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Abstract

Prostate cancer is the most diagnosed form of cancer and one of the leading causes of
cancer death in men, but survival rates are relatively high with sufficiently early diagnosis.
The current clinical model for initial prostate cancer screening is invasive and subject
to overdiagnosis. As such, the use of magnetic resonance imaging (MRI) has recently
grown in popularity as a non-invasive imaging-based prostate cancer screening method.
In particular, the use of high volume quantitative radiomic features extracted from multi-
parametric MRI is gaining attraction for the auto-detection of prostate tumours since it
provides a plethora of mineable data which can be used for both detection and prognosis
of prostate cancer.

Current image-based cancer detection methods, however, face notable challenges that
include noise in MR images, variability between different MRI modalities, weak contrast,
and non-homogeneous texture patterns, making it difficult for diagnosticians to identify
tumour candidates. In this thesis, a comprehensive framework for computer-aided prostate
cancer detection using multi-parametric MRI was introduced. The framework consists of
two parts: i) a saliency-based method for identifying suspicious regions in multi-parametric
MR prostate images based on statistical texture distinctiveness, and ii) automatic prostate
tumour candidate detection using a radiomics-driven conditional random field (RD-CRF).

The framework was evaluated using real clinical prostate multi-parametric MRI data
from 20 patients, and both parts were compared against state-of-the-art approaches. The
suspicious region detection method achieved a 1.5% increase in sensitivity, and a 10%
increase in specificity and accuracy over the state-of-the-art method, indicating its poten-
tial for more visually meaningful identification of suspicious tumour regions. The RD-
CRF method was shown to improve the detection of tumour candidates by mitigating
sparsely distributed tumour candidates and improving the detected tumour candidates
via spatial consistency and radiomic feature relationships. Thus, the developed frame-
work shows potential for aiding medical professionals with performing more efficient and
accurate computer-aided prostate cancer detection.
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Chapter 1

Introduction

Prostate cancer refers to the presence of uncontrolled cellular growth (i.e., a malignant tu-
mour) in the prostate, and can negatively affect urinary and erectile function in men. The
prostate is a walnut-sized gland in the male reproductive system responsible for making
seminal fluid, which mixes with sperm from the testicles to make semen. The prostate is
located below the bladder and in front of the rectum, surrounding part of the urethra (the
tube that carries urine and semen through the penis). While changes to the growth and
behaviours of the cells in the prostate may lead to non-cancerous (benign) conditions such
as prostatitis and benign prostatic hyperplasia (BPH), they can also lead to precancer-
ous conditions such as prostatic intraepithelial neoplasia (PIN), proliferative inflammatory
atrophy (PIA), and atypical small acinar proliferation (ASAP) [3].

Prostate cancer is the most diagnosed form of cancer (excluding non-melanoma skin
cancers) in Canadian and American men. According to the Canadian Cancer Society [4],
there was an estimated 24,000 new cases and 4,100 deaths from it in 2015, making it
the third most deadly cancer and accounting for approximately 10% of cancer deaths in
Canadian men. Similarly in the United States, there was an estimated 220,800 new cases
and 27,540 deaths from prostate cancer in 2015, making it the second most deadly cancer
and accounting for approximately 9% of cancer deaths in American men [5]. The median
patient survival time for metastatic prostate cancer is between 12.2 to 21.7 months [6].
However, prognosis is relatively good if the prostate cancer is detected early. As such, fast
and reliable prostate cancer screening methods are crucial and can greatly impact patient
survival rate, as the five-year survival rate in Canada is 96% for patients diagnosed with
prostate cancer before the metastatic stage [7].
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1.1 Current Cancer Screening Approaches

There are a variety of tests that are presently being used to screen for prostate cancer.
Typically, the current clinical model for initial prostate cancer screening employs a digital
rectal exam (DRE) and/or a prostate-specific antigen (PSA) test. The DRE is generally
done as part of a routine physical exam for adult males over the age of 50 (or in the 40s
in the case of men at higher risk of prostate cancer). A healthcare professional performs a
DRE by inserting a gloved finger into the rectum and feeling the prostate gland through
the rectum wall to check for enlargement or abnormalities. Generally done in tandem with
the DRE, the PSA test measures the amount of the PSA protein in the blood. A protein
made by the cells in the prostate gland, small amounts of PSA can normally be found in
the blood. While many physicians refer to a normal PSA level as 4.0ng/mL of blood of
less, the level of PSA varies and tends to increase with age. A PSA level of 2.5ng/mL is
typical for men younger than 50, with the upper limit of the normal PSA range increasing
by 1.0ng/mL per decade of age [3].

Given a positive DRE or an elevated PSA, a patient undergoes a follow-up transrectal
ultrasound (TRUS) guided multicore biopsy for risk stratification. TRUS imaging uses
ultrasound to image the prostate via a small probe inserted into the rectum. The probe
projects sound waves through the rectum and records the corresponding echoes. The
biopsy involves the systematic regional sampling of the prostate where typically eight or
more tissue samples are collected [8]. However, these samples are subject to sampling
error as prostate tumours imaged by TRUS tend to appear isoechoic and are difficult to
differentiate from surrounding tissue [9].

The PSA in particular has recently come under scrutiny, as recent studies [10, 11]
have demonstrated that the PSA test has a significant risk of overdiagnosis. Only an
estimated 50% of men who were screened as having elevated levels of PSA are actually
diagnosed with prostate cancer. This oversensitivity leads to expensive, painful, and often
unnecessary needle biopsies, and subsequent overtreatment [10–12]. These TRUS guided
prostate biopsies cause discomfort, possible sexual dysfunction, and increased hospital
admission rates due to infectious complications [13, 14]. In addition, the biopsies have a
chance of missing the cancerous tissue altogether. The challenge diagnosticians currently
face is how to improve prostrate cancer screening by reducing the overdiagnosis due to
conventional screening methods while still maintaining a high sensitivity.
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1.2 Computer-aided Detection via MRI

The use of magnetic resonance imaging (MRI) has recently grown in popularity as a non-
invasive imaging-based prostate cancer screening method. MRI is a medical imaging tech-
nique used in radiology to tomographically image anatomy and physiological processes.
Using a magnetic field and radio frequency pulses, MRI repeatedly acquires detailed two-
dimensional images (or “slices”) over a tissue volume. MRI has been shown to be a viable
alternative to the clinical prostate cancer screening methods currently in use.

A diagnosis through MRI, however, requires an experienced medical professional to
extensively review the data due to the subtle differences between cancerous and healthy
tissue. Manual labelling of image data is time-consuming, and can lead to diagnostic
inconsistencies due to variability between radiologists (inter-observer variability) and the
variability of a radiologist over multiple sittings (intra-observer variability) [15–17]. To
help raise the consistency of radiologists, the European Society of Urogenital Radiology
(ESUR) introduced the Prostate Imaging – Reporting And Diagnosis System (PI-RADS)
as a common set of criteria [18]. PI-RADS is a set of guidelines for interpreting multiple
MRI images, and aims to raise the consistency between diagnosticians through a common
set of criteria.

1.3 Multi-Parametric MRI

Within the realm of MRI, there are various types or modalities of MRI that allow for
different tissue details to be emphasized. One basic type of MRI is T2-weighted MRI which
focuses on measuring the fluid content of tissue, allowing for improved soft tissue contrast
relative to other medical imaging techniques [19, 20]. Another commonly used modality
is diffusion-weighted imaging (DWI); sensitive to the diffusion process of water molecules
in biological tissues, DWI has also been shown to provide promising delineation between
cancerous and healthy prostate tissue [21–23]. While T2-weighted and DWI have both
been shown to provide diagnostically relevant information for prostate cancer localization,
the use of multiple MRI modalities (multi-parametric MRI) has been shown to improve
prostate cancer screening [22, 24]. This is done via the extraction and combination of
unique information and features from each modality.

Despite PI-RADS and further development to standardize diagnostic practices across
multi-parametric MRI [25], there is still a level of subjectiveness across different medical
professionals when assessing MR images that can lead to inter-observer and intra-observer
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variability. In addition, notable challenges include noise in MR images, weak contrast, non-
homogeneous texture patterns, variability between different MRI modalities, and lack of
registration and/or misalignment between different MRI modalities. These challenges make
it difficult for diagnosticians to accurately and efficiently identify tumour candidates. As
such, computer-aided cancer detection methods are being developed to help the physicians
with the process.

1.4 Proposed Framework and Thesis Contributions

Figure 1.1: The proposed comprehensive framework for computer-aided prostate cancer
detection via suspicious region detection and tumour candidate classification using multi-
parametric MRI. In this thesis, the following multi-parametric MRI modalities were used:
T2-weighted imaging (T2w), apparent diffusion coefficient maps (ADC), computed high-b
diffusion-weighted imaging (CHB-DWI), and correlated diffusion imaging (CDI).

The purpose of this thesis is to propose a comprehensive framework for computer-aided
prostate cancer detection via suspicious region detection and tumour candidate classifica-
tion using multi-parametric MRI. There are two main contributions:

1. A saliency-based method for identifying suspicious regions in multi-parametric MR
prostate images based on statistical texture distinctiveness is presented in Chapter 3.

4



In this approach, a sparse texture model is learned via expectation maximization
from features derived from multi-parametric MR prostate images, and the statistical
texture distinctiveness-based saliency constructed using the model is used to identify
suspicious regions.

2. An approach for automatic prostate cancer detection using a radiomics-driven con-
ditional random field (RD-CRF) framework is detailed in Chapter 4. In addition to
the high-throughput extraction and utilization of a comprehensive set of voxel-level
quantitative radiomic features, the proposed RD-CRF framework leverages inter-
voxel spatial and radiomic feature relationships to ensure that the auto-detected tu-
mour candidates exhibit interconnected tissue characteristics reflective of malignant
prostate tumours.

The two main contributions of this thesis focus on creating a comprehensive framework
to provide decision support and aid medical professionals with consistently and accurately
localizing prostate cancer (shown in Figure 1.1). In this thesis, a review of relevant back-
ground concepts and state-of-the-art methods are presented in Chapter 2. Problem formu-
lation, methods, and comparison test results against other state-of-the-art methods using
patient data are detailed for the two main contributions in Chapters 3 and 4, respectively.
Lastly, conclusions, recommendations, and future works are discussed in Chapter 5.
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Chapter 2

Background

In this chapter, background information for the thesis and related works for each pro-
posed contribution are presented. The background theory for the used MRI modalities is
presented in Section 2.1, and the mathematical formulation for conditional random fields
(CRF) is described in Section 2.2. An introduction to radiomics and related research is
outlined in Section 2.3. A brief description of the existing types of approaches and their
limitations are discussed to lead into the thesis contributions. The relevant work for sus-
picious region identification is discussed in Section 2.3.1, and the applicable literature for
prostate tumour detection is presented in Section 2.3.2.

2.1 Imaging Modalities

In this thesis, the following multi-parametric MRI modalities were used: T2-weighted
imaging [26], apparent diffusion coefficient maps [27], computed high-b diffusion-weighted
imaging [28], and correlated diffusion imaging [29]. The modalities are summarized in the
following subsections.

2.1.1 T2-weighted
One of the basic MRI pulse sequences, T2-weighted (T2w) [26] imaging is a MR imaging
modality that characterizes the sensitivity of tissue using the differences in transverse (spin-
spin) relaxation time of the applied magnetic field. T2 is a time constant that characterizes
the time required for the magnetic resonance signal to irreversibly decay to 37% (or 1/e)
of its initial value. The transverse relaxation decay is defined as:

6



Figure 2.1: Sample T2-weighting images from eight different patients. Note that cancerous
regions are extremely difficult to identify visually in this modality.

Mxy(t) = Mxy(0)e−t/T2 (2.1)

where Mxy(t) is the decayed signal at time t, and Mxy(0) is the initial signal value.

T2w imaging has been shown to provide some useful information for classification due
to a small reduction in signal for cancerous tissue in the prostate gland [22]. Figure 2.1
shows some sample T2w prostate MR images.

2.1.2 Apparent Diffusion Coefficient

Diffusion-weighted imaging (DWI) is an imaging modality in which the sensitivity of the
tissue to the Brownian motion water molecules is measured through the application of lobe
gradients (pairs of opposing magnetic field gradient pulses) [23]. The diffusion-weighted
signal S is formulated as:

S = S0e
−bD (2.2)

where S0 is the signal intensity without diffusion weighting, b is the degree of applied
diffusion weighting and indicated the gradient strength and pulse duration, and D is the
strength of the diffusion. The diffusion-weighted images are typically generated using
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Figure 2.2: Sample apparent diffusion coefficient maps computed from diffusion-weighted
images from eight different patients. While lower resolution than T2w images, there is
increased contrast between cancerous and healthy tissue.

different b values, and can be used to estimate apparent diffusion coefficient (ADC) maps
via least-squares or maximum likelihood methods [23] by rearranging 2.2 for the strength
of diffusion D:

A = −1

b
ln
S

S0

(2.3)

Cancerous tissue in ADC maps (shown in Figure 2.2) is usually presented with a darker
intensity relative to surrounding healthy tissue [27].

2.1.3 Computed High-b Diffusion Weighted Imaging

Previous research has shown that high b-values in DWI data (e.g., b-values greater than
1, 000s/mm2) allow for increased delineation between healthy and cancerous tissue [28,
30]. Due to hardware limitations, acquiring high b-value images for prostate imaging is
infeasible. CHB-DWI is a computational model for reconstructing high b-value DWI data
using low b-value acquisitions [28, 31].

Using the general equation for a diffusion-weighted signal Si:

Si = Sγe
−(bi−bγ)A (2.4)
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Figure 2.3: Sample computed high-b diffusion weighted images (computed using Eq. 2.7)
from eight different patients.

where Sγ is the reference signal corresponding to bγ and A is the ADC map, an estimate

Â for the ADC map can be formulated as a Bayesian estimation problem [28]:

Â = arg max
A

P (S|A) (2.5)

= arg max
A

∏
i

P (Si|A) (2.6)

where P (S|A) is the conditional probability of the signal given A, and Si is a single DWI
measurement corresponding to b-value bi.

Using the estimate Â, computed diffusion-weighted images Ŝi can be obtained for any
desired b-value bi as follows:

Ŝi = Sγe
−(bi−bγ)Â (2.7)

Our patient data includes CHB-DWI images (Figure 2.3) constructed at a b-value of
2, 000s/mm2 using a Bayesian model with the least-squares estimation used to estimate
our ADC maps.

2.1.4 Correlated Diffusion Imaging

Correlated Diffusion Imaging (CDI) [29] is a new diffusion MRI modality that leverages the
joint correlation in signal attenuation across multiple gradient pulse strengths and timings
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Figure 2.4: Sample correlated diffusion images (computed using Eq. 2.8) from eight differ-
ent patients.

to improve delineation between cancerous and healthy tissue. The overall characterization
of the water diffusion is better represented via the correlation of signal attenuation across
all b-values within a local sub-volume, which is obtained via signal mixing [29]:

CDI(x) =

∫
...

∫ bn

b0

S0(x)...Sn(x)P (S0(x), ...Sn(x)|

V (x)× dS0(x)...dSn(x) (2.8)

where bi represents the utilized b-values, x is the spatial location, S is the acquired signals,
P represents the conditional joint probability density function, and V (x) is the local sub-
volume centred at x. Figure 2.4 shows some sample CDI prostate images.

2.2 Conditional Random Fields

First proposed by Lafferty et al. [32], conditional random fields (CRFs) are a framework
for building probabilistic models to label data. There are several advantages of CRFs over
hidden Markov models [33] and stochastic grammars, such as the ability to relax the strong
independence assumptions made in those models. In addition, CRFs also bypass the label
bias problem of maximum entropy Markov models [34] and other discriminative Markov
models. The label bias problem [32] refers to the susceptibility of these models to favour
states with few successor states, i.e., the transitions leaving a given state compete only
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against each other, rather than against all other transitions in the model. CRFs solve this
bias problem by having a single exponential model for the joint probability of the entire
set of labels given the observations.

CRFs can be formulated as a graph G(V , E), where V is the set of vertices (nodes)
representing the states Y and E is the set of edges of the graph. Given G, (X, Y ) is a
conditional random field where the random variables y ∈ Y obey the Markov property
with respect to the graph when conditioned on X. In this thesis, we use an undirected
CRF, the probability distribution of which can represented using a product of non-negative
functions of the maximal cliques of graph G [35]:

p(v) =
1

Z

∏
c∈C

Ψc(vc) (2.9)

where factors Ψc are potential functions of vc within clique c ∈ C; conditionally independent
nodes belong to different cliques and do not appear within the same factor.

The general model for a CRF is formulated as

P (Y |X) =
1

Z(X)

∏
c∈C

Ψc(Xc, Yc) (2.10)

where P (Y |X) is the conditional probability of labels Y given observations X, and Z(X)
is the normalization function given the observations X.

2.3 Radiomics

More recently, a particularly promising and powerful approach to cancer detection that
could have significant potential for prostate cancer detection is radiomics [2,36–39], which
involves the high-throughput extraction and utilization of a large amount of quantitative
features for characterizing tumour phenotype. Radiomics facilitates for a high-dimensional
mineable feature space that can be utilized for both detection and prognosis [36]. Studies on
lung and head-and-neck cancer patients have confirmed the prognostic power of radiomics
features when it comes to patient outcome prediction for personalized medicine [36–38].
However, the prognostic capability of radiomics features has only very recently been in-
vestigated for prostate cancer detection (general framework shown in Figure 2.5) and the
quantitative characterization of prostate tumour phenotype.
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Figure 2.5: Radiomic features extracted from multi-parametric MRI in a general cancer
detection framework.

2.3.1 Suspicious Region Identification

One specific area of research is the identification of suspicious regions to aid physicians with
performing a more efficient and accurate diagnosis. The current method for identifying
suspicious regions is to threshold apparent diffusion coefficient (ADC) maps, as low ADC
values are associated with tumorous tissue [22]. Cameron et al. [1] proposed a threshold-
based approach where tissue associated with ADC values within a threshold range are
automatically identified as suspicious.

y =

{
1 a ∈ A, a < 1000× 10−6mm2/s

0 otherwise
(2.11)

where a is a single value in the ADC map A. However, this method depends on fixed
thresholds, making it susceptible to noisy MR images and ADC variations across different
sets of multi-parametric MRI data.

2.3.2 Computer-Aided Prostate Tumour Detection

Current methods for radiomics-driven automatic computer-aided prostate tumour detec-
tion typically use a supervised method trained on a set of low-level features calculated from
multispectral MR images. Lemâıtre et al. [40] recently published a comprehensive review of
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state-of-art methods for prostate cancer detection and diagnosis. These radiomics-driven
methods use hand-crafted feature sets and some combination of the following classifiers:
Bayesian, random forest, logistic regression, neural network, linear discriminant, Gentle-
Boost, support vector machines, relevance vector machines, fuzzy Markov random fields,
and conditional random fields.

Madabhushi et al. [41] extracted three-dimensional texture features from MRIs that had
been corrected for background inhomogeneity and nonstandardness. For each image voxel,
a trained Bayesian classifier assigns a malignancy “likelihood” to each feature indepen-
dently, and the “likelihood” images are then combined using an optimally weighted feature
combination scheme. Using similar features as [41], Tiwari et al. proposed a method that
combines structural and metabolic imaging data for prostate cancer detection and detected
cancerous regions within prostate tissue using a random forest classifier.

Duda et al. [42] published a semi-automatic multi-image texture analysis method that
simultaneously analysed several images (each acquired under different conditions) of the
same organ. In addition to the features used by [41], Duda et al. also extracted fractal-
based and run length features and assessed the potential of multi-image texture analysis
using different classifiers including logistic regression, a neural network, and support vector
machines.

Litjens et al. [43] used features that represent pharmacokinetic behaviour, symmetry
and appearance, and other anatomical aspects. In a two-stage computer-aided prostate
cancer detection system, Litjens et al. detected initial candidates via multi-atlas-based
prostate segmentation using a selective and iterative method for performance level esti-
mation (SIMPLE) [44]. The authors then experimented with three different classifiers
for voxel classification and candidate classification: linear discriminant, GentleBoost, and
random forest.

Similar to Litjens et al., Vos et al. [45] also developed a two-stage classification ap-
proach for computer-aided prostate cancer detection. Vos et al. analysed lesion candidates
and discriminated prostate cancer from benign abnormalities using a linear discriminant
classifier. Ozer et al. [46] used parametric images derived from DCE MRI, and proposed
the use of relevance vector machines (RVM) with a Bayesian framework. Ozer et al. then
evaluated the method against support vector machines (SVM) with the same framework.

Khalvati et al. [39] proposed a multi-parametric MRI texture feature model for radiomics-
driven prostate cancer analysis. The texture feature model, based on the one proposed
by Peng et al. [47], comprises of 19 low-level texture features extracted from each MRI
modality, including features extracted from the gray-level co-occurrence matrix (GLCM).
Khalvati et al. [2] more recently published radiomics-driven models as an extension of the

13



previous texture feature model. An attempt at designing comprehensive quantitative fea-
ture sequences, the radiomics-driven models include additional MRI modalities, additional
low-level features, and feature selection.

Recently, the use of random fields for prostate cancer detection has grown in popularity.
The use of fuzzy Markov random fields (MRFs) in particular has been investigated [48–50],
as fuzzy MRFs are an unsupervised method for cancerous tissue classification. Liu et al. [48]
proposed a new method for estimating the parameters of the Markovian distribution of the
measured data, and applied it to feature vectors extracted from multispectral prostate MRI
datasets for prostate cancer detection. An extension on previous work, Ozer et al. [49] also
propose the use of fuzzy MRFs as an unsupervised alternative to the previously proposed
SVM and RVM, and evaluate the classifiers using feature vectors formed from the peripheral
zone of multispectral prostate MRI datasets.

Lastly, Artan et al. [50] presented a cost-sensitive SVM cancer localization method as
an extension to the conventional SVM for prostate cancer detection. Trained via a full
grid search over the ν and γ values (SVM kernel parameters) to determine the optimal
parameters, the cost-sensitive SVM shows improved results relative to the conventional
SVM. Artan et al. also proposed a new segmentation method by combining conditional
random fields (CRF) with a cost-sensitive framework. Using node potential parameters
w obtained from SVM and subsequently estimated edge potential parameters κ, the cost-
sensitive CRF demonstrated improved cost-sensitive SVM results by incorporating spatial
information.
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Chapter 3

Suspicious Region Identification in
Multi-Parametric Prostate MRI

In this chapter, the proposed method for identifying suspicious regions using prostate multi-
parametric MRI is described. The components of the method are region-based textural
representations, sparse texture model, statistical textural distinctiveness, and suspicious
region identification via saliency, and are presented in Section 3.2, Section 3.3, Section 3.4,
and Section 3.5, respectively. The patient data used in this thesis is described in detail
in Section 3.6. Experimental setup and applicable quantitative metrics are outlined in
Section 3.7, and both quantitative and visual results are shown in Section 3.8. At the
end of this chapter, a brief summary of the method and implications of the results are
discussed.

3.1 Problem Formulation

One specific area of research is the identification of suspicious regions to aid physicians with
performing a more efficient and accurate diagnosis. The current method for identifying
suspicious regions is to threshold apparent diffusion coefficient (ADC) maps, as low ADC
values are associated with tumorous tissue [22]. Cameron et al. [1] proposed a threshold-
based approach where tissue associated with ADC values within a threshold range are
automatically identified as suspicious. However, this method depends on fixed thresholds,
making it susceptible to noisy MR images and ADC variations across different sets of
multi-parametric MRI data.
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Figure 3.1: Proposed framework for identifying suspicious regions using prostate multi-
parametric MRI. Unique texture features extracted from different MRI modalities are
used to learn a sparse texture model, and suspicious regions are identified via a statistical
textural distinctiveness-based saliency map.

To facilitate a more reliable diagnosis, a novel method for identifying suspicious regions
indicative of potential prostate cancer using texture-based saliency in multi-parametric
MR images is proposed. The proposed method uses unique texture information from each
MRI modality to learn a sparse texture model, and better characterize suspicious tissue
within a patient’s MRI data.

A novel method is proposed for identifying suspicious regions to better aid physicians
with performing more efficient and accurate diagnoses. The proposed method uses multi-
parametric MR images and incorporates cross-modality texture features to better identify
suspicious regions via statistical textural distinctiveness. Figure 3.1 shows the general
algorithmic framework developed.
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3.2 Region-based Textural Representations

Region-based (or image patch-based) textural representations are used to allow for the
characterization of texture features indicative of suspicious regions in prostate MR images.
For region-based textural representations, we incorporate the feature set proposed by Khal-
vati et al. [39], which consists of sets of 19 low-level texture features extracted each from
T2-weighted (T2w) images, apparent diffusion coefficient (ADC) maps, computed high-b
diffusion-weighted imaging (CHB-DWI) data, and correlated diffusion imaging (CDI) data,
to better capture healthy and cancerous tissue characteristics. These MRI modalities were
selected based on their potential to separate cancerous from healthy prostate tissue.

The sets of texture features are combined into a single textural representation h(x), and
a compact version of the textural representation is produced using principal component
analysis (PCA). PCA [51] is used to increase the variance between the elements of the
texture descriptor and to improve the efficiency of the subsequent sparse texture model
and statistical textural distinctive model stages. A compact textural representation t(x)
is produced using the w principal components of h(x) with the highest variance:

t(x) = 〈Φi(h(x))|1 ≤ i ≤ w〉 (3.1)

where Φi is the ith principal component of h(x). While w can be selected based on variance
compactness, w components of h(x) were selected to represent 90% of the variance of all the
textural representations as determined through extensive empirical testing via parameter
grid search.

3.3 Sparse Texture Model

To characterize healthy and suspicious tissue for a patient, a sparse texture model is learned
using the extracted multi-parametric MRI texture features [39]. The sparse texture model
incorporates unique texture features from each MRI modality to learn tissue characteristics
via cross-modality texture information. Thus, the sparse texture model can better identify
healthy and suspicious tissue.

Using a subset t(x)T of the compact textural representations t(x) as training data, a
global texture model is defined to represent the heterogeneous characteristics of healthy
and suspicious prostate tissue. As global texture modelling is computationally expensive,
we generalize an MRI slice as being composed of a set of regions where a particular texture
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pattern is repeated over a given area. In addition, the number of areas with unique texture
patterns is assumed to be much fewer than the number of individual voxels in the training
data, allowing for the a sparse texture model to fully characterize the MRI data.

Using this generalization, we can establish a textural sparsity assumption, and the
global textural characteristics of prostate tissue can be well-represented using a small set
of distinctive local textural representations. This allows for the use of a sparse texture
model, defined as a set of m representative texture atoms:

T r = {tri |1 ≤ i ≤ m} (3.2)

The sparse texture model used in the proposed method is a set of representative texture
atoms corresponding to healthy or suspicious tissue, where each texture atom represents
the mean and covariance (i.e., tri ∼ N (µ

i
,Σi)) of a particular texture pattern characteristic

of healthy or suspicious tissue. The representative atoms in the sparse texture model are
learned via expectation maximization [52] in a Gaussian mixture model [53].

3.4 Statistical Textural Distinctiveness

Suspicious regions in prostate MRI data can be characterized as areas that are highly
unique and texturally distinct. Using the concept of statistical textural distinctiveness [54],
we quantify the distinctiveness of texture patterns and uncover the underlying saliency by
using the statistical relationship between texture patterns across different MRI modalities.

To define statistical textural distinctiveness between two representative texture atoms
(denoted as tri and trj) in the sparse texture model, we use Kullback-Leibler (KL) diver-
gence [55] to measure the statistical difference between the representative texture atoms
in the sparse texture model:

βi,j = log
|Σj|
|Σi|
− w + trace(Σ−1j Σi) +

(µ
j
− µ

i
)TΣ−1j (µ

j
− µ

i
)

2
(3.3)

where u is the number of PCA components selected, µ
i

and µ
j

represent the mean of tri and

trj , respectively, and Σi and Σj represent the covariance of tri and trj , respectively. Thus,
the distinctiveness metric βi,j increases as the texture patterns become more distinct from
one another.
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3.5 Suspicious Region Detection via Saliency Map Com-

putation

As the majority of prostate tissue is considered to be healthy, salient regions can be inter-
preted as suspicious due to the uniqueness and statistical occurrence of the corresponding
cross-modality texture characteristics. Given a subset of compact texture features used
for testing (denoted as t(x)Z), the saliency map for a given MRI image can be computed
using the previously determined statistical textural distinctiveness graphical model. The
saliency αi is defined as:

αi =
m∑
j=1

βi,jP (tri |t(x)Z) (3.4)

where P (tri |Z) is the occurrence probability of tri in t(x)Z .

For Λi being the set of texture representations that corresponds to saliency αi, voxels
belonging to salient representative texture atoms Λi (i.e., αi >

αmax
2

) are classified as
regions of suspicious tissue, with all other voxels classified as healthy tissue. That is, each
voxel x in a given MRI image is assigned a label y:

y =

{
1 x ∈ Λi, αi >

αmax
2

0 otherwise
(3.5)

3.6 Patient Data

The performance of the proposed framework was evaluated using the MP-MRI data of
20 patients (17 with cancer and 3 without cancer) acquired using a Philips Achieva 3.0T
machine at Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada. Institutional
research ethics board approval for this study was obtained at Sunnybrook Health Sciences
Centre. For each patient, the following MP-MRI modalities were obtained (Table 3.1): i)
T2w, ii) DWI, and iii) CDI. The patients’ age ranged from 53 to 83. Table 3.1 summarizes
the information about the 20 patients’ datasets used in this research. MP-MRI imaging
data were processed in the ProCanVAS (Prostate Cancer Visual Analysis System) plat-
form developed jointly by Sunnybrook Research Institute, Toronto, ON, Canada and the
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University of Waterloo, Waterloo, ON, Canada. The data set includes segmentation infor-
mation to isolate the prostate, and ground truth data for tumour size and location. All
imaging data were reviewed and marked as healthy and cancerous tissue by a radiologist
with 18 and 13 years of experience interpreting body and prostate MRI, respectively, and
the radiologists’ markings were confirmed by pathology data to be Gleason scores of 7 or
above.

Table 3.1: Description of the prostate T2w, DWI, and CDI imaging data

Modality DFOV (cm2) Resolution (mm3) TE (ms) TR (ms)

T2w 22× 22 0.49× 0.49× 3 110 4,687

DWI 20× 20 1.56× 1.56× 3 61 6,178

CDI 20× 20 1.56× 1.56× 3 61 6,178

3.7 Experimental Setup

Each patient dataset had corresponding T2w images, ADC maps, CHB-DWI data, and
CDI data. Using the radiologist contour of the prostate, a rectangle cropped around
the prostate gland was selected as the region of interest (ROI) for each MRI slice. The
performance of each method was evaluated using leave-one-patient-out cross-validation.
A subset of the training texture features were randomly selected and used to train the
classifier, and the voxels in a single MRI slice were classified as either healthy or cancerous
tissue and assigned the saliency value of the nearest texture atom.

In addition, the number of texture atoms used to compute the spare texture model (as
described in Subsection 3.3) was varied to determine the optimal number of representative
texture atoms for identifying suspicious regions in prostate MR images. The ADC-based
method was compared against the proposed texture distinctiveness method (TD) via sen-
sitivity, specificity, and accuracy metrics.

Sensitivity =
TP

P
Specificity =

TN

N

Accuracy =
TN + TP

N + P
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where the performance of each method was quantified by the metrics’ closeness to one.
TP is the number of voxels in the intersection of the identified cancerous tissue and the
radiologist’s tissue segmentation, TN is the number of voxels not in the identified tissue
that are also not in the radiologist’s segmentation, N is the number of voxels not in the
radiologist segmented tissue and P is the number of voxels in the radiologist segmented
tissue.

3.8 Experimental Results

The proposed textural distinctiveness method (TD) was evaluated using both four-atom
and six-atom sparse texture models. Table 3.2 shows the performance metrics for the
ADC-based method [1] and the proposed method. The testing data contained 52 tumours
(as identified by an experienced radiologist) across the slices from 13 different patients.

Table 3.2: Comparison of TD (trained with both 4 and 6 texture atoms) with ADC-based
method [1]. TD has similar sensitivity values as the ADC-based method, and improved
specificity and accuracy values.

Sensitivity Specificity Accuracy

ADC-based method [1] 0.7911 0.7107 0.7115
TD (4 texture atoms) 0.8088 0.8285 0.8283
TD (6 texture atoms) 0.8103 0.8303 0.8301

As seen in Table 3.2, the proposed TD method outperformed the ADC-based method [1]
in terms of sensitivity, specificity, and accuracy. While there was only a relatively small in-
crease in sensitivity (approximately 1.5%), TD demonstrated an increase of at least 10% in
specificity and accuracy relative to the ADC-based method. This is especially beneficial, as
a low specificity negatively impacts a diagnostician’s ability to perform quick and accurate
assessments of MRI data. By increasing specificity, TD minimizes the number of wrongly
detected regions that contain no tumour candidates. This is important for procedures such
as radical prostatectomy where an extremely high specificity rate is required.

Figure 3.2 shows a visualization of the suspicious regions detected using the ADC-based
method [1] and the proposed TD method using four and six representative texture atoms.
While all methods identify the cancerous regions as suspicious, the ADC-based method
in particular has a tendency to be over-sensitive and often identifies a large portion of
the prostate tissue as suspicious. A visual inspection of the identified suspicious regions
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shows that TD consistently produces spatially compact and useful regions regardless of the
number of texture atoms.

3.9 Summary

A novel method was proposed to aid physicians in efficiently and accurately diagnosing
patients via the identification of suspicious regions in prostate MR images. We extracted
unique textural information from different MRI modalities, and used a sparse texture model
to learn tissue texture characteristics. As the majority of prostate tissue is considered to be
healthy, texturally distinct regions can be interpreted as suspicious due to the uniqueness
and statistical occurrence of the corresponding cross-modality texture characteristics.

(a) (b) (c) (d)

Figure 3.2: Visual comparison of identified suspicious regions (shown in red) between (a)
ADC-based method [1], (b) TD using four texture atoms, (c) TD using six texture atoms,
and (d) radiologist segmented regions.
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The proposed statistical textural distinctiveness approach (using four-atom and six-
atom sparse texture models) was evaluated against the ADC-based method [1]. In both
cases, statistical textural distinctiveness produced higher sensitivity, specificity, and accu-
racy values than the state-of-art ADC-based method. In additional, statistical textural
distinctiveness also identified suspicious regions on a per patient basis, rather than relying
on a fixed ADC value characteristic of typical cancerous tissue (as is the case with the
ADC-based threshold method). Thus, statistical textural distinctiveness shows potential
for more flexible and visually meaningful identification of suspicious tumour regions.

Achieving a 1.5% sensitivity increase and a 10% specificity and accuracy increase
over current the state-of-the-art method, the proposed statistical textural distinctiveness
method shows potential for more visually meaningful identification of suspicious tumour
regions and allows for more accurate tumour classification. Particularly noteworthy is
the 10% specificity increase of the proposed statistical textural distinctiveness approach,
as a high specificity is crucial for imaging-guided procedures such as biopsy or radical
prostatectomy.

Future work includes the further investigation of additional MRI modalities, and the
use of spatial consistency to enforce more compact identified suspicious areas. Applications
include identifying suspicious regions for clinicians to better stream-line a patient’s diagno-
sis, and automatically identifying regions of interest for computer-aided tumour detection
methods. In the next chapter, a novel algorithm for prostate cancer tumour detection is
presented.

23



Chapter 4

Tumour Detection in
Multi-Parametric Prostate MRI

In this chapter, the method for prostate tumour detection is presented. The quantita-
tive radiomics-driven feature model is introduced in Section 4.2, and the radiomics-driven
conditional random field (RD-CRF) is formulated in Section 4.3. Experimental setup is
outlined in Section 4.4, and results were obtained using the data previously described in
Chapter 3. Experimental results are shown in Section 4.5, and detailed discussion of the
results is presented in Section 4.6. A brief summary of the method and related future
works are discussed at the end of this chapter.

4.1 Problem Formulation

Inspired by genetic profiling for cancer risk stratification (genomics), Khalvati et al. [2] in-
troduced comprehensive and quantitative radiomics feature models consisting of hundreds
of radiomics features derived from MP-MRI data via feature selection and classification for
the purpose of voxel-resolution prostate tumour detection. As the first voxel-level radiomics
feature models based on MP-MRI data designed for prostate tumour characterization to
be introduced, the results of the studies demonstrated the prognostic power of radiomics
for the purpose of automatic voxel-resolution prostate cancer detection. Nevertheless, one
limitation of such voxel-resolution radiomics-driven prostate tumour detection approaches
is that they utilize the extracted quantitative radiomics features associated with individual
voxels on an independent basis, and do not account for the interconnected tissue character-
istics reflective of cancerous tumours. As such, the incorporation of additional information
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regarding the spatial and radiomics feature relationships between voxels has significant
potential for achieving a more reliable voxel-resolution radiomics-driven prostate cancer
detection performance.

We propose a novel approach for automatic prostate cancer detection based on a
radiomics-driven conditional random field (RD-CRF) framework. The proposed RD-CRF
framework utilizes the quantitative MP-MRI radiomics feature model proposed in [2] and
incorporates not only the spatial relationships between voxels, but the quantitative ra-
diomics feature relationships between voxels into a conditional random field model. This
facilitates for the enforcement of interconnected tissue characteristics reflective of cancerous
tumours, thus better representing the actual cancerous tissue phenotype.

Here, we present the methodology and underlying principles of a novel method for auto-
matic pixel-resolution prostate cancer detection via a radiomics-driven conditional random
field (RD-CRF) framework. While existing prostate cancer detection methods can gener-
ally identify tumours, these methods tend to identify regions that are sparsely distributed
(as shown in Section 4.2) that are unrepresentative of typical cancerous tissue. As such,
the proposed RD-CRF framework leverages the full set of pixel-level quantitative radiomics
features and incorporates inter-pixel spatial and feature relationships via a conditional ran-
dom field to detect tumours more reliably by taking into account the inter-connected tissue
characteristics reflective of cancerous tumours.

An overview of the proposed framework for pixel-resolution prostate cancer detection is
shown in Figure 4.1. First, a large amount of quantitative radiomics features are extracted
from MP-MRI data using a quantitative radiomics feature model. Second, a classifier
trained using such quantitative radiomics features from training data is used to perform
initial pixel-resolution cancer detection. A radiomics-driven conditional random field (RD-
CRF) framework is then used to perform final pixel-resolution cancer detection using the
initial results produced by the classifier and the full set of extracted quantitative radiomics
features of the current patient case. The detailed methodology behind each step of the
proposed framework is described below.

4.2 Quantitative Radiomics-driven Feature Model

First, the proposed framework incorporates the quantitative radiomics feature model pro-
posed in [2], which was specifically designed for extracting a large number of quantitative
radiomics features from MP-MRI data for the purpose of prostate cancer detection. Sets
of 96 low-level radiomics features (4 from first-order and 72 from second-order statisti-
cal features, 8 from Kirsch edge detection, and 12 from Gabor filters [2]) were extracted
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Figure 4.1: The proposed framework for automatic voxel-resolution prostate cancer de-
tection. A large amount of quantitative radiomics features are extracted from MP-MRI
data using a quantitative radiomics feature model. A classifier trained using quantitative
radiomics features from training data is used to perform initial voxel-resolution cancer de-
tection. A radiomics-driven conditional random field (RD-CRF) framework is then used
to perform final voxel-resolution cancer detection using the initial results produced by the
classifier and the full set of extracted quantitative radiomics features of the current patient.

from each of following 8 different forms of MP-MRI data: i) T2-weighted (T2w) imag-
ing data, ii) apparent diffusion coefficient (ADC) data, iii) computed high-b diffusion-
weighted imaging (CHB-DWI) data, iv) correlated diffusion imaging (CDI) data, and v-
viii) diffusion-weighted imaging (DWI) data acquired at 4 individual b-values (0, 100, 400,
and 1000s/mm2). This results in a total of 768 features used within the comprehensive
quantitative radiomics feature model that can better capture both healthy and cancerous
tissue characteristics. A SVM classifier was then trained using quantitative radiomics fea-
tures extracted from training data using this radiomics feature model, which can then be
used to perform voxel-resolution classification on a new unseen patient case.

The MP-MRI modalities used in this radiomics feature model were selected based on
their potential to separate cancerous from healthy prostate tissue. T2w imaging data
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has been shown to provide some localization information for tumour candidates due to
a small reduction in signal in the cancerous tissue [22]. Similarly, cancerous tissue in
ADC data is typically represented by a darker intensity relative to surrounding tissue [27].
Previous research has shown that high-b values in diffusion weighted imaging data allows
for increased delineation between cancerous and healthy tissue [28, 30]. Lastly, CDI data
takes advantage of joint correlation in signal attenuation across multiple gradient pulse
strengths and timings to improve delineation between cancerous and healthy tissue [29,56].

One challenge with classifying tissues into cancerous and healthy as performed in exist-
ing state-of-the-art voxel-resolution radiomics-driven cancer detection methods (e.g., [2])
is that the detected tumour candidates tend to be sparsely distributed across the prostate
region (see Figure 4.2), leading to high false positive and negative rates. This sparsity
is a result of existing approaches not taking into account inter-voxel spatial relationships
and radiomics feature relationships between voxels, and results in situations where there
are missing voxels within a tumour candidate, as well as scattered voxels that may be
considered as cancerous voxels. As cancerous tissue tends to be localized to one or two
regions of a prostate, and exhibit interconnected tissue characteristics, this motivates the
use of a probabilistic radiomics-driven framework that better accounts for such character-
istics to improve prostate cancer detection performance, which will be described in the
next section. Therefore, the proposed framework incorporates cross-modality spatial pri-
ors to enforce spatial relationships between voxels while maintaining relationships between
cross-modality radiomic features.

Figure 4.2: Examples of tumour candidates detected by [2]. The identified regions (shown
in red) are sparsely distributed across the prostate tissue, contrary to the compact regions
characteristic of cancerous tissue.
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4.3 Radiomics-driven Conditional Random Field

The theory behind the radiomics-driven conditional random field (RD-CRF) framework
used to perform final voxel-resolution cancer detection based on the initial results pro-
duced by the classifier and the full set of extracted quantitative radiomics features of the
current patient case can be described as follows. Conditional random fields [32, 35] were
first proposed by Lafferty et al. [32] and have previously been used for image labelling [57].
The proposed RD-CRF model extends the conditional random field (CRF) model to lever-
age the full set of voxel-level quantitative radiomics features derived from MP-MRI data
while taking into account the spatial relationships and quantitative radiomics feature re-
lationships between voxels to better enforce interconnected tissue characteristics.

Given the prostate MP-MRI data pertaining to the patient, the tumour detection prob-
lem is formulated as the conditional probability of a set of binary labels (i.e., suspected
prostate tumour or healthy tissue). The RD-CRF framework models the conditional prob-
ability of the binary label field Y and corresponding X observations as follows:

P (Y |X) =
1

Z(X)
exp(−E(Y,X)) (4.1)

where Z(X) is the normalizing function and E(Y,X) represents the energy function factor-
ized from different feature functions. The labelling problem of the prostate as healthy or
cancerous is optimized using a Maximum A Posteriori (MAP) approach where minimizing
the energy function E(Y,X) produces the best classification of healthy tissue and tumour
candidates:

Y ∗ = arg min
Y

E(Y,X) (4.2)

where Y ∗ is the optimal solution given the patient’s MP-MRI. As Y ∗ maximizes the prob-
ability of healthy and cancerous tissue classification via the minimization of E(Y,X), the
formulation of the energy function is crucial in obtaining an accurate binary label field.

E(Y,X) can be formulated as some combination of unary and pairwise potential func-
tions, and is generally defined as:

E(Y,X) =
n∑
i=1

ψu(yi, X) +
∑
ϕ∈C

ψp(yϕ, X) (4.3)
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E(Y,X) incorporates the data-driven unary function ψu(yi, X) and the inter-voxel spatial
and radiomic features-based pairwise function ψp(yϕ, X) into the model. In Equation 4.3,
yi ∈ Y is a single state in the set Y = {yi}ni=1 and represents the label of a single voxel
in the binary label field. X = {xi}ni=1 is the corresponding set of observations from the
prostate MR-MRI data as represented by the quantitative radiomic features, and yϕ ∈ Y
is the subset of labels (clique) in the surrounding neighbourhood. For each node i, there
is a set of neighbours N(i):

N(i) = {j|j = 1 : n, j 6= i} (4.4)

where |N(i)| was empirically chosen to be 24 (i.e., a 5× 5 neighbourhood centred at node
i). The proposed RD-CRF framework uses a pairwise clique structure

C = {Cp(i)}ni=1 (4.5)

Cp(i) = {(i, j)|j ∈ N(i)} (4.6)

to enforce the consistency of spatial and radiomics feature relationships in the identification
of tumour candidates. Each node i represents a single voxel in a patient’s MP-MRI data,
and N(i) represents the corresponding neighbouring axial voxels.

For the proposed RD-CRF framework, the results of the trained classifier are used as
the data-driven unary term ψu(.), while the pairwise term ψp(.) is factorized based on the
set of clique structures C for a pairwise clique c ∈ C.

By taking full advantage of the comprehensive set of 768 quantitative radiomics fea-
tures extracted from the different MP-MRI modalities along with spatial and radiomics
feature relationships within the RD-CRF framework, one can better characterize healthy
and cancerous tissue phenotype and thus achieve improved final voxel-resolution cancer
detection.

To obtain the final voxel-resolution tumour detection results, the energy function E(Y,X)
is minimized using gradient descent, and the binary label field is assigned to each voxel as
y∗ ∈ optimal solution Y ∗ (as defined in Equation 4.2):
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y∗ =

{
1 cancerous tissue

0 healthy tissue
(4.7)

Graph G(V , E) is the realization of the proposed RD-CRF for an axial MRI slice, where
V is the set of nodes representing the states Y ∗ = {0, 1} and E is the set of edges of the
graph.

Figure 4.3: Realization of proposed radiomics-driven conditional random field framework.
For each node yi, there is a set of corresponding measurements as radiomic features xi.
The connectivity between each pair of nodes yi and yj is represented by the solid red line
eij.

As shown in Figure 4.3, each node y represents a single voxel and has a set of associated
observations xi. Each xi represents the set of quantitative radiomics features [2] calculated
across all MP-MRI modalities for a given voxel. The edge eij is the connectivity between
a pair of nodes, and represents the relationship between two voxels.

4.4 Experimental Setup

The experimental setup used to assess the efficacy of the proposed RD-CRF framework for
voxel-resolution prostate cancer detection is described as follows. Using the data previously
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described in Chapter 3, each patient dataset had corresponding T2w imaging data, ADC
data, CHB-DWI data, and CDI data. For each modality, the testing data contained a total
of 40,975 samples (40,369 healthy and 606 cancerous samples confirmed by the radiologist)
across the slices from 20 different patients1. Using the radiologist contour of the prostate,
a rectangle cropped around the prostate gland was selected as the region of interest (ROI)
for each MP-MRI slice.

The voxel-resolution cancer detection results produced by the proposed RD-CRF frame-
work was compared with that produced using the state-of-the-art method proposed in [2]
via sensitivity, specificity, and accuracy metrics (as shown in Chapter 3), where the perfor-
mance of each method was quantified by the metrics’ closeness to one. TP is the number
of voxels in the intersection of the method’s identified cancerous tissue and the voxels con-
tained in the radiologist’s tissue markings, TN is the number of voxels not in the method’s
identified tissue that are also not in the radiologist’s markings, N is the number of voxels
not in the radiologist’s marked tissue, and P is the number of voxels in the radiologist’s
marked tissue.

In addition, the Jaccard index [58] and Sørensen–Dice coefficient [59] were used to
compute the overlap between the radiologist’s marked tissue and the voxel-resolution cancer
detection results produced by the proposed RD-CRF framework and the state-of-the-art
method proposed in [2].

Jaccard =
|A ∩B|
|A ∪B|

Sørensen–Dice =
2|A ∩B|
|A|+ |B|

where A is the set of voxels contained in the method’s identified cancerous tissue and
B is the set of voxels contained in the radiologist’s tissue markings. The performance
of each method was evaluated using leave-one-patient-out cross-validation, with training
radiomics features were selected from all but one patient and used to train the classifier,
and the voxels in the remaining patient’s MRI dataset were classified as either healthy and
cancerous tissue.

1To balance the training data in terms of number of healthy and cancerous samples, when training
the SVM classifier, smaller subsets of healthy samples are randomly selected to be the same size as the
cancerous samples and this is repeated 50 times and the classification results are averaged. This way, the
training data used for training SVM classifier becomes 50% − 50% leveled with respect to cancerous and
healthy samples [2].
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4.5 Experimental Results

Table 4.1: RD-CRF performance and Khalvati et al. [2] performance metrics for different
numbers of cases. Statistical significance is shown across all performance metrics (p-values
below 0.05).

Sensitivity Specificity Accuracy Jaccard
Sørensen–

Dice

[2] 70.21% 91.38% 90.59% 26.64% 37.12%
RD-CRF 71.47% 91.93% 91.17% 28.56% 39.13%

p-value 0.0413 0.000293 0.000163 0.0217 0.0312

Table 4.1 show the average sensitivity, specificity, accuracy, Jaccard index, and Sørensen–
Dice coefficient for the proposed RD-CRF and Khalvati et al. [2] across all patients. The
proposed RD-CRF method shows significantly improved (p-values < 0.05) for all metrics.

Table 4.2 shows the improvement of the proposed RD-CRF framework with respect
to [2] for different cases starting with 5 worst cases for sensitivity obtained by [2]. As it
can be seen from Table 4.2, for the first 5 worst cases, the proposed RD-CRF framework
improved sensitivity by 3.2%. When all 20 cases were taken into account, the proposed
RD-CRF framework improved sensitivity, specificity, and accuracy by 1.10%, 0.55%, and
0.59%, respectively. Given that [2] already achieved high specificity rates (e.g., 92%), the
proposed RD-CRF framework was only able to improve it slightly (0.59%).

Figure 4.4 shows the improvement in sensitivity and specificity obtained by the proposed
RD-CRF framework when compared to [2]. Figures 4.5 and 4.6 show the actual sensitivity
and specificity numbers for [2] and the proposed RD-CRF framework.

The fact that the proposed RD-CRF framework increased the sensitivity, specificity, and
accuracy of [2] indicates that taking into account inter-voxel spatial and radiomics feature

Table 4.2: RD-CRF performance improvement with respect to [2] for different numbers of
cases.

Cases/Results Sensitivity Specificity Accuracy

5 cases 3.20% 0.52% 0.61%
10 cases 1.41% 0.55% 0.60%
15 cases 1.50% 0.48% 0.53%
20 cases 1.10% 0.55% 0.59%
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relationships helps noticeably in mitigating the identification of sparsely distributed tumour
candidates and thus improving prostate cancer detection performance. Figure 4.8 shows
examples of how the proposed RD-CRF framework mitigates sparsely distributed tumour
candidates while promoting consistency in spatial and radiomics feature relationships to
ensure the identified tumour candidates better reflect cancerous tumours.

Figure 4.8 shows the prostate tumour candidates detected using [2] and that detected
using the proposed RD-CRF framework in comparison to the radiologist’s markings. Fig-
ure 4.7 shows sample results for [2], RD-CRF, and the radiologist’s markings along with the
corresponding pathology data. The pathology data indicates additional smaller tumours
present in the prostate tissue. While [2] and the proposed RD-CRF framework failed to
detect these small areas of cancerous tissue, the radiologist’s markings also did not identify
these small tumours, which illustrates that such small areas of cancerous tissue may not
exhibit significantly distinctive image-based features in the MP-MRI data.

Figure 4.4: RD-CRF performance improvement in sensitivity (shown in red) and speci-
ficity (shown in blue) compared to [2]; the graph shows the percent improvements in both
sensitivity and specificity for different numbers of cases.
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Figure 4.5: RD-CRF sensitivity (shown in blue) for different number of cases compared
to [2] (shown in red).

Figure 4.6: RD-CRF specificity (shown in blue) for different number of cases compared
to [2] (shown in red).
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Figure 4.7: From left to right: pathology samples, radiologist’s markings, classification
results for [2], results of proposed RD-CRF framework.

4.6 Discussion

Computer-aided detection (CAD) algorithms for prostate cancer are mainly based on ex-
ploiting the imaging characteristics to train a classifier such as SVM, enabling it to classify
new cases. Radiomics attempt to augment this approach by utilizing a large amount of
quantitative imaging-based features to improve the classification results. The common
theme in these radiomics-driven approaches is the fact that single voxels are studied indi-
vidually and inter-voxel spatial and feature relationships are usually overlooked. In con-
trast, we have proposed a radiomics-driven conditional random field (RD-CRF) framework
to incorporate the inter-voxel relationships by jointly enforcing multi-parametric radiomics
features consistency and spatial consistency with the pairwise term (Equation 4.3). This
enforces the compactness and radiomics-based connectedness of the classification results,
leading to the better representation of prostate tumours and a better separation of cancer-
ous and healthy tissues.

The proposed RD-CRF framework can incorporate any given quantitative radiomics
feature model that classifies image voxels for a given case such as prostate cancer. In
prostate cancer, one of the challenges that the CAD algorithms face is the fact that the
cancerous voxels are a small fraction of the prostate gland (i.e., less than 1%). This leads to
poor sensitivity results in a significant number of cases. To demonstrate the effectiveness
of the proposed RD-CRF framework, we calculated the results starting with the worst
sensitivity cases obtained by [2]. As it can be seen, the proposed RD-CRF framework was
able to improve sensitivity by 3.2% for first 5 cases and 1.10% for all 20 cases while in all
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Figure 4.8: Visual comparison of identified prostate tumour candidates produced by [2]
and the proposed RD-CRF framework. RD-CRF produced results that show a noticeable
reduction in sparsely distributed tumour candidates and increased spatial consistency in
detected tumour candidates. Left to right: radiologist’s markings, results produced by [2],
results produced by RD-CRF, and the results overlaid with the radiologist’s markings.
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cases specificity was improved by 0.60%. The low gain in specificity is mainly due to high
specificity rates obtained by [2] (e.g., 92%) making it difficult for the RD-CRF framework
to further improve performance.

The proposed RD-CRF framework can improve CAD algorithms with respect to sensi-
tivity enabling them to become reliable for cancer screening programs where high sensitivity
rates are required. Furthermore, [2] also tends to identify more sparsely distributed tumour
candidates leading to false positive cases (Figure 4.8). The proposed RD-CRF framework
can also help improve specificity of CAD algorithms to be used in procedures such as radi-
cal prostactomy where a very high specificity is required to prevent unnecessary surgeries.
As seen in Figure 4.8, the proposed RD-CRF framework identified a single compact region
(e.g., fifth row) and also extended the identified tumour candidate to an added region (e.g.,
second row).

While Table 4.2 indicates that the RD-CRF framework generally improved the clas-
sification results, RD-CRF is limited by the initial classification results from the trained
classifier. Figure 4.9 shows examples of cases where the initial trained classifier failed to
identify tumour candidates as cancerous, resulting in incorrect tumour candidate classifi-
cations when using the RD-CRF framework.

The example shown in the first and second row of Figure 4.9 are cases where the initial
trained classifier failed to identify tumour candidates entirely while the third row shows a
case where the initial trained classifier partially identifies the tumour. A visual inspection
shows that the texture in the radiologist-marked regions appears similar to other healthy
prostate tissue. This suggests that the MP-MRI modalities and corresponding extracted
quantitative radiomics features do not capture all underlying texture characteristics of
cancerous tissue, thus resulting in the radiomics feature model to not properly identify the
suspicious regions. This suggests that more information (via new imaging modalities or
the discovery of new quantitative radiomics features) is required to capture such cases.

4.7 Summary

A novel framework was proposed for automatic prostate cancer detection using multi-
parametric magnetic resonance imaging via a radiomics-driven conditional random field
(RD-CRF) framework. Experimental results showed that the proposed RD-CRF frame-
work improved the sensitivity, specificity, and accuracy compared to a state-of-the-art
voxel-resolution radiomics-driven prostate cancer detection method. While the overall ef-
fectiveness of the RD-CRF framework is limited by the initial classification results, the
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Figure 4.9: Examples where tumour candidates are not properly identified. Left to right:
radiologist’s markings, initial classification results, and RD-CRF results.

RD-CRF framework was shown to improve the detection of tumour candidates by mitigat-
ing sparsely distributed tumour candidates and improving the detected tumour candidates
via spatial consistency and radiomics feature relationships. Thus, the RD-CRF framework
shows potential for more efficient and accurate computer-aided prostate cancer diagnosis
for clinicians.
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Similarly to Chapter 3, future work includes incorporating additional MRI modalities,
and extending the pairwise potential used to characterize spatial and radiomics feature
relationships to better enforce spatial and feature consistency and improve detection per-
formance. The radiomics feature model used here incorporated CDI as one of the imaging
modalities which, as shown in [2], boosts the initial results significantly. We have devel-
oped an enhanced version of CDI, called dual-stage correlated diffusion imaging (D-CDI),
which has shown promise in enhancing separability of cancerous and healthy tissue in
prostate MRI compared to CDI [56]. As future work, we will incorporate D-CDI into
the radiomics feature model used by the RD-CRF framework to investigate its efficacy
in improving prostate cancer detection performance. The introduction of a hierarchical
RD-CRF framework will also be investigated for the incorporation of morphological fea-
tures and asymmetric characteristics of cancerous tissue in the prostate gland. We will
investigate using a hybrid morphological-textural feature model as an initial classifier for
the RD-CRF framework where in addition to texture analysis, the morphological charac-
teristics (e.g., shape) of candidate regions are taken into account to detect cancer [1].

Furthermore, the DWI data captured at different b-values are usually distorted due to
patient movement during the image acquisition, and thus may reduce cancer separability
and affect the cancer detection performance of the RD-CRF framework. We have pre-
sented preliminary results for co-registering the b-value images to compensate for patient
movement [60] which we will incorporate into our proposed RD-CRF framework to inves-
tigate the effect on the accuracy of cancer detection. Finally, this method was developed
with the intention of using the tumour region candidates defined by statistical textural dis-
tinctiveness in Chapter 3 as the initial regions used for classification and enforcing spatial
consistency and radiomics feature relationships by RD-CRF.
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Chapter 5

Conclusion

In this chapter, a brief summary of the thesis and the key contributions are described in
Section 5.1. Recommendations of the methods are discussed in Section 5.2, and potential
future work for this research is outlined in Section 5.3.

5.1 Summary of Thesis and Contributions

In this thesis, a comprehensive framework for computer-aided prostate cancer detection
using multi-parametric MRI has been developed. The framework consists of two parts: i)
a saliency-based method for identifying suspicious regions in multi-parametric MR prostate
images based on statistical texture distinctiveness, and ii) automatic prostate tumour can-
didate detection using a radiomics-driven conditional random field (RD-CRF).

In Chapter 3, a suspicious region identification method via statistical textural distinc-
tiveness-based saliency is described. Using unique texture features extracted from multi-
parametric MRI modalities to learn a sparse texture model, the distinctiveness of texture
patterns are quantified and used to uncover the underlying saliency via the statistical
relationship between texture patterns across different MRI modalities. The quantitative
improvement over the state-of-the-art method is reported in Table 3.2, where the statisti-
cal textural distinctiveness method achieves an approximately 1.5% increase in sensitivity,
and at least a 10% increase in specificity and accuracy. Figure 3.2 shows the qualitative
improvement of textural distinctiveness method; the state-of-the-art method has a ten-
dency to be over-sensitive, while the textural distinctiveness method consistently produces
spatially compact and useful regions.
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In Chapter 4, automatic prostate cancer detection method based on a radiomics-driven
conditional random field (RD-CRF) framework is presented. Using the quantitative MP-
MRI radiomics feature model proposed in [2], the method incorporates both the spatial
relationships between voxels and the quantitative radiomic feature relationships between
voxels into a conditional random field model. This facilitates the enforcement of intercon-
nected tissue characteristics reflective of cancerous tumours, thus better representing the
actual cancerous tissue phenotype. Table 4.1 shows a comparison of the RD-CRF method
with the state-of-the-art method [2] and statistically significant improvement is obtained
across all performance metrics (p-values below 0.05), and Table 4.2 shows the performance
improvement relative to [2]. Figure 4.8 shows a visual comparison of detected prostate
tumour candidates produced by [2] and the RD-CRF method. The proposed RD-CRF
method produced results that show a noticeable reduction in sparsely distributed tumour
candidates and increased spatial consistency in detected tumour candidates.

5.2 Recommendations

The suspicious region identification method via statistical textural distinctiveness produced
higher sensitivity, specificity, and accuracy values than the state-of-art ADC-based method.
In addition, statistical textural distinctiveness also identifies suspicious regions on a per
patient basis, rather than relying on a fixed ADC value characteristic of typical cancerous
tissue (as is the case with the ADC-based threshold method). Thus, statistical textural
distinctiveness shows potential for more flexible and visually meaningful identification of
suspicious tumour regions, and should be used regularly by medical professionals to aid in
suspicious region identification in place of the ADC-based method.

While the RD-CRF method generally improved the initial results, RD-CRF is limited by
the initial classification results from the trained classifier. Sample cases where the initial
trained classifier failed to identify tumour candidates as cancerous resulted in incorrect
tumour candidate detection when using the RD-CRF. Though the overall effectiveness
of the RD-CRF framework is limited by the initial classification results, the RD-CRF
framework was shown to improve the detection of tumour candidates by mitigating sparsely
distributed tumour candidates and improving the detected tumour candidates via spatial
consistency and radiomics feature relationships. The RD-CRF framework shows potential
for more accurate computer-aided prostate cancer detection for clinicians, and should be
paired with a classifier with reasonably accurate initial classifications to further refine and
fine-tune the results.
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5.3 Future Work

5.3.1 Prostate Cancer Grading

The use of radiomic features is largely prevalent in current computer-aided prostate cancer
detection and/or classification research. However, the application of radiomic features can
also be extended to cancer grading and staging. Future works will include the use of
radiomic features for computer-aided cancer grading and correlation to pathology, so as to
better bridge the gap between radiology and pathology. The development of radiomics-
based prostate cancer grading methods would enable a non-invasive method for assessing
the severity and behaviour of prostate cancer.

5.3.2 Prognosis and Risk Stratification

The potential uses of radiomic features within the field of cancer detection and prognosis
are extensive, and can lead to better patient care and survival rates through more reliable
risk stratification. Risk stratification refers to a medical professional’s formal estimation of
the probability of a person succumbing to a disease or benefiting from a treatment. Future
works will also include the application of radiomic features to risk stratification, allowing
for the development of a computer-aided decision support framework that helps medical
professionals assess patients, and more efficiently and accurately provide prostate cancer
risk stratification.

5.3.3 Discovery Radiomics

Current radiomic-driven methods for prostate cancer classification typically employ a set
of pre-defined, hand-crafted quantitative features extracted from multi-parametric MR
images. While hand-crafted imaging-based feature models for radiomics-driven methods
for prostate cancer classification have been shown to be highly effective, the generic nature
of such feature models for generating radiomic sequences can limit their ability to fully
characterize unique prostate cancer tumour phenotype. Motivated by this, the concept
of discovery radiomics [61, 62] was introduced, where we forgo the notion of predefined
feature models by discovering customized, tailored radiomic feature models directly from
the wealth of medical imaging data already available (as shown in Figure 5.1).

Discovery radiomics has the potential to find previously unexplored, abstract imaging-
based features that capture highly unique tumour traits and characteristics beyond what
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Figure 5.1: Overview of the proposed discovery radiomics framework where multi-
parametric MRI data from past patients is used to discover a customized radiomic se-
quencer tailored for prostate cancer.

can be captured using predefined feature models, thus allowing for improved personalized
medicine and risk stratification through radiomic sequencing.
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