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Abstract

Hypergoemetric Series are very important in mathematics and come up regularly when

dealing with the precise definitions of constants such as e, π and Apery’s constant ς(3).The

evaluation of such series to high precision is traditionally done with multiple divisions,

multiplications and factorials, which all takes a long time to compute, especially when the

computation is done on a single machine.

The interest lies in performing this computation in parallel and in a distributed fashion.

In this thesis, we present a simple distributed toolkit for doing such computations by

splitting the problem into smaller sub-problems, solving these sub-problems in parallel on

distributed machines and then combining the result at the end. Our toolkit takes care of all

the networking for the user; connectivity, dropped connections, management of the Clients

and the Server. All the user has to provide is the definition of the problem; how to split the

problem into sub-problems, how to evaluate the sub-problems and finally how to combine

the sub-problems and produce a result. The toolkit records timings for computation as

well as for communication.

What is different about our application is that all the code is written in Java (which is

completely machine independent) and all the Clients are Java Applets. This means that

having a web browser in enough to take part in the computation when it is distributed

over the internet. We are almost guaranteed that every computer on the internet has a

web browser. The Java Plug-in (if unavailable) can easily be downloaded from Sun’s web

site.

We present a comparison between Java’s native BigInteger library and an FFT based

Integer Library written by R. Howell of University of Kansas. This study is important

since we are doing computations with very large integers.

To test our system, we evaluate e to different number of digits of precision and show

that our system truly works and is easy for anyone to use.
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Chapter 1

Background Information

1.1 Hypergeometric Series

We consider the evaluation of the hypergeometric series

S(N) =
N−1∑

n=0

a(n)

b(n)

n∏

i=0

p(i)

q(i)
(1.1)

to high precision, where a, b, p, and q are polynomials with integer coefficients, and a(n),

b(n), p(n), and q(n) have bit length O(log n). We also assume that the series is linearly

convergent, so that the nth term of (1.1) is O(c−n) withc > 1. These series are commonly

used in high precision evaluation of elementary functions and other constants, including the

exponential function, logarithms, trigonometric functions, and constants such as Apery’s

constant ς(3)[6, 7].

A widely used approach to the computation of (1.1) is binary splitting, which computes

the numerator and denominator of the rational number S(N). The decimal representation

of S(N) is computed by the floating point division of the numerator by the denominator.

In order to understand the properties of this type of series, let us take the computation

of e. The Taylor Series expansion of e dictates that

e =
n∑

i=0

1/i!

Alternatively, we can view this formula as

1



P

Q
=

n∑

i=0

1/i!

where performing the final division of P by Q would give us the exact value of e.

If we need n digits of precision, it is sufficient to evaluate m terms in (1.1) where n

= m*log m. In order to evaluate this in a distributed fashion, let m = p ∗ s where p is

the number of processors, sub-tasks or sub-problems, and s is the number of terms in a

sub-task. In the following formula, k is the number of the sub-task (k = 0, 1,. . . , p-1 ).

e = 1 +
m∑

i=1
1/i!

= 1 +
m∑

i=1

1
i∏

j=1

j

= 1 +
p−1∑
k=0

( 1
(ks)!

· s∑
i=1

1
i∏

j=1

(k·s+j)

(2)

With this simplification, we have obtained a formula similar to the one in (1.1) and we

have no factorials to perform, since the processor number takes into account the placement

of the denominator and multiple factorials are not calculated more than once.

In this way, we can compute
s∑

i=1

1
i∏

j=1

(k·s+j)

as a sub-problem by distribution and collecting

the results to combine them as in (2).Each sub-problem would have the result in the form

of two rational integers P and Q. These are not divided until all P ’s and Q’s from each

processor are received.

In essence, the Clients perform the following computation

P = 1;

Q = (k - 1) * m + 1;

x = Q;

For i = 2 to m do

x = x + 1;

P = P * x + 1;

Q = Q * x;

End

2



To combine the results, we apply the following code

Assuming partial sums are in P[i] and Q[i]

P=1;

Q=1;

For i =1 to k do

P = P*Q[i] + P[i];

Q = Q*Q[i];

End

Finally performing the division P/Q would yield the correct answer.

1.2 Distributed Computing

Distributed computing is a science which solves large problems by giving smaller sub-

problems to many computers to solve and then combines the results into a final solution

for the original problem. With the advent of the internet, this form of computing has

really flourished. Millions of users worldwide have access to the internet and can become

a part of the computation. The types of computations have ranged from looking for extra

terrestrial activity (SETI) to breaking secret key cryptography systems (distributed.net)

to finding million digit prime numbers (Mersenne Prime Search). The most popular form

of distributed computing that does not involve any direct mathematical computation is file

sharing. Applications such as Napster, Kazaa and Systems such as the Torrent network

have made full use of distributing computing for sharing files across networks.

On the computation side, the problems themselves are so large that it would be impos-

sible for one single (even very powerful) machine to solve the problem by itself. With the

growing power of the internet and all the computers working together, you have a force

that is stronger than any single computer in the world.

We would like to start by describing the different models that can be applied to dis-

tributed computing and discussing what benefits each system presents. This will be fol-

lowed by observing closely some of the popular distributed computing projects and how the

researchers have been able to accomplish their goals. A detailed list of current distributed

computing projects can be found at http://www.mersenne.org/projects.htm.
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We also look at the usage of Java, Applets and its security concerns to discuss how viable

Java is as a solution to implementing our System. We present a comparison between two

Java Integer libraries and one C++ Integer library and see what type of solution best suits

our needs for a fast and efficient Integer Library.

This is followed by a detailed description of the System that we have developed and are

proposing for distribute computation of Hypergeometric Series. In this section we detail

the architecture of the System, specify how the Server and Client interact with the user

and with each other. We also show how a developer can use our System and make minor

changes to evaluate a new problem. We then show some tests and results of those tests to

show that our System truly delivers what it promises. Finally we have some concluding

remarks, followed by some suggestions on some future work to enhance the System.

4



Chapter 2

Models of distributed computing

There are 2 types of distributed computing models [15]

1. Shared memory

2. Distributed memory

2.1 Shared memory

The shared memory architecture consists of a sharing a single memory/address space

among multiple processors. There are two approaches for implementing such a model.

5



2.1.1 Uniform Memory Address

Figure 2.1: Uniform Memory Addressing

This model uses shared system resources such as Memory and I/O. These resources

can be accessed by each processor without any added changes to programs. For example,

a variable declared in the program can be accessed by each processor without any special

changes.

Memory

The memory is centrally located and is shared by all the processing elements.

Cache

The coherence of the cache is maintained by the hardware.

Expandability

It is not simple to add more processors to the system and it is expensive to build in the

first place.
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Examples

An example of a System using the Uniform memory address model is the Compaq GS

AlphaServer.

2.1.2 Non Uniform Memory Address

Figure 2.2: Non Uniform Memory Addressing

This model uses a shared address space, but there is the concept of local and remote

memory access, which is different for different processors and therefore affects memory

latency.

Memory

The address space is shared but memory latency varies with local or remote address access.

Cache

The cache coherence is maintained through a software or hardware protocol.

7



Expandability

More processors can be added to the System since they have local memory, but the cost

of doing so is not economical.

Examples

Some examples of Non-Uniform Memory Addressing machines are SGI Origin 2000/3000

and Sun Ultra HPC Servers.

2.2 Distributed Memory

The distributed memory architecture is very general and therefore can be discussed as

single machine architecture or multiple machine architecture.

Figure 2.3: Distributed Memory

Although the diagram looks very similar to the Non Uniform Memory Address, this

architecture can be either implemented within a single system or across a network or

8



systems. The communication network can either be inside a large server or can be the

Ethernet connection between networks of machines.

Memory

The memory manager uses local addressing to access local memory.

2.1.2.6 Cache

There is no issue of cache coherence in this System because the cache is maintained by

each CPU locally.

Expandability

This System can easily be expanded by adding and making use of more processors

Examples

IBM SP is a System that has been developed by IBM, which uses distributed memory.
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2.2.1 Multiple Machine Distributed Architecture

Figure 2.4: Multiple Machines, Distributed Architecture

From the previous discussion we saw that the Ethernet connection between multiple

machines can serve as the communication network. The computers connected to the net-

work can be the elements in the system. If we ignore communication costs, then from a

distributed computing perspective, if it takes time t to solve a problem on a single machine,

then it should take time t/n for the problem to be solved in a distributed fashion, if there

are n machines of (roughly) the same computational power.

Memory

In this model, each system has its own local memory and manages it as well.

Cache

Each system deals with cache coherence on its own since the memory and the memory

management is done locally.

Expandability

In this model, more systems can be easily added to the network. More systems mean more

resources to be utilized.

10



Examples

Examples of such models are Local Area Networks (LANs).

2.2.2 Multiple Networked Machines Distributed Architecture

What we are really trying to utilize, is the following

Figure 2.5: Multiple Networked Machines Distributed Architecture

The internet is sometimes called the WAN (Wide Area Network) but the WAN can

be used to refer also to set of LANs. What we want to do is to utilize all possible LANs

that are connected to the internet in our project. The more computers we have, the more

problems we can solve by giving each computer a small chunk of work to do.

11



Memory

Each system has and manages its own memory. It is possible that each LAN supports

several architectures of memory.

Cache

Each system or sub system manages cache on its own through the hierarchical systems.

Expandability

It is very easy to add more systems to the network.

Examples

The Internet is the best example for this type of model.
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Chapter 3

Sample Distributed Projects

3.1 SETI@HOME

SETI stands for Search for Extra Terrestrial Intelligence [12]. This project was originally

started at UC Berkley to analyze data from telescopes for strong signals in the skies. The

main idea was to search for new life or new civilization in the galaxy. The problem was

that the Super Computers could look for strong signals but did not have enough resources

to look for weaker signals. They needed more powerful computers to be able to accomplish

this. The decision came down to two things: Spend a lot of money on an expensive Super

Computer or use smaller computers, but how many and how? The realization that a regular

desktop computer spends more cycles displaying screen savers than doing something useful

inspired the researches. And they did exactly that: replace the cartoon screen saver by

one that displays “cool” graphs showing the analysis of data while actually using the CPU

resources to analyze the data.

3.1.1 Setup

The telescope, “Arecibo”, records about 35 Giga Bytes of data on tape per day. The data

is then sent (via regular mail) to UC Berkley where it is divided into 256 Kilo Byte chunks,

with additional data about the “work-unit” to make a total of 340 Kilo Byes and sent to

the internet to be analyzed by SETI@HOME users. After results from one work-unit are
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Figure 3.1: SETI@HOME System Architecture

submitted, the database at Berkley merges them into their central database and sends

another work-unit, and this process continues. Several copies of the same work-unit are

sent to different users to make sure there are no mistakes.

3.1.2 Client setup

Users can go to http://setiathome.ssl.berkeley.edu and download an installer based

on their operating system. Once the software is installed, the user is allowed to set some

options. Before a user can actually use the program, they have to create an account with

SETI@HOME. Communication is only done when the data is sent and received, which is

done only with permission from the user. The work is done only when the SETI@HOME

screen saver is active. These are just the basics of the project; the details can be found at
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http://setiathome.ssl.berkeley.edu

3.1.3 Setup Parameters

Connectivity

Internet connection is only required when submitting results and getting new work.

Reliability

Several copies of the same work unit are sent to multiple users to avoid mistakes

Verification

By distributing several copies of the same problems, the chances of errors are minimized

Communication method

Communication is done through special ports using TCP/IP. Requires some tweaking to

work behind a firewall

Expandability

New client version has to be downloaded for newer code or a different problem to solve

Fault Tolerance

The servers and results are backed up regularly to make sure the system is safe against

any potential problems.
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3.2 Distributed.net

Figure 3.2: Distributed.net System Architecture

The RSA Security group is a major cryptography firm in the United States, selling

cryptography, security and related products. There has been a lot of research done in the

cryptography area since almost all levels of Government and non-Government institutions

need to protect their data as well as transactions. RSA is very confident about its security

algorithms and issues challenges to people (with a reward) to break its encryption by finding

the correct secret key. Distributed.net [4] is a site that uses distributed computation to

try and achieve this goal. In 1997, in coalition with the Electronic Frontier Foundation, it

found the solution to RSA’s RC5 56-bit key challenge, which took 250 days. Recently, in
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2002, distributed.net cracked the RC5 64-bit secret key challenge, in 1,757 days by utilizing

computers all over the world. Currently, distributed.net and its users are working to try

and find the 72-bit key in the RC5-72 project. The prize money is split among the site

and the user finding the winning key.

3.2.1 Setup

The site hosts several central servers that keep track of the keys. These servers specify the

range of keys that each client works on. The results are then collected from the clients and

stored on these servers.

3.2.2 Client Setup

The client can be downloaded from their website http://www.distributed.net. It can

either be installed by windows or the files can be copied to any folder and run from there.

It has a telnet like interface for setting up common options. It can either run in the

foreground or through a screen saver. It communicates with the server to get the data for

RC5 project as well as another project named OGR. There are a lot of options that can

be tweaked by the user. There is no need to set up an account, the user can use a general

account for taking part in the computation, but they have to sign up if they want to be

considered for the reward.

3.2.3 Setup Parameters

Connectivity

Internet connection is only required when submitting results and getting new work.

Reliability

From the description available, only one client works on one key sub block.
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Verification

The hierarchical structure of servers and clients exists so that the same block is not checked

twice, therefore increasing the chances of possible error. The handling of such errors is not

clearly laid out in the documentation.

Communication method

Communication is done through special ports using TCP/IP. It requires some tweaking to

work behind a firewall

Expandability

A new client version has to be downloaded for newer code or a different problem to solve

(RC5-64 bit clients are not compatible with the RC5-72 bit challenge)

Fault Tolerance

The proxy Key Servers serve as a Round Robin DNS, so if one of the them fails, the client

will automatically switch to other available servers
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3.3 Mersenne Prime Search

Figure 3.3: Mersenne Prime Search System Architecture

Known as GIMPS [16], the Great Internet Mersenne Prime Search, this project is

designed to find Mersenne prime numbers. A Mersenne Prime number is of the form

2p − 1. This project was started in 1996 and users computers across the internet to find

the prime numbers. So far, only 40 Mersenne prime numbers have been discovered.

3.3.1 Setup

A central server known as the PrimeNet server distributes exponents to the clients. All the

communication is done via the HTTP Protocol. The work is sent to the client and results
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are collected by the PrimeNet server.

3.3.2 Client Setup

The client can be downloaded from http://www.mersenne.org. The installation program

is a one Mega Byte file that can be downloaded and installed in Windows. There are two

uses for their client software. For the user who wants to take part in the GIMPR project,

you can either participate anonymously or by creating a user id with the client. Another

option made available by the program is stress testing. This usage is meant for testing

the consistency of the CPU. This is used typically to test CPU’s, or in some cases to test

the stability of over clocked CPU’s (CPU’s that are configured by the end user to run

at a higher frequency than the CPU’s rating, for example, running a Pentium 4 2.6Ghz

processor at 3GHz by changing settings in the computer’s BIOS).

The client communicates with the server every few weeks and sends only a few hundred

bytes per connection. It lets the user specify how long the program should run, how much

memory should be used etc. It also predicts the time at which a certain computation will

complete. A computation “tag” or identifier is sent by the Server and displayed to the

user.

3.3.3 Setup Parameters

Connectivity

Internet connection is only required when submitting results and getting new work. It is

possible to use the client software only for testing the CPU, without participating in the

research.

Reliability

As mentioned in the figure, different type of work is given to different class of machines.

The program saves its internal state every half hour to avoid losing data, in case a crash

occurs.
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Verification

From the figure, it can be seen that a certain class of computers get work to double check

the previous results. This way, the results from one machine can be verified through

another machine.

Communication method

Communication is done through the HTTP Protocol and requires some tweaking to work

behind a firewall

Expandability

A new client version has to be downloaded for newer code or a different problem to solve

Fault Tolerance

Internal state is saved so that data is not lost. It is not apparent but is likely the case that

the Prime Net servers are backed up and have proxies in case one goes offline, another can

take its place.
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3.4 PiHex

Figure 3.4: PiHex System Architecture

PiHex [10] was a project developed by Colin Percival at Simon Frasier University, BC.

The goal was to compute millions of bits of π. The project has now been completed.

3.4.1 Setup

The idea is to give each computer a portion of bits to solve without solving for all the

previous bits in π. This way it achieves efficiency by not doing previous redundant calcu-

lations, saving computing time as well as using only a small amount of memory on a client

computer. A range of terms is assigned to each computer and results are collected.
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3.4.2 Client setup

A client for PiHex can be downloaded in the form of a zipped file from

http://www.cecm.sfu.ca/projects/pihex/download.html.

3.4.3 Setup Parameters

Connectivity

Internet connection is only required when submitting results and getting new work.

Reliability

If a machine does not communicate with the server after a fixed amount of time has passed,

the work is automatically assigned to a different machine.

Verification

There is no information available regarding verification of results.

Communication method

All communication is done via TCP/IP using specific ports. It is fairly easy to configure

the client to work behind a firewall.

Expandability

A new version of the software needs to be installed to start a new project.

Fault Tolerance

Since the work is reassigned if a client does not communicate, there is fault tolerance on

the client side. It is not clear if there are multiple servers on the server side to provide

fault tolerance in case of a Server crash.
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3.5 Napster

Figure 3.5: Napster System Architecture

Even though Napster [13] in its true form does not exist anymore, it started the evo-

lution for making file sharing very easy across networks, countries and millions of users.

The requirement was simple: every user needs some files and every user has some files

to offer, Napster offered the public link between them. Though not a complete Peer to

Peer network, Napster was probably the most popular distributed internet application and

spawned quite a few other applications as well.
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3.5.1 Setup

The central server is responsible for account and file list management. Users are connected

to the central server that keeps track of the files and the users.

3.5.2 Client setup

The client can be downloaded from http://www.napster.com. After installing the pro-

gram, you have to create a user name and password, which is a very simple process. You

are presented the options of chatting with people or searching for files. When a search

is done, a query is sent to the central Server, which searches through its list of files and

returns the usernames that have the files. Queries can be complicated with additional

options, such as bit rate, bandwidth of the users etc. Napster was designed specifically for

songs in mp3 format.

3.5.3 Setup Parameters

Connectivity

Research has gathered that there is a constant connection to the Napster servers. This is

concluded from the fact that there is a status of “on-line” and “off-line” within the client

software.

Reliability

From experience, there is little to no reliability when it comes to downloading programs.

This is because users in the past have liked to misguide searchers by changing file names.

This does not seem to be the case with music files but is always possible due to the

anonymity of the person who has the file.

Verification

The only possible way to verify if a file is what it is supposed to be is to open the downloaded

files.
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Communication method

The file lists are indexed by the Napster servers. The files are copied directly from the

other clients, so there is a direct connection between the peers. Fixed port numbers are

used for smooth operation behind firewalls.

Expandability

Only a new version would allow any different behaviour by the application. There were

quite a few versions released of the client software, adding different features.

Fault Tolerance

If two users have similar file names with same file size in bytes, it is considered to be the

same file and a file is downloaded in parts through different peers. This makes it possible

to obtain high data rates if different peers are sending parts of the file.
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3.6 Kazaa

Kazaa [9] took the ideas of Napster and expanded them further. Working on the same

principles as Napster, Kazaa allowed users to share every kind of file; music, software,

images, movies etc. It started becoming very popular due to the shutdown of Napster.

This software however hosted a lot of spy ware, so people developed other versions of

Kazaa that still work today.

3.6.1 Setup

The server is setup in a similar way to the Napster setup.

3.6.2 Client Setup

The client is pretty much setup the same way as in Napster, with a few changes: Kazaa

allows multiple people to have the same user name, which means they keep track of users

based on their IP addresses, and searches are not limited to music files as explained previ-

ously.

All other parameters are similar to Napster.
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3.7 BitTorrent Network

Figure 3.6: BitTorrent Network Architecture

With Kazaa’s spy ware and the fact that it was becoming more commercial just like

Napster, another alternative was developed by the community. This network [3] is not as

popular as Napster or Kazaa, but with the passage of time it is growing very rapidly. This

is a truly distributed network since there are no central servers. Technically there are no

servers; there are only trackers (explained in detail in the next section), and anyone can

become a tracker.

The main idea is that the files that are shared are published, rather than kept by

someone and searched for. A lot of websites are setup that list “torrents”. Torrents are
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files of small size that list details of the entity being downloaded. We call it entity because

the download is not limited to just one file, it could be a set of files. A “Seed” is the user

who has a complete copy of the torrent, and a “Peer” is a user who is trying to download

the torrent. As the number of seeds increases, the chances of having a complete download

increases as well. Even if there are no seeds, peers can still keep the download going, but

the torrent will not be complete until there is at least one seed taking part in the download.

It is also possible that a few users, together, be one seed. An example to illustrate this is

that if user a has the first half of the torrent and user b has the second half, then there is

one complete copy of the torrent available for download.

3.7.1 Setup

As we explained earlier, there are no central servers, just trackers. A tracker is a site

that keeps track of the torrent. As users start to download the torrent, they remain in

communication with the tracker and the tracker gets updated with information regarding

the Seeds and the Peers. A lot of people have setup trackers that are tracking hundreds of

torrents. The tracker then publishes the torrents either on its own website or some other

website that lists torrents from different trackers.

3.7.2 Client setup

As of right now, there are about 20 different Bit Torrent clients. This is due to the fact that

most clients are open source and therefore modified versions are easily available. The client

that we have used is called “Azureus”, which is completely written in Java. After installing

the software, a user can go to websites that lists torrents and start downloading. A very

popular site, which forwards the users to available mirrors, is http://www.suprnova.org.

A user can browse through the list and click on the torrent file, which is opened by the

client. The client contacts the tracker and gets information about the download. In the

same connection the client also finds out how many users are seeding the file, how many

peers etc. Immediately, download as well as upload to and from other clients begins. A

ratio is kept to show downloaded versus uploaded data. If there are no seeds available,

it means that no client has a complete copy of the file, which means that possibilities of
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getting a complete copy of the file are very slim. At any point, someone can choose to seed

a file and the chances to obtain the file increase. Some torrent sites monitor user usage

based on login information (if required) or IP address and can ban users if their share ratio

is low.

3.7.3 Setup Parameters

Connectivity

There is a constant connection to the peers/seeds while downloading files. There is a

scheduled connection to the tracker to update the client’s status at the tracker as well as

to get status of seeds/peers. If this connection is not available later on in the download,

the connection to the known seeds/peers remains open.

Reliability

The pieces are broken up into parts and downloaded one by one. The hash value of each

piece is calculated as well as that of the whole torrent. These values are matched with the

individual hash values of the pieces downloaded and pieces that don’t match are discarded.

Verification

Until the files are viewed/opened/executed, one cannot tell if the torrent is what it is

claimed to be. File misnaming has not been a huge issue, since most files are posted by

users who are trying to be recognized for their efforts and would not want file misnaming

associated with their aliases.

Communication method

All communication is done via TCP/IP using specific ports. The website states that the

software does not work very well behind a firewall unless the ports are configured manually,

but we have yet to run into that problem with our installation.
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Expandability

Due to its open source nature, quite a few clients and new versions are available all the

time. ”Azureus” checks with its own websites for updates from time to time and upgrades

itself if required.

Fault Tolerance

The chances of getting a complete torrent increase if the number of Peers and Seeds in-

crease. The only issue of fault comes into play if the torrent file is available but the tracker

is offline for the very first connection. This means that the client cannot get information

regarding seeds/peers and therefore renders the torrent useless. If during the download,

the client cannot communicate with the tracker, as long as it is connected to some Seeds

and Peers, the torrent continues to download.
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3.8 Problem with the approach

The problem with all these approaches is the requirement of the user to download and in-

stall the client program. As we see, this step involves going to the web site of the project,

downloading and installing the software, setting up a user account in some cases, tweaking

settings and then loading the client to start participation in the project. This step requires

a lot of input from the user. With the advantage of Java Applet technology, we would like

to show that this step is not necessary for the user. The amount of work the user has to

do in order to join should be minimal, and our approach will show how it can be done via

Java Applets.
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Chapter 4

Java & Applets

In our project, we investigate the use of Java [14] for doing mathematical computation and

distributed networking on a large scale. The main reason we need Java is for Applets, as

will be explained later in this chapter.

Java also offers very easy use of its Socket classes, as well as to build a large Graphical

User Interface (GUI) based application. Java also lets users Serialize Objects, which means

that Objects can easily be transferred from the Server, over the sockets via Serialization,

and rebuilt on the Client side with only a few lines of code. Any new Object can be

Serialized with ease by just implementing the Java.io.Serializable Interface and including

the methods to read the Object from a stream and write an Object to a Stream. Details

of this are available in section 6.9.

Applets are “mini” applications, or light weight applications that run within the envi-

ronment of a web browser. An applet is integrated within the HTML web page. When a

browser parses a web page and finds the <APPLET> tag, it immediately knows that there is

an applet that is embedded within the source. If the computer has JRE (Java Run Time

Environment), the applet is handed by the JRE. If the computer doesn’t have JRE, then

the user cannot see the applet. Most browsers come with a version of the JRE that is able

to run most applets.

The applet is a small piece of executable code that runs within the JRE. The JRE has

a built in “Virtual Machine” that runs the code for the applet. The Applet is downloaded

by the browser and run locally on the machine. An Applet is not trusted by default and
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therefore not allowed to access most resources of the computer. We will see a comparison

between unsigned applets (most applets available on the web are unsigned) and signed

applets, to see what restriction each class presents.

4.1 Signed vs. Unsigned Applets

By default, the Java Virtual Machine does not allow applets to do anything more than

accept keyboard input, display something on the screen and capture mouse movements. In

order to let the developers benefit from the potential of Applets, in a proper application

usage environment, which would open network connections, save files to disk and various

other applications like behaviour, Sun introduced the notion of Applet Signing.

A digital Signature can be obtained from RSA for $400. The JAR (Java Archive, a file

that stores the compiled code for the applet) can be signed with this Signature. When a

user opens a Signed Applet that is signed by RSA, and their computer’s root certificate

trusts RSA for security, there is no difference to the user when they load the applet.

An applet can also be signed by anyone wishing to sign the applet, with the help of

tools provided by Java. This of course means that by default the user’s browser will not

trust the applet and therefore a box similar to the one shown in figure 4.1 will alert them

of the situation.
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Figure 4.1: Security Warning for Signed Applets

The user can choose to grant permission for one session, not grant permission, or always

grant permission. Even if permission is not granted, the applet runs as if it was an unsigned

applet: not allowed to use the resources that are available for signed applets. For a project

that is along the magnitude and importance as ours, it is a good idea to get a code signing

certificate from a trusted authority such as Verisign or RSA. The benefit of this is that

when the applet is signed by trusted authorities, these are the same authorities that are

(typically) a part of the browser’s trusted sources and therefore the user trusts them as

well.

The JRE allows different security levels under which signed and unsigned applets are

executed. Following is a brief comparison of the two:
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Category Unsigned Applets Signed Applet

Open a socket connection Only to the applet’s host Open socket to any host

Reading/Writing files Not allowed Allowed

Read System properties Only some can be read All properties can be read

Invoke other applications Not allowed Allowed

Table 4.1: Applet Security

Even though table 4.1 is complete, for our purposes we are only interested in the first

and second categories for the time being.

4.2 Applet Security Concerns

4.2.1 Opening Socket Connections

This is important to us because we want some Client machines to be able to execute as

super nodes. A super node can be thought of as 2nd level server, but the levels can vary

arbitrarily. This would allow Clients to spread their work load onto other Clients. These

Clients can be delegated by the main Server. This can be explained by the following

diagram
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Figure 4.2: Super Node Diagram

In a very simplified form, figure 4.2 shows that we have the main server with some

Clients connected to it, and then one Client acts like a super node, and it distributes the

work further to other Clients, creating a hierarchical structure. In this way, we can have

multiple Super Nodes that are capable of spreading the work to others and can get results

even faster. For all this to happen, we need Clients to have permission to open sockets to

other Clients than the main server for sending/receiving data.

4.2.2 Reading and Writing Files

For almost every application, writing data and reading data is very important. It helps

in backing up the data to disk in case of a system crash. An unsigned applet does not
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allow you to write anything to the user’s disk, or read anything from it. If we have this

capability, we can write intermediate results to disk so that the next time we start up the

applet, we can check previous results and continue on. This will obviously save a lot of

time and can only be possible if we can read or write files.

Signed Applets enable writing to the local file system, which means it is possible to

have a file sharing application written as an Applet, which would enable us to have a file

sharing tool which does not need to be installed and updated all the time.
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Chapter 5

Comparison of Integer Libraries

In order to facilitate us with choosing the best library to use in our distributed computation

application, we ran the following tests that benchmark the computation time of 3 libraries:

Java native Java.Math.BigInteger, an FFT based Java library LargeInteger written by R.

Howell of Kansas State University [8] and a FFT based C++ library BigInt written by

Xavier Gourdon [6].

The tests were conducted on a Intel r©PentiumTM4 running at 3124MHz with

HyperThreading r© and 512MB of RAM. Most non essential processes were killed before

the tests were conducted.

5.1 Multiplying Integers of same size

The first test was conducted by generating two random integers a and b of the same length

(the number of decimal digits being the same). Since there is no easy way of generating

random integers of fixed length in java, this was done in the following way (testing only

done on positive integers)
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Repeat twice

Let n be the number of digits required

Create an empty String s

Generate a random number x between 1 and 9 inclusive

Append x to s

While not the desired number of digits (length(s)! = n)

Generate a random number x between 0 and 9 inclusive

Append x to s

End

X1 = First integer created

X2 = Second integer created

End repeat

Start timer

Y = X1 * X2

End timer

End

Since the constructors of BigInteger and LargeInteger take a String as an argument,

converting the Strings to integers was trivial. In order to speed up testing, the same

random String was used to initialize the BigInteger object and the LargeInteger object.

BigInt was not used in this test because it didn’t seem possible to generate a String of

digits and then initializing a BigInt from it.

Table 5.1 shows the timing results obtained from our testing. Please note that the

results are taken over the average of 2 or more executions.
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Number of Digits BigInteger (ms) LargeInteger (ms)

100 1 16

200 1 1

400 16 15

800 16 16

1600 1 15

3200 1 47

6400 15 63

12800 31 172

25600 219 375

51200 719 718

102400 2657 1844

204800 10485 3797

409600 43265 7578

Table 5.1: Same Size Integer Multiplication Results

41



Figure 5.1: Logarithmic graph of same decimal digit Multiplication vs. Time

Figure 5.1 shows a graphical representation of the logarithmic results. Most of the

small computations took close to zero seconds; they were changed to 1 for simplicity.

We can see in figure 5.1 that for integers up to size 100,000, both libraries take about

the same time for multiplication computation. However, with integers of much bigger size

(400,000 decimal digits); LargeInteger is much faster than BigInteger due to its FFT based

multiplication algorithm. This means that on integers of equal or almost equal size, using

LargeInteger (on average) is faster and therefore more efficient than using BigInteger.

5.2 Factorial Calculation

In this test, we calculate the factorial of a number n. In this way, we will test how both

libraries deal with multiplying small numbers with large numbers. This is to be done in
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the following way

Start

End = 64000

Accum = 1

For (i=2 to End)

Accum = Accum * i

End loop

In this way, we are multiplying the accumulator each time with a relatively small number i.

We refer to this computation as local computation, because if we think about calculating

a factorial in a distributive fashion, each machine would do a similar type of calculation

(with different starting and end points) locally and send back the results to the Server.

The accumulator keeps track of the current value of the factorial and is multiplied by the

next number on each iteration of the loop.

The result are shown in table 5.2 and the graphical representation appears in figure 5.2

Factorial BigInteger (ms) LargeInteger (ms) C++ BigInt (ms)

50 1 16 1

100 1 31 1

200 1 141 16

400 1 734 78

800 16 3125 2672

1600 16 15797 1812

3200 62 80016 11203

6400 234 387703 41703

12800 1000 1819657 201206

Table 5.2: Factorial Calculation Results
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Figure 5.2: Logarithmic graph of n-Factorial Multiplications vs. Time

We can clearly see from figure 5.2 that the BigInteger library performs much better

than any of the FFT based libraries. This allows us to conclude that for these types of

calculations, the BigInteger library should be used.

5.3 Partial Factorial Multiplication

In this test, we test the amount of time it takes to multiply a partial factorial. We refer to

this as global computation, because in our application, after the machines have returned

their partial results, the Server will perform this computation over all the intermediate

results. This test is performed in the following way
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Start

// calculate factorial from 1 to n/2

End = 12800 (Sample End)

Mid = End / 2;

Accum1 = 1;

For (i=2 to Mid)

Accum1 = Accum1 * i;

End loop

// calculate factorial from n/2+1 to n

Accum2 = Mid;

For (j=Mid+1 to End)

Accum2 = Accum2 * j;

End loop

Time1 = get current time in ms

Result = Accum1 * Accum2;

Time2 = get current time in ms

Total Time = Time2 -- Time1;

Think of the problem of calculating the factorial of n=12800 distributed over 2 ma-

chines. One machine calculates the first half of the factorial and the second machine

calculates the second half of the factorial and both return the results to the Server. The

Server then combines both of the results into one result and we time this calculation from

the server.

The results are shown in table 5.3 and the graph can be seen in figure 5.3
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Partial Factorial BigInteger (ms) LargeInteger (ms) C++ BigInt (ms)

50 1 1 1

100 1 1 1

200 1 1 1

400 1 1 1

800 1 31 32

1600 16 62 31

3200 16 156 31

6400 125 297 2880

12800 594 672 5720

25600 2750 1750 11440

51200 12641 3687 23842

102400 57906 7859 46724

Table 5.3: Partial Factorial Multiplication Results
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Figure 5.3: Logarithmic graph of Partial n-Factorial Multiplications vs. Time

From the graph, we can see that initially all 3 libraries take almost the same time to

multiply the partial factorials. As the size of n increases, BigInteger takes much longer than

LargeInteger, but BigInt takes much more time than both and looks like it will gradually

execute faster, but the tests were getting very long and CPU intensive. Some of this slow

speed can be accounted to the memory overhead incurred by BigInt. From this information,

we can deduce that when multiplying larger integers, the FFT based LargeInteger performs

much better than BigInteger, but it is possible that in the long run, BigInt will execute

about the same speed or a little faster.
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5.4 Conclusion

From the results shown here, the task of choosing a suitable library for computation is not

a very trivial one. Bear in mind that we have only really considered multiplication as the

computation we are interested and not looked at division which is also a CPU intensive

operation. Each library has presented its own merits and good/bad behavioural areas. The

LargeInteger library is good for multiplying really large integers, and integers of different

but very large sizes. The BigInteger library is good for multiplying smaller integers (even

with one of the numbers being very big). It seems pertinent that we use the good features

of both of these libraries. We take the fast small computation capabilities of BigInteger

and fast multiplication behaviour of LargeInteger and fuse them together to form a faster

system. This means that local computations should be done using BigInteger and global

computations should be done using LargeInteger.
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Chapter 6

Our Project: A Java based approach

Our implementation for a distributed project is a simple Client-Server architecture System.

The Server and Client are both written in Java. We are aiming to achieve two goals with

this project. Firstly, to develop an API for programmers to easily be able to write a

distributed application quickly, defining a few derived classes and not worrying about how

the distribution of problems, how their combination and how their management will take

place. Secondly, to show that there are some real world gains by using a Java approach

with distribution over the internet using Applets.

The software is written in Java, and thus requires that all developer-defined software

components also be written in Java. Furthermore, the Java Runtime Environment (JRE)

version 1.4 (or later) must be installed on each machine which is expected to run the

software.

We can define the main sub systems of the System with the following diagram
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Figure 6.1: Main Sub-Systems of our Project

Figure 6.1 shows the main Sub Systems of our Project. Below is a brief description of

the responsibilities and functions of these sub-systems.

6.1 Java Virtual Machine

The JVM must run on both the Client and the server sides. The JVM provides the interface

between the Client and Server sub-systems, and the hardware and networking platforms

on which they run. The JVM is also responsible for providing the platform- independent

features of the system.
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6.2 Server

The most important sub-system on the server-side is the Server. This sub-system runs on

top of the JVM, and is able to communicate with Clients via the network interface and the

network. Its principle responsibility is to manage various server-side data structures and

components, as well as interacting with the three developer-defined components, namely

the ResultHandler, ProblemGenerator and Problem (described below). The Server also

manages the communication mechanisms through which transactions between Clients and

the server will be conducted.

6.3 ProblemGenerator

The ProblemGenerator sub-system is responsible for generating Problems. Such problems

are split into sub-problems by the Server (described later), which are sent to Clients on

request, via the network. The sub-problems are received by the Client and processed. The

ProblemGenerator is developer-defined.

6.4 ResultHandler

The ResultHandler is a sub-system that runs within the Server and takes care of the

incoming Results. It notifies the Server that the partial results have arrived and keeps

running until all the Chunks are evaluated.

6.5 ChunkCombiner

This sub-system runs within the Server and is responsible for combining the Chunks as

results are made available. This gives us the advantage of combining the results as they

arrive and not having to wait till all the Chunks are evaluated; we have more parallel

computations this way.
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6.6 Client

The Client is the most important sub-system on the Client side, and is responsible for

maintaining various Client-side data structures necessary for its runtime functionality.

The Client must request a Problem from the ServerEngine, which it processes. Once

the processing is complete, the Client is responsible for sending the Result set back to the

ServerEngine, where it is passed to the ResultHandler, as described above.

6.7 Network Interfaces and Network

The network interfaces and the network are the medium across which all Client-server

communication takes place, and are thus critical in determining the overall performance of

the system. The network must support the TCP/IP protocols.

6.8 Server Setup

For the setup of the Server, we require that the machine have Java Runtime Environment

1.4 or better installed. This will enable the pre-compiled classes to run the Server. For the

user defined classes to be compiled, Java Development Kit (JDK) 1.4 or better is required.

Since we are trying to make it easy for developers to define quickly their applications

by inheriting certain classes, we will first give a brief overview of what a developer needs to

do in order for their application to run. This will involve showing which classes need to be

sub classed and which methods should be defined and what their behaviour requirement

will be.

6.9 Integrating developer defined application into the

System

The following is a list of classes and methods of importance when a developer is adding

their application to the System for distributed computation.
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Class to inherit: DiCom.Problem

This is the class that actually defines a problem. For example, if you want to define

a problem that calculates the factorial, you will create a sub class of this class and de-

fine the problem. It is important to follow the techniques for thread synchronization or

method/object mutual exclusion by using the synchronize keyword wherever applicable.

The following are the methods of importance to define in the sub classes.

Result solve()

This method is defined so that the Problem can be evaluated without splitting it into

any smaller sub-problems (Here on referred to as Chunks). This needs to be over

ridden so that the developer can define how to evaluate a sub-problem. The Result object

needs to be retuned; a Result Object can be a user defined Object which sub classes Result

class, or it can be any of the predefined classes available.

void split(int n, ProblemArray Problems)

throws SplitFailedException

This method splits the Problem into n Chunks and returns the set of Chunks in a

ProblemArray called Problems. If the Problem cannot be successfully split into Chunks, a

SplitFailedException is thrown. It is possible that this method just calls on the constructor

of its own class to create sub-Problems with different starting parameters. An example

will be given later on.

int getRequiredChunksNumber()

This method is defined so that the developer can define the suitable number of Chunks

for their particular application. This information is used when splitting the problem into

Chunks.

Result combineChunks()

throws BrokenProblemException
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This method defines the behaviour to combine all the Chunks and come up with a

Result. A BrokenProblemException is thrown if there is an error in combining the chunks.

The developer has to define this method for their application to combine the Chunk’s

Results that were sent back from the Client.

void combineWithResult (Result _rResult)

This method is used to combine Chunks as the results arrive. We combine the cur-

rent Result (current P & Q for the example of evaluating e) with the incoming Result.

CombineChunks can be used for doing combination of results at one time, if required.

Result doFinalComputation()

When using combineWithResult (Result rResult), if there is need for a computation

after all Chunks all combined (for example, doing the final divisionP
Q

), this is the method

where such behaviour would be defined.

long getCombineTimeMs()

A method that will get the time it took for the Results to be combined. This helps in

keeping track of how effective the System is.

void writeObject(ObjectOutputStream _rStream)

throws IOException

Since the Objects are sent via the internet to the Client, they have to be written

as Serialized Objects. Therefore, any important data members must be written via the

writeObject method to the Stream.
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abstract void readObject(ObjectInputStream _rStream)

throws IOException,ClassNotFoundException

Since the Objects are sent via the internet to the Client, they have to be read as Seri-

alized Objects. Therefore, any important data members must be read via the writeObject

method to the Stream. The read must occur in the exact sequence the write has taken

place.

There are 3 available Result classes: TwoBigIntegersResult (to be used when a value of

P & Q is required), DecimalResult (when a decimal result is required, such as the rational

value of P divided by Q) and BigIntResult, which used Java.math.BigInteger (this could

be used for problems such as

N−1∏
i=0

i

which will only have one Integer Result). Any of these classes can be used for obtaining

Results.

Class to inherit: DiCom.Result

Since each application is different, the developer might want to define the types of

Results it wants to generate. By inheriting this class, the developer has to define the

following methods

abstract String toString()

This method is used for printing the Object. The developer can define how the Result

can be printed.

void readObject(ObjectInputStream _rStream)

throws IOException, ClassNotFoundException

Since the Result has to be sent via the internet to the Server from the Client, it has to

be Serialized and the developer must write the data members to the Stream.
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void writeObject(ObjectOutputStream _rStream)

throws IOException

Since the Result has to be sent via the internet to the Server from the Client, it has to

be Serialized and the developer must read the data members from the Stream. The read

must occur in the exact sequence the write has taken place.

Interface to implement: ProblemGenerator

This class is just used to generate Problems. It has a single method that needs definition

Problem getNextProblem()

This method must return a Problem to be evaluated. Here a developer can just create

and return an instance of the Problem they are trying to evaluate.

Class to Modify: Server

The Server must be modified so that it knows which ProblemGenerator to use. It is

possible to parameterize this modification but as of right now, the following line of code

must be modified

MyProblemGenerator m rProblemGen = new MyProblemGenerator ();

MyProblemGenerator needs to be changed to whatever the developer’s class name is

for the ProblemGenerator.

The combined definition of all these classes is all you need to have a working distributed

application for solving Hypergeometric Series.

6.10 Client Setup

Since the Clients are connected via Applet, a developer can either make the applet available

offline or run via Sun’s Applet Viewer, or a web server can be used to host the Applet. The

Applet is always downloaded and run locally on the Client’s machines. The web server is

a more popular solution, since a developer can just distribute the links to the site to the

prospective Clients.
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A user visit’s our website (for example http://www.fawad.ca/research/) and clicks on

the “I want to participate” link. They will be taken to a web page that will load a simple

Java Applet. Since we are not yet doing any Security Certificates, the Applet will not be

signed and therefore will simply open connections only to the website it is hosted on. The

applet has a very simple user interface like the following

Figure 6.2: Client Interface
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6.11 System Architecture

The overall System Architecture of our project is very simple. It can be understood with

the aid of the following diagram

Figure 6.3: System Architecture

As can be seen in the figure above, our System is a very simple Client-Server type

System. The Server is a Java Application running on our servers and the Clients are Java

Applets running remotely via the internet on computers all over the world. This is a very

simplistic view of how we are setting up our System. To get a detailed idea, let us look at

the simple scenario of the interaction between the Server and only one Client.
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Figure 6.4: Single Client-Server interaction

As we can see from the diagram, we have a scenario in which there is only one Client and

only one Server. Let us walk through a typical user and their connection to our System.

The Client is loaded in a web browser and a connection is initiated by the Client to

the Server. On the Server side, the Server recognizes that there is a Client connected to

the System; it sends a connection response to the Client and updates the User Interface as

shown in figure 6.5.
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Figure 6.5: Server Interface showing connection by one client

For the simplicity of the System, let us assume that we actually have 2 Clients (so that

we are doing some shared work). When the second Client connects, the screen is updated
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similar to the one shown above.

The Problem is split into however many chunks are required (stated by the Problem

itself). If we have that many Clients, that is the optimal situation, but in a situation that

we do not have as many Clients as Chunks, we can either reduce the Chunks to match the

number of Clients, or we can just have multiple Chunks to be given once the Clients finishes

one computation (this approach is better since in the event of another Client connecting,

we can give it some work as well). The Server then sends a lock message to the Client and

waits for a response within 10 seconds. If there is no response from a particular Client, it

is assumed that the Client is no longer available for computation. Once the lock responses

are received, the Server sends the Chunk to each of the Client and updates the screen, as

can be seen in the following series of diagrams which are just zoomed in for clarity

Figure 6.6: Clients List

In this list we see that we have 2 users, their IP addresses (both Clients are running on
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local machines), the chunk ID of the chunk they are working on, the details of the problem

(this is user defined, for this particular problem, the value of k is used, and the number of

terms for the computation), and finally we see the status of the Client.

There is also a messages window, which outputs any messages, logs or print statement

that the user or the Server has programmed to be printed.

Figure 6.7: Messages Window

The diagram that follows shows the completion of Chunks so that the user can follow

the progress of the computation
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Figure 6.8: Chunk Completion diagram

In this diagram we see a visual display of the Chunks. The “alt” text shows detailed

status of the Chunk, while the Chunk color defines its immediate status

• Red means the Chunk has not been evaluated and there are no members solving the

chunk

• Green means the Chunk is being currently evaluated

• Blue means the Chunk is already evaluated

Once the chunks are distributed, the Client immediately starts to work on them. In order

to make sure that the user has not disconnected (gone offline, crashed, rebooted etc); the

Server sends a Poll message to the Clients every 10 seconds and waits for a response. If

there is a response, there is no change made to the System. If there is no response from a

certain user, the user is considered KILLED, removed from the list of Members, the Chunk

status is changed back to unevaluated and unassigned.
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If another user joins during the computation, the first available chunk that is unsolved

and unassigned is assigned to them. If there are no available chunks then the Client just

waits for a problem to be sent from the System.

When the Client is finished doing the computation, it sends back the Result to the

Server. At this point, the Server will either assign an unsolved chunk to this Client if

there are any; otherwise it will disconnect the Client. Once all Clients are disconnected,

it performs the final calculation i.e. combining the results specified by the user defined

Problem. This result is printed to the screen along with the time it took for the whole

computation as well as the time each Chunk took to be evaluated.

In the setting of multiple Clients, we have a very similar picture as before but with

multiple Clients
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Figure 6.9: Multiple clients connected to our Server

In this case we just have more Clients to handle, following the same processes as stated

before. New Clients are welcome and old ones who do not respond are removed from the

System.

Let us now look at some of the Setup Parameters that we have evaluated for all other

Systems
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6.12 Setup Parameters

6.12.1 Connectivity

Since we are doing computation over the internet in a web browser, at this time it is crucial

that the user is connected to the Server at all time since the Server Polls the user from

time to time. We have to look at the sensitivity of such an application since the user can

just close the browser window and we would have no way to find out if the user is still

connected or not. Depending on the size of the computation, the user might be involved

in the computation for a long time and submit results after long periods, in which case an

offline approach is better than the current one. On the other hand, if the computations

are small, then the Results need to be sent back and new Problems received frequently, in

which case a constant internet connection is more useful.

6.12.2 Reliability

If a Client does not respond to Poll messages, then the Client is assumed to be dead and

the Chunk is then put in a pool of unsolved Chunks. When other users are connected

to the System, the Chunks are then distributed to them as well. A modification to our

System can actually solve this problem, which will be presented later on.

6.12.3 Verification

At this point there is no method for verification of results, but the modification previously

mentioned can aid us in this task. We can also build verification by doing more distributed

computation but this time on the inverse of the series we are trying to evaluate, and

finally multiplying the two results. For example, we obtain P1

Q1
for evaluating eand then we

compute Q2

P2
for evaluating 1

e
and then we verify that R = P1∗Q2

Q1∗P2
= 1. It is not necessary

that every hypergeometric series would indeed have a hypergeometric series representation

of the inverse.
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6.12.4 Communication method

All communication is done via TCP/IP using specific ports. It is fairly easy to configure

the Client to work behind a firewall.

6.12.5 Expandability

This is the best part of our project. Whenever a user connects to our website and opens

the applet, the latest version of all the Software that is required by the Client is given to

the user. This means that if we are actually solving a different problem this time, the user

does not need to download anything new. The interface for the Applet can remain the

same, since the Client does not need to know that a new problem needs to be solved.

Another great thing about this is that the Client code is just a sub class of the Server

code. With this comes the great benefit of super nodes and sub nodes, as mentioned

before. With signed Applets, we can enable some Clients to become Super nodes, so that

they can further distribute some work among other Clients. The behaviour here will be a

little different, as the Server would still be the only one hosting on a website and would

just forward the details of new Clients to these super nodes so that they can communicate

directly. As with most other distributed applications, only with the user’s permission will

the Client start its Super node activities.

6.12.6 Fault Tolerance

Since the work that is incomplete by one Client is reassigned to other Clients, we have

fault tolerance, but on a very small scale. With the aid of signed applets, we can actually

save partial results to local files so that on a new launch of the applet, we can check our

state and continue the computation rather than requesting a new Problem from the Server

and starting to work on it from scratch. There will be some behavioural changes from

the current setup, since a Client is assumed disconnected if it does not respond to Poll

messages. This will mean that on the current Setup, the “restarted” Client will be assumed

to be a new Client. Changes on the Server side and on the Client side, once implemented

will aid in this new and improved working of the Clients.
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6.13 Modification to the System

Suppose that we have a machine that is free most of the time and we (the Server) knows the

IP address of this machine. This means that we can use this machine for our computation

benefit, in such a way that there is no user intervention required. We can actually create

a very specific Client for this machine, which can be launched remotely and which can do

any type of work that we need it to do. Let us call this machine the “Assistant”.

We can use the Assistant to perform any type of work that we want, since we know

where it is located and that is it available to be used any time. We can use it for any of

the following tasks

1. Verify partial results sent from Client

2. Evaluate Chunks sent from the Server

3. Combine the Results sent from Clients to compute final Result

4. Always be available to take a part in the Computation

In essence we have a Client that is always available for helping us and we can use it in

any way we want. If there are no Clients available to start the computation, we can just

start by giving some work to this machine while waiting for other machines to connect. It

is entirely possible that this single machine will evaluate all our Chunks for us. Since we

have a control on this machine, we will assume that this machine has reliability in terms

of Results, a reliable connection to us and is fault tolerant to a certain degree. We can see

this via the following diagram
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Figure 6.10: Assistant

We can see that even as other Clients come and go, we have this constant Client, the

assistant, who’s only job is to do any type of work we assign it to do.
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Chapter 7

Tests

As discussed in Chapter 1, we test our system using the evaluation of e to high precision

and see what type of results we produce. We test the System with different ways of

breaking up the problem and with a different number of Clients. We also show that the

System handles disconnection of Clients and integrates the connection of new Clients into

the current Problem Solution Cycle.

We are, of course, interested in the System performance as well as the performance of

solving the problem by distributing parts of it across different machines and obtaining a

final result. What will be important to note is the Speed up of this process over the process

of solving the Problem on a Single machine.

A very important thing to note here is that the most important aspect of our research

is to develop a toolkit which can easily be customized to evaluate different types of series.

The Clients which are Java Applets actually run much slower than the standard application

via the main () method. Even doing simple I/O slows down the Applet considerably. This

is because the Applet is constrained within the browser’s environment, the memory is not

allocated in the same way as a standard application, and above all, the Client as well as

the Server are both GUI programs; they are running multiple threads for the GUI, as well

as for communication with each other. We want users to also see what is going on within

the System, and the developer to see the progress of the test. All of this involves more

computation time that is taken by these parts and less of the CPU time is left available

for the actual computation.
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Since we want more and more precision in our results, we will be testing with more and

more digits of accuracy, which means the number of terms in the Series, given Section 1.1

will increase and therefore the overall work required will also increase. It is important to

note that since division of very large rational integers is a complex and time consuming

task, in all fairness, we time the computations without doing the final division P/Q.

In the following sections, we will first state the parameters of the test, a brief discussion

on why the test is important and how the System behaved in response to the parameters

and the conditions. The tests were conducted with the Server and one Client running on

an Intel r©PentiumTM4 running at 3124MHz with 512MB of Random Access Memory and

another Client running on a Pentium r©IV 2.6GHz laptop. Most non essential processes

were killed before the tests were conducted. The Server machine also runs a web server

to host the Applet. The Applet was loaded via Internet Explorer browser. Using only 2

computers, where we are not extracting all the parallelisms that we can potentially have,

we hope to achieve speeds closer to the Single Machine solution, since results are slower as

previously mentioned.

The common factor in all these tests is that there is a buffer of 5 seconds between

sending the Lock message and receiving a Locked message. This means that before any

computation starts, the 5 seconds are spent for locks and therefore contribute a whole 5

seconds to the total Processing time.

We have devised the tests so that we can be very fair to the standalone application as

well as the distributed application. In all the tests, the standalone result is also obtained

by splitting the problem into smaller chunks. Each Chunk’s result is combined into the

overall result as soon as it is available. In the Client-Server case, the Server starts joining

the results as soon as they arrive. Since the Applet runs slower as mentioned before, it

is not surprising when the Chunk time for Applet is almost double the Chunk time in

the Application. What is important is that if we actually have many similar machines

at our disposal, the parallelism we would obtain would guarantee us that the distributed

computation would perform much faster than its standalone counterpart.

The mode of computation we use for these tests is to combine the chunks as the results

arrive. Using this mode, since we have only access to 2 fast machines, we are running the

Server and Client on the same machine. This means that this Client is sharing its time
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with the Server and therefore does not even do about one third of the total number of

Chunks. The second Client solves most of the Chunks, so we lose some time this way as

well. The mode can be modified to only combine the Chunks at the end, very easily.

It is also important to note that the times shown here are wall clock times and not

CPU times. This means we are measuring the total time from the time that the instance

for the Problem is created to the time we have combined all the chunks together (since we

are not doing final division).
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7.1 Test 1

Parameter Value

Number of Digits 100,000

Number of Chunks 4

Disconnect any Clients No

Table 7.1: Parameters for Test 1

Please note that number of Chunks is not the same as the number of Clients (2 in all

the tests).

Parameter Value

Total Communication Time 63 ms

Total Processing Time 15,000 ms

Chunk 0 Time 766 ms

Chunk 1 Time 681 ms

Chunk 2 Time 891 ms

Chunk 3 Time 4,381 ms

Combination Time 9,297 ms

Time to Evaluate on a Single Machine 12,437 ms

Table 7.2: Results for Test 1

From this test we can see that for a small number of digits, the overhead of using the

Applet contributes the most time to the total time. The Chunk Combination Time for

both is almost the same.
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7.2 Test 2

Parameter Value

Number of Digits 100,000

Number of Chunks 10

Disconnect any Clients No

Table 7.3: Parameters for Test 2

We are increasing the number of Chunks to see how the System behaves.

Parameter Value

Total Communication Time 111 ms

Total Time 18,265 ms

Avg Chunk Time 200 ms

Combination Time 12,984 ms

Time to Evaluate on a Single Machine 13,719 ms

Table 7.4: Results for Test 2

Since the size of the Chunks has increased, the average Chunk Time has decreased

significantly, but the combination time has increase, which contributes to the total time.

Keeping in mind the locking time, the total time here is just the lock time and the combi-

nation time, as if Chunk computation took no time at all.
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7.3 Test 3

Parameter Value

Number of Digits 500,000

Number of Chunks 20

Disconnect any Clients No

Table 7.5: Parameters for Test 3

We increase the digits as well as the number of Chunks. If the number of Chunks was

only 2, this test would take a very long time, as compared to running with 20 Chunks.

Parameter Value

Total Communication Time 100 ms

Total Time 119,907 ms

Avg. Chunk time 1,011 ms

Combination Time 114,297 ms

Single Machine Time 126,766 ms

Table 7.6: Results for Test 3

We have improved our combination algorithm to take advantage of more parallelism,

due to which our combination time (which is included in the total time) has improved and

our System is now faster than the Single Machine Time.
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7.4 Test 4

Parameter Value

Number of Digits 1,000,000

Number of Chunks 20

Disconnect any Clients No

Table 7.7: Parameters for Test 4

We increase the digits as well as the number of Chunks.

Parameter Value

Total Communication Time 100 ms

Total Time 275,875 ms

Chunk Combine Time 268,734 ms

Single Machine Time 323,329 ms

Table 7.8: Results for Test 4

In this test, with more digits of accuracy, we see a catch-up of the Single machine by

our System. We will see in the coming results that our System results are not very different

from the Single machine. If we have more computers available, the gap between the two

will be significant.
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7.5 Test 5

Parameter Value

Number of Digits 1,000,000

Number of Chunks 30

Disconnect any Clients No

Table 7.9: Parameters for Test 5

We further increase the number of digits to see how the system behaves.

Parameter Value

Total Communication Time 1000 ms

Total Time 365,641 ms

Chunk Combine Time 359,766 ms

Single Machine Time 384,400 ms

Table 7.10: Results for Test 5

We see in this test that our system performs faster than the Single machine. The

difference is not very significant, but at least we are running on par with the Single Machine

Time, even though we are just using 2 machines for the whole test.
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7.6 Test 6

Parameter Value

Number of Digits 2,000,000

Number of Chunks 30

Disconnect any Clients No

Table 7.11: Parameters for Test 6

We increase the digits as well as the number of Chunks.

Parameter Value

Total Communication Time 1563 ms

Total Time 882,875 ms

Chunk Combine Time 873,766 ms

Single Machine Time 887,968 ms

Table 7.12: Results for Test 6

We see that our results are a little faster than the single machine, due to the reasons

specified previously.
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7.7 Test 7

In this test, we will compute e to 3 million digits. This is because it will take a long time

for this to compute, especially if we keep the number of chunks smaller, hence making each

Chunk larger. This will allow us to test disconnection of Clients and connections from new

Clients to the System.

Parameter Value

Number of Digits 3,000,000

Number of Chunks 5

Disconnect any Clients Yes

Table 7.13: Parameters for Test 7

We begin the testing by running the Server and 2 Clients normally. We will disconnect

a Client after the data has been sent to the Client and the Client is busy. We will also

connect a completely new Client to the System. It will also be tested if the Server reacts

as expected when a Client connects at a time when there are no more Chunks to evaluate.

Finally, we will let the System run and check if the correct output is received.

Parameter Value

Total Communication Time 900 ms

Total Time 1,123,302 ms

Avg. Chunk time 280,656 ms

Table 7.14: Results for Test 7

The System passed all the required tests, producing the desired behaviour. When a

Client disconnected from the System, it was marked as KILLED and subsequently removed

from the System. When a new Client connected the System, it was marked as IDLE and

given a Chunk to evaluate. When a Client connected to the System and there were no

Chunks to be evaluated, it remained in the IDLE state. After all the Chunks are evaluated,

the System produced the correct final result.
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Chapter 8

Conclusion

From the previous chapter, we see a mixture of results. The timings are sometimes better

of our System and sometimes it makes sense to do the computation on only one machine.

There are other interesting results as well, which have to do with using Java for solving

these types of problems. Let us study these results by dividing them into 2 sections.

8.1 Java as the language for implementation

Currently, Applets are the only applications that can be run inside a browser without

any user input, authentication or permission. We saw that this, however, does not open

the complete potential of what Java Applets can achieve, but is sufficient for our work.

Another great benefit of Applets over conventional non Java applications is that every

time the Applet is loaded, the latest version of the compiled code is available for the

user. This means that if on the Server side, the code has been changed, updated or

removed, the same changes take effect within the Client session, and we can keep changing

the types of problems that we use the System to evaluate. However, with all the good

benefits that Applets have to offer, we see that Applets run very slow even when doing just

computations. This was because there are multiple threads running within the Applet and

the computation thread has to share its time with every other thread. We also have to keep

in mind that a non Java solution would mean that the Clients would have to download

the binary executable code from the website and run it locally. This would yield better
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control of the application on the Client side, but we would forfeit any benefits of using

Java Applets.

We also saw a comparison of Integer Libraries, BigInteger which is built into Java

and LargeInteger, a FFT based implementation by R. Howell [8]. BigInt was the C++

implementation done by Xavier Gourdon [6]. We saw that where BigInteger lacked in

speed, LargeInteger was a faster solution and vice versa. We suggested a hybrid solution

where we would do some computations involving small operands using BigInteger library

and perform operations on larger operands using LargeInteger library. The C++ results

were provided to see how we compare against a C++ implementation.

In order to have a Java based solution, a web server needs to be run, wherever the

System Server resides. This web server will allow Clients to connect to the System via

the http protocol and download the Applet in their browser, to run the code. The latest

version of the Java Plug-in (or Java Virtual Machine) must be installed on the Client

machine; otherwise the Applet will fail to load. The Java Virtual Machine, especially on

older machines, takes a long time to initialize and load Applets. But in a large group of

machines, this should not pose a very significant problem.

8.2 Distributed Computation of Hypergeometric Se-

ries

The Application runs faster than the Applet in almost half the time, which can have an

effect on the System. We have to a find a point of optimality in terms of number of

Chunks to split the problem into, so that we can minimize the total time. As we saw in

section 6.9, it is very easy to make changes to the classes in order to choose a suitable

size of the sub-problem. Binary splitting [6, 7] is a popular algorithm for evaluating

hypergeoemetric series, we can easily setup the system to use binary splitting instead

of the current algorithms to evaluate the series.

In an unpublished paper by Cheng et al. [2], more efficient solutions for evaluating

Hypergeometric Series are discussed and it is shown that by using modular arithmetic and

Rational Number Reconstruction of images of S(N), the series can be evaluated faster and

more efficiently than using Binary Splitting. This is obtained by choosing an appropriate
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modulus and doing all the computation modulus that prime. This result is important to

us because we can incorporate their approach into our System by making changes in the

Problem class in the way that the problem is evaluated at the Client and how it is combined

together at the end.

We have shown that our solution is very scalable, since we can have any number of

Clients connected and we can keep increasing the size of the Problem and still find a

solution very fast. We have shown reliability in the System because we have a numeric

answer at the end which we can compare against systems like Maple, Matlab or use the

techniques described in the verification section.
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Chapter 9

Future Work

What we have implemented and presented here is a very limited and small version of

what a complete distributed System can offer. There are several avenues that still remain

unexplored.

Since we have found a lot of promise in using Java Applets, we can explore the possi-

bilities presented in Chapter 2. If we can sign our Applets through a trusted third party,

the chances that a user would trust our Client as well increase significantly. This means

that we can make the Client more complex. This can be accomplished by the idea of the

Super Node as mentioned before, in which case the Client can also act like a Server and

distributed chunks to other Clients, which will be forwarded by the main Server.

By signing Applets and making them trusted, we would have some access to the Client’s

local file system. The benefit would be that we can save partial results to a file within

the Client’s file system. This of course comes in handy when a Client is restarted by the

user, which can check if any partial results are available and continues computation from

that point on, rather than starting from the very beginning. Another approach would be

to try and send partial results to the Server and indicating that these are partial results,

so that the Server can make use of these results when combining all the chunks to get the

Result. It is also possible, with some code changes to the Client, to save the State of the

Client. This is similar to saving partial results, but this also incorporates any other data

structures that might be in use. This is particularly useful if a Client crashes or if the user

decides to shut down the Client.
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The Server would need to be modified in order to incorporate changes within the Client.

If partial results are going to be saved, then it would be beneficial to the Server to write

all the partial results to a file and keep track of this file at all times. This once again is

similar to saving the state of the Server, but is only a small portion of the State. The

Server can also keep a track of any Clients by making sure that it can reconnect to the

Clients in case the Server is restarted. This will decrease any dependency on the user to

restart the Client to establish a connection with the Server.

We already saw the approach of using an Assistant, which would allow the Server to be

free while the Assistant handles any work, such as solving any remaining Chunks in case

there are no Clients connected, or doing the final combination of Chunks. We can also

have the Assistant combine partial Chunks, while the Server keeps track of Clients and

manages them.

Any other improvements to make the code robust would be a great avenue to explore.

We have shown that using Java Applets makes things very easy for general users, if we

can do anything more to improve their experience in taking part in solving mathematical

problems, it is worth the effort.
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