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Abstract

Terahertz (THz) technology offers a rich playground for a vast number of research top-
ics and applications. High resolution imaging for biomedical applications, long-wavelength
spectroscopy for interstellar applications, security monitoring, communication, quality con-
trol, and process monitoring are just among a few possible applications of the THz technol-
ogy. While the lack of an efficient source is a huge obstacle in flourishing of THz technology,
the potentially huge impact of THz technology in many areas of every day human life has
motivated extensive world-wide research efforts in this area. In response to the widespread
need for the cost-effective miniaturized THz active devices, this thesis describes theoret-
ical and practical methods developed for the analysis, the design optimization, and the
fabrication of a graphene-based THz photomixing sources.

The main contributions, from an analysis point of view, include a new computationally
efficient multipole-based method with a surface boundary condition (SBC) to analyze the
wave interaction with graphene and also development of a comprehensive theoretical model
for modeling of the difference frequency generation (DFG) in graphene. The proposed
multipole-based method is deployed to find the linear interaction of light with graphene
and also to verify the volumetric model that will be used in the design optimization of
the THz photomixing structure. In the nonlinear analysis, symmetry breaking and the
advent of second order processes such as the DFG in graphene are discussed in detail. I,
specifically, explore the role of DC biasing and the wave momentum as two mechanisms
effective in symmetry breaking. As a result, nonlinear conductivity of the graphene layer
is calculated for an obliquely incident wave and in the presence of a DC current using a
quantum mechanical approach.

From a design optimization point of view, design of a new nanoplasmonic structure
for the DFG enhancement and a THz antenna for the efficient radiation of the generated
THz signal are the main focuses of this work. I start by verifying the plasmon enhanced
wave interaction with the graphene layer via the Raman spectroscopy. Next, I use the
obtained nonlinearity in conjunction with the volumetric model to design and analyze
the complex structure of photomixer in the perturbation limit. The nonlinear analysis
shows the achievable THz power of 1µW from an incident laser pulse with the fluence of
15mW/cm2. I then investigate the effect of designed log-periodic antenna and I show how
the antenna can be used to control the generated THz power.

Finally, the new recipe developed for the fabrication of the graphene-based photomixer
structure is presented. The developed recipe ensures a reliable and repeatable fabrication
process even for large area graphene devices. In addition, a comparison between the de-
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veloped recipe and those typically used in nanofabrication is depicted. This work ends by
showing the measurement setups and the measurement results for the fabricated devices.
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Chapter 1

Introduction

Two dimensional (2D) materials or 3D anomalies [1] offer unique electrical and thermal
properties because of the plane-confined heat and charge transfer. From a chronological
point of view, the first member of 2D materials is graphene which was discovered in 2004
by Geim and Novoselov. Since their ground breaking experiment, every now and then, a
new allotrope is added to the list of 2D crystals. Hexagonal boron nitride, germanane,
molybdnum disolphyte (MoS2), and WSe2 are among the most studied 2D crystals [2].

Beside their amazing capability in device miniaturization, each of these materials offers
inherently unique properties such as high carrier mobility [3–5], controllable band gap [6],
and flexibility [7] that can surpass the commercialized Si and GaAs technologies. No
need to mention the importance of mobility in the device speed, controllable band gap in
electro-optic interaction, and the flexibility in every day life applications [7].

Historically, LTGaAs was among the first materials used for terahertz (THz) wave
generation. As a result of its high carrier mobility, it is possible to generate short pulses
extended to the THz range of frequency. However, the loss of LTGaAs in THz range is a
fundamental drawback preventing the realization of a fully integrated THz chip. Having
the concept of replacing the bulky materials with the 2D counterparts for miniaturization,
one can think of graphene as a replacement for LTGaAs. The higher mobility of graphene
as compared to that of LTGaAs and the feasibility of integration with Si technology are
the attractive factors to investigate a graphene-based THz generator. In this thesis, I have
performed a comprehensive study and investigation of such a device from both analytical
and experimental points of view.
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Chapter 1. Introduction

1.1 The physics of graphene

Carbon atom, one of the most abundant elements in the universe, has different allotropes,
each of which has distinct and interesting features. Among them, diamond, graphite, and
carbon nano-tubes are well-known structures. The graphite layer, particularly, is made of
stacks of two dimensional carbon sheets which are bounded by weak Van der Waals forces.
Each layer of these two dimensional carbon sheets is known as graphene. The existence of
isolated two dimensional crystal structures, e. g. graphene, was presumed to be impossible
due to the thermal effects in a low-dimensional system [8]. However, in 2004, a trivial
yet clever process involving the peel off of the graphite was proposed to isolate islands of
graphene [9].

Graphene is atomic layer thick substance in which the carbon atoms are arranged in
hexagonal structures (Figure 1.1 (a)). The distance between two adjacent carbon atoms
is a = 1.42. Each carbon atom has three covalent bonds with the neighboring atoms in
a sp2 configuration leaving one free electron in the pz orbital. The electrons bounded by
covalent bonding barely contribute to the electrical properties of graphene. The electron
in the pz orbital, however, has the most contribution to electrical and optical properties.

1.1.1 The crystal structure of graphene

The honeycomb lattice of graphene is shown in Figure 1.1 (a). It can be verified that the
honeycomb structure is a Bravais lattice with a basis including two adjacent carbon atoms.
The direct lattice translation vectors are (The whole structure of lattice can be built by
translating the basis along an integer multiple of these vectors):

a1 =
3a

2
(1, 1/

√
3) (1.1)

a2 =
3a

2
(1,−1/

√
3) (1.2)

where a = 1.42 is the lattice constant. The Berillouin zone of graphene crystal and its
translation vectors b1 and b2 are plotted in Figure 1.1 (b). The vectors b1 and b2 are as
follows:

b1 =
2π

3a
(1,
√

3) (1.3)

b2 =
2π

3a
(1,−

√
3) (1.4)
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Chapter 1. Introduction

As we will see shortly, the two pointK andK ′ (denoted as Dirac points) are very important
to describe the electronic properties of graphene. The location of these two points in the
reciprocal space are,

K =
2π

3a
(1, 1/

√
3)

K′ =
2π

3a
(1,−1/

√
3).

1.2 The band-structure of graphene

The band-diagram of graphene, obtained using the tight-binding method and considering
the nearest neighbor and the next nearest neighbor hopping, is as follows [10]:

E(~k) = ±t
√

3 + f(~k)− t′f(~k), (t < 0, t′ > 0)

f(~k) = ejk.δ1 + ejk.δ2 + ejk.δ3 (1.5)

where t = 3eV and t′ = 0 are the nearest neighbors and the next nearest neighbor hopping
energies. Vector ~k is the electron wave vector on the graphene plane and the vectors δδδ1−δδδ3

are shown in Figure 1.1. The energy band-diagram of graphene in the Berillouin zone is
plotted in Figure 1.2. The intersection points of the valance and the conduction bands,
known as Dirac points, are important in dynamics of electron in the low energy limit. Inset
of Figure 1.2 shows the enlarged picture of band-diagram near one of these points. The
cone-shape structure of band-diagram near these points suggest the existence of massless
Dirac fermion near the Dirac points K and K ′.

Since all the carriers are bounded to the region near the Dirac points in the low en-
ergy limit, we only need Hamiltonian around these points to describe the carriers transfer
and scattering. The Hamiltonian of graphene around the Dirac points K and K ′ can be
conveniently written as [10]:

H0 =

(
0 kx − ξky

kx + ξky 0

)
(1.6)

where H0 is the Hamiltonian of the free standing graphene layer, ξ = 1 for the Dirac cone
K and ξ = −1 for the Dirac cone K ′. The Hamiltonian equation, near the Dirac points,
can also be written as follows:

H0ψ(r) = Eψ(r)

H0 = νF (p̂xσx + ξp̂yσy) (1.7)
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Chapter 1. Introduction

Figure 1.1: The direct (a) and the reciprocal (b) lattice of graphene.

Figure 1.2: The band-diagram of graphene. The inset shows the cone-shaped band-diagram
near the Dirac points.
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Chapter 1. Introduction

where νF ≈ c/300 is the Fermi velocity in graphene, σσσ’s are the Pauli matrices, E is the
energy of the electron, and ψ(r) is the electron spinor in graphene. For an infinite graphene
layer, the eigenfunctions of the Dirac equation 1.7 are [10]:

Ψ±,K =
1√
2

(
e−jφ/2

±ejφ/2
)
ej(

~k.~r−E/~t), Ψ±,K′ =
1√
2

(
ejφ/2

±e−jφ/2
)
ej(

~k.~r−E/~t) (1.8)

where φ is the propagation angle of electron with respect to the x−axis. From the wave
functions of Eq. 1.8, one can deduce the massless fermionic nature of carriers in graphene
since the propagation of carriers resemble the plain wave solutions of the Maxwell’s equa-
tions. Although the Taylor’s expansion of the graphene’s Hamiltonian (the Dirac equation)
might not provide a complete description of the carrier transport, the Dirac equation is
sufficient for describing different set of exceptional quantum effects such as chiral tunneling,
surface states, biasing magnetic field effect, anomalous integer quantum Hall effect, and
spin-orbit coupling in graphene. The electron wave propagation in graphene nanoribbons,
zigzag or armchair, can also be studied using the Dirac equation.

To complete our introduction to the Dirac equation, the probability density and the
current probability density should be presented. It is straightforward to confirm that the
Dirac equation supports the following continuity equation [10]:

∂

∂t

[
eΨ†Ψ

]
+ e∇.

(
νFΨ†σµΨx̂µ

)
= 0 (1.9)

where

ρ = Ψ†Ψ (1.10)

is the electron probability density and

jµ = eνFΨ†σµΨ (1.11)

shows the current probability density. Defined x̂µ vector can be wither x̂ or ŷ. The
expectation value of the current density 〈jµ〉 is important in establishing a macroscopic
model. The most common model for graphene is based on the surface conductivity model
derived from the relation between 〈jµ〉 and the electric field.

1.2.1 The quantum-physical modeling of the graphene’s surface
conductivity

To model the interaction of the electromagnetic field with graphene, one can either in-
corporate the electromagnetic potentials into the Dirac equation or insert the macroscopic
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Figure 1.3: The real (dashed lines) and the imaginary (the continuous lines) parts of the
graphene’s conductivity for T = 0K and T = 300K.

constitutive parameters of graphene, e.g. permittivity and permeability, into the Maxwell’s
equations. The former requires the inclusion of electromagnetic wave and electron wave
simultaneously, which is a sophisticated problem to deal with. The latter is a more con-
venient approach based on the assumption that the electromagnetic field does not change
the band structure of the graphene. Through the course of this research, I have always
used the second approach.

Considering the zero band-gap of the graphene layer, there is always a conductivity
current on its surface. Since the flow of current is confined to the surface of graphene, which
is only one atom thick, the current can be modeled as a surface current. Since the effective
thickness of graphene ∆ < 1nm, such an assumption is valid from the microwaves range
of frequencies to the visible light. The effect of this surface current on the electromagnetic
field can be considered as a discontinuity in the magnetic field as follows:

n̂× ( ~H1(~r, t)− ~H2(~r, t)) = ~Js(~r, t). (1.12)

where n̂ is a unit vector perpendicular to the surface of graphene, ~H1 and ~H2 are the
magnetic fields at either sides of the graphene layer, and ~Js is the surface current on the
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Chapter 1. Introduction

graphene layer. The vector ~Js(~r, t) in Eq. 1.12, can be locally approximated as:

~Js(~r, ω) = ¯̄σ(~r, ω). ~E(~r, ω) (1.13)

where ¯̄σ is the conductivity tensor of graphene and ~E(~r, ω) is the electric field on the
graphene layer. When there is no external magnetic field, the tensor ¯̄σ reduces to a scalar
given below (Assuming a time harmonic of the from e−iωt) [11,12]:

σ(ω,EF ,Γ, T ) =
ie2(ω − iΓ)

π~2

{
1

(ω − iΓ)2

∫ ∞
0

E
(
∂fd(E)

∂E
− ∂fd(−E)

∂E
dE
)

−
∫ ∞

0

fd(−E)− fd(E)

(ω − iΓ)2 − 4(E/~)2

}
(1.14)

where ~ is the reduced Planck constant, e is the electron charge, EF is the Fermi energy
level of the graphene layer, Γ is a phenomenological constant of scattering rate at the
graphene’s surface, and T is the temperature of the graphene layer. Function fd(E) is the
Fermi-Dirac distribution:

fd(E) =
1

e(E−EF )/kBT + 1
(1.15)

where kB is the Boltzmann’s constant. In Eq. 1.14, the approximate derivative ∂fd(E)
∂E dE

is substituted for the actual probability difference of electrons in the conduction or the
valance band fd(E +dE)−fd(E), which represents the probability of intraband transitions.
The first integration in Eq. 1.14 represents the contribution of intraband transitions while
the second one is due to the effect of interband transitions. The conductivity at zero
temperature can be represented analytically as follows [12,13]:

σ(ω) = −e
2EF
π~2

i

ω − iτ−1
+
e2

4~

{
θ(~ω − 2EF )− i

π
ln

∣∣∣∣~ω − 2EF
~ω + 2EF

∣∣∣∣} (1.16)

where τ−1 = Γ and θ(t) is the Heaviside step function. We always use τ = 10−13 which
was extracted from the dc-mobility of the graphene layer at EF = 100meV [14, 15]. The
first term in Eq. 1.16 is the same as the Drude model for metals [16] and comes from
the intraband transitions. The second term of Eq. 1.16 shows the effect of interband
transitions mostly contributing to the absorption losses. As the photon energy reached
2EF , there is a sudden increase in the conductivity loss of the graphene layer due to the
contribution of the second term (the step function θ((~ω − 2EF ))).
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Figure 1.4: The real (solid lines) part and the imaginary (dashed lines) part of the permit-
tivity of the graphene layer for three different values of the Fermi energy level EF = 0.4eV ,
EF = 0.6eV , and EF = 0.8eV (∆ = 0.7nm).

Substituting Fermi-Dirac distribution function into Eq. 1.14, one can find the following
simple form for the conductivity [13,17]:

σ(ω) =
2e2kBT

π~2

i

ω − iτ−1
ln(2 cosh(EF/2kBT ))

+
e2

4~

(
H(ω/2)− 4iω

π

∫ ∞
0

dΩ
H(Ω)−H(ω/2)

ω2 − 4Ω2

)
(1.17)

where H(Ω) is defined as follows [17]:

H(Ω) =
sinh(~Ω/kBT )

cosh(~Ω/kBT ) + cosh(EF/kBT )
(1.18)

Figure 1.3 shows the conductivity of graphene (τ = 10−13 and EF = 0.77eV ) [12] at
T = 0K compared with the one obtained for the room temperature. As the temperature
of the graphene layer increases, the frequency dependency of conductivity becomes more
gradual. It is notable that the peak value of imaginary part of conductivity reduces by
half for T = 300K.

Though the surface conductivity model is well-developed for graphene, the inclusion of
this surface conductivity in the commercial softwares based on a volumetric model such
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Figure 1.5: The typical structure of a graphene device. The silicon substrate acts as the
backgate to control the Fermi energy level of graphene.

as the finite element method (FEM) and the finite difference time domain (FDTD) is not
possible. For this reason, a volumetric model for the graphene layer is also proposed [18].
The equivalent volumetric permittivity of the graphene layer can be obtained from:

εr = 1 + σ(ω)/iω∆ε0 (1.19)

where ∆ is the effective thickness of the graphene layer [19]. In deriving the Eq. 1.19, it is
assumed that the thickness of ∆ is small enough that the current is uniformly distributed
along the thickness. As presented in Chapter 4, the volumetric model introduced here is
as accurate as the surface model for ∆ < 1nm. Figure 1.4 shows the obtained permittivity
(∆ = 0.7nm) for three different Fermi energy levels of the graphene layer, showing that
the constitutive parameters of the graphene layer can be controlled by changing the Fermi
energy level of graphene. One of the simplest method to change the Fermi level is via
backgating of the silicon substrate (Figure 1.5). Considering the controllable conduction
loss in graphene, one may think of realizing different type of graphene-based modulators
such as the ones proposed in [19–22].

It is important to note that no external magnetic field has been assumed in the pre-
vious derivations. The existence of external magnetic field changes the band-diagram of
the graphene and also the isotropy of the conductivity tensor. The derivation and the
applications of the anisotropic conductivity tensor are detailed in [11,23].

1.3 Interaction of electromagnetic field with graphene

The interaction of light with patterned graphene structures shows peculiar behaviors which
are mainly the result of the two dimensional (2D) structure of graphene [18, 24, 25]. The
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periodically patterned graphene structure can completely absorb the optical beam in a
specific wavelength, which can be tuned by changing the Fermi energy level of graphene [26].
The patterned graphene structures also show interesting tunable properties in the terahertz
(THz) and the infrared spectra, as measured in [27, 28]. In addition, the closely spaced
graphene flakes show high field enhancements [13, 29] which can potentially be applied to
biosensors, photonic metamaterials [18], and optical nanoantennas.

Most of these effects originate from either the excitation of surface plasmons in graphene,
or from the plasmon coupling with metallic nanostructures. Each of these effects opens
up new possibilities for graphene-based devices. In the following sections, we review the
importance of the plasmon generation/coupling in graphene and how it contributes to the
realization of featured components for new applications. This review is also an essential
part of our introduction to the graphene-based THz photomixer in which the plasmonic
effects are dominant. As the numerical analysis are an essential part of the device charac-
terization, I also briefly review the current trends in numerical methods developed for the
analysis of graphene-based components.

1.3.1 Plasmonic properties of graphene

Plasmon is a quantum of plasma oscillations [16]. The generation of this quasi-particle is
the result of a coupling between the electromagnetic field with the electron wave. Its main
property, from an application point of view, is that the plasmons are squeezing light photons
far below their diffraction limit. This property makes them a promising candidate for a
broad range of applications in optics such as optical waveguiding [30, 31], biosensing [32],
imaging [16], and the realization of nanoantennas [33]. The most prominent materials
supporting the plasmon resonances are gold and silver. The inherent plasmons of gold
and silver, however, suffers from two deficiencies; their surface plasmon-polariton (SPP)
resonances only occur at the visible range of spectrum and the loss of SPP resonances is
huge because of the corresponding metal losses.

The negative permittivity of graphene (Figure 1.4) also allows the excitation of long-
lived plasmon waves in the midinfrared (Mid-IR) and THz range of frequency [34, 35]. In
contrast to the metal plasmons, the graphene’s plasmons can be dynamically tuned using
the electrostatic backgating [18, 24, 28,36–39]. By increasing the Fermi level, it is possible
to block the interband absoption and consequently increase the plasmon’s life-time [20,37].
Even optical pumping can be used to manipulate the plasmon resonances in graphene
layer [40].

The existence of strong plasmons confined to the surface of graphene can be exploited in
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the applications where a strong light-matter interaction is required, e. g. Mid-IR sensors
[34, 41, 42]. Mid-IR range is well suited for biosensing since the biomolecule vibrations,
which uniquely identify the constituents of life, couple to the electromagnetic spectrum in
this range of frequency. DNAs, proteins, and lipids are a few examples of the constituents
that can be detected using the vibrational spectroscopy. Besides the enhancement in
sensing which arises from the plasmon resonances, the chemical bonding between biological
materials and either the reduced graphene oxide (RGO), or chemically derived graphene
(CDG) can be used for detection purposes [43,44].

In addition to the sensing applications, the highly confined plasmons of graphene makes
it suitable for subwavelength imaging and the realization of hyper lenses [45, 46]. A well
designed graphene lens can differentiate between two points separated by λ/10 [45]. This
is an exceptionally high resolution obtained using the near field imaging.

1.3.2 Enhanced wave-matter interaction using the surface plas-
mon modes of metallic structures

The controllable constitutive parameters of graphene make this material an excellent candi-
date for a wide range of applications [24,28,47]. However, the interaction of graphene with
the electromagnetic (EM) field propagating perpendicularly to its surface is low due to its
single layer nature. The absorption of the graphene layer in the visible range of frequency
is about three percent which originates from the minimum conductivity of graphene in the
visible spectrum. The small absorption of graphene is a huge obstacle in realization of
structures in which a strong light-matter interaction is needed such as a THz photomixer.
In a structure like THz photomixer, the efficiency of the device is directly proportional
to the absorption, and the transmitted/reflected parts of the laser power are essentially
contributing to the device losses. As we discussed earlier in this chapter, one approach to
increase the light-matter interaction is to use graphene plasmons. The graphene plasmons,
however, are only dominant and effective in the mid-infrared/THz range of frequency and
cannot be extended to the near-infrared range. One effective way to enhance the graphene-
wave interaction in the visible spectrum is to use the graphene in a waveguiding structure.
In this approach the interaction is enhanced since the traveling wave in the waveguide
interacts with the graphene over a finite length [19,22,48]. This specific approach leads to
the fabrication of waveguiding-based structures that requires design and fabrication of an
optical waveguide.

A different while effective approach is to integrate the graphene layer with a plasmonic
nanostructure. Plasmonic structures are known to be able to confine light far below the
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diffraction limit [16]. Considering the fact that the actual probability of the excitation of
an atom can be written as σ/A where σ is the cross section of the atom and A is the
distribution area of the EM field [49], the photon confinement by a plasmonic structure
leads to higher light-matter interaction (An interesting application of plasmon structures
for single molecule detection can be found in [49, 50]). This intensified interaction is the
direct result of an increase in the electric field amplitude [51]. The more confined energy
distribution of photons near the graphene layer, the higher the probability of electron-
photon interaction.

The plasmon resonaces of nanoparticles integrated with graphene is used for enhance-
ment of photovoltaic effect in graphene [52,53] and enhancement of Raman scattering from
graphene [54, 55]. As described in Chapter 5, a nonlinear process such as the difference
frequency generation can be enhanced by 4 orders of magnitude in the presence of these
nanoplasmonic structures. This unprecedented level of enhancement greatly improves the
generated power of THz wave.

1.3.3 Numerical analysis methods

Being just one atomic layer thick, graphene can be modeled as a surface conductivity in
the Maxwell’s equations. The value of this surface conductivity, obtained using a quantum
mechanical approach, is reported in [13, 17, 34]. To study the electromagnetic wave scat-
tering from graphene, two different approaches have been proposed. The first approach
considers graphene as a very thin layer [18]. The second approach models the graphene
layer as a surface current which causes a discontinuity in the tangential magnetic field [56].

In the first approach, the graphene layer is assumed to have an equivalent thickness of
∆ and a volumetric permittivity of εg = 1 + σs/(jω∆ε0), where σs is the surface conduc-
tivity of graphene. This volumetric model can be used used in numerical methods such as
the FEM [18] and the finite difference time domain (FDTD) method [57–59]. In addition
to the fine meshing required to model the thin graphene layer, another drawback of the
volumetric permittivity model is the fact that there is no unique value for ∆. The ambi-
guity in the value of ∆ necessitates verifying the numerical convergence of electromagnetic
fields through decreasing the value of ∆. The main difficulty with this test is that since
the graphene is actually thinner than the wavelength or finest mesh size, the change in
the effective thickness, which modifies the field inside that fictitious effective layer (the
graphene model), should not have any effect on the field around the graphene.

Implementation of a numerical method based on the second approach, which uses a
surface boundary condition (SBC), on the other hand, requires a modified formulation of
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the numerical method. In the case of the FDTD method, a SBC-based algorithm has
already been developed [60]. The reported FDTD method reduces the computational cost
of numerical simulations; however, the conductivity of graphene must be written as a
summation of Drude-like expressions, thereby limiting its applicability to the cases where
the interband transitions are not important [61].

To resolve the aforementioned issues, in Chapter 4, I am proposing a general and
numerically efficient multipole-based technique combined with a SBC for the analysis of
electromagnetic scattering from graphene flakes. The proposed approach also allows us to
assess the accuracy of the conventional volumetric FEM.

1.4 Nonlinearity of graphene for THz wave generation

The thriving research field of THz technology has become increasingly attractive for a fast
growing number of applications including food quality control, security monitoring, medical
science, nondestructive imaging, and communication [62]. One of the most important
challenges in implementing the aforementioned applications is the realization of an efficient
THz source. While the DFG process is considered as a promising approach for a number
of applications, the efficiency of the devices built using this approach is not sufficient. To
increase the efficiency of the DFG process, the nonlinearity of the material used in the
THz source is a key factor. Different materials such GaAs, ZnSe, and etc. are studied
and tested; however, the search for a materials with a higher nonlinearity still continues.

The monolayer of graphene provides an enhanced nonlinearity compared with some of
the studied material, e. g. GaAs [63, 64], and is a new candidate for the realization of
an efficient THz source. The nonlinearity of graphene for perpendicularly incident waves
is studied using different approaches such as quasi-classical Boltzmann equation [65–67]
and optical Bloch equation [68]. The reported nonlinearities, however, are limited to the
third order processes because of the centro-symmetric structure of graphene. Considering
the fact that the third order processes are significantly weaker than the second order
processes [51, 69], it is desirable to break the symmetry of induced nonlinear dipoles in
the graphene. The symmetry can be broken by applying a DC current [70, 71]. Using
this approach the second order nonlinearity of graphene comes into the picture [70], and
a stronger nonlinearity and consequently a more efficient frequency conversion can be
obtained.

Recently, the generation of THz signals are reported for unbiased graphene layers when
the optical beams are obliquely incident [72, 73]. The momentum of incident photons
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Figure 1.6: The typical structure of a graphene device. The silicon substrate acts as the
backgate to control the Fermi energy level of graphene. Drain and source metal contacts
define the current of the graphene sheet and gate controls the flow of current.

is responsible for the induction of a second order nonlinear current referred to as “drag
current” which contributes to the DFG [74, 75]. Using this approach the symmetry of
transitions can be broken and an enhanced DFG can be observed. This approach can
also provide a tunable and an effective way of generating THz plasmon on the surface of
graphene [28].

1.5 Graphene production and device fabrication

Figure 1.6 displays a typical structure of a graphene-based device. The silicon substrate
acts as the back-gate to control the Fermi energy level of graphene. Drain and source metal
contacts define the current of the graphene sheet and gate controls the flow of current. The
fabrication of graphene, depositing metal contacts, and the fabrication of gate dielectric
are three important steps in building the device. In this section, the different fabrication
methods are addressed and their effects on the device performance will be described.
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1.5.1 Graphene production

Different methods that can be used to produce the single layer (SLG) and multilayer
graphene(MLG) are as follows:

• Micromechanical Cleavage

• Liquid-phase exfoliation

• Graphene oxide

• CVD

• Carbon segregation

• Chemical Synthesis

A summary of each method can be found in [25]. Among the mentioned methods, mi-
cromechanical cleavage and CVD processes are more often used to obtain the graphene.
Here we explain these two methods.

The micromechanical cleavage method, which was first used to demonstrate the exis-
tence of SLG [76], is based on peeling off graphite by means of adhesive tapes. Obtained
SLGs are less than millimeters in size but the quality of obtained graphene is considerably
high. The micromechanical cleavage is the method of choice for research. Fig. 1.7 shows
the obtained graphene flakes using adhesive tapes. Adhesive tape is used to peel off the
highly pure natural graphite.

The following are steps to fabricate large area graphene layers in a CVD process [77,78]:

• load the fused silica tube with the 25− µm thick Cu foils.

• evacuate, back fill with hydrogen, and heat to 1000◦C.

• maintain a H2 pressure of 40 mTor.

• stabilize the Cu film at the desired temperatures, up to 1000◦C.

• introduce 35sccm of CH4 for a desired period of time at a total pressure of 500mTorr.

• Cooling down the furnace to room temperature.

Fig. 1.8 summarizes different steps of CVD process. The obtained CVD graphene can
be transferred to another substrate by coating the graphene layer with PMMA and then
dissolving the Cu foils. A more detailed description can be found in [77].
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Figure 1.7: The obtained graphite flake using micromechanical cleavage of highly pure
graphite. As the number of layers decreases the substrate color can be seen more vividly.

Figure 1.8: Different steps of a CVD process to obtain the SLG [77].
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1.5.2 Fabrication of gate dielectric and the drain/source metallic
contacts

Since SLGs can be easily doped when exposed to other material, the fabrication of gated
graphene structures is a crucial step. Moreover, the quality of gate deposition affects the
electronic properties of graphene and it may deteriorate its special properties. For example,
evaporated SiO2 degrade graphene performance by 85%. Among the different methods,
atomic layer deposition is the most successful one [79]. The procedure can be summarized
as follows:

• Deposit 2nm Al on top of graphene using electron beam evaporator.

• Exposing the layer to air to form the oxidization of Al layer on top of graphene.

• Using the ALD chamber to deposit Al2O3 as gate dielectric.

Using this method, the neutral point (Dirac point) of graphene layer is around VD = 0.08V
which shows very small loading effect. The measured mobility is also µ = 8600 cm

2

V
[79]. It

is worth pointing out that single layer boron nitride (BN) also can be used to make the
gate dielectric (because of 6eV band-gap of BN and having the same structure of graphene
layer the loading effects are small) [80].

Another crucial point that should also be addressed is the maximum achievable value of
Fermi energy level using the gate dielectric. It is important to notice that the gate voltage
cannot be increased arbitrary because of the break down voltage of gate dielectric. For
example, for the regular backgate dielectrics such as SiO2, the value of Fermi energy level
can be swept only by 300meV . However, using very specific dielectric materials such as
ion-gel [81] and solid polymer electrolyte [82] and under special treatments such as cooling,
it is possible to achieve the Fermi energy levels as high as 1− 2eV .

The metallic contacts are necessary either for changing the Fermi energy level of
graphene or for controlling the flow of current in graphene. Since this metallic contacts
are in direct contact with graphene, it is important to know how they affect the Fermi
energy level of graphene and the carrier types. Table 1.1 summarizes the main important
properties of Ni, Cr/Au, as Ti/Au contacts (Table reproduced from the obtained results
of Ref. [83]).

1.6 Research objectives

The research objectives of this work can be summarized as follows:
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Table 1.1: The difference in work-function of Ni, Cr/Au, as Ti/Au contacts as compared
to that of graphene (∆φ) and their carrier type.

Metal Ti Cr Ni

∆φ −0.2 0.1 0.7

Carrier
Type

hole − hole

• Developing an analysis method for the study of photomixing process in graphene.
Moreover, proposing an enhancement mechanism to increase the device efficiency
and throughput. Also, study of the enhanced mixing process in the presence of a
designed antenna, and evaluating the achievable THz power.

• Proposing a recipe for fabrication of the proposed photomixer. Considering the
complex structure of THz mixer, the fabrication recipe should ascertain a repeatable
and reliable process.

• Characterizing the fabricated photomixer by measuring the amount of induced pho-
tocurrent and the power of radiated THz wave.
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Chapter 2

Enhancing the light-matter interaction
in graphene using a periodic
nanoplasmonics structure

1 As discussed in Chapter 1, the interaction of mid-infrared electromagnetic wave by
graphene can be enhanced with a plasmonic structure. The plasmonic structure, which is
composed of a periodic arrangement of metal nano-golds, localizes the photon distribution
function, thereby enhancing the wave-matter coupling.

In this chapter, the design procedure for achieving an optimum enhancement is pre-
sented and a fabrication recipe specifically developed for the realization of a nano-crescent
periodic structure is demonstrated. To experimentally characterize the enhancement, we
record the intensity of photons generated in a nonlinear process such as the one in the
Raman Spectroscopy. The Raman output of a graphene layer, located on top of the pro-
posed nanostructure, supports the idea that metallic plasmons enhances the wave-graphene
interaction by several orders of magnitude. The Raman measurements are done for the
wavelength of λ = 532nm. We also designed and fabricated other structures for the wave-
length of λ = 800nm which is the wavelength of available laser source for THz photomixing.

1The structure used in this chapter was proposed by Dr. Mohammadreza Khorasaninejad and Prof.
S. Saini for use in surface plasmonic sensing applications. In this chapter, the structure is optimized for
enhanced Raman scattering from a graphene layer suspended on top of the structure.
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Figure 2.1: Schematic of ring (a) and crescent (b) nanoparticles on a gold-coated glass
substrate. The thickness of gold is 30 nm and the height of silver nanoparticles is 75 nm.

2.1 Proposed plasmon nanostructure

Gold nanoparticles are known for their plasmon resonances in the near-infrared range of
frequency including the wavelength of λ = 800nm. Our characterization method (Raman
Spectroscopy at λ = 532nm), however, would require enhanced wave-graphene interaction
at λ = 532nm where the plasmon resonances of silver nanoparticles are more prominent.
Consequently, we are using silver nanoparticles in our designs for Raman measurements.

The shape and the periodicity of nanoparticles determines the resonance wavelength
and the achievable enhancement, e. g. nanoparticles with sharp edges have the most
confined field. Considering the fabrication tolerances and the type of process (lift-off),
the realization of nanoparticles with sharp edges is challenging. So, we focus our study to
simple structures that can be easily fabricated such as cubes, cylinders, rings, and crescents.

To represent the periodic structure in our simulations, we consider a unit cell of the
periodic structure with appropriate periodic boundary conditions. The dielectric constant
of silver as reported in [84] has been used in our FEM simulations. The incident wave is
a plane wave propagating perpendicular to the surface of graphene. To compare the en-
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(a) (b)

Figure 2.2: The amplitude of electric field on the cross section of a crescent nanoparticle
with (a) and without (b) the gold reflecting mirror.

hancements obtained for different nanoparticles, we use the parameter g defined as follows:

g =

∫
S

∣∣∣ ~E∣∣∣2 dS∫
S

∣∣∣ ~E0

∣∣∣2 dS (2.1)

where ~E is the electric the field on the graphene layer, ~E0 is the incident wave’s electric
field, and S is the surface of the graphene layer (The surface S is a rectangle with the
same dimensions of the unit cell at the distance of 10nm from the top of nanoparticles).
The proposed enhancement factor g represents the enhancement in the energy of total field
over the graphene layer.

Different periodic structures made of cubes, cylinders, rings, and crescents are investi-
gated using the proposed criterion of Eq. 2.1. The best results are obtained for the case
of nano-rings and nano-crescents.

Figure 2.1 shows the periodic array of nanocylinders or nanocrescents studied for the
field enhancement. Figure 2.2a shows the cross section of electric field distribution for
crescent nanoparticles over a glass substrate. There are two hot spots at the top, where
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Figure 2.3: The schematic of a unit cell of ring nanoparticles (a). The effect of radius of
nanorings (b), period of structure (c), and the thickness of nanorings (d) on the defined
surface enhancement.
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(a) (b)

Figure 2.4: The SEM image of fabricated gold nanocrescents for the scale bar of 200nm
(a) and the scale bar of 1µm (b) [55].

graphene is located, and at the bottom of the structure. To gain more enhancement from
the nanostructure, a gold reflector is deposited below the structure which helps enhancing
the field’s amplitude in upper hot spots by reflecting the field at the nanoparticles-glass
interface (Fig. 2.2b). The required thickness of gold substrate is 30nm.

The dimensions of the nanoparticles can be adjusted to acquire the maximum enhance-
ment in the desired wavelength. Figure 2.3 displays the effect of the periodicity, the thick-
ness, and the radius of nanorings in the resonance frequency of surface plasmon. Radius
of nanorings greatly changes the SPP resonance wavelength, while the period only changes
the amplitude of enhancement (Higher values of P leads to higher Q-factors). Increasing
the thickness mainly increases the absorption and reduces the peak value of enhancement.

2.2 Fabrication and measurement

2 The substrate has been cleaned in an ultrasonic bath of acetone and propanol for 30
minutes. A thick layer of Al followed by 5nm of titanium followed by 30nm of gold was
then deposited on the glass substrate using electron beam deposition. The sample was spun

2The fabrications reported in this chapter have been done by Dr. Reza Khorasani from prof. Simarjeet
Saini’s group.
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Figure 2.5: The shape of nanostructures after transferring the graphene layer [55].

coated with PMMA A4 at the speed of 3000 rpm resulting in a 190nm thick layer of PMMA.
After baking the sample for 20 minutes at the temperature of 180oC, the electron beam
lithography was carried out using a Raith TWO-150 at 25 KV. The pattern was developed
in MIBK:IPA 1 : 3 bath for 40s followed by 30s rinsing with IPA. After developing the
EBL patterns, a 75nm thick layer of silver was deposited. The sample was soaked in the
PG remover over night to accomplish the lift-off process. To fabricate the nanocrescents,
the idea of over exposing the resist with electron beam is proposed by Dr. Reza Khorasani.
Figure 2.4a show the effectiveness of the over exposure for fabrication of gold nanorings
and nanocrescents, respectively. The period of structure is P = 400nm and the thickness
of nanorings is T = 45nm. Figure 2.4b shows a larger number of nanocrescents in a view.

A 1cm×1cm PMMA-coated graphene from ACS Material was used in this experiment.
The graphene sheet was transferred to our substrate with the fabricated nanoparticles.
After transferring the graphene, there are water droplets trapped below it. Removing these
water droplets are necessary since they do not let the graphene layer to be attached to the
surface of nanostructure. We used nitrogen gas and heating to dehydrate the sample. The
PMMA layer can then be dissolved in acetone. The existence of wrinkles in the transferred
graphene layer is obvious in the SEM pictures (Fig. 2.5).

The Raman spectrum of graphene has two major peaks, the G−peak at 1580cm−1and
the 2D−peak at 2700cm−1 [85]. For a single layer graphene, the amplitude of the G−peak
is smaller than the 2D−peak and the 2D−peak is a single sharp one. As the number of
layers increases, other peaks contribute to the 2D−peak broadened by the coupling between
layers. The amplitude of the G−peak in comparison to the 2D−peak and also the shape
of the 2D−peak can be used to differentiate between the single layer graphene and a few
layer graphene. Figure 2.6 shows the measured Raman spectrum of graphene layer on
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Figure 2.6: Raman Spectrum of graphene over the SiO2 wafer. The dashed line is the
measured Raman spectrum and the continuous lines show the fitted Lorentzian curves.
The insets show the fitted Lorentzian curves to the actual peaks [55].

top of a silicon dioxide wafer. As can be seen, the measured Raman spectrum has all the
aforementioned features of a single layer graphene. The insets show the fitted Lorentzian
curves to the actual peaks.

Figure 2.5 shows the SEM image of nanoparticles after transferring the graphene layer.
After transferring graphene layer, the shape of nanoparticles has been deformed. The
maximum achieved enhancement for the ring structure is when R = 135nm and T =
46nm and for the crescent one is when R = 110nm and T = 46nm (Fig. 2.7). The
graphene folding around the crescent structures can be observed in SEM image. The
Raman spectrum for graphene on top of the plasmonic structure can be seen in Fig. 2.8.
Table 2.1 summarizes the position and the amplitude of measured peaks for the graphene
layer. To obtain the enhanced factors reported in Table 2.1, Lorenzian curves are fitted to
the measured Raman spectrum of graphene over crescent or ring structures and then the
peak amplitudes are compared with those of graphene over silicon. Using this method, the
Raman shifts can be reported more accurately. The total obtained enhancement for the
ring structure is lower than that of the crescent structure. For the crescent structure a much
higher enhancement obtained for the G−peak comparing with the 2D−peak. However, for
the case of ring structures a higher enhancement was obtained for the 2D−peak. Besides,
there is a blue shift in the Raman peaks for both ring and crescent structures.

As previously outlined, there are two different enhancements obtained for nanocres-
cents. The large difference between the obtained results is addressed by investigating the
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(a) (b)

Figure 2.7: The schematic of nanorings (a) and nanocrescents (b) with the associated
dimensions.

Table 2.1: Summary of enhancement and position of G- and 2D-peaks for different struc-
tures [55].

Peak Structure Enhancement Centre Wave-
length (cm−1)

SiO2 1 1597.1
G-Peak Ring 148 1595.4

Crescent 1 904 1594
Crescent 2 161 1596.4
SiO2 1 2694.7

2D-Peak Ring 73 2693.8
Crescent 1 38 2682.6
Crescent 2 31 2688.6

actual distance of the graphene layer from the nanoparticles at these two spots. The AFM
images of the two spots are shown in Fig. 2.9. Fig. 2.9a shows a place where the graphene
is attached to the crescents (“Crescent 1” spot) and individual element profiles within the
periodic structure can be observed. Using the AFM results, the average spacing between
graphene and the silver nanoparticles is 5nm. Figure 2.9b shows the place where the
graphene is not attached to the surface of nanoparticles (“Crescent 2” spot) and is sitting
like a tent on top of the nanostructure. Individual crescent’s surface features are not visible
in the AFM measurement. Nevertheless, the distance between the graphene and the silver
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Figure 2.8: Raman spectra of graphene on a thin film of silicon dioxide (red dashed line),
rings (blue dashed line), and crescents (continuous line) [55].
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(a) (b)

Figure 2.9: The AFM image of graphene over the nanocrescents at two different locations.
The distance of graphene from the nanocrescents at location (a) is smaller than that of
location (b) [55].

nanostructure is obviously larger than the previous spot. The difference in the recorded
average distance is the main cause of observing different enhancements.

To analytically verify our obtained results, we are using a previously developed method
[86] based on the power distribution of the incident and Raman scattered fields. The
Raman enhancement can be predicted using the factor gR defined as follows:

gR =

∫
S
|Eλ0|2 |Eλs|

2 dS∫
S
|Einc

λ0 |
2 ∣∣Es0

λs

∣∣2 dS (2.2)

where |Eλ0| is the amplitude of the electric field at λ = 532nm and λs is the wavelength
of scattered wave (the value of λs for the G−peak is λG = 582nm and for the 2D−peak
is λ2D = 622nm). The field amplitudes |Einc| and |Es0| are the incident and the scattered
fields in the case that there is no plasmonic structure. The surface S is the surface of
graphene layer located on top of the nanostructure. It is important to note that the gain gR
is a function of the graphene’s distance from the nanoparticles. Figure 2.10 shows the field
distribution for the incident and the shifted Raman wavelengths. The field distribution over
the crescent nanostructure is mostly confined around the sharp edges for all wavelengths.
However, the electric field distributions of nano-rings for λ = 532nm and λ = 622nm
are concentrated around the inner and outer cylinders, respectively. Since the spatial
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(a) (b) (c)

(d) (e) (f)

Figure 2.10: Electric filed distribution for a crescent (R = 110nm and T = 46nm) at
the wavelengths of 532 nm, 582 nm and 622 nm (a)-(c); and the ring (R = 135nm and
T = 46nm) at the wavelengths of 532 nm, 582 nm and 622 nm [55].

29



Chapter 2. Enhancing the light-matter interaction in graphene ...

0 20 40 60 80
10

1

10
2

10
3

10
4

Crescent G−Peak
Crescent 2D−Peak

(a)

0 20 40 60 80
0

100

200

300

400

500

600

700
Ring G−Peak
Ring 2D−Peak

(b)

Figure 2.11: The predicted Raman enhancement for G−peak and 2D−peak of a graphene
layer located at the distance dz from nanocrescents (a) and nanorings (b) [55].
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Figure 2.12: The obtained enhancement for ten random configuration of nanocrescents in
a unit cell of 2× 2 nanocrescents.
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distribution of electric field for the nanocrescents remains the same for all wavelengths as
opposed to the one for the nanorings, it is expected that the overlap integral of Eq. 2.2 for
the crescent structure to be larger than that for the ring structure.

Figure 2.11 shows the predicted Raman enhancement for the G−peak and the 2D−peak
of the graphene layer on top of the nanostructure. The predicted enhancement because of
the crescent structure for the 2D−peak is smaller than the predicted enhancement for the
G−peak. The measurement results (Table 2.1) also verify that the obtained enhancement
for the first peak (G−peak) is lower than the obtained enhancement for the second peak
(2D−peak). However, the predicted amplitude of enhancement does not match the mea-
sured results. The disagreement between the theory and the measurement is because of the
random orientation of nanocrescents. Random directions of the nanocrescents contributes
to the smaller enhancement measured with the Raman spectroscopy. To model the random
directions of nanocrescents, a larger unit cell, including four randomly oriented crescents,
is analyzed with the FEM. The simulations are carried out for ten different random di-
rection of crescents. Figure 2.12 shows the obtained enhancement for all ten cases. The
average value of enhancement is much lower than the predicted results of Fig. 2.11. Con-
sidering the random direction of nanocrescents, a better agreement between the theoretical
enhancement and the measurement can be obtained.
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Quantum enhanced second order
nonlinearity in graphene: the role of
wave momentum and DC biasing

The purpose of this chapter is to study the effects of both the DC current and the photon-
drag on the DFG enhancement in graphene. While the DFG is known to be a nonlinear
process, there are fundamental differences between the DFG and the harmonic generation
reported in the literature [51]. A complete description of the DFG process requires the
inclusion of both inter- and intra-band transitions and considering the effect of wave mo-
mentum. Our results show that there is an optimum value of the Fermi-energy level where
the second order nonlinearity can be enhanced by one order of magnitude, leading to an
approximately two orders of magnitude enhancement in the power of the generated THz
signal. Using this strong nonlinearity, one can envision the integration of a graphene-based
THz source with other graphene-based THz components such as THz modulators [19], THz
detectors [73,87,88], and plasmonic enhanced THz sensors [13,28].

3.1 Difference frequency generation in graphene

In the low energy limit, the dynamics of electrons in a free standing graphene layer can be
described using the following 2-dimensional Dirac equation (ξ = 1 for the Dirac cone K
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and ξ = −1 for the Dirac cone K ′) [10]:

H0ψ(r) = Eψ(r)

H0 = νF (p̂xσx + ξp̂xσy) (3.1)

where H0 is the Hamiltonian of free standing graphene layer, νF is the Fermi velocity in
graphene, and σσσ’s are the Pauli matrices. The eigenfunctions of Eq. 3.1, in the momentum
space, are as follows:

|l,k〉 =
1√
2

(
e−iξθk/2

(−1)leiξθk/2

)
(3.2)

where k is the electron wave vector, θk is the angle of the wave vector k from the x-axis, and
l shows the corresponding wave function in the conduction (l = 0) or the valance (l = 1)
band. When an electromagnetic wave is incident on the graphene layer, the momentum
defined in (3.1) should be replaced by the generalized momentum Π̂ = p̂ + eA, where
p = ~k is the momentum of electrons. Using the aforementioned generalized momentum,
the total Hamiltonian in reciprocal space can be written as [68]:

Ĥ = Ĥ0(k) + Ĥint(k) (3.3)

where Ĥint(k) represents the interaction of electromagnetic wave with graphene. For an
incident plane wave with the frequency of ω, the Ĥint(k) can be written as follows:

Ĥint(k) = eνF (σxAx + ξσyAy) (3.4)

where A is the magnetic vector potential. Eq. 3.4 can be written in a more concise form
as:

Ĥint(k) =
1

ω
µµµ.E (3.5)

where E = iωA is the electric field (see Appendix I) and

µµµ =
eνF
i2

(σxx̂+ ξσyŷ) (3.6)

is the polarization vector. In our derivations [89], we assume that one of the incident waves
is a plane wave propagating perpendicular to the graphene’s surface while the second plane
wave is obliquely incident. The magnetic vector potential of the incident wave can be
written as:

A =
E(−ωq)
−i2ωq

e−i(kq .r−ωqt) +
E(ωp)

i2ωp
ei(kpz−ωpt) + c.c. (3.7)
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where kq = ωq/c and kp = ωp/c defines the wave vectors of incident waves; E(−ωq)
and E(ωp) are the amplitude of electric field for the waves with the frequency ωq and
ωp, respectively (since the electric field is real, we have E∗(ωq) = E(−ωq) and E(ωp) =
E∗(−ωp)). The plane wave with frequency of ωp is propagating perpendicular to the surface
of graphene while the one with the frequency of ωq is obliquely incident. In a DFG process,
the difference between the frequencies of incident beams determines the frequency of the
generated wave ωd = ωp − ωq. The time evolution of system can be obtained from the
equation of motion of the density matrix (Liouville equation) [90]:

ρ̇ = − i
~

[H, ρ]− Γ(ρ− ρ (t = 0)) (3.8)

where Γ is the phenomenological damping constant that shows how fast system relaxes to
its equilibrium state. The value of ~Γ = 0.05eV is chosen based on the measured relaxation
time (τ = 10−13s, where τ is the relaxation time [13]) using the impurity-limited dc mobility
for graphene. The expected value of induced surface current is:

j = 2e
∑
B.Z.

Tr

{
ρ̂
∂Ĥ

∂p

}
(3.9)

where the spin degeneracy is included as a factor of two in the calculations and the summa-
tion should be carried out in the whole Brillouin zone (B.Z.). The second order nonlinear
term of induced current obtained in Eq. 3.9 has sum and difference frequency components
of incident waves, j

(2)
e (ωp +ωq) and j

(2)
e (ωp−ωq). Here we focus on the difference frequency

terms. The second order surface conductivity involved in the DFG is defined as follows
(considering the positive frequency component):

j(2)
s (ωd) = σ

(2)
sij (ωd,−ωq, ωp,kq||)Ei(ωp)Ej(−ωq)e−i(kq||.r+ωdt) (3.10)

where kq|| is the tangential part of wave vector kq on the graphene’s plane, σ(2)
sij defines

a tensor of rank 3 and the indices i, j, s = 1 (i, j, s = 2) shows the x̂(ŷ) directions. The
generated surface current in (3.10) has the frequency of ωd = ωp−ωq and the spatial wave
vector of −kq||. Figure 3.1(a) shows the schematic of the DFG process and the generated
nonlinear current on the surface of graphene. Using the expression defined in Eq. 3.10,
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Figure 3.1: (a) Schematic of the DFG process. Two waves with frequencies ωp and ωq
incident at the angles of θp = 90 and θq. (b) The schematic of one of the possible transitions
involved in the DFG. The photon with the energy ~ωp excites the electron from the valance
band to the conduction band while the photon with the energy of ~ωq induces the inverse
process. As a result of the final intraband transition, a THz photon is generated.

the tensor of σ(2) can be obtained from (see Appendix I):

σ
(2)
sij (ωd,−ωq, ωp,kq||)

=− eνF
2π2~2ωpωq

2∑
n,m=1

2∑
l=1

∫
K,K′

d2k{(
ρ

(0)
|m,k〉 − ρ

(0)
|l,k〉

) µi|l,k〉|m,k〉µ
j
|n,k′〉|l,k〉(

ω|l,k〉|m,k〉 − ωp
)
− iΓ

+
(
ρ

(0)
|m,k〉 − ρ

(0)
|l,k′〉

) µj|l,k′〉|m,k〉µ
i
|n,k′〉|l,k′〉(

ω|l,k′〉|m,k〉 + ωq
)
− iΓ

−
(
ρ

(0)
|l,k′〉 − ρ

(0)
|n,k′〉

) µi|n,k′〉|l,k′〉µ
j
|l,k′〉|m,k〉(

ω|n,k′〉|l,k′〉 − ωp
)
− iΓ

−
(
ρ

(0)
|l,k〉 − ρ

(0)
|n,k′〉

) µj|n,k′〉|l,k〉µ
i
|l,k〉|m,k〉(

ω|n,k′〉|l,k〉 + ωq
)
− iΓ

}
ηs|m,k〉|n,k′〉

ω|n,k′〉|m,k〉 − ωd − iΓ
(3.11)

where ηs|m,k〉|n,k′〉 = 〈n,k′| 1
νF

∂Ĥ
∂ps
|m,k〉 (see Appendix I), ~ω|l,k〉|m,k〉 is the transition energy

from the state |m,k〉 to the state |l,k〉, and k′ = k− kq||. It is important to note that in
the calculation of σ(2) both inter- and intra-band transitions are included, e.g. the term
µi|l,k〉|m,k〉 when l = m (l 6= m) shows an intra-band (inter-band) transition. While the
integration should be carried out for the whole Brillouin zone, in the low energy limit, only
the electrons near the Dirac points K and K ′ contribute to the wave-graphene interaction,
and we thus calculate the integration only near these points [70]. Fig. 3.1(b) shows the
schematic of one of the possible transitions involved in the DFG. The photon with the
energy ~ωp excites the electron from a lower state to a higher state. Another photon with
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Figure 3.2: The second order nonlinearity of graphene as a function of incident wave
momentum for EF = 0.4eV and jdc = 0.

the energy of ~ωq induces the inverse process from the higher state to a lower state. Since
the second photon has a transverse momentum of pp = ~kq|| (kq|| = kq − (kq.ẑ)ẑ), the
latter transition is not a straight one. For electron to return to its original position on the
band structure, a photon with energy of ~ωd should be emitted. Direction of the radiated
THz photons can be calculated from the conservation of the momentum kd|| = −kq||, where
kd is the wave vector of the generated THz photon. If kd|| < ωd/c, the induced nonlinear
current on the graphene layer couples to the radiating modes in the free space. The angle
of radiation from the graphene’s plane is

θd = sin−1
(
ckd||/ωd

)
. (3.12)

However, when kd|| > ωd/c, the generated photons at the difference frequency are surface
waves decaying in the perpendicular direction to the surface of graphene. In the limit of
k′ → k, the equation 3.11 reduces to the one obtained in [70].

When the two primary waves propagating perpendicular to the graphene plane, σσσ(2)

becomes zero mainly because of the inversion symmetry in the graphene crystal [51]. The
symmetry, however, can be broken using either a DC current [70], an obliquely incident
beam [28, 73] or a strong magnetic field perpendicular to the surface of graphene. The
first mechanism, DC biasing, breaks the symmetry of the band structure while the second
approach, the wave momentum, breaks the symmetry of transitions. The magnetic field,
on the other hand, leads to the formation of Landau levels [10, 91, 92] and can also break
the symmetry by introducing spin splitting in graphene [10,91]. The spin splitting can be
disregarded unless the magnetic field’s strength is several tens of Tesla [10]. The landau
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level structure, however, becomes important when a magnetic field as strong as a few Tesla
is being applied. For the study presented here, we assume that the strength of the magnetic
field is small enough that the Landau level formation can be ignored in the calculation.

To differentiate between the different mechanisms that break the symmetry, we are
expanding the obtained second order nonlinear tensor as follows (see Appendix I for the
derivation of expansion):

σ
(2)
sij (ωd,−ωq, ωp,kq||) =χ

(2)
sij(ωd,−ωq, ωp)+

T
(2)
sija(ωd,−ωq, ωp) (kq)a (3.13)

where χ(2)
sij is a tensor of rank 3 which does not depend on kq, Tsija is a tensor of rank 4

representing the photon-drag effect in the nonlinearity, and the indices i, j, a, s can have
the values of 1 or 2. In our numerical analysis, we are calculating the value of σ(2)

sij from Eq.
3.11 and we are not directly calculating the tensors χ(2)

sij and T
(2)
sija. To find the contribution

of photon-drag in the nonlinearity, one can use the following approach:

T
(2)
sija(ωd,−ωq, ωp) (kq)a =

σ
(2)
sij (ωd,−ωq, ωp,kq||)− σ

(2)
sij (ωd,−ωq, ωp,−kq||)

2

χ
(2)
sij(ωd,−ωq, ωp) =

σ
(2)
sij (ωd,−ωq, ωp,kq||) + σ

(2)
sij (ωd,−ωq, ωp,−kq||)

2
(3.14)

where the value of σ(2)
sij should be calculated for the wave vectors kq|| and −kq||.

To incorporate the effect of DC current in our calculation, we note that this current
can be written as jdc = σdcEdc where Edc is the in plane DC electric field. This electric field
shifts the Fermi surface as shown in Fig. 3.1. The amount of this shift can be obtained
from the ballistic transport theory in graphene as follows (see Appendix I for the details
of calculation):

Jdc(∆k) = 4
2∑
l=1

∫
je|l,k〉ρ

(0)
|l,k−∆k〉D(k)T|l,k〉d

2k (3.15)

where Jdc is the total DC current, ∆k is the shift in the Fermi surface due to the DC
current, D(k) = 1/(2π)2 is the 2D density of states, T|l,k〉 is the transmission probabil-
ity of the electron in the state |l,k〉 (T|l,k〉 = 1 for the ballistic transport), and je|l,k〉 =
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Figure 3.3: The effect of applied current density of jdcx = 20µA/µm for different values of
the Fermi level, EF = 0.15eV (a), EF = 0.4eV (b), and EF = 0.55eV (c).

eνF (−1)l [cosθkx̂+ sinθkŷ] is the DC current due to an electron (or hole) with the mo-
mentum pe = ~k. Because of the symmetry of the band-diagram, it is straightforward to
conclude that Jdc → 0 when ∆k → 0. Using Eq. 3.15, one can find the relation between
Jdc and ∆k for different values of the Fermi level. To find the nonlinearity tensor in the
presence of the DC current, we replaced ρ|m,k〉 by ρ|m,k−∆k〉 [70].

3.2 Numerical results for second order conductivity ten-
sor

The value of σ(2) is calculated using the integration defined in Eq. 3.11 (for the details of
calculation, refer to the supplemental information). Fig. 3.2 shows the nonlinear response
of graphene (Eq. 3.11) for λp = 2πc/ωp = 1554nm and λq = 2πc/ωq = 1546nm (~ωq ≈
~ωq ≈ 0.8eV ) when the DC current is equal to zero. The Fermi level of graphene is set to
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Figure 3.4: The broken symmetry of transitions when the Fermi energy level is approxi-
mately equal to the incident photo energy.

EF = 0.4eV and the DFG at the frequency of fd = (ωp − ωq)/2/π = 1THz (λd = 300µm)
is calculated. The wave with frequency of ωp is perpendicularly incident to the graphene
layer, while the wave with frequency of ωq is obliquely incident. The propagation wave
vector for the obliquely incident beam can be written as follows:

kq = kq|| cos(φ)x̂+ kq|| sin(φ)ŷ +
√
k2

0 − k2
q||ẑ (3.16)

where kq|| = kq sin(θ), k0 = 2π/λp,q is the free space wave vector, φ is the angle of wave
vector kq form the x−axis, and ~kq|| < ~k0 is the tangential part of the wave momentum
on the graphene plane (θ and φ are the angles of the spherical coordinate). For the plane
wave that propagates in the x̂ direction (φ = 0), the obtained nonlinearity (real and
imaginary parts) shows a linear dependency on the tangential momentum of the incident
wave. Because of this linear dependency, we can deduce that for the case of JDC = 0 only
the photo drag effect contributes to the nonlinearity. This becomes more obvious when we
are investigating the second order nonlinearity for an incident wave that propagates in the
−x̂ direction (φ = π). In this case (φ = π), σ(2) change as follows:

σ(2) (φ = π) = −σ(2) (φ = 0) (3.17)

Substituting Eq. 3.17 into Eq. 3.14, it is easy to verify that χ(2)
sij ≡ 0 as must be true

because of the symmetry. Fig. 3.3(a-c) shows the effect of the applied DC current as
the Fermi level changes from 0.15eV to 0.55eV . In practice, the Fermi level of graphene
can be controlled via the back gating of the underlying silicon wafer. The applied DC
current is assumed to be jdcx = 20µA/µm. When EF = 150meV (Fig. 3.3a) almost
the same linear dependency of σ(2) on the wave vector can be observed showing that the
drag effect is dominant when the Fermi level EF is small compared to the incident photon
energies. As the Fermi level reaches the incident photon energies (~ωp ≈ ~ωq), there is a
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Figure 3.5: Dependency of the second order nonlinearity to the angle of incident wave φ
(Eq. 3.16) for (a) zero biased current, (b) jdcx = 20µA/µm. The wave vector of incident
field is kq|| = k0 sin(π/3).

significant shift in the nonlinear conductivity (Fig. 3.3b). Since the amount of shift does
not depend on the incident photon momentum, it is easy to confirm that the DC effect
only contributes to the tensor χsij. The importance of the Fermi level in enhancing the
nonlinearity can be understood by looking at Fig. 3.4. As the Fermi level reaches the
incident photon energy, some of transitions are allowed while the rest are blocked because
of Pauli exclusion principle. For this specific value of the Fermi level, the symmetry of
transitions are completely broken and the nonlinearity can be enhanced by a factor of 10.
For a Fermi level higher than the incident photon energy (Fig. 3.3c), a smaller number of
transitions are possible because of the fully occupied states in the conduction band and
therefore the absolute value of σ(2) becomes smaller.

The polarization and the direction of the incident waves also play an important role
in the second order nonlinearity. By changing the direction and the polarization of the
incident waves, it is possible to control the amplitude and the phase of different components
of the induced nonlinear current. As mentioned before, the direction of the obliquely
incident beam directly affects the induced drag current and consequently changes the value
of σ(2). Figure 3.5a shows the values of σ(2)

xyy and σ(2)
yxx (Jdc = 0) as the polar angle (φ) of

obliquely incident beam changes. As expected, when the drag effect is dominant, the
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angular dependency of σ(2)
xyy and σ(2)

yxx can be expressed as follows:

σ(2)
yxx ∝ kqy ∝ sinφ

σ(2)
xyy ∝ kqx ∝ cosφ. (3.18)

It is very important to note the symmetry of σ(2) for positive and negative values of φ.
This symmetry along with the observed linear response in Fig. 3.2 confirm that the tensor
Tsija is independent of the wave vector kq. As the DC current in x̂ direction increases to
Jdc = 20µA/µm (Fig. 3.5b), the absolute value of σ(2)

xyy dominates the nonlinear response
while the value of σ(2)

yxx does not change. This fact demonstrates the dependency of the
tensor χsij to the direction and the amplitude of Jdc. Because of the symmetry of the
graphene layer, one expects to observe a similar variation in σ(2)

yxx as the DC current in ŷ
direction increases.
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Figure 3.6: The absolute value of induced nonlinear current as a function of the beam
direction (φ) for linear (a) and circular (b) polarized waves (α = 0 and α = 1 in Eq. 3.19,
respectively) when Jdc = 0 and kq|| = k0 sin(π/3). The figures (c) and (d) are the same as
the ones in (a) and (b) for Jdcx = 5µA/µm

The wave polarization is another degree of freedom affecting the DFG process. The
polarizations control the DFG by inclusion of different components of σ(2) tensor in the
induced current. For example, the nonlinear current of two y−polarized incident waves
is proportional to σ(2)

xyy and σ
(2)
yyy, whereas for two circular polarized waves all the tensor

components contribute to the j(2). To study the effect of polarizations, we calculate j(2)
x
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(a) (b)

Figure 3.7: The imaginary (a) and the real (b) parts of second order conductivity at the
difference frequency of fd = 1THz as a function of Fermi energy level and incident wave
vector. The current density in graphene is Jdcx = 40µA/µm.

and j(2)
y for the following incident plane waves:

E (ωp) =
ŷ + iαx̂√

1 + α2
e
−i 2π

λp
z

E (ωq) = (− sinφx̂+ cosφŷ) eikq .r (3.19)

where α = 1 (α = 0) results in a circular (linear) polarized beam, φ is the angle of the
incident wave with frequency ωq, and kd = kd|| + kdz ẑ (k2

dz = (2π/λd)
2 − k2

d||). Figure 3.6a
shows the induced nonlinear current j(2) , calculated using Eq. 3.10, as a function of φ
for Jdc = 0 and α = 0. j(2)

x has 2-fold symmetry while j(2)
y has a 4-fold symmetry with

a lower amplitude compared to that of j(2)
x . On the contrary, when one of the beams is

circular polarized (α = 1), j(2)
x and j(2)

y both have 2-fold symmetry and the same maximum
amplitude. Increasing Jdcx breaks the angular symmetries and increases the amplitude of
j(2) at φ = π.

Finally, we explore the second order nonlinearity as both the Fermi level EF and the
tangential wave momentum ~kqx changes. Figure 3.7 shows the real and the imaginary
parts of σ(2)

xyy for ~ωd = 4meV (fd = 1THz) and jdcx = 40µA/µm. As can be seen in fig.
3.7, both tensors χ(2) and T (2) are important in the nonlinearity. The drag effect mostly
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contributes to the Im
{
σ

(2)
xyy

}
and to the Re

{
σ

(2)
xyy

}
at low Fermi energy levels. On the

other hand, the DC current mostly contributes to the Re
{
σ

(2)
xyy

}
when EF ≈ ~ωp,q.
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Chapter 4

Verification of the volumetric model of
permittivity for graphene using a
multipole-based numerical method

An essential part of the THz photomixer analysis is the simulation of graphene-nanparticle
coupling using a commercially available FEM-based software (HFSS). The simulation of
graphene in HFSS requires the use of a volumetric model for graphene. As explained earlier,
the volumetric model of permittivity proposed for the graphene layer is an approximate
model. To assess the accuracy of the conventional volumetric model, I develop a new
numerical technique and propose a surface model to analyze the scattering from the flakes
of graphene. The new approach, which is based on the multiple multipole method, expands
electromagnetic field in terms of certain eigenmode solutions [93–99]. The solution of the
scattering problem can be obtained by expanding the solution in different regions and
enforcing suitable boundary conditions [30, 31, 100–102]. An important advantage of this
formulation is the fact that the unknowns are the boundary fields as compared to the field
over the entire volume, which form the unknown in the conventional FEM and FDTD.

The organization of this chapter is as follows. In Section 4.1, the formulation of the
new approach and its application to an isolated graphene flake are described. Section 4.2
is devoted to the numerical study of various configurations of graphene flakes including
isolated graphene flakes, closely spaced graphene flakes, and two-dimensional periodically
patterned graphene flakes. In each section, a comparison between the numerical results of
HFSS with those of the GMT is presented to assess the accuracy of volumetric model.
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Graphene flake

Boundaries of substrateMultipoles

Figure 4.1: The schematic of a graphene flake on the interface of two dielectric half-spaces.
Inset shows the top view of the graphene flake.

4.1 The formulation of multiple multipole method for
the analysis of a patterned graphene structure

Spherical multipoles of the Maxwell’s equations are used as the three dimensional (3D) ex-
pansion wave functions in each region. The radial components of TEr and TMr multipoles
can be written as (time-harmonic variation of the form exp(jωt) is chosen) [103]:

Enm
r =

n(n+ 1)

jωεr2
Pm
n (cos(θ))Ĥ(2)

n (kr)ejmφ (4.1a)

− n ≤ m ≤ n

Hnm
r =

n(n+ 1)

jωµr2
Pm
n (cos(θ))Ĥ(2)

n (kr)ejmφ (4.1b)

− n ≤ m ≤ n

where Pm
n are the associated Legendre polynomials and Ĥ

(2)
n are the Schelkunoff-Hankel

functions of the second kind. Considering the discontinuity of the problem in the ẑ direction
(we assume that graphene flakes lie on the x− y plane), other types of multipoles such as
TEz and TMz can also be used.

To solve the scattering problem, the solution space should be divided into a number
of subregions and the multipoles expanding the electromagnetic wave in every subregion
should be located outside that specific subregion [31]. Fig. 4.1 shows the graphene flake on
the interface of two dielectric half-spaces. The multipoles located in the upper half-space
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(Du) produce the field in the lower half-space (Dl) and vice versa. The specific boundary
condition that should be satisfied on the interface between two dielectric regions outside
the part covered by the graphene flake is the continuity of tangential components of fields.
On the graphene layer, the following set of boundary conditions should be satisfied:

ẑ × (Hu −Hl) = Js, Js = σE (4.2a)
Js.n̂ = 0 (4.2b)
ẑ × (Eu) = ẑ × (El) (4.2c)

where ~Js is the surface current; ~Hu and ~Hl are the magnetic fields in the upper and the
lower sides of the interface, respectively; ~E is the electric field; n̂ (inset of Fig. 4.1) is the
unit vector perpendicular to the edge of the flake in the x−y plane. It is worth mentioning
that the boundary condition (4.2b) can be derived from (4.2a) provided that H can be
evaluated at a point arbitrarily close to the flake boundary. Since the scattered fields are
singular at the edge of the flake [104], imposing the boundary condition (4.2b) will exempt
us from computing the fields close to their singular regions.

The multipoles located in the region Du expand the field in the region Dl and vice
versa. In addition to the multipoles in the regions Du and Dl and in order to satisfy
the edge conditions, extra multipoles should be placed close to the edge of the graphene
layer. However, smoothening the field variation along the boundary needs a large number
of multipoles which increases the run-time of numerical simulations. To alleviate this
difficulty, an approach similar to the method of moment (MoM) is used. For this purpose,
we add a number of new multipoles between each successive pair. The coefficients of these
new multipoles are obtained from those of the aforementioned pair through an interpolation
scheme. Fig. 4.2 shows this scheme. This approach is similar to the sampling of the roof-
top function between Cnm

l and Cnm
l+1. The total electric field of such a set of multipoles can

be written as:

Enm
B (r) =

P−1∑
q=1−P

Enm (r− rq)
P − |q|
P

(4.3)

where rq is the location of multipole number q (Fig. 4.2) and (2P − 1) is the total number
of multipoles. Similar approach has been reported in [105,106].

Fig. 4.3 shows an example of the multipole setting that is used for the analysis of a
circular graphene flake. A carefully chosen multipole setting is needed to achieve the fast
convergence [107]. Mutipoles near the edge of the graphene flake model the edge effects;
the other multipoles produce the field distribution on the graphene flake. As shown in
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Figure 4.2: Locations and coefficients of a cluster of four multipoles located around the
centered multipole Cnm

l .

Fig. 4.3b, the distance of all multipoles from the center of the graphene flake should be
approximately equal. This criterion ensures that the contributions of all multipoles in
producing the scattered field are the same. For the circular disk shown in Fig. 4.3, the
multipoles, denoted by ×, are located on two circles with the radii of approximately 0.3a
and 0.7a (a is the radius of the graphene disk) at the height of a and 0.4a, respectively.

The inset of Fig. 4.3a shows how the boundary is discretized near the graphene flake.
The boundary conditions (4.2a) and (4.2c) are applied on the points shown by diamond
markers; the boundary condition (4.2b) is applied on the points shown by ∗ markers.
Since the amplitude of field near the edges varies rapidly and in a singular manner, two
boundary lines close to the actual physical boundary of the flake define the location of the
nearest discretized points to the edge (Fig. 4.3a). The locations of these boundary lines
are determined by the required accuracy with which the singular behavior of the field at
the edge is to be modeled. As for our simulations, the proper value for the ∆g is found to
be ∆g = D/20 (D and ∆g are defined in Fig. 4.3a). Smaller values of ∆g will not have
any substantial effect on the field distribution except in the region very close to the edge.
Using the proposed multipole setting, the scattered fields in the regions Du and Dl can be
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Figure 4.3: The top view (a) and the side view (b) of the multipole setting for a graphene
disk at the interface of two half-space dielectrics. The inset of (a) shows the discretization
points near the graphene flake. The diameter of the flake is D = 2a.

written as follows:

Es
l (r) =

Mu∑
i=1

∑
nm

Cnm
i Enm(r− ri)+

MB
u∑

i=1

∑
nm

C ′nmi Enm
B (r− rBi ) (4.4a)

Es
u(r) =

Md∑
i=1

∑
nm

Gnm
i Enm(r− r′i)+

MB
d∑

i=1

∑
nm

G′nmi Enm
B (r− rB′i ) (4.4b)

where C’s are the unknown coefficients of the upper half-space (Du) multipoles, G’s are
the unknown coefficients of the lower half-space (Dl) multipoles, Enm is the electric field
of TEr or TMr spherical multipoles defined in (4.1), and Enm

B is given in (4.3). The value
of MB

u shows the number of multipoles close to the edge of the flake and Mu is the number
of other mutlipoles in Du. The same expressions exist for the magnetic fields. Primed
coefficients, C ′ and G′, are the coefficients of multipoles near the edge of the flake in Du
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and Dl, respectively. The boundary conditions are:

ẑ × (Hs
u + Hinc

u −Hs
l −Hinc

l ) = Js (4.5a)
Js = σ

(
Es
t + Einc

t

)
, Js.n̂ = 0 (4.5b)

ẑ ×
(
Es
u + Einc

u

)
= ẑ ×

(
Es
l + Einc

l

)
. (4.5c)

where Et is the tangential component of the electric field on the x − y plane and Einc

(Hinc) is the electric field (magnetic field) of the incident wave. Considering the continuity
of tangential components of the incident field over all boundaries, we have:

ẑ × (Hs
u −Hs

l ) = Js, Js = σ
(
Es
t + Einc

t

)
(4.6a)

Js.n̂ = 0 ẑ × Es
u = ẑ × Es

l . (4.6b)

To find the unknown coefficients, the boundary surfaces should be subdivided into
a number of elements (more than the number of unknowns). It means that an over-
determined problem should be solved. Truncating the summation in (4.4), the following
matrix equation can be written for the upper and the lower half-spaces.

[Es]l = [E ]l[C], [Hs]l = [H]l[C] (4.7a)
[Es]u = [E ]u[G], [Hs]u = [H]u[G] (4.7b)

where [C] ([G]) is the vector of unknown multipole coefficients in the upper (lower) half-
space and [E ]l is a vector of matrices that relates the vector [C] to the the vector of electric
field on discretized boundary points in the lower half-space. This vector of matrices can
be written as [E ]l = [Ex]lx̂ + [Ey]lŷ + [Ez]lẑ. The other matrices [H]l, [E ]u, and [H]u have
similar definitions. To satisfy the boundary conditions, the following matrix equations
should be solved:

ẑ × ([Hs]u − [Hs]l) = [σ]
(
[Es

t ]u + [Einc
t ]u

)
(4.8a)

n̂.
(
[Es

t ]u + [Einc
t ]u

)
= n̂.

(
[Es

t ]l + [Einc
t ]l
)

= 0 (4.8b)
ẑ × [Es]u = ẑ × [Es]l (4.8c)

where [σ] is the conductivity matrix on the discretized boundary. The boundary conditions
in (4.8) can be put in a single matrix equation as:

[A][X] = [B]. (4.9)

It is worth mentioning that in this method the value of sigma does not affect the com-
putational complexity of the problem. Accuracy and uniqueness of obtained results are
verified not only by checking the convergence of the GMT as the order and the number of
multipoles increase but also by a direct comparison with those obtained by the FEM.
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4.2 Numerical results

The graphene layer is modeled as a conducting surface whose conductivity can be obtained
from the following analytical expression [13,17] :

σ(ω) =
2e2kBT

π~2

j

ω + jτ−1
ln(2 cosh(EF/2kBT ))

+
e2

4~

(
H(ω/2) +

4jω

π

∫ ∞
0

dΩ
H(Ω)−H(ω/2)

ω2 − 4Ω2

)
(4.10)

where EF = 0.4eV is the Fermi energy level of graphene, T = 100K is the temperature of
the graphene layer, τ = 10−13s represents the effect of impurity [17], kB is the Boltzmann
constant, and H(Ω) is defined as follows [17]:

H(Ω) =
sinh(~Ω/kBT )

cosh(~Ω/kBT ) + cosh(EF/kBT )
(4.11)

Using this expression which is valid under the random phase approximation, we are cal-
culating the conductivity for different values of the Fermi level. To compare results of the
approach proposed herein with those of the conventional FEM, the equivalent permittivity
of graphene for the FEM analysis is εr = 1 + σ(ω)/jωε0∆, where ∆ = 0.5nm. In all
numerical simulations that the graphene layer is assumed to be suspended in free space,
the incident wave is as follows:

Einc(z) = ŷE0e
−jkz (4.12)

where E0 = 1 is the amplitude of the incident electric field and the plane wave is propa-
gating perpendicular to the surface of the graphene.

4.2.1 Scattering from isolated graphene flakes

The multipole setting shown in Fig. 4.3 is used to calculate the scattering from an isolated
disk of graphene in free space. The radius of the disk is a = 500nm, the number of
multipoles near the edge is 30 and the number of multipoles on each side of graphene layer
is 14. To keep the number of unknowns as small as possible, the maximum value of n
in (4.1) for all the multipoles is 2. Wherever a multipole with a higher order is needed,
closely spaced multipoles of order 2 can be used to mimic the field variations of higher
order multipoles. The maximum value of the error, as defined below, is less than 3%.

e =
‖[A][X]− [B]‖
‖[B]‖

(4.13)
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Figure 4.4: The field enhancement factor g (Equation (4.14)) for an isolated circular
graphene flake as a function of wavelength. The insets show the electric field distribu-
tions at the resonance frequencies. The dotted curve is the FEM result.

To compare the obtained numerical results with those of the FEM method, an enhancement
factor g is defined as follows:

g =

∫
S
‖Es‖2 dS∫

S
‖Einc‖2 dS

(4.14)

where the surface S is a rectangle with dimensions of 4a × 4a located at the center of
the graphene disk. Since the FEM solution inside the graphene layer is not a part of the
scattering solution, the surface of rectangle S is located outside the disk at the distance
of 5nm below the graphene layer. The factor g represents the enhancement of the electric
field energy near the graphene flake. The incident wave is a plane wave propagating
perpendicular to the surface of graphene. Fig. 4.4 shows the enhancement obtained by
the GMT as compared to the FEM results. As shown, the results match quite good.
The field distributions for the peak values of g are also plotted. These peaks indicate the
plasmon resonances of the graphene circular disk. To investigate the significance of the
J.n̂ = 0 boundary condition around the edges of the graphene flake, a graphene rectangle
with the dimensions of 1µm × 1µm at the frequency of 5THz is simulated under two
different conditions: 1) using the correct boundary condition at the edge; and 2) ignoring
the boundary condition at the edge. Fig. 4.5 shows the field distributions for these two
cases. Applying the J.n̂ = 0 boundary condition increases the maximum value of electric
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Figure 4.5: (a) Distribution of |E|2 on the surface of the graphene flake. (b) The distribu-
tion of |E|2 on the surface of the same graphene flake when the surface current normal to
the boundary of flake is not set to be zero. (c) The amplitude of |E|2 over the vertical line
bisecting the rectangle for both cases.

field around the edges. Furthermore, the true field distribution (Fig. 4.5a) shows correct
singular behavior close to the edge. The amplitude of the scattered electric field over the
vertical line bisecting the rectangle is plotted in Fig. 4.5c. As shown, the field distribution
when the boundary condition (4.2b) is applied (Fig. 4.5a) is different from that obtained
without imposing the correct boundary condition (Fig. 4.5b). This shows the significance
of imposing correct boundary conditions over the surface and the edge of the graphene
layer. It is important to note that the boundary condition (4.2b), exempt us from getting
near the edge of the flake. However, if the number of discretization points around the edge
of flake increases (This would results in a higher simulation time) the field distributions
for both cases (Fig. 4.5c) become identical.

The formulation derived in Section 4.1 can also be used to obtain the scattered field
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for a graphene layer on a substrate (εr1 = εs and εr2 = 1 in Fig. 4.1). The field of upper
half-space multipoles should be calculated in a homogeneous medium with ε = εs, and the
incident plane wave should be as follows [103]:

Einc(z) = ŷ

e
−jk0z + ηs−η0

ηs+η0
ejk0z z ≥ 0

2ηs
ηs+η0

e−jk0
√
εsz z < 0

(4.15)

where η =
√
µ/ε is the intrinsic impedance of the substrate (ηs) or air (η0). To verify our

method, we compare the obtained field distribution for a graphene triangle on the silicon
substrate (εs = 12) with those of the FEM. Figure 4.6 shows the absolute value of the
electric field obtained using the GMT method at the frequency of 5THz. The obtained
field distribution matches that of the FEM shown in Fig. 4.6b.

(a) (b)

Figure 4.6: (a) The field distribution of a triangle graphene flake with the dimensions of
1µm× 1.5µm on top of the silicon substrate. The plot shows the electric field distribution
inside the silicon at a distance of 5nm below the graphene layer. (b) The same structure
is simulated using the FEM.

4.2.2 Plasmon resonances of graphene dimers

Plasmon resonances of coupled metallic nanoparticles generate a high intensity electric field
region, which can be used for high resolution sensing and imaging. Dimers of graphene
flakes located in proximity to each other also show field enhancements which are much
stronger than those of similar dimers made of gold and silver [29]. Here, the proposed
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Figure 4.7: The distribution of |E|2 for two coupled graphene nanodisks obtained by the
proposed method (a) and by the FEM (b). The Distribution of |E|2 over the vertical line
bisecting both disks (c).

method is used to study the enhancement of the electric field between two closely spaced
graphene disks.

Figure 4.7a shows the distribution of |E|2 between two closely spaced graphene nanopar-
ticles as computed by the GMT method at the distance of 5nm below the graphene layer.
The multipole setting for each disk is similar to those used for isolated flakes. The diameter
of flakes is 1µm and the spacing between them is 100nm. To show the accuracy of the
proposed method, we plotted the electric field distribution at the wavelength where the
maximum enhancement can be achieved, λ = 26.5µm. As can be seen, an electric field
enhancement as large as 40 times can be achieved in the hot spot (an enhancement of 1600
times in |E|2). Figure 4.7b shows the results of the analysis of the same structure using
the FEM. To compare the results of these two methods, the amplitude of |E|2 over the
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vertical line bisecting both disks is plotted in Fig. 4.7c. As can be seen, the FEM results
match the result of the GMT method, meaning that a volumetric model (∆ = 0.5nm) is
as accurate as the surface model for this range of frequency.

4.2.3 Periodically patterned graphene structures

Figure 4.8 shows the multipole setting for the analysis of the periodic structure. To analyze
a periodically patterned graphene structure, the multipole setting of a single disk (Fig.
4.3) should be changed as follows. A number of multipoles should be placed outside Bloch
boundaries. These multipoles generate the field inside the Bloch boundaries. In addition,
the field generated by multipoles shown by × and are connected by a line (Fig. 4.8) should
be calculated using the interpolating scheme presented in (4.3). To analyze the periodically

H

D
2

W

Bloch boundariesL
D

3

Bloch boundaries

D
1

Figure 4.8: The upper view of multipole setting for the analysis of periodic graphene
nanodisks. The inset shows the side view of the multipole setting.

patterned structure, in addition to the boundary conditions in (4.6), the following periodic
boundary conditions should be satisfied:

E(x = L/2, y, z) = e−jκLE(x = −L/2, y, z) (4.16a)
H(x = L/2, y, z) = e−jκLH(x = −L/2, y, z) (4.16b)

E(x, y = W/2, z) = e−jκ
′WE(x, y = −W/2, z) (4.16c)

H(x, y = W/2, z) = e−jκ
′WH(x, y = −W/2, z) (4.16d)

where κ and κ′ are the Bloch wave numbers, L and W are the periodicity of the flake in
x and y direction, respectively. To satisfy the Bloch boundary conditions, a number of
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Figure 4.9: The electric field energy enhancement factor g calculated for the 2D periodic
nanodisks of graphene structure. The insets show the amplitude of electric field at the
peak wavelengths. The results of the proposed method are compared with those of the
FEM.

multipoles should be located outside of the Bloch boundaries (Bloch multipoles). To keep
the number of Bloch multipoles as small as possible, the height of these multipoles should
be the same as that of the inner multipoles. Fig. 4.8 and its inset show the exact locations
of these mutlipoles. The Bloch multipoles are located at the distance of L/2 (Note that
L = W ) from the Bloch boundaries. For the numerical evaluation, the solution space is
truncated to −15a < H < 15a (a is the radius of flake) in the ẑ direction. Increasing
H beyond this region would not substantially change the results as all the multipoles are
located at the maximum distance of a from the flake. Figure 4.9 shows the enhancement
factor g (Equation (4.14)) obtained from the electric field distribution inside the Bloch
boundaries. The Bloch wave vectors are κ = 0 and κ′ = 0. The incident wave is a plane
wave polarized in ŷ direction and propagating in ẑ direction. The maximum error as
defined in (4.13) is about 4%. The FEM results (Fig. 4.9) matches the obtained results.
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Chapter 5

The graphene-based photomixer design

5.1 Introduction

Chapter 2 explained that the plasmon-assisted coupling enhances nonlinear processes such
as the Raman scattering in graphene. Extraordinary Raman enhancements as high as 1000
times were achieved for our fabricated nanocrescent structures. The Raman scattering,
however, is not a frequency mixing process and the process we are interested in our study
involves the difference frequency generation (DFG).

In a DFG process, the wave momentum and the DC current are two decisive while in-
herently different factors. Pertinent to their inherent differences, these two factors respond
differently to the plasmon enhancements. One expects the DFG due to the DC current to
be scaled up the same way that absorption increases. In contrast, the drag effect is not
only affected by the enhancement in the absolute value of fields but also by the shape of
the wave front. The shape of the wave front brings a third factor in the analysis, that is
the geometry of the nanoparticles.

Employing the volumetric model of the graphene layer developed in Chapter 4, in this
chapter, a comprehensive study of a new graphene-based THz mixer is presented. We
start by investigating the role of nanoparticles in the field enhancement and symmetry
breaking. We then focus our study on the THz radiation from graphene in the presence of
the proposed THz antenna.
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(a) (b)

Figure 5.1: The transitions involved in the DFG process (Eq. A.35) (a) and the schematic
of nanostructure on top of the graphene layer (b). Two waves with frequencies of ωp and ωq
mix in graphene resulting in a photon with frequency of ωd. The graphene layer is placed
on a Si/SiO2(300nm) layer.

5.2 Nonlinear response of graphene in the presence of
nanoparticles

It is theoretically proven [28] and experimentally demonstrated [73,108] that the aforemen-
tioned drag effect is an efficient mechanism in the photomixing process, resulting in the
generation of THz photons in graphene. Although the nonlinearity caused by the drag ef-
fect is strong [28], extreme localization of the electromagnetic field is still essential to make
the nonlinear interaction of light and graphene sufficiently strong. Meanwhile, the incom-
ing photons at the fundamental frequencies should be guided into the graphene with a large
enough in-plane linear momentum. These conditions can be simultaneously satisfied in a
graphene layer integrated with an asymmetric nanostructured supporting plasmonic mode
with a very small mode volume. The asymmetry introduced by the nanoparticles causes
the induced field to have large enough in-plane linear momentum required for dragging the
quasiparticles.

For a free standing graphene layer, the induced nonlinear current at the difference
frequency of ωd for two obliquely incident plane waves at the frequencies ωp and ωq (ωd =
ωp − ωq) is related to the phasors of the incoming plane waves as

Js (ωd) =∑
j,k

σ
(2)
sjk(ωd, ωp,−ωq,kp,kq)Ej(ωp,kp)E

∗
k(ωq,kq) (5.1)

where the tensor σ(2)
sjk(ωd, ωp,−ωq,kp,kq) is the second order conductivity tensor and Ei(ωp)
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is the i’th cartesian component of the electric field phasor E(ωp,kp) = Ep exp(ikp.r) . For
a graphene layer that lies on the xy plane the indices s, j and k run over x and y only.
The tensor σ(2) is calculated by a quantum mechanical approach employing the velocity
gauge in which the momentum of the incoming photons is included in the formulation.
Considering the possible transitions involved in the DFG process (Fig. 5.1a), the elements
of the second order conductivity tensor σ(2) are calculated as (see Appendix I):

σ
(2)
sij = − 2eνF

~2ωpωq

∫
K,K′

d2k1

4π2

{[
ρ

(0)
k1
− ρ(0)

k2

(ω21 − ωp)− iΓ

−
ρ

(0)
k2
− ρ(0)

k3

(ω32 + ωq)− iΓ

]
µi21µ

j
32η

s
13

ω13 − ωd − iΓ
+

[
ρ

(0)
k4
− ρ(0)

k1

(ω14 + ωq)− iΓ

−
ρ

(0)
k1
− ρ(0)

k2

(ω21 − ωp)− iΓ

]
µj14µ

i
21η

s
42

ω42 − ωd − iΓ

}
(5.2)

where ~ω21 is the transition energy from the state |1〉 to |2〉, µi21 is the induced dipole
caused by the transition from the state |1〉 to |2〉 (Fig. 5.1a), and ρ(0)

k1
is the Fermi-Dirac

distribution for the state |1〉 with the wave vector k1. Other parameters in Eq. A.35 are
defined similarly. The conservation of momentum enforces the conditions k2 = k1 + kp,
k3 = k1 + kp − kq, and k4 = k1 + kq. The vector operators µ̂µµ and ηs are defined as (ξ = 1
for the Dirac cone K and ξ = −1 for the Dirac cone K ′):

µ̂µµ =
−i
2
eνF (σxx̂+ ξσyŷ) , η̂ηηs =

1

νF

∂Ĥ

∂ps
(5.3)

where σi’s, νF and ps are the Pauli matrices, the Fermi velocity (∼ 106m/s) and the Bloch
momentum respectively.

We now proceed to find the induced current at the frequency of ωd for the plasmonic
structure shown in Fig. 5.1b. As schematically shown in the figure, the periodic array of
asymmetric gold nanoparticles is placed on the top of a graphene layer. The graphene sheet
is placed over a multilayer structure. The structure is excited by two monochromatic laser
fields illuminating the structure in perpendicular direction from the top. The nanoparticles
are appropriately shaped to be at resonance around the wavelength of the incoming photons
and therefore the induced field is highly non-uniform on each cell . In order to calculate
the induced current, the linear analysis is performed to find the induced electric fields at
the frequencies of ωp and ωq. The induced field is then decomposed in terms of the plane
waves to be plugged into Eq. (5.1). Assuming the periodicities of W and L along the x
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and y axes respectively, the tangential electric field on the graphene layer is expanded in
terms of the Floquet modes as

Et(ωp) = (x̂x̂+ ŷŷ) · E =∑
α,β

ExαβeiGαβ .rx̂+
∑
α,β

Eyαβe
iGαβ .rŷ (5.4)

where Exαβ and Eyαβ are the Fourier expansion coefficients (See Appendix I). The vectors
Gαβ = 2πα

L
x̂+ 2πβ

W
ŷ, where α and β are integers, are spatial harmonics defined in reciprocal

space.

Since ωd � ωp, ωq, we can safely assume that the field distributions at ωp and ωq are
almost identical for a similar excitation. That allows us to use equal Fourier coefficients to
expand the field distributions. The induced current at the difference frequency ωd is then
given by

Js (r, ωd) =
∑

α,β,α′,β′

2∑
a,b=1

σ
(2)
sab (ωd, ωp, ωq,Gα,β,Gα′,β′)

(Eαβ)a
(
E∗α′β′

)
b
ei(Gα,β−Gα′,β′ ).r

=
∑
mn

Js,mneiGm,n.r (5.5)

where (Eαβ)1 = Exαβ and (Eαβ)2 = Eyαβ. Since L,W � λd (λd is the wavelength of the
difference frequency), only the term ~J00(ωd) contributes to radiation. All the higher spatial
harmonics are evanescent. The total radiating component of THz current is obtained as

Jrads (ωd) = Js,00(ωd) =∑
α,β

2∑
a,b=1

σ
(2)
sab (ωd, ωp, ωq,Gα,β,Gα,β) E (a)

αβ E
(b)∗
αβ (5.6)

The radiating current obtained in Eq. 5.6 is spatially uniform. It is straightforward to
show that the condition E−nm 6= Enm or En(−m) 6= Enm guarantees nonzero THz radiating
current. These conditions can be interpreted as introducing a phase progress over the
graphene layer by asymmetric excitation of the Floquet modes.
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Figure 5.2: The field enhancement factor g(1) calculated on the graphene layer for four
different periodic arrays of gold nanoparticles. The inset shows the geometry of nanopar-
ticles.

5.3 Numerical results

5.3.1 Design considerations and figures of merit

The schematic of the proposed structure is depicted in Fig. 5.1b. The graphene layer is
integrated with a periodic arrangement of nano-rings with the outer radius of r1 = 90nm
and the inner radius of r2 = 40nm . The height of nanoparticles is 65nm and a buffer layer
of SiO2 with thickness of 300nm is placed between the graphene layer and the silicon wafer.
The dimensions of the symmetric nanorings and the thickness of SiO2 layer are optimized
to obtain the highest possible enhancement on the graphene layer. The figure of merit
characterizing the performance of the plasmonic nanostructure in the linear regimes is the
first order enhancement factor defined as

g(1) =
1

WL

∫
unit cell

|E|2

|E0|2
dxdy (5.7)

where E0 is the electric field amplitude of the incident wave. Figure 5.2 shows the achieved
enhancement g(1) as a function of wavelength for nanorings with reduced symmetry. To
reduce the symmetry, the inner cylinder of the nanoring is displaced by the amount of d
along the x axis (Inset of Fig. 5.2). The enhancement peaks for d/r2 = 0 and d/r2 = 0.17
are at λ0 ∼ 800nm; however, as the displacement increases the wavelength of maximum
enhancment significantly varies. The electric field distributions for the different values of
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(a) (b)

(c) (d)

Figure 5.3: The distribution of |E|2 for the symmetric case (d = 0) (a) and for the asym-
metric cases d/r2 = 0.17 (b), d/r2 = 0.4 (c), d/r2 = 0.6 (d).

the displacement are shown in Fig. 5.3a-5.3d. It is noted that, by increasing the shift d/r2

from 0 to 0.6, the field distribution becomes more asymmetric.

For the DFG analysis, we assume that the wavelengths of the incident fields are λp, λq ≈
800nm (λp = 801nm and λq = 799nm ) and the difference frequency is ωd = ωp − ωq =
2π(1THz). Having the field distribution on the graphene layer, the radiating part of induced
nonlinear current can be calculated using Eq. (5.6). To compare the obtained results when
the nanoparticles are present with those of the bare graphene layer, we define the nonlinear
enhancement factor, g2 as:

g(2) =

∣∣∣ ~JMNP
00

∣∣∣2
|JB|2

(5.8)

where ~JMNP
00 is the uniform part of the induced THz current when the metal nanoparticles

are present and JB is the induced THz current when two waves are incident on a bare
graphene layer at a certain incident angle like 45◦. The factor g(2) defined in Eq. (5.8),
shows the enhancement in the radiated THz power [109].

The amount of the gain achieved for three different value of d (Fig. 5.2) are plotted in
Fig. 5.4; the insets show the field enhancement of the real part of Ex and the normalized
amplitude of spatial expansion functions for |α| < 20 and β = 0. The non-symmetric
distributions of the Floquet modes expansion coefficients becomes more pronounced as the
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Figure 5.4: The gain in the DFG response of the graphene layer obtained by introducing
asymmetric nanoparticles on top of the graphene layer. The insets shows the enhancements
in the real part Ex and the normalized amplitude of spatial expansion functions for |α| =
1, 2, ..., 20 and β = 0.

d increases (insets of Fig. 5.4). As a result, the radiated THz power is enhanced by the
factors of g(2) ∼ 2, g(2) ∼ 20, and g(2) ∼ 103 for d = 15nm, d = 35nm, and d = 55nm,
respectively. As to be detailed in the study of the pulse excitation, The amount of the
enhancement obtained in the case of crescent nanoparticles (i.e. d = 55nm) leads to a
substantial conversion efficiency compared to the available integrated THz photomixing
technologies. It is worth mentioning that nano-crescents can be fabricated via a simple
fabrication method using the electron beam lithography [55,110]. It should be emphasized
that the approach introduced here is not an absorption-enhanced process. The approach
presented here relies on engineering the scattering process.

5.3.2 Pulse generation

In the analysis of THz pulse generation, we assume that the optical pulse is a Gaussian
pulse with a central wavelength of λ0 = 800nm. The electric field of the incident pulse can
be written as follows:

E(t, r) = E(t)× E(r) (5.9)

where E(r) and E(t) show the spatial and time dependency, respectively. The spatial
distribution of electric field (E(r)) is obtained from the HFSS simulations. The spatial
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variation of electric field is expanded as follows:

E(r) =
∑
α,β

2∑
a,b=1

σ
(2)
sab (ωd,kα,β,kα,β) (Enm)a (E∗nm)b (5.10)

Assuming a Gaussian envelope for the laser pulse, The time-evolution of the pulse is as
follows:

E(t) = E0cos(ωt)e
2(t−t0)

2

τ2 (5.11)

where t0 is the time reference of the pulse. The Fourier expansion of E(t) provides the
frequency components of the incident field.

E(t) =

∫
E(ω)ejωtdω

E(ω) =
1

2π

∫
E(t)e−jωtdt (5.12)

where E(ω) is the Fourier transform of E(t) . The total energy of a pulse can be written
as follows:

Ep =
S

2π

∫
ω

1

2η
|E(ω)|2 dω (5.13)

where S is the surface that light shines on. The total incident power of the pulse chain is:

Pinc =
S

2π

∫
ω

1

2η
|E(ω)|2 dωRr (5.14)

where Rr is the repetition rate of the laser pulse. The frequency components of the inci-
dent laser pulse is extended from 760nm to 840nm. Since the field distribution does not
significantly vary in this range, the same single frequency spatial expansion in Eq. 5.10 is
used for the whole frequency range. Consequently, the following expansion can be written
for the different frequency components of incident laser pulse:

E(ω, r) = E(ω)
∑
m, n

Eαβe
i 2π
L
αxei

2π
W
βy (5.15)

where α and β are defined in Eq. 5.4. The total induced nonlinear current in the frequency
of fd is as follows:

J(fd) =

∫
ω

E(ω)E∗(ω − 2πfd)dω
∑
α,β

2∑
a,b=1

σ
(2)
sab (ωd,kα,β,kα,β) (Enm)a (E∗nm)b (5.16)
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We used the equation 5.16 to find the frequency components of J(fd). Using the inverse
transform, it is possible to find the current induced in the time domain.

The center wavelength of the laser is λ0 = 800nm; the laser generates pulses with the
duration of τ = 150fs and the repetition rate of 86MHz. The power lunched to the setup
is assumed to be 300mW with the focused spot size of ∼ 15µm× 15µm. As shown in Fig.
5.5(a), the generated THz signal is captured in the silicon layer underneath. Fig. 5.5(b)
shows the normalized optical pulse and the generated current on the surface of the graphene
layer. The amount of THz power captured in the silicon layer has been rigorously calculated
using the reciprocity theorem and it is shown that PTHz ∼ 1µW.
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Figure 5.5: The schematic of the analyzed setup for THz pulse generation (a) and the
induced nonlinear current (b) (the black Gaussian pulse). The optical excitation pulse is
also shown in blue (b).
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Figure 5.6: The schematic of a log-periodic antenna. The parameters τ , σ, R1, a1, δ, and
β determines the number and the location of resonances.

5.4 Antenna Design

Antenna plays a significant role in the performance and the efficiency of a THz pho-
tomixer [111, 112]. Having a good matching between the antenna and the active region
is necessary to achieve the maximum radiation power. Considering the developed model
for the graphene’s active region (Appendix II), the impedance of active region is directly
proportional to the current density of graphene. The higher the applied current, the lower
the capacitance/inductance of the active region and consequently a better matching can be
achieved. Since the matching can be controlled by changing the gap properties, I focus the
study to two most important parameters of antenna, maximum gain and the bandwidth.
Two special types of antennas that are frequently used in the THz mixers setup are the
dipole antenna and the log-periodic antenna. A dipole antenna has a high gain and low
bandwidth whereas a log-periodic antenna has an exceptional bandwidth with a moderate
gain. For our early designs we used a dipole antenna; however, because of the uncertain-
ties in the frequency of maximum induced THz current, we switched to the trapezoidal
log-periodic antennas. Figure 5.6 shows the schematic of a log-periodic antenna with the
main parameters defining the number of resonances and the frequency of resonances. The
antenna is composed of a series of dipole antennas connected together. Analytically speak-
ing, the number of resonances is equal to the number of dipoles; the resonance frequencies
can also be determined by the length of each dipole.

In the TDS measurements, a large silicon lens will be placed behind the substrate to
focus the THz beam. Practically speaking, there is no reflection from the silicon lens-air
interface back to the antenna. So, in a realistic modeling, the antenna should be simulated
at the interface of two half-spaces of air and silicon. To model a half-space silicon layer
in HFSS, a lossy silicon layer attached to the original silicon layer. Figure 5.7a shows the
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(a) (b)

Figure 5.7: The schematic of antenna plotted in HFSS (a) and the side view of the radiation
from the antenna at the resonance frequency of f = 457GHz(b).

schematic of design in HFSS. The hemisphere near the antenna is lossless silicon and the
hemisphere denoted by a lighter gray color is the lossy silicon. Since the loss is very small,
the difference between the permittivity of substrates is negligible and the reflection at the
interface of two layers can be ignored. The wave that propagates through the second layer
eventually attenuates. The second layer in our design acts as a perfectly matched layer
(PML) which mimics the behavior of a half-space substrate. Figure 5.7b shows the wave
propagation in substrate. As can be seen, the wave amplitude is dominant in the lossless
silicon substrate and eventually vanishes in the lossy silicon.

Two antennas are designed for the purpose of integration with graphene-based THz
mixer. One of the antennas is designed to have multiple resonances from 250GHz− 1THz
(β = 60, δ = 30, τ = 0.7, σ = 0.84, R1 = 94µm) while the larger antenna has resonances
down to 100GHz (β = 60, δ = 30, τ = 0.7, σ = 0.84, R1 = 250µm). The gap size of
the smaller antenna is 20µm while the gap size of the larger one is 50µm. The scattering
parameters for both antennas is displayed in Figure 5.8a and 5.8b. The radiation patterns
are plotted in Figures 5.9a and 5.9b. In the simulations, the gap is excited by a constant
current and the scattering parameters were measured at the gap interfaces. Though being
the routine procedure in characterizing the antenna, a constant current model in gap is
not accurate enough for modeling of the DFG induced radiation.

Since the current distribution inside the gap of antenna is not constant, a realistic
model for our design has to be based on the dipolar excitation in the gap. It means that a
small dipole should be located in the gap and the coupling of antenna with that dipole has
to be considered. An intuitive, while not accurate, way of solving the problem of a dipole
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Figure 5.8: The scattering parameters of two designed log-periodic antennas for the selected
parameters of β = 60, δ = 30, τ = 0.7, σ = 0.84, R1 = 94µm (a) and β = 60, δ = 30,
τ = 0.7, σ = 0.84, R1 = 250µm (b).

loaded antenna is to assume that the antenna would only shape the torus-like radiation
pattern of the small dipole. However, the effect of antennas scattering parameters in this
intuitive solution remains unanswered. Here, a full wave simulation is carried out to find
the radiation of dipole in the presence of antenna.

To model the dipole loaded antenna, a small dipole antenna (the length of dipole is
l = 500nm) with a driving current of 1A is located at the gap of the antenna. The size of
gap is 20µm and the dipole is oriented in the direction of the log-periodic antenna (The
antenna has no significant effect on the radiation of dipoles oriented perpendicular to its
axis). Figure 5.10a shows the gain factor g defined as follows:

gA =
Pdla
Pd

(5.17)

where Pdla is the radiated power of the dipole loaded antenna into the silicon substrate
and Pd is the radiated power of the secluded dipole in the free space. As can be seen, the
antenna generally enhances the amount of the radiated power while changing the radiation
patterns (Fig. 5.10b and 5.10c). The directivity of antenna as well as the enhancement
depend on the dipole location. As the dipole get closer to the gap edge d = 8µm, a gain as
high as 40 times can be achieved. As expected, the antenna pattern becomes asymmetric
when the symmetry of excitation breaks (The dipole moves to the edges of the gap). As the
number of dipoles in the gap increases, 502 dipoles for the designed nanostructure with the
periodicity of 400nm, the average enhancement becomes considerable. To find the effect
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(a) (b)

Figure 5.9: The directivity of the log periodic antennas at the frequencies of f = 981GHz
(R1 = 94µm) (a) and f = 457GHz (R1 = 250µm)
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Figure 5.10: Defined gain factor g (Eq. 5.17)(a), the directivity of radiations in x− z (b)
and y − z planes (c) for the small log-periodic antenna.
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Figure 5.11: The total enhancement of the antenna (R1 = 94µm) for a periodic structure
of 16 dipole antennas.

of periodic dipole antennas in the gap, we simulated the antenna when loaded with 16
dipoles in the gap. The result (Figure 5.11) shows that the overall enhancement of gA = 10
is obtained. So, the antenna affects the radiation pattern of dipole while enhancing the
total radiated power. Our designed antenna shows a maximum enhancement of gA = 10.
To find the total radiated power, we multiply the total radiated power of dipoles by the
antenna gain reported in Figure 5.11.

5.5 The proposed graphene-based photomixer

To exploit the functionality of the graphene layer in a THz photomixer application, I
propose the design shown in Figure 5.12. The proposed structure is composed of a log-
periodic antenna (Figure 5.12 (a) and (b)) connected to large pads for the connection
of the chip to biasing sources (Figure 5.12(a)), a periodic nanostructure to enhance the
light-graphene interaction (Figure 5.12(c)), and a top gate to control the carrier density in
graphene (Figure 5.12(d)).
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Figure 5.12: (a) The schematic of the proposed photomixer. The bonding contacts facilitate
the connection of the chip to a designed PCB board. A magnified picture of designed
antenna and the gap size are shown in (b), (c), and (d). The plot in (c) shows the first
layer of the design including the drain/source contacts and the nanoparticles in the gap.
The plot in (d) demonstrates the gate dielectric and the top gate of the graphene layer.
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5.6 Conclusion

In conclusion, we assessed the attainable THz power from the proposed structure. Con-
sidering the contribution of the drag effect and taking into account the plasmonic and
antenna enhancements, it is possible to obtain more than 10µW of THz power resulting
to the conversion efficiency of 3e− 5.
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Chapter 6

Fabrication of graphene-based THz
photomixer and the measurement
results

The fabrication approach discussed in Chapter 2 is based on the fabrication of nanostruc-
tures and then transferring graphene to the wafer. In the proposed approach the existence
of a reflective metallic surface below the nano-structure is essential for achieving high local
enhancement in the electric field. Although the proposed method offers unprecedented high
enhancements, the approach has certain drawbacks that limits its use for our application.
The first drawback is the existence of a metallic surface at a close distance to the graphene
layer. As known from the image theory, the existence of this layer near the graphene layer
suppresses the THz radiations. Another drawback, which simply arises from transferring
graphene onto the nano-structure, is the uncontrollable distance between the graphene
layer and the nano-structure. As discussed in Chapter 2, this distance plays an important
role in the enhancement. Finally, the fabrication process is not optimized in the sense that
the fabrication of the whole mixer structure needs at least three steps of electron beam
lithography (EBL) including fabrication of the back-gate, nano-antennas, and the THz
antenna.

A better approach that was theoretically discussed in chapter 5 is to transfer the
graphene layer onto the substrate and then build the nano-antennas and the THz antenna
on top of the graphene layer. The SiO2/Si interface has the role of an optical reflector
while it does not affect the THz radiation. Using this approach, the fabrication process
can be minimized to a one step EBL process. In addition, the problems that we previously
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(a) (b)

Figure 6.1: Destruction of nanoparticle as a result of the graphene layer detachment for
the surface of substrate (b). The effect of Remover PG on the graphene layer (b).

encountered such as the deterioration of nano-antennas and the indefinite distance between
the graphene and the nano-antennas are resolved.

Although the one step nano-EBL process on graphene might seems trivial, there are
challenges that requires the development of an elaborate recipe for the large area graphene
devices. The main difficulty arises from the fact that the bonding of graphene-substrate is
based on the weak Van Der Waals forces. The weak attachment prevents the facilitation
of the lift-off process using the ultrasonic or high temperatures. The best that can be done
for the lift-off is to use the liquid pressure of a pipette to complete the lift-off process.
Surprisingly, the liquid pressure proves to also be a damaging factor. Furthermore, the
graphene layer interacts with Remover PG and starts to roll over itself or be detached
from the SiO2 layer. Figure 6.1a shows how the nano-structure is affected as a result
of graphene detachment. The metallic structure on the graphene layer only has chemical
bonds with the graphene layer meaning that there is no bonding between the metallic layer
and the substrate beneath. The effect of Remover PG on graphene is shown on Fig. 6.1b.
The graphene layer is removed and only a few islands are remained on the substrate.

After trying different approaches, we developed a reliable and repeatable recipe that
can be used for fabrication of a wide variety of graphene-based devices. The fabrication
steps are summarized as follows:

• Growing the SiO2 layer on the silicon substrate.

• Transferring the graphene layer.

• Spin coating PMMA A3 with the speed 2000rpm and the acceleration 500rpm/s.
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• Baking the PMMA layer on hot plate at the temperature of 180◦ for about 17 minutes.

• Drain and source pattern development.

• Oxygen plasma for 20 seconds.

• Defining graphene contacts.

• Depositing Ti/Au layer.

• Gate dielectric fabrication.

• Oxygen plasma for 20 seconds.

• Gate contacts definition.

• Bonding the sample to a PCB board.

• Packaging the sample.

Here, we explain the details of each step.

6.1 Sample preparation: SiO2 layer growth and graphene
transfer

The high resistive silicon wafers were cleaned using the ultrasonic bath of acetone and
IPA. We then used the plasma enhanced chemical vapor deposition (PECVD) to deposit
300nm of glass on top of the silicon wafers. The Filmetric measurements of the thickness
show a uniform deposition ranging from 300nm to 320nm over the whole sample. We then
transfer the prepared CVD graphene layer with the method explained in Chapter 2. To
make sure that the graphene layer is attached to the silicon wafer, running the following
recipe is necessary:

• Soft baking for 30 minutes at 50◦ followed by another 30 minutes at 100◦.

• Baking sample for another 30 minutes at 200◦.

• Cooling the sample and soaking it in acetone over night.

After this stage, the pure graphene layer over the silicon substrate is obtained.
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Figure 6.2: The change in the graphene layer after the lift-off process. The graphene layer
is moved causing one of the contact to be tilted. The nanostructure is also deteriorated as
a result of graphene layer detachment.

6.2 Fabrication of THz antenna and the drain/source
metal contacts

One straightforward method of fabrication is to pattern the whole antenna and contacts
in one step and then deposit the gold film. This approach, however, is not reliable and
repeatable as there are cracks in the transferred graphene layer that would completely
deteriorate the structure after one step or two steps of EBL. Figure 6.2 shows the changes
in the graphene layer caused by the lift-off process. The best recipe that we developed is
as follows:

• Using EBL (20Kv/20µm) to define the THz antennas and the bonding pads.

• Developing the sample in MIBK:IPA 1:3 for 30s followed by 30s rinsing in IPA.

• Running 20 seconds oxygen plasma to erase the graphene below the antenna and the
pads.

• Returning the sample to the Raith TWO for another round of EBL. After proper
alignments, defining the graphene contacts and the nano-structure.

• Developing the sample again in MIBK:IPA 1:3 for 30s followed by 30s rinsing in IPA.

• Depositing Ti/Au (3nm/65nm) using the electron beam deposition.
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Figure 6.3: The discontinuity in the first and the second layers as a result of the fabrication
of the second layer over the loosely substrate-attached first layer.

• Soaking the sample in acetone over night. Then facilitating the lift-off process with
a pipette. It is also possible to use ultrasonic bath for a short time to facilitate the
lift-off.

As a result of this step, the THz antenna would be attached to the silicon layer and the
graphene located in the gap will also be attached to these antennas. Since the bonding
between Ti/SiO2 is much stronger than the Ti/graphene, the proposed fabrication step
is far more reliable than the simple one-step EBL method.

This approach would also ease the next fabrication steps since one should not be worry
of the pressure of higher layers to the lower ones. If all the structures in the first layer are
fabricated on graphene, there is a good chance that the tension of the second layer would
destroy the connections of the first layer (Fig. 6.3). Figure 6.4a and its zoomed views
(Fig. 6.4b and 6.4c) show a large area of periodic digitated structure fabricated using the
proposed approach.

6.3 Fabrication of the gate

One of the most important parts of a graphene-based device is the gate. By changing the
gate voltage, it is possible to change the Fermi level of graphene. Changing the Fermi level
results in a change in the carrier density on the graphene layer and consequently all the
electronic properties of graphene including the nonlinearity can be controlled. In most of
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(a) (b) (c)

Figure 6.4: A large area array of digitated structures on top of graphene (a). The figures
(b) and (c) show the zoomed view of part (a).

the literature, the concept of backgating (as explained in Chapter 1) is used to control the
Fermi level of graphene. This approach, however, would need the deposition of metal on
the lower side of Si wafer which blocks the THz radiation. Instead, we are using a top-gate
design shown in Fig. 6.5. Figure 6.5a shows the perspective view of the gate structure.
The schematic of the designed layered structure in RaithTWO software is also shown in
Fig. 6.5b.

The fabrication of gate structure includes two steps EBL processes, deposition of gate
dielectric and deposition of the gate metal contact. The process recipe can be summarized
as follows:

• Spin-coating PMMA A3 with the speed 2000rpm and the acceleration 500rpm/s.

• Baking the PMMA layer on hot plate at the temperature of 180◦ for about 17 minutes.

• Patterning the gate dielectric using EBL.

• Deposition of 90nm of Al2O3 and then lift-off overnight using the Remover PG.

• Running 20 seconds oxygen plasma to erase the graphene except the parts located
below the gate dielectrics.

• Spin-coating PMMA A3 (2000rpm and 500rpm/s) and baking for 5 minutes at 180◦.

• Spin-coating another layer of PMMA A3 (2000rpm and 500rpm/s) and baking for
15 minutes at 180◦.
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(a) (b)

Figure 6.5: The schematic of a top-gated graphene structure (a). The first layer is the
drain and the source contacts, the middle layer is Al2O3, and the top layer is the gate
metal contact. Plot (b) demonstrates the schematic of different layers including the THz
antenna, the drain and the source contacts, and the gate metal contact.

• Patterning the gate metal contact using EBL.

• Deposition of 90nm of Ti/Au and then lift-off overnight using the Remover PG.

In is important to note that a part of the gate metal contact is on the gate’s dielectric
while the rest of the gate metal contact is on the Si wafer. Since the dielectric is at the
hight of 90nm from the Si wafer, the height of gate metal contact should be at least 90nm.
Figures 6.6a shows the SEM picture of the fabricated THz photomixer antenna. Figure
6.6b shows the zoomed picture of the gap highlighting that there is no nanostructure in
the gap of antenna and a part of gate metal contact did not lift-up properly. Figure 6.7a
shows the SEM image of a sample with the nanoparticles in the gap of the antenna. A
fabrication tolerance as good as 5nm is achieved using the EBL.

During the course of this work, different recipes have been developed for the fabrication
of THz mixing structures. In addition to the devices that are fabricated with the recipe
explained in this chapter (Recipe 1), I also fabricated smaples using the simple EBL method
without removing the graphene layer below the antennas (Recipe 2). The fabrication steps
of Recipe 2 are summarized as follows:

• Transferring graphene using the method explained in this chapter.

• Spin coating sample with PMMA A3. The speed and the acceleration are 2000rpm
and 500rpm/s, respectively.
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(a) (b)

Figure 6.6: (a) The fabricated THz photoconductive antenna on the graphene layer includ-
ing the drain/source, gate dielectric, and the gate metal contact. (b) The zoomed view of
the antenna gap.

(a) (b)

Figure 6.7: (a) The fabricated THz photoconductive antenna on the graphene layer includ-
ing the drain/source, nanoparticles, gate dielectric, and the gate metal contact. (b) The
zoomed view of the nanoparticles in the antenna gap.
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• Patterning the antenna structure using EBL and then depositing Au/T i layer.

• Soaking the sample in Remover PG or acetone to complete the lift-off process.

• Spin coating the sample using PMMA A3. The process was repeated twice to achieve
400nm PMMA A3 on top of the graphene.

• Patterning the gate contact, depositing the Al2O3/T i/Au (90nm/3nm/45nm) layer,
and then lifting-off the sample.

• Spin coating the negative resist (Ma-N 2400), patterning with the EBL.

• Removing the graphene layer using 20− 40 seconds of oxygen plasma.

• Dissolving the negative resist in acetone over night.

Figure 6.8a and its zoomed view show the dipole antenna with the decoupling THz structure
fabricated with one step EBL method (Recipe 2). The graphene layer is then patterned
using a negative resist layer. Figures 6.8c and 6.8d are also the gated designs of log periodic
antenna fabricated using the Recipe 2.

6.4 Bonding and Packaging

To characterize our designed structure two different DC biasing sources are required. A
source to control the DC current on the graphene layer and another source to control
the gate voltage of graphene. To connect the designed chip to the external sources, the
chip should be bonded to a PCB board. I have designed the PCB boards in ADS. The
fabrications of PCB boards are done with the assistance of one of my colleague, Mr. Hussam
Alsaedi, using the milling machine. At the start of this project, we were also using the
PCB boards provided by TeTechS Inc.

Since the thickness of gold layer in our designs is less than 100nm, we could not use the
bonding machine. Instead, I used the silver epoxy to connect the chip to the PCB board.
The process involves gluing the PCB board to the fabricated THz mixer using the UV cure
epoxy and then connecting the drain, source, and gate metal contacts on the chip to the
PCB conducting layer with silver epoxy. Though the process is completely manual, it is
possible to bond the features as small as 100µm× 100µm to the PCB board. Figure 6.9a
shows the designed PCB board and Fig. 6.9b shows the microscope picture of the sample
bonded using the silver epoxy. The prepared sample is then placed in the right packaging
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(a) (b)

(c) (d)

Figure 6.8: The structure of dipole antenna with THz decoupling structure (a) and the
zoomed view of the gap of the dipole antenna. (c) and (d) are the fabricated log periodic
antenna design with and without the nanostructure, respectively.
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(a) (b)

Figure 6.9: (a) The designed PCB board for the sample bonding and packaging. (b) The
microscope image of the bonded THz photomixer chip using the silver epoxy.

for the measurements. The package we used for our sample was provided by TeTechS Inc
(Fig. 6.10a). The final product of the packaging and assembly is the chip that is placed
on a x-y moving stage (Fig. 6.10b).

6.5 Measurement setups

The first stage of characterizing the fabricated THz mixer is to measure the induced pho-
tocurrent in the gap region. The amount of this photocurrent is a direct indicator of the
attainable THz signal. Figure 6.11 shows the schematic of the setup. The laser pulse is fo-
cused on the gap of photoconductive antenna with an optical lens. The low noise amplifier
(LNA) provides the bias voltage and amplifies the amount of the induced photocurrent.
The lock-in amplifier measures the induced photocurrent signal that has the frequency of
chopper (ωchop) and suppresses the other sources of noise that does not have the frequency
of ωchop. Next step of characterization is the measurement of the generated THz signal.

The characterization of fabricated THz mixer is done using the terahertz time domain
spectroscopy (TDS) setup. Figure 6.12(a) shows the typical setup of a TDS setup. The
main purpose of the setup is to study the THz pulse generator which is driven by a DC
bias and is excited by a femto-second pulsed laser. The produced THz pulse is directed
and focused on the receiver which is already excited by the laser’s pulse. Having both
pulses, the laser’s pulse and the THz pulse, arriving at the same time in the GaAs receiver,
a current with the frequency of ωchop is induced that can be sensed by the detector. The
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(a) (b)

Figure 6.10: The packaging of the bonded sample (a) and the packaged sample on the x-y
moving stage.
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Figure 6.11: The schematic of setup used for measuring the photocurrent.
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Figure 6.12: (a) The schematic of THz measurement setup using a GaAs photoconductive
antenna. (b) The THz measurement setup using an electro-optical crystal (ZnTe).

synchronization of pulses can be done using the moving stage that increases or decreases the
path of the incident laser light. Two infrared lenses are used to focus the laser beams on the
THz generator and the detector. The existence of lenses can help to enhancing the received
signal by at least 10dB. There are also two silicon lenses attached to the generator and the
detector. The existence of these THz lenses are also mandatory since the generated THz
beam in the small gap of antenna is very divergent. Depending on the shape of the lens,
the THz beam can be collimated (Bullet lenses) or focused (Hypo-hemispherical lenses) or
the divergence angle can be decreased (Hyper-hemispherical lenses). For the setup that
we are using in our lab, a high resistive hyper-hemispherical lenses with the diameter of
R = 10mm and the thickness of t = 5.84mm is used.

Another setup that is frequently used to characterize the generated THz pulse is shown
in Fig. 6.12(b). Instead of a THz photo-conductive antenna as the detector, an electro-
optic crystal (ZnTe crystal) is used for the detection. Because of the nonlinearity of the
crystal, the polarization of the laser beam passing through the crystal rotates when both
THz signal and the laser beam is getting mixed inside the crystal. The amount of this
rotation is directly proportional to the electro-optic (EO) coefficient of crystal. It can be
shown that the change in the polarization angle is as follows [113]:

∆φ =
ωL

c
n3
Or41ETHz (6.1)

where nO is the refractive index at the optical frequency and r41 is the EO coefficient.
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(a) (b)

Figure 6.13: The GaAs (a) and the ZnTe (b) THz characterization setups.

To detect the amount of polarization rotation in the laser beam, we are using the setup
shown in Fig. 6.12(b). The detection part is composed of an splitter, a quarter waveplate
(QWP), a polarization dependent splitter (PS), and a balanced amplified photodetector.
In the absence of THz beam, the beam polarization rotates 45◦ by the QWP and splits
equally in the PS. The balanced detector, in the absence of THz wave, detect zero since
both received signals on the photodetectors have the same amplitude. In the presence of
THz signal, a small rotation in the polarization unbalances the detector causing a large
signal to be observed. To observe a signal higher than the noise floor, the power of incident
signal on the ZnTe crystal should be very high.

6.6 Measurement results

To do the final measurements, I and a few of my colleagues, Mr. Chao from prof. Dayan
Ban lab (ZnTe setup) and Mr. Zandieh and Dr. Saeedkia from the TeTechs Inc. (GaAs
setup), made the characterization setups. A picture of the setups are shown in Fig. 6.13.

The measured photocurrent for two THz photoconductive antennas of Fig. 6.8d, and
6.8a are shown in Figures 6.14 and 6.15. The first antenna (Fig. 6.8d) is a gated antenna
fabricated using the Recipe 2. As a result of the fabrication method, there is a thick layer
of negative resist on the graphene layer. A large amount of photocurrent near 30µA is
obtained for VDS = 250mV and the gate voltage of nearly 5V . As can be seen in 6.14(b),
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Figure 6.14: The measured photocurrent (a) and the responsivity (b) of the fabricated
antenna of Fig. 6.8d as a function of the gate voltage. The incident power is 25mW and
VDS = 250mV . The inset shows the enlarged plot of the region marked with the red dashed
rectangle.
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Figure 6.15: The measured photocurrent (a) and the responsivity (b) of the fabricated
antenna of Fig. 6.8a as a function of the incident wave power ( VDS = 200mV ).
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Figure 6.16: The measured photocurrent (a) and the responsivity (b) of the fabricated
antenna of Fig. 6.8d as a function of the gate voltage. The incident power is 22.5µW
and VDS = 250mV . The inset shows the enlarged plot of the region marked with the red
dashed rectangle.

the responsivity of the fabricated antenna is directly proportional to the gate voltage. It is
worth mentioning that the photocurrent is also linearly proportional to the VDs. As VDS
increases, the photocurrent increases; however, because of the limited amount of current
supported in graphene this voltage can not exceed a certain value. We chose VDS = 250mV
to be on the safe side.

Figure 6.16a shows the photocurrent measurements for the same device and for the
incident power of 22.5µW . The maximum photocurrent of 1.4µA is obtained for the gate
voltage of 4.5V . As the incident power decreases from 25mW to 22.5µW , the amount of
induced current dramatically decreases; however, the responsivity increases by two orders
of magnitude (6.16b).

We also investigated the role of source and drain metal contacts in the photocurrent
measurements. For an antenna with two different contacts on each side, Cr/Au for one arm
of the antenna and Ti/Au for the other arm (the device is similar to Figure 6.8a without
any nanostructure in the gap), a sensitivity as high as 0.5A/W is obtained. The device is
fabricated without the gate layer. Figure 6.15a and 6.15b show the induced photocurrent
and the responsivity as a function of incident power at λ0 = 800nm (VDS = 200mV ). This
device is fabricated using the Recipe 2 where the thickness of negative resist is less than
50nm. The high amount of recorded photocurrent which requires the quantum efficiency
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of one or even more can be associated with the charge trapping in the negative resist or the
multiple hot-carrier generation [114]. The exact origin of this high quantum yield needs
more theoretical and practical investigations.

The other fabricated devices without nanoparticles in the gap and with an Al2O3 gate
dielectric produce a maximum photocurrent less than 2µA. The reason for a high amount
of photocurrent for the sample of Fig. 6.8d might be because of the thick resist layer that
changes the graphene’s Fermi level. An elaborate and accurate conclusion about these
effects would require the THz measurements.
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In summary, a graphene-based THz photomixer is proposed, thoroughly studied and ana-
lyzed in theory and successfully fabricated with a developed recipe, and characterized with
the photocurrent measurements. Both theoretical results and practical measurements cor-
roborate the fact that the graphene layer can be considered as an outstanding candidate
for the photomixing applications.

In Chapter 2, the idea of using a plasmonic nanostructure for the enhancement of
light-graphene interaction is introduced and tested through Raman Spectroscopy. The
measurements show the significant effect of designed nanoparticles on enhancing a nonlinear
process such as the Raman scattering. In Chapter 3, a comprehensive theoretical model for
modeling of the difference frequency generation (DFG) in graphene is proposed. The role
of DC biasing and the wave momentum as two practical mechanisms in the DFG process
are investigated. Chapter 4 presents a computationally efficient numerical electromagnetic
method for analysis of scattering from the graphene flakes. A multipole-based approach
with a surface boundary condition (SBC) is deployed to analyze the wave interaction with
graphene and also to verify the volumetric model of graphene.

In Chapter 5, the obtained nonlinearity in conjunction with the volumetric model is
used to design and analyze the proposed photomixing structure in the perturbation limit.
The nonlinear analysis shows the achievable THz power of 1µW from an incident laser pulse
with the fluence of 15mW/cm2 without applying any DC current. The role of antenna in
the bandwidth and the power of THz radiation is also examined. Outcome of the theoretical
study asserts that a THz signal as powerful as 10µW can be generated using a single sheet
of graphene.

In Chapter 6, a new recipe for the fabrication of the graphene-based photomixer struc-
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ture is proposed. The developed recipe ensures a reliable and a repeatable fabrication
process even for large area graphene devices. Lastly, the measurement setup and the
measurement results are shown.

7.1 Future Work and Outlook

The main future work that can be envisioned is the THz measurements missing in the
presented thesis. The effect of incident laser power, the shape of nanoparticles, and the
antenna effect on the bandwidth and the shape of THz pulse will be further studies and
explored.

Though it is almost ten years since the discovery of graphene, there are lots of new
research directions that can help the implementation of the designed photomixer structure.
One of these directions is the production of a stack of graphene layers. At the time of this
report, the stack of graphene layers up to 40 layers has been produced. This huge number
of graphene layers can be used particularly in the DFG. Based on the amount of power that
we obtained in a non-absorptive (plasmon-drag) enhancement, it is believed that powerful
THz signals can be generated with the stack of graphene layers.

Another direction that can excite new researches on the graphene-based photomixing
structure is the integration of graphene with low-loss silicon waveguides. The graphene
layer can be easily transferred onto the silicon where a platform for low-loss THz signal
transmission and radiation already exists. This approach would facilitate and help not
only nourishing the research on graphene-based photomixers but also the THz technology
as a whole.

7.2 Conclusion

In conclusion, the proposed graphene-based THz mixer offers unique characteristics that
makes it suitable for a wide range of application in THz range of frequency. The achievable
power of 1µW with the bandwidth of 10THz ensures that device covers the whole THz
gap spectrum. The proposed device can be fabricated with a modular and systematic
fabrication recipe which strengthen its applicability in different structures such as in a
radiating or a waveguiding structure. The measurements strongly support the fact that
the proposed device is capable of producing a THz power comparable with those of the
commercially available THz mixers.
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Appendix A

A.1 Derivation of the second order nonlinearity tensor

Dirac eqaution that describes the electron behavior in graphene is as follows (ξ = 1 for the
Dirac cone K and ξ = −1 for the Dirac cone K ′):

H0ψ(r) = Eψ(r)

H0 = νF (p̂xσx + ξp̂xσy) (A.1)

where H0 is the Hamiltonian of the free standing graphene layer, νF is the Fermi velocity
in graphene, and σσσ’s are the Pauli matrices. The Hamiltonian of Eq. A.1 has the following
eigenfunctions:

Ψ|l,k〉 =
1√
LW
|l,k〉 eik.r (A.2)

where |l,k〉 is as follows:

|l,k〉 =
1√
2

(
e−iξθk/2

(−1)leiξθk/2

)
(A.3)

In Eqs. A.3 and A.2, L andW are the length and width of the graphene layer, respectively;
k is the electron wave vector; θk is the angle of the wave vector k from the x-axis; and l
shows the corresponding wave function in the conduction (l = 0) or the valance (l = 1)
band. The coupling between the electromagnetic wave with electrons in graphene can be
formulated using the interaction Hamiltonian.

H = Ĥ0 + Ĥint (A.4)
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where

Ĥint = eνF (σxAx + ξσyAy) (A.5)

where A is the magnetic vector potential. For a plane-wave excitation of the form:

E =
∑
α

Eα cos(kα.r− ωαt)

=
1

2

∑
α

E(ωα)ei(kα.r−ωαt) + E(ω−α)e−i(kα.r−ωαt)

=
1

2

∑
α

E(kα, ωα)e−iωαt + E(k−α, ω−α)eiωαt (A.6)

the interaction Hamiltonian can be written as follows (E(ωα) = E(ω−α), ω−α = −ωα, and
k−α = −kα):

Ĥint =
∑
α

eνF
i2ωα

(σxx̂+ ξσyŷ) .E(kα||, ωα)e−iωαt =
∑
α

1

ωα
µµµ.E(kα||, ωα)e−iωαt (A.7)

where kα|| is the tangential part of wave vector kα on the graphene layer and µµµ =
−ieνF (σxx̂+ ξσyŷ) /2. The incident beam in our calculations is composed of two plane
waves, one propagating perpendicular to the surface of graphene and the other one is
obliquely incident.

E =
E(−ωq)

2
e−i(kq .r−ωqt) +

E(ωp)

2
ei(kpz−ωpt) + c.c. (A.8)

where kq = ωq/c and kp = ωp/c defines the wave vectors of incident waves; E(ωq) and E(ωp)
are the amplitudes of electric field for the waves with the frequency−ωq and ωp, respectively
(Since the electromagnetic field is real, we have E(ωq) = E(−ωq) and E(ωp) = E(−ωp)).
The DFG of the first two waves in Eq. A.8 will give the positive frequency component ωd
in the DFG while the complex conjugate of terms presented in Eq. A.8 will result in the
negative part of the generated wave −ωd. From now on, we only consider the first two
complex waves in Eq. A.8.

Ec =
E(−ωq)

2
e−i(kq .r−ωqt) +

E(ωp)

2
ei(kpz−ωpt) (A.9)
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The first (ρ(1)) and the second (ρ(2)) order perturbations of the density matrix can be
calculated from the following formula [51]:

ρ
(1)
|n,k〉|m,κ〉 =

∫ t

−∞

−i
~

[
Ĥint, ρ

(0)
]
|n,k〉|m,κκκ〉

e(iω|n,k〉|m,κκκ〉+Γ)(t′−t)dt′ (A.10)

ρ
(2)
|n,k〉|m,κ〉 =

∫ t

−∞

−i
~

[
Ĥint, ρ

(1)
]
|n,k〉|m,κκκ〉

e(iω|n,k〉|m,κκκ〉+Γ)(t′−t)dt′ (A.11)

where ρ(0) is the Fermi-Dirac distribution in the absence of the electromagnetic field, Γ
is the phenomenological factor showing the electron relaxation time, and ~ω|n,k〉|m,κ〉 is
the transition energy from the state |m,κ〉 to the state |n,k〉. Using the second order
perturbation of density matrix, it is possible to find the induced nonlinear current and
consequently the second order conductivity tensor for the DFG in graphene.

j(2)(ωd) = 2e
∑
B.Z.

tr

{
ρ̂(2)∂Ĥ

∂p

}
=
eνF
2π2

∫
ρ̂(2)(σxx̂+ ξσyŷ)d2k (A.12)

where the factor 2 shows the spin degeneracy, the summation should be carried out for
the whole Brillouin zone, and j

(2)
s (ωd) is related to the second order nonlinearity tensor

through:

j(2)
s (ωd) = σ

(2)
sij (ωd,−ωq, ωp,kq||)Ei(ωp)Ej(−ωq)e−i(kq||.r+ωdt) (A.13)

It is worth mentioning that in the low energy limit the dynamics of electrons can be
described by the Dirac equation around Dirac points K and K ′ and consequently the
integration over the whole Brillouin zone (B.Z.) can be reduced to the integration near the
Dirac points K and K ′. To calculate the integrals in Eq. A.10 and Eq. A.11, we can write:
(
∑

Ψ|l,k′′〉Ψ〈l,k′′| = 1, where 1 is the identity matrix):[
Ĥint, ρ

(N)
]

Ψ|n,κκκ〉Ψ|m,k〉
=
∑

Ψ|l,κκκ′′〉

[
(Hint)Ψ|n,κκκ〉Ψ|l,κκκ′′〉ρ

(N)
Ψ|l,κκκ′′〉Ψ|m,k〉

]
−
∑

Ψ|l,k′′〉

[
(Hint)Ψ|l,k′′〉Ψ|m,k〉ρ

(N)
Ψ|n,κκκ〉Ψ|l,k′′〉

]
(A.14)

where the matrix elements of Ĥint can be further simplified by calculating the spatial
integration, e. g.,

(Hint)Ψ|n,κκκ〉Ψ|l,κκκ′′〉 =
e−iωαt

ωα
E(ωα).

∫
S

Ψ∗|n,κκκ〉µµµe
ikα.rΨ|l,κκκ′′〉d

2r

=
e−iωαt

ωα
µµµ|n,κκκ〉|l,κκκ′′〉.E(ωα) (A.15)
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where S is the surface of graphene and κκκ = κκκ′′ + kα|| is the expected result from the
conservation of the momentum. Using the similar calculation for different elements of
Ĥint, one can obtain:[

Ĥint, ρ
(N)
]

Ψ|n,κκκ〉Ψ|m,k〉
=
∑
α

1

ωα

∑
|l,k′′〉

µµµ|n,κκκ〉|l,κκκ′′〉.E(ωα)e−iωαtρ
(N)
|l,κκκ′′〉|m,k〉

−
∑
α

1

ωα

∑
|l,k′′〉

µµµ|l,k′′〉|m,k〉.E(ωα)e−iωαtρ
(N)
|n,κκκ〉|l,k′′〉 (A.16)

where k′′ = k + kα||. For the case of N = 0, Eq. A.16 can be further simplified to:[
Ĥint, ρ

(0)
]

Ψ|n,κκκ〉Ψ|m,k〉
=
∑
α

1

ωα

(
ρ

(0)
|m,k〉 − ρ

(0)
|n,κκκ〉

)
µµµ|n,κκκ〉|m,k〉.E(ωα)e−iωαt (A.17)

where we used the fact that ρ(0)
mn = 0 form 6= n (κκκ = k+kα||). For the excitation introduced

in Eq. A.9, the Eq. A.17 should be written as follows:[
Ĥint, ρ

(0)
]

Ψ|n,k〉Ψ|m,k〉
=

1

ωp

(
ρ

(0)
|m,k〉 − ρ

(0)
|n,k〉

)
µµµ|n,k〉|m,k〉.E(ωp)e

−iωpt

+
1

−ωq

(
ρ

(0)
|m,k〉 − ρ

(0)
|n,k′〉

)
µµµ|n,k′〉|m,k〉.E(−ωq)eiωqt (A.18)

where k′ = k− kq||. The explicit forms of µµµ|n,k〉|m,k〉 and µµµ|n,k′〉|m,k〉 are as follows:

µµµ|n,k〉|m,k〉 = 〈n,k| − ieνF (σxx̂+ ξσyŷ) /2 |m,k〉
µµµ|n,k′〉|m,k〉 = 〈n,k′| − ieνF (σxx̂+ ξσyŷ) /2 |m,k〉 (A.19)

where the state 〈n,k| is the conjugate transpose of the state |n,k〉. We use the repre-
sentation of Eq. A.19 in our numerical calculations. For the simplicity of derivation, we
consider

µµµnm.E = µµµ|n,k〉|m,k〉.E(ωp)
e−iωpt

ωp
+ µµµ|n,k′〉|m,k〉.E(−ωq)

eiωqt

−ωq
. (A.20)

Substituting Eq. A.18 into Eq. A.10, we have:

ρ
(1)
lm = ρ

(1)
|l,k〉|m,k〉 + ρ

(1)
|l,k′〉|m,k〉 = −

{
~−1

(
ρ

(0)
|m,k〉 − ρ

(0)
|l,k〉

) µ|l,k〉|m,k〉E(ωp)/ωp(
ω|l,k〉|m,k〉 − ωp

)
− iΓ

}
e−iωpt

+

{
~−1

(
ρ

(0)
|m,k〉 − ρ

(0)
|l,k′〉

) µ|l,k′〉|m,k〉E(−ωq)/ωq(
ω|l,k′〉|m,k〉 + ωq

)
− iΓ

}
eiωqt

(A.21)
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The value of ρ(1)
lm is used as a short form replacing ρ(1)

|l,k〉|m,k〉 + ρ
(1)
|l,k′〉|m,k〉.

The second order perturbation of density matrix can be evaluated using the following
relation: [

Ĥint, ρ
(1)
]
nm

=
∑
l

(
µµµnl.Eρ

(1)
lm − µµµlm.Eρ

(1)
nl

)
(A.22)

where µµµnl.E has the following form:

µµµnl.E = µµµ|n,k′〉|l,k〉.E(−ωq)
eiωqt

−ωq
+ µµµ|n,k′〉|l,k′〉.E(ωp)

e−iωpt

ωp
. (A.23)

In the product of µµµnl.Eρ
(1)
lm , we only The same formulation can be used to find the values

of µµµlm.Eρ
(1)
nl . Substituting µµµlm.Eρ

(1)
nl and µµµnl.Eρ

(1)
nl into Eq. A.22, we get:

[
Ĥint, ρ

(1)
]
nm

=
1

~ωpωq

2∑
l=1

{(
ρ

(0)
|m,k〉 − ρ

(0)
|l,k〉

) µµµ|l,k〉|m,k〉.E(ωp)E(−ωq).µµµ|n,k′〉|l,k〉(
ω|l,k〉|m,k〉 − ωp

)
− jΓ

+
(
ρ

(0)
|m,k〉 − ρ

(0)
|l,k′〉

) µµµ|l,k′〉|m,k〉.E(−ωq)E(ωp).µµµ|n,k′〉|l,k′〉(
ω|l,k′〉|m,k〉 + ωq

)
− jΓ

−
(
ρ

(0)
|l,k′〉 − ρ

(0)
|n,k′〉

) µµµ|n,k′〉|l,k′〉.E(ωp)E(−ωq).µµµ|l,k′〉|m,k〉(
ω|n,k′〉|l,k′〉 − ωp

)
− jΓ

−
(
ρ

(0)
|l,k〉 − ρ

(0)
|n,k′〉

) µµµ|n,k′〉|l,k〉.E(−ωq)E(ωp).µµµ|l,k〉|m,k〉(
ω|n,k′〉|l,k〉 + ωq

)
− jΓ

}
e−jωdt

(A.24)

Having Eq. A.24, the total induced nonlinear current (Eq. A.12) can be calculated. Using
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the total induced nonlinear current, the obtained tensor σ(2)
sij is as follows:

σ
(2)
sij (ωd,−ωq, ωp,kq||)

= − eνF
2π2~2ωpωq

2∑
n,m=1

2∑
l=1

∫
K,K′

d2k

{(
ρ

(0)
|m,k〉 − ρ

(0)
|l,k〉

) µi|l,k〉|m,k〉µ
j
|n,k′〉|l,k〉(

ω|l,k〉|m,k〉 − ωp
)
− iΓ

+
(
ρ

(0)
|m,k〉 − ρ

(0)
|l,k′〉

) µj|l,k′〉|m,k〉µ
i
|n,k′〉|l,k′〉(

ω|l,k′〉|m,k〉 + ωq
)
− iΓ

−
(
ρ

(0)
|l,k′〉 − ρ

(0)
|n,k′〉

) µi|n,k′〉|l,k′〉µ
j
|l,k′〉|m,k〉(

ω|n,k′〉|l,k′〉 − ωp
)
− iΓ

−
(
ρ

(0)
|l,k〉 − ρ

(0)
|n,k′〉

) µj|n,k′〉|l,k〉µ
i
|l,k〉|m,k〉(

ω|n,k′〉|l,k〉 + ωq
)
− iΓ

}
ηs|m,k〉|n,k′〉

ω|n,k′〉|m,k〉 − ωd − iΓ
(A.25)

where kq is the wave vector of obliquely incident beam (k′ = k − kq||), ηs|m,k〉|n,k′〉 =

〈n,k′| 1
νF

∂Ĥ
∂ps
|m,k〉 = 〈n,k′| (σxx̂+ ξσyŷ) |m,k〉.

A.2 The effect of wave momentum in the second order
nonlinearity

To separate the effect of wave momentum (kq) in the second order conductivity tensor (Eq.
A.25), we can expand the polarization vector as follows.

µj|n,k′〉|l,k〉 = µj|n,k〉|l,k〉 + (k′a − ka)
∂µj|n,κκκ〉|l,k〉
∂κa

∣∣∣∣∣
κκκ=k

= µj|n,k〉|l,k〉 − (kp)a ς
aj
|n,k〉|l,k〉 (A.26)

where ka shows the Cartesian components of wave vector k, kq is the wave vector of
obliquely incident wave, and we define

ςaj|n,k〉|l,k〉 =
∂µj|n,κκκ〉|l,k〉
∂κa

∣∣∣∣∣
κκκ=k

. (A.27)

Similar expansions can be obtained for all the dipole moment terms in A.25. Using the
Taylor series expansion of ρ(0)

|n,k′〉 and ω|a,k′〉|m,k〉, we can also get:

ρ
(0)
|n,k′〉 = ρ

(0)
|n,k〉 + (kp)a ∆a

|n,k〉

ω|l,k′〉|m,k〉 ≈ ω|l,k〉|m,k〉. (A.28)
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Where we used the fact that the transition frequency which appears in the denominator
does not changes substantial as the direction of wave momentum changes. Substituting
equations A.27 and A.28 into A.25 and retaining only the terms that depend linearly on
kq, one can derive the general expression:

σ
(2)
sij = χ

(2)
sij + T

(2)
sija (kp)a (A.29)

where the tensor χ(2) and T
(2)
sija do not depend on the wave vector (kp)a. The tensor

T
(2)
sija is a tensor of rank four and determines the effect of incident wave momentum in the

second order nonlinearity. The contribution of second term (T (2)
sija (kp)a) to the second order

nonlinearity is known as the photon-drag effect.

A.3 Derivation of the second order nonlinearity tensor
for two obliquely incident plane-waves

The second order perturbation of density matrix for two obliquely incident plane waves is
as follows [51]:

ρ(2)
nm = − 1

~2ωpω2

2∑
l=1

∫
K,K′

d2k

{(
ρ

(0)
|m,k〉 − ρ

(0)
|l,k1〉

) µµµ|l,k1〉|m,k〉.E(ω1)E(−ω2).µµµ|n,k3〉|l,k1〉(
ω|l,k1〉|m,k〉 − ω1

)
− jΓ

+
(
ρ

(0)
|m,k〉 − ρ

(0)
|l,k2〉

) µµµ|l,k2〉|m,k〉.E(−ω2)E(ω1).µµµ|n,k3〉|l,k2〉(
ω|l,k2〉|m,k〉 + ω2

)
− jΓ

−
(
ρ

(0)
|l,k2〉 − ρ

(0)
|n,k3〉

) µµµ|n,k3〉|l,k2〉.E(ω1)E(−ω2).µµµ|l,k2〉|m,k〉(
ω|n,k3〉|l,k2〉 − ω1

)
− jΓ

−
(
ρ

(0)
|l,k1〉 − ρ

(0)
|n,k3〉

) µµµ|n,k3〉|l,k1〉.E(−ω2)E(ω1).µµµ|l,k1〉|m,k〉(
ω|n,k3〉|l,k1〉 + ω2

)
− jΓ

}
e−jωdt

ω|n,k3〉|m,k〉 − ωd − iΓ
(A.30)

where Γ is the phenomenological factor showing the electron relaxation time, k1 = k+q1||,
k2 = k− q2||, and k3 = k + q1|| − q2||. In writing the Eq. A.30, we used the fact that〈

Ψ|ν,κ′〉 |µ.E(ω1)|Ψ|l,κ〉
〉

= µ|ν,κ+q1〉|l,κ〉.E(ω1) (A.31)〈
Ψ|ν,κ′〉 |µ.E(−ω2)|Ψ|l,κ〉

〉
= µ|ν,κ−q2〉|l,κ〉.E(−ω2) (A.32)
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where we used the conservation of momentum to find the right hand side and µ|ν,κ′〉|l,κ〉 is
given by:

µµµ|ν,κ′〉|l,κ〉 = 〈ν, κ′| − ieνF (σxx̂+ ξσyŷ) /2 |l, κ〉 (A.33)

Substituting Eq. A.30 into Eq. A.12 and using the definition of Eq. A.13, one can find
the second order nonlinearity tensor to be as follows:

σ
(2)
sij (ω1,−ω2,q1,−q2)

= − eνF
2π2~2ω1ω2

2∑
n,m=1

2∑
l=1

∫
K,K′

d2k1

{(
ρ

(0)
|m,k1〉 − ρ

(0)
|l,k2〉

) µi|l,k2〉|m,k1〉µ
j
|n,k3〉|l,k2〉(

ω|l,k2〉|m,k1〉 − ω1

)
− iΓ

+
(
ρ

(0)
|m,k1〉 − ρ

(0)
|l,k2′ 〉

) µj|l,k2′ 〉|m,k1〉µ
i
|n,k3〉|l,k2′ 〉(

ω|l,k2′ 〉|m,k1〉 + ω2

)
− iΓ

−
(
ρ

(0)
|l,k2′ 〉

− ρ(0)
|n,k3〉

) µi|n,k3〉|l,k2′ 〉
µj|l,k2′ 〉|m,k1〉(

ω|n,k3〉|l,k2′ 〉 − ω1

)
− iΓ

−
(
ρ

(0)
|l,k2〉 − ρ

(0)
|n,k3〉

) µj|n,k3〉|l,k2〉µ
i
|l,k2〉|m,k1〉(

ω|n,k3〉|l,k2〉 + ω2

)
− iΓ

}
ηs|m,5k1〉|n,k3〉

ω|n,k3〉|m,k1〉 − ωd − iΓ
(A.34)

It is worth noting that the tensor σ(2)
sij can be more simplified considering the fact that

two incident beams are high energy while the generated photon in the difference process
is weak. The high energy beams only contribute to the interband transition while the
generated photon can only be the result of an intraband transition. Figure A.1 (a) shows
all the transitions that can be involved in the DFG. By changing the naming convention
for states as shown in Figure A.1 (b), it is possible to obtain a more concise form for σ(2)

sij

as follows:

σ
(2)
sij = − 2eνF

~2ω1ω2

∫
K,K′

d2k1

4π2

{[
ρ

(0)
k1
− ρ(0)

k2

(ω21 − ω1)− iΓ

−
ρ

(0)
k2
− ρ(0)

k3

(ω32 + ω2)− iΓ

]
µi21µ

j
32η

s
13

ω13 − ωd − iΓ
+

[
ρ

(0)
k4
− ρ(0)

k1

(ω14 + ω2)− iΓ

−
ρ

(0)
k1
− ρ(0)

k2

(ω21 − ω1)− iΓ

]
µj14µ

i
21η

s
42

ω42 − ωd − iΓ

}
(A.35)
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(a) (b)

Figure A.1: (a) The schematic of transitions involved in the DFG process. (b) The same
transitions using a new convention for naming the sates. The new convention makes the
nonlinearity expression concise.

Figure A.2 shows the dependency of the nonlinear conductivity σxyy and σxxx to the
incident wave vector. The drag-induced nonlinearity is a linearly function of the incident
wave momentum.

A.4 The effect of DC biasing

The effect of DC current is to shift the Fermi surface and to cause a perturbation in the
electron states. Assuming an induced shift ∆k in the Fermi surface due to the change
of initial electron states, the DC current can be obtained using the following transport
formula:

Jdc = gsgv

2∑
l=1

∫
je|l,k〉

(
ρ

(0)
|l,k−∆k〉 − ρ

(0)
|l,k〉

)
D(k)T|l,k〉d

2k (A.36)

where Jdc is the total DC current, gs = 2 is the spin degeneracy, gv = 2 is the valley degen-
eracy in graphene, D(k) = 1/(2π)2 is the 2D density of states,

(
ρ

(0)
|l,k−∆k〉 − ρ

(0)
|l,k〉

)
is the per-
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W ŷ)
α

Re{σxyy}

Im{σxyy}

Re{σxxx}

Im{σxxx}

Figure A.2: The nonlinear conductivity of graphene for the difference frequency of fd =
1THz calculated as a function of the incident wave vector. The elements of second order
conductivity tensor are a linear function of the incident wave momentum.
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Figure A.3: Dependency of ~νF∆k(meV ) (a) and its slope (b) to the DC current for
different values of the Fermi level.
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turbation of the Fermi-Dirac distribution, T|l,k〉 is the transmission probability of the elec-
tron in state |l,k〉 (T|l,k〉 = 1 for ballistic transport), and je|l,k〉 = eνF (−1)l [cosθkx̂+ sinθkŷ]

is the DC current due to an electron (or hole) with the momentum pe = ~k. The value of
je|l,k〉 can be calculated using the following formula [17]:

je|l,k〉 = eνF 〈l,k|σxx̂+ σyŷ |l,k〉 = eνF (−1)l [cosθkx̂+ sinθkŷ] (A.37)

Considering the fact that
∑2

l=1

∫
je|l,k〉ρ

(0)
|l,k〉D(k)T|l,k〉d

2k = 0 and using the symmetry of the
band-diagram, the Eq. A.36 can be written in a more concise form as:

Jdc(∆k) = gsgv

2∑
l=1

∫
je|l,k〉ρ

(0)
|l,k−∆k〉D(k)T|l,k〉d

2k (A.38)

Eq. A.38 can be used to find the relation between the shift in the Fermi surface and
the DC current. Figure A.3a shows the dependency of the ∆k on the current density for
different values of the Fermi level. As can be seen in Fig. A.3b, the slope Jdc/∆k increases
as the Fermi level increases. It is worth mentioning that because of the symmetry in the
band-diagram, the dependency of Jy to ∆ky is identical to the dependency of Jx on ∆kx.
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B.1 The active region modeling

A successful design of a photomixer antenna needs the accurate modeling of graphene
active region. The main purpose of such a characterization is to obtain the impedance
between two metal contacts of antenna. The impedance of the gap between antenna plays
an important role in the efficiency and total gain of antenna. To have an exact model, the
effect of electromagnetic field is considered as a perturbation in the steady-state current
flow of electrons in graphene. Here we suppose that the time-varying applied potential
has a linear profile in graphene layer. Assuming that one of the contacts is grounded the
potential of the other contact can be written as:

U(t) = U1e
−iωt + U1e

iωt (B.1)

where ω/2π and U1 are the frequency and the amplitude of electromagnetic field. Because
of the time periodicity of applied field the electron wave-function in graphene should be:

ψ(x, y, t) =
∑
n

ψn(x, y)e−i(E+n~ω)t/~ (B.2)

where ψn(x, y)s are the coefficients of e−i(E+n~ω)t/~ time-harmonics. Assuming a linearly
increasing potential inside the gap, the Dirac equation can be written as:

νF (p̂x − ip̂y)ψB + U(t)
x

l
ψA = i~∂tψA

νF (p̂x + ip̂y)ψ
A + U(t)

x

l
ψB = i~∂tψB (B.3)
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Figure B.1: The imaginary part of gap impedance of graphene active region as a function
of DC current (E = 100meV ). The real part of graphene is approximately zero.

By substituting the Eq. B.2 into the Dirac equation, one may obtain the following set of
equations:

νF (p̂x − ip̂y)ψBn +
x

l
U1ψ

A
n−1 +

x

l
U1ψ

A
n+1 = (E + n~ω)ψAn

νF (p̂x + ip̂y)ψ
A
n +

x

l
U1ψ

B
n−1 +

x

l
U1ψ

B
n+1 = (E + n~ω)ψBn (B.4)

Since the amplitude of time-varying field is negligible comparing to the DC current for the
case of photomixer, the first order current in graphene is only the DC current:(

ψA0
ψB0

)
=

1√
(2)

(
e−iφ/2

eiφ/2

)
ei~p0.~r, νF ‖~p0‖ = E (B.5)

Substituting Eq. B.5 into the Eq. B.4, one can obtain:

ν2
F (p̂x + ip̂y)(p̂x − ip̂y)ψB1 +

U1

l
νF (p̂x + ip̂y)

{
xψA0

}
= (E + n~ω)

{
(E + n~ω)ψB1 −

x

l
U1ψ

B
0

}
− ~2ν2

F∇2ψB1 − (E + n~ω)2ψB1 − i~
U1

l
νFψ

A
0 +

x

l
U1EψB0

= −(E + n~ω)
x

l
U1ψ

B
0 (B.6)

After solving the equation Eq. B.6 for ψA1 and ψB1 (Here we suppose that the second
order nonlinearity is negligible comparing to the linear response):
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ψ
A(B)
1 = φ

A(B)
1 ei~p1.~r/~, νF ‖~p1‖ = E + ~ω

φ
A(B)
1 = C

A(B)
2 xei

~P .r/~ + C
A(B)
3 ei

~P .r/~ (B.7)

where

~P = ~p0 − ~p1

C
A(B)
2 = − βA(B)~2

2~p1. ~P +
∣∣∣~P ∣∣∣2

C
A(B)
3 = − αA(B)~2

2~p1. ~P +
∣∣∣~P ∣∣∣2 +

2x̂.(~p1 + ~P )βA(B)~3i(
2~P1. ~P +

∣∣∣~P ∣∣∣2)2

(B.8)

and (
αB
)∗

= αA =
−iU1e

iφ/2

√
2l~νF

,
(
βB
)∗

= βA =
(2E + ~ω)U1e

−iφ/2
√

2l~2ν2
F

. (B.9)

The linear response of system can be written as:

Jx = 2eνFR
{
ψB0 ψ

A∗
1 eiωt + ψB0 ψ

A∗
−1e
−iωt + ψA0 ψ

B∗
1 eiωt + ψA0 ψ

B∗
−1e

−iωt}
The impedance between leads can be obtained as a function of carrier density. The carrier
density, on the other hand, can be obtained from the DC current. So, one can write:

|Z(ω)| = |U1/(JxJx0)| (B.10)

where Z is the impedance of antenna gap. It should be noted that the input impedance
can be measured as a function of DC current (an approximate value of the Fermi energy
level is enough to evaluate the input impedance). Another interesting point is the factor

2~p1. ~P +
∣∣∣~P ∣∣∣2 which determines the amplitude of current. According to this factor the

relative angle between DC and AC current also affect the input impedance of antenna.
For the case of photo-mixer both currents are in the same direction. Fig. B.1 shows the
impedance of active region as a function of DC current.
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