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Abstract 

Hydrogels are commonly used in drug delivery1–3, water treatment for heavy-metal removal4, 

tissue engineering5, and hygienic products, and as a plugging agent for enhanced oil recovery6. In 

recent years, a number of chemical reactions and polymerization have been developed in 

microfluidic devices. The products in microfluidics have a better control over size, size distribution, 

morphology, and chemical composition. In this work, the poly (acrylamide-co-sodium acrylate) 

hydrogel micro-particles with enhanced properties were synthesized in the microfluidic device.  

We developed a simple experimental method (inverted-chip method) to synthesize the hydrogel 

micro-particles in the microfluidic device. The product micro-particles have a narrow size 

distribution; and their morphology is similar. The swelling property was controlled by varying the 

feed monomer composition and crosslinker concentration. 

As a result, the hydrogel micro-particles swell faster and larger than the bulk polymer. The volume 

swelling ratio depends on the crosslinker concentration and the ionic content in the polymer. A 

lower crosslinker concentration absorbs and retains more water than a higher crosslinker 

concentration. The high-ionic-content polymer micro-particles have a higher swelling ratio than 

do those with lower ionic content.  

 

 

 

 

 



iv 

 

Acknowledgements 

First and foremost, I would like to thank my supervisor, Dr. Chandra Mouli R. Madhuranthakam, 

for giving me an opportunity to work under his guidance. His passion and professional knowledge 

on chemical engineering continuously teaches, inspires and encourages me throughout my 

graduate study. This work would not be possible without his encouragement and advice.  

I also would like to thank to my co-supervisor Dr. Carolyn Ren. I sincerely appreciate all the 

members in Dr. Ren’s research group, especially Gürkan Yeşilöz, who worked closely with me on 

every experiment. I really enjoyed the time that we worked together.  

My special thanks to all my friends in University of Waterloo who continuously support and 

encourage me.  

Finally, I am deeply grateful to my parents, my wife and coming baby. I love you.  

 

 

 

 

 

 

 

 



v 

 

Contents 

List of Figures ............................................................................................................................... vii 

List of Tables .................................................................................................................................. x 

Chapter 1: Motivation and Objectives ............................................................................................ 1 

1.1 Motivation ........................................................................................................................ 1 

1.2 Objectives ......................................................................................................................... 3 

Chapter 2: Background and Literature Review .............................................................................. 4 

2.1 Free-radical polymerization ............................................................................................. 4 

2.2 Microfluidic Reactor for Polymerization Literature Review ........................................... 8 

2.2.1 Single-phase polymerization ..................................................................................... 9 

2.2.2 Droplet emulsion polymerization ........................................................................... 12 

2.2.3 Morphology............................................................................................................. 26 

Chapter 3: Experimental ............................................................................................................... 32 

3.1 Material .......................................................................................................................... 32 

3.2 Method ........................................................................................................................... 33 

3.2.1 Pre-polymer solution and oil-phase preparation: .................................................... 33 

3.2.2 Chip fabrication ...................................................................................................... 34 

3.2.3 Droplet generation: ................................................................................................. 39 

3.2.4 Polymerization of polymer micro-particles: ........................................................... 41 

3.3 Characterization ............................................................................................................. 48 



vi 

 

3.3.1 Droplet size and size distribution: ........................................................................... 48 

3.3.2 Fluorescence microscopy: ....................................................................................... 48 

3.3.3 SEM: ....................................................................................................................... 48 

3.3.5 FTIR: ....................................................................................................................... 48 

3.3.6 Elemental analysis: ................................................................................................. 49 

3.3.7 Swelling test: ........................................................................................................... 49 

Chapter 4: Discrimination of Experiment Methods ...................................................................... 51 

4.1 Material choice: .............................................................................................................. 51 

4.2 Monomer Droplet Production: ....................................................................................... 52 

4.3 On-chip polymerization: ................................................................................................ 56 

4.4 Off-chip photo-polymerization: ..................................................................................... 61 

4.4.1 Glass slide setup:..................................................................................................... 61 

4.4.2 Polymerization in external oil reservoir:................................................................. 63 

4.4.3 Inverted-chip method: ............................................................................................. 65 

Chapter 5: Result and Discussion ................................................................................................. 66 

5.1 Micro-particles size and size distribution: ..................................................................... 66 

5.2 FTIR analysis: ................................................................................................................ 66 

5.3 Swelling test analysis and discussion: ............................................................................ 73 

Chapter 6: Summary, Conclusion and Future Work ..................................................................... 86 

Reference: ..................................................................................................................................... 88 



vii 

 

 

List of Figures 

Figure 2- 1 Single phase design to synthesis PNIPAM.  [from ref. (23)] ..................................................................... 10 

Figure 2- 2 N-carboxy anhydrides synthesis in single phase MF device. [from ref. (24)] ............................................ 11 

Figure 2- 3 Different types of microfluidic device for droplet generation. .................................................................. 14 

Figure 2- 4 Left: Terrace type setup. Right: Droplet generation mechanism. [from ref (19)] ...................................... 15 

Figure 2- 5 Simple T junction setup. [from ref. (29)] ................................................................................................... 17 

Figure 2- 6 First simple flow focus setup. [from ref. (32)] ........................................................................................... 19 

Figure 2- 7 Left: chemical reaction. Right: experiment setup. [from ref. (33)] ............................................................ 20 

Figure 2- 8 Double Y shape flow focus. Monomer solution with different dye is injected by channel 1 and 2. Oil 

solution is injected by channel 3. [from ref. (15)] ......................................................................................................... 22 

Figure 2- 9 Cross Flow design for TPP-chitosan micro-sphere production. [From ref.( 37)] ....................................... 23 

Figure 2- 10 A: Single cross junction. B: Traditional double cross junction. The surfactant is added at both cross 

junction. C: Delayed surfactant addition method. The surfactant is only added at second cross junction for method C. 

The droplet is surround by surfactant right after generation to reduce the change of coalescence. (From source 38) .. 24 

Figure 2- 11 Coaxial MF experiment setup. [from ref. (39)] ........................................................................................ 25 

Figure 2- 12 Left: a) Experiment setup with mask b) rectangular polymerized monomer c) cross section view. Right: 

sample Jauns particle. .................................................................................................................................................. 26 

Figure 2- 13 T junction MF producing non-spherical particles from ref (46) ............................................................... 27 

Figure 2- 14 Left: T junction experiment setup. Right: a) Merging method to generate Janus particle. C) Two side 

injection method. [from reference (47)] ........................................................................................................................ 29 

Figure 2- 15 Left: Experiment setup. Right: optical image of Hollow structure. [from ref. (50)] ................................ 30 

 

Figure 3- 1 Schematic diagram of flow-focusing (top) and T-junction (bottom) microfluidic device used to synthesize 

polymer micro-particles. .............................................................................................................................................. 41 

file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677664
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677665
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677673
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677673
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677675
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677675
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677676
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677677
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677677


viii 

 

Figure 3- 2 On-chip polymerization. (a) Photo-polymerization inside the serpentine. (b) Semi-on-chip polymerization.

 ..................................................................................................................................................................................... 43 

Figure 3- 3 Glass-slide polymerization. The droplets flowed freely to a glass slide and exposed to UV irradiation. . 45 

Figure 3- 4 Schematic diagram oil reservoir photo-polymerization. (a) Continuous phase was FC40 and oil in the 

reservoir filled with hexadecane.  (b) Continuous phase and oil in the reservoir was FC40. ...................................... 46 

Figure 3- 5 Inverted chip (T junction) method. The green tubing indicates the aqueous phase inlet. ......................... 46 

Figure 3- 6 Experiment setup for inverted-chip method. ............................................................................................. 47 

 

Figure 4- 1 Droplet leakage. The flow direction was from top to bottom. The droplet on the top was captured just 

before it left T junction. When it traveled along the channel, droplet broke into small pieces, as shown in optical image. 

A tail followed with the large drop. ............................................................................................................................. 52 

Figure 4- 2 Optical microscopy image of monomer droplet generation. (left) flow focus junction. (right) expended 

chamber. ...................................................................................................................................................................... 54 

Figure 4- 3 CV% measurement for droplet at microchip outlet. .................................................................................. 55 

Figure 4- 4 CV% measurement for droplet at microchip tubing outlet. Before and after processing (left and right 

respectively). ............................................................................................................................................................... 56 

Figure 4- 5 Fluorescence microscopy image of semi-on-chip photo-polymerization. ................................................. 60 

Figure 4- 6 Monodispersed monomer droplets on Glass slide before polymerization ................................................ 61 

Figure 4- 7 Off-chip polymerization. Polymerization in external oil reservoir ........................................................... 62 

Figure 4-8 Aggregated polymer micro-particles .......................................................................................................... 63 

Figure 4- 9 Optical microscopy image of poly-dispersed polymer micro-particles. .................................................... 64 

Figure 4- 10 A string of droplet in graduate cylinder for inverted-chip method.......................................................... 65 

 

Figure 5- 1 dried polymer micro-particle. Left: before Matlab program image processing. Right Processed image. . 66 

Figure 5- 2 Hydrogel FTIR spectrum. From top to bottom: Polyacrylamide homopolymer, copolymer with 55% of 

sodium acrylate, copolymer with 10% of sodium acrylate, sodium polyacrylate homopolymer. ............................... 68 

Figure 5- 3 rescaled spectrum of 10% and 55% NaA. ................................................................................................. 69 

file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677680
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677680
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677681
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677685
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677686
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677686
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677688
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677689
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677690
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677691
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677692


ix 

 

Figure 5- 4 Chosen band and method of calculation relative peak area. The spectrum is 55% NaA monomer 

concentration. .............................................................................................................................................................. 70 

Figure 5- 5 (left) Magnified image for Figure 5- 4 at 1st peak area around 2950 cm-1. (right) Magnified image for 

Figure 5- 4 at 2nd peak area around 1410 cm-1 ............................................................................................................. 71 

Figure 5- 6 Acrylate content (F1) and relative peak area (Arel) relation for different copolymer composition. ......... 72 

Figure 5- 7 Cross-linker effect on relative peak area. .................................................................................................. 73 

Figure 5- 8 crosslinking density 𝜌𝑥 and number average molecular weight between crosslinking (Mc) plot. ............ 77 

Figure 5- 9 Crosslinking density vs. Mcat different Mn value. .................................................................................... 78 

Figure 5- 10 Theoretical swelling curves for ionic polymer network. Assuming V2,r =1. ........................................... 80 

Figure 5- 11 Hydrogel micro-particles after swelling (right) Matlab program processed image (left). ....................... 81 

Figure 5- 12 Hydrogel micro-particles swelling experimental result average diameter vs. swelling time. The 

crosslinker concentration fixed at 0.2 w/v%. ............................................................................................................... 81 

Figure 5- 13 Hydrogel micro-particles swelling experimental result average swelling ratio vs. swelling time. The 

crosslinker concentration fixed at 0.2 w/v%. ............................................................................................................... 82 

Figure 5- 14 The effect of crosslinker concentration on swelling ratio. ...................................................................... 84 

Figure 5- 15 The effect of ionic content% on swelling ratio. ...................................................................................... 84 

 

 

 

 

 

 

 

 

file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677697
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677697
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677699
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677700
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677701
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677702
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677703
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677704
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677704
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677705
file:///D:/Dizhu_Thesis(July%2018th)%20revised%20V1.docx%23_Toc456677705


x 

 

List of Tables 

Table 2- 1 Free-radical polymerization mechanism. ..................................................................................................... 4 
 

Table 5- 1 FTIR experiment design table .................................................................................................................... 69 
 

 

 

 

 

 

 

 

 

 

 

 



1 

 

Chapter 1: Motivation and Objectives 

1.1 Motivation 

Hydrogel is defined as a crosslinked polymeric material that can swell and retain a significant 

amount of water within its structure; but it cannot be soluble in water7. Due to its high water-

absorbance capacity, higher mechanical strength, and longer service life, synthetic hydrogel has 

attracted more research and industrial attention than natural hydrogel during the last two decades. 

The major applications of hydrogel have been focused on drug delivery1–3, water treatment for 

heavy metal removal4, tissue engineering5, hygienic products, and plugging agents for enhanced 

oil recovery. The materials, methods and processes conventionally used to produce hydrogel are 

extensively reviewed by M. Ahmed7. Polyacrylamide- and acrylamide-related copolymer provide 

the major base materials for super absorbance hydrogel. 

In recent years, the polyacrylamide and polyacrylamide based micro-gel is widely used in 

enhanced oil recovery (EOR) for water-shut-off treatment and conformance control8. 

Conformance control is a process that improves the uniformity of a flood-fluids front both 

vertically and areally. The water-flooding technique, which involves injecting water underground 

to replace the oil, creates many “thief zones” that are highly water permeable. Non-crosslinked 

polyacrylamide is used to increase the viscosity of fluids injected during polymer flooding. This 

is an EOR technique that is used primarily for mobility control. Both water flooding and polymer 

flooding result in poor sweep efficiency - the percentage of original oil in place displaced from a 

formation by flooding fluid - in a layered system (heterogeneous system). The injected fluid tends 

to flow into highly permeable zones. As a result, it is difficult to achieve efficient oil displacement 

by conventional flooding techniques. The polymer micro-gel is used primarily for conformance 

control when there is a high permeability contrast9.  
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Many cases that use gel in EOR—such as bulk gel, weak gel, colloidal dispersion gel and 

performance gel—are reviewed by M. Abdulbaki9. Compared to the non-crosslinked polymer used 

in polymer flooding, polymer gel has better mechanical stability10, thermal stability8,11, shear 

resistance11 , salinity resistance12 and chemical resistance8. To achieve the conformance control, 

polymer micro-gel can deform and pass through pore-throats due to the pressure difference. Size, 

size distribution, and swelling ratio are three important characteristics of the micro-gel that is used 

for EOR plugging agent. The size of the polymer gel needs to match with the size of the pore-

throats; otherwise the micro-gel will not enter the pore or will just pass by the pore-throats. Either 

consequence may result inefficient conformance control6,13. 

Currently, the traditional method for hydrogel micro-particles synthesis involves bulk 

polymerization, solution polymerization, emulsion polymerization, and micro-emulsion 

polymerization. All of the polymerization methods mentioned above require either complex 

mixing units in reactors or a significant amount of surfactant and emulsion stabilizer, which is 

costly. In addition to their production cost, many polymerization reactions are highly exothermic. 

The control of reaction temperature is critical to controlling the uniformity of polymer properties 

such as crosslinking density, molecular weight and copolymer composition.  

The polymerization in microfluidic device (MF) is a promising method to provide better process 

controllability, which improves the property of hydrogel micro-particles. In recent years, the MF 

provides a novel approach to produce uniform monomer droplet and micro-particle. Many 

polymerization reactions have been performed in MFs or micro-reactors, such as free-radical 

polymerization of Butyl Acrylate14, N-isoproprlacrylamide15–18and Divinylbenzene (DVB)19. This 

approach allows for precise control over droplet size and reaction condition. Due to the small size 

of droplets, the high surface-area-to-volume ratio leads the heat and mass transfer to surrounding 
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environment quickly. Therefore the MF-aided method produces hydrogel micro-particles with an 

improved control over size, size distribution, composition, and morphology20.  

 

1.2 Objectives 

The main objectives of this research are to  

1. Synthesize the monodispersed spherical poly (acrylamide-co-sodium acrylate) hydrogel 

micro-particles with controlled compositions.  

2. Develop a simple and robust experimental procedure and setup to synthesize the polymer 

micro-particle in the microfluidic device. 

3. Evaluate the performance of different experiment procedures and setups for synthesis.  

4. Study the effect of monomer composition and crosslinker density on the swelling ratio.  
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Chapter 2: Background and Literature Review 

2.1 Free-radical polymerization 

Acrylamide hydrogel is usually synthesized by free-radical polymerization, which typically 

involves four steps: initiation, propagation, chain transfer, and termination. The mechanism of 

free-radical polymerization is well-studied in the literature, and is shown in Table 2-1.  

Table 2- 1 Free-radical polymerization mechanism. 
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Polymerization starts with an initiation step that involves the decomposition of initiator and the 

initiation of monomer to form a monomer free radical. The rate of radical production, 𝑅𝑖, is shown 

in following equation: 

 𝑅𝑖 = 2𝑓𝑘𝑑[𝐼] (2-1) 

where 𝑓  is the initiation efficiency (which usually ranges from 0 to 1), 𝑘𝑑  is the initiator 

decomposition rate constant, and [I] is the initiator concentration. According to equation 2-1, the 

initiation rate is proportional to the initiator efficiency and initiator concentration at fixed 

temperature. The next step is propagation, which increases polymer chain length. The radicals 

react with the monomer electron pair that are held between two carbons with a sigma bond and 

propagate one with others. Assuming that the rate of propagation does not depend on the chain 

length, it can be shown that, 

  𝑅𝑝 = 𝑘𝑝[𝑅𝑟
∗][𝑀] (2-2) 

The free radicals are terminated by combination or disproportionation. The rate of termination is 

given by the following: 

 𝑅𝑡 = 𝑘𝑡[𝑅𝑟
∗]2 (2-3) 

where 𝑘𝑡  is the termination-rate constant and 𝑘𝑡 = 𝑘𝑡𝑐 + 𝑘𝑡𝑑  where 𝑘𝑡𝑐  and 𝑘𝑡𝑑  are the 

termination-rate constants for combination and disproportionation, respectively. Assuming steady-

state, the concentration of free radical remains constant: i.e., 
𝑑[𝑅𝑟

∗]

𝑑𝑡
= 0, and 𝑅𝑡 = 𝑅𝑖. Therefore, 

free radical concentration can be obtained as follows: 

 
[𝑅𝑟
∗] =  [

𝑓𝑘𝑑[𝐼]

𝑘𝑡
]
1
2 (2-4) 

Combining equation (2-4) and equation (2-2) leads to (2-5): 
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 𝑅𝑝 = 𝑘𝑝[
𝑓𝑘𝑑[𝐼]

𝑘𝑡
]
1

2[𝑀] =  
𝑘𝑝

𝑘𝑡
1
2⁄
[𝑓𝑘𝑑[𝐼]]

1

2[𝑀] (2-5) 

The overall rate of propagation depends on 𝑘𝑝, 𝑘𝑡, 𝑘𝑖: monomer and initiator concentration and 

initiation efficiency. The majority of monomer free radicals are consumed in the propagation step, 

but a few of them are consumed by small molecules such as impurities, solvents, and chain-transfer 

agents that can affect the molecular weight of the final polymer. The corresponding rates of chain 

transfer are given by equations 2-6 to 2-8: 

 

 𝑅𝑠 = 𝑘𝑠[𝑅𝑟
∗][𝑆] (2-6) 

 𝑅𝐶𝑇𝐴 = 𝑘𝐶𝑇𝐴[𝑅𝑟
∗][𝐶𝑇𝐴] (2-7) 

 𝑅𝐼 = 𝑘𝐼[𝑅𝑟
∗][𝐼] (2-8) 

where 𝑅𝑠, 𝑅𝐶𝑇𝐴 and 𝑅𝐼 are the rate of chain transfer to solution, chain-transfer agent and impurity 

respectively. 𝑘𝑠 , 𝑘𝐶𝑇𝐴 and 𝑘𝐼  are the rate constants of chain transfer to solution, chain-transfer 

agent, and impurity, respectively. The radicals are transferred to another molecule, so the activity 

changes. As a result, the molecular weight is reduced.  

A copolymer is formed by introducing a second monomer species in the polymerization. The 

mechanism is shown in equations (2-9) through (2-1): 

 
𝑅𝑟,1
∗ +𝑀1

𝑘𝑝11
→  𝑅𝑟+1,1

∗  (2-9) 

 
𝑅𝑟,1
∗ +𝑀2

𝑘𝑝12
→  𝑅𝑟+1,2

∗  (2-10) 

 
𝑅𝑟,2
∗ +𝑀1

𝑘𝑝21
→  𝑅𝑟+1,1

∗  (2-11) 

 
𝑅𝑟,2
∗ +𝑀2

𝑘𝑝22
→  𝑅𝑟+1,2

∗  (2-12) 
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where 𝑅𝑟,1
∗  is the monomer free radical of length r ending with monomer 1, and 𝑅𝑟,2

∗  represents the 

monomer free radical of length r ending with monomer 2. 𝑘𝑝𝑖𝑗 is the rate constant of propagation 

of adding monomer j to monomer free radical ending with monomer i.  

The Mayo-Lewis model is commonly used for the copolymerization system, which describes the 

distribution of monomer in the copolymer. As mentioned above, we can write the reaction rates of 

two monomers as follows: 

 
𝑅𝑀1 =  

𝑑[𝑀1]

𝑑𝑡
= 𝑘𝑝11[𝑅𝑟,1

∗ ][𝑀1] + 𝑘𝑝21[𝑅𝑟,2
∗ ][𝑀1] (2-13) 

 
𝑅𝑀1 =  

𝑑[𝑀1]

𝑑𝑡
= 𝑘𝑝11[𝑅𝑟,1

∗ ][𝑀1] + 𝑘𝑝21[𝑅𝑟,2
∗ ][𝑀1] (2-14) 

Assuming quasi-steady-state, the division of these two equations yields the Mayo-Lewis equation, 

which given as equation (2-15): 

 𝑑[𝑀1]

𝑑[𝑀2]
=
[𝑀1](𝑟1[𝑀1] + [𝑀2])

[𝑀2]([𝑀1] + 𝑟2[𝑀2])
 (2-15) 

where 𝑟1 and 𝑟2 are the reactivity ratios of two monomers, defined as: 

 
𝑟1 = 

𝑘𝑝11

𝑘𝑝12
 𝑎𝑛𝑑 𝑟2 = 

𝑘𝑝22

𝑘𝑝21
 (2-16) 

The reactivity ratio specifically depends on the reaction conditions, such as solvent, pH, monomer 

species, and reaction temperature. This parameter, for most of the common monomer combinations, 

can be found in the polymer data/property handbook and published literature.  

The monomer feed composition can be shown as follows: 

 
𝑓1 =

[𝑀1]

[𝑀1] + [𝑀2]
 𝑎𝑛𝑑 𝑓2 = 1 − 𝑓1 = 

[𝑀2]

[𝑀1] + [𝑀2]
 (2-17) 
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where 𝑓1 is the feed composition of monomer 1, and 𝑓2 is the feed composition of monomer 2. 

Combining equation (2-17) with the Mayo-Lewis equation yields equation (2-18): 

 
𝐹1 =

𝑟1𝑓1
2 + 𝑓1𝑓2

𝑟1𝑓1
2 + 2𝑓1𝑓2 + 𝑟2𝑓2

2 (2-18) 

where 𝐹1 is the monomer 1 instantaneous composition in the polymer mixture. In this work, the 

instantaneous co-monomer composition is estimated by using equation (2-18), which uses 

monomer feed composition and reactivity ratio.  

2.2 Microfluidic Reactor for Polymerization Literature Review 

Microfluidic devices have large surface-volume ratios, which enhance the mass and heat transfer 

compared to those achieved in conventional reactors. The polymer particles synthesised via 

microfluidic devices generally have an extremely narrow size distribution. Many polymerization 

reactions have been performed on microfluidic devices, such as free-radical polymerization of 

butyl acrylate, n-isoproprlacrylamide and divinylbenzene (DVB)19. 

Polymerization reactions in microchannels can be classified into two main categories: single-phase 

type and multiple-phase type. Single-phase polymerization is limited by the increase in the 

viscosity of the polymer during the reaction, which can often cause blockage of channels21,22. 

Therefore, the reactant concentration and conversion is usually less than that of the conversion 

achieved in a batch reactor. A multiple-phase polymerization is similar to an emulsion 

polymerization in which a continuous phase and a dispersed phase are generated. For example, 

oil-in-water (O/W) or water-in-oil (W/O) emulsion. A multiple-phase-type polymerization 

consists of monomer droplet formation followed by polymerization of the droplet. Both steps also 

can be integrated onto a single chip or designed into separate chips. One type of microfluidic 

device produces only emulsion droplets while the further reactions take place downstream in an 
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external reactor. The multiple-phase method makes polymerization more complex than the single-

phase method; however, it has more research applications due to ease of operation.  

2.2.1 Single-phase polymerization 

Single-phase polymerization is the simplest technique in microfluidics. However, a major 

limitation of this technique is an increase in viscosity during polymerization, which can cause 

clogged channels, as mentioned previously. The blockage in a single channel changes the pressure 

and flow rate of other inlet streams. Single-phase polymerization usually requires a mixer 

chamber—either an active or a passive mixer—prior to the reaction channel to obtain homogenous 

monomer solution. The active mixer introduces a perturbation force external to the flow, such as 

the small magnetic bar in Wu’s work22. There are other types of active mixers, such as ultrasonic, 

electrokinetics, thermal, and pressure-driven mixers. However, active mixers introduce 

complexity to the fabrication and replication procedure, which ultimately increases production cost. 

Passive mixers are widely used in research because they are easily made and very efficient. The 

main principle of passive mixing is to increase the interfacial area of two solutions and thus 

increase mixing. Frequently used techniques involve the multi-lamination micromixer, the split-

and-recombine mixer, and chaotic micromixers. The chaotic micromixer relies on the complex 

channel geometry of the microchannel, which increases chaotic advection, which in turn increases 

mixing. 

The kinetics of polymerization of p-NIPAM on microfluidic devices has been studied by V. Dan 

and coworkers23. The polymerization kinetics is monitored by an in-site FTIR device that is 

integrated with the microfluidic device (Figure 2- 1). The initiator, monomer solution, and water 

are injected separately at inlets I to IV. The wavy channel before merging at the T junction is for 

stabilizing the flow and mixing the reactants. Polymerization takes place in the serpentine channel 



10 

 

which constitutes reaction chamber. FTIR, temperature, and pH probes are used at P1, P2, and P3, 

respectively, to monitor the polymerization reaction. The reaction time is precisely controlled by 

the length of the serpentine channel and the inlet flow rates. The FTIR spectrum of pure reactant 

is measured as base-line. When the reaction starts, the band reduction on NIPAM double bond 

indicates the consumption of monomer. The effect of concentration of initiator, accelerator and 

monomer, and pH were reported. Increasing the concentration of initiator, accelerator and 

monomer increases the rate of polymerization. To study the viscosity effects, the maximum on-

chip monomer concentration was maintained as low as 300mM, and the maximum reaction time 

was restricted to 6.75 seconds.  

 

Figure 2- 1 Single phase design to synthesis PNIPAM.  [from ref. (23)] 

PBA, PMMA, PBMA, PS and PVBZ have been synthesized via single-phase-solution 

polymerization using micro-reactors by T. Iwasaki and Yoshida et al.14. The micro-reactor used in 

their work had mixing tubing and reactor tubing (inner diameter: 500um). To remove the heat 

generated by free-radical polymerization, the stainless reaction tubing was submerged under an oil 

bath (at 80 or 100°C). As a result, the PDI (polydispersity index, a measure of the width of 
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molecular weight distribution) for highly exothermic reaction in a micro-reactor is notably smaller 

than that of a macro-reactor. 

Tao Wu et al.22 synthesized pHPMA (poly-2-hydroxypropyl methacrylate) by using a microfluidic 

system with an active mixing chamber, which is a small magnetic stir bar driven by magnetic stir 

plate. The microchannel size they used is larger than the typical size used to supress viscosity 

increase during polymerization. Tao Wu et al. found that the molecular mass of polymer produced 

is determined by the flow rate or polymerization time. As a result, the higher the flow rate, the 

shorter the polymerization time; therefore, smaller conversion and molecular mass result. 

Polymerization of N-carboxy anhydrides in a microfluidic device with a passive micro-mixer has 

been reported by T. Honda and coworkers24 . A schematic diagram of their microfluidic device is 

shown in Figure 2- 2. The reactor is composed of two parts: a PDMS passive micro-mixer channel 

and a PTFE micro-channel. The yield, molecular weight, and molecular-weight distribution of 

poly(amino acid) in microfluidic synthesis is compared with that in batch-wise synthesis. The 

molecular weight is similar, but the distribution is narrower in microfluidic synthesis, especially 

when the concentration of reactant is high. The mixing and temperature effects were studied. Better 

mixing results in a narrower MWD. Steady reaction temperature results in a smaller MWD. 

 

Figure 2- 2 N-carboxy anhydrides synthesis in single phase MF device. [from ref. (24)] 
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Enzyme-catalyzed polymerization in continuous-flow microfluidic device had been reported by S. 

Kundu et al.25 Immobilized Candian antarctica Lipase B (CAL B) was stuck to aluminum micro-

reactor channel wall surface by vacuum. The microchannel dimension is 2mm×1mm in width and 

depth, which is larger than PDMS microchannels in other reported work. ε-caprolactone (εCL) and 

toluene were injected into a micro-reactor and heated the channel to a ring-opening reaction 

temperature (55°C to 100°C). The micro-reactor produced a faster reaction rate and larger 

molecular weight with the same amount of enzyme and temperature than the batch reactor. The 

transport path length is smaller due to the small channel dimension, and the active enzyme site is 

greater due to the large surface-area to-volume ratio in the micro-reactor.  

A similar single-phase Styrene (Sty), butyl acrylate (BA), Sty/BA copolymer, and 

Methylmethacrylate (MMA) polymerization was reported by Takahide Fukuyama et al.26 in a 

micro-flow reactor made from stainless-steel tubular reactor (length varying from 1 to 5 metres). 

Retention time, reaction temperature, monomer-composition effect on molecular weight, PDI, and 

conversion were studied. The authors report a smaller PDI, higher conversion, and higher 

molecular weight than those obtained with a conventional batch reactor.  

2.2.2 Droplet emulsion polymerization  

In recent years, polymerization in droplet has attracted more attention in research and 

applications21. Droplet emulsion polymerization generally integrates a two-step processes that 

includes on-chip droplet generation and post polymerization either on-chip or off-chip. There are 

two main categories of microsystems that can generate monodispersed droplets: microchannel-

based and capillary-based devices. The common microchannel-based devices include a terrace-

like microchannel device, a T-junction microchannel device, and a flow-focus (including cross-

flow fusing) microchannel device. Capillary devices are typically made by inserting a tiny 
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capillary into glass or PDMS molding. Different microfluidic devices for droplet emulsion 

generation are shown in Figure 2- 3. Although there are a variety of microfluidic designs for 

droplet generation, the droplet size is controlled by two dimensionless numbers: Reynolds number 

(Re) and capillary number (Ca): 

 
𝑅𝑒 =  

𝜌𝑉𝐷

𝜇
 (2-19) 

 
𝐶𝑎 =  

𝜇𝑉

𝛾
 (2-20) 

where 𝜌 and 𝜇 are the fluids density and viscosity, respectively. V is the fluid velocity and D is the 

characteristic dimension of the channel. 𝛾 is the interfacial tension between the two immiscible 

fluids. Because the flow and characteristic dimension in microfluidics is typically low, the 

Reynolds number is usually below unity. The capillary number represents the relative effect of 

viscous force versus interfacial tension force acting across an interface between the two immiscible 

phases. Therefore, the monomer droplet size depends on the properties of the monomer phase 

(such as the interfacial tension) and on the flow rates of the continuous phase and dispersed phase. 

In general, at a low value of Ca, larger droplets are produced. When the Ca number increases, the 

droplet size decreases21.  
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2.2.2.1 Terrace type 

Polymeric microsphere (MS) with narrow size distribution was synthesized by S. Sugiura et al.19 

in terrace type structure microchannel (MC), as shown in figure Figure 2- 4. The channel was used 

for emulsion production of polydivinylbenzene. Continuous phase flows into the center channel, 

and the dispersed phase enters the micro-reactor on both sides of the center channel. A continuous 

stream of squeeze-shaped droplets form in the continuous-phase fluid when the dispersed-phase 

fluid passes through the microchannel. The droplets enter the terrace to form spherical droplets. 

The dispersed-phase solution is composed of monomer solution (DVB) and initiator solution 

(BPO). The continuous-phase solution is composed of surfactant (SDS) and water. The effect of 

Figure 2- 3 Different types of microfluidic device for droplet generation.  
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surfactant and channel width on the size distribution of polymer particles has been studied. When 

the concentration of surfactant is less than the critical micelles concentration (CMC, which 

represents the surfactant concentration above which micelles are formed), the dispersed phase 

forms larger droplets due to the wetting of MC. As a result, the MS has a larger coefficient of 

variation. The smaller MC forms smaller droplets because the MS size is smaller. However, the 

variation is large for smaller MC, because it is hard to control the wetting of the MC when the 

channel is too narrow. After polymerization, the polymer particles have a larger coefficient of 

variation due to Ostwald ripening. 

Their first study used a simpler experiment setup27. The dispersed phase is pressed into the center 

of a silicon microchannel plate. The continuous phase is filled in the micro channel. In this case, 

Figure 2- 4 Left: Terrace type setup. Right: Droplet generation mechanism. [from ref (19)] 
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they studied an oil-in-water system; therefore, the channels need to be hydrophilic after surface 

treatment. They studied the effect of pressure difference, which is controlled by the height of the 

liquid chamber, on droplet formation. The pressure required for initial droplet formation is higher 

than that of breakthrough. They found that the cell size is independent of the operating pressure 

range (1-10 kpa). The average cell size is 22.5 µm, which is 3.75 times higher than the average 

microchannel width. 

The mechanism of droplet formation in terrace type was studied by Sugiura et al. 28. The dispersed 

phase droplet squeezes through the MC to form a flat droplet. Its size increases until it reaches the 

boundary of the well. The curvature of the interface increases28. Consequently, the Laplace 

pressure, which is the pressure difference across the interface, is larger on the terrace than in the 

well. The change of the interface free energy before and after is calculated. As a result, −𝛥𝐺 results 

in spontaneous droplet formation. The interfacial tension force dominates at small scales rather 

than other forces that influence liquid behavior. The MC system for MS formation is super-

efficient with respect to energy consumption. 

Ikkai F. et al.17 reported a new method for synthesizing pNIPAm gel particles that involves the use 

of an UV initiation system with persulfate as initiator in a terrace-type microchannel. The dispersed 

phase is a mixture of 700mM NIPAm monomer and 50mM APS initiator. The continuous phase 

is iso-octane and 5 wt% of Span 80. The maximum droplet production is 10ml/hour. Since the 

pNIPAm polymer and the monomer are water soluble, the MC surface was modified chemically. 

The droplets produced in the MC were collected in a quartz vessel for UV gelation. The average 

droplet size at the exit of the MC was 16µm with a narrow size distribution. After UV gelation, 

there was little change in the droplet size. The gel particles absorbed water and swelled to 26.45um 

at 20ºC. Due to the temperature-sensitive property of “smart gel”, it shrunk beyond critical 
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temperature at approximately 43ºC. However, the size distribution remained below 5% during 

swelling and shrinking processes.  

2.2.2.2 T junction 

X.S. Liu et al.29 synthesised poly(pentaerythritol triacrylate) (PPETA) microspheres in a simple T-

junction channel design, as shown in figure Figure 2- 5. The microfluidic chip is made from PDMS 

and exhibits two perpendicular channels (diameter: 375 um), which are the continuous- and the 

dispersed-phase channels. Silicon oil was pumped through the continuous phase and PPETA pre-

polymer was pumped through the dispersed-phase channel. The droplet formed at the junction area. 

After pre-polymer microspheres formed, they were collected and photo-polymerized under 365 

um UV light. PPETA monodispersed microspheres were successfully synthesised in various sizes 

ranging from 150um to 600um by varying the flow ratio of continuous phase and dispersed phase.  

 

Figure 2- 5 Simple T junction setup. [from ref. (29)] 

1,6-hexanediol diacrylate was successfully synthesised by photo-initiation in T-shaped channels 

by N. Takasi et al.30. The droplet size depends on the flow rate of the continuous phase (𝑄𝑐) and 

the monomer phase (𝑄𝑑). For a fixed 𝑄𝑑, the monomer phase wets the top surface of the channel 

at a low 𝑄𝑐  or low Reynolds-number region; once the flow reached the pocket region, 
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monodispersed droplets formed. As 𝑄𝑐 increases, the breaking point for droplet formation moves 

closer to the T junction. When the critical 𝑄𝑐 is reached, further increase in 𝑄𝑐 results in poly-

dispersed droplet formation. Furthermore, the breakup point moves away from the T-junction point. 

The dicolored polymer was synthesised by thermal initiation by using a combination of Y junctions 

and sheath-flow junctions. Isobornyl acrylate was dyed into black and white with carbon-black 

and titanium-dioxide pigments. Both colors can be clearly distinguished in the droplet; however, 

they become less distinct after curing. 

Reversed T junctions have been reported by Chia-Hsien Yeh et al.5 for Ca-alg micro-particle 

synthesis using PMMA microfluidics. The dispersed phase flows through the horizontal channel, 

and the continuous phase flows in the perpendicular channel. However, to the best of our 

knowledge, the reversed T-junction design was never used for polymer synthesis.  

C.H.Choi et al.31 report a special T junction winding channel that uses a PDMS microfluidic device 

for alginate hydrogel in in situ production. A Y-shaped channel (for the dispersed phase) was 

attached to the side of the main channel (for continuous phase); therefore, the dispersed phase can 

have two components. Calcium chloride and sodium alginate form in the dispersed phase. The 

continuous phase is n-hexadecane with surfactant Span 80. The crosslinked hydrogel forms after 

the two components in the dispersed phase contact each other. The reaction depends on diffusion 

between the two components. Also, laminar flow with high retention time has the risk of 

coagulating. The effective of flow rate, surfactant concentration and viscosity of the dispersed 

phase have been studied.  
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2.2.2.3 Flow Focus 

The first report of a flow-focusing method in a microchannel for droplet formation was introduced 

by Shelley et al.32 in 2002. A very simple flow-focusing geometry is implemented in the design, 

as shown in Figure 2- 6. The dispersed phase (water) flows in the center channel, and the 

continuous phase (oil) flows through the side channel. These liquids are forced to flow through an 

orifice, resulting in the formation of droplets. The droplet size depends on the size of orifice and 

on the flow-rate ratio of dispersed phase and continuous phase. If the droplet breaks inside the 

orifice, a satellite droplet accompanies the regular-sized droplet. Coalescence occurs at the outlet 

of the orifice if the flow rate is low; however, it can be supressed by stabilization (adding surfactant 

to continuous or dispersed phase).  

Figure 2- 6 First simple flow focus setup. [from ref. (32)] 

Multi-step, microfluidic polymerization reaction was studied by W. Li et al.33. The schematic 

diagram of a micro reactor is shown in Figure 2- 7(right). They used a passive-mixing, serpentine 

channel prior to the cross-flow focus junction. An interpenetrating polymer network of 

polyTPGDA and polyurethane was synthesized as the final product. The TPGDA is initiated by 

photo-initiation, and the polyurethane reaction is thermally activated by heat released from the first 

polymerization reaction. TPGDA and PU-pre monomers and other initiators or catalysts enter a 

mixer before polymerization. Droplets are formed by the flow-focusing method with polyvinyl 

alcohol (PVA) as continuous phase. The conversion of PU (reached 65%) depends on the heat 
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released by poly-TPGDA, which is easily controlled by the flow rate of TPGDA and the weight 

ratio of reactants consumed in reactions 1 and 2. 

 

Figure 2- 7 Left: chemical reaction. Right: experiment setup. [from ref. (33)] 

Adam R. et al.34 suggest a novel way to generate monodisperse micro-particles from a non-

Newtonian polymer solution. They report on a one-step double-emulsification method that 

contains three layers of solution, such as water/oil/water system. The center channel contains a 

non-Newtonian solution, which tends to be viscous, and is incompatible with the traditional 

droplet-formation technique. The middle layer and the external layer are a chaperoning fluid and 

a continuous-phase solution, respectively. They compared the droplet formation obtained in one-

step double emulsification (novel method) and single emulsification (traditional method) for three 

solutions: pNIPAM, pU-pBDO, and Lipid melts. The novel method generates monodispersed 

polymer particles for all solutions. 

A similar channel design was implemented in the copolymerization of Triproplylene glycol 

diacrylate- acrylic acid (TPGDA/AA) copolymer by Patrick et al.35 The TPGDA/AA monomer 

mixture solution flows in the center channel and continuous phase flows in the outside channel. 

When the AA concentration reaches 10%, the droplets show a tendency to wet the channel wall, 

as the channel is made of Polyurethane (PU). The droplet does not break in a large range of flow 

rates when the AA concentration reaches 15% or higher. For the low-AA concentration case, 

droplet size depends on the flow-rate ratio and monomer composition. After droplet formation, 



21 

 

copolymer particles flow through the downstream channel for UV initiation and copolymerization. 

The particles are highly monodispersed. 

T.D Dung et al.36 report a method for the preparation of monodispersed poly(ethylene glycol) PEG 

micro-particles in a flow-focus MF device. Like other flow-focus MFs, the dispersed-phase (PEG) 

solution flows in the center channel, and the continuous-phase solution flows perpendicular to the 

center channel at the junction. Three flow streams force the solution into a small orifice to form 

hydrogel micro-particles for further UV initiation. The effect of channel geometry (different 

dimension of inlet, outlet and orifice), flow rate, and concentration of dispersed phase have been 

studied. The cured MPs are 110 to 130 µm with a CV% of 2.1%.  

R.F. Shepherd et al.15 report using a Y-shaped-sheath flow-focus MF device (SFMD), as shown in 

Figure 2- 8, to generate Janus colloid-filled hydrogel granules. The MF device was made from 

PDMS by using soft-lithography. The dispersed phase consists of monodispersed silica 

microspheres in suspension in the acrylamide aqueous solution. To generate Janus granules, the 

colloidal suspensions are labeled by rhodamine isothiocyanate (RITC) and fluorescein 

isothiocyanate (FITC). Two modified suspensions are injected at two inlets of Y-shaped junctions 

to form a Janus laminar flow. Droplets then form in a SFMD under shearing of the sheath phase. 

Droplets polymerize immediately by UV initiation to retain the morphology. The optimum 

composition of acrylamide and silicon MPs suspension (36v/o silica and 16.5 v/o acrylamide) 

required to generate robust hydrogel granules is reported. The optimum concentration of 
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photoinitiator and acrylamide is estimated. Monodispersed spherical and discoidal colloid-filled 

hydrogel granules are successfully synthesised in their system. 

Figure 2- 8 Double Y shape flow focus. Monomer solution with different dye is injected by channel 1 and 

2. Oil solution is injected by channel 3. [from ref. (15)] 

2.2.2.4 Cross flow  

Chih-Hui Yang et al.37 introduce a cross-flow microfluidic device to generate monodispersed TPP-

chitosan MS, as shown in Figure 2- 9. The microfluidic device is made of four layers of PMMA 

substrates. The top layer is cover layer. The second layer contains two oil inlets and a sample inlet. 

The third layer is the main layer, which has channels and a cross-flow junction. The bottom layer 

is a cover layer with three outlets. The continuous phase (sunflower seed oil) is pumped at side 

channels, and the dispersed phase (Chitosan sample) is pumped in the center channel. The droplets 

are generated when fluid passes through the crossflow junction and is transferred into a vessel with 
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the TPP solution for crosslinking chitosan MS by a Teflon tubing. The generated MS varies from 

160μm to 650μm, depending on the flow-rate ratio of the two phases.  

Figure 2- 9 Cross Flow design for TPP-chitosan micro-sphere production. [From ref.( 37)] 

Droplet production in the microfluidic device is limited within the dripping regime, which is 

defined by capillary number (Ca) and Weber number (We). Usually, a low flow rate of inner and 

outer fluid is required for stable droplet generation. Seiffert et al.38 introduced a delayed surfactant 

addition method, as shown in figure Figure 2- 10, to increase the droplet production from ~500 

drops per second to ~3800 drops per second, which is about eight times higher than that achieved 

in the conventional method. For the conventional method, the flow rate for stable droplet 

generation is fixed at 200μl/hr for NIPAM per-microgel solution. The corresponding Ca and We 

numbers are 0.08 and 0.11, respectively. The delayed surfactant-addition method accelerates the 

flow rate up to 1600μl/hr. The Ca and We numbers for the accelerated method are 0.12 and 2.02, 

respectively. Both methods producd monodispersed NIPAM per-polymer droplets. The per-

microgel droplets are polymerized at room temperature overnight. 



24 

 

 

Figure 2- 10 A: Single cross junction. B: Traditional double cross junction. The surfactant is added at both 

cross junctions. C: Delayed-surfactant-addition method. The surfactant is added only at second cross 

junction for method C. The droplet is surround by surfactant right after generation to reduce the change of 

coalescence. (From source 38) 

2.2.2.5 Capillary type 

The capillary type MF was often used in capsulation, microfiber, and micro-tubing synthesis. 

Generally, a nano-sized capillary tube was inserted in the microchannel. The dispersed phase is 

pumped into the center capillary tube, and the continuous phase is pumped into the microchannel. 

The capsulation generally combines two or more capillary devices in the co-flow or the counter-

flow method. The microfiber and the micro-tubing can be synthesised in a single capillary device. 

As mentioned in many other review papers, the capillary type is not limited by the hydrophobicity 

between the MF channel wall and the dispersed phase. Therefore, the surface modification process 

is eliminated, which simplifies the MF fabrication.  

A coaxial microfluidic device for PAM hydrogel is reported by Bodong Yang et al.39, as shown in 

Figure 2- 11. The dispersed phase consists of acrylamide as the monomer, N,N’-methylene-bis-

acrylamide as the cross-linking agent, and ammonium peroxide as the initiator. The continuous 

phase is n-octane. The microfluidic device is fabricated on a PMMA plate with a cylindrical Teflon 

capillary tube with an inner diameter of 500μm embedded into the plate. A Teflon microneedle 

(inner diameter: 160μm) is inserted into the capillary tube for droplet formation. The continuous 
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phase is injected into two side channels; meanwhile, the dispersed phase is injected into the middle 

channel. A PTFE tubing immersed in a heat bath which is connected to the outlet of the 

microchannel for the polymerization of droplets. The residence time in heat bath is approximately 

1.5 minutes. After polymerization, the hydrogel micro-particles are collected in a vessel. 

 

Figure 2- 11 Coaxial MF experiment setup. [from ref. (39)] 

W.J Jeong et al.40 report a sheath-flow capillary-device based on the PDMS MF device to generate 

MPs. This is the simplest model built on the basis of external shear force to estimate the size of 

droplet. The biocatalyst MPs are (glucose oxidase) immobilized on the photo-polymerizable 

sample.  

A series of flow-focusing capillaries with a T-junction tubing system are reported by C.A. Serra 

et al.41. Synthesis of spherical, Janus, capsule, and rod-like microstructure polymer microbeads is 

successfully reported. The primary capillary is inserted to a T-junction tubing. For simple, 

spherical-polymer microbead synthesis, the capillary tube is connected to the second tubing for 

MP generation, and polymerization is done using UV initiation. For example, the synthesis of 

homogenous Au/PTPGDA and ZnO/PTPGDA polymer microbeads is reported by Z. Chang and 

coworkers41.The Janus polymer (PAM/Poly methyl acrylate for drug release study 42and magnetic 

anisotropy Janus beads43) are synthesised in a side-by-side primary capillary instead of in a single 



26 

 

capillary. By connecting the end of first capillary to a secondary T junction tubing and a secondary 

capillary tail-to-head, the capsule spherical MPs are successfully generated. By adding a second 

layer of capillary at the end of the T-junction tubing outside of the primary capillary, the system 

is able to generate more beads with a controllable morphology, such as capsule and rod-like shape44.  

2.2.3 Morphology 

Polymer micro-particles synthesised in the MF device can be shaped into many morphologies, 

which are very important in the self-assembly and other applications.  

Continuous-flow polymerization can produce particles faster than multiple-phase polymerization. 

Dendukuri et al.45 reports a method for synthesis of non-spherical particles in a continuous flow 

process using a photolithography method, as shown in Figure 2- 12. Polymer particles with 

specific shapes have been synthesised by a mask-defined UV-initiation method. Due to the 

permeability of oxygen in PDMS, a layer of non-polymerized oligomer acts as a lubricant layer 

between the channel surface and particles. The same method can also be used for the synthesis of 

Figure 2- 12 Left: a) Experiment setup with mask b) rectangular polymerized monomer c) cross 

section view. Right: sample Jauns particle. 
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bifunctional Janus particles without premixing two reactants, which can be used in the self-

assembly study.   

2.2.3.1 Janus particles 

Dendukuri et al.46 reports a method to synthesize non-spherical micro-particles in microfluid by 

UV initiation. See Figure 2- 13. The droplets are formed in a T-shaped channel. The continuous 

phase is 1% SDS water solution, and the dispersed phase is Norland optical adhesive 60 (NOA 

60), which is a UV-sensitive liquid photopolymer. According to their work, the shape of the droplet 

is determined by the flow rate of the dispersed phase (𝑄𝑑) and capillary. When the Ca number is 

too low, there is insufficient shear force for the dispersed phase to wet the top surface of the channel. 

When the Ca number is increased by increasing the flow rate, there is a region which forms non-

spherical micro-particles. Otherwise, the particles are flat and spherical. 

 

Figure 2- 13 T junction MF producing non-spherical particles from ref (46) 

Y. Bing et al.47 studied polyethylene glycol (PEG) hydrogel in the same T-junction microfluidic 

with an online UV-initiation device in a rounded channel. The rounded T-junction channel is 

fabricated on the PDMS using the soft lithography. A rounded silica capillary is fused onto a silica 
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wafer by a water soluble PVA adhesive as a master framework, as shown in Figure 2- 14. The 

authors studied four systems: a drug-release system (mixed with Aspirin), magnetic particles 

synthesis (mixed with Fe3O4- nano-particles (NPs)), a binary PEG/dye microsphere in a peanut 

shape, and Janus particles. In the drug-release system, the PEG monomer is mixed with the 

photoinitiator 2-hydroxy-2-methyl propiophenone (HMP) and with the Aspirin, which is used as 

the dispersed phase. The pre-polymer microsphere is cross-linked by an online UV-initiation 

system. Then monodispersed MS is obtained. The size varies according to continuous/dispersed-

phase flow ratio. The smaller MS releases Aspirin faster than the larger MS, as the small MS swells 

faster than larger one. The magnetic PEG NPs are synthesised by polymerization of PEG monomer 

solution and Fe3O4- NPs mixture. As a result, the NPs have excellent magnetic properties. In other 

studies, the PEG monomer solution is dyed red and blue. Peanut-shaped binary particles are 

formed when two solutions of different colors are pumped into different sides of the continuous 

phase in a staggered position. A Janus MS is formed when two colored solutions are pumped in 

laminar flow. 
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2.2.3.2 Nano-tubing: 

C.H. Yeh et al.5 report a cross-linked Chitosan microfiber which is applied in a cell-culture 

preparation method in a flow-focus MF chip. The chip is made from three layers of PMMA 

processed by a CO2 laser machine. The top layer has three inlets. The main channel is carved in 

the middle layer, and the MF is sealed by the bottom layer. Chitosan solution (injected in the center 

channel) is squeezed by sodium tripolyphosphate (STPP) solution (injected on both side channels) 

to form a laminar flow. The Chitosan is cross-linked by P3O5
- ions. The semi-crosslinked 

microfiber enters the STPP reservoir to complete the crosslinking. The authors studied the effect 

of flow rate and cell culture on the chitosan microfiber. 

2.2.3.3 Hollow Micro-particles: 

A novel V-junction, flow-focusing microfluidic device is introduced by Oguzhan et al.48 to 

generate hollow polymer micro-particles. The device is made from polymethylmethacrylate 

(PMMA) by CNC machining. Three Teflon FEP capillaries (inner diameter: 150um, outer 

diameter: 1.6mm) are inserted into a PMMA mold, as shown in Figure 2- 15. Nitrogen gas is 

pumped into the center capillary. The polymer solution and the surfactant solution are pumped into 

two side capillaries. When the N2 gas exits the capillary, the air bubble is surrounded by the 

Figure 2- 14 Left: T junction experiment setup. Right: a) Merging method used to generate 

Janus particle. C) Two-side injection method. [from reference (47)] 
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polymer solution immediately in the triangle area; it then releases the hollow particle to the 

downstream channel. The gas pressure varies between 40kPa to 350 kPa. The average particle size 

does not depend on the gas pressure, but the polydispersity at low pressure (40 kPa) and high 

pressure is much higher than moderate pressure. 20wt% of polymethysilsesquioxane in ethanol 

and 18wt% glycerol and 2wt% of PVA are used to generate spherical solid nanoparticles.  

 A novel method of producing hollow, monodispersed, polymer micro-particles for drug-release 

application in microfluidics is introduced by Remigijus et al.49 The mechanism of this method of 

hollow structure is based on diffusion of solvent in the dispersed phase to the continuous phase. 

The polymer particle continuously accumulates on the surface of the interface until a semisolid or 

solid surface is formed. The dispersed phase, which consists of polymer dissolved in DMC solvent, 

is injected into the center channel of cross-junction MF. The continuous phase, which consists of 

PVA dissolved in DI water, is injected into two side-channels. The flow rate is controlled within 

the dripping regime to minimize the polydispersity of droplet. The DMC continuously diffuses 

Figure 2- 15 Left: Experiment setup. Right: optical image of Hollow structure. [from ref. (48)] 
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into water, but the polymer accumulates at the interface. As a result, the droplet starts to shrink 

and the viscosity increases. The solvent diffusion decreases with an increase in the droplet 

viscosity. The controlled hollow structure performed very well in a drug-loading-and-releasing 

study. The encapsulation efficiency is 96-97% for this Ac-Dex polymer. 

The diffusion mechanism for producing polymer micro-particles was first reported by T. Ono et 

al.50 to synthesize polystyrene and poly(methyl methacrylate) micro-particles in a flow-focused 

MF. The effect of molecular weight, solvent, polymer concentration, and additives on micro-

particles morphology have been studied. 

A novel multi-stimuli responsive micro-particle for smart drug releasing application has been 

synthesised and reported by Jie Wei et al.18. The double emulsion chitosan micro-particle (O/W/O) 

is made from a double capillary microfluidic device. The smart micro-particle integrates pH, 

temperature, and magnetic responsive properties in one particle. The middle aqueous layer 

contains the pH-sensitive component chitosan, the temperature-sensitive component poly( N-

isopropylacrylamide-co-acrylamide, and magnetic nanoparticles.  

In conclusion, according to the literature review, the microfluidic device improves the properties 

of polymer micro-particles, yielding uniform size distribution, uniform morphology, fast swelling, 

and fast releasing. Multiple microfluidic designs and experimental methods exist whereby polymer 

micro-particles with various morphologies can be obtained. Due to the large surface-area-to-

volume ratio of the droplet, the polymerization reaction can be precisely controlled in 

microfluidics. Therefore, we propose a novel method to synthesize the poly(acrylamide-co-sodium 

acrylate) micro-particles with enhanced properties in a MF. 
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Chapter 3: Experimental 

3.1 Material 

Photoresist SU-8 was purchased from Microchem Co. (MA, USA). Pre-polymer Sylgard 184 

Silicon Elastomer Kit (poly-(dimethylsiloxane) (PDMS)) was purchased from Dow Corning Corp 

(Midland, MI, USA). Monomer acrylamide (Am) and co-monomer sodium acrylate (NaA) were 

purchased from Aldrich Canada and used as received. The photo-initiator 2,2-

Diethoxyacetophenone (DEAP), the cross-linker  N,N′-Methylene-bisacrylamide (BIS), and the 

activator Tetramethylethylenediamine (TEMED) were purchased from Aldrich Canada and used 

as received. The oil phase hexadecane and FC40 were purchased from Aldrich Canada and used 

after filtration. Other chemicals, such as the surfactant sorbitan monooleate (SPAN 80) and steric 

stabilizer polyvinyl alcohol (PVA), were purchased from Aldrich Canada and used as received.  

Table 3- 1 Chemical structure of key chemicals. 

Number Chemical Structure 

1 Acrylamide 

 

2 Sodium Acrylate 

 

3 2,2-Diethoxyacetophenone 
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4 N,N′-Methylene-bisacrylamide 

 

5 Hexadecane 

 

6 FC40 

 

7 Sorbitan monooleate 

 

8 Tetramethylethylenediamine 

 

 

3.2 Method 

3.2.1 Pre-polymer solution and oil-phase preparation: 

Monomer solution and oil solution were prepared before injection into the microchip for pre-

polymer droplet generation. To prepare a 9.28M monomer solution, 10 grams of ultrapure DI water 

was added to a 30ml beaker and degassed with nitrogen gas for 15 minutes to remove oxygen, 

which can cause inhibition during free-radical polymerization. After degassing, 6.6 grams of Am 
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and 0.2 grams of BIS were added to the beaker and mixed for 30 minutes using a magnetic stirrer 

at 400 rpm. The beaker was covered with aluminum foil while mixing to prevent UV irradiation 

from light. 0.127ml of DEAP was added after 30 minutes of mixing and continuously mixed for 

another 15 minutes. For the copolymer monomer solution, sodium acrylamide was weighed and 

mixed according to the feed composition. The second monomer was added as Am was added. For 

the lower total monomer concentration, 2 mL of 9.28M concentrated monomer solution was 

diluted with 2 mL of degassed DI water. Then 0.04 mL of DEAP was added into diluted solution 

to maintain the initiator concentration. 

Two different oil phases were prepared and used for droplet generation, which are FC 40 and 

hexadecane. To prepare the hexadecane oil phase, 5 wt.% of DEAP and 1-2 wt.% of span 80 were 

added to 13ml of hexadecane and mixed continuously for 25 minutes in an ultrasound mixer 

(Branson, model 3510). The photo-initiator in the oil phase was added to maintain the initiator 

concentration in the droplet; otherwise the initiator diffuses into the oil phase rapidly due to an 

imbalanced concentration.  A similar method is used and reported by Shepherd et al.15 and Choi et 

al.16,31.  To prepare the FC40 oil phase, 1-2 wt.% of customized surfactant was mixed with FC40. 

Since DEAP is immiscible with FC40, it is not necessary to add DEAP. Both oil phases were 

filtered with 20-micrometer filter before injection to prevent clogging of the channel due to large 

impurity particles or dust in the air. Silicon oil and mineral oil were used occasionally for droplet 

generation. The preparation procedure is similar to that used for hexadecane-oil preparation.  

3.2.2 Chip fabrication 

Overview of fabrication procedure: 

The soft-lithography51 technique is mainly composed of two techniques: master preparation and 

replica molding. The first technique refers to the negative photo-resist of SU8 to relief the designed 
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microchannel structure on a silicon wafer. The next technique is to replicate the microchannel 

structure by casting liquid PDMS on the prepared silicon wafer and peeling it off after it solidifies. 

Next, bond the PDMS molding with a glass slide to complete the microchip fabrication. The 

outline of the microchannel was designed in the AutoCAD® initially; then the microchannel was 

printed on a transparent plastic film with a resolution of 20,000 dpi. A master with the positive 

microchannel relief was prepared with negative photoresist of SU-8 on silicon wafers by a 

photolithography technique. Multiple layers of SU-8 were coated on a clean silicon wafer via spin 

coating, UV exposure, and thermal crosslinking. The PDMS elastomer was prepared by mixing 40 

grams of silicon elastomer base with 4 grams of curing. The pre-polymer mixture was placed into 

a vacuum oven, and 25 psi vacuum was applied for 20 minutes to remove excess air bubbles in the 

PDMS elastomer mixture. The mixture was poured onto the master and cured in an oven at 80°C 

for 1.5 to 2 hours depending on the thickness of the replica. After curing, the replicate was carefully 

peeled and cut off from the master using a sharp scalpel. Holes (c.a. 2mm) for inlet and outlet were 

punched at the designed position before bonding. The replica and a clean glass slide were oxidized 

in a plasma-cleaner chamber for 50 seconds; then the replica was immediately sealed with a glass 

slide. Finally, Teflon tubing was attached to holes for the inlet and outlet to complete the 

fabrication. Microchannel wall surface treatment followed the fabrication process. In this project, 

water-in-oil droplets were generated. Therefore the microchannel wall surface needs to be treated 

hydrophobically. 

Detail fabrication procedure: 

The whole process begins with the designing of the microchannel with the aid of a computer 

program (AutoCAD®). The outline of microchannel was drawn in the AutoCAD. Then the micro-

channel was printed on a transparent plastic film which can be made from polystyrene or Mylar 
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with a resolution of 20,000 pdi. The transparency of plastic film and the printing resolution must 

be of good quality; otherwise, the defect on the film and channel edges can be transferred to the 

next step, thereby causing imperfections. The mask printing was done by Cad/Art services, 

Brandon OR. The finished master was stored properly in an anti-static bag to prevent dust in the 

air and any potential damage such as bending or scratching.  

Once the mask was ready, the master was made by negative photoresist. A robust and precise 

master is critical for future replicate. It determines not only the precession of the microchannel but 

also the number of replicas that can be made from the master.  

Before fabrication, SU-8 at different viscosities was prepared 24 hours before the spin-coating 

process. The SU-8 was poured from the shipping bottom to a smaller UV-protective container  and 

transferred it to a pipettor. (Alternately, one could cover the container with an aluminum foil 

instead of using a UV-protective container.) Bubbles generated during pouring and transferring 

will dissolve before spin coating. The higher viscosity of SU-8 creates a higher spin-coating 

thickness, but it adheres less to the Si wafer; therefore, to choose the right SU-8 is critical to the 

master fabrication. The silicon wafer was air cleaned and baked at 200°C for 10 minutes to remove 

moisture on the surface (dehydration baking), as the dirt or moisture on the wafer surface prevents 

the SU-8 from adhering. The wafer was cooled to room temperature on a clean surface, such as 

petri dish.  

The cleaned wafer was placed in the center of the spin chuck and aligned with the centering tool. 

Inappropriate alignment of the wafer can result in uneven SU-8 distribution.  Once the alignment 

was completed, the wafer was fixed by a vacuum. To promote the adhesive of SU-8, a thin layer 

of low viscosity SU-8 was coated on the entire wafer. The spin coating machine was programmed 

in advance according to the SU-8 thickness requirement. A typical procedure is as follows: 
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1. 0-500 @ 100 rpm/s hold for 25s as dispensing is performed. 

2.  500-SET @ 300 rpm/s and hold for 30s.  

SU-8 was deposited at the center of wafer dynamically while the wafer was spinning at 500 rmp. 

Most of the defects in master fabrication—such as dust, air bubbles or uneven SU-8 surface—

came from the spin-coating process,. Therefore, this step requires much practice and attention if 

the product is to be protected from contamination.  

After spin coating, the wafer was transferred to a hot plate for a soft bake in which the solvent was 

removed in SU-8 and hardened. The wafer must be in a good contact with the hot plate; otherwise, 

evaporation is not uniform. Smooth and steady raising or cooling is required to prevent cracking 

and the lift-off of SU-8. The wafer was baked on two separate hotplates at 65°C and 95°C, 

respectively. The baking time depends on the thickness requirement. The baked wafer was cooled 

at 65°C on a hotplate for 3 to 5 minutes and cooled to room temperature on a glass petri dish. 

After soft baking, the wafer was exposed under UV irradiation to crosslink, and the crosslinked 

SU-8 was insoluble in the developer. To promote the adhesion of SU-8, a thin layer of SU-8 was 

coated and cured without a mask. The mask blocks UV radiation to create a positive relief on the 

wafer. The exposure time depends on the SU-8 thickness, UV lamp intensity and the suggested 

dose is given by Microchem as a reference. Insufficient exposure leads to lift-off because the 

crosslink does not extend to the bottom layer of SU-8. On the other hand, overexposure creates 

undesired features on SU-8. The wafer was put in the mask aligner and the mask was placed over 

the wafer. To enhance the contact of mask and wafer, a vacuum was applied (optimum pressure is 

3-5 psi). Larger pressure pushes the mask into the wafer. Smaller pressure creates a gap between 

wafer and mask which results in an undesired shape on SU-8 after UV exposure. 
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The wafer required the post-bake step to complete the crosslink. The exposed wafer was baked at 

65°C and 95°C on a hot plate for a few minutes (depending on the SU-8 thickness) and cooled 

stepwise. After this step, the channel design should be visible on the wafer.  

The crosslinked SU-8 creates a positive relief on the wafer, and the uncrosslinked SU-8 needs to 

be removed by washing. This step is called a development process. The wafer after post baking 

was fixed on a dipping holder and immersed in the SU-8 developer with nitrogen bubbling for 

slight agitation. The excess developer and SU-8 were washed off by using isopropyl alcohol and 

by purging with nitrogen. If the SU-8 does not cover the whole surface area of the wafer (especially 

on the edge area), the empty space must be covered with glue to prevent peel-off by PDMS replica. 

The development process and washing completes the master fabrication. The master wafer was 

stored in a wafer holder in a clean room.  

The next step is PDMS replica and bonding with a glass slide. The master wafer was placed in an 

aluminum foil bowl (customized by curling up the side of an aluminum dish). The PDMS 

elastomer was prepared by mixing silicon elastomer base with the curing agent at a weight of 40g 

and 4g respectively (10:1 ratio). The heavier PDMS elastomer will create a higher moulding. The 

pre-polymer mixture was placed into a vacuum oven and a 25 psi vacuum was applied for 20 

minutes to remove excess air from the PDMS elastomer mixture. The mixture was then poured 

onto the master and cured in an oven at 80°C for 1.5 to 2 hours, depending on the thickness of the 

mold. After curing, the replica was carefully peeled and cut off from the master using a sharp 

scalpel. Holes (c.a. 2mm) for inlet and outlet were punched at designed positions before bonding. 

The replica and a clean glass slide were oxidized in the plasma cleaner chamber for 50 seconds, 

and the replica was brought to contact and immediately sealed with a glass slide. Finally, Teflon 

tubing was attached with holes for inlet and outlet to complete the fabrication.  
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Surface Modification of PDMS Microfluidic Devices: 

The PDMS is naturally hydrophobic (the contact angle with water is greater than 90°). However, 

to obtain permanent bonding, the PDMS replica undergoes an oxygen-plasma treatment, which 

generates silanol groups. The presence of silanol groups modifies the PDMS surface to be 

hydrophilic. The wall surface needs to be hydrophobic in this project to produce water-soluble per-

polymer droplets. A different method was used to treat the surface corresponding to the oil used 

as the continuous phase. For FC40, Aquapel® was injected to the microchannel for two minutes 

after bonding. For hexadecane, the bonded microchannel was placed on the hot plate at 125°C for 

48 hours.  

3.2.3 Droplet generation: 

The premixed monomer solution and the oil phase were introduced into the microchannel using a 

pressure system or syringe pumps. If a pressure system (Fluigent MFCS8) is used, the aqueous oil 

phase must be stored in a small plastic vial and tightly connected with a reservoir holder. Then the 

pressure system was connected with a reservoir by using a soft tubing. The other end of the 

reservoir was connected with the inlet of the microchip. The pressure system was controlled by a 

software program provided by Fluigent Co. The pressure stabilized quickly. If syringe pumps 

(Harvard Apparatus, pump 33) are used, the syringes need to be loaded with the aqueous and the 

oil phases before mounting on the syringe pump. The pump provided a flow with a constant flow 

rate. The delivered flow rate in the microchannel correlates with the inner diameter of the syringe 

and the microchannel cross-section area. Therefore, the set point on the syringe pump must be 

calculated before injection.  

If a cross-flow focus-design microchannel was used (the junction region is shown in Figure 3- 

1(top)), the monomer solution was injected by the center channel and the oil phase was injected 
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by the outer inlet. For a T junction, as shown in Figure 3- 1(bottom), the aqueous phase was 

delivered through a microchannel perpendicular to the main channel in which the oil phase flowed. 

Before connecting the reservoir with the microchip, the pressure or flow rate of the oil phase was 

adjusted to fill the tubing initially. When the connection tubing was fully filled with the oil, it was 

connected to the corresponding inlet. This process was repeated with the aqueous phase. The 

excess air bubbles in connection tubing can be trapped at the turning point or at the junction inside 

the microchannel, which can cause blockage or pressure change. 

The outlet was punched at the middle of the microchannel instead of at the designed outlet area, 

because the designed outlet might not have uniform hydrophobicity or might be partial wetted. 

When droplets reached the designed outlet, they broke or split into small pieces before exiting the 

tubing. This may be because the chemical treatment does not reach to the corner. Instead of 

punching at designed outlet, the hole for the outlet was punched in the middle of the microchannel.  
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3.2.4 Polymerization of polymer micro-particles: 

On-chip and off-chip polymerization can be used in microfluidic-aided polymer micro-particle 

synthesis, depending on the lab equipment and the polymer micro-particle properties required. In 

general, on-chip polymerization requires fast polymerization (less than 1 second) since it is limited 

by the dimensions of the micro-channel. To achieve fast polymerization, high initiator 

concentration or high UV intensity is used. However, the high initiator concentration is not 

economic, and it is difficult to wash out from the crosslinked polymer micro-particles. Fast 

polymerization may cause uninform crosslinking.  

Different types of photo-polymerization of the pre-polymer droplet were carried out in this 

research, including on-chip and off-chip polymerization. For on-chip polymerization, droplets are 

Figure 3- 1 Schematic diagram of flow-focusing (top) and T-junction (bottom) microfluidic device used 

to synthesize polymer micro-particles.  



42 

 

exposed to the UV irradiation immediately after droplet generation, either in a serpentine 

microchannel or in a PETF tube attached at the outlet (semi-on-chip), as shown in Figure 3- 2(a) 

and (b), respectively. Both  PDMS molding and Teflon tubing have excellent UV-transmission 

properties. For off-chip polymerization, three methods are used: glass-slide polymerization, oil-

reservoir polymerization, and the inverted-chip method (as shown in fFigure 3- 3 to Figure 3- 5, 

respectively).  

3.2.4.1 On-chip polymerization: 

The on-chip polymerization method includes polymerization in an extension wavy micro-channel 

(shown in Figure 3- 2a) and in an external tubing attached at the outlet (semi-on-chip 

polymerization, as shown in Figure 3- 2b). For the wavy channel method, n ultrahigh intensity 

lamp (Sunspot2, 8000W/cm2 Uvitron) and a medium-high intensity lamp (ML-3500S, 50W/cm2, 

Spectroline) were used. For the semi-on-chip polymerization, only the medium-high intensity lamp 

was used because the ultrahigh intensity lamp would burn the tubing after long exposure. The 

reaction time was controlled by the droplet-travelling time in the reaction region, which was 

controlled by the flow rate of the oil phase, micro-channel or tubing cross-section area, and by the 

length of reaction channel or tubing. Prior to UV exposure, the junction region was well covered 

by aluminum foil to prevent polymerization in the monomer channel. To ensure stable droplet 

formation, the system was stabilized for at least 10 minutes before exposure. The lamp height 

(measured from the top of the micro-chip surface to the lamp bulb surface) was controlled between 

3 and 5 cm.  
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Figure 3- 2 On-chip polymerization. (a) Photo-polymerization inside the serpentine. (b) Semi-on-chip 

polymerization.  
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3.2.4.2 Off-chip polymerization: 

Three off-chip polymerization methods have been studied and evaluated in this work: glass-slides 

polymerization, oil-reservoir polymerization and the inverted-chip method.  

The glass-slides polymerization method has a different outlet, so it requires a special chip-

fabrication procedure. The cured PDMS mold is cut before the designed outlet, and there is no 

need to punch holes for an outlet. Then the PDMS mold is bonded with a glass slide by oxygen-

plasma treatment as a usual procedure. The droplet generation region is similar to that of other 

chips, but droplets flow directly onto the glass slide. To ensure that the droplet does not leak to the 

sides, a path is created by instant glue to guide the flow direction of droplets. A sketch of the 

microchip is shown in Figure 3- 3. The droplet accumulates on the glass side for 5 minutes and is 

followed by UV exposure to complete the polymerization. 

For the oil-reservoir method, the droplet is collected in an oil reservoir and then exposed to UV 

irradiation while collecting, as shown in Figure 3- 4. Several oil-phase combinations (continuous 

phase and reservoir oil) were investigated, such as FC 40 in hexadecane or vice versa.  

3.2.4.3 Inverted-chip method: 

The improved oil-reservoir method is called an inverted-chip method. In the inverted-chip method, 

the micro-chip is flipped upside down (rotate 180°). The schematic diagram and the real 

experiment setup is shown in Figure 3- 5 and Figure 3- 6. The inlet and outlet holes on the PDMS 

molding face downward. Instead of using long, bended tubing, a short straight tubing (2 to 3 cm) 

is attached to the outlet and inserted into a 10 ml graduated cylinder filled with hexadecane oil 

phase (mixture of hexadecane DEAP and Span 80)  as an oil reservoir. The cylinder is exposed to 

UV irradiation to collect pre-polymer droplets to complete the polymerization. The microchip is 

moved away from the microscope during UV exposure to prevent damage to the microscope 
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objective. To prevent polymerization in the monomer channel or the junction region, the whole 

micro-chip and the inlet tubing are covered with an aluminum foil. The junction region is carved 

out for observation of droplet formation. The top and bottom parts of the cylinder were covered 

with aluminum foil to supress polymerization in the short tubing and aggregation at the cylinder 

bottom. The reaction time depends on the sinking time from cylinder top to bottom. 

 

Figure 3- 3 Glass-slide polymerization. The droplets flow freely to a glass slide and are exposed to UV 

irradiation. 
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Figure 3- 5 Inverted chip (T junction) method. The green tubing indicates the aqueous phase inlet. 

Figure 3- 4 Schematic diagram oil-reservoir photo-polymerization. (a) Continuous phase is FC40, 

and oil in the reservoir is filled with hexadecane.  (b) Continuous phase and oil in the reservoir is 

FC40. 
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Figure 3- 6 Experiment setup for inverted-chip method. 

3.2.4.4 Bulk polymer synthesis: 

The bulk polymer was synthesised with the same monomer solution to compare with the polymer 

micro-particles. Approximately 1ml of monomer solution is added into a 10 ml beaker or a petri 

dish and exposed to UV light for 30 to 60 seconds until the monomer solution changes to a whitish 

cake. The reaction time of bulk polymer synthesis can be used to estimate the reaction time in the 

micro-particles experiment for the different monomer composition and concentration. The bulk 

polymer is washed and dried in a vacuum oven for 24 hours and stored in a desiccator. 
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3.3 Characterization 

3.3.1 Droplet size and size distribution: 

The droplet size was observed and recorded by an inverted microscope equipped with a CCD and 

a high-speed camera. The size and size distribution were measured and processed by ImageJ® 

software. The analyzed size distribution was compared with the calculated diameter variation from 

a MATLAB image processing program.  

3.3.2 Fluorescence microscopy:  

The fluorescence dye, Fluorescein (FITC) from Invitrogen, was mixed with the monomer solution 

before injection to the micro-channel. The fluorescence microscopy image was observed by an 

inverted microscope (Eclipse Ti, Nikon). The samples prepared for FTIR and elemental analysis 

were not mixed with Fluorescence dye to prevent contamination. 

3.3.3 SEM: 

Scanning electron microscopy (SEM) confirms the shape and size of dried micro-particles. Since 

the hydrogel micro-particle is non-conductive, a thin layer of gold is coated onto the sample surface. 

Images of polymer micro-particles and bulk polymers were taken at various magnifications.  

3.3.5 FTIR: 

The Fourier Transform infrared spectra (FTIR) of dried hydrogel micro-particles is tested by a 

potassium bromide (KBr) pellet method and recorded by Bruker (Vertex 70) FTIR. The scan range 

is from 400 to 4000 cm-1 for 32 times. A background scan is run every time before a sample scan.  

3.3.5.1 KBr pellet method: 

To prepare the KBr pellet, dry sample is crushed and ground into a fine powder, initially in a 

mortar. If the sample is not dry and there is leftover moisture in the polymer, the polymer is not to 
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be ground into a fine powder. Dry KBr granules are added into the mortar, at a weight ratio of 

100:1 with respect to the polymer sample and ground into powder while mixing with polymer 

powder for 3 minutes. When the mixing is completed, a thin layer of white powder is spread evenly 

on the pellet press dies. The smooth surface of the die should always face towards the polymer 

powder. The pellet press die is placed under a hydraulic press at 17500 ponds pressure for 1 minute. 

Then the die base is removed carefully and the sample pellet is removed. A good sample should 

be solid and transparent. The pellet will be brittle. 

If the sample pellet had a different thickness or polymer concentration, the absorbance or the 

transmittance of FTIR spectrum will be affected. The pellet needs to be stored in a dry condition, 

because of the moisture in the polymer. 

3.3.6 Elemental analysis: 

Polymer micro-particle composition was measured by using an elemental analysis (CHNS, Vario 

Micro Cube, Elementar). The blank and stand sample runs 3 times before the sample run. The 

content of elemental C, H, N and S in the samples was determined for calculation. 

3.3.7 Swelling test: 

The degree of swelling was determined by a swelling test under room temperature. The degree of 

crosslinking is closely related to the degree of swelling, according to the Flory-Huggins and the 

equilibrium swelling theories. For the micro-particle swelling test, the dried polymer micro-

particles are added into a 96 well cell-culture plate, and the sizes of dried polymer micro-particles 

(particle diameter) are recorded by a microscope and then analyzed by ImageJ® software. The 

analyzed dry particle size is confirmed via SEM measurement. Then DI water, at room temperature 

(25°C), is added into the corresponding well. The swelling process is recorded by using a 

microscope. The diameter of swollen particle (at maximum absorbance capacity) is used to 
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calculate the degree of swelling by the following equation (assuming that the micro-particle is 

spherical): 

 

𝑄 =
𝑉
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=
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2)
3

4
3 × 𝜋 × (

𝐷0
2 )

3
= (

𝐷

𝐷0
)3 (3-1) 

where V is the volume of swollen polymer micro-particle and 𝑉0 is the volume of dried micro-

particle. D is the diameter of swollen polymer micro-particle and 𝐷0  is the diameter of dried 

polymer micro-particle.  

The degree of swelling of bulk polymer was measured as reference. First, 0.1g of dried bulk 

polymer was taken in a weight boat; it was then immersed into deionized water at room 

temperature for 2 to 3 days to obtain the saturated, swollen polymer. The degree of swelling is 

calculated via the following equation: 

 

𝑄 =

(𝑊𝑠 −𝑊𝑑)
𝜌𝑠
𝑊𝑑
𝜌𝑑

 (3-2) 

where 𝑊𝑠 is the weight of swollen bulk polymer and 𝑊𝑑 is the weight of dried bulk polymer. 𝜌𝑠 is 

the density of swollen bulk polymer, and 𝜌𝑠 is the density of dried bulk polymer.  
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Chapter 4: Discrimination of Experiment Methods 

This chapter evaluates the experiment setup, monomer and oil phase compositions, UV lamp, 

pumping system, and micro-chip designs.  

4.1 Material choice: 

Three materials were used for the oil phase in this project: hexadecane, FC 40, and silicon oil. All 

three materials are inert to polymerization and thermally stable. The viscosity at room temperature 

varies from 3mPs to 10mPs. The surfactant is mixed with the oil phase to decrease interfacial force 

and thereby stabilize droplet generation. Span 80 at concentration of 1wt.% to 2wt.% is used in 

hexadecane and silicon oil; and a customized surfactant is used for FC 40.  

The photo-initiator (DEAP) is miscible with hexadecane and silicon oil. Therefore, additional 

photo-initiator in the oil phase maintains the DEAP concentration in the monomer solution. 

TEMED is an accelerator that is frequently used in the literature to trigger the redox reaction; 

however, the TEMED mixed in the monomer solution reduces surface tension causing droplet 

leakage. This phenomenon is observed only when TEMED is mixed into the monomer solution 

and hexadecane is used to generate droplets, as shown in Figure 4- 1. The droplet at the junction 

is bean shaped and remains as a whole drop. When the droplet passes certain point, a tail with tiny 

black droplets forms following the main droplet. The droplet leakage was observed both in the T-

junction and in the cross-flow focus channel. The mechanism of droplet leakage is not clear, but 

reduction in surface tension could be one cause15. Another cause could be partial wetting of the 

channel wall surface. The monomer solution always touches the channel ceiling and floor, since 

the microchannel is rectangular and its height is much smaller than the channel width. If the 

channel surface is hydrophilic at a certain point, the droplet can break at that weak point. This 
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phenomenon is described in Hashimoto’s work52 as “tip streaming” caused by a shear-driven 

interfacial instability exerted on the traveling droplet by the floor and ceiling.  

This phenomenon is not observed when FC 40 is used as an oil phase. Therefore, FC 40 was used 

for the initial experimental method to avoid droplet leakage. However, FC 40 is difficult to wash 

with general organic solvents, such as isopropyl alcohol or acetone. 

 

Figure 4- 1 Droplet leakage. The flow direction is from top to bottom. The droplet on the top was captured 

just before it left the T junction. When it traveled along the channel, the droplet broke into small pieces, as 

shown in optical image. A tail followed the large drop.  

 

4.2 Monomer Droplet Production: 

Monodispersed monomer droplets were successfully generated in both the T junction and the 

cross-flow-focus microfluidic devices, as shown in Figure 4- 1. One of the advantages of this 
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process is that it does not require a specific channel design for droplet generation; hence, it gives 

more freedom on the channel design. Droplet formation is driven by competition between viscous 

stress and surface tension between two immiscible fluids; therefore, the capillary number 

contributes to the final droplet size significantly20. In addition, the droplet size is governed by the 

dimension of the neck region in the channel, by the flowrate ratio of continuous and dispersed 

phases, and by the physical properties of the two immiscible fluids. In this project, the channel 

height is fixed at 50 to 60 µm and the channel width at the junction is fixed at 200 micrometers. 

The droplet size is controlled by varying the flow rate either through syringe pumps or via the 

pressure system. The syringe pumps, which are commonly used in other research, provide a 

precisely controlled, steady flow rate inside the micro-channel, unless the channel is clogged. 

However, the syringe pump requires a longer time to stabilize: usually up to 30 minutes to reach 

steady state. Compared to syringe pumps, the pressure system responds faster to changes in the 

inlet pressure, and it reaches steady state quickly. Nonetheless, the pressure system suffers from a 

severe pressure drop in the downstream serpentine channel and external extended tubing. The 

pressure is sensitive to the length of the channel, to the length of extended tubing, and to the 

orientation of the outlet tubing (bent, vertically or horizontally oriented).  

In this project, both systems are tested to match with different micro-channel designs and 

experimental set-ups. For example, a syringe pump is recommended for the on-chip 

polymerization, which requires a steady flow rate inside the microchannel to overcome the effects 

of viscosity change during photo-polymerization. On the other hand, the pressure system is a better 

choice for the inverted-chip method, as it takes less time to stabilize. 

For the cross flow focus design, the center aqueous phase is symmetrically pinched off by the 

continuous phase at two side channels; it then broke into individual droplets of uniform size (as 
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shown on the left of Figure 4- 2). The droplet velocity decreases when droplets enter into an 

expended chamber due to a change in velocity at the cross section area. The droplets touch each 

other at the chamber entrance but do not merge, which shows that the surfactant in oil phase is 

effective and sufficient. As mentioned above, the serpentine channel prior to the junction region, 

as shown in Figure 3- 2, stabilizes the inlet pressure whenever the pressure system is used. The 

syringe pump system provides a stable flow rate to the microchannel; therefore, the serpentine 

channel is not required before the junction.  

 

Figure 4- 2 Optical microscope image of monomer droplet generation. (left) flow focus junction. (right) 

expended chamber.  
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Monomer droplet size is controlled by the microchannel size, by the flow rate ratio of the 

continuous phase, and by the dispersed phase. Since the pressure system is frequently used for fast 

stabilization, the inlet pressure of two immiscible phases determines the droplet size. However, 

due to the large pressure drop, the pressure/droplet-size relationship also depends on the serpentine 

channel design and the length and the inner diameter of tubing.  

The droplet produced by the micro-chip has a uniform size distribution with a small coefficient of 

variation which is defined as the standard deviation in the measured diameter divided by the 

average diameter31.  It can be calculated by using following equation: 

 CV% =
𝜎𝑑𝑟𝑜𝑝𝑙𝑒𝑡

𝜇𝑑𝑟𝑜𝑝𝑙𝑒𝑡
 (4-1) 

where 𝜎𝑑𝑟𝑜𝑝𝑙𝑒𝑡 is the standard deviation of droplet diameter and 𝜇𝑑𝑟𝑜𝑝𝑙𝑒𝑡 is the average diameter 

of droplets. The CV% is calculated by a MATLAB image processing program in which one can 

detect, capture, and measure the circular object in the image. It distinguishes the color intensity in 

an image automatically, such as dark or bright objective, size and void space. Figure 4-3 (left) is 

the original image of a droplet collected at the micro-chip outlet without any further processing. 

Figure 4-3 (right) is after processing. Most of the droplets are circled by red markers, including 

the darker ones at the bottom of the image. The droplets at the tubing outlet (inverted-chip method) 

Figure 4- 3 CV% measurement for droplet at microchip outlet. 
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were collected on the glass slide for size-distribution analysis. As a result, the droplet has a CV% 

value of 3.3%, as shown in Figure 4- 4.  

 

4.3 On-chip polymerization: 

The on-chip polymerization method is widely used and studied in the literature to synthesize the 

monodispersed, spherical, disk-like or rod-shaped polymer. Since the on-chip method polymerizes 

the monomer droplets individually, the product has uniform size and the morphology remains the 

same before and after polymerization. The on-chip reaction time (depending on the reaction-

channel length and the flow rate of oil and aqueous phase) is usually less than 10 seconds. A longer 

reaction time requires a longer serpentine channel or a lower flow rate, neither of which are 

desirable for polymerization in the microfluidic device21. So, to facilitate the rapid reaction, one 

usually requires a high concentration of photo-initiator and a high-intensity UV lamp, which 

supplies sufficient UV irradiation that instantaneously decomposes the photo-initiator. In addition 

to the advanced equipment requirement, clogging (in the reaction region, the monomer supply 

channel, and the junction region) in the micro-channel is a serious problem that can cause wasting 

of the micro-chip.  

Figure 4- 4 CV% measurement for droplet at microchip tubing outlet. Before and after processing (left 

and right respectively). 
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An ultrahigh intensity (8000W/cm2, Sunspot2 Uvitron) and a medium-high intensity (50W/cm2, 

ML 3500S Spectroline) UV lamp were tested with the on-chip polymerization setup. With the 

same monomer solution, the ultrahigh intensity lamp completed the polymerization within 1 

second. The reaction is fast enough that no serpentine reaction channel is required for the ultrahigh 

intensity lamp. The medium-high UV lamp requires 15 to 30 seconds to complete the reaction, 

depending on the monomer concentration. Therefore, a micro-chip with a long serpentine design 

was used to extend the reaction time for the medium-high intensity UV lamp.  

The experimental setup with the ultrahigh-UV intensity lamp successfully produces mono-

dispersed micro-particles inside the micro-channel for a short period of time (3 seconds); however, 

this process cannot continuously polymerize the droplets due to the microchannel clogging issue, 

both in the monomer supply channel and in the reaction channel. The UV irradiation focused on a 

spot with a diameter of 5 mm in the reaction region by a liquid-filled light guide (UVtrion). 

However, UV light scatters inside the PDMS mold and travels horizontally, which can initiate the 

monomer solution in the monomer channel and cause clogging when UV light is continuously 

exposed. There are different methods that can prevent the scattered light, such as blending 

fluoresce dye into the PDMS before curing53; but all methods require a sophisticated chip-

fabrication procedure. To prevent clogging in the monomer channel, we simply used two hard 

aluminum foils as shields inserted vertically into the PDMS mold between the reaction region and 

the droplet-generation junction. This simple modification blocked the majority of horizontally 

scattered UV light.  

The other issue associated with on-chip polymerization is clogging in the reaction microchannel. 

This problem was observed in both UV lamp setups. The reaction in the ultrahigh UV lamp was 

so fast that the microchannel was clogged by aggregated polymer particles immediately after 3 
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seconds of operation and the clogging process could not be recorded. The decreasing velocity of 

partially polymerized droplets was observed and recorded in the medium-high UV lamp setup in 

a long, serpentine reaction channel. The inlet pressure was sensitive to the building up of pressure 

by the partially polymerized droplet, so the flow rate in the micro-channel changed; as a result, the 

droplet formation is affected. The partially polymerized droplets can be pushed away slowly by 

increasing the inlet flow rate in both channels. If the polymerization or gelation is completed inside 

the micro-channel, it will permanently clog.  

Although the process of clogging is complex and the mechanism is not well understood, the 

potential cause and solution of micro-channel clogging is reviewed in Kumacheva’s work21. She 

mentions that the aggregation of a partially polymerized droplet can lead to the clogging of a 

reaction channel. The drop in velocity of a pre-polymer droplet during a gelation process in the 

reaction region leads to the coalescence and merging of droplets into a large plug. By the time the 

pre-polymer droplet solidifies completely, the reaction channel is fully clogged. The recommended 

solution is to expand the channel size in the reaction region or reduce the droplet size. The 

reduction of contact between the droplets and the micro-channel wall surface minimizes the 

probability of clogging during the reaction. The second method is to increase the flow rate in the 

reaction channel to compensate the pressure drop so that the partially polymerized droplet can be 

pushed away.  

The first recommended method was not applied in the chip design in this project. The channel 

height and width at the junction and reaction region was fixed at 50 and 200 micrometers, 

respectively. The droplet in the channel is always disk-like, as mentioned previously. If the droplet 

is too small, uniform size distribution is not guaranteed. In the second method, an increase in the 

flow rate in the reaction channel (by additional oil channel or reduction in channel width) further 
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reduces the reaction time and increases the contact between the droplet and the channel wall 

surface. Therefore, the second method did not work for the chip design in this work either.  

Semi-on-chip polymerization polymerizes the droplet in the tubing to prevent clogging inside the 

chip. Two sizes of Teflon tubing attached to the microchip outlet were tested in this project (Inner 

Diameter: 750μm and 250μm). The droplet deformed from a disk-like shape into sphere due to the 

changing cross section area from rectangular to circular shape. The advantage of this method is 

that the droplet flows at the center in the tubing without touching the tubing wall. However, the 

large-diameter tubing significantly reduces the velocity of monomer droplets when they enter the 

tubing, so droplets can coalesce in the tubing. The tubing with a smaller diameter supresses this 

problem. As a result, micro-particles synthesized in larger-diameter tubing are more poly-

dispersed than they are in smaller tubing. The fluorescence microscopy image in Figure 4- 5 shows 

that the product polymer micro-particles are poly-dispersed before washing. The particles in the 

middle are larger than the surrounding particles. The highly crosslinked polymer chain shrinks to 

the center; therefore, the core of droplet is darker than the shell, which indicates either a lower 

crosslinked density polymer or incomplete polymerization. A similar observation is reported by 

Bodong39.  
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Figure 4- 5 Fluorescence microscopy image of semi-on-chip photo-polymerization.  

The problem associated with this technique is that the droplet may coalesce and merge before 

reaction in the tubing. To enhance the observation of droplet flow in the tubing, we add 

fluorescence dye to the monomer solution. When the monomer droplet is exposed to UV light, it 

glows slightly in a dark room; so we can keep tracking the morphology and movement of the 

droplets in the tubing. Without the addition of fluorescent dye, the droplet is transparent in the 

tubing. The tubing is attached with the microchip outlet want vertically upward at the joint region 

initially and bend 90 degree before the reaction region. Gravity causes droplet velocity reduction 

in the joint region, so the droplets potentially merge. In addition, any mechanical disturbance—

such as vibration or bending in tubing—will cause merging of droplets. Several variations on the 

tubing method were investigated, such as decreasing tubing length from 30 cm to 10 cm and 

reducing the bending angle; however, the coalescence in the tubing does not improve. This 

problem magnifies if longer tubing is used.  
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4.4 Off-chip photo-polymerization: 

For the off-chip polymerization technique, monomer droplets are collected in a reservoir or a petri 

dish and exposed to UV irradiation to polymerize. This method avoids the clogging issue; however, 

it suffers from serious aggregation during polymerization. A similar observation is reported by 

Wei Li et al.33 For the glass-slide and the oil-reservoir experiment, the monodispersed monomer 

droplet produces a thin film or cluster of poly-dispersed polymer micro-particles after 

polymerization. The inverted-chip method, developed based on the oil-reservoir method, produces 

monodispersed spherical polymer micro-particles.  

4.4.1 Glass slide setup: 

The uniform-sized monomer droplets are collected on a glass for this experimental setup. The 

droplets touch each other. FC 40 is the oil used for this experiment setup. It has a higher density 

Figure 4- 6 Monodispersed monomer droplets on Glass slide before 

polymerization 
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than the monomer solution; therefore, the droplet floats on the top of oil. There are multiple vertical 

layers of monomer droplets close to the outlet region, as shown on the right side of Figure 4- 6.  

Droplets attract each other due to interfacial force, so they do not flow directly to the end of the 

glass slide (flow from left to right in Figure 4- 6). The velocity decreases dramatically at the outlet 

exit region, so some droplets are pushed to the top layer. After exposure to UV irradiation, 

monomer droplets disappear, and a thin and transparent polymer film forms on the top of the oil 

which can be easily broken by a tweezer. The monomer droplets on the glass slide contact each 

Figure 4- 7 Off-chip polymerization. Polymerization in external oil reservoir 
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other tightly, so they crosslink on the interface during polymerization. Therefore, the space 

between monomer droplets during polymerization is critical to retain the original morphology.  

4.4.2 Polymerization in external oil reservoir: 

The alternative off-chip polymerization method is to collect the monomer droplets in a plastic vial 

filled with oil, which is called an oil reservoir and is followed by UV irradiation (as shown in 

Figure 4- 7). The initial experimental setup, TEMED, is added to the monomer solution for faster 

reaction, and the FC 40 is used for the oil phase to avoid droplet leakage. The reservoir is filled 

with hexadecane and DEAP mixture, Figure 4- 7(a). When the outlet tubing is attached to the 

reservoir vial, the FC 40 sunk to the bottom and the monomer droplet floated in the middle layer 

due the density (𝜌𝐹𝐶40 > 𝜌𝑚𝑜𝑛𝑜𝑚𝑒𝑟 > 𝜌ℎ𝑒𝑥𝑎𝑑𝑒𝑐𝑎𝑛𝑒). Since these three fluids are immiscible, the 

FC 40 forms a large droplet (monomer droplet on top and FC 40 on the bottom) before it sinks to 

the bottom. Droplets sink individually and accumulate at the bottom of the reservoir. The 

accumulated droplets are continuously exposed to UV irradiation. During photo-polymerization, 

Figure 4-8 Aggregated polymer micro-particles 
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the partially polymerized micro-particles aggregate to form a cluster of micro-particles, as shown 

in Figure 4-8.  

Changing the oil in the reservoir to FC40 supresses aggregation, as shown in Figure 4- 7(b) right; 

but it cannot be avoided completely. In this situation, the monomer droplet floats directly to the 

top of oil. Therefore, the reaction time for individual monomer droplets increases. As a result, the 

conversion is higher and there is a smaller chance to aggregate. 

To conclude off-chip polymerization, to achieve individual polymer micro-particles, the monomer 

droplets need to be polymerized individually and separately. Otherwise, the monomer droplets 

aggregate during polymerization. To increase the space, the monomer droplet is poured into a petri 

dish and then polymerized. However, the mechanical disturbance during pouring causes merging 

of small droplets to larger droplets; even so, many droplets remain individual. After polymerization 

in the petri dish, polydispersed polymer micro-particles are collected and washed (as shown in 

Figure 4- 9).  

Figure 4- 9 Optical microscopy image of poly-dispersed polymer micro-particles. 



65 

 

4.4.3 Inverted-chip method: 

The inverted-chip method is the improved version of the oil-reservoir method, which gives more 

uniform spherical micro-particles without the clogging issue. By simply flipping the chip 180° and 

attaching a short straight tubing to the outlet, droplet coalescence in the tubing is avoided. The 

flipped chip does not affect droplet generation, which was mentioned in the previous section. The 

droplet generation can be observed in the carved window at the junction region. A string of 

monomer droplets fell directly to the middle of the graduated cylinder without merging and 

coalescing, as shown in Figure 4- 10. The space between the droplets is larger than that in the on-

chip method or the semi-on-chip method, so the droplets can be polymerized separately and 

individually. The reaction time is extended to approximately 30 seconds since the graduated 

cylinder is much longer than a plastic vial. The reaction time can be further extended by increasing 

cylinder length.  

 

 

 

Figure 4- 10 A string of droplets in a graduated cylinder for the inverted-chip method. 
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Chapter 5: Result and Discussion 

The mono-dispersed polymer micro-particle was successfully synthesized using inverted-chip 

method. Size and size distribution, composition, and crosslinking density are analyzed and 

discussed in this chapter.  

5.1 Micro-particles size and size distribution: 

After polymerization, the monomer droplet was washed with isopropyl alcohol or methanol and 

dried in a vacuum oven for 24 hours. It is then stored in a vacuum desiccator. The dried micro-

particles are shrunk and deformed, as shown in Figure 5- 1. The dried micro-particle has a larger 

CV% (5.68%) than that of monomer droplets before polymerization. 

 

Figure 5- 1 dried polymer micro-particle. Left: before Matlab program image processing. Right 

Processed image. 

5.2 FTIR analysis:  

Experiment design: 
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Homo-polymer polyacrylamide and sodium polyacrylate micro-particles were synthesized and 

measured for reference. Then crosslinked copolymer micro-particles of acrylamide and sodium 

acrylate with 10% of NaA and 55% NaA are synthesized and measured. The micro-particles with 

different cross-linker concentrations are also synthesized and measured. The experiment design 

table is shown in Table 5- 1. 

Table 5- 1 FTIR experiment design table 

Run # 1 2 3 4 5 6 

NaA% (%) 0 10 10 55 55 100 

Bis (g) 0.2 0.2 0.1 0.2 0.1 0.2 

 

Result: 
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Figure 5- 2 Hydrogel FTIR spectrum. From top to bottom: Polyacrylamide homopolymer, copolymer with 

55% of sodium acrylate, copolymer with 10% of sodium acrylate, sodium polyacrylate homopolymer. 

According to the spectrum in Figure 5- 2, bands at 3410-3421cm-1 and 3190-3914cm-1 represent 

asymmetry and symmetry vibrations of the NH2 group, which are characteristic of the acrylamide 

unit. Those two peaks are broadened by O-H stretch at 3300 cm-1. The strong peak at 1650-1680 

cm-1 indicates the C=O bond. Bands at 1560 and 1410 cm-1 indicate the carboxylate group 

stretching of COO- group. The band at 2950 cm-1 is assigned to CH and CH2 stretching. The 

carboxylate group at 1410 cm-1 is chosen as a standard to compare with different NaA 

compositions. The increasing peak area in bands 1410 and 1560 cm-1 means an increasing acrylate 

composition in the copolymer. From Figure 5- 2, it is difficult to distinguish the difference of 

absolute peak area at 1410 cm-1 because of the absorbance variation. 
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The absorbance of copolymer micro-particles is smaller than the absorbance of homopolymer that 

results in a lower copolymer concentration in the KBr pellet. To avoid the absorbance difference 

and pellet thickness difference, a relative absorbance is calculated for comparison. The relative 

peak was chosen at CH and CH2 stretching at 2950 cm-1, which is shown in every spectrum.  

 

Figure 5- 3 rescaled spectrum of 10% and 55% NaA. 

Since the absorbance of 10% and 55% NaA is too small compared to the absorbance of 

homopolymer, the 10% and 55% NaA spectrum was rescaled and magnified, as shown in Figure 

5- 3. The arrow indicates the corresponding absorbance axis.  
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The base line of two peaks is set by connecting a line within chosen range. The method is depicted 

in Figure 5- 4, and Figure 5- 5 below. The peak area is calculated by OriginPro®. The relative 

absorbance is calculated according to the following equation: 

 
𝐴𝑟𝑒𝑙 =

𝐴1410
𝐴2950

 (5-1) 

where 𝐴𝑟𝑒𝑙 is the relative absorbance and  𝐴1410 and 𝐴2950 represent the peak area under 1410 cm-

1 and 2950 cm-1, respectively. 

 

Figure 5- 4 Chosen band and method of calculation of relative peak area. The spectrum is 55% NaA 

monomer concentration. 
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The acrylate content has a good linear correlation with the relative peak area, which is shown in 

Figure 5- 6.  The relation is obtained by a linear-regression method, as follows: 

 𝑁𝑎𝐴% = −8.6675 + 194.6867𝐴𝑟𝑒𝑙 (5-2) 

The increase in calculated relative absorbance is matched with the increase in acrylate content. At 

zero acrylate content (polyacrylamide homopolymer), the relative absorbance is 0.5124, which 

corresponda to weak amine stretch of acrylamide. The y-axis intercepts at −8.6675, which is 

similar to the value Magalhaes et al. reported: −8.8354. The reported slope is smaller than it is in 

this study, which could be due to the cross-linker concentration difference. 

Therefore, two levels of cross-linker concentration were studied, which are 0.1 and 0.2 grams of 

BIS in the monomer solution. The cross-linker effect is demonstrated in Figure 5- 7. The lower 

cross-linker concentration shows a higher Arel value. The increasing cross-linker concentration 

Figure 5- 5 (left) Magnified image for Figure 5- 4 at 1st peak area around 2950 cm-1. (right) Magnified 

image for Figure 5- 4 at 2nd peak area around 1410 cm-1 
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reduces the calculated relative absorbance. The same effect is shown in both 10% and 55% acrylate 

content.  

 

Figure 5- 6 Acrylate content (F1) and relative peak area (Arel) relation for different copolymer composition. 
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5.3 Swelling test analysis and discussion: 

Two important parameters of hydrogels are the equilibrium volume-swelling ratio (Q) and the 

number average molecular weight between crosslinks (𝑀̅𝑐)
55. The equilibrium volume-swelling 

ratio is the reciprocal of the polymer-volume fraction in the swollen state, which can be measured 

by the swelling test. The number average molecular weight between crosslinks determines the 

crosslinking density and porosity in hydrogel. Combining the equilibrium swelling theory and 

Flory-Huggins mixing theory, the 𝑀̅𝑐 can be calculated from swelling measurement with a few 

other important variables, such as the solvent-interaction parameter (𝜒1). 

 

 

Figure 5- 7 Cross-linker effect on relative peak area. 



74 

 

Equilibrium Swelling Theory: 

The polymer network will absorb solvent until the chemical potential of solvent in a free solution 

equals the chemical potential in the polymer network. Four terms contribute to the swelling 

equilibrium theory: the mixing of polymer with solvent (𝛱𝑚𝑖𝑥 ), the elastic response due to 

crosslinking (𝛱𝑒𝑙𝑎𝑠 ), the ionic contribution from the chemical potential inside and outside of 

polymer (𝛱𝑖𝑜𝑛), and the electrostatic interaction of charges on the polymer chain (𝛱𝑒𝑙𝑒). The 

equation can be written as follows55: 

 𝛱𝑚𝑖𝑥 + 𝛱𝑒𝑙𝑎𝑠 + 𝛱𝑖𝑜𝑛 + 𝛱𝑒𝑙𝑒 = 0 (5-3) 

For a non-ionic polymer, 𝛱𝑖𝑜𝑛  and 𝛱𝑒𝑙𝑒  are negligible. However, the acrylamide and sodium 

acrylate copolymer is an anionic polymer and those two terms cannot be negligible. However, 

according to the theoretical calculation and the experimental result, the 𝛱𝑒𝑙𝑒  is typically small 

compared to the 𝛱𝑖𝑜𝑛. Therefore, the equilibrium equation simplifies to this: 

 𝛱𝑚𝑖𝑥 + 𝛱𝑒𝑙𝑎𝑠 + 𝛱𝑖𝑜𝑛 = 0 (5-4) 

The 𝛱𝑚𝑖𝑥 contribution to the chemical potential can be derived from Flory-Huggins theory via the 

entropy change on the mixing, ∆S𝑚𝑖𝑥, and the heat of mixing, ∆H𝑚𝑖𝑥, as shown in Equation (5-5): 

 ∆G𝑚𝑖𝑥 = ∆H𝑚𝑖𝑥 − 𝑇∆S𝑚𝑖𝑥 (5-5) 

where T is the absolute temperature. The ∆𝐻𝑚𝑖𝑥 is defined by liquid lattice theory as follows: 

 ∆H𝑚𝑖𝑥 = 𝑧∆𝑤12𝑥1𝑛1𝑣2,𝑠 (5-6) 

To abbreviate the heat of mixing of two components, the Flory interaction parameter is introduced 

as follows: 
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𝜒1 =

𝑧∆𝑤12𝑥1
𝐾𝑇

 (5-7) 

where z is the lattice coordination number, ∆𝑤12 is the interchange energy due to unlike pair 

contacts, and 𝑥1 is the number of segments in the solvent molecule55. Substituting equation (5-7) 

into equation (5-6) yields: 

 ∆H𝑚𝑖𝑥 = 𝑅𝑇𝜒1𝑛1𝑣2,𝑠 (5-8) 

The entropy of mixing can be written as follows: 

 ∆S𝑚𝑖𝑥 = −𝑘(𝑛1𝑙𝑛𝑣1,𝑠 + 𝑛2𝑙𝑛𝑣2,𝑠) (5-9) 

where 𝑣1,𝑠 is the volume fraction of solvent and 𝑣2,𝑠 is the volume fraction of polymer. 𝑛1 is the 

number of solvent molecules in a solution, 𝑛2 is the number of polymer molecules in a solution, 

and k is the Boltzman constant55. In a crosslinked polymer system, the number of assumed 

uncrosslinked polymer molecules (𝑛2) equals to zero. So the overall equation can be simplified as 

follows: 

 ∆G𝑚𝑖𝑥 = ∆H𝑚𝑖𝑥 − 𝑇∆S𝑚𝑖𝑥 = 𝐾𝑇[𝑛1𝑙𝑛𝑣1,𝑠 + 𝜒1𝑛1𝑣2,𝑠 ] (5-10) 

Differentiation of the above equation with respect to 𝑛1 can be written as equation (5-11): 

 
𝛱𝑚𝑖𝑥 = [

𝑅𝑇

𝑉1
] [ln(1 − 𝑣2,𝑠) + 𝑣2,𝑠 + 𝜒1𝑣2,𝑠

2] (5-11) 

where R is the gas constant and T is the absolute temperature. The term 𝑣2,𝑠 is the polymer volume 

fraction in swollen state, which can be measured experimentally. 𝑉1 is the solvent molar volume. 

In this case, water is used as a solvent, so 𝑉1  is 18 cm3/mol. The 𝜒1  is the polymer-solvent 

interaction parameter according to the Flory-Huggins theory, which accounts for the free-energy 

change due to the mixing process. This variable is usually between 0 and 1; a higher value indicates 

a poor solvent for the polymer. 𝜒1 can be estimated by different approaches; however, they are not 
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usually applicable for strong hydrogel bonding. For this project, the 𝜒1value is assumed to be equal 

to 0.48 for polyacrylamide and water interaction, according to Peppas et al.55.  

The elasticity term, 𝛱𝑒𝑙𝑎𝑠,  accounts for the elastic response due to the crosslinking that is 

controlled by the effective crosslinking density (𝜌𝑥). Increasing the crosslinking density decreases 

the water absorbance capacity since it reduces the number of possible configurations of the 

polymer chain and the movement of the polymer chain is limited. The general equation can be 

written as follows: 

 

𝛱𝑒𝑙𝑎𝑠 = −RT𝜌𝑥𝑉2,𝑟[(
𝑉2,𝑠
𝑉2,𝑟
)

1
3

− 0.5 (
𝑉2,𝑠
𝑉2,𝑟
)] (5-12) 

where 𝑉2,𝑟 is the polymer volume fraction in the solvent at a relaxed state: i.e., the volume fraction 

right after crosslinking but before swelling. For the polymer crosslinked in absence of solvent—

i.e., for the crosslinking network prepared in bulk state—𝑉2,𝑟 can be assumed to be 1. Therefore, 

the equation reduces to this: 

 
𝛱𝑒𝑙𝑎𝑠 = −RT𝜌𝑥[(𝑣2,𝑠)

1
3 − 0.5(𝑣2,𝑠)] 

(5-13) 

To extend the definition of crosslinking density, 𝜌𝑥  is correlated with the number average 

molecular weight between crosslinks, 𝑀̅𝑐 , and the number average molecular weight of the 

polymer before crosslinking, 𝑀̅𝑛. The relationship can be shown as follows: 

 
𝜌𝑥 = [

1

𝑣𝑀̅𝑐
] [1 −

2𝑀̅𝑐

𝑀̅𝑛
] (5-14) 

The number average molecular weight before crosslinking can be measured by using conventional 

Gel Permeation Chromatography methods. If crosslinking density is obtained by back calculation 

through swelling measurement, and if 𝑀̅𝑛 is obtained by GPC, the number average molecular 
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weight between crosslink can be easily calculated. The decreasing of 𝜌𝑥 indicates a larger average 

molecular weight between crosslinks, so the polymer chain is less crosslinked. Figure 5- 8 

illustrates the relationship between crosslinking density and number average molecular weight 

between crosslinking, assuming number average molecular weight before crosslinking is 10000 

and v = 100 𝑐𝑚3/𝑚𝑜𝑙. With an increase in the crosslinking density (from 105 to 103 mol/cm3), the 

𝑀̅𝑐 decreases from 833 to ~10. A smaller 𝑀̅𝑐 value means that there are fewer chains between 

crosslinks; therefore, the polymer is more crosslinked. The value of 𝑀̅𝑛 is usually much greater 

than the value of 𝑀̅𝑐, and the equation 5-14 can be simplified to with the assumption of  𝑀̅𝑐>> 

𝑀̅𝑛, as follows: 

Figure 5- 8 crosslinking density 𝜌𝑥 and number average molecular weight between crosslinking 

(𝑀̅𝑐) plot. 
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 𝜌𝑥 = [
1

𝑣𝑀𝑐
]. (5-15) 

This assumption is valid if 𝑀̅𝑛is very high; usually 𝑀̅𝑛 is on the order of 104 or higher. This can 

be verified by plotting crosslinking density versus 𝑀̅𝑐 at different 𝑀̅𝑛 values, as in Figure 5- 9. It 

clearly shows that the tendency of the curve is not affected by a change in 𝑀̅𝑛 when 𝑀̅𝑛is greater 

than 104.  

Since poly(acrylamide-co-sodium acrylate) is an anionic polymer, the 𝛱𝑖𝑜𝑛 term that accounts for 

the osmotic swelling pressure due to the ion concentration difference cannot be ignored. The 

ionisable group in polymers must be maintained electro-neutral against the counter-ions that arise 

from the dissociation. Therefore, this term is significant in the ionic polymer network. The 

equation is given by, 

Figure 5- 9 Crosslinking density vs. 𝑀̅𝑐at different 𝑀̅𝑛 value. 
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𝛱𝑖𝑜𝑛 = 𝑅𝑇[

𝑖𝑣2,𝑠
𝑉𝑚

+ 𝑣(𝑐𝑠
′ − 𝑐𝑠)] (5-16) 

where i is the fraction of ionized polymer structural units in polymer chain, 𝑉𝑚 is the molar volume 

of the monomer unit,  𝑣 is the number of ions in solvent,  𝑐𝑠
′ and 𝑐𝑠 are the concentrations of salt 

within the gel and in solution that came from external solvent, respectively. In this study, pure DI 

water with a pH of 7 is used as a solvent for the swelling test. Therefore, the second term in the 

equation (5-16) can be assumed to be zero. The equation simplifies to the following:  

 
𝛱𝑖𝑜𝑛 = 𝑅𝑇 [

𝑖𝑣2,𝑠
𝑉𝑚
] (5-17) 

Combining all these three equations leads to equation (5-18): 

 [ln(1 − 𝑣2,𝑠) + 𝑣2,𝑠 + 𝜒1𝑣2,𝑠
2]

𝑉1
+ 𝜌𝑥 [(𝑣2,𝑠)

1
3 − 0.5(𝑣2,𝑠)] + 

𝑖𝑣2,𝑠
𝑉𝑚

= 0 (5-18) 

The volume degree of swelling (Q), which equals the inverse of 𝑣2,𝑠 , can be represented and 

calculated as a function of 𝜒1, ρ𝑥, 𝑖, 𝑉1 and 𝑉𝑚.  

According to Flory-Huggins theory, a decrease in crosslinking density and the increasing of ionic 

content in the polymer network improves the swelling ratio of hydrogel. The swelling ratio is 

proportional to the ionic content in hydrogel and is inversely proportional to the crosslinking 

density, as shown in Figure 5- 10. 



80 

 

 Assuming that the polymer chains are Gaussian chains, Vm = 90 𝑐𝑚3/𝑚𝑜𝑙, V1 =10 𝑐𝑚3/𝑚𝑜𝑙 for 

water molar volume, 𝜒1 = 0.48 55. When the ionic content is increased at constant crosslinking 

density, the swelling ratio is (Q) increased. When crosslinking density is increased at constant 

ionic content, the swelling ratio decreases, so the water absorbance capacity decreases.  

Experimental result analysis: 

The dried polymer micro-particles with different monomer composition is placed into the cell-

culture well plate, and the original size is recorded using a microscope. When DI water is added, 

the micro-particle swell quickly and the swelling process is recorded by microscope, as shown in 

Figure 5- 11. The volume increases 4 to 36 times for different monomer compositions and different 

crosslinker concentrations.  

Figure 5- 10 Theoretical swelling curves for ionic polymer network. Assuming V2,r =1.  
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Micro-particle diameter was measured by ImageJ® three times, and the average value with error 

bar was plotted in Figure 5- 12. The micro-particles expand exponentially in the first 20 seconds, 

and the volume after swelling reaches an equilibrium after 30 seconds. The volume does not 

Figure 5- 12 Hydrogel micro-particles swelling experimental result average diameter vs. 

swelling time. The crosslinker concentration fixed at 0.2 w/v%. 

Figure 5- 11 Hydrogel micro-particles after swelling (right) Matlab program processed image (left). 
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change much if additional water is added. According to Figure 5- 13, the initial size of micro-

particle is similar for 10% and 55% NaA content in the feeding composition. After swelling, the 

diameter of 10% NaA micro-particles is only 2/3 that of 55% NaA micro-particle. The polymer 

fraction in the swollen state can be calculated from diameter change using equation 5-19: 

 

𝑄 =
𝑉

𝑉0
=

4
3 × 𝜋 × (

𝐷
2)
3

4
3 × 𝜋 × (

𝐷0
2 )

3
= (

𝐷

𝐷0
)3 (5-19) 

After swelling, the dried micro-particle expands to almost 40 times its original size for 55% NaA 

copolymer. The 10% NaA copolymer has a smaller swelling ratio (~14 times). The larger swelling 

ratio is contributed to the higher ionic content in 55% NaA copolymer, which is in agreement with 

the Flory-Huggins theory.  

Figure 5- 13 Hydrogel micro-particles swelling experimental result average swelling ratio vs. 

swelling time. The crosslinker concentration fixed at 0.2 w/v%. 
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The effect of crosslinker concentration is studied in this project. 0.1 and 0.2 grams of crosslinker 

was used for different monomer compositions. The crosslinker concentration is inversely 

proportional to the swelling ratio, as shown in Figure 5- 14, which is in agreement with the Flory-

Huggins theory. The higher crosslinker concentration results in higher crosslinking density and in 

a smaller number of average molecular weight between crosslinks; therefore, the swelling is less.  

Compared to the bulk hydrogel, the micro-particles not only swell faster but the swelling ratio is 

also higher, especially when the ionic content is at a high level. From Figure 5- 15, the swelling 

ratio is same for the polyacrylamide homopolymer obtained from bulk and microfluidic chip. At 

10% of sodium acrylate content, the swelling ratio of micro-particles is 47.12% higher than that 

of bulk. At 55% of sodium acrylate content, the swelling ratio of micro-particles is 126.49% higher 

than that of bulk.  

The micro-particle has a large surface-to-volume ratio compared to that of bulk; therefore, micro-

particle swelling is much faster than in bulk. During polymerization, the oil phase instantaneously 

removes the heat released from droplet polymerization. Therefore, the micro-particles have a more 

uniform crosslink in the surface and core compared to the bulk. So the water can penetrate to the 

core of micro-polymer faster than in bulk.  
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Figure 5- 14 The effect of crosslinker concentration on swelling ratio. 

 

Figure 5- 15 The effect of ionic content% on swelling ratio. 
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According to equation (5-18), the measured swelling ratio is related to the crosslinking density (ρ𝑥) 

and the ionic content (𝑖). For the polyacrylamide homopolymer, the ionic content is zero, so we 

estimate the ρ𝑥 , which equals 8.33 × 10−4 . We can assume that the crosslinking density is 

independent of the feed composition if the crosslinker concentration and the total monomer 

concentration are fixed. Therefore, the same value of ρ𝑥 is applied to the other polymer system if 

the crosslinker concentration and the total monomer concentration are the same. The theoretical 

ionic content can be calculated based on equation (5-18), as shown in Figure 5- 16. The theoretical 

ionic content is smaller than the experimental result. This can be explained by the fact that the 

effective ionic content is smaller than the feed ionic composition. The deviation is small at lower 

feed ionic content but increases dramatically at the high-feed ionic composition. A similar 

phenomena is reported by Okay et al.56 

 

Figure 5- 16 The experimental result and theoretical value comparison. Red circle is the 

experimental measurement. Black dot is the calculated theoretical value. 
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Chapter 6: Summary, Conclusion and Future Work 

In this work, an experiment method is developed to synthesize poly (acrylamide-co-sodium 

acrylate) hydrogel micro-particles in microfluidic devices. On-chip and off-chip methods are 

evaluated. The inverted-chip method produces monodispersed spherical hydrogel micro-particles. 

The properties of micro-particles (with various monomer composition and crosslinker 

concentration) were analyzed, such as volume swelling ratio, composition, size and size 

distribution. The swelling property was controlled by the ionic content and crosslinker 

concentration. The swelling ratio obtained from the swelling test matches the Flory-Huggins 

theory and the equilibrium swelling theory. 

Future work and recommendations: 

 In this work, only two levels of NaA feed composition are synthesized and tested. For deep 

understanding of swelling mechanism, more experiment with different feed compositions 

are required.  

 In this study, DEAP is used as photo-initiator. It has higher solubility in oil than in water. 

Therefore, adding DEAP is necessary to maintain the initiator concentration in monomer. 

If the initiator switches to a water-soluble initiator, this problem will be avoided, which 

can save oil and initiator in reservoir. 

 The conversion is generally measured by gravimetry in conventional polymer synthesis. 

However, the gravimetry is difficult to perform in this work, since the amount of product 

is too low. It may be useful to do additional characterization to understand conversion in 

MF.   
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 The reaction time is limited by the cylinder height and intensity of the UV lamp. Therefore, 

a longer cylinder or stronger UV intensity may increase the conversion so that MPs can be 

synthesise at a lower total monomer and initiator concentration. 

 MPs production can be scaled using multiple MFs or multiple micro-channels in a MF.  
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