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Postman Problems on Mixed Graphs

Francisco Javier Zaragoza Mart́ınez

Abstract

The mixed postman problem consists of finding a minimum cost tour of a mixed graph

M = (V,E,A) traversing all its edges and arcs at least once. We prove that two well-known

linear programming relaxations of this problem are equivalent. The extra cost of a mixed

postman tour T is the cost of T minus the cost of the edges and arcs of M . We prove that

it is NP-hard to approximate the minimum extra cost of a mixed postman tour.

A related problem, known as the windy postman problem, consists of finding a minimum

cost tour of an undirected graph G = (V,E) traversing all its edges at least once, where

the cost of an edge depends on the direction of traversal. We say that G is windy postman

perfect if a certain windy postman polyhedron O(G) is integral. We prove that series-parallel

undirected graphs are windy postman perfect, therefore solving a conjecture of Win.

Given a mixed graph M = (V,E,A) and a subset R ⊆ E ∪ A, we say that a mixed

postman tour ofM is restricted if it traverses the elements of R exactly once. The restricted

mixed postman problem consists of finding a minimum cost restricted tour. We prove that

this problem is NP-hard even if R = A and we restrict M to be planar, hence solving a

conjecture of Veerasamy. We also prove that it is NP-complete to decide whether there

exists a restricted tour even if R = E and we restrict M to be planar.

The edges postman problem is the special case of the restricted mixed postman problem

when R = A. We give a new class of valid inequalities for this problem. We introduce

a relaxation of this problem, called the b-join problem, that can be solved in polynomial

time. We give an algorithm which is simultaneously a 4
3
-approximation algorithm for the

edges postman problem, and a 2-approximation algorithm for the extra cost of a tour.

The arcs postman problem is the special case of the restricted mixed postman problem

when R = E. We introduce a class of necessary conditions for M to have an arcs postman

tour, and we give a polynomial-time algorithm to decide whether one of these conditions

holds. We give linear programming formulations of this problem for mixed graphs arising

from windy postman perfect graphs, and mixed graphs whose arcs form a forest.
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To my dearest friends in México, whom I have not forgotten: Ada, Alejandro, Aurora,

Carlos, Carlos Enrique, Clara, César, Edgar, Enrique, Erick, Ernesto, Fabio, Feliú, Gabriel,
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Chapter 1

Introduction

El mundo era tan reciente, que muchas cosas carećıan de nombre,

y para mencionarlas hab́ıa que señalarlas con el dedo.

Cien años de soledad, Gabriel Garćıa Márquez

In this thesis we study a class of problems collectively known as postman problems. As the

name indicates, these are the problems faced by a postman who needs to deliver mail to all

streets in a city, starting and ending his labour at the city’s post office, and minimizing the

length of his walk. Some other applications of postman problems include frequent activities

such as garbage collection, street sweeping, snow plowing, and bus routing, but also less

frequent activities such as museum planning, graph drawing, and circuit embedding.

In graph theoretical terms, a postman problem consists of finding a minimum cost tour

of a graph traversing all its arcs (one-way streets) and edges (two-way streets) at least

once. The postman problem when all streets are one-way, known as the directed postman

problem, can be solved in polynomial time by a network flow algorithm. The postman

problem when all streets are two-way, known as the undirected postman problem, can be

solved in polynomial time using Edmonds’ matching algorithm, as shown by Edmonds and

Johnson. However, Papadimitriou showed that the postman problem becomes NP-hard

when both kinds of streets exist. This problem, known as the mixed postman problem,

and some of its variants, is the central topic of this thesis.

1



2 Postman Problems on Mixed Graphs

We study some properties of the linear programming relaxations of two well-known

integer programming formulations for the mixed postman problem. We prove that these

linear programming relaxations are equivalent. In particular, we show that the polyhedron

defined by one of them is essentially a projection of the other. We also give new, simpler

proofs of the half-integrality of one of these two polyhedra for general graphs, and the

integrality of the same polyhedron for graphs with vertices of even degree.

A problem closely related to the mixed postman problem is the windy postman problem,

where all streets are two-way, but the cost of traversing a street depends on the direction of

traversal. An integer programming formulation for the windy postman problem is similar

to one for the mixed postman problem, and their linear programming relaxations define

polyhedra with similar properties. We say that an undirected graph G is windy postman

perfect if the windy postman polyhedron is integral. We can see that if G is windy postman

perfect then, for every mixed graph M with underlying graph G, the mixed postman

polyhedron of M is also integral. In his doctoral thesis, Win proved that even graphs are

windy postman perfect, and conjectured that series-parallel graphs are also windy postman

perfect. We prove a statement stronger than this conjecture, namely, that a generalization

of the windy postman problem has linear programming relaxations whose corresponding

polyhedra are always integral if and only if G is series-parallel. We study this problem in

terms of grafts: We show that another generalization of the windy postman problem has

linear programming relaxations whose corresponding polyhedra are always integral only if

the graft defined by G and its vertices of odd degree does not contain certain graft minors.

In the remainder of this thesis, we study a variant of the mixed postman problem, called

the restricted mixed postman problem, in which we require that a tour of a mixed graph

traverses exactly once some of its edges and arcs, called restricted. These restrictions

appear in real-life situations due to bad roads, safety concerns, noise limitation, traffic

impediments, etc. We focus on two special cases of the restricted mixed postman problem:

when all arcs are restricted, and when all edges are restricted.

The first special case of the restricted mixed postman problem that we study, when all

arcs are restricted, is called the edges postman problem. It is not difficult to see that we

can eliminate the arcs from a reformulation of the edges postman problem, replacing them

by demands on the vertices. Hence, the edges postman problem can be seen as a version of



Introduction 3

the flow problem on an undirected graph G. In his doctoral thesis, Veerasamy conjectured

that this problem was NP-hard, and gave an approximation algorithm for it. We prove

that the edges postman problem is NP-hard, even if we restrict G to be planar. We correct

a small flaw in Veerasamy’s analysis of his algorithm, and give two other approximation

algorithms for the edges postman problem with better approximation guarantees. The best

of our algorithms has an approximation guarantee of 4
3
, which is better than the currently

best known guarantee for the mixed postman problem, namely 3
2
.

For most practical applications of postman problems, we consider that the cost of

traversing each edge or arc for the first time is irrelevant, since we are obliged to traverse

them at least once. In fact, a computationally equivalent way of formulating any postman

problem would be to find a tour minimizing the extra cost due to the additional traversals.

However, it is possible that these formulations have different approximability properties.

As an example, we mentioned in the last paragraph that the mixed postman problem has

an approximation algorithm with constant guarantee for the optimal length of a tour, but

we prove that it is impossible to approximate its extra cost within any given factor, unless

P = NP . As a positive result, we prove that our best approximation algorithm for the

edges postman problem has also a guarantee of 2 for the extra cost.

Given that the edges postman problem is NP-hard, we cannot expect to obtain a

complete linear programming formulation for it. However, we are able to give a linear

programming formulation for a relaxation of the edges postman problem that we call the

b-join problem. This problem is related to some well-known problems in matching theory.

The second special case of the restricted mixed postman problem, when all edges are

restricted, is called the arcs postman problem. Although it was known that this problem

is NP-hard, nothing was known about the complexity of the problem of finding a feasible

solution. We prove that finding a feasible solution is NP-complete, even if we restrict the

input to be planar. We introduce an infinite class of necessary conditions for feasibility,

and we exhibit an infinite family of mixed graphs to show that no finite subset of our

necessary conditions is sufficient. We give a polynomial-time algorithm to decide whether

one of these conditions holds. Finally, we give linear programming formulations of the arcs

postman problem for the class of mixed graphs arising from windy postman perfect graphs,

and the class of mixed graphs whose arcs form a forest.



4 Postman Problems on Mixed Graphs

1.1 Outline of the Thesis

This thesis is divided into six chapters. In the remainder of Chapter 1, we define our basic

terminology, and introduce some basic results that we will use later. Chapter 2 is a survey

on the Eulerian tour problem, and on polynomial-time solvable postman problems. Each

of the last four chapters is devoted to one of the hard postman problems mentioned before.

In Chapter 3, we study linear programming relaxations of the mixed postman problem, and

we introduce its bounded and restricted versions. Chapter 4 deals with the windy postman

problem and the integrality properties of the windy postman polyhedron. In Chapter 5,

we study the approximability of the edges postman problem, and the solvability of one of

its relaxations. In Chapter 6, we study the complexity of the arcs postman problem, we

give necessary conditions for feasibility, and we discuss some solvable cases.

Except for very small details, the last three chapters can be read independently of each

other, although they all depend on Chapter 3. We recommend that time-conscious readers

work quickly through Chapters 1 and 2, paying special attention to Section 1.3 on mixed

graphs, and then move on to Chapter 3, before going into any of Chapters 4, 5, or 6.

1.2 Mathematical Preliminaries

We denote by N the set of natural numbers {1, 2, . . .}, by Z the set of integer numbers

{. . . ,−2,−1, 0, 1, 2, . . .}, by Q the set of rational numbers, and by R the set of real numbers.

Moreover, we denote by Z+, Q+ and R+ the sets of nonnegative integer, rational, and real

numbers, respectively. Given a real number a, we denote by bac the integer part of a, that

is, the largest integer b such that a ≥ b, and by {a} the fractional part of a, that is, a−bac.

Given a nonempty set S, an element x of RS is called a real vector on S. Similarly, an

element of ZS is called an integer vector on S, an element of QS is called a rational vector

on S, etc. For s ∈ S, we denote x(s) also by xs, and we call it the s-th entry of x. We

say that the entries of x are indexed by S. For T ⊆ S, we denote
∑

t∈T xt by x(T ). For

S ′ ⊆ S, the restriction of x to S ′ is the vector x[S ′] ∈ RS′ such that x[S ′](s) = x(s) for all

s ∈ S ′. If S = {1, . . . , n}, we denote RS by Rn, QS by Qn, ZS by Zn, etc., and we say that

x ∈ Rn is an n-dimensional real vector. We extend all these notations to real matrices.
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If T ⊆ S, the characteristic vector χT of T with respect to S is defined by the entries

χT (t) = 1 if t ∈ T , and χT (t) = 0 otherwise. If T = S we write 1S or 1 instead of χS, if T

consists of only one element t we write 1t instead of χ{t}, and if T is empty we write 0S or

0 instead of χ∅. If x ∈ Rn, the support of x is the vector y ∈ Rn such that yi = 1 if xi 6= 0,

and yi = 0 otherwise, and it is denoted by supp(x). The positive support of x is the vector

y ∈ Rn such that yi = 1 if xi > 0, and yi = 0 otherwise, and it is denoted by supp+(x).

The characteristic vector χF of an ordered tuple F on S has entries χF(s) equal to the

number of times that s appears in F , for every s ∈ S.

1.3 Graph Theory

There are no standard conventions for names and notations in this field, and we have

decided to follow Bondy and Murty [10] to a certain extent. However, we aim to define as

many terms as possible in such a way that they apply to all kinds of graphs.

1.3.1 Undirected, Directed and Mixed Graphs

We define three kinds of graphs: undirected, directed, and mixed. An undirected graph

G is an ordered triple (V (G), E(G), ψG) consisting of two disjoint sets V (G) and E(G)

of vertices and edges, respectively, and an incidence function ψG : E(G) → {{u, v} :

u, v ∈ V (G)}. A directed graph D is an ordered triple (V (D), A(D), ψD) consisting of

two disjoint sets V (D) and A(D) of vertices and arcs, respectively, and an incidence func-

tion ψD : A(D) → {(u, v) : u, v ∈ V (D)}. A mixed graph M is an ordered quintuple

(V (M), E(M), A(M), ψE
M , ψ

A
M) consisting of three mutually disjoint sets V (M), E(M),

and A(M) of vertices, edges, and arcs, respectively, and two incidence functions ψE
M :

E(M)→ {{u, v} : u, v ∈ V (M)} and ψA
M : A(M)→ {(u, v) : u, v ∈ V (M)}. See Figure 1.1

for some examples. In this thesis, all graphs are finite.

To avoid repetition, we see the undirected graph G = (V (G), E(G), ψG) as the mixed

graph G = (V (G), E(G), ∅, ψG, ∅), and the directed graph D = (V (D), A(D), ψD) as the

mixed graph D = (V (D), ∅, A(D), ∅, ψD). When they are clear from the context, we

drop the incidence functions and write G = (V (G), E(G)), D = (V (D), A(D)) and M =

(V (M), E(M), A(M)), or simply G = (V,E), D = (V,A) and M = (V,E,A), respectively.



6 Postman Problems on Mixed GraphsPSfrag replacements

AAA BBB

CCC

G D M

aaa

bbb

ccc ddd

eee

Figure 1.1: An undirected graph G, a directed graph D, and a mixed graph M .

Let M = (V (M), E(M), A(M), ψE
M , ψ

A
M) be a mixed graph. Let u, v ∈ V (M), and let

e, f ∈ E(M) ∪ A(M). If ψE
M(e) = {u, v} or ψA

M(e) = (u, v) we say that u and v are the

ends of e, and that e joins u and v. If e is an arc, we also say that e is oriented from u

to v, that u is the tail of e, and that v is the head of e. If there exists e ∈ E(M) ∪ A(M)

such that e joins u and v, we say that u and v are adjacent, that e is incident with u and

v, and vice versa. If u = v then e is called a loop. Two distinct edges e and f are parallel

if ψE
M(e) = ψE

M(f). Two distinct arcs e and f are parallel if ψA
M(e) = ψA

M(f). An edge e

and an arc f are parallel if ψE
M(e) = {u, v} and ψA

M(f) = (u, v) for some u, v ∈ V (M). The

mixed graph M is called simple if it has no loops, and no parallel edges or arcs. In this

case, we usually denote an edge e with ends u and v as {u, v} or uv, and an arc a with tail

u and head v as (u, v) or uv. In this thesis, graphs are not necessarily simple, unless we

explicitly say so. In Figure 1.1, we draw an edge as a curve joining its ends, and an arc as

an arrow from its tail to its head. In G, edges a and b are parallel, while edge e is a loop.

Given a mixed graph M with no loops, and no parallel edges or arcs, its adjacency

matrix A(M) is the integer matrix on V (M)× V (M) whose entries are defined as follows:

A(M)u,v =

{

1 if there is an edge or arc from u to v

0 otherwise.
(1.1)



Introduction 7

If we allow parallel edges or arcs, the incidence matrix I(M) ofM is the integer matrix

on V (M)× (E(M) ∪ A(M)) whose entries are defined as follows:

I(M)v,e =



















1 if e ∈ E(M) and v is an end of e

1 if e ∈ A(M) and v is the head of e

−1 if e ∈ A(M) and v is the tail of e

0 otherwise.

(1.2)

We say that the directed graph M ∗ = (V (M), E(M) ∪ A(M), ψ∗
M) is an orientation of

M if, ψ∗
M(a) = ψA

M(a) for all a ∈ A(M), and, for all e ∈ E(M), ψE
M(e) = {u, v} implies

that ψ∗
M(e) is one of (u, v) or (v, u). Two orientations M+ and M− of M are said to be

opposite if, for all non-loops e ∈ E(M), ψ+
M(e) 6= ψ−

M(e). The associated directed graph
~M of M is given by (V (M), ~E(M) ∪ A(M), ~ψM), where ~E(M) = {e+, e− : e ∈ E(M)},

for every e ∈ E(M), if ψM(e) = {u, v} then ~ψM(e+) = (u, v) and ~ψM(e−) = (v, u), or

vice versa, and ~ψM(a) = ψA
M(a) for all a ∈ A(M). The underlying undirected graph M̄ of

M is given by (V (M), E(M) ∪ A(M), ψ̄M), where, for every a ∈ A(M), if ψM(a) = (u, v)

then ψ̄M(a) = {u, v}, and ψ̄M(e) = ψM(e) for every e ∈ E(M). In Figure 1.1, D is an

orientation of both G and M , and G is the underlying undirected graph of both D and M ,

while in Figure 1.2, D− is an orientation of G opposite to D, ~G is the associated directed

graph of G, and ~M is the associated directed graph of M .

1.3.2 Subgraphs and Isomorphism

Let M = (V (M), E(M), A(M), ψE
M , ψ

A
M) and N = (V (N), E(N), A(N), ψE

N , ψ
A
N) be two

mixed graphs. We say that M is a subgraph of N , and we denote this by M ⊆ N , if

V (M) ⊆ V (N), E(M) ⊆ E(N), A(M) ⊆ A(N), ψE
M(e) = ψE

N(e) for all e ∈ E(M), and

ψA
M(a) = ψA

N(a) for all a ∈ A(M). If V (M) = V (N) we say that M is spanning. If

V (M) ∪ E(M) ∪ A(M) ⊂ V (N) ∪ E(N) ∪ A(N), we say that M is proper. Two special

subgraphs of M are the undirected graph GM = (V (M), E(M), ψE
M) and the directed

graph DM = (V (M), A(M), ψA
M). For S ⊆ V (M), the subgraph of M induced by S is

the mixed graph M [S] = (S,ES, AS, ψ
E
S , ψ

A
S ) such that ES = {e ∈ E(M) : ψE

M(e) ⊆ S},

AS = {a ∈ A(M) : ψA
M(a) ∈ S2}, ψE

S (e) = ψE
M(e) for all e ∈ ES, and ψ

A
S (a) = ψA

M(a) for

all a ∈ AS. For F ⊆ E(M) and B ⊆ A(M), the subgraph of M induced by F and B is
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Figure 1.2: Another orientation of G, and the associated directed graphs of G and M .

the mixed graph M [F,B] = (S, F,B, ψF
M , ψ

B
M) such that S is the set of ends of all edges

in F and arcs in B, ψF
M(e) = ψE

M(e) for all e ∈ F , and ψB
M(a) = ψA

M(a) for all a ∈ B. For

v ∈ V (M), M \ v =M [V (M) \ v] is the subgraph of M obtained by deleting v.

We say that M and N are isomorphic, and we denote this by M ∼= N , if there are

bijections φV : V (M) → V (N), φE : E(M) → E(N), and φA : A(M) → A(N) such that,

for all u, v ∈ V (M), e ∈ E(M) and a ∈ A(M) we have that ψE
M(e) = {u, v} if and only if

ψE
N(φE(e)) = {φV (u), φV (v)} and ψ

A
M(a) = (u, v) if and only if ψA

N(φA(a)) = (φV (u), φV (v)).

The ordered triple φ = (φV , φE, φA) is called an isomorphism between M and N .

For e ∈ E(M), the mixed graph obtained by subdividing e is Me = (V (M)∪ e, (E(M) \

e)∪{e1, e2}, A(M), ψe
M , ψ

A
M)), where {e1, e2} is disjoint to V (M)∪E(M)∪A(M), ψE

M(e) =

{u, v}, ψe
M(f) = ψE

M(f) for all f ∈ E(M) \ e, ψe
M(e1) = {u, e}, and ψe

M(e2) = {e, v}.

Similarly, for a ∈ A(M), the mixed graph obtained by subdividing a is Ma = (V (M) ∪

a,E(M), (A(M)\a)∪{a1, a2}, ψ
E
M , ψ

a
M)), where {a1, a2} is disjoint to V (M)∪E(M)∪A(M),

ψA
M(a) = (u, v), ψa

M(b) = ψA
M(b) for all b ∈ A(M)\a, ψa

M(a1) = (u, e), and ψa
M(a2) = (e, v).

If N is isomorphic to a mixed graph obtained from M by a (possibly empty) sequence of

subdivisions of edges and arcs, then N is said to be a subdivision of M .

A simple undirected graph in which each pair of distinct vertices is joined by an edge is

called complete. For each n ∈ N, up to isomorphism, there is only one complete undirected
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graph on n vertices, denoted by Kn. A directed graph isomorphic to ~Kn is called complete.

An undirected graph is called bipartite if its vertex set can be partitioned into two subsets

X and Y , so that each edge has one end in X and one end in Y . Such a partition (X,Y )

is called a bipartition of the undirected graph, and each of X and Y is called a side of

the bipartition. A complete bipartite undirected graph is a simple undirected graph with

a bipartition (X,Y ) in which each vertex in X is joined to each vertex of Y . Up to

isomorphism, the only complete bipartite undirected graph with one side of size m and the

other side of size n is denoted by Km,n. A mixed graph M is bipartite if M̄ is.

1.3.3 Cuts, Paths, Trees and Connectivity

Let M = (V (M), E(M), A(M), ψE
M , ψ

A
M) be a mixed graph, and let S ⊆ V . We define

three kinds of cuts. The undirected cut δE(S) determined by S is the set of edges with one

end in S and the other end in S̄ = V \ S. The directed cut δA(S) determined by S is the

set of arcs with tails in S and heads in S̄. The total cut δM(S) determined by S is the set

δE(S) ∪ δA(S) ∪ δA(S̄). For single vertices v ∈ V (M) we write δE(v), δA(v), δM(v) instead

of δE({v}), δA({v}), δM({v}), respectively. The cardinalities of cuts are called degrees, and

we define four kinds of these: The degree dE(S) = |δE(S)|, the outdegree dA(S) = |δA(S)|,

the indegree dA(S̄) = |δA(S̄)|, and the total degree dM(S) = |δM(S)|, respectively. If every

vertex ofM has even total degree, we say thatM is even. If all vertices ofM have the same

total degree r, we say that M is regular of total degree r. A vertex of total degree zero is

called isolated. The minimum and maximum total degrees of a vertex of M are denoted

by δM and ∆M , respectively. A cut determined by a proper subset S is called proper,

otherwise it is called trivial. Trivial cuts are always empty. If M has no empty, proper

total cut, we say that M is connected; otherwise M is disconnected. If N is a maximal

connected subgraph of M , we say that N is a connected component of M . If a cut consists

of exactly one edge or arc e, we say that e is a cut edge or a cut arc, respectively.

For S, T ⊆ V (M), let E(S, T ) = {e ∈ E(M) : ψE
M(e) = {u, v} for some u ∈ S, v ∈ T},

and let A(S, T ) = {a ∈ A(M) : ψA
M(a) = (u, v) for some u ∈ S, v ∈ T}. Note that

E(S, S̄) = δE(S), A(S, S̄) = δA(S). Let γE(S) = E(S, S), and let γA(S) = A(S, S).

A walk from v0 to vn is an ordered tuple W = (v0, e1, v1, . . . , vn−1, en, vn) on V (M) ∪

E(M) ∪ A(M) such that n ∈ Z+, vi ∈ V (M) for all 0 ≤ i ≤ n, and, for all 1 ≤ i ≤ n,
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either ei ∈ E(M) and ψE
M(ei) = {vi−1, vi}, or ei ∈ A(M) and ψA

M(ei) = (vi−1, vi). We say

that W traverses all of v0, v1, . . . , vn and e1, . . . , en, and we call n the length of W . A walk

has the same parity as its length. A walk W may also be represented by the ordered tuple

(e1, . . . , en) on E(M) ∪ A(M) or, if M has no parallel edges or arcs, by the ordered tuple

(v0, v1, . . . , vn). If e1, . . . , en are pairwise distinct, W is called a trail. If v0, v1, . . . , vn are

pairwise distinct, W is called a path. If W1 and W2 are two paths from u to v, they are

said to be edge-disjoint if they do not have edges or arcs in common, and they are said to

be internally disjoint if, besides u and v, they do not have vertices in common. If v0 = vn,

W is said to be a closed walk, or a circuit. If W is closed and traverses all vertices of M ,

we call it a tour. If W is a closed trail, and v1, . . . , vn are pairwise distinct, we call it a

cycle. An undirected graph is bipartite if and only if it contains no odd cycle.

A mixed graph is acyclic if it contains no cycles. A mixed graph is a forest if its

underlying undirected graph is acyclic. Note that there are directed acyclic graphs that are

not forests. A connected forest is a tree. Let G = (V,E) be an undirected graph. Then, G

is a tree if and only if G is connected and every edge of G is a cut edge. Alternatively, G

is a tree if and only if, for all u, v ∈ V , there is a unique path from u to v.

If u, v ∈ V (M) and there is a walk from u to v, we say that u is connected to v, and we

denote this by u → v. If for every two vertices u and v of M , u → v and v → u, we say

that M is strongly connected. Note that if M is strongly connected then it is connected.

In fact, if M is an undirected graph, these two concepts are equivalent. If N is a maximal

strongly connected subgraph of M , we say that N is a strongly connected component of M .

A vertex v of M is a cut vertex if E(M) can be partitioned into E1 and E2, and A(M)

can be partitioned into A1 and A2, in such a way that both E1 ∪ A1 and E2 ∪ A2 are

nonempty, and the mixed graphs M [E1, A1] and M [E2, A2] have only v in common. If M

is connected and has no cut vertices it is called a block. We say that N is a block of M if N

is a maximal subgraph of M that is a block. A vertex cut of M is a subset S ⊆ V (M) such

thatM [V (M)\S] is disconnected. If S is a vertex cut ofM and it has cardinality k, we call

S a k-vertex cut. If M has at least two nonadjacent vertices, the vertex connectivity κ(M)

of M is the minimum k for which M has a k-vertex cut; otherwise κ(M) = |V (M)| − 1.

We say that M is k-vertex-connected if κ(M) ≥ k. Blocks with at least 3 vertices are 2-

vertex-connected. If S ⊂ V (M) and |δM(S)| = k, we say that δM(S) is a k-edge cut. If M
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has at least two vertices, the edge connectivity κ′(M) of M is the minimum k for which M

has a k-edge cut, otherwise κ′(M) = 0. We say that M is k-edge-connected if κ′(M) ≥ k.

Note that κ(M) ≤ κ′(M) ≤ δM for all mixed graphs M . Menger proved several results

relating the connectivity of an undirected graph with its disjoint paths [66]. Among them:

Theorem 1.1 (Menger) Let G be an undirected graph with at least k+1 vertices. Then G

is k-vertex-connected if and only if any two vertices of G are joined by at least k internally

disjoint paths.

1.3.4 Graph Minors

Let G = (V (G), E(G), ψG) be an undirected graph, and let e ∈ E(G) with ends x, y ∈

V (G). The deletion of e is the graph G \ e = (V (G), E(G) \ e, ψ\
G) where ψ

\
G(f) = ψG(f)

for all f ∈ E(G) \ e. If e is a loop, the contraction of e is the graph G / e = G \ e. If e is

not a loop, the contraction of e is the graph G / e = ((V (G) ∪ e) \ {u, v}, E(G) \ e, ψ /
G )

where ψ
/
G (f) = {θ(u), θ(v)} for all f ∈ E(G) \ e with ends u and v, and θ(w) = w if

w /∈ {x, y}, otherwise θ(w) = e. Informally, G \ e is obtained by deleting e from G,

whereas G / e is obtained by deleting e from G and identifying its ends. Note that edge

deletion and edge contraction commute, that is, if e and f are two distinct edges of G then

(G \ e) / f ∼= (G / f) \ e, so we will simply write G \ e / f or G / f \ e.

PSfrag replacements
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Figure 1.3: An undirected graph G, and the deletion and contraction of e.
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Let H be an undirected graph. If H is isomorphic to an undirected graph obtained from

G after a sequence of edge deletions, edge contractions, and isolated vertex deletions, we

say that H is a minor of G, and we denote this by H ¹ G. Furthermore, if the sequence is

not empty, we say that H is a proper minor of G, and we denote this by H ≺ G. A class of

undirected graphs G is a possibly infinite set of undirected graphs such that, for all distinct

G,H ∈ G, G and H are not isomorphic. We say that the class G is closed under taking

minors if, for all G ∈ G, and for all H ¹ G, there exists H ′ ∈ G such that H ∼= H ′. For

example, the class of undirected forests is closed under taking minors, but neither the class

of complete undirected graphs, nor the class of complete bipartite undirected graphs, are

closed under taking minors. Given a class H of undirected graphs, we can define another

class of undirected graphs ex(H) by excluding minors in H, that is, we define ex(H) to be

the largest class of undirected graphs such that none of its elements has a minor in H. For

example, the class of undirected forests is obtained by excluding loops. Note that ex(H) is

closed under taking minors. One of the deepest results in graph theory, due to Robertson

and Seymour in their series of papers Graph Minors, is that every class of undirected

graphs closed under taking minors can be obtained by excluding finitely many minors.

1.3.5 Planarity and Duality

We usually represent undirected graphs by drawings on the real plane R2. Informally, we

identify the vertices of an undirected graph with distinct points, and each edge with a

curve joining its ends. It is always possible to draw an undirected graph on the plane

in such a way that the only vertices met by any given edge are its ends, although edges

may intersect each other. An undirected graph is said to be planar if it can be drawn on

the plane so that its edges do not intersect. Such a drawing is called a planar embedding.

Note that the property of being planar is closed under taking minors or subdivisions. It is

easy to see that K5 and K3,3 are not planar. Kuratowski proved that an undirected graph

is planar if and only if it does not contain a subdivision of K5 or K3,3 [64], and Wagner

proved that ex(K5, K3,3) is precisely the class of planar graphs [86].

A planar embedding of G partitions R2 \ G into a number of connected regions called

the faces of G. We denote by F (G) the set of faces of G, and we call the pair (G,F (G)) a

plane graph. Each plane graph has exactly one unbounded face, called the exterior face.
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Figure 1.4: A plane graph and its dual.

A face f is said to be incident with the vertices and edges in its boundary. There are two

faces incident with each edge e of G, except if e is a cut edge, when just one face is incident

with e. The degree of a face f is the number of edges incident to it, with cut edges counted

twice. Given a plane graph (G,F (G)) with G = (V (G), E(G), ψG), its dual graph is the

plane graph (G∗, V (G)), where G∗ = (F (G), E(G), ψ∗
G) and, for every e ∈ E(G), ψ∗

G(e) is

the set of faces of G incident with e. In Figure 1.4 we show a plane graph (with square

vertices and continuous edges) and its dual (with round vertices and dashed edges). Note

that G∗ is also a planar graph. In fact, one can find a planar embedding of G∗ where each

vertex of G∗ is a point in the corresponding face of G. Also note that, if G is connected,

(G∗)∗ ∼= G, and that a loop of G becomes a cut edge of G∗ and vice versa. We should also

note that isomorphic plane graphs may have nonisomorphic duals. We say that a mixed

graph is planar if its underlying undirected graph is planar. Planar mixed graphs also have

duals, but they are constructed in a different way, which we introduce later.

A subset of the class of planar graphs that is of considerable theoretical interest is the

class S of series-parallel graphs. We define the class S recursively as follows:

1. All undirected forests are in S.

2. If G ∈ S, the graphs obtained by adding a loop to G, by subdividing an edge of G,

or by adding an edge parallel to an edge of G are in S.
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Observe that every connected series-parallel graph with at least three vertices contains

two edges in series or two edges in parallel. Also note that S is closed under taking minors.

Furthermore, Duffin proved that S = ex(K4) [23].

1.4 Computational Complexity Theory

Earlier in this chapter we have made reference to easy and hard problems. Our purpose

is to informally describe here what we mean by those two terms, and many others. We

recommend the books by Hopcroft and Ullman [55] and Papadimitriou [71].

1.4.1 Problems, Algorithms and Running Time

A decision problem P is a pair (Y (P ), N(P )) of disjoint subsets Y (P ) and N(P ) of Z+.

An instance i of P is an element of I(P ) = Y (P ) ∪ N(P ), and it is called a yes instance

if i ∈ Y (P ), and a no instance if i ∈ N(P ). More often than not, we define a decision

problem P by describing its set of instances and one of its set of yes instances or its set

of no instances. For example, the decision problem Primes has set of instances N and set

of yes instances {p ∈ N : p is prime}. Equivalently, we say that the decision problem P is

the question: “Given an i in I(P ), is i in Y (P )?” Hence, we can reformulate the problem

Primes as the question: “Given a natural number i, is i prime?”

Very often we are concerned with decision questions regarding objects that are not

necessarily nonnegative integers, for example, rationals, sets, matrices, graphs, tuples, etc.

In order to deal with these questions, we introduce the notion of a good encoding. In

general, a good encoding is an injective function from the set of objects of interest to the

set of natural numbers. For example, if the object of interest is a set of cardinality at most

n, we can easily encode it as a nonnegative integer less than 2n using binary representations.

Another property of a good encoding is that we do not use numbers that are excessively

large. For example, note that a set of cardinality n has 2n subsets, and hence any encoding

of sets of cardinality at most n will use a number at least as large as 2n−1. Good encodings

also exist for rationals, matrices, graphs, tuples, and many other objects. It is generally

accepted that the incidence and adjacency matrices of a mixed graph are good encodings

for it. Given a class of objects I with a good encoding, and a subset Y ⊆ I, we also say
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that the pair (Y, I \Y ) is a decision problem, as well as the question: “Given an i in I, is i

in Y ?” The size `(i) of a nonnegative number i is the length of its binary representation,

that is, `(i) = dlog2(i + 1)e. If g is a good encoding for I, then the size `(i) of object i is

`(g(i)).

Informally, an algorithmA is a list of well-defined and elementary instructions that takes

some input from the set I and eventually produces some output on the set O. The input

and the output should be nonnegative integers, but any objects with a good encoding will

do. If we run A with input i ∈ I and it produces output o ∈ O, we denote this by A(i) = o.

The running time of A is a function fA : N → N, where fA(i) is the maximum number of

elementary instructions needed to produce an output with an input of size at most i. These

functions are usually difficult to compute, so we resort to the O(·) notation. If f, g : N → N,

we say that f is order of g, and denote this by f = O(g), if there exists a positive real

constant C, and an integer constant N such that f(n) ≤ C · g(n) for all integers n ≥ N .

If fA = O(g) we say that the running time of A is O(g). If g is a linear, polynomial, or

exponential function, we say that A is a linear-, polynomial-, or exponential-time algorithm,

respectively. Edmonds recognized the importance of polynomial-time algorithms, which

he called good algorithms, as a measure of efficiency [27].

Given a decision problem P , we say that A is a decision algorithm for P if the input

for A is taken from the set of instances of P , the output of A is either 1 or 0 (or any other

two distinct alternatives), and for all instances i of P , A(i) = 1 if i is a yes instance, and

A(i) = 0 if i is a no instance. Very often we are confronted with problems were the objective

is to count the number of objects satisfying the given property (a counting problem), or to

construct an object satisfying the given property (a construction problem). Algorithms that

find the correct count in the former case, or that construct a correct object in the latter

case, are called counting and construction algorithms, respectively. Furthermore, if the

given property is of the form “maximize” or “minimize” a certain function, we say that our

problem is a maximization or minimization problem, respectively, and algorithms that find

these maxima or minima are called maximization or minimization algorithms, respectively.

A maximization or minimization problem is also called an optimization problem, and an

algorithm that finds an optimum solution is called an optimization algorithm.
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1.4.2 The Classes P and NP

We say that a problem P is solvable in polynomial time if there exists an algorithm A for P

whose running time is polynomial. We denote by P the set of all decision problems solvable

in polynomial time. We define the setNP of decision problems solvable in nondeterministic

polynomial time as follows: a decision problem P is in NP if and only if there exists a

decision problem P ′ ∈ P and a polynomial function p such that, for every instance i ∈ I(P ),

we have that i ∈ Y (P ) if and only if there exists a certificate j with `(j) ≤ p(`(i)) such that

(i, j) ∈ Y (P ′). Naturally, P ⊆ NP . One of the most important questions in computer

science is whether P = NP or not, and most people believe that the answer is no.

We define co-NP as the set of all decision problems P = (Y (P ), N(P )) such that their

complements P c = (N(P ), Y (P )) are in NP . Note that P ⊆ NP ∩ co-NP ; moreover,

since a problem P ∈ NP ∩co-NP has both yes certificates and no certificates, we say that

it has a good characterization. There are very few decision problems known to have good

characterizations but not known to be in P . In fact, it usually happens that one proves

that a problem has a good characterization and then that it is in P .

Given two decision problems P and Q, we say that P is reducible to Q if there exists a

polynomial-time algorithm A with input in I(P ) and output in I(Q) such that i ∈ Y (P )

if and only if A(i) ∈ Y (Q). Note that if P is reducible to Q and Q ∈ P then P ∈ P and,

similarly, if P is reducible to Q and Q ∈ NP then P ∈ NP . We extend in a natural way

the notion of reducibility to pairs of problems that are not necessarily of decision type. A

problem P is said to be NP-hard if each problem in NP is reducible to P . If in addition

P ∈ NP then P is said to be NP-complete. Many important problems are known to be

NP-complete or NP-hard. We refer the reader to the book by Garey and Johnson [42].

Since optimization problems are not decision problems, they cannot be in P nor NP .

However, they can be transformed into decision problems. For example, the minimization

problem P “minimize f(x) over x ∈ X” (where f is a rational function and X is a set of

objects derived from the input to P ) can be transformed into the decision problem Q “given

an r ∈ Q, is there an x ∈ X such that f(x) ≤ r?” We can do a similar transformation for

maximization problems. In both cases, we call Q the decision version of P .
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1.4.3 Satisfiability and Variants

The main tool to prove that a given problem P is NP-complete is to prove that a known

NP-complete problem is reducible to P . In 1971, Cook exhibited the first NP-complete

problem, namely Satisfiability, which we describe next [15]. A variable x has two

literals, a positive literal x and a negative literal ¬x. We can assign to x either value true

or false. If x is true, then ¬x is false, and vice versa. A clause C is a set of literals, and it

is said to be satisfiable if we can assign values to the variables in such a way that at least

one literal in C is true. A set C of clauses is satisfiable if there exists an assignment of the

variables that satisfies all its clauses.

Problem: Satisfiability.

Input: A set X of variables and a set C of clauses.

Output: Is C satisfiable?

For fixed k ∈ N, the special case of Satisfiability where all clauses contain exactly k

distinct literals is called k-Satisfiability. Both 1-Satisfiability and 2-Satisfiability

can be solved in polynomial time [19].

Theorem 1.2 (Cook) 3-Satisfiability is NP-complete.

Let X be a set of variables, and let C be a set of clauses. Consider the bipartite

undirected graph G with vertex set X ∪ C and edges joining x ∈ X and C ∈ C if and

only if the clause C contains at least one of x or ¬x. The special case of Satisfiability

where G is restricted to be planar is called Planar Satisfiability. In Figure 1.5 we

show an instance of this problem with set of variables {x1, x2, x3, x4} and clauses C1 =

{x1, x2,¬x4}, C2 = {x2,¬x3, x4}, C3 = {¬x1, x2, x3}, and C4 = {¬x1, x3,¬x4}. The

vertices corresponding to variables are represented with circles, and those corresponding

to clauses are represented with squares. We can use the following result of Lichtenstein to

prove that certain graph problems remain NP-complete even when we restrict the input

to be a planar graph [65]:

Theorem 1.3 (Lichtenstein) Planar 3-Satisfiability is NP-complete.
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Figure 1.5: A planar instance of Satisfiability.

We can also modify when a clause is said to be satisfiable by giving a different truth

table. Schaefer obtained a complete characterization of those tables with three literals that

give NP-complete problems [79]. In 1-in-3 Satisfiability, a clause is true if and only if

exactly one of its literals is true. In Not All Equal Satisfiability, a clause is true if

and only if not all its literals have the same value.

Theorem 1.4 (Schaefer) 1-in-3 Satisfiability is NP-complete.

Theorem 1.5 (Schaefer) Not All Equal Satisfiability is NP-complete.

Similarly as before, we can consider the planar versions of 1-in-3 Satisfiability and

Not All Equal Satisfiability, called Planar 1-in-3 Satisfiability and Planar

Not All Equal Satisfiability, respectively. The first of these two problems was shown

to be NP-complete by Dyer and Frieze [24], while the second was recently shown to be

solvable in polynomial time by Kratochv́ıl and Tuza [63].

Theorem 1.6 (Dyer and Frieze) Planar 1-in-3 Satisfiability is NP-complete.
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1.5 Combinatorial Optimization

Combinatorial optimization may be thought of as a branch of mathematics whose main

goal is to find good algorithms for decision, construction, and optimization problems whose

objects of interest are taken from a discrete set. When this is not possible, for example,

when the problem of interest isNP-hard, combinatorial optimization is also concerned with

methods to find optimal solutions (even if we cannot guarantee that they run in polynomial

time), and with polynomial-time algorithms to find guaranteed near optimal solutions. We

refer the reader to the book by Cook, Cunningham, Pulleyblank, and Schrijver [16].

1.5.1 Polytopes and Polyhedra

Starting with the work of Edmonds [26], one of the main driving forces for combinatorial

optimization has been the study of polyhedra and polytopes. Let x1, . . . , xm ∈ Rn, and let

α1, . . . , αm ∈ R. We say that y = α1x1 + · · ·+αmxm is a linear combination of x1, . . . , xm.

We say that x1, . . . , xm are linearly independent if y = 0n implies that α1 = · · · = αm = 0.

If α1, . . . , αm ≥ 0 we say that y is a nonnegative combination of x1, . . . , xm, and if in

addition α1+ · · ·+αm = 1 we say that y is a convex combination of x1, . . . , xm. For any set

S ⊆ Rn, the convex hull of S, denoted by convhull(S), is the set of all convex combinations

of elements of S. A simple, but important result is that for any finite S ⊆ Rn, and any

c ∈ Rn, we have that min{c>x : x ∈ S} = min{c>x : x ∈ convhull(S)}.

Given a matrix A ∈ Rn×m and a vector b ∈ Rn, the polyhedron determined by A and

b is the set P (A, b) = {x ∈ Rm : Ax ≤ b}. Given a vector c ∈ Rm and a real d ∈ R,

the inequality c>x ≤ d is valid for a polyhedron P if it holds for all x ∈ P . If there

exists l, u ∈ R such that, for all 1 ≤ i ≤ m, the inequalities xi ≤ u and xi ≥ l are valid

for P , we say that P is bounded and we call it a polytope. If c 6= 0m, the polyhedron

H(c, d) = {x ∈ Rm : c>x = d} is called the hyperplane determined by c and d. We say

that H(c, d) is a supporting hyperplane of P if c>x ≤ d is valid for P and P ∩H(c, d) 6= ∅.

The intersection of a polyhedron P and one of its supporting hyperplanes, as well as P

and ∅, are called faces. A vector x ∈ P is called an extreme point of P if {x} is a face of

P . Equivalently, x is an extreme point of P if and only if x is not a convex combination

of vectors in P \ {x}. We say that P is pointed if it has at least one extreme point. If P is
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pointed then every minimal nonempty face of P is an extreme point. Nonempty polytopes

are pointed. A polytope is equal to the convex hull of its extreme points. Furthermore, a

set is a polytope if and only if it is equal to the convex hull of a finite set.

If A ∈ Qn×m and b ∈ Qn then P (A, b) is said to be a rational polyhedron. A rational

polyhedron is said to be integral if each of its nonempty faces contains an integral vector.

A pointed rational polyhedron is integral if and only if all its extreme points are integral.

Let P be a polyhedron on the variables x ∈ Rn and y ∈ Rp. The projection of P onto

y = 0 is the set projx(P ) = {x ∈ Rn : (x, y) ∈ P for some y ∈ Rp}. The projection of a

polyhedron is a polyhedron. A description of projx(P ) is given by the following theorem.

Theorem 1.7 Let P = {(x, y) ∈ Rn × Rp : Ax+By ≤ c}, then

projx(P ) = {x ∈ Rn : z>(c− Ax) ≥ 0 for all z ∈ Rm
+ such that z>B = 0}. (1.3)

1.5.2 Linear Programming, Optimization and Separation

Given a rational polyhedron P ⊆ Rm, and a rational vector c ∈ Qm, we are often interested

in the problem of finding a vector x∗ ∈ P such that it minimizes the linear function c>x

over P , that is c>x∗ ≤ c>x for all x ∈ P . More precisely, we consider:

Problem: Linear Programming Minimization.

Input: Numbers n,m ∈ N, a matrix A ∈ Qn×m, and vectors b ∈ Qn, c ∈ Qm.

Output: A vector x∗ ∈ P (A, b) minimizing c>x.

If instead we are interested in finding a vector x∗ ∈ P such that c>x∗ ≥ c>x for all

x ∈ P , we call this problem Linear Programming Maximization. More generally,

we call Linear Programming the problem of optimizing a linear function over a poly-

hedron. Linear programming optimization problems are also called linear programs. The

polyhedron P is also called the feasible region, and a vector x ∈ P is called a feasible

solution. If P 6= ∅ the linear program is called feasible, and infeasible otherwise. If x∗ is a

feasible solution such that c>x∗ is optimal, we say that x∗ is an optimal solution. A feasible

linear program is called bounded if it has optimal solutions, and unbounded otherwise.

The first practical method to solve Linear Programming was the simplex method

designed by Dantzig around 1947 [18]; however, no variant of this method is known to be



Introduction 21

a polynomial-time algorithm. The first such algorithm (known as the ellipsoid algorithm)

was developed in 1979 by Khachiyan [61]; nevertheless, this algorithm turned out to be very

slow in practice. In 1984, Karmarkar proposed a fast (both theoretically and in practice)

interior point algorithm for Linear Programming [58].

Let P ⊆ Rm and x ∈ Qm. The problem of deciding whether x ∈ P or not is called

Separation. An important result of Grötschel, Lovász, and Schrijver implies that, in a

sense, Linear Programming and Separation are equivalent [46]. Their result applies

only to proper classes of polyhedra. We do not define what proper means in this context;

however, almost all classes of interesting polyhedra are proper.

Theorem 1.8 (Grötschel, Lovász and Schrijver) For any proper class of polyhedra,

Linear Programming is solvable in polynomial time if and only if Separation is solv-

able in polynomial time.

1.5.3 Integer Programming

More often than not, we are only interested in the integral solutions of linear programs.

Problem: Integer Programming Minimization.

Input: Numbers n,m ∈ N, a matrix A ∈ Qn×m, and vectors b ∈ Qn, c ∈ Qm.

Output: An integer vector x∗ ∈ P (A, b) minimizing c>x.

We define the problems Integer Programming Maximization and Integer Pro-

gramming in a similar way as before. Unfortunately, the decision version of Integer

Programming is NP-complete (see [42, page 245]). An interesting aspect of Integer

Programming is that most combinatorial optimization problems can be easily formulated

as integer programs. For example, in the instance of Satisfiability introduced before, we

can write the condition that variable x1 must be true or false with the constraints x1 ≥ 0

and x1 ≤ 1, and the condition that clause C1 = {x1, x2,¬x4} must be satisfied with the

constraint x1 + x2 + (1 − x4) ≥ 1. In this way, an instance of Satisfiability with n

variables and m clauses can be described by a system of 2n+m linear constraints plus the

integrality condition on the variables. More generally, given a finite set S, a possibly infi-

nite set F of multisets on S, and a vector c ∈ QS, we are often interested in the problem of



22 Postman Problems on Mixed Graphs

finding F ∗ ∈ F such that c(F ∗) = max{c(F ) : F ∈ F}. One can obtain a linear program-

ming formulation of this problem by obtaining the convex hull of the set X of incidence

vectors of multisets in F . Note that min{c(F ) : F ∈ F} = min{c>x : x ∈ convhull(X )}.

Very often, to obtain a description of the polyhedron convhull(X ) is extremely difficult.

In those cases that it is possible, it is a good idea to start with an integer programming

formulation of the problem (that is, an instance of Integer Programming whose set of

solutions is precisely X ), and then to ignore the integrality condition on the variables to

obtain a linear programming relaxation. More often than not (in particular for NP-hard

problems), we will not have yet a description of the polyhedron convhull(X ), but in this

case, we can always add valid inequalities for convhull(X ) to our linear program.

1.5.4 Approximation Algorithms

As we mentioned in the opening of this section, when we consider an NP-hard problem,

sometimes we settle for a polynomial-time algorithm that outputs a feasible solution to our

problem which is not far from optimal. We are particularly interested on those algorithms

for which we can give a bound on how far from optimal is the solution obtained.

Let P be a minimization problem with set of instances I(P ), let α : I(P ) → R+, and

let A be a polynomial-time algorithm. Then A is said to be an α-approximation algorithm

for P if, for every instance i of P with minimal solution P (i), A outputs a feasible solution

A(i) such that A(i) ≤ α(i) ·P (i). We call α the approximation guarantee of A, and we say

that A approximates P within a factor of α. Note that α(i) ≥ 1 for all instances i. Let

A = {Aε : ε > 0} be a set of algorithms for P . If for each fixed ε > 0 we have that Aε is a

(1 + ε)-approximation algorithm for P then we say that A is a polynomial approximation

scheme. If in addition each Aε runs in polynomial time with respect to the size of the input

and 1
ε
, then A is said to be a fully polynomial approximation scheme. Similar definitions

can be given for maximization problems. Papadimitriou and Yannakakis introduced the

notion of hardness of approximation [72]. We say that a problem P is Max-SNP hard if,

for some fixed ε > 0, there is no (1 + ε)-approximation algorithm for P , unless P = NP .

The area of approximation algorithms is very active. We refer the reader to the books

by Ausiello et al. [3], Hochbaum [53], and Vazirani [83].



Chapter 2

The Eulerian Tour Problem and the

Chinese Postman Problem

Ach, alles ereignet sich einmal nur, aber einmal muß alles geschehen.

Über Berg und Tal, über Feld und Flur werd’ ich vergehen, verwehen. . .

Die unendliche Geschichte, Michael Ende

We introduce the Eulerian Tour problems for undirected, directed and mixed graphs.

In each case, we give necessary and sufficient conditions for the existence of an Eulerian

tour. Later we introduce the Chinese Postman problems for undirected and directed

graphs as generalizations of the corresponding Eulerian Tour problems.

2.1 The Eulerian Tour Problem

In 1736, the great Swiss mathematician Leonhard Euler wrote [33]:

The problem, which I am told is widely known, is as follows: in Königsberg in

Prussia, there is an island A, called the Kneiphof; the river which surrounds it is

divided into two branches, as can be seen in [Figure 2.1], and these branches are

crossed by seven bridges a, b, c, d, e, f and g. Concerning these bridges, it was

asked whether anyone could arrange a route in such a way that he would cross

23
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each bridge once and only once. I was told that some people asserted that this

was impossible, while others were in doubt; but nobody would actually assert that

it could be done. From this, I have formulated the general problem: whatever

be the arrangement and division of the river into branches, and however many

bridges there be, can one find out whether or not it is possible to cross each

bridge exactly once? [9, page 3]

It is widely recognized that Euler’s paper gave birth to what he called the geometry of

position, that is, to graph theory. Moreover, the problem he formulated became the first in

a class of problems that we call arc routing problems. In this chapter, we will concentrate

in Euler’s original question, as well as in some variants and generalizations. For more

on Eulerian graphs see the two books by Fleischner [35, 36], and for more on arc routing

problems see the book edited by Dror [21], or the surveys by Ahr [1], Assad and Golden [2],

Eiselt, Gendreau, and Laporte [31, 32], and Guan [50].

e

Figure 2.1: The seven bridges of Königsberg.
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2.1.1 Undirected Eulerian Tours

Let G = (V,E) be an undirected graph. A tour of G is Eulerian if it contains each edge of

G exactly once. We can reformulate Euler’s question as follows:

Problem: Undirected Eulerian Tour.

Input: An undirected graph G = (V,E).

Output: Does G have an Eulerian tour?

We say that an undirected graph is Eulerian if it has an Eulerian tour. Euler gave

necessary conditions for an undirected graph to be Eulerian [33]. A proof that they were

also sufficient came more than a century later, in a posthumous paper by Hierholzer, in

1873 [52]. A second characterization was given in 1912 by Veblen [84].

Theorem 2.1 (Euler, Hierholzer) Let G be a connected, undirected graph. Then G is

Eulerian if and only if every vertex of G has even degree.

Theorem 2.2 (Veblen) Let G be a connected, undirected graph. Then G is Eulerian if

and only if G is the disjoint union of some cycles.

In Figure 2.2 we show on the left-hand side the undirected graph corresponding with

the seven bridges of Königsberg. Note that this undirected graph is connected but has

vertices with odd degree, hence it is not Eulerian. On the right-hand side, we show a

connected undirected graph all whose vertices have even degree, hence it is Eulerian. An

Eulerian tour of this undirected graph is

(A, a,B, b, A, c, C, d, A, e,D, f, B, i, C, g,D, h,A). (2.1)

As Euler pointed out, once we determined that an undirected graph G has an Eulerian

tour, we still need to find it. We can reformulate this question as follows:

Problem: Undirected Eulerian Tour Construction.

Input: An undirected graph G = (V,E).

Output: An Eulerian tour T of G, if it exists.

Apparently, Euler did not consider this question as being important, and he did not

give explicit details regarding the construction of an Eulerian tour:
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Figure 2.2: A non-Eulerian undirected graph and an undirected Eulerian graph.

When it has been determined that such a journey can be made, one still has to

find how it should be arranged [. . . ] [I]t is [. . . ] an easy task to construct the

required route [. . . ] I do not therefore think it worthwhile to give any further

details concerning the finding of the routes. [9, page 8]

These details were given for the first time by Hierholzer [52].

Theorem 2.3 (Hierholzer) There exists a linear-time algorithm that, given an undi-

rected graph G, either finds an Eulerian tour of G, or shows that G is not Eulerian.

2.1.2 Directed Eulerian Tours

We can consider a first variation of Euler’s question as follows: Let D = (V,A) be a

directed graph. A tour of D is Eulerian if it contains each arc of D exactly once.

Problem: Directed Eulerian Tour.

Input: A directed graph D = (V,A).

Output: Does D have an Eulerian tour?
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We say that a directed graph is Eulerian if it has an Eulerian tour. In his 1936 book,

Kőnig gave a characterization of directed Eulerian graphs [62, page 29].

Theorem 2.4 (Kőnig) Let D be a connected, directed graph. Then D is Eulerian if and

only if, for every vertex of D, its indegree and outdegree are equal.
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Figure 2.3: A non-Eulerian directed graph and a directed Eulerian graph.

On the left-hand side of Figure 2.3 we show a connected directed graph having vertices

whose indegree and outdegree are not equal, hence it is not Eulerian. On the right-hand

side, we show a connected directed graph each of whose vertices have its indegree equal to

its outdegree, hence it is Eulerian. An Eulerian tour of this directed graph is

(A, c, C, i, B, a, A, e,D, g, C, d, A, h,D, f, B, b, A). (2.2)

As before, we have the problem of constructing Eulerian tours of directed graphs.

Problem: Directed Eulerian Tour Construction.

Input: A directed graph D = (V,A).

Output: An Eulerian tour T of D, if it exists.

The algorithm mentioned in the previous section can be adapted to solve this problem.
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2.1.3 Mixed Eulerian Tours

A second variation of Euler’s question is as follows: Let M = (V,E,A) be a mixed graph.

A tour of M is Eulerian if it contains each edge and arc of M exactly once.

Problem: Mixed Eulerian Tour.

Input: A mixed graph M = (V,E,A).

Output: Does M have an Eulerian tour?

We say that a mixed graph is Eulerian if it has an Eulerian tour. In their 1962 book

Flows in Networks, Ford and Fulkerson gave a characterization of mixed Eulerian graphs

[38, page 60] based on Hoffman’s circulation theorem [54].
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Figure 2.4: A non-Eulerian mixed graph and a mixed Eulerian graph.

Theorem 2.5 (Ford and Fulkerson) Let M be a connected, mixed graph. Then M is

Eulerian if and only if, for every subset S of vertices of M , the number of arcs and edges

from S̄ to S minus the number of arcs from S to S̄ is a nonnegative even number.

We observe that Veblen’s characterization of undirected Eulerian graphs in terms of

cycle decompositions applies also to directed and mixed graphs.
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On the left-hand side of Figure 2.4 we show a connected mixed graph for which S =

{A,D} fails the condition of Theorem 2.5, and hence it is not Eulerian. On the right-hand

side, we show a mixed Eulerian graph, one of whose Eulerian tours is

(A, a,B, i, C, d, A, e,D, f, B, b, A, h,D, g, C, c, A). (2.3)

Consider the problem of constructing Eulerian tours of mixed graphs.

Problem: Mixed Eulerian Tour Construction.

Input: A mixed graph M = (V,E,A).

Output: An Eulerian tour T of M , if it exists.

Ford and Fulkerson’s proof of Theorem 2.5 also gives an algorithm, based on network

flow techniques, to solve Mixed Eulerian Tour Construction. The much simpler

algorithms for undirected and directed graphs do not work in this case.

Theorem 2.6 (Ford and Fulkerson) There exists a polynomial-time algorithm that, given

a mixed graph M , either finds an Eulerian tour of M , or shows that M is not Eulerian.

2.2 The Undirected Postman Problem

In 1960, the Chinese mathematician Mei Gu Guan proposed the following:

When the author was plotting a diagram for a postman’s route, he discovered

the following problem: “A postman has to cover his assigned segment before

returning to the post office. The problem is to find the shortest walking distance

for the postman.” [48]

Guan’s problem became widely known as the Chinese postman problem after a talk by

Edmonds in 1965 [25]. However, due to the enormous variety of similarly posed questions,

throughout this thesis we will refer collectively to all of them simply as postman problems,

dropping the adjective Chinese, and adding more descriptive adjectives. For example, we

will refer to Guan’s original problem as Minimum Undirected Postman Tour because

the objective is to minimize the length of a postman’s route in an undirected graph.
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Figure 2.5: A non-Eulerian undirected graph and two postman sets.

Naturally, if the postman’s route corresponds with an Eulerian graph the answer is

given by the length of one of its Eulerian tours. More generally, given an undirected graph

G, a tour of G is a postman tour if it contains each edge of G at least once. A postman

tour of the non-Eulerian undirected graph shown on Figure 2.5 is

(A, a,B, b, A, a, B, f,D, e, A, e,D, g, C, d, A, c, C, d, A). (2.4)

Since the graph obtained from a connected undirected graph G by duplicating each of

its edges is Eulerian, both the problem of deciding whether G has a postman tour or not,

and the problem of finding one such tour are as easy as the corresponding problems for

Eulerian tours of undirected graphs.

The first interesting problem is, as Guan asked, to find the length of a shortest postman

tour. Given a connected undirected graph G = (V,E), for each edge e ∈ E a nonnegative

cost ce, and a postman tour T of G, the cost of T (denoted by c(T )) is the sum of the costs

of the edges used by T , that is, if T = (v1, e1, v2, e2, . . . , vk, ek, v1), then

c(T ) ≡
k
∑

i=1

c(ei). (2.5)
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Problem: Minimum Undirected Postman Tour.

Input: A connected undirected graph G = (V,E), and a vector c ∈ QE
+.

Output: The minimum cost MUPP(G, c) of a postman tour of G.

Assuming all its edges have cost one, a minimum cost postman tour of the non-Eulerian

undirected graph shown on Figure 2.5 is

(A, a,B, b, A, a, B, f,D, g, C, c, A, d, C, g,D, e, A). (2.6)

2.2.1 Formulations

Let T be a postman tour of G and, for every edge e, let xe be the number of times that

T uses e, that is, let x be the incidence vector of T . Euler’s Theorem implies that x must

satisfy that for every vertex v ∈ V the number x(δ(v)) is even, and for every edge e ∈ E

the number xe is a positive integer. Moreover, it also follows that any vector x satisfying

these two conditions is the incidence vector of a postman tour of G. Hence, we obtain the

following integer programming formulation for Minimum Undirected Postman Tour

MUPP(G, c) = min c>x (2.7)

subject to

x(δ(v)) ≡ 0 (mod 2) for all v ∈ V (2.8)

xe ≥ 1 and integer for all e ∈ E. (2.9)

An easy consequence is that Minimum Undirected Postman Tour has optimal

solutions with xe ≤ 2 for every edge e: If xe ≥ 3 for some edge e, then decreasing this

component by 2 does affect feasibility, and does not increase the objective value.

An equivalent way of looking at Guan’s problem is then to find the minimum length of

the edges that are traversed twice by a postman tour. We say that a subset F ⊆ E is a

postman set of G if the graph obtained from G by duplicating the edges in F is Eulerian.

Problem: Minimum Undirected Postman Set.

Input: A connected undirected graph G = (V,E), and a vector c ∈ QE
+.

Output: The minimum cost MUPSP(G, c) of a postman set of G.



32 Postman Problems on Mixed Graphs

Figure 2.5 shows in bold the edges of two different postman sets of an undirected graph.

Assuming all the edges have cost one, {a, g} is a minimum cost postman set of the graph

shown, corresponding with the minimum cost postman tour mentioned before.

Let F ⊆ E and let x be its incidence vector. It follows from Euler’s Theorem that F is

a postman set if and only if x(δ(v))+ d(v) is even for every v ∈ V , and xe is a nonnegative

integer for every e ∈ E. Therefore, the following is an integer programming formulation

for Minimum Undirected Postman Set:

MUPSP(G, c) = min c>x (2.10)

subject to

x(δ(v)) ≡ d(v) (mod 2) for all v ∈ V (2.11)

xe ≥ 0 and integer for all e ∈ E. (2.12)

We say that a vertex v is odd if its degree is odd, and we say that v is even otherwise.

Similarly, we say that a subset S ⊆ V is odd if it contains an odd number of odd vertices.

Let Pups(G) be the convex hull of all feasible solutions x to the integer program above.

Consider the linear program

LMUPSP(G, c) = min c>x (2.13)

subject to

x(δ(S)) ≥ 1 for all odd S ⊆ V (2.14)

xe ≥ 0 for all e ∈ E, (2.15)

and let Qups(G) be the set of its feasible solutions. Note that in this linear program

the parity constraints (2.11) have been replaced by the odd-cut constraints (2.14) obtained

from the following observation: if S ⊆ V is odd, then any postman tour of G must use at

least twice some edge in δG(S). Equivalently, if S ⊆ V is odd, then any postman set of G

must contain at least one edge in δG(S).

2.2.2 Algorithms

In 1965, Edmonds presented an algorithm for Minimum Undirected Postman Tour

[25] based on his algorithm for maximum matching [26], as well as on the all-shortest paths

algorithm of Floyd [37] and Warshall [88].
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Theorem 2.7 (Edmonds) There exists a polynomial-time algorithm that, given a con-

nected, undirected graph G, and nonnegative rational costs on its edges, computes a mini-

mum cost postman tour of G.

In 1973, Edmonds and Johnson strengthened this result by showing that the integer

programming formulation of Minimum Undirected Postman Set and the linear pro-

gramming relaxation LMUPSP(G, c) are equivalent [29]. Their main result is:

Theorem 2.8 (Edmonds and Johnson) Let G be a connected, undirected graph. Then

Pups(G) = Qups(G). Moreover, there exists a polynomial-time algorithm that, given

nonnegative rational costs c on the edges of G, solves the linear program LMUPSP(G, c),

and hence computes the minimum cost of a postman tour of G.

Using that Minimum Cut can be solved in polynomial time, Padberg and Rao proved

that Minimum Odd Cut can also be solved in polynomial time [69].

Theorem 2.9 (Padberg and Rao) Let G = (V,E) be a connected, undirected graph, let

T ⊆ V have even cardinality, and let x ∈ QE
+. There exists a polynomial-time algorithm to

find a subset S ⊆ V , with |S ∩ T | odd, minimizing x(δ(S)).

Due to the equivalence between optimization and separation, Theorem 1.8, we can use

this result as follows: Let T be the set of vertices of G with odd degree. Note that a subset

S ⊆ V has |S ∩ T | odd if and only if S is odd. Hence, if we want to decide whether a

vector x ∈ QE
+ belongs to Qups(G), it is enough to find an odd subset S∗ ⊆ V minimizing

x(δ(S)), since x ∈ Qups(G) if and only if x(δ(S∗)) ≥ 1. This observation, together with

the ellipsoid algorithm for linear programming, gives a polynomial-time algorithm to solve

Minimum Undirected Postman Set.

2.2.3 T -joins

We consider a generalization of Minimum Undirected Postman Set. Let G = (V,E)

be an undirected graph, and let T ⊆ V with |T | even. We say that J ⊆ E is a T -join if,

for every v ∈ V , dJ(v) is odd if and only if v ∈ T .
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Problem: Minimum T -Join.

Input: An undirected graph G = (V,E), a subset T ⊆ V , with |T | even, and a

vector c ∈ QE.

Output: The minimum cost MTJ(G, c) of a T -join of G.

Edmonds proved that Minimum T -Join can be solved in polynomial time [25].

It is not difficult to verify that the postman sets of G are precisely the T -joins of G

where T is the set of vertices of G with odd degree, and the ∅-joins of G are precisely the

even subgraphs of G. Also, it is not hard to see that a T -join is minimal if and only if it

is the union of 1
2
|T | edge disjoint paths whose set of endpoints is precisely T .

Edmonds and Johnson introduced two linear programming formulations for Minimum

T -Join, one for nonnegative costs, and another for arbitrary costs [29]. We say that S ⊆ V

is T -odd if S ∩ T is odd. If J ⊆ E is a T -join and S ⊆ V is T -odd then the subgraph

GS = (S, J ∩ γ(S)) has an even number of vertices of odd degree, but the subgraph

GJ = (V, J) has an odd number of vertices in S of odd degree. Hence |J ∩ δ(S)| must be

odd. In particular, if x ∈ ZE
+ is the incidence vector of J then x(δ(S)) ≥ 1. Let Q1

TJ(G, T )

be the set of solutions of the linear program

LMTJ1(G, T, c) = min c>x (2.16)

subject to

x(δ(S)) ≥ 1 for all T -odd S ⊆ V (2.17)

xe ≥ 0 for all e ∈ E, (2.18)

and let P1
TJ(G, T ) be the convex hull of its integral solutions. Edmonds and Johnson

proved that Q1
TJ(G, T ) = P

1
TJ(G, T ), and hence if c ∈ QE

+ then LMTJ1(G, T, c) is equal to

the minimum cost of a T -join.

Now we describe the second formulation. If J ⊆ E is a T -join and S ⊆ V then |J∩δ(S)|

and |S ∩T | have the same parity. Hence, if F ⊆ δ(S) and |F |+ |S ∩T | is odd, then F and

J ∩ δ(S) cannot be equal and, in particular, their symmetric difference contains at least

one edge. It follows that the characteristic vector x of J satisfies

x(δ(S) \ F ) + (|F | − x(F )) ≥ 1. (2.19)
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Let P2
TJ(G, T ) be the convex hull of the characteristic vectors of T -joins, and let

Q2
TJ(G, T ) be the set of solutions of the linear program

LMTJ2(G, T, c) = min c>x (2.20)

subject to

x(δ(S) \ F )− x(F ) ≥ 1− |F | for all S ⊆ V and all F ⊆ δ(S) (2.21)

such that |F |+ |S ∩ T | is odd

1 ≥ xe ≥ 0 for all e ∈ E. (2.22)

Again, Edmonds and Johnson proved that Q2
TJ(G, T ) = P

2
TJ(G, T ), and hence for every

c ∈ QE, LMTJ2(G, T, c) is equal to the minimum cost of a T -join.

The combinatorial structure of T -joins has been studied extensively. The cuts induced

by T -odd sets are called T -cuts. Frank wrote a survey on T -joins and T -cuts [39].

2.2.4 Applications

In addition to its practical applications to vehicle routing, Minimum Undirected Post-

man Tour has various other theoretical applications. We mention very briefly only some

of them here. We direct the interested reader to the survey by Barahona [6].

Spin glasses are magnetic alloys with interesting physical properties. One of the main

problems of interest is the determination of configurations of minimum energy. There exists

a mathematical model for configurations of spin glasses for which the problem of finding

a minimum energy state can be reduced to solving a Minimum Undirected Postman

Tour [4]. In the design of a two layer VLSI circuit, one may need to add interconnections

(called vias) between its two layers. The via minimization problem consists of minimizing

the number of such interconnections. This problem can also be reduced to solving a Mini-

mum Undirected Postman Tour [7]. In fact, it can be seen that the via minimization

problem is a special case of Maximum Cut on planar graphs, which can be solved in

polynomial time, as shown by Barahona [8] and Hadlock [51]. Moreover, it is known that

Maximum Cut can be solved in polynomial time for graphs not contractible to K5, by

solving a sequence of Minimum Undirected Postman Tour instances [5]. Recall that

Maximum Cut is NP-complete for general graphs [59].
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2.3 The Directed Postman Problem

A first variation of Guan’s question is to consider directed graphs instead of undirected

graphs. Given a directed graph D, a tour of D is a postman tour if it contains each arc of

D at least once. A postman tour of the directed graph shown on Figure 2.6 is

(A, c, C, i, B, a, A, d, C, i, B, a, A, e,D, f, B, a, A, e,D, g, C, i, B, b, A, e,D, h,A). (2.23)

Note that some arcs are used more than twice, and that this cannot be avoided.
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Figure 2.6: A non-Eulerian directed graph and a postman tour.

Since a directed graph has a postman tour if and only if it is strongly connected, it is

easy to decide whether a directed graph has a postman tour or not. A more interesting

problem is to obtain a postman tour of a directed graph.

Problem: Directed Postman Tour Construction.

Input: A strongly connected directed graph D = (V,A).

Output: A postman tour T of D.

For the moment, we are not going to discuss here how to do this. Instead, we are going

to consider the problem of finding the length of a shortest postman tour. Given a strongly
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connected directed graph D = (V,A), for each arc a ∈ A a nonnegative rational cost ca,

and a postman tour T of D, the cost of T (denoted by c(T )) is the sum of the costs of the

arcs used by T , that is, if T = (v1, a1, v2, a2, . . . , vk, ak, v1) then c(T ) ≡
∑k

i=1 c(ei).

Problem: Minimum Directed Postman Tour.

Input: A strongly connected directed graph D = (V,A), and a vector c ∈ QA
+.

Output: The minimum cost MDPP(D, c) of a postman tour of D.

2.3.1 Formulation and Algorithms

Let T be a postman tour of D and, for every arc a, let xa be the number of times that T

uses a, that is, let x be the incidence vector of T . It follows from Kőnig’s Theorem 2.4 that

x must satisfy the conditions: For every vertex v ∈ V the quantities x(δ(v)) and x(δ(v̄))

are equal, and for every edge e ∈ E the number xe is a positive integer. Moreover, it

also follows that any vector x satisfying these two conditions is the incidence vector of a

postman tour of D. Hence, we obtain the following integer programming formulation for

Minimum Directed Postman Tour:

MDPP(D, c) = min c>x (2.24)

subject to

x(δ(v̄))− x(δ(v)) = 0 for all v ∈ V (2.25)

xa ≥ 1 and integer for all a ∈ A. (2.26)

Given a directed graph D = (V,A), a vector l ∈ RA of lower bounds on the arcs,

a vector u ∈ RA of upper bounds on the arcs, and a vector b ∈ RV of demands on the

vertices, we say that a vector x ∈ RA is a (feasible) flow if la ≤ xa ≤ ua for all a ∈ A, and

x(δ(v̄))− x(δ(v)) = bv for all v ∈ V . The following result of Gale [41] gives necessary and

sufficient conditions for the existence of feasible flows:

Theorem 2.10 (Gale) Given a directed graph D = (V,A), and vectors l, u ∈ RA, and

b ∈ RV , there exists a flow x ∈ RA if and only if l ≤ u, b(V ) = 0, and every S ⊆ V satisfies

u(δ(S̄)) ≥ b(S) + l(δ(S)). (2.27)
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Moreover, if l, u, and b are integral, there exists an integral flow x if and only if the same

conditions hold.

If bv = 0 for all v ∈ V , a feasible flow is called a circulation. Note that the incidence

vectors of postman tours of a directed graph are circulations. Hoffman’s circulation theorem

is a special case of the above [54].

Theorem 2.11 (Hoffman) Given a directed graph D = (V,A), and vectors l, u ∈ RA,

there exists a circulation x ∈ RA if and only if l ≤ u, and every S ⊆ V satisfies

u(δ(S̄)) ≥ l(δ(S)). (2.28)

Moreover, if l and u are integral, there exists an integral circulation x if and only if the

same conditions hold.

If we assign costs to the arcs, we are interested in the problem of finding a minimum

cost feasible flow, or in the problem of finding a minimum cost circulation. These two

problems, as well as Minimum Directed Postman Tour, are special cases of:

Problem: Minimum Cost Feasible Flow.

Input: A directed graph D = (V,A), vectors c ∈ QA
+, l, u ∈ ZA (with l ≤ u), and a

vector b ∈ ZV with b(V ) = 0.

Output: The minimum cost MCFF(D, c, l, u, b) of a feasible flow x.

A polynomial-time algorithm to solve this problem is due to Edmonds and Karp [30],

although faster algorithms exist (see [80, Chapter 12]). Edmonds and Johnson [29] used

this algorithm to solve Minimum Directed Postman Tour.

Theorem 2.12 (Edmonds and Karp) Let D = (V,A) be a directed graph, and let c ∈

QA
+, l, u ∈ ZA (with l ≤ u), and b ∈ ZV (with b(V ) = 0). There exists a polynomial-time

algorithm that finds a minimum cost feasible flow of (D, c, l, u, b).

Theorem 2.13 (Edmonds and Johnson) Let D = (V,A) be a strongly connected di-

rected graph, and let c ∈ QA
+ be a vector of costs on its arcs. There exists a polynomial-time

algorithm that finds a minimum cost postman tour of (D, c).



Chapter 3

The Mixed Postman Problem

Doublethink means the power of holding two contradictory

beliefs in one’s mind simultaneously, and accepting both of them.

Nineteen Eighty-Four, George Orwell

We introduce a generalization of Mixed Eulerian Tour known as Minimum Mixed

Postman Tour. We give integer programming formulations for this problem, and prove

properties of their linear relaxations. We show that Minimum Mixed Postman Tour

is NP-hard under various assumptions, and describe approximation algorithms for it.

Finally, we introduce a bounded version of the problem.

3.1 Introduction

In the previous chapter we introduced Mixed Eulerian Tour, and listed the conditions

under which it has solutions. Just as we did for its undirected and directed counterparts,

we relax now the condition that each edge and arc must be traversed exactly once. Given

a mixed graph M , a tour of M is a postman tour if it contains each edge and arc of M at

least once. A postman tour of the non-Eulerian mixed graph shown on Figure 3.1 is:

(A, a,B, b, A, d, C, c, A, e,D, f, b, A, h,D, g, i, B, b, A). (3.1)

39
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Figure 3.1: A non-Eulerian mixed graph and two postman tours.

As in the directed case, some edges or arcs are used more than twice, and this cannot

be avoided. As in the undirected and directed cases, we consider the problems of deciding

whether a mixed graph has a postman tour and, in that case, to construct one.

Problem: Mixed Postman Tour.

Input: A mixed graph M = (V,E,A).

Output: Does M have a postman tour?

Note that if M is not strongly connected then M cannot have a tour. Conversely, if

M is strongly connected, define a mixed graph N with the vertex set of M and, for each

edge e of M with ends u and v, add to N two parallel edges with ends u and v, and for

each arc a of M with head u and tail v, add a to N together with a shortest mixed path

of M from u to v. By Veblen’s theorem, since N is the disjoint union of some cycles, it

is Eulerian, and an Eulerian tour of N determines a postman tour of M . Hence M has a
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postman tour if and only if M is strongly connected. Moreover, note that N has at most

2|E| + |A| · |V | edges and arcs, which is polynomial in the size of M . Hence, we can also

use Hierholzer’s algorithm to construct a postman tour T of M .

Given a strongly connected mixed graph M = (V,E,A), for each edge or arc e of M a

nonnegative rational cost ce, and a postman tour T of G, the cost of T (denoted by c(T ))

is the sum of the costs of the edges and arcs used by T . In this chapter, we concentrate

on the problem of finding a postman tour of M with minimum cost.

Problem: Minimum Mixed Postman Tour.

Input: A strongly connected mixed graph M = (V,E,A), and a vector c ∈ QE∪A
+ .

Output: The minimum cost MMPT(M, c) of a postman tour of M .

Recall that, in the undirected case, we defined a postman set to be a subset of the edge

set whose duplication produces an Eulerian graph. We did not define a similar concept for

the directed version of the problem; however we define it now for the mixed version. We

say that a family F of edges and arcs is a postman set of M if there exists a tour T of M

using each edge and arc e of M one more than the number of times e appears in F .

Problem: Minimum Mixed Postman Set.

Input: A strongly connected mixed graph M = (V,E,A), and a vector c ∈ QE∪A
+ .

Output: The minimum cost MMPS(M, c) of a postman set of M .

We note that the outputs of Minimum Mixed Postman Tour and Minimum Mixed

Postman Set are related by MMPT(M, c) = MMPS(M, c) + c(E ∪A). Hence, from the

optimization point of view, these two problems are equivalent.

Edmonds and Johnson introduced Minimum Mixed Postman Tour [29]. Fernandes,

Lee, and Wakabayashi gave a polynomial-time algorithm for mixed graphs with bounded

tree width [34]. A branch and cut algorithm for Minimum Mixed Postman Tour was

given by Christofides et al. [13], whereas branch and bound algorithms were given by Nobert

and Picard [68], and Yan and Thompson [91]. Corberán, Mart́ı, and Sanchis [17], Edmonds

and Johnson [29], Greistorfer [45], Jeworrek and Schulz [56], Wang [87], and Yaoyuenyong

et al. [92] gave heuristics for Minimum Mixed Postman Tour. Pearn and Chou gave

methods to improve solutions [73]. Surveys on Minimum Mixed Postman Tour include

those by Brucker [11], Eiselt, Gendreau, and Laporte [31], Minieka [67], and Peng [75].
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3.2 Computational Complexity

In contrast to Minimum Undirected Postman Tour and Minimum Directed Post-

man Tour, which can be solved in polynomial time, Papadimitrou showed that the de-

cision version of Minimum Mixed Postman Tour is NP-complete, even if we restrict

the input so that the mixed graph is planar, each of its vertices has total degree at most

three, and all edge and arc costs are equal to one [70]. We introduce first a modification of

Papadimitriou’s construction, which will allow us to reproduce some of his results, namely,

that the decision version of Minimum Mixed Postman Tour is NP-complete even if

all costs are equal to one. Our proof, however, will also give a negative result about the

approximability of Minimum Mixed Postman Set. We modify further our construction

to prove that the decision version of Minimum Mixed Postman Tour is NP-complete

even if the costs arise from either the Euclidean or the Manhattan metric in Q2.

3.2.1 Assumptions on Satisfiability

Consider an instance I of 3-Satisfiability with n ∈ N variables x1, x2, . . . , xn and m ∈ N
clauses C1, C2, . . . , Cm, where each clause Ci contains exactly three literals y1i , y

2
i , y

3
i , each

of which is either a positive variable (say xj) or a negative variable (say ¬xj). Note that

size(I) is O(m log n), which is O(m logm) since we can clearly assume that n ≤ 3m. We

will assume further the following:

1. No clause contains a variable and its negation: these clauses are trivially satisfied

and can be removed from I. This condition can be verified in time O(m).

2. No two clauses contain exactly the same literals: removing repetitions of clauses does

not affect the satisfiability of I. We can verify this condition in time O(m logm) by

sorting lexicographically the set of clauses.

3. Every variable appears in its positive and negative forms in the set of clauses: if a

variable appeared only, say, in its positive form, we could set it to true and remove all

clauses in which it appeared, without affecting the satisfiability of I. We can verify

this condition in time O(n+m) = O(m) by checking each clause and each variable.
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It could be necessary to perform the above verifications more than once, but as each

time they fail they decrease the number of clauses or the number of variables, the number of

verifications is O(n+m) = O(m). Hence the total time spent in this process is O(m2 logm),

and therefore polynomial in size(I). For each 1 ≤ i ≤ n we define pi as the number of

times the literal xi appears in the clauses, qi as the number of times the literal ¬xi appears

in the clauses, and ti = max{pi, qi}. Under the above assumptions m and n satisfy the

inequalities n ≤ 3
2
m and m ≤ (2n)3, and, for each 1 ≤ i ≤ n, pi ≥ 1 and qi ≥ 1.

3.2.2 Unit Costs

We consider first the special case of Minimum Mixed Postman Tour in which the cost

of each edge or arc is equal to one. The proof of the NP-completeness result is based on

three lemmas describing the behaviour of some mixed subgraphs.
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Figure 3.2: The clause subgraph and its optimal postman tours.

Lemma 3.1 Consider the clause subgraph C in Figure 3.2 and assume it is induced by

vertices u, v, y1, y2, y3 on a mixed graph M where the shortest path between any two of

v, y1, y2, y3 has cost at least 2. Assume further that we specify the directions in which we

traverse edges uy1, uy2, uy3. Then the minimum cost of replicating edges and arcs in C to

find a postman tour in M is 3 if the three edges were directed away of u, and 1 otherwise.
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Proof. If the three edges uy1, uy2, uy3 are directed away of u, then we have four arcs

leaving u, so we need four arcs entering u. This can be done by replicating three times edge

uv, and directing the four copies towards u. The other three cases are handled similarly.

See Figure 3.2 for a case by case analysis. ¥

Lemma 3.2 Consider the comparator subgraph D in Figure 3.3 and assume it is induced

by vertices a, b, c, d, e, f, g, h on a mixed graph M where the shortest path between any two

of a, b, c, d has cost at least 2. Assume further that we specify the directions in which we

traverse edges ae, bf, cg, dh (two entering D and two leaving D). Then the minimum cost

of replicating edges and arcs in D to find a postman tour in M is 2 if both ae and cg have

the same orientation, and at least 3 otherwise.

Proof. Note that if we replicate any of the edges ae, bf, cg, dh then we need to replicate

at least two, therefore incurring a cost of at least 3, if using a path in D two connect those

edges, or at least 4, if using a path partially outside D. Hence we can assume that we only

replicate arcs in D. See Figure 3.3 for a case by case analysis. ¥

Given an integer k ≥ 1 we define a (k + 1)-rail mixed graph as follows: Take k copies

D1, . . . , Dk of the comparator graph, with endpoints ai, bi, ci, di for i ≤ i ≤ k. For 1 ≤ i < k

identify vertices di and ai+1. Rename vertex a1 as c0, and vertex dk as b0. See Figure 3.4

for an example of a 4-rail. A 1-rail is a path of length 2 with extreme points c0 and b0.

Lemma 3.3 Let k ∈ Z+, and assume that a (k + 1)-rail R is an induced subgraph (with

endpoints b0, b1, . . . , bk and c0, c1, . . . , ck) of a mixed graph M satisfying that the shortest

path between any two of the endpoints of R has cost at least 2. Then the minimum cost of

replicating edges and arcs in R to find a postman tour in M is 2k if we enter R through

c0, c1, . . . , ck and leave R through b0, b1, . . . , bk or vice versa, and greater otherwise.

Proof. R contains k induced copies of the comparator. Moreover, the length of the

shortest path between any two extreme points of any copy of the comparator is at least

2. By Lemma 3.2 the minimum cost of replicating edges and arcs in R to find a postman

tour in M is at least 2k. This cost can be achieved if we enter R through c0, c1, . . . , ck and
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leave R through b0, b1, . . . , bk or conversely. If we fail to do this then the cost in one copy

of the comparator will be at least 3. Hence the total cost will exceed 2k. ¥

Theorem 3.4 (Papadimitriou) The decision version of Minimum Mixed Postman

Tour with unit costs is NP-complete.

Proof. We are going to reduce 3-Satisfiability to the decision version of Minimum

Mixed Postman Tour with unit costs. Let I be any instance of 3-Satisfiability that

satisfies the assumptions on Section 3.2.1. Construct a mixed graph M as follows:

Take m copies of the clause graph, with common vertex v and vertices ui, y
i
1, y

i
2, y

i
3 for

1 ≤ i ≤ m. For each 1 ≤ j ≤ n, let Rj be a tj-rail graph with endpoints bj0, b
j
1, . . . , b

j
tj−1

and cj0, c
j
1, . . . , c

j
tj−1. For each 1 ≤ j ≤ n, and for each 1 ≤ l ≤ pj, identify cjl−1 with

yiz, where the l-th ocurrence of literal xj is in position z of clause Ci. Similarly, for each

1 ≤ j ≤ n, and for each 1 ≤ l ≤ qj, identify b
j
l−1 with y

i
z, where the l-th ocurrence of literal

¬xj is in position z of clause Ci. Identify all the remaining bjl and cjl vertices with vertex

v. Figure 3.5 shows the mixed graph obtained from the set of clauses C1 = {x1, x2, x3},

C2 = {¬x1,¬x2,¬x3}, C3 = {x1, x3,¬x4}, C4 = {x1, x3, x4}, and C5 = {x2,¬x3,¬x4}.

Let w = m+ 2
∑n

j=1(tj − 1). We claim that M has a postman set of cost at most w if

and only if I is satisfiable. Assume that I is satisfiable by an assignment of truth values

to variables x1, . . . , xn. Then we can construct a postman tour of M as follows: For every

1 ≤ j ≤ n, if xj is true orient the edges in Rj entering through bj0, b
j
1, . . . , b

j
tj−1 and leaving

through cj0, c
j
1, . . . , c

j
tj−1, otherwise orient the edges in Rj entering through cj0, c

j
1, . . . , c

j
tj−1

and leaving through bj0, b
j
1, . . . , b

j
tj−1. For each 1 ≤ i ≤ m direct edges yi

z according to

the orientations above. Figure 3.6 shows the orientation of M corresponding to the truth

assignment x1 = x2 = true, x3 = x4 = false. The fact that the assignment satisfies I

implies that at least one of the edges yi
z will enter vertex ui. By Lemmas 3.1 and 3.3, the

above orientations imply there exists a postman set of M with cost w.

Now assume that there exists a postman set of M with cost w. By Lemmas 3.1 and 3.3

a cost of w cannot be avoided, since we have m copies of the clause subgraph, and n rail

subgraphs, each with associated cost 2(tj−1). Moreover, cost w can only be achieved if at

least one edge enters each clause subgraph, and all edges in each rail subgraph are properly

oriented. This orientation defines an assignment of truth values that satisfies I.
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It only remains to show that M has size polynomial in the size of I. This is true since

it has less than 2m + 8
∑n

j=1(tj − 1) vertices, and 5m + 11
∑n

j=1(tj − 1) edges and arcs.

These two quantities are O(m). ¥

The mixed graph M constructed in the previous proof is definitely not planar (even

if we restrict I to be an instance of Planar 3-Satisfiability), and its maximum ver-

tex total degree is greater than 3. However, by using techniques similar to those used by

Papadimitriou, it is possible to modify our proof to obtain the stronger result in [70]. More-

over, we can use our proof to obtain a weak negative result regarding the approximability

of Minimum Mixed Postman Set. We give a stronger result in Chapter 6.

Theorem 3.5 There is no fully polynomial approximation scheme for Minimum Mixed

Postman Set, even if all costs are 1, unless P = NP.

Proof. Assume there exists a fully polynomial approximation scheme A such that, for

all ε > 0, Aε approximates Minimum Mixed Postman Set within a factor of (1 + ε).

Recall that Aε must run in time polynomial in both |V | + |E| + |A| and 1
ε
. Let I be an

instance of 3-Satisfiability that satisfies the assumptions in Section 3.2.1, and let M

be the mixed graph constructed in the proof of Theorem 3.4. Recall that I is satisfiable if

and only if M has a postman set with cost at most w. Moreover, since

n
∑

j=1

(tj − 1) <
n
∑

j=1

tj <
n
∑

j=1

(pj + qj) = 3m (3.2)

it follows that m ≤ w < 7m, that 2m ≤ |V | < 26m, and that 5m ≤ |E| + |A| < 38m.

Choose ε = 1
7m

and let A be the algorithm Aε. Note that A runs in time polynomial in

m = O(|V |+ |E|+ |A|) and satisfies:

1. If I is not satisfiable then A(I) ≥ OPT (I) ≥ w + 1.

2. If I is satisfiable then A(I) ≤ (1 + ε)OPT (I) ≤ (1 + ε)w < w + 1.

Therefore I is satisfiable if and only ifA(I) < w+1, and we can decide 3-Satisfiability

in polynomial time. This is a contradiction, unless P = NP . ¥
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3.2.3 Metric Costs

We say that the vector of costs c ∈ QE∪A
+ is a metric if it satisfies the triangle inequality,

that is, if for every edge e with ends u and v and for every mixed path P from u to v we have

that ce ≤ c(P ), and for every arc a with tail u and head v and for every mixed path P from

u to v we have that ca ≤ c(P ). Note that the vector of unit costs is a metric. It follows that

the decision version of Minimum Mixed Postman Tour remains NP-complete even if

we restrict the costs to be metric, and there is no fully polynomial approximation scheme

for Minimum Mixed Postman Set, even if costs are metric, unless P = NP .

In the remainder of this section, we consider mixed graphs whose vertices are points in

Z2. Given two points (p, q) and (r, s) in Z2, the discrete Euclidean distance between them

is b((p− r)2 + (q − s)2)1/2c, and the Manhattan distance between them is |p− r|+ |q − s|.

It can be seen that each one of these two distances defines a metric on Z2. The vertices of

an instance of Minimum Mixed Postman Tour with discrete Euclidean or Manhattan

costs are described by their integer coordinates. As is usual when considering graphs whose

vertices are points in Z2, we allow superimposed vertices.

Theorem 3.6 The decision version of Minimum Mixed Postman Tour remains NP-

complete even if we restrict the costs to be Manhattan.
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Figure 3.7: The clause and comparator subgraphs with Manhattan costs.

Proof. It is enough to show that we can construct a clause subgraph and a comparator

subgraph on Z2 with Manhattan costs. We show those subgraphs in Figure 3.7. The
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coordinates for the points are as follows: u = (0, 0), v = y1 = y2 = y3 = (2, 0), a = b =

c = d = (2, 0), e = g = (4, 0), f = (3, 1), and h = (3,−1). Note that all costs have been

doubled with respect to the costs of the original subgraphs. ¥

Corollary 3.7 The decision version of Minimum Mixed Postman Tour remains NP-

complete even if we restrict the costs to be discrete Euclidean.
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Proof. A direct reduction from Minimum Mixed Postman Tour with Manhattan

costs works: Replace every edge between points (a, b) and (c, d) with two edges, one between

points (a, b) and (a, d), and the other between points (a, d) and (c, d). Similarly, replace

every arc from (a, b) to (c, d) with two arcs, one from (a, b) to (a, d), and the other from

(a, d) to (c, d). In Figure 3.8, we have applied this procedure to the subgraphs in Figure 3.7.

The number of edges and arcs of the new mixed graph is at most doubled. The discrete

Euclidean cost is now precisely the Manhattan cost. ¥

3.3 Integer Programming Formulations

Let M = (V,E,A) be a strongly connected mixed graph, and let c ∈ QE∪A
+ . We present

two different integer programming formulations of Minimum Mixed Postman Tour.
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3.3.1 First Formulation

The first integer programming formulation we give is due to Kappauf and Koehler [57], and

Christofides et al. [13]. It is based on Veblen’s characterization of mixed Eulerian graphs

and a flow formulation similar to the one for the directed case. Similar formulations were

given by Edmonds and Johnson [29], Grötschel and Win [47], and Ralphs [78].

Let ~M = (V,A∪E+∪E−) be the associated directed graph ofM , and let B = E+∪E−.

For every e ∈ E, let ce+ = ce− = ce. A nonnegative integer circulation x of ~M is the

incidence vector of a postman tour ofM if and only if xe ≥ 1 for all e ∈ A, and xe++xe− ≥ 1

for all e ∈ E. Therefore, we obtain the integer program:

MMPT1(M, c) = min c>AxA + c>Ex
+
E + c>Ex

−
E (3.3)

subject to

x(~δ(v̄))− x(~δ(v)) = 0 for all v ∈ V (3.4)

xa ≥ 1 for all a ∈ A (3.5)

xe+ + xe− ≥ 1 for all e ∈ E (3.6)

xa ≥ 0 and integer for all a ∈ A ∪ E+ ∪ E−. (3.7)

Let P1
MPT (M) be the convex hull of the feasible solutions to the integer program above,

and let Q1
MPT (M) be the set of feasible solutions to its linear programming relaxation:

LMMPT1(M, c) = min c>AxA + c>Ex
+
E + c>Ex

−
E (3.8)

subject to

x(~δ(v̄))− x(~δ(v)) = 0 for all v ∈ V (3.9)

xa ≥ 1 for all a ∈ A (3.10)

xe+ + xe− ≥ 1 for all e ∈ E (3.11)

xa ≥ 0 for all a ∈ A ∪ E+ ∪ E−. (3.12)
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3.3.2 Second Formulation

The second integer programming formulation we give is due to Nobert and Picard [68].

The approach they use is based on Ford and Fulkerson’s characterization of mixed Eulerian

graphs. The vector x ∈ ZE∪A
+ is the incidence vector of a postman tour of G if and only

if xe ≥ 1 for all e ∈ E ∪ A, x(δE∪A(v)) is even for all v ∈ V , and x(δA(S̄)) + x(δE(S)) ≥

x(δA(S)) for all S ⊆ V . Therefore we obtain the integer program:

MMPT2(M, c) = min c>x (3.13)

subject to

x(δE∪A(v)) ≡ 0 (mod 2) for all v ∈ V (3.14)

x(δA(S̄)) + x(δE(S))− x(δA(S)) ≥ 0 for all S ⊆ V (3.15)

xe ≥ 1 and integer for all e ∈ E ∪ A. (3.16)

Note that the parity constraints (3.14) are not in the required form for Integer Pro-

gramming Minimization; however, this can be easily solved by noting that, for all v ∈ V ,

x(δE∪A(v)) ≡ x(δA(v̄)) + x(δE(v))− x(δA(v)) (mod 2), (3.17)

and introducing a slack variable sv ∈ Z+ to obtain the equivalent constraint

x(δA(v̄)) + x(δE(v))− x(δA(v))− 2sv = 0 for all v ∈ V. (3.18)

Let P2
MPT (M) be the convex hull of the feasible solutions to the integer program above,

and let Q2
MPT (M) be the set of feasible solutions to its linear programming relaxation:

LMMPT2(M, c) = min c>x (3.19)

subject to

x(δA(S̄)) + x(δE(S))− x(δA(S)) ≥ 0 for all S ⊆ V (3.20)

xe ≥ 1 for all e ∈ E ∪ A. (3.21)

Note that the constraints (3.14) were relaxed to x(δE∪A(v)) ≥ 0 for all v ∈ V , but

these constraints are redundant in the linear program LMMPT2(M, c). We reach the same

conclusion if we use the formulation with slacks and we discard them.
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3.4 Linear Programming Relaxations

In the previous section we gave two integer programming formulations for Minimum

Mixed Postman Tour, as well as their linear relaxations. One of the first questions

we might ask is whether one of the relaxations is better than the other or they are in fact

equivalent. Surprisingly, we were not able to find a single reference to this question in our

literature search. We answer this question by showing in two rather different ways that

the relaxations are equivalent. With this result in hand, we study some of the properties

of the extreme points of the set Q1
MPT (M) of solutions to our first formulation.

3.4.1 Equivalence

We give two proofs that LMMPT1(M, c) and LMMPT2(M, c) are essentially equivalent.

Our first result says that solving both linear programs would give the same objective value.

Theorem 3.8 For every x1 ∈ Q1
MPT (M) there exists x2 ∈ Q2

MPT (M) such that c>x1 =

c>x2, and conversely, for every x2 ∈ Q2
MPT (M) there exists x1 ∈ Q1

MPT (M) such that

c>x1 = c>x2. Moreover, in both cases we can ensure that x1a = x2a for all a ∈ A, and

x1e+ + x1e+ = x2e for all e ∈ E.

Proof: First note that x1e = x2e for all e ∈ A, and x1e+ + x1e− = x2e for all e ∈ E imply

c>x1 = c>x2 for every vector of costs c. (⇒) Let x1 ∈ Q1
MPT (M) and define x2 as above.

It is clear that x2 ∈ RE∪A
+ , so we only have to prove (3.20). Let S ⊆ V , then

0 ≤ 2x1(~δB(S)) (3.22)

=
∑

v∈S

(

x1(~δ(v̄))− x1(~δ(v))
)

+ 2x1(~δB(S)) (3.23)

= x1(δA(S̄)) + x1(~δB(S)) + x1(~δB(S̄))− x1(δA(S)) (3.24)

= x2(δA(S̄)) + x2(δE(S))− x2(δA(S)). (3.25)

(⇐) Let x2 ∈ Q2
MPT (M) and assume x2 is rational. Let N be a positive integer such

that each component of x = Nx2 is an even integer. Consider the graph MN that contains
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xe copies of each e ∈ E∪A. Note thatM
N is Eulerian, and xe ≥ N for all e ∈ E∪A. Hence

we can direct some of the copies of e ∈ E in one direction and the rest in the other (say

xe+ and xe− , respectively) to obtain an Eulerian tour of MN . Therefore, x ∈ Q1
MPT (M

N),

xe ≥ N for all e ∈ A, and xe+ + xe− ≥ N for all e ∈ E, and hence x1 = 1
N
x ∈ Q1

MPT (M).

Note that x1 satisfies the properties in the statement. ¥

Theorem 3.8 implies that, for every vector c, LMMPT1(M, c) = LMMPT2(M, c), that

is, it is equivalent to optimize over either polyhedron. Our second result goes a bit further:

we show that Q2
MPT (M) is essentially a projection of Q1

MPT (M). Let A be the incidence

matrix of the directed graph D = (V,A), and let D be the incidence matrix of the directed

graph D+ = (V,E+). Let Q3
MPT (M) be the set of solutions x ∈ RA∪E∪E+∪E−

of the system:

AxA +D(xE+ − xE−) = 0V (3.26)

xE − xE+ − xE− = 0E (3.27)

xA ≥ 1A (3.28)

xE ≥ 1E (3.29)

xE+ ≥ 0E (3.30)

xE− ≥ 0E (3.31)

Note that this system is a reformulation of (3.9)–(3.12) where all the constraints have been

written in vector form, and we have included an additional variable xe for each edge e.

The following is a consequence of Theorem 3.8, but we give a different proof.

Theorem 3.9 The projection of the polyhedron Q3
MPT (M) onto xE+ = 0E and xE− = 0E

is Q2
MPT (M).

Proof: Let Q be the projection of Q3
MPT (M) onto xE+ = 0E and xE− = 0E, that is

Q = {x ∈ RA∪E : (A>zV + zA)
>xA + (zB + zE)

>xE ≥ z>A1A + z>E1E ∀ z ∈ R}, (3.32)

where

R = {(zV , zB, zA, zE) ∈ RV ∪E+∪A∪E : zA ≥ 0A, zE ≥ 0E and zB ≥ |D
>zV |}. (3.33)

We verify first that (3.20) and (3.21) are valid inequalities for Q:
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(3.20) Let S ⊆ V , and consider the element of R given by zV = χS, zB = χδE(S), zA = 0A,

and zE = 0E. This implies the constraint (χS)>AxA + (χδE(S))>xE ≥ 0, that is,

x(δE(S)) + x(δA(S̄))− x(δA(S)) ≥ 0.

(3.21) Let a ∈ A, and consider the element of R given by zV = 0V , zB = 0E, zA = 1a,

and zE = 0E. This implies the constraint 1>a xA ≥ 1>a 1A, that is, xa ≥ 1. Let e ∈ E,

and consider the element of R given by zV = 0V , zB = 0E, zA = 0A, and zE = 1e.

This implies the constraint 1>e xE ≥ 1>e 1E, that is, xe ≥ 1.

Now we verify that every element of R can be written as a nonnegative linear combi-

nation of the following elements of R:

(S1) For S ⊆ V , let zV = χS, zB = χδE(S), zA = 0A, and zE = 0E.

(S2) For S ⊆ V , let zV = −χS, zB = χδE(S), zA = 0A, and zE = 0E.

(A) For a ∈ A, let zV = 0V , zB = 0E, zA = 1a, and zE = 0E.

(E1) For e ∈ E, let zV = 0V , zB = 0E, zA = 0A, and zE = 1e.

(E2) For e ∈ E, let zV = 0V , zB = 1e, zA = 0A, and zE = 0E.

If any component of zA or zE is positive, we can use (A) or (E1) to reduce it to

zero, so we only consider the set of solutions of zB ≥ |D>zV | with zB and zV free. Let

S+ = supp+(zV ), and let S− = supp−(zV ). If both S+ and S− are empty, then we can

reduce the components of zB using (E2). Otherwise, assume that S+ is nonempty and

that the minimal positive component of zV is 1. For every edge e ∈ δE(S+) with endpoints

u ∈ S+, v /∈ S+ we have

(zB)e ≥ |(D
>zV )e| = |(zV )u − (zV )v| ≥ |(zV )u| = (zV )u ≥ 1. (3.34)

Therefore, the vectors

z∗B ≡ zB − χδE(S+) and z∗V ≡ zV − χS+ (3.35)

satisfy z∗B ≥ |D
>z∗V | and have fewer nonzero components. So we can reduce (zB, zV ) using

(S1). Similarly, if S− is nonempty, we can reduce (zB, zV ) using (S2). ¥
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3.4.2 Half-Integrality

Now we are going to explore the structure of the extreme points of Q1
MPT (M). To start, we

offer a simple proof of the following result due independently to Kappauf and Koehler [57],

Ralphs [78], and Win [90]. We say that e ∈ E is tight if xe+ + xe− = 1.

Theorem 3.10 (Kappauf and Koehler, Ralphs, Win) Every extreme point x of the

polyhedron Q1
MPT (M) has components whose values are either 1

2
or a nonnegative integer.

Moreover, fractional components occur only on tight edges.

Proof: Let x be an extreme point of Q1
MPT (M). We say that a ∈ A is fractional if xa

is not an integer. Similarly, we say that e ∈ E is fractional if at least one of xe+ or xe− is

not an integer. Let F = {e ∈ E ∪A : e is fractional}. We will show that F ⊆ E, and that

each e ∈ F is tight. Assume that for some v ∈ V , dF (v) = 1. Let e be the unique element

of F incident to v. Since the total flow into v is integral the only possibility is that e ∈ E.

Moreover, both xe+ and xe− must be fractional. If e is not tight, the vectors x1 and x2

obtained from x replacing the entries in e+ and e− by

x1e+ = xe+ + ε x1e− = xe− + ε

x2e+ = xe+ − ε x2e− = xe− − ε
(3.36)

(where ε = min{xe+ , xe− , 2(xe+ + xe− − 1)} > 0) would be feasible, with x = 1
2
(x1 + x2),

contradicting the choice of x. Hence e is a tight edge, and satisfies xe+ = xe− = 1
2
. Delete e

from F and repeat the above argument until F is empty or F induces an undirected graph

with minimum degree 2. (Deletion of e does not alter the argument since it contributes 0

flow into both its ends.) Suppose F contains a cycle C. Assign an arbitrary orientation

(say, positive) to C. We say that an arc in C is forward if it has the same orientation as

C, and we call it backward otherwise. Partition C as follows:

C+
A = {e ∈ C ∩ A : e is forward} (3.37)

C−
A = {e ∈ C ∩ A : e is backward} (3.38)

C=
E = {e ∈ C ∩ E : e is tight} (3.39)

C>
E = {e ∈ C ∩ E : e is not tight} (3.40)
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and define

ε+ = min
e∈C+

A

dxee − xe (3.41)

ε− = min
e∈C−

A

xe − bxec (3.42)

ε= = min
e∈C=

E

{xe+ , xe−} (3.43)

ε> = min
e∈C>

E

{dxee − xe, xe − bxec} (3.44)

ε1 = min{ε+, ε−, 2ε=, ε>} (3.45)

The choice of C implies ε1 > 0. Now we define a new vector x1 as follows:

x1e =































xe + ε1 if e ∈ C+
A or e is forward in C>

E

xe − ε1 if e ∈ C−
A or e is backward in C>

E

xe +
1
2
ε1 if e is the forward copy of an edge in C=

E

xe −
1
2
ε1 if e is the backward copy of an edge in C=

E

xe otherwise

(3.46)

This is equivalent to pushing ε1 units of flow in the positive direction of C, and therefore

it is easy to verify that x1 ∈ Q1
MPT (M). Similarly, define ε2 and a vector x2 using the other

(negative) orientation of C. But now x is a convex combination of x1 and x2 (in fact, by

choosing ε = min{ε1, ε2} and pushing ε units of flow in both directions we would have

x = 1
2
(x1 + x2)) contradicting the choice of x. Therefore F is empty. ¥

Note that F above is a forest [57]. A similar idea allows us to prove a sufficient condition,

due to Edmonds and Johnson [29], for Q1
MPT (M) to be integral. Recall that a mixed graph

M = (V,E,A) is even if the total degree dE∪A(v) is even for every v ∈ V .

Theorem 3.11 (Edmonds and Johnson) If M is even, then Q1
MPT (M) is integral.

Therefore Minimum Mixed Postman Tour can be solved in polynomial time for the

class of even mixed graphs.

Proof. Let x be an extreme point of Q1
MPT (M). We say that a ∈ A is even if xa is

even. We say that e ∈ E is even if xe+ − xe− is even. For a contradiction, assume x is not
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integral, and define F as in the proof of Theorem 3.10. Let N = {e ∈ E ∪ A : e is even}.

Note that by Theorem 3.10, F ⊆ N . Hence N is not empty. We show now that M [N ] has

minimum degree 2, and hence contains a cycle C. Let v ∈ V . If dF (v) ≥ 2 then certainly

dN(v) ≥ 2. If dF (v) = 1 then

x(~δ(v))− x(~δ(v̄)) =
∑

a∈δA(v)∪δA(v̄)

±xa +
∑

e∈δE(v)

±(xe+ − xe−) (3.47)

is the sum of an even number of integer terms (one term per arc a ∈ δA(v)∪ δA(v̄) and one

term per edge e ∈ δE(v)), and one of them is equal to zero (the one in δF (v)); therefore

another term must be even. The same argument works for a vertex v not in V (F ), that is,

dF (v) = 0, with at least one element of N incident to it, that is, dN(v) ≥ 1.

As before, assign an arbitrary (positive) orientation to C and partition it into the classes

C+
A , C

−
A , C

=
E , C

>
E . Note that all e ∈ C \ C=

E satisfy xe ≥ 2. Hence the vector x1 defined as

x1e =































xe + 1 if e ∈ C+
A or e is forward in C>

E

xe − 1 if e ∈ C−
A or e is backward in C>

E

xe +
1
2

if e is the forward copy of an edge in C=
E

xe −
1
2

if e is the backward copy of an edge in C=
E

xe otherwise,

(3.48)

as well as the vector x2 obtained from the negative orientation of C, belong to Q1
MPT (M)

and satisfy x = 1
2
(x1 + x2). This contradiction implies that F must be empty. ¥

Observe that the set N defined above is the complement of a postman set of M̄ .

3.4.3 Odd-Cut Constraints

A consequence of Theorems 3.9 and 3.10 is that Q2
MPT (M) is integral, and hence it may

have integral extreme points that are not incidence vectors of postman tours of M . By

adding odd-cut constraints similar to those for Minimum Undirected Postman Tour,

we can cut these extraneous integral extreme points from Q2
MPT (M), as well as some

fractional extreme points from Q1
MPT (M). Let S ⊂ V be such that dM(S) is odd. Then,

in any postman tour of M , at least one element of δM(S) must be duplicated. Therefore,
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the inequality

x(δA(S)) + x(δA(S̄)) + x(δE(S)) ≥ dA(S) + dA(S̄) + dE(S) + 1 (3.49)

is valid for P2
MPT (M), and the inequality

x(~δ(S)) + x(~δ(S̄)) ≥ ~d(S) + ~d(S̄) + 1 (3.50)

is valid for P1
MPT (M). Note that both of these inequalities can be rewritten as:

x(δM(S)) ≥ dM(S) + 1, (3.51)

for all S such that dM(S) is odd.

Let O1
MPT (M) be the subset of Q1

MPT (M) that satisfies all the odd-cut constraints

(3.50), and let O2
MPT (M) be the subset of Q2

MPT (M) that satisfies all the odd-cut con-

straints (3.49). We will study the properties of O1
MPT (M) and Q1

MPT (M). It is worth

noting that the smallest graph for which Q1
MPT (M) is not integral is K2, and the smallest

graph for which O1
MPT (M) is not integral is K4.

A consequence of Theorem 2.9 is that we can decide in polynomial time whether a

vector x ∈ QA∪E+∪E−

+ satisfies all the odd-cut constraints (3.50) or not. Together with

Theorem 1.8, this implies the following result of Grötschel and Win [47, 90]:

Theorem 3.12 (Grötschel and Win) There exists a polynomial-time algorithm that,

given a mixed graph M = (V,E,A) and a vector c ∈ QA∪E
+ , finds a vector x ∈ QA∪E+∪E−

+

minimizing c>x over O1
MPT (M). Hence, Minimum Mixed Postman Tour can be solved

in polynomial time for the class of mixed graphs M with O1
MPT (M) integral.

3.5 Approximation Algorithms

In this section we sketch three approximation algorithms for Minimum Mixed Post-

man Tour. When we combine the first two, we obtain a 5
3
-approximation algorithm for

Minimum Mixed Postman Tour, and when we combine the last two, we obtain a 3
2
-

approximation algorithm for Minimum Mixed Postman Tour. In this section, T ∗ is a

minimum cost postman tour of M = (V,E,A) with costs c ∈ QE∪A
+ .
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3.5.1 A 5
3
-Approximation Algorithm

The first algorithm we describe (called Mixed1) is due to Edmonds and Johnson [29]. Let

M̄ = (V,A ∪ E) be the underlying undirected graph of M . By Theorem 2.8, we can find

a minimum cost postman set J1 of M̄ with costs c. Let N = (V, F,B) be the mixed graph

obtained from M by adding one copy of each element of J1, with the same cost as the

original. By Theorem 3.11, since N is even, we can find a minimum cost postman tour

T1 of N . Note that T1 is also a postman tour of M . Frederickson proved that this is a

2-approximation algorithm for Minimum Mixed Postman Tour [40].

The second algorithm we describe (called Mixed2) is another 2-approximation algo-

rithm for Minimum Mixed Postman Tour, due to Frederickson [40]. Let D′ = (V,A′)

be the directed graph with A′ = A∪B1∪B2, where each of B1 and B2, just as B, contains

two oppositely directed arcs (e+1 , e
−
1 and e+2 , e

−
2 , respectively) for each edge e in E. Let x∗

be an extreme point solution to the minimum feasible flow problem

INOUT(M, c) = min c>AxA + c>Ex
+ + c>Ex

− (3.52)

subject to

x(δA′(v̄))− x(δA′(v)) = 0 for all v ∈ V (3.53)

xa ≥ 1 for all a ∈ A (3.54)

xb ≤ 1 for all b ∈ B2 (3.55)

xb ≥ 0 for all b ∈ B1 ∪B2, (3.56)

and let U be the set of edges e such that xe+2
+xe−2

is even. Let T = {v ∈ V : dU(v) is odd},

and let J2 be a minimum cost T -join of G = (V,E) with costs c. Note that U and J2 form

an even undirected graph. Hence adding J2 to x gives a postman tour T2 of M .

Frederickson [40] gave examples (M1, c1) and (M2, c2) to show that the above guarantees

for Mixed1 and Mixed2 cannot be improved. He considered the algorithm Mixed12

that runs Mixed1 and Mixed2 with the same input, and outputs the better of the two

solutions obtained, and proved that algorithm Mixed12 is a 5
3
-approximation algorithm

for Minimum Mixed Postman Tour.

It is not known whether the factor 5
3
is best possible for Mixed12. Frederickson gave

a modification of Mixed12 that has a guarantee of 3
2
for planar mixed graphs [40].
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3.5.2 A 3
2
-Approximation Algorithm

The third algorithm we describe is due to Raghavachari and Veerasamy [76, 85]. This

algorithm, called Mixed3, is a slight modification of Mixed1 that uses some intermediate

output from Mixed2, namely U . Define a new vector of costs c′ ∈ QE∪A
+ as c′e = ce if e ∈ U ,

and c′e = 0 otherwise, and let J3 be a minimum cost postman set of M̄ with costs c′. The

purpose is to avoid the duplication of edges in U as much as possible. Let N = (V, F,B)

be the mixed graph obtained from M by adding one copy of each element of J3, with its

original cost, and find a minimum cost postman tour T3 of N . Consider the algorithm

Mixed23 that runs Mixed2 and Mixed3 with the same input, and outputs the best of

the two solutions obtained. Raghavachari and Veerasamy proved that algorithm Mixed23

is a 3
2
-approximation algorithm for Minimum Mixed Postman Tour.

Frederickson’s examples also show that the factor 3
2
is the best possible for Mixed23.

Currently, Mixed23 is the approximation algorithm with the best approximation guaran-

tee for Minimum Mixed Postman Tour.

3.6 The Bounded Mixed Postman Problem

We can generalize Minimum Mixed Postman Tour by providing, for each edge and arc

e, two integers ue ≥ le ≥ 0, and requiring that e is used at least le and at most ue times.

We allow ue =∞ (that is, no upper bound), but le must be finite. We say that a family of

circuits C is an (l, u)-postman tour (or simply, a bounded postman tour) if, for every edge

and arc e, the total number of times that e is used by the elements of C is at least le and at

most ue. Note that a bounded postman tour is not necessarily a tour simply because the

edges and arcs of the elements of C may induce a disconnected subgraph of M . However,

if the spanning subgraph of M induced by the support of l is connected, then a bounded

postman tour is a tour. Consider the feasibility and minimization questions:

Problem: Bounded Mixed Postman Tour.

Input: A mixed graph M = (V,E,A), and vectors l, u ∈ ZE∪A
+ .

Output: Does M have a bounded postman tour?
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Problem: Minimum Bounded Mixed Postman Tour.

Input: A strongly connected mixed graph M = (V,E,A), vectors l, u ∈ ZE∪A
+ with

l ≤ u, and a vector c ∈ QE∪A
+ .

Output: The minimum cost MBMPT(M, l, u, c) of a bounded postman tour of M .

The study of these problems was originally suggested by Edmonds and Johnson [29].

Since the decision version of Minimum Mixed Postman Tour isNP-complete, it follows

that the decision version of Minimum Bounded Mixed Postman Tour is also NP-

complete. Tohyama and Adachi proved that the same is true even if all upper bounds are

finite (even if ue = 2 and le = 1 for all e ∈ E ∪A) [82]. It is easy to see that the following

are integer programming formulations for Minimum Bounded Mixed Postman Tour:

MBMPT1(M, l, u, c) = min c>AxA + c>Ex
+
E + c>Ex

−
E (3.57)

subject to

x(~δ(v̄))− x(~δ(v)) = 0 for all v ∈ V (3.58)

ua ≥ xa ≥ la for all a ∈ A (3.59)

ue ≥ xe+ + xe− ≥ le for all e ∈ E (3.60)

xe integer for all e ∈ A ∪ E+ ∪ E− (3.61)

and

MBMPT2(M, l, u, c) = min c>x (3.62)

subject to

x(δE∪A(v)) ≡ 0 (mod 2) for all v ∈ V (3.63)

x(δA(S̄)) + x(δE(S))− x(δA(S)) ≥ 0 for all S ⊆ V (3.64)

ue ≥ xe ≥ le and integer for all e ∈ E ∪ A. (3.65)

Let P1
BMPT (M, l, u) be the convex hull of the feasible solutions to the first integer

program above, letQ1
BMPT (M, l, u) be the set of feasible solutions to its linear programming

relaxation, let P2
BMPT (M, l, u) be the convex hull of the feasible solutions to the second

integer program above, and let Q2
BMPT (M, l, u) be the set of feasible solutions to its linear

programming relaxation. Similarly to Theorem 3.10, we can prove that Q1
BMPT (M, l, u) is

half-integral. We say that e ∈ E is bound tight if xe+ + xe− = ue or xe+ + xe− = le.
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Theorem 3.13 Every extreme point x of the polyhedron Q1
BMPT (M, l, u) is half-integral.

Moreover, fractional components occur only on bound tight edges.

The following result says that testing feasibility of Minimum Bounded Mixed Post-

man Tour is equivalent to testing feasibility of a flow problem (Theorem 2.12) in the

directed graph D = (V,A ∪ E+) . Recall that E+ is an orientation of E.

Theorem 3.14 Assume that ue > le for all e ∈ E. Then P1
BMPT (M, l, u) is not empty if

and only if there exists an integer solution x of

x(δA∪E+(v̄))− x(δA∪E+(v)) = 0 for all v ∈ V (3.66)

ua ≥ xa ≥ la for all a ∈ A (3.67)

ue ≥ xe+ ≥ −ue for all e ∈ E (3.68)

xe integer for all e ∈ A ∪ E+. (3.69)

Hence, if uE > lE, Bounded Mixed Postman Tour is solvable in polynomial time.

Proof. Let x̄ be the incidence vector of a bounded postman tour of (M, l, u), and

define x ∈ ZA∪E+

as xa = x̄a for all a ∈ A, and xe+ = x̄e+ − x̄e− for all e ∈ E. Since

ue ≥ xe+ ≥ −ue for all e ∈ E, it follows that x is a feasible solution to the system above.

Conversely, if x is a feasible solution to the system above, define x̄ ∈ ZA∪E+∪E−

by x̄a = xa

for all a ∈ A, and x̄e+ = b1
2
(ue + xe+)c and x̄e− = b1

2
(ue − xe+)c for all e ∈ E. Since

xe+ = x̄e+ − x̄e− , and ue ≥ x̄e+ + x̄e− ≥ ue − 1 ≥ le for all e ∈ E, it follows that x̄ is the

incidence vector of a bounded postman tour of (M, l, u). ¥

Theorem 3.15 If uE > lE, then there exists a 2-approximation algorithm for Minimum

Bounded Mixed Postman Tour.

Proof. By Theorem 3.14, we can assume that the given instance of Minimum Bounded

Mixed Postman Tour is feasible. Let c ∈ QE∪A
+ , let x∗ be the incidence vector of an

optimal solution to MBMPT1(M, l, u, c), and let x be an extreme point optimal solution

to its linear programming relaxation. By Theorem 3.13, x is half-integral. Furthermore, if
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e ∈ E is a fractional bound tight edge, we can assume that xe+ + xe− = le since otherwise

we can decrease both xe+ and xe− without losing feasibility nor increasing the cost of the

solution. In this case, we can also assume that le ≥ 1, for otherwise xe+ = xe− = 0. Define

a vector x̄ ∈ ZA∪E+∪E−

+ by x̄e+ = xe+ + 1
2
and x̄e− = xe− + 1

2
for all fractional bound tight

edges e, and x̄a = xa otherwise. Note that x̄ is a feasible solution to MBMPT1(M, l, u, c),

and that the cost due to the fractional bound tight edges is at most doubled. Therefore

c>x ≤ c>x∗ ≤ c>x̄ ≤ 2c>x. ¥

3.6.1 The Restricted Mixed Postman Problem

Let R ⊆ E ∪ A be a set of restricted edges and arcs. We say that a postman tour of M is

restricted if it uses exactly once each restricted edge and arc.

Problem: Restricted Mixed Postman Tour.

Input: A mixed graph M = (V,E,A), and a subset R ⊆ E ∪ A.

Output: Does M have a restricted postman tour?

Problem: Minimum Restricted Mixed Postman Tour.

Input: A strongly connected mixed graph M = (V,E,A), a subset R ⊆ E∪A, and

a vector c ∈ QE∪A
+ .

Output: The minimum cost MRMPT(M,R, c) of a restricted postman tour of M .

There are four special cases of this problem that seem to be natural. If R = ∅ then

we obtain Minimum Mixed Postman Tour. If R = E ∪ A then we obtain Mixed

Eulerian Tour. The special case when R = A is the subject of Chapter 5, and the

special case when R = E is the subject of Chapter 6. These two special cases were studied

before by Veerasamy in his doctoral thesis [85]. Although we show that both cases share

some common properties, such as both problems being NP-hard even when restricted

to planar inputs, our research produced, in each case, some other very different kinds

of results. For the case R = A we give results about approximability, as well as about

properties of linear relaxations of the problem. For the case R = E we give results about

necessary conditions for feasibility, as well as about some solvable cases of the problem.



Chapter 4

The Windy Postman Problem

Ich ging hin und her, Hände in den Hosentaschen,

einmal geschoben vom Wind, geradezu schwebend,

dann wieder gegen den Wind, dann mühsam. . .

Homo Faber, Max Frisch

We study an NP-hard variant of Minimum Undirected Postman Tour, known as

Minimum Windy Postman Tour, where the cost of an edge depends on the direction

of traversal. We give an integer programming formulation for this problem, and study

the integrality of the polyhedron defined by its linear programming relaxation. It was

previously known that undirected even graphs have integral windy postman polyhedra. We

prove that undirected series-parallel graphs also have integral windy postman polyhedra.

4.1 Introduction

When we considered Minimum Undirected Postman Tour, we assumed that the cost

of traversing an edge was the same for either direction. While studying some methods to

approach Minimum Mixed Postman Tour, Minieka argued that [67]:

This is hardly a good assumption when one direction might be uphill and the

other downhill, when one direction might be with the wind and the other against

the wind or when fares are different depending on direction.

65
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Let G = (V,E) be an undirected, connected graph, and let ~G = (V,E+ ∪ E−) be its

associated directed graph. A tour T of ~G is a windy postman tour of G if, for every e ∈ E,

T contains e+ or e− at least once. If c ∈ QE+∪E−

+ is a vector of costs on the arcs of ~G, then

the cost of T , denoted by c(T ), is the sum of the costs of the arcs used by T .

Problem: Minimum Windy Postman Tour.

Input: An undirected graph G = (V,E), and a vector c ∈ QE+∪E−

+ .

Output: The minimum cost MWPT(G, c) of a windy postman tour of (G, c).

Just as for Minimum Mixed Postman Tour, a natural generalization of this problem

is to find a minimum cost collection T of circuits of ~G such that, for each e ∈ E, T contains

e+ or e− at least le and at most ue times. We call T a bounded windy postman tour of G.

In this case, both the feasibility and the optimization problems are interesting.

Problem: Bounded Windy Postman Tour.

Input: An undirected graph G = (V,E), and vectors l, u ∈ ZE
+.

Output: Does (G, l, u) have a bounded windy postman tour?

Problem: Minimum Bounded Windy Postman Tour.

Input: An undirected graph G = (V,E), vectors l, u ∈ ZE
+, and a vector c ∈

QE+∪E−

+ .

Output: The minimum cost MBWPT(G, c) of a windy postman tour of (G, l, u, c).

Guan proved that the decision version of Minimum Windy Postman Tour is NP-

complete via a reduction from Minimum Mixed Postman Tour, and hence this remains

true even if we restrict the input to be planar [49]. Win gave two distinct 2-approximation

algorithms [89, 90], and Raghavachari and Veerasami gave a 3
2
-approximation algorithms for

Minimum Windy Postman Tour [77]. Currently, the latter is the best approximation

algorithm for Minimum Windy Postman Tour. Grötschel and Win gave a cutting

plane algorithm to find optimal solutions for Minimum Windy Postman Tour [47].

Pearn and Li gave some algorithms to improve solutions [74].

Du and Sun showed that the decision version of Minimum Bounded Windy Post-

man Tour is NP-complete even if all bounds are finite (even if le = 1 and ue = 2 for



The Windy Postman Problem 67

all e ∈ E) [22]. A simple linear-time algorithm to decide whether an undirected graph

G = (V,E) has a bounded windy postman tour consists in verifying a parity condition on

the connected components of the subgraph of G with edge set F = {e ∈ E : le < ue}.

4.2 Integer Programming Formulation

An integer programming formulation for Minimum Windy Postman Tour due to Win

is as follows [89, 90]:

MWPT(G, c) = min c>x (4.1)

subject to

x(~δ(v̄))− x(~δ(v)) = 0 for all v ∈ V (4.2)

xe+ + xe− ≥ 1 for all e ∈ E (4.3)

xe+ , xe− ≥ 0 for all e ∈ E (4.4)

xe+ , xe− integral for all e ∈ E. (4.5)

Let PWPT (G) be the convex hull of the feasible solutions to the integer program above,

and let QWPT (G) be the set of feasible solutions to its linear programming relaxation.

We can obtain a similar integer programming formulation for Minimum Bounded

Windy Postman Tour as follows:

MBWPT(G, l, u, c) = min c>x (4.6)

subject to

x(~δ(v̄))− x(~δ(v)) = 0 for all v ∈ V (4.7)

ue ≥ xe+ + xe− ≥ le for all e ∈ E (4.8)

xe+ , xe− ≥ 0 for all e ∈ E (4.9)

xe+ , xe− integral for all e ∈ E. (4.10)

Let PWPT (G, l, u) be the convex hull of the feasible solutions to the integer program above,

and let QWPT (G, l, u) be the set of feasible solutions to its linear programming relaxation.

We observe that the integer programs MWPT(G, c) and MBWPT(G, l, u, c) are very

similar to the integer programs MMPT1(M, c) and MBMPT1(M, l, u, c) for Minimum
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Mixed Postman Tour. In fact, if G is the underlying undirected graph of the mixed

graph M , then QMPT1(M) and QMPT1(M, l, u) are faces of QWPT (G) and QWPT (G, l, u),

respectively. Hence, the integrality of the latter implies the integrality of the former.

Conversely, since QWPT (G) = QMPT1( ~G) and QWPT (G, l, u) = QMPT1( ~G, l, u), the

results about integrality and half-integrality (Theorems 3.10 and 3.13) in Chapter 3 apply

to Minimum Windy Postman Tour. Win proved the stronger statement [89, 90]:

Theorem 4.1 (Win) Every extreme point x of the polyhedron QWPT (G) has components

whose values are either 1
2
or a nonnegative integer. Furthermore, QWPT (G) is integral if

and only if G is even.

This implies that Minimum Windy Postman Tour can be solved in polynomial

time for the class of undirected Eulerian graphs.

Corollary 4.2 Every extreme point x of the polyhedron QBWPT (G, l, u) is half-integral.

As before, we can strengthen the linear programming relaxation of Minimum Windy

Postman Tour by adding odd-cut constraints. Let S ⊂ V be such that dG(S) is odd.

Then, in any windy postman tour of G, at least one element of ~δ(S) ∪ ~δ(S̄) must be used

more than once. Therefore, the inequality

x(~δ(S)) + x(~δ(S)) ≥ dG(S) + 1 (4.11)

is valid for PWPT (G). Let OWPT (G) be the subset of QWPT (G) that satisfies the odd-cut

constraints (4.11). We can also give some odd-cut constraints for the bounded case. Let

S ⊂ V be such that l(δG(S)) is odd, and let T ⊂ V be such that u(δG(T )) is odd. Then

any bounded windy postman tour of G uses at least l(δG(S)) + 1 elements of ~δ(S) ∪ ~δ(S̄),

and at most u(δG(T ))− 1 elements of ~δ(T ) ∪ ~δ(T̄ ). Therefore, the inequalities

x(~δ(S)) + x(~δ(S)) ≥ l(δG(S)) + 1 (4.12)

and

x(~δ(T )) + x(~δ(T )) ≤ u(δG(T ))− 1 (4.13)

are valid for PWPT (G, l, u). Let OWPT (G, l, u) be the subset of QWPT (G, l, u) that satisfies

these odd-cut constraints. In the rest of this chapter, we assume that there are no upper

bounds, and hence we refer to the polyhedra PWPT (G, l), QWPT (G, l), and OWPT (G, l).
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4.3 Windy Postman Perfect Graphs

We say that an undirected graph G is windy postman perfect if the polyhedron OWPT (G)

is integral. Equivalently, an undirected graph G is windy postman perfect if OWPT (G) is

the convex hull PWPT (G) of incidence vectors of windy postman tours of G.

The class of windy postman perfect graphs was introduced and studied extensively

by Win [89, 90]. He observed that there exists a polynomial-time algorithm, based on

the ellipsoid method, to solve Minimum Windy Postman Tour for the class of windy

postman perfect graphs. This is a consequence of the equivalence of optimization and

separation (Theorem 1.8) and the fact that the flow (4.2), lower bound (4.3), nonnegativity

(4.4), and odd-cut constraints (4.11) can all be separated in polynomial time.

By Theorem 4.1, even undirected graphs are windy postman perfect. Win also proved

that undirected forests and all undirected graphs with two vertices are windy postman

perfect [89]. As with other graph properties, we might think that windy postman perfection

is closed under taking graph minors. However, this is not true: K5 is windy postman

perfect, but OWPT (K4) has the fractional extreme point shown in Figure 4.1.

Nevertheless, Win proposed four operations that preserve windy postman perfection [89].

Theorem 4.3 (Win) Let G,G1, G2 be windy postman perfect graphs.

1. Any subdivision of G is windy postman perfect.

2. If e ∈ E(G), then G / e is windy postman perfect.

3. If e, f ∈ E(G) are parallel, then G \ {e, f} is windy postman perfect.

4. If v1 ∈ V (G1) and v2 ∈ V (G2), then the undirected graph G3 obtained by identifying

the vertices v1 and v2 is windy postman perfect.

We observe that the class of even undirected graphs is closed under each of these four

operations, and that the same is true for the class of undirected forests. Another class of

undirected graphs that has this property is the class of series-parallel undirected graphs.

Win conjectured that these are also windy postman perfect [89]. In what follows, we prove

a statement stronger than Win’s conjecture.



70 Postman Problems on Mixed Graphs

PSfrag replacements

1
2

1
2

1
2

1
2

3
2

3
2

3
2

3
2

Figure 4.1: A fractional extreme point of OWPT (K4).

It is possible to verify, say using the polyhedral software package PORTA [12], that K3,3

is also windy postman perfect. This example is interesting because K3,3 is neither even nor

series-parallel, and it cannot be obtained from these classes of graphs using the operations

described in Theorem 4.3. Another interesting observation is that, although the polyhedron

QWPT (G) is always half-integral, this is not true in general for the polyhedron OWPT (G).

In Figure 4.2, we show some undirected graphs G for which OWPT (G) has both 1
2
-integral

and 1
3
-integral extreme points. Using PORTA, we have verified that for all simple graphs G

with at most 6 vertices, OWPT (G) is 1
6
-integral.
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Figure 4.2: Some undirected graphs with 1
3
-integral extreme points.
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4.3.1 Windy Postman Ideal Graphs

Let G = (V,E) be an undirected graph, let l ∈ ZE
+, and let b ∈ ZV with b(V ) = 0. We say

that S ⊂ V is an odd set if b(S)+ l(δE(S)) is odd. Let ~G = (V,E+∪E−) be the associated

directed graph of G, and let O(G, l, b) be the set of feasible solutions to the system

x(~δ(v̄))− x(~δ(v)) = bv for all v ∈ V (4.14)

xe+ + xe− ≥ le for all e ∈ E (4.15)

x(~δ(S)) + x(~δ(S̄)) ≥ l(δE(S)) + 1 for all odd S ⊂ V (4.16)

xe+ , xe− ≥ 0 for all e ∈ E. (4.17)

We say that G is windy postman ideal if the polyhedron O(G, l, b) is integral for all

possible choices of l and b. Observe that windy postman ideal graphs are windy postman

perfect. We prove that windy postman ideal graphs are precisely the series-parallel graphs,

proving Win’s conjecture as a consequence. In contrast to windy postman perfection, windy

postman ideality is closed under taking graph minors.

Theorem 4.4 Let G = (V,E) be a windy postman ideal undirected graph, and let e ∈ E.

Then G \ e and G / e are also windy postman ideal.

Proof. Let u, v be the ends of e. Let l′ ∈ ZE\e
+ , and let b′ ∈ ZV (G / e) with b′(V (G / e)) =

0. Let l ∈ ZE
+ and b ∈ ZV be defined by lf = l′f for all f ∈ E \ e and le = 0, and bw = b′w

for all w ∈ V \ {u, v}, bu = b′e, and bv = 0. Since G is windy postman ideal, O(G, l, b) is

integral. Since O(G / e, l′, b′) is the projection of O(G, l, b) onto xe+ = 0 and xe− = 0, it is

also integral. Hence, G / e is windy postman ideal.

Let l′ ∈ ZE\e
+ , and let b′ ∈ ZV with b′(V ) = 0. Define l ∈ ZE

+ by lf = l′f for all f ∈ E \ e

and le = 0. Since G is windy postman ideal, O(G, l, b′) is integral. Since O(G \ e, l′, b′) is

a face of O(G, l, b′), it is also integral. Hence, G \ e is windy postman ideal. ¥

Let x ∈ O(G, l, b), and let e ∈ E. We say that e is integral if both xe+ and xe− are

integral, and we say that e is fractional otherwise. We say that e is tight if xe+ + xe− = le.

Lemma 4.5 Let G = (V,E) be a minor minimal, non windy postman ideal undirected

graph. Let b ∈ ZV and l ∈ ZE
+ be such that O(G, l, b) is not integral, and let x be one of its

fractional extreme points. If e ∈ E is integral, then xe+ + xe− = le + 1.
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Proof. Let e+ be oriented from u to v, and e− be oriented from v to u. Assume first

that e is tight. Let H = G \ e. Define the vectors x′ ∈ QE+∪E−\{e+,e−}
+ , l′ ∈ ZE\e

+ and

b′ ∈ ZV by x′a = xa for all a ∈ E+ ∪ E− \ {e+, e−}, l′h = lh for all h ∈ E \ e, and

b′w =











bu − xe+ + xe− if w = u

bv + xe+ − xe− if w = v

bw otherwise.

(4.18)

Observe that (G, l, b) and (H, l′, b′) have the same odd sets. Since H is windy postman

ideal, x′ is fractional, and x′ ∈ O(H, l′, b′), there exist distinct vectors y′, z′ ∈ O(H, l′, b′)

such that x′ = 1
2
(y′ + z′). Define the vectors y, z ∈ QE+∪E−

by ya = y′a and za = z′a for

all a ∈ E+ ∪ E− \ {e+, e−}, ye+ = ze+ = xe+ and ye− = ze− = xe− . Then y ∈ O(G, l, b),

z ∈ O(G, l, b), and x = 1
2
(y + z), a contradiction to the choice of x.

Now assume that xe+ + xe− ≥ le + 2. We can also assume that xe+ ≥ 1. Observe that

edge e does not cross any tight odd set, that is, if S ⊂ V is odd and e ∈ δ(S), then

x(~δ(S)) + x(~δ(S̄)) > l(δE(S)) + 1. (4.19)

Let H = G / e, and define the vectors x′ ∈ QE+∪E−\{e+,e−}
+ , l′ ∈ ZE\e

+ and b′ ∈ ZV (H) by

x′a = xa for all a ∈ E
+∪E−\{e+, e−}, l′h = lh for all h ∈ E\e, b′w = bw for all w ∈ V \{u, v}

and b′e = bu + bv. Since H is windy postman ideal, x′ is fractional, and x′ ∈ O(H, l′, b′),

there exist distinct vectors y′, z′ ∈ O(H, l′, b′) such that x′ = 1
2
(y′ + z′). We may choose

y′, z′ so that ‖y′ − z′‖ is arbitrarily small. Define α by

2α = y′(~δ(ū) \ e−)− y′(~δ(u) \ e+)− z′(~δ(ū) \ e−) + z′(~δ(u) \ e+), (4.20)

and define the vectors y, z ∈ QE+∪E−

by

ya =











xe+ + α if a = e+

xe− if a = e−

y′a otherwise

and za =











xe+ − α if a = e+

xe− if a = e−

z′a otherwise.

(4.21)

Using that ‖y′ − z′‖ is arbitrarily small, we can show that y ∈ O(G, l, b), z ∈ O(G, l, b),

y 6= z, and x = 1
2
(y + z), a contradiction to the choice of x. ¥

The following two lemmas imply that we only need to consider 2-vertex-connected

undirected graphs. We leave their straightforward proofs to the reader.
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Lemma 4.6 Let G = (V,E) be an undirected graph, and let G1, . . . , Gk be its connected

components. Let b ∈ ZV and l ∈ ZE
+. For every 1 ≤ i ≤ k, let bi and li be the restrictions

of b and l to Gi. If O(Gi, l
i, bi) is integral for all 1 ≤ i ≤ k, then O(G, l, b) is also integral.

Hence, G is windy postman ideal if and only if Gi is windy postman ideal for all 1 ≤ i ≤ k.

Lemma 4.7 Let G = (V,E) be an undirected graph with a cut vertex v, and let G1 =

(V1, E1) and G2 = (V2, E2) be the partition of G induced by v. Let b ∈ ZV and l ∈ ZE
+. For

i ∈ {1, 2}, let bi and li be the restrictions of b and l to Gi, except b
1
v = b(V2) and b

2
v = b(V1).

Then O(G, l, b) is integral if and only if O(G1, l
1, b1) and O(G2, l

2, b2) are integral. Hence,

G is windy postman ideal if and only if G1 and G2 are also windy postman ideal.

Now we prove our characterization of windy postman ideal graphs.

Theorem 4.8 Let G = (V,E) be an undirected graph. Then G is windy postman ideal if

and only if G is series-parallel.

Proof. Since OWPT (K4) is not integral, it follows that windy postman ideal graphs

must be series-parallel. Let G = (V,E) be a minor minimal, non windy postman ideal

series-parallel graph. By Lemmas 4.6 and 4.7, we can assume that G is 2-vertex-connected.

We can verify that all series-parallel graphs with at most two vertices are windy postman

ideal. Hence, we can assume that G has two edges in parallel or two edges in series. Let
~G = (V,E+ ∪ E+) be the associated directed graph of G, let l ∈ ZE

+, and let b ∈ ZV with

b(V ) = 0. For a contradiction, assume that x is a fractional extreme point of O(G, l, b).

Parallel case. Assume first that G has two parallel edges e and f , with ends u and v.

Let H = (V, F ) be the undirected graph obtained from G by replacing edges e and f by a

single edge g, and let ~H = (V, F+ ∪ F−) be its associated directed graph. We can assume

that e+, f+, and g+ are oriented from u to v, that e−, f−, and g− are oriented from v to

u, and that all other arcs of ~G and ~H are oriented consistently. Define l′ ∈ ZF
+ by l′h = lh

if h 6= g, and l′g = le + lf . Observe that (G, l, b) and (H, l′, b) have the same odd sets.

Define the vector x′ ∈ QF+∪F−

+ by x′a = xa if a /∈ {g+, g−}, x′g+ = x′e+ + x′f+ , and

x′g− = x′e− + x′f− , and observe that x′ ∈ O(H, l′, b). Assume first that x′ is integral. Then

xa is integral for all a /∈ {e+, e−, f+, f−}, xe+ is integral if and only if xf+ is integral, and

xe− is integral if and only if xf− is integral. Since x is fractional, we can assume without

loss of generality that xe+ and xf+ are fractional. Hence xe+ > 0 and xf+ > 0.
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Case P1: If xe− is integral, then xf− is integral. Since xe+ and xf+ are fractional, neither

e nor f is tight. Let α = min{xe+ , xf+ , xe+ +xe−− le, xf+ +xf−− lf} > 0, and define

the vectors y and z by

ya =











xe+ + α if a = e+

xf+ − α if a = f+

xa otherwise

and za =











xe+ − α if a = e+

xf+ + α if a = f+

xa otherwise.

(4.22)

Observe that y, z ∈ O(G, l, b), y 6= z, and x = 1
2
(y+ z), contradicting the choice of x.

Case P2: If xe− is fractional, then xf− is fractional. Hence xe− > 0 and xf− > 0. Let

α = min{xe+ , xe− , xf+ , xf−} > 0, and define the vectors y and z by

ya =











xa + α if a ∈ {e+, f−}

xa − α if a ∈ {e−, f+}

xa otherwise

and za =











xa − α if a ∈ {e+, f−}

xa + α if a ∈ {e−, f+}

xa otherwise.

(4.23)

Observe that y, z ∈ O(G, l, b), y 6= z, and x = 1
2
(y+ z), contradicting the choice of x.

Since we get contradictions in both cases, it follows that x′ is fractional. Since H has fewer

edges than G, O(H, l′, b) is integral. Hence, there exist distinct vectors y ′, z′ ∈ O(H, l′, b)

such that x′ = 1
2
(y′ + z′). We may choose y′, z′ so that ‖y′ − z′‖ is arbitrarily small.

Assume that neither e nor f is tight. If both xe+ and xf+ are positive, or both xe− and

xf− are positive, we can obtain a contradiction in a similar way to Case P1. Hence, we

may assume, by interchanging e and f if necessary, that xe+ > le, xf− > lf , xe− = 0, and

xf+ = 0. Define the vectors y and z by

ya =



















y′g+ if a = e+

y′g− if a = f−

0 if a ∈ {e−, f+}

y′a otherwise

and za =



















z′g+ if a = e+

z′g− if a = f−

0 if a ∈ {e−, f+}

z′a otherwise.

(4.24)

Using that ‖y′ − z′‖ is arbitrarily small, we can conclude that y, z ∈ O(G, l, b), y 6= z, and

x = 1
2
(y + z), contradicting the choice of x.

Hence, we can assume without loss of generality that e is tight. If all of xe+ , xe− , xf+ ,

and xf− are positive, we can obtain a contradiction in a similar way to Case P2. Hence,
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we can assume that at least one of xe+ , xe− , xf+ , or xf− is zero. If xe− = 0, we contradict

Lemma 4.5. Hence, we can assume that xe+ > 0, xe− > 0, xf+ > lf , and xf− = 0. (If

xf+ = lf , we interchange the roles of e and f .) Define the vectors y and z by

ya =































le − y′g− if a = e+

y′g− if a = e−

y′g+ + y′g− − le if a = f+

0 if a = f−

y′a otherwise

and za =































le − z′g− if a = e+

z′g− if a = e−

z′g+ + z′g− − le if a = f+

0 if a = f−

z′a otherwise.

(4.25)

Using that ‖y′ − z′‖ is arbitrarily small, it is not difficult to verify that y, z ∈ O(G, l, b),

y 6= z, and x = 1
2
(y + z), a last contradiction to the choice of x.

Series case. Now assume that G has two edges e and f in series, with ends u and

v, and v and w, respectively. Assume first that all edges in E \ e are integral, and e is

fractional. By Lemma 4.5, xg+ + xg− = lg + 1 for all g ∈ E \ e. Since e is fractional, but

xe+ − xe− = bv − xf− + xf+ is integral, it follows that xe+ > 0 and xe− > 0. Since G is

2-edge-connected, it follows that e cannot be an odd cut by itself, and hence it must be

tight. Furthermore, our assumptions imply that

xe+ = 1
2
(le + lf + bv + 1)− xf− and xe− = 1

2
(le + lf − bv + 1)− xf+ , (4.26)

and hence le + lf + bv must be even (otherwise e would be integral). Let C ⊆ E be the

edge set of a cycle containing e. We assume without loss of generality that, for each edge

g ∈ C \ e, the arc g+ satisfies xg+ ≥ 1. We say that g+ ∈ C+ \ e+ is forward if it has the

same orientation as e+ along C; otherwise it is backward. Define the vectors y and z by

ya =































xe+ + 1
2

if a = e+

xe− −
1
2

if a = e−

xa + 1 if a is forward

xa − 1 if a is backward

xa otherwise

and za =































xe+ −
1
2

if a = e+

xe− + 1
2

if a = e−

xa − 1 if a is forward

xa + 1 if a is backward

xa otherwise.

(4.27)

Note that y and z satisfy the flow (4.14), lower bound (4.15), and nonnegativity (4.17)

constraints. Since y and z are integral, they satisfy the odd-cut constraints (4.16). Hence,

y, z ∈ O(G, l, b), y 6= z, and x = 1
2
(y + z), contradicting the choice of x.
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Therefore, there are fractional edges in E \ e and in E \ f . In a similar way, we obtain

a contradiction if we assume that the only two fractional edges are e and f . Hence, there

are fractional edges in E \ {e, f}. Let Se be the set of all odd sets crossed by e, and let

se = min
S∈Se

x(~δ(S)) + x(~δ(S̄))− l(δ(S))− 1. (4.28)

We define Sf and sf in a similar way. We assume without loss of generality that se ≥ sf .

The rest of the proof is divided into five main cases.

Case S1: If se ≥ sf > 0, then neither e nor f crosses a tight odd set. Let H = (V \

{u,w}, F ) be obtained from contracting e and f in G, and let ~H be its associated

directed graph. Define the vectors x′ ∈ QF+∪F−

+ , l′ ∈ ZF
+ and b′ ∈ ZV \{u,w} by

x′a = xa for all a ∈ F+ ∪F−, l′h = lh for all h ∈ F , b′t = bt for all t ∈ V \ {u, v, w} and

b′v = bu+bv+bw. SinceH is windy postman ideal, x′ is fractional, and x′ ∈ O(H, l′, b′),

there exist distinct vectors y′, z′ ∈ O(H, l′, b′) such that x′ = 1
2
(y′ + z′). We may

choose y′, z′ so that ‖y′ − z′‖ is arbitrarily small. Define α by

2α = y′(~δ(ū) \ e−)− y′(~δ(u) \ e+)− z′(~δ(ū) \ e−) + z′(~δ(u) \ e+). (4.29)

Define the vectors y, z ∈ QE+∪E−

as follows: For all a ∈ F+ ∪ F−, let ya = y′a and

za = z′a. If xe− = 0, then ye+ = xe+ +α, ze+ = xe+−α, and ye− = ze− = 0. If xe+ = 0,

then ye− = xe− − α, ze− = ze− + α, and ye+ = ze+ = 0. Otherwise, ye+ = xe+ + 1
2
α,

ye− = xe− −
1
2
α, ze+ = xe+ −

1
2
α, and ze− = xe− + 1

2
α. Define yf+ , yf− , zf+ , and

zf− in a similar way. Using that ‖y′ − z′‖ is arbitrarily small, we can show that

y, z ∈ O(G, l, b), y 6= z, and x = 1
2
(y + z), contradicting the choice of x.

Case S2: If se > sf = 0, then e does not cross any tight odd set, but f does. This case

can be handled in a similar way to Case S1, except that we use H = G / e.

Hence, we can assume that se = sf = 0, that is, both e and f cross tight odd sets. We

assume without loss of generality that xe+ + xe− − le ≥ xf+ + xf− − lf .

Case S3: Assume that {v} is even. Since e crosses the odd set S if and only if f crosses

the odd set S 4 v, it follows that xe+ +xe−− le = xf+ +xf−− lf . We assume without
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loss of generality that min{xe+ , xe− , xf+ , xf−} ∈ {xf+ , xf−}. Assume first that this

minimum is positive. Let H = G / e, and let ~H be its associated directed graph.

Define the vectors x′ ∈ QE+∪E−\{e+,e−}
+ , l′ ∈ ZE\e

+ and b′ ∈ ZV (H) by x′a = xa for all

a ∈ E+ ∪ E− \ {e+, e−}, l′h = lh for all h ∈ E \ e, b′e = bu + bv, and b′t = bt for all

t ∈ V (H) \ e. Since H is windy postman ideal, x′ is fractional, and x′ ∈ O(H, l′, b′),

there exist distinct vectors y′, z′ ∈ O(H, l′, b′) such that x′ = 1
2
(y′ + z′). We may

choose y′, z′ so that ‖y′ − z′‖ is arbitrarily small. Define α and β by 2α = y′f+ − z′f+

and 2β = y′f− − z′f− , and define the vectors y, z ∈ QE+∪E−

by

ya =











xe+ + α if a = e+

xe− + β if a = e−

y′a otherwise

and za =











xe+ − α if a = e+

xe− − β if a = e−

z′a otherwise.

(4.30)

Using that ‖y′ − z′‖ is arbitrarily small, we can show that y, z ∈ O(G, l, b), y 6= z,

and x = 1
2
(y + z), contradicting the choice of x.

Without loss of generality, we can now assume that xf− = 0. If xe+ > 0, then the

above construction works (observe that β = 0). Hence, we can assume that xe+ = 0.

Since xe− + xf+ = −bv and xe− − xf+ = le − lf , it follows that xe− = 1
2
(le − lf − bv)

and xf+ = 1
2
(lf − le − bv). Since bv + le + lf is even, both xe− and xf+ are integral.

By Lemma 4.5, xe− = le + 1, xf+ = lf + 1, and bv = −(le + lf + 2). But then the

above construction works again (observe that α = β = 0).

Hence, we can assume that {v} is odd. Let tv = xe+ + xe− + xf+ + xf− − le − lf − 1. Let

Te be the set of all odd sets crossed by e, except for {v} and its complement, let

te = min
T∈Te

x(~δ(T )) + x(~δ(T̄ ))− l(δ(T ))− 1, (4.31)

and let Te ∈ Te achieve this minimum. Define Tf , tf , and Tf in a similar way. Since both

e and f cross tight odd sets, it follows that either tv = 0, or tv > 0 and te = tf = 0.

Case S4: Assume that tv = 0. Let H = G / e, and let ~H be its associated directed graph.

Define the vectors x′ ∈ QE+∪E−\{e+,e−}
+ , l′ ∈ ZE\e

+ and b′ ∈ ZV (H) by x′a = xa for all

a ∈ E+ ∪ E− \ {e+, e−}, l′h = lh for all h ∈ E \ e, b′e = bu + bv, and b′t = bt for all
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t ∈ V (H) \ e. Since H is windy postman ideal, x′ is fractional, and x′ ∈ O(H, l′, b′),

there exist distinct vectors y′, z′ ∈ O(H, l′, b′) such that x′ = 1
2
(y′ + z′). We may

choose y′, z′ so that ‖y′ − z′‖ is arbitrarily small. Define α and β by 2α = z ′f+ − y′f+

and 2β = z′f− − y′f− , and define the vectors y, z ∈ QE+∪E−

by

ya =











xe+ + α if a = e+

xe− + β if a = e−

y′a otherwise

and za =











xe+ − α if a = e+

xe− − β if a = e−

z′a otherwise.

(4.32)

Using that ‖y′ − z′‖ is arbitrarily small, we can show that y, z ∈ O(G, l, b), y 6= z,

and x = 1
2
(y + z), contradicting the choice of x.

Case S5: Assume that tv > 0 and te = tf = 0. Let H = (V \ {u,w}, F ) be obtained

from contracting e and f in G, and let ~H be its associated directed graph. Define

the vectors x′ ∈ QF+∪F−

+ , l′ ∈ ZF
+ and b′ ∈ ZV \{u,w} by x′a = xa for all a ∈ F+ ∪ F−,

l′h = lh for all h ∈ F , b′t = bt for all t ∈ V \ {u, v, w} and b
′
v = bu + bv + bw. Since H is

windy postman ideal, x′ is fractional, and x′ ∈ O(H, l′, b′), there exist distinct vectors

y′, z′ ∈ O(H, l′, b′) such that x′ = 1
2
(y′ + z′). We may choose y′, z′ so that ‖y′ − z′‖

is arbitrarily small. Define the vectors y, z ∈ QE+∪E−

by ya = y′a and za = z′a for all

a ∈ F+ ∪ F−, and, for all a ∈ {e+, e−, f+, f−}, let ya and za be the unique solutions

to the system of linear equations

ye+ + ze+ = 2xe+ (4.33)

ye− + ze− = 2xe− (4.34)

yf+ + zf+ = 2xf+ (4.35)

yf− + zf− = 2xf− (4.36)

y(~δ(ū))− y(~δ(u)) = bu (4.37)

y(~δ(w̄))− y(~δ(w)) = bw (4.38)

y(~δ(Te)) + y(~δ(T̄e)) = l(δ(Te)) + 1 (4.39)

y(~δ(Tf )) + y(~δ(T̄f )) = l(δ(Tf )) + 1. (4.40)

Using that ‖y′ − z′‖ is arbitrarily small, we can show that y, z ∈ O(G, l, b), y 6= z,

and x = 1
2
(y + z), a last contradiction to the choice of x. ¥
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Recall that ifG = (V,E) is not series-parallel, then it contains a subdivisionK = (W,F )

of K4. Define the vector l ∈ ZE
+ by le = 1 if e ∈ F , and le = 0 otherwise. Since OWPT (K4)

is not an integral polyhedron, it follows that OWPT (G, l) is also not an integral polyhedron.

Corollary 4.9 Let G = (V,E) be an undirected graph. Then G is series-parallel if and

only if the polyhedron OWPT (G, l) is integral for all l ∈ {0, 1}E.

We also obtain Win’s conjecture as an easy corollary.

Corollary 4.10 If G is series-parallel, then G is windy postman perfect.

Using Theorems 4.1, 4.3, and 4.8, we can extend the class of undirected graphs known

to be windy postman perfect.

Theorem 4.11 Let F be the class of undirected graphs constructed as follows:

1. All graphs whose connected components are even, series-parallel, or K3,3 are in F .

2. Any graph obtained from graphs in F by performing any of the operations described

in the statement of Theorem 4.3 is in F .

Then every undirected graph in F is windy postman perfect.

4.3.2 Windy Postman Perfect Signed Graphs

Win’s operations suggest the study of graphs for which we have associated a parity to each

edge. A signed graph is a pair (G,Σ) where G = (V,E) is an undirected graph, and Σ ⊆ E.

If e ∈ Σ we say that e is odd; otherwise we say that it is even. Similarly, we say that a

subset F ⊆ E is odd if |F ∩ Σ| is odd; otherwise we say that it is even. A vector l ∈ ZE
+

is said to be valid if for every e ∈ E, le is odd if and only if e ∈ Σ. We say that (G,Σ) is

windy postman perfect if OWPT (G, l) is integral for all valid l.

We say that Σ′ is a signature for (G,Σ) if (G,Σ) and (G,Σ′) have the same family of

odd cuts. In particular, if C ⊆ E is the edge set of a cycle in G then Σ 4 C is a signature

for (G,Σ). We call (G,Σ 4 C) the resigning of (G,Σ) along C. For F ⊆ E we define

(G,Σ) / F to be the signed graph (G / F,Σ \ F ). For F ⊆ E \ Σ we define (G,Σ) \ F



80 Postman Problems on Mixed Graphs

to be the signed graph (G \ F,Σ). We call these two the contraction and deletion of F ,

respectively. We say that (G′,Σ′) is a minor of (G,Σ) if (G′,Σ′) can be obtained from

(G,Σ) after a sequence of resignings, contractions and deletions. Observe that our minor

operations are essentially dual to the usual minor operations for signed graphs.

Windy postman perfection of signed graphs is closed under taking minors.

Theorem 4.12 Let (G,Σ) be a windy postman perfect signed graph.

1. If e ∈ E \ Σ, then (G,Σ) \ e is windy postman perfect.

2. If e ∈ E, then (G,Σ) / e is windy postman perfect.

3. If C ⊆ E is a cycle, then (G,Σ 4 C) is windy postman perfect.

Proof: Let e be an even edge, let G′ = G \ e, and let l′ ∈ ZE′

+ be valid for (G′,Σ).

Define the vector l ∈ ZE
+ by lf = l′f if f 6= e, and le = 0. Since (G,Σ) is windy postman

perfect and l is valid for (G,Σ) we have that OWPT (G, l) is integral, and so is its face

defined by xe+ = 0 and xe− = 0. This implies the integrality of OWPT (G
′, l′).

Let e ∈ E with ends u and v. Assume that e+ = (u, v) and e− = (v, u). Let G′ = G / e,

let Σ′ = Σ \ e, and let l′ ∈ ZE′

+ be valid for (G′,Σ′). Define the vector l ∈ ZE
+ by lf = l′f if

f 6= e, and le = 1 if e ∈ Σ or le = 0 if e /∈ Σ. Let x′ be an extreme point of OWPT (G
′, l′).

For every f ∈ E ′, let xf+ = x′f+ and xf− = x′f− . In order to have x ∈ OWPT (G, l), define

xe+ and xe− as follows: Let z = x(~δ(u) \ e−) − x(~δ(ū) \ e+). Without loss of generality,

we assume that z ≥ 0. Let W be the set of odd cuts containing e. For W ∈ W let

y(W ) =
∑

f∈W\e(xf+ + xf− − lf ). Let y = minW∈W y(W ) if W is not empty; otherwise

let y = 1. Assume first that z ≥ le. If y + z ≥ 1 + le let xe+ = z, xe− = 0; otherwise let

xe+ = 1
2
(1 + le + z − y) and xe− = 1

2
(1 + le − z − y). It is not difficult to show that x is an

extreme point of OWPT (G, l). Hence x and x′ are integral. Now assume that z < le (this

can only happen if le = 1). If y + z ≥ 2 let xe+ = 1
2
(1 + z) and xe− = 1

2
(1− z); otherwise

let xe+ = 1
2
(2 + z − y) and xe− = 1

2
(2− z − y). Again, it is not difficult to show that x is

an extreme point of OWPT (G, l). Hence x and x′ are integral.

Let Σ′ = Σ 4 C, let l′ ∈ ZE
+ be valid for (G,Σ′), and let x′ be an extreme point of

OWPT (G, l
′). Let C+ be a cyclic orientation of C. We assume that, for every e ∈ C, e+ is

oriented as in C+. Construct the vectors l ∈ ZE
+ and x ∈ QD

+ as follows:
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• If e /∈ C let le = l′e, xe+ = x′e+ , and xe− = x′e− ,

• else if x′e+ > 0 let le = l′e + 1, xe+ = x′e+ + 1, and xe− = x′e− ,

• else if l′e ≥ 1 let le = l′e − 1, xe+ = 0 and xe− = x′e− − 1,

• else if x′e− > 0 let le = 1 and if x′e− ≥ 2 let xe+ = 0 and xe− = x′e− − 1; otherwise let

xe+ = 1− 1
2
x′e− and xe− = 1

2
x′e− ,

• else let le = 1, xe+ = 1 and xe− = 0.

It is not difficult to show that l is valid for (G,Σ) and that x is an extreme point of

OWPT (G, l). Hence x and x′ are integral. ¥

Since K4 is not windy postman perfect, it follows that the signed graph K6
4 = (K4, E(K4))

is also not windy postman perfect. Another signed graph that is not windy postman perfect

is K1
4 = (K4, {e}), where e is an edge of K4. We exhibit a corresponding fractional extreme

point in Figure 4.3. The lower bounds are shown on the right-hand side.
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Figure 4.3: The signed graph K1
4 and a fractional extreme point.

We believe that K1
4 and K6

4 are the only obstructions to windy postman perfection of

signed graphs. The following would be a generalization of Theorem 4.8.

Conjecture 4.13 A signed graph (G,Σ) is windy postman perfect if and only if (G,Σ)

does not have a K1
4 nor a K6

4 minor.
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4.3.3 Windy Postman Perfect Grafts

A graft is a pair (G, T ) where G = (V,E) is an undirected graph, and T ⊆ V . If v ∈ T

we say that v is odd; otherwise we say that it is even. Similarly, we say that a subset

S ⊆ V is odd if |S ∩ T | is odd; otherwise we say that it is even. Grafts were introduced by

Seymour [81]. Some reductions of grafts, called splits, were introduced by Gerards [43] in

order to give an interpretation of Seymour’s decomposition theorem for regular matroids.

A vector l ∈ ZE
+ is valid if for every v ∈ V , l(δ(v)) is odd if and only if v ∈ T . We say

that the graft (G, T ) is windy postman perfect if OWPT (G, l) is integral for each valid l.

Let (G,Σ) be a signed graph, let T = {v ∈ V : δ(v) is odd}, and consider the graft

(G, T ). Note that if l ∈ ZE
+ is valid for (G,Σ), then l is also valid for (G, T ). Moreover,

if Σ′ is any signature for (G,Σ), then any valid l ∈ ZE
+ for (G,Σ′) is valid for (G, T ). The

converse is also true: If l ∈ ZE
+ is valid for (G, T ), then the set Σ′ = {e ∈ E : le is odd} is a

signature for (G,Σ). This implies a strong relationship between windy postman perfection

of grafts and of signed graphs.

Lemma 4.14 Let (G,Σ) be a signed graph and let (G, T ) be the graft defined above. Then

(G,Σ) is windy postman perfect if and only if (G, T ) is windy postman perfect.

For e ∈ E we define (G, T ) \ e to be the graft (G \ e, T ), and (G, T ) / e to be the

graft (G / e, Te), where Te is defined as follows: Let u, v be the ends of e in G and let

w be the newly created vertex in G / e. Then Te = (T \ {u, v}) ∪ {w} if |T ∩ {u, v}| is

odd, and Te = T \ {u, v} otherwise. We call these two the deletion and the contraction

of e, respectively. We say that (G′, T ′) is a minor of (G, T ) if (G′, T ′) can be obtained

from (G, T ) after a sequence of edge contractions and edge deletions. Theorem 4.12 and

Lemma 4.14 imply that windy postman perfection of grafts is closed under taking minors.

Theorem 4.15 Let (G, T ) be a windy postman perfect graft, and let e ∈ E(G). Then

(G, T ) \ e and (G, T ) / e are also windy postman perfect.

Since the signed graphs K6
4 and K1

4 are not windy postman perfect, Lemma 4.14 implies

that the grafts K4
4 = (K4, V (K4)) and K

2
4 = (K4, {u, v}) (where u and v are two distinct

vertices of K4) are also not windy postman perfect. In fact, Lemma 4.14 and Theorem 4.15

imply that the following statement is equivalent to Conjecture 4.13.
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Conjecture 4.16 A graft (G, T ) is windy postman perfect if and only if (G, T ) does not

have a K2
4 nor a K4

4 minor.

Let (G, T ) be a graft. If any component G′ of G has |V (G′) ∩ T | odd, there does not

exist a valid l ∈ ZE
+ for (G, T ). Therefore, (G, T ) is windy postman perfect. In the rest of

this section we assume that every component G′ of G has |V (G′) ∩ T | even.

If G is disconnected, with V1 the vertex set of one of its components, then (G1, T1) =

(G[V1], T ∩V1) and (G2, V2) = (G[V \V1], T \T1) form a 1-split of (G, T ). If G is connected,

with a cut vertex v, then (G1, T1) and (G2, T2) form a 1-split of (G, T ), where E(G1) and

E(G2) form a partition of E(G) induced by v, T1 is defined as T \ V (G2) if |T ∩ V (G2)| is

even, or (T \ V (G2))∪ {v} otherwise. T2 is defined similarly. (G1, T1) and (G2, T2) are the

parts of the 1-split. The following can be proved in a similar way to Lemmas 4.6 and 4.7.

Lemma 4.17 Let (G, T ) have a 1-split with parts (G1, T1) and (G2, T2). Then (G, T ) is

windy postman perfect if and only if (G1, T1) and (G2, T2) are windy postman perfect.

If G has a 2-vertex cut {u, v} with sides G1 and G2, neither of which consists of a two

edge path with middle vertex in T , then (G′
1, T

′
1) and (G′

2, T
′
2) form a 2-split of (G, T ), where

(G′
1, T

′
1) is defined as follows: If T ⊆ V (G1), then V (G′

1) = V (G1), E(G′
1) = E(G1)∪{uv},

and T ′
1 = T . If T \ V (G1) is not empty, then V (G′

1) = V (G1) ∪ {w} (where w is a new

vertex) and E(G′
1) = E(G1)∪ {uw,wv}. Moreover T ′

1 = (T ∩ V (G1))∪ {w} if |T \ V (G1)|

is odd, and T ′
1 = (T ∩ V (G1)) 4 {u,w} otherwise. Observe that this definition guarantees

that there will be an even number of vertices in T ′
1. (G′

2, T
′
2) is defined in a similar way.

(G′
1, T

′
1) and (G′

2, T
′
2) are the parts of the 2-split. See Figure 4.4 for an example where

T consists of the odd-degree vertices of G, and T ′
1, T

′
2 are obtained as described above.

Vertices in T, T ′
1, T

′
2 are drawn as squares, whereas other vertices are drawn as circles.

The following property of splits is straightforward to verify.

Lemma 4.18 Let (G, T ) have a 1-split or a 2-split with parts (G′
1, T

′
1) and (G′

2, T
′
2). Then

(G, T ) has a K2
4 or a K4

4 minor if and only if at least one of (G′
1, T

′
1) and (G′

2, T
′
2) does.

We close this chapter by giving a characterization of grafts with no K2
4 nor K4

4 minor.

This characterization depends on the following technical result.
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Lemma 4.19 Let G = (V,E) be a connected undirected graph, and let T ⊆ V with |T |

even. If (G, T ) has neither a K2
4 nor a K4

4 minor, then one of the following holds:

1. T is empty.

2. G is series-parallel.

3. (G, T ) has a 1-split or a 2-split.

Proof: For a contradiction, we assume that none of the above three statements hold.

Then G is 2-vertex-connected and has a K4 minor, and |T | ≥ 2. Furthermore, if {u, v} is a

2-vertex cut with sides G1 and G2, then exactly one of them consists of a two edge path with

middle vertex in T . Observe that contracting one of these two edges does not decrease the

vertex connectivity, nor changes the property of having a K4 minor. Choose one of these

two edges, say e, such that it maximizes the number of odd vertices in (G′, T ′) ≡ (G, T ) / e.

We claim that |T ′| ≥ 2: If one of u or v is not odd and we contract the edge incident to it,

then |T ′| = |T | ≥ 2. Else, if both u and v are odd and we contract either edge, then |T | ≥ 4

and |T ′| = |T | − 2 ≥ 2. If G′ has two parallel edges, delete one of them from (G′, T ′).

Redefine (G, T ) to be (G′, T ′), and continue this process until G is 3-vertex-connected.

We claim that (G, T ) has a K2
4 or a K4

4 minor. Since G has a K4 minor, it has at least

four vertices. Let u and v be two odd vertices. By Menger’s Theorem 1.1, u and v are

joined by three internally-disjoint paths P1, P2, and P3. Since G has no parallel edges, two

of these paths, say P2 and P3, have internal vertices r and s, respectively. Since G \ {u, v}

is connected, it contains a path P4 joining r and s. Choose P1, P2, P3, r and s in such a

way that P4 is as short as possible. It follows that the edges of P1, P2, P3 and P4 induce a

subdivision K = (VK , EK) of K4. Let TK = T \ VK . For each t ∈ TK , let Pt be a shortest

path, not containing u nor v, that joins t to a vertex in VK . Pt exists since there are three

internally-disjoint paths from t to r, and at least one of them does not contain u nor v.

Let EP = ∪t∈TK
Pt, and let ED = E \ (EK ∪EP ). Let (G

′, T ′) = (G, T )\ED / EP . Observe

that G′ is isomorphic to K, and that T ′ still contains u and v. Let (K4, T
′′) be obtained

from (G′, T ′) by contracting all edges in EK , except for the three edges incident to u, and

one edge on each of the paths joining r to s, s to v, and v to r. See Figure 4.5, where we

show (G, T ) after deleting ED, but before contracting the edges in EP (bold edges), and
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the edges in EK (dashed bold edges). Since u ∈ T ′′, it follows that (K4, T
′′) is either a K2

4

or a K4
4 minor of (G, T ). ¥

Lemmas 4.18 and 4.19 imply the desired characterization.

Theorem 4.20 Let (G, T ) be a graft with G connected and |T | even.

1. If (G, T ) has neither a 1-split nor a 2-split, then (G, T ) has neither a K2
4 nor a K4

4

minor if and only if G is series-parallel or T is empty.

2. If (G, T ) has a 1-split or a 2-split, then (G, T ) has neither a K2
4 nor a K4

4 minor if

and only if none of the parts of the split does.

We believe that a statement similar to Lemma 4.17 holds for 2-splits. Together with

Theorem 4.20, this would immediately imply Conjectures 4.13 and 4.16.
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Chapter 5

The Edges Postman Problem

Now, here, you see, it takes all the running you can do, to keep in the same place.

If you want to get somewhere else, you must run at least twice as fast as that!

Through the Looking Glass, Lewis Carroll

We introduce a special case of Minimum Restricted Mixed Postman Tour, called

Minimum Edges Postman Tour. It was conjectured that this problem is NP-hard,

and we prove that this is the case, even when the input is restricted to be planar. We study

a linear relaxation of Minimum Edges Postman Tour; in particular, we give a class

of valid inequalities for its integral solutions, and a class of integral extreme points of the

polyhedron it defines. We present four approximation algorithms for Minimum Edges

Postman Tour, the best of which has a guarantee of 4
3
for the cost of an optimal tour,

and a guarantee of 2 for the cost of an optimal postman set.

5.1 Introduction

At the end of Chapter 3, we defined Minimum Restricted Mixed Postman Tour,

and we proposed the study of two special cases. The first special case that we study is

when the restricted set of the input mixed graph M = (V,E,A) coincides with its arc set.

We say that a postman tour of M is an edges postman tour if it uses each arc of M exactly

once. We say that a family F of edges is an edges postman set of M if there exists an edges

87
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postman tour of M using each edge e of M once more than the number of times e appears

in F . We show in Figure 5.1 a mixed graph and one of its edges postman tours.

(u, e, v, b, w, f, u, e, v, b, w, c, x, d, z, g, v, b, c, x, h, y, i, z, i, y, a, u). (5.1)

Observe that edge b must be used more than twice and, in this tour, edge i has been

traversed in two different directions. We define the problems that we study in this chapter.

Problem: Edges Postman Tour.

Input: A mixed graph M = (V,E,A).

Output: Does M have an edges postman tour?

Problem: Minimum Edges Postman Tour.

Input: A strongly connected mixed graph M = (V,E,A), and a vector c ∈ QE
+.

Output: The minimum cost MEPT(M, c) of an edges postman tour of M .

Problem: Minimum Edges Postman Set.

Input: A strongly connected mixed graph M = (V,E,A), and a vector c ∈ QE
+.

Output: The minimum cost MEPSP(M, c) of an edges postman set of M .

Note that since arcs cannot be replicated, we do not assign them a cost (or consider

their cost to be zero) in the minimization version of the problem. Furthermore, we can

easily remove the arcs from its description. Let G = (V,E), let ~G = (V,E+ ∪ E−) be its

associated directed graph and, for each v ∈ V , let bv = dA(v) − dA(v̄) be the demand at

vertex v. Then the problem of finding an edges postman tour on the mixed graph M is

equivalent to the problem of finding a feasible flow x on the directed graph ~G, with vector

of demands b and vector of lower bounds 0, such that xe+ + xe− ≥ 1 for all e ∈ E. See

Figure 5.2 for an example. Hence, we can reformulate the above three problems as follows.

Problem: Edges Postman Tour.

Input: An undirected graph G = (V,E), and a vector b ∈ ZV .

Output: Does (G, b) have an edges postman tour?
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Problem: Minimum Edges Postman Tour.

Input: An undirected graph G = (V,E), a vector b ∈ ZV , and a vector c ∈ QE
+.

Output: The minimum cost MEPT(G, b, c) of an edges postman tour of (G, b).

Problem: Minimum Edges Postman Set.

Input: An undirected graph G = (V,E), a vector b ∈ ZV , and a vector c ∈ QE
+.

Output: The minimum cost MEPSP(G, b, c) of an edges postman set of (G, b).

From this alternate formulation, it is easy to see that (G, b) is a yes instance of Edges

Postman Tour if and only if the vertex set S of each connected component of G satisfies

b(S) = 0. Equivalently, M is a yes instance of Edges Postman Tour if and only if

the vertex set S of each connected component of G satisfies dA(S) = dA(S̄). A natural

generalization of the above problems is to require that each edge e ∈ E is traversed at least

le and at most ue times (ue ≥ le ≥ 0). Such an edges postman tour is said to be bounded.

Problem: Minimum Bounded Edges Postman Tour.

Input: An undirected graph G = (V,E), vectors l, u ∈ ZE
+ with l ≤ u, a vector

b ∈ ZV , and a vector c ∈ QE
+.

Output: The minimum cost MBEPT(G, l, u, b, c) of a bounded edges postman tour

of (G, l, u, b).

5.2 Computational Complexity

In his doctoral thesis, Veerasamy conjectured that Minimum Edges Postman Tour is

NP-hard [85]. In this section we prove that the decision version of Minimum Bounded

Edges Postman Tour is NP-complete, and then we remove the upper bounds to prove

that the decision version of Minimum Edges Postman Tour is also NP-complete.

Finally, we remove the non-planarity from our proof to show that Minimum Edges

Postman Tour remains NP-complete even if we restrict the input to be planar. Our

reductions are from the NP-complete problems 1-in-3 Satisfiability and Planar 1-in-

3 Satisfiability (Theorems 1.4 and 1.6). Recall that in 1-in-3 Satisfiability a clause

is satisfied if and only if exactly one of its three literals is true.
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For each variable xi, consider the variable subgraph on the left-hand side of Figure 5.3,

with vertices vi and wi, and edges di and ei. (In this section, all figures indicate the

demands at the vertices, and the bounds and costs of the edges as the triple (l, u, c).) The

only two feasible solutions carry one unit of flow from vi to wi on di and two on ei, or vice

versa. For each clause Cj, consider the clause subgraph on the right-hand side of Figure 5.3,

with vertices sj and tj, and edges fj, gj, and hj. The only three feasible solutions carry

one unit of flow from tj to sj on one of fj, gj, and hj, and two units on the other two. We

describe now a subgraph used to interconnect the variable to the clause subgraph.

Lemma 5.1 Consider the negator subgraph N in Figure 5.4 and assume that the demands

at vertices w, x, y, z satisfy bw, bx ∈ {1, 2}, by, bz ∈ {−1,−2}, and bw + bx + by + bz = 0.

Then the minimum cost of an edges postman tour of (N, l, u, b, c) is 3 if bw = 1, bx = 2,

by = −1, and bz = −2, or if bw = 2, bx = 1, by = −2, and bz = −1. For other values of

the demands, the cost is greater, or the problem is infeasible.

Proof. First we show that in any feasible solution of N , the demands at w, x, y, z must

satisfy by = −bw and bz = −bx. By symmetry, it is enough to show the former. Since

bp = 0 and lpq = upq = 1, it follows that in any feasible solution of N , one of op or pw

carries one unit of flow, and the other carries two units of flow. Similarly, one of op and oy

carries one unit of flow, and the other carries two units of flow. Hence, there are only two
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possibilities: Either op carries one unit of flow, or both oy and pw carry one unit of flow.

In the former case bw = −by = 2, and in the latter case bw = −by = 1.

To finish the proof, it is enough to find optimal solutions for the four cases that result

from the restrictions on the demands at w, x, y, z. We show these solutions in Figure 5.5.

Bold arcs carry two units of flow. The other arcs carry one unit of flow. ¥

Theorem 5.2 The decision version of Minimum Bounded Edges Postman Tour is

NP-complete, even if all bounds are finite.

Proof. We reduce the NP-complete problem 1-in-3 Satisfiability to the decision

version of Minimum Bounded Edges Postman Tour. Let I be an instance of 1-in-3

Satisfiability with n variables x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm, where each

clause Cj contains three literals y1j , y
2
j , y

3
j . Construct an instance (G, l, u, b, c) of Minimum

Bounded Edges Postman Tour consisting of n copies of the variable subgraph and m

copies of the clause subgraph, interconnected with negator subgraphs as follows.

For each clause Cj, identify its literals y1j , y
2
j , y

3
j with the edges fj, gj, hj, respectively.

If literal y1j is a positive variable (say xi), then identify it with edge di. Otherwise, if literal

y1j is a negative variable (say ¬xi), then identify it with edge ei. Split each of the two edges

identified with literal y1j into three parts, and connect these two paths of length three with

a negator subgraph. Repeat this procedure with the other literals of Cj. Note that in this

process, the edges of the variable subgraphs may be split many times. See Figure 5.6.

We claim that I is satisfiable if and only if (G, l, u, b, c) has a bounded edges postman

tour of cost at most 9m. Assume that I is satisfiable, and let x∗1, x
∗
2, . . . , x

∗
n be an assignment

of the variables satisfying I. For all 1 ≤ i ≤ n, if x∗i is true, send a unit of flow from vi

to wi through di, otherwise, send it through ei. For all 1 ≤ j ≤ m, send a unit of flow

from tj to sj through the edges identified with the false literals in Cj. By Lemma 5.1, it

is possible to send flow through each negator subgraph with a cost of 3, for a total cost of

9m. Conversely, if we have a feasible solution for (G, l, u, b, c) with cost at most 9m, by

Lemma 5.1, it must have cost exactly 9m because each negator subgraph involves a cost of

3. Moreover, if we set x∗i to true if and only if a unit of flow is sent from vi to wi through

di, we obtain an assignment of the variables that satisfies I. ¥
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Our next step is to remove the upper bounds.

Corollary 5.3 The decision version of Minimum Edges Postman Tour is NP-complete.

Proof. Consider the instance of Minimum Bounded Edges Postman Tour used

in the proof of Theorem 5.2. Remove the upper bounds, and set the cost of the edges to

zero everywhere, except on the two squares of each negator subgraph, where we set the

cost of the edges to one. The variable subgraph and the clause subgraph satisfy the same

properties as before. Subject to the conditions of Lemma 5.1, each negator subgraph can

be traversed with cost at most 10 if and only if bw = 1, bx = 2, by = −1, and bz = −2 or

bw = 2, bx = 1, by = −2, and bz = −1. For other values of the demands, the cost is at least

11. The corresponding optimal solutions are the same as in Figure 5.5, except that the

infeasible case becomes feasible, with a cost of 11. The same argument as in Theorem 5.2,

with 9m replaced by 30m, proves the result. ¥

The following result can be proved in a similar way to Theorem 3.5, with w = 30m for

Minimum Edges Postman Tour, and w = 6m for Minimum Edges Postman Set.

Corollary 5.4 There is no fully polynomial approximation scheme for Minimum Edges

Postman Tour, nor for Minimum Edges Postman Set, unless P = NP.
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In order to give hardness results for the planar case of Minimum Edges Postman

Tour, we need a slight modification of the variable subgraph.

Theorem 5.5 The decision version of Minimum Bounded Edges Postman Tour

remains NP-complete even if G is restricted to be planar and all bounds are finite.

Proof. We reduce Planar 1-in-3 Satisfiability to the decision version of Minimum

Bounded Edges Postman Tour. Let I be an instance of Planar 1-in-3 Satisfia-

bility with n variables x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm, where each clause Cj

contains three literals y1j , y
2
j , y

3
j . For each 1 ≤ i ≤ n, let pi and qi be the number of times

the literals xi and ¬xi appear in the clauses, respectively, and let ti = max{pi, qi}.

Let H be the bipartite undirected graph associated with I (see Figure 1.5 and the

explanation that precedes it). Since H is planar, we can find a planar embedding of H in

polynomial time. Using this embedding, we construct an undirected graph G, essentially

replacing each variable vertex of H with a new variable subgraph, each clause vertex of H

with a clause subgraph, and each edge of H with a negator subgraph.

For each variable xi, the new variable subgraph is a cycle Xi of length 4ti, whose edges

have l = 1, u = 2, and c = 0, and whose vertices have demands either +1 or −1, alternating

around Xi. Label the edges of Xi from e1 to e4ti around Xi, and associate the odd edges

with the literal xi, and the even edges with the literal ¬xi. Observe that each Xi has only

two feasible solutions: All even edges carrying two units of flow from a vertex with demand

+1 to a vertex with demand −1 and all odd edges carrying one unit of flow from a vertex

with demand −1 to a vertex with demand +1, and vice versa.

Following the embedding ofH, connect these variable subgraphs to the clause subgraphs

as in the proof of Theorem 5.2. Observe that, in this process, many edges of the variable

subgraphs are left unused. If two consecutive edges are unused we may contract them.

See Figure 5.7, where the bold edges with square ends represent the negator subgraphs.

Note that some crossings have appeared, but only between edges with l = 1, u = 2, and

edges with l = u = 1. These crossings can be removed simply by transforming them into

vertices. The rest of the proof is similar to that of Theorem 5.2. ¥

Corollary 5.6 The decision version of Minimum Edges Postman Tour remains NP-

complete even if G is restricted to be planar.
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5.3 Integer Programming Formulations

We give two integer programming formulations for Minimum Edges Postman Tour

and Minimum Bounded Edges Postman Tour based on those we gave for Minimum

Mixed Postman Tour in Section 3.3, as well as their linear programming relaxations.

Let M = (V,E,A) be a strongly connected mixed graph, let c ∈ QE
+, let G = (V,E), and

let bv = dA(v)− dA(v̄) for every v ∈ V .

5.3.1 First Formulation

For the first integer programming formulation, let ~G = (V,E+ ∪ E−) be the associated

directed graph of G. As before, we obtain the following integer program for Minimum

Edges Postman Tour.

MEPT1(G, b, c) = min c>xE+ + c>xE− (5.2)

subject to

x(~δ(v̄))− x(~δ(v)) = bv for all v ∈ V (5.3)

xe+ + xe− ≥ 1 for all e ∈ E (5.4)

xe ≥ 0 and integer for all e ∈ E+ ∪ E−. (5.5)

Denote its linear programming relaxation by LMEPT1(G, b, c).

We can obtain an integer programming formulation MBEPT1(G, l, u, b, c) for Mini-

mum Bounded Edges Postman Tour, as well as its linear programming relaxation

LMBEPT1(G, l, u, b, c), replacing the constraint (5.4) by

ue ≥ xe+ + xe− ≥ le for all e ∈ E. (5.6)

Let P1
EPT (G, b) be the convex hull of the feasible solutions to the integer program

MEPT1(G, b, c), and let Q1
EPT (G, b) be the set of feasible solutions to its linear program-

ming relaxation LMEPT1(G, b, c). Similarly, let P1
BEPT (G, l, u, b) be the convex hull of

the feasible solutions to MBEPT1(G, l, u, b, c), and let Q1
BEPT (G, l, u, b) be the set of fea-

sible solutions to LMBEPT1(G, l, u, b, c). By Theorem 3.13, both Q1
EPT (G, l, u, b) and

Q1
BEPT (G, b) are half-integral polyhedra.
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5.3.2 Second Formulation

The second integer programming formulation we give is again based on Ford and Fulker-

son’s characterization of mixed Eulerian graphs.

MEPT2(G, b, c) = min c>x (5.7)

subject to

x(δ(S)) ≥ b(S) for all S ⊆ V (5.8)

x(δ(v)) ≡ bv (mod 2) for all v ∈ V (5.9)

xe ≥ 1 for all e ∈ E (5.10)

xe integral for all e ∈ E. (5.11)

Its linear programming relaxation is obtained by deleting the parity constraints (5.9) and

the integrality constraints (5.11), and it is denoted by LMEPT2(G, b, c).

We can obtain an integer programming formulation MBEPT2(G, l, u, b, c) for Mini-

mum Bounded Edges Postman Tour, as well as its linear programming relaxation

LMBEPT2(G, l, u, b, c), replacing the constraints (5.10) by ue ≥ xe ≥ le for all e ∈ E.

Let P2
EPT (G, b) be the convex hull of the feasible solutions to the integer program

MEPT2(G, b, c), and let Q2
EPT (G, b) be the set of feasible solutions to its linear program-

ming relaxation LMEPT2(G, b, c). Similarly, let P2
BEPT (G, l, u, b) be the convex hull of the

feasible solutions to MBEPT2(G, l, u, b, c), and let Q2
BEPT (G, l, u, b) be the set of feasible

solutions to LMBEPT2(G, l, u, b, c).

5.4 Linear Programming Relaxations

In this section, we study some properties of the linear programming relaxations of Mini-

mum Edges Postman Tour and Minimum Bounded Edges Postman Tour. We

give some valid inequalities for the sets of feasible solutions of these two problems. We

also introduce a relaxation of Minimum Bounded Edges Postman Tour, that we call

Minimum b-Join, for which we give a linear programming formulation. In this section,

we assume that ue =∞ for all e ∈ E, and hence we refer to MBEPT1(G, l, b, c) instead of

MBEPT1(G, l, u, b, c), Q1
BEPT (G, l, b) instead of Q1

BEPT (G, l, u, b), etc.
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5.4.1 Odd-Cut Constraints

We can easily see that the polyhedraQ1
BEPT (G, l, b) andQ

2
BEPT (G, l, b) have extreme points

that do not correspond to feasible solutions of Minimum Bounded Edges Postman

Tour, for example when G consists of only one edge e, le = 1 and b = 0.

We say that S ⊆ V is an odd set, and that δ(S) is an odd cut if b(S) + l(δ(S)) is odd.

We also say that v ∈ V is odd if the set {v} is odd. It is easy to see that an integral

solution x to MBEPT1(G, l, b, c) must satisfy the odd-cut constraints

x(~δ(S)) + x(~δ(S̄)) ≥ l(δ(S)) + 1 for each odd set S ⊆ V, (5.12)

and an integral solution x to MBEPT2(G, l, b, c) must satisfy the odd-cut constraints

x(δ(S)) ≥ l(δ(S)) + 1 for each odd set S ⊆ V. (5.13)

Let O1
BEPT (G, l, b) be the subset of Q

1
BEPT (G, l, b) that satisfies the odd-cut constraints

(5.12), and let O2
BEPT (G, l, b) be the subset of Q2

BEPT (G, l, b) that satisfies the odd-cut

constraints (5.13). Since Minimum Edges Postman Tour is NP-hard, we cannot

expect that O2
BEPT (G, l, b) = P2

BEPT (G, l, b). In Figure 5.8 we show one of the smallest

examples we know of an undirected graph G, with vector of demands b, and vector of lower

bounds l, together with a fractional extreme point x of O2
BEPT (G, l, b).
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5.4.2 b-Joins

Let G = (V,E) be an undirected graph, and let T ⊆ V with |T | even. A (generalized)

T -join of G is a vector x ∈ ZE
+ such that for each v ∈ V , x(δ(v)) is odd if and only if v ∈ T .

For S ⊆ V , we say that S is T -odd and that δ(S) is a T -cut if |S ∩ T | is odd. Let b ∈ ZV

be a vector with b(V ) even, and let T = {v ∈ V : bv is odd}. Note that |T | is even. We

say that x ∈ ZE
+ is a b-join of G if x is a T -join of G, and x(δ(v)) ≥ bv for all v ∈ V .

Problem: Minimum b-Join.

Input: An undirected graph G = (V,E), a vector b ∈ ZV , and a vector c ∈ QE
+.

Output: The minimum cost MBJ(M, c) of a b-join of G.

We can slightly generalize b-joins by giving a vector l ∈ ZE of lower bounds, and

requiring that x ≥ l. Let PBJ(G, l, b) ⊆ RE be the polyhedron defined by

x(δ(v)) ≥ bv for all v ∈ V (5.14)

x(δ(S)) ≥ l(δ(S)) + 1 for all odd S ⊆ V (5.15)

xe ≥ le for all e ∈ E, (5.16)

where S ⊆ V is odd if b(S)+ l(δ(S)) is odd. Let PBJ(G, b) be the polyhedron PBJ(G,0, b).

We prove first that the integrality of PBJ(G, b) implies the integrality of PBJ(G, l, b).

Lemma 5.7 If the polyhedron PBJ(G, b) is integral for all choices of b, then the polyhedron

PBJ(G, l, b) is integral for all choices of l and b.

Proof. Note that PBJ(G, l, b) is the translate of PBJ(G, b
′) obtained from y = x − l,

where, for all v ∈ V , b′v = bv − l(δ(v)). It is enough to verify that parity is preserved:

b′(S) = b(S)−
∑

v∈S

l(δ(v)) = b(S) + l(δ(S))− 2l(δ(S))− 2l(γ(S)). (5.17)

Hence b′(S) is odd if and only if b(S) + l(δ(S)) is odd. ¥

Now we prove that PBJ(G, b) is indeed integral. Our proof is very similar to one given

by Cook et al. [16, Section 6.1] for a description of the b-factor polytope.
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Theorem 5.8 The polyhedron PBJ(G, b) is integral.

Proof. It is easy to see that if x is a b-join, then x ∈ PBJ(G, b). We are going to show

that if x ∈ PBJ(G, b) then x is a convex combination of some b-joins.

Let y be a T -join of G. For each v ∈ V , define the violation f(y, v) of y at v as

f(y, v) = max(0, bv − y(δ(v))). (5.18)

Define the total violation f(y) of y as f(y) =
∑

v∈V f(y, v).

Since PBJ(G, b) is a subset of the T -join polyhedron for (G, T ), we can write x as a

convex combination of some T -joins x =
∑k

i=1 λix
i. Choose this convex combination so

that the weighted violation α =
∑k

i=1 λif(x
i) is as small as possible. If α = 0 then each xi

is a b-join, and we are done. Otherwise, we can assume that f(x1, u) > 0 for some vertex

u, that is, x1(δ(u)) < bu. Since x(δ(u)) ≥ bu, we can also assume that x2(δ(u)) > bu.

Let x̃ ∈ ZE
+ be defined by x̃e = |x1e − x2e| for e ∈ E. Since x1, x2 are T -joins, x̃ is an

∅-join, that is, x̃(δ(v)) is even for all v ∈ V . Let G̃ be an undirected graph with vertex set

V and edge set E1 ∪ E2, where E1 contains x̃e copies of edge e whenever x1e > x2e, and E2

contains x̃e copies of edge e otherwise. Construct an edge-simple closed path P as follows.

• Start at u. The first edge of P is in E2.

• If P enters v ∈ V on an edge in E1, it leaves if possible on an edge in E2.

• If P enters v 6= u on an edge in E2, it leaves if possible on an edge in E1.

• If P enters u on an edge in E2, it terminates.

This path exists since G̃ is an even undirected graph, and |E2∩ δ̃(u)| > |E1∩ δ̃(u)|. For

each e ∈ E, let x̄e be the number of copies of e used by P . Note that x̄ is again a ∅-join.

Define the vectors y1, y2 by

y1e =











x1e − x̄e if x1e > x2e
x1e + x̄e if x1e < x2e
x1e otherwise

and y2e =











x2e − x̄e if x2e > x1e
x2e + x̄e if x2e < x1e
x2e otherwise.

(5.19)

Since x1, x2 are T -joins, and x̄ is a ∅-join, we have that y1, y2 are T -joins. Moreover,

it is not difficult to see that y1 + y2 = x1 + x2 and f(y1) + f(y2) < f(x1) + f(x2). Define
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zi to be xi for 1 ≤ i ≤ k, and zk+1 = y1, zk+2 = y2. Let ε = min{λ1, λ2}, and define

µ1 = λ1 − ε, µ2 = λ2 − ε, µi = λi for 3 ≤ i ≤ k, and µk+1 = µk+2 = ε. Then
∑k+2

i=1 µiz
i

is an expression for x as a convex combination of T -joins for which the weighted violation

satisfies
∑k+2

i=1 µif(z
i) < α, a contradiction to the choice of the xi. ¥

Since PBJ(G, l, b) is integral, and since we can separate in polynomial time all its

defining constraints, the equivalence between separation and optimization implies that we

can optimize over PBJ(G, l, b) in polynomial time, that is, we can solve Minimum b-Join in

polynomial time, even in the presence of lower bounds. An interesting question is whether

we can give such an algorithm that does not depend on the ellipsoid method.

A vector x ∈ ZE
+ is a perfect b-matching of G if x(δ(v)) = bv for all v ∈ V . Observe that

perfect b-matchings are precisely the integral vectors in the set of solutions PPBM(G, b) of

the system

x(δ(v)) = bv for all v ∈ V (5.20)

x(δ(S)) ≥ 1 for all odd S ⊆ V (5.21)

xe ≥ 0 for all e ∈ E. (5.22)

Furthermore, since PPBM(G, b) is a face of PBJ(G, b), it follows from Theorem 5.8 that

the polytope PPBM(G, b) is integral, and hence PPBM(G, b) is the convex hull of perfect

b-matchings of (G, b), a result of Edmonds and Johnson [28].

5.5 Other Valid Inequalities

In this section we describe a new class of valid inequalities for P 1
BEPT (G, l, b) obtained via

Gomory-Chvátal cutting plane proofs [14, 44]. This class of constraints is unusual in that

it arises from congruency modulo 4, instead of modulo 2 as the classic odd-cut constraints.

Let T0, T1, . . . , Tk be k + 1 subsets of V such that

1. b(T0) ≡ l(δ(T0)) + k + 2 (mod 4),

2. T1, . . . , Tk are odd, and

3. each e ∈ E appears an even number of times in δ(T0), δ(T1), . . . , δ(Tk).
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For e ∈ E, let te be the number of times that e appears in δ(T1), . . . , δ(Tk). Note that te

is odd if and only if e ∈ δ(T0). Define the subset F ⊆ E by e ∈ F if and only if either

e ∈ δ(T0) and te ≡ 3 (mod 4), or e /∈ δ(T0) and te ≡ 2 (mod 4).

5.5.1 First Rounding

We will consider the two valid inequalities

1
4
(x(δ(T0)) + 3

k
∑

i=1

x(δ(Ti)) + 2x(F )) ≥ 1
4
(b(T0) + 3

k
∑

i=1

(l(δ(Ti)) + 1) + 2l(F )) (5.23)

and

1
4
(3x(δ(T0)) +

k
∑

i=1

x(δ(Ti)) + 6x(F )) ≥ 1
4
(3b(T0) +

k
∑

i=1

(l(δ(Ti)) + 1) + 6l(F )) (5.24)

obtained from adding multiples of the valid inequalities x(δ(T0)) ≥ b(T0), x(F ) ≥ l(F ),

and x(δ(Ti)) ≥ l(δ(Ti)) + 1 for all 1 ≤ i ≤ k.

First, we verify that all the coefficients on the left-hand sides are integers, then we show

that the right-hand sides are non-integral multiples of 1
2
. This will allow us to add 1

2
to

both right-hand sides to obtain the valid inequalities

1
4
(x(δ(T0)) + 3

k
∑

i=1

x(δ(Ti)) + 2x(F )) ≥ 1
4
(b(T0) + 3

k
∑

i=1

(l(δ(Ti)) + 1) + 2l(F ) + 2) (5.25)

and

1
4
(3x(δ(T0)) +

k
∑

i=1

x(δ(Ti)) + 6x(F )) ≥ 1
4
(3b(T0) +

k
∑

i=1

(l(δ(Ti)) + 1) + 6l(F ) + 2). (5.26)

For e ∈ E, let ce and de be the coefficients of xe in the left-hand sides of (5.23) and

(5.24), respectively. Observe that: If e ∈ δ(T0), then ce = 3
4
(te + 1) and de = 1

4
(te + 9) if

e ∈ F , and ce =
1
4
(3te + 1) and de =

1
4
(te + 3) if e /∈ F . If e /∈ δ(T0), then ce =

1
4
(3te + 2)

and de =
1
4
(te +6) if e ∈ F , and ce =

3
4
te and de =

1
4
te if e /∈ F . Else, if e /∈ ∪

k
i=0δ(Ti), then

ce = de = 0.
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Note that in every case, ce and de are integers. To verify our second claim, observe that

the right-hand sides of (5.23) and (5.24) have the same fractional parts as

1
4
(l(δ(T0)) + 3

k
∑

i=1

l(δ(Ti)) + 2l(F ) + 4k + 2) (5.27)

and

1
4
(3l(δ(T0)) +

k
∑

i=1

l(δ(Ti)) + 6l(F ) + 4k + 6), (5.28)

respectively. Now note that the coefficients of le in the above expressions are ce and de,

that the constant terms are 1
2
and 3

2
, respectively, and that the coefficients of k are both 1.

5.5.2 Second Rounding

Add inequalities (5.25) and (5.26), and multiply the result by 1
2
. After some simplification,

we obtain the valid inequality

1
2
(x(δ(T0)) +

k
∑

i=1

x(δ(Ti)) + 2x(F )) ≥ 1
2
(b(T0) +

k
∑

i=1

(l(δ(Ti)) + 1) + 2l(F ) + 1). (5.29)

For e ∈ E, let ae be the coefficient of xe on the left-hand side of (5.29). We claim that

each ae is integral, and that the right-hand side has a fractional part of 1
2
. As before, if

e /∈ ∪k
i=0δ(Ti), then ae = 0. If e ∈ δ(T0), then ae =

1
2
(te + 3) if e ∈ F , and ae =

1
2
(te + 1) if

e /∈ F . Else, if e /∈ δ(T0), then ae =
1
2
(te + 2) if e ∈ F , and ae =

1
2
te if e /∈ F .

To verify our second claim, note that the right-hand side of (5.29) has the same frac-

tional part as

1
2
(l(δ(T0)) +

k
∑

i=1

l(δ(Ti)) + 2l(F ) + 2k + 1). (5.30)

Note that the coefficient of le in the above expression is ae, that the coefficient of k is 1,

and that the constant term is 1
2
. Hence we can add 1

2
to the right-hand side of (5.29) to

obtain the valid inequality

1
2
(x(δ(T0)) +

k
∑

i=1

x(δ(Ti)) + 2x(F )) ≥ 1
2
(b(T0) +

k
∑

i=1

(l(δ(Ti)) + 1) + 2l(F ) + 2), (5.31)
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or simply

x(δ(T0)) +
k
∑

i=1

x(δ(Ti)) + 2x(F ) ≥ b(T0) +
k
∑

i=1

(l(δ(Ti)) + 1) + 2l(F ) + 2. (5.32)

5.5.3 Small Values of k are Redundant

Assume that x is a vector that satisfies all the flow, odd-cut and lower bound constraints.

We show that if k ≤ 3, then x satisfies all the constraints (5.32).

If k = 1, it must be that b(T0) ≡ l(δ(T0)) + 3 (mod 4), δ(T0) = δ(T1), and F is empty.

We can further assume that T = T0 = T1. Hence, the inequality

x(δ(T0)) + x(δ(T1)) + 2x(F ) ≥ b(T0) + l(δ(T1)) + 2l(F ) + 3 (5.33)

is equivalent to

2x(δ(T )) ≥ b(T ) + l(δ(T )) + 3. (5.34)

To see that this inequality is redundant, note that either

1. b(T ) ≥ l(δ(T )) + 3, and hence 2x(δ(T )) ≥ 2b(T ) ≥ b(T ) + l(δ(T )) + 3, or

2. b(T ) ≤ l(δ(T ))− 1, and hence 2x(δ(T )) ≥ 2(l(δ(T )) + 1) ≥ b(T ) + l(δ(T )) + 3.

If k = 2, our assumptions imply that b(T0) ≡ l(δ(T0)) (mod 4). With a bit more

work we see that all possible configurations of T0, T1, T2 can be obtained as follows: Let

(A,B,C,D) be a partition of the vertex set such that T0 = A ∪ B, T1 = A ∪ C, and

T2 = B ∪C. The set F will consist of the edges between A and B, and the edges between

C and D. Moreover, we can easily check that

x(δ(T0)) + 2x(F ) = x(δ(T1)) + x(δ(T2)) (5.35)

and

l(δ(T0)) + 2l(F ) = l(δ(T1)) + l(δ(T2)). (5.36)

Hence, the inequality

x(δ(T0)) + x(δ(T1)) + x(δ(T2)) + 2x(F ) ≥ b(T0) + l(δ(T1)) + l(δ(T2)) + 2l(F ) + 4 (5.37)
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is equivalent to

2x(δ(T0)) + 4x(F ) ≥ b(T0) + l(δ(T0)) + 4l(F ) + 4. (5.38)

To see that this inequality is redundant, note that one of the following is true:

1. b(T0) ≥ l(δ(T0)) + 4, and hence

2x(δ(T0)) + 4x(F ) ≥ 2b(T0) + 4l(F ) (5.39)

≥ b(T0) + l(δ(T0)) + 4l(F ) + 4. (5.40)

2. b(T0) = l(δ(T0)), and hence

2x(δ(T0)) + 4x(F ) = 2x(δ(T1)) + 2x(δ(T2)) (5.41)

≥ 2l(δ(T1)) + 2l(δ(T2)) + 4 (5.42)

= 2l(δ(T0)) + 4l(F ) + 4 (5.43)

= b(T0) + l(δ(T0)) + 4l(F ) + 4. (5.44)

3. b(T0) ≤ l(δ(T0))− 4, and hence

2x(δ(T0)) + 4x(F ) ≥ 2l(δ(T0)) + 4l(F ) (5.45)

≥ b(T0) + l(δ(T0)) + 4l(F ) + 4. (5.46)

If k = 3, our assumptions imply that b(T0) ≡ l(δ(T0)) + 1 (mod 4). In particular T0 is

odd. With a bit more work we see that all possible configurations of T0, T1, T2, T3 can be

obtained as follows: Let (A0000, A0011, A0101, A0110, A1001, A1010, A1100, A1111) be a partition

of the vertex set with T0 = A0011 ∪A0101 ∪A1001 ∪A1111, T1 = A0011 ∪A0110 ∪A1010 ∪A1111,

T2 = A0101 ∪ A0110 ∪ A1100 ∪ A1111, and T3 = A1001 ∪ A1010 ∪ A1100 ∪ A1111. Just as before,

we can verify that

x(δ(T0)) + 2x(F ) = x(δ(T1)) + x(δ(T2)) + x(δ(T3)) (5.47)

and

l(δ(T0)) + 2l(F ) = l(δ(T1)) + l(δ(T2)) + l(δ(T3)). (5.48)
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Hence, the inequality

x(δ(T0)) +
3
∑

i=1

x(δ(Ti)) + 2x(F ) ≥ b(T0) +
3
∑

i=1

l(δ(Ti)) + 2l(F ) + 5 (5.49)

is equivalent to

2x(δ(T0)) + 4x(F ) ≥ b(T0) + l(δ(T0)) + 4l(F ) + 5. (5.50)

To see that this inequality is redundant, note that one of the following is true:

1. b(T0) ≥ l(δ(T0)) + 5, and hence

2x(δ(T0)) + 4x(F ) ≥ 2b(T0) + 4l(F ) (5.51)

≥ b(T0) + l(δ(T0)) + 4l(F ) + 5. (5.52)

2. b(T0) = l(δ(T0)) + 1, and hence

2x(δ(T0)) + 4x(F ) = 2x(δ(T1)) + 2x(δ(T2)) + 2x(δ(T3)) (5.53)

≥ 2l(δ(T1)) + 2l(δ(T2)) + 2l(δ(T3)) + 6 (5.54)

= 2l(δ(T0)) + 4l(F ) + 6 (5.55)

= b(T0) + l(δ(T0)) + 4l(F ) + 5. (5.56)

3. b(T0) ≤ l(δ(T0))− 3, and hence

2x(δ(T0)) + 4x(F ) ≥ 2(l(δ(T0)) + 1) + 4l(F ) (5.57)

≥ b(T0) + l(δ(T0)) + 4l(F ) + 5. (5.58)

On the other hand, some inequalities with k = 4 are not redundant. The fractional

point shown in Figure 5.8 violates two facet inducing inequalities of P 1
BEPT (G, l, b) that

can be obtained from (5.32) with the two families of subsets

T0 = {1, 2, 3}, T1 = {5}, T2 = {6}, T3 = {2, 5}, T4 = {2, 4, 5} (5.59)

and

T0 = {1, 2, 3}, T1 = {5}, T2 = {6}, T3 = {3, 6}, T4 = {3, 4, 6}. (5.60)
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5.5.4 Generalization

Let S1, . . . , Sj and T1, . . . , Tk be subsets of V such that

1.
∑j

i=1 b(Si) ≡
∑j

i=1 l(δ(Si)) + k + 2 (mod 4),

2. T1, . . . , Tk are odd, and

3. each e ∈ E appears an even number of times in δ(S1), . . . , δ(Sj), δ(T1), . . . , δ(Tk).

For e ∈ E, let se be the number of times that e appears in δ(S1), . . . , δ(Sj), and let te be

the number of times that e appears in δ(T1), . . . , δ(Tk). Note that te is odd if and only if

se is odd. Define the subset F ⊆ E by e ∈ F if and only if either se ≡ 1 (mod 4) and

te ≡ 3 (mod 4), or se ≡ 0 (mod 4) and te ≡ 2 (mod 4).

As before, we can obtain after two roundings the valid inequality

j
∑

i=1

x(δ(Si)) +
k
∑

i=1

x(δ(Ti)) + 2x(F ) ≥

j
∑

i=1

b(Si) +
k
∑

i=1

(l(δ(Ti)) + 1) + 2l(F ) + 2. (5.61)

We observe that, if T ⊆ V is odd, it is possible to obtain the odd-cut constraints (5.13)

from (5.61) by setting T1 = T and T2 = V \ T .

5.6 Approximation Algorithms

In this section we describe four approximation algorithms for Minimum Edges Postman

Tour. Our main contribution is an algorithm that has both a guarantee of 4
3
for Minimum

Edges Postman Tour, and a guarantee of 2 for Minimum Edges Postman Set. To

the best of our knowledge, this is the first positive result about approximating the cost of

an optimal postman set for any NP-hard postman problem.

In the analysis of our algorithms, we use the following easy consequence of Theorem 2.8.

Lemma 5.9 Let G = (V,E) be a 2-edge-connected undirected graph, let T ⊆ V be an even

set, and let c ∈ QE
+. Then G has a T -join J with cost c(J) ≤ 1

2
c(E).

The next lemma allows us to consider only 2-edge-connected undirected graphs.
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Lemma 5.10 (Veerasamy [85]) Let (G, b, c) be an instance of Minimum Edges Post-

man Tour with G = (V,E) connected. Assume that e ∈ E is a cut-edge, and that S ⊆ V

is such that δ(S) = {e}. Then any optimal solution x∗ ∈ ZE
+ for (G, b, c) has x∗e = |b(S)| if

b(S) 6= 0, and x∗e = 2 if b(S) = 0.

Proof. Without loss of generality, we can assume that b(S) ≥ 0. If b(S) > 0, then any

feasible solution for (G, b, c) must carry b(S) units of flow from S to S̄ along e, and the

optimal way of doing this is setting x∗e = b(S). If b(S) = 0, then in any feasible solution

for (G, b, c) no flow is sent through e. Since e must be used at least once, it follows that it

must be used at least twice. Hence, the optimal way of doing this is setting x∗e = 2, and

carrying one unit of flow in each direction. ¥

Therefore, before applying any of the algorithms that we describe later, we apply the

following procedure due to Veerasamy [85] to a given instance (G, b): As long as G has a

cut-edge e = {u, v}, let S be as in the above lemma, with u ∈ S, v ∈ S̄, let G′ = G \ e,

define b′ as b′u = bu − b(S), b′v = bv + b(S), and b′w = bw for all w ∈ V \ {u, v}, and

redefine (G, b) as (G′, b′). After at most |V | iterations, all connected components of G are

2-edge-connected, and we apply any of our four algorithms to each of them.

To show the workings of the four algorithms we describe next, we apply each of them to

the instance (M, c) shown in Figure 5.9, with MEPT(M, c) = 26 and MEPSP(M, c) = 6.

5.6.1 A 5
2
-Approximation Algorithm

The first approximation algorithm we describe (called Edges1) was given by Veerasamy in

his doctoral thesis [85]. Given an instance (G, b, c) of Minimum Edges Postman Tour

where G is a 2-edge-connected undirected graph, find a minimum cost feasible flow xF

on the directed graph ~G, with demands b and costs ce+ = ce− = ce for all e ∈ E. Let

U = {e ∈ E : xF
e+ + xF

e− = 0}, which we call the set of unused edges by the flow xF . Let

T = {v ∈ V : dU(v) is odd}, and let J be a minimum cost T -join of (G, T, c). Note that U

together with J is an even subgraph of G, and hence each of its connected components is

Eulerian. The output of Edges1 is x1, the incidence vector of the edges postman tour of

(G, b) obtained from adding U and J to the flow xF .
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On the top of Figure 5.10 we indicate with arrows the flow xF , with cost 19, and with

bold edges the set U , with cost 11. On the bottom, we show with dashed edges the set J ,

with cost 4. The edges postman tour found by Edges1 has cost 34.

Veerasamy claimed that Edges1 has a guarantee of 3
2
for Minimum Edges Postman

Tour. However, we prove that the guarantee of Edges1 is somewhere between 2 and 5
2
.

Theorem 5.11 Algorithm Edges1 is a 5
2
-approximation algorithm for Minimum Edges

Postman Tour. The guarantee of Edges1 is not better than 2. Algorithm Edges1 has

no guarantee for Minimum Edges Postman Set.

Proof. Let G = (V,E) be a 2-edge-connected undirected graph, and let (G, b, c) be an

instance of Minimum Edges Postman Tour with optimal value C∗ ≥ c(E). Since any

edges postman tour of (G, b) corresponds with a feasible flow of ( ~G, b), it follows that C∗

is at least the cost CF of xF . In the worst case, all edges are left unused by xF , and hence

c(U) ≤ c(E). By Lemma 5.9, c(J) ≤ 1
2
c(E). Hence, the cost C1 of x1 satisfies

C1 = CF + c(U) + c(J) ≤ C∗ + 3
2
c(E) ≤ 5

2
C∗. (5.62)

For each ε > 0, consider the undirected graph consisting of two parallel edges e and f , with

ends u and v, and with ce = 1, cf = 1 + ε, bu = +2, and bv = −2. It is easy to see that

an application of Edges1 to this instance gives xF
e = 2, xF

f = 0, U = {f}, and J = {e},

with cost C1 = 2 + (1 + ε) + 1 = 4 + ε. However, an optimal solution to this instance has

x∗e = x∗f = 1, with cost C∗ = 2 + ε. Hence limε→0
C1

C∗ = 2. Observe that an optimal edges

postman set has cost 0, while Edges1 outputs an edges postman set of cost 2. ¥

5.6.2 A 2-Approximation Algorithm

The second approximation algorithm we describe (called Edges2) is an adaptation of the

2-approximation algorithm for Minimum Windy Postman Tour due to Win. In fact,

the first part of our proof is very similar to Win’s proof for his algorithm [89]. Given an

instance (G, b, c) of Minimum Edges Postman Tour where G is a 2-edge-connected

undirected graph, find an extreme point optimal solution xL with cost CL of the linear

programming relaxation LMEPT1(G, b, c) of Minimum Edges Postman Tour. Recall
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that xL is a half-integral vector. Let F be the set of edges with fractional components.

The output of Edges2 is x2, the integral vector obtained by adding 1
2
to each fractional

component of xL. Note that x2 is the incidence vector of an edges postman tour of (G, b).

On the top of Figure 5.11 we indicate with arrows the optimal solution xL to the linear

programming relaxation, with cost 25, and with bold edges the set F . On the bottom, we

indicate with arrows the edges postman tour x2 found by Edges2, with cost 29.

Theorem 5.12 Algorithm Edges2 is a tight 2-approximation algorithm for Minimum

Edges Postman Tour, and it has no guarantee for Minimum Edges Postman Set.

Proof. Let G = (V,E) be a 2-edge-connected undirected graph, and let (G, b, c) be

an instance of Minimum Edges Postman Tour whose optimal solution x∗ has value

C∗ ≥ c(E). Since x∗ is feasible for LMEPT1(G, b, c), it follows that CL ≤ C∗. In the worst

case, all edges are fractional, and hence c(F ) ≤ c(E). Hence, the cost C2 of x2 satisfies

C2 = CL + c(F ) ≤ C∗ + c(E) ≤ 2C∗. (5.63)

For each ε > 0, consider the undirected graph consisting of two parallel edges e and f ,

with ends u and v, and with ce = ε, cf = 1, bu = +1, and bv = −1. It is possible that

an application of Edges2 to this instance gives xL
e+ = 1, xL

e− = 0, xL
f+ = xL

f− = 1
2
, and

F = {f}, with cost C2 = (1+ ε)+1 = 2+ ε. However, an optimal solution to this instance

has x∗e+ = x∗e− = 1, x∗f+ = 1, and x∗f− = 0, with cost C∗ = 1 + 2ε. Hence limε→0
C2

C∗ = 2.

Observe that an optimal edges postman set has cost ε, while Edges2 outputs an edges

postman set of cost 1. Hence limε→0
C2−c(E)
C∗−c(E)

→ +∞. ¥

5.6.3 A 3
2
-Approximation Algorithm

The third approximation algorithm we describe (called Edges3) is a slight improvement

of Edges2. As before, find an extreme point optimal solution xL with cost CL of the

linear programming relaxation LMEPT1(G, b, c) of Minimum Edges Postman Tour,

and let F be the set of edges with fractional components. Let T = {v ∈ V : dF (v) is odd},

and let J be a minimum cost T -join of (G, T, c). Note that F together with J is an even

subgraph of G. The output of Edges3 is x3, the vector obtained by adding J to xL.
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Figure 5.11: Win’s algorithm and algorithm Edges3 applied to an example.
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Theorem 5.13 Algorithm Edges3 is a tight 3
2
-approximation algorithm for Minimum

Edges Postman Tour, and it has no guarantee for Minimum Edges Postman Set.

Proof. Let G = (V,E) be a 2-edge-connected undirected graph, and let (G, b, c) be

an instance of Minimum Edges Postman Tour whose optimal solution x∗ has value

C∗ ≥ c(E). Since x∗ is feasible for LMEPT1(G, b, c), it follows that CL ≤ C∗. By

Lemma 5.9, c(J) ≤ 1
2
c(E). Hence, the cost C3 of x3 satisfies

C3 = CL + c(J) ≤ C∗ + 1
2
c(E) ≤ 3

2
C∗. (5.64)

For each ε > 0, consider the undirected graph shown in Figure 5.12 consisting of a circuit

of length four (v1, e1, v2, e2, v3, e3, v4, e4, v1) and a diagonal e5 = v1v3, with c1 = ε, c2 = 1,

c3 = ε, c4 = 1, c5 = 0, b1 = 0, b2 = +1, b3 = −2, b4 = +1. An application of Edges3 to this

instance gives xL
1+ = 1, xL

1− = 0, xL
2+ = xL

2− = 1
2
, xL

3+ = xL
3− = 1

2
, xL

4+ = 0, xL
4− = 1, xL

5+ = 0,

xL
5− = 2, F = {e2, e3}, T = {v2, v4}, J = F , with cost C3 = (2 + 2ε) + (1 + ε) = 3 + 3ε.

However, an optimal solution to this instance has x∗1+ = x∗1− = 1, x∗2+ = 0, x∗2− = 1,

x∗3+ = x∗3− = 1, x∗4+ = 0, x∗4− = 1, x∗5+ = 0, xL
5− = 1, with cost C∗ = 2 + 4ε. Hence

limε→0
C3

C∗ = 3
2
. Observe that an optimal edges postman set has cost 2ε, while Edges3

outputs an edges postman set of cost 1 + ε. Hence limε→0
C3−c(E)
C∗−c(E)

→ +∞. ¥

5.6.4 A 4
3
-Approximation Algorithm

The previous three approximation algorithms have the common feature that first they

satisfy the demands at the vertices, and then they correct for those edges that were left

unused or used fractionally by adding a certain T -join. The fourth approximation algorithm

that we describe (called Edges4) performs these two steps in the reverse order.

Let T = {v ∈ V : bv + d(v) is odd}. The key observation is that any edges postman set

of (G, b) must contain a T -join. Let J be a minimum cost T -join of (G, T, c). The output of

Edges4 is x4, an extreme point optimal solution with cost C4 of the linear programming

relaxation LMEPT1(G, l, b, c) of Minimum Edges Postman Tour, with lower bounds

le = 2 if e ∈ J , and le = 1 otherwise. Since bv + l(δ(v)) is even for all v ∈ V , it follows that

x4 is an integral vector, and hence an edges postman tour of (G, b).
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On the top of Figure 5.13 we indicate with bold edges the set J . On the bottom, we

indicate with arrows the edges postman tour x4 found by Edges4, with cost 28.

Theorem 5.14 Algorithm Edges4 is a tight 4
3
-approximation algorithm for Minimum

Edges Postman Tour, and also a tight 2-approximation algorithm for Minimum Edges

Postman Set.

Proof. Let G = (V,E) be a 2-edge-connected undirected graph, and let (G, b, c) be an

instance of Minimum Edges Postman Tour whose optimal solution x∗ has value C∗. In

order to satisfy the parity constraints at the vertices, any edges postman set of (G, b) must

contain a T -join of (G, T ), and hence C∗ ≥ c(E) + c(J). By Lemma 5.9, c(J) ≤ 1
2
c(E),

and hence C∗ ≥ 3c(J). We can obtain a feasible solution to LMEPT1(G, l, b, c) by adding
1
2
to each component of x∗ corresponding with an edge in J . Hence

C4 ≤ C∗ + c(J) ≤ 4
3
C∗ (5.65)

and

C4 − c(E) ≤ C∗ − c(E) + c(J) ≤ 2(C∗ − c(E)). (5.66)

For each ε > 0, consider the instance in Figure 5.14, consisting of an undirected circuit

of length four (v1, e1, v2, e2, v3, e3, v4, e4, v1), with c1 = 4 − 2ε, c2 = 1, c3 = 2 − ε, c4 = 1,

b1 = +1, b2 = −1, b3 = +4, b4 = −4. An application of Edges4 to this instance gives

T = {v1, v2}, J = {e1}, x
4
1+ = x41− = 1, x42+ = 1, x42− = 0, x43+ = 0, x43− = 3, x44+ = 1,

x44− = 0, with cost C4 = 16−7ε. However, an optimal solution to this instance has x∗1+ = 1,

x∗1− = 0, x∗2+ = 2, x∗2− = 0, x∗3+ = 0, x∗3− = 2, x∗4+ = 2, x∗4− = 0, with cost C∗ = 12 − 4ε.

Hence limε→0
C4

C∗ = 4
3
, and limε→0

C4−c(E)
C∗−c(E)

= limε→0
8−4ε
4−ε

= 2. ¥

We observe that none of the four algorithms we described outputs a solution with cost

less than 16 − 7ε for the instance in Figure 5.14. Hence, it is not possible to obtain an

approximation algorithm for Minimum Edges Postman Tour with guarantee less than
4
3
by just running the four algorithms with the same input and choosing the best output.

A problem that remains open is whether there exists an approximation algorithm (or

even a polynomial-time algorithm to decide feasibility) for Minimum Bounded Edges

Postman Tour, other than for the case l < u (Theorems 3.14 and 3.15).
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Chapter 6

The Arcs Postman Problem

Language is a process of free creation; its laws and principles are fixed, but the

manner in which the principles of generation are used is free and infinitely varied.

Even the interpretation and use of words involves a process of free creation.

Language and Freedom, Noam Chomsky

We study another NP-hard special case of Minimum Restricted Mixed Postman

Tour, called Minimum Arcs Postman Tour, as well as its feasibility version, called

Arcs Postman Tour. The complexity of the latter was open, but we prove it is NP-

complete. In the rest of the chapter we study a large class of necessary conditions for

feasibility, and we investigate some special cases of Minimum Arcs Postman Tour

that can be solved in polynomial time.

6.1 Introduction

The second special case of Minimum Restricted Mixed Postman Tour that we study

is when the restricted set of the input mixed graph M = (V,E,A) coincides with its edge

set. We say that a postman tour of M is an arcs postman tour if it uses each edge of M

exactly once. In Figure 6.1 we show a mixed graph and one of its arcs postman tours:

(u, e, v, b, w, c, x, d, z, g, v, b, c, x, d, z, i, a, u, f, w, c, x, h, y, a, u). (6.1)

117
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Figure 6.1: A mixed graph and an arcs postman tour.

Note that in this tour, edge e has been oriented from u to v to obtain the arc ~e. In

order to avoid confusion with the original arcs, or the original edges, we draw these oriented

edges as dashed and hollow arrows. Now we define the two problems that we study in this

chapter. Note that since edges cannot be replicated, we do not assign them a cost in the

minimization version of the problem.

Problem: Arcs Postman Tour.

Input: A mixed graph M = (V,E,A).

Output: Does M have an arcs postman tour?

Problem: Minimum Arcs Postman Tour.

Input: A strongly connected mixed graph M = (V,E,A), and a vector c ∈ QA
+.

Output: The minimum cost MAPT(M, c) of an arcs postman tour of M .
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6.2 Computational Complexity

As Veerasamy pointed out [85], Papadimitriou’s original proof [70] of NP-completeness

of the decision version of Minimum Mixed Postman Tour does not need to duplicate

edges, that is, Minimum Arcs Postman Tour is NP-hard even with unit costs. We

prove some stronger negative results.

Theorem 6.1 Arcs Postman Tour is NP-complete.

Proof. We are going to reduce Not All Equal Satisfiability (which is NP-

complete by Theorem 1.5) to Arcs Postman Tour. Let I be an instance of Not All

Equal Satisfiability with n ∈ N variables x1, . . . xn and m ∈ N clauses C1, . . . , Cm,

where each clause Ci contains exactly three literals z1i , z
2
i , z

3
i , each of which is either a

positive variable (say xj) or a negative variable (say ¬xj). For each variable xj, let pj be

the number of times it appears as a literal in its positive form, let nj be the number of

times it appears as a literal in its negative form, and let qj = max{pj, nj}.

For each variable xj, we construct a subgraph Gj consisting of a directed cycle with

2qj vertices vj1, . . . , v
j
2qj

, and 2qj edges joining new vertices uj
1, . . . , u

j
2qj

to vj1, . . . , v
j
2qj

. See

Figure 6.2 for an example with qj = 4. Assume the dotted arcs can be used either once or

twice. Observe that any arcs postman tour must traverse Gj in one of the following ways:

1. The edges are oriented from uj
i to vji if i is odd, and from vj

i to uj
i if i is even. The

arcs (vji , v
j
i+1) are used twice if i is odd, and once if i is even.

2. The edges are oriented from uj
i to vji if i is even, and from vj

i to uj
i if i is odd. The

arcs (vji , v
j
i+1) are used twice if i is even, and once if i is odd.

To complete the construction, replace each dotted arc in the directed cycle with a copy of

the subgraph on the right of Figure 6.2, which has the property that it must be traversed

either once or twice from w to z, according to whether arc c is duplicated or not. We

associate an edge that goes from uj
i to vji with a true assignment, and an edge that goes

from vji to uj
i with a false assignment. We also associate the edges joining uj

i to vji with

positive literals if i is odd, and with negative literals if i is even.
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For each clause Ci, we construct a subgraph Hi consisting of a vertex si and four edges

joining it to vertices y1i , y
2
i , y

3
i , and t, as in Figure 6.3. Note that in any arcs postman tour,

two of these edges must enter si and the other two must leave si. In particular, in any arcs

postman tour, either one or two of the edges joining si to y
1
i , y

2
i and y3i must leave si.

Let M be the mixed graph consisting of the subgraphs G1, . . . , Gn and the subgraphs

H1, . . . , Hm where, for each 1 ≤ i ≤ m and each 1 ≤ k ≤ 3, if zki is a literal of variable

xj, vertex y
k
i has been identified with one of the vertices uj

l with l odd if zki is a positive

literal, and l even otherwise. For each 1 ≤ i ≤ m and each 1 ≤ k ≤ 3, if yk
i has not been

identified yet, we identify it with the common vertex t. See Figure 6.4.

We claim that M has an arcs postman tour if and only if I is a yes instance of Not

All Equal Satisfiability. By the properties of the Gj and the Hi, if M has an arcs

postman tour, then there is an assignment of the variables for which every clause contains

either one or two true literals and, conversely, if there is such an assignment, then we

can orient all edges in M and duplicate some of its arcs to obtain an arcs postman tour.

Finally, we observe that M has size polynomial in the size of I. ¥

A consequence of our result is the promised strengthening of Theorem 3.5 about the

inapproximability of Minimum Mixed Postman Set.

Theorem 6.2 For any function α : N → R (on the size of the input), there is no α-

approximation algorithm for Minimum Mixed Postman Set, unless P = NP.

Proof. Assume that, for some function α : N → R, there exists an α-approximation

algorithm A for Minimum Mixed Postman Set. Let M = (V,E,A) be a strongly

connected mixed graph, and define a vector c ∈ QE∪A
+ as ce = 1 for all e ∈ E, and ca = 0

for all a ∈ A. Let z = A(M, c), and let z∗ = MMPSP(M, c). If M has an arcs postman

tour, then M has a postman set with cost 0, and hence 0 ≤ z ≤ α(M, c)z∗ = 0, that is,

z = 0. If M does not have an arcs postman tour, then z ≥ z∗ ≥ 1. Therefore, M has an

arcs postman tour if and only if z = 0, and we can decide this in polynomial time. This is

a contradiction, unless P = NP . ¥
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6.2.1 Planar Case

In the problems studied in previous chapters, it was possible to modify the proof of NP-

completeness to show that the respective problem remainedNP-complete even if restricted

to planar mixed graphs, using that Planar 3-Satisfiability and Planar 1-in-3 Sat-

isfiability are NP-complete (Theorems 1.3 and 1.6, respectively). However, Planar

Not All Equal Satisfiability is solvable in polynomial time, and hence this strategy

does not work for Arcs Postman Tour. Nevertheless, we can prove that Arcs Post-

man Tour remains NP-complete even if restricted to planar mixed graphs, by removing

the non-planarity from the construction in the proof of Theorem 6.1.

Theorem 6.3 Arcs Postman Tour is NP-complete, even if the input mixed graph M

is restricted to be planar.

Proof. Consider the reduction given in the proof of Theorem 6.1. It is enough to

show that it is possible to obtain in polynomial time a plane mixed graph M ′ with the

property that M has an arcs postman tour if and only if M ′ does. Draw the mixed graph

M on the plane in such a way that the only crossings involve pairs of edges leaving variable
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subgraphs, and any such pair crosses at most once. The resulting drawing may contain

many crosses, but not more than 1
2
(
∑n

i=1 2qj)
2 ≤ 18m2. Replace each crossing by the

uncrossing subgraph in Figure 6.5 to obtain a plane mixed graph M ′ as in Figure 6.6.

Recall that the dotted arcs can be used either once or twice, and that the subgraph they

represent is in Figure 6.2. This procedure can be done in polynomial time.

We claim that in any arcs postman tour of M ′, the edges uu′ and vv′ are traversed in

the same direction (both up or both down), and the edges xx′ and yy′ are traversed in the

same direction (both left or both right). Hence they replicate the behaviour of the two

crossing edges uv and xy. Since the degree of u′ is even, both arcs (x′, u′) and (u′, y′) must

be used the same number of times, and similarly for arcs (y′, v′) and (v′, x′). Also, since the

degree of x′ is odd, the arcs (v′, x′) and (x′, u′) must be used a different number of times,

and similarly for arcs (u′, y′) and (y′, v′). From this, it is easy to see that if xx′ is oriented

to the right, then the two arcs (x′, u′) and (u′, y′) must be used twice, the two arcs (y′, v′)

and (v′, x′) must be used once, edge yy′ is oriented to the right, and the three edges uu′,

u′v′, and vv′ are traversed in the same direction (all up or all down). Conversely, if xx′ is

oriented to the left, then the two arcs (x′, u′) and (u′, y′) must be used once, the two arcs

(y′, v′) and (v′, x′) must be used twice, edge yy′ is oriented to the left, and the three edges

uu′, u′v′, and vv′ are traversed in the same direction (all up or all down).

It follows that M ′ has the desired properties. ¥

We observe that, if we assign a unit cost to each arc of M ′, then all arcs postman tours

of M ′ have the same cost. Hence all of them are optimal.

Corollary 6.4 The decision version of Minimum Arcs Postman Tour with unit costs

is NP-complete, even if the input mixed graph M is restricted to be planar.

6.3 Necessary Conditions

In this section we study some necessary conditions that a mixed graph must satisfy in order

to have an arcs postman tour. Note that since Arcs Postman Tour is NP-complete, we

cannot expect to obtain a complete (and short) list of necessary and sufficient conditions.

Let M = (V,E,A) be a mixed graph, and let I ⊆ E. If we assign some direction to the
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edges in I we obtain a partial orientation N ofM , which we denote as N = (V, I, E \I, A).

Since the edges in I have been assigned a direction, we call them oriented edges. Sometimes,

this direction is forced by some condition, and hence we also call them implied edges. An

arcs postman tour of N is an arcs postman tour of M where the edges in I have been

traversed in the direction indicated by I.

6.3.1 Miscellaneous Conditions

We describe some necessary conditions for feasibility due to Veerasamy [85]. First, ifM has

an arcs postman tour then M must be strongly connected. We can obtain other necessary

conditions as follows: Let S ⊆ V . We say that an arc or edge e crosses the cut induced by

S if e has one end in S and the other end in S̄, that is, if e ∈ δM(S). We say that an arc

a leaves S if a ∈ δA(S), and that it enters S if a ∈ δA(S̄). We say that S is outgoing if no

arc enters S, and that it is undirected if no arc crosses the cut induced by S.

Theorem 6.5 (Veerasamy) If a mixed graph M = (V,E,A) has an arcs postman tour

then it must be connected and satisfy the following two conditions:

dE(S) ≥ dA(S) for all outgoing S ⊆ V, and (6.2)

dE(S) is even for all undirected S ⊆ V. (6.3)

Proof. If M is not connected, it does not have a tour. Now assume that M has an

arcs postman tour T . Let S ⊆ V be an outgoing set. Note that T must leave S at least

dA(S) times, but it can only enter S at most dE(S) times. Hence dE(S) ≥ dA(S). Let

S ⊆ V be an undirected set. Since T must leave S the same number of times as it enters

S, and since these two numbers add up to dE(S), it follows that dE(S) must be even. We

note that condition (6.2) and M being connected imply that M is strongly connected. ¥

Lemma 6.6 Conditions (6.2) and (6.3) can be tested in polynomial time.

Proof. LetM = (V,E,A) be a mixed graph, and letM ∗ = (V,E∪A) be any orientation

of M . To test condition (6.2), define vectors l, u ∈ ZE∪A as le = −1 and ue = 1 for all
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e ∈ E, and la = 1 and ua = +∞ for all a ∈ A. Note that the incidence vector of any arcs

postman tour of M is an integral circulation of (M ∗, l, u). By Theorems 2.11 and 2.12,

(M∗, l, u) has a circulation x ∈ ZE∪A if and only if u(δ∗(S̄)) ≥ l(δ∗(S)) for all S ⊆ V , and

this can be decided in polynomial time. If S is not outgoing, then u(δ∗(S̄)) = +∞, and the

condition holds. If S is outgoing, then u(δ∗(S̄)) = d∗E(S̄) and l(δ∗(S)) = d∗A(S) − d∗E(S),

and the condition is d∗E(S) + d∗E(S̄) ≥ d∗A(S), that is, dE(S) ≥ dA(S). To test condition

(6.3), observe that arcs do not belong to any undirected cut, and hence, the mixed graph

M ′ obtained from contracting all arcs in M has the same set of undirected cuts. Note that

all cuts of M ′ have even cardinality if and only if all its vertices have even degree, and that

this can be tested in linear time. ¥

We note that conditions (6.2) and (6.3) are independent: K2 satisfies (6.2) but not

(6.3), and an orientation of K2 satisfies (6.3) but not (6.2). Furthermore, these conditions

are not sufficient: In Figure 6.7, we show a connected mixed graph that satisfies both

conditions (6.2) and (6.3), but does not have an arcs postman tour.

We call (6.2) the outgoing-set condition, and (6.3) the even-cut condition. We can

generalize these conditions to partial orientations. Let N = (V, I, E,A) be a partial ori-

entation of a mixed graph. For S ⊆ V , let δI(S) ⊆ I be the set of edges oriented from

a vertex in S to a vertex in S̄, and denote by dI(S) its cardinality. We say that e ∈ I

crosses the cut induced by S if e ∈ δI(S) ∪ δI(S̄), that it leaves S if e ∈ δI(S), and that it
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enters S if e ∈ δI(S̄). Let δN(S) = δA(S) ∪ δA(S̄) ∪ δE(S) ∪ δI(S) ∪ δI(S̄) and let dN(S)

be its cardinality. Observe that orienting an edge does not change the set of outgoing or

even subsets of V . The proof of the following is very similar to that of Theorem 6.5 and

Lemma 6.6, and hence it is omitted.

Corollary 6.7 If a partial orientation N = (V, I, E,A) of a mixed graph has an arcs

postman tour then it must be connected and satisfy the following two conditions:

dE(S) + dI(S̄) ≥ dA(S) + dI(S) for all outgoing S ⊆ V, and (6.4)

dE(S) + dI(S) + dI(S̄) is even for all undirected S ⊆ V. (6.5)

Furthermore, (6.4) and (6.5) can be tested in polynomial time.

We call (6.4) the (generalized) outgoing-set condition, and (6.5) the (generalized) even-

cut condition. Again, these conditions are independent, and not sufficient for feasibility.

Let M = (V,E,A) be a mixed graph. We say that S ⊆ V has the parity of dM(S).

For every outgoing S ⊆ V define surM(S) = dE(S) − dA(S) to be the surplus of S. Note

that condition (6.2) can be rewritten as surM(S) ≥ 0 for all outgoing S ⊆ V . Also note

that an outgoing set has the same parity as its surplus. Similarly, let N = (V, I, E,A) be

a partial orientation of a mixed graph. We say that S ⊆ V has the parity of dN(S). For

every outgoing S ⊆ V define surN(S) = dE(S) + dI(S̄)− dA(S)− dI(S) to be the surplus

of S. Now, condition (6.4) can be rewritten as surN(S) ≥ 0 for all outgoing S ⊆ V . If

S, T ⊆ V are outgoing, a straightforward calculation shows that

surN(S) + surN(T ) = surN(S ∪ T ) + surN(S ∩ T ) + 2|E(S \ T, T \ S)|. (6.6)

6.3.2 Two Outgoing Sets

Let N = (V, I, ∅, A) be a partial orientation of the mixed graph M = (V,E,A) in which

all edges have been oriented in such a way that N has an arcs postman tour. Let S ⊆ V

be outgoing. Using the generalized outgoing-set condition (6.4) we obtain

dI(S̄) ≥ dA(S) + dI(S). (6.7)
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Adding dI(S) to both sides, we obtain

dE(S) = dI(S) + dI(S̄) ≥ dA(S) + 2dI(S). (6.8)

Solving for dI(S) we conclude that

dI(S) ≤ b
1
2
(dE(S)− dA(S))c = b

1
2
surM(S)c. (6.9)

Similarly, if T ⊆ V is also outgoing, we obtain

dI(T ) ≤ b
1
2
surM(T )c. (6.10)

Adding these two inequalities we get

dI(S) + dI(T ) ≤ b
1
2
surM(S)c+ b1

2
surM(T )c. (6.11)

Now note that the left-hand side is the number of oriented edges that leave S and T (an

oriented edge is counted twice if it leaves both sets). We can obtain a lower bound for this

number by observing that oriented edges with one end in S \ T and the other end in T \S

must leave exactly one of S and T . Hence, we have proved the following:

Theorem 6.8 Let M = (V,E,A) be a mixed graph with an arcs postman tour, and let

S, T ⊆ V be two outgoing sets. Then

|E(S \ T, T \ S)| ≤ b 1
2
surM(S)c+ b1

2
surM(T )c. (6.12)

We call (6.12) the 2-outgoing-sets condition. We show that this condition is a common

generalization of the outgoing-set condition and the even-cut condition.

Theorem 6.9 Let M = (V,E,A) be a mixed graph that satisfies the 2-outgoing-sets con-

dition. Then M satisfies the outgoing-set and the even-cut conditions.

Proof. Let S ⊆ V be an outgoing set. Then, by (6.12):

0 = |E(S \ S, S \ S)| ≤ b 1
2
surM(S)c+ b1

2
surM(S)c = 2b1

2
surM(S)c, (6.13)
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that is, surM(S) ≥ 0, the outgoing-set condition. Now, let S ⊆ V be an undirected set.

Then both S and S̄ are outgoing, and by (6.12):

dE(S) = |E(S \ S̄, S̄ \ S)| ≤ b1
2
surM(S)c+ b1

2
surM(S̄)c = 2b1

2
dE(S)c, (6.14)

which can only happen if dE(S) is even, the even-cut condition. ¥

In fact, condition (6.12) is stronger than conditions (6.2) and (6.3): Take S = {u, v}

and T = {u,w} in the mixed graph of Figure 6.7 to obtain the contradiction 1 ≤ 0.

Just as before, we can generalize these results to partial orientations of mixed graphs.

Corollary 6.10 Let N = (V, I, E,A) be a partial orientation of a mixed graph with an

arcs postman tour, and let S, T ⊆ V be two outgoing sets. Then

|E(S \ T, T \ S)| ≤ b 1
2
surN(S)c+ b

1
2
surN(T )c. (6.15)

We call (6.15) the (generalized) 2-outgoing-sets condition.

Corollary 6.11 Let N = (V, I, E,A) be a partial orientation of a mixed graph that satisfies

the generalized 2-outgoing-sets condition. Then N satisfies the generalized outgoing-set

condition and the generalized even-cut condition.

6.3.3 Testing the 2-Outgoing-Sets Condition

Now we describe how to verify in polynomial time whether the generalized 2-outgoing-sets

condition holds. We say that a pair (S, T ) of outgoing sets S, T ⊆ V is tight for the mixed

graph M if (6.12) holds with equality. We say that an outgoing set S ⊆ V is tight for M

if (S, S) is tight for M . Equivalently, S is tight for M if b 1
2
surM(S)c = 0. Note that if S

is a tight even set then surM(S) = 0, and that if S is a tight odd set then surM(S) = 1. If

v ∈ V , we say that v is tight for M if {v} is tight for M , and we say that v̄ is tight for M if

V \ v is tight for M . Similarly, we say that a pair (S, T ) of outgoing sets S, T ⊆ V is tight

for the partial orientation N if (6.15) holds with equality, and we say that an outgoing set

S ⊆ V is tight for N if b 1
2
surN(S)c = 0. If v ∈ V , we say that v is tight for N if {v} is

tight for N , and we say that v̄ is tight for N if V \ v is tight for N .

The following two lemmas, which we state without proof, describe operations involving

tight even sets that preserve feasibility.
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Lemma 6.12 Assume that S ⊆ V is a tight even set of N such that both N [S] and N [S̄]

are connected. Let N1 and N2 be the partial orientations obtained from N by contracting

all edges and arcs in N [S̄] and N [S], respectively. Then N has an arcs postman tour if

and only if both N1 and N2 have arcs postman tours.

Lemma 6.13 Assume that S ⊆ V is a tight even set of N . Let a ∈ δA(S) ∪ δI(S), let

e ∈ δE(S) ∪ δI(S̄), and let N ′ = (V, I ∪ i, E \ e, A \ a) be the partial orientation obtained

from N by deleting a and e, and adding an edge i oriented from the tail of a to the end of

e in S. Then N has an arcs postman tour if and only if each component of N ′ does.

We say that N is simplified if, for all sets S satisfying the conditions of Lemma 6.12,

either |S| ≤ 1 or |S̄| ≤ 1. Note that, in this case, at least one of N1 and N2 is equal to N .

Theorem 6.14 There exists a polynomial-time algorithm that, with input a partial orien-

tation N = (V, I, E,A) of a connected mixed graph, outputs correctly either that N has no

arcs postman tour, or a list of simplified partial orientations N1, . . . , Nk, each of them sat-

isfying the generalized 2-outgoing-sets condition (6.15), such that N has an arcs postman

tour if and only if all of N1, . . . , Nk do, and
∑k

i=1 size(Ni) ≤ size(N).

Proof. By Corollary 6.7, we can decide in polynomial time whether N satisfies con-

dition (6.4) or not, and hence we can assume that it does. For outgoing sets S, T ⊆ V ,

condition (6.15) is equivalent to surN(S) + surN(T ) ≥ k + 2|E(S \ T, T \ S)|, where k = 0

if both S and T are even, k = 1 if S and T have different parity, and k = 2 if both S and

T are odd, which by (6.6) is equivalent to:

surN(S ∪ T ) + surN(S ∩ T ) ≥ k. (6.16)

Since N satisfies condition (6.4), this inequality holds if both S and T are even (since

surN(S ∪ T ) ≥ 0 and surN(S ∩ T ) ≥ 0) and if S and T have different parity (since S ∪ T

and S ∩ T have different parities, one of surN(S ∪ T ) and surN(S ∩ T ) is at least 0, and

the other is at least 1). Furthermore, if both S and T are odd, then S ∪ T and S ∩ T have

the same parity, and if this parity is odd then surN(S ∪ T ) ≥ 1 and surN(S ∩ T ) ≥ 1.

Hence, we only need to be able to test in polynomial time whether (6.16) holds for odd

S and T such that S ∪ T and S ∩ T are even. Equivalently, we need to be able to test in
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polynomial time whether there exist odd outgoing sets S and T such that both S ∪ T and

S ∩ T are tight even sets, violating (6.16). We call such a pair (S, T ) a bad pair. Observe

that if (S, T ) is a bad pair then both S \ T and T \ S are odd.

Assume first that N is simplified. Let G = (V,A) be the underlying undirected graph

of D = (V,A), let R be the set of vertices of odd degree of N , and define a vector x ∈ ZA
+

by xa = 0 if a is incident with a vertex v such that v or v̄ is tight, and xa = 1 otherwise.

We claim that there exists a bad pair if and only if there exists U ⊆ V with |U ∩ R| odd

and x(δG(U)) = 0. Observe that we can decide the latter in polynomial time using the

algorithm in Theorem 2.9. Also note that |U ∩R| is odd if and only if U is odd. Suppose

first that (S, T ) is a bad pair. Since S∩T and S∪T are tight, then each v ∈ S∩T is tight,

and each v ∈ S ∪ T has v̄ tight. Let U = S \T . If e ∈ δG(U), then e must be incident with

at least one vertex in (S∩T )∪(S ∪ T ), which implies xe = 0. Therefore x(δG(U)) = 0, and

U satisfies the required properties. Now suppose that U ⊆ V is odd, with x(δG(U)) = 0.

Define the sets P = {v ∈ V : v is tight}, Q = {v ∈ V : v̄ is tight}, S = (U ∪ P ) \ Q, and

T = (Ū ∪ P ) \ Q. Since S and T have the same parity as U , they are both odd. Since

S ∩ T = P and S ∪ T = Q̄, they are both tight even. Hence (S, T ) is a bad pair.

If N is not simplified, we can decompose it recursively into simplified pieces as follows:

First we test whether there exists any proper S ⊂ V violating condition (6.4). If there is

any, stop and output that N does not have an arcs postman tour. Second we test whether

there exists any proper S ⊂ V such that δN(S) ⊆ I. Note that any such set must be tight.

We can do this in polynomial time by finding a minimum weight cut in the underlying

undirected graph N̄ of N with weights we = 1 if e ∈ E ∪ A, and we = 0 otherwise. If

there is a set S such that w(δ̄N(S)) = 0 then we pair arbitrarily the elements of δI(S) with

the elements of δI(S̄), and apply to each pair the reduction described in Lemma 6.13. We

continue recursively with the connected components obtained. This procedure stops in at

most |I| steps since, at each step, we reduce the number of implied edges by at least one.

We continue to test recursively each connected component N ′ = (V ′, I ′, E ′, A′) ob-

tained. As before, first we test whether there exists any proper S ⊂ V violating condition

(6.4). If there is any, stop and output that N does not have an arcs postman tour. Second

we test whether there exists any tight set S. Note that all such sets satisfy

|δ′N(S) ∩ (A′ ∪ E ′)| > 0. (6.17)
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We can do this in polynomial time modifying the feasible flow algorithm used in the proof

of Corollary 6.6. Let N ∗ = (V, I ′ ∪ E ′ ∪ A′) be any orientation of N such that each arc in

I ′ is oriented exactly as in N . Let ε = 1
|A′|+|E′|

, and define two vectors l, u ∈ ZA′∪E′∪I′ as

le = ue = 1 if e ∈ I ′, le = ε − 1 and ue = 1 − ε if e ∈ E ′, and le = 1 + ε and ue = +∞ if

e ∈ A. We claim that there exists an integral circulation l ≤ x ≤ u of (N ∗, l, u) if and only

if there is no tight S ⊂ V . First, if S ⊂ V is tight then (6.17) implies that:

0 < d′E(S) + d′A(S) (6.18)

0 < d∗E(S) + d∗E(S̄) + d∗A(S) (6.19)

−εd∗E(S̄) < εd∗E(S) + εd∗A(S) (6.20)

(1− ε)d∗E(S̄) + d∗I(S̄) < (ε− 1)d∗E(S) + d∗I(S) + (1 + ε)d∗A(S) (6.21)

u(δ∗N(S̄)) < l(δ∗N(S)). (6.22)

Conversely, if S ⊂ V satisfies condition (6.4) strictly then:

d′E(S) + d′I(S̄) ≥ d′A(S) + d′I(S) + 1 (6.23)

d∗E(S) + d∗E(S̄) + d∗I(S̄) ≥ d∗A(S) + d∗I(S) + 1 (6.24)

d∗E(S) + d∗E(S̄) + d∗I(S̄) ≥ d∗A(S) + d∗I(S) + ε(|A∗|+ |E∗|) (6.25)

(1− ε)d∗E(S̄) + d∗I(S̄) ≥ (ε− 1)d∗E(S) + d∗I(S) + (1 + ε)d∗A(S) (6.26)

u(δ∗N(S̄)) ≥ l(δ∗N(S)). (6.27)

If we find a tight set S, we pair arbitrarily the elements of δ ′A(S)∪δ
′
I(S) with the elements

of δ′E(S) ∪ δ
′
I(S̄), and apply to each pair the reduction described in Lemma 6.13. We

continue recursively with the connected components obtained. As before, this procedure

must stop in at most |A|+ |E|+ |I| steps. ¥

Corollary 6.15 There exists a polynomial-time algorithm that, with input a connected

mixed graph M , outputs correctly either that M has no arcs postman tour, or a list of sim-

plified partial orientations N1, . . . , Nk, each of them satisfying the generalized 2-outgoing-

sets condition (6.15), such that M has an arcs postman tour if and only if all of N1, . . . , Nk

do, and
∑k

i=1 size(Ni) ≤ size(M).
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6.3.4 Testing the 2-Outgoing-Sets Condition on Planar Graphs

We give a simpler polynomial algorithm to decide whether a partial orientation of a planar

mixed graph satisfies the generalized 2-outgoing-sets condition. We show first how to

perform the reduction described in Lemma 6.13 preserving planarity. Let S be a tight set

with N [S] and N [S̄] connected, and C be a curve enclosing S in a given planar embedding

of N , as in Figure 6.8. Label each a ∈ δA(S)∪ δI(S) with a +1, and each e ∈ δE(S)∪ δI(S̄)

with a −1. Since S is tight, all these labels add up to zero. Furthermore, there must be

two elements in δN(S) with distinct labels and consecutive along C. In Figure 6.8, we

show in bold edges some possible pairs. Observe that if we apply the reduction to these

two elements, we obtain a planar embedding for N ′.
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Figure 6.8: A region on the plane containing a tight set and a pairing.

Our algorithm for planar mixed graphs differs from our general algorithm in the way

it verifies the outgoing-set condition, and in the way it finds tight sets. One of these

procedures is based in the following result about cycles in a directed graph [60]:

Theorem 6.16 (Karp) Let D = (V,A) be a directed graph, and let l ∈ ZA be a vector

of lengths. For each simple directed cycle C = (W,B) of D with at least one arc, let

m(C) = 1
|B|
l(B) be its mean length. There exists a polynomial-time algorithm to find a

simple directed cycle C∗ of D with at least one arc, and minimum mean length.
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Let N = (V, I, E,A) be a partial orientation of a connected plane mixed graph. The

dual of N is a partial orientation N ∗ of a connected plane mixed graph constructed as

follows: Let G = (V,A ∪ E ∪ I) be the underlying undirected plane graph of N , let F be

its set of faces, and let G∗ = (F,A ∪ E ∪ I) be its dual. To obtain N ∗ from G∗, replace

each edge a ∈ A in G∗ by an arc a in N ∗ oriented from the face to the right of a in N to

the face to the left of a in N . Similarly, replace each edge i ∈ I in G∗ by an implied edge

i in N ∗ oriented from the face to the right of i in N to the face to the left of i in N . See

Figure 6.9 for an example where the vertices of N are dots (•) and the vertices of N ∗ are

squares (¥). An interesting property of duals of partial orientations constructed in this

way is that if S is an outgoing set in N , then the cut δN(S) is the disjoint union of some

cycles in N ∗, where implied edges may be traversed in either direction.

Theorem 6.17 There exists a polynomial-time algorithm that, with input a partial ori-

entation N = (V, I, E,A) of a connected planar mixed graph, outputs correctly either that

N has no arcs postman tour, or a list of simplified planar partial orientations N1, . . . , Nk,

each of them satisfying the generalized 2-outgoing-sets condition (6.15), such that N has

an arcs postman tour if and only if all of N1, . . . , Nk do, and
∑k

i=1 size(Ni) ≤ size(N).

Proof. Let N ∗ = (F, I, E,A) be the dual of N , and let D∗ = (F,A ∪ ~E ∪ ~I) be the

associated directed graph of N ∗, where ~E = {e+, e− : e ∈ E}, ~I = {i+, i− : i ∈ I}, and

i+ is oriented as i. Define a vector w of weights in the arcs of D∗ as wa = −1 if a ∈ A,

we+ = we− = 1 if e ∈ E, and wi+ = −1, wi− = 1 if i ∈ I. See Figure 6.10 for an

example. Observe that D∗ has a cycle of negative weight if and only if N fails condition

(6.4). Hence, we can replace the use of the feasible flow algorithm at the beginning of the

proof of Theorem 6.14 by the minimum mean length algorithm of Theorem 6.16.

Assume that N satisfies condition (6.4). In order to simplify N , we need to be able

to detect cycles of length zero in N ∗. A straightforward application of Theorem 6.16 fails

due to the cycles corresponding with implied edges. Since Karp’s algorithm uses dynamic

programming, it is possible to modify it in order to consider only cycles with at least three

arcs. Alternatively, since N has no cycles of negative length, we can use a shortest path

algorithm (such as the ones in [20, 37, 88]) as follows: For each e ∈ A∪E ∪ I, we delete its

corresponding arcs from N ∗, compute shortest paths between its ends (in both directions),
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Figure 6.9: A partial orientation and its dual.
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Figure 6.10: The associated directed graph of the dual.
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and verify whether any of the deleted arcs forms a cycle of length zero together with one

of the computed shortest paths. Any such cycle of length zero separates the vertex set of

N into parts S and S̄, at least one of them being outgoing and tight. Pair the elements

of δN(S), as described above in order to preserve planarity, and apply to each pair the

reduction described in Lemma 6.13. Continue recursively with the connected components

obtained. This procedure must stop in at most |V | steps because, at every step, we increase

the number of connected components without increasing the number of vertices. Once we

have simplified N , we apply the procedure described in the proof of Theorem 6.14. ¥

Corollary 6.18 There exists a polynomial-time algorithm that, with input a connected

planar mixed graph M , outputs correctly either that M has no arcs postman tour, or a list

of simplified planar partial orientations N1, . . . , Nk, each of them satisfying the generalized

2-outgoing-sets condition (6.15), such that M has an arcs postman tour if and only if all

of N1, . . . , Nk do, and
∑k

i=1 size(Ni) ≤ size(M).

6.3.5 Many Outgoing Sets

Since Arcs Postman Tour is NP-complete, and the 2-outgoing-sets condition can be

tested in polynomial time, we cannot expect that these conditions are also sufficient for a

mixed graph to have an arcs postman tour. In fact, we show in Figure 6.11 an example

of a planar mixed graph that satisfies the 2-outgoing-sets condition, but does not have an

arcs postman tour. With this in mind, we have two different options: We can try to find a

class of mixed graphs for which the 2-outgoing-sets condition is sufficient, or we can try to

find other necessary conditions for having arcs postman tours. Here we address the second

option, while later in this chapter we address the first option.

We introduce a generalization of the 2-outgoing-sets condition. For each k ∈ N, define

the Sperner graph of order k to be the undirected graph SPk = (Vk, Ek), with vertex set

Vk = 2[k], and edge set Ek = {{X,Y }|X,Y ∈ Vk, X 6⊆ Y , Y 6⊆ X}. The name Sperner

reflects that every clique of SPk defines a Sperner system on [k] and, conversely, every

Sperner system on [k] defines a clique of SPk. We show the Sperner graphs of orders 2

and 3 in Figure 6.12. Let M = (V,E,A) be a mixed graph, and let N = (V, I, ∅, A) be a
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partial orientation of M in which all edges have been oriented in such a way that N has

an arcs postman tour. Let S = {S1, . . . , Sk} be a family of k outgoing subsets of V . For

each X ⊆ [k], we define the vertex sets

SX =
⋂

i∈X

Si

⋂

i/∈X

S̄i, (6.28)

and we define the edge set

ES
k =

⋃

{X,Y }∈Ek

E(SX , SY ). (6.29)

As in the proof of Theorem 6.8, for each 1 ≤ i ≤ k we have that

dI(Si) ≤ b
1
2
surM(Si)c, (6.30)

and adding all these inequalities, we obtain

k
∑

i=1

dI(Si) ≤
k
∑

i=1

b1
2
surM(Si)c, (6.31)

an upper bound for the number of edges that leave some Si. To obtain a lower bound for

this quantity, observe that if e ∈ E(SX , SY ) (with e = {u, v}) for some {X,Y } ∈ Ek, then

there exist i ∈ X \ Y and j ∈ Y \X, such that u ∈ Si ∩ S̄j and v ∈ Sj ∩ S̄i and, since e

has to leave either Si or Sj, e will be counted at least once by the left-hand side of (6.31).

Hence we have proved the following:

Theorem 6.19 Let M = (V,E,A) be a mixed graph with an arcs postman tour, and let

S = {S1, . . . , Sk} be a family of k outgoing subsets. Then

|ES
k | ≤

k
∑

i=1

b1
2
surM(Si)c. (6.32)

We call (6.32) the k-outgoing-sets condition. Note that setting k = 1 or k = 2 in

(6.32), we obtain the outgoing-set condition or the 2-outgoing-sets condition, respectively.

Furthermore, (6.32) is strictly stronger than they are: Our example of Figure 6.11 does not

satisfy the 3-outgoing-sets condition, as shown by the family S consisting of the three sets

S1 = {v}, S2 = {u,w}, and S3 = {u, v, x}, for which b 1
2
surM(S1)c = 0, b1

2
surM(S2)c = 1,

b1
2
surM(S3)c = 0, ES

3 = {uv, wx}, and hence |ES
3 | = 2 > 1 =

∑3
i=1b

1
2
surM(Si)c.

As is usual by now, we can easily obtain the following consequence of Theorem 6.19:
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Corollary 6.20 Let N = (V, I, E,A) be a partial orientation of a mixed graph with an

arcs postman tour, and let S = {S1, . . . , Sk} be a family of k outgoing subsets. Then

|ES
k | ≤

k
∑

i=1

b1
2
surN(Si)c. (6.33)

We can obtain a strengthening of Theorem 6.19 as follows: When we obtained a lower

bound for the left-hand side of (6.31), we used only the fact that e must leave at least one

outgoing set. However, if both X \ Y and Y \ X contain more than one element (which

can only happen if k ≥ 4) this bound can be improved, since e must leave at least |X \ Y |

sets in S if oriented from u to v, and at least |Y \ X| sets in S if oriented from v to u.

Using the same notation as before, for every e ∈ E we define the coefficients:

mS(e) = min{|X \ Y |, |Y \X|} and m+
S (e) = max{|X \ Y |, |Y \X|}. (6.34)

Theorem 6.21 Let M = (V,E,A) be a mixed graph with an arcs postman tour, and let

S = {S1, . . . , Sk} be a family of k outgoing subsets. Then

∑

e∈E

mS(e) ≤
k
∑

i=1

b1
2
surM(Si)c. (6.35)

Corollary 6.22 Let N = (V, I, E,A) be a partial orientation of a mixed graph with an

arcs postman tour, and let S = {S1, . . . , Sk} be a family of k outgoing subsets. Then

∑

e∈E

mS(e) ≤
k
∑

i=1

b1
2
surN(Si)c. (6.36)

We call (6.35) the strong k-outgoing-sets condition. We believe that (6.35), and possibly

(6.32) as well, together with connectivity, form a set of sufficient conditions for having an

arcs postman tour. Furthermore, it is likely that we need to consider only a finite number

of outgoing sets depending on the size of M . To be more precise:

Conjecture 6.23 There exists a function f : N → N for which the following statement is

true: A connected mixed graph M = (V,E,A) has an arcs postman tour if and only if it

satisfies the k-outgoing-sets condition for all 1 ≤ k ≤ f(|V |).
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Conjecture 6.24 A connected mixed graph has an arcs postman tour if and only if it

satisfies the k-outgoing-sets condition for all k ∈ N.

Conjecture 6.25 A connected mixed graph has an arcs postman tour if and only if it

satisfies the strong k-outgoing-sets condition for all k ∈ N.

Observe that Conjecture 6.23 implies Conjecture 6.24, which in turn implies Conjec-

ture 6.25. Since we can test in polynomial time the k-outgoing-sets condition for k ≤ 2,

we may ask whether there exists, for each constant parameter k ∈ N, a polynomial-time

algorithm that tests the k′-outgoing-sets condition for all k′ ≤ k. We may also ask whether,

for each constant parameter k ∈ N, there exists an interesting class Mk of mixed graphs

such that M ∈Mk has an arcs postman tour if and only if M satisfies the k′-outgoing-sets

condition for all k′ ≤ k. We exhibit a family of examples demonstrating simultaneously

that the function f in the statement of Conjecture 6.23 is at least linear in |V |, and that

there is no k ∈ N for which the class of series-parallel mixed graphs is a subset of Mk.

Let n ∈ N, and let Mn = (Vn, En ∪ Fn, An) be the series-parallel mixed graph with

vertex set Vn = {vi : 0 ≤ i ≤ 2n}, arc set An = {a2i+1 = (v2i+1, v2i), a2i+2 = (v2i+1, v2i+2) :

0 ≤ i ≤ n − 1}, and edge set consisting of En = {ei = {vi, vi+2} : 0 ≤ i ≤ n − 2}, and

Fn = {fi : 1 ≤ i ≤ 2n − 2}, where f1 = {v0, v1}, f2n−2 = {v2n−1, v2n}, and for each

2 ≤ j ≤ n− 1, f2j−2, f2j−1 are two edges parallel to arc aj. See Figure 6.13 for an example

with n = 5. Note also that Figure 6.7 corresponds with n = 1.
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Theorem 6.26 Let n ∈ N. The mixed graph Mn satisfies the k-outgoing-sets condition

for each 1 ≤ k ≤ 2n− 1, but does not satisfy the 2n-outgoing-sets condition.

Proof. Let S ⊆ V be an outgoing subset of Mn. We say that v2j−1, v2j+1, . . . , v2l+1

form an odd interval of S if v2j−1, v2j+1, . . . , v2l+1 ∈ S, and that v2j, v2j+2, . . . , v2l form an

even interval of S if v2j, v2j+2, . . . , v2l ∈ S. Note that v0 ∈ S implies v1 ∈ S, v2n ∈ S

implies v2n−1 ∈ S and, for all 1 ≤ i ≤ n − 1, v2i ∈ S implies that v2i−1, v2i+1 ∈ S. Hence,

the connected components of Mn[S] are determined by the maximal odd intervals of S.

Let S1, . . . , Sh be the vertex sets of the connected components of Mn[S], then:

b1
2
surMn

(S)c ≥
h
∑

i=1

b1
2
surMn

(Si)c, (6.37)

and hence, if we try to construct a family Sn that violates (6.32), we can assume that

each of its members induces a connected component of Mn. Also note that the only edges

that can be counted on the left-hand side of (6.32) are in En, since the edges in Fn are

parallel to at least one arc. Furthermore, for an edge e ∈ En to be counted in this way, the

family Sn must contain at least two outgoing sets crossed by e. Therefore, the maximal

contribution of S to the left-hand side of (6.32) is lhs(S) = 1
2
dEn

(S).

Let v2j−1, v2j+1, . . . , v2l+1 be the unique maximal odd interval of S, and let m be the

number of even intervals of S. Also, let si = 0 if vi ∈ S, and si = 1 otherwise. We split

the analysis into four cases, depending on the values of j and l:

1. If j = 1 and l < n − 1 then dAn
(S) = 1 + s0 + 2

∑l
i=1 s2i, dEn

(S) = s0 + 2m,

and dFn
(S) = 2 + s0 + 4

∑l
i=1 s2i. Hence lhs(S) = m + 1

2
s0 and b1

2
surMn

(S)c =

s0+m+
∑l

i=1 s2i, and therefore lhs(S) < b 1
2
surMn

(S)c unless s0 = s2 = · · · = s2l = 0,

that is, unless S = {si : 0 ≤ i ≤ 2l + 1}. In this case lhs(S) = b 1
2
surMn

(S)c.

2. If j > 1 and l = n − 1 the situation is symmetric, and a similar analysis gives that

lhs(S) < b1
2
surMn

(S)c unless S = {si : 2j − 1 ≤ i ≤ 2n}.

3. If j = 1 and l = n−1 then dAn
(S) = s0+s2n+2

∑n−1
i=1 s2i, dEn

(S) = s0+s2n+2m−2,

and dFn
(S) = s0 + s2n + 4

∑n−1
i=1 s2i. Hence lhs(S) = m − 1 + 1

2
(s0 + s2n) and

b1
2
surMn

(S)c = m−1+ b1
2
(s0+s2n)c+

∑n−1
i=1 s2i, and therefore lhs(S) < b 1

2
surMn

(S)c
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unless s2 = · · · = s2n−2 = 0, that is, unless {si : 1 ≤ i ≤ 2n− 1} ⊆ S. In this case, if

s0 6= s2n then 1
2
= lhs(S) > b1

2
surMn

(S)c = 0, otherwise lhs(S) = b 1
2
surMn

(S)c.

4. If j > 1 and l < n − 1 then dAn
(S) = 2 + 2

∑l
i=j s2i, dEn

(S) = 2 + 2m, and

dFn
(S) = 4+4

∑l
i=j s2i. Hence lhs(S) = 1+m and b 1

2
surMn

(S)c = 2+m+
∑l

i=j s2i,

and therefore lhs(S) < b 1
2
surMn

(S)c always.

For 0 ≤ j ≤ 2n, let Lj = {vi : 0 ≤ i ≤ j} and Rj = {vi : j ≤ i ≤ 2n}. Our analysis

shows that the only two outgoing sets S for which lhs(S) > b 1
2
surMn

(S)c are L2n−1 and

R1, and hence both must be included in any family Sn violating (6.32). For L2n−1 to

contribute its 1
2
to the left-hand side of (6.32), Sn must contain an outgoing set S with

v2n ∈ S, v2n−2 /∈ S, and lhs(S) ≥ b 1
2
surMn

(S)c, and the only such set is R2n−1. Similarly,

for R1 to contribute its 1
2
to the left-hand side of (6.32), Sn must contain an outgoing set

S with v0 ∈ S, v2 /∈ S, and lhs(S) ≥ b 1
2
surMn

(S)c, and the only such set is L1. Proceeding

by induction, Sn must contain all of L1, L3, . . . , L2n−1 and R1, R3, . . . , R2n−1. Furthermore,

the family Sn consisting precisely of these 2n outgoing sets satisfies

|ES
2n| = |En| = 2n− 1 > 2(n− 1) =

n
∑

i=1

b1
2
surMn

(Li)c+
n
∑

i=1

b1
2
surMn

(Ri)c, (6.38)

and hence violates (6.32). ¥

To close this section, we offer a characterization of mixed graphs that have an arcs

postman tour for each possible orientation of their edges.

Theorem 6.27 Let M = (V,E,A) be a connected mixed graph. The following statements

are equivalent:

1. M has an arcs postman tour for every orientation of its edges.

2. The only outgoing sets of M are ∅ and V .

3. D = (V,A) is strongly connected.

4. For all k ∈ N, and for all families S = {S1, . . . , Sk} of outgoing sets, M satisfies:

∑

e∈E

m+
S (e) ≤

k
∑

i=1

b1
2
surM(Si)c. (6.39)
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Proof. (1 ⇒ 2) Let S ⊂ V , and orient all edges in δE(S) from S to S̄. Since this

partial orientation has an arcs postman tour, there must be arcs in δA(S̄). Hence S is not

outgoing. (2⇒ 3) If D is not strongly connected, then there exists S ⊂ V such that δA(S̄)

is empty, that is, S is outgoing, a contradiction. (3⇒ 1) Let I be an arbitrary orientation

of E. Construct an arcs postman tour T of N = (V, I, ∅, A) as follows: Start with an

empty arcs postman tour T . For each i ∈ I from u to v, add to T a cycle consisting of i

and a directed path in D from v to u. For each unused a ∈ A from u to v, add to T a cycle

consisting of a and a directed path in D from v to u. (2⇒ 4) Since S consists of copies of

∅ and V , we have that m+
S (e) = 0 for all e ∈ E, and surM(Si) = 0 for all 1 ≤ i ≤ k. Hence

(6.39) holds. (4 ⇒ 1) Let N = (V, I, E \ I, A) be any partial orientation of M . We claim

that for all k ∈ N, and for all families S = {S1, . . . , Sk} of outgoing sets, N satisfies:

∑

e∈E

m+
S (e) ≤

k
∑

i=1

b1
2
surN(Si)c. (6.40)

We proceed by induction on n = |I|. Note that this is true for n = 0, and assume it

is true for some 0 ≤ n < |E|. Choose any e′ ∈ E \ I, and let N ′ = (V, I ′, E ′, A) be

the partial orientation obtained from N by orienting e′ arbitrarily, say, from u to v. Let

S = {S1, . . . , Sk} be a family of k outgoing sets. Let X,Y ⊆ [k] such that u ∈ SX and

v ∈ SY . Using that |X \ Y | ≤ m+
S (e

′) we obtain

∑

e∈E′

m+
S (e) =

∑

e∈E

m+
S (e)−m+

S (e
′) (6.41)

≤
∑

e∈E

m+
S (e)− |X \ Y | (6.42)

≤
k
∑

i=1

b1
2
surN(Si)c − |X \ Y | (6.43)

=
k
∑

i=1

b1
2
surN ′(Si)c, (6.44)

which is what we wanted. Hence our claim is true. Now let N = (V, I, ∅, A) be obtained

from M after orienting arbitrarily all its edges. By our claim, N satisfies the outgoing-set

condition and, as in the proof of Corollary 6.7, it has an arcs postman tour. ¥
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6.4 Integer Programming Formulations

Let M = (V,E,A) be a strongly connected mixed graph, and let c ∈ QA
+. We give two

integer programming formulations for Minimum Arcs Postman Tour based on those

we gave for Minimum Mixed Postman Tour in Section 3.3, as well as their linear

programming relaxations. Later, we consider some valid inequalities for the solutions

of the given integer programs. For the first integer programming formulation, let ~M =

(V,A∪E+∪E−) be the associated directed graph of M , and let B = E+∪E−. As before,

we obtain the following integer program for Minimum Arcs Postman Tour:

MAPT1(M, c) = min c>xA (6.45)

subject to

x(~δ(v̄))− x(~δ(v)) = 0 for all v ∈ V (6.46)

xa ≥ 1 for all a ∈ A (6.47)

xe+ + xe− = 1 for all e ∈ E (6.48)

xe ≥ 0 and integer for all e ∈ A ∪ E+ ∪ E−, (6.49)

and its linear programming relaxation LMAPT1(M, c).

The second integer programming formulation is:

MAPT2(M, c) = min c>xA (6.50)

subject to

x(δA(v)) + x(δA(v̄)) ≡ dE(v) (mod 2) for all v ∈ V (6.51)

x(δA(S))− x(δA(S̄)) ≥ dE(S) for all S ⊆ V (6.52)

xa ≥ 1 and integer for all a ∈ A, (6.53)

and its linear programming relaxation is:

LMAPT2(M, c) = min c>xA (6.54)

subject to

x(δA(S))− x(δA(S̄)) ≥ dE(S) for all S ⊆ V (6.55)

xa ≥ 1 for all a ∈ A. (6.56)
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6.4.1 Valid Inequalities

As usual, if S ⊆ V satisfies that dM(S) is odd, then at least one arc in δM(S) must be

duplicated in any arcs postman tour of M . Hence, the odd-cut constraints

x(δA(S)) + x(δA(S̄)) ≥ dA(S) + dA(S̄) + 1 (6.57)

are valid for the sets of solutions of the two integer programs above.

We can obtain another set of valid inequalities from the proof of Theorem 6.14. Recall

that if M has an arcs postman tour then it does not have a bad pair, that is, there are

no odd outgoing sets S, T ⊂ V , such that S ∪ T and S ∩ T are tight even sets, violating

(6.16). Hence, for all odd outgoing sets S, T ⊂ V with even S ∪ T and S ∩ T , we have:

surN(S ∪ T ) + surN(S ∩ T ) ≥ 2. (6.58)

In terms of the variables of MAPT1(M, c), this constraint is equivalent to:

x(δA(S ∪T ))+2x(δB(S ∪T ))+x(δA(S∩T ))+2x(δB(S∩T )) ≤ dE(S ∪T )+dE(S∩T )−2.

(6.59)

6.5 Solvable Cases

We enumerate in this section some special cases of Minimum Arcs Postman Tour and

Arcs Postman Tour that can be solved in polynomial time.

6.5.1 Windy Postman Perfect Graphs

Let M be a connected mixed graph, and let M̄ be its underlying undirected graph. If M̄

is windy postman perfect, then the set of solutions of LMAPT1(M, c) that satisfy (6.57)

is an integral polyhedron. Hence:

Theorem 6.28 There exists a polynomial-time algorithm to solve Minimum Arcs Post-

man Tour, with input restricted to mixed graphs M whose underlying undirected graph

M̄ is windy postman perfect.
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6.5.2 Series-Parallel Mixed Graphs

Since series-parallel undirected graphs are windy postman perfect, we have the following:

Corollary 6.29 There exists a polynomial-time algorithm to solve Minimum Arcs Post-

man Tour, with input restricted to series-parallel mixed graphs M .

Corollary 6.30 There exists a polynomial-time algorithm to solve Arcs Postman Tour,

with input restricted to series-parallel mixed graphs M .

There is another algorithm to decide whether a connected series-parallel mixed graph

M = (V,E,A) has an arcs postman tour or not. Since the class of series-parallel mixed

graphs is closed under contractions of edges and arcs, the next lemma says that we can

assume M does not contain directed cycles.

Lemma 6.31 Let M = (V,E,A) be a mixed graph. Assume that the directed cycle C =

(W,B) is a subgraph of D = (V,A), and let M ′ = (V ′, E ′, A′) be the mixed graph obtained

from M by contracting all edges and arcs in M [W ] into a vertex w. Then M has an arcs

postman tour if and only if M ′ has an arcs postman tour.

Proof. If T is an arcs postman tour of M , then the tour T ′ obtained by contracting all

edges and arcs inM [W ] is an arcs postman tour ofM ′. Conversely, if T ′ is an arcs postman

tour of M ′, we can construct an arcs postman tour T of M as follows: Start with T = T ′.

Each time that T ′ enters w through e1 and leaves through e2, insert in T a directed path

between e1 and e2 using arcs in B. After doing this, for every e ∈ (A[W ]∪E[W ]) \B, add

to T a cycle consisting of e and a directed path between its ends using arcs in B. Finally,

if there are still some arcs in B that have not been used by T , add a copy of C to T . ¥

Let ~M be any orientation ofM . Letm = |A|+|E|, and define a function S : A∪E → 2Z

as S(e) = {−1, 1} for all e ∈ E, and S(a) = [1,m] for all a ∈ A. The motivation for this

definition is that, if M is acyclic, each of its arcs leaves some outgoing set, and hence

every arcs postman tour of M uses each of its arcs at most m times. For X,Y ⊆ Z, let
−X = {−x : x ∈ X}, X+Y = {x+y : x ∈ X, y ∈ Y }, andX−Y = {x−y : x ∈ X, y ∈ Y }.

Since ~M is also series-parallel, if it has more than one arc, then it has two arcs in series
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or two arcs in parallel. As long as ~M contains more than one arc, apply iteratively the

following reductions:

Series: If a = (u, v) and b = (v, w) are two arcs in series, replace them with an arc

c = (u,w) with S(c) = S(a)∩S(b). If a = (u, v) and b = (w, v) are two arcs in series,

replace them with an arc c = (u,w) with S(c) = S(a) ∩ (−S(b)).

Parallel: If a = (u, v) and b = (u, v) are two arcs in parallel, replace them with an arc

c = (u, v) with S(c) = S(a) + S(b). If a = (u, v) and b = (v, u) are two arcs in

parallel, replace them with an arc c = (u, v) with S(c) = S(a)− S(b).

These reductions ensure that for every arc c, and at every stage of the algorithm, S(c)

contains the possible values of flow from the tail to the head of c. At termination, when
~M consists of only one arc a, M has an arcs postman tour if and only if 0 ∈ S(a), or a is

a loop and S(a) 6= ∅. Since at every stage of the algorithm, and for every arc c, we have

that S(c) ⊆ [−m2,m2], we can perform all set operations in polynomial time.

However, we cannot expect to solve in polynomial time Arcs Postman Tour, even

if the input mixed graph is the union of two series-parallel graphs. The first result below

follows directly from the proof of Theorem 6.3, and the second follows from a slight mod-

ification of the subgraph on the right of Figure 6.2: Replace each edge by a left-to-right

path consisting of an edge, an arc, and an edge.

Corollary 6.32 Arcs Postman Tour is NP-complete even if the input M = (V,E,A)

is restricted to be planar, and both G = (V,E) and D = (V,A) are series-parallel.

Corollary 6.33 Arcs Postman Tour is NP-complete even if the input M = (V,E,A)

is restricted to be planar, and to satisfy that G = (V,E) is a forest, D = (V,A) is series-

parallel, dA(v) + dA(v̄) ≤ 2 for all v ∈ V , and the longest directed path has length 2.

6.5.3 Directed Forests

If the mixed graph M = (V,E,A) satisfies that D = (V,A) consists of one directed walk

and some isolated vertices, then we can solve Arcs Postman Tour in polynomial time.

Furthermore, we have the following characterization:
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Theorem 6.34 Let M = (V,E,A) be a connected mixed graph where D = (V,A) consists

of one directed walk and isolated vertices. Then M has an arcs postman tour if and only

if M satisfies the outgoing-set condition (6.2) and the even-cut condition (6.3).

Proof. Necessity follows from Theorem 6.5. We give an algorithmic proof of sufficiency.

Let P = (u0, a1, u1, . . . , ak, uk) be the directed walk inD. SinceM satisfies the outgoing-set

condition, there exists an undirected path Q in G = (V,E) from uk to u0. Let H = (V, F )

be the undirected graph obtained from G by deleting the edges of Q. We claim that

all odd degree vertices in H are vertices of P : If v ∈ V \ V (P ) has odd degree in H

then it also has odd degree in G and, since v and v̄ are outgoing, it violates the even-cut

condition, a contradiction. If ui and uj (with i < j) are two vertices of odd degree in

the same component of H, there exists a path Q′ from uj to ui which forms a cycle with

P ′ = (ui, ai, . . . , uj). Delete Q′ from H, and continue until all connected components of

H are even. Since each of these components can be oriented to form an Eulerian tour,

we have given the cycle decomposition of an arcs postman tour of M , consisting of these

Eulerian tours, together with the cycle formed by the paths P and Q, and all the cycles

formed by the paths P ′ and Q′. ¥

Corollary 6.35 Let M = (V,E,A) be a connected mixed graph where D = (V,A) consists

of one directed walk and isolated vertices. Then M has an arcs postman tour if and only

if M satisfies the 2-outgoing-sets condition (6.12).

Since all steps in the above algorithm can be carried out in polynomial time, we have:

Corollary 6.36 There exists a polynomial-time algorithm to solve Arcs Postman Tour,

with input restricted to mixed graphs M = (V,E,A) such that D = (V,A) consists of one

directed walk and isolated vertices.

Observe that the proof of Theorem 6.1 forbids us from extending Corollary 6.36 to the

case when D = (V,A) consists of an arbitrary number of vertex disjoint directed walks.

However, if we disallow cycles in the underlying undirected graph ofD, that is, if we restrict

D to be a forest, we can solve in polynomial time not only Arcs Postman Tour, but

also Minimum Arcs Postman Tour. We use the next lemma in our algorithm, which

guarantees that certain arcs must be duplicated in any arcs postman tour.
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Lemma 6.37 Assume that S ⊆ V is an odd outgoing set of M such that δA(S) contains

exactly one arc a. Let M ′ be the mixed graph obtained from M by adding an arc a′ parallel

to a. Then M has an arcs postman tour if and only if M ′ does.

Proof. Since S is odd, any arcs postman tour of M must use at least twice some

element of δM(S). Since a is the only arc in δM(S), any arcs postman tour of M must use

a at least twice. ¥

Theorem 6.38 There exists a polynomial-time algorithm for Minimum Arcs Postman

Tour, with input M = (V,E,A) restricted so that D = (V,A) is a forest.

Proof. Let T ⊆ V be the set of vertices v with dM(v) odd. If there exists v ∈ T

such that v is not incident to any arc, then M fails the even-cut condition at v, so we can

assume that each vertex in T is incident to some arc. Let F = (VF , AF ) be a maximal tree

in D. If TF = VF ∩ T is odd, then M fails the even-cut condition at VF , so we can assume

that it is even. For each a ∈ AF there exists a unique outgoing subset Va ⊆ VF such that

a is the unique element of δA(Va). By Lemma 6.37, if Va is odd then a must be used at

least twice by any arcs postman tour of M . Let A2 be the set of all such arcs, and let

A1 = A\A2. Note that A2 is the unique minimal T -join of (D̄, T ), and hence can be found

in polynomial time. Let le = ue = 1 for all e ∈ E, la = 1 and ua = +∞ for all a ∈ A1, and

la = 2 and ua = +∞ for all a ∈ A2. By Theorem 3.13, since l(δM(v)) is even for all v ∈ V ,

the polyhedron Q1
BMPT (M, l, u) is integral, and hence the linear program

LMAPTF(M, c) = min c>xA (6.60)

subject to

x(~δ(v̄))− x(~δ(v)) = 0 for all v ∈ V (6.61)

xa ≥ 1 for all a ∈ A1 (6.62)

xa ≥ 2 for all a ∈ A2 (6.63)

xe+ + xe− = 1 for all e ∈ E (6.64)

xe ≥ 0 for all e ∈ A ∪ E+ ∪ E−, (6.65)

solves the given instance of Minimum Arcs Postman Tour. ¥
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