Decoupling of Information
Propagation from Energy
Propagation

by

Robert H. Jonsson

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Applied Mathematics

Waterloo, Ontario, Canada, 2016

© Robert H. Jonsson 2016



Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11



Statement of Contributions

Most of the results of this thesis were previously published in the single-authored pub-
lication [38], and two co-authored publications [39, 40].

In the research that led to the two co-authored publications I was responsible of all cal-
culations, I made significant discoveries leading to the main results of the publications, and
wrote the first drafts for the publications which were then co-edited with my collaborators.

Some sections and chapters of this thesis consist of adapted and extended parts of the
co-authored publication [39], and the single-authored publication [38]. These are marked
clearly by comments at the beginning of the respective sections or chapters.

On the co-authored publication [39] are based: Section 3.2, Appendix A, and Chapter 4.

On the single-authored publication [38] are based: Section 2.3.2, Section 2.4, Chapter 7,
and Section 6.1.

Where figures have been reproduced from the three mentioned publications, the sources
are cited in the captions.

11



Abstract

Information and energy are concepts central to our understanding of nature. Their
relevance, in physics, ranges from fundamental physics, e.g., in black hole physics, all the
way to future quantum computing technology. This thesis investigates how information
and energy propagate in quantum fields. The main result is that in massless fields the
propagation of information can decouple from the propagation of energy partially and,
under special circumstances, even completely.

It has been known that in general curved spacetimes, and also in odd-dimensional
Minkowski space, signals can propagate slower than light even in a massless field. Here it is
shown that the energy-to-information ratio of these classical timelike signals can approach
zero. The extreme case is marked by two-dimensional Minkowski space. In this case,
timelike signals reach arbitrarily far into the future lightcone, without diluting, and they
carry no energy at all. Instead, the energy cost associated with the detection of energyless
signals has to be provided by the receiver, much as in a collect call.

Technically, sender and receiver are modelled as basic first-quantized systems coupling
locally to the relativistic quantum field, i.e., as Unruh-DeWitt particle detectors. This
gives rise to a standard quantum channel from the sender to the receiver. Thus, the tools
of quantum information can be applied to investigate the combined impact of relativistic
and quantum effects on the propagation of information.

In the perturbative regime, signals analogous to phase modulation are shown to over-
come signals analogous to amplitude modulation: It is shown that the sender has to prepare
superpositions of eigenstates, to achieve signalling effects at leading order. Signals from
pure energy eigenstates are subdominant, and only appear in next-to-leading order. The
classical channel capacities resulting from optimal signalling states are calculated.

Analyzing the energy injected into the field by the sender, it is shown that signals
reach further in spacetime than the energy radiated by the sender, both for timelike, as
well as for lightlike signals. Instead, the energy budget is balanced by the energy that the
receiver has to provide when decoupling the detector from the field. This switching cost is
particularly sensitive to timelike signals.

Timelike signals are also demonstrated to occur between harmonic oscillators coupling
to the field inside a cavity. This model could be instrumental for future research, because
it can be treated non-perturbatively using Gaussian methods.

Such numerical calculations only take into account a finite number of field modes. It
is shown that relativistic properties of the field can still be resolved reliably, because the
number of necessary modes scales with the desired accuracy, namely following a power law.
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Chapter 1

Introduction

Motivation - Relativistic Quantum Communication

What would happen if we were to take the physics of an ordinary, everyday wireless phone
call and push it to the very frontiers of our understanding of physics? What if we describe
the signalling devices as quantum systems, that move along relativistic trajectories through
a curved spacetime, and communicate via quantum fields?

This question, which motivates the present thesis, brings together three fundamental
branches of theoretical physics: general relativity, quantum theory and information theory.
It combines them in a regime yet to be fully explored. A regime where several fascinating
results point toward deep connections between the three theories, while it is still unknown
if and how they might emerge from a common, more fundamental theory of nature that is
yet to be discovered.

General relativity and quantum field theory, the foundations of our current understand-
ing of nature, continue to resist their unification. Their partial combination in the study of
quantum field theory in curved background spacetimes, however, already led to the most
stunning predictions, such as the Hawking radiation of black holes, particle creation in
expanding universes, cosmic inflation or, even in flat spacetime, the Unruh effect.

At the heart of these phenomena lies the observation that particles are an observer-
dependent concept, much as time is in general relativity. For example, in the Unruh effect
a uniformly accelerated observer perceives as a thermal state, what an inertial observer in
Minkowski space perceives as the vacuum state of the field. The quantum fluctuations of
the field, which look like vacuum noise to an inertial observer, conspire to look like the



fluctuations of a thermally excited state with respect to the accelerated observer’s choice
of field basis states.

Information theoretical questions have uncovered further fascinating links between
quantum theory and gravity. Well known and active research topics of this kind include
the entropy of black holes, the black hole information paradox, the Bekenstein bound, the
vacuum entanglement of quantum fields, black hole thermodynamics, and the holographic
principle.

In this general context, studying communication via quantum fields in curved space-
times contributes a new perspective exploring the impact of spacetime curvature and rel-
ativistic effects on quantum fields. Spacetime curvature impacts quantum communication
between relativistic observers via the quantum field in at least two different ways: Firstly,
the sender, the receiver, and the propagating signal experience general relativistic effects,
such as time dilation and gravitational red-shifts, depending on their motion and location.
Secondly, spacetime curvature modulates the quantum fluctuations of the field. These
constitute an omnipresent source of noise in the communication channel between devices
communicating via the field, against which the signal has to compete.

Approaching this interplay of general relativistic and quantum phenomena from the
point of view of information transmission will allow us to measure and quantify arising
effects in terms of information theoretic quantities such as communication channel capac-
ities.

Context - Relativistic Quantum Information

This thesis falls into the research field of relativistic quantum information. This field
emerged over recent years, inspired by the development of quantum information. (See [55],
and other articles of this special issue.) Relativistic quantum information investigates the
impact of relativity on quantum information processes, and approaches question from quan-
tum field theory in curved spacetimes with tools from quantum information. The interest
in these questions is often twofold: On the one hand, it searches to uncover fundamental
principles of the interplay between gravity and quantum theory. On the other hand, it
explores relativistic quantum fields as a potential resource for quantum information tasks.

When modelling the interaction of relativistic observers with a quantum field, one needs
to take into account that there is no global notion of particles. One way to achieve this is to
model the observers themselves by basic first quantized quantum systems that couple to the
field along a given observer’s worldline [23, 81]. Such particle detector models have proven
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to be an important tool in the study of quantum field theory in curved spacetimes, and
can in fact be used to demonstrate all the well-known effects mentioned above [29, 30, 81].

In the context of relativistic quantum information, particle detectors have been used
to study questions such as whether the relativistic motion of a qubit that is coupled to
a field can be used to perform quantum gates on the qubit [57]. Or, it has been shown
that entanglement can be swapped from the vacuum correlations of the field onto a pair of
detectors, even when they are spacelike separated [69]. This entanglement extraction can,
in principle, distinguish the geometry of different cosmological spacetimes [79, 60, 72] and
it could be used as a resource for quantum information processing [58, 71]. In quantum
energy teleportation protocols the vacuum entanglement of the field is used to teleport
energy between two parties interacting locally with the field through particle detectors
[34, 35, 36, 83].

In this thesis, the focus lies on signalling between detectors, i.e., the ability to transmit
information through the influence of one detector on the other, that is mediated by the
quantum field. Besides other results, we make particularly interesting observations on the
relation between information transport and energy transport in massless quantum fields.

Result - Decoupling of Information Transmission and
Energy Transmission

The central observation of this thesis is that a signal that carries information through
a massless field does not necessarily carry energy from the sender to the receiver. This
decoupling of a flow of information from the flow of energy in the field arises, because
information can be imprinted into the amplitude of the field without directly contributing
to the field’s energy density, to which only the field’s derivatives contribute.

Studying signalling between Unruh-DeWitt particle detectors provides an information-
theoretical framework in which the interesting consequences of this phenomenon can be
explored. In a communication setting, the effects of the sender on the receiver can be
encapsulated in the map from the sender’s initial state to the receiver’s final state. Such
maps between density matrices are known as quantum channels in quantum information
theory, and a range of methods has been developed to analyze their properties.

This framework for signalling between detectors via relativistic fields was introduced in
[19, 20, 21]. Building up in these works this thesis completes the perturbative analysis of
the channel. In particular, it identifies the optimal input states that the sender needs to
use in order to maximize the signalling strength in leading order of perturbation theory.



Intuitively, one might expect that energy eigenstates maximize the impact of the sender
on the quantum field and evoke the strongest signals. However, for interactions in the
perturbative regime, these are the sender’s worst possible choice. Instead, the sender
needs to use equal weighted superpositions of energy eigenstates, in order to obtain optimal
signalling strength. The maximum achievable leading order signalling strength is found
to be given by a relatively simple, Fourier-type integral over the field commutator. This
integral is also shown to determine the leading order behaviour of the resulting Shannon
capacitiy of the channel.

Therefore, to leading order, signalling effects between detectors correspond to the clas-
sical behaviour of the field, because the commutator is given by the field’s classical Green
functions and independent of the quantum state of the field. Accordingly, the Green func-
tion’s support in spacetime determines where in spacetimes signals can propagate.

It has long been known that signals in massless fields do generally not propagate strictly
at the speed of light, but a part of the signal typically propagates slower than the speed
of light. This might appear counterintuitive, since massless fields in 3+1D Minkowski
spacetime are one of the few exceptions to which the so called Huygens principle applies,
i.e., the Green functions have lightlike support only. However, in general curved spacetimes,
and also in odd-dimensional Minkowski spacetime, the Green functions of the field have
support inside the lightcone as well. This means that signals can partially propagate slower
than light, even in a massless field.

These timelike signals highlight the decoupling of information transmission and en-
ergy transmission. They can carry both information and energy into the sender’s future
lightcone. However, their energy density decays faster than their signalling strength such
that their energy-to-information ratio approaches zero. Instead, timelike signals between
Unruh-DeWitt detectors modulate the energy that is required from the receiver to couple
and decouple his detector and the field. This means that the information content of time-
like signals between detectors is partially encoded in the energy costs associated with the
signal’s detection.

The most extreme case of this phenomenon occurs in 141D Minkowski space. In this
case, timelike signals reach arbitrarily far into the future lightcone of the sender, without
diluting. In contrast, the field’s energy density propagates strictly at the speed of light.
Thus, a receiver in the future lightcone can obtain information without obtaining any
energy from the receiver. Instead, any energy cost associated with the detection of the
signal has to be provided by the receiver when switching their detector on and off.

This findings highlight that the information carried by a signal, and the energy injected
into the field at the signal’s emission can travel different paths in spacetime. The impli-
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cations of this aspect for the general interplay of spacetime geometry, information and
energy, e.g., in the context of black hole physics, or known results on the energy costs of
information processing, are yet to be explored.

Synopsis and Conventions

The thesis is organized as follows:

Chapter 2 reviews the quantization of a Klein-Gordon field in Minkowski spacetime.
The field commutator which is central to the propagation of signals in the field is calculated
for Minkowski space of different dimensions, and in a one-dimensional Dirichlet cavity. The
propagation of field operators and field energy density in 1+1D Minkowski spacetime is
discussed in detail. This chapter shows that timelike signals in massless field lead to a
decoupling of information propagation and energy propagation.

Chapter 3 studies the structure and classical capacity of the channel between two
two-level Unruh-DeWitt particle detectors using time-dependent perturbation theory. We
briefly review the Unruh-DeWitt particle detector model. Then we discuss how to calcu-
late the channel from a perturbative treatment of the detector-field interaction. For the
calculation of optimal signalling states and channel capacities the channel is represented
in the Bloch sphere picture. The central result is that a relatively simple Fourier-type
integral over the field commutator yields the strength of signalling effects to leading order
in perturbation theory.

Chapter 4 discusses the questions how many modes of the field, e.g., in a numerical
calculation, need to be taken into account in order to be able to accurately model the
relativistic features of the quantum field. By studying the size of signalling effects it is
shown that the number of modes necessary scales with a power law in the desired accuracy.

Chapter 5 discusses the characteristics of the leading order signalling effects for timelike
and lightlike separated detectors. The signalling strength between detectors in lightlike
contact is optimized when the detector are resonant with each other, in which case can grow
arbitrarily large for long interaction times. This is in contrast to signalling between timelike
separated detectors where resonance between the detectors is irrelevant. The signalling
strength between inertial and uniformly accelerated detectors is calculated. The effect of
the relativistic motion enters into the corresponding integrals through the appearance of
the relativistic Doppler shift.

Chapter 6 studies, using perturbation theory, the energy density injected into the field
by a detector coupling to the vacuum of the field. It discusses in detail the energy necessary



to couple and decouple a detector and the field, and the energy exchange occurring under
the interaction. An analysis of how these processes are affected by signalling between
detectors shows that timelike signals modulate the energy required by the receiver to
switch their detector.

Chapter 7 studies timelike signals between harmonic oscillators coupling to the field
inside a one-dimensional Dirichlet cavity. This setup is of interest, because it allows us to
study timelike signals while treating the time evolution non-perturbatively.

We close with a discussion of the results and directions for future research.

In signalling scenarios the sender will often be referred to as Alice, and the receiver as
Bob. These terms are used interchangeably throughout the thesis. We use natural units
c=h=kg=1, and (+,—, ..., —) as signature of the Minkowski spacetime metric.



Chapter 2

Quantum Field Theory: Field and
Commutator

The decoupling of information transmission and energy transmission arises in massless
fields because the amplitude of the field does not contribute to the field’s energy directly,
but only its derivatives do. Thus, when a sender encodes a signal into the field’s amplitude,
the absolute value of the amplitude does not contribute to the field’s energy per se, but
only the part of the signal does where the amplitude changes in time or in space.

This can lead to a decoupling of a flow of information from the flow of energy in
the field, in particular, in spacetimes where Huygens principle does not apply [22]. The
Huygens principle, i.e., propagation strictly at the speed of light, is a familiar property
of massless fields in 341D Minkowski spacetime. Less familiar, maybe, is the fact that
Huygens principle is an exception rather than the norm. It only applies to very special
geometries as, e.g., 3+1D Minkowski spacetime, higher odd+1D Minkowski spacetimes,
and certain special cases of curved spacetimes. In general, signals in massless fields do not
propagate strictly at the speed of light, but part of the signal propagates slower.

By this phenomenon, senders can affect the amplitude of the field inside their future
lightcone. Such timelike signals may also carry some energy into the future lightcone.
However, the energy does not reach as far into the lightcone as the imprint into the field’s
amplitude does. This is because the energy density, since it only depends on the deriva-
tives of the field, decays faster than the field’s amplitude. In the extreme case of 1+1D
Minkowski spacetime, timelike signals even propagate arbitrary far into the future light-
cone, without diluting, while carrying no energy at all.

We begin this chapter with a brief review of the massless Klein-Gordon field and the
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Huygens principle, and of the quantization of the Klein-Gordon field. We go on to calculate
the field’s Wightmann function, whose imaginary part is the commutator of the field,
which we will find to be a central quantity in the study of signalling scenarios. Also this
calculation is exemplary for momentum space integrations that appear in perturbative
calculations later in the thesis. Finally, in Section 2.4, we demonstrate how the decoupling
of an information flow from the energy flow in 141D Minkowski spacetime follows from
expressing the field in terms of its left- and right-moving observables.

2.1 The Klein-Gordon field and Huygens principle

In this thesis, we will consider a real, massless Klein-Gordon field in flat (n+1)-dimensional
Minkowski space. In this case the Klein-Gordon equation reads

O¢ = 0 (2.1)
where O = g—; - a‘z—j? — .= ai—QQ denotes the d’Alembertian. The field ¢(t, Z) is a function
of the spacetime coordinates (t,7) = (t,z1,...,2,). For example, in 141 dimensions the
massless Klein-Gordon equation is therefore

(07 = 82) o(t, ) = 0, (2.2)

which is the wave equation describing the transverse displacement of an elastic string. The
141 dimensional case will play a central role in this thesis, because here information can
completely decouple from the transmission of energy as Section 2.4 will show. Ultimately,
this is possible because the amplitude of the field does not occur in the Lagrangian density
of the massless Klein-Gordon field

1 v
L= 517“ 0,00, ¢ (2.3)
where n* = diag(+, —, ..., —) denotes the Minkowski metric. When the field amplitude ¢,
or rather its amplitude square ¢?, contributes to the field’s Lagrangian through
1
L= 3 (77’“’ 00, — m2¢2) (2.4)

then the field is called massive. A massive Klein-Gordon field obeys the equation

(O+m*) ¢=0. (2.5)



In classical field theory Green functions are used to solve the field equations with a
prescribed source term

Oo(x) = p(x). (2.6)

They are solutions to the field equation with a Dirac d-distribution as a source term on
the right-hand side

OG(z,2') = §(x — 1), (2.7)

such when integrated against the prescribed source u(x) they provide a solution to (2.6),
since

O, /da:’G(x,x')u(a:’) = u(z). (2.8)

The solution to (2.7) is not unique and different choices of Green functions are possible.
Two particularly important Green functions are the retarded Green function G, (z, '),
which is non-vanishing only when z lies in the future of 2/, and the advanced Green function
Gaav(z, "), which is non-vanishing only when x lies in the past of 2’. The retarded Green
function can thus be thought of as propagating the effect of a disturbance of the field into
the future, whereas the advanced Green function propagates it backwards in time. An
instructive review and calculation of the Green functions of a scalar Klein-Gordon field in
flat, and in curved spacetime is found in [68].

The support of the Green functions thus encode how signals can propagate in the field.
Causality, i.e., that no signal can propagate faster than the speed of light, is encoded in
the fact that the Green functions vanish at spacelike separations. In 341D Minkowski
spacetime the support of the Green functions is, in fact, restricted to strictly lightlike
separations, i.e., to the boundary of the lightcone. This means that all signals propagate
strictly at the speed of light. If this is the case on a given spacetime, then it is said to obey
the Huygens principle.

The Huygens principle can equivalently be formulated in terms of the Cauchy problem.
This is the problem of how the solution to the field equation in the future of some spacelike
n-dimensional surface S depends on the prescribed values for the field and its normal
derivative on S. If the solution to ¢(x) at some point = in the future of S only depends
on an arbitrarily small neighbourhood of the intersection of S with the null lightcone
emanating from x, then the spacetime is said to satisfy the Huygens principle [22].



While one might think that it would be a natural property of a massless field that all
signals propagate strictly at the speed of light, this is actually only holds in very special
cases [22, 62, 63]. Even in flat spacetimes of n+1 dimensions it only holds for odd n > 3,
but is violated in all other cases. We will see this explicitly in the calculations of the
Wightmann function in Section 2.3 below.

2.2 Quantization of a Scalar Klein-Gordon Field

The ultimate goal of this research is to investigate the interplay of quantum effects with
relativistic effects and, in particular, spacetime curvature. Therefore we give the following
review of field quantization in the diction of quantum field theory in curved spacetimes
[8, 28, 84]. It serves to introduce notation, and as reference for following chapters. Within
the scope of this thesis we only consider scenarios in flat Minkowski spacetime and in
Dirichlet cavities. Therefore, a background familiarity with quantum field theory as taught,
e.g., in courses on particle physics is sufficient for the lecture of this thesis. As we will see,
passing from flat spacetime to curved spacetimes would, generally speaking, only affect the
results of this thesis in as far as the commutator of the field is affected.

This section is similar to the review of quantization in [8]. Note, however, that there
the the spacetime dimension denoted by n includes the time dimension, whereas we are
going to denote by n the spatial dimensions only, i.e., n in [8] corresponds to n + 1 here.

In quantum field theory, the field and its derivatives at each spacetime point are oper-
ators. In the Heisenberg picture, these operators obey the Klein-Gordon equation and are
therefore interdependent. A complete set of observables is given just by the collection of
all field operators ¢ and their canonically conjugate

oL
00 29
across a Cauchy hypersurface of the spacetime, such as a slice of constant time in Minkowski
space [84]. All other field operators can be expressed in terms of such a set of complete
observables. This is analogous to how initial data of the classical field and its momentum
on a Cauchy hypersurface determines the value of the field everywhere else in spacetime.

Furthermore, the so called equal time commutation relations are imposed on the field
operators and their conjugate.

o(t, %), ¢, 7] =0 [7(t,2), 7, 5] =0 [o(t D)7, y)] =i6(T-¢)  (2.10)



To find a representation of these, the field operator can be expanded in terms of plane
wave solutions to the Klein-Gordon equation, to which we will refer to as field modes,

¢(t,f) _ wt—E-i’)aE + ei(wt-E:ﬁ')d}fg) 7 (211>

. 1 .
A"k —i(
N (6

where wp = 4/ k|2 + m2. The operators ag (and a%) are called annihilation (and creation)
operators since the equal time commutation relations for the field operators are equivalent

to the commutation relations
laz, a] =0, [a%, aH =0, [cr aq = 0™ (k —1). (2.12)

These are used for the standard Fock representation of the fields Hilbert space with the
vacuum state |0) such that

a|0) = 0. (2.13)

The single particle states are created by acting on the vacuum with the corresponding
creation operator

T _
al-|0) = |1;) (2.14)
which we also will denote as ‘E> = ‘1,;> The multi-particle states are correspondingly
defined as
(1) (2) (s)
SUPHC <f>> - ! ( t)" ( t)" < t)” 0 2.15
L A N NASTROTINC a a- g |0) (2.15)

which in particular also yields
CLE}HE> = \/ﬁ|(n— 1>E> (2.16)

When we expand the field operator ¢(t, %) = [ d”lgu,;(t, ) ag + ui(t, 7) a% in terms of
the field modes

1 L
up(t, T) = ————p 1(WthT) 2.17
7(t. 7) oo (2.17)

the modes are chosen to be orthonormalized
(ug ) = 8 (F 1) (2.18)

11



with respect to the Klein-Gordon scalar product

(61, ) = —i / T (61 (1, O3 T) — 63t D11, 7)) (2.19)

for any fixed time coordinate ¢. This orthonormalization yields the equivalence of the
equal time commutation relations and the commutation relations for the annihilation and
creation operators.

When the spacetime is spatially compact the plane wave solutions form a discrete set
instead of a continuous set, since the spectrum of the d’Alembertian is discrete. Hence the
field operator is expanded in terms of a sum

ot ) = Y uj(t, D)a; + ui(t, F)a) (2.20)
i

where the modes now obey the orthonormalization condition

(u;, u;) = (517 (2'21)
with a Kronecker symbol (7 = 6;,j,0iyj,---0i,, ) instead of the Dirac d-distribution on the
right hand side.

One example of a spatially compact and flat spacetime is an (n+1)-dimensional torus
with length L. The torus is obtained from Minkowski space by identifying points that
differ by L in any spatial coordinate, i.e., (t,z1,...,x; + L,...;xn) ~ (£, 21, ..., i, oo, Tp).
The plane wave solutions on the torus are

i, 7) = — o i(K7) (2.22)

- - - )
with j € Z", k; = 2%]’ and w; = \/k; +m?. And the field operator is then expanded as

itk ®) )y ei(w;tfk;-f)at> (2.23)
j

R 1
o(t, T) = Z W“’I (e ;

In general, to translate expressions from Minkowski space with its continuous spectrum
into their counterpart on the torus with its discrete spectrum, and vice versa, one can
apply the following replacements [8, 9]

- - 0z : az
n (n) _ (%] A+ J R J
/d kE — AV i , 0 (k f) N up(t, @) — A ap — NG (2.24)
J
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with AV = (%)n For example, this yields the commutation relations for the creation and
annihilation operators

[% “zT] ="k —1) — [az, aﬂ = 075- (2.25)

If the field is massless the so called zero mode of the field requires a treatment different
from the one applied so far: Above, each mode of the field modes is treated as a separate
quantum harmonic oscillator of frequency wy. However, when the field is massless we

have w- = ‘k? ‘ So for the zero mode we would obtain wgz = 0 which of course does not

i J
correspond to a harmonic oscillator. Instead the zero mode needs to be treated in analogy

to a free, non-relativistic particle on the real line [59].

Later we will use a different case of a spatially compact space, which we refer to as
a (n+1)-dimensional Dirichlet cavity. Here the space is restricted to the n-dimensional
(hyper)cube of side length L, i.e, & € [0, L]", and so called Dirichlet boundary conditions are
imposed on the field: This means that the field operators have to vanish on the hypercube’s
boundary. The mode functions for the field in a Dirichlet cavity are

. 1 : nmy Jom : InT\ it
uz(t, @) = — sin (xl—) sin (atg—) ...sin (:L“n— e i (2.26)
J Lws L L L

—2
with wz =1/ k; + m? as usual, however the wave vector in the Dirichlet cavity is given by

- T

where the entries of j = (J1,J2, .-, jn) are all positive integers, i.e., j; > 1.

2.3 Wightmann Function and Field Commutator

The commutator of the field is the central object when studying the propagation of signals
in a quantum field. Because the commutator encodes the dependence of the field operator
at one point on other field operators at earlier times. First of all, this means that sending
information from one point to another in spacetime via a quantum field is possible only if
the field commutator between those two points does not vanish [26, 19]. And, as we will
see in Chapter 3, the size of the commutator determines the signalling strength between
observers interacting locally with the field to leading order in perturbation theory.

13



The commutator arises as the imaginary part of the Wightmann function of the field. In
the following, we review this relation, and calculate the Wightmann function and the com-
mutator in Minkowski spacetime of arbitrary dimension, and in one-dimensional Dirichlet
cavities.

A detailed treatment of the commutator’s relation to the different Green functions
of the Klein-Gordon field, their representations in terms of contour integrals, and their
relation to the different two-point function of the quantum field is found in Chapter 4 of
[28] and Chapter 2.7 of [8].

The commutator of the field operators at two different points in spacetime is propor-
tional to the identity operator

[o(t, Z), p(t', )] o< i1 (2.28)

This is a direct consequence of the commutator of creation and annihilation operators
being proportional to the identity operator, which we observe when use the expansion of
the field of (2.11) above. (This also applies to the commutators [¢, 7’| and [, 7'].)

In fact, the commutator of the field is determined just by the classical wave equation:
It is a homogeneous solution of the wave equation, and is given as

[qb(t? f)7 ¢(t/7 f/)] =1 (Gadv (ta £7 t? fl) - Gret(t7 fa tv f/)) I (229>

in terms of the advanced and the retarded Green functions of the classical wave equation
(O+ m?) ¢ = 0. Therefore the spacetime points between which one can transmit signals
via the quantum field, are the same as for the classical field. It is known from the analysis
of the classical wave equation as a partial differential equation that the advanced and
retarded Green functions vanish for spacelike separations between (¢,Z) and (t',2”), but
are supported only inside the lightcone.

To evaluate the commutator in the context of quantum field theory, we can use that it
equals the imaginary part of the Wightmann function (0| (¢, ¥)¢(t', @) |0).

[¢(t’ f)a ¢(t/>fl)] = <0| [¢(taf>v gb(t/’ f/)] |0> = <O| ¢(t7 f)¢(t/7fl) |O> - <O| gb(tlvfl)gb(t’ f) |0>
213 ((0] ¢(t, D)o(t', 27) |0)) (2.30)

The Wightmann function, in turn, can be evaluated using the field operator’s expansion
in terms of mode operators. Here |0) denotes the vacuum state of the field.

Since the commutator is proportional to the identity its expectation value is the same
for any state of the field. The anti-commutator of the field, {¢(t, %), ¢(¥',2")}, is a non-
trivial operator of the field, and its expectation value is sensitive to the field state. Thus

14



one can think of the quantum properties of the vacuum state as being encoded in the real
part of the Wightmann function.

(O[{o(t, ), o(t', 7)1 [0) = 2R (0] 6 (¢, )b (t', 7') [0) (2.31)

Such quantum properties are the quantum fluctuations of the field, and the entanglement
contained in them, even between spacelike separated regions of spacetime.

Accordingly, the imaginary part and the real part of the Wightmann function also differ
in their support in spacetime. The imaginary part, yielding the commutator, is restricted
to the lightcone. This is, at essence, what guarantees causality in relativistic quantum
fields. However, the real part of the Wightmann function also has support outside of the
lightcone at spacelike separations. The calculation of the Wightmann function reveals an
interesting dependency of the real part and imaginary part, and thus the commutator, on
the spacetime dimension.

2.3.1 The Wightmann Function in Minkowski space

In terms of the field modes uy the Wightmann function is given by

0| (¢, Z)p(t', 2')]0) = /d”EuE(t,f)ul’%(t’,f’) (2.32)

as follows directly from the expansion of the field operator and the commutation relations
for the mode operators a; and a’g. Which for the plane wave modes of (n+1)-dimensional
Minkowski space yields

(0] 6t F)b(t, ) 0) = / aF me—iw—mﬁ (2.33)

where we introduced At =t —t' and AZ =7 — 2.

This integral expression does not represent a function on the Minkowski spacetime R"**
(or rather on R™"! x R™1). Tt is, in fact, divergent for lightlike separations, i.e., when
At? — A7? = 0. Instead the integral represents a distribution which acts on test functions
on Minkowski spacetime. Which means that in order to get a well-defined finite result the
expression should be integrated against two test functions in Minkowski spacetime, before
the momentum integration is carried out.

A representation for such distributions in which the distribution’s support is readily
analyzed is the so called ie-prescription. It is obtained by multiplying into the integrand
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a factor of e™ with ¢ > 0. With this factor the momentum integration can be performed
directly, which results in a finite complex function. To evaluate the distribution for a par-
ticular pair of test functions, this complex function is integrated against the test functions
first, and the limit of € — 0 is taken at the end.

We will now derive the ie-representation for the Wightmann function of a massless field.
The calculation for a massive field is analogous and can be found in [80] (Note that whereas
we use n to denote only the spatial dimensions of (n+1)-dimensional Minkowski time, in
[80], the symbol n is used to denote all spacetime dimensions, including time.)

We denote this by k£ = ‘l; ‘ and also introduce
Az = |AZ| > 0. The Wightmann function then reads

- . ny 1 71 CEAZ) ke
<0|¢<t79ﬁ)¢(t’,x’)|0> :/d kme (kAt—k-AF) o~k

[e.e] ™

= [dk k™ [dpy sin" 2y

For a massless field we have w = )/; )

efik(Athm cos 1) e ke

(2m)"2k

<)
5 ©

T 21

X [dgs sin" " @o... [dp,_s sinp,_s / den1

0 0 0
N TV v
=V i(r(3) -
oo ™

— dk kv 2 d(Pl sin® -2 (plefik(Athxcostpl)efke

n+1 n _1
2 F 7))
_ — /dk? L 2 /du 1 . u %3 e—ik(At—Amu)e—ke
ms 2nT ()
1—n
(%) ( Az )
= € + 1At 1+ ——
Am"s ( " (e +1At)?
L (:5) 1
= ntl 5 n1
4T (e +int)? + Ag?)
I(nt 1
_ ( n2+1) _ (2.34)

AT (2HeAt — A2 + Ax2) T

Here, in the spherical integration, we assumed that n > 3, however the result holds for
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n > 2 as well. (Whereas n = 1 will be discussed below in equation (2.43).) In the last step
€2 was dropped in the denominator since it is subdominant to 2ieAt and hence does not
affect the behaviour of the distribution.

For even spacetime dimensions we can use the Sokhotskii formulae to express the Wigh-
mann function in terms of the Dirac J-distribution. We have [12]
1

1 —1)k
—— =P+ iwué(k_l)(:c) for k =1,2,3, ... (2.35)
(x £ ie) T

(k—1)!

where P denotes the Cauchy principal value and §*)(z) is the k-th order distributional
derivative of the Dirac é-distribution §(z) = 5 (z), i.e.,

o0

/ dz ()0 (x) = (~1)* F¥(0), (2.36)

—00

as explained in detail in chapter 2.2.B of [12]. Applying this to even spacetime dimensions,
ie., forn=3,5,7,..., we can rewrite the Wightmann function as

(0] o(t + AL, Z + AZ)p(t, T) |0)

() 1

- ntl n—1
AT2 (2ieAt — AR + Ax?) 2
r(»=t 1 D% (a

= (,?H) P +sgn(m)m%5<f) (A2 +A2?) | (2.37)
42 (A2 4+ Ax?) = (%5°)!

Being twice the imaginary part of the Wightmann function, the commutator in these
dimensions is
(—=1)"z sgn(At)

n—1

21 2

[6(t + AL, 7+ AZ), 6(t,7)] = i 5(2°) (AL + Ax?). (2.38)
Thus the commutator of the field in even spacetime dimensions, n + 1 > 4, has (singular)
support only on the boundary of the lightcone and vanishes between points that are not
null separated. This means that signals propagate only at the speed of light in these
dimensions, and the Huygens principle is satisfied. The case that we will consider as a
frequent example in later chapters is 3+1D Minkowski space. Here we have

_isgn(At)
2m

[6(t + At, 7+ AF), 6(t, 7)] = 5 (At + Az)(At + Az))
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= As (0(At+ Az) — 6(—At + Ax)). (2.39)

In odd spacetime dimensions (n = 2,4, 6, ...) the Wightmann function

r) 1
AT"3 (V2ieAt — AP+ Ax?)"

(0] 6(t + At, T + AT)o(t, T) |0) = (2.40)

is singular on the lightcone as well. Away from the lightcone it is purely imaginary for
timelike separations and purely real for spacelike separations

1 . 2 9
I (~=t —— —, if Ax* > At
(0] ¢(t + At, T + AZ)¢(t, 7) |0) = (_2+) (V=ArTA2)

A2 %7 if At? > Ax?
—Azx

(2.41)

In particular this means that the commutator of the field has support even inside the
lightcone for timelike separations. This means that the field amplitude at any given point
in spacetime is dependent not only on the boundary of its past lightcone but also on the
lightcone’s interior. Vice versa, this means that signals can propagate even slower than
light in the massless field, and the Huygens principle is not satisfied.

Among the odd-dimensional Minkowski spacetimes, we will in particular consider sce-
narios in 241D Minkowski spacetime. Here the field commutator evaluates to

1 —isgn(At)

[0t + At, 7 + AT), (1, 7)) = A7 AR - A2

O(A* — Ax?). (2.42)

The most extreme example of timelike support of the commutator we find in 141D
Minkowski space. However, one difficulty here is that the Wightmann function of a massless
field in 141 dimensions cannot be treated the same way as above since it is infrared
divergent for £ — 0. However, this divergence only affects the real part of the Wightmann
function. The imaginary part is still finite and given by

6(t,2), 6(t', 7)) = %sgn =)0 ((t—1t) = (x—2')?). (2.43)
This can be calculated readily from the expansion of the field operator in 1+1 dimensions,

as done in the appendix of [56], or from the Wightmann function of the massive Klein-
Gordon field in the zero mass limit, as done in [80].
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The commutator being constant in the entire future lightcone means that signals im-
printed in the amplitude of the field reach arbitrarily far into the future ligthcone, without
diluting at all. We will consider the case of 141D Minkowski space in detail in Section
2.4. In the following we first evaluate the Wightmann function inside a Dirichlet cavity,
which shows that the commutator of the field there corresponds closely to the commutator
in free 1+1D Minkowski space that we just calculated.

2.3.2 Wightmann Function in one-dimensional Dirichlet cavity

Note: This section consists of adapted and expanded passages from [38].

Inside a (141)-dimensional cavity with vanishing Dirichlet boundary conditions the
field operator can be expanded as

> 1 sJm T
o(t,x) = Z — sin(jmz/L) <aje’lft + a}elft> : (2.44)
j=1 VI

The length of the cavity imposes an infrared cutoff on the field. This avoids the infrared
divergence that appeared in the Wightmann function in free (141)-dimensional Minkowski
space. The field operator expansion yields an analytically summable expression for the
Wightmann function of the field, which is

(0] ¢(t, 2)o(t', 2") 0) :Zi sin(jra /L) sin(jra’ [ L)elimE /L

T
Jj=1 J

1 s —t/—z—a’ s t—t' —zta’
:E< (1—e =g ) —ln<1—e’”%>

I (1 it ) +1ln (1 - e—iﬂi““t’””'» . (2.45)

The imaginary part of the Wightmann function, which yields the commutator, has a par-
ticularly simple structure

[e.9]

ot 0. = =3 = sinjmo/L)sin(jra’/ L) sin (¢ = ¢)/1)
( t—t’;LL:p—xJ N V_tlg_Lx+I/J
B V_t/ ;La:+x’J B V_t/ Q—Lx—x’D (2.46)
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Figure 2.1: [38] Sketch of [¢(t = 0, 1), ¢(¢, )], the commutator of a massless Klein-Gordon
field in a one-dimensional cavity of length L with Dirichlet boundary conditions. In the
red areas it takes the value +3 and in the blue areas it takes the value —3.

where | x| = floor(z) denotes the floor function.

As seen in Figure 2.1 the commutator inside the cavity resembles very much the commu-
tator in free (141)-dimensional Minkowski space with the only difference that the lightcone
structure is reflected off the cavity walls. When (¢, z) and (¢',2’) are close, the commuta-
tor is identical to the commutator in (141)-dimensional Minkowski space: It vanishes at
spacelike separations, and it takes the value —i—% when (¢, 2') lies in the future lightcone of
(t,z). For large separations, the lightcone structure is reflected by the cavity walls, such
that the commutator is periodic in ¢ — ¢ with periodicity 2L.

In particular, this shows that timelike signalling is possible inside Dirichlet cavities as
well. The phenomenon of timelike signalling in massless fields is therefore not dependent
on the zero mode of the field, because the zero mode is not present in the Dirichlet cavity.

The real part of the Wightmann function, yiedling the anti-commutator of the field,
inside the cavity is

(O (o(t, 2)o(t', ') + o(t', )b (t, 2)) 0)

—i In{1-— cos —t—t/—x—x’ —In(1-—cos —t—t’—x—i—x’
~ 4r i L m L
t_t/ _ / t_t/ /
—In (1 — cos <W#>) +1In (1 — cos <7T$))> . (247)

It shows that the vacuum correlations of the field, through the real part of the Wightmann
function, contain information about the total length of the cavity: For example, the equal-
time correlations between the field operators at two points in the cavity do not only depend
on the distance between the two points but also on their distance to the cavity walls. This
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is because the vacuum state of the field is not translationally invariant due to the Dirichlet
boundary conditions.

2.4 Massless field in 14+1D Minkowski space

Note: This section consists of adapted and expanded passages from [38].

In 1+1D Minkowski spacetime the decoupling of information propagation from energy
propagation can readily be observed from the structure of the field operators themselves.
This is because there are two particularly simple solutions for the field and its conjugate
momentum which elucidate the propagation of signals and energy within the field. The
first one, the d’Alembert solution, expresses the field operator and its conjugate at any
point in spacetime in terms of the operators on any spatial slice of constant time. The
second one expresses the field and its conjugate in terms of left- and right-moving parts of
the field operator and its conjugate.

These solutions explain why energy injected into the field by a sender propagates away
at the speed of light, whereas the sender can change the field’s amplitude in the entire
future lightcone.

The reason is that the field’s energy density operator at a given spacetime point can be
expressed in terms of field operators located on the boundary of the point’s past lightcone.
However, the decomposition of the field amplitude at a given point involves operators
acting on the field inside the point’s entire past lightcone. Hence the field amplitude at a
given point contains information from its entire past lightcone.

Therefore, a receiver that misses all the lightrays emanating from the sender, cannot
collect any of the energy that the sender injected into the field. However, the receiver can
still obtain information from the sender that is imprinted into the field’s amplitude.

In (141)-dimensional Minkowski space the massless Klein-Gordon equation simplifies
to the well-known wave equation

0
(ﬁ - @) é(t,x) = 0. (2.48)

The expansion of the field operator in terms of plane wave field modes reads

(e}

1
¢(t7 l’) :7 dk \/4—7-[-—|k»|

(e—i(|k|t—kz)ak + eillkle=ko) o1 > , (2.49)
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Here we used that n-dimensional momentum integral expression are translated into 1+1D

Minkowski space, by replacing [d"k — [dk and |k| =k — |k|.

Because the collection of all field operators ¢(x,t) and their canonical conjugate mo-
mentum 7(t,x) = O p(t,z) located on a Cauchy hypersurface forms a complete set of
observables [84], any observable acting on the field can be expressed in terms of field op-
erators ¢(t,x)|,_,. and m(¢,x)|=~ located only on an arbitrarily chosen slice of constant
time t = t*. In particular we have the so called d’Alembert solution which work both for
classical fields as well as for the quantum field operators [34]:

x+t
o(t,x) = % o0,z +1t)+ ¢(0,x —t) + /dy 7(0,y) (2.50)
r(t x) = % (70,2 + ) + 70,2 — 1) + 0o (0, 2 + 1) — Dy (0,7 — 1)) (2.51)

Note that these formulae are time translation invariant, and thus for s < ¢

r4+t—s
o(t,x) = % o(s,x+t—38)+o(s,r—t+s)+ / dy (s, y) (2.52)

r—t+s

and correspondingly for 7(¢,x). We see right from this formula, that the field amplitude
operator ¢(t,x) is equal to a composition of field operators on earlier time slices covering
every point in the past lightcone. Therefore the field amplitude at a particular spacetime
point depends on the field’s history inside the point’s entire past lightcone. It can thus be
used to receive signals from a timelike separated sender. In contrast, the conjugate (¢, x)
is composed of operators located only on the boundary of the lightcone.

The energy density of the field, i.e. the Tyy-component of the energy-momentum tensor,
reads [8]

Toolt. z) = % (06(t,2)) + (D.0(t, 2))?) = % (r(t.2) + (@ub(t,2))) . (2.53)
From equation (2.50) above we have
0.0(t,x) = % (0:0(0,2+t) + 0,0(0,x —t) + w(0,z +t) — w(0,z — 1)), (2.54)
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together with (2.51) this gives

Too(t, ) = }1 ((m(0,2 + 1) + 0,0(0,2 + 1)) + (7(0,2 — t) — 0,6(0,x — 1))*) . (2.55)

The energy density of the field at any point in spacetime can thus be written in terms
of field operators located only on the boundary of the point’s lightcone. Thus the energy
density measured in the field at one point in spacetime could only have been detected by
earlier measurements on the boundary of the point’s lightcone. Conversely, any energy
density injected into the field at some location will only be observable along the boundary
of the future lightcone of the point. This means that no energy can be carried by the field
between timelike separated points in (141)-dimensional Minkowski space.

An alternative explanation for the decoupling of the flow of information from the flow
of energy can be given by separating the field into a left-moving and a right-moving sector.
The two terms on the right hand side of equation (2.55), which sum up to give the energy
density, then have a direct interpretation in terms of the energy flux from the left- and
right-moving sectors of the field.

To see this, we split the field operator into a left- and a right moving part

ot x) = ¢ (t, ) + o (¢, 2) (2.56)
with
¢-(t,x) = [dk o (e““’“'”k”)ak +e‘(|’“'t+kx)a2)
0
= [dk 1 —ik(t—x) ik(t—x) 1
= o (e air +€ a+k>
0
0
1 : .
¢+ (t,x) = [dk =1 (e"(lk'tJrkz)ak —i—e‘“k't*kx)a;t)
— [dr — (eﬂk(tm)a%+elk(t+z)aik> (2.57)
7r

[en]

The conjugate momentum is correspondingly split into
m(t,x) = (t,x) + m_(t,x) (2.58)
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with
’/Ti<t, .73) = at@[(t, 33) (259)

These operators depend only on the so called lightcone coordinates x4 = t + z. E.g.,
o_(t,x) = ¢_(u,y) if and only if t — 2 = u — y, and ¢_ are therefore called the right
moving field operators.

With these definitions follows
Opos (t,2) = +0,du(t, 1) = +mo(t, ). (2.60)
So 7(t, ) + 0,¢(t,x) = 27.(t,x), and
Too(t, ) = (my(t,x))* + (m_(t, 2))>. (2.61)

Which shows that the energy density of a massless Klein-Gordon field is the sum of the
left and right moving energy flux.

Expressing the field operator in terms of left- and right-movers at first makes it less
evident how signals can propagate slower than the speed of light. After all, the field
operator at any point is given as the sum of its left and right moving part both of which
are propagating strictly at the speed of light. The resolution is that the left and right
moving field operators are not localised operators, but the commutator between different
left moving (or different right moving) field operators is not zero.

When calculating the commutators of the left- and right-moving operators we directly
see that operators acting on different sectors of the field always commute. For operators
acting on the same sector we find

(e 9]

ults) s = o farELZIZOZI) Sy (- ) (262

[0+(F, ), me(u, )] = dk cos (k ((u—1t) + (y — z))) = %5(@ —t) £ (y—x) (2.63)

et ), )] = o fabsin (b ((u = ) & (g = ) = 5 ((u— ) & (5~ )

(2.64)
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where ¢’(z) denotes the derivative of the Dirac J-distribution.

At first sight, the appearance of the commutator [ry (¢, z), 74 (u,y)] = —30'((u —t) £
(y — x)) might seem contradictory, since it has its singular support where v =t and = = y.
Would this imply that the operator 7. (¢,z) does not commute with itself? Here it is
necessary to remember that the field operators actually are operator valued distributions.
In order to obtain an operator these distributions need to be smeared out by a test function,

say [dz f(z)m+(0,2). The operator we now obtained does commute with itself, as it
should.

[az s@rat0.0), [ay r)mato.n)

= [ao [ay f@rr) 5oy - )

-7 Z . 4 duw f((v+w)/2) f((v = w)/2)8 (£w)

+io[ d
=3 oo L p(w o+ w)2) £ - w)/2)sy
=2 [ (P/270/2) - F0/2)f w/2) =0 2.65)

Where we used the coordinate change v = x + y,w = y — x, such that x = %(v —w),y =
s(v+w) and dz dy = Jdvdw.

The commutation relations above imply that in models which allow observers to directly
couple to the ¢4 (t,x) operators, signaling would be possible between arbitrary points in
spacetime. This problem does not occur for observers that only couple to the canonically
conjugate operators. In fact, even if just one of two parties couples only to the operators
7+ (t, x) signaling is possible only between lightlike separated points in spacetime due to
the singular support on the lightcone’s boundary of commutators involving 74 (t, ).
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2.5 Conclusion - Timelike Propagation and Huygens
Principle

Two-dimensional, i.e., 1++1D Minkowski spacetime marks the most distinct case of a time-
like support of the commutator. Typically, the commutator decays with increasing dis-
tance inside the future lightcone. This is also what we observed above for odd-dimensional
Minkowski spacetimes, such as 241D Minkowski spacetime.

In most spacetimes, in particular also four-dimensional ones, the Huygens principle
does not hold. In fact, it has proven to be a challenging and rich problem to identify the
classes of spacetimes where Huygens principle does apply [22, 62, 63]. The calculation
of the commutator of a quantum field, or the Greens function of a classical field, with
timelike support can be very involved and is not always possible in a closed form. For the
physically very interesting case of expanding FLRW universes solutions are known [17, 68],
and, in works following up on the results presented in this thesis, timelike signalling has
been studied in these and other cosmological scenarios [10, 11]. The Greens function in
black hole spacetimes is more complicated, and can be expressed in terms of expansions
[18, 87] that can be evaluated numerically.

For the purpose of this thesis, we will study signalling in 2+1D Minkowski space as
the prototype example of a timelike supported, but decaying commutator of the field. In
spacetimes where the commutator of the field is non-constant inside the future lightcone
also the fields energy density can propagate slower than the speed of light. To see this, con-
sider the commutator between the field and its conjugate momentum. Since the conjugate
momentum is given by the time derivative of the field, we have

[0(t, %), w(u, §)] = [¢(t, T), Oud(u, §)] = Ou [6(t, T), (u, 7)]

! (u—1)
> O = : 2.66
\/(t—u)Q — ‘f—gj‘Z ((t—u)Z— If—JIQ)S/Q ( )

which shows that acting on the field through the field operator in one point affects the
field’s derivative, and thus the field’s energy density, inside the future lightcone. Hence,
timelike signals arising from decaying commutators are accompanied by some flow of energy.
However, this flow of energy decays at a higher order in the spacetime distance.

This leads to an asymptotic decoupling of information transmission from energy trans-
mission, in the sense that the ratio of propagating signalling strength to propagating field
energy density diverges. As such this is only a qualitative observation at this point. We
will be able to quantify this consideration in the next chapter, by the introduction of a
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concrete model of signalling device by which sender and receiver couple locally to the field
along their worldlines.

This approach yields a more operational approach to signal and energy propagation in
quantum fields. And, it incorporates naturally the impact of the quantum fluctuations of
the field, encoded in the real part of the Wightmann function. These constitute a source
of noise against which the signal may have to compete.
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Chapter 3

The quantum channel between
Unruh-DeWitt detectors

To study the propagation of information, and quantum information from one point in
spacetime to another, we need a description of sender and receiver that are localized in
spacetime. This, however, is difficult within the formalism of relativistic quantum field
theory, because of the lack of a position operator.

To circumvent this problem, we draw inspiration from the interaction between atoms
and quantum fields. There, the atom’s internal states can be described as a quantum-
mechanical system with its own Hilbert space, that is coupled to the field through the field
operator at some fixed (non-quantized) position. The idea we follow here, is to build a
prototype model of wireless quantum communication analogously [19, 21, 20]. To this end,
we equip sender and receiver with simplified model atoms (two-level system or harmonic
oscillators) as quantum signalling devices, which can couple to the field along the sender’s
and observer’s worldlines.

Sender and receiver have direct control only, i.e., can manipulate and perform measure-
ments, only on their own signalling device. In particular, they need to use the signalling
device to act on the quantum field, or to probe it. The sender has to encode their message
in the initial state of their signalling device before coupling it to the field. Analogously,
the receiver has to recover the message only from the final state of their own detector after
coupling it to the field. Thus, the field only serves as a medium for the signal from the
sender to the receiver.

All influence that the sender, Alice, has on the receiver, Bob, is encapsulated in the
map from Alice’s initial state to Bob’s final state. Such maps between the input and
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output states of physical processes are known as quantum channels in the field of quantum
information. There they are of great interest, since they capture a system’s ability to
process information encoded in quantum systems. Accordingly, a great range of methods
has been developed for the study of their information theoretical channel capacities [64,
86]. These results can be directly applied to our framework, to explore the information
capacities allowed for by quantum fields.

This approach is very general, and can be applied and compared to results for signal
propagation in other quantum systems as well. Let us therefore briefly review how the
quantum channel arises mathematically, before specifying a particular type of signalling
device.

The total Hilbert space H of the system is given by the tensor product of the sender’s,
the field’s and the receiver’s Hilbert spaces.

H=Hi@Hr®Hp (3.1)

Before any interaction between the devices and the field take place, we assume that the
devices and the field are in a product state:

Po = PAao X pro X pso- (3.2)

The time evolution of the system under the couplings between the signalling devices and
the field is given by some unitary operator U, that depends on the details of the interaction.
The final state of the total system, after the interactions have taken place, is thus

p=UpU" (3.3)

which, in general, will be a non-separable state. Since the receiver only has access to the
state of his own signalling device, we take the partial trace over the sender’s Hilbert space
and the field’s Hilbert space to obtain the, generally mixed, final state of the receiver.

pB:TrA,;p:TrAJUpOUT. (3.4)

The quantum channel map from the sender’s initial state to the receiver’s final state is
therefore given by

f:pA’OHpngrAyy:UpoUT. (3.5)

To model the signalling devices we will use the Unruh-DeWitt particle detector model,
which is a widely used tool in the study of quantum field theory in curved spacetimes, and
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relativistic quantum information. This framework was first considered in [19, 21, 20]. We
begin by a general review of the framework, and of the Unruh-DeWitt particle detector
model in the first two sections. Then we discuss the general structure of the channel
and how it results from a perturbative treatment of the system’s time evolution. Here
we generalize earlier results from [19] and, in particular, identify superpositions of energy
eigenstates as the sender’s optimal choice of signalling states. We go on to derive the Bloch
picture representation of the channel. Upon this we base the subsequent calculation of the
channel’s classical capacity.

The key observation of this chapter is that the commutator of the field operator is the
object that decides between which points in spacetime signalling is possible: It was shown
in [19] that in order to send signals from one point in spacetime to another point via the
quantum field, it is necessary that the commutator does not vanish. Here we observe,
that this is also sufficent: We find that a relatively simple, Fourier-type integral over the
commutator of the field yields the leading order behaviour of the signalling strength and
the channel capacity between two Unruh-DeWitt detectors.

3.1 Unruh-DeWitt particle detectors

In general spacetimes different observers may perceive the particle content of a given quan-
tum field state differently. In fact, the concept of particles, as an excitation of a particular
field mode, is an observer-dependent concept, much like time is. This is because just as ob-
servers may use different coordinates to parametrize spacetime, they may also use different
sets of modes to expand the field operator.

This means that what is the vacuum state of the field with respect to one observer,
can be an excited state with respect to another observer. An example of this, known as
the Unruh effect, is that in Minkowski spacetime the vacuum state of a quantum field
according to intertial observers in Minkowski space is a thermally excited state from the
point of view of a uniformly accelerated observer [81].

The question how many particles are present in a given quantum field state is therefore
not a well defined question to ask since the answer is not unique. Instead, we can only ask
how many particles a particular observer will detect in a given field state. This question
can be approached in a natural and operational way using model particle detectors. These
model the interaction of a localized observer with the quantum field along a given worldline.

The detector model used most widely is attributed to Unruh [81] and DeWitt [23]. It
can be thought of as a simple model for the interaction of an atom with a background
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quantum field. In its simplest form the Unruh-DeWitt particle detector consists of just
a two-level system. Typically, the detector is assumed to start out in his ground state
before it is coupled to the field. Through the interaction with the field, the detector can
be excited, i.e., its state can acquire some overlap with the excited state. The detector is
said to have detected a particle, when a measurement performed on the detector finds the
detector in its excited state.

The model treats the atom’s internal degrees of freedom as a quantum-mechanical
system, and also the coupling to the field along the detector’s worldline is described fully
unitary. However, the atom’s worldline, i.e., its position in spacetime, is not quantized but
corresponds to the fixed classical worldline of a given observer.

The interaction Hamiltonian which couples the detector and the field is proportional
to the product of the detector’s so called monopole operator and the field operator at the
detector’s location. Hence in the Schrodinger picture it is proportional to

Hin 0cm @ ¢(7) = ([e)(g] + 9)(e]) ® ¢(). (3.6)

where {|g),|e)} is the energy eigenbasis of the detector, the monopole operator is m =
le) (gl + |g)(e|, and ¢(Z) is the field operator of a scalar Klein-Gordon field.

We will use the Dirac interaction picture. In this picture the operators evolve according
to their free Hamiltonians, and the state of the combined detector-field system evolves only
under the action of the interaction Hamiltonian. The free Hamiltonian of the detector
two-level system is Hy = 2 e)(e|. Accordingly, in the Heisenberg picture, the monopole
operator reads

m(r) = 7 (|e) (gl + g)(el) e = T Je) (g] + e [g) (e] (3.7)

where 7 is the proper time of the detector along its relativistic wordline. With the Heisen-
berg picture field operator ¢(t, Z) the interaction Hamiltonian for the Dirac interaction
picture then is

Hine(7) o< (€7 |e) (gl + 77 |g) (e]) @ & (t(7), Z(7)) . (3.8)

In order to obtain the full Unruh-DeWitt interaction Hamiltonian in the form which we will
be using only two more factors are needed in front of this term: The coupling constant A
and a switching function 7(7). Together with these the full interaction Hamiltonian reads

Hin(7) = An(7) (€7 [e){g] + 77 [g){e]) @ ¢ (¢(r), Z(7)) . (3.9)
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The switching function is used to switch the coupling of detector and the field on and
off. It is a real valued function taking values between 0 and 1

n(t) € [0,1]. (3.10)

In general, the switching function needs to be a smooth and compactly supported function
in order to guarantee well-defined behaviour of the model, and to avoid divergent results
when coupling a single detector to the field [33, 54, 74]. However, as far as the leading
order effects arising from signalling between two detectors are concerned, we will be able
to even use sharp switching functions, which we define as

1ifr€|0,T
Xpo,1)(T) = {0 else 0,7] : (3.11)

These functions model a sharp, instantaneous switching of the detector, with the switch-on
happening at proper time 7 = 0 and the switch-off at proper time 7 = T.

Even when using smooth and compactly supported switching functions certain diver-
gences can occur. (In particular, if we allow for arbitrary initial states of the detector, as
we discuss on Page 43.) These are due to the field operator ¢(t, ) being an operator val-
ued distribution which needs to be integrated against a test function. To avoid all of these
divergences one can smear out the detector in space. (See [53], and references therein.) To
this end the spatial profile of the detector is modelled by a profile function f(7,Z), such
that the smeared out interaction Hamiltonian reads

Hine(7) = An(7) (€7 |e){g] + 7 [g)(e]) @ /d”ff(ﬂ 7) ¢ (4(7),7). (3.12)

Non-smeared detectors, i.e., pointlike detectors, then correspond to having a Dirac-delta
like profile function f(Z) = §(Z).

Dimensionality of the coupling constant

The coupling constant A is typically used as the perturbative parameter in perturbative
treatments of the time evolution. When doing so, we need to keep in mind that, dependent
on the spacetime dimension, A may not be a dimensionless parameter.

This is, because in an (n+1)-dimensional spacetime the Klein-Gordon field has mass
dimension
- n—1

(9] = —5 (3.13)
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where [Q2] = 1. This can be read of from the field’s Lagrangian density £ = %n““@ugb@l,aﬁ
in (2.3), or from the constant time commutation relation [¢(t, %), 7(t,7)] = 0(& — §). The
interaction Hamiltonian needs to be of mass dimension [Hj,] = 1. Therefore, the dimension
of the coupling constant is

N = . (3.14)

The coupling constant is dimensionless only in 341 dimensions. However, in 1+1 dimen-
sions, for example, it has the dimension of mass (or energy). This means, that when we
consider the perturbative expansion, e.g., of the detector excitation probability

P~ NP+ 0O(\?), (3.15)

then the term P, has dimensions which exactly cancel the dimension of A, such that the
contribution to the probability is dimensionless.

When A has a dimension, it needs to be compared to the physical parameters of the
problem in order to make sure that it is perturbatively small. Interestingly, the quantities
to which A should be compared to, seem to be suggested directly by the form of the terms
in the perturbative expansion.

We will observe this in Chapter 3 for the perturbative expansion of signalling effects
between two detectors. For example, in 1+1D Minkowski space, where A\ has the dimension
of energy, the terms are inverse proportional to the detector energy gap for resting detectors.
This suggests A/{) << 1 as the perturbative parameter. Furthermore, when the detector
is accelerated, the contributions are inverse proportional to the acceleration of accelerated
observers, suggesting A/a as perturbative parameter. In the case when the energy gap of
the detector vanishes €2 = 0, they are proportional to the total interaction time instead,
suggesting AT as the perturbative parameter.

Detectors in motion

It is also important to note that the interaction Hamiltonian as defined above generates
time translations with respect to the detector proper time 7. If instead a different time
parameter, e.g., coordinate time ¢, is used in calculations then the interaction Hamiltonian
needs to be corrected by a factor of % such that, for example, the interaction Hamiltonian
for a pointlike detector with respect to coordinate time t reads

dr(t)

Hing(t) = An(7(8) =3~ (¢ [e) (gl + e |g) e]) @ ¢ (¢, (1)) - (3.16)
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This is particularly important for the study of signalling between relativistically moving
detectors that we are aiming for. In general, the proper times of sender and receiver will
differ. In this case, we use some global time coordinate to calculate the joint time evolution
of interacting detectors and the field. A detailed discussion of this aspect can also be found
in [15].

The detection of a particle by an Unruh-DeWitt particle detector is modelled by an
excitation of the detector, as mentioned before. Even a detector that is initialized in its
ground state has, in general, a non-vanishing probability to be found in its excited state
after interacting with the field. The probability for a particular observer to measure a
particle in a given field state is, therefore, modelled as the probability for a detector to get
excited when coupling to the field along the observer’s worldline. Indeed, this approach
can be applied to famous phenomena of quantum field theory in curved spacetime such
as the Unruh effect [81], Hawking radiation [30], or the creation of particles in expanding
universes [29].

Hence, the leading order transition probability has been the subject of an extensive
body of literature, which include, but is by no means limited to [33, 54, 78, 80], and the
references therein. In the context of this thesis, it is also interesting to note that the
thermal response of a detector experiencing the Unruh effect changes from a Planck to
a Fermi-Dirac behaviour for Minkowski spacetime of different dimension, depending on
whether the Huygens principle holds [66].

In the next section, the leading order excitation probability appears as one of the differ-
ent coefficients appearing in the quantum channel between two Unruh-DeWitt detectors.
There, it belongs to the contributions to Bob’s final state which are independent of the
signal from Alice, i.e., which constitute the noise present in the channel.

3.2 Perturbative analysis of the channel

Note: This section consists mainly of adapted and expanded parts of [39].

In the context of signalling between two detectors, we do not only need to calculate the
transition probability between two particular states of a single detector, but we need the
full final state of the receiver resulting from arbitrary input states of the sender and of the
receiver. Therefore, it is most convenient to describe the time evolution of the detectors
in terms of their density matrix.

As discussed in the introduction to this chapter, we equip both the sender, also referred
to as Alice (A), and the receiver, also referred to as Bob (B), with pointlike Unruh-DeWitt
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detectors. The total Hilbert space of the system is therefore composed as the tensor product
space

H=Hs9Hr®Hp (3.17)

of Alice’s Hilbert space H 4 = C2, Bob’s Hilbert space Hz = C? and the Hilbert space of
the quantum field Hr. We put the field’s space as the middle factor for later notational
convenience.

As mentioned before, we work in the Dirac interaction picture. This means that the time
evolution under the free field Hamiltonian and the free detector Hamiltonians is absorbed
into the operators such that only the interaction Hamiltonian acts on the states. For the
two detectors, and with respect to coordinate time t, it reads

Hing(t) = Aaxa(t) (9474 [eq) (ga] + 7440 g 1) (ea]) @ ¢ (1, 7a(1) © I
+ A5 x5() La @ 6 (,75(1) © (5™ [eg) (g5 + e |gp)(es])  (3.18)

where we absorbed the switching function and derivative of the proper times into the

functions yp(t) = TID(TD(t))_dTZiDt(t)'

The communication between Alice and Bob is modelled as follows: Initially, the switch-
ing functions are chosen to vanish. So the detectors are not coupled to the field and Alice
and Bob can prepare them for the interaction. To encode her message, Alice is free to
prepare her detector in any state she chooses, which we denote by its density matrix p4.
And Bob prepares his detector in some fixed initial state pg.

We assume the field to start out in the vacuum, and the initial state of the system to
be a product state

po = pao ® [0)(0] @ pso. (3.19)

However, all results of this chapter also hold for other initial states of the field with the
property that their odd n-point functions (n = 1,3,5,...) vanish, e.g., for multi-particle
Fock states or thermal states.

Then the detectors are coupled to the field. For simplicity, we assume that all interac-
tions take place within the coordinate time interval ¢ € (0,77). In this interval the initial
state evolves unitarily under the action of Hj, into a final state pr. The final state will,
in general, be an entangled state of the detectors and the field.

As discussed in the introduction to this chapter, the resulting quantum channel map
from Alice’s initial density matrix to Bob’s final density matrix is then given by

€:paorr per =Trar(pr). (3.20)
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To obtain Bob’s final state, the partial trace is taken over Alice’s and the field’s Hilbert
space.

3.2.1 Perturbative time evolution

To obtain the time evolution operator under the interaction Hamiltonian from a time ¢ = 0
to a time ¢t =T, we use the Dyson series of standard time-dependent perturbation theory

T T 1

lﬂ]ﬂmzzﬂ—i/hh}ﬂmﬁﬁ——/hh(/am}ﬂmagfﬁn@ﬂ%a.. (3.21)

0 0 0

. AN S

v U2

which expands the formal solution for U(0,7T) in powers of the coupling constant such
that U®) ~ O(N*). From the expansion of the time evolution operator, we also obtain
an expansion of the final density matrix pr. Denoting the initial density matrix of the
field-detectors system by py as above, we get that after a time T,

pr=[1+UY +U?D 4+ ON)po[l + UD + U + 0N (3.22)

This is, pr = po + pgpl) + ,Og?) + O(N\3), where

i
p(Tl) = UWpy + poUD" ~ O(N) (3.23)
p® = U p Mt 4 U@y 1 p U@ ~ 0(22) (3.24)
n . n— t n
pr) =3 UM p UM~ 0" (3.25)
k=0

and U =T is understood. The symbol O(A") stands for the combined powers of the two
coupling constants, i.e., O(\yA\;) ~ O(XNT7).

In [19], the expansion of the final density matrix was formulated in terms of commu-
tators between Hi, and py. Here we choose to use the Dyson expansion of U(t) instead,
because it facilitates the intuitive interpretation of the different perturbative processes and
leads to an integral structure that is advantageous for numerical evaluation.

Note that all the perturbative corrections from (3.25) to the final density matrix pp are
traceless:

Tr pi = 0. (3.26)
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Therefore, independent of up to which order O(A") in the coupling constant the corrections
are taken into account, the trace of the final state is always preserved,

Trpr = 1. (3.27)

It is not necessay to introduce any normalization constant in front of py at any order in
perturbation theory, if all terms up to this order are consistently taken into account. To
see this, let us verify that the derivative of the left hand side of (3.26) with respect to the
switching time 7" vanishes:

)

3T Trpr’ =0, VT > 0. (3.28)

As all the pgb ) are identically zero for T' = 0, their trace also vanishes for 7" = 0. Hence, if
(3.28) is true then Tr p(T" ) vanishes for all T. To evaluate (3.23) we differentiate (3.25):

—

n—

a n : n— : n—k— t
a—TTrp(T) =Tr | (=1 Hwn(T)UV) po + > (=i Hio(T)U D) po UP
k=1
n—1
+ 3" U p, (i U(k*”THim(T)> + o (i U(”’l)THint(T)) (3.29)
k=
where we used 2:U™ = —i H, (T)U™ Y, which follows from (3.21). Using the cyclic

property of the trace, we can rewrite (3.29) so as to have Hiy(T') stand first in every term
of the sum. Then we see that the terms form pairs that exactly cancel each other, so (3.29)

vanishes. This shows that Tr p(T" ) is indepent of T" and vanishes for all T'.

Independently of this observation, the Dyson expansion is not unitary order by order,
but instead it is unitary up to the power of the perturbative parameter of the first ignored
term in the perturbative expansion.

To obtain Bob’s output density matrix pg s as defined in (3.20), we trace out the field
and Alice’s detector from pr. All ng ), with n odd, do not contain diagonal matrix elements
in the field components, hence they drop out when the partial trace over the field is taken.
This is because the field starts out in the vaccuum state, hence the partial trace over the
field can be expressed as a vaccuum n-point function of the field. These n-point functions
are identically zero for odd numbers of field operators. So the contributions to pgr are all
of even power in the coupling constant.

par = pso+ Trazp) + Traz pl) + O(X°) (3.30)
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3.2.2 Structure of the channel

In order to compare different signalling scenarios quantitatively, all the perturbative con-
tributions derived in the previous section have to be evaluated up to the desired order
(typically leading, or next-to-leading order) in the coupling constant. However, important
qualitative features of the channel from Alice to Bob can already be derived from the form
of the interaction Hamiltonian and the Dyson series expansion of the time evolution oper-
ator. They determine which elements of Bob’s final density matrix are linearly dependent
on which elements of Alice’s initial density matrix. Moreover, they also determine at which
order in perturbation theory these contributions first arise.

This analysis of the channel’s general structure was done in [19] under the assumption
that Bob initializes his detector in its groundstate, pso = |g5)(g95|. We will first review
and discuss these results, and then generalize the analysis to arbitrary initial states of Bob.

Ground state as initial state for Bob

The dependence of Bob’s output density matrix on the elements of Alice’s input density
matrix is captured by the quantum channel £ from (3.20).

¢ [pao] = psr (3.31)

Denoting Alice’s initial density matrix as

pas =016} el +710) o+ b el + Bla ol = (12 }). (332)

it’s general structure is given by [19]
B g ~\| (P O 0A+ B ~C+~*D*
puT = ¢ [<7 5)} - (0 - P) + (7*0* +yD —9A-BB) (3.33)

The term P accounts for the noise observed by Bob and is independent of the presence
of Alice’s detector. Indeed, it is not affected by the elements of the density matrix of Alice
in (3.33). The terms that account for the influence of Alice’s detector on Bob’s detector
are those labeled A, B,C and D. A, B and P are real, while C' and D are complex. They
depend on the parameters of the detectors, their wordline, the field and the switching
function. Their lowest order contributions are:

P=X, P+ \g P+ 00\%) (3.34)
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A= N5 A+ 00N (3.35)
B = X35 By + O(\%) (3.36)
C = A Ca + O\ (3.37)
D = Mg Dy + O\ (3.38)

Here again the symbol O(\") stands for the combined powers of the two coupling constants.
The expressions for Cy, Dy, Ay, By, P, and P, are rather complex and are given in Appendix
A where some interesting points about their mathematical form are also discussed.

We can understand both the general structure of the channel and the form of the
individual terms by discussing how they originate from the perturbative expansion of the
system’s final state. Every term U®) in the expansion of the time evolution operator
in (3.21) can be expanded into 2*¥ summands, by using that the interaction Hamiltonian
(3.18) is the sum Hiy = Hint.a + Hine s of the interaction Hamiltonian for each of the
detectors. Accordingly, each pg,]? ) can be written as a sum of terms sorted by their orders in

the coupling constants A4 and Ag. In this fashion, the lowest order contribution to ppr,
which reads

: i
Py =Trar py) = Tear UM pgUM + U@ pg + pUP'| | (3.39)

contains terms of order O(X\%), O(A\3) and O(A4\g).

The terms of order O(\%) do not contribute to pp 7 because they cancel out when the
partial trace over detector A is taken. This holds true for all terms that do not contain
any power of A\g, hence no terms of order O(\%) contribute to pp 7.

The terms of order O()\%) contribute to either the upper or to the lower diagonal ele-
ment of pp . The contribution of this kind originating from U™ poU M g proportional to

les) (e, while the O()\%) contribution from U® py + poU @' leads to terms that are pro-
portional to |gg){(gs|. Although they come with different structures of nested integrals, the
coefficients of these matrix elements are equal up to an overall sign. They both constitute
Ps, the lowest order contribution to P.

It is important to remark that, as mentioned above, P is nothing but the excitation
probability of the single detector in the vacuum state of the quantum field. This quantum
noise term is independent of the presence of the second detector and it contains only terms
of order O(A%). Any terms that describe an interaction between the two detectors have to
contain powers of both coupling constants, i.e., they are O( f@)%).

The terms of order O( f4)\f§), with ¢ and j odd, always appear multiplied by v or ~*
(off-diagonal elements of A’s initial state) and |eg)(gs| or |gs)(es| (off-diagonal elements
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of B’s final state), so they contribute to the factors C' or D, which couple the off-diagonal
elements of pa and ppr as in the general structure of the quantum channel (3.20).

This means that the terms of order O(A4\p) from (3.39) are the lowest order terms
that account for any signalling from A to B if the initial state of Alice’s detector is such
that v # 0.

As all the terms contributing to ppr are of even (combined) powers in the coupling
constant, the only other class of terms contributing to the channel are of order O( Q)%),
with both ¢ and j even. These terms couple the diagonal terms of both density matrices
and hence contribute to the factors A and B in (3.20). The lowest order terms in this class
are of order O(A\}\%) as indicated in (3.35) and (3.36).

Arbitrary initial states of Bob

After the previous analysis, we now analyze the general structure of the quantum channel,
analogously, for arbitrary initial states of Bob’s detector. To allow arbitrary initial states
for both detectors, we denote the two detectors’ initial density matrices by

0 )
PAL = (,y* g) ) PBo = (;p* /‘i) . (340)

With the same kind of argument as above, that explained the structure of the channel
(3.33) in the simplified scenario, and using the tracelessness and hermiticity of the density
matrix, we can deduce that the final state of Bob’s detector for general initial states of
both detectors is of the form:

psr = Trazlpr] = Trar [U(T,0) pr U(T,0)']
(e 0 n KP4+ oQ O0R+0*S*
- \0* K R*+06S —kP — pQ
0ol +0*J kC + oG « (OJ + 0" KD+ pH*
T\kD +oH —0I—6J KC* + G* —8J* — §*I*
+9(/<:A+90E 5K+(5*L*) B( kB + pF (5M+5*N*>

5L+ 0 K* —kA— oF SN + 6 M* —kB — oF (3-41)

Here A, B, E, F, P,Q € R are real, whereas all other Latin letters stand for complex con-
stants, that depend on the parameters, the geometry and the switching functions of the
set-up. The constants A, B,C, D, P are the ones which were already introduced in (3.33).
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The constants multiplying v and v*, the off-diagonal elements of p40, are all of order
O(N\?). As discussed for C' and D earlier, all their perturbation expansions are of the form

X =M\ Xy +ONY, for X =C,D,G,H,1,J, (3.42)
whereas the terms that multiply the diagonal elements 6 and 3 of p 4 are of order O(A\*),
Y = A5+ O\, for Y = A B,E,F,K,L, M, N. (3.43)

The noise terms, which arise from the interaction of Bob’s detector with the field alone,
and which are independent of Alice’s presence

7 = XgZy+ O(Ng), for Z=P,Q,R,S (3.44)

also contribute at leading order O(A\%) in perturbation theory.

In Appendix A.2 we calculate the leading order terms in the perturbative expansion of
Bob’s final state psr in (3.41), i.e., all the O(A?) contributions to the X and Z coefficients.
Interestingly, all second order contributions to the signalling X coefficients (3.42) are given
by one of two different integral expressions (see (A.20)):

G2 - —CQ H2 == —DQ IQ = D2 J2 - 02 (345)

Such that the leading order contribution in the perturbative expansion of Bob’s final state
in (3.41) simplifies to

_ ((p 5) L\ (/iPQ +pQy O0Ry+0*S; )
PBT =\ 5+ g B\ R; + 65y —kPy— Qs

(5D2 + 6*02 (/i - 80)02
+ /\A)\B |:’Y ( (:‘i — QP)DQ —(5D2 — 5*02 + H.C.

+ 0\ (3.46)

with leading order signalling contributions

~

Cs

dty / dby xa(t2)xs(ty)e =T [ (0 4 (8)), ¢ (25(11))] (3.47)
0

1 [dty xa(tz)xp(ty)e OEmBETRATARD [0 (ty)), d(x.4(t2))] (3.48)
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and leading order noise contributions

T T
= / dty [dty xs(ty)xs(ta)e BT (3w (ts))p(ap(t1))) (3.49)
T T
Q= — [dt, /dtz X5 (t1)xp(t2)e BT (6 (pg(ty)) p(ap(t1))) (3.50)

0

0
T

Ry = —/dt1 /dtg XB(tl)XB(tQ)eiQB(TB(t1)—TB(t2))
0

x ((o(rs(t1))9(x5(t2))) + (d(25(t2))d(w5(t)))) (3.51)

T

T
SQ = dtl /dtg XB tl XB t2> —iQp(75(t1)+75(t2)) <¢<x8(t2))¢(373(t1>>> . (352)
0 0

Note that P, constitutes the leading order contribution for a single detector to get excited
from the ground to its initial state by coupling to the vacuum state of the field. This is
the term which, as mentioned in the previous section, has been extensively studied in the
literature in the context of effects as the Unruh effect, Hawking radiation and the like.

Before we go on to discuss the implications and physical interpretation of the channel
structure in the next section, it is interesting to note a couple of points on these leading
order contributions to the channel coefficients.

First we note, that the leading order signalling contributions only involve the commu-
tator of field operators which, as discussed in Section 2.3 corresponds to a homogenous
solution of the classical field equations. In particular, the commutator is independent of
the fields quantum state. Therefore, to leading order in perturbation theory, the signal
is not affected, or not sensitive, to the quantum properties of the field. In contrast, all
leading order noise contributions involve the full Wightmann function of the field, or in the
case of Ry just its real part. (The imaginary part is equal to the commutator, as discussed
in Section 2.3.) This means that only the noise contributions to the channel are sensitive
to the properties of the field’s quantum state at leading order in perturbation theory.

A second, more technical remark concerns the convergence of the integrals above. The
field operators are, strictly speaking, operator valued distributions rather than operators on
their own. Consequently, the Wightmann functions are distributions in spacetime rather
than functions on spacetime. Therefore, to guarantee convergence of integrals that involve
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the Wightmann function as above, the field operators should be integrated against test
functions, i.e., smeared detectors should be used. However, for pointlike detectors the
Wightmann function pulls back to yield a distribution on R x R corresponding to the cross-
product of the detector’s proper time with itself. (For further reference, see [74, 42, 43].)
Accordingly, integrals such as P, Q2 and Sy give well-defined finite results as long as
smooth, compactly supported or rapidly decaying test functions are used for the switching
functions x(¢).

This argument does not apply to terms with a nested integral structure such as Rs.
Due to its nested integral structure, the integration region has a sharp boundary along the
t; =ty line in the integration plane, even when the switching function itself is smooth on
R. Therefore, as far as terms with nested integrals such as Ry are concerned, the detector
needs to be smeared out by a spatial profile in order to guarantee convergence. This
aspect appears not to have been addressed in the literature before and should therefore be
interesting to study further.

3.2.3 Superposition states are optimal signalling states

When studying any quantum communication setting, it is important to find out which
states Alice, the sender, should use to encode her message in order to make optimal use
of the channel at hand. For the channel we are investigating here, we will be able to
answer this question by analyzing its action in the Bloch sphere picture in the subsequent
section. The key insight into this question, however, already follows from the perturbative
expansion of the channel coefficients that we discussed in the previous section. It was first
discussed in [39].

On first view, it might appear natural to assume that Alice should initialize her detector
in the excited state in order to achieve as strong an effect as possible on Bob’s state.
However, the discussion in the previous section shows that, actually, this is Alice’s worst
possible choice, for settings within the regime of perturbation theory.

This is because the contributions to Bob’s final density matrix that depend on the
diagonal elements of Alice’s initial density matrix 6 and 3 are all multiplied by the Y-type
channel coefficients of equation (3.43) which only contribute at order O(A%)%). As such
they are dominated by the noise contributions by two powers in the coupling constant,
since the Z-type noise terms in (3.44) are of order O(\%). For example, if Bob initializes
his detector in the ground state pg = |gg){gs| and Alice uses her energy eigenstates as
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signalling states, then Bob’s final state is given by

centead= ("0 gl ) o o= (737 L) 6

Here the signalling contributions A and B are of order O(\*) whereas the noise term is P
is of order O(\?).

In order to have a signal that competes with the noise contributions of leading order
in perturbation theory, Alice needs to make use of the X-type channel coefficients in
(3.42) which are of order O(A4A5). These are the coefficients that, in Bob’s final density
matrix (3.41), multiply the off-diagonal elements of Alice’s initial density matrix. This
is only possible, if Alice initializes her detector in a coherent superposition of the energy
eigenstates. They are the only signalling contributions that enter Bob’s final state at
leading order O(\?) of perturbation theory, as we saw in (3.46).

For example, Alice can achieve this by using states like |+) = \/iﬁ (lg) £ |e)) as signalling
states. When Bob starts out in the ground state then his final state reads

P+LA+B)  +iC+D) ). (3.54)

(|E)(£]) = ( +1(C*+D) 1-P—L(A+B)

Here the off-diagonal elements receive leading order signalling contributions at order O(\?)
which do not even compete directly with the noise term as they contribute to different
density matrix elements. The outcome of a measurement on Bob’s detector with respect
to basis of |+)-states will not be affected by the diagonal elements of the density matrix
above, but only by its off-diagonal elements. Therefore, only the signalling contributions
but not the noise contributions will affect the expectation value of such a measurement.

From the analysis of the previous section, we see that Alice needs to prepare coherent
superpositions of energy eigenstates in order to influence Bob’s final state at leading order
in perturbation theory. The analysis of the channel in the Bloch sphere picture will show
that, in fact, equal weighted superpositions of energy eigenstates are Alice’s optimal choice
of signalling states.

There is one technical, and one more intuitive explanation to this phenomenon: Tech-
nically, the reason for the suppression of signals from energy eigenstates is that they have a
vanishing expectation value of the interaction Hamiltonian. Therefore, they have a weaker
impact on the quantum field than equal-weighted superpositions of energy eigenstates.
This is because the latter, under the free time evolution of the detector, oscillate into
eigenstates of the monopole operator in the interaction Hamiltonian. More intuitively this
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can be understood by viewing the energy eigenstates of the detector as the stationary states
of a model atom. These states however, by definition, do not emit much radiation. The
radiating states of an atom are not part of its energy eigenstate basis, but are superposi-
tions of energy eigenstates. Hence, in this picture, the superposition states of the detector
could be viewed as radiating states, which explains why they have a stronger immediate
impact on the field.

The initial state of Bob is not of as fundamental importance as the initial state of Alice,
because in general his final state is always affected by some signalling contributions at
order O(\?). However, it is interesting to see that one observation from the above example
generalizes: The contributions to the off-diagonal elements of pg r are proportional to the
diagonal elements ¢, x of the initial state pgo of Bob and vice versa. This suggests that
to detect the signals sent from Alice, the final measurement on the state of Bob should be
done in a basis which is unbiased (in the sense of mutually unbiased bases) with respect
to the basis to which Bob’s initial state belongs.

It is interesting to note that the leading order signalling contributions cannot be ex-
plained in terms of the exchange of real (on-shell) particle excitations of the field. Such
processes, i.e., processes where there is a non-zero probability to detect the field in a one-
particle state after the coupling of the sender to the field are of order O(A3\%). (In terms
of Feynman diagrams they would involve one vertex at the sender’s detector and one vertex
at the receiver’s detector, resulting in an amplitude of O(A4Ag) and hence a probability
of O(A4)%).) Hence they are next-to-leading order only.

The discussion of this section, of course, is valid only for the perturbative regime.
Beyond the perturbative regime, for long interaction durations between the detectors and
the field, e.g., the role of particle exchange processes may be more important. To address
this aspect, non-perturbative methods would have to be applied.

However, within the perturbative regime, by definition, the leading order dominates
over next-to-leading order terms. We now understand that, in this regime, superposition
of energy eigenstates are the optimal choice of signalling states for Alice.

3.3 Bloch sphere picture of channel

The Bloch sphere picture gives a geometric interpretation of a qubit’s state space, and
of the action of qubit quantum channels. For the channel between two two-level Unruh-
DeWitt detectors it is particularly useful in order to understand which signalling states are
Alice’s optimal choice.
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We begin with a brief review of the Bloch sphere picture and the representations of
qubit channels, i.e., quantum channels mapping qubit states to qubit states, in the Bloch
sphere picture. Then we derive the Bloch sphere representation for the channel studied
above for a couple of different initial states of Bob’s detector.

Introductions to the Bloch sphere picture are part of most textbooks on quantum
information, such as [64, 86]. An introduction to the Bloch sphere representation of qubit
channels is found in [67], and the references therein.

3.3.1 The Bloch sphere

Because a qubit density matrix p is a hermitean matrix with unit trace, it can be written
in terms of the Pauli matrices

0 1 0 —i 1 0
O'X:(l 0), O'y:(i 01), O'Z:(O _1), (355)

as
11
p=§(H+p-0)=§(H+PXUx+pYUY+PZUZ)
L 14+pz px—ipy
— - . : 3.56
2(px+1py 1 —pz (3.56)

and represented by a real, three-component vector g = (px, py, pz). The coefficients of the
vector are exactly the expectation value of the state for a measurement of the observables
of the corresponding Pauli matrices.

px =Tr(pox) = (X) py =Tr(poy) = (Y) pz="Te(pos)=(Z).  (357)

This uses that Tro;o; = 2075, which holds including for the identity matrix oq = I.

In the Bloch sphere picture the state space of a qubit is represented as the unit ball
in R3. Pure states are represented by points on the unit sphere, whereas mixed states
correspond to points lying within the unit ball. The coordinates of the point representing
a particular qubit states are exactly given by the three-vector = (px, py, pz).

The connection is easy to see for a pure qubit state. Any given pure qubit state [¢))
can be expressed with respect to the basis {|+Z2) ,|—Z)} in terms of two angle parameters
6 € [0,7] and ¢ € [0, 27], as

) = cosg 4+Z) + ¢ sing |—Z). (3.58)
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These angles can be viewed as the spherical coordinates of the point representing the state
|¢)) on the unit sphere in R?, which in this context is referred to as the Bloch sphere. In
terms of these angles, the state’s expectation values for the measurements of the Pauli
matrices are

0 0
(X)=cos¢ (Y)=sing (Z)=cos? 3 sin? 5 = cos 6. (3.59)
These are exactly the cartesian coordinates of a point on the Bloch sphere with polar coordi-
nates (6, ¢), which motivates the identification of the vector coefficients in g = (px, py, pz)
with the cartesian coordinates of the state in the Bloch sphere. The state |1)) can also be
rewritten in terms of its Pauli matrix expectation values as

1 +2<Z> 2] _2<z>

¥) = (X) +1(Y)) [-2). (3.60)

The density matrix of mixed states is characterised by their square not having unit
trace. In the case of a mixed qubit state we have

<Tr(p’) <1 (3.61)

DN | —

In terms of the three vector representation this means that the norm of the vector p is
|p] < 1, because the norm of a state’s Bloch vector is determined by the trace of the
squared density matrix.

1 (L+pz)  (px—ipy)\ _ 1 L1
Trp?==T . = —(1+ p? 2 2y=Z 4= 3.62
rp 1 r((px+lpy) (1—Pz) 2( +pZ+pY+pX) 2"'2‘5‘ ( )

In the following we will use the convention that identifies the excited state |e) of a two-level
qubit detector with the |[+Z) state.

3.3.2 Calculating the Bloch sphere picture of a channel

In the Bloch picture, any given qubit channel & : p; — p, can be represented by an affine
map acting on R3 as

R?® — R?
pi = po = Ap; + U, (3.63)
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where A is a real 3x3-matrix and ¢/ is a constant, real 3-vector [47, 7]. In order to determine
A and ¥ it is therefore sufficient to know the action of the channel on one eigenstates of
each Pauli matrix, and the completely mixed state, since the Pauli eigenstates correspond
to a basis of R? in the Bloch sphere picture

4X) = (1,0,0) |[+Y)=(0,1,0) |+2)=(0,0,1) (3.64)

and the completely mixed state corresponds to the null vector 0 € R3. Therefore the image
of the completely mixed state determines v, and consequently the image of the three Pauli
eigenstates can be used to derive A. These calculations are possible by a straightforward
application of the identifications between qubit density matrices and the Bloch sphere that
we discussed in the previous section.

For evaluation using a computer algebra system, we have found the following ansatz very
convenient and efficient. Instead of evaluating the channel for the states corresponding to
the four vectors (1,0,0),(0,1,0),(0,0,1),(0,0,0), we evaluate the channel for the density
matrices corresponding to the Bloch vectors (¢,0,0), (0,¢,0) and (0,0,¢) for some real
variable t.

pxt=§ (%(H +tUX)) pyy =& (%(H—l- tOY)) pzi=§ (%(H + thz)) : (3.65)

By grouping the Bloch vectors that correspond to these density matrices into the columns
of a 3x3 matrix, we obtain

(p)?,tv p}_},t) pg,t) = tA + (Ua 177 17) . (366)

From this matrix both A and ¢ can be easily obtained as the coefficients with respect to
zeroth and first order in ¢ by a computer algebra system.

3.3.3 Single Detector

We can also use the Bloch sphere picture to analyze how a single detector is affected by
the interaction with a field, because the map from a single detector’s initial state to its
final state is a quantum channel map as well. Therefore, the impact of the interaction with
the field, and its correlations along the worldline of the detector, can be represented in the
Bloch sphere picture.

The Bloch sphere picture gives an intuitive description of the change of a detector’s state
under the interaction with the field. This is in particular helpful to address scenarios as in
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[57], which show that quantum gates could be performed on two-level detectors through
relativistic motion in adequately prepared quantum fields in one-dimensional cavities.

The general form of a single detector’s state after coupling to the field was already
contained in the general form of the sender’s final state that was discussed in equation
(3.41). If the sender is not coupled to the field then this states exactly corresponds to
the situation where the sender is alone and only coupling to the vacuum state of the field.
Hence the final density matrix of a single detector coupling to the field has the form

(e 6 KP4+ oQ O0R+0*S*
pm“‘@*m)+<ﬁmww5-%P—¢Q ) (3.67)

where we used the same notation as in (3.41), i.e., the detector’s initial state is given by

paozz(gi 5) (3.68)

K
and the coefficients P, Q, R, S are the same as introduced before in Section 3.2.2.

As mentioned before, the coefficient P denotes the probability for a detector that started
out in the ground state to be found in the excited state after the interaction with the field.
It has therefore been the subject of extensive study in the literature. It is easily seen that
() analogously denotes the deexcitation probability of an initially excited detector. The
Bloch sphere picture of the channel will yield a similarly intuitive interpretation of the
remaining R and S coefficients.

Applying the method described in the previous section to the channel pgo — pgr, and
identifying |e4) = |[+Z) and |g4) = |—Z), we obtain

1+ R(R)+R(S) S(R)+3(9) 0 0
per = —S(R)+S(S) 1+R(R)—RN(S) 0 pBo + 0
0 0 1-P+Q P+@Q
R(R)+R(S) HR)+3(9) 0 0
=po+ | =S(R) +3(S) R(R) — R(S5) 0 po + 0 : (3.69)
0 0 Q—-P P+Q

The action of the matrix can be understood in terms of its singular value decomposition.
For this we first write R = |R|e!® and S = |S|e!?s, such that R(R) = cos¢gr|R| and

S(R) = sin ¢g|R|, and analogously for S. In this notation the singular value decomposition

[64] expresses the matrix as the product

R(R) +R(S) S(R)+3(S) 0
~3(R)+3(S) R(R)—R(S) 0 |=UoOMO" (3.70)
0 0 Q-P
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with the rotation matrices

cospr singr 0 coS ‘m%% —sin % 0
U= | —singr cos¢r O 0= sin% cos% 0 (3.71)
0 0 1 0 0 1
and the diagonal matrix
|R| + |S| 0 0
M = 0 |R| — |S] 0 . (3.72)
0 0 Q—-P

We can view the action of this matrix as the composition of rotations about the Z-axis
and a multiplication by the diagonal matrix M.

Altogether, the effect of the interaction with the field on a single detectors state can be
described as follows in the Bloch sphere picture: Mostly, the final state remains close to
the initial state, since the initial state pgo occurs on the right-hand side of (3.69) above.
However, a correction vector is added to the original state vector. The correction along the
Z-axis consists of a shift, whose size is determined by the coefficients P and ), and the
detector’s initial expectation value of (Z). The correction in the X-Y-plane of the Bloch
sphere is obtained by a series of rotations, determined by the complex arguments of the
R and S coefficients, and a stretching, determined by the absolute values of the R and S
coefficients

It is interesting to note, that if the initial state of the detector is pure, the correction
vector that is added to the initial state vector has to be inward pointing, so as to connect
the initial state to a valid physical final state within the Bloch sphere. This indicates that
the final state after the interaction typically will be a mixed state, which is to be expected
since the interaction will generally entangle the detector with the field.

3.3.4 Bloch picture of the channel between two detectors

We now derive the Bloch sphere representation of the channel between two two-level Unruh-
DeWitt detectors. Expressing it as a map of the form

pao = ppr = Npao+ U (3.73)

will give a geometric picture of how Alice’s initial state Bloch vector needs to be contracted
and shifted in order to obtain Bob’s final state. We will do this analysis for three different
types of initial states of Bob: For Bob starting out in the completely mixed state, for
Bob starting out in an energy eigenstate, and for Bob starting out in an equal weighted
superposition of energy eigenstates.
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Receiever initialized in the completely mixed state

It arguably could be easier to initialize a two-level system in the completely mixed state
rather than in a pure initial state. Therefore, it is interesting to ask if the completely
mixed state is a viable choice for Bob’s initial state.

If Bob starts out in the completely mixed state, then it follows from equation (3.41)
that the channel takes the form

R(C+D+G+H) S(C+D+G+H) 0
ppr=5|S(D+H-C=G) R(C+G-D-H) 0 po
0 0 A+E—-B-F
0
+ 0 (3.74)

P+Q+3i(A+E+B+F)

in the Bloch picture. The channel matrix bears some similarity with the case where Bob is
initialized in an energy eigenstate, which we investigate below. However, we notice that the

leading order signalling contribution to this channel vanish, since as discussed in equation
(3.45), we have Gy = —Cy and Hy = —Ds.

Therefore, if Bob is initialized in the completely mixed state, any signal from Alice
only affects Bob’s final state at order O(A*), which is sub-dominant to the vacuum noise
of order O(\?) as discussed before. This suggests that Bob needs to initialize his detector
in a pure state in order to be sensitive to Alice’s signal at leading order in perturbation
theory.

Receiver initialized in energy eigenstate

The scenario where Bob initializes his detector in the ground state, is the one that was
considered first in the literature in [19], and also Chapter 4 is focussed on this setting. We
first encountered this channel in equation (3.33). Applying the methods discussed above,
we find that its Bloch picture representation is

R(C)+R(D) S(C)+3(D) 0 0
per=|—S(C)+S(D) R(C)-R(D) 0 |pio+ 0 . (3.75)
0 0 A-B 2P+A+B—1

where the coefficients P, A, B,C, D are the ones defined earlier for the density matrix
picture. As expected, we see that Bob’s detector remains close to its initial state, the
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ground state represented by the Bloch vector (0,0, —1), up to corrections determined by
the channel coefficients P, A, B, C, D.

The matrix that appears above has the same structure as the matrix that we already
analyzed for the single detector channel. Accordingly, it has a similar singular value com-
position. Writing C' = |C|e'?¢ and D = |D|e? we obtain

R(C)+R(D) S(O)+3(D) 0
R

-3 (C)+ (D) (C)—R(D) 0 = UOMO"™ (3.76)
0 0 A—-B
with
cospc  singe 0 cos @%m —sin ¢C;¢D 0
U= | —singc cosoc 0 O = | sin @ oS ¢C;¢D 0 (3.77)
0 0 1 0 0 1
and the diagonal matrix
|C| + | D] 0 0
M = 0 |C| — | D] 0 : (3.78)
0 0 A-B

It is also possible to choose the diagonal matrix positive, by instead using

|C+ |D| 0 0
M= o =Dl o
0 0 |A — Bj
([ cos¢e  sinode 0
—singc  cos ¢ 0 if |C| > |D|
0 0 A-B
U = , sen ) (3.79)
cos¢p sin¢p 0
—singp cosép 0 if |C| < |D|
\ 0 0  sgn(A—B)

whereas O remains unchanged.

The geometrical Bloch sphere picture of the channel’s action is now clear, and a sketch
of it is given in Figure 3.1: The Bloch sphere of all possible initial states that the sender
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Figure 3.1: Sketch of the set of final receiver states, if the receiver is initialized in its
ground state |gg). The Bloch sphere of the sender’s possible initial states is contracted to
an ellipsoid close to the receiver’s ground state. The ellipsoid’s diameter in the X —Y -plane
is determined by the absolute values of the C' and D channel coefficients. The ellipsoid’s
diameter along the Z-axis is determined by the A and B coefficients.

can choose from is contracted to an ellipsoid which lies close to the receiver’s initial ground
state. The centre of this ellipsoid always lies on the Z-axis.

The key observation is that the ellipsoid’s diameters along the X-axis and the Y-
axis are determined by the C' and D coefficients, whereas the diameter along the Z-axis is
determined by the A and B coefficients. As discussed earlier, the C' and D coefficients are in
the class of signalling contributions that are of leading order in perturbation theory, whereas
the A and B coefficients only enter subdominantly in next-to-leading order. Therefore, in
general, the diameter of the ellipsoid in the X-Y-plane is of order O(\?) whereas it is only
of order O(A\) along the Z-axis.

Due to the block structure of the channel matrix, the Z-component of the final state
of the receiver depends only on the Z-component of the initial state of the sender, and
the final X-component and Y-component depend only on the initial X-component and
Y-component of the sender. Whereas the relation of the Z-components is just linear, the
action of the channel in the X-Y -plane consists of a sequence of rotations and a contraction:
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First, Alice’s initial state vector is rotated around the Z-axis by the angle A¢ =
Then the diagonal matrix D is applied which contracts the state vector. If Alice’s initial
state is aligned optimally, then it is contracted by the factor |C| + | D|, in the worst case it
is contracted by the factor |C| — |D|. Afterwards the state vector is rotated further around
the Z-axis, this time by the angle A¢ = —@.

__¢c+9p
5.

What does this imply for Alice’s choice of signalling states? In the Bloch sphere picture
the distance between two state Bloch vectors gives their trace distance

1 1.
D(p1,p2) = 5 It (p1 — p2) = 5 |71 — o] (3.80)

which is a measure for the distinguishability of two states. It corresponds to the probability
of correctly identifying one state out of a pair of states in a single measurement [64].
One would intuitively expect that Alice has to choose her signalling states such that the
corresponding final states of Bob’s detector have maximal distance from each other in the
Bloch sphere picture. In the subsequent section we will see, that this intuition is correct for
single, and sequential uses of the channel. For multiple, parallel uses Section 3.4.3 shows
that still a pair of input states maximizes the Holevo capacity of the channel. However,
this are not strictly orthogonal to each other and, thus, the corresponding output states
do not maximize the trace distance.

In order to send a signal to Bob that leaves his state in one of two possible state
that Bob has the highest probability of telling apart successfully, Alice needs to choose
her initial state such that Bob’s final state lies on either end of the ellipsoid’s longest
semi-principal axis. From the geometric interpretation of the channel that we discussed
above, we know that this semi-principal axis lies in X — Y-plane and has a length of
2(|C] + |D|) ~ 22425 (|Cs] + | Do]) + O(AY). Alice can achieve this by using the initial
states with Bloch vectors

vy =+ (cos (@) , sin (@) ,O> (3.81)

which correspond to the two pure orthogonal input ket states

5 (
=—1|leq) + €
’w:lz> \/5 | A>
These lead to the optimal possible trace distance between Bob’s corresponding final states
which is

i¢c+¢D
2

9.4)) (3.82)

%Tr () (W) = E(10-)(¥-])) = |Cal + [ Da] + O(XY). (3.83)
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The behaviour of the channel if Bob initializes his detector in the excited state pg o =
(0,0,1) = |ep){ep| instead of the ground state, is completely analogous. When Bob starts
in the excitedet state, the Bloch representation of the channel takes the form

R(H)+R(G) I(G)+ S (H) 0 0
per= | —S(G)+S(H) —RH)+R(G) 0 ) pio+ 0
0 0 E—-F 14+2Q+F+F
(3.84)
Since Gy = —C5 and Hy = — D>, the leading order signalling contributions are the same up

to an overall sign. Therefore the results from above, for the ground state as Bob’s initial
state, carry over to the scenario with the excited state as Bob’s initial state.

Using the Bloch picture representation we are able to confirm our earlier result, that
Alice’s optimal signalling state are superposition of energy eigenstates, that lie in the
equator of the Bloch sphere. In the Bloch picture we are also able to readily identify
the signalling states that maximize the trace distance between Bob’s corresponding final
detector states.

Here, in the scenario where Bob initializes his detector in an energy eigenstate, he will
have to tune the measurement of his final state to the complex arguments of the complex
channel coefficients Cy and D,, in order to distinguish the two output states lying on the
opposite poles of the ellipsoid of possible output states.

Receiver initialized in equal weighted superposition of energy eigenstates

The optimization of Bob’s final measurement can be traded against an optimization of
Bob’s initial state, as we will see now. This is possible, when Bob initializes his detector in
an equal weighted superposition of energy eigenstates, where the precise relative phase of
the superposition state as to be optimized according to the complex values of the channel
coefficients. Then, Bob can simply perform a final measurement in the energy eigenbasis
in order to optimally use the leading order signalling contributions from Alice’s signal.

We assume that Bob initializes his detector in a pure state on the equator of his Bloch
sphere, i.e., we have

pEo = | sin(r) (3.85)
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for some real parameter r. Under this assumption, the channel takes the following form

RC+D+G+H) S(C+D+G+H) 0
ppr =5 |S(=C+D-G+H) S(C-D+G—H) 0 PA0
0 0 A-—B+FE—-F
0 0 sR(K+L—-M-—N)
+ cos(r) O 0 sS(—K+L+M—N) | pio
R(I ST+ J) 0
0 5S(K+L—M-—N)
+ sin(r 0 SRIK—L—-M+N) | pio
(=1 +J) 0
1 cos(r)2+2§RR+S)+§R(K+L+M+N)
+3 cos(r)2¥(—R+5)+(—K+L—M+N))
0
1 sin(r)(2S(R+S) + (K + L+ M+ N))
+ 5 | sin(r) 2+ 2R(R - §) + R(K — L+ M = N))
0
] 0
+5 0 . (3.86)

2P+Q)+A+B+E+F

The leading order, O(\?) contributions to the channel have a very simple form. Using
again that Cy = —G9 and Dy = —Hy we have

PBT =

0 0 0
s ( 0 0 0)
cos(r)R(I2 + J2) + sin(r)S(le — J2)  cos(r)S(I2 + J2) + sin(r)R(—I2 + J2) 0
cos(r)(1 + R(Ra + S2) + sin(r)I(Ra + S2)
+ )2 (cos(r)%(Rz + S9) +sin(r)(1 + R(Ry — 52))) + 0O\
P+ Q2

(3.87)

So the optimal choice of signalling states for Alice, that to leading order in perturbation
theory maximize the trace distance between Bob’s corresponding final states , lie on the
equator of Alice’s Bloch sphere again, i.e., are equal-weighted superpositions of energy
eigenstates, as we expected.
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Bob can detect the signal by measuring his detector in the energy eigenbasis. Assuming
that Alice’s input state is px o = (cos(s), sin(s), 0) we have
(Zp) = A cos(s) (cos(r)R(Iy + Jo) + sin(r)S(ly — J2))
+ AaAgsin(s) (cos(r)S(L + J2) +sin(r)R(—L + J2)) + 2ls(Po + Q2) + O(Y)
(3.88)
for the Z-component of Bob’s final state.

Through the choice of Bob’s initial state Alice’s influence on this expectation value can
be maximized. For this Bob needs to choose his initial state with r = r,, := %(arg(lg) —
arg(J2)), and Alice uses initial states pao = £(cos(sp,), sin(s,,),0) with

COS ng<12 + JQ) — sin T’m%(fg - JQ)

ans cos(7m ) R(L2 + J2) + sinr, (L — Jo) (3:89)
Then the expectation values are
(Zp) = Ng(Pr + Q2) £ Aads (o] + | Ja]) + O(NY), (3.90)

which yields a trace distance of Ay Ag(| 2| +|J2|) + O(A*), which is identical to the maximal
trace distance in the previous scenario of AgAg(|Cs| + |Da|) + O(A?), because Cy = J, and
Dy = 1I,.

This already suggests |Cs| + |Ds| as an estimate for the channel capacity of signalling
between two Unruh-DeWitt detectors. We will find this confirmed by the discussion of
different communication tasks, and channel capacities in the following section.

3.4 Classical channel capacity

In the previous section we saw that the maximum influence Alice can take on Bob’s final
state, as measured by the trace distance between output states, to leading order is ~
A2(|Cy| +]Ds)), i.e., determined by the integrals that where defined in equations (3.47) and
(3.48). If Alice wants to use this influence in order to transmit information to Bob, her
signal has to compete with the local vacuum noise, that Bob’s detector is experiencing,
and which also is of leading order O(A?). Of course, the noise will never render the channel
capacity equal to zero, since, as for all communication channels, any non-zero signal-to-
noise ratio guarantees a non-vanishing classical Shannon channel capacity. However, the
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question is how far the classical capacity will be reduced, as the noise here is comparable
to the signal strength.

We will discuss this questions from three different point of views: We are going to
analyze a scenario where Alice has to transmit one classical bit to Bob, in a single use
of the channel. Here, we find that the noise actually has no impact on the probability of
Bob correctly deducting Alice’s bit from the measurement on his detector. Allowing for
repeated uses of this protocol, which constitutes a so called binary asymmetric channel,
we calculate the resulting Shannon channel capacity. Finally, using a result by Berry [6],
we derive a perturbative expansion of the Holevo capacity of the quantum channel, for the
scenario where Bob initializes his detector in the ground state.

In all these analyses, the resulting capacities depend on the quantity |Cy| + | D2/, which
motivates the use of this quantity as an estimate of the channel capacity between two
Unruh-DeWitt detectors.

3.4.1 Transmission of one bit from Alice to Bob

A very basic way to assess a qubit channel’s capability to transmit classical information is
to try to transmit one bit from Alice to Bob by a single use of the channel. What is the
success probability of Bob correctly inferring the bit Alice was sending him? As we will see
now, this probability is determined by the trace distance between Bob’s final states that
we discussed above.

For the analysis of this information task we assume that Alice and Bob can agree and
optimize their communication protocol beforehand. They both know where and when they
will couple to the field and can optimize Alice’s pair of input states, in which she encodes ‘0’
and ‘1’ respectively, as well as they can optimize Bob’s initial state and final measurement.

Then, Alice is given a randomly selected bit, she chooses her initial state accordingly
and couples her detector to the field. Bob initialized his detector in the previously chosen
input state, couples his detector to the field in order to detect Alice’s signal, and after
decoupling his detector performs a (projective) measurement on his detector. Since we are
working with two-level detectors, this measurement has two possible outcomes. In case of
the first outcome Bob will guess that Alice was sending him a ‘0’; in the case of the other
outcome he will guess ‘1.

Bob’s probability of guessing correctly increases above % exactly by the trace distance
between the two states. Therefore, using the results from the previous section, Alice
and Bob can maximize the probability of Bob guessing the original bit correctly by Alice
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choosing her signalling states for ‘0’ and ‘1’ such that trace distance between the resulting
final states of Bob is as large as possible.

Bob has to choose his measurement as the projection onto a pure qubit state whose
Bloch vector is parallel to the semi-axis along which the two possible output states of
his detector are aligned. For example, if Bob initializes his detector in an equal weighted
superposition of energy eigenstates, as discussed at the end of the previous section, then
his final states lie on the Z-axis of the Bloch sphere, so that Bob will make a measurement
with respect to one of the energy eigenstates of his detector. This is the scenario that was
considered in [40].

Of course, the measurement outcome after which Bob will guess ‘1’ is the one that is
more likely when Alice did encode ‘1’. We denote the probability that Bob will measure
and guess ‘1’ when Alice encoded ‘1’ by p. The probability that Bob measures and guesses
‘1’ despite Alice actually encoding ‘0’ we denote as q. The diagram Figure 3.2 shows that
Bob’s probability of guessing the bit correctly is

—_

1
Pyt = 3 +=(p—q). (3.91)

N}

However, %(p — q) is exactly the trace distance between the two possible final states of
Bob’s detector. The results in the previous section showed that this trace distance can be
maximized such that the success probability for the transmission of one bit in a single use

of the channel grows as

1
Phiv = 5 + AaAs (|Cof + | Def) + o). (3.92)

As anticipated, the quantity |Cy| + |D2| gives the leading order improvement in Bob’s
probability to guess Alice’s bit correctly.

This transmission of one bit in a single use of the channel was first discussed in [40],
however there, in equation (5), the optimization over Alice’s and Bob’s initial states was
not performed yet. Also, in [40], Alice was assumed to encode ‘1’ by coupling her detector
to the field whereas to encode ‘0’ she would not couple to the field at all. Using two
orthogonal input states, as above, doubles the gain in success probability since it doubles
the trace distance between Bob’s possible final states. (Also we note that in [40] in the
caption of Figure 2, and the corresponding passage in the text, the success probability
should read 1 + 1]S(t)| instead of 1 + |S(¢)].)
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Figure 3.2: [40] The success probability for the correct transmission of one bit in a single
use of a binary asymmetric channel is 3p + 3(1 — ¢) = 5 + 5(p — ¢), assuming p — ¢ > 0.

3.4.2 Capacity as a classical binary asymmetric channel

The protocol developed in the previous channel for the transmission of one bit constitutes
what is known as a classical binary asymmetric channel [77]. These are channels where
the sender can choose between two possible inputs which modulate the probability of the
receiver’s outcome, just as sketched in Figure 3.2. The classical Shannon channel capacity
of theses channels is known to be [77]

—qh h p-hg
Clp.q) = —2 (o) + phlg) + log, <1+2h( 3*5)) (3.93)

with the binary entropy function [77, 64]
h(z) = —zlogy(x) — (1 — x)logy (1 — x), (3.94)
where the classical capacity measures the number of bits that can reliably transmitted per

channel use in the limit of large numbers of channel uses [64, 76, 86].

To adopt this formula to the signalling between Unruh-DeWitt detectors, we assume
the following perturbative expansions for p and ¢

pNP0+)\2(P2+SQ)+)\4(P4+S4)+O()\6)
q~ Py+ N (P — So) + N (P, — Sy) + O\ (3.95)

which yields

i 1 S5

~ A
¢ 21112P0(1—P0)

+ O, (3.96)
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In our case Py + A\2P, + ... corresponds to the noise contributions, that are independent of
Alice’s presence, to the probability for Bob to find a measurement outcome corresponding
to ‘1’. This means F, is the probability for Bob to detect ‘1’ in his original initial state.
This probability will typically be %, because Bob’s final measurement typically has to be
performed with respect to a basis that is unbiased to his initial state, as we observed
in our earlier discussion. The coefficient Sy is simply Sy = |Cs| + |Ds|. Hence, setting

A = A4 = A, altogether we obtain
2
C e X (1G] + Do) + O (), (3.97)

This expression is only a lower estimate for the asymptotic behaviour of the classical
capacity of the channel between two Unruh-DeWitt detectors, because we are restricting
Alice and Bob to use the channel as a classical channel in each round of use, and do not
allow Bob to perform joint measurements on the output. However, from this result we can
already tell that the channel’s classical capacity is robust against the noise in the channel,
at least as far as the asymptotic behaviour in the coupling constant is concerned.

3.4.3 Holevo capacity

We close this section by deriving an expression for the full Holevo capacity for the quantum
channel between two Unruh-DeWitt detectors assuming that the receiver initializes his
detector in its ground state. For this we use results by Berry [6].

The Holevo capacity of a channel, is the number of classical bits that can reliably
transmitted per use of the quantum channel in the limit of large numbers of channel uses,
if the sender is restricted to encode separable states over the different channel uses, whereas
the receiver is allowed to perform joint measurements on all obtained outputs [64, 86, 6].
It is given by

C(€) = sup S(E(p) = D piS(E(p) (3.98)
{piypi} i
with the von Neumann entropy S(p) = — Trplog, p. The optimization is taken over

ensembles of signalling states where the individual signalling states p; appear with relative
frequency p;, which implies ) . p; = 1. We denote by p = . p;p; the average input state
of the ensemble.

The Holevo capacity can also be computed by the following min-max formula [75, 6]

C/(€) = min max D (€(p0)]€(2)) (399
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where the maximum is taken over all input states of the receiver, the minimum is taken
over all average states of ensembles of input states, and

D(p1|p2) = Tr (p1 logy p1 — p1 logs po) (3.100)

denotes the relative entropy.

As discussed in [75, 6], and the references therein, it is generally known that for noisy
channels ensembles of pure signalling states are optimal. Also the number of states in an
optimal ensemble of a state acting on a Hilbert space of dimension d does not exceed d?. For
qubit channels, there are known examples that have optimal signalling ensembles consisting
of four states. Interestingly, even if the qubit channel only requires optimal ensembles of
two states, these states aren’t necessarily orthogonal if the channel is non-unital, i.e., if it
maps (some) pure input states to mixed output states.

In [6], Berry discusses and characterizes a class of qubit channels for which the optimal
signalling ensembles contain only two states. These channels are assumed to have a Bloch
sphere represenation of the general form

my 0 0 0
>0 my 05+ (0 (3.101)
0 0 ms t

for real-valued constants my, mo, ms,t. This does not seem to match the Bloch represen-
tation of the channel when Bob initializes his detector in the ground state which we found
in (3.75), because the channel matrix there was not diagonal. However, from the singular
value decomposition of the channel matrix, we see that the channel £ can be written as

f = FUO e} f, o) Fotr, (3102)

where I'yo and I'gtr are the unitary channels induced by the matrices O and U in equation

(3.77). These will not change the capacity of the channel, and therefore the capacity of &

is identical to the capacity of & which is of the desired from above, with m; = |C| + | D|,
mye =|C|—|D|,m3=A—Bandt=2P+ A+ B — 1.

Defining m,,, = max(|m;|, |ms|) Berry shows that if m,, > |m3| and

t2 2 ) )

—— 5 —1+m, +1" <0 (3.103)

Moy, — M3

then there is an optimal ensemble consisting of two states. These states, in the Bloch sphere
picture, lie equidistant from the Z-axis, on a line perpendicular to and intersecting the Z-
axis (Theorem 2 of [6]). This criterion holds in our case, since |C|+|D| ~ A2(|Cy|+|Da|) >
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A— B~ )\4<A4 — B4), and

t2 2

2 2 2 4

and P; is always positive. Because in our case m; = |C|+ |D| > |C| — | D| = my these two
optimal states also lie in the X-Z-plane of the Bloch sphere. Berry gives a determination
equation for the angle 6 that the Bloch vectors of the optimal states enclose with the
Z-axis. For our case it yields a perturbative expansion of

s )\2 (A4 — B4) IH(A2P2>

AN 3
b~ 35— B + O, (3.105)

This means that to zeroth order the optimal pair of signalling input states for Alice lie on
opposite poles of the Bloch equator and are hence orthogonal states. The leading order
perturbative correction moves the location typically below the Bloch equator, such that
the states are not strictly orthogonal to each other anymore.

However, a perturbative expansion of the resulting channel capacity shows, that this
correction to the optimal angle is irrelevant to the leading order behaviour of the channel’s
Holevo capacity. Thus the leading order contribution to the Holevo capacity is also achieved
by the pair of orthogonal input states.

The Holevo capacity of the channel £ expands as

(ICo| + | Do])?

N_41 2
O~ =N (NP2

+ O\9). (3.106)
Due to the logarithm of the leading order noise contribution, In(A?/,), the leading order
behaviour of the Holevo capacity is of higher order than the O(A\?) behaviour that we
derived for the use as a binary asymmetric channel. The smaller the noise is, the closer
to pure states are the final states of Bob, since the centre of the ellipsoid of output states
moves closer to the boundary of the Bloch sphere. This results in an advantage if Bob
uses joint measurements on multiple output states, which is a strategy captured by the
Holevo capacity. As before we see that the quantity |Cy| + |Dy| features as the signalling
contribution that determines the channel’s capability to transmit classical information to
leading order.

If 2P, — 0 could be made arbitrarily small, then it seems as if the leading order
contribution to the Holevo capacity C' could be made arbitrarily large, which appears to
be unphysical. However, we note that to achieve very small values of P, typically smooth

63



switching functions have to be used, and the detector has to be coupled to the field for a
long time. As we will see in Chapter 5, this generally leads to a decrease of the size of |Cs|
and |Ds| which overall could lead to a decrease of the leading order contribution to C.

The Holevo capacity that results from restricting Alice’s possible input states to her
energy eigenstates, i.e., only optimizing over p; but dropping the optimization over p;, is
discussed in [19]. For this pair of input states a closed form expression for the capacity
was found in terms of the coefficients P, A and B.

3.5 Conclusion

The main result of this chapter is the estimate for the leading order signalling strength
between two two-level detectors, which is given by

|Ca| + | D] (3.107)

with Cy and D, as defined in (3.47) and (3.48). We can use this term as a measure for
the signalling strength, because we have shown that it sets the leading order contribution
to the successful transmission of a single bit, to the channel capacity of the associated
binary asymmetric channel, and to the Holevo capacity for the transmission of classical
information through the quantum channel.

We see that Alice, in order to achieve leading order signalling effects, needs to initialize
her detector in superpositions of energy eigenstates. Signals from energy eigenstates only
occur at next-to-leading order in perturbation theory.

Bob can detect leading order signalling effects even when he starts out in an energy
eigenstate. However, he will have to optimize the basis for his final measurement accord-
ing to the physical parameters of the interaction in order to optimally detect the signal.
This measurement basis will then consist of equal-weighted superpositions of the energy
eigenstates. Alternatively, Bob can use a final measurement in the energy eigenbasis, if he
optimizes his initial state so as to be optimally sensitive under the given physical parame-
ters of the coupling.

Chapter 5 looks at the leading order signalling strength of both lightlike and timelike
signals, between detectors at rest and also detectors in relativistic motion. However, first,
in Chapter 4, we use the quantum channel framework to explore what finite number of
modes is required to accurately reproduce the relativistic properties of a quantum field,
e.g, in numerical calculations.
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Chapter 4

Relativistic Accuracy with Finite
Numbers of Modes

Note: This chapter largely consists of adapted and extended parts of [39)].

The original motivation for the study of the quantum channel between Unruh-DeWitt
detectors is to develop an information-theoretic framework for the study of information
propagation in relativistic quantum field theories. In this chapter, however, we apply
the framework to a slightly different question that could be phrased as: which models of
quantum fields in cavities are relativistic enough?

When modelling quantum fields in optical, or microwave cavities typically only finitely
many modes of the field are taken into account. On one hand, this is a practical necessity
in any numerical computation. On the other hand, it is also physically founded since the
frequency range of real cavities is always limited. Most importantly, the few-modes or
even single-mode models are justified by their successful description of many experimental
implementations of light-matter interactions. A well-known example of this is the Jaynes-
Cummings model. It can be derived from the Unruh-DeWitt interaction hamiltonian
through single-mode, and rotating-wave approximations.

Generally speaking, the finite-mode number approximations are valid in what one could
call the Galilean regime. This would be the regime, where it is irrelevant that the prop-
agation velocity of signals is bounded, and interaction times are long with respect to the
propagation time of the signal. In this regime, it is of less importance that models which
take into account only a finite number of modes do violate relativistic causality by allowing
for faster-than-light signalling [5]. For example, if localized detectors were able to couple
to just a single mode of the field, this could be used for faster-than-light signalling, because
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interacting with a single mode is a highly non-local operation. The mode fills the entire
space and, therefore, any change to the state of the mode could immediately be detected
by any other detector having access to the single mode at a different point in space.

As discussed earlier, the causality of quantum field theory is encoded in the lightcone
structure of the commutator, which strictly vanishes at spacelike separations. It follows
from this sharply defined support of the commutator, that an infinite number of modes is
necessary to obtain a strictly causal description of the quantum field: A finite number of
modes can only resolve the sharp light cone structure of the commutator up to some limited
accuracy, and will exhibit the Gibbs overshoot phenomenon at the light cone boundary.
(See also [88].)

In this chapter we investigate how many field modes are necessary to suppress non-
causal effects below some desired level of accuracy, in order to obtain a description of
matter-light interactions that is valid beyond the non-relativistic regime.

In parts our approach is inspired by the so-called Fermi problem first posed by Fermi
in [27]. This is the question how fast one atom in some excited state can cause another
atom, prepared in its ground state at some distance, to get excited by the transmission of
excitations via the quantum vacuum of the electric field. How would causality, and a finite
propagation speed of the excitations be guaranteed given that the Wightman function
of the field is non-vanishing at spacelike separations? This question is addressed in an
extended body of literature, including several rediscoveries of the question and its solution.
A brief but very interesting review of the problem’s history is given in [24].

In essence, the resolution to the Fermi problem is to carefully consider which measure-
ments a localized observer can perform, having access only to the second atom. Effects
on the outcome probabilities for such measurements propagate at most at the speed of
light. In contrast, faster-than-light signalling effects tend to be artefacts of non-local, joint
measurements on the state of both atoms and the field.

The quantum channel between Unruh-DeWitt detectors provides a quantum-informa-
tion theoretic framework for the Fermi problem [19]. It was shown that the channel respects
causality to all orders of perturbation theory, because the commutator of the field vanishes
at spacelike separations. Of particular interest in this context are also the works on the
Fermi problem in circuit QED [70] and in discrete systems [88].

When only a finite number of the field modes inside a cavity are taken into account, i.e.,
when a ultraviolet (UV) cutoff is imposed on the field, then faster-than-light error terms
arise in the Fermi problem. We take the size of these error terms as an estimate for the
accuracy with which the relativistic properties of the field can be represented by a given
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number of field modes. We find that the size of the errors decay for larger total numbers
of modes following a power-law decay.

4.1 The quantum channel inside a cavity

In the following we study the quantum channel between two detectors inside a cavity in
different communication settings. For the purpose of this chapter, we restrict ourselves to
the case where the receiver detector is initialized in its ground state. Therefore the channel
is of the general form (3.33), where only the coefficients P, A, B, C, D occur.

Here we are interested in how the magnitude of the imposed UV-cutoft, i.e., the number
of field modes that are taken into account, affects the accuracy with which causality is
respected by the model. In other words, we will study the magnitude of faster-than-light
error terms, that arise from the leading order contributions to the coefficients P, A, B, C, D,
as a function of the UV-cutoff.

As a first setting, we will consider what we will call the Fermi problem scenario, i.e., we
study signalling from detector A to detector B under the condition that the initial state
of the first detector is either the ground or the excited state. Although it appears to be a
very natural choice to use the energy eigenstates for signalling, we know from the previous
section that these signalling terms are suppressed by two orders in the coupling constant:
here, the effect on Bob’s detector is only of order O(A*!), whereas the effect is of order
O()\?) for any other set of pure input states.

To illustrate this, we will consider a second scenario where detector A initially is pre-
pared in either the state

+) = — (l9) +le)) (4.1)

or

- 5l
(]

—)=— —le)). 4.2

=) 7 (lg) = le)) (4.2)

In what follows we consider a massless Klein-Gordon field inside a one-dimensional

Dirichlet cavity as discussed in Section 2.3.2. Also we choose both detectors to be resonant
with a field mode, so Q4 = Qp = w,, for some given resonance mode number n.

The detectors are switched on and off sharply at ¢ = 0 and ¢ = T respectively, i.e., the
switching function is defined to be x(t) = 1 for t € (0,7T) and vanish at all other times.
Under these conditions the perturbative terms of the leading order contributions to the
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channel coefficients P, A, B,C, D in (3.31), (3.35), (3.36), (3.37), (3.38) are analytically
integrable (although very involved to obtain). Even though different switching protocols
could be considered, to have detector B switched in parallel with the first detector is the
most conservative setting in order to detect any error terms that would propagate signals
from A to B outside the lightcone.

Figure 4.1: [39] Leading order contribution P, to the single detector excitation probability
(3.34) for a detector at z; in a cavity of length L = 10. The detector is resonant to the
fourth field mode (n = 4). The contribution P; is periodic with a periodicity of Ty = 2L.
The number of valleys in every period is equal to n. For the calculation a cutoff of No = 100
modes was used. (All plotted quantities are dimensionless.)

Before we study the influence of detector A on the final state of B we review the
contribution to pp 7 in (3.33) which is independent of the presence of detector A. This is
the term P in (3.34) which captures the probability of the single detector B to get excited
on its own due to the switching, i.e., which captures its vacuum noise.

Figure 4.1 shows the lowest order contribution P, to the single detector excitation
probability which is mostly induced from the vacuum due to the sudden switching. It is
non-negative and periodic with a periodicity of T,,., = 2L, which is twice the cavity crossing
time. When the detector is tuned resonant to a field mode with an even mode number n
(as in the figure), the term P, peaks at the light-crossing time of the cavity for a detector
positioned at the middle of the cavity. If n is odd P, vanishes here. The number of valleys
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per period along the T-axis is equal to the resonance mode number n. The contribution
of the non-resonant modes makes the probability non-zero in these valleys.

In Figure 4.2, one example of the second order contribution P is plotted. P, captivates
the probability of a single detector to get excited and deexcited again during the inter-
action interval. Hence it gives a non-positive correction to the single detector excitation
probability.

All other contributions to psr depend on the initial state of Alice’s detector.

As we know from the channel’s general structure, in the Fermi problem the contribution
of A to the state of B appears only in the diagonal elements of Bob’s density matrix. Hence,
as discussed earlier, in the Fermi problem the signalling terms which are of order O(\*)
compete directly with the single detector excitation probability P ~ O(A?) This might, on
the one hand, mask effects of causality violations in the excitation probability of Bob and,
on the other hand, hinder the ability of Alice to signal Bob.

Therefore, as a second example, we will consider a slightly altered version of the Fermi
problem where Bob performs his measurement in the {|+),|—)} basis such that Bob can
detect the O(\?) effect of Alice’s input without any influence of P on the measurement
outcomes.

4.2 Signalling in the Fermi problem

We can analyze the Fermi problem, i.e., the question of how the excitation probability of
detector B, which starts out in the ground state at ¢ = 0, is affected by the presence of
the other detector starting out in its excited state. From (3.33) we see that the detector B
ends up in the state

P+ A 0 ) (4.3)

eatead=("54 P,
So the factor A describes the probability for the detector B to become excited due to the
presence of the initially excited detector A. If we compare this output to the case where
the detector A is initially prepared in its ground state,

catas = ("3 0 p).

we see that B describes the contribution to the probability of finding detector B excited
after the interaction due to the presence of the other detector starting out in the ground
state.

(4.4)

69



- - M A B
15001 B4
/
- - P4 ,
.
/
1000 /
/
/
.
/
500+ A

_500 I I I
0

Figure 4.2: [39] Numerical values of the O(A\*) coefficients defined in (3.35),(3.36) and
(3.34) for the quantum channel in the Fermi problem. The length of the cavity is L = 10
and the distance between the two detectors is |x4 — zg| = 2. (All plotted quantities are
dimensionless.)

As we have seen in (3.35) and (3.36), the factors A and B are of order O(A?). lLe., if
Alice wants to send a message to Bob, or just a single bit, and tries to encode it by either
preparing her detector in the ground or excited state initially, she only influences Bob’s
final measurement result at fourth order O(A?) in the coupling constant.

In Figure 4.2, one example of the lowest order contributions to A and B is plotted. The
general behaviour is that A, is non-negative and grows faster with the switching length T’
than the other contributions of order O(\*), whereas By is oscillating.

We also see that A, and B, vanish outside the lightcone, i.e., for switching times
T < |xyg — zp| smaller than the distance between the two detectors. Of course this is
necessary to prevent superluminal signalling: If A or B were not to vanish for 7' < |z 4 —z5]
then the state of detector B at time t = T" would be influenced by the the state of detector
A at t = 0, and thus retrieve information about the initial state of A, although no light
signal could have reached B within this time.

It was shown in [19] that the quantum channel ¢ is causal in the continuum scenario
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at leading order in perturbation theory. All the factors A, B,C and D in (3.33) vanish
outside the lightcone, which relies on the property of the field commutator to vanish for
spacelike separations.

This also holds in the cavity if all (infinite) field modes are taken into account. However,
when a UV-cutoff is introduced such that only a finite number of modes N are taken into
account, the commutator does not vanish outside the lightcone any longer. Hence a model
with only a finite number of field mode also predicts that superluminal signalling between
two detectors is possible for certain settings. In the following we want to investigate how
these acausalities depend on the number of modes Ng and how the model of light-matter
interaction behaves more and more causally with increasing cutoffs to a point where the
predicted acausal behaviour would be undetectable in practice.

XA=2.5, XB=7.5, n=15

0.2r
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x T =6.5
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Figure 4.3: [39] Numerical values of the lowest order contribution A, from (3.35) to the
signalling term in the Fermi problem for two detectors separated by |z4 — x| = 5 for
different switching times 7', depending on the number of modes below the cutoff No. The
biggest contribution are acquired around the resonance mode number n = 15. For No > n
the results oscillate around a limiting value which is approached for higher cutoffs. For the
lowest switching time the detectors are spacelike separated during the interaciton with the
field, hence no signalling is possible. (All plotted quantities are dimensionless.)
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Figure 4.3 illustrates how the result obtained for the coefficient in the channel, in this
case of A, improves with the number of modes N taken into account. As expected the
main contribution to the coefficient originates from the mode to which the detectors are
resonant. For cutoffs No > n larger than the resonance mode the results begin to converge
toward a limit in an oscillating manner. This limit is positive when T' is chosen to be
larger than the distance between the operators so that signalling is possible. If we have
T < |z — zp| then the results for A, converge to zero.

xA=4, Xg= 6,n =2
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Figure 4.4: [39] The signalling term A, from (3.35) in the Fermi problem for two detectors
at a distance of |x4 — x| = 2 for different switching times 7" for increasing cutoffs at N¢.
The dashed line indicates the lightcone. In general the values of A, inside the lightcone
grow towards the lightcone. Hence to check the level of causality violation for a specific
cutoff the value on the lightcone, i.e., for a switching time T' = |z 4 — 2| is relevant. (All
plotted quantities are dimensionless.)

The most relevant figures are Fig. 4.4 and 4.5. There we study the behaviour of A4(T")
in the proximity of the light cone as the UV cutoff N is increased.

In Figure 4.4, we see that for low values of Ns the contribution A, is not vanishing
for switching times T' < |z 4 — x| shorter than the distance between the detectors. This
would allow for superluminal signalling. Only with increasing N the graph approaches
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the exact limit and causal behaviour is restored. We also observe in Figure 4.4 that the
values outside of the lightcone, i.e., for switching times T' < |x 4 — x|, grow with increasing
switching times 7. Hence, the lightcone where the switching time T" = |x4 — 25| equals
the distance between the detectors marks a critical case which we can use to quantify the
violation of causality in a model with UV-cutoff: To avoid superluminal signalling the
coefficients of the channel in (3.33), like A, have to vanish on the lightcone. As the value of
|A4(T)| for a fixed cutoff N is larger on the lightcone than further outside the lightcone,
we can take |A4(T = |z4 — x5|)| as a measure for the violation of causality.

In other words, given that the coefficients A, B, C, D are smooth functions of time, their
being zero outside the light cone implies that their value is also zero right on the light cone.
If we are looking for an estimation of how big the acausal error in signalling is for a finite
number of modes Ng, we can analyze the value of the contributions of Alice’s detector
initial state to Bob’s detector right on the light cone, since this is the most conservative
scenario.

Because of the oscillating behaviour that we observed in Figure 4.3 for large cutoffs, it
is not convenient to directly compare values of |A4(T = |z4 — xp|)| obtained for different
values of N¢ to each other directly. Instead, in Figure 4.5, for a given cutoff N, we plot
the maximum value obtained for |A4(T = |z 4 — xp|)| for any cutoff N larger than or equal
to Nc.

Notice that for all switching times 7" the value of A4(7") depends also on the mode n with
which the detectors are resonant. In general, all contributions to the channel coefficients
A,B,C,D and P in (3.33) tend to be smaller for higher mode numbers n. Therefore, in
order to be able to compare the values for detectors being resonant with different modes n
on equal footing, in Figure 4.5, we show the value of the A4 term on the light cone divided
by the respective value of A, for each n at a time inside the lightcone. Hence we are
computing the relative magnitude of the faster-than-light signalling signature as compared
to the causal signal. In particular, the values in Figure 4.5 have been normalized by the
respective value of |A4(T = 2|z 4 — x|, N = 100)].

Interestingly, we observe that this value decays following a power law for cutoffs Ng
well above the resonance mode n.

The asymptotic power of this decay is the same for different choices of the mode the
detectors are tuned to be in resonance with. Similarly, the distance between the two
detectors and their positioning inside the cavity do not change the slope of the decay, but
only shift the asymptotic behaviour along the y-axis in a double-logarithmic plot as in
Figure 4.5. This shift in the double-logaritmic plot corresponds to a multiplying factor in
front of the functional relation between Ny and Ay.
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Figure 4.5: [39] The plot shows maxysn, |A4(N)|, the maximum value of the signalling
term Ay from (3.35) on the light cone |A4(T = |x4 — x5|)| obtained for any higher cutoff,
i.e., for any number of modes N > N larger than or equal to N¢. For different n the
modes have been normalized as explained in the text. The values of |A4| on the lightcone,
i.e., for T' = |z, — x| approach zero following a power law for large numbers of modes

Ne. (All plotted quantities are dimensionless.)

The power law decay can be traced back to the structure of A, as it is given in equation
(A.2) of the appendix. Inside the cavity the two-point function of the field is given by a
sum with a single contribution from each field mode. Hence the four-point function which
occurs in Ay is given by a twofold sum with two summation variables running over all
the field modes, because the four-point function can be expressed in terms of two-point
functions in the usual way. For each term in this sum the time integrations of equation
(A.2) lead to a polynomial in the summation variables (with the physical parameters and
trigonometric functions as coefficients) which is divided by a common denominator. This
denominator is itself a polynomial in the summation variables. Hence for higher cutoffs
the asymptotic power law behaviour should emerge from the leading behaviour of the
polynomial fraction for high values of the summation variables.
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4.3 Signalling using |+) and |—) states

In this section we extend the analysis above to the error terms that appear in leading order
O(A?) signalling terms. The previous section was only concerned with the subdominant
O(M) terms that arise in the Fermi problem where the sending detector A is prepared in
an energy eigenstate. In order to obtain leading order signalling contributions we will, in
a slight modification of the Fermi problem, consider the case where detector A starts out
in a superposition of energy eigenstates instead.

In (3.33) we see that the off-diagonal elements of psr are given by products of the
factors C' and D (and their complex conjugates) with the off-diagonal elements v and ~*
of pao. So in general (i.e., unless pa is diagonal) the initial state of detector A has an
influence on the final state of detector B at second order in the coupling strength, because
C,D ~ O()\?). However to make use of this effect, e.g., for signalling, the off-diagonal
element of the input state v has to be large and, on the recipients side, the off-diagonal
elements of psr have to be measured.

As a simple example for this we look at the following protocol: The system is assumed
to start out in the same state as before, i.e., the field is prepared in the vacuum, detector
B in its ground state and detector A in an arbitrary state

PAO = <79* g) : (4.5)

Now, however, after the interaction has taken place between ¢ = 0 and T = 0 a measure-
ment on detector B is performed in the {|+),|—)} basis, where

4) = (lg) £ Je)). (4.6)

V2

We find that the projectors onto these two states are given by

Pt=0) = ) =5 () %) (47

Because we work in the interaction picture P; needs to be evolved with the corresponding
free Hamiltonian Hg = Q5 |e){e|.

Py (t) = exp(iHpt) PL(t = 0) exp(—iHpt) = 1 ( (4.8)

j:e—iQBt 1

1 +elf28t
2
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So for ¢t > T the probability to find detector B, e.g., in the |+)-state is given by:

T (P ()prs) = 5 + Re (40 +° D) %) (4.9)

As expected from the Bloch picture analysis of the channel in Section 3.3.4, this detection
probability is completely independent of all other terms occuring in the general form of
the channel. It is independent of A and B and hence from the diagonal elements of p.
and the single detector excitation probability P does not have any influence either.

By choosing the time of Bob’s measurement the signalling strenght can be optimized:
Say the detector A was intially prepared in the |+)-state, for which v = % or the |—)-state,
for which ~ = —%‘ Then for a given set of parameters, i.e., if C' and D are known, the
time point of the measurement on detector B can be chosen such, that the probability to
find detector B in the |+)-state is given by

p(B=1|+) |A:|i>):%i]C+D*]. (4.10)

Figure 4.6 plots one example of the lowest order contributions to this probability. As
known from the analysis of the channel’s capacity for the transmission of one single bit in
Section 3.4.1 the effect could be further optimized up to 5 =+ |C|+|D| by optimizing Alice’s
input state (or the time of onset of the coupling).

Figures 4.6 and 4.7 show that the dependence of |Cy + D3| on the size of the cutoff N¢
is similar to the behaviour obtained for the signalling term in the Fermi problem in the
previous section. Figure 4.6 illustrates the behaviour of |Cy + D3| close to the lightcone. If
a too small number of modes are taken into account, the model is clearly inconsistent with
causality but for higher and higher cutoffs the curve approaches the limit of full causality.
In Figure 4.7 we see that the errors again decay according to a power law, as already
observed in the previous section.

4.4 Conclusion

This chapter showed that light-matter interactions in cavities can be reliably modelled for
short interaction times and relativistic scenarios, even with only finitely many field modes.

As a measure for the accuracy that is achievable with a given cutoff on the number
of field modes, we studied the size of unwanted non-causal error terms in the signalling
between two Unruh-DeWitt detectors. These errors decay following a power law when the
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Figure 4.6: [39] Plot of |Cy + Dj| as defined in (3.37), (3.38), the lowest order contribution
to the detection probability in (4.10), for different cutoffs No. The detectors are located at
a distance of |x4 — x| = 2. The dashed line indicates the lightcone. The use of |+)-states
enhances signalling by two orders of magnitude in the coupling constant as compared to
the use of energy eigenstates. (All plotted quantities are dimensionless.)

number of modes is increased. The power law decay arises from the convergence behaviour
of the channel coefficients. Therefore, it is universal and does not depend on the particular
initial states of the detectors. A study of the convergence behaviour of the signal strength
estimator |Cy| 4+ | Ds| might demonstrate this more distinctly.

The result of this chapter is particularly relevant for numerical calculations, such as in
Chapter 7, where necessarily only a finite number of field modes can be taken into account.
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Figure 4.7: [39] The plot shows maxy>n. |C2(N) + D3(N)| on the light cone, i.e., for
T = |za—xp| =5. Analogous to Figure 4.5, also here the values for different n have been
normalized in order to be able to compare them better. Again we observe a power law
decay for high cutoffs No. (All plotted quantities are dimensionless.)
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Chapter 5

Characteristics of timelike and
lightlike signals

In this chapter, we explore how signalling between two detectors is affected by the distance
and separation between the detectors, by their motion, and by their parameters such as
switching times and energy gap. To this end, we study the leading order signalling term
|Cs] + |Ds|, which we introduced as an estimate for the signalling strength in Chapter 3,
in various scenarios.

Most interestingly, we observe that signalling is not only possibly between lightlike
separated detectors, but in 1+1D and 241D Minkowski spacetime also appears between
timelike separated detectors. We anticipated this in our discussion of the Klein-Gordon
field propagator in Chapter 2.

When sender and receiver are in lightlike contact while they couple to the field, the
signalling strength is maximized when sender and receiver are tuned into resonance. For
detectors at resonance this means having identical detector gaps. However, when the
detectors move relative to each other, then they need to account for the relativistic Doppler
effect.

Resonance plays no role for signalling between timelike separated detectors. Instead,
sender and receiver just need to optimize their energy gap according to their own switching
parameters.

Another scenario where resonance cannot be achieved is signalling between a detector
at rest and a uniformly accelerated detector. Although they are in lightlike contact, the
Doppler shift ranges from infinitely blue-shifted to infinitely red-shifted which leads to final
signalling strengths even for infinite interaction times.
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The number of different signalling scenarios we need to consider is conveniently reduced
by a time-inversion symmetry of the leading order signalling terms. We find that “running
the movie backwards”, such that the detectors move backwards in time and the receiver
turns into the sender, results in the same signalling strength.

5.1 Lightlike versus timelike signalling

In Chapter 3 we showed that the quantity |Cy| + |Ds| determines the signalling strength
between two Unruh-DeWitt detectors to leading order. For example, it improves the
probability for the correct transmission of a one bit, in a single use of the channel, from

the mere guessing probability of 3 up to (see (3.92))

1
Pt = 5t Aars (|Cs] + |Ds]) + O(AY). (5.1)

The integrals represented by Cy and Dy, derived and defined in Section 3.2, are

T t1
Cr = /dh /dtz Xa(ta)xp(ty)e BB =Amal2) (1, 4 (1)), d(t1, Z5(t))] (5.2)
0 0
T t1
D, = / dty [dts xa(ta)xs(t)e PO (61, (1)), $(ta, Ta(t2))] . (5:3)
0 0
Here ¢ denotes the coordinate time. And x(t) = 95(7) is the product of the detector’s

switching function and the derivative of the detector’s proper time with respect to co-
ordinate time. Also, we assumed that the interaction between field and detectors takes
place within the coordinate time interval ¢ € [0,7]. We note that the second integral
Dy(24.025) = —Cs(Q24, —Qp) arises from the first one by an overall change of sign, and by
changing the sign of (3. Therefore, we focus on C} in the following discussion.

The nesting of the time integrations above originates from the Dyson expansion of the
time evolution operator, which imposes t; > t;. We can tighten the upper boundary of
the the integral over o further, by using that signals propagate at most at the speed of
light, and assuming that the sender only couples to the field within some time interval
t €[0,T4] C [0,T]. (Compare Figure 5.1.)

The final propagation velocity of the signal is encoded in the commutator, because
the commutator vanishes at spacelike separations. Therefore, for a fixed value of t;, the
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Figure 5.1: Spacetime diagram of signalling scenario between two detectors at rest. Alice
couples within the coordinate time interval ¢ € [0, T4] to the field. Depending on the timing
of Bob’s coupling for t € [T}, T,] the detectors are lightlike or timelike separated. [40]

integrand vanishes when ¢ is so large that the lightray which emanates from the sender
at to reaches the receiver only at a time later than ;. We denote the coordinate time at
which the lightray, emanating at ¢; from the sender, reaches the receiver by #(¢;). The time
window of the sender’s coupling to the field is given by the switching function’s support
supp x4 C [0,T4]. Therefore, the integrand also vanishes if ¢, > T4. Thus, altogether we
can express the nested integration boundary as

Ty min(TAf(h),tl)

= /dtl / ty o (t) s (1 ) OB 247 61, 7 (1)), S(tr, T ()]
T 0

(5.4)

where we added the assumption that the receiver couples to the field within the time
window [Tl,TQ].

The integration boundaries are independent if and only if the receiver is strictly timelike
separated from the sender, i.e, if no lightray that emanates from the sender while the sender
is coupling to the field reaches the receiver while the receiver is coupling to the field. In this
case the inner integral is independent of ¢; and always runs over the interval 0 <ty < T'y.
We will see that this has the consequence that timelike signals do not depend on sender
and receiver being resonant with each other.
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In contrast, lightlike signals can grow much larger when sender and receiver are resonant
to each other, i.e., have identical detector gaps, or when their detector gaps are tuned such
as to account for any Doppler-shift effects.

5.2 Lightlike signalling

5.2.1 Resting detectors

To study the properties of lightlike signals, we begin with the simple setting of two de-
tectors, Alice and Bob, at rest in Minkowski space. A spacetime diagram of this general
scenario is shown in Figure 5.1. In this setup we can explore the role that the detec-
tors’” energy gaps, and the distance between the detectors plays for the signalling strength.
Interestingly, we find that the signalling strength decays slower than the energy density
emitted by the sender has to decay when the distance between the sender and the receiver
is increased. This is what we already expect from the discussion of the field commutator’s
behaviour in Chapter 2.3.

We assume that Bob couples to the field exactly during the time interval when he is
lightlike separated from Alice. This means Bob’s detector is switched on when the first
lightray emanating from Alice reaches him, and Bob’s detector is switched off when the
last lightray from Alice reaches Bob. With the notation introduced above, where Alice
couples to the field 0 <t < T4 and Bob for T} <t < T, this means

Tv=L  To=L+Ty, (5.5)

where L is the distance between Alice and Bob.

Under these conditions the integrals of the leading order signalling contributions take
the form

L+4+Ty t1—L

Co= [ dt [t xaltahns(t)e 04 (ot Ealta)) ot Tt )] (56)
L 0
and accordingly for Dy = —C5(Q4, —Qg). For sharp switching functions, as defined in

(3.11), this integral has a straightforward solution in 141D Minkowski spacetime and in
3+1D Minkowski spacetime.
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In 3+1D the field commutator (see Section 2.3) is

(6 (t2, 7). Blt1, )] = ——

T AT |T) — T (O(te—ti + T2 —T4]) =0 (ta — 1 — [T2 = 24]))  (5.7)

and we have

L+Tx t1—L

Cy = / dt, / ty ya(ta)xs(t ) @5t~ 24tz
L 0

0t —t— L)

- L+T1;t i(QB_QA)tl ieiQ_AL B eiQBL (1 _ ei(Qg*Q_A)TA) (5 8)
- L/ Le AL 4nL(Qa— Op) ’
In 141D, where the commutator is
i
[b(t2, 2), (t1, 21)] = = sgn(ty — 12)O ((t — t2)” — (21 — 22)?), (5.9)
2
we have
ielsh QBT (Qs-Q)T
Cs (s — Q) (1 —e8T1) + Qp (572070 — 1)) (5.10)

T 20.05(Q4 — Qp)

In both dimensions the leading order signal strength |Cs| + |Ds| is maximized for res-
onant detectors which have Q4 = Qg. (See Figure 5.2.) The reason for this is the nested
integral structure, where t; — L is the upper integration bound for t,. This leads to a
resonant term in the C integral: When the inner integral over ¢ is performed, the upper
bound adds a term with a complex phase factor of €4 to the leftover ¢, integral. (See,
e.g., the first step of (5.8).) If the two detectors are resonant, i.e., if Q4 = (g, then
this complex factor cancels the factor of e7¥5% that is already present in the integrand.
This term in the integrand is then non-oscillatory and increases the absolute value of the
integral.

When the detectors are resonant, i.e., for 2 = Q4 = Qp the integrals simplify further.
In 1+1D they are

eOL (i (4 _ 1) + QT e i(QLH29Ta) (4iQT4 _ q 2
202 40)2
and in 3+1D
(elQLT o—iQL+2Ta) (oi20T4 _
Oy = A Dy =— ( ) (5.12)
Ar L T L

83



Figure 5.2: Dependence of the leading order signalling strength |C5| 4| D2 | on the detector
energy gaps, for two detectors at rest in 3+1D Minkowski space, as resulting from (5.8).
The signalling strength is maximized for detectors with equal energy gap. The peak along
the diagonal Q4 = (2 becomes more distinct when the interaction time T4 is increased.
The distance between the detectors is set to L = 1, and the interaction time to Ty = 7.5.
(The signalling strength is dimenionless in 341 dimensions.)

Note, that as discussed in Section 3.1, these terms are dimensionless in 341D, whereas
they have mass dimension Cy = —2 in 14+1D. As discussed earlier, this is because the
coupling constant is dimensionless in 341D but has dimension [A\] = 1 in 141D, such
that in all dimensions the perturbative contribution to the measurement probability ~
A2 (|Cy| + |Dy|) is dimensionless, as it needs to be.

In 1+1D Minkowski spacetime for detectors at rest, the result for Cy and D,y suggest
that the detector energy gap (1 is the natural scale to which the coupling constant A should
be compared: If we change the detector gap 2, while leaving the number of detector
periods for which the detectors are coupled to the field constant, Q274 = const, then the
term |Cy| 4 | Do scales as ~ Q2. This could be corrected for by rescaling A? such that
A/ = const, which would keep the resulting contribution to the excitation probabilities
constant.
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Zero-gap detectors

The signalling strength is maximized for zero-gap detectors, i.e., in the limit {2 — 0. When
applying this limit to the result for resonant detectors 2 = Q4 = 1z above, D, differs
from C5 only by a sign, such that in 1+1D

T2 T42
|Co| + D2 =2 : = %7 (5.13)
and in 3+1D
o |iTa | Ta

For zero-gap detectors there is an analytic solution even for 241D Minkowski space.
Here the commutator is given by

0L, 72), 6(t1,71)] = —— sgnts — f2) . (5.15)

2 — —
m \/(752 —1)2 = |& — & [

which, with Q4 = Qp = 0, yields

Ty + L |2v/Ta* +2T4L
Cy| + |Dy| =
’ 2‘ + ‘ 2‘ 21 Tyh+ L
1
+1n (ﬁ (2TA2 +ATAL — 2T4**\/ Ty + 2L + L* — 2L,/ T3 + 2TAL> ' .
(5.16)

Zero gap detectors maximize the signalling strength, because the free detector time
evolution is frozen out. This is different from the usual case of gapped detectors with
2 > 0. There, in the Dirac interaction picture, the free detector Hamiltonian Hp = Q |e) (e
causes all operators that act on the detector to spin around the Z-axis of the Bloch sphere.
This also affects the monopole operator in the interaction Hamiltonian, which is, therefore,
rotating in the equator X — Y-plane of the Bloch sphere. This leads to an averaging effect
of the interaction over the time the detector is coupled to the field.

However, when the detector gap, and thus, the free detector Hamiltonian Hp vanish,
operators that act on the detector do not evolve in time anymore, and the interaction
Hamiltonian couples constantly through the monopole operator, which corresponds to the
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Pauli o x-operator. In this case, Alice and Bob can choose their initial states such that they
maximize the effect of the coupling at all times, without being averaged out. Therefore,
the leading order signalling strength is maximal for zero gap detectors.

A particular feature of zero gap detectors is that in 1+1D and in 2+1D Minkowski
space the signalling strength scales super-linearly with the total interaction time 7T4. This
is in contrast to gapped detectors where the scaling is linear as seen in the exact solutions
for 1+1D and 3+1D above, and as numerical evaluations of the 2+1D case show. For
zero-gap detectors in 141D, however, we see above that |Cy| + | Dy is proportional to T2
The behaviour of the signalling term in 2+1D Minkowski space lies in between linear and
quadratic, and is of order O(T4InTy4) as Ty — oc.

Scaling of signalling strength with distance between detectors

In 1+1D Minkowski space the signalling strength is independent of the distance between
sender and receiver. This is in agreement with the intuition that the surface of a wavefront
propagating in one dimension does not increase, hence the signal should not dilute.

Accordinlgy, one might expect that in higher dimensions the signalling strength would
dilute at the same rate as the surface of the spherical wavefront emitted by the sender
increases. Such that in 2+1D Minkowski space |Cy| + |D2| ~ 1/L, and in 3+1D Minkowski
space |Cy| + |Dy| ~ 1/ L2

However, the commutator, and accordingly the signalling strength decay slower than
this. We see above that in 3+1D the signalling strength scales as

1
|Cof + [Da] ~ I (5.17)
and in 241D we find an asymptotic behaviour of
1
|Co| + |Do| ~ —= (5.18)

VL

of the analytic solution for zero-gap detectors, and on numerical evaluations for gapped
detectors.

This scaling behaviour points towards the decoupling of the propagation of information
from the propagation of energy, because it shows that the ratio between signal strength
and resulting channel capacity, and the energy carried by the signal has no upper bound.
The energy density emitted by the sender has to dilute at least at the rate at which the
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emitted wavefront’s surface grows, because the total energy is conserved. However, the
signal strength decays slower.

This shows that signals imprinted in the amplitude of massless fields cannot be thought
of as being supported by a flow of energy. This aspect will be most plainly highlighted by
timelike signals in 141D, and discussed in depth in Chapter 6.

5.2.2 Time-mirror symmetry of signalling strength

Considering signalling between moving detectors, one of the first questions one might want
to address is whether it is easier to signal between two detectors moving towards each other,
and therefore perceiving each other blue-shifted, than between two detectors moving apart,
and perceiving each other red-shifted? Or, whether it is easier to signal from an accelerated
to an inertial detector, than the other way around?

Interestingly, the answer is that, under very general assumptions, the leading order
signalling strength typically is the same in both directions. This is due to a time-mirror
symmetry of the Cy and Dy terms: If time is inverted, such that the motion of the detectors
runs backwards and also the role of sender and receiver are interchanged, then the Cy and
D, integrals of the new scenario are exactly the same as in the original scenario.

To show this we rewrite C5 in its most general form that does not make any assumptions
on the time intervals in which the detectors couple to the field:

Oy = /dtl /dtz XA(t2)XB(tl)ei(QBTB(n)*QATA(tz)) [¢(t2’ fA(tQ))a ¢(t1’ fB(tl))] (5,19)

Without loss of generality, we may assume that 74(t = 0) = 75(t = 0) = 0. The time-
mirrored scenario is then given by the worldlines

o) = Ta(—t)  Tplt) = Fs(—1) (5.20)
and hence
Ta(t) = —Ta(=t)  75(t) = —78(-1). (5.21)

The mirrored switching functions are given by x’(t) = x(—t). In this scenario the signalling
term for signalling from Bob to Alice is then given by

t1
€y = fatr [dtaxs(t)na(t)el oD o0, (1), ot T0))) (522)
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by changing the integration variables to s; = —t; and s, = —t5 we obtain

Cy = [dsi [dsax(—say(—su)elParaten ()
51

X [p(—s9, T(—52)), ¢(—51, Ty (—51))]

_/&3ﬁmxa@nAaWqum”%mwww—@ja&»¢@aﬁﬂam

B /d32 /dsl XB(s2)xa(51)e T PATAENOTE2)) (651 F (1)), G52, T5(s2))] = Co.
(5.23)

Whereas for the Dy term, the mirrored term D) = —D; differs from the complex conjugate
of the original coefficient by an overall sign. This shows that the leading order contribution
to the signalling strength

|Col + D3] = |Ca + | De (5.24)

is identical in the mirrored and the original scenario. Therefore, as far as the leading
order signal strength is concerned, it suffices to, e.g., only analyze leading order signalling
strength between detectors moving apart from each other since the signalling between two
detectors moving towards each other is identical.

5.2.3 Doppler shift for inertial detectors

When the sender and the receiver are moving relative to each other, the signalling strength
is in general not optimal if both detectors have identical energy gaps. The reason for this
is that the motion causes the receiver to perceive the sender as red- or blue-shifted. In fact,
between two inertially moving detectors exactly the Doppler effect appears in the leading
order signalling strength terms.

The relative motion between sender and receiver enters the integral terms by the same
mechanism that favored resonance between detectors at rest. Due to the nested integral
structure, the inner integral produces a term that depends on the outer integration variable,
when sender and receiver are lightlike separated. This term contains an exponential phase
factor. Thus, if the receiver’s gap is tuned to match the shifted gap of the detector, the
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two complex phase factors cancel each other such that the integral now contains a non-
oscillatory contribution.

To illustrate this, we look at a scenario where Alice is moving inertially whereas Bob
is at rest, with respect to the chosen coordinate system. Alice couples to the field for a
proper time interval 0 < 74 < T4. At the beginning of her interaction she is at a distance
L away from Bob, and during the coupling she moves at constant velocity v > 0 away from
Bob. Without loss of generality we may assume that ¢(74 = 0) = 0. Then, the lightrays
that emanate from Alice while she is coupling to the field reach Bob at coordinate time

L <t< L+ (T4 Where
1+wv
— 5.25
(=1 (5.25)

is the relativistic Doppler factor. The factor appears because the length of the coordinate
time interval in which Bob receives lightrays from Alice is

TA 140

(1) =TT (5.26)

1—w
If Bob couples to the field for this time interval, then the C5 term takes the following
form,

At =

L+CTx  (1—L)/¢
Cy = /dtl /dTAnA(TA)XB(tl)ei(QBtIQATA) [6(t(7.4), Ta(74)), d(t1, T5(t1))] (5.27)

L 0

where t(74) = 74/v1— 0% The appearance of the Doppler factor ¢ in the integration
boundary of the inner integral allows for the cancellation of the complex phase factors,
only if Bob’s detector is tuned such as to match the red-shifted energy gap of Alice’s
detector.

For example, in 3+1D Minkowski spacetime, for sharp switching functions, we find

L+(Ta  (1=L)/C -
1

Cy = / dt, / dr g (807 2AT4) —— 0 (tr — L = 740)
L 0 47T‘L+\/1—v2‘
Ta
Q5L
_ : /dTA el (28(—04) 74 1
VT A
A / L+ T
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V1= 2 iL(QB+V1;v2 mA—cQB))
—e

47 X (F <O’ Q(m ) mB)) L ( o {Tav+ im) (Qu — CQB)>)
(5.28)

with the incomplete Gamma function
[o.¢]

[(a,x) = /dtt“let. (5.29)

xT

The plot in Figure 5.3 shows how the Doppler shift affects Bob’s optimal choice of detector
frequency. If Bob chooses his detector energy gap to optimally match Alice’s red-shifted
frequency, i.e., such that Qg = Q4/(, the solution simplifies to

iel28L /1 — 2 vT'y
= 1 1+ —Fr—. .
¢ A7 v " ( * LW) (5.30)

Which also correctly reproduces our previous result for resting detectors,

3 iQBL T
. 1€ A
lim C5 = —.
vlg(l) 2 A7 L

(5.31)

Also in 1+1D Minkowski spacetime, for sharp switching functions, the integral has an
exact solution. Here we obtain

C, = _eiQBL R4+ L (eiQBCTA o 1) (532)
204 Op
where
g it O — 0
R = C Agi i(QpC—Q )TiA . - 1 B .A/C ‘ (533)
el sin (¢ —Qa)22)  else

We assumed here that v > 0 such that the detectors are moving apart from each other.
Therefore Bob perceives Alice as red-shifted and has to lower his detector frequency in
order to match Alice’s shifted frequency and to optimize the signalling strength.

It is interesting to note that this lowering of Bob’s frequency also plays out to opti-
mize the signalling strength in the time-inverted scenario. Although there, Bob and Alice
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Figure 5.3: The Doppler effect between inertially moving detectors requires Bob to tune his
detector gap €1z to correct for the red-shifted signal from Alice, who is moving away from
him at speed v. The initial distance between the detectors is L = 1, Alice’s detector gap
is set to {24 = 2.5 and Alice is coupled to the field for the duration of Ty = 7.5 according
to her proper time. (The signalling strength is dimenionless in 3+1 dimensions.)

perceive each other as blue-shifted because they are moving towards each other. However,
Bob is now the sender and hence needs to lower his detector gap in order to correct for the
blue-shift. The amount by which Bob has to lower his gap is a sender, is exactly the same
amount by which Bob has to lower his detector gap as a receiver in the original scenario,
in order to correct for the red-shift when Alice moves away from him.

5.2.4 Signalling across acceleration horizon

In the context of quantum field theory, a canonical example of non-inertial motion is
uniformly accelerated motion. Under this motion, a single detector experiences the Unruh
effect when he is coupled to the Minkowski vacuum of the field. Earlier works that study
communication under uniform acceleration include [13, 25].

The interesting feature of a uniformly accelerated wordline is that it is causally discon-
nected from one quarter of the Minkowski spacetime, also referred to as a Rindler wedge.
This is the case, because the worldline of a uniformly accelerated observer takes the form
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of a hyperbola in the spacetime diagram. We can choose inertial coordinates such that the
worldline of an observer, accelerating uniformly with proper acceleration a is given by

t(r) = ésinh(aT) ot = écosh(cm') (5.34)
where 7 is the observer’s proper time, and the remaining spatial coordinates are set to
vanish, 2 = ... = 2" = 0. Since the motion of the accelerated observer is restricted to
the so called right Rindler wedge where 0 < |t| < z, the observer will never be reached by
signals from spacetime points for which ¢ > x. Also, the accelerated observer is unable to
signal to any spacetime point with ¢ < —z.

The Unruh effect [81] is a consequence of this causal divide as well. It shows that
a uniformly accelerated observer perceives the field as being in a thermal state with a
temperature proportional to his proper acceleration, while inertial observers would describe
the same state as the vacuum state of the field.

Here, we want to study the signalling strength in a scenario where the sender is moving
on the accelerated wordline above, while the receiver is at rest at ' = 0, just behind
the acceleration horizon. We will see that the signalling strength is finite even for infinite
coupling lengths, because of the infinite blue-shift and red-shift of the sender for early and
late times. The leading order signalling strength in the mirrored scenario, with a resting
sender and a uniformly accelerated receiver, is the same due to the time-mirror symmetry.

We will give analytic solutions to the C5 and D, integrals in 1+1D an 3+1D Minkowski
space, beginning with the latter case. Before this, we make a few geometric notes on the
distance between Alice and Bob at different times. First, we note that the lightray that
emanates from Alice at her proper time 74 reaches Bob at coordinate time

1 1
ts(14) = 2'(74) + t(74) = ~ (cosh(ary) + sinh(aty)) = —e*™. (5.35)
a a
The inverse of this function will appear as the integration boundary in the nested integral,
1
TA<tB> = — hl(atg). (536)
a

Secondly, the spatial distance between Alice’s spacetime point at her proper time 74 and
Bob’s location (at x! = 0) is

1 %th+ 1
) _ et (5.37)

1 1
r=ax'(ta(ts)) = p cosh (In(atp)) = 5 (atzs 4 T
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341D Minkowski spacetime

In 3+1D Minkowski spacetime, the leading order signalling terms are finite even for con-
stantly switched-on detectors. We can therefore set y 4 = xg = 1. The integral is then

In(atq)

00 @ . ) 1
Cy = /dt1 / dr4 el(QBtrQ““TA)—l ) <7',4 - - ln(atB))
Amr a
0 —00

/dt el(QBt1—$24 Inats) ) ia’tp
2m(aty + 1)

0

a 104 24
_ {zlr ( ) Q|
47 a

. WQA WQA IQA 1 IQA Q%
X <sgn(QB) sinh < 5 ) + cosh ( 5 )) 1By (1, o + 3 5, +1; 12
i Q Q Q Q
+7ra% (SgH(QB)SeCh (7r2 A) sinh (‘—Bl) + csch (WQ—A) cosh (M>)] (5.38)
a a a

a
with the generalized hypergeometric function'

> (11 kZ
F: :by1, b 5.39
1 2(a1, 1,02; 2 Z% b1 b2 kk" ( )

From this we obtain a total leading order signal strength of

1 Q4 — 20 Q i
|Cz|+|D2|— 27 cosh (M) sch (W A)aQaA
4dr 2a a
. i IQA IQA 1 IQ_A Q%
2SO T B12A L~ B4 5
+2ie ( a)12<’2a+2’2a+’4a2

Q Q 9] i
+ |27 cosh (WA—W) csch (W_A) a%A
2a a

. T 24 i 4 Q4 1 iy Q%
e O [ ——2) R(1;,=2 4+, 22 4+1,-8
e ( a>12(’ 0 T4 TU e

1See also: http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F2/02/
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. _my iy 1 iy T )
=~ 2 # (i) B (LY 4 2 Y T ) g
dr 162(1y)12<’2 22+’4>x

_|_
~+27 cosh ( Ty — 2% > csch(my '

_|_

2ie2 ['(— 1 — =+ 1 — | zY
ie2 I'(—iy) 4 2( 2+2,2+,4)x

+27 cosh (%(zp + ﬂy)) csch(ﬂy)‘ (5.40)

where in the last step we measured the detectors’ energy gaps in multiples of the proper
acceleration by introducing x = Qp/a and y = Qy4/a. Interestingly, this shows that
the leading order signalling strength in 341D is a function only of the ratio between the
detector gaps and the acceleration.

A plot of the signalling strength as a function of x and y is given in Figure 5.4. The
case where Alice uses a zero-gap detector, i.e., 24 = 0, or equivalently y = 0 for constant
x, has an exact solution. It reads

a0 a0
Grs | 4 1 Grs | % 1
1 Oa Oa D) . 1 Oa 07 2 -
|Co| + | Ds| = 1 —ie |+ — *

1€ +

VT 4 VT

where G is the Meijer G-function”

Gmn Z| A1y .-y Any Angly -0y Qp
P bl,... bm,bm+1,...,bq

1 Hm (8+bk))l_[21 I—ar—s)
:2_/ o

k ni1 L (s + ak’)) Hk =m+1 L(1— by —s) (5:42)

The limit x — 0 appears not to exist. As x approaches zero, for fixed values of y, the
signalling strength becomes highly oscillatory. However, it appears to remain bounded
from above.

The particular case of equal detectors, i.e., Q4 = Qp = Q such that x = y = Q/a,
diverges in the limit of 2/a — 0. This is interesting, because this limit can arise in two
ways, which appear to by physically very different.

2See also http://functions.wolfram.com/HypergeometricFunctions/MeijerG/02/
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Figure 5.4: The leading order signalling strength, |Cy|+|Ds|, across the acceleration hori-
zon in 3+1D Minkowski spacetime as found in (5.40). The sender is uniformly accelerated
sender with proper acceleration a, the receiver is located just behind the sender’s acceler-
ation horizon. The signalling strength only depends on the ratios x = %ﬁ and y = %A It
is highly oscillatory as x — 0, which cannot be seen in this plot.

On the one hand, this limit could be achieved by lowering the detector frequency
whereas keeping the acceleration and worldlines of the detectors fixed. Then the diver-
gence of the signalling strength could be explained by the gradual freeze of the free time
evolution of the detectors due to the lower energy gap of the detector. This would make the
relativistic Doppler shift only be relevant at very early and very large times, thus, giving
more and more time for the signalling terms to acquire growth.

Alternatively, one could achieve the limit by keeping the detector frequencies fixed
while increasing the acceleration. Here, the increase in signalling strength seems to be
explained by the decrease of distance between sender and receiver, which is % for t = 0.
However, vanishing distance leads to a divergence in 3+1D Minkowski spacetime, due to
the divergence of the commutator at zero separation. (Remember, that we arranged the
receiver to be located just behind the acceleration horizon of the sender.)

The impact of these two effects on the signalling strength is equivalent, not only for
resonant detectors, but also in general, since the signalling strength only depends on the

ratios of z = £8 and y = 24,
a a
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1+1D Minkowski spacetime

In 141D Minkowski spacetime, Cy and Dy are solvable for sharp switching functions with
arbitrary finite interaction time intervals for Alice and Bob. However, the limit of infinite
interaction times does not exist due to oscillatory boundary terms. The integrals appear
to be bounded for arbitrary interaction interval lengths but a limit does not exist. The
origin of this oscillatory behaviour lies in contributions from timelike signals, which we will
discuss in detail in the subsequent section.

In order to suppress the oscillatory terms for the scenario that we are considering here,
we introduce switching functions

np(T) = e Ille = @(T)G_T/U + @(—T)GT/U (5.43)

for both detectors, and take the limit of op — oo after the integration. For the solution
of the integral, it is helpful to split the integration up in two parts.

In(aty)
oo a
_ _ . _ 1
2(0a, 05) drge t8/08 o —|TAl/T A (Bt —QaTA) _
’ 2
0 —00
mln(O ln(atl))

/dtl / dTA e tB/UBeTA/UAe i(Qpt1— QATA)

2
o In(atq)
+ /dt1 / d7a e’tB/"Be*TA/”Aei(QBtl*QATA)i (5.44)
2
These integrals are solvable, and yield
(-12) 1 (-14)
1ip a F _1Wip
G2 = aAng?s%oo C2<0-A7 08) - 2afl3 ’ (545)
such that the signalling strength is
1 7TQA ™
C Dsy| = —— cosh . 5.46
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Here, the signalling strength is not directly dependent on Alice’s detector gap but only
on its ratio to her proper acceleration 24/a. However, the signalling strength is directly
dependent, and inverse proportional, to both the absolute value of the proper acceleration
and Bob’s detector gap. Their appearance in front of the perturbative term suggests that
QO sets the scale for the receiver’s coupling constant, whereas the acceleration a sets the
scale for the sender’s coupling constant 4.

The signalling strength is divergent when either of the detector energy gaps or the
proper acceleration approach zero. However, in 141D Minkowski space the limit of infinite
acceleration exists and is

1
Qa5

We will see in the following that this is a quarter of the maximum leading order signalling
strength that is achievable between strictly timelike separated detectors.

5.3 Timelike signalling

The appearance of timelike signals in massless fields, i.e., signals propagating slower than
the speed of light, is the most counter-intuitive of the signalling phenomena that are
discussed in this thesis. This impression probably derives from our intuition being based
on 3+1D Minkowski spacetime, where the Klein-Gordon equation actually obeys the strong
Huygens principle such that timelike signals do not appear.

However, as discussed in Chapter 2 this is an exception rather than the norm. In
general curved spacetimes, and also in odd-dimensional Minkowski spacetime and 1+1D
Minkowski spacetime, the strong Huygens principle is violated and the commutator has
timelike support. In this case, it is possible to have leading order signalling effects between
timelike separated observers, because the leading order signalling strength |Cy| + |Ds|
depends directly on the commutator.

In this section, by analyzing the leading order signalling strength, we will see that
an important characteristics of timelike signals is that they do not depend on the sender
and receiver being resonant with each other. This suggests that timelike signals can be
interpreted as a static imprint from the sender on the field amplitude, which remains, or
slowly decays, inside the future lightcone of the sender.

In 141D Minkowski space the Cy and D, integrals take a particularly simple form
when Alice and Bob are timelike separated, i.e., when Bob couples to the field only inside
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the future lightcone of Alice’s coupling to the field. Because the commutator takes the
constant value 3 in the future lightcone, and also because the interdependence on the

nested integrals drops out when Bob is timelike separated from Alice.

Even more conveniently, the integral can be performed in terms of the detectors’ proper
times without any explicit reference to their relative motion. Assuming that Alice couples
within the coordinate time interval 0 < ¢t < T4 and Bob within the coordinate time
interval T7 < t; < T5 we have

T Ta .
Cy = / Aty [dty alts) sty P =anate) -
T 0
. TA 15
_ % /dt2 XA(tQ)e—iQAT.A(tQ) /dt1 XB(tl)eiQBTB(tl)
0 1
1 —iQ T Q5T
=3 /dTA na(ra)e 4™ /dTB ns(Tp)e” " (5.48)

where in the last step we dropped the integration boundaries, since they are implied by
the support of the detectors switching function np(7p) already.

We see that the signalling coefficients Cy and Dy between timelike separated detectors
in 1+1D Minkowski space are nothing but the product of the Fourier transform of the
detector switching functions evaluated at the detectors’ energy gap frequency. This means
that Alice and Bob do not have to cooperate in order to optimize the signalling strength
of timelike signals. They only need to separately optimize their own switching function
and detector gap. They do not need to tune their detectors into resonance as they have to
optimize lightlike signals, which we discussed above.

Also, the signalling strength is completely independent of the relative motion of sender
and receiver. The only relevant parameter is the profile of their switching function with
respect to their proper time.

Intuitively speaking a receiver in the future lightcone of the sender only sees the final
displacement of the field amplitude that the sender imprinted into the field. The sender
then has to optimize his switching parameters such that the effect of any displacement
of the field amplitude on his detector is maximized. This is in contrast to scenarios with
lightlike separations between sender and receiver. Here the receiver sees the change of field
amplitude that the sender created at her side during her coupling to the field. So if the
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receiver adjusts his detector to the frequency of the oscillations in the field amplitude, this
results in a resonant driving of his detector and thus a larger signalling strength.

A particular simple solution to the signalling coefficients is obtained by using instanta-
neous switching functions, i.e.,

1 ifp <7< A
no(7) = <7< 717+ Tp‘ (5.49)
0 else
Here the integrals evaluate to
21 . . Q Q
Oy = — o B o) =i Crao ) gin ( ZAAL, ) sin [ 2 Arg ) . (5.50)
Q405 2 2

Accordingly, the leading order signalling strength between timelike separated detectors in
14+1D Minkowski space with instantaneous switching functions is

sin (%ATA> sin (%ATB)

Here we see that both Alice and Bob should couple their detectors to the field for an integer

multiple plus one half of their own detector period, i.e., for At = (k + %)2—” in order to

Q
maximize the signalling strength, which then is

|Co| + | Do =

. (5.51)

Q405

4

Dyl = ——.
|Ca| + | Dy 0 lm

(5.52)
Also, Alice can completely suppress the Cy and Dy coefficients for timelike observers by
coupling to the field for an integer multiple of her detector frequency. In this way she leaves
no remaining imprint on the field amplitude that is detectable in her future lightcone.

The sharp switching also maximizes the signalling strength in the sense that adding
a smooth transitions to the switching function in which the switching function ramps up
and down to its constant value of n = 1 for times 79 < 7 < A7y + 79 generally decreases
the absolute value of the integral

/ dr n(r)e . (5.53)

The most significant property of timelike signals in 141D Minkowski space is that they
are independent of the time delay between the sender and receiver. This is a consequence
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of the factoring of the C5 into two separate integrals, which occurs because the commutator
is constant in the future lightcone. This means that Bob can detect timelike signals from
Alice at any point in the future lightcone without any change in the leading order signalling
strength. In principle, it makes no difference whether Bob decides to detect the timelike
signal that Alice imprinted into the field a second after Alice coupled to the field, or a day
later.

Also in 241D Minkowski spacetime, signalling between timelike separated detectors
is possible, because the commutator has timelike support. As seen in Figure 5.5, also in
241D timelike separated detectors need not be tuned into resonance in order to maximize
the strength of timelike signals, just as in 14-1D.

However, in 241D the signalling strength of timelike signals dilutes with increasing
timelike separation between sender and receiver. This is a consequence of the commutator
being proportional to o< 1/v/At? — Az?. (See equation (5.15).) This leads the signalling
strength to decay at the same rate. Numerical evaluations confirm that when the coupling
duration of sender and receiver is kept constant, but the time delay between their couplings
AT =T, — Ty is kept constant, then the signalling strength decays as

1
|Cal +|Ds| ~ 3 (5.54)

for large time delays AT — oo.

This decay of the signalling strength of timelike signals is still slower than the decay of
the energy that is injected by the sender into their future lightcone, just as we argued at
the end of Chapter 2, and will see in detail in Chapter 6. Therefore, in 2+1D Minkowski
space, we find an asymptotic decoupling of the information flow from the flow of energy
for large timelike separations between the sender and the receiver, in the sense that the
ratio of transmitted energy to signalling strength goes to zero.

5.4 Conclusion

In the scenarios that we discussed, the leading order signalling strength between two parti-
cle detectors behaves much as one would expect, based on intuition on classical fields. This
is not surprising, since the leading order signalling strength derives from the commutator
which is given by the classical Greens function of the field.

We see that the signalling strength is optimized between resonant detectors, when
sender and receiver are in lightlike contact. To achieve resonance between moving detectors,
the classical, relativistic Doppler shift needs to be taken into account.
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(|Co| + | Do) /228

Figure 5.5: The leading order signalling strength for timelike signalling in 24+-1D Minkowski
space for different detector energy gaps of the sender 24 and the receiver 2z. The sender
and receiver are at rest at the same position, however, couple to the field after each other.
The sender couples to the field for ¢ = 0...2, the receiver for ¢ = 2.1...4.1. The signalling
strength does not depend on the sender and receiver being resonant. The plot shows
(|Cs|+|D2])/ V2408, i.e., the leading order signalling strength normalized by the geometric
mean of the detector gaps.

In contrast, signals between timelike separated observers are not dependent on sender
and receiver being resonant with each other. This suggests that timelike signals can be un-
derstood as a static remainder from the sender’s interaction with the field, that is imprinted
on the field’s amplitude in the future lightcone. Accordingly, to optimize the signalling
strength, Alice has to choose coupling parameters which maximize her imprint on the field.
Whereas Bob, independently, has to choose parameters which are as sensitive as possible
to any imprint Alice may have left behind.

We found that, interestingly, both for lightlike as well as for timelike signals the sig-
nalling strength between more distant detectors decays slower than the surface of the wave
front emitted by the sender. This indicates that the ratio between the information flow
encoded in the amplitude of the massless field, decouples from the energy flow. The subse-
quent chapter will analyze the energy transmission between sender and receiver in detail.
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We will find that the energy cost associated with the coupling and decoupling of detectors
and field plays an important role in the energy budget of signalling.

The characteristics of timelike signals in 2+1D Minkowski space can help to build
intuition for timelike signals in curved spacetimes. Because even when the commutator
is non-vanishing inside the future lightcone, it tends to decay with increasing distance.
Following up on the results presented in this thesis, and published in [40], timelike signals
have been considered for different examples of expanding spacetimes in [10, 11]. There it
was found that timelike signals might serve as a channel to obtain information about the
early universe. With methods as developed in [18, 87], it should be possible to extend the
analysis of the leading order signalling strength to black hole spacetimes.

As shown in Chapter 3 the channel capacity between two detectors does not directly
compete with the noise in the channel, to leading order. Nevertheless, it should be interest-
ing to compare the leading order signalling strength with the local noise from the quantum
fluctuations of the field, that the receiver experiences. For example, when signalling across
an acceleration horizon the leading order signalling strength, due to the time inversion
symmetry, is the same from an accelerated to a resting detector as vice versa. However,
an accelerated observer would experience thermal noise through the Unruh effect, whereas
a resting observer only experiences vacuum noise.

A conclusive analysis of how the interplay of signalling and noise effects impacts the
channel capacity may require a non-perturbative analysis. Non-perturbative methods are
also necessary for scenarios where many receivers try to obtain timelike signals from a single
sender. Such scenarios are interesting both from the perspective of energy transmission,
as well as for questions concerning the quantum capacity of the channel.

Chapter 7 will demonstrate timelike signals non-perturbatively between harmonic oscil-
lators coupling to the field inside a Dirichlet cavity. Further prospects for non-perturbative
methods are also discussed in the final conclusions of the thesis.
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Chapter 6

Energy exchange between
Unruh-DeWitt detectors

The appearance of timelike signals in massless fields may not only be surprising, on first
sight, it may even appear to be in conflict with energy conservation: In previous chapters
we have seen that in 1+1D Minkowski space Alice’s timelike signals reach arbitrarily far
into the future light cone, without being diluted. Therefore, it is possible to have an
arbitrary large number of receivers in Alice’s future lightcone which all detect Alice’s signal
in parallel. The receivers can even be arranged to be spacelike separated from each other
such that they have no influence on each others measurement outcomes at all. Therefore,
if they initialize their detectors as discussed in Chapter 3, they all receive the same positive
leading order contribution to the expectation value of their detector energy due to Alice’s
signal.

This means that the total increase in the energy of the many receiver detectors, caused
by Alice, is unbounded because the number of receivers can be arbitrary large. How
could Alice possibly know, in advance, how much energy she needs to send into the future
lightcone in order to excite all potential receivers?

The answer is that Alice sends no energy at all. In fact, she does not have the means to
send any energy into the future lightcone in 141D Minkowski spacetime, since, as discussed
in Chapter 2.4, the field energy density in 1+1D propagates strictly lightlike. Instead, much
as in a collect call, the receivers have to pay the energy expense for exciting their detectors
themselves by the work necessary to couple and decouple their detectors from the field.

In this chapter, we analyze the role of energy exchange in signalling between Unruh-
DeWitt detectors. In Section 6.1, we calculate the total energy, and the distribution of
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energy density that a single detector injects into the field when coupling to the vacuum,
to first order in perturbation theory.

In Section 6.2 we analyze how, under the coupling of the field and detector, the different
parts of the system exchange energy. Coupling and de-coupling the detector and the field,
can introduce energy into the field. We discuss how this energy cost is balanced by the
work necessary to switch the detector.

Based on this analysis, we discuss the exchange of energy in signalling between a pair
of Unruh-DeWitt detectors in Section 6.3. We find that timelike signals, in particular,
can modulate the energy cost of coupling a detector to the field inside the sender’s future
lightcone. On the one hand, this additional energy cost resolves the apparent energy
conservation paradox we discussed above. On the other hand, it also means that the
information content of timelike signals can be viewed as being encoded in the energy cost
incurred by the receiver when switching their detector.

6.1 Energy injected into the field by a single detector

Note: Figures and certain passages of this section concerning 1+1D Minkowski spacetime
are reproduced from [38].

In this section, we discuss how much energy an Unruh-DeWitt detector coupling to the
vacuum injects into the field, and how this energy propagates in spacetime. We approach
this question using perturbation theory and calculate the leading order contributions to
the expectation value of the field energy density, and the expectation value of the total
field energy.

For 1+1D and for 2+1D Minkowski spacetime we obtain closed expressions even for
sharply switched, pointlike detectors. In 1+1D, these show that all energy that is injected
by the detector in the field propagates strictly at the speed of light, confirming the decou-
pling of the flow of information from the flow of energy in 141D Minkowski spacetime.

We obtain general expressions for the leading order contributions in higher dimensions
in terms of distributional momentum integrals. The support of these integrals encode
where the field energy density propagates that is emitted by the detector.

In 241D Minkowksi spacetime we find that energy propagates into the future lightcone,
as expected from the discussion in Chapter 2. Interestingly, the leading order contribution
to this timelike propagating energy density is found to be independent of the detector’s
initial state.
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Our discussion extends a large body of literature that addresses the radiation and
energy flux originating from a Unruh-DeWitt detector. In particular, the question whether
an accelerated detector emits radiation while the detector experiences the Unruh effect has
found particular attention. This question has been considered for stationary, and non-
stationary couplings both of two-level, and harmonic oscillator type detectors in (1+1)-
and (143)-dimensional Minkowski space. Later works on this topic which give a review of
previous work include [49, 45, 46, 61, 3].

6.1.1 Field energy density in Minkowski space

We begin with a brief derivation of the operators for the field’s energy and energy density.
The field energy density of the field is given by the Tyy component of the field’s energy-
momentum tensor. For a massless Klein-Gordon field in n+1D Minkowski spacetime it
reads [§]

Too = <<at¢>2 + i(&-aﬁ)?) . (6.1)

i=1

It is also called Hamiltonian density, since, when normal ordered, its integral over a slice
of constant coordinate time yields the field’s Hamiltonian

Hy = /d"f Tho: = /d”/;:k:a]%a,;. (6.2)

Here, k = k ‘ denotes the norm of the momentum vector, and we have used the expansion

of the field operator as introduced in Chapter 2. Using the notation

/{Z’uﬂfu = ]{Z()LUO - E ST = k0$0 - Z k’ll'l (63)

=1

for the Minkowski product, the expansion of the field operator reads

hod ny. 1 1 —iktx ikHx
o(t, ) / TR (e hag + 4*nal). (6.4)

Accordingly, its derivatives are given by

- |k ) )
/dnk \/; (efllc*‘z#a]z o elk#z#al]%) (65)
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1 ni kl —iktx ikFx
d;9(z) = W/d /{;m (e Mg — elf “a%). (6.6)

To obtain the normal-ordered energy density operator of the field, :Tyg:, we plug these
expansions into the energy density, and apply normal-ordering to the creation and annihi-
lation operators:

—1 . ﬂ ki
Too: = ——— | A"k /dnk’ VEE 4+
00 4(277)”/ ( Mkk')

—i(k+k/ ) i(k+k ) T o1 (k=K o 1
y (e i( ) x“ak’ak"/ + el( ) x#ak‘alg _ 261( ) xuaEak-;) (67)

We readily see that integrating the normal-ordered energy density up over a slice

of constant time indeed yields the Hamiltonian of the field. Since [d"@ e ik=R)-E

(2m)"6 <E— l;’) and kk — k - k = 0, the first two terms drop out of the integral, and
the last one exactly gives back the Hamiltonian

/d”.f Tyo: = /d”l;k:a’%a,g — Hy. (6.8)

Therefore, the first two terms in the energy density do not enter the Hamiltonian. This also
is inevitable, because these terms consist of two creation or annihilation operators and are,
therefore, non-diagonal in the Fock basis of the field, in contrast to the field Hamiltonian
Hy. However, these two terms, despite having no influence on the total energy of the field,
ensure that the field’s energy density propagates causally. For example, in our following
calculations, they cancel out contributions to the energy density from the last term in :Tj:
that have spacelike support.

6.1.2 Leading order contributions to the field energy density

This section derives the leading order contributions to the field energy density from an
Unruh-DeWitt detector coupling to the field in general, n+1D Minkowski spacetime. For
all of this chapter, we assume that the detector initially is in a pure state, denoted by

[Y0) = ale) + 51g), (6.9)

whereas the field initially is in its vacuum state. Thus, the initial density matrix of field
and detector is

po = [tho) (o] @10)(0] = (laf* [e){e| + aB* [e)(g] + "B g) (el + |B]* |9)(g]) @ |O><0(|é 0)
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At this point we make no assumptions on the detector’s wordline yet. Therefore, we
denote the interaction Hamiltonian with respect to the detector’s proper time 7 by

Hie = (1) (e_iQT lg){e| 4 ¥ le)(g]) @9(a), (6.11)

N J/
-~

m(7)

where x, = x,(7) = (to(7), Zo(7)) is the detector’s location in spacetime at proper time 7.

We calculate the time evolution of the system under the detector-field interaction in
the interaction picture using the Dyson expansion for the time evolution operator, just as
previously in Chapter 3. From this we obtain a perturbative expansion for the time-evolved
density matrix of the total system.

p e~ po+ (UDpg + poU V) 4 (UD poU O 4 U g 1 pUDH) 10(N%) (6.12)

(. > . >

PO PD~O(2)
For the expectation value of the field energy density this results in
Tr (:Ty: p) ~ Tr (Tt po) + Tr (T pV) + Tr (:Toz p®) + O(N3). (6.13)
=0

Here the zeroth order contribution to the expectation value of the field energy density
vanishes, since the field starts out in the vacuum state.

The first order contribution Tr (:Ttt:p(l)) = Tr (:TOO: (U(l)po —|—p0U(1)T)) vanishes as
well, because

iktay,
UWpy = —i / d / Ak ——
Po 7_77(7—) (271_)5\/%

—00

(lal?e™ [g) (el + BT [e) (g + aB"e™ 7 |g)(g] + a3 [e)(e]) @ |1;z>§0! "
6.14

contains matrix elements that are off-diagonal between the one-particle sector and the vac-
uum state of the field, but the energy desnity :Tq: is quadratic in creation and annihilation
operators.

The leading order contribution from an Unruh-DeWitt detector to the field energy
density of the vacuum is, therefore, of order O(\?), and consists of the terms

Tr (:Too: UM poUDT) + Tr (:Tp0: UP ) + Tr (:Too: poUPH) . (6.15)
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The first term can be written as

TI' ('T()()' U(l)pQU(l)T)
/dT /dT’ 77— \04\2 Qr=) 4| gfPe iU )> D™ (x — x4, 2" —z) (6.16)

and the second terms, which are complex conjugates of each other, can be written as

Tr (ZTO()I U(2)p0) =Tr (ZTO()I pQU(Q)T)*
o0 T ,
= \? /dT /dT' % (|a|26iQ(T_T,) + |,3|2e_m(7_7/)> D™ (z, —x, 2! —x) (6.17)

Here, by D™(y, z), we denoted the momentum space integral

/d” /d”k’ <1+ Zkk, ) e F " gk 2 (6.18)

This integral represents a distribution in spacetime. Hence, in general, it has to be inte-
grated against test functions in order to guarantee well-defined results, i.e., one would have
to use smeared rather than pointlike detectors.

The distributional integral D™(y, z) determines how the energy that the detector in-
jects into the field propagates, and spreads out in spacetlme The integral can be split into
its imaginary and real part, D™ (y, z) = Dg%)( z) + 1D ( z), with

D" (y,z) = D™ (z,y), D™ (y,2)* = D™ (~y, —2). (6.19)

This can be used to rewrite the leading order contribution to the expectation value of the
field energy density as

Tr ('Too'( )p(2))

/dT /dT/U <|a|2 iQ(r—7") + |6|2 —iQ(r— T)> D(n)(fL‘—CL’a,ZL‘;—I‘)
/dT /dTﬂ? <|a|2 iQ(r—) 4 |B|2 —iQ(r— T)) D(n)((ZE—I ), (2 — 24))

+ A2 /dT /dT/ nir s1n(Q(T — 7)) (Ja)* = 18 D(Sn)((x —2l), (x — x,)).
(6.20)
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In this form it is evident that the expression is real-valued, since the first two terms do not
change under complex conjugation, and the last integrand is real-valued.

We note that D™(y, z) has support even for spacelike separated points y and z.
However, we will see below that the spacelike contributions from the different terms in
Tr (:Tooz(q;)p@)) in 1+1D Minkowski spacetime cancel against each other, such that the
result propagates causally. This could suggest that one might be able to rewrite the above
expression in a form where the causal propagation is more evident, also in general spacetime
dimensions.

6.1.3 Leading order contributions to the field energy

To obtain the leading order contribution to the expectation value of the total field energy,
we integrate the expectation value of the energy density over a slice of constant time.
Before equation (6.8) we discussed that the field Hamiltonian arises from the term which
is diagonal in the Fock basis of the field. The same kind of argument shows that the
expectation value of the field Hamiltonian is given by

(Hy) ~ / 4"z Tr (:Too: UV poUDT) + O(N%). (6.21)
The integral expression for this leading order contribution is given by

/d”f Tr (:TOO: U(l)poU(l)T)

_ )\2 /dT /dT/X (|06’2 iQ(r—7' + |ﬁ|2 iQ(r— T)) /dn];eik(tatﬁl)oeilg-(i"'afﬁl).
(6.22)

For a detector at rest it simplifies to

/dnf Tr (ITOOZ U(l)poU(l)T)

_)\2 /dT /dT/X <|OZ|2 —iQ(r— T’)+ |5|2 iQ(r—1’ >/dnlgeik(7'—7”)

o0

/ X( ) 2 —iQ(r—1") 2 iQ(r—7") n—1 _ik(r—71")
/dT /dT > () n/2p(%) <|a| e + |5]%e > dk k" e , (6.23)
0
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since Z,(7) = Z,(7') is constant, and the proper time 7 = ¢, coincides with coordinate
time. The distributional momentum integral can be represented alternatively by

o0

/ dk k= Teks = i (n — )P 4 7 wg(n — 1)(s). (6.24)
Sn
0

We obtain this representation by applying the ie-prescription discussed in Section 2.3.1 to
the integral, and then applying the Sokhotskii formulae (2.35).

Except for 1+1D, this expression is UV-divergent for sharp switching functions. If we
insert x(7) = Xjo,r)(7) above, and perform the time integration first, we obtain

/ d"% Tr (:Tpo: UM poUT)

12 /X[07T1<T>X[07T](T,) 2 ,—iQ(r—1") 2 1Q(r—7") n—1 ik(r—7")
=)\ /dT /dT 2 ()" (2) <|a| o +|8|% ) dk k" e
—00 —00 0
\2 i a2 TN I8P T
= dk k" ———sin? [ (Q — k)= — 2 sin? [((Q+ k)= .
2n=2(7)n /20 (2) / ((Q " g (( )3+ Q+ k2 (@+k)35
0

(6.25)

This integral diverges for n > 2 as k — oo. Therefore, in Minkowski spacetime of 2+1D
and higher dimensions smooth switching functions are necessary to obtain well-defined,
finite leading order contributions to the expectation value of the field energy.

6.1.4 Lightlike energy propagation in 141D Minkowski space-
time

In 1+1D Minkowski spacetime, the momentum integrals appearing in the leading order
contributions to the field energy, and to the field energy density, have finite closed form
solutions even for pointlike and sharply switched detectors.

These solutions agree with our discussion in Section 2.4, where we showed that the
energy density of a massless field in 1+1D propagates lightlike. We will see that all energy
that a sender injects into the field propagates away strictly at the speed of light. The
information carried by lightlike signals into the future lightcone of the sender is, therefore,
completely decoupled from the flow of energy emanating from the sender.
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We note that the infrared ambiguity of the massless field in (1+1)-dimensional Minowski
space does not affect the expectation values of the energy-momentum tensor. This explains
why the results for the detector’s effect on the field energy, and field energy density, are
finite, whereas the excitation probability for a pointlike detector in 141 dimensions is
infrared-divergent and has to be regularized [80, 41].

The distributional integral which appears in the contributions to the energy density
can be readily expressed in terms of Dirac, and principal value distributions, in 1+1D
Minkowski spacetime. Using formula (2.35), which yields

/dk: M = wo(r) + 173%, (6.26)

0

we find
DW(y, 2) =2 (mS(y) + Py%) (mi(z) + Pi)
) (m3(y+) + Pi) (ﬁa(m + Pi) (6.27)

where for y = (yo,y1) and z = (20, 21) we introduced the lightcone coordinates y+ = yo £y
and z4 = zg£2z;. These lightcone coordinates are zero for points that are lightlike separated
from the origin. Splitting the distribution up into its real and imaginary part

1 1 1 1
DY (y, 2) = 2n%6(y-)o(=) — 2P P+ 26 )0(24) — 2P P

- Y+ 2+
1 1 1 1
Dg) =2716(y_)P— + 216 (2-)P— + 2m0(y4 ) P— + 21 (24 )P —. (6.28)
Z_ (/. CAR Y+

we see that the double principal value term in the real part means that the distribution
has support even at spacelike separations. However, this term cancels out in the expression
for the energy density, which we find to be

Tr ( Tu(t, z): (2))

/dT/dT’X <|a|2 iRr=1) 4 | |2 ))

(5($+ —ay)0(ry — a’+) +0(z- —a-)d(r- — a'_))
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+(Jaf = 18P) far [ar MDD oo~ )

« (5(gg+ ) P— (e - a_)P;,) (6.29)

Ty —al, T_—a

where x4 =t + 2, a/, =1,(7") £ 2,(7") and ay is defined accordingly.

At this point we have not yet introduced any assumptions on the detector’s wordline, or
the switching function. However, due to the §(x+ — a4 )-distributions, a non-zero contribu-
tion to the energy density of the field can only be found at spacetime points (¢, z) that have
one lightcone coordinate, ¢t + z, in common with a spacetime point at which the detector
interacted with the field. This means that the detector only affects the expectation value
of the energy density of the field at spacetime points which are lightlike connected to the
detector’s worldline: Any energy that the detector injects into the field propagates strictly
at the speed of light.

For a detector at rest, say at x, = 0, the detector’s proper time coincides with coordinate
time. If we couple the detector to the field for a time 7" using a sharp switching function

X(7) = (6.30)

1 f0<7r<T
0 else

the leading order contribution to the energy density evaluates to

e (Tt %) =07 (NG (o~ 137) X2

Si(
+(@ (Jaf \5\) (2 sir ))) (6.31)

A plot of the spatial profile of this contribution to the energy density is given in Fig. 6.1
for the case of a detector starting out in its excited state, |a|?> = 1, and for the case of
a detector starting out in its ground state, |3|*> = 1. For other input states the energy
density can take any value in between, depending on the value of |a|? —|3|%. In particular,

if the detector starts out in an equal superposition of energy eigenstates, i.e., |a|? = |5,

then the oscillatory contributions to the energy density vanish.

Qz,)

The energy density injected into the field by the detector oscillates with a larger ampli-
tude at times right after the onset of the interaction. In the plot these are the points most
distant from the origin, where the detector is located. Towards later times, the oscillations
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Figure 6.1: [38] Leading order contribution to the normal ordered energy density
(:T;(tQ, x):) from equation (6.31) injected into the field by an Unruh-DeWitt detector
at rest, starting out in its excited state (upper, red line), or its ground state (lower, blue
line). The detector frequency €2 is used to obtain dimensionless distances and times. The
detector is coupled to the field at z, = 0 for the time interval ¢ = 0...20/€Q2. The graph
shows the energy density on the spatial slice of 1+1D Minkowski space with ¢t = 40/, i.e.,
the graph plots (:T3,(t = 30/, z):). The energy density is only non-vanishing at points
which are ligthlike connected to the interacting detector.

diminish and the energy density approaches a constant limit of %2 for the excited detector,
and zero for the detector in the ground state. Interestingly, the detector in the ground
state causes negative energy densities to occur.

The abrupt switching through step functions used above can be problematic, e.g., for
the calculation of detector excitation probabilities, because it does not comply with the
mathematically rigorous requirement of being a smooth test function [54, 74]. The change
of energy expectation values for smooth switching functions converges to the results ob-
tained for abrupt switching, as the smooth switching functions approach step functions
[40]. The oscillating fringes in the energy density of Fig. 6.1 are a consequence of steep
switching, and are smoothened out for switching functions with lower slopes.

The total energy injected into the field by the interaction with the sharply switched
detector is

Tr (H;p?) = AQT(%+M (Si(QT) + %)) : (6.32)
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Figure 6.2: [38] Leading order perturbative contribution to the total energy injected into
the field by an Unruh-DeWitt detector, with energy gap €2, coupling to the field for the
time interval ¢ = 0...7 while at rest, see (6.32). The upper line shows a detector starting
out in its excited state. Here the contribution to the energy scales linearly with the total
interaction time Q7. The lower line shows a detector starting out in its ground state. Here
the total energy approaches the limit of (H;) — A\?/(7Q) as T — oo, see (6.33).

A plot of the total energy injected into the vacuum state of the field by a detector in its
ground, or in its excited state is given in Fig. 6.2.

When the detector starts out in its excited state, this contribution scales linearly with
the total interaction time, so that (H;) ~A* T as T — oo. For long interaction times this
divergence might be overcome by higher order perturbative contributions, otherwise, it
indicates the limits of the perturbative regime.

For a detector starting in its ground state the limit of long interaction times yields

11 Q1) — 1 o g 1
A2T<5 - (Si(QT) + %)) s AQW—Q. (6.33)

as T' — oo. This means that even in the limit of an infinitely long interaction time
window, a detector starting out in its ground state injects energy into the field. This
energy originates from the energy density injected early, after the abrupt switch-on of the
interaction. Any energy that is injected into the field propagates away at the speed of
light. Hence, there are no means to retain it later at the detector’s location.
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This indicates that there has to be an energetic cost for decoupling the detector from the
field: After the interaction is switched off the field will be in a state of higher energy, because
it is not in the vacuum anymore. Also the energy of the detector can only increase under
the interaction, since the detector started out in the ground state. The only mechanism
by which this overall energy gain can be introduced to the system is through the time-
dependent switching of the interaction Hamiltonian.

Therefore, in a sense, the energy which is injected into the field by a detector in its
ground state can be viewed as a binding energy between the detector and the field. We will
analzye the exact energy budget of switching a detector, and the role the different parts of
the systems’s Hamiltonian play in Section 6.2.

6.1.5 Timelike energy propagation in 2+1D Minkowski space-
time

In 2+1D Minkowski spacetime, a part of the energy density that the detector injects into
the field can propagate into the detector’s future lightcone. The leading order contribution
to this timelike propagating energy density behaves in a way which appears to support
the interpretation of timelike signals as a static imprint on the amplitude of the field, that
we arrived at in Chapter 5, because we find this contribution to be independent of the
detector’s initial state.

In higher dimensions the evaluation of the distributional integral D™ (y, z), from equa-
tion (6.18), that appears in the leading order contribution to the expectation value of the
field energy density, is more involved than in 1+1D Minkowski spacetime. In 2+1D, we
can obtain an ie-representation for the distribution (see Section 2.3) which reads

(—iyo + €)(—izp + €) — cos0|y]|Z]
((—iyo + €)% + 712> ((—izo + €)2 + |212)**

where 6 = <(7, Z) is the angle enclosed by the spatial part of y and z. In general, this
distribution needs to be integrated against smooth test functions in order to obtain a finite
result for the leading order contribution to the expectation value of the field energy density.
A pointlike, sharply switched detector will necessarily yield a divergent contribution to the
energy density, because we know that its leading order contribution to the total field energy
is already divergent.

D@ (y, z) = 4n? (6.34)

Nevertheless, an interesting observation about the energy density propagating into the
future lightcone of a detector can be made from the ie-representation above. This observa-
tion suggests that the divergent contributions to the energy density, that would arise from
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a sharply switched and pointlike detector, do not propagate into the future lightcone of
such a detector.

Let us consider the field energy density at a resting detector’s own position in space,
after the interaction has been switched off. In the corresponding integral we encounter
the distribution D®)(y, z) only with arguments that have vanishing spacelike parts, i.e.,
¢ = Z=0. In this case, the expression for D simplifies.

D(2) (yo, 6, 206) =

42 1 . 1 .

(yo +i6)2(z0 +1€)2 4r? (Py_g + 17r5’(yo)) (Pz_g + 16’(20)) (6.35)
As we are evaluating the energy density in the future lightcone of the interaction of the
detector with the field, we will have yg, zg > 0. Therefore the ¢’ terms do not contribute,
and also the principal value prescription is irrelevant, since the integral expression does
not involve the singularity. Thus, the leading order contribution to the expectation value
of the field energy density, which we derived in equation (6.20), from a detector at rest at
24, after the interaction has been switched off, takes the simple form

o0

0o ’Oé|2 iQ(r—7") 4 |5’2 —iQ(r—7 ))
Tr (:Too:(t d dr’ 6.36
I‘( 00(7 87T2/T/T77 (t—T) (t—T)Q ( )

at the detector’s own position. This integral has a well-defined solution even for a sharp
switching function x(7) = xp,77(7). It reads

Tr (:Tooz(t, :Z"a)p(Q))

—itQ
2 € WO e - : iTQ
x ((t —T) (tQ(Ei(itQ) — Ei(i(t — T)Q)) + ie'?) — ite!=1) (6.37)
where Ei(z) = — [dte "/t is the exponential integral function.

—z
The most remarkable property of this solution is, that it is independent of the detector’s

initial state. Instead, the energy density inside the future lightcone only depends on the
mere presence of the interacting detector, irrespective of its state.

The energy density in the lightcone is mainly determined by the time that has passed
since the detector was decoupled, i.e., on the time interval ¢ — T. The asymptotic depen-
dence of the energy density on the time delay since the detector has been switched off is
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independent of the detector gap. For vanishing delays, as t — T, we have

1
Tr (Too:(t, Zo)p?) ~ ——— 6.38
I'( 00(7x>p ) 87T2(t_T)27 ( )
and for large time delays, t — oo, the energy density falls off as
1 —cos(TQ) = Tsin*(TQ/2
Tr (:Tho:(t, 7a)p®) ~ cos(T§h) | Tsin (1%2/2) (6.39)

42Q)2t4 200245

Increasing the duration of the coupling 7T only increases the energy density that is
observed a certain time after the detector is switched off up to some maximum that is soon
attained, as seen in Figure 6.3. Only in the limiting case of a zero-gap detector, 2 — 0,
where

T2
T 82t —T)?

can the energy density grow unbounded for longer interaction durations 7.

Tr (:Tooz(t, fa)p(2)) (6.40)

6.2 Energy budget of switching a single detector

We have seen that coupling a detector to the field injects energy into the field. Also, we
know that such a coupling can excite a detector that was initially in its ground state into
its excited state. In general, such effects are stronger the shorter the interaction, and the
sharper the switching is.

In fact, after the coupling is switched off again, both the energy of the detector, as
well as the field energy can be elevated from their initial ground state, which means that,
overall, energy has been added to the combined detector-field system by the coupling.
What is the source of this energy, or, more precisely, what is the source of this rise in the
energy expectation value of the system?

The change of the energy expectation value can only be caused by the time-dependence
of the Hamiltonian, introduced by the time-dependent switching of the detector, because
the entire time evolution of the combined field-detector system is unitary.

In this section we discuss how much energy an observer needs to locally couple a detector
to the field, and how this energy expense accounts for the excitation of the field and the
detector. In the following section, this analysis reassures us that timelike signalling do not
violate energy conservation, and, most interestingly, it shows that the information carried
by timelike signals can be viewed as being encoded in the energy expense their detection
requires from the receiver.
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Figure 6.3: Leading order contribution to the energy density Tr (:Tpo:(¢, Z,)p®) /A%, from
equation (6.37), from a detector with energy gap €1, at rest at Z, in 2+1D Minkowski
spacetime, coupling to the vacuum for a duration 7', at time ¢t = T. The energy density
soon attains a maximum for increasing coupling durations 7. Only for zero-gap detectors
can the energy density grow unbounded, see (6.40)

6.2.1 Energy change from time-dependent Hamiltonian

To begin with let us review and formalize the assertion made in the previous paragraph
that the time-dependent switching changes the energy of the system. For a time-dependent
Hamiltonian we have that its expectation value evolves as

d 0OH
o= (5. (6.41)

i.e., the time derivative of the energy expectation value of a non-autonomous system is
given by the expectation value of the time derivative of the Hamiltonian. Being a statement
about expectation values, this is independent of the particular (Schrodinger, Heisenberg,
Dirac) picture we use for our calculations.

The formula is most easily derived, and applied to our case, in the Schrodinger picture.
So we will use the Schrodinger picture for the purpose of this section. There we find that

d(H(b) _ d
S = Sl UTOH(OU (1) o) (642
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= il (U000 U0 + U0 (510) U0
U HODHO U ) 4o (6.43
OH (1) OH (1)
=l 25 ey 1o = ( 5. (6.44)

In our case the Hamiltonian consists of the sum of the free Hamiltonians of the field
and the detector, and of the interaction Hamiltonian Hiy ().

H(t) = Hy + Hq + Hin (1) (6.45)

The interaction Hamiltonian is the only part of the Hamiltonian that is time-dependent,
whereas the free Hamiltonians, of the field Hy = [ drk k a%al—ﬁ' and the detector H; =
Q]e)(e|, are constant. Therefore, the change of the total energy expectation value of the
system is given by the expectation value of the interaction Hamiltonian’s time derivative.

() (252

The interaction Hamiltonian is, in general, time-dependent both through the switching
of the detector, as well as through the detector’s motion, because in the Schrodinger picture
the interaction Hamiltonian reads

Hini () = An(t) m ¢(za4(t))- (6.47)

Here, if the detector is moving, the field operator is changing in time such that, even when
the switching function is constant, the motion of the detector can introduce energy into
the detector-field system.

In the following we restrict our attention to detectors at rest, i.e., Z4(t) = 4 = const. In
this case the field operator is constant in the Schrodinger picture. So the time derivative of
the interaction Hamiltonian and, thus, the time derivative of the total energy expectation
value of the field-detector system is given by

St = (P = (0 (20 gz ) = P00 (o)

_ o)

e (hr) . (6.48)
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where we defined the ‘stripped’ interaction Hamiltonian as
hr = A ¢(Zyq). (6.49)

The advantage of this notation is that its expectation value (h;) does not depend on which
picture we are applying. So for all calculations in the following we can switch back to the
interaction picture and use perturbation theory to calculate (h;).

6.2.2 Exchange of energy under constant coupling

Before we analyze how the switching of the detector changes the total energy, we review
briefly how the different parts of the Hamiltonian exchange energy when the switching
function 7(t) is constant, i.e., the interaction is constantly switched on or off.

When the interaction is switched off, i.e., n(t) = 0, no exchange of energy takes place
since the free detector and the free field evolve in time independently from each other. So
the expectation value of each of the Hamiltonians is constant, and therefore of course also
their sum which is the total Hamiltonian.

(H) = (H;) + (Hp) = const (6.50)
=const =const

During time intervals, where the interaction is switched on and constant, n(t) = const,
the total energy expectation value is conserved because the interaction Hamiltonian is
constant

n = const = <5gf;m> =0= (H) = (Hy) + (Hp) + (Hin) = const. (6.51)

However, the individual expectation values of the field, the detector and the interaction
Hamiltonians can now change. With the interaction term present, the Hamiltonian is now
acting non-trivially on the product Hilbert space of field and detector spaces, H = H;QHp.
So (Hy), (Hp) and (Hiy) change over time, and only their sum is kept constant: Energy is
exchanged between the different terms in the Hamiltonian and can flow from one subsystem
to the other. This is a consequence of the coupled system having different energy eigenstates
than the free uncoupled system.

The exchange of energy can lead to non-trivial energy distributions between the field
and the detector, mainly because the interaction Hamiltonian is not positive. This is easily
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seen from the monopole operator’s eigenvalues being +1. Therefore, even when the total
energy expectation value vanishes, (H) = 0, the energies of the field and the detector can
both be positive, (Hy), (Hq) > 0 at the expense of having a negative expectation value of
the interaction Hamiltonian, (Hiy) < 0.

The next section shows, that this is how both the field and the detector can gain energy
when they are coupled to each other. The negative expectation value of the interaction
Hamiltonian corresponds to the energy which is on average necessary to decouple the
detector and the field when switching off the detector.

6.2.3 Energy cost of switching a detector

The only time when the total energy expectation value of the field and a detector at rest
can be raised or lowered is when the switching function is changing. If we assume that the
switching function is changing within the interval a < ¢ < b, then, as shown above, the
total energy introduced during this process into the system is given by

b

A (HY = jdt@ — /dt (ag—(t” <h1>). (6.52)

a a

If we use a sharp switching function 7(t) = xjor1(t), which as defined earlier is 1
if 0 <t < T and vanishes elsewhere, then its time derivative consists of two Dirac -
distributions.

1 (t) = Xjor () = 0(t) — 0(t = T). (6.53)

This means that when the detector is switched on, the energy introduced to system is

Ay = far (P98 )}~ far (500 - ot - 1) () = () (1= 0) (650

—€ —€

which is the expectation value of the stripped interaction Hamiltonian (h;) = (Amo(Zy))
at the time of switching. Analogously, the change in energy at the switch-off is given by
the negative of the expectation value of the stripped interaction Hamiltonian

A(H) = — (b)) (t =T). (6.55)
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The expectation value of the interaction Hamiltonian can be either positive or negative
such that, depending on the state of the field and detector, switching a detector can cost
or yield energy.

When detector and field are in a product state, as we typically assume them to be
initially, then the expectation value of the stripped interaction Hamiltonian is just the
product of the expectation values of the monopole operator and the field operator.

(hr) = A () (¢(7a)) (6.56)

If either of these expectation values vanishes, switching a detector sharply does not change
the energy expectation value of the combined system. This is the case, for example, if the
detector is in an energy eigenstate, or when the field is in a Fock state.

In particular, coupling a detector to the field’s vacuum state does not require any energy.
When the detector is switched on sharply, the total energy of the system just remains
unchanged. Instead all changes to the expectation values of the field Hamiltonian and the
detector Hamiltonian that arise from the coupling, are balanced by opposite contributions
to the interaction Hamiltonian. This balance has to be accounted for when switching the
detector off. Here, as much energy as has been introduced into the system, is required to
switch the detector off and decouple the field and the detector.

The expectation value of the interaction Hamiltonian therefore corresponds to a binding
energy between field and detector, which can be positive or negative.

The energy change that is introduced by the switch-off depends on the state that field
and detector have evolved into. It can be evaluated order by order in perturbation theory,
following the same approach that we used before. In fact, we can already deduce the
expectation value of the interaction Hamiltonian from previous results, since it is exactly
the opposite of the expectation value of the detector Hamiltonian and the field Hamiltonian.
The former is just given by the probability to find the detector in its excited state, which
has been widely studied in the literature, and the latter we calculated in the previous
section.

This also shows that when the perturbative corrections to the expectation values of
the detector and the field energy diverge, so does the expectation value of the interaction
Hamiltonian. Therefore, in 1+1D we encounter the same IR-divergence as for the single
detector excitation probability. In higher dimensions, sharp switching of pointlike detectors
yields the same UV-divergence in the expecation value of the interaction Hamiltonian, that
we encountered in the field energy in the previous section.

However, in signalling scenarios the leading order perturbative terms that depend on the
interaction of both detectors with the field, i.e., terms of order O(A4A5) do not suffer from
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these divergences. Therefore we will consider pointlike and sharply switched detectors in
our analysis. It is straightforward to show that the results we obtain for the perturbative
contributions, using a sharp switching functions as above, are exactly recovered when
considering a smooth switching function that changes from n(t) = 0 to n(t) = 1 in an
interval —e <t < ¢, and taking the limit of ¢ — 0.

6.3 Energy exchange in signalling

Above, we have discussed the energy flows involved in coupling a single detector to the
field. Now, we apply the approach to analyze the role of energy transport and exchange
in signalling between two detectors. In a perturbative analysis we will see to which part
excitations of the receiver’s detector are fuelled by the energy that Bob has to provide in
order to couple his detector and the field, and to which part the excitation can be fuelled
by energy that Alice injected into the field.

We assume that both Alice and Bob each have a pointlike detector, which start out in
pure states that we denote by

[Va) = aalea) + Balga) [VB) = agsles) + Bs|9s) , (6.57)

whereas the field is assumed to start out in the vacuum. The geometrical setup is the same
as in Figure 5.1: The detectors are assumed to be at rest, at a fixed distance L from each
other. Alice couples her detector first for the interval ¢ € [0,T4], and Bob for ¢t € T3, T3]
We assume that Bob couples to the field after Alice has decoupled her detector Ty > T4.
Depending on the distance L between them, Alice and Bob can still be spacelike, lightlike
or timelike separated.

As above, we calculate the resulting time evolution of the expectation values of the
different parts of the Hamiltonian perturbatively. The balance between the different parts
of the Hamiltonian, that we discussed in Section 6.2.2, will then hold order by order
in perturbation theory: The terms of a particular order contributing to one side of the
equation balance the terms of the same order on the other side of the equation.

The leading order contributions to the energy contain three different kinds of terms.
They are either of order O(A\) or O(A\3), or of order O(A4\g). The terms of order O(\%)
arise from Alice’s interaction with the field. They contribute to the field Hamiltonian (H )
and to her detector’s Hamiltonian (H 4). These contributions are balanced by opposite
contributions to her part of the interaction Hamiltonian (Hi, 4), which determine the
energy that Alice needs to provide in order to decouple her detector. Similarly, the terms
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of order O()\%) arise from Bob’s interaction with the field. These leading order terms are
not influenced by Alice’s presence at all, i.e., they are no different from a scenario where
Bob would be coupling to the field alone.

The terms of order O(AsA\5) arise due to the interaction of both Alice and Bob with
the field. We therefore refer to them as signalling terms. They describe the leading order
effects of how Alice’s past action on the field modulates the switching costs, and the energy
exchange between Bob’s detector and the field. They contribute to (Hy) , (Hg) and (Hin 5)-
The signalling contributions to Alice’s Hamiltonian vanish, which is to be expected since
they would constitute means for Bob to signal into his past.

The signalling effects can be very different depending on the detector states and the
spacetime dimension. For example, in 3+1D Minkowski space, Alice can modulate the en-
ergy exchange between Bob and the field without affecting Bob’s interaction Hamiltonian,
i.e., without changing the energy Bob requires to switch his detector. Contrary to that,
in 141D, timelike signalling does not lead to any energy exchange between Bob and the
field, but instead only affects the energy cost of Bob’s switching.

6.3.1 Leading order signalling contributions to the Hamiltonians

The general form of the leading order signalling contributions to the different Hamiltonians’
expectation values indicate already their different propagation behaviour. The signalling
contribution to Bob’s detector Hamiltonian is nothing but the product of Bob’s detector
energy gap and the probability of finding Bob’s detector excited after the coupling. In
terms of the notation for the initial states that we introduced above it reads

Ts Ta
(Hg) ~ as]? + 4\ s /dt2 () /dt1 nalth)
T 0

X R (aaBie™ %) R {apfse ™ [o(t1, Ta), §(t2, T5)] } + O(Ng).  (6.58)

It is closely related to the C5 and D5 terms from Chapter 3, and depends on the commutator
of the field. From the results there, we know that the leading order signalling contributions
require Alice to be in a superposition of energy eigenstates, i.e., ay # 0,54 # 0, and in
order to have leading order contributions to the detector Hamiltonian, also Bob needs to
be in a superposition of energy eigenstates initially, i.e., ap # 0, Bz # 0.

The signalling contribution to the field energy expectation value, after all the interac-
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tions have taken place, is

T2 TA
(Hy) ~ 4X X5 /dt2 ne(ts) /dtl nalt)R (@aBie ®40) R (agBye ")
Tl O
x R ((21) / ani e—i(utl_tz)—z-(m_fs))) + 0\ +0(Ng).  (6.59)
T n

Here, a distributional integral different from the commutator determines for which space-
time separations between Alice and Bob the field energy is changed by signalling contri-
butions. It can be readily evaluated in different dimensions. In 1+1D we have

R i /dk e Ikl(t1—t2)—k(za—25)
27
1
=5 (0(jza — o5 = (1 = t2)) + (|24 — 25| + (f1 = 12))) - (6.60)

Here the energy of the field is only affected by signalling between lightlike separated detec-
tors. In contrast to this, signalling is possible between timelike separated observers, and
signalling contributions to the detector Hamiltonian and the interaction Hamiltonian do
arise from such signals.

In 241D Minkowski space, if |ty — t1]| > |24 — 75

oo 27
1 ih(t1—t) ik[FA—3 —|ta — ta]
R dkk [d ik(t1—t2) ,ik|Ta—Zplcosp | _ 6.61
4”20/ O/ o (CEAEEA R

such that even signalling between timelike separated detectors can have an effect on the
field energy. This integral vanishes for spacelike separations, i.e., if |ty — t1| < |24 — Z5]
[37].

In 341D Minkowski space

o0 1 2T

1 ' o

R 33 /dk k2 /d cosf /d<P o~ ik(t1—t2) ,ik|Z4—Zp| cos O
0 —1 0

-1 . B . )

T Ini — 78| (0" (|Za — @] + (t1 — t2)) + &' (|Ta — 5| — (t1 — 12))), (6.62)
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again, signalling contributions to the field energy only arise from signalling between lightlike
separted observers.

The signalling contribution to Bob’s interaction Hamiltonian expectation value, (hs z)
is different from the previous two in that it only involves one time integration. This is
because the interaction Hamiltonian already contains a factor of Az itself. Therefore the
leading order contribution, at order O(A4A3) only depends on the change of the field state
caused by Alice but does not take into account the action of Bob’s own detector on the
field. This means that Alice determines the signalling contribution to Bob’s interaction
Hamiltonian, and thus modulates when it is energetically favourable for Bob to switch his
detector. Therefore, at any given time ¢ after Alice has coupled to the field, the leading
order signalling contribution to Bob’s interaction Hamiltonian is

Ta

(hr) ~ 4A AR (apBpe8) /dtl na(t)R (aBie ) [p(Ta, 1), 6(Z5,1)] + O(Np).
0

(6.63)

Here, as for the expectation value of Bob’s detector energy, the commutator decides at
which spacetime separations signalling effects occur.

As mentioned above, the interplay between the different parts of the Hamiltonian de-
pends very much on the dimension of the spacetime. In the following we will compare
1+1D, 241D and 341D Minkowski space.

6.3.2 3+1D Minkowski spacetime

The probably most intuitive scenario is 3+1D Minkowski spacetime, since here all signalling
effects propagate strictly at the speed of light. In particular, this means that if Bob switches
his detector on before the first lightray emanating from Alice reaches him, and switches his
detector off after the last lightray from Alice has passed by him, then the energy required
to switch his detector is, to leading order, the same as if Bob was coupling to the vacuum.
This is due to the appearance of the commutator in the signalling contribution to (hy ). It
means that Alice’s signal does not influence the energy cost for Bob to switch his detector.

The signalling contributions to (Hy) and (Hg) will in general not vanish. While their
integrand has only lightlike support, the terms are integrated over both Alice’s and Bob’s
worldline, in contrast to the expression for (h;z). In fact, this implies that the signalling
contributions at order O(AsAg) to (Hy) and (Hp) exactly balance each other, because at
this order no energy is injected into the system through the switching.
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Thus, the signalling effect Alice has onto Bob’s detector corresponds to a modulation
of the energy exchange between Bob’s detector and the field. Any amount by which Bob’s
energy expectation value is raised or lowered due to the signal, is taken or injected into
the field. This leads us towards an interesting observation about the relation between the
signalling contributions and the other single detector contributions at order O(A\%) and

O(\%) to the field energy.

In equation (5.14) we saw that the signalling strength between two detectors at rest,
which is proportional to the signalling contribution to (Hg), scales as the inverse ~ % of the
distance L between the detectors. Now, if one receiver at distance L is able to extract some
amount of energy from the field at order O(A4Ap), then it is possible to spherically arrange
a certain number of pairwise spacelike separated receivers at the same distance from the
sender which, accordingly, all can extract the same amount of energy from the field into
their detectors. However, the maximum number of spacelike separated receivers scales as
~ L? whereas the the amount of energy extracted from the field into the detectors only
decays as % Could we extract an arbitrary amount of energy from the field by increasing
the distance between sender and receivers, and drive (Hy) to arbitrary negative values?

The answer is, of course, that this cannot happen since the Hamiltonian of the field is
a non-negative operator, i.e., (Hy) > 0 is never negative. The negative signalling contri-
butions are outweighed by positive single detector contributions to the field Hamiltonian.

(Hf) ~ O(Aadg) + O(X%) + O(\g) > 0 (6.64)

This is not obvious at first sight, because the single detector contributions do not depend
on the distance to other detectors, or even their presence. Also, the coupling constants
of the sender and the receivers could be changed independently. Decreasing the receivers’
coupling constants by a certain factor while increasing the sender’s coupling constant by
the same factor would leave the signalling contributions unchanged. However, it could
significantly lower the single detector contributions from the many receivers while only
raising the one contribution from the sender.

This apparent paradox can be resolved by using the positiveness of the Hamiltonian and
the Cauchy-Schwartz inequality. Let us denote the perturbative expansion of the systems
state by

) = [¢°) + [¥') + [9*) + O(N), (6.65)

where [¢°) = [14) ® |5) ® |0) is the initial state. Then leading order of the perturbative
expansion of the field Hamiltonian is

(Hy) = (0 Hy ([9°) + [01) + [90%) + ((0°] + (| + (07]) Hy [07)

=0 =0
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+ (U Hy [¢") + O\, (6.66)

The first order contribution to the state is the sum of the first order correction through
Alice’s coupling and the first order correction through Bob’s coupling.

[y = @—F@ (6.67)
O(4)  OQs)

This yields an easy expression for the different leading order perturbative contributions to
the energy expectation of the field,

(Hy) ~ (| Hy [01) = (0] Hy [04) + (us| Hy [g) + 2R ((Wa] Hy [vg)) . (6.68)

O(\) O(\3) O(Aars)

Since H; is a positive operator on the orthogonal complement of the vacuum state of the
field, we can view a term (¢| Hy |¢) as a modified scalar product between states that are
orthogonal to the vacuum state. In particular, we have a Cauchy-Schwartz inequality (CSI)
for the expression which yields

(W] Hy |9)” < (| H [9) (9] Hy ) - (6.69)

The first order contribution |¢') lies in the one-particle sector of the field’s Fock space,
hence it lies in the orthogonal complement of the vacuum state. Applying this CSI we get

(] Hy 1) = (04| Hy [04) + (| Hy [0g) + 2R ((W4] Hy [v5))
> (| Hy |[h) + (Vs Hy [0g) — 2 || Hy |0g)]

> (Y] Hy [0l) + (8] Hy [0h) — 20/ WAl Hy [030/ (b] Hy [0k
= (Vs o) - sl o) 2o (670

Thus, indeed, the leading order single detector contributions are, in absolute value, at least
as large as the signalling contributions to the field Hamiltonian’s expectation value. This
ensures that their sum, the total leading order contribution at order O(A?), cannot be
negative.

6.3.3 1+1D Minkowski spacetime

The energy budget for signalling between timelike separated detectors in 141D Minkowski
space is diametrically opposite to what we just observed for signalling in 3+1D.
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In both dimensions, the field energy only obtains signalling contributions if sender and
receiver are in lightlike contact. However, the particular property of the commutator in
1+1D of being constant in the future lightcone, leads to signalling contributions to the
detector energy, even when sender and receiver are strictly timelike separated. Therefore,
if Alice and Bob are timelike separated, any signalling contributions to Bob’s detector
Hamiltonian are balanced by opposite contributions to the energy cost of Bob switching
his detector on and off, because the signalling contributions to the field Hamiltonian vanish.

In fact, for sharp switching functions n4(t) = xp,7.(t) and 1z(t) = Xy, (t), we find
that the final signalling contribution to Bob’s detector Hamiltonian are

(V4| Hg |vg) + (Us| Hs [¥)

_ 2?;4;% (B (69T — &%) & () (1 — e ®4Ta)) . (6.71)

This is exactly the difference between the energy that Bob has to provide when he switches
his detector on, and when he switches it off, because the signalling contribution to the
expectation value of his interaction Hamiltonian at any time ¢ in the future lightcone of
Alice is

a5

(W s |00) + (Wil e [9°) = =57

R (apBre ") S (aaBy (74" = 1)) . (6.72)

This means that any change of Bob’s detector energy that results from a timelike signal
from Alice, is provided for by Bob himself through the net energy he needs to switch his
detector on and off. This difference can be positive or negative. In fact all signalling
contributions that we are discussing in this section change their sign whenever either Alice
or Bob changes their initial detector state into its orthogonal, because this changes the
sign of the product apf;,.

This observation is the answer to the apparent violation of energy conservation through
timelike signalling to many receivers in the future lightcone of Alice in 141D Minkowski
space. Just as in a collect call, the receivers have to provide the energy themselves by
which Alice’s signal may have increased their detector energy.

6.3.4 241D Minkowski space

The energy budget of timelike signals in 2+1D Minkowski space shows a mixture of energy
exchange between all the parts of the Hamiltonian. There are signalling contributions that
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Figure 6.4: [40] Signalling contributions to (Hg) from (6.58) (solid) and to (H) from
(6.59) (dashed) divided by AsAp for two detectors of frequency Q4 = 25 = 3 at a distance
L = 1 in 24+1D Minkowski space. Alice starts out in the state (Jes) —1i|ga))/v/2 and is
switched on for ¢ = 0...3. Bob starts in the state (|eg) + |gp))/v/2 and is switched on for
t ="1T,...Ty + 3. For T} > 4 the detectors are timelike separated.

cause an energy exchange between the detector and the field, but also, there are signalling
dependent switching costs for a receiver in the future lightcone. These switching costs can
contribute both to the detector energy and the field.

There are signalling contributions to the field energy expectation value even for timelike
separated detectors, since the momentum integral, which we evaluated in (6.61), has non-
vanishing timelike support. However, with increasing timelike distance between the receiver
and the sender, the signalling contribution to the field energy density decays at a higher
power than the contribution to the detector energy. Figure 6.4 plots an example of this.

For large timelike separations between Alice and Bob, the energy exchange with the
field becomes subdominant. Instead, it is the net energy that Bob requires to switch his
detector on and off, which balances the timelike signalling contributions to Bob’s detector

Hamiltonian.

For smaller separations between Alice and Bob, the field Hamiltonian contributes to
the signalling contributions and, thus, also affects the switching costs. However, as we
see in Figure 6.4, the signalling contributions to the field and the detector energies are
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not in phase. Therefore, the signalling contributions from the field Hamiltonian can be
thought of as superimposed modulation on Bob’s switching costs, which are dominated by
the contributions from the detector Hamiltonian. There are timing parameters where Bob
only adds energy to the field through his switching, there are parameters where he only
adds to the detector energy, and seldom there are parameters such that the net switching
cost is zero and there is only energy exchange between the field and the detector.

In general scenarios, such as in the figure, the signalling contributions can be evaluated
numerically. Or, the simple scenario of a timelike separated sender and receiver that couple
to the field after each other at the same location has analytic solutions that can be obtained
with a computer algebra system.

We can use these, to find the scalings of the signalling contributions to the different
Hamiltonians for large timelike separations between sender and receiver. For sharp switch-
ing functions that couple Alice to the field for 0 <t < Ty, and Bob for T} <t <T) + AT,
the signalling contributions to the energy expectation values scale as

)\A)\B )\A)\B

(Hp) ~ /o (Hj) ~ T = T2

e (6.73)

as Ty — oo. Thus (Hp) decays with the same power as the commutator, and (Hy) with
the same power as the momentum space integral in (6.61).

6.4 Conclusion

The motivation for this chapter was the surprising scaling and range of the leading order
signalling strength that we had observed previously in Chapter 5. There, we concluded that
both timelike and lightlike signals between two detectors cannot be viewed as being tied to
an energy flow, which would be carrying them. This was obvious for timelike signals from
our analysis of 141D Minkowski spacetime in Section 2.4. However, even for the lightlike
signals in 341D Minkowski spacetime we saw that their leading order decayed much slower
for increasing distance between sender and receiver, than the energy radiated spherically
symmetric from the sender.

Both types of signals yield leading order contributions to the energy expectation value
of appropriately prepared receivers. However, by the perturbative analysis of this chapter
we were able to show that there are different mechanisms underlying the energy transfer.

Energy increases from timelike signals in 141D Minkowski spacetime are accounted for
by changes to the energy required from the receiver to couple and decouple their detector.
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Therefore, the receiver could equally obtain the sender’s message just from a measurement
of the switching costs, without performing a measurement on the detector itself.

In contrast, in 3+1D Minkowski spacetime the energy cost of switching the receiver’s
detector contain no information about any leading order signals from the sender. The
joint switching costs of the sender and receiver were shown to be at least as high as the
amount by which the receiver’s energy is elevated. However, the switching costs contain no
information about the signal, and are, to leading order, the same as if receiver and sender
were just individually coupling to the vacuum.

In 241D Minkowski spacetime we observed both types energy transmission superim-
posed. Due to the support of the commutator in the future lightcone, the switching costs of
receivers can be modulated by timelike signals. And, due to the decay of the commutator
inside the lightcone, timelike signals can transfer energy from the field to the receiver’s
detector.

Consequently, on general curved spacetimes, we also should expect both types of energy
transmission, because the commutator generally decays into the future lightcone. Expand-
ing FLRW spacetimes, where the signalling strength of timelike signals has already been
studied [10, 11], could yield a first scenario to test whether the intuition, that we developed
in this chapter in flat spacetime, carries over to spacetimes with curvature.
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Chapter 7

Signalling with Harmonic Oscillators

Note: This chapter mainly consists of adapted and extended parts of [38].

At this point we have achieved an understanding of the communication channel between
two localized relativistic observers. We know that the commutator dominantly determines
whether classical information can be transmitted through the quantum field. And, we were
able to explain how exactly information transmission can decouple from energy transmis-
sion through timelike signalling, based on a perturbative analysis of the time evolution.

The next important question is to investigate the transmission of quantum information
through relativistic quantum fields between localized observers. To address this question
requires us to go beyond perturbation theory for several reasons.

First of all, the transmission of a qubit from the sender’s detector into the field, let
alone subsequently from the field to the receiver’s detector, is more than a perturbative
correction to the system’s state. Also, in this context, since quantum information may get
dispersed in the field and cannot be amplified or multiplied, it may also become relevant
to consider scenarios with many receivers trying to cooperatively recover the sent quantum
information from the field. However, having more receivers means having a larger interac-
tion Hamiltonian, thus, the limits of the perturbative regime are reached earlier. Moreover,
the influence of the quantum properties of the field state, encoded in the real part of the
Wightmann function, only become visible in higher order terms.

One setup in which the exact time evolution of detectors and the field can be calculated
is obtained by just a small modification to our earlier setups: Upgrading the detectors from
two-level systems to being harmonic oscillators makes it possible to treat the combined
time evolution of the detector and the field using symplectic methods [15, 16]. (See also
[82, 49, 50].)
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In this chapter we will consider signalling between harmonic oscillators that couple
to the field inside a one-dimensional Dirichlet cavity, just as in Chapter 4. Except now,
because we are using harmonic oscillator detectors, the exact time evolution of the detectors
and the field modes can be calculated numerically following the approach of [15].

This chapter’s sections introduce the general setup (Section 7.1), review some basics of
symplectic methods (Section 7.2), and characterize timelike signalling between harmonic
oscillators (Section 7.3). Finally, we discuss the influence of the lack of translation invari-
ance in the Dirichlet cavity (Section 7.4), and the possibility of (timelike) signalling with
harmonic oscillators that are resonant with the fundamental mode of the cavity (Section
7.5).

7.1 Harmonic oscillators inside a Dirichlet cavity

The interaction Hamiltonian between the field and a harmonic oscillator detector located
at rest at x4 inside the cavity reads

Hi = \Q (e_imad + eimail) o(t, xq) (7.1)

in the interaction picture. Here now the operators ay and aji are the ladder operators
acting on the harmonic oscillator detector. Since for the purpose of this chapter we are
only concerned with the field in one-dimensional cavities, we multiplied the Hamiltonian
by the harmonic oscillator’s energy level spacing €2, so as to make the coupling constant A
dimensionless. We also dropped the switching function, since we will only consider sharp
switchings of the interaction between the detectors and the field.

The advantage of a Dirichlet cavity is that the full unitary time evolution of the de-
tectors and the field can be calculated numerically with the methods developed in [15]. In
contrast, in a periodic cavity the zero mode of the field would require separate analysis.

However, this advantage comes at the price of loosing spatial translational invariance:
Inside a Dirichlet cavity the field modes have varying intensity at different locations, be-
cause they exhibit maxima and node points due to the boundary conditions. These maxima
and nodes lie at different points for the individual modes depending on their wave length.
Therefore also the behaviour of a detector coupling to the field inside a Dirichlet cavity
depends on the detector’s location.

As far as signalling between two detectors is concerned, these effects are negligible when
sender and receiver are strictly timelike separated, in the sense that not even lightrays
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reflected by the cavity walls can connect the sender to the receiver. We will discuss this
aspect in detail in Section 7.4.

In a numerical calculation, of course, only a finite number of N field modes can be
taken into account. This means introducing a UV cutoff in the field expansion (2.44)

N
1 vk L Jm
t,x) = — sin(jmx/L <a~e_lft + atelft> 7.2
o(t, ) ; NIz (ymz/L) { a; j (7.2)
exactly of the kind that was studied in Chapter 4. There we saw that the cutoff needs
to be chosen large enough in order to capture the relativistic properties of the field with

accuracy, which is satisfyingly achievable on a standard desktop computer. (This aspect
is also discussed in [15] for harmonic oscillator detectors.)

The interaction Hamiltonian (7.1) between field and detectors is strictly quadratic in
the creation and annihilation operators, without any linear terms. Under the time evolution
of such a Hamiltonian, Gaussian states remain Gaussian states. And the time evolution of
Gaussian states can be very efficiently described in the symplectic formalism.

To exploit this we restrict ourselves to Gaussian initial states. As far as the field
is concerned, this is what we have been doing before. The vacuum state, consisting of
the ground state for each individual mode, of course already is a Gaussian state. For
the detectors we will mostly use the ground state, squeezed states or thermal states as
signalling input states.

7.2 Miniature review of Gaussian methods

Continuous variable, and Gaussian quantum information methods provide a widely devel-
oped and powerful framework, e.g., for optical quantum information. There are various
reviews, such as [14, 85], and different introductions to the topic, such as [1, 65]. These
methods were first applied to the context of particle detectors in [15] which gives a detailed
explanation of the relevant Gaussian methods. Here, we will restrict ourselves here to a
very basic review.

Gaussian states are fully characterized by the first two moments of all quadrature
operators. These can be conveniently combined into a vector. To this end, we organize the
quadrature operators of the two detectors (whose annihilation operators we denote as a,
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and ap) and the N field modes into one (2N + 4)-dimensional vector

1
— T T T
X = a —i—a),(a +a>,...,<a —i—a),
\/§<<A A B B N N

—i (GA—C&) ,—1 (aB—an,) y ey —1 <aN—ajV)), (7.3)

such that the first (IV + 2) entries correspond to the detectors’ and field modes’ canonical
position operators

g = % (i +af). (7.4)

and the second (N + 2) entries correspond to the canonical momentum operators

pi = % (ai — a}) . (7.5)

The first two moments which fully characterize a Gaussian state are then given by the
expectation value of the quadrature operator vector (x), and by its covariance matrix o.
For the latter we use the convention

7 = 5 ({8, ;) = 5 (b +35%) — 2 0 () (7.0

such that the ground state of a harmonic oscillator has the covariance matrix o;; = %@-j. (Tt
is important to note that there is an alternative convention without the factor % in front,
which is used in [15, 1].) To obtain the covariance matrix of a subsystem one only needs to
delete the rows and columns belonging to the other part of the system from the covariance

matrix. This is analogous to taking the partial trace of a state’s density operator.

An important class of Gaussian states are squeezed state. These states have one of
their covariances enlarged at the expense of the other. For a single mode it therefore can

be written as
1 e—2’r 0
0= 5 ( 0 eQr) (77)

with r being called the squeezing parameter. Squeezed states are pure states, and they
optimize the Heisenberg uncertainty principle.

Another important class are thermal states. A thermal state of temperature 7 has the
covariance matrix

1 Q
o = coth (;) I (7.8)
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where () is the energy level spacing of the mode. It is interesting to note that any zero-
mean Gaussian state can be viewed as a squeezed thermal state. This is possible since
covariance matrices are positive and symmetric such that any covariance matrix can be
diagonalized by a rotation matrix.

The overlap of a zero-mean Gaussian state of M modes with the vacuum, i.e., the
probability to measure the system in its overall ground state, is given by

2M
P = 7.9
’ Vdet o det (01 + 2Iay) (7.9
which for a single mode simplifies to
2
P (7.10)

-~ VAdeto+2Tro+ 1

The time evolution of the system is captured by the so called symplectic matrix S(t)
which takes the role of the unitary time evolution operator. In the Heisenberg picture, it
evolves the quadrature operators simply by mutliplication

x(t) = S(t)x(0). (7.11)

The moments of a Gaussian state, which are picture independent since they are expectiaton
values, accordingly evolve as

(x(t)) = S (x0) (7.12)
o(t) = Soo (S)" (7.13)
where ST denotes the transpose of the symplectic matrix. We see that the first and second

moments evolve independent of each other. In particular this means, that a state with
vanishing first moments, called a zero-mean state, always remains a zero-main state.

The symplectic matrix S(¢) is determined by an analogue of the Schrédinger equation,
which for time-dependent Hamiltonians can be solved by numerical methods. However,
since we use sharp switchings only, we have a Hamiltonian which is piecewise constant in
time. For constant Hamiltonians the symplectic matrix is solved for by a matrix exponential

S(t) = exp (QF*™¢) (7.14)

Q- (_OH g) . (7.15)
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And the matrix FY™ = F + FT is the symmetrized part of the matrix which is obtained
be rewriting the Hamiltonian of the system as

H=x"Fx. (7.16)

This is possible since the Hamiltonian is strictly quadratic in the creation and annihila-
tion operators, and thus also quadratic in the quadrature operators. Formulae for the
construction of F are found in [15].

The definition of F refers to the full Hamiltonian of the field, i.e., to the sum of the free
Hamiltonians of the field and the detectors, and the interaction Hamiltonian. Therefore,
depending on which detectors couple to the field during which intervals of time, different
symplectic matrices need to be constructed for the different time intervals, during which
the Hamiltonian is constant.

Finally, we note that by treating the time evolution of quantum harmonic oscillators
to the quantum field in this formalism we en passant also solve the behaviour of the
corresponding classical system. Because by the Ehrenfest theorem the first moment, the
mean (X), evolves according to the classical equations of motion. All signalling effects that
we observe for the mean of the detectors would thus also be osbervable between classical
harmonic oscillator coupling to a string with fixed boundary conditions.

7.3 Timelike signals between harmonic oscillators

The signalling scenario that we will study with the harmonic oscillator detectors is the
same as the scenarios previoulsy considered for timelike signalling between detectors at
rest: Initially the field is in its vacuum state, i.e, all the field modes are in their ground
state. The sender’s detector is initialized in some pure Gaussian state, and coupled to the
field for time ¢t = 0...T4. Then, with some delay, the receiver, being initialized in its ground
state, is coupled to the field for time ¢t = 77...7T;. The time delay between the couplings
Ty — T4 determines whether the two detectors are timelike or lightlike separated.

After the receiver is decoupled from the field, the mean displacement of the sender’s
harmonic oscillator depends linearly on the initial mean displacement of the sender. From
equation (7.12) follows

(xa(T)) = ( S Savis ) (xa(0)) (7.17)

SN+41 SN+4N+3
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Figure 7.1: [38] Phase space plot of receiver’s final mean (xg(73)) = ((¢5), (pB)) =

\/LE (aB + a%, —i(ag — a}),)). The inner circles correspond to timelike separation between

the sender and the receiver (see Figure 7.2). The sender is located at a = 0.5L, and the
receiver at b = 0.6L. The sender couples to the field for ¢ = 0...0.3L. The receiver couples
to the field for t = 0.46L...7T5. The points in this plot correspond to 75 = 0.46...1.2L.
The detectors’ energy gap is 2 = 107w/L and the coupling constant A = 0.075. For the
computation N = 200 field modes were taken into account.

with xq = (qq, pa) = \% (ad + azl, —i(aq — aZ)) ford = A, B.

Figures 7.1 and 7.2 show that even for strictly timelike separation between sender and
receiver, i.e., when not even lightrays reflecting of the cavity walls can connect the sender
to the receiver, the sender can induce a displacement of the receiver’s final state. For this
the sender needs to prepare an initial state with non-vanishing displacement in canonical
momentum (p4), such as (xa(0)) = (0,1).

An initial displacement in canonical position (g4), hardly affects a timelike separated
receiver, when the sender interacts with the field for times on the order of a few detector
periods €2/(27), and is resonant with higher modes of the cavity. An initial displacement
in (ga) only affects receivers reached by (reflected) light rays, as seen in Section 7.4. This
is different for detectors resonant with the base mode of the cavity (2 = w/L) where also
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Figure 7.2: [38] Displacement (r) = 1/{(gg)’ + (pp)° of the receiver’s final state over dif-
ferent coupling times for the receiver in the same setting as Figure 7.1. The receiver and
sender are strictly timelike separated for 7, < 0.9L. For lightlike separations between
sender and receiver see Section 7.4.

(xa) = (1,0) leads to timelike signalling, as seen in Section 7.5.

To maximize timelike signalling effects, the sender needs to couple to the field for a
multiple plus a half of a detector period, i.e., for Ty = (2n + 1) Q/(47) with n € N. The
timelike effects vanish when the sender is coupled for an integer multiple of its detector
period, i.e., for Ty = nQ/(2m).

In the example of Figure 7.1 and 7.2 (coupling constant A = 0.075) we observe a
displacement of the receiver’s final state which is in the percentile range of the sender’s
initial displacement. (Higher values of the coupling constant increase the effect.) This
displacement decreases the overlap between the sender’s final state and its initial ground
state and could thus be used for classical information transmission [40], both via the
quantum field as well as in its classical analogue.

When the sender is initialized in a zero-mean Gaussian state (just as the receiver and the
field modes always are as they are initialized in their ground state), then no displacement of
the receiver’s final state occurs. Because, as mentioned earlier, zero-mean Gaussian states
remain zero-mean Gaussian states under Hamiltonians that are only quadratic in creation
and annihilation operators .
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However, timelike signals can also be evoked by zero-mean Gaussian states, by the
second moments of the state. Denoting the covariance matrix elements of the sender’s and
receiver’s detector into three-vectors

011 022
OA = | ON+3N+3 OB = | ON+4N+4 | (7-18)
O1N+3 02 N+4

it follows from equation (7.13) that the receiver’s final covariance elements are given by

(S91)? (San+3)? 25219 N3
oB(t) = | (Svta1)?  (Sniangs)? 25N 4415N+aN+3 oa(0)
S21S9N+41 Sont3SN4an+s S21SN+anN+3 + Sen3SNa1
L[ (S20)?
+ | Z B (SN+4i)2 (7.19)
1#1,N+3 SQiSN+4Z'

where we used that all field modes and the receiver’s detector are initially in their ground
state. The covariance matrix elements of the receiver’s final state consist of an affine part,
which can be viewed as background noise, on top of which a contribution is added which
is linear in the sender’s initial covariance matrix elements.

Due to these contributions there is a certain excitation probability P, = 1 — Fy to
measure the receiver in a state other than the ground state after its interaction with the
field. If this probability is affected by the sender’s action, this influence can be used
to transmit classical information, since it constitutes a binary asymmetric channel as in
Section 3.4.1.

Figure 7.3 shows an example where initializing the sender in a thermal state, as an
example of a zero-mean state, can be used for signalling to a timelike separated receiver.
Just as for the effects on the mean displacement, the sender needs to couple for a time
Ty = (2n + 1)Q/(47) to maximize the effect on a strictly timelike separated receiver’s
covariance matrix. These effects vanish when the sender is coupled for Ty = n2/(27), i.e.,

for a multiple of a detector period.

Similarly to the signalling via the state’s mean, the variance of the sender’s initial
canonical momentum oy 3n+3 = Apa = (p%) — (pa)” evokes stronger timelike signalling
effects than the sender’s initial variance in canonical position 071 = Az = (23) — (x4)°
as one would expect comparing equations (7.17) and (7.19). This can be demonstrated by
initializing the sender in differently rotated squeezed states. There we find that timelike
signalling is stronger for states squeezed in position (with large Ap,) than for timelike
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Figure 7.3: [38] Timelike signalling via thermal states. P, is the excitation probability for
the receiver. The lower line shows P, when the receiver is coupling to the vacuum state of
the field, in the absence of a sender. The upper line shows the elevation of P, by the sender
in the signalling scenario. The sender is initialized in a thermal state with Q/7 = 61073,
located at a = 0.5L, and coupled to the field for ¢ = 0...0.3L. The receiver is located
at b = 0.6L, and coupled to the field for t = 0.46L...T5. Hence sender and receiver are
strictly timelike separated for Ty < 0.9L. The detectors’ energy spacing is 2 = 107 /L, the
coupling constant A = 0.075. For the numerical calculations N = 200 modes were used.

signalling effects are tiny for momentum squeezed states (with large Az 4). However, when
sender and receiver are connected by (reflected) lightrays the signals from momentum
squeezed states are comparable in size to the signals from position squeezed states, as we
will see in the next section.

7.4 Influence of position inside Dirichlet cavity

The field inside a Dirichlet cavity is not translationally invariant since the individual field
modes exhibit nodes and maxima at different points in the cavity. This also affects the
coupling between a detector and the field. For example, the probability to excite a single
detector by coupling it to the vacuum of the field depends on the position of the detector
inside the cavity, as shown in Figure 7.4, and as we observed for the excitation probability
of a two-level detector in Figure 4.1.

The signalling between detectors is also affected by the sender’s and the receiver’s
position inside the cavity. Figure 7.5 and Figure 7.6 show how the receiver’s final mean
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Figure 7.4: [38] Position dependence of vacuum excitation probability in a Dirichlet cavity
for a single detector. A harmonic oscillator detector, resonant with the 10th field mode
(@ = 10m/L) is initialized in its ground state and then coupled to the field for a time
t = 0..T. The plot shows the probability P, to find the detector in a state other than
its ground state after the interaction with the field. For the black curve, whose oscillation
amplitude diminishes towards 0.03 around 1" = 3.75, the detector is located at x = 0.55L
which is a maximum of the resonant 10th field mode. The light blue curve shows the
detector located at x = 0.6L which is a node of the resonant field mode. The coupling
constant is A = 0.075 For the numerical calculations N = 200 field modes were used.

displacement is affected, depending on whether sender and receiver are located at maxima
or at node points of the cavity mode with which their detector is resonant. Figure 7.5 is
hereby extending the setup of Figure 7.2 to longer coupling times of the receiver’s detector.

We see that the strongest displacement arises when both sender and receiver are located
at maxima of the resonant mode. When the sender and receiver both are at node points
the signals are weaker, but still stronger than when when only the sender is located at
a node point and the receiver is located at a maximum. (In the latter setup, even when
reflected lightrays connect the sender to the receiver, the effects are not larger than for
strictly timelike separation between sender and receiver.)

However, for strictly timelike separation between sender and receiver, the location of
sender and receiver has no influence, and there is no difference in the final displacement of
the sender.

When signalling with zero-mean Gaussian states the effect of the detectors’ position
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Figure 7.5: [38] Mean displacement (r) of final receiver state when the sender is initialized
in a state with (g,) = 0 and (p4) = 1, i.e., with a non-zero displacement in canonical
position. The plot shows different combinations of sender and receiver being located at
maxima or node points of the field mode they are resonant with. The detectors’ energy
spacing is 2 = 107 /L, i.e., they are resonant with the 10th cavity mode. The upper (black)
curve corresponds to the sender being located at a = 0.45L and the receiver at b = 0.55L
both of which are maxima of the 10th cavity mode. The middle (blue) curve correspond
to both sender (a = 0.5L) and receiver (b = 0.6L) being located at node points. The lower
(red) curve shows the sender at a node point (a = 0.5L) and the receiver at a maximum
(b =0.55L). The sender couples to the field for t = 0...0.3L, the receiver for t = 0.46L...T5.
The coupling constant is A = 0.075. For the numerical calculations N = 200 field modes
were used.

on the excitation probability of the receiver is very similar to the effect on the mean
displacement. Figure 7.7 shows AP, = P58 — P¥a which is the difference between the
receiver’s excitation probability P58 in the signalling scenario and the receiver’s excitation
probability PY*¢ when coupled only to the vacuum at the same location as in Figure 7.4.

In contrast to the mean displacement (r), the difference in excitation probability AP,
shows some dependence on the exact location of sender and receiver in the cavity even for
strictly timelike separations. The size of this effect is however negligible. For example, in
the setup of Figure 7.7 the differences in the value of AP, for different locations of sender
and receiver are < 2 - 1075 whereas AP, ranges up to 4 - 1072
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Figure 7.6: [38] Mean displacement (r) of final receiver state when the sender is initialized
in a state with (¢,) = 1 and (p4) = 0, i.e., with a non-zero displacement in canonical
position. Otherwise setup identical to Figure 7.5.

7.5 Signalling with detectors resonant with the fun-
damental mode

In order to study timelike signalling via fields inside a cavity it appears natural to choose
the cavity to be large, such that the receiver and sender can each couple to the field for
some time, before lightrays that emanate from the sender and reflect off the cavity walls
connect sender and receiver. If the interaction time of sender and receiver is to be on the
order of a few detector periods §2/(27), then the detectors need to be resonant with higher
modes of the cavity. For this reason we choose the detectors to be resonant with the 10th
field mode in the numerical examples above.

It is still interesting to ask if timelike signalling also occurs between detectors that are
resonant with the base mode of the cavity, i.e., have an energy level spacing of Q = 7/L.
Figure 7.8 and Figure 7.9 answer this question in the affirmative. They show the senders
effect on the receivers final mean displacement, and on the receivers excitation probability
for a zero-mean initial state of the sender. In this setup, in order to allow for timelike
separation between sender and receiver, the sender is coupled to the field for less than half
a detector period.

Figure 7.8 shows that, unlike detectors being resonant to higher field modes (Figure 7.2),
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Figure 7.7: [38] Signalling with zero-mean Gaussian states. The plot shows AP, =
Psie — PYac wwhich is the difference between the receiver’s excitation probability PS® in
the signalling scenario and the receiver’s vacuum excitation probability (see Figure 7.4).
The sender was initialized in a thermal state with /7 = 6 - 1073. All other parameters

and the detector locations are identical to Figure 7.5.

a displacement of the receiver’s mean arises both from displacement in the sender’s initial
canonical momentum (p4), as well as in position (g4). Whereas the mean displacement
continues to grow for longer coupling times of the receiver, it already reaches the percentile
range while sender and receiver are still strictly timelike separated.

The long time behaviour of the mean displacement is again similar to the behaviour of
the excitation probability for zero-mean states which is given in Figure 7.9. In Figure 7.9
we see the influence of a sender using a thermal, zero-mean Gaussian state on the excitation
probability of the sender, analogous to Figure 7.7. Whereas AP, grows up to values of about
AP, ~ 0.55 for long coupling times, an influence on the order of AP, ~ 0.04 is already
visible for timelike separations between sender and receiver at the chosen parameter values.

7.6 Conclusion

The results of this chapter show that signalling is possible between strictly timelike sep-
arated harmonic oscillators coupling to the field inside a cavity. These signals can be
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Figure 7.8: [38] Mean displacement (r) of the receiver’s final state, for detectors resonant
with the fundamental cavity mode. The dotted line shows the displacement resulting from
a initial sender state with (g4) = 1 and (p4) = 0, i.e., non-vanishing mean in canonical
position. The other line shows an sender initial state with (g4) = 0 and (p4) = 1. The
sender is located at a = 0.45L, and coupled to the field for ¢ = 0...0.4L. The receiver is
located at b = 0.55L and coupled to the field for ¢ = 0.51L...T5. Sender and receiver are
timelike separated if 75 < L. Both detectors have Q = /L and A = 0.01. And N = 200
cavity modes were used for the numerical calculations.

transmitted both via the first as well as via the second moments of Gaussian states. Most
importantly, these signals were treated non-perturbatively using symplectic methods. This
makes the model an interesting tool for future research into the classical and quantum in-
formation capacity of timelike and energyless signals.

For example, it is possible to analyze scenarios with multiple receivers in Alice’s future
lightcone. We were able to clarify the budget of energy flows in such scenarios in the
previous chapter. The next question would be to ask whether spacelike separated receivers
in the future lightcone can perform independent measurements of Alice’s signal, or to what
extent their outcomes are correlated. First results show that the probabilities are highly
correlated for a group of receivers to get excited out of their groundstates in the future
lightcone of Alice.

Another higher-order effect that is accessible using the non-perturbative methods of
this chapter, are signatures of the real part of the Wightmann function, which encodes the
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Figure 7.9: [38] Signalling via zero-mean Gaussian states between detectors resonant with
the fundamental cavity mode. The plot shows AP, = Psie— P¥ac the difference of excitation
probability between the signalling scenario and coupling to the vacuum. (Compare Figure
7.7). The sender is initialized in a thermal state with /7 = 4-1073. All other parameters
are identical to Figure 7.8. signalling arises already at timelike separations for T, < L.

quantum properties of the field state. In the perturbative treatment these only enter at
next-to-leading order through already quite intricate integral terms. (See coefficient A, in
(A2).)

First results show, that they seem to occur as a modulation of timelike signals, via the
second moments of the Gaussian detector states, that depends on the receiver’s position
in the lightcone. Signals via the mean of Gaussian states are not affected if the receiver is
moved within the future lightcone of the sender. This is to be expected, since the mean of
a Gaussian state evolves according to the classical equations of motion, i.e., it depends on
the classical Greens function of the field which is, as we know, constant everywhere in the
future lightcone.
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Chapter 8

Conclusions and Outlook

The observation that information can be transmitted through massless fields without the
transmission of energy contributes to the exploration of exciting frontiers in current re-
search. Today, deep links between information theory, quantum field theory and general
relativity continue to be discovered, and following rapid technological progress experiments
in quantum information begin to enter relativistic regimes.

On the one hand, this thesis adds an interesting perspective to the question if the infor-
mation encoded in a field is fundamentally related to its energy content, and the spacetime
curvature which results from it. On the other hand, it may unveil both challenges, as well
as novel prospects for the processing of quantum information using relativistic quantum
fields. With respect to both aspects the operational approach, focused on the quantum
channel between localized particle detectors, can be helpful. It can model the transmission
of information between different regions of spacetime in theoretical considerations, as well
as it can closely resemble experimental setups.

This closing chapter discusses directions for future research aimed at these goals, and
reviews how they arise from the central results of the various thesis chapters. A very im-
portant objective of future research is to extend the study of this thesis to the transmission
of quantum information. The present results consider the transmission of classical infor-
mation via the quantum field. However quantum information as very distinct properties.
Most crucially, it cannot be copied. As we discuss below this will impose very special
limitations to the transmission of quantum information via quantum fields.

This and other future research questions also require the development of new theoretical
methods for the analysis of signalling. In particular, as begun in the previous chapter, it
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is necessary to go beyond the perturbative treatment of the interaction between observers
and the field.

Relativistic Quantum Communication with Particle Detectors

Describing the transmission of information between localized observers strictly within quan-
tum field theory is difficult because the construction of localized field states is highly non-
trivial in relativistic quantum fields. The problem was resolved in this thesis by modelling
sender and receiver as Unruh-DeWitt detectors.

Here, the interaction of a localized observer with a relativistic quantum field is described
as a unitary interaction between quantum systems. Moreover, the quantum channel be-
tween two detectors provides an operational approach to the study of relativistic quantum
communication via quantum fields to which the methods of quantum information theory
can be directly applied.

Following up on the works of [19, 21], where this framework was first introduced, Chap-
ter 3 completed the perturbative analysis of the structure and classical capacity of the
quantum channel between two Unruh-DeWitt detectors.

The key result is that, within the perturbative regime, the optimal choice of signalling
states for the sender are equal-weighted superpositions of energy eigenstates. The signalling
strength and channel capacity of these optimal signals is determined by a relatively simple
Fourier-type integral over the field commutator, see (3.107).

Interestingly, the optimal signalling states are different from the usual choice of energy
eigenstates as initial states, when detectors are used to measure properties of the field.
When measuring the field, the interaction Hamiltonian should have the strongest effect
possible on the detector’s state. This is achieved by energy eigenstates of the detector,
which acquire a relative phase most quickly because they are superpositions of eigenstates
of the monopole operator of the detector. On the contrary, when a detector is used for sig-
nalling, the impact of the detector onto the quantum field needs to be maximal. Therefore,
eigenstates of the monopole operator are the optimal choice of signalling states.

The commutator of the field is given by the classical Green functions of the field.
Therefore, to leading order, the characteristics of the signalling strength is independent
from the quantum state of the field, and corresponds to the behaviour of the classical field.
Chapter 5 evaluated the leading order signalling estimate in various settings of resting and
moving detectors in Minkowski spacetime.
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The leading order signalling effects make it possible to study the impact spacetime
curvature has on signalling by deforming the Green functions of the field. Recent works
that follow up on the results presented in this thesis study signalling in certain expanding
universe cosmologies [10, 11]. Future research could study the impact of spacetime curva-
ture onto communication in the vicinity of black holes, using methods such as [18, 87] for
the representation of the classical Green functions of the field.

Beyond the impact of spacetime curvature that is encoded in the classical Green func-
tion of the field, spacetime curvature also impacts the quantum fluctuations of the field
[73]. These fluctuations constitute a noise source in the quantum channel between detec-
tors. Therefore, a comparison of noise and signalling strength in different scenarios could
be used to explore the combined impact of spacetime curvature on classical and quantum
properties of the field.

As shown in Chapter 3 the Holevo capacity of the channel combines both signalling
strength and noise terms already at leading order. Other measures of channel capacity
would require higher order terms, or non-perturbative treatments of the detector-field
interactions.

Timelike Signals in Massless Fields

The appearance of timelike signals, i.e., signals propagating slower than the speed of light,
in massless fields is a phenomenon that derives directly from the properties of the clas-
sical field. As such this phenomenon has long been known. Nevertheless, it may appear
particularly counterintuitive in the context of quantum fields, because they break with
assumptions that appear very natural within the particle picture often used to discuss
quantum fields. Timelike signals, as discussed in Chapter 3, travel slower than the speed
of light which massless particles are unable to do. Furthermore, they cannot be under-
stood as the emission and absorption of on-shell field quanta, because they appear at
leading order in perturbation theory.

The most surprising property of timelike signals, which this thesis demonstrates, is that
they lead to a partial, or even complete, decoupling of the propagation of information from
the propagation of energy in the field.

Chapter 6 showed that timelike signals, instead of transporting energy from the sender
to the receiver, modulate the energy required by the receiver to couple his detector to the
field. This relates to the observation of Chapter 5 that, whereas lightlike signals appear to
have a dynamic characteristics to them which favours resonant detectors, timelike signals
appear to behave as more of a static imprint in the future lightcone of the field which can
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remain constant, as in 141D Minkowski space, or gradually decays, as in 241D Minkowski
spacetime. As a consequence the leading order signalling strength of lightlike signals can
grow unbounded, see (5.52), whereas for timelike signals it is bounded. This raises the
question whether this behaviour persists when higher-order terms, or non-perturbative
solutions are considered.

Furthermore, it is an interesting direction for further research to explore timelike signals,
and their associated phenomena, in realistic fields such as the electro-magentic field. Also
the prospect of proposing an implementation of these effects in experimental quantum
information systems, e.g., in superconducting circuits, appears promising.

Non-perturbative Methods

Several interesting future research questions require us to go beyond the perturbative
analysis of signalling between detectors. As mentioned above, non-perturbative approaches
to signalling scenarios are key to the study of the quantum noise properties of the channel,
as well as for the further study of timelike signals. In particular, they are instrumental to
the study of quantum information transmission via relativistic quantum fields as will be
discussed below.

A first non-perturbative approach was discussed in Chapter 7. Here signalling between
harmonic oscillator detectors coupling to the field inside a cavity is studied using the
Gaussian formalism. Gaussian quantum information has been widely developed over recent
years such that there is a range of methods available. These could be applied to both
numerical and analytical, non-perturbative studies of channel capacities and signalling
effects between two, and multiple detectors.

Another possibility are non-perturbative solutions to the channel between two-level
detectors. Very recently the channel between two zero-energy gap detectors was shown
to be analytically solvable [48], and its channel capacities were calculated. This approach
and its results carry over to the case of instantaneous couplings between field and detector,
where the switching function consists of a Dirac o-distribution 7(t) = §(¢). Such models
could be valuable in exploring the interplay between classical information transmission and
the quantum noise of the field.

However, zero-energy gap detectors and instantaneously coupled detectors do not allow
for the transmission of qubits between them. As shown in [48] the channel between two
zero-gap detectors is entanglement-breaking, i.e., it has zero quantum capacity. The same
can be shown to apply to instantaneously coupled detectors.
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In both cases, the underlying reason is that the free detector evolution is frozen out, or,
respectively, is irrelevant under the instantaneous coupling. Therefore, Bob’s final state
only depends on the expectation value of Alice’s monopole operator, and no quantum
information can be coherently transmitted through the channel. In fact, the entanglement
breaking already happens at the first stage when Alice couples to the field.

It is conceivable that a sequence of, e.g., instantaneous couplings would allow for the
coherent transmission of quantum information from Alice to the field and on to Bob, while
still being analytical solvable. However, even if so there are further restrictions on the
transmission of quantum information in relativistic scenarios arising from the fact that
quantum information cannot be copied.

Quantum Information Transmission

A very basic argument can be made that shows that couplings between matter and fields
that possess spatial symmetries, as they appear in nature and also in the standard Unruh-
DeWitt model, can not be used for the coherent transmission of quantum information
in relativistic scenarios. The reason is that a symmetric coupling leads to signals that
propagate symmetrically in the quantum field.

For example, if in 14+1D a sender couples equally to the left-moving and the right-
moving modes of a field, the signal will propagate equally to the left and to the right. In
a relativistic scenario the duration for which sender, and later the receiver, couple to the
field could be shorter than the propagation time from the sender to the receiver. This
means that a mirror-receiver could exist on the left of the sender which is identical to the
original receiver on the right. If the distance between the two receivers is large enough,
they have no influence on each other, and accordingly the quantum channel from the sender
to the mirror-receiver is identical to the quantum channel from the sender to the receiver.
However, this means that the quantum channel is anti-degradable and, therefore, as no
quantum capacity.

This shows that a symmetric coupling between signalling device and field leads to a
delocalization of any transmitted quantum information. In order to be able to transmit
quantum information coherently it is necessary to direct and focus the signal. It may
very well be that Unruh-DeWitt model cannot reasonably be modified to allow for the
directional signalling necessary for the transmission of quantum information, and that the
development of other models such as [25] is required.

On the other hand, the famous Jaynes-Cunnings model can be derived from the Unruh-
DeWitt coupling by non-relativistic approximations. In the Jaynes-Cunnings model the
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transfer of qubits is possible. This raises the question as to where in the middle range be-
tween the non-relativistic Jaynes-Cunnings model and relativistic instantaneously switched
detectors the transmission of quantum information becomes possible.

This question could unveil speed limitations in the processing of quantum informa-
tion with quantum fields, which might be an obstacle to certain tasks like quantum state
transfer. On the other hand, they may be useful for the implementation of information
processing tasks such as relativistic bit commitment [44, 32, 2].

In view of the decoupling of classical information propagation from the propagation of
energy, it is an interesting question to ask whether quantum information can be transmitted
without the transmission of energy at all? After all, one could speculate whether the
conservation of quantum information and the conservation of energy are two sides of the
same coin, tied together by the unitary time evolution generated by the Hamiltonian of
the system. In this context, it is interesting to note that it was shown recently that energy
transport between two quantum sytems requires discord [52].

Information, Energy and Spacetime Geometry

A long term goal of future research is to put the findings of this thesis into the context of
works that study the fundamental relation between the geometry of spacetime, which is
formed by its energy and matter content, and the information that is encoded into it.

This refers to long-standing results such as Landauer’s principle on the minimum en-
ergy cost of information processing, or Bekenstein’s results on the information content of
spacetime volumes and the energy cost of information transfer [4]. Moreover, it also refers
to very recent results: For example, it has recently been suggested that a mechanism of
energy storage at zero energy cost could contribute to a possible resolution of the black
hole information paradox [31]. Interesting connections may also exist to [51], which derives
Einstein’s equation from quantum measurement limits in spacetime.

The approach of this thesis could add to this research the perspective of an operational
framework which both models the measurement of the quantum field by a localized observer
fully quantum-theoretical, as well as it considers the energy costs for the transmission and
detection of signals in spacetime.

In this way studying signalling scenarios may contribute to understanding the interplay
of quantum fields, as signal carriers and fundamental constituents of all matter, and the
spacetime geometry traversed by the signals, which is determined by matter and energy
according to the laws of general relativity.
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Appendix A

Leading order contributions to
channel coefficients

Note: This appendiz is reproduced with minor adaptions from [39].

A.1 Integral form of the channel coefficients

In this section we present the integral form of the coefficients A, B and P defined in
equations (3.34),(3.35) and (3.36). The lowest order integrals for the coefficients C' and D
are given in (3.47) and (3.48).

For the coefficient A we have

A= N5 A+ 0N (A1)
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(A.2)

The coefficient B is obtained by simply changing the sign of €24 in the above formula.
B = N A\5By + O(\%) = A(—Q4,Q5) (A.3)

The single detector excitation probability only involves the receiver’s coupling constant Az.
Its expansion up to order O(\1) is

P =X, P+ A\ P+ O(\%) (A.4)

where

T T

P = / dh / Aty Xs(t)Xs(t2) €O (3t ) )pas(t))  (AB)
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T T t1 to
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o fr e
X (6195(TB(“)77‘3@2)”5@3)778(8)) (p(x5(s))p(ws(t1))d(zs(t2))P(25(t3))) +H‘C‘>} +O(AB).
(A6)

Notice that in comparison to [19] the terms for A and B have a different integral
structure, because we derived them using the Dyson expansion as in (3.30). In this form not
all the integral boundaries are dependent on each other, which should be an advantage for
numerical evaluations. Also, we can obtain two different expressions for the contributions
to P, A and B from (3.30), one of which comes as the coefficient of |eg){eg| whereas the
other the comes with |gs)(gs|. These two forms have different integral structures but are,
of course, equivalent.

A.2 Integral form of the leading order channel coeffi-
cients

In this section we give a detailed calculation of the O(A\?) contributions to (3.41). These
are the leading order contributions to Bob’s final density matrix in the most general case
where Alice and Bob are allowed to start out in arbitrary initial states while the field still
starts out in the vacuum state.

The interaction Hamiltonian in the interaction picture for two Unruh-DeWitt detectors
coupled to the Klein-Gordon field is the sum of two single detector interaction Hamiltonians
Hint,A and Hint,B:

H(t) = Hinta + Hings = Z Ap Xp(t) mp(t) p(zp(t)) = Z Mp(t) p(xp(t)). (A7)
d=AB D=AB

Here we introduced the shorthand notation Mp(t) = Apxp(t)mp(t). As in section 3.2.2
we denote the initial state of the system by

m=pan@ om0 l0) 0= (1 F)e (£ 1)@ 0p0], (A9

PAB
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From equation (3.24) the second order perturbative corrections pg? ) to the total system’s

final state pr are given by

T T
pg) =UPpg +poUP " + UM ™)

ty

T T ty
= - (/dh /dtz Hl(tl)HI(t2)) PO — PO ( dty /dtz HI(tz)HI(tl))
0 0 0 0
T T
+ (/dtl Hz(tl)) PO (/di2 Hf(i2))
0 0

T t1
== faty fats [(HineA(t0) HingA(t2) + Hing At) Hing B(t2) + Hing B(t1) Hing A(t2) + Hing B(t1) Hing B(t2) ) po
0 0
+ ro (HintA(tz)HimA(tl) + Hing A(t2) Hing B(t1) + Hing B(t2) Hing A(t1) + HintB(tz)HincB(tl))]

T T
+ [fatr [ats [HinACt0)po HingA(t2) + Hing At1)po Hing B(t2) + Hing B(t1)p0 Hing A(t2) + Hing B(t1)p0 Hint B(12)] - (A.9)
0 0

Bob’s final density matrix pgr is obtained by taking the partial trace over the field’s and
Alice’s subspace (see (3.20)). Taking the partial trace of (A.9) over the field first leaves us
with a two-point function in each term:

ty

T
Tor p® = = farr [ats [ (Ma(t)Malt2) (6(@a(t))6(@a(t2)) + Ma(t1) M (t2) (624 ()6 (w5 (t2)))
0 0

+Mp(t1)Ma(t2) (d(zp(t1))d(za(t2))) + Mp(t1)Mp(t2) (¢(zp(t1))d(zp(t2))) ) PAB
+ paB (MA(tz)MA(tl) (p(za(t2))d(za(tr))) + Ma(t2)Mp(t1) (¢(za(t2))p(zp(t1)))
+Mp(t2) Ma(t1) (D25 (t2)¢(z 4 (41))) + Mp(t2) Mp(t1) (d(z5 (t2)d(z5(t1) )]
T T
+ /dt1 /dtz [MA@l)P.ABI\/IB(tZ) (p(za(t2))d(za(t1))) + Ma(t1)paMp(te) (d(zp(t2))d(z.a(t1)))
0 0

+Mp(t1)pasMa(tz) (d(za(t2))d(zp(t1))) + Mp(t1)pasMp(tz) <¢(w5(t2))¢(15(t1))>]- (A.10)

Next we take the partial trace over Alice’s detector. At this point the terms that describe
interactions only between Alice and the field, but leave Bob’s detector unaffected, drop out.
This is because taken together the second order contributions to the system consisting only
of Alice’s detector and the field have vanishing trace, as we discussed in Section 3.2.1. For
the terms that contain one factor of M4(t) the partial trace gives a scalar factor which
reads

D u(t) :=Tr Ma(t)pa = Tr paMa(t) = Aaxa(t) (ve~ P40 4 yrei®amal) = (A1)
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With this definition we obtain

2 2
PE;,)T =Tryq Trrp p< )

T t1
=- /dt1 /dtz [FA(tl) (p(za(t1))d(zp(t2))) Mp(t2)pp,0 + L altz) (¢(zp(t1))o(za(t2))) Ma(t1)rs,0
0 0

+ T a(t2) (p(za(te))o(zp(t1))) pr,oMp(t1) + T a(ty) (d(zp(t2))d(za(t1))) p,oMpB(t2)
+(d(zp(t1))d(zp(t2))) Mp(t1)Mp(t2)ps,0 + (d(zp(t2))d(zp(t1))) PB.,O]WB<t2)ME(t1)}
T T
+ /dtl /dtz [FA(tl) (p(zp(t2))P(za(t1))) pB,0Mp(t2) + T A(t2) (¢(za(t2))d(zs(t1))) Ms(t1)ps,0
0 0

+ (@5 (t2))d(z5(t1))) Mp(t1)pB,0Mp (t2)] - (A.12)

Inserting the definitions of I' 4 and Mp and switching to matrix notation for Bob’s density
matrix gives

T ty

pSy = 7/dt1 dt2 [Aars (XA(tl)XB(tz) (e IPAN £y IRAT) (g a (1))@ (1)) <£:i?2§?22 52(5?98;22)
0 0
FxAlt2)x5 () (veTIRAR 4y QA2 (g(ap(41)d(2 A (t2))) (i:iii%ffl Jiii?nifl)
+xaltz)xs(t) (v "PAR 44 I PA) (B(a 4 (t2)) B(wn (1)) (ii:gi;i g‘ii;;i?»
FxA(t)X5 (t2) (ve T IRAN 4y RAN) (g (2))b(x a (1)) (jj:iZZZ (ﬁffité))
+AZ X (t1)x (t2) <<¢(x3<t1>>¢<x5(t2>>> <5:":f§§(1;3)2> H‘iﬁ?ﬁ;i;ﬁf;)
+ (D@5 (t2) (@ (1)) <;jf;§:fl_fi)> i:’;iiiiiiiizi))}
T T

. . —iQt iQpt
+ fann fats [AAAB (u(tl)m(tz) (ve 7 AN 147N ) (3o (t2) @A (1)) (i S A 2)
0 0

e—ipts  §*,i0pts

—i * i *eiQ25t] 123t
+xa(t2)xs(ty) (ve AR 44T RA) (g (24 (t2)) B(@5 (1)) (ﬁeimgtl 5’”;imgt1>>

(A.13)

R OB —t2) g 95 (1)
+A%><B(t1>xs<tz><¢<zs<t2>>¢<zs<t1»>< S )]

se—iB(t1H+t2)  Le=ifp(t1—t2)

where, to allow for a more compact notation, we wrote €% instead of ¢**® in all expo-
nentials.

From this expression we can read off the second order contributions to the channel
coefficients by comparison to (3.41). For the noise terms P, @, R, S from (3.44) the lowest
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order contributions are found to be:

T T

Py = /dtl /dt2 x5(t1)xp(t2)e™ BT (6w (ty)) p(ap(11)))

T
/dt1
dty
0

dty xs(tr)xs(ta)e” B TER) (G s (ts) ) p(as(th))

Ry = — dtg XB(tl)XB(t2)eiQB(TB(t1)—TB(t2))

S~ \ﬂ

x ((d(ws(t))d(2s(t2))) + (P(r5(t2))d(25(11))))

T

B /dtl /dtz x5(t)xs(t)e BB (G 35(8y)) p(p(t1))) -

(A.14)

(A.15)

(A.16)

(A.17)

The lowest order signalling terms from (3.42) contain a sum of different integral terms

from (A.13). These integrals can be combined, e.g., for C' we have

T t1

Cy = _/dh /dtz (xa(ty)xi(te)e! FEe = EATACD) (1 4 (1)) (w5 (t2)))

0 0

Fxa(t)xp(ty)e I aTal) (h(15(4))p(w 4(L2))))

T T

+O/dt1 O/dtz Xa(t)xs(ts)e B0 0amal2)) (65 (t5))p(2p(th)))

T

_ /dm /dt2 xa(t)xs ()T 2T (54 (1)), ()]
0 0

and for D we find

T t1

D, :/dt1 /dt2 Yalts)xs(t)e T OBTBEOHOATAE) [ (25(11)), B 4(t2))] -

0 0
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(A.19)



Here, a sign error in [19] in the exponent of (3.48) has been corrected. The remaining
lowest order contributions can be expressed in terms of Cy and Ds:

G2 = —CQ, H2 == —DQ, [2 - DQ, JQ - CQ. (AQO)
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