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Abstract 

Mercury (Hg) is a toxic heavy metal and environmental contaminant that can accumulate in both 

terrestrial and aquatic environments. Pollutant Hg is derived primarily from anthropogenic 

sources such as mining, coal burning and other high-temperature incineration processes. Mercury 

tends to bioaccumulate in organisms via exposure to the highly neurotoxic organomercury 

compound methylmercury (MeHg). Remediation of Hg contamination in river systems is a 

complex process due to the persistence of Hg in the environment and the nature of Hg 

methylation, sorption to solids, transport and deposition. Elevated concentrations of Hg and 

MeHg are present throughout portions of the South River watershed in Virginia. Mercury was 

released to the river from 1929-1950 as a result of industrial processes and remains bound to 

riverbank sediments and floodplain soils. Erosion of riverbanks and floodplain runoff are now 

secondary sources of Hg to the South River, decades after the initial contamination.  

Saturated column experiments were conducted to evaluate the effect of several inorganic 

soil amendments on Hg mobilization and transport. Contaminated sediment from the South River 

was blended with a 2 % amendment (dry weight) of limestone, attapulgite clay or sulfidized 

attapulgite clay and flushed with low-Hg water from the South River for 36 - 47 weeks 

representing 150 PV of flow. No appreciable stabilization or mobilization of Hg was observed in 

the sediment blended with limestone; Hg concentrations in the column effluent were similar in 

magnitude to the sediment control. Extensive Hg mobilization occurred in the sediment amended 

with attapulgite clay, with an increase in cumulative effluent 0.45 µm-filtered Hg of more than 

200%. This result indicates that there is potential for both destabilization of Hg previously bound 

to the sediment and colloid-facilitated transport of Hg in the presence of a clay amendment. 
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Imparting S functional groups onto the surface of attapulgite clay greatly reduced Hg transport 

relative to both the unmodified clay and the sediment control. The cumulative release of Hg in 

the column effluent for the 0.45 µm-filtered fraction in the sediment amended with sulfidized 

clay was 24 % of the sediment control and 7.5 % of the unmodified clay. The strong interactions 

between Hg and S may have promoted binding of Hg to the surface of the modified clay and 

subsequent agglomeration and deposition of Hg-bearing clay particles. Elevated concentrations of 

MeHg were observed only in the sediment amended with unmodified clay, likely as a result of an 

increase in bioavailable Hg.  

 The use of biochar as an amendment to sequester Hg in contaminated sediment was 

evaluated in five saturated column experiments, including a sediment control, a 2 % (dry weight) 

amendment of unmodified biochar, a 2 % amendment of HNO3-modified biochar, a 2 % 

amendment of sulfidized biochar and a 5 % amendment of sulfidized biochar. No suppression of 

Hg transport was observed in the sediment blended with unmodified biochar and HNO3-modified 

biochar, while increased binding of Hg was observed in both the 2 % and 5 % amendments of 

sulfidized biochar. The cumulative release of 0.45 µm-filtered Hg in the effluent of the sediment 

blended with a 2 % amendment of sulfidized biochar was 29 % of that observed in the control, 

while the cumulative release for the 5% amendment of sulfidized biochar was 17 % of the control. 

In both columns, Hg was likely bound to the surface of the modified biochar through the 

formation of Hg-S complexes, rendering it less mobile. In all sediment amendment columns, 

effluent chemistry and net MeHg production were not appreciably impacted by the addition of 

biochar. The results of this study suggest that amendment of the Hg-bearing sediment with 

sulfidized biochar in saturated, dynamic conditions may lead to decreased Hg transport.  
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Chapter 1: Introduction 

Mercury (Hg) is an environmental contaminant of global importance that can be derived from 

both natural and anthropogenic sources. Though it was once considered a “cure-all” for a variety 

of ailments, exposure to Hg is now known to be hazardous to human health and detrimental to 

natural ecosystems (Fitzgerald & Lamborg, 2013). The adverse health effects associated with Hg 

have been well documented and currently fish consumption and dental amalgams represent the 

primary routes of human exposure (Tchounwou et al., 2003; Clarkson & Magos, 2006; Karagas 

et al., 2012). Methylmercury (MeHg) is the organic form of Hg and is a particularly potent 

neurotoxin that accumulates in aquatic organisms. MeHg poisoning, sometimes referred to as 

Minamata disease, can cause neurological impairment, especially in infants, and visual and 

hearing impairment and chronic paresthesia (Ekino et al., 2007). 

Mercury contamination derived from historic manufacturing processes has resulted in 

four rivers in the Shenandoah Valley, Virginia being defined by the state’s Department of 

Environmental Quality as “impaired” waters. Elevated concentrations of Hg are present in the 

tissue of fish from the South River, South Fork Shenandoah River, North Fork Shenandoah River 

and the Shenandoah River, prompting fish consumption advisories by the Virginia Department of 

Health. Despite the more than 60-year period since the cessation of Hg discharge into the river 

system, Hg concentrations remain elevated due to continued leaching and erosion of Hg-bearing 

soils and sediments in and surrounding the rivers. Stabilization of Hg present in both the 

riverbank sediments and floodplain soils is considered vital to the remediation process and a 

field-scale bank-stabilization program is currently under way along sections of the South River 

(Flanders et al., 2010). The work presented in this thesis focuses on the evaluation of potential 
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strategies for in situ stabilization of Hg-bearing riverbank sediment from the South River, the site 

of the initial Hg release. 

1.1 Distribution and Fate of Mercury in the Environment 

Mercury occurs naturally in the environment as elemental mercury (Hg0), the mineral cinnabar 

(HgS) and other phases. Major deposits of Hg are typically found near subduction zones and 

other tectonically active regions, where volcanism, erosion and volatilization from soils are the 

primary natural sources of Hg to the environment (Fitzgerald & Lamborg, 2013). Anthropogenic 

release of Hg is widespread and today is largely associated with the combustion of coal and 

municipal wastes (Fitzgerald & Lamborg, 2013). Historically, mining and industrial processes 

contributed significant amounts of Hg to the environment, heavily impacting aquatic 

environments (Wang et al., 2012). In many locations, this Hg persists in lake and river systems as 

“legacy” Hg, providing long-term sources of contamination. In Canada, numerous Hg-

contaminated sites exist as a result of mining and industrial activities, including the English-

Wabigoon river system in Ontario (Kinghorn et al., 2007), the Pinchi Hg Mine in central British 

Columbia (Weech et al., 2004), and the Murray Brook Mine in New Brunswick (Shaw et al., 

2006). Internationally, the Idrija River in Slovenia (Hines et al., 2000), the Oak Ridge 

Reservation in Tennessee (Han et al., 2006), the Madeira River basin in Brazil (Lechler et al., 

2000), the Carson River in Nevada (Wayne et al., 1996) and the New Almaden Hg Mine in 

California (Thomas et al., 2002) are examples of enduring anthropogenic Hg contamination.  

Mercury released to aquatic environments can be found in three forms: elemental (Hg0), 

inorganic (Hg2+, Hg+) and organic (MeHg). Inorganic Hg is highly reactive and can readily form 
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complexes with sulfides, chlorides, hydroxides and organic ligands. While Hg of all forms can be 

detrimental to human and wildlife health, it is the highly neurotoxic form MeHg that poses the 

most immediate concern due to its ability to bioaccumulate in organisms. Mercury methylation is 

a bacterially-mediated transformation typically attributed to sulfate-reducing bacteria (SRB), 

iron-reducing bacteria (IRB) and methanogens under anaerobic conditions (Kerin et al., 2006; 

Gilmour et al., 2013). The rate of MeHg formation is dependent on numerous factors, including 

the concentrations of electron donors (e.g., organic substrates) and electron acceptors (e.g., NO3, 

Mn (III/IV), Fe (III), and SO4) (Gilmour et al., 1992; Desrochers et al., 2015) and the nature of 

the microbial community (King et al., 2000). The speciation of inorganic Hg also plays a critical 

role in Hg methylation, as some forms of Hg and Hg-complexes are considered more 

bioavailable than others. In anoxic sediments, the presence of dissolved organic matter and 

sulfide are considered primary controls on Hg speciation and bioavailability (Graham et al., 

2012). Biotic and abiotic demethylation are important controls on net MeHg production. 

Methylmercury has been shown to undergo photodegradation in surface water bodies (Sellers et 

al., 1996) and microbial demethylation by methanogens and SRB in soils and sediments (Marvin-

Dipasquale & Oremland, 1998).  

1.2 Site Background 

The South River is located within the Shenandoah Valley in northwestern Virginia, USA and 

runs through the city of Waynesboro, VA (Fig. 1.1). Land use within the approximately 608 km2 

South River Watershed is primarily forested and agricultural (58 % and 31 % respectively) with 

most of the remaining land being developed (Eggleston, 2009). The bankfull width of the South 
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River surrounding the study area (relative river mile (RRM) 0.25) is approximately 26 m (Pizzuto, 

2012) and the mean annual flow of the river near Waynesboro is 4.2 m3/s (Eggleston, 2009). The 

South River joins the South Fork Shenandoah River downstream of Waynesboro near the town of 

Port Republic (Eggleston, 2009).  

 Sediment and flood plain soils at the South River contain elevated concentrations of Hg as 

a result of historical industrial practices in Waynesboro. Mercury sulfate was used as a catalyst at 

a textile manufacturing plant and was discharged to the river from 1929-1950. Due to transport 

and deposition processes, the river bottom and floodplain along a 39.6 km stretch of the South 

River downstream of the plant site now contain Hg-contaminated sediments and soils (Eggleston, 

2009). Other sources of Hg to the river, including atmospheric deposition and agricultural 

fungicides have been documented but are considered insignificant relative to Hg from the textile 

manufacturing plant (Eggleston, 2009).  

 Mercury entrapped in soils and sediments surrounding river systems can act as a 

secondary source of Hg contamination, as seen at the River Nura in Kazakhstan where Hg 

entrapped in river bank sediments is mobilized following the annual spring flood (Ullrich et al., 

2007). Studies at the South River have indicated that erosion of riverbank sediments and 

inundation of floodplain soils by floodwater provide a significant portion of dissolved and 

particulate Hg to the river water (Eggleston, 2009; Pizzuto, 2012).  

1.3 Mercury Remediation 

Selection of effective strategies for remediation of Hg at a given contaminated site greatly 

depends on the degree and scale of Hg distribution. Traditional ex situ techniques involving 
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direct removal of the contaminant, such as dredging and excavation, can be expensive and may 

result in sediment resuspension, promoting subsequent Hg release (Randall & Chattopadhyay, 

2013). At the South River, Hg is present in varying concentrations over a large area, thus 

economics, mitigation of Hg remobilization and ease of implementation are important 

considerations in selection of remediation options. Given these criteria, one remediation 

technique currently being considered for use at the South River site involves sorption and 

partitioning of Hg onto sorbent amendments.  This method does not directly remove Hg from the 

environment, but sequesters it, rendering it relatively immobile and less bioavailable (Ghosh et 

al., 2011). The selected material can be blended into contaminated soils (co-blending) (Kumpiene 

et al., 2008), used in a permeable reactive barrier (Blowes et al., 2000) or incorporated into 

engineered reactive caps or mats (Gidley et al., 2012), allowing for removal in situ. At the South 

River, a suitable in situ sorbent amendment could be utilised as a reactive mat to aid in riverbank 

stabilization or co-blended with floodplain soils to minimize Hg transport. Ideally, the 

amendment should be inexpensive, inert with respect to the surrounding environment, and 

efficiently limit Hg mobilization while not stimulating MeHg production. 

1.4 Research Objectives 

The primary objective of the research presented in this thesis is to evaluate the suitability of 

various solid-phase materials for the stabilization of Hg in contaminated soils and sediments by 

co-blending. While studies have been conducted to determine Hg uptake capacities of certain 

carbon-based and inorganic materials, few studies have blended these materials with sediment to 

control Hg in a dynamic, saturated system. This thesis focuses specifically on the impact of 
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modified and unmodified inorganic soil amendments on Hg mobilization; including the 

modification and enhancement of biochar, a material previously identified to effectively remove 

Hg from aqueous solution. These reactive materials will be assessed based on the following 

criteria: 

• Minimization of Hg mobilisation and transport 

• Limitation of the production of MeHg 

• Reduction of the fraction of nanoparticulate and colloidal Hg  

An amendment material considered suitable for use at the South River site should effectively 

sequester both dissolved and nanoparticulate/colloidal Hg and should not increase net MeHg 

production. Considering these factors, the overall goal of the studies is to reduce the mobility and 

bioavailability of Hg in the floodplain sediments of the South River watershed.  

1.5 Thesis Organisation 

This thesis includes two chapters structured as journal articles that each address an aspect of the 

above research objectives. In Chapter 2, the first article presents saturated column experiments to 

evaluate the effects of the inorganic soil amendments limestone and attapulgite clay on Hg-

contaminated sediment. Sulfidization of the clay is employed in an attempt to increase the Hg 

uptake capacity of the clay. The second article is presented in Chapter 3 and describes the utility 

of co-blending biochar with the same contaminated sediment to sequester Hg. Modification of 

biochar with HNO3 and sulfidization of the biochar are also evaluated as methods to increase Hg 

sequestration.  In both chapters, emphasis is placed on Hg sequestration and suppression of 

MeHg production.  
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Figure 1.1: Map and photos showing locations of historical Hg release point and study area. 
Satellite images taken from Google Earth, riverbank picture (bottom right) courtesy of R. Landis. 
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Chapter 2: Inorganic Soil Amendments and their Effect on Mercury 
Contaminated Sediments from the South River, VA 

 

2.1 Synopsis 

Saturated column experiments were conducted to determine the effect of different inorganic soil 

amendments on mercury (Hg) transport in contaminated sediment. Riverbank sediment from the 

South River, VA was blended with either agricultural limestone, attapulgite clay or calcium 

polysulfide (CaSx)-modified attapulgite clay in sealed acrylic columns that were continuously 

flushed with South River water containing low concentrations of Hg. Effluent concentrations of 

Hg, methylmercury (MeHg) and other parameters were monitored for a total of 41 - 46 weeks; 

equivalent to 150 PV of flow, before the experiments were terminated. Three times during the 

experiment, aqueous profile sampling was conducted using three ports distributed along the 

vertical length of the column. The water collected from this profile sampling was analysed to 

establish the mobility of Hg and evolution of porewater geochemistry within the columns. 

Effluent and profile samples indicate that the release of Hg from the limestone-amended sediment 

was similar to the release from the sediment control, indicating little stabilization of Hg. In 

contrast, results from the column containing unmodified attapulgite clay showed that Hg was 

extensively mobilized compared to the control. The cumulative percent of 0.45 µm filtered Hg 

leached into the effluent of the sediment co-blended with clay was more than 200% higher than 

that of the control. Methylmercury (MeHg) concentrations were also elevated in the effluent from 

the clay-amended sediment, likely as a result of the increase in bioavailability of the mobilized 

Hg. Treatment of attapulgite clay with a commercially available solution of CaSx resulted in a 



 9 

pronounced decrease in Hg release. Cumulative concentrations of 0.45 µm filtered Hg in the 

column effluent were 23 % of those in the control and 7.5 % of those in the unmodified clay. 

Effluent concentrations of MeHg in the sediment amended with CaSx-modified clay were similar 

to the control, suggesting little effect of the S modification on net MeHg production. In addition, 

porewater chemistry in both the effluent and port samples taken from the sediment amended with 

CaSx-modified clay were similar to the control; a trend observed in all sediment amendments. 

The decrease in Hg mobilization observed in the sediment blended with CaSx-modified clay may 

be indicative of increased interaction between available Hg and the S groups present on the clay 

surface. These interactions may act to sequester Hg via the formation of Hg-S complexes, thus 

limiting its transport and bioavailability. 

2.2 Introduction 

Mercury is a highly toxic environmental contaminant that accumulates in watersheds and other 

terrestrial environments. Although it can be derived from natural sources, most Hg contamination 

is anthropogenic and is commonly associated with mining activities (Weech et al., 2004), chlor-

alkali plants (Kinghorn et al., 2007), solid-waste incinerators (Chen et al., 2013), and other 

industrial and manufacturing processes. Soils and sediments can sequester Hg through 

interactions with clay minerals, fulvic and humic acids, amorphous metal hydroxides and 

oxyhydroxides and other soil constituents (Gabriel & Williamson, 2004). Mercury sequestration 

can result in sustained contamination long after active release of Hg has ceased. In watersheds, 

accumulated Hg can be leached from contaminated soils and sediments and deposited in surface 

water bodies through erosion, floodwater inundation, precipitation, surface runoff and 
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groundwater discharge (Balogh et al., 1998; Mason & Sullivan, 1998; Miller et al., 1998). After 

Hg is discharged to a river system, Hg can be readily bound to natural suspended colloids, 

rendering it highly mobile (Babiarz et al., 2001; Lowry et al., 2004; Slowey et al., 2005). Colloid-

facilitated transport and subsequent deposition of Hg can result in the spread of Hg contamination 

far from the initial source. Riverbank soils and sediments are ideal environments for the 

formation of the organomercury species methylmercury (MeHg), which is produced primarily by 

sulfate-reducing and iron-reducing bacteria under anaerobic conditions (Gilmour & Henry, 1991; 

Graham et al., 2012). Methylmercury is a potent neurotoxin that can biomagnify within a food 

chain, resulting in elevated MeHg concentrations in the tissue of fish and other organisms 

(Fitzgerald and Lamborg, 2013). The complex nature of Hg transport and deposition and the 

potential for Hg methylation and demethylation processes necessitates but greatly complicates the 

remediation of Hg-contaminated sites.  

Elevated concentrations of Hg are present in the surface water, groundwater and 

sediments surrounding the South River (Eggleston, 2009; Flanders et al., 2012). Between 1929 – 

1950, a textile plant in Waynesboro, VA discharged Hg to the river in the form of a HgSO4 

catalyst (Carter, 1977). Since this initial release, Hg in the South River spread approximately 40 

km downstream of the historical release point and is present in soils throughout the 100-year 

floodplain (E.I. du Pont de Nemours and Company, 2013). Mercury concentrations in the South 

River have not decreased significantly since first measured in the 1970s and elevated 

concentrations of Hg are still present in soils and groundwater at the plant site (Eggleston, 2009). 

Flanders et al. (2012) have established that Hg derived from contaminated floodplain soils and 
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riverbank sediments is the largest current source of Hg to the river, thus stabilization and 

sequestration of Hg in these areas is critical to remediation of the site.  

Traditional remediation techniques for Hg-contaminated soils and sediments generally 

consist of excavation and dredging. These methods can be effective for localized areas of 

relatively high contamination, but are often expensive and logistically challenging for large 

expanses of polluted soils and sediments. The application of in situ amendments to contaminated 

sites has received attention as an effective and potentially lower cost method of contaminant 

immobilisation that can be applied on a large scale (Blowes et al., 2000; O’Day & Vlassopoulos, 

2010; Ghosh et al., 2011). Some materials that have been utilised for Hg stabilization include 

activated carbon (Gilmour et al., 2013), biochar (Desrochers, 2013), natural zeolites (Campbell et 

al., 2006) and clay minerals (Green-Ruiz, 2005).  

In this study, saturated column experiments were conducted to evaluate the effectiveness 

of three different inorganic minerals as co-blending amendments for decreasing Hg transport and 

mobilization from sediment from the South River. The mobility of Hg in sediments amended 

with limestone, attapulgite clay or sulfidized attapulgite clay was monitored to determine their 

capacity for Hg sequestration at the South River site. Limestone has long been used in agriculture 

to increase the pH of soils and supply calcium for plant nutrition (O’Day & Vlassopoulos, 2010). 

Dissolution of limestone in saturated sediments can increase the ionic strength of the surrounding 

pore waters via the release of Ca2+ ions. In classical colloid filtration theory, this increase in ionic 

strength can promote aggregation and deposition of colloidal material in an aqueous medium, 

limiting its transport (Yao et al., 1971; Ryan & Elimelech, 1996). Limestone has also been shown 

to moderately reduce the mobility of heavy metals in contaminated soils (Basta & McGowen, 
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2004; Lee et al., 2009). In this study, it is postulated that the addition of limestone to South River 

sediment will lead to a decrease in the mobility of Hg-bearing colloids and nanoparticles by 

promoting coagulation reactions. Attapulgite clay is a hydrated magnesium aluminum silicate 

that is non-swelling and bears a needle-like structure. As a result of this structure it has a surface 

area and sorptivity that is higher than most industrial clays (bentonite, kaolin) (Haden & Schwint, 

1967). Clay minerals are often used in metal remediation for their sorptive qualities and 

attapulgite clay amendments have been shown to reduce heavy metal leaching from soils 

(Álvarez-Ayuso & García-Sánchez, 2003; Liang et al., 2014). Modification of clay minerals can 

be employed to increase metal retention capacity (Stathi et al., 2007; Bhattacharyya & Gupta, 

2008). In Hg remediation, the use of S-containing modifiers is of particular interest due to the 

strong interaction between Hg and S (Wang et al., 2012). Gibson et al. (2011) has shown that S-

modified clay can remove nearly all available Hg from solution in static “batch” experiments. In 

this study, attapulgite clay treated with a S solution (calcium polysulfide, CaSx) was used to 

provide improved stabilization of Hg through enhanced binding reactions. Calcium polysulfide 

has been approved by the U.S.-EPA for use in the environment and is most often employed in 

agriculture and horticulture as a fungicide (U.S.-EPA, 2005). The overall goal of this study was 

to identify potential materials for sequestration of Hg in floodplain soils at the South River site, 

while considering their effect on net MeHg production and pore water chemistry.  
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2.3 Materials and Methods 

2.3.1 Sediment and Water Collection 

Sediment used in all column experiments was collected from a riverbank along the South River 

0.4 km (relative river mile (RRM) 0.25) downstream from the textile manufacturing plant, the 

point source of Hg release. The sampling location is found on the west side of the South River. 

At the sampling location, the banks of the South River are relatively steep and the river width is 

approximately 30 m. The sediment was collected October 2010, at an elevation just above the 

base-flow level of the river, 3-3.7 m (10-12 ft) below the top of the bank. The sediment was 

shipped to the University of Waterloo where it was homogenized and stored at 4 °C and protected 

from light. South River water (SRW) was used as the column influent solution. This water was 

collected on a bimonthly basis from a location approximately 5 km upstream of the initial Hg 

release point, and was shipped on ice to the University of Waterloo where it was stored in the 

dark at 4 °C.  

2.3.2 Soil Amendments 

Attapulgite clay (Zemex Industrial Minerals Inc., Attapulgus, GA) utilised in this experiment was 

obtained as a fine powder. Modification of the attapulgite clay was performed using a 

commercially available solution of calcium polysulfide (CaSx, lime sulfur) (Sure-gro Inc., 

Brantford, ON). A mixture containing 20 g of attapulgite, 1.7 mL of CaSx and 200 mL of 

ultrapure water (Milli-Q purification system) was shaken and left to react for seven days under 

anaerobic conditions. The resulting material was rinsed with ultrapure water and dried at room 
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temperature in a laboratory fume hood. The agricultural limestone utilised was ground and sieved 

to 0.5 mm – 1.0 mm in diameter. Prior to column packing, South River sediment was mixed with 

a 2 % (dry weight) addition of attapulgite clay, sulfidized attapulgite clay or limestone. The 

mixing was done in small batches to ensure equal distribution of the amendment material 

throughout the sediment.  

2.3.3 Experimental Set-up 

Four column experiments (Table 2.1) were conducted using acrylic columns that were 15 cm 

long with an inner diameter of 4 cm, and a volume of 171.9 cm3 ± 2.7 cm3. The columns were 

packed with unamended sediment (Column 1; Control), limestone-amended sediment (Column 2; 

Limestone), attapulgite clay-amended sediment (Column 3; Clay) and CaSx-modified clay-

amended sediment (Column 4; CaSx-clay). Each column included three 0.75 cm diameter ports 

installed at 3.5 cm, 7.5 cm and 11.5 cm from the bottom of the column to allow for profile 

sampling. Coarse and fine NITEX screens were placed at the bottom of each column and topped 

with a 1 cm layer of silica sand to prevent sediment loss. Columns were then packed by slowly 

pumping SRW upwards through the column while adding small amounts of the sediment mixture. 

This procedure was used to ensure saturation and lessen the formation of preferential flow paths. 

When the packed sediment was ~1 cm from the top of the column, an additional layer of silica 

sand, and coarse and fine NITEX screens were added prior to the column being sealed. A multi-

channel peristaltic pump (Ismatec, Switzerland) was used to pump SRW through the columns at a 

constant rate of flow (Table 1).  
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2.3.4 Aqueous Sample Collection and Analysis 

Column effluent was collected in 125 mL sealed amber bottles that were purged with N2(g) prior 

to each sample collection to minimize sample oxidation. Effluent samples were drawn from the 

collection bottles using 30 mL sterile polypropylene/polyethylene luer-lock syringes (Norm-Ject). 

Samples were collected from the ports in 30 mL glass syringes (BD Multi-Fit) at the unaltered 

flow-rate of the column. This profile sampling was completed three times over the course of each 

column experiment: once at the beginning (3-7 PV), once near the middle (45-89 PV) and once 

just before the end (143-183 PV) of the experiment. Samples were filtered using 32 mm diameter 

syringe filters containing 0.1 µm or 0.45 µm Supor Membranes (Acrodisc®). Samples collected 

for total mercury (THg), MeHg, dissolved organic carbon (DOC) and nutrient (NH3-N, PO4-P) 

analysis were stored in 15 mL vacuum and ionized amber borosilicate bottles (Qorpak). Samples 

for cation and anion analyses were collected in 15 mL polypropylene bottles (Nalgene™). 

Effluent collected for THg and cation analysis was acidified to pH<2 using ultrapure HNO3; for 

MeHg analysis to pH < 2 using analytical grade HCl; and for  DOC and nutrient analyses to 

pH<2 with OmniTrace Ultra High Purity H2SO4. Anion samples were left unacidified. All 

samples were stored at 4 °C with the exception of those intended for MeHg and anion analysis, 

which were frozen at -20 °C immediately after collection.  

Analysis of all parameters was performed on samples that were passed through 0.45 µm 

filters. In addition, unfiltered and 0.1 µm filtered samples for THg analysis were collected on a 

monthly basis. Total Hg was analysed using cold vapour atomic fluorescence spectroscopy 

(CVAFS) (Tekran®) following U.S-EPA method 1631 (U.S-EPA, 2002). A summary of the 

quality assurance/quality control (QA/QC) measures taken during Hg analysis can be found in 
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Appendix C. Methylmercury (0.45 µm filtered) was quantified using the distillation, aqueous 

ethylation, purge and trap and CVAFS technique (Tekran®) as per U.S-EPA method 1630 (U.S-

EPA, 2001). Determinations of the concentrations of major cations were obtained using 

inductively coupled plasma optical emission spectroscopy (iCAP 6000; ThermoFisher Scientific) 

and for trace elements using inductively coupled plasma mass spectroscopy (X-Series 2; 

ThermoFisher Scientific). Anion samples were analysed using ion chromatography (Dionex ICS-

5000) with a KOH eluent and an IonPac™ AS18 2 × 250 mm column. When organic acids 

(acetate, formate, lactate, propionate) were analysed in addition to inorganic anions, an IonPac™ 

AS11 0.4 × 250 mm column was utilised. Standards for both anions and organic acids were 

prepared on the day of analysis. DOC concentrations were measured using a wet oxidation total 

organic carbon analyser (Aurora 1030W). The nutrients ammonia-nitrogen (NH3-N) and 

phosphorus as orthophosphate were analysed with a spectrophotometer (HACH DR 2800). 

Ammonia-nitrogen was quantified using the salicylate method with a spectrophotometer (HACH 

DR 2800, Method 8155 from the DR 2800 manual) and PO4-P analysis was adapted from the 

ascorbic acid spectrophotometric method 4500-P from the Standard Methods for Examination of 

Water and Waste Water (HACH DR 2800). 

2.3.5 Solid-Phase Sample Collection 

The column experiments were terminated after 150 PV of flow, after which the sediment mixture 

was extracted under anaerobic conditions in 2 cm intervals along the length of the column. Solid 

samples for total Hg, MeHg and sequential extraction were collected at the 1-3 cm, 5-7 cm and 9-

11 cm intervals relative to column influent using 70% ethanol-washed tools. The remaining 
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sediment was stored in glass vials and all samples were frozen immediately and stored at -20 °C 

until analysis.  

2.4 Results and Discussion 

2.4.1 Mercury Mobilization 

Release of Hg from the sediment control column (Control) was greatest within the first seven 

weeks of sampling (0 – 25 PV) (Fig. 2.1). The maximum concentration of 0.45 µm-filtered Hg 

(0.45-Hg) observed in the control column effluent was 1500 ng L-1 at 21 PV. Maximum 

concentrations of both unfiltered (THg) and 0.1 µm-filtered (0.1-Hg) Hg  (2830 ng L-1 and 1000 

ng L-1 respectively) were observed at 9.5 PV. By 30 pore volumes of flow, 0.45-Hg declined to 

180 ng L-1 and by approximately 48 PV all fractions of Hg decreased to 40 ng L-1 – 160 ng L-1, 

remaining within this range until termination of the experiment. At early times, the majority of 

effluent Hg was associated with the >0.45 µm size fraction, indicating an initial rapid release of 

particulate-bound Hg. After 48 PV the distribution among fractions switched to Hg 

predominantly associated with the nanoparticulate/dissolved fraction (<0.1 µm). Concentrations 

of 0.45-Hg in the pore water extracted from ports along the length of the column were the highest 

at early times (4 PV), reaching a maximum of 194 ng L-1 in the samples obtained from the top 

port (Fig. 2.2). By the second sampling session at 49 PV concentrations of 0.45-Hg were less 

than 65 ng L-1 at all distances along the column and by the final sampling (183 PV) 0.45-Hg was 

less than 30 ng L-1. Mercury in the column pore waters typically increased from the bottom to the 

top of the column, likely as the influent SRW was allowed to interact for longer times with the 

contaminated sediment and transporting leached Hg upwards through the column.  
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 In comparison to the Control, release of Hg in the effluent from the Limestone column 

occurred more rapidly, reaching a maximum 0.45-Hg concentration of 1380 ng L-1 and 

subsequently declining to 470 ng L-1 by 14 PV. The highest concentrations of THg and 0.1-Hg 

also were observed at early times (by 8 PV) and were similar in magnitude to the control. 

Concentrations of filter passing Hg (both 0.45-Hg and 0.1-Hg) decreased to concentrations <200 

ng L-1 and THg to levels <350 ng L-1 by 44 PV and by termination of the experiment 

concentrations of 0.45-Hg had declined to approximately 100 ng L-1. Concentrations of 0.45-Hg 

measured in aqueous profile samples from the Limestone column were higher than the Control at 

the first sampling session (3 PV), with a peak in concentration of 231 ng L-1 observed at the 

middle distance. Mercury concentrations then declined at the next sampling session of 45 PV, 

and declined further to <10 ng L-1 in all ports by 152 PV. In contrast to the Control, the 

proportion of Hg associated with the particulate (>0.45 µm) fraction did not decline considerably 

with time in the effluent of the Limestone column. This finding suggests that particulate-bound 

Hg was transported through the limestone-amended sediment at a consistent rate, rather than the 

rapid leaching of particulate Hg observed in the effluent of the Control column.  

The greatest observed release of effluent Hg occurred in the sediment amended with 

unmodified clay. By 6.5 PV, concentrations of 0.45-Hg reached a maximum of 4500 ng L-1, a 

value approximately three times higher than the Control. Concentrations of both 0.1-Hg and THg 

were similarly elevated, with maximum concentrations of 3300 ng L-1 and 6300 ng L-1 

respectively. As observed for all columns, the release of Hg from the unmodified clay-amended 

sediment was highest at early times before all Hg filter fractions declined to <1500 ng L-1 by 33 
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PV. Mercury concentrations further declined in all filter fractions to concentrations <300 ng L-1 

by 90 PV and by the end of the experiment ranged between 18 ng L-1 and 30 ng L-1.  

As observed with the effluent Hg concentrations, concentrations of 0.45-Hg in pore 

waters collected along the length of the Clay column were elevated in comparison to the other 

columns at early times. At the first profile sampling session (7 PV), the concentration of 0.45-Hg 

in porewater collected from the top port of the Clay column was 7860 ng L-1. This concentration 

was more elevated than the maximum THg concentration in the Clay column effluent collected at 

11 PV of flow. As with the measured effluent Hg, concentrations of 0.45-Hg in the port samples 

declined over time and by 150 PV were <12 ng L-1 along the length of the column. Both the 

effluent and port sampling results suggest that the addition of clay promoted an increase in Hg 

mobility in South River sediment compared to the unamended sediment. Work by both Álvarez-

Ayuso & García-Sánchez (2003) and Liang et al. (2014) demonstrated decreased heavy metal 

mobility in contaminated soils with the addition of attapulgite clay. Álvarez-Ayuso & García-

Sánchez suggest that reaction with silanol groups present on the surface of attapulgite is the 

primary mechanisms of metal sorption and retention. Analysis of the distribution of Hg among 

filter fractions indicates that throughout the course of the column experiment, an average of 50% 

of all measured Hg was in the nanoparticulate/dissolved phase (<0.1 µm). This distribution is 

slightly higher than the 40% average seen in the Control and indicates that while Hg sorption to 

clay particles and subsequent mobilization through the column may have occurred, it does not 

account for the significant portion of Hg present in the sub-100 nm category. One hypothesis may 

be that the electrostatic interaction between clay particles and Hg, which can occur in soils 

(Gabriel and Williamson, 2004), was strong enough to scavenge some Hg from the sediment but 
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not enough to cause sorption, thereby destabilising Hg and causing it to be transported through 

the column in the dissolved phase.  

Effluent Hg concentrations from the CaSx-clay column reached maximum values in all 

filter fractions by the first sampling event at 1.5 PV. At this time, the peak 0.45-Hg concentration 

in the column effluent was 280 ng L-1 while 0.1-Hg and THg were 287 ng L-1 and 298 ng L-1 

respectively. The concentration of Hg in all filter fractions was consistently below 50 ng L-1 by 

35 PV and at the termination of the experiment all were approximately 10 ng L-1. Similar 

concentrations of Hg were observed in the port samples collected along the length of the CaSx-

clay column.. By the first port sampling session at 6 PV of flow, a maximum 0.45-Hg 

concentration of 162 ng L-1 was observed in effluent from the top port. Measured 0.45-Hg in the 

second and third port sampling sessions (89 PV and 143 PV) did not vary significantly along the 

vertical profile and were consistently lower than concentrations in the Control column. 

Comparison of effluent filter fraction distribution highlights the discrepancies between the CaSx-

clay and the unmodified version. On average, 82 % of measured Hg in the CaSx-clay column 

effluent was in the <0.1 µm fraction, a value double the control and approximately 60 % higher 

than the unmodified clay. This suggests that like the unmodified clay, Hg is not simply attaching 

to clay particles and being mobilized through the column. Research conducted by Gibson et al. 

(2011) utilised extended X-ray absorption fine structure (EXAFS) analysis to measure Hg bond 

lengths on two thiadiazole-modified attapulgite clays and suggested the formation of Hg-S bonds. 

In the CaSx-modified attapulgite amendment, Hg-bearing particles may form similar aggregates 

with available clay particles enhanced by the strong interaction between Hg and S present on the 

modified clay. These aggregates likely settle out of aqueous suspension, resulting in free 
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dissolved Hg not in contact with clay particles being readily transported and constituting the 

majority of Hg present in the column effluent. 

2.4.2 Cumulative Hg Release 

Aqueous Hg concentrations can provide insight into Hg transport within a column but do not 

account for variability in the amount of Hg-bearing sediment present in each column. To 

accurately compare the effects of sediment amendments on Hg release, the cumulative percent 

Hg released from all column experiments was calculated using both 0.45-Hg and THg 

concentrations. These calculations were used to normalize the Hg concentrations measured in 

column effluent to the total mass of Hg in each column as determined by the total mass of 

contaminated sediment in each column and allows for direct comparisons of Hg transport. By the 

completion of the experiment, 0.19 % of the total 0.45-Hg and 0.41 % of the THg was leached 

from the Control (Fig. 2.3). In comparison nearly 0.6 % of available 0.45-Hg was observed in the 

effluent of the Clay column, illustrating the pronounced increase in Hg mobilization associated 

with the clay amendment. Zhu et al. (2012) also observed increased Hg mobilization in a sand 

column when it was flushed with slurry of clay (kaolinite), attributed to the ability of kaolinite to 

strip Hg from the sand particles, resulting in colloid-facilitated Hg transport.  

The cumulative release of both aqueous 0.45-Hg and aqueous THg from the Limestone 

column was higher than the Control, reaching 0.26 % and 0.51 % respectively by the end of the 

experiment. Geochemical speciation modelling (PHREEQC) performed on aqueous effluent 

samples indicates that there was no appreciable change in ionic strength induced by the addition 

of limestone to the sediment (Appendix A). Furthermore, the saturation indices for calcite 
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(CaCO3), aragonite (CaCO3) and dolomite (CaMg(CO3)2) as determined using PHREEQC were 

similar in effluent samples from both the Control and the Limestone columns, suggesting there 

was likely little dissolution of the agricultural limestone during the experiment. The similarity in 

transport of Hg between the Control and Limestone columns is likely due to the lack of change in 

chemistry in the presence of the amendment.   

Leached 0.45-Hg in the CaSx-clay column effluent was 0.05 % of the total available solid-

phase Hg, representing a 76 % decrease compared to the control and a 92 % decrease relative to 

the unmodified material. Similar results were observed for the cumulative release of total Hg 

from each column, indicating that the CaSx treatment was effective at treating both particulate 

and filter-passing Hg. The presence of S has frequently been cited as contributing to Hg 

sequestration (Zhu et al., 2009; Kim et al., 2011). Research by Blue et al. (2010) found that a 

synthetic thiol compound (1,3-benzenediamidoethanethiol) added to a solution containing Hg 

will immediately form a Hg-S precipitate. More recently, Crockett et al. (2016) synthesized a 

sulfur-limonene polysulfide that sequesters aqueous Hg2+ as an insoluble Hg deposit. In this 

study with modified clay, the attapulgite clay was likely just a carrier for the CaSx solution rather 

than acting as a sorbent material itself. It is possible that the same CaSx treatment could be 

applied to a number of other sorbents to increase the S content and enhance Hg uptake. 

2.4.3 Aqueous Porewater Chemistry 

The addition of each of the amendment materials to the contaminated sediment led to minimal 

changes in porewater chemistry for all of the columns. Measurements of pH in the effluent of all 

columns were initially 7.8 and gradually declined over the course of the experiments to between 
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7.2 and 7, indicating that soil amendments did not appreciably influence porewater pH. Profile 

sampling for pH indicated very consistent values for all columns at each port sampling session, 

with values close to 7.5 in each of the three ports along the vertical length of the columns 

(Appendix A). Eh values in the effluent of both the Control and Limestone columns decreased 

sharply at early time, with a value of 112 mV observed in the Control column effluent and a 

value of -18 mV observed in the Limestone column effluent by 10 PV. This decrease in effluent 

Eh was also reflected in aqueous profile sampling results from the Limestone column at three PV 

of flow, though not in the Control. Both columns stabilized at Eh levels above the SRW input 

(~340 mV) by 24-30 PV in the effluent and by 45-49 PV along the vertical profile In contrast, Eh 

measurements in the effluent of both the Clay column and the CaSx-clay column started at 400 

mV – 470 mV and declined with time to values of 56 mV and -41 mV. Measurements of Eh from 

the profile sampling of both columns also followed a similar pattern, beginning at 400 mV– 450 

mV at the first port sampling and declining to 150 mV – 300 mV by 150 PV.  

The addition of limestone did not significantly alter effluent alkalinity, as demonstrated 

by a peak concentration of ~300 mg L-1 alkalinity as CaCO3 being observed in both the Control 

and Limestone columns.  Both clay-containing columns reached a maximum effluent alkalinity 

concentration of 200 mg L-1 as CaCO3 by 10 PV. Upon 150 pore volumes of flow, alkalinity in 

all columns had decreased to at or just below the SRW input concentration of 110 mg L-1 as 

CaCO3. Alkalinity was similar in samples extracted from the ports of all columns and typically 

increased with distance along the length of the columns, likely as a result of the increased 

dissolution of CaCO3 as the porewater migrated upwards through the sediment. The 

concentration of major ions, with emphasis on those associated with clay mineral transport (e.g. 
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Al, Mg, Ca, Si, K), was monitored in both column effluent and ports to track trends in colloidal 

transport (Appendix A). Generally, these parameters did not vary significantly among the 

columns. Concentrations of Mg, Ca, Si and K were typically highest at early times, 

corresponding to the onset of reducing conditions that have been shown to influence colloid 

release (Tadanier et al., 2005; Thompson et al., 2006), before declining to approximately SRW 

concentrations by experiment termination. Release of Al was an exception to this trend, with 

elevated concentrations measured in the effluent of the Clay column and from samples taken 

from the uppermost port of the CaSx-clay column. The increase in Al concentrations at 103 PV 

for the Clay column corresponded with small spikes in effluent Si and may be indicative of a 

sudden release of colloidal material.  

2.4.4 Net MeHg Production 

In the context of contaminated site remediation, a sorbent amendment that controlled Hg 

transport but stimulated Hg methylation would not be suitable due to the harmful effects of 

MeHg accumulation in the environment. As such, effluent MeHg concentrations were tracked in 

all columns in this study to monitor the effect of amendment materials on net MeHg production. 

The net production of MeHg in the effluent of the Control and Limestone columns followed a 

similar trend with time (Fig. 2.5). Concentrations of effluent MeHg were <1 ng L-1 for both 

columns at early time, but increased to a peak of approximately 7 ng L-1 by 28 PV. In the Control 

column, MeHg concentrations declined quickly and returned to <1 ng L-1 by 60 PV, remaining in 

this range for the duration of the experiment. This decline to low effluent MeHg concentrations 

was also observed in the Limestone column but was followed by a secondary increase in MeHg 
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concentrations at 86 PV. Of all the experiments, the most elevated concentrations of MeHg were 

measured in the effluent of the Clay column. Like the Control and Limestone columns, MeHg 

concentrations in the Clay column effluent were <1 ng L-1 at early time. After approximately 20 

PV flushes the concentration of effluent MeHg began to rapidly increase and by 29 PV had 

peaked at 29 ng L-1. Methylmercury concentrations in the effluent of the Clay column then 

declined to 2 ng L-1 by 48 PV, remaining between 1 ng L-1 – 3 ng L-1 until 123 PV before 

returning to <1 ng L-1. The elevated concentrations of MeHg observed in the Clay column 

effluent may have resulted from enhanced transport of MeHg by sorption to clay particles 

(Babiarz et al., 2012) or by the destabilization and subsequent methylation of sediment-bound Hg 

induced by the attapulgite clay amendment. In contrast to the addition of unmodified attapulgite 

clay, effluent MeHg concentrations were not significantly altered by the CaSx-clay amendment 

when compared to the control. Effluent MeHg in the CaSx-clay column reached a peak 

concentration of 6.8 ng L-1 by 17 PV. Though slower to decline than the Control column, MeHg 

concentrations in sediment amended with CaSx-clay decreased with time and were  <1 ng L-1 by 

103 PV. The MeHg results observed in the CaSx-clay column are consistent with work done by 

Jay et al. (2002) who found methylation rates by certain SRB did not increase in the presence of 

polysulfides; a finding attributed to the charged nature and large size of Hg-polysulfide 

complexes.  

Changing reduction-oxidation (redox) conditions can greatly affect Hg behaviour in 

aqueous systems by influencing mineral precipitation and dissolution, complexation and 

speciation (Ullrich et al., 2001; Gabriel & Williamson, 2004). Bacteria present within saturated, 

O2-limited sediments can oxidize available organic carbon within sediments coupled to terminal 
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electron acceptors such as NO3, SO4, Mn4+ and Fe3+. In particular, the production of MeHg 

occurs primarily under sulfate-reducing or iron-reducing conditions by SRB and IRB present in 

anoxic sediments (Hsu-Kim et al., 2013). In this study, the concentrations of electron donors 

(DOC), products of organic carbon degradation (NH3-N, PO4-P) and concentrations of electron 

acceptors (NO3, Mn, Fe, SO4) were measured to monitor changes in biogeochemical conditions 

caused by the addition of soil amendments (Fig. 2.4). Release of effluent DOC was similar for all 

columns, regardless of amendment material. DOC concentrations were most elevated at early 

time, ranging between 12 mg L-1 – 16 mg L-1 within the first 20 PV. In the Control and 

Limestone columns, these elevated concentrations of effluent DOC observed within the first PV 

flushes were typically associated with high effluent concentrations of acetate (Appendix A). 

Acetate can be produced by the microbially-mediated oxidation of other organic compounds (e.g. 

lactate, propionate) and therefore the observed elevated concentrations of acetate and hence DOC 

may be indicative of SRB activity within the columns (Widdel & Pfennig, 1982; Oyekola et al., 

2009). With increasing PV flushes, effluent DOC declined in all columns to at or just above SRW 

input concentrations (~1 mg L-1) as available DOC was likely consumed or flushed out of the 

column.  

The oxidation and subsequent degradation of organic carbon can lead to the release of 

NH3-N and PO4-P (Waybrant et al., 2002). In all columns, effluent NH3-N concentrations peaked 

between 6-13 PV before declining to below SRW input levels (0.5 mg L-1) by approximately 50 

PV. Release of effluent PO4-P was delayed in comparison to NH3-N, with peak PO4-P 

concentrations measured in the effluent of the columns by 25-48 PV of flow. This attenuation 

may have resulted from interactions between PO4-P and Fe(III) oxyhydroxides, for which 
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potential PO4-P sorption sites are increased under Fe-reducing conditions (Reddy et al., 1999). 

Concentrations of both NH3-N and PO4-P were typically aligned with effluent alkalinity in all 

columns, another product of organic carbon oxidation.  

Nitrate concentrations in the effluent of all columns were highest by the first PV of flow. 

In both the Control and Clay column effluent, maximum NO3 concentrations of 420 mg L-1 – 470 

mg L-1 were measured, while maximum effluent NO3 concentrations in the Limestone and CaSx-

clay columns ranged from 230 mg L-1 – 270 mg L-1. Effluent NO3 concentrations rapidly 

declined to below the method detection limit (MDL) of 0.03 mg L-1 by 4-7 PV for both the Clay 

and CaSx-clay columns and by 18-21 PV for the Control and Limestone columns. Effluent 

concentrations of SO4 were similarly at the most elevated value in each column by the first PV 

flushing of input SRW. The highest concentration of SO4 measured in the effluent of a column 

experiment was 39 mg L-1 in the Control. In contrast, SO4 in the Clay column reached a 

maximum concentration of 21 mg L-1. After 10 PV, effluent SO4 concentrations in all columns 

had declined to <7 mg L-1 (SRW input), remaining between input concentrations and the MDL 

(0.1 mg L-1) for the duration of the experiments. The decline of effluent NO3 and SO4 to below 

SRW input concentrations was likely indicative of denitrification (Eq. 1) and SO4 reduction (Eq. 

2) corresponding with the onset of reducing conditions within the columns.   

      Eq. 1 

       Eq. 2 

Analysis of aqueous profile samples from the columns indicates that NO3-reducing conditions 

were established soon after the start of the experiments. Nitrate concentrations measured in 
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samples extracted from the ports were <2 mg L-1 along the vertical transect of the Control and 

Limestone columns and below the MDL in the Clay and CaSx-clay columns by the first port 

sampling session (Appendix A). Sulfate was not initially depleted in aqueous samples extracted 

from the ports, but did decline to concentrations equal to or less than the SRW input by the 

second and third port sampling sessions.  

Release of effluent dissolved Mn was greatest in the Clay column with a peak 

concentration of 3500 µg L-1 measured at 80 PV. Manganese concentrations in all columns were 

initially elevated, ranging from 1350 µg L-1 – 2300 µg L-1 by approximately 30 PV and 

remaining above input levels for the duration of the experiments. Dissolved Fe was most elevated 

in the Control column effluent, with a maximum concentration of 314 µg L-1 measured at 26 PV. 

Effluent Fe was elevated in the Clay column by the first PV of flow and reached a maximum 

concentration of 280 µg L-1 by 103 PV. In contrast, effluent Fe was highest in both the limestone 

and CaSx-clay columns by approximately 30 PV with concentrations of 170 µg L-1 and 125 µg L-

1 respectively. Bacteria are capable of oxidizing organic carbon present in sediment by pairing 

with Mn(IV) oxides and Fe(III) oxyhydroxides as terminal electron acceptors (Lovley & Phillips, 

1988). This process can result in elevated concentrations of dissolved Mn and Fe through 

reduction of the mineral phases (Eq. 3 and Eq. 4). 

      Eq. 3 

     Eq. 4 

Instances of elevated MeHg concentrations in the effluent of all columns were typically 

associated with peaks in dissolved Mn, Fe and organic carbon and occurred after the depletion of 
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NO3 and SO4. The correlation between dissolved Fe and aqueous MeHg has also been observed 

in several studies (Paulson, 2014; Hellal et al., 2015; Desrochers et al., 2015) and is attributed to 

microbially mediated Fe(III) reduction by IRB. At the South River, Both IRB and SRB contribute 

to MeHg production, with SRB being dominant in the upper layers of sediment and IRB 

contributing to net methylation at depth (Yu et al., 2012).  

2.4.5 Conclusions 

These saturated column studies demonstrate that limestone and attapulgite clay were ineffective 

at minimizing Hg transport when blended with contaminated sediment. While the addition of 

limestone did not result in an appreciable change in Hg mobilization relative to the control, 

attapulgite clay caused rapid and extensive Hg transport likely through the de-stabilization of 

sediment-bound Hg. Net production of MeHg was similarly elevated in sediment blended with 

attapulgite clay, likely as a result of colloid-facilitated transport and the increase in destabilized 

and subsequently more bioavailable Hg observed with this amendment. Experiments did show 

that modification of attapulgite clay with a CaSx solution greatly decreased Hg mobilization with 

respect to the unmodified material and the control without significantly altering MeHg 

production or porewater geochemistry. Increased interactions between the S groups on the clay 

and Hg appear to have countered the destabilization effects seen with the unmodified clay and 

promoted aggregation and deposition of clay-bound Hg.  

 The results of this study lend promise to the use of CaSx-modified sorbent amendments 

for in situ remediation of Hg-contaminated sediments. Treatment with CaSx is relatively simple 

and inexpensive, utilises a reagent approved for environmental use by the U.S.-EPA and could 
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likely be applied to variety of different materials, including those that demonstrate limited Hg 

uptake capacity.  
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Table 2.1 – Summary of amendments and flow parameters for column experiments. 

Column ID Control Limestone Clay CaSx-Clay 
Amendment 

Type N/A Agricultural 
Limestone Attapulgite Clay CaSx-modified 

Attapulgite Clay 
Amendment 
Percentage  

(dry weight) 
N/A 2% 

Mass of Dry 
Sediment in 
Column (g) 

211 192 172 172 

Average Pore 
Volumes 

Flushed per 
Week 

3.9 3.3 3.5 3.5 

Total Pore 
Volumes 
Flushed 

187 154 153 145 
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Figure 2.1 – Concentrations of THg, 0.45-Hg and 0.1-Hg in the effluent of the column 
containing Hg-contaminated sediment (Control), sediment amended with agricultural limestone 
(Limestone), sediment amended with attapulgite clay (Clay) and sediment amended with CaSx-
modified attapulgite clay (CaSx-Clay). Note the changes in scale found on the Hg axis.  

 
 
 
 
 



 33 

 
 

Figure 2.2 - 0.45 um-filtered Hg measured samples extracted from the ports of the column 
containing Hg-contaminated sediment (Control), sediment amended with agricultural limestone 
(Limestone), sediment amended with attapulgite clay (Clay) and sediment amended with CaSx-
modified attapulgite clay (CaSx-Clay). Note the change in scale found in the Hg axis.  
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Figure 2.3 - Cumulative 0.45 µm filtered Hg (left) and cumulative unfiltered total Hg (right) 
measured in the effluent of the column containing Hg-contaminated sediment (Control), sediment 
amended with agricultural limestone (Limestone), sediment amended with attapulgite clay (Clay) 
and sediment amended with CaSx-modified attapulgite clay (CaSx-Clay). Cumulative Hg is 
expressed as a percent of the total solid-phase Hg present within each column. Note that the y-
axis scale for the subplot on the right is double that of the subplot on the left.  
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Figure 2.4 - Aqueous composition of the effluent from of the column containing Hg-
contaminated sediment (Control), sediment amended with agricultural limestone (Limestone), 
sediment amended with attapulgite clay (Clay) and sediment amended with CaSx-modified 
attapulgite clay (CaSx-Clay).   
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Figure 2.5 - Concentrations of MeHg and select redox indicators in the effluent of the column 
containing Hg-contaminated sediment (Control), sediment amended with agricultural limestone 
(Limestone), sediment amended with attapulgite clay (Clay) and sediment amended with CaSx-
modified attapulgite clay (CaSx-Clay).  
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Chapter 3 – Co-blending of Biochars to Stabilize Mercury in Contaminated 
Riverbank Sediment from the South River, VA  

3.1 Synopsis  

In riverine environments, mercury (Hg) contamination derived from mining or industrial 

processes can persist long after direct Hg inputs have ceased. In many instances, complete 

removal of Hg-contaminated soils and sediments from affected riverbanks and floodplains is not 

feasible due to the wide spread occurrence of Hg downstream of the initial source; instead, in situ 

remediation techniques can be employed to immobilize Hg and render it less bioavailable.  

Flow-through, saturated column experiments were conducted to evaluate the effectiveness of 

different biochar materials to sequester and stabilize Hg when blended with contaminated 

sediment. Modification of biochar with either HNO3 or with a solution of calcium polysulfide 

(CaSx) was employed to alter the physiochemical properties of the material and render it more 

effective for Hg remediation. Five column experiments were conducted by mixing biochar with 

Hg-contaminated riverbank sediment from the South River, VA, including a) unamended 

sediment control, b) 2 % amendment of unmodified biochar, c) 2 % amendment of HNO3-

modified biochar, d) 2 % amendment of CaSx-modified biochar, and e) 5 % amendment of CaSx-

modified biochar. All columns were continuously flushed with low-Hg river water collected from 

the South River while effluent and profile samples were collected at regular intervals and 

analysed for Hg, methylmercury (MeHg) and other aqueous chemistry parameters. Release of Hg 

from the sediment amended with unmodified and HNO3-modified biochar was similar to the 

unamended sediment, suggesting little control of Hg transport by those materials. In contrast, 

concentrations of Hg measured in effluent and profile samples for the experiments containing 
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CaSx-modified biochar were significantly lower. Mercury leaching (0.45 µm-filtered) from the 

sediment amended with 2 % CaSx-modified biochar decreased by 71 % relative to the control. 

When the percentage of CaSx-modified biochar was increased to 5 %, an 83 % reduction in Hg 

release was observed relative to the sediment control. These results suggest that the presence of 

CaSx-modified biochar may be an effective amendment for limiting the release of Hg from 

contaminated sediment. This control is likely a result of favourable interactions between available 

Hg and S groups present on the biochar surface. Net production of MeHg was not appreciably 

altered by the biochar amendments, although increased leaching of dissolved organic carbon, Mn 

and PO4-P was observed from the sediment amended with 5 % CaSx-modified biochar. Sulfur X-

Ray absorption near edge structure spectroscopy (XANES) on both the unmodified and CaS-

modified biochars indicate that a greater proportion of reduced S was present on the surface of 

the CaSx-biochar than on the unmodified material. This investigation provides critical 

information regarding the suitability of CaSx-modified biochar for stabilization of Hg 

contamination and the feasibility of co-blending as a Hg-remediation strategy.  

 

3.2 Introduction 

Mercury (Hg) is a highly toxic heavy metal that is released to the environment primarily from 

anthropogenic activities. Globally, the majority of contaminant Hg is released into the 

atmosphere as a result of fuel (coal) combustion and waste incineration (Driscoll et al., 2013). 

Once airborne, atmospheric Hg can be transported long distances and ultimately deposited in 

aquatic and terrestrial environments (Lindqvist et al., 1991; Schroeder & Munthe, 1998; 

Fitzgerald & Lamborg, 2013). Currently, atmospheric transport and subsequent deposition of Hg 
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is considered the largest source of Hg to most watersheds (Fitzgerald et al., 1998). On a local 

scale, Hg can be introduced to watersheds and riverine systems by direct inputs from industrial 

processes, mining and chlor-alkali plants (Driscoll et al., 2013). Numerous river systems have 

been affected by anthropogenic Hg contamination, including the Carson River in Nevada (Wayne 

et al., 1996), the English-Wabigoon river system in Ontario (Kinghorn et al., 2007) and the Idrija 

River in Slovenia (Bonzongo et al., 2002). Due to the strong interactions between Hg and natural 

organic matter present in soils, Hg can remain sequestered in riverbank sediments and floodplain 

soils for many years after contaminant release has ceased. Sequestered Hg can be re-mobilized by 

riverbank erosion, surface runoff and de-gassing from soils, thus providing a secondary source of 

Hg contamination (Miller et al., 1998; Amos et al., 2013). 

The processes controlling the re-mobilization of Hg in riverbank sediments and floodplain 

soils are complex (Hellal et al., 2015; Poulin et al., 2016). Mercury is bound to sediments and 

soils through sorption to clays, other inorganic materials (hydroxides, oxyhydroxides) and 

organic matter constituents (thiol compounds, OH-, Cl-, S2-) (Gabriel & Williamson, 2004). 

Erosion, precipitation and flooding processes can perturb these soils and sediments, releasing Hg-

bearing particles that are highly mobile and can be redistributed downstream of the initial site of 

contamination. Anoxic soils and sediments associated with riverine systems are also ideal 

environments for the production of the organomercury species methylmercury (MeHg) (Gilmour 

& Henry, 1991). Methlymercury is a powerful neurotoxin that can pass through the blood-brain 

barrier and accumulate in the tissue of organisms (Ceccatelli et al., 2010). Bioaccumulation can 

result in MeHg concentrations in fish that are many times higher than the surrounding water 

(Fitzgerald and Lamborg, 2013). Formation of MeHg is a bacterially-mediated process attributed 
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primarily to sulfate-reducing and iron-reducing bacteria (SRB and IRB) present in anoxic 

sediments (Gilmour et al., 1992; Kerin et al., 2006; Yu et al., 2012). The availability of electron 

donors (organic substrates) and acceptors (NO3, Mn(III/IV), Fe(III) and SO4) utilized by 

methylating bacteria are important controls on the rate of MeHg production. In addition 

production of MeHg is dependent on the speciation of Hg with neutrally-charged Hg-ligand 

complexes and more recently, HgS nanoparticles considered most bioavailable to methylating 

bacteria under anoxic conditions (Graham et al., 2012; Pham et al., 2014).  

In contaminated watersheds where Hg has been transported downstream of the initial 

point source, site remediation will require strategies for stabilization of Hg in potentially large 

expanses of floodplain soils and river sediments. One option for remediation that can be used for 

treatment of Hg in situ is the application of sorptive and/or reactive amendments to contaminated 

soils and sediment. These amendments can be blended into soil or sediment and serve to 

sequester Hg, rendering it less mobile and less bioavailable. Amendment materials that can be 

effective for Hg remediation include activated carbons and biochars (Gomez-Eyles et al., 2013), 

cements (Serrano et al., 2016), and S-functionalized amendments (Chaves et el., 2011).  

Biochar is widely defined as a carbon-rich material produced by thermal decomposition 

of biomass at low temperatures (<700 °C) and under low oxygen conditions (Johannes Lehmann 

& Joseph, 2009). It is similar to the commonly used activated carbon, but does not undergo an 

additional post-production activation step and thus is widely considered to be less expensive 

(Beesley et al., 2011). As a soil amendment, biochar has been used for remediation of heavy 

metal contamination due in part to its large surface area, presence of surface functional groups 

and longevity in soils (Beesley et al., 2010; Jiang et al., 2012). Several studies have demonstrated 
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the effectiveness of Hg removal from solution by biochar (Desrochers, 2013; Paulson, 2014; Xu 

et al., 2016) but few have focused on the sequestration of Hg by biochar when mixed directly into 

contaminated soils or sediments.   

Modification of carbon-based soil amendments (activated carbon, biochar) can be useful 

in enhancing properties such as surface area, surface charge and the presence of functional groups. 

In heavy metal remediation, modification of biochars is employed to increase the presence of 

oxygen-containing functional groups (carboxyl, hydroxyl, phenolic) considered key to metal-

binding ability (Uchimiya et al., 2011, 2012). Impregnation of activated carbon with S has been 

shown to increase the uptake capacity of both aqueous and volatile Hg from industrial processes, 

due to the strong interaction between S and Hg (Liu et al., 2000; Krishnan & Anirudhan, 2002).  

Co-blending biochar with contaminated sediment provides an option for in situ treatment 

of floodplain soils and river sediments with elevated Hg concentrations. In this study, a series of 

laboratory column experiments was conducted under saturated flow conditions to evaluate the 

effectiveness of co-blending biochars to stabilize mercury and prevent its release from 

contaminated sediment. The sediment utilised in this experiment was collected from the South 

River, VA, USA. Historical release of Hg from a textile plant in Waynesboro, VA resulted in 

widespread contamination of riverbank sediments and floodplain soils within the South River 

watershed. Mercury released from these sediments and soils provides the largest current source of 

Hg contamination to the river (Eggleston, 2009; Flanders et al., 2010).  

Several biochar materials were evaluated in this experiment, including an unmodified 

biochar and two modified biochars. One biochar was modifed with HNO3 to increase oxygen-

containing functional groups and promote Hg-chelation and a second biochar sample was 
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modified with calcium polysulfide (CaSx) to impart S-bearing groups and promote formation of 

Hg-S complexes. Calcium polysulfide is a commercially available fungicide that is approved by 

the U.S.-EPA for environmental use (U.S.-EPA, 2005). It is typically employed as a chemical 

reductant and was used for in situ remediation of chromium at the Coast Wood Preserving 

Superfund site located in California (U.S.-EPA, 2011). Samples of biochar were collected at the 

termination of the experiments and analysed using synchrotron-based X-ray absorption near-edge 

structure (XANES) spectroscopy to evaluate the influence of CaSx on S groups present on 

biochar and to investigate changes in those S groups with time in a flowing, water-saturated 

environment. The results of these experiments provide insight into the utility of biochar as 

material for Hg sequestration, with implications for the South River and other Hg-contaminated 

sites.  

3.3 Materials and Methods 

3.3.1 Sediment and Water Collection 

Sediment used in the experiments was collected from a riverbank located ~0.4 km downstream 

(relative river mile (RRM) 0.25) of the point of historical Hg release. At RRM 0.25, the South 

River is approximately 30 m wide with steep banks. The sediment collection site was located on 

the western bank of the river, 3-3.7 m (10-12 feet) below the top of the riverbank close to the 

base-flow level of the river. After collection, the sediment was shipped to the University of 

Waterloo where it was later homogenized, separated into 1L Nalgene bottles, wrapped in 

aluminum foil and stored at 4°C. Sediment from RRM 0.25 was classified as containing a 

relatively low concentration of Hg when compared to other sediments from the South River, with 
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a solid-phase Hg concentration of 5.2 µg g-1. South River Water (SRW) used in the experiments 

was collected on an approximately bimonthly basis upstream of the mercury release point and 

shipped to the University of Waterloo on ice where it was subsequently stored at 4°C away from 

light.  

3.3.2 Reactive Material 

Biochar used in all experiments (Cowboy Charcoal, Albany, KY) was produced from oak and 

maple hardwoods that were charred at approximately 700 °C under low-O2 conditions. Prior to 

use, the biochar was crushed and subsequently sieved to remove fines, with the 0.5 mm – 2.36 

mm diameter fraction retained for the column experiments. Nitric acid-modified biochar was 

produced by soaking 90 g of biochar in 1.5 L of 0.5M HNO3 for 24 hours under aerobic 

conditions. The resulting material was rinsed with de-ionized water until a constant pH was 

observed in the supernatant and dried at room temperature. Enhancement of biochar with 

additional S groups was achieved using a solution of CaSx. Production of CaSx-modified biochar 

involved combining 20 g of biochar with 2.17 mL CaSx solution (Sure-gro Inc., Brantford, ON) 

and 400 mL ultrapure water (Milli-Q purification system). The mixture was left to react for four 

days under anaerobic conditions, rinsed with ultrapure water and dried at room temperature.  

3.3.3 Experimental Set-Up 

Five column experiments (Table 3.1) were conducted using acrylic columns that were 15 cm long 

with an inner diameter of 4 cm and a volume of 171.9 cm3 ± 2.7 cm3: Control (unamended 

sediment), CC (sediment + unmodified biochar), CC+HNO3 (sediment + HNO3-modified 

biochar), CC+2%CaSx (sediment + 2 % amendment of CaSx-modified biochar) and CC+5%CaSx 
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(sediment + 5 % amendment of CaSx-modified biochar). Sediment was amended with 2 % or 5 % 

biochar (dry weight) prior to being packed into columns. The required mass of biochar was 

blended with sediment in small batches to ensure an even distribution of the material. All 

columns were then packed by first placing coarse and fine NITEX screens on the bottom of the 

column followed by a 1 cm layer of silica sand to ensure sediment was adequately contained. 

SRW was then continuously pumped upwards through the column while sediment was added in 

small increments to ensure saturation. When the sediment was approximately 1 cm from the top 

of the column, another layer of silica sand as well as both coarse and fine NITEX screens were 

placed on top of the sediment and the column was sealed. The input solution for all columns 

consisted solely of SRW, stored at laboratory temperature with minimal exposure to light. South 

River water was pumped upwards through the columns at a constant rate (Table 3.1) using a 

multi-channel peristaltic pump (Ismatec, Switzerland). All column experiments were conducted 

for a duration of 36 – 47 weeks, representing approximately 150 pore volumes (PV) of flow.  

3.3.4 Aqueous Sample Collection and Analysis 

Column effluent was collected in 125 mL narrow-mouth amber bottles that were purged with N2 

gas prior to sample collection to minimise exposure to atmospheric O2. Samples were drawn 

from the collection bottle using 30 mL sterile polypropylene/polyethylene luer-lock syringes 

(Norm-Ject). Columns were outfitted with three 0.75 cm diameter ports that were evenly 

distributed along the length of the columns and allowed for collection of pore water along the 

length of the column. Samples from the ports were collected in 30 mL glass syringes (BD Multi-

Fit) at the unaltered column flow rate. Profile sampling was conducted three times over the length 
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of all experiments: once at early time (2-9 PV), once in the middle of the experiment (17-107 PV) 

and once at the end of the experiment (148-183 PV). Sample filtration was performed using 32 

mm diameter syringe filters with 0.1 µm or 0.45 µm Supor Membranes (Acrodisc®). All samples 

were stored in 15 mL amber borosilicate bottles that were pre-cleaned using a vacuum and 

ionization process (Qorpak) with the exception of samples for cation and anion analysis, which 

were stored in 15mL polypropylene bottles (Nalgene). 

 Samples for Hg analysis were acidified to pH<2 using ultrapure HNO3 and kept at 4 °C 

until analysis by cold vapour atomic fluorescence spectroscopy (CVAFS) (Tekran®) following 

U.S.-EPA Method 1631 (U.S. EPA, 2002). A summary of quality assurance/quality control 

(QA/QC) measures taken during Hg analysis can be found in Appendix C. Analysis of MeHg 

was performed on 0.45 µm filtered samples that were acidified using analytical grade HCl and 

kept frozen at -20 °C until use. MeHg concentrations were determined by the U.S.-EPA method 

1630 (U.S. EPA, 2001) using the distillation, aqueous ethylation, purge and trap and CVAFS 

technique (Tekran®).  

 Anion samples were filtered (0.45 um), left unacidified and frozen at -20 °C immediately 

after collection. After thawing, anion concentrations were determined by ion chromatography 

(Dionex ICS-5000) with an IonPac™ AS18 2 × 250 mm column and a KOH eluent. 

Concentrations of organic acids (formate, lactate propionate, acetate) were determined using an 

IonPac™ AS11 0.4 × 250 mm column. Standards for both anions and organic acids were 

prepared on the day of analysis. Samples for cation analysis were acidified with ultrapure HNO3 

and stored at 4 °C until analysis using inductively coupled plasma optical emission spectroscopy 

(iCAP 6000) for major cations and inductively coupled plasma mass spectroscopy (X-Series 2) 
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for trace elements. Geochemical speciation modelling was performed on effluent samples from 

the Control, CC, CC+HNO3, CC+2%CaSx and CC+5%CaSx columns using PHREEQC. A 

summary of ionic strength, charge balance error and saturation indices for select minerals can be 

found for each column in Appendix B.  

Ammonia, phosphorus and dissolved organic carbon (DOC) analyses were completed on 

samples that were passed through 0.45 µm filters and acidified using OmniTrace Ultra High 

Purity H2SO4. Ammonia-nitrogen (HN3-N) was analysed with a spectrophotometer (HACH DR 

2800) using the salicylate method (Method 8155 from the DR 2800 manual). Phosphorus as 

orthophosphate (PO4-P) was quantified using the ascorbic acid spectrophotometric method 

derived from method 4500-P from the Standard Methods for Examination of Water and Waste 

Water (HACH DR 2800). DOC was measured using a wet oxidation total organic carbon 

analyser (Aurora 1030W).  

3.3.5 Solid-Phase Sample Collection 

Samples for solid-phase analysis were extracted from all columns upon termination of the 

experiments at 150 PV. The sediment and biochar mixture was removed from the columns in 2 

cm intervals under anaerobic conditions. Samples for THg digestion, total MeHg determination 

and Hg sequential extraction were collected from the 1-3 cm, 5-7 cm and 9-11 cm intervals 

relative to the column influent and stored in glass vials. The sediment mixture for DNA 

extraction was collected from the 1-3 cm, 5-7 cm and 9-11 cm intervals using 70 % ethanol-

washed tools and stored in autoclaved 50 mL polypropylene vials. All solid-phase samples were 

frozen immediately after collection at -20 °C.   
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3.3.6 Polymerase Chain Reaction Analysis 

Extraction of DNA for polymerase chain reaction (PCR) analysis was performed on solid-phase 

samples collected from the Control, CC and CC+HNO3 columns within 9 weeks of termination 

of the column experiments. DNA extractions were performed using an UltraClean® Soil DNA 

Isolation Kit (MoBio Laboratories) within an AC600 Series Combination PCR Workstation 

(AirClean®, Raleigh, NC). Isolated DNA was shipped frozen from the University of Waterloo 

and PCR analysis was performed with an average of 3k reads (MR DNA, Shallowater, TX). A 

single-step 30-cycle PCR analysis using a HotStarTaq Plus Master Mix Kit (Qiagen, Valencia, 

CA) was performed with the 16S primer pair 515F/806R. Amplicon products from the PCR 

analysis were purified using Agencourt Ampure beads (Agencourt Bioscience Corporation, MA) 

and pyrosequencing was performed using a Roche 454 FLX titanium instrument and reagents as 

per the manufacturer’s instructions. The resulting Q25 sequence data was processed using a 

proprietary analysis pipeline (MR DNA, Shallowater, TX). Sequences were depleted of barcodes 

and primers, with sequences containing <200 base pairs, ambiguous base calls and sequences 

with homopolymer runs exceeding six base pairs being removed. Remaining sequences were then 

denoised and operational taxonomic units (OTUs) were defined by clustering at 3 % divergence. 

Singleton sequences and chimeras were removed (Dowd et al., 2008a; Dowd et al., 2008b; Edgar, 

2010) and OTUs were taxonomically classified using BLASTn against a database derived from 

GreenGenes (DeSantis et al., 2006).   
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3.3.7 Synchrotron Analysis 

Synchrotron-based X-ray absorption near edge structure (XANES) spectroscopy was performed 

at the SXRMB beamline at the Canadian Light Source in Saskatoon, SK. Biochar and sediment 

samples extracted from column experiments were freeze-dried and ground to a fine powder. Prior 

to being ground, biochar samples were rinsed with nanopure water to remove sediment particles. 

At the beamline, samples were mounted on double-sided, conducting carbon tape and loaded into 

a vacuum chamber. The S K-edge XANES spectra were collected using fluorescence mode and 

data was processed with the program ATHENA (Ravel & Newville, 2005).  

3.4 Results and Discussion 

3.4.1 Mercury Immobilization by Biochar  

Mercury release from the Control column sediment was characterized by a short period of active 

Hg leaching resulting in initially elevated effluent Hg concentrations, followed by a decline to 

stable, relatively low effluent Hg concentrations at later times. The concentration of 0.45-µm 

filtered Hg (0.45-Hg) measured in the Control column effluent reached a maximum concentration 

of 1500 ng L-1 by 21 PV (Fig. 3.1). Maximum effluent concentrations of both unfiltered Hg 

(THg) and dissolved/nanoparticulate Hg (0.1 µm-filtered, 0.1-Hg) were observed at 9.5 PV, with 

concentrations of 2830 ng L-1 and 1000 ng L-1 respectively. By approximately 48 PV, 

concentrations of effluent Hg observed in all filter fractions (<0.1 µm, 0.1 µm – 0.45 µm, >0.45 

µm) had stabilized to within 40 ng L-1 – 160 ng L-1, remaining in this range until the end of the 

experiment. Analysis of filter fraction distribution indicates that at early times (10 PV – 16 PV), 
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the majority of Hg in the Control column effluent was found in the >0.45 µm fraction, 

representing elution of particulate-bound Hg during the first two weeks of column flow. After 21 

PV of flow, the percentage of Hg associated with the <0.45 µm fraction began to increase and by 

48 PV the distribution of Hg switched to Hg found predominantly in the <0.1 µm fraction. These 

results suggest an initial flushing of particulate/colloidal-bound Hg followed by prolonged 

leaching of Hg in the dissolved/nanoparticulate form. 

 Concentrations of 0.45-Hg measured in aqueous samples extracted from the ports of the 

Control column are consistent with the trend in Hg leaching observed in the column effluent. 

Profile Hg samples were most elevated at early times, with the maximum 0.45-Hg concentration 

of 194 ng L-1 observed in sample extracted from the top port at 4 PV (Fig. 3.2). With time, 

concentrations of Hg in profile samples declined and by the second sampling session at 49 PV, 

0.45-Hg measured in samples extracted from all ports was < 65 ng L-1. By experiment 

completion at 183 PV, concentrations of 0.45-Hg measured in profile samples had declined to 

<30 ng L-1.  

Release of Hg from the sediment amended with unmodified biochar (CC column) 

occurred in a similar fashion to the Control. Concentrations of 0.45-Hg observed in the CC 

column effluent reached a maximum value of 1900 ng L-1 by 22 PV. At this time concentrations 

of both THg and 0.1-Hg were also most elevated, with maximum effluent concentrations of 2400 

ng L-1 and 990 ng L-1 respectively. After the initial release of Hg, effluent Hg concentrations 

from the CC column quickly declined, with all filter fractions stabilizing at Hg concentrations 

<300 ng L-1 by 40 PV of flow. Throughout the duration of the CC column experiment, Hg was 

evenly distributed between the dissolved/nanoparticulate (<0.1 µm) and particulate (>0.45 µm) 
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fractions. When compared to the Control, particulate Hg comprised a smaller fraction of the total 

Hg present in the CC column effluent, but there was little effect on the fate of 0.45-Hg and 0.1-

Hg. These results suggest that in a dynamic setting, biochar may act as a filter for Hg-bearing 

particles, mitigating their transport through the sediment, but does little to increase the Hg 

sorption capacity of the sediment and sequester Hg in the <0.45 µm fraction. 

 The addition of HNO3-modified biochar to the contaminated sediment did not greatly 

affect Hg sequestration when compared to the Control. Effluent Hg concentrations measured in 

the CC+HNO3 column peaked at 22 PV with a 0.45-Hg concentration of 1120 ng L-1. At this time 

the concentration of 0.1-Hg measured 435 ng L-1 and THg measured 1700 ng L-1, representing 

the most elevated effluent concentrations of Hg in the dissolved/nanoparticulate and particulate 

fractions. After 42 PV flushings, Hg concentrations in all filter fractions were <250 ng L-1 and by 

the end of the column experiment had declined to <50 ng L-1.  Similar to the CC column, a 

relatively even distribution of Hg among the different filter fractions was observed over the 

course of the CC+HNO3 experiment.  

Throughout the duration of the CC+HNO3 column experiment, the highest Hg 

concentrations were observed in aqueous samples extracted from the ports. Although 0.45-Hg 

was <100 ng L-1 at both the first (3 PV) and last (150 PV) profile sampling sessions, by the 

middle session at 18 PV, 0.45-Hg measured 2700 ng L-1 in the sample from the bottom port and 

1500 ng L-1 in the sample from the top port. These measurements were made just before the 

maximum release of effluent Hg at 22 PV and may represent accumulations of Hg in the 

sediment at the top and bottom of column.  
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Concentrations of Hg were substantially lower in the effluent of both columns containing 

CaSx-modified biochar (CC+2%CaSx, CC+5%CaSx) relative to the Control and CC columns. 

Effluent 0.45-Hg concentrations in the CC+2%CaSx column reached a peak of 220 ng L-1 by 6.6 

PV, representing a nearly 7-fold reduction in Hg release compared to effluent from the Control 

column. Concentrations of 0.1-Hg and THg also peaked at 6.6 PV, measuring 191 ng L-1 and 222 

ng L-1 respectively. By 17 PV, Hg concentrations in all filter fractions were <100 ng L-1 and 

subsequently decreased to <20 ng L-1 by 50 PV. At the termination of the experiment, 

concentrations of Hg in all filter fractions were <10 ng L-1.  

Release of aqueous effluent 0.45-Hg in the CC+5%CaSx column was defined by an 

immediate peak in Hg concentrations followed by a rapid decline to stable levels. By 3 PV of 

flow, effluent 0.45-Hg was measured at a maximum concentration of 590 ng L-1. Effluent 

concentrations of both 0.1-Hg and THg were also most elevated at 3 PV, with concentrations of 

560 ng L-1 and 690 ng L-1 respectively. These effluent concentrations rapidly declined and by 6 

PV effluent Hg concentrations in all filter fractions were <100 ng L-1, representing the fastest 

decrease in Hg concentrations observed in all of the column experiments. By 30 PV, Hg 

concentrations were consistently below 25 ng L-1, remaining in this range for the duration of the 

experiment.  

In both columns containing sediment amended with CaSx-modified biochar, 

approximately 80 % of measured Hg was present in the <0.1 µm fraction. This distribution of Hg 

indicates that the majority of mobilized Hg was in the nanoparticulate/dissolved fraction while 

particulate Hg was effectively sequestered within the sediment. This mobile fraction may 
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represent Hg strongly bound to dissolved organic matter (DOM) that cannot interact with reduced 

S on the biochar surface and is flushed from the column upon the ingress of SRW.  

Mercury concentrations measured in profile samples collected from the CC+2%CaSx 

column were significantly lower than Hg measured in profile samples from the CC column and 

of a similar magnitude to those measured in the Control. A maximum 0.45-Hg concentration of 

170 ng L-1 was observed in samples from the top port of the CC+2%CaSx column at the first 

profile sampling session (10 PV). By the second profile sampling session at 76 PV, Hg 

concentrations in samples from all ports were <30 ng L-1 and by the final profile sampling session 

at 149 PV Hg concentrations were <5 ng L-1. Mercury concentrations were lower in samples 

extracted from the ports than in the effluent of the CC+5%CaSx column, with the most elevated 

concentration of 102 ng L-1 measured in a sample from the top port during the first profile 

sampling session (6 PV).  

Comparison of effluent Hg concentrations from all columns suggests a common trend, 

where Hg is readily flushed from the column sediment at early times followed by prolonged 

leaching of lower concentrations of Hg after 30 – 40 PV.  Similar behaviour has been observed in 

other column experiments (Daugherty, 2010; Desrochers, 2013; Poulin et al., 2016) and can be 

attributed to the nature of Hg sorption. Dissolved Hg-DOM complexes residing in sediment pore 

water are likely first to elute from the column upon the input of influent SRW, followed by Hg 

bound to weak sediment binding sites such as carboxyl and phenol groups (Drexel et al., 2002; 

Xiong et al., 2009). Mercury associated with strong binding sites, such as thiol groups present in 

the sediment, may be leached more slowly thus producing the plateau in Hg concentrations 

observed at later times (Xiong et al., 2009). 
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3.4.2 Cumulative Hg Release 

The concentrations of both 0.45-Hg and THg collected in the effluent of a given column were 

normalized at each sampling point to the total mass of solid-phase Hg in that column (Equation 

3.1) (Fig. 3.3). This approach was used to directly compare the effectiveness of each treatment 

material by accounting for variability in the mass of Hg-bearing sediment present in each column 

experiment.  

  [!"#$%&  !"  !"#$%&   !   ×  !"#$%#&  !"  !"#!$#%&'%("#  !"  !"#$%&   !"  !!! ]
!"##  !"  !"#$%"&'  !"  !"#$%&   !"   ×  !"  !"#!$#%&'%("#  !"  !"#$%"&'  (!"  !!!)

  ×  100       Eq. 3.1  

As illustrated in Figure 3.3, the cumulative release of 0.45-Hg from the Control column sediment 

was 0.19 %. The same percent cumulative release of 0.45-Hg released in the effluent of the CC 

column was higher than the Control at 0.21 %, indicating that Hg was not effectively 

immobilized in the CC column. Studies conducted by Gomez-Eyles et al. (2013) found that 

biochar had a much lower capacity for inorganic Hg sorption than activated carbon in a static 

system spiked with a Hg solution. They also noted that in a modelled simulation of Hg-

contaminated sediment, biochar was relatively ineffective at reducing porewater Hg 

concentrations. In this experiment, the percent Hg released from the CC column was slightly 

lower than the Control when considering THg concentrations rather than 0.45-Hg (Fig. 3.3), 

supporting the hypothesis that unmodified biochar acts primarily as a filter for particulate-bound 

Hg rather than as a sorbent material. Similar results were observed in the HNO3-modified biochar 

column, where there was no appreciable control of Hg consistent with both the Control and CC 

columns.  
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Cumulative Hg leaching of both the 0.45-Hg and THg fractions was greatly reduced in 

both columns containing CaSx-modified biochar. The cumulative percent of 0.45-Hg observed in 

the effluent of the CC+2%CaSx column was 0.05 %, while in the CC+5%CaSx column the 

cumulative 0.45-Hg percent release was 0.03 %. The release of total, unfiltered Hg also 

decreased in sediment amended with CaSx-modified biochar, with cumulative THg measured in 

the CC+2%CaSx column effluent being 15 % of that released from the Control and cumulative 

THg released in the effluent of the CC+5%CaSx column being 11 % of the Control. These results 

suggest that the addition of S-containing groups onto the biochar surface increased the Hg 

treatment capacity of the material under co-blended conditions.  

Gomez-Serrano et al. (1998) and Asasian and Kaghazchi (2015) both observed increases 

in Hg adsorption from aqueous solution on sulfurized activated carbons, which they attributed to 

the surface reactions between Hg and S present on the activated carbons. Liu et al. (2016) 

postulate that Hg binding to reduced S is more energetically favourable than to carboxyl and 

hydroxyl functional groups typically found on biochar and suggest the following mechanism for 

Hg binding to polysulfude: 

               Eq. 3.2                                                                                                              

The presence of excess S introduced to the system by the modified biochar may have led to 

stronger interactions between Hg derived from sediment and biochar, promoting formation of 

Hg-S complexes and reducing Hg mobility. Kim et al. (2011) found that increasing S loading on 

polysulfide-rubber polymer-coated activated carbon resulted in greater removal of HgCl2 from 

water and suggest that polysulfide groups control Hg binding.  

!S ! S ! +Hg2+ "!S(Hg)S !
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Comparison of the CC+2%CaSx and CC+5%CaSx columns illustrates the effect of 

amendment percentage on Hg removal from sediment porewater. Whereas both 2 % and 5 % 

amendments by dry weight are considered typical amendment ratios for field applications (Ghosh 

et al., 2011), a greater reduction in Hg leaching was observed in the sediment with a 5 % 

amendment of CaSx-biochar, compared to the 2 % amendment of the same material. The 

cumulative percentage of 0.45-Hg released from the CC+5%CaSx column was 60 % of that 

released from the 2 % amendment, while the cumulative percentage of THg released from the 

CC+5%CaSx column was 70 % of that released from the 2 % amendment. This reduction in Hg 

observed with the 5 % amendment of CaSx-biochar was likely a result of more effective 

interactions between Hg and biochar associated with the increased amendment dosage. 

3.4.3 Aqueous Porewater Chemistry 

Porewater chemistry was monitored in all columns to evaluate changes in geochemical conditions 

induced by biochar amendments (Fig. 3.4). The chemical composition of the pore water was 

similar for both the effluent and profile sampling among the columns containing biochar-

amended sediment and the results did not differ greatly from the sediment control. Effluent pH 

ranged from 7.0 – 7.8 in all columns over the course of the experiments. Measurements of pH 

were typically highest at early times before stabilizing to values between 7.0 – 7.4 by 

approximately 50 PV. Values of pH in samples taken from the column ports did not fluctuate 

greatly, remaining between 7.5 – 7.8 at each profile sampling session. Effluent Eh in the Control 

column measured between 100 mV – 250 mV at early times before increasing to above SRW 

input (340 mV) by 30 PV. Eh in the CC column effluent ranged between 350 mV – 550 mV 
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throughout the duration of the experiment, while values of Eh in the CC+HNO3 column effluent 

reached a minimum of 0 mV by 2.5 PV before increasing to above the SRW input. Measurements 

of Eh in the CC+2%CaSx column effluent were initially similar to the CC column but decreased 

steadily with time to 130 mV by the end of the experiment. Effluent Eh values in the 

CC+5%CaSx column were close to the SRW input at early times before sharply declining at 55 

PV and continuing at <300 mV. Measurements of Eh made on samples extracted from the ports 

of both the CC and CC+HNO3 columns were lowest (<300 mV) at the first profile sampling 

session before increasing to at or above input levels by the second profile sampling. This finding 

is in contrast to both columns containing amendments of CaSx-modified biochar, where Eh 

measurements on profile samples were highest at early times and declined to below SRW input 

values for the second and third profile sampling sessions. Alkalinity in the Control column 

effluent peaked at 310 mg L-1 as CaCO3 by 10 PV before gradually declining to SRW input 

concentrations (100 mg L-1) by the end of the experiment. Effluent alkalinity in both the CC and 

CC+HNO3 columns peaked at 230 mg L-1 – 240 mg L-1 as CaCO3 by approximately 25 PV 

followed by a decline similar to the Control. Alkalinity in the columns containing sediment 

amended with CaSx-modified biochar peaked at 2-3 pore volumes of flow, with the maximum 

alkalinity concentration of 590 mg L-1 as CaCO3 in the CC+5%CaSx column more than double 

that of the unmodified biochar and 2% CaSx-biochar amendment. In all columns, alkalinity 

measured in sample extracted from the ports typically increased from top to bottom as the 

influent SRW moved upwards through the column and like the effluent results, alkalinity 

decreased with time (Appendix B).  
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Concentrations of major cations (Al, Ca, Mg, Si) followed similar trends in the effluent of 

all columns. The highest observed Al concentration of 490 µg L-1 was measured in the effluent of 

the CC+2%CaSx column at 114 PV. Effluent Al concentrations peaked at a similar PV in both the 

CC and CC+HNO3 columns, but lower Al concentrations of approximately 100 µg L-1 were 

observed. Concentrations of effluent Mg in all columns remained close to the SRW input 

concentration of 10 mg L-1 throughout the experiments, with the exception of the CC+5%CaSx 

column from which a peak effluent Mg concentration of 32 mg L-1 was observed at 3 PV. The 

most elevated Ca concentration of 230 mg L-1 was also observed in the CC+5%CaSx column 

effluent at 3 PV of flow. Calcium in the remaining columns peaked between 80 mg L-1 – 110 mg 

L-1 by 10 – 20 PV before declining to SRW input concentrations. Effluent Si concentrations in all 

columns were most elevated at early times, declining to input concentrations by experiment 

completion.  

3.4.4 Net Methylmercury Production and Aqueous Redox Parameters 

Measurements of aqueous MeHg concentrations in the effluent of all column experiments were 

made to determine the suitability of both unmodified and enhanced biochars for use in in situ Hg 

remediation. A significant increase in net MeHg production linked to the addition of biochar to 

sediment would likely render the material unfavourable for field application. In addition to 

effluent MeHg, the concentration of electron acceptors (NO3, Mn, Fe, SO4), electron donors 

(dissolved organic carbon (DOC)) and products of organic matter degradation (NH3-N, PO4-P) 

were monitored over the duration of the column experiments to observe changes in porewater 

redox conditions that potentially affect Hg speciation and MeHg production (Fig. 3.5). 
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Effluent concentrations of MeHg were similar for the Control and each of the columns 

containing an amendment. Aqueous effluent MeHg concentrations in both the Control and CC 

columns were <1 ng L-1 at early times before peaking at 6 ng L-1 – 7 ng L-1 by approximately 27 

PV. Concentrations of MeHg then returned to <1 ng L-1 by 50 – 60 PV, remaining at this 

concentration for the duration of the experiments. Similarly, effluent MeHg measured from  

CC+HNO3 column  was initially low before reaching a maximum concentration of 7.4 ng L-1 by 

35 PV and returning to low (<1 ng L-1) concentrations by the termination of the experiment. 

Concentrations of MeHg were slightly lower in the column containing a 2% amendment of CaSx-

modified biochar than in the Control. The most elevated aqueous MeHg measured in the 

CC+2%CaSx column effluent was 5.5 ng L-1 at 33 PV of flow. Following this peak, MeHg 

production rapidly declined and excluding a small secondary peak observed at 127 PV, effluent 

MeHg concentrations in the CC+2%CaSx column were  <1 ng L-1 for the majority of the 

experiment. Concentrations of MeHg measured in the CC+5%CaSx column effluent deviated 

from the pattern of results observed in all other columns. Aqueous MeHg concentrations peaked 

rapidly at 10 ng L-1 by 6 PV of flow. The concentrations of effluent MeHg then remained slightly 

elevated, reaching a secondary peak of 3.4 ng L-1 by 29 PV; the same approximate time at which 

MeHg concentrations were most elevated in all other columns. Net production of MeHg in the 

CC+5%CaSx column then proceeded to decline with time and by 77 PV flushings effluent MeHg 

concentrations were <1 ng L-1.  

The similarity between aqueous MeHg concentrations measured in the effluent of the 

Control and all biochar-amended sediment columns suggests that the rates of Hg methylation 

were controlled by the sediment properties and were independent of the added biochar. Elevated 
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MeHg concentrations were observed in the effluent of all columns at similar times (25 PV – 35 

PV), suggesting a common control on MeHg production and/or transport across all columns. The 

delay in maximum MeHg concentrations observed in the effluent of the columns relative to 

elevated inorganic Hg concentrations may is attributed to a lag  in establishment of Fe(III)-

reducing and SO4-reducing conditions within the columns. Hellal et al. (2015) observed MeHg 

release from columns containing sand and iron oxides spiked with increases in Hg(II) 

concentrations during periods of Fe(III) and SO4 reduction, corresponding to increased IRB and 

SRB activity. Yu et al. (2012) linked net rates of Hg methylation production in South River 

sediment to both SRB and IRB activities, highlighting the importance of the microbial 

community in production of MeHg. In this study, comparison of the classes of bacteria identified 

by PCR analysis on sediment extracted from the Control, CC and CC+HNO3 columns indicates 

that considerable change in the bacterial community was not induced by the addition of both 

unmodified and HNO3-modified biochar amendments (Appendix B). A comparison of PCR 

results to a library of predicted methylating bacteria (ORNL, 2016), the percentage of sequence 

counts in classes containing known methylators was similar in sediment collected from the 

Control, CC and CC+HNO3 columns, with an average of 37 % ± 3 %. The percentage of 

sequence counts in classes containing methylating bacteria typically increased along the length of 

the columns, away from the SRW input. These results suggest that Hg methylation occurred 

primarily within the top 7 cm – 13 cm of column sediment, where reducing conditions could 

develop at greater distances from the influx of O2-rich SRW.  

The peak concentrations of MeHg in the effluent of the Control and all biochar-amended 

sediment columns were observed after the depletion of both NO3 and SO4, indicating the onset of 
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reducing conditions and bacterial activity necessary for MeHg production. Effluent NO3 

concentrations rapidly declined to below the method detection limit (0.03 mg L-1) by 7 PV in the 

biochar-amended sediment columns and by 20 PV in the Control, likely as a result of microbially 

facilitated denitrification reactions. Effluent SO4 concentrations measured 30 mg L-1 – 55 mg L-1 

in all columns within the first few PV of flow, representing an initial flushing of soluble SO4. 

These SO4 concentrations then declined to below the SRW input concentration of 6.8 mg L-1 by 

approximately 20 PV, corresponding to increases in net MeHg production and suggesting 

bacterial SO4 reduction was linked to methylation reactions. Profile sampling results corroborated 

this rapid onset of NO3-reducing conditions followed by the transition into SO4-reducing 

conditions observed in the effluent of the columns. Nitrate was typically depleted by the first 

profile sampling session in all columns, while SO4 was often most elevated at the first profile 

sampling before declining to below SRW input by the second and third profile sampling sessions. 

The CC+5%CaSx column was an exception to this trend, as effluent SO4 concentrations were 

below the SRW input by 3 PV and SO4 measured in the samples extracted from the ports was 

lowest (~2 mg L-1) at the first sampling session, indicating that SO4-reducing conditions were 

established soon after the influx of SRW. Nitrate concentrations measured in samples extracted 

from the ports increased in all columns to above the SRW input by the second or third profile 

sampling session, suggesting production of NO3 within the column sediment occurred at later 

times. Some studies have established a link between anaerobic nitrification and reduction of 

metal oxides in marine sediments (Luther III et al., 1997; Anschutz et al., 2000; Fernandes et al., 

2015). In particular, manganese oxides are thought to act as the terminal electron acceptor in the 
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oxidation of ammonia, thus producing NO3 outside of the typical oxic nitrification process 

(Equation 3.3) (Hulth et al., 1999; Bartlett et al., 2008).  

4!"!! + !!!! + 6!! → 4!"!! + !!!! + 5!!!                   Eq. 3.3  

Release of dissolved Mn and Fe was greatest in the column containing sediment blended 

with a 5 % amendment of CaSx-modified biochar. The concentration of Mn in the CC+5%CaSx 

column effluent peaked at 4200 µg L-1 by 3 PV of flow, representing a 128 % increase relative to 

Mn observed in the Control. Iron was most elevated in the sample from the top port of the 

CC+5%CaSx column, measuring 2200 µg L-1 at the first profile sampling session (6 pore 

volumes). In anaerobic sediments, Mn and Fe can be released into the surrounding pore water via 

the bacterially mediated reductive dissolution of Mn(IV) oxides and Fe(III) oxyhydroxides 

(Equations 3.4 and 3.5) (Lovley & Phillips, 1988; Myers & Nealson, 1988).  

!!!! + 2!"!! + 3!! → 2!"!! + !"!!! + 2!!!       Eq. 3.4 

!!!! + 8!"##$ + 15!! → 8!"!! + 2!"!!! + 12!!!       Eq. 3.5 

In this study on biochar-amended systems, peaks in effluent Mn and Fe concentrations were 

observed close together and were often aligned with declines in effluent SO4 and elevated 

concentrations of MeHg. In particular, the rapid release of large quantities of dissolved Mn 

observed in the CC+5%CaSx column effluent occurred at the same time as the decline in SO4 

concentrations to below input levels, the highest concentrations of effluent Hg and MeHg 

observed in the column and the peak release of several major ions (Al, Ca, Mg). These results 

suggest that reductive dissolution of Fe and Mn oxides and oxyhydroxides and thus the release of 

previously bound Hg and Al/Ca/Mg colloids in the CC+5%CaSx column may have been 

promoted by the addition of CaSx, a known reducing agent.  
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 Dissolved organic carbon in the Control column effluent was most elevated at early times, 

peaking at 16 mg L-1 by 25 PV before gradually declining to SRW input concentrations (1 mg L-

1) by the end of the experiment. Release of DOC was of a similar magnitude in the effluent of the 

CC and CC+HNO3 columns, although a secondary peak of DOC was observed in both columns 

at 120 – 130 PV. This delayed release of DOC may be attributed to the gradual breakdown of 

biochar present in the sediment. Liu et al., (2015) found that hard-wood based biochar released 

more DOC in a short-term continuous leaching test than activated carbon. Biochar, although 

considered relatively recalcitrant in soils, can also be vulnerable to microbial degradation, 

resulting in the release of excess DOC when bacterial colonies are active (Lehmann et al., 2009).  

Concentrations of DOC were elevated in the effluent of both columns containing CaSx-

modified biochar when compared to the sediment control and to sediment blended with 

unmodified or HNO3-modified biochar. Although release of effluent DOC from the CC+2%CaSx 

column began similar to the Control, CC and CC+HNO3 columns, by 76 PV DOC was observed 

at a maximum concentration of 58 mg L-1. In contrast to this delayed occurrence of DOC in the 

CC+2%CaSx column effluent, release of DOC from the CC+5%CaSx column was rapid, with the 

peak concentration of 264 mg L-1 observed at 3 PV of flow. This elevated concentration of DOC 

was correlated to the peak effluent concentration of Mn and occurred just before the maximum 

release of effluent Fe. The association between DOC, Fe and Mn in anaerobic sediments has been 

well documented and is attributed to both the bacterially mediated oxidation of organic carbon 

using Mn and Fe oxides as the terminal electron acceptor and to the release of DOC previously 

bound to these minerals via reductive dissolution (Hamilton-Taylor et al., 1996; Chadwick et al., 

2006). Alkalinity, a product of organic matter oxidation under anaerobic conditions, was 
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observed at peak effluent concentrations in the CC+5%CaSx column when Mn and DOC were 

most elevated.  

The oxidation and degradation of organic carbon can also produce NH3-N and PO4-P 

(Waybrant et al., 2002). The most elevated concentration of PO4-P measured in all column 

experiments was observed in the effluent of the CC+5%CaSx column, approximately 15 PV after 

the maximum release of DOC. The increase in concentrations of Mn, DOC, alkalinity and PO4-P 

seen in the CC+5%CaSx column effluent relative to the Control and all other biochar-amended 

sediment columns seem to suggest either an increase in microbially-mediated oxidation of 

organic carbon or the onset of more strongly reducing conditions brought about by the addition of 

CaSx to the system. Chrysochoou et al. (2012) observed increased leaching of both Fe and Mn 

from sediment treated with a pulse of CaSx solution in a flow-through column experiment. An 

earlier study also found that the addition of CaSx solution to soil induced the rapid onset of 

reducing conditions in bench-top batch experiments (Chrysochoou et al., 2010). If a portion of 

the CaSx sorbed to the surface of the modified biochar was labile, it is possible that some 

previously sorbed CaSx was released from the treated biochar upon the influx of SRW, prompting 

more reducing conditions in the sediment porewater. This phenomenon was likely more 

pronounced in the 5 % amendment of CaSx-biochar than the 2 % amendment as a result of the 

increased mass of CaSx-biochar and thus of CaSx present in the column. Despite the indications 

of changes to the pore water redox conditions and the introduction of excess S to sediment in the 

CC+5%CaSx column relative to all other column experiments, no significant increase in MeHg 

production was observed and release of Hg from the contaminated sediment was effectively 

mitigated by the 5 % amendment of CaSx-biochar. 
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3.4.5 Amendment Characterization – S XANES 

Sulfur XANES spectra were collected to characterize the S species present on the surface of 

biochar treated with CaSx. A number of S reference materials were analysed in addition to 

biochar extracted from terminated column experiments and fresh biochar that had not been 

blended with sediment (Fig. 3.6). The resulting S XANES spectra are consistent with the 

increased presence of reduced S on CaSx-modified biochar (CaSx-CC) compared to the 

unmodified material (Fig. 3.6). The most intense peak on the S XANES spectra for CaSx-CC 

corresponds with the peak energy for reduced S (2472.7 eV, S0). The peak with the greatest 

intensity observed on the S XANES spectra for unmodified CC is positioned at a higher peak 

energy, corresponding with oxidized S (2482.5 eV, SO4). These results suggest that reduced S is 

imparted to the surface of the biochar after reaction with the CaSx solution. This finding also 

demonstrates that the CaSx treatment can withstand multiple water rinsings and exposure to an 

aerobic environment despite treatment of the biochar with CaSx solution for a relatively short 

period of 4 days.  

Comparison of the S XANES spectra for the fresh CaSx-CC with biochar extracted from 

the CC+2%CaSx and CC+5%CaSx columns illustrates changing intensities of reduced S and 

oxidized S (SO4) with time (Fig. 3.6). The most intense peak corresponding to the energy of 

reduced S was observed for the fresh CaSx-CC. This material was not run in a column experiment 

and therefore was not exposed to continuous rinsing with the SRW input. A decrease in the 

intensity of the reduced S peak and simultaneous increase in the oxidized S peak intensity was 

seen in biochar removed from the CC+5%CaSx column at 53 days of column run time. This 
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decrease in the reduced S peak and increase in the oxidized S peak was more pronounced in 

biochar removed from the CC+2%CaSx column at 174 days of run time.  

Linear combination fitting (LCF) was conducted to determine the similarity between S 

XANES spectra for biochar samples and S reference materials (Table 3.2; Fig. 3.7). A 

combination of dibenzothiophene and CaSO4 provided the best fit for fresh unmodified biochar. 

The addition of elemental S was required to provide the best fit for biochar extracted from the CC, 

CC+2%CaSx and CC+5%CaSx columns. The percentage of elemental S utilized in the LCF 

varied among the different biochar materials. A fit that included the lowest percentage of 

elemental S (21 %) provided the closest match for spectra obtained for biochar extracted from the 

CC column. The best fit for biochar from the CC+2%CaSx column required 53 % elemental S 

while the best fit for biochar from the CC+5%CaSx column required 74 % elemental S. The 

differences in the percentage of reduced S required to provide the best LCF result for the 

different biochar materials is consistent with the differences in intensity of the reduced S peak 

observed in the S XANES spectra for all biochar samples.  

The results of both the S XANES spectra and LCF indicate that although reduced S is 

imparted to biochar treated with CaSx, the treatment is not stable. When the CaSx-modified 

biochar is exposed to continuous flushing with oxygenated water, as would be expected in a field 

setting, the proportion of reduced S present on the modified biochar decreases.  Despite these 

findings, there was no perceivable impact on the Hg-treatment capacity of the S-modified 

biochars. Concentrations of Hg in both the effluent of the 2% and 5% amendment columns were 

consistently lower than the control and unmodified biochar. It may be possible that the majority 

of available Hg was already associated with recalcitrant Hg-S complexes (cinnabar) therefore the 
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loss of reduced S was excess and did not affect Hg treatment. In addition, an increase in aqueous 

SO4 concentrations as a result of this shift from reduced to oxidized S was not observed. This 

result indicates that S imparted to the surface of the biochar, independent of speciation, is 

strongly bound and not likely to accumulate in sediment pore water. This finding has 

implications for MeHg production in sediments amended with CaSx-biochar, as there was no 

evidence for substantial stimulation of methylation reactions induced by the presence of oxidized 

S (SO4) on CaSx-biochar observed in the effluent of the CC+2%CaSx and CC+5%CaSx columns.  

3.4.6 Implications for Hg Contaminated Sites 

The results of this study indicate that co-blending with unmodified biochar at a low amendment 

percentage does little to mitigate Hg release from contaminated sediments. Although biochar has 

been shown to be effective at removing Hg from aqueous solutions in static batch tests 

(Desrochers, 2013; Liu et al., 2016), the Hg sequestration capacity of the material when co-

blended with sediment appears to be less effective under dynamic flow conditions. Less effective 

stabilization may arise from the strong binding of Hg to sediment constituents and the short 

interaction time between Hg and biochar particles when biochar is applied at a 2 % amendment 

ratio These finding suggest that unmodified biochar may be most effective in a flow-through 

remediation technique such as permeable reactive barriers or reactive mats, where contact 

between Hg and biochar is increased.  

 The addition of biochar to contaminated sediment had little effect on MeHg production 

and transport. While no reduction in MeHg concentrations was observed in the CC column 
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effluent, production of MeHg was not stimulated by the amendment, suggesting that it may be 

suitable for anaerobic applications where methylation may be a concern.  

 The use of HNO3 to oxidize the surface of biochar did not provide any improvement to 

Hg uptake capacity or suppression of MeHg production under co-blended conditions. It is likely 

any additional O2-bearing functional groups imparted to the biochar surface via HNO3 oxidation 

were unable to strip Hg already strongly sorbed to sediments or complexed with DOM. In 

contrast, the use of a commercially available CaSx solution to impart S functional groups onto the 

surface of biochar greatly enhanced the Hg uptake capacity relative to the unmodified material. 

An increase in the proportion of reduced S groups on the biochar, as seen in S XANES spectra, 

may have resulted in stronger interactions between biochar and available Hg and promoted the 

precipitation of Hg as solid HgS. Similar effects have been observed with CaSx-modified clay, 

where the modified material added as a soil amendment significantly reduced Hg transport when 

compared to unmodified clay (Chapter 2). The CaSx-modified biochar was most effective when 

applied as a 5% amendment to contaminated sediment, although the 2% amendment of the same 

material also mitigated Hg release. When considering future applications, the addition of CaSx to 

biochar did not result in pronounced changes to net MeHg production, despite altering the redox 

conditions present within the sediment porewater. Although synchrotron characterization 

revealed that the proportion of reduced S present on the CaSx-modified biochar decreases with 

time under saturated conditions, this result did not seem to impact the Hg removal or pore water 

chemistry of sediment containing CaSx-modified biochar.  

 For the South River and other Hg contaminated sites, the use of modified biochar can be a 

low-cost option for remediation of large areas. While other studies have explored inorganic 
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materials for Hg stabilization, including limestone and attapulgite clay, CaSx-modified biochar 

yielded the most significant reduction in Hg mobilization under co-blended conditions (Chapter 

2). Treatment of biochar with a CaSx solution is a simple process that renders the charcoal many 

times more effective at Hg removal than its unmodified counterpart. In addition to the ease of 

production, blending CaSx-modified biochar into contaminated soils and sediments can eliminate 

the potential for hazardous waste disposal, the destruction of surrounding ecosystems and 

minimizes engineering challenges faced with other remediation techniques such as dredging and 

sediment capping.  
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Table 3.1- Overview of contents, operating conditions and duration of experiment for the 
Biochar-amended sediment columns. 

Column I.D Control CC CC+HNO3 CC+2%CaSx CC+5%CaSx 

Amendment 
Material Type N/A Biochar 

HNO3-
modified 
biochar 

CaSx-modified biochar 

Amendment 
Percentage (dry 

weight) 
N/A 2% 5% 

Mass of Dry 
Sediment in 
Column (g) 

211 173 182 166 173 

Average Pore 
Volumes 

Flushed Per 
Week 

3.9 3.5 3.4 3.2 4.4 

Final Pore 
Volumes 
Flushed 

187 155 154 152 155 
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Table 3.2 – Percentage (%) of different S forms and reduced chi squared for the fresh 
unmodified biochar, biochar from the CC column, biochar from the CC+2%CaSx column and 
biochar from the CC+5%CaSx column as determined by LCF. 

Standard 
Fresh 

Unmodified 
Biochar 

Biochar from 
CC 

Biochar 
from 

CC+2%CaSx 

Biochar from 
CC+5%CaSx 

Dibenzothiophene 57 34 10 8 
CaSO4 (Gypsum) 43 45 37 18 
S0 (Elemental S) -- 21 53 74 

Reduced chi 
squared 0.03 0.1 0.03 0.02 
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Figure 3.1 – Aqueous concentrations of 0.1-Hg, 0.45-Hg and THg measured in the effluent of 
column containing Hg-contaminated sediment (Control) and columns with amendments, 
including hard-wood biochar (CC), HNO3-modified biochar (CC+HNO3), a 2 % amendment of 
CaSx-modified biochar (CC+2%CaSx) and a 5 % amendment of CaSx-modified biochar 
(CC+5%CaSx). Note the change in scale along the Y-axis of all plots.  
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Figure 3.2 – Aqueous concentrations of 0.45-Hg measured in samples extracted from the ports of 
the column containing Hg-contaminated sediment (Control) and columns with amendments, 
including hard-wood biochar (CC), HNO3-modified biochar (CC+HNO3), a 2 % amendment of 
CaSx-modified biochar (CC+2%CaSx) and a 5 % amendment of CaSx-modified biochar 
(CC+5%CaSx). Hg concentrations measured in the SRW input (column height = 1.0 cm) and in 
the effluent of each column at the given pore volume (column height = 14.0 cm) are included on 
the plots. Note the change in scale along the x-axis for the different plots.  
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Figure 3.3 – Cumulative concentrations of 0.45-Hg (left) and THg (right) measured in the 
effluent of the column containing Hg-contaminated sediment (Control) and columns with 
amendments, including hard-wood biochar (CC), HNO3-modified biochar (CC+HNO3), a 2 % 
amendment of CaSx-modified biochar (CC+2%CaSx) and a 5 % amendment of CaSx-modified 
biochar (CC+5%CaSx). Cumulative Hg released is expressed as a % of total solid-phase Hg 
present in each column. 
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Figure 3.4 – Aqueous chemistry measured in the effluent of the column containing Hg-
contaminated sediment (Control) and columns with amendments, including hard-wood biochar 
(CC), HNO3-modified biochar (CC+HNO3), a 2 % amendment of CaSx-modified biochar 
(CC+2%CaSx) and a 5 % amendment of CaSx-modified biochar (CC+5%CaSx). 
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Figure 3.5 - Aqueous concentrations of MeHg and redox parameters measured in the effluent of 
the column containing Hg-contaminated sediment (Control) and columns with amendments, 
including hard-wood biochar (CC), HNO3-modified biochar (CC+HNO3), a 2 % amendment of 
CaSx-modified biochar (CC+2%CaSx) and a 5 % amendment of CaSx-modified biochar 
(CC+5%CaSx).  
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Figure 3.6 – S K-edge XANES for fresh unmodified and CaSx-modified biochar (left). 
Comparison of S K-edge XANES for fresh CaSx-modified biochar, CaSx-CC from the 2% 
amendment column and CaSx-CC from the 5% amendment column. The grey dashed lines 
represent the peak energies of reduced S (2472.7 eV) and sulfate (2482.5 eV). 
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Figure 3.7 – Sulfur K-edge XANES for eight S reference materials (left). Sulfur K-edge XANES 
for fresh unmodified biochar, unmodified biochar from the CC column, CaSx-CC from the 
CC+2%CaSx column and CaSx-CC from the CC+5%CaSx column (right). The dashed grey line 
represents the fitted curve for each sample using LCF.  
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Chapter 4 - Conclusions and Recommendations  

 
Remediation of Hg-contaminated sites presents many challenges due to the recalcitrant nature of 

Hg in the environment and the tendency for bacterial conversion of Hg to the highly toxic MeHg. 

Atmospheric transport and deposition coupled with Hg transport in riverine environments can 

result in large areas of Hg-contamination, further complicating the identification of successful 

remediation strategies. The column studies presented in Chapter 2 and Chapter 3 of this thesis 

demonstrated the effects of various inorganic and carbon-based amendments on Hg transport and 

sequestration within contaminated sediments. The results of these experiments provide insight 

into the suitability of the tested amendment materials for Hg stabilization in a co-blended setting.  

The addition of agricultural limestone to Hg-contaminated sediment yielded no 

substantial change in Hg transport or production of MeHg. Some studies have observed limited 

nanoparticle transport in the presence of carbonate minerals, primarily through ionic strength 

manipulations and nanoparticle attachment to the limestone grains (Laumann et al., 2013). Under 

the experimental conditions in this study, the SRW input water was saturated with respect to 

calcite and dolomite (Appendix A), limiting dissolution of the agricultural limestone amendment. 

This factor may have prevented an increase in pore water ionic strength and as such mitigated the 

deposition and immobilization of aggregate Hg-S nanoparticles. The use of limestone specifically 

as a remediation tool may be best suited to regions where soils and sediments are carbonate-

depleted. This could allow for sufficient dissolution of the limestone amendment and provide a 

greater impact on porewater ionic strength conditions.  

Mercury transport was greatly enhanced by the addition of attapulgite clay to 

contaminated sediment. Despite published success in heavy metal remediation, co-blending Hg-
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contaminated sediment with attapulgite clay resulted in a 161 % increase in effluent THg when 

compared to the Control. This increase in Hg mobilization was likely a result of the 

destabilization of Hg bound to sediment in the presence of attapulgite clay coupled with clay-

facilitated Hg transport. Effluent MeHg concentrations were also increased in the presence of 

attapulgite clay and may be a due to the increase in dissolved, bioavailable Hg induced by the 

clay amendment.  

 The use of unmodified biochar and HNO3-modified biochar as amendments for Hg 

stabilization did not yield improved Hg sequestration when compared to the Control. Although 

the transport of particulate Hg was moderately reduced in the presence of biochar and HNO3-

biochar, little to no effect was observed on filter-passing Hg. In particular, oxidation of biochar to 

enhance metal chelating functional groups resulted in no appreciable increase in Hg sequestration 

compared to the unmodified material. A more robust oxidation method using more concentrated 

HNO3 at a higher temperature, as in Shim et al. (2001) or Strelko & Malik (2002), may be 

necessary to promote increased Hg interaction and binding.  

The use of a CaSx solution to impart S functional groups to the surface of reactive 

amendments yielded vastly improved results in the reduction of Hg transport compared to the 

unmodified materials. Utilizing CaSx-modified attapulgite clay as a reactive amendment greatly 

reduced the transport of Hg through contaminated sediment. The distinction between the 

unmodified attapulgite clay and the CaSx-clay was dramatic, with a 92 % reduction in leached 

0.45-Hg observed in the effluent from the CaSx-clay column when compared to the Clay column. 

Similar immobilization of Hg was observed when biochar treated with CaSx was blended with 

Hg-contaminated sediment. Compared to the Control, concentrations of effluent 0.45-Hg were 
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reduced by 71 % when a 2 % amendment of CaSx-biochar was incorporated into contaminated 

sediment. Mercury transport was further reduced by 83 % when the amendment dosage of CaSx-

biochar was increased to 5 %. These results suggest that the utilization of an inexpensive, 

commercially available solution of CaSx to modify sorbent materials can greatly limit Hg 

transport in contaminated sediments. The addition of reduced S groups to the surface of biochar 

and clay was likely the key factor in the increased Hg-binding capacity of the CaSx-modified 

sorbents.  

 Further research should be carried out to establish the long-term effects of CaSx-modified 

sorbent amendments on the environment. While numerous studies have examined the ecotoxicity 

of biochar in natural settings (Lehmann et al., 2011; Beckingham et al., 2013; Hale et al., 2013), 

additional information is required to understand the toxicity effects CaSx may have on the 

surrounding ecosystem. The oxidation of reduced S imparted to the amendment material should 

be investigated, as this occurrence has implications for the continued efficacy of the material as a 

treatment strategy. A long-term leaching experiment may be beneficial to fully investigate the 

implications of additional S on methylating bacteria over extended periods of time.  
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Appendix A: Supplementary Graphs for Chapter 2 

 

 

Figure A 1 - Hg, MeHg , redox parameters and geochemistry measured in the Control column 
effluent.
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Figure A 2 - Hg, MeHg, redox parameters and geochemistry measured in the Limestone column 
effluent. 
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Figure A 3 - Hg, MeHg, redox parameters and geochemistry measured in the effluent of the Clay 
column. 
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Figure A 4 - Hg, MeHg, redox parameters and geochemistry measured in the effluent of the 
CaSx-clay column. 
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Figure A 5 - Aqueous geochemistry, Hg and redox parameters measured in samples extracted 
from the ports of the Control column. 
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Figure A 6 - Aqueous geochemistry, Hg and redox parameters measured in samples extracted 
from the ports of the Limestone column. 



 100 

 

Figure A 7 - Aqueous geochemistry, Hg and redox parameters measured in samples extracted 
from the ports of the Clay column. 
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Figure A 8 - Aqueous geochemistry, Hg and redox parameters measured in samples extracted 
from the ports of the CaSx-clay column. 
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Figure A 9 - Mass and percent Hg from the Control column determined by sequential extraction 
analysis of column sediment after experiment termination (right). Fraction 1 (F1) targets water 
soluble Hg, F2 targets weak acid-extractable Hg, F3 organo-complexed Hg, F4 strongly-
complexed/elemental Hg and F5 targets Hg sulfides. Fresh sediment concentration is the bulk Hg 
extracted from sediment used prior to column packing. Solid-phase MeHg (right) analysed after 
experiment completion.  
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Figure A 10 - Mass and percent Hg in the Limestone column determined by sequential extraction 
analysis of column sediment after experiment termination (right). Fraction 1 (F1) targets water 
soluble Hg, F2 targets weak acid-extractable Hg, F3 organo-complexed Hg, F4 strongly-
complexed/elemental Hg and F5 targets Hg sulfides. Fresh sediment concentration is the bulk Hg 
extracted from sediment used prior to amendment and column packing. Solid-phase MeHg (right) 
analysed after experiment completion. Note: Sequential extraction data is not available for the 3-
5 cm transect.  
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Method for Total Solid-Phase Hg, MeHg and Hg Sequential Extractions 

Sequential extractions were performed on thawed sediment samples using the following reagents: 

Fraction 1 (F1) – deionized water, F2 – 0.1 M CH3COOH and 0.01 M HCl, F3 – 0.1 M KOH, F4 

– 12 M HNO3 and F5 – aqua regia following the method by Bloom et al. (2003). Sediments in the 

F1 – F4 fractions were shaken for 24 hours at room temperature prior to centrifugation and 

filtration while sediment in the F5 fraction was allowed to react in a stationary setting for three 

days at room temperature. Total Hg digestions were completed independent of the sequential 

extraction procedure but in an identical manner to the F5 fraction. All digestates were 

subsequently analysed using the CVAFS technique previously described for aqueous samples. 

Solid samples for MeHg analysis were prepared with 20 % KCl and 8 M H2SO4 before 

distillation with CuSO4, aqueous ethylation and CVAFS using the same technique described for 

aqueous MeHg samples.  
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Table A 1 - Ionic strength, charge balance error and selected mineral saturation indices 
calculated in effluent samples from the Control column. Parameters were determined using 
PHREEQC. 

Sample 
ID 

Ionic 
Strength 
(mol/kg 
water) 

Charge 
Balance 

Error (%) 

Calcite 
Saturation 

Index 

Aragonite 
Saturation 

Index 

Dolomite 
Saturation 

Index 

Gypsum 
Saturation 

Index 

Fe(OH)3 
Saturation 

Index 

SSRC-2 0.0067 2.4 0.49 0.35 0.44 -2.4 1.3 
SSRC-4 0.01 7.1 0.59 0.45 0.66 -2.7 -0.07 
SSRC-5 0.0066 3.3 0.13 -0.02 -0.28 -2.8 1.4 
SSRC-8 0.007 -0.55 0.17 0.03 -0.19 -3.5 2.3 
SSRC-18 0.0047 7.4 -0.41 -0.56 -1.1 N/A 1.5 
SSRC-25 0.0047 -0.45 -0.5 -0.64 -1.2 -3.8 1.7 
SSRC-37 0.0048 60 -0.92 -1.1 -2.0 -3.5 2.4 
SSRC-41 0.0035 6.8 -0.7 -0.84 -1.6 -3.6 1.7 
SSRC-47 0.0029 6.6 -0.81 -0.96 -1.8 -3.9 1.3 
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Table A 2 - Ionic strength, charge balance error and selected mineral saturation indices 
calculated in effluent samples from the Limestone column. Parameters were determined using 
PHREEQC. 

Sample 
ID 

Ionic 
Strength 
(mol/kg 
water) 

Charge 
Balance 

Error (%) 

Calcite 
Saturation 

Index 

Aragonite 
Saturation 

Index 

Dolomite 
Saturation 

Index 

Gypsum 
Saturation 

Index 

Fe(OH)3 
Saturation 

Index 

SSLS-2 0.0079 -5.2 0.63 0.49 0.71 -2.3 1.3 
SSLS-4 0.0074 -11 0.39 0.25 0.25 -2.8 1.4 
SSLS-5 0.0079 22 0.19 0.05 -0.15 -2.7 -2.4 
SSLS-8 0.0075 0.82 0.21 0.06 -0.13 -3.4 2.0 
SSLS-10 0.0061 0.07 0.12 -0.03 -0.3 -3.3 2.2 
SSLS-18 0.0049 4.0 -0.48 -0.62 -1.3 -5.9 1.1 
SSLS-25 0.0047 -0.93 -0.46 -0.6 -1.1 -4.2 0.65 
SSLS-37 0.0037 12 -0.69 -0.83 -1.5 -3.8 1.6 
SSLS-41 0.0033 8.3 -0.76 -0.9 -1.7 -3.8 1.2 
SSLS-47 0.0033 2.1 -0.67 -0.82 -1.5 -3.8 0.79 
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Table A 3 - Ionic strength, charge balance error and selected mineral saturation indices 
calculated in effluent samples from the Clay column. Parameters were determined using 
PHREEQC. 

Sample 
ID 

Ionic 
Strength 
(mol/kg 
water) 

Charge 
Balance 

Error (%) 

Calcite 
Saturation 

Index 

Aragonite 
Saturation 

Index 

Dolomite 
Saturation 

Index 

Gypsum 
Saturation 

Index 

Fe(OH)3 
Saturation 

Index 

SSAP-2 0.0085 -3.1 0.4 0.25 0.47 -2.4 2.2 
SSAP-3 0.0062 7.0 0.21 0.06 0.1 -2.6 1.1 
SSAP-4 0.0056 17 0.2 0.05 0.07 -2.6 1.0 
SSAP-8 0.0054 5.9 -0.08 -0.23 -0.48 -3.1 1.7 
SSAP-9 0.0059 7.0 0.01 -0.14 -0.32 -3.3 1.8 
SSAP-10 0.006 11 -0.01 -0.16 -0.41 -3.5 1.8 
SSAP-14 0.0046 10 -0.38 -0.53 -1.1 -3.7 1.4 
SSAP-20 0.0032 2.2 -0.79 -0.94 -1.9 -3.9 1.3 
SSAP-24 0.0046 4.6 -0.44 -0.59 -1.2 -3.8 2.2 
SSAP-27 0.0046 4.4 -0.33 -0.48 -0.94 -3.8 0.64 
SSAP-31 0.0044 10 -0.48 -0.63 -1.2 -3.7 2.2 
SSAP-39 0.005 -4.1 -0.31 -0.46 -0.78 -3.1 1.0 
SSAP-45 0.0041 4.7 -0.4 -0.55 -0.94 -3.1 1.3 
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Table A 4 - Ionic strength, charge balance error and selected mineral saturation indices 
calculated in effluent samples from the CaSx-Clay column. Parameters were determined using 
PHREEQC. 

Sample 
ID 

Ionic 
Strength 
(mol/kg 
water) 

Charge 
Balance 

Error (%) 

Calcite 
Saturation 

Index 

Aragonite 
Saturation 

Index 

Dolomite 
Saturation 

Index 

Gypsum 
Saturation 

Index 

Fe(OH)3 
Saturation 

Index 

SAPS-1 0.024 -21 0.77 0.62 1.1 -1.8 1.4 
SAPS-2 0.0066 5.9 0.33 0.18 0.26 -2.4 1.4 
SAPS-3 0.0063 4.5 0.28 0.13 0.16 -2.5 1.4 
SAPS-4 0.0062 6.5 0.1 -0.04 -0.19 -2.5 1.3 
SAPS-5 0.0074 12 0.2 0.05 -0.06 -2.4 1.5 
SAPS-8 0.0062 5.6 0.1 -0.04 -0.2 -3.1 1.5 
SAPS-12 0.0047 0.14 -0.38 -0.52 -1.14 -3.7 1.9 
SAPS-16 0.0035 4.0 -0.71 -0.85 -1.8 -3.8 1.6 
SAPS-20 0.0044 9.4 -0.55 -0.69 -1.4 -3.5 1.1 
SAPS-27 0.0048 3.9 -0.37 -0.52 -0.97 -3.3 0.95 
SAPS-31 0.005 -4.4 -0.41 -0.56 -1.0 -3.2 0.18 
SAPS-35 0.0052 -3.9 -0.31 -0.46 -0.76 -3.0 0.79 
SAPS-42 0.0035 -2.6 -0.68 -0.83 -1.5 -3.8 -0.31 
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Table A 5 - Ionic strength, charge balance error and selected mineral saturation indices 
calculated in the SRW input. Parameters were determined using PHREEQC. 

Sample 
ID 

Ionic 
Strength 
(mol/kg 
water) 

Charge 
Balance 

Error (%) 

Calcite 
Saturation 

Index 

Aragonite 
Saturation 

Index 

Dolomite 
Saturation 

Index 

Gypsum 
Saturation 

Index 

Fe(OH)3 
Saturation 

Index 

SRW 0.0037 -5.0 0.32 0.18 0.54 -3.0 1.0 
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Appendix B: Supplementary Graphs for Chapter 3 

 

Note: Entries for the control column can be found in Appendix A 

 
Figure B 1 - Hg, MeHg, redox parameters and geochemistry measured in the effluent of the CC 
column. 
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Figure B 2 - Hg, MeHg, redox parameters and geochemistry measured in the effluent of the 
CC+HNO3 column. 
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Figure B 3 - Hg, MeHg, redox parameters and geochemistry measured in the effluent of the 
CC+2%CaSx column. 
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Figure B 4 - Hg, MeHg, redox parameters and geochemistry measured in the effluent of the 
CC+5%CaSx column. 
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Figure B 5 - Aqueous geochemistry, Hg and redox parameters measured in samples extracted 
from the ports of the CC column.   
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Figure B 6 - Aqueous geochemistry, Hg and redox parameters measured in samples extracted 
from the ports of the CC+HNO3 column.   
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Figure B 7 - Aqueous geochemistry, Hg and redox parameters measured in samples extracted 
from the ports of the CC+2%CaSx column. 
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Figure B 8 - Aqueous geochemistry, Hg and redox parameters measured in samples extracted 
from the ports of the CC+5%CaSx column. 
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Figure B 9 - Mass and percent Hg in the CC column determined by sequential extraction analysis 
of column sediment after experiment termination (right). Fraction 1 (F1) targets water soluble Hg, 
F2 targets weak acid-extractable Hg, F3 organo-complexed Hg, F4 strongly-complexed/elemental 
Hg and F5 targets Hg sulfides. Fresh sediment concentration is the bulk Hg extracted from 
sediment used prior to amendment and column packing. Solid-phase MeHg (right) analysed after 
experiment completion.  
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Figure B 10 - Mass and percent Hg in the CC+HNO3 column determined by sequential 
extraction analysis of column sediment after experiment termination (right). Fraction 1 (F1) 
targets water soluble Hg, F2 targets weak acid-extractable Hg, F3 organo-complexed Hg, F4 
strongly-complexed/elemental Hg and F5 targets Hg sulfides. Fresh sediment concentration is the 
bulk Hg extracted from sediment used prior to amendment and column packing. Solid-phase 
MeHg (right) analysed after experiment completion.  
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Figure B 11 – Comparison of S K-edge XANES for fresh unmodified biochar, fresh CaSx-
modified biochar, biochar from the CC+2%CaSx column and biochar from the CC+5%CaSx 
column to three reference S standards – polysulfide (CaSs), oxidized S (SO4

2-) and reduced S (S0).  
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Figure B 12 - Classes of bacteria identified from PCR analysis performed on sediment extracted 
from the Control (top), CC (middle) and CC+HNO3 (bottom) columns at the time of column 
decommission. Hatched bars represent classes that contain know methylating bacteria.  
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Table B 1 - Ionic strength, charge balance error and selected mineral saturation indices calculated 
in effluent samples from the CC column. Parameters were determined using PHREEQC. 

Sample 
ID 

Ionic 
Strength 
(mol/kg 
water) 

Charge 
Balance 

Error (%) 

Calcite 
Saturation 

Index 

Aragonite 
Saturation 

Index 

Dolomite 
Saturation 

Index 

Gypsum 
Saturation 

Index 

Fe(OH)3 
Saturation 

Index 

SSCC-2 0.0069 -13 0.12 -0.03 -0.31 -2.5 1.2 
SSCC-4 0.0068 1.6 0.11 -0.04 -0.32 -2.6 1.4 
SSCC-6 0.0063 2.1 0.05 -0.09 -0.37 -2.6 1.4 
SSCC-8 0.0073 0.82 0.15 0 -0.18 -3.1 2.2 
SSCC-22 0.0045 -2.3 -0.48 -0.63 -2.1 -4.4 2.0 
SSCC-34 0.0036 7.7 -0.72 -0.86 -2.6 -3.7 1.6 
SSCC-38 0.0033 9.3 -0.8 -0.95 -1.8 -3.9 1.2 
SSCC-45 0.0035 3.6 -0.54 -0.68 -1.3 -3.5 1.3 
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Table B 2 - Ionic strength, charge balance error and selected mineral saturation indices calculated 
in effluent samples from the CC+HNO3 column. Parameters were determined using PHREEQC. 

Sample 
ID 

Ionic 
Strength 
(mol/kg 
water) 

Charge 
Balance 

Error (%) 

Calcite 
Saturation 

Index 

Aragonite 
Saturation 

Index 

Dolomite 
Saturation 

Index 

Gypsum 
Saturation 

Index 

Fe(OH)3 
Saturation 

Index 

SSAC-2 0.0068 -14 0.27 0.12 -3.0 -2.4 -2.1 
SSAC-4 0.0062 1.5 -0.02 -0.17 -0.58 -2.6 1.5 
SSAC-6 0.0064 0.72 0.02 -0.12 -0.48 -2.6 1.8 
SSAC-8 0.007 0.16 0.15 0 -0.2 -2.8 1.1 
SSAC-21 0.0049 -1 -0.5 -0.65 -1.2 -3.7 0.86 
SSAC-33 0.0038 10 -0.67 -0.81 -1.5 -3.6 1.6 
SSAC-37 0.0035 7.4 -0.72 -0.87 -1.6 -3.7 1.2 
SSAC-45 0.0038 6.9 -0.6 -0.75 -1.4 -3.5 0.73 
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Table B 3 - Ionic strength, charge balance error and selected mineral saturation indices calculated 
in effluent samples from the CC+2%CaSx column. Parameters were determined using 
PHREEQC. 

Sample 
ID 

Ionic 
Strength 
(mol/kg 
water) 

Charge 
Balance 

Error (%) 

Calcite 
Saturation 

Index 

Aragonite 
Saturation 

Index 

Dolomite 
Saturation 

Index 

Gypsum 
Saturation 

Index 

Fe(OH)3 
Saturation 

Index 

SSCS-2 0.0084 -0.68 0.67 0.52 0.8 -2.2  
SSCS-3 0.0076 1.9 0.58 0.44 0.63 -2.4 1.7 
SSCS-4 0.0069 1.0 0.11 -0.04 -0.32 -2.5 1.2 
SSCS-6 0.0076 -14 0.24 0.09 -0.07 -1.9 1.2 
SSCS-8 0.0086 14 0.36 0.22 0.19 -2.5 1.4 
SSCS-12 0.0055 0.27 -0.12 -0.27 -0.64 -5.9 2.2 
SSCS-16 0.0046 8.3 -0.53 -0.68 -1.4 -3.8 1.8 
SSCS-20 0.0041 8.7 -0.6 -0.74 -1.5 -3.8 1.2 
SSCS-25 0.0032 -2.7 -0.79 -0.93 -1.8 -5.2 1.8 
SSCS-29 0.0038 13 -0.63 -0.78 -1.5 -3.6 0.54 
SSCS-33 0.0043 4.9 -0.51 -0.66 -1.3 -3.8 0.61 
SSCS-37 0.0043 8.4 -0.33 -0.48 -0.86 -3.5 2.5 
SSCS-41 0.0047 -4.9 -0.32 -0.46 -0.78 -3.4 1.3 
SSCS-45 0.005 3.4 -0.35 -0.5 -0.83 -3.3 0.89 
SSCS-48 0.0048 -0.82 -0.34 -0.49 -0.81 -3.2 -0.56 
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Table B 4 - Ionic strength, charge balance error and selected mineral saturation indices calculated 
in effluent samples from the CC+5%CaSx column. Parameters were determined using 
PHREEQC. 

Sample 
ID 

Ionic 
Strength 
(mol/kg 
water) 

Charge 
Balance 

Error (%) 

Calcite 
Saturation 

Index 

Aragonite 
Saturation 

Index 

Dolomite 
Saturation 

Index 

Gypsum 
Saturation 

Index 

Fe(OH)3 
Saturation 

Index 

SSCS-
5%-1 0.02 -11 0.92 0.77 1.3 -1.9 1.4 

SSCS-
5%-2 0.019 12 1.0 0.9 1.6 -2.7 2.0 

SSCS-
5%-3 0.013 2.2 0.97 0.83 1.4 -3.2 2.1 

SSCS-
5%-4 0.01 -0.42 0.73 0.58 0.92 -3.2 2.1 

SSCS-
5%-6 0.0057 -0.12 -0.06 -0.21 -0.71 -3.4 2.5 

SSCS-
5%-8 0.0046 1.6 -0.34 -0.49 -1.3 -3.8 2.4 

SSCS-
5%-14 0.0048 0.5 -0.43 -0.58 -1.3 -3.8 1.3 

SSCS-
5%-17 0.0045 3.5 -0.44 -0.59 -1.2 -3.6 1.5 

SSCS-
5%-27 0.0049 -5.4 -0.5 -0.65 -1.1 -3.3 0.85 

SSCS-
5%-31 0.0038 2.2 -0.81 -0.95 -1.7 -3.7 1.3 

SSCS-
5%-36 0.0029 5.6 -1.0 -1.2 -2.2 -3.9 0.13 
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Appendix C: Quality Assurance and Quality Control for Chapters 2 and 3 

 

Table C 1 - THg QA/QC for the Control Column. 

Sample 
ID 

Date 
Collected 

Date 
Analysed 

THg (ng 
L-1) 

Repeat 
THg  

(ng L-1) 

Internal 
Check (ng 

L-1) 

Relative 
Standard 
Deviation 

(%) 

Matrix 
Spike 

Recovery 
(%) 

SSRC-2 July 28, 
2014 

Sept. 10, 
2014 64 61  3.3  

SSRC-4-
0.1 

Aug. 13, 
2014 

Sept. 19, 
2014 999    121 

SSRC-7-
0.1 

Sept. 2, 
2014 

Aug. 25, 
2015 665 652  1.4  

SSRC-8 Sept. 9, 
2014 

Sept. 30, 
2014 610 614  0.5  

SSRC-8-
0.1 

Sept. 9, 
2014 

Nov. 5, 
2014 313  

 3.5 
 

Nov. 6, 
2014  329  

SSRC-18 Nov. 17, 
2014 

Dec. 16, 
2014 63    86 

SSRC-25 Jan. 5, 
2015 

Feb. 18, 
2015 107.7 

 
 

12  May 1, 
2015  90.7 
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Table C 2 - THg QA/QC for the Limestone Column. 

Sample ID Date 
Collected 

Date 
Analysed 

THg  
(ng L-1) 

Repeat 
THg  

(ng L-1) 

Internal 
Check  

(ng L-1) 

Relative 
Standard 
Deviation 

(%) 

Matrix 
Spike 

Recovery 
(%) 

SSLS-3-
0.1 

Aug. 6, 
2014 

Sept. 18, 
2014 1067  

 14  Sept. 19, 
2014  879 

SSLS-4-
UNF 

Aug. 14, 
2014 

Sept. 10, 
2014 1860 1955  4  

SSLS-7 Sept. 3, 
2014 

Sept. 30, 
2014 403    99 

SSLS-8-
0.1 

Sept. 11, 
2014 

Nov. 5, 
2015 242 255  4  

SSLS-8 Sept. 11, 
2014 

Sept. 30, 
2014 361  

 7  Oct. 1, 
2014  398 

SSLS-18-
0.1 

Nov. 18, 
2014 

Dec. 16, 
2014 73 73  0.1  

SSLS-25 Jan. 5, 
2015 

Feb. 18, 
2015 133 

 
 

0  May 1, 
2015  133 

SSLS-T-1 July 30, 
2014 

Jan, 14, 
2015 135 129  4  

SSLS-M-3 Oct. 22, 
2014 

Mar. 2, 
2016 46    82 
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Table C 3 - THg QA/QC for the Biochar Column. 

Sample ID Date 
Collected 

Date 
Analysed 

THg 
(ng L-1) 

Repeat 
THg 

(ng L-1) 

Internal 
Check 

(ng L-1) 

Relative 
Standard 
Deviation 

(%) 

Matrix 
Spike 

Recovery 
(%) 

SSCC-3 Aug. 25, 
2014 

Sept. 10, 
2014 282 283  0.2  

SSCC-4-
0.1 

Sept. 2, 
2014 

Sept. 18, 
2014 449    107 

SSCC-6 Sept. 15, 
2014 

Sept. 30, 
2014 397  

 0.1  Oct. 1, 
2014  398 

SSCC-12-
UNF 

Oct. 27, 
2014 

Nov. 5, 
2014 194  

 5  Nov. 6, 
2014  209 

SSCC-14 Nov. 10, 
2014 

Dec. 16, 
2014 88    98 

SSCC-22 Jan. 5, 
2015 

Feb. 18, 
2015 125.5 

 
 

7  May 1, 
2015  114.2 

SSCC-45 June 14, 
2015 

July 21, 
2015 20 22  5  

SSCC-B-2 Sept. 17, 
2014 

Mar. 2, 
2016 271 267  1.2  
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Table C 4 - THg QA/QC for the HNO3-modified Biochar Column. 

Sample ID Date 
Collected 

Date 
Analysed 

THg 
(ng L-1) 

Repeat 
THg 

(ng L-1) 

Internal 
Check 

(ng L-1) 

Relative 
Standard 
Deviation 

(%) 

Matrix 
Spike 

Recovery 
(%) 

SSAC-3 Sept. 3, 
2014 

Sept. 10, 
2014 148 144  2  

SSAC-4-
UNF 

Sept. 11, 
2014 

Sept. 18, 
2014 528  

 0.8  Sept. 19, 
2014  534 

SSAC-6 Sept. 23, 
2014 

Sept. 30, 
2014 237    109 

SSAC-6-
UNF 

Sept. 23, 
2014 

Sept. 30, 
2014 450  

 4  Oct. 1, 
2014  474 

SSAC-7-
0.1 

Oct. 1, 
2014 

Nov. 5, 
2014 435 462  4  

SSAC-13 Nov. 11, 
2014 

Dec. 16, 
2014 109 117  5  

SSAC-21 Jan. 5, 
2015 372     116 

SSAC-45 June 22, 
2015 

July 21, 
2015 27 27  0.5  
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Table C 5 - THg QA/QC for the CC+2%CaSx Column. 

Sample 
ID 

Date 
Collected 

Date 
Analysed 

THg 
(ng L-1) 

Repeat 
THg 

(ng L-1) 

Internal 
Check 

(ng L-1) 

Duplicate 
(ng L-1) 

Relative 
Standard 
Deviation 

(%) 

Matrix 
Spike 

Recovery 
(%) 

SSCS-4 Dec. 30, 
2014 

Jan. 14, 
2015 219     100 

SSCS-4-
UNF 

Dec. 30, 
2014 

Mar. 1, 
2016 222 227   1.8  

SSCS-5 Jan. 5, 
2015 

Jan. 14, 
2015 117 118   0.3  

SSCS-8 Jan. 26, 
2015 

Feb. 18, 
2015 83 87   4  

SSCS-
10-0.1 

Feb. 9, 
2015 

Mar. 10, 
2015 75 76   1.3  

SSCS-11 Feb. 17, 
2015 

Feb. 18, 
2015 71.2  77.8  6  

SSCS-14 Mar. 9, 
2015 

Mar. 10, 
2015 71     105 

SSCS-23 May 11, 
2015 

May 13, 
2015 14   13 3.2  
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Table C 6 - THg QA/QC for the Attapulgite Clay Column. 

Sample ID Date 
Collected 

Date 
Analysed 

THg 
(ng L-1) 

Repeat THg 
(ng L-1) 

Relative 
Standard 
Deviation 

(%) 

Matrix Spike 
Recovery 

(%) 

SSAP-1-
UNF 

Jan. 30, 
2015 

Feb. 18, 
2015 78 76 2  

SSAP-3 Feb. 5, 2015 Feb. 18, 
2015 745   116 

SSAP-7 Mar. 2, 2015  Mar. 10, 
2015 970 987 1  

SSAP-12 Apr. 7, 2015 Apr. 15, 
2015 578 557 3  

SSAP-17 May 11, 
2015 

May 13, 
2015 184   93 

SSAP-20-
0.1 June 1, 2015 June 9, 2015 179   108 

SSAP-27-
0.1 

July 20, 
2015 

July 21, 
2015 55 50 6  

SSAP-31 Aug. 17, 
2015 

Aug. 25, 
2015 44   105 

SSAP-35 Sept. 14, 
2015 

Sept. 15, 
2015 86 88 2  

SSAP-39 Oct. 13, 
2015 

Nov. 11, 
2015 51 55 5  

SSAP-M-2 July 22, 
2015 

Aug. 25, 
2015 23 23 0.5  
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Table C 7 - THg QA/QC for the CaSx-modified Attapulgite Clay Column. 

Sample ID Date 
Collected 

Date 
Analysed 

THg 
(ng L-1) 

Repeat THg 
(ng L-1) 

Relative 
Standard 
Deviation 

(%) 

Matrix Spike 
Recovery 

(%) 

SAPS-1-0.1 Mar. 9, 2015 Mar. 1, 2016 287 583  112 

SAPS-1 Mar. 9, 2015 Apr. 15, 
2015 280 268 3  

SAPS-5 Mar. 23, 
2015 

April 15, 
2015 141   97 

SAPS-14 May 25, 
2015 June 9, 2015 36 34 4  

SAPS-18-
0.1 

June 23, 
2015 

July 21, 
2015 20   99 
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Table C 8 - THg QA/QC for the CC+5%CaSx Column. 

Sample ID Date 
Collected 

Date 
Analysed 

THg 
(ng L-1) 

Repeat THg 
(ng L-1) 

Relative 
Standard 
Deviation 

(%) 

Matrix Spike 
Recovery 

(%) 

SSCS-5%-2 May 6, 2015 May 13, 
2015 588  2  

SSCS-5%-2-
UNF May 6, 2015 Mar. 1, 2016 688 1312  103 

SSCS-5%-3 May 8, 2015 May 13, 
2015 86   92 

SSCS-5%-
12 July 9, 2015 July 21, 

2015 20   91 

SSCS-5%-
14 

July 20, 
2015 

July 21, 
2015 15 13 6  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 134 

Table C 9 - THg QA/QC for Sequential Extractions of the Control, Limestone, CC and 
CC+HNO3 Columns. 

 THg (µg g-1) dry weight 

Sample ID Date 
Analysed F1 F2 F3 F4 F5 THg 

CC-T Dec. 1-10, 
2015 

8 3.7 1254 2613 699 4947 
CC-T-
DUP 9 3.5 121 3186 1821 4246 

Relative Standard 
Deviation (%) 14 5 116 25 63 11 

RC-B Dec. 1, 
2015 

 2.6     
RC-B-RE  3.3     

Relative Standard 
Deviation (%)  17     

RC-T Dec, 1, 
2015  1.4     

RC-T-RE Dec. 2, 
2015  1.6     

Relative Standard 
Deviation (%)  9     

CC-T Dec. 2, 
2015 

  1254    
CC-T-RE   1290    

Relative Standard 
Deviation (%)   2    

LS-B Dec. 8, 
2015 

   638866   
LS-B-RE    584629   

Relative Standard 
Deviation (%)    6   

CC-B Dec. 9, 
2015      5253 

CC-B-RE Dec. 10, 
2015      5768 

Relative Standard 
Deviation (%)      7 
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Table C 10 - THg Method Detection Limits Given a 99% Confidence Interval. 

Date  Method Detection Limit (ng L-1) 
Sept. 10, 2014 0.69 
Sept. 19, 2014 0.19 

Oct 1, 2014 0.19 
Nov. 6, 2014 0.13 
Dec. 17, 2014 0.09 
Jan. 14, 2015 0.1 
Mar. 10, 2015 0.13 
June 9, 2015 0.28 
July 22, 2015 0.09 
Nov. 11, 2015 0.09 
Mar. 2, 2016 0.06 
AVERAGE 0.19 

 
 
 
 
 


