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Abstract

The Internet has become an essential tool for communication and information access,
and with growing demand, new challenges and usage continue to surface. A complimentary
tool that came to exist in recent years is Cloud Computing - an economical solution that
serves as an alternative to owning and running computing facilities. While cloud computing
has many advantages, there are a number of issues that hamper the adoption of cloud
computing. Some of the major concerns, can be classified into one of the following groups:
traditional security, availability, and third-party data control. The first set of concerns,
revolve around security threats that can expose clients private data. The second set of
concerns, revolve around the compromise of the operation of the applications in the cloud.
Finally, the last set of concerns involve the legal implications of data and applications being
held by a third party. Different solutions exist to deal with traditional security, availability,
and third-party data control, separately, but one way to handle traditional security, and
third-party data control, is through data encryption. The client has to take responsibility
for ensuring that the data is setup in such a way, that even if the cloud service provider is
compromised, or has a malicious intent, it is not able to get anything from the customers
data. Of course, encrypting the data introduces limitations, with varying tradeoffs for
different systems. In this work, we use Shamirs Secret Sharing Scheme and a symmetric
key cryptographic system (AES) to encrypt data at a field level, such that it can be
stored in the cloud without compromising data privacy. Using Shamirs Secret Sharing
Scheme to encrypt numeric field values, gives us the ability to perform efficient addition,
subtraction, and multiplication on the encrypted numeric field values. We explore two
different ways of using Shamir Secret Sharing Scheme and AES, and discuss the advantages
and disadvantages of each. We then propose, and complete, a software implementation for
the proposed system. The implementation is used in order to compare execution time,
memory usage, and bandwidth usage, to the plaintext and MySQL encrypted versions
of the database. Analyzing the benchmarks, we can see how the performance varies for
different query types when run on tables with different number of records and field types
giving the reader an idea about the cost and tradeoffs of the system.
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Chapter 1

Introduction
The Internet has become an essential tool for communication and information access, and
with growing demand, new challenges and usage continue to surface. A complimentary tool
that came to exist in recent years is Cloud Computing - an economical solution that serves
as an alternative to owning and running computing facilities. While cloud computing
has many advantages, there are a number of issues that hamper the adoption of cloud
computing. Some of the major concerns, can be classified into one of the following groups:
traditional security, availability, and third-party data control[32]. The first set of concerns,
revolve around security threats that can expose clients’ private data. The second set of
concerns, revolve around the compromise of the operation of the applications in the cloud.
Finally, the last set of concerns involve the legal implications of data and applications being
held by a third party[32].

Different solutions exist to deal with traditional security, availability, and third-party
data control, separately, but one way to handle traditional security, and third-party data
control, is through data encryption. The client has to take responsibility for ensuring that
the data is setup in such a way, that even if the cloud service provider (CSP) is compro-
mised, or has a malicious intent, it is not able to get anything from the customer’s data.
Secondly, mechanisms exist to ensure proper auditing of the data, in order to detect any
malicious or erroneous data alterations. Of course, encrypting the data has its limitations,
and it is the focus of this work to determine a cost effective implementation that would
allow a company/customer to leverage the cloud for their computing needs.

The goal of this work is to find a way to process encrypted data stored in a database,
to allow for the utilization of cloud computing services, without compromising the data’s
privacy. Currently, there is no efficient way to perform computations on encrypted data,
which means that in many implementations, the data has to be decrypted first, before
any computations can be performed on it, and then re-encrypted. This gave way for
homomorphic encryption schemes, which are still a very active area of research, with no
single solution for all applications. Existing solutions lack efficiency, and/or are highly
complex. One of the prominent work on homomorphic encryption by Gentry, Halevi, and
Smart[46], is done under the ring-LWE (Learning with Error [66]) assumption, and has
a best case scenario of polylogarithmic overhead. We propose the use of Shamir’s Secret
Sharing Scheme, in order to encrypt the data values that will undergo any computations,
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leveraging the homomorphic properties of the scheme, allowing us to take advantage of
storing and processing the data in the cloud, without exposing the clients’ private data.
Shamir’s Secret Sharing Scheme was created to divide a secret in such a way, that it would
require the collusion of multiple parties to recover the secret. It can also be used to protect
a secret in a hierarchical fashion, where certain individuals carry higher weight than others
in the secret recovery process. For example, in order to access client data, it requires the
president of the company, and two vice presidents, or a vice president and 4 managers,
etc... By combining Shamir’s Secret Sharing Scheme and a traditional symmetric key
cryptographic system (such as AES), we hope to pave the way for a database system that
can be stored in the cloud, and accessed from anywhere through the Internet.

In addition to being able to perform computations on encrypted data in the cloud, data
redundancy is crucial for many database applications where the stored information is of
great value. For example, the database system containing patient’s medical records. In
many cases, the this data is irreplaceable, and so it is not enough to protect the data from
unauthorized access, but there is also a need for backup and redundancy to insure that the
data remains safe and accessible at all times.

1.1 Thesis Statement

There exists a database system, that has the following properties:

• Through field level encryption, maintain the confidentiality of the data stored in the
database

• Support queries, such as select and criteria based queries, on encrypted data

• Support server-side calculations on data values, without the need for full decryption,
by encrypting the values using Shamir’s Secret Sharing Scheme (details in section
3.2.3)

• Provide database data redundancy through data replication, and threshold scheme
data division

• Controlled access to the database through the Internet

In the context of this work, data confidentiality is defined as: making the plaintext
version of the data stored in the database available to authorized users only. An authorized
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user, is an individual who has access to the private keys used to decrypt the ciphertext
stored in the database.

In our work, we propose a complete system that involves three components (details in
chapter 4.4): a client-side application, a server-side application, and an encrypted database
hosted in the cloud. The implementation leverages AES to encrypt string values, while
Shamir’s Secret Sharing scheme is used to encrypt numerical values. With the help of
an application running on the server side, a database hosted in the cloud, we propose
an initial design of how the system would be setup and operate, while maintaining data
confidentiality. Shamir’s Secret Sharing Scheme, is an example of a privacy homomorphism
[67]. The problem is, that it is weak cryptographically because a ”chosen plain-text attack”
can break it [67]. Therefore, it is not possible to use it by itself, or at least not in its original
form.

The security of the system, like any other system with a cryptographic implementa-
tion, is potentially vulnerable to implementation errors that could weaken its security -
something outside the scope of this thesis. We assume that the implementation used for
AES, and implementation of Shamir’s Secret Sharing Scheme is complete and reliable.

In this work, we will explore different options for combining AES encryption with
Shamir’s Secret Sharing scheme as well as the advantages and disadvantages of the various
usages. The next step will look at a proposed software implementation for the system, and
how the system will be compared to MySQL encrypted database and plaintext database.
The next chapter will present a cost analysis in terms of memory usage and execution time
for the implementation of the proposed system, on two platforms: laptop and iPhone. We
will also discuss potential improvements to the system.
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Chapter 2

Background
This section covers a lot of the topics relevant to this work. Topics include: databases,
encryption, big data, and cloud computing. Due to the nature of the work, the main focus
is on databases and homomorphic encryption.

2.1 Big Data

The targeted application for this work, are databases, and thus, the size of the database,
how it is stored, and how it will be used, are all factors that affect the feasibility of the
proposal. The first step, would be to define the parameters that affect the performance of
the database, as well as its size. The definition of a large database, is changing over time
as Hardware and Software continue to evolve and advance [6]. For the purposes of this
work, the focus will be on small, and medium sized databases. A table summarizing and
comparing small and medium sized databases is shown below:

Small Sized Database Medium Sized Database
Fits in Memory Fits in Single Server
< 105 Records 105 - 107 Records
< 10 GB of Data 10 - 40 GB of Data
No partitions Minimal Partitions

Factors that affect performance, include [6]: data volume, throughput, software, and
hardware. Data volume is the amount of data as defined by the number of records, tables,
terabytes/petabytes, etc...[6]. Throughput defines the database usage, in terms of the
number of concurrent users accessing the database, and the number of transactions being
carried out by each user. The software includes both the database management system,
and the implementation of the database - both of which can affect how quickly data can
be retrieved. Finally, the hardware available to host the database and process the queries,
will also affect the performance of query processing and data retrieval.

Based on the aforementioned factors, we will define the database to have the following
characteristics:
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– The DBMS technology used in our model will be MySQL, since it is an established
and open-sourced system. Since MySQL is widely used by many large institutions
[7], it is assumed that it is an efficient and reliable DBMS that can be used as a
testbed for our proposal.

– The database will contain 105 - 107 records, spread across multiple tables. At least
two scenarios with two setups will be tested: records divided equally across all tables,
and tables unevenly divided across multiple tables (some tables containing the bulk
of the data, and the remaining records in other tables). The storage space will also
be < 40 GB.

– The hardware that will be used to store the DB, and execute the queries, meets the
minimum hardware requirements as defined by software developers of MySQL [3].

– Since the values are encrypted, the indexing of values encrypted using AES will
not be indexed, and the indexing doesn’t make sense for the values encrypted using
Shamir’s Secret Sharing Scheme since the data ordering is removed as well.

– Sharding (breaking a slow large database into a lot of quick little databases), database
virtualization, and database optimizations are beyond the scope of this work.

2.2 Symmetric-key Cryptography

Symmetric key algorithms are cryptographic algorithms that use the same cryptographic
keys for both encryption of plaintext and decryption of ciphertext [64]. Some examples
of symmetric key cryptography systems include stream ciphers and block ciphers such as
AES. One of the weakness of symmetric key cryptography system is that you can’t achieve
non-repudiation - the reason being that the secret key is shared between the sender and
receiver. That is, if the secret key used for encryption and decryption is the same, it would
be impossible to be able to distinguish who used the key to generate the ciphertext - a
drawback that doesn’t exist in the public key system. Another important drawback is
that the secret key used for encryption/decryption has to be exchanged with all authorized
parties securely. Finally, with this system, the number of keys that would have to be
generated and maintained is high since you have to generate a new key for each pair of
individuals communicating[64]. While symmetric key cryptographic systems might have a
few drawbacks, it does have an important advantage over public key cryptography system:
speed - by a factor of approximately one hundred to one thousand times faster [64].
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2.3 Asymmetric-key Cryptography

Public key cryptography, also known as asymmetric key cryptography, refers to a crypto-
graphic algorithm which requires two separate keys: A secret (or private) key for decrypting
ciphertext or generating digital signatures, and a public key used for encrypting plaintext
or verifying digital signatures[64]. Due to the existence of different keys for encryption and
decryption, public key cryptographic systems can be used for applications such as digital
signatures and key establishment, and for classical data encryption[64]. Two popular ex-
amples of public key system, which will be discussed in the next subsections, are RSA and
ElGamal.

Public key cryptographic systems have a number of uses:

• Key Establishment: Protocols that allow for the secure exchange of secrets keys over
an insecure channel

• Non-repudiation: Digital signature schemes provide non-repudiation and message
integrity through the use of public key cryptographic systems

• Identification: Combining digital signatures and challenge-and-response protocols
provide entity identification

• Encryption: Classical data communication encryption algorithms using schemes such
as RSA and ElGamal

One of the drawbacks of public key cryptographic systems is ensuring the authenticity
of public keys. The current solution to this drawback is the use of certificates. Certificates
are issued by what is referred to as a ”certificate authority” (CA) - a trusted entity that
binds users to a public key after verifying their identity. These certificates can then be
placed in the public domain, allowing anyone one to use them for encrypting messages for a
particular sender. Of course the compromise of the CA, would allow for the impersonation
of entities. The second potential problem with CAs is that they have to maintain high
availability in order to be able to perform verification requests at any time. Another
drawback of public key cryptographic systems is the intensity of the operations involved
with the different schemes in this class. In order to achieve a ”secure” system, the operands
for the different schemes must have a minimum number of bits to achieve a certain security
level, making the computations being performed in each scheme extremely intensive. For
example, for RSA, to achieve a 256 bit security level, the public key has to be 15,360 bits -
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a very large number! It is estimated the computational complexity of the algorithms grows
roughly cube of the bit length [64].

The majority of practical public key cryptographic systems rely on one of the following
computational problems:

• Integer Factorization Schemes: These are schemes that rely on the difficulty of fac-
toring large integers (e.g. RSA)

• Discrete Logarithms Schemes: Schemes that rely on the difficulty of discrete loga-
rithm problem in finite fields (e.g. Diffie Hellman Key Exchange)

• Elliptic Curve Schemes: Schemes that rely on the difficulty of determining the discrete
logarithm of an elliptic curve element with respect to a publicly known base point
(e.g. Elliptic Curve DiffieHellman (ECDH) key agreement scheme)

Public key algorithms are based on mathematical problems which currently have no
efficient solution that are inherent in certain integer factorization, discrete logarithm, and
elliptic curve relationships. It is computationally easy for a user to generate their own
public and private key-pair for use with encryption and decryption. The strength lies
in the computational infeasibility of determining a public key from a properly generated
private key. Thus the public key may be published without compromising security, whereas
the private key must not be revealed to anyone not authorized to read messages or generate
digital signatures. Public key algorithms, unlike symmetric key algorithms, do not require
a secure initial exchange of one (or more) secret keys between the parties.

2.4 Homomorphic Encryption

Homomorphic encryption is a type of encryption that allows for mathematical operations
to be applied to the encrypted values - without having to decrypt it first. This means that
computations can be performed on encrypted values, yielding an encrypted result - without
having to decrypt intermediate results. Formally, homomorphic encryption for plaintext
M, and operation

⊙
(where

⊙
is some operator), is defined as [44]:

∀m1,m12 ∈M

Ek(m1)
⊙

Ek(m2) = Ek(m1

⊙
m2)

(2.1)
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A scheme is called additively homomorphic if the operator being used is addition, and
multiplicatively homomorphic, if the operator is multiplication [44]. RSA and ElGamal
encryption schemes are examples of multiplicatively homomorphic encryption schemes[44,
65]:

∀m1,m12 ∈M
Eke(m1 ∗m2) = (m1 ∗m2)

emodN

= (m1
emodN)(m2

emodN)

= Eke(m1) ∗ Eke(m2)

(2.2)

The problem with RSA is two fold: it is not protected against chosen plaintext attacks,
and it is not additively homomorphic (i.e., doesn’t support addition) [44]. On the other
hand, a variant of ElGamal encryption scheme has been proposed that, in addition to being
multiplicatively homomorphic, supports addition as well [44].

Some of the other existing homomorphic encryption schemes include: Goldwasser-
Micali, Benaloh, Naccache-Stern, Paillier, and Paillier variants. Goldwasser-Micali is the
first probabilistic public-key, asymmetric key encryption algorithm, which is provably se-
cure, but is inefficient because each bit in the plaintext leads to a large data expansion in
the ciphertext [44]. Benaloh is a generalization of Goldwasser-Micali, which improves on
the efficiency of Goldwasser-Micali by encrypting data blocks rather than individual bits,
but the gain is limited because the decryption process is still heavily influenced by the size
of the plaintext. Naccache-Stern, builds on Benaloh’s scheme, and attempts to improve
the decryption cost.

The next set of homomorphic encryption schemes are based on Paillier encryption
scheme: a probabilistic asymmetric and additively homomorphic scheme. Paillier’s scheme
decreases the data expansion, and through the use of Chinese Remainder Theorem, pro-
vides a more efficient decryption than the schemes previously presented, but it does not
meet the adaptive chosen-ciphertext attack requirements[44]. Through certain algebraic
properties, Cramer and Shoup proposed a general approach to resolving the weakness in
Paillier encryption scheme[35]. Damgard and Jurik proposed another variant of Paillier,
which lowers the expansion of the ciphertext, but ends up being more costly overall[44].

All of the homomorphic schemes previously mentioned, are based on asymmetric schemes,
which are much slower than symmetric schemes.
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2.5 Algebraic Homomorphic Systems Requirements

Rivest, Adleman, and Dertouzos, came up with a list of requirements that an algebraic
system with homomorphic properties should have [67]:

• The encoding and decoding functions should be easy to compute

• The operations and predicates should be efficiently computable

• The encoded version of the data should not require more space to represent than the
amount of space required for the original data

• Knowledge of many encoded values, should not reveal anything about the decoding
function or the key (Ciphertext only attack)

• Knowledge of plaintext and its corresponding encoded value, for several values, does
not reveal anything about the decoding function or the key (Chosen plaintext attack)

• The operations and predicates in the algebraic system should not be sufficient to
yield an efficient computation of the decoding function

The proposed encryption scheme, will attempt to meet as many of the requirements as
possible. Currently, the scheme meets the first two requirements but does not meet the
third requirement because the secret is broken to three pieces of equal size. A thorough
analysis is still required to determine whether the last three requirements are met or not.

2.6 Shamir’s Secret Sharing

Shamir’s Secret Sharing Scheme allows the sharing of a secret by dividing it into pieces, and
giving each participant their own unique part, where some, or all, the parts are needed in
order to reconstruct the secret [70]. Requiring all the participants to combine together the
secret might be impractical, and therefore sometimes the threshold scheme is used where
any k of the parts are sufficient to reconstruct the original secret[70]. The mathematical
definition of Shamir’s Secret Sharing Scheme:

• Knowledge of any k or more Di pieces makes D easily computable

9



• Knowledge of any k-1 or fewer Di pieces leaves D completely undetermined (all
possible values are equally likely)

The process of reconstructing the secret is performed using polynomial interpolation,
where given k points in the 2-dimensional plane (x,y), ..., (xk, yk, with distinct xi, there is
one, and only one polynomial q(xi) = yi for all i [70]. There exists efficient ways to perform
the reconstruction process.

2.6.1 Homomorphic Properties of Shamir’s Secret Sharing Scheme

First, we will show how Shamir’s Secret Sharing Scheme addition homomorphic properties
hold. In this case, the polynomial used to break up the secret is a degree two polynomial.
Assume that there are two secret values, C1 and C2. Therefore, we will setup the two
polynomials to generate the secret pieces as follows:

a1x
2 + b1x+ C1 = y1

a2x
2 + b2x+ C2 = y2

(2.3)

Note that constant values (a and b) for the polynomials that will hold the two secrets,
do not have to be the same. That is true, regardless of the degree of the polynomial to be
used for breaking up the secret. The reason being that the secret occurs at the y-intercept,
and the values of the constants cancel out at x = 0 - regardless of their original values.
For the re-construction of the secret, we use Lagrange’s Interpolation, using the following
formulas:

L(x) =
k∑

j=0

yjlj(x)

lj(x) =
∏

0≤m≤k
m 6=j

x− xm
xj − xm

(2.4)

The next step is to show the points that would be generated for each polynomial, plus
the polynomial which would be reconstructed from the points that are a sum of the secrets
C1 and C2:
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Polynomial yn Point 0 Point 1 Point 2

f1(x) = ax2 + bx + C1 (x0,y0) (x1,y1) (x2,y2)
f2(x) = ax2 + bx + C2 (x0,y3) (x1,y4) (x2,y5)
f3(x) = 2ax2 + 2bx + (C1 + C2) (x0,(y0 + y3)) (x1,(y1 + y4)) (x2,(y2 + y5))

Table 2.1: This table shows the points generated for each secret value.

In this case, we are using the same value for constants a and b, but this not necessary.
For reconstructing the polynomials f1(x), f2(x), or f3(x), the value lj(x) will be the same
for all of them because it is strictly dependent on the values of x - which are equal for
all functions. The only difference in the calculations of reconstructing the values, is the
y values used. Now we want to prove that if we add the y values for a particular x, and
try to reconstruct the secret, we will get the sum of the two original secrets. When using
Lagrange’s Interpolation to reconstruct a degree two polynomial, we have to first calculate
the values l0, l1, and l2. The next step, is to apply the following equation for reconstructing
polynomials f1(x) and f2(x):

f1(x) =
2∑

j=0

yj ∗ lj(x)

f1(x) = y0 ∗ l0 + y1 ∗ l1 + y2 ∗ l2

f2(x) =

j=2,k=5∑
j=0,k=3

yk ∗ lj(x)

f2(x) = y3 ∗ l0 + y4 ∗ l1 + y5 ∗ l2

(2.5)

Now if we apply the equations to reconstruct the function f3(x), we get the following:
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f3(x) =
2∑

j=0

yj ∗ lj(x)

f3(x) = (y0 + y3) ∗ l0 + (y1 + y4) ∗ l1
+ (y2 + y5) ∗ l2

f3(x) = (y0 ∗ l0 + y1 ∗ l1 + y2 ∗ l2)
+ (y3 ∗ l0 + y4 ∗ l1 + y5 ∗ l2)

f3(x) = f1(x) + f2(x)

f3(x) = 2ax2 + 2bx+ (C1 + C2)

(2.6)

Even though the resulting polynomial (from the summation of f1(x) and f2(x))), has a
different shape, the y-intercept occurs at the sum C1+C2. Using a very similar proof to the
one shown in equations 2.5 and 2.6, one can show that the same holds for the multiplication
property. The only difference for the multiplication, is that it will require five points to
re-construct the function because the result of multiplying two polynomials of degree two
is a polynomial of degree four.

Shamir’s Secret Sharing Scheme, meets all of the requirements propoposed by Riverst,
Adleman, and Dertouzous except for one: the encoded version of the data should not
require more space to represent than the amount of space required for the original data.
Since the data is being split into three parts, each at least the size of the original data,
this requirement is not.

2.7 Database Encryption and Security

In general, there are three distinct, but overlapping methods, to achieve data security:
physical security, operating system security, and data encryption. To achieve data con-
fidentiality, the data needs to be encrypted, since access control mechanisms can only
protect the database if it is being accessed using the traditional mechanisms[71]. It should
be noted, that even encryption, by itself, is unlikely to be sufficient for the protection of a
database, but it does go a long way to solve many of the problems [36]. There are many
challenges to processing encrypted data in general, and databases are no exception. This
section will look into details at the work that has been to protect data through encryption
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and non-encryption scheme. Each proposed method will be analyzed in detail - highlight-
ing the pros and cons of each. At the end of this section, analysis on some of the early
encryption methods explored for this work will be presented.

2.7.1 Database Security Without The Use of Encryption

In this section, we will discuss some of the proposed methodologies for protecting data
in a database, without the use of encryption. One of the proposed schemes [17], achieves
data privacy by partitioning the database and storing it on multiple servers that can’t
communicate with each other. The idea is the data on any of the partitions, by itself, can’t
violate the privacy of the data [17]. The queries are carried out by performing sub-queries
on the different database parts, and then putting together the result at the client side [17].
The example presented involves storing a credit card number field securely. This is achieved
by generating a random number r, and XOR-ing that value with the credit card number.
One database will hold the random numbers, and one database will hold the result of XOR-
ing the random number with the credit card number. To recover the credit card number,
the client queries both databases, and XORs the the values returned from the databases,
to get the credit card number. The advantages of this scheme include: no encrypted
connections are required to the various servers hosting the database (because the data
at each provider on its on is meaningless, and eavesdropping on that connection will not
compromise the privacy of the data), the operation for recovering the data is cheap relative
to decryption, and the data can be stored in plaintext form (preserving the operation of
the database and the types of queries supported). One of the disadvantages of this scheme
is the process of decomposition/partitioning of the database, which is not straightforward,
and requires extensive analysis of the attributes of the database to determine how the
client defined security and privacy constraints will be met. Another weakness is that the
architecture does not support selection on encoded attributes, nor does it support the
GROUPBY clause - two key functionalities in databases. Finally, the authors have not
performed a real-world case study on their architecture, which could potentially reveal
more drawbacks of their architecture.

2.7.2 Database Encryption Advantages and Disadvantages

As with any application where encryption is used, in the context of databases it provides
a layer of security to preserve data confidentiality even if the physical data is lost or
compromised[36]. There are a lot of concerns involved with encrypting, and executing
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queries, on encrypted databases. The first concern is, how will the database be encrypted?
Should the encryption be on the record level? Or on the field level? Or should the
encryption occur on the database file as a whole? These are the first set of questions that are
encountered when database encryption is going to be performed - encryption granularity.
In order to answer these question, an individual must examine each method, in light of the
application its being used in, to determine the best fit. The first challenge introduced with
most database encryptions is the ciphertext searching/substitution vulnerability. This
issue occurs because of the high frequency of identical plaintext values being encrypted
under the same key. While this issue occurs in any encryption application, it is especially
problematic in databases because the possibility of repeated plaintext is high.

The next common challenge introduced with most database encryption is the fact
that the encryption is not order preserving. This is problematic for the operation of
the database, because it relies on indexes to speed up query execution, which in turn re-
quires ordered data to be pre-computed[72]. While encryption functions preserve equality,
allowing for hashing to be used for indexing, frequency information is revealed[72].

Given all these challenges and concerns, it is clear that sacrifices, or compromises, have
to be made in order to achieve a particular level of security. The type of compromises
will be determined by the level of security defined by the user, and will vary from one
application to the next.

2.7.3 Database Encryption Techniques

There are different ways to achieve database encryption: encrypting the database as a
whole, encrypting records (under a single key), encrypting records (use separate field keys),
and encrypting fields (under single or multiple keys). We will explore each encryption
method in the following subsections.

Complete Database Encryption

For this encryption method, a single key is used for encrypting the database file, or for
encrypting the physical drive that is hosting the database[71]. While this method maintains
the confidentiality of the data, it does not support discretionary access control[71]. This
method also does not support any database functionality (queries) nor does it support
any mathematical computations (addition, multiplication, average, etc...), without the
decryption of the database first. Therefore, this type of encryption might be ideal only for
archiving databases, and will not be considered or analyzed any further in this work.
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Record Based Encryption

For this encryption method, it can be performed using single key for all the records, or
multiple keys - one for each record. For the case of a single key use, each record is encrypted
such that the values for the different attributes of that record are combined into one large
encrypted tuple. This method of encryption is used as a database archival method -
requiring large amounts of decryption for any processing[72]. This of course is a major
drawback, making it an undesirable option for our application.

One method that involves record based encryption, involves indexing the encrypted
attributes/fields that are involved in search and join predicates [48]. The idea is, the
encrypted version of the table will contain an encrypted version of the record, plus an
index field for every attribute/field involved in a search or join predicate. The mapping
function used for the indexing process is order preserving, and is used with a partitioning
function to build the encrypted version of the database. With the help of a query translator
and meta data about the attributes in the database stored on the client side, a server-side
representation of the query is created and sent to the server to be executed. The encrypted
tuple result is then decrypted and returned to the user. Finally, an algebraic framework
for query splitting is proposed, such that the cost of the query execution (comprised of I/O
and CPU cost of evaluating the query at the server, the network transmission cost, and
the I/O and CPU cost at the client) is minimized. The advantage of the proposed system
is that the data is indeed encrypted, and can be stored at an untrusted site, allowing for
the majority of the query execution to occur at the untrusted server. However, there are
a few disadvantages. The first disadvantage is that the binning of values reveals data
distribution information [53]. The second disadvantage is the complexity involved with
the implementation, which requires partition functions, mapping functions, identification
functions, as well as the maintenance of the meta data to allow for the execution of queries.
Finally, it is not clear what the overhead of this setup is, compared to a database system
that contains an unencrypted version of the same database under test. The experiments
presented show the change in execution time as the number of buckets used for indexing is
increased. But the question in this case is, how does this execution time compare to running
the same query on an unencrypted version of the same database? This is something that
was not discussed in this work.

The second type of record based encryption is performed with separate field keys. A
very specialized cryptographic system has been suggested, that is based on the Chinese
Remainder Theorem[37, 36]. The advantages of the proposed system is that it can detect
any subtle modifications to the ciphertext - whether they have been done maliciously, or
occurred due system errors[36]. This is achieved because the presented system is basically
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a block cipher over an entire record, with block ciphers error propagation property. The
second advantage of this method is that prevents the substitution of field values, since the
record is encrypted as a whole. Another advantage, is that the system is not susceptible to
searching/substitution vulnerability since the possibility of having repeated ciphertext is
low - given that the possibility of two records being identical is fairly low. Finally, a very
important advantage is that it allows for partial block decipherment (unlike block cipher
cryptographic systems), which enables easy access to certain fields for a set of records,
without the need for decrypting the whole record[36]. The disadvantages of this system
include expensive write and update operations, because if the value of one of the fields is
changed, the entire record has be to re-encrypted[36]. The second major disadvantage is
that an update to any record, requires knowledge of all the field values for that record.
Therefore, it is not enough to have the encryption/decryption keys, but also the other
values in that record have to be known by the user performing the update, or have to be
retrieved prior to the update. This is a major disadvantage because it is very plausible that
the person performing a record update, does not have knowledge of the values of the other
fields - whether it is because he does not have access to all the fields in those record (does
not have security access), or because they simple don’t have the values memorized. Another
disadvantage is, it is not possible to project out fields without performing a computation
over complete records, which requires knowing the field keys[38].

The last example of a record level encryption to be explored, is the one by [53]. In
this work, the authors propose adding a different counter-based CTR for each record. The
counter generates a random number, which is encrypted, and XOR-ed with an attribute.
The next attribute in the record is encrypted by XOR-ing the plaintext with the encrypted
version of the next sequence in the counter. In other words, the following scheme is
operations are performed to perform the encryption:

CTR Attribute1 Attribute2 Attribute3
Counter C ⊕E(C) ⊕E(C + 1) ⊕E(C + 2)

Table 2.2: Encryption scheme proposed by [53].

The advantages of the proposed scheme, is that it meets a pre-defined set of security
requirements (as discussed in their work), while still supporting select, project, and join
queries. The disadvantage of this scheme is that in its current form, it only supports
read-only queries. Although they claim that it can be extended to support write queries,
they did not discuss how this would be done. The second disadvantage is that it requires
tamper-proof hardware module to perform secure execution. Therefore, this scheme will
require certain hardware setup wherever it is deployed - adding to the cost and complexity
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of deployment. Finally, in order to meet the defined security requirements, dummy tuples
are sometimes sent to the client - increasing both the amount of data communicated, and
the amount of data the client has to filter through to get the relevant data. Finally, the
scheme does not support any mathematical operations on the encrypted fields - the field
values have to be decrypted before they can be involved in any computations.

Field Based Encryption

For this encryption method, it can be performed using single key or multiple keys (one
for each field). For the single key field encryption method, it can be one key that is
used to encrypt every field value in a database. The single key field encryption method
is vulnerable to ciphertext searching/substitution, if there are a lot of repeated plaintext
values[76]. The second type of field based encryption is using separate keys for each field
of each record. In order to avoid having to store a large number of keys, the keys can be
generated as a one-way function of a record id, field id, and a single secret key[76, 38]. The
multiple key method mitigates the weaknesses of ciphertext searching/substitution, and
has a lot of advantages, which will be discussed in more details.

Advantages of field based encryption include:

• Support projection, and selection, in encrypted form [38]

• Allows for the decryption of select fields in a record independently, without having
to decrypt all the fields in the record [38]

• Compatibility with legacy applications [71]

• If the encryption keys are based on a function, then the amount of info that needs
to be stored for encryption/decryption is limited

Disadvantages of field based encryption include:

• To retrieve records based on a field criteria, the field of every record has to be checked.
In other words, requires full table scan [38]

• Field level encryption causes expansion of short fields - for example for using DES it
would expand short fields to 64 bits [38]
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One work suggested for field level encryption in databases, is through the use of multiple
representations of data values for the same field (attribute) - formally known as homophonic
cipher [76]. In other words, multiple representations of a ciphertext are used, for the
same plaintext value, in order to prevent frequency analysis. The author of this work
suggests applying the homophonic cipher at the character level, where the assumption is
that each character has a 6-bit representation and that an 8-bit homophonic encoding
is used, which will require a r/3 dummy characters to be certain that a homophonic
encoding exists with a flat distribution[76]. In order for this scheme to allow for relational
joins, exact flat distribution will not be possible, and information to dynamic attacks is
leaked[76]. Another major weakness for the proposed system is that when a query for
finding a record (or group of records), based on the value of some field is being executed,
the entity initiating the query has to generate the different homophonic representations
for each character - at most 256 8-bit numbers. For our application, this has a two fold
drawback: the amount of processing required to generate the different combination for a
plaintext value, and the communication cost of transmitting those values to the CSP. If
the query is suppose to match multiple field values, then the effect is compounded further
- making it computationally heavy. This scheme supports average calculations, but extra
characters have to be used to identify dummy records, and extra computations have to be
performed to remove the dummy records from the calculation.

The work by Denning suggests a different approach to field encryption: using different
keys to encrypt each field in order to mitigate the weaknesses of ciphertext searching/substi-
tution. The work focuses on different methods of key generation, such that the probability
of getting repeated ciphertext is low - an extension to the work by Flynn and Campasano
which proposes the use of different keys for each record [43]. Also to reduce the issue with
maintaining a large number of encryption/decryption keys, the key is generated based on
a fixed relation, such that it can be easily generated during decryption. Denning proposes
five possibilities for the key generator function, where ⊕ is the exclusive-or operator [38]:

1. Kij = EKj
(Ri), where Kj = EK(Fj)

2. Kij = EKi
(Fj), where Ki = EK(Ri)

3. Kij = Ri ⊕ Kj, where Kj = EK(Fj)

4. Kij = Ki ⊕ Fj, where Ki = EK(Ri)

5. Kij = EK (Ri ⊕ Fj)
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Note that Ri is the identifier for record i, Fj is the identifier for field j, and Kij is the
key for cell i, j. The disadvantage of the first method is that two encryptions are needed to
compute each element key in a record - tripling the effort required to encrypt or decrypt an
individual record [38]. The advantage of the first method is, for multiple record accesses to a
particular field j, the element keys in field j can be obtained with one additional encryption
each, once Kj is computed. The second method is similar to the first method, but the order
of the encryption is switched, allowing faster access to all fields within a record, but slower
access to multiple records [38]. The third method replaces one of the encryptions with
an XOR. The problem with that approach is that if key Kij is compromised, then the
field key Kj is compromised as well, and therefore every element key in field j, is easily
computed (assuming that record identifiers are known) [38]. The fourth method is similar
to the second, where a record key is first generated, but instead of a second encryption
an XOR operation is performed [38]. With this method, the time to encrypt or decrypt
an entire record is competitive with record based encryption, but multiple record accesses
to a single field still requires an encryption (of the record key) to obtain the element keys
in the field [38]. The fifth method performs a single encryption and an XOR operation,
giving it the advantage of never requiring double encryption to compute an element key
[38]. This method, does though, always require encryption, making it slower than method
3 for multiple record accesses to a single field, and slower than method 4 for single record
encryption and decryption. Another disadvantage is Kij = Kpq will occur whenever Ri ⊕
Fj = Rp ⊕ Fq [38]. The common problem with the previously mentioned solutions is that
if a query was to be executed on values encrypted using this scheme, you would have to
supply a value that can be used to compute the decryption key (or as proposed by this work
a trusted interface would be holding this key)- thus giving the server the ability to recover
the plaintext if the secret key is compromised. Otherwise, it is not possible to perform a
query, since the person generating the query would have to generate the different possible
ciphertexts to compare to the field values being searched. There are also no details about
how the query execution would be carried out exactly, or what type of database queries
are supported other than select and projection queries.

Another field level encryption based work suggested, similar in nature to [38], sug-
gest XOR-ing the plaintext value with a number based on the database coordinates, before
encrypting the result using a symmetric-key cryptographic scheme [41]. The work also pro-
poses a secure indexing scheme, to maintain the database query execution efficiency [41].
The operation for encrypting a cell involves the following operation: Ek(Vtrc ⊕ µ(t, r, c)),
where Vtrc is the plaintext value located in table t, row r and column c, µ is a function
that generates a number based on the database coordinate of the field being encrypted,
and Ek is the encryption function under private key k. Similar to the work of Denning,
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the advantage of this method is that the structure of the database is maintained, you
just encrypt the values in the various fields. The second advantage is that an indexing
scheme is also proposed, to allow for indexing of the encrypted fields. Finally, since dif-
ferent keys are being used to encrypt each field value, the proposed scheme is not prone
to ciphertext searching/substitution weaknesses. It is not clear what the performance hit
is for the proposed scheme, relative to an unencrypted database. The author claims that
the only overhead of the proposed scheme is, the overhead associated with the encryption
and decryption operations [41]. In this case, the encryption operation requires the gen-
eration/retrieval of database coordinate information whenever a field is being encrypted,
and the decryption operation requires the retrieval of the database coordinate information
- operations that have not been discussed, and could potentially affect performance of
query execution. Another disadvantage is that the proposed system does not support any
arithmetic operation, such as addition, multiplication, average, etc...

Another field level encryption based work suggested the use of tamper free controller,
mandatory access control, and a two level subject [69]. In this work, it was proposed to
leave unclassified database values to be stored in their plaintext form in order to improve
query execution speed, and to perform field level encryption (DES) on private and classified
database values. The key generation procedure differs, depending on whether classified
data or private data is being encrypted. For private data, the encryption key generation
procedure for encrypting cell i, j, is through the use of a random key generation function
g, which is being feed a seed ((Aj ⊕ ID)⊕T ) and the master controller key K, the private
key is generated and used to encrypt the field. For classified data, the encryption key
generation procedure for encrypting cell i, j, is through the use of a random key generation
function g, which is being feed a seed attribute j Aj and master controller key K. The
generated keys are securely stored at the master controller, for retrieval by the mandatory
access control of the database, to perform the encryption and decryption of the query
request/responses. One of the advantages of this system is that it does not alter the
structure of the database, encrypting certain fields as required, and leaving the rest in their
plaintext form as needed. The second advantage is the key generation function is chosen
such that the probability of getting repeated keys is low, and it is also computationally
infeasible to determine one element key from other element keys [69]. The proposed scheme
also allows for the detection against modification of sensitive data and their classification
label, because the plaintext is replicated many times (to fill the encryption block), it
can provide authenticity as well as secrecy [69]. Finally, the proposed scheme addresses
confidentiality, access control, integrity, and authentication and non-repudiation. One of
the disadvantages of the proposed scheme is that not all the fields are encrypted. While this
might be acceptable in some applications, it is probably not a wide range of applications.
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The second disadvantage is that queries involving a statistical calculation over a range of
data in the database, such as sums, averages, and counts, can not be performed directly
[69]. This means that if any of these types of queries is to be carried out, all the records
involved have to be retrieved, decrypted, before the calculation can be performed. Finally,
there is no study about the cost of the proposed system. The authors claim that the cost
is very minimal, but there is no empirical data to support this claim.

Another implementation that involves field level encryption is the work done by [31].
In this case the authors propose the use of both public key and private key cryptographic
systems to encrypt the fields of the database. They achieve access control mechanisms,
and data privacy, by encrypting the plaintext field value using symmetric key encryption
and a randomly generated private key, and then encrypting the private key using the user’s
public key. If the user wants to share that field value with other users, then the private
key is encrypted using the other authorized users’ public key, allowing them to access the
database values. The advantage of this implementation, is that it retains the structure
of the database. The second advantage is that it achieves both data privacy, and access
control on the various fields. Some of the disadvantages of this scheme include the high
number of keys that have to be stored and maintained. It is not clear what the performance
impact is on storage and retrieval process of these keys. The second disadvantage affecting
the performance, is the use of the public key cryptographic system on top of the symmetric
key cryptographic system. There are no benchmarks on the proposed scheme, and its effect
on the operation of the database. Finally, this scheme does not support any mathematical
computations, such as addition, multiplication, and statistical calculations.

2.8 Processing Encrypted Data

The area of processing encrypted data, is still being explored, and still faces a number of
challenges. The work on encrypted data processing will pave the way for more companies
and individuals, that don’t want to give up their data confidentiality, to consider utilizing
the cloud for their computing needs. One of the leading problems with processing encrypted
data is that very often, in order to perform arithmetic operations, or even any type of
general processing (such as sorting), on the data, one has to convert the data back to its
non-encrypted origin before performing the required operations [20]. This is the most basic
solution for this problem - if you have something encrypted, and you want to process it,
then decrypt it and perform all the processing required and then re-encrypt the data again.
This of course, is not an efficient solution, and might not be possible in some scenarios.
For example, if a user has an encrypted database, if they have to decrypt all the tables
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involved in a query, that might take a very long time to decrypt, process the query, and
then re-encrypt the data.

While different methods have been developed to allow for the processing of encrypted
data, in the context of different applications, it should be noted that some operations
(comparisons and search) do not require any special setup [20]. Even though performing
a search and comparison on encrypted data is possible without any special setup, the
performance is severely affected in database query execution [72]. The reason being that
encrypted databases does not allow for data indexing, forcing the database to scan all the
records to find a match.

One of the proposed methods of being able to perform keyword-based searches of a
large text file, is by creating a concordance of the file [76]. The first step is to break up
the file into blocks, and as each block is being encrypted, a concordance is constructed,
storing the words in the file, and the block that contains that work. The concordance is
stored at a central site, with the encrypted files. When a keyword is to be searched, the
encrypted version of the keyword is sent to the site, where the concordance is searched
for that keyword and all the blocks containing that keyword are returned. The user then
simply decrypts the blocks to retrieve the plaintext. This method is the basis for for
an implementation of large database, managed by the STAIRS full-text retrieval system
[29]. The advantages of this scheme include: the data is encrypted at the central site
and is thus protected against static attacks, there is relatively little overhead in processing
(if searching as previously described is all that is done), allows for multi-level security
classification through the use of different keys for different files, and the database along
with the concordance can be created incrementally - allowing for the growth of the database
[29]. The first disadvantage of this method is: if the word being searched for occurs in a
large number of blocks, then that will require a large number of retrieval and decryption -
incurring a heavy communication and processing cost for the user. The second disadvantage
is that this scheme does not support other major database functionality, such as joins,
projections, removals, and updates.

Another proposed algorithm for processing encrypted data is done by adding the key-
word (key) and the plaintext word [20]. The operation of addition can be a ”modulo
2 addition” or any other method used by the system, provided it uses a word size in a
modulo L that will prevent loss of data due to overflow [20]. In this algorithm, the first
addition of the key to the plaintext amount (P1) gives the first ciphertext balance (C1).
Afterwards, if additional values want to be added to the ciphertext balance, then you just
perform addition on C1. When a decryption is required, then one can simply subtract the
key from the ciphertext to recover the plaintext. In other words, the following operations
are performed:
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C1 = K + P1

C2 = C1 + P2

C3 = C2 + P3

(2.7)

Now, in order to decrypt the sum of P1, P2, and P3, we just have to subtract the key:

C3 = C2 + P3

C3 = (C1 + P2) + P3

C3 = ((K + P1) + P2) + P3

C3 −K = [((K + P1) + P2) + P3]−K
= P1 + P2 + P3

(2.8)

Some of the drawbacks of the proposed algorithm are [20]:

• A one-time only breaking of the key enables the decryption of all the data at any
time

• The periodic updates that are done in plaintext may increasingly provide information
to a potential enemy

• If the balance is ever discovered in an intermediary state, it is possible to trace all
the updates

• In order to perform a correct decryption, it is necessary to distinguish between data
entering the system as plaintext and data entered as ciphertext

A small variation to the algorithm described above, that was proposed by the same
authors, is to add the key to each ciphertext before adding it to another ciphertext. For
that solution, they need to keep track of the number of ciphertexts added together, so that
you can subtract a multiple of the key to get back the sum of the ciphertexts. This still
suffers from similar problems as the previous method.
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Chapter 3

Proposed System Architecture & Data
Encryption Method

3.1 Proposed System

The proposed system has two components: a mobile device, and a cloud service provider
(CSP) hosting the database. A diagram depicting the architecture of the system is shown
below:

!

Internet!

Encrypted
Connection

Authorized Users

Cloud 
Service 

Provider 1

Cloud 
Service 

Provider 2

Encrypted 
Database

Figure 3.1: An overview of the proposed system architecture.

The proposed system allows multiple authorized users, who have access to the private
keys and database metadata, to issue queries to the encrypted database hosted in the
cloud. The CSP is accessed by establishing an encrypted connection to protect against
eavesdropping, while the data in the database is encrypted to protect the privacy of the
data in the database.
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An overview of the components of the system, and the operation of the system are
shown in the diagram below:

 Cloud Service 
Provider

Encrypted 
Query(1)

!

Internet!
Encrypted 
Response(4)

(2)

(3)

Authorized 
User

Non-trusted 
Region

Trusted
Region

Figure 3.2: An overview of the system operation, and the interaction between the various
components of the system.

Specific details of how the various components of the system work, including imple-
mentation details, are included in section 4.4. Here we discuss the general usage/operation
of the system. An application running on the device of an authorized user has two main
purposes: first, the ability to convert a plaintext query to its encrypted form, and second,
decrypt the encrypted result and display it to the user. The first step (1), is to use the
database metadata (table names and field names) to convert the plaintext query to its en-
crypted form, and send the query over an encrypted connection to the CSP. The database
server hosted on the CSP receives the query (2), and executes it. Next (3), the database
server sends back the encrypted records to the client that issued the query. Finally (4),
the application running on the authorized device, uses the encryption keys and database
meta-data (field types), to decrypt the records appropriately, before returning the plain-
text results to the user. Any extra processing required for queries that are not natively
supported by the server, are also performed by the application.

3.1.1 Security Objectives

The security objectives for the proposed system, can be split into two main components:
data security, and system security. First we will look at the data security component, were
we the privacy of the data in the database should also be protected at rest and against
chosen plaintext attacks (CPA) from probabilistic polynomial-time (PPT) adversaries. The
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data in the database can be split into two groups: values encrypted using AES in counter
mode, and data encrypted using Shamir’s Secret Sharing Scheme. We did not alter the way
AES is being used in counter mode - merely introduced a nonce generation component.
We also did not alter the way Shamir is being used, with the exception of keeping the
x values of the polynomial secret, the values encrypted using Shamir are unconditionally
secure. We define the experiment for the numeric encrypted values for Shamir

∏
= (Gen,

Enc, Dec), and any adversary A that is a probabilistic polynomial-time adversary:

Definition 3.1.1. Experiment SHAMIRA,
∏:

1. The adversary A outputs a pair of messages m0, m1 ∈⊂M - corresponding to numeric
field values in the database

2. A random bit b ← 0,1 is chosen, and then a ciphertext c ← Enck(mb) is used to
produce an encrypted query q, execute it on the server, and returns all the matching
records to the adversary A. We call c the challenge ciphertext

3. The adversary A is given the result consisting of a secret piece value for cx,b for field
f, which corresponds to plaintext numeric values mb

4. The output of the experiment is defined to be 1 if b′ = b, or and 0 otherwise. (In
case PrivKcpa

A,
∏ (n) = 1, we say that A succeeded.)

We define the experiment for the values encrypted using AES in counter mode
∏

=
(Gen, Enc, Dec), and any adversary A that is a probabilistic polynomial-time adversary,
and any value n for the security parameter as follows:

Definition 3.1.2. Experiment AESA,
∏:

1. The adversary A is given input 1n and oracle access to Enck(), and outputs a pair of
messages m0, m1 ∈⊂ M - corresponding to string field values in the database that
are of the same length

2. A random bit b ← 0,1 is chosen, and then a ciphertext c ← Enck(mb) is used to
produce an encrypted query q, execute it on the server, and returns all the matching
records to the adversary A. We call c the challenge ciphertext

3. The adversary A continues to have oracle access to Enck(), and outputs a bit b′.

4. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise. (In case
PrivKcpa

A,
∏ (n) = 1, we say that A succeeded.)
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The system security objectives for the proposed system, are concerned with the opera-
tion of the system, where the adversary shouldn’t be able to:

• Determine the database being accessed, the number of queries being performed by a
user, the number of records returned for the various queries, and the number of users
accessing the database

• Deny service to authorized users

• Maliciously change values in a database

Through the use of an encrypted connection between the device and the CSP, the se-
curity objectives for the operation of the system can be achieved against adversary eaves-
dropping but it, it isn’t possible to do the same for the CSP. Since the CSP is hosting the
database and processing the queries, it is not possible to protect against the first point.
There is also a need to ”trust” the CSP will be able to maintain the availability of the
service, and protect against unauthorized access to the database such that a person can’t
maliciously change the encrypted data. The security objectives for the data and system
security preclude the following:

• Protecting the data against malicious changes, or incorrect changes due to errors,
from the CSP or authorized users (data authentication)

• Number of fields associated with a specific table can not be hidden from the CSP

• Type of query being carried out (select, update, delete), can not be hidden from the
CSP

• Field types for a specific table (integer, string), can not be hidden from CSP

• Frequency of access to fields and/or tables, can not be hidden from the CSP

As the system stands in the proposal, if the data stored in the database is changed
maliciously, it becomes unrecoverable. For the case of string values, it would have to be
first determined that the retrieved value is incorrect, and it would have to be retrieved from
another CSP. As for numeric values, it would have to be determined that the recovered value
is incorrect, perhaps because the re-construction leads to value that doesn’t make sense,
and it would have to try to reconstruct using combinations of secret pieces from different
CSP. Therefore, if two of the three secret pieces are incorrect, then the numeric value is
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unrecoverable. The users’s device contains all the secret keys, and database metadata,
and so of course, it has to be protected appropriately to avoid exposure of the data. The
data in the database has to be protected against malicious changes to the data, as well to
maintain data availability for authorized users. The privacy of the data in the database
should also be protected at rest.

3.2 Proposed Encryption Method

Data encryption in the database is performed at a field level, where strings and any numeric
values not involved in any computations are encrypted using a symmetric key encryption
scheme, and numeric values are encrypted using Shamir’s Secret Sharing Scheme. In this
work, we propose a nonce generation method for using AES in counter mode, and a way of
combining the symmetric key encryption system with the Shamir’s Secret Sharing Scheme,
in order to maintain the privacy of data in database.

3.2.1 Encrypting Strings

Any values not involved in computations are encrypted using a symmetric key encryption
scheme such as Advanced Encryption Standard (AES). In order to ensure that the same
plaintext does not produce equal ciphertext - a weakness known as ciphertext searching/-
substitution vulnerability, two methods were explored: using AES in cipher block chaining
mode (CBC) or electronic code book (ECB) mode with a different key for each cell, and
using AES in counter (CTR) mode. A formal definition of the usage of the encryption
scheme:

1. Let Mi,j denote a plaintext value in row i and column j

2. Let IV be 256 bit string value, generated once during system setup, using a crypto-
graphically secure Pseudo-Random Number Generator (PRNG)

3. Let primary key (PKey) be a string value representing the record number (example:
5), field key (FKey) be a string value representing the field number/position in the
table (example: 3), and table name (tname) be a string value representing the table
name

4. Let Ki,j be 256 bit string value, generated by concatenating PKey, FKey, tname,
and IV as follows: Ki,j = PKeyi + FKeyj + TName + IV with a minimum of
128 bits used from IV
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5. Let EKi,j
denote the encryption operation using AES under key Ki,j

6. Let Ci,j denote a ciphertext value for plaintext value Mi,j generated as follows: Ci,j

= EKi,j
(Mi,j)

7. Plaintext recovery is done by first generating Ki,j as previously described, and then
doing the following: Mi,j = DKi,j

(Ci,j)

The key generation process proposed, ensures that the ciphertext is unique across ta-
bles, through the table name, unique across rows through different primary keys, and
unique across columns, through the field key. The key generation method assumes that
the concatenation of TName, PKey, and FKey is less than or equal to 128 bits long, while
the rest of the bits of the key will come from the randomly generated IV. This will ensure
that even if an attacker has aprior knowledge of the table name and primary key, then
they will still need to guess at least a 128 bit key comprised of the IV, plus the size of the
field key FKey. Since this is a symmetric key encryption system, the same key is used on
the encrypted value to recover the plaintext value.

The alternative was to use AES in counter mode, and generate different nonce values
for each cell. A formal definition of the usage of the encryption scheme:

1. Let IV be 256 bit string value, generated once during system setup, using a crypto-
graphically secure Pseudo-Random Number Generator (PRNG)

2. Let K be 256 bit string value, generated once during system setup, using a crypto-
graphically secure Pseudo-Random Number Generator (PRNG)

3. Let primary key (PKey) be a string value representing the record number (example:
5), field key (FKey) be a string value representing the field number/position in the
table (example: 3), and table name (TName) be a string value representing the
table name with a minimum of 128 bits used from IV

4. Let Si,j represent a 256 bit string value, which is a concatenation of enough bits from
the IV, FKey, PKey, and TName

5. Let EK denote the encryption operation using AES under key K

6. Let Zi,j denote a string value generated as follows: Zi,j = EK(Si,j)

7. Let Mi,j denote a plaintext value in row i and column j
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8. Let Ci,j denote a ciphertext value for plaintext value Mi,j generated as follows: Ci,j

= Zi,j ⊕ Mi,j

9. Plaintext recovery is done by first generating Zi,j as previously described, and then
doing the following: Mi,j = Zi,j ⊕ Ci,j

The proposed method for generating the nonce, was inspired from Dennings work on
determining unique keys to encrypt each cell [38]. In the proposed system, the IV, Key,
and field key, remain part of the secret. The majority of the nonce, will be compromised
of the initialization vector, which will ensure that even if an attacker has aprior knowledge
of the table name and primary key, then they will still need to guess at least a 128 bits of
the IV, plus the size of the field key FKey. The experiments were performed using AES
in CBC mode, but the results should not vary highly since the AES in counter mode only
involves an extra step of performing an XOR operation. The advantages of the nonce/key
generation process for the string values is as follows:

• Each cell in the table is encrypted using a unique nonce/key, and thus even if there
are repeated values within a record or field, the corresponding ciphertext value will
be different

• There are only three pieces of information that need to be stored to perform en-
cryption/decryption: IV, TName, field key FKey, and K if using AES in counter
mode

The disadvantages of the nonce/key generation process for the string values is as follows:

• If IV value is determined, then all the non-numeric values can be exposed because
the remaining portion of the nonce/key would be easy to determine

• As the number of fields in the database increase, so does the number of FKey. This
will require more storage, and processing time during the encryption/decryption
process to retrieve the appropriate key - if the keys are spread across multiple tables

3.2.2 Encrypting Numeric Values (Option 1)

Two variations were explored for implementing Shamir’s Secret Sharing Scheme, using a
linear polynomial. Each variation, has its own advantages and disadvantages, but it is
believed that option 1 is less secure. In this sub section, we will discuss the first method
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explored for encrypting numeric values using Shamir’s Secret Sharing Scheme, and the
vulnerabilities that make it less desirable than option 2. For cell (i,j ), containing a plaintext
numeric value (M ) that will be used in mathematical computations, the encrypted value
Ci,j would be computed as follows:

EKSn(M) = (ax+ S) mod pc

C1i,j = EKS1(M)

C2i,j = EKS2(M)

C3i,j = EKS3(M)

Each generated secret piece (C1,C2,C3 ), will be stored at a different CSP such that at
any two of the three secret values are required to re-assemble the secret. For the purposes
of this scheme, the x values and prime value p used to generate the secret pieces, will
be part of the secret as well. To recover the secret, the user must retrieve two of the
three secret pieces, and interpolate using the corresponding x values. The coefficient for
the polynomial used to generate the secret pieces will depend on a value generated once
at the start from a range of values, using a cryptographically secure pseudorandom value
generator:

a = (RandV alue) mod pc (3.1)

For a given field in a table, the same coefficient value a will be used to encrypt all the
values in that field. The RandV alue is generated from a uniform distribution over the
integer range one to p, where p is a prime number that is larger than all the secret values
being encrypted. The advantages of this method include:

• Irrespective of the number of tables, fields, and records, the two pieces of information
that are needed to perform the encryption are the coefficient value a and x, while for
decryption you will only need the x values

• The encryption is order-preserving. In other words, secret piece1 for secret1, will be
less than secret piece2 for secret2, if secret1 is less than secret2. This is also true for
all the other secret pieces (secret piece2 and secret piece3). This would allow MySQL
to natively perform the MIN, MAX, <, and > on the encrypted data

• Supports addition, subtraction, and multiplication on the encrypted values
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• If the same x values are used for evaluating the polynomials in different fields, then
addition, subtraction, and multiplication is supported across different fields in the
table as well. For example, the value from field1 can be added to the value from
field2, in the same table. The same is true for fields across different tables

Some of the disadvantages of this method include:

• If the plaintext value of any of the secret values is determined, then all the other
values are easily recovered, because the relation between the secret pieces is linear.
Therefore, secret piece1 - secret piece2 = secret1 - secret2, and therefore, if you have
secret 1 and its corresponding secret piece1, you can determine secret2 by subtracting
the difference between the secret pieces. This is also true for determining any of the
other secret values

• Equal secret values will produce the same secret piece for a given field, introducing
the weakness of frequency analysis on the values for a given field

• The largest value to be encrypted has to be known ahead of time to choose the prime
value correctly.

• The largest value to be encrypted has to be less than the largest prime less than
2,147,483,647 (maximum value for signed 32 bit integer), or less than the largest
prime less than 9,223,372,036,854,775,807 (maximum value for a signed 64 bit integer)

The first disadvantage mentioned above is very dangerous, because determining one
secret value, exposes all the other values. The second disadvantage, not only allows for
frequency analysis, but makes it very difficult to re-encrypt the values and keep them secret
again, because through frequency analysis of the old data, it can be mapped to the new.
For the reasons perviously mentioned, the next option was explored.

3.2.3 Encrypting Numeric Values (Option 2)

The second proposed option for encrypting numeric values, used for the purposes of this
project, uses a linear polynomial to encrypt the value. The main difference is that a
different coefficient a is used to encrypt each individual value. All the other aspects of the
encryption method, remains the same. Therefore, the encryption process will be require
one extra step for each numeric value: generation of the coefficient a. A formal definition
of the usage of the Shamir scheme:
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1. Let secret S be an integer value in finite field F of size p such that S < p

2. Let a be a randomly generated integer, chosen from a uniform distribution over
integers in the range from zero to p

3. Build degree one polynomial f(x) = (ax + S) mod p

4. Let x 1, x 2, and x 3 be integer values used to generate secret pieces C1i,j, C2i,j, and
C3i,j respectively, for secret value S in row i, column j

5. The encryption process involves generating the secret pieces C1i,j, C2i,j, and C3i,j

by evaluating the polynomial from step 3

6. To recover the secret (decryption), perform interpolation using any two of the three
secret values Cli,j, with their respective x l values. Any of the following combinations
works: C1i,j, x 1 and C2i,j, x 2, or C1i,j, x 1 and C3i,j, x 3, or C2i,j, x 2 and C3i,j,
x 3

7. If the secret being recovered is the multiplication of two secret pieces, then all three
secret pieces have to be used because the multiplication produces a polynomial of
degree two

Some of the advantages of this method include:

• Irrespective of the number of tables, fields, and records, the two pieces of informa-
tion that are needed to perform the encryption are the RandValue and x, and for
decryption (secret re-assembly) thex value

• Supports addition, subtraction, and multiplication on the encrypted values

• If the same x values are used for evaluating the polynomials in different fields, then
addition, subtraction, and multiplication is supported across different fields in the
table as well. For example, the value from field1 can be added to the value from
field2, in the same table. The same is true for fields across different tables

• The linearity between the secret pieces, which existed in the previously proposed
method, doesn’t exist anymore - removing the associated vulnerabilities

Disadvantages of this method includes:
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• The largest value to be encrypted has to be known ahead of time to choose the prime
value correctly. Alternatively the largest possible prime has to be selected, from the
start

• The largest value to be encrypted has to be less than the largest prime less than
2,147,483,647 (maximum value for signed 32 bit integer), or less than the largest
prime less than 9,223,372,036,854,775,807 (maximum value for a signed 64 bit integer)

• MySQL does not natively support MIN/MAX and comparison operators natively by
MySQL

Even though you lose the advantage of supporting MIN/MAX and comparison oper-
ators natively by MySQL, but removes two serious vulnerabilities: If any of the secret
values is determined, then all the other values are easily recovered, and frequency analysis
for equal secret values producing the same secret pieces for a given field.

3.2.4 Encryption Analysis

Advanced Encryption Standard, also known as Rijndael, was chosen because of its high
speed and low RAM requirements - allowing it to perform well on a wide variety of
hardware[73]. The other advantage to using AES, is there are no known practical at-
tacks that would anyone to recover the plaintext from ciphertext encrypted using AES
without the knowledge of the secret key. The use of 128, 192 and 256 key lengths of the
AES algorithm, are considered to be sufficient to protect classified information up to the
SECRET level, while the TOP SECRET level requires either 192 or 256 bit key lengths [1].
The key being used in the proposed system is 256 bits long. There are no requirements for
the key itself, other than its length. The nonce, as described above, would be compromised
of a random component, the table name, the primary key of the recover and the field key.

For unconditionally secure secret sharing scheme, the requirements are that each share
of the secret must be at least as large as the secret itself, and random bits are required in
the formulation of the shares. For Shamir’s Secret Sharing Scheme to be unconditionally
secure, the requirement is the coefficient of the polynomial are randomly chosen from 0 to p
(where p is a large prime larger than the secret), and that each share of the secret must be
at least as large as the secret. These requirements are met in the proposed implementation.
By definition, if the attacker gains access to one set of the data, they will not be able to
learn any new information about the numeric values. In addition to that, since the x-values
are part of the secret, then the attacker will not be able to recover the secret even if they
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gain access to two secret pieces corresponding to the same secret. This can be easily shown
as follows:

Proof. Let S1 be the first secret, y1 be the first secret piece recovered, and y2 be the
second secret piece recovered. If values y1 and y2 are known, using the equation of a linear
polynomial, we have the following two equations:

y1 = ax1 + S1 (3.2)

y2 = ax2 + S1 (3.3)

If we substitute equation 3.2 into 3.3 (or subtract 3.2 from 3.3), we get:

y1 − y2 = a(x1 − x2) (3.4)

This leaves us with three unknowns. Using the secret pieces for other secrets to try
and recover x1 or x2, will introduce another unknown coefficient a for each secret - thus
making it impossible to recover any of the x values or secret values.

For the proposed system, only authorized users should have access to the software
which contains the database information and secret keys. It is also assumed that the
authorized users are not malicious, or have any malicious intent. Therefore, non-authorized
users would not be able to mount a chosen plaintext attack, because they can’t provide
plaintext and see the corresponding ciphertext, nor can the attacker mount a chosen-
ciphertext attack because it would not be able to chose ciphertexts and see its plaintext.
will not have access to both the ciphertext and matching plaintext, thus a known-plaintext
attack should not be possible either. The only type of attack that needs to be considered
is the ciphertext-only attack - since the data is stored in the cloud. For numeric values
encrypted using Shamir’s Secret Sharing scheme, they are resistant to known ciphertext
attacks, because as we have shown in the previous proof 3.2.4, even if the attacker has
access to all the secret pieces for a given secret, they still can’t learn anything about the
secret value used to generate them.
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3.2.5 Advantages And Disadvantages of Proposed System

Some of the advantages of the proposed system includes:

• For the nonce generation process for string values, irrespective of the number of
tables, fields, and records, only four pieces of information are required to perform the
encryption and decryption: the randomly generated value, the table name, primary
key, and field key

• For the encryption process for non-numeric values, the only two pieces of information
are required: the x values, and the prime P used during the generation process

• Allows for easy record updates, and projection, because the values are encrypted
independent of each other

• Each cell will have a unique nonce for encryption, and so there will be no repeated
ciphertext for the same plaintext

• Numeric encryption method supports addition, subtraction, and multiplication on
the encrypted values

• If any of the values are corrupted at any of the CSP, it can be updated from other
CSPs if it was a string value, or it can be regenerated if it was a numeric value
(redundancy)

Some of the disadvantages of the proposed system includes:

• Shamir’s Secret Sharing Scheme is not space efficient, since each value is broken into
three values

• Field values encrypted using AES double in size because of padding and conversion
to hexadecimal form. The increase in data has a negative effect on the amount of
bandwidth for retrieving the data, and the amount of storage required at the CSP

• Does not natively support GROUP BY, COUNT, and Order BY operations on fields.
It also does not natively support partial string matching - aka the value being searched
has to be an exact match

• If the data in two of the three databases is compromised or lost, then the numeric
values are not recoverable - since you need at least two of the three secret pieces to
recover the original secret. Therefore there has to be guarantees by the CSP that the
data will not be lost, or intentionally corrupted
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• The numeric calculations are bound by two things: the definition of BIGINT in
MySQL, and the prime number used to generate the secret pieces. The sum, multi-
plication, and average calculations have to be less than the maximum value that can
be stored by BIGINT (8 bytes, maximum value 9223372036854775807), otherwise
the query will fail[12]. In order to be able to decrypt the value correctly, the value
has to also be less than prime number chosen to generate the secret pieces

• It is a bit slower than using AES in CBC mode (or counter mode) in the traditional
way, because the encryption module has to be re-initialized every time
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Chapter 4

System Comparisons
The three systems being compared are: plaintext MySQL database, encrypted MySQL
database, and the proposed system. The encrypted MySQL database, is encrypted using
MySQL’s built in encryption system. Details of the supported query types, and imple-
mentation techniques for queries not supported natively are discussed in this section as
well.

4.1 Database Details

In this section, we will focus on how the data used in the database was generated, and
the data it contains for carrying out experiments. In order to test various functions of
the proposed system, the database was setup with tables containing varying field types
and varying number of records. The idea is to see how various query execution times are
affected by the different field types, and the number of records. The field values were
generated using a random data generator website (Mockaroo)[11], and a Python script
combining different string values. A copy of the script used is included in the appendix
section.

The database used in the experiments consists of five tables: item price, employee sales,
position, location, and employee. A summary of the details of each table is shown below:
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Table Name Number of Fields Field Types Number of
Records

itemPrice item id, item description, item price int, string, float 24,312
empSales sale id, emp id, sale date int, int, string 100,000

item id, num units sold, int, int
sale total double

position pos id, pos name int, string 4,955
location loc id, loc city, loc state province int, string, string 6,000

loc country, loc address string, string
employee emp id, emp fname, emp lname int, string, string 10,000

pos id, loc id, emp salary int, int, double ->
emp sin, emp hire date int, date 1,280,400

Table 4.1: A summary of the tables used in the database for testing the proposed system.
Note that there are eight versions of the employee, with the number of records starting
at ten thousand, and doubling until we reached one million and two hundred and eighty
thousand records.

The data used in the database, includes some assumptions: string values less than 32
bytes, field names and table names are less than 16 bytes, and numeric values are less than
the chosen prime value 2147483647. The prime value chosen, took into account the values
in the tables, to properly support addition and multiplication between different fields. For
numeric values, they are stored using long signed int type to avoid any integer overflow
issues. The data is used is believed to be realistic, with real location names used, and
common first and last names used as well.

4.1.1 Components

To initiate a proper comparison, the software implementation for the plaintext database
and the MySQL encrypted database, is very similar in operation to the proposed system.
All the implementations, access a database hosted on the same CSP. The software for
the laptops/desktops is written in C, while the software for mobile device, running iOS,
is written using a combination of C and Objective C. Details regarding the devices and
database used in the experiments, are shown in chapter 5. All the implementations makes
use of MySQL’s C API.
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4.2 Plaintext MySQL Database

This is a typical database implementation, where all types of queries supported by MySQL
can be carried out. For this case, static strings of the different query types have been
generated and stored in local variables. Once a query executes on the server, the result is
printed to the console. This represents the best case scenario, with no penalty associated
with data retrieval or decryption. A diagram highlighting how the software for accessing
the plaintext MySQL database is implemented, is shown below:

Records to 
display?

Yes

Display Plaintext

No
End

Generate Encrypted SQL

Send 
Plaintext SQL 

to CSP

Figure 4.1: A description of how the software for the plaintext MySQL database is imple-
mented. This type of query is used as a base benchmark for comparative purposes.

4.3 MySQL Encrypted DB

This is a software implementation which accesses the database encrypted using the built-
in encryption functionality of MySQL. MySQL supports a number of encryption and
compression functions, including the official Advanced Encryption Standard (AES) [13].
The functions of interest are: AES ENCRYPT (for encrypting a value using AES) and
DES ENCRYPT(for decrypting a value using AES), used in AES-256 encryption mode.
In order to compare this system to the proposed system the encryption mode for AES is
first set to cipher block chaining mode (CBC). The functions perviously mentioned, are
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used by supplying three parameters: the value to be encrypted/decrypted, the private key,
and the initialization vector. Padding is automatically added by the function to the string
value being encrypted, to make it a multiple of 128 bits [13]. Note that the one of the
differences between this system, and the one proposed, is that in this case a single key and
initialization vector to encrypt the field values are supplied - as opposed different nonce
generated for each cell in the table.

4.3.1 Encrypting Existing Database

This subsection discusses how the database is converted into its encrypted form. Three
methods were examined:

1. Encrypt one record at a time, and insert it into the encrypted database

2. Encrypt one record at a time, and perform bulk insertion into the encrypted database

3. Encrypt one record at a time, and generate a file formatted in a certain way containing
all the encrypted values for the records, and then perform a LOAD DATA [14]

Unfortunately, the third method did not work, because the LOAD DATA command
returned a parsing error message when a file containing field values with AES ENCRYPT
keyword, encryption key, and initialization vector was used. The first method turned
out to be the fastest method, with the majority of the time in the second method spent
concatenating a large string to execute on the server. In order to achieve the best results
using the first method, the database was converted to its encrypted form on the local
machine, and then exported to the database system online. The conversion process of the
database involves reading records from the plaintext database, generating the encrypted
query, and executing that query on the encrypted database. A summary of the steps for
converting a plaintext table into its encrypted form, is shown below:

1. Retrieve encryption keys for the all the fields in the table being converted

2. Encrypt field and table names

3. Read a record from the plaintext database

4. Using the appropriate field value and encryption key, generate the MySQL insert
statement
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5. Execute the query on the server hosting the encrypted database

6. Repeat steps 3 to 5 while there are plaintext records to process

A sample MySQL insert query, used in the conversion of the plaintext database, is
shown below:

INSERT INTO ‘1 c7a4f0622bb0d253329c58be2c32e78 ‘
VALUES( ’%s ’ , AES ENCRYPT( ”%s ” ,
’ZXCVBNM, . / ASDFGHJKLposition11312 ’ ,
’ZXCVBNM, . /ASDFGHJKLQWERTYUIOP123 ’ ) ) )

Note that the table being inserted into above, contains only two fields: position id and
position name. The first value, position id, which represents the primary key of the table,
is not encrypted and remains in its plaintext form. For the field position name, the field
value is encrypted using the AES ENCRYPT function which takes three values: the field
value for that particular record, the private key, and the initialization vector, respectively.
Note that the same key and initialization vector have to be used for all insert queries,
otherwise the select queries will not work.

4.3.2 Supported Queries

In this subsection, we discuss how some of the queries that are not natively supported by
MySQL encrypted database can be performed using software - for comparative purposes
with the proposed system. Some of the queries that are not natively supported by MySQL
encrypted database include: SUM, AVG, MIN/MAX, greater than, and less than. In
order to make these queries work, all the values have to be retrieved from the server, and
processed by the client. For example, the MIN/MAX query on a particular field would
work as follows:

1. Perform a select query, with projection on the numeric field to be used to extract the
minimum/maximum value - example:

SELECT AES DECRYPT( ‘ bfd56004fc2d85d551a911d4b0514de6 ‘ ,
’ZXCVBNM, . / ASDFGHJKitemPrice11116 ’ ,
’ZXCVBNM, . /ASDFGHJKLQWERTYUIOP123 ’ )

FROM ‘CSP1 ‘ . ‘ 8 1 ca31489b952789500d7eb9f2c864ae ‘
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2. Using a local variable, keep track of the minimum/maximum value encountered so
far as you process all the records in the table

3. Once all the records have been processed, return to the user the minimum/maximum
value stored in the local variable

For the SUM and AVG query, the same query is executed, but a different calculation
is performed before returning the value to the user. For performing the greater than or
less than type of query, an if statement in the code determines whether the value from the
record being processed should be displayed or not.

4.3.3 System Operation

The way this system works is almost identical to the way a plaintext MySQL system works,
with the main difference being the need to supply the decryption keys for the various fields
in the table. For the purposes of this project, a single key is used to encrypt each field
encrypted using AES-256 in CBC mode. To execute a select query, the following steps are
performed:

1. Retrieve the decryption keys for all the fields involved in the query

2. Encrypt the table and field names

3. Generate the query string by combining the appropriate encrypted field and their
respective keys

4. Execute the generated query string

5. Display the decrypted results returned from the server to the user

A sample query for performing a select all on the position table is shown below:

SELECT ‘695 b090e f7ee3bf4d54e f59270aa54fd ‘ ,
AES DECRYPT( ‘ f ce6c9 f0b20c58 f058c13c f4637e7a81 ‘ ,
’ZXCVBNM, . / ASDFGHJKLposition11312 ’ ,
’ZXCVBNM, . /ASDFGHJKLQWERTYUIOP123 ’ )

FROM ‘CSP1 ‘ . ‘ 1 c7a4f0622bb0d253329c58be2c32e78 ‘
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A sample query for performing a select all on the position table with a where clause:

SELECT ‘695 b090e f7ee3bf4d54e f59270aa54fd ‘ ,
AES DECRYPT( ‘ f ce6c9 f0b20c58 f058c13c f4637e7a81 ‘ ,
’ZXCVBNM, . / ASDFGHJKLposition11312 ’ ,
’ZXCVBNM, . /ASDFGHJKLQWERTYUIOP123 ’ )

FROM ‘CSP1 ‘ . ‘ 1 c7a4f0622bb0d253329c58be2c32e78 ‘
WHERE ‘ f c e6c9 f0b20c58 f058c13c f4637e7a81 ‘ =
AES ENCRYPT( ‘ Occupational Therapist ‘ ,
’ZXCVBNM, . / ASDFGHJKLposition11312 ’ ,
’ZXCVBNM, . /ASDFGHJKLQWERTYUIOP123 ’ )

As it was shown in the previous examples, all the query processing is completed by
MySQL database server, and the decrypted result is returned to the user for display. To
ensure there is protection against eavesdropping on the connection with the CSP, a secure
connection is established using SSL.

4.3.4 Advantages and Disadvantages

In this subsection, we examine some of the advantages and disadvantages of using the
encrypted version of MySQL database. Some of the advantages of MySQL encrypted
database includes:

• The encryption/decryption operation is performed on the server. This can be viewed
as an advantage, because it reduces the computational load on the device performing
the queries

• The cost of converting a database from its plaintext form, to its encrypted form, can
be done with less computational resources (as shown in the experiments section)

• If the data is stolen from the server, it is encrypted, and thus protected

Some of the disadvantages of MySQL encrypted databases includes:

• The encryption/decryption operation is performed on the server side, and thus the
values are visible to the server in their plaintext form, and thus the server has to be
trusted

• The secret key has to be supplied to the server to perform any query
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• Does not provide native support for sum, average, min, and max for encrypted nu-
meric values - they would have to be done locally on the device

• The comparison for integer values does not work - only the equal to works

4.3.5 Threat Analysis

In this subsection we examine a potential architecture, where a database encrypted using
MySQL is stored in the cloud, and accessed by various devices through the Internet. Areas
of interest include any potential points of attack and any information that could be exposed
in the system. The architecture of the system consists of three main parts: the users device,
the Internet, and the CSP.

Encrypted 
DB 

CSP

!

Internet!

Threat 1 Threat 2

User’s Device Cloud Service Providers

Encrypted 
Connection

Threat 3

Software 

Mobile Device

Figure 4.2: Threat model for MySQL encrypted database

The users device is critical because it contains all the encryption keys for the system,
as well details about the database, including table names and field names. Therefore,
the user’s device must be protected to avoid having the keys being leaked and exposing
the data. The implications of exposing the secret keys of the database is not just the
recovery of the plaintext, but also the cost of having to re-encrypt the entire database and
the downtime involved until that is complete. The second group of threats involves the
communication between the device and the CSP. Information that could potentially be
learned from snooping on the connection link between the device and CSP include:

• The private keys used to encrypt the data
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• The table names and field names (if there is a projection on any field)

• The type of query being carried out

• The query results are in their plaintext form, so everything related to the query
becomes known

To protect the information discussed from snooping, an encrypted connection has to be
established between the device and the CSP. This will ensure that a snooping entity can’t
learn anything about the data being accessed or the database. The next issue of concern
is the availability of the CSP. While the data is encrypted, a compromised server would
reveal information about the database when it is processing queries. Finally, preventing
authorized access through distributed denial of service attack is an issue of concern, but it
is assumed that as part of the service agreement, the CSP should be able to shield those
types of attacks - such as Amazons AWS cloud security [25].

The last area of threat involves the CSP. In order for this scheme to work, the server
has to be trusted. This of course might not be possible, depending on the client and the
application. But in this case, as with the plaintext version, the CSP has the ability to
access the data every time it processes a query. This scheme is good for protecting the
data during storage, but otherwise it does not provide privacy if the database is hosted at
an untrusted site.

4.4 Proposed System

In this subsection, the proposed system is discussed by looking at the work done during the
implementation process, including the encryption library used for AES, how the Shamir
Sharing Scheme is implemented, the encryption of the database, and how some of the
queries are supported.

4.4.1 AES Encryption

The first open source library explored for this project, is MCrypt. MCrypt is a replacement
for the Unix crypt command, with extensions including AES algorithm [10]. The source
code for AES 128 bit, and 256 bit are 1.14 and 1.15 respectively. The source code was
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retrieved from the last libmcrypt source available online (v2.5.8). According to the doc-
umentation, the code is written for clarity, rather than speed, and thus the initial results
were very slow in terms of execution time.

The source code was slightly modified, in order to speed up the encryption algorithm
initialization process. No modifications have been done on the algorithm itself, with all
the modifications being related to the process of loading the algorithm module. The
mcrypt generic init function is called to setup the encryption key and initialization vector,
but performs a few steps that can be skipped:

• Retrieve key size for the encryption scheme used

• Retrieve all the key sizes that are supported by the encryption scheme, if more than
one exists

• Check the various supported key sizes against the key size being passed by the user
to make sure there a compatible size has been passed

The steps mentioned above can be skipped because the assumption is that the correct
key size is going to be passed every time. The last set of changes involves the retrieval
of the handler for initializing the encryption scheme, and for loading the handler for set-
ting the encryption key. The functions involved are init mcrypt and mcrypt set key, where
a call is made to mcrypt dlsym to search for and retrieve the appropriate handler. The
change involves immediate retrieval of the handler, instead of searching for it - saving a
considerable amount of time every time the encryption module is initialized to encrypt and
decrypt values. Finally, the library has also been compiled with the highest optimization
level provided by XCode configuration file, and c/c++ compiler (v4.2.1). Unfortunately,
while there was a significant improvement in processing time (up to 20x) with the changes
previously mentioned, the results were still not satisfying - and thus a second option (CC-
Crypt) yielding a 2x improvement over modified version of MCrypt was explored. Note
that MCrypt has not been updated since 2012, and thus is not ideal for use since it is not
being maintained regularly anymore.

CCCrypt is an interface for a library developed by Apple, providing access to a number
of symmetric encryption algorithms [9]. The usage of this interface is similar to that of
MCrypt, with general operation involving: initialization of the encryptor with raw key
data and options (CCCryptorCreate()), performing the actual encryption (CCCryptorUp-
date()), and release of the encryptor (CCCryptorRelease()) [9]. Details of how to use the
different methods to perform the encryption, is provided in details in the manual page for
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the interface[9]. The encryptor also provides a padding function, but it was not used for the
purposes of this project because a padding function was developed to perform the padding
when the MCrypt library option was being explored - and thus used for consistence’s sake.
The exact same implementation was used for both the iPhone and the laptop, with tests
over thousands of runs, yielding execution time for CCCrypt AES on the laptop on average
2.2 µs and 5.8 µs on the iPhone.

The encryption of a string involves four steps: encryption nonce generation, string
padding, encryption, and converting the encrypted value to a hex string. The nonce
generation process uses the table name, primary key, and field key to determine how much
to copy from the random string, and then concatenate the rest of the key information. The
next step is to add padding to the string before sending it, with the key, to a function which
will perform the encryption, and then convert the encrypted string into hexadecimal form.
The reason for the last step, is that the encrypted string can contain special characters that
would be interpreted incorrectly by MySQL, causing errors when executing the generated
MySQL query. The final hex formatted string is sent back to the calling function to
be included in the MySQL query. To decrypt a value, four steps are involved as well:
nonce generation, converting the hex string to a byte array, decryption, and removing the
padding. The first step is to generate the nonce value - the same way it was generated
during the encryption process. The second step is to call the decryption function, passing
the decryption key. The function will first convert the string to its byte form, perform the
decryption, and finally remove the padding before returning the plaintext to the user.

Execution time, measured over a million runs of the AES implementation under a key
of size 256 bits and message size of 16 bytes used, yielded on average 5135.4 ns on the
iPhone and 2312.05 ns on the laptop, for the encryption and decryption operations.

4.4.2 Shamir Secret Sharing Encryption

Numeric values are encrypted using Shamir’s Secret Sharing Scheme. There are two dif-
ferent functions that perform the encryption: one for integer values, and one for double
values. The assumption in this project is that all double values, have at most two decimal
places, and so the difference between the integer version and the double version of the
encryption method, is that for the double version the value is multiplied by a hundred, and
the value is converted to an integer - otherwise, everything else is the same. The process of
encrypting an integer value involves three steps: converting the string value to an integer,
generating a coefficient for the polynomial, and finally generating the secret pieces. The
generation of the secret pieces involves one multiplication, one addition, and three modulo
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operations. Code for the conversion function is included in the appendix section. The
exact same implementation was used for both the iPhone and the laptop, with tests over
thousands of runs, yielding execution time for Shamir on the laptop on average 0.211 µs
and 0.358 µs on the iPhone.

4.4.3 Encrypting Existing Database

To covert an existing database into its encrypted form, three different ways were examined:

1. Encrypt one record at a time, and insert it into the encrypted database

2. Encrypt one record at a time, and perform bulk insertion into the encrypted database

3. Encrypt one record at a time, and generate a file formatted in a certain way containing
all the encrypted values for the records, and then perform a LOAD DATA [14]

It was determined that the last method is the fastest one. Details of the cost of converting
the database, are discussed in the next chapter.
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The overall process for converting the database is summarized in the diagram below:
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Figure 4.3: A description of how the plaintext database is encrypted in the proposed system

Once the encrypted data is generated, a LOAD DATA command is run in MySQL while
supplying the file name and the table name containing the encrypted insert queries.

4.4.4 Supported Queries

Queries that involve average, sum, addition of two values, or multiplication of two values,
can be done natively on MySQL server, with the device just decrypting the returned result.
All the other queries will require extra processing from the device initiating the query -
details in the next subsection.
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4.4.5 System Operation

In this section, we will look at some of the queries that have been tested using the proposed
system. It is only a subset of the queries that can be performed, and it is believed that all
the queries can be performed using a combination of the queries shown, or with different
software methods. The proposed system, depends on metadata that describes the various
tables in the database, the fields, and the encryption method used to encrypt each field.
The metadata is used to determine the encryption type required to process each type of
query. In its simplest (and fastest) form, classes or structs, contain hardcoded information
about the table and fields, such that there is very low retrieval time. While this method
is very fast, it can be more difficult to maintain, and thus more prone to software bugs.
But this is something that is outside the scope of this work since different data structures
exist that can be used for storage and retrieval, with varying tradeoffs. In this subsection,
we will discuss how the various types of queries are performed in the proposed system.
It should also be noted, that it was determined that there is no noticeable advantage to
retrieving all the records at once using mysql use result, before processing it, as oppose to
using mysql store result. This is something that might make a difference if the decryption
process is slow, or the bandwidth available for retrieving the records is low, to the point
where it can cause an overall slow down in the query processing.

There are a few variations for select queries which include: select all, select with projec-
tion on certain fields, select with a where clause, select AVG/SUM/MIN/MAX, and select
with a join. The implementation for each type of query, varies slightly, with some queries
being natively supported by MySQL DB, and others requiring further processing on the
device. As a proof of concept we will discuss in subsection 4.4.5: implementation and oper-
ation of some of the select query types, challenges associated with each type, and space and
time complexity of each type. We will also perform the same type of analysis/discussion
for update and delete queries (4.4.5).
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Select Query

For a select all query, and select with projection, they generally operate the same way. A
diagram depicting the general steps involved with processing an encrypted select query for
a table containing a mix of numeric and string fields is shown below:
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Figure 4.4: A description of the steps to complete a select query in the proposed system
for a table containing fields encrypted using AES and Shamir’s Secret Sharing Scheme.

The first step in completing a select query, is to convert the plaintext query into its
encrypted form. This is done by encrypting the table name, and any field names (for
queries with projection), using the table and field encryption key. The query would retain
the same form as its plaintext form, with the exception of the field names and table name
being encrypted. A sample query for the employee table is shown below:

SELECT ∗ FROM ‘CSP1 ‘ . ‘ 9 0 cd43ee2ba785dc9b5ffb820ad9571d ‘
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Once the encrypted query is generated, the encrypted query is sent to the appropriate
CSP for execution and the returned results are processed independently. In order to decrypt
the result, two pieces of information are required: the type of encryption used for that
particular field, and the decryption key. The system should be designed such that this
information is either hardcoded, or retrieved once, to reduce any overhead with processing
the records. For the purposes of this thesis, the information is hardcoded. Since this table
contains fields encrypted using both AES and Shamir, the second query is generated such
that only the fields encrypted using Shamir are retrieved from the second CSP. This will
remove any unnecessary bandwidth usage. For example, the second query for the employee
table in our case would be:

SELECT ‘3573 d7ecd3e286a5981a824d2e7ca48a ‘ ,
‘ bafc8e08a78cfa167f5a5fb25bb68b08 ‘ ,
‘ a1a74d21f31d77750b356f8b54e0abc5 ‘ ,
‘58 e6712f8e84e99c91c4d15cab52fdde ‘

FROM ‘CSP2 ‘ . ‘ 9 ab6f8b0f05fa0544205702bb53b8e1d ‘

Note that the employee table contains eight fields, and only four are retrieved from the
second CSP - a saving of approximately 256 bytes/record (4 * 64 bytes/field). The final
step is to decrypt the values, and display it to the user.
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The next variant of select queries, is a select query with a where clause. A diagram
depicting the operation of this variant is shown below:

Records to 
process?
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No
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Generate Encrypted SQL

Send 
Encrypted 

SQL to CSP1

Send 
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SQL to CSP2

Decrypt Field 
For Where 

Clause

Condition 
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Yes Decrypt Remaining Fields 
In Record Display Plaintext

No

Figure 4.5: A description of the steps to complete a select query, with a where clause in
the proposed system

In this case a select all query is performed, and the where clause, is processed locally
on the device. This is done by first decrypting the field value being matched on, and if
there is a match, then the rest of the fields in the record are decrypted appropriately, and
finally displayed to the user. This will save time on one of the expensive operations in this
process - decryption of AES encrypted field values. The select min(field name) and select
max(field name), work in a similar fashion where a different encrypted query is generated
projecting on the fields of interest, and all the records are processed with a temporary
variable maintaining the minimum or maximum value.
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The next variant of select queries, natively supported by MySQL, are: select AVG(field name)
and select SUM(field name). These types of queries require contacting two CSPs, each re-
turning a single result, just like how it would work on the plaintext version of the database.
A diagram depicting the operation of these queries, is shown below:

Process Result

SHAMIR
Secret_Share1

Secret_Share2

End

Assemble Secret Display Result

Generate Encrypted SQL

Send 
Encrypted 

SQL to CSP1

Send 
Encrypted 

SQL to CSP2

Figure 4.6: A description of the steps to complete a select average or select sum query on
a numeric field in the proposed system.

Note that the addition of two field values, works in a similar fashion, with the only
difference being the number of results returned and decrypted.

The final variant of the select queries we will examine, is right join. A right join is
performed on two steps: the fields being joined on are first retrieved (from the referenced
table), decrypted, and stored on the device, and then while retrieving the data of the
other table, the actual join is performed based on the foreign key in the child table. As
an example for the proposed system, a right join query between the location table and
employee table was implemented. The query in its plaintext form would be:

SELECT l o c a t i o n . l o c c i t y , l o c a t i o n . l o c s t a t e p r o v i n c e ,
employee . emp fname , employee . emp lname
FROM l o c a t i o n
RIGHT JOIN employee
ON l o c a t i o n . l o c i d = employee . emp loc
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The previously described query is carried out in the proposed system as follows:

1. Perform a select query on location table with projection on loc id, loc city, and
loc state province.

2. Decrypt the results from step 1, and store the results in an array of length equal to
the number of records returned from the location table with the loc id being as the
index in the array

3. Perform a select query on employee table with projection on emp fname, emp lname,
and emp loc

4. Process each record from the employee query. Decrypt all the values of the record
returned

5. Use the decrypted value from emp loc to access the location information stored in
the array (if it exists)

6. Display all the field values combined for the record (city, state/province, first name,
and last name)

7. Repeat steps 4 and 5, until you have processed all the records in the employee table

This type of query, is not expensive in terms of decryption operations because you are
not performing any extra decryptions of fields to complete the query. The cost in this
case, is in terms of extra memory usage, to store the foreign key related information of the
location table - the larger the number of fields and records, the higher the memory usage.
The other potential cost, versus a plaintext database query, is the extra bandwidth used to
transfer the field values - encrypted data has to be blocks of 128 bits, and thus, are likely
to be padded.

Update and Delete Queries

There are a few variations in update queries, but they are generally the same, where the
values of one, or more, fields within a record are updated. The primary key of a record
can not be updated, because it is part of the encryption key. Thus, if for any reason the
primary key needs to be changed, the record would have to be removed, and re-encrypted
and inserted under a new primary key. In most cases, the primary key is auto generated,
and this should not be an issue. Update queries are performed over two steps: identify
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the primary key of the records that need to updated after going through all the records,
and then generate and execute the update queries. A diagram depicting the operation of
update queries is shown below:
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Figure 4.7: A description of the steps to complete a update query in the proposed system

Matching on any value in the record, will require a full table search, and then a single
update query. Therefore, the cost of updating records, is a function of the size of the table,
and would be expensive in terms of data retrieval and processing for large tables.

For delete queries, a record is deleted based on matching on one, or more, values in
the record, and thus it has a very similar implementation to how an update query is
done. Delete queries would work exactly the same as update queries, with the exception
generating an encrypted delete query with primary key of the records that need to be
deleted after they have been identified.
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Summary of Query Cost

In this subsection we have a summary of the cost of some of the queries explored, for
the proposed system. The cost can be split into two main components: time complexity
associated with processing queries, and the bandwidth cost for the data that has to be
transferred. There is of course an extra cost associated with some of the queries, such
as min/max and join queries, because they are encrypted using the proposed system. A
summary of the cost to the device generating the query:

Query Type Processing Bandwidth
SELECT * FROM table1 m1(a*c1+s*c2) m1(a+s)
SELECT * FROM table1 m1*c1+l((a-1)*c1+s*c2) | m1(a+s)
WHERE (field1) = val m1*c2+l((a)*c1+(s-1)*c2)
SELECT SUM/AVG(field1) 1 1
FROM table1
SELECT (field1) + (field2) m1(c2) 2m1s
FROM table1
SELECT (field1) * (field2) m1(c2) 2m1s
FROM table1
SELECT MIN/MAX(field1) m1(c2) 2m1s
FROM table1
UPDATE table1 SET 2l(a*c1) | 2l(s*c2) m1(a) | m1(s)
(field1) = val WHERE
(field1) = val
SELECT (field1) FROM table1 m1(a*c1+s*c2) + (m1+m2)(a+s)
RIGHT JOIN table2 m2(a*c1+s*c2)

Table 4.2: A summary of the cost of executing each type of query as a function of: number
of string fields (s), number of numeric fields (a), number of records in a given table (m),
and number of records matched (l) on in where statement. The cost functions, take into
account that the cost of decrypting AES encrypted fields c1, and the cost of reassembling
Shamir’s Secret Scheme c2, are different, with the cost of decrypting AES assumed to be
much higher. Here, the cost c1 and c2, represent the execution time required to perform
the decryption - which will differ, depending on the hardware running it.
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For the select queries with a where statement, the processing cost is lower, if l is small,
because the decryption of the record only occurs if there is a match. The cost of performing
a select with a where statement on a numeric field, is slightly lower because the majority
of the decryption is done on numeric values. The drawback for select query with a where
statement, is the bandwidth cost - which is equal to that of a select all. The SUM and AVG
queries, are performed on the server, and the device only needs to decrypt the result. For
the sum and multiplication of fields, the are considered cheap on processing, because they
involve decrypting numeric values, but are expensive on bandwidth, because it involves
retrieving two parts to of the secret to recover the secret.s comes from The cost of doing
queries involving mathematical operations (sum, average, addition, and multiplication) is
considered to be very cheap because it involves the decryption of a single numeric value.
Since no matching can be done on encrypted data by MySQL server, performing the select
min or select max on numeric fields, requires retrieving the whole dataset rest of the queries
list above involves getting the whole data set, and thus, is considered expensive in terms
of bandwidth and processing time. The update query for a single field value, has a similar
processing cost to a select with a where clause because you are matching on a field to
find the records that require updates. Regarding the bandwidth cost, it is slightly lower
for update queries because only the fields being matched on are retrieved - not the whole
record. Note that the cost, is two times the number of records being matched on, because
you will have to decrypt the new values and send them back to the server.

4.4.6 Advantages and Disadvantages

In this subsection we discuss some of the advantages and disadvantages of the proposed
system. These advantages include supported features and operational advantages. A
summary of some of the advantages of the system are summarized below:

• Availability: The data is available to any authorized user, at any time - assuming
that the service providers are reliable

• Confidentiality: The data is encrypted, and can be safely stored in the cloud without
revealing any information to the CSP, or anyone who might gain unauthorized access
to the data

• Data redundancy: Data is spread across multiple CSPs allowing the recovery of the
data even if one of the CSPs loses the data
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• Efficient Computations Offloaded: The homomorphic properties of Shamirs Secret
Sharing Scheme allows for some of the data processing to be performed in the cloud.
This gives the user the ability to offload mathematically intense computations to the
cloud

• Transparency to the user. The database retains its structure, and operates in the
same fashion as a plaintext database. The queries also retain their structure, but use
encrypted: field names, tables names, and values instead of their plaintext counter-
parts. This means that legacy systems can adopt the proposed system, allowing for
applications that access the database to continue doing so in the same fashion - with
a layer in between to perform the encryption/decryption of the queries

• The encryption schemes used are well established, with a known security record

• Cost saving of having a DBA, and an IT department, to manage the infrastructure
setup locally

A summary of some of the disadvantages and challenges associated with the proposed
system include:

• Initially, there is a cost to generate and upload the database to CSP. For a poly-
nomial degree one, at least three points have to be generated, in order to support
multiplication and division. The number of points that have to be generated for
numeric values is: (degree of the highest polynomial * 2) + 1. The cost of uploading
the database to the CSP is 3x, if the cost of uploading an unencrypted database to
a single CSP is x

• In order to re-assemble a secret result, the secret pieces from two CSPs (assuming a
degree one polynomial was used) have to be retrieved, and for numeric results from
multiplication the secret pieces from three CSPs have to retrieved

• Keeping all the databases synchronized from multiple users accessing the database
at the same can be pose a challenge. This can be an issue because users can be
attempting to update fields that are being accessed by other users

• Safe guards have to be in place to ensure that an adversary would not be able to
intentionally corrupt the data because if two of the three secret pieces for numeric
values becomes corrupted, then that value is not recoverable

• If a string encrypted value becomes corrupted in one (or more) CSP, there has to be
a mechanism in place for recoverability
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4.4.7 Threat Analysis

In this subsection we look at the various components of the proposed system, the potential
points of attack, and the information that could be exposed by the usage of the system.
The architecture of the system consists of three main parts: the user’s device, the Internet,
and the CSP. A diagram depicting the overall architecture of the system is shown below:
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Figure 4.8: A description of the architecture of the proposed system, with the different
components that could potentially come under attack
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The threats to the proposed system fall into one of two groups: threats to the mobile
device, and threats to the CSP. The user’s device is critical because it contains all the
encryption keys for the system, as well as all the details about the database. Therefore,
safeguards must be applied to the user’s device to ensure that this information is not
leaked or compromised in any way. The implications of exposing this information is not
just the loss of private data in the cloud, but also the need to re-encrypt the database from
scratch, and the downtime associated with waiting until that is done. The second group
of threats target the Internet, and the CSP. Information that could potentially be learned
from snooping on the connection link between the device and CSP include:

• The number of records returned from the query, and potentially the number of records
for a table if a select all is being performed

• The number of fields associated with a specific table

• The type of query being carried out

• Field types for a specific table

• If the connection is being monitored for a long time, the frequency of any particular
table or field being accessed

To protect the information discussed in the previous list, an encrypted connection has
to be established between the device and the CSP. This will ensure that a snooping entity
can’t learn anything about the user’s activity with the server, or the data being accessed.
The next issue of concern is the availability of the CSP. While the data is encrypted, and
so any unauthorized access to the data, will only reveal the information previous listed.
Another item of concern is malicious changes to the data stored in the database, which
could occur if the CSP is compromised. Finally, preventing authorized access through
distributed denial of service attack is an issue of concern, but it is assumed, that as part
of the service agreement, the CSP should be able to shield those types of attacks - such as
Amazons AWS cloud security [25].
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Chapter 5

Experiments, Results, and Analysis
In this chapter, we will start off with looking at the devices to run the experiments on.
Next, we will look at the queries to be executed to benchmark the proposed system, and
compare it to the MySQL encrypted DB and plaintext DB. Next, we will look at the
experiments carried out, as well as the results from the experiments. Finally, we will
provide some analysis of the data collected from the experiments.

5.1 Devices

The experiments are performed on two devices, laptop and mobile device. The platform
used for the database is MySQL, and it was hosted on Amazon’s relational database service
(RDS) free tier class. A summary of the the database hosted in the cloud is shown below:

DB Engine: MySQL
License Model: general-public-license

DB Engine Version: 5.6.23
DB Instance Class: 1 vCPU1, 1GiB2

Network Performance: low
Multi-AZ Deployment:3 No

Storage Type: General Purpose (SSD)
baseline of 3 IOPS/GB4

and ability to burt to
3,000 IOPS

Allocated Storage: 5 GB

Table 5.1: A summary of the DB instance used on Amazon’s relational database service
(RDS) for hosting the database on. Two instances were used to simulate two CSPs to run
the experiments on.
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Since the database was hosted on the free tier version of the database, it is considered
to be low performance - low network performance, low virtual CPU frequency, and small
amount of allocated memory. A summary of the laptop computer specifications used in
the experiments to generate the queries and process the results is shown below:

Model: MacBook Pro Retina Late 2013
CPU: 2.6 GHz Intel Core i5

3MB shared L3 cache
Random Access Memory: 16GB 1600 MHz DDR3

Graphics: Intel Iris 1536GB
OS: OS X Yosemite 10.10.5

Storage Type: Solid State Drive 500GB
WLAN: 802.11ac IEEE 802.11a/b/g/n compatible

Table 5.2: A summary of the laptop used for encrypting the database and benchmarking
the proposed system

The laptop being used is over two years old, and it is expected that current computers
are more powerful and could potentially yield better results. A summary of the cell phone
specifications, used in the experiments to generate the queries and process the results, are
shown below:

Model: iPhone 5s
CPU: Dual-core 1.3 GHz Cyclone (ARM v8-based)

Random Access Memory: 1 GB RAM DDR3
GPU: PowerVR G6430 (quad-core graphics)
OS: iOS 9.02

Storage Type: Flash 16GB
WLAN: Wi-Fi 802.11 a/b/g/n

Table 5.3: A summary of the mobile device used for benchmarking the proposed system

1Virtual Central Processing Unit
21 gibibyte = 230 bytes = 1073741824 bytes
3Multi-AZ Deployment is provisioning a failover database in a different time zone
4Input/Output Operations per second
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The cell phone used for the experiments, is over two years old as well, and Apple has
significantly improved the computing power of the recent iPhone. The current generation
iPhone has double the RAM of the iPhone used in the experiments, and has a faster CPU
running at 1.84GHz.

5.2 Performance Metrics

In this section, we define the performance metrics to compare the proposed system versus
the MySQL encrypted database and plaintext database. One of the well known benchmark-
ing processes for databases, is TPC. The purpose of TPC-C benchmarking is to provide
relevant, and objective performance data to industry users. The objective of the TPC
benchmarkC (TPC-C), is to create a mixture of read-only and update intensive transac-
tions that simulate the activities found in complex OLTP application environments [45].
The performance metric reported by TPC-C is a business throughput measuring the num-
ber of orders processed per minute, where each transaction is subject to a response time
constraint [45].

There are five transaction types included:

• New-Order transaction: Represents a mid-weight, read-write transaction with a
high frequency of execution and stringent response time.

• Payment transaction: Represents a light-weight, read-write transaction with a
high frequency of execution and stringent response time. Represents 43% of the
total transactions

• Order-Status transaction: Represent a mid-weight read only database transaction
with a low frequency of execution and response time requirement to satisfy on-line
users. Represents 4% of the total transactions

• Delivery transaction: Consists of processing a batch of 10 new (not yet delivered)
orders. Has a low frequency of execution and must complete within a relaxed response
time requirement. Represents 4% of the total transactions

• Stock-Level transaction: Represents a heavy read-only database transaction with
a low frequency of execution, a relaxed response time requirement, and a relaxed
consistency requirement. Represents 4% of the total transactions

The queries executed by the benchmarking system include a mix of:

65



• Select with a projection and a where clause, matching on string of numeric field
values

• Update numeric and string field values, based on a value retrieved from a previous
select query

• Insert a complete record based on a value retrieved from a previous select query

• Count query on a certain field

The price per performance is calculated by determining the total price of the system,
and dividing that by the reported throughput. The experiments performed include running
a different number of concurrent users, and for different run times, on the same number of
records. Details of the automatically generated database, extracted from MySQL Work-
bench tool V6.2.3, include:

Table Name Number of Fields Number of Records Table Size (estimate)
Customer 21 30,000 21.1 MiB
District 11 10 16 KiB
History 8 320,000 36.6 MiB

Item 5 100,000 9.5 MiB
New Orders 3 20,000 1.5 MiB
Order Line 10 3,000,000 324.5 MiB
Warehouse 9 1 16 KiB

Orders 8 300,000 22.0MiB
Stock 17 100,000 35.1 MiB

Table 5.4: A summary of the TPC-C generated database
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The fields in the various tables, contain different field types and sizes including: variable
string length of different size, numeric field values, and date/time. The parameters used
to run the TPC-C benchmark are summarized below:

Parameter Name Description Value Value Used
Number of Warehouses Size of the database 1 - 20 1

based on the number of
warehouses specified

during database generation
Number of Concurrent Number of concurrent 2 - 20 2 - 20

Connections users in the benchmark
Ramp Up Time Time before starting 1 - 9999 10

(seconds) the benchmark
Measure Time The amount of time 1 - 9999 1300

(seconds) the benchmark runs for

Table 5.5: A summary of the parameters used to run TPC-C

The benchmarking system focuses on determining the number of transaction at which
the backend database technology can complete, running on a particular hardware set. The
first set of graphs shows the average TpmC values, for different number of concurrent users,
running on the plaintext and encrypted versions of the database:

Figure 5.1: Average TpmC values over 1300 seconds for different number of users on
plaintext and encnrypted version of the database.
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While the TpmC values for the plaintext version of the database are twice that of
the encrypted version of the database, the trend is approximately the same for the same
number of users. This confirms that the delay in cost, is directly proportional to the
number of string values that need to be decrypted by the device, and is fixed irrespective
of the number of concurrent users accessing the database. Of course this is still highly
dependant on the maximum number of concurrent users that backend can handle.

Next we look at the TpmC values for five and ten users running on both the plaintext
and encrypted version of the database:

Figure 5.2: TpmC values for five and ten users running on the plaintext version of the
database.

Figure 5.3: TpmC values for five and ten users running on the encrypted version of the
database.
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Here we see very similar trends between the plaintext and encrypted version of the
database, with TpmC values varying from 4 to 14 for the plaintext database, and 1 to 8
for the encrypted version of the database. It is expected that the relative TpmC numbers
would remain the same, since the delay due to the decryption on average should remain
constant.

A different benchmarking process, which was loosely based on the TPC-C on-line trans-
action processing benchmark, was devised. For the purposes of this project, different types
of queries are executed back to back, hitting different rows in tables of different sizes.
To simulate a heavy load, two different machines connected on a separate network, were
accessing the database while simulating different number of users (ranging from five to
sixty) simultaneously accessing the database at the same time. It was determined that the
maximum number of concurrent users supported by the server is approximately sixty for
the database instance class used on Amazon. It was also determined that at the maximum
number of concurrent users, there was no detectable difference in terms of execution time
on the device performing the experiment - and thus, the idea was abandoned. Unlike the
TPC-C system, timing of the queries was not strictly based on a model because the main
idea was to simulate a worst case scenario - the perceived delay at peak usage. In the ex-
periments, each function representing a query type, was run in different order, a different
number of times for a total of one thousand times. For example: run first query ten times,
followed by the second query ten times, followed by the first query again five times, and
so on. The average is then calculated from the traces (see .6 for sample trace) generated
by Instruments.

The purpose of the experiments in section 5.3, is to collect empirical data that can be
extrapolated on, to determine the cost of the proposed system in terms of execution time,
bandwidth, and memory usage (5.3). The performance measurements are based on our
implementation, and are not necessarily the most efficient in terms of execution time and
memory usage - but that is an engineering problem that can be solved depending on the
requirements set by the client. For the purposes of this work, since the database is being
treated as a black box, the performance comparison will be based on the following metrics:
query execution and processing time, memory usage, network bandwidth, and storage.
Query execution time, is the total execution time including the time it takes to generate
the query, send the query to the server, and process (decrypt) the results returned by the
server (subsection 5.3.3). Of course, for the plaintext version of the database, the time it
takes to process the query will be zero, but the purpose of this comparison is the total time
it takes to display the data in its plaintext form for both cases. The second measurement,
is how much memory is used to process the query - a potential limitation in mobile devices
(subsection 5.3.3). The next major factor, network bandwidth for retrieving the data in
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both cases, is an approximation of the size of the records returned. It is expected that
more data would have to be transmitted in the proposed system, due to the fact that any
information encrypted using AES is at least twice as large, and Shamir’s Secret Scheme
will require retrieving information from at least two CSPs. Finally, the last measurement
of interest is the amount of storage used by the database (subsection 5.3.2).

5.3 Experiments and Results

The purpose of the experiments is to examine the change in cost in terms of execution
time, bandwidth, and memory usage, for: varying number of records for the same number
of numeric and string fields, and for varying number of fields for the same number of records.
While the experiments do not cover every possible combination of fields and records, the
database used gives a general trend that can be extrapolated upon, for what the cost of
various databases might be - given the mixture of string fields and numeric fields. In
order to establish a performance baseline, all the queries will be executed on the plaintext
database, the MySQL encrypted database, and on the proposed system. The experiments
involve four basic steps: generating the query, executing the query on the CSP, retrieving
the results, and print the records to the user on the console. For the proposed system,
the extra step required is decrypting the encrypted fields correctly, and getting the secret
pieces from other CSPs , if necessary. It was determined, that the maximum number of
concurrent users supported on this cloud computing VM is sixty one, and the server can
handle the maximum number of users performing a join query simultaneously, with no
measurable effect on the performance for the device used for benchmarking. In this section
we will look at: the queries to be executed (5.3.1), the cost of converting the database
to its encrypted form (5.3.2), the experiments carried out, and analyze the results of the
experiment (5.3.3).
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5.3.1 Queries

In this subsection, we look at the queries that are going to be executed on the database. The
queries are grouped by table, and the summary includes the number of records returned,
as well as the record numbers returned. Some of the values for the queries were chosen to
match records grouped together, while others were chosen such the matching records are
spread out over the table. A summary of the queries carried out on the various tables is
shown below:

Query # of Records Record
Returned Numbers

empSales all 100,000 1 - 100,000
empSales where saleDate 11 1, 14228, 24938, ... 99592
empSales where empID 101 1, 2025, 2584, ... 97843
empSales where saleTotal 2 22040, 39938
empSales sum(saletotal) 1 N/A
empSales avg(saletotal) 1 N/A
empSales sum(unitsSold) 1 N/A
empSales avg(unitsSold) 1 N/A
location all 6,000 1 - 6,000
location where city 545 3, 8, 17, ... 5995
location where state 293 32, 46, 47, ... 5958
location where country 1,187 1, 2, 6, ... 5993
position all 4,955 1 - 4,955
position where posName 39 129, 292, 342, ..., 4942
position where posName2 42 17, 80, 133,... , 4929
itemPrice all 24,312 1 - 24,312
itemPrice where price 1 12,034
itemPrice where descr. 3 16014, 17004, 24306
itemPrice where descr. 2 5 98, 10927, 14028,

14995, 15173
select sum(itemPrice) 1 N/A
select avg(itemPrice) 1 N/A

Table 5.6: Information about the queries being executed for the employee sales, location,
position, and item price tables
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Query # of Records Record
Returned Numbers

select all 10,000 1 - 10,000
select all where fname 20 1 - 20
select all where fname 20 5,000 - 5,020
select all where fname 20 9,981 - 10,000
select all where hireDate 834 14,15,38,...9999
select f1 + f2 10,000 1 - 10,000
select f1 + f2 + f3 10,000 1 - 10,000
select f1 + f2 + f3 + f4 10,000 1 - 10,000
select sum(empSalary) 1 N/A
select avg(empSalary) 1 N/A

Table 5.7: Information about the queries being executed for the employee table with ten
thousand records

The information for the rest of the employee tables with different number of records,
are available in the appendix section. The number of records, doubles for the employee
table, until it reaches approximately one million and and two hundred thousand records.
The number of records returned, also doubles for all, but the last two queries.
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5.3.2 Database Conversion Costs

The cost of converting the database can be split into four parts: processing time, memory,
disk usage, and bandwidth. The cost of processing involves execution time required by the
software running on the laptop, to convert the plaintext database to its encrypted form, as
described in the previous chapter 4.3.1,4.4.3. The amount of memory usage, includes the
amount of RAM required by the software to perform the conversion. Next, is the amount
of storage required to store the database on disk until it is uploaded to the CSP. Finally
the cost of the bandwidth to upload the database to the CSP - which is directly related to
the size of the database. A table summarizing memory usage and execution time for the
proposed system and MySQL encrypted database to convert the database is shown below:

Table Name Memory Memory Execution Execution
Usage (MB) Usage (MB) Time (ms) Time (ms)

Proposed MySQL Proposed MySQL
System Encrypted System Encrypted

itemPrice 2.504 2.524 179.12 258.29
position 0.700 0.74 38.81 43.66
location 0.872 1.04 130.84 60.41
empSales 0.105 0.292 836.33 981.76

employee 1 1.2 1.492 173.86 140.93
employee 2 1.2 1.492 356.31 295.51
employee 3 1.2 1.492 708.58 486.92
employee 4 1.2 1.492 1,415.05 1,004.29
employee 5 1.2 1.492 2,856.60 1,949.74
employee 6 1.2 1.492 5,590.20 3,678.56
employee 7 1.2 1.492 10,977.30 8,884.26
employee 8 1.2 1.492 21,594.12 13,924.62

Table 5.8: A summary of the processing cost of converting the database to its encrypted
form, using the developed implementation for the proposed system and MySQL encrypted
database. The values are averaged over a thousand runs on the laptop.

The memory cost of converting the database is more or less the same for the proposed
system and MySQL encrypted DB, so there is no advantage to using one over the other.
The software written for converting the database, in both cases, is single threaded, but the
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key difference is, the encryption of the records in the proposed system is performed on the
laptop, while for the MySQL system its performed on the CSP, which is multi-threaded
and makes use of multiple CPUs[15]. Therefore, there is a clear difference in execution
time between the proposed system and the proposed system. This distinction is clear in
the employee tables, where as the number of records doubles, the execution time doubles
for the proposed system, but the increase is not linear for MySQL server. For simplicity
purposes and to explore the worst case scenario for the proposed system, a single threaded
program was developed. If the database being converted is large, it would make sense to
develop a multi-thread program to decrease the execution time. The next aspect of interest
for the cost, is the amount of disk storage space, which affects both the amount of disk
space required to host the database, as well as the bandwidth used to upload it to the
server. A table summarizing disk usage is shown below:

Table Plaintext Proposed MySQL Plaintext Proposed MySQL
Name Average Encrypted Encrypted Table Encrypted Encrypted

Row Average Row Average Row Size Table Table
Length Length Length (MiB) 5 Size Size
(bytes) (bytes) (bytes) (MiB) 5 (MiB) 5

itemPrice 26 88 62 1.36 2.7 2.1
empSales 28 95 104 4.6 11.1 12.7
position 28 80 43 250.68 530.1 353.1

x 10−3 x 10−3 x 10−3

location 56 276 98 389.22 1.7 752.1
x 10−3 x 10−3

employee 46 244 145 780.90 3.1 1.7
x 10−3

- - - - - -
55 244 154 96.2 305.4 205.6

Table 5.9: A storage comparison between the plaintext tables, and their respective en-
crypted forms. The data was collected from MySQL Workbench table information page -
sample in appendix 1.

In the proposed system, tables that contain only string values, double in size - as shown
in the position table. This is expected since the string value is padded to reach 32 bytes

51 MiB = 220 bytes = 1024 kibibytes = 1048576 bytes
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before being encrypted and converted to a hex array - which doubles the size to 64 bytes.
A table like the employee table, having four numeric fields and three string fields, grows
on average a little over six times in size - as oppose to sixteen times, if they were all string
fields. So while the numeric values are split into three pieces, the individual pieces do
not use up as much space as the AES encrypted string. There is a difference between the
MySQL encrypted values, and the proposed system values in terms of the expected storage
size. For the tables containing only string values, such as location and position table, the
storage space should be exactly the same, but this is not the case. The position table in
the proposed system is approximately 1.5x larger than the MySQL encrypted version, even
though the same encryption type is used, and its suppose to produce 128 bit blocks. It
seems that in the MYSQL encrypted database, the data is padded to the closest multiple
of 128 bits blocks for short strings, as oppose to what was done in the proposed system
where all the values are automatically padded to 256 bits blocks - and thus saving on space.

5.3.3 Query Cost & Analysis

In this subsection, we will look at the experiments for carrying out the different types of
queries on the laptop and mobile device. We will look at two aspects: memory usage, and
execution time. A summary of the memory usage for processing the queries for each table
for the laptop and iPhone are shown below:

Query for Plaintext Memory MySQL Memory Proposed Memory
table: Usage (MB) Usage (MB) Usage (MB)

position ≈ 0.280 ≈ 0.380 – 0.390 ≈ 0.420
item price ≈ 0.280 ≈ 0.400 – 0.410 ≈ 0.435 – 0.460
location ≈ 0.280 ≈ 0.420 ≈ 0.500

employee sale ≈ 0.280 ≈ 0.405 – 0.450 ≈ 0.440 – 0.500
employee ≈ 0.280 ≈ 0.415 – 0.485 ≈ 0.350 – 1.930

Table 5.10: A table summarizing the memory usage on the iPhone for queries executed on
the plaintext database, MySQL encrypted database, and the proposed system.
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Query for Plaintext Memory MySQL Memory Proposed Memory
table: Usage (MB) Usage (MB) Usage (MB)

position ≈ 0.200 ≈ 0.310 ≈ 0.320
item price ≈ 0.200 ≈ 0.320 – 0.336 ≈ 0.330 – 0.340
location ≈ 0.200 ≈ 0.330 ≈ 0.350

employee sale ≈ 0.200 ≈ 0.304 – 0.332 ≈ 0.340 – 0.380
employee ≈ 0.200 ≈ 0.320 – 0.396 ≈ 0.330 – 1.910

Table 5.11: A table summarizing the memory usage on the laptop for queries executed on
the plaintext database, MySQL encrypted database, and the proposed system.

Since a single record is retrieved at a time, the memory usage is directly proportional to
the amount of memory required to store a single record in memory - and thus the variation
in memory usage is not that high between the various query types. Note that the memory
requirements for MySQL encrypted database, is lower, because the records are already
decrypted - and thus in terms of storage is very close to that of the plaintext. If there are
more fields in each record, the memory usage would be higher. It was determined that the
memory usage increases linearly based on the field size. In other words, for every added
string field the memory usage increases by approximately 64 bytes, and for every integer
field the memory usage increases by approximately 32 bytes.
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Now we examine the execution time on the device for the different types of queries, and
compare it to the MySQL encrypted database and plaintext database. For the position
table, containing a single field encrypted using AES, a graph comparing the execution time
for the proposed system versus the plaintext and MySQL encrypted database is shown
below:
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Figure 5.4: Execution time for queries executed on position table on the iPhone
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Figure 5.5: Execution time for queries executed on position table on the laptop

We can see from the data gathered from the position table, that the cost of performing
a select all query for the proposed system, is approximately 4.8x for the iPhone, and 2.7x
for the laptop, compared to the plaintext database. If we compare the proposed system
to the MySQL encrypted database, we find there is a 2.9x and 2x fold increase for the
iPhone and laptop respectively. Overall, the execution time is lower for the laptop - which
can be expected, because the laptop has higher computational power. This indicates that
as the computational power continues to improve, the gap between the proposed system
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and plaintext version will shrink further. The cost of performing a select all with a where
clause for the proposed system, is approximately 71x for the iPhone, and 26x for the
laptop, compared to the plaintext database. Comparing the cost of the proposed system
to the MySQL encrypted database, we find there is a 16.6x and 5.5x fold increase for the
iPhone and laptop respectively. While the execution time is lower for the select query
with a where clause in the proposed system, it is still considered to be high relative to the
other systems. It is also expected that the execution time for the select query with a where
clause will increase, if the number of matching records increases. The select query with a
where clause endures a much higher penalty, mainly because the proposed system has to
retrieve all the records, and decrypt them locally to find the one that matches.

Now we look at a breakdown of the execution time for the position table, to determine
where the bulk of the processing occurs. In the table below, we have a summary breakdown
of the components that contribute to the extra processing for the proposed system:

Position Exec AES Key Shamir MySQL printf
Query Name Time Decryption Gen Decryption Related (ms)

(ms) (ms) (ms) (ms) (ms)
select all where 258.17 180.12 17.5 0 88.06 1.0439

pos name
select all 430.104 176.6 21.09 0 152.21 49.8

Table 5.12: A breakdown of the position table execution time, including total execution
time, for the proposed system on the iPhone.

Position Exec AES Key Shamir MySQL printf
Query Name Time Decryption Gen Decryption Related (ms)

(ms) (ms) (ms) (ms) (ms)
select all where 23.75 11.85 1.9 0 7.7 0.25

pos name
select all 36.3 12.6 1.9 0 10.02 9.3

Table 5.13: A breakdown of the position table execution time, including total execution
time, for the proposed system on the laptop.

For the proposed system, the bulk of the time spent performing the extra processing, is
due to the decryption of the field values, and key generation process. On the laptop, this
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amounts to approximately 58% of the total execution time for the select all with a where
clause, and 40% for the select all query. On the other hand, for the iPhone, approximately
76% of the total execution time for the select all with a where clause, and 46% of the time
on select all query.

For the item price table, containing a mixture of string and numeric values, a graph
comparing the execution time for the proposed system versus the plaintext and MySQL
encrypted database is shown below:
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Figure 5.6: Execution time for queries executed on item price table on the iPhone
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Figure 5.7: Execution time for queries executed on item price table on the laptop

The item price table, increases the number of records four times from the position table,
and combines different field types. Again we see a similar trend to what we have seen in
the position table, where there is a big difference in the execution time between the select
all query, and the select with a where clause string values. The important thing to note
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here, is that the gap in execution time between select all query, and the select with a where
clause, has increased significantly, as the number of records has increased. In this case,
the select with a where clause has a 270x and 96x fold increase for the iPhone and laptop
respectively. This is a significant jump in the processing time. Comparing the select query
done on a string value, versus on a numeric value, for the proposed system, we see that
the execution time is 3.9x faster for the numeric value on the iPhone, and 1.4x faster for
the laptop. Finally, the sum and average query execution times are approximately 3x and
5x, for the iPhone and laptop, respectively, than the MySQL encrypted DB - a significant
difference. Now we look at a break down of the execution time for the item price table in
the proposed system:

itemPrice Exec AES Key Shamir MySQL printf
Query Name Time Decryption Gen Decryption Related (ms)

(ms) (ms) (ms) (ms) (ms)
select all 1416.72 654.3 82.9 4.06 305.14 262.701

select all where 933.11 626.15 55.19 0.771 x 10−4 183.5 0.914
itemDescr

select all where 240.3 1.09 0.1934 2.2 182.16 0.839
itemPrice

select sum 17.06 0 0 0.713 x 10−5 14.94 0.18
itemPrice
select avg 16.58 0 0 0.913 x 10−5 14.46 0.11
itemPrice

Table 5.14: A breakdown of the item price table execution time for the proposed system
on the iPhone.
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itemPrice Exec AES Key Shamir MySQL printf
Query Name Time Decryption Gen Decryption Related (ms)

(ms) (ms) (ms) (ms) (ms)
select all 186.3 66.8 15.1 3.2 32.03 57.4

select all where 86.85 43.65 8.35 0.816 x 10−6 29.4 0.05
itemDescr

select all where 60.9 8.264 x 10−6 0.2264 x 10−6 2.2 47.8 0.11
itemPrice

select sum 2.92 0 0 0.198 x 10−6 2.49 0.02
itemPrice
select avg 2.81 0 0 0.198 x 10−6 2.36 0.05
itemPrice

Table 5.15: A breakdown of the item price table execution time for the proposed system
on the laptop.

For the proposed system, some of the important information that we can extract from
the breakdown of the execution time includes:

• For the laptop, the amount of time spent on encryption related tasks include: 46%
for select all, 60% for a select with a string where clause, and 4% select with a
numeric where clause

• For the iPhone, the amount of time spent on encryption related tasks include: 52%
for select all, 73% for a select with a string where clause, and 1.45% select with a
numeric where clause

• For the laptop, less than 1% of the time is spent on encryption related tasks for the
sum and average queries

• For the iPhone, less than 1% of the time is spent on encryption related tasks for the
sum and average queries
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Next, we look at the location table graphs comparing the execution time for the pro-
posed system versus the plaintext and MySQL encrypted database:
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Figure 5.8: Execution time for queries executed on location table on the iPhone
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Figure 5.9: Execution time for queries executed on location table on the laptop

One of the important trends to extract here, is that extra cost for processing for select
queries with a where clause, decreases as the number of records returned by the query
increases. For example, the cost of performing a select matching on state, is approximately
37x relative to the plaintext database on the iPhone, and 27x for the laptop. On the other
hand, for the select query matching on city, which returns approximately twice as many
records, the cost is approximately 28x relative to the plaintext database on the iPhone,
and 15x for the laptop. As the number of records returned doubles again for matching on
country, the cost is approximately 14x relative to the plaintext database on the iPhone,
and 8.8x for the laptop.
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Now we look at a break down of the execution time for the location table in the proposed
system:

Location Exec AES Key Shamir MySQL printf
Query Name Time Decryption Gen Decryption Related (ms)

(ms) (ms) (ms) (ms) (ms)
select all 950.04 559.34 60.022 0 217.44 56.130

where country 494.77 297.9 30.556 0 121.6 11.05
where state 415.75 221.0 25.441 0 138.332 3.005
where city 435.0 238.861 25.021 0 130.966 11.22

Table 5.16: A breakdown of the location table execution time for the proposed system on
the iPhone.

Location Exec AES Key Shamir MySQL printf
Query Name Time Decryption Gen Decryption Related (ms)

(ms) (ms) (ms) (ms) (ms)
select all 116.31 61.6 10.8 0 20.4 14.9

where country 60.2 25.1 4.091 0 25.3 2.7
where state 49.3 16.2 2.8 0 25.6 1.4
where city 52.9 18.9 3.021 0 26.2 1.4

Table 5.17: A breakdown of the location table execution time for the proposed system on
the laptop.

For the proposed system, some of the important information that we can extract from
the breakdown of the execution time includes:

• For the laptop, the amount of time spent on encryption related tasks include: 61%
for select all, 48% for a select matching on country, 41% for a select matching on
city, and 39% for a select matching on state

• For the iPhone, the amount of time spent on encryption related tasks include: 65%
for select all, 66% for a select matching on country, 61% for a select matching on
city, and 59% for a select matching on state
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A trend to consider here, is the effect of increasing the number of string fields on the
execution time. If we compare the location and position tables, we find that it takes
approximately 0.158ms to process a single record, while it takes 0.0858ms for the position
table. While the number of string fields increased four times, the time it takes to process
a record only increased 1.8x. The decryption occurs serially in both cases, and thus it is
possible that as the number of fields increases, the increase in processing time becomes
linear (or worse).

The next table we will look at, is the employee sales table, which contains three numeric
values and two string values. A graph comparing the execution time for the proposed
system versus the plaintext and MySQL encrypted database is shown below:
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Figure 5.10: Execution time for queries executed on employee sales table on the iPhone
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Figure 5.11: Execution time for queries executed on employee sales table on the laptop
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A summary of some of the trends found in the employee sales table include:

• A four fold increase in the number of the number of records, from the item price
table, has no effect on the execution time for the sum and average calculation in the
proposed system

• A four fold increase in the number of the number of records, from the item price
table, has approximately a three fold increase on the sum and average calculation in
MySQL encrypted system

• For the proposed system, the cost of performing a select query with a where clause
on a string value, is approximately 3x that of doing a select query matching on a
numeric value for the iPhone, and 2x for the laptop

EmpSales Exec AES Key Shamir MySQL printf
Query Name Time Decryption Gen Decryption Related (ms)

(ms) (ms) (ms) (ms) (ms)
select all 4966.373 2171.011 265.199 79.668 1079 1030.91

where saleDate 3472.757 2022.67 233.102 0.000320 1017.883 1.03
where saleTotal 1162.274 0.0861 0.00691 23.009 1012.01 1.01
where empID 1091.1 4 1.883 15.033 973.6 6.7
sum saleTotal 17.28 0 0 0.903 x 10−5 14.79 0.11
avg saleTotal 16.3 0 0 0.910 x 10−5 14.09 0.15

sum numUnitsSold 17.26 0 0 0.904 x 10−5 14.84 0.12
avg numUnitsSold 18.93 0 0 0.907 x 10−5 16.38 0.14

Table 5.18: A breakdown of the employee sales execution time for the proposed system on
the iPhone.
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EmpSales Exec AES Key Shamir MySQL printf
Query Name Time Decryption Gen Decryption Related (ms)

(ms) (ms) (ms) (ms) (ms)
select all 873.6 275.31 60.061 36.7 166.8 292.7

where saleDate 385.6 175.95 28.9 18.2 160.9 0.2
where saleTotal 210.8 361.2 x 10−6 120 x 10−6 9.5 163.4 0.21
where empID 197.2 624.9 x 10−6 27.1 x 10−6 8.9 163.5 0.1
sum saleTotal 3.17 0 0 0.198 x 10−6 2.76 0.01
avg saleTotal 3.05 0 0 0.208 x 10−6 2.66 0.03

sum numUnitsSold 2.98 0 0 0.210 x 10−6 2.59 0.01
avg numUnitsSold 3.4 0 0 0.201 x 10−6 2.96 0.07

Table 5.19: A breakdown of the employee sales execution time for the proposed system on
laptop.

Some of the information we can extract from the employee sales execution time break
down include:

• For the laptop, the amount of time spent on encryption related tasks include: 42.6%
for select all, 57.8% for a select with a string where clause, and 4.5% select with a
numeric where clause

• For the iPhone, the amount of time spent on encryption related tasks include: 51%
for select all, 65% for a select with a string where clause, and 1.46% select with a
numeric clause

• For the laptop and iPhone, less than 1% of the time is spent on encryption related
tasks for the sum and average queries, and the majority of the time is spent on getting
the data from the server

Here we see that the average and sum calculations are fairly efficient, where most of
the execution time is spent on retrieving the data, rather than on any decryption related
operations. On the other hand, queries with a where clause, continue to get more expensive
as the number of records increases, since most of the work is being done on the device,
rather than on the MySQL server.

The next set of experiments, focus exclusively on the employee table, where the number
of records start at ten thousand, and goes up to one million and two hundred and fifty
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thousand records. The employee table contains three string values, and four numeric values.
First, we will present the total execution time comparison for the various queries carried
out on the employee table containing ten thousand records:
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Figure 5.12: Execution time for the first set of queries executed on employee table con-
taining ten thousand records on the iPhone
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Figure 5.13: Execution time for the second set of queries executed on employee table
containing ten thousand records on the iPhone
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Employee 1 iPhone Total Execution Time
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Figure 5.14: Execution time for the third set of queries executed on employee table con-
taining ten thousand records on the iPhone
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Figure 5.15: Execution time for the first set of queries executed on employee table con-
taining ten thousand records on the laptop

88



Employee 1 Laptop Total Execution Time
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Figure 5.16: Execution time for the second set of queries executed on employee table
containing ten thousand records on the laptop
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Figure 5.17: Execution time for the third set of queries executed on employee table con-
taining ten thousand records on the laptop

Looking at the total execution time data, we see similar trends to the ones seen in
previous tables:

• Select queries with a where clause are expensive, ranging from 31x to 64x

• Average and sum calculations are inexpensive

• The sum of multiple numeric fields are inexpensive

• Execution time for summing up numeric fields does not increase with increasing the
number of fields
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• Join queries are expensive, mainly because the data from the two tables are retrieved
serially, and the actual join is performed on the device before the result is returned
to the user

Now we look at a break down of the execution time of the proposed system for the
employee table:

Employee Exec AES Key Shamir MySQL printf
Query Name Time Decryption Gen Decryption Related (ms)

(ms) (ms) (ms) (ms) (ms)
select all 1025.29 581.332 70.61 1.912 162.08 112.04

where fname 258.33 155.21 20.33 0.745 x 10−2 59.67 0.22408
where hireDate 795.09 434.90 73.78 0.3106 180.32 32.55

avg salary 19.02 0 0 0.197 x 10−6 16.45 0.11
sum salary 17.43 0 0 0.201 x 10−6 14.96 0.11

f1+f2 201.8 0 0 1.48 33.2 162.6
f1+f2+f3 205.8 0 0 1.34 32.8 166.8

f1+f2+f3+f4 214.12 0 0 1.39 31.2 185.3
join locName 1818.401 484.22 61.101 1.991 29 120.08

(952.404)
join posName 1443.41 558 93.2 2.15 18.92 45.12

(458.06)

Table 5.20: A breakdown of the execution time for the employee table containing ten
thousand records for the proposed system on the iPhone. The time between bracket for
the join queries, constitutes the total time spent on processing the location table and
position table for join on location name and join on position name queries, respectively.
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Employee Exec AES Key Shamir MySQL printf
Query Name Time Decryption Gen Decryption Related (ms)

(ms) (ms) (ms) (ms) (ms)
select all 406.173 264.21 36.92 3.18 28.12 47.85

where fname 133.67 70.33 19.102 0.897 x 10−3 35.33 0.09566
where hireDate 142.84 73.46 15.42 0.912 25.41 7.19

avg salary 3.06 0 0 0.197 x 10−6 2.80 0.02

sum salary 3.2 0 0 0.201 x 10−6 2.80 0.02
f1+f2 22.2 0 0 1.12 4.2 12.8

f1+f2+f3 21.6 0 0 1.16 6.8 12.94
f1+f2+f3+f4 22.8 0 0 0.96 5.2 16.09
join locName 525.08 236.441 40.509 3.791 19 44.82

(165.213)
join posName 388.996 222.43 39.1 4.65 18.92 35.41

(37.68)

Table 5.21: A breakdown of the execution time for the employee table containing ten
thousand records for the proposed system on the laptop. The time between bracket for the
join queries, constitutes the total time spent on processing the location table and position
table for join on location name and join on position name queries, respectively.

Here we see that 75% of the total execution time for the iPhone, and 64% of the total
execution time for the laptop, is spent on encryption related operations for the select all
query. For the select with a where clause 64% of the total execution time for the iPhone
and laptop, is spent on encryption related operations. Again for the average and sum
calculations, the bulk of the execution time is spend on getting the data from the server.
For the summation of numeric fields, less than 1% of the total execution time is spent on
decryption related operations.

Next, we will look at various trends for doubling the number of records for each query
from ten thousand, to one million and two hundred thousand records on the laptop, with
similar trends observed for the iPhone. For the first three graphs (select all 5.18, select
where 5.20, select join 5.19), the increase in execution time is almost linear, as the number
of records doubles. Since half the fields are encrypted using AES, and around 67% - 70%
of the time is spent on decryption related operations, it does not come as a surprise that
the execution time doubles as the number of records doubles because the amount of data
to retrieve, and process, doubles.
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Figure 5.18: Select all execution time trend for doubling number of records in employee
table running on the laptop for the proposed system

Figure 5.19: Join on location name and position name execution time trend for doubling
number of records in employee table running on the laptop for the proposed system
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Figure 5.20: Select all with a where clause execution time trend for doubling number of
records in employee table running on the laptop for the proposed system

The next trend of interest is the summation of numeric fields (5.21), where the doubling
of the number of records causes a linear increase in execution time because the amount
of data being retrieved and returned to the user from the server is doubling as well. The
trend showing the effect of doubling the number of records on the execution time is shown
below:

Figure 5.21: Sum of multiple fields execution time trend for doubling number of records in
employee table running on the laptop for the proposed system
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Finally, the last trend to be examined is the average and sum of a single field, which
remains more or less constant with the doubling of the number of records.

Figure 5.22: Sum and average execution time trend for doubling number of records in
employee table running on the laptop for the proposed system

The results examined in this subsection give a picture about the cost in terms of ex-
ecution time and memory usage associated with various types of queries, for tables with
varying number of records, and varying field types. In the next section we summarize the
cost findings in terms of memory usage and total execution time.

5.4 Potential Improvements

The implementation of this system in software involves tradeoffs that can be decided based
on the requirements of the users. In this section, we will explore one potential improve-
ment that directly affects the execution time - the use of multi-threaded programming.
The MySQL server, is indeed multi-threaded, and the utilization of the multi threads will
definitely improve the execution time[15]. Multi-threading could potentially negatively im-
pact power consumption, through higher CPU utilization. To determine the effect of using
multiple threads on power consumption, a multi-threaded version for the location table
was developed. A GUI application by Intel, which provides real-time data on processor
frequency and estimated processor power, and can log frequency, power, energy, and tem-
perature data over time, was used to measure the power consumption during the execution
of the query [16]. The implementation of the multithread version, had three threads: the
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main thread, and two processing threads. The main thread retrieves six records at a time,
and adds it to the queue of the first processing thread, and then retrieves another six
records and adds them, to the queue of the second processing thread. A diagram depicting
the operation of the multi-thread implementation, is shown below:

Main Thread

Retrieve 
Records

Thread 1

Yes
Remove from 

Queue
Decrypt 
Record Print Record

No

End

Records 
To Process?

Add 6 To 
Queue 1

Retrieve Meta 
Data & Keys

Yes

End

Wait for Thread 1 
and Thread 2 to 

Finish 

Add 6 To 
Queue 2

Records 
in Queue 1?

Thread 2

Yes
Remove from 

Queue
Decrypt 
Record Print Record

No

End

Records 
in Queue 2?

Send Signal To 
Threads 

Figure 5.23: A diagram showing the multi-thread implementation for the location table in
the proposed system

The processing queues, process any records that are in the queue, and block if the queue
is empty. Once the main thread is done extracting all the records, a signal from the main
thread is sent to the consumer threads informing them that they can finish anything in
the queue and exit. In this case, in order to display the results in order, one of two things
can be done: use an array with the primary key as the index to store the records, or store
the results as they come in and sort them once all the processing is done. Since the same
amount of memory is used, the only piece of information that has to be known before the
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processing is know, is the number of records, in order to allocate the appropriate amount
of memory. Tests of this implementation have been performed on the location table, and
the results have shown average power consumption to be approximately 4% higher in the
multi-threaded version, over the single-threaded version, but has a saving of approximately
34% in execution time. Therefore, the overall energy consumption of the multi-threaded
version, is lower than the single-threaded version.

Another area of improvement, involves queries that retrieve all the records for processing
queries with a where clause. One way to improve those types of queries, is to have a field
that remains in plaintext form that can be used to reduce the results filtered for the queries
with a where clause. This is similar to the concept of semi-structured data, where tags
are used to enforce hierarchies of records and fields within a data set. So for example,
if the employee hire date, happens to be a field that can remain in plaintext form, then
performing a query on the employee table of employee working in Toronto, who were hired
after August 2017, would reduce the dataset that has to be retrieved from the server
to just the employees hired after the specified date, instead of getting all the employees
determining the ones that work in Toronto, and then determining the ones hired after
that specific date. This of course might not be possible for certain tables, but it certainly
is something that can be considered. This of course, can reduce the security of the data,
because you are exposing a relationship between the data sets - whether those relationships
mean something or not, is a different discussion.
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Chapter 6

Contributions, Conclusion, and Future
Work

6.1 Contributions

In this work, we surveyed various work on homomorphic encryption schemes, and how data
privacy can be achieved in databases. Next, we explored two different ways to combine
Shamir’s Secret Sharing Scheme with AES encryption, in order to encrypt the data at a
field level, and analyzed each method to determine the more suitable one. Encrypting the
database at a field level has two main advantages: no changes are required to the database
itself, and the database can be hosted in the cloud without compromising the privacy of
the data. We analyzed the advantages and disadvantages of the proposed system, to better
understand the scenarios under which the system might be cost efficient for a client. The
cost of the proposed system in terms of execution time, and bandwidth was determined
for different query types.

Next, an architecture for the proposed system was introduced, and analyzed for poten-
tial security threats. Software implementation of the proposed system was completed in C
and Objective C, so that it can be benchmarked against plaintext database and MySQL en-
crypted database - considered to be two viable alternatives. The software was benchmarked
on a laptop and and iPhone, to collect empirical data for execution time and memory us-
age. Full details of how the software executing the various query types, as well as the
tools used to perform the instrumentation of the code, was shown. A database containing
five tables, and varying number of records and field types, was generated and uploaded
to Amazon’s RDS service paving the way for benchmarking the proposed system. Next,
experiments were designed to perform the benchmarking of the proposed system against
the plaintext and MySQL encrypted database, and the data collected from the experiments
were analyzed. The experiment analysis provide empirical data on how execution time,
bandwidth, and memory usage, changes as the number of fields, field types, and number
of records returned are varied. Finally, some potential improvements of the software were
suggested.
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6.2 Conclusion

In this work, we have proposed a way to combine Shamir’s Secret Sharing Scheme with
AES encryption in order to encrypt a database at the field level. We accomplished this
with no change to MySQL server, which allows for flexible deployment in the cloud on any
database technology. Next, we discussed the advantages and disadvantages of the proposed
system, and how it compares to the plaintext and MySQL encrypted databases. We also
completed an implementation in C, and objective C, to demonstrate the practicality of the
system with a database hosted in the Amazon’s RDS cloud service. Using the implemen-
tation, we determined collected empirical data about the cost in terms of execution time,
memory, and bandwidth usage. Finally, a potential improvement that can be applied to
the implementation was discussed, that was able to reduce execution time at the cost of
some added complexity and memory usage.

A summary of the important findings for the proposed system include:

• The use of better hardware, has a positive effect on the proposed system. The ratio
spent on decryption related operations between the iPhone and laptop are the same,
with just faster performance on the laptop

• Execution time for sum/average queries, does not change significantly as the number
of records increases

• Queries matching on numeric values, are faster than matching on string values - 10x
on average for the iPhone, and 17x on average for the laptop

• Performance of the average/sum queries is significantly better on the proposed system
than on the MySQL encrypted database

• Select all queries relative to MySQL encrypted database, is on average 2x for the
proposed system

In conclusion, the system has many advantages and disadvantages, and its usability is
highly application dependent. The most efficient query types involve numeric values such
as: sum and multiplication of two fields, sum and average of a single field, and sum of
multiple fields calculations. Queries that involve where clauses or joins, are expensive, but
remain reasonable in terms of execution time for relatively large number of records. While
the bandwidth cost is high for query types that involve retrieving all the data, over time
the trend of cheaper communication will slowly diminish this cost. Also improvements in
CPU power, will decrease the execution, and thus improve the feasibility of the system.
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6.3 Future Work

The future work revolves around two main areas: improving the performance of the pro-
posed system, and determining some operational details of the proposed system. Improv-
ing the performance of the proposed system, to make it an attractive choice for different
database sizes and field types. The biggest downside to the proposed system is the need
to download all the records for certain query types, making it inefficient in terms of data
bandwidth and execution time. One thing to explore is multi-threading the decryption
process, which can help reduce the execution time of the query, but it does not help with
the bandwidth. It is possible to relax the security requirements, in order to reduce the
number of records retrieved, but that would be dependent on the client and whether they
can tolerate the security downgrade.

Regarding the operational details of the proposed system, some of the unanswered
questions that require further research include:

• How will the CSP stay in sync for updates/deletes, if one (or more) of them is/are
down?

• How do you deal with field values changing maliciously, or due to transmission errors?

• How will the system perform with different database technologies?

• Can the CSP, or another entity, be involved in the query processing of currently
inefficient queries, without compromising the privacy of the data?
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APPENDICES
.1 Relevant Definitions

This is a list of some basic definitions and concepts that are relevant in this work:

• Plaintext: The message, or text, in its original form.

• Ciphertext: The message after it has been encrypted using any encryption scheme.

• Encryption: The process of converting plaintext, into ciphertext. This process
would allow only authorized parties to recover the plaintext (original message), using
the secret key that is agreed upon between the authorized parties.

• Decryption: The process of recovering the plaintext from the ciphertext. A process
that is done using the secret key that is agreed upon between the authorized parties.

• Deterministic Encryption: Given a fixed encryption key and plaintext, the en-
cryption will always produce the same ciphertext[44].

• Ciphertext-only attack: The attacker has access to ciphertext of several messages,
which the attacker analyzes to try and recover the plaintext, or deduce the secret
key[68].

• Chosen plaintext attack: The attacker is able to chose plaintext, and get the
corresponding ciphertext [64, 68]. The plaintext-ciphertext pair is then analyzed to
try to recover the plaintext, or try and deduce the secret key.

• Known-plaintext attack: The attacker has access to ciphertext and the matching
plaintext[68]. The attacker analyzes the plaintext-ciphertext pair, to try and recover
the plaintext, or try and deduce the secret key[68].

• Chosen-ciphertext attack: The attacker can choose different ciphertext to be
decrypted and has access to the decrypted plaintext [68]. Again, the goal is to try
and deduce the secret key.

Encryption schemes evaluation criteria: The criteria upon which encryption
schemes are evaluated on includes the following[56]:
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• Level of Security: Measured in the number of operations required (using the best
methods currently known) to defeat the intended objective. In other words, the
effort required to recover the plaintext from the ciphertext, or recover the secret key.

• Performance: Efficiency of the encryption scheme when used in a particular way. For
example, an encryption algorithm can be rated by the number of bits per second
which it can encrypt.

• Ease of implementation: The difficulty of implementing the encryption scheme, in
software or hardware environment.

.2 Employee Tables Info

Query # of Records Record
Returned Numbers

select all 10,000 1− >10,000
select all where fname = ”Gordon” 20 1− >20
select all where fname = ”Abdel Rafi” 20 5,000− >5,020
select all where fname = ”Test First Name 168” 20 9,981 − > 10,000
select all where hireDate = ”2010-04-01” 834 14,15,38,...9999
select empPos + empLoc 10,000 1− >10,000
select empPos + empLoc + empSalary 10,000 1− >10,000
select empPos + empLoc + empSalary + empSin 10,000 1− >10,000
select sum(empSalary) 1 N/A
select avg(empSalary) 1 N/A

Table 1: Information about the queries being executed for for the employee table with ten
thousand records.
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Query # of Records Record
Returned Numbers

select all 20,000 1− >20,000
select all where fname = ”Gordon” 40 1− >40
select all where fname = ”Abdel Rafi” 40 10,001− >10,040
select all where fname = ”Test First Name 168” 40 19,961 − > 20,000
select all where hireDate = ”2010-04-01” 1,666 14,15,38,...19999
select empPos + empLoc 20,000 1− >20,000
select empPos + empLoc + empSalary 20,000 1− >20,000
select empPos + empLoc + empSalary + empSin 20,000 1− >20,000
select sum(empSalary) 1 N/A
select avg(empSalary) 1 N/A

Table 2: Information about the queries being executed for for the employee table with
twenty thousand records.

Query # of Records Record
Returned Numbers

select all 40,000 1− >40,000
select all where fname = ”Gordon” 80 1− >80
select all where fname = ”Abdel Rafi” 80 20,001− >20,080
select all where fname = ”Test First Name 168” 80 39,981 − > 40,000
select all where hireDate = ”2010-04-01” 3,334 14,15,38,...39999
select empPos + empLoc 40,000 1− >40,000
select empPos + empLoc + empSalary 40,000 1− >40,000
select empPos + empLoc + empSalary + empSin 40,000 1− >40,000
select sum(empSalary) 1 N/A
select avg(empSalary) 1 N/A

Table 3: Information about the queries being executed for for the employee table with
forty thousand records.
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Query # of Records Record
Returned Numbers

select all 80,000 1− >80,000
select all where fname = ”Gordon” 160 1− >160
select all where fname = ”Abdel Rafi” 160 40,001− >40,160
select all where fname = ”Test First Name 168” 160 79,841 − > 80,000
select all where hireDate = ”2010-04-01” 6,666 14,15,38,...79999
select empPos + empLoc 80,000 1− >80,000
select empPos + empLoc + empSalary 80,000 1− >80,000
select empPos + empLoc + empSalary + empSin 80,000 1− >80,000
select sum(empSalary) 1 N/A
select avg(empSalary) 1 N/A

Table 4: Information about the queries being executed for for the employee table with
eighty thousand records.

Query # of Records Record
Returned Numbers

select all 160,000 1− >160,000
select all where fname = ”Gordon” 160 1− >160
select all where fname = ”Abdel Rafi” 160 40,001− >40,160
select all where fname = ”Test First Name 168” 160 79,841 − > 80,000
select all where hireDate = ”2010-04-01” 13,334 14,15,38,...159,999
select empPos + empLoc 160,000 1− >160,000
select empPos + empLoc + empSalary 160,000 1− >160,000
select empPos + empLoc + empSalary + empSin 160,000 1− >160,000
select sum(empSalary) 1 N/A
select avg(empSalary) 1 N/A

Table 5: Information about the queries being executed for for the employee table with
three hundred and twenty thousand records.
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Query # of Records Record
Returned Numbers

select all 320,000 1− >320,000
select all where fname = ”Gordon” 320 1− >320
select all where fname = ”Abdel Rafi” 320 80,001− >80,320
select all where fname = ”Test First Name 168” 320 159,681 − > 160,000
select all where hireDate = ”2010-04-01” 21,332 14,15,38,...319,999
select empPos + empLoc 320,000 1− >320,000
select empPos + empLoc + empSalary 320,000 1− >320,000
select empPos + empLoc + empSalary + empSin 320,000 1− >320,000
select sum(empSalary) 1 N/A
select avg(empSalary) 1 N/A

Table 6: Information about the queries being executed for for the employee table with
three hundred and twenty thousand records.

Query # of Records Record
Returned Numbers

select all 640,000 1− >640,000
select all where fname = ”Gordon” 712 1− >712
select all where fname = ”Abdel Rafi” 712 178,001− >178,712
select all where fname = ”Test First Name 168” 712 355,289 − > 356,000
select all where hireDate = ”2010-04-01” 53,400 14,15,38,...639,999
select empPos + empLoc 640,000 1− >640,000
select empPos + empLoc + empSalary 640,000 1− >640,000
select empPos + empLoc + empSalary + empSin 640,000 1− >640,000
select sum(empSalary) 1 N/A
select avg(empSalary) 1 N/A

Table 7: Information about the queries being executed for for the employee table with six
hundred and forty thousand records.
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Query # of Records Record
Returned Numbers

select all 1,280,000 1− >1,280,000
select all where fname = ”Gordon” 1,067 1− >1,067
select all where fname = ”Abdel Rafi” 1,067 266,751− >267,817
select all where fname = ”Test First Name 168” 1,067 532,434 − > 533,500
select all where hireDate = ”2010-04-01” 21,332 14,15,38,...1,199,999
select empPos + empLoc 1,280,000 1− >1,280,000
select empPos + empLoc + empSalary 1,280,000 1− >1,280,000
select empPos + empLoc + empSalary + empSin 1,280,000 1− >1,280,000
select sum(empSalary) 1 N/A
select avg(empSalary) 1 N/A

Table 8: Information about the queries being executed for for the employee table with six
hundred and forty thousand records.
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.3 Script For Generating Data

def generate db ( num records , l i s t f n a m e s , l i s t l n a m e s ) :

conn = s q l i t e 3 . connect ( num records+” . db” )
c = conn . cu r so r ( )

l i s t s a l a r y = [100000 ,200000 ,300000 ,400000 ,500000 ,600000 ,
700000 ,800000 ,900000 ,1000000]
s i n c o u n t e r = 11111
s a l a r y c o u n t e r = 0
emp id counter = 1
p o s i d c o u n t e r = 6

dict names = dict ( )

for i in c r e a t e t b l s q l :
c . execute ( i )

for i in p o s t b l s q l :
c . execute ( i )

conn . commit ( )

for f in l i s t f n a m e s :
for l in l i s t l n a m e s :

i f s a l a r y c o u n t e r > 9 :
s a l a r y c o u n t e r = 0

i f p o s i d c o u n t e r > 17 :
p o s i d c o u n t e r = 6

s = ”INSERT INTO employee VALUES ( ”
s = s + ” ’ ” + str ( emp id counter ) + ” ’ , ”
s = s + ” ’ ” + f + ” ’ , ’ ” + l + ” ’ , ”
s = s + ” ’ ” + str ( p o s i d c o u n t e r %17) + ” ’ , ”
s = s + ” ’ ” + str ( l i s t s a l a r y [ s a l a r y c o u n t e r ] )
+ ” ’ , ”
s = s + ” ’ ” + str ( s i n c o u n t e r ) + ” ’ ) ”
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s a l a r y c o u n t e r = s a l a r y c o u n t e r + 1
dict names [ emp id counter ] = s
emp id counter = emp id counter + 1
s i n c o u n t e r = s i n c o u n t e r + 1

for i in dict names . keys ( ) :
#p r i n t d ic t names [ i ]
c . execute ( dict names [ i ] )

conn . commit ( )
conn . c l o s e ( )

l i s t f n a m e s 1 0 = [ ’ Abdel ’ , ’Mark ’ , ’ Mike ’ , ’ John ’ , ’ Joe ’ ]
l i s t l n a m e s 1 0 = [ ’ Tawakol ’ , ’Doe ’ ]
generate db ( ’ ten ’ , l i s t f n a m e s 1 0 , l i s t l n a m e s 1 0 )

l i s t f n a m e s 1 0 0 = [ ’ Abdel ’ , ’Mark ’ , ’ Mike ’ , ’ John ’ , ’ Joe ’ , ’ Jim ’ , ’ Nick ’
, ’ Ph i l ’ , ’ B i l l ’ , ’ George ’ ]
l i s t l n a m e s 1 0 0 = [ ’ Tawakol ’ , ’Doe ’ , ’ King ’ , ’ Bush ’ , ’ Zuckerberg ’ , ’ Carry ’ ,
’ Fowler ’ , ’ Gates ’ , ’Nay ’ , ’ Li ’ ]
generate db ( ’ hundred ’ , l i s t f n a m e s 1 0 0 , l i s t l n a m e s 1 0 0 )

.4 Encrypt Integer Using Shamir Secret Sharing Scheme

signed long int f a s t a t o i ( const char ∗ s t r )
{

signed long int va l = 0 ;
while ( ∗ s t r )
{

va l = va l ∗10 + (∗ s t r++ − ’ 0 ’ ) ;
}
return va l ;

}

signed int∗ encrypt shamir ( char∗ va l )
{

signed int ∗ enc rypt ed va l s = c a l l o c (3 , s izeof ( signed int ) ) ;
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signed int c o e f f 1 ;
int x v a l s [ ] = {1 ,2 , 3} ;

signed int i n t v a l = ( signed int ) f a s t a t o i ( va l ) ;

c o e f f 1 = ( ( arc4random uniform (SHAMIR PRIME−1))
%SHAMIR PRIME POLY COEFF) ;

enc rypt ed va l s [ 0 ] = ( ( i n t v a l%SHAMIR PRIME) +
( ( c o e f f 1 ∗ x v a l s [0 ] )%SHAMIR PRIME)%SHAMIR PRIME) ;

enc rypt ed va l s [ 1 ] = ( ( i n t v a l%SHAMIR PRIME) +
( ( c o e f f 1 ∗ x v a l s [1 ] )%SHAMIR PRIME)%SHAMIR PRIME) ;

enc rypt ed va l s [ 2 ] = ( ( i n t v a l%SHAMIR PRIME) +
( ( c o e f f 1 ∗ x v a l s [2 ] )%SHAMIR PRIME)%SHAMIR PRIME) ;

return enc rypt ed va l s ;
}
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.5 Table Information Sample

A sample of the information containing the table details, extracted from MySQL Work-
bench.

Figure 1: A sample of the employee sales table information, as seen on MySQL Workbench
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.6 Trace Sample

A sample of the trace file recorded by Instruments, for item price table queries running on
the iPhone.

Figure 2: Sample trace file for item price table queries running on the iPhone
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