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ABSTRACT 

Polymeric nanoparticle (NP) drug carriers present a promising technology for 

controlled release since they are capable of improving the encapsulation efficiency and 

stability of the drugs inside the NPs and also able to provide effective drug levels over 

a longer period of time, compared to traditional therapy. However, before the NP drug 

delivery technology becomes a reality, important parameters of NPs like size, drug 

loading ability and sustained release kinetics must be well investigated and optimized 

in order to minimize the adverse effects of chemotherapeutic compounds and prolong 

the drug releasing profile in a controlled manner.  

In order to accomplish this objective, this thesis proposed two novel methods for 

synthesis of NPs as drug delivery carriers, with assistance from bulk and microfluidic 

technologies, for hydrophobic and hydrophilic drugs, individually. 

For encapsulation of hydrophobic drugs, a modified flow focusing method was 

developed on a glass capillary microfluidic platform. Unlike conventional microfluidic 

flow focusing using two miscible phases, an insoluble component (DCM) was 

introduced into the dispersed phase to form a partially water-miscible precursor, and a 

transformation phenomenon of “jet—micro droplets--nanoparticles” was firstly 

observed instead of the “jet—micro droplets” or “jet—nanoparticles” from traditional 

flow focusing. Using Doxorubicin as a drug model, size-tunable Doxorubicin-PLGA 

NPs (80~170 nm) were synthesized by adjusting the flow rates, polymer concentration 

and the volume fraction of DCM in dispersed phase with an excellent monodispersity 

(PDI=0.1~0.2) which was superior to those from conventional flow focusing. We also 

found that drug loading content increased when volume ratio of DCM/DMSO in 

dispersed phase increased, with a considerable mass loading ratio up to 26.3%. In 

addition, Doxorubicin-PLGA NPs synthesized with DCM/DMSO precursor exhibited 

a slower drug release profile than those synthesized with pure DMSO precursor.  

This modified flow focusing method can also be extended to encapsulate inorganic 

compounds, such as iron oxide (Fe2O3) for a combination of chemotherapy and thermo-

therapy, and showed a better loading ability of Fe2O3 than conventional research using 
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pure DMSO. This method successfully combined the advantages from previous 

classical drug encapsulation techniques: small particle size, ease to operation—like 

nanoprecipitation; monodispersity, high drug encapsulation efficiency—like emulsion-

based methods, provided us a promising tool for preparing nanoparticle carriers for 

multiple drug loading of both organic drugs and inorganic compounds 

For encapsulation and release of hydrophilic drugs, a modified bulk drop-wise 

nanoprecipiation method was designed by separating drug and polymer into aqueous 

and DMSO phases, respectively. In this case, we successfully solved the problem of the 

poor solubility of hydrophilic drug in organic solvents, for which reason the traditional 

nanoprecipitation method was limited to the application of hydrophilic drug 

encapsulation. Monodisperse ciprofloxacin-loaded PLA (poly (D,L-lactide))-Dextran 

and PLGA-PEG (poly (lactide-co-glycolide)-block-poly (ethylene glycol)) NPs were 

prepared of a tunable size range (80~200 nm). The drug loading ability, up to 18.6% 

(w/w), was found having an excellent linear correlation with the original feed of the 

ciprofloxacin drug, which indicated that drug content encapsulated by the NPs could be 

precisely controlled and an in-vitro sustained release was achieved up to 95.4% in 6 

days. 

This thesis demonstrated the design and mechanism of different drug encapsulation 

and release systems; and synthesis, characterization, and optimization of drug-loaded 

polymeric nanoparticles. Our novel drug delivery systems significantly improved the 

encapsulation efficiency of various therapeutic compounds and exhibited a sustained-

release profile. These nano-drug-delivery systems exploited intrinsic properties of NPs 

for controlled release, and will not only benefit the field of nanobiomedicine, but also 

could be further applied to food, flavor, fragrance and cosmetics industry.  
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Chapter 1 INTRODUCTION 

1.1 Overview 

Drug delivery system (DDS) plays an increasingly important role in treatments for 

various diseases nowadays1, which can be performed through different organs like eye, 

nose, ear canal, vagina, rectum and mouth or through dental, transdermal, subcutaneous, 

intramuscular injection or implantation. Drugs from DDS is released or absorbed in a 

controlled rate and so that could be maintained at a safe, stable and efficient 

concentration. Currently, combination of DDS and nanomedicine attracts growing 

attentions from researchers with the advancement of nanotechnology to solve a number 

of existing challenges. Biocompatible polymeric nanoparticles (PLGA, PLA2 and their 

copolymers, etc.) are considered to be promising drug delivery carriers since they are 

capable of encapsulating bioactive agents for therapeutic proposes and their high area-

to-volume ratio ensures a great potential to conduct an effective release3. In addition, 

NPs could improve the stability of drugs and tiny NPs of sub-100nm range are able to 

circulate with blood and accumulate in tumor areas by the enhanced permeability and 

retention (EPR) effect.  

Drugs can be distinguished as two categories: hydrophobic and hydrophilic, and 

different encapsulation techniques are chosen according to this property to fabricate 

drug-loaded NPs. However, problems like low encapsulation efficiency, low 

controllability over the size and drug loading ability of particles and complex protocols 

still exist in the encapsulation methods for both hydrophobic and hydrophilic drugs 

which need to be optimized before their further biomedical applications. 

(1) Conventional nanoprecipitation method, mixing one miscible fluid in water, 

mainly used for encapsulation of hydrophobic drugs, could bring us very small NPs. 

But we have to bear the consequences that relatively low encapsulation efficiency and 

board distribution of the nanoparticles during the bulk mixing procedure. Microfluidic 

technology is previous used to solve this problem, however, partially: The droplet-

based microfluidics is able to produce homogenous O/W emulsion, yet of micro sizes; 

flow-focusing microfluidics is able to produce smaller particles, yet relatively lower 
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encapsulation efficiency. We are thus motived to combine the advantages of these two 

techniques together: fabricating highly uniform nanoparticles as drug delivery carriers 

and improving the encapsulation efficiency of hydrophobic drugs at the same time.    

A modified microfluidic flow focusing technique has been proposed to solve this 

problem that we used a mixed solvent of DCM/DMSO instead of pure DMSO as a 

dispersed phase. With the diffusion of DMSO into water, the insoluble DCM was left 

with PLGA NPs so that monodisperse droplets were generated and these droplets could 

transfer to nanoparticles afterwards. In addition, since DCM has a strong surface 

tension with water, more hydrophobic drugs can be preserved when using Doxorubicin 

and Tamoxifen as drug model because DCM creates a good solvent condition inside the 

nanoparticles. By controlling the flow rates of Qw and Qoil, polymer concentration and 

volume fraction of DCM in dispersed phase, highly uniform PLGA NPs were 

synthesized with a precisely-tunable size. 

(2) While nanoprecipitation technology is highly-efficient, easily-handled and rapid, 

it has, to date, had limited potential to encapsulate hydrophilic drugs due to the poor 

solubility of these drugs in organic solvents4. So the encapsulation of most hydrophilic 

drugs are accomplished by multiple-step-emulsion techniques e.g., tetanus toxoid 

encapsulated by solid-oil-water emulsion, methylene blue entrapped by emulsion 

solvent evaporation and water-oil-water encapsulation of insulin by double emulsions.  

However, the emulsion-based encapsulation methods also suffer from the weak 

controllability over the size of particles and complex preparation process.  

Thus we developed a new modified drop-wise nanoprecipitation method, the biggest 

difference of which from the conventional one is the drug and polymer were separated 

into organic phase and aqueous phase individually. Monodispersed ciprofloxacin-

loaded poly (D,L-lactide)-dextran and PLGA-PEG nanoparticles were formed through 

a simple drop-wise mixing process. The characterization of morphology and the 

encapsulation efficiency of PLA-DEX and PLGA-PEG NPs were assessed. In addition, 

the relationship of initial concentration of ciprofloxacin the mass loading ability of 

PLA-DEX and PLGA-PEG NPs were investigated and a cumulative release of 

ciprofloxacin was evaluated in-vitro. 
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(3) It is highly desirable that nanoparticle carriers can not only deliver anti-cancer 

drugs to tumor sites, but also provide thermotherapy5 as a second treatment addition to 

chemotherapy. Currently, there is limited range of mature drug delivery systems that 

could satisfy: (i) multiple loading of drugs and magnetic contents; (ii) biocompatibility 

and non-toxicity; (iii) stability of drugs and inorganic components.  

Nanoparticle drug delivery technology may provide a more efficient, harmless 

solution to overcome these problems. Dual loading of anti-cancer drugs and magnetic 

nanoparticles can be achieved within polymer carriers through simple procedures6. 

However, NPs prepared by chemically-conjugated7 or conventional nanoprecipitation 

method8 are limited by low loading ability of magnetic iron oxide nanoparticles, which 

directly affects its ability of transferring magnetic energy to heat energy, thus lower the 

effect of hyperthermia. 

We were inspired by the great drug loading ability of modified microfluidic flow 

focusing method described in Section 1.1 (1), and therefore, applied it to dual loading 

of drug and iron oxide nanoparticles. PTMC-b-PGA polymer vesicles were prepared by 

the same microfluidic platform using a DCM/DMSO mixed precursor, with a uniform 

distribution. The morphology of the PTMC-b-PGA vesicles were measured and 

confirmed. The drug encapsulation efficiency of drug and iron oxide components were 

determined, individually. In addition, the influence parameters on the encapsulation 

efficiency and size of NPs, like polymer composition, flow ratio, initial drug feed were 

investigated. 

 

1.2 SCOPE AND OBJECTIVES 

The objective of this research is to synthesize functional polymeric nanoparticles for 

encapsulation and controlled release of therapeutic compounds. According to the 

different solubility of hydrophobic and hydrophilic drugs in aqueous and organic 

solvents, two different drug encapsulation methods should be developed, respectively, 

in order to modify the important properties of NPs such as size, encapsulation efficiency 

and sustained release ability for further biomedical application. So we divide our works 
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into two parts: for hydrophobic drugs and for hydrophilic drugs. 

(i) For hydrophobic drugs, it is hypothesized that the encapsulation efficiency of 

hydrophobic drugs by nanoparticles from emulsion-based method is higher than that 

from nanoprecipitation method and nanoparticle synthesized by nanoprecipitation 

method may be smaller than that from emulsion-based method. There may be 

possibility to combine these two encapsulation methods together by microfluidic 

technology using a partially water-miscible precursor, and remain both of their 

advantages. A Microfluidic technology may serve as a promising tool to produce 

nanoparticles to encapsulate hydrophobic drugs. By achieving these desired properties, 

uniform nanoparticles may be synthesized around sub-200 nm size range and with a 

great encapsulation efficiency of hydrophobic drugs. In addition, previous literatures 

indicated that the encapsulation of iron oxide nanoparticles and be achieved in bulk 

emulsion or nanoprecpitation methods, which may open potential for dual loading of 

inorganic metal nanoparticles and organic drugs, and provide a fundament for 

combination of thermotherapy and chemotherapy. Further investigation is possibly 

about the mechanism of self-assembly behavior of nanoparticles by microfluidic flow 

focusing and controlling important parameters of the drug-loaded nanoparticles, such 

as size and distribution, encapsulation efficiency and release profiles.  
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Figure 1. Summary of scope and objectives: Modified microfluidic flow focusing using a partially 

water-miscible precursor for encapsulation and controlled release of hydrophobic drugs 

 

The work flow chart of this part is demonstrated in Figure 1 and the specific 

objectives to test the hypotheses are described below:  

(1) Synthesize nanoparticles by traditional nanoprecipitation method, emulsion 

method and “emulsion + nanoprecipitation” method in bulk experiments, 

individually  

(2) Characterize and compare size and distribution of nanoparticles, encapsulation 

efficiency and in-vitro release profiles by these three methods 

(3) Design and fabricate a robust microfluidic platform using a partially water-miscible 

precursor to synthesize nanoparticles  

(4) Investigate the formation process of nanoparticles and the impact factors over the 

size and distribution of nanoparticles 

(5) Demonstrate encapsulation and in-vitro controlled release of hydrophobic drugs by 

the microfluidic platform 

(6) Preform multiple loading of inorganic iron oxide nanoparticles and organic anti-

cancer drugs 

(7) Compare the results with different drugs, microfluidics, and bulk methods 

(8) Modify parameters of NP formations to optimize its size and distribution, surface 

properties, encapsulation efficiency and controlled release. 

 

(ii) For hydrophilic drugs, it is hypothesized that hydrophilic drugs dissolved in 

aqueous solvent can be encapsulated by polymer nanoparticles during the drop-wise 

nanoprecipitation. High drug/polymer ratio may lead to drug-loaded nanoparticles with 

a considerable drug loading ability. These drug-loaded nanoparticles may improve the 

stability of the drug and prolong the therapeutic release activity. Mechanism of the 

formation of drug-loaded nanoparticles is to be understood next. This modified drop-

wise nanoprecipitation method may have potential to be extended to different polymeric 

nanomaterials and drugs and important parameters like particle size, distribution and 
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drug loading ability are possible to be tuned for optimization.  

 

Figure 2. Summary of scope and objectives: Modified drop-wise nanoprecipitation for 

encapsulation and controlled release of hydrophilic drugs  

 

The work flow chart of this part is demonstrated in Figure 2 and the specific 

objectives to test the hypotheses are described below:  

(1) Synthesize drug-loaded nanoparticles by modified drop-wise nanoprecipitation 

(2) Characterize the size and morphology of nanoparticles 

(3) Perform encapsulation of hydrophilic drugs and evaluate the drug loading ability  

(4) Demonstrate in-vitro release profiles and compare with ones from free drug group 

(5) Modify the NP formations to optimize its size and distribution, surface properties, 

encapsulation efficiency and controlled release. 
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Figure 3. Summary of scope and objectives: Combination of chemotherapy and magnetic therapy, 

dual loading of drugs and iron oxide nanoparticles.  

 

The work flow chart of this part is demonstrated in Figure 2 and the specific 

objectives to test the hypotheses are described below:  

(1) Apply same microfluidic technology to fabricate uniform polymer vesicles using 

amphiphilic block polymers 

(2) Dual encapsulate anti-cancer drugs and iron oxide nanoparticles  

(3) Determine the morphology and structure of the drug/iron oxide-loaded vesicles 

(4) Measure the encapsulation efficiency of drugs and iron oxide nanoparticles 

(5) Test the biocompatibility of the drug/iron oxide-loaded vesicles in the cell culture 

(6) Perform in-vitro and in-vivo drug release study under the magnetic field  

(7) Investigate influence parameters on the drug loading ability, particle size, drug 

release rate, and hyperthermia effect for optimizations. 

 

1.3 Thesis Outline 

This thesis consists of one chapter of introduction of the Ph.D. research project, one 
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chapter of literature review, and followed by three research-based chapters and one 

chapter of conclusion and perspectives. 

Chapter 1 outlines the background, existing problems to be solved, scopes, and 

objectives of this thesis 

Chapter 2 reviews the current art states of developments of different encapsulation 

and release methods for hydrophobic, hydrophilic drugs, and combination of 

thermotherapy and chemotherapy, respectively.  

Chapter 3 demonstrates the design and fabrication of a modified microfluidic 

platform using a partially water-miscible precursor to improve the encapsulation 

efficiency of hydrophobic drugs and drug loading ability of polymeric nanoparticles. 

Physical mechanism of evolution process of the partially water-miscible precursor in 

the microfluidic channel is firstly investigated. The effects of parameters on the 

formation of drug-loaded nanoparticles and release profiles are then discussed, 

including hydrophobicity of drugs, flow ratio, polymer concentration, drug/polymer 

feed ratio, and volume ratio of immiscible component.  

Chapter 4 shows formation of drug-loaded NPs by the modified drop-wise 

nanoprecipitation to improve the loading ability of hydrophilic drugs. The self-

assembly mechanism of hydrophilic drug-NPs is firstly investigated. Then the drug 

loading ability of different polymers and drug/polymer feed ratio are compared, and the 

effect of hydrophilicity of the co-polymers on the drug release rate are discussed as well  

Chapter 5 utilizes the microfluidic technique developed in Chapter 3 to investigate 

the possibility of dual loading of inorganic iron oxide nanoparticles and organic 

therapeutics. The potential of this microfluidic method for multiple drug loading over 

conventional bulk methods, like monodispersity of NPs, smaller NP sizes, and higher 

drug loading content are illustrated. This chapter also provides proof-of-concept of 

combing magnetic therapy and chemotherapy using a facile microfluidic tool.  

Chapter 6 concludes current achievements of this work so far and looks head the 

future perspectives of this thesis. One of the key avenues of this research is exploiting 

different drug encapsulation methods for fabricating drug-loading NPs with a 

considerable loading, according to the hydrophobicity or hydrophilicity of the drug. 
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Secondly, these methods are able to be extended to applications of various polymers, 

drugs, inorganic contents. Additionally, to industrialize and scale-up these 

encapsulation and release systems, an understanding of interactions of 

hydrophobic/hydrophilic drugs and NPs needs to be established 
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Chapter 2 LITERATURE REVIEW 

2.1  Polymeric Nanoparticles (NPs)for drug delivery  

Nano drug delivery system (DDS) refers to chemically and/or physically loading 

therapeutic compounds within nanomaterials, and forming a mixed system of drug and 

carriers. The main advantages of nano can be briefly concluded but not limited as: (1) 

increase the drug concentration in the target organs/tissues/cells to, thereby increasing 

drug utilization and treatment and lowering side effects9, 10; (2) improve the solubility 

of hydrophobic drugs in aqueous environment1; (3) able to deliver drug to targeted 

organs/tissues/cells11; (4) able to deliver biomacromolecules like DNA12, 13, 14, 15/RNA16, 

17, 18/protein19, 20, 21, 22 which are difficult for cells to uptake to active sites inside the 

cells. Thus, innovation and development of nano DDSs arise interests from biomedical 

scientists. 

Biodegradable polymers are widely investigated and used for targeted drug 

delivery23. Because of their excellent biocompatibility and biodegradation, polymers 

like poly (lactic acid) (PLA)24, poly (lactic-co-glycolic acid) (PLGA)25 and their 

copolymers26, 27, etc., are promising biomaterials that can be fabricated as microspheres 

and nanospheres28 containing bioactive agents (drugs, proteins, DNA12, etc.) for in vivo 

and in vitro therapeutic applications29. In the other hand, drug-loaded NPs provide us a 

novel perspective to overcome drawbacks of traditional approaches, such as drug 

solubility, toxicity11 and in vivo half-life, in a sub-micron or a nano scale.  

 

Figure 4. Molecular formula of PLA and PLGA 

With various physical or chemical processes, biocompatible polymers could combine 

with most drugs by hydrophobic or electrostatic interactions and form functional NPs 
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of different structures, like micelles30, core-shell, hydrogel31, star, dendrimer, 

liposomes32 and polymersomes33, 34, 35 (Figure 5) and be stimuli-responsive36, 37. These 

NPs minimize the side effects of chemotherapeutic drugs and provide optimal drug 

levels for a longer period of time. The surface of NPs can also be coated or grafted with 

different functional groups (e.g. PEG26, peptides29) in order to reduce its uptake by 

organs38, improve its biocompatibility and bind targeting receptors11.  

Figure 5. A schematic illustration of different structures of polymeric nanoparticles 

However, several important parameters of NPs such as density of targeting receptors, 

drug loading ability, surface charges, morphology,  hydrophilicity, etc. still need to be 

optimized39, before targeted controlled release therapy becomes a reality. 

 

2.2  Traditional bulk encapsulation methods of hydrophilic/hydrophobic drugs 

by NPs for drug delivery system 

An increasing number of newly innovated drugs that are poorly soluble in common 

solvents arises a need to develop novel effective methods for encapsulation and 

delivery40. In this chapter, conventional bulk methods to prepare nanoparticle drug 

carriers will be reviewed and discussed about how they are performed, the reason that 

they are chosen for hydrophobic /hydrophilic drugs and their advantages and limitations. 
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2.2.1 Common encapsulation methods for hydrophobic drugs 

Figure 6. A brief flow chart of different encapsulation methods for hydrophobic drugs: (a). 

Formation of NPs after solvent evaporation, (b). Emulsion droplets containing water-immiscible 

contents, (c). Formation of NPs after solvent evaporation, (d). Emulsion droplets containing both 

water-miscible and water-immiscible contents, (e). Emulsion droplets containing water-immiscible 

contents after dilution, (f). Formation of NPs after solvent evaporation 

 

2.2.1.1 Nanoprecipitation 

Nanoprecipitation has grown up to one of the most commonly used methods for 

synthesis of polymeric hydrophobic drug-loaded NPs, which was firstly invented by H. 

Fessi et al41 in the late 1980s. A typical process (Figure 6.a) of nanoprecipitation is like 
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this: polymer (or with drugs) were dissolved in same water-miscible organic solvents 

(dispersed phase) and then drop-wisely mixed with aqueous solution (continuous 

phase).The one-step formation of nanoparticles is due to the interfacial deposition of 

polymer (or with drugs) because of the interfacial solvent displacement between two 

different unstable liquid phases41.  An incredibly amount of drugs (cyclosporine A, 

DOX, doctaxel, paclitaxel, etc.) and polymers (PLGA, PLA, PCL, PMMA, etc.) are 

able to be used to prepare NPs by nanoprecipitation. Important parameters of NPs, e.g. 

size, distribution, encapsulation efficiency, etc. can be easily tuned by controlling 

different experimental conditions of nanoprecipitation, such as O/W ratio42, pH43, 

polymer/drug ratio44, block ratio of block polymers45, solvent selection46 and etc.  

Since basically no external energy or surfactant is required for the formation of NPs, 

nanoprecipitation is indeed a facile and neat procedure. The solubility of drugs and the 

miscibility of solvents46 with water are the dominating parameters for the results. The 

general encapsulation efficiency of hydrophobic drugs by nanoprecipitation method is 

less than 50%47 and the loading ability is around 10% (weight ratio) 44. In contrast, 

hydrophilic drug usually has a poor encapsulation efficiency by nanoprecipitation 

because it different solubility from polymer, though some attempts48 are tried to 

improve its entrapment in NPs. In addition, the traditional nanoprecipitation is still 

currently limited inside labs due to its drop-wise operation, and the difficulties of 

extraction, recovery and reservation of NPs.  

 

2.2.1.2 Oil/Water Single Emulsion  

Emulsion-based methods are another kind of widely adapted techniques for 

hydrophobic drug encapsulation. Unlike nanoprecipitation procedure, water immiscible 

organic solvents are usually used in order to make emulsions. Compared to 

nanoprecipitation methods, NPs from emulsification procedure vary in particle size, 

drug-loading ability, etc. Different emulsion-based methods will be discussed in this 

and following sections. 
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   O/W single emulsion is the most commonly used method to prepared NPs. It 

normally contains two steps (Figure 6.b, c): (1) Polymer and drug are dissolved in a 

volatile solvent (e.g. DCM, THF, etc.) and mixed with aqueous solution by sonication 

or high-speed stirring to form micro-sized or nano-sized emulsion; (2) The volatile 

solvent are removed gradually under evaporation.  

   Facile, rapid and easy to control, the O/W emulsion is regarded as a general method 

in drug delivery area that are suitable for many different kinds of solvents, such as ethyl 

acetate49, DCM50, 51, 52, 53and chloroform54,and polymers (e.g. Pluoronic F68&12749, 

PS54, PLGA50, 51, PLA50, PCL-PEG15 and their copolymers55) and common drugs 

(DOX56, docetaxel57, paclitaxel55, cyclosporinA58, etc.). Multiple drug contents can be 

incorporated simultaneously56and high encapsulation efficiency (usually more than 

80%, even close to 100%)59 can be achieved as well. Conventional procedure may lead 

to unstable emulsion droplets so that surfactants like PVA52, 53, 56 are required sometimes. 

Smaller emulsion particles are found having a “burst” sustained release52 compared to 

larger ones, since smaller droplets suffer from a higher surface/volume ratio which 

accelerates the transportation of drugs, which means we need to find a balance point 

between the size and properties of NPs.  

   As for nanoprecipitation, the solubility of drugs also determines that the application 

of O/W single is mainly limited with hydrophobic drugs, however, , there are some 

efforts are made to break this boundary60. The residue of volatile solvent inside the NPs 

is a potential hazard for in-vivo therapy and the un-stability and polydispersity of 

emulsion droplet are the other issues to concern about.  

 

2.2.1.3 Solvent Diffusion Emulsion 

   Solvent diffusion emulsion is another popularly used approach for preparation of 

nanoparticle drug carriers which was firstly reported by Y. Kawashima et al61in 1993. 

In this method, the polymer and drug are dissolved a partially water-miscible solvent 

(e.g. acetone+DCM62) which is pre-saturated by water, then drop-wisely added into 
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aqueous solution to form O/W emulsion droplets. The droplets are further diluted by an 

additional significant amount of water and the rapid diffusion of organic solvent into 

water induces the formation of NPs (Figure 6d, e, f). A typical solvent evaporation 

process is usually followed to get rid of the organics. In addition, different formation 

conditions of preparation could bring NPs with various properties, such as drug-loading 

ability, morphology and controlled release13, 63, 64, 65, 66, 67, 68, 69. 

   This method is a further development of the conventional O/W single emulsion 

method66, and could produce smaller NPs with a better monodispersity, which is 

superior to O/W single emulsion method and W/O/W double emulsion method, since 

less water-immiscible solvent is introduced into the emulsification thus it becomes 

easier to control. Generally, the solvent diffusion emulsion is thought of as a 

supplementary method to prepare hydrophobic drug-loaded NPs70 besides 

nanoprecipitation method, however, both E.E. (less than 40%)62 and drug loading 

content(less than 10%)62 inside the nanospheres were still not satisfying. In addition, 

the large amount of additional diluting aqueous solution during the emulsification may 

limit its application for hydrophilic drug encapsulation62. In addition, the diluted 

emulsion also increases the difficulties of extraction of NPs and evaporation of volatile 

solvents.  

 

2.2.1.4 Salting-out Emulsion 

The organic solvent involved in salting-out emulsion method is totally miscible with 

water, like acetone. And the aqueous solution contains salts (magnesium chloride 

hexahydrate68, calcium chloride71, or magnesium acetate tetrahydrate49)of a high 

concentration to prevent the diffusion of organic solvent into water. The polymer 

solution is firstly drop-wisely mixed with water and dispersed in forms of emulsion 

droplets, then the continuous phased is diluted greatly to induce the precipitation of 

polymer and drug and the formation of NPs (Figure 6.d,e,f).  

So from the perspective of mechanism, salting-out emulsion can be seen as a 
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derivative of solvent-diffusion method and similarly, hydrophobic drug has much better 

encapsulation efficiency in salting-out emulsion because of the excess aqueous solution. 

Also, salting-out technique can be thought of as a modified nanoprecipitation method, 

however, with a “pause” first step (organic phase against highly-concentrated salt 

solution, almost no diffusion) and a rapid mixing second step. Compared with these 

two methods, NPs obtained by salting-out emulsion are usually larger than the ones 

from nanoprecipitation and smaller than the ones from solvent-diffusion68, under same 

experimental conditions. A typical E.E. of this method is around 40% and mass loading 

ability is around 50%72. However, an additional purification step is normally required 

after salting out agent elimination72, so is the removal of organic solvent2. Besides, a 

burst-release (>50%) usually happens in the very beginning stage of the release 

process72, which means a bad control of the release rate. In addition, important issues 

like the concentration of salts, O/W ratio and selection of stabilizers are still need to be 

concerned in order to improve the salting-out emulsion method.  

 

2.2.2 Common encapsulation methods for hydrophilic drugs 

2.2.2.1 Water/Oil/Water Double Emulsion 

W/O/W double emulsion is a further and supplementary development based on the 

O/W emulsion. A typical procedure to prepare W/O/W double emulsion (See Figure 7) 

is: (1) The hydrophilic drug and polymer are dissolved in aqueous solvent and organic 

solvent individually; (2) The first water-in-oil emulsion is prepared by mixing the two 

phases by sonication or high-speed shearing; (3) The water-in-oil emulsion is then 

poured into aqueous solution again to form water-oil-water double emulsion;  (4) 

Microspheres or nanospheres can be produced after evaporation of organic solvent 

under reduced pressure or heating for further use. 
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Figure 7. A typical process of double emulsion formation73.  

   The double emulsion technique was firstly developed to encapsulate hydrophilic 

bioactives like proteins71, insulin59 and DNA12, and it also can be applied to synthesize 

nanocomposites with inorganic materials73. Yet it also has potential encapsulation 

ability for hydrophobic drugs since it contain an organic core at the same time.  Y.Y. 

Yang et al74 reported a double-wall microspheres made of poly(orthoester) and PLGA 

with both good encapsulation efficiency of bovine serum albumin (BSA) and 

hydrophobic cyclosporin A (CyA). BSA and CyA are entrapped in shell and core, 

respectively, since their different solubility and both two drugs can be completely 

released.  

The size and morphology or double emulsion NPs can be tuned by modifying the 

composition of polymers75, O/W ratio76, etc. and high encapsulation efficiency can be 

easily reached77. Compared to O/W emulsion, W/O/W double emulsion is easier to get 

rupture or stratification51 during the mixing or evaporation, since more dispersed phase 

are created which thus increases the interfacial energy, which leads to the loss of loaded 

contents. Typically, good E.E18 (usually less than 30%) and loading ability77 (usually 
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less than 1%)are hard to be both satisfied at meantime. Thus surfactants or emulsifiers 

are normally required to stabilize the PLA NPs and amphiphilic copolymer75, 77 is also 

a preferred choice. 

 

2.2.2.2 Reverse-phase-evaporation (REV) 

Reverse-phase-evaporation technique was firstly created in 1978 by Francis Szoka 

et al78. An aqueous buffer is added into organic solvents with lipids and the volatile 

organic solvents are subsequently removed by evaporation under reduced pressure to 

form vesicles79. A considerable fraction of aqueous phase is then encapsulated by the 

vesicles with high efficiency80. Phosphatidylcholine81, soybean phosphatidylcholine82, 

cholesterol83and 1,2–dipalmitoyl–sn–glycerol–3-phospocholinemonohydrate 

(DPPC)84 etc., and the mixture of them are commonly used to prepare large unilamellar 

and oligolamellar lipid vesicles.  

 

Figure 8. Protocol for niosome preparation through REV method85. MLV: Mulit-lamellar vesicles. 

Now the REV procedure has been a popular drug encapsulation method, especially 

for hydrophilic drugs. Hosny86 prepared ciprofloxacin liposomal hydrogel with soybean 

phosphatidylcholine (PC) and cholesterol (CH) for ocular treatments. It is found that 

the entrapment efficiency and permeability of the liposomes can be controlled by 
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changing the molar ratio of PC/CH. R.C.R. Beck et al82developed a novel redispersible 

liposomal-N-acetylcysteine powder for pulmonary administration. Besides, reverse-

phase-evaporation could also be a supplementary method for LBL to encapsulate small 

neutral water-soluble compounds87. 

However, the controllability over the size and morphology of the vesicles is lacked, 

which is because vesicles could hardly remain stability after evaporation of organic 

solvents and coalesces and ruptures81 of vesicles occur casually. The wide size 

distribution of the liposomes could lead to a huge loss of drug once the over-sized 

particles are excluded, e.g., the E.E. goes down from 54.2% to 5.2% when filtered by a 

200nm membrane, and the mass loading decreases to 0.08%.84 In addition, the complex 

operation procedure and easy permeability86 of the liposomes may limit its application 

for long-term controlled release. 

 

2.2.3 Versatile encapsulation methods for both hydrophilic and hydrophobic drugs 

2.2.3.1 Layer-by-Layer assembly 

 
Figure 9. Example of Layer-by-Layer materials14. 

Layer-by-layer (LBL) assembly method is based on the electrostatic attraction88 or 

hydrophobic forces87 between polyelectrolytes, such as poly (ethylene imine)89, poly-

lysine90, poly (arcylic acid)91, chitosan, poly(styrene sulfonic acid) and so on. Different 

bioactive agents frequently play the role of the depositing species to grow a core-shell 

structure, like BSA, dextran sulfate, glucose oxidase; inorganic materials, e.g. 

nanodiamonds90, gold nanoparticles16, porous CaCO3
92 or silica93 microparticles can 

also be used. Then the particles are quenched into drug and polymer solutions step by 

step94 to form NPs. The final step is the removal of the template core to make a hollow 
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structure for further absorption17, or the drug contents can be encapsulated at the first 

step, like DNA14 as the initial core of the NPs so that it could be coated with multi-layer 

polymers to modify its properties. By regulation of the conditions of LBL cycles95, 

multi-layered NPs could be produced with a tunable particle size96 and a controlled 

release rate91.  

The LBL method is suitable method for both hydrophilic and hydrophobic drugs 

since it doesn’t depend on the solubility of the drugs to accomplish the encapsulation, 

but the electrostatic interaction between polymers and drugs. But in the other hand, it 

also limits the selection of neutral polymers and drugs87, 97, and the density of the drug 

within the layers is usually as low as several micrograms per cm2. Furthermore, the in-

vivo toxicity, immune-responses18, leaky shells87, and the complex preparation process 

remain severe obstacles to be solved97. 

2.2.3.2 Spray-drying technique 

The spray-drying technique was firstly invented by Pamujula et al98 in 2004 to 

improve the entrapment efficiency of hydrophilic drugs (proteins99, 100, ceftazidime, 

ciprofloxacin101). The polymer and lipids are normally dissolved in a volatile organic 

solvent (DCM, chloroform) and then mixed with aqueous solution which contains drugs 

to form a W/O emulsion102. In the second step, the suspensions are injected through a 

standard nozzle (0.70mm or 1.0mm) and blew into a chamber with hot nitrogen. By 

changing the flow rates, size-tunable103 NPs could be easily obtained. Finally the NPs 

are collected and dried104 to further characterization or release study105.  
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Figure 10. Construction of REV device. (a): schematic representation of the electrospray 

experimental setup. (b): The schematic of electrospray in the jet mode99. 

 

The current art-state of this method is more driven by electrospray (voltage 

difference99, 103) than conventional mechanical syringe pumps and NPs can be 

fabricated with a more narrow distribution (Figure 10). Furthermore, this method is 

modified and applied to encapsulation of hydrophobic drugs as well. For example, 

Hirvonen et al.103synthesized beclomethasone-dipropionate-loaded and salbutamol-
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sulfate-loaded PLA NPs with a diameter around 200nm. However, due to the weaker 

affinity of hydrophilic drugs with polymer, the encapsulation efficiency of them is 

usually lower than that of hydrophobic drugs, though mass loading of the latter is just 

around 1%82. Besides, the low electrical conductivity of organic solvents requires 

additional electrolytes.  

2.2.4 Summary 

   Here we have taken a quick and full view of different bulk encapsulation methods 

for hydrophobic/hydrophilic compounds. These conventional bulk methods have 

advantages of ease to operate, cheap costs, high encapsulation efficiency and long-term 

controlled release, etc. To point out, there is neither an absolutely clear boundary line 

between different methods, nor a restriction for one method being limited for one single 

use. With modifications and novel developments, the traditional protocols can be 

promoted to the area where they never applied before, and combination of different 

encapsulation methods is a popular trend49, 56, 82. The disadvantages of the conventional 

bulk methods are also obvious---They lack to ability to precisely control over the results: 

size, distribution, surface properties and drug loading ability of NPs; the wasted drugs 

and no-recycle increase the expenses; the mixing and evaporation of solvents usually 

take a period of time. Thus, new encapsulation methods are strongly needed--in a more 

tiny and precise scale, in a cheaper and faster way and with a safer and more-

controllable product. Microfluidic technology is one of the most promising candidates 

to overcome these drawbacks and will be introduced in the following sections.  

 

2.3 Microfluidic platform for drug delivery system 

In this chapter we will introduce the basic concepts of microfluidics and why it is a 

promising technology in biomedical field. Commonly used materials for microfluidic 

fabrication and different microfluidic devices are going to be reviewed to compare their 

advantages and disadvantages. Recent achievements by microfluidics for drug delivery 

area will be discussed as well.   
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2.3.1 Introduction of Microfluidics 

   Microfluidics is the science and technology of systems to manipulate tiny amounts 

of fluids in an integrated chip having channels with dimensions of tens to hundreds 

micrometers106. The history of microfluidics can be traced back to 1980s and it was 

firstly adapted to help molecular biology analysis and got incredible development since 

then. Currently, microfluidics is contributing to various research areas, including 

biochemistry analysis107, colloids and interfaces108, fluid mechanics109, in-situ synthesis 

of functional materials110, 111, rapid screening of drug discovery112, 113 and cell biology114, 

etc. It offers us ability to analyze, separate115 or synthesize materials by use of small 

quantities of samples with advantages of low costs, high resolution and sensitivity, good 

controllability and short experimental time.  

   A microfluidic system normally includes but not limited to 4 components: power 

source (syringe pumps, voltage difference), input ports (nanoport, tubing), microfluidic 

chip (channels, valves, junctions) and output ports (reservoir)116. Microfluidic chip is 

the core part of this system and can be built with different engineering materials, like 

polymer, glass and resins.    

 

2.3.2 Materials for microfluidic fabrication 

 
(a) (b) 
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Figure 11. Examples of microfluidics devices. (a). PDMS chip. copyright ©scientific device 

laboratory. (b) SU-8 chip. copyright © Elveflow. (c). NOA chip copyright © the National Institute 

of Standards and Technology. (d). Glass microfluidic capillary 

Poly (dimethylsiloxane) (PDMS) is the mostly used material to fabricate microfluidic 

devices117, which is an optically transparent, elastic and non-toxic thermosetting 

polymer. Plus tunable flexibility, smooth surface, chemical inertia and ease to cut118, 

PDMS is a superior platform to support most engineering components: valves, tubes, 

adhesives, electrodes, corrosive solvents and so on119. By changing the heating 

temperature molar ratio of curing agent and monomer, the bulk PDMS can be 

polymerized with different softness. With the development of soft lithography 

technique, hundreds of micron-scaled or even nano-scaled (nanofluidics) channels with 

a 3D structure could be easily built on a PDMS chip of less than 10 cm2 (Figure 11a). 

However, the highly hydrophobic nature of PDMS120, makes it normally requires 

surface modification by UV/ozone plasma121, 122, 123 when applied to aqueous solution 

and leakage usually occurs under high pressure or after multiple-cycles of uses because 

of aging and permeability. In addition, the low elastic modulus of PDMS makes it hard 

to form effective tiny elements in a micron- or even millimeter-scales.  

Families of SU-8 (2000 and 3000 series)124, 125, 126, 127, 128 (Figure 11b), NOA (60, 70 

and 80 series, etc.)129, 130 (Figure 11c) thermoset polyester (TPE), polyurethane 

methacrylate (PUMA)131 are widely used resins to build microfluidic channels. These 

resins can be UV or thermo-cured in a short time and form a geometric structure with 

a high aspect ratio. Because of good rigidity, transparency and chemical stability, they 

(c) (d) 
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offer excellent alternatives to PDMS132, especially for microfluidic devices with high-

pressure injections. The fabrication of these polymers are mainly done by soft 

lithography133, which is a highly precise and replicable technique to build molds with a 

resolution of several microns. These resins are able to handle most solvents, however, 

may still suffer from swelling-effects. Due to the nature of the multiple steps of 

photolithography, dedicatedly designed devices usually have very low fault tolerance 

for solvent development and assembling, each tiny error or contamination perhaps lead 

to a re-start over, which indicates that the cost of resins should be more than it appears131. 

Silicon wafers and glass capillaries (Figure 11d) attract attentions because they have 

a superior solvents resistance to organic and acidic solvents compared to PDMS and 

resins. The establishment of microfluidic channels on glass wafer is written by laser134 

or craved by acid-etching with a resolution up to less than 1µm. The glass is rarely 

affected by solvents and hardly deforms because of its high elastic modulus. Thus glass-

based microfluidic devices could offer an excellent platform to observe complex 

behaviors of microfluidics and nanofluidics. Capillaries are usually insert-set together 

and the inner one is tapered and cut to form a round orifice to finely focus the fluids, so 

that highly monodispersed droplets, bubbles and nanoparticles can be generated. The 

hydrophobic surface of capillary can be tuned by coating with 5% Hydroxypropyl 

cellulose (HPC) solution. Besides, unlike photo-cured polymers, which can’t be split 

into single useful component again, capillaries-based devices can be disassembled 

easily to clean or recycle135. It should be noticed that the capillary phenomenon could 

lead to unexpected clogging and reflux and the fragile nature of glass restrains its 

robustness under extremely high pressure, like supercritical fluids, in which case 

stainless steels are mainly used136. 

 

2.3.3 Recent developments of microfluidics-assisted drug delivery system 

   The rapid development of drug delivery research requires the drug delivery carriers 

to be more controllable. Microfluidics technology offers a better platform than 

conventional methods in control of: particle size, drug loading efficiency, surface 

properties and release rate. 
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2.3.3.1 Nanoparticles 

The impact of particle size has been found in many aspects of its functions: 

degradation, drug loading ability and release rate, hydrodynamic properties and smaller 

NPs are found have a less uptake by immune system137. Flow focusing (F.F.) 

microfluidics could provide a high-throughput platform to synthesize very small drug-

loaded nanoparticles42in one step without external power supply.  

 

Figure 12. Nanoprecipitation of PLGA-PEG copolymers. (a) Self-assembly of PLGA-PEG diblock 

copolymers during nanoprecipitation. (b) The process of mixing in a microfluidic device45.  

 

Karnik et al45 (See Figure 12) discovered smaller PLGA-PEG NPs can be fabricated 
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on a F.F. platform than bulk nanoprecipitation with the same O/W ratio because the 

microfluidic channel could offer higher mixing rate and then avoid large aggregation 

of polymers, with a E.E. around 50% and a mass loading less than 5%. By varying 

composition of polymers and precursors, both of morphology and surface charges of 

NPs can be easily controlled138. Monodispersed block copolymer vesicles with a 

tunable size from 40 nm to 2 μm are attained by Thiele et al139with a very narrow 

distribution. Commonly used polymers (PLA, PCL, PS, liposomes140) and drugs 

(doxorubicin, docetaxel, IFN-α141, siRNA1) in bulk encapsulation methods can be 

replicated on microfluidic platforms and form drug-loaded NPs with a high 

encapsulation efficiency. Stimuli-responsive142 (pH, thermo, glucose)NPs and  can 

also be produced within microfluidic channels, which indicates the possibility of 

targeted drug delivery.  

 

2.3.3.2 Microparticles/Microspheres 

 

Figure 13. Optical microscopy image showing the orifice of the flow-focusing region generating 

droplets in water143. 

   One key function of microfluidics is to generate discrete droplets which have 

excellent capability to encapsulate a series of drugs and form into microparticles. By 

playing with flow ratio, one could easily control the size of droplets and the production 

rate135. Compared to bulk emulsification method, in which mechanical shearing could 

lead to a broad size distribution, extremely monodispersed DEX-HEMA microgels can 

be easily fabricated in a co-flow chip144 with an average diameter of 9.9 µm±0.3 µm. 

Shum et al145presents a droplet-based approach to produce highly uniformed double 

emulsion  phospholipid vesicles on a glass-capillary microfluidic platform with a 

constant generation frequency round 500 Hz. The device exhibits a fantastic ability to 
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manipulate tiny amount of different fluid phases precisely so that the formation of each 

double emulsion droplet can be controlled individually. The sustained release of drugs 

also benefit from the on-chip production of monodispersed microparticles. Cumulative 

analysis shows that the release of bupivacaine from PLGA particles is slower than that 

from conventional single emulsion method of the similar average size but polydispersed.     

Furthermore, although  this method has very similar mass loading ratio of drugs 

(around 20%) with the conventional bulk emulsion mixing protocols (around 18%), 

chip-produced PLGA microcapsules avoid an initial burst release which is observed 

with conventional particles143. This is because the microfluidics could offer a more 

homogenous mixing environment for the formation of drug-NPs, and less drug was 

adsorbed or trapped near the surface of the microparticles fabricated using the 

microfluidic device than those prepared using the conventional emulsification approach. 

Natural biomaterials can be fabricated into drug delivery carriers in microfluidic device 

as well, Breslauer et al146reconstituted silkworm cocoon silk as microspheres by 

laminar flow streams, which exhibit a characteristic β-sheet structure and remains the 

its nature of softness. Besides hydrodynamic production, droplets can also be prepared 

in other ways, like magnet-actuated microfluidics147. Once coupled with scaling-up, the 

microfluidic fabrication of large quantities of advanced microparticles will be enabled 

and assists in controlled drug release applications148. 

 

2.3.3.3 Multi-layer self-assembly 

Self-assembly particles or matrix consist of multiple layers is a powerful cancer 

therapy media since different components can be encapsulated within one single 

compartment and the decoration of shells can offer more targeting sites with high 

specificity149.  
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Figure 14. Images showing monodisperse multilayer gas lipospheres visible in bright field150. 

 

Hettiarachchi et al150 (see Figure 14) used a droplet-based PDMS device to produce of 

micron-sized gas-cored lipospheres, the middle oil layer of which contains a high 

concentration of doxorubicin up to 15 mg/ml and the outside targeting ligands provide 

an effective binding with cancer cells. For production of lower-order (double, triple) 

emulsions, microfluidics technology shows a superior ability in controlling the numbers 

of inner drops and adjusting the thickness of shells, compared to mechanical mixing 

method, according to Deng et al.’s study151, 152. These multiphase emulsions are 

considered to be powerful tools for drug delivery applications153. Besides spherical 

shapes, hydrogels with non-spherical microarchitecture are synthesized on a 

microfluidic platform by Guo et al154. The formation of PAM/PEG core/shell droplets 

and hydrogels with rod-like, oval and triangle shapes can be realized by modifying the 

flow rate and polymerization temperature. The irregularly-shaped hydrogels exhibit 

significant anisotropy and different protein release rates which are highly shapes-

dependent. 3-D mimic architecture of drug delivery potential can also be replicated by 

building multilayers of cell–matrix inside a microchannel and the thickness of each 

layer can be tailored with a resolution to microscale155.  

 

2.3.3.4 Janus particles 

As the name indicates, Janus particles are a series of anisotropic particles with 

biphasic geometry156. The morphology and composition of Janus particles can be 

independently controlled to form various shapes and encapsulate different components 

so that they have great potential in drug delivery applications.  
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Figure 15. Fabrication of various Janus particles of different morphology. (a) Schematic of 

formation of droplets with different monomers M1 and M2. (b, c, d) Optical micro-scopy images of 

Janus particles. Bright and dark phases are polymers of M1 and M2, respectively. (e) Janus particles 

with ternary structures. Image reproduced from Prof. Huang’s lab157. 

 

Dendukuri et al158reported a synthesis of rod-like PEG-diacrylate Janus particles with 

a length about 100um in a co-flowed microchannel with one end labeled by rhodamine. 

The two ends of Janus particles appear different colors under fluorescence microscopy 

and the width of each band can be altered by changing the flow rates of the streams, 

which can incorporate with other functional moieties like drugs. Monodispersed 

colloid-filled Janus spheres are produced by Shepherd et al159within a Y-junction chip 

and the shape of these hydrogel granules are be locked by in-situ photopolymerization. 

Weitz’s group presents a series of methods to generate Janus particles, including from 

templates of double emulsion droplets160, phase separation of homogenous 

droplets161and precursor solution of prefabricated cross-linkable polymers162and 

photoinitiators for UV-polymerization are usually required to solidify the morphology 

of the Janus particles. Janus particles could also encapsulate inorganic compounds (e.g., 

mass loading of Fe3O4
 around 4%~7%) and incorporate with functional groups163 which 
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reveals the possibility of co-delivery of different drugs or biomarkers within a single 

particle157, 164.  

 

2.3.3.5 Supercritical Fluid (SCF) 

 

Figure 16. High pressure SCFs-liquid micro co-flows136. 

   The SCF has been widely used for industry applications such as microreactors165, 

extraction166 and recently applied to drug delivery field because of their unique 

properties167. For example, the commonly used CO2, is a non-toxic, transparent, 

chemically inert and economic material and its supercritical conditions are easy to be 

satisfied. The SCF could be an instead of organic solvents during the preparation of 

drug-loaded NPs168 and the encapsulation occurs after a rapid decompression 

precipitation. Champeau et al169used  supercritical CO2 as a solvent to improve the 

entrapment of ketoprofen and aspirin into PEO platelets and the solubility of the drugs 

was found proportional to the pressure of CO2 (from 0 to 12%, when the pressure 

increased from 5MPa to 15MPa), so that a gradually increase of drug loading efficiency 

was monitored with the increase of pressure. Another use of SCF is being applied to 

extract the inner phase of an existing emulsion as an “anti-solvent” to form 

microparticles or nanoparticles. With this method, Shekunov et al170fabricated 

nanoparticles of model hydrophobic drugs with a size range from 100nm to 1000nm. 

The concentration of residual solvents decreases to several ppm from the original 

10%~30% (w/w) in a short time and the morphology of particles are found correlated 

to the drug concentration, emulsion droplet size and the molar ration of organic solvent. 
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From the research of Chattopadhyay et al171, the original droplet size is thought as the 

major control parameter of the finial particle size and the kinetic dissolution coefficient 

for encapsulated drugs is observed being reduced by 2–4 orders of magnitude when 

compared to the unprocessed drug particles. For future perspective, the SCF only needs 

relatively mild conditions and has great potential for scaling-up. However, to design 

economic, safe, and robust microreactors capable of working at the desired working 

conditions compatible with the use of most supercritical fluids172, remains to be a key 

issue to be solved.   

2.4 Combination of chemotherapy and thermotherapy  

 Thermotherapy treats cancer and tumor cells by heating them physically to a specific 

temperature range and kill them. However, the clinical application of conventional 

hyperthermia were usually limited by its poor targeting ability, which caused severe 

side effects to nearby healthy tissues. Nanotechnology now offers a possibility to solve 

this problem.  

Polymeric nanoparticles containing magnetic components like Fe2O3
5, Fe3O4

173
 are 

mostly used for thermotherapy since the iron oxide particles can produce heat that is 

transferred from an external alternating magnetic field of a  high frequency. Sanson8 

et al synthesized highly magnetic nanoparticles (loaded up to 70 wt%) and observed 

deformation of the vesicle membrane under an applied magnetic field, and conducting 

a magneto-chemotherapy.    

Gold nanoparticles are another important series of ideal biomaterials for 

hyperthermia due to their non-toxicity, uniformity, and highly clearance through 

kidneys174. The radioenhancing effect175 by irradiation was found and measured more 

than 30 years ago. Hainfled174 et al performed an intravenous injection of 1.9 nm 

diameter gold particles and 250 kVp x-ray therapy. One-year survival of mice bearing 

subcutaneous EMT-6 mammary carcinomas was 86% versus 20% with x-rays alone 

and 0% with gold alone. Golden materials can also be active in the near-infrared (NIR) 

region of the radiation spectrum, which is called photo-thermal therapy and could 
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minimize the light extinction by intrinsic chromophores in native tissue176, 177, 178, 179. 

By conjugating to anti-epidermal growth factor receptor (anti-EGFR) monoclonal 

antibodies, Huang et al found that gold nanorods bind to targeted cells with a high 

affinity178. In addition, the scattered red light from gold nanorods made themselves 

easily visualized in dark field, so that both efficient cancer cell diagnostics and selective 

photothermal therapy are realized at the same time. Besides, other inorganic materials 

like quantum dots180 can also be applied to hyperthermia due to their high photo-to-

thermal conversion rate and high light absorption cross-sectional surface.  

Compared with traditional thermotherapy, nanoparticles provide a more economic, 

safe, energy-concentrated method, with advantages of faster heating-up, non-invasive 

and shorter treatment period. Combination of chemotherapy and thermotherapy also 

open potential applications for spontaneous drug loading and in-vivo/vitro 

magnetic/photonic response imaging. 
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Chapter 3 Fabrication of Polymeric Nanoparticles using 

microfluidics for encapsulation and release of hydrophobic 

drugs 

3.1 Summary  

Here we present a novel microfluidic flow focusing method for synthesis of 

Doxorubicin (DOX)/Tamoxifen (TAM)-encapsulated PLGA nanoparticles (NPs), using 

a water-miscible precursor (Dimethyl Sulfoxide+Dichloromethane) solution. We 

achieved two major breakthroughs: (1) Extruding this partially water-miscible into an 

aqueous solution produced a previously unseen transformation phenomenon of the 

precursor fluid: jet to micro-droplets (emulsions) to nanoparticles; (2) Uniform PLGA 

NPs were synthesized with a considerable drug loading ratio, the size of which could 

be precisely tuned by changing the flow ratios, polymer concentration, and volume ratio 

of DCM (VDCM/VDMSO) in the precursor. We further investigated the mechanism of the 

evolution process of precursor fluid, and the effect of VDCM/VDMSO on the formation of 

NPs and drug release kinetics. Our work suggests that this rapid, facile, efficient and 

low-cost method is promising technology for NP fabrication and can be extended to 

benefit the fields like nanomedicine and cancer therapy. 

  

3.2  Introduction 

Poly(lactic-co-glycolic acid) (PLGA) nanoparticles and microparticles exhibit great 

potential for nanobiomedicine71, and is one the most commonly used biopolymers 

approved by FDA because of its biosafety, biocompatibility, biodegradability181. 

Microfluidic technology has been developed for the synthesis of these series of NPs in 

past decades because of its advantages, including homogenous reaction environments 

from a single batch45, enhanced reproducibility182, non-excessive consumption of 
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expensive agents106, and high, steady and fast throughput motored by mechanical 

valves and pumps106, compared with bulk methods. Currently, two microfluidic 

methods are most frequently used for producing drug-loaded NPs: (1) rapid mixing and 

nanoprecipiation, and (2) droplet-based flow focusing. The conventional method of 

rapid mixing and nanoprecipitation, mixing one water-miscible fluid with an aqueous 

solution, could bring us small NPs (10~100 nm)138, 183, however, with a relatively low 

encapsulation efficiency (E.E., usually less than 50%)45 compared to the droplet-based 

method; on the other hand, the particles from droplets and emulsions formed by water-

immiscible solvents are usually having a better drug loading ratio yet oversized (100 to 

102 µm) 143, 144, 145, 146, 148, 184. Efforts have been made to push forward the state of the 

art: Lee et al185 used droplets fusion instead of direct convection of discrete and 

continuous fluids, but the low flow rates/ratios easily resulted in PLGA NPs larger than 

several hundred nanometers; Karnik et al183 accelerated the micromixing in a twisted 

channel and synthesized hybrid PLGA-lipid-PEG NPs via a single-step process within 

a much smaller particle size less than 100nm , yet a low drug loading ability (w/w, less 

than 5%).  

We are thus motived to decrease the NP size without sacrificing its drug loading 

ability by using a partially water-miscible mixture of Dimethyl Sulfoxide (DMSO) and 

Dichloromethane (DCM) instead of pure DMSO or pure DCM143 as a dispersed phase 

at a microfluidic platform. In a co-axial glass capillaries-based microfluidic channel, 

thin stable jets of this partially water-miscible precursor transforms into microdroplets, 

and then to NPs under the action of the solubilization of DMSO into water. Strikingly, 

this method leads to high mass loading and high E.E for both hydrophobic drug 

(Tamoxifen) and hydrophilic drug (Doxorubicin).  

With a hydrophobic drug Tamoxifen17, E.E. has high of 88% were measured. 

Compared to previous bulk mixing using similar organic phases62, 66, (Doxorubicin-

Poly (D, L-lactide-co-glycolide) Acid) DOX-PLGA NPs synthesized by this 

microfluidic method were smaller(90~160nm), size-tunable, of an higher E.E (up to 

66%) and mass loading ability (up to 26.3%), by adjusting the flow rates, polymer 

concentration and VDCM/VDMSO. The release properties are not affected by this procedure 
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and remain the same than the one obtained using pure DMSO. These characteristics 

imply that our approach provides a novel and valuable method producing NPs with a 

tunable size range, and significant drug loading ability under precise control, at a 

nanoscale level. 

 

3.3  Experimental Section 

 

3.3.1 Materials 

Dichloromethane (HiPerSolv CHROMANORM for HPLC，VWR) and Dimethyl 

Sulfoxide (ACS grade, Amresco) were mixed at a volume ratio of 1/10 and 1/20 to 

prepare the precursor solutions. Poly (D, L-lactide-co-glycolide) acid (75:25, Mw 

4000~15000, Sigma Aldrich) was dissolved in the dispersed phase, at different 

concentrations (5mg/ml, 15mg/ml) and  Sodium dodecyl sulphate (SDS, GPR 

REACTPUR, VWR) was dissolved in DI water (0.5%, w/v) as the continuous phase. 

Phosphate buffered saline (PBS, pH=7.4 at 25 °C, Sigma Aldrich).  

 

3.3.2 Fabrication of the microfluidic platform 

The microfluidic device (Figure 17) was constructed under the following protocols: 

(1) A round glass capillary (0.50mm ID×0.70mm OD, CM Scientific) was pulled by a 

micropipette puller and broken to a ~50µm ID tip (P-97, Sutter Instrument Company). 

(2) This tipped capillary was inserted into a square glass capillary (0.70mm ID, CM 

Scientific） to get a coaxial geometry. (3) The resulting coupled capillaries plus 

nanoports were stuck onto a glass platform using epoxy glues.  
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Figure 17. Coaxial microfluidic device fabricated with glass capillaries. (a) A microfluidic platform 

under operation; (b) A microfluidic chip constructed of glass capillaries and nanoports; (c) The 

nozzle of the inside round capillary under optical microscope; (d) The nozzle of the inside round 

capillary under optical microscope.  

 

3.3.3 Synthesis of PLGA nanoparticles by microfluidic flow focusing 

Two syringe pumps (Harvard Apparatus PHD 4000) are used to drive two fluid 

phases to flow in the same direction. The dispersed phase (PLGA solution) flows inside 

the round capillary, and the continuous phase (aqueous solution) flows between the 

round and square capillaries. A typical quantity flow rate of Qoil is set as 10, 20, 30…to 

60 µl/hr and Qw is set as 2000, 3000, 4000… to 10000 µl/hr. The solutions containing 

PLGA NPs are collected from the outlet and water-bath evaporated for 1 hour at 45°C 

to remove the DCM solvent. The PLGA NPs were characterized by Dynamic Lighting 

Scattering (Vasco particle size analyser, Cordouan Technologies) after solvent 

evaporation. Each measurement was repeated 3 times. (n = 3, mean ± S.D).  

 

200 µm 

(a) (b) 

Oil 

Water 

Water 

(c) (d) 

300 µm 



38 
 

3.3.4 Drug Encapsulation by PLGA nanoparticles 

The Doxorubicin (DOX) supplied by Discovery Fine Chemicals (Wimborne, UK) is 

commercially modified as Doxorubicin hydrochloride, so that Triethylamine (TEA, 

≥99.5%, Sigma-Aldrich) was used to incubate DOX solution in DMSO overnight with 

1:2 molar ratio to remove its hydrochloride group186. DOX (or Tamoxifen, Sigma 

Aldrich) and PLGA were dissolved in the precursor solution of 1 mg/ml and 5 mg/ml, 

respectively. A typical quantity flow rate of Qoil is set as 50 µl/hr and Qw is set as 5000 

and 10000 µl/hr. 1 ml of microfluidic solution was collected from the capillary reservoir, 

and then transferred to an Amicon ultrafiltration tube (MWCO=3kDa, Amicon ultra-4) 

to centrifuge for 30 min at 8000 rpm to separate the drug-loaded NPs47. The filtered 

NPs was re-suspended and dissolved by 1 ml of DMSO. The concentration of the 

encapsulated drug by PLGA NPs was calculated by measuring the concentration of the 

doxorubicin in the mixture by obtaining the UV absorbance of the solution at 481 nm 

(SpectraMax M2). For tamoxifen, the filtered NPs was re-suspended and dissolved by 

2 ml mixture of DMSO and Methanol187 (v:v=1:1), and the encapsulation efficiency 

was determined by measuring the UV absorbance at λ=285 nm. Each measurement was 

repeated 3 times. (n = 3, mean ± S.D). 

 

3.3.5 Drug Release by PLGA nanoparticles 

The DOX-PLGA NPs solution was collected at Qoil= 50 µl/hr and Qw =5000 µl/hr 

(CDOX=1 mg/ml, VDCM/VDMSO=1/10) for 20 ml, which was concentrated to 1 ml by 

ultrafiltration (4500 rpm, MWCO=10 kDa, Amicon ultra-15). The concentrated NPs 

solution was then transferred to a dialysis membrane (MWCO=25 kDa) against 40 ml 

PBS solution (pH=7.4) in a release bottle with magnetic stirring at T=37 °C. The 

cumulative released dose was determined by UV spectroscopy. DOX-PLGA NPs 

solution made with the same protocols but using pure DMSO was used as a control 

group. 

 

3.4  Results and Discussions 
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3.4.1 Stability of the partially water-miscible fluid in a confined microfluidic 

channel 

 

10 20 30 40 50 60 70 80 90

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

 

 

 A

 B

 C

 D

Q
W

, 
μ

l/
h
r

Q
oil

, μl/hr

    

 

 

(b) (a) 

(d) (c) 



40 
 

Figure 18. Map of flow behavior in the (Qw, Qoil) plane. Jets are observed as two forms: wide straight 

jets that are stable at nozzle and then diffuse with water through the channel (a, solid square); thin 

jets that break into tiny droplets at a well-defined location (d, open triangle); Droplets are observed 

with periodic modulations (b, solid circle; and c, solid square). VDCM/VDMSO=1/10 and 0.5% SDS in 

water. 
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Figure 19. Boundary between droplets and jets shifts as the VDCM/VDMSO changes. Triangle and round 

scatters represent the critical (Qw, Qoil) conditions of the boundary between droplets and jets (or 

jetting) with VDCM/VDMSO =1/20 and 1/10, respectively. 0.5% SDS in water 

 

Figure 18 displays different flow patterns of this partially water-miscible precursor 

with operational (Qoil, Qw) close to the nozzle (i.e at a distance shorter than the diameter 

of the external capillary tube). These patterns observed close to the nozzle are 

reminiscent from the one obtained using immisicible fluids184.  To be more precise, 

we note no modification of the flow diagram. A droplet regime is basically found for 

very low (Qoil, Qw), with droplets emitted periodically with a size comparable to the 

nozzle radius ( Figure 18 picture b and red circles) or larger droplets resulting from the 

instability of an emerging oscillating jet (Figure 18 picture c and green triangles)184.  

Large short jets are found close to the (Figure 18 picture d and blue triangle). In this 

case, no visible macroscopic droplets are formed. For large values of the external flow 

rate, we observed what we call jetting: thin and straight jets are produced (Figure 18 
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picture a and black squares).  

The similarities between partially miscible and not miscible fluids are not surprising.  

Even though the fluids are partially miscible, they still have a surface tension. Jets of 

liquids displaying surface tension are linearly unstable due to Rayleigh-Plateau 

instability144, 188. The nature of the instability at the linear level (absolute or convective) 

controls whether drops or a jet are obtained. In the convective case, growing 

disturbances are simultaneously convected downstream and a continuous jet can persist 

in the system over some distance (which does not preclude the formation of droplets 

downstream). By contrast, in the absolute instability regime, no jet is stable, as any 

perturbation generates oscillations that grow and travel backwards to invade the whole 

capillary. This corresponds to the droplets and plugs regimes.  

 

In our study, this process might be altered by the release of DMSO into water. This is 

in fact not the case close to the nozzle. The Péclet number (ie. the ratio of the convective 

time by the diffusion time) is very large, diffusion plays little role in the process and 

the liquids behave as if they were immiscible. The Péclet number is given by Pe=Q/DR 

where Q is the flow rate, D is the diffusion coefficient, and R is the size of the capillary 

tuble. Typical values Q=2000 µl/hr, D=10~102 m2/s, and R=700 µm, leading to 

Pe=8000. 

The boundaries of the various zones are varied by using a larger amount of DCM in 

the DMSO/DCM mixture (see Figure 19). At a given Qw > 2500 µl/hr, the precursor of 

higher VDCM/VDMSO exhibited as droplets while the one of lower VDCM/VDMSO exhibited 

as jets at the same Qoil, because the precursor of higher VDCM/VDMSO contains more 

insoluble component, which is inclined to give a higher interfacial tension and thus a 

larger domain of drops in the parameter plane (Qoil, Qw).  

At first sight, our strategy seems thus inefficient to produce small nanoparticles since 

the flow diagram is unchanged. However, the originality of our work and the possibility 

to reach our aim relies in the long time evolution. The jet and the drops shrink as a 

function of time i.e. as a function of their displacement in the capillary tube. When 

using polymer solution instead of pure fluids, the shrinking of the jet and of the drops 
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induces the formation of nanoparticles or sub-micron particles. 

Using Dynamic Light scattering (see Table 1), we point out that both size and 

polydispersity of the PLGA NPs decrease gradually when increasing Qw. PLGA NPs 

from the jetting region (region A) exhibit advantages of smaller size, more narrow 

distribution, and of higher through-put, compared with other regions. So we focus on 

this jetting region for further study. 

 

Region A: oil=50µl/hr 

Qw=6000µl/hr 

B: oil=50µl/hr 

Qw=4000µl/hr 

C:Qoil=50µl/hr 

Qw=3000µl/hr 

D:Qoil=50µl/hr 

Qw=1000µl/hr 

Diameter (nm) 103 106 128 321 

Polydispersity 0.046 0.084 0.105 0.27 

Table 1. Size and distribution of PLGA NPs collected from reservoir. Concentration of PLGA 

(Mw=4000~15000) = 5mg/ml, VDCM/VDMSO = 1/10.  

3.4.2 Generation of NPs in the jetting zone: Jet to Original Droplets to 

Nanoparticles 

 

 

(a) 200µm 
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Figure 20. The evolution processes of different precursor fluids. (a) Flow focusing of water-miscible 

solvent (pure DMSO) and water, Qw=3000 µl/hr, Qoil=50 µl/hr; (b-e) Flow focusing of partially 

water-miscible precursor (VDCM/VDMSO=1/10) and water, Qw=10000 µl/hr, Qoil= 100 µl/hr. Photos 

were taken at positions close to nozzle, 10 mm after nozzle, 20 mm after nozzle, 30 mm after nozzle, 

along the flows direction, successively.  

 

In traditional flow focusing of water and water-miscible fluids like DMSO (Figure 

20a), nanoparticles but no droplets form after rapid mixing and nanoprecipitation since 

there is no interfacial tension between these two fluids, which has been well studied 

and well-known189. However, in our experiments, when a water-immiscible component 

like DCM was added to DMSO and tuned the mixed fluid to partially water-miscible, 

a unique phenomenon was observed: a jet of fluid diffused into water (Figure 20b) and 

gradually perturbed into a steady stream of homogenous droplets (Figure 20c), which 

(b) (c) 

(e) 50µm (d) 
50µm 

50µm 50µm 
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spread among the whole microfluidic channel from the restricted central jetting zone, 

yet still flowing not stuck (Figure 20d), and finally shrinked as invisible nanoparticles 

under optical microscope (Figure 20e). The diameters of these original droplets by 

jetting are much less than that of the former jet, which can be used to produce 

monodispersed nanoparticles. This procedure consisted of three stages, having features 

of both conventional nanoprecipiation183, 190, 191 and emulsion-based flow focusing153, 

188, 192: (1) the soluble component (DMSO) diffuses into the water; (2) the surface 

tension of the precursor increases gradually since more insoluble component (DCM) 

was left, as a result of which a stream of tiny microdroplets are generated in place of 

the jetting away from the nozzle. This process can also be explained by Plateau-

Rayleigh Instability that surface tension causes fluid stream break into a series of 

droplets eventually; (3) Although part of the DMSO residue within the microdroplets, 

and diffused into water, some remained as main component of the micro-emulsions, 

and further escaped into the water. The size of the particles decreased to a nanoscale 

level, which were invisible under microscope, however, detectable by DLS techniques. 

This evolution process--jet to original droplets to nanoparticles --occurred along the 

direction of the flow focusing and is clearly demonstrated by Figures 20b-e and 

following DLS results, which reveals a novel concept for synthesizing NPs. 
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Figure 21. Relationship of original droplet diameter and PLGA NP diameter formed with different 

flow ratios from the jetting zone of fluid. Diameter of droplets was measured and calculated by 

using ImageJ software. Qoil=50 µl/hr , Qw was set as 1000 µl/hr,4000 µl/hr, 6000 µl/hr, 8000 µl/hr 

and 10000 µl/hr, respectively. Concentration of PLGA (Mw=4000~15000) = 5mg/ml, in water (w/v), 

VDCM/VDMSO =1/10.  

 

In Figure 21, we found that at jetting zone, when flow ratio of Qoil/Qw increases from 

50/10000 to 50/4000, the diameter of the original droplets increases under optical 

microscope. In addition, the sizes of synthesized PLGA NP exhibit a strong positive 

correlation with the sizes of original droplets. Thus, it is reasonable for us to conclude 

that the NP sizes are influenced by the original droplets sizes.  

 

Figure 22. Mechanism of PLGA NPs formation from droplets. Purple color in the left circle 
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represents the mixture of DCM+DMSO; Red color in the middle circle represents the mixture of 

DCM+DMSO, yet less DCM content; Light blue color in the middle circle represents the mixture 

of DCM+DMSO, yet more DCM content; Solid black dots on the right side stand for PLGA NPs. 

 

However, if we assume that one single droplet corresponds to one single nanoparticle 

in the final stage, and calculate the density of the PLGA NPs, given by the equation 

𝜌𝑜
4

3
𝜋𝑅3 = 𝜌𝑓

4

3
𝜋𝑟3  ( 𝜌𝑜  stands for original polymer concentration=5mg/ml, ρf 

stands for final polymer concentration, R stands for the radius of original 

droplet≈1.5µm, r stands for the radius of final nanoparticle≈50nm), the final density 

𝜌𝑜  is around 135000kg/m3. This value looks impossible for polymer materials by 

common sense, thus our previous assumption is overthrown and the most likely 

explanation should be: one single droplet will separate into a plurality of nanoparticles 

eventually.  

The procedure of the evolution of NPs is probably like (see Figure 22): (1) A droplet 

forms by jetting, containing DCM, DMSO, and PLGA; (2) A multiple nucleation may 

happen within a single droplet. Since solvent environment for polymers turns bad due 

to the diffusion of DMSO into water, the PLGA chains are inclined to shrink and 

aggregate, with the remaining DCM content. (3) The polymer chains would further 

shrink and aggregate because of the change of solvent environment, and finally, 

numerous nanoparticles are split from the original droplets. Smaller the original droplet 

is, shorter the time it takes to shrink193. Under these rapid conditions the concentration 

of polymer inside the droplets increases rapidly and more nuclei are formed. We do thus 

observe smaller nanoparticles when the size of the initial droplet is smaller.  

This mechanism is different from the NPs self-assembly by pure water-miscible fluid 

or pure water-immiscible fluid, since the formation of NPs in the jetting zone must 

experience a “transitional state” of droplets, and a multiple nucleation procedure. We 

can also use this theory to explain why higher VDCM/VDMSO leads to larger NPs. It is 

because that more DCM increases the surface tension between the fluid and water and 

increases the sizes of original droplets. Larger the original droplet is, longer the time it 

takes to shrink. Under these slow diffusion conditions, the concentration of polymers 
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inside the droplets does not increase too much, fewer nuclei are formed and polymers 

easily adsorb on them. We do thus observe larger nanoparticles when the volume ratio 

of DCM is higher.  

3.4.3 Comparison of NPs synthesized by bulk and microfluidic methods 
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Figure 23. Size and polydispersity of PLGA NPs synthesized by bulk and microfluidic methods. 

Concentration of PLGA (Mw=4000~15000) = 5 mg/ml, Qoil:Qw=50 µl/hr : 8000 µl/hr for 

microfluidics and Voil:Vw=0.05 ml:8 ml for bulk mixing. Bulk 1: pure DMSO, Bulk 2: VDCM/VDMSO 

=1/10, Microfluidics 1: pure DMSO, Microfluidics 2: VDCM/VDMSO =1/10. (n = 3; mean ± S.D.) 

We synthesized PLGA NPs by using microfluidic and bulk mixing tools, individually 

(Figure 23). To prepare NPs by traditional synthesis via bulk mixing, 50ul of 

DCM/DMSO solution including PLGA was drop-wisely added into 8ml of water 

(0.5%SDS). The NPs synthesized by microfluidics using pure DMSO (Bulk 1 and 

Microfluidics 1) showed slight decreases in both size (from 75 nm to 59 nm) and 

polydispersity (from 0.213 to 0.181) compared to those from bulk mixing with the same 

flow ratio (Figure 13), which is consistent with the findings of previous report138. 

However, the NPs synthesized using mixed solvents of DCM/DMSO (Bulk 2 and 
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Microfluidics 2) using microfluidic flow focusing exhibited a much greater decrease in 

both size (from 305 nm to 97 nm) and polydispersity (from 0.275 to 0.067). These huge 

variations in size and polydispersity between bulk method and microfluidic method 

when using DCM/DMSO mixture, prove that this microfluidic technology can produce 

smaller and more homogenous NPs than bulk methods13, 62, 66, 70. Moreover, the size and 

distribution of NPs synthesized with the partially water-miscible solvent are more 

sensitive to the change of fluid mixing rates than those synthesized with the water-

miscible precursor. Additionally, the NPs produced by microfluidics using 

DCM/DMSO precursor demonstrated a much narrower size distribution than NPs 

produced using pure DMSO precursor. 

 

3.4.4 Effects of polymer concentration，flow ratio, and VDCM/VDMSO on the size of 

PLGA NPs in the jetting zone of fluid. 

We further investigated the effects of different impact factors, specifically, polymer 

concentration, flow ratio, and VDCM of the dispersed phases, on the size of PLGA NPs  
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Figure 24. Size of PLGA NPs synthesized with different PLGA concentrations. Qoil=50 µl/hr, 

VDCM/VDMSO =1/10. The solid icons represent the data of particle sizes and the open icons represent 

the date of particle dispersity. (n = 3; mean ± S.D.) 

 

Comparing PLGA solutions of different concentrations, we found that polymer 

precursor of higher concentration lead to larger nanoparticles when with the same flow 

rates of Qoil and Qw (Figure 24), which is easy to be understood since in this case, more 

polymers would be absorbed or inserted into each nanoparticle so that its volume 

increased. We also observed that the change of particle size range of NPs from precursor 

of 15 mg/ml (152 nm to 93 nm) is more than that from precursor of 5mg/ml (104 nm to 

74 nm) when Qw increased from 2000 µl/hr to 10000 µl/hr. However, the polydispersity 

of PLGA NPs barely changed with the increase of the polymer concentration so that it 

provides us great potential to synthesize monodisperse nanoparticles with a 

concentrated precursor. 
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Figure 25. Size of PLGA NPs synthesized with precursors of different flow ratios and different 

VDCM/VDMSO. Qoil=50 µl/hr, Concentration of PLGA (Mw=4000~15000) = 5 mg/ml. The solid icons 

represent the data of particle sizes (left Y axis) and the open icons represent the date of particle 

dispersity (right Y axis). (n = 3; mean ± S.D.) 
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It is found that at a given flow rate of Qw, larger PLGA NPs will be produced at a 

higher flow rate of Qoil; and at a given flow rate of Qoil, smaller PLGA NPs will be 

produced a t a higher flow rate of Qw (Figure 15). It is reasonable for us to consider that 

higher flow ratio (Qoil/Qw) needs more time for solvent exchange (Equation 1). In this 

case, self-assembly of polymer occurs in an environment with less organic solvent45, in 

which condition polymers cannot easily move, absorb or insert to a present nanoparticle, 

but nucleate new nanoparticles themselves of smaller sizes than those from flow 

focusing with more Qoil fraction. Besides, the distribution of nanoparticles basically 

remains the same regardless change of flow rates of Qoil and Qw, which proves this 

microfluidic flow focusing a reliable technique to produce uniform nanoparticles with 

different flow rates. 

τmix ~ 
𝑊𝑓

2

4𝐷
 ≈

𝑤2

9𝐷

1

(1+
1

𝑅
)2

  (1) 

τmix: mixing time of hydrodynamic flow focusing 

D: diffusivity of the solvent,  

Wf: width of the focused stream,  

w: width of the channel, 

R: flow ratio, Qoil/Qw. 

We next examined the effect of DCM on self-assembly of PLGA NPs by setting its 

volume ratio of DCM/DMSO in the dispersed phase as 0, 1/20 and 1/10 (Figure 15). At 

each given flow ratio of Qoil/Qw, the volume fraction of DCM is found to have a positive 

correlation with the diameter of the NPs. It can be explained in the Section 3.4.2 that 

the more DCM is introduced into the solution, the larger nanoparticles will be created. 

The size of PLGA NPs also changed as Qw increasing from 2000 µl/hr to 10000 µl/hr, 

but with different ranges: 70 nm to 59 nm (no DCM), 104 nm to 74 nm 

(DCM/DMSO=1/20) and 128 nm to 91 nm (DCM/DMSO=1/10). Higher DCM fraction 

led to larger size range, in other word, different volume fraction of DCM brought the 

size range different sensitivities to the change of Qw, which offers us a new controllable 

method to tune the size of nanoparticles with a broader range for selection by adding 

an immiscible component to dispersed phase and changing its volume fraction.  
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To be noticed, almost all of the PLGA NPs synthesized with DCM/DMSO precursor 

have a more narrow distribution than those with pure DMSO precursor, yet no 

significant correspondence to the volume fraction of DCM. This is because formation 

of nanoparticles from pure DMSO precursor and DCM/DMSO precursor are dominated 

by two different mechanism: with pure DMSO it is classical nanoprecipitation45; with 

DCM/DMSO, homogeneous micro droplets are firstly generated (Figure 20c) and then 

shrink to nanoparticles which inherited their homogeneity. Thus PLGA NPs evolved 

from highly uniform micro droplets are superior to those self-assembling from 

traditional nanoprecipitation in monodispersity. 

3.4.5 Drug encapsulation and release  
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Figure 26. Size of DOX-encapsulated PLGA NPs synthesized with precursors of different flow 

ratios and different VDCM/VDMSO. The solid icons represent the data of particle sizes and the open 

icons represent the date of particle dispersity. Qoil=50µl/hr. Concentration of PLGA 

(Mw=4000~15000) = 5mg/ml. Concentration of Doxorubicn = 1mg/ml. (n = 3; mean ± S.D.). TEM 

image of DOX-PLGA NPs (the scale bar is 100 nm) to demonstrate spherical shape of the 

nanoparticles. 

  Figure 26 illustrates the how the size of DOX-encapsulated NPs varies at different 

flow ratios and VDCM/VDMSO, the trend of which is basically consistent with the size of 

NPs without drugs (Figure 25). Generally, the sizes of drug-loaded NPs are larger than 

those without drugs. Noticeably, the DOX-PLGA NPs exhibited a good monodispersity, 

and the polydispersity gradually decreased as the flow ratio (Qoil/Qw) decreased, which 

proves that rapid mixing can offer a more homogenous environment for NPs formation. 

100um 

300 nm 
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Figure 27. E.E. and mass loading ability of DOX-PLGA NPs of different flow ratios different 

VDCM/VDMSO. Qoil=50 µl/hr, Concentration of PLGA (Mw=4000~15000) = 5 mg/ml. Concentration 

of Doxorubicin = 1 mg/ml. (n = 3; mean ± S.D.) 

Drug encapsulation efficiency (E.E.) is defined as the fraction of the initial DOX that 

is encapsulated by PLGA NPs, whereas mass loading ability is defined as the mass 
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fraction of the encapsulated drug and nanoparticles. It is shown in Figure 27 that both 

E.E. and mass loading ability increased with the increase of VDCM/VDMSO, regardless of 

the flow ratio. With the addition of DCM from 0 to 1/20, and to 1/10,  the E.E. 

increased from 48.5% to 49.9%, and to 56.9%, meanwhile the mass loading ability 

increased from 9.7% to 10.0%, and to 11.4%, at low flow ratio (Qoil/Qw =50/10000); 

the E.E. increased from 58.1% to 74.3%, and to 79.8%, meanwhile the mass loading 

ability increased from 11.6% to 14.9%, and to 16.0%, at high flow ratio (Qoil/Qw 

=50/5000). These results indicate that this partially water-miscible fluid could help to 

preserve drug within the NPs better than using pure DMSO and other classical water-

miscible fluid in literature49 by the introduction of DCM, which is mostly like due to 

the interfacial tension between the partially water-miscible fluid and water, as discussed 

in Section 3.4. 2, and help to “lock” the drug inside during their formation of NPs. The 

good affinity between DCM and DOX contributes to this effect as well. Higher 

VDCM/VDMSO led to higher E.E. can also be explained by that precursor of higher 

VDCM/VDMSO has larger interfacial tension with water so that more drug would be 

encapsulated.  

5000 10000
0

10

20

30

40

50

60

70

80

90

100

 

 

E
.E

.,
 %

Q
w
, μl/hr

 Bulk Mixing

 Microfluidics



54 
 

5000 10000
0

2

4

6

8

10

12

14

16

18

20

 

 

M
a
s
s
 L

o
a
d
in

g
 A

b
ili

ty
, 
%

Q
w
, μl/hr

 Bulk Mixing

 Microfluidics

 

Figure 28. E.E. and mass loading ability of DOX-PLGA NPs by bulk mixing method and 

microfluidics method, respectively. VDCM/VDMSO =1/10. Concentration of Doxorubicin = 1 mg/ml. 

Qoil=50 µl/hr, Concentration of PLGA (Mw=4000~15000) = 5 mg/ml. (n = 3; mean ± S.D.) 

 

In addition, both of E.E. and mass loading ability of PLGA NPs by microfluidics 

have got improved (Figure 28) compared to bulk mixing protocols, especially at low 

flow ratio (Qoil/Qw). This feature is most likely due to the superior controllability of 

microfluidics to manipulate tiny volume of fluid42, 135 while at rapid mixing. 
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Figure 29. E.E. and mass loading ability of DOX-PLGA NPs of different flow ratios and initial drug 

concentrations. VDCM/VDMSO =1/10. Qoil=50 µl/hr, Concentration of PLGA (Mw=4000~15000) = 5 

mg/ml. (n = 3; mean ± S.D.) 

We further investigated the effect of the initial DOX concentration on mass loading 

ability and E.E. (Figure 29). With a fixed VDCM/VDMSO=1/10, by doubling the drug feed 
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from 1mg/ml to 2mg/ml, we have got the mass loading ability greatly increased from 

11.4% to 21.1%, and the E.E. just slightly decreased from 56.7% to 52.7%, at low flow 

ratio (Qoil/Qw =50/10000); and similarly, the mass loading ability greatly increased from 

16.0% to 26.3%, and the E.E. just slightly decreased from 79.8% to 65.9%, at high flow 

ratio (Qoil/Qw =50/5000). This mass loading ratio shown by these PLGA NPs is not only 

significantly higher than former research using conventional synthesis4, 41, but also 

comparable to droplets-based microfluidic method using pure water-miscible solvent194, 

195, and the relatively high E.E. ensures a low waste of drugs.  
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Figure 30. Size of DOX-PLGA NPs and Tamoxifen-PLGA NPs of different flow ratios. VDCM/VDMSO 

=1/10. Concentration of Doxorubicin and Tamoxifen= 1 mg/ml. Qoil=50 µl/hr, Concentration of 

PLGA (Mw=4000~15000) = 5 mg/ml. (n = 3; mean ± S.D.) 

 

When we switched the drug from Doxorubicin to Tamoxifen, it was also found that 

the affinity between drugs and solvents has a great effect on the size and encapsulation 

ability of NPs. The PLGA NPs containing Tamoxifen have larger sizes (Figure 30) 

compared to those containing Doxorubicin, since Tamoxifen is more hydrophobic than 

Doxorubicin, and could increase the surface tension of the transitional micro-droplets, 

which finally lead to larger NPs as discussed in Section 3.4.2. 



57 
 

5000 10000
0

20

40

60

80

100

 

 

 Tamoxifen

 DOX

Q
w
, μl/hr

E
.E

.,
 %

5000 10000
0

2

4

6

8

10

12

14

16

18

20

 

 

M
a
s
s
 l
o
a
d
in

g
 a

b
ili

ty
, 
%

Q
w
, μl/hr

 Tamoxifen

 DOX

 

 

Figure 31. E.E. and mass loading ability of DOX-PLGA NPs and Tamoxifen-PLGA NPs of different 

flow ratios. Qoil=50 µl/hr, Concentration of PLGA (Mw=4000~15000) = 5 mg/ml. VDCM/VDMSO 

=1/10. Concentration of Doxorubicin and Tamoxifen= 1mg/ml. (n = 3; mean ± S.D.) 

In addition, the NPs exhibited a significantly improved E.E. and mass loading ability 
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with Tamoxifen than with Doxorubicin (Figure 31) at low flow ratio (Qoil/Qw 

=50/10000). It is most likely due to that Tamoxifen has higher affinity with DCM than 

Doxorubicin, so that more Tamoxifen can be preserved after the solvent replacement.   
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Figure 32. Comparison of in-vitro doxorubicin cumulative release profiles by PLGA NPs of 

different VDCM/VDMSO.  

The role of VDCM/VDMSO played in the procedure of drug release was also studied: We 

found that DOX-PLGA NPs containing DCM during their formation exhibited a slower 

sustained release stage, compared to those without DCM during the formation (Figure 

8). As previous research shown196, 197, 198, DCM is inclined to shrink towards the core 

of NPs during its evaporation process, so that more drug is desired to be “dragged” to 

and embedded in the “deeper” part of the NPs. This feature of the partially miscible 

water imply that it could help to preserve more drug inside NPs and facilitate to a more 

sustained release.  
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3.5 CONCLUSION 

Herein we have successfully developed a novel microfluidic flow focusing method 

for synthesis of DOX-PLGA NPs using a partially water-miscible solvent. We 

investigated the stability of the partially water-miscible under the confinement of the 

microfluidic channel and a transformation process, “Jet to Droplets to Nanoparticles”, 

of the precursor fluid in the jetting zone was observed for the first time. The PLGA NPs 

size can be precisely tuned by controlling the flow ratio, polymer concentration, and 

VDCM of the dispersed phase. Furthermore, the NPs synthesized using the partially 

water-miscible microfluidic precursor exhibited much better drug loading loading 

ability and a longer sustained release stage than conventional microfluidic methods 

using water-miscible precursor. 

Besides, our microfluidic method with excessive drug loading hasn’t caused any 

clogging effect or drug aggregation during the long-time flow focusing. All of these 

characteristics prove that this microfluidic method by partially water-miscible fluid is 

a clean, highly-efficient, and robust platform to produce drug-encapsulated NPs, and 

has great potential for further applications such as cosmetics industry, controlled release, 

and 3D printing, etc. 
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Chapter 4 Drug Content Tunable Encapsulation and 

Controlled Release of a Hydrophilic Drug by a Modified 

Drop-wise Nanoprecipitation Method 

 

4.1 Summary 

To improve the encapsulation efficiency of hydrophilic drugs by polymer 

nanoparticles (NPs) has been arising attentions from the controlled release research 

field48. Here we developed a novel simply-modified drop-wise nanoprecipitation 

method which separated hydrophilic drug and polymer into aqueous phase (continuous 

phase) and organic phase (dispersed phase), individually, and involved a mixing process. 

Using this method, we produced ciprofloxacin-loaded NPs by Poly (D, L-lactic acid)-

Dextran (PLA-DEX) and PLGA-PEG successfully, with a considerable drug loading 

ability (18.6% by PLA-DEX, 27.2% by PLGA-PEG, w/w), which could be precisely 

tuned by changing the initial drug feed concentration of ciprofloxacin. In-vitro 

sustained release study of ciprofloxacin was achieved in stimulated tear fluid (STF).  

Up to 95.4% of encapsulated ciprofloxacin was released by PLA-DEX NPs and 96.9% 

of encapsulated ciprofloxacin was released by PLGA-PEG NPs, within 144h. These 

studies suggest that this novel modified nanoprecipitation method is a rapid, facile, and 

reproducible technique for making nano-scale drug delivery carriers of high drug 

loading ability. 

4.2 Introduction  

Nanoprecipitation technology has grown into a highly-efficient, easily-handled, and 

mature tool to fabricate drug-loaded NPs for biomedicine researchers since its late 

1980s start by Fessi et al41. Polymer and hydrophobic drugs were dissolved in the same 
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organic solvents and then mixed with aqueous solution. By modifying the solution 

mixing speed, O/W ratio42, pH43, polymer/drug ratio44, block ratio of block polymers45, 

solvent selection46, etc., the parameters of NPs including size, distribution, and drug 

encapsulation efficiency, could be tuned easily.  

However, the conventional nanoprecipitation procedure has relatively limited 

potential to encapsulate hydrophilic compounds199, given their poor solubility in 

organic solvents compared to most commonly used emulsion-based techniques12, 76, 200, 

201, 202, not to mention precisely control of the drug loading amount203, though the latter 

methods usually include complex preparation process, and result in much larger 

(several hundreds to thousands nanometers) non-uniform nanoparticles78. 

Here we chose ciprofloxacin as our drug model, one of the most commonly used 

anti-infective agents for ocular treatment because of its low toxicity, broad-spectrum 

antimicrobial activity, and low resistance from bacteria86. Then we developed our novel 

modified nanoprecipitation method that separates drug and polymer into organic phase 

and aqueous phase, individually. Monodispersed ciprofloxacin-loaded NPs were 

formed with a tunable size via a simple drop-wise mixing process similar to 

conventional nanoprecipitation’s199. The drug encapsulation efficiencies of NPs and 

their in-vitro release kinetics were assessed. In addition, a high linear correlation was 

found between the initial concentration of ciprofloxacin and the mass loading ability of 

PLA-DEX and PLGA-PEG NPs. This work provides new quantitative approach for 

producing polymeric NPs with high loading of hydrophilic drugs by facile one-step 

nanoprecipitation.  

4.3 Experimental Section 

4.3.1 Materials 

Poly (D, L-lactic acid)-Dextran (PLA 20 kDa -DEX 10 kDa) was synthesized as 

previously reported47 and PLGA (30~35 kDa)-PEG (6 kDa) was purchased from 

Lakeshore Biomaterials (Birmingham, AL, USA). Ciprofloxacin, Dimethyl sulfoxide 
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(DMSO), and Hydrochloric acid (HCl) were purchased from Sigma Aldrich (Oakville, 

Canada). Simulated tear fluid (STF) was prepared for the in vitro release experiment 

using a previously described formulation204. 

4.3.2 Synthesis of PLA-DEX and PLGA-PEG NPs.  

1 ml PLA-DEX or PLGA-PEG solution (5 mg/ml in DMSO) was added into 10 ml 

HCl aqueous solution (1 mol/L) drop-wisely with gentle magnetic stirring for 10 min. 

Then the solution was filtered by 200 nm filters for further use. The size and 

polydispersity (PDI) of NPs were determined by dynamic lighting scattering (90Plus 

Particle Size Analyzer, Brookhaven, λ = 659 nm at 90°). 

4.3.3 Transmission Electron Microscopy (TEM).  

The particle morphology of PLA-DEX and PLGA-PEG NPs were further 

characterized using transmission electron microscopy (TEM, Philips CM 10) with a 

lanthanum hexaboride filament (LaB6). The NP solution was prepared as the protocols 

mentioned above and coated onto a copper grid. A drop of aqueous phosphotungstic 

acid solution (20 mg/ml) was used to briefly stain the NPs for 10s and was then removed 

by absorbent paper. The copper grid was dried at room temperature over night before 

TEM imaging. 

4.3.4 Ciprofloxacin encapsulation by PLA-DEX and PLGA-PEG NPs.  

PLA-DEX was dissolved in DMSO (5 mg/ml), and ciprofloxacin was dissolved in 1 

mol/L HCl aqueous solution with concentration of 0.5, 1, 2, 4, 5, 6, 8 mg/ml, 

respectively. 1ml PLA-DEX solution was added into 10ml Ciprofloxacin solution drop-

wisely with gentle magnetic stirring for 10 min. Then the solution was filtered by 200 

nm filters for further use. 1 ml of filtered solution was centrifuged with an Amicon 

centrifuge tube (MWCO=3000) for 30 min at 8000 rpm. 1ml of 1mol/L HCl aqueous 

solution was used to resuspend the NPs, and another round of centrifugation (8000 rpm, 

30 min) was done in order to wash away the un-bonded and loosely-associated 
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ciprofloxacin. Afterwards, the NPs were dissolved by a mixed solvent of 1mol/L HCl 

aqueous solution and DMSO (v: v=1:1) to release all encapsulated drugs for 

determination of encapsulation efficiency by UV spectroscopy. The same procedure 

was applied for encapsulation of ciprofloxacin by PLGA-PEG for comparative analysis. 

The encapsulation efficiency and mass loading ability of NPs were calculated by the 

following Eq. (2) and Eq. (3). 

Encapsulation Efficiency = 
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑟𝑢𝑔 𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑒𝑑

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑑𝑟𝑢𝑔 𝑓𝑒𝑒𝑑 
× 100% (2) 

Mass loading ability = 
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑟𝑢𝑔 𝑒𝑛𝑐𝑎𝑝𝑠𝑢𝑙𝑎𝑡𝑒𝑑

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑙𝑦𝑚𝑒𝑟 
× 100% (3) 

4.3.5 Drug release study.  

After the modified nanoprecipitation (1 ml 5 mg/ml PLA-DEX+10 ml 5 mg/ml 

ciprofloxacin), 4 ml filtered solution was centrifuged, washed and re-centrifuged per 

the procedure from previous sections. The NPs were resuspended by 10 ml Millipore 

water, and then transferred into a dialysis membrane (100 kDa, MWCO), against 400 

ml simulated tear fluid (STF) in a release bottle with stirring at 37 ℃. 1 ml of each 

sample was collected at 2h, 4h, 6h, 8h, 10h, 12h, 24h, 48h...etc. to determine the 

cumulative released dose by UV spectroscopy. Comparative groups of free drug 

without NP carriers and of Ciprofloxacin-PLGA-PEG NPs were made with the same 

protocols.  

4.4 Results and Discussion 
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4.4.1 Formation of Ciprofloxacin-loaded NPs by block polymers  

 

Figure 33. The formation procedure of ciprofloxacin-loaded NPs. (1) Drop-wise nanoprecipitation; 

(2) Block polymer self-assembled to form core-shell NPs with ciprofloxacin; (3) The NPs and non-

encapsulated ciprofloxacin after nanoprecipitation. 

 

Figure 33 shows a schematic of the formation process of ciprofloxacin-loaded NPs 

within the modified nanoprecipitation. It is known that in traditional nanoprecipitation 

the drug-loaded NPs form because of their co-nanoprecipitatian205due to the solvent 

displacement that turns one same “good” organic solvent into one same “bad” aqueous 

solvent. However, the difference of the modified nanoprecipitation is the ciprofloxacin 

and polymer were separated in two different “good” solvents at the beginning, which 

were then turned into one same “bad” solvent for both afterwards. The formation of 

drug-loaded NPs is due to the interfacial deposition of polymer and drug because of the 

interfacial solvent displacement between two different unstable liquid phases41. 
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Figure 34. Nanoprecipitation of ciprofloxacin and PLA-DEX NPs. (a) A normal modified 

nanoprecipitation, Left: 1h after nanoprecipitation; Right: 0 min after nanoprecipitation. (b) 

Modified nanoprecipitation without PLA-DEX, Left: 1h after nanoprecipitation; Right: 0 min after 

nanoprecipitation. (c) Modified nanoprecipitation without Ciprofloxacin, Left: 1h after 

nanoprecipitation; Right: 0 min after nanoprecipitation. (d) Modified nanoprecipitation with 

different concentration of ciprofloxacin after 24h. Left to Right: 8, 6, 5, 4, 2, 1, 0.5, 0 mg/ml. (e) 

Solution of free drug and modified nanoprecipitation. Left to Right: ciprofloxacin in HCl solution, 

1h after modified nanoprecipitation, 30 min after modified nanoprecipitation, 15 min after modified 

nanoprecipitation. (The protocol was drop-wisely adding 1 ml of 5 mg/ml PLA-DEX in DMSO into 

8 mg/ml ciprofloxacin in 1 mol/L HCl aqueous if no additional statements). 

 

Although only a little volume of dispersed phase (DMSO) was added into continuous 

phase (HCl aqueous solution), this tiny change of solvent environment was a driven 

force for the precipitation of ciprofloxacin, which is assessed in Figure 34b, the 

spontaneous aggregation of ciprofloxacin occurred without the PLA-DEX in the mixing 

process. Compared Figure 34a, b and c, we can see the PLA-DEX NPs had not 

precipitation, yet the existence of PLA-DEX in the solvents mixing promoted more 

precipitation of ciprofloxacin since the ciprofloxacin not only aggregated by itself, but 

also were absorbed or encapsulated by PLA-DEX, which is the mechanism of this 

modified nanoprecipitation. More concentrated the ciprofloxacin solution was, the 

more precipitation would be formed according to Figure 34d. It is also clearly 

(a) (c) (b) 

(e) (d) 
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demonstrated in Figure 34e that how the precipitation of ciprofloxacin happened in a 

clear solution after nanoprecipitation by time. The solution turned slightly milky in 30 

min and obvious precipitation formed in 1h, which indicated that the preparation to 

make NPs for use of characterization, encapsulation and release study should be done 

as fast as possible in case of severe aggregation.  

4.4.2 Encapsulation of ciprofloxacin by NPs 

Polymer C of Cipro 

(mg/ml) 

Size of NPs 

(nm) 

PDI Mass loading 

ability (%)  

PLA-DEX 0.5 82.4±7.7 0.137±0.011 1.52±0.23 

 1 89.2±3.2 0.129±0.015 3.33±0.84 

 2 89.2±6.5 0.124±0.029 5.68±0.74 

 4 93.2±7.3 0.141±0.020 8.45±0.31 

 5 94.9±8.9 0.138±0.026 10.25±1.99 

 6 94.4±9.3 0.133±0.014 12.06±1.90 

 8 98.4±11.2 0.133±0.034 18.64±2.60 

     

PLGA-PEG 0.5 174.4±1.2 0.125±0.014 3.29±1.00 

 1 175.2±1.2 0.123±0.002 4.76±0.75 

 2 177.8±7.6 0.123±0.007 5.97±1.60 

 4 179.1±2.3 0.098±0.005 10.79±0.59 

 5 182.8±4.6 0.124±0.007 13.71±1.25 

 6 187.5±5.3 0.103±0.015 17.84±3.04 

 8 205.4±15.2 0.112±0.022 27.24±4.79 

Table 2. NP parameters of effective diameter, polydispersity, and mass loading ability for PLA-DEX 

and PLGA-PEG. (n = 3; mean ± S.D.) 

 

As shown in Table 2, the effective diameters slightly increased from 82.4±7.7 nm to 

98.4±11.2 nm by PLA-DEX NPs, and from 174.4±1.2 nm to 205.4±15.2 nm by PLGA-

PEG NPs, respectively, with the increase of ciprofloxacin concentration from 0.5mg/ml 

to 8mg/ml. Given that other environmental conditions remained the same, this increase 

of NP size should be due to the increasing amount of encapsulated drug content within 

the NPs (Figure 35), which indicates that we could tune the NP size by controlling the 

concentration of ciprofloxacin. Moreover, with this modified nanoprecipitation method, 

the NPs remained a relatively low and similar polydispersity (Table 2) regardless of 

changes in ciprofloxacin concentration or NP size. This characteristic revealed that our 
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modified nanoprecipitation method has a superior controllability over the morphology 

of NPs. 

  

Figure 35. TEM image demonstrates the spherical shape of PLA–DEX NPs (Left) and PLGA-

PEG NPs (Right). 
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Figure 36. Relationship of NPs’ mass loading ability and initial concentration of ciprofloxacin. (a) 

PLA-DEX NPs, y=2.2015x, R2=0.9696; (b) PLGA-PEG NPs, y=3.1115x, R2=0.9676. (n = 3; mean 

± S.D.) 

 

In addition, with this modified nanoprecipitation method, NPs presented a 

considerable mass loading ability, 18.6±2.6% by PLA-DEX and 27.2±4.8% by PLGA-

PEG, respectively. Noticeably, one interesting phenomenon is that the mass loading 

ability of NPs, either PLA-DEX or PLGA-PEG, exhibited a very strong liner 

relationship with the concentration of ciprofloxacin by this modified nanoprecipitation. 

Both correlation coefficients were very close to 1 (R=0.9847 by PLA-DEX NPs and R 

=0.9837 by PLGA-DEX NPs ) according to Figure 36, which indicates a quantitative 

approach that we could take to control the amount of the encapsulated ciprofloxacin205 

in the NPs by changing the concentration of original drug feed.  

Furthermore, there is an interesting phenomenon to be noticed is that the mass 

loading ability of the PLA-DEX NPs exhibited a very strong liner relationship with the 

concentration of ciprofloxacin in the modified nanoprecipitation. The correlation 

coefficient R=0.9847 according to Figure 26, which indicates a quantitative approach 

that we could use to control the amount of the encapsulated ciprofloxacin205 in the NPs 

(b) 
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by changing the concentration of original drug feed.    

Furthermore, the effective diameter of the NPs only increased by 1.2 times whereas 

its ability of drug loading had increased by more than 10 times, which means it could 

keep superior drug loading ability without significant change of its size.  

The encapsulation efficiency of the PLA-DEX NPs slightly fluctuated, but all 

relatively low (1.05±0.17% to 1.97±0.54%) compared to the mass loading ability 

because there were much more ciprofloxacin than PLA-DEX in the solution. Perhaps 

we can use volatile solvents (e.g. acetone) instead of DMSO in the modified 

nanoprecipitation and perform a solvent evaporation206 afterwards. After subtracting 

the NPs by centrifugation and filtration, we could re-use the filtered ciprofloxacin 

solution for another modified nanoprecipitation, or even multiple times. In this way, we 

may find a good balance between encapsulation efficiency and mass loading ability. 

4.4.3 Ciprofloxacin Release Study 
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Figure 37. The cumulative release profiles of ciprofloxacin in vitro in STF at 37 °C as free drugs, 

by PLA-DEX NPs, and PLGA-PEG NPs. (n = 3; mean ± S.D.) 

Figure 37 shows how the ciprofloxacin was released in simulated tear fluid (STF) as 

free drug, as encapsulated content by the PLA-DEX NPs, and by PLGA-PEG NPs, 
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respectively. The free drug group had a very quick release up to 83.2±6.9% within the 

initial 2h due to the free diffusion of the ciprofloxacin, and then the free diffusion nearly 

finished at 6h. In contrast, the ciprofloxacin encapsulated by both PLA-DEX and 

PLGA-PEG NPs had a slower burst-release within the initial 2h, up to 67.5±6.1% and 

56.1±9.0%, respectively. These differences indicate that part of the encapsulated drugs 

was strongly associated to the NPs that were “covered” or “protected” well during the 

burst-release stage207, compared to the free drug group. Both PLA-DEX NPs and 

PLGA-PEG NPs exhibited a much more controlled release profile than free drugs did. 

After the first 12h, a steady-release stage continued within both two groups, and ended 

up to 96.9±5.2% and 95.4±2.5%, respectively, at 144h. Noteworthy is that PLGA-PEG 

NPs released ciprofloxacin at a slower rate than PLA-DEX NPs did. This is perhaps 

because PLA-DEX NPs have more hydrophilic surfaces23 which are less compact in an 

aqueous environment making it easier for ciprofloxacin drugs to detach44.  Compared 

to the release profiles of free drug, both PLA-DEX and PLGA-PEG NPs prepared by 

this modified nanoprecipitation method showed great potential for a long time sustained 

release, which is needed for constant ocular treatments in clinical application208.  

4.5 CONCLUSION 

A novel one-step drop-wise modified nanoprecipitation method was successfully 

developed, by which we could efficiently encapsulate the hydrophilic drug 

ciprofloxacin by PLA-DEX and PLGA-PEG NPs. NPs of considerable drug loading 

ability were synthesized with tunable sizes. We also found that the mass loading ability 

of the NPs varied as an excellent linear function of the concentration of ciprofloxacin, 

which demonstrates a possibility for an accurate control over the drug loading amount 

by NPs. Both of PLA-DEX and PLGA-PEG NPs exhibited great potential for a long-

time sustained release compared to free drugs. By optimizing the formulation of NPs 

by changing the drug/polymer ratio and polymer composition, effective drug release 

rates and amounts for constant treatments in future clinical application208 can be 

achieved. All of these characteristics make this modified nanoprecipitation method a 
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promising technique for encapsulation and release of hydrophilic drugs and preparation 

of functional NPs as drug delivery tools for further biomedical application.  
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Chapter 5 Investigation on possibility of combination of 

chemotherapy and magnetic therapy 

5.1 Summary 

We applied our modified flow focusing method using a partially water-miscible 

precursor to encapsulate magnetic iron oxide nanoparticles, within PTMC-b-PGA 

polymersomes, as a basis for future combination of chemotherapy and magnetic therapy. 

The modified flow focusing method showed better encapsulation efficiency (78%) and 

mass loading content of -Fe2O3 (43%) than conventional methods. The structure of 

PTMC-b-PGA polymersomes was characterized and confirmed by dynamic lighting 

scattering, static lighting scattering, and cryo-TEM. The influence of mixing methods 

(microfluidics and bulk) and flow ratio on the size and morphology of polymer vesicles 

were further investigated. This method successfully accomplished encapsulation of -

Fe2O3 magnetic nanoparticles, prepared monodispersed polymer vesicles with 

considerable loading contents, thus, provided us a promising tool for fabricating 

multifunctional nanoparticle carriers for future multiple loading of anti-cancer drugs 

and inorganic therapeutics. 

5.2 Introduction 

Nanoparticles has been proved their effectiveness in cancer treatments over the past 

decades, no matter as the nano carrriers9, 10, 71 of anti-cancer drugs, or as the metallic or 

inorganic hyperthermia nanoparticles209, 210, or as diagnosis imaging probes211, 212, etc. 

However, with the continuous research of the mechanisms of diseases and increasing 

treatment requirements, relying on a single type of drug or single therapy protocol 

usually could not solve the problem or meet patients’ needs1 completely. Thus, 

combinations of different nanotechnology cancer therapy methods7, 213, 214 attract 

increasing attentions from researchers.  
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Dual loading of drug/ hyperthermia nanoparticles6, 215, 216 has been arising interests 

of biomedical scientists recently, not only because of both nano-chemotherapy36, 38 and 

nano-thermotherapy174, 217 were tested effective in animal experiments, but also because 

of their combinations offer new advantages for cancer therapy strategies. For example, 

drug release from smart responsive polymer carriers3, 37, 142 can be triggered by physical 

environmental stimulus like temperature and light, which can be shared with or offered 

by most commonly-used iron oxide nanoparticles179, 218. In addition, iron oxide 

nanoparticles can be used as theranostic signals219, or to accelerate the drug release rate8 

in the chemotherapy systems, which further enhances the treatment effects. 

However, the preparation of drug/iron oxide loading polymer vesicles by microfluidics 

at current stage are usually limited by the following drawbacks: (1) Oversized capsules 

(several hundred m) by droplet-based microfluidics220, 221, which brings obstacles for 

in-vivo study; (2) Poor loading ability of magnetic nanoparticles by flow-focusing 

based microfluidics, due to the poor solubility of iron oxide nanoparticles in common 

water-miscible organic solvents. 

We are thus motivated to apply our modified microfluidic flow focusing method 

described in Chapter 3, in order to accomplish encapsulation of iron oxide nanoparticles 

first. In our experiments, we have successfully fabricated -Fe2O3- loaded PTMC-b-

PGA polymersomes, with a respect to small and uniform vesicle size (dia.~200nm and 

PDI~0.2), and high loading ability of -Fe2O3 (mass loading > 40%). This modified 

microfluidic flow focusing method will provide huge potential for multiple 

encapsulation, imaging diagnosis, targeted therapy, and controlled drug release. 

5.3 Experimental Section 

5.3.1 Materials 

PTMC (poly-trimethylenecarbonate, Mw=10000)-b-PGA-8(polyglycolic acid, 

Mw=3700) and -Fe2O3 nanoparticles (dia. 10~15 nm) were provided by collaborator 

Dr. Shusheng Zhang from Laboratoire de Chimie des Polymères Organiques, 
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University of Bordeaux. Dichloromethane (HiPerSolv CHROMANORM for HPLC，

VWR), Dimethyl Sulfoxide (ACS grade, Amresco) Phosphate buffered saline (PBS, 

pH=7.4 at 25 °C, Sigma Aldrich). Microfluidic capillary was fabricated as same 

protocols per the Section 3.2.2.  

5.3.2 Preparation of polymersomes 

PTMC-b-PGA (5 mg/ml) was dissolved in the mixed solvent of DCM/DMSO 

(VDCM/VDMSO=1/10) and filtered by 0.2 m filter. The polymersomes were produced by 

a microfluidic flow focusing using the DCM/DMSO as a precursor and PBS buffer 

(0.01 mM) as a continuous phase at room temperature. The resulting dispersion was 

evaporated under a 37°C water-bath for one hour to remove DCM and then dialyzed 

against PBS buffer (0.01 mM, 1X) using a cellulose dialysis membrane  (MWCO=3.5 kDa). 

The particle size and morphology were then measured and confirmed by DLS (dynamic 

lighting scattering) and SLS (static lighting scattering). 

5.3.3 Fabrication of Fe2O3-loaded magnetic polymersomes by microfluidics 

Doxorubicin, -Fe2O3, and PTMC-b-PGA (a typical weight ratio was: 1 mg/ml, 0.5 

mg/ml, 5 mg/ml) were dissolved in the mixed solvent of DCM/DMSO 

(VDCM/VDMSO=1/10) and filtered by 0.22 m PTFE membrane. A typical aqueous phase 

flow ratio was set as 10000 L/hr and oil phase speed was set as 100 L/hr. The aqueous 

phase was 0.01 mM PBS buffer with 0.02 wt % NaN3. The production solution was 

evaporated under a 45°C water-bath for one hour to remove DCM and then dialyzed 

against 1X PBS buffer using a cellulose dialysis membrane  (MWCO=3.5 kDa) for 5h. 

Samples were then filtered by 0.8 m membrane. The particle size and morphology 

were then measured and confirmed by DLS (dynamic lighting scattering) and SLS 

(static lighting scattering). 
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5.3.4 DLS andSLS characterization  

DLS (dynamic lighting scattering) and SLS (static lighting scattering) were further 

performed using an ALV Laser goniometer, which consisted of a 35 mW HeNe linear 

polarized laser with a wavelength of 633nm and an ALV-5000/EPP Multiple Tau 

Digital correlator with 125 ns initial sampling time. Samples were collected after 

solvent evaporation and dialysis, and kept at 25.0 C during all the experiments. The 

accessible scattering angle range was from 25 to 150. Aliquots of samples (1 mL in 

10 mm diameter cylindrical glass cell) were immersed in a filtered toluene bath. The 

data acquisition was done with the ALV-Correlator Control software. Polydispersity 

(PDI) was obtained by simple fit of 90 data. 

5.3.5 Determination of encapsulation efficiency of Fe2O3 

Iron oxide-loaded polymersomes were synthesized by microfluidics. After solvent 

evaporation and dialysis, 3.0 mL solution containing drug-loaded magnetic 

polymersomes was added into three Amicon® Ultra-15 centrifugal filter devices 

(MWCO=10000), respectively, and centrifuged at 4500 rpm for 30min. 3.0 mL 

DMSO/H2O (80/20, v/v) was added into each tube to disrupt polymersomes and the 

solution was then transferred to a centrifuge tube (5mL, VWR) at 8000 rpm for 30min 

to induce aggregation of Fe2O3 nanoparticles.  

Supernatant solution from each centrifuge tube was removed gently using a Pasteur 

pipette to leave Fe2O3 precipitation at the bottom of the centrifuge tube. 3.0 mL HCl 

solution (5 mol/L) was added into each tube to disrupt polymersomes and dissolve 

Fe2O3 nanoparticles. 0.3 mL solution from each centrifuge tube was transferred to three 

wells in a standard calibration UV 96 plate, respectively. The mean absorption at 350 

nm was measured and the concentration of Fe2O3was calculated by using the standard 

calibration curve. 

5.4 Results and Discussions 
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5.4.1 Effects of flow ratio on formation of polymersomes 

Sample name Qw (µl/hr) Qoil (µl/hr) Diameter (nm) PDI 

PTMC-b-PGA 5000 50  124±5.01 0.16±0.005 

 10000 50  111.15±3.49 0.15±0.008 

 10000 100 139.22±9.16 0.17±0.005 

PTMC-b-PGA 10000 50 217.09±10.21 0.25±0.016 

+-Fe2O3 10000 100 208.83±7.43 0.19±0.046 

Table 3. Size of polymersomes with different flow ratios. (n = 3; mean ± S.D.) 

 

Method Sample name 
Qw 

(µl/hr) 

Qoil 

(µl/hr) 

Rg 

(nm) 

Rh 

(nm) 
Rg/Rh  PDI 

Microfluid

ics 

PTMC-b-PGA 10000 100 52 51 1.03 0.17 

PTMC-b-PGA 10000 50 123 105 1.16  

+-Fe2O3 10000 100 136 117 1.17  

Bulk PTMC-b-PGA   108 68 1.60 0.344 

Table 4. Comparison of PTMC-b-PGA polymersomes synthesized by microfluidics and bulk 

methods. Bulk experiment was performed as the same O/W volume ratio in a 100mL beaker. 

 

We investigated the effects of flow ratio (Qoil/Qw) on the size and polydispersity of 

PTMC-b-PGA polymersomes. In Table 3, it is shown that increasing flow rates of oil 

phase led to increasing polymersome sizes, and flow rates of aqueous phase had a 

negative correlation with the polymersome sizes. This trend is consistent with the data 

of PLGA NPs in Chapter 3.  

In addition, with addition of -Fe2O3 nanoparticles, the size of polymersomes 

increased greatly, yet the monodispersity just increased slightly. Furthermore, the shape 

factors (Rg/Rh) of PTMC-b-PGA polymersomes prepared by the microfluidics were 

very close to 1 (Table 4), regardless encapsulation of -Fe2O3, which indicates that 

much more PTMC-b-PGA vesicles were shaped as structures of polymersomes by the 

modified microfluidic method, compared to bulk method. These advantages prove that 
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this modified microfluidics method have a great controllability of particle size, 

distribution, and morphology, which can also be intuitively illustrated by the cryo-TEM 

picture. (Figure 38)  

 

Figure 38. Morphology of PTMC-b-PGA polymersomes by Cryo-TEM  

 

100nm 
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5.4.2 Encapsulation of iron oxide nanoparticles 
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Figure 39. E.E. and mass loading ability of -Fe2O3 by PTMC-b-PGA polymersomes. VDCM/VDMSO 

=1/10. Qw=10000 µl/hr, Concentration of PTMC-b-PGA=5mg/ml, -Fe2O3 =3mg/ml. 

DCM/DMSO=1/10, v/v, Qw=10000 µl/hr. (n = 3; mean ± S.D.) 

 

 We successfully accomplished the encapsulation of -Fe2O3 within the PTMC-b-PGA 

polymersomes. By increasing the flow rate of oil phase from 50µl/hr to 100µl/hr, we 

improved the encapsulation efficiency from 69% to 78%, and the mass loading ability 

from 41% to 47%. To be noticed, the solubility of -Fe2O3 in DMSO is very poor so 

that most -Fe2O3 are dissolved within DCM component of the oil phase. Increase of 

oil phase led to the increase of the content of DCM, so that more -Fe2O3 could be 

preserved inside the particles. These data encapsulation efficiency and mass loading are 

highly comparable to previous literatures8, 222, which means the novel microfluidic 

method has a superior ability for both organic drugs (Chapter 3) and inorganic 

therapeutics. This great property opens a door for further multiple encapsulation and 

cancer therapy. 

 



79 
 

5.5 Conclusion 

 Here we successfully applied our modified microfluidic flow focusing method to the 

encapsulation of inorganic -Fe2O3 nanoparticles. The morphology of PTMC-b-PGA 

polymersomes containing -Fe2O3 was confirmed by shape factor (Rh/Rg) and cryo-

TEM. Higher flow ratio of Qoil/Qw could both increase particle size of polymersomes 

and Fe2O3 loading content inside the polymersomes. This method not only significantly 

improved the drug encapsulation efficiency and loading content, compared to the 

conventional bulk methods, but also provided a great potential for a combination of 

chemotherapy and magnetic therapy.  
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Chapter 6 Conclusions and Future Work 

6.1 Encapsulation and controlled release of hydrophobic drugs by 

modified microfluidic flow focusing 

  (1) Summary 

We have verified that the modified microfluidic flow focusing was able to generate 

smaller and uniform nanoparticles than conventional bulk methods and microfluidic 

flow focusing by adding DCM in the classical dispersed phase DMSO, to make a 

partially water-miscible precursor. This method helped improving the hydrophobic 

drug encapsulation efficiency and drug loading ability, and slower the sustained-release 

rate.  

First of all, the modified microfluidic flow focusing method using a partially water-

miscible precursor produced polymer NPs according to a novel fluidic mechanism: “Jet 

to Microdroplets to NPs”. This mechanism was investigated that final particle sizes are 

directly influenced by the sizes of their original droplets.  

Secondly, the formation of the NPs could be precisely controlled by tuning the flow 

rates, polymer concentration, and VDcm/VDMSO. Higher flow ratio of Qoil/Qw was proved 

that could increase the NPs size and increase the drug content within the NPs. Higher 

polymer concentration was also proved that has a positive correlation with the final NPs 

size. Higher volume fraction ratio of DCM in the dispersed phase could also increase 

the particle size and the drug loading content. In addition, more hydrophobic the drug 

is, more drug will be encapsulated within the NPs by this method, at given parameters 

of flow rates, polymer concentration, and VDcm/VDMSO. 

   Furthermore, in-vitro controlled release profiles of doxorubicin-loaded NPs 

fabricated from pure DMSO precursor and (DCM+DMSO) precursor were compared, 

and NPs from (DCM+DMSO) precursor was confirmed that has a more sustained-

release procedure.  

   Generally, this microfluidic flow focusing method using a partially water-miscible 
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precursor is capable of fabricating uniform droplets and NPs, improving drug 

encapsulation efficiency and mass loading ability than classical methods, and slowing 

down the drug release rate. These important characteristics open a new door for 

preparation of droplets and nanoparticles, drug encapsulation and release, and cancer 

therapy.  

 

(2) Future Work 

The Map of flow behavior in the (Qw, Qoil) plane needs to be further extended and 

investigated, to understand whether the jet and jetting zones could remain their regime 

at higher flow rates. If not, a new phenomenon of flow behavior may be observed.  

The choice of the partially water-miscible precursor can also be extended to other 

combination solvents: (1) Using THF, Acetone, alcohol, etc., as an instead of DMSO, 

since these solvents are easier to evaporate than DMSO; (2) Using ethyl acetate instead 

of DCM, since its low toxicity and low boiling point; (3) Using soybean oil instead of 

DCM, which is totally biocompatible and biodegradable solvent as important oil in our 

daily life. Noticeably, because of its non-volatile property, soybean oil may remain in 

the droplets and NPs for a long time, so micro-droplets or NPs perhaps could keep their 

shapes, “lock” more drugs inside, and release the drugs in a longer period; (4) Different 

combinations of solvents are worthy being tested to understand the effect of solvent 

choices on the NPs size, drug loading ability, and release profiles.  

The role of DCM played in the drug encapsulation and release should be tested and 

the assumption proposed in Section 3.7 should be verified as well. The experiment can 

be designed like this: (1) A strongly fluorescent dye may be used as a drug model 

instead of doxorubicin or tamoxifen; (2) The formation of microdroplets and the 

distribution of dye in the microdroplets may be traced by confocal microscopes; the 

distribution of dye in the NPs may be detected by cyro-TEM; (3) A precursor using 

pure DMSO may be used as a control group, compared to a precursor using 

DCM+DMSO.  



82 
 

 

Figure 40. Scheme of the set-up of concentrating device for the NPs solution. 

 The major challenge of this method is to improve the concentration of NPs solution 

since it is very diluted (CPLGA=0.05~0.1mg/mL) after being produced. We propose a 

PDMS chip with parallel channels to separate excessive water from the NPs solution, 

by co-flowing the NPs solution and aqueous solution with a high concentration of 

dextran. Due to the osmotic pressure between the two fluids and the good permeability 

of PDMS materials, the NPs solution can be gradually concentrated and collected in a 

reservoir for further use.  

Hopefully, this method can be also further extended and optimized to be applied to 

industrial areas like cosmetics, fragrances, 3D printing and pharmacy 

 

6.2 Improvement of the encapsulation efficiency of hydrophilic drugs 

by modified drop-wise nanoprecipitation 

(1) Summary 

We have successfully developed a novel simply-modified drop-wise 

nanoprecipitation method which separated hydrophilic drug and polymer into aqueous 

phase (continuous phase) and organic phase (dispersed phase), individually. Uniform 

nanoparticles with a considerable ciprofloxacin loading ability were synthesized acby 

two polymers, PLA-DEX and PLGA-PEG. The mass loading ability of both two 
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polymeric NPs which could be precisely tuned by changing the initial drug feed 

concentration of ciprofloxacin. In-vitro sustained release study of ciprofloxacin by both 

two polymeric NPs was achieved in stimulated tear fluid (STF) and the sustained-

release could last for almost one week. These studies suggest that this novel modified 

nanoprecipitation method is a rapid, facile, and reproducible technique for making 

nano-scale drug delivery carriers of high drug loading ability. 

 

(2) Future Work 

The challenge of further improvement of the encapsulation efficiency still exist. 

Volatile solvent like acetone may be used as an instead of DMSO so that it could be 

easily removed by evaporation from the aqueous solution. So the rest of the aqueous 

solution which still contains considerable ciprofloxacin may be re-collected and 

recycled for another or more rounds of modified drop-wise nanoprecipitation.  The 

encapsulation efficiency of ciprofloxacin perhaps will be greatly improved by repeating 

the nanoprecipitation procedure. 

   The effects of volume ratio of organic/aqueous phase and polymer concentration on 

the encapsulation efficiency and release profiles are going to be determined. Different 

polymer like polycarbonate and hydrophilic drug like insulin could be tested by this 

drug encapsulation system to see whether the linear correlation of mass loading ability 

and initial drug feed still valid, in order to extend it to a universal method, which could 

be combined with microfluidics as well. Optimizations of the phase ratio, polymer and 

drug concentration will be done in order to improve drug loading ability of the NPs 

with a respect to the encapsulation efficiency. 

6.3 Improvement of the encapsulation efficiency of hydrophilic drugs 

by modified drop-wise nanoprecipitation 

(1) Summary 

We successfully applied our modified flow focusing method to encapsulate magnetic 

iron oxide nanoparticles, within PTMC-b-PGA polymersomes, as a basis for future 
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combination of chemotherapy and magnetic therapy. The modified flow focusing 

method showed good encapsulation efficiency (78%) and mass loading content of -

Fe2O3 (43%). The morphology of the PTMC-b-PGA polymersomes and shape factor 

(Rh/Rg) were characterized by dynamic lighting scattering, static lighting scattering, and 

cryo-TEM. and cryo-TEM. Higher flow ratio of Qoil/Qw was found that could increase 

particle size of polymersomes and Fe2O3 loading content inside the polymersomes. This 

method successfully accomplished encapsulation of -Fe2O3 magnetic nanoparticles, 

prepared monodispersed polymer vesicles with considerable loading contents, thus, 

provided us a promising tool for fabricating multifunctional nanoparticle carriers for 

future multiple loading of anti-cancer drugs and inorganic therapeutics. 

 

(2) Future Work 

  Our future work will be focused on accomplishing dual encapsulation of anti-cancer 

drug and iron oxide nanoparticles. Firstly, we are going to determine the loading 

contents of each compounds in the particles. Second, the formulation of the initial 

drug/Fe2O3/polymer ratio will be tuned to optimize the size and morphology of the 

polymer nanoparticles. Third, a magnetic field will be applied to the dual-encapsulated 

NPs in the in-vitro release or in-vivo release study.  

6.4 Research plan/Milestones 

The overall research timetable is tabulated below: 
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Research objectives 2012 2013 2014 2015 2016 

F: fall (Sep to Dec); W: winter (Jan to Apr); S: spring (May to Aug) F W S F W S F W S F W S 

Courses                         

Encapsulation and Controlled Release of Hydrophobic drugs                         

Microfluidic method                         

Literature review                         

Fabrication of microfluidic platform                         

Development of modified microfluidic flow focusing                         

Microfluidic synthesis of PLGA NPs                         

Microfluidic encapsulation of Doxorubicin                          

In-vitro controlled release of Doxorubicin                         

Investigation on mechanism of self-assembly behavior of NPs                         

Extension to different hydrophobic drug Tamoxifen                         

Optimization of drug-loaded NPs formations                         

Encapsulation and Controlled Release of Hydrophilic drugs                         

Literature review                         

Development of modified drop-wise nanoprecipitation                         

Synthesis and characterization of PLA-DEX NPs                         

Encapsulation of Ciprofloxacin                         

In-vitro controlled release of Ciprofloxacin                         

Investigation on mechanism of self-assembly behavior of NPs                         

Extension to different polymer PLGA-PEG                         

Optimization of drug-loaded NPs formations                         

Combination of Chemotherapy and Thermotherapy             

Literature review             

Dual encapsulation of Doxorubicin and Fe2O3             

In-vitro controlled release of Ciprofloxacin with magnetic field             

Thesis writing                         

PhD defense                         



86 
 

Bibliography 

1. Heath JR, Davis ME. Nanotechnology and cancer. In: Annual Review of Medicine (ed^(eds) 

(2008). 

 

2. Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA 

microparticles. International Journal of Pharmaceutics 364, 298-327 (2008). 

 

3. LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nature 

Biotechnology 21, 1184-1191 (2003). 

 

4. Barichello JM, Morishita M, Takayama K, Nagai T. Encapsulation of hydrophilic and lipophilic 

drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Development and 

Industrial Pharmacy 25, 471-476 (1999). 

 

5. Ting-Yu Liua b, Shang-Hsiu Hub, Dean-Mo Liub, San-Yuan Chenb, I-Wei Chena,∗. Biomedical 

nanoparticle carriers with combined thermal and magnetic responses. Nano Today,  (2008). 

 

6. Fahima Dilnawaz  AS, Chandana Mohanty, Sanjeeb K. Sahoo. Dual drug loaded 

superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials,  

(2010). 

 

7. Santimukul Santra CK, Jan Grimm, J. Manuel Perez. Drug/Dye-Loaded, Multifunctional Iron 

Oxide Nanoparticles for Combined Targeted Cancer Therapy and Dual Optical/Magnetic 

Resonance Imaging. Small,  (2009). 

 

8. Sanson C. Doxorubicin Loaded Magnetic Polymersomes: TheranosticNanocarriers for MR 

Imaging and Magneto-Chemotherapy. Acs Nano,  (2011). 

 

9. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, 

characterization and biological significance. Advanced Drug Delivery Reviews 47, 113-131 

(2001). 

 

10. Seigneuric R, et al. From Nanotechnology to Nanomedicine: Applications to Cancer Research. 

Current Molecular Medicine 10, 640-652 (2010). 

 

11. Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for 

cancer. Nature Reviews Drug Discovery 7, 771-782 (2008). 

 

12. Vila A, Sanchez A, Perez C, Alonso MJ. PLA-PEG nanospheres: New carriers for transmucosal 

delivery of proteins and plasmid DNA. Polymers for Advanced Technologies 13, 851-858 (2002). 

 

13. Ravi Kumar MNV, Bakowsky U, Lehr CM. Preparation and characterization of cationic PLGA 

nanospheres as DNA carriers. Biomaterials 25, 1771-1777 (2004). 



87 
 

 

14. Jewell CM, Zhang JT, Fredin NJ, Lynn DM. Multilayered polyelectrolyte films promote the direct 

and localized delivery of DNA to cells. Journal of Controlled Release 106, 214-223 (2005). 

 

15. Huang MJ, et al. One-step preparation of poly(epsilon-caprolactone)-polyethylene glycol)-

poly(epsilon-caprolactone) nanoparticles for plasmid DNA delivery. Journal of Biomedical 

Materials Research Part A 86A, 979-986 (2008). 

 

16. Guo S, et al. Enhanced Gene Delivery and siRNA Silencing by Gold Nanoparticles Coated with 

Charge-Reversal Polyelectrolyte. Acs Nano 4, 5505-5511 (2010). 

 

17. Katas H, Cevher E, Alpara HO. Preparation of polyethyleneimine incorporated poly(D,L-lactide-

co-glycolide) nanoparticles by spontaneous emulsion diffusion method for small interfering 

RNA delivery. International Journal of Pharmaceutics 369, 144-154 (2009). 

 

18. Cun D, Foged C, Yang M, Frokjaer S, Nielsen HM. Preparation and characterization of poly(DL-

lactide-co-glycolide) nanoparticles for siRNA delivery. International Journal of Pharmaceutics 

390, 70-75 (2010). 

 

19. Doerdelmann G, Kozlova D, Karczewski S, Lizio R, Knauer S, Epple M. Calcium phosphate 

increases the encapsulation efficiency of hydrophilic drugs (proteins, nucleic acids) into 

poly(D,L-lactide-co-glycolide acid) nanoparticles for intracellular delivery. Journal of Materials 

Chemistry B 2, 7250-7259 (2014). 

 

20. Bhuchar N, Sunasee R, Ishihara K, Thundat T, Narain R. Degradable Thermoresponsive Nanogels 

for Protein Encapsulation and Controlled Release. Bioconjugate Chemistry 23, 75-83 (2012). 

 

21. Xie S, Wang S, Zhao B, Han C, Wang M, Zhou W. Effect of PLGA as a polymeric emulsifier on 

preparation of hydrophilic protein-loaded solid lipid nanoparticles. Colloids and Surfaces B-

Biointerfaces 67, 199-204 (2008). 

 

22. Jain D, Banerjee R. Comparison of ciprofloxacin hydrochloride-loaded protein, lipid, and 

chitosan nanoparticles for drug delivery. Journal of Biomedical Materials Research Part B-

Applied Biomaterials 86B, 105-112 (2008). 

 

23. Gref R, et al. THE CONTROLLED INTRAVENOUS DELIVERY OF DRUGS USING PEG-COATED 

STERICALLY STABILIZED NANOSPHERES. Advanced Drug Delivery Reviews 16, 215-233 (1995). 

 

24. Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. 

Advanced Drug Delivery Reviews 28, 5-24 (1997). 

 

25. Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of 

poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. Faseb 

Journal 16,  (2002). 



88 
 

 

26. Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical 

applications. Advanced Drug Delivery Reviews 55, 403-419 (2003). 

 

27. Cheng J, et al. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug 

delivery. Biomaterials 28, 869-876 (2007). 

 

28. Muller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy 

Rationale for development and what we can expect for the future. Advanced Drug Delivery 

Reviews 47, 3-19 (2001). 

 

29. Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. 

Advanced Drug Delivery Reviews 56, 1649-1659 (2004). 

 

30. Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric 

micelles as nanocarriers for drug and gene delivery. Pharmacology & Therapeutics 112, 630-

648 (2006). 

 

31. Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K. The development of microgels/nanogels for 

drug delivery applications. Progress in Polymer Science 33, 448-477 (2008). 

 

32. K. K. Upadhyay, 2,3, et al. Role of Block Copolymer Nanoconstructs in Cancer Therapy.  (2009). 

 

33. J. Thevenot HO, S. Lecommandoux. Polymersomes for theranostics (2013). 

 

34. Hugo De Oliveira, 2 Julie Thevenot1,2 and S ébastien, Lecommandoux1. Smart polymersomes 
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