
Towards Automatic Initial

Buffer Configuration

by

Fei Yen Ku

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2003

c©Fei Yen Ku 2003

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION

OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of

the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Buffer pools are blocks of memory used in database systems to retain frequently

referenced pages. Configuring the buffer pools is a difficult and manual task that

involves determining the amount of memory to devote to the buffer pools, the num-

ber of buffer pools to use, their sizes, and the database objects assigned to each

buffer pool. A good buffer configuration improves query response times and system

throughput by reducing the number of disk accesses. Determining a good buffer

configuration requires knowledge of the database workload.

Empirical studies have shown that optimizing the initial buffer configuration

(determined at database design time) can improve system throughput. A good ini-

tial configuration can also provide a faster convergence towards a favorable dynamic

buffer allocation. Previous studies have not considered automating the buffer pool

configuration process.

This thesis presents two techniques that facilitate the initial buffer configura-

tion task. First, we develop an analytic model of the GCLOCK buffer replacement

policy that can be used to evaluate the effectiveness of a particular buffer config-

uration for a given workload. Second, to obtain the necessary model parameters,

we propose a workload characterization scheme that extracts workload parameters,

describing the query reference patterns, from the query access plans. In addition,

we extend an existing multifractal model and present a multifractal skew model to

represent query access skew.

Our buffer model has been validated against measurements of the buffer man-

ager of a commercial database system. The model has also been compared to an

alternative GCLOCK buffer model. Our results show that our proposed model

closely predicts the actual physical read rates and recognizes favourable buffer con-

figurations. This work provides a foundation for the development of an automated

buffer configuration tool.

iii

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Professor Kenneth

Salem. His guidance, insight and expressive clarity have served as an inspiration

and have helped me tremendously during these past two years. This thesis would

not be possible without his patience and advice. I would also like to thank my

readers, Professors Tim Brecht and Grant Weddell for taking the time to review

my thesis.

I would like to thank all those at the IBM Toronto Lab for answering my endless

questions, especially Matt Emmerton, Ian Finlay, Sam Lightstone, Keri Romanufa,

and Calisto Zuzarte. Thank you to NSERC and the IBM Centre for Advanced

Studies for their financial support.

A special thank you to my family for their endless love, support and encourage-

ment during my studies away from home. Finally, a heartfelt thank you to Gideon

for his continuous patience, understanding and love over the years.

iv

Trademarks

• DB2, DB2 Universal Database, AIX and IBM are trademarks or registered

trademarks of International Business Machines Corporation in the United

States, other countries, or both.

• Oracle is a registered trademark of Oracle Corporation.

• SQL Server is a registered trademark of Microsoft Corporation.

v

Contents

1 Introduction 1

2 Database Buffer Management 4

2.1 Buffer Pools . 4

2.2 The Buffer Manager . 5

2.2.1 Buffer Search . 6

2.2.2 Buffer Allocation . 7

2.2.3 Buffer Replacement Policies 12

3 Related Work 16

3.1 Access Patterns in Buffer Configuration 16

3.1.1 Buffer Allocation Schemes 17

3.1.2 Access Skew Characterization 21

3.2 Analytic Buffer Modelling . 22

3.3 Multiple Buffer Pool Configuration 25

3.3.1 The Bursty Stream Characterization Method 26

3.3.2 The Clustering Approach . 27

3.3.3 Comparison . 29

3.4 Discussion . 30

4 Initial Buffer Configuration Overview 32

4.1 Workload Input . 32

4.2 Workload Characterization . 34

4.3 The Buffer Model . 38

vi

5 Workload Characterization 40

5.1 Access Pattern Extraction . 40

5.1.1 Query Access Plans . 41

5.1.2 Descriptor Vectors . 45

5.1.3 Methodology . 45

5.1.4 Summary . 51

5.2 Multifractal Skew Model . 51

5.2.1 Details of the Multifractal Skew Model 52

5.3 Page Request Arrival Process . 55

6 The GCLOCK Query-Weight Buffer Model 56

6.1 Buffer Model Overview . 56

6.2 Model Parameters . 58

6.3 Details of the GCLOCK Query-Weight Buffer Model 59

7 Experimental Evaluation 64

7.1 Experimental Environment . 64

7.1.1 TPC-C Workload Overview 64

7.1.2 System Specification . 65

7.2 Methodology . 66

7.3 Experimental Results . 68

7.3.1 Model Validation against System Measurements 68

7.3.2 Comparison between our Query-Weight Model and the Ap-

proximate Markov Model . 82

7.3.3 Validating Predictive Capability 86

7.4 Summary . 90

8 Conclusions 92

A Circular Dependency Problem 95

Bibliography 98

vii

List of Tables

2.1 Results of our TPC-C candidate buffer configurations relative to the

default configuration. 12

3.1 Results of candidate buffer configurations relative to the default con-

figuration. 29

4.1 Workload characterization and buffer model symbols. 36

7.1 Refined skew model parameters . 67

7.2 Measured object buffer occupancy 69

7.3 Measured object physical read rates 71

7.4 Buffer configurations used to test the model’s predictive capability. 87

viii

List of Figures

2.1 A sample buffer assignment . 10

2.2 An LRU stack buffer . 13

2.3 The CLOCK replacement policy . 14

2.4 The GCLOCK replacement policy 15

3.1 The Approximate GCLOCK Markov model 24

4.1 Our initial buffer configuration framework 33

4.2 Workload characterization overview 35

5.1 A sample query access plan . 42

5.2 Distribution of query page references according to pk 54

5.3 The multifractal skew model construction process 54

6.1 Modelling the weight of a class ckj buffer page 59

7.1 Normalized buffer occupancy predictions 69

7.2 Normalized physical read rate predictions 70

7.3 Total physical read rates for varying buffer sizes 72

7.4 Query-Weight object buffer occupancy predictions for the 2 BP con-

figuration . 73

7.5 Predicted object buffer occupancies for the split table/index config-

uration . 74

7.6 Predicted object buffer occupancies for the 3 BP configuration . . . 74

7.7 Total physical read rates for multiple buffer pool configurations . . 75

7.8 Sequentially scanned table buffer occupancy 77

ix

7.9 Sequentially scanned table physical read rate 78

7.10 Total physical read rates for table scan tests 79

7.11 Object physical read rate comparison for History sort 80

7.12 Object physical read rate comparison for Item sort 81

7.13 A comparison of our varied TPC-C sort workloads against the stan-

dard TPC-C workload . 81

7.14 Query-Weight versus Approx-GCLK total physical read rate com-

parison . 83

7.15 Model comparison of object buffer occupancies 84

7.16 Model comparison of object physical read rates 85

7.17 Mean TPC-C throughput . 88

7.18 Measured mean total physical read rates 88

7.19 Model predicted total physical read rates 89

A.1 The circular dependency problem 96

x

Chapter 1

Introduction

Buffer pools are blocks of memory used in database systems to retain frequently

referenced pages. Buffer pools help to reduce query response times and increase

system throughput by exploiting temporal and spatial page locality to reduce the

number of disk accesses. Configuring the buffer pools is a difficult task that involves

determining the amount of memory to devote to the buffer pools, the number of

buffer pools to use, their sizes, and the database objects assigned to each buffer pool.

Determining an effective buffer configuration requires knowledge of the query refer-

ence patterns in the workload. Current buffer configuration methods use database

reference traces, obtained after workload execution, as their source of query refer-

ence pattern information.

The task of configuring the buffer pools at database design time is called the ini-

tial buffer configuration task. The default buffer configuration assigns all database

objects to one buffer pool. With minimal query reference pattern knowledge at

database design time, the initial buffer configuration task typically results in the

default configuration.

Configuring and tuning the buffer pools is a manual process that involves gath-

ering query reference pattern information, analyzing this information to determine

the workload behaviour and re-configuring the buffers according to the new refer-

ence patterns. Users often have neither the time nor the knowledge to search the

large space of possible configurations in order to find the best buffer configuration

for their workload.

1

CHAPTER 1. INTRODUCTION 2

Recent work in self-managing database systems has proposed dynamic buffer

allocation algorithms to help simplify the buffer pool tuning process. Given an

initial buffer configuration, these algorithms dynamically allocate memory among

the buffer pools according to the queries’ current buffer needs and pre-specified

goals. However, these dynamic algorithms do not consider how the initial buffer

configuration is determined, and they do not adjust the number of buffer pools

or the objects’ buffer pool assignments. Dynamic buffer allocation algorithms and

previous buffer configuration methods have not considered how to automate the

buffer configuration process.

In this thesis, we introduce a framework to help automate database buffer config-

uration. We develop an analytic model of the GCLOCK buffer replacement policy

that estimates the expected total physical read rate of a workload running with a

given buffer configuration. We expect that a decrease in the total physical read rate

will result in a system throughput increase. The model can be used to evaluate a

candidate buffer configuration for a given workload by predicting the expected total

physical read rate. The candidate configuration resulting in the minimal predicted

total physical read rate will be the recommended buffer configuration.

Our proposed buffer model requires specific workload input parameters. We

have developed a workload characterization scheme that extracts the necessary

workload parameters from the query access plans. Additional required parameters

describing query access skew and database object statistics are collected from the

database administrator and the catalog tables, respectively. In addition, we extend

an existing multifractal model and present a multifractal skew model to capture the

distribution of query page references. Together, the buffer model and the workload

characterization scheme help automate the initial buffer configuration task.

The main contributions of this thesis are as follows:

• We propose a workload characterization scheme that extracts query reference

patterns from the access plans. We also extend an existing multifractal model

to represent a broad range of access skew using only a few parameters.

• We develop an analytic model of the GCLOCK buffer replacement policy that

CHAPTER 1. INTRODUCTION 3

considers more generalized weight assignments than an alternative GCLOCK

model. Our proposed buffer model is able to closely predict the buffer occu-

pancy and physical read rate of database objects in the workload.

• We present an extensive experimental validation of our buffer model against

system measurements. In addition, we compare our buffer model predictions

to an alternative GCLOCK Markov model. We also evaluate our model’s

predictive capability to distinguish between initial buffer configurations that

improve system throughput and those that result in throughput degradation.

The remainder of this thesis is organized as follows. In Chapter 2, we present

some background information on database buffer management. Specifically, we in-

troduce the database buffer pools and the role of the database buffer manager.

In Chapter 3, we review related work and describe previous buffer configuration

methods and the only existing analytic GCLOCK buffer model, the approximate

GCLOCK Markov model [NDD92]. In Chapter 4, we provide an overview of our

initial buffer configuration automation process. In Chapter 5, we present our work-

load extraction algorithm and the multifractal skew model. We also explain how

query page references are modelled. In Chapter 6, we describe our GCLOCK buffer

model. In Chapter 7, we present the results from our experimental evaluation of

the accuracy and effectiveness of our proposed buffer model. Finally, in Chapter 8,

we summarize the main results of this thesis and make some suggestions for future

work.

Chapter 2

Database Buffer Management

Modern operating systems provide a storage cache to satisfy read and write requests

without having to physically read disk blocks. In this chapter, we present an equiv-

alent concept in database systems known as buffer management, where the goal

is to minimize the number of disk accesses required to satisfy query requests. We

introduce the primary element, the database buffer pools, in Section 2.1. In Section

2.2, we provide an overview of the buffer manager and describe two commonly used

buffer replacement algorithms.

2.1 Buffer Pools

In database systems, the cost of retrieving a page from disk is greater than the cost

of retrieving it from memory. Satisfaction of query requests by pages in memory

saves costly disk accesses. Modern database systems designate a portion of the

memory area to buffer copies of database pages. This memory area is often called

the buffer pool or simply the buffer.

Effective use of the buffer pools exploits temporal and spatial locality to retain

frequently accessed pages. Temporal locality indicates that a currently accessed

page will likely be accessed again in the near future. Spatial locality indicates that

if a page is currently being accessed, then its neighbouring pages will likely be

accessed in the near future. By exploiting temporal and spatial locality, the buffer

manager is better able to predict and service query page requests. As the buffer

4

CHAPTER 2. DATABASE BUFFER MANAGEMENT 5

satisfies an increased number of page requests, this leads to fewer disk accesses and

decreased query response times.

As incoming query requests occur, the buffer is searched first for the desired

page. If the page is found in the buffer, this is known as a buffer hit. Otherwise,

the page must be retrieved from disk and then placed into the buffer. This is known

as a buffer miss. A buffer manager governs which data reside in the buffer pools.

The buffer manager is responsible for (1) searching the buffer pools and determining

if a page request is a buffer hit or a miss, and (2) allocating a limited number of

buffer pages among a large number of competing queries. The role of the buffer

manager is explored further in the next section.

2.2 The Buffer Manager

The buffer manager governs buffer pool usage and is an interface between the buffer

pools and other database components. The buffer manager’s goal is to minimize

the number of physical reads and writes needed to satisfy query requests.

Each query request for a page of data is called a logical reference. A request

that requires reading a page from disk is also called a physical reference. Physical

references are a subset of logical references. The buffer manager handles logical

references as follows.

The buffer manager searches the buffer for some desired page, pi, requested

by a query Qi.
1 If pi is found in the buffer, it is fixed, to prevent replacement

during its use. The address of the buffer frame containing pi is passed to the calling

component that is evaluating Qi. When Qi has completed its work on pi, it calls

the buffer manager to unfix pi, making pi available for replacement.

If the search for pi results in a buffer miss, a buffer replacement algorithm

(implemented by the buffer manager) selects a candidate buffer page to discard to

make room for pi. If the candidate buffer page has been modified, it is considered

dirty, and must first be flushed to disk. After writing the dirty page to disk, the

buffer manager retrieves pi from disk and places it in the buffer. The buffer manager

1All pages in a buffer pool are of equal size.

CHAPTER 2. DATABASE BUFFER MANAGEMENT 6

fixes and unfixes pi to prevent replacement, as it did in the case of a buffer hit.

The amount of data stored and accessed in a database system is typically much

larger than the buffer size. This causes the buffer pool to be a high contention

resource. Since query requests compete for limited buffer space, the buffer manager

must [EH84]:

1. Efficiently search the buffer for requested pages.

2. Effectively allocate buffer pages among its requestors.

3. Minimize the number of physical references for a given workload by imple-

menting an effective buffer replacement policy.

2.2.1 Buffer Search

For every logical reference, the buffer manager searches the buffer for the desired

page. The search process is a vital task that must be efficiently implemented to

avoid excessive query wait times.

A sequential scan of the buffer is the simplest search strategy. With no assump-

tions of page ordering, the buffer manager checks each buffer page header until the

desired page is found. For a buffer of size B, an average of B/2 pages are scanned for

a buffer hit, and a worst case of B pages are scanned for a buffer miss. To avoid the

costly process of scanning the entire buffer for each logical reference, some database

systems implement a partial sequential search. A database administrator (DBA)

specifies a search limit of m pages, indicating the maximum number of buffer pages

to examine. A buffer pointer tracks the currently examined buffer page. The buffer

pointer starts at the first buffer page, and for each unsuccessful page examined, the

pointer is incremented to point to the next buffer page. This process continues until

the desired page is found, or m buffer pages have been examined. If after scanning

m pages, the desired page is not found, the buffer manager returns a buffer miss.

The buffer miss is misleading since the buffer has not been exhaustively searched.

A small value for m can lead to unnecessary physical reads, whereas large values of

m can cause large query response times. A balance between these two cases must

be achieved. At the next logical reference, the buffer manager begins its search

CHAPTER 2. DATABASE BUFFER MANAGEMENT 7

with the buffer pointer pointing to the buffer page immediately following the most

recently examined page.

An alternative class of search strategies applies an indirect approach and uses

accessory tables to improve the buffer search time. A sorted table contains an entry

for each buffer page, sorted by page ID. The buffer manager can apply binary search

techniques to the sorted entries to locate a desired page. For a buffer of size B, an

average of B/2 pages must be examined to determine a buffer hit or miss. Creating

a binary tree index can help reduce the search space to an average of log2B pages.

The sorted table approach suffers from the drawback that table updates are costly

to maintain. An alternative approach is to implement a hash algorithm. A hash

function transforms a page ID into a hash table offset, whose table entry contains

the buffer address of the desired page.

2.2.2 Buffer Allocation

A buffer allocation scheme can be classified as query oriented or object oriented. In

a query oriented allocation scheme, the buffer manager decides how many buffer

pages to allocate to a particular query. In an object oriented scheme, the buffer

manager decides how many buffer pages to allocate to a database object. Our

work concentrates on the object oriented allocation scheme. The buffer manager

provides different buffer configuration options to the user and/or DBA depending

on the allocation scheme. The buffer manager requires that the user/DBA evaluate

these options before it allocates any buffer pages.

Buffer Configuration Options

The buffer manager provides various configuration options to a DBA, depending

on the implemented buffer allocation scheme (indicated in parentheses):

1. Specification of the total buffer size (query, object oriented)

2. Specification of the number of buffer pools to use (object oriented)

3. Specification of the size of each buffer pool (object oriented)

CHAPTER 2. DATABASE BUFFER MANAGEMENT 8

4. Assignment of each database object to a buffer pool (object oriented)

In an object oriented allocation scheme, the DBA must evaluate all four buffer

configuration options to derive a buffer configuration that is used by the buffer man-

ager for page allocation decisions. We first describe a guideline for calculating the

total buffer size, followed by a brief description of the query oriented approach. We

then discuss the object oriented allocation scheme and its associated configuration

requirements.

Calculating the Total Buffer Size

In both allocation schemes, the total buffer size must be given before the buffer

manager allocates any buffer pages to queries or database objects.

Intuition indicates that larger buffer pools lead to higher hit rates, which lead

to improved system performance. The relationship between the buffer size and the

hit rate varies with each workload. However, previous buffer allocation studies have

shown the hit rate versus buffer size curve is generally concave [BCL96, TPK97].

This indicates that for small buffer sizes, increasing the buffer size will lead to

large hit ratio improvements. As the buffer size increases beyond a knee point,

the marginal hit rate benefit decreases. The maximum marginal hit rate occurs at

the knee point. In limited memory situations, a DBA should select a total buffer

size as close as possible to the knee point to capitalize on the large hit ratio gains.

Having a total buffer size greater than the knee point will provide minimal hit

ratio improvements, and the extra memory may be better utilized elsewhere in the

system.

Query Oriented Scheme

Given a total buffer size of B pages, the buffer manager allocates the B pages

among the running queries. The success of this buffer allocation scheme relies on

the buffer manager exploiting the locality present in the queries’ data references.

The number of buffer pages to allocate to a query is based on the query’s working

set, which is the set of pages referenced by a query. The size of the working set

and its reference types are both considered when deciding how many buffer pages

CHAPTER 2. DATABASE BUFFER MANAGEMENT 9

to allocate. For example, a query performing a sequential reference of n pages will

likely receive only a few buffer pages since the reference locality is low. Whereas a

looping reference of s pages will benefit greatly from a buffer allocation of s pages,

since the looping set of s pages is referenced repeatedly. An evaluation of query

oriented buffer allocation strategies is presented in Section 3.1.1.

Object Oriented Scheme

In an object oriented allocation scheme, the buffer manager decides how many buffer

pages to allocate to a database object. Before this allocation can be done, a buffer

configuration must be provided. This involves evaluating the four configuration

options presented earlier. Once the total buffer size has been determined, the DBA

decides how many buffer pools to use and the size of each pool. This is not an

easy task. Usually an initial number of buffer pools is chosen, and this number

can be refined depending if more or less buffer pools are required to help separate

conflicting object reference patterns. Most buffer configurations use between two

and four buffer pools.

In a multiple buffer pools environment, the database system of an object ori-

ented allocation scheme requires that every database object be assigned to exactly

one buffer pool. When the number of database objects is greater than the number

of buffer pools, some objects share buffers. The database administrator performs

the assignment task of mapping database objects to the buffer pools. An exam-

ple is shown in Figure 2.1. When considering if two or more objects should share

a common buffer, the database administrator evaluates each object’s access pat-

terns, from all queries, and determines whether commonalities exist among all the

observed access patterns. If so, objects exhibiting similar reference behaviour are

good candidates to share a buffer. Two common clustering heuristics are used:

(1) group database objects that share similar reference patterns, and (2) cluster

database objects of the same type, for example, assigning all indices to the same

buffer. These heuristics attempt to isolate conflicting reference patterns and page

types to avoid thrashing situations. If two conflicting query references share the

same buffer, an infrequent query (e.g., a query with a large number of random

accesses) may steal all the available buffer pages from a second more active query

CHAPTER 2. DATABASE BUFFER MANAGEMENT 10

I1 I2 I4

BP1

T1 T2 T4

BP2
BP3

T3 T5

Figure 2.1: A sample buffer assignment. All indices are assigned to buffer pool BP1.
Tables T3 and T5 share similar reference behaviour and have their own buffer BP3.
The remaining tables are assigned to BP2.

(e.g., a query with looping references), causing the second query to experience fre-

quent buffer misses.

Given a buffer configuration, the buffer manager can then allocate each buffer

pool’s pages to the objects assigned to that buffer. Consider a buffer assignment,

a set of objects Oi, i = 1..m, each assigned to the buffer pool Bn of size Sn pages.

Depending on the number of pages accessed, and the access patterns of each Oi,

the buffer manager will allocate the Sn pages among the m objects to satisfy query

requests and to exploit reference locality. Usually, buffer space is allocated dynam-

ically to objects through the actions of the buffer manager’s replacement policy.

For example, if Oi is a table that is sequentially scanned, it will likely receive only

a few buffer pages. The buffer manager does this to avoid flooding Bn with Oi’s

pages, since they will not be re-referenced in the near future, and to avoid displacing

frequently accessed pages from other Oj objects, j = 1..m, i �= j.

Experimental Studies

The buffer manager provides four buffer configuration options, which allow a DBA

to customize the buffer pools for a given workload. We conducted a series of

experiments to determine whether these configuration options can be used to reduce

query response times and increase system throughput. The goal of our experiments

was to determine whether initial buffer configuration mattered.

Our system consisted of DB2 v.7, 32-bit on AIX v.5. The machine was equipped

CHAPTER 2. DATABASE BUFFER MANAGEMENT 11

with 4 x 350 MHz processors, 24 x 72 GB external IBM Serial Storage Architecture

(SSA) drives and 1 SSA controller. We ran a series of tests using a simulated TPC-

C workload on an 11 GB database. Further experimental details such as workload

specification and methodology are given in Chapter 7.

We ran several trials of the default, single buffer pool configuration using a

total of 1.1 GB of buffer memory. Each trial was executed with an initial 15 minute

ramp-up period. System throughput (transactions/min) and average transaction

response time (RT) values were collected at the end of a 45 minute test duration

for each trial. These values form the benchmark from which we will evaluate the

performance of candidate multiple buffer configurations.

Our initial experimental results showed that separating objects that are heavily

accessed and re-referenced results in modest performance gains. Results are shown

in Table 2.1.

Table 2.1 shows that although the performance gains are small, each of the three

non-default configurations help to improve the throughput, response time and the

physical read rate. Our results are further supported by other researchers who

have conducted similar experiments and have reported larger performance gains:

(1) Levy, Messinger and Morris reported a 6% increase in throughput and a 29%

decrease in the physical read rate [LMM96], and (2) Xu, Martin and Powley re-

ported a 30% increase in throughput, a 23% reduction in the response time and a

55% reduction in the total physical reads using a TPC-C workload [XMP02]. Fur-

ther details regarding these results are given in Section 3.3. Xu, Martin and Powley

reported significant performance gains. A distinguishing difference between their

experimental setup and ours (and Levy et. al) is the total buffer size used. Xu,

Martin and Powley used a total buffer size of approximately 1% of the database size

whereas we used a total buffer size that was approximately 10% of the database

size. These experiments provide an indication that as the total buffer size de-

creases, buffer configuration leads to larger performance gains, since contention for

the limited buffer memory increases. That is, buffer configuration becomes more

important as the total buffer size decreases.

Given that the TPC-C workload is not one that we would have expected to

benefit from a multiple buffer pool configuration (it has no large scans, no large

CHAPTER 2. DATABASE BUFFER MANAGEMENT 12

Configuration Throughput Mean RT (s) Phys Reads/s

Default: One buffer pool 6124 0.74 2022
BP1: STK Tbl (495 MB)
BP2: All remaining objects (605 MB) 6403 (+4.5%) 0.71 (-4%) 1957 (-3.2%)
BP1: STK and OLINE Tbls (710 MB)
BP2: STK Idx (150 MB)
BP3: All remaining objects (240 MB) 6257 (+2.2%) 0.72 (-2%) 1933 (-4.4%)
BP1: STK Tbl (495 MB)
BP2: OLINE Tbl (182 MB)
BP3: All remaining objects (423 MB) 6242 (+1.9%) 0.727 (-1.8%) 1969 (-2.6%)

Table 2.1: Results of our TPC-C candidate buffer configurations relative to the
default configuration.

sorts, little use of temp space), these results provide an encouraging and positive

indication of the performance gains that can be achieved through (multiple) buffer

pool configuration.

2.2.3 Buffer Replacement Policies

For each logical reference, if the buffer is full and a buffer miss occurs, the buffer

manager calls upon a buffer replacement policy to select the best victim for re-

placement. The replacement policy attempts to select the page with the lowest

probability of a re-reference. Some replacement algorithms exploit temporal local-

ity by using a page’s reference history to predict its future reference behaviour.

Recently and frequently accessed pages are prime candidates to be accessed again

in the near future, and thus, will not be selected for replacement. Buffer pages that

have been inactive for a long period of time are selected as victims. We describe

two commonly used buffer replacement policies: LRU and GCLOCK.

Least Recently Used

The Least Recently Used (LRU) replacement policy exploits temporal locality by

victimizing the least recently used buffer page, under the assumption that it will

not be accessed in the near future. An LRU buffer can be implemented as a stack.

CHAPTER 2. DATABASE BUFFER MANAGEMENT 13

G

B

M

Y

F

C

G

B

M

Y

(a)

G

B

M

Y

F

M

G

B

Y

F

 (b)

Figure 2.2: An LRU stack buffer. In (a), page C is not found in the buffer, it is
fetched from disk and placed at the top of the stack. The least recently used page,
F, is removed. In (b), requested page M is a buffer hit. Page M is placed at the
top of the stack. Pages G and B each shift down one position.

If a newly requested page is not found in the buffer, it is fetched from disk, and

placed at the top of the stack, pushing all other buffer pages down one position. The

least recently used page, located at the bottom of the stack, is removed from the

buffer. If a requested page is found in the buffer, it is removed from its current stack

position j, and placed at the top of the stack. Existing buffer pages in positions 1

to j−1 each move down one position, all other buffer pages remain unaffected. An

example LRU stack is shown in Figure 2.2.

Generalized CLOCK

The Generalized CLOCK (GCLOCK) replacement algorithm simulates LRU be-

haviour, but has a simpler implementation. We first describe the CLOCK algo-

rithm, from which the GCLOCK algorithm is based.

In the CLOCK algorithm, buffer pages can be thought of as being arranged in

a circular manner, with a pointer advancing among them, as shown in Figure 2.3.

The algorithm associates a reference bit with each buffer page, indicating whether

the page has been referenced during the last revolution of the clock pointer. On a

buffer miss, the clock pointer circulates through the buffer pages, examining each

page’s reference bit. If a page with a reference bit equal to one is encountered, the

clock sets it to zero, and advances to the next page. The first buffer page with a

CHAPTER 2. DATABASE BUFFER MANAGEMENT 14

F 0

1Y

0M 1 G

1B

0K

Figure 2.3: The CLOCK replacement policy. The clock pointer will reset page B
and page G’s weights to zero. Page F will be selected for replacement.

reference bit equal to zero is selected for replacement.

In the GCLOCK algorithm, the reference bit is replaced by a counter known

as a weight. The initial weight is set when a page is first brought into the buffer.

Re-references to buffer pages set the weight to a new value. Different weights can

be assigned to different types of pages or to distinguish different reference patterns.

For example, index pages may be assigned a higher weight than table pages.

On a buffer miss, the clock pointer cycles among the buffer pages, decrementing

the weight of each page it examines, until a zero weight page is found. This zero

weight page is selected for replacement. If the selected page is dirty, it is first

written to disk. The requested page is brought into the buffer, with its weight set

to some initial value. On the next buffer miss, the clock pointer begins its search

from the page immediately following the page that caused the previous miss. A

GCLOCK buffer page replacement example is shown in Figure 2.4. On a buffer hit,

there is no advancement of the clock pointer.

Prefetching

We briefly mention the concept of prefetching due to its widespread implementation

in modern database systems and its relationship to buffer replacement policies. A

CHAPTER 2. DATABASE BUFFER MANAGEMENT 15

K 2

B 1

G 0

F 2

M 0

 Y 3

K 1

B

C 3

F 2

M 0

Y 2

 (a) (b)

3

Figure 2.4: The GCLOCK replacement policy. In (a), the clock pointer will examine
pages Y, K, and B, and decrement each of their weights by one. Page G will be
selected for replacement. Page C is fetched into the buffer replacing page G. If page
B is re-referenced before the clock pointer visits it again, the resulting buffer state
is shown in (b) (page B is given a new weight equal to 3).

prefetching algorithm exploits spatial locality by not only fetching the requested

page into the buffer, but also fetching its neighbouring pages. This is done to

minimize data access latency. The number of physical reads is also reduced if a

group of pages can be read in one prefetch versus a single page read during demand

fetching.

Prefetching is most effective for sequential reads. Many modern database sys-

tems can detect that a query is sequentially accessing an object, and will auto-

matically activate prefetching. The prefetch algorithm relies on the buffer manager

and the replacement policy to provide the requested number of buffer pages. The

number of pages to prefetch depends on the algorithm, but is usually no more than

a few page blocks. An aggressive prefetching algorithm, which prefetches far in

advance and reads a large number of pages, can increase query response times by

replacing buffer pages that might have been re-referenced. Furthermore, a pre-

sumptuous algorithm may prefetch pages that are completely unused. Fortunately,

most prefetch algorithms provide tunable parameters to limit how far in advance,

and how many pages to prefetch. This helps to correct and avoid the undesirable

situations described above.

Chapter 3

Related Work

In a database management system, the buffer manager is responsible for searching

for available buffers, allocation of buffer pages to requestors, and the implementa-

tion of a page replacement policy. Early work in buffer management focused on

improving the runtime buffer page allocation strategy by leveraging access pattern

and skew information. Analytic models also captured access patterns and access

skew to help predict buffer hit rates. More recent work has been directed towards

automatic database tuning issues and has explored the multiple buffer pool con-

figuration problem. There has been little work on modelling buffer replacement

policies.

In this chapter, we present some of the previous work in these areas. In Section

3.1, we present a survey of buffer allocation strategies and introduce an access skew

characterization method. In Section 3.2, we describe an existing analytic GCLOCK

buffer model. Proposed solutions to the multiple buffer pool configuration problem

are explored in Section 3.3.

3.1 Access Patterns in Buffer Configuration

Different types of workloads access database pages in different ways. For exam-

ple, online transaction processing (OLTP) workloads consist of many simple trans-

actions which read and update a few pages at a time. Online analytic process-

ing (OLAP) workloads apply more complex queries to voluminous data, typically

16

CHAPTER 3. RELATED WORK 17

performing large scans. The combination of possible query references against a

database constitute the database access patterns.

The characterization of database access patterns is useful in the following set-

tings:

1. In buffer allocation schemes, to effectively allocate buffer pages to queries in

multi-query environments [SS82, CD85, NFS91, CY89, CR93].

2. To help predict buffer hit rates [DYC95, BCL96, XMP01].

3. In multiple buffer pool configuration, to help decide which database objects

are best suited to share a common buffer pool [LMM96, XMP02].

Access patterns are usually obtained from reference traces [SS82, CD85, NFS91,

CR93, DYC95, LMM96, XMP01, XMP02]. Although access plans also contain ac-

cess pattern information, they are rarely used to extract this information. Analytic

buffer models use access patterns to predict buffer hit ratios [DT90, NDD92]. These

models help evaluate what-if scenarios by predicting hit ratios of candidate buffer

configurations, without having to physically run the configuration itself.

In Section 3.1.1, we present a survey of buffer allocation schemes that exploit

access patterns to help allocate buffer pages among competing queries. Section

3.1.2 discusses the importance of access skew in buffer configuration.

3.1.1 Buffer Allocation Schemes

As mentioned in Section 2.2.2, the buffer manager determines the number of buffer

pages to allocate to each query or database object. Original buffer allocation

strategies applied operating system memory management principles to database

systems. They considered only buffer availability at runtime in their allocation

decision. Later methods exploited database access patterns to selectively allocate

buffer pages to queries and define query admission criteria [SS82, CD85, NFS91,

CY89, CR93]. We present a survey of query oriented buffer allocation schemes in

this section. We will use the notation adopted in [CR93] and let [lmin, lmax] repre-

sent the minimum and maximum buffer allocations for a given query based on the

observed reference pattern.

CHAPTER 3. RELATED WORK 18

A primary allocation strategy is to assign enough buffer pages to a query to

hold its hot set [SS82]. A hot set is a set of pages that have exhibited looping

behaviour in the database reference trace. In order for a query to run efficiently, it

must be allocated sufficient buffers to hold its hot set. If the number of available

buffers is not sufficient to hold a query’s hot set, then the query is not admitted for

execution. Shortcomings of this approach include infinite waits and long running

queries blocking short queries.

Chou and Dewitt improve upon the work of the hot set model by classifying

the observed reference patterns into distinct categories [CD85]. Page references

are classified as sequential, looping or random. The DBMIN algorithm allocates

buffers based on these observed classifications. Each pattern is associated with a

fixed number of pages called a locality set. The locality set is the estimated number

of pages that a query needs to minimize page faults. DBMIN uses the following

allocations:

• Sequential references: [lmin, lmax] = [1, 1].

• Looping references [lmin, lmax] = [s, s], where s = (number of distinct looping

pages). If s is greater than the buffer pool size, a most recently used (MRU)

page replacement policy should be used to manage the buffer pool.

• Random references [lmin, lmax] = [1, 1].

Experimental evaluation showed that DBMIN resulted in 7-13% better through-

put than the hot set model. The major shortcomings of DBMIN are a lack of

flexibility in its buffer allocation policy, and inefficient use of available buffers. For

example, if (s − 1) buffer pages are available, DBMIN will not admit a looping

reference query for execution until s buffer pages become available.

The marginal gain algorithm, MG-x-y, was developed to overcome the draw-

backs of DBMIN [NFS91]. MG-x-y, where x and y are user parameters, is a flexible

buffer allocation strategy based on marginal gains and buffer availability at run-

time. MG-x-y is similar to DBMIN except that it allows more flexible allocations,

as follows:

CHAPTER 3. RELATED WORK 19

• sequential reference: [lmin, lmax] = [1, 1]

• looping reference: [lmin, lmax] = [x% ∗ s, s]

• random reference: [lmin, lmax] = [1, y]

If the number of available buffer pages is less than a query’s locality set size

(s), but greater than x% ∗ s, the query is admitted for execution and allocated a

set of buffer pages within [x% ∗ s, s]. In the looping and random cases, buffers are

allocated up to s and y, respectively, as long as the expected marginal gain (the

expected number of page faults reduced per extra buffer allocated) is still positive,

and buffer pages are still available. Contention for buffer pool resources between

queries is resolved by allocating pages to queries on a first-come, first-served basis.

MG-x-y has been shown to provide greater throughput, higher buffer utiliza-

tion, and lower query wait times than DBMIN due to its flexible allocation strategy

[NFS91]. The success of the algorithm relies on selecting optimal values for x and

y. The parameters x, y are static for all queries, which is not a realistic assumption

since different queries, although they may have the same reference pattern, can

exhibit different fault behaviour. The necessity of selecting suitable parameters x,

y is a drawback of this method.

Chen and Roussopoulos proposed a Faulting Characteristic Model (FCM) which

collects page access patterns for sequential, looping and random references during

query execution [CR93]. The page references are translated to reference strings.

The FCM quantifies page fault characteristics for each reference string. Buffer

allocation for each reference string is based on its page fault characteristics and

current buffer availability. Using query feedback, the model updates the reference

strings if changes in the access patterns are detected, and the corresponding buffer

allocations are updated. The allocation algorithm (MGR) is based on FCM. Given

n concurrent reference strings, MGR allocates buffers in proportion to their average

marginal gain ratios.

Simulation results showed MGR provided an average 15-30% throughput im-

provement over MG-x-y. The advantage of this method is the incorporation of

query feedback into the buffer allocation scheme, which provides more accurate

CHAPTER 3. RELATED WORK 20

predictions than probabilistic methods and uniformity assumptions.

Chung and Yu proposed a global optimization technique that integrates buffer

management and query optimization. The technique exploits access plans to con-

sider the effect of buffers in the query optimization cost function [CY89]. An inte-

ger programming approach is used to select the best access plan and its associated

buffer allocation. The objective function is determined as follows:

Let

Qi, i = 1..NQ be a set of queries

QSij, j = 1..ni, be the set of possible access plans for Qi

Xij = 1, if plan QSij is used, and 0 otherwise

Dij be the number of disk pages read, if plan QSij is used

λi be the arrival rate for Qi

Let the objective function f =
∑

i

∑
j DijXijλi.

The following constraints are enforced:

1.
∑

j Xij = 1, j = 1..ni. This states that exactly one plan is used for each

query.

2.
∑

j XijFij ≤ B, where Fij is the buffer allocation to Qi under plan QSij. This

states that the total buffer allocation must be no greater than the total buffer

size B.

3.
∑

i λi

∑
j XijFijRTij ≤ αB, where RTij is the average response time of query

Qi under plan QSij. This states that the average buffer usage for each query

must be no greater than some fraction, α, of the buffer size. The parameter

α is experimentally determined.

RTij must initially be estimated for each Qi, i = 1..NQ, j = 1..ni. The opti-

mization problem is solved iteratively using the initial RTij estimates. A queuing

CHAPTER 3. RELATED WORK 21

model uses the solution set of query plans and associated buffer allocations to es-

timate a new set of response times. The integer programming model takes these

new response times and uses them to iteratively solve for a new set of query plans

and buffer allocations. This process repeats until no changes are observed in either

the query plans or in the response times.

3.1.2 Access Skew Characterization

Database access patterns are generally skewed (non-uniform), meaning that some

pages are accessed more frequently than others [LD93, DYC95]. Skewed access is

an important consideration for buffer resource planning. First, skewed data access

increases data contention for frequently accessed pages, also known as hot sets.

The buffer manager fixes (i.e., locks) these hot pages during their use, making

them unavailable to other requestors. This leads to increased response times due to

longer wait periods. Second, skewed access increases the buffer hit ratio, since hot

pages reside in the buffer longer, and repeated accesses to hot pages are satisfied by

the buffer [DDY94]. Any buffer configuration methodology must carefully consider

these two consequences of access skew and ensure that buffer resources are used

effectively and that skew is modelled correctly.

It is common practice to model access skew by partitioning the database into

hot and cold regions, such that the access probabilities of all pages within a par-

tition are the same [DT90, NDD92, DDY94, DYC95, FMS96, WMCPF02]. The

most widely used partition model is the 80-20 model, where 80% of the accesses

reference 20% of the data, and the remaining 20% of the accesses reference 80%

of the data. Faloutsos, Matias, and Silberschatz proposed a multifractal model to

model skewed distributions [FMS96]. The multifractal model recursively divides

a unit interval for k levels, where each division bisects the interval, resulting in

2k total sub-intervals. Hot and cold regions are created by associating an access

probability p to the hot region and an access probability (1− p) to the cold region.

This process continues recursively for each cold and hot region. Our access skew

model, which is described in Section 5.2, is based on this multifractal approach.

Dan, Yu and Chung propose a binary partitioning algorithm, which character-

CHAPTER 3. RELATED WORK 22

izes the access skew for randomly accessed pages given a reference trace [DYC95].

Assume the database needs to be divided into K partitions to achieve a desired level

of buffer hit rate accuracy. The probability of accessing a page within a partition

is uniform. A buffer hit rate versus buffer size curve is first derived from a trace

driven simulation based on the LRU policy.

The binary partitioning algorithm begins with two partitions, a hot and cold

partition, and their corresponding access frequencies and sizes. The hot partition

is divided again into a hot and cold partition, and the new sub-partition access

frequencies and sizes are re-computed, representing the new access skew. This

process continues recursively for each newly created hot partition. The predicted

model hit rates [DT90] are successively refined against the simulated hit rates by

increasing the number of partitions in the database to K or until a desired level of

hit rate accuracy is achieved.

3.2 Analytic Buffer Modelling

Analytic buffer models are used to predict some system performance measurement,

e.g., buffer hit rate, system throughput. An accurate model helps to avoid costly

and time consuming simulation tests. In this section, we describe the best known,

and only, analytic model of the GCLOCK buffer replacement algorithm.

Nicola, Dan, and Dias propose an analytic model of the GCLOCK buffer re-

placement algorithm [NDD92]. The model assumes the Independent Reference

Model (IRM) for page accesses. The objective of the model is to compute the

hit probability of each partition, and then the overall buffer hit probability. The

model input parameters are: the number of partitions P , the size of each partition

sp, the probability of accessing a partition p page, rp, the total buffer size B, and

the GCLOCK weight Lp for partition p. A brief overview of the model follows.

Consider a database with P partitions, where access to pages within a partition

is uniform. When a page miss occurs, a victim page from the buffer is selected

(weight=0) and the page causing the miss is fetched into the buffer. An initial

weight, Lp, is given to the new page. If a request is fulfilled by an existing buffer

page, then the weight for the page is reset to Lp.

CHAPTER 3. RELATED WORK 23

Let np be the steady-state number of partition p pages in the buffer. The hit

rate, hp, and miss rate, mp, for each partition can then be computed:

hp =
np

sp

(3.1)

mp = 1− hp (3.2)

Then h =
∑P

p=1 hprp is the overall hit rate, and the overall miss rate m = 1−h.

To compute h, np must first be determined. A simple approximate Markov

model (Approx-GCLK) is developed to estimate np, for each p. The Markov chain

represents the state of an arbitrary buffer frame at the instant of a random page

request. A portion of the Markov chain is shown in Figure 3.1. The model describes

the effect of the GCLOCK algorithm on a single buffer frame. State (p, i) indicates

that a buffer frame contains a page from partition p with weight i, 1 ≤ i ≤ Lp. The

Approx-GCLK model has a total of
∑P

p=1(Lp + 1) states.

Let np,i be the steady-state average number of buffer pages from partition p

having weight i. We then have,

np =

Lp∑
i=0

np,i (3.3)

Since all the buffer pages must sum to the buffer size B,
∑P

p=1 np = B. Let

n0 =
∑P

p=1 np,0 be the number of buffer pages with zero weight.

The Approx-GCLK model assumes the number of misses experienced during a

complete cycle of the clock pointer is n0. Suppose these n0 pages are randomly

distributed in the buffer. On a buffer miss, the clock pointer must decrement the

weight of each page located between two zero weight buffer pages (the clock pointer

stops when a zero weight buffer page is found for replacement). Thus, the probabil-

ity of decreasing the weight of a random page is 1/n0. In Figure 3.1, the probability

of transition from state (p, i) to state (p, i−1) is m/n0. The probability of replacing

a page with weight zero is (rpmp)/n0; which is the probability of bringing a new

partition p page into the buffer (rpmp) multiplied by the probability of selecting

a random zero weight buffer page for replacement (1/n0). A similar explanation

CHAPTER 3. RELATED WORK 24

.

.

.

.

.

.

rp/sp

m/n0

m/n0

m/n0

p, Lp−1

p, 1

p, 0(rp ∗mp)/n0

(r1 ∗m1)/n0

P,Lp

1, L1

P, 0

1, 0

(rp ∗mp)/n0

(rp ∗mp)/n0

p, Lp

Figure 3.1: The Approximate GCLOCK Markov Model [NDD92].

applies to transitions from some state (k, 0), 1 ≤ k ≤ P , to a state (p, Lp), k �= p,

after a request has fetched a new page into the buffer, replacing an old zero weight

buffer page. A random partition p page is accessed with probability rp/sp. Thus, if

a requested page is already in the buffer, its weight is reset to Lp, and the transition

probability from state (p, i), 1 ≤ i ≤ Lp − 1 to state (p, Lp) is rp/sp.

After deriving and solving the balance equations, a closed form equation for np

is obtained:

np = sp(1− 1

(1 + n0

m

rp

sp
)Lp + 1

), 1 ≤ p ≤ P (3.4)

Equation 3.4 can be solved iteratively to compute np for each partition, and

consequently hp.

A drawback of the simplified, Approx-GCLK model is it does not consider the

distance of a buffer page from the clock pointer. It also assumes the average number

of misses in a clock cycle is equal to the number of buffer pages with zero weight,

CHAPTER 3. RELATED WORK 25

n0. This leads to under estimates of buffer hit rate, especially in hot partitions,

since pages with a zero weight may have been hit and upgraded to pages with a

non-zero weight as the clock pointer traverses through the buffer. This causes over

estimates of the number of buffer misses.

Nicola, Dan and Dias refine the Approx-GCLK Markov model by considering

the distance between a buffer page and the clock pointer [NDD92]. The refined

model corrects the inaccurate buffer miss count assumption by adding a new state

variable j, to each state (p, i, j), to represent the distance between the page and

the clock pointer. The solution to the simplified model is used as a starting point

to iteratively solve the refined model for np.

Nicola, Dan and Dias’ validation of the refined model showed good results

against simulation tests. They further validated the model by comparing its hit

rate predictions to hit rates from an optimal static buffer allocation. Initial results

showed the model predictions were pessimistic compared to the static allocation’s

hit rates.

Drawbacks

The Approx-GCLK model considers weights to be assigned on a partition basis,

i.e., each page in a partition p is initialized and reset to the same weight Lp. How-

ever, in practice, different queries can reference pages in the same partition in very

different ways. One query may sequentially scan a set of partition p pages, while

another query randomly reads another set of pages. These distinctions in query

page reference behaviour dictate different buffer needs. To help exploit temporal

locality, repeatedly referenced partition p pages can be tagged by the buffer man-

ager with a high re-reference weight, whereas sequentially read pages can be tagged

with a low re-reference weight. The Approx-GCLK model is unable to capture this

specific query page reference behaviour and individual page weight assignment.

3.3 Multiple Buffer Pool Configuration

In this section, we discuss two previous solutions to the multiple buffer pool config-

uration problem; the bursty stream method [LMM96], and the clustering approach

CHAPTER 3. RELATED WORK 26

[XMP02]. This problem consists of three sub-problems:

Given Oi database objects, i = 1 . . . No and K total buffer pages.

1. How many separate buffer pools, L, should be configured?

2. How do we allocate the K buffer pages among the L buffer pools?

3. How do we assign each of the Oi objects to the L buffer pools such that system

performance is optimized?

In the following subsections, we discuss each of the proposed methodologies.

3.3.1 The Bursty Stream Characterization Method

The bursty stream characterization method models the requests for a given database

object as a request stream [LMM96]. Given two objects, the interaction of their

request streams is analyzed to determine its burst characteristics - does one stream

have more bursts of consecutive page requests that dominate over the other stream

at any particular time? Or does mixing two streams result in a fairly interleaved

request pattern? Using this stream characterization, the method decides whether

it is appropriate for two objects to share a buffer pool. The buffer assignment

algorithm assigns objects to buffer pools and allocates buffer pages to the buffer

pools. A brief description of the algorithm follows.

The input to the algorithm is the number of buffer pools, L, and a trace of the

page requests for each object. The algorithm begins by computing the cumulative

depth distribution for each object’s request stream. The depth distribution repre-

sents the location statistics that describe where each request page is found in the

buffer pool. In the second phase of the algorithm, given a page reference stream,

P , for all objects, the mean burst lengths for every pair of objects, t1, t2, must be

computed. The next step is to fully split the buffer such that each object is as-

signed its own buffer pool. The size of each buffer pool is calculated using dynamic

programming. The optimal buffer pool sizes are those that maximize overall hit

rate.

From this initial fully split state, the algorithm repeatedly selects two streams

to superimpose. If the superposition of the two streams is deemed beneficial, their

CHAPTER 3. RELATED WORK 27

associated buffer pools are merged into a single larger buffer pool. The number of

streams is decremented, and the number of current buffer pools is decremented until

it reaches L, at which point the algorithm terminates. The superposition criteria

is based on a greedy approach which merges the pair of buffers that results in the

lowest miss rate.

Experimental Evaluation

Levy, Messinger and Morris experimentally evaluated the quality of the algorithm’s

buffer assignments and allocations. The experimental workload consisted of six up-

date transactions and one complex read-only query accessing a total of 26 database

objects on a DB2 database system. The number of non-compulsory misses (avoid-

able physical reads) and transaction I/Os, and the overall transaction throughput

were the performance metrics used to compare the single buffer pool configuration

and the configuration recommended by the algorithm. Experimental observations

indicated that using greater than three buffer pools provided only marginal gains.

Results from running the recommended three buffer configuration over the single

default buffer configuration showed:

• 11.4% decrease in non-compulsory misses

• 29% decrease in the average number of physical I/Os per transaction

• 6% increase in overall transaction throughput

3.3.2 The Clustering Approach

Xu, Martin and Powley propose a clustering approach to solve the problem of

assigning database objects to the buffer pools [XMP02]. They present a list of

buffer partitioning heuristics:

• Separate data and indices into their own buffer pools

• Separate large tables used in sequential scans

• Separate frequently used small tables into their own buffer

CHAPTER 3. RELATED WORK 28

• Separate temp tables

• Separate tables that must be accessed quickly and repeatedly

The clustering algorithm defines a feature vector for each database object. An

object’s feature vector quantifies that object’s access pattern. Features include:

relative size, relative access rate, read/write mix, sequential, re-reference and ran-

dom read rates. The idea is to group objects with similar access patterns into one

cluster and assign the cluster to a buffer pool. Similarity is based on an object’s

access pattern features.

The features allow for a similarity measure to be defined by giving different

weights to different features and clustering based on these weights. Three clus-

tering algorithms were evaluated: K-Means, Partitioning Around Medoids, and

Divisive Hierarchical, with K-Means proving to be superior. The number of buffer

pools, L, is pre-specified. Once the objects are clustered into L groups, and each

group is mapped into its own buffer pool, the Dynamic Reconfiguration algorithm

[MLZRP00] is used to size each buffer pool.

Experimental Evaluation

Xu, Martin and Powley tested the clustering algorithm’s proposed configurations

against a random configuration (randomly assign objects to buffer pools), an ex-

pert configuration, and the default single buffer pool configuration using a TPC-C

workload. The experiments used database traces to obtain the feature vectors and

a total of three buffer pools were used. The evaluation measurements were the

system throughput, the percentage of physical reads, and the overall weighted re-

sponse time (WRT), which was determined by weighing the transaction response

times by the respective transaction frequencies. The K-Means clustering algorithm

was used in the experiments. Three candidate buffer configurations were evaluated:

• Equal Weight Scheme: Read/write, sequential, re-reference and random

features are weighted equally.

• Heavy Read/Write Scheme: Read/write patterns are favoured over se-

quential, re-reference and random access patterns.

CHAPTER 3. RELATED WORK 29

Configuration WRT Throughput Gain % Physical Reads

Equal Weight -20.9% 27.6% -46.1%
Heavy Read/Write -20.3% 26.3% -54.8%

Access Pattern -22.7% 30.7% -55.7%

Table 3.1: Results of candidate buffer configurations relative to the default config-
uration.

• Access Pattern Scheme: Sequential, re-reference and random accesses are

favoured over read/write accesses.

The experimental results showed that all three configurations out performed the

default buffer configuration; details are listed in Table 3.1. The Equal Weight and

Access Pattern Schemes resulted in higher throughput and lower overall response

times than the random configuration. The Access Pattern Scheme was superior over

the other two schemes, and matched the performance of the expert configuration.

3.3.3 Comparison

The bursty stream method and the clustering method apply distinct approaches to

solving the multiple buffer pool configuration problem. The bursty stream model

applies a bottom-up approach in which buffers are merged pair-wise until the de-

sired number of buffer pools is reached. The clustering approach applies a top-down

method where objects are logically associated with a single buffer pool and the algo-

rithm selectively partitions the buffer according to the object clusters. The bursty

stream method suffers from the drawback that if there are many database objects,

it is a very time consuming process to merge from the initial fully split state to a

few buffer pools.

In both algorithms, the target number of buffer pools must be pre-specified.

This number is used to provide an algorithm termination condition. The fact that

neither algorithm automatically determines the number of buffer pools also hints

at the difficulty of selecting this number. Buffer pool sizes are computed using

CHAPTER 3. RELATED WORK 30

external methods based on maximization of buffer hit rates.

3.4 Discussion

Multiple buffer pools have the potential to provide system performance improve-

ments when they are tuned correctly. Having an effective initial buffer configuration

provides users with other buffer startup options instead of relying on the default

single buffer pool. A workload running with an effective initial multiple buffer pool

configuration can outperform a single buffer configuration, as we have seen with

previous experimental results. In goal-oriented algorithms [BCL93, MLZRP00], a

good initial allocation can provide faster convergence towards a favourable dynamic

buffer allocation.

Section 3.1 provided a summary of how access patterns and access skew are

used in buffer configuration. To achieve effective buffer allocations and accurate

buffer hit rate predictions, access patterns and skew must be considered. In most

of the methods we have presented, access patterns and access skew are extracted

from database reference traces. In addition, the bursty stream and clustering algo-

rithms described in Section 3.3 provided buffer assignments and allocations based

on reference traces. At database design time, when trace data is not yet available,

an alternative source of access pattern input is required to determine a good initial

buffer configuration. Access plans from the query optimizer can be exploited to

provide this access pattern information.

We propose a novel workload characterization scheme that extracts access pat-

tern information from the access plans. In addition, we apply and extend the

multifractal model to model query access skew. The model allows specification

of access skew for particular database objects, if this information is known, and

assumes a default skew otherwise.

Previous configuration methods have proposed heuristics and algorithms to ad-

dress a few of the buffer configuration options. However, tuning and re-configuring

the buffers still remains a manual and difficult process. Previous buffer configura-

tion methods have not considered automating the buffer configuration task.

CHAPTER 3. RELATED WORK 31

The GCLOCK buffer replacement policy has been known to effectively simu-

late LRU behaviour. It is simpler to implement than LRU and it exists in many

commercial database systems. We propose an analytic model of the GCLOCK

buffer replacement policy to help automate the buffer configuration process and

to address the drawbacks of the Approx-GCLK Markov model. Our buffer model

assumes pages are referenced independently by queries. Our model’s objective is

to compute the total physical read rate, given a buffer configuration, query arrival

rates, and query access patterns.

To address the per partition weight assignment limitation of the Approx-GCLK

model, our proposed GCLOCK model adopts a more generalized approach where

weights are assigned to individual pages based on the page type and the query type.

This approach provides two benefits:

1. It provides greater flexibility to distinguish among individual page references

and exploit temporal page locality, while still providing the option of a par-

tition based weight assignment, if required.

2. It is more realistic - not all pages in a partition are referenced in the same

manner by different queries. Thus, the pages in a partition should not all be

reset to the same weight.

Together, the proposed workload characterization scheme and analytic buffer

model help to automate the initial buffer configuration task. Our proposed tech-

niques are introduced next.

Chapter 4

Initial Buffer Configuration

Overview

In this chapter, we introduce the main components of our initial buffer configu-

ration methodology. We propose two novel techniques that facilitate initial buffer

configuration; a workload characterization scheme and an analytic GCLOCK buffer

model. We begin by discussing the various workload inputs needed to generate a

suitable workload characterization. In Section 4.2, we present an overview of our

workload characterization scheme, which extracts object access patterns from the

query access plans. Our proposed buffer model, described in Section 4.3, uses the

workload characterization to evaluate the quality of a given buffer configuration.

4.1 Workload Input

Figure 4.1 shows an overview of our framework. The workload query declaration

input consists of static SQL query statements. These statements may be derived

from a DBA, users or application programs. At the time of initial buffer configu-

ration, dynamic query statements are not available, so we rely on static queries to

obtain reference pattern information. These static query statements are passed to

the query optimizer.

The query optimizer parses the queries for semantic correctness and may re-write

32

CHAPTER 4. INITIAL BUFFER CONFIGURATION OVERVIEW 33

 Query

Access Plans

 Query
 Optimizer

 Query

Catalog Info
& Workload

 Parameters

Buffer Configuration

Recommended

Characterization
 Workload

 Configuration
 Optimizer

 Buffer Model

sizes, weights
/query, /class, class

Access rates

Declarations

 Workload

Figure 4.1: Our initial buffer configuration framework. The notation /x, /y, indi-
cates a quantity is calculated per x, per y. For example, access rates are calculated
per query, per class.

CHAPTER 4. INITIAL BUFFER CONFIGURATION OVERVIEW 34

the query in an equivalent form that facilitates cost based optimization. A query

may be executed in many ways and still generate the same result, but the expended

resources can vary greatly. A cost-based optimizer generates a collection of possible

query execution plans called access plans, and associates an estimated cost with each

plan. The estimated cost considers factors such as the physical database design,

access methods, object access statistics, caching, and CPU resources. The optimizer

will select the access plan with the lowest cost.

A workload is represented by a set of queries. The chosen access plans contain

useful information indicating how the queries will be executed. Specifically, they

indicate which objects will be accessed, the estimated number of pages accessed per

object, and the anticipated access methods, e.g., sequential scans or random refer-

ences. The information in the chosen set of access plans provides an indication of

the workload behaviour. Our workload characterization scheme capitalizes on this

information and defines it in a manner that is useful for initial buffer configuration.

In addition to the query access plans, workload parameter information and the

system catalogs are required inputs to the workload characterization scheme. The

system catalogs provide information on database object sizes and types. Query

arrival rates and access skew information are the additional workload parameters

(provided by a DBA) that are needed to derive an accurate characterization of the

given workload.

4.2 Workload Characterization

Given the query access plans, query arrival rates, object attributes, and access

skew inputs, the characterization scheme generates values for the input parameters

of the buffer model. Figure 4.2 shows an overview of the workload characterization

process. Our characterization scheme consists of four tasks:

1. Given the query reference types and object types, determine a GCLOCK

weight assignment scheme for each combination of a workload query and a

database object.

2. Given the query access plans, extract the object access patterns from the

CHAPTER 4. INITIAL BUFFER CONFIGURATION OVERVIEW 35

Query arrival

Mean access

 Model

Access Plans
Query

/query, /object
Vectors

Page Request

query pg ref.
Weights per

/class, /query
 % of ref. pgs

Descriptor

 rate

 tables)
(from catalog

 Object size
(from DBA)

(from DBA)

Skew parms

(from catalog
tables)

Object Types

class size
 rates

Assignment
Weight

Skew Model
Multifractal

 Algorithm
 EXTRACT

(λkij)
nkj, wki

(wki)

(nk)

(bk, pk, order),

(µkij)
(nkj)

(λi)

Figure 4.2: Overview of our workload characterization process.

CHAPTER 4. INITIAL BUFFER CONFIGURATION OVERVIEW 36

Symbol Description

wki The GCLOCK weight to an object k page from a query i reference.
pk Access probability to an obj. k hot class page; range [0.5,1); default = 0.8.
bk Fraction of obj. k’s pages to allocate to a hot class; range (0,0.5]; default = 0.2.

order The number of class division iterations; order ≥ 0; default = 2.
nk The number of pages in object k.
µkij The utilization factor, the proportion of pages in class kj referenced by query i.
nkj The number of pages in class kj.
λi The arrival rate of query i.

λkij The reference rate to a class kj page by query i.
λkj The reference rate to a class kj page from all queries.

Table 4.1: Workload characterization and buffer model symbols.

plans to produce a descriptor vector per query, per object.

3. Given the skew parameters, object sizes and the per query descriptor vectors

for each object, develop a skew model to capture the access skew in query ref-

erences. The skew model divides each object into classes, with uniform access

probability within each class. The skew model determines the proportion of

pages referenced per class, per query, and the size of each class.

4. Given the proportion of referenced pages per class, per query, and the query

arrival rates, model the page request arrival process, and determine the mean

access rate per class from each query.

Table 4.1 shows a list of of symbols that we use in our workload characterization

scheme and buffer model.

GCLOCK Weight Assignment

Weight assignments are database system specific. The underlying database system

implements a weight assignment policy that is used in the GCLOCK replacement al-

gorithm. The weight assignment module shown in Figure 4.2 should assign weights

to query/object combinations that correspond to those used by the database sys-

tem whose buffer manager is being modelled. Since our GCLOCK model is very

CHAPTER 4. INITIAL BUFFER CONFIGURATION OVERVIEW 37

general, the weight assignment model has the flexibility to assign weights based on

the type of object being referenced or on the type of access (sequential or random)

required by the query. This depends on what is actually done by the database

system that is being modelled.

Access Pattern Extraction

Given the query plans, the EXTRACT algorithm estimates the number of pages

each query operator references per object. For simplicity, we assume each object is

referenced by at most one operator in a query plan, although this is not a fundamen-

tal limitation of the EXTRACT algorithm. The EXTRACT algorithm performs a

depth first traversal of the access plan to extract the number of referenced pages

and the reference type of each operator. We define a descriptor vector for each

operator accessing an object. The descriptor vector consists of two attributes: the

number of referenced pages and the reference type. The collection of descriptor

vectors, one per query, for each object characterizes the access patterns for that

object. Further details of the access pattern extraction method are given in Section

5.1.

Multifractal Skew Model

In general, accesses to database pages are not uniform. Non-uniform page access,

where some database pages are accessed more frequently than others, is referred

to as access skew. The EXTRACT algorithm estimates the number of pages refer-

enced in an object k, and represents this information in a set of descriptor vectors.

This estimate, however, does not indicate which pages are actually referenced. We

assume that these query page references are skewed. We introduce a multifractal

model of this skew. The multifractal skew model divides each object’s pages into

hot and cold classes according to a given set of skew parameters, bk, pk and order.

Within each class, access is assumed to be uniform. The skew model uses the de-

scriptor vectors to model the distribution of the queries’ references over the hot and

cold class pages of the object k.

The skew parameters may be pre-specified by a database administrator. Oth-

erwise, the default values shown in Table 4.1 are assumed. The skew model deter-

CHAPTER 4. INITIAL BUFFER CONFIGURATION OVERVIEW 38

mines µkij, the proportion of pages referenced in the jth class of database object k

by query i, and the size of each class, nkj, ∀j = 1..2order, i = 1..Q. We discuss the

multifractal skew model in greater detail in Section 5.2.

Page Request Arrival Process

Given the utilization factor, µkij, and the arrival rate, λi, of each query i, we model

the arrival of requests to each class kj page as a Poisson process. Each page’s

requests are modelled independently of the requests to other pages. Assuming uni-

form access probability within a class, we first calculate λkij, the expected reference

rate to a class kj page, per query. We then aggregate over all queries to determine

the mean access rate to a class kj page, λkj. Section 5.3 gives further details on

our model of page requests.

4.3 The Buffer Model

Given the expected page reference rates, class sizes and a weight assignment policy

from the workload characterization scheme, and a buffer configuration from the con-

figuration optimizer, our analytic model of the GCLOCK buffer replacement policy

estimates the total physical read rate for the given workload executing under the

given buffer configuration. The estimated physical read rate provides a suitability

measure for the buffer configuration. Buffer configurations with low physical read

rates are more appropriate for the given workload than configurations with high

read rates, since this indicates that the buffer pools are doing a better job of sat-

isfying page requests. Further details of our GCLOCK buffer model are presented

in Chapter 6.

The final component in our framework, the configuration optimizer, is an input

and output source for our buffer model. The configuration optimizer supplies the

buffer model with candidate initial buffer configurations for evaluation. A given

buffer configuration includes: the total buffer size, the number of buffer pools, and

their respective sizes and object assignments. In turn, our buffer model returns a

physical read rate count for each given buffer configuration indicating the quality of

CHAPTER 4. INITIAL BUFFER CONFIGURATION OVERVIEW 39

the configuration under the current workload. It is up to the configuration optimizer

to decide whether to continue supplying initial configurations to the model, or

terminate the process by selecting the configuration with the lowest physical read

rate as the recommended buffer configuration.

We are currently manually implementing the configuration optimizer tasks de-

scribed above. The development of a search algorithm to generate candidate initial

buffer configurations is part of our future work.

Chapter 5

Workload Characterization

In this chapter, we describe our workload characterization scheme, which extracts

the workload parameters needed by our buffer model to evaluate a given buffer

configuration. Specifically, the workload characterization scheme supplies the buffer

model with: a query reference rate, one per query, for each object class; all class

sizes; and a weight assignment policy.

As discussed in Chapter 4, the underlying database system uses the query ref-

erence types and object types to select a weight assignment policy. Since the

workload characterization scheme simply mimics this policy, we will focus on how

the reference rate and class sizes are calculated. We first describe an access pattern

extraction technique that infers the reference type and the number of referenced

pages from the query access plans. We then present a multifractal skew model that

is capable of generating a broad range of access skew based on a few parameters.

Finally, we show how page requests are modelled.

5.1 Access Pattern Extraction

The combination of all query accesses on an object determines that object’s access

patterns. Access patterns can be defined by two attributes: (1) the reference type,

e.g., sequential or random access, and (2) the number of referenced pages. Our

extraction method infers object access patterns from information in the query access

plans.

40

CHAPTER 5. WORKLOAD CHARACTERIZATION 41

5.1.1 Query Access Plans

A query access plan describes the execution strategy for a query. Access plans can

be represented in a tree-like form in which the leaf level nodes are objects and the

internal nodes are operators. (An internal node may also be an object such as a

temporary (TEMP) table.)

The query plans we describe in this section are derived from the DB2 database

system. Specifically, the IO COST and sequential detection operator attributes

exist in DB2 query plans. However, query plans from other commercial database

systems, such as Oracle and SQL Server, also contain similar operator attributes.

Our extraction method can be applied to any set of database query plans that

contain similar IO COST and sequential detection attributes to those in DB2.1 A

sample access plan for the SQL query Q1 is shown in Figure 5.1.

Q1:

SELECT C.name, S.ID, S.name

FROM Students S, Courses C

WHERE C.ID = S.CourseID 2

Connections between the nodes represent data flows. The tuples returned at

a lower level node are passed as an input stream to the parent node. The query

execution plan shown in Figure 5.1 may be described as follows:

• The query processor sequentially scans the COURSES table and each tuple

it reads is passed to the parent operation, the Nested Loop Join (NLJ).

• For each COURSES record received, the NLJ operation passes the C.ID to

the index scan operator.

• The index scan reads a secondary STUDENTS index on CourseID, and re-

turns a set of row IDs to the FETCH operation. Each row ID identifies a

student record whose CourseID matches the given C.ID.

1Minor modifications to the extraction algorithm may be required when calculating the I/O
costs of an operator depending on whether the I/O costs in the query plans are cumulative values
or not.

2For each course, Q1 returns all the students (their IDs and names) enrolled in that course.

CHAPTER 5. WORKLOAD CHARACTERIZATION 42

 Index

 Courses Students

 Students

RETURN

 NLJ

TABLE SCAN
 50

 FETCH

 INDEX SCAN
20

 45

120

120

Figure 5.1: A sample query access plan. The value below each operator is the
IO COST for the sub-plan rooted at that operator.

CHAPTER 5. WORKLOAD CHARACTERIZATION 43

• The FETCH operation uses the row IDs to retrieve the corresponding records

from the STUDENTS table, and percolates the qualifying records up to the

NLJ. The NLJ combines the matching COURSES and STUDENTS records.

• Finally, the query processor returns the set of qualifying records to the calling

program.

IO COST

Most of today’s cost-based query optimizers apply cost models that measure ex-

pended CPU, memory and disk I/O resources from proposed query plans. The

access plans contain granular breakdowns of exactly how much of each resource is

used by each operation in the plan. In particular, the IO COST of an operation,

is the estimated number of page I/Os required to execute the plan up to (and

including) the current operator. The query optimizer considers object attribute

characteristics, object sizes, index clustering, disk overhead and available buffering

when computing the IO COST value.

We use the IO COST values to estimate the number of pages each operator

references per object. For operations that access an object directly (table and index

scans) the IO COST reflects the number of object pages that operator references.

Indirect access operations (fetch, insert, update, delete, merge join, hash join), are

represented as internal nodes in a query plan. The number of available buffers is

used to calculate the IO COST of an operation. We use the IO COST values to

help define access patterns, which we consequently use to help recommend buffer

configurations. This forms a circular dependency. Further details regarding this

circular dependency problem are described in Appendix A. Since the IO COST is

a cumulative value, the IO COST of an indirect operation alone can be estimated

as:

IO COSTint = IO COSTcum − IO COSTchild (5.1)

where IO COSTcum is the cumulative IO COST up to (and including) the cur-

rent indirect operation, and IO COSTchild represents the sum of the cumulative

IO COSTs of its immediate children operations. For the merge join, hash join and

CHAPTER 5. WORKLOAD CHARACTERIZATION 44

sort operations, which normally receive their inputs via pipelining from lower level

operations, their IO COSTs should be minimal. Large IO COSTint values for these

operations occur when object pages spill to disk due to insufficient buffer memory,

temp space, or sort memory.

The nested loop join (NLJ) operation normally executes its right input branch

repeatedly. This behaviour can typically be inferred from the access plans by ob-

serving a larger IO COST for the NLJ operation. However, we do not have sufficient

information to determine how these NLJ page IO COSTs are distributed among

its children operations and database objects and whether repeated references are

to the same pages or to distinct pages. Thus, for simplicity, we assume that for

each iteration of a looping reference, query references are to the same pages. If

the NLJ’s IO COST value is large, our assumption introduces error that can cause

under estimates in our model’s predictions.

In the sample access plan in Figure 5.1, the table and index scans access an esti-

mated 50 and 20 pages of the COURSES table and STUDENTS index, respectively.

The FETCH operation references approximately 25 pages from the STUDENTS ta-

ble.

Sequential Scan Detection

The access plans contain operator specific attributes indicating changes in access

behaviour based on object statistics, available data structures and current system

resources. One of these operator attributes is a parameter which we call seqON,

that indicates whether or not an operator will sequentially read an object’s pages.

A variant of this parameter can be found in modern query access plans [OR00,

DB01], particularly in direct access operator attributes. Sequential access can also

be inferred from the access method directly, e.g., a table scan. A seqON = TRUE

value indicates the operator will sequentially read the underlying object pages,

whereas a FALSE value implies the object pages will be randomly read.

The query optimizer decides whether an operator will sequentially read an ob-

ject’s pages by evaluating factors such as available indices, index selectivity and the

page clustering. We are interested in the value of seqON because it may be used

by the GCLOCK weight assignment module.

CHAPTER 5. WORKLOAD CHARACTERIZATION 45

5.1.2 Descriptor Vectors

To characterize the access pattern of each query i’s reference to an object k, i = 1..Q,

k = 1..C, or to a temporary (TEMP) table, we define a descriptor vector. A

descriptor vector consists of two attributes:

1. pgsRead(k,i), gives the number of pages query i reads from object k. By

default, pgsRead(k,i) := 0, ∀k, i.

2. seqAccess(k,i), a boolean flag indicating if query i sequentially reads object

k’s pages. The default value, seqAccess(k,i) := FALSE, ∀k, i, indicates random

page accesses.

Chou and Dewitt categorized query references into three types: sequential, ran-

dom or looping [CD85]. We adopt a similar categorization to our descriptor vectors

to capture sequential and random query references against objects.

We assume a permanent object k is referenced by at most one operator in a

query. However, TEMP tables, which are temporary objects that exist only during

query execution, may be used by more than one operator in a query plan to handle

record spillage. Since we do not know beforehand the number of operators which

will use a TEMP table (if any), we simply assign a unique object identifier greater

than C (the number of non-TEMP database objects) to each TEMP table that we

discover in an access plan.

5.1.3 Methodology

The extraction algorithm determines a value for pgsRead(k,i) from the IO COST

value(s), and determines sequential access either from the seqON parameter or from

the access method. We infer the seqON parameter value from the access method

in cases where the operation is defined to sequentially read an object’s pages (e.g.,

a table scan) and in cases where the operation reads a TEMP table. In addition,

we assume that a sort operation randomly reads a table’s pages. Our extraction

algorithm performs a depth first traversal of the query plan tree to calculate these

values. We assume each node p in the query plan tree contains the following fields:

CHAPTER 5. WORKLOAD CHARACTERIZATION 46

• name, is the operator name, or a unique identifier for the object.

• type, indicating the node type: operator or object.

• IO COST, represents the number of page I/Os required to execute the

plan up to, and including, the current operator. For object (leaf) nodes,

IO COST = 0.

• seqON, is a boolean parameter indicating if an operator will reference the

object pages sequentially. For object nodes, seqON = NIL.

• left, represents the left child of an operator node. For object nodes, left = NIL.

Unary operators have only the left child.

• right, represents the right child of an operator node. For object nodes,

right = NIL.

We present the access pattern extraction algorithm below. We describe the

specific processing details for each access method following the algorithm.

Algorithm

For a given access plan represented as a tree, the plan nodes are visited in a
depth first order (for simplicity, we omit the depth first traversal details, and present
only the specific processing details). Prior to processing any plan nodes, the al-
gorithm initializes the TEMP tables identifier, t := C, which will be incremented
each time a descriptor vector is created for a TEMP table. If p is an operator node
in query i, EXTRACT(p,i) will determine the number of referenced pages and the
reference type for the database object used by operator p.

Extract(p, i)

1 if p.type = operator

2 then switch (p.name) // Extract access patterns according to the access method

3 case TBSCAN :

4 // the child node is the referenced table

5 pgsRead(left.name,i) ← p.IO COST

CHAPTER 5. WORKLOAD CHARACTERIZATION 47

6 seqAccess(left.name,i) ← TRUE

7

8 case IDXSCAN :

9 // the child node is the referenced index

10 pgsRead(left.name,i) ← p.IO COST

11 seqAccess(left.name,i) ← p.seqON

12

13 case FETCH :

14 if p is a unary operator

15 then pgsRead(left.name,i) ← p.IO COST

16 seqAccess(left.name,i) ← p.seqON

17 else // p is a binary operator and the

18 right child is the referenced object

19 pgsRead(right.name,i) ← (p.IO COST − left.IO COST)

20 seqAccess(right.name,i) ← p.seqON

21

22 case INSERT‖UPDATE‖DELETE :

23 // binary operators, where the right child is the referenced object

24 pgsRead(right.name,i) ← (p.IO COST − left.IO COST)

25 seqAccess(right.name,i) ← left.seqON

26

27 case MGJOIN‖HSJOIN :

28 // ops don’t access objects directly, input is piped from children ops

29 // check if spillage occurs to the TEMP tables

30 if p.IO COST > (left.IO COST + right.IO COST)

31 then t+ = 1

32 pgsRead(t,i) ← (p.IO COST−
33 (left.IO COST + right.IO COST))

34 seqAccess(t,i) ← TRUE

35

36 case TEMP :

37 // a unary operator

CHAPTER 5. WORKLOAD CHARACTERIZATION 48

38 t+ = 1

39 pgsRead(t,i) ← (p.IO COST − left.IO COST)

40 seqAccess(t,i) ← TRUE

41

42 case SORT :

43 Let nrows be the number of rows to be sorted

44 Let rwidth be the width of a sorted row

45 Let psize be the sorted table’s page size

46 Let ST identify the sorted table

47 nSorted← p.nrows∗p.rwidth

psize

48 pgsRead(ST ,i) ← nSorted

49 seqAccess(ST ,i) ← FALSE

50 if nSorted > size(sortMem)

51 then t+ = 1

52 pgsRead(t,i) ← nSorted

53 seqAccess(t,i) ← FALSE

54

55 case default :

56 break

The EXTRACT(p,i) algorithm examines each node p in the query i plan, and if

p is an operator node, the algorithm derives the reference type and an estimate for

the number of referenced pages to each object k. The derivation steps vary with

each access method. We describe each access method’s specific processing details.

TBSCAN

A TBSCAN is a sequential scan of a table’s pages. Since the TBSCAN is a unary

operator, its child node represents the referenced table. An estimated number of

referenced table pages is given by the TBSCAN operator’s IO COST value.

CHAPTER 5. WORKLOAD CHARACTERIZATION 49

IDXSCAN

An IDXSCAN is a unary operator where the child node represents the referenced

index. Whether the IDXSCAN references the index pages sequentially or randomly

is indicated by its seqON attribute, which updates the seqAccess vector attribute.

Since an IDXSCAN reads the index pages directly, an estimated number of refer-

enced index pages is given by its IO COST value.

FETCH

FETCH can be a unary or binary operator. In either case, the reference type

(sequential or random), is indicated by the FETCH operator’s seqON attribute. If

FETCH is a unary operator, it references object k’s pages directly, and an estimate

for the number of referenced pages is given by the operator’s IO COST value. If

FETCH is a binary operator, the right child is the referenced object and the left

child is an operator. The left child passes an identifier to the FETCH to retrieve the

matching record from the object. In this case, the FETCH operator’s IO COST is a

cumulative value and the estimated number of referenced object pages is calculated

by subtracting the cumulative IO COST of the left child operator from the FETCH

operator’s IO COST.

INSERT/UPDATE/DELETE

The INSERT, UPDATE and DELETE operators all have binary inputs, where the

left child is an operator and the right child is the referenced object. Similar to the

binary input FETCH, a row identifer is passed from the left child to the UPDATE

or DELETE operator, which then applies the operation to the matching object

record. An INSERT operation inserts a given record into the table or index object.

The reference type is indicated by the left child’s seqON attribute. The number

of pages referenced during the operator’s execution is the difference between the

current operator’s IO COST value and its left child’s IO COST value.

CHAPTER 5. WORKLOAD CHARACTERIZATION 50

MGJOIN/HSJOIN

The merge join (MGJOIN) and hash join (HSJOIN) operations are processed in a

similar manner. MGJOIN sequentially reads its sorted input records. If there are

duplicate records on the join key in the outer table, then each matching record in

the inner table will be repeatedly read. The set of matching records will be spilled

to a TEMP table to avoid excessive disk reads. HSJOIN sequentially reads a hash

table. If the hash table is too large to fit into the given amount of memory, it is

spilled to TEMP tables.

Ideally, the IO COST of the MGJOIN and HSJOIN operations should each

be approximately equal to the sum of its children’s IO COSTs, since all inputs

are piped from children operations. However, in the cases described above, the

MGJOIN and HSJOIN incur extra I/Os (p.IO COST > (left.IO COST + right.IO COST))

to read pages from the TEMP tables. We create a descriptor vector to capture the

TEMP table references and to account for the extra buffer pages the TEMP tables

will occupy.3 To accurately identify each referenced TEMP table, the identifier t,

is incremented each time a descriptor vector is created for a TEMP table. The

estimated number of sequentially referenced TEMP table pages is calculated as

p.IO COST - (left.IO COST + right.IO COST).

TEMP

A TEMP operation stores data into, and retrieves data from a TEMP table. TEMP

is a unary operator, where its child is normally an operator node. The estimated

number of referenced TEMP pages is calculated as (p.IO COST - left.IO COST).

The pages are assumed to be sequentially read.

3When p.IO COST < (left.IO COST + right.IO COST), the MGJOIN, HSJOIN is expected
to read only a portion of its inner table or hash table, respectively. This indicates that the
optimizer’s initial operator IO COSTs were over estimates. In this case, since the joins receive
the necessary pages from lower level operators and no spillage occurs to the TEMP tables, the
algorithm does not need to perform any calculations.

CHAPTER 5. WORKLOAD CHARACTERIZATION 51

SORT

Modern database systems devote a portion of memory specifically for handling

SORT operations. Let this sort memory be called sortMem, whose size is a database

tunable parameter. If the size of sortMem is not large enough to contain the sort

(i.e., size(sortMem) < nSorted), the sort spills to TEMP tables. If this occurs, we

create a descriptor vector to capture the TEMP table references, and to account for

the extra buffer pages that the TEMP tables will use. We calculate the estimated

number of pages to be sorted, and use this estimate as the number of pages the

SORT operation randomly references in the TEMP table.4 In addition, we create

a descriptor vector to capture the query page references to the table whose pages

are to be sorted.

5.1.4 Summary

In this section, we have shown how the EXTRACT algorithm determines the refer-

ence type and the number of referenced object pages from information in the query

access plans, to produce a descriptor vector per query, per object, for permanent

objects. The value of the attribute pgsRead(k,i), indicates the expected number

of pages query i references from object k. This attribute does not provide infor-

mation regarding the distribution of query page references nor which specific pages

are referenced. In the next section, we describe how query access skew is modelled

and show how the descriptor vector attributes are used to calculate the utilization

factor per class, per query.

5.2 Multifractal Skew Model

Database reference patterns are generally skewed, meaning that some pages are

accessed more frequently than others [CS89, LD93, DYC95]. The multifractal model

is closely related to the 80-20 skew law, which says that 80% of the accesses reference

20% of the data. The multifractal model mimics this skew behaviour by dividing the

4Modern query optimizers provide the values nrows, rwidth and psize, in the SORT operator’s
attributes in the query access plans [OR00, DB01].

CHAPTER 5. WORKLOAD CHARACTERIZATION 52

data records into two equal halves and setting a bias parameter p = 0.8, to indicate

that 80% of the accesses occur in one half of the data records and the remaining

20% of accesses occur in the other half. This process then continues recursively

[FMS96, WMCPF02].5 Empirical studies have shown that the multifractal model

is quite accurate in modelling skewed distributions [SCH91, FMS96], and network,

web and disk I/O traffic [WMCPF02].

We use the multifractal model to represent database access skew. The model

divides an object k’s pages into classes, with uniform access probability within each

class. Pages are divided into hot and cold classes, which consequently determines

their access frequency, i.e., hot classes contain frequently referenced pages, whereas

cold classes contain less frequently referenced pages. We modify the model slightly

by introducing a parameter, bk, to help create a more general access skew represen-

tation. The parameter bk indicates the percentage of object k’s pages to allocate

to each of the two divided classes, i.e., bk = 0.3 means 30% of object k’s pages are

distributed to the hot class and the remaining 70% of pages are distributed to the

cold class. The original multifractal model divided the object pages into two equal

sized classes, this is a special case with bk = 0.5. We present our multifractal skew

model next.

5.2.1 Details of the Multifractal Skew Model

In our buffer configuration methodology, the multifractal model is used to model

skewed query access to object pages. Table 4.1 describes the skew model param-

eters pk, bk, order and nk. Values for these parameters may be specified by the

DBA. Otherwise, the default values shown in Table 4.1 are used. In addition to

these parameters, the model uses the descriptor vector attribute, pgsRead(k,i). For

each object k, the model divides its pages into 2order classes. We will use ckj,

1 ≤ j ≤ 2order, to represent the classes of an object k.

Access skew is modelled by associating higher page access probabilities to smaller

5The multifractal model extrapolates on the self-similarity property of fractals (patterns seen
at a high level are also seen in nested lower levels).

CHAPTER 5. WORKLOAD CHARACTERIZATION 53

sized classes. The model begins with one class (containing all pages of object k),

and at each step n, 0 ≤ n < order, the model recursively divides each of the 2n

classes into a cold class and a hot class. This division process is repeated for order

times, resulting in 2order classes. Cold classes are larger than hot classes and typi-

cally receive a lower percentage of page references relative to their size.

Suppose we start with a class of N pages of which Ni are referenced by query

i. On each iteration, divide the class into two classes:

• A hot class has (N · bk) pages, of which min(N · bk, Ni · pk) are referenced by

query i.

• A cold class has N(1 − bk) pages, of which (Ni - min(N · bk, Ni · pk)) are

referenced by query i.

Initially, for each object k, we have a single class with N = nk and Ni =

pgsRead(k,i). We perform order iterations for each object k, resulting in 2order

classes. Let nkj be the size of class ckj and dkij be the number of pages query i

references in class ckj. The output of the model is nkj and the utilization factor

µkij =
dkij

nkj
, ∀j.

Figure 5.2 shows an example of the skew construction process when query ref-

erenced pages are distributed among the hot and cold object classes, according to

probabilities pk and (1− pk), respectively. Note that at each level, the right sided

class is the hotter class.

Figure 5.3 shows the first two steps of how the multifractal skew model deter-

mines the class size proportions and class reference probabilities according to bk

and pk, respectively. In Figure 5.3 (a), a query references all of object k’s pages

uniformly according to some probability P . In Figure 5.3 (b), at order level = 1,

an 80-20 skew is generated; 80% of the total page references go to the hot class

(containing 20% of object k’s pages). In Figure 5.3 (c), at order level = 2, four

classes exist; containing 64%, 16%, 16%, and 4% of object k’s pages, and attracting

4%, 16%, 16%, and 64% of object k’s total query page references, respectively. The

multifractal skew model generates heavier access skew as bk → 0 and pk → 1.

CHAPTER 5. WORKLOAD CHARACTERIZATION 54

Notation:

Distribution
Access Skew

(2500, 22, 0.0088)

(400, 3.52, 0.0088)(400, 3.52, 0.0088)

(100, 14.08, 0.1408)(1600, 0.88, 0.00055)

(2000, 4.4, 0.0022) (500, 17.6, 0.0352)

(nkj , dkij , µkij)

pgsRead(k,i) = 22

nk = 2500

order = 2

bk = 0.2

pk = 0.8

Figure 5.2: The distribution of query page references among the hot and cold
classes, according to pk and (1 − pk), respectively. Note that

∑
j nkj = nk and∑

j dkij = pgsRead(k,i).

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Access
Probability

Proportion of Pages

 (a)

Access
Probability

Proportion of Pages

 (b)

Access
Probability

Proportion of Pages

 . 64 1 . 96.80

 (c)

.25 .50 1 .80 1

P

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

������
������
������

������
������
������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

pk

(1− pk)

(1− pk)
2

pk(1− pk)

(pk)
2

Figure 5.3: The multifractal skew model construction process to determine class
size proportions and page access probabilities, for bk = 0.2, pk = 0.8 and order = 2.

CHAPTER 5. WORKLOAD CHARACTERIZATION 55

The multifractal skew model calculates µkij, the proportion of class ckj pages

referenced by query i, ∀j = 1..2order. When a query i reads all the pages in a table,

the multifractal skew model returns µkij = 1, ∀j, regardless of the values for pk and

bk. In the next section, we use µkij to determine the expected reference rate to a

class ckj page.

5.3 Page Request Arrival Process

To model queries’ requests for pages, consider a query i, with arrival rate λi, which

references a fraction µkij of the pages in class ckj at each arrival. Assuming each

class ckj page is equally likely to be referenced, the expected reference rate to an

arbitrarily selected class ckj page is:

λkij = λi · µkij (5.2)

Query requests to a class page are modelled independently of requests to other

class pages. Assume references by query i to a class ckj page form a Poisson process

with rate λkij. Assume all queries are independent. Then the aggregate reference

process for the page, over all queries, is a Poisson process with rate:6

λkj =

Q∑
i=1

λkij (5.3)

Consequently, query references to the class ckj page occur with a mean interar-

rival time of 1
λkj

.

In the next chapter, we show how the output from the workload characterization

scheme, namely the parameters: λkij, nkj, and the weights wki, are used in our buffer

model to determine the total physical read rate, which is the performance metric

we use to evaluate a given buffer configuration.

6This follows directly from the superimposition property of Poisson processes [JAIN91].

Chapter 6

The GCLOCK Query-Weight

Buffer Model

The approximate GCLOCK Markov model proposed by Nicola, Dan and Dias

[NDD92], assigned weights on a per object basis. Specifically, a set of objects

was partitioned, and a weight was selected for each partition. In this chapter, we

present an analytic model of the GCLOCK buffer replacement policy that allows

weights to be assigned on a per object, per query basis. That is, each type of page

may have a distinct weight for each type of query. Given a workload characteriza-

tion (as described in Chapter 5) and an initial buffer configuration, our buffer model

evaluates the initial buffer configuration by estimating the total physical read rate

of the workload running with the given buffer configuration. We give an overview

of our buffer model, describe its parameters, and then discuss the buffer model in

greater detail.

6.1 Buffer Model Overview

To distinguish our GCLOCK model from the approximate GCLOCK Markov model

(Approx-GCLK model), we call our model the GCLOCK Query-Weight model to

highlight our model’s ability to accept different weights for different query types.

Given a buffer configuration and the workload parameters, λkij, nkj and wki, our

56

CHAPTER 6. THE GCLOCK QUERY-WEIGHT BUFFER MODEL 57

Query-Weight buffer model estimates the physical read rate for each class ckj. The

buffer model’s objective is to calculate the total physical read rate over all classes,

which is an indication of the quality of the given buffer configuration for the current

workload. That is, a lower physical read rate is preferred over a higher read rate

since this indicates that the buffer pools are doing a good job of satisfying a greater

number of query page requests.

To determine the total physical read rate, our buffer model first needs to esti-

mate the number of pages from each class that reside in the buffer. This is also

known as the buffer occupancy for a class. It depends on the length of time a class

ckj page spends in the buffer. We define the concept of a page request lifetime, as

the length of time a class ckj page resides in the buffer after being used by a query.

In the GCLOCK replacement policy, a request lifetime begins when a query i

references a page and ends by one of two events: (1) the clock algorithm evicts

the page from the buffer when it discovers the page’s weight is zero, or (2) another

query references the same page, giving the page a new weight and a new request

lifetime. Clearly, the page request lifetime depends on the weights and on the

request arrival rate. Frequently referenced pages that are given large weights will

reside in the buffer longer than infrequently referenced pages with smaller weights.

We assume class pages with a zero weight are evicted from the buffer. As queries

reference a buffer page, the page weight either increases or decreases depending on

the query reference type. The clock will decrement a page’s weight by one on each

cycle through the buffer. The clock removes the page from the buffer when the

page weight reaches zero. We model the weight transitions of an arbitrary class ckj

page using a Markov model. From the Markov model, we determine the probability

that the page resides in the buffer (has weight greater than zero). We can then

estimate the buffer occupancy and physical read rate values for that class. The sum

of the physical read rate estimates, first over all j classes per object, and then over

all k objects, determines the model’s total physical read rate prediction associated

with the given buffer configuration. Further details of our GCLOCK Query-Weight

buffer model are given in Section 6.3. We present the model’s parameters next.

CHAPTER 6. THE GCLOCK QUERY-WEIGHT BUFFER MODEL 58

6.2 Model Parameters

We assume the given buffer configuration provides an assignment of each database

object to a buffer pool. Table 4.1 described the workload parameters. Our GCLOCK

Query-Weight buffer model uses the following additional parameters and notation:

Parameters

• B, the total number of buffer pools.

• sx, the size of buffer pool x.

Notation

• w, the maximum weight assigned to a class page, w = maxk,i wki.

• 1
tx

, the clock speed for buffer x, tx > 0.

• λ
(m)
kj , the reference rate to a class ckj page from all queries that set the page

weight to m, m = 0..w. λ
(m)
kj =

∑
i|wki=m λkij.

• µm, the clock eviction rate for a buffer page with weight m, µm = 1
tx·m .

• ρkj, the duty cycle of pages in class ckj, i.e., the probability a ckj page is in

the buffer.

• nkjx, the expected buffer occupancy of class ckj, i.e., the expected number of

ckj pages residing in buffer x. (Given that object k is assigned to buffer x.)

• nkx, the buffer occupancy of object k,
∑2order

j=1 nkjx = nkx.

• rkj, the physical read rate of class ckj.

• rk, the physical read rate of object k,
∑2order

j=1 rkj = rk.

• rtot, the total physical read rate from all objects,
∑C

k=1 rk = rtot.

CHAPTER 6. THE GCLOCK QUERY-WEIGHT BUFFER MODEL 59

1 0 m w-1 w.
λ

(1)
kjλ

(0)
kj λ

(m)
kj λ

(w−1)
kj λ

(w)
kj

µ1

µm

µw−1

µw

Figure 6.1: Markov model representing the weight of an arbitrary class ckj buffer
page.

6.3 Details of the GCLOCK Query-Weight Buffer

Model

We model the weight of an arbitrary page from class ckj as a continuous time

Markov model, as shown in Figure 6.1.

The Markov model has a total of (w+1) states. State m indicates that the page

has weight m. The steady state probability Pm indicates the probability that the

page has weight m. If the page is in one of the states 1..w, then the page resides in

the buffer. If it is in state 0, then it is not in the buffer.

When a query of type i references the page, it sets the page weight to wki. This

causes the page to move to state wki. Transitions to a state m occur with a rate

of λ
(m)
kj , where λ

(m)
kj is the reference rate of all queries that set the page weight to

m. In Section 5.3, we modelled the page request process of a query i to a class ckj

page as a Poisson process with rate λkij. Assuming that the page request processes

of the query types are independent, by the superimposition principle of Poisson

processes:

CHAPTER 6. THE GCLOCK QUERY-WEIGHT BUFFER MODEL 60

λ
(m)
kj =

∑
i|wki=m

λkij (6.1)

The resulting aggregate reference process is also Poisson.

Since the clock decrements the weight of a class buffer page by one on each

revolution through the buffer, a page with a weight of m is expected to reside in

the buffer for a time of tx ·m, if it is not re-referenced, where tx is the time for the

clock to circulate once through the buffer. After this time, the page weight reaches

zero and the clock evicts the page from the buffer. To model this, we assume a

Poisson eviction process with rate µm = 1
tx·m , for a page in state m > 0. This is

shown by the transitions labelled with µi in Figure 6.1. Note that pages with higher

weights have a slower eviction process, and will thus remain in the buffer longer

before being evicted. Finally, note that the eviction rate is expressed in terms of

tx, called the buffer clock rate, which will be discussed further later in this section.

Having described the state transition rates, we proceed to derive the balance

equations for the Markov model in Figure 6.1. Our objective is to derive an expres-

sion for P0, the steady state probability that the page has a zero weight. Equiva-

lently, P0 indicates the probability that the page does not reside in the buffer.

Let

λkj =
w∑

i=0

λ
(i)
kj (6.2)

Generally, for a state m, 0 < m ≤ w, the sum of the flow rates into state m

must equal to the sum of the flow rates out of state m, i.e., flow in = flow out.

λ
(m)
kj [P0 + P1 + . . . + Pm−1 + Pm+1 + . . . + Pw] = Pm

[
µm + (λkj − λ

(m)
kj)

]

Since we know the normalization condition
∑w

i=0 Pi = 1 must hold, we get:

CHAPTER 6. THE GCLOCK QUERY-WEIGHT BUFFER MODEL 61

λ
(m)
kj [1− Pm] = Pm

[
µm + (λkj − λ

(m)
kj)

]

λ
(m)
kj = Pm [µm + λkj]

Pm =
λ

(m)
kj

µm + λkj

, m ≥ 1 (6.3)

To derive P0, the probability that the page is not in the buffer, we substitute

Equation (6.3) into the normalization condition:

P0 = 1− [P1 + P2 + . . . + Pw]

= 1−
w∑

m=1

Pm

P0 = 1−
w∑

m=1

λ
(m)
kj

µm + λkj

(6.4)

Let P0 kj be P0 for class ckj. That is, P0 kj is the probability that a ckj page is

not in the buffer. We define ρkj as the probability that a class ckj page is in the

buffer:

ρkj = 1− P0 kj (6.5)

We use ρkj to determine nkjx, the expected number of class ckj pages residing

in buffer x, also known as the buffer occupancy for class ckj:

nkjx = ρkj · nkj (6.6)

where nkj is the size of class ckj, determined from the workload characterization

scheme. The buffer occupancy estimate for object k; nkx, is:

nkx =
2order∑
j=1

nkjx (6.7)

CHAPTER 6. THE GCLOCK QUERY-WEIGHT BUFFER MODEL 62

Up until this point, we have not mentioned how the clock speed, tx, is deter-

mined. In a multiple buffer pool configuration, each buffer x, x = 1..B, has an

associated tx, which is determined as follows.

Suppose for a given buffer configuration, u objects are assigned to buffer x,

u ≤ C. From Equations (6.6) and (6.7), we have:

n1x =
2order∑
j=1

ρ1j(tx) · n1j

n2x =
2order∑
j=1

ρ2j(tx) · n2j

...

nux =
2order∑
j=1

ρuj(tx) · nuj (6.8)

where we have written ρuj(tx) to emphasize the fact that ρuj is a function of tx

(remember that µm = 1
tx·m). We must also enforce the constraint:

sx = n1x + n2x + . . . + nux (6.9)

Equation (6.9) says that the total expected occupancy of all objects assigned to

buffer x must be equal to the size of that buffer. Using Equations (6.8) and (6.9),

if we start with an initial estimate of tx and an error tolerance, δ, we can solve for

tx numerically. If
∑u

v=1 nvx > (sx + δ), then tx should be reduced. Similarly, if∑u
v=1 nvx < (sx − δ), then tx should be increased. We are able to solve for tx using

this approach because the function nix, i = 1..u, increases monotonically with tx.

Finally, we show how to estimate the physical read (miss) rate, rtot, for a work-

load running under a given buffer configuration. We first estimate rkj and rk, the

physical read rates per class and per object, respectively.

rkj is determined by estimating the number of class ckj pages on disk (nkj−nkjx)

and summing the query reference rates of these pages:

CHAPTER 6. THE GCLOCK QUERY-WEIGHT BUFFER MODEL 63

rkj = λkj (nkj − nkjx) (6.10)

It follows that,

rk =
2order∑
j=1

rkj (6.11)

rtot =
C∑

k=1

rk (6.12)

Our buffer model uses rtot as a performance evaluation measurement. A buffer

configuration that minimizes the physical read rate will:

• Satisfy a larger number of query page requests from memory than configu-

rations with a higher number of physical reads, and consequently improve

buffer hit rates.

• Reduce query response times by reducing the need to wait for disk accesses,

and reducing the amount of CPU time and resources required to perform disk

accesses.

• Enable the system to generate higher throughput as a result of decreased

query response times and increased availability of CPU resources.

Chapter 7

Experimental Evaluation

In this chapter, we present the results of our model validation against a commercial

database system. We also present the comparative results between our model pre-

dictions and predictions from the approximate GCLOCK Markov model [NDD92].

First, we describe the experimental environment. We then describe the valida-

tion methodology. Finally, we present our validation and comparative results and

summarize with concluding remarks.

7.1 Experimental Environment

7.1.1 TPC-C Workload Overview

We validated our model using a TPC-C workload. A TPC-C workload is an online

transaction processing (OLTP) workload that simulates a generic order entry sys-

tem. A user may perform one of five transactions to enter and deliver orders, record

payments, check the status of orders, or monitor the stock level at the warehouses.

The database is scaled according to the number of warehouses. Each WAREHOUSE

consists of 10 DISTRICTS, and each district serves 3000 CUSTOMERS. 1 There

are 100 000 ITEMS available to be ordered. The inventory levels for each item at

each warehouse are maintained in the STOCK relation. When a customer places a

1We denote proper relation names by capitalization.

64

CHAPTER 7. EXPERIMENTAL EVALUATION 65

new order, three relations are updated: (1) the ORDER relation maintains a record

of each order; (2) the NEW-ORDER relation tracks pending, not-yet delivered or-

ders; and (3) the ORDER LINE relation maintains a record of every ordered item.

A log of payment transactions is kept in the HISTORY relation. Query references

to the STOCK, CUSTOMER, and ITEM relations exhibit data access skew [LD93].

The WAREHOUSE, DISTRICT, CUSTOMER, and STOCK relations scale with

the number of warehouses. The ORDER, ORDER LINE, and HISTORY relations

grow as orders are processed.

The TPC-C benchmark defines five transaction types. The NEW-ORDER

transaction enters an order for 10 items on average, records the order, and up-

dates the inventory level for each item in the STOCK relation. The number of

NEW-ORDER transactions completed per minute (TPM) is the TPC-C perfor-

mance metric. The PAYMENT transaction handles payment from a customer. The

ORDER-STATUS transaction returns the status of a customer’s last order. The

DELIVERY transaction processes 10 pending orders, one for each district, and

deletes the pending orders from the NEW-ORDER relation. Finally, the STOCK-

LEVEL transaction returns the inventory level of all items that were ordered in the

last 20 orders from a district.

The TPC-C benchmark specifies minimum transaction frequency requirements

that must be maintained as the database is scaled. For our experiments, we used

the following transaction mix, [NEW-ORDER, DELIVERY, PAYMENT, ORDER-

STATUS, STOCK-LEVEL] = [0.45, 0.04, 0.43, 0.04, 0.04], which attempts to maxi-

mize the NEW-ORDER transaction frequency. Further details regarding the TPC-

C benchmark can be found in the TPC-C benchmark specification [TPC02].

7.1.2 System Specification

We conducted our experiments on DB2 v.7 running on AIX v.5. The machine was

an IBM pSeries model B80 with 4 x 350 MHz processors, 6 GB total memory, 24 x

72 GB external SSA drives and 1 SSA controller. We used a 100 warehouse scale

factor TPC-C database (100 WH SF), with an approximate size of 11 GB.

The database schema consisted of 14 user-defined tablespaces. Each table and

index was assigned to its own tablespace with the exception of the WAREHOUSE,

CHAPTER 7. EXPERIMENTAL EVALUATION 66

DISTRICT, and ITEM tables and indices, which were assigned to a shared table and

index tablespace, respectively. We also created a user-defined TEMP tablespace.

Each tablespace was striped across the 24 disks for increased parallelism. We

used 24 prefetchers and page cleaners, corresponding to one prefetcher and one

page cleaner per disk. The amount of memory allocated to the buffer pools varied

according to each experiment.

7.2 Methodology

Our experimental objective was to validate our model’s buffer occupancy and phys-

ical read rate predictions against system measured buffer occupancy and miss rate

values, under varying buffer configurations and query reference behaviour. We also

compared our model’s predictions to those from the approximate GCLOCK Markov

model. In addition, we examined our model’s predictive capability to distinguish

buffer configurations that can provide increased system throughput.

The primary performance metric we used is rtot, the total physical read rate

across all objects. The buffer occupancy estimates for each object are an inter-

mediate measurement useful for model validation. For our predictive capability

tests, we expect our model to predict lower physical read rate totals for buffer

configurations that help increase system throughput.

To derive our model estimates, we configured the TPC-C database with a total

buffer pool size ranging from 120 MB to 1.2 GB (30 K to 300 K 4 K pages), depend-

ing on the particular experiment. In our experimental environment, the optimizer

generated 67 query plans for 19 physical objects (9 relational tables, 10 indices).

We passed the query plans to the EXTRACT algorithm and the multifractal skew

model to derive the required workload model parameters. We assume skewed query

references and used two sets of skew parameters: (1) the default skew parameters

bk = 0.2, pk = 0.8 and order = 2 for all k = 19 objects (uniform skew), and (2)

a refined set of skew parameters shown in Table 7.1 (refined skew). Non-default

skew parameter values were assigned to objects that were known to exhibit spe-

cific access skew [LD93]. The DBMS buffer manager assigned index pages a weight

of 2, sequentially referenced pages a weight of 0, and all other page references a

CHAPTER 7. EXPERIMENTAL EVALUATION 67

Object pk bk

STOCK 0.85 0.15
CUSTOMER 0.85 0.15
ORDER LINE 0.75 0.25
ORDER IDX 0.7 0.3
ITEM 0.75 0.25
Remaining Objects 0.8 0.2

Table 7.1: Refined skew model parameters, skew order level = 2.

weight of 1. We use the same weight assignments in our model. Given the work-

load model parameters and a buffer configuration specification (i.e., the number of

buffer pools, their object assignments and sizes), we define our GCLOCK model

parameters according to the given parameters and buffer specification. We use the

model to predict the buffer occupancy and physical read rate for each object and

rtot for the given buffer configuration.

For the comparative tests, we used the extracted workload parameters as input

into the approximate Markov model to determine the access probability to each

partition. Further details regarding the comparative testing methodology are given

in Section 7.3.2.

To obtain the system measured values associated with the tested buffer config-

uration, we configure the database with the same buffer configuration. We ran the

TPC-C transactions against the configured database to generate workload activity.

We executed each test run for an initial 15 minute ramp-up period at 170 clients

for a 25 minute duration. We ran the predictive capability tests for a 45 minute

duration to verify system stability in our results. The 15 minute ramp-up was the

average time needed for the system to achieve a steady state and for the number

of physical reads to stabilize. We took a buffer snapshot at the end of each run

to determine the actual buffer occupancy value for each database object. We used

DB2’s tablespace snapshot monitor to measure the physical read rate counts for

each tablespace at the end of each run. We then compared the system measured

buffer occupancy and physical read rate values to our model’s predictions.

A driver application executes the TPC-C transactions and reports the system

CHAPTER 7. EXPERIMENTAL EVALUATION 68

throughput as the number of completed NEW-ORDER transactions per minute

(TPM). If the driver application reports a higher TPM value with buffer configu-

ration A than with buffer configuration B, we expect our GCLOCK Query-Weight

model to predict rtotA < rtotB.

7.3 Experimental Results

7.3.1 Model Validation against System Measurements

We validated our model’s predictions against system measurements for a single

buffer pool configuration of size 500 MB. Figure 7.1 shows the predicted buffer oc-

cupancy of each data object, normalized with respect to its system measured value,

ordered by decreasing table size. For clarity, we have omitted the WAREHOUSE

and DISTRICT table and index values, whose buffer occupancies were each less

than 50. Table 7.2 shows the system measured buffer occupancy value of each data

object in Figure 7.1.

For most of the data objects, the uniform skew buffer occupancy predictions

show discrepancies from the measured values, i.e., normalized values are greater or

less than 1. However, the refined skew model, with corrected individualized skew

parameters, (for the STOCK, CUSTOMER, ORDER LINE, ITEM tables and OR-

DER index) offers improved buffer occupancy predictions. The existing differences

between the refined skew model predictions and the measured values are possi-

bly caused by assuming independent page references. If an object exhibits a large

number of correlated page references, the model does not capture this temporal and

spatial page locality. Consequently, the model will assume an increased number of

independent page references causing an increased buffer occupancy prediction. Fur-

ther refinement to the access skew parameters may be required for objects whose

buffer occupancy predictions are under estimated. Figure 7.1 shows that given cor-

rect access skew, the model offers improved accuracy to closely predict the actual

object buffer occupancies, particularly for the frequently referenced data objects

(i.e., STOCK, CUSTOMER, ORDER LINE tables and indices).

Figure 7.2 shows the physical read rate prediction of each TPC-C database ob-

CHAPTER 7. EXPERIMENTAL EVALUATION 69

Buffer Size = 500MB

������

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

0

0.5

1

1.5

2

Database Object
STK STK_I CUS CUS_I OL OL_I HIS ORD ORD_I NO NO_I ITEM ITEM_I

Model Predictions − Uniform Skew
Model Predictions − Refined Skew

F
ra

ct
io

n
of

 S
ys

te
m

 M
ea

su
re

d
V

al
ue

TPC−C Object Buffer Occupancies, Normalized w.r.t. System Measured Values

Figure 7.1: Object buffer occupancy predictions.

Object Abbreviation Measured Buffer Occupancy (4 K pages)

STOCK Tbl STK 43505
STOCK Idx STK I 21562
CUSTOMER Tbl CUS 8218
CUSTOMER Idx CUS I 7273
ORDER LINE Tbl OL 28265
ORDER LINE Idx OL I 3803
HISTORY Tbl HIS 1138
ORDER Tbl ORD 1576
ORDER Idx ORD I 5033
NEW-ORDER Tbl NO 896
NEW-ORDER Idx NO I 1540
ITEM Tbl ITEM 1756
ITEM Idx ITEM I 336

Table 7.2: Measured object buffer occupancy.

CHAPTER 7. EXPERIMENTAL EVALUATION 70

Buffer Size = 500MB

������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0

0.5

1

1.5

2
F

ra
ct

io
n

of
 S

ys
te

m
 M

ea
su

re
d

V
al

ue

Database Object
STK STK_I CUS CUS_I OL OL_I HIS ORD ORD_I NO NO_I WDI

Model Predictions − Uniform Skew
Model Predictions − Refined Skew

TPC−C Physical Read Rates, Normalized w.r.t System Measured Values

WDI_I

Figure 7.2: Object physical read rate predictions.

ject, normalized with respect to its system measured value. Table 7.3 shows the

system measured physical read rates. The physical read rate predictions for the

WAREHOUSE, DISTRICT and ITEM tables and indices are reported as WDI and

WDI I, respectively.2 For objects that were given corrected skew parameter values,

the refined predictions offer improved accuracy. However, discrepancies still remain.

Over estimates may again be due to the independent page reference assumption,

under which an increased number of independent page references (especially for

pages not in the buffer) cause an increased number of disk reads. The under esti-

mates for the ORDER LINE table and the STOCK, CUSTOMER, ORDER indices

may be refined by further tuning their individual skew parameter values.

Figure 7.2 shows that with correct skew parameters, our model is able to closely

predict the object physical read rate, particularly for frequently referenced data

objects. In addition, although not exemplified in Figure 7.2, the model is able to

capture the relative physical read rate of each database object. That is, if the

2Recall that these tables and indices are assigned to a shared table tablespace and a shared
index tablespace. System measured physical read rates are determined on a per tablespace basis.

CHAPTER 7. EXPERIMENTAL EVALUATION 71

Object Abbreviation Measured Physical Reads/Sec

STK 760.35
STK I 231.77
CUS 125.02
CUS I 113.23
OL 641.22
OL I 35.93
HIS 13.63
ORD 17.7
ORD I 50.87
NO 7.9
NO I 3.32
WDI 16.02
WDI I 4.12

Table 7.3: Measured object physical read rates.

measured physical reads for the STOCK table are greater than the physical reads

for the ORDER LINE table, the model predictions follow the same trend.

We are interested in validating the accuracy of the model’s total physical read

rate prediction rtot. For a buffer size of 500 MB, the measured total physical read

rate was 2017.07 reads/sec. Our model predicted rtot = 2071.76 reads/sec using the

refined skew parameters, giving a relative difference of approximately 3%. Unless

otherwise stated, all remaining model predictions will be based on the refined skew

parameter values. In addition, figures displaying normalized model predictions are

with respect to the system measured values.

Varying Total Buffer Size

We evaluated the Query-Weight model’s rtot predictions across varying buffer sizes.

We are interested in evaluating the scalability of the model’s physical read rate

predictions. Figure 7.3 shows the results of our experiments for a total buffer size

ranging from 120 MB to 1.2 GB.

As expected, the measured and predicted physical read rates decrease as the

total buffer size increases. The model’s predictions closely follow the system mea-

CHAPTER 7. EXPERIMENTAL EVALUATION 72

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

3000

Total Buffer Size (MB)

T
ot

al
 P

hy
si

ca
l R

ea
ds

 p
er

 S
ec

on
d

Total Physical Read Rate − Buffer Size Sensitivity

System Measured
Query−Weight Model Predictions (r

tot
)

Figure 7.3: Total physical read rates for varying buffer sizes.

sured values throughout the range of buffer sizes. The predictions improve as the

buffer size increases, showing a maximum relative error of approximately 7%.

Multiple Buffer Pool Configurations

We evaluated the accuracy of our model predictions under different multiple buffer

pool configurations, with a total buffer size of 500 MB. We used the following three

buffer configurations:

1. 2 BP: A two buffer pool configuration where the STOCK table is assigned

to its own buffer pool of size 200 MB. All remaining objects are assigned to

the default buffer pool.

2. Table/Index Split: All tables are assigned to a buffer pool of size 300 MB,

and all indices are assigned to another buffer pool of size 200 MB.

3. 3 BP: The STOCK table is assigned to a buffer pool of size 160 MB, the OR-

DER LINE table is assigned to a buffer pool of size 80 MB, and all remaining

CHAPTER 7. EXPERIMENTAL EVALUATION 73

STK_BP = 200MB, BP1 = 300MB

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

0

0.5

1

1.5

2

Database Object
STK STK_I CUS CUS_I OL OL_I HIS ORD ORD_I NO NO_I ITEM ITEM_I

F
ra

ct
io

n
of

 S
ys

te
m

 M
ea

su
re

d
V

al
ue

2 BP Configuration − Normalized Buffer Occupancy Predictions

Figure 7.4: Query-Weight object buffer occupancy predictions for the 2 BP config-
uration.

objects are assigned to the default buffer pool of size 260 MB.

These configurations were derived from preliminary experiments to test the

benefits of initial buffer configuration. The focus of these configurations was to

devote separate buffer pools to large, frequently referenced tables. By changing

the object to buffer pool assignments, the mix of query page references (i.e., query

reference types and referenced objects) to a buffer pool changes. We are interested

in examining the accuracy of the model’s predictions in light of these changes.

Figures 7.4, 7.5 and 7.6 show the buffer occupancy estimate for each object in

the 2 BP, split table/index and 3 BP configurations, respectively.

Overall, the figures show that the model is able to quite accurately predict the

actual buffer occupancy for most data objects. Differences between the predicted

and measured values may be due to required skew parameter tuning for specific

objects or an increased number of independent page references. The model’s con-

sistent low predictions for the ORDER index may be caused by an under estimated

number of query page references for this object. The EXTRACT algorithm deter-

CHAPTER 7. EXPERIMENTAL EVALUATION 74

TB_BP = 300MB, IDX_BP = 200MB

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
�
�
�
�
�
�
�
�

��
��
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

0

0.5

1

1.5

2

Database Object
STK STK_I CUS CUS_I OL OL_I HIS ORD ORD_I NO NO_I ITEM

F
ra

ct
io

n
of

 S
ys

te
m

 M
ea

su
re

d
V

al
ue

ITEM_I

Split Table/Index Configuration − Normalized Buffer Occupancy Predictions

Figure 7.5: Predicted object buffer occupancies for the split table/index configura-
tion.

Default_BP = 260MB, STK_BP = 160MB, OLINE_BP = 80MB

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
�
�
�
�
�
�
�
�

��
��
��
��
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

0

0.5

1

1.5

2

Database Object
STK STK_I CUS CUS_I OL OL_I HIS ORD ORD_I NO NO_I ITEM ITEM_I

F
ra

ct
io

n
of

 S
ys

te
m

 M
ea

su
re

d
V

al
ue

3 BP Configuration − Normalized Buffer Occupancy Predictions

Figure 7.6: Predicted object buffer occupancies for the 3 BP configuration.

CHAPTER 7. EXPERIMENTAL EVALUATION 75

2060.9 2070.7 2047.41996.7
1830.9

2076.2

������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

0

500

1000

1500

2000

2500

3000
Total Physical Read Rate − Multiple Buffer Pool Configurations

System Measured
Query−Weight Model Predictions

2 BP Table/Index Split

Buffer Configuration

T
ot

al
 P

hy
si

ca
l R

ea
ds

 p
er

 S
ec

on
d

3 BP

Figure 7.7: Total physical read rates for multiple buffer pool configurations.

mines this estimate from information in the query access plans.

Figure 7.7 shows the total physical read rate for each of the multiple buffer pool

configurations. The model is able to accurately predict the actual total physical

read rate for the 2 BP and Table/Index split configurations. The prediction for the 3

BP configuration shows a greater discrepancy, about 14%, from the measured total.

This is likely due to the increased discrepancies in the 3 BP buffer occupancies,

which results in larger deviations between the predicted physical read rate and the

system measured physical read rate.

Large Table Scan and Sort Behaviour

The TPC-C workload contains primarily short read and update transactions. We

are interested in validating our model on a wider range of workloads, specifically,

workloads that contain large table scans and sorts. We modified the TPC-C trans-

actions to include table scans of both large and small tables, and sorts of small

and mid-sized tables. Our experiments used a total buffer size of 500 MB. We first

discuss the results of our table scan tests followed by the results of our table sort

CHAPTER 7. EXPERIMENTAL EVALUATION 76

tests.

Large Table Scans

To test the impact of table scans, we added the following three queries that cause

table scans to two of the TPC-C transaction types:

1. Oline Scan: in the ORDER-STATUS transaction, we added the query SE-

LECT OL AMOUNT FROM ORDER LINE.

2. History Scan: in the ORDER-STATUS transaction, we added the query

SELECT H AMOUNT from HISTORY.

3. Oline Hist Scan: in addition to the above two scans, we added the query

SELECT OL DELIVERY D FROM ORDER LINE in the PAYMENT transac-

tion.

We expect two results from our table scan tests:

1. The buffer occupancy estimate of each scanned table should be approximately

equal to its estimate when there is no table scan. Since the weights of sequen-

tially scanned pages are set to zero, their buffer residency time is minimal.

2. The predicted physical read rate of each sequentially scanned table should

increase over its no scan prediction, since an increased number of pages must

be fetched from disk to read the table.

Figure 7.8 compares the measured and predicted buffer occupancy values for

the ORDER LINE and HISTORY tables in the Oline Scan and History Scan tests,

respectively. As expected, the model prediction for each of the two tables is ap-

proximately equal to its original buffer occupancy prediction when there is no table

scan. The discrepancies between the model predictions and the system measured

buffer occupancies, for the scan cases, may be explained by the following reason.

In practice, the buffer manager tags a sequentially scanned table page with a zero

weight. The page will reside in the buffer until the clock evicts the page or another

query re-references it. If a query re-references the page, this logical reference will

CHAPTER 7. EXPERIMENTAL EVALUATION 77

28265 28829 28964
27512

1138 1552
3463

1465

ORDER_LINE HISTORY

������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���� ���
���
���

���
���
���

0

5000

10000

15000

20000

25000

30000

Scan vs. No Scan Table Buffer Occupancy

System Measured
Model Predictions

N
um

be
r

of
 (

4K
)

B
uf

fe
r

P
ag

es

No Scan Scan No Scan Scan

Scanned Relation

Figure 7.8: Sequentially scanned table buffer occupancy.

correspond to a buffer hit. However, our model assumes zero weight pages are

evicted from the buffer and considers this logical reference to be a physical read.

This immediate eviction assumption for zero weight pages can cause the model to

predict lower buffer occupancy values and higher physical read rates.

Figure 7.9 shows the physical read rate comparison between the measured and

the model predictions. As expected, we observe that the physical read rates for

both tables have increased from their original estimates when there were no table

scans. The model, however, has predicted larger physical read rate increases in

both tables than the system measured increases. A possible reason for this increase

is the immediate eviction assumption described above.

In the Oline Hist Scan test, the buffer occupancy measurements and predictions

and the physical read rate measurements for the ORDER LINE and HISTORY ta-

bles are similar to the values of the previous two scan tests. However, the model

estimates a total of 1248 physical reads/sec for the ORDER LINE table. This

increase is approximately equal to the increase in predicted physical reads of the

ORDER LINE table in the Oline test case over the ORDER LINE no scan predic-

CHAPTER 7. EXPERIMENTAL EVALUATION 78

641.2
566.7

717.2

937.5

13.6 30.5
66.8

129.2

ORDER_LINE HISTORY

������

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

������ ���
���
���
���

0

200

400

600

800

1000
P

hy
si

ca
l R

ea
ds

 p
er

 S
ec

on
d

Scan vs. No Scan Table Physical Read Rates

System Measured
Model Predictions

No Scan Scan No Scan Scan

Scanned Relation

Figure 7.9: Sequentially scanned table physical read rates.

tion. In the Oline Hist case, the model predicts a larger physical read rate for the

ORDER LINE table because there are two scan queries referencing this table.

Figure 7.10 shows the total physical read rate, across all objects, in each of

the three table scan tests. The larger discrepancy in the Oline Hist test can be

explained by the increased ORDER LINE physical read rate estimate mentioned

previously. Our model is sensitive to changes to the object buffer occupancy and

physical read rate due to sequential scan behaviour. However, our results have

shown that the model over estimates the physical read rate of sequentially scanned

tables. Query re-references to zero weight buffer pages can cause the model to

predict increased object and overall total physical read rates.

Table Sorts

To validate our model on a workload that contains table sorts, we added sort activity

to the standard TPC-C workload by using one client to sequentially generate sort

queries with no think time. The client was capable of generating the following

queries. One query is used per experiment:

CHAPTER 7. EXPERIMENTAL EVALUATION 79

2123.3
1926.1

2202.3
2362.2

2027.1

2859.9����

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

0

500

1000

1500

2000

2500

3000

Total Physical Read Rate − Table Scan Tests

System Measured
Query−Weight Model Predictions

OLINE HISTORY OLINE_HIST

Table Scan Tests

T
ot

al
 P

hy
si

ca
l R

ea
ds

 p
er

 S
ec

on
d

Figure 7.10: Total physical read rates for table scan tests.

1. History Sort: A dynamic sort query on the HISTORY table: SELECT

H DATE FROM HISTORY ORDER BY H DATE.

2. Item Sort: A dynamic sort query on the ITEM table: SELECT I PRICE

FROM ITEM ORDER BY I PRICE.

Figures 7.11 and 7.12 show the model’s physical read rate predictions for the

HISTORY and ITEM tables, respectively. In Figure 7.11, the model under esti-

mates the HISTORY table’s physical read rate and accurately predicts the physical

read rate of the TEMP table. The model’s under estimation for the HISTORY

table may be caused by a few factors. One possibility is that the query optimizer

under estimated the number of table pages that were to be sorted, leading the model

to predict fewer physical reads. Another possible cause is that the EXTRACT al-

gorithm assumes the sort routine will read the table pages once from disk. The

algorithm does not consider repeated physical reads to the table pages, which can

occur during the sort routine if the sort spills to the disk, causing the model to

predict fewer physical reads.

CHAPTER 7. EXPERIMENTAL EVALUATION 80

139.8

100

18.4 22.1

������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

���
���
���

���
���
���

0

20

40

60

80

100

120

140

160
Physical Read Rate Comparison − HISTORY Sort

System Measured
Query−Weight Model Predictions

P
hy

si
ca

l R
ea

ds
 p

er
 S

ec
on

d

HISTORY TEMP
Database Object

Figure 7.11: Object physical read rate comparison for History sort.

Figure 7.12 shows that the model over estimates the physical read rate of both

the ITEM and TEMP tables. This may be a result of fewer disk accesses needed to

perform the sort, since most of the sort can be performed within the sort memory.

The total physical read rate of each sort workload is shown in Figure 7.13.

The measured and model predicted values are almost indistinguishable. The sort

workloads generate a minimal increase in the total physical read rate over the

standard TPC-C workload. Sorts on larger tables will likely generate a noticeably

larger number of total physical reads.

The results from Figure 7.13 show that our model is able to accurately predict

the total physical read rate of workloads with minimal sort activity. However, the

model’s physical read rate predictions for individual sorted tables requires further

improvement.

CHAPTER 7. EXPERIMENTAL EVALUATION 81

21.2

32.1

4.7

10.1

������

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���

���
���
���

0

5

10

15

20

25

30

35

40

45

50
System Measured

Query−Weight Model Predictions

ITEM TEMP

Database Object

P
hy

si
ca

l R
ea

ds
 p

er
 S

ec
on

d
Physical Read Rate Comparison − ITEM Sort

Figure 7.12: Object physical read rate comparison for Item sort.

2144 2142215821512071
2017

������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

0

500

1000

1500

2000

2500

3000

T
ot

al
 P

hy
si

ca
l R

ea
ds

 p
er

 S
ec

on
d

Total Physical Read Rate − Table Sorts

Std TPC−C (No Sort) HISTORY Sort

System Measured
Query−Weight Model Predictions

ITEM Sort

Workload

Figure 7.13: A comparison of our varied TPC-C sort workloads against the standard
TPC-C workload.

CHAPTER 7. EXPERIMENTAL EVALUATION 82

7.3.2 Comparison between our Query-Weight Model and

the Approximate Markov Model

We are interested in studying how our Query-Weight model performs relative to

the approximate GCLOCK Markov model (Approx-GCLK Model) [NDD92], by

comparing the predictions from both models against system measured values. First,

we evaluated both models using the standard TPC-C workload under a set of

buffer configurations with varying total buffer sizes. Second, we evaluated both

models under a modified TPC-C workload that included large table scans. For

both experiments, we used a 100 WH SF database. For the second experiment, we

used a 500 MB total buffer size.

To calculate the Approx-GCLK model predictions, we used a total of 76 par-

titions (19 objects times 4 classes/object), corresponding to the number of classes

used by our Query-Weight model. The size of each partition was equal to the size of

our corresponding class. We used the extracted workload parameters to derive the

parameter rp, the access probability to each partition p, which is required by the

Approx-GCLK model. We assigned a weight of 1 to all table pages and a weight of

2 to all index pages in the Approx-GCLK model. We first describe our experimen-

tal results with the varying buffer size configurations, followed by our results from

the table scan tests.

Model Comparison - Varying Buffer Sizes

Figure 7.14 shows the total physical read rate prediction from each model across

buffer sizes ranging from 120 MB to 1.2 GB. Our model tends to slightly over

estimate the actual total physical read rate, while the Approx-GCLK model sig-

nificantly under estimates. Our model offers improved accuracy across the entire

range of evaluated buffer sizes.

Model Comparison - Sequential Table Scans

Our model considers query based weight assignments, i.e., weights are based on

the query reference type. For workloads involving large table scans, we expect our

CHAPTER 7. EXPERIMENTAL EVALUATION 83

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

3000

Total Buffer Size (MB)

T
ot

al
 P

hy
si

ca
l R

ea
ds

 p
er

 S
ec

on
d

Model Comparison of Total Physical Read Rate Predictions , 100 WH SF

System Measured
Approx−GCLK Model
Query−Weight Model

Figure 7.14: A comparison of the Query-Weight versus Approx-GCLK total phys-
ical read rate predictions.

model to predict more accurate buffer occupancy and physical read estimates than

the Approx-GCLK model.

We evaluated both models on a modified TPC-C workload that included large

table scans. Specifically, we modified the TPC-C PAYMENT transaction to include

the following queries:

• SELECT s ytd FROM stock

• SELECT ol delivery d FROM order line

• SELECT c ytd payment FROM customer

Figure 7.15 shows the normalized buffer occupancy estimates for each database

object. We observe that with the exception of the CUSTOMER and ITEM tables,

our model estimates are more accurate than the Approx-GCLK estimates.

Figure 7.16 shows the normalized object physical read rate predictions. For

most of the data objects in the workload, our model predictions offer greater ac-

CHAPTER 7. EXPERIMENTAL EVALUATION 84

100 WH SF, 500MB Buffer Size

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
�
�
�
�
�

��
��
��
��
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�

�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��

��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

������

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Database Object
STK STK_I CUS CUS_I OL OL_I HIS ORD ORD_I NO NO_I ITEM ITEM_I

Query−Weight Predictions
Approx−GCLK Predictions

Model Comparison of TPC−C Buffer Occupancies (normalized)
F

ra
ct

io
n

of
 S

ys
te

m
 M

ea
su

re
d

V
al

ue

Figure 7.15: A comparison of the Query-Weight versus Approx-GCLK object buffer
occupancy predictions using a modified TPC-C workload with sequential table
scans.

curacy than the Approx-GCLK predictions. The Approx-GCLK model provides

better predictions for the ORDER LINE, HISTORY and ORDER tables. For each

sequentially read table, both models over estimate the actual number of physical

reads. This is a likely consequence of both models assuming independent page ref-

erences and an increased number of disk accesses required to sequentially read the

table pages.

The system measured a total physical read rate of 2394 physical reads/sec.

Our Query-Weight and the Approx-GCLK model predicted 3212 and 2805 physical

reads/sec, respectively. Our initial results indicate that for most of the database

objects in the TPC-C workload, our model offers improved accuracy when predict-

ing the individual object buffer occupancy and physical read rate. However, the

Approx-GCLK model has shown better predictions for a small set of tables and for

the total physical read rate. Further experiments using scan intensive workloads

are needed to investigate these discrepancies.

CHAPTER 7. EXPERIMENTAL EVALUATION 85

100 WH SF, 500MB Buffer Size

������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

0

0.5

1

1.5

2

Database Object
STK STK_I CUS CUS_I OL OL_I HIS ORD ORD_I NO NO_I WDI

Query−Weight Model
Approx−GCLK Model

WDI_I

F
ra

ct
io

n
of

 S
ys

te
m

 M
ea

su
re

d
V

al
ue

Model Comparison of Object Physical Read Rates (normalized)

Figure 7.16: A comparison of the Query-Weight versus Approx-GCLK object phys-
ical read rate predictions using a modified TPC-C workload with sequential table
scans.

CHAPTER 7. EXPERIMENTAL EVALUATION 86

7.3.3 Validating Predictive Capability

We conducted experiments to study our model’s ability to distinguish given buffer

configurations that provide increased system throughput over those that will result

in throughput degradation. As this section shows, reducing the number of total

physical reads increases the system throughput. We therefore use the total num-

ber of physical reads as the performance metric to evaluate our model’s system

throughput predictive capability.

We evaluated our model’s predictive capability on a set of buffer configurations,

shown in Table 7.4. For these experiments, we used a total buffer size of 1.1 GB.

The experiments were executed for 45 minutes with a 15 minute ramp-up period.

These buffer configurations were derived with the objective of assigning sepa-

rate buffer pools to large, frequently referenced tables, specifically, the STOCK,

CUSTOMER and ORDER LINE tables, in order to minimize the total number of

physical reads. We also evaluated a case where the STOCK index was assigned a

separate buffer pool to determine if that would help improve system throughput.

Figure 7.17 shows the mean system measured TPC-C throughput for each con-

figuration. Buffer configurations C1, C2 and C3 each show a throughput gain. The

remaining configurations C4-C10 each show a decline in the throughput relative to

the default buffer configuration, with C10 performing the worst. For buffer con-

figurations C1, C2 and C3, we expect that the model will predict a total physical

read rate close to or less than the physical read rate of the default configuration.

For each buffer configuration in the unsatisfying set C4-C10, we expect the model

to predict a larger total physical read rate than the default configuration. Further-

more, we expect the model to predict higher read rates for buffer configurations

that perform more poorly than others.

Figures 7.18 and 7.19 show the system measured and model predicted total phys-

ical read rates, respectively, for each buffer configuration. The results from Figure

7.18 show that each of the C1-C3 buffer configurations had fewer total physical reads

than the default configuration. In contrast, all buffer configurations that showed a

decline in throughput had a greater number of total physical reads. As expected,

configurations C9 and C10, which showed the worst throughput performance, had

the greatest physical read rate increase.

CHAPTER 7. EXPERIMENTAL EVALUATION 87

Configuration Buffer Pool Assignments

Default BP1 (1.1 GB): All database objects.
C1 BP1 (495 MB): STK

BP2 (605 MB): all remaining objects.
C2 BP1 (495 MB): STK

BP2 (182 MB): OL
BP3 (423 MB): all remaining objects.

C3 BP1 (177 MB): STK, OL
BP2 (150 MB): STK I
BP3 (240 MB): all remaining objects.

C4 BP1 (670 MB): STK, CUS
BP2 (430 MB): all remaining objects.

C5 BP1 (495 MB): STK
BP2 (175 MB): CUS
BP3 (430 MB): all remaining objects.

C6 BP1 (100 MB): STK I
BP2 (1 GB): all remaining objects.

C7 BP1 (250 MB): CUS
BP2 (850 MB): all remaining objects.

C8 BP1 (390 MB): OL
BP2 (710 MB): all remaining objects.

C9 BP1 (580 MB): OL
BP2 (520 MB): all remaining objects.

C10 BP1 (500 MB): CUS
BP2 (600 MB): all remaining objects.

Table 7.4: Buffer configurations used to test the model’s predictive capability.

CHAPTER 7. EXPERIMENTAL EVALUATION 88

6124
+4.55% +1.93 +2.16%

−4.39% −4.54% −5.33%

−13.08%

−41.43%

−14.25%

−28.35%

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

0

1000

2000

3000

4000

5000

6000

7000
N

ew
O

rd
er

 T
ra

ns
ac

tio
ns

 p
er

 M
in

ut
e

Buffer Configuration

TPC−C Measured Throughput, 100 WH SF, 1.1GB Buffer Size

C10C9C8C7C6C5C4C3C2C1Default

Figure 7.17: Mean TPC-C throughput.

−4.4%

+11% +10.3%

−2.6%−3.2%

+15.7%

+31.6%

+9% +10.3%
+20.7%

2022

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

0

500

1000

1500

2000

2500

3000

T
ot

al
 P

hy
si

ca
l R

ea
ds

 p
er

 S
ec

on
d

Buffer Configuration

Measured Total Physical Read Rate, 100 WH SF, 1.1GB Buffer Size

Default C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Figure 7.18: Measured mean total physical read rates.

CHAPTER 7. EXPERIMENTAL EVALUATION 89

+0.3% +0.14%−2.1%
+3.1% +3.9% +3.5% +6.2%+5.5%

+28.8%

+14.5%

2212

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

0

500

1000

1500

2000

2500

3000

3500
T

ot
al

 P
hy

si
ca

l R
ea

ds
 p

er
 S

ec
on

d

Buffer Configuration

Model Predicted Total Physical Read Rate, 100 WH SF, 1.1GB Buffer Size

Default C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Figure 7.19: Model predicted total physical read rates.

When comparing Figure 7.19 with Figure 7.18, one can see that the model’s

total physical read rate prediction of 2212 physical reads/sec is about 9.5% greater

than the measured total of 2022. The predictions in Figure 7.19 show that our

model is able to distinguish the preferable configurations, C1, C2 and C3. The

predictions for C1 and C2 are approximately equal to the physical read rate of the

default configuration. For configuration C3, which showed the greatest physical

read rate decrease over all configurations at -4.4%, the model also predicted the

greatest decrease over all buffer configurations at -2.1%. As expected, for each

buffer configuration that demonstrated a throughput gain, the model predicted

values close to or less than the default configuration’s total physical read rate.

For each buffer configuration in the unfavourable set C4-C10, the model’s esti-

mates were between 3%-30% larger than the default configuration’s physical read

rate. Furthermore, the results show that our model is able to distinguish those

buffer configurations that perform extremely poorly relative to other configurations.

The model estimates the greatest physical read rate increases for configurations C9

and C10, at 14.5% and 28.8%, respectively.

From our experimental results, we observe that our model is able to distinguish

CHAPTER 7. EXPERIMENTAL EVALUATION 90

favourable versus unfavourable buffer configurations. Favourable buffer configura-

tions, which show an improvement in system throughput, are a consequence of a

decrease in the number of total physical reads. In contrast, unfavourable buffer

configurations show a reduction in throughput; a consequence of an increased num-

ber of physical reads. In addition, our model is able to detect those configurations

that perform extremely poorly (large throughput reductions), by predicting a larger

total physical read rate.

Our model’s ability to distinguish favourable versus unfavourable buffer config-

urations is useful for automatic database buffer configuration. Assuming a mecha-

nism that generates candidate buffer configurations, our model is able to evaluate

a given configuration and predict whether applying the buffer configuration will

improve or degrade system throughput.

7.4 Summary

We draw the following conclusions from our experiments:

• The model quite accurately predicts the buffer occupancy and physical read

rate for frequently referenced objects in the TPC-C workload assuming a uni-

form access skew. The model provides more accurate predictions when given

improved access skew values for an object. Discrepancies between the mea-

sured values and the model predictions are possibly caused by the independent

page reference assumption.

• The model’s total physical read rate predictions scale well with increasing

buffer size.

• For multiple buffer pool configurations, our model closely predicts the buffer

occupancy for the majority of the data objects in each buffer pool, and the

total physical read rate.

• Our model is sensitive to changes to the object buffer occupancy and physical

read rate due to sequential scan behaviour. Query re-references to zero weight

CHAPTER 7. EXPERIMENTAL EVALUATION 91

buffer pages can cause the model to predict less accurate (increased) object

and total physical read rates.

• Our initial results showed that our model is able to accurately predict the

total physical read rate of workloads with minimal sort activity. However,

further experiments are needed to validate the model’s ability to handle sort

intensive workloads. In addition, the model’s physical read rate predictions

for individual sorted tables needs to be improved.

• For a wide range of increasing buffer sizes, our model offers improved accuracy

over the Approx-GCLK model for predicting total physical read rates.

• For the modified TPC-C table scan workload, our results indicate that for

the majority of the database objects in the workload, our model offers im-

proved accuracy over the Approx-GCLK model when predicting the object

buffer occupancy and physical read rate. However, the Approx-GCLK model

provides better predictions for a small set of tables and for the total physical

read rate. Further experiments using scan intensive workloads are needed to

further investigate these model distinctions.

• Our model is able to distinguish between favourable and unfavourable buffer

configurations. For all favourable configurations, our model’s total physical

read rate predictions were either less than or within 1% of the default config-

uration’s physical read rate. The model’s ability to detect favourable buffer

configurations helps an automatic buffer configuration tool recommend non-

default buffer configurations that are expected to improve system throughput.

Furthermore, our model is able to detect those buffer configurations that per-

form extremely poorly relative to other configurations, by predicting larger

physical read rate totals.

Chapter 8

Conclusions

In this thesis, we evaluated the benefits of buffer configuration at database design

time. Our experimental results showed that having a good initial buffer configu-

ration can increase system throughput and reduce both the mean transaction re-

sponse time and the total physical read rate. These results are further supported by

previous empirical studies [LMM96, XMP02]. Determining an appropriate buffer

configuration at database design time requires knowledge of the workload. Pre-

vious methods have used reference traces as their source of query access pattern

information. Since reference traces are not available at database design time, the

initial buffer configuration task is challenging without sufficient query access pat-

tern information.

When the buffer pools are effectively configured and tuned, they help to reduce

query response times and increase system throughput and buffer hit rates by min-

imizing the number of disk accesses. Configuring and tuning the buffer pools is a

manual and difficult process. Users and database administrators are often hindered

by limited knowledge and time to determine the best buffer configuration for their

workload. Having a DBA manually evaluate all possible buffer configurations is

clearly impractical. Previous methods have not considered automating the buffer

configuration process.

We have developed an analytic model of the GCLOCK buffer replacement pol-

icy that can be used to evaluate the effectiveness of a particular buffer configuration

for a given workload. To derive the workload parameters required by our model,

92

CHAPTER 8. CONCLUSIONS 93

we proposed a workload extraction algorithm that extracts query reference pat-

terns from the access plans. The workload extraction algorithm can be applied at

database design time to obtain the necessary query access pattern information. In

addition, we extended an existing multifractal model and introduced a multifrac-

tal skew model that models the distribution of query page references over object

classes. The skew model is able to generate a broad range of access skew based on

a few parameters.

We have given an overview of how our proposed buffer model can be used in con-

junction with our workload characterization scheme and a configuration optimizer

to automate the initial buffer configuration task. The buffer model can also be

used after database design time to help automate the buffer configuration process

by evaluating candidate buffer configurations.

Our buffer model improves upon the only alternative GCLOCK model (Approx-

GCLK) [NDD92] by considering a more generalized weight assignment policy, which

distinguishes query page reference behaviour. Our model improves accuracy by

considering weights to be assigned based on the page type and the query reference

type. Comparative tests between our buffer model and the Approx-GCLK model

showed that for increasing buffer sizes, our model offers improved accuracy for

predicting the total physical read rate. For a modified TPC-C workload involving

large table scans, the comparative model results were mixed. Our model showed

greater accuracy in predicting the buffer occupancy and physical read rate for

most of the database objects in the workload. However, the Approx-GCLK model

provided better predictions for a small set of tables and the total physical read rate.

Further experiments using scan intensive workloads are required to investigate these

model differences.

We conducted an extensive set of experiments to validate our model predictions

against system measurements using a wide range of buffer configurations. Our

results showed that given correct access skew parameters, our model is able to

quite accurately predict the buffer occupancies and physical read rates of frequently

referenced objects in the TPC-C workload. The model’s total physical read rate

predictions scale well with increasing buffer size. In addition, our model is sensitive

to multiple buffer pool configurations. It closely predicts the buffer occupancy for

CHAPTER 8. CONCLUSIONS 94

the majority of the data objects in each buffer pool, and the total physical read

rate. We also validated our model using a modified TPC-C workload containing

table scans and minimal sort activity. Our initial results indicate that our model

is sensitive to changes in the object buffer occupancy and physical read rate due

to the scan and sort activity. However, discrepancies in the physical read rate

predictions indicate that further investigation is needed to refine the model to

better handle scan and sort intensive workloads. Finally, our predictive capability

experiments showed that our model is able to accurately distinguish and predict

those buffer configurations that improve system throughput from those that degrade

throughput.

The above results are an encouraging indication that our model provides ac-

curate predictions for OLTP type workloads. Our proposed buffer model provides

the foundation for an effective mechanism that evaluates candidate buffer configu-

rations in an automated buffer configuration tool.

The following are suggestions for future work:

• Further model validation using a wider range of workloads. In particular,

database workloads that involve large sequential scans, sorts and longer run-

ning queries.

• Development of the configuration optimizer, which generates candidate buffer

configurations for evaluation by the buffer model.

• Consideration of temporal and spatial page locality by modelling the query

page reference process using heavy tailed distributions, which consider corre-

lated page reference characteristics.

• Extension of the EXTRACT algorithm to consider a larger number of oper-

ators.

Appendix A

Circular Dependency Problem

In Chapter 5, we showed how the EXTRACT algorithm exploited the access plans

to derive a characterization for a given workload. Our buffer model used this work-

load characterization to evaluate and recommend a candidate buffer configuration.

However, the access plans are originally derived from a buffer configuration - re-

sulting in a cyclic dependence. We describe the circular dependency problem and

explain how it affects our buffer configuration methodology.

Figure A.1 shows an overview of the dependency cycle. A DBA passes a buffer

configuration (consisting of the total buffer size, the number of buffer pools and

their respective sizes and object assignments) and a workload declaration to the

query optimizer. The optimizer generates a set of access plans based on its inputs.

Our workload characterization (i.e., EXTRACT algorithm) and buffer model use

these access plans to evaluate the quality of a given candidate buffer configuration.

The problem is, how can our proposed techniques evaluate and recommend a buffer

configuration when one of its inputs is also based on a buffer configuration?

The break in the cycle comes from the fact that query optimizers do not nec-

essarily consider all four buffer configuration options when evaluating their access

plan decisions. For some database systems, the optimizer considers only the total

buffer size, i.e., if the total buffer size changes, new access plans must be gener-

ated. If the number of buffer pools, or their respective sizes or object assignments

change, the access plans are unaffected. Thus, the dependency cycle is partially

broken between steps 1 and 2, where the access plans are insensitive to all buffer

95

APPENDIX A. CIRCULAR DEPENDENCY PROBLEM 96

 Access Plans

 Candidate
 Initial Buffer
 Configurations

 (4)
 Workload

 Buffer Model
 Characterization &

 (1)

 Buffer
 Configuration

 (1a)

 Workload

 (3a)

 (3)

 (2)

 Query
 Optimizer

Figure A.1: The circular dependency problem.

APPENDIX A. CIRCULAR DEPENDENCY PROBLEM 97

configuration changes, except the total buffer size.

Therefore, for a given fixed total buffer size, our buffer configuration methodol-

ogy remains valid to evaluate a set of candidate initial buffer configurations, possibly

with changing object assignments, buffer sizes or the number of buffer pools. Any

change to the total buffer size requires that the user re-generate the access plans

and re-execute the EXTRACT algorithm.

If future query optimizers are enhanced to consider the remaining buffer config-

uration options, then any buffer configuration change will require that new access

plans be generated. The effect on our buffer configuration methodology is that the

buffer model will evaluate only the buffer configuration on which the access plans

are based. The evaluation of each new buffer configuration will involve generating a

new access plan. However, our workload characterization scheme and buffer model

are still valid to effectively evaluate the quality of a given buffer configuration for

a workload without having to actually run the workload.

Bibliography

[AS01] Yongli An and Peter Shum. DB2 Tuning Tips for OLTP Applica-

tions, DB2 Universal Database Performance and Advanced Technol-

ogy, IBM Toronto Lab, IBM Canada, July 2001.

[BCL93] Kurt P. Brown, Michael J. Carey, Miron Livny. Managing Memory to

Meet Multiclass Workload Response Time Goals, VLDB 1993: 328-

341.

[BCL96] Kurt P. Brown, Michael J. Carey, Miron Livny. Goal-Oriented Buffer

Management Revisited, SIGMOD Conference 1996: 353-364.

[BEL66] L. Belady. A Study of Replacement Algorithms for a Virtual-Storage

Computer, IBM Systems Journal, 5(2), July 1966.

[CD85] Hong-Tai Chou, David J. DeWitt. An Evaluation of Buffer Manage-

ment Strategies for Relational Database Systems, VLDB 1985: 127-

141.

[CFWNT95] J.Y. Chung, D. Ferguson, G. Wang, C.Nikolaou, J.Teng. Goal

Oriented Dynamic Buffer Pool Management for Database Systems,

Workshop on Quality of Service in Open Distributed Processing. Bris-

bane, Australia, 1995.

[CLR92] T. H. Cormen, C. E. Leiserson and R. L. Rivest. Introduction to

Algorithms, MIT Press, 1992.

[CR93] Chung-Min Chen, Nick Roussopoulos. Adaptive Database Buffer Al-

location Using Query Feedback, VLDB 1993: 342-353.

98

BIBLIOGRAPHY 99

[CS89] Ignacio R. Casas, Kenneth C. Sevcik. A Buffer Management Model

For Use In Predicting Overall Database System Performance, ICDE

1989: 463-469.

[CY89] Douglas W. Cornell, Philip S. Yu. Integration of Buffer Management

and Query Optimization in Relational Database Environment, VLDB

1989: 247-255.

[CY93] Douglas W. Cornell, Philip S. Yu. Buffer Management Based on Re-

turn on Consumption in a Multi-Query Environment, VLDB Journal

2(1): 1-31, 1993.

[DB01] DB2 SQL Reference v.7.2, IBM Corporation, 2001.

[DDY94] Asit Dan, Daniel M. Dias, Philip S. Yu. Buffer Analysis for a Data

Sharing Environment with Skewed Data Access, TKDE 6(2): 331-337,

1994.

[DT90] Asit Dan, Don Towsley. An approximate analysis of the LRU and

FIFO buffer replacement schemes, ACM SIGMETRICS Performance

Evaluation Review, Proceedings of the 1990 ACM SIGMETRICS,

April 1990.

[DYC95] Asit Dan, Philip S. Yu, Jen-Yao Chung. Characterization of Database

Access Pattern for Analytic Prediction of Buffer Hit Probability,

VLDB Journal 4, 127-154, 1995.

[EH84] W. Effelsberg, T. Haerder. Principles of Database Buffer Manage-

ment, ACM TODS 9(4), pages 560-595, Dec. 1984.

[FMS96] C. Faloutsos, Y. Matias, A. Silberschatz. Modeling skewed distribu-

tions using multifractal and the 80-20 law, VLDB 1996: 307-317.

[HAYES00] Scott Hayes. Bufferpool Tuning, IDUG Solutions Journal, Spring

2000, vol. 7, no.1.

BIBLIOGRAPHY 100

[HSY01] W. Hsu, A.J. Smith, H. Young. Analysis of the Characteristics of Pro-

duction Database Workloads and Comparison with the TPC Bench-

marks, IBM Systems Journal, Vol. 40(3), 2001.

[JAIN91] R. Jain. The Art of Computer Systems Performance Analysis, Wiley-

Interscience, April 1991.

[JCL90] R. Jauhari, M. Carey, M. Livny. Priority-Hints: An algorithm for

priority based buffer management, VLDB 1990: 708-721.

[KD89] J. P. Kearns and S. Defazio. Diversity in database reference behaviour,

Performance Evaluation Review, 17(1):11-19, May 1989.

[LD93] Scott T. Leutenegger, Daniel M. Dias. A Modeling Study of the TPC-

C Benchmark, SIGMOD Conference 1993: 22-31.

[LM96] Hanoch Levy, Robert Morris. Should Caches be Split or Shared?

Analysis using the Superposition of Bursty Stack Depth Processes,

Performance Evaluation 27 & 28, 1996, pgs.175-188.

[LMM96] Hanoch Levy, Ted Messinger, Robert Morris. The Cache Assignment

Problem and its Application to Database Buffer Management, Trans-

actions on Software Engineering, November 1996 (Vol. 22, No. 11).

[MLZRP00] Patrick Martin, Hoi-Ying Li, Min Zheng, Keri Romanufa, Wendy

Powley. Dynamic Reconfiguration Algorithm: Dynamically Tuning

Multiple Buffer Pools, DEXA 2000: 92-101.

[NDD92] V. F. Nicola, A. Dan, and D. M. Dias. Analysis of the generalized

clock buffer replacement scheme for database transaction processing,

ACM SIGMETRICS and Performance, 1992.

[NFS91] Raymond T. Ng, Christos Faloutsos, Timos K. Sellis. Flexible Buffer

Allocation Based on Marginal Gains, SIGMOD Conference 1991:

387-396.

BIBLIOGRAPHY 101

[OR00] Oracle8i Designing and Tuning for Performance, Release 2 (8.1.6).

Oracle Corporation, 2000.

[SCH91] Manfred Schroeder. Fractals, Chaos, Power Laws, Minutes from an

Infinite Paradise, pages 187-189, 1991.

[SS82] Giovanni Maria Sacco, Mario Schkolnick. A Mechanism for Managing

the Buffer Pool in a Relational Database System Using the Hot Set

Model, VLDB 1982: 257-262.

[STO96] A. Storkey. The Fractal and Multifractal Nature of Traffic, UTSG

Conference, January 1996.

[TPC02] Transaction Processing Council. TPC Benchmark C,

www.tpc.org/tpcc/, December 2002.

[TPK97] T. Tsuei, A. Packer, and K. Ko. Database buffer size investigation

for OLTP workloads, SIGMOD Conference 1997: 112-122.

[TSW92] D. Thiebaut, H. Stone, J. Wolf. Improving Disk Cache Hit-Ratios

Through Cache Partitioning, IEEE Transactions on Computers, Vol.

41, No. 6, June 1992.

[WMCPF02] M. Wang, T. Madhyastha, N.H. Chan, S. Papadimitriou, C. Falout-

sos. Data Mining Meets Performance Evaluation: Fast Algorithms

for Modeling Bursty Traffic, 18th International Conference on Data

Engineering, 2002.

[XMP01] Y. Xi, Patrick Martin, Wendy Powley. An Analytical Model for Buffer

Hit Rate Prediction, Proceedings of CASCON 2001: November 2001.

[XMP02] Xiaoyi Xu, Patrick Martin, Wendy Powley. Configuring Buffer Pools

in DB2 UDB, Proceedings of CASCON 2002: 171-182.

[XU01] Xiaoyi Xu. A Clustering Approach to Configurting Buffer Pools in

a Database Management System, M.Sc. Thesis, Dept. of Computing

and Information Science, Queen’s University, 2001.

