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Abstract

Carbon sequestration in deep saline aquifers has been proposed for long term storage

of CO2 as an alternative to the release of CO2 into the atmosphere. In this thesis a

computationally efficient numerical model that describes the physics of CO2 injection into

deep saline aquifers is presented. The model is based on the multiphase flow and vertically

averaged mass balance equations, requiring the solution of two coupled, non-linear partial

differential equations - a pressure equation and a saturation equation. The numerical

formulation is based on sequentially coupled Finite Element Methods (FEMs). The Finite

Difference Method (FDM) is used to discretize in time. The saturation equation is a non-

linear advective equation for which the application of Galerkin Finite Element Method

(FEM) can lead to non-physical oscillations in the solution.

Several stabilized methods are considered to control the oscillations that occur as a

by-product of the approximation of the saturation equation. The methods developed

are based on the the Streamline Upwind (SU) method, the Streamline Upwind Petrov

Galerkin (SUPG) method, the Galerkin Least Squares (GLS) method, the Subgrid Scales

(SGS) method, and the Least Squares Finite Element Method (LSFEM). Two sequential

solution schemes are applied: a single step (SS) and a predictor-corrector (PC). The range

of Courant numbers yielding smooth and oscillation-free solutions is investigated for each

method. The useful range of Courant numbers depends upon both the sequential scheme
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(SS vs PC) and also the time integration method used (Forward Euler, Backward Euler,

or Crank-Nicolson). For complex problems such as when two plumes meet, only the SU

stabilization with an amplified stabilization parameter (SU-8τ) gives satisfactory results

when large timesteps are used.

The use of linear elements results in the omission of the second order term in the SUPG

and LSFEM residuals. In addition, part of the perturbation operator for LSFEM also

disappears. This loss of information may affect the stabilization properties of the SUPG

and LSFEM methods. When linear elements are used, SUPG, GLS and SGS all result

in the same formulation. Quadratic elements allow for GLS and SGS stabilizations, and

permit more complete forms of SUPG and LSFEM stabilizations. The results show that

SGS, GLS and SU-8τ (SU with an amplified value of the stabilization parameter) are the

most robust stabilization methods considered. SGS and GLS are the preferred choice at

small timesteps, and SU-8τ is the most suitable for relatively large timesteps. Quadratic

elements are shown to better handle the case of merging CO2 plumes compared with

linear elements, but quadratic elements experience greater oscillations when encountering

a Dirichlet boundary.

The proposed formulation is compared against an existing benchmark study where

eleven different simulators were used to determine the arrival time of the CO2 at a

leaky well. Four examples consider non-uniform permeability, multiple injection wells,

an upsloping aquifer, and a dome shaped aquifer. A new adaptive timestep strategy is

implemented which allows stable solutions with increasing timesteps as time progresses.

The adaptive timesteps reduce the computational cost by 75-82 % compared to constant

timesteps in the four examples shown.

The eXtended Finite Element Method (XFEM) is introduced to accurately approx-
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imate near-injection well pressure behaviour with elements significantly larger than the

injection well diameter. A vertically averaged multiphase flow model is presented that

combines XFEM to approximate the pressure field, with a Streamline Upwind/Finite

Element/FDM (SU-FEM-FDM) to approximate the distribution of CO2 in the aquifer.

Near-well enrichment functions are presented along with the solution procedure for the

coupled problem. Two examples are presented; in the first, CO2 injection into a perfectly

horizontal aquifer is modelled with both XFEM and FEM-based methods. The results

suggest that XFEM is able to provide low relative errors in the pressure near the well at

a reduced computational cost compared to FEM. The impact and selection of the sta-

bilization coefficient of the SU-FEM-FDM is also discussed. In the second example, the

XFEM and SU-FEM-FDM models are applied to a more realistic problem of an inclined

aquifer to demonstrate the ability of the model to capture the buoyancy driven migration

of CO2 in a deep saline aquifer.
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Chapter 1

Introduction to Carbon
Sequestration and Objectives

1.1 Carbon Capture and Storage (CCS)

Carbon Dioxide (CO2) is a greenhouse gas that is widely understood to contribute to

global warming, which has become a significant international issue. Fossil fuels, when

combusted, release large amounts of greenhouse gases which trap heat in the atmosphere

and cause an increase in the average global temperature. As worldwide use of fossil fuels

continues to grow, so do the emissions of CO2. Global warming will continue to induce

climate change unless the release of greenhouse gases into the atmosphere is reduced.

An intergovernmental panel (IPCC) produced a study [2] examining the problem of

global warming. It determined that immediate action is necessary to reduce CO2 emis-

sions. In 2005, global CO2 emissions associated with use of fossil fuels were 26 gigatons

per year and without a unified effort, over 9,000 gigatons were projected to be released

over the next century [1]. In order to slow climate change CO2 emissions must be sig-

nificantly reduced. This requires a large scale reduction in the amount of CO2 released
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into the atmosphere [1]. There are three main ways that emissions can be reduced [2]:

improved fuel efficiency; development of reduced carbon footprint energy sources; and

carbon capture and storage (CCS).

Improving fuel efficiency seeks to find ways to do more work with less energy. For

example, cars are made more fuel efficient by reducing their weight, improving aerody-

namics and improving the efficiencies of engines. Climate change presents an incentive for

the development of technologies which harness renewable sources of energy. In order to

decrease the global dependence on fossil fuels, achieving a portfolio of dependable renew-

able energy sources is paramount. Wind energy, solar energy and geothermal energy are

continually replenished and, if exploited, offer an alternative to burning fossil fuels. Un-

fortunately, technologies which harness these sources generally lack the efficiency required

to produce massive quantities of energy in a cost effective manner. Further development

is required to make these technologies competitive with fossil fuels.

Carbon capture and storage (CCS) provides a method to dispose of the CO2 emissions

created during fossil fuel use. A thorough overview of CCS can be found in [9]. A

schematic of the CCS process is shown in Figure 1.1. In this example, a power plant

creates CO2 emissions which are separated from the flue gas. The CO2 is then compressed,

and sent by pipeline to the injection site. At the injection site the CO2 is pumped into the

injection zone. The injection well is monitored and sealed to prevent leakage. CCS focuses

on large volume emitters, since it is more feasible to capture and store CO2 from a few

large sources (i.e., stationary point sources) than many smaller ones. Power generation

is the largest emitter of CO2 [2]. Coal power plants are ideal for CCS because the source

is localized, which facilitates capture of the CO2. Before the carbon can be stored or

sequestered it must be separated from flue gas. Once the CO2 has been captured it is
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then transported to the injection site, where it is compressed and injected below the

ground in a process known as carbon sequestration.

Figure 1.1: Overview of CCS process [1].

Carbon capture and storage is an expensive undertaking. There are three main com-

ponents of CCS: capture, transport and sequestration (storage). In order to assess the

feasibility of CCS the economics must be considered. There are four major costs to CCS

[10]: capture ($30-50 per tonne CO2); compression ($8-10 per tonne CO2); transportation

($0.70-4 per tonne CO2 per km); and injection ($2-8 per tonne CO2). The largest cost
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associated with CCS is the capture process. Therefore CCS can be made much more

economical and viable if significant progress is made in technologies that can capture the

CO2 from the flue gas in a more economical way than current technology allows.

1.2 Carbon Sequestration

There are several potential storage possibilities for the carbon dioxide (CO2), which can

be categorized into three main groups [10]: biosphere sinks; material sinks; and geosphere

sinks. Biosphere sinks are where the CO2 is stored in natural systems (e.g., oceans, forests

and soils). Material sinks are where the CO2 is used to produce materials (wood products,

chemicals, plastic). In geosphere sinks, the CO2 is stored in geological structures (e.g.,

depleted oil reservoirs, coal beds, deep saline aquifers).

Geological structures provide several important options for carbon sequestration (as

shown in Figure 1.2) including [2]: injection into old depleted oil and gas reservoirs;

deep unmineable coal seams; deep saline aquifers; or use during enhanced oil or methane

recovery. While many options for CO2 storage exist, deep saline aquifers appear to present

the most potential. A thorough overview of carbon sequestration in geological structures

can be found in [11].

Deep saline aquifers are composed of porous rock such as sandstone and initially

contain brine (salt water). The resident brine is displaced when the CO2 is injected.

These aquifers are promising due to the large potential capacity to store CO2 and the

potential for long term storage. Figure 1.3 shows the capacity of storage in deep saline

aquifers that is estimated to be available globally. It can be seen that much of the total

global availability of this storage space is concentrated in North America.

Deep saline aquifers considered for CO2 storage are greater than 800 m below the
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ground level [12]. Excellent review articles on carbon sequestration in deep saline aquifers

are found in [13, 14]. The temperature at these depths is typically 35 ◦C or higher. Under

the pressures and temperatures that occur at these depths, the CO2 is in a supercritical

state. When CO2 exists as a supercritical fluid it can exhibit properties of both a gas and

a liquid. As the host aquifers contain a brine solution, the interaction of the supercritical

CO2 and the resident brine solution results in multiphase flow. The supercritical CO2 is

less dense than the host brine, and thus there will be a buoyancy drive causing the CO2

to rise and float on top of the brine.

Ideal deep saline aquifers have an impermeable caprock above to prevent the CO2 from

leaking into overlaying aquifers. The locations that are ideal for deep saline storage of

CO2 typically happen to be the same areas that have been heavily drilled by the oil and

gas industry, so there are many abandoned wells that act as possible leakage pathways.

The horizontal dimensions of the aquifer can be measured in kilometres, while the

thickness of these aquifers is typically of the order of tens of metres. The large difference in

scale between the horizontal and vertical dimensions permits the use of vertically averaged

governing equations to study these systems. A second significant difference in scale exists

between the horizontal dimensions of the aquifer and the diameters of injection wells (and

leaky wells). Therefore, prohibitively fine spatial discretizations must be used near these

wells to capture the large pressure gradients when traditional numerical methods are used.

CO2 is injected at pressures that are below the fracture pressure of the formation to

avoid inducing fractures. If vertical fractures are created, they present pathways through

which the CO2 (or brine) can migrate vertically and contaminate other aquifers. When

injecting near faults, it is crucial to determine safe injection pressures that will not cause

fault reactivation [15, 16]. CO2 is injected at temperatures that are much colder than the
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Figure 1.2: Options for geological storage of CO2 [2].

Figure 1.3: Estimated global CO2 storage capacity [1].

formation fluids. This can contribute to the creation or reactivation of existing fractures

in the caprock.

One of the key hazards of carbon sequestration is the CO2 (or brine) migrating out

of the storage aquifer. The density difference between the CO2 and the brine create

a buoyancy drive that forces the CO2 upward. If the CO2 plume encounters leakage

pathways, the CO2 can migrate out of the storage aquifer and potentially contaminate

drinking water aquifers, or leak to the surface. If CO2 contaminates the groundwater
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above, it can result in acidification of the groundwater. Should the CO2 reach the surface,

it can present a suffocation hazard since air is less dense than CO2.

As the carbon dioxide plume expands, many physical processes occur, and many leak-

age pathways may be encountered. Before CO2 sequestration is implemented at a partic-

ular site, the potential for leakage must be properly understood, analysed and quantified.

The risks involved need to be properly assessed in order to select sites for CO2 seques-

tration, and to design safe injection procedures. The importance of understanding and

mitigating against risk cannot be understated, as this underlies the feasibility of large

scale CO2 sequestration.

The CO2 can propagate upward to reach above aquifers, and possibly ultimately the

surface of the earth. There are several potential leakage pathways for the upward mi-

gration of CO2. Three of the possible leakage pathways are: diffusion through caprock;

migration through faults and fractures; and migration through abandoned oil and gas

wells.

Figure 1.4 illustrates the leakage scenario through abandoned oil and gas wells. As the

CO2 is injected the plume rises above the resident brine solution. As the plume migrates

updip a leakage pathway in the form of an abandoned well is encountered. The CO2

travels through leakage pathways in the abandoned well driven by a buoyancy force. The

low viscosity of the supercritical CO2 makes it easier to travel through the pathways. As

the CO2 travels upward through the abandoned well, some of the CO2 enters the aquifer

above and spreads out. The remaining CO2 continues upward and can enter the aquifers

above in a similar process. Eventually some of the CO2 may reach the surface.

Although abandoned wells are plugged, there are still several potential leakage path-

ways through which the CO2 may migrate upward. Figure 1.5 shows that leakage may
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Figure 1.4: CO2 injection and leakage [3].

occur through any of several pathways: a) between well casing and cement fill; b) be-

tween well casing and well plug; c) through the well plug; d) through the well casing; e)

through cement fill; and f) between the cement fill and the ground. A small amount of

the CO2 may dissolve in the brine which can create an acidic solution that may degrade

the cements in plugged wells.

1.2.1 Importance of Computational Efficiency

There is a large degree of uncertainty associated with carbon sequestration including:

location and number of abandoned wells; leakage characteristics of abandoned wells; and

formation properties such as porosity and permeability. As a consequence of the large

uncertainties involved, stochastic methods must be used to assess potential sites. One

of the most widely used of these methods is the Monte Carlo approach. In the Monte

Carlo approach unknown parameters are assigned likelihood distributions. The governing
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Figure 1.5: Leakage pathways through a plugged abandoned well [2].

equations are solved many times, each time with a set of parameters that is randomly

sampled from assumed distributions of the uncertain parameters. For each set of ran-

domly chosen parameters, the output is computed. This is repeated many times, and the

result is a probability distribution for the unknown values. Since the calculations in this

approach are repeated thousands of times it is necessary to have computationally efficient

numerical techniques to model the carbon sequestration system. In addition to the un-

certainty, carbon sequestration models involve very large domains (km2) which require a

large number of degrees of freedom, especially when near-well behaviour is important.

1.2.2 Solution Approaches

Efficiently modelling leakage in CO2 sequestration requires the selection of the right ap-

proach. There are four main approaches that are found in the literature to studying

injection and plume evolution in CO2 sequestration systems: analytical; numerical; hy-

brid; and semi-analytical.

Analytical solutions provide very computationally efficient, accurate solutions. While
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they are very efficient and accurate they are typically limited to simple cases. Analytical

solutions can be useful for studying large scale injection and transport in addition to

modelling flow through a single well. Analytical solutions that are applicable to studying

leakage in a carbon sequestration system can be found in [17, 18, 19, 20, 21, 22, 23, 24,

25, 26, 27, 28, 29, 30, 31, 32, 33].

Most practical problems, however, are too complicated to be amenable to analytical

solution, thus numerical solutions are usually the approach of choice. References [34] and

[35] provide good introductions to numerical methods. Numerical methods suffer from

the drawback of being computationally expensive.

Semi-analytical solutions have also been used recently with success. Semi-analytical

solutions use analytical methods to solve for the spatial solutions, however, the solutions

are stepped through time numerically. This type of approach can be very computationally

efficient for many cases. The usefulness of semi-analytical solutions was demonstrated in

[36, 37].

Hybrid solutions have also been used to study CO2 leakage. In this class of methods

numerical methods are used to calculate large scale flows. The analytical solutions are

then applied locally (e.g., to correct for localized injection pressures or abandoned well

leakage) using an analytical solution. For many problems, computational efficiency can

be greatly improved over numerical solutions using hybrid solutions [38].

Analytical, semi-analytical, and hybrid solutions are typically more computationally

efficient than numerical solutions, however, numerical solutions are still generally required

to handle heterogeneity, anisotropy, irregular boundaries and other complexities in carbon

sequestration systems. Two of the most common numerical methods for PDEs are the

Finite Element Method (FEM), and the Finite Difference Method (FDM). While both
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methods are often appropriate to discretize in space, the FEM has the advantage that

it is able to handle complex geometries easily. FDM is often used to discretize in time.

Many numerical models have been used in the literature to study carbon sequestration

including [39, 40, 41, 42, 43, 44, 45, 46, 47]. Numerical solutions are described in more

detail in the next sections.

1.3 The Finite Difference Method (FDM)

The Finite Difference Method (FDM) is a common approach to solving partial differential

equations (PDEs) [48]. Difference equations are substituted into the strong form (original

PDE) of the governing equations to obtain the discretization. FDM has been used as the

main spatial and temporal discretization method in carbon sequestration modelling (e.g.,

[38, 41]). FDM is also commonly used in combination with FEM, where FEM is used to

discretize space and FDM is used to discretize time.

1.4 The Finite Element Method (FEM)

The Finite Element Method (FEM) is another numerical method to solve PDEs. It is

a very versatile approach that can be used to solve a wide variety of PDEs. The FEM

has been successfully applied to many problems in mechanics, including: stress analysis,

thermal analysis, seismic analysis, crash analysis, fluid flow analysis, and electromagnetic

analysis [49]. A large selection of resources are available on the topic of FEM including

[49, 50, 51, 52, 53, 54].

FEM generally uses simple functions such as polynomials to locally construct ap-

proximate solutions throughout the domain. The same shape functions are often used as
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weight functions. This is the Galerkin Finite Element Method (FEM). Linear or quadratic

elements in one dimension or bilinear or biquadratic elements in two dimensions are fre-

quently used. The Finite Element Method begins with the weak form of the governing

partial differential equation that is to be solved. This differs from the Finite Differ-

ence Method, which works with the strong form of the PDE. To obtain the weak form,

the strong form is multiplied by a test function and integrated over the domain. Then

Green’s formula is used to reduce the highest order derivative of the results. FEM is able

to handle irregular boundaries, unlike FDM, which generally has the restriction of regular

boundaries. To the author’s knowledge, no Finite Element Method has been described

in literature which solves the vertically averaged multiphase flow equations described in

this thesis. A general framework for these equations is developed with the Finite Element

Method (FEM) and is described in Chapter 4, Chapter 5 and Chapter 6.

1.4.1 The eXtended Finite Element Method (XFEM)

The horizontal dimensions of the aquifers are measured in kilometers, but the diameter

of the injection wells is measured in centimeters. To accurately resolve the pressure field

and the pressure dependant leakage flux in the vicinity of an injection or abandoned well

using traditional numerical methods would require a prohibitively fine discretization near

the well.

XFEM has been widely used to model crack propagation (e.g., [55, 56]). XFEM has

also been used to model interfaces (e.g., [57]). In addition, XFEM has been used to model

point source injections and leaky wells in single phase simulations for carbon sequestration

in [45, 46, 58]. The pressure distribution near wells was shown to be accurately resolved

near wells using a coarse mesh. A more complete description of XFEM, with particular
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focus on point source singularities, is presented in Chapter 6.

1.5 Objectives

The objectives of this thesis are:

1. Develop a computationally efficient numerical model for carbon sequestration based

on a Finite Element Method framework using a vertically averaged formulation

(Chapter 4).

2. Effectively deal with instabilities and oscillations that occur from FEM approxima-

tions of the advection equation and the coupled nature of this problem (Chapter

4).

3. Compare the developed numerical model with a benchmark problem from existing

literature (Chapter 5).

4. Reduce the computational cost of carbon sequestration injection simulations by

using adaptive timesteps (Chapter 5).

5. Improve the approximation of the pressure singularity due to the injection of CO2

using XFEM (Chapter 6).

Chapter 2 provides a review of relevant concepts related to modelling flow in porous

media, with a focus on carbon sequestration. It also discusses solution techniques for

coupled models. Chapter 3 considers the oscillations that can occur when numerical

modelling of an advection term. Stabilized Finite Element Methods are introduced and

compared using one dimensional elements. These stabilized FEMs will be examined fur-

ther in the context of coupled numerical models for carbon sequestration. Chapter 4
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addresses objectives one and two and develops a framework based on FEM to solve the

governing equations for vertically averaged multiphase flow. Several stabilized FEMs are

considered to handle the numerical oscillations that occur in the numerical solution of the

problem. Both linear and quadratic stabilization methods are considered and compared.

Conclusions are drawn about the conditions where certain stabilization methods are pre-

ferred. A stabilization approach is identified as offering stable solutions across the widest

range of conditions. In addition, this solution strategy offers consistently stable solutions

with large timesteps. Chapter 5 addresses objectives three and four. The developed FEM

framework is compared to a benchmark problem which compares several other numerical

simulators. The computational cost of the solution strategy is further improved by using

adaptive timesteps that allow larger timesteps as the simulation progresses. Chapter 6

addresses objective five by using the eXtended Finite Element Method (XFEM) to allow

improved approximations of the pressure singularity at an injection well. This yields im-

proved accuracy in the vicinity of wells, even with coarse spatial discretizations. Finally,

Chapter 7 provides the major conclusions from the thesis and concludes with suggestions

for future work.
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Chapter 2

Numerical Modelling of Flow In
Porous Media

2.1 Introduction

In this chapter the theoretical framework for modelling flow in porous media is presented.

The chapter begins by explaining some basic concepts related to flow in porous media.

First, the case of single phase flow is considered. Once the essential concepts of single

phase flow are presented, the discussion moves to multiphase flow. In this case two fluids

(or phases) are present in the porous medium. The chapter concludes with a description

of vertically averaged multiphase flow. This concept is useful to reduce the dimensionality

of multiphase flow problems, resulting in a more computationally efficient framework that

can be successfully used to study carbon sequestration problems.

The remainder of this thesis is based on the following assumptions [3]:

• no rock deformation;

• laminar flow;

• incompressibility of CO2 and brine;
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• hydrostatic pressure distribution;

• constant relative permeability;

• constant viscosities;

• sharp interface between the brine and CO2;

• no capillary pressure at the interface.

2.2 Single Phase Flow

2.2.1 Basic Concepts

This section discusses some essential key ideas related to flow in porous media. The

governing equations of single phase flow are presented at the end of this section. The

topic of flow in porous media is covered by many sources including [59], [60] and [61].

Representative Elementary Volume

A porous medium is actually composed of microscopic pores. In order to make the analysis

tractable a continuum approach is used. A representative elementary volume (REV) is the

smallest volume that has the same properties of interest as the whole volume. Multiple

measurements of properties over the whole volume of samples the size of an REV should

give the same results. The concept of an equivalent porous media (EPM) is used to model

flow in fractured porous media using the concept of a continuum. An REV is required so

that the flow can be modelled as a porous medium. For a thorough treatment of this top

refer to [60].

16



Porosity

The porosity is a measure of the void space of the rock matrix. The porosity is calculated

by:

φ =
Vvoids
Vrock

(2.1)

where φ is the porosity of the rock, Vvoids is the volume of void space, and Vmatrix is the

volume of the solid portion of rock matrix and Vrock = Vvoids + Vmatrix is the total rock

volume.

Density

The density of a fluid is the amount of mass in a given volume:

ρ =
m

V
(2.2)

where ρ is the density of the fluid, m is the the mass of the fluid, and V is the volume of

the fluid.

Permeability

The permeability (k) of an aquifer is a measure the aquifers abililty to allow fluid to flow

through it. Permeability values can range vary across many orders of magnitude, for

example from 10−20 m2 for shale to 10−13 m2 for sandstone [62].

Hydraulic Conductivity

Hydraulic conductivity is the ability of a fluid to flow through a given aquifer. This prop-

erty depends on both the porous media and the fluid. Values can range vary across many
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orders of magnitude, for example from 10−13 m/s for shale to 10−6 m/s for sandstone

[62]. The hydraulic conductivity is calculated by:

κ =
kρg

µ
(2.3)

where k is the permeability of the aquifer, ρ is the density of the fluid, g is the gravitational

constant, and µ is the dynamic viscosity of the fluid.

Dynamic Viscosity

The dynamic viscosity µ is a measure of the internal resistance of a fluid (or gas) to flow.

The higher the dynamic viscosity, the greater the resistance. Air, for example has a much

lower dynamic viscosity than water, which has a dynamic viscosity lower than honey.

2.2.2 Governing Equations

The governing equations for three dimensional porous media flow arise from the conser-

vation of mass combined with Darcy’s law. The conservation of mass of the system is

expressed by the following differential equation:

∂ρφ

∂t
+∇ · (ρa) = s (2.4)

where a is the seepage velocity of the fluid, and s is a source term.

Darcy’s Law is used to determine the fluid flux expressed as volumetric flow per unit

matrix area. based on the gradient of the hydraulic head. Darcy’s law can be written as:

q = −κ∇h (2.5)
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where q is the flux (m/s), κ is the hydraulic conductivity (m2), and h is the hydraulic

head (m) The hydraulic head is given by:

h =
p

ρg
+ z (2.6)

Substituting (2.3) and (2.6) into (2.5) gives:

q = −k

µ
(∇p+ ρg∇z) (2.7)

Darcy’s law is valid for laminar flow. When the Reynold’s number is greater than 10

the validity of Darcy’s law may be questionable [60].

2.3 Multiphase Flow

Injection of CO2 into a brine-filled aquifer can be modelled by the governing equations

for multiphase flow through porous media. This section builds upon the previous section

to describe multiphase flow in porous media. First a few basic definitions are given, then

the governing equations are presented.

2.3.1 Basic Concepts

Capillary Pressure

The capillary pressure is the pressure differential at the interface of two immiscible fluids

such as water and air or water and CO2. In carbon sequestration, for example, the

interaction between brine and CO2 is often of interest, in which case the capillary pressure
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is given by:

pcap = pC − pB (2.8)

where pC and pB are the pressures along the interface in the CO2 and brine respectively.

Relative Permeability

The relative permeability, kCrel, is the relative permeability of CO2 relative to brine. If

kCrel = 1 then effective permeability of the rock is the same for brine and CO2.

Residual Saturation

When the CO2 arrives and displaces the brine a certain amount of brine remains left

behind. This is referred to as the residual brine saturation (SBres). On the other hand,

when CO2 is left behind, this is referred to as residual CO2 saturation.

2.3.2 Governing Equations

The governing equations for immiscible two phase flow in porous media are derived from

mass conservation principles combined with the multiphase flow extension of Darcy’s law.

For incompressible fluids and an incompressible medium the governing equations for each

phase are given by:

∂φSαρα
∂t

+∇ · qαρα = qsαρα (2.9)

where Sα is the saturation for each phase (here α = C for CO2, α = B for brine), qsα

is a source/sink term, and qα is the volumetric flux of each phase and is given by the

multiphase flow extension of Darcy’s law:

qα = −kkαrel
µα
· (∇pα − ραg) (2.10)
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where k is the intrinsic permeability of the porous medium, kαrel is the relative permeability

of each phase, µα is the viscosity of each phase, pα is the pressure in each phase, ρα is the

density of each phase, g is the gravitational vector. The relative permeability, kαrel reflects

the fact that permeability of the medium to each phase is different.

Solving the full three-dimensional multiphase flow equations may be extremely com-

putationally expensive. One can, however, take advantage of the fact that the vertical

dimension of the aquifer is much smaller than the horizontal dimensions and use vertical

averaging to reduce the dimensionality of the equations.

2.4 Vertically Averaged Multiphase Flow

The injection of CO2 into a brine-filled aquifer is illustrated in Figure 2.1. The technique

of vertical averaging has been used to reduce the complexity of CO2 injection simulations

and significantly improve the computational efficiency of carbon sequestration modelling

[17, 18, 19, 20]. The approach reduces the dimensionality of the problem (e.g., from three

dimensions to two dimensions) by integrating the continuity equations (2.9) vertically

through each aquifer.

The vertically averaged formulation is based on several assumptions: incompressibility

of brine; CO2 and solid matrix; constant viscosity and density for brine and CO2; constant

intrinsic permeability; a sharp interface between the brine and CO2; hydrostatic vertical

pressure variation; and no capillary pressure at the interface [3]. The assumption that

the boundary between the fluids is a sharp interface is common as it leads to a great

simplification of the governing equations, for example in [38, 63, 64].

High permeability reservoirs are currently favored for sequestration [12]. Therefore, it

is a reasonable first-order approximation to assume that the capillary forces are negligible
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in comparison to the gravity forces. The large gravity forces result from the large density

contrast and the height of the fluid columns. Therefore, to make the problem simpler,

capillary forces will be neglected as was done in [3]. When more detailed case-specific mod-

elling is required, such as design of a specific operation in a particular geological location,

models that account for capillarity (e.g., TOUGH2) can be used to refine predictions.

CO2 reacts with the brine to form carbonate minerals, which can lead to reduced

porosity and permeability. However, these reactions occur over very long time scales

(e.g., over a thousand years) [2, 3], and as such can safely be neglected in this thesis,

where the focus is on plume migration during the injection period.
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Figure 2.1: Parameters of carbon sequestration model.

The vertically averaged flow equations are obtained from mass balance equations for

the CO2 phase and the brine phase combined with the multiphase flow extensions of

Darcy’s Law for each phase [3]. The mass balance equations for the CO2 and brine
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phases are [3]:

φ(1− SresB )
∂hC
∂t

+∇ · q̂C = qCleak (2.11)

φ(1− SresB )
∂hB
∂t

+∇ · q̂B = qBleak (2.12)

where φ is the porosity of the aquifer, SresB is the brine residual saturation, hC is the depth

of the CO2, hB is the depth of the brine, q̂C is the vertically averaged CO2 flux, q̂B is the

vertically averaged brine flux, qCleak is a source term to account for the injection/leakage

of CO2, qBleak is a source term to account for the leakage of brine. In the equations above,

the densities are eliminated from the mass balance equations by dividing both sides of the

equation by the appropriate density. Figure 2.1 illustrates several key parameters from

(2.11) and (2.12)

Vertical averaging begins with integrating the mass balance equations for each phase

(2.11) and (2.12) over the thickness of the aquifer and substituting in the vertically av-

eraged fluxes (2.13) and (2.14). Reference [41] provides a detailed description of the

derivation.

The vertically average fluxes are given by the multiphase extension of Darcy’s Law [3]:

q̂C = −hC
kkCrel
µC

(∇pbot − ρBg∇H + ∆ρg∇hC + ρCg∇ztop) (2.13)

q̂B = −hB
k

µB
(∇pbot + ρBg∇zbot) (2.14)

where k is the intrinsic permeability, kCrel is the relative permeability, µC is the viscosity

of CO2, µB is the viscosity of brine, pbot is the pressure at the bottom of the formation, ρC

is the density of CO2, ρB is the density of the brine, ∆ρ = ρB − ρC , g is the gravitational

constant, ztop is the vertical height of the top of the aquifer, zbot is the vertical height of
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the bottom of the aquifer, and H is the thickness of the aquifer.

Pressure and Saturation Equations

In order to solve this system of non-linear coupled partial differential equations (PDEs)

equations (2.11) and (2.12) are manipulated to arrive at one equation that can be solved

for the pressure at the bottom of the aquifer and another equation that can be solved for

the height of the interface between the two phases [41]. These two equations are called

the pressure equation and the saturation equation.

The pressure equation is obtained using the mass balance equations (2.11) and (2.12).

The mass balance equation for each phase is multiplied by the density of the other phase.

These two equations are then added together. Using this approach leads to the transient

terms cancelling out. The result is an steady-state elliptical pressure equation.

∇ ·
(
hC

kkCREL
µC

(∇pbot + ∆ρg∇hC) + hB
k

µB
(∇pbot)

)
= −qBleak − qCleak (2.15)

pbot(x, t) = pbot(x, t) on Γp (2.16)

q̂C(x, t) · n = qC(x, t) on Γq (2.17)

q̂B(x, t) · n = qB(x, t) on Γq (2.18)

The assumption of incompressibility is reflected in the loss of the transient term in

2.15. The compressibility of the CO2 may be particularly important near injection wells.

Further away from the wells, however, the pressure gradient is much smaller and thus

the incompressibility assumption is quite reasonable. The focus of the models developed

in this thesis is on the late time CO2 plume evolution. As such, the assumption of

incompressibility is a good approximation for the model described in this thesis.

24



The saturation equation is obtained by substituting the multiphase extension of Darcy’s

Law (2.14) into the mass balance for brine (2.12). The brine equation is selected as the

saturation equation in this thesis, but the CO2 mass balance equation could also have be

used as the saturation equation.

φ(1− SresB )
∂hB
∂t
−∇ ·

(
hB

k

µB
(∇pbot + ρBg∇zbot)

)
= qBleak (2.19)

hB(x, t) = hB(x, t) on Γh (2.20)

hB(x, 0) = ho(x) on Ω (2.21)

In Chapter 4, Chapter 5, and Chapter 6 a description is given of how these two

equations are discretized in space using the FEM and integrated in time using the FDM.

2.5 Coupled Models

Most of the studies in the literature that deal with CO2 sequestration consider uncoupled

models that, in general, solve for only one physical process (e.g., flow) and ignore other

physics involved (e.g., thermal, mechanical, chemical effects). It is often crucial, however,

to understand the many physical process that occur during CO2 injection and how they

affect one another. For example, the thermal stresses induced during injection can create

leakage pathways in the form of fractures through the caprock. A review of coupling

approaches applicable to carbon sequestration is given in [65].

Numerical models for carbon sequestration can include the coupling of many processes

such as: stress-temperature, stress-temperature-chemical, pressure-stress, pressure-stress-

temperature. In the numerical framework developed in this thesis, the coupling exists

between pressure and the average CO2 (or brine) depth.
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There are three main ways to handle the coupled physical processes discussed in nu-

merical models: one-way coupling, sequential (iterative) coupling, and full coupling [66].

One-way coupling involves first obtaining solutions to the one of the unknowns. The sec-

ond equation is updated with the solution to the first unknown and it is used to solve for

the second unknown. This method is called a one-way coupling because there is only a

one-way transfer of information. For example with pressure-stress coupling, solutions are

first obtained for the fluid equations [66]. The pore pressures are then updated and used

to solve the geomechanical equations of stress. The fluid solutions transfer the updated

pore pressures to the geomechanical solution, but the geomechanical solution does not

transfer any information to the fluid solutions.

In sequential coupling, the solution of the first unknown is used to solve for the second

unknown. The second unknown is used to update the solution of the first unknown. The

updated solution for the first unknown is used to update the second unknown. This pro-

cess of updating the solutions to the unknowns can be repeated one or more times. As an

example of sequential coupling consider a pressure-displacement coupling. The pressure

equations are solved while the displacements remain constant, then the momentum equa-

tions are solved while the pressures remain constant [66]. Information is passed back and

forth between solvers until convergence is achieved. Sequential coupling can be done using

two separate software programs - a fluid flow solver and a geomechanics solver. Sequen-

tially coupled solutions for fluid flow and geomechanics are studied in [67]. One useful

sequential coupling strategy that has been useful to the reservoir simulation community is

IMPES (IMplicit Pressure Explicit Saturation) [68]. A special case of sequential coupling

is explicit (staggered) coupling, where only a single iteration is performed.

In full coupling, all of the equations are solved simultaneously. A fully coupled multi-
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phase flow and thermo-poromechanical effects formulation is considered in [66] where the

fully coupled solution was compared with one-way coupling and iterative coupling and

superior accuracy of fully coupled solutions was demonstrated.

The importance of coupled models of various forms for carbon sequestration problems

has been demonstrated in several studies. Using the In Salah project as a case study, a

coupled reservoir-geomechanics analysis of CO2 injection was performed [69]. Simulations

were compared with ground deformation monitoring, to explain the ground deformations.

In [47] coupled simulations of CO2 injection were performed. The simulations included

effects of Thermal-Hydraulic-Mechanical-Chemical (THMC). A stabilized FEM was used

to assess stress and pressure changes near an injection. The results show that chemical and

thermal processes can have significant effects near an injection well. Coupled simulations

have also been demonstrated to be useful to estimate safe injection pressures near faults

in [16, 47].

Coupled models are an important tool to help understand how various physical pro-

cesses influence one another. By using coupled models carbon sequestration systems can

be better understood. Coupled models can be used to test critical assumptions made in

uncoupled models. A widespread acknowledgment of this importance is responsible for

the recent publication of many good papers on the subject (e.g., [47, 66, 70, 65]).

2.6 Chapter Summary

In this chapter the fundamentals of flow in porous media were reviewed. Essential con-

cepts were presented to understand single phase flow and then the governing equations

for single phase flow were discussed. The related concepts and governing equations for

multiphase flow were then described. Vertically averaged multiphase flow governing equa-
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tions were presented as a basis for mathematical modelling of plume evolution in carbon

sequestration. The chapter concluded with a discussion of solution strategies for coupled

problems.
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Chapter 3

Stabilized Finite Element Methods
for Advection-Diffusion-Reaction
Equations

3.1 Introduction

There are many possible forms of the Finite Element Method (FEM), but typically FEM

refers to the Galerkin FEM where the weight functions and interpolation functions are

of the same form. The standard Galerkin FEM is well suited for diffusion problems (i.e.

Poisson’s equation) since the diffusion operator is symmetric. This leads to symmetric

system matrices and the best approximation property of FEM applies [71]. The best

approximation property states that the error in the FEM approximation will be minimized

by finding the optimal function from the approximation space. Therefore, the FEM

approximation will find the optimal solution based on the assumed shape functions. The

Galerkin FEM, however, can encounter non-physical oscillations and instabilities when

discretizing PDEs with significant advection terms. An advection operator is of the first

order and leads to unsymmetric system matrices. The Galerkin FEM discretization of a
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PDE with an advection term leads to a truncation error in the form of negative artificial

diffusion. Therefore spatial instabilities can occur in the solution when advection is present

in the governing equation [72, 71] and dominates the diffuse term.

In the development of a carbon sequestration simulation framework, one of the two

non-linear coupled PDEs is dominated by an advection term. This section discusses vari-

ous alternative FEMs available to solve this problem. In order to do this, one dimensional

model problems are used to elucidate some techniques that will prove useful in later chap-

ters.

3.2 Types of Partial Differential Equations

In general there are three types of partial differential equations (PDEs): elliptical, parabolic,

and hyperbolic. Mathematically these three classes of PDEs can be described by the fol-

lowing general form:

c1(x, y)
∂2u

∂x2
+c2(x, y)

∂2u

∂x∂y
+c3(x, y)

∂2u

∂y2
+c4(x, y)

∂u

∂x
+c5(x, y)

∂u

∂y
+c6(x, y)u+c7(x, y) = 0

(3.1)

where c1(x, y), c2(x, y), c3(x, y), c4(x, y), c5(x, y), c6(x, y), and c7(x, y) are variables that in

general vary in space.

If c2
2 − 4c1c3 < 0 then (3.1) is an elliptical equation.

If c2
2 − 4c1c3 = 0 then (3.1) is a parabolic equation.

If c2
2 − 4c1c3 > 0 then (3.1) is a hyperbolic equation.

If c1 = c2 = c3 = 0 then (3.1) is a first order PDE which is hyperbolic.

The Galerkin FEM provides excellent approximations for elliptical and parabolic equa-

tions since the system of equations are symmetric, and thus the best approximation prop-
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erty holds. For advection equations, which are first order hyperbolic PDEs, the Galkerin

FEM leads to unsymmetric systems which lose the best approximation property [71].

3.3 Advection-Diffusion-Reaction Equation

The governing equation that is the subject of this chapter is the advection-diffusion-

reaction equation, which is given as:

∂u

∂t
+ a

∂u

∂x
− v∂

2u

∂x2
+ σu = s (3.2)

u(x, 0) = uo(x) on Ω (3.3)

u = uD on ΓD (3.4)

vn
∂u

∂x
= h on ΓN (3.5)

where u is an unknown scalar quantity, a is the velocity, v is the diffusion coefficient, σ

is a reaction term, s is a source/sink term, Ω is the entire domain, ΓD is the Dirichlet

(essential) boundary, ΓN is the Neumann (natural) boundary, uo is the initial value of u,

uD is the prescribed value of u on the boundary ΓD, n is a unit normal to the boundary

ΓN , and h is the prescribed flux on the boundary ΓN .

The first term in (3.2) is the unsteady term, the second is the advection of the unknown

quantity u, by the velocity a. The third is the diffusion of the unknown quantity u. The

fourth term is the reaction, σ. If σ > 0 then it represents the dissipation of the quantity

u and if σ < 0 then it represents the production of the quantity u.

The Galerkin FEM does not satisfy the original PDE, but instead implicitly solves a

modified equation which has an additional term added to the original which represents

negative artificial diffusion [71]. Quadratic elements have the added difficulty that the
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mid and corner nodes have different forms of the negative diffusion operator [71]. The

negative diffusion operator introduced by the Galerkin approximation is given by:

v
∂2u

∂x2
(3.6)

where v is the artificial diffusion coefficient. The Galerkin FEM effectively solves (3.2)

with (3.6) added to the left hand side of the equation.

3.3.1 Peclet Number

The Peclet number is a measure of the relative magnitude of advection to diffusion. The

mesh Peclet number is given by:

Pe =
a∆x

2v
(3.7)

where ∆x is a measure of the element size.

When |Pe| > 1 spatial oscillations can occur with the Galerkin FEM. If diffusion is

not present, Pe approaches infinity, and the Galerkin method gives a solution that is very

likely to be contaminated by non-physical oscillations, which can be difficult to control.

3.3.2 Damkohler Number

The Damkohler number, D is a measure of the relative magnitude of the reaction term

and the advection term. The mesh Damkohler number is calculated from:

D =
σ∆x

a
(3.8)

The Damkohler number is used to compare the magnitudes of the reaction term and
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the advection term.

3.4 Weak Form

Before (3.2) is discretized with the Galerkin Finite Element method the weak form is

considered first. The weak form of (3.2) that results from the Galerkin approach is find

u(x, t) ∈ U such that:

∫
Ω

δu
∂u

∂t
dΩ+

∫
Ω

δua
∂u

∂x
dΩ+

∫
Ω

∂δu

∂x
v
∂u

∂x
dΩ+

∫
Ω

δuσdΩ =

∫
Ω

δusdΩ+

∫
ΓN

δuhdΓ,∀δu ∈ U0

(3.9)

where δu is a weight function. The function spaces for u and δu are given as:

U = {u(x, t)|u(x, t) ∈ H1, u(x, t) = u on Γu}

U0 = {δu(x)|δu(x) ∈ H1, δu(x) = 0 on Γq}
(3.10)

where u is the prescribed value of the Dirichlet boundary condition, Γu is the Dirichlet

boundary, and Γq is the Neumann boundary.

3.5 Stabilization Techniques

For advection-diffusion-reaction equations, when the Peclet number is large, oscillations

can occur in a Galerkin FEM solution. Oscillations can arise from the solution of (3.2)

because the Galerkin FEM actually solves a modified form of (3.2) where the diffusion

coefficient v is equal to v (see (3.6)). Sharp gradients in the solution, as occur at the start

of CO2 injection, when CO2 plumes merge or when the CO2 plume reaches the boundaries

of the domain, are particularly problematic. There are several approaches to stabilize
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these approximations including: the Streamline Upwind (SU) method [73], the Streamline

Upwind Petrov Galerkin (SUPG) method [73], the Least Squares Finite Element Method

(LSFEM) [74, 75, 76], the Subgrid Scales (SGS) method [77, 78], the Galerkin Least

Squares (GLS) method [79], Upwinding [80, 81], the Taylor-Galerkin method [82], Bubble

Functions [83], Finite Increment Calculus [84], and the Discontinuous Galerkin (DG)

method [85].

In this chapter the discussion and examples will focus on five stabilized FEMs: the

Streamline Upwind (SU) method [73], the Streamline Upwind Petrov Galerkin (SUPG)

method [73], the Least Squares Finite Element Method (LSFEM) [74, 75, 76], the Subgrid

Scales (SGS) method [77, 78] and the Galerkin Least Squares (GLS) method [79]. These

five methods stabilize the Galerkin FEM by the use of a perturbation operator that

operates on the weight function [71]. The modified weak form for the stabilized methods

is given as: find u(x, t) ∈ U such that:

∫
Ω

δu
∂u

∂t
dΩ +

∫
Ω

δua
∂u

∂x
dΩ +

∫
Ω

∂δu

∂x
v
∂u

∂x
dΩ +

∫
Ω

δuσdΩ

+
∑
e

∫
Ωe

P (δu)τR(u)dΩ =

∫
Ω

δusdΩ +

∫
ΓN

δuhdΓ

(3.11)

where R(u) is the residual of (3.2), P (δu) is a perturbation operator that distinguishes

the stabilization methods, τ is a stabilization parameter, and e is the element number.

Note that when R(u) = 0 the weak form (3.11) is equivalent to (3.9).
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3.5.1 Streamline Upwind (SU) and Streamline Upwind Petrov
Galerkin (SUPG)

The Streamline Upwind (SU) and Streamline Upwind Petrov Galerkin (SUPG) stabiliza-

tions [86] have a perturbation operator in the form of [71]:

P (δu) = a
∂δu

∂x
(3.12)

where a is the velocity and δu is a weight function from the Galerkin method.

The difference between SU and SUPG is in a different form of the residual R(u).

SUPG uses the full residual from (3.2):

R(u) =
∂u

∂t
+ a

∂u

∂x
− v∂

2u

∂x2
+ σu− s (3.13)

while SU only uses the advection term of the residual:

R(u) = a
∂u

∂x
(3.14)

3.5.2 Stabilization Parameter

The stabilization parameter, τ in (3.11) scales the additional term that is added to the

Galerkin formulation to stabilize the spatial oscillations. Many definitions of the stabiliza-

tion parameter τ are presented in the literature. Two forms of the stabilization parameter

for one dimension for use with the θ-family of time integration schemes are given by [87]

and [88] respectively:

τ =

((
1

θ∆t

)2

+

(
2a

∆x

)2

+ 9

(
4v

∆x2

)2

+ σ2

)−1/2

(3.15)
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τ =

(
1

θ∆t
+

2a

∆x
+

4v

∆x2 + σ

)−1

(3.16)

where ∆t is the timestep size, ∆x is the element size, and θ determines the time integration

scheme. θ = 0 is the Forward Euler (FE) method, θ = 0.5 is the Crank-Nicolson (CN)

method, and θ = 1 is the Backward Euler (BE) method. At large Peclet numbers these

two definitions of τ give the same result.

3.5.3 Galerkin Least Squares (GLS)

The Galerkin Least Squares (GLS) stabilization was first presented in [79]. The pertur-

bation operator is derived from a least squares minimization of the residual [79]. The

perturbation operator for the GLS stabilization is [71]:

P (δu) = a
∂δu

∂x
− v∂

2δu

∂x2
+ σδu (3.17)

P (δu) for GLS is the same as SUPG for the advection diffusion equation when linear

elements are used to approximate u and σ = 0. The residual is given by (3.13).

3.5.4 Subgrid Scales Method (SGS)

The Subgrid Scales (SGS) method was originally appeared in [77] and was adapted to the

advection-diffusion equation in [89]. In the SGS method the perturbation operator takes

the form [71]:

P (δu) = a
∂δu

∂x
+ v

∂2δu

∂x2
− σδu (3.18)

Just as with GLS stabilization this reduces to SUPG for linear elements when σ = 0.

The residual is given by (3.13).
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3.5.5 Least Squares Finite Element Method (LSFEM)

The Least Squares Finite Element Method (LSFEM) can be represented by the same

weak form as the Galerkin FEM, but the weight functions are replaced by the LSFEM

weight function. Two LSFEM formulations can be obtained for transient problems. The

difference lies in the order of the discretization. The weak form for LSFEM can be written

as find u(x, t) ∈ U such that:

∫
Ω

δuLS
∂u

∂t
dΩ+

∫
Ω

δuLSa
∂u

∂x
dΩ+

∫
Ω

∂δuLS

∂x
v
∂u

∂x
dΩ+

∫
Ω

δuLSσdΩ =

∫
Ω

δuLSsdΩ+

∫
ΓN

δuLShdΓ

(3.19)

where δuLS,ST = a∂δu
∂x
−v ∂2δu

∂x2
+σδu if space is discretized first and δuLS,TS = δu+a∂δδu

∂x
−

v ∂
2u
∂x2

+ σδu if time is discretized first.

LSFEM and GLS are similar, but differ in two main ways. In LSFEM the entire weight

function is applied throughout the domain, while GLS applies the Galerkin portion of the

weight function throughout the entire domain, but the remainder of the weight function

(the perturbation function) is applied only over the element interiors when τ 6= 0.

The second difference between LSFEM and GLS is the stabilization parameter τ . In

LSFEM τ = θ∆t arises naturally from the derivation. GLS, on the other hand, requires

the selection of a somewhat arbitrary value of τ such as that given in [88].
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3.6 Finite Difference Method (FDM) Discretization

in Time

When (3.9) or (3.11) is discretized in space, a system of equations of the following form

must be solved:

[C]{u̇}+ [K]{u} = {F} (3.20)

where [C] is a storage matrix, [K] is a conductance matrix, and {F} is a flux vector. These

matrices are defined in the next section for the various spatial discretization schemes. In

this chapter, the time domain is discretized using the θ-family of FDMs, leading to the

system of equations of the form:

([C] + ∆tθ[K]) {u}n+1 =

([C]−∆t (1− θ) [K]) {u}n + ∆t
(
θ{F}n+1 + (1− θ) {F}n

) (3.21)

which can be rewritten as:

[Keff ]{u}n+1 = {Feff}n+1 (3.22)

where

[Keff ] = ([C] + ∆tθ[K]) (3.23)

and

{Feff}n+1 = ([C]−∆t (1− θ) [K]) {u}n + ∆t
(
θ{F}n+1 + (1− θ) {F}n

)
(3.24)

where [Keff ] is the effective conductance matrix, and {Feff} is the effective flux vector.

If θ = 0 this is referred to as Forward Euler (FE), if θ = 0.5 it is called Crank-Nicolson
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(CN) and if θ = 1 it is referred to as Backward Euler (BE).

3.7 Stabilized FEM Discretizations in Space

3.7.1 Galerkin FEM Discretization

The discrete equations are obtained by substituting the finite element shape functions

into the weak form (e.g., (3.11)). The finite element approximation is given by:

uh(x) =
∑
I∈N

NI(x)uI , x ∈ Ω (3.25)

where NI(x) are the shape functions, uI is the unknown quantity at the node I, and N

is the set of all nodes in the domain Ω. The Galerkin advection-reaction matrix is given

by:

Ke
G =

∫
Ωe

NeTaBedΩe +

∫
Ωe

NeTσNedΩe (3.26)

where Ne is the shape function vector for element e, Be are the derivatives of the shape

functions, and Ωe is the domain of element e. The Galerkin storage matrix is given by:

Ce
G =

∫
Ωe

NeTNedΩe (3.27)

The Galerkin source flux vector is given by:

Fe
G =

∫
Ωe

NeTsdΩe (3.28)
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3.7.2 SU and SUPG FEM Discretizations

The SUPG and SU advection-reaction matrices are given by:

Ke
SUPG =

∫
Ωe

NeTaBedΩe +

∫
Ωe

NeTσNedΩe +

∫
Ωe

BeTτa2BedΩe +

∫
Ωe

BeTτaσNedΩe

(3.29)

and

Ke
SU =

∫
Ωe

NeTaBedΩe +

∫
Ωe

NeTσNedΩe +

∫
Ωe

BeTτa2BedΩe (3.30)

The SUPG and SU storage matrices are given by:

Ce
SUPG =

∫
Ωe

NeTNedΩe +

∫
Ωe

(Ne + aBe)TNedΩe (3.31)

and

Ce
SU = Ce

G (3.32)

The SUPG and SU source flux vectors are given by:

Fe
SUPG =

∫
Ωe

NeTsdΩe +

∫
Ωe

BeTasdΩe (3.33)

and

Fe
SU = Fe

G (3.34)
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3.7.3 GLS FEM Discretization

The GLS advection-reaction matrix is given by:

Ke
GLS =

∫
Ωe

NeTaBedΩe +

∫
Ωe

NeTσNedΩe +

∫
Ωe

(aBe + σNe)Tτ(aBe + σNe)dΩe

(3.35)

The GLS storage matrix is given by:

Ce
GLS =

∫
Ωe

NeTNedΩe +

∫
Ωe

(aBe + σNe)TτNedΩe (3.36)

The GLS source flux vector is given by:

Fe
GLS =

∫
Ωe

NeTsdΩe +

∫
Ωe

(aBe + σNe)TτsdΩe (3.37)

3.7.4 SGS FEM Discretization

The SGS advection-reaction matrix is given by:

Ke
SGS =

∫
Ωe

NeTaBedΩe +

∫
Ωe

NeTσNedΩe +

∫
Ωe

(aBe − σNe)Tτ(aBe + σNe)dΩe

(3.38)

The SGS storage matrix is given by:

Ce
SGS =

∫
Ωe

NeTNedΩe +

∫
Ωe

(aBe − σNe)TτNedΩe (3.39)
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The SGS source flux vector is given by:

Fe
SGS =

∫
Ωe

NeTsdΩe +

∫
Ωe

(aBe − σNe)TτsdΩe (3.40)

3.7.5 LSFEM Discretization

If space is discretized first (or for a steady state problem) then the LSFEM advection-

reaction matrix is given by:

Ke
LSFEM,ST =

∫
Ωe

(aBe + σNe)T(aBe + σNe)dΩe (3.41)

The LSFEM storage matrix is given by:

Ce
LSFEM,ST =

∫
Ωe

(aBe + σNe)TNedΩe (3.42)

The LSFEM source flux vector is given by:

Fe
LSFEM,ST =

∫
Ωe

(aBe + σNe)TsdΩe (3.43)

On the other hand, if the discretization in time is performed first, then the LSFEM

matrices and vectors are given below. The LSFEM advection-reaction matrix is:

Ke
LSFEM,TS =

∫
Ωe

NeTaBedΩe +

∫
Ωe

NeTσNedΩe +

∫
Ωe

(aBe + σNe)T(aBe + σNe)dΩe

(3.44)
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The LSFEM storage matrix is:

Ce
LSFEM,TS =

∫
Ωe

NeTNedΩe +

∫
Ωe

(aBe + σNe)TNedΩe (3.45)

The LSFEM source flux vector is:

Fe
LSFEM,TS =

∫
Ωe

NeTsdΩe +

∫
Ωe

(aBe + σNe)TsdΩe (3.46)

The above matrices are substituted into (4.32) to complete the space-time discretiza-

tion. These discretizations will be demonstrated in the next section.

3.8 Courant Number

The Courant number is a measure of the timestep size in relation to the advective velocity

and the element size and is given by:

Cr =
a∆t

∆x
(3.47)

where ∆t is the timestep size and ∆x is the element size.

3.9 A Comparison of Stabilization Methods for One

Dimensional Advection / Advection-Reaction Equa-

tions

In this section four numerical examples are provided to compare the Galerkin FEM and

five stabilized FEMs (SU, SUPG, GLS, SGS, LSFEM). The examples focus on four vari-

ants of (3.2): the steady state advection equation, the steady state advection-reaction
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equation, the unsteady advection equation, and the unsteady advection-reaction equation.

All of the examples presented in this section are in one dimension, but the methodologies

are applicable to two dimensional and three dimensional systems. Diffusion is not con-

sidered as it is not present in the advection-reaction equation that is considered in the

chapters that follow. The absence of a diffusion term makes stabilization more difficult,

since the presence of diffusion can offset the negative diffusion introduced by the Galerkin

FEM discretization of an advection-diffusion-reaction equation.

3.9.1 One Dimensional Steady State Advection Equation

The steady state advection equation is now considered in one dimension. The governing

equation and boundary conditions are given by:

a
∂u

∂x
= s(x) (3.48)

u = uD on ΓD (3.49)

n
∂u

∂x
= f on ΓN (3.50)

Example 1

For this example a = 1 is assumed to be constant. At x = 0 a Dirichlet boundary

condition is imposed of u = 0. At x = L a no flow Neumann boundary condition is

specified. In other words, f = 0 in (3.50).

The source function is given by:

s(x) =
e(x−1)/ε

ε(1− e−1/ε)
; (3.51)
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where ε = 0.05 [54]. The exact solution of this problem is given as:

uexact = 1− (1− e(x−1)/ε))

(1− e−1/ε)
; (3.52)

Figure 3.1 compares the exact solution with the solutions obtained with the Galerkin,

SU, SUPG, LSFEM methods using 10 linear finite elements to discretize the domain. The

exact solution is plotted at the nodal locations and shown by the solid black line. The

Galerkin solution shows non-physical oscillations. The SU, SUPG, and LSFEM solutions

do not contain these oscillations. For the pure advection equation, the SGS and GLS

stabilizations are equivalent to SUPG. In the case of SU, the perturbation function is not

applied to the source term and as such erroneous results can occur when the source term

is not zero as can be seen here.

Figure 3.2 shows the effect of increasing the number of elements to 100. All of the

methods, including Galerkin appear to give smooth results. However, the Galerkin method

gives non-physical oscillations of a very small magnitude as shown in Figure 3.3. The SU,

SUPG, and LSFEM solutions do not contain these oscillations and the solutions agree well

with the exact solution. The oscillations are still present in the Galerkin approximation

when the number of elements is increased to 1024, as shown in Figure 3.5, although they

are not apparent in Figure 3.4.

Figure 3.6 shows the convergence of the L2 error. The L2 error is given by:

‖εL2‖ =

(∫
Ω

(uexact − uh)2dΩ

) 1
2

(3.53)

where uexact is the exact solution and uh is the approximate solution. The normalized L2
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Figure 3.1: Solution to steady state advection problem using 10 elements.
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Figure 3.2: Solution to steady state

advection problem using 100 ele-

ments.

0 0.002 0.004 0.006 0.008 0.01
−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

−5

x

u

 

 

SU
SUPG
LSFEM
Exact
Galerkin

Figure 3.3: Solution to steady state

advection problem using 100 ele-

ments. Close-up of small magnitude

oscillations in Galerkin FEM solu-

tion.

error is given by:

εL2 =

(∫
Ω

(uexact − uh)2dΩ
) 1

2(∫
Ω

(uexact)2dΩ
) 1

2

(3.54)

From Figure 3.6 it can be seen that SUPG and LSFEM converge at the optimal rate

of 2. SU converges at much lower rate of 1.02 because it is an inconsistent method as not

every term in the residual is stabilized. The Galerkin FEM converges at a slightly slower

rate and the L2 error associated with Galerkin is larger for each element size than SUPG
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Figure 3.4: Solution to steady state

advection problem using 1024 ele-

ments.
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Figure 3.5: Solution to steady state

advection problem using 1024 ele-

ments. Close-up of small magnitude

oscillations in Galerkin FEM solu-

tion.

and LSFEM due to the presence of the oscillations that reduce with mesh refinement as

shown in Figure 3.3 and Figure 3.5.

10
−5

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

∆ x

L 2 E
rr

or

 

 

Galerkin
SU
SUPG
LSFEM

Galerkin Fit=1.98
SU Fit=1.02
SUPG Fit=2.00
LSFEM Fit=2.00

Figure 3.6: Convergence study of steady state advection problem.
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3.9.2 One Dimensional Steady State Advection-Reaction Equa-
tion

In this subsection the steady-state advection-reaction equation is examined. It is similar

to the steady state advection equation, but now a reaction term is also considered. The

governing equation and boundary conditions are given by:

a
∂u

∂x
+ σu = s(x) (3.55)

u = uD on ΓD (3.56)

n
∂u

∂x
= f on ΓN (3.57)

The only difference between (3.55) and (3.50) is the addition of a reaction term to

the left hand side of the equation. Since there is a reaction term in (3.55) SGS and GLS

provide different stabilized methods than SUPG.

Example 1

The same example as the previous section is repeated here, but with σ 6= 0. Several values

of σ are considered. The effect of σ on the exact solution is shown in Figure 3.7. The

exact solution from the previous example (σ = 0) is shown by a solid blue line. Positive

values (dashed lines) of σ
a

fall to the right of the σ = 0 solution. Negative values of σ
a

are

indicated by solid lines and fall to the left of the σ = 0 solution.

Figure 3.8 shows the numerical solutions using 1024 element for the case when σ =

−100. SUPG, GLS, and SGS agree very well with the exact solution. SU gives a solution

that is overdiffuse, but gives a reasonable approximation. LSFEM and Galerkin, on the

other hand, give solutions that are far from the exact solution. Figure 3.9 zooms in

further on these solutions. It is shown that the Galerkin solution has small magnitude
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Figure 3.7: Exact solutions for various values of σ.

oscillations, while the other solutions are smooth.
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Figure 3.8: Solution to steady

state advection-reaction problem us-

ing 1024 elements - σ = −100.
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Figure 3.9: Solution to steady

state advection-reaction problem us-

ing 1024 elements - σ = −100.

In Figure 3.10 and Figure 3.11, σ = 100 is used to generate the results. All of the

methods agree very well with the exact solution both on the scale of the entire domain

(Figure 3.10) and locally (Figure 3.11).

Figure 3.12 shows the solutions using the various FEMs with 1024 elements for σ =

−10. SU, SUPG, GLS and SGS agree well with the exact solution. Galerkin and LSFEM

give poor approximations. The Galerkin solution is has small magnitude oscillations as
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shown in Figure 3.13.
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Figure 3.10: Solution to steady

state advection-reaction problem us-

ing 1024 elements - σ = 100.
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Figure 3.11: Solution to steady

state advection-reaction problem us-

ing 1024 elements - σ = 100.
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Figure 3.12: Solution to steady

state advection-reaction problem us-

ing 1024 elements - σ = −10.
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Figure 3.13: Solution to steady

state advection-reaction problem us-

ing 1024 elements - σ = −10.

The solutions when σ = 10 are plotted in Figure 3.14 and Figure 3.15. On the scale

of the entire domain all methods appear to give results that are very close the the exact

solution, however, upon closer inspection the Galerkin approximation experiences small

magnitude oscillations.
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Figure 3.14: Solution to steady

state advection-reaction problem us-

ing 1024 elements - σ = 10.
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Figure 3.15: Solution to steady

state advection-reaction problem us-

ing 1024 elements - σ = 10.

3.9.3 One Dimensional Unsteady Advection Equation

The unsteady advection equation is considered in this example. The governing equation

for this problem is given by:

∂u

∂t
+ a

∂u

∂x
= s(x, t) (3.58)

u(x, 0) = u0(x) on Ω (3.59)

u = uD on ΓD (3.60)

n
∂u

∂x
= f on ΓN (3.61)

The FEMs described in this subsection are used to discretize in space. The Finite Dif-

ference Method (FDM) is used to discretize in time. The general theta family relationship

is given by (3.21).

When θ = 0 the FE time integration is explicit. If θ = 0.5 the method is CN. When

θ = 1 the method is BE. CN and BE are implicit methods. The effect of various values

of θ will be considered in the next two examples. In addition, the effect of timestep size

will be considered.
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Example 1

In this example the source function from the previous examples is made time-varying and

is given by:

s(x, t) =
e(x−1)/ε

ε(1− e−1/ε)
sin(5t); (3.62)

where ε = 0.05 [54]

The initial conditions are u = 0 throughout the domain. The other properties are the

same as from Section 3.9.1. Figure 3.16 shows the results of θ = 0 with Cr = 0.25 using

25 elements. SU, SUPG and LSFEM-ST give smooth solutions that are reasonably close

to one another. Galerkin and LSFEM-TS, on the other hand are unstable and are not

shown here.

When θ = 0.5 the time integration scheme is referred to as the Crank-Nicolson method

(CN). The results using CN are shown in Figure 3.17. SU, SUPG, LSFEM-ST and

LSFEM-TS give similar solutions to Figure 3.16. Galerkin gives a solution that is very

oscillatory. When BE time integration is used the Galerkin oscillations are slightly reduced

as shown in Figure 3.18.
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Figure 3.16: One dimensional unsteady advection equation, example 1, θ = 0, Cr = 0.25,

25 elements.
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Figure 3.17: One dimensional unsteady advection equation, example 1, θ = 0.5, Cr = 1,

25 elements.
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Figure 3.18: One dimensional unsteady advection equation, example 1, θ = 1, Cr = 1, 25

elements.
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Example 2

In this example there is no source function and the initial conditions are a step function.

The initial step function travels through the domain at a velocity of a = 1. Figure 3.19

shows the solutions with θ = 0 for Cr = 0.1. Only SU does not show any oscillations.

However, the SU approximation is overdiffuse. The largest oscillations occur for Galerkin

and LSFEM-TS to the left of the discontinuity. LSFEM-ST gives the largest oscillations

to the right of the discontinuity. When Cr = 1 the timesteps are too large for the explicit

timestepping scheme and thus the Forward Euler scheme gives unstable solutions. This

case is not shown.

When θ = 0.5 (CN) the solutions are shown in Figure 3.20 and Figure 3.21. All

methods show oscillations except SU. SU appears to be largely unaffected by the size of

the timestep.

Backward Euler (BE) (θ = 1) time integration is considered in Figure 3.22 and Figure

3.23 for Cr = 0.1 and Cr = 1 respectively. When θ = 1 is combined with Cr = 1, all

methods give better approximations with no visible oscillations. SU gives a slightly more

diffuse solution. The apparent large diffusion compared to the exact solution is magnified

by the use 25 elements. As the number of elements is increased, the approximation of

this sharp front can be improved.
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Figure 3.19: One dimensional unsteady advection equation, example 2, θ = 0, Cr = 0.1,

25 elements.
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Figure 3.20: One dimensional unsteady advection equation, example 2, θ = 0.5, Cr = 0.1,

25 elements.
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Figure 3.21: One dimensional unsteady advection equation, example 2, θ = 0.5, Cr = 1,

25 elements.
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Figure 3.22: One dimensional unsteady advection equation, example 2, θ = 1, Cr = 0.1,

25 elements.
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Figure 3.23: One dimensional unsteady advection equation, example 2, θ = 1, Cr = 1, 25

elements.
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3.9.4 One Dimensional Unsteady Advection-Reaction Equation

The final examples in this chapter focus on the unsteady version of the advection-reaction

equation. The governing equation is the same as the previous section, except that now

there is a reaction term present. This equation is given below:

∂u

∂t
+ a

∂u

∂x
+ σu = s(x, t) (3.63)

u(x, 0) = u0(x) on Ω (3.64)

u = uD on ΓD (3.65)

n
∂u

∂x
= f on ΓN (3.66)

Example 1

This example is the same as example 1 in the previous section, with the addition of a

reaction term. Time integration is conducted in the same manner as discussed in the

previous example.

When σ = 10 the results are shown in Figure 3.24 and Figure 3.25 for CN and BE

time integration respectively. The results are very similar. The oscillations in the Galerkin

solution are reduced very slightly for BE compared to CN. Only Galerkin gives oscillations

in the solutions.

Figure 3.26 and Figure 3.27 show the solutions for σ = −10 with CN and BE re-

spectively. The results are similar for the two time integration schemes. Galerkin and

LSFEM-ST give unstable solutions.
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Figure 3.24: One dimensional unsteady advection-reaction equation, example 1, θ =

0.5, Cr = 1, σ = 10, 25 elements.
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Figure 3.25: One dimensional unsteady advection-reaction equation, example 1, θ =

1, Cr = 1, σ = 10, 25 elements.
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Figure 3.26: One dimensional unsteady advection-reaction equation, example 1, θ =

0.5, Cr = 1, σ = −10, 25 elements.
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Figure 3.27: One dimensional unsteady advection-reaction equation, example 1, θ =

1, Cr = 1, σ = −10, 25 elements.
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Example 2

Similar to example 2 in the previous section, the source term is zero and the initial

condition is a step function. The main difference here is the addition of the reaction

term. The exact solution to this problem is given by:

uexact(x, t) = H(at− x)e
−σ
a
x (3.67)

where H() is a heaviside function.

Figure 3.28 and Figure 3.29 compare the solution for σ = 1 when Cr = 0.1 and Cr = 1

respectively using BE time integration. Larger timesteps generally provide smoother

results and give more consistent solutions between the various FEMs. SU is least affected

by the size of the timestep.

When σ = −1 the results are shown in Figure 3.30 and Figure 3.31. Similar to the

previous two figures, larger timesteps reduce the magnitude of the oscillations and SU is

the least affected by changing the size of the timestep.
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Figure 3.28: One dimensional unsteady advection-reaction equation, example 2, θ =

1, Cr = 0.1, σ = 1, 25 elements.
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Figure 3.29: One dimensional unsteady advection-reaction equation, example 2, θ =

1, Cr = 1, σ = 1, 25 elements.
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Figure 3.30: One dimensional unsteady advection-reaction equation, example 2, θ =

1, Cr = 0.1, σ = −1, 25 elements.
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Figure 3.31: One dimensional unsteady advection-reaction equation, example 2, θ =

1, Cr = 1, σ = −1, 25 elements.
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3.10 Chapter Conclusions

In this chapter the steady and unsteady pure advection and advection-reaction equations

were considered. Finite Element Method (FEM) discretizations were used to approximate

the solutions to the steady state advection equation, the steady state advection-reaction

equation, the unsteady advection equation and the unsteady advection-reaction equa-

tion. The discretization of the advection term results in non-physical oscillations in the

solution from the standard (Galerkin) FEM. These oscillations can be controlled with

stabilized FEMs. Several stabilized FEMs were described and compared using four ex-

ample problems. SU, SUPG, LSFEM, SGS, GLS can be used to stabilize FEM under

various scenarios. These stabilization methods were compared with several test problems

to give insights into the stabilization properties of these methods, which will be useful as

they are used in the next chapter to stabilize the saturation equation. Time integration

was performed with the θ-family FDM. In some cases the Galerkin FEM gave seemingly

smooth results, but by zooming in small magnitude oscillations are revealed. This was

not observed with any of the stabilized FEMs. FE time integration was shown to give

unstable results unless small timesteps are used. The magnitude of the oscillations from

the various FEMs were the least when BE time integration was used. Oscillations were

found to be significantly reduced when BE is combined with relatively large timesteps

(Cr = 1). SU gave the most robust solutions across the range of examples considered.

However, SU can give overdiffuse solutions. The presence of a reaction term was shown

that it can increase the magnitude of the non-physical oscillations.

The stabilized FEMs considered in this chapter will be used in Chapter 5 and Chapter

6 in order to stabilize the resulting oscillations that occur during the Galerkin FEM

discretization of vertically averaged multiphase flow equations.
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Chapter 4

Carbon Sequestration Injection
Simulations using a Stabilized Finite
Element Method Framework in
Quasi-Two Dimensions

This chapter is based on two journal articles:

C. Ladubec and R. Gracie, “Stabilized Finite Element Methods for Vertically Averaged

Multiphase Flow for Carbon Sequestration”, Submitted, 2015.

C. Ladubec and R. Gracie, “Vertically Averaged Multiphase Flow Simulations for Car-

bon Sequestration using Stabilized Finite Element Methods and Quadratic Elements”, Sub-

mitted, 2016.

In these articles I was the first author where I led the writing of the journal articles.

In addition, I lead the development of the MATLAB code, and the development of the

formulations.

This chapter addresses objectives 1 and 2 (see Chapter 1) of the thesis:

• Develop a computationally efficient numerical model for carbon sequestration based

on a Finite Element Method framework using a vertically averaged formulation.
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• Effectively deal with instabilities and oscillations that occur from FEM approxima-

tions of the advection equation and the coupled nature of this problem.

4.1 Introduction

The properties of saline aquifers are highly uncertain because of the large size of the

domains, the difficulty in measuring system properties and the high degree of heterogene-

ity. As such, stochastic simulations are required during storage site assessments [90]. In

addition, there is a great deal of uncertainty associated with the location and properties

of leakage pathways. Stochastic approaches require a large number of simulations (using

many different sets of system parameters), dramatically increasing the computational cost

of modelling for site assessment purposes. Therefore, computationally efficient numerical

schemes for modelling CO2 sequestration are needed.

A vertically averaged multiphase flow formulation [3] allows for a significant reduction

in the computational cost by reducing the dimensionality of the problem (e.g., from three

dimensions to quasi-three dimensions or two dimensions to quasi-two dimensions). The

vertically averaged formulation is comprised of two non-linear coupled partial differential

equations (PDEs) that define the mass balance of the CO2 and the brine phases. The

governing equations can be solved either simultaneously, or by using a sequential solution

strategy. Solving the coupled equations simultaneously creates a very large system of

equations that has a large computational cost associated with it. In order to reduce

the computational burden a sequential solution strategy may be utilized. The system of

equations can be manipulated to result in an elliptical equation (i.e., a Poisson equation)

that governs the pressure in the system and a hyperbolic equation (i.e., an advection

equation) that describes the evolution of the average brine saturation [41].
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It is well known that the Galerkin Finite Element Method can produce non-physical

oscillations when used to obtain numerical solutions of advection-dominated PDEs. The

Galerkin FEM discretization of the saturation equation can achieve smooth solutions with

the proper selection of element size and timestep. However, it will be demonstrated that

the Galerkin FEM can lead to solutions with spurious oscillations and often cannot be

used when the CO2 plume encounters a Dirichlet boundary or when multiple plumes mix,

as occurs in the presence of multiple injection wells.

Many solutions exist in the literature to stabilize the Finite Element Method to obtain

satisfactory solutions to advection-dominated problems. A good overview of the subject

is presented in [71]. A large number of approaches have been used in literature to sta-

bilize the Galerkin FEM. The more common approaches include the Streamline Upwind

(SU) method [73], the Streamline Upwind Petrov Galerkin (SUPG) method [73], the

Least Squares Finite Element Method (LSFEM) [74, 75, 76], the Subgrid Scales (SGS)

method [77, 78] and the Galerkin Least Squares (GLS) method [79]. SU and SUPG were

originally presented considering steady-state and transient advection-diffusion equations

[73]. LSFEM was presented as a means to provide stabilized solutions to the steady state

advection-reaction equation [74], and the transient advection equation [75]. GLS was pro-

posed as a stabilization method for advection-diffusion problems [79]. SGS was presented

as a method to stabilize the advection-diffusion equation and the Helmholtz equation (a

diffusion-reaction equation) [77, 78]. Other approaches include Upwinding [80, 81], the

Taylor-Galerkin method [82], Bubble Functions [83], the Discontinuous Galerkin (DG)

method [85], and Finite Increment Calculus [84].

The multitude of stabilization techniques give a great deal of possible approaches to

providing a stabilized Finite Element approximation of an advection equation. Each ap-
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proach has its advantages and disadvantages. Typically stabilization methods are best

suited to a particular problem, and often are inadequate for other problems. In addi-

tion, the stabilization methods in the literature are often optimized for linear uncoupled

systems where the advection term is constant in time and space. In the case of carbon

sequestration considered here the governing equations are non-linear, coupled, and the

advection velocity is not constant. Determining the ideal stabilization method for a given

problem can be non-trivial. Stabilization is more challenging for the advection equation

considered here since there is no diffusion term.

The use of linear elements results in incomplete forms of the SUPG and LSFEM

discretizations. This loss of information may affect the stabilization properties of the

SUPG and LSFEM methods. When linear elements are used SUPG, GLS and SGS all

result in the same formulation. Quadratic elements allow for GLS and SGS stabilizations,

and permit more complete forms of SUPG and LSFEM stabilizations.

In this chapter, a coupled system of non-linear PDEs is considered where the advection

velocity varies with space and time. The pressure is approximated using the Galerkin

FEM, while the saturation equation is discretized in time using the θ-family of Finite

Difference Methods (FDMs) and in space using the FEM and various stabilized FEMs.

The various spatial discretization methods for the saturation equation are compared and

the advantages and disadvantages are highlighted. Stabilization has not been previously

studied in detail for these equations. The selection of appropriate stabilization methods

is highly problem dependent. Furthermore, the optimization of stabilization methods

and associated stabilization parameters have typically focused on linear, uncoupled equa-

tions with constant advection velocity. Therefore, the performance of various stabilization

methods needs to be assessed in the context of the vertically averaged multiphase flow
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equations. While the performance of the various stabilization methods discussed above

may be hypothesized, an actual study of their behaviour is required. Such a study is

presented in this chapter. Due to the complexity of the resulting non-linear coupled dis-

crete equations, stabilization is studied here in a one dimensional (quasi-two dimensional)

context.

4.2 Governing Equations in One Dimension (Quasi-

Two Dimensions)

The problem consists of simulating the injection of CO2 into a deep saline aquifer and

solving for the pressure and saturation distributions over time. A description of the carbon

sequestration system considered in this chapter is shown in Figure 4.1. The multiphase

flow system [3] is described by the mass balance of each phase. The CO2 and brine mass

balance equations are given by:

φ(1− SB)
∂hC
∂t

+
∂q̂C
∂x

= Qinj(t)δ(x− xinj) (4.1)

φ(1− SB)
∂hB
∂t

+
∂q̂B
∂x

= 0 (4.2)

where φ is the porosity of the aquifer, SB is the brine residual saturation, hC(x, t) is the

depth of CO2 and hB(x, t) is the depth of brine as a functions of time and space, Qinj(t)

is the rate of CO2 injection, δ() is Dirac’s delta function, and xinj is the coordinates of the

injection well. The vertically integrated CO2 and brine fluxes, q̂C and q̂B are respectively

given by:

q̂C = −hC
kkrelC

µC

(
∂pbot
∂x
− ρBg

∂H

∂x
+ ∆ρg

∂hC
∂x

+ ρCg
∂ztop
∂x

)
(4.3)
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q̂B = −hB
k

µB

(
∂pbot
∂x

+ ρBg
∂zbot
∂x

)
(4.4)

where k is the permeability of the rock matrix of the aquifer, krelC is the relative permeabil-

ity of CO2, µC is the viscosity of CO2, µB is the brine viscosity, pbot is the pressure along

the the bottom boundary of the aquifer, ρB and ρC are the densities of brine and CO2

respectively, ∆ρ = ρB−ρC , g is the gravitational constant, H is the aquifer thickness, and

ztop and zbot are the depths of the top and bottom boundaries of the aquifer respectively.
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Aquifer
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x

z

CO2 Brine

Figure 4.1: Parameters of carbon sequestration model [4].

The mass balance equations (4.1) and (4.2) are combined with with the flux equations

(4.3) and (4.4). These equations are then manipulated in the same way as described in

[41] to obtain a pressure equation and a saturation equation.
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4.3 Pressure Equation

The pressure equation is determined by adding (4.1) and (4.2), as in [41]. The unsteady

terms φ(1 − SB)∂hC
∂t

and φ(1 − SB)∂hB
∂t

cancel, and what is left is a elliptical equation.

The strong form of the pressure equation is find pbot(x, t) such that:

− ∂

∂x

(
hC
kkCREL
µC

(
∂pbot
∂x

+ ∆ρg
∂hC
∂x
− ρBg

∂H

∂x
+ ρCg

∂ztop
∂x

))
− ∂

∂x

(
hB

k

µB

(
∂pbot
∂x

+ ρBg
∂zbot
∂x

))
= qinjC , x ∈ Ω

(4.5)

and

pbot(x, t) = pbot(x, t) on Γp (4.6)

q̂C(x, t)n = qC(x, t) on Γq (4.7)

q̂B(x, t)n = qB(x, t) on Γq (4.8)

where Ω is the entire domain of the problem, Γp ∪ Γq is the boundary of Ω, Γp ∩ Γq = ∅,

and n is a unit normal to Γq.

4.3.1 Weak Form

In order to derive the FEM formulation, the strong form is converted to a weak form. The

weak form of the pressure equation for the pressure at the bottom of the aquifer (4.5) is:
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find pbot(x, t) ∈ U such that:

∫
Ω

∂δpbot
∂x

hB
k

µB

∂pbot
∂x

dΩ +

∫
Ω

∂δpbot
∂x

hB
k

µB
ρBg

∂zbot
∂x

dΩ +

∫
Ω

∂δpbot
∂x

hC
kkrelC

µC
∆ρg

∂hC
∂x

dΩ

−
∫

Ω

∂δpbot
∂x

hC
kkrelC

µC
ρBg

∂H

∂x
dΩ +

∫
Ω

∂δpbot
∂x

hC
kkrelC

µC
ρCg

∂ztop
∂x

dΩ +

∫
Ω

∂δpbot
∂x

hC
kkrelC

µC

∂pbot
∂x

dΩ

=

∫
Ω

δpbotQinj(t)δ(x− xinj)dΩ + (δpbot (qB + qC))

∣∣∣∣
Γp

,∀δpbot ∈ U0.

(4.9)

The function spaces are given as:

U = {pbot(x)|pbot(x) ∈ H1\Ωwell, pbot(x) = pbot on Γp}

U0 = {δp(x)|δp(x) ∈ H1\Ωwell, δp(x) = 0 on Γp}
(4.10)

These spaces have been used in similar problems, but the author is not aware of any

proof that these spaces are correct.

4.3.2 FEM Discretization

From the weak form (4.9) one can arrive at a Galerkin Finite Element Method (FEM)

discrete pressure equation. The FEM approximation of pressure is taken as:

ph(x) =
∑
I∈N

NI(x)pI , x ∈ Ω (4.11)

where NI(x) are the shape functions for three-node quadratic elements, pI is the pressure

at the node I and N is the set of all nodes in the domain Ω. The pressure approximation

can be expressed in matrix form as:

ph(x) = Npbot (4.12)
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where N contains the shape functions for all nodes and

pT
bot = {p1, p2, ..., pnn} (4.13)

where nn is the total number of nodes in N .

Substituting (4.12) into (4.9) the FEM discretization of the pressure equation can be

determined as:

Kppbot = Fp (4.14)

Fp = Fp1 + Fp2 + Fp3 + Fp4 (4.15)

where Kp is the diffusion matrix, Fp is the total flux vector, which is composed of: Fp1 -

the injection flux vector, Fp2 - the boundary flux vector, Fp3 - the buoyancy flux vector,

and Fp4 - the slope flux vector.

The matrices and vectors defined in the previous two equations are:

Ke
p =

∫
Ωe

BeT

(
hCk

rel
C

µC
+
hB
µB

)
kBedΩe (4.16)

Fe
p1 =

∫
Ωe

NeTQinj(t)δ(x− xinj)dΩe (4.17)

Fe
p2 = NeT (qB + qC)

∣∣∣∣
Γep

(4.18)

Fe
p3 = −

∫
Ωe

BeTkk
rel
C

µC
∆ρghC

∂hC
∂x

dΩe (4.19)

Fe
p4 =

∫
Ωe

BeT

(
hC
kkrelC

µC

(
ρBg

∂H

∂x
− ρCg

∂ztop
∂x

)
−hB

k

µB
ρBg

∂zbot
∂x

)
dΩe (4.20)

where Ne and Be are the shape functions and the shape function derivatives for element

e and Ωe is the domain of element e.
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4.4 Saturation Equation

The strong form of the saturation equation for the brine phase is given by combining (4.2)

and (4.4), resulting in:

∂hB
∂t

=
1

φ(1− SB)µB

((
∂pbot
∂x

+ ρBg
∂zbot
∂x

)
∂hB
∂x

+

(
∂2pbot
∂x2

+ ρBg
∂2zbot
∂x2

)
hB

)
,

x ∈ Ω, t ∈ [0, tend]

(4.21)

hB(x, t) = hB(x, t) on Γh (4.22)

q̂B(x, t)n = qB(x, t) on Γq (4.23)

hB(x, 0) = hBo(x) on Ω (4.24)

where hB(x, t) is the specified Dirichlet boundary condition on the boundary Γh, qB(x, t)

is the prescribed brine flux on the Neumann boundary Γq, and hBo(x) is the initial brine

depth throughout the domain Ω. On the right hand side of the equation the first term in

the brackets is the advection term and the second term is the reaction term.

4.4.1 Galerkin Method

The strong form from the previous section is converted to a weak form, which is then

discretized using the Galerkin Finite Element Method. Green’s Formula is used to reduce

the order of the second derivatives that appear in the reaction term. The advection and

reaction terms become a combined advection-reaction term and a boundary integral. The

boundary integral is zero for Dirichlet boundaries. The Galerkin weak form is given by:
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find hB(x, t) ∈ W such that

∫
Ω

δhB
∂hB
∂t

dΩ−
∫

Ω

∂δhB
∂x

ahBdΩ =

(
δhB

1

φ(1− SB)
qB

) ∣∣∣∣
Γq

, ∀δhB ∈ W0. (4.25)

where δhB is the weight function W and W0 are the appropriate function spaces for hB

and δhB, and a is the advective velocity given by:

a = − k

φ(1− SB)µB

(
∂pbot
∂x

+ ρBg
∂zbot
∂x

)
(4.26)

The Courant number is given by:

Cr =
a∆t

∆x
(4.27)

where ∆t is the timestep size and ∆x is the element size.

The FEM approximation for the depth of brine is given by:

hhB(x, t) =
∑
I∈N

NI(x)hI(t) (4.28)

where NI(x) is the shape function for one dimensional three-node quadratic elements,

hI(t) is the brine depth at the node I (which is a function of time) and N is the set of

all nodes in the domain Ω.

The brine depth approximation can be expressed in matrix form as:

hhB(x, t) = NhB (4.29)
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where N contains the shape functions for all nodes and

hB
T = {h1, h2, ..., hnn} (4.30)

where nn is the total number of nodes in N .

By substituting the FEM approximation of brine depth given by (4.29) into (4.25),

and using the same form for the weight functions, the Galerkin FEM discretization results

in the following system of semi-discrete equations:

[Cα]{ḣB}+ [Kα]{hB} = {Fα} (4.31)

where Cα is the storage matrix, Kα is the advection-reaction matrix, Fα is the flux vector,

hB is the nodal brine depths, ḣB is the time derivative of the depth of brine, and α signifies

the spatial discretization method - Galerkin, SU, SUPG, LSFEM, GLS, or SGS.

After discretizing the above equation in time using the Finite Difference Method

(FDM), the system of equations to solve becomes:

(
[Cα] + ∆tθ[Kα]n+1) {hB}n+1 =

((
[Cα]−∆t (1− θ) [Kα]n+1) {hB}n

+ ∆t
(
θ{Fα}n+1 + (1− θ) {Fα}n)

) (4.32)

where ∆t is the timestep size, θ determines the type of time integration (θ = 0 for the

Forward Euler method (FE), θ = 0.5 for the Crank-Nicolson method (CN) and θ = 1 for

the Backward Euler method (BE), n+ 1 denotes the current timestep, and n denotes the

previous timestep.
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The matrices associated with the Galerkin spatial discretization of (4.25) are given by:

Ke
G = −

∫
Ωe

BeTaNedΩe (4.33)

Ce
G =

∫
Ωe

NeTNedΩe (4.34)

Fe
G =

(
NeT 1

φ(1− SB)
qB

) ∣∣∣∣
Γeq

(4.35)

4.4.2 Stabilization Methods

In order to eliminate the non-physical oscillations that can occur with a Galerkin FEM

approximation, several stabilized FEMs are examined. The following methods will be

considered: the Streamline Upwind (SU) method [73], the Streamline Upwind Petrov

Galerkin (SUPG) method [73], the Least Squares Finite Element Method (LSFEM) [74,

75, 76], the Galerkin Least Squares (GLS) method [79], and the Subgrid Scales (SGS)

method [77, 78]. Each stabilization method can be considered as the original (Galerkin)

weak form of the problem (4.25) with an additional stabilization term that is composed

of a perturbation operator and a residual. Various options are available and these choices

define the various stabilized methods that are considered in this thesis. The additional

stabilization term can be generalized by the following form:

∑
e

∫
Ωe
P (δhB)R(hB)dΩe (4.36)

where P (δhB) is a perturbation function and R(hB) is the residual. The choice of P (δhB)

and R(hB) differentiates the various stabilized methods examined in this chapter.

The weak form for the stabilized methods is obtained by adding (4.36) to (4.25). The
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weak form then becomes find hB(x, t) ∈ W such that:

∫
Ω

δhB
∂hB
∂t

dΩ−
∫

Ω

∂δhB
∂x

ahBdΩ +
∑
e

∫
Ωe
P (δhB)R(hB)dΩe

=

(
δhB

1

φ(1− SB)
qB

) ∣∣∣∣
Γq

, ∀δhB ∈ W0.

(4.37)

where W and W0 are the appropriate function spaces for hB and δhB.

In the sections that follow the perturbation function and the residual for each of the

stabilized methods are discussed. The resulting matrices of the discretization are also

presented.

The Streamline Upwind (SU) and Streamline Upwind Petrov Galerkin (SUPG)
Methods

The Streamline Upwind (SU) and Streamline Upwind Petrov Galerkin (SUPG) methods

share the same perturbation function in (4.36) and (4.37). The perturbation function is

given by:

P SU(δhB) =P SUPG(δhB) = τa
∂δhB
∂x

(4.38)

where τ is the stabilization parameter, and δhB is the weight function.

The definition of τ used in this study is adopted from [91] to account for the reaction

term in (4.21).

τ e =

((
1

θ∆t

)2

+

(
2a

he

)2

+ σ2

)− 1
2

(4.39)

where he is a measure of element size and σ is the reaction term of the residual and is

given by:

σ = − k

φ(1− SB)µB

(
∂2pbot
∂x2

+ ρBg
∂2zbot
∂x2

)
(4.40)
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The distinguishing feature of SU and SUPG is the form of their residuals. SUPG uses

the complete residual of (4.21), while the residual for SU only includes the advective term.

SUPG consistently applies the perturbation operation to all terms in the residual and thus

it is called a consistent stabilization method. SU on the other hand is an inconsistent

stabilization method. The residual for SUPG and SU are given by:

RSUPG(hB) =
∂hB
∂t

+ a
∂hB
∂x

+ σhB (4.41)

RSU(hB) = a
∂hB
∂x

(4.42)

The resulting matrices for the spatial discretization of (4.37) are given by

Ke,stab
SUPG =

∫
Ωe

BeTτa2BedΩe +

∫
Ωe

BeTτaσNedΩe (4.43)

KSUPG = KG + Kstab
SUPG (4.44)

Ke,stab
SU =

∫
Ωe

BeTτa2BedΩe (4.45)

KSU = KG + Kstab
SU (4.46)

Ce,stab
SUPG =

∫
Ωe

BeTτaNedΩe (4.47)

CSUPG = CG + Cstab
SUPG (4.48)

CSU = CG (4.49)

FSUPG = FSU = FG (4.50)
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The Galerkin Least Squares Method (GLS)

The Galerkin Least Squares Method (GLS) uses a different perturbation operator than

SUPG. The perturbation operator for GLS is given by:

PGLS(δhB) = τ

(
δhB
∆t

+ a
∂δhB
∂x

+ σδhB

)
(4.51)

where τ is given by (4.39). The residual is the same as for SUPG and is given by (4.41).

The matrices for the GLS discretization are given by:

Ke,stab
GLS =

∫
Ωe

NeT τ

∆t
aBedΩe +

∫
Ωe

NeT τ

∆t
σNedΩe +

∫
Ωe

BeTτa2BedΩe

+

∫
Ωe

BeTτaσNedΩe +

∫
Ωe

NeTτσaBedΩe +

∫
Ωe

NeTτσ2NedΩe

(4.52)

KGLS = KG + Kstab
GLS (4.53)

Ce,stab
GLS =

∫
Ωe

NeT τ

∆t
NedΩe +

∫
Ωe

BeTτaNedΩe +

∫
Ωe

NeTτσNedΩe (4.54)

CGLS = CG + Cstab
GLS (4.55)

FGLS = FG (4.56)

The Subgrid Scales (SGS) Method

The Subgrid Scales (SGS) method is similar to GLS. The difference between SGS and

GLS is the sign on the last term of the perturbation operator, as shown below:

P SGS(δhB) = τ

(
δhB
∆t

+ a
∂δhB
∂x
− σδhB

)
(4.57)

where τ is given by (4.39).
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The residual is the same as for SUPG and GLS and is given in (4.41). The matrices

for the SGS method are:

Ke,stab
SGS =

∫
Ωe

NeT τ

∆t
aBedΩe +

∫
Ωe

NeT τ

∆t
σNedΩe +

∫
Ωe

BeTτa2BedΩe

+

∫
Ωe

BeTτaσNedΩe −
∫

Ωe
NeTτσaBedΩe −

∫
Ωe

NeTτσ2NedΩe

(4.58)

KSGS = KG + Kstab
SGS (4.59)

Cstab
SGS =

∫
Ωe

NeT τ

∆t
NedΩe +

∫
Ωe

BeTτaNedΩe −
∫

Ωe
NeTτσNedΩe (4.60)

CSGS = CG + Cstab
SGS (4.61)

FSGS = FG (4.62)

The Least Squares Finite Element Method (LSFEM)

There are two main differences between the Least Squares Finite Element Method (LS-

FEM) and the three other consistent stabilization methods (SUPG, GLS and SGS). The

first difference is the general form of the perturbation operator. The second difference

is that the definition of the stabilization parameter τ arises directly from the derivation,

and thus one does not need to define τ separately, as in (4.39).

PLSFEM(δhB) = τLSFEM
(
a
∂δhB
∂x

+ σδhB

)
(4.63)

where τLSFEM is given by the following equation:

τLSFEM = θ∆t (4.64)
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LSFEM shares the same residual as SUPG, GLS, and SGS. The residual is given by (4.41).

The matrices for the LSFEM discretization are given by:

Ke,stab
LSFEM =

∫
Ωe

BeTθ∆ta2BedΩe +

∫
Ωe

NeTθ∆tσ2NedΩe

+

∫
Ωe

NeTθ∆tσaBedΩe +

∫
Ωe

BeTθ∆taσNedΩe

(4.65)

KLSFEM = KG + Kstab
LSFEM (4.66)

Ce,stab
LSFEM =

∫
Ωe

BeTθ∆taNedΩe +

∫
Ωe

NeTθ∆tσNedΩe (4.67)

CLSFEM = CG + Cstab
LSFEM (4.68)

FLSFEM = FG (4.69)

4.5 Solution Procedure

4.5.1 Single Step (SS) Approach

One of the solution strategies that is used to solve the coupled problem is illustrated in

Figure 4.2. It is similar to that found in [68]. The simulation begins at t = 0. The initial

conditions for the saturation equation (4.21) are specified and used to calculate the initial

pressure distribution. Next, the injection begins. For each time the pressure distribution

is calculated and used to determine the average brine and CO2 distributions. This loop

is executed until the end time is reached.
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Specify h
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Compute p  (x,y,0) using (4.14)
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bot
Compute p  (x,y,t ) using (4.14)

bot i

Compute h  (x,y,t ) using (4.32)B i

Figure 4.2: Sequential solution strategy to solve (4.14) and (4.32) [5].

4.5.2 Predictor-Corrector (PC) Approach

A second solution technique is examined and compared to the methodology described in

the previous subsection. In this approach a Heun predictor-corrector (PC) [35] is used to

improve the solution of the saturation equation.

The predictor step is:

{pbot}n+ 1
2 = [Kp

n]−1{Fp}n (4.70)

{hB}n+ 1
2 = {hB}n − [Keff

n+ 1
2 ]−1{Fincr

eff }n+ 1
2 (4.71)

in which {pbot}n+ 1
2 is the predicted pressure vector, [Kp

n] is the pressure diffusion matrix
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using the nodal saturation from time n, {Fp}n is the pressure flux vector computed using

the nodal saturation from time n, {hB}n+ 1
2 is the predicted saturation vector, {hB}n is

the saturation vector from time tn, [Keff
n+ 1

2 ] is the saturation effective advection matrix

computed using the predicted nodal pressures, and {Fincr
eff }n+ 1

2 = [Kα]n+ 1
2{hB}n is the

saturation effective incremental flux vector computed using the predicted nodal pressures,

[Kα]n+ 1
2 is the advection matrix from (5.25) (α = Galerkin, SU, SUPG or LSFEM)

evaluated using the predicted nodal pressures.

The corrector step is:

{pbot}n+1 = [Kp
n+ 1

2 ]−1{Fp}n+ 1
2 (4.72)

{hB}n+1 = {hB}n −
∆t

2

(
[Keff

n+ 1
2 ]−1{Fincr

eff }n+ 1
2 + [Keff

n+1]−1{Fincr
eff }n+1

)
(4.73)

where {pbot}n+1 is the corrected pressure vector at time tn+1, [Kp
n+ 1

2 ] is the pressure

diffusion matrix computed using the predicted nodal saturations, {Fp}n+ 1
2 is the pressure

flux vector computed using the predicted nodal saturation, {hB}n+1 is the corrected sat-

uration vector, [Keff
n+1] is the saturation effective advection matrix computed using the

corrected nodal pressures from time tn+1, {Fincr
eff }n+1 = [Kα]n+1{hB}n+ 1

2 is the saturation

effective incremental flux vector computed using the corrected nodal pressures from time

tn+1, and [Kα]n+1 is the advection matrix evaluated using the corrected nodal pressures.
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4.6 Stabilization Using One Dimensional Linear Ele-

ments

In this section three examples are considered. First, a manufactured solution is used to

measure the convergence of the saturation distribution error in the L2 norm. In the final

two examples, two quasi-two dimensional test problems are considered to compare the

Galerkin discretization of the saturation equation with three stabilized discretizations:

SU, SUPG, and LSFEM. In the second example, CO2 is injected into a horizontal aquifer

via a single well. In the third example, two injection wells pumping CO2 into a sloping

aquifer is considered. The performance of each discretization method is investigated

and compared. The relative strengths and weaknesses of each method in solving these

problems are discussed.

4.6.1 Example 1 - Convergence Study of a Manufactured Solu-
tion

In this section the convergence of the L2 error of the saturation distribution is studied by

considering a manufactured solution in one dimension. A horizontal aquifer is assumed

and simplified system properties are used as shown in Table 4.1.

Table 4.1: System properties for example 1 [6].

Property Value Units

µB 1 Ns/m2

µC 1 Ns/m2

ρB 1 kg/m3

ρC 1 kg/m3

SB 0 -
φ 1 -
kx 1 m2

krelC 1 -

After substituting the simplified system properties and using the fact that the aquifer
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is horizontal, the following simplified forms of the pressure and saturation equations are

obtained:

∂

∂x

(
hC
∂pbot
∂x

)
+

∂

∂x

(
hB
∂pbot
∂x

)
= s(x, t), x ∈ [0, 1] (4.74)

and

pbot(x, t) = 1 on Γp (4.75)

∂hB
∂t

=
∂

∂x

(
hB
∂pbot
∂x

)
, x ∈ [0, 1], t ∈ [0, 0.25] (4.76)

hB(x, t) = 1 on Γh

hB(x, 0) = 1− 1

2
sin (πx) on Ω

(4.77)

The manufactured solution is obtained by assuming the solution to the CO2 and brine

depths. The solution to the CO2 is assumed to be:

hC(x, t) =
1

2
sin (πx) cos (πt) (4.78)

and it follows that the brine distribution is:

hB(x, t) = 1− 1

2
sin (πx) cos (πt) (4.79)

The saturation equation (4.76) with (4.79) is used to solve for the pressure distribution.

The pressure distribution is then used to solve for a source term from the pressure equation
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(4.74). The source term in (4.74) is found to be:

s(x, t) =
π sin (πt)

(
cos (πt)− 4 cos

(
πx
2

)
sin
(
πx
2

))
4 cos2 (πt) cos2

(
πx
2

)
− 4 cos2 (πt) cos4

(
πx
2

)
− 8 sin

(
πx
2

)
cos (πt) cos

(
πx
2

)
+ 4

(4.80)

Figure 4.3 shows the convergence of the L2 error of the saturation profile at time

t = 0.25 s using the single step (SS) approach. The error in the L2 norm in the saturation

approximation is given by:

εmh =

(∫
Ω

(hmB − hexB )2dΩ∫
Ω

(hexB )2dΩ

) 1
2

(4.81)

where m is the number of degrees of freedom in the approximation and a superscript ex

denotes the exact solution.

The slope of the four leftmost data points are displayed on Figure 4.3. All methods

except SUPG-8τ and SUPG-10τ give identical rates of convergence of εmh of 1.00. The

convergence rate is slightly lower for the SUPG-8τ and SUPG-10τ , at rates of 0.999 and

0.998 respectively. SUPG-10τ and SUPG-8τ also have the largest errors for each element

size.

The saturation convergence for the predictor-corrector (PC) approach is shown in

Figure 4.4. The results are essentially the same as for the SS approach in Figure 4.3.

The results of this example demonstrate that the solution methodology presented in this

chapter achieves first order convergence of saturation distribution error in the L2 norm.
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Figure 4.3: L2 error vs. element size

after t = 0.25 s, θ = 1, Crmax = 1,

SS method [6].

10
−4

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

10
0

∆x(m)

ǫ
h

 

 
Galerkin
SU
SUPG
LSFEM
SU−8 τ
SUPG−8 τ
SU−10 τ
SUPG−10 τ Galerkin Fit=1

SU Fit=1
SUPG Fit=1
LSFEM Fit=1
SU−8 τ Fit=1
SUPG−8 τ Fit=0.999
SU−10 τ Fit=1
SUPG−10 τ Fit=0.996

Figure 4.4: L2 error vs. element size

after t = 0.25 s, θ = 1, Crmax = 1,

PC method [6].

4.6.2 Example 2 - Point Source Injection into a Horizontal Aquifer

In this example, CO2 is injected into the centre of a hypothetical 1000 m × 1 m aquifer

at a depth of 2970 m, as shown in Figure 4.5. The system properties are given in Table

4.2. The aquifer has a uniform thickness of 30 m. CO2 is injected into the aquifer at

a rate of 13.33 m3/day. The injection well is modelled as a point source injection at a

node to improve the accuracy of the pressure approximation. The system is symmetric,

so symmetric boundary conditions and half the domain is used. At x = 0 the injection is

applied as a boundary flux for the pressure equation and a no-flow boundary is imposed for

the saturation equation. At x = 500m Dirichlet boundaries are imposed for the pressure

and saturation equation.

The results in this example focus on two times. The first time is when the CO2 plume

is far from the domain boundary. The second time of interest is after the CO2 reaches

the edge of the domain. Gravity causes the CO2 to rise to the top of the aquifer above

the brine. This can lead to the creation of a very thin CO2 boundary layer along the

upper caprock that extends far beyond the centroid of the plume. Thus in the practical

modelling of carbon sequestration the case of CO2 reaching the edge of the domain may
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Figure 4.5: Example 1: Injection into a single aquifer system [6].

Table 4.2: System properties for example 2 [6].

Property Value Units

µB 2.535e-4 Ns/m2

µC 3.950e-5 Ns/m2

ρB 1045 kg/m3

ρC 479 kg/m3

SB 0 -
φ 0.15 -
kx 2e-14 m2

krelC 1 -
qinj 13.33 m3/day

be encountered.

A large number of simulations (432) were executed using various parameters (including

θ, Crmax(∆t), and τ), the sequential solution strategy (SS vs. PC), and the stabilization

schemes. The results of these simulations are summarized in Tables 4.3-4.8.

Forward Euler (FE) FDM in Time (θ = 0)

The results using Forward Euler (FE) FDM are summarized in Table 4.3 for the SS

scheme and Table 4.4 for the PC scheme. For both SS and PC all methods smooth

solutions were obtained when Crmax ≤ 0.005. When θ = 0 all methods reduce to the
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Galerkin FEM based on (4.39) and (4.64). Figure 4.6 shows the saturation distribution

for θ = 0, Crmax = 0.001 and the SS sequential scheme. The horizontal line represents

the top aquifer boundary. Figure 4.7 shows the associated pressure distributions. All of

the FEM variants give nearly identical solutions as expected.

Table 4.3: Simulation results after 50 days of CO2 injection for θ = 0 and the SS method.

“S” indicates a smooth solution (stable and non-oscillatory) and “O” indicates either

noticeable oscillations or an unstable solution. Using 100 linear elements [6].

θ = 0 τ 8τ 10τ
∆t (days) Crmax G LS SUPG SU SUPG SU SUPG SU

0.0034 0.001 S S S S S S S S
0.0169 0.005 S S S S S S S S
0.0337 0.01 O O O O O O O O
0.1684 0.05 O O O O O O O O
0.3356 0.1 O O O O O O O O
1.6667 0.5 O O O O O O O O
3.3333 1 O O O O O O O O

10 3 O O O O O O O O
16.6667 5 O O O O O O O O

Table 4.4: Simulation results after 50 days of CO2 injection for θ = 0 and the PC

method. “S” indicates a smooth solution (stable and non-oscillatory) and “O” indicates

either noticeable oscillations or an unstable solution. Using 100 linear elements [6].

θ = 0 τ 8τ 10τ
∆t (days) Crmax G LS SUPG SU SUPG SU SUPG SU

0.0034 0.001 S S S S S S S S
0.0169 0.005 S S S S S S S S
0.0337 0.01 O O O O O O O O
0.1684 0.05 O O O O O O O O
0.3356 0.1 O O O O O O O O
1.6667 0.5 O O O O O O O O
3.3333 1 O O O O O O O O

10 3 O O O O O O O O
16.6667 5 O O O O O O O O
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Figure 4.6: Saturation distribution

after 50 days of CO2 injection, θ =

0, Crmax = 0.001, using 100 linear

elements, SS method [6].
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Figure 4.7: Pressure distribution af-

ter 50 days of CO2 injection, θ = 0,

Crmax = 0.001, using 100 linear ele-

ments, SS method [6].

Crank-Nicolson (CN) FDM in Time (θ = 0.5)

The Crank-Nicolson (CN) FDM results are summarized in Table 4.5 for the SS scheme and

Table 4.6 for the PC scheme. For both sequential solution schemes (SS and PC) Galerkin,

LSFEM, SUPG-τ , and SU-τ were found to give smooth solutions when Crmax ≤ 0.005,

while SUPG-8τ and SUPG-10τ produced smooth solutions only when Crmax = 0.001.

For the SS scheme SU-8τ achieved smooth solutions when Crmax ≤ 0.005, while SU-8τ

combined with the PC scheme produced smooth solutions with Crmax ≤ 0.01, Crmax = 0.5

and Crmax = 1. For SU-10τ , SS produced smooth solutions for Crmax ≤ 0.01 and

Crmax ≥ 3, and PC with SU-10τ gave smooth solutions with Crmax ≤ 0.01, Crmax = 0.5

and Crmax = 1 (same as SU-8τ).

Figure 4.8 and 4.9 show the saturation and pressure distributions for θ = 0.5, Crmax =

0.001 and SS solution strategy. All methods give nearly identical results.
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Table 4.5: Simulation results after 50 days of CO2 injection for θ = 0.5 and the SS

method. “S” indicates a smooth solution (stable and non-oscillatory) and “O” indicates

either noticeable oscillations or an unstable solution. Using 100 linear elements [6].

θ = 0.5 τ 8τ 10τ
∆t (days) Crmax G LS SUPG SU SUPG SU SUPG SU

0.0034 0.001 S S S S S S S S
0.0169 0.005 S S S S O S O S
0.0337 0.01 O O O O O O O S
0.1684 0.05 O O O O O O O O
0.3356 0.1 O O O O O O O O
1.6667 0.5 O O O O O O O O
3.3333 1 O O O O O O O O

10 3 O O O O O O O S
16.6667 5 O O O O O O O S

Table 4.6: Simulation results after 50 days of CO2 injection for θ = 0.5 and the PC

method. “S” indicates a smooth solution (stable and non-oscillatory) and “O” indicates

either noticeable oscillations or an unstable solution. Using 100 linear elements [6].

θ = 0.5 τ 8τ 10τ
∆t (days) Crmax G LS SUPG SU SUPG SU SUPG SU

0.0034 0.001 S S S S S S S S
0.0169 0.005 S S S S O S O S
0.0337 0.01 O O O O O S O S
0.1684 0.05 O O O O O O O O
0.3356 0.1 O O O O O O O O
1.6667 0.5 O O O O O S O S
3.3333 1 O O O O O S O S

10 3 O O O O O O O O
16.6667 5 O O O O O O O O
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Figure 4.8: Saturation distribution

after 50 days of CO2 injection, θ =

0.5, Crmax = 0.001, using 100 linear

elements, SS method [6].
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Figure 4.9: Pressure distribution af-

ter 50 days of CO2 injection, θ =

0.5, Crmax = 0.001, using 100 linear

elements, SS method [6].
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Backward Euler (BE) FDM in Time (θ = 1)

The Backward Euler (BE) FDM results are summarized in Table 4.7 for the SS scheme

and Table 4.8 for the PC scheme. Non-oscillatory and stable solutions were achieved

with the SS scheme for Galerkin, LSFEM, SU-τ , and SUPG-τ when Crmax ≤ 0.005

and Crmax = 5. SUPG-8τ and SUPG-10τ gave smooth solutions only for the case of

Crmax = 0.001. SU-10τ produced smooth solutions for all values of Crmax considered.

Only Crmax = 0.05 gave minor oscillations when SU-8τ was used.

When the PC scheme was used Galerkin and SU-τ produced smooth solutions when

Crmax ≤ 0.01 and Crmax ≥ 3. LSFEM and SUPG-τ achieved smooth approximations

when Crmax ≤ 0.005 and Crmax ≥ 3. The results produced by SUPG-8τ were smooth

when Crmax = 0.001 and Crmax ≥ 1 and by SUPG-10τ when Crmax = 0.001 and Crmax ≥

3. Smooth results were obtained from SU-8τ and SU-10τ for all values of Crmax that were

investigated.

By increasing the stabilization parameter τ by eight and ten times, SU was found

to give smooth solutions for nearly all cases with θ = 1 (SS and PC methods). In the

one exception, the oscillations were minor. The effect of increasing τ on SUPG is quite

different. Most often increasing τ increased the oscillations for SUPG.

Figure 4.10 and 4.11 show the saturation and pressure distributions for θ = 1, Crmax =

3 with the PC scheme. Galerkin, SU, SUPG and LSFEM give similar results. The SUPG-

8τ saturation distribution shows a slight bend near x = 0 that is not present in the other

solutions, while brine depth obtained with SUPG-10τ becomes slightly negative at the

injection well (CO2 depth exceeds the height of the aquifer). SU-8τ and SU-10τ give

smooth saturation distributions that are more diffuse than the others.

Figure 4.12 shows the saturation distribution for θ = 1 and Crmax = 3 with the SS
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sequential solution scheme. Only SU-8τ and SU-10τ do not contain oscillations. SUPG-

10τ becomes negative 20 m from the injection well. In Figure 4.13, where θ = 1 and

Crmax = 1 with the PC scheme, only SU-8τ and SU-10τ and SUPG-8τ are smooth.

Table 4.7: Simulation results after 50 days of CO2 injection for θ = 1 and the SS method.

“S” indicates a smooth solution (stable and non-oscillatory) and “O” indicates either

noticeable oscillations or an unstable solution. Using 100 linear elements [6].

θ = 1 τ 8τ 10τ
∆t (days) Crmax G LS SUPG SU SUPG SU SUPG SU

0.0034 0.001 S S S S S S S S
0.0169 0.005 S S S S O S O S
0.0337 0.01 O O O O O S O S
0.1684 0.05 O O O O O O O S
0.3356 0.1 O O O O O S O S
1.6667 0.5 O O O O O S O S
3.3333 1 O O O O O S O S

10 3 O O O O O S O S
16.6667 5 S S S S O S O S

Table 4.8: Simulation results after 50 days of CO2 injection for θ = 1 and the PC

method. “S” indicates a smooth solution (stable and non-oscillatory) and “O” indicates

either noticeable oscillations or an unstable solution. Using 100 linear elements [6].

θ = 1 τ 8τ 10τ
∆t (days) Crmax G LS SUPG SU SUPG SU SUPG SU

0.0034 0.001 S S S S S S S S
0.0169 0.005 S S S S O S O S
0.0337 0.01 S O O S O S O S
0.1684 0.05 O O O O O S O S
0.3356 0.1 O O O O O S O S
1.6667 0.5 O O O O O S O S
3.3333 1 O O O O S S O S

10 3 S S S S S S S S
16.6667 5 S S S S S S S S
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Figure 4.10: Saturation distribution

after 50 days of CO2 injection, θ =

1, Crmax = 3, using 100 linear ele-

ments, PC method [6].
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Figure 4.11: Pressure distribution

after 50 days of CO2 injection, θ =

1, Crmax = 3, using 100 linear ele-

ments, PC method [6].
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Figure 4.12: Saturation distribution

after 50 days of CO2 injection, θ =

1, Crmax = 3, using 100 linear ele-

ments, SS method [6].
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Figure 4.13: Saturation distribution

after 50 days of CO2 injection, θ =

1, Crmax = 1, using 100 linear ele-

ments, PC method [6].

Effects of Timestep Size

The effects of timestep size (measured by Crmax) are examined in Figures 4.14 - 4.19.

All methods give nearly identical solutions at small timesteps, therefore Galerkin with

Crmax = 0.001 with the SS scheme is arbitrarily selected as the reference solution for the

comparisons.

Figure 4.14 shows that with large timesteps Crmax = 5 the Galerkin FEM with the

PC scheme gives a solution that is closer to the reference solution. This is also true for

SUPG (Figure 4.15), LSFEM (Figure 4.16), SU (Figure 4.17) and SU-8τ (Figure 4.18).
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However, SU-8τ is the least affected by the choice of the sequential solution strategy (SS

or PC).

Figure 4.19 compares the SS scheme results from Figures 4.14 - 4.18. SU-8τ is the

closest to the reference solution for distances greater than 200 m away from the injection

well. It is important to understand the large scale migration of CO2, so this may be an

important area to have accurate simulation results.
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Figure 4.14: Saturation distribu-

tion after 50 days of CO2 injection,

θ = 1 - effect of large timesteps on

Galerkin approximation [6].
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Figure 4.15: Saturation distribution

after 50 days of CO2 injection, θ = 1

- effect of large timesteps on SUPG

approximation [6].
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Figure 4.16: Saturation distribution

after 50 days of CO2 injection, θ = 1

- effect of large timesteps on LSFEM

approximation [6].
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Figure 4.17: Saturation distribution

after 50 days of CO2 injection, θ =

1 - effect of large timesteps on SU

approximation [6].
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Figure 4.18: Saturation distribution

after 50 days of CO2 injection, θ = 1

- effect of large timesteps on SU-8τ

approximation [6].

0 100 200 300 400 500
0

5

10

15

20

25

30

35

x (m)

h B
 (

m
)

 

 

SU−SS−Cr=5
Galerkin−SS−Cr=0.001
SU−8τ−SS−Cr=5
LSFEM−SS−Cr=5
SUPG−SS−Cr=5
Galerkin−SS−Cr=5

Figure 4.19: Saturation distribution

after 50 days of CO2 injection, θ = 1

- effect of large timesteps - a compar-

ison of approximations, SS method

[6].

Injection of CO2 into a Brine-Filled Aquifer for 350 days

When the CO2 plume reaches the domain boundary where a Dirichlet boundary condition

hC = 0 (hB = H) is prescribed, the boundary conditions applied to the FEM discretiza-

tion do not represent the true physics of the problem. In other words, the depth of CO2

at the domain boundary is no longer zero, as the Dirichlet boundary conditions imply. In

the simulations as CO2 leaves the system the depth of CO2 at the boundary remains as

zero, which is unrealistic. With a fine enough mesh an acceptable approximation of the

saturation near the boundaries can be obtained.

The effect of the CO2 reaching the domain boundary is shown in Figure 4.20 and

Figure 4.21. Figure 4.20 compares the results of SU-8τ , SUPG-8τ , LSFEM and SU-

10τ formulations (SS scheme) when the CO2 plume reaches the domain boundary. Once

the CO2 reaches the boundary, oscillations completely contaminate the Galerkin, SU-τ ,

SUPG-τ , and SUPG-10τ approximations of brine (or CO2) depth and thus are not shown.

SU-8τ , SUPG-8τ , LSFEM and SU-10τ do not experience these oscillations. For SUPG-

8τ , however, the brine depth becomes negative. Figure 4.21 shows the same plot for the
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PC scheme where it is shown that with the PC scheme SU-τ , SU-8τ , SU-10τ , SUPG-τ

and LSFEM don’t oscillate or exceed the aquifer boundaries. The SUPG-8τ , SUPG-10τ

solutions give CO2 depths that exceed the aquifer height. The Galerkin approximation is

not shown due to significant oscillations.
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Figure 4.20: Saturation distribution

after 350 days of CO2 injection, θ =

1, Crmax = 5, using 100 linear ele-

ments, SS method [6].

0 100 200 300 400 500

0

10

20

30

x (m)
h B

 (
m

)
 

 

SU
SUPG
LSFEM
SU−8τ
SUPG−8τ
SU−10τ
SUPG−10τ

Figure 4.21: Saturation distribution

after 350 days of CO2 injection, θ =

1, Crmax = 5, using 100 linear ele-

ments, PC method [6].

Figure 4.20 and Figure 4.21 demonstrate that even when the Galerkin method gives

smooth solutions in early times, when the domain boundary is encountered by the CO2

significant oscillations will contaminate the solutions. Therefore stabilized methods are

always necessary if the plume is expected to encounter the domain boundary.

4.6.3 Example 3 - Two Wells Injecting into a Sloping Aquifer

In this example there are two injection wells injecting CO2 at a uniform rate of 6.67

m3/day into a sloping aquifer. Figure 4.22 illustrates the problem. The domain is 500

m long by 1 m wide. Two-node linear elements are used. The wells are spaced 100 m

apart. The system properties are the same as example 2, except that H, ztop and zbot

are functions of x. The top boundary, ztop(x) slopes upward from left to right, while the

bottom boundary zbot(x) slopes downward from left to right, at the same rate.
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Figure 4.23 shows the average brine depth (saturation) profiles as the two plumes

merge using θ = 1, Crmax = 0.001 (∆t = 7.4882 × 10−4 days) using the PC scheme

and 200 linear elements. Solid black lines indicate the top and bottom boundaries of

the aquifer. All methods give nearly identical results which are contaminated by minor

oscillations at the boundaries. The results from the PC scheme and 100 elements with

Crmax = 5 (∆t = 7.5 days) are shown in Figure 4.24. Only SU-8τ gives a solution that

is smooth and does not exceed the top and bottom aquifer boundaries. Results for the

SS scheme are shown in Figure 4.25 and Figure 4.26 for Crmax = 0.001 (200 elements)

and Crmax = 5 (100 elements) respectively. When Crmax = 0.001 all methods give minor

oscillations in the solution at the boundaries. When large timesteps are used (Crmax = 5)

only SU-8τ gives a smooth solution that remains within the aquifer boundary.

Figure 4.27 compares SU-8τ with the SS and PC sequential solution schemes. The

results are very similar. The associated pressure distributions are also very similar as

shown in Figure 4.28.

This example demonstrates that the SU-8τ (and SU-10τ) stabilization is the only

method to give satisfactory results using large timesteps when multiple injection wells

result in plumes merging. The results for SU-10τ were not shown in this example, but

are essentially the same as SU-8τ , but are slightly more diffuse. Since the PC scheme

is much more computationally expensive, the SU-8τ stabilization combined with the SS

sequential solution strategy is the preferable approach for this problem.
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Figure 4.22: Two wells injecting into a single nonhorizontal variable depth aquifer [6].
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Figure 4.23: Saturation distribution

after 30 days of CO2 injection from

two wells, θ = 1, Crmax = 0.001, us-

ing 200 linear elements, PC method

[6].
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Figure 4.24: Saturation distribution

after 30 days of CO2 injection from

two wells, θ = 1, Crmax = 5, using

100 linear elements, PC method [6].
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Figure 4.25: Saturation distribution

after 30 days of CO2 injection from

two wells, θ = 1, Crmax = 0.001, us-

ing 200 linear elements, SS method

[6].
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Figure 4.26: Saturation distribution

after 30 days of CO2 injection from

two wells, θ = 1, Crmax = 5, using

100 linear elements, SS method [6].
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Figure 4.27: Saturation distribution

after 30 days of CO2 injection from

two wells, θ = 1, Crmax = 5, using

100 linear elements, a comparison of

SS and PC methods [6].
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Figure 4.28: Pressure distribution

after 30 days of CO2 injection from

two wells, θ = 1, Crmax = 5, using

100 linear elements, a comparison of

SS and PC methods [6].
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4.7 Stabilization Using One Dimensional Quadratic

Elements

Quadratic elements are required for complete representations of the SUPG and LSFEM

stabilizations. In addition, SGS and GLS stabilizations require quadratic elements in

order to give formulations that are different from SUPG. In this section two examples are

used to demonstrate and compare the various stabilized discretizations of the saturation

equation using quadratic elements.

4.7.1 Example 1 - Injection of CO2 into Brine-Filled Aquifer:
Comparison of Stabilized FEMs

In this problem an injection well pumps CO2 into an aquifer at a rate of 13.33 m3/day.

The aquifer is located at a depth of 2970 m and has a uniform height of 30 m. This

scenario is shown in Figure 4.29. The system properties are given in Table 4.9. The

domain is 1000 m in length, and has a unit width. The system is symmetric, as such only

half the domain is modelled after applying the proper symmetric boundary conditions.
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Figure 4.29: Example 1: One injection well injecting CO2 into a single aquifer [4].

Injection over 50 days was simulated using seven different formulations: Galerkin,
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Table 4.9: System properties for example 1 [4].

Property Value Units

µB 2.535e-4 Ns/m2

µC 3.950e-5 Ns/m2

ρB 1045 kg/m3

ρC 479 kg/m3

SB 0 -
φ 0.15 -
k 2e-14 m2

krelC 1 -
qinj 13.33 m3/day

SU, SU-8τ (τ increased by a factor of 8), SUPG, LSFEM, GLS and SGS using Backward

Euler (θ = 1) time integration. The simulations are run using a range of timestep sizes

and the results are summarized in Table 4.10. Each simulation is marked with one of

four symbols: “S” means a stable and non-oscillatory (smooth) solution, “S*” means that

minor oscillations are present, “S**” means that significant oscillations are present and

“O” means that the result either contains extreme oscillations or is unstable.

Galerkin produces oscillation-free results only when Cr = 5. SU, SUPG and LSFEM

result in smooth solutions when Cr ≥ 3. SU-8τ smooth results when Cr ≥ 0.05. GLS

and SGS produce stable non-oscillatory solutions when Cr ≤ 0.05 or Cr ≥ 3. These

results can be compared to those presented in the previous section to compare linear and

quadratic elements. The stability ranges were similar for quadratic elements and linear

elements for Galerkin, SU, SU-8τ , SUPG, and LSFEM. The additional methods examined

in this section (GLS and SGS), which are only made possible by quadratic and higher

order elements, give superior stability ranges to the other consistently stabilized methods

(SUPG and LSFEM). The stability ranges of GLS and SGS are similar to that of SU-8τ

which was shown earlier in this chapter to be the most robust stabilized method for linear

elements.
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Figure 4.30 shows the average brine saturation when Cr = 0.0001 (∆t = 0.00067 days).

All of the stabilization methods give similar results. Only GLS and SGS are free from the

minor oscillations that occur near the right boundary which exceed the top aquifer bound-

ary. This can be seen more clearly in Figure 4.31. The associated pressure distributions

are shown in Figure 4.32.

Figure 4.33 shows the brine saturation distributions with Cr = 0.005 (∆t = 0.0034 days).

GLS and SGS give smooth solutions, while SU-8τ gives oscillations near the right bound-

ary. The other methods give extreme oscillations and are not shown.

Figure 4.34 compares the various stabilization methods when Cr = 3 (∆t = 16.66667 days).

In this case all methods give smooth solutions except Galerkin which shows significant

oscillations near the injection site. SU-8τ gives a more diffuse solution than the other

methods.

Figure 4.35 plots the average brine saturation when Cr = 5 (∆t = 25 days). In

this case all stabilization methods give smooth solutions. Again, SU-8τ exhibits a more

diffusive solution compared to the others.

Figures 4.36 - 4.39 compare linear and quadratic elements for small timesteps and

large timesteps. In Figures 4.36 and 4.37 linear and quadratic elements are compared

for Cr = 0.001. All methods (linear and quadratic) give nearly identical saturation

distributions except near the right boundary. SGS and GLS are the only methods that

do not exceed the top aquifer boundary. Although slight, the other methods exceed the

top boundary and exhibit oscillations. Linear elements gave results that exceed the top

aquifer boundary by a lesser amount than the quadratic elements. Figures 4.38 and 4.39

compare linear and quadratic elements using Cr = 5. Galerkin, LSFEM, and SU-8τ

give very similar saturation distributions whether or not linear or quadratic elements are
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used. SU gives significant oscillations when linear elements are used (not shown), but

no oscillations appear when quadratic elements are used. When linear elements are used

with SUPG an oscillation occurs near the injection well where the CO2 saturation exceeds

the height of the aquifer. This does not occur when SUPG is combined with quadratic

elements. In addition, SUPG with linear elements give a less diffuse solution compared

with quadratic elements. Similarly, LSFEM with linear elements also gives a less diffuse

solution compared with quadratic elements.

When linear elements are used, the SUPG and LSFEM residual are incomplete because

of the second derivatives in the reaction term. In addition, the LSFEM perturbation

function is also incomplete with linear elements. This explains the differences between

linear and quadratic elements for LSFEM and SUPG. When quadratic elements are used

all methods give nearly identical distributions except SU-8τ which gives a more diffuse

solution that better matches the solutions with small timesteps as the distance from the

injection well increases.

Figure 4.40 shows the average brine saturation after 350 days of injection. After 350

days much of the CO2 that was injected has left the system. For the CO2 to leave the

system the depth of the CO2 should be non-zero to be physically realistic. However,

Dirichlet boundary conditions are typically imposed for this type of problem. Dirichlet

boundary conditions are applied at the domain boundary that represents a brine only

condition at the boundary. This results in an inconsistency between the numerical model

and the physical reality. When the CO2 plume encounters these Dirichlet boundary

conditions numerical oscillations can occur as shown in Figure 4.40. Only SU-8τ gives a

smooth solution. SUPG, LSFEM and GLS all exhibit significant oscillations. Galerkin,

SU and SGS are not shown as they exhibit extreme oscillations. When linear elements
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were used, smooth solutions were obtained for SU-8τ and LSFEM (SUPG had minor

oscillations). However, with quadratic elements only SU-8τ gives a smooth solution. This

example suggests that quadratic elements encounter greater oscillations as the CO2 plume

exits the domain.

Table 4.10: Simulation results after 50 days of CO2 injection for θ = 1. “S” indicates a

smooth solution (stable and non-oscillatory) “S*” indicates minor oscillations, “S**” in-

dicates significant oscillations and “O” indicates either extreme oscillations or an unstable

solution. Using 50 quadratic elements [4].

∆t (days) Crmax G SU SU-8τ SUPG LS GLS SGS
0.00067 0.0001 S* S* S* S* S* S S
0.0034 0.0005 S* S* S* S* S* S S
0.0067 0.001 S* S* S* S* S* S S
0.0337 0.005 O O S** O O S S
0.0675 0.01 O O O O O S S
0.3356 0.05 O O S O O S S
0.6667 0.1 O O S O O O O
3.3333 0.5 O O S O O S** O
6.25 1 O O S O O S** S**

16.6667 3 S** S S S S S S
25 5 S S S S S S S
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Figure 4.30: Saturation distribu-

tion after 50 days of CO2 injection,

Crmax = 0.0001, using 50 quadratic

elements [4].
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elements. Close-up of oscillations

near boundary [4].
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Figure 4.32: Pressure distribution

after 50 days of CO2 injection,

Crmax = 0.0001, using 50 quadratic

elements [4].
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Figure 4.33: Saturation distribu-

tion after 50 days of CO2 injection,

Crmax = 0.005, using 50 quadratic

elements [4].
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Figure 4.34: Saturation distribu-

tion after 50 days of CO2 injection,

Crmax = 3, using 50 quadratic ele-

ments [4].
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Figure 4.35: Saturation distribu-

tion after 50 days of CO2 injection,

Crmax = 5, using 50 quadratic ele-

ments [4].
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Figure 4.36: Close-up of Saturation

distribution after 50 days of CO2 in-

jection, Crmax = 0.001, 100 linear

elements vs. 50 quadratic elements

[4].
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Figure 4.37: Close-up of Saturation

distribution after 50 days of CO2 in-

jection, Crmax = 0.001, 100 linear

elements vs. 50 quadratic elements
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Figure 4.38: Saturation distribu-

tion after 50 days of CO2 injection,

Crmax = 5, 100 linear elements vs.

50 quadratic elements [4].
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Figure 4.39: Saturation distribu-

tion after 50 days of CO2 injection,

Crmax = 5, 100 linear elements vs.

50 quadratic elements [4].
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Figure 4.40: Saturation distribution

after 350 days of CO2 injection,

Crmax = 5, using 50 quadratic ele-

ments [4].
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4.7.2 Example 2 - Multiple CO2 Injectors in a Sloping Aquifer

In this example three injection wells inject CO2 into an aquifer with a horizontal bottom

boundary and a top boundary that slopes upward from left to right as shown in Figure

4.41. Except for ztop, which is a function of x, the system properties are the same as for

example 1 and are given in Table 4.9.

Figure 4.42 compares the brine saturation distributions after 40 days of injection

with one timestep. Galerkin experiences significant oscillations and is not shown. The

stabilized FEMs avoid these oscillations, however LSFEM computes a CO2 depth that

exceeds the aquifer depth at the centre of the domain.

Figure 4.43 shows the saturation distributions using a small timestep (Cr = 0.0005,

∆t = 7.7301 × 10−4 days). Only LSFEM, GLS and SGS give smooth solutions that are

in excellent agreement. Earlier in this chapter it was demonstrated that Galerkin, SU,

SUPG, and LSFEM with linear elements result in oscillatory solutions when plumes merge.

Only SU-8τ and SU-10τ were able to obtain non-oscillatory solutions. This example shows

that in general, quadratic elements improve the ability of to capture merging plumes

compared to linear elements.
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Figure 4.41: Three wells injecting into a variable depth aquifer [4].
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Figure 4.42: Saturation distribu-

tion after 40 days of CO2 injection,

Crmax = 25 (∆t = 40 days), using

500 quadratic elements [4].

300 400 500 600 700

2950

2960

2970

2980

2990

3000

3010

x (m)

z 
(m

)

 

 

LSFEM

GLS

SGS

Figure 4.43: Saturation distribu-

tion after 40 days of CO2 injection,

Crmax = 0.0005 (∆t = 7.7301 ×
10−4 days), using 500 quadratic ele-

ments [4].

4.8 Chapter Conclusions

Carbon sequestration is a means to reduce CO2 emissions by injecting CO2 into deep saline

aquifers for permanent storage. Numerical methods for modelling CO2 plume evolution for

carbon sequestration must be computationally efficient in order to be useful for stochastic
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approaches.

Objective 1 (see Chapter 1) of this thesis has been accomplished in this chapter by

using a vertically averaged multiphase flow formulation to reduce the number of degrees

of freedom. The vertically averaged multiphase flow formulation consists of two fully

coupled non-linear PDEs. One of these equations is solved for pressure and the other

is solved for the average brine saturation. A sequential solution strategy is adopted to

handle the coupling. In this chapter two sequential solution strategies were presented.

The first strategy is a single iteration sequential solution (SS) approach and the second

is a predictor-corrector (PC) approach.

The governing equation that describes the evolution of the brine contains an advec-

tive term, which can result in non-physical spurious oscillations in FEM. Objective 2

(see Chapter 1) of this thesis has been accomplished in this chapter by considering sev-

eral stabilized FEMs (SU, SUPG, LSFEM, SGS, and GLS). The time discretization was

performed with FDM.

One-dimensional linear and quadratic elements were used to approximate pressure and

saturation. Linear elements cannot fully represent the stabilization terms for SUPG and

LSFEM. Quadratic elements allow the full stabilization terms of SUPG and LSFEM to

be represented. In addition, quadratic elements also permit the use of SGS and GLS

stabilizations.

4.8.1 Comparison of Stabilized FEMs - One Dimensional Linear
Elements

Three examples were used to compare several solution strategies for the saturation equa-

tion using linear one dimensional elements. First order convergence of the saturation error

with respect to the L2 norm was achieved for both the SS and PC solution strategies us-
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ing Backward Euler (BE) time integration. It was demonstrated that, in general, a fully

implicit Backward Euler (BE) time integration scheme provides superior stability prop-

erties compared to the Forward Euler (FE) and Crank-Nicholson (CN) time integration

methods.

In general, when FE (θ = 0) or CN (θ = 0.5) time integration is used, small Courant

numbers (e.g., Crmax ≤ 0.005) are required to obtain smooth solutions with the various

stabilization methods.

BE (θ = 1) provides the most reliable approximations in general. In addition to

being stable and non-oscillatory for small timesteps, for large timesteps (Crmax ≥ 3− 5)

it can also produce smooth solutions depending on the sequential solution strategy and

stabilization method. When the CO2 plume encounters the Dirichlet domain boundaries

oscillations can contaminate the brine saturation solution. In addition, oscillations can

occur when two plumes meet. If SU stabilization is combined with 8τ or 10τ (eight or ten

times a standard stabilization parameter definition) smooth solutions can be obtained for

large timesteps when the plume encounters a boundary and when plumes merge. This

is achieved by adding artificial diffusion to the system. No other stabilization scheme

gives acceptable solutions using large timesteps when two plumes merge. Increasing the

stabilization parameter for SUPG can sometimes increase the severity of the oscillations.

A PC scheme can be used to reduce oscillations at large timesteps with the BE method

(θ = 1), but comes with a significant increase in computational cost. The SS method gives

a similar result as the PC scheme, but at a much lower computational cost.

The results from this study highlight the care that must be taken when using Dirichlet

boundaries on the outflow boundaries or the simulation of multiple merging CO2 plumes.

It was demonstrated that a Galerkin FEM discretization of the saturation equation should
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not be used if the CO2 plume encounters a Dirichlet boundary or if multiple injection wells

are present and large timesteps are used. SU combined with an increased value of the sta-

bilization parameter (8τ or 10τ) is the most robust stabilization method examined. When

combined with BE time integration it can achieve smooth solutions at large timesteps,

and gives reasonable results even with a simple SS sequential solution strategy, which

yields a computationally efficient framework to solve the vertically averaged multiphase

flow equations presented in this work.

4.8.2 Comparison of Stabilized FEMs - One Dimensional Quadratic
Elements

Two examples were provided to compare low order stabilizations (linear elements) and

higher order stabilizations (quadratic elements). The SU-8τ approximation did not change

significantly when quadratic elements were used. At large timesteps SU-8τ best matches

the solutions obtained by all methods at the smallest Cr. The increased stabilization

parameter provides sufficient artificial diffusion to compensate for the negative diffusion

introduced by the Galerkin FEM approximation of the saturation equation.

SUPG and LSFEM approximations were more diffuse with quadratic elements. Quadratic

elements were shown improve the stabilization properties of SUPG and LSFEM in some

cases. SGS and GLS offer stable approximations over a larger range of timesteps compared

to Galerkin, SU, SUPG, and LSFEM. SGS and GLS can provide smooth oscillation-free

approximations for small Courant numbers (Cr ≤ 0.05) and large Courant numbers

(Cr ≥ 3). SU-8τ provides smooth solutions when Cr ≥ 0.05. SGS and GLS seem to be

the preferable option for small Cr values, while SU-8τ seems to be the best option for

large Cr values.

In general, quadratic elements improve the ability of the stabilized FEMs to achieve
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smooth solutions compared with linear elements when multiple CO2 plumes merge. How-

ever, quadratic elements introduce a greater tendency (compared to linear elements) for

oscillations when the CO2 exits the domain.
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Chapter 5

Carbon Sequestration Simulations in
Quasi-Three Dimensions with
Adaptive Timesteps

This chapter is based on the journal article:

C. Ladubec and R. Gracie, “Quasi-Three Dimensional Multiphase Carbon Sequestra-

tion Simulation with the Finite Element Method”, In Preparation.

In this article I was the first author where I lead the writing of the journal article.

In addition, I lead the development of the MATLAB code, and the development of the

formulation.

This chapter addresses objectives 3 and 4 (see Chapter 1) of the thesis:

• Compare the developed numerical model with a benchmark problem from existing

literature.

• Reduce the computational cost of carbon sequestration injection simulations by

using adaptive timesteps.
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5.1 Introduction

Deep saline aquifers are an ideal location for long term storage of CO2 [12]. These aquifers

which are typically composed of sandstone, initially contain a salt water solution (brine)

that gets displaced as the CO2 is injected. Deep saline aquifers are typically one kilometre

or more below the ground surface. The Shell Quest project in Alberta, for example,

proposes to inject over one million tonnes of CO2 per year into a saline aquifer at a depth

of over 2 km [92].

Geological structures such as deep saline aquifers have properties that are uncertain to

a large degree. The result of these uncertainties is the need for stochastic approaches for

storage site assessment [90]. Stochastic approaches (e.g., Monte Carlo methods) involve

the solution of the system equations with many, perhaps thousands, of different combi-

nations of system properties. Since these simulations need to be run many times, the

computational efficiency of the underlying numerical solution technique becomes very im-

portant. The computational cost of these simulations is very large owing to large domain

sizes (e.g., km2) and long injection times (e.g., years).

It is important to compare the current formulation with other carbon sequestration

simulators. This is done via a benchmark study that compares eleven different simula-

tors. In order to compare with the results of the benchmark study, the discretization

from Chapter 4 is extended to two dimensions (quasi-three dimensions). Quasi-three di-

mensional refers to the fact that the third dimension (depth) is vertically averaged, thus

making the problem essentially two dimensional.

In this chapter an adaptive timestepping algorithm is developed to take advantage of

larger permissible timesteps as the simulation progresses in order to improve computa-

tional efficiency. Constant timesteps were used in Chapter 4. The current formulation is
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demonstrated by using several examples. Adaptive timesteps are shown to significantly

reduce the computational cost of the formulation.

The Finite Element Method (FEM) is used to model the pressure field. The Streamline

Upwind method is used to stabilize an FEM spatial discretization and combined with a

Finite Difference Method (FDM) discretization of time (SU-FEM-FDM) to model the

evolution of the brine and CO2 phase saturations. Non-physical oscillations can occur in

the solution of the brine equation making stabilized FEMs necessary. This chapter uses

a stabilization method with a magnified stabilization parameter from Chapter 4. This

stabilization was demonstrated to be give smooth oscillation-free solutions for a wide

range of timestep sizes.

This chapter is organized as follows. First, the governing equations of the problem in

quasi-three dimensions are presented. Then, the pressure equation is described along with

the weak form and the FEM discretization. Next, the saturation weak form and the SU-

FEM-FDM discretization is presented. Then, the solution procedure is described. The

chapter concludes with four examples. Results from the current formulation are compared

against a benchmark study in [8] where eleven different simulators were compared via a

well defined test problem to predict CO2 plume movement. The examples demonstrate

the significant improvement in computational efficiency from adaptive timesteps.

5.2 Problem Statement

A vertically averaged multiphase flow formulation is used to model the large scale CO2

plume evolution. Figure 2.1 illustrates the problem. The governing equations are provided

by the mass balance equations for the CO2 and brine phases [3].
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φ(1− SB)
∂hC
∂t

+∇ · q̂C = qinjC (5.1)

φ(1− SB)
∂hB
∂t

+∇ · q̂B = 0 (5.2)

where φ is the porosity of the aquifer, SB is the residual saturation of brine in the aquifer,

hC(x, t) is the depth of CO2, hB(x, t) is the depth of brine, q̂C(x, t) is the vertically

averaged CO2 flux, q̂B(x, t) is the vertically averaged brine flux, and qinjC (x, t) is the CO2

injection term.

The CO2 injection term is defined by:

qinjC (x, t) = Qinj
C (t)δ(x− xinj) (5.3)

where Qinj
C (t) is the rate of CO2 injection, xinj is the location of the injection or extraction

well, and δ() is the Dirac delta function.

The vertically averaged fluxes are computed by the multiphase extension of Darcy’s

Law [3]:

q̂C = −hC
kkrelC

µC
(∇pbot − ρBg∇H + ∆ρg∇hC + ρCg∇ztop) (5.4)

q̂B = −hB
k

µB
(∇pbot + ρBg∇zbot) (5.5)

where k is the permeability of the aquifer, krelC is the relative permeability of CO2 compared

to brine, µC is the dynamic viscosity of CO2 , µB is the dynamic viscosity of brine, pbot(x, t)

is the pressure at the bottom of the aquifer, ρC is the density of CO2, ρB is the density of

brine, ∆ρ = ρB−ρC , g is the gravitational constant, ztop(x) defines the top boundary of the

aquifer, zbot(x) defines the bottom boundary of the aquifer, and H(x) = zbot(x)− ztop(x)
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is the thickness of the aquifer.

The governing equations (5.1) and (5.2) are manipulated to obtain one equation that

is solved for the pressure at the bottom of the aquifer (the pressure equation) and one that

is solved for the average depth of the brine and thus the CO2 (the saturation equation).

These two equations will be discussed in the next two sections.

5.3 Pressure Equation

The mass balance equations (5.1) and (5.2) are added together to give the pressure equa-

tion. The transient terms disappear and the result is a steady state pressure equation.

∇ ·
(
hC
kkCREL
µC

(∇pbot + ∆ρg∇hCρBg∇H + ρCg∇ztop)
)

+∇ ·
(
hB

k

µB
(∇pbot + ρBg∇zbot)

)
= −qinjC , x ∈ Ω

(5.6)

and

pbot(x, t) = pbot(x, t) on Γp (5.7)

where Γp is the boundary of Ω. The domain is defined in Figure 5.1. The domain of the

injection well is indicated by Ωwell.

Ω

Γp, Γh
Ωwell

x

y

Figure 5.1: Problem domain [6].
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5.3.1 Weak Form

The pressure equation is converted to the weak form before the FEM discretization is

performed. The weak form of the pressure equation is: find pbot(x, t) ∈ U such that

∫
Ω

∇δpbot · hB
k

µB
∇pbotdΩ +

∫
Ω

∇δpbot · hB
k

µB
ρBg∇zbotdΩ +

∫
Ω

∇δpbot · hC
kkrelC

µC
∆ρg∇hCdΩ

−
∫

Ω

∇δpbot · hC
kkrelC

µC
ρBg∇HdΩ +

∫
Ω

∇δpbot · hC
kkrelC

µC
ρCg∇ztopdΩ +

∫
Ω

∇δpbot · hC
kkrelC

µC
∇pbotdΩ

=

∫
Ω

δpbotq
inj
C dΩ, ∀δpbot ∈ U0.

(5.8)

where δpbot is a weight function. The function spaces are

U = {pbot(x)|pbot(x) ∈ H1\Ωwell, pbot(x) = pbot on Γp}

U0 = {δpbot(x)|δpbot(x) ∈ H1\Ωwell, δpbot(x) = 0 on Γp}
(5.9)

The choice of the approximation spaces given are based on their application in similar

problems. The author has no knowledge of a proof that these are the correct spaces for

this problem.

5.3.2 FEM Discretization

The weak form of the pressure equation (5.8) is discretized by replacing the weight func-

tions and the pressure by FEM shape functions. The FEM approximation of the pressure

is:

ph(x) =
∑
I∈N

NI(x)pI ,x ∈ Ω (5.10)

where N is the set of all nodes, pI is a vector containing the nodal pressures, NI(x) is the

shape function for node I.
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The pressure approximation can also be written as:

ph(x) = Npbot (5.11)

where N is a matrix containing the shape functions for all nodes and pbot
> = {p1, p2, ..., pnn}.

The FEM discretization of the pressure equation becomes:

Kppbot = Fp (5.12)

where Kp is the diffusion matrix and the flux vector has four contributions:

Fp = Fp1 + Fp2 + Fp3 (5.13)

where Fp1 is the injection flux vector, Fp2 is the buoyancy flux vector, and Fp3 is the slope

flux vector.

The matrices and vectors are

Ke
p =

∫
Ωe

BeT

(
hCk

rel
C

µC
+
hB
µB

)
kBedΩe (5.14)

Fe
p1 =

∫
Ωe

NeTqinjC dΩe (5.15)

Fe
p2 = −

∫
Ωe

BeTkk
rel
C

µC
∆ρghC∇hCdΩe (5.16)

Fe
p3 =

∫
Ωe

BeT

(
hC
kkrelC

µC
(ρBg∇H − ρCg∇ztop)− hB

k

µB
ρBg∇zbot

)
dΩe (5.17)

where Be = ∇Ne is a matrix containing the shape functions derivatives for element e.

The eXtended Finite Element Method (XFEM) has successfully been used to allow
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accurate pressure distributions using coarse meshes even when the injection occurs mid

element [45, 46, 58]. This will be discussed in detail in the next chapter.

5.4 Saturation Equation

The brine mass balance equation (5.2) is used as the saturation equation to determine

the average brine saturation in the aquifer. With the average brine saturation known the

average CO2 saturation can computed. The saturation equation is given by:

ḣB + a · ∇hB + σhB = 0, x ∈ Ω, t ∈ [0, tend] (5.18)

hB(x, t) = hB(x, t) on Γh

hB(x, 0) = hBo(x) on Ω

(5.19)

where tend is the end time of the simulation, hB(x, t) is the prescribed brine depth, Γh is

the essential boundary of Ω, hBo(x) is the initial brine depth in the aquifer. The advective

velocity vector is given by:

a = − k

φ(1− SB)µB
(∇pbot + ρBg∇zbot) (5.20)

and the reaction term is given by:

σ = − k

φ(1− SB)µB
(∇2pbot + ρBg∇2zbot) (5.21)

When bilinear elements are used σ = 0.
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5.4.1 Weak Form

The weak form is obtained by multiplying (5.2) by a weight function and integrating

over the domain. Green’s Formula is used to reduce the continuity requirements, which

generates a boundary flux term. A stabilization term is added to control the oscillations

that can result from a Galerkin FEM discretization of the saturation equation (5.2). The

stabilization term can be considered as an artificial diffusion that is added to the system

which offsets the negative diffusion introduced by the Galerkin FEM discretization of the

advection term. The weak form of (5.2) can be written as: find hB(x, t) ∈ W such that:

∫
Ω

δhB ·
∂hB
∂t

dΩ−
∫

Ω

∇δhB · ahBdΩ+
∑
e

∫
Ωe

(τ ea · ∇δhB)·(a · ∇hB) dΩe = 0, ∀δhB ∈ W0.

(5.22)

where δhB is the weight function, a is the advective velocity vector, τ e is the stabilization

parameter, and W and W0 are the appropriate function spaces for hB(x, t) and δhB(x, t),

respectively. The stabilization parameter τ e is given by [91]:

τ e =

((
1

θ∆t

)2

+

(
2‖a‖
he

)2
)− 1

2

(5.23)

5.4.2 Streamline Upwind (SU) FEM - FDM Discretization

A standard linear FEM approximation of the average brine saturation is given by:

hB(x, t) =
∑
I∈N

NI(x)hI(t) (5.24)
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This approximation is inserted into the weak form (5.22) to obtain the discretized matrices

and vectors. The system of equations to be solved becomes:

[CS]{ḣB}+ [KS]{hB} = {FS} (5.25)

where CS is the storage matrix, KS is the advection matrix and FS is the boundary flux

vector, hB is the unknown vector which contains nodal brine depths in the aquifer and

hB(x, t) = H(x)− hC(x, t), ḣB is the derivative with respect to time of hB(x, t).

The Streamline Upwind (SU) method [73] is similar to the Galerkin discretization,

except a stabilization matrix is added to the Galerkin advection matrix. The Galerkin

advection matrix is given by:

Ke
G = −

∫
Ωe

BeTaNedΩe (5.26)

and the stabilization matrix is given by:

Ke,stab
SU =

∫
Ωe

BeTτ eaaTBedΩe (5.27)

The SU-FEM advection matrix is obtained by adding the Galerkin advection matrix

and the stabilization matrix.

KS = KG + Kstab
SU (5.28)

The storage matrix is given by:

Ce
S =

∫
Ωe

NeTNedΩe (5.29)
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where Ne are the shape functions for element e, and Be = ∇Ne.

The Backward Euler (BE) method was shown in Chapter 4 to provide superior stability

properties compared to the Forward Euler and Crank-Nicholson FDM methods. As such,

BE (θ = 1) is used here to discretize (5.22) in time. This results in the following system

of equations:

[Keff ]n+1{hB}n+1 = {Feff}n+1 (5.30)

where

[Keff ]n+1 = [CS] + ∆t[KS]n+1 (5.31)

and

{Feff}n+1 = [CS]{hB}n (5.32)

The matrices and vectors [KS] and [CS] are defined by (5.28) and (5.29).

5.4.3 Adaptive Time Stepping

To improve the computational efficiency an adaptive timestepping algorithm is developed.

This enables larger timesteps to be used later in time as the advective velocities are

reduced. The pressure gradient in the CO2 plume has its largest absolute value when the

injection begins. Over time, as the CO2 plume spreads, the pressure gradient (and thus

the advective velocity) decreases at the CO2 plume front. The size of timestep n + 1 is

computed from:

∆tn+1 = min
e

(√
∆x2 + ∆y2

‖ane‖

)
Cr (5.33)
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where Cr is the Courant number, and is given by:

Cr =
‖a‖∆t√

∆x2 + ∆y2
(5.34)

The Courant number is selected before the analysis begins, in order to balance accuracy

an stability. From the fixed Courant number, the timestep for each time is computed

from (5.33). The adaptive timestepping allows a constant Cr value for the duration of

the simulation.

5.5 Examples

In this section four examples are used to demonstrate the formulation described in this

chapter. In the first example, the CO2 is injected into a horizontal aquifer to compare

with other simulators from a benchmark problem from [8]. In the second example, five

injection wells inject CO2 into a single aquifer. In the third example, CO2 is injected into

an upsloping aquifer and the migration of the CO2 is modelled. In the fourth example,

CO2 is injected into a dome shaped aquifer.

5.5.1 Example 1 - Comparison with Benchmark

In this example the current formulation is compared with the benchmark simulation in

[8]. The problem is illustrated in Figure 5.2 and the system properties are given in Table

5.1. A single injection well injects CO2 at a rate of 1600 m3/day for 10 days. The aquifer

is horizontal and has a constant thickness of 30 m. The top boundary of the aquifer is

located at a depth of 2970 m.

A ficticous (not modelled) leaky well is located 100 m away. Eleven different simulators
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are compared using this benchmark problem in [8]. The time for the CO2 plume to reach

the leaky well is measured and compared. A summary of these results is given in Table

5.2. The arrival time ranges from 4 to 19 days, while nine of the 13 results had arrival

times that ranged between 7 and 10 days.

Figure 5.3 shows the arrival time at the leaky well for several different mesh densities.

SU gives smooth stable results for each spatial mesh. When SU is not used (i.e., Galerkin

is used) unphysical spatial oscillations can develop, particularly when using 160,000 el-

ements. When the element edges are less than 2 m, the arrival time is consistently 6.6

days. This result is in agreement with the lower end of the range from Table 5.2. The

result from the current formulation agrees very well with the VESA results in particular

which is based on similar assumptions. VESA is based on vertically averaged multiphase

flow, but the numerical discretization is based on the FDM in space. The wide range of

results in [8] is explained by the variation of numerical diffusion in the various solutions,

but the authors argue that due to the large uncertainty in the system properties, the issue

of numerical diffusion is not a prohibitive problem.

The saturation and pressure distributions after 10 days are shown in Figure 5.4 and

Figure 5.5 respectively. Timesteps were controlled by Cr = 10 and the spatial discretiza-

tion was done using 250,000 (2 m × 2 m) elements. The saturation and pressure distri-

butions are replotted along line A-A (Figure 5.2) in Figures 5.6 and 5.7. The pressure

approximation can be improved using the eXtended Finite Element Method (XFEM)

[45, 46, 58], particularly when the injection occurs mid-element. This is considered in

Chapter 6.

Figure 5.8 shows how the adaptive timestep changes over the duration of the simula-

tion. The timestep at the end of the simulation is over five times larger than the initial
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timestep. If a constant timesteps were used, 16 timesteps would be required, but with

the adaptive timestep, only 4 are needed.

The results of this example demonstrate that the current formulation is agreement

with a range of simulators. In particular, the current formulation matches very well with

the simulator from [8] that most closely matches the assumptions made in the current

formulation. The SU method provides smooth solutions, while the Galerkin FEM can be

contaminated with non-physical oscillations as shown in Chapter 4. In addition, adaptive

timestepping reduced the computational costs of the problem by about 75 %.

Change in Permeability

Figure 5.9 shows the domain with a non-uniform permeability. The permeability drops

from 2 × 10−14 m2 to 2 × 10−15 m2 when x = 550 m. The resulting saturation and

pressure distributions are shown along A-A in Figure 5.10 and Figure 5.11 respectively.

When the plume encounters the change in k, it is much easier for the flow to go in the

other direction, and therefore further injection leads to the plume preferentially flowing

in the direction of the largest permeability as expected. The saturation distribution and

the pressure distribution are unsymmetrical as expected.

Table 5.1: System properties for example 1 [5].

Property Value Units

µB 2.535× 10−4 Ns/m2

µC 3.950× 10−5 Ns/m2

ρB 1045 kg/m3

ρC 479 kg/m3

SB 0 -
φ 0.15 -
k 2× 10−14 m2

krelC 1 -
qinj 1600 m3/day
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Figure 5.2: Example 1: One injection well injecting CO2 into a single aquifer [5].

Table 5.2: Summary of results of benchmark study [8].

Simulator Arrival Time (days)

COORES 8
DuMux 6
ECLIPSE 8
FEHM 4
IPARS-CO2 10
MUFTE 8
RockFlow 19
ELSA 14
TOUGH2/ECO2N #1 4
TOUGH2/ECO2N #2 10
TOUGH2/ECO2N #3 - refined mesh 8
TOUGH2 9
VESA 7
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Figure 5.3: Effect of number of ele-

ments on arrival time of CO2 plume

at leaky well located 100 m away [5].

Figure 5.4: Saturation distribution

after 10 days of CO2 injection, Cr =

10, using 250,000 uniform sized bi-

linear elements [5].

Figure 5.5: Pressure distribution af-

ter 10 days of CO2 injection, Cr =

10, using 250,000 uniform sized bi-

linear elements [5].

131



0 50 100 150
0

5

10

15

20

25

30

r (m)

h
C

 (
m

)

 

 

Figure 5.6: Saturation distribution

along section A-A (Figure 5.2) after

10 days of CO2 injection, Cr = 10,

using 250,000 uniform sized bilinear

elements [5].
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Figure 5.7: Pressure distribution

along section A-A (Figure 5.2) after

10 days of CO2 injection, Cr = 10,

using 250,000 uniform sized bilinear

elements [5].
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Figure 5.8: Adaptive timestep size

over the duration of the simulation,

Cr = 10, using 250,000 uniform

sized bilinear elements [5].
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Figure 5.9: Change in permeability at x = 550 m [5].
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Figure 5.10: Saturation distribution

(along A-A) after 10 days of CO2 in-

jection, Cr = 10, using 250,000 uni-

form sized bilinear elements - change

in permeability at x = 550 m [5].
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Figure 5.11: Pressure distribution

(along A-A) after 10 days of CO2 in-

jection, Cr = 10, using 250,000 uni-

form sized bilinear elements - change

in permeability at x = 550 m [5].
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5.5.2 Example 2 - Multiple CO2 Injection Wells

In the second example five injection wells inject CO2 into a deep saline aquifer located at

depth of 2970 m as shown in Figure 5.12. Other than the number of wells and the injection

rates the system properties are the same as for example 1 (see Table 5.1). Each well

injects at 320 m3/day. Two planes of symmetry exist and thus after applying appropriate

symmetry boundary conditions the setup of the model is shown in Figure 5.13.

After 60 days of injection the saturation and pressure distributions are shown in

Figure 5.14 and Figure 5.15 respectively. In addition plots along section A-A (Figure

5.13) are shown for the saturation and pressure distribution in Figure 5.16 and Figure

5.17 respectively. There are two CO2 plumes and two pressure spikes due to the two

injection wells.

Figure 5.18 shows the size of the adaptive timestep over the course of the simulation.

The timestep starts out at 2 days, and increases to about 12.6 days, before reducing to

8.8 days. The reduction in timestep at the end is so the predetermined end time can

be exactly reached. The maximum timestep is over five times larger than the initial

timestep. Thirty constant timesteps would be required, but adaptive timesteps require

only 6 timesteps, a reduction in computational cost of approximately 80 %.

This example shows that the current formulation is able to obtain smooth stable

solutions with two multiple injection wells that are closely spaced. The significant im-

provements to computational efficiency that can result from adaptive timestepping was

also demonstrated.
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Figure 5.12: Example 2: Five injection wells injecting CO2 into a single aquifer [5].
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Figure 5.13: Example 2: Model after application of symmetric boundary conditions [5].
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Figure 5.14: Saturation distribution

after 60 days of CO2 injection, Cr =

100, using 500 × 500 bilinear ele-

ments [5].

Figure 5.15: Pressure distribution

after 60 days of CO2 injection, Cr =

100, using 500 × 500 bilinear ele-

ments [5].
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Figure 5.16: Saturation distribution

along section A-A (Figure 5.13) after

60 days of CO2 injection, Cr = 100,

using 500 × 500 bilinear elements

[5].

0 50 100 150 200 250
4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4
x 10

7

r (m)

p
b

o
t (

P
a)

 

 

Figure 5.17: Pressure distribution

along section A-A (Figure 5.13) after

60 days of CO2 injection, Cr = 100,

using 500 × 500 bilinear elements

[5].
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Figure 5.18: Adaptive timestep size

over the duration of the simulation,

Cr = 100, using 250,000 uniform

sized bilinear elements [5].
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5.5.3 Example 3 - Upslope CO2 Migration

In the third example CO2 is injected into an upsloping, but constant thickness aquifer as

shown in Figure 5.19. The system properties are given in Table 5.1.

The saturation distribution after 500 days of injection is shown in Figure 5.20. The

saturation distribution along section A-A (Figure 5.19) is shown in Figure 5.22. It can be

clearly be seen that the due to the upsloping aquifers and the density difference between

the CO2 and the brine, the CO2 preferentially migrates upslope. The pressure distribution

after 500 days is shown in Figure 5.21 and the distribution along A-A is shown in Figure

5.23. The unsymmetrical pressure distribution reflects the upsloping aquifer and the

upslope migration of the CO2.

The size of each timestep is shown in Figure 5.24. The initial timestep is 6.5 days and

increases to a maximum of 41.3 days. The reduction of the timestep to 7.1 days at the end

is to so that the endtime can be reached exactly. Seventy-seven constant timesteps would

be needed with constant timesteps for this problem, but only 14 timesteps are required

with adaptive timesteps. Both the constant and adaptive timesteps provide a similar level

of accuracy. This represents an approximate 82 % reduction in computational cost.

In this example the behaviour of the CO2 plume is modelled after the injection into an

upsloping aquifer. The unsymmetrical pressure and saturation distribution demonstrate

the ability of the model to capture upsloping effects created by the density difference

between the CO2 and the brine.
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Figure 5.19: Example 3: One injection well injecting CO2 into a single upsloping aquifer

[5].

Figure 5.20: Saturation distribution

after 500 days of CO2 injection,

Cr = 100, using 500 × 500 bilinear

elements [5].

Figure 5.21: Pressure distribution

after 500 days of CO2 injection,

Cr = 100, using 500 × 500 bilinear

elements [5].
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Figure 5.22: Saturation distribution

along section A-A (Figure 5.19) af-

ter 500 days of CO2 injection, Cr =

100, using 500 × 500 bilinear ele-

ments [5].
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Figure 5.23: Pressure distribution

along section A-A (Figure 5.19) af-

ter 500 days of CO2 injection, Cr =

100, using 500 × 500 bilinear ele-

ments [5].
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Figure 5.24: Adaptive timestep size

over the duration of the simulation,

Cr = 100, using 250,000 uniform

sized bilinear elements [5].
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5.5.4 Example 4 - Injection of CO2 into a Dome Shaped Aquifer

In the final example example CO2 is injected into an aquifer that contains a dome struc-

ture. The setup is given in Figure 5.25. The CO2 is injected at a rate of 1600 m3/day into

the top of the dome. This problem is symmetric, and the proper symmetric boundary

conditions are used.

Figure 5.26 shows the saturation distribution after 325 days. The associated pressure

distribution is shown in Figure 5.27. The saturation and pressures along slice A-A (Figure

5.25) are shown in Figure 5.28 and Figure 5.29. The CO2 first fills the dome, since the

CO2 rises above the brine due the differences in densities. Once the dome is filled, the

CO2 begins to spread laterally beyond the extent of the dome. This demonstrates that

the current formulation is able to handle arbitrary changes in aquifer boundaries.

The timestep size over time is shown in Figure 5.30. The timestep starts off at ∆t =

6.3 days, reaching a maximum of ∆t = 40.5 days, before falling to ∆t = 0.7 days in order

to reach the goal end time. This represents a 81 % reduction in number of timesteps

compared to constant timesteps.
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Figure 5.25: Example 4: One injection well injecting CO2 into a aquifer with a dome

structure [5].

Figure 5.26: Saturation distribution

after 325 days of CO2 injection,

Cr = 100, using 300 × 300 bilinear

elements [5].

Figure 5.27: Pressure distribution

after 325 days of CO2 injection,

Cr = 100, using 300 × 300 bilinear

elements [5].
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Figure 5.28: Saturation distribution

along section A-A (Figure 5.25) af-

ter 325 days of CO2 injection, Cr =

100, using 300 × 300 bilinear ele-

ments [5].
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Figure 5.29: Pressure distribution

along section A-A (Figure 5.25) af-

ter 325 days of CO2 injection, Cr =

100, using 300 × 300 bilinear ele-

ments [5].
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Figure 5.30: Adaptive timestep size

over the duration of the simulation,

Cr = 100, using 90,000 uniform

sized bilinear elements [5].

5.6 Chapter Conclusions

Based on the evaluation and comparision of the various stabilization methods in one di-

mension (quasi-two dimensions), SU-8τ was found to be the most robust in terms of sta-

bility, especially at large timesteps (Chapter 4). This formulation (SU-8τ) was extended

to bilinear two dimensional elements (quasi-three dimensions) in the current chapter. Ob-

jective 3 (see Chapter 1) of this thesis has been accomplished in this chapter by comparing

the SU-8τ formulation to a benchmark study that computes when the CO2 plume arrives
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at a leaky well 100 m away from the injection well. The results fell in the range of so-

lutions from the various simulators examined in [8]. The results agreed very well with

numerical (FDM) - analytical discretization that was based on similar assumptions to the

formulation presented here. It was also demonstrated that the current model is able to

generate smooth solutions when an abrupt change in permeability is encountered.

An example with five injections wells in close range was used to illustrate that the

formulation can handle complicated injection scenarios. The long term upslope migration

was studied using the given formulation and it was shown that the proposed formulation

is able to adequately capture the updip movement of CO2 due to the buoyant drive that

results from the density difference between the brine and the supercritical CO2. Finally, an

example of injection into a dome structure was considered. The current formulation was

shown to capture the effect of the injected CO2 flowing downward despite the buoyancy

drive since the CO2 has nowhere else to go.

The model presented in this thesis could be further validated using data from cur-

rent carbon sequestration operations. A detailed comparison with the North Sea project

(Sleipner) is not practical at this point due to the lack of data and large amount of het-

erogeneities in the system [93]. The Ketzin injection site is relatively well characterized.

Data from the Ketzin project can be used to further validate the model presented in this

thesis [94, 95].

Computationally efficiency of the underlying numerical solver is essential for practical

value in stochastic simulations. In this chapter the use of a vertically averaged multiphase

flow framework based upon sequentially coupled FEMs was examined. The computational

costs were reduced for the models from Chapter 4 in the current chapter via an adaptive

timestep. Objective 4 (see Chapter 1) of this thesis has been accomplished in this chapter

144



by an adaptive timestepping scheme that allows larger timesteps as the simulation pro-

gresses. In the examples considered in this chapter the adaptive timesteps reduced the

computational costs of the simulations by a range of approximately 75-82 %.
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Chapter 6

Computationally Efficient
Approximation of Pressure
Singularity at Injection Wells with
the eXtended Finite Element
Method (XFEM)

This chapter is based on the following journal article:

C. Ladubec, R. Gracie, and J. Craig, “An eXtended Finite Element Method model for

carbon sequestration”, International Journal for Numerical Methods in Engineering, vol.

102, no. 3-4, pp. 316-331, 2015.

In this article I was the first author where I lead the writing of the journal article. In

addition, I lead the development of the MATLAB code, and was involved in the develop-

ment of the formulation.

This Chapter addresses objective 5 (see Chapter 1) of the thesis:

• Improve the approximation of the pressure singularity due to the injection of CO2.
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6.1 Introduction

Traditional numerical techniques such as the Finite Element Method (FEM) are compu-

tationally inefficient when used to model carbon sequestration systems. Aquifers that are

candidates for carbon sequestration are often punctured by many abandoned oil and gas

wells. The large difference between the scale of aquifers (km2) and the wells (cm2) means

that in order to obtain accurate solutions a very large number of degrees of freedom are

required in simulations. A large number of abandoned wells makes the FEM prohibitively

expensive for use in a risk analysis framework.

One method to overcome some of the limitations associated with numerical solutions

is to use the eXtended Finite Element Method (XFEM), which was developed to model

crack propagation [55, 56]. The primary benefit of XFEM is that it is able to handle

discontinuities or steep gradients in the solution in a very computationally efficient manner

by enriching the basis functions from the standard FEM. When XFEM is applied to carbon

sequestration a fine mesh around the wells is not required to obtain accurate solutions.

Instead, the enrichment functions are used only in the vicinity of abandoned wells and

injection wells.

In this chapter, an eXtended Finite Element Method (XFEM) method for accurate

and efficient modeling of the pressure field resulting from injecting CO2 into a deep saline

aquifer using a vertically averaged multiphase flow formulation is presented. XFEM is

then coupled to a Streamline Upwind/ Finite Element Method/Finite Difference Method

(SU-FEM-FDM) to model the evolution of the average saturation of each phase in the

aquifer. This chapter follows earlier works on XFEM-based single phase aquifer flow

models [45, 46].
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6.2 Introduction to the eXtended Finite Element Method

(XFEM)

The XFEM was comprehensively developed by Belytschko and co-workers over the past 17

years [55, 56, 96, 97, 98, 99]. It was first applied to the simulation of the singularities and

discontinuities found in linear elastic fracture mechanics [55, 56, 100]. Later applications

focussed on dynamic crack propagation [101, 102, 103], multiscale analysis [104, 105, 106],

and material modelling [107, 108, 109].

Comparably less attention has been given to the application of XFEM to multiphase

flow. Some notable exceptions are the two-dimensional two-phase flow works of Chessa

and Belytschko [110] and Cheng and Fries [111], the three-dimensional two-phase flow

models of Sauerland and Fries [112] and the analysis of partially saturated porous me-

dia of Mohammadnejad and Khoei [113]. One of the major differences between these

earlier works and that present here, is that they focus on two and three dimensional mod-

els, whereas, the present model is quasi-three dimensional, leading to different governing

equations, different representation of the interface between fluid phases, and different en-

richment functions. Furthermore, the focus here is on the singular behaviour near wells.

XFEM was used to model leakage through abandoned wells for a single phase flow

formulation [45, 46] where it was shown that for a given level of accuracy XFEM was

approximately 10000 times more computationally efficient than the traditional FEM.

6.3 XFEM Approximation of the Pressure Equation

The solution to the pressure equation (5.6) is known to be singular at the injection well.

To better approximate the pressure field, an XFEM approximation is adopted. The key

to the XFEM is that the FEM approximation is enriched in the vicinity of the injection

148



wells with functions that capture the asymptotic behaviour near the well. In contrast,

an FEM model would require a fine mesh around the wells in order to obtain accurate

solutions. As mentioned, XFEM was previously used to model single phase porous media

flow in an aquifer [45, 46]. The governing equation (strong form) is given in Chapter 5 by

equation (5.6). The weak form is the same as (5.8).

For the multiphase XFEM model present here, the use of the same enrichment function

as [45, 46] is examined. The enrichment function for the pressure near well α is:

ψα(x) =


log(rα(x)), rα > rw

log(rw), rα ≤ rw

(6.1)

where rα is distance to the centre of the well number, α, and rw is the radius of the well.

The enrichment function is illustrated in Figure 6.2. The distance to the centre of well α

is given by

rα(x) = ||x− xinjα || (6.2)

where xinjα are the spatial coordinates of the injection wells. In the range of typical well

radii the method is insensitive to rw.

The XFEM approximation of pressure is given by

ph(x) =
∑
I∈N

NI(x)pI +

ninj∑
α=1

wbα(x)ψα(x)
∑
J∈Sα

NJ(x)pαJ ,x ∈ Ω (6.3)

where N is the set of all nodes, pI is the pressure at node I, ninj is the number of injection

wells, Sα is the set of nodes in the enriched domain of well α (see Figure 6.1), wbα(x) is

a weighting function that blends the enriched and unenriched parts of the domain ([114],

[45]), pαJ are the enriched degrees of freedom, and NI(x) are the standard finite element
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basis functions.

The pressure approximation can be written in matrix form as:

ph(x) = Npbot + Np (6.4)

where N is the matrix of standard FEM shape functions and N is the matrix of the

enriched shape functions. pbot and p are vectors containing the standard FEM pressure

degrees of freedom and the enriched degrees of freedom respectively.

pbot
T = {p1, p2, ..., pnn} (6.5)

pT = {p1, p2, ..., pmm} (6.6)

where nn and mm are the number of nodes in the mesh and the number of enriched

nodes, respectively.

The blending weight function is defined as:

wbα(x) =
∑
I∈N

NI(x)wbI (6.7)

where wbI is one for an enriched node within the enrichment radius, renr, and wbI is zero

for an enriched node outside the enrichment radius.

The XFEM discretization of the pressure equations are:

Kaquifer


pbot

p

 =


Fp

Fp

 (6.8)
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Figure 6.2: Illustration of the enrichment function [7].

Fp = Fp1 + Fp2 + Fp3 + Fp4 (6.9)

Fp = Fp1 + Fp2 + Fp3 + Fp4 (6.10)

Kaquifer =

K K

K
T

K

 (6.11)

where Kp is the stiffness matrix, Fp1 is the injection vector, Fp2 is the boundary flux

vector, Fp3 is the buoyancy vector, and Fp4 is the aquifer slope vector. Kp and Kp

are enriched stiffness matrices, Fp1 is the enriched injection vector, Fp2 is the enriched

boundary flux vector, Fp3 is the enriched buoyancy vector, and Fp4 is the enriched aquifer
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slope vector.

The matrices and vectors are

Kp,IJ =

∫
Ω

BT
I

(
hkREL,C
µC

+
H − h
µB

)
kBJdΩ, ∀I, J ∈ N (6.12)

Kp,IJ =

∫
Ω

B
T

I

(
hkREL,C
µC

+
H − h
µB

)
kBJdΩ,∀I ∈ N ,∀J ∈ Sα (6.13)

Kp,IJ =

∫
Ω

B
T

I

(
hkREL,C
µC

+
H − h
µB

)
kBJdΩ,∀I ∈ Sα,∀J ∈ Sβ (6.14)

Fp1,I =

∫
Ω

NT
I qC,injdΩ,∀I ∈ N (6.15)

F p1,I =

∫
Ω

N
T

I qC,injdΩ,∀I ∈ Sα (6.16)

Fp2,I = −
∮

Γ

NT
I (q̂B + q̂C)ndΓ,∀I ∈ N (6.17)

F p2,I = −
∮

Γ

N
T

I (q̂B + q̂C)ndΓ,∀I ∈ Sα (6.18)

Fp3,I = −
∫

Ω

BT
I

kkrel,C
µC

∆ρgh∇hdΩ,∀I ∈ N (6.19)

F p3,I = −
∫

Ω

B
T

I

kkrel,C
µC

∆ρgh∇hdΩ,∀I ∈ Sα (6.20)

Fp4,I =

∫
Ω

BT
I (h

kkrel,C
µC

(ρBg∇H − ρCg∇ztop)− (H − h)
k

µB
ρBg∇zbot)dΩ,∀I ∈ N (6.21)

F p4,I =

∫
Ω

B
T

I (h
kkrel,C
µC

(ρBg∇H − ρCg∇ztop)− (H − h)
k

µB
ρBg∇zbot)dΩ,∀I ∈ Sα

(6.22)
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where B and B are matrices of the derivatives of the standard and enriched shape func-

tions, respectively.

Numerical Integration

Numerical integration of the unenriched elements in the pressure equation is performed

using 2×2 Gauss quadrature. Enriched elements that do not contain a well are integrated

using 4 × 4 Gauss quadrature. Enriched elements containing wells are integrated using

an iterative bisection scheme as described in [45]. The subcells are then integrated using

3 × 3 Gauss quadrature if they are located outside the well radius, and using 1 × 1

Gauss quadrature if they are located within the well radius. The number of subcells was

determined so that the integration errors are sufficiently small to not affect the results.

6.4 Streamline Upwind (SU) Stabilized FEM discretiza-

tion of the Saturation Equation

The strong form is given by (5.18) and the weak form is given by (5.22) from Chapter

5. An SU-FEM-FDM approximation is used to discretize the saturation equation. Space

is discretized using an SU-FEM approach. SU is implemented as an added artificial

diffusion term that counteracts the negative diffusion that occurs due to the Galerkin

FEM discretization of the hyperbolic saturation equation (i.e., the advection equation).

A Crank-Nicolson FDM is used to discretize the time domain.

The average saturation of the brine is approximated in space by:

hh(x, t) =
∑
I∈N

NI(x)hI(t) (6.23)
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The semi-discrete FEM saturation equations are given by:

[Cs]{ḣB}+ [Ks]{hB} = {Fs} (6.24)

Ce
s =

∫
Ωe

NeTφ(1− SRES,B)NedΩe (6.25)

Ke
adv =

∫
Ωe

BeT k

µB
(∇pbot + ρBg∇zbot)NedΩe (6.26)

Fse =

∮
Γeq

NeTq̂BndΓeq (6.27)

where {hB} is the unknown vector of brine depth in the aquifer and hB(x, t) = H(x) −

h(x, t), Cs is the storage matrix, Kadv is the advection matrix , Fs is the boundary flux

vector. Ne are the shape functions for each element and Be are the derivatives of the

shape functions. The XFEM pressure approximation is utilized in the advection matrix,

Kadv above. The Streamline Upwind (SU) method is used to stabilize the saturation

equation, which is a pure advection equation. SU is implemented using artificial diffusion

as described in [73] and [86]. Artificial diffusion acts to offset the negative diffusion that is

created due to the Galerkin FEM approach. The artificial diffusion to the system, which

for the pure advection case simplifies to

Ke
SU =

∫
Ωe

BeTτ
H

φ(1− Sres,B)

k

µB
|∇pbot + ρBg∇zbot|BedΩe (6.28)

where τ is a parameter to control the amount of diffusion applied and is meant to replace

the constant multiplier of 1√
(15)

that was used in [73]. The amount of artificial diffusion

is element dependent since it is a function of the pressure gradient in each cell. This

approach in not consistent with respect to the transient term and the boundary flux
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vector, therefore τ must be selected carefully to avoid overly diffuse solutions [73]. An

improved stabilization approach for this formulation is described in Chapter 5.

In the saturation equation, time is discretized using the FDM. This can be written as

([Cs] + ∆tθ[Ks]
n+1){hB}n+1 =

(([Cs]−∆t(1− θ)[Ks]
n){hB}n + ∆t(θ{Fs}n+1 + (1− θ){Fs}n))

(6.29)

where [Ks] = [Kadv] + [KSU ]. In the above equation, θ = 0.5 gives the Crank-Nicolson

(CN) method.

6.5 Example 1 - Injection of CO2 into a Deep Saline

Aquifer

In this example CO2 is injected into a brine filled aquifer. The setup of this problem is

shown in Figure 6.3. The system properties are given in Table 6.1. The aquifer is bounded

above and below by impermeable caprock layers (aquicludes). Initially, the aquifer is filled

with brine. The water table begins at the top boundary of the aquifer. CO2 is injected

at a constant rate of 1600 m3/day. As the injection progresses, the CO2 plume spreads

throughout the aquifer.

Dirichlet boundary conditions of hydrostatic pressure are applied for the pressure

equation along the whole boundary of the domain. An initial condition of h(x, 0) = 0

throughout the domain is used (i.e. brine only). Dirichlet boundary conditions of h(x, t) =

0 are imposed at all boundaries, and as such the domain must be large enough so that

the CO2 plume remains far enough away from the domain boundaries. The simulation is

conducted for a time of 3 days.

Figure 6.4 compares the pressures distributions for two XFEM and two FEM simu-
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Figure 6.3: Set up of example 1 [7].

lations with different mesh densities. The pressure is plotted against a radius centered

at the centre of the well along section A-A, as shown in Figure 6.3. Near the injection

well the XFEM solutions give higher localized pressures. The pressure near the injection

well increases along with refinement of the FEM and XFEM meshes. At further distances

away from the well XFEM and FEM give similar pressure fields. Figure 6.5 shows the

average CO2 saturation distribution along a radius that follows section A-A (Figure 6.3).

The XFEM and FEM pressure approximations give similar results. The depth of CO2 at

the injection well converges to the depth of the aquifer as element size is reduced.

A study of the relative error in the pressure at the well is shown in Figure 6.6. The

relative error is obtained by comparison to the pressure at the well using a fine FEM

mesh (3.6× 105 elements) with the injection at a node. This compares to a maximum of

2.3× 104 elements used in the study. For the coarsest meshes the FEM with the injection
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Table 6.1: System properties for example 1 [7].

Property Value Units

µB 5.11e-4 Ns/m2

µC 6.11e-5 Ns/m2

ρB 1099 kg/m3

ρC 400 kg/m3

Sres,B 0 -
φ 0.15 -
kx 1e-15 m2

ky 1e-15 m2

krel,C 1 -
qinj 1600 m3/day
rw 0.15 m
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Figure 6.4: Comparison of XFEM and FEM pressure distributions along a radius centered

at injection well and along line A-A using bilinear quadrilateral elements [7].

at a node provides the least relative error. This relative error decreases rather slowly.

XFEM reaches a 1 % relative error much sooner than both FEM approaches. Therefore

to achieve a relative error less than 1 % is computationally more efficient to use XFEM.

XFEM can achieve low relative errors even when the injection takes place mid-element.

FEM performs poorly when the injection takes place mid-element.

The effect of the amount of stabilization (τ) on the average saturation profile is studied

using XFEM in Figure 6.7. At low values of τ the saturation profile is non-physical. The
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Figure 6.6: Comparison of relative error in pressure at the injection well for XFEM and

FEM [7].

approximation becomes smoother as τ is increased. One side effect of increased damping

is the reduction of the depth of CO2 at the injection well. Care must be taken in the

selection of τ to avoid overdamping. The effect of τ on the pressure is shown in Figure 6.8.

Once τ is large enough to eliminate the non-physical values, increasing τ increases the
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pressure near the well, and reduces the pressure further away from the well. Therefore,

a careful selection of τ is important. A more detailed consideration of τ can be found in

Chapter 4 and Chapter 5.
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Figure 6.7: Effect of the stabilization parameter on average CO2 saturation profile along

a radius centered at injection well and along line A-A [7].
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Figure 6.8: Effect of the stabilization parameter on pressure along a radius centered at

injection well and along line A-A [7].
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6.6 Example 2 - Injection of CO2 into a Sloping Aquifer

In this example CO2 is injected into a sloping aquifer. The problem is illustrated in

Figure 6.9 and the system properties are described in Table 6.2. The aquifer is bounded

above and below by impermeable layers. The top boundary of the aquifer slopes upwards

to the right and the bottom boundary slopes downwards to the right. Therefore, the

depth of the aquifer is a function of the x and y coordinates.

a)

1000 m

1000 m

(5
00

,5
00

)

b)

1m

Caprock

Caprock

Aquifer

995.5m

qinj

994.5m

10m

b=0

19m

b=1414.2 m

Figure 6.9: Set up of example 2 [7].
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Table 6.2: System properties for example 2 [7].

Property Value Units

µB 5.11e-4 Ns/m2

µC 6.11e-5 Ns/m2

ρB 1099 kg/m3

ρC 400 kg/m3

Sres,B 0 -
φ 0.15 -
kx 1e-15 m2

ky 1e-15 m2

krel,C 1 -
qinj 1600 m3/day
rw 0.15 m

Dirichlet boundary conditions are specified for the pressure equations as the hydro-

static pressure caused by the brine that exists between the top of the water table and

the bottom of the aquifer. For the saturation equation Dirichlet boundary conditions are

specified such that at the boundaries of the domain the full depth of the aquifer is filled

with brine. Initial conditions of a completely brine-filled aquifer are applied.

The average CO2 saturation profile is shown in Figure 6.10. Since the CO2 has a lower

density than the host brine fluid, the CO2 should preferentially flow to the right, following

the up-sloping top boundary of the aquifer.

Figure 6.10 shows the average saturation after 60 days of injection for the system

shown in Figure 6.9 compared to the system shown in Figure 6.3. The average saturation

is shown along axis b, defined in Figure 6.9. Comparing the evolution of the CO2 plume

in the horizontal aquifer case and the sloping aquifer one can see that the for the sloping

aquifer, the CO2 preferentially flows up the slope. This preferential flow is caused by the

buoyant drive resulting from the lower density of the CO2 compared to brine. Thus the

current formulation adequately captures the updip effect of CO2 migration.

Figure 6.11 shows the pressure distribution along along axis b, defined in Figure 6.9

after 60 days of injection. The pressure to the left of the well is larger than to the right of
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Figure 6.10: XFEM average CO2 saturation distribution after 60 days of injection [7].

the well due to the sloping aquifer. The larger pressure on the left drives the flow updip

to the right. During the early stages of injection the saturation of CO2 is significantly

impacted by the sloping aquifer geometry due to buoyancy forces.
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Figure 6.11: XFEM pressure distribution after 60 days of injection [7].
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6.7 Chapter Conclusions

A computationally efficient model of carbon sequestration, where carbon dioxide (CO2) is

injected into deep saline aquifers is presented. Objective 5 (see Chapter 1) of this thesis

has been accomplished in this chapter by an effective computational scheme that combines

the efficiency of a vertically averaged formulation and the enrichment of the pressure ap-

proximation using the eXtended Finite Element Method (XFEM). The XFEM-based for-

mulation is used to improve the approximation of the singular pressure field in the vicinity

of an injection well. The XFEM pressure approximation is combined with a Streamline

Upwind/Finite Element Method/Finite Difference Method (SU-FEM-FDM) framework

to approximates the average CO2 saturation through the thickness of the aquifer. Using

the XFEM-SU-FEM-FDM framework two examples were considered. In the first, it was

shown that XFEM is able to achieve low relative errors in the pressure near injection

wells at a lower computational cost, when compared to an FEM approximation. The

SU stabilization parameter, τ must be selected carefully to avoid over diffuse saturation

distributions. In the second example, the XFEM-SU-FEM-FD simulator is demonstrated

to be able to capture the important effect of buoyancy driven flow of CO2 in a sloping

aquifer.
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Chapter 7

Conclusions

Carbon sequestration is a means to reduce CO2 emissions by injecting CO2 into deep

saline aquifers for permanent storage. Due to a great deal of uncertainty involved in

these systems, computationally efficient numerical methods are needed for stochastic sim-

ulations. In this thesis a framework for a computationally efficient numerical method to

study the large scale plume evolution associated with carbon sequestration was presented.

In Chapter 1 an introduction to carbon sequestration was given. Carbon Capture

and Storage (CCS) was described as a means to reduce greenhouse gas emissions from

point emitters of CO2, such as coal fired power plants. Carbon sequestration, which is

the storage phase of CCS was then introduced. Deep saline aquifers were mentioned

as a particularly promising storage location. Solution approaches applicable to carbon

sequestration systems were discussed. Challenges related to numerical modelling of carbon

sequestrations were provided as a motivation to the objectives of the thesis, which were

presented at the end of Chapter 1.

Chapter 2 provided an introduction to the numerical modelling of flow in porous

media. Basic definitions and governing equations were explained for single phase flow and
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multiphase flow. The governing equations that are the focus of this thesis were provided

towards the end of this chapter.

Chapter 3 examined the use of stabilized FEMs for advection-reaction equations.

These equations can result in non-physical spurious oscillations when discretized using

the Galerkin FEM. Five stabilized FEMs were introduced and applied to four variations

of the advection-reaction equation in order to gain insight in how the stabilized FEMs be-

haved in uncoupled advection-reaction equations. The stabilized FEMs that were consid-

ered were SU, SUPG, LSFEM, SGS, and GLS. The examples demonstrate that Galerkin

approximations of an advection-reaction equation can have small scale oscillations that

do not occur with the stabilized FEMs. In certain cases the oscillations can introduce

instabilities in the approximations. This is particularly true for the Galerkin FEM, how-

ever instabilities can also occur when using the stabilized FEMs. Care must be taken to

select the proper stabilization method in order to achieve acceptable approximations to

any problem.

In Chapter 4 five different stabilized FEMs (SU, SUPG, LSFEM, SGS, and GLS)

are used to discretize the governing equations of vertically averaged multiphase flow and

compared with the Galerkin FEM discretization. Three examples were used to compare

several solution strategies for the saturation equation using linear one-dimensional ele-

ments. First order convergence of the saturation error with respect to the L2 norm was

achieved for both the SS (Single-Step) and PC (Predictor-Corrector) solution strategies

using Backward Euler (BE) time integration. It was demonstrated that, in general, a fully

implicit Backward Euler (BE) time integration scheme provides superior stability prop-

erties compared to the Forward Euler (FE) and Crank-Nicholson (CN) time integration

methods.
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In general, when FE (θ = 0) or CN (θ = 0.5) time integration is used, small Courant

numbers (e.g., Crmax ≤ 0.005) are required to obtain smooth solutions with the various

stabilization methods.

BE (θ = 1) provides the most reliable approximations in general. In addition to

being stable and non-oscillatory for small timesteps, for large timesteps (Crmax ≥ 3− 5)

it can also produce smooth solutions depending on the sequential solution strategy and

stabilization method. When the CO2 plume encounters the Dirichlet domain boundaries

oscillations can contaminate the brine saturation solution. In addition, oscillations can

occur when two plumes meet. If SU stabilization is combined with 8τ or 10τ (eight or ten

times a standard stabilization parameter definition) smooth solutions can be obtained

for large timesteps when the plume encounters a boundary and when plumes merge.

No other stabilization scheme gives acceptable solutions using large timesteps when two

plumes merge.

A PC scheme can be used to reduce oscillations at large timesteps with the BE method

(θ = 1), but comes with a significant increase in computational cost. The SS method gives

a similar result as the PC scheme, but at a much lower computational cost.

Care that must be taken when using Dirichlet boundaries on the outflow boundaries

or the simulation of multiple merging CO2 plumes. It was demonstrated that a Galerkin

FEM discretization of the saturation equation should not be used if the CO2 plume en-

counters a Dirichlet boundary or if multiple injection wells are present and large timesteps

are used. SU combined with an increased value of the stabilization parameter (8τ or 10τ)

is the most robust stabilization method examined. When combined with BE time inte-

gration it can achieve smooth solutions at large timesteps, and gives reasonable results

even with a simple SS sequential solution strategy, which yields a computationally effi-
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cient framework to solve the vertically averaged multiphase flow equations presented in

this work.

The SU-8τ approximation did not change significantly when quadratic elements were

used. At large timesteps SU-8τ best matches the solutions obtained by all methods at

the smallest Cr. It is hypothesized that the increased stabilization parameter provides

sufficient artificial diffusion to compensate for the negative diffusion introduced by the

Galerkin FEM approximation of the saturation equation.

Linear elements cannot fully represent the stabilization terms for SUPG and LSFEM.

Quadratic elements allow the full stabilization terms of SUPG and LSFEM to be repre-

sented. SUPG and LSFEM approximations were more diffuse with quadratic elements.

Quadratic elements were shown improve the stabilization properties of SUPG and LS-

FEM in some cases. Furthermore, quadratic elements permit the use of SGS and GLS.

Two examples were provided that examine stabilization with higher order (quadratic)

elements.

SGS and GLS offer stable approximations over a larger range of timesteps compared

to Galerkin, SU, SUPG, and LSFEM. SGS and GLS can provide smooth oscillation-

free approximations for small Courant numbers (Cr ≤ 0.05) and large Courant numbers

(Cr ≥ 3). SU-8τ provides smooth solutions when Cr ≥ 0.05. SGS and GLS seem to be

the preferable option for small Cr values, while SU-8τ seems to be the best option for

large Cr values.

In general, quadratic elements improve the ability of the stabilized FEMs to achieve

smooth solutions compared with linear elements when multiple CO2 plumes merge. How-

ever, quadratic elements introduce a greater tendency (compared to linear elements) for

oscillations when the CO2 exits the domain.
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SU-8τ was in general found to exhibit the best stabilization properties over the range

of conditions examined using the one dimensional (linear and quadratic) studies. At large

timesteps the advantages of SU-8τ are the most apparent.

In Chapter 5 the SU-8τ formulation was compared to a benchmark study that sim-

ulates the arrival of a CO2 plume at a leaky well 100 m away from the injection well.

The results fell in the range of solutions from the various simulators examined in [8].

The results agreed very well with numerical (FDM) - analytical discretization that was

based on similar assumptions to the formulation presented here. It was also demonstrated

that the current model is able to generate smooth solutions when an abrupt change in

permeability is encountered.

An example with five injection wells in close range was used to illustrate that the

formulation can handle complicated injection scenarios. The long term upslope migration

was studied using the given formulation and it was shown that the proposed formulation

is able to adequately capture the updip movement of CO2 due to the buoyant drive that

results from the density difference between the brine and the supercritical CO2. Finally an

example of injection into a dome structure was considered. The current formulation was

shown to capture the effect of the injected CO2 flowing downward despite the buoyancy

drive since the CO2 has nowhere else to go.

Computationally efficiency of the underlying numerical solver is essential for practical

value in stochastic simulations. The current formulation improves the computational

efficiency from Chapter 4 by an adaptive timestepping scheme that allows larger timesteps

as the simulation progresses. In the examples considered in this chapter the adaptive

timesteps reduced the computational cost of the simulations by a range of approximately

75-82 %.
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In Chapter 6 the eXtended Finite Element Method (XFEM) was used to improve

the approximation of the singular pressure field that occurs at an injection well. An

effective computational scheme is obtained by combining the efficiency of a vertically av-

eraged formulation and the enrichment of the pressure approximation using XFEM. The

XFEM pressure approximation is combined with a Streamline Upwind/Finite Element

Method/Finite Difference Method (SU-FEM-FDM) framework to approximate the aver-

age CO2 saturation through the thickness of the aquifer. Using the XFEM-SU-FEM-FDM

framework two examples were examined. In the first, it was shown that XFEM is able to

achieve low relative errors in the pressure near injection wells at a lower computational

cost, when compared to an FEM approximation. The SU stabilization parameter, τ must

be selected carefully to avoid over diffuse saturation distributions. In the second example,

the XFEM-SU-FEM-FD simulator is demonstrated to be able to capture the important

effect of buoyancy driven flow of CO2 in a sloping aquifer.
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Chapter 8

Future Work

In this chapter several recommendations are given for future work related to extending

the formulations provided in this thesis:

• Further validation of numerical models using field data (e.g., Ketzin);

• Fully coupled solutions, as an alternative to the sequentially coupled solution strat-

egy presented in this thesis, should be considered as they may have different stabi-

lization properties;

• Solution of CO2 equation as saturation equation, instead of the brine equation;

• XFEM implementation of leaky wells and multi-aquifer systems for multiphase flow

as in [45, 46];

• Brine may be extracted to reduced pressure as CO2 is injected, therefore in the

formulation a brine extraction source term could be considered;

• Determination or proof of correct approximation spaces for pressure and saturation

equations;
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• Alternative approaches for stabilized approximations (e.g., the Discontinuous Galerkin

(DG) method or the Finite Volume Method (FVM)) of the saturation equations

should be explored.
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