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Abstract

This thesis studies the estimation, goodness-of-fit testing, pricing and sampling prob-
lems for regime switching models, which are popularly used in financial markets. Specifi-
cally, we consider such models whose distributions are characterized by their characteristic
functions, for example, Lévy processes. The thesis contains the following contents:

Chapter 1 introduces regime switching models and Lévy processes. Then we present
the problems we would like to address in the following chapters and our main contributions
to these problems.

Chapter 2 studies the estimation problem for regime switching Lévy processes. We
extend an existing estimation method that is based on characteristic functions to our mod-
els. Meanwhile, we compare the estimation results obtained by the proposed estimation
method with those obtained by the expectation-maximization (EM) algorithm. We also
address several computational challenges within the proposed estimation method.

Chapter 3 studies the goodness-of-fit testing problem for regime switching models,
where we extend two existing goodness-of-fit tests. Both of the proposed tests are based
on characteristic functions.

Chapter 4 applies the estimation and testing methods proposed in Chapters 2 and 3 to
a set of S&P 500 real data.

Chapter 5 studies the pricing problem for regime switching Lévy processes. We propose
a numerical pricing method that provides a unified pricing framework. The proposed
method is illustrated by pricing European and Bermudan options and ratchet equity-index
annuities (EIAs) with surrender risk.

Chapter 6 studies the problem of sampling conditioned processes of regime switching
models, where we propose an algorithm to sample paths from conditioned processes for a
two-regime switching Black-Scholes model. Then we apply the proposed algorithm to the
problems of pricing and static hedging of path-dependent options, where we use an Asian
call option for illustrations.

Chapter 7 lists several topics for future research.
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List of Notations

Here we provide a list of notations that are used in this thesis. Matrices and
vectors are typically denoted by bold letters, for example, z, and the transpose of
z is denoted by z′. For precise definitions and more abbreviations, see details in
each chapter.

Symbol Description

∀ for all
∃ there exists
∩ the intersection of two measurable sets
P the real-world measure
Q a risk-neutral measure
R the set of real numbers
R+ the set of positive real numbers
C the set of complex numbers
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Z the set of integers
Z+ the set of positive integers
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=(·) imaginary part of a complex number or function
W = {Wj, j ∈ Z+} observable stochastic process, e.g., log-returns of the underlying asset
Y = {Yj, j ∈ Z} Markov chain with index j
S = {k, k ∈ Z+} state space of Y
ξ = (ξ1, . . . , ξp) a vector of p model parameters
Z(ξ) = {Zj+1(ξ), j ∈ Z+} independent random variables that depend on ξ, and they are assumed

to be increments of a Lévy process in this thesis

p
(n)
kl n-step transition probability of Y
P = [pkl, k, l ∈ S] transition matrix of Y
π = {πk, k ∈ S} stationary distribution of Y
L = {Lt, t ≥ 0} a Lévy process
Φm the m-dimensional characteristic function of the model
Φ̄m,N the m-dimensional ECF of the model with N observations
ζm a vector of real and imaginary parts of Φm
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FDAWO finite difference approximation with optimization
GOF goodness-of-fit
LR likelihood ratio
PV projected value
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Chapter 1

Introduction

Hidden Markov models (HMMs) (see, for example, Mamon and Elliott (2007)) are widely
used in finance, signal processing, biology, psychology, geography, etc. In finance and
economics, regime switching models (RSMs) represent one of the two main classes of
applications of HMMs1. Although numerous authors have investigated the problems of
estimation, goodness-of-fit testing, pricing and sampling for such models, few papers have
discussed these problems for RSMs whose distributions are characterized by their charac-
teristic functions only. In the thesis, we plan to address some of the outstanding issues for
these models.

1.1 The Model

In this section, we will give the definitions and some examples of hidden Markov models
whose characteristic functions can be written explicitly. All models are defined under the
real-world P measure.

1As suggested by my committee member, Professor Tony Wirjanto, in the broadest sense, a HMM
is a Markov process that has an observable (Wj) and unobservable (Yj) components. In one class of
applications, HMMs describe a setting where a stochastic system is observed through noisy measurements
Yj representing a random signal and Wj representing an observable corrupted version of the original signal.
In the second class of applications, Wj itself is of interest while Yj (such as an unobserved economic factor
which induces fluctuations in stock prices) represents the influence on observable Wj (such as market prices
of a stock). RSMs come from the second application of HMMs.

1



1.1.1 Regime Switching Models

Let Y := {Yj, j ∈ Z} be a Markov chain and S be its state space. Assume that S is finite,
and its elements will be denoted by k, where k ∈ Z+. Let P = [pkl] be the transition

matrix and p
(n)
kl = Pr(Yn = l | Y0 = k) be the n-step transition probability of Y , where

k, l ∈ S and n ∈ Z+. If n = 1, then p
(n)
kl = pkl. Define π = {πk, k ∈ S} as a stationary

distribution of Y , that is, it satisfies
∑

k∈S πk = 1 and πl =
∑
k∈S

πkpkl. It is known (see, for

example, Cinlar (2013) ) that if Y is irreducible, aperiodic, and positive recurrent, then π

is the unique stationary distribution of Y , and for every k, l ∈ S, lim
n→∞

p
(n)
kl = πl.

Next we define the hidden Markov models used throughout this thesis.

Let Y = {Yj, j = 0, ..., N − 1} be an unobservable Markov chain with K states and
W = {Wj, j = 1, ..., N} be an observable stochastic process (for example, the log-returns
of the underlying asset), where N ∈ Z+. We define a hidden Markov model as a bivariate
process (Y ,W) that satisfies the following conditions:

(A1–1) States/Regimes: Y can take values from the state space S = {1, ..., K}.

(A1–2) Independence: Y is independent of the processW ; conditional on Y ,W is a sequence
of independent variables.

(A1–3) Homogeneity: Y is a time-homogeneous Markov chain.

We also assume that W depends on the hidden Markov chain in the following way:

Wj+1 := µ(Yj) + Zj+1

(
ξ(Yj)

)
, j = 0, . . . , N − 1, (1.1)

where Z(ξ) := {Zj+1(ξ), j = 0, ..., N−1} is a sequence of random variables whose distribu-
tion depends on a vector of parameters ξ := (ξ1, . . . , ξp) and the Markov chain Y . At time
tj, the value of Yj denotes the regime realization of the interval [tj, tj+1). The parameters
µ ≡ µ(Yj) and ξ ≡ ξ(Yj) are allowed to depend on the current regime, and they take values
from a pre-determined set

µ(k) := µk and ξ(k) := ξ
k
,

where ξ
k

:= (ξk,1, . . . , ξk,p) ∈ Rp, k ∈ S, are given vectors of parameters.

2



1.1.2 Lévy Processes

A large class of models of the form (1.1) can be created by assuming that Z1, ..., ZN
correspond to increments of a Levy process. They became popular because of two main
reasons:

(i) They form a rich class of statistical models.

(ii) They provide a tractable mathematical framework for pricing and hedging of financial
options.

Below we only provide some basic facts about Lévy processes, and refer to Tankov
(2003) for a comprehensive presentation of their properties and applications in finance.

Definition 1.1.1. Let L = {Lt, t ≥ 0} be a stochastic process. Then it is a Lévy
process if it satisfies the following properties:

1. L0 = 0 almost surely.

2. For any 0 ≤ t1 < t2 < · · · < tn < ∞, Lt2 − Lt1 , Lt3 − Lt2 , . . . , Ltn − Ltn−1 are
independent.

3. For any 0 ≤ s < t <∞, Lt − Ls is equal in distribution to Lt−s.

4. For any ε > 0 and t ≥ 0, lim
h→0

P (|Lt+h − Lt| > ε) = 0.

For a given Levy process L := {Lt, t ≥ 0}, we can define a hidden Markov process of
the form (1.1) by taking Zj+1 = Ltj+1

−Ltj , for a sequence t0 ≤ · · · ≤ tN . Denote the char-
acteristic function of Z(ξ) by Ψ(·; ξ), which we assume to have an analytic representation.
This assumption implies that conditional on Yj, the characteristic function of the process
Wj+1 can be determined from the characteristic function of Zj+1(ξ). By the definition of
characteristic functions,

Ψ(z; ξ) = E(eizZ(ξ)), z ∈ R.

Lévy-Khintchine representation

By the Lévy-Khintchine representation, the characteristic function of L can be written
in the form of

ΨL(z, t) := E[eiz·Lt ] = etψL(z), (1.2)

3



where the characteristic exponent ψL is given by

ψL(z) := iγz − σ2

2
z2 +

∫
R

(eizx − 1− izx1|x|≤1)νL(dx), (1.3)

and i :=
√
−1.

Equation (1.3) implies that the process is fully determined by two real parameters, γ
and σ, and a measure νL, which is called the Lévy measure of the process. The measure
νL is defined by

νL(A) := E
[
#{t ∈ [0, 1] : ∆Lt 6= 0,∆Lt ∈ A}

]
,

where A is a measurable set and ∆Lt := Lt− lim
s→t−

Ls. νL can be interpreted as it assigns to

every measurable set A, the expected number of jumps per unit time, whose sizes belong to
A. Different selections of the Lévy measure lead to processes with different characteristics,
and below we present three examples:

(i) νL ≡ 0. Then L is a Brownian motion with drift γ and diffusion coefficient σ.

(ii) ν̄L :=
∫
R\{0} νL(x)dx < ∞ and dνL/ν̄L admits a density function g with respect to

the Lebesgue measure. In this case, L can be represented as a sum of a linear trend, a
Brownian motion with diffusion coefficient σ, and a compound Poisson process with
jump intensity ν̄L and jump-size density function g.

(iii)
∫
R\{0} νL(x)dx = ∞ and σ = 0. In this case, L has infinite number of jumps over

any finite time interval and is referred to as a process with infinite activities.

We use increments of a Lévy process to define the variables Z1, . . . , ZN in (1.1), and
since µ is a location parameter, to avoid redundancy, we assume that the parameter γ in
(1.3) is zero. Next, we provide three different hidden Markov models of the form (1.1)
corresponding to different selections of the measure νL.

Log-normal model. Hardy (2001) has proposed a regime-switching model where log-
returns of the underlying asset follow a normal distribution with the mean and variance
taking constant values in each regime. It is equivalent to our model where ξ = σ and
Z(σ) ∼ N(0, σ2h), or Z1, . . . , ZN in (1.1) are increments of a Brownian motion (BM) over
intervals of length h, and its drift term is zero and the diffusion term is σ. Since in this
case the characteristic exponent of L is of the form

ψL(z) = −z
2σ2

2
,

4



the log-characteristic function of Z(σ) is given by

ψBM(z;σ) := −z
2σ2

2
h. (1.4)

Merton (M) model. Merton (1976) proposed an extension of the log-normal model
by adding jumps in the asset price. The jumps follow a Poisson process with a constant
intensity λ and the logarithm of the jump size follows a normal distribution with mean µJ
and standard deviation σJ upon a jump. In this case, the characteristic exponent of L is

ψL(z) = −z
2σ2

2
+ λ(e−

z2σ2
J

2
+iµJz − 1).

In principle, by taking ξ := (σ, λ, µJ , σJ), we may allow any of the four parameters to
change in each regime. Then, the log-characteristic function of Z(ξ) will take the form

ψM(z; ξ) :=
[
− z2σ2

2
+ λ(e−

z2σ2
J

2
+iµJz − 1)

]
h.

The exponential moments of this model are finite, though the tails of the process are
heavier than those of Gaussian.

Variance gamma (VG) model. This model, where L has a variance gamma process,
can be represented as a subordinated Brownian motion, that is, Lt = Wht , where W is a
Brownian motion with drift θ and diffusion σ, and the subordinator ht is a gamma process
with the variance parameter ν, ν > 0 (see Madan et al., 1998, and, for an application to
ratchet EIAs, Ballotta 2010). The characteristic exponent of the process L is of the form

ψL(z) = −1

ν
ln(1− iθνz +

1

2
z2σ2ν),

from which we can find

ψV G(z; ξ) := −h
ν

ln(1− iθνz +
1

2
z2σ2ν)

with ξ := (σ0, θ0, ν). Both the Lévy density and the probability density function of incre-
ments of the variance gamma process have exponential tails with decay rates depending
on the three parameters θ, σ and ν.

Other possible selections of the Lévy process L can be:

5



(i) Kou’s model: The jump-diffusion model proposed by Kou (2002), which is the
same as Merton’s model except that the logarithm of the jump size has a double
exponential distribution.

(ii) Other infinite-activity Lévy processes: Normal inverse Gaussian process (for
example, Barndorff-Nielses 1997, 1998) and Tempered stable process (for example,
Carr et al., 2003).

In all these cases, the characteristic functions of the increments of the processes are
tractable analytically.

1.2 Problems and Contributions

In this section, we outline the problems that we would like to address in each of the
following chapters and the contributions that we have made to these problems.

Chapter 2 We study the estimation problem for regime switching Lévy processes, where
we extend the estimation method proposed by Feuerverger and McDunnough (1981)
and Feuerverger (1990). In particular, we apply the discrete empirical characteristic
function (DECF) estimation method that is based on joint characteristic functions
of two consecutive observations (bivariate) to regime switching models in Lévy pro-
cesses. We use the maximum-likelihood estimation method (Kim (1994)) as a bench-
mark, where density functions are approximated by truncated sums of Fourier cosine
series expansions. Then we compare these two estimation methods in a numerical
study.

We also discuss some computational challenges within the proposed estimation pro-
cedure, such as selection of the dimension of the characteristic function and selection
of the number and the locations of the points at which a characteristic function is
evaluated. To solve the former problem, we propose a method to select the dimension
by comparing some conditional distributions derived from the model. To solve the
latter problem, we propose two methods of selection of points. One method is based
on finite difference approximations with optimization, where the objective function
is based on a measure of singularity of a covariance matrix. The other method is
based on a quantization method proposed by Pagés et al. (2004).

Chapter 3 We study the goodness-of-fit testing problem for regime switching models,
where we extend two existing goodness-of-fit tests. One is a visual test, which is
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based on the test proposed by Altman (2004). Instead of distribution functions used
in the paper, we use empirical characteristic functions for our visual test. This test
can examine the fit of an estimated model to observations by plotting the empirical
characteristic function versus the true one to test deviations from the reference line,
which is a 45 degree straight line through the origin. It can also test the dependence
structure between observations by plotting the multivariate empirical characteristic
function versus the true one. The other test is an extension of the method proposed
by Koutrovelis and Kellermeier (1981) to non-i.i.d. observations, where the test
statistic is proven to follow the same chi-square distribution as in the i.i.d. case
considered by the authors.

Chapter 4 We apply the estimation and testing methods proposed in Chapters 2 and 3 to
the same set of S&P 500 real data as used in Hartman and Groendyke (2013), where
we consider two-regime switching Black-Scholes, Merton and variance gamma models
as our candidate models. The estimates obtained by the proposed DECF estimation
method are comparable with those obtained by the authors. Based on the visual test
results, we do not reject the estimated two-regime switching Black-Scholes model,
but we reject the other two estimated models.

Chapter 5 We study the Bermudan option pricing problem for regime switching Lévy
processes. We propose a numerical pricing method called the Projected Value (PV)
method, where in a dynamic programming setup we calculate conditional expecta-
tions by first representing the current value of the option using a series expansion and
then by applying the characteristic function. To see the advantages of the proposed
pricing method, we compare it with two well-known methods, the COS method de-
veloped by Fang and Oosterlee (2008) and the least-squares (LS) method proposed
by Carrière (1996) and Longstaff and Schwartz (2001). We also apply the PV method
to the problem of pricing ratchet equity-indexed annuities (EIAs), which currently
are popular products in insurance markets.

Chapter 6 We devise a method of sampling paths from conditioned processes for a two-
regime switching Black-Scholes model. We apply the algorithm to the problem of
pricing path-dependent options, where we use an Asian call option for illustrations.
We also compare the pricing results obtained by the proposed algorithm and a com-
monly used method, called the forward method. Then we apply the proposed algo-
rithm to the problem of static hedging of path-dependent options, where we extend
the static hedging method and relevant theoretical results proposed by Kolkiewicz
(2016) to our model. Finally, we briefly discuss another application of the condi-
tioned process sampling algorithm, which is filtering the path of volatility given the
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terminal value of the price process of the underlying asset.

Chapter 7 We discuss extensions of the existing work and possible topics for future re-
search.
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Chapter 2

Estimation of Regime Switching Lévy
Processes

2.1 Introduction and Motivation

In this chapter, we discuss some estimation methods based on characteristic functions for
the regime switching model defined in (1.1).

To estimate regime switching models, maximum likelihood estimation(MLE) using
the expectation-maximization(EM) algorithm and Bayesian estimation using the Markov
Chain Monte Carlo(MCMC) are two commonly used methods. The EM algorithm was first
applied to regime switching models by Hamilton(1990) and then refined by Kim (1994).
In a Bayesian framework, Harris (1997) uses the Gibbs sampler, while Hardy (2002) uses
the Metropolis Hastings Algorithm. Hardy (2001, 2002) and Hartman and Groendyke
(2013) apply the MLE and Bayesian estimation methods to estimate regime switching
Black-Scholes models in insurance markets, and Janczura and Weron (2013) use the MLE
to estimate regime switching models in electricity markets.

The above methods are based on distribution or density functions, which are usually
unknown or not easily tractable for Lévy processes. Thus, estimation methods based
on characteristic functions are more suitable for processes whose characteristic functions
are easier to compute than their density functions. The estimation approaches that are
based on empirical characteristic functions are known as the ECF (empirical characteristic
function) methods, and they have been applied to numerous models, including ARMA
models (Knight and Yu (2002)), switching regression models (Xu (2010)), normal mixture
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models (Xu and Knight (2011)) and Ornstein-Uhlenbeck-based stochastic volatility models
(Taufer et al. (2011)). Kotchoni (2012) uses characteristic functions within the generalized
method of moments with a continuum of moments conditions (CGMM) to estimate stable
distributions and autoregressive variance gamma models. These CGMM methods were
previously proposed by Carrasco and Florens (2000) and Carrasco et al. (2007). Other
relevant references to the ECF methods are Yu (1998) and Jiang and Knight (2002). A
more comprehensive literature review is provided in Yu (2004).

The ECF methods can be continuous or discrete. An example of the first approach is
the integrated squared error (ISR) estimation method proposed by Heathcote (1977), which
minimizes a weighted integral of a distance between empirical and marginal characteristic
functions. There is also a discrete version of Heathcote’s estimation method called the
k − L procedure (for example, Feuerverger and McDunnough (1981)). The k − L method
is based on empirical and true characteristic functions evaluated at k points. It can be
seen as a generalized representation of the maximum likelihood procedure in the Fourier
domain.

Estimation problems can be also divided into various categories according to the as-
sumed form of dependency of the data. Among the existing literature, Heathcote (1977),
Feuerverger and Mureika (1977) and Koutrouvelis (1980) consider the case of indepen-
dent and identically distributed (i.i.d.) observations, while Feuerverger and McDunnough
(1981), Feuerverger (1990), Knight and Satchell (1996,1997) and Carrasco et al. (2002)
discuss the non-i.i.d. case. The estimation approaches for the i.i.d. case are usually based
on marginal empirical characteristic functions; however, the marginal empirical character-
istic function may not identify all the parameters in the non-i.i.d. case. Therefore, joint
characteristic functions (CFs) and conditional characteristic functions are considered for
estimating in the latter case. Estimating regime switching models in Lévy processes be-
longs to the non-i.i.d. case. In this chapter, we only consider the approaches based on joint
characteristic functions rather than conditional ones. This is motivated by the fact that the
methods based on conditional characteristic functions are not directly applicable because
of the presence of unobservable, or latent, state variables in our models, and those based
on joint characteristic functions allow us to estimate model parameters directly without
filtering out the realizations of the latent variables. Though this may result in the loss of
efficiency in the estimation procedure.

When using the ECF methods, we have to address several computational challenges,
such as proper selections of the dimension of the characteristic function, the weight func-
tion and the points at which a characteristic function is evaluated. These problems are
very important; for example, the number and the locations of the points at which a char-
acteristic function is evaluated can affect the accuracy and efficiency of the estimation
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results and they may also result in a singular covariance matrix that is used in the estima-
tion procedure. Indeed, this problem is still an open question, though quite a few studies
have discussed it. Koutrouvelis (1980) only gives some basic ideas on how to choose the
points. Feuerverger and McDunnough(1981) and Feuerverger (1990) only mention that
the points should be properly selected. Later, Knight and Satchell (1997) propose a gen-
eralized method of moments (GMM) scheme to select the points. In addition, Schmidt
(1982) advocates a similar approach where moment generating functions are used instead
of characteristic functions. Yu (1998) discusses other computational problems that may
occur during the implementation of the ECF estimation procedure, such as the singularity
problem of the covariance matrix.

In this chapter, we consider using the discrete instead of the continuous ECF meth-
ods to estimate our models. By using the continuous ECF methods, we can match all
the moments of the ECF and theoretical CF continuously, and hence more information
from the observations is used. Also we do not need to be concerned with the selection
of different grids as they are integrated out provided that the weight function is chosen
appropriately. However, there are some potential problems with the continuous ECF meth-
ods; for example, the selection of the weight function as mentioned above. In theory, the
optimal weight function is obtained as the inverse Fourier transform of the score function
(see, for example, Feuerverger and McDunnough (1981)). Note that the score function
depends on the density function, which is usually unknown for a regime switching diffusion
process. Thus, we usually use some methods to approximate the weight function in the
implementation, which can affect the efficiency of the continuous ECF methods. The two
most common choices for the weight function are exponential and normal, but using these
two functions does not result in an efficient estimator, though the asymptotic properties
are still preserved. Although, we face several computational challenges when implementing
the discrete ECF methods. In the following sections, we propose some methods to solve
these problems.

The fact that some aspects of the ECF methods must be selected judiciously makes them
more difficult to use in practice. In this chapter, we plan to propose and investigate more
objective ways of estimating models described in terms of their characteristic functions.
To estimate model (1.1), we utilize an estimation procedure that matches a joint empirical
characteristic function with the theoretical one over a discrete set of points. For the problem
of selection of the dimension of the characteristic function, we propose an approach that
compares some conditional distributions derived from the model. For the problem of
proper selection of the points at which a characteristic function is evaluated, we suggest
a systematic way based on finite difference approximations. As an alternative approach,
we consider a quantization method proposed by Pages et al. (2004). We compare our
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estimation results with those obtained by the EM algorithm, where in the latter we use
cosine expansions to approximate density functions (the method is presented in Appendix
2.A).

This chapter is organized as follows. In Section 2.2, we present the discrete ECF
estimation method and discuss some computational issues that need to be resolved. The
problem of proper selection of the points at which a characteristic function is evaluated is
discussed in Section 2.3. We illustrate the proposed methods through a simulation study
in Section 2.4.

2.2 Discrete ECF Estimation Method

In this section, we discuss some estimation methods for regime switching models based on
characteristic functions. Since marginal distributions of such processes are not sufficient to
identify all the parameters of the models, we consider using joint characteristic functions.
Methods of estimation based on characteristic functions evaluated over a set of finite points
have been discussed, among others, by Feuerverger (1990), Knight and Satchell (1996,
1997), and Yu (1998).

Following Feuerverger and McDunnough (1981) and Feuerverger(1990), we present a
discrete ECF estimation procedure for a non-i.i.d. stationary process. In the thesis, we
refer to this as the DECF method. Below we first describe the DECF method. Then we
discuss several computational challenges when implementing the method, followed by the
description of the methods that we propose to address these issues.

Let W := {Wj, j = 1, 2, ..., N} be defined as in model (1.1). For convenience, we index
the characteristic function of Wj given Yj−1 = k by the parameter ξ

k
as

φ(z; ξ
k
) := E[eizWj |Yj−1 = k], z ∈ R+.

By conditioning, the marginal characteristic function Φ(z; ξ), of the process W can be
represented as

Φ(z; ξ) := E[eizWj ] =
K∑
k=1

πkφ(z; ξ
k
). (2.1)

In the case where in the estimation procedure we use the m-dimensional marginal
distribution, we define the following vectors: z := (z1, ..., zm) ∈ (R+)m and Wj,m :=
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(Wj, ...,Wj+m−1) ∈ Rm, where j = 1, ..., N + 1 −m. By the definition of our model, the
characteristic function of Wj,m can be expressed as

Φm(z; ξ) := E[eizW
′
j,m ] =

K∑
k1=1

· · ·
K∑

km=1

πk1pk1,k2 · · · pkm−1,kmφ(z1; ξ
k1

) · · ·φ(zm; ξ
km

), (2.2)

where
′

denotes the transpose of a vector. We refer to (2.2) as the m-dimensional charac-
teristic function. When the parameters in (2.2) are estimated, we denote the corresponding
characteristic function by Φ̂m(z; ξ̂).

In addition, we denote the m-dimensional ECF based on observations, W1, ...,WN , by

Φ̄m,N(z) :=
1

N −m+ 1

N−m+1∑
j=1

eizW
′
j,m . (2.3)

When m = 1, the one-dimensional ECF becomes:

Φ̄N(z) =
1

N

N∑
j=1

eizWj , z ∈ R+. (2.4)

Define ζm and ζm,N as 2q−dimensional vectors,

(ζm)
′ ≡

(
ζm(ξ)

)′
:=
{
<m(r1), ...,<m(rq),=m(r1), ...,=m(rq)

}
(2.5)

and
(ζm,N)

′
:=
{
<m,N(r1), ...,<m,N(rq),=m,N(r1), ...,=m,N(rq)

}
, (2.6)

where <m and =m are the real and imaginary parts of Φm, while <m,N and =m,N are the
real and imaginary parts of Φ̄m,N , and r1, ..., rq are some selected different vectors from
(R+)m.

The basic idea of the DECF estimation method for the parameter ξ in model (1.1) is to

minimize a weighted sum of the distance between Φ̄m,N and Φm. In particular, Feuerverger
and McDunnough (1981) suggest to estimate the parameter ξ by minimizing the quadratic
form of

(ζm,N − ζm)
′D(ζm,N − ζm), (2.7)

where D is a weight function.
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As suggested by the authors, we estimate the parameters in model (1.1) by minimizing
the quadratic form of

Lm,N = (ζm,N − ζm)
′
(Ωm)−1(ζm,N − ζm), (2.8)

where Ωm ≡ Ωm(ξ) is the covariance matrix of ζm,N and (Ωm)−1 is its inverse.

Although numerous authors have considered the computational problems we need to
face when implementing the DECF method, some of the problems are still open questions,
for example, the selection of the q points at which a characteristic function is evaluated. In
addition, some of the existing results are not applicable to our models directly. For example,
though an explicit formula for the covariance matrix Ωm for model (1.1) is available, it is
not easy to be implemented in practice especially when observations are dependent and
the dimension m is large. Therefore, in the following sections we would like to propose
some methods to address these computational problems for our model, and the three main
problems considered in this chapter are the evaluation of Ωm, the selection of the dimension
m and the selection of the q points.

Below we have several remarks for the estimating functions (2.7) and (2.8).

Remark1 2.2.1.

(i) Assume that ξ̂ is a consistent root of equation (2.7). Feuerverger and McDunnough
(1981) show that if D in (2.7) is selected to be the inverse of the covariance matrix
of ζm,N , which is the estimating function (2.8), then N · var(ξ̂) converges to the
asymptotic Fisher information per observation.

(ii) The choice of points r1, ..., rq affects the efficiency of the estimation procedure. Feuerverger
and McDunnough (1981) also show that the estimation procedure can be as efficient
as the maximum likelihood estimation is if the points r1, ..., rq are chosen to be suf-
ficiently fine and extended.

(iii) The behaviours of the processes <m and =m can provide some guidance for the selec-
tion of the points. Note that as z → 0, the processes <m and =m are uncorrelated,
and <m,N and =m,N become their good estimates. Therefore, it is more reasonable
to have the points to be close to zero. Based on our implementation, the estimation
procedure works well even the points are not close to zero, say 50. In addition, the
points r1, ..., rq should be selected such that Ωm is non-singular. The selection of
these points are discussed further in Section 2.3.

1Thank Professor Tony Wirjanto for his comments that help me to formulate some of these remarks.
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(iv) Because < and = are cosine and sine functions and they are bounded, and hence the
estimating function (2.8) is also bounded. Therefore, the DECF estimation procedure
is robust for a large class of models.

(v) The continuous form of the estimating function (2.7) is a weighted integral of the
distance between the two characteristic functions Φ̄m,N and Φm. Although for this
case we do not encounter the problem of selecting the q points, we have to decide
the weight function, which is not a trivial problem especially for the case when the
dimension m is large.

The covariance matrix for model (1.1) is presented in the lemma below.

Lemma 2.2.1. The covariance matrix Ωm of the vector ζm,N defined in (2.6) can be
represented as:

Ωm =

(
Ωm,RR Ωm,RI

Ωm,IR Ωm,II

)
, (2.9)

where the corresponding elements in the four sub-matrices are :

(Ωm,RR)i,l = E
[
<m,N(ri)<m,N(rl)

]
−<m(ri)<m(rl),

(Ωm,RI)i,l = E
[
<m,N(ri)=m,N(rl)

]
−<m(ri)=m(rl),

(Ωm,IR)i,l = E
[
=m,N(ri)<m,N(rl)

]
−=m(ri)<m(rl),

(Ωm,II)i,l = E
[
=m,N(ri)=m,N(rl)

]
−=m(ri)=m(rl),

and

E
[
<m,N(ri)<m,N(rl)

]
=

1

2(N −m+ 1)

(
<m(ri + rl) + <m(ri − rl)

)
+

1

2(N −m+ 1)2

N−m∑
k=1

(N −m+ 1− k)
[
<ψk(ri, rl)

+ <ψk(ri,−rl) + <ψk(rl, ri) + <ψk(rl,−ri)
]
,
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E
[
<m,N(ri)=m,N(rl)

]
=

1

2(N −m+ 1)

(
=m(ri + rl)−=m(ri − rl)

)
+

1

2(N −m+ 1)2

N−m∑
k=1

(N −m+ 1− k)
[
=ψk(ri, rl)

− =ψk(ri,−rl) + =ψk(rl, ri)−=ψk(−rl, ri)
]
,

E
[
=m,N(ri)<m,N(rl)

]
=

1

2(N −m+ 1)

(
=m(ri + rl)−=m(rl − ri)

)
+

1

2(N −m+ 1)2

N−m∑
k=1

(N −m+ 1− k)
[
=ψk(rl, ri)

− =ψk(rl,−ri) + =ψk(rl, rl)−=ψk(−ri, rl)
]
,

E
[
<m,N(ri)<m,N(rl)

]
=

1

2(N −m+ 1)

(
<m(ri + rl)−<m(ri − rl)

)
+

1

2(N −m+ 1)2

N−m∑
k=1

(N −m+ 1− k)
[
−<ψk(ri, rl)

+ <ψk(ri,−rl)−<ψk(rl, ri) + <ψk(rl,−ri)
]
,

where
ψk(ri, rl) = E

[
e(iriW

′
1,m+irlW

′
k+1,m)

]
. (2.10)

Proof: The proof is similar to that for stationary stochastic processes presented in
Knight and Satchell (1995), and hence it is omitted. �

In the case when m = 2, equation (2.10) can be written in an explicit form as below:
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1. For k = 1:

ψ1(ri, rl) = E
[
e(iri(W1,W2)

′
+irl(W2,W3)

′
)
]

= E
[
e(i(ri1,ri2)(W1,W2)

′
+i(rl1,rl2)(W2,W3)

′
)
]

= E
[
e(iri1W1+i(ri2+rl1)W2+irl2W3

]
=

K∑
k1=1

K∑
k2=1

K∑
k3=1

πk1pk1,k2pk2,k3

· φ(ri1; ξ
k1

)φ(ri2 + rl1; ξ
k2

)φ(rl2; ξ
k3

). (2.11)

2. For k ≥ 2:

ψk(ri, rl) = E
[
e(iri(W1,W2)

′
+irl(Wk+1,Wk+2)

′
)
]

=
K∑

k1=1

K∑
k2=1

K∑
k3=1

K∑
k4=1

πk1pk1,k2p
(k−1)
k2,k3

pk3,k4

· φ(ri1; ξ
k1

)φ(ri2; ξ
k2

)φ(rl1; ξ
k3

)φ(rl2; ξ
k4

). (2.12)

As mentioned earlier, we face the following three main issues when implementing the
DECF estimation method:

(i) Evaluation of the characteristic function ψk when k ≥ 2. Formula (2.12) is not easy
to use in practice for two reasons:

– computation of the transition densities p
(k−1)
k2,k3

can be demanding, especially when
k is large;

– multiple summations result in extreme computational efforts, especially when
m is large.

(ii) Selection of the dimension m of the vector Wj,m.

(iii) Selection of q and the points r1, ...rq.

Below we discuss the above three problems in detail.
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2.2.1 Approximation of the Characteristic Function ψk

In this section, we propose an approximation of the representation (2.12). Recall that if
the stationary distribution π exists for a hidden Markov chain with the transition matrix
P = [pkl], then

lim
n→∞

p
(n)
i,j = πj, i, j ∈ 1, ..., K.

Thus, for any k2≥ 2, p
(k−1)
k2,k3

in (2.12) can be rewritten as

p
(k−1)
k2,k3

= πk3 + εk3,k−1, (2.13)

where εk3,k−1 is the error term.

To approximate the right-hand side of formula (2.12), we can use the fact that for

every ε > 0, there exists a k∗ such that for any n ≥ k∗, we have ε̄k3,n := |p(n)
k2,k3
− πk3| ≤ ε.

Therefore, we can approximate the transition probability p
(k−1)
k2,k3

in (2.12) with the following
series

p̂
(n)
k2,k3

=

{
p

(n)
k2,k3

, n ≤ k∗ − 1

πk3 , n ≥ k∗. (2.14)

Obviously, when n ≥ k∗, the smaller the value of ε̄k3,n is, the more accurate the above

approximation of p
(k−1)
k2,k3

becomes. Indeed, the accuracy and efficiency of such approximation
depend on the rate of convergence of the transition probability matrix P to its stationary
distribution π. Next, we will describe this rate of convergence more formally.

Following Bremaud (1999), let U be the matrix of linearly independent eigenvectors in
RK and ui be the ith column of U , which is a left eigenvector of P , and each ui is normalized
to having an L2 norm equal to 1. Let D be the diagonal matrix of left eigenvalues of
P , namely D = diag(d1, ..., dK), where each di is the corresponding eigenvalue of the
eigenvector ui. Let the eigenvalues be ordered such that |d1| > |d2| ≥ |d3| ≥ ... ≥ |dK |. If
P is a row stochastic matrix, its largest left eigenvalue is d1 = 1.

By the eigen-value decomposition, we have

P = UDU−1.

2This k represents the number of steps (k − 1), which is different from the k in P = [pkl], where k
represents a state. Thus, hereafter in this section, we use n = k − 1 to represent the number of steps and
ki, i = 1, ...,K, represents the states.
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Let P(n) be the n-th power of the matrix P and n ∈ Z+. Then we have

P(n) = UDnU−1.

Consider a transition matrix with K = 2 as

P =

(
1− α α
β 1− β

)
.

In this case, we have |d1| = 1 and |d2| = |1− α− β|. Note that the stationary distribution
π for this P is

π =
[ β

α + β
,

α

α + β

]
.

Then, for any n ∈ Z+, P (n) becomes

P(n) =
1

α + β

(
β α
β α

)
+

(1− α− β)n

α + β

(
α −α
−β −β

)
.

and since |1− α− β| < 1, we have

P(∞) := lim
n→∞

P (n) =
1

α + β

(
β α
β α

)
.

Therefore,

P(n) = P(∞) +
(1− α− β)n

α + β

(
α −α
−β −β

)
= P(∞) +

(d2)n

α + β

(
α −α
−β −β

)
or equivalently,

ε̄n := P(n) − P(∞) =
(d2)n

α + β

(
α −α
−β −β

)
,

where the error term ε̄n is a decreasing function of n since |d2| < 1.

We have two results that can be inferred from the above derivations:

(i) Each row of P(∞) has the same form as the stationary distribution π.

(ii) The convergence rate of P(n) to the stationary distribution π is exponential (power
of n) and determined by the second largest eigenvalue.
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Below we provides two simple examples to illustrate the above facts.

Example 2.2.1. When

P =

(
0.4 0.6
0.6 0.4

)
,

by the eigen-value decomposition, we get

U =

(
−0.707 0.707
0.707 0.707

)
,

and

D =

(
−0.2 0

0 1

)
.

Thus, |d1| = 1 and |d2| = 0.2.

The stationary distribution π for this P is

π = [0.5 0.5],

and for any k ∈ Z+,

P(n) =

(
0.5 0.5
0.5 0.5

)
+

(−0.2)n

1.2

(
0.6 −0.6
−0.6 −0.6

)
,

where

ε̄n =
(−0.2)n

1.2

(
0.6 −0.6
−0.6 −0.6

)
.

We find that |ε̄n| < 10−4 or P(n) is equal to its stationary distribution up to the fourth
decimal place when n = 6.

Example 2.2.2. When

P =

(
0.1 0.9
0.9 0.1

)
,

by the eigen-value decomposition, we get

U =

(
−0.707 0.707
0.707 0.707

)
,
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and

D =

(
−0.8 0

0 1

)
.

Thus, |d1| = 1 and |d2| = 0.8.

The stationary distribution π for this P is

π = [0.5 0.5],

and for any k ∈ Z+,

P(n) =

(
0.5 0.5
0.5 0.5

)
+

(−0.8)n

1.8

(
0.9 −0.9
−0.9 −0.9

)
,

where

ε̄n =
(−0.8)n

1.8

(
0.9 −0.9
−0.9 −0.9

)
.

We find that |ε̄n| < 10−4 or P(n) is equal to its stationary distribution up to the fourth
decimal place when n = 42.

From these two examples, we can see that the P(n) in Example 2.2.1 approaches π
faster than that in Example 2.2.2, because the second largest left eigenvalue of Example
2.2.1 is smaller than that of Example 2.2.2.

The dimension of Wj,m used in the above results and examples is m = 2. However,
the results can be extended to higher dimensions by the Perron-Frobenius Theorem (see
Bremaud (1999)).

For convenience of reference, we summarize some of our findings in the following remark.

Remark 2.2.2.

(i) If P(n) approaches π slowly, we can use (2.14) with a suitably larger value k∗.

(ii) If P(n) approaches π fast, we can take k∗ = 1, which makes the procedure faster and
will not reduce the accuracy and efficiency a lot. In our implementation, we found
that k∗ = 1 was sufficient to produce reasonably accurate estimation results for our
selections of the model parameters.
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Now we use (2.14) to simplify (2.12).

Lemma 2.2.2. If p
(k−1)
k2,k3

in (2.12) is replaced by (2.14), then (2.12) becomes:

ψ̄k(ri, rl) =



K∑
k1=1

K∑
k2=1

K∑
k3=1

K∑
k4=1

πk1pk1,k2p
(k−1)
k2,k3

pk3,k4

·φ(ri1; ξ
k1

)φ(ri2; ξ
k2

)φ(rl1; ξ
k3

)φ(rl2; ξ
k4

), 2 ≤ k ≤ k∗

K∑
k1=1

K∑
k2=1

πk1pk1,k2φ(ri1; ξ
k1

)φ(ri2; ξ
k2

)

·
K∑

k3=1

K∑
k4=1

πk3pk3,k4φ(rl1; ξ
k3

)φ(rl2; ξ
k4

), k ≥ k∗ + 1, (2.15)

and for any ε∗ > 0, there exists a k∗ such that εk,k∗ := |ψk(ri, rl)− ψ̄k(ri, rl)| ≤ ε∗.

Proof: See Appendix 2.B. �

The following lemma describes the special case when p
(k−1)
k2,k3

in (2.12) is replaced by
(2.14) with k∗ = 1.

Lemma 2.2.3. For any k ≥ 2, if we assume that W1,m and Wk+1,m are independent,
then (2.12) is the same as (2.15) with k∗ = 1.

Proof: See Appendix 2.C. �

If we substitute equations (2.11) and (2.15) into (2.10), then we get an approximation
of the covariance matrix, which can be used in equation (2.8). In the rest of the chapter,
we use (2.14) with k∗ = 1.

2.2.2 Selection of the Dimension of the Vector Wj,m

Another important implementational issue within the DECF estimation procedure is the
selection of the dimension m. In general, larger m can increase the asymptotic efficiency
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of the DECF method, since more information about the model is included in the esti-
mation procedure; at the same time, however, larger m makes an implementation more
cumbersome as well as time-consuming.

Knight and Yu (2002) mention that a proper choice of m depends on the dimension
of the minimal sufficient statistic of a model. Particularly, if the random variables of the
observations are independent, then m = 1 is sufficient. If a model is a Markov process of
order m∗, then m = m∗ + 1 is sufficient, where m∗ = 1, 2, .... If a model is a non-Markov
process with a sample size N , any m < N is not sufficient. Intuitively, if a non-Markov
process can be approximated well by a Markov process of order m∗, then m = m∗ + 1
should be a good choice.

Our models are non-Markov processes, and {Wj, j = 1, ..., N} are dependent variables
because of the presence of the Markov chain Y . This observation suggests that any choice
of m < N is not sufficient. Therefore, if m is small, estimation results may not be accurate;
if m is large, the estimation procedure may take very long time and hence be inefficient.
Thus, in our study, we only consider m up to 3.

Before we propose a procedure to select m, we need to describe in greater detail the
estimating functions that we use in our model. Let w = {w1, ..., wN} be the observations
drawn from the process W := {Wj, j = 1, 2, ..., N} defined in model (1.1). Since {Wj, j =
1, ..., N} are not independent, the likelihood function based on the observations w is of the
form

L(w; ξ) := f(w1; ξ)
N∏
j=2

f(wj|wj−1; ξ),

where wj := (w1, ..., wj). Then, the corresponding score function is of the form

S(w; ξ) :=
N∑
j=1

Sj(wj; ξ), (2.16)

where

S1 =
∂

∂ξ
log f(w1; ξ) and Sj =

∂

∂ξ
log f(wj|wj−1; ξ).

For models whose density functions are unknown explicitly, we can consider an inference
method based on a transform, like the characteristic function. In this case, we first need
to specify the dimension m of a marginal distribution that we are going to use. Then an
estimator ξ̂ can be defined as a solution to the equation

N∑
j=1

G(Wj,m; ξ̂) = 0, (2.17)
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with a suitably chosen function G. For independent observations, in which case m = 1
is sufficient, Feuerverger and McDunnough (1984) show that by properly selecting more
points at which a characteristic function is evaluated, an estimating function (2.17) can be
made close to (2.16) if G(Wj,m; ξ̂) is close to the score function Sj in a properly selected
L2-space. For non-independent observations, which is our case, we are generally trying to
approximate a function of N arguments using a function of only m (m < N) arguments.
To use this observation in practice, we have to first understand the dependence structure
of our process.

There are several known facts about equations (2.17) and (2.18):

(i) If W is ergodic, then ξ̂ will converge to the true parameter ξ̄ that solves

E
[
G(W1,m; ξ̄)

]
= 0. (2.18)

(ii) If there is only one ξ̄ that solves (2.18), then the model is identifiable.

(iii) If the left-hand side (LHS) of (2.17) is asymptotically normally distributed, then so
is ξ̂ (see, for example, Feuerverger and McDunnough (1984) and Feuerverger (1990)).

(iv) A practical way of determining the loss of efficiency of the method based on (2.17)
when compared with the optimal estimating function (2.16) is still an open question.

In this section, we introduce a notion of closeness of two functions that depend on
the same parameter. Define f(x; θ) and g(x; θ) as functions of x indexed by a parameter
θ ∈ Rd, where d ∈ Z+. Let θ0 be a fixed point. If for given x and ε > 0, there exists a
neighbourhood of θ0 such that |f(x; θ)− g(x; θ)| < ε, then we say that the two functions f

and g are locally close, which we denote by f(x; θ)
c.l∼ g(x; θ).

For the problem of proper selection of m, let us first look at an example of a Markov
process of order m∗ = 1. In this case, an estimation procedure based on the marginal
distribution of the process (m = 1) will retain the efficiency of the maximum-likelihood
(ML) method only if

f(wj; ξ)
c.l.∼ f(wj|wj−1; ξ), j = 2, ..., N.

Typically, the above approximation will be poor, and hence we usually use transition
densities (m = 2) instead of the marginal distribution to estimate a Markov process.
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If we choose m = 2, then it is possible to construct estimating functions based on
marginal distributions of the process up to the dimension 2 that will lead to an estimating
method with the same asymptotic efficiency as MLE. For this we can take

Ḡ(wj, wj−1; ξ) := (G1(wj, wj−1; ξ), G2(wj, wj−1; ξ)), j = 1, ..., N,

with

G1(wj, wj−1; ξ) :=
∂

∂ξ
log f(wj; ξ), j = 1, ..., N,

G2(w1, w0; ξ) :=
∂

∂ξ
log f(w1; ξ)

and

G2(wj, wj−1; ξ) :=
∂

∂ξ
log f(wj, wj−1; ξ), j = 2, ..., N.

Since
log f(w1|w0; ξ) = log f(w1; ξ)

and
log f(wj|wj−1; ξ) = log f(wj, wj−1; ξ)− log f(wj−1; ξ), j = 2, ..., N,

it is easy to see that the estimating function

N∑
j=1

Ḡ(wj, wj−1; ξ) = 0

is equivalent to the MLE, where 0 is a zero vector.

A similar analysis also holds ifW is only weakly Markovian (i.e., the transition density
is of the form f(wj|wj−1, ..., wj−k; ξ), for some k ≥ 1). Then an estimation procedure based
on (2.17) with m < k + 1 will have high efficiency if

f(wj|wj−1, ..., wj−m+1; ξ)
c.l.∼ f(wj|wj−1..., wj−k; ξ), j = k + 1, ..., N. (2.19)

If condition (2.19) holds, then, similar to the case when W is a Markov process, the score
function corresponding to the conditional density function of the left-hand side of (2.19)
can be recovered by properly defining estimating functions based on marginal distributions
of the process up to the dimension m.

Below we present a procedure to select m for the model defined in (1.1), where we apply
the above idea described for Markov models. Let y := {y1, ..., yN} be the realization of
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the hidden Markov process Y = {Y1, ..., YN}. In the following, we only consider two cases,
m = 1 versus m = 2 and m = 2 versus m = 3, to decide which m (up to 3) is the best
choice for our model.

Remark 2.2.3. From now on, we omit ξ for simplicity.

(i) m = 1 Versus m = 2.

By (2.19), we want to verify the condition

f(wj)
c.l.∼ f(wj|wj−1), j = 2, ..., N. (2.20)

If (2.20) holds, then m = 1 is a sufficient choice; otherwise, we need to increase the value
of m. For the LHS:

P (Wj = wj) =
K∑

yj=1

P (Wj = wj|Yj = yj)P (Yj = yj)

=
K∑

yj=1

P (Wj = wj|Yj = yj)πyj . (2.21)

For the right-hand side (RHS):

P (Wj = wj|Wj−1 = wj−1) =
K∑

yj=1

P (Wj = wj|Yj = yj,Wj−1 = wj−1)P (Yj = yj|Wj−1 = wj−1)

=
K∑

yj=1

P (Wj = wj|Yj = yj)
K∑

yj−1=1

pyj−1,yjP (Yj−1 = yj−1|Wj−1 = wj−1).

Thus (2.20) holds if for any j = 2, ..., N , the following two conditions are satisfied:

• P (Wj = wj) = P (Wj = wj|Yj = yj), which can be obtained from the fact that

P (Wj = wj) = P (Wj = wj)
K∑

yj=1

πyj =
K∑

yj=1

P (Wj = wj)πyj =
K∑

yj=1

P (Wj = wj|Yj = yj)πyj .

This condition is not realistic, but could be approximately satisfied if the dependency
on the regime in the hidden Markov process is weak.
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• πyj
c.l.∼
∑

yj−1
pyj−1,yjP (Yj−1 = yj−1|Wj−1 = wj−1). This also could be approxi-

mately satisfied if the dependency on the regime is weak, in the sense that P (Yj−1 =

yj−1|Wj−1 = wj−1)
c.l.∼ πyj−1

.

These two conditions are very strong, and hence we typically use at least m = 2.

Since our models are non-Markovian, even m = 2 may not be sufficient. Therefore we
may be interested in deciding whether there is any advantage in using m = 3, as opposed
to m = 2.

(ii) m = 2 Versus m = 3.

By (2.19), we want to verify the condition

f(Wj = wj|Wj−1 = wj−1)
c.l.∼ f(Wj = wj|Wj−1 = wj−1,Wj−2 = wj−2), j = 3, ..., N.

(2.22)
If (2.22) holds, m = 2 is a sufficient choice; otherwise, we may have to consider a larger
value m = 3.

By Bayes’ theorem, (2.22) can be equivalently represented as

f(Wj−2 = wj−2,Wj = wj|Wj−1 = wj−1)
c.l.∼

f(Wj−2 = wj−2|Wj−1 = wj−1)f(Wj = wj|Wj−1 = wj−1), j = 3, ..., N,

(2.23)

which intuitively suggests that (2.22) will hold if Wj−2 contributes less to our knowledge
about Wj when Wj−1 is known. In the extreme case when Wj−1 is known, then Wj−2

and Wj are independent, which is true if W is a Markov process of order m∗ = 1. This
also confirms our previous conclusions for m = 2 in the case of a Markov process of order
m∗ = 1. Conditions (2.22) and (2.23) also suggest that if we can filter the latent regime
more accurately, then we are getting closer to a Markov process set-up, and hence (2.22)
will be more likely true.

The following lemma provides a sufficient condition under which (2.23) holds.

Lemma 2.2.4. Condition (2.23) holds if for any j = 3, ..., N ,

P (Yj−1 = yj−1|Wj−1 = wj−1)
c.l.∼ P (Yj−1 = yj−1|Wj−1 = wj−1, Yj−2 = yj−2). (2.24)
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Proof: See Appendix 2.D.

Lemma 2.2.4 suggests that condition (2.23) holds if we only need the observation wj−1

to filter the state Yj−1 correctly or, equivalently, that conditional on the current observation
the distribution of the hidden state does not change significantly if we add the information
about the previous state.

Below we consider a two-regime switching model as examples to illustrate condition
(2.24), where the state space of a Markov chain is S = {1, 2}.

Through a simple algebra, we can represent the distributions in condition (2.24) in
terms of model densities and parameters as presented in Lemma 2.2.5.

Lemma 2.2.5. Condition (2.24) holds if the following two conditions hold:

(i)

d1
c.l.∼ d3

c.l.∼ d5, (2.25)

where

d1 :=
dW,1p21

dW,1p21 + dW,2p12

, d3 :=
dW,1p11

dW,1p11 + dW,2p12

, d5 :=
dW,1p21

dW,1p21 + dW,2p22

,

with

dW,1 := P (Wj−1 = wj−1|Yj−1 = 1) and dW,2 := P (Wj−1 = wj−1|Yj−1 = 2).

(ii)

d2
c.l.∼ d4

c.l.∼ d6, (2.26)

where

d2 :=
dW,2p12

dW,1p21 + dW,2p12

, d4 :=
dW,2p12

dW,1p11 + dW,2p12

, d6 :=
dW,2p22

dW,1p21 + dW,2p22

.

Proof: See Appendix 2.E. �
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These two conditions correspond to taking yj−1 in (2.24) to be either 1 or 2 respec-
tively. Let ξ

0
be the true value of the parameter ξ. We assume that the parameter ξ

used for the distributions dW,1 and dW,2 is in the neighbourhood of ξ
0
. In the follow-

ing lemma, we present a simple sufficient condition such that both conditions (2.25) and
(2.26) hold. The proof is based on the following assumption. Define g1(wj−1; ξ) and
g2(wj−1; ξ) as two functions of wj−1 and T (·) as a transformation of a function. We assume
that the following condition holds at least for the neighbourhood of the parameter ξ

0
: if

g1(wj−1; ξ)
c.l.∼ g2(wj−1; ξ), then T (f(x; ξ))

c.l.∼ T (g(x; ξ)), where ξ is in a neighbourhood of
ξ

0
.

Lemma 2.2.6. Conditions (2.25) and (2.26) hold if the following condition holds:

gW,1 :=
dW,2p12

dW,1p11

c.l.∼ gW,2 :=
dW,2p22

dW,1p21

, (2.27)

or, more stringently, if the following condition holds:

p12

p11

c.l.∼ p22

p21

. (2.28)

Proof: See Appendix 2.F. �

Note that condition (2.28) is a sufficient condition for condition (2.27), and it does not
depend on the distributions dW,1 and dW,2. Condition (2.28) implies that two rows of the
transition matrix should be similar. Therefore, we can check conditions (2.25) and (2.26)
by checking condition (2.28) instead. If condition (2.28) does not hold, then we need to
check the less stringent condition (2.27).

Below we summarize the steps to decide m that is used in the DECF estimation pro-
cedure for a two-regime switching model based on the above results:

(S1–1) Estimate the model parameters by the DECF estimation method with m = 2 3. If

D0 :=
∣∣∣p12

p11
− p22

p21

∣∣∣ < ε, then m = 2 is a sufficient choice. Otherwise, we need to decide

m by the following steps.

(S1–2) Estimate model parameters by the DECF estimation method with m = 2 and obtain
the distributions dW,j, j = 1, 2, by using the obtained parameters.

3In this section, we focus on the selection of the dimension m, but not on the selection of the best
model. This step can be seen as a pre-analysis on the model parameters.
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(S1–3) Obtain the normalized distributions of gW,j, j = 1, 2, denoted by g∗W,j, j = 1, 2, so
that the distributions are comparable on the same scale. The normalizing constants
can be obtained as cj =

∑
∀wj−1

gW,j, then g∗W,j =
gW,j
cj
, j = 1, 2.

(S1–4) If D1 := max
∀wj−1

∣∣∣g∗W,1 − g∗W,2

∣∣∣ < ε, then m = 2 is a sufficient choice for the model;

otherwise, it is more preferable to use m = 3.

Below we provide a numerical example to illustrate the above steps to decide the di-
mension m.

Example 2.2.3. In this example, we use ε = 0.01, wj−1 ∈ [−1, 1] and consider a two-
regime switching Black-Scholes model, where the model parameters are µ1 = 0.120, σ1 =
0.114, µ2 = −0.141, σ2 = 0.220, p12 = 0.045, and p21 = 0.149. Since D0 := 5.66 > ε,
condition (2.28) does not hold and we need to check condition (2.27) instead. Then we
have D1 = 8.33 · 10−16 < ε. Therefore, m = 2 is a sufficient choice for this set of model
parameters.

We have repeated steps (S1–1)–(S1–4) for other values of parameters for the two-regime
switching Black-Scholes model as well as for the two-regime switching Merton and variance
gamma models. Below we list our main findings:

(i) Based on simulation studies, we find that the mean squared errors of the model
parameter estimates with m = 2 on average are less than those with m = 3. This
could be explained by the following arguments. If we consider MLE, an estimating
function with m = 2 is based on the likelihood of d1 (d2), while for the case when
m = 3 it is based on the likelihoods of d3 and d5 (d4 and d6). For most of the cases,

we have d1
c.l.∼ d3

c.l.∼ d5 (d2
c.l.∼ d4

c.l.∼ d6). However, our estimation method is not MLE,
so we may expect some cases such that the estimates with m = 3 on average perform
better (smaller mean squared errors) than those with m = 2.

(ii) It is common to have the case such that condition (2.28) does not hold, while condi-

tion (2.27) holds. This could be explained by the fact that the ratio
dW,2
dW,1

dominate the

values of g∗W,1 and g∗W,2. In addition, if f(x; θ)
c.l.∼ g(x; θ), then due to continuity, it is

very likely that f(x; θ̄)
c.l.∼ g(x; θ̄), where θ̄ is a set of parameters in the neighbourhood

of θ.

Based on our analysis, we use m = 2 in the DECF estimation procedure for our models
and data sets.
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2.3 Selection of Points

In this section, we discuss the problem of selection of points at which a characteristic
function is evaluated in an estimation procedure. Selections of the number and the locations
of the points are crucial to the accuracy and efficiency of the DECF estimation method.
The existing literature offers only limited results to guide us through this problem. To
address this issue, we propose two methods of selection of the points:

(i) Finite difference approximations with optimization (the FDAWO method).

(ii) Quantization method.

These two methods are presented in Sections 2.3.1 and 2.3.2 respectively.

2.3.1 The FDAWO Method

In this section, we propose a systematic way for selection of the points that are used in
the DECF estimation procedure. We also briefly discuss the problem of selection of the
number of points. Finally, we summarize the steps to obtain the points by our proposed
method.

For a fixed q, r1, ..., rq should be chosen such that Ωm in (2.8) is non-singular. Instead
of choosing these points randomly, we propose a first order finite difference approximation
with optimization method, which we call the FDAWO method. The method is easily appli-
cable since it involves finite derivatives of characteristic functions or empirical characteristic
functions, which are in tractable forms for our models.

To simplify our presentation, we assume that the moment generating function for our
model exists. It can be recovered from the characteristic function through the standard
formula M(z) = Φ(−iz). Thus, to estimate the model parameters, we will use the empirical
moment generating function, which we shall denote by M̄(z) := Φ̄N(−iz), where Φ̄N(z) is
the corresponding empirical characteristic function.

The FDAWO method, which can be used to determine the points that are used for the
DECF estimation method, is based on the following two main steps:

(S2–1) Obtain a set of initial points by using a first order finite difference (FDA) method to
approximate the derivatives of an empirical moment generating function.
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(S2–2) Obtain a set of optimized points by solving an optimization problem with the initial
points obtained in step (S2–1).

In step (S2–1), we use a systematic way based on observations to obtain a set of initial
points. During the estimation procedure, we need the inverse of the covariance matrix
Ωm, which need to be non-singular. However, those initial points may generate a singular
covariance matrix. To avoid this issue, we can get a set of optimized points by solving an
optimization problem in step (S2–2). We explain these two steps in detail below when the
dimension of a characteristic function is m = 1, and then we extend the method to other
values of m.

• Step (S2–1)

We explain how to use a finite difference method to obtain a set of initial q points,
r1, ..., rq. Let u(z) := M̄(z), that is,

u(z) =
1

N

N∑
j=1

ezWj , (2.29)

and let r0, ..., rq be such that 0 = r0 < r1 < ... < rq and rj ∈ R+, j = 1, ..., q. Denote
the ith derivative of u at 0 by

u(i) :=
∂(i)u(z)

∂z(i)
|z=0, (2.30)

since u(z) = Φ̄N(−iz), equation (2.30) becomes

u(i) =
1

N

N∑
j=1

(Wj)
i, (2.31)

which is the ith empirical moment.

Our objective is to get one-sided approximations to derivatives at a prescribed level
of accuracy. Using the Taylor series expansion, we can obtain all the points r1, ..., rq
by using iteratively the following algorithm.

For j = 1, ..., q − 1, we have

u(rj) = u(0) +

j+1∑
i=1

u(i)
rij
i!

+ εrj , (2.32)
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and

u(rj+1) = u(0) +

j+1∑
i=1

u(i)
rij+1

i!
+ εrj+1

, (2.33)

where εrj and εrj+1
are the error terms. Subtracting equation (2.32) from (2.33) gives

u(rj+1)− u(rj) =

j+1∑
i=1

u(i)
rij+1 − rij

i!
+ εrj ,rj+1

, (2.34)

where εrj ,rj+1
is the error term. Then equation (2.34) can be rewritten as

(j + 1)!(u(rj+1)− u(rj)−
∑j

i=1 u
(i) r

i
j+1−rij
i!

)

(rj+1
j+1 − r

j+1
j )

= u(j+1) + εrj ,rj+1
. (2.35)

If the error term is small, then

u(j+1) ≈
(j + 1)!(u(rj+1)− u(rj)−

∑j
i=1 u

(i) r
i
j+1−rij
i!

)

(rj+1
j+1 − r

j+1
j )

. (2.36)

To avoid obtaining the same points and/or too small intervals between the points,
we find the next point by using previously obtained points as opposed to finding the
best point for each derivative. Given all the previous obtained points r1, ..., rj and a
reasonable small value of εrj ,rj+1

, say 0.01, we can obtain the point rj+1 by solving
the linear equation (2.35) with substituted equations (2.29) and (2.31). Therefore,
we can obtain all the points r1, ..., rq by the above algorithm.

We refer to the above method as the FDA (finite difference approximation) method
and we call the selected points obtained by the FDA method the initial points.

Below we present an example to illustrate the FDA method when j = 1 and j = 2,
i.e., to obtain the first two points r1 and r2.

For j = 1, we have

u(r1) = u(r0 + (r1 − r0)) = u(0) + u(1)r1 + εr1 , (2.37)

where εr1 is the error term. Then (2.37) can be rewritten as

u(r1)− u(0)

r1

= u(1) + εr1 . (2.38)
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Note that when the error term is small enough, then

u(1) ≈ u(r1)− u(0)

r1

. (2.39)

Given a small εr1 and functions (2.29) and (2.31), we can obtain the only unknown
variable r1 by solving the linear equation (2.38).

For j = 2, we have

u(r1) = u(0) + u(1)r1 + u(2) r
2
1

2
+ εr1 , (2.40)

and

u(r2) = u(0) + u(1)r2 + u(2) r
2
2

2
+ εr2 , (2.41)

where εr1 and εr2 are the error terms.

Subtracting equation (2.40) from (2.41) gives

u(r2)− u(r1) = u(1)(r2 − r1) + u(2) (r2
2 − r2

1)

2
+ εr1,r2 , (2.42)

where εr1,r2 is the error term. (2.42) can be rewritten as

2(u(r2)− u(r1)− u(1)(r2 − r1))

(r2
2 − r2

1)
= u(2) + εr1,r2 . (2.43)

If εr1,r2 is small enough, then

u(2) ≈ 2(u(r2)− u(r1)− u(1)(r2 − r1))

(r2
2 − r2

1)
. (2.44)

Given r1 that obtained from equation (2.38) and a small εr1,r2 , we can obtain the sec-
ond point r2 by solving the linear equation (2.43) with substituted equations (2.29)
and (2.31).

• Step (S2–2)

To ensure that the covariance matrix Ωm used in the estimation is non-singular, we
solve an optimization problem in this step, where we maximize or minimize a criterion
that is a measure of singularity of the covariance matrix. Among all the possible
criteria, the determinant and the eigenvalues are the most familiar ones. Knight
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and Satchell (1997) and Schmidt (1982) obtain the optimal points by minimizing the
determinant of the asymptotic covariance matrix, which is due to the requirement
that the points should be close to zero. However, Quandt and Ramsey (1978) argue
that small points may result in a singular covariance matrix. To avoid the singularity
problem, we propose to use the condition number instead of the determinant. The
condition number is a measure of stability or sensitivity of a matrix to numerical
operations and is also related to the singularity of a matrix, which is defined below.

Definition 2.3.1. Let A be an n× n matrix. Denote the norm of a matrix by ‖ · ‖.
Then the condition number of the matrix A is defined as κ(A) := ‖A‖ · ‖A−1‖. (See
Golub and Van Loan (1996).)

Remark 2.3.1. Note that κ(A) ≥ 1. If κ(A) = 1, A is non-singular; if κ(A) = +∞,
A is singular. If the condition number is closer to 1, the matrix is said to be well-
conditioned; if the condition number is much greater than one, say greater than 30,
the matrix is said to be ill-conditioned. See more details in Golub and Van Loan
(1996) and Cheney and Kincaid (2012).

Let A be a square matrix. The following statements are equivalent:

(i) A is singular.

(ii) The columns of A are linear dependent.

(iii) The determinant of A is 0.

(iv) The condition number of A is +∞.

To obtain the optimized points used for the estimation procedure, we propose to
solve an optimization problem by minimizing the condition number of the covariance
matrix Ωm, where the initial points are obtained by the FDA method. There are four
aspects that worth emphasizing for this optimization method:

(i) Theoretically, we can also solve the optimization problem by minimizing the
negative absolute value of the determinant (det) or any other criteria that are
related to the covariance matrix. We use the condition number instead of the
determinant as the criterion, because the optimization problem with the condi-
tion number has a boundary (minκ(A) = 1) while the one with the determinant
could be negative infinity or unbounded. Thus, using the condition number is
more effective in our problem.

(ii) Minimization of the condition number is not a convex optimization problem
(see Lu and Pong (2011)). However, our goal is to avoid singularity rather than
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finding the least singular matrix. Thus, we can obtain acceptable points at a
local minimum of the condition number but not necessarily the globally best
points.

(iii) Minimization of the condition number may result in points with large absolute
values. However, when implementing the method, we can make the points
bounded from above. The upper bound can be determined by imposing the
condition that the modulus of the marginal characteristic function becomes less
than a given number. For example, in the case presented in Figure 2.1, we
can set the upper bound to be 100, where the real and imaginary parts of the
marginal characteristic function become less than 0.

The following plot explains the reason for using an upper bound. Figure 2.1
shows the real (left panel) and imaginary (right panel) parts of the marginal
and the empirical characteristic functions for an RSBS model, where we assume
m = 1 and use the points z = [0 : 1 : 2000]. We can see that the marginal
characteristic function is almost equal to zero when z is larger than 100. How-
ever, the empirical characteristic function is a trigonometric function, and it
fluctuates around 0 permanently. Therefore, more information is included when
z is not too large, while for large z, information contained in the empirical
characteristic function is less reliable.

Figure 2.1: Characteristic Functions v.s Points z
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(iv) To avoid both the singularity problem and the extreme large values of points
where the information is less reliable, we can bound the points in the optimiza-
tion problem.

Below we extend the two steps (S2–1) and (S2–2) to the case when m ≥ 2.

Definition 2.3.2. For x ∈ R, the ceiling function of x is defined as the smallest integer
not less than x and denoted by dxe.

When m ≥ 2, we can obtain a set of initial points in three ways:

(i) First is a natural extension of the FDA method to higher dimensions. For a given q
and m, choose q∗ such that qm∗ is the smallest integer that greater or equal to q, that
is, qm∗ = dqe. Then the m-dimensional q points are naturally to be (r1, ..., rq∗)

m.

For example, if q = 4 and m = 2, then q∗ = 2 and the q = 4 points used in the
estimation are (r1, r1), (r1, r2), (r2, r1) and (r2, r2), which form a rectangle.

(ii) Use r1, ...rq to construct the q points such that they form a diagonal line through the
origin.

For example, if q = 4 and m = 2, then the four points are (r1, r1), ..., (r4, r4).

(iii) Select the coordinates of the points randomly from the points obtained by the FDA
method. For example, if q = 4 and m = 2, and we have 2q = 8 points (r1, ..., r8) from
the FDA method, then we can set the q = 4 points as (r1, r2), (r7, r5), (r4, r6), (r3, r8)
or any other permutations.

We refer to these three ways as Case 2 – (i), Case 2 – (ii) and Case 2 – (iii) respectively.
To avoid the singularity problem of the covariance matrix, we select the optimized points
by the same idea as presented in step (S2–2).

Another problem that we face when implementing the DECF method is the selection
of the number of points, which is q. Theoretically, q should be large, since then we can re-
trieve more information about the model from its characteristic function, and the resulting
estimator will be more efficient. On the other hand, larger number of points is likely to lead
to a singular covariance matrix Ωm. In our experience, q should at least satisfy 2q− p > 0,
and usually be no larger than three times of p, where p is the number of parameters that
need to be estimated.

We summarize the steps for the FDAWO method to obtain the points used for the
DECF estimation method as follows:
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(S3–1) Choose the number q such that q = dp
2
e or 1 + dp

2
e, where p is the number of model

parameters.

(S3–2) When m = 1, use the FDA method in equations (2.32)–(2.35) to obtain the initial
points. When m ≥ 2, use one of the three ways (i)–(iii) proposed in Case 2 to obtain
the initial points.

(S3–3) Estimate the model parameters using the DECF estimation method with the initial
points obtained in step (S3–2).

(S3–4) Set boundaries on the points when solving the optimization problem, and then obtain
the optimized points used for the estimation procedure by minimizing the condition
number of the covariance matrix, where the model parameters are estimated in step
(S3–3).

2.3.2 The Quantization Method

In this section, we describe another way of selecting the points r1, ..., rq, which is based on
the quantization method proposed by Pagès et al. (2004).

If the set of points z is chosen continuously, then we can estimate the model parameters
by minimizing a distance between the joint characteristic function and the empirical one
as ∫ ∞

−∞
· · ·
∫ ∞
−∞

∣∣∣Φm(z; ξ)− Φ̄m,N(z)
∣∣∣2g(z)dz (2.45)

or ∫ ∞
−∞
· · ·
∫ ∞
−∞

∣∣∣Φm(z; ξ)− Φ̄m,N(z)
∣∣∣2dG(z), (2.46)

where g and G are the weight functions. See Feuerverger (1990) and Yu (2004) for more
details about continuous estimation approaches based on characteristic functions.

If the points are chosen to be finite and take at most q points, the approximation of
the integral in (2.45) can be written as a Riemann sum with q terms as

q∑
i=1

∣∣∣Φm(ri; ξ)− Φ̄m,N(ri)
∣∣∣2g∗(ri), (2.47)
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where r1, ..., rq ∈ Rm and g∗
4 is a weight function. Thus, we may consider an alternative

point selection method to select the q points, where the following difference is minimized:

εg,g∗ :=

∣∣∣∣ ∫ ∞
−∞
· · ·
∫ ∞
−∞

∣∣∣Φm(z; ξ)− Φ̄m,N(z)
∣∣∣2g(z)dz−

q∑
i=1

∣∣∣Φm(ri; ξ)− Φ̄m,N(ri)
∣∣∣2g∗(ri)∣∣∣∣.

(2.48)

Indeed, optimal quantization methods can solve this problem. The basic idea of quan-
tization is to discretize the state space of a random vector or a stochastic process. It was
originally used for discretizing emitted signal in 1950’s, and since then it was developed
and applied to information theory, signal processing and finance. For a complete review,
we refer to Pagès et al. (2004) and Pagès and Printems (2008).

Optimal quantization of a Rd random vector Z ∈ Lp(Ω,P) addresses the problem of
finding the best possible approximating random vector that takes at most N values such
that the induced Lp-error is minimized. Following Pagès et al. (2004), let X : Ω → Rd

be a random vector and Γ = X(Ω). If Γ = {x1, ..., xN}, then the Lp-quantization error is
defined as

||Z −X||p = E
[

min
1≤i≤N

|Z − xi|p
]
. (2.49)

Note that the expectation in equation (2.49) depends on the distribution of Z. Then the
N -grid optimal quantizer of Z, {x1, ..., xN}, is obtained by minimizing equation (2.49).

In our case, we want to find a random vector that takes q values, Γ = {r1, ..., rq}, where
r1, ..., rq ∈ Rm, to replace the Rm random vector Z such that

E
[

min
1≤i≤q

|Z − ri|p
]

(2.50)

is minimized.

In our implementation, we use several specifications of the distribution of Z, which
we explain below. The simplest one is the uniform distribution over an interval that is
determined by the lower and upper boundaries used in the optimization problem. Once
the points are determined, we can estimate the model parameters by minimizing (2.8) with
the optimal quantizer Γ.

Since it is difficult to justify the use of a uniform distribution in (2.50) from the
viewpoint of estimation errors, below we discus other choices of the distribution of Z.
Feuerverger and McDunnough (1981, 1984) and Feuerverger (1990) demonstrate that with

4Note that g∗(·) is different from g(·), and it contains the approximation of dz.
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the DECF estimation method, N · var(ξ̂) can be made arbitrarily close to the asymptotic

Fisher information if the points are selected properly, where ξ̂ is a consistent root of equa-

tion (2.8). In addition, Feuerverger and McDunnough (1984) show that N · var(ξ̂) can be
written in the form of a weighted sum

k+1∑
j=1

G∗j

(∂ logG∗j
∂ξ

)2

, (2.51)

where G∗j = G(rj) − G(rj−1) and G is a CDF with G(r0) = 0 and G(rk+1) = 1. Thus
(2.51) can be interpreted as a discrete approximation of the integral that appears in the
definition of the Fisher information I(ξ).

We would like to use this idea to select the q points. Specifically, Feuerverger and
McDunnough (1981) show that a Fourier domain version of the likelihood function of MLE
is in the form of ∫ (

Φm(z; ξ)− Φ̄m,N(z)
)
g(z; ξ)dz = 0, (2.52)

where g(z; ξ) is a weight function, which is given as the inverse Fourier transform of the
score function. The authors also mention that to solve (2.52), we can regard g(z; ξ)
as known. Then the estimating procedure is asymptotically equivalent to MLE if the
weight function is appropriately selected. Note that if we take g(z; ξ) = g(z; ξ̂), then
the only component of integrand in (2.52) that depends on the unknown parameter ξ is

(Φm(z; ξ) − Φ̄m,N(z)). The discrete approximation of equation (2.52) can be represented
with a Riemann sum of q terms as

q∑
i=1

(
Φm(ri; ξ)− Φ̄m,N(ri)

)
g(ri; ξ) = 0. (2.53)

We would like to select the q points that lead to a fast convergence of the LHS of equation
(2.53) to its limit, which is the LHS of equation (2.52). Since our estimation procedure
is based on empirical characteristic functions, we can select the points z := {r1, ..., rq} by
minimizing ∫

min
1≤i≤q

∣∣∣Z − ri∣∣∣pdGN(Z), (2.54)

where GN is the empirical characteristic function of observations and hence is always
positive. Similarly as in the FDAWO method, to avoid large values of the points, we
can set boundaries when solving the optimization problem in the quantization method
described above.
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2.4 Simulation Study

In this section, we illustrate the DECF estimation method through a simulation study 5 for
the model defined in (1.1). In Section 2.4.1, we consider a regime switching Black-Scholes
model. In Section 2.4.2, we repeat our estimation procedures for a regime switching Merton
model and a regime switching variance gamma model. In Section 2.4.3, we investigate the
effects of different selections of points on estimation results.

2.4.1 Regime Switching Black-Scholes Model

In this section, the parameters we use for the simulation study are:

(i) T = 2000, the number of observations (values).

(ii) N = 50, the replication number for simulation.

(iii) Parameters in the FDAWO method:

– The error term used in the FDA method is 0.001.

– q = 4, the number of points used in the estimation.

– The lower and upper bounds on points are 0.1 and 100.

(iv) The model parameters for the RSBS model are the same as those used in Hartman
Groendyke (2013). They are:

µ1 = 0.156, σ1 = 0.110, µ2 = −0.096, σ2 = 0.219, p12 = 0.045, p21 = 0.143.

The notations we use are:

• EM represents the modified EM algorithm for estimating regime switching models,
which is presented in Appendix 2.A.

• Est1 represents the DECF estimation method with m = 1 when the points are
selected by the FDAWO method.

• Est2i represents the DECF estimation method with m = 2 when the points are
selected by the FDAWO method, and they form a rectangle as described in Case 2 –
(i).

5All the numerical results in this thesis are obtained by using the software MATLAB.
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• Est2ii represents the DECF estimation method with m = 2 when the points are
selected by the FDAWO method, and they form a diagonal line through the origin
as described in Case 2 – (ii).

• Est2iii represents the DECF estimation method with m = 2 when the points are
selected by the FDAWO method, and they spread randomly as described in Case 2
– (iii).

The sets of points used in the following two methods are obtained by minimizing (2.54)
when Z is uniformly distributed. (2.54) is calculated by a numerical integration method
with Nm

L points, where NL is a set of equally spaced points and m represents the m-fold
Cartesian product. The initial points of z are randomly generated by the Sobol sequence
generator. The number of the points and their lower and upper bounds are the same as
those used in the FDAWO method.

• Est1Q represents the DECF estimation method with m = 1 and NL = 500.

• Est2Q represents the DECF estimation method with m = 2 and N2
L = 252.

The resulting optimized points are:

Table 2.1: Selected Points for Estimation of RSBS
Method r1 r2 r3 r4

Est1 21.2 49.5 78.7 100.0
Est2i (25.1, 25.1) (25.1, 75.1) (75.1, 25.1) (75.1, 75.1)
Est2ii (22.0, 22.0) (51.1, 51.1) (78.7, 78.7) (100.0, 100.0)
Est2iii (35.2, 2.9) (91.2, 42.3) (41.3, 98.6) (99.9, 100.0)
Est1Q 12.6 37.6 62.5 87.5
Est2Q (25.1, 25.1) (25.1, 75.1) (75.1, 25.1) (75.1, 75.1)

Remark 2.4.1. If the covariance matrix with the optimized points is still or close to be
singular, we consider alternative ways to determine the initial points for the optimization
problem:

(i) Drop the first or first two values of the initial points, then use the rest of the obtained
points as the initials, for example, use (r2, r3, ...).
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(ii) Randomly select the needed number of points from the initial points as the new
initial points. It is better to select the middle and large ones, and ensure that the
distance between two numbers is big enough, for example, use (r2, r4, r5...).

Estimation results based on the selected points are presented in Table 2.2. The pre-
sented estimates are averages based on N = 50 repetitions, and the numbers in the paren-
theses are the corresponding standard deviations. In addition, Table 2.3 shows the mean
squared errors of the estimates for different estimation methods.

We can see that the EM method shows the smallest bias, but for some parameters,
their estimates based on the DECF method have much smaller standard deviations than
the corresponding EM estimates. Thus, comparing the estimation methods using the mean
squared error (MSE) 6 is more suitable. Based on the results presented in the tables, we
have several findings as listed below:

(i) For most parameters when m = 2, their DECF estimates (Est2i, Est2ii, Est2iii and
Est2Q) on average have much smaller MSEs than the corresponding EM estimates.
Note that we use cosine series expansions to approximate density functions that are
used in the EM algorithm, which may result in approximation and truncation errors.
Since we focus on the DECF estimation method in this chapter, we only use the EM
method as a benchmark. Therefore, the results at least confirm the accuracy of the
DECF method.

(ii) Regardless of the way to select the points, the DECF estimates based on the joint
characteristic function (Est2i, Est2ii, Est2iii and Est2Q) have much smaller MSEs
than the corresponding ones based on the marginal characteristic function (Est1 and
Est1Q). This agrees with our expectations because the joint characteristic function
uses more information about the model than the marginal one does when estimating
regime switching models.

(iii) When m = 2, the quantization method leads to estimates that perform no better
than those based on the FDAWO method. This may be due to the fact that the
FDAWO method depends on model parameters based on steps (S1-1)–(S1-5), while
the quantization method used in this section does not, since here the distribution of
z is assumed to be uniformly distributed in equation (2.54).

(iv) We have also found that estimates with randomly selected points (Case 2 – (iii)) have
much smaller MSEs than those with the points that form either a rectangle (Case 2

6All the MSEs in this section are based on the simulation results.
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– (i)) or a straight line (Case 2 – (ii)). This could be explained by the fact that the
characteristic function with randomly selected points may contain more information
of the model than the cases with points that are on a straight line or on the edges of
a rectangle.

Table 2.2: True and Averaged Estimated Parameter Values of RSBS

µ1 σ1 µ2 σ2 p12 p21

True 0.156 0.110 -0.096 0.219 0.045 0.143
EM 0.156 0.109 -0.092 0.220 0.047 0.153

(0.015) (0.003) (0.047) (0.010) (0.012) (0.034)
Est1 0.157 0.111 -0.468 0.178 0.049 0.294

(0.015) (0.010) ( 0.499) ( 0.048 ) ( 0.025) (0.257)
Est2i 0.153 0.112 -0.097 0.221 0.046 0.143

(0.027) (0.010) (0.004) (0.011) (0.003) (0.006)
Est2ii 0.157 0.110 -0.096 0.222 0.045 0.145

(0.008) (0.006) (0.002) (0.006) (0.002) (0.004)
Est2iii 0.157 0.110 -0.096 0.222 0.046 0.143

(0.008) (0.005) (0.003) (0.005) (0.001) (0.005)
Est1Q 0.155 0.109 -0.122 0.222 0.042 0.1205

(0.016) (0.006) (0.123) (0.019) (0.026) (0.075)
Est2Q 0.153 0.112 -0.097 0.221 0.046 0.143

(0.027) (0.010) (0.004) (0.011) (0.003) (0.006)
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Table 2.3: Mean Squared Error of the Estimated Parameters of RSBS (×10−4)

µ1 σ1 µ2 σ2 p12 p21

EM 2 0 22 1 2 13
Est1 2 1 3871 40 7 884
Est2i 7 1 0 1 0 0
Est2ii 1 0 0 0 0 0
Est2iii 1 0 0 0 0 0
Est1Q 3 0 157 4 7 62
Est2Q 7 1 0 1 0 0

2.4.2 Other Regime Switching Models

In this section, we apply the DECF and EM estimation methods to a regime switching
Merton model and a regime switching variance gamma model.

(i) The parameters of the RSM model are

µ1 = 0.237, µ2 = 0.016, σ1 = 0.094, σ2 = 0.143, λ1 = 0.302, λ2 = 0.844,

and

µJ1 = 0.521, σJ1 = 0.450, µJ2 = −0.033, σJ2 = 0.069, p12 = 0.435, p21 = 0.169.

They are obtained by estimating with the EM algorithm from the same S&P 500
data as used in Hartman and Groendyke (2013) 7.

(ii) The parameters of the RSVG model are obtained by matching prices of European
put options with those obtained from the RSM model in (i). The options we use
have one-year maturity and strikes that are equal to 80, 85, 90, 95, 100, 105, 110,
115, 120 and 125. The resulting parameters are:

µ1 = 0.151, µ2 = 0.352, σ1 = 0.103, σ2 = 0.155, ν1 = 0.0001, ν2 = 0.024,

and
θ1 = −0.070, θ2 = −0.303, p12 = 0.417, p21 = 0.179.

7Although, the measure has been changed from the real-world P to a risk-neutral Q, we only try to get
a set of parameter values here for the estimation problem.
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We only consider the cases EM, Est1, Est2iii, Est1Q and Est2Q for these two mod-
els. The selected points for the RSM and RSVG models are listed in Tables 2.4 and 2.5
respectively.

Table 2.4: Selected Points for Estimation of RSM
Method r1 r2 r3 r4 r5 r6

Est1 0.5 63.2 70.7 82.3 95.7 100.0
Est2iii (30.4, 12.3) (35.2 ,60.2) (86.4, 44.2) (99.4, 99.9 (59.8, 99.5) (98.3, 0.9)
Est1Q 8.4 25.1 41.7 58.4 75.0 91.7
Est2Q (17.7, 17.7) (24.2, 53.5) (53.5, 24.3) (75.7, 75.7) (26.4, 84.9) (84.9, 26.4)

Table 2.5: Selected Points for Estimation of RSVG
Method r1 r2 r3 r4 r5

Est1 18.1 40.9 63.0 86.0 100.0
Est2iii (36.8, 0.6) (0.1, 100.0) (100.0, 51.2) (100.0, 100.0) ( 49.7, 79.7)
Est1Q 10.1 30.1 50.1 70.0 90.0
Est2Q (22.1, 22.1) (22.1, 78.0) (77.9, 22.2) (77.9, 77.9) (50.0, 50.1)

The estimation results of these two models are presented in Tables 2.6 and 2.8. The
estimates are averages based on N = 50 8 repetitions, and the numbers in the parentheses
are the corresponding standard deviations. Tables 2.7 and 2.9 show the mean squared
errors of the estimates for each of the models. Based on the estimation results, we have
the following findings:

(i) Similarly as reported in Section 2.4.1, the DECF estimates with m = 2 (Est2iii and
Est2Q) on average have much smaller MSEs than those for the corresponding EM
estimates. In addition, the DECF estimates based on the joint characteristic function
(Est2iii and Est2Q) have much smaller MSEs than the corresponding ones based on
the marginal characteristic function (Est1 and Est1Q).

(ii) Differently from those reported in Section 2.4.1, the case Est2Q leads to estimates
that perform better than those of the case Est2iii. Indeed, we repeat the estimation
procedure for models with different values of model parameters, and we find that

8We only use N = 50 because of the computational burden. It takes about 12 hours in total to obtain
the estimation results for N = 50.
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given m, the performances of the estimation method with points obtained by the
FDAWO method (Case 2 – (iii)) and the quantization method are comparable and
similar, though they depend on models and their values of parameters. Therefore,
we recommend to use either of the two point selection methods to estimate those
models with the DECF estimation method.

Table 2.6: True and Averaged Estimated Parameter Values of RSM

µ1 σ1 λ1 µJ1 σJ1 µ2

True 0.237 0.094 0.302 0.521 0.450 0.016
EM 0.130 0.110 0.509 0.381 0.388 0.056

(0.184) (0.029) (0.301) (0.406) (0.132) (0.074)
Est1 0.318 0.114 0.293 0.471 0.430 0.435

(0.078) (0.008) (0.019) (0.027) (0.010) (0.069)
Est2iii 0.241 0.095 0.334 0.484 0.448 0.018

(0.012) (0.002) (0.075) (0.086) (0.053) (0.018)
Est1Q 0.289 0.089 0.953 0.238 0.421 0.024

(0.164) (0.047) (0.611) (0.544) (0.240) (0.301)
Est2Q 0.301 0.116 0.296 0.513 0.438 0.245

(0.123) (0.010) (0.029) (0.060) (0.020) (0.152)

σ2 λ2 µJ2 σJ2 p12 p21

True 0.143 0.844 -0.033 0.069 0.435 0.169
EM 0.139 0.708 -0.130 0.079 0.395 0.177

(0.022) (0.546) (0.106) (0.030) (0.169) (0.143)
Est1 0.129 0.304 -0.039 0.066 0.418 0.156

(0.011) (0.027) (0.050) (0.003) (0.021) (0.011)
Est2iii 0.143 0.865 -0.035 0.069 0.435 0.168

(0.003) (0.086) (0.011) (0.011) (0.014) (0.006)
Est1Q 0.190 0.874 -0.300 0.101 0.437 0.187

(0.154) (0.680) (0.266) (0.094) (0.174) (0.169)
Est2Q 0.137 0.309 -0.017 0.068 0.422 0.159

(0.011) (0.044) (0.061) (0.006) (0.028) (0.015)
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Table 2.7: Mean Squared Error of the Estimated Parameters of RSM (×10−4)

µ1 σ1 λ1 µJ1 σJ1 µ2 σ2 λ2 µJ2 σJ2 p12 p21

EM 455 11 1332 1843 213 384 26 4621 208 10 300 205
Est1 125 5 5 33 5 439 14 7 26 0 7 3
Est2iii 2 0 66 87 28 483 24 3234 1 1 2 0
Est1Q 297 22 7954 3753 583 1361 332 7887 1421 98 302 288
Est2Q 193 6 9 36 5 232 20 20 39 0 10 3
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Table 2.8: True and Averaged Estimated Parameter Values of RSVG

µ1 σ1 θ1 ν1 µ2

True 0.151 0.103 -0.070 0.0001 0.352
EM 0.055 0.086 -0.066 0.007 0.322

(0.305) (0.038) (0.269) (0.013) (0.171)
Est1 0.174 0.113 -0.071 0.0001 0.373

(0.055) (0.018) (0.030) (0.000) (0.042)
Est2iii 0.122 0.104 -0.040 0.0001 0.370

(0.070) (0.002) (0.070) (0.000) (0.022)
Est1Q 0.096 0.090 -0.060 0.008 0.299

(0.270) (0.039) (0.261) (0.018) (0.141)
Est2Q 0.159 0.103 -0.066 0.0001 0.356

(0.057) (0.007) (0.035) (0.000) (0.024)

σ2 θ2 ν2 p12 p21

True 0.155 -0.303 0.024 0.417 0.179
EM 0.157 -0.279 0.032 0.415 0.183

(0.026) (0.110) (0.021) (0.350) (0.240)
Est1 0.155 -0.320 0.026 0.449 0.201

(0.008) (0.029) (0.002) (0.032) (0.027)
Est2iii 0.156 -0.322 0.019 0.415 0.180

(0.003) (0.034) (0.003) (0.009) (0.004)
Est1Q 0.159 -0.305 0.040 0.388 0.282

(0.019) (0.142) (0.026) (0.316) (0.313)
Est2Q 0.154 -0.294 0.027 0.447 0.191

(0.004) (0.015) (0.003) (0.042) (0.022)
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Table 2.9: Mean Squared Error of the Estimated Parameters of RSVG (×10−4)

µ1 σ1 θ1 ν1 µ2 σ2 θ2 ν2 p12 p21

EM 1023 17 721 2 300 7 127 5 1225 575
Est1 35 4 9 0 22 1 11 0 20 12
Est2iii 57 0 57 0 8 0 15 0 1 0
Est1Q 761 17 682 4 226 4 201 10 1006 1084
Est2Q 34 0 12 0 6 0 3 0 26 6

2.4.3 Comparison of Different Methods of Point Selection

In this section, we compare the estimation results with different selections of points ob-
tained through the quantization method. We consider two cases where the points are
obtained by minimizing (2.54) when GN is a uniform distribution and when GN is the
empirical characteristic function of observations. The initial points of z are generated
by the Sobol sequence generator. In this section, we consider the same regime switching
Black-Scholes model as used in Section 2.4.1.

Additional notations are:

• Est1unif represents the DECF estimation method with m = 1, N1
L = 500 and GN is

a uniform distribution.

• Est1ecf represents the DECF estimation method with m = 1, N1
L = 500 and GN is

the ECF of the simulated data.

• Est2unif represents the DECF estimation method with m = 2, N2
L = 252 and GN is

a uniform distribution.

• Est2ecf represents the DECF estimation method with m = 2, N2
L = 252 and GN is

the ECF of the simulated data.

The resulting points that are used for the estimation are presented in Table 2.10.
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Table 2.10: Selected Points for Estimation of RSBS
Method r1 r2 r3 r4

Est1unif 12.6 37.6 62.5 87.5
Est1ecf 20.8 55.5 31.3 87.8
Est2unif (25.1, 25.1) (25.1, 75.1) (75.1, 25.1) (75.1, 75.1)
Est2ecf (15.2, 5.1) (63.1, 66.7) (15.9, 46.6) (50.8, 7.3)

Table 2.11 shows the estimation results, where the presented estimates are averages
based on N = 50 repetitions and the numbers in the parentheses are the correspond-
ing standard deviations. In addition, Table 2.12 shows the mean squared errors for the
estimates. Based on the results presented in these tables, we can conclude that

(i) For a given m, the estimates have much smaller MSEs on average when GN is the
empirical characteristic function than those when GN is a uniform distribution. This
agrees with our expectations, because we use more information of the model to select
the points when GN is the empirical characteristic function; while we do not use any
model information to select the points when GN is a uniform distribution.

(ii) The estimates based on the method Est2ecf have much smaller MSEs on average
than those based on the method Est2unif. However, they perform no better than
those of the case Est2iii in Section 2.4.1, and this result depends on models and
their parameters as explained in Section 2.4.2. In addition, we left the study on
the properties of the estimators based on different selections of the points for future
research.
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Table 2.11: True and Averaged Estimated Parameter Values of RSBS

µ1 σ1 µ2 σ2 p12 p21

True 0.156 0.110 -0.096 0.219 0.045 0.143
EM 0.156 0.109 -0.092 0.220 0.047 0.153

(0.015) (0.003) (0.047) (0.010) (0.012) (0.034)
Est1unif 0.155 0.109 -0.122 0.222 0.042 0.1205

(0.016) (0.006) (0.123) (0.019) (0.026) (0.075)
Est1ecf 0.161 0.109 -0.091 0.224 0.047 0.156

(0.016) (0.005) (0.020) (0.023) (0.012) (0.083)
Est2unif 0.153 0.112 -0.097 0.221 0.046 0.143

(0.027) (0.010) (0.004) (0.011) (0.003) (0.006)
Est2ecf 0.168 0.094 -0.098 0.225 0.045 0.149

(0.004) (0.007) (0.001) (0.007) (0.001) (0.006)

Table 2.12: Mean Squared Error of the Estimated Parameters of RSBS (×10−4)

µ1 σ1 µ2 σ2 p12 p21

EM 2 0 22 1 2 13
Est1unif 3 0 157 4 7 62
Est1ecf 3 0 4 6 1 71
Est2unif 7 1 0 1 0 0
Est2ecf 2 3 0 1 0 1

2.5 Conclusions of Chapter 2

In this chapter, we present the DECF estimation method and discuss several computational
challenges need to be resolved, including selections of the dimension of a characteristic
function and the number and locations of the points at which a characteristic function is
evaluated. Based on our analysis in Section 2.2.2, we use the dimension m = 2 for our
models. To select the points, we propose two methods, one is based on finite difference ap-
proximations with optimization (the FDAWO method) and the other one is a quantization
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method proposed by Pages et. al (2004). We show that our proposed estimation and point
selection methods work well through a simulation study, where we use the EM algorithm
as a benchmark. Based on the numerical results in Section 2.4, we conclude that given the
dimension m, the performances of the DECF estimation method with different selections
of points depend on models and their parameters.
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Chapter 3

Goodness-of-fit Testing for Regime
Switching Models

3.1 Introduction and Motivation

In this chapter, we discuss some goodness-of-fit tests for the model defined in (1.1).

Besides estimation, model selection and goodness-of-fit (GOF) testing are another two
important parts of statistical inference. Given a set of data, a model selection method can
select a statistical model that fits the data best among all the candidate models, while a
GOF test can individually describe how well a statistical model fits the data. Standard
model selection methods, such as AIC, BIC and DIC, are widely used, and in the context of
regime switching models have been applied, among others, by Hardy (2001) and Hartman
and Groendyke (2013). These criteria independently measure the relative quality of a given
set of models for the same observations, while parallel model selection methods, like the
one used by Groendyke (2013), can simultaneously compare all the candidate models.

Regarding GOF testing, which is the focus of this chapter, we examine the fit of a
selected model to a given set of observations. A well-known statistical test, Neyman-
Pearson likelihood ratio (LR) test, usually compares a model with a nested submodel. This
test has been applied to regime switching models in Hansen (1992), where the author shows
that the LR statistic may have a conventional distribution under certain assumptions.
However, there are several problems with the LR test used for regime switching models
(see Date, Paresh and Mamon (2013)), for example, Hardy (2003) has stated that the
LR test is not valid for the number of regimes in a regime switching model because of the
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asymptotics of the estimator for its test statistic. Another goodness-of-fit testing method is
based on visual plots. For a stationary hidden Markov model, Altman (2004) has proposed
such a test not only for univariate but also multivariate distributions. This method can
be used to test the fit to the marginal distribution and the dependence structure of the
underlying process. Since a visual test does not use any asymptotic distributions, it is a
less rigorous method. All the tests mentioned above are not well suited for models defined
by their characteristic functions, as they require knowledge of density functions. Thus,
a goodness-of-fit test based on empirical characteristic functions is a more proper choice
for testing models whose characteristic functions are easier to obtain than their density
functions.

Koutrouvelis (1980) proposed a goodness-of-fit test for independent and identically
distributed observations that is based on empirical characteristic functions when model
parameters are given. This test has been extended by Koutrouvelis and Kellermeier (1981)
to the case when model parameters need to be estimated. It is based on the same idea as
the DECF method that we defined in Chapter 2, and it measures a distance between the
empirical characteristic function and the true one at several pre-specified points. The test
statistic has a chi-square distribution with a degree of freedom that depends on the number
of points at which a characteristic function is evaluated and the number of parameters need
to be estimated. The test is restricted to i.i.d. observations and requires proper selection
of the number and locations of the points. Indeed, this test can be generalized by a
class of minimum-distance methods based on empirical transforms proposed by Luong and
Thompson (1987). Many papers have discussed continuous versions of this goodness-of-fit
test, where the test statistics are weighted integrals of the deviations between the empirical
characteristic function and the true one, like, Feuerverger and McDunnough (1984) and
Jiménez-Gamero et. al (2009). Some other tests that are based on empirical characteristic
functions have been applied to special distributions: Epps and Pulley (1983) propose a test
for univariate normality, and Feuerverger and Mureika (1977) consider a test of univariate
symmetry. These methods have been extended to multivariate tests for normality and
symmetry by Ghosh and Ruymgaart (1992). However, these tests are only applicable to
i.i.d. observations, so none of them is suitable for our models.

In this chapter, we present two extensions of the existing goodness-of-fit tests that are
suitable for stationary hidden Markov models with known forms of characteristic functions.
One is similar to the visual test proposed by Altman (2004), except that we use character-
istic functions instead of distribution functions. By using this test, we can investigate the
fit of the empirical characteristic function to the marginal one and also examine the depen-
dence structure of observations. To ensure the convergence of the empirical characteristic
function to the marginal one, some conditions must be satisfied. We apply the α-mixing
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result from Altman (2004) and the Lévy Continuity Theorem to show that the conditions
hold for stationary hidden Markov models.

The second goodness-of-fit test that we propose is a natural extension of the test for-
mulated by Koutrouvelis and Kellermeier (1981) to the case of non-i.i.d.. By using the
α-mixing property of the process, we show that the test statistic has the same distribution
as the one in Koutrouvelis and Kellermeier (1981). For this goodness-of-fit test, selection
of points at which a characteristic function is evaluated is also as important as for the
DECF estimation method discussed in Chapter 2. We demonstrate that we can use the
methods proposed in Section 2.3 to select these points.

This chapter is organized as follows. We propose visual and statistical goodness-of-
fit tests that are based on empirical characteristic functions for stationary hidden Markov
models in Sections 3.2.2 and 3.2.3 respectively, followed by numerical illustrations in Section
3.3. Section 3.4 concludes.

3.2 Goodness-of-fit Testing

In practice we usually have several candidate models to consider. After estimating them, we
want to select the best model among all the candidates and also test whether the estimated
models fit the observations well. Indeed, we mainly focus on the goodness-of-fit testing for
regime switching models or hidden Markov models in this chapter. A limited number of
papers have discussed tests for such models, even less or none for models based on Lévy
processes. To test such models, we have two things to consider. First, we have mentioned
that their characteristic functions are easier than the density functions to compute, so tests
based on characteristic functions are more reasonable. Second, visual tests are not rigorous
though they intuitively give some information. Therefore, it is more desirable to have a
formal test whose test statistic has a known distribution.

3.2.1 Method 1 – Visual Test

Altman (2004) has proposed a visual goodness-of-fit test for stationary hidden Markov
models. The test visually shows the empirical against the estimated cumulative distribu-
tion functions in univariate and bivariate cases, and it examines deviations of the plots
from the 45 degree (45◦) line through the origin. The author not only assesses the fit of
the theoretical distribution to the true one (the univariate case), but also analyses the
dependence structure of observations (the bivariate case). In this chapter, we propose a
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similar test but based on empirical characteristic functions, where the model and notations
are consistent with those used in Chapters 1 and 2.

Our test is based on a visual comparison of estimated univariate (bivariate) character-
istic functions with empirical ones, Φ̂m(·) versus Φ̄m,N(·) at a range of points, where m =1
or 2, and it examines deviations of the plots from the 45◦ line through the origin, which
we call the reference line. If the assumed model is correct or fits well to the observations,
the plots are supposed to converge to the reference line.

Specifically, the x-axis of the plot is the real (or the imaginary) part of the empirical
characteristic function evaluated at pre-specified points and the y-axis is the real (or the
imaginary) part of the estimated characteristic function evaluated at the same points.
Denote the real and imaginary parts of the estimated characteristic function by <(Φ̂m)
and =(Φ̂m), and those of the empirical characteristic function by <(Φ̄m,N) and =(Φ̄m,N).
Denote the number of points at which these functions are evaluated by q and the set of
q points by {ri, i = 1, ..., q}. Then we plot <(Φ̂m) against <(Φ̄m,N) and =(Φ̂m) against

=(Φ̄m,N) respectively. If a model is estimated well, then the plots of <(Φ̂m) against <(Φ̄m,N)

and =(Φ̂m) against =(Φ̄m,N) should lie on or show few deviations from the reference line;
otherwise, the plots show obvious deviations from the reference line. For model selection
purposes, we can compare all the candidate models by testing them on the same set of
observations.

For the method to work, the following three assumptions are necessary.

(A2–1) W is strictly stationary. By definition, this requirement holds when the joint distribu-
tion of (Wj, ...,Wj+m) is identical for all j given a fixed m, where m = 0, 1, ..., N − j.

(A2–2) Φ̂m(·) converges to Φm(·) (in the sense of pointwise convergence). This requirement is
satisfied, for example, when Φm(·) is a continuous function of the model parameters
and the parameters are estimated using a consistent method.

(A2–3) Φ̄m,N(·) converges in probability to Φm(·). To ensure that this is true, we can use the
following Lemma.

Lemma 3.2.1. Let Φ̄m,N(·) and Φm(·) respectively be the empirical and the true
characteristic functions of the random vector Wj,m. Then Φ̄m,N(·) converges to Φm(·).

Proof: Let F̄m,N(·) and Fm(·) respectively be the empirical and the true cumulative
distribution functions of the random vector Wj,m. Proposition 1 in Altman (2004) shows
the m-dimensional empirical cumulative distribution function converges to the true one,
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that is, F̄m,N(·) converges to Fm(·). By the Lévy Continuity Theorem, it is known that
a sequence of random variables converges in distribution if and only if the corresponding
sequence of characteristic functions converges to some function. Therefore, Φ̄m,N(·) con-
verges to Φm(·). �

Under conditions (A2–1)–(A2–3) above, our proposed visual test is valid for stationary
hidden Markov models. Additionally, if Φ̄m,N converges in probability to Φm, then <(Φ̄m,N)

and =(Φ̄m,N) converge in probability to <(Φ̂m) and =(Φ̂m) respectively. We conduct the

visual test by plotting <(Φ̂m) against <(Φ̄m,N) and =(Φ̂m) against =(Φ̄m,N) to test the

closeness between Φ̄m,N and Φ̂m, where m = 1 and m = 2.

3.2.2 Method 2 – Statistical Test Based on the DECF Method

Koutrouvelis (1980) proposes a goodness-of-fit test using empirical characteristic functions
where model parameters are given. Then Koutrouvelis and Kellermeier (1981) extend the
test to the case where parameters need to be estimated first. Both tests assume i.i.d.
observations. Since this assumption does not hold for hidden Markov models, we need to
verify whether the test can be extended to our models.

First, let us assume m = 1, which implies z ∈ R+. Let W1, ...,WN be random variables
defined in (1.1) with a common characteristic function denoted by Φ(z). Recall equations
(2.1) and (2.4) in Section 2.2.1, and define

Φ0(z, ξ) := Φ(z, ξ) =
K∑
k=1

πkφ(z, ξ
k
), (3.1)

ΦN(z) := Φ̄N(z) =
1

N

N∑
j=1

eizWj . (3.2)

Define two 2q−dimensional vectors:

ζ
′

0 ≡ ζ
′

0(ξ) :=
{
<0(r1), ...,<0(rq),=0(r1), ...,=0(rq)

}
(3.3)

and
ζ
′

N :=
{
<N(r1), ...,<N(rq),=N(r1), ...,=N(rq)

}
, (3.4)

where r1, ...rq are different points from R+ and <l and =l are the real and imaginary parts
of Φl with l = 0, N . Let Ω0 ≡ Ω0(ξ) be the 2q × 2q covariance matrix as shown in (2.9)

58



under the null hypothesis H0. The arguments r1, ..., rq can be chosen by the proposed point
selection methods in Section 2.3 such that Ω0 is non-singular. Suppose that we want to
test that the estimated model is the true model. Then the null hypothesis of our test is:

H0 : Φ(z) = Φ0(z, ξ), (3.5)

where ξ := (ξ1, . . . , ξp) ∈ Rp is the set of parameters of our testing model, and ξ is an

unknown parameter that needs to be estimated. Define ξ̂
N

as an estimate of this parameter
obtained by minimizing equation (2.8) with m = 1. The test statistic under H0 has the
following quadratic form of:

Q0
N := (ζN − ζ0)′Ω−1

0 (ζN − ζ0). (3.6)

Before presenting some theoretical results for the proposed test, we need basic facts
about α-mixing processes and the Central Limit Theorem for such processes.

Definition 3.2.1. Let V := {Vj, j ∈ Z+} be a stationary sequence of random variables
on a probability space (Ω,F , P ). Let F ba := σ {Vj, a ≤ j ≤ b} be the σ-algebra generated
by the random variables {Va, ..., Vb}. We say that V is α-mixing (or strong mixing) if

αl := sup
A∈Fs1 ,B∈F∞s+l

∣∣∣P (AB)− P (A)P (B)
∣∣∣→ 0 as l→∞, (3.7)

and {αl} are called the mixing coefficients.

Bradley (1985) states the following Central Limit Theorem (CLT) for an α-mixing pro-
cess.

Theorem 3.2.1. Suppose X = {Xj, j ∈ Z+} is strictly stationary, E(X1) = 0, {αl}
are the mixing (α-mixing) coefficients of the centered process X , and either of the following
two conditions holds:

(i) for some δ > 0, E
(
|X1|2+δ

)
<∞ and

∑∞
l=1 α

δ
2+δ

l <∞,

(ii) for some C <∞, |X1| < C a.s. and
∑∞

l=1 αl <∞.

If σ2
∗ = E(X2

1 ) + 2
∑∞

j=2 E(X1Xj) and 0 < σ2
∗ <∞, then

∑N
j=1Xj√
Nσ∗

→ N(0, 1) in distribution
as N →∞.
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Let V := {Vj, j ∈ Z+} be a stationary hidden Markov process and X be the centered
process V , that is, Xj = Vj − E(Vj), j ∈ Z+. Then X is a stationary hidden Markov
model, and hence we can apply Theorem 3.2.1 to the model defined in (1.1). Theorem 1
in Mackay (2002) states that the mixing coefficients for stationary hidden Markov models
satisfy αl = O(l−ν) for some ν > 2q + 1, where q ∈ Z+. Thus a stationary hidden Markov
model is a α-mixing process by the definition of α-mixing.

Then we have the following theorem for the asymptotic distribution of the test statistic
defined in equation (3.6).

Theorem 3.2.2. Assume that observations W = {Wj, j ∈ Z+} are from stationary
hidden Markov models with finite centered moments and ξ

0
is the true parameter under

H0, and r1, ..., rq are positive real values such that Ω0(ξ
0
) is non-singular. Then, under H0,

QN :=
(
ζN − ζ0(ξ̂

N
)
)′

Ω−1
0 (ξ

0
)
(
ζN − ζ0(ξ̂

N
)
)

(3.8)

has an asymptotic χ2 distribution with 2q − p (p < 2q) degrees of freedom as the sample
size N → +∞.

Proof: See Appendix 3.A. �

Remark 3.2.1.

(i) The above result can be naturally extended to higher dimensions with m ≥ 2 by
using a multivariate CLT for α-mixing processes (see Tone (2010)). However, we find
that an improper selection of the q points may result in an inaccurate distribution of
the test statistic. We left the investigation of the implementation problems for this
test in higher dimensions with m ≥ 2 for future research.

(ii) When m = 1, an improper selection of the number q and the locations of the q points
may result in a singular covariance matrix Ω0, in which case the distribution of the
test statistic could be different from the one described in Theorem 3.2.2. Thus, we
propose to use the FDAWO or the quantization method introduced in Section 2.3 to
select these points.

(iii) When the model parameters are given (p = 0), the test statistic based on the
quadratic form (3.8) is χ2

2q distributed. Although the model parameters are usually
unknown in practice, we can verify the accuracy of this test through a simulation
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study given the model parameters. The q points can also be obtained by the FDAWO
or the quantization method except that now we use the known model parameters.

(iv) When the model parameters are unknown, they need to be estimated by the proposed
DECF estimation method. Although we need to face the problem of selection of the
grid points, we only consider the test based on the DECF estimator instead of the
continuous ECF estimator in this chapter for consistency considerations.

(v) As suggested by my committee member, Professor Tony Wirjanto, in general, the
result in Theorem 3.2.2 usually does not hold for weakly dependent observations with
exception of mixing processes as we proved. In addition, when the model parameters
are unknown, using the parametric bootstrap method (see Leucht (2012)) to obtain
critical values and approximate p-values is an option. However, bootstrap samples
may not be mixing even though the original process satisfies some mixing conditions,
and hence the bootstrap method may not be appropriate for our models.

3.3 Simulation Study

For the proposed two goodness-of-fit tests, we use a set of simulated data where we estimate
the parameters by the DECF method, and we want to test the performance of the two
goodness-of-fit methods.

3.3.1 Method 1 – Visual Test

For the visual test, we use the same q = 21 points as those used in Altman (2004).

(i) For the univariate visual test (m = 1), ri = i− 1 where i = 1, ..., 21.

(ii) For the bivariate visual test (m = 2), ri = (i− 1, i− 1) where i = 1, ..., 21.

To illustrate the proposed visual test, we only simulate one set of observations using
the same regime switching Black-Scholes model as the one used in Section 2.4.1, and we
denote the generated set of data by Data 1. Then we estimate the model parameters using
Data 1 and the DECF method, where the points used in the estimation procedure are
selected by the FDAWO method with Case 2 – (iii), and we denote this case by DECF2iii.
The estimation results are presented in Table 3.1.
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Table 3.1: Estimated Parameter Values

µ1 σ1 µ2 σ2 p12 p21

True 0.156 0.110 -0.096 0.219 0.045 0.143
DECF2iii 0.153 0.112 -0.099 0.218 0.047 0.143

We now apply the visual test to examine the closeness of the estimated model and the
true one by plotting <(Φ̄m,N) versus <(Φ̂m) and =(Φ̄m,N) versus =(Φ̂m) at the q = 21 points
presented in (i) and (ii) above. We want to test deviations of the plots from the reference
line (the 45 degree line through the origin), and we consider two cases: the univariate test
when m = 1 and the bivariate test when m = 2.

Figures 3.1-3.2 show that all the plots mimic the reference lines well, which is consistent
with the way data were generated. Therefore, our estimated model fit the true one well
based on these figures.

• m = 1

Figure 3.1: RSBS Univariate Characteristic Function Test
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• m = 2
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Figure 3.2: RSBS Bivariate Characteristic Function Test
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The visual test can also be used to test the fit in each regime. To filter the state for
each observation, we use the method proposed by Janczura and Weron (2014), which is
combined with the EM algorithm.

Assume K = 2 and define equation (3) (Appendix 2.A) at the last iteration of the EM
algorithm as P (Yj = k|wN). Then we can tell that an observation is most probably coming
from regime k if P (Yj = k|wN) > 0.5, where k = 1, 2. We refer to this approach as the
filtering method and we use it when testing single regimes below.

We use Data 1 and the EM algorithm to estimate the model parameters, and the
resulting estimates are presented in Table 3.2.

Table 3.2: Estimated Parameter Values

µ1 σ1 µ2 σ2 p12 p21

True 0.156 0.110 -0.096 0.219 0.045 0.143
EM 0.134 0.114 -0.023 0.227 0.036 0.151

Figures 3.3 and 3.6, 3.4 and 3.7, 3.5 and 3.8 show the plots in both the univariate and
bivariate cases based on the whole data set, the observations corresponding to regime 1
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and the observations corresponding to regime 2. Figures 3.3, 3.4, 3.6 and 3.7 show few
deviations from the reference lines. Figures 3.5 and 3.8 depict similar graphs for regime
2, and they show obvious deviations especially in the imaginary parts. From Table 3.2,
we can see that µ2 has apparent differences from the true value, and only 271 out of 2000
observations are filtered for regime 2. Those two facts can be the reasons for the deviations
in Figures 3.5 and 3.8.

• m = 1

Figure 3.3: RSBS Univariate Characteristic Function Test (based on all observations)
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Figure 3.4: RSBS Regime1 Univariate Characteristic Function Test (based on observations
corresponding to Regime 1)
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Figure 3.5: RSBS Regime2 Univariate Characteristic Function Test (based on observations
corresponding to Regime 2)
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• m = 2
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Figure 3.6: RSBS Bivariate Characteristic Function Test (based on all observations)
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Figure 3.7: RSBS Regime1 Bivariate Characteristic Function Test (based on observations
corresponding to Regime 1)
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Figure 3.8: RSBS Regime2 Bivariate Characteristic Function Test (based on observations
corresponding to Regime 2)
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We have also applied the proposed visual test to the regime switching Black-Scholes
model with other selections of model parameters and also to other regime switching models
we specified in Section 1.1.2. Our results suggest that in some cases, the bivariate plots
can give more information than the univariate ones do.

3.3.2 Method 2 – Statistical Test Based on the DECF Method

Here we focus on validating the proposed statistical test rather than testing the estimated
model. We use simulated sets of data from the same regime switching Black-Scholes model
as the one in the previous section. Before presenting the results, we first define the re-
jection percentage (RP), which represents a p-value as the proportion of the rejected null
hypotheses based on N repetitions, that is,

RP :=
# {i : Qi

N ≥ Qα,2q−p}
N

, i = 1, ...N, (3.9)

where Qi
N is the test statistic at ith simulation and α is the significance level for the test.

We assume m = 1 and still use the model parameters in Table 3.1. Other parameters
are:
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(i) p = 0 when model parameters are given, while p = 6 when model parameters are
unknown and need to be estimated.

(ii) N = 5000 repetitions.

(iii) The significance level is α = 0.05.

(iv) q = 2 when p = 0, and we will show further discussions of the q points when p = 6
below.

First we start with the case when model parameters are known. The q = 2 points
obtained by the FDAWO method are r1 = 60 and r2 = 100. The theoretical test statistic
is χ2

4 in this case. In Figure 3.9, the thin line represents the density function of χ2
4, while

the histogram is based on 5000 simulated values of the test statistic given in equation (3.8).
As the graph shows, they fit well, which confirms the asymptotic distribution of the test
statistic. In addition, the rejection percentage in this case is 0.049, which is close to the
significance level as desired.

Figure 3.9: Histogram of Simulated Test Statistics
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Now we discuss the case when model parameters are unknown. This case is more
complicated. For illustrations, we only consider q = 4, 5, 6, 7 and 8, and the corresponding
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degrees of freedom 2q − p are 2, 4, 6, 8 and 10. Values of the q points are obtained by the
FDAWO method as shown in Table 3.3.

Table 3.3: Selected Points for Statistical Test

Degree Points

2 0.1 32.9 85.2 100
4 0.1 14.7 51.6 87.6 100
6 20.5 45.2 63.6 68.3 99.4 100
8 4.3 15.2 56.0 70.7 70.6 94.1 99.9
10 1.3 22.1 43.9 62.7 72.9 94.2 99.9 100

Using the above points, we simulate values of the test statistics for each of the degrees
of freedom. In Table 3.4, we show the RP values for those different cases. We can see that
the absolute difference between the RP and the significance level becomes smaller when
the value of q becomes larger. These results suggest that a proper selection of the points
is crucial for the accuracy of the asymptotic result stated in Theorem 3.2.2.

Table 3.4: Rejection Percentages for RSBS

Degree 2 4 6 8 10

RP 0.303 0.290 0.143 0.103 0.101

Next, we consider other selections of points, which are obtained by the quantization
method described in Section 2.3.2. Tables 3.5 and 3.6 provide the selected sets of points,
where GN in (2.54) is respectively assumed to be a uniform distribution and the empirical
characteristic function of observations. We refer to the former case as Quant1 and the
latter one as Quant2.
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Table 3.5: Selected Points by Quant 1 for Statistical Test

Degree Points

2 12.5 62.5 37.5 87.5
4 10.0 70.0 50.0 90.0 30.0
6 8.3 75.0 41.6 91.7 24.9 58.3
8 7.1 78.4 35.5 92.8 21.3 64.0 49.7
10 6.5 69.4 32.1 93.9 19.4 57.0 44.6 81.7

Table 3.6: Selected Points by Quant 2 for Statistical Test

Degree Points

2 12.2 48.3 29.4 73.7
4 10.3 56.7 39.6 79.3 24.8
6 8.7 62.1 33.0 83.1 20.9 46.2
8 7.4 66.5 28.7 86.0 18.2 51.9 39.7
10 6.5 55.5 25.0 87.6 16.1 44.2 34.2 69.2

Table 3.7 shows the rejection percentages for different cases. We find that Quant1 and
Quant2 have similar 1 rejection percentages for each of the degrees of freedom. In addition,
we need fewer degrees of freedom in those two cases than that in Table 3.4 for the absolute
difference between the RP and the significance level to be less than 0.01. Therefore, we
recommend using points selected by the quantization method to conduct this goodness-of-
fit test when model parameters need to be estimated, where GN in (2.54) can be either a
uniform distribution or the empirical characteristic function of observations. In addition,
the degrees of freedom should be at least equal to 10 in this example.

1They look almost identical, but they vary for different models and values of model parameters.
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Table 3.7: Rejection Percentages for RSBS

Degree 2 4 6 8 10

Quant1 0.713 0.392 0.205 0.095 0.047
Quant2 0.718 0.392 0.205 0.095 0.047

We can summarize our finding as follows:

(i) The degrees of freedom at least at which the rejection percentage approaches the sig-
nificance level depends on models and their parameters. In practice, we can conduct
a pre-test (simulation study) by which we can decide the least degrees of freedom
need to be used in the proposed goodness-of-fit test.

(ii) Since model parameters are estimated by the DECF estimation method with m = 2,
so it is more reasonable to consider this test with m = 2. Because we suffer from the
problem of selection of the points at which a characteristic function is evaluated for
m ≥ 2, so we left this for future research.

3.4 Conclusions of Chapter 3

In Chapter 3, we investigate goodness-of-fit testing methods based on characteristic func-
tions. We propose two goodness-of-fit tests for regime switching models, which are exten-
sions of the methods proposed by Altman (2004) and Koutrouvelis and Kellermeier (1981)
respectively. We use univariate visual tests to examine the fit of the testing model to
observations and bivariate visual tests to explore the dependence structure of consecutive
observations. Moreover, we show the feasibility of combining the EM algorithm (Appendix
2.A) with the filtering method to test the goodness-of-fit in each regime.

We also propose a formal test and establish its asymptotic distribution with a degree
of freedom that depends on the number of the points at which a characteristic function
is evaluated and the number of parameters need to be estimated. Our numerical studies
suggest that the asymptotic distribution provides a good approximation when model pa-
rameters are known. However, when parameters need to be estimated, a proper selection
of points is crucial and is still an open question.
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Chapter 4

Applications to Real Data

In this chapter, we apply the estimation and testing methods proposed in Chapters 2 and
3 to real data, where we use the same S&P 500 data set as the one used in Hartman
and Groendyke (2013). We consider two-regime switching Black-Scholes (RSBS), variance
gamma (RSVG) and Merton (RSM) models1. Section 4.1 provides the selected points used
for the estimation and the estimation results for these regime switching models. Because
the problem of selection of the grid points remains open for the statistical test proposed
in Section 3.2.2, in Section 4.2 we only apply the proposed visual test to the estimated
models. Section 4.3 concludes.

4.1 Estimation

The points used for the estimation are obtained by minimizing (2.54), where GN is the
empirical characteristic function of the data. Similarly as in Section 2.4, (2.54) is calculated
by a numerical integration method with Nm

L points, where NL is a set of equally spaced
points and m represents the m-fold Cartesian product. The initial points are randomly
generated by the Sobol sequence generator.

The notations are consistent with those used in Chapters 2 and 3. The parameters we
use are:

1Although we do not know the true model of the data, we only use those three models for illustrations
of our proposed estimation, point selection and goodness-of-fit methods. Definitely, we can choose other
models as candidate models for the data.
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(i) m = 2 2, the dimension of the random variable Wj,m.

(ii) q = 4, 5, 6, the number of points used for the estimation of regime switching Black-
Scholes, VG, and Merton models respectively .

(iii) The lower and upper bounds on the points are 0.1 and 100.

(iv) N2
L = 252, the number of points used in the numerical integration.

(v) The models are fitted to monthly total log-returns of the set of S&P 500 from Febru-
ary 1956 to October 2010 with total T = 657 observations. Figure 4.1 shows the
log-returns of the data. The annual-averaged log-return is around 0.06.

Figure 4.1: The S&P 500 data plot
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The resulting points used for the DECF estimation method are presented in Table 4.1.

2Based on our pre-analysis on the model parameters as described in Section 2.2.2, we choose m = 2 for
our candidate models.
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Table 4.1: Selected Points for Estimation
Model r1 r2 r3 r4 r5 r6

RSBS (16.3, 6.3) (68.7, 69.7) (16.6, 53.0) (56.8, 9.1)
RSVG (16.4, 1.9) (73.8, 65.1) (21.4, 72.8) (56.9, 8.8) (15.0, 33.5)
RSM (16.9, 2.3) (78.4, 59.8) (12.5, 64.3) (42.4, 81.2) (16.8, 32.1) (56.6, 7.1)

The estimated parameters 3 obtained by the DECF estimation method are as follows:

RSBS:

µ1 = 0.125, µ2 = −0.142, σ1 = 0.110, σ2 = 0.230, p12 = 0.046, p21 = 0.148

RSVG

µ1 = 0.246, µ2 = 0.477, σ1 = 0.121, σ2 = 0.172, ν1 = 0.0001, ν2 = 0.022,

θ1 = −0.023, θ2 = −0.262, p12 = 0.330, p21 = 0.175.

RSM:

µ1 = 0.364, µ2 = 0.272, σ1 = 0.100, σ2 = 0.114, µJ1 = 0.427, µJ2 = −0.087,

λ1 = 0.244, λ2 = 0.329 σJ1 = 0.471, σJ2 = 0.065, p12 = 0.487, p21 = 0.169

The parameters for the RSBS model obtained by Hartman and Groendyke (2013) are:

µ1 = 0.156, µ2 = −0.096, σ1 = 0.110, σ2 = 0.219, p12 = 0.045, p21 = 0.143.

Table 4.2 compares the non-central moments of the set of S&P 500 data (Data) and
the estimated RSBS models obtained by the DECF estimation method (DECF) and by
Hartman and Groendyke (2013) (H&G). The moments of the data are obtained by the
sample means and those of DECF and H&G are obtained based on fitted models. The
numbers in the parentheses are the absolute differences between the moments based on the
estimated models (DECF or H&G) and those of Data. We have several findings based on
the results in Table 4.2:

(i) The second and forth order of the non-central moments are similar for the two es-
timated RSBS models, and the other two moments are very different, especially for
the third moment.

3There are no standard errors accompanying the estimates, because these estimates are obtained by
using the estimation method once.
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(ii) The absolute differences between the first and second moments of DECF and those
of Data are less than those between H&G and Data.

(iii) The absolute differences between the third and forth moments of DECF and those
of Data are larger than those between H&G and Data.

(iv) The two cases, DECF and H&G, are similar in the accuracy of the estimation, since
for both of them only two of the four non-central moments of the estimated model
fit the data well.

Table 4.2: Comparison of non-central moments

Non-central moments (order) 1 2 3 4

Data 0.060 0.022 0.004 0.002
DECF 0.062 (0.002) 0.022(0.000) -0.001 (0.005) 0.005(0.003)
H&G 0.096 (0.036) 0.021 (0.001) 0.004 (0.000) 0.004 (0.002)

4.2 Visual Test

Based on the proposed visual test in Section 3.2.1, we respectively plot the real and imag-
inary parts of Φ̄m,N(·) versus those of Φ̂m(·) for the two-regime switching Black-Scholes,
Merton and variance gamma models as below. We consider both univariate (m = 1) and
bivariate (m = 2) tests. Note that our goal is to test the goodness-of-fit of the estimated
models respectively to the data, but is not to select the best model among all the candidate
models.

• Univariate Test (m = 1)

We use the same q = 21 points as those used in Section 3.3.1, ri = i − 1, where
i = 1, ..., 21, to conduct the univariate visual test.

Figures 4.2-4.4 show the plots of the univariate real (left panels) and imaginary (right
panels) parts of the empirical characteristic functions versus the estimated ones for
the estimated RSBS, RSVG and RSM models. The solid straight lines in all the plots
refer to the 45◦ line through the origin. We can see that only the plots of the RSBS
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model have few deviations from the reference line. Although, the plots of the real
parts of the RSVG and RSM models are close to the reference line, the imaginary
parts show obvious deviations. Therefore, the RSBS model has the best fit to the
observations among all the candidate models, and we do not reject the RSBS model
based on the univariate visual test.

Figure 4.2: RSBS Univariate Characteristic Functions Test for Whole Model
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Figure 4.3: RSVG Univariate Characteristic Functions Test for Whole Model
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Figure 4.4: RSM Univariate Characteristic Functions Test for Whole Model

0.7 0.75 0.8 0.85 0.9 0.95 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Univariate Empirical CF Real Part

U
n

iv
a

ri
a

te
 E

s
ti
m

a
te

d
 C

F
 R

e
a

l 
P

a
rt

RSM Model

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Univariate Empirical CF Imaginary Part

U
n

iv
a

ri
a

te
 E

s
ti
m

a
te

d
 C

F
 I

m
a

g
in

a
ry

 P
a

rt

RSM Model

• Bivariate Test (m = 2)

77



To construct a bivariate visual test, we use the same q = 21 points as those used in
Section 3.3.1, ri = (i − 1, i − 1), where i = 1, ..., 21, to conduct the bivariate visual
test.

Figures 4.5-4.7 show the plots of the bivariate real (left panels) and imaginary (right
panels) parts of the empirical characteristic functions versus the estimated ones for
the estimated RSBS, RSVG and RSM models. We have similar conclusions as those
reported in the univariate test above, except that the real parts of the RSVG and
RSM models also show some deviations. Combining the results of the univariate and
bivariate tests, we do not reject the RSBS model, but we reject the RSVG and RSM
models.

Figure 4.5: RSBS Bivariate Characteristic Functions Test for Whole Model
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Figure 4.6: RSVG Bivariate Characteristic Functions Test for Whole Model
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Figure 4.7: RSM Bivariate Characteristic Functions Test for Whole Model
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4.3 Conclusions of Chapter 4

In this chapter, we apply the proposed DECF estimation method to estimate the two-
regime switching Black-Scholes, Merton and variance gamma models, where we use a set
of S&P 500 real data.

Based on the visual test results in Sections 4.2, we do not reject the estimated RSBS
model, but reject the estimated RSVG and RSM models.

Note that there is a conflict between the rejection of the RSM model and the acceptance
of the RSBS model, since the RSBS model is a special case of the RSM model with no
jump parts. This may be explained by the following possible reasons:

(i) The initial values of parameters affect the estimation results. The DECF estimation
method is not maximum-likelihood estimation, and the estimation procedure finds
the closest model that fits observations. Therefore, the estimating function (2.8)
with the estimated model parameters may only reach the local but not the global
minimum.

(ii) The points used for these models in the estimation procedure are different and se-
lected independently. Since they also affect the estimation results, we cannot say
that the RSBS model is a nested model within the RSM model with respect to the
estimation. To confirm this fact we have run a short simulation study. We estimate
model parameters for both the RSBS model and the RSM model by using the same
set of simulated data from an RSM model. Then we test the goodness-of-fit for both
of the estimated models by using the proposed visual test. We repeat this procedure
for different sets of simulated data (i.e., from the RSM model with different sets of
parameters). We have found that for some of the cases the plots for the RSBS model
show fewer deviations than those of the RSM model, which means we may infer the
wrong model such that we do not reject the RSBS model but reject the RSM model
based on the visual test. We can take this as a drawback of the visual test, which is
informal and not robust.
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Chapter 5

Pricing Ratchet Options under
Regime Switching Models

5.1 Introduction and Motivation

In this chapter, we propose a numerical pricing method called the PV method to price
Bermudan options, and we apply the PV method to ratchet equity-indexed annuities (EIAs)
with early surrender risk under the model defined in (1.1).

EIAs are very popular contracts in insurance markets and gaining more attention in
their proper pricing with variety features of the contracts and different assumptions of the
models of the underlying fund. Kijima and Wong (2007) derive closed-form formulas for
simple and compound ratchet EIAs under extended Vasicek interest rate models. Yuen
and Yang (2010) consider the trinomial tree method and Wei et al. (2013) propose a lattice
algorithm to price early surrender risk under CIR++ interest rate models.

Pricing ratchet EIAs with surrender risk is similar to pricing Bermudan options un-
der certain assumptions. However, there are some challenges we need to handle. First,
most contracts in insurance markets have longer maturities than financial options, and the
models with a constant volatility or interest rate become questionable. Instead, regime
switching models, where some economic factors or parameters are allowed to change ran-
domly according to a Markov process, are more reasonable for pricing long-term financial
and insurance products. Numerous authors have considered regime switching models be-
cause of their attractive features, including Hardy (2001, 2002), Yin et al. (2006), Lin et
al. (2009), Yuen and Yang (2009), and Bastani et al. (2013). Second, the dimension of a
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model increases by introducing a Markov process, which makes pricing Bermudan options
more difficult. Stochastic dynamic programming is a well-known technique that can be
used to solve this problem. However, the recursive computation of the conditional expec-
tations involving in the backward induction is also challenging in dynamic programming.
Monte Carlo simulation is a natural approach to solve the high-dimensional problems when
pricing Bermudan options since the publication of Tilley’s paper (1993). Then the prob-
lem has been discussed by a considerable number of literature including Carriere (1996),
Broadie and Glasserman (2004), Longstaff and Schwartz (2001), Andersen and Broadie
(2004), Jin et al. (2007), Caramellino and Zanette (2011), and Boyle et al. (2001, 2013).
For a more complete list of references, the reader may refer to Detemple (2006) and Hirsa
(2013).

In this chapter, we present a general method of pricing Bermudan options for models
where the characteristic functions of the underlying asset log-returns are known. We call
this method the projected value (PV) method, where we also use the dynamic programming
approach. However, we calculate the conditional expectations by representing the current
value of the option with a series expansion and then applying the characteristic function.
By doing this, we avoid Fourier inversions, which can be computationally intensive1. The
idea of decomposing a payoff function using simpler functions is not new, since Bakshi
and Madan (2000) and Chiarella et al. (1999) have considered this approach for European
and American options respectively, where in the latter paper the authors use Hermite
polynomials in the path-integral framework. Recently, Bang (2012) has proposed a pricing
method based on characteristic functions for European vanilla options only, where he uses
a trigonometric series to represent a payoff.

In Section 5.4, we compare the PV method with two well-known pricing methods. We
show that the PV method can recover the COS method developed by Fang and Oosterlee
(2008) if the basis functions in our approach are selected to be cosine series. The COS
method has been applied to the problems of pricing Bermudan options under different
distribution assumptions, and it is preferable to many alternative methods based on char-
acteristic functions (see Fang and Oosterlee 2009, Ruijter and Oosterlee 2012). Although
the points of departure for the PV method and the COS method are different, since the
former uses cosine series expansions of the value functions while the latter uses cosine ex-

1None of the leading pricing methods based on characteristic functions use Fourier inversions, which
often, due to oscillatory behaviour of the integrand, require a large number of integration points, and hence
can be computationally intensive. We should mention that for numerical integration of inverse Fourier
transform, the FFT method is not guaranteed in general to dominate a properly selected direct integration
method. For an example, we refer to Chapter 4 in Zhu (2009). Some discussion of pricing methods based
on inversions of characteristic functions can be found in Lord et al. (2008).
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pansions of the density function, they produce the same pricing formula. However, the
PV method allows for a much larger selection of approximating functions and hence is
amenable to different strategies designed to enhance computational efficiency. This feature
of the PV method is particularly useful for pricing ratchet options embedded in EIAs,
for which the COS method exhibits low rate of convergence. To compare with the least-
squares (LS) method proposed by Carrière (1996) and Longstaff and Schwartz (2001), the
PV method has several advantages when pricing Bermudan options especially when the
log-returns follow regime switching models in Lévy processes.

Other approaches to pricing Bermudan options based on Fourier methods include the
Convolution (CONV) method (Lord et al. (2008)) and a related Fourier Space Time-
stepping (FST) algorithm (Jackson et al. (2007)), where the latter utilizes the advantages
of Fourier transform methods by transforming a partial integro-differential equation (PIDE)
into Fourier space. The computational complexity of the CONV method is the same as
that of the COS method 2, but typically the error for the latter diminishes at a higher rate
(Fang et al. (2009)). In addition, the main assumption of the CONV method is that the
transition density f(y|x) of log-prices depends on x and y only via their difference, which
we do not make in this chapter. The FST method, on the other hand, can incorporate
regime-switching stock price behaviour by transforming a system of PIDEs into Fourier
space (Jackson et al. (2007, 2008)). However, changes in regimes occur in continuous
time, while in this chapter we assume that they follow a discrete-time Markov chain, which
is consistent with some of the models proposed in the actuarial literature (e.g., Hardy
(2001)).

In Section 5.5, we apply the PV method to the problems of pricing ratchet EIAs with
surrender risk under regime switching models in Lévy processes. Although using Fourier
transform methods to price options is a well established technique in finance and insurance
(see Lord et al. (2008), Jackson et al. (2007, 2008), Dufresne et al. (2009), Eberlein (2014);
and the books of Tankov (2003), Cherubini et al. (2010), and Hirsa (2013)), it is difficult
to apply such methods to path-dependent options and options that depend on several risk
factors. One notable feature of the PV method is that it provides a unified framework for
different distributions of the log-returns of the underlying asset, since only one component
of the algorithm needs to be replaced.

This chapter is organized as follows. We describe the models used for pricing in Section
5.2. In Section 5.3, we propose the pricing method, the PV method, and compare it
with two known alternative approaches, the COS method and the least-squares method

2Here the computational complexity assumes that an arithmetic operation with an individual element
has complexity O(1). We discuss complexity of the COS method in Section 5.4.1.
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in Section 5.4. In Section 5.5 we apply the method to price ratchet EIAs, followed by
implementation results in Section 5.6. Section 5.7 concludes.

5.2 The Model

In this chapter, we introduce S = {St : t ≥ 0} as the price process of the underlying asset
and Sj := Stj , for a given set of equally-spaced time points tj := jh, j = 0, . . . , N . For
pricing purposes, model (1.1) should be defined under a risk-neutral measure Q. Then it
can be represented as

Wj+1 := ln
Sj+1

Sj
= µ(Yj) + Zj+1

(
ξ(Yj)

)
, j = 0, . . . , N − 1, (5.1)

where W = {Wj+1, j = 0, 1, ..., N − 1} can be seen as the log-return process of the under-
lying asset.

Under some risk-neutral measure Q, the expected returns of model (5.1) must have
a particular form in each regime so that the model is arbitrage-free. From the general
option pricing theory, this condition will be satisfied if the discounted price process follows
a martingale. In our case, this implies that under the pricing measure, we must have

E[e−mhrSm|Fn] = e−nhrSn, for m ≥ n, (5.2)

where r is a continuously compounded interest rate and Fn is the σ-field generated by the
processes S and Y up to time tn. Since (5.2) can be written as

E
[Sm
Sn
|Fn
]

= erh, for m = n+ 1,

then the left-hand side becomes

E
[
eµk+Z(ξ

k
)|Fn

]
= E

[
eZ(ξ

k
)|Fn

]
eµk = E

[
ei(−i)Z(ξ

k
)|Fn

]
eµk = Ψ(−i; ξ

k
)eµk .

Therefore, (5.2) is equivalent to

Ψ(−i; ξ
k
)eµk = erh, for k = 1, . . . , K,

which leads to the condition
µk = rh− ψ(−i; ξ

k
), (5.3)
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where ψ(·; ξ
k
) is the natural logarithm of the characteristic function of Z(ξ

k
), that is,

ψ(·; ξ
k
) := log(Ψ(·; ξ

k
)). Define MZ(·, ξ) as the moment generating function of Z(ξ) and

mZ(·; ξ) as the cumulant moment generating function of Z(ξ). By definitions,

MZ(z, ξ) := E(ezZ(ξ)) and mZ(z, ξ) := log
(
MZ(z, ξ)

)
, z ∈ R.

Since Ψ(−i; ξ
k
) = MZ

(
i(−i), ξ

)
= MZ(1, ξ) and similarly ψ(−i; ξ

k
) = mZ

(
i(−i), ξ

)
=

mZ(1, ξ), then (5.3) can be rewritten as

µk = rh−mZ(1; ξ
k
), (5.4)

where we assume that mZ(1; ξ
k
), k = 1, . . . , K, are finite. The pricing measure that we use

in our numerical study is equivalent to equation (5.3), but the proposed pricing method is
valid for any selection of risk-neutral measure Q3.

We also consider an extension of model (5.1) where the timing of the regime that
determines the parameter ξ is different. In model (5.1), we assume that ξ at the next time
period tj+1 depends on the regime Yj at time tj, and the variable Zj+1 is the only uncertain
term in the log-return µ(Yj) + Zj+1(ξ(Yj)). An alternative model assumes that ξ at time
tj+1 also depends on the regime realization at tj+1, then model (5.1) becomes

Wj+1 := ln
Sj+1

Sj
= µ(Yj) + Zj+1

(
ξ(Yj+1)

)
, j = 0, . . . , N − 1. (5.5)

Similar specifications have been considered in the context of discrete-time stochastic volatil-
ity models, and we refer to Durham (2006) for a discussion of pros and cons of different
formulations of such models. In the original model (5.1), the current regime Yj determines
uniquely all of the parameters in the distribution of the return Wj+1 over the interval
[tj, tj+1], whereas the return follows a mixture distribution in (5.5).

By conditioning, the characteristic function of the log-return Wj+1 in model (5.5) can
be expressed in terms of the characteristic function of Z(ξ), which has the form of

E
[
eiz(µ(Yj)+Zj+1(ξ(Yj+1)))|Yj = k

]
= eizµ(k)

K∑
l=1

Ψ(z; ξ
l
)pkl. (5.6)

To ensure that the discounted price process forms a martingale under model (5.5), in
each regime the parameters must satisfy

µ(k) = rh− ln

(
K∑
l=1

ψ(−i; ξ
l
)pkl

)
. (5.7)

3For example, Lin et al. (2009) use the Esscher transform to determine an equivalent pricing measure.
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The proposed estimation method can be adjusted for this extended model (5.5).

5.3 The Pricing Method

In this section, we present a numerical method of pricing Bermudan options.

Assume the payoff function of an option is G(τ, Sτ , Yτ ) at the exercise time τ , where
τ ∈ T := {t0, t1, . . . , tN = T}, that is, the option can be exercised prior to maturity at
N + 1 time points including the initial time. Our objective is to find the value

V := max
τ∈T

E
[
e−τrG(τ, Sτ , Yτ )

]
,

where the maximum is over all possible stopping times {0, 1, . . . , N}, and the expectation
is taken under a risk-neutral pricing measure Q.

By the dynamic programming principle, we can obtain V by calculating V (tj, ·, ·)
through the following backward recursive algorithm:

V (T, s, y) = G(T, s, y), (5.8)

V (tj, s, y) = max
[
G(tj, s, y), C(tj, s, y)

]
, j = N − 1, ..., 0, (5.9)

where the continuation value, C(tj, s, y), is defined as

C(tj, S, y) := e−rhE
[
V (tj+1, Stj+1

, Ytj+1
)|Stj = s, Ytj = y

]
. (5.10)

Then, the price of the option V can be obtained by taking V = V (0, S0, Y0). In practice,
we must calculate or accurately approximate the conditional expectations in (5.10) for
all regimes y ∈ S and some selected points s from the state space of the price process
S. Recursively computing these expectations with the dynamic programming principle
is another challenge. Some existing numerical methods for the dynamic programming,
including crude Monte-Carlo simulation, least squares regression and mesh point method,
have been proposed in the existing literature.

In this chapter, we propose using the characteristic functions of the log-increments of
the process S to approximate the conditional expectations (5.10) in the above dynamic
programming setup. Define V̂ (tj+1, ·) as the approximation of V (tj+1, ·) at time tj+1, j =
0, . . . , N − 1, obtained from the backward recursion. In addition, let M := {ml(x) : x ∈
X , l = 0, .., L} be a collection of basis functions defined on X = {x : exp(x) ∈ S}. Then
the approximation Ĉ(tj, ·, ·) of the continuation value C(tj, ·, ·) at time tj is obtained in
the following two steps:
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(S4–1) For each regime y ∈ Y , approximate the function V̂ e(tj+1, ·, y) := V̂ (tj+1, exp(·), y)
by a weighted sum of the basis functions

V̂ e(tj+1, x, y) ≈ V̂ e
M(tj+1, x, y) :=

L∑
l=0

αl(y)ml(x), (5.11)

where αl(·) are the assigned weights or coefficients of the basis functions ml(·), l =
0, ..., L.

(S4–2) Calculate the conditional expectation of V̂ e
M as follows:

E
[
V̂ e
M(tj+1, ln(Stj+1

), Ytj+1
)|Stj = s, Ytj = y

]
=

L∑
l=0

E
[
αl(Ytj+1

)ml(ln(Stj+1
))|Stj = s, Ytj = y

]
=

L∑
l=0

E
[
αl(Ytj+1

)|Ytj = y
]
E
[
ml

(
ln(Stj+1

)
)
|Stj = s, Ytj = y

]
,

(5.12)

where the last equation results from the assumption that the Markov chain Y is
independent of the price process S. By the representation (5.1), the variables Stj+1

and Ytj+1
are independent given Stj and Ytj .

We should note that in step (S4–1), we approximate the current value of the option
V̂ on a logarithmic scale, which makes computations conveniently for step (S4–2). We
can also obtain the approximation by any of the standard techniques, like the least-squares
method or an interpolation technique. For example, the coefficients αl(y) ≡ αl(tj+1, y), l =
0, . . . , L, may solve the following optimization problem

(α0(y), . . . , αL(y)) := arg inf
β0,...,βL

M∑
i=1

(
V̂ e
L(tj+1, x

j+1
i , y)−

L∑
l=0

βlml(x
j+1
i )

)2

, (5.13)

where the points {xj+1
1 , . . . , xj+1

M } are sampled randomly from a pre-specified probability
distribution on X .

In this chapter, we focus on trigonometric functions, which is motivated by the fact that
steps (S4–1)–(S4–2) are easy to implement for these functions. Based on classical Fourier
analysis, properly scaled trigonometric functions form a complete and orthogonal set in the
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space of square integrable functions over any given interval [−l, l], l > 0. In particular, any
square-integrable function with a period 2l on R can be approximated arbitrarily close in
the L2-sense by sums of trigonometric functions. In step (S4–1), V̂ e(tj+1, ·, y) is typically
non-periodic. In order to represent it as a sum of trigonometric functions, we first need to
truncate the range of possible values of ln(Stj+1

) to a finite interval, for example, (−lX , lX),

where lX ≡ l(tj+1) is a suitably chosen constant. Then, we can approximate V̂ e(tj+1, ·, y)
by its orthogonal projection onto the space spanned by the following set of functions

M(lX ,L) :=
{

1, cos(
πx

lX
), . . . , cos(

πLx

lX
), sin(

πx

lX
), . . . , sin(

πLx

lX
); x ∈ [−lX , lX ]

}
. (5.14)

Then V̂ e(tj+1, ·, y) can be approximated by

V̂ e
M(l,L)

(tj+1, x, y) := A(y) +
L∑
l=1

{
al(y) cos(

πlx

lX
) + bl(y) sin(

πlx

lX
)

}
, x ∈ (−lX , lX),

(5.15)
where A(y) = a0(y)/2,

al(y) :=
1

lX

∫ lX

−lX
V̂ e(tj+1, x, y) cos(

πlx

lX
)dx, l = 0, 1, 2, . . . , L, (5.16)

and

bl(y) :=
1

lX

∫ lX

−lX
V̂ e(tj+1, x, y) sin(

πlx

lX
)dx, l = 1, 2, . . . , L. (5.17)

Typically, we need to approximate the coefficients al, l = 0, 1, . . . , L, and bl, l = 1, . . . , L,
defined in (5.16)–(5.17) by some numerical methods, or we can obtain these coefficients by
using a fast Fourier transform (FFT).

To calculate the conditional expectation of V̂ e
M in step (S4–2), we need to find two

sets of expectations E[αl(Ytj+1
)|Ytj = y], l = 0, . . . , L, and E[ml(ln(Stj+1

))|Stj = s, Ytj =
y], l = 0, . . . , L. The first expectations depend only on the transition probabilities of the
Markov chain Y , and they can be calculated by a weighted sum of the given coefficients
αl(y) as:

E
[
αl(Ytj+1

)|Ytj = k
]

=
∑
i∈K

αl(yi)pki, l = 0, . . . , L.

Calculating the second set of expectations is challenging, for which a proper selection
of basis functions is crucial. We may impose two requirements on the basis functions M
to make the calculation easier:
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(A3–1) For each function ml ∈M, the conditional expectation

E
[
ml

(
ln(Stj+1

)
)
|Stj = s, Ytj = y

]
(5.18)

can be represented in terms of the characteristic function Ψ.

(A3–2) For each regime y, the conditional expectation (5.18) can be represented as an explicit
function of x ≡ ln(s) ∈ X .

Indeed, if (A3–1) is satisfied, typically the expectation (5.18) can be expressed in an
analytical form. If (A3–2) is also satisfied, then calculating the conditional expectations
in the recursive backward procedure will be convenient.

For model (5.1), polynomials and trigonometric functions satisfy the two requirements
(A3–1) and (A3–2).

Polynomials:

When ml(x) := xl, l ≥ 0, is a monomial function, we can use the binomial theorem to
show that

E
[
(lnStj+1

)l|Stj = s, Ytj = k
]

= E
[
(lnStj +Wtj+1

)l|Stj = s, Ytj = k
]

= E
[
(ln s+Wtj+1

)l|Ytj = k
]

=
l∑

m=0

(
l

m

)
(ln s)l−mE

[
(Wtj+1

)m|Ytj = k
]

=
l∑

m=0

(
l

m

)
(ln s)l−m

1

im
∂mΨk(z)

∂zm

∣∣∣
z=0

, (5.19)

where Ψk(z) = exp(izµk)Ψ(z; ξ
k
) is the characteristic function of µk + Z(ξ

k
). Then we

can implement (S4–1) and (S4–2) efficiently if all the required derivatives of Ψk(z) can be
obtained.

Note that for some cases of model (5.1), we can express the conditional moments
of Stj+1

directly in terms of its characteristic function or moment generating function
without taking the logarithmic transformation; however, this approach is limited because
increments of Lévy processes typically have exponential tails and only a small number of
moments of Stj+1

may exist.

Trigonometric:
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When ml(x) := cos(ωx) and/or sin(ωx), we can use elementary properties of trigono-
metric functions to show that for any real number ω

E
[

cos
(
ω ln(Stj+1

)
)
|Stj = s, Ytj = k

]
= E

[
cos
(
ω
(
ln(Stj) +Wtj+1

) )
|Stj = s, Ytj = k

]
= cos

(
ω ln(s)

)
E
[

cos(ωWtj+1
)|Ytj = k

]
− sin

(
ω ln(s)

)
E
[

sin(ωWtj+1
)|Ytj = k

]
= cos

(
ω ln(s)

)
<
(

Ψk(ω)
)
− sin

(
ω ln(s)

)
=
(

Ψk(ω)
)
, (5.20)

where <(z) and =(z) denote the real part and the imaginary part of a complex number z
respectively.

Similarly, we have

E
[

sin
(
ω ln(Stj+1

)
)
|Stj = s, Ytj = k

]
= cos

(
ω ln(s)

)
=
(

Ψk(ω)
)

+ sin
(
ω ln(s)

)
<
(

Ψk(ω)
)
.

(5.21)

Formulas (5.20) and (5.21) show that the requirements (A3–1) and (A3–2) are satisfied
for the basis functions coming from M(lX ,L). Calculating the conditional expectations is
equivalent to evaluating the real and imaginary parts of the characteristic function Ψ(·; ξ

k
)

at different points. Therefore, we can find the expression for the conditional expectation
V̂ e
M(lX,L)

(tj+1, ln(Stj+1
), Ytj+1

) based on equations (5.20) and (5.21) :

E
[
V̂ e
M(lX,L)

(
tj+1, ln(Stj+1

), Ytj+1

)
|Stj = s, Ytj = k

]
=

1

2
E
[
a0(Ytj+1

)|Ytj = k
]

+
L∑
l=1

[
āl(k) cos

(πl
lX

ln(s)
)

+ b̄l(k) sin
(πl
lX

ln(s)
)]
Rl(k)

+
L∑
l=1

[
b̄l(k) cos

(πl
lX

ln(s)
)
− āl(k) sin

(πl
lX

ln(s)
)]
Il(k), (5.22)

with

āl(k) := E
[
al(Ytj+1

)|Ytj = k
]
, b̄l(k) := E

[
bl(Ytj+1

)|Ytj = k
]
, l = 1, 2, . . . , L, (5.23)

and

Rl(k) := <
(

Ψk(
πl

lX
)
)
, Il(k) := =

(
Ψk(

πl

lX
)
)
, l = 1, 2, . . . , L. (5.24)

90



We should note that (5.22) can be written as

E
[
V̂ e
M(lX,L)

(
tj+1, ln(Stj+1

), Ytj+1

)
|Stj = s, Ytj = k

]
=

1

2
E
[
a0(Ytj+1

)|Ytj = k
]

+
L∑
l=1

[
āl(k)Rl(k) + b̄l(k)Il(k)

]
cos
(πl
lX

ln(s)
)

+
L∑
l=1

[
b̄l(k)Rl(k)− āl(k)Il(k)

]
sin
(πl
lX

ln(s)
)
. (5.25)

Therefore, the conditional expectation has an analytical form. The coefficients for
cos(πl ln(s)/lX) and sin(πl ln(s)/lX) in equation (5.25) do not depend on s, so they can be
calculated only once at each time period and in each regime.

In addition, the PV method can be modified for the alternative model (5.5). For any
basis function, we have

E

[
ml

(
ln(Stj+1

)
)
|Stj = s, Ytj = yk1 , Ytj+1

= yk2

]
= E

[
ml

(
ln(Stj) + µ(Ytj) + Ztj+1

(
ξ(Ytj+1

)
))
|Stj = s, Ytj = yk1 , Ytj+1

= yk2

]

= E

[
ml

(
ln(s) + µ(yk1) + Ztj+1

(yk2)

)
|Stj = s, Ytj = yk1 , Ytj+1

= yk2

]

= E

[
ml

(
ln(s) + µ(yk1) + Ztj+1

(yk2)

)]
,

for which the last line is based on the assumption of the conditional independence of Ztj+1

on the remaining variables. conditional on Ytj+1
, step (S4–2) in the PV method should be

replaced with

(S4–2∗) Calculate the conditional expectation of V̂ e
M as follows:

E

[
V̂ e
M

(
tj+1, ln(Stj+1

), Ytj+1

)
|Stj = s, Ytj = k

]
=

L∑
l=0

K∑
i=1

αl(yi)E

[
ml

(
ln(s) + µ(yk) + Ztj+1

(yi)
)]
pki. (5.26)
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For the set M(lX ,L), the conditional expectation in (5.26) can be expressed in terms of
the characteristic function of Ztj+1

similarly as in (5.25), thus the PV method can be also
applied to the alternative model (5.5).

5.4 Comparison with Other Methods

In Section 5.4.1, we show that we can recover the COS method proposed by Fang and
Oosterlee (2008, 2009) by the PV method with a particular selection of basis functions.
This result enables us to construct an improved version of the latter method, which is par-
ticularly useful for pricing ratchet options. In Section 5.4.2, we compare the PV approach
with the least-squares method proposed by Carrière (1996) and Longstaff and Schwartz
(2001). Since the original formulations of the COS and the LS method do not allow for
regime changes, to simplify our exposition we assume that the Markov chain Y stays in
one regime only.

5.4.1 The COS method

To present the COS method, suppose that at time tj we want to find an approximation of
the expectation

I(x0) :=

∫
U(x)f(x;x0)dx, (5.27)

where U(x) ≡ V̂ e(tj+1, x, y) with a fixed value of y, f(x;x0) is the density function of

ln(Stj+1
) given ln(Stj) = x0, and V̂ e is the value function in the log-asset price. To ap-

proximate I(x0), we first truncate the integration region to an interval [a, b] and then
approximate the density f by using its Fourier cosine series expansion truncated to a finite
number of terms

f1(x|x0) :=
A0

2
+

L∑
k=1

Ak(x0) · cos(kπ
x− a
b− a

) (5.28)

with

Ak(x0) :=
2

b− a

∫ b

a

f(x;x0) cos(kπ
x− a
b− a

)dx, k = 0, 1, . . . . (5.29)

The above cosine series coefficients can be approximated using the characteristic function
φ(·;xo) of x as

Ak(x0) ≈ Fk(x0) :=
2

b− a
<
{
φ(

kπ

b− a
;x0) · exp(−i kaπ

b− a
)

}
, (5.30)
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where we have only an approximation not an equality in (5.30), which is due to the trunca-
tion of the integration region in the definition of the characteristic function. If we replace
Ak with Fk in (5.28) and substitute the resulting sum into (5.27), we obtain the following
approximation of I(x0) used in the COS method:

Î(x0) :=
F0

2
+
b− a

2

L∑
k=1

Fk(x0) · Vk, (5.31)

where

Vk :=
2

b− a

∫ b

a

U(x) cos(kπ
x− a
b− a

)dx. (5.32)

We can notice that Vk, k = 1, 2, . . . , are the cosine series coefficients of U(x) on [a, b],
which suggests a close connection between the COS method and the PV method. Indeed,
it is easy to verify that if we use the cosine series expansion of U(x) on [−lx, lx] in (S4–1)
of the PV method , then (S4–2) produces a representation of the conditional expectation
that has the same form as the expansion (5.31) when a = −lx and b = lx.

Although the PV approach based on cosine functions and the COS method produce
the same approximations, they have different starting points in expansions. This fact
implies that the truncation error in both approaches can be controlled by approximating
more closely either the value function or the density function. This result can also be
derived from the common representation (5.31), where the rate at which the product
Fk(x0) · Vk decays to zero is faster than either Fk(x0) or Vk. However, the PV method is a
broader framework than the COS method, since it offers alternative ways of approximating
expectations.

To understand better how the PV approach can be used to improve the COS method,
we first need to know some properties of the COS method when applied to the problem of
pricing Bermudan options (Fang and Oosterlee (2008, 2009)):

(P1) Assume that the density of log-returns is smooth enough, typically we need only a
small number of terms in its series expansion.

(P2) Assume that the series coefficients Vk, k = 1, 2, ..., of the option values at the first
early-exercise date are known, they can be calculated, for some options, very ef-
ficiently for other exercise dates through an induction formula combined with the
FFT algorithm. In such cases, the computational complexity of the method is
O((M − 1)L logL), where M is the number of early-exercise dates and L is the
number of terms in the series expansion of the density.
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The first property (P1) depends on the smoothness of the density function of log-prices.
In many financial applications, this density is often infinitely differentiable, and therefore
its Fourier-cosine series expansion converges exponentially in the number of terms L on
bounded intervals. As a result, in practice, we do not need to use large values of L to
get accurate estimates of prices of European and Bermudan options. As we discuss below,
however, for ratchet options the coefficients in Fourier-cosine series expansions show only
algebraic convergence.

The second property (P2) of the COS method also leads to a significant reduction of
its overall computational cost. To derive the induction formula, however, we need to know
the form of the boundary that separates the continuation region from the exercise region
at each exercise time. For some options and models, finding this boundary is equivalent
to finding the point that separates the two regions (Fang and Oosterlee (2009)). However,
the exact shape of the exercise region may be difficult to determine, especially for path-
dependent options under a stochastic volatility model (for Heston model, see Ruijter and
Oosterlee (2012)). Therefore, the feasibility of an induction formula and its effectiveness
must be assessed on a case-by-case basis.

As mentioned earlier, for ratchet options, the exponential rate of convergence of the
COS approach is typically not true. For these contracts, the density f corresponds to a
truncated random variable, and it can be written in the form f t(x;x0) := cnf(x;x0)1[F,C](x),
where 1A is the indicator function of a set A, cn is a normalizing factor, and the constants
F and C with F,C ∈ (a, b), F < C, determine the truncation levels. In this case, the
density function has discontinuities inside the expansion region, and hence the truncation
error in the cosine expansions of f t will decay only algebraically.

Figure 5.1 shows some plots for the analysis of truncation errors (y-axis) with respect
to the number of terms in expansions (x-axis). The left panel in Figure 5.1 depicts the
truncation error, which is measured by the L1-distance between functions, to demonstrate
the difference between these two convergence rates. In this graph, the lower line represents
the truncation error of the case where we approximate the standard normal density function
on the interval (−10, 10) using Fourier cosine expansions with L terms, while the upper
line represents a similar error but for the normal density function truncated on the interval
(−2, 2). The difference is quite large, since for the former case we need only 16 terms to
ensure that the error is less than 0.007, while for the latter case the distance is still larger
than 0.01 even with 500 terms.
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Figure 5.1: Truncation Error Analysis with respect to L
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The PV method allows us to improve the convergence rates of the pricing methods based
on characteristic functions by constructing better approximations of value functions. The
justification for such a strategy is twofold. First, the value function has better smoothness
properties than the density for ratchet options with surrender risk, since it is typically
continuous and infinitely differentiable everywhere except for the points that separate the
exercise and the continuation regions. Second, the PV method provides a more flexible
framework for approximations than the COS method, since we are not constrained to cosine
functions only. In particular, we can combine polynomials and trigonometric functions
to construct more accurate approximations of the value function. Since these efficiency
enhancing techniques usually depend on the problems at hand, below we only describe a
general method that is applicable.

The truncation error when approximating U(x) by the finite sum of trigonometric
functions (5.15) is determined by the rate at which the coefficients al, l = 0, 1, . . . , L,
and bl, l = 1, . . . , L, defined in (5.16)–(5.17) converge to zero. Suppose that the function
U is (k − 2)-times continuously differentiable on [−lx, lx] and its k-th derivative, U (k), is
integrable on this interval. If, in addition, we also have

U(−lX) = U(lX), U (1)(−lX) = U (1)(lX), . . . , U (k−2)(−lX) = U (k−2)(lX), (5.33)
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then it can be shown that

|an| ≤
F

nk
and |bn| ≤

F

nk

for some sufficiently large constant F , which is independent of n. Thus, under the above
assumptions, the algebraic index of converge is at least as large as k. A proof of this result
based on simple integration by parts is presented in Boyd (1989) (Theorem 2.4). It is known
that for American options the continuation value meets the payoff function smoothly, as
long as the latter is smooth too (see, for example, Wilmott et al. 1993). Therefore, if we
assume that the payoff function G is continuously differentiable for in-the-money region,
then the first derivative of U will be continuous on (−lX , lX), and hence the algebraic index
of convergence will be at least 3 if the boundary conditions (5.33) hold for k = 3.

The value function V̂ e(tj+1, ·, y) does not usually satisfy these conditions, but a simple
remedy for this problem is to replace it with a function of the form:

V̂ e
M(tj+1, x, y) := V̂ e(tj+1, x, y)− pLb(x), x ∈ [−lX , lX ], (5.34)

where the polynomial pLb(x) :=
∑Lb

l=0 dlx
l is selected so that the resulting function V̂ e

M

satisfies (5.33) for a prespecified value of k. A similar approach is proposed in Boyd
(1989) for solving ordinary differential equations. In the context of the PV method, this
technique is feasible since by (5.19) the integral of pLb(x) can be expressed in terms of the
characteristic function of f . In particular, we can ensure that the periodic extension of
V̂ e(tj+1, x, y) is continuous by using a linear function with

d1 =
V̂ e(tj+1, lX , y)− V̂ e(tj+1,−lX , y)

2lX
.

To illustrate the advantages of the proposed method over the cosine method, assume
that U represents the log-prices of a Bermudan put option at time t = 10, where the option
expires at T = 11 and its strike price is 1. We obtain U on the interval (−5, 5) by using
the Black-Scholes model and formula (5.10), where we assume that σ = 30% and r = 5%.
To ensure that the boundary conditions (5.33) are satisfied, we use (5.34) with either a
linear function or a polynomial of order 3. Then we approximate U by using finite sums
of trigonometric functions with 2L + 1 terms for varying values of L. For comparison, we
also approximate U using cosine expansions with L terms.

The right panel of Figure 5.1 shows the truncation errors when approximating a value
function of a Bermudan option using either cosine expansions (top line), trigonometric
expansions combined with a linear function (middle line), or trigonometric expansions
combined with a polynomial of order three (bottom line). It shows that we can significantly
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improve the efficiency of the approximation based on trigonometric functions by combining
it with a linear function. However, combining higher order polynomials with trigonometric
functions does not improve the truncation error significantly over the case by combining
a linear function. This can be explained by the fact that the continuation value does not
have to meet the payoff function smoothly for Bermudan options, so the first derivative of
U does not need to be continuous. We propose to combine trigonometric functions with
polynomials of order one only when pricing options.

Regarding the second property (P2), the complexity of the COS method can be dra-
matically reduced for options where an efficient induction algorithm can be derived. In
such cases the PV method is equally attractive, since it can be verified that the computa-
tional complexity remains unchanged if we combine cosine functions with a finite number of
polynomials. Except for the cases discussed in the literature, it is unclear that whether the
induction algorithm can be efficiently utilized or not for other options and/or models. For
example, in Section 5.6.2 we demonstrate that for ratchet options under a regime switch-
ing model, the exercise region can be a union of two subsets. In the cases when the form
of the exercise region prevents us from using an induction algorithm, the computational
complexity of the COS method is only quadratic in the number of terms L. Therefore,
in these situations we may consider any method of reducing L, such as the proposed PV
approach.

5.4.2 The Least-Squares Method

Since in step (S4–2) of the PV method we can calculate conditional expectations by adding
a finite number of explicit terms, the main challenge when using the method lies in step (S4–
1), where we approximate the function V̂ e(tj+1, ·, y) by a weighted sum of basis functions. If
we estimate the coefficients αl in (5.11) by the least-squares method, then this step becomes
similar to the least-squares (LS) method proposed by Carrière (1996) and Longstaff and
Schwartz (2001).

Similarly to the PV approach, the LS method is also based on the backward recursion
(5.8)–(5.9). However, these two methods have several differences. First, we approximate
the continuation value on the logarithmic scale in the PV method, while the scale is
unchanged in the LS method. Second, instead of using the two steps (S4–1)–(S4–2) in
the PV method, we approximate the continuation value (5.10) with the LS method in each
time period by regressing V̂ (tj+1, Stj+1

) on functions of the form

L∑
l=0

βlml(Stj), (5.35)
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where m0,m1, . . . ,mL are given basis functions. For this, we need to sample a number of
observations (s1

tj
, s1
tj+1

), . . . , (sNtj , s
N
tj+1

) from the joint distribution of (Stj , Stj+1
) specified by

the assumed dynamic of the price process 4. Then we estimate the coefficients {β0, . . . , βL}
by using the ordinary least-squares method. Approximating the continuation value in this
way leads to two main drawbacks of the LS method:

(i) A proper selection of the basis functions and their number L is a challenging problem,
since the function we are approximating, s→ E[V̂ (tj+1, Stj+1

)|Stj = s], is unknown.
Therefore, it is difficult to find any diagnostic tool to asses the accuracy of our
approximation at each time step and the accuracy of the resulting price of the option.

This point can be explained by the following arguments. Assume that the interest
rate r is zero. By conditioning, we can derive the following equation

E
[
V̂ (tj+1, Stj+1

)−
L∑
l=0

βlml(Sti)
]2

= (5.36)

E[V̂ (tj+1, Stj+1
)− E

[
V̂ (tj+1, Stj+1

)|Stj ]
]2

+ E
[
Ĉ(tj, Stj)−

L∑
l=0

βlml(Sti)
]2

. (5.37)

In the LS method, the least-squares procedure asymptotically converges to the min-
imization of (5.36) with respect to the parameters β0, . . . , βL as the number of sim-
ulated points N increases to infinity.

The above equation shows that minimizing (5.36) is equivalent to minimizing the
second term in (5.37). This fact validates the use of regression techniques in the
LS method, where we approximate the value of the option at the next time period
V̂ (tj+1, Stj+1

) rather than approximating the continuation value Ĉ(tj, Stj), which is
our objective of interest.

This decomposition also explains why it is difficult to assess the approximation error.
It is known that the conditional expectation E[V̂ (tj+1, Stj+1

)|Stj ] provides the best

approximation of V̂ (tj+1, Stj+1
) in terms of the random variable Stj in the mean

squared form. Typically, the difference between those two variables will be non-zero,
which means the first term in (5.37) will be positive, regardless of the choice of
the basis functions and the number of functions L we use. Thus, we cannot assess
the goodness-of-fit and judge the accuracy of our approximation by the size of the
residuals V̂ (tj+1, Stj+1

)−
∑L

l=0 βlmj(Stj).

4The required sample from the joint distribution of (Stj , Stj+1
) can be simply obtained by simulating

N paths of the price process, starting from the initial value S0, and then sampling each path at tj and
tj+1.
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(ii) Since the explanatory variables in (5.35) are evaluated at randomly selected points
drawn from the marginal distribution of Stj , we may not have enough observations
in relevant regions for some options. Longstaff and Schwartz suggest that at each
time, the regression should be carried out only in the region where the option is
in the money. If the spot price S0 belongs to the out-of-the-money region, many
simulated paths of the process will remain in this region. Then, this method will be
computationally inefficient.

(iii) Another potential drawback of the LS method when applied to models described in
terms of characteristic functions of log-returns is due to the fact that direct sampling
from such distributions is difficult and often requires numerical inversion procedures.

The PV method does not suffer from the drawbacks (i)–(iii) above. First, the function
that we are approximating at each time period is known, at least over the mesh of points
that we have selected. Therefore, it is possible to evaluate the distance between our
approximation and the target function. Second, we can select points in any way that is
suitable for the given function when we implement step (S4–1). For example, we propose
to use uniformly spaced points, since this selection method allows us to utilize the FFT
algorithm. Finally, the PV method does not require sampling from the distribution of
log-returns.

However, the LS method is still attractive in the problems where the state space is
high-dimensional, since in such cases methods based on transforms are still in their early
stage of development.

5.5 Pricing Ratchet Options

The PV method described in Section 5.3 can be directly applied to price European and
Bermudan options on the asset S defined by (5.1). In this section, we will show how to
modify the algorithm to price simple ratchet EIAs with surrender risk.

For simple expositions, we assume that the contract has annual reset times or it credits
the policyholder’s account using annual returns of the underlying fund. The surrender
option allows the policyholder to withdraw from the contract at the beginning of each
year. Pricing a contract with surrender risk is the same as pricing a Bermudan option with
pre-determined exercise times if we assume that the owner of the contract acts rationally
and will surrender the contract only when it is optimal to do so. In addition, we assume
that the contract payoff depends on a fund whose returns are described by model (5.1).
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Suppose that Rj := Sj/Sj−1 = exp(Wj), where Wj is defined in (5.1), represents the
return during the annual period [j − 1, j], j = 1, . . . , N , and the initial investment is $1,
then the payoff of a simple ratchet EIAs contract at the reset time j can be represented
as:

Uj = 1 +

j∑
m=1

max

{
F,min

{
C, α(Rm − 1)

}}
, j = 1, . . . , N, (5.38)

with U0 = 1, where F and C, F < C, are pre-specified local floor and cap levels and α > 0
is a participation rate. The process (5.38) can also be represented in the form

Uj = Uj−1 +R∗j , j = 1, . . . , N, (5.39)

with

R∗j := max

{
F,min

{
C, α(Rj − 1)

}}
. (5.40)

Following Wei et al. (2013), we call R∗j the ratchet interest rate in the time period
[j − 1, j]. For regime switching models, the variables, R∗1, R

∗
2, . . . , are not necessarily

independent.

A more general form of the contract may consist of other features: a minimum garanteed
value for owners, and a cancellation fee which is usually a pre-determined percentage of
the annuity value. For example, Wei et al. (2013) choose the pre-determined percentage
according to 2009 Annuity Fact Book as

γ(j) := 1−max

{
Nc + 1− j

100
, 0

}
,

where Nc, Nc < N, is the number of years for which the cancellation fee is applied. If the
contract is surrendered at the reset date j, j = 1, . . . , N −1, its owner receives the amount

G(j, Uj) := max
{
γ(j)Uj, β(1 + rg)

j
}
, (5.41)

where rg ≥ 0 is the minimum guaranteed annual interest rate and β is a percentage of
the initial premium. If the contract is not surrendered earlier, then the owner receives the
amount G(N,UN) at maturity.

The value of the above contract can be represented as

V := max
τ∈T

E
[
e−τrG(τ, Uτ )

]
,
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where τ is a stopping time taking values in the set {1, . . . , N}.

To obtain the price of the contract under a regime switching model, we use the PV
method with a specialized backward recursive procedure of (5.9)- (5.10) and modified steps
of (S4–1)–(S4–2). First, replace the process S with the sequence U1, . . . , UN , which is a
direct consequence of the form of the payoff (5.41). To add the regime process Y , consider
at the reset time N − 1, the value of the contract VR(N − 1, u, y) is equal to the maximum
of G(N − 1, u) with u = UN−1, and the continuation value is

CR(N − 1, u, y) := e−rE

[
max

{
γ(N)[UN−1 +R∗N ], β(1 + rg)

N
}
|UN−1 = u, YN−1 = y

]
.

(5.42)

We have three remarks for the representation (5.42) with model (5.1).

Remark 5.5.1.

(i) When UN−1 and YN−1 are known, then the ratchet interest rate R∗N is independent
of the path of the process (5.38), and is determined only by the distribution of RN

based on (5.40).

(ii) The variables UN−1 and R∗N in (5.42) are in an additive way, so we only need to
approximate VR(N − 1, u, y) on the original not logarithmic scale when we apply
(S4–1) of the PV method. In addition, VR(N − 1, u, y) only depends on the payoff
at time N and does not depend on the future regime YN , this implying that we need
only one approximation at this step.

(iii) To apply step (S4–2) of the method, we need to determine the characteristic function
of R∗N in each regime y.

Now consider the value of the contract VR(j, u, y) at time j, j < N − 1. Then, the
continuation value (5.42) generalizes to

CR(j, u, y) := e−rE
[
VR(j + 1, Uj +R∗j+1, Yj+1)|Uj = u, Yj = y

]
. (5.43)

Equation (5.43) has similar formulation as (5.10). Thus, we can apply the PV method to
price ratchet EIAs with surrender risk only if we can determine the characteristic function
of the variable R∗j+1 conditioned on the current regime. To summarize steps (S4–1)–(S4–2)

of the PV method that are specialized to a ratchet option, let us define V̂R(j+ 1, ·, ·) as an
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approximation of VR(j+1, ·, ·) obtained through the backward recursion, with V̂R(N, u, y) ≡
VR(N, u, y) = G(N, u). Then, at time tj and for regime k ∈ S, the continuation value is
approximated by:

E
[
V̂R,M(lX,L)

(j + 1, Uj +R∗j+1, Yj+1)|Uj = u, Yj = k
]

=
1

2
E[a0(Yj+1)|Yj = k]

+
L∑
l=1

{[
āl(k)Rl(k) + b̄l(k)Il(k)

]
cos(

πl

lX
u) +

[
b̄l(k)Rl(k)− āl(k)Il(k)

]
sin(

πl

lX
u)

}
, (5.44)

where āl(k), b̄l(k) are defined in (5.23) and

al(y) :=
1

lX

∫ lX

−lX
V̂R(j + 1, x, y) cos(

πlx

lX
)dx, l = 0, 1, 2, . . . , L, (5.45)

bl(y) :=
1

lX

∫ lX

−lX
V̂R(j + 1, x, y) sin(

πlx

lX
)dx, l = 1, 2, . . . , L, (5.46)

Rl(k) := <
(

ΨR,k(
πl

lX
)
)

and Il(k) = =
(

ΨR,k(
πl

lX
)
)
, l = 1, 2, . . . , L. (5.47)

To use the above formulas, we need the characteristic function ΨR,k(·) of the ratchet
interest rate R∗j+1 in each regime k. Since the method that we propose to find ΨR,k(·) has
the same form in each regime, we explain how to obtain the characteristic function ΨR∗ of
a variable R∗ defined by

R∗ := max

{
F,min

{
C, α[R− 1]

}}
= max

{
F,min

{
C, α[eW − 1]

}}
,

where R = exp(W ) and the characteristic function of W is known as ΨW .

Let us denote the density function of W by fW (·). Using (5.28)–(5.30), we can approx-
imate fW (·) over [a, b] by its Fourier cosine series expansion truncated to a finite number
of terms

fW (x) ≈
L∗∑
k=0

′
Fk cos(kπ

x− a
b− a

), (5.48)

where Fk is given by (5.30) and
∑′ means that the first coefficient in the sum is divided
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by two. Then,

ΨR∗(z) =

∫ ∞
−∞

eizmax(F,min(C,α[ew−1])fW (w)dw

≈
∫ ∞
−∞

eizmax(F,min(C,α[ew−1])

L∗∑
k=0

′
Fk cos(kπ

w − a
b− a

)dw

≈
L∗∑
k=0

′
Fk

(
eizF

∫ ln (F/α+1)

ã

cos(kπ
x− a
b− a

)dx+

∫ ln (C/α+1)

ln (F/α+1)

eizα(ex−1) cos(kπ
x− a
b− a

)dx

+eizC
∫ b̃

ln (C/α+1)

cos(kπ
x− a
b− a

)dx

)
, (5.49)

where [ã, b̃] defines a bounded integration region, which we can take the same as [a, b]. Let
q1 = ln (F/α + 1) and q2 = ln (C/α + 1). Using the trapezoidal rule, we approximate the
middle integral in (5.49) by

hq1,q2
2

(
eizF cos(kπ

q1 − a
b− a

) + eizC cos(kπ
q2 − a
b− a

)
)

+ hq1,q2

n−1∑
m=1

(
eizα(eq1+mhq1,q2−1) cos(kπ

q1 +mhq1,q2 − a
b− a

)
)
,

(5.50)

where n denotes the number of equally spaced integration nodes and hq1,q2 := (q2 − q1)/n
is the distance between two consecutive nodes. By combining (5.49) and (5.50), we ap-
proximate the real and imaginary parts of ΨR∗(z) respectively by

F0

2

[
cos(zF )(q1 − a) + cos(zC)(b− q2) +

hq1,q2
2

(
cos (zF ) + cos (zC)

)
+ hq1,q2

n−1∑
m=1

cos
(
zα(eq1+mhq1,q2 − 1)

)]

+
L∗∑
k=1

Fk

[
cos(zF ) sin(kπ

q1 − a
b− a

)
b− a
kπ
− cos(zC) sin(kπ

q2− a
b− a

)
b− a
kπ

+
hq1,q2

2

(
cos(zF ) cos(kπ

q1 − a
b− a

) + cos(zC) cos(kπ
q2 − a
b− a

)
)

+ hq1,q2

n−1∑
m=1

(
cos
(
zα(eq1+mhq1,q2 − 1)

)
cos
(
kπ
q1 +mhq1,q2 − a

b− a

))]
(5.51)
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and

F0

2

[
sin(zF )(q1 − a) + sin(zC)(b− q2) +

hq1,q2
2

(
sin (zF ) + sin (zC)

)
+ hq1,q2

n−1∑
m=1

sin
(
zα(eq1+mhq1,q2 − 1)

)]

+
L∗∑
k=1

Fk

[
sin(zF ) sin(kπ

q1 − a
b− a

)
b− a
kπ
− sin(zC) sin(kπ

q2− a
b− a

)
b− a
kπ

+
hq1,q2

2

(
sin(zF ) cos(kπ

q1 − a
b− a

) + sin(zC) cos(kπ
q2 − a
b− a

)
)

+ hq1,q2

n−1∑
m=1

(
sin
(
zα(eq1+mhq1,q2 − 1)

)
cos
(
kπ
q1 +mhq1,q2 − a

b− a

))]
. (5.52)

5.6 Numerical Examples

In this section, we illustrate the PV pricing method using different models and options. In
Section 5.6.1, we price European and Bermudan options under models where we assume
the Markov chain Y stays in one regime only, and we compare our prices with the results
available in the literature based on alternative methods. In Section 5.6.2, we use three
two-regime switching models to price ratchet EIAs.

5.6.1 European and Bermudan Options under Constant Regime

We first assume that the model parameters are constant in time, that is, the Markov
process Y stays in one regime. Under this assumption we use the PV approach to price
European and Bermudan options on an underlying asset that follows (5.1) under six dif-
ferent selections of the Lévy process L. In addition to the Black-Scholes model (BS),
the Merton model and the variance gamma model (VG) that we discuss in Section 1.1.2,
we also consider the jump-diffusion model proposed by Kou (2002), the normal inverse
Gaussian process (NIG) and the tempered α-stable process (TS) (for more information
about these processes, see, for example, Tankov (2003)). By including the NIG model, we
can compare our prices with the results obtained by Këllezi and Webber (2004), where
the authors propose a lattice method to price Bermudan options on an underlying asset
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whose log-prices follow a Lévy process. In the Appendix 5.A, we present the characteristic
function of µ(ξ) + Z(ξ) for all six Lévy processes.

The model parameters that we use are listed below, where the parameters for the NIG
and VG models are the same as those used in Këllezi and Webber (2004). For other models,
we have obtained the parameters by matching the first five central moments of one year
log-returns with those from the VG model.

Black-Scholes model:
σ = 0.131.

Merton model:

σ = 0.067, λ = 1.618, σJ = 0.032, µJ = −0.086.

Kou model:
σ = 0.065, p = 0.090, λ = 4.136, λ+ = λ− = 24.221.

VG model:
ν = 0.2, σ = 0.12, θ = −0.14.

NIG model:
α = 28.421, β = −15.086, δ = 0.317 µ0 = 0.059.

TS model

α = 0.273, c+ = 2.093, c− = 1.952, λ+ = 38.209, λ− = 16.05.

We also assume that the continuously compounded interest rate r = 10% and the spot
price or S0 of the underlying security is 100.

Table 5.1 shows the prices of European calls and puts obtained using the PV method.
The options have one-year time to maturity, T = 1, and varying strike prices. Other
parameters we use including the truncation parameter lX = 4 and the number of basis
functions L = 200, which corresponds to 401 (= 2∗L+ 1) basis functions in the set (5.14).
At each time period, the continuation value is approximated by equation (5.15), where
the coefficients are obtained by applying a numerical integration method to the integrals
in (5.16) and (5.17) with M = 1000 nodes. This continuation value can be seen as the
price of the option at this period. For a European option, its price is the discounted
expectation of the payoff at maturity, and it can be obtained in one step only; however, we
use the recursive algorithm to capture the total error accumulated in all time steps. From
Table 5.1, we can see that the prices of the NIG and VG models are consistent with those
presented by Këllezi and Webber (2004) up to 3 decimal places.

105



Table 5.1: Prices of European Call and Put options with Maturity One Year

Model
Option Strike

BS Merton Kou NIG VG TS
90 18.855 19.100 19.103 19.093 19.099 19.098

Call 100 11.097 11.413 11.374 11.360 11.370 11.366
110 5.428 5.496 5.425 5.437 5.430 5.430
90 0.291 0.536 0.538 0.529 0.535 0.533

Put 100 1.581 1.896 1.858 1.844 1.854 1.849
110 4.960 5.029 4.957 4.969 4.962 4.962

Table 5.2 shows the prices of at-the-money calls and puts with different values of lX and
L in order to see the impacts of the selection of lX and L on the accuracy of the method,
where we only consider the TS and Kou models. For a wide range of parameter values,
the prices are reasonably close, which suggests the PV method is stable. The results also
show that pricing options with unbounded payoff functions may be more difficult. Take
a call option as an example, the difference between end-values of the payoff function over
[−lX , lX ] becomes larger as the truncation parameter lX increases, which results in larger
discontinuity of the periodic extension of the payoff function. As a consequence, for larger
values of lX , we need to increase the number of basis functions to guarantee the convergence
of the prices. We have repeated this experiment for other specifications of our models, and
the results are very similar.

Table 5.2: Prices of European at-the-money Calls and Puts for Different Selections of the
Truncation Parameter lX and the Number of Basis Functions (equal to 2 ∗ L+ 1)

TS Model Kou Model
Option L

lX = 1 lX = 4 lX = 10 lX = 1 lX = 4 lX = 10
200 11.366 11.366 -6.306 11.374 11.374 -8.329

Call 400 11.366 11.366 11.383 11.374 11.374 11.382
600 11.366 11.366 11.366 11.374 11.374 11.374
200 1.849 1.849 1.851 1.858 1.858 1.860

Put 400 1.849 1.849 1.849 1.858 1.858 1.858
600 1.849 1.849 1.849 1.858 1.858 1.858
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Table 5.3 shows the prices of Bermudan put options, where the option could be exercised
at one of ten equally spaced time periods. This assumption is consistent with the setup
used by Këllezi and Webber (2004). Other parameters we use including L = 600, M = 1000
and lX = 4. We find that for all the models except for the TS, the prices converge to their
limits quite fast with respect to the number of basis functions. In particular, we need 401
basis functions to guarantee that the results are within 0.01% of their limits for these five
models. For the TS model, the error is 0.03% for 401 basis functions, and it becomes less
than 0.003% for 601 basis functions. We have compared the results for the NIG and VG
models with those obtained by Këllezi and Webber (2004), and they are consistent within
0.02%. The results also suggest that while the models produce similar prices, the BS model
can significantly underprice deep out-of-the-money options.

Table 5.3: Prices of Bermudan Put Options with Maturity One Year and 10 Equally Spaced
Exercise Opportunities

Strike price BS Merton Kou NIG VG TS
90 0.376 0.766 0.768 0.745 0.761 0.756
95 1.031 1.571 1.539 1.496 1.526 1.515
100 2.443 3.008 2.889 2.844 2.882 2.866

K 105 5.097 5.292 5.158 5.173 5.170 5.166
110 9.116 9.004 9.019 9.0340 9.041 9.039
115 13.875 13.856 13.877 13.865 13.876 13.873
120 18.807 18.806 18.814 18.807 18.810 18.809

5.6.2 Ratchet EIAs under Regime Switching Models

Here we present the implementation results of the PV method to price ratchet EIAs.
We assume that the underlying fund follows model (1.1) under the three specification
of the distribution of Z(ξ) that are formulated in Section 1.1.2. We shall refer to them
respectively as the regime switching Black-Scholes (RSBS), Merton (RSM), and variance
gamma (RSVG) models.

For parameters of the RSVG model, we use one set of values presented in Konikov and
Madan (2002), where the authors fit continuous-time two-state VG Markov models to time
series data on daily returns of 22 individual stocks and indices. They are:
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ν1 = 0.002, ν2 = 0.002 σ1 = 0.780, σ2 = 0.302, θ1 = 2.442, θ2 = −1.106,

and
p11 = 0.434, p21 = 0.434.

The parameters of the RSBS and RSM models are obtained by matching prices of
European put options with those obtained from the RSVG model. For the RSBS model,
we use options with one-year maturity and strikes equal to 90, 100, 110, and 120, while
for the RSM model, the strikes are 85, 90, 95, 100, 105, 110, 115, and 120. By using
the Euclidean distance, we matched the prices at the level of error less than 0.01%. The
resulting parameters are:

RSBS5:

σ1 = 0.548, σ2 = 0.654, p11 = 0.482, p21 = 0.743,

RSM6:

µJ = −0.255, σ1 = 0.790, σ2 = 0.391, λ1 = 0.004, λ2 = 0.213,

σJ = 0.677, p11 = 0.441, p21 = 0.238.

Table 5.4 shows the prices of ratchet options with surrender (S) risk and without sur-
render (NS) risk for different values of F and C. We assume r = 5%, T = 10, α = 1,
rg = 3%, β = 1, and Nc = 8. The prices are obtained by applying the PV method with
the basis functions given by the set M(lX ,L) with lX = 2 and L = 400. To calculate the
coefficients (5.16)–(5.17), we use the trapezoidal quadrature rule with M = 5000 nodes.
To compute the real and imaginary parts of the characteristic function of R∗ in equations
(5.51) and (5.52), we use L∗ = 200, a = −5, b = 5, and n = 200. In the last row, we present
prices for large absolute values of C, which can be seen as an approximation of the case

5Note that σ1 < σ2 in the RSBS model, but σ1 > σ2 in the RSVG and RSM models. This may
be explained by the fact that we obtain the model parameters by matching the option prices, and the
transition probabilities p11 and p21 are quite different for those models, and hence the moments could be
similar though the standard deviations, σ1 and σ2, are quite different for those models.

6We assume that µJ and σJ stay in only one regime (remain constants) instead of two as considered
in Chapters 2-4 for the RSM model. Because it is more convenient for us to obtain 10 instead of 12
parameters. In addition, our goal in this chapter is to price options, but not to obtain the most flexible
model.
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without any truncation in the right tail. To preserve the accuracy of the pricing method,
we need to increase lX to 8 in this case .

For comparison purposes, we also provide prices of ratchet options without surrender
risk obtained from the Monte Carlo (MC) simulation with 100,000 sampled paths in the
RSBS model. The numbers in the parentheses are the standard deviations of the MC
estimates for the prices. Overall, the results agree with those obtained from the PV method,
except for the case C = 5 where the error is about 2%. This pattern can be explained by
the fact that for a larger C, it is more difficult to obtain accurate approximations of the
characteristic function of the ratchet interest rate R∗j .

Table 5.4: Prices of Ratchet Options Under Different Regime Switching Models

RSBS RSM RSVG RSBS–MC
Floor Cap

NS S NS S NS S NS
0% 10% 0.866 0.980 0.866 0.980 0.869 0.980 0.866(0.000)
0% 20% 1.047 1.061 1.043 1.057 1.045 1.059 1.047(0.000)
0% 30% 1.212 1.218 1.202 1.208 1.196 1.202 1.211(0.000)
0% 500% 2.155 2.197 2.113 2.191 2.008 2.080 2.199(0.003)

Table 5.5 shows the prices for different values of lX , which is in order to see the impact
of the parameter on the accuracy of the pricing procedure. The results become stable
when lX = 2 except the cases when C is large, in which lX needs to be at least 8. Thus,
the presence of the floor and the cap requires more terms in Fourier expansions of the
payoff function, but it also reduces the integration region, which makes some steps in the
algorithm more accurate.

Table 5.5: Prices of Ratchet Options with Surrender Risk for Different lX

RSBS RSM RSVG
Floor Cap

lX = 2 lX = 6 lX = 10 lX = 2 lX = 6 lX = 10 lX = 2 lX = 6 lX = 10
0% 10% 0.980 0.976 0.981 0.980 0.977 0.980 0.980 0.977 0.980
0% 20% 1.061 1.059 1.059 1.057 1.055 1.056 1.059 1.058 1.059
0% 30% 1.217 1.219 1.220 1.208 1.209 1.210 1.202 1.203 1.204
0% 500% 1.520 2.153 2.201 1.495 2.125 2.201 1.463 2.023 2.088
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In Figure 5.2, we compare the rates of convergence of the PV method based on two
different basis functions. One is only based on trigonometric functions (continuous line),
and the other one is based on trigonometric functions with a linear function (dotted line),
which is described in Section 5.4.1. For this comparison, we use an RSBS model to price
a ratchet option with surrender risk, where F = 0, and C = 0.1. As the graph suggests,
the addition of the linear function allows us to reduce L from 400 to 100. Although
the improvement is not dramatic, it is quite noticeable given that the method is easy to
implement and does not require any additional computational time.

Figure 5.2: Prices of a Ratchet Option with Surrender Risk under the RSBS Model
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Figure 5.3 shows the continuation values (continuous lines) and the payoff functions
(dotted lines) at time t = 1 for a ratchet option with surrender risk where F = 0 and
C = 0.1 under an RSBS model. The plot shows that in each regime the region where the
option should be surrendered is a union of two subregions. This fact has direct consequences
on possible improvements of the COS and the PV pricing methods, which is left for future
research.
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Figure 5.3: Exercise Regions at time t = 1 for a Ratchet Option with Surrender Risk under
the RSBS Model in Regime 1 (left panel) and Regime 2 (right panel)
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5.7 Conclusions of Chapter 5

In Chapter 5, we propose a pricing method called the PV method to price Bermudan
options. The method is based on the dynamic programming approach, where we calculate
the conditional expectation by representing the current value of the option with Fourier
series expansions and then applying the characteristic function of the underlying process.
To improve the rate of convergence of option prices, we describe a smooth trick where we
combine trigonometric functions with polynomial functions to approximate value functions.

To understand the advantages of the PV method, we compare it with the COS method
proposed by Fang and Oosterlee (2008) and the LS method proposed by Carrière (1996)
and Longstaff and Schwartz (2001). The PV method can recover the COS method by
using cosine functions as its basis functions, and it performs more flexibly than the COS
method especially for the options whose density functions are not smoother than their
payoff functions.

Moreover, we apply the PV method to European and Bermudan options under constant
regime models in Lévy processes. The resulting prices are consistent with our benchmarks.
Then we use the PV method to price ratchet EIAs with and without surrender risk under
two-regime switching models, where the smooth trick is proven to be useful.

Finally, we find that ratchet EIAs with surrender risk may have two exercise regions.
This observation has direct consequences on possible improvements of the PV and COS
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pricing methods.
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Chapter 6

Sampling Conditioned Processes for
a Regime Switching Black-Scholes
Model

In this chapter, we propose an algorithm to sample conditioned processes from a regime
switching Black-Scholes model. The sampling method that we propose can be applied to
different problems, including filtering of a hidden Markov process and characterization of
an optimal static hedging option. In the second part of this chapter, we describe the latter
in detail.

The main computational challenge in finding the optimal hedging option in a recently
proposed method by Kolkiewicz (2016) is the generation of paths from conditioned pro-
cesses, called bridges or pinned down processes. Specifically, let {St, t ∈ [0, T ]} be a
stochastic process representing prices of a traded security. Suppose we know that Ss = x
and ST = z, where s ∈ [0, T ). We want to generate a value of the process at time t, where
t ∈ (s, T ). Once we have the value, we repeat the procedure. This time we assume that
St and ST are known and the task is to generate a value at time u, where u ∈ (t, T ). We
continue this procedure until we have an enough values along this path. In real applications
we may need to generate 250 values to get a skeleton of a single path of the conditioned
process. This will be enough to find, for example, an average along each path. As we
discuss later, to find an optimal hedging option we have to repeat this simulation for a
large number of terminal values z. This procedure is quite straightforward for a geometric
Brownian motion, as it reduces to sampling Brownian bridges (see Kolkiewicz (2016) for
more details). However, sampling bridges for processes that include a hidden Markov chain
is much more difficult.
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In this chapter, we assume that the stochastic process {St} follows a Black-Scholes
model with volatility that follows a continuous-time Markov chain. Our objective is to
sample the process {St} given its initial and terminal values and the initial state of volatility.
Rigorously speaking, this is not a bridge sampling problem as we do not assume that we
know the terminal value of the Markov chain. Therefore, we call it the problem of sampling
a conditioned process. Literature on methods of bridge sampling for such models is still
scarce. Bridge sampling method was introduced to statistics by Meng and Wong (1996)
to solve the problem of computing the ratio of the normalizing constants that can be used
in likelihood and Bayesian inference, which was further discussed by Gelman and Meng
(1998). However, the method is based on i.i.d. samples, and hence cannot be applied
to our problem. Hobolth and Stone (2009) propose an algorithm to sample states from
a continuous-time Markov chain given the initial and terminal states. However, this is
a different problem from ours, because in our problem we only know ST but not the
terminal value of the Markov process1. Delyon and Hu (2006) propose some algorithms
to sample paths from the distribution of a diffusion process given the terminal value, but
their methods are only applicable to some particular diffusion processes.

This chapter is organized as follows. In Section 6.1, we present an algorithm to sample
conditioned processes from a two-regime switching Black-Scholes model, which is called
the conditioned process sampling algorithm. In Sections 6.2 and 6.3, we apply the pro-
posed sampling algorithm to the problems of pricing and static hedging of Asian options
respectively. In Section 6.4, we briefly discuss the application of the proposed conditioned
process sampling algorithm to the problem of filtering of a hidden Markov process. Section
6.5 concludes.

6.1 Sampling Method for the Conditioned Process

In this section, we propose an algorithm to sample conditioned processes from a regime
switching Black-Scholes model where the volatility follows a continuous-time Markov chain.

Here we assume that under a risk-neutral measure Q the price process {St} of the
underlying asset follows the Black-Scholes model:

dSt = rStdt+ vtStdWt, t ∈ [0, T ], (6.1)

1As suggested by my committee member, Professor Tony Wirjanto, it is often only possible to observe
the log-returns of the underlying asset, i.e., the integrated HMM at discrete time points, for example, some
asset prices are only quoted on a daily basis.

114



where r is a risk-free continuously compounded interest rate, the volatility {vt} is indepen-
dent of the standard Brownian motion {Wt} and follows a continuous-time Markov chain.
conditional on the volatility path, we can obtain the following result by Itô’s lemma:

ln
St
S0

∼ N(rt− 1

2

∫ t

0

v2
sds,

∫ t

0

v2
sds), t ∈ [0, T ]. (6.2)

This implies that for any u < t, u, t ∈ [0, T ], we have

ln
St
Su
∼ N(r(t− u) +

∫ t

u

1

2
v2
sds,

∫ t

u

v2
sds). (6.3)

We assume that there are two states (i.e., σ1 and σ2, σ1 6= σ2 and σ1, σ2 > 0), and the
infinitesimal generator of the Markov chain can be written as

A =

(
−λ1 λ1

λ2 −λ2

)
, (6.4)

where λ1, λ2 > 0. For convenience, we also assume that the initial state is 1 (i.e., v0 = σ1)
throughout this chapter. Indeed, in practice the initial state can be estimated using a
calibration procedure.

Our goal is to generate a path of {Sti , i = 1, ..., n} given the initial value S0 and the
terminal value ST , where {ti, i = 1, ..., n} is a set of pre-determined discrete times such
that 0 < t1 < ... < tn = T . Before we present our proposed sampling method, we have to
introduce some additional notations. Define

Ut1,t2 :=

∫ t2

t1

v2
sds, 0 ≤ t1 < t2 ≤ T, (6.5)

and we denote U0,T by U as

U ≡ U0,T =

∫ T

0

v2
sds. (6.6)

In addition, let us denote the total time spent in regimes 1 and 2 over the time interval
[0, T ] by T1 and T2 respectively. Note that T1 + T2 = T .

We first find the characteristic function of the joint distribution of (T1, T2), φT1,T2(z1, z2) :=
E[eiz1T1+iz2T2 ], where z1, z2 > 0. Let π0 denote the row vector of the initial (at time 0)
probabilities for the chain, and 1 denote the 2-dimensional unit column vector. Let D be
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a diagonal matrix with z := (z1, z2) being its diagonal entries. Following the results in
Elliott et al. (2005), we have

φT1,T2(z1, z2) = E[eiz1T1+iz2T2 ] = π0e
(A+iD)T1 = eλT + e(iz1−λ)T . (6.7)

If z2 = 0, then we have the characteristic function of T1 which we denote by φT1 . Indeed,
φT1 has the same form as (6.7). This result can be also used to obtain the characteristic
function of U , which is needed in the sampling algorithm proposed later. Based on our
model assumptions, (6.6) can be represented as

U = σ2
1T1 + σ2

2T2 = σ2
1T1 + σ2

2(T − T1) = σ2
1(T − T2) + σ2

2T2. (6.8)

Therefore, the characteristic function of U can be written as

φU(z) = φT1,T2(σ2
1z, σ

2
2z) = eλT + e(iσ2

1z−λ)T , z > 0. (6.9)

By the definition of characteristic functions, if z = 0, then φU(z) = 1.

We first assume that λ1 = λ2 = λ. In this case, the total number of changes (jump
events) in regime can be seen as following a Poisson process with the arrival intensity λ.
Denote the arrival rate of the jump events during the time interval [0,∆] by λ∆ := λ ·∆,
where ∆ ∈ R+. Define N∆ as the total number of events that occur during the time interval
[0,∆]. Then N∆ has a Poisson distribution with rate λ∆, that is N∆ ∼ POI(λ∆). Define
0 = X0 < X1 < ... < XN∆

< XN∆+1 = T as the corresponding event times.

In Algorithm 6.1 below, we outline the main steps of the algorithm we propose to
generate a path of {Sti , i = 1, ..., n} given S0 = s0 and ST = sT when λ1 = λ2 = λ. Figure
6.1 shows the flowchart of Algorithm 6.1 that contains four main steps. For each step, we
derive the conditional distribution that we need to sample from by Bayes’ theorem, and
we provide details in Sections 6.1.1-6.1.4. In Section 6.1.5, we extend our algorithm to the
case when λ1 6= λ2.

Figure 6.1: Flowchart of Algorithm 6.1

U |ST NT |U X1, ..., XNT |U,NT Sti |S0, ST ; vti
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Algorithm 6.1

Require: Given S0 = s0, ST = sT , v0 = σ1, ∆ = T and the infinitesimal generator of
the Markov chain.

Output: A path of {Sti , i = 1, ..., n} under the assumption that λ1 = λ2.

(i) Generate a value of U given ST = sT .

(ii) Generate the number of jump events NT given U obtained in step (i).

(iii) Generate the event times X1, ..., XNT given U and NT obtained in steps (i) and (ii).
Then compute the whole path of volatility {vt, 0 ≤ t ≤ T}.

(iv) Generate a path of prices {Sti , i = 1, ..., n−1} given {vt, 0 ≤ t ≤ T} obtained in step
(iii), and Stn = ST .

6.1.1 Generate U given ST = sT

In this step, we sample the integral of variance U from the conditional distribution fU |ST
given S0 = s0, ST = sT and v0 = σ1. By Bayes’ theorem, this density is proportional to
(∝) fST |UfU . Based on (6.2), fST |U has a log-normal distribution and can be represented
as

fST |U(ST = sT |U = u) =
1

z
√

2π
√
u
e−

(ln sT−ln s0−rT+ 1
2u)2

2u . (6.10)

The characteristic function of U , φU , is given in (6.9), and hence we can use cosine
series expansions to approximate fU using φU by the way presented in Section 5.4.1. Then
we can apply the inverse transform method by integrating numerically the density fU |ST .
In our implementation, we use the method proposed by Chen et al. (2011), which we
present in Appendix 6.A.
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6.1.2 Generate NT given U

In this step, we generate the number of events NT during the interval [0, T ] given U
obtained in Section 6.1.1. Hereafter, let N ≡ NT . By Bayes’ theorem, fN |U ∝ fU |NfN . We
know that fN follows a Poisson distribution with parameter λT , so the important part is
to derive the distribution fU |N . By the change of variables theorem, we have

fU |N(U = u|N = n) = fT1|N

∣∣∣∂T1

∂U

∣∣∣ =
1

|σ2
1 − σ2

2|
fT1|N(T1 =

u− σ2
2T

σ2
1 − σ2

2

|N = n).

Thus, the problem of finding fU |N is reduced to finding fT1|N .

Let FT1|N denote the cumulative distribution function of T1 given the total number of
events N . In Proposition 6.1.1 bellow, we present a formula for FT1|N when N ≤ 10. Using
a similar technique to the one we present in our proof, it is possible to extend our result to
other values of N . However, in practice, it is often sufficient to consider only a finite range
for N , as the probabilities of large values of N occurring are very small. For example, if
λ = 1.5, then the probability of 10 events occurring over the interval [0, 1] is less than 10−5.

Proposition 6.1.1. For N = 0,

FT1|N(T1 ≤ l|N = 0) =

{
1, if l ≥ T ,

0, otherwise.

For any integer n = 1, ..., 10, we have

FT1|N(T1 ≤ l|N = n) =

⌈
n
2

⌉
−1∑

j=0

(
n

j

)
(
l

T
)n−j(1− l

T
)j, (6.11)

where
(
n
j

)
= n!

(n−j)!j! and
⌈
·
⌉

represents the ceiling function.

Proof: See Appendix 6.B. �

Remark 6.1.1. My committee member, Professor Don McLeish, suggested that the
distribution in equation (6.11) is valid for all the positive integers. To prove this, it is
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equivalent to deriving the distribution of the median of the ordered statistics of i.i.d. ran-
dom variables drawn from U(0, T ).

From the above result we can represent the densities fT1|N(T1 = l|N = n), where
n = 1, .., 10, as follows:

fT1|N(T1 = l|N = n) =

⌈
n
2

⌉
−1∑

j=0

(
n

j

)((n− j)ln−j−1(T − l)j

T n
− jln−j(T − l)j−1

T n

)
.

Therefore,

fN |U(N = n|U = u) ∝ λn∆
n!
fT1|N(T1 = l|N = n), where n = 1, ..., 10 and l =

u− σ2
2T

σ2
1 − σ2

2

.

We normalize fN |U by the constant

D :=
10∑
j=0

λj∆
j!
fT1|N(T1 = l|N = j), where l =

u− σ2
2T

σ2
1 − σ2

2

.

The above results give us all the components that are necessary to formulate an algo-
rithm for generating the number of jumps N over the interval [0, T ] given U . We outline
its steps in Algorithm 6.2. Note that sampling N from the distribution fN |U can be seen as
sampling from a mixture model whose weights are defined by 1

D
fT1|N , where N = 0, 1, ..., 10.

Algorithm 6.2 (step (ii) of Algorithm 6.1.)

(i) Generate u ∼ U(0, 1).

(ii) If u ≤ 1
D
fT1|N(T1 = l|N = 0), return N = 0.

(iii) If 1
D

∑n
j=0

λj∆
j!
fT1|N(T1 = l|N = j) ≤ u < 1

D

∑n+1
j=0

λj∆
j!
fT1|N(T1 = l|N = j), n = 1, ..., 9,

return N = n. Else, return N = 10.
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6.1.3 Generate X1, ..., XN given U and N

In this step, we need to generate X = {X1, ..., XN} from the conditional distribution
fX|N,U , where N and U are obtained in Sections 6.1.1 and 6.1.2. The following proposition
characterizes the distribution of fX|N,U .

Proposition 6.1.2. Given the number of jump events N = n and the integral of
variance U = u, the joint distribution of the jump times X = {X1, ..., Xn} is uniform over
the region [0, T ] where 0 < X1 < ... < Xn < T and one of the following two conditions
holds:

(i) If n is odd, then
∑n+1

2
i=1 (X2i−1 −X2i−2) =

u−σ2
2T

σ2
1−σ2

2
.

(ii) If n is even, then
∑n

2
i=1(X2i −X2i−1) =

u−σ2
2T

σ2
1−σ2

2
.

Proof: See Appendix 6.C. �

To describe a method of generating jump times based on the above results, we need to
introduce some new notations.

(i) Denote the number of changes over [0, T ] from regime 1 to regime 2 by N1,2, and the
number of changes over [0, T ] from regime 2 to regime 1 by N2,1, i.e., N1,2 +N2,1 = N .
Given U , N and the initial state (which is 1 as assumed), we can determine N1,2,
N2,1 and the total time spent in regime 1 and regime 2, T1 and T2.

(ii) Then we have N1,2 + 1 time segments for regime 1 and N2,1 time segments for regime
2, where by time segment we mean the time slot that the Markov chain stays in a
single regime before it jumps to another regime.

(iii) Denote the time lengths of the segments for regime 1 by Y1, ..., YN1,2+1 and for regime
2 by Z1, ..., ZN2,1 . Then we have Y1 + ...+ YN1,2+1 = T1 and Z1 + ...+ ZN2,1 = T2.

(iv) Note that given the time lengths of these segments, we can compute the jump times
X. For example, if N = 4 and hence N1,2 = N2,1 = 2, then we have X0 = 0, X1 =
Y1, X2 = Y1 + Z1, X3 = Y1 + Z1 + Y2, X4 = Y1 + Y2 + Z1 + Z2 and X5 = Y1 + Z1 +
Y2 + Z2 + Y3 = T .
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Thus the problem of generating jump times is reduced to the problem of deciding the
time lengths of those segments. This means we need to find a way to split T1 into N1,2 + 1
parts and T2 into N2,1 parts. For convenience, we introduce the splitting times as follows,
which can be represented by the time lengths of the segments defined above.

(v) Given T1 and N1,2, we need to determine the N1,2 splitting times, W1 < ... < WN1,2 ,
over the interval [0, T1]. Similarly, given T2 and N2,1, we need to determine the N2,1−1
splitting times, J1 < ... < JN2,1−1, over the interval [0, T2].

(vi) Once we have the splitting times, we can determine the time lengths of the segments.
For example, if N1,2 = 2 and given W1 and W2, then we have Y1 = W1, Y2 =
W2 −W1, Y3 = T1 −W2.

Let W = {W1, ...,WN1,2} and J = {J1, ..., JN2,1−1}. The following lemma provides the
distributions of fW |T1,N1,2 and fJ |T2,N2,1 .

Lemma 6.1.1. Given T1 and N1,2, the joint distribution of W = {W1, ...,WN1,2} is
uniform over the interval [0, T1] if 0 < W1 < ... < WN1,2 < T1. Similarly, given T2 and
N2,1, the joint distribution of J = {J1, ..., JN2,1−1} is uniform over the interval [0, T2] if
0 < J1 < ... < JN2,1−1 < T2.

Proof: See Appendix 6.D. �

After obtaining W and J , we can compute the time lengths of the segments as described
above and hence the event times X. Algorithm 6.3 summarizes the steps to generate
X1, ..., XN given U and N .

Algorithm 6.3 (step (iii) of Algorithm 6.1.)

Require: Given U and N .

Output: Jump times X1, ..., XN .
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(i) Compute T1, T2, N1 and N2 given U and N .

(ii) Uniformly generate W1 < ... < WN1,2 from the interval [0, T1] and J1 < ... < JN2,1−1

from the interval [0, T2] respectively.

(iii) Obtain X1, ..., XN by using W1 < ... < WN1,2 and J1 < ... < JN2,1−1.

6.1.4 Generate {Sti, i = 1, ..., n} given U , N and X1, ..., XN

In this step, we generate a path of {Sti , i = 1, ..., n} given S0 = s0, ST = sT and all the
information obtained in Sections 6.1.1 – 6.1.3, i.e., we would like to sample St from the
conditional distribution f(St|S0, ST ), where t ∈ {ti, i =, ..., n}.

By Bayes’ theorem, we have

f(St|S0, ST ) =
f(St, S0, ST )

f(S0, ST )
=
f(ST |St)f(St|S0)

f(ST |S0)
∝ f(ST |St)f(St|S0)

(6.12)

Based on the results in (6.2) and (6.3), we know that f(ST |St), f(St|S0) and f(ST |S0) in
equation (6.12) all follow log-normal distributions, and hence (6.12) is known explicitly.
Through a simple algebra, we can show that f(St|S0, ST ) is proportional to a log-normal
distribution with known mean and variance (details are presented in Appendix 6.F). Then
for any t ∈ {ti, i = 1, ..., n}, we can sample {St} from this distribution directly.

6.1.5 Algorithm when λ1 6= λ2

In this section, we show that we can still use Algorithm 6.1 when λ1 6= λ2, but for this case
the algorithm must be augmented with an acceptance-rejection step. It is known that the
likelihood function of a Markov chain with the infinitesimal generator A defined in (6.4) is
of the form (e.g., Bladt and Srensen (2005))

L1 := λ
N1,2

1 e−λ1T1λ
N2,1

2 e−λ2T2 . (6.13)

When λ1 = λ2 = λ, we have

L0 := λNe−λT . (6.14)
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To apply the rejection sampling method, we need to find a constant CL > 1 such that
L1 ≤ CLL0, which means we need to find the upper bound on L1

L0
. Note that when N = 0

and L1 = L0, then L1 ≤ CLL0 holds for any CL > 1. Thus, we only consider the case when
N 6= 0.

Define

L1,0 :=
L1

L0

= (
λ2

λ1

)N2,1e−(λ2−λ1)T2 . (6.15)

To find the upper bound of (6.15), we consider two cases:

(i) λ1 > λ2.

In this case, we have 0 < λ2

λ1
< 1 and λ2 − λ1 < 0, and hence

L1,0 < 1 · e(λ1−λ2)T2 ≤ e(λ1−λ2)T .

Thus we take CL = e(λ1−λ2)T .

(ii) λ1 < λ2.

In this case, we have λ2

λ1
> 1 and λ2 − λ1 > 0, and hence

L1,0 <
λ2

λ1

N2,1

· 1 ≤ (
λ2

λ1

)N .

Thus we take CL = (λ2

λ1
)N .

In the following algorithm, Algorithm 6.4, we summarize the steps to generate a path
of {Sti , i = 1, ..., n} given S0 = s0 and ST = sT when λ1 6= λ2.

Algorithm 6.4

Require: Given S0 = s0, ST = sT , v0 = σ1, ∆ = T , the infinitesimal generator of the
Markov chain, λ1 = c1 and λ2 = c2, where c1 6= c2. Compute CL using c1 and c2.

Output: A path of {Sti , i = 1, ..., n} under the assumption that λ1 6= λ2.
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(i) Repeat

(i-1) Generate v ∼ U(0, 1).

(i-2) Set λ2 = λ1 = c1. Then use Algorithm 6.1 to obtain U,N and a path of
{vt, 0 ≤ t ≤ T}, and then compute L0.

(i-3) Use λ1 = c1, λ2 = c2 and U,N obtained in step (i-2) to compute L1.

until v < L0

CLL1
.

(ii) Generate a path of {Sti , i = 1, ..., n} given {vt, 0 ≤ t ≤ T} obtained in step (i-2).

6.2 Pricing Asian Options

In this section, we apply Algorithm 6.4 (or Algorithm 6.1, depending on model parameters)
to the problem of pricing Asian options for the regime switching Black-Scholes model
defined in (6.1).

Denote the payoff of a path-dependent option at time t ∈ [0, T ] by

C(S, t) ≡ C(Su, t)u∈[0,t].

Here we only consider an Asian call option on arithmetic average with fixed strike. Then
the payoff of the Asian option at maturity T is given by

CAF (S, T ) := (An −K)+, (6.16)

where K is the strike price, An = 1
n

∑n
i=1 Sti and {t1, ..., tn = T} is a set of equally spaced

monitoring dates. For model (6.1), the arbitrage-free price of the Asian option at time t
can be represented in the following form:

V (S, t) := e−r(T−t)EQ[CAF (S, T )|Ft], (6.17)

where Q is a risk-neutral measure, r is a continuously compounded interest rate and is
assumed to be a constant, {Ft} is a natural filtration generated by the process {St}. We
can obtain (6.17) by the crude Monte Carlo simulation method, where we need to sample
the whole path of the price process {Sti , i = 1, ..., n}. For convenience, we assume that the
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number of steps n is a power of two. In addition, let M be the number of paths need to
be generated and NMC be the number of repetitions for the Monte Carlo simulation.

For comparison, we propose two ways to sample paths and then price the Asian option,
and we refer to them as the forward method and the sampling method for the conditioned
process. The main steps of these two methods are outlined below.

(i) Forward Method

For j = 1, ...,M repeat (S5–1)–(S5–6):

(S5–1) Generate the number of event N ∼ POI(λT ).

(S5–2) Generate the event times 0 < X1 < ... < XN < T uniformly on the interval
[0, T ]. Then we have the whole path of {vs, 0 ≤ s ≤ T}.

(S5–3) Compute Uti−1,ti by (6.5), i = 1, ..., N .

(S5–4) Generate L∆,i ∼ N(r(ti − ti−1)− 1
2
Uti−1,ti , Uti−1,ti), i = 1, ..., n.

(S5–5) Obtain a path of {Sti} by computing the equation Sti = Sti−1
eL∆,i , i = 1, ..., n.

(S5–6) Compute the discounted payoff at time 0 for the j-th path as Vj = e−rT ( 1
n

∑n
i=1 Sti−

K)+.

(S5–7) Average the M discounted payoffs, then we have the price of the option at time
0 as 1

M

∑M
j=1 Vj.

(ii) Sampling Method for the Conditioned Process

For j = 1, ...,M repeat (S6–1)–(S6–6):

(S6–1) Generate the number of event N ∼ POI(λT ).

(S6–2) Generate event times 0 < X1 < ... < XN < T uniformly on the interval [0, T ].

(S6–3) Compute the time spent on regime 1 and regime 2 as T1 and T2 given the event
times generated in (S6–2). Then we obtain U = σ2

1T1 + σ2
2T2.

(S6–4) Sample LT ∼ N(rT − 1
2
U,U). Obtain ST by computing ST = S0e

LT , where S0

is given.

(S6–5) Generate a path of {Sti} by Algorithm 6.4 (or Algorithm 6.1) given ST that is
obtained in (S5–4).

(S6–6) Compute the discounted payoff at time 0 for the j-th path as Vj = e−rT ( 1
n

∑n
i=1 Sti−

K)+.
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(S6–7) Average the M discounted payoffs, then we have the price of the option at time
0 as 1

M

∑M
j=1 Vj.

Next, we provide an example to illustrate the above two methods to price the Asian
option described in this section under the two-regime switching Black-Scholes model defined
in (6.1). In our implementation, we have used the same model parameters as those used in
Fuh et al. (2012), they are σ1 = 0.2, σ2 = 0.3, λ1 = λ2 = 10, r = 0.1. The other parameters
that we use are T = 1, n = 256,M = 500, K = 1 and S0 = 1. Because in this example
λ1 = λ2, we use Algorithm 6.1 to sample conditioned processes from the model.

Table 6.1 shows the estimated prices of the Asian option at time 0 and the compu-
tational time (CPU time in seconds) obtained by the forward method and the sampling
method for the conditioned process (SMCP) based on NMC = 50 repetitions. The num-
bers in the parentheses are the standard deviations of the estimates. We can see that
the estimates and their standard deviations are similar for these two methods, but the
forward method is more efficient. Indeed, the most time consuming part of the sampling
method for the conditioned process is step (S6–5). We also repeated our calculations for
other selections of the model parameters, and the results, in terms of speed and accuracy,
are very similar to those reported in Table 6.1. To improve the computational efficiency
of the SMCP, we can consider an efficient method of filtering, which is further discussed
in Section 6.4, and hence we do not need to generate different paths of regime for each
repetition of the sampling algorithm.

Table 6.1: Comparison of Two Sampling Methods for an Asian Option
Method Price CPU (in seconds)

Forward 0.0783(0.005) 104.3
SMCP 0.0737(0.005) 270.0

6.3 Static Hedging of Asian Options

In this section, we study the problem of static hedging of path-dependent options by using
European options under a two-regime switching Black-Scholes model. This static hedging
problem has been solved under the Black-Scholes model by Kolkiewicz (2016). In the
paper, the author proposes the optimal hedging strategy that minimizes the shortfall risk
and compares it with the one that minimizes the mean squared hedging error.
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There are several differences between our optimal hedging problem and the one consid-
ered by Kolkiewicz (2016). First, the optimal hedging options under a regime switching
model depend not only on the path of prices but also on the path of regime. Second,
generating paths of prices given terminal values under our model is no longer equivalent
to generating Brownian bridges as described in the paper. The theoretical results in that
paper can be relatively easily extended to our models, which we present in Section 6.3.1.
However, the main challenge is in the implementation, where we need to apply Algorithm
6.1 to sample paths of the underlying asset. In Section 6.3.2, we consider the same Asian
option described in Section 6.2 and we use the proposed method in Section 6.3.1 to find
the optimal hedging strategies of the Asian option under our models.

First, we formulate our models and introduce some definitions and notations as follows.
Assume that under the real-world probability measure P , the dynamics of the process {St}
is given by

dSt = θtStdt+ vtStdWt, t ∈ [0, T ], (6.18)

where the parameters {θt} and {vt} are independent of the standard Brownian motion
processes {Wt} and follow a continuous-time Markov chain. Let {Yt} be the process of
the regime. Assume there are two states, i.e., if Yt = i, then θt = µi and vt = σi, where
i = 1, 2. conditional on the paths of {θt} and {vt}, we have

ln
St
S0

∼ N
(∫ t

0

θsds−
1

2

∫ t

0

v2
sds,

∫ t

0

v2
sds
)
, t ∈ [0, T ]. (6.19)

To describe a practical discrete-time hedging problem, let us consider a single time
interval starting from t = 0. Suppose that we want to hedge a path-dependent option
over a time interval of length Th, where Th ∈ [0, T ]. The objective is to create a static
portfolio including European options (calls and/or puts with different strike prices) on the
underlying asset and a bank account so that its value at Th is as close as possible to the
value of the path-dependent option C(S, Th). The initial cost of the portfolio is assumed
to not exceed a given budget, say VI . For a certain function h, h(STh) can represent such
a hedging strategy. Define the hedging error as C(S, Th)− h(STh) and the shortfall risk as(
C(S, Th)− h(STh)

)+
.

Since our objective is to find an optimal hedging option h so that the hedging error
meets our risk management objective, it is more convenient for us to use an alternative
description. Let us assume that STh = s is given and {St|s} represents the process {St} con-
ditioned on STh = s. Then the payoff function of a path-dependent option can be written
in a form where the terminal value s and the conditional process {St|s} are separated.
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conditional on STh = s, the risk of hedging C(S, Th) by h(STh) depends only on the
random variable

L(s, Th) := C(St|s, Th)t∈[0,Th],

which we will call the conditional residual risk. Therefore, we can use the set of random
variables

L(Th) := {L(s, Th) : s ∈ R+}

and the distribution of the terminal price STh to completely describe the hedging error.
For simplicity, we shall denote L(s, Th) by L(s).

6.3.1 Optimal Hedging Strategies

Once the residual risk is known, we can hedge the option by selecting a European option
with maturity Th such that a particular risk management objective is satisfied. Such
strategy can be represented by finding the value of a specified function, say h(s)2, s ∈ R+,
such that the hedging error or the shortfall risk has desirable properties.

In this section, we discuss the same two optimal hedging strategies as presented in
Kolkiewicz (2016). They are obtained by respectively minimizing the mean squared hedg-
ing error and the shortfall risk. Now we describe the two optimal hedging options under
our models. Let

SL := {s ∈ R+ : interior of supp(L(s)) is non-empty},

where supp(·) represents the support of a random variable and

H0 := {functions h on SL : h(s) ∈ the closure of supp(L(s)) for s ∈ SL}.

Assume that the set supp(L(s)) is connected 3 for each s ∈ SL. Given the initial capital
VI , define the set of possible hedging options h as

H := {h ∈ H0 : EQ[h(STh)] ≤ V0},

where Q is a risk-neutral measure and V0 = erThVI .

2The subscript h in Th is only a notation, which is different from the function h(·).
3Note that L(s), s ∈ SL, is a real-valued function, and it can be seen as the payoff function of the

underlying asset with STh
= s. The set supp(L(s)) is connected for each s ∈ SL, and hence they form a

metric topology.
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Define L2(STh) as the set of measurable and square integrable functions of STh . Then
the optimal hedging option that minimizes the mean-square of hedging error under the
measure P is defined as

he := arg inf
h∈H2

EP
[(
C(S, Th)− h(STh)

)2]
, (6.20)

where H2 := H ∩ L2(STh). As shown in Kolkiewicz and Liu (2012), we have an analytical
representation of he:

he(s) := EP
[
C(S, Th)|STh = s

]
. (6.21)

It is easy to verify that EP
[
he(s)

]
= V0.

Now we consider the optimal hedging strategy that minimizes the shortfall risk, denoted
by hopt. Define

HhL,hU := {h ∈ H : hL(s) ≤ h(s) ≤ hU(s), s ∈ SL},
where the given functions hL and hU satisfy the following assumptions:

(A4–1) hL and hU belong to H0 and are continuous.

(A4–2) hL(s) < hU(s), where s ∈ supp(STh) ∩ SL.

(A4–3) EQ[hL(STh)] ≤ V0 and V0 ≤ EQ[hU(STh)] <∞.

(A4–4) EP [(hU(STh)− hL(STh))p] < 1, where p ≥ 1 is a pre-determined value4.

Define the optimal hedging option hopt as

hopt := arg inf
h∈HhL,hU

EP

[((
C(S, Th)− h(STh)

)+
)p]

. (6.22)

The solution to the above optimization problem can be represented in terms of the following
function

g(s, z; p) :=
g0(s, z(hU(s)− hL(s))− hU(s))

(hU(s)− hL(s))p
, (s, z) ∈ SL × [0, 1], (6.23)

where

g0(s, z; p) := EP
[(

(L(s) + z)+
)p]

, (s, z) ∈ SL × [−hU(s),−hL(s)]. (6.24)

Note that z → g(s, z; p), z ∈ [0, 1], is convex and non-decreasing. We also assume that

4We use p = 2 in our implementation, because we would like to make hopt and he comparable.
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(A4–5) For each s ∈ SL, the function z → g(s, z; p) is continuously differentiable at any
z ∈ [0, 1]. We consider one-sided derivatives at the end points z = 0 and z = 1, and

its derivative gz(s, z; p) := ∂g(s,z;p)
∂z

is strictly increasing.

(A4–6) EP
[(
hU(STh)− hL(STh)

)
gz(STh ,−hL(STh); p)] <∞.

Denote the inverse of the function z → gz(s, z; p) by lg(s, y), y ∈ [gz(s, 0; p), gz(s, 1; p)],
and assume that it is well defined. Define the extended inverse function as

le(s, y) =


lg(s, y), if y ∈ [gz(s, 0; p), gz(s, 1; p)],

0, if y < gz(s, 0; p),

1, if y > gz(s, 1; p).

Let P ∗ and Q∗ be the distributions of STh under the measures P and Q respectively.
Then conditional on the volatility path, these two distributions of STh can be represented
as log-normal distributions as respectively described in (6.2) and (6.19).

Before presenting the solution to the optimization problem in (6.22), we need to identify
the form of dQ∗

dP ∗
under a two-regime switching model, which is needed in the representation

of the solution. Based on the model assumptions,
∫ Th

0
θsds and

∫ Th
0
v2
sds can be represented

in terms of the occupation time in regime 1. Let T1 represent the time spent in regime 1
over the time interval [0, Th], then

∫ Th
0
θsds = µ1T1 + µ2(Th − T1) and

∫ Th
0
vsds = σ2

1T1 +

σ2
2(Th − T1). Define µ̄(T1) :=

∫ Th
0
θsds and σ̄(T1) :=

∫ Th
0
v2
sds. Denote the density function

of T1 by fT1 . Then we have

dQ∗

dP ∗
(s) ≡ dQ∗(s)

dP ∗(s)
:=

∫ Th
0

1

s
√

2πσ̄(t)
exp(− (ln s−lnS0−rTh+ 1

2
σ̄(t))2

2σ̄(t)
)fT1(T1 = t)dt∫ Th

0
1

s
√

2πσ̄(t)
exp(− (ln s−lnS0−µ̄(t)+ 1

2
σ̄(t))2

2σ̄(t)
)fT1(T1 = t)dt

, s ∈ SL.

(6.25)

Although the density function of T1, fT1 , is unknown explicitly, the characteristic function
of T1, φT1 , is given in (6.7) with T = Th. Again we can use cosine series expansions to
approximate fT1 by using φT1 .

The following proposition provides the solution to the optimization problem stated in
(6.22).
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Proposition 6.3.1. Suppose that the assumptions (A4-1)–(A4-6) hold. Then the
solution of the optimization problem (6.22) can be written in the form of

hopt(s) = hL(s) + γ̄(s)
[
hU(s)− hL(s)

]
, s ∈ SL, (6.26)

where

γ̄(s) = 1− le
(
s, c ·

[
hU(s)− hL(s)

]1−pdQ∗
dP ∗

(s)
)
. (6.27)

The constant c is selected by solving the following equation

EQ∗
[
hopt(STh)

]
= V0. (6.28)

This constant c exists and is unique.

Proof: By Kolkiewcz’s proof, it suffices to show that the likelihood ratio dQ∗

dP ∗
is contin-

uous for our specification of the measures P and Q. See the proof in Appendix 6.E. �

6.3.2 Implementation

In this section, we provide a numerical example to illustrate the hedging strategies pre-
sented in Section 6.3.1. We use a Monte Carlo simulation method to obtain the optimal
hedging options he and hopt for the Asian option that is used in Section 6.2. To gener-
ate paths from the conditioned processes under a two-regime switching model5, we need
to apply Algorithm 6.1 proposed in Section 6.1. In Kolkiewicz (2016), the conditional
residual risk of an option can be represented using a Brownian bridge, which makes the
implementation easier. However, this simpler form of the conditional residual risk is not
available in our models. Given STh = s, the conditional residual risk of the Asian option
can be written as

LAF (s, Th) := (Asn −K)+, s ∈ R+,

with

Asn =
1

n
(
n−1∑
i=1

Sti|s + Stn) =
1

n
(
n−1∑
i=1

Sti|s + s).

5We only consider the two-regime switching Black-Scholes model in this section, since we have only
proposed the sampling algorithm for this model. For other regime switching models, we would like to
propose algorithms to sample the conditioned processes in future research.
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Then our problem now is to find a way to generate the process {St|s} given STh = s, which
is the same problem that has been solved by Algorithm 6.1 in Section 6.1. More details
are provided later in this section.

To sample a path of {St} given ST = sT under model (6.18), we can apply Algorithm
6.1 with some modifications. First, under model (6.18), the distribution of ST given U in
step (i) of Algorithm 6.1 is no longer in the form of (6.10) and it becomes

fST |U(ST = x|U = u) =
1

x
√

2πu
e−

(ln x−lnS0−θ̄(u)+ 1
2u)2

2u , (6.29)

where

θ̄(u) = µ1
u− σ2

2T

σ2
1 − σ2

2

− µ2
u− σ2

1T

σ2
1 − σ2

2

.

Second, in step (iii) of Algorithm 6.1, we need to compute not only the path of {vt} but

also the path of {θt}. Finally, we need to replace rt and r(T − t) with
∫ t

0
θsds and

∫ T
t
θsds

respectively in the log-normal distribution derived in Appendix 6.F to sample {St}.

In our implementation, for pre-determined levels αL and αH such that 0 < αL < αH <
1, we define hL and hU as the αL−quantile and αH−quantile of the conditional residual
risk of the option.

The main steps for obtaining the optimal hedging options proposed in (6.21) and (6.26)
of the Asian option under a two-regime switching model are outlined as below.

For Th = T , select an equally spaced set of positive points S := {s1, ..., sNs} such that
P (ST ∈ [s1, sNs ]) = αs, where αs is at least equal to a predetermined level, say 0.9999.

(S7-1) Select an equally spaced set of points from the interval [0, T ] as uT1 := {u1, ..., unt}.
Then use the trapezoidal rule with respect to uT1 to calculate the numerator and de-
nominator of (6.25) and store the resulting values as dQ∗(sj) and dP ∗(sj) respectively
for each sj, j = 1, ..., Ns.

For each sj, j = 1, ..., Ns, repeat (S7-2)–(S7-5):

(S7-2) Use Algorithm 6.16 with the modifications described above to obtain NB indepen-
dently sampled paths of {Sti|sj , i = 1, ..., n}. Then for each path l, l = 1, ..., NB,
compute the value of A

sj
n and denote it by ajl. Then approximate the value of the

6To improve the efficiency, we refer to Section 6.4 for more details.
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payoff function of the mean squared optimal hedging option he by the sample means
of the payoff function as

he(sj) ≈
1

NB

NB∑
l=1

(ajl −K)+, j = 1, ..., Ns.

(S7-3) For pre-determined levels αL and αH such that 0 < αL < αH < 1, obtain the
lower and upper bounding functions hL(sj) and hU(sj) as the αL−quantile and
αH−quantile of (A

sj
n −K)+ by using the samples ajl, l = 1, ..., NB.

(S7-4) Select an equally spaced set of points Z := {z1, ..., zNz} from the interval [0, 1]. For
each point, use a sample mean based on NB independent paths generated in (S7-2)
to approximate the value of function g(zk; sj, p) defined in (6.23).

(S7-5) Approximate the derivatives
∂g(z;sj ,p)

∂z
by using the finite difference method, where

zk ∈ Z. Then find the corresponding inverse function lg and the extended inverse
le by the inverse transform method proposed by Chen et al. (2011) (presented in
Appendix 6.A). Then approximate γ̄(sj) defined in (6.27) by

γ̄(sj) ≈ 1− le
(
sj, c

[
hU(sj)− hL(sj)

]1−pdQ∗(sj)
dP ∗(sj)

)
.

(S7-6) By using hL(s), hU(s) and le obtained in (S7-3) and (S7-5), where s ∈ SL, we can
obtain the optimal hedging option hopt(sj) defined in (6.26) up to the constant c. To
determine c that is consistent with the budget constraint defined in equation (6.28),
we use the Matlab build-in function ’fminsearch’ with hopt(sj) and dQ∗(sj), j =
1, ..., Ns, that are obtained in previous steps.

We use the following parameters: µ1 = 0.3, µ2 = 0.5, n = 256, Ns = 599, Nz =
501, NB = 20000, p = 1, s1 = 0.005, sNs = 3, αs = 0.9999, αL = 0.01, αH = 0.99 and
other model parameters are the same as those used in Section 6.2. To make the optimal
hedging options he and hopt comparable, we choose VI to be the price of the option at time
0. The resulting c is equal to 0.5653, and for this c the difference between the prices of
the options he and hopt is less then 10−6. Figure 6.2 shows the resulting hedging options
he and hopt, where the y-axis is the value of these options and the x-axis is the terminal
value of the price process s ∈ SL. The window in the figure is a zoomed part of the plot.
We can see that these two hedging options are close. The expected shortfall for the mean
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squared optimal option he is 0.0021, while for the optimal option hopt is 0.0020, giving a
reduction by around 3.2%.

Figure 6.2: The mean squared and the optimal static hedging options for the Asian call
option
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6.4 Filtering Regimes

In this section, we briefly describe another application of Algorithm 6.1, where the model
is defined in (6.18). The problem that we consider is the following: given the prices of the
underlying asset at times 0 and T , we want to determine a likely path of volatility or a
likely path of regime over the interval [0, T ].

Given ST = sT , we can sample U , an integral of variance over the interval [0, T ], by step
(i) of Algorithm 6.1. However, there are many possibilities of the regime path over [0, T ]
given U . We can sample these different paths of regime by steps (ii)–(iii) of Algorithm 6.1,
but our question is which path is the right one. Intuitively, we can solve this problem by
finding the path that has the highest probability to occur. In detail, we can obtain the
likelihood functions of the sampled paths of the hidden Markov process and then find the
path with the largest likelihood function. Let {yt} be the realization of the hidden Markov
process {Yt}. Then for a set of pre-determined times 0 = t0 < t1... < tn−1 < tn = T , the
likelihood function of a sampled path of {Yt} is in the form of

LY :=
n∏
i=1

P (Yti = yti |Yti−1
= yti−1

), (6.30)

which is a product of transition probabilities of the Markov chain. For example, if we have
NY , say 20,000, sampled paths of {Yt} whose likelihood are denoted by LjY , j = 1, ..., NY .
Let Lmax := max{LjY , j = 1, ..., NY }, then we choose the path of regime whose likelihood
is equal to Lmax as the selected right path of regime or the filtered path of regime.

Remark 6.4.1. As suggested by my committee member, Professor Tony Wirjanto,
given the infinitesimal generator of the Markov chain that contains two regimes, we can
derive the transition probabilities in equation (6.30) explicitly (see, for example, Kac (1974)
and López and Ratanov (2014)). For a Markov chain that contains more than two regimes,
we can consider several ways to approximate the transition densities, for example, we can
derive the partial differential equations for the densities and solve them numerically.

6.5 Conclusions of Chapter 6

In this chapter, we propose a sampling algorithm to generate conditioned processes from a
two-regime switching Black-Scholes model. Then we apply the algorithm to the problems
of pricing and static hedging of Asian options. We extend the static hedging method for
path-dependent options under the Black-Schole model proposed by Kolkiewicz (2016) to
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our models. All the numerical results show that our proposed sampling algorithm works
well. In addition, to improve the efficiency of the proposed sampling algorithm, we would
like to propose an efficient method of filtering. More work on this problem is left for future
research.
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Chapter 7

Future Research

In this chapter, we provide topics for future research.

7.1 Efficiency of the Selected Points for the DECF

Method

In Chapter 2, we estimate model parameters by the DECF method, and the points at which
a characteristic function is evaluated can be obtained by an application of the quantization
method proposed by Pagés et al. (2004). In our approach, we search for a random vector
taking values in Γ = {r1, ..., rq} that minimizes

∫
min

1≤i≤q
|z−ri|pdGN(z), where z is uniformly

distributed. Alternatively, we consider GN to be the empirical characteristic function of
observations. Although these approaches seem to produce estimators with reasonably good
properties, it is not clear how they can be related more formally to the efficiency of the
estimators. We would like to study different properties of the resulting estimators. In
particular, we want to establish the rate at which N · var(ξ̂) converges to its limit as
described in Section 2.3.2.

We will also consider some extensions of the testing methods presented in Chapter 3:

(i) The formal testing procedure that we discuss in Section 3.2.2 also requires a proper
selection of the points at which a characteristic function is evaluated, and hence it
would be interesting to develop systematic ways of doing this. However, we need to
use the power of the test instead of the efficiency as a criterion.
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(ii) For the proposed goodness-of-fit test in Section 3.2.2, we only consider the case when
m = 1 in the simulation study in Section 3.3. Since we use m = 2 for the estimation
method, we would also like to extend the goodness-of-fit test to the case when m = 2.

(iii) Chen et al. (2013) propose an empirical likelihood approach that is based on condi-
tional characteristic functions for estimation and testing of Markov models in Lévy
processes. Naturally, we would like to extend their methods to regime switching
models in Lévy processes, where we can use joint characteristic functions instead of
conditional ones.

7.2 Pricing under Regime Switching Models

At the end of Chapter 5, we find that two exercise regions may occur when pricing ratchet
EIAs with surrender risk. To price ratchet EIAs, we can use the COS method where Fang
and Oosterlee (2008, 2009) propose a recursive way of calculating coefficients in Fourier
expansions, which significantly reduces computational time. However, this technique re-
quires finding the boundary that separates the exercise region from non-exercise region at
each time step, usually by finding the root of a non-linear equation numerically. The same
approach can also be applied to the PV method where we combine trigonometric functions
with polynomials. Therefore, finding the possible two boundaries when pricing ratchet
EIAs is essential if we want to reduce computational time and improve the convergence
rate of prices.

Pricing perpetual ratchet EIAs is also an interesting problem, since it can be seen as
pricing contracts with extreme long term maturities.

In addition, to price an early exercise feature under regime switching models described
in terms of their characteristic functions, the existing methods assume that the current
regime is known, which is not true in reality. Typically, we estimate the regime using
either a calibration procedure or some filtering method. Rambharat (2012) shows how
to price American options in a limited information framework, where the volatility of the
underlying asset is a latent stochastic process. However, the author uses particle filter
methods, an application of which requires knowledge of density functions. We would like
to develop an efficient method of filtering for models where only characteristic functions
are known.
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7.3 Sampling Conditioned Processes

We considered some extensions of the proposed conditioned process sampling algorithm in
Chapter 6:

(i) It is natural to extend Algorithm 6.1 to other regime switching models as formulated
in Section 1.1.2. Compared with the regime switching Black-Scholes model, these
models have more parameters that can change according to the hidden Markov pro-
cess. Therefore, it is more reasonable to introduce more regimes rather than two as
considered in Chapter 6.

(ii) To improve the computational efficiency of the conditioned process sampling algo-
rithm used in the pricing and static hedging problems, we can find several paths of
regime and then reuse them in the sampling algorithm rather than generating differ-
ent paths of regime for each repetition of the algorithm. To solve this problem, we
can use the idea of filtering presented in Section 6.4. For example, given U = u, we
use the method proposed in Section 6.4 to obtain the filtered path of regime denoted
by Ymax |u, and then we store the values of U and Ymax |u as a pair. Given the terminal
value of the price process, as long as U is obtained by step (i) of Algorithm 6.1,
we can use the corresponding stored path of regime to obtain the path of volatility
and the path of price process rather than generating them by steps (ii) and (iii) of
Algorithm 6.1.

(iii) For the problem of sampling conditioned processes of model (6.1), we assume that
the volatility follows a continuous-time Markov chain. We can also consider the same
sampling problem for hidden Markov models, where the Markov chain is discrete-
time, and hence the jump events can only occur at a pre-determined set of points.
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Appendices

Appendix for Chapter 2

2.A The EM Algorithm

We want to compare the estimation results obtained by the DECF estimation method
with a commonly used approach, such as the EM method. In the following, we will present
a modified EM algorithm to estimate regime switching models whose distributions are
characterized by their characteristic functions only.

Kim (1994) has proposed an EM algorithm that can find the maximum likelihood esti-
mates of the parameters in models with unobserved (latent) variables. The EM algorithm
alternates between the E-step and the M-step until the resulting log-likelihood converges.
The E-step contains two sub-steps, filtering and smoothing, and it creates a function used
in the expected log-likelihood function whose parameters are the current estimates. The
M-step maximizes the expected log-likelihood to obtain a new set of estimated parameters,
which are then used in the next E-step.

Define θ(0) = (ξ(0), P (0), ρ
(0)
k ), k = 1, ...K, as the initial parameter vector for the

estimation algorithm, where ξ(0) is a set of model parameters, P (0) is the transition matrix

of the regime switching model defined in (1.1), and ρ
(0)
k = P (Y1 = k) is the probability that

the initial state of the model is k. We assume that the parameter vector θ(n) is obtained
in the M-step of the previous nth iteration, and w = {wj, j = 1, ..., N} is the realization of
the process W = {Wj, j = 1, ..., N}.

Following Kim (1994), below we present the EM algorithm to estimate a regime switch-
ing model.

1. E-Step (Filtering)
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For j = 1, 2, ..., N , we iterate equations

P (Yj = k|wj, θ(n)) =
P (Yj = k|wj−1, θ

(n))f(wj|wj−1, Yj = k, θ(n))∑K
k=1 P (Yj = k|wj−1, θ(n))f(wj|wj−1, Yj = k, θ(n))

, (1)

where f(wj|wj−1, Yj = k, θ(n)) is the conditional density function of wj given wj−1 at
regime k, and

P (Yj+1 = k|wj, θ(n)) =
K∑
l=1

plkP (Yj = l|wj, θ(n)), (2)

until P (YN = k|wN , θ(n)) is obtained with the starting point P (Y1 = k|w0, θ
(n)) = ρ

(n)
k .

2. E-Step (Smoothing)

For j = N − 1, N − 2, ..., 1, we iterate equations

P (Yj = k|wN , θ(n)) =
K∑
l=1

P (Yj = k|wj, θ(n))P (Yj+1 = l|wN , θ(n))p
(n)
kl

P (Yj+1 = l|wj, θ(n))
. (3)

3. M-Step

Now, we can obtain ξ(n+1) by maximizing the log-likelihood function

log[L(ξ(n+1))] =
K∑
k=1

N∑
j=1

P (Yj = k|wN , θ(n)) log[f(wj|wj−1, Yj = k, ξ(n))]. (4)

Lastly,
ρ

(n+1)
k = P (Y1 = k|wN , θ(n)), (5)

and

p
(n+1)
kl =

∑N
j=2 P (Yj = l, Yj−1 = k|wN , θ(n))∑N

j=2 P (Yj−1 = k|wN , θ(n))
(6)

=

∑N
j=2 P (Yj = l|wN , θ(n))

p
(n)
kl P (Yj−1=k|wj−1,θ

(n))

P (Yj=l|wj−1,θ(n))∑N
j=2 P (Yj−1 = k|wN , θ(n))

. (7)

Then we use θ(n+1) = (ξ(n+1), P (n+1), ρ
(n+1)
k ), k = 1, ...K, as the new parameter vector

in the next iteration from the E-step.
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For a model that is characterized by its characteristic functions only, the conditional
density function f(wj|wj−1, Yj = k) in the above algorithm is usually unknown. Thus,
we propose to use Fourier cosine series expansions to approximate the conditional density
function.

For comparison purposes, we only consider Lévy processes here. Increments of a Lévy
process are independent and stationary, so calculating the conditional density function
f(wj|wj−1, Yj = k) is reduced to calculating the density function f(wj|Yj = k).

To approximate f(wj|Yj = k), we truncate the support of the density to an interval
[a, b], and use Fourier cosine series expansions with a finite number of terms L. Then,

f̂(wj|k) :=
A0(k)

2
+

L∑
u=1

Au(k) · cos(uπ
wj − a
b− a

) (8)

with

Au(k) :=
2

b− a

∫ b

a

f̂(x|k) cos(uπ
x− a
b− a

)dx, u = 0, 1, . . . , L. (9)

The above cosine series coefficients can be approximated by using the characteristic func-
tion φ(·; ξ

k
) of W at regime k as follows

Au(k) ≈ Fu(k) :=
2

b− a
<
{
φ(

uπ

b− a
; ξ
k
) · exp(−i uaπ

b− a
)

}
. (10)

We only have an approximation not equality in (10), which is due to the truncation of the
integration region in the definition of the characteristic function. Moreover, we need to nor-
malize the approximation of the density function (8) so that its integral over the truncated
range is 1. Then we can approximate the conditional density function f(wj|wj−1, Yj = k)
by the following function:

f̂(wj|wj−1, Yj = k) :=
f̂(wj|k)∑L

u=0 f̂(a+ u ∗ b−a
L
|k)

. (11)

2.B Proof of Lemma 2.2.2.

Substituting (2.14) into formula (2.12), we obtain
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ψ̄k(ri, rl) =



K∑
k1=1

K∑
k2=1

K∑
k3=1

K∑
k4=1

πk1pk1,k2p
(k−1)
k2,k3

pk3,k4

·φ(ri1; ξ
k1

)φ(ri2; ξ
k2

)φ(rl1; ξ
k3

)φ(rl2; ξ
k4

), 2 ≤ k ≤ k∗ (12)

K∑
k1=1

K∑
k2=1

K∑
k3=1

K∑
k4=1

πk1pk1,k2πk3pk3,k4

·φ(ri1; ξ
k1

)φ(ri2; ξ
k2

)φ(rl1; ξ
k3

)φ(rl2; ξ
k4

), k ≥ k∗ + 1. (13)

Since πk3pk3,k4φ(rl1; ξ
k3

)φ(rl2; ξ
k4

) does not depend on k1 and k2, so ψ̄k(ri, rl) can be
rewritten as

ψ̄k(ri, rl) =



K∑
k1=1

K∑
k2=1

K∑
k3=1

K∑
k4=1

πk1pk1,k2p
(k−1)
k2,k3

pk3,k4

·φ(ri1; ξ
k1

)φ(ri2; ξ
k2

)φ(rl1; ξ
k3

)φ(rl2; ξ
k4

), 2 ≤ k ≤ k∗ (14)

K∑
k1=1

K∑
k2=1

πk1pk1,k2φ(ri1; ξ
k1

)φ(ri2; ξ
k2

)

·
K∑

k3=1

K∑
k4=1

πk3pk3,k4φ(rl1; ξ
k3

)φ(rl2; ξ
k4

), k ≥ k∗ + 1. (15)

By the definition of the error term, εk,k∗ becomes

εk,k∗ =


0, 2 ≤ k ≤ k∗

|
K∑

k1=1

K∑
k2=1

K∑
k3=1

K∑
k4=1

πk1pk1,k2(p
(k−1)
k2,k3

− πk3)pk3,k4

·φ(ri1; ξ
k1

)φ(ri2; ξ
k2

)φ(rl1; ξ
k3

)φ(rl2; ξ
k4

)|, k ≥ k∗ + 1. (16)

For all ε∗ > 0 and any k∗ ≥ 1, εk,k∗ = 0 < ε∗ when k ≤ k∗. Thus, we need to prove that
there exists k∗ such that equation (16) is less than or equal to ε∗ when k ≥ k∗ + 1.

The characteristic function φ is finite and bounded as |φ| ≤ 1. In addition, the transition
probabilities and the density of the stationary distribution are also finite and bounded by
1. Therefore,

|πk1pk1,k2pk3,k4φ(ri1; ξ
k1

)φ(ri2; ξ
k2

)φ(rl1; ξ
k3

)φ(rl2; ξ
k4

)| ≤ Cri,rl , (17)

143



where Cri,rl is a positive and finite constant. Thus, we can rewrite equation (16) as

εk,k∗ ≤ Cri,rl

K∑
k1=1

K∑
k2=1

K∑
k3=1

K∑
k4=1

|p(k−1)
k2,k3

− πk3|. (18)

Since |p(k−1)
k2,k3

− πk3| does not depend on k1 and k4, this implies

εk,k∗ ≤ Cri,rlK
2

K∑
k2=1

K∑
k3=1

|p(k−1)
k2,k3

− πk3|, (19)

or equivalently

εk,k∗ ≤ C∗
K∑

k2=1

K∑
k3=1

|p(k−1)
k2,k3

− πk3|, where C∗ := Cri,rlK
2. (20)

From Perron-Frobenius Theorem, we know that |p(k−1)
k2,k3

− πk3 | is a decreasing function

of k and lim
k→∞
|p(k−1)
k2,k3

− πk3 | = 0 for any k2 and k3. Because Cri,rl and K are finite, so

C∗ := Cri,rlK
2 is finite. Then, for any k2 and k3, lim

k→∞
C∗|p(k−1)

k2,k3
− πk3 | = 0, and hence

lim
k→∞

C∗ max
∀k2,k3

|p(k−1)
k2,k3

− πk3| = 0.

Then we have

0 ≤ lim
k→∞

C∗
K∑

k2=1

K∑
k3=1

|p(k−1)
k2,k3

− πk3| ≤ lim
k→∞

C∗
K∑

k2=1

K∑
k3=1

max
∀k2,k3

|p(k−1)
k2,k3

− πk3|,

and hence

0 ≤ lim
k→∞

C∗
K∑

k2=1

K∑
k3=1

|p(k−1)
k2,k3

− πk3| ≤ lim
k→∞

C∗K2 max
∀k2,k3

|p(k−1)
k2,k3

− πk3 |.

Because lim
k→∞

C∗ max
∀k2,k3

|p(k−1)
k2,k3
−πk3| = 0 and K2 is finite, so lim

k→∞
C∗K2 max

∀k2,k3

|p(k−1)
k2,k3
−πk3| = 0.

Therefore,

0 ≤ lim
k→∞

C∗
K∑

k2=1

K∑
k3=1

|p(k−1)
k2,k3

− πk3| ≤ lim
k→∞

C∗K2 max
∀k2,k3

|p(k−1)
k2,k3

− πk3| = 0,
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and by the Squeeze Theorem, lim
k→∞

C∗
K∑

k2=1

K∑
k3=1

|p(k−1)
k2,k3

− πk3| = 0.

This shows for any ε∗ > 0, we can find a k∗ such that εk,k∗ ≤ C∗
K∑

k2=1

K∑
k3=1

|p(k−1)
k2,k3

−πk3| ≤

ε∗ for any k ≥ k∗ + 1. �

2.C Proof of Lemma 2.2.3.

When k∗ = 1, for any integer k ≥ 2, equation (2.15) becomes

ψ̄k(ri, rl) =
K∑

k1=1

K∑
k2=1

πk1pk1,k2φ(ri1; ξ
k1

)φ(ri2; ξ
k2

) ·
K∑

k3=1

K∑
k4=1

πk3pk3,k4φ(rl1; ξ
k3

)φ(rl2; ξ
k4

).

(21)

Since by assumption, W1,m and Wk+1,m are independent for k ≥ 2, then (2.12) becomes:

ψ∗k(ri, rl) = E[e(iri(W1,W2)
′
)] · E[e(irl(Wk+1,Wk+2)

′
)]. (22)

By conditioning, the right-hand side of (22) becomes

[
K∑

k1=1

K∑
k2=1

πk1pk1,k2φ(ri1; ξ
k1

)φ(ri2; ξ
k2

)] · [
K∑

k3=1

K∑
k4=1

πk3pk3,k4φ(rl1; ξ
k3

)φ(rl2; ξ
k4

)]. (23)

We can see that (23) and (2.15) are in the same form. Thus, for any k ≥ 2, if we assume
that W1,m and Wk+1,m are independent, then (2.12) is the same as (2.15) with k∗ = 1. �

2.D Proof of Lemma 2.2.4.

When we condition (2.23) on Yj−2, Yj−1 and Yj, for the LHS:

P (Wj−2 = wj−2,Wj = wj|Wj−1 = wj−1)

=
K∑

yj−2=1

K∑
yj−1=1

K∑
yj=1

P (Wj−2 = wj−2|Yj−2 = yj−2)P (Wj = wj|Yj = yj)pyj−1,yj ·

P (Yj−1 = yj−1|Wj−1 = wj−1, Yj−2 = yj−2)P (Yj−2 = yj−2|Wj−1 = wj−1).

145



Similarly, for the RHS:

P (Wj−2 = wj−2|Wj−1 = wj−1)P (Wj = wj|Wj−1 = wj−1)

=
{ K∑
yj−2=1

P (Wj−2 = wj|Wj−1 = wj−1, Yj−2 = yj−2)P (Yj−2 = yj−2|Wj−1 = wj−1)
}

·
{ K∑
yj−1=1

K∑
yj=1

P (Wj = wj|Yj = yj)pyj−1,yjP (Yj−1 = yj−1|Wj−1 = wj−1)
}

=
K∑

yj−2=1

K∑
yj−1=1

K∑
yj=1

P (Wj−2 = wj−2|Wj−1 = wj−1, Yj−2 = yj−2) ·

P (Yj−2 = yj−2|Wj−1 = wj−1)P (Wj = wj|Yj = yj)pyj−1,yjP (Yj−1 = yj−1|Wj−1 = wj−1)

=
K∑

yj−2=1

K∑
yj−1=1

K∑
yj=1

P (Wj−2 = wj−2|Yj−2 = yj−2)P (Wj = wj|Yj = yj)pyj−1,yj ·

P (Yj−1 = yj−1|Wj−1 = wj−1)P (Yj−2 = yj−2|Wj−1 = wj−1).

Thus, based on our definition and assumption for the term
c.l.∼, condition (2.23)

holds if for any j = 3, ..., N ,

P (Yj−1 = yj−1|Wj−1 = wj−1)
c.l.∼ P (Yj−1 = yj−1|Wj−1 = wj−1, Yj−2 = yj−2). �

2.E Proof of Lemma 2.2.5.

For the LHS of condition (2.24):

P (Yj−1 = yj−1|Wj−1 = wj−1) =
P (Wj−1 = wj−1, Yj−1 = yj−1)

P (Wj−1 = wj−1)

=
P (Wj−1 = wj−1|Yj−1 = yj−1)P (Yj−1 = yj−1)

2∑
yj−1=1

P (Wj−1 = wj−1|Yj−1 = yj−1)P (Yj−1 = yj−1)

,

146



or

P (Yj−1 = yj−1|Wj−1 = wj−1) =
P (Wj−1 = wj−1|Yj−1 = yj−1)πyj−1

2∑
yj−1=1

P (Wj−1 = wj−1|Yj−1 = yj−1)πyj−1

.

Because stationary distributions can be represented in terms of transition probabilities as

π1 =
p21

p12 + p21

and π2 =
p12

p12 + p21

,

then we have

P (Yj−1 = 1|Wj−1 = wj−1) =
P (Wj−1 = wj−1|Yj−1 = 1)p21

P (Wj−1 = wj−1|Yj−1 = 1)p21 + P (Wj−1 = wj−1|Yj−1 = 2)p12

,

and

P (Yj−1 = 2|Wj−1 = wj−1) =
P (Wj−1 = wj−1|Yj−1 = 2)p12

P (Wj−1 = wj−1|Yj−1 = 1)p21 + P (Wj−1 = wj−1|Yj−1 = 2)p12

.

Similarly, for the RHS of condition (2.24):

P (Yj−1 = yj−1|Wj−1 = wj−1, Yj−2 = yj−2)

=
P (Wj−1 = wj−1, Yj−1 = yj−1, Yj−2 = yj−2)

P (Wj−1 = wj−1, Yj−2 = yj−2)

=
P (Wj−1 = wj−1|Yj−1 = yj−1)P (Yj−1 = yj−1|Yj−2 = yj−2)P (Yj−2 = yj−2)

2∑
yj−1=1

P (Wj−1 = wj−1|Yj−1 = yj−1)P (Yj−1 = yj−1|Yj−2 = yj−2)P (Yj−2 = yj−2)

,

=
P (Wj−1 = wj−1|Yj−1 = yj−1)pyj−2,yj−1

πyj−2

2∑
yj−1=1

P (Wj−1 = wj−1|Yj−1 = yj−1)pyj−2,yj−1
πyj−2

,

we can represent the distribution P (Yj−1 = yj−1|Wj−1 = wj−1, Yj−2 = yj−2), for any
yj−1, yj−2 ∈ {1, 2}, in terms of model densities and parameters.

Note that (2.24) holds if for any j = 3, ..., N , the following four conditions hold:
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(i)

P (Yj−1 = 1|Wj−1 = wj−1)
c.l.∼ P (Yj−1 = 1|Wj−1 = wj−1, Yj−2 = 1).

(ii)

P (Yj−1 = 1|Wj−1 = wj−1)
c.l.∼ P (Yj−1 = 1|Wj−1 = wj−1, Yj−2 = 2).

(iii)

P (Yj−1 = 2|Wj−1 = wj−1)
c.l.∼ P (Yj−1 = 2|Wj−1 = wj−1, Yj−2 = 1).

(iv)

P (Yj−1 = 2|Wj−1 = wj−1)
c.l.∼ P (Yj−1 = 2|Wj−1 = wj−1, Yj−2 = 2).

By combining conditions (i) and (iii) and (ii) and (iv), we obtain the two conditions (2.25)
and (2.26) respectively. Thus, the results follow. �

2.F Proof of Lemma 2.2.6.

To simplify conditions (2.25) and (2.26), we first divide the numerators and denominators of
dj, j = 1, ..., 6, by their numerators respectively. In addition, these compared distributions
are in the neighbourhood of the true value of the parameter, then we can obtain the
following sufficient conditions to (2.25) and (2.26) respectively:

(i)
dW,2p12

dW,1p21

c.l.∼ dW,2p12

dW,1p11

c.l.∼ dW,2p22

dW,1p21

,

(ii)
dW,1p21

dW,2p12

c.l.∼ dW,1p11

dW,2p12

c.l.∼ dW,1p21

dW,2p22

.
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Since condition (ii) is equivalent to (i), then we only need to consider condition (i). In
addition, we can get a sufficient condition for condition (i) as

p12

p21

c.l.∼ p12

p11

c.l.∼ p22

p21

. (24)

If p12

p11

c.l.∼ p22

p21
, then we have p11

c.l.∼ p21 and hence p12

p21

c.l.∼ p12

p11
. Then condition (24) can be

simplified as
p12

p11

c.l.∼ p22

p21

.

Similarly, condition (i) can be simplified as

dW,2p12

dW,1p11

c.l.∼ dW,2p22

dW,1p21

.

Thus, the results follow. �

Appendix for Chapter 3

3.A Proof of Theorem 3.2.2.

Let X be the centered process W , which is also stationary. To prove the result stated
in Theorem 3.2.2, we are going to use Theorem 3.2.1 to show that X is asymptotically
normally distributed. For this, we check condition (i) in Theorem 3.2.1.

First, assume that δ = 1:

The first part of condition (i) holds because of the model assumptions. For the second
part of condition (i), we can prove it by using Theorem 1 in Mackay (2002). This result
states that the mixing coefficients for stationary hidden Markov models satisfy αl = O(l−ν)
for some ν > 2q + 1, where q ∈ Z+. Thus, we can assume that the coefficients satisfy

αl ≤ cl−ν for some positive constant c, and we need to check
∑∞

l=1 α
1
3
l ≤

∑∞
l=1(cl−ν)

1
3 <∞.

Let bl = (cl−ν)
1
3 , l = 1, 2, 3, .... Since c is a positive constant and ν > 2q + 1, q ∈ Z+,

then bl > 0 for all l and

∞∑
l=1

bl =
∞∑
l=1

(cl−ν)
1
3 = c

1
3

∞∑
l=1

(
1

l
)
ν
3 .
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The sum
∑∞

l=1(1
l
)
ν
3 is a Riemann zeta function, or Euler-Riemann zeta function, and it

converges. Since
ν

3
> 1, then

∑∞
l=1 bl <∞. Thus,

∑∞
l=1 α

1
3
l ≤

∑∞
l=1(cl−ν)

1
3 =

∑∞
l=1 bl <∞.

This result shows that condition (i) in Theorem 3.2.1 holds. In addition, if the variance
σ2
∗ exists, that is, 0 < σ2

∗ < ∞ then the CLT is applicable to a stationary hidden Markov
model. Therefore, the CLT is applicable to the assumed models.

Lastly, we can follow the steps presented by Koutrouvelis and Kellermeier (1981) and
use a standard differential argument, combined with the CLT, to show that the quadratic
form of test statistic has an asymptotic χ2 distribution with 2q − p (p < 2q) degrees of
freedom, where q is the number of the points at which a characteristic function is evaluated
and p is the number of parameters need to be estimated of the testing model. We take
p = 0 when model parameters are given. �

Appendix for Chapter 5

5.A Characteristic Functions

Here we provide characteristic functions Ψh(·; ξ) of the variable µ(ξ) + Z(ξ) in model
(5.1), where Z(ξ) corresponds to an increment of a particular Lévy process over time
interval of length h and µ(ξ) satisfies (5.3). We also give formulas for Rj = <(Ψh(

πj
lX

))

and Ij = =(Ψh(
πj
lX

)), which can be used to obtain the coefficients in each regime for the
expansion (5.22).

Black-Scholes Model. The characteristic function of µ(ξ) + Z(ξ) is given by

Ψh(z; ξ) = eiz(r−σ
2/2)h−σ

2z2

2
h

with ξ := σ, which gives us the following coefficients

Rj = <
(
Ψh(

πj

lX
; ξ)
)

= e
−σ

2h
2

( πj
lX

)2

cos
(πj
lX

(r − σ2

2
)h
)
,

Ij = =
(
Ψh(

πj

lX
; ξ)
)

= e
−σ

2h
2

( πj
lX

)2

sin
(πj
lX

(r − σ2

2
)h
)
.

150



Merton’s Model. The characteristic function of µ(ξ) + Z(ξ) is given by

Ψh(z; ξ) = eiµ(ξ)zh− 1
2
z2σ2h+λh(e−

z2σ2
J

2 +izµJ−1),

where ξ = (σ, λ, σJ , µJ) and

µ(ξ) = r − σ2

2
− λ(e

σ2
J
2

+µJ − 1).

Hence,

Rj = exp{−1

2
(
πj

lX
)2σ2h+ λh(cos(µJ

πj

lX
)e
− 1

2
σ2
J ( πj
lX

)2

− 1)}

· cos

(
µ(ξ)

πj

lX
h+ sin(µJ

πj

lX
)λhe

− 1
2
σ2
J ( πj
lX

)2

)
,

Ij = exp{−1

2
(
πj

lX
)2σ2h+ λh(cos(µJ

πj

lX
)e
− 1

2
σ2
J ( πj
lX

)2

− 1)}

· sin
(
µ(ξ)

πj

lX
h+ sin(µJ

πj

lX
)λhe

− 1
2
σ2
J ( πj
lX

)2

)
.

Kou’s Model. The characteristic function of µ(ξ) + Z(ξ) is

Ψh(z; ξ) = e
iµ(ξ)zh− 1

2
z2σ2h+izλh[ p

λ+−iz
− 1−p
λ−+iz

]
,

where ξ = (σ, λ, λ+, λ−, p) and

µ(ξ) = r − σ2

2
− λ(

p

λ+ − 1
− 1− p
λ− + 1

).

Hence,

Rj = exp{−1

2
(
πj

lX
)2σ2h− λh(

πj

lX
)2(

p

λ2
+ + (πj

lX
)2

+
1− p

λ2
− + (πj

lX
)2

)}

· cos

(
µ(ξ)

πj

lX
h+ λ

πj

lX
h(

pλ+

λ2
+ + (πj

lX
)2
− (1− p)λ−
λ2
− + (πj

lX
)2

)

)
,
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Ij = exp{−1

2
(
πj

lX
)2σ2h− λh(

πj

lX
)2(

p

λ2
+ + (πj

lX
)2

+
1− p

λ2
− + (πj

lX
)2

)}

· sin

(
µ(ξ)

πj

lX
h+ λ

πj

lX
h(

pλ+

λ2
+ + (πj

lX
)2
− (1− p)λ−
λ2
− + (πj

lX
)2

)

)
.

Variance Gamma Process. The characteristic function of µ(ξ) + Z(ξ) is given by

Ψh(z; ξ) = eizhµ(ξ)−h
ν

log(1−iθνz+ 1
2
z2σ2ν),

with ξ := (σ, θ, ν) and

µ(ξ) =

[
r +

1

ν
log(1− θν − 1

2
σ2ν)

]
.

It can be rewritten as

Ψh(z; ξ) = exp

(
izhµ(ξ)− h

ν
(logR + iα)

)
= R−h/ν

(
cos(zhµ(ξ)− h

ν
α) + i sin(zhµ(ξ)− h

ν
α)

)
with

R ≡ R(z) =

√
(1 +

1

2
z2σ2ν)2 + (θνz)2 and α ≡ α(z) = Arg(1− iθνz +

1

2
z2σ2ν).

This leads to

Rj = R(
πj

lX
)−h/ν · cos(

πj

lX
hµ(ξ)− h πj

νlX
α),

Ij = R(
πj

lX
)−h/ν · sin(

πj

lX
hµ(ξ)− h πj

νlX
α).

Normal Inverse Gaussian Process. The characteristic function of µ(ξ) +Z(ξ) is given
by

Ψh(z; ξ) = e
izhµ(ξ)+izhµ0+δh

[√
α2−β2−

√
α2−(β+iz)2

]
with ξ = (µ0, δ, α, β) and

µ(ξ) = r − δ[
√
α2 − β2 −

√
α2 − (β + 1)2]− µ0.
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It can be rewritten as

Ψh(z; ξ) = e
izhµ(ξ)+izhµ0+δh

[√
α2−β2−√ρeiφ/2

]
,

where

ρ ≡ ρ(z) =
√

(α2 − β2 + z2)2 + (2βz)2 and φ ≡ φ(z) = Arg(α2 − (β + iz)2).

This leads to

Rj = eδh(
√
α2−β2−√ρj ·cos(φj/2)) · cos

(
πj

lX
h(µ(ξ) + µ0)− δh√ρj · sin(

φj
2

)

)

Ij = eδh(
√
α2−β2−√ρj ·cos(φj/2)) · sin

(
πj

lX
h(µ(ξ) + µ0)− δh√ρj · sin(

φj
2

)

)
,

where

ρj = ρ(
πj

lX
) and φj = φ(

πj

lX
).

Tempered Stable Process. The characteristic function of µ(ξ) + Z(ξ) is

Ψh(z; ξ) = eizhµ(ξ)+hΓ(−α+)c+[(λ+−iz)α+−λα+
+ ]+hΓ(−α−)c−[(λ−+iz)α−−λα−− ],

where ξ = (α−, α+, λ−, λ+), Γ(·) is the gamma function and

µ(ξ) = r − Γ(−α+)c+[(λ+ − 1)α+ − λα+

+ ]− Γ(−α−)c−[(λ− + 1)α− − λα−− ].

It can be rewritten as

Ψh(z; ξ) = ehΓ(−α+)c+[ρ
α+
+ cos(φ+α+)−λα+

+ ]+hΓ(−α−)c−[ρ
α−
− cos(φ−α−)−λα−− ]

·eih[zµ(ξ)+Γ(−α+)c+ρ
α+
+ sin(φ+α+)+Γ(−α−)c−ρ

α−
− sin(φ−α−)],

where

ρ+ ≡ ρ+(z) =
√
λ2

+ + z2, ρ− ≡ ρ−(z) =
√
λ2
− + z2,

and
φ+ ≡ φ+(z) = Arg(λ+ − iz), φ− ≡ φ−(z) = Arg(λ− + iz).
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Hence,

Rj = eA cos(B(j)) and Ij = eA sin(B(j)),

where

A = h [Γ(−α+)c+[ρ
α+

+ cos(φ+α+)− λα+

+ ] + Γ(−α−)c−[ρ
α−
− cos(φ−α−)− λα−− ]]

and

B(j) = h[
πj

lX
µ(ξ) + Γ(−α+)c+ρ

α+

+ sin(φ+α+) + Γ(−α−)c−ρ
α−
− sin(φ−α−)].

Appendix for Chapter 6

6.A The Inverse Transform Method

Suppose we want to sample random variates from a CDF, denoted by F . Denote the inverse
function of F by F−1. For a uniformly generated random variate z from the interval [0, 1],
we can obtain a sample from the distribution F by taking the inverse as x = F−1(z). If
the inverse function is unknown, then the problem is reduced to finding an approximation
of F−1. Chen et al. (2011) propose the inverse transform method to solve this problem as
follows.

Given an ε > 0, select an interval [x0, xK ] such that max(F (x0), 1 − F (xK)) < ε. Let
h := xK−x0

K
for a positive integer K, and xk = x0 + kh, 0 ≤ k ≤ K. Compute the values

Fk ≡ F (xk) and store (xk, Fk) as a pair for each 0 ≤ k ≤ K. For a uniformly generated
random variate z from the interval [0, 1], use the binary search to find k, where 0 ≤ k < K,
such that Fk ≤ z < Fk+1. Then F−1(z) can be approximated by the following linear
representation:

F−1(z) ≈ xk +
xk+1 − xk
Fk+1 − Fk

(z − Fk).

When 0 < z < F0 or FK ≤ z < 1, we can use the convention shown as follows to
approximate F−1(z) if ε is given small, say 10−8. Then we have F−1(z) ≈ x0 if 0 < z < F0

and F−1(z) ≈ xK if FK ≤ z < 1.
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6.B Proof of Proposition 6.1.1.

The regime does not change when N = 0, therefore T1 = T under the assumption that the
initial state is 1. Then we have,

FT1|N(T1 ≤ l|N = 0) =

{
1, if l ≥ T ,

0, otherwise.

Given N , let X = {X1, ..., XN} denote the event times. By the property of a Poisson
process, we know that fX|N follows a uniform distribution. Then we have fX|N ∝ 1.
Therefore, for any integer N ≥ 1, we can obtain FT1|N(T1 ≤ l|N = n) by integrating 1 over
all possible domains of event times, and then normalize the integration.

Here we provide the proof of the results for N up to 10. Let ZN , N = 1, ..., 10, be the
normalizer for the integration. We can calculate ZN by letting FT1|T (T1 ≤ T |N = 1) = 1.

N = 1

FT1|N(T1 ≤ l|N = 1) = Z1

∫ l

0

dX1 = Z1l,

and hence Z1 = 1
T

. Then we have

FT1|N(T1 ≤ l|N = 1) =
l

T
=

⌈
1
2

⌉
−1∑

j=0

1!

(1− j)!j!
l1−j(T − l)j

T 1
.

N = 2

In this case, T1 = X1 + T −X2, then X1 and X2 satisfy the following conditions

0 ≤ X1 + T −X2 ≤ l and 0 ≤ X1 ≤ X2 ≤ T.

Then we have our integration domain:

X1 ∈ [0, l +X2 − T ] and X2 ∈ [T − l, T ].

Therefore,

FT1|N(T1 ≤ l|N = 2) = Z2

∫ T

T−l

∫ l+X2−T

0

dX1dX2 = Z2
l2

2
,
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and hence Z2 = 2
T 2 . Then we have

FT1|N(T1 ≤ l|N = 2) =
l2

T 2
=

⌈
2
2

⌉
−1∑

j=0

2!

(2− j)!j!
l2−j(T − l)j

T 2
.

N = 3

Similarly as above, use 0 ≤ X1 ≤ ... ≤ XN ≤ T to represent T1 with the condition
T1 ≤ l, and we have two domains for integration:

X1 ∈ [0, X2]

X2 ∈ [0, X3]

X3 ∈ [0, l]

and


X1 ∈ [0, l +X2 −X3]

X2 ∈ [X3 − l, X3]

X3 ∈ [l, T ]

.

Then

FT1|N(T1 ≤ l|N = 3) = Z3
−2l3 + 3l2T

3!
,

and hence Z3 = 3!
T 3 . Then we have

FT1|N(T1 ≤ l|N = 3) =
−2l3 + 3l2T

T 3
=

⌈
3
2

⌉
−1∑

j=0

3!

(3− j)!j!
l3−j(T − l)j

T 3
.

N = 4

The domains for integration are
X1 ∈ [0, X2]

X2 ∈ [0, X3]

X3 ∈ [0, X4 + l − T ]

X4 ∈ [T − l, T ]

and


X1 ∈ [0, X2]

X2 ∈ [X3 + T −X4 − l, X3]

X3 ∈ [X4 + l − T,X4]

X4 ∈ [T − l, T ].

With Z4 = 4!
T 4 , we have

FT1|N(T1 ≤ l|N = 4) =
−3l4 + 4l3T

T 4
=

⌈
4
2

⌉
−1∑

j=0

4!

(4− j)!j!
l4−j(T − l)j

T 4
.
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N = 5

The domains for integration are

X1 ∈ [0, X2]

X2 ∈ [0, X3]

X3 ∈ [0, X4 + l −X5]

X4 ∈ [X5 − l, X5]

X5 ∈ [l, T ]

,



X1 ∈ [0, X2]

X2 ∈ [0, X3]

X3 ∈ [0, X4]

X4 ∈ [0, X5]

X5 ∈ [0, l]

and 

X1 ∈ [0, l +X4 −X5 +X2 −X3]

X2 ∈ [X3 +X5 −X4 − l, X3]

X3 ∈ [l +X4 −X5, X4]

X4 ∈ [X5 − l, X5]

X5 ∈ [l, T ].

With Z4 = 5!
T 5 , we have

FT1|N(T1 ≤ l|N = 5) =
6l5 − 15l4 + 10l3T 2

T 5
=

⌈
5
2

⌉
−1∑

j=0

5!

(5− j)!j!
l5−j(T − l)j

T 5
.

N = 6

The integration domains are

X1 ∈ [0, X2]

X2 ∈ [0, X3]

X3 ∈ [0, X4]

X4 ∈ [0, X5]

X5 ∈ [0, X6 + l − T ]

X6 ∈ [T − l, T ]

,



X1 ∈ [0, X2]

X2 ∈ [0, X3]

X3 ∈ [0, X4 −X5 − T +X6 + l]

X4 ∈ [T +X5 −X6 − l, X5]

X5 ∈ [X6 + l − T,X6]

X6 ∈ [T − l, T ]

157



and 

X1 ∈ [0, X4 −X5 − T +X6 + l +X2 −X3]

X2 ∈ [X3 − l −X6 + T +X5 −X4, X3]

X3 ∈ [l +X6 − T +X5 −X4, X4]

X4 ∈ [T +X5 −X6 − l, X5]

X5 ∈ [X6 + l − T,X6]

X6 ∈ [T − l, T ]

,

then we have

FT1|N(T1 ≤ l|N = 6) =
10l6 − 24l5T + 15l4T 2

T 6
.

Hereafter, for convenience, Xi −Xj is denoted by Xi,j.

N = 7

The integration domains are

X1 ∈ [0, X2]

X2 ∈ [0, X3]

X3 ∈ [0, X4]

X4 ∈ [0, X5]

X5 ∈ [0, X6]

X6 ∈ [0, X7]

X7 ∈ [0, l]

,



X1 ∈ [0, X2]

X2 ∈ [0, X3]

X3 ∈ [0, X4]

X4 ∈ [0, X5]

X5 ∈ [0, l +X6,7]

X6 ∈ [X7 − l, X7]

X7 ∈ [l, T ]

,



X1 ∈ [0, l +X6,7 +X4,5 +X2,3]

X2 ∈ [X3,4 +X5,6 +X7 − l, X3]

X3 ∈ [X6,7 +X4,5 + l, X4]

X4 ∈ [X5,6 − l +X7, X5]

X5 ∈ [l +X6,7, X6]

X6 ∈ [X7 − l, X7]

X7 ∈ [l, T ]

and



X1 ∈ [0, X2]

X2 ∈ [0, X3]

X3 ∈ [0, X6,7 +X4,5 + l]

X4 ∈ [X5,6 +X7 − l, X5]

X5 ∈ [+X6,7, X6]

X6 ∈ [X7 − l, X7]

X7 ∈ [l, T ]

,

then we have

FT1|N(T1 ≤ l|N = 7) =
l7 + 7l6(T − l) + 21l5(T − l)2 + 35l4(T − l)3

T 7
.
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N = 8

The integration domains are

X1 ∈ [0, X2]

X2 ∈ [0, X3]

X3 ∈ [0, X4]

X4 ∈ [0, X5]

X5 ∈ [0, X6]

X6 ∈ [0, X7]

X7 ∈ [0, X8 + l − T ]

X8 ∈ [T − l, T ]

,



X1 ∈ [0, X2]

X2 ∈ [0, X3]

X3 ∈ [0, X6,7 +X4,5 + l +X8 − T ]

X4 ∈ [X5,6 +X78 − l + T,X5]

X5 ∈ [l +X6,7 +X8 − T,X6]

X6 ∈ [X7,8 − l + T,X7]

X7 ∈ [l +X8 − T, T ]

X8 ∈ [T − l, T ]

,



X1 ∈ [0, l +X6,7 +X4,5 +X2,3 +X8 − T ]

X2 ∈ [X3,4 +X5,6 +X7,8 − l + T,X3]

X3 ∈ [X6,7 +X4,5 + l +X8 − T,X4]

X4 ∈ [X5,6 − l +X7,8 + T,X5]

X5 ∈ [l +X6,7 +X8 − T,X6]

X6 ∈ [X7,8 − l + T,X7]

X7 ∈ [l +X8 − T, T ]

X8 ∈ [T − l, T ]

and



X1 ∈ [0, X2]

X2 ∈ [0, X3]

X3 ∈ [0, X4]

X4 ∈ [0, X5]

X5 ∈ [0, l +X6,7 +X8 − T ]

X6 ∈ [T +X7,8 − l, X7]

X7 ∈ [l − T +X8, X8]

X8 ∈ [T − l, T ]

,

then we have

FT1|N(T1 ≤ l|N = 8) =
l8 + 8l7(T − l) + 28l6(T − l)2 + 56l5(T − l)3

T 8
.

N = 9

159



The integration domains are

X1 ∈ [0, X2]

X2 ∈ [0, X3]

X3 ∈ [0, X4]

X4 ∈ [0, X5]

X5 ∈ [0, X6]

X6 ∈ [0, X7]

X7 ∈ [0, X8]

X8 ∈ [0, X9]

X9 ∈ [0, l]

,



X1 ∈ [0, X2]

X2 ∈ [0, X3]

X3 ∈ [0, X4]

X4 ∈ [0, X5]

X5 ∈ [0, X6]

X6 ∈ [0, X7]

X7 ∈ [0, X8,9 + l]

X8 ∈ [X9 − l, X9]

X9 ∈ [l, T ]

,



X1 ∈ [0, X2]

X2 ∈ [0, X3]

X3 ∈ [0, X4]

X4 ∈ [0, X5]

X5 ∈ [0, l +X6,7 +X8,9]

X6 ∈ [X7,8 +X9 − l, X7]

X7 ∈ [l +X8,9, X8]

X8 ∈ [X9 − l, X9]

X9 ∈ [l, T ]

,



X1 ∈ [0, X2]

X2 ∈ [0, X3]

X3 ∈ [0, X4,5 +X6,7 +X8,9 + l]

X4 ∈ [X5,6 +X7,8 +X9 − l, X5]

X5 ∈ [l +X6,7 +X8,9, X6]

X6 ∈ [X7,8 +X9 − l, X7]

X7 ∈ [l +X8,9, X8]

X8 ∈ [X9 − l, X9]

X9 ∈ [l, T ]

and



X1 ∈ [0, X2,3 +X4,5 +X6,7 +X8,9 + l]

X2 ∈ [X3,4 +X5,6 +X7,8 +X9 − l, X3]

X3 ∈ [X4,5 +X6,7 +X8,9 + l, X4]

X4 ∈ [X5,6 +X7,8 +X9 − l, X5]

X5 ∈ [l +X6,7 +X8,9, X6]

X6 ∈ [X7,8 +X9 − l, X7]

X7 ∈ [l +X8,9, X8]

X8 ∈ [X9 − l, X9]

X9 ∈ [l, T ]

,

then we have

FT1|N(T1 ≤ l|N = 9) =
1

T 9
(l9 + 9l8(T − l) + 36l7(T − l)2 + 84l6(T − l)3 + 126l5(T − l)4).
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N = 10

The integration domains are

X1 ∈ [0, X2]

X2 ∈ [0, X3]

X3 ∈ [0, X4]

X4 ∈ [0, X5]

X5 ∈ [0, X6]

X6 ∈ [0, X7]

X7 ∈ [0, X8]

X8 ∈ [0, X9]

X9 ∈ [0, l − T +X10]

X10 ∈ [T − l, T ]

,



X1 ∈ [0, X2]

X2 ∈ [0, X3]

X3 ∈ [0, X4]

X4 ∈ [0, X5]

X5 ∈ [0, X6]

X6 ∈ [0, X7]

X7 ∈ [0, X8,9 +X10 + l − T ]

X8 ∈ [X9,10 + T − l, X9]

X9 ∈ [l − T +X10, X10]

X10 ∈ [T − l, T ]

,



X1 ∈ [0, X2]

X2 ∈ [0, X3]

X3 ∈ [0, X4]

X4 ∈ [0, X5]

X5 ∈ [0, X6,7 +X8,9 +X10 + l − T ]

X6 ∈ [X7,8 +X9,10 − l + T,X7]

X7 ∈ [X8,9 +X10 + l − T,X8]

X8 ∈ [X9,10 + T − l, X9]

X9 ∈ [l − T +X10, X10]

X10 ∈ [T − l, T ]

,



X1 ∈ [0, X2]

X2 ∈ [0, X3]

X3 ∈ [0, X4,5 +X6,7 +X8,9 +X10 + l − T ]

X4 ∈ [X5,6 +X7,8 +X9,10 + T − l, X5]

X5 ∈ [X6,7 +X8,9 +X10 + l − T,X6]

X6 ∈ [X7,8 +X9,10 − l + T,X7]

X7 ∈ [X8,9 +X10 + l − T,X8]

X8 ∈ [X9,10 + T − l, X9]

X9 ∈ [l − T +X10, X10]

X10 ∈ [T − l, T ]
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and



X1 ∈ [0, X2,3 +X4,5 +X6,7 +X8,9 +X10 + l − T ]

X2 ∈ [X3,4 +X5,6 +X7,8 +X9,10 − l + T,X3]

X3 ∈ [X4,5 +X6,7 +X8,9 +X10 + l − T,X4]

X4 ∈ [X5,6 +X7,8 +X9,10 + T − l, X5]

X5 ∈ [X6,7 +X8,9 +X10 + l − T,X6]

X6 ∈ [X7,8 +X9,10 − l + T,X7]

X7 ∈ [X8,9 +X10 + l − T,X8]

X8 ∈ [X9,10 + T − l, X9]

X9 ∈ [l − T +X10, X10]

X10 ∈ [T − l, T ]

,

then we have

FT1|N(T1 ≤ l|N = 10) =
1

T 10
(l10+10l9(T−l)+45l8(T−l)2+120l7(T−l)3+210l6(T−l)4).

These five distributions also satisfy the equation

FT1|N(T1 ≤ l|N = n) =

⌈
n
2

⌉
−1∑

j=0

(
n

j

)
(
l

T
)n−j(1− l

T
)j.

Therefore, the results follow. �

6.C Proof of Proposition 6.1.2.

For any integer n ≥ 1, we consider two cases, when n is odd and when n is even.

Given U = u and N = n, where n is odd, we have

fX|N,U ∝ fX,N,U

= fU |X,NfX|NfN

= fU |X,N ·
T−n

n!
· λ

n
∆e
−λ∆

n!
, if 0 < X1 < X2... < Xn < T,

where the last equality follows from the properties of a Poisson process. Since U and N
are given, then

fX|N,U ∝ fU |X,N .
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Moreover, if X1, ..., Xn are given, then U is fixed. Therefore,

fU |X,N =

{
1, if

∑n+1
2

i=1 (X2i−1 −X2i−2) =
u−σ2

2T

σ2
1−σ2

2
,

0, otherwise,

and hence

fX|N,U ∝

{
1, if

∑n+1
2

i=1 (X2i−1 −X2i−2) =
u−σ2

2T

σ2
1−σ2

2
and 0 < X1... < Xn < T,

0, otherwise.

Similarly, when n is even,

fX|N,U ∝

{
1, if

∑n
2
i=1(X2i −X2i−1) =

u−σ2
2T

σ2
1−σ2

2
and 0 < X1... < Xn < T,

0, otherwise.

Since the distribution is proportional to a constant, so fX|N,U follows a uniform distribu-
tion. �

6.D Proof of Lemma 6.1.1.

Let us focus on the first case. Note that T1 and N1,2 can be represented in terms of U
and N respectively. Also, W1, ...,WN1,2 can be represented in terms of the event times
X1, ..., XN . By Bayes’ theorem and the change of variables theorem, we have

fW |T1,N1,2 =
fW,T1,N1,2

fT1,N1,2

=
fX,U,N
fU,N

·H = fX|U,N ·H,

where H is a ratio of two Jacobians:

H =

∣∣∂(W,T1,N1,2)

∂(X,U,N)

∣∣∣∣∂(T1,N1,2)

∂(U,N)

∣∣ .
Since H is a constant and fX|U,N is a uniform distribution by Proposition 6.1.2, and hence
fW |T1,N1,2 is uniform over the interval [0, T1] if 0 < W1 < ... < WN1,2 < T1. Similarly, we
can prove that given T2 and N2,1, the joint distribution of J = {J1, ..., JN2,1−1} is uniform
over the interval [0, T2] if 0 < J1 < ... < JN2,1−1 < T2. Therefore, we can generate random
variates from the distributions fW |T1,N1,2 and fJ |T2,N2,1 by sampling uniformly from the in-
terval [0, T1] and [0, T2] respectively. �
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6.E Proof of the Continuity of the Likelihood Ratio in (6.25).

To prove the likelihood ratio in (6.25) is continuous, we need to prove that dQ∗(s) and
dP ∗(s) are continuous at every s ∈ SL. Let

fS,T1(s, t) :=
1

s
√

2πσ̄(t)
exp(−

(ln s− lnS0 − rTh + 1
2
σ̄(t))2

2σ̄(t)
).

Since a log-normal density function is continuous, so fS,T1(s, t) is continuous at every
s ∈ SL. Since fT1 does not depend on s ∈ SL, this shows that the product fS,T1 · fT1 is also
continuous at every s ∈ SL.

Next we prove that the numerator of (6.25), g(s) :=
∫ Th

0
fS,T1(s, t) · fT1(T1 = t)dt, is

continuous at every s ∈ SL. For a given s0 ∈ SL, define

t∗s := arg sup
t∈[0,Th]

∣∣fS,T1(s, t)− fS,T1(s0, t)
∣∣, s ∈ SL.

Since fS,T1 is continuous at any s ∈ SL, then for any number ε > 0, there exists δ > 0 such
that if ∣∣s− s0

∣∣ < δ,

then ∣∣fS,T1(s, t∗s)− fS,T1(s0, t
∗
s)
∣∣ < ε.

Since fT1 is the density function of T1, then we have

∣∣g(s)− g(s0)
∣∣ ≤ ∫ Th

0

∣∣fS,T1(s, t∗s)− fS,T1(s0, t
∗
s)
∣∣fT1(t)dt

<

∫ Th

0

εfT1(t)dt = ε

∫ Th

0

fT1(t)dt ≤ ε · 1 = ε.

This implies that function g is continuous at s0. Since the above is valid for any s0 ∈ SL,
and hence g(s) is continuous at every s ∈ SL.

Similarly, we can prove that the denominator of (6.25) is also continuous at every
s ∈ SL. In addition, the denominator is an integral of a product of two density functions,
and hence dP ∗(s) 6= 0, for every s ∈ SL. Thus the result follows. �
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6.F Derivation of the Sampling Log-normal Distribution is Section
6.1.4.

Based on the results in (6.2) and (6.3) and given S0 = s0, ST = sT and the volatility
path {vt} obtained in Section 6.1.3, we know that f(ST |St), f(St|S0) and f(ST |S0) follow
log-normal distributions. Denote

µ∗1 := r(T − t)− 1

2

∫ T

t

σ2
sds, σ∗1 =

√∫ T

t

σ2
sds,

µ∗2 := rt− 1

2

∫ t

0

σ2
sds and σ∗2 =

√∫ t

0

σ2
sds.

Then we have

f(ST |St) ∼ LN(ln y + µ∗1, (σ
∗
1)2), and f(St|S0) ∼ LN(lnx+ µ∗2, (σ

∗
2)2).

Through a simple algebra, we have

f(St = st|S0 = s0, ST = sT ) ∝ f(ST = sT |St = st)f(St = st|S0 = s0) = Cx,z · f ∗(y|x, z),

where Cx,z is a constant and f ∗(y|x, z) ∼ LN(µ∗, (σ∗)2) with

µ∗ =
(σ∗1)2(ln s0 + µ2) + (σ∗2)2(ln sT − µ1)

(σ∗1)2 + (σ∗2)2
and σ∗ =

σ∗1σ
∗
2√

(σ∗1)2 + (σ∗2)2
.

Then for any t ∈ {ti, i = 1, ..., n}, we can use a log-normal random variate generator to
sample St from the conditional distribution f ∗ as derived above.
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