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Abstract

The yellow spotted salamander (Ambystoma maculatum) shares a unique 

endosymbiotic relationship with the unicellular green alga Oophila amblystomatis. 

Though a number of studies have isolated and identified O. amblystomatis, the alga’s 

taxonomic identity is yet to be resolved. In this study the nuclear SSU rRNA gene was 

used to identify two well supported Oophila clades that included sequences from past 

studies in addition to isolates from the current study, and showed that O. amblystomatis 

does not group monophyletically with its own members, and groups paraphyletically 

with other species of green algae. Past studies have also assessed the potential for 

indirect effects on embryo development via herbicidal exposure to the endosymbiotic 

algae, but few have taken into account the possibility of correct species identification, 

strain, or locale sensitivity. In this study, the response of O. amblystomatis to the 

exposure of two herbicides, atrazine and 2,4-dichlorophenoxyacetic (96 h exposure 

acute toxicity tests), followed by recovery (96 h recovery in untreated media) acid were 

characterized. Lowest growth inhibition no-observed effect concentrations of 70 μg/L 

and 30 mg/L of atrazine and 2,4-D, respectively, followed by full recovery at these 

concentrations, indicate that these herbicides do not pose a risk of growth inhibition to 

egg-inhabiting algae. This study proposes a revision of the current taxonomy of O. 

amblystomatis, and demonstrates the need for species identification and thorough 

phylogenetic reconstruction in toxicity testing. 
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1. General Introduction

Ambystoma maculatum (Shaw), the yellow spotted salamander, shares a unique 

mutualistic relationship with a unicellular green alga commonly described as Oophila 

amblystomatis (Chlamydomonadales) Lambert ex Wille (Orr 1888, Wille 1905). Kerney 

(2011) suggested that the algal cells enter the salamander eggs after they are laid and 

provide the developing embryos with oxygen. This additional provision of oxygen has 

been shown to increase the viability and hatching success of the embryos (Gilbert & 

Perry 1944). More recently, it has been proposed that the embryos also incorporate 

fixed carbon produced by the algae, which further aids in their development (Graham et 

al. 2013). The algae in turn benefit from compounds produced in the nitrogenous waste 

of the embryos, such as ammonia, which the algae convert to proteins (Goff & Stein 

1978, Kerney 2011). The gelatinous matrix encompassing the eggs may also serve as 

protection for the algae from grazing (Kerney 2011).

The habitat of A. maculatum ranges from Nova Scotia in eastern Canada to 

Florida in the southern United States and reaches westward towards Ontario and Texas 

(Phillips 1994). Two scenarios have been proposed to explain the biogeographic 

distribution of A. maculatum and other North American fauna, post-glacial advance 

(Zamudio and Savage 2003). Numerous studies have hypothesized that species could 

have either evolved in eastern North America then spread west after glaciation, or 

diversity within refugial populations could have already existed before glaciation, 

meaning that glaciation periods may not have served as the sole driver of genetic 

variation in North America (Pflieger 1970, Mayden 1985, 1987). Recent evidence 

postulated by Zamudio and Savage (2003) has suggested that genetic divergence 
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within A. maculatum populations points towards post-glacial dispersal and radiation of 

these organisms from at least two southern refugia in the southern Appalachian 

Mountains (Zamudio and Savage 2003).

Spotted salamanders inhabit forested areas, and migrate to ephemeral 

freshwater ponds to mate and lay their eggs in the spring (Newcomb et al. 2003). In 

farmed regions, these temporary ponds may be associated with agricultural runoff that 

could be contaminated with pesticides (Mann et al. 2009). Amphibians and their eggs 

are particularly sensitive to contaminants due to their highly permeable integument, 

which allows for gas exchange and osmoregulation (Hopkins 2007). Hence, A. 

maculatum embryos and their mutualistic algae are both at risk of being exposed to 

contaminants including agricultural pesticides, which may accumulate in their habitats 

and alter aquatic conditions (Rodríguez-Gil et al. 2014, Hopkins 2007).

There is specific concern that herbicides could impair the growth and viability of 

the algal symbionts within A. maculatum eggs, whereby reducing hatching success and 

development of the embryos, as reported for atrazine by Olivier and Moon (2009). 

Atrazine is one of the most widely used herbicides in North America (Solomon et al. 

1996) and in Ontario, it is the second most applied pesticide for corn crops (after 

glyphosate). It is primarily used to control annual broadleaf and grass weeds (McGee et 

al. 2010, Solomon et al. 1996).

Another widely used broadleaf agrochemical in North America is 2,4 

dichlorophenoxyacetic acid (2,4-D) (Boivin et al. 2005). This herbicide is auxin 

simulator, and operates by disrupting normal plant cell division (Relyea et al. 2005, 

Fairchild et al. 1997). Though the direct effects of this herbicide on A. maculatum 
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embryos have not yet been extensively documented, there is potential for the algal 

symbionts to be inhibited by the herbicidal properties of 2,4-D (Wong 2000). Herbicides 

such as atrazine and 2,4-D pose a potential threat for amphibian populations in 

agricultural areas (Mann et al. 2009). As such, there is increasing concern for the risks 

that these chemicals may pose to amphibian health (Mann et al. 2009).

1.1 Symbiotic Relationships between the Chlorophyta and Animals

From aquatic to subaerial and terrestrial habitats, algae have colonized 

environments that would seemingly be uninhabitable for many other forms of

life (Seckbach, 2007; Wolfang, 2000). Aquatic algae have a wide ranging tolerance of 

pH, temperature, dissolved oxygen, and carbon dioxide concentrations, and thus can be 

observed in freshwater bodies to salt lakes, hot springs and even deserts (Barsanti et 

al. 2008). These organisms have also colonized extremely cold environments such as 

glaciers, and lowlight environments such as the marine benthos, at depths of 200 m 

(Barsanti et al. 2008). In addition to their capabilities to adapt to a wide range of 

conditions, algae are also notable for their many different associations with other 

organisms such as epiphytism, parasitism, and various symbioses (Barsanti et al. 

2008). Algae observed growing on plants or other algae are known as epiphytes, while 

epizoic algae are those that grow on animals (Bourrelly 1968). An example of the latter 

is Trichophilus welckeri, a species of green algae that inhabits the coarse and water 

absorbent fur of Bradypus spp., the three-toed sloth (Suutari et al. 2010). Though this 

alga has been described as the predominant algal species to inhabit Bradypus spp., 

phylogenetic analyses have revealed a diverse algal community (at least 20 species 
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across multiple genera) that has adapted to live with Bradypus and other sloth species 

(Suutari et al. 2010, Pauli et al. 2014, Voirin 2015). Differing hair structure, ecology, and 

divergence of sloth genera approximately 20 million years ago have been proposed as 

possible mechanisms for algal diversity and co-evolution in this symbiotic relationship 

(Suutari et al. 2010, Delsuc et al. 2004).    

Algae have also been observed having endosymbiotic associations (where algal 

cells are absorbed by host) with other organisms (Kerney 2011). Perhaps the most well 

known example of algal-animal endosymbiosis is that between the sea slug Elysia 

chlorotica and its algal food source Vaucheria litorea (Ochrophyta), a yellow-green 

marine alga (Rumpho et al. 2008). The kleptoplastic (plastid stealing) sea slug obtains 

the alga’s plastids via ingestion (herbivorous feeding) and stores the organelles in its 

epithelium where they continue to photosynthesize, providing the sea slug with an 

energy source (Rumpho et al. 2008). Alga cells are ingested during the larval stages of 

E. chlorotica, and again after metaphorphosis when larvae transform into adults 

(Schwartz et a. 2014). Thus, E. chlorotica has demonstrated the ability to renew its 

plastid endosymbionts (Schwartz et a. 2014).

In a similar case of endosymbiosis, the transient invasion of Oophila 

amblystomatis cells into the egg fluid of amphibian eggs is a well-known relationship 

seen in North American (Kerney 2011). Though other amphibians such as ranid frogs 

are also known to harbour O. amblystomatis within their eggs, this symbiotic 

relationship has been mostly observed and studied in Ambystoma maculatum, from 

where the alga derives its name (Wille 1909, Kerney 2011; Pinder and Friet 1994). The 

mutualism between O. amblystomatis and A. maculatum was first noted by Gilbert 

�4



(1942, 1944) who, through a series of experiments, noted that salamander eggs 

inhabited by the algal cells had lower mortality, faster hatching time and a greater rate of 

development than those without algal cells (Hutchinson and Hammen 1958). Increased 

proliferation of the algae in the presence of the salamander embryos was also 

observed, relative to algal growth in eggs where embryos were removed (Gilbert 1942). 

These embryo exclusion experiments have yet to be reproduced however, and 

experiments examining benefits to the algal symbionts are few compared to those 

examining benefits to A. maculatum (Kerney 2011). There is thus a need for further 

evidence to establish this symbiotic relationship as case of mutualism in favour of the 

endosymbiotic algae (Kerney 2011).

1.2 Taxonomy of the “Oophila” Clade

Recently, there has been increasing interest in the phylogeny and identity of 

Oophila amblystomatis. Named informally in 1905 by Lambert, who collected algal 

samples from A. maculatum eggs, the alga has been accepted as a “Chlamydomonad 

green alga” but lacks enough phylogenetic evidence for its current taxonomic position 

(Collins et al. 1905, Wille 1909, Kim et al. 2014). Recent phylogenetic reconstruction of 

algae sampled from A. maculatum eggs has suggested that the algal symbionts form a 

strongly supported clade which includes free living chlamydomonad taxa as well as 

sequences previously identified as O. amblystomatis (Kim et al. 2014, Rodríguez-Gil, et 

al. 2014, Baxter et al. 2015, Bishop and Miller 2014). Increasing evidence of the 

taxonomic position of O. amblystomatis amongst other green algal species indicates 

that the algae present in A. maculatum eggs is paraphyletic and groups with other 
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members within the Chlamydomonas genus (Baxter et al. 2015). Past studies have 

focused on the biogeography of this egg inhabiting algae, although sampling of the 

organisms has not extended to the complete range of A. maculatum (Phillips 1994, 

Zamudio and Savage 2003, Zamudio and Wieczorek 2007). To date, research focused 

on the phylogeny of O. amblystomatis has included samples from parts of eastern, 

western and central Canada, and some parts of the southern and eastern US (Kerney 

et al. 2011, Kim et al. 2014, Graham et al. 2013, Rodríguez-Gil et al. 2014), but the data 

have not been consolidated. Furthermore, most of the available sequence data for O. 

amblystomatis has been sampled from the North American east coast; thus it is evident 

that central North American regions are not, comparatively, sufficiently represented in 

terms of sample size. The investigation by Rodríguez-Gil et al. (2014), which included a 

sequence taken from Nova Scotia (Kerney et al. 2011), Pennsylvania (Graham et al. 

2013) and their own samples collected from southern Ontario, highlighted this need for 

increased sampling as their phylogenetic analyses revealed a possibility for 

biogeographic variability amongst the algae. More recently a study performed by Kim et 

al. (2014), which analyzed the majority of sequences from Nova Scotia along with a few 

other sequences across Canada and the United States, concluded that their samples 

formed one distinct “Oophila” clade, without an indication of possible variation, though 

they did not include sequence data from Rodríguez-Gil et al. (2014) or other available 

GenBank sequences in their analyses. Thus, there has been some evidence to indicate 

that some algal symbionts of A. maculatum may occupy a separate clade outside of O. 

amblystomatis, contrary to what has been previously accepted (Rodríguez-Gil et al. 

2014).
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1.3 History and Taxonomy of the Chlamydomonads

The genus Chlamydomonas Ehrenberg (1883) has historically been accepted as 

including all green algal species in which cells were biflagellated and housed one 

pyrenoid containing chloroplast with a cell wall (Ettl 1976; Pröschold et al. 2001). For 

this reason, the genus was considered by some taxonomists to be an artificial 

designation, as the described characteristics are not exclusive, or synapomorphic, to all 

Chlamydomonad species (Ettl 1976; Pröschold et al. 2001). Furthermore, many of the 

species within this genus were first identified using morphological classification, and did 

not take into account possible life cycle and population level variation within the 

Chlamydomonads (Pröschold et al. 2001). Thus, the genetic identity of many previously 

classified Chlamydomonad species have yet to be molecularly confirmed (Pröschold et 

al. 2001). 

One characteristic that has been used to delineate species within 

Chlamydomonas is the number and position of pyrenoids within the chloroplast. A lack 

of pyrenoids within the cell has led some phycologists to transfer some 

Chlamydomonas species into a separate genus, Chloromonas Gobi emend. Wille 

(1903), however this designation has not been unanimously accepted (Harris 2009; 

Pröschold et al. 2001). For example, Harris (2009) has maintained that the presence of 

pyrenoids can be affected by certain environmental conditions and hence, they can be 

absent in some parts of the life cycle. Futhermore, there is molecular evidence that 

demonstrates that some species in Chloromonas and Chlamydomonas group together, 

resulting in taxonomic amendments of these genera (Buchheim et al. 1997; Harris et al., 
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2009, Morita et al. 1999; Pröschold et al. 2001). For example, Pröschold et al. (2001) 

used molecular evidence from nuclear encoded small subunit (SSU) rRNA gene 

sequences to regroup previously described pyrenoid-containing Chlamydomonas 

species with the Chloromonas genus. Another study examined cold-tolerant and snow 

inhabiting species of Chlamydomonas and Chloromonas, and revised the relationships 

among species in both genera using  the nuclear SSU rRNA gene and rbcL genes 

(encodes the large subunit of the Ribulose 1,5-biphosphate carboxylase/oxygenase 

enzyme) and observed that pyrenoids have been gained and lost multiple times 

between these genera (Hoham et al. 2002). This supports the postulate that neither 

genus is monophyletic, despite being widely studied, and requires extensive taxonomic 

revision (Hoham et al. 2002).

Employing the use of nuclear SSU and ITS (Internal transcribed spacer) rRNA 

barcodes, Demchenko et al. (2012) also used chloroplast/pyrenoid structure as a 

defining characteristic to propose a revision of 15 previously described Chlamydomonas 

strains. The authors described their strains to have highly similar morphologies in 

organelles of the vegetative cells, including flagella and cup shaped chloroplasts 

(Demchenko et al. 2012). Despite some similarities in morphotypes however, 

comparison of mature and younger cells revealed differentiable organelle characters 

such as cup-shaped chloroplast versus lobed chloroplasts and ring-shaped versus 

horseshoe shaped pyrenoid. The extensive morphological characterizations of these 

previously Chlamydomonas sp. strains were confirmed with the phylogenetic 

reconstruction, and the authors show a newly characterized monophyletic lineage 

(within the Chlorophyceae) which they propose to rename Microglena (Demchenko et 
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al. 2012). Thus, it is evident that the polyphyletic Chlamydomonas genus is continually 

being re-examined and its species re-classified with novel and dynamic molecular tools 

(Pröschold et al. 2001, Harris et al. 2009, Demchenko et al. 2012). 

1.4 Effects of Pleistocene Climate Changes on North American Taxa

Within the past few decades sea bed, lake bottom, and ice sheet cores have 

provided scientists with an abundance of data that have helped deepen our 

understanding of paleo-climates (Hewitt 2000). Evidence from these core analyses 

show that temperature oscillations during the Pleistocene epoch (1-2 million years 

before present) lead to Earth’s cooling climate, and fluctuations with increasing 

amplitudes became more prevalent (Hewitt 2000, Zeisset and BeeBee 2008). These 

temperature oscillations led to a series of glaciation events that caused both extinctions 

and post glacial range expansion of many taxa around the world (Zamudio and Savage 

2003). Fluctuations in temperature were felt differently globally and were influenced by 

ocean currents, latitude, and landform characteristics (Hewitt 2000). The Last Glacial 

Maximum (LGM) is regarded as the most recent time period when ice sheets had 

reached their maximum global coverage, around 19 000 to 20 000 years ago (Mix et al. 

2001, Clark et al. 2009). Species responded accordingly to ice-covered Earth and were 

largely compressed to warmer areas towards the equator as ice sheets expanded 

(Hewitt 2000). Thus, many populations that currently inhabit previously glaciated areas 

can trace their lineages back to a limited number of southern refugia from where they 

began their colonization (Zamudio and Savage 2003). In North America and Europe, 

evidence from pollen cores has indicated that taxa currently inhabiting boreal and 
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temperate regions took refuge south of the ice and permafrost during glaciation (Hewitt 

2000). It has been proposed that post-glacial expansion of many of these taxa was fairly 

rapid and that northernmost populations of southern refugia would have expanded into 

large swathes of habitable area (Hewitt 2000). Long distance dispersers would have 

dominated this “leading edge expansion”, establishing colonies and dispersing before 

other populations arrived (Hampe and Petit 2005, Hewitt 2000). A continuation of this 

colonizing process would ultimately lead to successive founder events that would result 

in homozygosity and a loss of alleles (Ibrahim et al. 1996). Studies of fossils records in 

areas of post-glacial colonization show this proposed reduction in genetic diversity, and 

there have been a number of North American phylogeographic studies which show 

decreasing genetic diversity in populations north of southern refugia (Hewitt;1996, 2003, 

Soltis et al. 1997, Conroy et al. 2000). Mountain uplift has also been thought to be a 

major vicariance event that influenced the biogeography of these taxa (Zeisset and 

Beebee 2008).

Within amphibians, however, there are instances where secondary contact of 

vicariant lineages post-glacial colonization has led to an increase in genetic diversity 

(Zeisset and Beebe 2008). For example, Austin et al. (2002) investigated the 

phylogeographic distribution of the amphibian Pseudacris crucifer (spring peeper): a 

small woodland frog that inhabits eastern North America. Through a series of 

mitochondrial haplotype studies, the authors inferred that recolonization of P. crucifer 

began from two isolated southern refugia in the southern Appalachians which then 

converged in Ontario post-glaciation (Austin et al. 2002). Studies have also revealed 

that post glacial expansion of both aquatic and terrestrial species in North America 
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reflect the allopatric differentiation caused by glacial movement (Zamudio and Savage 

2003, Slots et al. 2006). Thus, geomorphological features such as mountain formation 

have, at different evolutionary scales, influenced both species diversification and 

intraspecific variation (Zamudio and Savage 2003)

To establish whether the phylogenetic patterns of A. maculatum today follow the

hypothesized patterns of post glacial biogeography of North American taxa described 

above, Zamudio and Savage (2003) employed the use of two mitochondrial gene 

regions to examine the intraspecific phylogeny of A. maculatum throughout its range in 

eastern North America. Their extensive sampling from 82 locations was able to reveal 

the presence of two monophyletic clades which they hypothesize arose from two 

isolated refugia populations in the southern Appalachian region (Zamudio and Savage 

2003). The aim of this study was to expand the sample area of Zamudio and Savage 

(2003), in hopes of gaining further insight into the biogeographic variation of A. 

maculatum within its range in southern Ontario. Thus, the mitochondrial gene regions 

ND4 and control region (including D-Loop) described by Zamudio and Savage (2003) 

were also employed in this study. Figure 1 shows Zamudio and Savage (2003)’s 

proposed clade hypothesis.
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Figure 1. Map of eastern North America depicting A. maculatum lineage distribution proposed by 
Zamudio and Savage (2003). The blue arrows represent sample localities falling within the author’s 
proposed “coastal clade hypothesis”. The red arrow delineates samples falling into the “interior 
clade” (which consists of two strongly supported lineages).



1.5 Biogeography of Freshwater Algae in North America

Due to their great ability to disperse and form desiccant resistant cells in 

unfavourable conditions, fresh water algae are considered to be geographically 

widespread (Bodeker et al. 2010). One species of filamentous freshwater algae, 

Cladophora glomerata (Chlorophyta) for example, is found globally in a wide range of 

habitats including streams, estuaries, and even polluted lakes (Whitton 1970, Dodds 

and Gudder 1992). Within the coccoid flagellates, geographic distribution is equally 

expansive, with some genera such as Chloromonas, and Chlamydomonas, also 

inhabiting snow and ice (Wehr 2015). Of the estimated 100 freshwater green flagellated 

genera, 50 have been identified across North America (Wehr 2015). 

Some species of algae are not as dispersive and require specific environmental 

conditions that meet their ecological demands in order to thrive (Coesel 1996, Baedeker 

et al. 2010). Within the cosmopolitan cyanobacteria for instance, there are some 

specialized cryptic species that have a very narrow range of habitat (Hoffmann 1996, 

Joyner et al. 2008).  Intuitively, the more limited the distribution of a species is, the less 

opportunities it may have for dispersal, via faunal vectors such as birds for example 

(Kristiansen 1996, Bodeker et al. 2010). For this reason, less ubiquitous algal species 

may provide more insights into paleo-biogeography of these organisms as historic 

geographic distributions are not masked by vector distribution (Boedeker et al. 2010). 
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1.6 The Effects of Herbicides on Oophila amblystomatis

1.6.1 Atrazine

Research on the effects of the herbicide atrazine on A. maculatum eggs has 

shown both direct and indirect effects on growth and hatching success of the embryos 

(Olivier and Moon 2010), though recent and more expansive work was not able to 

replicate these initial findings (Baxter et al., 2015). The ability of atrazine to inhibit 

growth of O. amblystomatis within the salamander eggs is the theorized cause of these 

indirect detrimental effects. The herbicide’s mode of action begins by binding to 

plastoquinone B located in the D1 subunit of PSII, and thus disrupting the flow of 

chloroplast electrons from plastoquinone A to B (Mullet and Arntzen, 1981; Steinback et 

al., 1981). This results in reduced ATP, and NADPH production, CO2 fixation, and an 

ultimate reduced rate of photosynthesis (Mullet and Arntzen, 1981; Steinback et al., 

1981; Zhu et al. 2009). Indirectly, the blockage of electron transport in PSII also causes 

the toxic accumulation of free radicals, such as reactive oxygen species, in PSII 

(Bowyer et al., 1991; Rutherford and Krieger-Liszkay, 2001; Zhu et al. 2009). These free 

radicals are subsequently responsible for protein and pigment damage, and ultimate 

plant death (Zhu et al. 2009). 

With a low vapour pressure and Henry’s law constant, atrazine’s volatilization 

from both water and soil is negligible (Solomon et al. 1996). Furthermore, the movement 

of the chemical from soil to water systems is favoured, as it has a moderate solubility 

and a small partition coefficient (Solomon et al. 1996). The persistent of atrazine in the 

water column is further facilitated by its chemical structure, which contains an s-triazine 

ring, hindering microbial degradation (Solomon et al. 1996). Chemical degradation of 
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atrazine via hydrolysis is thus the most important form of degradation of the compound. 

In waters with pH levels ranging from 6.0 to 7.0 and the addition of 5mg/L fluvial acid 

(naturally occurring levels), half lives of 398 and 742 days, respectively, have been 

observed (Solomon et al.1996). 

The effects of atrazine have been previously tested on algal samples isolated 

from A. maculatum eggs, as well as A. maculatum embryos themselves (Baxter et al. 

2014, Olivier & Moon 2009). However, differences in experimental design and herbicide 

test concentrations have resulted in some contradictory findings amongst these studies 

with regard to the sensitivity of the salamanders and their symbionts. Most recently, a 

comprehensive weight-of-evidence review by Van Der Kraak et al. (2014) maintained 

that A. maculatum and their symbionts are relatively insensitive to the concentrations of 

atrazine found in the environment. In a study investigating atrazine concentrations in 

southern Ontario surface waters, Byer et al. (2011) tested 158 locations within the 

region and reported peak atrazine concentrations at 3.9 μg/L. Furthermore, in rural and 

agricultural areas, they observed these peak concentrations of the herbicide occurring 

during the spring and early summer season when pesticides may be washed from soils 

during high rainfall periods (Byer et al. 2011).

1.6.2 2,4-Dichlorophenoxyacetic Acid

The second herbicide that will be tested in this study is 2,4-D, a phenoxy 

compound which is also a widely applied agrochemical used to control broad-leaved 

weeds (Boivin et al. 2005, Mangat et al. 1999).Through runoff and leaching, it has the 

potential to contaminate aquatic systems, and thus raises concern for biota in 
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freshwater systems that may be susceptible to its toxic effects (Mangat et al. 1999). 

With a relatively low molecular mass, high solubility, and low Henry’s constant, 2,4-D is 

limited in its ability to volatilize (Boivin et al. 2005). However, though it is retained in 

water, studies have shown that the herbicide is readily mineralized by microfauna, thus 

limiting its long term availability to the water column (Boivin et al. 2005). The compound 

is rapidly degraded into residues that are bound to various soil types, and it has been 

shown that 50% of an application dose of the herbicide can mineralize within 10 days of 

contact with clay or loamy soils (Boivin et al. 2005). Despite its rapid rate of degradation 

2, 4-D is a compound of concern because of the detrimental effects it can have on the 

growth and metabolism of aquatic plants (Wong 2000). In the environment, 2,4-D 

concentrations in urban and rural Canada and the U.S have been reported within the 

0.1 - 1.0 μg/L range (Glozier et al. 2012, US Geological survey 2006).

Being an auxin simulator, 2,4-D has been observed to promote growth in low 

concentrations while significantly inhibiting growth at higher concentrations— thus its 

use in the control of unwanted plants and weeds (Fairchild et al. 1997, Wong 2000). 

Although the effects of this herbicide on O. amblystomatis have never been 

investigated, Wong (2000) examined the effects of 2,4-D on Scenedesmus 

quadricauda. After examining the growth rate (at two day intervals until the stationary 

phase), photosynthetic rate (at 10 min. intervals for 60min), and chlorophyll-a content 

(at log and stationary phases of growth) of the alga at varying concentrations, their 

findings suggest that low concentrations (2-20 mg/L) of 2,4-D will promote growth of the 

algae, and only higher concentrations (200 mg/L) exceeding environmental levels 
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significantly inhibit algal growth (Wong et al. 2000). The effects of 2,4-D on A. 

maculatum embryos have not yet been investigated to our knowledge.
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2.0 Objectives

1. To confirm the taxonomic identity of the green algal species that is symbiotic with the 

yellow spotted salamander, A. maculatum, and to determine if there are more than one 

species of green algae involved in this relationship. This will include increasing the 

current sample area through more of the A. maculatum range within eastern North 

America, and analysis of the nuclear SSU RNA gene to determine placement of these 

collections with existing available data.

Hypothesis

Phylogenetic analyses of the nuclear SSU RNA gene will depict multiple 

species within the Oophila clade that are involved in the symbiotic relationship 

with the yellow spotted salamander.

2. To investigate the biogeography and patterns of coevolution of both A. maculatum 

and its algal symbionts using analyses of the nuclear SSU RNA gene described in 

Objective 1 (Oophila sequences) and the mitochondrial ND4 and control region genes 

(A. maculatum). Current genetic distributions and discontinuities in amphibian and algal 

populations will confirm previously hypothesized theories of post-glacial expansion of 

lineages in various North American taxa.
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Hypotheses

a. The evolutionary pattern depicted in the phylogenies of both Oophila species 

and A. maculatum will be similar when the gene phylogenies are compared due 

to co-evolution.

b. The biogeographic patterns in the gene phylogenies will be defined by

Pleistocene climatic changes.

3. To isolate and culture algal samples obtained from A. maculatum eggs across south

Ontario, and to test their sensitivity (response and recovery) to two agricultural 

herbicides: atrazine and 2,4-D. Toxic effects on these algae have been demonstrated to 

have indirect growth effects on A. maculatum embryos, and these data will be useful for 

the purposes of ecological risk assessment as it relates to these unique symbiotic 

relationships. Concentrations examined will include environmentally realistic exposures.

Hypotheses

a. Adverse effects of atrazine on algae cultured from A. maculatum egg masses 

will not be observed at environmental concentration levels.

b. Adverse effects of 2,4-D on cultured algae will only be observed at  

concentration levels exceeding environmental exposure levels.
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3.0 Methods

3.1 Sampling and Algal Culturing

Ambystoma maculatum egg collections were sampled from four locations across 

southern Ontario (Table 1, Figure 2). An additional collection was attempted at Backus 

Woods, however there were no egg masses present and it is possible the embryos had 

already hatched at this southern most location (Table 1). Appropriate permission from 

conservation authorities and/or owners of private properties, and the Ministry of Natural 

Resources and Forestry was retrieved (No. 1079477). The salamander embryos were 

observed to be at stages 25-37, based on Harrison and Wilens (1969) classification of 

development, and varied per location and time collected. However, the development of 

the embryos was noticeably more advanced at southerly locations (Table 1). In addition, 

embryos collected from Sudden Tract were the largest (most developed) while those 

from Bruce Peninsula were the smallest (least developed), with samples from Kingston 

and Niagara falling in between (presumably characterized by latitudinal geography). 

Environmental conditions upon sample collection and dates of collection are 

summarized in Table 2. One egg mass was collected from each location, and these 

were transported back to the University of Waterloo where they were stored at the Wet-

lab aquatic animal facility. Water temperature was maintained at 10 °C with constant 

flowing well water, and light conditions were maintained at a 12 h cycle of light and dark 

to mimic day and night. A select number of eggs (8-10) from each sample location were 

detached from jelly masses and preserved in 97% ethanol (v/v) for future sequencing. 

Appropriate ethics approval was obtained from the University of Waterloo Animal Care 

Committee (Issue Number A-15-04).
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Figure 2.  Southern Ontario 
sample locations (Google 
Maps, 2016a). Triangles denote 
the four sample locations from 
which A. maculatum eggs were 
collected, and Backus Woods 
where there were no egg 
masses present.

Table 1. Egg Mass Collection Sites
Sample Location Coordinates Property Owner

Sudden Tract - Cambridge, 
ON

43°18'30.8"N 80°22'05.1"W Region of Waterloo

Niagara College Campus 
Niagara, ON

43°08'55.7"N 79°09'44.8"W Niagara College 

326 Lindsay Rd. #20 - North 
Bruce Peninsula

45°03'16.5"N 81°27'02.0"W Private Property

Indian Lake - Elgin, ON 44°35'17.4"N 76°20'18.3"W Queens University Biological 
Station

*Backus Woods - 
Walsingham, ON

42°40'31.1"N 80°28'52.7"W Nature Conservancy of 
Canada

*No egg masses present 
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Table 2. Sampling Environmental Conditions

Sample 
Location 

Collection 
Date

PAR* (μmol m-2 s-)
Above/Below 
Water***

Temp. (°C) 
Air/Water

Water 
Depth (cm) pH

DO 
(mg/

L)

Conductivit
y 

(uS)

Sudden 
Tract

May 5, 
2015

1123/600 23/20 21.5 5.
5

8.5 70

Niagara 
College 
Campus

May 8, 
2015

1027/910 27/16.6 27.0 8.
6

7.4 NA**

North 
Bruce 
Peninsul
a

May 8, 
2015

Private Property 22/NA** 25.0 N
A*
*

NA**

Indian 
Lake

May 9, 
2015

1013/675 28.5/27.9 23.0 7.
7

5.7 481.4

*PAR - Photosynthetically Active Radiation
**NA - Data unavailable or unobtainable due to instrument malfunction
***Below Water - reading taken at position of egg mass under water
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For algal cell culturing, salamander eggs were first detached from jelly mass and 

rinsed with a 1x phosphate buffered saline solution (Rodríguez-Gil et al. 2015). Egg 

contents including algal cells were then extracted with a syringe and placed in modified 

NH4+ Bristol’s media (Rodríguez-Gil et al. 2015). These cultures were maintained on 

bench top in autoclaved 50 mL Erlenmeyer flasks, at room temperature, with autoclaved 

media refreshed every two weeks until cell isolation was performed (initial isolations 

within three months). Single-cell isolation techniques were conducted as described by 

Anderson (2005) and Rodríguez-Gil et al. (2014) without deviation. Cells were isolated 

and deposited in Nunc 4—well dishes in order to create unialgal cultures. Once wells 

were visibly green, contents were transferred to 50 mL and then to 250 mL erlenmeyer 

flasks. Of the four locations sampled, the algal sample from Niagara was not 

successfully isolated for Oophila sp., and therefore not included in subsequent 

analyses. For toxicity tests, subcultures were prepared using United States 

Environmental Protection Agency (USEPA) protocols (USEPA 1996). Based on these 

guidelines, cultures were maintained (same conditions as test conditions) in NH4+ 

modified Bristol’s media as per Rodríguez-Gil et al. (2014), with temperature controlled 

at 18 ± 1 °C and a 24 h white fluorescent light source at 200 ± 15 μmol m-2 s-1. Cultures 

were placed on a shaker table set to continuous shaking at 90 rpm. 

3.2 DNA Extraction and Polymerase Chain Reaction (PCR) Amplification 

Genomic DNA of A. maculatum was isolated using a DNeasy Blood & Tissue Kit 

(Qiagen, Toronto) following manufacturers protocols. Two mitochondrial gene regions 

were amplified using the ND4-tRNA and control region markers (Zamudio and Savage 
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2003, McKnight and Shaffer 1997). The ND4 region was amplified using the primers 

ND4 (Forward 5’ CAC CTA TGA CTA CCA AAA GCT CAT GTA GAA GC 3’) and LEU 

(Reverse 5’ CAT TAC TTT TAC TTG GAT TTG CAC CA 3’) (Arevalo et al. 1994). The 

control region was amplified with the primers THR (Forward 5’ AAA CAT CGA TCT TGT 

AAG TC 3’) and DL1 (Reverse 5’ AAT ATT GAT AAT TCA AGC TCC G 3’) (McKnight 

and Shaffer 1997). Amplifications were carried out in 50 μL solutions containing 5 μL 

template, 5 μL Thermopol buffer (10x, containing MgCl2),  1 μL of each primer (10 μM), 

1 μL dNTPs (10 μM), and 0.5 μl Taq Polymerase. A Multi Gene II (Labnet International) 

thermocycler was used to perform amplification under the following parameters: initial 

denaturation 95 °C for 3 min, 35 cycles of denaturation at 95 °C for 30 s, primer 

annealing at 48-55 °C for 30 s, and extension at 72 °C for 1 min 20 s, with a final 

extension at 72 °C for 5 min.

A DNeasy Plant Minikit (Qiagen, Toronto) was used to extract DNA from the algal 

culture obtained from the egg masses after rupturing cells using liquid nitrogen and a 

mortar and pestle. The nuclear SSU rRNA gene was amplified using the primers SSU1 

(Forward 5’ TGG TTG ATC CTG CCA GTA G 3’) and SSU2 (Reverse 5’ TGA TCC TTC 

CGC AGG TTC AC 3’) (Shoup and Lewis 2003). Amplification of the nuclear SSU rRNA 

gene was carried out in 50 μl solutions containing 5 μl template, 5μl Thermopol buffer 

(10x, containing MgCl),  1 μl of each primer (10 μM), 1 μl dNTPs (10 μM), and 0.5 μl 

Taq Polymerase. A Multi Gene II (Labnet International) thermocycler was used to 

perform amplification under the following parameters: initial denaturation 95 °C for 3 

min, 34 cycles of denaturation at 95 °C for 30 s, annealing at 51 °C for 30 s, and 
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extension at 72 °C for 1 min 20 s, with a final elongation at 72 °C for 5 min. Amplified 

PCR products of all gene regions were viewed on a 1% agarose gel.

3.3 Sequencing and Phylogenetic Analyses

Successfully amplified PCR products were cleaned using a QiaQuick PCR 

Purification Kit (Qiagen, Toronto) and sent for Sanger sequencing to the Robarts 

Research Institute in London, Ontario. Sequences were subsequently aligned using 

SeaView Multi-platform Graphical User Interface (Gouy and Gascue 2010). Multiple 

sequence alignments were created for all markers, with Ambystoma gracile (AY691773) 

and Amystoma opacum (EF649952) used as outgroups for both mitochondrial ND4 and 

control region alignments. The outgroup selected for the nuclear SSU rRNA gene 

alignment was borrowed from Kim et al. (2009) and included Pyramimonas vacuolata 

(AB999994), Micromonas commoda (KU244632), and Chara drouetii (U18495) (Hoham 

et al. 2002, Wodniok et al. 2011). Maximum likelihood (PhyML) trees using the GTR 

(Generalised time reversal) model were created with 1000 iterations and bootstrap 

thresholds of 70% or more are indicated on trees.

3.4 Toxicity Testing

To assess the concentration-response of each alga to atrazine, standard 96 h 

toxicity tests were performed at herbicide concentrations of 0 μg/L, 3 μg/L, 10 μg/L, 30 

μg/L, 100 μg/L and 300 μg/L (n=3) based on the range finding test of Baxter et al. 

(2014). These concentrations were chosen by the authors to achieve at least 50% 

growth inhibition and photosystem II (PSII) effective quantum yield (Baxter et al. 2014). 
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Test solutions were prepared by dissolving technical grade atrazine (96% purity, 

supplied by Syngenta Crop Protection, Product No. G30027H) in NH4+ modified Bristol’s 

media as per  Rodríguez-Gil et al. (2014).

In order to investigate the toxic effects of 2,4-D to algal cultures, a range finding 

test from 0 to 200 mg/L was first conducted. This range was chosen based on the study 

of Wong (2000) which investigated the effects of 2,4-D on the green algal species,  

Scenedesmus quadricada. Toxicity tests were then performed at herbicide 

concentrations of 0 mg/L, 3 mg/L, 10 mg/L, 30 mg/L, and 100 mg/L. Test solutions were 

prepared by dissolving technical grade 2,4-D (98.4% purity, supplied by Dow 

Agrosciences, Lot no. UB07161101) in modified Bristol’s media without the use of 

solvents. 

Toxicity tests were performed by inoculating test flasks containing 100 mL of 

modified Bristol’s media plus atrazine with a 4-6 day old algal culture in log phase, to 

achieve a 10000 cells/mL cell density. Three replicates were used for each 

concentration, and six replicates were used for control (untreated media). Flasks were 

then positioned in haphazard order on a shaker table set to 90 rpm in a growth chamber 

(Percival Scientific). Conditions in the chamber were set at 18 (±1) °C and 24 h cool 

white fluorescent light at 200 (±10) μmol m2/s for 96 hours. These parameters were in 

conjunction with USEPA guidelines (USEPA 1996) for standard acute algal toxicity tests 

and were set to mimic those defined by in Baxter et al. (2014). 

The recovery phase of the test was initiated by first collecting algae from the 

exposure phase for each concentration (replicates pooled) via centrifugation (4500 rpm, 

at 14°C for 30 min). The algae were subsequently washed twice with sterile media and 
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then reinoculated in fresh flasks containing untreated media to achieve a cell density of 

10000 cells/mL. Three replicates for each atrazine concentration (and six for control) 

were prepared for the recovery phase. Flasks were placed randomly on a shaker table 

in a growth chamber for 96 hours, under the same conditions as the exposure phase 

mentioned above.

3.5 Measurement of Endpoints

Growth rate (as function of cell density), chlorophyll absorbance and effective 

quantum yield of Photosystem II (PSII) were measured after the exposure and recovery 

phase of all tests. PS II yield was only measured for the mode of action of atrazine. Cell 

counts were taken using a Fuchs-Rosenthal hemacytometer, with two sub samples 

counted (and averaged) for each replicate. Growth rate was calculated using Equation 

1, where N = cell number, the time interval is 96 h, and k is the growth rate constant.

A number of absorbance wavelengths have been proposed for monitoring 

chlorophyl content (Geiss et al. 2000). Environment Canada suggests readings at 

430nm wavelength, and USEPA guidelines recommend 750 nm (Environment Canada 

1992, USEPA 1996). For the purposes of the current study, readings were taken at 430 

and 680 nm, although values at 430 nm were utilized in later analyses to maintain 

conformity with the methods of (Baxter et al. 2014). The average absorbance reading of 

three subsamples was used for each replicate. 
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Effective quantum yield of PSII was measured using a WATER-PAM (pulse-

amplitude-modulation) chlorophyll fluorometer (Heinz Walz GmbH). Aliquots of each 

“light adapted” sample were subject to the “saturation pulse method” which involves 

measurement of fluorescence yield (F), followed by a pulse of saturating light to 

determine maximum fluorescence (Fm’) (Klughammer and Schreiber 2008). Effective 

quantum yield (Y) is the resulting difference of fluorescence yield from maximum 

fluorescence divided by maximum fluorescence as seen in Equation 2 (Klughammer 

and Schreiber 2008).

It was ensured that the current fluorescent yield, Ft, value for each sample was initially 

at 300 - 400 mV as per the manufacture’s recommendations. The Pm gain setting was 

adjusted, or the sample diluted with de-ionised water to reach the appropriate Ft range. 

Five readings, 30 s apart, were taken for each replicate. The average of the last three 

readings were used for later analyses (Baxter et al. 2014). 

3.6 Confirmation of Atrazine Test Concentrations

Atrazine and 2,4-D prepared stock concentrations for each exposure level (at 0h, 

before test initiation) were measure in duplicate via enzyme-linked immunosorbent 

assay (ELISA) according to manufacturer’s protocol (Atrazine Microtitre Kit - Abraxis, 

Warminster). Recovery samples, taken from each recovery flask (before test initiation, 

at 0 h of recovery phase) were also analyzed in the same manner (see Appendix, 
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Tables A5, A6). Samples were frozen and stored in the dark until ELISA analysis. 

Samples were measured in duplicate and the average of values used in data analyses. 

Atrazine exposure and recovery values were within 20% of nominal concentrations, 

however 2,4-D exposure and recovery samples were not successfully quantified. 

3.7 Statistical Analysis 

One-way analysis of variance (ANOVA) followed by the post hoc Dunnett’s test 

(α = 0.05) were employed to determine no-observed-effect-concentrations (NOECs) and 

lowest-observed-effect-concentrations (LOECs) of atrazine and 2,4-D exposures. For 

recovery phase analysis, ANOVA followed by Dunnett’s test were used to determine 

recovery concentrations that differed significantly from controls. Where distributions did 

not meet ANOVA assumptions, the nonparametric Kruskal-Wallis H test was employed 

to determine whether or not there was significance between controls and exposure level 

(α = 0.05). These analyses were conducted in IBM SPSS Statistics software (IBM corp., 

New York). 

The response of O. amblystomatis strains to atrazine and 2,4-D exposure was 

also modelled for endpoints (growth rate, chlorophyll absorbance, PSII yield) in all 

exposure tests by non-linear regression using Equation 3, where a = the upper limit and 

b = the slope of the linear section of the curve (Baxter et al. 2014).

�29

                    y=a/1(1 + e^(b[log(x) - log(EC50)])                                                 (3)



Regression models and calculations were conducted in RStudio interface for R statistics 

software (Vienna) using the DRC package and script for ED.dcr, “Estimating effective 

doses” (Ritz and Streibig, 2005).
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4.0 Results

4.1 Phylogenetic Reconstruction

For nuclear SSU rRNA algal genes, sequences obtained after amplification were 

approximately 1700 base pairs (bp) in length, after primer annealing regions at the 5’ 

and 3’ ends were trimmed. Thus, phylogenetic analysis included GenBank sequences 

that were 900-1750 bp in length for the alignment. Partial sequences (e.g 200 bp) were 

excluded from analysis. An intron (248 bp) was observed in the Bruce Peninsula 

sequence, but this was trimmed before inclusion in the alignment. The nuclear SSU 

rRNA gene alignment also included Oophila sp. sequences obtained from Genbank in 

addition to representative Chlorophycean algal sequences that were included in the 

analyses by Kim et al. (2009). The maximum likelihood tree shows these Oophila sp. 

sequences grouping into two different, but well supported clades (Figure 3). The first 

“Oophila” Clade B (light green) includes sequences isolated/obtained by Kim et al. 

(2009), which originate from New Jersey, Tennessee, Nova Scotia, British Columbia, 

and Ontario (see Figure 4 for labelled map of North America), and has 100% bootstrap 

support. This clade also includes two sequences (denoted by arrows) retrieved from two 

southern Ontario locations (Sudden Tract and Lost Ray Lake) from Baxter al. (2014). 

Sudden Tract was revisited and included in the current study, however this sequence 

(2015) groups within Oophila Clade A (dark green). “Oophila” Clade B also includes 

three sequences from  Chlamydomonas (AY220572, AF517097, AB701502) that are 

paraphyletic with “Oophila” sp. sequences. Strong bootstrap values (90 to100%) 

support the grouping of these sequences within “Oophila” Clade B.   

�31



The second group, Oophila Clade A (Figure 3), includes sequences from the 

current study as well as unpublished Oophila sp. sequences obtained from GenBank, 

and holds 86% bootstrap support. At least one of these sequences was sampled from 

the type locality of Oophila amblystomatis in Middlesex Fells, Massachusetts (personal 

communication with Craig Schneider in possession of Lambert’s type species - 

Phycological Society of America Annual Meeting 2016; Wille 1909). It is notable that one 

Oophila sequence (KJ635663) falls outside of both described groups, but groups with 

two Chlamydomonas sequences (U57694, KF879589) with 84% bootstrap support. In 

addition to the various Chlamydomonas species, Clade B also shows Oophila species 

grouping with members of other green algal genera, Chlorococcum (AB490286, 

AB490288, U70586) and Characium (M63001), with strong bootstrap support of 85 - 

90%.  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Figure 3. Maximum likelihood tree of O. amblystomatis nuclear SSU rRNA gene sequences 
includes samples from the current study (asterisk) grouping with type locality (Clade A in dark green), 
samples retrieved by Baxter et al. (2014) (arrows, belonging to Clade B in light green), and representative 
green algal sequences from Kim et al. (2014). State/province abbreviations are included where sample 
information was available. Bootstrap values greater than 65% (1000 replicates) are indicated on major 
lineages. PhyML ln(L) = -20057.0 1778 sites GTR 4 rate classes



 

�34

Figure 4. Map of North America (Google Maps, 2016b) includes U.S. and Canadian 
provinces within A. maculatum range. Stars denote sample locations within southern Ontario. 
State and province abbreviations from Figure 3 match labels above.



Phylogeographic analysis of A. maculatum included the construction of two 

maximum likelihood trees using the mitochondrial ND4 and control region markers 

(Figures 5, and 6). Sequences of the ND4 region obtained for the current study had final 

lengths of ~ 800bp in length, and sequences of the control region consisted of edited 

sequences ~ 900bp, after 5’ and 3’ ends were trimmed. Additional sequences of both 

regions for the alignments were obtained from Zamudio and Savage (2003) and collated 

with sequences from the current study. Our ND4 mtDNA samples (asterisk) grouped 

within the expected Eastern Clade (blue) shown in Figure 5, and there is strong 

bootstrap support for this grouping (92%). Though this clade includes members from 

eastern provinces and states such as Ontario, and Maine, there is also evidence of 

these haplotypes within Interior Clade B (92% bootstrap support). 

Sequences of the control region taken from the five southern Ontario sample 

locations (asterisk) group together within Eastern Clade A with 94% bootstrap support 

(light blue, Figure 6). These Ontario individuals group with members from Nova Scotia, 

Maine, Maryland, Massachusetts, Wisconsin, Virginia, Connecticut, Pennsylvania, and 

New York with strong bootstrap support of 95%. Since sequences obtained from the 

current study grouped within the expected Eastern Clade A (or Coastal Clade as 

proposed by Zamudio and Savage (2009), it was deemed unnecessary to carry out any 

further analysis into determining the biogeographic distribution patterns of these 

samples within the relatively small sample region of southern Ontario.

The approximate geographic distribution of the above mentioned Interior and 

Eastern Clades are depicted in Figure 7. This map shows all four proposed A. 
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maculatum lineages in relation to the Appalachian Mountain discontinuity as proposed 

by Zamudio and Savage (2003) and others (Austin et al. 2002, Soltis et al. 2006)  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Figure 5. Maximum likelihood tree of A. maculatum mtDNA ND4 sequences includes data from 
Zamudio and Savage (2003) and samples from the current study (asterisk) grouping in the Eastern 
Clade (blue). State/province abbreviations under each clade represent the localities from which samples 
were retrieved. Bootstrap values greater than 65% (1000 replicates) are indicated on major lineages. 
PhYL ln(L) = -3094.3 802 sites GTR.
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Figure 6. Maximum likelihood tree of A. maculatum mtDNA control region sequences includes data 
from Zamudio and Savage (2003) and samples from the current study (asterisk) grouping in Eastern 
Clade B (dark blue). State/province abbreviations under each clade represent the localities from which 
samples were retrieved. Bootstrap values greater than 65% (1000 replicates) are indicated on major 
lineages. PhyML ln(L) = -5049.7 sites GTR
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Figure 7. Map depicting proposed A. maculatum lineage distribution by Zamudio and Savage 
(2003) (Google Maps, 2016c) includes sequences collected from the current study (locations 
starred) which group within Eastern Clade A highlighted in light blue. Also represented in the map 
are Eastern Clade B in dark blue, and Interior Clade A in red, and Interior Clade B in orange. 
Colours coincide with phylogenetic trees in previous two figures. The Appalachian Mountain 
discontinuity is depicted by the dotted region. 



4.2 Algal Toxicity Tests

4.2.1 Atrazine

Exposure effective concentration values for atrazine as it relates to growth rate, 

chlorophyll absorbance, and PSII yield are listed in Table 3. The goal of 50% inhibition 

was not reached for all endpoints, with the exception of Bruce Peninsula growth rate, 

and PSII yield, and Sudden Tract PSII yield. Relatively, chlorophyll absorbance was the 

most sensitive response, though it displays large SE. The least variable endpoint is PSII 

yield, with the lowest SE values compared to growth rate and chlorophyll absorbance. 

Of the extrapolated PSII values, Bruce Peninsula had the lowest 96 h EC50 at 292 μg/

L, and Kingston the greatest at 803 μg/L. This trend was also observed in the other two 

endpoints with Bruce Peninsula having a chlorophyll absorbance 96 h EC50 of 218 μg/

L, Sudden Tract an EC50 of 273 μg/L, and Kingston an EC50 of 352 μg/L. Bruce 

Peninsula, Sudden Tract and Kingston 96 h EC50s for growth rate were 425 μg/L, 508 

μg/L, and 526 μg/L respectively. Again, with such high SE values, these data values 

may only show relative trends between endpoints.

Analysis of variance revealed PSII NOECs had the lowest values, and were 

substantially different from chlorophyll absorbance and growth rate endpoints (Table 4). 

Bruce Peninsula had the lowest PSII 96 h NOEC at 3.3 μg/L, Sudden Tract had a 96 h 

NOEC of 9 μg/L and Kingston a 96 h NOEC of 10 μg/L. Chlorophyll absorbance was the 

least sensitive endpoint with Kingston having the greatest value of 405 μg/L, and 

Sudden Tract with 360 μg/L. Kingston also had the greatest growth rate NOEC of the 

three locations with a value of 140 μg/L, Sudden Tract and Bruce Peninsula followed 

with values of 80 μg/L and 70 μg/L respectively. An observed power analysis reveals  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that chlorophyll absorbance is underpowered for Kingston, and has less power the other 

endpoints for Sudden Tract, and Bruce Peninsula as well.

For the recovery phase of all three strains, full recovery was observed at all 

endpoints and previously atrazine exposed test cultures were equal to or more 

productive than controls (Figures 7, 8, and 9). Chlorophyll absorbance was visibly the 

most variable endpoint in both exposure and recovery phases for all three strains. 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Table 3. Atrazine effective concentration estimates with standard error of measured endpoints 
in Kingston, Sudden Tract and Bruce Peninsula O. amblystomatis

Sample EC
Growth rate Chlorophyll absorbance Photosystem II yield

Estimate (μg/L) SE Estimate (μg/L) SE Estimate (μg/L) SE

Kingston

EC10 352* 94 145* 162 29* 9

EC25 450* 93 226* 163 155* 23

EC50 576* 382 352* 155 803* 138

Sudden 
Tract

EC10 276* 204 78* 110 17 3

EC25 374* 41 146* 129 86 8

EC50 508* 482 273* 142 442 56

Bruce 
Peninsula

EC10 130 26 118* 268 14 2

EC25 235 15 160* 231 64 5

EC50 425 55 218* 138 292 27

* 50% inhibition was not reached at endpoint, and EC50 values were extrapolated from regression model

Table 4. Atrazine exposure NOECs, LOECs, and percent differences from the control 
group mean of measured endpoints in Kingston, Sudden Tract and Bruce Peninsula O. 
amblystomatis

Sample Endpoint
NOEC LOEC

Observed
Power Value 

(μg/L)
% 

difference
Value 
(μg/L)

% 
difference

Kingston

Growth rate 140 2 405 17 1.0

Chlorophyll 
absorbance

405 56 > 405 NA 0.47

Photosystem II 
Yield

10 1 27 9 1.0

Sudden 
Tract

Growth rate 80 0 360 23 1

Chlorophyll 
absorbance

360 55 > 360 NA 0.54

Photosystem II 
Yield

9 4 21 11 1.0

Bruce 
Peninsula

Growth rate 70 3 270 31 1.0

Chlorophyll 
absorbance

270 65 > 270 NA 0.64

Photosystem II 
Yield

3.3 1 10 7.75 1.0
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Figure 8. Kingston O. amblystomatis atrazine exposure and recovery. Endpoints monitored after 96 
h exposure of atrazine to algae (dark bars) followed by 96 h recovery (light bars). Nominal 
concentrations are shown with standard error bars. Significant differences from control (Dunnett’s test, 
Kruskal-Wallis H test α = 0.05) represented by asterisk. 
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Figure 9. Sudden Tract O. amblystomatis atrazine exposure and recovery. Endpoints monitored 
after 96 h exposure of atrazine to algae (dark bars) followed by 96 h recovery (light bars). Nominal 
concentrations are shown with standard error bars. Significant differences from control (Dunnett’s test, 
Kruskal-Wallis H test α = 0.05) represented by asterisk. 
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Figure 10. Bruce Peninsula O. amblystomatis atrazine exposure and recovery. Endpoints 
monitored after 96 h exposure of atrazine to algae (dark bars) followed by 96 h recovery (light bars). 
Nominal concentrations are shown with standard error bars. Significant differences from control 
(Dunnett’s test, Kruskal-Wallis H test α = 0.05) represented by asterisk.
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4.2.2 2,4-Dichlorophenoxy acetic acid

Nominal concentrations were used in the concentration-response regressions 

and ANOVA analyses for 2,4-D as analytical confirmation of exposure concentrations 

was not successful with ELISA. Growth rate and chlorophyll absorbance for Bruce 

Peninsula were similar, with 96 h EC50 values of 69 mg/L and 67 mg/L, respectively 

(Table 5). However SE values for chlorophyll absorbance were very large for Bruce 

Peninsula, as well as Kingston. Sudden Tract had 96 h EC50 values of 92 mg/L and 8 

mg/L for growth rate and chlorophyll absorbance, respectively. The latter value is 

noticeably the lowest value of all three samples and endpoints, and reflects high 

variability within the replicates for that test. Kingston had a 96 h EC50 of 77 mg/L for 

growth rate, and 50 mg/L for chlorophyll absorbance.

 Nominal 96 h NOECs for 2,4-D were 30mg/L for all endpoints measured for the 

three sample locations, except chlorophyll absorbance of Sudden Tract (Table 6). This 

does mirror the skewed 96 h EC50 values, which suggests that the variance between 

replicates likely interfered with the regression and ANOVA analyses. This is evident in 

the chlorophyll absorbance power, as it is lower for growth rate, similar to that of the 

previous atrazine tests.

Full recovery (equal to or greater than control productivity) was observed in all 

strains exposed to 2,4-D except for chlorophyll absorbance for Sudden Tract, however 

exposure readings for this endpoint were also unexpectedly low.  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Table 5. 2,4-D effective concentration estimates based on nominal concentrations with 
standard error of measured endpoints in Kingston, Sudden Tract and Bruce Peninsula O. 
amblystomatis

Sample EC
Growth rate Chlorophyll absorbance

Estimate (mg/L) SE Estimate (mg/L) SE

Kingston

EC10 42 8 26 15

EC25 57 7 36 17

EC50 77 5 50 23

Sudden 
Tract

EC10 73 81 0 0

EC25 82 56 1 1

EC50 92 24 8 5

Bruce 
Peninsula

EC10 41 13 41 55

EC25 53 12 52 52

EC50 69 10 67 43

Table 6. 2,4-D exposure nominal NOECs, LOECs, and percent differences 
from the control group mean of measured endpoints in Kingston, Sudden 
Tract and Bruce Peninsula O. amblystomatis

Sample Endpoint
NOEC LOEC

Observed 
Power Value 

(mg/L)
% 

difference
Value (mg/L) % difference

Kingston
Growth rate 30 3 100 72 1.0

Chlorophyll 
absorbance

30 1 100 88 0.79

Sudden 
Tract

Growth rate 30 +2 100 67 1.0

Chlorophyll 
absorbance

10 37 30 63 0.84

Bruce 
Peninsula

Growth rate 30 0 100 83 1.0

Chlorophyll 
absorbance

30 +16 100 83 0.98
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Figure 11. Kingston O. amblystomatis 2,4-D exposure and recovery. Endpoints monitored after 96 
h exposure of 2,4-D to algae (dark bars) followed by 96 h recovery (light bars). Nominal concentrations 
are shown with standard error bars. Significant differences from control (Dunnett’s test, Kruskal-Wallis H 
test α = 0.05) represented by asterisk.
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Figure 12. Sudden Tract O. amblystomatis 2,4-D exposure and recovery. Endpoints monitored after 
96 h exposure of 2,4-D to algae (dark bars) followed by 96 h recovery (light bars). Nominal 
concentrations are shown with standard error bars. Significant differences from control (Dunnett’s test, 
Kruskal-Wallis H test α = 0.05) represented by asterisk.
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Figure 13. Bruce Peninsula O. amblystomatis 2,4-D exposure and recovery. Endpoints monitored 
after 96 h exposure of 2,4-D to algae (dark bars) followed by 96 h recovery (light bars). Nominal 
concentrations are shown with standard error bars. Significant differences from control (Dunnett’s test, 
Kruskal-Wallis H test α = 0.05) represented by asterisk.
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5.0 Discussion

Standard toxicity tests should produce data that can be harmonized and 

compared with other studies, and be able to provide a relative context through which 

environmental risks may be assessed. In an effort to first determine the identity of the 

egg inhabiting algae O. amblystomatis, the phylogenetic analysis from this study was 

compared with the results of Kim et al. (2014) and others, who demonstrate that 

Oophila sp. is not a monophyletic species. Though the data from this study are partially 

congruent with previous results, the inclusion of other available Oophila sp. sequences 

from GenBank as well as samples from the current study in our phylogenetic 

reconstruction suggests that the species requires substantial taxonomic revision. The 

diverse nature of Oophila sp. as currently described is significant from a risk 

assessment standpoint, as toxic sensitivity is generally regarded as a species specific 

response (Blanck 1984, Ellesat et al. 2007). Thus, toxicity tests that examine species 

that are in fact genetically dissimilar would produce confounding results (Leung et al. 

2016). In their study, Leung et al. (2016) highlight this complexity in conducting toxicity 

tests with cryptic species such as Hyalella azteca Saussure, an amphipod crustacean. 

Only two clades of this species are cultured and employed in toxicity laboratories across 

North America, though the species complex includes 85 genetically diverse lineages in 

the wild (Leung et al. 2016). The authors exposed two clades of H. azteca to Nickel and 

Copper in a 14 d test, and reported one clade being significantly more tolerant to the 

metals than the other (endpoint measured being mortality) (Leung et al. 2016). Thus, 

the problematic nature of conducting toxicity tests on a cryptic species complex that is 
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otherwise accepted as a “standard toxicity test species” provides some context for the 

nature of the current study. 

In this study, the sensitivity of the egg inhabiting algae O. amblystomatis to 

herbicides atrazine and 2,4-D was also investigated. The results from the atrazine 

exposure and recovery tests in this investigation do differ from those in the study of 

Baxter et al. (2014), and the genetic dissimilarity between O. amblystomatis strains from 

each study may reflect these differences in toxic sensitivity. Our results also include 

data from the sample site used in Baxter et al. (2014) that was re-visited in the current 

study.

5.1 Phylogenetic reconstruction of symbionts

To gain a better understanding of the phylogeny of collected Oophila sp. 

samples, the nuclear SSU rRNA gene was sequenced and included in maximum 

likelihood tree with other related Chlorophycea species. The results depict Oophila sp. 

members grouping in two strongly supported clades, neither of which are monophyletic. 

“Oophila” Clade A, which contains sequences largely from Nova Scotia, includes three 

Chlamydomonad species mirroring the results of Kim et al. (2014), Lin and Bishop 

(2015) and Bishop and Miller (2014). Though the authors of these studies show 

Chlamydomonas members grouping within the “Oophila” clade, they exclude five 

Oophila sp. sequences available in GenBank (Lewis and Landberg, meeting abstract, 

2014). Four of these sequences, along with the southern Ontario sequences from the 

current study, group together to form Oophila Clade A in the nuclear SSU rRNA tree. It 

has recently been learned that at least one of the four unpublished GenBank sequences 
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was sampled from the type locality of Oophila amblystomatis F.D.Lambert ex N.Wille, 

namely, from Middlesex Fells, Massachusetts (personal communication with Craig 

Schneider, in possession of Lambert’s type species - Phycological Society of America 

Annual Meeting 2016; Wille 1909). Thus, it is postulated that samples from the current 

study are more likely to be Oophila amblystomatis, as they group strongly with the type 

locality. Within Oophila clade A members of other green coccoid or ovoid genera 

including Chlamydomonas (AY220599, AY220094), Characium (M63001), and 

Chlorococcum (U70586, AB490288, AB490286, U70587) are also observed. Some of 

these sequences are unpublished and U70586 has been described in GenBank only as 

a “Chlamydomonad flagellate”. With such a lack of verified characterization within the 

other species of Oophila Clade A, it is hypothesized that these other algae may be 

subject to mis-identification, and may in fact be O. amblystomatis members. 

Alternatively, it is possible that members within “Oophila” Clade B may indeed be O. 

amblystomatis, with the three chlamydomonad species, mentioned previously, possibly 

misidentified. This number of “Oophila sp.” sequences (over 40) grouping in a clade so 

distantly from sequences collected from the type locality may not be the most 

parsimonious explanation. It is more likely (and parsimoniously sound) that members of 

“Oophila” Clade B have indeed been mislabelled. 

Within the Chlamydomonadales (Chlorophyceae, Chlorophyta), taxonomic 

revision is not uncommon; Nakada et al. (2008) constructed an extensive phylogeny of 

the nuclear 18S rRNA gene region including over 400 sequences within the 

Chlamydomonadales (previously Volvocales). With the objective of reclassifying 

traditional taxonomic descriptions based on morphological characters, the authors 
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delineated 21 strongly supported clades within the Chlamydomonadales (Nakada et al. 

2008). One of their proposed clades (not a taxonomic group), Stephanosphaerinia, 

displays a similar grouping of Chlamydomonas spp. and Chlorococcum ellipsoideum, as 

observed in the present study (Nakada et al. 2008). The species within this described 

lineage are not monophyletic, but characterize the close genetic relationships between 

the above mentioned polyphyletic genera (Nakada et al. 2008). The clade is named 

after the representative genus, Stephanosphaera proposed by the authors (Nakada et 

al. 2008). The Stephanosphaerinia clade has been referenced in more recent literature 

and the grouping has been seemingly recognized in various taxonomic studies within 

the Chlorophyta (Hollzinger et al. 2014, Lemieux et al. 2015). Another study examined 

diversity within one Chlamydomonas species, C. reinhardtii, Jang and Ehrenreich 

(2012) employed a genome-wide assessment of interspecific variation within this model 

species. The authors isolated almost all available isolates of the species in North 

America and provide insight into the diversity of the species in addition to identifying 

geographical subpopulations of C. reinhardtii (Jang and Ehrenreich 2012). The authors 

assert the importance of their results as C. reinhardtii is a well studied species used as 

a model system for not only biological investigations, but also research in emerging 

algal applications such as biofuel (Jang and Ehrenreich 2012). Thus, it is evident that 

the characterization of genetic diversity within species, that are tested and utilized in 

different applications, is paramount to gain a complete understanding of the species’ 

sensitivity and applicability.

This study proposes that “Oophila” Clade B as described by previous authors 

likely does not contain O. amblystomatis members, we do not discredit the role that the 
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isolated algae from “Oophila” Clade B may have in the symbiotic relationship with their 

amphibian symbionts. Since these sequences were in fact isolated from A. maculatum 

eggs, we suggest that the relationship between the symbionts may not be restricted to 

just O. amblystomatis. Rather, the egg inhabiting algae may be opportunistic, with 

species adapting to environmental conditions which can vary in temperature, salinity, 

light, dissolved oxygen etc. Variations amongst these parameters within sample sites of 

this study were observed within one breeding season alone. Thus, variations in 

environmental conditions year to year would, undoubtedly, allow for even more 

competition between green algal species, as certain species would proliferate under 

conditions they are best suited to. Though Bishop and Miller (2014) maintain that their 

characterized “Oophila sp.” is the predominant alga within A. maculatum eggs, our 

phylogeny shows that isolates of egg inhabiting algae form distant clades. This could 

suggest that species within each clade are able to proliferate under separate sets of 

environmental conditions. In initial microscopic observations of A. maculatum egg 

contents for this study, a number of green algal species including Scenedesmus sp. and 

Chlorella sp. were noted. Furthermore, “Oophila” Clade B contains a sequence from a 

sample location that was re-visited in the current study, and which now groups in 

Oophila Clade A. Thus, though O. amblystomatis was isolated and sequenced, the 

possibility that there may be more Chlorophyta species that would contribute 

photosynthate products to A. maculatum embryos, and thus take part in this symbiotic 

relationship cannot be precluded.  

The second objective of this study was to examine two mtDNA gene regions of 

our A. maculatum samples, and determine whether sequences fell within previously 

�55



described patterns of post glacial distribution of taxa since the last glacial maximum. 

Furthermore, we wanted to compare the phylogeography of A. maculatum with any 

potential phylogeographic patterns observed within the algal symbionts. The results 

show that both ND4 and control region mtDNA sequences of out salamander samples 

are falling within the expected Eastern Clade A as described by (Zamudio and Savage 

2003). Since both our gene regions displayed congruent phylogenies of our southern 

Ontario samples, it was not deemed necessary to carry out any further network analysis 

or concatenate the phylogenies to get further resolution. The Eastern and Interior clade 

hypothesis proposed by Zamudio et al (2003) is a distribution pattern also described by 

Soltis et al. (2006) who sampled a vast range of taxa including amphibians, reptiles, 

fish, and algae, across North America. Their mtDNA restriction site analysis show the 

Appalachian mountain discontinuity as an east versus west pattern that delineates the 

genetic distribution of salamanders (A. maculatum, A. tigrinum) and turtles 

(Sternotherus odouratus, S. minor) among other species, in eastern North America 

(Soltis et al. 2006). It has been proposed that post glacial distribution of taxa after the 

LGM may have emerged from two refugial populations on either side of the city of 

Apalachicola, Florida (Soltis et al. 2006, Church et al. 2003).

This east-west divide of genetic diversity on either side of the Appalachians is not  

apparent in the nuclear SSU rRNA “Oophila” sp. phylogeny. Since both Oophila Clades 

A and B include members from Ontario, and thus members from at least one same 

geographical region, it is unclear that any phylogeographic patterns exist amongst the 

Oophila species. Furthermore, members of Clade A include not only East Coast 

sequences from Nova Scotia and New Jersey, but also sequences from the West Coast 
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in British Columbia. This vast distance between sample locations further suggests a 

lack of any clear phlyogeographic patterns. 

In order to delineate the biogeographic patterns within the red agal genus 

Hildenbrandia (Rhodophyta), Sherwood and Sheath (1999)  employed chloroplast and 

nuclear SSU rRNA gene markers to resolve the relationships of the widespread marine, 

and more isolated freshwater samples of the genus (Sherwood and Sheath 1999). 

Within the freshwater species, the authors observed paraphyly with marine samples and 

suggested that multiple invasions by different populations were responsible for this 

genetic diversity (Sherwood and Sheath 1999). It is possible that vectors such as 

marine waterfowl are responsible for the establishment of freshwater Hildenbrandia 

populations from coastal marine environments (Sherwood and Sheath 1999).  Also 

within the red algae, the biogeography of the Boldiaceae (Rodophyta) family was 

investigated by Rintoul et al. (1999) using combined analyses of nuclear SSU rRNA, 

rbcL, and other genes. In their results, the authors describe such high levels of species 

divergence within this family that sequence alignment was not possible (Rintoul et al. 

1999). Despite these differences however, the authors  propose a number of historical 

events that could explain this high interspecific variation within Boldiaceae (Rintoul et al. 

1999). For example, algal populations around the Great Lakes could only have been 

established after the retreat of the Laurentide Ice Sheet (Rintoul et al. 1999). More 

southerly populations, such as those sampled from Virgina however, may have been 

unaffected by the Last Glacial Maximum (approx. 20000 years ago), and thus may have 

been established much longer (Rintoul et al. 1999). This could account for the north-

south genetic divide amongst these Boldaceae species (Rintoul et al. 1999). To explain 
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the high degree of divergence amongst Boldaceae species within Ontario, the authors 

also propose the possibility of vector mediated transport such as that of migrating 

waterfowl (Rintoul et al. 1999). 

It is evident that Oophila sp., from its wide geographic distribution across North 

America, has an excellent ability to disperse, and can occupy a wide range of habitats 

(from east coast, to central, and west coast North America). This high affinity for 

dispersal can potentially mask any paleo-phylogeographic patterns that can be 

attempted to uncover using genetic data (Boedeker et al. 2010). Thus, with such widely 

dispersed populations, and apparent ability to thrive in a range of environments, there is 

not enough evidence to suggest any strict phylogeographic patterns of the algal 

symbionts of A. maculatum due to coevolution.

5.2 Response of O. amblystomatis to herbicides 

Past studies on the effects of atrazine on fresh water algae have indicated that 

inhibition of growth, largely, is  detected at 10 to 20 μg/L (Lockert et al. 2006, Huber 

1993). DeNoyelles et al. (1982) however, examined the indirect effects of atrazine on 

three fish species via the reduction of their phytoplankton food source, and reported 

inhibitory effects (in chlorophyll absorbance, biomass, and species distribution) on 

phytoplankton growth at 1 to 5 μg/L of treated atrazine. These authors employed longer 

term (136 d) mesochosm studies which involved exposing whole phytoplankton 

communities to atrazine, and monthly monitoring of the mentioned endpoints 

(DeNoyelles et al. 1982). For the current study, 96 h acute toxicity tests (including 

exposure and recovery) were conducted with unialgal cultures isolated from three 
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sample locations. The 96 h NOEC values for PSII Sudden Tract and Kingston support 

the results of Lockert et al. (2006) who reported that any measurable effects of atrazine 

were only apparent at > 20 μg/L. Lockert et al. (2006) examined the effects of atrazine 

on a wide range of taxa including green algae, cyanobacteria, and diatoms 

representative of North American freshwater streams. The authors measured 

chlorophyll absorbance and growth rate as endpoints, and obtained readings for 5 days 

of atrazine exposure (Lockert et al. 2006). O. amblystomatis cultures from the current 

study showed less susceptibility to atrazine however, in chlorophyll absorbance and 

growth rate data than the green algal species tested by Lockert et al. (2006). In 

comparison with the atrazine exposure tests by Baxter et al. (2014), the 96 h EC50s for 

all three endpoints in this study were much higher. The methodology and test protocol 

(including range values) of Baxter et al. (2014) was followed, so it was initially surprising 

that the algal cultures showed generally less sensitivity. After confirming the taxonomic 

position of the O. amblystomatis isolates (Figure 3, “Oophila” Clade A) in comparison 

with the sequence from Baxter et al. (2014) however, it can be surmised that the genetic 

differences in these two strains may contribute to their toxicological sensitivity to 

atrazine. Also worth re-iterating is that the sample location from which Baxter et al. 

(2014) had obtained their A. maculatum eggs (Sudden Tract, Township of North 

Dumfries Ontario), was re-sampled in the current study.  As mentioned previously, the 

sequence from Sudden Tract did not group within the clade including sequences from 

Baxter et al. (2014) and other authors (Bishop and Miller 2014, Kim et al. 2014).

After the exposure phase, full recovery was observed for all three sample 

cultures, and endpoints measured were equal to or more than the recovery controls. 
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This mirrors the observations of Baxter at el. (2014) who, through similar 96 h atrazine 

exposure followed by 96 hour recovery tests, noted full recovery for all endpoints except 

chlorophyll absorbance at 300 μg/L. The recovery data from this study are also in line 

with the results of Brain et al. (2012) who exposed three algal species, including the 

green alga Pseudokirchneriella subcapitata (Chlorophyta) to pulse exposures of 

atrazine. Growth inhibition of P. subcapitata was tested at nominal atrazine 

concentrations ranging from 5- 250 μg/L, and after a two day pulse exposure followed 

by a two day recovery, the authors observed no significant differences between 

recovery test concentrations and control (Brain et al. 2012). Furthermore, the 

concentration test range of Brain et al. (2012) was maintained to encompass the 

maximum worst-case pulse exposure of atrazine, that may potentially be measured in 

North American fresh water. With seasonal pulses taken into account, the highest 

recorded atrazine concentrations in the White River, Indiana (located in the U.S. Corn 

Belt) for example have peaked at approximately 15 μg/L (Gilliom, 2006). In Ontario, 

atrazine concentrations in surface waters have been reported at < 0.1 to 3.9 μg/L , with 

seasonal peaks of herbicide concentrations in the spring/early summer (Byer et al. 

2011). Thus, with the results of exposure and full recovery observed at the maximum 

test concentration, 405 μg/L in the current study, there is sufficient evidence to indicate 

that phytoplankton productivity, specifically that of O. amblystomatis and other 

chlamydomonad-like taxa, would likely be unaffected at environmentally realistic 

atrazine exposures in North America.

The herbicide 2,4-Dichlorophenoxyacetic acid is an auxin simulator, and as such 

it promotes plant growth at low doses, while at high doses, accelerates plant growth 
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which results in plant deformities and eventually, plant death (Song, 2013). The 

physiological abnormalities as a result of 2,4-D exposure described in vascular plants 

was not observed in the cells of our O. amblystomatis cultures. However, the herbicide 

did have an observable hormetic effect at low doses, approximately 3 to 10 mg/L, which 

was observed in two of the three strains (Kingston, Bruce Peninsula). Hormetic effects 

were not statistically significant from controls, but were observable in both growth rate 

and chlorophyll absorbance endpoints (see exposure/recovery graphs Figures 10, 11, 

and 12. 

Though quantification of 2,4-D test concentrations in this study was not obtained,  

response results at nominal concentrations coincide relatively with existing data on the 

inhibitory effects of this herbicide (Song 2013, Wong 2000).  In a 96 h 2,4-D toxicity test 

on Selenastrum capricornutum (Chlorophyta), Fairchild et al. (1996) observed the cell 

biomass NOEC to be 24 mg/L and the EC50 ranging from 37 to 46 mg/L of 2,4-D. The 

results from the current study suggested O. amblystomatis to be less sensitive with 

NOEC values of 30 mg/L for all endpoints and strains except for Sudden Tract 

chlorophyll absorbance. The 96 h EC50 values were also higher than those reported by 

Fairchild et al. (1996), but were within the same or order of magnitude. Though Fairchild 

et al. (1996) did not discuss the stimulatory effects of 2,4-D at low concentrations, Wong 

(2000) did observe promotion of growth in their growth rate and chlorophyll-a content 

endpoints of their test alga Scenedesmus quadricauda (Chlorophyta). Wong (2000) 

reported promotion of algal growth at 0.02 to 0.2 mg/L of 2,4-D, complete inhibition at 

200 mg/L, and significant chlorophyll-a reduction (compared to control) at 20 mg/L. 

Though some stimulatory effects at > 2 mg/L were observed, and significant growth 
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reduction at 30 to 100 mg/L of 2,4-D, the initial range finding test showed complete 

inhibition at 200 mg/L of the herbicide. This result coincides with that of Wong (2000), 

though the rest of the data may suggest our O. amblystomatis strains to be less 

sensitive than Scenedesmus quadricauda and Selenastrum capricornutum. 

There is a paucity of data on the recovery response of freshwater algae exposed 

to 2,4-D. Similar to that of the atrazine recovery phase tests however, full recovery 

(greater or equal to control) for 2,4-D exposed algae was observed. It is unlikely that the 

concentrations at which significant inhibition of growth detected in the current study 

would be found in the environment (Gilliom, 2006). According to the National Water-

Quality Assessment Program led by the U.S Geological Survey, although 2,4-D is one of 

the most highly detected compounds in herbicide mixtures within agricultural and urban 

environments, its detection at 1.0 μg/L is at the lowest limit of their detection capabilities 

(Gilliom, 2006). In Canada, the highest 2,4-D concentrations have been reported at 

approximately 0.95 μg/L (Glozier 2012). Thus, in conjunction with the chemical 

properties of 2,4-D that allow it to be readily degraded and mineralized by soil and 

organic particles in the water column (Boivin et al. 2005), it is proposed that 2,4-D is 

unlikely to be a risk to freshwater chlamydomonad algae at environmentally relevant 

concentrations (Gilliom, 2006). 
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6.0 Conclusions

The taxonomic identity of Oophila amblystomatis is in need of revision, and in 

this study we identified that this group is currently not monophyletic, and includes 

sequences that group in two separate clades, and with members of other green algal 

species.  The genetic diversity of algae isolated from A. maculatum eggs leads us to 

suggest that the symbiotic relationship between salamander and alga(e) may not be as 

exclusive as was until now accepted. Rather, the egg inhabiting algae may be 

opportunistic, and certain species may predominate under certain environmental 

conditions. It is possible that the algae participating in this relationship may comprise of 

a whole community of symbionts. The diversity observed within Oophila sp. itself does 

not coincide with its widespread distribution, in contrast with the biogeographic patters 

observed in A. maculatum lineages. This suggests that the green alga has likely been 

subject to vector transport, and is able to adapt and thrive in a wide range of habitats.

In order to thoroughly assess the indirect effects that herbicides, such as atrazine 

and 2,4-D, may have on A. maculatum embryos via their symbiotic algae, the next step 

into characterizing these potential risks may involve identifying and testing all the agal 

species that participate in this symbiotic relationship. Our study and others have shown 

that green algae is differentially sensitive to atrazine (Lockert et al. 2006, Baxter et al. 

2014) and 2,4-D (Wong 2000, Fairchild et al. 1998). For atrazine, NOEC for growth rate 

in our study was observed at 70 μg/L or more, and for 2,4-D the nominal NOEC was 

30mg/L or more. Though these responses exceed environmentally relevant exposure 

levels, there is potential for inhibitory effects to be observed at lower concentrations for 

more sensitive green algal species. Future directions with this research include 
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assessing the species of egg inhabiting algae that are the most sensitive to herbicides 

such as atrazine and 2,4-D, and establishing these as a standard for future toxicity 

tests. The results from this study for example, indicate that the O. amblystomatis strains 

isolated and cultured in this investigation are less sensitive than the strain tested by 

Baxter et al. (2014). From an environmental context, it is intuitive that the more sensitive 

a species is, the higher it is at risk, and this should be taken into consideration when 

conducting future toxicity tests with these unique egg inhabiting algae. 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Appendix / Supplemental Data

Table A1. Oophila sp. Genbank Compilation
Accession Number

KJ635663 KJ711227

KJ635662 KJ711224

KJ635659 KJ711215

KJ635658 KJ711213

KM359522 KJ711206

KM359519 KJ711203

KM359515 KJ711197

KM359513 KJ711196

KM359511 KJ711194

KM359510 KJ711193

KM359509 KJ711175

KM359508 KJ711167

KM359507 KJ711157

KM359506 KJ711155

KJ711131 KJ711151

KJ711256 KJ711147

KJ711254 KJ711145

KJ711251 KJ711140

KJ711247 KJ711133

KJ711244 KJ635670

KJ711236

KJ711234

KJ711233

KJ711229
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Table A2. Green Algal Sequences Taken from Kim et al. (2014)
Species, GenBank Accession Number

Chlamdomonas nasuta AB701502

Chlamydomonas pseudogloegama AF517097

Tetracystis aeria U41175

Chlorococcum hypnosporum U41173

Chlamydomonas moewusii U41174

Chlamydomonas moewusii EU925396

Chlamydomonas sp HM754412

Chlorococcum elkhartiense AJ628976

Chlamydomonas pitschmannii AJ628982

Chlamydomonas acidophila AJ628977

Chlamydomonas acidophila AJ852427

Chlamydomonas parkeae AB058373

Chlamydomonas hedleyi AJ781312

Tetracystis aplanospora JN903992

Chlamydomonas noctigama AJ781311

Chlamydomonas noctigama AF008242

Haematococcus pluvialis AF159369

Chlamydomonas perpusilla AB753036

Chlamydomonas gloeophila KJ635670

Chlorogonium elongatum U70589

Characium vacuolatum M63001

KJ635659 (Louise)

KJ635657 (Louise)

Chlorococcum sp. AB490286

KJ635662 (Louise)

Chlamydomonas sp. AY220599

KJ635658 (Louise)
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Chlamydomonas sp. AY220094

Chlorococcum sp. AB490288

Chlorococcum ellipsoideum U70586

Chlorococcum diplobionticum U70587

Protosiphon botryoides U41177

Chlamydomonas humicola U13984

Polytoma ellipticum U22933

Chlamydomonas tetragama AB007370

Asteromonas gracilis M95614

Chlorosarcinopsis gelatinosa AB218707

Chlorosarcinopsis arenicola AB218701

Characiosiphon rivularis AF395437

Dysmorphococcus globosus X91629

Chlamydomonas monadina U57694

Chlamydomonas sp. KF879589

KJ635663 (Louise Lewis)

Chloromonas rosae U70796

Chlamydomonas nivalivalis U57696

Lobochlamys culleus AJ410461

Oogamochlamys ettlii AJ410469

Chlorosarcina stigmatica AB218709

Chlamydomonas baca U70781

Neochlorosarcina negevensis AB218715

Volvox carteri X53904

Heterochlamydomonas lobata AF367858

Chlorosarcina stigmatica AB218711

Carteria radiosa D86500

Spermatozopsis similis X65557

Species, GenBank Accession Number
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Carteria crucifera D86501

Pyramimona vacuolata AB999994

Chara drouetii U18495

Micromonas commoda KU244632

Scherffelia dubia X68484

Chlorella vulgaris X13688

Oltmannsiellopsis viridis D86495

Aphanochaete magna AF182816

Species, GenBank Accession Number
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Table A3. ND4 Region A. maculatum sequences Taken from Zamudio and Savage 
(2003)

Genbank Accession Number

AY186486 AY186459 AY186434

AY186485 AY186458 AY186433

AY186484 AY186457 AY186432

AY186484 AY186456 AY186431

AY186483 AY186455 AY186430

AY186482 AY186454 AY186429

AY186481 AY186453 AY186428

AY186480 AY186454 AY186427

AY186479 AY186453 AY186426

AY186478 AY186452 AY186425

AY186477 AY186451 AY186424

AY186476 AY186450 AY186423

AY186475 AY186449 AY186422

AY186474 AY186448 AY186421

AY186473 AY186447 AY186420

AY186472 AY186443 AY186419

AY186471 AY186444 AY186418

AY186470 AY186445 AY186417

AY186469 AY186446 AY186416

AY186468 AY186442 AY186415

AY186467 AY186441 AY186414

AY186465 AY186440 AY186413

AY186464 AY186439 AY186412

AY186463 AY186438 AY186411

AY186462 AY186437 AY186410

AY186461 AY186436 AY186409
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AY186460 AY186435 AY186407

AY186408 AY186383 AY186358

AY186407 AY186382 AY186357

AY186406 AY186381 AY186356

AY186405 AY186380 AY186355

AY186404 AY186379 AY186354

AY186403 AY186378 AY186353

AY186402 AY186376 AY186352

AY186401 AY186375 AY186351

AY186400 AY186374 AY186350

AY186399 AY186373 AY186349

AY186398 AY186372 AY186348

AY186397 AY186371 AY186347

AY186396 AY186370 AY186346

AY186395 AY186369 AY186345

AY186394 AY186368 EF649952 ( A. opacum, outgroup)

AY186393 AY186367 AY691773 (A. gracile, outgroup)

AY186392 AY186366

AY186391 AY186365

AY186390 AY186364

AY1863989 AY186363

AY186387 AY186362

AY186386 AY186361

AY186385 AY186360

AY186384 AY186359

Table A3. ND4 Region A. maculatum sequences Taken from Zamudio and Savage 
(2003)

Genbank Accession Number
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Table A4. Control Region A. maculatum sequences Taken from Zamudio et al. (2003)

Genbank Accession Number

AY186495 (IL) AY186328 (?) AY186532 (WI)

AY186496 (IL) AY186270 (?) AY186511 (IN)

AY186498 (IL) AY186331(ON) AY186520 (KY)

AY186491 (IL) AY186332(ON) AY186513 (IN)

AY186494 (IL) AY186263 (ON) AY186536 (WI)

AY186499 (IL) AY186282 (WI) AY186528 (WI)

AY186500( (IL) AY186266 (ON) AY186526 (WI)

AY186501 (IL) AY186330 (?) AY186530 (WI)

AY186509 (MI) AY186261 (?) AY186523 (MI) 

AY186510 (KY) EU169894 (?) AY186522 (MI)

AY186533 (MI) EU169895 (?) AY186535 (TN)

AY186490 (ON) EU169899 (?) AY186529 (WI)

AY186507 (MI) AY186262 (MA) AY186487 (AL)

AY186508 (MI) AY186320 (MA) AY186489 (AL)

AY186505 (MI) AY186340 (VA) AY186525 (MS)

AY186506 (MI) AY186307 (CT) AY186516 (NC)

AY186519 (KY) AY186268 (ME) AY186524 (AL)

AY186521 (KY) EU169896 (?) AY186488 (AL)

AY186514 (IN) EU169897 (?) AY186517 (NC)

AY186537 (WI) AY186267 (ME) AY186518 (NC)

AY186497 (IL) AY186310 (PA) AY186503 (SC)

AY186502 (IL) AY186258 (NY) AY186504 (SC)

AY186512 (IN) EU169900 (?) AY186534 (NC)

AY186515 (IN) AY186264 (MA) AY186295 (IN)

AY186492 (IL) AY186309 (PA) AY186336 (ON)

AY186493 (MA) AY186327 (?) AY186271 (ON)
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AY186304 (VA) AY186337 (ON) AY186297 (NC)

AY186281 (VA) AY186323 (MS) AY186296 (NC)

AY186316(NY) AY186338 (MA) AY186287 (NC)

AY186335 (ON) AY186283 (?) AY186317 (MO)

AY186260 (?) AY186275 (LA) AY186288 (NC)

AY186300 (NY) AY186273 (?) EF649894 A. opacum

AY186318 (MA) AY186276 (LA) AY186597 A. gracile

AY186299 (NY) AY186313 (OK)

AY186326 (NSA) AY186278(LA)

AY186269B (? AY186312 (OK)

AY186256 (MD) AY186314 (MO)

AY186319 (MA) AY186290 (LA)

AY186303 (VA) AY186279 (LA)

AY186315 (NY) AY186302 (TN)

AY186344 (MD) AY186292 (AR)

AY186334 (ON) AY186321 (MO)

AY186306 (CT) AY186277 (LA)

AY186329 (?) AY186291 (AR)

AY186305 (VA) AY186293 (MO)

AY186342 (VA) AY186325 (NC)

AY186341 (VA) AY186324 (NC

AY186284 (?) AY186289 (OK)

AY186286 (GA) AY186298 (NC)

AY186285 (?) AY186274(IL)

AY186311 (OK) AY186339 (TN)

Table A4. Control Region A. maculatum sequences Taken from Zamudio et al. (2003)

Genbank Accession Number
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AY186294 (MO) AY186322(MO)

AY186301 (TN) AY186280 (SC)

Table A4. Control Region A. maculatum sequences Taken from Zamudio et al. (2003)

Genbank Accession Number
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Table A5. ELISA analytical quantification of atrazine exposure test concentrations

Nominal Kingston Sudden Tract Bruce Peninsula

3 4.5 4.2 3.3

10 10 9 10

30 27 21 21

100 140 80 70

300 405 360 270

Table A6. ELISA analytical quantification of atrazine recovery test concentrations

Nominal Kingston Sudden Tract Bruce Peninsula

0 0.12 0 0

3 0.12 0.2 0

10 0.5 0.5 0

30 0.9 0.25 0

100 5 5 0

300 6 6 1.1
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