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Abstract

Robotics and artificial intelligence have seen drastic advancements in technology and
algorithms over the last decade. Computer vision algorithms play a crucial role in enabling
robots and machines to understand their environment. A fundamental cue in understanding
environments is analyzing the motions within the scene, otherwise known as scene flow.
Scene flow estimates the 3D velocity of each imaged point captured by a camera. The 3D
information of the scene can be acquired by RGB-D cameras, which produce both colour
and depth images and have been proven to be useful for solving many computer vision
tasks. Scene flow has numerous applications such as motion segmentation, 3D mapping,
robotic navigation and obstacle avoidance, gesture recognition, etc. Most state-of-the-art
RGB-D scene flow methods are set in a variational framework and formulated as an energy
minimization problem. While these methods are able to provide high accuracy, they are
computationally expensive and not robust under larger motions in the scene.

The main contributions of this research is a method for efficiently estimating approx-
imate RGB-D scene flow. A new approach to scene flow estimation has been introduced
based on matching 3D points from one frame to the next in a hierarchical fashion. One
main observation that is used is that most scene motions in everyday life consist of rigid
motions. As such, large parts of the scene will follow the same motion. The new method
takes advantage of this fact by attempting to group the 3D data in each frame according to
like-motions using concepts from spectral clustering. A simple coarse-to-fine voxelization
scheme is used to provide fast estimates of motion and accommodate for larger motions.
This is a much more tractable approach than existing methods and does not depend on
convergence of some defined objective function in an optimization framework. By assum-
ing the scene is composed of rigidly moving parts, non-rigid motions are not accurately
estimated and hence the method is an approximate scene flow estimation. Still, quickly
determining approximate motions in a scene is tremendously useful for any computer vision
tasks that benefit from motion cues.

Evaluation is performed on a custom RGB-D dataset because existing RGB-D scene
flow datasets presented to date are mostly based on qualitative evaluation. The dataset
consists of real scenes that demonstrates realistic scene flow. Experimental results show
that the presented method can provide reliable scene flow estimates at significantly faster
runtime speed and can handle larger motions better than current methods.
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Chapter 1

Introduction

This section introduces the basic concepts of RGB-D cameras and scene flow and why they
are important. The main motivation behind this work is demonstrated by providing some
important example applications of scene flow. The shortcomings of existing methods and
the main contributions of this research are explained.

1.1 RGB-D Cameras and Scene Flow

Advancements in 3D imaging technology have introduced a wide variety of ways to capture
3D data, such as laser scanners, LiDAR, time-of-flight cameras, and infrared (IR) depth
cameras. In particular, there is tremendous interest in RGB-D cameras, which are cameras
that are equipped with both a regular camera sensor as well as a depth sensor. Hence,
RGB-D cameras produce both an RGB image as well as a depth image, where each pixel in
the depth image represents a physical measurement of how far away that point is from the
camera in the real world. Examples of commercial RGB-D cameras include the Microsoft
Kinect [86], Intel RealSense [37], Asus Xtion [2], etc. (see Figure 1.1 for an example
of the Kinect RGB-D camera). These cameras are appealing due to their robust depth
measurements, low cost, and real time performance. Nowadays, the technology has gained
tremendous interest in industry aiming to deploy RGB-D cameras into smartphone devices
e.g., Intel [37], Google [1]. That future smartphones and tablets will eventually be equipped
with an RGB-D camera is highly likely.

Having both RGB image and depth measurements have shown to have major advan-
tages in solving computer vision problems, such as segmentation, tracking, recognition,
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Figure 1.1: Example of an RGB-D camera. Shown above is the Microsoft Kinect v2 [53]

etc. [11]. For instance, the problem of image segmentation is to distinguish regions of an
image according to the task at hand. Suppose we want to segment the scene according
to different individual objects. With a regular colour or intensity image, image segmen-
tation algorithms rely on the colour/intensity differences in the image space. With depth
information, differences in depth can be a better cue for differentiating between different
objects. In general, the additional depth information provides a whole new dimension to
the measured information of a scene, providing additional cues and features for machines
to better recognize and understand the scene. This work is focused on the use of RGB-D
cameras for motion analysis, where the area of research regarding scene motion analysis
can benefit significantly from the use of RGB-D cameras. Within the field of 3D vision,
estimating scene flow is a fundamental problem that is concerned with estimating the 3D
motion field (the 3D velocity vector at each pixel) of a given scene relative to the camera
viewpoint. It is the 3D equivalent of optical flow, where optical flow is concerned with
estimating the 2D [x, y] motion vector of each pixel from one frame to the next, scene flow
estimates the 3D motion vector [x, y, z]. With RGB-D cameras, the depth information is
directly measured and does not need to be inferred from using regular cameras.

1.2 Motivation: Applications of Scene Flow

Scene flow estimates the 3D motion vector of every imaged point, and knowing the exact
movements of each pixel from frame to frame has numerous applications. Some examples
include robotic navigation, obstacle avoidance, action recognition, human-computer inter-
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facing, object tracking, augmented reality, etc [10, 52, 77]. These applications are described
next.

Robots are becoming more and more prevalent in modern times, from gadgets such as
the autonomous vacuums and unmanned aerial vehicles (UAVs) to revolutionary technol-
ogy such as self-driving cars. These robots need to be able to navigate their environment
without crashing into obstacles or people. In dynamic environments, this can be a chal-
lenging task, but by knowing the motion of every object that the robot observes the robot
can take predictive measures to avoid crashing into its surroundings. As well, knowing how
the scene moves from the perspective of the camera allows the robot to know the direction
that it’s moving. In conjunction with the depth maps generated by the RGB-D camera,
a 3D map of its surroundings can be created along with its trajectory for navigational
purposes. This can be used, for example, to improve simultaneousness localization and
mapping (SLAM) applications [10] and perform 3D reconstruction [25].

Scene flow can further be used as input to many other computer vision tasks. For
example, motion segmentation becomes a much simpler problem once scene flow is known
since one only has to segment the motion field produced by scene flow estimation into
distinct motions [34]. As well, object tracking across time also becomes a much simpler
problem once the motion of the object over time is known. As a final example, accurate
scene flow provides additional information and features to use for tasks such as human
action recognition [77], where for example knowing the velocity vector of how the arm is
moving can be used to distinguish gestures.

In addition to helping solve traditional computer and robotic vision problems, scene
flow has potential uses for future technologies. In human computer interfacing (HCI), a
computer that is equipped with an RGB-D camera can perform scene flow analysis to
measure the movements of a human user. In conjunction with action recognition methods,
this provides another means for users to provide input to machines. In augmented reality
applications, the challenge is to seamlessly overlay digital information on top of the im-
aged scene. In order to do so, the machine must have an extensive understanding of the
scene, including 3D structure, object recognition, and scene dynamics. Overlaying digital
information on top of a moving object will require accurate tracking and understanding of
the object’s 3D motion.

There are many more applications of scene flow. As such, scene flow is considered a
fundamental computer vision problem that is an active area of research [23]. In terms of
practicality, most scene flow applications require real-time or near real-time performance
to be useful. Unfortunately, research in the area has thus far focused on accuracy and
the run-time performance of most current state-of-the-art scene flow methods are highly
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lacking, ranging from minutes to over an hour per frame on a CPU [39, 70, 78]. Clearly,
this is nowhere near sufficient to be of practical use and there remains much room for
further research. Even if accuracy is compromised for speed, many tasks can still benefit
from approximate scene flow, such as obstacle avoidance or gesture recognition. Thus,
there is a need for fast, efficient scene flow estimation methods that maintain the accuracy
required for application use.

1.3 Thesis Contribution and Outline

This thesis aims to address the issue of computational efficiency in estimating scene flow.
The main contribution is a new method of efficiently approximating scene flow based on
grouping 3D data of similar motion between frames. The aim is to quickly estimate ap-
proximate scene flows from RGB-D sequences while retaining high accuracy on motion
estimates. The driving motivation behind the approach is the observation that most ev-
eryday scenes consist of rigidly moving parts. If we consider camera movement, vehicular
movement, pedestrians, etc., much of the movements of interest can be decomposed to a
set of rigidly moving parts. This means we do not necessarily have to find the individual
movements of every pixel, but rather find the overall movement of groups of pixels. By
discretizing and dividing the scene into groups, we can estimate scene flow much more
quickly while maintaining the general motions observed in the scene. Of course, this is not
true scene flow if the scene has non ridid motions such as fluids; hence it is an approximate
scene flow.

The remainder of the thesis is organized as follows. Chapter 1 introduces additional
background knowledge on the problem of scene flow as well as existing methods. Chapter 3
presents the proposed method of estimating scene flow. Experimental data and results are
reported in Chapter 4 and finally conclusions and future are discussed in Chapter 5.
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Chapter 2

Background

This section introduces the background theory behind RGB-D scene flow estimation as
well as existing methods. Section 2.1 begins by reviewing how an RGB-D camera is able
to provide full 3D information of the imaged scene using perspective projection and the
pinhole camera model. Following that, Section 2.2 discusses RGB-D scene flow methods
and its roots from optical flow and multi-view scene flow . Finally, because the method
in this work uses concepts from spectral grouping, Section 2.3 introduces the theory of
spectral clustering and its usage in motion analysis.

2.1 RGB-D Camera Model

2.1.1 Pinhole Camera Model

Conventional cameras capture the light reflected from the physical world onto a sensor to
generate a 2D image. This process can be modelled using the perspective camera model, or
pinhole camera model [31]. The pinhole camera model defines the geometric relationship
between a 3D point and its corresponding 2D projection onto the image plane. The model
is shown in Figure 2.1.

While pinhole cameras are considered antique technology, the pinhole model still holds
well for today’s standard cameras. For mathematical and visualization convenience, it is
convention to move the image plane in Figure 2.1 forward to be in front of the camera
center. This simply makes the image appear upright and the projective rays can be seen to
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Camera Center

Image Plane

3D Object in Real World

Figure 2.1: How a 3D scene is imaged using the pinhole camera model. −→pp is the principle
point (the projection of the camera center on the image plane) and f is the focal length of

the camera.
−→
P is the 3D real world coordinate and −→p is the image pixel coordinate.
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Image Plane

Figure 2.2: Pinhole model showing the geometric relationship between a world 3D point
and its 2D image projection via similar triangle principle.
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pass through the image plane, making visualization more intuitive. The new representation
is shown in Figure 2.2.

The model shown assumes that the origin (0, 0, 0) of the 3D Euclidean world coordinate
axis is at the camera center and that the image coordinate origin is at the principle point

pp. Then, the x, y image coordinates of
−→
P after projecting onto the image plane can be

computed using the property of similar triangles:

x

f
=
X

Z
→ x = f

X

Z
y

f
=
Y

Z
→ y = f

Y

Z

(2.1)

The focal length f and principle point pp = [cx, cy] are often referred to as the camera’s
intrinsic parameters. Digital images normally have their origin in the top left corner of
the image, so the principle points have to be taken into account by simply adding them to
Eq. 2.1:

x = f
X

Z
+ cx

y = f
Y

Z
+ cy

(2.2)

This relationship is normally represented using homogeneous coordinates, which allows
Eq. 2.2 to be represented as a matrix multiplication. Homogeneous coordinates are a sys-
tem of coordinates used in projective geometry, just as Cartesian coordinates are used in
Euclidean geometry. In homogeneous coordinates, an N-dimensional coordinate is rep-
resented using N+1 numbers. A point in Cartesian coordinates (x, y) is represented in
homogeneous coordinates as (x′, y′, ω) where an additional variable ω is added. The rela-
tionship between the Cartesian and homogeneous coordinates is:

x = x′/ω

y = y′/ω
(2.3)

Using homogeneous coordinates, the 3D to 2D relationship can be represented as:xy
1

 =

f 0 cx 0
0 f cy 0
0 0 1 0



X
Y
Z
1

 =
[
K|0

] 
X
Y
Z
1

 (2.4)

where K is the 3×3 camera matrix (or perspective transformation matrix) containing the
camera intrinsic parameters.
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Naturally, once a 3D point has been projected onto 2D space the 3D information is
lost - the above transformation cannot be inverted. Specifically, since only the x, y image
coordinates are known after the transformation, all information related to Z is lost and
X, Y cannot be recovered due to their dependence on Z as per Eq. 2.2. Therefore, it is
impossible to know the 3D information of the scene given a single image captured by a
conventional camera. For example, given a picture of a car, we do not know the scale or
size of the car. It could be a real car or it could be a toy model; they may look identical
in the image plane. RGB-D cameras are useful because they provide the Z information
required to recover the 3D information of the scene.

2.1.2 RGB-D Camera

An RGB-D camera is composed of a camera sensor and a depth sensor to produce a
colour (RGB) image as well as a depth (D) image. The colour image is the same as
what is captured by a standard camera following the pinhole camera model described in
the previous section. The depth image, instead of holding RGB values per pixel, holds
the Z value of the 3D scene that was captured. With the depth image, denoted D, and
the intrinsic camera parameters f, cx, cy, a pixel D(x, y) is projected onto 3D space with
coordinates [X, Y, Z] by simply the inverse of Eq. 2.2:

X =
(x− cx)D(x, y)

f
Y =

(y − cy)D(x, y)

f
Z = D(x, y) (2.5)

If we project every pixel in D onto 3D space, the result is a 3D point cloud that is
representative of the real world 3D geometry of the scene. Figure 2.3 shows an example
of an RGB image, depth image, and point cloud captured by one frame from an RGB-D
camera. The depth image is visualized by normalizing the depth values to be within the
range of 8-bit gray-scale image values (0-255).

Depth Sensing Technologies

The depth sensing technology that actually measures the Z values differs between the
various available RGB-D cameras. In the past, time-of-flight (ToF) sensors were the most
popular means of measuring depth, coupled with a regular camera. These sensors rely on
measuring the time it takes for a beam of light to travel to a destination and reflected back.
Companies that provide ToF cameras include Heptagon [33], PMD [59], and Basler [6]. The
main drawback to ToF cameras is that they require very specialized hardware, such as a
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RGB Image Depth Image Point Cloud

Figure 2.3: Example of what an RGB-D camera produces. The left shows the RGB image
captured by a conventional camera. The middle shows the depth image, captured by a
depth camera, where the depth values have been normalized for visualization. Lighter
parts of the depth image represent greater depth (objects farther away) and darker parts
represent objects that are closer to the camera. Each point in the point cloud is an (X, Y, Z)
coordinate obtained by projecting its corresponding point from the depth image according
to Eq. 2.2 & 2.4.

pulsing laser source and calibrated sensor, which are very expensive. This has made them
inaccessible to the general public and thus ToF cameras were mainly used in industry and
research. More recently, Microsoft introduced the Kinect v2 which uses ToF technology
for depth sensing at a much more affordable price of a couple hundred dollars [53].

The last few years have seen another type of RGB-D camera that has become popular.
These RGB-D cameras use active stereo vision with infrared (IR) light, which is the tech-
nology behind the first Microsoft Kinect [86]. The principle behind active stereo visions
is to project some light pattern onto the scene which is then captured by a camera and
triangulation is used to determine depth. Typical projection sources include a projector
(structured light systems), laser beams, and IR light. Consider a scene viewed by a camera
and a laser pointer pointed at the scene from a different angle to the camera, shown in
Figure 2.4. We can assume that both the laser pointer and camera have been calibrated
beforehand, meaning we know all the intrinsic parameters of the camera as well as the
pose (rotation and translation) of the camera and laser pointer. In this case we know the
direction vector −→q1 of the ray emitting from the laser pointer and also the direction of the
ray of the point being projected onto the image plane −→q2 . The parameter of interest here

is the length of the ray g2 from the camera center to the point
−→
P in the physical world.

This can easily be determined by simply finding the intersection of the two rays.

This simple example illustrates the concept of active vision for when we have a single
point. When a projection system is used that consists of many points, such as a projector,
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Projector Center

Camera Center

Projector Ray Camera Ray

Figure 2.4: Example of active stereo triangulation with a laser point source.

the projection system can also be modelled using the pinhole camera model but instead
of rays coming in to the camera, rays are going out. With many points, the camera has
to be able to discern which projected point corresponds to which image point i.e., which
rays are intersecting. Active vision systems use coded patterns in the projection such that
the pattern is spatially discriminative, in contrast to passive vision which relies solely on
finding correspondences between two camera images (more information on passive stereo
vision in Section 2.2.2). The Microsoft Kinect uses an IR dot pattern where each patch of
dots is unique from the rest of the dot patches so the camera can determine the spatial
location of each dot based on its neighbouring dot pattern. Using IR is also helpful because
it does not contaminate the scene in the visual light spectrum, so the projected pattern
appears as if it were invisible to the naked eye. Companies that produce RGB-D cameras
using active vision IR patterns include Microsoft [53], Intel [37], and Asus [2].

Thus far, the intrinsic values (focal length and principle points) of the camera were
assumed to be known beforehand. While nominal values for these camera parameters are
provided by the RGB-D camera manufacturer, more accurate estimates for these parame-
ters can be obtained through camera calibration techniques [85]. Also, the RGB image is
assumed to be aligned with the depth image such that the pixels in the RGB image refer
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Camera Center

Image Plane

u 

v

Optical Flow Scene Flow

Frame 1

Frame 2

Figure 2.5: Example of a ball’s motion captured at two different time steps / frames. Scene

flow estimates the 3D velocity vector
−→
T of each point from the first frame to the second

frame, while optical flow estimates the 2D motion u, v as observed in the image plane.

to the same point in space as the depth image. In practise, the RGB and depth image may
be misaligned in which case camera calibration needs to be performed. The next section
will discuss the use of RGB-D cameras for motion analysis.

2.2 Scene Flow Estimation

Scene flow estimates the 3D motion of the scene relative to the observer, which in this case
is the camera center. A scene sampled at two time steps is captured by two consecutive

frames in a video sequence. Given 3D points
−→
P 1 = [X1, Y 1, Z1]′ from frame 1 and

−→
P 2 =

[X2, Y 2, Z2]′ from frame 2, scene flow will find the translation from
−→
P 1 to

−→
P 2 i.e.

−→
P 2−

−→
P 1.

This concept is shown in Figure 2.5, where a ball’s movement is captured across two frames.
Historically, due to the lack of depth information, much of motion analysis was performed
in the 2D image plane and is termed optical flow. Referring again to Figure 2.5, optical flow
finds the [u, v] motion vector from the 2D image points −→p 1 and −→p 2. Scene flow analysis
originates from optical flow concepts and hence optical flow will be briefly introduced here.
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Frame 1 Frame 2 Optical Flow

Figure 2.6: Optical flow example. Optical flow estimates the motion from frame 1 to
frame 2, the downsampeld 2D motion field is shown on the right. Images obtained from
Human-assisted motion annotation dataset [48]

2.2.1 Optical Flow

Optical flow aims to find the apparent 2D motion of an imaged scene caused by relative
motion between the scene and the camera. It does not take into consideration the 3D
motion of objects in the physical world. Despite this, optical flow provides much of the
basis behind current scene flow methods because colour images in general are much more
distinctive and discriminative than depth information. For instance, a painting is very
feature-rich in an RGB image whereas the depth is simply a flat plane.

Given an image sequence, let I(x, y, t) represent the intensity image values over the
x, y coordinates and time t and let u and v represent the motion in the x and y directions
respectively for each pixel from one frame to the next. Figure 2.6 shows a visual example
of a downsampled optical flow field between two frames (the optical flow field contains a
motion vector for every pixel). To estimate this 2D motion field, the foundation of optical
flow methods rely on the optical flow constraint, which simply states that a given pixel’s
colour remains constant after applying the motion. For example, the moving silver car in
Figure 2.6 appears silver in the first frame and also in the second frame. Hence:

I(x, y, t) = I(x+ u, y + v, t+ 1) (2.6)

This constraint assumes that temporal intensity changes are only as a result from motion.
Eq. 2.6 holds for most image sequences but there are many cases where the constraint
breaks down. For example, lighting changes, shadows, and occlusions will make objects
appear differently from frame to frame. Nevertheless, this constraint is valid for high
sampling rates for small u, v and if I(x, y, t) ≈ I(x + u, y + v, t + 1). In this case, we can
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t t+1

Aperture

Figure 2.7: Visualization of the aperture problem. The blue line is moving to the right
and up, indicated by the red vector −→v . However, when viewed through the aperture of
a camera, there it appears to only move to the right, indicated by the blue vector −→vn.
Generally, only the motion that is normal to the structure is recovered.

apply a first order Taylor series expansion about I(x, y, t):

I(x+ u, y + v, t+ 1) = I(x, y, t) +
∂I

∂x
u+

∂I

∂y
v +

∂I

∂t
(2.7)

Subbing in Eq. 2.6:

0 =
∂I

∂x
u+

∂I

∂y
v +

∂I

∂t

0 = Ixu+ Iyv + It

(2.8)

where Ix, Iy, It are the partial derivatives of the image I(x, y, t) with respect to x, y, t
respectively. The above constraint is one relation in the two variables u, v and is under-
constrained, thus additional prior information is required to obtain a unique solution. This
is referred to as the aperture problem in optical flow estimation, and is a result of lacking
local structural information in the image to uniquely find the 2D motion. For example,
an edge moving to the right and up when viewed through the aperture of a camera may
only look like the edge is moving in the right direction (see Figure 2.7). Many optical
flow methods address this issue by using some form of regularization on the motion field,
adding additional constraints to the motions such as a smoothness assumption [22, 78]. Two
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seminal works in optical field are often cited with regards to this problem. One is by Lucas
and Kanade [50] which is considered a local regularized approach. They assume a constant
optical flow field around a given pixel’s neighbourhood. The optical flow constraint is
computed using all pixels in the neighbourhood to get an overconstrained system where the
solution is to minimize the sum of least squared deviations from the optical flow constraint
i.e., for a neighbourhood patch N , where N consists of all pixels within a square window
of a specified width around a given pixel:

[u, v] = arg min
u,v

∑
x,y∈N

(Ix(x, y, t)u+ Iy(x, y, t)v + It(x, y, t))
2 (2.9)

The other approach is by Horn and Schunck [35] which is considered a global approach and
is set in a variational framework. They use an energy objective function which contains a
regularization term that penalizes large disparities in the flow field to encourage spatially
smooth motions. The energy over the image domain Ω is defined as

E =

∫
Ω

(|Ixu+ Iyv + It|2 + µ(|∇u|2 + |∇v|2))dΩ (2.10)

where µ is a smoothness weighting parameter and ∇ = ∂2/∂x2 + ∂2/∂y2 is the Laplacian
operator, used to apply a cost to large variations in the u and v motion fields. While the
Lucas and Kanade method and Horn and Schunck method are relatively old, originating
decades ago, they still hold up today in terms of optical flow accuracy [22]. The varia-
tional method in particular has spawned many different optical flow methods that use a
similar framework. Optical flow methods that are set in a variational framework utilize
a smoothness assumption on the motion field and optimize a global energy cost over the
image domain Ω.

Eglobal =

∫
Ω

Edata(I1, I2, u, v) + Ereg(u, v) (2.11)

The data energy Edata will generally be some variant of the optical flow constraint, and the
regularization term Ereg will penalize large variations in the flow field. Many other robust
data and regularizer terms have been proposed [13, 18, 68, 82]. Optimizing this type of
energy functional is the basic framework for many optical flow methods, where they differ
in choice of energy terms and method of optimization [14, 17, 32, 72, 79, 82, 87]. This
approach is particularly applicable in the context of scene flow because scene flow methods
are set in a similar framework (see Sections 2.2.2,2.2.3 below).

In solving the energy functional, many approaches have been proposed in literature by
the different methods. Examples include solving the Euler-Lagrange equation [7, 13, 35],
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primal-dual frameworks [16], graph cuts [44], etc. Computational efficiency was and still is
an issue with methods using the variational framework. The best performing optical flow
methods remain computationally expensive [22].

Another challenge with optical flow methods is handling large displacements. This is
due to the linear approximation in Eq. 2.8 that holds only in the near vicinity of a pixel.
The general approach is to use a coarse-to-fine approach to deal with these cases [8, 15].

Optical flow has a long history of active research and many other models have been
proposed for estimating motion vectors. It is outside the scope of this work to review
them all. Rather, the variational approach and related methods were introduced that
pertained to the scene flow problem of interest here since many scene flow methods use
similar optimization frameworks. While optical flow methods have seen impressive results
in recent years, without 3D information there will always be cases where 2D optical flow is
insufficient to discern the correct motion. The barber pole illusion is the classic example
of this case, where the red and white stripes a barber pole appear to be moving in the
up/down direction when reality it is spinning around an axis. Ultimately, a combination
of RGB and depth can provide much more information than either one can independently.

2.2.2 Multi-view Scene Flow

Traditionally, scene flow has been studied in multi-view vision using stereo or multiple
cameras. In multi-view scene flow, depth and motion are jointly estimated through concepts
from multi-view geometry [31]. Vedula et al. [73] first defined the term ”scene flow” as the
estimation of 3D motion fields through imaging and since then many methods have been
introduced to estimate depth and motion.

The basis behind optical methods of measuring depth is through the principles of tri-
angulation and geometry [31]. A stereoscopic camera is a passive vision system, meaning
it does not alter the scene in any way as done in active vision systems. Rather, stereo
vision infers the 3D geometry of a scene by using two cameras. Typically, the two cameras
are referred to as the left camera that produces the left image IL and right camera for the
right image IR. Normally, IL and R are rectified such that the row pixels of one image
correspond to the rows in the other (i.e., corresponding points have the same y value).
This is shown in Figure 2.8. Given a stereo image pair IL, IR, a pixel in the left image
IL(x, y) corresponds to a pixel in the right image IR(x′, y′) through a displacement δ along
the x direction:

x = x′ + δ

y = y′
(2.12)
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Figure 2.8: Stereo cameras imaging a scene.

The geometric relationship between a 3D world point coordinates [X, Y, Z] and its 2D image
projection [x, y] onto the left image can be computed through the following relationship [31]:xy

δ

 =
1

Z

 Xf
−Y f
bf

+

cxcy
0

 (2.13)

where b is the baseline between the two cameras. Hence, if the camera parameters are
known(via calibration), the 3D points can be recovered by finding the displacements δ.
The fundamental problem that stereo vision algorithms aim to solve is estimating the
displacement δ for each pixel, otherwise known as the correspondence problem since the
task involves finding corresponding points between the left and right images. To this end,
some correlation or similarity metric is used to find corresponding points, such as the sum
of squared differences (SSD) [41] or sum of absolute differences (SAD) [30]. For motion
analysis, the addition of another camera allows inference of scene flow and introduces
additional constraints [78]. The optical flow constraint can be applied to both the left and
right cameras independently. Starting with the left camera:

IL(x, y, t) = IL(x+ u, y + v, t+ 1) (2.14)
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For the right camera, we can represent the pixel x coordinates in terms of the left image
coordinates, with the unknown displacement δ. The optical flow motion will introduce
differences only along the x direction since the y coordinates will be the same from Eq. 2.12.
The change in motion along x is denoted by δ′:

IR(x+ δ, y, t) = IR(x+ δ + u+ δ′, y + v, t+ 1) (2.15)

There is an additional constraint which states that the left image after applying the flow
field should be consistent with the right image after applying the flow field:

IL(x+ u, y + v, t+ 1) = IR(x+ δ + u+ δ′, y + v, t+ 1) (2.16)

These three constraints comprise the stereo motion constraints and are used in many stereo
scene flow methods again in a variational or energy minimization framework [38, 58, 84].
Wedel et al. [78] formulated the problem in a variational framework where they decoupled
the estimation of depth and motion. They employed an energy function composed of a
data term and smoothness term similar to Eq.2.11, consisting of the optical flow brightness
consistency constraint and the disparity constraint between left and right cameras. More
recent state-of-the-art approaches in stereoscopic scene flow model a scene as a set of
moving slanted planes to provide a constraint on local rigidity [80, 75, 52]. Vogel et al. [75]
modelled a scene as a collection of rigidly moving planes, allowing them to simplify the
problem to that of estimating the motion of a discrete set of segments which they infer
using a discrete conditional random field (CRF). Similarly, Menze and Geiger [52] also
segmented the scene into moving rigid planes but further modelled the scene as rigidly
moving objects and a background. These methods have shown top performance on the
KITTI benchmark dataset [23, 52].

Inherently, stereoscopic scene flow require accurate estimation of the depth of the scene
(the disparity δ), which can be challenging in regions with few texture features. As such,
stereoscopic scene flow methods generally rely on some form of global energy minimization,
which is computationally expensive.

2.2.3 RGB-D Scene Flow

With RGB-D cameras, the problem of unreliable depth inference is alleviated since there
are now depth measurements directly available. Compared to optical flow and multi-view
scene flow, the field of RGB-D scene flow is relatively not well explored. Just as there are
constraints on brightness and disparity for optical flow and multi-view scene flow, there is
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an analogous constraint when given depth information called the range flow constraint [69]
on the depth map D:

Dxu+Dyv + ζ +Dt = 0 (2.17)

where ζ is the change in depth and represents motion along the Z direction. Some early
work in RGB-D scene flow were set in a variational framework that extend optical flow
methods to include the depth constraint in Eq.2.17 [26, 46, 34, 40]. Similarly to optical
flow, regularization is just as crucial in RGB-D scene flow. This generally meant adding
an additional depth consistency cost term to Eq. 2.11 and regularizing the 3D motion field
[u, v, ζ]:

Eglobal =

∫
Ω

Ecolour(I1, I2, u, v) + Edepth(D1, D2, u, v, ζ) + Ereg(u, v, ζ) (2.18)

This global approach has generally been favoured over local approaches in scene flow esti-
mation. This is probably due to the fact that local structures in 3D are not distinctive and
have very low discriminative power. Consider again an example of a painting where the
3D structure of one local patch is nearly identical to another patch since both are simply
flat surfaces. Hence, global approaches relying on regularization have become more widely
used. Herbst et al. [34] minimized a global energy function consisting of a data term for
colour and depth consistency with an anisotropic regularization term to provide smooth-
ness while maintaining boundaries. To work around the limitations of variational methods
in estimating large motions, Letouzey et al. [46] used sparse feature matching (SIFT) to
get prior knowledge of the motions before optimization. Quiroga et al. [61] used a local
rigidity approach within a global weighted total variation optimization framework, where
they used twist motions to model the motion field. Jaimez et al. [39] formulated scene
flow with a spatial regularization on the 3D surface and minimized their energy function
in a primal-dual framework to achieve real-time RGB-D scene flow on a GPU. Similarly,
Ferstl et al. [20] also used the primal-dual principal on a GPU to minimize their energy
function that used a ternary census transform and closest point matching as their data
term. Other than the work by Jaimez et al. [39] and Ferstl et al. [20], the above methods
were not designed to be computationally efficient and focused more on scene flow accuracy.

There is some work in RGB-D scene flow that step outside the variational paradigm.
Hadfield and Bowden [29, 28] used a particle filter approach, hypothesizing over the possible
motion vectors of the 3D data. This approach has a large number of particle candidates
for each pixel and thus is computationally expensive. Hornacek et al. [36] proposed a
patch based matching scheme using spherical patches of 3D data in combination with a
variant of the patchmatch algorithm [4] to obtain a dense 6D motion field to account for
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rotation and translation. There are also some methods that make use of edge information
in the depth map to match larger flow vectors and handle larger motion [3, 64]. The
heavy dependence on edges make the applicability of these methods more scene-specific.
Finally, Sun et al. [70] used a layered model based on the depth of the scene to reason
about occlusion and constrain the motion. They were able to achieve very high accuracy
on the Middlebury optical flow dataset [65]. These methods are also not designed for fast
scene flow estimation, where they are either inherently computationally expensive or use
a final refinement step to smooth the motion field using a regularized objective function.
Compared to existing approaches, the method presented in this work is computationally
simpler and does not require explicit regularization on the motion field.

2.3 Motion Analysis Through Groupings

Part of the method presented in this work involves clustering or grouping the scene accord-
ing to similar motions. As such, methods in motion analysis that use grouping techniques
are reviewed here.

2.3.1 Motion Segmentation

Related to scene flow, the task of motion detection and segmentation in computer vi-
sion is of significant importance. Motion segmentation is essential for applications in
robotics, video surveillance, action recognition, object segmentation, etc. [83]. For instance,
a surveillance camera system would be interested in finding parts of the video where mo-
tion occurs to signify a person or car moving. As well, in sports analytics, segmentating
and identifying a moving ball or puck can help analyse the actions or plays being made.
Amongst the many approaches to motion detection and segmentation, a subset of methods
use grouping or clustering techniques [57, 60]. These techniques generally track a sparse set
of pixels across multiple frames and then cluster the scene into individual motions based
on the pixel trajectories. An example is shown in Figure 2.9 for a scene with moving cars
and static background. The three moving cars and static background comprise a total of
four independent motions. Here, the circles represent tracked points across the two frames
and are colour coded according to which cluster they belong to. Finding pixels to track can
be done by finding image features using methods such as scale-invariance feature tracking
(SIFT) [49].

At its core, clustering for motion analysis in computer vision revolves around the prob-
lem of subspace clustering. That is, although an image sequence provides millions of
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Figure 2.9: Example of motion segmentation by tracking point trajectories (shown by the
circles). The different motion clusters labelled by colour, with green circles representing
the background. Images obtained from KITTI autonomous vehicle dataset [23].

available pixel data, the scene itself and the motions associated with it are represented
using far fewer parameters and dimensions. This leads to using simpler, lower dimen-
sion representations of the data of interest. Conventional techniques for dimensionality
reduction include principle component analysis (PCA). In motion analysis, such as motion
segmentation, the interest is in the representation of pixel motions. This is normally done
by representing pixel trajectories in some subspace, and clustering within the subspaces
to find individual motions. We can let τ = [x1, y1, x2, y2, ..., xF , yF ] be the trajectory of a
tracked feature point over F frames. With P number of tracked points, the measurement
matrix can be formed by stacking the trajectories together:

x1
1 · · · x1

P

y1
1 · · · y1

P
...

. . .
...

xF1 · · · xFP
yF1 · · · yFP

 =

Λ1

...
ΛF



X1 · · ·XP

Y1 · · ·YP
Z1 · · ·ZP
1 · · · 1

 (2.19)

where Λ is some camera motion model, which can be the perspective camera model from
Eq.2.4 or more commonly the affine camera model [31, 42, 62, 71, 74] for its linearity and
simplicity. We want to segment the measurement matrix on the left according to its individ-
ual rigid motions, i.e., cluster the trajectories according to their motions. At its foundation,
this is a linear subspace segmentation / clustering problem, where we want to find k in-
dependent linear subspaces of R2F . Various ways of performing this clustering have been
proposed in literature, including generalized PCA [74], matrix factorizations [12],iterative
methods [81],and spectral clustering methods [19]. Spectral clustering in particular has
gained popularity for its efficient computations, ease of implementation, and clustering
performance [76].
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2.3.2 Spectral Clustering for Motion Analysis

Spectral clustering is a class of methods and algorithms for clustering data in a graph struc-
ture based on vertex affinities defined by the edge weights. Spectral clustering algorithms
are derived from spectral graph theory, which studies the eigenvalues and eigenvectors of
graph matrices [21]. This section will review the theory of spectral clustering used in this
work.

Graph Preliminaries and Definitions

A graph G = (ν,ε) is defined by its set of vertices ν and edges ε. Here G is a weighted
undirected graph, where the edge weights represent some sort of similarity measure be-
tween connected vertices. Intuitively, spectral clustering aims to partition the graph into
subgraphs such that the vertices within each subgraph have high similarity with each other
i.e., have high edge weights (see Figure 2.10, where high edge weights exist within the blue
and red clusters which are separated by low edge weights). Letting n = |ν| represent the
total number of vertices in G, the edge weights can be represented as a similarity matrix
(or adjacency matrix) W of size n×n, where each element wij of W holds the edge weight
connecting vertices νi and νj.

For a given vertex with m number of edges, the degree d of a vertex is defined as the
sum of incident edge weights:

di =
m∑
j=1

wij (2.20)

The degree matrix, Ψ, is defined to be a diagonal matrix with the diagonal values comprised
of di.

For a given subgraph S ⊂ ν, its ‘size ’can be measured as the volume of the subgraph
vol(S), which is defined as the sum of the degrees of all vertices in S:

vol(S) =
∑
i∈S

di (2.21)

A cut, which partitions the graph into two disjoint subgraphs, can be quantized as the
sum of the edge weights that separate the two partitions. For two subgraphs S1, S2 ⊂ ν,
define W (S1, S2) as the sum of edge weights connecting vertices from S1 to S2:

W (S1, S2) =
∑

i∈S1,j∈S2

wij (2.22)
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For k subgraphs S1...Sk, a cut is defined as

cut(S1, ..., Sk) =
k∑
i=1

W (Si, Si) (2.23)

where Si is the complement of Si.

Spectral Clustering Algorithm

As mentioned before, the goal of spectral clustering on a graph is to cluster the graph
into subgraphs such that the edge weights within each subgraph are high, signifying high
similarity. Put another way, clustering the graph vertices means finding a desired mincut,
which is a cut to partition the graph into subgraphs such that the connecting edge weights
between subgraphs are minimized. In practise, finding the mincut is relatively simple, but
often leads to solutions where a single vertex is isolated from the rest of the graph as a
subgraph [76]. Hence, at the same time, the subgraphs should be of relatively equal size
relative to each other i.e., we don’t want a partition that is insignificantly smaller than
the rest. To this end, the popular paper by Shi and Malik [67] proposed a normalized cut
(Ncut) defined as:

Ncut(S1, ..., Sk) =
k∑
i=1

cut(Si, Si)

vol(Si)
(2.24)

Minimizing the normalized cut in Eq. 2.24 takes into consideration the volume (or size)
of each graph partition Si in the denominator, thus discouraging very small volumes. An
example of a graph structure and Ncut is shown in Figure 2.10, with nodes shown as circles
and edges shown as lines with the corresponding edge weights beside each edge. The two
subgraphs, S and its complement S are colour coded blue and red.

An exact solution to finding the minimum Ncut is NP-hard [76]. Spectral clustering
allows for an approximate solution in polynomial time. The core of spectral clustering
algorithms involves the eigenvalue decomposition of the Laplacian matrix [21, 76]. The
unnormalized Laplacian matrix L is defined as [76]:

L = Ψ−W (2.25)

where Ψ is the degree matrix and W is the adjacency matrix defined above. Note that in
literature there are various proposed Laplacian matrices [21] to accomplish different goals.
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Figure 2.10: Toy example of an Ncut on a sample graph. The circles represent the ver-
tices ν, and the lines and numbers represent the edges ε and edge weights. The graph is
partitioned into two subgraphs, S (blue) and S(red), where it is seen that the edge sepa-
rating the two subgraphs have smaller weight than the edge weights within each subgraph.
Ncut aims to minimize the edge weights connecting the subgraphs and maximize the edge
weights contained within each subgraph.

A commonly used Laplacian matrix is the normalized symmetric Laplacian, Lsym, intro-
duced in the seminal work by Shi and Malik [67] and has improved clustering performance
over the unnormalized Laplacian matrix [76]:

Lsym = Ψ−
1
2 LΨ−

1
2

= I−Ψ−
1
2 WΨ−

1
2

(2.26)

where I is the identity matrix. Closely related to Lsym is the normalized Laplacian referred
to as Lrw due to its relation to random walks in literature [76]:

Lrw = Ψ−1L

= I−Ψ−1W
(2.27)

A few important properties of Lsym and Lrw to this work are listed below.
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1. For every vector
−→
h ∈ Rn:

−→
h ′Lsym

−→
h =

1

2

n∑
i,j=1

wij

(
hi√
di
− hj√

dj

)2

(2.28)

Proof −→
h ′Lsym

−→
h =

−→
h ′(I−Ψ−

1
2 WΨ−

1
2 )
−→
h

=
−→
h ′I
−→
h −

−→
h ′Ψ−

1
2 WΨ−

1
2
−→
h

=
n∑
i=1

h2
i −

n∑
ij

wij
hi√
di

hj√
dj

=
1

2

(
n∑
i=1

h2
i +

n∑
j=1

h2
j + 2

n∑
ij

wij
hi√
di

hj√
dj

)

=
1

2

n∑
i,j=1

wij

(
hi√
di
− hj√

dj

)2

(2.29)

2. λ is an eigenvalue of Lrw with eigenvector −→e if and only if λ is an eigenvalue of Lsym

with eigenvector −→e ′ = Ψ
1
2
−→e .

Proof

Lsym
−→e ′ = λ−→e ′ multiply both sides by Ψ−

1
2

Ψ−
1
2 Ψ−

1
2LΨ−

1
2
−→e ′ = λΨ−

1
2
−→e ′ sub. −→e = Ψ−

1
2
−→e ′

Ψ−1L−→e = λ−→e
Lrw
−→e = λ−→e

(2.30)

3. λ is an eigenvalue of Lrw with eigenvector −→e if and only if λ and −→e solve the general
eigenproblem L−→e = λΨ−→e .
Proof

Lrw
−→e = λ−→e multiple both sides by Ψ

ΨΨ−1L−→e = λΨ−→e
L−→e = λΨ−→e

(2.31)

Suppose the goal is to find the minimum Ncut for k number of subgraphs S1...Sk. First

define k indicator vectors
−→
h s ∈ Rn, s = 1...k, with each indicator vector being of the form:

hsi =

{
1√
vol(S)

if νi ∈ Ss

0 otherwise
(i = 1...n; s = 1...k) (2.32)
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These indicator vectors are the desired variables to be found as they specify which vertex

belongs to which subgraph. The specific form of
−→
h in Eq. 2.32 is chosen such that:

−→
h ′sL
−→
h s =

1

2

n∑
i,j=1

wij(hsi − hsj)2 (from Property 1, Eq. 2.28)

=
1

2

∑
i∈Ss,j∈Ss

wij

(
1√

vol(Ss)

)2

+
1

2

∑
i∈Ss,j∈Ss

wij

(
− 1√

vol(Ss)

)2

=
∑

i∈Ss,j∈Ss

wij
vol(Ss)

+
∑

i∈Ss,j∈Ss

wij
vol(Ss)

=
cut(Si, Ss)

vol(Ss)

(2.33)

From Eq. 2.33 and referring to the definition of Ncut in Eq. 2.24 it is seen that Ncut(S1...Sk) =∑k
s

−→
h ′sL
−→
h s. Therefore, Ncut minimization is equivalent to minimizing

∑k
s

−→
h ′sL
−→
h s.

The indicator vectors can be concatenated to form the columns of a matrix H ∈
Rn×k,H = [

−→
h 1,
−→
h 2, ...,

−→
h k]. It can be shown that

H′ΨH = I (2.34)

This can be verified by directly multiplying the terms and noticing the diagonal terms are
(
∑

i,νi∈Si
di)/vol(Si) = vol(Si)/vol(Si) = 1. Similarly, it can be checked that:

−→
h ′sL
−→
h s = (H′LH)ss (2.35)

Hence,
∑k

s

−→
h ′sL
−→
h s =

∑k
s(H

′LH)ss = Tr(H′LH) where Tr indicates the trace of a matrix
and the Ncut minimization problem can be restated as solving the following equation:

arg min
S1...Sk

Tr(H′LH) subject to H′ΨH = I (2.36)

This discrete optimization problem, in which the desired indicator vectors in H can take
on finite discrete set of values from Eq. 2.32, is still NP hard [76]. We can relax this
optimization problem by allowing the indicator vectors to take on real values. Substituting

M = Ψ
1
2 H (reason explained shortly), Eq. 2.36 is rewritten as:

arg min
M∈Rn×k

Tr(M′Ψ−
1
2 LΨ−

1
2 M) subject to M′M = I (2.37)
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The reason for the substitution of M is that now Eq. 2.37 can be solved by directly applying
the following theorem derived from the Courant Fisher characterization [43]:

Given a symmetric matrix A of size n×n and an arbitrary matrix V ∈ Rn×k, then the
trace of V′AV is minimized when V is an orthogonal basis of the eigenspace associated
with the smallest eigenvalues. If −→e 1, ...,

−→e k are eigenvectors associated with the increasing
eigenvalues λ1, ..., λk and E = [−→e 1, ...,

−→e k] then:

min Tr(V′AV) = Tr(E′AE) = λ1 + ...+ λk, V ∈ Rn×k,V′V = I (2.38)

In other words, since Ψ−
1
2 LΨ−

1
2 = Lsym, the solution of M to Eq. 2.37 is the matrix

containing the first k eigenvectors of Lsym as columns. For computational convenience, it
can also be shown that the solution to Eq. 2.37 is the first k eigenvectors of L−→e = λΨ−→e
by applying Property 2 and 3 of Lsym and Lrw above.

Once the real valued vectors of M have been solved for, they must still be converted
back to the discrete indicator vectors in order to group the vertices of the graph. This can
be done by treating the rows of M as data points and performing k-means clustering on
the rows of M since vertices belonging in same group will have similar indicator vectors.

The entire spectral clustering algorithm is summarized in Algorithm 1, and popular
spectral clustering algorithms generally follow this algorithm [76, 67, 54].

Algorithm 1 Spectral Clustering Algorithm

For input Similarity matrix W and k clusters:

1: Compute Laplacian L = Ψ−W
2: Compute first k eigenvectors −→e 1, ...

−→e k to the eigenproblem L−→e = λΨ−→e
3: Construct matrix E using −→e vectors as columns
4: The rows of E are the data points in Rk. Run k-means on the data points to obtain k

clusters.

For motion analysis, spectral clustering is appealing due to its low dependence on the
structure of the data, where clustering can be done on motion trajectories rather than
simply image points. In 2D motion analysis, spectral clustering has been employed for
tasks such as motion segmentation based on point trajectories [57, 60, 45, 19]. Mateus
et al. [51] use spectral clustering to track 3D trajectories using a multi-camera setup to
estimate sparse scene flow. These methods perform motion segmentation in 2D images and
perform clustering to generate a sparse motion field rather than the dense motion field in
scene flow.
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2.4 Summary

The primary drawback to most existing scene flow methods is the inherent computational
complexity in their variational framework. Optical flow has had a long history of research
with many different methods and also frameworks for more efficient computations. Scene
flow on the other hand has seen significantly less work and as such there exist little methods
that efficiently estimate scene flow. The lack of computationally efficient RGB-D scene flow
methods is the driving motivation behind this work. Rather than using an optimization
approach, grouping of similar motions is performed using concepts from spectral clustering.
Spectral clustering has seen success in motion analysis for 2D images, in particular for
motion segmentation by clustering sparse point trajectories. We apply similar concepts for
grouping RGB-D data for approximate dense scene flow.
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Chapter 3

Method

The motivation behind the method presented here is from observing that most scenes
encountered in everyday life consist of rigidly moving parts. This assumption has been
explored in recent state-of-the-art works in multi-view stereo [52, 75] decomposing the
scene into rigidly moving planes, and also in RGB-D scene flow [61] that constrains rigid
movements locally. In contrast to previous methods that are formulated in a variational
framework with explicit data and regularization term, we group these rigid motions using
concepts from spectral clustering. The data term, which consists of some defined cost
relating the difference in intensity and depth values based on the constraints in Eq. 3.1
and 3.2 is used as edge weights of a graph connecting matching nodes between frame 1
and frame 2 to define the matching affinity between nodes. Instead of a regularization
terms, we use a pairwise affinity between nodes based on intensity and motion similarity
to group like-motions and enforce every point within the group to have the same rigid
motion. The reasoning behind this again follows the basic assumption that most scenes
can be decomposed into rigidly moving parts. Similarly to how existing methods use a
coarse-to-fine scheme to accommodate larger motions [8, 15], the presented method here
uses a multi-resolution voxelization approach to hierarchically group motions together.

The following sections of this chapter are as follows. Section 3.1 introduces the scene
flow problem formulation and model and an overview of the method is given in Section 3.2.
Sections 3.3 and 3.4 present the core of the algorithm, namely the multi-scale voxelization
and affinity graph construction. Computational complexity is analysed in Section 3.6.
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3.1 Problem Formulation and Model

We formulate scene flow as a matching problem between two sets of 3D points measured
at two different time steps by an RGB-D camera. Let I1, I2 represent the intensity images
and D1, D2 represent the depth images measured at frame 1 and frame 2 respectively. For
a given pixel at ~p = (x, y), ~p ∈ I,D in the image domain, scene flow is the estimation of
its 3D translation vector ~o = (u, v, ζ), ~o ∈ R3 from one frame to the next. Here, (u, v) is
the optical flow velocity along the axis in the image plane, and ζ represents the change in
depth. Estimating ~o is generally done under the following constraints:

I1(x, y) = I2(x+ u, y + v) (3.1)

D1(x, y) = D2(x+ u, y + v)− ζ (3.2)

Eq. 3.1 is the brightness constancy assumption commonly used in optical flow (see Eq. 2.6
in Section 2.2.1) and Eq. 3.2 is the analogous depth constancy constraint (see Eq. 2.17 in
Section 2.2.3). Rather than estimating ~o, where u, v are motions in the image plane, we
match points directly in 3D space to better represent the physical scene. That is, we want

to find the 3D translation motion
−→
T ∈ R3:

−→
T =

Zf 0 X
Z

0 Z
f

Y
Z

0 0 1

uv
ζ

 (3.3)

where X, Y, Z are the 3D spatial coordinates of the observed point, readily obtained from
the pinhole camera model in Eq. 2.4.

Let P 1 = {
−→
P 1
i }i=1...n,

−→
P 1
i = (X1

i , Y
1
i , Z

1
i ) ∈ R3 represent the set of n 3D points of frame

1, with intensity values Q1 = {Q1
i }i=1...n,

−→
Q 1
i ∈ R. Similarly, let P 2 represent the set of

3D points of frame 2 with intensity values Q2. The goal is to find the set of 3D velocity

vectors, T 1 = {
−→
T 1
i }i=1...n,

−→
T 1
i = (∆X1

i ,∆Y
1
i ,∆Z

1
i ) ∈ R3 where

−→
T 1
i is the translation of

−→
P 1
i ∈ P 1 to its corresponding point in P 2. This is shown in Figure 3.1.

The 3D data are modelled as a graph G(ν, ε) with the data represented by vertices ν.
The term ν contains the 3D data from both frame 1 and frame 2. Under this graphical
model, scene flow is estimation is performed through grouping ν into k groups. In each
group, the vertices from frame 1 correspond to the vertices from frame 2. The 3D data
points can then be registered together according to the groupings to find the rigid trans-
formations (rotation and translation) for each group. Figure 3.2 shows this model with
two groups as an example. With G, the realization of the groupings is the fundamental
problem and the next sections describe the method for creating these groupings.
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Figure 3.1: Scene flow is finding the 3D translation vectors for each point. Black dots represent
points from frame 1 and white circles from frame 2.
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Figure 3.2: Graphical model of the 3D data. a) ν is the union of the 3D data from both
frames. b) Groups are created according to motions. Shown here are two groups, colour coded

red and green. c) Once the groups have been created, the rigid transformations R
−→
T (rotation

and translation) can be computed via registration of the 3D data within each group.
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3.2 Method Overview

The overall pipeline on a sample scene is shown in Figure 3.3. We use a hierarchical,
coarse-to-fine approach by voxelizing the 3D data. Voxelization discretizes the 3D data
into a 3D grid, which is a much simpler representation and allows for multiple grid reso-
lutions. The voxelization process is described in Section 3.3. P 1 and P 2 are voxelized at
different resolution levels where at each level the voxels are used as vertices to construct
a similarity graph (or affinity matrix). The affinity matrix is constructed based on colour
and motion similarity between voxels. Using the affinity matrix, the voxels are split into
groups via spectral grouping, shown in the middle column of Figure 3.3 with each group
colour coded. The construction of the affinity matrix and voxel spectral grouping is de-
scribed in Section 3.4. Voxels from frame 1 that are in the same group as voxels from frame
2 are presumed to match each other. Matched voxels are shown on the very right column
of Figure 3.3, where red voxels are from frame 1 and green voxels are from frame 2 with
blue lines linking matched voxels together. The motion field is estimated by computing the
rigid transformation between matched voxels via iterative closest point (ICP), described in
Section 3.5. Data of matched voxels are propagated forward to the next voxel resolution,
thus establishing a hierarchical grouping and matching framework. This process is iterated
until a specified final voxel resolution is reached. The procedure is explained further in the
next sections.
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Figure 3.3: Our method pipeline on sample scene. Excluding the top row, each row represents
an iteration of the method at a different voxel level and resolution, starting with the coarsest
resolution at the top. At each level, information from matching voxels at previous levels are used
as priors to help guide the grouping of voxels that exhibit similar motion and object properties.
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3.3 Multiscale Voxelization

Voxelization is the process in which a 3D object is converted from its continuous geometric
representation to a discrete space representation i.e. 3D grid. It is analogous to how a
scene is pixelized to a 2D grid in a digital image. Here, voxelization quantizes the set of
3D points captured by the RGB-D camera to integer values on a 3D grid within some
defined volume with dimensions ΓX ×ΓY ×ΓZ . The size of the 3D volume should be large
enough such that it encapsulates all 3D data points. A voxel is defined as an element/cube
of the 3D grid that can either be occupied or not, depending on how many 3D points lie
within that voxel’s volume. In addition, an occupied voxel takes on the value of the mean
intensity values of all 3D points within the voxel’s space. Given ΓX ,ΓY ,ΓZ and the width
of each voxel cube (the resolution) r, a voxel at coordinates (a, b, c) in the voxel grid V is
defined to be:

V (a, b, c) =
1

N

N∑
1

Qi

[a,b,c]×r<
−→
Pi<[a+1,b+1,c+1]×r

(3.4)

where N is the number of 3D points within the voxel’s volume. A visualization of a voxel
grid’s dimensions is shown in Figure 3.4.

(0,0,0) a

b

c

Figure 3.4: Visualization of a voxel grid and its dimension definitions. ΓX , ΓY , ΓZ , and r are in
world units whereas A, B, C are in voxel coordinate units (here A = 5, B = 4, C = 5). a, b, c are
the coordinate axis of the voxel grid.

Voxelization not only simplifies the data, but it also allows for a coarse-to-fine approach.
We voxelize the 3D points at multiple levels, each level representing a different resolution
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Vox. Res. l = 1 Vox. Res. l = 2 Vox. Res. l = 3

Figure 3.5: Example of voxelization of 3D data at three different resolutions.

of the voxel grid. An example voxelization at three different resolutions is visualized in
Figure 3.5 and the voxelization procedure is listed below.

1. Define the volume of interest in 3D space as ΓX×ΓY ×ΓZ in world units. The volume
should encapsulate all the points in P 1 and P 2.

2. Starting at a level index l, define rl to be the current level’s resolution i.e., the length
of the sides of a voxel cube. Define V 1

l , V
2
l to be Al × Bl × Cl voxel grids of P 1, P 2,

where Al = ΓX

rl
, Bl = ΓY

rl
, Cl = ΓZ

rl
. The values of each voxel Vl(a, b, c), a = 1...Al, b =

1...Bl, c = 1...Cl are the mean intensities of the 3D points inside the voxel’s volume.

3. In the next voxel level l + 1, the voxel grid is at a finer resolution: rl+1 = rl/2,
Al+1 = Al × 2, Bl+1 = Bl × 2, Cl+1 = Cl × 2. Vl+1 is created once again using Step 2
with the updated dimension values.

Starting at a low resolution voxel grid, we can create groupings between larger motion
segments and refine the groupings by passing on matches from a parent node to its children
nodes as we iterate to the next level. Using blocks or patches of 3D data in previous works
include SphereFlow by Hornacek et al. [36] and supervoxels [55]. The framework here
can use these patches for improved matching accuracy, but is not necessary. The basic
voxelization scheme will be used here for its simplicity, computational efficiency, and lends
itself easily to implementation data structures such as an octree.
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3.4 Graph Construction and Spectral Grouping

The voxels are used as the data units for the graphical model introduced in Section 3.1.
At a voxel level l, let ν1

l represent a set of vertices of a graph, where each vertex in ν1
l

is associated with an occupied voxel of V 1
l . Similarly, let ν2

l represent a set of vertices
representing occupied voxels in V 2

l . We construct the graph Gl = (νl, εl) that combines
vertices from both frames i.e., νl = ν1

l ∪ ν2
l . We want to partition νl into groups such that

given a grouping S ⊂ νl, the vertices in S that came from ν1
l are assumed to match the

vertices in S that came from ν2
l . In this way, the voxels from V 1

l are matched to the voxels
in V 2

l through these groups. Examples of these groups are shown in the second column of
Figure 3.3, where each group is colour coded differently. To carry out this grouping, we
employ spectral grouping to partition G. Spectral grouping techniques group vertices in a
graph according to their connective relationships described by the edge weights ε. Hence,
an appropriate affinity matrix for G must be constructed.

3.4.1 Graph Affinities

Spectral grouping performance is heavily reliant on the affinity matrix, therefore the affinity
between data must be set up accordingly. Given the graph Gl = (νl, εl), εl is represented
as an adjacency matrix W = (wij)i,j=1...m which describes the values of the weighted edges
(or affinities) for m vertices. W is constructed to be composed of two types of affinities,
which we call the pairwise affinity and matching affinity, and are described in the following
subsections.

Pairwise Affinity

The pairwise affinity, denoted wPij , encapsulates the colour and motion similarity between
voxel νl,i and its neighbouring voxel νl,j of the same frame. The assumption here is that if
a voxel shares similar colour with its neighbours then it should share a similar motion. The
pairwise affinity is decomposed into the colour similarity measure sc(νl,i, νl,j) and motion
similarity measure sm(νl,i, νl,j):

wPij = αsc(νl,i, νl,j) + βsm(νl,i, νl,j) (3.5)

where α, β are weighting parameters.
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The colour similarity measure used is a Gaussian weight parametrized by its variance
σ on the mean intensity difference between voxels νl,i, νl,j:

sc(νl,i, νl,j) = exp

(
−(νl,i − νl,j)2

2σ2

)
(3.6)

Any normalized colour similarity measure from literature can be used here to obtain pos-
sibly more robust matches, such as the data terms used in optical flow [22]. However, in
practise we found the Gaussian weighted measure to be sufficient. In literature, previous
methods have successfully used Gaussian weighted distance metrics [76].

The motion similarity measure weighs the difference in motion vector estimates be-
tween voxels νl,i, νl,j. The motion vector of νl,i, denoted ~ml,i, is the coordinate difference
between νl,i and its matching node. Similarly, ~ml,j is the motion vector for νl,j. How these
matches are found is described in the following subsection under matching affinities. Again
a Gaussian weight is used to measure this difference:

sm(νl,i, νl,j) = exp

(
−(|~ml,i − ~ml,j|)2

2σ2

)
(3.7)

Together the colour similarity encourages grouping on similar objects, while the motion
similarity encourages grouping on similar motion.

Matching Affinity

The matching affinity, denoted wMik , is assigned to the edge connecting a voxel ν1
l,i ∈ V 1

l

to a voxel ν2
l,i ∈ V 2

l . The edge weight connecting the matching voxels is the same as the
colour similarity measure:

wMik = exp

(
−(νl,i − νl,k)2

2σ2

)
(3.8)

Matches are found and propagated in a hierarchical fashion from coarse-to-fine voxel reso-
lution levels. Starting at the first level (coarsest), the matching vertex for ν1

1,i is the nearest
neighbour in V 2

1 to ν1
1,i, Then, the matches are recalculated after applying grouping and

motion estimation (see Section 3.5). The matches are then propagated to the next voxel
level to its children. That is, given a vertex νl,i corresponding to voxel Vl(ai, bi, ci) its parent
vertex is the vertex in νl−1 corresponding to voxel Vl−1(floor(ai

2
, bi

2
, ci

2
)). This relationship

is shown in Figure 3.6.
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νl,h
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wPij

wPih

wMik

LEVEL l

Figure 3.6: Example graph connectivities, shown as a 2D grid, of a voxel level l and l−1 for
the edge weights of the vertex νl,i. In this representation, each node from νl−1 subdivides
to four nodes to form νl. The pairwise weights wPij , w

P
ik connect νl,i to its neighbours and

the matching vertex weight wMik between νl,i and νl,k (shown in green) is from the matching
of their parent nodes from the previous level l − 1, shown by the vector ~ml−1,ik

.

3.4.2 Grouping Motions

Once the affinity matrix has been constructed from the graph structure, spectral clustering
techniques can be deployed to group the data according to motions. We follow the popular
spectral grouping method by Shi and Malik [67] to create the groupings inGl. We effectively
approximate a normalized graph cut along the edges of Gl, where we have defined our
affinities. To this end, Eigen decomposition is performed on the normalized Laplacian:

L = Ψ−1/2LΨ−1/2 (3.9)

where L is the unnormalized Laplacian matrix and Ψ is the degree matrix (see Chapter 2.3).
Then, k-means clustering is performed on the resulting row data of the matrix with its
columns constructed from the first k eigenvectors of L according to Algorithm 1. The
question arises now on how to choose k. Our problem is concerned with finding the
motions of individual groups, and so as long as the groups are large enough to contain
enough depth features then performance is not sensitive to the choice of k. k should be
chosen to loosely represent the expected number of rigid motions in the scene. If a high
k value is chosen, the scene is over-grouped or over-segmented with the size of each group
being roughly the same due to the normalized cut. Motions for smaller parts can still be
estimated so long as there is enough 3D structure within each group. Spectral grouping is
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convenient because of its linear nature and, generally, the similarity matrix will be sparse
and hence we can make use of efficient methods of finding the eigenvectors of large sparse
matrices [76].

3.5 Group Motion Estimation

Once groups of matching voxels have been created, the rigid motions of points from frame
1 to frame 2 within each group can be found by point cloud registration methods such
as iterative closest point (ICP) [9]. Given a group that contains nk number of 3D points
−→
P 1
i=1...nk

from frame 1 and
−→
P 2
i=1...nk

from frame 2, we find the 3 × 3 rotation matrix R̂

and 3 × 1 translation vector
−̂→
T that minimizes the squared Euclidean distance between−→

P 1
i=1...nk

and
−→
P 2
i=1...nk

:

R̂,
−̂→
T = arg min

R,
−→
T

nk∑
i=1

‖(R
−→
P 1
i +
−→
T )−

−→
P 2
i ‖2 (3.10)

As the name implies, ICP finds R̂,
−̂→
T iteratively by assuming the closest points of

−→
P 1
i=1...nk

to
−→
P 2
i=1...nk

correspond to each other and finds the optimal R,
−→
T applied to

−→
P 1
i=1...nk

based
on these correspondences. Then a new set of closest points are found and the process is
repeated until a convergence threshold or iteration limit is reached.

After applying the rigid transformation from ICP, a match is made based on the nearest
neighbour of the node in frame 1 from the nodes in frame 2. This serves to accommodate
for slight non-rigid motions, and it also helps generate some flow estimates when there are
no distinct object matches. The 3D vector difference between matched nodes is set as ~m
for the next iteration of voxel resolutions, multiplied by the upscale factor.

After the last iteration, the voxel flow vectors from matched nodes are reprojected to

the point cloud P 1, and the 3D translation motion
−→
T 1 is recovered.
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3.6 Computational Complexity

The computational time for the grouping method can be broken down as follows. The
main steps in the method are creating the similarity matrix, clustering, and ICP. For N
number of voxels in ν and k clusters at the finest voxel resolution, the order of the run-time
is:

O(Timesim + Timecluster + k × TimeICP ) (3.11)

Creating the similarity matrix is straightforward, it requires checking the neighbourhood
for each occupied voxel in the voxel grid for the pairwise affinity and adding the matching
affinity edge. The maximum number of neighbours in a cubic grid is 16, plus 1 for the
matching edge.

Timesim = 17N (3.12)

The spectral grouping method relies on an Eigen solver. The run-time analysis for a
normalized cut is [67]:

Timecluster = N ×m (3.13)

where m is the number of iterations required for an iterative Eigen solver. Finally, while
ICP is not known for its computational efficiency, there exists much work in the field of
point cloud registration with variants of ICP to efficiently register point clouds [63, 27]. In
general, ICP utilizes nearest neighbour search through a certain number of iterations. Each
group runs ICP on at most N points, for i iterations in ICP the run-time is approximately:

k × logN ×N (3.14)

Hence, the order of the total run-time for the algorithm is

O(17N +N ×m+ k × logN ×N) (3.15)

Typically, accurate results can be obtained with fewer than 10000 voxels. For an image
resolution of 640 × 480 pixels = 307200, the proposed method will run in approximately
the same amount of time it takes to iterate through all pixels in the image.
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Chapter 4

Experimental Results

Evaluation was performed on two RGB-D datasets and the KITTI dataset [23]. The first
RGB-D dataset is the UW-VIP RGB-D Scene Flow Dataset [47] (referred to as the UW
dataset for short), and will be used for quantitative evaluation. Qualitative results are
obtained on selected sequences from the GraphFlow RGB-D dataset [3] which consists of
larger motions. Lastly, the KITTI dataset, though technically not using an RGB-D camera,
contains recorded data containing RGB and depth information of real scenes from a moving
vehicle. For comparison, we evaluate our method against some leading methods in RGB-D
scene flow by Sun et al. [70] (source code acquired online 1), which uses a layered RGB-D
model, and Ferstl et al. [20] (source code acquired online2), which is set in a variational
framework called CP-Census.

For all experiments, four layers were used in the layered RGB-D method by Sun et
al. [70] and four voxel levels were used in our method, starting with a voxel grid size of ten.
The hyper parameters that need to be set are the weights α, β in Eq. 3.5 to specify the
contribution of colour and motion similarity to the affinity matrix respectively and σ for
the Gaussian weight. The selection of α, β is intended to find a balance between clustering
based on colour and motion. If α is high, more emphasis is placed on neighbouring colour
similarity and hence voxels belonging to the same object are more likely to be clustered
together and labelled with the same motion. However, if an object contains multiple dif-
ferent motions, such as the different segments of an arm, relying solely on colour similarity
will cluster the entire arm as one group and not separate the segments. On the other
hand, motion estimates are not as reliable as colour measurements and relying solely on

1http://people.seas.harvard.edu/ dqsun/
2https://rvlabs.org.icg.tugraz.at/project page/project tofusion/project sceneflow.html
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motion estimates will create groups of voxels with holes. Hence, a balance between colour
and motion is needed to find individual moving parts of the scene. With the colour and
depth image normalized to have max value 1, the parameters were tuned empirically and
assigned α = 0.8, β = 0.2, σ = 0.2 for all of experiments.

4.1 UW Dataset - Quantitative Evaluation

With the lack of ground truth RGB-D scene flow data, some authors have used the Mid-
dlebury stereo dataset [65] to perform quantitative analysis [70, 61, 36]. This is not a good
representation of scene flow as the camera motion is only along the X direction in a static
scene. The UW dataset is composed of pairs of RGB-D frames at two time steps of various
scenes. All motion in the scenes are rigid motions with combinations of object and camera
movement. Ground truth data of the motions were obtained by manually segmenting out
individual moving components in the scene and for which flow fields were determined by
performing ICP on the individually segmented components. Image sequences from the UW
dataset are shown in Figure 4.2 with their ground truth flow fields projected onto 2D image
plane. In this work, the 3D flow fields are visualized by projecting the 3D motion vectors
onto the 2D image plane i.e., they are viewed the same way as optical flow. For qualitative
visual assessment, the 2D flow vectors are colour coded according to the following colour
wheel:

Figure 4.1: 2D flow colour wheel. E.g., left motion (−u) is blue, right motion (+u) is red.

4.1.1 Evaluation Metric

For quantitative evaluation, our method was run on the UW dataset and the accuracy
metrics used are the normalized root mean square error (NRMS) of 3D point differences
and average angular error (AAE) [5]. The NRMS valuation measures the deviation of the
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Figure 4.2: Image sequences from the UW-VIP RGB-D Scene Flow image pairs. Shown
are the colour images and ground truth flow fields projected to the image domain.
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estimated 3D point
−→
P (x, y) after applying the estimated scene flow and its true 3D point

−→
P o(x, y) from the true motion.

NRMS =

√
1
n

∑
Ω ‖
−→
P (x, y)−

−→
P o(x, y)‖2

max‖
−→
P o(x, y)‖ −min‖

−→
P o(x, y)‖

(4.1)

where Ω is the image domain and n is the number of points. The denominator in Eq. 4.1
is a normalization factor allowing NRMS to be evaluated as a percentage of RMS error
from the range of possible motions indepedent of the absolute depth value. The original
motivation behind this metric was that errors in 2D flow do not necessarily correlate with
3D motion errors, since 3D errors will be of different scale than the 2D error and certain
errors in 3D (such as motions along the Z direction) are not captured in 2D [5].

As well, we use the average angular error (AAE), defined in radians, between
−→
P (x, y)

and
−→
P o(x, y)

AAE =

∑
Ω cos

−1
−→
P (x,y)·

−→
P o(x,y)

|
−→
P (x,y)||

−→
P o(x,y)|

n
(4.2)

The angular error measures the angular difference between the estimated flow vectors and
the true flow vectors.

4.1.2 Results

The results of our method, layered RGB-D [70], and CP-Census [20] are reported in Ta-
ble 4.1. While the layered RGB-D method of Sun et al. performed the best overall
in accuracy, our results were comparable and in some cases outperformed the other two
methods. Visualizations of the 2D flow fields are shown in Figure 4.3. It can be seen
that the scenes where our performance dropped were for scenes with motion on a complex
background. In these situations, wrong voxels can be grouped together that leads to error
in matching. As well, the aperture problem persists for planar surfaces causing ambiguity
in the scene. CP-Census and the layered RGB-D methods were seen to perform well in
these cases due to their global energy minimization approach with smoothness constraint.
It is interesting to note that despite the 2D flow visualizations looking more favourable for
the layered method on the shoes1 sequence, our method had lower NRMS. Indeed, the 3D
point differences were smaller for our method. This is probably because, unlike Sun et al.,
we do not use optical flow for initialization. Ultimately our method was very comparable
to other two methods in terms of accuracy on the UW dataset.
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Table 4.1: Quantitative results of scene flow methods on the UW dataset. NRMS in %,
AAE in radians

Sequence Ours Layered aTVG

NRMS AAE NRMS AAE NRMS AAE
boxes 2.05 0.005 1.30 0.007 1.63 0.007
chair 0.52 0.006 0.50 0.004 6.96 0.043
chairs 2.21 0.018 4.02 0.019 3.59 0.020
cluttered 10.85 0.090 5.38 0.008 18.86 0.159
shoes1 4.67 0.053 5.15 0.006 8.61 0.094
shoes2 7.06 0.053 3.25 0.014 11.22 0.104

boxes chair chairs cluttered shoes1 shoes2
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Figure 4.3: Visualizations of the estimated flow fields on the UW dataset. We can see that
our method has difficulty matching homogeneous areas of the background motion, but can
reliably estimate the flow of individual objects in the foreground. As expected, variational
methods perform well to smooth out background motions.
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4.2 GraphFlow - Qualitative Evaluation

This section shows some qualitative results of our method on scenes from the GraphFlow
dataset [3] that was used to evaluate their method on large motion scene flow. The results
are visualized in Figure 4.4. Looking at the 2D representation of the scene flow and the
flow circle in the bottom left corner we can see that the estimated motion is consistent
with the expected flow. For comparison, we also show the layered RGB-D method [70]
that showed the highest accuracy on our UW dataset.

In the Walking scene, the blue silhouette indicates the person moving to the left,
which is expected. The errors in the background are due to improper groupings caused
by occlusion, which are not explicitly handled yet. The individual motions in the Tea
scene were also correctly grouped. Specifically, the kettle, arm, and head movements were
captured, which are the most important movements in the scene. The layered method
does shower smoother motion for the Party. Observing more closely, we can see that our
method was able to distinctly pick out the arm movement which was lost in the layered
method due to smoothing. Of particular interest is the Hammer sequence, in which the
layered RGB-D method appears to have gotten the incorrect motion. The Hammer scene
has a very large motion of a relatively small object, and it is seen that our method is
still able to handle this case. Visually, we see that the general motions of each scene were
estimated correctly by our method.

4.3 KITTI Dataset

We further evaluate the presented method on the KITTI dataset [23]. This dataset is
taken from a vehicle moving through different outdoor environments and is equipped with
stereo cameras and a Velodyne LiDAR sensor for depth measurements. While the system
is not an RGB-D camera, it provides calibrated RGB and depth images. However, the
depth image is not dense and instead quite sparse, which may not be typical of RGB-D
depth images. Despite this, this dataset is representative of real world scenarios of scenes
that may be encountered by an autonomous vehicle and where data may be missing or
noisy. The results are shown below, where the RGB image from two time steps, our flow
estimate, the flow estimate by Sun et al. [70], and ground truth flow maps are shown. The
error metric used for evaluation in this dataset is based on 2D flow and is the percentage of
pixels whose flow estimates are beyond a certain error threshold compared to the ground
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Figure 4.4: Qualitative results of running our method on the GraphFlow dataset. It is
seen that the reported 2D Flow are consistent with the expected flow looking at the image
sequence from Frame 1 to Frame 2.

truth i.e.,

error =
# bad pixels

# total pixels
(4.3)

Let
−→
F = [u, v] represent a pixel’s 2D flow estimate and let

−→
Fo = [uo, vo] represent the

ground truth flow for that pixel. Then a pixel is determined bad if:

|
−→
F −

−→
Fo| > τ1 and

|
−→
F −

−→
Fo|

|
−→
Fo|

> τ2 (4.4)
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for error thresholds τ1, τ2. Reported here are results for τ1 = 3 pixels and τ2 = 10%. As
well, since the Velodyne data is highly sparse and unusable for scene flow for long distances,
we truncate the evaluation to measurements of the physical world within 20m.

In Figure 4.5, the scene flow sequences are of the car moving on city streets with other
cars on the road. Here, the rigid motions of other vehicles were correctly estimated by
our method. However, on flat surfaces such as the road, our method had difficulty, which
accounts for the large errors since the road takes up a large portion of the image. This is
because our method uses ICP, which depends on there being depth features to estimate
rigid motion. A flat surface such as the road provides ambiguity in matching patches.

In Figure 4.6, the vehicle is stationary and other moving vehicles are observed. Here,
our method is able to correctly estimate the motions of the other vehicles by correctly
grouping their rigid motions. Some incorrect groupings can lead to wrong motions, such as
the traffic light post in sequence 000046. This can happen when there are multiple possible
good matches, as is the case for two poles.

Finally, Figure 4.7 shows sequences of the car moving and with traffic moving in per-
pendicular motion to the vehicle’s motion. Once gain, the motion of the other vehicles
are correctly captured. Large errors here are due to two factors. One is error in the road
motion, as before. The other source of error is due to the fact that our method estimates
approximate motion, that is, the motion is more discretized due to our voxelization pro-
cess. Since the evaluation metric used in this dataset is based on a strict error threshold,
even the correct general motion may be deemed as erroneous.

In summary, many object rigid motions were correctly recovered by our method on
the KITTI dataset. We see that even the layered method by Sun et al. struggled with
this dataset. The depth information is much sparser than regular RGB-D cameras, and
generally this dataset is not entirely suitable for RGB-D methods. However, it provides
as close to real life data as possible in an application that would realistically have similar
depth information on autonomous vehicles.

4.4 Run-time Performance

One of the major advantages to using the proposed hierarchical grouping approach to
estimating scene flow is a major reduction in run-time and computational complexity.
Working with groups and reasoning about the motion of independently moving groups
of points inherently scales better with image size and resolution, since the number of
moving parts in the scene is limited. The hierarchical approach also allows for information

47



Table 4.2: Run-time (s) for experimental data sequences.

UW DATASET

Sequence Ours Sun et al [70] Ferstl et al.[20]

boxes 81 664 1935
chair 76 1001 2320
chairs 29 819 1949
cluttered 78 997 1856
shoes1 51 906 1900
shoes2 64 738 1869

Average 63 854 1971

KITTI DATASET

000005 53 876 NA
000020 61 712 NA
000046 35 680 NA
000047 41 675 NA
000086 54 702 NA
000167 58 645 NA

Average 51 715 NA

to be passed from one level to the next, constraining the search space to find matches
between voxels. Compared to optimization-based methods with an energy function defined
at the pixel level, the issue of convergence is not an issue. While there is a risk of finding
mismatches, the performance behaviour of our method is predictable and can be designed
around.

All experiments were run on a Intel i7-4770 3.4GHz CPU using Matlab implementation.
The run-time for each data sequence is reported in Table 4.2. Our method clearly outper-
forms the other two methods in computation time, averaging around 1 minute compared to
Sun et al.’s 14 minutes and 30 minutes for Ferstl et al. Of course, any algorithm’s run-time
performance will depend on its implementation. It should be noted that the current imple-
mentation of the method is in pure Matlab code with minimal optimization, leaving plenty
of room for improvements. At the same time, a majority of the heavy computations in our
method involve computing the edge weights for each voxel, which is highly parallelizable
and can take advantage of parallel architectures such as multi-core GPUs.
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Sequence: 000005 Sequence: 000020
Frame 1 Frame 1

Frame 2 Frame 1

Ours - Error: 65.99% Ours - Error: 53.77%

Layered - Error: 1.7% Layered - Error: 94.32%

Ground Truth Ground Truth

Figure 4.5: KITTI sceneflow dataset sequences 000005 and 000020 of moving car. Our
method struggles with recover motion on flat planes, such as the road, due to lack of depth
features. However, the motion of other objects and vehicles are estimated correctly.
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Sequence: 000046 Sequence: 000047
Frame 1 Frame 1

Frame 2 Frame 1

Ours - Error: 10.24% Ours - Error: 29.33%

Layered - Error: 7.33% Layered - Error: 65.63%

Ground Truth Ground Truth

Figure 4.6: KITTI sceneflow dataset sequences 000046 and 000047 of other moving cars.
It is seen that individual vehicle motions are estimated correctly.
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Sequence: 000086 Sequence: 000167
Frame 1 Frame 1

Frame 2 Frame 1

Ours - Error: 59.12% Ours - Error: 82.23%

Layered - Error: 65.63% Layered - Error: 33.38%

Ground Truth Ground Truth

Figure 4.7: KITTI sceneflow dataset sequences 000086 and 000167 of moving car. Again,
featureless regions are more erroneous but the motion of individual objects are estimated
well.
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Chapter 5

Conclusion and Future Work

The advancement of RGB-D camera technology facilitates a slew of computer vision and
robotic vision tasks. This work dealt with the fundamental problem of scene flow using
RGB-D cameras. Scene flow allows robots to better understand their dynamic environ-
ments, and is also an incredibly powerful tool that can be leveraged by other vision tasks.
Existing RGB-D scene flow methods have heavily focused on scene flow accuracy rather
than efficiency. As such, most state-of-the-art methods are not suitable for real-time appli-
cations. To address the lack of efficient RGB-D scene flow methods, this work introduced a
new method of estimating RGB-D scene flow that performs significantly faster than most
existing methods while maintaining decent accuracy. The proposed method groups objects
and rigid motions together using spectral grouping techniques to match 3D voxels between
frames and handles large object motion through a hierarchical coarse-to-fine approach.

Chapter 3 formulated the method as a way of finding matching correspondences in
3D data between two frames using spectral grouping techniques to group similar motions
together. The method used a hierarchical voxelization approach to simplify the large
amount of 3D data produced by RGB-D cameras. The construction of the affinity graph
for spectral grouping was also described for grouping the data. The final motions were
estimated using standard point cloud registration techniques, such as ICP, on the groups of
3D data. The run-time analysis illustrated how the proposed method is not only tractable
but also holds promise for real-time performance.

Chapter 4 demonstrated the viability of the method on different datasets. Experimental
results showed significantly faster run-times with slightly lower accuracy than state-of-the-
art methods in RGB-D scene flow on the VIP dataset and showed good qualitative results
on scenes with larger motion. On the custom VIP dataset, individual object motions were
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estimated with very comparable accuracy to state-of-the-art methods. Qualitative results
on the Graphflow dataset showed visually consistent motion estimates. On the KITTI
benchmark dataset, which consisted of real scenes that can be encountered by a moving
vehicle, our method was able to recover the motions of individual objects in the scene but
struggled with homogeneous backgrounds such as the road. It was shown that the run
time of our method is an order of magnitude faster than other RGB-D scene flow methods.

The main contribution of this work was to present a new and novel RGB-D scene flow
method that demonstrated significantly faster run times than existing state-of-the-art while
maintaining high accuracy. The main findings are summarized as follows:

1. Independent 3D motions in many different types of scenes can be grouped together
using spectral clustering techniques by assigning appropriate edges weights in the
affinity matrix based on colour and motion similarity.

2. Voxelization of 3D data can greatly simplify and speed up 3D data processing. A
coarse-to-fine resolution approach can account for greater motions in RGB-D data.

3. Rigid motions of objects can be accurately recovered via groupings provided enough
depth features are present. Homogeneous regions in colour / depth are still ambiguous
and difficult to estimate motions for.

5.1 Future Work

Evidently the main advantage of the method presented is the increased run-time perfor-
mance. Taking into consideration the unoptimized Matlab implementation and the run-
time analysis presented in Section 3.6, real-time performance seems very promising. Also,
much of the computation lies in the voxel operations of generating the similarity graph and
finding matches. These operations are easily parallelizable on a GPU to operate on each
voxel individually. Finally, accuracy does not suffer for rigid object motions, as shown by
the quantitative results on the VIP dataset.

There are some limitations to the method. Firstly, it is not suitable for scenes consisting
of mostly non-rigid motions such as fluids. As well, homogeneous regions in both colour
and depth is still challenging without a global regularization model. This was shown in
the errors on the road segments of the KITTI dataset. Finally, very fine motions may be
lost due to discretization in the voxelization procedure.
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The method presented here shows promise as a viable approach to accurate real-time
scene flow estimation. There are still many opportunities in which the current method
can be improved. One potential task is accounting for noise and occlusion in the depth
measurements, as this could lead to poor grouping results. Noise is an existing issue with
RGB-D cameras, especially around object boundaries. Explicit models can be used or more
robust grouping methods can be explored based on local 3D statistics. A pre-processing
step to denoise the point cloud could also be used, such as statistical outlier filters. To
account for occlusion, a forwards-backwards matching process can be employed to identify
regions that are not seen by both frames. Other occlusion models borrowed from stereo
vision literature can also be explored.

To further improve voxel matches, we can mitigate the inherent ambiguity in homo-
geneous scenes by incorporating a global regularization as a post processing step, where
higher level smoothness term between voxel groups can be explored. The added benefit of a
refinement step is to account for finer motions that may have been lost due to voxelization.
For quicker refinement, guided image filters may be used to smooth the errors rather than
using a regularization framework.

As well, explicit constraints can be added to the spectral clustering algorithm, such as
forcing matches based on image feature matching between frames, or dynamically sizing
the clusters based on local depth features. While the method presented here makes use
of spectral clustering algorithms, other grouping methods can also be explored, such as
hierarchical K-means, nearest neighbour, or agglomerative algorithms.

Various other aspects of the method can also be improved. The voxelization procedure
presented here was a basic voxelization scheme for the purpose of facilitating a hierarchical
approach. In the field of 3D discrete topology, other voxelization algorithms can be explored
to create more consistent surface voxels and separation to determine its effects on motion
estimation performance. As mentioned in this work, other methods other than voxels
can be used as ‘patches’of 3D data, such as spherical patches to provide better matching
performance. Similarly to optical flow, there is still room to explore correlation metrics to
use for determining similarity between patches of 3D data. The metric should be a hybrid
of colour similarity and 3D geometric similarity and account for other factors such as noise
and changes in illumination from one frame to the next.

Additional future work involves exploring applications of real-time scene flow using
the proposed method as input. A suitable application for our method includes action
recognition, since arm and hand motions can be estimated accurately using our method.
As well, the scene flow estimation can be used for navigating and avoiding obstacles for
aerial robotics in indoor environments.
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[45] Fabien Lauer and Christoph Schnörr. Spectral clustering of linear subspaces for motion
segmentation. In 2009 IEEE 12th International Conference on Computer Vision,
pages 678–685. IEEE, 2009.

[46] Antoine Letouzey, Benjamin Petit, and Edmond Boyer. Scene flow from depth and
color images. In BMVC 2011-British Machine Vision Conference, pages 1–11. BMVA
Press, 2011.

[47] Francis Li, Alexander Wong, and John Zelek. Hierarchical grouping approach for fast
approximate rgb-d scene flow. In Conference on Computer and Robot Vision. IEEE,
2016.

[48] Ce Liu, William T Freeman, Edward H Adelson, and Yair Weiss. Human-assisted
motion annotation. In Computer Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on, pages 1–8. IEEE, 2008.

[49] David G Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60(2):91–110, 2004.

[50] Bruce D Lucas, Takeo Kanade, et al. An iterative image registration technique with
an application to stereo vision. In IJCAI, volume 81, pages 674–679, 1981.

[51] Diana Mateus and Radu Horaud. Spectral methods for 3-d motion segmentation of
sparse scene-flow. In Motion and Video Computing, 2007. WMVC’07. IEEE Workshop
on, pages 14–14. IEEE, 2007.

[52] Moritz Menze and Andreas Geiger. Object scene flow for autonomous vehicles. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

59



[53] Microsoft. Kinect hardware (online). https://developer.microsoft.com/en-us/

windows/kinect/hardware, 2016.

[54] Andrew Y Ng, Michael I Jordan, Yair Weiss, et al. On spectral clustering: Analysis
and an algorithm. Advances in neural information processing systems, 2:849–856,
2002.

[55] Jeremie Papon, Alexey Abramov, Markus Schoeler, and Florentin Worgotter. Voxel
cloud connectivity segmentation-supervoxels for point clouds. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 2027–2034,
2013.

[56] Jaesik Park, Tae Hyun Oh, Jiyoung Jung, Yu-Wing Tai, and In So Kweon. A tensor
voting approach for multi-view 3d scene flow estimation and refinement. In ECCV,
2012.

[57] JinHyeong Park, Hongyuan Zha, and Rangachar Kasturi. Spectral clustering for
robust motion segmentation. In European Conference on Computer Vision, pages
390–401. Springer, 2004.

[58] Ioannis Patras, Nicolas Alvertos, and Georgios Tziritas. Joint disparity and motion
field estimation in stereoscopic image sequences. In Pattern Recognition, 1996., Pro-
ceedings of the 13th International Conference on, volume 1, pages 359–363. IEEE,
1996.

[59] PMD. Pmd (online). http://www.pmdtec.com/, 2016.

[60] Huaijun Qiu and Edwin R Hancock. Robust multi-body motion tracking using com-
mute time clustering. In European Conference on Computer Vision, pages 160–173.
Springer, 2006.

[61] Julian Quiroga, Thomas Brox, Frédéric Devernay, and James Crowley. Dense semi-
rigid scene flow estimation from RGBD images. In Computer Vision–ECCV 2014,
pages 567–582. Springer, 2014.
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[71] Roberto Tron and René Vidal. A benchmark for the comparison of 3-d motion seg-
mentation algorithms. In 2007 IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–8. IEEE, 2007.

[72] Markus Unger, Manuel Werlberger, Thomas Pock, and Horst Bischof. Joint motion
estimation and segmentation of complex scenes with label costs and occlusion mod-
eling. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference
on, pages 1878–1885. IEEE, 2012.

[73] Sundar Vedula, Simon Baker, Peter Rander, Robert Collins, and Takeo Kanade.
Three-dimensional scene flow. In Computer Vision, 1999. The Proceedings of the
Seventh IEEE International Conference on, volume 2, pages 722–729. IEEE, 1999.

61



[74] Rene Vidal, Yi Ma, and Shankar Sastry. Generalized principal component anal-
ysis (gpca). IEEE Transactions on Pattern Analysis and Machine Intelligence,
27(12):1945–1959, 2005.

[75] Christoph Vogel, Konrad Schindler, and Stefan Roth. 3d scene flow estimation with a
piecewise rigid scene model. International Journal of Computer Vision, 115(1):1–28,
2015.

[76] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing,
17(4):395–416, 2007.
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[83] Luca Zappella, Xavier Lladó, and Joaquim Salvi. Motion segmentation: a review.
In Proceedings of the 2008 conference on Artificial Intelligence Research and Devel-
opment: Proceedings of the 11th International Conference of the Catalan Association
for Artificial Intelligence, pages 398–407. IOS Press, 2008.

[84] Ye Zhang and Chandra Kambhamettu. On 3d scene flow and structure estimation.
In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the
2001 IEEE Computer Society Conference on, volume 2, pages II–778. IEEE, 2001.

62



[85] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Transactions
on pattern analysis and machine intelligence, 22(11):1330–1334, 2000.

[86] Zhengyou Zhang. Microsoft kinect sensor and its effect. IEEE multimedia, 19(2):4–10,
2012.

[87] Henning Zimmer, Andrés Bruhn, and Joachim Weickert. Optic flow in harmony.
International Journal of Computer Vision, 93(3):368–388, 2011.

63


	List of Tables
	List of Figures
	Nomenclature
	Introduction
	RGB-D Cameras and Scene Flow
	Motivation: Applications of Scene Flow
	Thesis Contribution and Outline

	Background
	RGB-D Camera Model
	Pinhole Camera Model
	RGB-D Camera

	Scene Flow Estimation
	Optical Flow
	Multi-view Scene Flow
	RGB-D Scene Flow

	Motion Analysis Through Groupings
	Motion Segmentation
	Spectral Clustering for Motion Analysis

	Summary

	Method
	Problem Formulation and Model
	Method Overview
	Multiscale Voxelization
	Graph Construction and Spectral Grouping
	Graph Affinities
	Grouping Motions

	Group Motion Estimation
	Computational Complexity

	Experimental Results
	UW Dataset - Quantitative Evaluation
	Evaluation Metric
	Results

	GraphFlow - Qualitative Evaluation
	KITTI Dataset
	Run-time Performance

	Conclusion and Future Work
	Future Work

	References

