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Abstract

Driving under the influence of alcohol is prohibited or restricted in almost every coun-

try on the planet. In Canada, a Blood Alcohol Content (BAC) of 0.08 g dL-1 results in

a Criminal Code offense and vehicle impoundment. Critical to this charge and its asso-

ciated consequences is the technology assessing alcoholic content. Modern police forces

use handheld or stationary breath analysis tools to evaluate alcohol ingestion. In order

for punitive measures to be enforced, the reliability and accuracy of breathalyzers must

go without question. However, methods employed to improve the reliability of modern

sensors waste significant energy to control the test environment; namely humidity and

temperature of the test cell. Through a more thorough investigation of the parameters

which govern an ethanol fuel cell sensor (FCS) response, we can design a testing cell itself

which is insensitive to its environment while improving the specificity.

Modern FCS are based on acid-soaked poly-vinyl chloride (PVC) with a platinum on

carbon catalyst hot-pressed directly to the membrane interface. More recently, Nafion by

Dupont has been investigated as an alternative, strongly conductive and stable membrane

material. Both of these fall prey to water loss, limiting their response to varied environmen-

tal conditions and requiring frequent calibration. This project designs and tests engineered

nanocomposite membranes to enhance the reliability of the FCS response. Increasing the

thickness of Nafion nanocomposite membranes correlated with improved sensor responses.

Integration of 5 wt% 1:1 ratio of sulfonic-acid functionalized nanoporous silicon dioxide to

functionalized graphene oxide in Nafion best enhanced a FCS response in low humidity,

showing stability even at 100 days in a low humidity environment.
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Chapter 1

Introduction

1.1 Background

The April 2016 ruling by Ontario Court Justice Elinore Ready acquitted a driver who

failed a roadside breath test, calling into question the integrity of the device. The expert

witness, Ben Joseph, had determined that the instrument’s history showed inaccurate

results, poor maintenance and other failures. Further, he testified that all breathalyzer

models used in Ontario lack an established error rate, meaning that there is no statistical

confidence in a given breath-test reading. The U.S.-based manufacturer defended itself by

saying, “CMI stands behind the accuracy and integrity of its breath testing instruments.”

The Crown has filed an appeal1 to overturn the ruling.

As thousands of impaired-driving sentences are meted out yearly across Canada, includ-

ing criminal offenses, the reliability and accuracy of the alcohol breath analysis machine

must be beyond reproach. Environmental conditions may exist which call into question

the validity of a given test such as the presence of ambient alcohol, how recently alcohol

has been consumed or even whether the officer administering the test performed his duties

knowledgeably and adequately. Irrespective of these conditions which cause deviation from

the true state of inebriation, there must be no doubt that the alcohol response provided is
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Table 1.1: Effect of Ethanol on humans based on BAC4

BAC g dL−1 Typical Effect

0.02 to 0.03 Noticeable cognitive changes

0.08 to 0.20 Person obviously intoxicated, delirium

0.25 to 0.35 Loss of consciousness

> 0.45 Severe coma and death

accurate.

An understanding of evidential breath-testing and how it relates to your Blood Alcohol

Content (BAC) is required before considering chemical analysis. BAC has been well studied

and the effect of alcohol on the human body has been categorized into several ranges

(Table 1.1)2–4 although these general symptoms are not suitable determinants for inferring

a patient’s BAC.5 General concerns about the invasive nature of blood testing led to

developments in non-invasive techniques including breath-testing. It is considered to be

a good estimate of BAC through the assumption that ethanol diffusing into and out of

tracheal mucous was recently in equilibrium with alveolar blood.6 Simply put, the air

mixture within your lungs is considered to be the gas-equivalent of your blood weighted by

volatility. The gas-liquid equilibrium of blood alcohol and lung air can be calculated using

Henry’s Law (Eq. 1.1) where R is the gas constant, T is the temperature keq is known

equilibrium constants.7 The exact calculation using the citation listed results in a breath

to blood partition ratio (ke/p) of 2298. Gas chromatography studies directly measuring the

ethanol concentration in air over a known concentration in voluntary blood samples report

values of 2157 ± 9.6 for men, and 2195 ± 10.9 for women.8 Generally a partition ratio

of 2100 is accepted.9–12 In Canada, BAC is reported in grams of ethanol per 100 mL of

blood. To achieve this, a simple conversion is applied (Eq. 1.2) where M(EtOH) is the

molar mass of ethanol.

BAC = BrAC ∗ keqRT ≈ 2100 ∗BrAC (1.1)
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g

dL
=
BAC ∗M(EtOH)

10
(1.2)

Breath-testing devices are considered evidential in Canada when they match or exceed

the conditions set out by the Canadian Society of Forensic Science Alcohol Test Comittee13

with an ISO/IEC 17025 accreditation. Some examples of requirements is that the mean

result of thirty consecutive analysis at each concentration must be within 5% of the target

value; and that after a minimum of 50 analyses using no fewer than ten human subjects with

a BAC between 50 to 150 mg per 100 mL, a device must be at least as accurate and precise

as near-simultaneous tests with an Approved Instrument. These conditions must continue

to be satisfied at yearly intervals and maintenance logs kept for each Approved Instrument

including preventative maintenance, modifications, replacements and all inspections. Due

to increases in test requirements, several methods originally used to detect breath alcohol

content have been phased out.

1.2 Breathalyzer History

Breathalyzer technology, the modern name for portable breath-analysis, has changed

significantly since its inception in 1954.14 Initially, a chemical reaction where a breath

sample is bubbled through a mixture of sulfuric acid, potassium dichromate, water and

optionally silver nitrate will cause the dichromate ion to change color when it reacts with

CO2.
15 A photocell compares this colour change with unreacted fluid, producing an electric

current to indicate ethanol concentration. This technology is still sold as a cheap personal

alcohol detector, however a short shelf life and poor reliability have long pushed it from

the evidential market.16

Based on the observation that ethanol natively absorbs infrared light, several versions

of non-portable and more recently, portable IR sensors have been manufactured. An end-

expiratory air sample is introduced into a chamber and the resulting measurable change in

IR (λ = 3.46 µm) output indicates the gas-concentration.17 This effect is perfectly linear

3



between concentration and response allowing for simple calculation of ethanol content.18

These are the type of breath-detectors found as table-top units in police stations, exhibiting

high accuracy and requiring frequent calibration. Portable versions tend to be large and

heavy, costing in excess of $1000 per unit.4

Semiconductor sensors use a bead of heated metal oxide and a small standing current

to detect alcohol. When the gas comes into contact, it changes the surface resistivity and

therefore the current response.19 Major concerns are with the specificity of this resistive

change, its non-linear response profile in changing concentrations and current drift as the

oxide ages. Typically semiconductor oxide sensors are used as a detector of the presence

of alcohol instead of concentration.

With increased interest in fuel cells as viable power sources for vehicles and small

devices, innovations in fuel cell technology allow direct alcohol fuel cells (DAFCs) to con-

sume ethanol.20,21 Instead of harnessing the energy produced it can be characterized to

determine the number of ethanol molecules present. This type of fuel cell, called a fuel

cell sensor (FCS), has been widely employed in portable breathalyzer technology. The re-

sponse of an FCS to a breath sample has been shown to be specific to ethanol, precise and

stable during calibration testing. The major drawback is a need for frequent recalibration

within every 1000 tests as the electrochemical response gradually diminishes. The majority

of high quality consumer and evidential portable breathalyzers use this characterization

method due to their accuracy, small size and relatively low cost. However, low quality

and cheap breathalyzers also employ ethanol FCSs which demonstrate poor accuracy and

consistency. Like many other fields, the choice of material composition, manufacturing

process and standard test environments provides degrees of difference in the performance

of a FCS-based breathalyzer. Through a more complete understanding of the principles

governing the response of a fuel cell sensor, especially related to its long-term degradation,

we predict future generations without the requirement for calibration will emerge.
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1.3 Project Collaboration and Confidentiality

In August 2013, Alcohol Countermeasure Systems (ACS) partnered with the University

of Waterloos Applied Nanomaterials and Clean Energy Laboratory (ANCEL) with the aid

of a National Sciences and Engineering Research of Canada (NSERC) grant, and later an

Ontario Center of Excellence (OCE) grant. The focus of this partnership was in developing

the next-generation of ethanol sensors, especially membrane and catalyst development. A

non-disclosure agreement had been in place from the onset, marking the materials and

content within as confidential intellectual property (IP) with the aim of establishing a

patent following successful experimentation.

1.4 Objective

The objective of this research is to remove any humidity and temperature dependent

response within a fuel cell sensor. Specifically, functionalized graphene nano-composite

membranes are proposed as a viable candidate. Towards this end and with the collaboration

of ACS focus was on:

• Building and maintaining consistent testing conditions

• Development and investigation of functionalized nano-materials into Nafion

• Long-term degradation results in varying humidity and temperature environments

1.5 Organization of Thesis

There are 5 Chapters detailed in this thesis. The second chapter consists of a review

of fuel cell fundamentals, highlighting the specific components that most directly affect

a FCS response. The third chapter is an overview of the specific methods employed in

synthesis, preparation, testing and characterization of a FCS. This chapter includes a sig-

nificant section on the design and creation of an automated testing station. The fourth
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chapter discusses all relevant results, sample characterization and makes several compar-

isons between these. The final chapter is a conclusion, putting all the research conducted

into perspective and briefly highlighting future steps to take.
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Chapter 2

Alcohol Fuel Cell Sensor Review

2.1 Introduction and Market

There are several challenges facing ethanol fuel cell sensors (FCSs). To be successful,

a new breathalyzer sensor must be cost effective, insensitive to its environment, have high

performance and quick response and also display unparalleled durability and reliability.

These characteristics have historically differentiated evidential-grade portable breathalyz-

ers from personal ones, but if made cost-effective there is a significant market at the ready.

Research by Markets and Markets (Figure 2.1) showed in 2012 that alcohol detection was

roughly half of all breath analysis, with a market over 200 million USD. Their report pre-

dicted a compound annual growth rate (CAGR) of 41.3% to 4.5 billion USD in 2019.22

Their later 2014 report put the global market at 479.3 million and updated the CAGR

to 26.3%, cutting their 2019 predicting to 1.54 billion.23 Two reports by Technavio es-

timated the CAGR at 44.3724 and 41.5725 between 2013-2018, citing “one of the major

challenges faced by the market is the inaccurate results that are sometimes provided by

breath analyzers”.25

In the scope of the total project the required approach is two-fold. First, develop-

ment of improved ion conducting membranes for reliable long-term operation. Second,
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Figure 2.1: Global Breath Analyzer Market by Application - 2012 (USD) Millions22

catalytic improvement to significantly decrease the cost and improve specificity. Several

types of novel electrolyte membranes were proposed focusing on two segments; polymer

nanocomposite membranes and morphologically modified polymers. In this first branch,

functionalized graphene oxide,26–29 silicon dioxide,30–32 titanium dioxide,33–35 zeolites36–38

and other nanostructured materials could be integrated into a polymer structure to pro-

vide increased overall sulfonic functionalization. In the second branch, membranes based

on polymers containing PFSAs,39,40 porous polybenzimidazole41–44 or porous poly-vinyl

alcohol45,46 hold potential for environmental insensitivity. All the testing performed here

focuses on that first zone: investigating functionalized graphene nanocomposite polymer

membranes.

2.2 Principle of Operation

A fuel cell sensor (FCS) is fabricated from several components as shown generally

in Figure 2.2. The anode and cathode are terminals for a circuit to connect to, whereby

electrons produced from the electrochemical reaction can be consumed or measured. These
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can be any conductive material, in most FCS being a carbon cloth or carbon paper material

which permits gas permeation. The inside edge of both the cathode and anode is coated

with a catalyst to enable the electrooxidation of ethanol and produce electrons. The

separator is electrically non-conductive, forcing any produced charge into an external circuit

while allowing ions to pass through to complete the reaction.

The anodic reaction involving ethanol (Figure 2.3) results in a complex mixture of

products including acetic acid, acetaldehyde and carbon dioxide via the reactions 2.1, 2.2

and 2.3 respectively. At ambient conditions the major product is acetic acid.47–49

C2H5OH + H2O −−→ CH3COOH + 4 H+ + 4 e− (2.1)

C2H5OH −−→ C2H4O + 2 H+ + 2 e− (2.2)

C2H5OH + 3 H2O −−→ 2 CO2 + 12 H+ + 12 e− (2.3)

The protons (H+) migrate through the separator, in this case called a proton exchange

membrane (PEM), to reach the cathodic compartment. At the cathode, the electroreduc-

tion of oxygen produces water (Eq. 2.4). From this reaction schema it can be observed that

ethanol oxidation always involves the participation of water, such that both chemisorption

of the alcohol and activation of the water molecule will constitute a good electrocatalyst.

O2 + 4 H+ + 4 e− −−→ 2 H2O (2.4)

2.3 Catalyst

Platinum is recognized as the most active catalyst towards ethanol oxidation. Signifi-

cant research has already gone into metal and non-metal additives to further enhance its

interaction with ethanol.50–52 For the complete oxidation (Eq 2.3) it is necessary to break

the C-C bond within the ethanol backbone to reform into carbon dioxide.21 This step
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Figure 2.2: Fuel cell sensor general schematic Figure 2.3: Ethanol reaction and current flow

requires significant activation energy and is rarely observed at ambient temperatures. It

should be noted that intermediates are also formed during oxidation, and if carbon monox-

ide (CO) molecules adsorb to the catalytic platinum surface it will experience catalytic

’poisoning’ where an irreversible bond prevents further catalysis at that site.48 Ambient

oxidation of ethanol on platinum is assumed to be a four electron process producing acetic

acid (Eq. 2.5) and is well supported in literature.53,54

C2H5OH + O2 −−→ CH3COOH + H2O (2.5)

2.4 Membrane

Besides the catalyst, an integral component of the fuel cell sensor is the separator

or PEM. The most well known proton conducting membrane is a perfluorosulfonic acid

(PFSA)-based polymer called Nafion ™produced by Dupont (Fig. 2.4). The protons are

driven across this membrane by a concentration gradient, moving from the anode toward
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the cathode55,56 and limited by the PEM diffusivity.

Figure 2.4: Structure of Nafion ™

Although the de-facto membrane and catalyst appear to be well-defined for the proton

exchange membrane fuel cell sensor (PEMFCS), some concerns arise which lead to a search

for more suitable materials. The principle concern in Nafion ™based cells is the strong de-

pendence of Nafion ™on water molecules to drive proton conduction.57 As the membrane is

exposed to ambient conditions following immersion during membrane synthesis, it slowly

loses proton conductivity.58 This phenomenon also indicates that the membrane response

will vary due to uncontrolled environmental conditions. A secondary concern is the ap-

parent ability for Nafion ™to permit ethanol cross-over, where ethanol molecules reach the

cathodic side and dampen the electronic response by providing electrons there.47,59–61

Some companies have refrained from solid state electrolytes and continue to use acid-

soaked polymers employing a membrane-bound liquid electrolyte.62 A “mosaic type” of

sintered poly-vinyl alcohol granules is bonded using polyvinyl chloride.63 This sheet-like

matrix forms a polymeric support for absorbing sulfuric acid, creating the cheap and pop-

ular commercial electrolytic membrane. However, it exhibits a very strong dependence on

temperature and humidity,64,65 such that a degree or two will affect the electronic response

baseline by more than 10%. To combat this, a heating diode is placed in tandem with the

cell and the sensor response is not taken until the cell has warmed up to a well-calibrated

temperature. This preventative measure accelerates water loss from the acid electrolyte,

prompting the need for frequent recalibration and potential sensor replacement in com-
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mercial units.

In general, any solid electrolytes has to satisfy the following conditions:

• high ionic conductivity

• low electronic conductivity

• high stability in reducing and oxidizing conditions

• low fuel cross-over

• reasonable mechanical strength

Several additional desirables are simplified design and assembly, lower corrosion and no

danger of electrolytic spill.49 Many variations of solid-state membranes have been tested

in fuel cell systems, such as functionalized nano-composite membranes,21,26,36,66–71 sul-

fonated polymeric membranes43,72–78 as well as a large subset of aqueous and ceramic

electrolytes.20,79–81 To-date, very few of these have been also applied to a fuel cell sensor,

specifically with temperature and humidity insensitivity in mind. This project aims to

investigate and expand on that principle with the direct commercial application in mind.

2.4.1 Membrane Electrode Assembly

A FCS broadly covers many components including the fuel inlet, gas chamber and

sensor housing as well as electrode contact pads (Fig. 2.5). From a materials perspective

we care about the electrochemical “heart” called the membrane electrode assembly (MEA).

This consists of five elements: the anode gas diffusion layer, the anode catalytic layer, the

electrolytic membrane, the cathode catalytic layer and finally the cathode gas diffusion

layer (Fig. 2.6). The diffusion layer is required to permit the gaseous fuel and water

to come into contact with the catalyst. It also acts as a conductor to remove electrons

produced in the reaction. The catalyst layer is exactly at the interface of the solid proton

conducting electrolyte and diffusion layer, such that the electrons and protons produced are

simultaneously conducted. The membrane is the separator between the anode and cathode
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as well as the proton carrier, and is typically acid soaked or acid functionalized to enhance

proton mobility. The MEA is fabricated by pressing pre-catalyst-coated diffusion layers

onto the membrane at elevated temperature, or by preparing a catalyst-coated-membrane

(CCM) and hot-pressing the diffusion layer after.

Figure 2.5: Schematic of a commercial fuel cell sensor

2.4.2 PFSA Membrane

Nafion ™has a backbone structure which is derived from polytetrafloroethylene (PTFE)

copolymerized with polysulfonyl fluoride vinyl containing pendant sulfonic acid (SO3H)

groups. As a cation exchanger, the firmly bound hydrophilic SO –
3 radicals associate with

H+ counter ions to be charge neutral. When water is present, these counter ions are sol-

ublized to form complexes such as hydronium (H3O
+) which can be transported to enable

ionic (proton) conductivity.82 The PTFE backbone enhances the mechanical properties,

while remaining hydrophobic to create distinct water-free and water-full phases. There is

significant research done to study the structure of Nafion ™, and the accepted theory is that
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Figure 2.6: Typical membrane electrode assembly (MEA) in a FCS

the free volume space in Nafion ™aggregates into connected nanometer sized pores lined

with sulfonic acid groups.83,84 The presence of water therefore creates a ’semi-liquid elec-

trolyte’ state where ions are transported through these interconnected pockets of sulfonic

groups. The resulting conductivity is comparable to that of a liquid electrolyte, except

that the polymer is a solid with no liquid phase unless excess water is present. This con-

ductivity, adding to good mechanical strength, chemical stability and gas permeability has

made it ubiquitous in fuel cell and sensor applications.

Additionally, Nafion ™is well known for its ability to absorb water. Volume mea-

surements typically report swelling of more than 20% in liquid, and 14% in humidified

air.85 Fuel cell stacks integrate humidity into fuel lines of H2 and O2 in order to maintain

membrane hydration. In the specific case of breathalyzer technology, each human breath

contains humidified air - making Nafion ™attractive in terms of regaining water content

due to its high affinity to absorb water. Still, several researchers have demonstrated the

variability of a gas sensor response dependent on the relative humidity (RH)86,87 marking

it as impractical for measurements in ambient air where a wide variety of RH is possible.
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2.4.3 Ion Conduction

Conductivity is the ability to allow charge movement in the presence of an electric

field. It is influenced by two major factors: how many charge carriers are present to

transport charge, and the mobility of those carriers inside the material. These two can

be characterized by the carrier concentration ci and the carrier mobility ui. The rate at

which ions can be carried through a membrane is dependent on its material properties.

The effectiveness of the movement of ions is characterized by the material diffusivity D

D = Doe
−∆Gact

RT (2.6)

where Do reflects how often ions attempt to move, ∆Gact is the activation barrier, R is the

gas constant and T is temperature (K). The overall mobility of ions in a solid electrolyte,

which is our conducting medium of interest, is given by

ui =
|zi|FD
RT

(2.7)

where zi denotes the charge per carrier (protons have a charge of 1), F is Faraday’s constant,

R is the gas constant and T is the temperature (K). The equation for conductivity can be

shown to be

σ = |zi|Fciui =
ci(ziF )2D

RT
(2.8)

Nafion ™demonstrates an ion diffusivity of about 1 ∗ 10−8 m2 s−1,88 and ion carrier

concentration of about 1 kmol m−3.89 It should be noted that liquid electrolytes have a

typical ion carrier concentration 10x higher than polymer electrolytes, making this field

highly competitive.

It is easy to note from these equations that our conductivity is an exponential relation-

ship dependent on temperature, and we can derive

σT = σoe
−Ea
kT (2.9)
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where σo represents a reference conductivity and Eact the activation energy in eV mol−1.

Most polymer and crystalline ion conductors follow this model, including PFSA polymer

membranes.90,91

2.5 Operation of a Breath Sensor

Throughout the duration of this project, full cell realistic tests were performed in am-

perometric mode. A conventional response curve is shown in Figure 2.7, highlighting the

characteristics of a single fuel cell sensor when fuel is injected. Typically, 0.5 mL of a mix-

ture of humid air and ethanol at a known concentration is drawn into the fuel cell sensor

by a solenoid-actuated sampling pump.

Figure 2.7: Current vs time response of a conventional fuel cell sensor and important parameters
taken from it

The fuel and water vapour comes into contact with one side of the MEA, where the

platinum catalyst facilitates the oxidation reaction to acetic acid, releasing a number of

electrons and protons. A digital meter is monitoring the current response in a low-resistance
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loop to produce the curve depicted. The indicative response can be analyzed for certain

values, in order of importance being the

• Curve Integral (µA s) and stability

• Curve peak value (µA)

• Curve time-to-peak value (sec)

• Curve Recovery Time (sec)

• Baseline (nA)

Each is explained in the subsections below.

2.5.1 Response Integral

The curve integral is extremely important as through it we can directly measure the

number of electrons transferred, and therefore have an idea as to the concentration of

fuel present. Further, it has been shown that the curve integral responds linearly to fuel

concentration, meaning that a well-calibrated device will be accurate for a wide range of

values instead of specific or fitted points.49,92

2.5.2 Response Height

The peak value is a good indicator of degradation. As the membrane increases in

resistivity the ohmic losses of the whole circuit is affected. This means that although the

integrated current response is maintained, due to the same number of ethanol molecules

being reacted the actual response curve may be “slumped” and take more time to return to

its baseline. Therefore, the maximum current response provides a quick way of detecting

changes in the speed response of the cell to a given injection even before the integral

can be measured. Further, if the peak value is sustained consistently by a sample it can

replace the integral as a much faster and computationally inexpensive measure of ethanol

concentration.
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2.5.3 Response Speed

The time-to-peak value acts similarly to the peak value in predicting sensor degrada-

tion. However, it also provides an important metric for retaining user-friendliness. When

considering any new material as a candidate for a commercial application, the concept of

usability must also be maintained. A precise sensor that takes 15 minutes to provide a

response is less desirable than a 5 second sensor with reasonable accuracy.

2.5.4 Response Recovery

The curve recovery time indicates how long it takes the cell to consume the provided

fuel before another test can be run. The longer this runs on, the less reliable a second test

is going to be if taken in a real-life situation. Many evidential breath-testers are tested

for their repeatability and if the recovery time is too large, some remaining fuel will be

integrated into the next test, providing a source of error.

2.5.5 Response Baseline

The baseline is of interest as it indicates if the cell is at equilibrium or not. For instance,

for hydrogen fuel cell operation it is essential to know how water content varies across a

membrane. As protons travel, they drag water and fuel molecules with them. This is called

electro-osmotic drift when referring to water, and cross-over contamination when related

to fuel. Since conduction is related to the water content, this means that the performance

of the cell suffers during the reaction depending on the current rate. In fuel cell sensors

this phenomenon is non-existent due to the fraction of ethanol consumed and water being

produced, however if the anode is exposed to a low-humidity environment for long enough,

water loss will create a concentration gradient. A standing current will be observed as

protons and water molecules exist in disequilibrium. This drift is negated by testing in

either a well maintained environment, or if the sampling time is short enough such that

there is no significant effect on the integral of the curve.
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Stability of a given response can be characterized by either long-term or short term

fluctuations. The cause of a drift in the baseline, or changes in the signal magnitude

are poorly characterized. All that is known is that temperature fluctuation, operation

and extreme humidities for long periods of time, catalyst degradation and fouling and

electrolyte contamination all contribute to changes in the elemental operation of a fuel cell

sensor. Despite this, traditional fuel cell sensors last several years and still retain valid

analytical performance.82

2.6 Response Characterization

2.6.1 Sensitivity

We can determine sensitivity by finding the slope of sensor response verses fuel con-

centration. In measuring the current area, we obtain a qualitative and linear relationship.

Generally, the lower detection limit (LDL) is where the concentration value is at least 3

times larger than the sampling noise. There are several factors which affect the signal at

very low concentration, being mass transport limitations, poor electrocatalytic activity,

analyte solubility and mobility, the physical geometry of the sensor and even the operating

method if using any filter or air scrubber membranes.93 It is not limited by the signal

due to advances in modern electronics, however the background current noise limits most

detection to a 1 parts-per-million (ppm) level. This background current can be due to:

• Electrolytic impurities, slow oxidation or reduction of solvent

• Electrode corrosion, such as a passivating layer

• Diffusion of reactant or reaction products

19



2.6.2 Selectivity

The selectivity of a sensor is quantified as the ratio of signal for the target analyte

compared to that of any other species that may be present. As platinum is electroactive

towards many species of alcohols, there is a high chance that more than simply the fuel

of choice is producing or consuming charged species and thereby affecting the current

response. Interference in the desired measurement should be either known and predictable,

or insignificant. In a given breath sample there are more than 200 known interferents as

well as additional elements such as hydrogen from smokers, alcohol due to mouthwash and

a variety of other volatile species that are at equilibrium in the human body.94

2.6.3 Accuracy

As a fuel cell sensor response does not ensure 100% conversion of the ethanol sample

introduced, accuracy relates a measurement to a known “true” value and computes the

reliability based on extrapolation or interpolation at another known concentration. Test

precision is the repeatability or deviation of a given measurement which must fall within

industry standards of 5%.13 In the case of breathalyzer samples, standard solutions must

be very carefully composed in order to obtain that “true” value consistently. Instrument

and measurement precision should also be known. Background noise will affect the current

response, however signals that are 10-100 times larger than the background current should

provide a precision within 1%.82,95 Accuracy is measured by looking at the lack-of-fit (LOF)

when conducting linearity tests. Precision is measured by performing repeat experiments

and calculating the standard deviation of the integrated current area.
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Chapter 3

Methods and Procedures

3.1 Nanomaterials Synthesis

3.1.1 Graphene Oxide

Graphene is an exciting material especially concerning its theoretical surface area (2630

m2 g-1).96 Unfortunately, it is difficult to find a use for graphene in fuel cell sensor

membranes as it is a poor ion conductor and has high intrinsic electronic conduction.

In order to improve ionic transport and take advantage of the very large surface area,

graphene needs to be chemically functionalized. Graphene oxide (GO), generated from

graphite oxide, is a graphene surface which contains a range of reactive oxygen functional

groups. These functional groups make GO a prime candidate for functionalization as well

as greatly improving its colloidal suspension. It is expected that the introduction of a

sufficiently functionalized, high surface area nanomaterial into conventional PEMs will

improve ion conduction through more concentrated charge carrier species.

Graphene oxide (GO) was prepared by the improved hummer’s method from graphitic

flakes.26,97,98 Graphite powder (2 g) is added to a 2 L round-bottom flask in an ice bath.

Concentrated sulfuric acid (H2SO4 360 mL) and phosphoric acid (H3PO4 40 mL) is stirred
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mechanically for 1 hour. Potassium permangonate (KMNO –
4 18 g) is added very slowly

and the ice bath temperature is maintained below 4oC. It is switched to a 50oC oil bath

for 16 hours, then put back to ice. Distilled and deionized water (DDI 400 mL) is added

drop-wise to the solution, generating heat and gas. Hydrogen peroxide (H2O2 30 mL)

is added drop-wise to the solution, observing a colour change to yellow as permanganate

is completely neutralized. The graphene oxide is purified by washing in DDI, 30% v/v

hydrochloric acid (HCl), a 50% v/v mixture of ethanol and DDI, 5% v/v HCl and a second

time with DDI. The GO is suspended in DDI and stored in a sealed glass vial under ambient

conditions.

To determine GO concentration a known volume is extracted and freezedried (Labconco

Freezone1) at 0.08 mBar for at least 72 hours. The result is a highly porous and brown

sponge-like material which is weighed to determine the solution concentration. When

storing dried GO, great care is taken in preventing contact with any moisture.

3.1.2 Mesoporous Silicon Dioxide

A second high surface area nanomaterial is mesoporous silicon dioxide (SBA-15). Fol-

lowing established proecedures,99,100 SBA-15 was prepared by combining a triblock copoly-

mer P123 (EO20PO70EO20, MW 5800, Aldrich Co., 2.2 g) in 2.0 M HCl (60 mL) until

completely dissolved. Tetraethyl orthosilicate (TEOS 4.2 g) was added while vigorously

stirring over a 10 minute period. The solution was left sitting for 24 hours at 40oC in

an autoclave, and a further 24 hours at 100oC. The solution was washed with DDI and

ethanol and dried overnight at 100oC. A furnace (Thermo Scientific Lindberg Blue M) was

used for calcination at 550oC in air for 6 hours. The resulting white powder was analyzed

using BET, SEM and XRD.
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3.1.3 Sulfonic Acid Functionalization

An increase in sulfonic acid functionalization is essential to improve the number of active

charge carrying species in a proton exchange membrane.74,101 Integrating a sulfonated

high surface area, hydrophilic nanomaterial is one method to increase SO3H concentration.

Sulfonic acid functionalization was performed on GO to form SA-GO, on SBA-15 to form

SA-SBA, and also on various ratios of a mixture of the two nanomaterials at 33:66, 50:50

and 66:33 % w/w equivalent. From literature, mercaptasilane attacks exposed hydroxyl and

epoxy groups to form new sulfonic groups onto the surface of the desired nanomaterial.26,102

Graphene oxide functionalization (Figure 3.1) and silicon dioxide functionalization (Figure

3.2) are hypothesized to differ in two regards. GO has a significant number of epoxy and

hydroxyl groups103 which results in an increase in SO3H functionalization. SBA-15 on the

other hand is a mesoporous silica structure with a high surface area around 600-900 m2

g−1.104,105 The inner pore walls are lined with hydroxyl species with which mercaptasilane

functionalization can occur.99 It is difficult to determine the degree of sulfonation (DS)

from simple understanding of the structure, as dispersed graphene sheets in solution is

favourable for functionalization while the high mesoporous surface area of SBA-15 could

support additional SO3H groups.

Figure 3.1: Sulfonic-acid doped
graphene oxide (SA-GO)106

Figure 3.2: Proposed sulfonization mechanism in silicon
dioxide pores to form SA-SBA

The desired high surface area reagent, for example GO (Fig. 3.3), is dispersed in

Toluene for 4 hours. 3-mercaptopropyl-trimethoxysilane (MPTMS) at a 20:1 w/w % ratio
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is added. Functionalization of thiol groups onto the dangling hydroxide bonds occurred in

agitated solution at room temperature over 48 hours. A higher temperature would speed

up this reaction, however it also has the potential to oxidize the nanomaterials of interest.

The solution is centrifuged in ethanol, and the filtrant is tested with iodine (I2 1 mg mL−1)

until MPTMS is no longer detected. The powder is left to air dry, and then stirred in 30%

v/v H2O2 for 24 hours. It is washed with DDI and then redispersed into 0.5 M H2SO4 and

for another 24 hours. To recover the dried, functionalized material, it is washed in DDI and

freezedried (Labconco Freezone1) for at least 72 hours. Sulfonic-acid doped nanomaterials

were given the abbreviation SA- to indicate functionalization.

Figure 3.3: Simplified procedure for sulfonic functionalization of graphene oxide via silation of
dangling hydroxyl species
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3.2 Membrane Synthesis

3.2.1 Casting Trays

A solid-state polymer membrane is solution cast from a volatile organic solvent. Due

to the requirement for perfectly level and large-scale membrane casting at elevated tem-

peratures, several casting trays were fabricated for the project. 3D solidworks designs were

proposed and accepted by a machine shop (Appendix A.1-A.4). The parts were machined

by an automated computer numerical control (CNC) device (HAAS VF-2). Two vari-

ants at cast surface areas of 28.5 cm2 and 38.4 cm2 were used to form all the membranes

presented.

3.2.2 Membrane Casting Conditions

Nafion ™Ionomer (15 wt%) was purchased from Ion Power Inc. To cast PFSA-based

nano-composite membranes (Fig. 3.4), the solution was first cast at 80oC for 12-24 hours

and then redissolved into anhydrous N,N-dimethyl formamide (DMF) at 60oC. Nanoma-

terials were suspended in DMF via sonication for 4 hr. The two solutions were mixed for

another 4 hours, and then cast into a glass-bottom aluminum casting plate. The casting

plate was left in an oven (Uamato DX 300) at 80oC for 12 hours to form a solid membrane,

then heated at 120oC for 2 h, 160oC for 1 h and 190oC for 1 hour to evaporate any re-

maining DMF. All PFSA-based films were pre-treated by boiling (60oC) in 3 wt% H2O2,

rinsing 1 h in boiling DDI, boiled in 0.5M H2SO4 for 1 hr and again rinsed in DDI for 1

hr. PFSA-based membranes were left soaking in DDI until ready to be manufactured in

an MEA.
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Figure 3.4: Simplified procedure for synthesis of a polymer SA-GO nanocomposite membranes

3.3 Characterization Techniques

3.3.1 FTIR

FTIR measurements were conducted on sodium chloride (NaCl) pellets. Nanomaterial

powder was dispersed in ethanol, drop-cast onto the pellets and left to dry overnight in a

glass desiccator chamber. The FTIR equipment (Bruker TENSOR 27) recorded a spectrum

from 4000 to 500 cm−1.

3.3.2 XRD

An x-ray diffractometer (XRD Rigaku MiniFlex600) was used to generate the x-ray

spectrum from a copper target. Scans were performed from +3 to +90o 2θ degree from

freeze-dried powder samples loaded onto a glass tray.
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3.3.3 SEM and EDX

Scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDX)

images of nanomaterial powder and cross-sectional membranes were performed using a

LEO 1530 FESEM.

3.3.4 TEM

Transmission electron microscopy (TEM) images were obtained by sending samples to

the McMaster Electron Microscopy Facility (JEOL 1200EX TEMSCAN).

3.3.5 BET

Brunauer-Emmett-Teller (BET Micromeritics ASAP 2020) was used to measure the

specific surface area of powder nanomaterials.

3.3.6 Proton Conductivity

3.3.6.1 EIS

Electrochemical impedance spectroscopy (EIS) is a technique for differentiating losses

based on measuring how a system impedes the flow of current. Unlike resistance, impedance

deals with time or frequency dependencies. We know that resistance is the ratio between

voltage and current, and we can define the impedance (Z) as

Z =
V (t)

i(t)
(3.1)

Typical measurements are made by applying a sinusoidal voltage perturbation and

monitoring the current response. This response may be shifted in phase compared to the
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voltage perturbation, and is described by θ in complex notation

Z =
Voe

jwt

ioejwt−jθ
= Zo cos θ + Zo sin θj = Zreal + Zimaginary (3.2)

where Zo is Vo/io and j is the imaginary number. A graphical representation of −Zim vs

Zre is known as a Nyquist plot, which summarizes impedance behaviour over many orders

of magnitude in frequency.

The major contribution to ionic resistance in a FCS is the membrane. To simplify the

analysis required, fuel cell sensors and MEA were not tested, instead opting to directly

test the fabricated membrane. As the membrane acts as a simple resistor, the i-V curve

is expected to be linear allowing for a relatively large perturbation. A potentiometer

(Princeton VersaSTAT MC) is operated at a D.C. bias of 0.0 V vs OC, while the A.C.

perturbation of 300 mV RMS is scanned from 1 MHz to 1 Hz at 30 points per decade. To

determine the membrane resistance, linear extrapolation of the applicable high frequency

response (HFR) on a Nyquist plot to the real impedance axis is accepted as the membrane

ionic resistance.

3.3.6.2 Cross-plane Conductivity

To measure membrane cross-plane conductivity, a small teflon setup was fabricated

with 4 platinum wires (Fig. 3.5). A membrane sample with dimensions of 0.5 mm by 2.0

mm is cut and placed onto this set-up, then torqued to 5 lbs by a torque wrench (FAT

Wrench 5553556). The two outer platinum wires are connected to the counter and sensing

electrode, while the two internal platinum wires are connected to the reference and second

working electrode. Each electrode is spaced 3 mm apart, such that Eq. 3.3 becomes Eq.

3.4.

σ =
Lelectrode−electrode

A Rionic

(3.3)

σ(S cm−1) =
0.3 cm

T W Rionic

(3.4)
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Figure 3.5: Cross-plane probe and membrane placement for ionic conductivity by EIS

In order to control membrane humidity during impedance testing an additional humid-

ity chamber was fabricated. A sealed borosilicate glass dish was modified with rubber-

stopped holes for conductive wire entry, temperature and humidity probes as well as a

sealed connection to controllable humidified nitrogen (N2) gas. This chamber is situated

on top of a hot-plate for temperature control. Through use of a low N2 flow rate, temper-

ature variation between the inlet and outlet of the chamber was maintained below 2oC,

while humidity was measured as close as possible to the internal setup. For 100% RH

tests, membranes were first soaked in DDI for at least 24 hours, then immediately tested

for through-plane or cross-plane conductivity in ambient conditions.

3.3.6.3 Through-plane Conductivity

To measure through plane conductivity, a 3D printed design (Appendix A.5) was made

which could be torqued to apply pressure to the membrane and ensure good contact.

Overlapping platinum foil at 5 mm by 5 mm formed the conduction area as depicted in

Figure 3.6. Several of these set-ups were made such that tests could occur in tandem.
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Each cell was torqued to 10 lbs force before testing impedance. Samples were equilibrated

in flowing N2 for 24 [hr] to get the low humidity (25% RH) points, and equilibrated at

least one hour for any other condition to ensure stability of the temperature and humidity

levels.

Figure 3.6: Through-plane schematic with improved humidity access and known cross-sectional
area

3.3.7 Membrane Water Uptake

Water uptake (WU) measurements are integral to PFSA-based films. In order for high

ionic conductivity and full dissociation of the integrated sulfonic acid groups, the presence

of water is according to the equilibrium

− SO3H + H2O←−→ − SO −
3 + H3O

+ (3.5)

Improved water uptake will indicate less sensitivity to the environment as more water
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molecules need to be removed to change ionic conductivity. To measure, membranes are

soaked in DDI for at least 24 hours, blotted dry with a KimTek wipe and sample weight

is recorded. Thickness and width is measured with a micrometer (Mititoyo 293 MDC-MX

Lite). Length is recorded with a caliper (Wixey WR100) and weight is recorded by a

high accuracy balance (d = 0.01/0.1 mg Denver Instrument MXX-2001). The membrane

is dried in a vacuum oven (VWR 1410) at 60oC and 30 mmHg for 24 hours before the

dry weight is recorded. Each weight is repeated 5 times, with a 5 minute break between

weighing. The WU and swelling ratio (SWR) is calculated by

WU(%) =
wwet − wdry

wdry
∗ 100 (3.6)

SWR(%) =
Vwet − Vdry

Vdry
∗ 100 (3.7)

where w is the weight recorded and V is the membrane volume equal to the multiplied

average of each width, length and thickness.

3.3.8 IEC and Mobility

Ion exchange content (IEC) sometimes also called ionic exchange capacity or degree of

sulfonation (DS) expresses the content of sulfonic acid groups in mmol g−1. It is known that

the water solubility of a polymer electrolyte increases with IEC, typically at the expense of

mechanical strength and correlated with an increase in water uptake.107 IEC was performed

using a 25 mL titration pipette. Membrane samples (approximately 20 mm by 20 mm)

were first immersed in DDI for 24 hours and the weight recorded. These were soaked in

0.1 M sodium chloride (NaCl 50 mL) solution for 24 hours in ambient conditions. The

membranes are removed and dried for 24 hours at 60oC in a vacuum oven (VWR 1410) at

30 mmHg. 0.01 M sodium hydroxide (NaOH) was used as a titrant against the remaining

solution until a pH of 7.0 is observed using a phenolphthalein indicator. The IEC and
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equivalent weight (EW) is calculated from

IEC =
VNaOH ∗ cNaOH

wdry
=
SO3H group

gpolymer
=

1

EW
(3.8)

From the calculation of IEC and knowledge of the WU of the same membrane, the

water content (λ) can be calculated by

λ = EW ∗ wwet − wdry
MH2O ∗ wdry

=
mol (H2O)

SO3Hgroup
(3.9)

where MH2O is the molar weight of water.

Further, the proton mobility can be calculated by

u(H+) =
σ WU

F IEC
(3.10)

where F is Faraday’s constant and σ is the through-plane conductivity. Through analysis

of the proton mobility, we can assess the impact of morphological changes with a fixed

sulfonic acid content. By integrating specific nanomaterials, the proton pathway will be

enhanced or inhibited depending on the spacing and ease-of-access to the sulfonic proton

transfer groups. As we claim to enhance conductivity through a morphological shift rather

than from increases in sulfonic acid concentration, the proton mobility becomes a key

indicator.

3.4 Alcohol Fuel Cell Sensor Testing

3.4.1 MEA Fabrication

The PFSA-based membrane was constructed into a membrane electrode assembly

(MEA) using a hot-press machine (Carver 3912). Platinum coated carbon paper (0.5

mg/cm2 CP-80 from FuelCellsEtc) was used as both the anode and cathode electrodes.
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These were directly hot-pressed to the polymer membrane without the need for any bind-

ing agent at 0.2 Ton force, 135oC for 3 minutes and were very mechanically robust. A 16

mm (diameter) punch die (MTI MSK-T10) was used to evenly cut the MEA to fit into a

housing.

3.4.2 MEA Equilibration and Sensor Construct

Plastic housing (Fig. 3.7) was acquired to store and test the fabricated MEAs. Each

housing had two exposed platinum wires, sealed with Elecolit 4030 conductive epoxy. Small

plastic fins within the cell served a dual purpose in creating a fuel ’channel’ from inlet-to-

outlet, while also supporting the cylindrical MEA and ensuring good contact between the

platinum wire and each electrode surface.

Figure 3.7: Plastic housing model where purple indicates metallic components, scale is in
centimeters.

Prior to full cell testing, the 16 mm fabricated MEAs were equilibrated for 24 hours in a

humidity chamber (ASPEC BTL-433) at a constant 25oC and 60% relative humidity (RH).

These were then assembled into the plastic housing containers. A porous PVC spacer (1

mm thick, 16 mm diameter) was included on top of the cathode side to mimic the pressure

in a commercial cell upon sealing with the plastic cap and ensure good contact with the

platinum current collectors. This assembly was further equilibrated at least 48 hours before

initial testing.
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3.4.3 Full Cell Test Set-up

3.4.3.1 Simulator

A breath simulator is employed in order to produce the hundreds or even thousands

of human-breath samples required to understand the effect of varied material parameters.

Traditionally the simplest method to achieve this is to obtain a glass jar, dissolve ethanol

into water at a known concentration into it and bubble air through that solution to a nearby

testing station.108 In order to maintain accuracy, the solution is continuously mixed as well

as maintained at 34oC, matching that of a typical human breath sample,16,109,110 although

this approximated value is contested by some.108 In testing, a 500 mL Guth Laboratories

Breath Simulator (Model 12V500) was used to maintain the ethanol analyte.

A 4 v/v % stock solution was prepared in the following manner: a 20 mL volumetric

pipette was first rinsed 3x with distilled water (DI), and then 3 times with pure ethanol

solution (99.9% purity). A 500 mL volumetric flask was rinsed 3x with DI, filled with DI

to approximately 400 mL and 20 mL of ethanol is added. This solution was mixed and left

to sit for 10 minutes to allow for temperature or volume disequilibrium. The volumetric

flask was then filled and upended at least 15 times. A further 10 minutes for equilibration

was given before use. The stock solution was remade whenever it ran below 100 mL or 1

month had passed, whichever occurred first.

To prepare a sample at 0.05 BAC (g dL−1) a 1:50 dilution of 4 v/v % stock ethanol

solution was mixed with distilled water using the same technique excepting a 10 mL pipette.

Other BAC dilutions were performed using the same technique but varying the amount

of stock solution transferred and the size of the transfer pipette. The resulting vapour

concentration was verified with the ACS SAF’IR™EVOLUTION, a dual IR and fuel cell

evidential breathalyzer. The value was compared to standard solutions provided by ACS

at 0.05 and 0.10 BAC and found to be comparable and reliable.

It is well known that vapour emitting from a water and ethanol solution will result in

a loss of ethanol due to its higher volatility and partial vapour pressure.111 Most breath
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simulators recommend replacement of the ethanol fluid after 50 uses, or 100 uses if in tan-

dem.112 For the purpose of testing the alcohol-water solution was replaced if left standing

for more than 3 hours or after 30 uses, whichever came first. To combat the loss of ethanol,

a recirculation system was proposed and developed where air would be drawn from the

simulator instead of from the ambient environment. In practice this increased the pressure

of the total system, causing ethanol molecules in the air stream to be pushed into the

fuel cell sensor by diffusion before the sampling pump drew its allocated air sample and

providing an erroneous and early response. As such, ambient air was drawn from the lab

environment (24oC, 40 RH) and heated as it is bubbled through the solution for all tests

conducted.

3.4.3.2 Auto-sampling

The initial testing set-up was a stripped down Alcochek FC90 where the exposed sample

pump was redirected from the fuel cell in the device to our external one. A sensor in the

FC90 would detect an adequate flow rate equal to a human breath sample of 10 to 12 litres

per minute and then the circuit would fire a 0.3 mL sampling pump after waiting for 3

seconds. The pump action would push stagnant air out of the cell into the breath stream

and then draw in the analyte. A high accuracy 29 Ω resistor was placed in series with the

fuel cell sensor and 6 1/2 digit digital multi-meter (Agilent 34411A) through a breadboard

to reduce current fluctuation due to contact resistance. There were a significant number

of issues with this set-up including fluctuating pump power, inconsistent detection of flow

rate, varying total resistance and human error in sampling due to manual interaction.

A new high power solenoid pump was proposed which sampled a volume of 0.5 mL.

The wattage required was determined using a QuadTech programmable DC power supply

(Model 42006-100-25) and found to be 24 Watts. The data recording method is presented

in Figure 3.8. In an effort to improve the accuracy and reliability of test data as well as

reduce manual interaction, the breath simulation, breath sample and data collection must

be linked and able to be computer controlled. Towards this end an integrated circuit (IC)
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approach was employed where a fundamental electronic circuit is hard-wired to accomplish

the control of these components and can be activated from a computer station.

Figure 3.8: Fuel cell sensor data capture timeline

For our designed system we required two features. First, we needed an ON signal that

lasts for the duration of the air pump. Second, we needed an ON signal that starts exactly

three seconds after the first and that lasts for exactly two seconds. An NE555 IC acts

as a timer, either starting in the OFF phase and turning ON after a specified time, or

starting in the ON phase and turning OFF. The timing is controlled by the combination

of a capacitor C and resistor R as described in Equation 3.1.

t(sec) = ln(3) ∗ C ∗R = 1.1 ∗ C ∗R (3.11)

It is simple to design an NE555 to turn ON for five seconds and control the air pump.

If a second NE555 timer starting in the OFF phase is directly tied to the output of the first

timer, it can be set to turn ON after three seconds and will lose power when the initial timer

turns OFF. Unfortunately, these components have limited current passage, permitting a

maximum of 0.2 A. As both the air pump and sampling pump require significantly more

current at 1.9 and 6.7 A respectively with 12 V DC adapters, isolated high-amperage power
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Table 3.1: Comparison of air pump model specifications

Air Pump Model Flow Rate Size Power Humidity Cost
Unit lpm mm V % RH USD

Parker D736A-23-02 11 85x76x33 24 N/A 288.00

Z712-6025-3800 ≤ 15 66x86x116 12/24 0-100 63.26

DX524-803-4800 16 102x70x40 12/24 0-100 51.26

Clark Boxer 3112 12 110x100x40 12/24 0-100 192.4

sources needed to be interfaced to the timer circuit using metal oxide semiconductor field

effect transistors (MOSFETs) as electronic switches. Some additional components such

as a manual ignition switch, LED indicator lights and diodes to prevent current backflow

from capacitors and motors were necessary to complete the circuit design (Appendix A.6).

Several models of air flow pump were investigated (Table 3.1) and a 12 V humidity

insensitive pump (Boxer 3112) operating at a flow rate of 12 litres per minute was purchased

from Clark Solutions. A cheap environmental controller was purchased (Arduino R3) which

translates command line input from a computer into hardware signals. This signal was

hooked in parallel with the manual switch so that command line code could instantiate

the electronic setup for a test run (Appendix C.1). A simple program was designed to

interface with the data collection software from Agilent and simultaneously control the

newly developed hardware (Appendix C.2). The parameters available to the user are the

sample name, number of tests to run and duration of each test in seconds, defaulting to

10 and 180 respectively. Upon instantiation, the data recording tool and hardware would

simultaneously start, the hardware would sample after 3 seconds and turn off at 5. Data

collection will elapse for the specified duration, save the sample run using the sample name

parameter with an automatic counter, and then restart both hardware and data collection

until the number of runs is completed. All components, manufacturing and testing was

assembled by hand for a total cost less than 400 CAD (Table B.1).
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3.4.3.3 Data Acquisition

In industry methods are applied to simplify data analysis, namely the calculation of

the response integral. As the ethanol current response relaxes towards the baseline, the

reliable decay shape indicates that approximation can be made by choosing points along

the relaxation curve to calculate the total integral (Eq. 3.6). This approximation is valid

for conventional commercial sensors, however there was high variance in sample-to-sample

runs using the same method with newly created membranes that show new response curve

shapes. As the integral value depends significantly on the baseline or zero-current response,

slight fluctuations in the baseline value or over-run of a previous test would throw off the

value of Areatrue.

Areatrue = Area 3
4
Peak + 2 ∗ (Area 3

8
Peak − Area 3

4
Peak) (3.12)

A new method was proposed to use a fitting function to forward extrapolate a segment

of the well-ordered decay. It turns out that the decay of ethanol current response is best

fit by a logistic model (Eq. 3.7). This model is used in dose-response systems for drugs.

We can consider ethanol to be the “dose” and the current output as the “response” to find

a quick and accurate fit (Adj. R2 = 1.0) even when specifying the error tolerance as ε =

1e−6. Using this fitting, a very accurate baseline can be calculated and integrated from.

Upon applying this methodology to the data-sets already analyzed with the prior method

(Eq. 3.6) the peak area standard deviation decreased significantly.

y =
A1 − A2

1 + (x/xo)p
+ A2 (3.13)

The logistic model is easily computed by laboratory software (OriginPro 8.5 SR1), and

so a script was written in C to automatically import, format, fit and integrate the raw

data curves (Appendix C.3). Some additional coding was also performed to detect and

ignore data points related to humidity. For Nafion ™based samples with very low humidity
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conditions, when they first come into contact with a humid source there is an initial ’burst’

of current flow which quickly resolves. By using OriginPro coding to detect this initial

peak, detect if it is significant and then repress the data before taking the integral a great

deal of effort in manual analysis was avoided.

3.4.3.4 Accelerated Degradation Testing

The goal of degradation testing is to stress the environment of the cell and evaluate how

it reacts. The basic premise is that any degradation test is valid as long as it is applied

consistently. If any procedure is repeated reliably it is considered valid for comparison

to other samples in similar conditions. Due to the variety of membrane characteristics

including thickness, composition level and additives at investigation, a simple degradation

method was chosen (Fig. 3.9) which is listed more completely in Table B.2. This simplified

procedure is able to handle several samples per day in our test environment while still

enforcing a harsh environment. The time required for a single sample on a given day is a

total of 3.5 hours. With only one automated testing station, the samples must be staged

by at least 30 minute intervals. A typical test would run during a work week (5 days)

where a baking cycle (2 hours at 60oC, VWR 1300U Oven) is run once per day, involving

between 4 to 6 samples.

3.4.3.5 FCS Reliability

The sensitivity of a sensor is calculated from the slope of a concentration versus full

cell response. To collect this data, a range of alcohol solutions from 0 to 200 mg dL−1

(equivalent to 0 to 0.200 BAC) are created. The integral of the response is recorded as the

number of electrons participating in the reaction. A high slope of the linear fit indicates a

sample with improved sensitivity. The sample accuracy is shown by the LOF of the linear

model, with samples showing a 0.99 or higher Adj. R2 demonstrating meaningful.
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Figure 3.9: Degradation test method for fuel cell sensors during full cell testing
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Chapter 4

Results and Discussions

4.1 Commercial Membranes

4.1.1 H2SO4 soaked PVC

The standard degradation cycle was applied to a 2-year old commercial sensor in the full

cell test environment before taking it apart for characterization. The response appeared

to be both reliable and environmentally stable (Figure 4.1), showing a consistent peak

area even after four subsequent exposures to a high temperature environment. The other

important parameters, namely the peak height, response time (time-to-peak) and recovery

time all showed a stable response. Although not shown in the Peak Area, the standard

deviation for each data point was calculated and shown to be lower than 2% of the total

value (Table 4.1). This sample, although a pseudo-liquid electrolyte, is important as it

defines the benchmark for commercial viability.
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Figure 4.1: Summary of the degradation results for a 2 year old commercial sensor recovered
from an evidential breathalyzer. Pre-bake is a response after at humidification in a 25oC, 60 RH
chamber, post-bake is a response after degradation exposure at 60oC.
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4.1.2 Nafion

To compare samples to modern Nafion ™as a baseline, several full cells were fabricated

from commercial membranes and the PFSA ionomer. Nafion 115 ™(127 µm) and 117 (183

µm) membranes were prepared by membrane cleaning in boiling water, hydrogen peroxide

and 0.5 M hydrochloric acid as described previously. Re-cast membranes at 100 µm and

220 were µm were first cast from commercial solution, then recast in DMF and cleaned.

For simplicity, the raw data curves are shown comparing initial testing after standard

humidification at 25oC and 60 RH versus 20 hours of humidification following a single 2

hour 60oC degradation test. From the results (Figure 4.2) it is clear that several factors

are affecting the fuel cell sensor response.

Figure 4.2: Selected response curves from a sensor response constructed with commercial
Nafion ™

Low thickness is theorized to provide a poor response due to increased ethanol cross-

over.47 A humidity peak is observed for thin samples, where the introduction of humid air
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creates a sudden proton and current flux. The thicker membranes suffer less in terms of

response height and time-to-peak change (shown by the arrows in Figure 4.2). Extrapo-

lating this result we could claim that a reliable response would be possible with very thick

Nafion ™films, say 600-1000 µm. However, the material cost to prepare such a thick film

while still theoretical observing water loss makes it commercially infeasible compared to

acid-soaked membrane alternatives.

The reliability of the membranes is evaluated based on two criteria: degradation stan-

dard deviation and testing standard deviation. These both contribute to a source of error

in the response. The former is the long-term response change (requirement for calibration)

and the latter is the short term response change (reliability of repeated tests). Table 4.1

lists the figures for thick Nafion™-based sensors over a degradation testing cycle of 4 days

(8 tests with 5 responses each).

Table 4.1: Peak Area Sensitivity for commercial Nafion membranes

Sample Thickness Avg. Peak Area St. Dev. Max St. Dev.
within tests

Units µm µm s % %

Naf-115 127 295.10 14.90 5.38

Naf-117 183 394.43 5.62 2.58

rNaf 220 350.91 3.85 4.43

Acid-Soaked 1100 500.78 1.70 1.69

Clearly, thick Nafion ™membranes exhibited an ethanol FCS response which was both

strong and reliable. Yet to attain the same performance as acid-soaked polymer elec-

trolytes there needs to be additional improvements. One proposal is the introduction of

functionalized nanomaterials to increase the sulfonic acid content.
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4.2 PFSA-SA-GO Composite Membrane

The solid polymer membrane composited with sulfonic acid graphene oxide (SA-GO)

had been previously investigated as a solid-state electrolyte in hydrogen fuel cells.26 Sig-

nificantly improved membrane performance at low humidities (4 times higher than recast

PFSA) is attributed to a higher water uptake. This phenomena was tested for the FCS by

manufacturing SA-GO nano-composite membranes with varied thickness between 200-400

µm and content percentiles from 3-10 wt%. Composite membranes at 10 wt% were unable

to survive the cleansing process in boiling H2O2, showing internal gas generation and wa-

ter uptake. Successful films at 7 wt% were realized by lowering the cleaning temperature

to below 70oC. The peak area response and deviation is listed in Table 4.2 while other

material factors are graphically presented in Figure 4.3.

Table 4.2: Peak area sensitivity for PFSA SA-GO membranes with varying thicknesses and
compositions

Sample Thickness Avg. Peak Area St. Dev. Max St. Dev.
within tests

Units µm µm s % %

3% Naf-SA-GO 230 336.57 4.3 7.33

3% Naf-SA-GO 350 347.07 4.13 5.21

5% Naf-SA-GO 240 379.25 2.41 4.34

6% Naf-SA-GO 360 447.13 3.24 2.33

7% Naf-SA-GO 215 335.25 1.88 9.58

From these results, we find some non-linear behavior in membrane performance. The

best sample considering only alcohol detection, meaning peak area response, is the 6 wt%

SA-GO in PFSA due to low inter-test deviation, reasonable decay during degradation

testing and an improved current area response. However from a commercial or consumer

stand-point, the 5 wt% sample displays similar stability but improved response times (Fig.

4.3). Further, by comparing the results of varied thicknesses, ie 3 wt% 230 µm versus 350

µm and comparing both 5 wt% and 7 wt% versus the thicker 6 wt%, it seems that drastically
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Figure 4.3: Selected response curves from a sensor response at different membrane thicknesses
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increasing the membrane thickness is no longer providing significant improvement to the

sensor response. The added cost of ionomer solution outweights the marginal gains provided

as the thickness increases. The increased performance is not on the same scale as evidenced

when moving from thin (≤ 150µm) membranes, thereby demonstrating a non-linear trend.

The response curve at the same thickness as raw PFSA is smaller (Fig. 4.4) yet shows

remarkable stability. Commercial Nafion ™membranes showed significant response change

after only a single exposure to the accelerated degradation environment as shown previously

in Figure 4.2. Membranes prepared with SA-GO content have very little change even

after four degredation exposures, demonstrating higher reliability. Judging solely from

their response curves it appears that the 3% SA-GO has drastically reduced the initial

performance; Figure 4.4 [Right] demonstrates how the current area is provided by the so-

called tailing effect. As the platinum catalyst is not rate limited by the small amount of

fuel present, the mass transfer or ionic conductance of protons is the proposed factor to be

limiting the response rapidity. Thus it appears that the addition of even a small percentile

of SA-GO is impeding the flow of protons while retaining and improving the water uptake.

Increasing SA-GO content to 5 wt% and further to 7 wt% both demonstrate improved

response times, implying that a morphological change may be occurring to permit flow.

It was hypothesized that at low wt%, the functionalized GO sheets align horizontally

during solution casting. Increasing the wt% content begins to disrupt this alignment,

eventually becoming so convoluted that it forms void volumes where gas and water is

trapped internally and ruptures the film in order to escape. Due to the preparation stability

and reasonable response of the 5 wt% SA-GO membrane, future membranes were all cast

with 5 wt% nano-material content for comparison.

4.3 PFSA-SA-(SBA:GO) Composite Membrane

There is support in literature for the restacking of sulfonated GO and its tendency

towards a layered structure in a polymer matrix.28,113 A more recent study on sulfonated
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Figure 4.4: Degraded response curves comparing wt% SA-GO and pure PFSA membranes [Left]
Peak height and decay over 4 bake cycles [Right] Expanded view of tailing effect to demonstrate
similar peak area responses

GO-SiO2 claimed to observe aggregation above 0.8 wt% and positively affect the solid state

polymer membrane’s structural maintenance by suppressing polymer chain movement.114

To investigate this theory that the consistency of the GO layers can be broken up by in-

serting non-sheet-like nanoparticles (Fig. 4.5), mesoporous silica (SBA-15) was introduced.

SBA-15 has literature support in post-synthesis functionalization of sulfonic groups, a large

surface area and a cubic structure making it a prime candidate for nanomaterial insertion.99

In this way, rather than contributing excess SA-GO to enhance proton conduction, sheet

stacking and alignment can be disrupted by a functionalized silica, both aiding in proton

transport and the degree of sulfonation.

Figure 4.5: Schematic proposing integration of SBA-15 to improve through-plane conduction
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Initially, three membranes were cast at 5 wt% nano-filler content. In the first, 5% SA-

GO was present. In the second, a 50:50 w/w mixture of SA-GO and SBA-15. In the third

case, a 50:50 w/w mixture of GO and SBA-15 was co-functionalized with MPTMS and

tested. It should be noted that due to centrifugation and purification during synthesis,

some deviation to the co-functionalized 50:50 w/w mixture is possible in the product.

These membranes were subjected to the standard degradation testing cycle (Fig. 4.6). A

very poignant observation is that the 2.5 wt% SA-GO and 2.5 wt% SBA-15 demonstrated

an improved response curve compared to 5 wt% SA-GO; a drastic change compared to 3

wt% with a higher peak area, faster response curve and much improved recovery time at

lower sulfonation. Upon co-functionalization, increasing the number of sulfonic acid groups

present for ionic conduction while still breaking up the regularity of the 2.5 wt% SA-GO

sheets even higher performance was observed.

Figure 4.6: Peak area and height comparison between SA-GO and intercalated nanoparticle
membranes
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4.3.1 Co-functionalized Nanofiller

Previous investigation of the FTIR and XPS spectra comparing bulk GO to SA-GO26,102

found that epoxy and hydroxyl vibrations (862 cm−1 and 1054 cm−1) disappear after

functionalization with MPTMS. The silane moiety hydrolyzes into silanols (Si(OH)3) and

is partially oligomerized in a condensation reaction. The silanol group and oligomers

become coupled with epoxy and hydroxyl groups on GO during water removal. Oxidation

of thiols will occur in the presence of H2O2 to form sulfonic acid surface species on GO

(Fig. 4.7). FTIR investigation on SBA-15 compared to SA-SBA found the appearance of

the C-H (2935 cm−1) vibration as well as a weak -SH group (2580 cm−1)99 and two SO3H

indicators (1060 and 650 cm−1).100

The FTIR spectra of the novel co-functionalization is presented (Fig. 4.8). The strong

presence of the C−−O bond (1725 cm−1) at 1:1 (SBA-15:GO) during synthesis indicates that

sufficient SA-GO remained in the nanomaterial powder mix, alleviating previous concerns

about precipitation during centrifugation. The Si-O vibrations for stretching, bending and

rocking are obvious at 1100, 950 and 805 cm−1 respectively. Some SO3H peaks are notice-

able and correspond to literature.100,102 This FTIR spectra confirms the functionalization

of sulfonic groups as well as the presence of SA-GO and SA-SBA in the co-functionalized

powder.

Figure 4.7: Proposed sulfonization mechanism on graphene oxide102

XRD of the SA-GO and SBA-15 ratios, including raw graphene oxide, are shown in

Figure 4.9. The graphene oxide peak at 9o is slighly lower than literature using the Im-

proved Hummer’s method115 around approximately 10o. Bulk graphite oxide obtained by
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Figure 4.8: FTIR spectra of SA-GO and 1:1 SA-SBAGO

typical oxidation and purification results in a well defined peak at 11.0o 2θ and constitutes

the restacking of previously exfoliated single layer GO flakes. The observed low angle peak

is strong, suggesting long-ranged order. If the ordered stacking of graphene layers is pre-

served and highly oxidized, forming a crystalline structure, this peak can be explained by

a c-axis expansion on the original graphite flakes.116 Sulfonic functionalization shifts the

XRD peak to 10.3o indicating exfoliation of the synthesized GO into single sheets during

the functionalization step. This peak diminishes as expected when the SA-GO content

ratio is lowered until only SA-SBA-15 is present. SBA-15 shows strong peaks in the 0.5-4o

2θ region117 which wasn’t captured by our device operating from a starting angle of 3o,

but can still be observed by the tail end of a peak captured from 3o to 7o 2θ which is only

observed in samples containing SBA-15.

After synthesis of SBA-15, BET analysis confirmed that a high surface area nanoma-

terial based on the polymeric template was formed. SBA-15 synthesized in neutral media

will form disordered mesoporous silicas with uniform pores as large as 30 nm and cubic

structures.117 The measured average pore diameter (4 V/A) was 6.8484 nm (Fig. 4.10)

with an average particle size of 4.9139 nm. BJH Adsorption showed a remarkable sur-

face area measurement at approximately 700 m2 g−1, certainly large enough to provide

significant sulfonic group functionalization.
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Figure 4.9: XRD of SA-GO and SA-SBA-15 powders

Figure 4.10: SBA-15 BET [Left] BJH determination of average pore sizes [Right] BET adsorp-
tion and desorption determination of surface area
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Powder TGA was performed at a rate of 10oC min−1(Fig. 4.11). It should be noted

that the silica sample (SA-SBA) showed extreme thermal stability as previously reported

for cubic SBA-15.117 Observation that the 50:50 wt% ratio of SA-(SBA-15:GO) decay

values are exactly half-way between the TGA results obtained for pure SA-GO and pure

SA-SBA provides another confirmation that the intended wt% ratio of nano-materials was

maintained throughout the co-synthesis reaction. It is also seen that compared to GO, SA-

GO boosts its high temperature weight by 5% indicating a high degree of functional species

grafted on. With the aid of the polymer-templated silicon dioxide additive, a well dispersed

nano-composite membrane will also be able to sustain higher temperature operation.118,119

Figure 4.11: TGA of SA-GO and SA-SBA-15 powder ratios
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4.3.2 Composite Membranes

For the purpose of investigating a novel humidity and temperature insensitive PEM,

a variety of 5 wt% membranes were fabricated varying from 0 to 100 % in content ratios

of co-functionalized GO and SBA-15 4.12. All membranes were cast in DMF and were

homogenous and mechanically stable. One anomaly was the membrane cast with 5 wt%

SA-SBA which would curl into a tube if not fully immersed in water. The initial hypothesis

is that the porous structure is non-homogenous, possibly because of a higher concentration

of dense particles near the bottom of the film compared to the upper surface. When

removed from liquid, unequal water loss will contract the membrane along the less dense

surface. The 33.3:66.7 wt% SA-(SBA:GO) membrane also showed some surface irregularity

which was not present in other films or ratios.

Figure 4.12: Physical membrane comparison with increasing SA-GO content versus SA-SBA
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4.3.2.1 Morphology

SEM micrographs of the fabricated PFSA-nanomaterial membranes were collected by

breaking membranes under liquid nitrogen and loading them vertically onto an SEM stage

for cross-sectional analysis (Fig. 4.13 [Top]). All samples were gold sputtered with a 30

nm film prior to imaging. The PFSA-SA-SBA-15 membrane demonstrated two separate

regimes, as shown in Figure 4.13 [Right] and confirmed by EDX mapping [Left]. Due to

the relatively higher density of the mesoporous silica, it is possible that when forming

into a membrane by solution casting these particles migrate to create a highly porous

structure. The remaining membrane will resemble pure recast PFSA. The EDX image

shows a highly dispersed distribution of fluorine (F) throughout the membrane, indicative

of perfluorosulfonic content, while silicon (Si) is concentrated near the membrane base. This

confirms the aforementioned theory whereby the upper and lower surface of the 5 wt% SA-

SBA membrane would have different water loss and water uptake characteristics, causing

it to bend once removed from a fully humidified environment. EDX mappings of other

membranes containing both SA-GO and SA-SBA had homogeneous dispersion. There

must exist an interaction between the mesoporous silica and graphene oxide nanoparticles

for this change to occur.

A closer investigation into the 33:66 wt% (SBA-15:GO) membrane showed many ’wrapped-

ball’ structures present on the surface of the cross-sectional area. This is in high contrast

to the rigid, sheet-like structure present in the SEM micrograph of PFSA-SA-GO. It is

proposed that the cubic silica is wrapped by many exfoliated graphene oxide sheets while

in solution. This larger structure is unable to migrate during membrane casting and is

well dispersed into the membrane matrix. Further, the regularity of SA-GO is disrupted

by the presence of SA-SBA which decreases the planar blocking of proton pathways and

improves the network of hydrophilic domains within the bulk membrane.
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Figure 4.13: [Top] Comparison of cross-sectional SEM micrographs for varying ratios of SA-
SBA and SA-GO in PFSA, also showing Nafion 117 ™[Left] Cross-sectional SEM micrographs of
the 5 wt% SA-SBA membrane [Right] EDX Mapping of fluorine (F) and silicon (Si).
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4.3.2.2 IEC, WU and Mobility

The water uptake and membrane swelling of all ratios of co-functionalized membrane

outperformed either pure nanomaterial membrane (Fig. 4.14 [Left]). The ion exchange

content was highest at a 33:66 wt% ratio of SA-(SBA-15:GO) and improved versus Nafion

117 ™(0.91 mmol g−1).77,120 The lower values with increasing SA-SBA is possibly due

to the silica nanoparticle forming larger pore networks, resulting in a lower ion-exchange

count per volume. The low IEC of PFSA-SA-GO is possibly influenced by its highly

ordered structure, making ion exchange with Cl– more difficult if graphene oxide films are

closely stacked. Combining the through-plane conductivity measured at RT with the IEC

and WU characterizations, the mobility of the membranes can be evaluated (Fig. 4.14

[Right]). This volcano peak demonstrates that the mixture of SA-SBA-15 and SA-GO is

synergistic.

Figure 4.14: Membrane characteristics [Left] Swelling Ratio and Water Uptake of nanomaterial
samples [Right] Through-plane ionic conductivity and mobility at 100 RH and 23oC

4.3.2.3 Proton Conductivity

Membrane conductivity was determined by EIS measurements. Two methods were

employed to evaluate the membranes across a range of humidities and temperatures. First,
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at a fixed temperature (RT) the humidity was varied (Fig. 4.15). It is clear that the 33:66

wt% and 50:50 wt% membranes demonstrate improved conductivity across all humidity

values, but are specifically improved at low humidity with a more than 5x improvement

versus 5 wt% SA-GO. Second, measuring the conductivity at a fixed humidity and various

temperatures to generate an Arrhenius plot (Fig. 4.15 [Right]), we are able to calculate the

activation energy (Gact) as listed in Table 4.3. The activation energy indicates the energy

barrier for proton migration based on the Grotthuss mechanism.121,122 A good linear fit

was present for the 1:1 ratio as well as for 5 wt% SA-GO. Focusing only on these two

membranes, Eact appears to be inversely related to the hypothesis for enhanced mobility.

Figure 4.15: Membrane ionic conductivity [Left] Sample response versus RH [Right] Arrhenius
plot of 100 RH conductivity from 20oC to 80oC with linear fit to determine activation energy.

Table 4.3: Arrhenius linear fit to determine activation energy

Sample Adj. R2 Eact Eact

Units kJ mol−1 eV

5 wt% SA-SBA-15 0.9367 13.206 0.137

2:1 SA-SBAGO 0.9534 15.677 0.162

1:1 SA-SBAGO 0.9912 20.817 0.216

1:2 SA-SBAGO 0.9467 18.926 0.196

5 wt% SA-GO 0.9996 15.595 0.162
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Analysis of the presented data poses an interesting problem. How is it possible for ionic

transport to require more energy, yet still demonstrate higher mobility? Both mobility and

activation energy are a function of conductivity. Activation energy is related to the relative

energy (in heat) which correlates to a change in the measured response. The ultimate goal is

to provide a membrane with null change and sufficient conductivity across all temperatures.

An Arrhenius plot of this theoretical membrane would have an infinitely large activation

energy. Therefore, the increase in the activation energy is an indicator of a stable membrane

response rather than proton immobility. The values reported above are also taken in wet

(100 RH) conditions, much higher than would be present during typical operation. It is

well known that with decreasing RH the activation energy will increase.123 At activation

energies between 0.5-0.9 eV, vehicle transport (H3O
+) is the major mechanism.124 Thus,

the high mobility at low relative humidity indicates that significant vehicle transport is

occurring, further that the addition of SA-SBAGO provides a significant source of this

transport.

4.3.3 Full Cell Tests

Four days of accelerated degradation testing were performed on each of the nano-

composite membranes (Fig. 4.16).

To get a better understanding of the significance of these results, we can directly com-

pare the recently created 5 wt% 50:50 SA-(SBA-15:GO) (1:1 SA-SBAGO for simplicity)

membrane to the commercial Nafion 117 ™(Table 4.4). 1:1 SA-SBAGO sample demon-

strates marginal ambient improvement in the relative decay rate, peak area and a slightly

tailed response rate. However, immediately after exposure to the low humidity, harsh en-

vironment we see significant improvement in the response rate, stability of the peak area

and peak height. These characteristics mark 1:1 SA-SBAGO as a candidate for long-term

stability in normal conditions.
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Figure 4.16: Membrane response characteristics for sulfonic acid functionalized SBA-15:GO
ratios.

Table 4.4: Nafion 117 ™and 50:50 SA-(SBA-15:GO) response comparison humidified vs dehu-
midified

B1 - Bake Cycle 1 Humidified Overnight After 2h 60oC
B4 - Bake Cycle 4 Naf 117 SA-SBAGO Dif [%] Naf 117 SA-SBAGO Dif [%]

Peak Height - B1 9.51 9.77 2.72 4.16 8.06 93.78

Peak Height - B4 6.56 7.39 12.75 2.87 6.17 114.93

Peak Area B1 378.01 422.05 11.65 424.17 431.19 1.66

Peak Area B4 359.71 414.84 15.32 409.31 425.94 4.06

Time to Peak B1 12.09 13.71 -13.40 32.29 16.75 48.13

Time to Peak B4 13.12 15.39 -17.30 42.54 19.27 54.71

Decay Time B1 26.96 30.02 -11.37 73.64 37.38 49.24

Decay Time B4 36.15 38.23 -5.76 103.72 47.94 53.78
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4.3.3.1 Long Term Degradation

Long-term degradation was applied to selected samples using a commercial degradation

method. The samples equilibrated overnight in a humidity chamber for the initial two

weeks. They were tested every 3-4 days at 0.05 BAC using a commercial testing platform. It

should be noted that the current area values here are not comparable to those performed on

the home-built testing platform. The membranes were kept at ambient humidity excepting

a test after 3 weeks where samples were left in the humidity chamber overnight, until 100

days had passed(Fig. 4.17). Although not as simple to discern in the raw data, applying

a rough bezier spline to the data points a general trend for each sample can be observed.

The fluctuating humidity conditions are measured in-lab before testing and vary due to

weather and season. This mirrors the working conditions of FCS breathalyzers in the field

where they are stored and periodically used to retrieve results. The 2:1 and 1:1 SA-SBAGO

functionalized membranes demonstrated improved insensitivity to their environment. Over

a period of 100 days, the 1:2 ratio maintained a valid response, followed by the 1:1 SA-

SBAGO and then the 5 wt% SA-GO original.

Figure 4.17: Membrane area change due to low-humidity environment. A Bezier spline applied
to demonstrate general trend.
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Chapter 5

Conclusions

5.1 Summary

There is a need for improved fuel cell sensors in the large and rapidly growing breath-

alyzer market.25 Commercial units require frequent calibration due to water loss and the

effect of the environment on a single sensor. The high cost of Nafion ™and its demonstrated

conductivity change with water loss mandates investigation into alternative methods to en-

hance long-term durability of solid state fuel cell sensors. To date, very few publications

have specifically focused on the challenges facing the fuel cell sensor industry with the

majority of relevant research conducted into the hydrogen fuel cell with a focus on high

power. Therefore, nanomaterial design and integration has a role in this small scale system

where even slight improvement on the current commercial models is significant for judicial

purposes.

To deal with the added issues of selectivity, sensitivity and membrane degradation a

new testing platform was devised. Fuel cell sensors could be easily and repeatably tested on

this platform, allowing for a more broad and complete investigation to occur. Sulfonated

graphene oxide (SA-GO) was previously tested and demonstrated improved characteristics

at low humidity conditions when integrated into a PFSA polymer.26 However at high
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weight percent integration in relatively thick membranes, a proton blocking effect was

observed compared to pure PFSA. To recover the expected response profile as well as aid

in the total charge transfer content, a mesoporous silica (SBA-15) was added as a spacer

in the membranes. Graphene oxide sheets were observed to wrap around these particles,

both aiding it the homogeneous dispersion as well as disrupting the layer-by-layer settling

of pure exfoliated graphene oxide in solution. These two features resulted in a membrane

response which is not only larger than Nafion 117 ™, but which demonstrates high response

stability even in low-humidity conditions over the course of 100 days.

5.2 Future direction

In the original exploration, several weight percentages of nanomaterial content were

explored. The choice of 5 wt% as a standard was due to the complexity in production as

well as the observation that high nanomaterial contents of SA-GO alone in the solid state

membrane would result in decreased performance or poor film formation. With the new

results demonstrating stable films at 5 wt% and the “wrapping” synergy between SA-GO

and SA-SBA-15, higher content can again be explored for higher water retention, ionic

content and ultimately more reliable response performance.

Further, as 95% of the membrane film is still composed of the PFSA polymer, intrinsic

water loss can be reduced by replacing or enveloping the polymeric ion conducting layer

with low-loss polymer layers such as cellulose or polybenzimidazole. Finally, a thorough

cost analysis of the nano-material synthesis procedure should be conducted before moving

to any production stage. The cost of MPTMS, H2O2 and other materials mentioned in the

synthesis procedure cannot be neglected.
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Figure A.6: Coupled fuel cell automated circuit [Green] Timer circuit design [Yellow] Air flow
pump circuit [Orange] Solenoid sampling pump circuit
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Table B.1: Items, specification and price for the automated FCS setup

Product Product Code Quantity Price
Units CAD

Boxer Air Diaphragm Pump 3112-12V 1 USD 192.40

Electronics Science Shop - - ~30.00

Arduino Uno Microcontroller RB-Ard-34 1 29.57

MOSFET N-Channel 150V/43A IRF3415PBF 5 10.54

DC Power Adapter 12v/1A DCA-1210 2 9.90

Breadboard 400 Tie Points ZY-60 3 11.06

NE555P Bipolar Timer NE555P 10 1.60

Red LED 3mm Diffused LED3RD 20 0.63

AWG24 Insulated Copper Wire 8m WIRE24 1 1.30

Subtotal 315.00

Shipping 17.16 & 54.85

Taxes 40.95

Approximate Total 400.00

Paid Total Rest -- 359.98

Figure B.1: 2K resolution of SBA-15 cubic
structure

Figure B.2: 28.18K resolution of SBA-15
showing the nanosized porous structure
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Table B.2: Chronological comparison of degredation test methodologies

Order Condition Applied Commercial
Units oC/R.H. - Time oC/R.H. - Time

1 Humidification 25/60 - 3 days 25/60 - N/A

2 1st Test Ambient - 0.5 hr Ambient - 0.5 hr

3 1st Bake 60/0 - 2 hr 60/0 - 2 hr

4 Rest Time Ambient - 0.5 hr Ambient - 1 hr

5 2nd Test Ambient - 0.5 hr Ambient - 0.5 hr

6 2nd Bake -- 60/0 - 2 hr

7 Rest Time -- Ambient - 1 hr

8 3rd Test -- Ambient - 0.5 hr

9 Storage 25/60 - Overnight 25/60 - Overnight

10 Day 2 Do 2-5 (2nd Bake) Do 2-8 (3rd & 4th Bake)

11 Storage 25/60 - Overnight 25/60 - Overnight

12 Day 3 Do 2-5 (3rd Bake) Do 2

13 Long Bake -- 60/0 - 4 hr

14 Rest -- Ambient - 1 hr

15 Test -- Ambient - 0.5 hr

16 Storage 25/60 - Overnight 25/60 - Overnight

17 Day 4 Do 2-5 (4th Bake) Do 12-14 (6th Bake)

18 Storage 25/60 - Overnight 25/60 - Overnight

19 Day 5 Do 2-5 (5th Bake) Do 2

20 Storage 25/60 - Until Needed 25/60 - Until Needed
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Figure B.3: Nyquist plots for ionic conductivity of a 50:50 SA-(SBA-15:GO) as a function of
temperature at 100% RH
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Appendix C

Code for Automated Data Analysis
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Code C.1: Hardware controller switch code to interface between automated software and the

benchtop testing hardware

//555 t imer t r i g g e r− monostable mode

//by Jared Lenos

//March 2014

// pin connec t i ons :

// d i g i t a l pin 0 to 555 pin 2

//Arduino ground to 555 ground ( pin 1)

i n t go = 12 ; //Pin used to con t r o l MOSFET

in t l ed = 13 ; //LED ind i c a t o r l i g h t on board

// va r i ab l e d e c l a r a t i on

i n t cyclenum = 0 ;

void setup ( ) {
S e r i a l . begin (9600) ; // i n i t i a l i z e s e r i a l communication :

S e r i a l . p r i n t l n (”Running PEMFC , Author : JARED LENOS, March 2014”) ;

S e r i a l . p r i n t l n (” Email : <j a r ed . lenos@gmail . com> i f i s s u e s a r i s e . ” ) ;

S e r i a l . p r i n t l n ( ) ;

S e r i a l . p r i n t l n (”Welcome ! Please send ’ g ’ to run the attached hardware . ” ) ;

S e r i a l . p r i n t l n (” ”) ;

pinMode ( go ,OUTPUT) ;

pinMode ( led ,OUTPUT) ;

}

void loop ( ) {
i f ( S e r i a l . a v a i l a b l e ( ) > 0) {

i n t inByte = S e r i a l . read ( ) ;

// do something d i f f e r e n t depending on the charac t e r r e c e i v ed .

// The switch statement expect s s i n g l e number va lue s f o r each case ;

// in t h i s exmaple , though , you ’ re us ing s i n g l e quotes to t e l l

// the c o n t r o l l e r to get the ASCII va lue f o r the cha rac t e r . For

// example ’ a ’ = 97 , ’b ’ = 98 , and so f o r th :

switch ( inByte ) {
case ’ g ’ : // Bl ink LED twice during one second be f o r e s t a r t i n g

S e r i a l . p r i n t (”Commencing in ”) ;

f o r ( i n t i = 0 ; i < 2 ; i++)

{
S e r i a l . p r i n t (”\ t ”) ;
S e r i a l . p r i n t (1− i /2 . 00 ) ;

d i g i t a lWr i t e ( led , HIGH) ;
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delay (250) ;

d i g i t a lWr i t e ( led , LOW) ;

de lay (250) ;

}
S e r i a l . p r i n t l n (”\ t GO! ” ) ;

d i g i t a lWr i t e ( go ,HIGH) ; // dr iv e MOSFET on

delay (100) ; // g ive i t 100ms to respond

d i g i t a lWr i t e ( go ,LOW) ; // dr i ve MOSFET o f f

S e r i a l . p r i n t (” Air Pump ON \ t ”) ;
f o r ( i n t i = 0 ; i < 6 ; i++)

{
d i g i t a lWr i t e ( led , HIGH) ;

de lay (250) ;

d i g i t a lWr i t e ( led , LOW) ;

de lay (250) ;

}
S e r i a l . p r i n t l n (” Ce l l Pump ON”) ;

f o r ( i n t i = 0 ; i < 14 ; i++)

{
d i g i t a lWr i t e ( led , HIGH) ;

de lay (100) ;

d i g i t a lWr i t e ( led , LOW) ;

de lay (100) ;

}
cyclenum++;

S e r i a l . p r i n t (” Cycle ”) ;

S e r i a l . p r i n t ( cyclenum ) ;

S e r i a l . p r i n t l n (” complete . ” ) ;

break ;

d e f au l t :

// do nothing , make sure LED i f o f f .

S e r i a l . p r i n t l n (”That command was i n v a l i d . ” ) ;

d i g i t a lWr i t e ( go , LOW) ;

d i g i t a lWr i t e ( led , LOW) ;

}
}

}
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Code C.2: Script to interface between the Agilent DMM software and send output to the

hardware controller

#IfWinActive Ag i l ent BenchVue ; Wil l only i n i t i a l i z e s c r i p t i f the a c t i v e window ’ s c l a s s

↪→ matches .

#NoEnv ; Recommended f o r performance and compa t i b i l i t y

↪→ with fu tu r e AutoHotkey r e l e a s e s .

#S ing l e I n s t an c e Force ; In s t ance s run again w i l l r ep l a c e prev ious ones .

#HotkeyInterva l 0

#MaxThreads 20 ; Prevents p o s s i b l e crash .

#Pe r s i s t e n t

#WinActivateForce ; Prevents window f l a s h i n g i f changing windows rap id l y .

SetWorkingDir %A Scr iptDir% ; Ensures a c on s i s t e n t s t a r t i n g d i r e c t o r y .

SendMode Input ; Recommended f o r new s c r i p t s due to i t s s up e r i o r

↪→ speed and r e l i a b i l i t y .

SetBatchLines , −1
SetKeyDelay −1,−1
CoordMode , Mouse , Re l a t i v e ; Set s mouse c l i c k s r e l a t i v e to the a c t i v e window .

;Menu , Tray , Icon ,%A WinDir%\system32\ s h e l l 3 2 . d l l , 16

NumPass := 10 ; Def ine Var iab l e s .

NumSec := 180

vFileName := ACS−Sample

;Add Tray Options

Menu , tray , t ip , PEMFC AutoRun

Menu , tray , NoStandard

Menu , tray , add , Var i ab l e s

Menu , Tray , add ,

Menu , Tray , add , About

Menu , tray , add

Menu , tray , add , Exit

re turn

CapsLock : : ; Use Capslock as a d e f au l t i n i t i a l i z a t i o n key .

Gui , add , Text , , P lease i n s e r t the f i l e name you ’ d l i k e to save r e s u l t s under .

GUI , add , Edit , w400 vFileName

Gui , add , Text , , P lease i n s e r t the number o f t e s t s you w i l l be making then pr e s s

↪→ OK ( Alt+O) .

GUI , add , Edit , w400 vNumPass , 10 ; 10 i s s e t as the base number as

↪→ a good sample should

↪→ have t h i s many .
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Gui , Add , Text , , P lease i n s e r t the number o f seconds between pas s e s .

Gui , add , Edit , w400 vNumSec , 180

Gui , Add , Button , x180 y140 h30 w50 , &OK ; User Input s e c t i o n .

Gui , −Theme

Gui , Show , , PEMFC Autorun

return

re turn

GuiEscape :

GuiClose : ; I f the u s e r s c l o s e s the window , prevents dup l i c a t e

↪→ c on t r o l s be ing c rea ted .

Gui , Destroy

re turn

ButtonOK : ; Sends the program towards the loop cy c l e .

Gui , Submit

Gui , Destroy

Goto Looping

re turn

Looping :

{

expo r t i d := ”HwndWrapper [ Ag i l ent BenchVue DMM. exe ; ; 5 b0b6434−7254−4adc−9869−
↪→ e0c43bc177f9 ] ”

ClickXGo := 36

ClickXStop := 130

ClickY := 67

CurrLoop := 0 ; Counter to determine how long to wait .

Loop %NumPass% {
WinActivate Ag i l ent BenchVue ; s e t s the Ag i l ent program as the a c t i v e window

WinWaitActive Ag i l ent BenchVue ; wai t s f o r the program to be a c t i v e

MouseGetPos , xpos , ypos

Cl i ck %ClickXGo%, %ClickY%, 0 ; Moves the mouse to the l o c a t i o n on the s c r e en

↪→ f o r ’ S ta r t Test ’ .

s l e e p 10

Cl i ck %ClickXGo%, %ClickY% ; C l i ck s to s t a r t the t e s t .

C l i ck %xpos%, %ypos%, 0 ; moves the mouse back to where you had i t be f o r e .

S leep 500

Run , cmd /c echo ”g”>COM8, , Hide ; Sends ”g” to the com port which i s r e cogn i z ed as

↪→ ’GO’ .
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; Program s l e e p s un t i l the so f tware has f i n i s h e d read ing .

SleepTime := NumSec∗1000+1500

Sleep %SleepTime%

; After s l e ep ing , end the data run , save the data and s t a r t a new run as qu i ck ly

↪→ as p o s s i b l e .

WinActivate Ag i l ent BenchVue ; s e t s the Ag i l ent program as the a c t i v e window

WinWaitActive Ag i l ent BenchVue ; wai t s f o r the program to be a c t i v e

MouseGetPos , xpos , ypos

Cl i ck %ClickXStop%, %ClickY%, 0 ; Moves the mouse to the l o c a t i o n on the s c r e en

↪→ f o r ’ Stop Test ’ .

s l e e p 10

Cl i ck %ClickXStop%, %ClickY% ; C l i ck s to stop the t e s t .

C l i ck %xpos%, %ypos%, 0 ; moves the mouse back to where you had i t be f o r e .

s l e e p 1000 ; Wait 1 seconds f o r ’ Stop All ’ to p rog r e s s .

C l i ck 1294 , 632 ; Export Button

Sleep 500

Cl i ck 1249 , 597 ; CSV cho i c e

; ; WinWait ahk c l a s s %expo r t i d%

Sleep 1000

Cl i ck 166 , 80 ; Wait f o r window to appear , c l i c k t ext

Send ˆa ; S e l e c t a l l t ex t

Send %FileName% ; Type in f i l ename

s l e e p 400

Send {Tab 3}{Space 2} ; uncheck number by twice on the number checkbox

↪→ to make i t auotmat i ca l l y add a value to the data

S leep 400

Cl i ck 33 , 244 ; Uncheck the ” inc lude setup text ” box

Sleep 400

Cl i ck 460 , 300 ; C l i ck OK to save data

S leep 40

Cl i ck %xpos%, %ypos%, 0 ; Move mouse back to i t s o r i g i n a l p o s i t i o n

WinWaitActive ahk c l a s s CabinetWClass ; Wait f o r the windows exp l o r e r window to

↪→ pop−up
WinClose ahk c l a s s CabinetWClass ; Close the window

CurrLoop++

}
WinActivate Ag i l ent BenchVue ; s e t s the Ag i l ent program as the a c t i v e window

WinWaitActive Ag i l ent BenchVue ; wai t s f o r the program to be a c t i v e

I f ( CurrLoop = Numpass ) {
MsgBox , 260 , S c r i p t Continuation , Would you l i k e to r e s t a r t t h i s e n t i r e c y c l e ?

IfMsgBox Yes
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Goto Looping ; r e s t a r t s the cy c l e i f ’ yes ’ i s p re s s ed .

r e turn

IfMsgBox No

Goto Exit

re turn

}
r e turn

}

Var iab l e s :

Gui , Destroy

Gui , add , Text , , P lease ente r the sample name you would l i k e to save .

GUI , add , Edit , w400 vFileName

Gui , add , Text , , P lease i n s e r t the number o f t e s t s you w i l l be making then pr e s s OK ( Alt+O

↪→ ) .

GUI , add , Edit , w400 vNumPass , 10

Gui , Add , Text , , P lease i n s e r t the number o f seconds between pas s e s .

Gui , add , Edit , w400 vNumSec , 180

Gui , Add , Button , x180 y140 h30 w50 , &OK ; User Input s e c t i o n .

Gui , −Theme

Gui , Show , , PEMFC Autorun

return

About :

Msgbox 64 , PEMFC Autorun , Written f o r Ag i l ent Benchvue by Jared Lenos . ‘ nMarch 2014 @

↪→ Applied Nanomater ia ls and Clean Energy Lab .

re turn

Exit :

ExitApp ; Exit w i l l end the running s c r i p t .

Pause : : Pause ; The s c r i p t can be paused at any time by h i t t i n g

↪→ ’ Pause ’ .
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Code C.3: Script to automatically detect extrapolate and integrate response curves

/∗
OriginPro 8 .5 macro to generate r e s u l t s from data f o r the Ethanol Fuel Ce l l (PEMFC)

Desc r ip t i on : This s c r i p t i s intended to automat i ca l l y import , i n t e r p r e t and prov ide easy

↪→ ac c e s s to the in fo rmat ion

that i s nece s sa ry to proper ly ana lyze the DMM data c o l l e c t e d from a s i n g l e PEMFC f u e l t e s t

↪→ . E s s en t i a l l y , i t autom−
a t i c a l l y imports f i l e s , us ing t h e i r names to o rgan i z e them . I t then formats the cur rent

↪→ column to being in micro−
amperes , c r e a t e s a l i n e p l o t o f a g iven sample , i n t e g r a t e s that l i n e from s t a r t to the 3/8

↪→ ths and 3/4 ths end po int

and c o l l e c t s and d i s p l a y s the data f o r easy t r a n s f e r r a l to a f i n a l a n a l y s i s t o o l .

Vers ion : 1 . 5 . 1

Date : Mar 23 , 2016

Contact : Jared Lenos <j a r ed . lenos@gmail . com>

∗/// NOTE: legendupdate mode:=custom custom:=@WS; // To qu i ck ly format legend e n t r i e s in

↪→ Orig in .

/∗ Common import func t i on and opt ions to trim/rename she e t s /books based on imported f i l e s .

↪→ ∗/

newbook ;

s t r i n g fn s ;

s t r i n g path$=system . path . o r i g i n $ ;

i n t nLen = Len ( path$ ) ;

path$=path . l e f t ( nLen−31)$ + ”\Raw Data \2015\20150327\”;
f i n d f i l e s f := fns$ e :=”Com∗ . csv ” ;

i n t n = fns . GetNumTokens (CRLF) ;

s t r i n g bkName$=page . name$ ;

impasc fname:= fns$
opt ions . ImpMode:=4 /∗ s t a r t with new shee t ∗/
opt ions . Spa rk l i n e s :=0 /∗ don ’ t have s p a r k l i n e s ∗/
opt ions . Cols . AutoColTypes :=1 /∗ Orig in automat i ca l l y de s i gn s the columns ∗/
opt ions . Cols . NumCols:=2 /∗ only import the f i r s t 2 columns ∗/
opt ions . Names . AutoNames:=0 /∗ turn o f f auto rename ∗/
opt ions . Names .FNameToBk:=0 /∗ do not rename the workbook ∗/
opt ions . Names . FNameToSht:=1 /∗ rename shee t to f i l e name ∗/
opt ions . Names . FNameToShtFrom:=0 /∗ tr im f i l e name from l e t t e r ∗/
// opt ions . Names . FNameToShtTo:=44 /∗ tr im f i l e name to l e t t e r ∗/
opt ions . PartImp . Pa r t i a l :=1 /∗ import ing only these columns ∗/
opt ions . PartImp . F i r s tCo l :=2
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opt ions . PartImp . LastCol :=3;

// opt ions . Names .FNameToBkComm:=1 /∗ add f i l e name to book comment ∗/

newbook r e s u l t :=SummarySheet ;

wks . name$=”Resu l t s ” ;

f o r ( ee=1; ee<=n ; ee++) /∗ Runs as many times as the number o f imports ∗/
{

win −a %(bkName$ ) ; // Act ivate s the book .

page . a c t i v e$=$ ( ee ) ; // Opens the page depending on the number o f

↪→ inputs .

s t r i n g wksname$=%(wks .Name$) ; // Var iab le conta in ing the name o f the worksheet (

↪→ from import ) .

/∗ Change f e a t u r e s o f f i r s t column ∗/
Range a = 1 ;

// Format column A to switch from a Date−Time to e lapsed time .

// − WARNING w i l l screw up i f going from 11 pm − 12 am.

a=Right (Trim( a$ )$ , 1 2 ) $ ;

a . SetFormat (3 , 11 , ) ;

a=a ∗86400;
a . Format=1;

a=a−a [ 1 ] ;

/∗ Change f e a t u r e s o f second column ∗/
Range b = 2 ;

b=b∗1 e6 ; // Format to micro−amperes

b [L ] $=Data (uA) ; // Change Column Header i n f o

// Figure out i f a ’ peak ’ e x i s t s in the f i r s t 10 seconds

// Find the index at which column A exceeds 10 .

de l −a l p a r t i a l ; // Delete temporary datase t i t a l r eady e x i s t s .

i n t rangemarked = 0 ;

datase t p a r t i a l ;

f o r ( i i =1; i i<=a . GetSize ( ) ; i i ++) {
p a r t i a l [ i i ]=b [ i i ] ;

i f ( a [ i i ] >= 10) break ;

}
i n t va l2=i i ; // Index at which the time exceeds 10 seconds .
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// Build a temporary datase t

va l=l i s t (max( p a r t i a l ) , p a r t i a l ) ; // Index o f the max value in in the 10 second

↪→ window .

i f ( va l < val2−4) { // ! ! A peak value e x i s t s be f o r e the 10 second mark .

i n t i i n e x t ; // i n i t i a l i z e a new va r i ab l e f o r the 3 rd forward

↪→ point

i n t bb next ;

i n t bb=va l ; // i n i t i a l i z e ’bb ’ at the peak to work backwards/

↪→ forwards from

f o r (bb=val −5; bb>=3; bb−−) // move backwards from the

↪→ peak un t i l a change i s found .

{
bb next = bb−3;

i f (b [ bb next ]>b [ bb ] ) break ; //Check the po int 3 va lue s behind . I f l a r g e r

↪→ the re must be a s i gn change = point o f i n f l e c t i o n

}
f o r ( i i=va l +10; i i<=b . GetSize ( ) ; i i ++) // move forwards from th i s peak (may stop

↪→ immediately )

{
i i n e x t = i i +10;

i f (b [ i i n e x t ]>b [ i i ] ) break ; //Check the po int 10 va lue s ahead . I f l a r g e r

↪→ the re must be a s i gn change .

}
// type $ (bb ) ;
// type $ ( i i ) ;

s t a r tpn t=bb ;

endpnt=i i ;

range r r = b [ s t a r tpn t : endpnt ] ;

mark −s t r r ;

rangemarked = 1 ;

}

// Do Sigmoidal f i t t i n g on the cuve and i n t e g r a t e f o r t rue area

range a = 1 ;

range b = 2 ;

range xx=3;

range yy=4;

endrow = a . nrows ;

endtime = a [ endrow ] ;

s tep = endtime /( endrow−1) ;
xx [L ] $=”Time ( sec ) ” ; // longname o f the x−column

xx . type = 4 ; // s e t i t to be an ’X’ column

yy [L ] $=”Current (uA) ” ; // longname o f the y−column
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xx={0: s tep : 1 200} ; // Extrapo late out to 1200 seconds .

datase t tmp=(b>=max(b) ) ? 1 : 0 ; // f i nd max value

i n t i i=l i s t (1 , tmp) ; de l −a l tmp ;

i i = i i +300; // Choose a po int to s t a r t about 400 po in t s past the i n i t i a l peak .

range decaycurve = b [ i i : end ] ; // Create a decay segment in the post peak area .

n lbeg in iy :=decaycurve func := l o g i s t i c n l t r e e := t t ; // i n i t i a l i z e f i t t i n g the a c t i v e p l o t

↪→ us ing l o g i s t i c model

// t t . maxiter=50; // change some parameters

t t . t o l e r an c e = 1E−6; // change some parameters

n l f i t ; // f i t to s p e c i f i e d modele

yy=f i t ( c o l (3 ) ) ; // apply f i t to presented x−va lue s
nlend ;

de l −a l tmp ;

xx=a ; // Replace with o r i g i n a l data f o r i n t e g r a t i o n / graphing .

yy=b ; // Replace with o r i g i n a l data f o r i n t e g r a t i o n / graphing .

b a s e l i n e=yy [ xx . nrows ] ; // Assume that the end o f the datase t i s the asymptotic va lue ( i e .

↪→ that decay happens by t h i s time )

yy=yy−$ ( b a s e l i n e ) ; // Subtact t h i s b a s e l i n e from the whole datase t ( f o r

↪→ comparison )

// Mask same data as in the o r i g i n a l data ∗/
// type $ ( s t a r tpn t ) ; // Check the s t a r t & endpoints

// type $ ( endpnt ) ;

i f ( rangemarked == 1) {
range r r = co l (4 ) [ s t a r tpn t : endpnt ] ;

mark −s t r r ;

}

// Get the Decay Time value

range a=3; // Use the ex t rapo la t ed datase t j u s t i n ca s e the 3/8 ths po int was never reached

↪→ in the o r i g i n a l data .

range b=4;

va l=l i s t (max(b) ,b ) ; // Get index o f max (b)

dd=max(b) ∗3/8 ;

// Star t count ing at ’ val ’ to i gnor e va lue s be f o r e the peak .

f o r ( i i=va l ; i i<=b . GetSize ( ) ; i i ++) { i f (b [ i i ] <= dd) break ;}
i n t va l2=i i ;
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// Ca lcu la te d i f f e r e n c e

decaytime = a [ va l2 ]−a [ va l ] ;

s t r i n g bkname$ = page . name$ ;

s t r i n g shname$ = laye r . name$ ;

paMultiY iy :=[ bkname$ ] shname$ ! (C,D) theme:=”True I n t e g r a l ” c l e a r :=0 append:= i n t e g r a t e ow

↪→ :=[ SummarySheet$ ] Resu l t s ;

// Adjust data in the Resu l t s Spreadsheet

range rea lpeak=[%(SummarySheet$ ) ] Resu l t s ! c o l (7 ) [ ee ] ;

range dataco l = [%(SummarySheet$ ) ] Resu l t s ! Col (1 ) ;

range indexco l = [%(SummarySheet$ ) ] Resu l t s ! Col (2 ) ;

range b a s e l i n e c o l = [%(SummarySheet$ ) ] Resu l t s ! Col (8 ) ;

range decayco l = [%(SummarySheet$ ) ] Resu l t s ! Col (9 ) ;

wcolwidth i rng := dataco l width :=15;

dataco l [ L ] $=Sample ;

dataco l [ $ ( ee ) ] $=shname$ ;

i ndexco l [ L ] $=Dataset ;

i ndexco l [ $ ( ee ) ]=$ ( ee ) ;
b a s e l i n e c o l [ L ] $=Base l i n e [uA ] ;

b a s e l i n e c o l [ $ ( ee ) ]=$ ( b a s e l i n e ) ;
decayco l [ L ] $=Decay Time [ s ] ;

decayco l [ $ ( ee ) ]=$ ( decaytime ) ;

}
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