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Abstract

Since first being synthesized in 2011, H2O@C60 has attracted much attention in the lit-

erature. Many interesting quantum phenomena are associated with this system, including

ortho-para conversion, rotational ground state splitting, and long-range dipole correla-

tions. The work presented here covers the theory required to model such a system as well

as detailing two projects that were undertaken in order to develop tools to study H2O@C60.

Path integral molecular dynamics simulations were utilized to gain an understanding of

the thermodynamic properties such as position and orientation densities, and imaginary-

time autocorrelation functions (ITACFs) were investigated and compared to those of a free

water molecule.

In order to gain access to energy levels directly, code was also developed in order to

diagonalize the Hamiltonian for the system and obtain the exact energy levels variationally.

The code that was written for this purpose is very general and can easily be applied to a

wide number of similar systems, including different guest/host molecules.
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Chapter 1

Introduction

Molecules have been found to exhibit interesting quantum properties within various

confining geometries.1–4 These quantum properties can include effects such as spatial

anisotropy induced rotational level splitting, and “quantum rattling”, which manifests itself

in the translational movement of the molecule. There are a number of systems that may

fall under the category of “nano-cavities”, but specific examples are: molecular hydrogen

in a clathrate cage, water in rare gas matrices, and endohedral fullerene complexes.

The work presented focuses on a water molecule that has been encapsulated within a

buckyball (H2O@C60), and is organized into four main sections. First, a formal introduc-

tion to the system is provided, involving a very brief review of experimental results high-

lighting the interesting quantum phenomena that arises. Secondly, relevant background

theory required for a thorough understanding of the works is covered. The third and fourth

sections detail the results and discussion of two projects undertaken in order to investi-

gate the system, path integral molecular dynamics simulations and exact diagonalization

calculations.
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1.1 Water Inside of a Buckyball

The endohedral water fullerene complex was first synthesized in 20115 in a molecular

surgery approach that has since been improved on.6 The result was a very exciting system

rich in quantum phenomena that may have eventual applications in many fields, spurring

interest and subsequently numerous studies.7–20

Some of the results from these experiments will be briefly discussed below, as they provide

us with motivation for studying such a system.

Inelastic Neutron Scattering

Very briefly, inelastic neutron scattering is a technique that is dependent on nuclear

spin interactions with the sample. Similar to molecular hydrogen, water molecules may be

found in either a para-state, or an ortho-state. Para water corresponds to the molecule

having a total nuclear spin of 0, whereas ortho water has a total nuclear spin 1, which is

based on the spins of the hydrogen atoms. The INS technique may actually drive transitions

between these spin-isomers of H2O, so INS peaks appear that correspond to ortho−para

transitions. Likewise, since ortho water has spin 1, ortho−ortho transitions may also be

seen.

Figure 1 shows the low lying rotational energy levels of a free water molecule, and will

be imperative to understanding much of the discussion in this work. The energy level

diagram is divided into the para states and the ortho states. Para states correspond to a

quantum number K being even in the symmetric top basis |JKM〉, and ortho states odd.

In an experiment using INS conducted by Turro et al.,9 they found evidence of a

splitting in the ground state of the ortho level. The data obtained seemed to indicate that

the triply degenerate level split by 0.6 meV into a doubly and singly degenerate level.
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Figure 1: Low Lying Rotational Energy Levels of H2O

Far-Infrared Spectroscopy

The infrared spectrum is typically divided into three categories: near, mid, and far-

infrared. The far-infrared region ranges from about 400 cm−1−10 cm−1. At such a low

energy, the rotational states of the system under study may be directly probed. Since this

type of spectroscopy cannot flip nuclear spin, ortho-para transitions are forbidden and

the peaks that are identified are strictly ortho-ortho and para-para transitions. The FIR

spectra of this system was obtained by Turro et al.9 at three different times relative to

the time the sample was prepared: immediately after the sample was prepared, 13 hours

after preparation, and once more 48 hours after preparation. ortho-para conversion was

observed through the fact that the relative instensity of the para transitions and the ortho

transitions changed over the duration of the data collection.
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Nuclear Magnetic Resonance

Nuclear magnetic resonance is a very powerful technique that has been used in a number

of studies regarding H2O@C60.9,10 It has been used in order to study the ortho-para water

conversion. The kinetics can be observed by measuring the decreasing ortho signal (para

water is not NMR active due to the spin being 0). It was determined that the conversion

followed second-order kinetics which is consistent with bimolecular models for the spin

conversion, although the exact mechanism for such a process remains unclear.

In another NMR study, they were able to observe level splitting in the ortho ground state,

as well as an anisotropic interaction that disappears at higher frequencies of the Magic

Angle Spinning NMR (MAS-NMR) technique.

X-ray Structure Analysis

The crystal structure of H2O@C60 was determined using X-ray diffraction.19 It was

found that, much like empty C60, the material took on a face-centered cubic (fcc) structure

at room temperature, and goes through structural transformation to simple cubic (sc) at

around 260 K, also like empty C60. The lattice constant for the H2O@C60 is larger than

C60 in the fcc conformation, but they are fairly equal in the sc phase.

Dielectric Permittivity Measurements

The dielectric permittivities of both H2O@C60 and C60 were measured and plotted

against temperature.19 The behaviour of the endohedral fullerene is quite different from

that of pure buckyballs as the permittivity increases with decreasing temperature following

the Curie-Weiss law,21 whereas the empty fullerene remains relatively constant. Both

materials exhibit a small jump in permittivity at about the same temperature that they

transform from fcc to sc. This increase in dielectric permittivity indicates longer range

correlations between the dipole moments of the water molecules.

These experiments highlight the interesting quantum phenomena associated with the
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endohedral water system, namely: ortho-para spin conversion, rotational level-splitting,

and long-range dipole correlations. The rest of this work relates to the theory involved

with modeling such a system, and the quantum simulations and calculations that were

developed.

The remainder of this thesis is organized as follows: Chapter 2 contains a description

of the background theory required for a thorough understanding of the system, Chapter

3 contains a description of the path integral simulations that were run on this system,

Chapter 4 contains a description of the exact diagonalization code that was developed in

order to obtain exact energy values, and conclusions and future directions are presented in

Chapter 5.
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Chapter 2

Background Theory

In order to tractably investigate the quantum dynamics of H2O@C60, we must work

within the framework of the Born-Oppenheimer approximation. That is to say, the nuclear

motion of the atoms within the water molecule are much slower compared to the fast

movement of the electrons and can be uncoupled from each other. Thus for a given set

of nuclear coordinates, the electronic problem may be solved in order to give a potential

energy. When done at many different nuclear positions, we may define a potential energy

surface (PES) for the system to be used in determining the nuclear dynamics.

The potential energy surface that will be used in this work is defined via a regular 6-12

Lennard-Jones pair-interaction potential which has the form:

VLJ = 4ε

[(
σ

r

)12

−
(
σ

r

)6
]

(2.1)

ε and σ are the parameters describing the interaction between two entities. In this

work, ε and σ are taken from a study published in 2013 by Farimani et al.14 in which the

rotation of water inside a buckyball was studied using classical molecular dynamics (MD)

simulations. The parameters were obtained through curve fitting a DFT-SAPT (density

functional theory-symmetry adapted perturbation theory) ab initio graphene-water inter-

action, and were reported as:
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σC−OW = 3.372Å

εC−OW = 0.1309kcal
mol

σH−OW = 2.640Å

εH−OW = 0.0256kcal
mol

The PES obtained for this model of interaction is depicted below, where the potential

is scanned with increasing r along the three principal axis with a fixed orientation.

Figure 2: PES for H2O@C60 along Principal Axes of Inertia

If instead of fixing the molecular orientation and scanning along each principal axis,

but we instead allow the water to find the minimum orientation for a fixed center-of-mass

position, we find a symmetric double-well with an extremely small barrier height.
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Figure 3: Minimum of PES for H2O@C60 vs COM Position

2.1 Statistical Mechanics

Statistical mechanics is extremely important when trying to calculate real properties of

systems with quantum precision. It provides us with a tool to determine macroscale prop-

erties of materials that arise due to the quantum properties and interactions of individual

molecules themselves.

Central to the development of statistical mechanics is the canonical partition function:

Z = Tr [ρ̂] (2.2)

where Tr represents the trace, and ρ is defined as e−βĤ , where β = 1
kBT

, kB is Boltz-

mann’s constant, T is the temperature and Ĥ is the Hamiltonian describing the system of

interest. If the trace is performed in the energy eigen basis:

8



Z =
∑
n

e−βEn (2.3)

If one is interested in average thermodynamic properties, one can calculate:

〈Ô〉 =
Tr
[
ρ̂Ô
]

Tr [ρ̂]
(2.4)

where Ô is some operator of interest.

2.1.1 Thermal Wavefunction

It may be intuitive to construct a thermal wavefunction in order to calculate thermody-

namic properties. If a system is at thermal equilibrium, then instead of writing a statistical

mixture, we may assume that the system is in a superposition of eigenstates. The ampli-

tude of each state is postulated to be equivalent to the Boltzmann factor of that state.

Thus for a given system at some temperature T, the wavefunction at thermal equilibrium

can be written as:

|ψ(β)〉 (2.5)

Expanding into the energy basis, we find:

|ψ(β)〉 =
∑
n

|n〉 〈n|ψ(β)〉

=
1√
Z

∑
n

e
−βEn

2 eiθn |n〉

9



where θn is a random phase associated with the n-th eigenstate and is attributed to the

random thermalization process.

A wavefunction defined in this way will have the same time-averaged properties as if

we had created an ensemble that existed as a statistical mixture of eigenstates. This is

shown in the next subsections.

2.1.2 Expectation Values

Being able to calculate expectation values for a system is important. The formulation

for finite temperature expectation values is given using the ’thermal wavefunctions’ intro-

duced previously. Beginning with a time-dependent expectation value, we may obtain the

canonical expectation value after averaging over all time.

〈ψ| Ô(t) |ψ〉 (2.6)

where Ô(t) represents the time dependence of some operator Ô and can be explicitly

written as:

Ô(t) = e
iĤt
~ Ôe

−iĤt
~

By projecting the wavefunctions into the energy basis, we obtain:

∑
n

∑
m

〈ψ|n〉 〈n| e
iĤt
~ Ôe

−iĤt
~ |m〉 〈m|ψ〉

and, using the proposed overlap of the wavefunction with the energy basis at some

10



finite temperature T we find that:

1

Z

∑
n

∑
m

e
−β(En+Em)

2 ei(θn−θm)e
i(En−Em)t

~ 〈n| Ô |m〉 (2.7)

We recognize this expression as the most general working form of the time dependent

expectation value of some operator Ô.

In order to recover canonical expectation values, we must average the time dependent

expectation value over all possible times, meaning that we will perform a time integral

from negative infinity to positive infinity. Since the only term in the above formula that is

actually dependent on time is e
i(En−Em)t

~ , the integral can be computed immediately.

1

2π

∫ +∞

−∞
e
i(En−Em)t

~ dt = δnm

This has the effect of setting m equal to n, which results in:

1

Z

∑
n

e−βEn 〈n| Ô |n〉 (2.8)

2.1.3 Autocorrelation Functions

Autocorrelation functions provide us with an extremely useful tool to investigate sig-

nals. More precisely, the autocorrelation function of a signal tells us how that particular

signal changes (usually over time) with respect to some ’lag parameter’.

The exact imaginary time autocorrelation function for operator Ô in terms of the thermal

wavefunction defined previously is:

〈ψ| Ô(t) · Ô(t+ iτ) |ψ〉 (2.9)

This is the expectation value between the inner product of the operator Ô at some t

with the operator at time t with an imaginary timelag ’iτ ’ added to it. We may proceed to
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evaluate this in a similar manner as the expectation value of an operator by first expanding

the bra and ket in the energy basis to give us:

∑
n

∑
m

〈ψ|n〉 〈n| e
iĤt
~ Ôe

−iĤt
~ e

iĤ(t+iτ)
~ Ôe

−iĤ(t+iτ)
~ |m〉 〈m|ψ〉

1

Z

∑
n

∑
m

e
−βEn

2 eiθn 〈n| e
iĤt
~ Ôe

−Ĥτ
~ Ôe

−iĤ(t+iτ)
~ |m〉 e

−βEm
2 e−iθm

1

Z

∑
n

∑
m

e
−β(En+Em)

2 ei(θn−θm)e
i(En−Em)t

~ e
Emτ

~ 〈n| Ôe
−Ĥτ

~ Ô |m〉

1

Z

∑
n

∑
m

∑
γ

e
−β(En+Em)

2 ei(θn−θm)e
i(En−Em)t

~ e
Emτ

~ 〈n| Ô |γ〉 〈γ| e
−Ĥτ

~ Ô |m〉

1

Z

∑
n

∑
m

∑
γ

e
−β(En+Em)

2 ei(θn−θm)e
i(En−Em)t

~ e
τ(Em−Eγ)

~ 〈n| Ô |γ〉 〈γ| Ô |m〉 (2.10)

Here we have found the most general form of the imaginary time autocorrelation for the

thermal wavefunction, which may be completely meaningless. In order to recover the

familiar form of the autocorrelation function we must perform an average over all time,

with the same result as above. Once again, the only part of the expression that is dependent

on time is e
i(En−Em)t

~ , and we recognize this as a kronecker delta which we recognize as a

dirac delta function upon integration. This causes the n and m to become equal, thus only

diagonal terms survive and the off-diagonal terms are killed. Finally, we obtain:

1

Z

∑
n

∑
γ

e−βEne
τ(En−Eγ)

~ 〈n| Ô |γ〉 〈γ| Ô |n〉 (2.11)

12



1

Z

∑
n

∑
γ

e−βEne
τ(En−Eγ)

~

∣∣∣〈n| Ô |γ〉∣∣∣2 (2.12)

2.2 Rotational States of Water

In order to determine the eigenfunctions of the rotational Hamiltonian for water, we

must solve the problem in the symmetric top basis. A brief overview of this process is

given following the development of Zare.22

We may begin by acknowledging the rotational Hamiltonian:

Ĥrot = AJ2
a +BJ2

b + CJ2
c (2.13)

A, B, C are the rotational constants of the molecule and are subsequently defined as:

A =
~

4πIa
(2.14)

B =
~

4πIb
(2.15)

C =
~

4πIc
(2.16)

Ia, Ib and Ic are the three principal moments of inertia (resulting from diagonalization of

the moment of inertia tensor). For water, which is an asymmetric top, convention dictates

that Ia < Ib < Ic, or equivalently A > B > C. Also by convention, the z-axis of the

molecule in the molecular fixed frame is defined as equivalent to the C2 axis and the x-axis

is parallel to the H-H direction, thus we make the following association with the rotational

constants and the coordinate axis:
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x = a

y = c

z = b

Figure 4: Water-fixed frame Cartesian Axes Diagram

The matrix elements of the angular momentum operators in the symmetric top basis

are given now. For the diagonal elements:

〈JKM | J2
x |JKM〉 = 〈JKM | J2

y |JKM〉 =
1

2

[
J(J + 1)−K2

]
(2.17)

〈JKM | J2
z |JKM〉 = K2 (2.18)

and for the off-diagonal elements of the angular momentum operators in the JKM basis:

〈JKM | J2
x |J [K ± 2]M〉 = −〈JKM | J2

y |J [K ± 2]M〉

=
1

4

[
J(J + 1)−K(K ± 1)

] 1
2
[
J(J + 1)− (K ± 1)(K ± 2)

] 1
2 (2.19)
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Now, using the convention of relating the inertial axis to cartesian axis in the molecular

frame mentioned above, we may write the Hamiltonian as:

〈JKM | Ĥrot |JKM〉 =
(A+ C)

2

[
J(J + 1)−K2

]
+BK2 (2.20)

〈JKM | Ĥrot |J [K ± 2]M〉 =
(A− C)

4

[
J(J + 1)−K(K ± 1)

] 1
2 ×[

J(J + 1)− (K ± 1)(K ± 2)
] 1

2 (2.21)

The Hamiltonian in the JKM basis is diagonal in J and M, thus needs only be solved in

K blocks which have a size (2J+1)×(2J+1) for each J level, with each state being (2J+1)

degenerate corresponding to M:

M = −J,−J + 1...0...+ J − 1,+J (2.22)

Additionally, there are no matrix elements that couple between odd/even K states, so

may be solved separately. The oddness or evenness of the K value can be linked to the

ortho or para states of water, as they fulfill the symmetry requirement for the respective

wavefunctions. The ortho states of water are related to odd K symmetric top states, and

as mentioned in the introduction corresponds to a total nuclear spin of 1, (the spins of the

hydrogen nuclei are parallel). Para water relates to states with even K, and corresponds

to hydrogen nuclear spins being anti-parallel and thus a total nuclear spin of 0.

This block Hamiltonian may be diagonalized in order to produce an energy level diagram

such as in Figure 1. The level splitting of the ground-state ortho level mentioned previously

is within the M degeneracy. The M quantum number corresponds to the space-fixed

projection of the molecule, which is why the lifting of this degeneracy is a signature of

an anisotropic environment as the space-fixed projection is no longer equivalent in all
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directions.

2.2.1 Contribution to Thermodynamic Energy

The rotational thermodynamic energy was plotted for a range of temperatures in the

figure below.

Figure 5: Rotational Contribution to Thermodynamic Energy

2.3 Exact Imaginary Time Orientation Autocorrelation Func-

tions

One property of the endohedral water that will be interesting to look at is the imaginary

time orientation autocorrelation function. This exact correlation function can be computed

for a free water and subsequently compared to the caged water to investigate the caging

effect. Imaginary time autocorrelation functions have several features including: they are

symmetric about τ = β
2
. At very low temperature the ITACFs generally decay to 0 by

the midpoint and have a wide β range, representing a very quantum-like system. At high

temperature the ITACFs reduce to a single point at (1,0) as the β range is effectively 0,

meaning the molecule remains perfectly correlated in τ - imaginary time and represents a

more classical-like object. The operator associated with the orientation is a vector repre-
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senting a specific axis of interest. The three main vectors that we will be interested in are

the three principal axis of the molecule, Vx, Vy, and Vz, where these vectors in the space

fixed frame are given by each column in the rotation matrix:

R =


cosφ cos θ cosχ− sinφ sinχ − cosφ cos θ sinχ− sinφ cosχ cosφ sin θ

sinφ cos θ cosχ+ cosφ sinχ − sinφ cos θ sinχ+ cosφ cosχ sinφ sin θ

− sin θ cosχ sin θ sinχ cos θ

 (2.23)

In order to calculate the ITACF for these vectors, we must modify the expression

obtained above slightly. Beginning with:

1

Z

∑
n

∑
γ

e−βEne
τ(En−Eγ)

~ 〈n| Ô |γ〉 〈γ| Ô |n〉 (2.24)

we may insert four complete sets of JKM states and expand.

1

Z

∑
n

∑
γ

∑
JKM

∑
J ′K′M ′

∑
J ′′K′′M ′′

∑
J ′′′K′′′M ′′′

e−βEne
τ(En−Eγ)

~

〈n|JKM〉 〈JKM | Ô |J ′K ′M ′〉 〈J ′K ′M ′|γ〉

〈γ|J ′′K ′′M ′′〉 〈J ′′K ′′M ′′| Ô |J ′′′K ′′′M ′′′〉 〈J ′′′K ′′′M ′′′|n〉

We can take measures to simplify this equation before replacing the generic operator Ô

with the directions of interest. As mentioned previously, the eigenvalues of the asymmetric

top in the JKM basis are good quantum numbers in J and M, and are only mixed in K.

That means that 〈n|JKM〉 and 〈J ′′′K ′′′M ′′′|n〉 may be simplified since J will always equal

J ′′′, and M will always equal M ′′′. Likewise for the second energy state sums, the J ′ and

M ′ will always equal J ′′ and M ′′, respectively. Also, we will write the projection of the
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energy state on the JKM basis as CJKM
n .

1

Z

∑
n

∑
γ

e−βEne
τ(En−Eγ)

~
∑
JM

∑
J ′M ′

∑
K

∑
K′

∑
K′′

∑
K′′′

CJKM
n CJ ′K′M ′

γ CJ ′K′′M ′

γ CJK′′′M
n 〈JKM | Ô |J ′K ′M ′〉 〈J ′K ′′M ′| Ô |JK ′′′M〉

The use of quadratures in the evaluation of the matrix elements 〈JKM | Ô |J ′K ′M ′〉

may be avoided if we recognize that the orientation vectors can be written in terms of

Wigner-D rotation matrices. This process is omitted here and left to Appendix A, but the

results will be shown.

For Ô = Vx we find:

〈JKM |Vx |J ′K ′M ′〉 〈J ′K ′′M ′|Vx |JK ′′′M〉

=< jk1m|[−
1√
2

(D1
q1 −D1

q−1)]|j′k′1m′ >< j′k′2m
′|[− 1√

2
(D1∗

q1 −D1∗

q−1)]|jk2m >

= (−1)m+m′−k′1−k2
(2J + 1)(2J ′ + 1)

2


 J 1 J ′

k1 1 −k′1

−
 J 1 J ′

k1 −1 −k′1




×


 J ′ 1 J

k′2 −1 −k2

−
 J ′ 1 J

k′2 1 −k2


∑

q

(−1)q+1

 J 1 J ′

M q −M ′


 J ′ 1 J

M ′ −q −M


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for Ô = Vy we find:

〈JKM |Vy |J ′K ′M ′〉 〈J ′K ′′M ′|Vy |JK ′′′M〉

=< jk1m|[
i√
2

(D1
q1 +D1

q−1)]|j′k′1m′ >< j′k′2m
′|[− i√

2
(D1∗

q1 +D1∗

q−1)]|jk2m >

= (−1)m+m′−k′1−k2
(2J + 1)(2J ′ + 1)

2


 J 1 J ′

k1 1 −k′1

+

 J 1 J ′

k1 −1 −k′1




×


 J ′ 1 J

k′2 −1 −k2

+

 J ′ 1 J

k′2 1 −k2


∑

q

(−1)q+1

 J 1 J ′

M q −M ′


 J ′ 1 J

M ′ −q −M



and for Ô = Vz we find:

〈JKM |Vz |J ′K ′M ′〉 〈J ′K ′′M ′|Vz |JK ′′′M〉

=< jk1m|D1
q0|j′k′1m′ >< j′k′2m

′|D1∗

q0 |jk2m >

= (−1)m+m′−k′1−k2(2J + 1)(2J ′ + 1)

 J 1 J ′

k1 0 −k′1


 J ′ 1 J

k′2 0 −k2


×
∑
q

(−1)q

 J 1 J ′

M q −M ′


 J 1 J ′

M ′ −q −M



Using these formulas, the exact orientational imaginary time autocorrelation function

was plotted for water at 4K, 12K and 55K in the following figures. It is interesting here to

note that each Va, Vb and Vc was found to uniquely couple from the ground rotational J=0

state, to an excited J=1 state. The Va was found to be the only operator to couple the

ground para state to the ground ortho state, 110. In addition, each spherical component
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of the Va vector couples to a different M level in the triply degenerate ground state. Thus,

it should in theory be possible to determine the splitting as measured in experiment by

looking at the imaginary time autocorrelation functions obtained through simulations, as

any change in the energy level directly affects the ITACF.

Figure 6: Exact ITACF of H2O, T=4K
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Figure 7: Exact ITACF of H2O, T=12K

Figure 8: Exact ITACF of H2O, T=55K
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Chapter 3

Path Integral Molecular Dynamics

Path Integral Molecular Dynamics (PIMD) is a technique that was developed based on

Feynman path integrals and provides us with a powerful tool to sample quantum mechanical

distributions.23

3.1 Path Integral Formulation of the Partition Function

In order to formulate the equations of motion for PIMD, we may first begin by writing

the canonical partition function in the coordinate basis.

Z =

∫
dq 〈q| e−βĤ |q〉 (3.1)

Z =

∫
dq 〈q| e−β(K̂+Û) |q〉 .

Where Ĥ represents the Hamiltonian, and K̂andÛ are the kinetic and potential energy

operators respectively. Unfortunately, the operators K̂ and Û do not commute, and we

require the use of the Trotter Theorem, allowing us to replace the operator

e−β(K̂+Û) = lim
P→∞

[e−βÛ/2P e−βK̂/P e−βÛ/2P ]P
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We see that the partition function, upon introduction of the operator

Ω̂ = e−βÛ/2P e−βK̂/P e−βÛ/2P

can be written

Z = lim
P→∞

∫
dq 〈q| Ω̂P |q〉 =

∫
dq 〈q| Ω̂Ω̂...Ω̂ |q〉 .

The next step is to insert P − 1 resolution of the identity operator’s

Î =

∫
dq |q〉〈q|

in between the P number of Ω̂’s, giving us

Z = lim
P→∞

∫
dq1..dqP × 〈q1| Ω̂ |q2〉 〈q2| .. |qP 〉 〈qP | Ω̂ |qP+1〉

= lim
P→∞

∫
dq1..dqP

P∏
i=1

[
〈qi| Ω̂ |qi+1〉

]
qP+1=q1

Since Û is a function of q̂, |q〉’s are eigenvectors of Û with eigenvalues e−βUq/2P . The result

is that our matrix element

〈qi| Ω̂ |qi+1〉 = 〈qi| e−βÛ/2P e−βK̂/P e−βÛ/2P |qi+1〉

can be reduced to

〈qi| Ω̂ |qi+1〉 = e−βU(qi)/2P 〈qi| e−βK̂/P |qi+1〉 e−βU(qi+1)/2P .

Now, we insert P resolutions of the identity operator, this time in terms of momentum

eigenvectors,
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Î =

∫
dp |p〉〈p|

within each matrix element.

〈qi| e−βK̂/P |qi+1〉 =

∫
dp 〈qi| e−βK̂/P |p〉 〈p|qi+1〉

We can see now that the operator, a function of the momentum operator, is acting on its

eigenvector |p〉, so this is reduced to

〈qi| e−βK̂/P |qi+1〉 =

∫
dp 〈qi|p〉 〈p|qi+1〉 e−βp

2/2mP

〈qi| e−βK̂/P |qi+1〉 =

(
1

2π~

)3 ∫
dp e−βp

2/2mP eip(qi−qi+1)/~

After completing the square and integrating over p ∈ (−∞,∞), we determine that

〈qi| e−βK̂/P |qi+1〉 =

(
mP

2πβ~2

)3/2

exp

[
− mP

2β~2
(qi − qi+1)2

]
we see that the partition function matrix element is simply

〈qi| Ω̂ |qi+1〉 =

(
mP

2πβ~2

)3/2

exp

[
− mP

2β~2
(qi − qi+1)2

]
× exp

[
− β

2P
(U(qi) + U(qi+1))

]

After resubstituting this expression, we are required to set q1 = qP+1 since it is a trace.

This means that the path is closed, thereby obtaining
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Z = lim
P→∞

(
mP

2πβ~2

)3P/2 ∫
dq1..dqP

× exp

−1

~

P∑
i=1

(
mP

2β~
(qi − qi+1)2 +

β~
P
U(qi)

)
qP+1=q1

This is the path integral formulation of the partition function. If we remove the limit as

P →∞, we obtain the discretized partition function ZP .

Figure 9: Path Integral Representation of Water: this figure shows us how we may interpret
the path integral representation of a water molecule. The solid lines represent atomic
potential interactions within a single molecule, and the squiggly lines represent the
spring potential between beads.

From Figure 9, it can be seen that the path integral representation reproduces our

classical result in the case P = 1 (P is the number of slices that we discretized our closed

path with). Additionally, it can be shown that in the high T limit, as T → ∞, β → 0, in

which case the spring constant also approaches∞, once again recovering the classical view

of one “bead”.
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3.2 Thermodynamic Estimators

In order to extract thermodynamic properties from the PIMD simulation, functions that

are referred to as “estimators” must be used. “Estimators” are functions whose average is

equivalent to the value of the actual physical observable. It is fairly easy to derive these

estimators from statistical mechanics, although they may exhibit horrendous convergence

properties due to very large fluctuations in the data. As such, simulations must usually be

run for a long time in order to ensure small errors. The estimators of utmost importance are

the energy estimators. There are two that were used in this work including the primitive

energy estimator, and the virial energy estimator, both of which are described below.

From statistical mechanics, we know that the energy of the system is equivalent to the

negative derivative of the logarithm of the partition function with respect to β.

E = − d

dβ
(lnZ) (3.2)

We are able to evaluate this directly by substituting in the discretized path integral

formulation for the partition function that we arrived at previously. After substituting in

ZP , it can be seen that the energy estimator may be written as

Eprim =
3P

2β
−

P∑
i=1

mP

2β2~2

(
qi+1 − qi

)2
+

1

P

P∑
i=1

U(qi) (3.3)

This particular version of the energy estimator is referred to as the Primitive Energy

Estimator, in comparison to the Virial Estimator that can be found by applying the virial

theorem.24 The virial energy estimator has the form:

Evir =
3P

2β
+

P∑
i=1

1

2
(qi − qcentroid) ·

δU

δqi
+

1

P

P∑
i=1

U(qi) (3.4)
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Molecular Modelling Toolkit

All of the PIMD simulations that are conducted are done within the framework of The

Molecular Modelling Toolit (MMTK).25 MMTK is an opensource library that was written

by Konrad Hinsen, in Python, C, and Cython. The basis behind MMTK was to provide

a new platform to conduct molecular simulations, through the easy-to-learn programming

language Python. The main step in order to implement MMTK is constructing a force

field that is responsible for modelling the interaction between constituents of the system.

The force field interactions are taken into consideration when calculating the forces that

determine the equations of motion.

Path Integral Langevin Equation

The Path Integral Langevin Equation (PILE)26 is a method used to thermostat a sys-

tem, and so allows sampling from the canonical ensemble (NVT). It was shown previously

that the Langevin equation could be combined with the Velocity Verlet algorithm,27 and

since PIMD is based off of classical equations of motion that can be computed with the

Velocity Verlet method, it was soon after adapted to be used in conjunction with PIMD.

3.3 Parameter Optimization

In order to efficiently use PIMD and have statistically relevant data, there are three pa-

rameters that need to be optimized beforehand: the centroid friction coefficient, simulation

timestep, and the number of beads (ie. τ parameter).

3.3.1 Centroid Friction Coefficient

The centroid friction coefficient is related to how the PILE thermostats the PIMD

simulation. This parameter must be optimized in order to increase sampling efficiency. In
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practice, the best centroid friction coefficient is the one that minimizes the decorrelation

time of the observable in which we are interested. Uncorrelated data in simulation time

ensures that the data are statistically independent.

In order to obtain the optimum centroid friction coefficient, the autocorrelation function

was obtained for a number of observables. The autocorrelation function is completed using

a Fast Fourier Transform (FFT), followed by the multiplication of the data set with it’s own

complex conjugate, followed by an Inverse Fast Fourier Transform (IFFT), completed by

the normalization of the data. There was a difficulty choosing an optimization parameter,

as different properties have different decorrelation times and are optimized by different

friction coefficients used in the PILE. Thus, compromises needed to be made. Figures 10,

11 and 12 highlight this, and depict the autocorrelation function for the position of the

oxygen atom, as well as the orientation of the dipole. These two autocorrelation functions

are compared with varying friction coefficients of 0.0 ps−1, 1.0 ps−1, and 100.0 ps−1. In the

end, 100.0 ps−1 was chosen at it appeared to have the best decorrelation times among all

of the properties.

Figure 10: Auto-correlation Functions for Oxygen and Water Dipole - 0 ps−1
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Figure 11: Auto-correlation Functions for Oxygen and Water Dipole - 1 ps−1

Figure 12: Auto-correlation Functions for Oxygen and Water Dipole - 100 ps−1

3.3.2 Timestep

Usually long simulations are run in order to collect sufficient, uncorrelated data. In

order to run a simulation for a longer “real-time”, the largest timestep possible while

results remain converged is desirable. The optimal timestep was chosen by looking at the

difference between the primitive and virial energy estimator, as it was noticed that these

two averages diverged at too high a timestep. This can be seen in figure 13. A timestep of

0.05fs was required to ensure that the energy estimators were converged.
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Figure 13: Timestep Convergence - Primitive vs Virial Enery Estimators

3.3.3 Energy vs. τ Convergence

The last parameter that requires optimization in PIMD simulations is the tau parame-

ter, which can be thought of as the imginary-time timestep. This parameter is dependent

on the temperature of the system and related to the number of beads used in the simula-

tion. Here we look at the energy convergence with respect to τ , where τ = β
P

. We recall

that β = 1
kBT

, and P is the number of beads. It is expected that the energy should exhibit

quadratic convergence with respect to τ , which is a result of the Trottor factorization made

in the development of the PIMD method. Figure 14 and 15 reflect this behaviour quite

nicely.
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Figure 14: Energy Convergence - Primitive and Virial Energy Estimators

Figure 15: Energy Convergence - Primitive and Virial Energy Estimators
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3.4 Density Distributions

The density distributions of several observables of the water molecule were investigated.

The distributions were obtained by averaging data obtained for each bead in every output

step in the simulations.

3.4.1 Center-of-Mass Position Distribution

The center-of-mass Cartesian position distributions were obtained in the x-, y-, and

z-directions. This was accomplished by storing the center-of-mass of each bead of water

at each decorrelated step in the simulation, over many simulations run under identical

conditions. Once the data was obtained for each step in each trajectory, the data was

histogrammed. The simulations were completed at a wide range of temperatures, and the

trends were examined.

Figure 16: Center-of-Mass Density at 4K
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Figure 17: Center-of-Mass Density at 360K

Figure 18: Center-of-Mass x-Density
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Figure 19: Center-of-Mass y-Density

Figure 20: Center-of-Mass z-Density

Figures 16 and 17 show us that the position distribution is basically equal in the x-,

y-, and z-direction, regardless of temperature, there is no temperature-dependent spatial
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anisotropy. Figures 18, 19, and 20 show the temperature behaviour of these distributions

in the x-, y-, and z-directions for a range of temperatures. These distribution are sharply

peaked and centered about 0. They tell us that the water molecules are strongly con-

fined within the buckyball cage, as their amplitude does not extend beyond even 0.5 Å.

The center-of-mass position densities of water inside a buckyball are almost temperature

independent, although at higher temperature the peaks do begin to widen.

3.4.2 Orientation Distributions

In addition to the position distributions, the orientation distributions of the water

molecule in the PIMD simulations were also obtained. The specific distributions that were

calculated were the φ and cos(θ) distributions of each molecular principal axis of the water,

with respect to spherical polar coordinates. φ is the azimuthal angle, and θ is the polar

angle. In order to obtain the principal axes, the moment of inertia tensor was calculated

and diagonalized for every bead at every timestep of interest, for each trajectory that was

run. The eigenvalues of this diagonaliation correspond to the principal moments of inertia,

as mentioned previously. The eigenvectors correspond to the principal axis associated with

the principal moment of inertia. The diagonalization method results in a random phase of

the eigenvectors though, so the result may be either the positive or negative axis.

In order to correct for this polarity, three additional vectors were defined. These vectors

include the dipole vector (the normalized vector along ~O -
~H1+ ~H2

2
. Another vector defined

by ~H2 − ~H1 was obtained, and another by the cross product of these two. Once these

three vectors were obtained the inner product with unit vectors lying along the inertial

principal axes were taken. Since the inertial axis we want defined will always have a positive

inner product with the vectors just defined, the phase was corrected by multiplying the

diagonalized vectors by -1 to ensure this positive inner product.
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Molecular Axis φ Distributions

Figure 21: Principal Axis φ Distributions at 4K

Figure 22: Principal Axis φ Distributions at 360K
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Figure 23: A-Axis φ Distributions

Figure 24: B-Axis φ Distributions

37



Figure 25: C-Axis φ Distributions

Molecular Axis cos(θ) Distributions

Figure 26: Principal Axis cos(θ) Distributions at 4K
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Figure 27: Principal Axis cos(θ)Distributions at 360K

Figure 28: A-Axis cos(θ) Distributions
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Figure 29: B-Axis cos(θ) Distributions

Figure 30: C-Axis cos(θ) Distributions

These plots show that at very low temperatures, the water is much more hindered and

the PIMD simulation has trouble sampling the phase-space evenly. This is an ergodicity
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problem, which evidently goes away at higher temperatures. This is to be expected, as

we have seen previously that the decorrelation time of the orientation of the molecule is

orders of magnitude larger than that of the position. This indicates that the time-scale of

rotations is much longer than that of the translational motion of the water. This leads to

inefficient sampling for the properties related to orientation.

3.5 Imaginary Time Autocorrelation Functions

The behaviour of the orientational imaginary time autocorrelation functions was inves-

tigated at different temperatures, and for each molecular principal axis.

Figure 31: PIMD Orientational ITACF at 4K
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Figure 32: PIMD Orientational ITACF at 12K

Figure 33: PIMD Orientational ITACF at 360K
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Figure 34: PIMD Orientational ITACF of A Axis

Figure 35: PIMD Orientational ITACF of B Axis
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Figure 36: PIMD Orientational ITACF of C Axis

The behaviour of these ITACFs is similar to that of a free rotor, although the results do

not exactly match up (they are offset by a slight shift in decorrelation amplitude). This may

be due to non-rigid body effects that are unaccounted for in the rigid rotor model used when

calculating the exact orientational ITACFs. This could also be attributed to incomplete

sampling of the PIMD simulations, due to the sampling problem afforementioned. Due

to the large errors in the correlation functions and the uncertain structure of the energy

levels, it proved to be implausible to curve-fit the obtained correlation functions to the

form of the exact ITACF in order to extract exact energy levels.
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Chapter 4

Exact Diagonalization

In addition to the path integral simulations that were conducted, exact diagonalization

code was developed in order to gain direct access to the systems energy eigenvalues. This

way, level splitting can be directly observed by looking at the energy levels themselves.

Additionally, access to the energy-levels and wavefunctions opens up pathways through

which much more can be learned about the system, as well as provide us with a standard

to test PIMD results against.

Code was developed in python in order to perform the exact diagionalization, and is

detailed in the remainder of this chapter.

4.1 Hamiltonian – Setting the Stage

In order to obtain energy values through exact diagonalization, we must first describe

the Hamiltonian of the system. We begin by writing the general Hamiltonian which is just

a sum of the kinetic and potential energy:

Ĥ = T̂ + V̂ (4.1)

Here, T̂ is the kinetic energy operator ( p̂
2

2m
), and V̂ is the potential energy operator
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(this contains information about interactions). In our calculation we work within the rigid

rotor approximation, meaning that the molecular vibrational modes are approximated as

uncoupled from the rest of the Hamiltonian due to the difference in magnitude of frequencies

and as such do not affect the low lying energy states that we are interested in. Thus, since

the molecular vibrations occur so fast, the molecule is treated as rigid, and the remaining

kinetic energy terms include just rotational and translational energy. As with the PIMD

simulations, the buckyball cage is treated as a rigid object whose contribution to the

Hamiltonian becomes the external potential that the water feels.

Ĥ = T̂trans + T̂rot + V̂ext (4.2)

Substituting the known operators, and recognizing that V̂ext is the sum of the Lennard-

Jones interaction potential between each carbon atom from the cage and each atom in the

water molecule, this can be explicitly written as:

Ĥ =
p̂2

2m
+
J2
a

2Ia
+
J2
b

2Ib
+
J2
c

2Ic
+

3∑
n=1

60∑
c=1

4ε

[(
σ

r

)12

−
(
σ

r

)6
]

(4.3)

4.2 Calculating the Potential

In order to calculate the matrix elements 〈klm| 〈JKM | V̂ |J ′K ′M ′〉 |k′l′m′〉 we must first

calculate the potential, defined previously as the sum of Lennard-Jones interactions on our

six dimensional grid. This was accomplished by first defining a grid for the center of mass

position of the water in spherical coordinates (r, θ, φ). At each point in this grid, another

grid was defined in terms of the three Euler angles (θ, φ, χ) representing the orientation

of the water. In order to incorporate this orientation information, the water was rotated

from the molecular fixed frame (MFF) into the space fixed frame (SFF) using the rotation

matrix:
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R =


cosφ cos θ cosχ− sinφ sinχ − cosφ cos θ sinχ− sinφ cosχ cosφ sin θ

sinφ cos θ cosχ+ cosφ sinχ − sinφ cos θ sinχ+ cosφ cosχ sinφ sin θ

− sin θ cosχ sin θ sinχ cos θ


By rotating the MFF position vector of each atom of the molecule by this matrix,

the new coordinates for each atom are obtained for a given set of Euler angles. After the

coordinates of the atoms have been determined for a given center of mass and orientation of

the water molecule, the potential is calculated by performing the sum over Lennard-Jones

between each atom in the water and each carbon in the buckyball. The coordinates for

the carbon atoms are read in from a data file, and since this is a very general procedure it

is very easy to exchange the external potential due to a buckyball in favour of an external

potential with a different geometry and/or interaction strength e.g, argon matrix, C70,

etc...

Following this procedure, we have obtained the potential in terms of the six degrees of

freedom V (r, θp, φp, θo, φo, χ) where p and o denote position and orientation, respectively.

4.3 Choosing a Basis

To solve this Hamiltonian, we require a complete basis that overlaps with each degree

of freedom defined by the operators in our Hamiltonian. The translational part has three

positional coordinates, the rotational part since water is an asymmetric top has three Euler

angles specifying orientation, and the external potential couples all six of these degrees of

freedom. Since the external potential appears to be strongly harmonic, we choose to work

in a 3D isotropic harmonic oscillator in spherical coordinates (|ψklm〉 for the translational

part, and the familiar eigenfunctions of a freely rotating symmetric top ( |ψJKM〉) for the

rotational part. The full basis may be represented as |klm〉
⊗
|JKM〉
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4.3.1 〈JKM |

In order the calculate matrix elements, the coordinate representation of the 〈JKM |

basis needs to be known:

〈JKM |θo, φo, χ〉 =

√
2J + 1

8π2
DJ
MK(θo, φo, χ) (4.4)

where DJ
MK(θo, φo, χ) is a Wigner-D matrix, defined as:

DJ
MK(θo, φo, χ) = e−iMφdJMK(θ)e−iKχ (4.5)

and

dJMK(θ) =
√

(J +M)!(J −M)!(J +M ′)!(J −M ′)!

×
∑
ν

(−1)ν

(J −M ′ − ν)!(J +M − ν)!(ν +M ′ −M)!ν!

×

[
cos

(
θ

2

)]2J+M−M ′−2ν [
−sin

(
θ

2

)]M ′−M+2ν

The sum over ν is for all positive integer factorial arguments.

4.3.2 〈klm|

The coordinate representation of the klm basis is separable into a a radial part and an

angular part.

〈klm|r, θp, φp〉 = Nklr
le−νr

2

L
l+ 1

2
k (2νr2)Ylm(θp, φp) (4.6)

Here, ν represents mω
2~ , where m is mass and ω is natural frequency, and Nkl is a
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normalization constant defined by:

Nkl =

√√
2ν3

π

2k+2l+3k!νl

(2k + 2l + 1)!!
(4.7)

L
l+ 1

2
k (2νr2) represents a generalized Laguerre polynomial, and Ylm(θ, φ) is a spherical

harmonic.

4.4 Matrix Elements

In order to determine the eigenvalues of this Hamiltonian, we must calculate the matrix

elements in the chosen basis.

The translational part of the Hamiltonian only acts on the |klm〉 basis, and is diagonal

in |JKM〉, whereas the rotational part of the Hamiltonian acts only upon the |JKM〉 and

is diagonal in |klm〉. The external potential due to the cage couples to both the |klm〉 and

the |JKM〉 which is why this problem is non-trivial.

〈klm| 〈JKM | Ĥ |J ′K ′M ′〉 |k′l′m′〉

= 〈klm| 〈JKM | T̂trans + T̂rot + V̂ext |J ′K ′M ′〉 |k′l′m′〉

= 〈klm| 〈JKM | T̂trans |J ′K ′M ′〉 |k′l′m′〉+ 〈klm| 〈JKM | T̂rot |J ′K ′M ′〉 |k′l′m′〉

+ 〈klm| 〈JKM | V̂ext |J ′K ′M ′〉 |k′l′m′〉

= 〈klm| p̂
2

2m
|k′l′m′〉 δJ,J ′δK,K′δM,M ′ + 〈JKM | T̂rot |J ′K ′M ′〉 δk,k′δl,l′δm,m′

+ 〈klm| 〈JKM | V̂ext |J ′K ′M ′〉 |k′l′m′〉

In order to solve the translational part, we add and subtract 1
2
mω2r2 from the Hamilto-

nian in order to obtain the 3D isotropic h.o. and an extra r2 term. Since the 3D isotropic
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h.o. is diagonal in the chosen basis, the kinetic energy is all taken care of in diagonal terms.

All that remains is a quadrature in the r-grid. The rotational part of the Hamiltonian is

the same for the free water case. The Hamiltonian becomes:

〈klm| p̂
2

2m
± 1

2
mω2r2 |k′l′m′〉 δJ,J ′δK,K′δM,M ′ + 〈JKM | T̂rot |J ′K ′M ′〉 δk,k′δl,l′δm,m′

+ 〈klm| 〈JKM | V̂ext |J ′K ′M ′〉 |k′l′m′〉

= 〈klm| Ĥqho |k′l′m′〉 δJ,J ′δK,K′δM,M ′ − 〈klm|
1

2
mω2r2 |k′l′m′〉 δJ,J ′δK,K′δM,M ′

+ 〈JKM | T̂rot |J ′K ′M ′〉 δk,k′δl,l′δm,m′ + 〈klm| 〈JKM | V̂ext |J ′K ′M ′〉 |k′l′m′〉

= ~ω
(

2k + l +
3

2

)
δJ,J ′δK,K′δM,M ′δk,k′δl,l′δm,m′ − 〈klm|

1

2
mω2r2 |k′l′m′〉 δJ,J ′δK,K′δM,M ′

+ 〈JKM | T̂rot |J ′K ′M ′〉 δk,k′δl,l′δm,m′ + 〈klm| 〈JKM | V̂ext |J ′K ′M ′〉 |k′l′m′〉

The remaining terms, 〈klm| 1
2
mω2r2 |k′l′m′〉 and 〈klm| 〈JKM | V̂ext |J ′K ′M ′〉 |k′l′m′〉 are

calculated using numerical integration.

4.5 Code Testing and Preliminary Results

In order to test the code for reliability, the following measures were taken. The basis

that were used for the quadrature calculations were tested to be orthonormal. In order

to accomplish this, the interaction potential was set to 1 in the potential matrix element

calculations. This results in a potential matrix that is equal to the identity since, with

a potential interaction of 1, the matrix element is just the inner product of two basis

functions (a Kronecker delta).

Additionally, the Hamiltonian comprised of just the 3D isotropic h.o. and the asymmetric

top was looked at. Since there is no term coupling the JKM or lmn basis functions, the

resulting diagonalization shows this. The eigenvalues are just the combination of the 3D
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isotropic h.o. and the asymmetric top rotational functions. The eigenvalues of this is

shown for the case where Jmax = 1 and Nmax = 2.

Table 4.1: Calculated Energy Levels for: A- No potential interaction term (Only 3D Isotropic
H.O. and Asymmetric Rotor); B- Full Hamiltonian

Here in column A eigenvalues are the eigenvalues of the 3D isotropic h.o. simply added

to the eigenvalues of the rotational Hamiltonian. The zero point energy of the 3D Isotropic

h.o. is at 257.64 cm−1. Column B shows the calculated eigenvalues for the full Hamilto-

nian of the system. These results are still preliminary as the potential interaction matrix

elements are not yet converged, with the grid size, and the ground state energy is not yet

converged variationally. This result is for a grid size of (70,50,50,24,25,25) corresponding

to (r, θp, φp, θo, φo, χ), and a Jmax of 2, Nmax of 3.
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The energy levels can be tested against the results recently published by Felker and Bačić28

in a study where they also investigated the 6D calculations of the translation-rotation eigen-

states of the H2O@C60, as we can match parameters and compare the resulting eigenvalues.

Felker and Bačić used the exact same L-J potential discussed previously to take into ac-

count the water-buckyball interaction, and used a water geometry defined by the molecular

fixed coordinates (x,y,z) in angstroms:

O: (0.0,0.0,-0.06563807)

H1: (0.7575,0.0,0.52086193)

H2: (-0.7575,0.0,0.52086193)

with rotational constants in cm−1:

A: 27.877

B: 14.512

C: 9.285

and a total mass of 18.01056 amu. The coordinates for the carbon cage can be found in

the supplementary material for the publication.28

It was discovered that the ground state energy of the system was located at E0 = -1987.57

cm−1, with the next excited state being triply degenerate (no splitting) at 23.74 cm−1

above the ground state. This indicates that a single cage is not enough to split the rota-

tional levels.

It is clear that our results are unconverged as our ground state energy is still over 100 cm−1

off from the published data. This means that many more basis functions will be required,

as well as a larger grid size. Even though the absolute energy may be unconverged, the

difference in energy between a certain state and the ground state still seem to be very close
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to one another.

4.6 Outlook

This code is finished development, and is ready to be used. Currently being applied to

the endohedral water system, the results are incomplete as the energy values have yet to

converge with respect to the coordinate grid size (r, θp, φp, θo, φo, χ) and basis size. Since

one buckyball does not split the rotational levels of water by itself, the effect of the next

nearest C60 neighbours will be looked at. The eigenvalues of the low-lying states can be

compared for single cage, an H-phase cage, and a P-phase cage,29 where these phases refer

to the orientation of the buckyballs in the crystal lattice. Once the H- or P- phase is

taken into account, it is expected that we find a slight lifting of the degeneracy, due to the

reduced symmetry of the crystal versus the buckyball itself.

The code may easily be utilized in a number of other systems, and should be a powerful

tool for continuing work on this and other similar systems.
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Chapter 5

Conclusion

In this work, tools were developed and utilized in order investigate the H2O@C60 and

similar systems. The tools were developed with the goal of modelling these systems ac-

curately in order to gain a better understanding of the quantum phenomena that are

present in experiments. This includes level splitting in the rotational ortho ground state,

ortho-para conversion, and long-range dipole interactions.

The first method utilized in pursuit of understanding this system was path integral

molecular dynamics simulations. Imaginary time autocorrelation functions were examined

for the orientation of the water, in order to see if the splitting could be captured through

this method but to no success due to the difficulty of trying to curve the proper form of the

correlation functions (sum of exponentials). These simulations were conducted for a system

consisting of only a single water molecule in a single buckyball and several thermodynamic

properties were obtained including various distributions as well as rotational imaginary

time autocorrelation functions. Although, it is now believed that the splitting is not due

to one cage, but due to a many-body effect from both the crystalline structure of the

buckyballs, as well as from the dipolar interactions with the other waters encapsulated

within the surrounding buckyballs.

In addition to the path integral simulations, exact diagonalization code was developed
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in order to variationally calculate the energy levels of the water directly. The code that

was written is very general and can easily be applied to multiple other systems, mainly by

interchanging the guest/host molecule.

5.1 Future Work

There is still much work to be done for the H2O@C60 system. Described in this work,

tools have been developed in order to study a single water in a single cage, but may cer-

tainly be extended in a wide number of ways to aid in future studies of this or related

systems. An immediate step for future work would be to complete converging results using

the exact diagonalization code that was developed on the single water, single cage system,

and extend it to larger systems. In order to converge results, the grid size in the coordinate

representation as well as the basis size must all be large enough. Once this is complete,

there are many calculations that may immediately be run that are related to the ther-

modynamic properties of the system. Various distributions again, and exact orientational

imaginary time autocorrelation functions for the caged water may be computed, and then

subsequently compared to the PIMD results.

Another direction for future work is to expand the existing code in order to probe

many-body effects. This is important as the interesting quantum phenomena are believed

to be due to many-body effects. It is upon understanding and utilizing these many-body

quantum effects that may allow us to find real applications for this material. In order to

include many-body effects, the simulation or calculation size may be modified by including

n-repeating units of the H2O@C60 complex in a crystalline structure. Although both sim-

ulations and calculations may suffer from too-long run times or not enough memory, there

may be clever ways to incorporate information from both exact diagonalization techniques

as well as path integral simulations.

An additional direction of future work is to vary host/guest molecules, meaning ex-

changing either the water with another guest, such as the HF@C60 molecule that was
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recently synthesized.30 In principal, the code that was developed is immediately ready

to tackle this system, provided that a sufficient HF - C60 potential is available. Different

systems may behave differently, and other interesting effects may become evident. It is a

simple task to extend the existing work to include alternative host/guest molecules. All

that is required is for the host molecule geometry data file to be modified and the in-

teraction parameters updated for the simulations or the calculations, as the code is very

general.

Lastly, modifying the exact diagonalization code to also capture the ortho-para spin

conversion is another interesting direction for future work that can be built off of the tools

described in this work. In order to capture spin-conversion, the Hamiltonian of the exact

code must be modified. The basis will have to be modified as well in order to include

nuclear spin in the Hilbert space, thus adding a dimension and forcing slower calculation

times.
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Appendix A

Exact ITACF using Spherical

Coordinates

In order to gain insight on the rotational eigenstates of a water molecule (free and confined),

we may study the orientational autocorrelation function. For a free water we may calculate this

exactly, through diagonalization of the asymmetric top hamiltonian in the symmetric top basis (

|JKM > ), and for the confined case we may measure these correlation functions directly along

the path in a PIMD/PIMC simulation.

In order to calculate the exact orientational ITACFs, it is required of us to write the orientation

vectors of the water in the space fixed frame so that we can solve the matrix elements in the

|JKM > basis.

In the molecular fixed frame, the orientation vectors can be written simply as:

ex =


1

0

0

 , ey =


0

1

0

 , ez =


0

0

1


where ex corresponds to the molecular a axis, ey is the c axis, and ez is the b axis.

In order to determine these vectors in the space fixed frame (under some arbitrary rotation), we

need to multiply the vectors with the rotation matrix:
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R =


cosφ cos θ cosχ− sinφ sinχ − cosφ cos θ sinχ− sinφ cosχ cosφ sin θ

sinφ cos θ cosχ+ cosφ sinχ − sinφ cos θ sinχ+ cosφ cosχ sinφ sin θ

− sin θ cosχ sin θ sinχ cos θ



Thus, we can write our SFF orientation vectors as n x R:

V x = ex ×R

=


1

0

0

×


cosφ cos θ cosχ− sinφ sinχ − cosφ cos θ sinχ− sinφ cosχ cosφ sin θ

sinφ cos θ cosχ+ cosφ sinχ − sinφ cos θ sinχ+ cosφ cosχ sinφ sin θ

− sin θ cosχ sin θ sinχ cos θ



=


cosφ cos θ cosχ− sinφ sinχ

sinφ cos θ cosχ+ cosφ sinχ

− sin θ cosχ



V y = ey ×R

=


0

1

0

×


cosφ cos θ cosχ− sinφ sinχ − cosφ cos θ sinχ− sinφ cosχ cosφ sin θ

sinφ cos θ cosχ+ cosφ sinχ − sinφ cos θ sinχ+ cosφ cosχ sinφ sin θ

− sin θ cosχ sin θ sinχ cos θ



=


− cosφ cos θ sinχ− sinφ cosχ

− sinφ cos θ sinχ+ cosφ cosχ

sin θ sinχ


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and finally

V z = ez ×R

=


0

0

1

×


cosφ cos θ cosχ− sinφ sinχ − cosφ cos θ sinχ− sinφ cosχ cosφ sin θ

sinφ cos θ cosχ+ cosφ sinχ − sinφ cos θ sinχ+ cosφ cosχ sinφ sin θ

− sin θ cosχ sin θ sinχ cos θ



=


cosφ sin θ

sinφ sin θ

cos θ



In order to solve the matrix elements of V x,y,z in the JKM basis, it would require the use of

quadratures although we may find that if we define vectors in terms of the spherical basis, we

can have analytical solutions to the integrals. The spherical basis is defined as:

e+ = − 1√
2
ex − i√

2
ey

e− =
1√
2
ex − i√

2
ey

e0 = ez

Therefore, in the SFF, the spherical basis vectors of the water are defined as:

V + = − 1√
2

(X + iY )

= − 1√
2


cosφ cos θ cosχ− sinφ sinχ− i cosφ cos θ sinχ− i sinφ cosχ

sinφ cos θ cosχ+ cosφ sinχ− i sinφ cos θ sinχ+ i cosφ cosχ

− sin θ cosχ+ i sin θ sinχ


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V − =
1√
2

(X − iY )

= − 1√
2


cosφ cos θ cosχ− sinφ sinχ+ i cosφ cos θ sinχ+ i sinφ cosχ

sinφ cos θ cosχ+ cosφ sinχ+ i sinφ cos θ sinχ− i cosφ cosχ

− sin θ cosχ− i sin θ sinχ



V 0 = Z

=


cosφ sin θ

sinφ sin θ

cos θ



These spherical basis vectors are still represented in the cartesian basis though, and one further

transformation to the spherical basis is required in order to find the useful symmetries.

The coordinates transform as the complex conjugate of the basis ie.

V+ = − 1√
2
Vx +

i√
2
Vy

V− =
1√
2
Vx +

i√
2
Vy

V0 = Vz

62



Looking at the V + vector, we thus see that in terms of spherical components:

V +
+ = − 1√

2
(V +
x − iV +

y )

= − 1√
2

[− 1√
2

(cosφ cos θ cosχ− sinφ sinχ− i cosφ cos θ sinχ− i sinφ cosχ

− i(sinφ cos θ cosχ+ cosφ sinχ− i sinφ cos θ sinχ+ i cosφ cosχ))]

=
1

2
[cosφ cos θ cosχ− sinφ sinχ− i cosφ cos θ sinχ− i sinφ cosχ

− i sinφ cos θ cosχ− i cosφ sinχ− sinφ cos θ sinχ+ cosφ cosχ]

=
1

2
[cosφ cos θ(cosχ− i sinχ)− sinφ(sinχ+ i cosχ)− cosφ(i sinχ− cosχ)− sinφ cos θ(i cosχ+ sinχ)

=
1

2
[cosφ cos θe−iχ − i sinφ(cosχ− i sinχ) + cosφ(cosχ− i sinχ)− i sinφ cos θ(cosχ− i sinχ)

=
1

2
[cosφ cos θe−iχ − i sinφe−iχ + cosφe−iχ − i sinφ cos θe−iχ]

=
e−iχ

2
[cosφ cos θ + cosφ− i sinφ− i sinφ cos θ]

=
1

2
e−iχe−iφ(cos θ + 1)

= D1
11

V +
− =

1√
2

(V +
x + iV +

y )

=
1√
2

[− 1√
2

(cosφ cos θ cosχ− sinφ sinχ− i cosφ cos θ sinχ− i sinφ cosχ

+ i(sinφ cos θ cosχ+ cosφ sinχ− i sinφ cos θ sinχ+ i cosφ cosχ))]

= −1

2
[cosφ cos θ cosχ− sinφ sinχ− i cosφ cos θ sinχ− i sinφ cosχ

+ i sinφ cos θ cosχ+ i cosφ sinχ+ sinφ cos θ sinχ− cosφ cosχ]

= −1

2
[cosφ cos θ(cosχ− i sinχ)− i sinφ(cosχ− i sinχ) + i sinχ cos θ(cosχ− sinχ)− cosφ(cosχ− i sinχ)]

= −1

2
e−iχ[cosφ cos θ − i sinφ+ i sinχ cos θ − cos θ]

= −1

2
e−iχ[cos θeiφ − eiφ]

=
1

2
e−iχeiφ[1− cos θ]

= D1
−11
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V +
0 = V +

z

=
1√
2

sin θ cosχ− 1√
2
i sin θ sinχ

=
1√
2

sin θ(cosχ− i sinχ)

=
1√
2

sin θe−iχ

= D1
01

For the V − vector, we find:

V −+ = − 1√
2

(V −x − iV +
y )

= −1

2
[(V x

x − iV y
x )− i(V x

y − iV y
y )]

= −1

2
[cosφ cos θ cosχ− sinφ sinχ+ i cosφ cos θ sinχ+ i sinφ cosχ

− i sinφ cos θ cosχ− i cosφ sinχ+ sinφ cos θ sinχ− cosφ cosχ]

= −1

2
[cosφ cos θ(cosχ+ i sinχ) + i sinφ(cosχ+ i sinχ)

− i sinφ cos θ(cosχ+ i sinχ)− cosφ(cosχ+ i sinχ)]

= −1

2
eiχ[cosφ cos θ + i sinφ− i sinφ cos θ − cosφ]

= −1

2
eiχ[cos θ(cosφ− i sinφ)− (cosφ− i sinφ)]

= −1

2
eiχe−iφ[1− cos θ]

= D1
1−1
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V −− =
1√
2

(V −x + iV −y )

=
1

2
[(V x

x − iV y
x ) + i(V x

y + iV y
y )]

=
1

2
[cosφ cos θ cosχ− sinφ sinχ+ i cosφ cos θ sinχ+ i sinφ cosχ

+ i sinφ cos θ cosχ+ i cosφ sinχ− sinφ cos θ sinχ+ cosφ cosχ]

=
1

2
[cosφ cos θ(cosχ+ i sinχ) + i sinφ(cosχ+ i sinχ)

+ i sinφ cos θ(cosχ+ i sinχ) + cosφ(cosχ+ i sinχ)]

=
1

2
eiχ[cosφ cos θ + i sinφ+ i sinφ cos θ + cosφ]

=
1

2
eiχ[cos θ(cosφ+ i sinφ) + (cosφ+ i sinφ)]

=
1

2
eiχeiφ[1 + cos θ]

= D1
−1−1

V −0 = V −z

=
1√
2

(V x
z − iV y

z )

= − 1√
2

(sin θ cosχ+ i sin θ sinχ)

= − 1√
2

sin θ(cosχ+ i sinχ)

= − 1√
2

sin θeiχ

= D1
0−1

And last for the V 0 vector, we find:
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V 0
+ = − 1√

2
(V 0
x − iV 0

y )

= − 1√
2

[cosφ sin θ − i sinφ sin θ]

= −1

2
[sin θ(cosφ− i sinφ)

= −1

2
e−iφ sin θ

= D1
10

V 0
− =

1√
2

(V 0
x + iV 0

y )

=
1√
2

[cosφ sin θ + i sinφ sin θ]

=
1

2
[sin θ(cosφ+ i sinφ)

=
1

2
eiφ sin θ

= D1
−10

V 0
0 = V 0

z

= cos θ

= D1
00

Since what we have obtained is orientation of the water in the molecular frame in terms of

the spherical basis completely in terms of Wigner D rotation matrices, we have may complete

the integrations of the direction operators in the JKM basis analytically, we just need to write

whatever vector in terms of the spherical basis; this will enable us to view the selection rules right

away (encoded within the Wigner 3J symbols)
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The quantity of interest is | < jǩm|n̂|j′ǩ′m′ > |2 where n is any direction vector. We are

interested in when n̂ is equal to the any of the molecular axes a,b, or c, as well as the spherical

basis vectors.

| < jǩm|n̂|j′ǩ′m′ > |2

=

j∑
k1

j′∑
k′1

j∑
k2

j′∑
k′2

Cjǩk1C
j′ǩ′

k′1
Cjǩk2C

j′ǩ′

k′2
< jk1m|n̂|j′k′1m′ >< j′k′2m

′|n̂|jk2m >

if n̂ = V 0 = V z we have

< jk1m|V 0|j′k′1m′ >< j′k′2m
′|V 0|jk2m >

=< jk1m|V 0|j′k′1m′ >< j′k′2m
′|V 0∗ |jk2m >

=< jk1m|D1
q0|j′k′1m′ >< j′k′2m

′|D1∗

q0|jk2m >

=
∑
q

(−1)q < jk1m|D1
q0|j′k′1m′ >< j′k′2m

′|D1
−q−0|jk2m >

= (−1)m+m′−k′1−k2(2J + 1)(2J ′ + 1)

 J 1 J ′

k1 0 −k′1

 J ′ 1 J

k′2 0 −k2


∑
q

(−1)q

 J 1 J ′

M q −M ′

 J 1 J ′

M ′ −q −M


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if n̂ = V + we have

< jk1m|V +|j′k′1m′ >< j′k′2m
′|V +|jk2m >

=< jk1m|V +|j′k′1m′ >< j′k′2m
′|V +∗ |jk2m >

=< jk1m|D1
q1|j′k′1m′ >< j′k′2m

′|D1∗

q1|jk2m >

=
∑
q

(−1)q+1 < jk1m|D1
q1|j′k′1m′ >< j′k′2m

′|D1
−q−1|jk2m >

= (−1)m+m′−k′1−k2(2J + 1)(2J ′ + 1)

 J 1 J ′

k1 1 −k′1

 J ′ 1 J

k′2 −1 −k2


∑
q

(−1)q

 J 1 J ′

M q −M ′

 J 1 J ′

M ′ −q −M



if n̂ = V − we have

< jk1m|V −|j′k′1m′ >< j′k′2m
′|V −|jk2m >

=< jk1m|V −|j′k′1m′ >< j′k′2m
′|V −∗ |jk2m >

=< jk1m|D1
q−1|j′k′1m′ >< j′k′2m

′|D1∗

q−1|jk2m >

=
∑
q

(−1)q+1 < jk1m|D1
q−1|j′k′1m′ >< j′k′2m

′|D1
−q1|jk2m >

= (−1)m+m′−k′1−k2(2J + 1)(2J ′ + 1)

 J 1 J ′

k1 −1 −k′1

 J ′ 1 J

k′2 1 −k2


∑
q

(−1)q

 J 1 J ′

M q −M ′

 J 1 J ′

M ′ −q −M



In order to look at the molecular axes (a and c, since b = z and we already solved for that),

all we need to do is use the inverse relations of the cartesian basis and spherical basis, ie.
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ex = − 1√
2
e+ +

1√
2
e−

ey =
i√
2
e+ +

i√
2
e−

ez = e0

if n̂ = V x we have

< jk1m|V x|j′k′1m′ >< j′k′2m
′|V x|jk2m >

=< jk1m|V x|j′k′1m′ >< j′k′2m
′|V x∗ |jk2m >

=< jk1m|[−
1√
2

(D1
q1 −D1

q−1)]|j′k′1m′ >< j′k′2m
′|[− 1√

2
(D1

q1 −D1
q−1)]∗|jk2m >

=< jk1m|[−
1√
2

(D1
q1 −D1

q−1)]|j′k′1m′ >< j′k′2m
′|[− 1√

2
(D1∗

q1 −D1∗

q−1)]|jk2m >

=
1

2

∑
q

(−1)q+1 < jk1m|D1
q1 −D1

q−1|j′k′1m′ >< j′k′2m
′|D1
−q−1 −D1

−q1|jk2m >

=
1

2

∑
q

(−1)q+1[< jk1m|D1
q1|j′k′1m′ > − < jk1m|D1

q−1|j′k′1m′ >]

[< j′k′2m
′|D1
−q−1|jk2m > − < j′k′2m

′|D1
−q1|jk2m >]

=
1

2

∑
q

(−1)q+1
√

2J + 1
√

2J ′ + 1(−1)m
′−k′1 [

 J 1 J ′

k1 1 −k′1

 J 1 J ′

M q −M ′


−

 J 1 J ′

k1 −1 −k′1

 J 1 J ′

M q −M ′

]
√

2J + 1
√

2J ′ + 1(−1)m−k2 [

 J ′ 1 J

k′2 −1 −k2

 J ′ 1 J

M ′ −q −M


−

 J ′ 1 J

k′2 1 −k2

 J ′ 1 J

M ′ −q −M

]

= (−1)m+m′−k′1−k2 (2J + 1)(2J ′ + 1)

2
[

 J 1 J ′

k1 1 −k′1

−
 J 1 J ′

k1 −1 −k′1

]

[

 J ′ 1 J

k′2 −1 −k2

−
 J ′ 1 J

k′2 1 −k2

]
∑
q

(−1)q+1

 J 1 J ′

M q −M ′

 J ′ 1 J

M ′ −q −M


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if n̂ = V y we have

< jk1m|V y|j′k′1m′ >< j′k′2m
′|V y|jk2m >

=< jk1m|V x|j′k′1m′ >< j′k′2m
′|V y∗ |jk2m >

=< jk1m|[
i√
2

(D1
q1 +D1

q−1)]|j′k′1m′ >< j′k′2m
′|[ i√

2
(D1

q1 +D1
q−1)]∗|jk2m >

=< jk1m|[
i√
2

(D1
q1 +D1

q−1)]|j′k′1m′ >< j′k′2m
′|[− i√

2
(D1∗

q1 +D1∗

q−1)]|jk2m >

=
1

2

∑
q

(−1)q+1 < jk1m|D1
q1 +D1

q−1|j′k′1m′ >< j′k′2m
′|D1
−q−1 +D1

−q1|jk2m >

=
1

2

∑
q

(−1)q+1[< jk1m|D1
q1|j′k′1m′ > + < jk1m|D1

q−1|j′k′1m′ >]

[< j′k′2m
′|D1
−q−1|jk2m > + < j′k′2m

′|D1
−q1|jk2m >]

=
1

2

∑
q

(−1)q+1
√

2J + 1
√

2J ′ + 1(−1)m
′−k′1 [

 J 1 J ′

k1 1 −k′1

 J 1 J ′

M q −M ′


+

 J 1 J ′

k1 −1 −k′1

 J 1 J ′

M q −M ′

]
√

2J + 1
√

2J ′ + 1(−1)m−k2 [

 J ′ 1 J

k′2 −1 −k2

 J ′ 1 J

M ′ −q −M


+

 J ′ 1 J

k′2 1 −k2

 J ′ 1 J

M ′ −q −M

]

= (−1)m+m′−k′1−k2 (2J + 1)(2J ′ + 1)

2
[

 J 1 J ′

k1 1 −k′1

+

 J 1 J ′

k1 −1 −k′1

]

[

 J ′ 1 J

k′2 −1 −k2

+

 J ′ 1 J

k′2 1 −k2

]
∑
q

(−1)q+1

 J 1 J ′

M q −M ′

 J ′ 1 J

M ′ −q −M


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Appendix B

Classical Motion of a QHO using

Thermal Wavefunction

Beginning with our definition for time-dependent expectation value of our thermal wave-

function of a system (that is at thermal equilibrium), we may look at the time-dependent

behaviour of a quantum-harmonic oscillator, and look at the conditions in order to obtain

classical-like motion. In doing so, we see that the condition is for a ’coherent-like’ state,

although not a coherent-state in the strict sense as this definition of a wavefunction is

not an eigenfunction of the annhiliation operator, nor is the uncertainity of the position -

momentum minimized.

1

Z

∑
n

∑
m

e
−β(En+Em)

2 ei(θn−θm)e
i(En−Em)t

~ 〈n| Ô |m〉 (B.1)

where the energy basis is the quantum harmonic oscillator energy basis, thus:

En = ~ω(n+
1

2
) (B.2)

if we are interested in the position of the QHO, we may replace the Ô with x̂ = â + â†.

Our expression becomes:
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1

Z

∑
n

∑
m

e
−β(En+Em)

2 ei(θn−θm)e
i(En−Em)t

~ 〈n| â |m〉 (B.3)

+
1

Z

∑
n

∑
m

e
−β(En+Em)

2 ei(θn−θm)e
i(En−Em)t

~ 〈n| â† |m〉 (B.4)

(B.5)

Since:

â |m〉 =
√
m |m− 1〉 (B.6)

and

â† |m〉 =
√
m+ 1 |m+ 1〉 (B.7)

we may evaluate the above expressions as:

1

Z

∑
n

∑
m

e
−β(En+Em)

2 ei(θn−θm)e
i(En−Em)t

~ 〈n| â |m〉+H.C.

=
1

Z

∑
n

∑
m

e
−β(En+Em)

2 ei(θn−θm)e
i(En−Em)t

~
√
m 〈n|m− 1〉+H.C.

thus, n = m-1 or m = n + 1. making this substitution we find:
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1

Z

∑
n

∑
m

e
−β(En+Em)

2 ei(θn−θm)e
i(En−Em)t

~
√
m 〈n|m− 1〉+H.C.

=
1

Z

∑
n

e
−β(En+En+1)

2 ei(θn−θn+1)e
i(En−En+1)t

~
√
n+ 1 +H.C.

noting that:

En − En+1 = ~ω(n+
1

2
)− ω̄(n+ 1 +

1

2
) = ~ω (B.8)

and that:

En + En+1 = ~ω(n+
1

2
) + ω̄(n+ 1 +

1

2
) = 2~ω(n+ 1) (B.9)

we can further simplify this to:

1

Z

∑
n

e
−β(En+En+1)

2 ei(θn−θn+1)e
i(En−En+1)t

~
√
n+ 1 +H.C.

=
e−β~ω

Z

∑
n

e−β~ωnei(θn−θn+1)eiωt
√
n+ 1 +H.C.

rewriting θn − θn+ 1 as just ∆θn, we find

e−β~ω

Z

∑
n

e−β~ωnei∆θneiωt
√
n+ 1 +H.C. (B.10)

after grouping the complex exponentials together:
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e−β~ω

Z

∑
n

e−β~ωnei(∆θn+ωt)
√
n+ 1 +H.C. (B.11)

Since we are adding the H.C., this is the same as taking 2xRe of the expression, and

we have:

2e−β~ω

Z
RE

[∑
n

e−β~ωnei(∆θn+ωt)
√
n+ 1

]
(B.12)

which is equivalent to:

2e−β~ω

Z

∑
n

√
n+ 1e−β~ωncos(∆θn + ωt) (B.13)

Thus, in order to have a classical-like motion of the QHO in a system defined by thermal

wavefunction, we require that the difference in phase of each n,n+1 state to be either 0,

or a constant. If the difference is a constant, this is really the same as originally having

the θn = θn+1 = θn+2 = 0, and then propogating this ’coherent’ state in time using the

time-propagator.

If we set this condition, our final expression becomes:

2e−β~ω

Z

∑
n

√
n+ 1e−β~ωncos(ωt) (B.14)

This can be seen as a frozen wave-packet whose expectation value oscillates back and

forth in time, the magnitude of these oscillations equivalent to some thermodynamic aver-

age. This is similar to a ’coherent’ state in the sense that in order to achieve this classical

type motion, the energy associated to each eigen state must be ’in phase’ or ’coherent’.

It can be noted that the thermal wavefunctions may be turned into a coherent-state

in the strict sense if we instead define the overlap of the wavefunction with the energy

eigenbasis as:
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|ψ(β)〉 =
∑
n

|n〉 〈n|ψ(β)〉

=
1√
Z

∑
n

e
−βEn

2 eiθn√
n!

|n〉

which just changes the distribution of eigenstates from a Boltzmann distribution to a

Poisonn distribution.
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Appendix C

Useful Snippets of Code

All of the code shown here is written in the python language.

C.1 Little-D Function

The following ’littleD’ function can be called with the arguments of J,m,mp, and theta,

in order to return the proper small-d rotation matrix.
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C.2 Rotational Hamiltonian Setup

The following algorithm sets up an asymmetric top rotational Hamiltonian in the sym-

metric top basis using the matrix elements derived previously. Here, jkm is the basis size

of the JKM basis up to a predefined Jmax.

C.3 Indexing and Basis Size Formulas

In order to calculate the total basis size of the JKM basis given a Jmax and including

all of the K and M quantum numbers, the basis size can be calculated as:

size = ((2*Jmax +1) * (2*Jmax + 2) * (2*Jmax + 3)) /6

Likewise for the nlm basis, given an nmax, we may determine the size as:

size = ((Nmax + 1) * (Nmax + 2) * (Nmax + 3)) /6

While iterating through the JKM basis, the position can be kept track using the following

index formula:

jpos = (2 * (J-1) + 1 ) * (2 * (J-1) + 2) * (2 * (J-1) + 3) / 6 + (K+J) * (2*J+1) +

(M+J)
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Which, when iterated through J=0 to Jmax, will count from 0 to the max basis size (1, 2,

3, 4,... basis size)
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