Second-Generation Stack Computer
Architecture

Charles Eric LaForest

A thesis
presented to the Independent Studies Program
of the University of Waterloo
in fulfilment of the
thesis requirements for the degree
Bachelor of Independent Studies (BIS)

University of

Waterloo

%

Independent Studies
University of Waterloo
Canada
April 2007

Declaration

I hereby declare that I am the sole author of this research paper.

I authorize the University of Waterloo to lend this thesis to other institutions or individuals for
the purpose of scholarly research.

. e -
Signature: Ezec Z

I further authorize the University of Waterloo to reproduce this research paper by photocopy-
ing or other means, in total or in part, at the request of other institutions or individuals for the
purpose of scholarly research.

Signature: gM %%w/ﬁd’/n

The work in this research paper is based on research carried out in the Independent Studies
Program at the University of Waterloo, Canada. No part of this thesis has been submitted else-
where for any other degree or qualification and is all my own work unless referenced to the
contrary in the text.

Copyright © 2007 by Charles Eric LaForest.

The copyright of this thesis rests with the author. Quotations and information derived from it
must be acknowledged.

i1

Second-Generation Stack Computer Architecture

Charles Eric LaForest

Submitted for the degree of Bachelor of Independent Studies
April 2007

Abstract

Itis commonly held in current computer architecture litara that stack-based computers were
entirely superseded by the combination of pipelined, irgtesgl microprocessors and improved
compilers. While correct, the literature omits a secondy generation of stack computers
that emerged at the same time. In this thesis, | developrigatpqualitative, and quantitative
distinctions between the first and second generations ok siamputers. | present a rebuttal
of the main arguments against stack computers and showhnatate not applicable to those
of the second generation. | also present an example of a,smadlern stack computer and
compare it to the MIPS architecture. The results show thairsd generation stack computers
have much better performance for deeply nested or recucsigle, but are correspondingly
worse for iterative code. The results also show that eveaghdhe stack computer’s zero-
operand instruction format only moderately increases tite @ensity, it significantly reduces
instruction memory bandwidth.

Acknowledgements

Firstly, thanks go to my family, immediate and extended, Wwaee always given me the leeway
and support | needed, who always believed in me.

Sometime in 2000, Ralph Siemsen and Andrew E. Mileski intoedl me to the Forth
programming language, which changed my view of programmfdupn after, | discovered the
microprocessors of Chen-Hanson Ting, Jeff Fox, and Chatld€huck) Moore, which did
the same for my view of computer hardware. Aaron Holtzmargested | play with FPGA
simulations of these computers, and graciously bore all mynglings about broken Verilog
compilers. At the same time, | had stimulating email dismursswith Myron Plichota and
Jecel Mattos de Assumpcao Jr. which led to some of the new iddhis thesis.

It was Sheryl Cronk who eventually gave me the arguments @asbns to return to Uni-
versity. Many friends bought my old junk and helped me mowe.this kick-start and support,
| am forever grateful.

Once at Waterloo, Professor Chrysanne DiMarco became mig@d\Her thorough knowl-
edge of the English language and of the customs of acadenpieowed me greatly. Thus, |
must atone by myself for any linguistic errors in this thedsofessors Giuseppe Tenti and
Barry Ferguson unrusted and expanded my mathematicad.gRibfessor Manoj Sachdev and
his PhD students, Shahab Ardalan and Bhaskar Chatterjgle ntach time both inside and
outside of class to discuss the details of VLSI circuitryhnibe. Professors Mark Aagaard
helped me gain a broader perspective on computer architegtal led me to the class of Pro-
fessor Paul Dasiewicz who taught me more about the subjé®. dandidate Brad Lushman
took time to help me with my exploration of programming laagas. | also thank Professor
Anne Innis Dagg of Independent Studies, whose course ompémdkent research rounded me
out well.

Outside of class, the denizens of the Computer Science Gmbded both enthusiastic
discussions and gave me a chance to make my work heard. Maks peovided me with a
useful and rare primary source for the KDF9, his favouritenpater. Professor Steven M.
Nowick of Columbia University helped me understand his MVMILIST synthesis tool.

The wheels of Independent Studies were kept turning by Bsofs Bill Abbott and Richard
Holmes and especially by Susan Gow, who provided endlessigiasm, countless good ex-
amples, and sage advice.

The writing of this thesis was supervised by Dr. Andrew Marteere at Waterloo, and by
Professor J. Gregory Steffan of the University of Torontaml very grateful for their feedback
and guidance.

And finally, thanks to Joy, my fiancée. You brighten my life.uMmake me happy.

The years ahead with you glow with promise and adventure.

"But the speed was power, and the speed was joy, and the s@sgpiune beauty.”

— Richard BachJohnathan Livingston Seagull

“If my calculations are correct, when this baby hits eightght miles per hour,
you’re gonna see some serious shit.”

— Emmet “Doc” Brown, inBack To The Future

Vi

Contents

1

Introduction 1
1.1 ResearchGoals 2
1.2 ThesisOutline. 3
1.2.1 Partl: HistoricalReview 3
1.2.2 Partll: Qualitative Arguments 3
1.2.3 Partlll: Quantitative Arguments 3
| Historical Review 5
History of the First Generation of Stack Computers 7
2.1 Lukasiewicz and the First Generation 7
2.1.1 Poland: Jan Lukasiewicz (1878-1956) 71
2.1.2 Germany: Konrad Zuse (1910-1995) 8
2.1.3 Germany: Friedrich Ludwig Bauer (1924-) 8
2.1.4 Australia: Charles Leonard Hamblin (1922-1985) 9
2.1.5 USA:Robert StanleyBarton 10
2.2 The First Generation of Stack Computers 11
221 ZuseZ4 e 11
2.2.2 EnglishElectricCo. KDF9 12
2.2.3 Burroughs B5000 and latermodels. 14
2.2.4 International Computers Ltd. ICL2900 series 16
2.2.5 Hewlett-Packard HP3000. 17
2.3 Shortcomings and Disappearance of the First Generation 18
2.3.1 Explicit High-Level Language Support 18
23.2 TheRiseofRISC 18
2.3.3 Excessive Memory Traffic 91
2.3.4 The NeedforindexRegisters 20
History of the Second Generation of Stack Computers 21
3.1 Charles H. Moore and the Second Generation 21
3.1.1 Charles Havice (Chuck) Moore Il 21
3.1.1.1 The Forth Programming Language Basis of Secon@&@geon
Stack Computers. 21
3.1.2 PhilipJ.Koopman,Jr. 2 2

3.2 The Second Generation of Stack Computers 23

3.2.1 NOVIXNC4016 e e e e e 23
3.22 HarrisRTX-2000 23
3.2.3 Sh-BOOM (Patriot Scientific IGNITEI) 23
3.24 MuP21 25
3.25 F21 . . e e 26
3.26 CL8 . . . 26
3.3 RecentResearch. 26
3.4 Strengths and Weaknesses of the Second Generation 28
3.4.1 The NeedforIndex Registers 28
3.4.2 Stack ManipulationOverhead 28
3.4.3 Poor Support of ALGOL-like Languages cew 29
3.4.4 Reduced Instruction Memory Bandwidth and System Cbexnp ... 29
3.4.5 Fast Subroutine Linkage and Interrupt Response 29
I Qualitative Arguments 31
4 Distinguishing the First and Second Generations 33
4.1 Location of Stacks: In-Memory vs. In-Processor T 7
4.2 Use of Stacks: Procedure Nesting vs. Expression Evathat 35
4.3 Operations with Stacks: High-Level Language SupporPvinitive Operations 36
5 Objections Cited by Hennessy & Patterson 37
5.1 The Enormous Influence of Hennessy & Patterson on Computhitecture . 37
5.2 The Disappearance of Stack Computers (of the First@gasy 38
5.3 Expression EvaluationonaStack., 39
5.4 The Use of the Stack for Holding Variables 40
5.5 Distorted Historical Arguments 40
[l Quantitative Arguments 45
6 A Stack-Based Counterpart to DLX: Gullwing 47
6.1 BlockDiagram 47
6.1.1 Memory Subsystem 48
6.1.1.1 SingleMemoryBus 48
6.1.1.2 Differentiating Loads, Stores, and Fetches 48
6.1.2 Computation Subsystem 8 4
6.1.3 Control Subsystem 48
6.2 InstructionSet. L 49
6.2.1 InstructionPacking 49
6.2.2 FlowControl 49
6.2.3 Load, Store, and Literal Fetch 50
6.2.4 ArithmeticandLogic 05

6.2.4.1 Synthesizing More Complex Operations 51

6.2.5 Stack Manipulation 25
6.2.6 No-OpandUndefined 52
6.2.7 Instruction Format and Execution Example 53
6.3 State Machine and Register Transfer Description 54
6.3.1 Improvement: Instruction FetchOverlap. 56
Comparisons With DLX/MIPS 59
7.1 GullwingBenchmarks 59
7.1.1 Flight Language Kernel (Bare) 59
7.1.2 Flight Language Extensions (Ext.) 60
7.1.3 Virtual Machine (VM) 60
7.2 Comparison of Executed BenchmarkCode 61
7.2.1 Dynamic InstructionMix o 61
7.2.2 CyclesPerlInstruction 64
7.2.3 Memory AccessesPerCycle 5 6
7.2.4 InstructionsperMemoryWordo 67
7.2.4.1 Basic Blocks and Instruction Fetch Overhead 68
7.3 Behaviour of Iteration, Recursion, and Subroutineall 68
7.3.1 Measured Properties 8 6
7.3.2 Demonstrators L e 69
7.3.3 lterative Triangular Numbers 70
7.3.4 Recursive Triangular Numbers 72
7.3.5 Tail-recursive Triangular Numbers 74
7.3.6 SubroutineCalls 76
7.4 Pipelining 97
7.4.1 Transforming the DLX Pipelineto Gullwing 79
7.4.2 Altering the ISR to Deal with the Additional Latency 81
7.4.3 The Effect of Pipelining on Calls, Jumps,andthe CPI 83
7.5 Summary and Performance Comparison 84
Improving Code Density 85
8.1 Improving High-Level Code Density by Adding an InstiootStack 86
8.1.1 Side-Effects on Return Stack Manipulation 87
8.2 Implementation 88
8.3 Side-Effect on Code Size, Silicon Area, and Subroutimveread 88
8.3.1 The Instruction Stack as an InstructionCache 89
Conclusions, Contributions, and Further Work 91
9.1 Contributions a3
9.2 FurtherWork e 93

9.2.1 Reducing the DLX/MIPS Subroutine Call Overhead by iAdd&tacks 94
9.2.2 Reducing Gullwing’s Instruction Count with Compousiick Opera-
ONS e 96

9.2.3 Reducing Gullwing’s CPI by Executing Multiple Insttions using

Generalized InstructionFolding79
A Gullwing Benchmarks Source 99
A.1l FlightLanguageKernel 99
A.1.1 Internal Variablesand MemoryMap 99
A.1.1.1 CountedStrings o 100
A.1.2 Utility Functions 01
A.1.3 StringFunctions 110
A.l.4 InputFunctions 210
A.1l5 NamelLookup. e 103
A.1.6 Function Definition Functions 104
A.1.7 Compilation Functions 106
A.1.8 Inline Compilation 04
A.1.9 MainLoop 108
A.1.10 Decimal to Binary Conversion 109
A.2 Flight Language Extensions imu. 109
A.2.1 Making the Flight Language More Tractable110
A.2.2 Interactively UsableOpcodes 112
A.2.3 Basic Compiling Functions 112
A.2.4 Terminal Control Characters 113
A.2.5 Conditionalsand Comparisons 113
A.2.6 Code Memory Allocation 511
A.2.7 String CopyingandPrinting 115
A.2.8 De-Allocating Functions 116
A.2.9 Unsigned Multiplication and Division 117
A.2.10 Binary to Decimal Conversion 118
A.2.11 Simple FibonacciExamples 119
A.2.12 StaticVariables oo 120
A.2.13 AccumulatorGenerator 121
A.2.14 Fibonacci Generator 121
A.2.15 Caesar Cipher Generator 122
A.2.16 Higher-Order Function(Map) 124
A.3 VirtualMachine 125
A31 VM . e 125
A.3.2 Metacompiler L 131
A.3.3 Self-hostedKernel 351
A.3.4 Flight Language Extensions 140
B Static and Dynamic Gullwing Code Analyses 141
B.1 StaticAnalyses 141
B.1.1 MemoryUsage 141
B.1.2 Rangeofliterals 214
B.1.3 Rangeof Addresses. 214
B.1.4 Instructions per InstructionWord L. 143

X

B.1.5 |InstructionDensity o 143
B.1.6 Compiled InstructionCounts 144
B.2 Dynamic Analyses 451
B.2.1 OverallExecution 514
B.2.2 Executed InstructionCounts 145
B.2.3 Average CPl 147
B.2.4 InstructionTypes e 471
B.2.5 BasicBlockLength., 814
B.2.6 DataStackDepth 149
B.2.7 ReturnStackDepth. 015
Bibliography 151

Xi

Xii

List of Tables

5.1

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18

9.1
9.2
9.3

B.1
B.2
B.3
B.4
B.5

Comparison of Citations of Computer Architecture Téatsof Fall 2004) . . .

Gullwing Flow Control Instructions
Gullwing Load and Store Instructions, ..
Gullwing ALU Instructions e
Gullwing Stack Manipulation Instructions
Gullwing No-Op and Undefined Instruction

Compilers Dynamic Instruction Mix
Interpreters Dynamic Instruction Mix
DLX CPI with Load and Branch Penalties
Gullwing CPI by Instruction Type
Gullwing Memory Accesses Per Cycle (Total) . . C e
DLX/MIPS Memory Accesses Per Cycle Caused by Loads amdz§t
Triangular Iterative Code Comparisono ...
Iterative Dynamic Instruction Mix
Triangular Recursive Code Comparison e e e e e e
Recursive Dynamic Instruction Mix
Triangular Tail-Recursive Code Comparison o o o
Tail-Recursive Dynamic InstructionMix
Add2 Code Comparison e
Add2 Dynamic Instruction Mixo e
Add3 Dynamic Instruction Mix L e
Add3 Code Comparison i
Add4 Dynamic Instruction Mix L e
Add4 Code Comparison e

Synthesized Stack Operations on MIPS with Stacks
Recursive MIPS32 Instruction Distribution With and Wdut Stacks

Triangular Recursive MIPS32 Code Comparison With anih®vit Stacks . . .

Compiled Flight Code Memory Usage
Range of Literals by Absolute Value
Range of Addresses by AbsoluteValue,
Instructions per InstructionWord 0L
InstructionDensity e

75

76
76

e
78
78

B.6 Compiled InstructionCounts 144

B.7 OverallExecution 145
B.8 Executed InstructionCounts e 146
B.9 Average CPIl e 714
B.10 Instruction Types e 147
B.11 BasicBlockLength 148
B.12 Data Stack Depth 149
B.13 Return Stack Depth 150

Xiv

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2

4.1
4.2
4.3

6.1
6.2
6.3

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

8.1
8.2
8.3
8.4

9.1

Evaluation of Polish Notation expressiops-552 8
Fig. 1 from Bauer and Samelson German Patent #1094019 9
Programming model forthe Zusez4 11
KDF9 Q-Store Layout e 21
KDF9 Block Diagram 31
B6900 Top-of-Stack and Stack Bounds Registers 15
B7700 Stack Buffer and Stack Memory Area . 15
Comparison of B6700 and ICL 2900 stack mechanlsms 16
HP3000 Stack Registers 17
NC4016 and RTX-2000 Block Diagrams 24
IGNITEIBlock Diagram i 25
First-Generation Stack Computer Block Diagram 34
General-Purpose Register Computer Block Diagram 34
Second-Generation Stack Computer Block Diagram 35
Gullwing Block-Level Datapath 47
Gullwing Instruction Shift Register Block Diagram a7
Gullwing Instruction Format L. 53
DLX Pipeline Block Diagram 79
Gullwing Pipeline Block Diagram wu.. 80
Gullwing Pipeline Operation 81
Gullwing Load/Stores Pipeline Diagram 81
Gullwing ISR Modified for Pipeline 82
Gullwing Instruction Fetch (with Overlap) Pipeline Qram 82
Gullwing Instruction Fetch (without Overlap) Pipelibeagram 83
Gullwing Taken Jumps or Calls Pipeline Diagram 83
Gullwing High-Level Code with Unavailable Slots 85
Instruction Stack During Call and Return e e 86
Gullwing High-Level Code with Available Slots 86
Instruction Stack During>RandR> 87
MIPS Register Filewith Stacks 94

A.1 Flight Language KernelMemoryMap
A.2 Counted StringFormat

XVi

List of Algorithms

©Ooo~NOoOUIThWwWNPE

Gullwing Synthesis of Subtraction and Bitwise OR

Gullwing Synthesis of Multiplication (4x4)
Gullwing Flow Control Instructions
Gullwing No-Op and Undefined Instructions
Gullwing ALU Instructions
Gullwing Load and Store Instructions
Gullwing Stack Instructions
Gullwing ALU Instructions with Instruction Fetch Overlap.
Gullwing Stack Instructions with Instruction Fetch Owgrl.
Gullwing No-Op and Undefined Instructions with InstroatiFetch Overlap . .
Triangular Iterative C Source e
Triangular Iterative MIPS32 Assembly
Triangular Iterative Gullwing Assembly
Triangular Recursive CSource v i i ittt i,
Triangular Recursive MIPS32 Assembly
Triangular Recursive Gullwing Assembly
Triangular Tail-Recursive C Source

Triangular Tail-Recursive MIPS32 Assembly

Triangular Tail-Recursive Gullwing Assembly

Add2C Source
Add2 MIPS32 Assembly L
Add2 Gullwing Assembly L
Add3CSoUrce e
Add3 MIPS32 Assembly
Add3 Gullwing Assembly L oL
Add4 CSource e
Add4 MIPS32 Assembly
Add4 Gullwing Assembly L L oL
Alterations to Gullwing to Support an Instruction Stack

Triangular Recursive MIPS32 Assembly with Stacks Added
Gullwing Compound Stack Operations
Example Gullwing Instruction Sequence Using Generdlzading

XVii

Xviii

Chapter 1

Introduction

| first learnt about stack computers in 2000 while working abmputer manufacturer where
co-workers introduced me to the Forth programming languagstack-based programming
environment. Soon after, while looking for a suitable pgswr for a homebrew computer
system, | came across a mention of the MuP21 [MT95] in the EXdEmbedded Processor
and Microcontroller Primer and FA®

The MuP21 was designed by Chuck Moore, the inventor of Fontith the
MuP21, Forth can compile into machine code and still be Fdrtlcause the ma-
chine code IS Forth. The MuP21 freaks out at 100 MIPS whilesaaring only 50
milliwatts. Not only that, the chip includes a video generahas only about 7000
transistors (that’s right, 7000 and not 7,000,000), andscaisout $20.

The assembler on this chip is a sort of dialect of Forth, asR& is modeled
after the Forth virtual machine. MuP21 is a MINIMAL Forth eng. [...] The
CPU programs the video generator and then just manipulagegideo buffer. It
is composite video out, so it only needs one pin. MuP21 is a9 pin chip.

I'd never heard of anything like it. It was smaller and fastend its machine code was a
structured language! | was hooked. Understanding this tfgeardware and software be-
came a hobby that ultimately led me to pursue a Universityakegn the topic. However, |
couldn’t simply take a Computer Engineering degree siniekimd of computer is virtually
non-existent in the mainstream literature and totally abfem the curriculum. Therefore, |
had to create one under the aegis of the Independent Stig)ge¢gram.

The IS program is a self-directed course of study guided atigtet by a Faculty Adviser
and composed of a combination of Independent Study Unitsregualar courses. After two
years of study (typically), a student petitions to entersisi€®hase and if approved, spends a
year developing a thesis on a selected topic. A successithpleted thesis grants the degree
of Bachelor of Independent Studies (BIS). Overall, IS beame resemblance to graduate
studies than undergraduate ones.

The structure of this thesis reflects the directions | hakerniahroughout the 1S program.
| began with broad historical explorations of stack ardtitee and programming languages,
complemented by regular engineering courses on digitaésys computer architecture, and

1Copyright (c) 1997 by Russ Hersch, all rights reserved.:Mitp/w.fags.org/fags/microcontroller-fag/primer/

1

integrated circuits. These efforts eventually conceattain defining, simulating, program-
ming, and partially implementing a particular stack congpwesign. In this thesis, | leave
aside the issues of programming language design and VLSementation to focus on the
architecture of the computer itself.

1.1 Research Goals

A stack computer performs its operations not upon a randaadgssible set of registers, but
upon a simpler, linear list of such. This list is convenignilewed as a pushdown stack with
the visible registers at the top. Since virtually all arigttm and logical operations are either
unary or binary, at a minimum the top two elements of a staddrte be accessible. The
operations implicitly access these locations for operamdsreturn values. The stack can be
used for evaluating expressions in the manner of ReversshRgbtation and also for storing
a chain of activation records (stack frames) of nested suines.

The main problem in reasoning about stack computers ishtbaetusually mentioned in the
computer architecture literature, the first generationetlmeen superseded. They were popular
due to their efficient use of hardware, their natural apfbcetowards algebraic computation,
and the ease with which they could be programmed. Althoughisticated, they were eventu-
ally flatly outperformed by the new VLSI microprocessord tteme out of the Berkeley RISC
[PS81] and Stanford MIPS [H382] projects. The first generation of stack computers can be
defined by its support for High-Level Language, mainly ALGQLhis required in-memory
stacks primarily used to allocate storage for nested prgesgdand encouraged a large instruc-
tion set which attempted to match the semantics of ALGOLatlosThe goal was to make
programming easier in the absence of good compilers.

The second generation of stack computers arose just asstkadied away. These comput-
ers had simple hardware, high code density, fast subrolinikege and interrupt response, but
garnered little attention since they were aimed at embedgga@ms instead of general-purpose
computing. This separated the second generation from tirestream of processor design and
caused it to become confused with the first generation,dudiscouraging work. The second
generation of stack computers can be defined by its suppothéoForth programming lan-
guage. It defines two stacks, Data and Return, which are aepgaom main memory and not
randomly addressable. The Data Stack is used to evaluatessxpns and pass values between
procedures in a functional manner. The Return Stack hoklestturn addresses of subroutines
and can also act as temporary storage. The small instruséibis mostly composed of Forth
primitives, which are simple stack manipulations, loadd atores, and basic arithmetic and
logical functions similar to those found in conventionajisger-based computers.

The purpose of this thesis is to argue for a distinction ofksteomputers into first and
second generations. | do this by recapitulating the evatutif stack computers, revisiting
old arguments against them, and comparing the design of a&lnsedond-generation stack
computer to a modern computer architecture. Given thiesed view, | hope to fill the
gap in the literature about stack computers and uncover gagresting avenues in computer
architecture.

1.2 Thesis Outline

This thesis is divided into three major parts: a HistoricaliRw, Qualitative Arguments, and
Quantitative Arguments. The first and third may be read ieddently. However, the second
part depends on the background provided by the first and sostgul by data from the third.

1.2.1 Part|: Historical Review

Current computer literature only briefly touches upon stachitecture, always from the first
generation, and usually as an introductory contrast tostegbased computers. Chapter 2
provides a more detailed summary of the history of the peapkk machines that make up
the first generation of stack computers, starting with theirceptual origins and ending with
the main reasons for their downfall. It uncovers two diffareindamental approaches to the
design of stack computers: support for the ALGOL prograngiamguage, and composition of
functions. This difference turns out to be the main critetior distinguishing first-generation
stack computers from second-generation ones.

Chapter 3 contains an overview of the second generatioraok stomputers. It focuses
on the latest wave of such machines which originated withwitwk of Charles H. Moore and
were extensively studied by Philip J. Koopman. It gathegetber the scattered publications
on the subject and also much information that was never filyrpablished.

1.2.2 Part ll: Qualitative Arguments

Before any comparison can be made between second-genestdzk computers and current
register-based computers, the confusion about stack demspin the mainstream literature
must first be addressed. Chapter 4 proposes a set of thregactd divide stack computers
into a first and a second generation. They concern the lacafithe stacks, their purpose, and
the operations done upon them. Stacks in a second-gemecatioputer resemble registers
used for calculations and parameter-passing, while tlokstaf a first-generation machine are
effectively call stacks holding procedure activation melso

With these criteria and the historical data in mind, Chaptexddresses the arguments
against stack architectures cited by Hennessy & Patteidoese arguments are found to rely
on outdated assumptions about compiler and hardware tegyn@nd have also been dis-
torted through secondhand citations. The original argusare cited, and found to be much
less critical of stack architectures than suggested by eksyn& Patterson.

1.2.3 Part lll: Quantitative Arguments

Given that past arguments have been found lacking, the casopdetween second-generation
stack computers and current register-based computers nedzk revisited. Chapter 6 de-
scribes in detail the design of a small, modern stack compuéhitecture, named 'Gullwing’,
along with a simple optimization to its instruction fetchechanism which makes practical the
use of a single memory bus for both instructions and data.

Chapter 7 compares Gullwing to the DLX and MIPS processoesl @s demonstrators
by Hennessy & Patterson. The processors are compared vgthgaje benchmarks and with

3

low-level analyses of how they execute iterative, recdi@il-recursive, and nested subroutine
code. The issue of pipelining Gullwing is explored as a ti@amsation of the DLX pipeline.
Gullwing is found to have a definite advantage at subroutatle @nd memory bandwidth, but
is unfortunately architecturally equivalent to a DLX preser without load or branch delay
slots, with the same penalty to performance.

Chapter 8 addresses Gullwing’s inefficient usage of memmridlding compiled code by
adding a third stack to temporarily hold instructions dgrsubroutine calls. This new archi-
tectural feature will increase the density of code to theimar possible value and accelerate
returns from subroutines.

Finally, Section 9.2 outlines the addition of stacks to a Blfifocessor, without altering the
pipeline or instruction set, in order to give it the efficisntbroutine call mechanism of a stack
computer. This section also introduces the addition of t@ronk of parallelism to Gullwing:
one which reduces its instruction count with compound stgerations, and the other which
reduces its CPI by overlapping the execution of instrution

Appendix A provides the source to the Flight language keamel the software used to
benchmark Gullwing. Appendix B contains the tabulated ratadrom the analyses of the
dynamic and static properties of Gullwing machine code.

Part |

Historical Review

Chapter 2

History of the First Generation of Stack
Computers

| present here the first generation of stack computers indh&egt of the pioneers of the field
and of the machines that followed their insights. | dischgsdrganization and design goals of
these computers, their shortcomings, and ultimately tlepilacement by RISC designs.

2.1 Lukasiewicz and the First Generation

The idea of using stacks for computation seems to have aztimdependently, in slightly
different forms, to several people worldwide within an vt of about a decade. It is difficult
to tell if they were aware of each other’s work at the time. Biheless, there seems to be a
chronological order to the discoveries.

2.1.1 Poland: Jan Lukasiewicz (1878-1956)

In 1929, while a professor at Warsaw University, LukasiemecoteElements of Mathematical
Logic [Luk29]. In it he introduced a parenthesis-free notationdathmetic and logic which
eventually became known as Polish Notation or Prefix Natatiis main feature is that it
makes the order of operations explicit, contrary to the Lelgabraic notation (correspondingly
called Infix Notation) which depends on a knowledge of omeratecedence and the use of
parentheses to override it where necessary.

For example, the expressidh + 5)/2 requires the use of parentheses to specify that the
result should bé and not7.5 due to the higher precedence of the division operator. Thaeq
alent Prefix expression+ 55 2 is unambiguous and can be evaluated left-to-right by leavin
the application of an operator pending until enough opesamd available. The alternative in-
terpretation of the infix expression would be written in prefotation as+ /5250r+5/52.
Figure 2.1 shows how the expression is evaluated one syrhadiae. It is easy to see how the
operators and operands could each reside in separate stdikisey are respectively executed
or consumed.

/
/+
/+5
/+55
/10
/102
5

Figure 2.1: Evaluation of Polish Notation expressjon 55 2

2.1.2 Germany: Konrad Zuse (1910 - 1995)

The case of Konrad Zuse is unusual. He did his work privateliside of academia or industry,
and it was destroyed multiple times during the World War iraids on Berlin. He also did not
base his work on Lukasiewicz, but appeared to have come tosthef a stack out of simple
engineering need. He constructed a series of computersiaasing capability, arriving at
the stack-based Z4 in 1945, predating all other stack coenpbly at least 15 years [BFPB97,
10.3]. Unfortunately, except for the various machines poadl up to 1969 by the Zuse KG
company, there are no architectural descendants of the @érmany or abroad.

2.1.3 Germany: Friedrich Ludwig Bauer (1924-)

The earliest known mechanical realization of Lukasieveicgdea was Bauer's STANISLAUS
relay calculator [Bau60], first conceived in 1950/1951 nitezged out of the desire to mechan-
ically test the well-formedness of formulae. The publicatof this achievement was delayed
by the need for secrecy while patents for the evaluation atetiere filed in Germany, the
United States, France, the United Kingdom, and Sweden [BSd][BSa][BSb]. Figure 2.2
shows Fig. 1 from the original German patent, clearly shgven 'OperationsKeller’ (Opera-
tions Cellar) and a 'ZahlKeller (Number Cellar) used to lexdie Polish Notation expressions.
The method is also discussed in a paper published after teatpavere filed in 1957/1958
[SB60].

This 'cellar principle’, now referred to as the stack prilei, made its way into a proposal
for an International Algebraic Language [Car58, BBRS58&snatural method for the block
structure of storage allocation for subroutines [Bau9(jisTanguage evolved into ALGOL
60 [BBG"60]. Its use of a dynamic stack to support subroutine nestitgrecursion has since
become the dominant organizing principle of programmimgyisages. It is important to note
that the support of this structure is one of the hallmarksrst-fieneration stack computers
(Figure 4.1).

In a recent talk [Bau02, BD02], Bauer mentioned some othgearances of the stack
principle:

Hardware cellars, stacks, and pushdown stores have been discusssthele,
possibly as early as 1947 by Alan Turing, certainly in 194Hayry D. Huskey

8

in connection with the ZEPHYR (SWAC) computer and in 1956 bifléfh L.
van der Poel in connection with the design of the MINIMA cortgyuin all cases
presumably for the treatment of return jumps in subroutifies]

ZEICHNUNGEN BLATT 1 AUSGABETAG: 1. DEZEMBER 1960 DAS 1094019
‘KL.42m 14
mrernaT. kL. G 06 £

J 6

L

! |

I | Vor- | A

[| ent |

| [schlitssler. "

| | o]

: la |

' [

LYYy _ _ |]

» T LB
— erationskeller (O Rechen~——0]| Zahl-
3716 i i werk 3 Keller
Ta.stenfgld 1 0 ," —
" 2 — -
Schyeithwerk

Fiq.’l

Figure 2.2: Fig. 1 from Bauer and Samelson German Paten#@1@9

2.1.4 Australia: Charles Leonard Hamblin (1922-1985)

Facing the tedium of the programming systems of the time, Iliamdependently discovered
the importance of Lukasiewicz’s work for expressing foramubut took it into a slightly differ-
entdirection. Also, because of the secrecy during the prefperiod of Bauer and Samelson’s
patents, he could not have known of their work.

The key change Hamblin made was reversing the order of tlatiani placing the operands
before the operator. This reverse Polish’ notation keptdperators in the same order as in the
original infix notation and removed the need for delayingapplication of an operator since it
would arrive only after its operands. This made straightéod the translation of an expression

9

into a sequence of machine instructions. For example, theesgion(5 + 5)/2 is expressed
unambiguously as5 + 2/, while the alternative interpretations (assuming no piueses)
would be writtena$ 2 / 5+ or552 / +. Furthermore, only a single stack is required since the
operators are never waiting for their operands.

Hamblin expanded upon this insight in a pair of 1957 papesasibl7a][Ham578]reprinted
[Ham85]). In summary:

It is now possible to visualize the general shape a machisguled to use such
code might take. It would have a 'running accumulator’ anelstmg register’ as
described, and a number-store arranged on something kkpatiern indicated,

[..]

The running accumulator is a stack and is equivalent to Badlaimber Cellar. The nesting
register is of the same structure but holds the return adesasf subroutines. This separation
of evaluation and flow-control into two stacks, which areoadsparate from main memory, is
the main architectural feature of second-generation stackuters (Figure 4.3).

Some employees of the English Electric Co. were present \aemblin delivered his first
paper [AlI85][Dun77]. They integrated his ideas into the@ixt computer, the KDF9.

2.1.5 USA: Robert Stanley Barton

Just as the Bauer and Samelson patents were being grantéoh BEso independently came
to the same conclusions about the application of Lukas@sviwork [Bul77]. In 1959, he
proposed the design of a stack-based computer to be progrdremtirely in ALGOL [Bar61a]
(reprinted [Bar87]) [Bar61b][Bar61c]. The proposal tookrh as the Burroughs B5000, which
became the archetypal first-generation stack computegrmlesi

Barton acknowledged the work of Bauer and Samelson, butstehave not known about
Hamblin’s work at the time. This, and the focus on directlpgorting ALGOL, might explain
the use of a single stack (per process) in the B5000.

1This is a slightly abridged form of the first paper.

10

2.2 The First Generation of Stack Computers

There were many more machines of this type than those I'venerated here. I've mentioned
the ones that are directly linked to the people of the pres/gmction or which have been notable
in industry. A much larger list can be found in Koopman'’s b@i&o89, App.AJ.

2.2.1 ZuseZ4

The Z4 is too simple to fit into either the first or second geti@naof stack computers, not
being a stored-program machine, but it is the earliest omsvkrand thus deserves mention.
Originally built in 1945, it was damaged during World War &ind later rebuilt in 1950. It
currently resides in the Deutches Museum in Munich, Germany

Like many of Zuse’s computers, the Z4 was designed to peréargineering calculations.
Its program was read from a punched plastic faped it included a second tape reader as a
form of subroutine call. Its ingenious mechanical main mgnteld 64 32-bit floating-point
numbers which could be loaded into a stack of 2 elementsatgrbupon, and then stored back.
It supported a full complement of basic arithmetic operagioncluding square root and some
built-in constants such as Its 8-bit instruction format was zero-operand, with ompe@nd
loads and stores for direct addressing of memory. No addrasslations or access to the
stack pointer were possible. It supported conditional ,s$&fp, and call instructions. Figure
2.3 shows the programming model for the Z4. It is a simplifiggroduction from Blaauw and
Brooks’ book [BFPB97, fig. 10-29].

Memory Data
| Op
'y

Stack Level —> AL
Stack Level }—» U

Figure 2.3: Programming model for the Zuse Z4

2ysed movie film, in fact!

11

2.2.2 English Electric Co. KDFS

The design of the KDF9 (Figure 2.5) [Eng63, fig. 2] was ingping Hamblin's first paper on
stack-based computing [Ham57a] and thus uses a pair ofsstacks operation. The Nesting
Store was a 19-deep hardware stack, with the top two elenaisiitde to the Arithmetic Unit,
upon which expressions were evaluated. The Sub-Routing@ Nesting Store was similar,
but only 16-deep with only the top-most element visible.thei of these stacks extended into
main memory. All storage locations were 48 bits wide.

A third set of 16 stores, named 'Q -Stores’ (Figure 2.4) [KIRFfg. 9], were used for
random access storage, address modification, loop couatidd/O operations. The first store,
QO, was a read-only zero register. The remainder were aisedt as single 48-bit registers,
or triads of 16-bit registers, with direct or accumulatiterage. The 16-bit sub-registers could
also be used respectively as modifier, increment, and couAte access to main memory
could have its address augmented by the modifier. Afterwdhdsmodifier could then be
incremented by the increment and the counter decrementedéayWith a jump instruction to
test the counter, this made for efficient loops and arraygesiag. The counter of a Q-Store
could also hold the amount of positive or negative shift faftsnstructions. Finally, a Q-Store
could hold a device number and the start and end addressesudain memory in preparation
for an automated I/O operation.

The English Electric Co. went through a series of acquisgtiand mergers, eventually
forming International Computers Ltd. in 1968 [Lav80]. Hoxee by then their focus seemed
to have changed to competing with Burroughs’ B5000 serieslBN’s System/360 [Dun77]
and so the dual-stack approach, and the KDF9, was droppigelgnt

The KDF9 is an oddity. Historically, itis a first-generatistack computer. However, based
on the distinguishing criteria for first and second-genenastack computers (Chapter 4), it
falls squarely into the second. Had it not been discontintieglfirst and second generations
might have existed in parallel.

Q-STORE : STORAGE OF 48-BITS

(TOTAL NUMBER OF Q-STORES: 15)

g -
ADDRESSABLE 16-BIT ADDRESSABLE 16-BIT ADDRESSABLE 16-BIT
HIGH-SPEED STORE HIGH-SPEED STORE HIGH-SPEED STORE
OR ACCUMULATOR OR ACCUMULATOR OR ACCUMULATOR

ADDRESSABLE 48-BIT HIGH-SPEED
STORE OR ACCUMULATOR

Figure 2.4: KDF9 Q-Store Layout

3The variations 'KDF.9’ and 'KDF-9’ are also used.

12

The Basic KDF 9 System

INPUT/OUTPUT
BiFER PAFER
Sine TAPE
ZEAERS PRCHES

MAIN STORE :)- e

SEEEEEEEEE®) s

—— o U AmTRGTIC UNT
C——— oomomams WDl NETFING N
Q QSR

-m.e * ADDRESSES SINS SUBROUTINE JUMP NESTING STORE
FIGURE 2 _

Figure 2.5: KDF9 Block Diagram

13

2.2.3 Burroughs B5000 and later models

The B5000 spawned an entire series of stack computers nadidaat the direct and efficient
execution of the ALGOL language. They were complex mulijessing systems with tagged
memory and descriptors for primitive data types and autmmmaanagement of subroutine
parameters. | will concentrate here on the design and useedingle, in-memory stack that
governed the execution of a program. This feature is esdgntinchanged across the entire
series.

Figure 2.6 shows the implementation of the stack in the BGB0081, Sec.3]. The stack
memory area is delimited by the contents of the Bottom OfIS{BOS) and Limit Of Stack
(LOS) registers. The current subroutine area is indicatethb F register which points to
a Mark Stack Control Word (MSCW). This word contains the eahinformation necessary
to return to the subroutine’s caller. The topmost stack el@nm use is pointed to by the S
register.

The A and B registers are a working cache for the top of thekstad are connected to
the ALU. They are extended by the X and Y registers for dogioéesision calculations. Their
contents are loaded and unloaded as required by each @peraprogress and so their entire
operation is transparent to the program. They are not pateostack proper since they are
flushed whenever the top of the stack is altered by some aperauch as a subroutine call,
and so cannot be used to pass parameters.

The B7700 added a 32-entry circular stack buffer betweem ma&mory and the A and B
registers (Figure 2.7) [Bur73, Sec.2]. This is a genuinédotihat is transparent to the program,
and is only flushed if the processor registers (includingShg&, LOSR, and BOSR registers)
are altered with a SPRR (Set Processor Register) or a MVSTW€Mo Stack) operation, or
in the case of an atomic memory exchange with the top of thek sising RDLK (Read With
Lock).

Both computation and subroutine linkage were done on the saack in a manner specif-
ically designed to support the structure of the ALGOL progmaing language. When a sub-
routine or nested block of code was to be entered, a MSCW veaeglon the stack, followed
by the parameters to the subroutine, followed by a Returntrébword (RCW) which saved
the condition flags, amongst other things. The local vagsbihd temporary values were then
allocated above all this. Only at this point could the EnteNTR) operator be executed to
enter the subroutine.

In 1986, the Burroughs Corporation merged with the Spermp@ation into the Unisys
Corporation [Ros87]. The B5000 series of computers corsirin the company’s ClearPath
line of mainframes.

14

-
INPUT/ r TOP-OF-STACK REGISTER —I
OUTPUT
PATHOFDATA *—] A 11 x]
TO STACK I
HARDWARE
REGISTERS 9 I
| G I
) L ‘ 2
~ £
(T WORDNnNtx
STACK AREA
)
STACK TO PROGRAM T0S WORD
MEMORY |
ARea MOST RECENT MSCW
STACK AREA - T
CURRENTLY f——
IN USE [Ll STACK LIMIT REGISTER '
— LOS F |
L l WORDn - { sos J
L €1
MV 1593

Figure 3-1. Top-of-Stack and Stack Bounds Registers

Figure 2.6: B6900 Top-of-Stack and Stack Bounds Registers

PROCESSOR MAIN MEMORY
LOCAL IC MEMORY

EXECUTION
v p-
TOP OF
STACK [T] COMPUTE
OPERANDS HARDWARE
(A AND B)
INPUT/OUTPUT
PATH OF DATA
TO/FROM STACK
T——T —— T0S WORD\¢— .
smox Sort T
BUFFER
AREA _*_‘ 1 STACK
T o [
IN CORE ASSIGNED
TO
e PROGRAM
STACK
BUFFER
STACK STACK
MEMORY AREA
AREA CURI:EUNSTELV
REGISTERS [—
LINKING
CORRESPONDING
POINTS IN
STACK &
STACK BUFFER
o
oias
Figure III-1-12. Stack Buffer and Stack Memory Area
3-39

Figure 2.7: B7700 Stack Buffer and Stack Memory Area

15

2.2.4 International Computers Ltd. ICL2900 series

The ICL2900 series, introduced in 1974, was fairly simitattte Burroughs computers save for
a lack of tagged memory and a different approach to the udeedtack. Its design is derived
from the Manchester MU5 [IC78]. The ICL computers were acolator-based with a stack
that was explicitly referenced by the programmer. FiguBeshows a comparison between the
stacks of the B6700 and the ICL2900 [Dor75a]. The top thraekstlements were buffered in
registers [Dor75b, Chu75].

special

registers
{transfers

(transfers ¢ programmed)
automatic) top i
S‘} of {.SF
stack :
\\ ,/
stacks
in
] memory !
a/ B6700 b/ ICL2900

fig.3 Arithmetic stack mechanisms

Figure 2.8: Comparison of B6700 and ICL 2900 stack mechagism

16

2.2.5 Hewlett-Packard HP3000

The HP 3000 series was originally introduced in 1972. Itnsilsir to the Burroughs computers,
but has been simplified to support real-time response [M¢IS8680]. Figure 2.9 shows the
structure of its stack. The main difference lies in the us¢heffour-element circular stack
buffer. Unlike the B7700, the current top two elements of steck buffer feed the ALU
directly and the S register points to the current head of tifeebinstead of main memory.
Like the Burroughs computers, the buffer is managed auioaigtand flushed on subroutine
calls [Bla77]. In later models (Series 68), the stack buffas expanded to eight elements
[Hew84, pg.86]. This series of computers was being sold bylete-Packard, under the name
'e3000’, up until November 2001.

STACK DATA
SEGMENT OF
THE CURRENT
PROCESS

4 TOP-OF-STACK

CPU REGISTERS ‘
/ 1 %

%
No. CPU REGS VALID :
S = SM + (SR) /A
(ToPOF sTACK) '\ MEMORY LOCATION OF LAST
VALID STACK WORD IN MAIN
MEMORY

Figure 7. Stack registers extend the stack in memory.
Figure 2.9: HP3000 Stack Registers

17

2.3 Shortcomings and Disappearance of the First Genera-
tion

During their heyday of about 20 years, stack computers weite gossibly the most sophis-
ticated general-purpose computers available. But insptot, they had several glaring short-
comings which were endemic in machines of the time.

2.3.1 Explicit High-Level Language Support

The idea of directly supporting a high-level language indiagare seems downright baroque
today. In hindsight however, there were some constraiets that have since vanished:

e Compilers were primitive, and took up a lot of the availablemory.

e The machines were slow, leading to long compilation timedy to end up with sub-
optimal code!

e Since code was written mostly by hand, and programs weragetirger and harder to
write (including compilers), supporting a high-level large helped the programmer.

These led to two major features: hardware support for thewtia models of structured
languages such as ALGOL, and the integration of complextfons in the instruction set,
implemented as microcode, making it easier to program thgpcter directly.

These features became weaknesses over time. A computgneeégp execute one lan-
guage well would perform poorly with another [Org73, ch.@|s compilers improved they
generated simpler subroutine linkages that did not matelfulh-featured built-in ones [HP02,
2.14]. The compilers also could not use the complex ingoastprovided. Finally, the mi-
crocode for these computers had itself grown to the poinhafanageability [Pat85] (reprinted
[Pat86, FL86]).

Eventually, compilers became able to effectively redugidhevel languages features into
series of simple operations, and the RISC computers thatfetl were designed in that light.

2.3.2 The Rise of RISC

The first generation of stack computers began to fade awdyeirearly 1980’s with the ad-

vent of the Reduced Instruction Set Computer (RISC) desilhe combination of advances
in compilers, hardware speed, and integration forced aimviof the approaches used to im-
prove the performance and reduce the costs of the hardwdrtharsoftware. The combined
end-results flatly outperformed the first generation oflstammputers while also efficiently

supporting high-level languages.

18

e Ditzel and Patterson criticized the original argumentsHagh-Level Language Com-
puter Systems (HLLCS) [DP80] (reprinted [DP86, FL86], aldPp8b] with updated
comments [DP98a]), and conclude that."almost any system can be a HLLCS through
the appropriate software.”. They also wrote an overview of the arguments for reduce
instruction sets [PD80].

e Patterson later wrote an extremely broad article on th@featand successes of the early
RISC experiments, including software measurements angit@ntechniques [Pat85]
(reprinted [Pat86, FL86]), and advocates taking implemgon as a factor in computer
architecture.

e At Berkeley, Patterson and Sequin headed the RISC | and RIBfjects as one ap-
proach to RISC designs [PS81] (reprinted [PS98a] with wgl@bmments [PS98b]).
The fine details of their implementation were presentedehD thesis of one of their
students, Manolis Katevenis [Kat85].

e One of the premises of RISC design is that the hardware ansbfhware must be con-
sidered together. Hennessy and Jouppi measured the leMéatures of software and
proposed some architectural guidelines to support thehmowitthe pitfalls of past high-
level language support. These included the use load/store architecture and the ab-
sence of condition codes”. [HIB™82]. These data guided the Stanford MIPS project
[HIPF82].

e The major technological change of the time was the emergeinery Large Scale In-
tegrated (VLSI) circuits which made possible the impleradoh of an entire processor
on a single chip. The various approaches to integratedtaotbre are discussed by
Hennessy [Hen84] (reprinted [Hen86, FL86]).

2.3.3 Excessive Memory Traffic

Without an optimizing compiler, a requirement for the egplsupport of a structured, high-
level language was the use of an execution stack in main memstead of registers in the
processor. This increased traffic to main memory, which washslower, and further drove
the development of complex microcoded instructions tocagcessing it.

For example, passing parameters to a subroutine requidngpvalues from a location
in the caller’s stack frame to one in the callee’s frame, asitating a memory read and a write
for each parameter. Local variables and temporary values aleo on the stack since there
was no location in the processor to store them, further asirgg memory traffic. In the case
of the Burroughs computers, the use of a single stack meansthbroutine parameters were
buried under the return address and other subroutine lenikdgrmation. This meant that they
could not be used directly for computation without explicads into the top of the stack.

In later stack computers, some registers were used to bb#eiop of the stack, but their
small number (four or less) limited their usefulness to hmddntermediate results of algebraic
expressions. The subroutine linkage conventions reqtiredegisters to be flushed whenever
a subroutine was called and so they could not be used to paas\@&rs. The Burroughs

19

B7700 was likely the only first-generation stack computexddress this problem by including
a genuine 32-entry buffer (Figure 2.7) for the top of thels{&ur73, pg.3-36] .

2.3.4 The Need for Index Registers

Stack computers execute iterative code poorly compareenergl-purpose register comput-
ers. Random-access registers can hold the loop indicesterchiediate results for immediate
access. On the other hand, a stack computer must temparaug values off the top of the
stack to access any index or result that isn't the most imatedit is the source of enormous
overhead whether or not this generates memory traffic ardedgmurpose index registers have
to be used to reduce it. All first-generation stack computersided some form of index reg-
ister:

e The KDF9 was the first to do so by including the Q-Stores [Ha(ERjure 2.4). They
were abundant (16) and could be also used as general-pugmpsters.

e The B5000 series encoded loop counts in special instrugtisimch as BEGIN LOOP
(BLP), END LOOP (ELP), and JUMP OUT LOOP CONDITIONAL (JLC)hich re-
used some internal registers to hold addresses while ireCtemModé [Bur63] [Bur67].

e The B7700 added a vector mode of operations in which the ifateane loop and the
addresses and increments for up to three arrays were stosegarate internal registers
So as to free the stack for computations [Bur73, pg.3-112].

e One of the three top-of-stack registers of the ICL 2900 cbeldsed as an index register
[Dor75a].

e The HP 3000 series had a single index register (X) to suppopd [Hew84].

4Character Mode processed 6-bit Binary-Coded Decimal nusnhbdile Word Mode processed binary 48-bit
numbers.

20

Chapter 3

History of the Second Generation of Stack
Computers

In this chapter, | present the second generation of staclpuaters in the context of the pioneers
of the field and of the machines that followed their insightdé.the same time that the first
generation of stack computers was fading away in the liglRI&C, the second generation
began to emerge and found a niche in embedded control systetead of general-purpose
computing.

3.1 Charles H. Moore and the Second Generation

The latest wave of second-generation stack computers waxsaéntirely initiated by Charles
H. Moore and documented by Philip J. Koopman, Jr., with sodtitisnal unpublished mate-
rial made available online by Jeff Fox [Fox04].

3.1.1 Charles Havice (Chuck) Moore Il

Chuck Moore studied physics at MIT (BS, 1960) and mathersatidrinceton. He became a
freelance programmer during the 1960s and the softwarkitd@ created for himself gradu-
ally evolved into the Forth programming language [ML%0}long with Elizabeth Rather and
Ned Conklin, he co-founded Forth Inc. in 1973 [RCM93] [RCMI96 1981, Moore began
to pursue hardware implementations of the Forth virtualhiree This work was the basis for
the second generation of stack computers and continuesstdeai

3.1.1.1 The Forth Programming Language Basis of Second-Geration Stack Comput-
ers

Much as stack computers from the first generation were basetllLGOL, those from the
second generation are derived from the Forth programmirggiage. Surprisingly, there seems
to be no historical connection at all between the design dhFand the early work of Charles
Hamblin (Section 2.1.4) or the design of the KDF9 computerc{®en 2.2.2). However, the

1Online as of March 2007 at http://www.ultratechnology.¢éth_1970.pdf and /4th_1970.html

21

Burroughs B5500 computer was the influence for the use ofck $ta expression evaluation
[Mo091]. The best introduction to Forth and the methodadsgt favours are a pair of books
by Leo Brodie [BI86] [Bro84].

A Forth system is divided into two interpreters. The outéeipreter receives source input
and looks up each word in a dictionary. If found, it calls thaer interpreter to process the
word’s definition. In the most basic case a word definition sedes of addresses of other
words, themselves defined in the same manner, ending withitiyes which are written in
machine code The inner interpreter is a small virtual machine which wgalkrough these
definitions and executes the primitives it encounters. Tiner interpreter keeps track of the
nesting of these definitions on a stack in memory, commorigrmed to as the Return Stack.

The Forth primitives do their operations on another suctksthe Data Stack, where they
take their arguments and place their results. The prinstare thus simple function applica-
tions which can be composed by executing them in sequengbaeHievel words are functional
compositions of these primitives. These new words inteséttt the stack and compose in the
same manner as the primitives.

A second-generation stack computer is basically a physsadization of the inner inter-
preter, the Forth primitives, and the stacks. The prim#tisgecome the instruction set which
operates on a hardware Data Stack. The inner interpretacesdo simple call and return
instructions which use a Return Stack to store the returnezdds of subroutines.

3.1.2 Philip J. Koopman, Jr.

From 1986 to about 1995, Philip J. Koopman, Jr. did the moditkmew applied and theo-
retical research on stack computers while at WISC Techmedogfarris Semiconductor (now
Intersil), the United Technologies Research Centre, andégge Mellon University (where
he is now part of the faculty). His book on stack computerdilstee single best reference
on the subject [Koo89]. His paper on modern stack computdritacture [Koo90] contains
the essential insights and comparisons to the CISC (Coniptgruction Set Computer) and
RISC (Reduced Instruction Set Computer) designs of the. tiieealso did the initial work on
efficiently compiling the C language to such machines [KdoBi touches upon the problem
of pipelining a stack computer in a set of slides [Ko091]. dfy) he co-authored some com-
parative performance studies [KKC92b] [KKC92a]. Althoughhas left stack computers as a
research field, his academic work remains the most visibéekoown.

2This is known as 'indirect-threaded code’. There existe disect-threaded, string-threaded, token-threaded,
and subroutine-threaded versions, each with differeefsieed trade-offs. Second-generation stack computers
are subroutine-threaded systems.

22

3.2 The Second Generation of Stack Computers

I’m concentrating here on the computers primarily designe@huck Moore. There are many
more machines than the ones listed here (see Koopman’s Kool89, App.A]), but Moore’s

work was by far the most ground-breaking and influential. Mless was published about his
machines than those of the first generation. Therefore, ékergbtions here are mostly based
on information found in Koopman’s book, reference manuais, unpublished documentation.

3.2.1 NOVIX NC4016

Formed in 1983, NOVIX produced the first prototypes of the RQ8l (initially called the

NC4000) in 1985. The NC4016 was a 16-bit processor, desigpé&huck Moore, which ran
the Forth programming language natively. It was a remagkablall device implemented in
about 4000 gates, amounting to about 16000 transistorsgéiuKoo89, 4.4]. Figure 3.1a
shows a block diagram [Koo089, fig.4.6].

Since the NC4016 was a hardware realization of the Forthrarogning language, it sup-
ported an expression evaluation stack and a subroutinedsktack both separate from main
memory and accessed via separate external buses. It ad@amssmencoded instruction for-
mat, similar to microcode, which allowed simultaneous oardf the ALU, the stacks, and the
memory. A clever compiler could combine two to five primitiverth operations into a single
instruction. In ideal conditions, the NC4016 could mangtelboth stacks, fetch from main
memory, execute an ALU operation, and perform a subroughem all in the same cycle.

The NC4016 led to the NC6016, which was licenced to Harrisi8amaluctors in 1987 and
renamed the RTX-2000 [RCM96]. NOVIX ceased operations 8919

3.2.2 Harris® RTX-2000

The RTX-2000 is derived from the NC4016. The the main chamgelsde the addition of
byte-swapped memory access, some counter/timers, amuipterontroller, and a hardware
16x16 multiplier. The stacks are now on-chip [Koo89, 4.5] aan be subdivided into smaller
stacks to support fast task switching. The RTX-2000 has inagen application in aerospace
systems. Versions of the processor manufactured in radiagisistant (rad-hard’) processes
[Int00] have flown (and are still flying) on several NASA misss [Fre98] [Fre01] [Ras03].
Figure 3.1b shows a block diagram [Koo89, fig.4.8].

3.2.3 Sh-BOOM (Patriot Scientific IGNITE I)

In 1988, Russell Fish proposed a new low-cost microprocdasgeted at embedded systems,
the Sh-BOOM, which Chuck Moore designed. It contained ai8atal-stack microprocessor
which shared the single DRAM memory bus with a smaller dedatgrocessor for deter-
ministic transfers to peripherals and for dynamic memofsesh. The stacks, for expression
evaluation and subroutine linkage, were on-chip, aboutellé deep each, and would spill/fill

SNow Intersil.

23

to/from memory as required. The implementation used ab0d® @ates. Figure 3.2 shows a
block diagram of the main processor [Sha02, fig.1].

Contrary to the NC4016 or the RTX-2000 the Sh-BOOM did notarsenencoded instruc-
tion format, but packed four 8-bit, Forth-like instruct®imto each memory word. This formed
a simple instruction cache that allowed instructions toxeeeated while the next memory fetch
was in progress. This also allowed very small loops to exefrotn within the cache without
requiring an instruction fetch. Another interesting featwas the use of conditional SKIP
instructions which, if the condition was met, would skip ptlee remainder of the instructions
in the memory word. Conditional jumps and calls were impletad this way [GWS91].

The Sh-BOOM broke away from a pure stack architecture byiaioly 16 general-purpose
registers (g0-g15), and by making most of the on-chip restawnk addressable as registers (r0,
rl, etc...). The general-purpose registers were usedrgpdeary storage and for 1/0O opera-
tions, much like the KDF9. To support the stack frames of ALG®Re languages, instead of
simply pushing values on the return stack, a number of engagtions could be allocated in
one step and then later filled from the general-purposetergis

The Sh-BOOM design is currently being marketed by Patrid¢r8ific* as the IGNITE |
[Sha02] (previously PSC1000 [Sha99]) processor coregtadgat embedded Java applications.
It is the most sophisticated second-generation stack ctanpurrently available.

— 1 TOP
TOP INTERRUPT CTL
STACK CTL
o = TIMER/COUNTERS
MEMORY PAGE REGS
T OFF-CHIP ALY MULTIPLER
X-BUS & BBUS ASIC BUS DEVICES
DEVICES t
G
OFF-CHIP B
DATA u
DATA STACK S

DATA

DATA
BYTE SWAP/ PROGRAM Y
PASS THROUGH| DATA MEMORY 3
ADDRESS | §

IR

> vwemo

o m—
_ =1 El
E= ER E

B B
=3
jull=]
£l

R

3 =

@

3

o m=<

wnom—

"] L1
] T
[1 [1
L - L =
- DATA DATA 0aTA
—roar] STACK 1 sTack
e
(a) NC4016 (b) RTX-2000

Figure 3.1: NC4016 and RTX-2000 Block Diagrams

http://lwww.ptsc.com/

24

A » Address Bus

» Data Bus
[}

Y
instruction
latch

muluplexer
decode/ » Control
execute

! [orore I

A 4

<
Address Bus
Data Bus

essing

o

operand stack addressing

local register stack addr

>
> r3 <
= o
g Resourc
% - - Registers|
e
mfltaddr
e
3 ;address
. 32 data
4/4 _—
« e
>
< 1/1 : gzl trap logic INTC
g
4/74 > g0 force » reti
o IR B S
control/status < 3 int #
»{ donatin
Figure 3.2: IGNITE I Block Diagram
3.2.4 MuP21

First published in 1995 [MT95], the MuP21 was the first of a ilgraf chips dubbed Minimal
Instruction Set Computers (MISC). Like the Sh-BOOM, it usedacked instruction format
which held four 5-bit instructions in a 20-bit memory wordeTinternal stacks and ALU were
21-bits wide to support arithmetic carry. The data stack ovdg six cells deep, and the return
stack was a mere 4 cells deep. An address register (A) wasl dddeemporary storage and
for memory accesses.

Like the Sh-Boom, the MuP21 also contained a small auxilpgncessor which had pri-
ority access to the memory bus. However, it was a video psaceshich executed its own
instruction set, also 5-bits wide, which was tailored fa¥ating a 16-colour NTSC signal at an
output pin. A frame of video was described by a block of thestructions which could be
manipulated by the main processor.

Amazingly, the entire implementation used only 7@ffhsistors in a 1.2u process, had a
typical speed of 80 MIPS, and dissipated only 50 mW. Thereharts that the design was
fully asynchronous. The MuP21 was an influential design.sitsplicity made it an ideal
choice for undergraduate and hobbyist projects, usualFPEBA implementations (for exam-
ple: [HHOQ]).

25

3.25 F21

Jeff Fox had formed UltraTechnology in 1990 in Berkeley, evelop a custom computer in
collaboration with Chuck Moore. The result was the F21 npcogessor [Fox98], which was
an extension of the MuP21. The instruction set added pas¢inenting loads and stores from
the address register and the top of the return stack, and extmaearithmetic operations. The
stacks were expanded to about 17 cells each. Like the MuP2lmemory interface was
20-bits wide and values were stored internally as 21 bits.

Like the MuP21, the F21 contained a video coprocessor, adddagimilar coprocessors
for analog 1/0O and serial networks. Some common routineg\weiuded in on-chip ROM.

In a 0.8u process, the F21 was implemented in about 15,008i$tars, and had a typical
execution rate of 100 MIPS (peaking internally at 500 MIR&pending on memory access
time. Ultratechnology ceased to exist in 2002 with nothimgrfally published about the design
and only some prototype chips made. The website for the coyipmntains some fairly
detailed documentation. For a reconstruction of what tbelslevel design might have been
like, see Figure 6.1.

3.2.6 cl8

Around 2001, Moore took the F21 design in a new direction anodiyced the ¢c18 [Moo01b,
Moo01a]. Architecturally, it is virtually identical to thie21, but adds a second address register
for on-chip communication. Its width was also reduced to 8 to match the fast cache
memory chips available at the time. This leaves room to patk ® instructions per memory
word.

The coprocessors were eliminated and replaced by a watdhdeg There is no external
memory bus. External memory must be accessed via the paf@llgins, and programs must
be loaded into a few hundred words of on-chip RAM to be exatute

The c18 was simulated in a modern 1.8V 0.18u process. It haedigied *sustained*
execution rate of 2400 MIPS, while dissipating about 20 nt\.ds an aggressive, fully asyn-
chronous design.

The c18 was targeted at multiprocessing. A 5x5 array of ¢X®anected by horizontal
and vertical buses, would fit in 7mm”sq. This eventually beeaealized as the SEAforth-24
multiprocessor currently entering production at IntgligIntelligent Array Systems) .

3.3 Recent Research

Most of the research in the last decade has been outsidedéraca and/or of little visibility
due to the mistaken lumping of these second-generatiogmesiith the previous generation.
This section will overview the most salient academic, comuia®, and amateur research on
the subject.

e Between 1994 and 2004, Christopher Bailey co-authored eruwf papers on vari-
ous enhancements to stack computers for High-Level Lareggaagport, interrupt per-

5As of March 2007: http://www.ultratechnology.com/f2 It
Shttp://intellasys.net/

26

formance, and instruction-level parallelism [Bai94] [B$9Bai00, DBLO0O] [Bai04]
[SBO4]. His 1996 PhD thesis presented an improvement tk stpidl/fill algorithms
so as to further reduce memory traffic [Bai96].

e During his Master’s studies at the University of Alberta,blea James Chapman ex-
plored the synthesis of stack computers using VHDL [Cha@Hhg98] and wrote a pa-
per which decomposed the usual stack permutation opesaitido smaller primitives
[Cha95].

e Myron Plichota is a freelance consultant in Hamilton, Oiatavho designed in 2001
the Steamer 16 proces$as a VHDL design implemented on a Cypress CY37128P84-
125JC CPLD (Complex Programmable Logic Device). It is nigtdbr fitting in very
little hardware, having only eight, 3-bit instructions,daa bare minimum 3-deep on-
chip stack. It runs Forth-like software with C-like stackrmes in main memory. It is
remarkable in its speed/size trade-off while still achmgv20 MIPS. It has been used in
an industrial machine vision application.

e While at the Technical University of Munich, Bernd Paysawterhis 1996 Diploma the-
sis on the 4stack proces&@Pay96], a 4-way superscalar VLIW (Very Long Instruction
Word) design specified in Verilog. It is meant for embeddedP¥Bigital Signal Pro-
cessing) applications, but has a supervisor mode and Mrteiaory for desktop use. He
also designed the much smaller b16 microprocéd8ay02], a 12-bit version of which
is used internally at Mikron AG.

e Chung Kwong Yuer® at the National University of Singapore has an unpublisteguep
[Yue] on how to implement a reorder buffer to obtain supdescexecution in stack
computersh.

e Chen-Hanson Ting currently runs the eForth Acad&ny Taiwan, which provides de-
sign classes for embedded systems. He created the P sem@safrocessots derived
from the works of Chuck Moore. They are described in [Tingiia97b}41%.

e A number of students at the Chinese University of Hong Kongigieed and imple-
mented two versions of a derivative of the MuP21 micropreces The MSL16 was
first implemented on an FPGA (Field-Programmable Gate Aiflal.98] and later re-
implemented in silicon using asynchronous logic as the MB\L[ITCCLL99].

"The only documentation was at http://www.stringtuner.aogron.plichota/steamer1.htm which is now de-
funct, but archived in the Internet Archive Wayback Machanéttp://www.archive.org/web/web.php

8http://www.jwdt.com/~paysan/4stack.html

Shttp://www.jwdt.com/~paysan/b16.html

Ohttp://www.comp.nus.edu.sg/~yuenck/

10ne of two papers available at http://www.comp.nus.edtysgenck/stack

Phttp:/lwww.eforth.com.tw/

Bhttp://www.eforth.com.tw/academy-n/Chips.htm

publication list: http://www.eforth.com.tw/academyBobkstore/bookstore_4.htm

15pyblished by Offete Enterprises: http://www.ultratediogy.com/offete.html

27

3.4 Strengths and Weaknesses of the Second Generation

The second generation of stack computers still has somesafrdwbacks of the first: a need
for index registers, stack manipulation overhead, andditemhally supports ALGOL-like lan-
guages poorly. However, the second generation also has distiect advantages: reduced
memory bandwidth and system complexity, and faster subreuinkage and interrupt re-
sponse.

3.4.1 The Need for Index Registers

As in computers from the first generation (Section 2.3.4 atcess of loop indices or interme-
diate results which are not immediately on top of the stagkires significant stack manipula-
tion overhead. All second-generation stack computergmxte very smallest, mitigate this
problem with index registers:

e The NC4016 buffered the topmost Return Stack element gmschit could be used as an
index register (). A loop-on-index instruction would denrent I, and then conditionally
jump to the beginning of the loop. The RTX-2000 used the samehamnism.

e The Sh-Boom used a count (ct) and an index (x) register. Thataegister was used
by decrement-and-branch-on-non-zero instructions, badntdex register was used for
direct, post-incrementing, and pre-decrementing memocgsses.

e The MuP21 used the A register to hold memory addresses whidd then be moved to
the data stack, modified, and the returned to A for the nexdssccT he alternative would
have needed a deeper stack and more stack manipulationespcod

e The F21 could do post-incrementing memory accesses frongidtez and from the top
of the Return Stack. They were primarily meant for fast mgrtormemory transfers.
The c18 has the same mechanism.

3.4.2 Stack Manipulation Overhead

Stack computers from the first generation suffered from &sige memory traffic (Section
2.3.3) since their stacks, except for a few working regsstarere entirely in main memory.
However, this had the advantage of allowing random accetbgetentire stack.

Computers from the second generation keep their stacksagegeom main memory and
usually on-chip. This has the advantage of causing no meinaffyc, but typically limits
access to the topmost two to four elements since the stac& lsnger addressable. This
limitation requires that the topmost elements be permuteating a value to the top of the
stack (Section 7.3.3).

The original overhead of memory traffic is thus transformetd ithe overhead of extra
operations to manipulate the stack. This problem can begatéd by using more deeply-
accessible stacks or more complex stack manipulation tipesa This random access comes
at the price of increased system complexity, culminating aonventional multiparty register
file.

28

3.4.3 Poor Support of ALGOL-like Languages

Languages which are derived from ALGOL, such as C, use tlo& sta means of allocating
space for, amongst others, the local variables of a proeedinis entails pushing entire struc-
tures onto the stack and then accessing them randomly, thiteagh a pointer. Thus a local
variable must be present in main memory since the stack ic@segeneration computer is
not addressable.
Solutions to this problem include more sophisticated céenp{Koo94] [ME9Q7] [ME98],

the addition of some form of frame pointer register which sapport indexed addressing, or
making the return stack addressable such as in the PSCBMNIO/E | [Sha02] [Sha99].

3.4.4 Reduced Instruction Memory Bandwidth and System Comiexity

The compact encoding of stack instructions stems from thgdigihnature of their operands:
It is always the top of the stack. Thus, contrary to a registachine, several such operations
can fit into a single memory word. This correspondingly rexfuthe frequency of instruction
fetches. The memory access cycles between instructiohefgetcan then be used for loads,
stores, and fetches, eliminating the need for separatelatigtn and data memory buses (Sec-
tion 7.2.4). This greatly reduces system complexity analadifor a higher internal operating
frequency than the memory would normally allows.

The case of unencoded instructions, as in the NC4016 andltke?R00, does not provide
the same memory bandwidth advantage, but while still opgyain a single memory bus,
increases the performance through the multiple simultasieperations that can be contained
in such an instruction word.

3.4.5 Fast Subroutine Linkage and Interrupt Response

A stack computer does not need to save the contents of negigien entering a subroutine. Its
parameters are already on top of the data stack, which beitemwerking values throughout
the computation, and ultimately remain as one or more retalues upon exiting the subrou-
tine. The call and return instructions automatically usereturn stack for the return address.
Subroutine linkage thus requires no additional memoryitraind takes only a cycle or two
(Section 7.3.6).

An interrupt service routine (ISR) is effectively a hardesnvoked subroutine, and so
benefits from the fast linkage. The ISR can simply do its warkap of the stacks so long as
it leaves them unaltered upon exit.

29

30

Part Il

Qualitative Arguments

31

Chapter 4

Distinguishing the First and Second
Generations

The existing computer architecture literature considérstack computers to be of the same
kind!. This view seems correct when contrasted against modeisteetpased machines. How-
ever, it conflates the first and second generations of statiueters, which makes difficult a
clear discussion of their respective properties. Distisigng the generations is important since
the second resembles current register-based designs nareltiman it does the first. Without
this distinction, an entire branch of computer architezigrmissed solely due to a categorical
error.

The differences between the generations stem from the tstoridal approaches to stack
computation. The first generation is based on Bauer’s “gpaiciciple” for subroutine storage
allocation (Section 2.1.3) and is exemplified by the Burtmi85000 series (Section 2.2.3).
The second generation originates in Hamblin’s method fafuating and composing expres-
sions (Section 2.1.4), first seen in the English Electric R[¥Section 2.2.2), and later inde-
pendently rediscovered as the Forth programming langugesion 3.1.1.1).

The only significant exception to this conflation I've fourgla section in Feldman and
Retter’s text [FR93, pp.599-604] which lists some of the séfinst generation stack machines”
as |l doin Section 2.2, then proceeds to explain in a nutdiettigin and features of the second
generation of stack computers, although they do not refdreim by that name.

In this chapter, | expand on Feldman and Retter’s statensrtgpropose a codification
based on some properties of the stacks: their locationosermnd the operations done upon
them.

'Except for a passing mention in the preface of Koopman's f&ok89] and a short summary in Bailey’s
PhD Thesis [Bai96].

33

4.1 Location of Stacks: In-Memory vs. In-Processor

“[...] Itis this explicit coupling of all ALU operations to hardware stack which
sets these machines apart.”

[FR93, pg.600]

The first distinguishing feature is the location of the stack

First-generation stack computers (Figure 4.1) kept thaoks as randomly accessible data
structures in main memory, located by an automatically gadatack pointer register. Each
operation implicitly loaded and stored the required data&kpression evaluation to an internal
stack of two to four registers. The number and size of thekstat memory were variable
and usually each process had its own. Later machines usedacibuffers between the reg-
isters and the memory to accelerate access to items regrntyn the stack. Unfortunately,
first-generation stack computers were overtaken by registged machines before this feature
became widespread.

General-purpose register computers (Figure 4.2) use the &nds of stacks, also kept
in memory. However, the stack pointer is now an ordinarystegj selected by convention,
and is manually controlled by software. Software manualbds and stores values from the
stack into an arbitrarily accessible register file. Registachines usually place a cache buffer
between the registers and memory.

Contrary to both first-generation and general-purposetegtomputers, second-generation
machines (Figure 4.3) keep their stacks in the processersiidtks are not randomly accessi-
ble data structures and only make visible the top two to ftements. The stacks are separate
from main memory and only interact with it via load, storeddlow control instructions. The
number and size of the stacks are fixed, although they maytspiiemory via a pointer, de-
pending on the size of the system, and thus behave as thetamkes. There are typically only
two stacks, shared by all processes, which can internatligange data amongst themselves.

I = Locals of B **%* b Locals of B
Stack Pointer E Return Address = Return Address
| Parameters of B ! Parameters of B
1 '—|Return Value from B ~— {—[Return Value from B
L Locals of A 1 Locals of A
«} : Return Address 1 Return Address
i Parameters of A 1 Parameters of A
Stack . |Return Value from A = [Return Value from A
! Registers !
CPU | Memory CPU : Memory

Figure 4.1: First-Generation Stack Computer 5 | ,
Block Diagram Figure 4.2. General-Purpose Register Com-

puter Block Diagram

34

4.2 Use of Stacks: Procedure Nesting vs. Expression Evalu-
ation

“[...] While recursion is easy to accomplish with a stack iemory, this is not
what we mean bgtack maching[...]’

“[...] Unlike most earlier stack machines, these Forth pssors have two stacks,
one to hold temporary data and pass subroutine parametershe other to save
subroutine return addresses and loop counters. [...]”

[FR93, pg.600]

The second distinguishing feature is the use of the stacks.

First-generation stack computers (Figure 4.1) used sta€lstructured temporary storage
for program procedures. Each procedure invocation wouldnaatically cause the allocation
of an amount of space on the stack to contain (typically) tieumeters of the procedure, its
return value, its local variables, and the return addrests @fller. This area is referred-to as
a procedure activation record. Values from the record weaddd and stored into the small
internal stack as needed for expression evaluation. Tamialtstack only held the intermediate
results of computations within a given procedure. All ligkebetween procedures was done
solely on the stack in memory.

General-purpose register computers (Figure 4.2) use the kiand of stacks, in the same
manner, except that the procedure activation records aneialg managed by software and
procedure linkage can occur through the registers if tharpaters, locals, and return values
fit within them.

Second-generation stack computers (Figure 4.3) use sefsegks to control procedure
nesting and to perform expression evaluation. The retudresdes of procedure calls are
stored on a stack dedicated to that purpose (Return Statt)in them separately helps to
eliminate the division of the other stack (Data Stack) integedure activation records. Thus,
a called procedure finds its parameters (P) on top of the Datk Snanipulates them directly
as locals (L) during expression evaluation, and leaves pretier its return value (R) upon
exit or the parameters for calling another procedure. The B#ack is used for an effectively
single, large, and complex expression evaluation whogs peg tracked by the contents of the
Return Stack.

Memory
CPU
L/P/R of B [~ Return Address
L/P/R of B Return Address
L/P/R of B
L/P/R of A
L/P/R of A
L/P/R of A
Data Stack Return Stack

Figure 4.3: Second-Generation Stack Computer Block Dragra

35

4.3 Operations with Stacks: High-Level Language Support
vS. Primitive Operations

“First generation stack machines, such as the Burrough®385500, B6700,
B7700, Hewlett-Packard HP3000, and ICL2900, were desigoeskecute lan-
guages like Algol-60 [Dor75b]. Most of these had a singlelstahich was used
for holding temporary data, passing subroutine paramedassaving subroutine
addresses. [...]"

[FR93, pg.600]

The third distinguishing feature is the operations perfedrapon the stacks.

First-generation stack computers (Figure 4.1) had bailtardware and microcode support
for high-level language (typically ALGOL) and operatingsggm features. The procedure call
and return instructions would automatically allocate apdlldbcate activation records on the
stack. The arithmetic instructions would determine tha dgbe of their operands from special
tags. Indirect reference words and data descriptors wdlaw #or lexical scoping across ac-
tivation records and resolve call-by-name referencestimalstacks could be maintained and
cross-referenced to enable multitasking and inter-psocesmmunication. Descriptors could
point to data on disk to support code and data paging-on-deénide end result was powerful,
but extremely complex. These features are well-describ€rganick’s book [Org73].

General-purpose register computers (Figure 4.2) have oihese language-specific fea-
tures, although they were designed with the efficient supplbALGOL-like languages in
mind. A large register file supports fast, simple procedunealge when possible, and can hold
multiple intermediate values during expression evalumaftithe instruction set is simple but can
use any registers as source and target. High-level languadjsystem features are managed
in software by the compiler and the operating system.

Second-generation stack computers (Figure 4.3) have moogmmon with general-purpose
register machines than with first-generation stack conmpufehe call and return instructions
only save and restore the calling procedure’s return addleaving more complex procedure
linkage to software. Arithmetic instructions operate ote the top few elements of an inter-
nal stack and their operands must be loaded from and storedrtoory explicitly. Only simple
direct and indirect addressing modes are supported, @thpost-incrementing/decrementing
versions are common. Other than the implicit use of stack®dsic procedure linkage and
expression evaluation, all high-level language and opeyatystem features are implemented
in software in the same manner as in register-based machines

36

Chapter 5

Objections Cited by Hennessy & Patterson

Hennessy and Patterson’s magnum oplsrputer Architecture: A Quantitative Approdch
[PHO0, HP96, HP02] has a tremendous influence on the fieldrapoter architecture. | sup-
port this claim by comparing the number of citations it hasereed compared to other text-
books on computer architecture.

Most arguments against stack computer architecture anndram a few statements found
in this book. | present counterarguments which support ldiencdhat the statements are valid
for the first generation of stack computers, but not the sg.con

5.1 The Enormous Influence of Hennessy & Patterson on
Computer Architecture

Some data collected in Fall 2004 provides a view of this égnebook’s status (Table 5.1)
based on the number of citations it has received comparédhat of other books on computer
architecture. These books were all found in the Univerditaterloo Davis Centre Library.
The number of citations was obtained from the ACM Digital tBs Guide To Computing
Literaturée.

It's easy to see that the influence of the first two editions ehkkssy & Patterson’s work
completely dwarfs that of the remainder of the sample. Asntidry 2006, the updated cumu-
lative number of citations provided by the ACM Guide are:

e First Edition [PH90]: 424
e Second Edition [HP96]: 454

e Third Edition [HP02]: 125

Additionally, the CiteSeérscientific literature library show a total of 1525 citatiofus all
editions combined, as of January 2006.

http://portal.acm.org/
2http://citeseer.ist.psu.edu/

37

Incidentally, the main text on second-generation stackprders [Koo89] had, according
to the ACM Guide, seven citations in the Fall of 2004 and twels of January 2006. It is not
listed in CiteSeer.

| Book | Citations| Book | Citations|

[PH9O0] 324 [FRO3] 1
[HP96] 310 [MK97] 1
[HPO2] 19 [HVZ95] 0
[PHO8] 21 [Sta02] 0
[Hwa92] 50 [GLO3] 0
[Kog90] 24 [Omo99] 0
[Omo094] 6 [Bur98] 0
[SSK97] 6 [Sto92] 0
[Sta93] 2 [Wil91] 0
[Wil01] 1 [Sta90] 0
[Hay97] 1 [Mur90] 0
[Wil96] 1 [Bla90] 0
[MP95] 1

Table 5.1: Comparison of Citations of Computer Architeetliexts (as of Fall 2004)

5.2 The Disappearance of Stack Computers (of the First Gen-
eration)

One of the views expressed by Hennessy & Patterson is steatk based machines fell out of
favor in the late 1970s and, except for the Intel 80x86 fl@gpoint architecture, essentially
disappeared.[HP96, pg. 113][HP02, pg. 149]. This statement can onlgred the first gen-
eration of stack computers since the second generatiorodligtally begin until 1985 (Section
3.2.1), ‘roughly concurrent with the emergence of RISC as a desigosgphy [FR93, pg.
600].

These new machines went unnoticed due to being in the nidchembedded real-time
control and aerospace applications (Section 3.2.2) idsiegeneral-purpose computing. The
latter instances of the second generation were developieih990s, with little visibility in
academia (Section 3.3), since by then the term 'stack coengwtd become synonymous with
designs from the first generation.

38

5.3 Expression Evaluation on a Stack
Hennessy & Patterson state:

Although most early machines used stack or accumulatde-atghitectures, vir-
tually every machine designed after 1980 uses a load-stgister architecture.
The major reason for the emergence of general-purposdee(fzPR) machines
are twofold. First, registers—Ilike other forms of storageeinal to the CPU—are
faster than memory. Second, registers are easier for a tmmpuse and can be
used more effectively than other forms of internal stordge.example, on a reg-
ister machine the expressi¢d « B) — (C' x D) — (E = ') may be evaluated by
doing the multiplications in any order, which may be morecédfit because of the
location of the operands or because of pipelining conceses Chapter 3). But
on a stack machine the expression must be evaluated lefjlig tinless special
operations or swaps of stack positions are done. [HP96,Hg. 7

The third edition has a different final sentence:

Nevertheless, on a stack computer the hardware must esdhmexpression in
only one order, since operands are hidden on the stack, amayihave to load an
operand multiple times. [HP02, pg. 93]

The first point, which implies that the stack is in memory,adonger valid. Second-generation
stack computers keep their stacks internal to the CPU (@edtil). Furthermore, the access
to a stack is faster than to registers since no addressiegjusred. The inputs to the ALU are
hardwired to the top two elements of the stack. This is putit@atageous use when pipelining
(Section 7.4).

Secondly, the claim that compilers can use registers mdéeetefely is true only because
much research has been done on register allocation in moderpilers. Prior to the advent
of modern compiler techniques like graph colouring, regstwere seen as difficult to use
and stacks were favoured. For example, this is the reasoS8RA&C architecture uses reg-
ister windows which effectively form a stack of activatiatords [PS98a, pg. 2]. There has
been promising work showing that it is possible to cacheuslty all local variable memory
references onto the stack [KooSIEQ7]°[ME98]®. Also, it could be possible to evaluate
expressions in an out-of-order fashion on a stack comp8estion 3.3).

Lastly, the final point raised is true. Operands are hiddetherstack and even with the
aforementioned compiler techniques this fact makes for peoformance on iterative code
due to the stack manipulations required (Section 7.3.3)wé¥er, a register-based computer
has the same kind of repeated memory accesses and regisggigter copying overhead when

3The arguments in this section suggest an interesting wakinking qualitatively about stacks: that they
are the 'reciprocal’ (or the 'inverse’) of registers. Formexple, reading a register does not destroy its contents,
but writing does. Conversely, reading from a stack popsrmé&dion from it, but writing to it simply pushes the
existing information down. Up to its maximum capacity, nformation is lost. This is a tantalizing symmetry.
*http://Iwww.ece.cmu.edu/~koopman/stack_compilersnioken|
Shttp://www.complang.tuwien.ac.at/papers/maierho26e4t197.ps.gz
Shttp://www.complang.tuwien.ac.at/papers/maierho26e4t198.ps.gz

39

entering or exiting a subroutine (Section 7.3.6). This bead is virtually nil in stack comput-

ers . Finally, there are hints that a redesigned stack canpnstruction set could combine
stack manipulations with arithmetic operations ’for fregithout adding any new datapath or
control lines (Sections 9.2.2 and 9.2.3).

5.4 The Use of the Stack for Holding Variables

Immediately after the previous quote they state:

More importantly, registers can be used to hold variableshek\Wariables are
allocated to registers, the memory traffic is reduced, thgnam is sped up (since
registers are faster than memory), and the code densityowapr(since a register
can be named with fewer bits than a memory location). [HP§6,74][HP02, pg.
93]

As stated in the previous section, a stack can also be usedldovariables. Since second-
generation stack computers keep their stack in the CPU, #meary traffic is reduced (Section
7.2.3) and the program sped up in the same proportion. The dedsity is improved to an
even greater extent since a stack does not need to be nanwidiiSe2.4). No addressing bits
are required since operations implicitly use the top of theks Overall, these features are no
different than in register-based computers.

5.5 Distorted Historical Arguments

Lastly, Hennessy & Patterson raise points from past rebeayainst the use of (first-generation)
stacks:

The authors of both the original IBM 360 paper [ABB64] and trigginal PDP-
11 paper [BCM 70] argue against the stack organization. They cite thrgerma
points in their arguments against stacks:

1. Performance is derived from fast registers, not the way #re used.

2. The stack organization is too limiting and requires mamgsand copy op-
erations.

3. The stack has a bottom, and when placed in slower memawy iha perfor-
mance loss.

[HP96, pg. 113][HP02, pg. 149]

At first glance, these points are correct when referring gi-fieneration stack computers: an
abundance of fast registers which can be randomly and nsinudévely accessed will increase
performance by reducing memory traffic and re-ordering af@ns. For second-generation
stack computers however, these points are moot:

1. On-chip stacks are really a linear collection of regsster

40

2. The limitations are partially a matter of compiler teclogy (Section 5.3) and on the
other hand, stacks avoid the subroutine call overhead ddtezgbased computers (Sec-
tion 7.3.6).

3. This is a straw-man: All stacks have a bottom. Past exmarisnhave shown that an
on-chip stack buffer that is 16 to 32 elements deep elimgategually all in-memory
stack accesses for both expression evaluation and sutemésting and that the number
of accesses to memory decreasgponentiallyfor a linear increase in hardware stack
depth [Koo089, 6.4] [Bai96, 4.2.1] (Appendices B.2.6 and.B)2
Current Intel processors use exactly such a stack, 16 etsndeep, to cache return
addresses on-chip [Int06, 2.1.2.1, 3.4.1.4], as does tpbaAAXP 21064 processor
[McL93]. Hennessy & Patterson themselves show data suppgdttis feature [HP96,
pg. 277] [HPO2, pg. 214]. The SPARC architecture accomefishsimilar results with
its register windows.

The preceding quote is however an abridged version. Thenatigtatements by Bebt al.
were:

The System/360 designers also claim that a stack organiaetiime such as the
English Electric KDF 9 (Allmark and Lucking, 1962) or the Boughs B5000
(Lonergan and King, 1961) has the following disadvantages:

1. Performance is derived from fast registers, not the way #re used.

2. Stack organization is too limiting, and requires manyycapd swap opera-
tions.

3. The overall storage of general register and stack maslaireethe same, con-
sidering point #2.

4. The stack has a bottom, and when placed in slower memawy iha perfor-
mance loss.

5. Subroutine transparency is not easily realized with ¢aeks
6. Variable length data is awkward with a stack.

We generally concur with points 1, 2, and 4. Point 5 is an evoois conclusion,
and point 6 is irrelevant (that is, general register machiveve the same problem).
[BCM*70]

Hennessy & Patterson are simply repeating the points whielsapported by the authors of
this quote. In retrospect, it is peculiar that the authomgdwoth the KDF9 and the B5000

together, despite being very different machines (see @exf.2.2, 2.2.3, and Chapter 4). The
arguments should not apply equally to both. It turns outtiratjuote is an extremely abridged
version of the original statements by the System/360 dessyn

Serious consideration was given to a design based on a pushalcumulator
or stack. This plan was abandoned in favor of several regiseach explicitly
addressed. Since the advantages of the pushdown organizaé discussed in
the literature, it suffices here to enumerate the disadgasteashich prompted the
decision to use an addressed-register organization:

41

1. The performance advantage of a pushdown stack orgamaatierived prin-
cipally from the presence of several fast registers, nohftioe way they are
used or specified.

2. The fraction of “surfacings” of data in the stack which gueofitable”, i.e.,
what was needed next, is about one-half in general use, beadithe oc-
currence of repeated operands (both constants and comrotmsia The
suggests the use of operations such as TOP and SWAP, whijpécteely
copy submerged data to the active positions and assistanmesubmerged
data when the information is not longer required.

3. With TOP’s and SWAP’s counted, the substantial instarctensity gained
by the widespread use of implicit addresses is about eqguhbile¢hat of the
same instructions with explicit, but truncated, addresdeish specify only
the fast registers.

4. In any practical implementation, the depth of the stackdénamit. The reg-
ister housekeeping eliminated by the pushdown organizagappears as
management of a finite-depth stack and as specification afitots of sub-
merged data for TOP’s and SWAP’s. Further, when part of astaltk must
be dumped to make room for new data, it is h@tompart, not the active
part, which should be dumped.

5. Subroutine transparency, i.e., the ability to use a subrerecursively, is one
of the apparent advantages of the stack. However, the disgatye is that the
transparency does not materialize unless additional emdgnt stacks are
introduced for addressing purposes.

6. Fitting variable-length fields into a fixed-width staclaiskward.

In the final analysis, the stack organisation would have ladeut break-even for
a system intended principally for scientific computing. &lére general-purpose
objective weighed heavily in favor of the more flexible adkd®d-register organi-
zation. [ABB64]

I'll address these points individually:

1. As previously mentioned, on-chip stacks are really adlirm®llection of registers. Addi-
tionally, the unabridged statement supports the use okstaben either fully on-chip,
as in second-generation stack computers (which the KDFY, wasufficiently buffered
as in the B7700 (Sections 2.2.3 and 2.3.3) which was notdntred until 1973.

2. While stack permutations are inevitable, how often threyraquired is a strong function
of how the code is arranged by the programmer or compiletsdt @epends on whether
the code is primarily iterative, recursive, or composed e$tad procedures (Section
7.3.1). The choice of stack instruction set affects the loead significantly (Section
9.2.2).

3. The static code analyses for a basic second-generagickh&mputer (Appendix B.1.5)
support this statement, but also suggest that the insbrudénsity can be increased much
further (Chapter 8). This is also dependent on the natureaadgement of the code.

42

4. Experiments done since show that a stack needs to be ority 3% elements deep to
virtually eliminate stack overflow to main memory [Koo8944.] [Bai96, 4.2]. What
memory traffic remains can be mitigated by the hardware sterkagement algorithms
that have been discovered since [Koo89, 6.4.2] [Bai96,. 6. e abridged versions
of this statement omitted the trade-off between the reglsteisekeeping required for
subroutine calls on register-based computers versusdhk kbusekeeping required for
iterative code on stack-based computers.

5. | suspect the authors were thinking of the KDF9 since §esteration stack comput-
ers exhibit subroutine transparency using a single stadks i possible because the
activation record of an instance of a subroutine is storadam memory. For second-
generation stack computers like the KDF9, whose stack isaratomly accessible, a
single stack is insufficient since at the very least the agntmbeing passed recursively
would be buried under the return address (Section 4.2). ahtlee minimum a second
stack is needed to hold return addresses.

The statement is correct for both generations when indestexg are used (Sections
2.3.4 and 3.4.1) since unless they are also stacks therasaksted subroutines which
use them would have to do housekeeping to preserve and dbe@sglues, effectively
implementing in software the stack of a first-generationkstamputer at a great perfor-
mance penalty. Finally, given integrated circuits, the cdsin extra stack is minimal.

6. Bell et al. are correct when saying that this point is irrelevant. Thabfam, if present,
is orthogonal to the internal organization of a fixed-widtaahine.

In summary, the arguments quoted by Hennessy & Pattersanaversimplified and referred
to old hardware and compiler technology. In fact, the oagjgource of the arguments is far
less critical of stacks than the version Betlal. present and most of the shortcomings have
been overcome since then.

43

44

Part Il

Quantitative Arguments

45

Chapter 6

A Stack-Based Counterpart to DLX:
Gullwing

| present the Gullwingprocessor architecture as an unpipelined, stack-baséabmesof Hen-
nesy and Patterson’s DLX [HP02]: a small design that is a ki reflection of the current
state of the art. Gullwing is closely based on the availabkcdptions of the MuP21, F21, and
c18 processors (Chapter 3).

6.1 Block Diagram

Figure 6.1 shows the datapath components of the process$er.ddscription is not entirely
abstract or free from implementation details. Some have beduded for clarity and some
are simply too compelling to ignore. Unless noted otherwiBe registers and memory are
32 bits wide and contain integers. The depth of the stackebigray. See Section 5.5 for a
discussion of useful depths.

] d(‘at[a MEM

[ISR |

|ALU ﬁTPP y +1TE
=

ter Block Diagram

R |
(= ﬁ Figure 6.2: Gullwing Instruction Shift Regis-
(=

Figure 6.1: Gullwing Block-Level Datapath

1The name 'Gullwing’ was inspired by Richard Bach’s book Hidathan Livingston Seagull", and also by the
DelLorean DMC-12 made famous in the "Back To The Future" muritegy by Robert Zemeckis and Bob Gale.

47

6.1.1 Memory Subsystem

At the top is the main memory (MEM), whose address port isicoatly driven by the Mem-
ory Address Register (MAR). The MAR is itself loaded by ondltd Address Register (A),
the Program Counter (PC), or the Return Register (R). Théeats of each of these can be
modified by a dedicated incrementer (+1). The MAR can als@addd directly from memory
output in the case of jumps and calls, or from the incremewgesion of the PC in the case of
subroutine returns.

The PC holds the address of the next memory word to be rea@ttihg instructions or
literals. Upon a subroutine call, it is stored into R, whishtself saved onto the Return Stack
(RS). The reverse process occurs when a subroutine returns.

The Aregister is used under program control to hold the adeé®of loads and stores, with
optional post-incrementing. The R register can be usedaséime manner.

6.1.1.1 Single Memory Bus

In order to concentrate on the architecture of Gullwing,rite@n memory is abstracted away
to an idealized form. It has a single, bidirectional data g a single, unidirectional address
bug. One read or one write is possible per cycle. By default, t@ut of the memory is
always available for reading.

6.1.1.2 Differentiating Loads, Stores, and Fetches

If a read from memory simply reads the current memory outipig,termed a 'fetch’. There
is no write equivalent to a fetch. If an explicit address isdutd read or write to memory, it is
termed a’load’ or a 'store’, respectively. For example ha hext two sections it will be shown
that calls and jumps fetdeir target address, but lo#tuk instructions from that location.

6.1.2 Computation Subsystem

At the far left, the Arithmetic and Logic Unit (ALU) always kas its inputs from the Top
Register (TOP) and the Data Stack (DS) and returns its otapt®P, whose original contents
are optionally pushed onto the DS. The TOP register is theaegwoint of gullwing. It is the
source and target for memory operations and can exchangevithtthe A and R registers.

6.1.3 Control Subsystem

Figure 6.2 shows the details of the Instruction Shift RegidSR). The 32 bits of an instruction
word are loaded into six 5-bit registers (SO to S5), eachihgldne instruction, with the two
most significant bits (MSB) left unus&dThe instruction in the least significant (LSB) position
is output as the current one being executed (INST). When IftfiShes executing, the contents

2This is not the instruction fetch bottleneck it seems to bee Section 6.3.1 for why a second bus would
remain idle over 90% of the time.

3These two bits could be used as a seventh instruction takem tie set of instructions whose three MSB
are always zero, or as subroutine return and call flags agiN@41016 and RTX-2000. They are left unused for
simplicity.

48

of the instruction registers are shifted over by one instoncand filled-in at the far end with a
Program Counter Fetch (PC@) instruction (see Section 8f23r the last loaded instruction
is executed, the PC@ instruction fetches the next insomgioup into the ISR.

If the instruction after INST is a PC@, then INST is the lasé @f this group. This is
signalled by the Last line (L) being high during the execotod INST. If the encoding of PC@
is conveniently chosen to be all zeroes, then L is simply t@ERNof all the bits of S1. This
line is used to overlap the execution of INST and PC@ whengessible (Section 6.3.1).

6.2 Instruction Set

The Gullwing instruction set is identical to that of the F&Ee¢tion 3.2.5), with some minor
implementation simplifications which are beneficial to fijpag (Section 7.4):

e To fetch instructions, the F21 uses an internal memory aodelay triggered by a lack
of memory-accessing instructions in its ISR. Gullwing @&t uses a Program Counter
Fetch (PC@) instruction as the instruction fetching medman It was the simplest
choice to implement and the most deterministic in behavidbrs also allows skipping
of unused instruction slots, which would otherwise haveddilked with no-ops.

e The F21 call and jump instructions use the remainder of tirettshold the low-order
bits of the target address. The number of these bits dependagere in the ISR the
instruction is placed. These bits would replace the comedimg ones in the PC, provid-
ing a limited branch distance relative to the current valiuth® PC. In Gullwing, the call
and jump instructions take their target address from a mgiuddress which follows the
instruction, usually the very next one. This allows unifoahsolute addressing over the
entire memory range.

e Like the calls and jumps, literal fetches on the F21 alsoeldaeir argument in the
remaining low-order bits. In Gullwing, the literal fetchsimuction takes its literal value
from a memory address which follows the instruction, ugutide very next one. This
makes for uniform and general storage of literals.

6.2.1 Instruction Packing

All instructions fit into 5-bit opcodes and have no operanttl§ier extended formats of any
kind. Thus, up to six instructions can be packed into eachiB@emory word (Section 6.2.7).
This packing of instructions greatly reduces the numbensfruction fetches for sequential
code (Section 7.2.4) and makes possible a much higher codéyléChapter 8).

6.2.2 Flow Control

These instructions (Table 6.1) control the flow of executiba program. They all access mem-
ory and use full-word absolute addresses either expliottlimplicitly. The jumps and calls
fetch their target address from the next word in memory, evthie PC@ and RET instructions

49

respectively take theirs from the Program Counter (PC) hadReturn Register (R). They all
execute in two cycles, except for PC@ which requires only one

| Mnemonic| Name | Operation |
PC@ PC Fetch Fetch next group of instructions into ISR
JMP Jump Unconditional Jump

JMPO | Jump Zero| Jump if top of data stack is zero. Pop stack.
JMP+ Jump Plus| Jump if top of data stack is positive. Pop stack.

CALL Call Call subroutine
RET Return Return from subroutine

Table 6.1: Gullwing Flow Control Instructions

6.2.3 Load, Store, and Literal Fetch

Table 6.1 shows the instructions used to access main memdirpccesses are word-wide.
There are no half-word, byte or double-word formats. Thelréiteral (LIT) instruction uses
the next word of memory to contain its value. The other ingtams use addresses stored in
A and R to access main memory, and can post-increment themday The TOP register is
always the source of data for stores and the target of loatifetshes. All of these instructions
execute in two cycles, except for LIT which requires only one

| Mnemonic| Name | Operation |
LIT Fetch Literal| Push in-line literal onto data stagk
@A+ Load A Plus| Push MEM[A++] onto data stack
@R+ Load R Plus| Push MEM[R++] onto data stac
@A Load A Push MEM[A] onto data stack
IA+ Store A Plus| Pop data stack into MEM[A++]
IR+ Store R Plus| Pop data stack into MEM[R++]
1A Store A Pop data stack into MEM[A]

e

Table 6.2: Gullwing Load and Store Instructions

6.2.4 Arithmetic and Logic

The Gullwing ALU supports a small number of operations (€ahi3). Other operations such
as subtraction and bitwise OR must be synthesized by sl sequences. Binary operations

4Except for PC@, which loads the ISR.

50

are destructive: they pop two values from the DS and pushesétrback. Unary operations
simply replace the contents of the top of the DS. All thest&rurcsions execute in a single cycle.

The +* operation is unusual in that it is conditional and rd@structive. It replaces the
contents of TOP with the sum of TOP and of the first element of @y if the original value
of TOP was odd (least significant bit is set). Combined witlit iperations, it provides a
means of synthesizing a multiplication operation.

| Mnemonic| Name | Operation |

NOT Not Bitwise complement of top of data stack
AND And Bitwise AND of top two elements of data stack
XOR Xor Bitwise XOR of top two element of data stagk

+ Plus Sum of top two elements of data stack

2* Two Star Logical shift left of top of data stack

2/ Two Slash Arithmetic shift right of top of data stack

+* Plus Star Multiply step

Table 6.3: Gullwing ALU Instructions

6.2.4.1 Synthesizing More Complex Operations

The ALU instructions included, given the small amount ofialde opcodes, are the most
frequent and useful: Addition is much more common than swuhitn and XOR is frequently
used as an equality test. Other primitive instructions easymthesized with short sequences
that fit inside a single memory word. Algorithm 1 shows howtsaittion is implemented as a
two’s-complement operation followed by an addition, wihiie implementation of the bitwise
OR operatord Vv B is expressed ad @ (B A A).

Algorithm 1 Gullwing Synthesis of Subtrac-Algorithm 2 Gullwing Synthesis of Multipli-

tion and Bitwise OR cation (4x4)
Subtraction: SR 2% 2% 2% 2+ R>
NOT LIT 1 + + +x 2/ +%x 2/ + % 2/ + % 2f
Bitwise OR: >R DROP R>

OVER NOT AND XOR

Algorithm 2 shows how the multiplication of two 4-bit numikeis implemented. The
topmost element of the Data Stack contains the multiplibilerthe second contains the mul-
tiplicand.

The multiplicand is first shifted right four times to alignwitith the empty space in front
of the multiplier. It is then added to that empty space if thast significant bit (LSB) of
the multiplier is set. The partial product and multipliee ahifted left by one, which both
prepares the LSB with the next bit of the multiplier and haes ¢fffect of effectively shifting
the multiplicand right by one relative to the partial protdulthe process is repeated four times,

51

shifting out the multiplier and leaving the completed 8gdoibduct on the top of the stack. The
multiplicand is then discarded.

This method produces one bit of product approximately etv@oycycles and is a compro-
mise between full hardware and software implementatideslifadvantage is that it is limited
to single-word products, and thus to half-word factors. ldeer, it can also be optimized when
the multiplier is much smaller than the multiplicand.

The multiplication of full-word factors, with a double-waproduct, could be accomplished
in the same way by shifting across two registers. For exaii@® could hold the multiplicand
and A the multiplier. By having +* test the LSB of A, and 2/ gmfj from TOP into A, the
process would leave the lower half of the product in A and theen half in TOP. Executing
A> would then place both halves on the Data Stack.

6.2.5 Stack Manipulation

Table 6.4 shows the instructions which manipulate the stackl move data internally. They
execute in one cycle.

| Mnemonic| Name | Operation |

A> A From Push A onto data stack
>A To A Pop data stack into A
DUP Dup Duplicate top of data stack

DROP Drop Pop data stack

OVER Over | Push copy of second element onto data stack
>R ToR Pop data stack and push onto return stack
R> R From | Pop return stack and push onto data stack

Table 6.4: Gullwing Stack Manipulation Instructions

6.2.6 No-Op and Undefined

Finally, one instruction is defined as no operation (Tab.6lt does nothing but fill an in-

struction slot and use a machine cycle. The remaining fodefined instructions are mapped
to NOP also.

| Mnemonic| Name | Operation |

NOP Nop Do Nothing
UNDIJ0-3] | Undefined| Do Nothing

Table 6.5: Gullwing No-Op and Undefined Instruction

52

6.2.7 Instruction Format and Execution Example

Instruction opcodes are 5-bit numbers. Six of these can tleeplainto a 32-bit memory word.
The last two bits are unused (see Section 6.1.3). Literalsddresses always occupy an entire
word. Each instruction position is termed a slot and thessioa word constitute an instruction
group. After a group is fetched, the instructions in thesskoe executed in turn until they are
exhausted. Figure 6.3 shows the memory layout of a randoppsnof code tailored to show
the layout of the instructions. They are laid out in leftright order for convenience only.

In the initial state of this example, the group at addresssljist been fetched, the instruc-
tion in Slot 0 (S0) is about to be executed, and the Programmtéo(iPC) has been incremented
to point to address 2. The first instruction (>R) executefauit comment and shifts the con-
tents of the ISR to the left by one instruction, placing JMB@ee current instruction.

In the case of the JIMPO conditional jump being not taken, thésRncremented by one to
point to address 3, and the execution continues with DUP.A\Mine LIT instruction is reached
it fetches the literal pointed-to by the PC (at address 3)inagements the PC by one. The
addition instruction is then executed.

When the PC@ instruction is reached, it fetches a new graup the location pointed to
by the PC, which is currently address 4, and then increméet$C. Eventually the CALL
instruction is reached. It loads the instruction group fribra target address in the memory
word pointed to by PC (at address 5), and loads the PC withatigettaddress plus one. The
remaining slots are never executed and are filled by coraentith PC@.

Had the JMPO conditional jump been taken, it would have ebegtsimilarly to the CALL
instruction, loading the group at address 4 and leaving @pdting to address 5. The strictly
word-wide access to memory is why the R> in Slot 0 at addressiiaot be placed in Slot 5
at address 1. Jumping or calling to an address always begesing at Slot 0.

SO s1 S2 S3 S4 S5
>R | JMPO|DUP | LIT | + |PC@
Address for IMPO (4)

Number for LIT

R> | XOR |[CALL |PC@ | PC@| PC@
Address for CALL

ah~ whNPE

Figure 6.3: Gullwing Instruction Format

53

6.3 State Machine and Register Transfer Description

The operation of the unpipelined Gullwing processor is \&&myple. There are no exceptions or
interrupts. Algorithms 3 through 4 show the state transgiand register transfers. The inputs
of its state machine consist of the opcode of the currentuasbn (INST), the current state
(S), and whether the contents of the TOP register is all zgfe@), has the most significant bit
clear (MSBO), or has the least significant bit set (LSB1). Seharee flags have been collapsed
into a single input column (TOP) for brevity. 'Don’t Care’ lues are represented by X. The
outputs are the next state (N) and the various enable andt sfmals needed to steer the
datapath, which are represented symbolically.

All actions on a line occur concurrently. For example, theragion of PC@ can be under-
stood as: leave the state at zero, route the PC through ttemeater (+1) and store its output
into both PC and MAR, and load the ISR with the current outpMBM. All instructions end
with either loading or shifting the ISR (ISR< <), which ch&sgNST to the next instruction
to execute (see Figure 6.2). Instructions that take twoesyake the state bit to select which
phase to execute.

Instructions which load instructions from memory, such @d.C and JMP, execute the
same sequence of steps as PC@ in their second phase. Fay,kiese steps have been
replaced with the opcode.

Algorithm 3 Gullwing Flow Control Instructions
Inputs Outputs

PC@ X 0 0 PG(+1) —PC,MAR, MEM-ISR
X 0 1 MEM:PC,MAR
JMP X 10 PC@
0 0 1 DS-TOP, DS(POP), MEM—PC,MAR
JMPO =0 0 0 DS—TOP, DS(POP), PC —(+1) —PC,MAR, ISR<<
JMPO X 1 0 PC@

JMP+ MSBO 0 1 DSsTOP, DS(POP), MEM—PC,MAR

JMP+ MSB1 0 0 DS-TOP, DS(POP), PC —(+1) —PC,MAR, ISR<<
JMP+ X 10 PC@

CALL X 0 1 PC-(+1) —R, R—RS, RS(PUSH), MEM—MAR,PC
CALL X 10 PC@

RET X 0 1 RS(POP), RS—R, R—PCMAR

RET X 10 PC@

Algorithm 4 Gullwing No-Op and Undefined Instructions
Inputs Outputs Inputs Outputs

INST TOP S N Control INST TOP S N Control
NOP X 0 0 ISR<< UND2 X 0 0 ISR<<
UNDO X 0 0 ISR<< UND3 X 0 0 ISR<«<
UND1 X 0 0 ISR<<

54

Algorithm 5 Gullwing ALU Instructions

Inputs

Outputs

INST TOP S N Control

X
LS
LS

X

X

X
X
X

B
B

0 0 TORALU(NOT)—TOP, ISR<<
0 0 TOP,DS-ALU(AND)—TOP, DS(POP), ISR<<
0 0 TOP,DS-ALU(XOR)—TOP, DS(POP), ISR<<
0 0 TOP,DS—ALU(+) —TOP, DS(POP), ISR<<
0 0 TOP-ALU(2+*) —TOP, ISR<<

0 0 TOP—ALU(2/) —TOP, ISR<<

0 ISR<<

00
1 0 0 DS, TOP—ALU(+) —TOP, ISR<<

Algorithm 6 Gullwing Load and Store Instructions

Inputs

Outputs

INST TOP S N Control

LIT
@A+
@A+
@R+
@R+
@A
@A
IA+
IA+
IR+
IR+
IA

IA

X

X X X X X X

XX X X X X

0 0 MEM—TOP, TOP—DS, DS(PUSH), PC —(+1) —PC,MAR, ISR<<
0 1 AsMAR,(+1) —A

1 0 MEMTOP, TOP—DS, DS(PUSH), PC —~MAR, ISR<<
0 1 R-MAR,(+1) —R

1 0 MEMTOP, TOP—DS, DS(PUSH), PC —MAR, ISR<<
0 1 A-MAR

1 0 MEMTOP, TOP—DS, DS(PUSH), PC —MAR, ISR<<
1 A —>MAR,(+1) —A

0 DS(POP), DS —TOP, TOP—-MEM, PC-MAR, ISR<<
1 R—MAR,(+1) —R

0 DS(POP), DS —TOP, TOP—MEM, PG-MAR, ISR<<
1 A —MAR

0 DS(POP), DS —TOP, TOP—MEM, PG-MAR, ISR<<

Algorithm 7 Gullwing Stack Instructions

Inputs

Outputs

INST TOP S N Control

0 0 TOP:DS, DS(PUSH), ISR<<
0 0 DS:TOP, DS(POP), ISR<<

0 0 DS-TOP, TOP—DS, DS(PUSH), ISR<<

0 0 RS(POP), RS—R, R—TOP, TOP—DS, DS(PUSH), ISR<<
0 0 DS(POP), DS—TOP, TOP-R, R—RS, RS(PUSH), ISR<<
0 0 A=TOP, TOP—DS, DS(PUSH), ISR<<

0 0 TOP-A, DS—TOP, DS(POP), ISR<<

55

6.3.1 Improvement: Instruction Fetch Overlap

Using an instruction (PC@) to fetch the next group of indionms eliminates the need for
dedicated instruction-fetching hardware. The fact thet #iso shifted into the ISR for free is
also very elegant. However, this means that at least ond eueoy seven instructions executed
will be a PC@, or about 14% This overhead could be reduced by overlapping fetching wit
execution while the memory bus is free.

A priori, itis unclear how much benefit would come from ovepang the instruction fetch.
Koopman provides a table of the dynamic instruction execuftiequencies of Forth primitives
averaged over a set of benchmarks [Koo89, 6.3]. These presitnap almost directly to the
Gullwing instruction set and the benchmarks from Sectidnare also written in a Forth-like
language. The data predicts that approximately half of ¥eewed primitives are either flow
control or load/store instructions and thus access memdsguming that this probability is
evenly distributed, the fetching of instructions could vertapped half the time, reducing the
overhead to about 7% for straight-line code.

Accomplishing this overlap depends on this fact: If the @ instruction before a PC@
does not access memory, then both instructions can be exksuultaneously without con-
flict. Figure 6.2 shows how the ISR makes this possible. Ifriiet instruction to be executed
is a PC@, then the current instruction being executed is the lastafrthis group. This is
signalled by raising the Last flag (L). If the current instian does not access meméyyhen
instead of shifting the ISR at the end of its execution, tietrirction will fetch the next group
of instructions from memory in the same manner as PC@, akafdtexecuted concurrently.

Implementing this optimization requires adding the L biasinput to the state machine.
Flow control and load/store instructions ignore this hikcgl they always access memory. The
remaining instructions now have two versions, selected,bytich either shift or load the ISR.
Algorithms 8, 9, and 10 show the necessary changes.

Analysis of code executed with an overlapping instructetcli (Appendix B.2.2) confirms
that the actual overhead of explicit PC@ instructions isiced to 4.1 to 2.2% of the total
executed instructions . It also shows that 4.2 to 7.5% ofuiesibns are executed concurrently
(FOLDS’) with a PC@. This demonstrates a 50.6 to 77.3% r&adaodn instruction fetch
overhead.

5The actual overhead will be lower since other flow controtrinstions do their own instruction loading.
Without instruction fetch overlapping the actual overhegihstruction fetching is 8.3 to 9.7%.

SPC@ is conveniently encoded as all zeroes.

Since the opcodes are divided about equally between memdrg@n-memory instructions, a single bit (the
MSB, for example) can be used to test if the instruction asememory. This should simplify the implementa-
tion of the state machine.

56

Algorithm 8 Gullwing ALU Instructions with Instruction Fetch Overlap

Inputs Outputs

INST TOP L S N Control

COM X 00 0 TORALUNOT)—TOP, ISR<<
COM X 10 0 TORALU(NOT)—TOP, PC@

AND X 0 0 0 TOP,DS-ALU(AND)—TOP, DS(POP), ISR<<
AND X 10 0 TOP,DS-ALU(AND)—TOP, DS(POP), PC@
XOR X 00 0 TOP,DS-ALU(XOR)—TOP, DS(POP), ISR<<
XOR X 10 0 TOP,DS-ALU(XOR)—TOP, DS(POP), PC@
+ X 00 0 TOP,DS—ALU(+) —~TOP, DS(POP), ISR<<

+ X 10 0 TOP,DS—ALU(+) —TOP, DS(POP), PC@

2% X 00 0 TOP-ALU@2+*) —TOP, ISR<<

2% X 100 TOP-ALU(@2+*) —TOP, PC@

2/ X 000 TOP—ALU@2) —TOP, ISR<<

2/ X 100 TOP—ALUQ2)) —TOP, PC@

++ LSBO 0 0 0 ISR<<

++ LSBO 1 0 0 PC@

+» LSB1 0 0 0 DS,TOP—ALU(+) —TOP, ISR<<

++ LSB1 1 0 0 DS,TOP—ALU(+) —TOP, PC@

Algorithm 9 Gullwing Stack Instructions with Instruction Fetch Overla

Inputs Outputs

INST TOP L S N Control

DUP X 0 0 0 TOP-DS, DS(PUSH), ISR<<
DUP X 1 0 0 TOP-DS, DS(PUSH), PC@

DROP X 0 0 0 DS-TOP, DS(POP), ISR<<

DROP X 1 0 0 DS-TOP, DS(POP), PC@

OVER X 0 0 0 DSsTOP, TOP—DS, DS(PUSH), ISR<<

OVER X 1 0 0 DS-TOP, TOP—DS, DS(PUSH), PC@

R> X 0 0 0 RS(POP), RS—R, R—TOP, TOP—DS, DS(PUSH), ISR<<
R> X 10 0 RS(POP), RS—R, R—TOP, TOP—DS, DS(PUSH), PC@
>R X 0 0 0 DS(POP), DS—TOP, TOP—R, R—RS, RS(PUSH), ISR<<
>R X 10 0 DS(POP), DS—TOP, TOP—R, R—RS, RS(PUSH), PC@
A> X 00 0 A-TOP, TOP=DS, DS(PUSH), ISR<<

A> X 100 A-TOP, TOP=DS, DS(PUSH), PC@

>SA X 00 0 TOP-A, DS—TOP, DS(POP), ISR<<

>SA X 100 TOP-A, DS—TOP, DS(POP), PC@

Algorithm 10 Gullwing No-Op and Undefined Instructions with Instructieetch Overlap

Inputs Outputs Inputs Outputs

INST TOP L S N Control INST TOP L S N Control
NOP ISR<< UND1 X 100 PC@

X 000
NOP X 100 PC@ UND2 X 0 0 0 ISR<<
UNDO X 0 0 0 ISR<x< UND2 X 100 PC@
UNDO X 10 0 PC@ UND3 X 0 0 0 ISR<<
UND1 X 0 0 0 ISR<< UND3 X 100 PC@

57

58

Chapter 7
Comparisons With DLX/MIPS

As stated in Section 1.1, this thesis aims to divide the faofistack-based computers into first
and second generations. Part of this distinction consfgBawing that the second generation
resembles the register-based machines which replacedgthe fi

This chapter supports this argument by comparing the Gogjyerocessor from Chapter 6
with the well-known MIPS and DLX processors used as dematms by Hennessy & Pat-
terson. This comparison is based on statistics derived fhenorganization and execution of
programs and further based on a comparison of the pipelinetste of each microprocessor.
The characteristics compared include: cycle time, cyclentacycles per instruction, instruc-
tion count, dynamic instruction mix, memory accesses peleggode size, and code density.

7.1 Gullwing Benchmarks

Unfortunately, C compilers for second-generation stackmaters are rare and, when avail-
able, are proprietary or experimental. Additionally, #hare no existing operating systems or
peripherals for Gullwing. Thus, it is not possible at thedito compile the SPEC benchmarks
for this platform. The software used to test Gullwing pemisrmostly symbol table searches
and machine code compilation and interpretation. It co@ddosely viewed as a tiny subset
of the GCC, Lisp, and Perl components of the SPECint bendtsnar

The software was originally written to explore a Forth-lgadf-extensible language, named
'Flight’. 1t is composed of a language kernel used to compieensions to itself, including
a metacompiler and a Gullwing virtual machine, which arenthsed to re-create the Flight
language kernel and all its extensions in a self-hostingr@a his process is described in the
following subsections. The source for all the benchmarkstied in Appendix A.

7.1.1 Flight Language Kernel (Bare)

The Flight language kernel is a small (about 800 32-bit mgmards) piece of machine code.
Its main loop reads in a name, searches for it in a linearatiaty and if found, calls the

function associated with that name. The kernel's othetdiifunctions include management
of a linear input buffer, string comparison, creation otidicary entries, conversion of decimal
numbers to binary, and compilation of the Gullwing opcod8surce code fed to the kernel

59

is executed as it is received and can contain the name of aftyirbor previously defined
function. The source to the kernel is listed in Appendix A.1.

7.1.2 Flight Language Extensions (Ext.)

The language defined by the Flight kernel is extremely sparfde Flight extensions begin
by creating convenience functions to simplify the defimtitookup, and compilation of other
functions. These are used to create various functions forgstopying, compilation, and
printing, multiplication and division of integers, binaty decimal conversion, and a simple
'map’ function generator. These new function are used tesitant small demonstrations of
Fibonacci numbers and Caesar ciphers. These demonsgrattoaunt for a negligible portion
of the total execution time and are used mainly as regresssis for the underlying code.
The Flight language extensions exercise the functionseftlght kernel and are composed
of 329 lines of codecontaining 1710 namésnd executing 5,018,756 instructions (4,462,579
without the demonstrations). The source is listed in AppeAd.

7.1.3 Virtual Machine (VM)

The virtual machine is built upon the Flight extensibagithout demonstration code). It de-
fines a software emulation of all the Gullwing opcodes, somebs-checking functions for a
given area of memory, and an instruction extraction andpnétation loop that reads Gullwing
machine code. Compiled code executes in the virtual machitiean overhead of about 31
emulator instructions per actual emulated instructiore &hd result is a fully contained emu-
lation of the Gullwing microprocessor. The compilation étvirtual machine itself requires
276 lines of code containing 769 names. This process egsrthe functions of the kernel and
its extensions and executes 4,288,157 instructions. Timeeds listed in Appendix A.3.1.

Metacompiler The metacompiler manipulates the Flight kernel to retaitgedperations to
the memory area used by the virtual machine. It saves andressthe internal state of the
kernel, such as the location of the dictionary and inputdaufdnd defines a new main loop
to replace the kernel’'s default one. The new loop first sesr¢he new dictionary in the
virtual machine memory and if there is no match, continuesserarch in the kernel’s original
dictionary. This allows the use of functions previously defl outside of the virtual machine
to bootstrap code inside it. The compilation of the metadtenpequires 106 lines of code
containing 491 names. This process exercises the funaifdhe kernel and its extensions and
executes 4,069,393 instructions. The source is listed jmeAdix A.3.2.

Self-Hosted Kernel The first thing compiled into the virtual machine is anothestance of
the Flight kernel. While the original kernel was written issembly language, this new kernel

10nly non-blank lines are counted.

2Each name is either a function name, or a string to be prodesse

3Although the Virtual Machine software includes the comipila of the Extensions, the latter contributes to
only 2.2% of the total number of executed instructions.

60

is defined using the functions of the original kernel andtaléktensions. The result is a higher-
level description of the Flight kernel, written in itself.h& new kernel binary residing in the
virtual machine memory area is identical to the origindlhe compilation of the self-hosted
kernel requires 246 lines of code containing 681 names. dioisess exercises the functions
of the kernel and its extensions via the indirection of theaoempiler and executes 6,511,976
instructions. The source is listed in Appendix A.3.3.

Flight Language Kernel Extensions Now that a Flight kernel resides in the virtual machine
memory, is it possible to start the virtual machine and eteethis new kernel. The Flight
language extensions from Section 7.1.2 are fed to the nemekerxercising the same code,
but through the emulation layer of the virtual machine. Txscutes 184,993,301 instructions,
taking about 90% of the total execution time of the VM testesui

7.2 Comparison of Executed Benchmark Code

This section compares the properties of Gullwing and DLX8&MWwhen executing integer code.
The DLX/MIPS data is derived from published SPECint92 [HF&H 2.26] and SPECint2000
[HPO2, fig. 2.32] results. The Gullwing data (Appendix B) axpiled from the execution of
software built upon the kernel of a low-level Forth-like ¢prage, named 'Flight’, tailored to
Gullwing (Appendix A). The properties compared are dynamstruction mix, cycles per
instruction (CPI), memory accesses per cycle, and instmgper memory word.

Note that while the DLX and MIPS processors include optirtires such as operand for-
warding, the Gullwing processor has none except for theunsbn fetch overlapping de-
scribed in Section 6.3.1. Other optimizations have bedridefuture work (Section 9.2).

7.2.1 Dynamic Instruction Mix

Tables 7.1 and 7.2 compare the proportions of instructiceswged during the benchmarks.
The Gullwing data is taken from the Extensions and Virtualchlae executed instruction

counts from Appendix B.2.2. Since the Extensions softwagalsdmainly with code com-

pilation, it is compared to the GCC component of the SPEQiraAd SPECint2000 suites.
The Virtual Machine software is compared to the other imetipe components: Lisp from

SPECIint92 and Perl from SPECint2000.

The Gullwing instructions are grouped together and theitigics summed in order to
match the meaning of the equivalent DLX/MIPS instructioRer example, while MIPS has
one load instruction for all purposes, Gullwing has différenes (@A, @A+, @R+) depending
on the addressing mode and the load address register.

The statistics for the XOR and NOT instructions are combisiade the SPECint92 data
groups them together even though the SPECint2000 datdHis separately Statistics for

4Actually, there is a gap of one memory word between functehresto a quirk of the compilation process, but
the actual code is the same.
SFrom SPECIint2000 data:
Table 7.1: 2.8% XOR, plus 0.3% other logical ops.
Table 7.2: 2.1% XOR, plus 0.4% other logical ops.

61

instructions which do not exist in a given machine are regmesd by a dash (*-").
For both the compiler and interpreter test data, the dynarstouction mix of the Gullwing
processor differs from that of DLX and MIPS in some significaays:

e The proportion of loads and stores is lower. | believe thiginates from a lack of
complex data structures in the Gullwing software, and thedrfer DLX and MIPS to
use a stack in main memory to pass parameters to subroutines.

e There are many more immediate loads (fetches) since Gughe@mnot include small
literal operands within most instructions as DLX and MIPS do

e The proportion of calls and returns is much greater. Thekdbased architecture of
Gullwing results in extremely efficient procedure linkagdiich makes the inlining of
code unnecessary in most cases.

e About a quarter of all the instructions executed are staakipodation instructions. Some
are manipulations made explicit by the absence of operan@siilwing instructions as
a consequence of the lack of random access to a stack. DLX #A8 Mclude implicit
move, copy, and delete operations within their instrudiby using a three-operand
instruction format which gives random access to their tegss A large portion of these
stack manipulations are moves of addresses from the toje @fdka Stack to the Address
Register, as performed by the >A instruction. Section 9d&s8usses a mean to reduce
the overhead of these moves.

Additionally, the interpreter dynamic instruction mix @la 7.2) has some further differences:

e The proportion of conditional jumps is lower on Gullwing. i$hs likely because of
the lack of conditionals in the main VM loop, which uses iaste table of function
addresses.

e The large incidence of shifts is due to the use of the shift(&) instruction in the VM
to extract individual instructions out of a memory word.

62

Benchmark | GCC (92)] GCC (2000)| Extensions|

| DLX/MIPS Instr.|| DLX | MIPS | Gullwing || Gullwing Instr. |
load 22.8% 25.1% 15.2% @A, @A+, @R+
store 14.3% 13.2% 0.4% IA, IA+, IR+
add 14.6% 19.0% 10.3% +
sub 0.5% 2.2% -
mul 0.1% 0.1% -
div 0.0% - -
compare 12.4% 6.1% -
load imm 6.8% 2.5% 16.8% LIT, PC@
cond branch 11.5% 12.1% 6.6% JMPO, IMP+
(incl. TAKEN jumps)
cond move - 0.6% -
jump 1.3% 0.7% 2.1% JMP
call 1.1% 0.6% 6.4% CALL
return, jmp ind 1.5% 0.6% 6.4% RET
shift 6.2% 1.1% 0.2% 2/, 2*
and 1.6% 4.6% 0% AND
or 4.2% 8.5% -
other (xor, not) 0.5% 2.5% 6.5% XOR, NOT
other (moves) - - 29.2% DUP, DROP, OVER,
>R, R>, >A, A>
other - - 0% NOP, +*

63

Table 7.1: Compilers Dynamic Instruction Mix

| Benchmark || Lisp(92) | Perl (2000)) VM | |
| DLX/MIPS Instr.|| DLX | MIPS [Guliwing| Guliwing Instr. |
load 31.3% 28.7% 9.3% @A, @A+, QR+
store 16.7% 16.2% 4.6% IA, 1A+, IR+
add 11.1% 16.7% 7.7% +
sub 0.0% 2.5% -
mul 0.0% 0.0% -
div 0.0% - -
compare 5.4% 3.8% -
load imm 2.4% 1.7% 18.0% LIT, PC@
cond branch 14.6% 10.9% 2.0% JMPO, IMP+
(incl. TAKEN jumps)
cond move - 1.9% -
jump 1.8% 1.7% 2.7% JMP
call 3.1% 1.1% 5.0% CALL
return, jmp ind 3.5% 1.1% 7.5% RET
shift 0.7% 0.5% 12.6%* 2/, 2*
and 2.1% 1.2% 3.4% AND
or 6.2% 8.7% -
other (xor, not) 0.1% 3.1% 3.9% XOR, NOT
other (moves) - - 23.3% | DUP, DROP, OVER,
>R, R>, >A, A>
other - - 0% NOP, +*

Table 7.2: Interpreters Dynamic Instruction Mix

71.2.2

The CPI of Gullwing can be readily determined from the ratigh® total number of cycles
to instructions in each test (Appendix B.2.1). Both testsileika CPI of about 1.3 (Appendix
B.2.3).

Table 7.4 shows the contribution to the CPI from each insadype, calculated from
product of the cycle count and of the frequency of each iositso type listed in Appendix
B.2.4. A more detailed breakdown can be derived from theucsbn frequencies in Appendix
B.2.2.

There is sufficient published data in Hennesy & Pattersor®giRom the SPECint92 suite
to estimate the CPI of the DLX processor for the GCC and Lispmanents, beginning with a
base CPI of 1.00 and then adding the penalties from branchoaddstalls. The load penalty
is calculated as the percentage of all the 184ds percentage of all instructions) which stall
[HP96, fig. 3.16]. The branch penalty is given directly [HPB@. 3.38]. The resulting CPl is
1.11 for the GCC component, and 1.15 for Lisp (Table 7.3).

Cycles Per Instruction

Sincluding immediate loads

64

The higher CPI of Gullwing does not compare favourably wihttof DLX. However,
loads and taken jumps on Gullwing take two cycles, which i§ asoad or branch stall always
occurred. Therefore, Gullwing is really architecturalyuevalent to a DLX without load delay
slots and without delayed branches, which always stallsoadd and taken branches. For
example, if 100% of loads are assumed to stall on DLX, theidIpenalty increases to 29.6%
for GCC and 33.7% for Lisp, which raises the total CPI of DLXLt84 and 1.41 respectively,
which is comparable to Gullwing.

Correspondingly, there are some possible optimizatioraulbwing which would reduce
the CPI of loads and jumps and make Gullwing equivalent toremabDLX (Section 9.2.3).

| Test | GCC | Lisp | | Test | Extensions VM |

Total Loads || 29.6%| 33.7% | Instr. Type [Fraction of Total CPI

Load Stalls || 23% | 24% Conditionals] 0.071 0.031

Load Penalty || 6.81%) 8.10% Subroutine | 0.300 0.304

| Branch Penalty] 4% | 7% | Fetches 0.168 0.180

[Total Penalty [10.8%] 15.1%)] Load/Store) 0.312 | 0.276

[OverallCPI || 1.11 | 1.15 | ALU 0.169 | 0.277

Stack 0.292 0.233

Table 7.3: DLX CPI with Load and Branch ‘ Total H 1312 ‘ 1.301 ‘
Penalties

Table 7.4: Gullwing CPI by Instruction Type

7.2.3 Memory Accesses Per Cycle

The memory bandwidth usage of a processor can be expresetlasrage number of mem-
ory accesses per cycle. Assuming a memory access time eghal tycle time of the proces-
sor, one memory access per cycle implies full usage of thikalla bandwidth to memory.

For the MIPS and DLX processors, determining the memory Wwaitt usage is straight-
forward. An instruction is fetched and another completeerg\cycle, assuming no stalls.
Only load and store instructions explicitly access memangmwise. Immediate operands are
within the instruction opcode and so are counted as partofitruction fetches. Large num-
bers which require two loads are rare and ignored. Flow obimstructions do not add to the
instruction fetches since they only steer the Instructiettk pipeline stage.

Table 7.6 takes data from the benchmarks of Section 7.2.slamls that loads and stores
make up on average 42.1% of the total number of executedigtgins. Thus, they contribute
an additional average of 0.421 memory accesses per cyclen\&tided to the instruction
fetches, this totals to an average 1.421 memory accessaygerfor DLX/MIPS, divided
between separate instruction and data memories.

Measuring the memory usage of Gullwing is a little more caogtéd. There is no pipeline.
Several instructions are loaded in one memory access (segantion and Section 6.2.7). Flow
control instructions do their own fetching or loading oftingtions. There are no immediate
operands. Different instructions take different numbéisycles to execute and make different
numbers of memory accesses. However, there is only one myeimoboth instruction and

65

data fetches/loads and thus only one Memory Address Re@ideR) (Section 6.1.1). Thus,
a memory access is defined as an alteration of the MAR.
The average number of memory accesses per cycle for andgtistris calculated as so:

Avg. # of accesses/cycle = (# of accesses = # of cycles) X avg. fraction of total cycles

The number of accesses is determined from the registerfeéramascription (Section 6.3)
as is the number of cycles, which can alternately be seenjreAgix B.2.4. The percentage of
total cycles is listed under the C/C column in Appendix B.Z&ble 7.5 condenses this data.

In summary, the Gullwing processor performs an averageGd/Omemory accesses per
cycle while using a single memory bus, compared to 1.421 fo{/MIPS which uses two.

It would be ideal to reduce Gullwing’s memory bandwidth hat, but part of the reason
it is already low is because of the extra instructions rexgiito manipulate the stack (which
do not access memory). Reducing this instruction overhalidnerease the proportion of
memory-accessing instructions and thus increase thegeetanber of memory accesses per
cycle, towards a maximum of one (Section 9.2.3).

Either way, since loads and stores cannot (and have no npedeidap instruction fetches
on Gullwing, the maximum number of memory accesses per @at@ot exceed one. By
comparison, MIPS must havenasinimumof one memory access per cycle. When MIPS must
manipulate its call stack, it must perform additional meyrexcesses in the form of data loads
and stores, increasing its memory bandwidth further

| Test | Extensiong VM |
| Instruction | Accesseg Cycles| Acc./Cyc. || Fraction of Total Cycles
PC@ 1 1 1 0.031 0.017
FOLDS 1 1 1 0.032 0.058
CALL 2 2 1 0.098 0.076
JMP 2 2 1 0.033 0.042
JMPO, JMP+ 1 1 1 0.046 0.009
JMPO, JMP+ (TAKEN) 2 2 1 0.007 0.001
RET 2 2 1 0.098 0.115
LIT 1 1 1 0.097 0.122
@A, QA+, @R+ 2 2 1 0.233 0.142
IA, 1A+, IR+ 2 2 1 0.006 0.070
all others 0 1 0 0.352 0.392
| Total of (Acc./Cyc.) x Fraction | 0681 | 0652 |
| Average | 0.667 |

Table 7.5: Gullwing Memory Accesses Per Cycle (Total)

“Implying, of course, a second memory bus.

66

Test Compiler Interpreter
CPU DLX MIPS || DLX | MIPS
Component| GCC92| GCCO0O0|| Lisp Perl
Loads 22.8% | 25.1% || 31.3%| 28.7%
Stores 14.3% | 13.2% || 16.7%| 16.2%

[Total | 37.1% | 38.3% || 48.0%] 44.9%)
| Average || 37.7% | 46.5% |
| Average || 42.1% |

Table 7.6: DLX/MIPS Memory Accesses Per Cycle Caused by t@adl Stores

7.2.4 Instructions per Memory Word

For DLX/MIPS, the density of code in memory is simple: thes@xactly one instruction per
memory word. The opcode and its operands or literals arerigedtto fit. For Gullwing,
opcodes have no explicit operands and literals are placéteimext memory word (Section
6.2.7). This allows up to six instruction opcodes to fit in mgé¢ memory word. The actual
number is variable due to the word-addressed nature of jucafis, and returns.

However, if the total number of instructions is comparedi® total number of instruction
slots (Appendix B.1.5), it is apparent that most of the aldé instruction slots are wasted.
Chapter 8 explains why and shows a method to make these wastea@vailable.

Appendix B.1.4 shows that in most cases there is one, twax arstructions per word that
contains instructions (instead of a literal). The ones avastimply higher-level code where
the memory word contains a call or jump, while the sixes arelkvel code without changes in
program flow. The result is an overall code density of aboRiristructions per memory word
(Appendix B.1.5). If the words containing literals and agkies are excluded, the average
memory word containing instructions contains between tmtaree instructions.

Despite the modest overall increase in code density, thieehigensity of words which
contain instructions reduces the number of memory accessesred to fetch instructions.
Until a group of instructions is exhausted, the memory bdieis for loads and stores, and for
fetching addresses and literals and the next instructian also.

Gullwing spends 0.441 memory accesses per cycles to fetoadmstruction$ compared
to 1.00 for MIPS. The fraction of all memory accesses usetktohing or loading instructions
on Gullwing is still approximately the same relative to MIF&®.1% versus 70.4%, based on
Section 7.2.3). Therefore, the important benefit of packmutiple instructions per memory
word is not so much a reduction in code size, as one in ingdruéétch memory bandwidth.

8Calculated as the sum of the fraction of total memory acsegsee by instructions which alter the Program
Counter (PC): PC@, FOLDS, CALL, RET, all IMPs, and LIT, age@over both the Ext. and VM tests.

67

7.2.4.1 Basic Blocks and Instruction Fetch Overhead

This reduction in the number of instruction fetches manées a reduction of the number of
PC Fetch (PC@) instructions required to load the next sagémstruction word. If a basic
block of code spans several memory words, the last instnuati each word will be a PC@
which fetches the next group of instructions (Sections76ghd 6.3.1). The call and jump
instructions that terminate basic blocks do their own ungton loading.

Appendix B.2.5 shows that the average length of a basic bloelasured in instructions,
fits well within the six instruction slots in each memory woid fact, 71.1 to 80.9% of basic
blocks fit in a single memory word. This places a limit on howamwverhead the PC@
instructions can cause.

This PC@ overhead drops as the memory word gets wider and ingiractions can be
packed in one. At the limit, when all basic blocks fit into onemory word, no PC@ in-
structions will be executed and all loading of instructiovid come from calls and jumps. In
effect, each memory word behaves as a cache line. This &faatplified by the mechanism
proposed in Chapter 8.

7.3 Behaviour of Iteration, Recursion, and Subroutine Calé

A clearer understanding of the differences between Gugveind MIPS is obtained by com-
paring the behaviour of simple, demonstrative programstevrifor both processors. These
demonstrators are examples of universal small-scalerf=satf code, regardless of the higher
language used: iteration, recursion, and subroutine. Cetigy are not meant as benchmarks of
overall performance, but as precise, singular tests maeepose the low-level details of how
each processor executes code, unclouded by the compdeartak biases of actual purpose-
ful software. A direct comparison can be made between batbgssors since the algorithms
and implementation styles are identical, contrary to therogeneous tests from the previous
section.

7.3.1 Measured Properties

The code examples given are simple enough that their prepeld not depend on input data
and can thus be determined by inspection. The propertiesnassured for a single algo-
rithm step, which is one loop, recursive call, or sequencgubfoutine calls. For looping and
tail-recursive code, only the code inside the loop is casrgid since the entry and exit code
contribute a fixed amount regardless of the number of itemati For recursive and subroutine
code, the entire code is considered. The measured praparée

Memory Words This is a measure of code size, assuming 32-bit memory wbrsisuctions
are displayed such that one line represents one word of nyemor

Instructions This is the number of instructions executed. All other tlsitgging equal, a
difference in number suggests a difference in suitabititihe given task.

68

Memory Accesses This is the count of the number of memory fetches, loads, tod$. For
MIPS, this also include the fetching of instructions. Thisrao such distinction in Gullwing:
fetching instructions is a special case of data loads.

Cycles This is the count of the number of cycles required. The cyiohe tis assumed to
be the same for both processors. All MIPS instructions eacimtcas one cycle, while the
Gullwing instructions count as one or two cycdieésThe MIPS pipeline is assumed to be full at
the start and to never stall.

Memory Accesses Per Cycle This is a measure of the memory bandwidth required. A mea-
sure of one access per cycle implies a fully-utilized menury.

Cycles Per Instruction (CPI) The MIPS pipeline is assumed to never stall and thus to always
have a CPI of one. Since Gullwing instructions take one oradywdes, the CPI depends on the
code being executed.

Instructions Per Memory Word This is a measure of code density. For MIPS, this measure
is always one. For Gullwing, it is variable.

7.3.2 Demonstrators

The C source for the demonstrators was compiled to assearuyibge, at various optimiza-
tion levels, with a little-endian MIPS32 cross-compilingrsion of GCC 3.4.4. The simplest
resulting code was then hand-optimized, if possible, tmielate the quirks of the compiler
and reproduce optimal hand-assembled code. From this,qiieadent stack-oriented code
was written with an effort towards keeping the algorithm hereged.

The first demonstrator is the triangular numbers functiors the additive analogue of the
factorial function: each triangular number is the sum ofledl preceding positive integers. It is
quite possibly the tiniest non-trivial example of loopingpe (since the number of repetitions
is part of the calculations). It is also interesting sinces iexpressible in several forms. The
iterative, recursive, and tail-recursive forms are anedf/z

°In the MIPS pipeline, all instructions require one memorgess to fetch the instruction, and another access
if the instruction is a load or a store. For Gullwing, there@division between instruction and data memory.
The fetching or loading of instructions is done by the flowtcohinstructions. Calls, returns, jumps, and taken
conditionals perform two memory accesses. Untaken camdits and PC@ (PC Fetch) do only one. A PC@ is
implied at the end of a group of instructions that does notieralflow control instruction. Literal fetches take
one cycle.

OFor Gullwing, conditional jumps use a variable number oflegc If taken, they behave like a jump, call, or
return, taking two cycles. If not taken, they merely advatocide next instruction, taking one cycle. Fortunately,
in the programs shown, the conditional jump is used to testabp exit condition or the recursion terminal case
and thus takes one cycle for all algorithm steps except gteolze. It is thus considered a one-cycle instruction.
See Section 6.3 for details.

UThere is a closed form of the triangular numbers algorithricivhive not investigated here because it requires
multiplication, which Gullwing does not hav&ri,, = %n(n + 1). Since it's a straightforward expression, it
should evaluate in the same manner on stack-based anderdmasted computers, with perhaps a small stack
manipulation overhead on stack computers, depending oexte instruction set.

69

The second demonstrator is a sequence of progressively ecoanplex subroutine calls
implementing the sum of their parameters. While the fumcigatrivial, it is implemented in a
manner that highlights parameter passing in nested subesut

7.3.3 lterative Triangular Numbers

This is a straightforward iterative version. It add a deaating loop counter to a sum.

Gullwing requires over twice as many instructions for it code since values must be
explicitly duplicated, moved about the two stacks, or lahftem memory. In contrast, MIPS
has random access to all registers and explicit source astohdon operands which can also
be small literals. This implicitly combines duplicationamipulation, and literal fetches with
the actual arithmetic/logical operation. It naturallyléevs that many more of the simpler stack
operations will be required to accomplish the same effeelctiBns 9.2.2 and 9.2.3 discuss
means of implementing more complex stack operations.

These extra instructions required by Gullwing are mostglstmanipulations, which add
cycles but do not access memory, and thus artificially rediaieenemory bandwidth. Simi-
larly, the CPI is lower than in all the other demonstrators ttuthese additional single-cycle
instructions.

The size overhead of these instructions is entirely absldsigeéhe capacity to pack multiple
instructions per memory word, but any potential reductiothie number of memory accesses
is offset by the greater number of literals and addresseshwhiist be fetched.

70

Algorithm 11 Triangular Iterative C Source

int triangular (int foo) {

int bar = 0;
while(foo !'= 0){
bar = bar + foo;
foo = foo - 1;
}
return bar;
}
Algorithm 12 Triangular Iterative MIPS32Algorithm 13 Triangular Iterative Gullwing
Assembly Assembly
move $2,$0 LIT >R
$L7: beq $4,$0,$L8 0
addu $2,$2,%4 Loop: DUP JMPO R> OVER + >R
b $L7 End
addiu $4,%4,-1 LIT + JMP
$L8: -1
j $31 Loop
nop End: DROP R> RET
| Main Loop | MIPS | Stack| Stack/MIPS]
Mem Words 4 5 1.25
Instructions 4 9 2.25
Mem Accesses (instr+data)(4+0) 5 1.25
Cycles 4 10 2.50
| Derived Measures | MIPS | Stack| Stack/MIPS]
Accesses/Cycle 1.00 | 0.50 0.50
Cycles/Instruction 1.00 | 1.11 1.11
Instructions/Word 1.00 | 1.80 1.80

Table 7.7: Triangular Iterative Code Comparison

MIPS Gullwing
move 0| 4| >R, R> DUP, OVER
addu, addiy 2 || 2 +
loadimm | 0| 1 LIT
beq 1)1 JMPO
b 11 JMP

Table 7.8: Iterative Dynamic Instruction Mix

71

7.3.4 Recursive Triangular Numbers

The recursive version stores the intermediate values ostdoik across a series of recursive
calls, summing them once the terminal case is reached.

The stack-oriented instruction set of Gullwing eliminaadithe explicit call stack manipu-
lations and copying of arguments done by MIPS, approximdu@iving the number of memory
words required and also resulting in straightforward ¢éade

Gullwing has to perform very little extra stack manipulatiand so does not have an ar-
tificially reduced memory bandwidth as in the iterative epdan On the other hand, MIPS
must now manage a stack in memory, increasing its cycle amdameaccess counts to well
above those of Gullwing. The result is that Gullwing gentyrmequires about half the mem-
ory bandwidth than MIPS. Section 9.2.1 discusses a methachvdould eliminate the stack
management overhead of MIPS.

Algorithm 14 Triangular Recursive C Source
int triangular (int foo) {

if (foo == 0) {
return O;
} else {

return foo + triangular(foo-1);

}

12t is fair to say that the MIPS code shown, which has been eléamp from the actual compiler output, is
spaghetti-code. It's not possible to optimize it furthetheiut altering the algorithm (recursing to a separate entry
point), and even then it would only save one instruction. Toevoluted nature of efficient code created by a
compiler is not usually a human concern, but there’s no wanlaall it a good thing.

72

Algorithm 15 Triangular Recursive MIPS32Algorithm 16 Triangular Recursive Gullwing

Assembly Assembly

Tri: addiu $sp,$sp,-32 Tri; DUP JMPO DUP LIT + CALL
sw $31,28($sp) End
sw $16,24($sp) -1
move $16,%4 Tri
beq $4,$0,$L1 +
move $2,%0 End: RET
addiu $4,%$4,-1
jal Tri
addu $2,$2,$16

$L1: Iw $31,28($sp)
lw $16,24($sp)
] $31

addiu $sp,$sp,32

| Entire Code | MIPS | Stack| Stack/MIPS]
Mem Words 13 6 0.46
Instructions 13 8 0.62
Mem Accesses (instr+data)13+4)| 7 0.41
Cycles 13 10 0.77

| Derived Measures | MIPS | Stack| Stack/MIPS]
Accesses/Cycle 1.31 | 0.70 0.53
Cycles/Instruction 1.00 | 1.25 1.25
Instructions/Word 1.00 | 1.33 1.33

Table 7.9: Triangular Recursive Code Comparison

MIPS Gullwing

move 21 2 DUP
addu, addiu 4 || 2 +
loadimm |0 || 1 LIT

SwW 20| Al etc...

Iw 20| A@, etc...
beq 111 JMPO
jal 11| CALL

j 11 RET

Table 7.10: Recursive Dynamic Instruction Mix

73

7.3.5 Tail-recursive Triangular Numbers

Expressing the recursive algorithm in a tail-recursiverfaeuses the parameters across calls,
reducing the data stack depth to that of the iterative case,paovides the opportunity to
eliminate the tail call.

The advantage of this representation is that the tail catlivglly eliminated from the
Gullwing code by replacing th€ALL instruction with aJMP and eliminating the following
RET instruction. This eliminates the accumulation of returdradses from the return stack.
Optimizing the MIPS code in the same manner yields the inteaative code. The tail of the
Gullwing code is not counted since it executes only once.

Expressing the algorithm in a tail-recursive form bringsldser to the iterative case and
so some of the stack manipulation overhead reappears inuheifg code. However, the
memory bandwidth remains lower than MIPS as in the recuzge.

Algorithm 17 Triangular Tail-Recursive C Source
int triangular (int foo, int acc) {

if (foo == 0){
return acc;

} else {
acc += foo;
foo -= 1;
return triangular(foo,acc);

74

Algorithm 18 Triangular Tail-Recursive Algorithm 19 Triangular Tail-Recursive Gull-

MIPS32 Assembly wing Assembly

Tri: addiu $sp,$sp,-32 Tri:. OVER JMPO OVER + >R
sw $31,24($sp) End
beq $4,$0,5L1 LIT + R> CALL
addu $5,$5,$4 -1
jal Tri Tri
addiu $4,%$4,-1 RET

$LI: End: >R DROP R> RET
lw $31,24($sp)
] $31

addiu $sp,Psp,32

| Main Body | MIPS | Stack| Stack/MIPS]
Mem Words 9 6 0.67
Instructions 9 10 1.11
Mem Accesses (instr+data)(9+2) | 7 0.64
Cycles 9 12 1.33

| Derived Measures | MIPS | Stack| Stack/MIPS]
Accesses/Cycle 1.22 | 0.58 0.48
Cycles/Instruction 1.00 | 1.20 1.20
Instructions/Word 1.00 | 1.67 1.67

Table 7.11: Triangular Tail-Recursive Code Comparison

MIPS Gullwing
move 0| 4| DUP, OVER, >R, R>
addu, addiy 4 || 2 +
loadimm |0 1 LIT
sw 1/ 0 Al etc...
Iw 1/ 0 A@, etc...
beq 111 JMPO
jal 111 CALL
j 111 RET

Table 7.12: Tail-Recursive Dynamic Instruction Mix

75

7.3.6 Subroutine Calls

Nested subroutine calls are really a form of expressionuasign (Section 4.2), which is a
process that naturally maps onto a stack. However, the ezfigi of this mapping is quite
dependent on how the expression is arranged by the prograormmempiler. A fundamental
assumption here is that subroutines are library calls ansgl tAnnot be inlined or have their
registers globally allocated by a smart compiler.

The MIPS subroutine call overhead, manifested as additinstructions and memory ac-
cesses to manage an in-memory stack and move parameteeehawygisters, is quickly am-
plified as the nesting of subroutines increases. This oaerle so large that even the low
density and high CPI of sequence of calls in Gullwing codesdua# negate it. Section 9.2.1
discusses a method which could eliminate the stack managewerhead of MIPS.

Add2 The stack code cycle overhead here comes from (the unopyRET requiring two
cycles to execute.

Algorithm 20 Add2 C Source
int add2 (int a, int b){
return a + b;

}
Algorithm 21 Add2 MIPS32 Assembly Algorithm 22 Add2 Gullwing Assembly
add2: j $31 add2: + RET

addu $2,$4,$5

| Entire Code | MIPS | Stack| Stack/MIPS]
Mem Words 2 1 0.50
Instructions 2 2 1.00
Mem Accesses (instr+data)(2+0) 2 1.00
Cycles 2 3 1.50

| Derived Measures | MIPS | Stack| Stack/MIPS]
Accesses/Cycle 1.00 | 0.67 0.67
Cycles/Instruction 1.00 | 1.50 1.50
Instructions/Word 1.00 | 2.00 2.00

Table 7.13: Add2 Code Comparison

MIPS | Gullwing
addu| 1| 1 +
i |11 RET

Table 7.14: Add2 Dynamic Instruction Mix

76

Add3 The stack code shows a great advantage, as previously stenragcursive triangular
number example, even for a single nested call with one axhditiparameter.

Algorithm 23 Add3 C Source
int add3 (int a, int b, int c){
return add2(add2(a,b),c);

}
Algorithm 24 Add3 MIPS32 Assembly Algorithm 25 Add3 Gullwing Assembly
add3: addiu $sp,$sp,-32 adds: CAL
sw $31,28($sp) ?:ALL
sw $16,24($sp) add?
move $16,$6 RET
jal add2
move $4,$2
move $5,$16 MIPS Gullwing
jal add2 move 31 0| DUP,etc...
Iw $31,28($sp) ddu, addid 20|+
Iw $16,24($sp) addu,
j $31 S 20| Aletc...
addiu $sp,$sp,32 Iw 2| 0] AQ, etc...
= jal 22| CALL
i 11| RET

Table 7.15: Add3 Dynamic Instruction Mix

| Entire Code | MIPS | Stack| Stack/MIPS]
Mem Words 12 5 0.42
Instructions 12 3 0.25
Mem Accesses (instr+data)12+4)| 6 0.38
Cycles 12 6 0.50

| Derived Measures | MIPS | Stack| Stack/MIPS]
Accesses/Cycle 1.33 | 1.00 0.75
Cycles/Instruction 1.00 | 2.00 2.00
Instructions/Word 1.00 | 0.60 0.60

Table 7.16: Add3 Code Comparison

77

Add4 This more complex example requires some stack manipulabometheless, its per-
formance is still far better than the corresponding MIPSecod

Algorithm 26 Add4 C Source
int add4 (int a, int b, int c, int df
return add2(add2(a,b),add2(c,d));

}
Algorithm 27 Add4 MIPS32 Assembly Algorithm 28 Add4 Gullwing Assembly
add4: addiu $sp,$sp,-40 add4: CAdeLZ
sw $31,36($sp) iR CALL
sw $18,32($sp) 2dd2
sw $17,28($sp) R> CALL
sw $16,24($sp) 2dd?2
move $16,$6
RET

move $17,%7
jal add2

move $18,$2
move $4,$16

move $5.$17 MIPS Gullwing

jal addé move| 7 2| >R,R>

e Ses oA

move $5,$2 l, etc...

jal add2 w |41 0| A@, etc...

lw $31,36($sp) jal_|3]3] CALL

lw $18,32($sp) J 1)1 RET

w $17,28(3sp) Table 7.17: Add4 Dynamic Instruction Mix
lw $16,24($sp)

j $31

addiu $sp,$sp,40

| Entire Code | MIPS | Stack| Stack/MIPS]
Mem Words 21 7 0.33
Instructions 21 6 0.29
Mem Accesses (instr+data)21+8)| 8 0.28
Cycles 21 10 0.48

| Derived Measures | MIPS | Stack| Stack/MIPS]
Accesses/Cycle 1.38 | 0.80 0.56
Cycles/Instruction 1.00 | 1.67 1.67
Instructions/Word 1.00 | 0.86 0.86

Table 7.18: Add4 Code Comparison

78

7.4 Pipelining

The unpipelined view of the Gullwing processor presente@Ghapter 6 shows a simple com-
puter with a number of components comparable to the DLX memeof Hennessy & Pat-
terson. However, the cycle time of Gullwing as shown mustiteaigr than that of the DLX
simply because an instruction cycle includes the full pabmfthe Instruction Shift Register
(ISR), through the (implicit) decoding logic, to the corlted units such as the ALU.

Pipelining Gullwing would overlap the decoding and exeegivf an instruction and reduce
the cycle time to that of the slowest stage, which is usublyadder in the ALU. I'll show this
change in the same manner as Koopman [Ko090], as a trangfomedthe well-known DLX
pipeline, but in much more detail. The resulting Gullwinggline has a structure that implies
a comparable cycle time to the DLX pipeline.

7.4.1 Transforming the DLX Pipeline to Gullwing

For reference, Figure 7.1 [HP0O2, Fig. A-3] shows the basapstof the DLX pipeline. Each
stage contains a particular subsystem: Instruction Mer(iMy, Register File (Reg), Arith-
metic and Logic Unit (ALU), and Data Memory (DM). These stagee commonly referred
to as the Instruction FetchH), Instruction DecodelD), Execute EX), Memory (MEN| and
Write-Back (WB stages. Stages are separated by pipeline registers. Tddile is simul-
taneously read in thi® stage and written in thé/Bstage.

1= ID EX MEM WB

DM —Reg
i

Figure 7.1: DLX Pipeline Block Diagram

The pipelining of the Gullwing processor can be explaine@dkghanging the subsystems
in the DLX pipelining with those of Gullwing and following éhimplications.

The first change is that Gullwing has a single memory bus fetrilctions and data. This
removes the distinction between IM and DM. Since lthestage fetches an instruction every
cycle, this implies a structural hazard for every data axddswever, the zero-operand instruc-
tion format of Gullwing means that several instructions barpacked as a group into a single
memory word (Section 6.2.7). This reduces the occurrentieecdtructural hazard to between
2 and 4 percent of executed instructions (PC@ count in Apgdh@.2). Furthermore, the end
of a group of instructions is explicitly marked by the indlusof a PC@ (PC Fetch) instruction
which fetches the next group of instructions in parallehaifie current instruction if possible.
Combined, these two features accomplish the function offhstage and effectively divides
it betweenMEMwhere the instructions are fetched, dBd where they are held and decoded.

79

The second change is the replacement of the register fileanstiack, which has the dis-
advantage of forcing a RAW (Read-After-Write) dependenegeen all instructions. This
means that an instruction ID must wait for the previous instruction EXto reachwBbefore
being able to continue. However, a stack has the advantagavrig its inputs and outputs
immediately available, without having to decode addrééseghis effectively makes them
into registers equivalent to tHB/EX andEX/MEMpipeline registers connected to the ALU.
Thus the stack can be moved outlbf and placed int&EX without any speed penalty. This
eliminates thaVBstage and simplifielD .

The third change is the use of direct addressing. The DLXg®®ar uses displacement
addressing to simulate a number of other addressing motiesreqjuires the ALU to compute
an address for each load or store instruction, fordgto precedeMEM Direct addressing
removes this dependency and so both stages can now opepgllel. SinceMEMalready
contains the incrementer for the Program Counter (brougét som IF in the first transfor-
mation), it can be re-used to implement post-incrementirgctladdressing.

The end result of these changes results in the pipeline slmwigure 7.2a, wher¢éD
decodes the instructions from the ISR, @ and MEMexecute the instructions. Figure 7.2b
shows how these stages map to the existing Gullwing funatiolocks. Note that thEX and
MEMstages both contain adding circuitry and so place a lowdt bmthe cycle time that is
comparable to that of the DLEX stage.

The operation of the pipeline is similar to that of the DLXdEre 7.3). Since the pipeline
introduces one stage of latency to execution, the next gobumstructions is loaded into the
ISR while the last instruction in the current group (5) dezdThis process is detailed in the
next section. Instructions that require two cycles to et@csuch as loads, occupy the
stage for the duration of their execution (Figure 7.4). Ladd stores must take two cycles
since they currently cannot be overlapped, but on the othed lthere is no load delay slot.
Overlapping loads and stores are discussed in Section 9.2.3

MEM —

ME

(a) Pipeline (b) Stage Details

Figure 7.2: Gullwing Pipeline Block Diagram

13Since a stack is only ever accessed sequentially, the aiiogesf the individual stack registers reduces to a
single-bit shift register, one bit per stack register, withdecoding required. A more aggressive design would
further reduce the entire stack to a word-wide shift registe

80

Cycle (Current Instruction Word)
Instruction 1 2 3 4 5 6 1
0 ID EX/IMEM
1 ID EX/IMEM
2 ID EX/IMEM
3 ID EX/IMEM
4 ID EX/IMEM
5 (next word loaded while 4 executes and 5 decodes) ID EX/IMEM
0 | ID

Figure 7.3: Gullwing Pipeline Operation

Cycle Notes
Instruction 4 5 6 7
@A ID MEM @A staysin ID
@A ID EX/MEM
4 ID EX/IMEM
5 ID

Figure 7.4: Gullwing Load/Stores Pipeline Diagram

7.4.2 Altering the ISR to Deal with the Additional Latency

The pipelining of Gullwing adds a latency of one stage to tkecation of instructions. This
affects the use of the PC@ instruction to fetch the next gadupstructions when the current
one is exhausted (Section 6.1.3). After the last instradtioa group has finished, while the
current PC@ is in th&X stage, another PC@ would belid and would enteEX just as
the ISR was reloaded by the first PC@. The spurious second PQ@ when load the ISR
again after only the first instruction from the new group hadun executing, skipping over
the remainder.

The solution to this side-effect of pipelining is to move atidy one the insertion point of
the PC@ instruction so that it begins executing while theadast instruction in the group
begins decoding and is executed just as the ISR is reloadgdreF7.5 shows the necessary
alterations to the original ISR (Figure 6.2). The PC@ indgtan is inserted at the same time as
the rest of the ISR is loaded, in between the last and be&stadstruction slots (S5 and S4).
The slots are now filled-in with NOPs instead of PC@s as theuasons are shifted out.

The multiplexer between SO and S1 is required to handle #steuiction fetch overlap op-
timization (Section 6.3.1). Once the penultimate instarc{originally in S4) reaches SO0, the

81

inserted PC@ will be in S1 and enable the L signal, signaltirgglast instruction. If the in-
struction in SO does not access memory, then both it and ti@ Ex&cute in parallel and SO
and S1 are then loaded from82which contains the actual last instruction (Figure 7.6). |
the instruction in SO accesses memory, then the instruéimh is not overlapped, and the
instructions are shifted as usual (Figure 7.7).

If not all the instruction slots are filled, then the compiheust make sure that a PC@ is
compiled before the last instruction and fill the remainitagswith NOPs. It must also make
sure the built-in PC@ is never executed after a previous PCiBeisame word. For example,
if the last instruction would end up in S4, then it must be ntbteeS5 and a NOP placed in S4.
Such instruction reorderings usually leads to a one-cyetalby in execution.

MEM |- - - - - - PC@
LSB 32/ | MSB
5 5 5 5 5 5 iz
sg w3 sg c{s2l¢{s3¢{s4<{ Pc@%{ Sb% NOP
INST 35
L

(a) ISR for Pipeline

Figure 7.5: Gullwing ISR Maodified for Pipeline

Cycle Notes
Instruction 4 5 6 1
3 ID EX/MEM
4 ID EX Doesn’t use MEM
PC@ (Lisset) MEM Executed concurrently
5 ID | EXIMEM Loaded from S2
0 | D

Figure 7.6: Gullwing Instruction Fetch (with Overlap) Piipe Diagram

1431 is overwritten by S2 so as to prevent two PC@ from beingueedn sequence. The instruction in S2,
being the actual last instruction, can never be a PC@, edssitilmtion described in the first paragraph occurs.

82

Cycle Notes
Instruction 4 5 6 7 1
3 ID EX/MEM
4 ID MEM Uses MEM
PC@ (L is set) ID MEM Executed sequentially
5 ID | EXIMEM Loaded from S1
0 | D

Figure 7.7: Gullwing Instruction Fetch (without Overlapp®ine Diagram

7.4.3 The Effect of Pipelining on Calls, Jumps, and the CPI

Jumps behave on a pipelined Gullwing in the same manner dgeddltX. The jump target is
loaded one cycle after the jump instruction has finished@iag, thus the following instruc-
tion is a branch delay slot which is always executed and meistgpropriately filled by the

compiler (Figure 7.8).

Also, as in the DLX, a data hazard occurs if a conditional judtapends on the result of the
immediately preceding instruction. However, becausettekgprovides only a single point for
all results it makes this data hazard inevitable. As withfach delay slot, the compiler must
find a way to fill this data hazard slot with useful work. Oneregde is to fill it with a DUP
instruction which would duplicate the top of the stack beftite conditional jump consumes

it, thus saving its value.

In the worst case where they can only be filled with NOPs, tha Hazard and branch
delay slots will add two cycles to conditional jumps, ragsthem to four cycles, and will add
one cycle to calls, unconditional jumps, and returns, mgishem to three cycles. Factoring
this overhead into the CPI data from Table 7.4 increases Blec@Gntribution of Subroutine
instructions to 0.450 for Extensions and 0.453 for VM, of @itionals to 0.142 and 0.062, for
a new total CPI of 1.533 and 1.481 respectively. This estBrdats not take into account the
second-order effect of the lower instruction density cdusethe NOP-filled slots, which will

increase the proportion of instruction fetch

es.

Cycle Notes
Instruction 3 4 5 6 1
2 ID EX/MEM Data Hazard Slot
JMPO ID MEM JMPO stays in ID
JMPO ID MEM
4 ID | EXIMEM | Branch Delay Slot
0 | ID | Branch Target

Figure 7.8: Gullwing Taken Jumps or Calls Pipeline Diagram

83

7.5 Summary and Performance Comparison

In Section 7.2, the comparison of benchmark statisticsaledethese facts about Gullwing,
relative to DLX/MIPS:

e Agreater number of literal fetches, subroutine calls, dadkspermutations are executed.

e An average CPI of 1.31, which is poor compared to the averddeld for a DLX.
However, Gullwing is actually architecturally equival@nta DLX without load delay
slots or delayed branches, whose average CPI is 1.38.

e An average number of memory accesses per cycle of 0.667, avechigio 1.421 for
DLX/MIPS (Section 7.2.3).

e An average code density of only 1.2 instructions per memasydyout of a potential
maximum of three, because most of the instruction slots iremaused.

In Section 7.3, a detailed inspection and analysis of etgmtgorograms which express fun-
damental code features uncovered these differences be®udlving and a generic MIPS-32
computer:

e The random-access registers and explicit operands of tiRShlesign are a definite
advantage when multiple values must be maintained at onae ailgorithm. Gullwing
must instead execute additional instructions to maniptila¢ stacks to get to the value
it needs.

e The MIPS processor must simulate a stack in software forosuinres calls and recur-
sive procedures. The extra instructions to implement tisisksconsume more memory
bandwidth and processors cycles than the equivalent Ghglaade.

e The Gullwing processor requires less memory bandwidtenofftalf that of MIPS, re-
gardless of the number of cycles required for an algorithm.

In Section 7.4, the pipelined form of Gullwing is deriveddbgh incremental transformation
of the DLX pipeline. The result is a 2-stage pipeline complasiean Instruction Decode stage
followed by parallel Execute and Memory stages. Each staggucturally no more complex
than any stage from the DLX pipeline, which implies that tlele time will be similar. The
Gullwing pipeline exhibits similar branch data hazard aethy slots as the DLX pipeline. In
the worst case, these delays should increase the averadgeo@P1.31 to 1.51.

In summary, a pipelined Gullwing processor would have alasintiycle time relative to a
DLX processor. However, with the exception of subroutinksca&ullwing usually requires
a greater number of cycles to execute the same algorithnagsdtsuffers from a higher CPI
due to un-optimized load and branch delays. Therefore, itgl®ullwing up to the same
performance as DLX, the number of executed instructiongcarttie average CPI must be
reduced (Sections 9.2.2 and 9.2.3).

84

Chapter 8

Improving Code Density

The density of Gullwing low-level code is very good. A 32-ibrd holds six instruction slots.
However, instructions that require an in-line argumentsag calls, jumps, and literal fetches,
also additionally use up one whole subsequent memory\wémdluding one such instruction
in a group, while keeping all slots filled, raises the mema@age to two words and thus halves
the code density to three. Adding another such instructiopgithe density to two, and so on
until all six instructions require an in-line argument, kvé resulting minimum code density of
six-sevenths~0.86). As the number of slots in a memory word increases, themam code
density increases towards unity.

This situation is unfortunately a narrow best case. It iy @aplplicable when all instruction
slots can be filled. This is true for literal fetches sinceyte not alter the program flow, and
for conditional jumps since they simply continue with thexni@struction if the condition is
not met. Calls and unconditional jumps always load a newuntibn groug. Memory is
word-addressed and groups always begin execution with ttétesfot, therefore jumping or
returning to the instructions in the slots after a call or puisiimpossible and must instead go
to the next memory word after the argument. Sequences &f tbals end up wasting most of
the available slots (Figure 8.1), bringing the minimum cddasity down to one-half.

Sequences of calls are typical of high-level code, wher@egature is primarily composed
of calls to other procedures. Sequences of jumps are rarer agecuted sequentially, and are
not considered further. The actual usage of the instrudiots is listed in Appendix B.1.5.
The low ratio of filled instruction slots suggests that thenoom for significant improvement
in code density.

Unreachable Slots

CALL | l l l l
Address of Subroutine 1
CALL | l l l l
Address of Subroutine 2
CALL | l l l l
Address of Subroutine 3

Figure 8.1: Gullwing High-Level Code with Unavailable ot

IReturns take their argument from the Return Stack and sareeqga extra memory.
2As do returns.

85

8.1 Improving High-Level Code Density by Adding an In-
struction Stack

The key to improving the density of high-level code is theeylation that if the instructions

to be executed after a subroutine call are placed in the saemeony word as the call, they

will be fetched along with the call and they should not needéaofetched again when the
subroutine returns. The instructions simply need to be tgarpjy stored in the processor
while the subroutine executes. The number of words that tebd stored is identical to the

current nesting depth of the program. This suggests exigritie Instruction Shift Register

(ISR) with a stack that operates in synchrony with the Re&tack (RS). Figure 8.2 illustrates
the process. For clarity, only four slots are depicted ardRéturn Register (R) is omitted (see
Figure 6.1).

When a subroutine call is executed, the remaining instvastare pushed onto an Instruc-
tion Stack (IS) at the same time that the return address isgousom the Program Counter
(PC) onto the RS. When the subroutine returns, the savediatisins are popped from the IS
and placed at the head of the ISR at the same time that the eetdress is popped from the RS
into the PC. The last slot in the ISR is filled with a Program fteu Fetch (PC@) instruction,
as during normal execution. The net effect is that the isitvas following a call are now ex-
ecuted upon return from the subroutine. This makes it ptessiincrease the minimum code
density of high-level code back to six-sevenths (Figurg.8.3

ISR PC ISR PC
[SZY E N I | RET |

| | ST e]

(a) (b)

Figure 8.2: Instruction Stack During Call and Return

Available Slots

CALL [CALL |CALL | | |
Address of Subroutine 1
Address of Subroutine 2
Address of Subroutine 3

Figure 8.3: Gullwing High-Level Code with Available Slots

86

8.1.1 Side-Effects on Return Stack Manipulation

A consequence of the Instruction Stack (IS) is that the netldresses on the Return Stack
(RS) must always be matched with the corresponding instmgstored on the IS. Any offset
between the Instruction and Return stacks would mean tbat that point onwards all re-
turns to calling procedures would execute a few randomunstins before fetching the next
(correct) groups of instructions!

The >R (“To R”) and R> (“R From”) instructions move data backidorth between the top
of the Data Stack (TOP) and the RS. Hence they could leave $heith a different number
of elements than the IS. To compensate, >R pushes a group@fiR§iructions onto the IS,
and R> pops the IS, discarding the instructions. If >R is useggush a return address onto
the RS, such as when the address of a function call is com@iteshtime, then the next
subroutine return will execute the stored PC@ and forcibtgh the first instruction group
of that procedure. If R> is used to discard a return addresssiply for some kinds of error
handling, the stored instructions for that procedure age discarded. Figure 8.4 illustrates the
process.

It is still possible to cause incorrect execution with theisual code sequence 'R> >R’
which would replace the stored instructions with a PC@. Wusld skip a few instructions
upon return unless the instruction slots after the cornedipg call we deliberately left unused
(and thus filled with PC@ anyway). However, the need to inspealter the address of the
calling procedure’s caller is rather unusual. Similarlylass there exists a means of loading
or storing the contents of the IS under program control, tBe&nnot be saved to memory for
the purpose of context switching, debugging, or excepteamdhing.

ISR TOP ISR TOP

Figure 8.4: Instruction Stack During >R and R>

87

8.2 Implementation

The implementation of the code density optimization isigtrdorward, consisting mainly of
adding control lines to push and pop the IS as required. Algor29 shows the changes re-
quired. Added controls are in bold, while removed controéssdruck through. The instruction
fetch overlap optimizations (Section 6.3.1) are not ineldids they are orthogonal.

Algorithm 29 Alterations to Gullwing to Support an Instruction Stack
Inputs Outputs

INST TOP S N Control

CALL X 0 1 PC-(+1) —R, R—RS, RS(PUSH), MEM—MAR,PC, | SR—~IS, | S(PUSH)

CALL X 1 0 PC-(+1) —PC,MAR, MEM-ISR

RET X 00 RS(POP), RS—R, R—PCMAR, | S(POP), |S—ISR

RET X 1 0 PC{+1) PC,MAR, MEM-ISR

>R X 0 0 DS(POP), DS—TOP, TOP—R, R—RS, RS(PUSH), PC@-lS, |S(PUSH), ISR<<
R> X 0 0 RS(POP), RS—R, R—TOP, TOP—DS, DS(PUSH), |S(POP), ISR<<

o o

8.3 Side-Effect on Code Size, Silicon Area, and Subroutine
Overhead

Code Size By allowing sequences of calls to fill all instruction slotsa memory word,
the Instruction Stack (IS) mechanism significantly redubessize of high-level code. In the
example previously given, the code size is reduced by 33&m(&ix memory words down to
four). In the most extreme case where all six slots are fillgd ealls, the code size is reduced
by 42% (from twelve memory words down to seven). For a larggigh number of slots per
memory word V), the reduction tends towards a limit of 50% as the number oharg words
goes from2 N down toN + 1.

As a further estimate of the reduction in code size, if the benof instructions in the
VM test (Appendix B.1.5) is assumed to be evenly packed ifitsiainstruction slots in a
word, these instructions will then use only 610 words of mgmostead of 1565 (Appendix
B.1.1). Adding to that the 1464 memory words which hold aterand addresses, which are
not affected by the new instruction packing, the new totz sif the VM test would be 2074
memory words, which is a 31.5% reduction in size.

In reality, the size reduction is lessened by a second-aflect from calls and jumps:
since memory is word-addressed, the target code of a calinmp nust begin at the first slot
of a memory word, which means that there will usually be a lbiaahe sequence of used
instruction slots, wasting a few. This typically happensinall code loops and at the end of
procedures (after the return instruction). This effecis® aiscussed in Section 6.2.7.

88

Silicon Area Adding a third stack increases the silicon area requirechbyptocessor. The
additional area consumed by the IS is similar to that of thieiReStack since it must be of the
same depth and slightly less wide.

The breakeven point between the additional area of the IStlamdaved area in main
memory, given a uniform word width, is when the reductiBnn the original sizeS of a
program, due to the addition of the IS mechanism, is equaié¢odepthD of the IS stack:
S—S(1—-R)=D.

For example, ifR is taken to be the previously determined value of 31.5%, thaeeds to
be 3.17 times larger thah for its size to be reduced by the same amount as the size dbthe |
Since a stack rarely needs to be more than 32 words deepd®&ch),S would only need to
be equal to 102 memory words to justify the additional aretheS mechanism.

For larger programs, the reduction in code size would gyeattweigh the area of the IS.
The size of the main memory can thus be correspondingly estfud he lowered total silicon
area (processor and memory) would especially benefit engoesicstems.

Subroutine Overhead The use of the IS eliminates the need to fetch the remainistguic-
tion slots after a call instruction. Algorithm 29 shows thia¢ load in the eliminated second
cycle of the return instruction is no longer required beeatg remaining instruction slots are
now loaded from the IS during the first cycle. This reducesotherhead of calling and return-
ing from a subroutine to three cycles, down from four, and atsluces the associated memory
traffic by the same 25%.

8.3.1 The Instruction Stack as an Instruction Cache

Section 7.2.4.1 discusses how the packing of multiple ulesitvns in a memory word makes
each memory word into a cache line of sorts. This cachingeféeluces the number of sequen-
tial instruction fetches within a basic block, as perfornydPC@ (“PC Fetch”) instructions,
leaving virtually all loading of instructions to calls ananpps.

With the addition of the Instruction Stack, multiple basiodks, or at least fragments
thereof, can fit into a single memory word. This extends tlubicey effect across basic blocks
separated by calls. The basic block fragment following & ioatruction had already been
previously loaded and kept on the IS while the subroutineexasuting.

3This assumes that the stacks and main memory are implemasitegithe same memory technology.

89

90

Chapter 9

Conclusions, Contributions, and Further
Work

The first part of this thesis presented the historical oggihthe first generation of stack com-
puters and found that these machines were derived from Baitack principle for the alloca-
tion of storage in nested subroutines, later used in thafsgaon of ALGOL and now seen as
the call stack of C and other programming languages, andhbatecond generation of stack
computers was based on Hamblin’s independently discowvateaik principle geared at func-
tion composition instead of storage allocation. The Emdlikectric KDF9, made commercially
available around 1963, was found to stand out as the firsnslegeneration stack computer
and the only one until the NOVIX NC4016 in 1985. This gap, amel ¢coincidence with the
appearance of RISC microprocessors, accounts for the otyscithe second generation.

The second part of this thesis built upon the first by proppaiset of criteria to distinguish
first and second-generation stack computers. In summaryndegeneration stack computers
keep their stacks in the CPU instead of main memory, use #uksfor the evaluation and
composition of functions instead of procedure storagecation, and use simple, RISC-like
instructions instead of complex microcoded operationsapfdr 5 then presented a rebuttal to
the influential arguments against stack architectured tiyeHennessy & Patterson and found
that they are not applicable to second-generation staclkotars due to their different design
and to advances in hardware technology and compilers. Tis¢ telbng finding is that some
modern processors, such as the Intel Pentium IV and thedbiglipha AXP 21064, use a 16-
deep internal stack to cache return addresses in the sammeemassecond-generation stack
computers.

The third part of this thesis specified the design of a smakbisd-generation stack ma-
chine, named 'Gullwing’. The first unusual feature found wiaat the packing of multiple
instructions per memory word, made possible by the zer@amgkinstruction format, reduced
the number of sequential instruction fetches to betwee#&8Bd 9.7% of the total number
of executed instructions despite achieving an average @exsity of only 1.2 instructions per
memory word. An additional simple optimization of the insttion fetch mechanism reduced
this fetching overhead by 50.6 to 77.3%, down to 4.1 to 2.2%etotal number of executed
instructions, effectively eliminating the need for a set@nemory bus dedicated to fetching
instructions.

Chapter 7 then compared Gullwing to the DLX and MIPS processga some aggregate

91

benchmarks and some low-level code comparisons. In Settiynt was observed that 23.3
to 29.2% of the executed instructions on Gullwing are staekipulation instructions whose
actions are implicit in the three-operand instruction fatrof MIPS. Similarly, Gullwing must
perform 10 to 16% more immediate loads since there are n@ogstto hold small constants.

The average CPI of Gullwing was between 1.301 and 1.312: afyesf 13.1 to 18.2% over
DLX. However, Gullwing is architecturally equivalent to & R processor without delayed
branches and loads. Without these optimizations the CPIL){ @ould have been 1.34 to
1.41 instead: 2.1 to 8.4% worse than Gullwing.

It was also found that MIPS performed an average of 1.421 mgmawcesses per cycle,
while Gullwing required only 0.667: a 53% reduction in mesnbandwidth. For instruction
fetching alone, Gullwing required 55.9% fewer memory asesger cycle on average (0.441
vs. 1.00 for MIPS). These improvements were found to origima the packing of multiple
instructions per memory word: 71.1 to 80.9% of code basicksdit within a single memory
word on Gullwing.

Section 7.3 showed that Gullwing is at a disadvantage whdtiplaiintermediate results
are required. A comparison of iterative code demonstratatd@ullwing required 25% more
memory space, 125% more instructions, 25% more memory seseand 150% more cycles,
compared to MIPS, to execute the iterative algorithm duééonieed to shuffle values on and
off the Data Stack.

On the other hand, Gullwing exhibits extremely efficientdtion calls. The same algo-
rithm, implemented recursively on Gullwing, required 54664 memory space, 38% fewer
instructions, 59% fewer memory accesses, and 23% feweexybhn the equivalent recur-
sive MIPS code due to the elimination of the instructionsuneggl to simulate a stack in main
memory.

When looking at pure nested subroutines, as would be thendtsprecompiled libraries,
Gullwing’s advantage at subroutine calls is amplified farthb8 to 67% less (code) memory
space, 71 to 75% fewer instructions, 62 to 72% fewer memocgsses, 50 to 52% fewer
cycles, and a 25 to 44% reduction in memory bandwidth, degpitaverage CPI between 1.67
and 2.00 and a code density between 0.60 and 0.86 instragiemword.

As originally specified, the Gullwing processor was not pipel, and so its cycle time
would have exceeded that of the pipelined DLX processor.p&lpied form of Gullwing was
specified by transforming the stages of the DLX pipeline tdvidng’s stack architecture. The
resultis a two-stage pipeline with parallEKandMEMstages, which has branch delay slots like
DLX, but no load delay slots and additional branch hazart$slae to the use of a stack instead
of registers. In the worst case where these slots could nagde productively, the average CPI
of Gullwing would increase by 12.9 to 17.8%, to a range of 1.#81.533. Assuming that the
ALU is the critical path of a simple pipeline, then the twagt pipelined form of Gullwing
should have a similar cycle time to the five-stage DLX pip&lin

Finally, Chapter 8 proposed the use of a third stack to tearggthold instructions during
subroutine calls. This Instruction Stack would maximize ttensity of high-level code with
many branches and calls, reducing the overall code sizeitilealer 30% (up to a theoretical
limit of 50%), and would reduce the memory traffic and cyclemooverhead of calling and
returning from a subroutine by 25%.

92

9.1 Contributions
This thesis makes the following contributions:

1. a historical review of first-generation stack computengciv uncovers the origins of the
conceptual difference between first and second-genenatamhines (Chapter2);

2. a historical review of second-generation stack compurich provides a summary of
many lesser-known and unpublished machines (Chapter 3);

3. aset of criteria to distinguish first and second-genanagtack computers which expand
on those given by Feldman and Retter [FR93, pp.599-604]{tehd);

4. a rebuttal of the arguments against stack computers bitddennessy and Patterson,
showing that they are applicable to the first generation adkstomputers, but not the
second (Chapter 5);

5. a register-transfer level description of Gullwing, a giey modern second-generation
stack computer, along with an optimization of its instrantfetching mechanism (Chap-
ter 6);

6. an initial comparison of the execution statistics of mumerical code on both Gullwing
and MIPS (Section 7.2);

7. adetailed comparison of the behaviour of iteration, r&ou, tail-recursion, and subrou-
tine calls on both Gullwing and MIPS (Section 7.3);

8. the design of the Gullwing pipeline as a transformationhaf DLX pipeline (Section
7.4);

9. the proposal of an instruction stack to maximize the coelesiy and accelerate the
subroutine returns of Gullwing (Chapter 8).

9.2 Further Work

Section 7.5 summarized some comparisons between DLX/Mi@Szallwing. As Gullwing
currently stands, its overall performance is lacklustremwicompared to a basic MIPS pro-
cessor. Although the cycle time should be similar, Gullwiacks result forwarding between
functional units, which makes its pipelining incompletelanflates its CPI, as evidenced by
the two-cycle loads, stores, branches, and calls. Theaietgins of Gullwing are also simpler
than those of MIPS and thus more are required to accompleskdme task, with the excep-
tion of subroutine calls, which Gullwing performs with femiastruction, cycles, and memory
accesses than MIPS.

This section presents some future improvements to Gullwihgch could bring its CPI
closer to the ideal of 1.00, as well as reduce the impact dfigker instruction count. Addi-
tionally, the addition of a stack to the MIPS architecturdigsussed, in order to grant MIPS the
efficient subroutine calls of Gullwing without otherwis¢eaing the instruction set or pipeline.

93

9.2.1 Reducingthe DLX/MIPS Subroutine Call Overhead by Adding Stacks

The MIPS architecture has very inefficient subroutine acadisipared to Gullwing, stemming
from the need to save and restore registers to a stack in mei@ection 7.3.6). Conversely,
Gullwing has poor performance for iterative code becaukeks random-access registers. A
combination of both might yield the best of both worlds.

Figure 9.1 shows a conceptual modification to the MIPS regiiie which would create
the possibility of running stack-like code for efficient sabtine calls, while otherwise leaving
the instruction set, architecture, and pipeline unchangddata Stack and a Return Stack are
added 'underneath’ some registers. The Return Stack gaks tegister $31 since it is where
the current return address is normally stored byj#he (Jump And Link) instruction. The
Data Stack could be placed under any other registers, bladsg here under registers $2 and
$1 for illustrative purposes. Two registers are used sotii@bperands can be taken from the
stack when needed. Register $0 is is of course a source @xzeroreads and a sink on writes.

If the stacks are disabled, the register file behaves as,usndlexisting code runs un-
changed. When the stacks are enabled, a read from a registeeated to a stack ($31, $2,
and $1) pops the content of the stack into the register, nyatkia read operation destructive,
and a write to a register pushes the previous contents oétjister onto the stack. The excep-
tions to this behaviour are when both $2 and $1 are read tegethly the contents of $2 are
overwritten by the stack, and if $1 is both read and writtethat same instruction, it is simply
overwritten as if it had been popped, then pushed.

Given this rough sketch of stack and register interacti@ild 9.1 shows how a number
of stack computer instructions can be synthesized by daitdlPS instructions. Small inline
constants and branch target labels are denoted by '$Ln’.

The stack manipulation instructions, such as DROP and O\8E&yld never be required.
A compiler would use other registers as usual for the stoohgeunters and common subex-
pressions, thus avoiding the stack manipulation overh&éerative code seen in Section 7.3.3,
and avoiding the RAW (Read After Write) dependency of thelst&€onversely, the stack could
be used to hold local variables and arguments to subroytivigsh would reduce or outright
eliminate the loads and stores required for nested sulbmatélls on MIPS (Section 7.3.6).

Algorithm 30 shows the recursive example from Section 7iid@glemented using stacks.
Tables 9.2 and 9.3 show that, relative to the original MIP8e¢dhe loads and stores are
eliminated, the algorithm uses 38% fewer cycles, and meiangwidth is reduced by 24%.

A similar register and stack mechanism was proposed by Ridh&Sites [Sit78], with the
primary intent of simplifying expression evaluation. Hesebved that a stack placed under one
of the registers allowed the evaluation of an expressiamggwer actual registers. In current
systems, this could make possible smaller register filegjvar a compiler more room to do
register allocation.

| $31| $30| | $2 = $1| $0]

Figure 9.1: MIPS Register File with Stacks

94

| Stack] MIPS [Stack| MIPS |

CALL jal $Ln NOT | xor $1,$1,-1
RET j$31 AND | and $1,$1,$2
JMP b $Ln + add $1,$1,$2

JMPO | beq $1,$0,$Ln| DROP | add $0,$0,$1
LIT | addi $1,$0,$Ln| SWAP | add $1,$2,$0
@ lw $1,($30) | PUSH| add $1,$30,$C

[sw $1,($30) | POP | add $30,%$1,%(

Table 9.1: Synthesized Stack Operations on MIPS with Stacks

Algorithm 30 Triangular Recursive MIPS32 | Instructions| Without | With |
Assembly with Stacks Added move 2 0
Tri: add $30,$1,$0 // POP addu, addiy) 4 5
beq $30,$0,$L1 // JMPO sw 2 0
add $1,$30,$0 // PUSH Iw 2 0
addi $1,$0,-1 // LIT beq 1 1
jal Tri /I CALL jal 1 1
add $1,$1.$2 // + J 1 1

add 3$1,$1,$2 I+ Table 9.2: Recursive MIPS32 Instruction Dis-

$Lij %3l ' RET _ ibution With and Without Stacks

Entire Code | Without | With | With/Without |
Mem Words 13 8 0.62
Instructions 13 8 0.62
Mem Accesses (instr+data) (13+4) 8 0.62
Cycles 13 8 0.62

| Derived Measures | Without | With | With/Without |
Accesses/Cycle 1.31 | 1.00 0.76
Cycles/Instruction 1.00 | 1.00 1.00
Instructions/Word 1.00 1.00 1.00

Table 9.3: Triangular Recursive MIPS32 Code Comparisom\afid Without Stacks

95

9.2.2 Reducing Gullwing’s Instruction Count with Compound Stack Op-
erations

There has been a hidden assumption throughout this thesig alhich operations can be
performed on a stack while avoiding random access to thesgltmit contains. The commonly
given model of stack behaviour assumes that a dyadic opanatips two items from the stack
in sequence, stores them in some working registers, ogauatan the items, and then pushes
the (usually single-item) result onto the stack.

This process is usually optimized to a single step by makliegisible top of the stack into
a separate register, thus allowing two items to be read samebusly and the result to be stored
into the register while the stack proper simply discardsapmsnost element. This mechanism
is illustrated by the Data Stack in Figure 6.1.

However, the capacity to see ttveo topmost items creates the possibility of more complex
operationswithout adding cycles, data lines, or control lineend thus without most of the
pitfalls of past, high-level instruction sets.

For example, addition on a stack destroys both its argumehish brings about the use of
the OVER instruction to preserve the second element by pgsinto the stack a copy of the
second element which is is then added to the first. This isise@e iterative and tail-recursive
code examples (Sections 7.3.3 and 7.3.5). Similarly, babiraents can be preserved by first
copying them both with two consecutive OVER instructions.

By simply not popping the stack proper when performing anitaag the 'OVER + se-
guence is accomplished in a single instruction. Simildslymerging the addition operation
into the implementation of the OVER instruction, the seqei®VER OVER +’ reduces to
a single instruction. The Gullwing implementation of thessv operations is shown by the
first two lines of Algorithm 31. Removed actions are struck ehile added ones are bolded.
Similarly, the last three lines show the implementation aba-destructive JMPO instruction,
replacing the common 'DUP JMPOQ’ sequence, where the stagiknigly not manipulated.

To provide enough opcodes to support these compound opesathe width of the Gull-
wing opcodes would have to be increased to six bits. Whilkeithstill comparable to MIPS,
further study is needed to make sure that at least one cordpmpration would occur on
average per executed group of instructions, thus balameinhthe reduction from six to five of
the number of instruction per group, and still saving ondecgompared to the execution of
the original instruction group.

Algorithm 31 Gullwing Compound Stack Operations

Inputs Outputs
INST TOP S N Control
OVER_+ X 0 0 TOP,DS-ALU(+) —TOP, BS{POPR),-ISR<<

OVER_OVER + X 0 OTOP, DS-ALU(+) ~TOP, TOP—DS, DS(PUSH), ISR<<

DUP JMPO =0 0 1DS-TOP, DS(POP), MEM—PC,MAR
DUP_JMPO !=0 0 0 BS—TOPDS{POPR)-PC —(+1) —PC,MAR, ISR<<
DUP_JMPO X 10 PC@

96

9.2.3 Reducing Gullwing’s CPI by Executing Multiple Instructions using
Generalized Instruction Folding

Section 6.3.1 describes a change to the decoding of ingtnsotvhich allows the overlapping
of the execution of the PC@ ('PC Fetch’) instruction withttbbany instruction that does not
access memory, retiring both instructions at once. Thishraieism could be generalized to a
greater number of pairs of instructions.

For example, the 'OVER + and 'DUP JMPQO’ compound operatidascribed in Section
9.2.2 could be implemented, without adding new opcodes,dapding both the current and
the next instruction and then shifting them both out. Thatdee widens the instruction input
to the decoder and might present a time or area penalty $irdedtruction encoding is derise

Loads and stores can especially benefit from the decodingv@firistructions at once.
Instead of holding steady for two cycles the instructionuitie the decoder while the load or
store executes its two phases, the first phase can be exeduedthe instruction enters the
first part of the two-instruction window of the improved dedeo, and the second phase when
the instruction enters the second part of the window. Atgamni32 shows how the instruction
sequence 'DROP A@+ R@+ XOR RETwould be executed: The first line shows the first
phase of A@+ folded with the execution of DROP. The secorel ¢tiontains the overlapped
second phase of A@+ and first phase of R@+. The third line dotesverlap the execution of
XOR with the second phase of @R+ since the load must compdétecoX OR can operate on
the loaded value. Finally, the fourth and fifth lines show RO®R and RET are overlapped.

The execution of this five-instruction code sequence nowddike cycles instead of eight.
Its CPI went from 1.60 to 1.00. The number of memory accessesygle increased from 0.75
to 1.00. The performance is now on par with that of non-brargcbode on MIPS.

The data dependency of the '@R+ XOR’ sequence could be avbiglenabling the ALU
to use MEM as an input. Similarly, the 'LIT JMPO’ sequence Iddoe overlapped if an ad-
ditional zero-detect circuit was connected to MEM, and '>A@ould benefit from a direct
path between TOP and MAR. This forwarding of data, equivaierhe result forwarding of
the MIPS processor, does add multiplexers in the data pathhars the cycle time to cycle
count trade-off should be considered carefully.

Algorithm 32 Example Gullwing Instruction Sequence Using GeneralizaldiRg
Inputs Outputs

SO S1 TOP S N Control

DROP @A+ X 0 0 DSTOP, DS(POP), A -MAR,(+1) —A, ISR<<

@A+ @R+ X 0 0 MEMOP, TOP-DS, DS(PUSH), R -MAR,(+1) —R, ISR<<

@R+ XOR X 0 0 MEMOP, TOP—DS, DS(PUSH), PC —MAR, ISR<<

XOR RET X 0 0 TOP,DS-ALU(XOR)—TOP, DS(POP), \\ cont. next line
RS(POP), RS —R, R—PC,MAR, ISR<<

RET PC@ X 0 0 PG(+1) —PC,MAR, MEM-=ISR

1By comparison, MIPS R-type instructions use a total of twedpcode bits, but do not enco?® unique
instructions. The encoding must thus be sparse and simgiecade.
2A simple hypothetical comparison routine based on COMPARERING from Appendix A.1.3.

97

98

Appendix A

Gullwing Benchmarks Source

The appendix provides the source code for the benchmarksiloed in Section 7.1.

A.1 Flight Language Kernel

The Flight language kernel defines the basic functions riealdefine, lookup, and execute
functions. These basic functions enable the system to eéxteelf without external software.
The kernel is written in Gullwing machine language, desmtibere symbolically. The main
loop of the kernel is described in Section A.1.9. | have add@@iments, but they are not
present in the actual source code.

A.1.1 Internal Variables and Memory Map

These variables contain the state of the kernel. Each igyéesimemory word. They define the
boundaries of areas of memory illustrated in Figure A.1.
HERE Contains the address of the memory location that is the mutaeget for compilation.

HERE_NEXT Contains the address of the next memory word where code esd¢ornpiled.

SLOT Contains the bitmask which defines the current availabkeuoson slot in the mem-
ory word pointed-to by HERE.

THERE Contains the address of the top of the function name diatjordso the pointer to
the bottom of the input buffer.

NAME_END Contains the address of the end of the function name diatjortais used to
detect the failure of a dictionary search.

99

INPUT Contains the address of the top of the input buffer, whichedieginning of the most
recently received string.

Start of Memory

Function Code

HERE—
HERE_NEXT-

Free Memory

INPUT
Input Buffer
THERE
Name Dictionary
NAME END

Figure A.1: Flight Language Kernel Memory Map

A.1.1.1 Counted Strings

The storage and transmission format for strings is that ofted strings (Figure A.2). Contrary
to C-style strings, counted strings have no built-in detémi They are instead preceded by a
single memory word which contains the count of memory woskiiby the body of the string.
The contents of the body are arbitrary.

Once received and stored into memory, a counted string gatsappended, which is not
taken as part of the count. This tail contains either its oddress, thus guaranteeing that a
string comparison will always terminateor the address of the code with which the string is
associated, thus forming a name dictionary entry.

Count| Body & Tail

Figure A.2: Counted String Format

LComparing a string to itself is a corner case not dealt witle he

100

A.1.2 Utility Functions

These are small functions which synthesize operationsnmplieimented by the Gullwing pro-
cessor. They are shown here as subroutines but are nornaaigiled in-line due to their
size.

MINUS Negates the number on the top of the Data Stack before addmthe next number.

NOT LIT 1 PLUS PLUS RET

OR Performs the bit-wise logical OR of the top two numbers onRhé& Stack.

OVER NOT AND XOR RET

A.1.3 String Functions

These are the lowest level input buffer manipulation raginThe input buffer behaves like
a simple stack of counted strings. The top of stack pointé&NRBUT, the bottom pointer is
THERE.

STRING_TAIL Returns the address of the tail of a string. Takes the heakssldf the
string. The tail contains an address used for referencilg oo terminating string compar-
isons.

/lget string length and skip it
>A A@+

/Istring tail address

A> + RET

PUSH_STRING Alters INPUT to allocate the space for a counted string. Setsail of the
string to point to its own address. Takes the length of thagfrom the Data Stack.

/I account for string count and address tail
DUP LIT 1 + NOT

/I adjust INPUT

LIT [address of INPUT] >A A@ + DUP Al
/I store string length count at [INPUT]

>A Al

LIT [address of INPUT] >A A@

CALL STRING_TAIL

DUP >A A! RET

101

POP_STRING Alters INPUT to discard the most recently SCAN’ed string.

LIT [address of INPUT] >A A@
CALL STRING_TAIL

/I point to head of next string

LIT 1 +

LIT [address of INPUT] >A A! RET

For comparison, this alternate version keeps a copy of tdeead of INPUT on the stack. It
avoids a literal fetch and a function call, but is harder ttof@. An optimizing compiler might
generate code like this.

LIT [address of INPUT] DUP >R

/I get [INPUT]

>A A@ DUP

/I get string length

>A A@

/[add length+2 to [INPUT] to point to next string
+ LIT 2 +

/Il update INPUT

R> >A Al RET

COMPARE_STRINGS Takes the head address of two strings. Returns the add{estes
same order) of the first non-matching pair of symbols. No& the practise of tailling each
string with the address of the tail guarantees that the casgrawill terminate (at the tail).

>A >R

LOOP:

R@+ A@+ XOR
JMPO LOOP

LIT -1 R> +

LIT -1 A> + RET

A.1.4 Input Functions

These functions read in counted strings from the outsidédwor

READ1 Presumed here is that READ1 always returns a memory word.lelhmgntation
depends on interface to outside world. Here | assume a mepootyor illustration purposes.

/I read in one memory word
LIT [address of input port] >A A@ RET

102

SCAN_STRING Reads a string into a pushed string entry.

/I get string length and prep

LIT [address of INPUT] >A A@ >R R@+
SCAN_STRING_LOOP:

/I READ1 uses A

CALL READ1 R!+

LIT -1 + DUP JMPO DONE

JMP SCAN_STRING_LOOP

/I storage address should be equal to (INPUT)+length+1 now
DONE:

/I store address of end of string in itself for LOOK terminati
DROP R> DUP >A A! RET

SCAN Reads in a string from the outside world. Input is a countedgtwhere the first
memory word contains the following number of memory wordsduBy the string, regardless
of symbol encoding. Always reads in the string. There is reckh

The location after the string is kept free to hold its own &ddr(which is [THERE]) as a
termination marker for LOOK, or an actual code address shibblecome a name entry.

To see if there is enough free space, the sender of the staimgloeck in advance if the
result of "INPUT HERE -" is greater than the string lengtheTdhneck depends on the fact that
HERE points to an address that begins at 0 and incrementige INRUT points to a location
that begins at THERE and decrements. THERE begins at thefandroory and decrements
towards zero. If they meet, then there is no more free membiys if the start address is
lesser than the one HERE points at, there is no room for thegqior for anything else at all!).

CALL READ1
CALL PUSH_STRING
JMP SCAN_STRING

A.1.5 Name Lookup

LOOK Searches the name dictionary for the topmost string in thetibuffer. Returns the
address of the code associated with the name or NAME_END mhatzh. No error checking
other than for the end of the dictionary.

/Il address of latest name entry string

LIT [address of THERE] >A A@ LIT 1 + DUP
LOOP:

/I address of topmost SCANed string

LIT [address of INPUT] >A A@

CALL COMPARE_STRINGS

LIT [address of INPUT] >A A@

CALL STRING_TAIL

XOR JMPO MATCH

103

on

/I uses the DUPed name entry address

DROP

CALL STRING_TAIL

/I point to start of next name entry

LIT 1 +

/[are we at end of name dict?

DUP LIT [address of NAME_END] >A A@ XOR JMPO NOMATCH
DUP JMP LOOP

MATCH:

/I return code address for name entry

>A DROP A@ RET

NOMATCH:

/I return address of end of dict

DROP LIT [address of NAME_END] >A A@ RET

A.1.6 Function Definition Functions

These functions create new name dictionary entries an@ ss¢ucompilation of the code that
will be associated with the new name.

FIRST_SLOT Begin compiling at zeroth instruction slot.

LIT [address of SLOT] >A
LIT [mask for slot 0] A! RET

LAST _SLOT Setup at fifth instruction slot, so the next compilation witicur at the zeroth
slot.

LIT [address of SLOT] >A
LIT [mask for slot 5] Al RET

NULL_SLOT Nullinstruction slot mask. Denotes that HERE is empty.

LIT [address of SLOT] >A
LIT [mask for null slot] Al RET

ALIGN Makes HERE point to the next free location, so we don’t poiniaane at the tail
end of the previous procedure or clobber literals. Make HEREXT point to the following
location. Mark HERE as empty with NULL_SLOT.

LIT [address of HERE_NEXT] >A A@

/I zero out location, and increment address
DUP >R LIT 0 R+

/I update HERE_NEXT

R> Al

104

/I update HERE
LIT [address of HERE] >A Al
JMP NULL_SLOT

NEXT_SLOT Point to first slot if HERE is empty (NULL_SLOT), else point text free
slot at HERE, else ALIGN.

/I get slot mask

LIT [address of SLOT] >A A@

LIT [null slot mask] OVER XOR JMPO HEREEMPTY
LIT [fifth slot mask] OVER XOR JMPO HEREFULL
Il next 5-bit slot

2% 2% 2% 2+ 2+« Al RET

HEREFULL:

DROP CALL ALIGN JMP FIRST_SLOT
HEREEMPTY:

DROP JMP FIRST_SLOT

DEFN_AS Takes the ALIGNed address of a code entry (usually [HERE])the address of
a SCANed string (from INPUT) and converts it to a name entpydates THERE.
The name string must be the only one in the input buffer stadkia converted in place,

so INPUT must be pointing to it and its tail must be at THEREc&ese of this, INPUT does
not need to be changed.

/I store address in [THERE]

LIT [address of THERE] >A A@ >A Al
/I get string start address

LIT [address of INPUT] >A A@

/I move to first free location before it
LIT -1 +

LIT [address of THERE] >A Al RET

NEW_WORD Returns an aligned address at which to compile code.
CALL ALIGN

/I get [HERE]
LIT [address of HERE] >A A@ RET

DEFN Defines a name entry for the current code location.gate

CALL NEW_WORD
JMP DEFN_AS

105

A.1.7 Compilation Functions

These functions enable the kernel to compile the Gullwingpdes. By convention, functions
that compile a Gullwing opcode or inline another functiondnparentheses around their name.

COMPILE_INIT Initialize HERE, HERE_NEXT, and SLOT for compilation.

LIT [address of HERE] >A

LIT [initial compilation address] Al+ A>
LIT [address of HERE_NEXT] >A Al
LIT [address of SLOT] >A

LIT [mask for slot 5] Al

LIT [address of HERE] >A A@ >A

/[Zero out memory to compile to

LIT 0 Al RET

COMPILE_OPCODE Takes an opcode (in slot 0) and compiles it at the next emp®EELOT
location. Assumes the current slot is full. Leaves SLOT pogto next full slot.

This function fails for the PC@ instruction, since its opeas all zeroes. It shouldn't be
necessary to compile it explicitly, as that's what ALIGN daehen it zeroes the memory word.
Note the addition instead of logical OR at the end. We can gosince empty slots are filled
with PC@ opcodes (zeroes).

CALL NEXT_SLOT

/Il get slot mask and invert

>R LIT [address of SLOT] >A A@ -~
/lplace opcode on top

R>

/Il slot O

OVER OVER AND JMPO COMPILE
/I shift opcode by one slot

2% 2% 2% 2% 2%

/Il slot 1

OVER OVER AND JMPO COMPILE
2% 2% 2% 2% 2x

Il slot 2

OVER OVER AND JMPO COMPILE
2% 2% 2% 2% 2%

/I slot 3

OVER OVER AND JMPO COMPILE
2% 2% 2% 2% 2x

/Il slot 4

OVER OVER AND JMPO COMPILE
2% 2% 2% 2% 2xgate

/[then we *have=* to be in slot 5

106

COMPILE:

LIT [address of HERE] >A A@

/I compile opcode, drop mask, return
>A A@ + A! DROP RET

COMPILE_LITERAL Takes a procedure address or literal (for CALL, JMP, IMPQJ)
and compiles it at HERE_NEXT. Increments HERE_NEXT.

LIT [address of HERE_NEXT] >A A@agate

/I store address/literal and increment

>A Al+

/Il update HERE_NEXT

A> LIT [address of HERE_NEXT] >A A! RET

CMPC, (CALL) Takes the address of a procedure an compiles a call to it. dliggrs to the
next free word since later slots in current word will nevee@xte.

LIT [opcode for CALL]
CALL COMPILE_OPCODE
CALL COMPILE_LITERAL
JMP ALIGN

CMPJ, (JMP)

LIT [opcode for JMP]
CALL COMPILE_OPCODE
CALL COMPILE_LITERAL
JMP ALIGN

CMPO, (JMPO) If IMPO is not taken, the next opcode in the same memory warslinstead,
unlike CALL and JMP.

LIT [opcode for JMPO]
CALL COMPILE_OPCODE
JMP COMPILE_LITERAL

CMP+, (JMP+)

LIT [opcode for JMP+]
CALL COMPILE_OPCODE
JMP COMPILE_LITERAL

NUMC, (LIT) Compiles a literal fetch instruction.

LIT [opcode for LIT]
CALL COMPILE_OPCODE
JMP COMPILE_LITERAL

107

A.1.8 Inline Compilation

Copying a word slot-by-slot requires decompiling it instiian by instruction and recompiling
it at the new location. This requires reimplementing the pibation words ’in reverse’. This
is complicated and ugly. Simply ALIGNing and copying exigticode is no better since the
words that will be worthwhile to inline are the shortest, @dnany slots will get proportion-
ally wasted. The extreme case is when inlining machineunstins: you would end up with
one opcode per word! So that’s the key: we know in advance lwviards will need to be
inlined, and so we write a function which when run compiles ¢tlode in situ. It's a macro!
The kernel contains a full set of inlining functions for thel®ing opcodes.

(DUP), (DROP), (+), (Al+), etc...

LIT [opcode in slot O]
JMP COMPILE_OPCODE

A.1.9 Main Loop

These functions constitute the main loop of the kernel.

EXECUTE Synthesizes a function call or jump using an address on fheftine Data Stack.
If called: Takes a procedure address and calls to it. If @dior jumped-to: Takes a procedure
address and jumps to it.

/I Place the function address on the Return Stack
/[and execute a function return, 'returning’ to the
/I pushed address.

>R RET

NXEC This is the user-interface loop. Reads in a string, lookshegfwnction address, and
calls to it. In effect, the kernel does nothing but execute@hnmands given to it.

CALL SCAN

CALL LOOK

CALL POP_STRING
CALL EXECUTE
JMP NXEC

EXEC Reads in the address of a function and calls to it. It is anredte main loop meant
to be used by communicating instances of the kernel sinsanitore efficient to pass function
addresses than names.

CALL READ1
CALL EXECUTE
JMP EXEC

108

A.1.10 Decimalto Binary Conversion

By design, the encoding of strings is irrelevant. Howevambers cannot avoid a predefined
decimal encoding. Ideally, this would be UNICODE, but | kttfor decimal ASCII numerals
for now (0 ->48,...9 -> 57), one per memory word. Wastefut,dmple.

TENSTAR, 10* Multiply an integer on the Data Stack by 10.

DUP 2 2+« 2x OVER + + RET

NUMI Takes the string address of an unsigned decimal number amdse¢he corresponding
integer on the stack. No error or overflow checking!

LIT [address of INPUT] >A A@

/I read in length

>R R@+

LIT 0 >A

Il if N ==

DUP JMPO DONE

LOOP:

/I shift total by radix, get number, convert to int, add
A> CALL 10+ R@+ LIT -48 + + >A
LIT -1 + DUP JMPO DONE

JMP LOOP

DONE:

DROP R> DROP A>

JMP POP_STRING

A.2 Flight Language Extensions

The source to the Flight language extensions is a sequencenuhands fed to the Flight
language kernel. It is important to keep in mind that the &kdoes not parse its input. It
only looks up names and executes functions. Parsing is imgaiéed by executing words
which consume some of the input stream before returningrabtd the kernel main loop.
Compilation is implemented by executing code whose actda compile code.

There is no built-in syntax. The only purpose of white spact iseparate names. Inden-
tation and other formatting is for clarity only. | have addsainments after double slashes
‘I, but they are not present in the actual source. To conweaning, | use some naming
conventions throughout the code:

e Functions which compile code have their names between thesses ().
e The use of strings in the input buffer is denoted by a doligin $$'.

e The use of integer values is denoted by a hash sign '#'.

109

e Moving data, input, and output is denoted by angle brack&tarid >,

The Flight language evolves very quickly at the beginninge Tirst few functions are used
throughout the latter code and must be understood befooeeding further.

A.2.1 Making the Flight Language More Tractable

These utility functions make it easy to define functions, poexalls, read in numbers, and do
name look-ups. They are used throughout the rest of the code.

/I Creates a function named “”

/I 1t scans in a string and creates a dictionary entry.
SCAN : DEFN

SCAN SCAN LOOK POP_STRING CMPCALL

SCAN DEFN LOOK POP_STRING CMPCALL CMPRET

/I Reads in a name and leaves the address of the

/I associated code on the stack.

2

SCAN SCAN LOOK POP_STRING CMPCALL

SCAN LOOK LOOK POP_STRING CMPCALL

SCAN POP_STRING LOOK POP_STRING CMPCALL CMPRET

/I Takes a string from the input buffer

/I and compiles a call to its associated code
. $c

| LOOK CMPCALL

| POP_STRING CMPCALL

| CMPCALL CMPCALL CMPRET

/Il Reads in a function name
/[and compiles a call to it
: ¢ SCAN SCAN $c SCAN $c $c CMPRET

/I Reads an unsigned decimal number and leaves
/I its binary representation on the stack
: n ¢ SCAN ¢ NUMI CMPRET

/I Creates a new dictionary entry for
/l an existing function
: alias ¢ | ¢ SCAN ¢ DEFN_AS CMPRET

/I Alias the built-in function names
/I to get away from C-style identifiers.
alias CMPJMP (IMP)

110

alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias
alias

CMPJMPZERO
CMPJMPPLUS
CMPCALL
CMPRET
NUMC

NUMI

LOOK
POP_STRING
DEFN

SCAN
WRITE1
READ1
TENSTAR
CMPLOADA
CMPSTOREA

(JMPO)
(IMP+)
(CALL)
#

$n

$l

$pop

$:

>$

#>

>t

10 *

(A@)
(A

CMPLOADAPLUS (A@+)
CMPSTOREAPLUS (Al+)
CMPLOADRPLUS (R@+)
CMPSTORERPLUS (R!4)

CMPXOR
CMPAND
CMPNOT
CMPTWOSTAR
CMPTWOSLASH
CMPPLUS
CMPPLUSSTAR
CMPDUP
CMPDROP
CMPOVER
CMPTOR
CMPRFROM
CMPTOA
CMPAFROM
CMPNOP

(XOR)
(AND)
(NOT)
(2%)
(/)
(+)
(+*)
(DUP)
(DROP)
(OVER)
(>R)
(R>)
(>A)
(A>)
(NOP)

// Compile jumps and conditional jumps
: $ ¢ $l ¢ $pop ¢ (IMP) ;
jc>%c 9

- $j0 ¢ 3l ¢ $pop ¢ (JMPO) ;
1 J0 ¢ >$ ¢ $j0 ;

: $j+ ¢ $l ¢ $pop ¢ (IMP+) ;
Cj+ ¢ >$ ¢ $j+ ;

111

A.2.2 Interactively Usable Opcodes

These functions create interpreted versions of some ogdodseteractively manipulate mem-
ory and the Data Stack. Opcodes which manipulate the A exgasid the Return Stack cannot
be interpreted since the interpretation process altensdbetents.

@ (>A) (AQ@) ;
] =A) (AY ;

: XOR (XOR) ;

: AND (AND) ;

. NOT (NOT) ;

: OR (OVER) (NOT) (AND) (XOR) ;
D2 % 2~*) ;

220 (2)

Dt +)

Do+ (+*) ;

: DUP (DUP) ;

: DROP (DROP) ;
. OVER (OVER) ;
: NOP (NOP) ;

A.2.3 Basic Compiling Functions

These are some compiling functions for common operationstigarithmetic.

/I Compiles addition with a fetched constant
H#+ c# c (+);

/I Compiles a decimal number literal fetch
n# cnec#,

/I Compiles a function address literal fetch
#clc#;

/I Compile loads and stores and bitwise OR

1 (@) ¢ (>A) ¢ (A@) ;

(M c (>A) ¢ (A) ;

: (OR) ¢ (OVER) ¢ (NOT) ¢ (AND) ¢ (XOR) ;

/I Negate, or compile its code
: negate (NOT) n# 1 (+) ;
: (negate) ¢ (NOT) n# 1 c #+ ;

/I Read in and negate a decimal
. -n ¢ n (negate) ;

/[Same, from the input buffer

. -$n ¢ $n (negate) ;

112

/[Same, and compile as literal
S -n# C -n Cc # ;

/I Compiles code to read in a decimal

/[and compile it as a constant addition

/I Negate beforehand to make a subtraction
: (N-) ¢ -n ¢ #+ ;

: (N+) ¢ n c #+ ;

/Il Synthesize subtraction
: - (negate) (+) ;
> (-) ¢ (negate) c (+) ;

A.2.4 Terminal Control Characters

These output the basic terminal control characters (astedwstrings of length 1).

c\an# 7 n#1lc#>j#>
\bn# 8 n# 1 c #>|#>
M n# 9 n# 1lc#>] #
\n n# 10 n# 1 c #> | #>
\Won# 11 n# 1 c #> | #>
M n# 12 n# 1 c #> | #>
\rn# 13 n# 1 c #> | #>
c\s n# 32 n# 1 c #> | #>

A.2.5 Conditionals and Comparisons

These functions implement the usual if/then construct. flleeconditions are “if non-zero”
and “if negative”. Some usage examples follow.

/[Compile a JMPO to 0, and leave the address
/I of the jump address on the stack

- if

n#¥ 0 ¢ (JMPO)

l# HERE_NEXT (@)

(N-) 1

:if-

n# 0 ¢ (JMP+)

l# HERE_NEXT (@)
(N-) 1

113

/I Backpatch the jump to target
/I the next memory word

. else

(>R) ¢ NEW_WORD (R>)

(A) (A)

. max

(OVER) (OVER) (-)
if-

(>R) (DROP) (R>) ;
else

(DROP) ;

: min

(OVER) (OVER) (-)
if-

(DROP) ;

else

(>R) (DROP) (R>) ;

. abs
(DUP) if- (negate) ; else ;

. <=
(-) (DUP)
if-
(DROP) -n# 1 ;
else
if
n# 0 ;
else
-n# 1

D >=
(-) (DUP)
if-
(DROP) -n# 0 ;
else
if
n# 0 ;
else
-n# 1

114

A.2.6 Code Memory Allocation

This function allocates a zeroed-out span of memory in tlie @vea, usually for static storage
of data.

. allot
(DUP)

if

¢ ALIGN
(N-) 1

| allot
else
(DROP) ;

A.2.7 String Copying and Printing

These functions print strings and copy them between the ioyfter and the code area.

/I Copies a string between a source
/[and a destination address

. $copy

(>R) (A)

(A@) (A>) (+) (N+) 1

: $copy-loop (A>) (OVER) (XOR)

if (A@+) (R!+) j $copy-loop

else (DROP)

(R>) (DUP) (>A) (A!) ;

/I Copy a string from the input buffer
/I to the code area

L $>C

l# INPUT (@)

l# HERE (@)

(OVER) (@) (N+) 1 c allot

c $copy

c ALIGN

j POP_STRING

/I Copy a string from the code area
/I to input buffer

. c>$

(DUP) (@) ¢ PUSH_STRING

l# INPUT (@)

c $copy ;

115

/[Output a string, given its address

. Ccs>

(DUP) (@) (+) (N+) 1

(A>) (>R)

: ¢s>-loop (R>) (OVER) (OVER) (XOR)
if >R) (R@+) c #> | cs>-loop

else (DROP) (DROP) ;

/I Output a string from the input buffer
D $>

l# INPUT (@)

Cc cs>

j POP_STRING

/I Print a string, given its name
/I copy first to input buffer

c $print c 1l c c>$j $

/[Same, without copying

. csprint ¢ | j cs>

A.2.8 De-Allocating Functions

Executing 'forget foo’ will move back the HERE, HERE_NEXTHERE, and INPUT pointers
to points just before the name and the code of the functiam,fia effect erasing it from the
language. This will also forget all functions that had beefireed after 'foo’.

: match?
l# INPUT (@) ¢ STRING_TAIL (XOR) ;

: end?
| NAME_END @ # (XOR) ;

. erase

(DUP) I# THERE (!)
(DUP) (N+) 1 W INPUT ()
(@) (DUP)

(N-) 1 # HERE ())

l# HERE_NEXT ())

j ALIGN

116

. forget
c >$
l# THERE (@) (N+) 1 (DUP)
. forget-loop
l# INPUT (@)
¢ COMPARE_STRINGS
c match?
if (DROP) ¢ STRING_TAIL (N+) 1 (DUP) ¢ end?
if
(DUP) j forget-loop
else
(DROP) ¢ POP_STRING ;
else
c erase (DROP) ;

A.2.9 Unsigned Multiplication and Division

These functions synthesize unsigned integer multipbcaéind division. The multiplication
function takes two 15-bit integers and returns the 30-lmtpct. The division function has a
simple error reporting mechanism if a division by zero iglepted. It will stop and send the
remaining input to the output so the location of the fault exda visible.

. 15x15

(>R)

(2*) (2 %) (2 %) (2 *)

(2*) (2 %) (2 %) (2 *)

(2*) (2 %) (2 %) (2 *)

(2*) (2 *) (2 *)

(R>)

(+*) @) (+ =) @) (+ =) @)+ =) (2)
(+*) @) (+ =) @)+ =) @)+ =) (2)
(+*) @) (+ =) @2) (+ =) @2) + =) (2)
(+*) @) (+ *) @) (+ =) @) (+ =)
(>R) (DROP) (R>) ;

. divbyOmsg >$ DIV_BY_0 ERROR $>c

. divbyO # divbyOmsg ¢ cs> ;

. errcontext ¢ \s ¢ >$ ¢ $> | errcontext

. divbyOcheck

(DUP) if ; else (DROP) (DROP) c divbyO j errcontext

117

- U/

¢ divbyOcheck

n# 0 (>A)

: Ul/-loop

(OVER) (>R) (DUP) (R>) ¢ <=
if

(DUP) (>R) (1) (R>)
(A>) (N+) 1 (>A)

j Ul-loop

else

(DROP) (A>) ;

A.2.10 Binary to Decimal Conversion

: minus?
if- n# 1 ; else n# O ;

: numstrlen
c abs (DUP) (N-) 10
if- (DROP) n# 1 ; else (DUP) (N-) 100

if- (DROP) n# 2 ; else (DUP) (N-) 1000

if- (DROP) n# 3 ; else (DUP) (N-) 10000

if- (DROP) n# 4 ; else (DUP) (N-) 100000

if- (DROP) n# 5 ; else (DUP) (N-) 1000000

if- (DROP) n# 6 ; else (DUP) (N-) 10000000
if- (DROP) n# 7 ; else (DUP) (N-) 100000000
if- (DROP) n# 8 ; else (DUP) (N-) 1000000000
if- (DROP) n# 9 ; else (DROP) n# 10 ;

/[Converts a signed integer to a string

/I in the input buffer

D #>$

(DUP) ¢ numstrlen (OVER) ¢ minus? (+) ¢ PUSH_STRING
(DUP) if- n# 45 I# INPUT (@) (N+) 1 () c abs else

(>R) # INPUT (@) ¢ STRING_TAIL (N-) 1 (R>)

. #>$-loop

n# 10 ¢ U/ (>R) n# 48 (+) (OVER) () (N-) 1 (R>)

(DUP) if j #>%$-loop else (DROP) (DROP) ;

/I Convert and print a decimal number
C #$> ¢ #% ¢ B>

118

A.2.11 Simple Fibonacci Examples

/I Given two Fibonacci numbers,
/[compute the next pair

/leg: 11 ->12->23 ..

. 1fib

(OVER) (>R) (+) (R>) ;

/I Given starting numbers and a count

I/l generate a string of Fibonacci numbers

/I in the input buffer

/[Terminates by comparing current position in
/I the buffer with that of the string tail

. nfibx

c PUSH_STRING I# INPUT (@)

(DUP) (>R) ¢ STRING_TAIL (R>) (N+) 1 (>A)
. nfib-loop

(>R) c 1fib (DUP) (Al+) (R>) (DUP) (A>) (XOR)
if j nfib-loop

else (DROP) (DROP) (DROP) :

/I As above, but terminates by decrementing

/I the counter to zero

. nfibc

(DUP) ¢ PUSH_STRING I# INPUT (@) (N+) 1 (>A)
. nfib-loop

(>R) c 1fib (DUP) (Al+) (R>) (N-) 1 (DUP)

if j nfib-loop

else (DROP) (DROP) (DROP) ;

: manyfibs
c 1fib ¢ 1fib ¢ 1fib j 1fib

/I Calculates the mean of all nhumbers in a string

/I Could be used after nfibx as an example of

/I function composition through the input buffer

: nmean

n# 0

l# INPUT (@) (DUP) (>R) ¢ STRING_TAIL (R>) (N+) 1 (>A)
: nmean-loop

(>R) (A@+) (+) (R>) (DUP) (A>) (XOR)

if] nmean-loop

else (DROP) I# INPUT (@) (@) ¢ U/ ¢ POP_STRING ;

119

A.2.12 Static Variables

This code creates the ability to store data in the code ard@dime a function in created.
It is equivalent to C language static variables. This is usddplement named variables as
functions which return the address of the associated storag

/I Allocates one memory word and compiles code
/I to place its address on the Data Stack

. create

n#t 0 ¢ # |# HERE_NEXT (@) (N-) 1 (>R)

n# 0 ¢ (JMP) # HERE (@) (N-) 1

l# HERE (@) (R>) () ;

/I This ends the data allocation and begins

/I the code that will use the address of the

/I allocated area.

/I Exact same code as else, so just alias it instead
alias else does

/I Allocate a number of memory words, then
/I compile code to return its address
: var ¢ create (>R) (N-) 1 c allot (R>) c does ;

I/l Create a global variable named ’first’
/Il with a size of one memory location
: first n 1 var ;

/I Store integer 4’ in first
/I then load and print it
n 4 first !

first @ #%$> \t

/[Compile code as data
/I then call to it
. pass
n# 1 c #%> c \t
create
n# 2 c #%> c \n ;
does
n# 3 c #%> c \t
¢ EXECUTE ;

/[Output: 1 3 2
pass

120

A.2.13 Accumulator Generator

This is a simple example of generating code with an initiglanent that becomes static data.

/[Compile an integer into the code area
. #>c # HERE (@) () ;

/I Compiles code that returns an accumulator
/I function using a provided integer

/I Returns the function’s address

. accgen

¢ NEW_WORD (>R)

c create (>R) ¢ #>c (R>) c does

c (@) c (+) c (DUP) c (Al) c ;

(R>) ;

/I Read in a name and associate it
/I with an address on the stack.
: name-as ¢ >$ ¢ DEFN_AS ;

/I Create two accumulators and test them.
Output: 8 7 10 9 17 16 117 116
accgen name-as foo

accgen name-as bar

foo #3$> \t

bar #$> \t

foo #$> \t

bar #$> \t

foo #3$> \t

bar #$> \t

100 foo #$> \t

100 bar #%$> \t \n

-~
~~

N NDNDDNOTOTNN W

5 3 33333 3 3 3 35

A.2.14 Fibonacci Generator

Slightly more elaborate examples of code generation witicstlata.

/I Generate a Fibonacci function that stores
/[its initial arguments in memory
. fibgenl

create (>R) ¢ #>c (R>) c does

create (>R) c¢ #>c (R>) c does

(OVER) ¢ (@) ¢ (OVER) ¢ (@) c (+) ¢ (>R)
(OVER) ¢ (@) c (OVER) c (1) c (DROP)
(>A) ¢ (R>) ¢ (DUP) ¢ (A) c ; ;

OO0 OO0 00

121

/I Factored out Fibonacci code

: memfib

(OVER) (@) (OVER) (@) (+) (>R)
(OVER) (@) (OVER) () (DROP)
(>A) (R>) (DUP) (A} ;

/I Takes 2 numbers in the Fibonacci sequence
/[and returns a function that outputs the

/[next number in the sequence when called.

/I The two current sequence numbers are stored
/I within the function body.

. fibgen2

C:

c create (>R) ¢ #>c (R>) c does

c create (>R) ¢ #>c (R>) c does

l# memfib ¢ (CALL) c ; ;

n 0 n 1 fibgen2 fibonacci

/[Output: 1 2 3 58 13 21 34
fibonacci #%$> \t

fibonacci #%$> \t

fibonacci #%$> \t

fibonacci #%$> \t

fibonacci #%$> \t

fibonacci #%$> \t

fibonacci #%$> \t

fibonacci #$> \t \n

A.2.15 Caesar Cipher Generator

An initial example of a function being passed as a parameter.

/[Add a given number to a memory location
. caesar

(>R) (>A) (R>) (A@) (+) (A!) ;

/[Make one argument of caesar (the number)
/I a built-in parameter

. caesargen

C:

c create (>R) ¢ #>c (R>) c does

c (@) I# caesar ¢ (CALL) c ; ;

122

n 3 caesargen encode
-n 3 caesargen decode

/I Takes the address of a string

/[and the name of a function.

/I Maps the function to each

/I element of the string.

: mapl

(DUP) (>R) ¢ STRING_TAIL (R>)
(N+) 1

c | (>R)

: mapl-loop

(DUP) (R>) (DUP) (>R) ¢ EXECUTE (N+) 1
(OVER) (OVER) (XOR)

if | mapl-loop

else (DROP) (DROP) (R>) (DROP) ;

/I Input: ABCD

/I Output: ABCD DEFG ABCD
>$ ABCD

/I Print the string

[INPUT @ DUP cs> \t

DUP mapl encode

/[Print the ciphered version
DUP cs> \t

/I Print the deciphered version
DUP mapl decode

$> \t \n

/l Since the argument is a constant

/[it can be compiled as a literal fetch instead
. caesargen

C:

c #

l# caesar ¢ (JMP) ;

123

A.2.16 Higher-Order Function (Map)

This is an example of a mapped function generator.

/I Takes an integer and the function name of
/I a function that alters memory.

/I Compiles code which applies the given

/I function to each location in a string

/[at the interval provided by the integer
mapgen

(DUP) ¢ (>R) # STRING_TAIL ¢ (CALL) c (R>)
1#c#c(+)

NEW_WORD

(DUP) ¢ | ¢ (CALL) (>R) ¢ # (R>) ¢ (+)
(OVER) ¢ (OVER) c (XOR)

if >R) ¢ (JMP) (R>)

else ¢ (DROP) ¢ (DROP) c ; ;

OO0 000 S 0 "

n 5 caesargen encodel
-n 5 caesargen decodel

I/l Apply encodel to every other character in a string
. cipher n 2 mapgen encodel

/I Apply decodel to each character in a string

. decipher n 1 mapgen decodel

/I Input: Imnopq

/I Output:Imnopq gmsouq |hnjpl
>$ Imnopq

| INPUT @ DUP cs> \t

DUP cipher

DUP cs> \t

DUP decipher

$> \t \n

/[Given a memory address, print the

/I decimal expression of its contents

; printd (@) ¢ #$> c \t ;

/I Apply print# to each location in a string
: print$# n 1 mapgen print#

/I Generate and print

/I the first 8 Fibonacci numbers
/l Output: 1 1 2 358 13 21
nlnOn 8 nfibx

| INPUT @ print$# POP_STRING

124

A.3 Virtual Machine

The virtual machine is an emulation of the Gullwing hardwaiidne opcodes are emulated
directly on the hardware if possible, and their memory asegsire bounds-checked.

A3.1 VM

// Define an 8kB memory for the VM
: MEMSIZE n# 8192 ;
: MEM MEMSIZE var ;

: OPCODEWIDTH n# 5 ;
: OPCODEMASK n# 31 ;

. MEM_INPUT MEM MEMSIZE + -n 2 + # ;
: MEM_OUTPUT MEM MEMSIZE + -n 1 + # ;

: MEMHEAD MEM # ;
. MEMTAIL MEM_OUTPUT # ;

. (check_low)
MEMHEAD negate # ¢ # ¢ (+) ;

. (check_high)
c (negate) MEMTAIL # c # ¢ (+) ;

. mem_in_range?
(DUP) (check_low) (OVER) (check_high) (OR) ;

. mem_access_msg
create >$ ILLEGAL_MEMORY_ACCESS: $>c
does | cs>

. report_mem_error
C mem_access_msg
c\sc#%>j \n

. access_check

C mem_in_range?
if-

C report_mem_error
| errcontext

else ;

125

. PCFETCHopcode n# 0 ;
: CALLopcode n# 1 ;
: RETopcode n# 2 ;
: JMPopcode n# 3 ;
: JMPZEROopcode n# 4 ;
: JMPPLUSopcode n# 5 ;
: LOADAopcode n# 6 ;
. STOREAopcode n# 7 ;

: LOADAPLUSopcode n# 8 ;

: STOREAPLUSopcode n# 9 ;
: LOADRPLUSopcode n# 10 ;
. STORERPLUSopcode n# 11 ;

. LITopcode n# 12 ;

: UNDOopcode n# 13 ;

: UNDlopcode n# 14 ;

: UND2opcode n# 15 ;

: XORopcode n# 16 ;
: ANDopcode n# 17 ;
: NOTopcode n# 18 ;
. TWOSTARopcode n# 19 ;
: TWOSLASHopcode n# 20 ;
. PLUSopcode n# 21 ;
: PLUSSTARopcode n# 22 ;
: DUPopcode n# 23 ;
: DROPopcode n# 24 ;
: OVERopcode n# 25 ;
: TORopcode n# 26 ;
: RFROMopcode n# 27 ;
: TOAopcode n# 28 ;
: AFROMopcode n# 29 ;
: NOPopcode n# 30 ;
: UND3opcode n# 31 ;

/[Emulated A, PC and ISR

: AREG n 1 var ;

: PCREG n 1 var ;

: ISRREG n 1 var ;

. do_pcfetch

PCREG # (@)

c access_check (DUP)

(N+) 1 (Al)
(@) ISRREG # (I) :

126

: do_call

/[Move run_vm return address

(R>)
PCREG # (@)

(DUP) (N+) 1 (>R)

(@) c access_check (DUP)
(N+) 1 PCREG # ()

(@) ISRREG # ()

/I Restore run_vm return address

(>R) ;

. do_ret

(R>)

(R>) c access_check (DUP)
(N+) 1 PCREG # (!)

(@) ISRREG # (1)

(>R) ;

: do_jmp

PCREG # (@) (@)

c access_check (DUP)
(N+) 1 PCREG # (!)
(@) ISRREG # () ;

: do_jmpzero
if

PCREG # (@) (N+) 1 (A) :

else
j do_jmp

: do_jmpplus
if-

PCREG # (@) (N+) 1 (A) :

else
j do_jmp

. do_loada

AREG # (@)

(DUP) MEM_INPUT # (XOR)
if

c access_check (@) ;

else

(DROP) | >#

127

. do_storea

AREG # (@)

(DUP) MEM_OUTPUT # (XOR)
if

c access_check (1) ;

else

(DROP) | #>

: do_loadaplus

AREG # (@)

(DUP) MEM_INPUT # (XOR)
if

c access_check

(>A) (A@+) (A>)

AREG # () ;

else

(N+) 1 AREG # (1) j >#

. do_storeaplus

AREG # (@)

(DUP) MEM_OUTPUT # (XOR)
if

c access_check

=A) (A+) (A>)

AREG # () ;

else

(N+) 1 AREG # (1) j #>

. do_loadrplus
(R>) (>A)
(R>)
(DUP) MEM_INPUT # (XOR)
if
c access_check
(>R) (R@+)
(A>) (>R) ;
else
(N+) 1 >R)
(A>) (>R)
j >#

128

. do_storerplus
(R>) (>A)
(R>)
(DUP) MEM_OUTPUT # (XOR)
if
c access_check
(>R) (R'+)
(A>) (CR) ;
else
(N+) 1 (>R)
(A>) (>R)
j #>

: do_lit

PCREG # (@)
(DUP) (N+) 1 (AD
(@) ;

: do_und n 31 COMPILE_OPCODE ;
: do_xor (XOR) ;
: do_and (AND) ;
: do_not (NOT) ;
: do_twostar (2 *) ;
. do_twoslash (2/) ;

: do_plus (+) ;

. do_plusstar (+ *)
: do_dup (DUP) ;
. do_drop (DROP) ;
: do_over (OVER) ;

. do_tor
(R>) (>A)
(>R)

(A>) (CR) ;

: do_rfrom
(R>) (>A)

(R>)

(A>) >R) ;

: do_toa AREG # (V) ;

: do_afrom AREG # (@) ;
: do_nop (NOP) ;

129

c #>c c ALIGN ;

D &>
clc,;

/I Indexed by the opcode
. instruction_call_table

create

&>
&>
&>
&>
&>
&>
&>
&>
&>
&>
&>
&>
&>
&>
&>
&>
&>
&>
&>
&>
&>
&>
&>
&>
&>
&>
&>
&>
&>
&>
&>
&>

do_pcfetch
do_call
do_ret
do_jmp
do_jmpzero
do_jmpplus
do_loada
do_storea
do_loadaplus
do_storeaplus
do_loadrplus
do_storerplus
do_lit
do_und
do_und

do _und
do_xor
do_and
do_not
do_twostar
do_twoslash
do_plus
do_plusstar
do_dup
do_drop
do_over
do_tor
do_rfrom
do_toa
do_afrom
do_nop
do _und

does ;

130

. (shift_isr)
c (2)c@)c@)c@)c (2 ;

. (extract_instruction)
OPCODEMASK # ¢ # ¢ (AND) ;

. do_next_instruction

ISRREG # (@)

(DUP) (shift_isr) (Al
(extract_instruction)
instruction_call_table # (+) (@)

(>R) ;

/I All input now gets processed by the software

/I inside the VM instead of the original Flight language kern el
: run_vm

MEM # PCREG # (!)

n 0 # ISRREG # (!)

n 123456 # AREG # ()
: vm_loop

¢ do_next_instruction

j vm_loop

/I Output short message to show
/I that compilation reached this point
>$ VM4-1 $> \n

A.3.2 Metacompiler

The metacompiler saves and restores the internal stateedatiyuage kernel. This allows
redirecting the operation of the kernel to a different meyremea. In this case, it is used to
direct compilation and execution of code to the previoudfirced Virtual Machine memory
area.

/[Virtual Machine state

- vm_here n 1 var ;

: vm_here_next n 1 var ;
. vm_there n 1 var ;

> vm_slot n 1 var ;
©vm_input n 1 var ;

> vm_name_end n 1 var ;

/I Native Machine state
> nm_here n 1 var ;
> nm_here_next n 1 var ;

131

. nm_there n 1 var ;

> nm_slot n 1 var ;

> nm_input n 1 var ;

: nm_name_end n 1 var ;

: save_nm_here I# HERE (@) nm_here # (!) ;

: save_nm_here_next # HERE_NEXT (@) nm_here_next # (!) ;
: save_nm_slot 1# SLOT (@) nm_slot # (1) ;

: save_nm_input # INPUT (@) nm_input # (!) ;

. save_nm_there |# THERE (@) nm_there # () ;

: save_nm_name_end # NAME_END (@) nm_name_end # (!) ;

: save_vm_here |# HERE (@) vm_here # () ;

: save_vm_here_next |# HERE_NEXT (@) vm_here_next # (!) ;
. save_vm_slot # SLOT (@) vm_slot # () ;

: save_vm_input I# INPUT (@) vm_input # (1) ;

: save_vm_there |# THERE (@) vm_there # (!) ;

: save_vm_name_end # NAME_END (@) vm_name_end # (!) ;

. restore_nm_here nm_here # (@) # HERE () ;

. restore_nm_here_next

nm_here_next # (@) # HERE_NEXT (!) ;

. restore_nm_slot nm_slot # (@) I# SLOT (!) ;

. restore_nm_input nm_input # (@) I# INPUT () ;
. restore_nm_there nm_there # (@) # THERE (!) ;
. restore_nm_name_end nm_name_end # (@) # NAME_END (!) ;

. restore_vm_here vm_here # (@) |# HERE (!) ;

. restore_vm_here_next

vm_here_next # (@) # HERE_NEXT (!) ;

. restore_vm_slot vm_slot # (@) # SLOT (!) ;

. restore_vm_input vm_input # (@) I# INPUT (!) ;
. restore_vm_there vm_there # (@) |# THERE (!) ;
. restore_vm_name_end vm_name_end # (@) # NAME_END (!) ;

. init_vm_here MEM # vm_here # () n# 0 (A@) () ;

. init_vm_here_next

MEM nl+ #vm_here_next # () n# 0 (A@) () ;

: init_vm_slot n# 0 vm_slot # (!) ;

. init_vm_there MEM_INPUT n 1 - # vm_there # () ;

. init_vm_input MEM_INPUT # vm_input # (!) ;

. init_vm_name_end MEM_INPUT # vm_name_end # () ;

132

/I Flight Language Kernel main loop while in VM.
/I (Compare with NXEC)
/[Lookup names in VM dictionary, and if not found,
/I repeat in native machine dictionary.
. vm_nxec
¢ SCAN
¢ LOOK
(DUP) I# NAME_END (@) (XOR)
/[1f found in VM memory
if
¢ POP_STRING
¢ EXECUTE
] vm_nxec
else
/I Else find in native machine memory
/I but execute with kernel pointed at VM memory
(DROP)
save_vm_there
save_vm_name_end
restore_nm_there
restore_nm_name_end
LOOK
save_nm_there
save_nm_name_end
restore_vm_there
restore_vm_name_end
POP_STRING
EXECUTE
] vm_nxec

OO0 000000000

. init_name_dict
create >$ zeroword $>c
does ¢ ¢c>$ n# 0 ¢ DEFN_AS ;

/[Drop current caller address
: (unwind) ¢ (R>) ¢ (DROP) ;

/I Begin execution inside VM
- VM(

init_vm_here
init_vm_here_next
init_vm_slot

init_vm_there

init_vm_input
init_vm_name_end

OO0 000

133

save_nm_here
save_nm_here_next
save_nm_slot
save_nm_there
save_nm_input
save_nm_name_end
restore_vm_here
restore_vm_here_next
restore_vm_slot
restore_vm_there
restore_vm_input
restore_vm_name_end
init_name_dict

/I Change the main loop
(unwind)

j vm_nxec

OO0 00000000000

/[End execution inside VM
. VM

save_vm_here
save_vm_here next
save_vm_slot
save_vm_there
save_vm_input
save_vm_name_end
restore_nm_here
restore_nm_here_next
restore_nm_slot
restore_nm_there
restore_nm_input
restore_nm_name_end
Change the main loop
(unwind)

j NXEC

OO0 0O0O00O0O0O0O0OO0OO0OO0

-~
~

/I Print this to signal we got this far
>$ METACOMP1 $> \n

134

A.3.3 Self-hosted Kernel

This is a reimplementation of the Flight language kernelitam in the language it defines,
using all the extensions previously compiled. It compileshte same original machine code
in which the kernel was originally implemented (Section)Aldut it is compiled in the Virtual
Machine memory area instead.

VM(
n 0 JMP) MEM n 1 + >$ START _WORD DEFN_AS

: HERE

. HERE_NEXT
. THERE

. SLOT

. INPUT

: NAME_END

: MINUS (NOT) n# 1 (+) (+) ;
: OR (OVER) (NOT) (AND) (XOR) ;

: READ1 MEM_INPUT # (@) ;
: WRITE1 MEM_OUTPUT # () ;
: STRING_TAIL (>A) (A@+) (A>) (+) ;

: PUSH_STRING
(DUP) n# 1 (+) (NOT)

I# INPUT (@) (+) (DUP) (Al)
0]

I# INPUT (@)

¢ STRING_TAIL

(bupP) () ;

: POP_STRING
l# INPUT (@)
¢ STRING_TAIL
n# 1 (+)

l# INPUT (1) ;

: COMPARE_STRINGS
(>A) (>R)

: CS_LOOP

(R@+) (A@+) (XOR)
j0O CS_LOOP

-n# 1 (R>) (+)

-n# 1 (A>) (+)

135

: SCAN_STRING

l# INPUT (@) (>R) (R@+)
: SS LOOP

c READ1 (R'+)

-n# 1 (+) (DUP)

if

j SS_LOOP

else

(DROP) (R>) (DUP) (M) ;

. SCAN
¢ READ1

¢ PUSH_STRING
j SCAN_STRING

: FIRST_SLOT
l# SLOT (>A)
n# 31 (A) ;

. LAST_SLOT
l# SLOT (>A)
n# 1040187392 (A!l) ;

: NULL_SLOT
l# SLOT (>A)
n# 0 (A ;

. ALIGN

l# HERE_NEXT (@)
(DUP) (>R) n# 0 (R!+)
(R>) (A

l# HERE (!)

j NULL_SLOT

: NEXT_SLOT
l# SLOT (@)
n# 0 (OVER) (XOR)
if
n# 1040187392 (OVER) (XOR)
if
(2*) (2 *) (2 *) (2 *) (2 %) (A) ;
else
(DROP) c ALIGN j FIRST SLOT
else
(DROP) j FIRST_SLOT

136

: DEFN_AS

l# THERE (@) ()
l# INPUT (@)
-n# 1 (+)

l# THERE () ;

: NEW_WORD
¢ ALIGN
HERE (@) ;

. DEFN
¢ NEW_WORD
i DEFN_AS

. LOOK
l# THERE (@) n# 1 (+) (DUP)
: LOOK_LOOP
l# INPUT (@)
¢ COMPARE_STRINGS
l# INPUT (@)
c STRING_TAIL (XOR)
if
(DROP) ¢ STRING_TAIL
n# 1 (+)
(DUP) # NAME_END (@) (XOR)
if
(DUP) j LOOK_LOOP
else
(DROP) I# NAME_END (@) ;
else
(>A) (DROP) (A@) ;

: COMPILE_OPCODE

¢ NEXT_SLOT

(>R) I# SLOT (@) (NOT)
(R>) (OVER) (OVER) (AND) if
2*) (2 *) (2) (2*) (2)
(OVER) (OVER) (AND) if
(2*) (2 %) (2 *) (2) (2 %)
(OVER) (OVER) (AND) if
(2%) (2 %) (2 %) (2 %) (2 %)
(OVER) (OVER) (AND) if
2*) (2 *) (2) (2*) (2 %)
(OVER) (OVER) (AND) if

137

2*) 2 *) (2 *) (2 *) (2 *)
else else else else else
l# HERE (@)

(@) (+) (A) (DROP) ;

. COMPILE_LITERAL

l# HERE_NEXT (@)

(>A) (A4)

(A>) # HERE_NEXT (!) ;

: CMPCALL

CALLopcode # ¢ COMPILE_OPCODE c¢ COMPILE_LITERAL j ALIGN
: CMPJMP

JMPopcode # ¢ COMPILE_OPCODE ¢ COMPILE_LITERAL j ALIGN
: CMPIJMPZERO

JMPZEROopcode # ¢ COMPILE_OPCODE j COMPILE_LITERAL

: CMPJMPPLUS

JMPPLUSopcode # ¢ COMPILE_OPCODE j COMPILE_LITERAL

: NUMC

LITOpCOde # ¢ COMPILE_OPCODE j COMPILE_LITERAL

: CMPPCFETCH PCFETCHopcode # j COMPILE_OPCODE

: CMPRET RETopcode # j COMPILE_OPCODE

: CMPLOADAPLUS LOADAPLUSopcode # j COMPILE_OPCODE

: CMPLOADRPLUS LOADRPLUSopcode # j COMPILE_OPCODE

: CMPLOADA LOADAopcode # j COMPILE_OPCODE

: CMPSTOREAPLUS STOREAPLUSopcode # j COMPILE_OPCODE
: CMPSTORERPLUS STORERPLUSopcode # j COMPILE_OPCODE

: CMPSTOREA STOREAopcode # j COMPILE_OPCODE
: CMPNOT NOTopcode # j COMPILE_OPCODE

: CMPAND ANDopcode # j COMPILE_OPCODE

: CMPXOR XORopcode # j COMPILE_OPCODE

: CMPPLUS PLUSopcode # j COMPILE_OPCODE

: CMPTWOSTAR TWOSTARopcode # j COMPILE_OPCODE
: CMPTWOSLASH TWOSLASHopcode #] COMPILE_OPCODE
: CMPPLUSSTAR PLUSSTARopcode # j COMPILE_OPCODE

: CMPAFROM AFROMopcode # j COMPILE_OPCODE
: CMPTOA TOAopcode # j COMPILE_OPCODE

: CMPDUP DUPopcode # j COMPILE_OPCODE

: CMPDROP DROPopcode # j COMPILE_OPCODE

: CMPOVER OVERopcode # j COMPILE_OPCODE

: CMPTOR TORopcode # j COMPILE_OPCODE

: CMPRFROM RFROMopcode # j COMPILE_OPCODE
: CMPNOP NOPopcode # j COMPILE_OPCODE

. EXECUTE (>R) ;

138

. EXEC

¢ READ1

¢ EXECUTE
j EXEC

: NXEC

¢ SCAN

c LOOK

c POP_STRING
¢ EXECUTE

j NXEC

: TENSTAR
(DUP) (2 *) (2 *) (2 *) (OVER) (+) (+) ;

: NUMI
l# INPUT (@)
(>R) (R@+)
n# 0 (>A)
(DUP)
if
: NUMI_LOOP
(A>) ¢ TENSTAR (R@+) -n# 48 (+) (+) (>A)
-n# 1 (+) (DUP)
if
j NUMI_LOOP
else
else
(DROP) (R>) (DROP) (A>)
j POP_STRING

| NXEC | START _WORD !

save_vm_here vm_here @ | HERE !
save_vm_here_next vm_here_next @ | HERE_NEXT !
save_vm_slot vm_slot @ | SLOT !

save_vm_input vm_input @ | INPUT !

save_vm_there vm_there @ | THERE !
save_vm_name_end vm_name _end @ | NAME_END !
VM

>$ FIF1 $> \n

139

A.3.4 Flight Language Extensions

This is a repetition of the compilation of the ExtensiongrirS8ection A.2, except that they are
processed by the new kernel within the Virtual Machine. Tihdirection greatly alters and
increases the nature of the code that is executed duringthpilation of the extensions.

\n >$ FIFTEST1-VM-BEGIN $> \n
run_vm
/I Extensions code goes here

\n >$ FIFTEST1-VM-DONE $> \n

140

Appendix B

Static and Dynamic Gullwing Code
Analyses

The following analyses are based on the software developAgpendix A for the Gullwing
processor. The analyses are imperfect since it cannot allwayknown if a memory word
contains instructions or a literal. For example, this hayspe@herever the software contains
directly accessed memory locations. These memory locaticnneither executed nor accessed
in-line like literal fetches. The analysis software comsgithese memory locations to contain
instructions by default, despite actually being literéfartunately, such cases are infrequent
and contribute very little noise to the data, showing up as, rarge literal values and UND
instructions.

B.1 Static Analyses

The static analyses are done on the binary code residentimomgafter each test was compiled
and run. The symbol table associated with the executable wad removed prior to analysis.

B.1.1 Memory Usage

Table B.1 shows the total size of the code measured in (32dginory words. This is divided
into words which contain either instructions or literalmas$. The literals are further divided as
addresses and as actual literal values.

| 32-bit Words| Bare | Ratio || Ext. | Ratio | VM | Ratio |

Total 286 | 1.000|| 1185| 1.000| 3029| 1.000
Instruction | 123 | 0.430| 593 | 0.500|| 1565| 0.517
Literal 163 | 0.570| 592 | 0.500| 1464 | 0.483
Literal Types (words)
Literal 79 | 0.485| 215 | 0.363| 593 | 0.405
Address 84 | 0.515| 377 | 0.637| 871 | 0.595

Table B.1: Compiled Flight Code Memory Usage

141

B.1.2 Range of Literals

Table B.2 shows the distribution of the required number t @quired to represent the abso-
lute value of literals in immediate fetches. Most of these small constants used in calcula-

tions.

| Bits || Bare| Ratio | Ext. | Ratio | VM | Ratio |

4 56 | 0.709| 168 | 0.781| 340 | 0.573
8 17 | 0.215|| 22 | 0.102] 63 | 0.106
12 1 |0.013| 13 | 0.060| 73 | 0.123
16 2 |0.025| 4 |0.019| 101 |0.170
20 0O |0.000f 2 |0.009| 5 |0.008
24 0O |0.000f 1 |0.005| 2 |0.003
28 0 |0.000f 1 |0.005]| 2 |O0.003
32 3 10038 4 |0.019] 7 |0.012

Table B.2: Range of Literals by Absolute Value

B.1.3 Range of Addresses

Table B.3 shows the distribution of the required number t @quired to represent the abso-
lute value of addresses used for calls and jumps. As the ¢pelensreases, the number of bits

required to represent an address increases proportionally

| Bits || Bare| Ratio | Ext. | Ratio | VM | Ratio |

4 3 |0.036| 22 | 0.058| 34 | 0.039
8 70 | 0.833| 187 | 0.496| 224 | 0.257
12 7 10.083| 164 | 0.435| 516 | 0.592
16 1 |0.012) 2 | 0.005) 95 |0.109
20 0O |0.000f O |0.000| O |0.000
24 2 |10.024| 0 |0.000[O |0.000
28 0O |0.000f 2 |0.005| 2 |0.002
32 1 |0.012 O | 0.000f O |0.000

Table B.3: Range of Addresses by Absolute Value

142

B.1.4 Instructions per Instruction Word

Table B.4 shows the distribution of the number of instrutsicompiled into memory words.
The PC@ (PC Fetch) instruction is not counted since it is tséllithe empty instruction slots.
A memory word which contains zero instructions is thus dbtdidled with PC@ instructions.

| #/Word || Bare| Ratio | Ext. | Ratio | VM | Ratio |
0 0 0.000| 32 | 0.054| 126 | 0.081
28 | 0.228] 242 | 0.408| 595 | 0.380
38 | 0.309(132 | 0.223|| 347 | 0.222
3 0.024| 44 | 0.074| 140 0.089
16 | 0.130| 34 | 0.057| 75 | 0.048
7 0.057| 18 | 0.030| 44 | 0.028
31 | 0.252| 91 | 0.153|| 238 | 0.152

OO B W N

Table B.4: Instructions per Instruction Word

B.1.5 Instruction Density

Table B.5 shows the number of instructions per memory worde averages are computed
against both all memory words and against only those whictabo instructions. The max-
imum number of instructions per any memory word is a functbthe division between in-
struction and literal words seen in Table B.1.

| Instr. per Mem. Word || Bare | Ext. | VM |
Avg. per Any Word 1.392| 1.190| 1.207
Max. per Any Word 2.580| 3.003]| 3.100
Avg. per Instruction Word| 3.236| 2.380| 2.337

Total # of Instr. 398 | 1410 3657
Total Instr. Slots 738 | 3558 | 9390
Slot Usage 0.539]| 0.396| 0.389

Table B.5: Instruction Density

143

B.1.6 Compiled Instruction Counts

Table B.6 shows the number of times each possible instmuetias found in memory. The
ratios are calculated relative to the total number of irgtoms (C/1) and to the total number of
instruction slots (C/S).

| Instr. [Bare]| C/l | CIS | Ext.| CN [CIS| VM | CIl | CIS |

JMPO | 14 | 0.035| 0.019| 33 | 0.023| 0.009| 75 | 0.021| 0.008
JMP+| 0 | 0.000| 0.000| 19 | 0.013| 0.005| 40 |0.011| 0.004
CALL | 30 | 0.075| 0.041| 244 | 0.173| 0.069| 566 | 0.155| 0.060
RET 20 | 0.050| 0.027| 141 | 0.100| 0.040| 419 | 0.115| 0.045
JMP 40 | 0.101| 0.054|| 81 | 0.057| 0.023| 190 | 0.052| 0.020
PC@ || 340 | 0.854| 0.461|| 2148| 1.523| 0.604| 5733| 1.568| 0.611
LIT 79 10.198| 0.107| 215 | 0.152| 0.060| 593 | 0.162| 0.063
@A 22 | 0.055| 0.030|| 54 |0.038|0.015| 154 | 0.042| 0.016
@A+ 4 |0.010| 0.005| 4 |0.003|0.001 17 |0.005| 0.002
A 19 | 0.048| 0.026| 33 | 0.023| 0.009| 120 | 0.033| 0.013
IA+ 2 | 0.005H 0.003]] 5 |0.004|0.001| 53 |0.014| 0.006
@R+ 4 |0.010| 0.005| 5 |0.004|0.001| 14 |0.004| 0.001
IR+ 2 | 0.005H 0.003]] 4 |0.003|0.001| 17 |0.005|0.002
XOR 5 |0.013, 0.007|| 19 | 0.013|0.005|| 47 | 0.013| 0.005
AND 5 |0.013| 0.007|| 8 |0.006|0.002| 19 | 0.005| 0.002
NOT 2 |0.005| 0.003|| 18 | 0.013| 0.005| 43 | 0.012| 0.005
2* 33 | 0.083| 0.045|| 49 |0.035|0.014| 104 | 0.028| 0.011
2/ 0O | 0.000| 0.000| 17 | 0.012|0.005| 39 |0.011| 0.004
+ 16 | 0.040| 0.022|| 83 | 0.059| 0.023| 184 | 0.050| 0.020
+* 0O | 0.000| 0.000| 18 | 0.013|0.005| 41 | 0.011| 0.004
DUP 12 | 0.030| 0.016| 59 | 0.042| 0.017| 136 | 0.037| 0.014
DROP|| 9 |0.023| 0.012| 56 | 0.040| 0.016| 123 | 0.034| 0.013
OVER | 13 | 0.033| 0.018| 41 | 0.029| 0.012|| 87 | 0.024| 0.009
>R 6 |0.015| 0.008| 43 | 0.030|0.012| 109 | 0.030| 0.012
R> 5 |0.013, 0.007|| 41 |0.029|0.012|| 101 | 0.028| 0.011
>A 43 | 0.108| 0.058|| 93 | 0.066| 0.026| 286 | 0.078| 0.030
A> 8 |0.020| 0.011] 14 | 0.010| 0.004| 39 | 0.011| 0.004
NOP 1 |0.003| 0.001] 2 |0.001|0.001| 8 |0.002|0.001
UNDO 1 |0.003| 0.001] O |[0.000|0.000{ 2 |O0.001|0.000
UND1| O |O0.000| 0.000|| 2 |O0.001|0.001|f 6 |0.002| 0.001
UND2 || O |0.000| 0.000ff 1 |0.001|0.000f 8 |0.002|0.001
UND3 || 3 |0.008| 0.004| 8 |0.006|0.002|| 17 | 0.005| 0.002

Table B.6: Compiled Instruction Counts

144

B.2 Dynamic Analyses

The dynamic analyses are done on an execution trace log bfteatin Appendix A. The
'Bare’ case present in the static analyses is not includecesihe Flight language kernel is
built into the simulator and does virtually nothing with@xtternal input.

B.2.1 Overall Execution

Table B.7 lists the total number of executed instructiortste number of cycles they required.
An average CPI (Cycles Per Instruction) of 1.3 is impliedlgse values.

| Test | Ext. | VM |

Instructions| 5,018,751| 204,325,372
Cycles 6,574,996| 265,567,537

Table B.7: Overall Execution

B.2.2 Executed Instruction Counts

Table B.8 lists the number of times each instruction was @egtand its ratios relative to the
total number of instructions (C/I) and cycles (C/C) exeduiehe conditional jumps are divided
into taken and not taken instances since they have diffey@hd counts (2 and 1, respectively).
A fold is a case where the fetching of the next group of instoms (a PC@) is executed
concurrently with the last instruction from the currentgpothus occurring 'for free’. The
implementation of this feature is detailed in Section 6. AIPC@ (PC Fetch) instruction is
executed after the last instruction when this folding cafreodone. The sum of the folds and
PC@s is the total number of instruction fetches not origimggiirom jumps, calls, or returns.

145

| Instruction || Extt. [C/l | CIC | VM | CIl | CIC |
JMPO 304,141| 0.061| 0.046| 2,280,533| 0.011| 0.009
JMP+ 63 0.000| 0.000 63 0.000| 0.000
JMPO TAKEN | 23,307 | 0.005| 0.007 83,610 | 0.000| 0.001
JMP+ TAKEN 137 | 0.000| 0.000| 1,875,075| 0.009| 0.014
CALL 320,857| 0.064| 0.098| 10,143,368 0.050| 0.076
RET 321,997| 0.064| 0.098| 15,306,286 0.075| 0.115
JMP 107,803| 0.021| 0.033| 5,617,365| 0.027| 0.042
PC@ 230,798| 0.041| 0.031| 4,428,928| 0.022| 0.017
FOLDS 210,080| 0.042| 0.032|| 15,381,940 0.075| 0.058
LIT 636,924| 0.127| 0.097| 32,273,461 0.158| 0.122
@A 321,272| 0.064| 0.098| 16,753,698 0.082| 0.126
@A+ 320,744| 0.064| 0.098| 1,546,398| 0.008| 0.012
1A 12,909 | 0.003| 0.004| 9,326,086 | 0.046| 0.070
IA+ 428 | 0.000| 0.000 1272 0.000| 0.000
@R+ 120,753| 0.024| 0.037| 560,414 | 0.003| 0.004
IR+ 6038 | 0.001| 0.002 28,593 | 0.000| 0.000
XOR 319,174| 0.064| 0.049| 4,203,870| 0.021| 0.016
AND 2247 | 0.000| 0.000| 7,042,637| 0.034| 0.027
NOT 2249 | 0.001| 0.000| 3,758,267 | 0.018| 0.014
2% 9914 | 0.002| 0.002 32,069 | 0.000| 0.000
2/ 0 0.000| 0.000|| 25,802,660 0.126| 0.097
+ 515,465| 0.103| 0.078| 15,671,697 0.077| 0.059
+* 0 0.000| 0.000 0 0.000| 0.000
DUP 212,572| 0.042| 0.032|| 10,923,102 0.053]| 0.041
DROP 103,643| 0.021| 0.016| 511,936 | 0.003| 0.002
OVER 6777 | 0.001| 0.001| 3,770,383| 0.018| 0.014
>R 104,923| 0.021| 0.016| 7,110,502| 0.035| 0.027
R> 103,781| 0.021| 0.016| 1,947,580| 0.010| 0.007
>A 633,291| 0.126| 0.096| 21,482,640 0.105| 0.081
A> 302,944| 0.060| 0.046| 1,843,179| 0.009| 0.007
NOP 0 0.000| 0.000 0 0.000| 0.000
UNDO 0 0.000| 0.000 0 0.000| 0.000
UND1 0 0.000| 0.000 0 0.000| 0.000
UND2 0 0.000| 0.000 0 0.000| 0.000
UND3 0 0.000| 0.000 0 0.000| 0.000
Table B.8: Executed Instruction Counts

146

B.2.3 Average CPI

Table B.9 shows the computed average CPI (Cycles Per Itistnizalues based on the in-
struction counts from Table B.8. The "Worst’ and 'Best’ vieduare for the hypothetical bound-
ary cases where all conditional jumps are taken or not, ctispéy.

| Test | Ext. | VM |
Best || 1.305| 1.290
Actual || 1.310]| 1.300
Worst || 1.371] 1.311

Table B.9: Average CPI

B.2.4

Table B.10 lists the executed instructions grouped by tyiie ratios are relative to the total
number of instructions executed. The relative contributmthe CPI of each instruction type
can be readily inferred from the product of the cycles andrguencies.

Instruction Types

| Test | Extensions | Virtual Machine |
| Instr. Type | Members | Cycles| Count | Freq.| Count | Freq.|
Conditionals JMP+, IMPO 1 304,204 | 0.061| 2,280,596 | 0.011
Conditionals JMP+ TAKEN, 2 23,444 | 0.005|| 1,958,685| 0.010
(Taken) JMPO TAKEN
Subroutine | CALL, RET, IMP 2 750,657 | 0.150(31,067,019 0.152
Fetches PC@, LIT 1 840,722 | 0.168| 36,702,389 0.180
Load/Store @A, @A+, A, 2 782,144 | 0.156| 28,216,461 0.138
IA+, @R+, IR+
Arithmetic & | XOR, AND, NOT, 1 849,649 | 0.169| 56,510,900 0.277
Logic 2%, 2/, +, +*
Stack DUP, DROP, OVER, 1 1,467,931 0.292| 47,589,322 0.233
Manipulation| >R, R>, >A, A>
NOP/UND NOP, UNDI0-3] 1 0 0.000 0 0.000

Table B.10: Instruction Types

147

B.2.5 Basic Block Length

Table B.11 lists the lengths, measured in instructionshefttasic blocks encountered during
execution. Calls, returns, and jumps (taken or not) terteingbasic block. A block length of
zero signifies two consecutive calls or jumps.

The odd peak at length 17 is the main loop of the \{M, next_instruction , Which
was deliberately inlined into a single basic block for perfance reasons.

| Instructions| Ext. |Ratio]|] VM | Ratio |
0 24,613 | 0.023|| 17,143,651 0.486
1 300,464 0.279| 2,372,695| 0.067
2 394 0.000|| 661,029 | 0.019
3 230,485| 0.214| 2,118,717| 0.060
4 208,813| 0.194| 940,229 | 0.027
5 103,499| 0.096| 741,651 | 0.021
6 3292 | 0.003| 1,099,523 0.031
7 100,262| 0.093| 719,878 | 0.020
8 100,824| 0.094| 394,367 | 0.011
9 3108 | 0.003| 647,462 | 0.018
10 - - 317,034 | 0.009
11 77 0.000| 322,764 | 0.009
12 43 0.000| 132,018 | 0.004
13 61 0.000|| 646,811 | 0.018
14 634 0.001| 1,884,477| 0.053
16 1728 | 0.002 3462 0.000
17 - - 5,160,532 | 0.146
20 8 0.000 - -

Total Blocks 1,078,305 35,306,300

Average 3.654 4.787

Table B.11: Basic Block Length

148

B.2.6 Data Stack Depth

Table B.12 shows the distribution of the number of items an Brata Stack over the entire
execution.

| Depth | Ext. |Ratio]| VM | Ratio|

0 109,303 | 0.022| 1,469,323| 0.007
1 876,384 | 0.175|| 13,429,593 0.066
2 1,379,820, 0.275|| 29,249,154 0.143
3 1,437,394 0.286| 44,388,630 0.217
4 879,234 | 0.175|| 44,484,643 0.218
5 272,451 | 0.054 | 34,373,299 0.168
6 52,157 | 0.010}| 20,746,317 0.102
7 9314 0.002|| 9,725,059 0.048
8 2184 0.000|| 4,301,403 0.021
9 463 0.000| 1,710,608| 0.008
10 47 0.000| 367,851 | 0.002
11 - - 65,179 | 0.000
12 - - 11,231 | 0.000
13 - - 2677 0.000
14 - - 405 0.000
| Average| 2.636 | 3.924 |

Table B.12: Data Stack Depth

149

B.2.7 Return Stack Depth

Table B.13 shows the distribution of the usage of the RettiackSover the entire execution.
The depth of the Return Stack is usually equal to the callldepthe program, plus some
transient, temporary storage.

| Depth | Ext. |Ratio] VM | Ratio |
0 5666 0.001 19,823 | 0.000
1 1,862,081 0.371| 8,362,538 0.041
2 1,452,360 0.289| 15,583,345 0.076
3 1,147,591 0.229| 57,244,617 0.280
4 379,797 | 0.076 || 48,202,927 0.236
5 169,104 | 0.034 | 44,737,258 0.219
6 1978 0.000| 17,140,510 0.084
7 174 0.000| 10,796,692 0.053
8 - - 1,452,808 | 0.007
9 - - 778,445 | 0.004
10 - - 6079 0.000
11 - - 330 0.000
| Average| 2.110 4.037 |

Table B.13: Return Stack Depth

150

Bibliography

[ABB64]

[AlI85]

[Baio4]

[Baio6]

[Baio0]

[Bai04]

[Bar61la]

[Bar61b]

[Bar61c]

[Bar87]

[Bau60]

G. M. Amdahl, G. A. Blaauw, and F. P. Brook&rchitectureof theIBM System
360, IBM Journal of Research and Developm@(t964), no. 2, 87-101.

Murray W Allen, CharlesHamblin (1922-1985), Aust. Comput. 17 (1985),
no. 4, 194-195.

Chris Bailey,HLL enhancemenfor stackbasedprocessors, EuroMicro Journal
of Microprocessing and Microprogrammid@ (1994), 665-668.

, Optimisation Techniques for Stack-Based Processors, Rafis, Uni-
versity of Teesside, UK, July 1996, Amongst other thingslyzres the use of
stack buffers to reduce memory traffic.

, Achievingminimal anddeterministidnterruptexecutionin stack-based
processoarchitectures., it UROMICRO [DBLO0O0], pp. 1368-.

, A proposedmechanismfor super-pipelinednstruction-issuefor ilp
stackmachines, DSD '04: Proceedings of the Digital System DeddfROMI-
CRO Systems on (DSD’04) (Washington, DC, USA), IEEE Comp6®&ieciety,
2004, pp. 121-129.

R. S. BartonA new approachto the functional designof a digital computer,
AFIPS Conference Proceeding® (1961), 393—-396, presented at IRE-AIEE-
ACM Computer Conference, May 9-11, 1961.

, Systemdescriptionfor animprovedinformation processingnachine,
Proceedings of the 1961 16th ACM national meeting (New Yok, USA),
ACM Press, 1961, pp. 103.101-103.104.

Robert S. Bartonf-unctionaldesignof computers, Commun. ACM (1961),
no. 9, 405.

R. S. BartonA newapproacho thefunctionaldesignof adigital computer, IEEE
Annals of the History of Computing9 (1987), no. 1, 11-15.

Friedrich L. BauerThe formula-controlledogical computer'STANISLAUS",
Math. Tabl. Aids Comd4 (1960), 64—67.

151

[Bau90]

[Bau02]

[BBG*60]

[BBRS58]

[BCM+70]

[BDO2]

[BFPB97]

[BIS6]

[Bla77]

[Blago]

[Bro84]

[BSa]

[BSb]

[BSc]

F. L. BauerThe cellar principle of statetransitionandstorageallocation, IEEE
Ann. Hist. Computl12 (1990), no. 1, 41-49.

Friedrich L. Baueri-rom the Stack Principle to ALGOL, pp. 26—42, in Broy and
Denert [BD02], 2002, Points to possible earlier originstat&s for computation.

J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy,JAPerlis,
H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegsteinyai. Wijngaar-
den, and M. WoodgeReportonthealgorithmiclanguageALGOL 60, Commun.
ACM 3 (1960), no. 5, 299-314.

F. L. Bauer, H. Bottenbruch, H. Rutishauser, andSKmelsonProposalfor a
universallanguagédor the descriptionof computingprocesses, pp. 355-373, in
Carr [Car58], 1958.

G. Bell, R. Cody, H. McFarland, B. DelLagi, J. O’LaughliR, Noonan, and
W. Wulf, A newarchitecturdor mini-computerstheDEC PDP-11, Proc. AFIPS
SJCC (1970), 657—-675.

Manfred Broy and Ernst Denert (eds3oftware pioneers: contributionsto
softwareengineering, Springer-Verlag New York, Inc., New York, NYSA,
2002.

Gerrit A. Blaauw and Jr. Frederick P. BrookKxmputerarchitecture:Concepts
and evolution, Addison-Wesley Longman Publishing Co., Incgosi®n, MA,
USA, 1997.

Leo B. Brodie and FORTH IncStartingFORTH, second ed., Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1986.

Russell P. Blakezxploring a stackarchitecture, Compute0 (1977), no. 5, 30—
39, QA76.5.154, not in ACM Digital Library.

Mario De Blasi,Computerarchitecture, Addison-Wesley Longman Publishing
Co., Inc., 1990.

Leo B. Brodie, Thinking FORTH: a languageand philosophy for solving
problems, Prentice-Hall, Inc., Upper Saddle River, NJ, U$%84.

Friedrich Ludwig Bauer and Klaus Samelsbrenchpatentl.204.424Machine
a calculerautomatiqueet procédépour sonexploitation, Filed March 28, 1958.
Delivered August 10, 1959. Published January 26, 1960.

, Gb patent 892,098: Improvementsin and relating to computing
machines, Filed March 31, 1958. Published MArch 21, 1962.

, Germanpatentl 094 019: Verfahrenzur automatische¥erarbeitung
von kodiertenDatenund Rechenmaschineur AusubungdesVerfahrens, Filed
March 30, 1957. Granted December 1, 1960.

152

[BSd]

[BS94]

[Bul77]

[Bur63]

[Bur67]

[Bur73]

[Bur81]

[Bur98]

[Car58]

[Chag5]

[Cha97]

[Chagg]

[Chu75]

[DBLOOQ]

, Us patent3,047,228: Automatic computingmachinesand method of
operation, Filed March 28, 1958. Granted July 31, 1962.

C. Bailey and R. SotudeHLL enhancemerior stackbasedrocessors, Selected
papers of the short notes session on Euromicro '94 (Amsterdhe Netherlands,
The Netherlands), Elsevier Science Publishers B. V., 19p4685—688.

D. M. Bulman,Stackcomputers, Computdi0 (1977), no. 5, 14-16.

Burroughs Corporation, Detroit, MichigaQperationalcharacteristicsof the
processor$or the BurroughsB5000, 1963, Pub. No. 5000-21005, Revision A.

Burroughs Corporation, Detroit, MichigarBurroughs B5500 information
processingystemgeferenceananual, May 1967, Pub. No. 1021326.

Burroughs Corporation, Detroit, MichigaB,7700 systemsreferencemanual,
1973, Form 1060233.

Burroughs Corporation, Detroit, MichigaB6900systenreferencananual, July
1981, Form 5100986.

Stephen D. BurdSystemsarchitecture:Hardwareand softwarein information
systems, South-Western Publishing Company, 1998.

J. W. Carr (ed.Summerschool1958, University of Michigan, 1958.

Robert James ChapmanStack quarks, Proc. Rochester Forth Con-
ference on Emerging Technology (Rochester, New York) (leawwe
P. G. Forsley, ed.), University of Rochester, The Institdite Applied
Forth Research, Inc., June 1995, Decomposes the typicak sper-
mutation operations into smaller primitives. Online as obvN 2006:
http://www.compusmart.ab.ca/rc/Papers/StackQuapestaif.

, A writable computer, Proc. Rochester Forth Conference on Emerging
Technology (Rochester, New York) (Lawrence P. G. Forsley), dJniversity

of Rochester, The Institute for Applied Forth Research,,ldane 1997, De-
scribes the VHDL design of a small stack computer. Online faSav. 2006:
http://www.compusmart.ab.ca/rc/Papers/writablecowpodf.

Rob Chapman, A Stack Processor: Synthesis, web page, Jan-
uary 1998, Project Report for EE602. Online as of Nov. 2006:
http://www.compusmart.ab.ca/rc/Papers/spsynthefis.p

Yaohan ChuHigh-levellanguagecomputerarchitecture, Academic Press, Inc.,
Orlando, FL, USA, 1975.

26th EUROMICRO 2000 conference,informatics: Inventing the future, 5-7
septembeR000,Maastricht,TheNetherlands, IEEE Computer Society, 2000.

153

[Dor75a]

[Dor75b]

[DPSO]

[DPS6]

[DP98a]

[DP98b]

[Dun77]

[Eng63]

[FL86]

[Fox98]

[Fox04]

[FRO3]

[Fre9s]

[FreO01]

[GLO3]

R. W. Doran he InternationalComputerdtd. ICL2900 computerarchitecture,
SIGARCH Comput. Archit. Newd (1975), no. 3, 24-47.

Robert W. DoranArchitectureof stackmachines, pp. 63—-108, in [Chu75], 1975.

David R. Ditzel and David A. PattersoRetrospectiveon high-levellanguage
computerarchitecture, ISCA '80: Proceedings of the 7th annual sysiyro on
Computer Architecture (New York, NY, USA), ACM Press, 1980, 97-104.

, Retrospectiven high-levellanguagecomputerarchitecture, pp. 44-51,
in [FL86], 1986.

, Retrospective: a retrospectiveon high-level language computer
architecture, ISCA '98: 25 years of the international sysipan Computer ar-
chitecture (selected papers) (New York, NY, USA), ACM Prd€98, pp. 13-14.

, Retrospectiven high-levellanguagecomputerarchitecture, ISCA '98:
25 years of the international symposia on Computer ardiite¢selected papers)
(New York, NY, USA), ACM Press, 1998, pp. 166—-173.

Fraser George DuncaBtackmachinedevelopmentAustralia,greatbritain, and
europe, Computet0(1977), no. 5, 50-52.

English Electric-LEO Computers Ltd., Kidsgrove, tolg&-On-
Trent, Staffordshire, England, KDF9 programming manual, circa
1963, Online as of March 2006 at: http://www.jeays.ca/Kutil
and http://frink.ucg.iefbfoley/edhist/kdf9pm/kdfOpm.html and
http://acms.synonet.com/deuce/KDF9pm.pdf.

Eduardo B. Fernandez and Tomas Lan&oftware-oriented computer
architecture, IEEE Computer Society Press, Los Alamit@s, ISA, 1986.

Jeff Fox, F21 CPU, web page, 1998, Online as of April 2007:
http://ultratechnology.com/f21.html.

, Forth Chips, web page, 2004, Online as of April 2007:
http://ultratechnology.com/chips.htm.

James M. Feldman and Charles Ret@amputerarchitecturea designer’'sext
basedn agenericRISC, McGraw-Hill, Inc., 1993.

Paul Frenger-orth in space,or, so NEAR yet sofar out, SIGPLAN Not.33
(1998), no. 6, 24-26.

__, Closeencounterf the Forth kind, SIGPLAN Not.36 (2001), no. 4,
21-24.

William F. Gilreath and Phillip A. Laplant€Gomputer Architecture, Kluwer Aca-
demic Publishers, 2003.

154

[GWS91]

[Hal62]

[Ham57a]

[Ham57b]

[Ham85]

[Hay97]
[Hen84]

[Hen86]
[Hew84]

[HHOOQ]

[HIB*82]

[HIP'82]

[HP96]

Il George William ShawsSh-BOOM: the soundof the RISC marketchanging,
Proceedings of the second and third annual workshops om,F&@&M Press,
1991, p. 125.

A. C. D. Haley,TheKDF.9 computeisystem, Proceedings of the AFIPS Fall Joint
Computer Conference, vol. 21, 1962, pp. 108-120.

Charles L. HamblinAn addresslesgoding schemebasedon mathematical
notation, Proceedings of the First Australian Conferent€omputing and Data
Processing (Salisbury, South Australia: Weapons Resdsstdblishment), Jun
1957.

, Computellanguages, The Australian Journal of ScieR0¢1957), 135—

139.

, Computerlanguages, Aust. Comput. 17 (1985), no. 4, 195-198,
Reprint of 1957 paper in volume 20 of The Australian Jourfi@@ence.

John P. Haye§, omputemarchitectureandorganization, McGraw-Hill, Inc., 1997.

John L. HennessYLSI processoarchitecture, IEEE Transaction on Computers
C-33(1984), no. 12, 1221-1246.

, VLSI processoarchitecture, pp. 90-115, in [FL86], 1986.

Hewlett-Packard, Cupertino, Californi&P 3000 computer systemsgeneral
informationmanual, October 1984, Pub. No. 5953-7983.

Richard E. Haskell and Darrin M. Hanndmplementing a Forth engine
microcontrolleron a Xilinx FPGA, Looking Forward — The IEEE Computer So-
ciety’s Student Newsletter (A Supplement to Compu8&{2000), no. 1, Online
as of Nov. 2006: http://www.cse.secs.oakland.edu/haeseérch/IEEE2.pdf and
http://www.cse.secs.oakland.edu/haskell/VHDL/IEEE®Nt. PDF.

John Hennessy, Norman Jouppi, Forest Baskett, ThomassGand John Gill,
Hardware/softwar&radeoffsfor increasegerformance, ASPLOS-I: Proceedings
of the first international symposium on Architectural supdor programming
languages and operating systems (New York, NY, USA), ACMs®rel 982,
pp. 2-11.

John Hennessy, Norman Jouppi, Steven Przybylski, @iptier Rowen, Thomas
Gross, Forest Baskett, and John GMlIPS: A microprocessoarchitecture, Ml-
CRO 15: Proceedings of the 15th annual workshop on Micrapragiing (Pis-
cataway, NJ, USA), IEEE Press, 1982, pp. 17-22.

John L. Hennessy and David A. PattersbamputerarchitectureA quantitative
approach, 2nd ed., Morgan Kaufmann Publishers Inc., 1986 dbminant text-
book on current computer architecture, which I've found &drroneous with
regards to current stack architecture.

155

[HPO2]

[HVZ95]

[Hwa92]

[IC78]

[Int00]
[INt06]

[Kat85]

[KDF61]

[KKC92a]

[KKC92b]

[Kog90]

[Ko089]

[Ko090]

[Ko091]

[Ko094]

, Computerarchitecture: A quantitativeapproach, Morgan Kaufmann
Publishers Inc., 2002.

V. Carl Hamacher, Zvonko G. Vranesic, and Safwat Gaky, Computer
organization, McGraw-Hill Higher Education, 1995.

Kai Hwang, Advanced computer architecture: Parallelism, scalability,
programmability, McGraw-Hill Higher Education, 1992.

R. N. Ibbett and P. C. Capoffhe developmenbf the MU5 computersystem,
Commun. ACM21(1978), no. 1, 13-24.

Intersil, Datasheeffor HS-RTX2010RH, March 2000, File Number 3961.3.

Intel Corporation, Dever, CAntelR) 64 andIA-32 architecturesoptimization
referencananual, November 2006, Order Number: 248966-014.

Manolis G. H. KatevenisReducedinstruction set computerarchitecturesfor
VLSI, Massachusetts Institute of Technology, Cambridgé, MSA, 1985, One
of the PhD theses from the Berkeley RISC project. Goes irgaldep technical
details and reasonnings behind RISC.

KDF9: Very high speeddataprocessingystemfor commercejndustry,science,
English Electric, Kidsgrove, Stoke-On-Trent, StaffordehEngland, 1961, Sales
brochure for the KDF9.

William F. Keown, Philip Koopman, and Aaron ColinPerformanceof the
Harris RTX 2000 stack architectureversusthe Sun 4 SPARC and the Sun 3
M68020architectures, SIGARCH Comput. Archit. Ne28(1992), no. 3, 45-52.

, Real-timeperformancef theHarrisRTX 2000stackarchitectureversus
the Sun4 SPARCandthe Sun3 M68020architecturesvith aproposedeal-time
performancebenchmark, SIGMETRICS Perform. Eval. R&® (1992), no. 4,
40-48.

Peter M. Kogge,The architectureof symboliccomputers, McGraw-Hill, Inc.,
1990.

Philip J. KoopmanStackcomputersthenewwave, Halsted Press, 1989, A com-
pendium of stack computer architectures. Has useful exygetial data.

, Modernstackcomputerarchitecture, System Design and Network Ar-
chitecture Conference (1990), 153-164.

, Someideasfor stack computerdesign, Rochester Forth Conference
(1991), 58.

, A preliminaryexplorationof optimizedstackcodegeneration, Journal
of Forth Applications and Researé(1994), no. 3, 241-251.

156

[Lav80] Simon Hugh LavingtorEarly british computersThe story of vintagecomputers
and the peoplewho built them, Butterworth-Heinemann, Newton, MA, USA,
1980.

[LTLI8] P. H. W. Leong, P. K. Tsang, and T. K. Le&,FPGAbasedorth microprocessor,
FCCM '98: Proceedings of the IEEE Symposium on FPGAs for @usCom-
puting Machines (Washington, DC, USA), IEEE Computer Slyci998, p. 254.

[Luk29] Jan LukasiewicZ:lementsof mathematicalogic, Warsaw, 1929, [English trans-
lation of 1958 edition: Macmillan, 1963].

[McK80] William M. McKeeman,Stackcomputers, pp. 319-362, in [Sto80], 1980.

[McL93] Edward McLellan,The Alpha AXP architectureand21064processor, IEEE Mi-
cro13(1993), no. 3, 36—47.

[ME97] Martin Maierhofer and M. Anton ErtlOptimizing stack code, Forth-Tagung
1997, 1997.

[ME98] , Local stackallocation, Compiler Construction 1998, Springer LNCS

1383, 1998, pp. 189-203.

[MK97] M. Morris Mano and Charles R. Kimé,ogic andcomputerdesignfundamentals,
Prentice-Hall, Inc., 1997.

[ML70] Charles H. Moore and Geoffrey C. LeadRQRTH — a languagefor interactive
computing, Mohasco Industries, Inc., Amsterdam, NY, 19%@rnal publica-
tion.

[M0091] Charles H. Moore[orth - the early years, Unpublished notes that became
the papers by Rather, Colburn, and Moore [RCM93] [RCM96]cdsible at
http://www.colorforth.com/HOPL.html as of Nov. 2006.,919

[MooOla] ____, 25x emulator, Proceedings of the 17th EuroForth Confer¢8ckloss
Dagstuhl, Saarland, Germany), University of Teesside @idyer 2001, ISBN: O
907550 97 6.

[Moo01b] , ¢18 colorForth compiler, Proceedings of the 17th EuroFGdhference
(Schloss Dagstuhl, Saarland, Germany), University of Jides November 2001,
One of the few published papers by Chuck Moore. DescribestBenstruction

set in detail.

[MP95] Silvia M. Muller and Wolfgang J. Paullhe complexity of simple computer
architectures, Springer-Verlag New York, Inc., 1995.

[MT95] Charles H. Moore and C. H. TingJuP21—aMISC processor, Forth Dimensions
(1995), 41, http://www.ultratechnology.com/mup21.html

[Mur86] Robert W. MurphyUnderthe hoodof a superchip:the NOVIX Forthengine, J.
FORTH Appl. Res3 (1986), no. 2, 185-188.

157

[Mur90] William D. Murray, Computeranddigital systemarchitecture, Prentice-Hall, Inc.,
1990.

[Omo94] Amos R. OmondiComputerarithmeticsystems:algorithms,architectureand
implementation, Prentice Hall International (UK) Ltd., 90

[Om099] , Themicroarchitecturef pipelinedandsuperscalacomputers, Kluwer

Academic Publishers, 1999.

[Org73] Elliott Irving Organick,ComputersystemorganizationTheB5700/B6700 series
(ACM monograplseries), Academic Press, Inc., Orlando, FL, USA, 1973.

[Pat85] David A. PattersonReducedinstruction set computers, Commun. ACM8
(1985), no. 1, 8-21.

[Pat86] , Reducednstructionsetcomputers, pp. 76—89, in [FL86], 1986.

[Pay96] Bernd Paysanmplementatiorof the 4stackprocessowusing Verilog, Diploma
thesis, Technische Universitat Munchen, Institut fur tnfatik, August 1996,
http://www.jwdt.com#paysan/4stack.html.

[Pay02] Berndt Paysat16—AForthprocessoin anFPGA, Forth-Tagung 2002 (2002),
http://www.b16-cpu.de/.

[PD80] David A. Patterson and David R. Ditzé&lhe casefor thereducednstructionset
computer, SIGARCH Comput. Archit. Nev831980), no. 6, 25-33.

[PHOO0] David A. Patterson and John L. Hennesdgmputerarchitecture:a quantitative
approach, Morgan Kaufmann Publishers Inc., 1990.

[PHO8] , Computeorganizatioranddesign:thehardware/softwarmterface, 2nd

ed., Morgan Kaufmann Publishers Inc., 1998.

[PS81] David A. Patterson and Carlo H. Sequ$SC |: A reducednstructionsetVLSI
computer, ISCA '81: Proceedings of the 8th annual symposianComputer
Architecture (Los Alamitos, CA, USA), IEEE Computer Sogidress, 1981,
pp. 443-457.

[PS98a] David A. Patterson and Carlo H. SéqiRetrospectiveRISC I: areduced
instructionsetcomputer, ISCA '98: 25 years of the international symposia o
Computer architecture (selected papers) (New York, NY, YYS¥CM Press,
1998, pp. 24-26.

[PS98b] David A. Patterson and Carlo H. SequRhSC I: areducednstructionsetVLSI
computer, ISCA '98: 25 years of the international symposi&Computer archi-
tecture (selected papers) (New York, NY, USA), ACM Pres98.%p. 216-230.

158

[Ras03]

[RCMO3]

[RCM96]

[Ros87]

[SB60]

[SB04]

[Shag9]

[Sha02]

[Sit78]

[SSK97]

[Stag0]

[Sta93]

[Sta02]

[Sto80]

[Sto92]

James Rash, Space-related applications of forth, webpage:
http://forth.gsfc.nasa.gov/, April 2003, Presents spat&ted applications
of Forth microprocessors and the Forth programming languaig NASA.
Accessed on Nov. 2006.

Elizabeth D. Rather, Donald R. Colburn, and ChaHe®oore, Theevolutionof
Forth, The second ACM SIGPLAN conference on History of pamgming lan-
guages (Cambridge, Massachusetts, United States), AC8% Pr893, pp. 177—
199.

, The evolution of Forth, History of programming languages—II (New
York, NY, USA), ACM Press, 1996, pp. 625-670.

Robert F. RosirRrologue:TheBurroughsB5000, Annals of the History of Com-
puting9 (1987), no. 1, 6-7.

K. Samelson and F. L. Bau&gquentiaformulatranslation, Commun. ACN8
(1960), no. 2, 76-83.

Huibin Shi and Chris Baileynvestigatingavailableinstructionlevel parallelism
for stackbasedmachinearchitectures, DSD '04: Proceedings of the Digital Sys-
tem Design, EUROMICRO Systems on (DSD’04) (Washington, DEA), IEEE
Computer Society, 2004, pp. 112-120.

George William ShaweSC1000microprocessoreferencemanual, Patriot Sci-
entific Corporation, San Diego, CA, March 1999, Ref. No. 33<0001.

, IGNITE intellectualpropertyreferencemanual, Patriot Scientific Cor-
poration, San Diego, CA, March 2002, Revision 1.0.

Richard L. SitesA combinedregister-staclarchitecture, SIGARCH Comput.
Archit. News6 (1978), no. 8, 19-19.

Dezso Sima, D. Sima, and Peter KacsAklvancedcomputerarchitectures,
Addison-Wesley Longman Publishing Co., Inc., 1997.

William StallingsComputerorganizatiorandarchitecture, 2nd ed., Prentice Hall
PTR, 1990.

, Computerorganizationand architecture: principles of structureand
function, 3rd ed., Macmillan Publishing Co., Inc., 1993.

, Computerorganizationand architecture, Prentice Hall Professional
Technical Reference, 2002.

Harold S. Stondntroductionto computerarchitecture, Science Research Asso-
ciates, 1980.

, High-performancecomputerarchitecture, Addison-Wesley Longman
Publishing Co., Inc., 1992.

159

[TCCLL99] P.K. Tsang, K.H. C.C. Cheung, T.K. Lee Leung, andH.W. Leong,

[Tin97a]

[TiN97D]

[Wil91]

[Wil96]

[Wilo1]

[Yue]

MSL16A: an asynchronous Forth microprocessor, TENCON @8céedings of
the IEEE Region 10 Conference, vol. 2, September 1999, pf-11D82.

C H Ting, The P seriesof microprocessors, More On Forth Engir&s(1997),
1-17.

, P16 microprocessodesignin VHDL, More On Forth Engine22
(1997), 44-51.

Barry Wilkinson, Computerarchitecture: Design and performance, 1st ed.,
Prentice-Hall, Inc., 1991.

__, ComputenarchitectureDesignandperformance, 2nd ed., Prentice-Hall,
Inc., 1996.

Rob Williams, Computersystemsarchitecturewith CDROM, Addison-Wesley
Longman Publishing Co., Inc., 2001.

C K Yuen, Superscalarexecution of stack programsusing reorder buffer,
http://www.comp.nus.edu.sgyuenck/stack.

160

	LAFOREST Eric BIS 2007 Signed Declaration
	LAFOREST_Eric BIS 2007 Thesis

