Convergence Analysis of Generalized Primal-Dual

Interior-Point Algorithms for Linear Optimization

Hua Wei

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2002

(©Hua Wei 2002

[hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

II

Abstract

We study the zeroth-, first-, and second-order algorithms proposed by Tungel. The zeroth-order
algorithms are the generalization of the classic primal-dual affine-scaling methods, and have a
strong connection with the quasi-Newton method. Although the zeroth-order algorithms have
the property of strict monotone decrease in both primal and dual objective values, they may
not converge. We give an illustrative example as well as an algebraic proof to show that the
zeroth-order algorithms do not converge to an optimal solution in some cases. The second-order
algorithms use the gradients and Hessians of the barrier functions. Tuncel has shown that all
second-order algorithms have a polynomial iteration bound. The second-order algorithms have
a range of primal-dual scaling matrices to be chosen. We give a method to construct such a
primal-dual scaling matrix. We then analyze a new centrality measure. This centrality measure
appeared in both first- and second-order algorithms. We compare the neighbourhood defined by
this centrality measure with other known neighbourhoods. We then analyze how this centrality
measure changes in the next iteration in terms of the step length and some other information of

the current iteration.

111

Acknowledgements

I would like to express my deep thanks to my supervisor, Dr. Levent Tuncel. Without his
continues guidance and support, I could not finish this thesis. I would also like to thank the two
readers, Dr. Michael Best and Dr. Henry Wolkowicz, for their comments and careful reading of
the draft.

Thanks to the professors, colleagues, and friends in the Department of Combinatorics and

Optimization at the University of Waterloo.

Thanks my parents, my brother for their love and continues encouragement. Although they

were not in Canada when I was writing the thesis, I can always feel their support.

Last, I owe great thanks to my wife, Feng Zou, for her love, encouragement, and being my

company in my life for countless good or bad days.

v

Contents

1 Introduction 1
2 Fundamentals of Linear Programming 5
2.1 Notations e)
2.2 Basic Theorems of Linear Programming 6
23 Central Path 9
2.4 Primal-dual Potential Function 13
3 The Zeroth-Order Algorithms and Their Convergence Issue 15
3.1 The Classical Primal-Dual Affine Scaling Algorithm 15
3.2 The Zeroth-Order Algorithms 17
3.3 Another Form of the Zeroth-Order Algorithms 18
3.4 An Ilustrative Example 0 o 20
3.5 Introduction to The Algebraic Proof 23
3.6 Basic Theorems e 24
3.7 Upper Bounds for the Quantities |77 — T?||, [|df — dsl|, and ||df —dg|. 26
3.8 Progression of The Algorithm 30

4 Scaling Matrices for the Second-Order Algorithm 36

4.1 Introduction to the First-Order Algorithms 36
4.2 Introduction to the Second-Order Algorithms 38
4.3 Scaling Matrices in the Second-Order Algorithms 39
5 On the Proximity Measures for the Central Path 44

VI

List of Figures

31 T?defined by (3.9) 21
3.2 T? defined by (3.9), zoom in after iteration 3 22
33 T2:=XS7' 22
34 T?:= XS8! zoom in after iteration 3 23

VII

Chapter 1

Introduction

The linear programming problem is an optimization problem with a linear objective function
and linear constraints. Dantzig [2] [3] proposed the simplex method to solve linear programming
problems. The simplex method is very efficient. With the development of computer technology,
the simplex method has been successfully implemented on computers. Even now, most commercial

linear programming solvers still use the simplex method.

Although the simplex method is very efficient on average, no variant of it has been proven to
have polynomial complexity in the worst case. Klee and Minty [13] devised a problem such that the
simplex method (employing the largest coefficient rule) needs exponential time to solve in terms
of the problem size (data length). The exponential worst-case complexity of the simplex method
motivated many researchers to look for a polynomial time algorithm for the linear programming

problem.

Khachiyan [11], [12] first found a polynomial time algorithm for linear programming problem
by using the ellipsoidal method of Shor [28], and Yudin and Nemirovskii [41]. Khachiyan’s result
has a great impact in theory, but in practice, the algorithm always achieves the worst-case bound,

and can not beat the algorithms based on the simplex method.

Karmarkar’s seminal paper [10] in 1984 gave a polynomial time algorithm and it was an-
nounced as more efficient than the simplex method. Karmarkar’s algorithm is very different from
the simplex method. The simplex method is a combinatorial method. It iterates through the
extreme points of the feasible region to achieve an optimal extreme point. However, Karmarkar’s
algorithm is more like an algorithm working on a non-linear optimization problem. It evolves

through a series of strictly feasible points (interior-points), and approaches an optimal solution.

That is why it and its following variants are called interior-point methods.

Karmarkar’s paper led many researchers into this area. Soon, Vanderbei, Meketon, and
Freedman [36] and Barnes [1] proposed a natural simplification of Karmarkar’s algorithm. It
turned out that as early as 1967, Dikin [4] had a very similar proposal. Nowadays, it is called the
affine-scaling method. Then, in 1990, Monteiro, Adler, and Resende [22] described a polynomial-

time primal-dual affine-scaling algorithm.

Renegar [27] was the first to prove an O(y/nL) iteration bound for a path-following method.
The path-following methods explicitly restrict the iterates to a neighbourhood of the central path
(defined later) and follow the central path to an optimal solution. Although Renegar’s path-
following method has a better iteration bound than Karmarkar’s algorithm, it was not efficient
in practice. Later, Vaidya [34] refined Renegar’s path-following algorithm, and described an al-
gorithm with an overall complexity of O(n3L). Vaidya was also the first to extend path-following
methods to handle exponential many constraints in some cases as the ellipsoidal method does.
Almost at the same time, Gonzaga [6] also proposed an algorithm with the same overall complex-
ity. Kojima, Mizuno, and Yoshise [16] also proposed a primal-dual path-following method at that
time. This primal-dual path-following method was soon be improved to the same complexity as
Vaidya’s (O(n3L)) by these authors themselves [15], and Monteiro and Adler [21].

Another family of algorithms based on the potential-function were developed later. These
algorithms use a potential-function to merit each iterate. The potential-function keeps the iterates
away from the boundary and rewards the improvements in the objective function at the same
time. At each iteration, the algorithms try to decrease the potential function by a constant, and

in return, the algorithms get a polynomial-iteration bound.

Karmarkar’s algorithm is a primal-only potential-reduction algorithm. Gonzaga [7] gave a
primal-only potential-reduction algorithm. His algorithm and Karmarkar’s algorithm are both

O(nL)-iteration algorithms.

In 1990, Todd and Ye [31] gave the first algorithm using the primal-dual potential function
in its analysis. But their algorithm was more like a path-following algorithm than a potential-
reduction algorithm. The first pure potential-reduction algorithm with O(y/nL)-iteration com-
plexity bound was due to Ye [39] (see also Freund [5]). This algorithm was not a symmetric
primal-dual method. In the same year, Kojima, Mizuno and Yoshise [17] gave a symmetric

primal-dual potential reduction algorithm with O(y/nL) iteration complexity bound.

We would like to refer to some good references here. Gonzaga [8] gave an excellent review on

path-following methods. Later, Todd [30] gave an excellent survey paper on potential-function.

Also, there are some recently published books in interior-point method. They are Nesterov and
Nemirovskii [24], Vanderbei [35], Wright [38], and Ye [40].

Among all variants of interior-point methods, symmetric primal-dual interior-point methods
play a very important role both in theory and in practice. On the one hand, it has been well
analyzed in theory and has the best worst-case complexity bound, on the other hand, it is very

robust and efficient in practice.

Recently, there is a trend to generalize these already successful algorithms for linear pro-
gramming to a much wider area, such as semidefinite programming and convex programming.
Nesterov and Todd [25] gave a symmetric primal-dual interior-point algorithm for feasible regions
expressed as the intersection of a symmetric cone with an affine subspace. Later, Tungel [33] gen-
eralized the primal-dual interior-point methods to convex optimization problem in conic form.
His generalization not only generalizes the algorithm’s applicable problems, namely, generalizes
from linear programming to convex optimization problem in conic form, but also generalizes the

search direction to a wider range.

During the last ten years, there has been significant interest in a particular convex optimization
problem in conic form: semidefinite programming. Primal-dual interior-point algorithms for such
problems have been proposed by Helmberg, Rendl, Vanderbei, Wolkowicz [9], Kojima, Shindoh,
Hara [18], Monteiro and Zhang [23]. For an overview of the area, see the handbook [37] edited
by Wolkowicz, Saigal, and Vandenberghe.

We will do some research based on the generalized algorithms. We limit our discussion to
linear programming problems, and focus on the related problems arisen from the generalization
of the search direction. Tuncel [33] provides three frameworks for primal-dual algorithms, namely
Zeroth-, First-, and Second-Order Algorithms. The difference of the algorithms lies in how the

barrier function is used.

e zeroth-order algorithms need no information about the barrier functions (the primal barrier
function and the dual barrier function), but need feasible region information. In return,

descent in the primal and dual objective function values can be proved.

e first-order algorithms need the first derivatives of the barrier functions. In return, the first-

order descent in the potential function can be proved.

e second-order algorithms need both the gradients and the Hessians of the barrier functions.

In return, conditions for constant reduction in the potential function can be obtained, and

hence an O(y/n1n(1/€))-iteration complexity bound is obtained.

The zeroth-order algorithms have a strong connection with the quasi-Newton methods by using a
BFGS like update to construct the primal-dual scaling matrix. While the second-order algorithms
are more like the approach of Nesterov and Nemirovskii [24], and Nesterov and Todd [25], [26].

This thesis has been structured in five Chapters. The first one is the introduction, which is
what we are going through now. The second chapter presents the fundamental theorems of linear
programming which is necessary for the theorems developed in the later chapters. The third
chapter analyzes the zeroth-order algorithm, and points out why the algorithm fails to converge
in some cases using an illustrative example. An algebraic proof for the non-convergence of the
zeroth-order algorithm in some cases is also presented in this chapter. The fourth chapter gives
an introduction for the first- and the second-order algorithms, and then analyzes the primal dual
scaling matrix in the second-order algorithm. The fifth chapter discusses the proximity measures

for the central path.

Chapter 2

Fundamentals of Linear

Programming

2.1 Notations

Here is a list of notations for reference. We will also mention the notation when we use it.

R™, R’ : the set of n-dimensional real vectors, the set of non-negative vectors in R";
F(P): the feasible set of the primal problem;
F(P): the strictly feasible set of the primal problem;
F(D): the feasible set of the dual problem;
F(D): the strictly feasible set of the dual problem;
x: the primal variable;

S the dual variable;
Z,9,8 some specific variables;
Z,Y,5 the variables in the scaled space;
N(A): the null space of A4;
R(A): the range of A, or column space of A;

Py :=1— AT(AAT)~'A. The orthogonal projection matrix onto N (A);
DI the set of symmetric n x n real matrices;

Xh: the set of symmetric positive semidefinite n X n real matrices;

X0 the set of symmetric positive definite n x n real matrices;

e = [1,1,...,1)%;

X: the diagonal matrix such that Xe = x;

Ai(A): the i*® largest eigenvalue of a matrix A;

A(A): the vector consisting of the eigenvalues of a symmetric matrix A;

Diag(v): a diagonal matrix such that Diag(v)e = v.

2.2 Basic Theorems of Linear Programming

We consider the linear programming (LP) problems in the following form:
(P) minclz,
Axr = b,
r > 0,
where ¢ is in R”, A is in R™*" and b is in R™. We use x > 0 to denote that every element of

the vector z is greater than or equal to 0. Similarly, we use > 0 to denote that every element

of vector z is greater than 0.

Without loss of generality, we assume A has full row rank. If A does not have full row rank,
then either the linear system Az = b has no solution, or Az = b has some redundant equations.
We can remove those redundant equations without changing the solution set of Az = b, and then

have a new matrix which is of full row rank.
We use (P) to denote the primal problem, the corresponding dual problem is written in the
following form:
(D) minb’y,
ATy+s = e,
s > 0,
where A, b, and c are the same data discussed in the primal problem (P). Therefore, y is in R,

and s is a slack variable in R} .

We use the following definitions to denote the feasible region:

F(P) = {ze€R}:Az=0b},
Fi(P) = {weRlsAv=1b},
F(D) = {yeR", seR: ATy +s=c},
Fi(D) = {yeR" seR, :ATy+s=c}.

We also say a variable is primal or dual feasible if it is in the set F(P) or F (D) respectively;
a variable is strictly primal or dual feasible if it is in the set F (P) or F4 (D) respectively. We
assumed that A is full row rank. Also, we assume that F(P) and F, (D) are not empty. So we

can start the interior-point method from a strictly feasible point.

It seems that we have two variables (y,s) in the dual problem. We call s the dual slack
variable. But in another view, we show that y is uniquely determined by s. If (¢, §) is a feasible
solution of the dual problem (D), because A = ¢— 3, and A is full row rank, then ¢ is uniquely
determined by §. For convenience, sometimes we will only write s to refer to the dual feasible

solution.
With the assumption that A has full row rank, we can define
Py:=1-ATAAT) 1A, (2.1)

This matrix is known as “the orthogonal projection matrix onto N'(A), the null space of A”.
That is, for any £ € R®, Psx is in the null space of A. This can be verified by seeing that
A(Pyx) = Az — AAT(AAT) 1Az = 0.

We need the following fundamental theorem of linear algebra: (we use L to denote the or-

thogonal complement to a linear sub-space.)
Lemma 2.1 N (A)* = row space of A = column space of AT = R(AT).

Using the above lemma, we can write the dual problem in another form, which only uses the

variable s.

Theorem 2.2 Let & be any feasible solution to the primal, then the dual problem (D) is equivalent
to the following problem (D'),

(D') max—z7s,
PAS = PAC,
s > 0

Proof

We use F(D') := {s € R} : Pys = Pac} to denote the feasible region of (D’). For any
(9,8) € F(D), we have ATj = ¢ — 3, so (c — 8) is in the R(AT). Because R(A”) is the or-
thogonal complement of N'(A), we have Py(c— 8) = 0. Thus § is in F(D’). Conversely, if § is in

F(D'), then P4(c— 8) = 0 means (c — §) is in the range of AT. Thus there exists a §, such that
ATy +35=rc, §>0.So F(D') = F(D). Notice that bTy = 37 ATy = 37 (c — 5) = —2Ts + #Tc.
This means the difference between the objective value of (D) and (D’) is just a constant #”c.
Because they have the same feasible region, and the difference between the objective functions is

just a constant, these two problems are equivalent. O

The following is the well-known weak duality relation.

Fact 2.3 (Weak duality relation) Let & and (y,3) be a feasible solution for (P) and (D) re-

spectively, then the primal objective value is greater than or equal to the dual objective value, that

18
'z >vlg, and Tz —bvlg=43"%.
Proof
Ti=AT5+8)Ta=9"ATe +8T2 =9"b+ 375 .
Because £ > 0 and §7 > 0, we have ALz > ngj. O

Theorem 2.4 (Strong duality theorem) Let & and (7,8) be feasible solutions for (P) and
(D) respectively. Then the optimal solutions for (P) and (D)ezist, and the optimal values for (P)
and (D) are equal.

Directly using the weak duality relation and the strong duality theorem, we see that z and
s are optimal solutions to the primal and dual problems if and only if they satisfy the following

system:

N
~
<
l’
@
Il
o

(2.2)

8

®

Il
=

8
»
v
o

2.3 Central Path

We define a pair of families of non-linear programming problems, parameterized by p > 0:

n
(P,) minc'z —p Z log z; ,

i=1
Axr = b,
(z > 0).
(D,) min—b"y—p z log s; |
i=1
Aly+s = ¢,
(s > 0).

Here, and throughout this thesis, all logarithms are base-2. The functions — > " | log z; and
— > %, logs; are called the barrier functions (for primal and dual respectively). These barrier
functions give a description of the inequality constraints. So, the inequality constraints are

implicit here.

Theorem 2.5 Suppose the primal and the dual problems both have strictly feasible solutions,
then (P,) and (D)) have unique solution pair z(p), (y(n),s(w)) for each p > 0.

Proof

Note that the objective function ¢!

z—py. i logx; is strictly convex. And when z; goes to zero,
the objective value goes to infinity. So the minimizer exists and it must be an interior point. The

objective function is strictly convex, so the minimizer must be unique.

Similarly, we can prove that the dual solution is also unique. O

Theorem 2.6 Suppose the primal and the dual problems both have strictly feasible solutions.
Then for a fized p > 0, the unique solution x(n), (y(un), s(n)) of (Py) and (D,) make up the

unique solution to the following system:

Ax = b, >0,
ATy+s = ¢ s>0, (2.3)
Xs = pe.

Proof
We use Karush-Kuhn-Tucker (KKT) condition to prove the theorem. For the parameterized

primal problem (P,), the Lagrangian function and its derivatives are:

L(z,)) = (dz—p Zlogwi) — (Az —b)Tx,
=1
VoL(z,)) = c—pX te—ATX,
V2 L(z,\) = X2,

The Hessian of the Lagrangian is positive definite. So, the KKT condition, which is V,L(z,\) = 0,
is both sufficient and necessary in our case. Let s := uX 'e > 0, y := A, then Xs = pe.
Moreover, V,L(z,\) = 0 is equivalent to ATy + s = c. Also, because x is a feasible solution
to the problem (P,), we must have Az = b and z > 0. Thus system (2.3) is a restatement of
the KKT condition of problem (P,). So, a solution of system (2.3) is equivalent to the optimal
solution of (P,). Theorem 2.5 shows that (P,) has a unique solution. Thus, this also proves that

the solution of system (2.3) is unique by Theorem 2.5.

To prove that the parameterized dual problem (D,,)’s solution is also a solution of the system
(2.3), we use the different form of the dual problem from Theorem 2.2. We can rewrite the

problem (D,,) in the following equivalent form:

n
(D) min #7s — uZlog Si
i=1
Pyc = Pys,

(s > 0),

where & is any feasible solution to the primal problem. The Lagrangian for the problem (D,')

and its derivatives are:

L(s,A) = (&"s—p) logs;) —[Pa(c—s)"A,
=1
ViL(s,\) = &—pSte+PIN=0,
ViL(s,\) = S§72.

Similarly, the KKT condition is also sufficient and necessary condition here. Let z := uS~'e > 0,

then Xs = pe. Also,

VsL(s,A\) =0 = AV L(s,\)=Az—-Az+0=0

= Ax=0b.

10

Moreover, s is a feasible solution of (D,), which is just (D), so ATy+s = c. Hence, the optimal

solution of (D,') must also be a solution to the system (2.3). O

If a feasible solution pair (z,s) satisfy system (2.3) for some p > 0, then we say they are on

the central path.

As p goes to 0, x(u)?'s(p), which is un, also goes to 0. So if x(u) and s(u) converge, then
z(p) and s(u) must converge to a solution of the system (2.2), which is an optimal solution pair
to the primal (P) and dual (D) problem. McLinden [20] proved the following theorem for the

monotone linear complementarity problem, which includes linear programming.

Theorem 2.7 Let (z(p),y(p),s(un)) be on the central path. Then (x(u),s(un)) converges to an
optimal solution pair for primal (P) and dual (D) problem.

So, if we can find a solution pair of (P,) and (D), and decrease p at each iteration, we will
achieve an optimal solution. This is the basic idea behind the path-following methods. Since it
is expensive to get an exact optimal solution for (P,) and (D,,), usually, we find an approximate
solution near the optimal solution (the central path), and then decrease p, go to the next iteration.

To measure the approximation, a neighbourhood of the central path is defined.
The following are some of the neighbourhoods of the central path.
Example 1: No(8) = {(z,5) € F+(P) & F1 (D) : | Xs — piells < B} -
Example 2: N () = {(z,5) € F1(P) & F4 (D) : | Xs — pelloo < B} -
Example 3: Nig(8) = {(v.5) € F1(P) @ F4 (D) : | Xs — pells, < B} -
Here, for v € R", [jv]|5, := — min {0, min;{v;}}.

Clearly, for v € R?, ||v|ly > ||v|l5 > ||v]| - So, for every > 0, we have

Na(B) € Noo(B) € N (B)-

We also have some other measures of proximity to the central path. We define

P(x,s) :=nlog S ;log xi— ;log Si. (2.4)
1= 1=

11

Proposition 2.8 For allz € R}, s € R},
P(o,s) > 0.
Moreover, the inequality above holds as equality if and only if s = tX e for some t > 0.

Proof

Using the Arithmetic-Geometric Mean Inequality, we have

n

>

n
>\ ||$z8z

— log==—— ZZ L xZSZ Z log z; + Z log s;)

— q,b(,)>0.

(let a; =: zs;)

The equality holds in (2.5) if and only if all a; in (2.5) are equal. Therefore, 1(z,s) = 0 if and
only if s = tX 'e for some t > 0. O

We define 1 as always x!'s/n. Following [33], we also define the shadow iterates corresponding
toxz, s. 5:= X le, &:=8"te, i := % First, we have the well-known Arithmetic-Harmonic

Mean Inequality.

Lemma 2.9 Assume a; > 0 for allt=1,2,...,n. Then

DAL

The above inequality holds as equality if and only if a1 = as = ... = ay,.
Proof
If we expand the left hand side, we have a term Z—]‘ + Z—Jz for each 7 # j. We have (g) such terms.

Also for each index i, we have a term a; - a% = 1 in the left hand side. We have n such terms.
So, the left hand side = Z#J(Z—; + Z_i) +n > (3) -2+ n =n% Note that the inequality holds as
equality if and only if a; = a; for all < and j. O

12

Using the last lemma, we conclude a special case of a result of Nesterov and Todd [26] (see
also Tuncel [33]).

Lemma 2.10 For every (z,s) which is a strictly primal and dual feasible solution pair,

pi > 1,

and the inequality above holds as equality if and only if s = nX 'e.

Proof
Note that pji > 1 <= (Y0 2is)(Y1) =) > n?. Let a; := z;s;. Using above lemma (the
Arithmetic-Harmonic Mean Inequality), we have the desired result. O

2.4 Primal-dual Potential Function

The following primal-dual potential function was proposed by Tanabe [29], and Todd and Ye [31].
DEFINITION 2.11 (Tanabe-Todd-Ye potential function)

n n
bp(x,5) := (n+ p)logzTs — Zlog ZTi — Zlog s;, where p > 0.
i=1 i=1

Notice that ¢,(z,s) = ¢ (z,s) + plogz’'s.

We have the following well-known theorem about this potential function and the corresponding

proximity measure ¥ (z, s):

0) 0)

Theorem 2.12 Suppose we are given z(0, s strictly feasible in (P) and (D) respectively.
Further assume (20, s0)) < plog(%) for some given € € (0,1). If we reduce the wvalue of
bp(z,8) by an absolute positive constant in every iteration, then there ewists a k = O(plog(%)),
such that

B 5(k) < ew(O)TS(O), for all k > k.

Proof

Let 0 denote the absolute positive constant decrease attained in every iteration. Then we have

—k§ > ¢p($(k), S(k)) _ <bp(gE(O)7 5(0))

13

k)T (k)

_ s (k) (k)Y _ o0 4(0)
plog x(O)TS(O) +1/)($)8) 1/)(27)8)
20T (k) 1
> — = -).
> plog 7,0 log()

We have used (2%, s*)) >0, 4(z®,s0)) < plog(L) at the last step. So

(k)T 4(k) 1
e\ s
< —) — A
plog x(O)TS(O) — plog(6) k(s
We choose k := 2plog(2), then for all k > k we have

2B () < O 40)

14

Chapter 3

The Zeroth-Order Algorithms and

Their Convergence Issue

3.1 The Classical Primal-Dual Affine Scaling Algorithm

Let T' be a diagonal positive definite matrix, then a scaling transformation on problem (P) is
a change of variable from z to z := T 'z. A scaling transformation on the dual problem is a

change of variable from s to § := T's. So we have the new scaled primal problem:

(P) min &'z,

Az = b,
z > 0,
as well as the scaled dual problem
(D) max by,
ATy+35 = &,
5 > 0,

where A := AT, ¢ := Tc. The scaled problem (P) has the same feasible region as the original
problem (P), namely for any feasible solution Z to the original problem, the corresponding scaled
solution 7~ !4 is also a feasible solution to the scaled primal problem (P); and vice versa. Also,
their objective values are the same. The same argument can be applied on the dual problem.

We consider the pair of problems (P), (D) equivalent to the pair (P), (D). We call this property

Scale Invariance (see Tuncel [32]).

15

The reason why we use scaling is not only because scaling gives us a very clear and beautiful
presentation, but also because that after scaling, the steepest descent direction will change, and

this may give us a better direction.

The Newton direction to solve the system (2.2) is

Ad, = 0,
Ald, +d;, = o0,
Sd, + Xd;, = —Xs.

If we let T = X1/28-1/2 and scale the original problem (P) and (D), then the above system

becomes

Ad, = 0,
ATq, +d, = 0, 3.1
Yy
d;,—i—d; = -0,

where A := AT, d, :=T7'd,, d, :=Td,, and v :=Ts =T 'z.

Lemma 3.1 Assume A has full row rank. Then the above system (3.1) has the unique solution
d;" := P;(—v), and dy" := (I — Pg)(—v),

where Py, which is defined in (2.1), is the orthogonal projection matriz onto N'(A), the null space
of A.

Proof

First, by substituting d,” := Pj(—v) and ds" := (I — P;)(—v) into the system (3.1), we know
that they provide a solution to the system (3.1). Second, we show the uniqueness of the solution.
We know that d, lies in the null space of A and dj lies in the range of A”. Thus, by Lemma 2.1,
we have d_de_szo. Suppose there exist another pair of solutions d, and dg'. Since d_x', d, also
lie in the null space of A and the range of A’ respectively, we have that dy — dy, d,' — dy also
lie in the null space of A and the range of A7 respectively. Thus (d;, — d,)7 (d,' — dy) = 0. But,
dy +d,) =dy+d, = —v, 500 = (dy —d)T(dy —d,) = _\ I —d

ds — ds‘ , which means d_sl = d,.
Similarly, d, = dy. This proves the uniqueness of the solution. O

Now we can state the classical primal-dual affine-scaling method.

16

Algorithm 3.1
Input (A, z,s,¢€)
while z7s > ¢
T.— X1/28-1/2
A:= AT
solve the system (3.1) to get the unique solution dy and d
dy :=Tdy; dg =T 'd
find an a > 0 such that
z(a) ;= +ady, >0
s(a) ==s+ads; >0
Let z := z(a); s:= s(a)

repeat

This algorithm can be made to run in polynomial time (see Monteiro, Adler and Resende
22)).

3.2 The Zeroth-Order Algorithms

We may wonder about generalizing the above diagonal positive definite scaling matrix X/25~1/2

to any invertible scaling matrix 7" but keep the symmetric property. By symmetric, we mean that
the primal variable z and the dual slack variable s are interchangeable. Symmetric algorithm will
balance the primal and dual problem. A wv-space approach (see Kojima, Megiddo, Noma, and
Yoshise[14], and Tuncel [32]) is known to achieve this property. In such an approach, the scaling

matrix T" must satisfy the condition
Ts=v=(T")"s. (3.2)

A direct consequence of the above identity (3.2) is that (I'7T)s = x. Since T is not singular,
the linear transformation (T7'T), mapping s to z, is a symmetric positive definite matrix. For
every such transformation (77T, there are many T exist. But if we force T' to be also symmetric
positive definite, then 7" is unique, which is the unique symmetric positive definite square root
of the matrix (T7T). For simplification, we limit our discussion on the case that 7" is symmetric
positive definite. Thus the linear transformation (77T can be written as T2. Since the T and T?
are uniquely determined by each other, we find it convenient to define T' by explicitly describing
17

17

We use X!, to denote the set of symmetric positive definite matrices. For every pair of (z, s)

which is strictly feasible solution for primal and dual respectively, we define
To(z,s) :={T € X", : T?s =z}

and we state the zeroth-order algorithm(from [33]) as below:

Algorithm 3.2
Input (A, z,s,€)
while z7's > €
Find a T € To(z,s)
A= AT
solve the system (3.1) to get the unique solution dy and d
dy :=Tdy,; dg:=T""dg
find an a > 0 such that
z(a) ==+ ady, >0
s(a) ==s+ads; >0
Let z := z(a); s:= s(a)

repeat

We use the notation in the algorithm, namely z(a) for (z + ady) and s(a) for (s + ads). For

the general zeroth-order algorithms, we have the following nice properties.

Theorem 3.2 (Kojima and Tungel [19]) Let x, s be strictly feasible solutions to the primal and
the dual problems respectively. For every T € To(z,s), the underlying search direction satisfies

the following properties:

1. z(a)Ts(a) = (1 —a)z’s.

2. All primal-dual affine-scaling algorithms are strictly monotone in both primal and dual

objectives, unless all the primal or all the dual solutions are optimal.

3.3 Another Form of the Zeroth-Order Algorithms

We give another form of the zeroth-order algorithms at this section. By this form, we can easily

see that the scaling matrix 7T is closely related to some ellipsoids inscribed in the feasible region.

18

The direction d, given by the zeroth-order algorithms (Algorithm 3.2) can be directly cal-
culated out by Lemma 3.1. The solution is d, = —Pjv. It is also the optimal solution of the

following problem:

minv’d, ,
Ad, = 0, (3.3)
.7 < 4.
Here, 0 is some positive constant. The solution to the above problem is ﬂliliéﬁ'

The following problem directly comes from the above problem (3.3) by rewriting the scaling

matrix T out explicitly.

min s’ d, ,
Ad,
d,"T™%d, < .

Il
o

(3.4)

Since Ad, = 0, we have s'd, = y" Ad, +s"d, = c¢"d,. Therefore, the above problem is equivalent

to

minc!d,,
Ad, = 0, (3.5)
d"T%d, < 4.

From the above problem, we can see that the direction d, is actually the optimal solution to a
trust-region sub-problem using the steepest-descent direction. Roughly speaking, we want the

trust-region specified by (d,’ T?d, <) to be a good approximation to the original feasible region.

Suppose we have a strictly feasible solution (Z,3) at the current iteration. If we let J be
the maximum value such that (Z + d;) is in the primal feasible region, then the set {z € R” :
(x —2)TT2(z —) < 0, Az = Az} defines an ellipsoid contained in the feasible region of (P).
We showed that the optimal solution d, in problem (3.5) is the same direction as the one defined
in the zeroth-order algorithms (Algorithm 3.2). So, if we find a constant ¢ at each iteration and
solve the problem (3.5) to get the optimal solution d,, and update Z to Z+d,, then this algorithm,
which defines a step length at each iteration while zeroth-order algorithms do not specify the step

length, is actually a special case of the zeroth-order algorithms (Algorithm 3.2).

The zeroth-order algorithms are a generalization of the classical primal-dual affine scaling

algorithm by generalize the scaling matrix 72 from diagonal positive matrix to any positive

19

definite one. By the above discussion, we can see that this generalization, in terms of geometric
property, allows many more choices for the ellipsoid defined by the set {z € R* : (z —)T T—2(z —
z) <0, Ar = Az}

The zeroth-order algorithms may not converge to an optimal solution in some cases. In the

following section, we present an illustrative example showing the reason.

3.4 An Illustrative Example

Based on the last section’s discussion, we give a concrete example in this section. We show why

the algorithm may not converge in some cases.

Our example is based on the data:

-4 1 —-11 11
A = (), (3.6)
—16 3 12 0
2 = (1,1,1,1)T, (3.7)

0 = (1,1,1,1)7, (3.8)

Moreover, the T2 is defined as the following iterative formula:

zxl T?ssTT?

T? =177 — :
- zT's sTT?sT

(3.9)

This formula comes from [33]. Note that 7%s = x, and T is a symmetric positive definite matrix
if T? is a symmetric positive definite matrix. We may let T2 be the scaling matrix in the previous
iteration. If it is the first iteration, we let 72 be I. Also the step length is defined in the previous

section, which is determined by the largest inscribed ellipsoid based on T2.

Using the classical primal-dual affine-scaling interior-point method, we can find that the op-

timal solution of this problem is:

z*: = (0.2098, 0, 0.1964, 0)%,
s*: = (0,1.2187, 0, 2.375)1. (3.10)

While using the 7 defined by (3.9), we get the solution:

& = (0.2299, 0.0997, 0.1982, 0)T,
(0.8920, 1.0231, 0.9239, 1.1235)7.

VN
Il

20

2 : : :
* (x2,x 4) at each iteration
— _ direction dX
157 1
<1 i
0.5¢ 1
0

Figure 3.1: T? defined by (3.9)

Since (#*)T5 > 0 and #7s* > 0, neither & nor § is optimal.

We projected the ler onto the 2-dimensional space consisting of z9 and x4 and draw the
figures. So the optimal solution should be at the origin in this (z9,z4) 2-dimensional space.
Figure 3.1 and 3.2 show how the zeroth-order algorithms progress over iterations. We zoom in
after iteration 3 on Figure 3.2 to make it easier to see. This algorithm uses the scaling matrix
T defined in (3.9). Figure 3.3 and 3.4 also show how the algorithm works. But the difference
is that we use the diagonal scaling matrix 7' := X/2571/2 there. This scaling matrix turns the

algorithm into the classical primal-dual affine-scaling algorithm.

First, we look at how the zeroth-order algorithms work. We can see that those ellipses do not
change their shapes much after the first step. As the iterates tend to the boundary, the direction,
which is determined by the objective function line and the ellipses, does not change much. This

makes the step size smaller and smaller without much improvement in decreasing z”'s.

Let us have a look on Figure 3.3 and 3.4 to see how 77 := X S~! works. We draw the picture

on the same axes. We zoom in after the iteration 3 on Figure 3.4 to make it easier to see.

We can see that as xz approaches to the axes xo, the ellipses become skinnier and rotate so
that the search direction, determined by the objective function and the ellipses, points closer to

the origin, which is the optimal solution.

21

* (x2,x4) at each iteration | |
_ _ direction dX

0.25}

Figure 3.2: T? defined by (3.9), zoom in after iteration 3

2 T T T
* (x2,x 4) at each iteration
_ _ direction dX
15¢f
=<1
05¢
0

Figure 3.3: T? := XS~}

22

0.25} * ()fz’x4_) at each iteration | |
_ _ direction dX
0.2
0.15¢}
><<l‘
0.1
0.05}
0
0 0.1 0.2 0.3 0.4
X_

Figure 3.4: T? := XS, zoom in after iteration 3

The key difference between the two algorithms is that when using the T2 defined by (3.9),
the ellipses do not change their shape and orientation much. Because the ellipses’ shape and
orientation are determined by the eigenvalues and eigenvectors of T, we conclude that T?’s
eigenvalues do not change much through the iterations. The following sections of this chapter

contain an algebraic proof of this fact.

3.5 Introduction to The Algebraic Proof

We counsider the example based on the data given by (3.6), (3.7), and (3.8) in last section.

In every iteration, we define the step size « to be:
a = 0.9994c (3.11)

where a4z is the maximum value of « such that = + ad, > 0, and s+ ad; > 0. T? is defined by
(3.9).

To be more clear, we state the algorithm here to specify how to choose 1" and how to determine

the step length.

Algorithm 3.3

23

Input (A, z°, 5%, €), where A, 20,5 is defined in (3.6), (3.7), and (3.8)
while z7's > €
if first iteration
T:=1
else
let T defined by (3.9), where T? is the T? from the previous iteration
end if
A:= AT
solve the system (3.1) to get the unique solution d, and d
dy :=Tdy; dg =T 'd
use « defined in (3.11)
z(a) ;= +ady, >0
s(a) :=s+ady >0
Let z := z(a); s:= s(a)

repeat

Theorem 3.3 Algorithm 3.3 (a special case of the zeroth-order algorithms) does not converge to

an optimal solution.

We give a proof in the following 3 sections. Our discussion is based on the above algorithm.
The proof is divided into two parts. In the first part, we give upper bounds on the quantities
|72 —T?||, ldf — dyl|, and ||d — d||. We use the variables with a superscript “+” to denote the
next iteration. A special case is TJQF, where we put “+” as the subscript instead of the superscript.
In the second part, we stipulate two conditions, and prove that once the two conditions hold,
they will keep holding for the remaining iterations. More importantly, we prove a® < ﬁa.

Thus we get the result that Algorithm 3.3 does not converge.

3.6 Basic Theorems

First, we give some basic properties of eigenvalues and norms of a matrix in this section. We use
X" to denote the set of n x n symmetric real matrices. Let A € ¥". We use A(A) to denote a
vector whose entries are the eigenvalues of A. We use \;(A) to denote the i'! largest eigenvalue
of A. That is

M(4) > Aa(A) > - > Aa(4) .

24

Theorem 3.4 (Courant-Fischer-Weyl Min-max Theorem) Let A € X", and L be a sub-
space in R". Then

z! Az
Ap(A) = i
£(4) din%%?:kxelg{?o} Tz

Setting £k = 1 and k = n in the above statement, we immediately obtain the following well-

known fact.

Corollary 3.5 Let A € X". Then

zT A
A(A) =
1(4) :z:e%ilrfi\}io} 2l
T
A(A) = min v Az

zekr\{0} zlx

By using Theorem 3.4, we have

T
M(A+ B)= max min w(ATﬂ = max min
dim(L)=k zeI\{0} zlx dim(L)=k z€L\{0}

(wTAx xTBx)
+ .

Lz i
Combining the above fact with Corollary 3.5, we have the following corollary.

Corollary 3.6 Let A,B € ¥X". Then

A(A) + A (B) < M(A + B) < M(A) + Ai(B) .

We define the norm of a matrix,

|| Az
weRm\{0} [lz|

1A =
where A € R™*™ and z € R". For all A € X", we have
[All = max{|A1(4)], A (A)]} . (3.12)

2
I

Note that ||A||2 = maX;cgn\ {0} H‘I'LXIT‘Z = MaAXzeRrn\ {0} 2T A Aw Al(ATA) =\ (A2) Since A is a

Tz
symmetric matrix, there exists an orthogonal matrix @, such that A = QDiag(\(A))QT. Thus,
A% = QDiag(A(A4))2QT. So, A\ (A?%) = max{(\1(A))?, (Mu(A))?}. Hence, (3.12) follows.

Corollary 3.7 Let A, B € X". Then

Ae(4) = Ax(B) — [|A - BJ|.

25

Proof
Directly applying the identity (3.12) and Corollary 3.6, we obtain A;(A) > A\g(B) + A\, (A—B) >
Ae(B) — [|[A = BJ|. O

3.7 Upper Bounds for the Quantities ||T7 —T?||, ||df —d,||, and

Lemma 3.8 Assume 0 < o« < 1/2 and that T is defined by (3.9). Then

|3 =12
3 2 2 2 1 2
< o Mdslt izl + 20zl flsll ldell | 4]l ldol + lldall” 2 7" + 2 [|de | [|#]] + 3 [|dall
- 25 \n(T?2) || 52 l's An(T?) |52
Proof
o 2 21l _ [lat@h)T 12st(sH)TT?
By the update formula (3.9), it is clear that HTJr -T H = l@enmsr ~ e || We express
zt =z + ad,, and s = s + ad,, and we have
ot (z)T ~zz? + a(wdl + dpz?) + o?dydl
(zt)Tst (1—a)zTs '
Since T?st = T?(s + ads) = = + aT?ds, by dy + ds = —v , we have d, + T?d;, = —=, so
T?dy = —x — d,. Thus, we have
T?s% = (1 — @)z — ad,. (3.13)

It follows that

T2st(sT) T T2 (1= a)?z2” — a1 — a)(dpz” + zdl) + aPdydl

(stH)TT2st (sH)TT2s+
So,
x"’(a:"’)T B T23‘*'(3“‘)TT2
(x+) st (st)l'T2s+
B < zzl (1= a)2xxT) a(zdl + dyz?) + o?d.dL
N (I—-a)aTs (st)IT2st (1—a)zTs

a(l — a)(dyz’ + zdl) — o?d,dL
(st)'T2st

26

22T [(sH) ' T2s% — (1 —)327's]
(1 —a)zTs (st) T2s+
a(l — a)(dyzt + zdl) — o?d,dL
(s) T2(s+)

a(rdl + dyx?) + o?dydL
(1—a)zTs

l’

By using equation (3.13), sT = s + ad,, and dLds = 0, we can simplify the first norm quantity
of the right hand side to zal|(1a)a” 520 —o?) tall_a)d s —osTd.]

(1—a)zTs (st)TT2s+
more relaxed bound:

. We take the norm inside to get a

$+($+)T Tzs"'(s“‘)TT2

(z+) T s+ (sH)IT2s+
< Oé(||ib'||2 [(1—) ds|l =l + Isll ldall] | 2 Il 1de]| + o |dz 1
N (1 —a)zTs (st)'T2s+ (1—a)zTs
) Iz [1* +2(1 = @) [|d]| |=]| + e ||dx||2>‘
(st)T'T2st

By Corollary 3.5, we know that (st)TT2st > X\, (T2) ||s*||*. We also have the assumption that
0 < a <1/2. So we can simplify the above formula by using these two bounds and obtain the

desired result. O

Corollary 3.9 When A, 2°, s° is defined by (3.6), (3.7), and (3.8), we have

172 -7 <o 512 |1ds| + 1024 |lda| | 32lde| + [lde® 128 + 16]ldy]| + 5 [l
+ - 1.957 s\, (T2) z1's L9, (T2) ‘

Proof

For every = € F(P) and s € F(D), we have that x — z° is in the null space of A and s — s is in
the range of AT. Thus (z — z°)T (s — s%) = 0, which is equivalent to (z — z°)Ts = (z — s9)T's".
We obtain

ININ
B

(£2)T's° (by Theorem 3.2)

Il
)

27

Similarly, (z°)%s < 2(z%)7s? = 8. Since z > 0 and s > 0, we have upper bounds of ||z|| < 8
and ||s|| < 8. A lower bound of ||s|| can also be obtained. Since for any s feasible we have
(s — %) in the range of AT, then s = ATy + s° for some y. Thus, [[s| > min, ||ATy + s°||.
miny, HATy +s° H is a convex quadratic optimization problem. Based on the data of A and s°, we
get a numerical result min, HATy + SOH = 1.9893. So we are safe to say ||s|| > 1.9. We substi-

tute the bounds obtained here for ||z|| and ||s|| in the statement of Lemma 3.8 to get the result. O

We denote the upper bound given by the above corollary Up (HT}r — TZH).

The following two lemmas will be used to prove an upper bound of ||d} — d;]|.

Lemma 3.10 Assume B and C € R"*" nonsingular. Then
|B= o < |B M [[c B =Cll -

Proof
|- = | c - B < |5 o 1B - - §

Lemma 3.11 Given T € X7, suppose A € R™*" has full row rank. Then

1
(T)An(AAT)

Jear ATy < 1

Proof
For any y € R™\{0}, y" ATATy > 0 and y? AATy > 0, so (ATA?) and (AAT) € ¥, . Using
Corollary 3.12, we have H(ATAT)_1H = M ((ATAT)Y) = 1/\, (AT AT). Moreover,

T T
M (ATAT) = min w
yeRm\{0} Yy
min ylT AT ATy ' yTAATy
yekm\fo} yTAATy 4Ty

S ylT AT ATy i yT AATy
min “————— min —FF—
— yerm\{oy yTAATY yerm\fo} YTy
> Au(T)An(A4).
Therefore, the result follows. O

28

Lemma 3.12 In the zeroth-order algorithm,

HT2 || | AlI* [1o]
(TF)An(T?)(An(AAT))?

ot -l < 5o

Proof
Directly solving the system (3.1), we obtain

dy = —A(AT? A7) 1p.
So,

s —dal| = [Al(ATZ AT — (aT?AT)

1AT lIp]l | (AT AT) ™ — (AT AT) |

A 1ol [|(ATFAT) || || (AT? AT) 1| |[(AT? AT) — (AT?AT)]|| (by Lemma 3.10)

||| [|o]| |AT2 AT — AT2AT |

T (TR A(T?) (A (AAT))?
JAIP ol |75 — 7%

T A(TR)A(T?) (A (AAT))2

(by Lemma 3.11)

O
Using the above lemma, and the upper bound on HTJQr — TZH, we define an upper bound on
i — dy]| as:
Up (7% = 72[]) 1Al 1ol
An(T2)An (T) (An (AAT))2

Up (|45 = ds]) :=

Lemma 3.13 In the zeroth-order algorithm,

a2 = dul) < bl + |73 =72) +) i~]

Proof
Since d, + dy = —v, we have d, = —x — T?d,. So,

|di —da|| = ||z +T3df) — (. +T7d,)||
= |lady + (T7 = T*)df +T*(d} — d,)||
< ladg || + [[(TF = T?)df || + || T%(dy — ds) |
< alldell + (|75 = T2 a5 || + 7% {|d) — s -

29

Using the above lemma, and both upper bounds on HTE_ - T2H and ||d} — ds||, we obtain an
upper bound on ||d} — d.|| defined as:

Up(|[d; = dall) := e ol + Up (|72 = T2|) [|a || + 72| Up (||ds =]} -

3.8 Progression of The Algorithm

We obtained the upper bounds for the quantities |72 — T?|| , ||df — d||, and [|d} — d,]| in the
previous section. Now, we give two conditions, and prove that once these two conditions hold at
the current iteration, they will hold throughout all the remaining iterations, and most importantly,

«a decreases very fast before the iterates approach an optimal solution.

Condition 1: There exists a unique index i*, such that 0 < @00 = 7—3-: <1/2and d,,. <0,

and
L > 2nag if dy, <0, 0 F£ 0
S S Y i dy, <O, (3.14)
Condition 2:
Up (|72 - 12]) < Sa(?), (3.15)
Up (||df —ds|)) < %|dsi| for all i , (3.16)
Up (||df —ds]|) < %|dmi| for all 4 . (3.17)

Theorem 3.14 Let A, 2°, s° be defined by (3.6),(5.7), and (3.8). Then for this problem, if
Condition 1 and 2 hold at the current iteration, then they will also hold at the next iteration;

moreover, Omaz T < ﬁamam.
Proof
Suppose Condition 1 and 2 hold at the current iteration.

First, we consider the changes in z and s. Based on Condition 1 and that @ = 0.999,4,, We

have

* - fI;i* + adl?i*

~

= 2+ +0.99942dy .

30

T
= % . —dl"*
zie +0.999=—d,,

(2

1
1000 "

For every ¢ # 4*, if d;; > 0, then clearly x;“ =z +ady, > x; > %wi; if d;; < 0, then using

Condition 1, we have:

T, = x;+ ady,

~

> z;+ amamdmi

1 1
> T — §IL‘Z = §IL‘Z
In summary, it is
1
Ly = mfl;‘i*
{aﬁr > Ly for every i # i* (8.18)
T = 2% :
By applying the same calculation on s, we obtain
1
st > 55 for all i. (3.19)

Second, we consider the changes in d, and ds. Using Condition 2, we have
1
a4 —de]| < Up (| —) < 3]
Also, clearly

Thus,
Y, <df <3d,, ifd, >0, (3.20)
3dy, < df < 3dy, if dy, <O
Applying the same calculation on d; , we have:
1 3 :
3d,, <df <id,, ifd <O0.

These inequalities mean that throughout the rest of the iterations d,;, ds; do not change their

signs.

Now, we consider the change in a;q,. First, we focus on the index ¢*. Using (3.18) and (3.20)

L+ N S
L Too0 Li* 2 o
iy - max -
—d;:.* —%dmi* 1000

31

Those indexes 7 such that d,; > 0 have no relation with the determination of ay,,,. We only
consider those indexes i such that d;, < 0. For these indexes, using the relation (3.18), (3.20),
and condition 1, we have

+ 1
€T 5L 2 . .
! 270 > S , for every i # i, dy; <0;

—di, — —3d;, ~ 3

Similarly, for the s-space, we obtain

+
S 2)

Z+ > =Qmaz , for every i, dg;, < 0.
—dg, — 3

So, by the definition of 4., the only index that determines «f .. is the index 7*:

T

III'*+
amaa:+ == Amax-
—d.. ~ 1000

(3.22)

Thus, Condition 1 holds at the next iteration too.

Now, we prove that Condition 2 holds. First we show that the first inequality (3.15) of
Condition 2 holds. We use “4++”" as superscript or subscript to denote those variables in the

iteration after the next iteration.
Using Corollary 3.7 and Condition 2, we can describe a lower bound on \,,(T?):
1
M(TH) 2 Ma(T?) = | T2 = T%| 2 Au(T?) = Up (||TF — T2])) 2 5Aa(T?). (3.23)

Now, using the definition of Up (HTJZr — TZH), we have

Up (T2 —12]) = of2120dl +10240du] | 32]de]l + dal® | 128+ 161lda] + 5 eI
+ 1.927 s\, (T2) xT's 1.9)\,(T2) ’
2 2
Up (|72, —T2|) ot [512 I || + 1024 |[df || 32|df || + lldf 1|7 | 128 + 16|} || + 5 (|4 | ‘
1.9(z+) st A, (T2) (xt)Tst 19N, (T2)

We compare

2
+ ——a, by (3.22), and @ = 0.999,4z ;

“ = 1000
lasll < 2l by (3:20);
[az] < 2l by (320
(zH)Tst = 1—-a)zls> %wTs, by the assumption e, < 1/2 in Condition 1;
M(T2) > D(T?), by (323).

32

So, we have

—~

312
v (72, ~12) < By (22— = Lpprop. o

1000

N —
N —

Now, using (3.24) and Condition 2, we can provide an upper bound on the change in T?r in terms

of the smallest eigenvalue of T°2.

18

181 5, 9
T gntT

1) < 150937 = oo (T (3.25)

Up (|22, - 72 (72 -

Using the relation (3.23) and the above result, we can prove that the first inequality (3.15) of
the Condition 2 holds at the next iteration:

D5 (12) <

Up (||T24]] - TF) < Tooo ™ An(T7)

1
2

Now, we prove that the second inequality (3.16) of Condition 2 holds. Using Corollary 3.7,
the relations (3.23) and (3.25), we obtain

9 491

1000 = 1000 (T -

1
An(T24) 2 M(TE) = T2y = T2 > S2a(T%) -
By the above fact and (3.24), we have

Up(|| 7%, = T3]|) 14)1° [18l

Ul =) = S @) Gm(adn))2

Up([|754 = T2[)A 2) +
= d - dS
Up(HT2 TZH T_|2_+) p (H s H)
18 1000
< o aor p(lds = [} (326)
18 1 . .
< 132 |ds,;| < 5 ‘d ‘ for all i. (3.27)

We used the inequality (3.21) at the last step. So, the second inequality (3.16) of Condition 2
holds.

Now, considering ||df+ — d ||, we know
Up(|lds —dul)) = eldell +Up (|75 = T2[])]| + [|T%]| Up ([|d5” = ds]) ;
Up(|lda™ —di|) = o |ldf]| +Up (T2, = T2|) 7| + |72 Up ([l = ds ™))
We compare again:

2
at < 1000 by Condition 1;

33

lazll < 3 lidell, by (3.20);
Up (|73, ~T30) < 500p (177 =21, by (3.24);
sl <]+l = af | < g | + 5 min o s§ud+u by (3.27);
T2 < 72 + 17 = %) < |72 + 70(T?) < 3 [[72]], by Condition 2
Up (laf* —af]) < gocUp (llaf —difl) by (326).

49

By using above listed relations, Condition 2, and (3.20), we obtain

18 3
Up (ld:" = dz) < 57 3UP (lda” = dal]) <

27 1

4912 e

|dy, "

|_2

Therefore, we proved that all of the conditions hold at the next iteration, and that o, <
(2/1000)pnqz -

We have found an iteration that satisfies Conditions 1 and 2 in Matlab. In fact, it is pretty
easy to find, because « always decreases quickly, while others, like z, s, d,, d,, and T2 do not

change significantly when « goes to zero.

The following list presents the results from Matlab 5.3 on a common PC with 500MHz CPU.

We can see that Condition 1 and 2 are both satisfied at iteration 4, and the index 7" is 4.

34

Iterations 1 2 3 4
oY 0.8765 0.0076 7.6909 x 1076 7.6909 x 10~
Up(||T% —T?||) | 336.5851 28.3690 0.0289 2.8971 x 107°
Up(||dt — dsl)) 425.4212 317.0502 0.3253 3.2534 x 1074
Up(||di —dg||) | 491.1124 352.3395 0.3621 3.6216 x 10~*
An(T?) 1 0.1140 0.1131 0.1131
—0.1222 —0.1126 —0.1124 —0.1124
" 0.0261 —0.0240 —0.0240 —0.0240
—0.0862 —0.0793 —0.0792 —0.0792
0.1397 0.1287 0.1284 0.1284
—0.8778 —0.1009 —0.1000 —0.1000
p —1.0261 —0.1179 —0.1169 —0.1169
; —0.9138 —0.1050 —0.1041 —0.1041
—1.1397 —0.1310 —0.1299 —0.1299
1 0.8929 0.8920 0.8920
1 1.0229 1.0231 1.0231
i 1 0.9245 0.9239 0.9239
1 1.1225 1.1235 1.1235
1 0.2306 0.2299 0.2299
1 0.1006 0.0997 0.0997
v 1 0.1990 0.1982 0.1982
1 0.0010 1 x 1076 1 x107°

This numerical result gives a proof that at iteration 4, Condition 1 and 2 holds. By Theorem

3.14, we know that these two conditions will still hold through the rest iterations and the step

length will decrease more than 99.8% at each iteration. Using the optimal value z* and s* given
in (3.10) , we find z%'s* = 0.3686, and (z*)’'s = 0.1215, which are both far away from 0. So the =
and s at iteration 4 are both not optimal solutions. At iteration 4, the decrease of the duality gap
is azls = 7.6909 x 1072 x 2Ts = 3.7697 x 10~?. Since aynq; decreases more than 99.8% at each

iteration, the total decrease of the duality gap through the rest of iteration will be no more than

a very small value, which will not match current duality gap z’'s* = 0.3686, and (z*)’'s = 0.1215.

we conclude that the algorithm will not converge to an optimal solution. This proves Theorem

3.3.

35

Chapter 4

Scaling Matrices for the
Second-Order Algorithm

4.1 Introduction to the First-Order Algorithms

We showed in the last chapter that the zeroth-order algorithms do not converge to an optimal
solution in some cases. We may want to add more limitations on the choices of scaling matrices,
or add the centering direction to improve the algorithm. The centering direction will use the
first order information of the barrier functions. By using the first order information of the barrier
functions, we have a globally-convergent algorithm. We do not give any new result in this section.

They are a restatement of Tuncel [33]’s general first-order algorithms in linear programming form.

Recall 7 := S 'e and 5 := X 'e. Then 7 and 5 are the gradients of the barrier functions for
primal and dual problems respectively. We also denote ji := #75/n. Now, we can define the set
of the scaling matrices T in the first-order algorithms. For every pair (z,s) € Fi(P) & F4(D),
We define

Ti(z,s) ={T €¥, : T%s =z,T%3 = 7}.
Theorem 4.1 For every pair (z,s) € F+(P) ® F4 (D), if x = t& for some t > 0, then
Ti(z,s) = To(, s);

otherwise, define

T := H + a1zz? + g1 HssT H + a1337 + §1H35T H + ay(zi” + i) + go(Hs3TH + HisTH),

36

where

p . 7 1
s'Hs
I T THs) (3T H3) — (3T Hs)?’
sTHs sTHs

N T T Hs) THs) — GTHsP " " T (THs) (5T H3) — THs)?

Then
Ty € Ti(z,s), for every H € X7, .

Now, we define w := T'§ = T~'%. The search direction is described as by the following system.

Ad, = 0,
Ald, +ds = 0, (4.1)
Jw+Js = —v+ypw,

where A := AT, d, := T~ 'd,, dy := Td,, and y € [0, 1], a centering parameter.

Theorem 4.2 Let v € [0,1] and T € T1(x,s). Then

z(a)ls(a) = [1 — a(l —y)]z’s.
Now, we can state the first-order algorithm.

Algorithm 4.1
Input: (A, 2°, 5%, v, p, €)
while z7s > ¢
choose T' € Ti(z, s)
compute v :=Ts, w:=T§, and A := AT
solve the system (4.1) to get the unique solution d, and d
dy :=Tdy; dg =T 'd,
find & such that ¢,(z(&), s(&) = mingso ¢p(z(a),s(a)) (for ¢p(z,s), see Definition 2.11)
Let z := z(&); s:= s(@)

repeat

Theorem 4.3 All first-order algorithms with fized v € [0,1) and p > 0 are globally convergent.

37

Setting v = 0 results a zeroth-order algorithm with more restriction on the scaling matrices 1" as
well as allowing line search on a potential function to determine the step size «. This restriction

make the zeroth-order algorithms globally convergent.

4.2 Introduction to the Second-Order Algorithms

First-order algorithms have global convergence result. But we do not know if the first-order
algorithms have polynomial iteration bound. Second-order algorithms further restrict the choices
of scaling matrices in first-order algorithms by using the Hessians of the barrier functions. All
second-order algorithms have polynomial-iteration bound. A lemma in the next chapter (Lemma
5.5) gives an explanation that the new added restriction to the first-order algorithms actually

gives a lower bound on the step size «.

We define)
Or(a,5) 1= —ln(uji = 1) + 1] >

(We used Lemma 2.10). The Hessians of the barrier functions are X 2 and S~ 2 respectively.
Now, we add a new constraint to the set 77 (z, s) using the Hessians of the barrier functions , and

by this way, we get the scaling matrices set in second-order algorithms. We define

To(&m,s) = {T €X?, : T?s =2, T°X te= 87" S72<T? < €0p(2,8) X2} (4.2)

e —
’ €5F (:E, 3)
where £ is a positive constant.
We also define v :=T's, w := T3,

- (n—i-\/ﬁ
0= —
s

)v+w, and u :=

Note that
|al|5 = 0p(z,s) > 0;

therefore, u is well defined. Then we solve the system of linear equations

Ad, = 0,
ATd, +d, = 0, 4.3
Yy
d;,—i—cis = u.

Now, we can state the second-order algorithm.

38

Algorithm 4.2
Input (A, z,s,¢€,§)
while z7s > ¢
choose T € To(&; x, s)
compute v:=Ts, w:=T5, u, and u
A= AT
solve the system (4.3) to get the unique solution dy and d
dy :=Tdy,; dg:=T""dg
find a & >0 to minimize the potential function ¢ s (z(&),s(&)) (see Definition 2.11)
Let x .=z + &dyg; s := s+ ad;

repeat

The above algorithm is a restatement of the more general second-order algorithm in Tungel
[33]. We apply the algorithm specifically to the linear programming, while the original second-

order algorithms can be applied to any convex optimization programming in conic form.

Tungel [33] proved that for any T € T2(&; z, s) with £ a constant, all second-order algorithms

have polynomial-iteration bounds.
It follows from Theorem 6.1 of [33] that the choice
7= x1/2871/2,
lies in the set T2(3;2,).

Now the problem is that given the constant & > % and the variables z and s, can we find all

of the T € T3(&;x,)7 The next section answers this question.

4.3 Scaling Matrices in the Second-Order Algorithms

In this section, we give some theorems to show how to construct a matrix 7" in 73(&; z, s). Although

we can not find a way to construct all the matrices in T3(&;x, s), we give a theorem to bound the

T2(&;x,8).

We write 72 = XS~! + E, where E € ¥*. Then T € T5(¢;z,s) if and only if E € £(&;z,),

where
E;z,s) ={Ee€¥X": Es=FEX'e=0,E<E=<E},

39

and

E = &p(z,s)X? - XS,
1

E = —§?2_Xx51L

B £5F(x73)

Since T' = X/2571/2 Jies in the set 7'2(%; z,s), and X, S are both positive definite, with £ > 4/3,

E is always positive definite, and E is always negative definite.
Also, we can define the sets

£t (&a,s) = {E€X": BEs=EX 'e=0,0<E<E},
E (&m,8) == {E€X'": Es=EX 'e=0,E<E

The following lemma gives a method to construct all matrix in £ (&;2,s) or £7 (&1, 5).

Lemma 4.4 Assume E is positive definite. Then E € E7(&;x,s) if and only if
0<NEY?EE"'?)<e, E€xm
and (E-'2EE-Y?)(EY?s) = (E~'?EE~'?)(E'/?X'e) = 0.

Proof
Notice that

Also, because E~1/2 is a positive diagonal matrix,
E7\?EE"?h =0 «— E(E"'?h) =0 (4.4)

Let E-'/2h = s, we have h = E'/2s. Similarly, we have h = E/2X~le. So Es = EX e =0 is
equivalent to (E~Y/2EE-12)(E'/?s) = (E-Y2EE-1/?)(E'/*Xle) = 0. O

We also have a similar theorem on the set £ (&;z, s).

40

Lemma 4.5 Assume E is negative definite. Then E € £~ (&;x,s) if and only if
02 M(—B)"E(-E)7'/?) = —e (45)

and [(=E)"' P E(-B)7V2[(-B)'?s] = [(-B) " P E(-B) " (-B)'/? X 1] = 0.

Proof
Note that £ < E <0 is equivalent to 0 < —F < —FE. Applying Lemma 4.4, we have the desired
result. O

Theorem 4.6 Assuming E is positive definite and E is negative definite, a sufficient condition

for E€&(&w,s) is:
1

&0p(z, s) max;{z;s;} ¢

and (E-\2EE-12)(EY/%s) = (E-Y2EE~/?)(E'/2X e) = 0.

<NEYVPEETV?) <e

A necessary condition for E € E(&;x,s) is:
1
&0p(z, s) ming{z;s;}

and (E-\2EE-12)(EY/%s) = (E-Y2EE~Y/?)(E'/2X) = 0.

e < NE-V2EE12) < ¢

Proof
First, we see that E~'/2EE~1?h = 0 <= E[E~Y?h] = 0, so, Es = 0 and EX"'e = 0 is
equivalent to (E~Y/2EE"12)(E'/?s) = (E-Y2EE1/?)(E'/?Xle) = 0.

Second,

METVPEET?)e < AETVPEET? < e, (4.6)
and a necessary condition for £ < E < E is that
M(ETVPEEY?)e < AETY?EETY? <e. (4.7)

Using the fact that both E and E are diagonal matrices we obtain

1

P12 pE-1/2 _ p-lp _ 2 _ yo-1y-1
E™Y/°EFE E7E = (&0p(z,s) X = XS7) (£5F(:Jc,s)

S~2 xS,

41

So,

DO B B B B
[E71/2EE71/2]“ _ LiS; _(1§6F(a:,s)wz 5)) _ 1 '
zis; (E0p(x,s)xis; — 1) Eop(x, s)xis;
Thus,
_ _ 1
\IE-V2ERE-V?) — 43
il N] £6p (x, 8) max;{z;, i} (4.8)
_ _ ~1
M|EVPEEY? . 4.9
nl -] €0 (x, s) ming{x;, s;} (4.9)
Combining (4.6), (4.7), (4.8) and (4.9), we have the desired conclusion. 0

Define £ (&§2,8) + 7 (§w,8) :={ET + B~ : EY € EF(§2,5), B7 € E7 (&3, 8))

Theorem 4.7
E(&m,s) DET(&m,s) +E (61,8);
and
El6i.5) © B I (G,) + £ (60,9)
or
E(E3,5) C EF (€5, 5) + oxilTisth o).
min;{z;s;}

Especially, when s = tX ‘e for some t >0, £(&;2,5) = EX(&2,5) +E (&1, 8).

Proof
Picking any matrix Et € £1(&;,5), and any matrix E~ € £~ (&; z, s), we have

E<E <E'"+E- <E"=<E.

Also, (ET +E)s=E*s+E s=0,and (ET + E")X 'e=0. Thus (ET + E") € £(&;2,8)
which means £(&;3,5) D ET(&;2,8) + &€ (&2, 9).

Conversely, for any FE € £(&;x, s), E-Y2EE-1/2 is still a symmetric matrix. We can write
E-12EE-1/2 = UAUT, where U is an orthogonal matrix and A is a diagonal matrix. Let AT,
and A~ be two matrices to denote the non-negative part and the non-positive part of matrix A
respectively, that is A;; = Aij ifAZ'j >0, A;; =0 ifAZ'j < 0; A;] = Az’j ifAij <0, A;] =0 ifAij > 0.
Thus, A = AT + A~. We denote Et := EY2UATUTEY2, and E- := EY2UA"UTEY2, then
E = Et4+E~. Because A\(E~1/2EE~1/2) = \(A"), by Lemma 4.4, we know that E* € £t (¢;z, 5).

42

—1

Because E € £(&; z, s), using the necessary condition in theorem 4.6, we have A > @) min{ws] 1.

So, we have
—1
o .
Az Eop(z,s) mini{xisi}l

This is equivalent to
min{z;s;} , -1

I
max;{z;s;} — &0p(w,s)max;{z;s;}
which, by Theorem 4.6, is a sufficient condition for %E‘ € £ (&, 8). Thus, we have
E(&a,s) C EF(Ea,s) + Tzl e (6, 5).

mini{:l:i 81'}

Similarly, we prove that £(&;x,s) C wg*(é’;w, s)+E (&x,8).

min;{x;s;}

When s = tX e for some ¢ > 0, max;{z;s;} = min;{z;s;}. Thus, £(&;z,5) = ET (&, 8) +
E(&z,s). O

The matrices in the set £T(&;x,s) and £7(&; 1, s) are very easy to construct. Given z and s

1/2 can be written

at the current iteration, we can first calculate the matrix E. Since E-Y/2EE~
as UAUT | we are free to pick the diagonal entries of A, the only constraint is that there must be
at least one zero on the diagonal entries and I > A > 0. As for the orthogonal matrix U, the
only limitation is that E'/2s and E'/2X~'e must lie in the zero eigenspace. After choosing the
appropriate A and U, we have Et := E-Y/2UAUT E'/? which is a matrix in the set £T(¢; 1, s).
Similarly, we can construct a matrix E~ in the set £ (£;2,5), so that (ET + E~ + XS 1) is in

T2(& ,).

43

Chapter 5

On the Proximity Measures for the
Central Path

We showed that pi > 1 in Chapter 2(see Lemma 2.10). Furthermore, the inequality holds as
equality if and only if s = X e for some ¢ > 0, in words, if and only if z and s lie on the central
path (assuming x and s are strictly feasible in the corresponding problems). So, (up — 1) is a
centrality measure. Also, in the first-order algorithms, (i — 1) appears at the iterative formula
in Theorem 4.1. In the second-order algorithms, we also have (ufi —1) appearing in the definition
of £0p(x,s). Studying (upp — 1) further may help us improve our understanding of the first- and
the second-order algorithms. One thing we need to know is how the neighbourhood defined by
this centrality measure relates to the old neighbourhoods, such as those we defined in Chapter 2.
Another thing we want to know is how ufi changes in the next iteration in terms of the current

iteration’s information.

Recall that we gave some of the neighbourhoods of the central path in Chapter 2. One of the

neighbourhoods is
Noo(B) = {(z,5) € Fy : | X5 — pell o < Bpu}-

Here, for v € R", |jv = —min {0, min;{v;}}. We also define a neighbourhood based on pi:

lloo :
1

NulB) = {(z,5) € Py s pip < 751} for g €[0,1).

We have the following relation between the new neighbourhood N,;(5) and the old neigh-
bourhood N (f).

44

Theorem 5.1 Assume the dimension n > 2. For a given B such that 0 < 8 < 1, we have

Nool) € N9 € (11 + 85 — 0 = (1=) = B - 1),

Proof
By the definition of norm || - ||;o, we have (z,s) € N3 (B) if and only if (min;{z;s;}/p) > 1— .
Therefore, pp < m < = ,8 This means (z, s) € N,i(8). So we have N_(8) C N,a(B).

1

For any (z,s) € Nyu(B), we have pji < 7—5- Using Lemma 2.9, the Arithmetic-Harmonic

Mean Inequality, we have

1
- > 1l
1—p§ = M
1 1
- ME ;S5
i=1 """
1 1 (n—1)2

— — -) (by Arithmetic-Harmonic Mean Inequality)
n\min;{x;s;} np— min{z;s;}

I YR U

n min{z;s;} n—min{z;s;}/p/’

We consider min;{x;s;}/p as a variable in [0, 1], then the above inequality is a quadratic inequality.

We directly solve the quadratic inequality, and get the answer:

mmz{mzsz}

>[5 - 0= L+ 55 - D - (-).

So, we have the desired result. O

We write z(«) for (z + ad;), and s(a) for (s + ads). The corresponding shadow variables

at the next iteration are () := Diag(s(a)) ‘e and 5(a) := Diag(z()) 'e. Then we define
(@) i= w(a)s(a) /n, and fia) = F(@)5(a)/n.

The following lemma gives an upper bound to fi(«) in terms of the step length « and the

current iteration’s information.

Lemma 5.2 Assume « is a step length such that i(«) is meaningful, that is x(a), s(a) are both
strictly feasible. Then

202 "
e —
(1 _a/amam)4u ()a

where Qpqy = max{a >0:z+ ady > 0,s + ads > 0}.

fi(e) < fi(0) + i (0) +

45

Proof

By the definition of «,4., we have

zi(a) = z; + ady, > z; — @ =(1-)z; > 0.
Amaz Amaz
Similarly,
si(a) = s; +ads, > (1 —)si > 0.
Amaz
As for ji"(«), we have
n 2 2 2
1 dy. ds. dy. ds.
i (o) — (ml_i_sz)_{_(x)+(s) 51
H@ =2 et [@ @) T\mw) TG >
By replacing each z;(«) with (1 — 3%—)z;, si(a) with (1 — ;%—)s;, we obtain a new function:
1 1 de, di\? [(ds,\? (ds\?
file) = (1= g2=) @isi [(% " s,») " <$z) " <5z>] ’
(5.2)
Note that
- 1
> fila) = mnu"(o)- (5.3)
=1 Qmazx

If d;; and d,; have the same signs, which means dj;ds, > 0, then

oon [(ZZZ))+ (i) (d(a>)] <file 64

Otherwise, if d;, and d,; have different signs, which means d,,ds, < 0, then

(;(x;) " sf(soiz)>2 N <xf(36&)>2 * (&Z))Z + xiiﬁﬁ;) < (;% &)>2 + (sZZ(Z)>2' (5.5)

So,

[N
&8
Q
YR
2
| — |
8
;\E_BQ‘
K
N~
[\
+
N
>
Qe
N~
| E—

IN
Do
=
8

46

By (5.1), (5.3), (5.4), and (5.5), we conclude that:

L2 20"(0)
fa) < =) file) = ——a—7-
n z:zl (1 B Qmaz)4
By Taylor’s theorem, we have:
2
- - - a”
i) = 0) + i (0) + S"(B) o some f € [0,0]
_ _ 202 .
< [(0) + i/ (0) + m//’(o)
~ ~r 20 ~1r
< a(0) + e’ (0) + —— (0) (by B < a).
Qmax

Note that p(a) can be expressed in terms of . More specifically (see [33]), in the zeroth-order
algorithms.
p(e) = (1 —a)y;
in the first-order algorithms:
pla) = [1—a(l =)y
in the second-order algorithms:

1

néF(:Jc,s),u]'u’ (5:6)

pla) = [1 -«

where 0p(z, s) := +[n(up—1)+1]. So an upper bound of fi(a) gives an upper bound of p(a)fi(c).

1
m
Also there is an interesting relation between the cunq, and the second-order algorithm. The

following well-known relation can be found in Todd’s survey paper [30].

Lemma 5.3 —L— < max{||dz ||z, ||dz||s }

Qmaxz —

Proof
Define
oz(dz) = min{oc >0, oz+d;>0};
os(ds) = min{o >0, os+ds >0}
o = max{oy(d;), os(ds)}.

47

We have 0 = ——. Also, we have
Qmaz

|dw|x = max{am(dx), Ux(_dx)}:HX_ldxHom
ldelle = [IX dyllz = (42X ~2dy)>.

So, we have 0,(dy) < |dzle < ||dgllz- Similarly, os(ds) < |ds]s < ||ds]|s- That is a"{az o
maX{Hda:Ha:u ||d8||5}

O IA

The following lemma comes from Tungel [33].

Lemma 5.4 In Algorithm 4.2, the second-order algorithm,
lde | < &0p(2,s) and ||ds|l; < &6p (2, 5).

Proof

By the definition of the norm || - ||, we have
7Ty —2m 7 - _ -~
ldall? = do” TX*Tdy < ||dal|3|1TX T2 < |TX>T]>.

We have used the property that ||d.||2 < 1 in the second-order algorithm. Since T' € T3(¢;x, 5),
by the definition of T3(¢;x,s) (4.2), we know that T? < £8p(x,s)X?, which is equivalent to
TX 2T = &5p(x,s)I. Hence, | TX 2T|2 < £6p(z, 8). That is ||dg||2 < £0p(z, 5).

Similarly we have the desired result of ||ds||? < £6p(z, s). O

Directly using the Lemma 5.4 and Lemma 5.3, we conclude the following lemma.

Lemma 5.5 In the second-order algorithm, we have

! S \/£5F(wv3)'

Omaz

This lemma combined with Lemma 5.4 also give an explanation that the new added constraint
(%S*2 = T? < &ip(x,5)X?) in the second-order algorithms gives a lower bound to the step

length .

Theorem 5.6 Suppose « is a step length such that fi(«) is meaningful. Then in the second-order
algorithm, we have

ple)ii(a) _

a 12665 (z, 8)
o <1 B n(sp(:v,s)u)< .)

1+ 2&6p(z,8) + (1 — a/tman)?

48

Proof

We use Lemma 5.2 to prove this theorem. In the second-order algorithms, we have

dy,

<
€

<
Similarly,
Therefore,
Similarly,

i) =

<

ldz|| (by the definition of norm ||-||,)

&0p(z,s) (using Lemma 5.4).

)

ZONEEDS
=1

1 n

< E;

Lisg

% < V faF(a:a 3)'

1 d,.
(—+
€

ds,
)

54

L 2/ &0p(z, s)

ZiS;

= 2¢/&0p(x, 8)i.

[
n i—1 IiSq Ty
6407 (x, 5)ji.

4 Ly’
5

()

Now, combining Lemma 5.2 and the fact (5.6), we obtain the desired result.

49

Bibliography

[1]

2]

E. R. Barnes. A variation on Karmarkar’s algorithm for solving linear programming prob-
lems. Mathematical Programming, 36:174-182, 1986.

G. Dantzig. Maximization of a linear function of variables subject to linear ineqaulities.
In T. C. Koopmans, editor, Activity Analysis of Production and Allocation, pages 339-347.
John Wiley, New York, 1951.

G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton,
NJ, 1963, 1963.

I. I. Dikin. Iterative solution of problems of linear and quadratic programming. Doklady
Akademii Nauk SSSR, 174:747-748, 1967. Translated in: Soviet Mathematics Doklady 8:674—
675, 1967.

R. M. Freund. Polynomial-time algorithms for linear programming based only on primal
scaling and projected gradients of a potential function. Mathematical Programmaing, 51:203—
222, 1991.

C. C. Gonzaga. An algorithm for solving linear programming problems in O(n3L) operations.
In N. Megiddo, editor, Progress in Mathematical Programming : Interior Point and Related
Methods, pages 1-28. Springer Verlag, New York, 1989.

C. C. Gonzaga. Polynomial affine algorithms for linear programming. Mathematical Pro-
gramming, 49:7-21, 1990.

C. C. Gonzaga. Path following methods for linear programming. SIAM Review, 34(2):167—
224, 1992.

C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz. An interior—point method for
semidefinite programming. SIAM Journal on Optimization, 6:342-361, 1996.

50

[10]

[11]

[19]

[20]

[21]

[22]

N. K. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,

4:373-395, 1984.

L. G. Khachiyan. A polynomial algorithm for linear progrmming. Soviet Math. Dokl.,
20:191-194, 1979.

L. G. Khachiyan. Polynomial algorithms in linear programming. USSR Computational
Mathematics and Math. Phys., 20:53-72, 1980.

V. Klee and G. Minty. How good is the simplex algorithm? In O. Sisha, editor, Inequalities
HI. Academic Press, New York, NY, 1972.

M. Kojima, N. Megiddo, T. Noma, and A. Yoshise. A unified approach to interior point
algorithms for linear complementarity problems: A summary. Operations Research Letters,
10:247-254, 1991.

M. Kojima, S. Mizuno, and A. Yoshise. A polynomial-time algorithm for a class of linear

complementarity problems. Mathematical Programming, 44:1-26, 1989.

M. Kojima, S. Mizuno, and A. Yoshise. A primal-dual interior point algorithm for linear
programming. In N. Megiddo, editor, Progress in Mathematical Programming: Interior
Point and Related Methods, pages 29-47. Springer Verlag, New York, 1989.

M. Kojima, S. Mizuno, and A. Yoshise. An O(y/nL) iteration potential reduction algorithm
for linear complementarity problems. Mathematical Programming, 50:331-342, 1991.

M. Kojima, S. Shindoh, and S. Hara. Interior—point methods for the monotone semidefinite
linear complementarity problem in symmetric matrices. SIAM Journal on Optimization,

7:86-125, 1997.

M. Kojima and L. Tuncel. Monotonicity of primal-dual interior-point algorithms for semidef-

inite programming problems. Optimization Methods and Software, 10:275-296, 1998.

L. McLinden. The analogue of Moreau’s proximation theorem, with applications to the

nonlinear complementarity problem. Pacific Journal of Mathematics, 88:101-161, 1980.

R. D. C. Monteiro and I. Adler. Interior path following primal-dual algorithms, Part1:
Linear programming. Mathematical Programming, 44:27-41, 1989.

R. D. C. Monteiro, I. Adler, and M. G. C. Resende. A polynomial-time primal-dual affine
scaling algorithm for linear and convex quadratic programming and its power series extension.
Mathematics of Operations Research, 15:191-214, 1990.

o1

[23]

[24]

R. D. C. Monteiro and Y. Zhang. A unified analysis for a class of path—following primal—
dual interior—point algorithms for semidefinite programming. Mathematical Programming,
81:281-299, 1998.

Yu. E. Nesterov and A. S. Nemirovskii. Interior—Point Polynomial Algorithms in Convex
Programming : Theory and Algorithms, volume 13 of Studies in Applied Mathematics. Society
of Industrial and Applied Mathematics (STAM) Publications, Philadelphia, PA 19101, USA,
1993.

Yu. E. Nesterov and M. J. Todd. Self-scaled barriers and interior—point methods for convex

programming. Mathematics of Operations Research, 22:1-42, 1997.

Yu. E. Nesterov and M. J. Todd. Primal-dual interior—point methods for self-scaled cones.
SIAM Journal on Optimization, 8:324-364, 1998.

J. Renegar. A polynomial-time algorithm based on Newton’s method for linear programming.
Mathematical Programming, 40:59-93, 1988.

N. Shor. Utilization of the operation of space dilatation in the minimization of convex
functions. Kibernetika, 1:6-12, 1970. (In Russian). Translated in: Cybernetics, 6, 7-15.

K. Tanabe. Complementarity—enforced centered Newton method for mathematical program-
ming. In K. Tone, editor, New Methods for Linear Programming, pages 118-144, The Insti-
tute of Statistical Mathematics, 4-6-7 Minami Azabu, Minatoku, Tokyo 106, Japan, 1987.

M. J. Todd. Potential-reduction methods in mathematical programming. Mathematical
Programming, 76:3-45, 1997.

M. J. Todd and Y. Ye. A centered projective algorithm for linear programming. Mathematics
of Operations Research, 15:508-529, 1990.

L. Tuncel. Primal-dual symmetry and scale invariance of interior-point algorithms for convex
optimization. Mathematics of Operations Research, 23:708-718, 1998.

L. Tungel. Generalization of primal-dual interior-point methods to convex optimization

problems in conic form. Foundations of Computational Mathematics, 1:229-254, 2001.

P. M. Vaidya. An algorithm for linear programming which requires
O((m +n)n? + (m +n)5nL) arithmetic operations. Mathematical Programming, 47:175—
201, 1990. Condensed version in: Proceedings of the 19th Annual ACM Symposium on
Theory of Computing, 29-38, 1987.

52

[35]

[38]

[39]

[40]

[41]

R. J. Vanderbei. Linear Programming: Foundations and Extensions. Kluwer Academic
Publishers, Dordrecht, The Netherlands, second edition, 2001.

R. J. Vanderbei, M. S. Meketon, and B. A. Freedman. A modification of Karmarkar’s linear
programming algorithm. Algorithmica, 1(4):395-407, 1986.

H. Wolkowicz, R. Saigal, and L. Vandenberghe. Handbook of semidefinite programming :
theory, algorithms, and applications, volume 27 of International series in operations research

and management science. Kluwer Academic, Boston, 2000.

S. J. Wright. Primal-Dual Interior—Point Methods. STAM Publications, STAM, Philadelphia,
PA, USA, 1996.

Y. Ye. An O(n3L) potential reduction algorithm for linear programming. Mathematical
Programming, 50:239-258, 1991.

Y. Ye. Interior—Point Algorithms: Theory and Practice. John Wiley & Sons, New York,
USA, 1997.

D. Yudin and A. Nemirovskii. Informational complexity and efficient methods for the so-
lution of convex extremal problems. Ekon.i Mat. Metody, 12:357-369, 1976. (In Russian).
Translated in: Matekon 13(2) 3-25.

53

