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Abstract

In 1919, Ramanujan initiated the study of congruence properties of the integer partition

function p(n) by showing that

p(5n+ 4) ≡ 0 (mod 5)

and

p(7n+ 5) ≡ 0 (mod 7)

hold for all integers n. These results attracted a lot of interest in the mathematical com-

munity and inspired other mathematicians to investigate the divisibility of various classes of

integer partitions.

The purpose of this thesis is to illustrate the use of generating series in the study of the

residue classes of integer partition values. We begin by presenting the work of Mizuhara,

Sellers and Swisher in 2015 on the residue classes of restricted plane partitions numbers.

Next, we introduce Ramanujan’s Conjecture regarding Ramanujan Congruences. Moreover,

we use modular forms to present Ahlgren and Boylan’s resolution of Ramanujan’s Conjecture

from 2003. Then, we discuss the open problems surrounding the distribution of the integer

partitions values into residue classes and present Judge, Keith and Zanello’s work from 2015

on the the distribution of the parity of the partition function. We continue by introducing

m−ary partitions and provide an account of Andrews, Fraenkel and Sellers’ work from 2015

and 2016 which yielded a complete characterization of the congruence classes of m−ary

partitions with and without gaps. Finally, we present new results regarding the complete

characterization of the residue classes of coloured m−ary partitions with and without gaps.

iii



Acknowledgements

First, I would like to thank my supervisor Ian Goulden for encouraging me to pursue

my interests, providing me with guidance, patience, optimism and the occasional joke and

his friendship.

I owe a debt of gratitude to the department of Combinatorics & Optimization for the

support and all of the free printing.

Special thanks goes to David Jackson for always knowing the right Welsh proverb to

cheer me up, agreeing to read my thesis and guiding me through an exploration of hypermaps

and constellations.

I would also like to thank Bruce Richmond for agreeing to read my thesis and providing

me with feedback.

I am extremely grateful for the support and guidance I received from Elias Brettler,

Ada Chan, Mike Zabrocki and Norman Purzitsky during my time at York University to

pursue my interest in mathematics.

To those who made my last two years memorable (in no particular order): Matt, Luis,

Nathan, Jason, Randy, Leanne, Rachel, Dan, Mark, Melissa, Carol, Marie, Megan, Gabriel,

Kayla, Owen and Djao.

iv



Dedication

To my parents Ilya and Irena, my brother Mark and my best friend Noch.

v



Table of Contents

1 Introduction 1

1.1 History and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Formal Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Generating Series for Partitions . . . . . . . . . . . . . . . . . . . . . 7

2 Plane Partitions 12

2.1 Introduction and History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 The Periodicity of Partition Functions . . . . . . . . . . . . . . . . . . . . . 15

2.4 A Congruence Characterization Theorem for Restricted Plane Partitions . . 19

2.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Modular Forms 24

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Ramanujan Congruences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 The Basics of Modular Forms . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Classification of Ramanujan’s Congruence . . . . . . . . . . . . . . . . . . . 32

4 The Distribution of the Partition Function 36

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vi



4.2 The Distribution of the Partition Function . . . . . . . . . . . . . . . . . . . 36

4.3 The Density of the Partition Function . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 The Density of the Odd Values of the Partition Function . . . . . . . 43

5 Enumerating m−ary Partitions modulo a prime m 46

5.1 Introduction and History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 m−ary Partitions modulo m . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 m−ary Partitions Without Gaps . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Colouring m−ary Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4.1 Allowing Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4.2 Coloured m-ary Partitions with No Gaps Allowed . . . . . . . . . . . 63

References 71

vii



Chapter 1

Introduction

1.1 History and Motivation

Addition of natural numbers is arguably one of the most easily understood arithmetic

operations. Typically, it is presented as the combination of objects of the same type. In this

thesis, we study the ways in which positive integers can add up to another positive integer

while satisfying some criteria. These are known as integer partitions.

In particular, we shall denote by p(n) the number of distinct number of ways in which we

can add positive integers to yield a nonnegative integer n, where the order of the summands

is irrelevant. Given the simplicity of the definition of p(n), it should not come as a surprise

that it appears in various areas of mathematics such as number theory, combinatorics and

representation theory. Before we discuss the intricacies of the theory of integer partitions,

we discuss some of their history. The following presentation is based on Andrews work in

[And08].

The study of integer partitions dates back to Gottfried Wilhelm Leibniz in 1674 when he

wrote a letter to Daniel Bernoulli asking about integer partitions and whether the partition

function is prime for n ≥ 2. This is demonstrably false as p(7) = 15.

In the 18th century, Leonard Euler made several significant breakthroughs in the area.

He was the first to introduce generating series to the study of integer partitions. In particular,

he found the generating series for the set of all integer partitions. Later, he discovered the

coefficients of its inverse in what is universally known as The Pentagonal Number Theorem

(see Theorem 1.2.13).
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In the 19th century, James Joseph Sylvester provided the mathematical community

with a new, geometric approach to analyzing integer partitions. He recognized that repre-

senting integer partitions as left-aligned rows of dots makes certain partition decompositions

become transparent. He named these Ferrers diagrams or Ferrers graphs after the British

mathematician Norman Macleod Ferrers, and used them to introduce the conjugates of par-

titions.

Later, in the 20th century, Srinivasa Ramanujan made profound contributions to the

study of divisibility properties of integer partitions [HSAW27]. In particular, he established

the following three identities for all integers n:

p(5n+ 4) ≡ 0 (mod 5)

p(7n+ 5) ≡ 0 (mod 7)

p(11n+ 5) ≡ 0 (mod 11).

Ramanujan went on to make the conjecture that ` = 5, 7, 11 are the only primes for which

there exists a partition congruence of the type p(`n + β) ≡ 0 (mod `). The problem of

finding congruences of this type for composite numbers has a slightly different flavour and

we refer the interested reader to [Ono00], [LO02] and [Atk68]. Since Ramanujan’s time,

many mathematicians sought to attack problems of similar flavour. In this thesis, we shall

examine the divisibility of various classes of integer partitions.

The underlying goal of this thesis is to demonstrate the usefulness of generating series

in the study of the congruence properties of integer partitions. The chapters are ordered

as follows. In this chapter, we discuss the history of integer partitions and study basic de-

composition theorems. We also include, for completeness a few basic facts about generating

series. Furthermore, we provide the background for the elementary mathematics we shall

use throughout the thesis which pertains to generating series. In Chapter 2, we study the

arithmetic properties of restricted plane partitions through the periodicity of their generat-

ing series. Moreover, we present an interesting tool used in the verification of plane partition

congruences. In Chapter 3, we provide a summary of a proof to Ramanujan’s Conjecture

using the theory of modular forms. In Chapter 4, we study the distribution of the values of

the partition function into congruences classes, the odd-value density of the partition func-

tion. Finally, in Chapter 5 we present a complete characterization of two classes of m−ary

partitions modulo m due to Andrews, Fraenkel, and Sellers and provide a new variation on

these objects by introducing colourings.

We note here that Chapter 2 is based on the works of Mizuhara, Sellers, Swisher [MSS15]

and Kwong [Kwo89]. The presentation of Chapter 3 is based on the on the works of Ahlgren
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and Boylan in [AB03]. Chapter 4 borrows from the questions posed by Newman in [New60]

and Ono’s discussions regarding density and distribution in [Ono00]. Following this, we

present a recent investigation of the parity of the partition function due to Judge, Keith and

Zanello in [JKZ15]. Chapter 5 is based on the the work of Andrews, Fraenkel and Sellers in

[AFS15] and [AFS16]. In Section 5.4, we present new results that extend their work which

were discovered in the process of working on this thesis.

1.2 Preliminaries

Throughout this thesis, we shall denote the set of natural numbers {1, 2, 3, . . .} by N
and the set of nonnegative integers by N0. As we described previously, an integer partition

of n is a summation of positive integers which yields n, where we do not care about the

order in which we add the positive integers to each other (each of which is called a part). In

general, we shall write integer partitions as sequences of integers throughout this thesis.

Definition 1.2.1. Fix n ∈ N0 an integer. We say that λ = (λ1, λ2, . . . , λk) ∈ Nk is a

partition of n with k ∈ N0 parts if

λ1 ≥ λ2 ≥ · · · ≥ λk

and

|λ| = λ1 + λ2 + · · ·+ λk = n.

We let p(n) denote the total number of partitions of n, where we use the convention p(0) = 1

and p(n) = 0 for n negative. As λi ∈ N for all i, we say that the set of allowed parts is the

set of positive integers.

We can easily compute all of the partitions of n for small values for n, as we do for

n = 4 below.
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Example 1.2.2. We note that p(4) = 5 by enumerating the partitions of 4:

p(4) = 4

= 3 + 1

= 2 + 2

= 2 + 1 + 1

= 1 + 1 + 1 + 1

We see that there is only one partition with a single part: (4), two partitions with two parts:

(3,1) and (2,2), one partition with three parts: (2,1,1), and a single partition with four parts:

(1,1,1,1).

It is often helpful to view partitions geometrically. To do so, we make use of Ferrers

diagrams.

Definition 1.2.3. For a partition λ = (λ1, . . . , λk), we identify λ with the so-called Ferrers

diagram. A Ferrers diagram will consist of k rows of dots which lie on top of each other in

a left-justified fashion. Row i will have λi dots, where we draw our first row at the top.

The convention that we use here is known as the English convention of drawing Ferrers

diagrams. Some authors use the French convention where the row sizes increase from top to

bottom.

Example 1.2.4. We draw the Ferrers diagrams for the partitions of 4 below.

(4) (3, 1) (2, 2) (2, 1, 1) (1, 1, 1, 1)

The graphical representation of partitions is a valuable tool as it allows one to decom-

pose partitions in a more intuitive way. For instance, consider the following:

Proposition 1.2.5. The number of partitions with at most k parts is equal to the number

of partitions where the largest part is at most k.
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Proof. We describe a bijection which relies on Ferrers diagrams. Consider an arbitrary

partition λ = (λ1, . . . , λr) where r ≤ k. We use λ to construct a partition λ′ which has no

parts of size larger than k.

We examine the Ferrers diagram of λ and count the number of dots in each column.

We set λ′ to be the partition where λ′i is the number of dots in column i of λ. Since λ has r

rows, we see that λ′1 = r ≤ k. As the column lengths decrease from left to right, we see that

λ′ is a partition with parts bounded by k.

Now, if we apply the same map to λ′, it becomes apparent that we obtain λ. Hence,

there exists a bijection between the number of partitions with at most k parts and partitions

whose parts are bounded by k. �

The operation described in Proposition 1.2.5 which sends λ to λ′ is known as conjuga-

tion. It not hard to see that λ′ is obtained from λ by reflecting the Ferrers diagram of λ via

the line y = −x. The partition λ′ which is obtained from λ by conjugation is known as the

conjugate partition of λ. Conjugation is well known in the theory of partitions and appears

frequently throughout various decompositions of integer partitions.

We shall often employ generating series in the study of partitions. Generating series

allow one to study combinatorial objects by endowing them with unique algebraic structure.

1.2.1 Formal Power Series

This subsection serves as a short review of the basics of generating series. Here, we

make use of the terminology found in [Wil13], [GJ04].

Definition 1.2.6. Let (an)n≥0 be a sequence of complex numbers and q an indeterminate.

We define the generating series A(q) of (an)n≥0 to be the formal sum

A(q) :=
∑
n≥0

anq
n.

We call any such summation a formal power series. We let C[[q]] denote the set of all formal

power series in q with coefficients in C. Throughout this thesis, we shall write [qn]A(q) to

denote the extraction of the n−th coefficient of A(q). That is,

[qn]A(q) = an
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for all n ∈ Z where we use the convention ak = 0 for k < 0. We define addition of two formal

power series in the natural way:∑
n≥0

anq
n +

∑
n≥0

bnq
n =

∑
n≥0

(an + bn)qn.

Moreover, we can extend the usual definition of multiplication of polynomials to formal

power series as follows:(∑
n≥0

anq
n

)(∑
n≥0

bnq
n

)
=
∑
n≥0

(
n∑
k=0

akbn−k

)
qn.

With respect to these two operations, the set C[[q]] forms a ring.

Example 1.2.7. Let (an)n≥0 be the sequence defined by an : n 7→ 1 for all n ∈ N0. The

power series A(q) which corresponds to it is given by

A(q) =
∑
n≥0

anq
n =

∑
n≥0

qn =
1

1− q
,

and we note that it is easily verified that
∑

n≥0 q
n is the multiplicative inverse of (1− q) in

C[[q]].

In the previous example,
1

1− q
is an instance of a closed-form expression for a generating

series. In this thesis, we write closed-form expression for a generating series to mean a

finite expression in terms of basic arithmetic operations and elementary functions (such as

polynomials, trigonometric functions, etc.).

We are often interested in finding closed-form expressions for generating series. Closed-

form expressions for generating series often allow one to find a recurrence relation for the

sequence, or in some cases an explicit formula for the n−th term in the sequence. Addition-

ally, in analytic combinatorics, it allows one to study the asymptotics of a sequence.

Example 1.2.8. If (bn)n≥0 is the sequence defined by n 7→ (−1)n for all n ∈ N0, we see that

its generating series is given by

B(q) =
∑
n≥0

bnq
n =

∑
n≥0

an(−1)nqn =
1

1 + q
= A(−q),
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which can be obtained via the substitution q 7→ −q in A(q).

We may use the closed-form expression for B(q) to deduce a recurrence relation for bn.

If we multiply the expression for B(q) by (1 + q), we have

1 = (1 + q)B(q)

=
∑
n≥0

bnq
n +

∑
n≥0

bnq
n+1.

Now, comparing coefficients we find

[qn]1 = [qn]

(∑
n≥0

bnq
n +

∑
n≥0

bnq
n+1

)
= [qn]

∑
n≥0

bnq
n + [qn]

∑
n≥0

bnq
n+1

= bn + bn−1.

Since

[qn]1 =

1, n = 0

0, n ≥ 1
,

it is immediate that

bn + bn−1 =

1, n = 0

0, n ≥ 1
.

Since b−1 = 0, we see that b0 = 1 and

0 = bn + bn−1

holds for all n ≥ 1. We summarize the recursive structure of bn as follows:

b0 = 1; bn = −bn−1, for n ≥ 1.

1.2.2 Generating Series for Partitions

Now, we investigate the generating series related to integer partitions. An overarching

theme in the following chapters is the idea of determining the generating series for a class of

partitions and then reducing the series modulo some integer.

The following theorem is due to Euler and is central to the study of integer partitions.
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Theorem 1.2.9. The generating series P (q) for the sequence of integer partitions is given

by

P (q) =
∑
n≥0

p(n)qn =
∏
i≥1

1

1− qi
.

Proof. Fix an integer partition λ of n. As n cannot have parts larger than n, it is evident

that

p(n) =
∑

m1,m2,...,mn≥0
1·m1+2·m2+···+n·mn=n

1.

Therefore, we see that

P (q) =
∑
n≥0

p(n)qn

=
∑
n≥0

 ∑
m1,m2,...,mn≥0

1·m1+2·m2+···+n·mn=n

q1·m1+2·m2+···+n·mn


=

(∑
m1≥0

q1·m1

)(∑
m2≥0

q2·m2

)
· · ·

(∑
mr≥0

qr·mr

)
· · ·

=
1

1− q
1

1− q2
· · · 1

1− qr
· · ·

=
∞∏
i=1

1

1− qi
.

�

We shall encounter partitions where some parts have the same size but are distinguish-

able from one another. We shall include them in a multiset of parts where we assign an

integer label to each part.

Definition 1.2.10. Fix a multiset S of natural numbers. We shall denote by p(n;S) the

number of partitions of n where every part is an element of S.

If k ∈ N appears in S with multiplicity f(k), we shall distinguish the various parts of

size k by assigning them indices from {1, 2, . . . , f(k)}. We can identify S with this function

f which we call the multiplicity counter of S. We shall refer to the multiset S as follows

S := {11, . . . , 1f(1), 21, . . . , 2f(2), . . .} = {ij : i ∈ N, 1 ≤ j ≤ f(i)}.

8



Example 1.2.11. If S = N, then p(n;S) = p(n).

If S = {2k − 1 : k ∈ N}, then p(n;S) is the number of partitions of n into odd parts.

If the multiplicity counter is defined byf(1) = 1, f(2) = 2 and f(k) = 0 for all k > 2, then

S = {11, 21, 22} and the partitions of 4 are the following

(22, 22), (22, 21), (22, 11, 11), (21, 21), (21, 11, 11), (11, 11, 11, 11).

We have an analogue of Ferrers diagrams for these partitions, where we assign different

colours to each part. For instance, we may assign the colour red to the part 22 and blue

to 21 and the color blue to 11 as well. This gives us the following Ferrers diagrams for the

partitions listed above:

(22, 22) (22, 21) (22, 11, 11) (21, 21) (21, 11, 11) (11, 11, 11, 11)

Next, we generalize Theorem 1.2.9 to partitions with set of allowed parts given by a

multiset S.

Theorem 1.2.12. If S is a multisubset of N and f : N → N0 is its multiplicity counter,

then ∑
n≥0

p(n;S)qn =
∏
i≥1

1

(1− qi)f(i)
.

Proof. We remark that

p(n;S) =
∑

m1,1,...,m1,f(1),...,mn,1,...,mn,f(n)∈N0

1(m1,1+···+m1,f(1))+···+n(mn,1+···+mn,f(n))=n

1

and from here the proof is analogous to the proof of Theorem 1.2.9. �

Euler recognized a relationship between the inverse of P (q) and the so-called generalized

pentagonal numbers.

Theorem 1.2.13 (Pentagonal Number Theorem). If P (q) =
∑

n≥0 p(n)qn, then

1

P (q)
=
∑
k∈Z

(−1)kq
k(3k−1)

2 = 1 +
∑
k≥1

(−1)k
(
q
k(3k−1)

2 + q
k(3k+1)

2

)
=
∑
n≥0

gnq
n,

where

gn :=

(−1)k, if n =
k(3k ± 1)

2
,

0, otherwise.

9



�

Euler [EDA12] originally provided an algebraic proof for Theorem 1.2.13 . For a combina-

torial proof, we refer the reader to [Gro84].

Theorem 1.2.13 implies the following linear recurrence relation which has no fixed order.

Corollary 1.2.14. The n−th partition number p(n) is given by

p(n) =
∑

k∈Z;k 6=0

(−1)k+1p(n− gk).

Proof. Since Theorem 1.2.13 is equivalent to the statement

P (q)
∑
k∈Z

(−1)kq
3(3k−1)

2 = 1,

we expand the left hand side and then equate the coefficients of qn on both sides. �

Throughout this thesis, we shall study congruences of various integer partition classes by

considering the underlying generating series in some modulus. As we see from the generating

series for integer partitions, binomial terms turn up as factors frequently. Fortunately, we

have a lemma analogous to the binomial theorem which gives us their reduction modulo a

prime.

Lemma 1.2.15. If ` is prime, then for all j ∈ N0,

(1− qj)` ≡ (1− qj`) (mod `).

Proof. The binomial theorem states that we can expand (1− qj)` as follows:

(1− qj)` =
∑̀
k=0

(
`

k

)
(−1)kqkj.

Moreover, for 1 ≤ k ≤ `− 1, we know that(
`

k

)
=

`!

k!(`− k)!

is divisible by `, as ` appears in the numerator and ` is prime. Therefore, we see that

(1− qj)` =
∑̀
k=0

(
`

k

)
(−1)kqkj

≡ 1− q`j (mod `)

where we know that (−1)` ≡ −1 (mod `) is true for odd primes and trivially true when ` is

2. �
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In some instances, when dealing with a formal power series A(q) =
∑

n≥0 anq
n, we shall

be interested in a related power series where only terms in some congruence class modulo m

appear. This motivates the following definition.

Definition 1.2.16. Fix m ∈ N and ` an integer where 0 ≤ ` ≤ m− 1. We say that a sum

of the form
∑

k≡` (mod m) akq
k is an m-th multisection of A(q) with residue `.

In order to find an explicit formulation for the m−th multisection of a formal power

series, we make use of the following proposition.

Proposition 1.2.17. If w = e
2πi
m is an m−th root of unity, then

m−1∑
k=0

wnk =

m, if m|n

0, otherwise
.

Moreover, if A(q) =
∑

r≥0 arq
r, then

∑
k≡` (mod m)

akq
k =

1

m

m−1∑
j=0

A(qwj)w−`j.

�

For proof, we refer the interested reader to [GJ04].
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Chapter 2

Plane Partitions

2.1 Introduction and History

The study of multi-dimensional partitions dates back to Percy A. MacMahon in the

early 20th century [Mac16]. MacMahon was very interested in the so-called plane partitions

that are the natural two dimensional generalization of partitions. He was able to prove

several interesting results regarding plane partitions. For instance, he showed [MA78] that∑
n≥0

pl(n)qn =
∏
n≥1

1

(1− qn)n

where pl(n) is the number of plane partitions of n. Though one can immediately identify

the right hand side as the generating series for coloured partitions, a bijective proof for this

result was not obtained until much after MacMahon’s time (see [PB04]).

Though some of MacMahon’s conjectures regarding higher-dimensional partitions turned

out to be false (see [Knu70]), MacMahon had many contributions in the area of plane par-

titions such as the identification ten different classes of plane partitions subject to different

symmetries and several correct conjectures concerning them. For a recent and up-to-date

survey, see [Kra15].

Despite the fact that connections between plane partitions and other areas of mathemat-

ics were not initially evident, MacMahon’s conjectures regarding plane partitions captured

the interests of many mathematicians due to their elegance. Over the last century, it became

apparent that plane partitions are relevant in many other areas of mathematics. These in-

clude the theory of symmetric functions [Vul09], representation theory [Col16], enumeration

of matchings in graphs ([Kuo04], [Ciu97]) and statistical mechanics ([GGS16],[Rov16]).

12



In 2015, Mizuhara, Sellers and Swisher (here after referred to as MSS) [MSS15] were able

to make use of Kwong’s work on the periodicity of rational polynomial functions [Kwo89] to

develop a useful theorem for establishing congruence properties for restricted plane partitions.

In this chapter, we will present MSS’s theorem for establishing restricted plane partitions

and demonstrate its use.

2.2 Preliminaries

A plane partition can be thought of as two-dimensional array of nonnegative integers

that increases along rows and columns with the restriction that there are only finitely many

nonzero entries.

Definition 2.2.1. For n ∈ N, we say that an array π = [πi,j]i,j∈N is a plane partition of n if

π is a two-dimensional array of integers satisfying the conditions

1. πi,j ∈ N0 for all i, j ∈ N,

2. πi,j ≥ πi,j+1 and πi,j ≥ πi+1,j for all i, j,

3. |π| :=
∑

(i,j)∈N×N πi,j = n.

We note these conditions imply that a plane partition has only finitely many nonzero

entries.

Definition 2.2.2. We denote by pl(n) the number of plane partitions of n for n ∈ N and we

set pl(0) = 1. For a triple (r, s, t) ∈ N3, we let Rr,s,t denote the number of plane partitions

for which the number of nonzero rows is at most r, number of nonzero columns is at most s

and the biggest entry is at most t.

We take the convention of displaying our plane partitions in the fourth quadrant as

illustrated in the example below.
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Example 2.2.3. The plane partitions of 4 are

4 , 3 1 ,
3

1
, 2 2 ,

2

2
, 2 1 1 ,

2 1

1
,

2

1

1

, 1 1 1 1 ,
1 1 1

1
,

1 1

1 1
,

1 1

1

1

,

1

1

1

1

.

Much like their one-dimensional counterparts, plane partitions have a nice graphical

representation. For instance, we can represent the plane partition

π =
2 1

1
,

graphically by drawing πi,j cubes stacked on top of one another in position (i, j) as depicted

in Figure 2.1.

2

1 1

Figure 2.1: A graphical representation of a plane partition of 4.

One of MacMahon’s celebrated results [Mac99] is the discovery of a closed-form expres-

sion for the generating series of plane partitions in Rr,s,t.

Theorem 2.2.4. The generating series for plane partitions in Rr,s,t is given by

∑
π∈Rr,s,t

q|π| =
r∏
i=1

s∏
j=1

t∏
k=1

1− qi+j+k−1

1− qi+j+k−2
.

�

MacMahon used Theorem 2.2.4 to compute the generating series for plane partitions∑
n≥0

pl(n)qn =
∏
n≥1

1

(1− qn)n
,

by taking a limit as r, s and t tend to infinity.
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In the following section, we will be studying the recursive structure of plane partitions

with restricted parts.

Definition 2.2.5. If k ∈ N, then we use plk(n) to denote the number of plane partitions of

n with parts from {1, 2, . . . , k} and we let PLk(q) denote the generating series

PLk(q) :=
∑
n≥0

plk(n)qn.

Set Sk := {ij : 1 ≤ i ≤ k − 1, 1 ≤ j ≤ i} and recall that p(n;S) denotes the number of

integer partitions with parts from S. We will denote the generating series for p(n;Sk) by

Fk(q) =
∑

n≥0 p(n;Sk)q
n and observe that

Fk(q) =
k−1∏
i=1

1

(1− qi)i
,

by Theorem 1.2.12.

By specializing Theorem 2.2.4, we obtain the following relationship between PLk(q)

and Fk(q):

PLk(q) =
∞∏
n=1

1

(1− qn)min(k,n)
(2.1)

= Fk(q)
∞∏
n=k

1

(1− qn)k
. (2.2)

2.3 The Periodicity of Partition Functions

In [Kwo89], Kwong showed that given any set of allowed parts S, the generating series

A(q) :=
∑

n≥0 p(n;S)qn is periodic modulo `N for any prime ` and N ∈ N.

Definition 2.3.1. If A(q) :=
∑

n≥0 αnq
n is a formal power series with integer coefficients,

then we say that A(q) is periodic with period d ∈ N and modulo ` if the sequence αn satisfies

αn+d ≡ αn (mod `).

We denote by πm(A(q)) the smallest period of A(q) in modulo m, if it exists.
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In Section 2.4, we will examine MSS’s theorem regarding restricted plane partitions

which could be paraphrased as follows: If ` is a prime, in order to establish a congruence of

the form
s∑
i=1

pll(`n+ ai) ≡
t∑

j=1

pl`(`n+ bj) (mod `),

it is sufficient to check that it holds for all n < K(l), where K(`) is some given integer

constant which is a function of our prime `.

We now introduce the terminology necessary to define the constant K(`). This is due

to a specialization of Kwong’s work in [Kwo89].

Definition 2.3.2. For n ∈ Z and ` prime, we define ord`(n) to be the unique integer such

that

n = `ord`(n)m

where ` - m. We say that m is the `−free part of n.

That is, we think of ord`(n) as the number of occurrences of ` in n as a factor.

Definition 2.3.3. Fix a prime `. For a finite multiset of positive integers S, we define m`(S)

to be the `−free part of lcm(S). That is,

lcm(S) = `ord`(lcm(S))m`(S).

We set b`(S) to be the least nonnegative integer such that

`b`(S) ≥
∑
n∈S

`ord`(n).

Example 2.3.4. We investigate the generating series F3(q) :=
∑

n≥0 p(n;S3)q
n of partitions

with parts from the set S3 := {11, 21, 22}, where we recall that ab denotes a part of size a

coloured by b.

We look to compute m3(S3) and b3(S3). First, we know that

m3(S3) =
lcm(S3)

3ord3(S3)
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and since lcm(S3) = lcm{1, 2} = 2, we compute ord3(2). Clearly, we have

2 = 30 · 2

and hence ord3(2) = 0. We conclude that

m3(S3) =
2

30
= 2.

Next, we compute ord3(1). Clearly,

1 = 30 · 1

and conclude ord3(1) = 0. This implies that b3(S3) must be the least nonnegative integer

for which

3b3(S3) ≥ 3ord(1) + 3ord(2) + 3ord(2)

= 30 + 30 + 30 = 3

and so it follows that b3(S3) = 1.

Kwong [Kwo89] proved that partition functions satisfy the following minimal period:

Theorem 2.3.5. Let S be a multisubset of N, ` a prime and N ∈ N.

Then A(q) =
∑

n≥0 p(n;S)qn is periodic modulo `N with minimal period

π`N (A(q)) = `N+b(S)−1m(S).

�

MSS [MSS15] specialized Theorem 2.3.5 to the case where S := Sk and obtained the

following corollary.

Corollary 2.3.6. Fix ` a prime, k,N ∈ N. Then the series Fk(q) is periodic modulo `N

with minimal period

π`N (Fk(q)) = `N+b(Sk)−1m(Sk).

�

In particular, Corollary 2.3.6 asserts that for all n ≥ 0

p(n+ π`N (Fk(q));Sk) ≡ p(n;Sk)
(
mod `N

)
.
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In fact, whenever n ≡ m (mod π`N (Fk)), it follows from Corollary 2.3.6 that

p(n;Sk) ≡ p(m;Sk)
(
mod `N

)
.

Next, we specialize Corollary 2.3.6 to the case when k = ` and evaluate the minimal

period.

Proposition 2.3.7. The minimal periods of F`(q) modulo `n for any primes ` are given by

π`N (F`(q)) =


2N−1 ` = 2

3N · 2 ` = 3

`N+1 · lcm{1, 2, . . . , `− 1} ` ≥ 5

Proof. If k = `, then by Theorem 2.3.5 we must determine

`N+b(S`)−1m(S`).

Recall that since Sl is given by

S` = {ij : 1 ≤ i ≤ `− 1, 1 ≤ j ≤ i}

we know that no integer in S` is divisible by ` and hence ord`(n) = 0 for all n ∈ S`. It is

then evident that ∑
n∈S`

`ord`(n) =
∑
n∈S`

`0

= |S`|

=
`(`− 1)

2
.

Therefore, b`(S`) is the minimal nonnegative integer satisfying

`b`(S`) ≥ `(`− 1)

2
= ` · (`− 1)

2
.

Now, we consider the three cases: ` = 2, 3 or ` ≥ 5.

Case 1: If ` = 2, we know that

`b`(S`) ≥ `(`− 1)

2
= 0
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is satisfied by b`(S`) = 0.

Case 2: If ` = 3, we see that

`b`(S`) ≥ `(`− 1)

2
= `

is satisfied by b`(S`) = 1.

Case 3: If ` ≥ 5, we know that

1 <
(`− 1)

2
< `

and so

` < `
(`− 1)

2
< `2

and it follows that b`(S`) = 2.

�

2.4 A Congruence Characterization Theorem for Re-

stricted Plane Partitions

Equipped with the knowledge of the minimal period of F` in modulo `, in this section

we present MSS’s [MSS15] restricted plane partition congruence theorem.

Theorem 2.4.1. Fix s, t ∈ N and ai, bj ∈ N for 1 ≤ i ≤ s, 1 ≤ j ≤ t. For a prime `, if

s∑
i=1

pll(`n+ ai) ≡
t∑

j=1

pll(`n+ bj) (mod `),

holds for all n < π`(F`(q)
`

, then it holds for all n ≥ 0.

Proof. Let ` be a prime. Using (2.2) and Lemma 1.2.15, we see that

PL`(q) =
∑
n≥0

pl`(n)qn ≡

(∑
i≥0

p(i;S`)q
i

)(∏
j≥`

1

1− qj`

)
(mod `) (2.3)

≡

(∑
i≥0

αiq
i

)(∑
m≥0

βmq
m`

)
(mod `) (2.4)
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where for ease of notation we set αi := p(i;S`) and∏
j≥`

1

(1− qj`)
=
∑
m≥0

βmq
m`.

Thus, by comparing coefficients we can immediately deduce from (2.3) that

pl`(n`+ k) ≡
n∑
i=0

αi`+kβn−i (mod `). (2.5)

We assumed in the hypothesis that

s∑
i=1

pll(`n+ ai) ≡
t∑

j=1

pll(`n+ bj) (mod `)

holds. We use (2.5) to rewrite our hypothesis as

s∑
i=1

n∑
r=0

αr`+aiβn−r ≡
t∑

j=1

n∑
r=0

αr`+bjβn−r (mod `).

By rearranging the summations, we can write

n∑
r=0

βn−r

(
s∑
i=1

αr`+ai

)
≡

n∑
r=0

βn−r

(
t∑

j=1

αr`+bj

)
(mod `). (2.6)

In particular, (2.6) is equivalent to

s∑
i=1

αn`+ai +
n−1∑
r=0

βn−r

(
s∑
i=1

αr`+ai

)
≡

t∑
j=1

αn`+bj +
n−1∑
r=0

βn−r

(
t∑

j=1

αr`+bj

)
(mod `) (2.7)

when n ≥ 1 as β0 = 1. Therefore, to show that (2.6) holds for all n ∈ N, it suffices to show

that
s∑
i=1

αn`+ai ≡
t∑

j=1

αn`+bj (mod `)

holds for all n. We consider the two cases ` = 2 and ` > 2.

Case 1: If ` = 2, then we know that π2(F2(q)) = 1 by Proposition 2.3.7 and thus the

coefficients are all congruent modulo 2.
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Case 2: If ` > 2, then we know that π`(F`(q)) = K`, for some K ∈ N. Let n ≥ K =
π`(F`(q))

`
, where we write n uniquely as

n = xK + y

for some x ∈ N, 0 ≤ y < K.

Now, for any 1 ≤ i ≤ s, 1 ≤ j ≤ t, we can write

n`+ ai = xK`+ (y`+ ai)

n`+ bj = xK`+ (y`+ bj)

and so

n`+ ai ≡ y`+ ai (mod π`(F`(q)))

n`+ bj ≡ y`+ bj (mod π`(F`(q)))

holds for all 1 ≤ i ≤ s, 1 ≤ j ≤ t. Since π` is the minimal period, we have that

αn`+ai ≡ αy`+ai (mod `) (2.8)

and

αn`+bj ≡ αy`+bj (mod `) (2.9)

hold. Since y`+ ai, y`+ bj < π`(F`) and y < π`(F`)/`, we see that

s∑
i=1

αn`+ai ≡
s∑
i=1

αy`+ai (mod `) by (2.8)

≡
t∑

j=1

αy`+bj (mod `) by hypothesis

≡
t∑

j=1

αn`+bj (mod `) by (2.9)

as was needed to be shown. �

2.5 Applications

Moreover, MSS [MSS15] were able to prove the following congruences hold using The-

orem 2.4.1.
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Theorem 2.5.1. For all n ≥ 0, (plk(m))m≥0 satisfies the following congruence relations:

pl2(2n+ 1) ≡ pl2(2n) (mod 2) (2.10)

pl3(3n+ 2) ≡ 0 (mod 3) (2.11)

pl5(5n+ 2) ≡ pl5(5n+ 4) (mod 5) (2.12)

pl5(5n+ 1) ≡ pl5(5n+ 3) (mod 5). (2.13)

�

We demonstrate the power of Theorem 2.4.1 by proving the first two identities as

follows.

Corollary 2.5.2. For all n ∈ N0,

pl3(3n+ 2) ≡ 0 (mod 3).

Proof. We apply Theorem 2.4.1 by specializing it to ` = 3, a1 = 2 and b1 = 5. It suffices to

show that

pl3(3n+ 2) ≡ pl3(3n+ 5) (mod 3) (2.14)

holds for all n ≥ 0 and that

pl3(2) ≡ 0 (mod 3).

By listing all plane partitions of 2 with parts in {1, 2, 3}, we find that pl3(2) = 3 ≡ 0 (mod 3).

Since
π3(F3(q))

3
=

3 · 2
3

= 2,

we need only check that (2.14) holds for all 0 ≤ n < 2. This is easily verified because

pl3(2) = 3 ≡ 0 (mod 3)

and

pl5(2) = 21 ≡ 0 (mod 3),

which completes the proof. �

Corollary 2.5.3. For n ∈ N0,

pl2(2n+ 1) ≡ pl2(2n) (mod 2).
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Proof. We specialize Theorem 2.4.1 to ` = 2, a1 = 1, b1 = 0. By Proposition 2.3.7, it suffices

to show that

pl2(2n+ 1) ≡ pl2(2n) (mod 2)

holds for all 0 ≤ n < π2(F2(q))
2

= 20

2
= 1

2
. Therefore, we compute pl2(2) and pl2(3) and check

that they are congruent modulo 2. By listing the relevant plane partitions, we find

pl2(2) = 1 pl2(3) = 5.

These are congruent modulo 2, and the claim holds. �
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Chapter 3

Modular Forms

3.1 Introduction

In 1919, Ramanujan [Ram19] initiated the study of partition number congruences by

discovering the so-called Ramanujan Congruences . A Ramanujan Congruence for a prime

` is the assertion that the integer partition function maps integers which lie in residue class

β (mod `) to 0 (mod `), for some β.

Ramanujan established the two identities∑
n≥0

p(5n+ 4)qn = 5

∏
i≥1(1− q5)5∏
i≥1(1− q)6

(3.1)

and ∑
n≥0

p(7n+ 6)qn = 7

∏
i≥1(1− q7)3∏
i≥1(1− q)4

(3.2)

in order to prove that for any n ∈ Z, p(5n+ 4) is divisible by 5 and p(7n+ 6) is divisible by

7, respectively.

Subsequently in [Ram21], Ramanujan found another method which allowed him to

deduce that p(11n+ 6) is divisible by 11 for all n. The method he used relied on functional

equations he derived from modular forms. Ramanujan conjectured that there are no such

congruences holding for primes other than 5, 7 and 11.

In 2003, Ahlgren and Boylan (here after referred to as AB) [AB03] were able to provide

a proof to this conjecture using the theory of modular forms. In this chapter, we introduce

modular forms and provide a summary of AB’s proof of Ramanujan’s Conjecture.
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3.2 Ramanujan Congruences

The existence of a Ramanujan congruence for a prime ` implies that the partition

function maps some linear sequence of integers with growth rate ` into the line y = `x.

Definition 3.2.1. For ` a prime and β ∈ Z, we say that

p(`n+ β) ≡ 0 (mod `) (3.3)

is a Ramanujan congruence if (3.3) holds for all n ∈ Z.

Ramanujan showed the following Ramanujan congruences for ` = 5, 7, 11:

p(5n+ 4) ≡ 0 (mod 5) (3.4)

p(7n+ 5) ≡ 0 (mod 7) (3.5)

p(11n+ 6) ≡ 0 (mod 11) (3.6)

Brendt [Ber07] presented proofs for (3.4), (3.5) and (3.6) relying on the theory of modular

forms. Although there are several mathematical statements which can be referred to as

Ramanujan’s Conjecture, in this chapter we will denote the following statement with this

name.

Conjecture 3.2.2 (Ramanujan’s Conjecture). Fix ` a prime. If

p(`n+ β) ≡ 0 (mod `)

is a Ramanujan congruence for some β ∈ Z, then ` ∈ {5, 7, 11}. Equivalently, equations

(3.4), (3.5) and (3.6) are the only Ramanujan congruences.

3.3 The Basics of Modular Forms

We begin by studying modular forms. The content and definitions in this section are

based on the work of Eric Bucher in [Buc10].

In order to define modular forms, we need to introduce modular groups and Dirichlet

characters. However, for our purposes we shall consider only the trivial Dirichlet character.
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Definition 3.3.1. We define the Special Linear Group SL2(Z) to be the group of 2 × 2

matrices over Z with unit determinant. That is,

SL2(Z) :=

{
A =

[
a b

c d

]
: a, b, c, d ∈ Z and det(A) = 1

}
.

We note that SL2(Z) is generated by two matrices

S :=

[
0 −1

1 0

]
and T :=

[
1 1

0 1

]
.

We let SL2(Z) act on the upper complex half-plane H := {z ∈ C : Im(z) > 0} by setting[
a b

c d

]
· z =

az + b

cz + d

for any z ∈ H and

[
a b

c d

]
∈ SL2(Z). We remark that in some literature, this action is

known as the Möbius transformation.

We recall that a complex-valued function f : S → C is said to be analytic on an open

set D ⊆ S if for any x0 ∈ D, we can write

f(x) =
∑
n≥0

an(x− x0)n

where a0, a1, . . . are all complex numbers and the series converges to f(x) for all x in some

nontrivial neighbourhood N ⊆ D of x0.

Definition 3.3.2. We say that a complex-valued function f : H → C is holomorphic on H
if it is analytic on H. If f is analytic at ∞ as well, then we say that f is holomorphic at ∞.

Dirichlet characters are studied throughout analytic number theory (see [Apo76]). They

are used to construct Dirichlet L-Functions which generalize the Riemann Zeta function and

hence appear extensively throughout the study of the generalized Riemann hypothesis.

For the sake of being thorough, we provide their definition here despite using only the

trivial Dirichlet character for our construction.
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Definition 3.3.3. A Dirichlet character χ is a function χ : Z→ C that satisfies the following

properties:

1. There exists k ∈ Z for which

χ(n) = χ(n+ k)

for all n ∈ Z. We call k the period of χ and we say that χ is a character to the modulus

k.

2. If gcd(n, k) > 1, then

χ(n) = 0.

Otherwise, if gcd(n, k) = 1, then

χ(n) 6= 0.

3. For all m,n ∈ Z,

χ(mn) = χ(m)χ(n).

4. χ(1) = 1.

5. If a ≡ b (mod k), then

χ(a) = χ(b).

6. If gcd(a, k) = 1, then χ(a) is a φ(k)th complex root of unity, where φ is Euler’s totient

function, which counts the number of positive integers less than some integer n that

are relatively prime to n.

We define the trivial Dirichlet character χ1 by

χ1(n) = 1

for all n ∈ Z and note that it is periodic with period 1.

Now, we relate these mathematical constructions to define a modular form.

Definition 3.3.4. We say that f : H → C is a modular form of weight k on SL2(Z) with

character χ if

27



1. The mapping f satisfies the functional equation

f(γ · z) = χ(d)(cz + d)kf(z) (3.7)

for all γ =

[
a b

c d

]
∈ SL2(Z) and z ∈ H,

2. f is holomorphic on H.

3. f is holomorphic at ∞.

The proof of Conjecture 3.2.2 relies on weakly modular forms.

Definition 3.3.5. We say that a modular form f of weight k is a weakly modular form of

weight k for SL2(Z) if f satisfies (3.7) with χ = χ1. That is,

f(γ · z) = (cz + d)kf(z) (3.8)

holds for all γ =

[
a b

c d

]
∈ SL2(Z).

Example 3.3.6. A good example of a modular form for SL2(Z) is ∆(z) which is defined by

∆(z) := q
∏
n≥1

(1− qn)24. (3.9)

One can verify that

∆

(
−1

z

)
= z12∆(z)

which in turn tells us that ∆(z) has weight 12.

Moreover, ∆ is related to the so-called Dedekind eta function η, which is defined by

η(z) := q
1
24

∏
n≥1

(1− qn).

We note that η(z) has an obvious relationship with the generating series of ordinary parti-

tions, since
1

η(z)
= q−

1
24

∑
n≥0

p(n)qn

which is often used in the literature in order to facilitate a connection between modular

forms and integer partitions (for instance, see [GO97], [CDJ+08]).
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We note that the set of all weakly modular forms of weight k forms a complex vector

space which we will denote by Mk.

We recall that a Fourier series is an expansion of a periodic function f(x) as an in-

finite summation of oscillating functions. In particular, any periodic function has such an

expansion. Here, we show that weakly modular functions have such expansions.

Lemma 3.3.7. If f is a weakly modular form, then f has a Fourier series expansion.

Proof. Since S and T generate SL2(Z), we can see that f satisfies (3.8) if and only if f

satisfies (3.8) for z = S, T . This is equivalent to

f(S · z) = f

(
0 · z − 1

1 · z + 0

)
= f

(
−1

z

)
= (1 · z + 0)kf(z)

= zkf(z)

and

f(T · z) = f

(
1 · z + 1

0 · z + 1

)
= f(z + 1)

= (0 · z + 1)kf(z)

= f(z).

Hence, we can conclude that f(z) satisfies (3.7) if and only if

f

(
−1

z

)
= zkf(z) (3.10)

and

f(z + 1) = f(z). (3.11)

In particular, (3.11) tells us that f is periodic and has period 1. Since modular functions

are periodic, we know that they have a Fourier series. Additionally, we know that they have

a Fourier series expansion at ∞ with the form

f(z) =
∑
n≥0

anq
n

where q := e2πiz. �
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Before we summarize AB’s proof of Conjecture 3.2.2 in the next section, we must first

introduce some of the machinery we will use.

In [AB03], the authors demonstrated the following striking property of primes ` which

have a Ramanujan congruence.

Proposition 3.3.8. For a prime ` and β ∈ Z, if

p(`n+ β) ≡ 0 (mod `)

holds for all n ∈ Z, then

24β ≡ 1 (mod `).

�

We can check that Proposition 3.3.8 agrees with the statement of Conjecture 3.2.2. For

instance, we can see that for ` = 5, β = 4 we have

24 · 4 = 96 ≡ 1 (mod 5),

for ` = 7, β = 5 we have

24 · 5 = 120 ≡ 1 (mod 7),

and when ` = 11, β = 6 we have

24 · 6 = 144 ≡ 1 (mod 11),

as asserted.

In proving Ramanujan’s Conjecture 3.2.2, [AB03] carefully examined the following func-

tions on prime numbers ` > 3.

Definition 3.3.9. For ` > 3 a prime, we define δ` by

δ` :=
`2 − 1

24

and f` by

f` := ∆δ`(z).

Clearly, if δ` ∈ Z, then δ` satisfies

24δ` ≡ `2 − 1 ≡ −1 (mod `).
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From Proposition 3.3.8, we see that

24δ` ≡ −1 ≡ 24β (mod `)

which allows us to conclude that δ` ≡ −β (mod `) because ` is a prime which does not divide

24.

Following [AB03], we now show that δ` is a nonnegative integer.

Proposition 3.3.10. If ` > 3 is a prime, then δ` ∈ N.

Proof. Consider `2 − 1 (mod 24). We seek to show that 24|`2 − 1 by showing that 8|`2 − 1

and 3|`2 − 1:

Since ` is an odd prime, we know that either ` ≡ 1 (mod 4) or ` ≡ 3 (mod 4).

If ` ≡ 1 (mod 4), then ` − 1 ≡ 0 (mod 4) and ` + 1 ≡ 2 (mod 4). This means that

4|`− 1 and 2|`+ 1 and so

8|(`− 1)(`+ 1) = `2 − 1.

Otherwise, if ` ≡ 3 (mod 4), we know ` − 1 ≡ 2 (mod 4) and ` + 1 ≡ 0 (mod 4). In

particular, this means that 2|`− 1 and 4|`+ 1 and thus allows us to conclude that

8|(`2 − 1).

Since gcd(3, 8) = 1, we only need to show now that 3|`2 − 1. Consider the consecutive

integers `− 1, `, `+ 1. Exactly one of these will be divisible by 3. Since ` is a prime greater

than 3, we know that 3 - `, and hence one of `−1 and `+1 is divisible by 3, which concludes

our proof. �

In their study of Ramanujan’s conjecture, [AB03] made use of several operators on the

set of all integer formal power series. We mention one in particular below as it shows up in

the study of m−ary partitions in Chapter 5 as well.

Definition 3.3.11. Let U` : Z[[q]]→ Z[[q]] be the operator defined by

U`

(∑
n≥0

anq
n

)
:=
∑
n≥0

a`nq
n.
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For the purposes of our summary, we will use the following nice factorization property

that is satisfied by U`:

Lemma 3.3.12. If an and bn are integer sequences, then

U`

[(∑
n≥0

anq
`n

)(∑
m≥0

bmq
m

)]
=

(∑
n≥0

anq
n

)(∑
m≥0

bm`q
m

)
.

Proof. We expand and compare coefficients:

U`

[(∑
n≥0

anq
`n

)(∑
m≥0

bmq
m

)]
= U`

∑
s≥0

 ∑
`n+m=s
n,m≥0

anbm

 qs


=
∑
s≥0

 ∑
`n+m=`s
n,m≥0

anbm

 qs

Since `n+m = `s and n,m ≥ 0 is equivalent to m = `k, for some k ≥ 0, we can rewrite our

summation as

∑
s≥0

 ∑
`n+m=`s
n,m≥0

anbm

 qs =
∑
s≥0

 ∑
`n+`k=`s
n,k≥0

anb`k

 qs

=
∑
s≥0

 ∑
n+k=s
n,k≥0

anb`k

 qs

=

(∑
n≥0

anq
n

)(∑
k≥0

b`kq
k

)
.

�

3.4 Classification of Ramanujan’s Congruence

Now, we outline AB’s proof of Conjecture 3.2.2. We omit several statements regarding

the reduction of modular forms modulo ` and instead emphasize the elegant mathematics

involved in their proof.

Theorem 3.4.1. Conjecture 3.2.2 is true.
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Proof. We let ` be a prime and we consider the three cases ` = 2, 3 or ` ≥ 5.

Case 1: Suppose ` = 2 and fix β ∈ Z. Using the division algorithm, we can write

β = 2 · n+ k

where k ∈ {0, 1} and n ∈ Z. Then

p(2(−n) + β) = p(k)

and since p(0) = p(1) = 1, we conclude p(k) 6≡ 0 (mod 2).

Case 2: Suppose ` = 3 and β ∈ Z. Once again, using the division algorithm, we find

β = 3 · n+ k

for some k ∈ {0, 1, 2} and n ∈ Z. Thus,

p(3(−n) + β) = p(k)

and because p(k) ∈ {p(0), p(1), p(2)} = {1, 2}, we see that p(k) 6≡ 0 (mod 3).

Case 3: Finally, we suppose that ` ≥ 5.

By Proposition 3.3.10, δ` ∈ N. Moreover, we see that {`n+ β : n ∈ N} = {`n− δ` : n ∈
N} as δ` ≡ −β (mod `).

Therefore, in order to prove Ramanujan’s conjecture, it is enough to show that if ` ≥ 13

is prime then ∑
n≥0

p(`n− δ`)qn 6≡ 0 (mod `).

We examine f` in detail:

f`(z) = qδ`
∏
n≥1

(1− qn)24δ`

≡ qδ`
∏
n≥1

(1− qn)`
2−1 (mod `)

= qδ`
∏
n≥1

(1− qn)`
2

(1− qn)
(mod `)
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as 24δ` ≡ `2 − 1 (mod `). Moreover, by the binomial theorem

qδ`
∏
n≥1

(1− qn)`
2

(1− qn)
≡ qδ`

∏
n≥1

(1− q`n)`
∏
n≥1

1

(1− qn)
(mod `)

= qδ`
∏
n≥1

(1− q`n)`
∑
n≥0

p(n)qn

=
∏
n≥1

(1− q`n)`
∑
n≥0

p(n− δ`)qn

If we apply U`, then by Lemma 3.3.12 we see that

U`(f`(z)) =
∏
n≥1

(1− qn)`
∑
n≥0

p(`n− δ`)qn. (3.12)

Therefore, it follows that ` gives a Ramanujan congruence if and only if

U`(f`(z)) ≡ 0 (mod `) (3.13)

holds. AB [AB03] demonstrated that (3.13) is equivalent to the assertion that

(δ` + 1)
`+3
2 ≡ 241 · δ

`+3
2

` (mod `).

We rewrite this as

(δ` + 1)

δ`

`+3
2

≡ 241 (mod `)

and then we simplify the left hand side by recalling that 24δ` ≡ −1 (mod `) to obtain

(δ` + 1)

δ`

`+3
2

= −24(δ` + 1) (mod `)

= (−24δ` − 24)
`+3
2

≡ (1− 24)
`+3
2 (mod `)

= (−23)
`+3
2

≡ 241.

In order to make use of Fermat’s Little Theorem, we write

`+ 3

2
= 2 +

`− 1

2
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and simplify

(−23)
`+3
2 = (−23)2(−23)

`−1
2

≡ 529 · (±1) (mod `) by Fermat’s Little Theorem

≡ 241 (mod `).

Therefore, we need to check for which values of ` we have

529 ≡ (±241) (mod `)

or equivalently, which primes ` satisfy either one of

529 + 241 = 770 = 2 · 5 · 7 · 11 ≡ 0 (mod `)

or

529− 241 = 288 = 25 · 32 ≡ 0 (mod `)

Since we excluded ` = 2 and ` = 3 in case 1 and case 2, we have demonstrated that ` must

be one of 5, 7 or 11. �
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Chapter 4

The Distribution of the Partition

Function

4.1 Introduction

In the previous chapter, we analyzed the Ramanujan congruences. In essence, they

stated that the partition function maps certain arithmetic progressions to 0 (mod `), for

certain primes `. Similar to this notion is the study of the distribution of the values of the

partition function modulo an integer m, not necessarily prime.

More specifically, we will be interested in the problem: given positive integer m, r and

X satisfying 0 ≤ r < m, how often is p(n) ≡ r (mod m) for n ∈ {1, 2, . . . , X}?

In this chapter we will present Newman’s conjecture [New60] regarding the distribution

of the partition function, an elementary proof of the ever-changing parity of the partition

function and recent progress pertaining to the odd-value density of the partition function

[JKZ15].

4.2 The Distribution of the Partition Function

In the 1960’s, Morris Newman [New60] studied distribution of the partition function

modulo an integer m. He was motivated by the belief that for all positive integers m, the

partition function values took on all residues in modulo m infinitely often, as in the following

conjecture.
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Conjecture 4.2.1 (Newman’s Conjecture). If m ∈ N and 0 ≤ r ≤ m− 1, then there is an

infinite sequence (a
(r)
n )n≥0 for which

p(a(r)n ) ≡ r (mod m)

holds for all n ≥ 0.

Newman showed that Conjecture 4.2.1 holds for m = 2 using a elegant algebraic argu-

ment. It relies on the following Lemma regarding formal power series.

Lemma 4.2.2. Fix m > 1 an integer and let (en)∞n=0, (cn)∞n=0 be sequences of integers such

that

lim
n→∞

en+1 − en =∞

and for all n ∈ N,

gcd(cn, cn+1, . . .) = 1, en ≥ en−1.

If we let f(q) be the generating series

f(q) :=
∑
n≥0

cnq
en ,

then there are no polynomials α(q), β(q) ∈ Z[q] for which α(q) = 1 and

f(q) ≡ β(q)/α(q) (mod m).

Proof. Suppose there are α(q) =
∑r

i=0 aiq
i, β(q) =

∑s
j=0 bjq

j ∈ Z[q] for which

f(q)α(q) ≡ β(q) (mod m),

where α(q) = 1. Fixing n ∈ N, we see that∑
ek≤n

ckan−ek ≡ bn (mod m)

and thus,

ben ≡
n∑
k=1

ckaen−ek (mod m)

= cn +
n−1∑
k=1

ckaen−ek (mod m)
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because a0 = 1. Since

lim
n→∞

en+1 − en =∞,

we know that there exists n0 for which

en − en−1 > r and en > s

holds for all n ≥ n0. However, this in turn implies that for n ≥ n0,

ben = 0 since β(q) is a polynomial

≡ cn +
n−1∑
k=1

ckaen−ek (mod m)

= cn +
n−1∑
k=1

ck · 0

= cn

as en − ek ≥ en − en−1 for all 1 ≤ k ≤ n − 1 and ai = 0 for i > r. Therefore, we find that

cn ≡ 0 (mod m) for all n ≥ n0. However, this means that

gcd(cn, cn+1, . . . , ) > 1

contradicting our hypothesis. �

Related to the notion of distribution in the context of Conjecture 4.2.1 is the ultimate

periodicity of a sequence. That is, the property that a sequence is eventually distributed

modulo m with recurrent pattern.

Definition 4.2.3. We say that a sequence (an)∞n=0 is ultimately periodic modulo m if there

are k, r ∈ N for which

al+r ≡ al (mod m)

holds for all l ≥ k. We say that r is a period of (an) modulo m with constant k. The smallest

r satisfying this criteria is known as the minimal period of (an) modulo m with constant k.

It follows immediately from the definition that if a sequence (an)n≥0 is not ultimately

periodic, then it takes on at least two values modulo m infinitely often. Newman [New60]

used Lemma 4.2.2 to demonstrate that p(n) is not ultimately periodic and thus takes on at

least two values in modulo m infinitely often. In particular, this proved that p(n) is odd

infinitely often and even infinitely often.
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Theorem 4.2.4. The sequence (p(n))n≥0 is not ultimately periodic (mod m) and conse-

quently takes on at least two different residue modulo m infinitely often.

In particular, Conjecture 4.2.1 holds for m = 2.

Proof. We know by the Pentagonal Number Theorem 1.2.13 that

∏
n≥0

(1− qn) =
∞∑

n=−∞

(−1)nq(3n
2+n)/2.

We write
∞∑

n=−∞

(−1)nq(3n
2+n)/2 =

∑
n≥0

gnq
en ,

where gn is as given by

gn =

(−1)k, if n =
k(3k ± 1)

2
,

0, otherwise.

Since (3n2 + n)/2 > 0 for all n ∈ Z, we see that

0 ≤ e0 < e1 < e2 < · · · .

Moreover, it is evident that

gcd(gn, gn+1, gn+1, . . .) = 1

as g` = ±1 infinitely often.

Thus, f(q) := 1/P (q) satisfies the hypothesis for Lemma 4.2.2 and we can conclude

that there are no α(q), β(q) ∈ Z[q] for which

f(q) =
α(q)

β(q)
.

But this also implies that there are no α(q), β(q) ∈ Z[q] for which

P (q) =
α(q)

β(q)
.
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If (pn)n≥0 is ultimately periodic modulo m with minimal period r and constant k, then

P (q) =
∑
n≥0

pnq
n

=
k∑

n=0

pnq
n +

k+r∑
n=k+1

pnq
n +

k+2r∑
n=k+r+1

pnq
n +

k+3r∑
n=k+2r+1

pnq
n + · · ·

≡
k∑

n=0

pnq
n +

k+r∑
n=k+1

pnq
n + qr

k+r∑
n=k+1

pn−rq
n−r + q2r

k+3r∑
n=k+2r+1

pn−2rq
n−2r + · · · (mod m)

=
k∑

n=0

pnq
n +

k+r∑
n=k+1

pnq
n

(
1

1− qr

)
.

If we denote by α(q) =
∑k

n=0 pnq
n and β(q) =

∑k+r
n=k+1 pnq

n, then

P (q) ≡ α(q) + β(q)
1

1− qr
(mod m)

=
1

1− qr
(α(q)(1− qr) + β(q)),

contradicting the fact that P (q) cannot be expressed as a rational function of two integer

polynomials. So, we conclude that p(n) is not ultimately periodic and hence its values take

on at least two residue classes infinitely often. �

For an alternative proof of the fact that p(n) is odd and even infinitely often, see

Kolberg’s work in [Kol59].

Moreover in [New60], Newman showed that Conjecture 4.2.1 holds for m = 5 and

m = 13 by exploiting congruences which were derived from the theory of elliptic modular

forms. Later on, Atkin [Atk68] verified Conjecture 4.2.1 for m = 7, 11 and m = 13

In [Ono00], K. Ono devised a groundbreaking tool for verifying if Conjecture 4.2.1 holds

for any arbitrary good prime.

Definition 4.2.5. We say that a prime m > 3 is a good prime if for all r ∈ {0, 1, . . . ,m−1}
there exists nr ∈ N0 such that mnr ≡ −1 (mod 24) and

p

(
mnr + 1

24

)
≡ r (mod m).
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Theorem 4.2.6. If m ≥ 5 is a good prime, then Conjecture 4.2.1 is true for m. Moreover,

for every residue class r modulo m, we have

#{0 ≤ n ≤ X : p(n) ≡ r (mod m)} �


√
X/ logX if 1 ≤ r ≤ m− 1

X if r = 0
.

�

Ono noted that although it appears likely that every prime m ≥ 13 is good, it is

computationally expensive to prove. He was able to use Theorem 4.2.6 in order to assert the

Corollary 4.2.7.

Corollary 4.2.7. Conjecture 4.2.1 holds for all good primes m < 1000 with the possible

exception of m = 3.

�

4.3 The Density of the Partition Function

When studying the distribution of a mathematical object, it is often natural to ask

questions about the density of the distribution. Before we examine the distribution of the

values of p(n) modulo an integer m, we introduce some essential terminology.

Definition 4.3.1. If m ∈ N and r ∈ {0, 1, . . . ,m− 1}, we denote by δr(m,X) the ratio

δr(m,X) =
#{0 ≤ n < X : p(n) ≡ r (mod m)}

X

for any X ∈ N.

Example 4.3.2. For instance, if we consider m = 2 and compute the first 12 values of p(n).

We see that δ0(2, 12) = 5/12 and δ1(2, 12) = 7/12.

The following conjecture is due to Ahlgren and Ono [AO01]:

Conjecture 4.3.3. The following are true.
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n p(n) p(n) (mod 2)

0 1 1

1 1 1

2 2 0

3 3 1

4 5 1

5 7 1

6 11 1

7 15 1

8 22 0

9 30 0

10 42 0

11 56 0

Table 4.1: Values of p(n) for 0 ≤ n < 12.

1. If 0 ≤ r < m, then the limit

lim
X→∞

δr(m,X) = δr(m)

exists and is in the interval (0,1).

2. If s ≥ 1 and m = 2s, then for all 0 ≤ i < 2s, we have

δi(2
s) =

1

2s
.

3. If s ≥ 1 and m = 3s, then for all 0 ≤ i < 3s, we have

δi(3
s) =

1

3s
.

4. If there is a prime ` ≥ 5 for which `|m, then for all 0 ≤ r < m we have

δr(m) 6= 1

m
.

�

The best known results that support Conjecture 4.3.3 may be found in [NRS98] and [Ahl99],

though they are still far from affirming the conjecture.
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4.3.1 The Density of the Odd Values of the Partition Function

The study of the odd-value density of the partition function dates back to Parkin and

Shanks in 1967 [PS67]. Their interest in this mathematical construct stemmed from Ramanu-

jan’s simple sufficiency condition for divisibility of the partition function: if n = 5k + 4, for

some k ∈ Z then 5|p(n).

Parkin and Shanks [PS67] computed the parity of the partition function p(n) for n up

to n = 2, 039, 999 empirically and conjectured that δ1 = 1
2
, where we utilize the notation

below.

Definition 4.3.4. We define the odd density of p(n) to be the quantity δ1, where

δ1 := lim
x→∞

#{n ≤ x : p(n) is odd}
n

.

Recall that for t ∈ N, we say that (λ1, . . . , λt) is a t-multipartition of an integer n if λi is an

integer partition for all i = 1, . . . , t and

|λ1|+ · · ·+ |λt| = n.

We use pt(n) to denote the number of t−multipartitions of n. We denote the odd density of

pt(n) to be the quantity δt where

δt := lim
x→∞

|{n ≤ x : pt(n) is odd}|
n

.

After conducting extensive computations, [JKZ15] Judge, Keith and Zanello (hereafter

referred to as JKZ) were led to believe the following.

Conjecture 4.3.5. The odd density of the partition function δ1 exists and is equal to 1/2.

Additionally, if t = 2kt0 ∈ N, where t0 is odd, then δt exists and equals

δt =
1

2k+1
.

In particular, they extended part 2 of Conjecture 4.3.3.

JKZ’s work [JKZ15] established a connection between δ1 and δt by showing that there

is an intricate relationship between p(n) and pt(n). In particular, consider the following

theorem.
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Theorem 4.3.6. If t ∈ {5, 7, 11, 13, 17, 19, 23, 25} and δt > 0, then δ1 > 0.

Moreover, if δt > 0, then δr > 0 holds for the following (t, r) pairs:

(27, 9), (9, 3), (25, 5), (15, 3), (21, 3), (27, 3).

In order to prove this connection, the JKZ established the following congruences using

modular forms.

Theorem 4.3.7. For (a, b, t) ∈ {(5, 4, 1), (7, 5, 1), (11, 6, 1), (13, 6, 1), (17, 5, 1), (19, 4, 1),

(23, 1, 1), (3, 2, 3), (5, 2, 3), (7, 1, 3), (5, 0, 5), (3, 0, 9)},

q
∑
n≥0

pt(an+ b)qn ≡ 1∏
i≥1(1− qi)at

+
1∏

i≥1(1− qai)t
(mod 2) (4.1)

and for (a, b, t) ∈ {(3, 8, 3), (5, 24, 1)},

q2
∑
n≥0

pt(a
2n+ b)qn ≡ 1∏

i≥1(1− qi)a
2t

+
1∏

i≥1(1− qai)at
+

q∏
i≥1(1− qi)t

. (4.2)

�

Theorem 4.3.7 allowed JKZ to prove that Theorem 4.3.6 holds through simple argu-

ments analogous to coefficient comparisons of two sides of a mathematical identitiy. For

instance, one can show that δ5 > 0 implies δ1 > 0 as follows:

Proof. Suppose that δ5 > 0 and that Theorem 4.3.7 holds in the case (5, 4, 1) so that

q
∑
n≥0

p(5n+ 4)qn ≡ 1∏
i≥1(1− qi)5

+
1∏

i≥1(1− q5i)
(mod 2). (4.3)

Since δ5 > 0, we know that 1∏
i≥1(1−qi)5

has a positive odd density. Therefore, the odd densities

of 1∏
i≥1(1−q5i)

and
∑

n≥0 p(5n+ 4)qn cannot both be zero.

We see that the odd density of P (q5) = 1∏
i≥1(1−q5i)

is equal to the odd density of P (q), and

hence it has odd density δ1. Since (5n+ 4)n≥0 is a subsequence of (n)n≥0, if it has a positive

density, then so must p(n). Thus, we conclude δ1 > 0. �

This technique can be generalized to other cases of (4.1) as well by recognizing that

pt(an + b) is a subprogression of of pt(n), 1∏
i≥1(1−qi)at

is Pat(q) the generating series for

at−multipartitions and 1∏
i≥1(1−qai)t

has the same density as P (q). We note that a similar

argument holds for congruences of the form of (4.2).

Moreover, these congruences allowed JKZ to show how one could test absurd hypotheses

in examinations of Conjecture 4.3.5, such as the Proposition 4.3.8 below.
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Proposition 4.3.8. If δ1 = 1, then δ5 = 4/5. In particular, the odd density of
∑

n≥0 p5(5n)q5n

is 0 and odd density of 1 among∑
n≥0

p5(5n+ 1)q5n+1,
∑
n≥0

p5(5n+ 2)q5n+2,
∑
n≥0

p5(5n+ 3)q5n+3,
∑
n≥0

p5(5n+ 4)q5n+4.

Proof. If δ1 = 1, then in (4.3), we find that since p(5n + 4) is a subprogression of p(n), it

will have odd density 1 as well. Similarly, P (q5) will also have odd density 1.

This means that the coefficients corresponding to multiples of 5 in P5(q) must have density

0. In particular, this means that {p5(5n)}n≥0 has odd density 0 and density 1 on all other

linear subprogressions, as needed. �
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Chapter 5

Enumerating m−ary Partitions

modulo a prime m

5.1 Introduction and History

A binary partition is a partition where every part is a power of 2. In the 1960’s,

Churchhouse investigated and made several conjectures concerning congruences of binary

partitions. In particular, he conjectured that if l ≥ 1, and l ≡ 1 (mod 2) then

b2(2
2k+2l) ≡ b(22kl)

(
mod 22k+2

)
and

b2(2
2k+1l) ≡ b(22k−1l)

(
mod 23k

)
where b2(n) is the number of binary partitions of n.

Shortly after Churchhouse published his conjectures regarding binary partitions congru-

ences ([Chu69]), other mathematicians proved and generalized his conjectures (see [Gup76],

[And71]).

In 2015, Andrews, Fraenkel and Sellers, hereafter referred to as AFS, were able to pro-

vide an elementary and ingenious proof to a generalization of Churchhouse’s conjectures

regarding binary partitions (see [AFS15]). More specifically, they introduced m−ary parti-

tons: integer partitions where the only allowed parts are powers of m, and then they found

an elegant closed-form expression for the residue class modulo m for each member of this

sequence. Their approach relied on simple manipulations of the generating series for m−ary

partitions and some basic tools from the theory of formal power series.
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Their result was remarkable for two reasons: it is a complete characterization of m−ary

partitions (mod m) which only depends on the base m representation of an integer and such

characterizations are extremely rare for integer partitions. It motivated other mathemati-

cians to study the distribution of m−ary partitions modulo m ([Edg16]). Moreover, Ekhad

and Zeilberger [EZ15] were able to generalize AFS’s approach to compute m−sections of any

formal power series satisfying a similar functional equation to that of m−ary partitions.

In [AFS16], Andrews, Fraenkel and Sellers were able to find similar congruence proper-

ties for a related class of m−ary partitions: those for which we use all powers of m as parts

up to some mk. This time, their approach for determining the residue class was to exploit a

congruence property derived from a recurrence relation.

In this chapter, we will illustrate AFS’s techniques for deriving their characterization

theorems. Afterwards, we will extend their results to a certain class of coloured m−ary

partitions.

5.2 m−ary Partitions modulo m

Definition 5.2.1. For m ≥ 2 an integer, we say that an integer partition is m-ary if all of

the parts are powers of m. We denote by bm(n) the number of m−ary partitions of n.

By considering the set of allowed parts for m−ary partitions in the context of Theorem

1.2.12, it is evident that the generating series for m−ary partitions Bm(q) is

Bm(q) :=
∏
j≥0

1

(1− qmj)
.

Moreover, it is obvious that Bm(q) satisfies the functional equation

Bm(qm)

(1− q)
= Bm(q). (5.1)

Now, we show that the values of (bm)m≥0 agree in tuples of m.

Lemma 5.2.2. For all r ∈ {1, . . . ,m− 1} and l ≥ 0, the coefficients bm(n) satisfy

bm(ml + r) = bm(ml).

Proof. Fix an arbitrary m−ary partition λ of ml. In order to construct a unique m−ary

partition of ml + r, we may add r parts of size 1 to λ.
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Conversely, let γ be an arbitrary partition of ml+r where r ∈ {1, . . . ,m−1} and ` ≥ 0.

We know that it has s parts of size 1 where s ≡ r (mod m) since it is the only way for the

partition to have size congruent to ml + r. In particular, since s ≥ r ≥ 1, we know that we

can remove r 1’s to obtain a unique m−ary partition of ml.

This gives us the desired bijection and concludes the proof. �

In order to prove their characterization theorem, the approach that AFS took made use

of the following elementary tools.

Lemma 5.2.3. For m ≥ 2, we have

1− qm

(1− q)2
≡

m∑
k=1

kqk−1 (mod m).

Proof. Formal differentiation of both sides of the geometric series gives us

d

dq

(
1

1− q

)
=

d

dq

(∑
k≥0

qk

)

which in turn implies that

1

(1− q)2
=
∑
k≥1

kqk−1.

So, if we multiply both sides by (1− qm), we find

(1− qm)

(1− q)2
= (1− qm)

∞∑
k=1

kqk−1

=
∑
k≥1

kqk−1 −
∑
k≥1

kqk+m−1

=
∑
k≥1

kqk−1 −
∑

k≥m+1

(k −m)qk−1

=
m∑
k=1

kqk−1 +
∑

k≥m+1

mqk−1

≡
m∑
k=1

kqk−1 (mod m).

�
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Lemma 5.2.4. If ζ is the m−th root of unity given by e2πi/m, then

m−1∑
k=0

1

1− ζkq
= m

(
1

1− qm

)
.

Proof. We expand and then use an elementary result regarding roots of unity:

m−1∑
k=0

1

1− ζkq
=

m−1∑
k=0

∑
r≥0

ζkrqr

=
∑
r≥0

qr
m−1∑
k=0

ζkr

=
∑
r≥0

qr
m−1∑
k=0

(
e2πi/m

)kr
In order to simplify this summation, we analyze what the contribution of the inner sum

is relative to the divisibility of r by m.

If m|r, then we write r = mj and

m−1∑
k=0

(
e

2πi
m

)kr
=

m−1∑
k=0

e2πikj

= m

as e2πi = 1.

Otherwise, if m - r, we write r = ms+ j where 0 < j < m and hence

m−1∑
k=0

(
e

2πi
m

)kr
=

m−1∑
k=0

e2πisk+
2πikj
m

=
m−1∑
k=0

e
2πikj
m

= 0

as the sum of all the m−th roots of unity is 0.

Therefore, when r is divisible by m, we find that the inner sum contributes m and

otherwise, it contributes 0. We can write this generating series in the form

m
∑
n≥0

qnm = m

(
1

1− qm

)
as needed. �

49



Next, we observe that Lemma 5.2.2 implies that in order to find (bm(n))∞n=0 (mod m) it

is sufficient to know (bm(mn))∞n=0 (mod m). Thus, it is natural to investigate the generating

series for bm(mn)n≥0.

Lemma 5.2.5. If Tm(q) :=
∑

n≥0 bm(mn)qn, then

Tm(q) =
1

1− q
Bm(q).

Proof. Let ζ = e2πi/m. Then

Tm(qm) =
∑
n≥0

bm(mn)qmn

=
1

m

(
Bm(q) +Bm(ζq) + · · ·+Bm(ζm−1q)

)
by Proposition 1.2.17

=
1

m

(∏
j≥0

1

1− qmj
+
∏
j≥0

1

1− ζmjqmj
+ · · ·+

∏
j≥0

1

1− ζ(m−1)mjqmj

)

=
1

m

(∏
j≥1

1

1− qmj

)(
m−1∑
k=0

1

1− ζkq

)

since ζk·m
j

= 1 holds for all j ≥ 1. Moreover, by Lemma 5.2.4

1

m

(∏
j≥1

1

1− qmj

)(
m−1∑
k=0

1

1− ζkq

)
=

1

m

(
m

1

1− qm
∏
j≥1

1

1− qmj

)
= Bm(q)

as needed to be shown. �

Finally, in their construction, AFS showed that the generating series Tm(q) is congruent

to a generating series they denoted by Um(q). This generating series made their characteri-

zation of bm(mn) clear.

Lemma 5.2.6. If Um(q) is the generating series

Um(q) :=
∞∏
j=0

(
1 + 2qm

j

+ 3q2m
j

+ · · ·+mq(m−1)m
j
)
,

then

Tm(q) ≡ Um(q) (mod m).
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Proof. We show algebraically that

1

Tm(q)
Um(q) ≡ 1 (mod m)

By Lemma 5.2.5, we know that

1

Tm(q)
Um(q) = (1− q)2

[∏
j≥1

(1− qmj)

]
Um(q)

≡ (1− q)2
[∏
j≥1

(1− qmj)

]∏
i≥0

1− qmj+1

(1− qmj)2

using Lemma 5.2.3. Finally, we can simplify

(1− q)2
[∏
j≥1

(1− qmj)

]∏
i≥0

1− qmj+1

(1− qmj)2
=
∏
j≥0

(1− qmj+1

)
∏
j≥1

1

1− qmj

= 1

as needed. �

Now, we have the tools available to prove the following characterization theorem.

Theorem 5.2.7. If n = a0 + a1m+ · · ·+ ajm
j in base m, then

bm(mn) ≡
j∏
i=0

(ai + 1) (mod m).

Proof. Lemma 5.2.6 tells us that

[qn]Tm(q) ≡ [qn]Um(q) (mod m).

In order to determine the coefficient

[qa0+a1m+···+ajmj ]
∏
i≥0

(
1 + 2qm

j

+ 3q2m
j

+ · · ·+mq(m−1)m
j
)

we note that by construction, it is enough to compute

[qa0+a1m+···+ajmj ]

j∏
i≥0

(
1 + 2qm

j

+ 3q2m
j

+ · · ·+mq(m−1)m
j
)

=

j∏
i=0

[qaim
i

]
(

1 + 2qm
j

+ 3q2m
j

+ · · ·+mq(m−1)m
j
)

=

j∏
i=0

(ai + 1)

as needed. �
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We offer an alternative proof for Theorem 5.2.7 by exploiting a congruence recurrence

relation that is satisfied by bm(mn) (see Theorem 5.4.8 in the case when k = 1).

5.3 m−ary Partitions Without Gaps

AFS were also able to give a characterization of a family of m−ary partitions satisfying

the property of not having gaps. The analysis still uses generating series heavily but with

a slightly different flavour. Here, the authors were able to exploit a recurrence relation to

prove their complete characterization of these partition numbers modulo m.

Definition 5.3.1. Fix λ an m−ary partition of n ∈ N. We say that λ is an m−ary partition

without gaps if λ satisfies the property

If mi is a part in λ, then so is mj for all 0 ≤ j ≤ i.

Example 5.3.2. For instance, when m = 2, the only two binary partitions without gaps of

4 are (1, 1, 1, 1) and (2, 1, 1). Note that (4) is not an binary partition without gaps of 4 as 2

and 1 do not appear as parts.

Lemma 5.3.3. The generating series Cm(q) for cm(n) is given by

Cm(q) = 1 +
∑
n≥0

q1+m+m2+···+mn

(1− q)(1− qm) · · · (1− qm2)
.

Proof. We decompose the set Cm of all m−ary partitions without gaps uniquely below.

Fix λ an m−ary partition without gaps. Let n be the unique maximal integer such

that mn is a part in λ. Since λ is without gaps, we know that {1,m, . . . ,mn} are all parts

in λ and hence

|λ| ≥ 1 +m+ · · ·+mn.

As n is maximal, it must be that λ only has parts from {1,m, . . . ,mn} and the number of

parts from each power of m in this set uniquely determines λ. �

Now, we show that that cm(n) also agree in m−tuples. Here, we show this combina-

torially but later, we offer an algebraic proof via the specialization of Lemma 5.4.15 to the

case k = 1.
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Lemma 5.3.4. For all r ∈ {0, 1, . . . ,m} and n ≥ 1,

cm(mn) = cm(mn− 1) = · · · = cm(mn− r).

Proof. Fix 0 ≤ r ≤ m − 1 and let λ be an arbitrary m−ary partition of mn without gaps

where n ≥ 1. Since the number of 1’s must be congruent to 0 and we have at least one part

of size 1, we know that λ has mk parts of size 1 for some k ≥ 1. So, if we remove r 1’s from

λ, we produce a unique partition of mn− r which is still m−ary and has no gaps.

Conversely, starting with an m−ary partition α of mn − r which has no gaps, if we

add r parts of size 1 then we construct a unique partition m−ary partition of mn without

gaps. �

This means that we can reduce the problem of computing cm(l) (mod m) to that of

computing cm(rm) (mod m) where rm is the rounding up of l to the nearest multiple of m.

Next, we use Cm(q) to compute the generating series for cm(mn)n≥0.

Lemma 5.3.5. The generating series for (cm(mn))n≥0 is given by∑
n≥0

cm(mn)qn = 1 +
q

1− q
Cm(q).

Proof. By Lemma 5.3.3, we have

Cm(q) = 1 +
∑
n≥0

q

1− q
qm+m2+···+mn

(1− qm) · · · (1− qmn)

= 1 +
q

1− q
+
∑
n≥1

q

1− q
qm+m2+···+mn

(1− qm) · · · (1− qmn)

where we interpret the three summands as the terms counting the trivial partition of 0,

trivial partitions where only parts are of size 1 and nontrivial partitions, respectively. Now,

if we were to only consider partitions where the sum of the parts is a multiple of m, we see

that ∑
n≥0

cm(mn)qmn = 1 +
qm

1− qm
+
∑
n≥1

qm

1− qm
qm+m2+···+mn

(1− qm) · · · (1− qmn)

as the number of 1’s must be a multiple of m. This can be expressed as∑
n≥0

cm(mn)qmn =
1

1− qm
+

qm

1− qm
(Cm(qm)− 1)

=
1

1− qm
− qm

1− qm
+

qm

1− qm
Cm(qm).
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Now, the claim follows by replacing qm by q and simplifying. �

The relationship between
∑

n≥0 cm(mn)qmn and Cm(q) allowed AFS to establish the

following recurrence.

Lemma 5.3.6. For n ≥ 1,

cm(mn) = cm(0) + cm(1) + · · ·+ cm(n− 1).

Proof. We extract coefficients using the series we found in Lemma 5.3.5

[qn]
∑
n≥0

cm(mn)qmn = [qn]1 +
q

1− q
Cm(q)

= [qn−1]
Cm(q)

1− q
= [qn−1]

∑
r≥0

qr
∑
k≥0

cm(k)qk

= cm(0) + cm(1) + · · ·+ cm(n− 1).

�

We use this recurrence to obtain a recurrence for cm(mn) modulo m.

Lemma 5.3.7. If n ≡ k (mod m), where 1 ≤ k ≤ m then

cm(mn) ≡ 1 + (k − 1)cm(n) (mod m).

Proof. By Lemma 5.3.6, we have

cm(mn) = cm(0) + cm(1) + · · ·+ cm(n− 1)

= cm(0) + cm(1) + · · ·+ cm(m) + cm(m+ 1) + · · ·+ cm(2m)

+ · · ·+ cm((j − 1)m+ 1) + · · ·+ cm((j − 1)m+m)

+ cm(mj + 1) + · · ·+ cm(mj + k − 1).

Taking into consideration Lemma 5.3.4, it becomes evident that reducing the above equality

modulo m gives to some cancellation. In particular, in Zm we know that m · i ≡ 0 (mod m)

for all i ∈ Zm and thus, the non vanishing terms from this reduction are

cm(mn) ≡ cm(0) + cm(mj + 1) + · · ·+ cm(mj + k − 1) (mod m)

≡ 1 + (k − 1)cm(mj) (mod m)

≡ 1 + (k − 1)cm(n) (mod m)

as needed. �
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Next, we prove that the residue class of cm(k) is invariant with respect to multiplication

of k by m2.

Lemma 5.3.8. For all n ≥ 0,

cm(m3n) ≡ cm(mn) (mod m).

Proof. We apply Lemma 5.3.7 several times:

cm(m3n) = cm(m(m2n))

≡ 1 + (m− 1)cm(m2n) (mod m)

≡ 1 + (m− 1)cm(m(mn)) (mod m)

≡ 1 + (m− 1)(1 + (m− 1)cm(mn)) (mod m)

= 1 + (m− 1) + (m− 1)2cm(mn)

= m+ (m2 − 2m+ 1)cm(mn) (mod m)

≡ cm(mn) (mod m).

�

Lemma 5.3.8 is instrumental in the case analysis that is considered when proving AFS’s

characterization theorem, which is carried out below.

Theorem 5.3.9. If n =
∑

i≥j αim
i in base m, then

cm(mn) ≡

αj + (αj − 1)
∑

i≥j+1 αj+1 · · ·αi (mod m) j even

1− αj − (αj − 1)
∑

i≥j+1 αj+1 · · ·αi (mod m) j odd

Proof. Since we assume mn =
∑

i≥j αim
j+1, we are able to divide the argument of cm(mn)

by m2 iteratively while j + 1 ≥ 3 using Lemma 5.3.8. This means that we have two cases to

consider, based on the parity of j.

Case 1: j is even.

Without loss of generality, j = 0. Therefore, we can write

n = α0 + a1m+ · · ·+ αkm
k (5.2)

and hence n ≡ a0 (mod m). By Lemma 5.3.7:

cm(mn) ≡ 1 + (α0 − 1)cm(α0 + α1m+ · · ·+ αkm
k) (mod m).
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As m > α0 ≥ 1, we can replace α0 by m due to Lemma 5.3.4:

≡ 1 + (α0 − 1)cm((α1 + 1)m+ α2m
2 + · · ·+ αkm

k)

≡ 1 + (α0 − 1)cm(m(α1 + 1 + α2m+ · · ·+ αkm
k−1)) (mod m)

≡ 1 + (α0 − 1)(1 + α1cm((a1 + 1) + α2m+ · · ·+ akm
k−1)) (mod m)

if we repeat the process of applying Lemma 5.3.4 and Lemma 5.3.7 and simplifying until

αi = 0 for i minimal, we obtain

cm(mn) ≡ α0 + (α0 − 1)
∑
i≥j

α1α2 · · ·αi (mod m).

This is because when αi = 0, we see that by Lemma 5.3.7

cm(m(αi + 1 + αi+1m+ · · ·+ αkm
k−i)) ≡ 1 + (1− 1)cm((αi + 1 + αi+1m+ · · ·+ αkm

k−i)) (mod m)

≡ 1 (mod m)

Case 2: j is odd.

Without loss of generality, we can then assume j = 1. Therefore, we know that

n ≡ m (mod m)

and hence

cm(mn) = 1− cm(n) (mod m)

= 1− cm(m
k∑
j≥0

αj+1m
j)

and then we apply our analysis from the first case j = 0 to

n′ =
∑
j≥0

αj+1m
j

and we get the desired result. �

5.4 Colouring m−ary Partitions

5.4.1 Allowing Gaps

In this section, we provide a partial generalization to the work of AFS in [AFS15] by

allowing the colouring of the parts of m−ary partitions with respect to two rules. This work
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is due to the author of the thesis and his supervisor Ian Goulden. We first suppose that m

is a prime and k ∈ N where k < m. We give a complete characterization of the number of

m−ary partitions where the parts of size mi for i ≥ 1 are coloured by any one of k fixed

colours. Later, we will introduce a new variable k1 which denotes the number of colours we

have available for the units and consider m−ary partitions where the units are coloured by

k1 colours and the other powers of m are coloured by k colours.

Definition 5.4.1. Fix m a prime number and k < m a positive integer. Let b
(k)
m (n) denote

the number of m−ary partitions of n where the set of parts allowed is

{1,mi
(j) : j ∈ {1, . . . , k} and i ≥ 1}

where mi
(j) is a part of size mi coloured by j.

We denote by B
(k)
m (q) the generating series

B(k)
m (q) :=

∑
n≥0

b(k)m (n)qn,

and note that

B(k)
m (q) :=

1

1− q
∏
i≥1

1

(1− qmi)k

by Theorem 1.2.12. These coefficients agree in m−tuples, in the same fashion as their bm(n)

counterparts (see Lemma 5.2.2).

Lemma 5.4.2. For all r ∈ {1, . . . ,m− 1} and l ≥ 0, the coefficients b
(k)
m (n) satisfy

b(k)m (ml + r) = b(k)m (ml).

Proof. We provide a combinatorial proof. Given any partition counted by b
(k)
m (ml), we can

add r parts of size 1 in order to construct a unique partition of b
(k)
m (ml + r).

Now, since the 1 is the only part in our set of parts allowed which is not a multiple

of m, we know that any m−ary partition of ml + r will have number of 1′s congruent to

r (mod m). �

Lemma 5.4.2 tells us that the problem of classifying b
(k)
m (l) (mod m) is equivalent to the

problem: For any fixed n ≥ 0, what is b
(k)
m (mn) (mod m)?
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We attack this problem by studying the generating series Φ
(k)
m (q) defined by

Φ(k)
m (q) :=

∑
n≥0

b(k)m (mn)qn.

First, we establish the following relationship between Φ
(k)
m (q) and B

(k)
m (q).

Lemma 5.4.3. For all m, k ∈ N, Φ
(k)
m (q) satisfies

Φ(k)
m (q) =

B
(k)
m (q)

(1− q)k
.

Proof. We observe that every m−ary partition of mn must have number of 1’s which is a

multiple of m. As this is the only restriction on the parts of a partition enumerated by

Φ
(k)
m (qm), we conclude

Φ(k)
m (qm) =

1

1− qm
1

(1− qm)k
1

(1− qm2)k
· · ·

=
1

1− qm
∏
i≥1

1

(1− qmi)k

=
B

(k)
m (qm)

(1− qm)k
.

and therefore the result follows by replacing qm by q. �

Now, we can use Lemma 5.4.3 to deduce the following recurrence relation.

Lemma 5.4.4. For all n ∈ N, b
(k)
m (mn) satisfies the recurrence

b(k)m (mn) =
n∑
l=0

(
k + l − 1

k − 1

)
b(k)m (n− l)

Proof. Suppose n = jm+ p, wherep ∈ Zm. Then by Lemma 5.4.3

b(k)m (mn) = [qn]Φ(k)
m (q) = [qn]

B
(k)
m (q)

(1− q)k

= [qn]
∑
l≥0

(
k + l − 1

k − 1

)
ql
∑
r≥0

b(k)m (r)qr

=
n∑
l=0

(
k + l − 1

k − 1

)
b(k)m (n− l).

�
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In order to simplify this recurrence in Zm, we establish two elementary lemmas.

Lemma 5.4.5. Given any n ∈ N, if m is a prime and k < m then we have(
n+m

k

)
≡
(
n

k

)
(mod m).

Proof. We can write the binomial coefficients as follows(
n+m

k

)
=

(n+m)(n+m− 1) · · · (n+m+ 1− k)

k!
.

Since m is prime and k < m, we know that 1/k! exists and the problem becomes equivalent

to showing

(n+m)(n+m− 1) · · · (n+m+ 1− k) ≡ n(n− 1) · · · (n+ 1− k) (mod m).

This follows immediately from the fact that n+ j ≡ n+m+ j (mod m) holds for all j. �

Lemma 5.4.6. For any i, j, n ∈ N,

n∑
j=0

(
i+ j

i

)
=

(
n+ i+ 1

i+ 1

)
.

Proof. Through repeated application’s of Pascal’s Identity, we have

n∑
j=0

(
i+ j

i

)
=

(
i

i

)
+

(
i+ 1

i

)
+ · · ·+

(
n− 1 + i

i

)
+

(
n+ i

i

)
=

(
i+ 1

i+ 1

)
+

(
i+ 1

i

)
+ · · ·+

(
n+ i

i

)
=

(
i+ 2

i+ 1

)
+

(
i+ 2

i

)
+ · · ·+

(
n+ i

i

)
...

=

(
n+ i

i+ 1

)
+

(
n+ i

i

)
=

(
n+ i+ 1

i+ 1

)
�

Now, we have the tools necessary to find the recurrence that b
(k)
m (mn) satisfies (mod m).
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Lemma 5.4.7. If n = jm+ p ≥ 0, where p ∈ Zm, then

b(k)m (mn) ≡
(
p+ k

k

)
b(k)m (n) (mod m).

Proof. From Lemma 5.4.4, we find that

b(k)m (mn) =
n∑
l=0

(
k + l − 1

k − 1

)
b(k)m (n− l)

≡
j−1∑
i=0

b(k)m (im)

[
n∑

s=n−m+1

(
s+ k − 1

k − 1

)]
+ b(k)m (jm)

p∑
s=0

(
s+ k − 1

k − 1

)
(mod m)

by Lemma 5.4.5. Moreover, using Lemma 5.4.6, we see that we can express the binomial

summation in the left summand as a difference of binomial coefficients to get

b(k)m (mn) ≡
j−1∑
i=0

b(k)m (im)

[(
n+ k

k

)
−
(
n−m+ k

k

)]
+ b(k)m (jm)

(
p+ k

k

)
(mod m)

and finally using Lemma 5.4.5 and Lemma 5.4.2, we may conclude

b(k)m (mn) ≡ b(k)m (n)

(
p+ k

k

)
(mod m).

�

This allows us to prove the following characterization of the number of m−ary partitions

where every part after the first can utilize any one of k colours.

Theorem 5.4.8. If n = a0 + a1m+ · · ·+ ajm
j in base m, then

b(k)m (mn) ≡
j∏
i=0

(
ai + k

k

)
(mod m).

Proof. We provide an inductive proof on the parameter j.

Base case: If n = a0, then

b(k)m (ma0) ≡
(
a0 + k

k

)
b(k)m (a0) (mod m)

=

(
a0 + k

k

)
since b

(k)
m (a0) = 1 for all a0 ∈ Zm.
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Now, suppose that the result holds for some j fixed and all a0, a1, . . . , aj ∈ {0, 1, . . . ,m−
1}. If aj+1 ∈ {0, 1, 2, . . . ,m− 1} is fixed arbitrarily, then by Lemma 5.4.7, we have

b(k)m (mn) ≡
(
a0 + k

k

)
b(k)m (a0 + a1m+ · · ·+ aj+1m

j+1) (mod m)

=

(
a0 + k

k

)
b(k)m (a1m+ · · ·+ aj+1m

j+1) Lemma 5.4.2

≡
(
a0 + k

k

) j+1∏
i=1

(
ai + k

k

)
(mod m) inductive hypothesis

as needed. �

If we let s = mkn where n is the m−free part of s, Theorem 5.4.8 tells us that b
(k)
m (ms) ≡

b
(k)
m (mn) (mod m).

Corollary 5.4.9. : For all r ∈ N,

b(k)m (mrn) ≡ b(k)m (mn) (mod m).

Proof. Suppose n = a0 + a1m+ · · ·+ ajm
j in base m. By Theorem 5.4.8,

b(k)m (mn) ≡
j∏
i=0

(
ai + k

k

)
(mod m).

Now, we inspect the base m representation of mr−1n for a fixed r ∈ N and find

mr−1n = 0 + 0 ·m+ · · ·+ 0 ·mr−2 + a0m
r−1 + a1m

r + · · ·+ ajm
j+r−1.

Next, we use Theorem 5.4.8 again to compute b
(k)
m (mr−1n) and find

b(mrn) ≡

[
r∏
s=0

(
0 + k

k

)][ j∏
i=0

(
ai + k

k

)]
(mod m)

≡

[
j∏
i=0

(
ai + k

k

)]
(mod m)

≡ b(k)m (mn) (mod m),

as needed. �

Now, we generalize our result further by allowing the colouring of the parts of size 1 as

well.
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Definition 5.4.10. Let b̃
(k1,k)
m (`) be the number of m−ary partitions of l where we have k1

colours available for parts of size 1 and k colours available for the rest of the parts.

Using our results regarding b
(k)
m (mn), we will give a complete characterization of b̃

(k1,k)
m (`)

modulo m for any ` ∈ N. In particular, our characterization depends on two variables: the

residue class of ` modulo m and the base m representation of the quotient in the division of

` by m.

With this in mind, we suppose ` = mn + a0 = a0 + a1m + · · · + aj+1m
j+1 in base m.

Let Φ
(k1,k)
m (q) denote the generating series

Φ(k1,k)
m (q) :=

∑
n≥0

b̃
(k1,k)
m (mn+ a0)q

mn+a0 .

Since the number of parts in a partition enumerated by Φ
(k1,k)
m (q) is congruent to a0 modulo

m, it follows that

Φ(k1,k)
m (q) =

∑
n≥0

(
k1 + nm+ a0 − 1

k1 − 1

)
qmn+a0

∏
i≥1

1

(1− qmi)k
. (5.3)

Now, we introduce and prove our b̃
(k1,k)
m characterization.

Corollary 5.4.11. For any 0 ≤ a0 ≤ m − 1, if l = mn + a0 = a0 + a1m + · · · + aj+1m
j+1

then

b̃
(k1,k)
m (l) ≡

(
k1 + a0 − 1

k1 − 1

) j+1∏
i=1

(
ai + k

k

)
(mod m).

Proof. We apply Lemma 5.4.5 to conclude∑
n≥0

(
k1 + nm+ a0 − 1

k1 − 1

)
qmn+a0 ≡

∑
n≥0

(
k1 + a0 − 1

k1 − 1

)
qmn+a0 (mod m).

So, (5.3) modulo m is

Φ(k1,k)
m (q) ≡

∑
n≥0

(
k1 + a0 − 1

k1 − 1

)
qmn+a0

∏
i≥1

1

(1− qmi)k
(mod m)

=

(
k1 + a0 − 1

k1 − 1

)
qa0

(1− qm)

∏
i≥1

1

(1− qmi)k
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If we compare coefficients, we find that

b̃
(k1,k)
m (mn+ a0) = [qmn+a0 ]Φ(k1,k)

m (q)

≡ [qmn+a0 ]

(
k1 + a0 − 1

k1 − 1

)
qa0

(1− qm)

∏
i≥1

1

(1− qmi)k
(mod m)

=

(
k1 + a0 − 1

k1 − 1

)
[qmn]

1

1− qm
∏
i≥1

1

(1− qmi)k

=

(
k1 + a0 − 1

k1 − 1

)
b(k)m (mn)

≡
(
k1 + a0 − 1

k1 − 1

) j+1∏
i=1

(
ai + k

k

)
(mod m),

by Theorem 5.4.8. �

5.4.2 Coloured m-ary Partitions with No Gaps Allowed

In this section, we extend the results of AFS regarding m−ary partitions without gaps

by introducing colours to the parts.

Definition 5.4.12. Fix m a prime and k < m a positive integer. Let r
(k)
m (l) denote the

number of m−ary partitions λ of l satisfying the two conditions

1. If mi is a part appearing in λ, then mk is a part in λ for every 0 ≤ k ≤ i− 1.

2. With the exception of the 1’s, every part is coloured using one of k colours.

We denote by R
(k)
m (q) :=

∑
l≥0 r

(k)
m (l)ql the generating series for r

(k)
m (l) and see that

R(k)
m (q) = 1 +

q

1− q
+
∑
n≥1

q

1− q

[
1

(1− qm)k
− 1

]
· · ·
[

1

(1− qmn)k
− 1

]
. (5.4)

Moreover, one sees that the generating series for the multisection Ψ
(k)
m (qm) :=

∑
l≥0 r

(k)
m (ml)qml

of R
(k)
m (q) is given by

Ψ(k)
m (qm) = 1 +

qm

1− qm
+
∑
n≥1

qm

1− qm

[
1

(1− qm)k
− 1

]
· · ·
[

1

(1− qmn)k
− 1

]
. (5.5)

Now, we express Ψ
(k)
m (q) in terms of R

(k)
m (q).

63



Lemma 5.4.13. Ψ
(k)
m (q) satisfies the functional equation

Ψ(k)
m (q) =

1

1− q
+
[
R(k)
m (q)− 1

] [ 1

(1− q)k
− 1

]
.

Proof. Replacing qm by q in (5.5) gives us

Ψ(k)
m (q) =

1

1− q
+

q

1− q
∑
n≥1

n∏
j=1

[
1

(1− qmj−1)k
− 1

]

=
1

1− q
+

q

1− q
∑
n≥1

n−1∏
j=0

[
1

(1− qmj)k
− 1

]
.

Hence, we have

(
Ψ(k)
m (q)− 1

1− q

)
=

q

1− q

[
1

(1− q)k
− 1

]{
1 +

∑
n≥1

n∏
j=1

[
1

(1− qmj)k
− 1

]}

=

[
1

(1− q)k
− 1

]{
q

1− q
∑
n≥1

n∏
j=1

[
1

(1− qmj)k
− 1

]
+

q

1− q

}
.

By (5.4), we know that

R(k)
m (q)− 1

1− q
=

q

1− q
∑
n≥1

n∏
j=1

[
1

(1− qmj)k
− 1

]

which by substitution gives us(
Ψ(k)
m (q)− 1

1− q

)
=

[
1

(1− q)k
− 1

](
R(k)
m (q)− 1

1− q
+

q

1− q

)
=

[
1

(1− q)k
− 1

] (
R(k)
m (q)− 1

)
.

�

Next, we make use of Lemma 5.4.13 to derive a recurrence for r
(k)
m (mn).

Lemma 5.4.14. For all n ≥ 1,

r(k)m (mn) = 1 +
n−1∑
l=1

r(k)m (l)

(
n− l + k − 1

k − 1

)
.
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Proof. By extracting coefficients of Lemma 5.4.13,

[qn]Ψ(k)
m (q) = [qn]

1

1− q
+ [qn]

[
R(k)
m (q)− 1

] [ 1

(1− q)k
− 1

]
= 1 + [qn](R(k)

m (q)− 1)
∑
s≥1

(
s+ k − 1

k − 1

)
qs

= 1 + [qn]
∑
l≥1
s≥1

r(k)m (l)

(
s+ k − 1

k − 1

)
qs+l

= 1 +
n−1∑
l=1

r(k)m (l)

(
n− l + k − 1

k − 1

)
�

Next, we show that the sequence r
(k)
m (l) comes in m−tuples for ` ≥ 1. To do so

algebraically, we look to express R
(k)
m (q) in terms of Ψ

(k)
m (qm).

Lemma 5.4.15. The relationship between R
(k)
m (q) and Ψ

(k)
m (qm) is given by

R(k)
m (q) =

q

(1− q)
(1− qm)

qm
Ψ(k)
m (qm)− (q1−m + q2−m + · · ·+ q−1).

Proof. Using (5.4) and (5.5), we find that(
R(k)
m (q)− 1

(1− q)

)
(1− q)
q

=

(
Ψ(k)
m (qm)− 1

(1− qm)

)
(1− qm)

qm

R(k)
m (q)− 1

(1− q)
= Ψ(k)

m (qm)
(1− qm)

(1− q)
q1−m − q1−m

(1− q)

R(k)
m (q) = Ψ(k)

m (qm)
(1− qm)

(1− q)
q1−m +

(1− q1−m)

(1− q)
,

as needed. �

Lemma 5.4.16. For all n ≥ 1,

r(k)m (mn) = r(k)m (mn− 1) = r(k)m (mn− 2) = · · · = r(k)m (mn− (m− 1)).
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Proof. If 0 ≤ r ≤ m− 1, then by Lemma 5.4.15 we have

r(k)m (mn− r) = [qmn−r]R(k)
m (q)

= [qmn−r]
q

(1− q)
(1− qm)

qm
Ψ(k)
m (qm)− (q1−m + q2−m + · · ·+ q−1)

= [qmn−r]q1−m(1 + q + q2 + · · ·+ qm−1)
∑
n≥0

r(k)m (mn)qmn − (q1−m + q2−m + · · ·+ q−1)

= [qmn−r](1 + q−1 + q−2 + · · ·+ q1−m)
∑
n≥0

r(k)m (mn)qmn

= r(k)m (mn)

�

Now, we utilize Lemma 5.4.16 to derive a recurrence for r
(k)
m (mn) modulo m.

Lemma 5.4.17. If n = jm+ p and 0 ≤ p ≤ m− 1, then

r(k)m (mn) ≡ 1 + r(k)m (n)

[(
p+ k − 1

k

)
− 1

]
(mod m).

Proof. By Lemma 5.4.15, we know that

r(k)m (mn) = 1 +
n−1∑
l=1

r(k)m (l)

(
n+ k − 1− l

k − 1

)

= r(k)m (0) + r(k)m (m)

[
m∑
s=1

(
n+ k − 1− s

k − 1

)]
+ · · ·

+ r(k)m (jm)

 jm+p−1∑
s=(j−1)m+1

(
n+ k − 1− s

k − 1

)
= 1 + r(k)m (m)

[(
n+ k − 1

k

)
−
(
n−m+ k − 1

k − 1

)]
+

· · ·+ r(k)m (jm)

[(
n+ k − 1− jm

k

)
−
(
n+ k − 1− jm− (p− 1)

k

)]
by Lemma 5.4.6. Now, by Lemma 5.4.5, we have

r(k)m (mn) ≡ 1 + r(k)m (m) · 0 + · · ·+ r(k)m (jm)

[(
p+ k − 1

k

)
−
(
k

k

)]
(mod m)

= 1 + r(k)m (n)

[(
p+ k − 1

k

)
− 1

]
.

�
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Next, we show that r
(k)
m satisfies an analogous reduction as in the case when k = 1 in

Lemma 5.3.8.

Lemma 5.4.18. If n ≥ 1, then

r(k)m (m3n) ≡ r(k)m (mn) (mod m).

Proof.

r(k)m (m3n) = r(k)m (m(m2n))

≡ 1 + r(k)m (m2n)

[(
k − 1

k

)
− 1

]
(mod m) Lemma 5.4.17

≡ 1− r(k)m (m2n) (mod m)

≡ 1−
(

1 + r(k)m (mn)

[(
0 + k − 1

k

)
− 1

])
(mod m) Lemma 5.4.17

≡ 1− (1− r(k)m (mn)) (mod m)

= r(k)m (mn) (mod m)

�

Lemma 5.4.18 is essential to our characterization of r
(k)
m (mn) (mod m) as it simplifies

the proof to the analysis of two simple cases.

Theorem 5.4.19. If n =
∑

i≥t αim
i in base m where αt 6= 0 and s is smallest such that

αs = 0, we have

r(k)m (mn) ≡



(
αt + k − 1

k

)
+

[(
αt + k − 1

k

)
− 1

] t+s−1∑
i=t+1

i∏
j=1

[(
αt+j + k

k

)
− 1

]
t even

1−
(
αt + k − 1

k

)
−
[(
αt + k − 1

k

)
− 1

] t+s−1∑
i=t+1

i∏
j=1

[(
αt+j + k

k

)
− 1

]
t odd

Proof. Suppose n = α0 + α1m + · · · + αlm
l where α0 6= 0. Using Lemma 5.4.16, we can

compute r
(k)
m (mn) as follows:

r(k)m (mn) ≡ 1 +

[(
α0 + k − 1

k

)
− 1

]
r(k)m (α0 + α1m+ · · ·+ αlm

l) (mod m)

≡ 1 +

[(
α0 + k − 1

k

)
− 1

]
r(k)m (m(1 + α1 + · · ·+ αlm

l−1)) (mod m)
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by replacing α0 by m and applying Lemma 5.4.16. Now, we have

r(k)m (mn) ≡ 1 +

[(
α0 + k − 1

k

)
− 1

](
1 +

[(
α1 + 1 + k − 1

k

)
− 1

]
r(k)m (1 + α1 + · · ·+ αlm

l−1)

)
by Lemma 5.4.17. So, we see that

r(k)m (mn) ≡
(
α0 + k − 1

k

)
+

[(
α0 + k − 1

k

)
− 1

] [(
α1 + k

k

)
− 1

]
r(k)m (m(1 + α2 + · · ·+ αlm

l−2)).

We repeat this process iteratively and find that r
(k)
m (mn) (mod m) has an expansion of the

form

r(k)m (mn) ≡
(
α0 + k − 1

k

)
+

[(
α0 + k − 1

k

)
− 1

] s−2∑
i=1

i∏
j=1

[(
αj + k

k

)
− 1

]

+

(
s−1∏
j=1

[(
αj + k

k

)
− 1

])
r(k)m (m(1 + αs + αs+1m+ · · ·+ αlm

l−s)).

If s is smallest index for which αs = 0, then from Lemma 5.4.17

r(k)m (m(1 + αs + · · ·+ αlm
l−s)) ≡ 1 +

[(
1 + αs + k − 1

k

)
− 1

]
r(k)m (1 + αs + · · ·+ αlm

l−s)

≡ 1

and hence our computation stops and we may conclude

r(k)m (mn) ≡
(
α0 + k − 1

k

)
+

[(
α0 + k − 1

k

)
− 1

] s−1∑
i=1

i∏
j=1

[(
αj + k

k

)
− 1

]
(mod m).

We suppose n has the base m representation

n = αtm
t + αt+1m

t+1 + · · ·+ αlm
l,

where αt 6= 0. Then

n = αtm
t + αt+1m

t+1 + · · ·+ αlm
l

= mt(αt + αt+1m+ · · ·+ αlm
l−t)

and so

mn = mt+1(αt + αt+1m+ · · ·+ αlm
l−t).

We can use Lemma 5.4.18 to break this down into the case analysis of the parity of t.
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Case 1: Suppose t is even. In this case, we know that

r(k)m (m(αt + αt+1m+ · · ·+ αlm
l−t)) ≡ r(k)m (m2 ·m(αt + αt+1m+ · · ·+ αlm

l−t))

≡ r(k)m (m4 ·m(αt + αt+1m+ · · ·+ αlm
l−t))

...

≡ r(k)m (mt ·m(αt + αt+1m+ · · ·+ αlm
l−t))

= r(k)m (mn),

and therefore, we can use our prior analysis to conclude

r(k)m (mn) ≡ r(k)m (m(αt + αt+1m+ · · ·+ αlm
l−t))

≡
(
αt + k − 1

k

)
+

[(
αt + k − 1

k

)
− 1

] t+s−1∑
i=t+1

i∏
j=1

[(
αt+j + k

k

)
− 1

]
where t+ s is the first index for which αt+s = 0.

Case 2: Suppose t is odd. Then without loss of generality, by Lemma 5.4.18 we assume

that t = 1. Thus, we see that

r(k)m (mn) ≡ r(k)m (m(0 + αtm+ αt+1m
2 + · · ·+ αlm

l−t+1))

≡ 1 +

[(
k − 1

k

)
− 1

]
r(k)m (m(αt + αt+1m

2 + · · ·+ αlm
l−t))

≡ 1− r(k)m (m(αt + αt+1m
2 + · · ·+ αlm

l−t))

≡ 1−
(
αt + k − 1

k

)
−
[(
αt + k − 1

k

)
− 1

] t+s−1∑
i=t+1

i∏
j=1

[(
αt+j + k

k

)
− 1

]
where again, we suppose t+ s is the first index for which αt+s = 0.

�

This result is notable because it states we can determine r
(k)
m (mn) (mod m) solely from

the base m representation of n. In fact, we need only know the parity of the first block

of zeros in the representation of n and the first nonzero block of n in order to compute

r
(k)
m (mn) (mod m).

Next, we generalize to the case where parts of size 1 have k1 colours available.
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Definition 5.4.20. Let r̃
(k1,k)
m (mn + p) is the number of m−ary partitions without gaps

where 1 has k1 colours available and k colours are available for the rest.

Corollary 5.4.21. If n ≥ 1 and p ∈ Zm, then

r̃
(k1,k)
m (mn+ p) ≡

(
k1 + p− 1

k1 − 1

)
r(k)m (m(n− 1)) (mod m).

Proof. We investigate
∑

n≥0 r̃
(k1,k)
m (mn+ p)qmn+p. We know that∑

n≥0

r̃
(k1,k)
m (mn+ p)qmn+p =

[∑
s≥0

(
k1 + sm+ p− 1

k1 − 1

)
qms+p

](
1 +

∑
n≥1

n∏
i=1

[
1

(1− qmi)k
− 1

])
since the number of 1′s must be congruent to p (mod m). Next, we reduce the generating

series for the number of 1’s modulo m∑
s≥0

(
k1 + sm+ p− 1

k1 − 1

)
qms+p ≡

∑
s≥0

(
k1 + p− 1

k1 − 1

)
qms+p (mod m)

≡
(
k1 + p− 1

k1 − 1

)
qp

1− qm

by Lemma 5.4.5. Therefore,∑
n≥0

r̃
(k1,k)
m (mn+ p)qmn+p ≡

(
k1 + p− 1

k1 − 1

)
qp

1− qm

[
1 +

∑
n≥1

n∏
i=1

[
1

(1− qmi)k
− 1

]]

≡
(
k1 + p− 1

k1 − 1

)
qp

(
1

1− qm
+

1

1− qm
∑
n≥1

n∏
j=1

[
1

(1− qmj)k
− 1

])
.

A straightforward computation shows us that

1

1− qm
+

1

1− qm
∑
n≥1

n∏
j=1

[
1

(1− qmj)k − 1

]
=

1

1− qm
+

Ψ
(k)
m (qm)

qm
− 1

qm(1− qm)
(5.6)

from which can see that

r̃
(k1,k)
m (mn+ p) ≡ [qmn+p]

(
k1 + p− 1

k1 − 1

)
qp

(
1

1− qm
+

1

1− qm
∑
n≥1

n∏
j=1

[
1

(1− qmj)k
− 1

])

= [qmn]

(
k1 + p− 1

k1 − 1

)(
1

1− qm
+

1

1− qm
∑
n≥1

n∏
j=1

[
1

(1− qmj)k
− 1

])

=

(
k1 + p− 1

k1 − 1

)
r(k)m (m(n− 1))

by (5.4). �

70



References

[AB03] Scott Ahlgren and Matthew Boylan. Arithmetic Properties of the Partition Func-

tion. Inventiones mathematicae, 153(3):487–502, 2003.

[AFS15] George E Andrews, Aviezri S Fraenkel, and James A Sellers. Characterizing

the Number of m−ary Partitions Modulo m. American Mathematical Monthly,

122(9):880–885, 2015.

[AFS16] George E Andrews, Aviezri S Fraenkel, and James A Sellers. m−ary Partitions

with No Gaps: A Characterization Modulom. Discrete Mathematics, 339(1):283–

287, 2016.

[Ahl99] Scott Ahlgren. Distribution of Parity of the Partition Function in Arithmetic

Progressions. Indagationes Mathematicae, 10(2):173–181, 1999.

[And71] George E Andrews. Congruence Properties of the m−ary Partition Function.

Journal of Number Theory, 3(1):104–110, 1971.

[And08] George E Andrews. Partitions. https://www.math.psu.edu/vstein/alg/ anthe-

ory/preprint/andrews/chapter.pdf, 2008.

[AO01] Scott Ahlgren and Ken Ono. Congruences and Conjectures for the Partition

Function. Contemporary Mathematics, 291:1–10, 2001.

[Apo76] Tom M Apostol. Introduction to Analytic Number Theory. Springer-Verlag New

York, 1976.

[Atk68] AOL Atkin. Multiplicative Congruence Properties and Density Problems for

p(n). Proceedings of the London Mathematical Society, 3(3):563–576, 1968.

[Ber07] Bruce C Berndt. Ramanujan’s Congruences for the Partition Function Modulo

5, 7, and 11. International Journal of Number Theory, 3(03):349–354, 2007.

71



[Buc10] Eric Bucher. The Partition Function and Ramanujan Congruences.

http://math.oregonstate.edu/ swisherh/EricBucher.pdf, 2010.

[CDJ+08] Neil Calkin, Nate Drake, Kevin James, Shirley Law, Philip Lee, David Pennis-

ton, and Jeanne Radder. Divisibility Properties of the 5-regular and 13-Regular

Partition Functions. Integers, 8(2):A60, 2008.

[Chu69] RF Churchhouse. Congruence Properties of the Binary Partition Function. Math-

ematical Proceedings of the Cambridge Philosophical Society, 66(02):371–376,

1969.

[Ciu97] Mihai Ciucu. Enumeration of Perfect Matchings in Graphs with Reflective Sym-

metry. Journal of Combinatorial Theory, Series A, 77(1):67–97, 1997.

[Col16] Laura Colmenarejo. Combinatorics on Several Families of Kronecker Coefficients

Related to Plane Partitions. arXiv preprint arXiv:1604.00803, 2016.

[EDA12] Leonhard Euler, Artur Diener, and Alexander Aycock. Evolutio Producti Infiniti

(1-x)(1-xx)(1-xˆ 3)(1-xˆ 4)(1-xˆ 5) etc. in Seriem Simplicem. arXiv preprint

arXiv:1202.0246, 2012.

[Edg16] Tom Edgar. The Distribution of the Number of Parts of m-ary Partitions Modulo

m. arXiv preprint arXiv:1603.00085, 2016.

[EZ15] Shalosh B Ekhad and Doron Zeilberger. Computerizing the Andrews-Fraenkel-

Sellers Proofs on the Number of m−ary Partitions Mod m (and doing MUCH

more!). arXiv preprint arXiv:1511.06791, 2015.

[GGS16] Suresh Govindarajan, Anthony J Guttmann, and Varsha Subramanyan. On a

Square-Ice Analogue of Plane Partitions. arXiv preprint arXiv:1607.01890, 2016.

[GJ04] Ian P Goulden and David M Jackson. Combinatorial Enumeration. Dover, 2004.

[GO97] Basil Gordon and Ken Ono. Divisibility of certain Partition Functions by Powers

of Primes. The Ramanujan Journal, 1(1):25–34, 1997.

[Gro84] Emil Grosswald. Topics from the Theory of Numbers. Birkhäuser Basel, 1984.
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