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ABSTRACT 

External post-tensioning can provide an effective structural reinforcement system 

for the design of new concrete structures and for the strengthening of existing 

structures. In most cases, the structural effectiveness of the external tendon is 

increased by using a deviated or harped tendon profile. Carbon-fibre reinforced 

polymer (CFRP) reinforcement has emerged as an alternative to steel because it is 

non-corroding and fatigue resistant. However, its use in external post-tensioning 

has been limited due to a lack of knowledge regarding the tensile-flexural behaviour 

of the tendons under typical harped profiles. Limited test data has shown a 

reduction in the tendon capacity resulting from the combination of tensile and 

flexural stresses at the deviator locations. Existing models for predicting the 

capacity of a deviated tendon appear to be either unconservative or excessively 

conservative, limiting the application of CRFP tendons as external post-tensioning. 

This thesis describes an experimental research study of the tensile-flexural 

behaviour of post-tensioned CFRP tendons subjected to harped profiles. The 

program studied the effect of tendon size, deviator size and harping angle on the 

tendon behaviour. The tendons were loaded to failure in a specially designed 

tension frame that accommodated a range of harped configurations. Both the 

flexural and overall behaviour of the tendon were observed and recorded 

throughout the tests. The experimental data illustrates the effect of harping 

variables on the tendon response and capacity, and reveals the potential for different 

failure modes dependent on the combination of variables. A comparison of the test 

data with existing analytical and design equations shows poor correlation between 

the predicted and measured values. The research program clearly points out the 
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inadequacies of the current analytical models and the need for an analytical model 

that more accurately predicts the tensile capacity of deviated CFRP tendons. 

A primary and an extended model were developed within the research program 

based on the material properties and geometry of the tendon and structural 

mechanics. The new models were found to perform very well and were used to 

develop design equations for the reduced tensile strength of harped CFRP tendons 

as well as failure mode control guidelines for the avoidance of undesirable failure 

modes. 
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1 INTRODUCTION 

1.1 GENERAL 

External post-tensioning can be used as an effective reinforcement system for the 

design of new structures and for the strengthening of existing structures. Carbon 

fibre reinforced polymer (CFRP) reinforcement presents a promising alternative to 

steel in external prestressing applications because of its high strength-to-weight 

ratio, and high resistance to corrosion and fatigue. CFRP tendons also have the 

additional benefit of being non-metallic, which can be useful for construction in 

magnetically sensitive environments, such as hospitals housing MRI machines. 

The use of CFRP tendons in external post-tensioning has been limited because of a 

lack of knowledge regarding the tensile-flexural behaviour of the tendons when 

used in the harped or deviated configuration typical of external post-tensioning 

applications. Limited test data has shown a reduction in the tendon capacity that 

results from the combination of axial and flexural tension stresses at the deviator 

locations exceeding the tensile capacity of the CFRP materials. Existing models for 

predicting the capacity of deviated tendons appear to be either unconservative or 

excessively conservative, limiting the application of CFRP tendons for external post­

tensioning in harped configurations. Thus, although CFRP pre-stressing tendons are 

commercially available, structurally efficient and cost-effective deviated CFRP 

tendon systems are needed to exploit the benefits of CFRP materials and better 

facilitate their acceptance as an alternative to steel reinforcing in external post­

tensioning applications in concrete construction and rehabilitation. A key aspect to 

developing these systems is gaining a better understanding of the tensile-flexural 

behaviour of CFRP tendons, including development of accurate models for 
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predicting the failure capacity of a deviated tendon and associated design 

guidelines. 

1.2 OBJECTIVES 

The overall objective of this research program is to investigate the behaviour of 

carbon fibre reinforced polymer (CFRP) tendons when placed in externally 

prestressed harped configurations (tensile-flexural behaviour). This objective will be 

achieved by: 

1) Experimentally investigating the tensile-flexural and failure behaviour of 

CFRP tendons under various harping configurations, 

2) Deriving analytical models that can predict the tensile-flexural behaviour of 

harped CFRP prestressing tendons, and 

3) Developing design recommendations and procedures for the use of externally 

prestressed CFRP tendons 

1.3 THESIS ARRANGEMENT 

In Chapter 2, a review of the literature and background information related to 

external prestressing of concrete structures and the use of fibre reinforced polymer 

(FRP) materials in external post-tensioning is presented. Chapter 3 describes the 

experimental program for the testing of CFRP prestressing tendons in various 

harping configurations. The test setup and equipment, the variables investigated, 

the instrumentation and data acquisition system, and the testing procedures are 

described. In Chapter 4, the data obtained in the experimental program is presented 

and analysed, including a comparison of the experimental data to the existing 

analytical models and design equations that were presented in the literature review. 
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Chapter 5 describes the derivation of a primary and an extended analytical model 

that were developed in this research program. The model predictions are compared 

to the experimental data and discussed. Chapter 6 discusses the significance of the 

three different failure modes observed for the harped CFRP prestressing tendons 

tested in this experimental program. Design guidelines involving failure mode 

control are also derived and presented in this chapter. Chapter 7 summarizes the 

design recommendations for harped CFRP prestressing tendons based on the 

models and guidelines developed in Chapters 5 and 6. The conclusions and 

recommendations for the research program are presented in Chapter 8. 
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2 BACKGROUND AND LITERATURE REVIEW 

2.1 INTRODUCTION 

Reinforced concrete is one of the most prevalent building materials in the world. 

One of the major issues being faced is the need to repair or rehabilitate reinforced 

concrete structures because of damage from corrosion of the steel reinforcement. 

Fibre reinforced polymer (FRP) reinforcement presents a promising alternative to 

steel reinforcement, particularly because of it's resistance to corrosion. 

This chapter presents background information on prestressing and harped 

prestressing configurations, the use and development of FRP reinforcement in 

construction, and the existing research and design recommendations for the harping 

of FRP prestressing tendons. 

2.2 PRESTRESSED CONCRETE 

Prestressing is often used in concrete construction in conjunction with or as an 

alternative to non-prestressed reinforcement. It is an active reinforcing system 

whereby reinforcing tendons have a tensile force in them before any loading of the 

structure occurs. Prestressing of concrete elements may be done either by 

pretensioning or by post-tensioning. With pretensioned prestressing, prestressing 

tendons are cast inside the concrete element and are fully bonded with it. Post­

tensioned prestressing, on the other hand, is performed after casting and curing of 

the concrete element and may be either internal or external. With external 

prestressing, the tendons are located completely outside the concrete. This has an 

added advantage of allowing for smaller concrete cross-sections, and not placing a 

limitation on the amount of prestressing because of concrete cover and spacing 
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requirements. Normally, external prestressing is performed using a harped 

configuration for the tendon. This is done by depressing the tendon with one or 

more deviators as illustrated in Figure 2-1. Gravity load moments are typically 

highest at the mid-span and lowest at the ends for simply supported beams. 

Harping of the prestressing tendon allows the eccentricity of the applied 

prestressing force to vary along the beam and more closely match the moments due 

to gravity loads. Harping of the tendons also provides additional shear resistance; 

the tendon prestressing force contains a vertical component that typically acts 

opposite to shear forces that result from loading. 

anchor,t----------;}31?1"-------~d~e~v.~ia~to:;r:_.--~±lv,.,,,,,::::::::~::-r,Th~---r1anchor 
prestressing tendon/ a) Single Harped Element 

anchort1====JJ1~:::d~e~vk~·a~to;r::::::::::::~de~v~:~t:'.or:::~i=v ===~:~T~h]1 anchor 

prestressing tendon! b) Double Harped Element 

Figure 2-1: Harped Prestressing Configurations 

External prestressing can be used as reinforcement for new structures as well as a 

strengthening technique for existing structures, increasing both the shear and 

flexural capacity of the structure. External prestressing can be used effectively for 

the repair and rehabilitation of structures that have been subjected to damage or 

deterioration. This may be short-term damage such as an impact or an overload, or 

long-term damage, such as fatigue or reinforcement corrosion. External prestressing 

can help recover the loss of structural strength and integrity of a structure due to 

damage or deterioration or provide additional structural strength to overcome 

design deficiencies or a change in the usage of the structure. In repair and 

rehabilitation of such structures with external prestressing, the vertical component 
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of the prestressing force can also help recover excessive elastic or plastic deflections 

that have occurred. Figure 2-2 shows a bridge that has been strengthened using 

harped external post-tensioned prestressing. This example uses steel tendons and, 

as can be seen in the photograph, they are situated inside ducts, which are needed to 

help inhibit corrosion. 

Figure 2-2: External Prestressing Being Used to Strengthen a Concrete Bridge 

2.3 FIBRE REINFORCED POLYMER (FRP) TENDONS 

When steel reinforcing or prestressing is used, the steel is vulnerable to corrosion. 

The ongoing presence of corrosion in reinforced and prestressed concrete is a major 

problem for infrastructure throughout the world. For example, in the U.S. it was 

estimated that at least 160,000 bridges are affected by corrosion with an estimated 

repair cost of US$20 billion dollars (Clarke, 1993). It is apparent that steel corrosion 

gives rise to a large financial cost for repair and rehabilitation, and that there is a 

need for more durable reinforcement materials, especially in the area of corrosion. 
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Advanced composite materials, in the form of fibre reinforced polymers (FRP), have 

emerged as an alternative construction material. FRP used in construction comes in 

many different forms including pultruded structural shapes, material for use as 

externally bonded reinforcement in the form of woven sheets and solid strips, and 

internal concrete reinforcement (Bakis et al, 2002) as well as prestressing tendons. 

FRP tendons have many desirable properties including an excellent resistance to 

corrosion. They also have a high strength and a high elastic modulus, are 

lightweight and have non-conductive and non-magnetic properties that can be 

advantageous in design situations where steel tendons are less effective (Gilstrap et 

al, 2001). 

FRP tendons are comprised of high-strength fibres in a polyester, vinylester or 

epoxy matrix and are typically manufactured using a pultrusion process. Other 

processes for manufacturing tendons include braiding, filament winding, vacuum 

compaction, and matched die molding (Gilstrap et al, 2001). Typically, the volume 

fraction of the fibres in FRP tendons is 60 to 65%. The matrix does not contribute 

significantly to the overall tensile capacity of the tendon and strength calculations 

typically ignore it. Thus, the effective strength of the tendon is equal to the strength 

of the individual fibres multiplied by the volume fraction of the fibres. The effective 

elastic modulus is also determined in a similar manner (Dolan, 1999). 

Three different types of FRP tendons, based on the type of fibre used, are most 

common: glass FRP (GFRP), which comes in C-glass, S-glass and E-glass varieties, 

aramid FRP (AFRP), and carbon FRP (CFRP). All three types of FRP provide high 

strength-to-weight ratios and are resistant to corrosion. Each fibre type has its own 

advantages and disadvantages which make them suitable in different applications. 

Table 2-1 lists the individual strengths and weaknesses of each FRP type as well as 

some commercially available products. 
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Table 2-1: General Properties and Commercial Availability of FRP Types 
( Gilstrap et al, 2001, El Refai et al, 2004) 

Fibre Relative 
Type Cost 
GFRP Low 

AFRP Medium 

CFRP High 

Strengths 

chemical resistance 
electrical resistance 

acid resistance 

fatigue resistance 
impact resistance 
thermal resistance 

moisture resistance 
fatigue resistance 
thermal resistance 

chemical resistance 

Weaknesses 

poor alkaline resistance 
poor humidity resistance 
poor fatigue resistance 

weak flexural and 
compressive properties 
low transverse stiffness 

poor UV resistance 
poor moisture resistance 

low ultimate strain 
poor impact resistance 

Commercial 
Availability 

lsorod (Canada) 
C-bar (USA) 

Plalloy (Japan) 

Arapree (Italy) 
Fibra (Japan) 

Technora (Japan) 
Pillystran (USA) 

Parafil (UK) 

Leadline (Japan) 
CFCC (Japan) 

Asian 200 (USA) 

CFRP tendons have better corrosion and fatigue resistance and a higher strength-to­

weight ratio than steel. CFRP tendons may be especially useful in external 

prestressing applications where corrosion is a primary problem. Steel cables used in 

external prestressing have to be protected against corrosion, usually by using an 

external duct, as seen in Figure 2-2. The duct is filled with corrosion inhibiting 

grease or cement grout. This type of corrosion protection is not necessary when 

CFRP tendons are used, since they are resistant to corrosion, and the effective price 

increase associated with using CFRP over steel may be reduced. In comparison to 

steel tendons, external CFRP tendons can be readily inspected, as they are visible, 

and can be replaced more easily if damaged (Pisaniu, 1998). 

Table 2-2 lists the material properties and Figure 2-3 shows the tensile stress-strain 

curves typical for the three different types of FRP, as well as those for prestressing 

steel for comparison. From the stress-strain curves, the linear elastic behaviour and 

lack of yielding or plastic behaviour of the FRP tendons can clearly be seen. From 

the properties exhibited in Table 2-2 and Figure 2-3, it can be seen that CFRP 

tendons show very similar mechanical properties to steel tendons, and thus, present 
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a promising alternative to steel for use in prestressing applications. However, 

because CFRP tendons are linear elastic to failure and do not exhibit yielding 

behaviour, they can be subject to brittle failure, and require special design 

consideration to avoid this. 

Table 2-2: Typical Material Properties of FRP and Steel Reinforcing 
(Nanni, 1994, Hughes Bros., 2002) 

Elastic modulus 
GPa (ksi) 

Tensile strength 
GPa (ksi) 

Failure Strain % 

Density 
kg/m3 (lb/ft3) 

GFRP 
E-Glass 

72-81 
(10,500-11,500) 

3.4-3.6 
(500-520) 

3.5-5.0 

2,540-2,620 
(159-164) 

2600 

AFRP 
Technora 

80 
(11,600) 

3.1-3.4 
(450-500) 

4.4-4.6 

1,390 
(87) 

Seven wire 
steel strand 

CFRP 
Asian 200 

124 
(18,000) 

2.1 
(300) 

1.7 

1,600 
(100) 
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Figure 2-3: Tensile Stress-Strain Curves for FRP and Steel Tendons (Pisaniu, 1998) 

The use of FRP in construction has been limited due to a lack of knowledge 

regarding their behaviour and performance. However, it is suggested that, as the 

body of knowledge on the use of FRP tendons expands and the profession becomes 
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comfortable with their behaviour, their use will expand, especially for saltwater and 

corrosive environments (Dolan, 1999). It was also put forward that the education 

and training of engineers, construction workers, inspectors, and owners of structures 

on the various relevant aspects of FRP technology and practice will be crucial in the 

successful application of FRP materials in construction (Bakis et al, 2002). The 

widespread use of FRP is also hampered by the higher short-term cost when 

compared to steel, which makes it unattractive for construction from an economic 

standpoint. However, when considering life-cycle costs, FRP may prove to be more 

cost-effective, especially with increased knowledge and acceptance of their usage 

(Hassanain et al, 2002). Externally post-tensioned concrete should be economical, 

provided whole-life costs and proper alternative designs are evaluated (Burgoyne, 

1999). 

Research and the usage of FRP have been on the increase in recent years around the 

world. In Europe for example, FRP has been successfully used in many different 

structural applications since the late 1970s, including prestressing systems, bridge 

stay cables, and reinforcement, as well as some structures fabricated completely out 

of composites (Burgoyne, 1999). In 1997 in Canada, the Taylor Bridge became the 

world's longest span bridge using CFRP reinforced girders. The construction of the 

bridge also included some CFRP deck reinforcing and GFRP barrier reinforcing 

(Rizkalla et al, 1998). Initiatives have also been taken around the world to develop 

design codes and recommendations for the usage of FRP in construction. In Canada, 

the Canadian Highway Bridge Design Code (CHBDC) and Network of Centers of 

Excellence on Intelligent Sensing for Innovative Structures (ISIS), in the United 

States, the American Concrete Institute (ACI) Committee 440 and Federal Highway 

Administration (FHWA), in Japan, the Japan Society of Civil Engineers (JSCE), and 

in Europe, EUROCRETE and Federation Internationale du Beton (fib) (Bakis et al, 
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2002) have all been involved m the development of design codes and 

recommendations. 

2.3.1 FRP as Harped External Prestressing Tendons 

Successful usage of FRP tendons in harped external prestressing applications has 

been seen in the laboratory and in the field. As an example, the recently constructed 

Bridge Street Bridge in Southfield, Michigan utilises external CFCC prestressing 

tendons in addition to CFCC and CFRP flexural reinforcement and steel stirrups. 

Before manufacturing the beams, the design and construction method was verified 

by testing a full-scale beam to failure and it was observed that the ultimate flexural 

capacity and the cracking of the beam were about 3.4 and 1.2 times the service 

moment, respectively and that the tested flexural strength was about 1.6 times the 

calculated capacity. Failure of the beam was initiated by crushing of the concrete 

topping, followed by the rupture of the internal prestressing tendons, however, 

none of the external CFCC post-tensioning strands ruptured (Grace et al, 2003). 

Most notably, the project won the Harry H. Edwards Industry Advancement Award 

in the PCI Design Awards Program. The jury citation was as follows: 

"The use of CFRP tendons in precast concrete bridges opens new potential for 

bridge designers to solve design problems more effectively and with faster 

construction. The careful and detailed work undertaken by this team of 

researchers, designers, and contractors holds great promise for future 

construction using CFRP. This project takes existing components and materials 

and expands on their abilities in new ways that will benefit the industry overall. 

These attributes define a Harry H. Edwards award winner (Grace et al, 2002)." 

Previous studies involving the use of prestressed CFRP tendons in harped 

configurations have found that there is a reduction in the tensile capacity of the 
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tendon because of harping. This tensile capacity reduction does not occur with steel 

tendons. The bending induced in the tendon due to harping produces axial stresses 

additional to the axial stresses due to the tensile loading. In Figure 2-3 it was shown 

that CFRP tendons are linear elastic up to failure with no plastic behaviour or 

yielding. Steel tendons exhibit a similar initial linear-elasticity, but also have an 

effective yield strain, beyond which additional strain results in yielding of the steel 

and plastic deformation with very little increase in stress. Figure 2-4 illustrates the 

effect that the combined axial stresses due to bending and tension have on harped 

steel and CFRP tendons as loading is increased. In Figure 2-4a it is shown that when 

the combined top fibre strain, s,
0
p, exceeds the yield strain of the steel, s Y, yielding 

of the material occurs and the tendon can continue to be loaded beyond this point. 

In Figure 2-4b it is shown that when the combined top fibre strain, s,op' exceeds the 

tensile rupture strain of the CFRP, s,,, failure occurs. The top fibre strain in the 

harped tendon is a result of the addition of the axial strain due to bending and the 

axial strain due to tensile loading, therefore, failure of the CFRP tendon will occur at 

a lower level than if the tendon was not harped and only axial strain due to tensile 

loading was present. Thus, in CFRP, the axial stresses due to bending reduce the 

strength available to resist stresses from the applied tensile loading, whereas in steel 

they do not. From this, it can be seen how the combined tensile and bending axial 

stresses and strains cause a reduction in the tensile capacity of CFRP tendons but not 

in steel tendons. 
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Figure 2-4: Effect of Combined Axial Stresses on Harped Tendons 

Mutsuyoshi and Machida (1993) performed a study on concrete beams strengthened 

with externally prestressed, harped AFRP and CFRP cables. In the course of this 

study, they observed that the bending point of the cables at the deviator was a weak 

point and found that the FRP cables failed at 77-80% of their average tensile 

capacity. This was not the primary focus of their testing program and was not 

pursued further; however, they did recognize the weakness at the harping point and 

concluded that the design strength of FRP tendons needs to be reduced when the 

tendon is to be bent or deviated. It is noted that in this study, FRP cables were used 

rather than solid tendons, which exhibit different overall stiffness properties; 

however, a strength reduction due the harping was still present. 

Taniguchi et al (1997) tested concrete beams using harped CFRP and AFRP tendons 

as external prestressing. In the course of their testing program, they observed that 

the harped prestressing tendons ruptured at about 70% and 90% of the nominal 

breaking load for CFRP and AFRP respectively. However, specific details of the 

deviator and harping configuration were not given. 
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Adachi et al (1997) performed a study on the strengthening of concrete segmental T­

beam bridges using external FRP prestressing using both AFRP and CFRP tendons. 

When the tendons were harped at an angle of 10° over a deviator with a radius of 

3000mm for their test program, a strength reduction coefficient of 0.9 was used for 

both tendon types to account for the strength capacity reduction in harped FRP 

tendons. 

Grace and Abdel-Sayed (1998) performed a study of the behaviour of external 

prestressed, harped CFRP tendons in concrete bridges. As a part of this research, 

the effect of harping on the strength of prestressing tendons was studied for a 

limited set of variables. The effect the harping angle and deviator size, as well as the 

use of cushioning at the deviator was investigated for CFCC tendons (Table 2-3). 

CFCC tendons consist of seven individual CFRP strands twisted into a single 

tendon, similar to steel prestressing strands, which exhibit a lower overall stiffness 

in comparison to solid tendons. Still, it was observed that both increased harping 

angles and decreased deviator radii reduced the capacity of the tendons. They also 

observed that the use of cushioning at the deviator significantly reduced the 

strength reduction. 

Table 2-3: Effect of Harping Angle and Cushioning on CFCC lx7 Tendons 

(Grace et al, 1998) 

Harping Angle Deviator Diameter Cushioning Average Breaking 
Load Reduction in Breaking Load 

degrees in (mm) kips (kN) 
0 No 36.8 (163.8) 0% 
3 2 (50.8) No 29.6 (132.2) 19% 
5 2 (50.8) No 24.0 (106.5) 34% 
5 20 (508) No 32.2 (143.3) 12% 
10 20 (508) No 27.4 (121.8) 26% 
5 20 (508) Yes 36.3 (161.5) 1% 
10 20 (508) Yes 33.5 (149.1) 9% 

They also investigated the effect of the harping angle as well as the introduction of a 

twist or torsion in the tendon for solid CFRP tendons (Table 2-4). It was again 
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observed that increasing the harping angle reduced the tendon capacity. It was also 

observed that the introduction of a twist in the tendon reduced the capacity of the 

tendon. Based on their observations, they recommend that cushioning at the 

deviator should be implemented and that the deviator should have a diameter of at 

least 20in (508mm) to minimise the strength reduction for harped CFRP tendons. 

They also recommend avoiding the introduction of twist in the tendons during post­

tensioning and that a 10 percent strength reduction should be used in design to 

accommodate any incidental twisting that may occur. 

Table 2-4: Effect of Harping Angle and Torsion on CFRP Tendons 
( Grace et al, 1998) 

Harping Angle Torsion Average Breaking Load Reduction in Breaking Load 
degrees kips (kN) 

0 No 48.3 (215.0) 0% 
0 Yes 42.2 (188.1) 13% 
4 Yes 37.6 (167.2) 22% 
7 No 36.4 (161.7) 25% 
7 Yes 34.8 (154.8) 28% 

2.3.2 Analytical Models for Harped FRP Prestressing Tendons 

Some of the previous research work on harped FRP prestressing tendons involved 

developing analytical models and design formulae. The three most developed 

models are those given by the Japan Society of Civil Engineers (JSCE), Ahmad et al, 

and Gilstrap et al. These three analytical models are presented here. 

2.3.2.1 JSCE 

The Japanese Society of Civil Engineering (JSCE, 1997) produced design 

recommendations for the use of FRP in the design and construction of concrete 

structures. The test program used several different types of FRP: carbon fibre, 

aramid fibre, glass fibre, and vinylon fibre. As part of these design 
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recommendations, a design strength formula was developed for bent or harped 

tendons: 

Equation 2-1: 

Equation 2-2: 

Where: 

f Jbk = min (JSCE, 1997) 

(JSCE, 1997) 

f Jbk = characteristic tensile strength of bent FRP tendon 

f1,,k = tensile capacity of the FRP 

r = deviator radius 

h = tendon diameter 

f Jbd = tensile design strength of bent FRP tendon 

r,,!fb = FRP material coefficient, generally taken as 1.3 

The variable r,,!fb in Equation 2-2 is a material coefficient that compensates for 

material variability and other factors that can affect the tendon strength, much like 

the material factors used in steel and concrete design. Therefore, Equation 2-2 is to 

be used for practical design, however in actual comparisons for strength testing, the 

characteristic tensile strength as determined by Equation 2-1 should be considered. 

This equation for the design strength of a curved tendon is adopted in the CHBDC 

and the ACI 440 (Machida et al, 2002). This design formula was based on a 

regression analysis of the data from a number of tests encompassing the various 

types of FRP listed above. The tests also had a limited variation of harping 

configuration, up to a maximum rlh ratio of 10, which would represent a 100mm 

radius deviator for a 10mm diameter tendon. Figure 2-5 shows the test data and 

linear regression equation that the characteristic strength formula, Equation 2-1, was 

based on. The characteristic strength formula is based on the linear regression 

equation with an adequate margin of safety, reflected in the changing of the 
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coefficient from 0.09 to 0.05. It can be seen that the design formula is independent of 

the modulus of elasticity for the particular material and the harping angle, and is 

based only on the ultimate capacity of the tendon and the deviator and tendon size. 

1.2 ------------~--
{ = (o 09 _!_ + 0 3) r. (regression 
tbk . h . tuk Eq.) 

1.0 f-----'<--+-~-+-~+---+---1------, 

Eq. (2) 

""' ..:? 
:;;, 0.6 fn.<),£1,c!=-;,'-------1---+------l----+------I 

~ 
0.4 l-r5i{=-.if------o-------l o Carbon fiber 
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0 1----+----1---1 o Glass fiber .2 
• Vinylon fiber 
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rlh 
30 

Figure 2-5: Test Data for JSCE Regression Equation (JSCE, 1997) 

2.3.2.2 Ahmad et al 

Ahmad et al. (1997) performed a research program on the behaviour of CFRP 

tendons subjected to combined axial loading and harping. The research program 

recognised the strength decrease in CFRP tendon strength when the tendon 

prestressed in a harped configuration. The material tested within this program was 

8mm diameter Leadline CFRP tendons manufactured by Mitsubishi Chemical 

Corporation. The CFRP tendons were subjected to various harping configurations 

and loaded to failure. 
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Based on the experimental test results, design equations were developed by 

regression analysis: 

Equation 2-3: 

Where: 

P1 =max 

21,600-845 · e · R-0
·
12

' 

(
1,000,000J + 44 . e. R-o.123 

A·E 

(o.0216-;}A·E 

(Ahmad et al., 1997) 

Pt= failure load of the harped tendon in kips 

A = tendon cross-sectional area in in' 

E = CFRP modulus of elasticity in ksi 

R = deviator radius in inches 

r = tendon radius in inches 

e = harping angle in degrees 

Contrary to the JSCE design formula, it can be seen that this design formula does 

include both the modulus of elasticity for the particular material and the harping 

angle. The formula, however, is not dimensionally consistent and relies on the 

variables being in particular units of measurement. The values of 0.0216 

(21,600microstrains) in the formulae are the average maximum fibre strains as 

measured within the program, and define the failure criterion. Though it is not 

stated, it should be inferred that these values should be modified to reflect the 

material being used. It is also noted in the paper that the average fibre failure strains 

for the harped tendons was much higher than those measured in uniaxial tests 

within the test program: approximately 0.0216 for harped tests compared to 

approximately 0.013 for uniaxial tests. The testing procedure used for the uniaxial 

tendon tests is not specified; however, it is known that factors such as tendon 

misalignment and stress concentrations due to the anchorages used can lead to 

premature failure of the tendon (Dolan et al, 2001) which can result in an inaccurate 
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determination of material properties. Therefore, it may be possible that the lower 

strain at failure determined by the uniaxial tests is a result of a premature failure of 

the tendons, and, therefore, may be erroneous. 

2.3.2.3 Gilstrap et al 

As part of a project funded by the US Federal Highway Administration (FHWA) to 

report on FRP prestressing for highway bridges, Gilstrap et al. (2001) presented a 

research program that studied the effect of harping on prestressed CFRP tendons. 

The material used in this program was a generic CFRP tendon developed 

specifically for the research project and referred to as the Strawman, developed by 

Glasforms Inc., as well as Leadline CFRP by Mitsubishi Chemical Corporation. An 

analytical model to predict the bending stresses in a harped tendon was developed. 

The formula for bending stress due to the curvature of the tendon was based on 

classical bending theory: 

Equation 2-4: 

Where: 

( Gilstrap et al., 2001) 

u,, = axial bending stress due to harping 

E 1 = FRP modulus of elasticity 

y = tendon radius 

R = deviator radius 

The total stress in the curved tendon is given as the sum of the bending stress and 

the stress due to the jacking load: 

Equation 2-5: 

Where: u = total combined bending stress at the harping point 

Pi = applied jacking load 

A 1 = tendon cross-sectional area 
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From Equation 2-5, the failure load can be determined by setting the total combined 

stress variable equal to the ultimate failure stress for the tendon and solving for the 

jacking load, Pi. It can be seen that this model includes the elastic modulus of the 

CFRP material, E, but not the harping angle. Therefore, it has been assumed that 

that the strength reduction due to harping is not influenced by the harping angle, 

contrary to the observations in the other literature discussed here. 

The research program included an experimental program. In the experimental 

program, explicit tension failure testing was not performed; instead, tendons were 

prestressed to a given level while straight and then harped to a specified harping 

angle using deviators of various radii. An equation to predict the resultant loading 

was developed and checked against the measured loads. The analytical model was 

used to determine if tendon failure should be expected for the specified deviator size 

and predicted resultant load. For the majority of the tests, it was noted that the 

analytical model indicated that the total combined stress in the harped would be 

greater than the capacity of the tendon and, therefore, the tendon would fail. 

However, the researchers were able to achieve the full harping angle in all of the test 

configurations without tendon failure. It was concluded that shear flexibility in the 

matrix allows for some stress redistribution and that this may explain why the 

tendons exceeded the capacity predicted by the model. The overall conclusion of 

this program was that until more research is performed on the effect of harping 

tendons, any tendon that is to be used in a harped configuration should be first 

field-tested. 

2.4 SUMMARY 

CFRP may prove to be a promising alternative material to steel for use in prestressed 

concrete because of its advantageous material and mechanical properties. However, 
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because of the significantly higher cost involved, and the lack of knowledge of its 

mechanical behaviour, particularly when placed in harped configurations, its 

widespread usage in construction currently remains unattractive. In order to 

increase its acceptance as an alternative construction material, knowledge 

concerning its use and its cost needs to be improved and promoted. Increasing the 

knowledge of the mechanical behaviour of harped CFRP prestressing tendons has 

the twofold effect of improving the reliability of its design for strength and 

increasing its cost effectiveness through more efficient designs. The increased usage 

should create a higher demand for CFRP, leading to a reduction in its cost. 

21 



3 EXPERIMENTAL PROGRAM 

3.1 INTRODUCTION 

An experimental program was developed to investigate the behaviour of a Carbon 

Fibre Reinforced Polymer (CFRP) tendon when loaded in tension to failure under 

various harping configurations. Various parameters including harping angle, 

deviator size and tendon size were investigated. This chapter describes the test 

specimen, the test program, the equipment, the instrumentation and the test 

procedure used. 

3.2 TEST PROGRAM 

Three different parameters were varied to capture a large spectrum of harping 

configurations: tendon diameter, deviator radius and harping angle. These 

parameters are illustrated in Figure 3-1. To optimize the data acquired and 

minimize the number of specimens needed, the test program was performed in two 

segments. Phase I of the test program was set up to encompass a broad range of the 

variables investigated. Further test configurations that would best supplement the 

data from phase I and fill in desired data points were determined for phase II of the 

test program following an analysis of the data acquired in phase I. 

Tendon 
Diameter 

Deviator 
; Radius 
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Harping 
Angle 



Figure 3-1: Configuration Variables 

3.2.1 Test Program - Phase I 

The primary test program utilized five different harping angles: 2°, 3°, 5°, 10° and 

15°, five different deviator radii: 50mm (2in), 100mm (4in), 250mm (lOin), 500mm 

(20in) and 1000mm (40in), and two different rod sizes: 6mm (l/4in) and 9mm (3/Sin). 

A test matrix using these variables was constructed as shown in Table 3-1. 

Table 3-1: Test Program Phase I Variable Matrix 

Test Group Specimen# Tendon Size Deviator Size Harping 
(diameter) (radius) Angle 

1 9.5mm 50mm 2' 
2 9.5mm 50mm 3' 
3 9.5mm 50mm 5' 
4 9.5mm 50mm 1 O' 
5 9.5mm 50mm 15' 
6 9.5mm 500mm 2' 
7 9.5mm 500mm 3' 

II 8 9.5mm 500mm 5' 
9 9.5mm 500mm 10' 
10 9.5mm 500mm 15' 
3A 9.5mm 50mm 5' 
11 9.5mm 100mm 5' 

Ill 12 9.5mm 250mm 5' 
BA 9.5mm 500mm 5' 
13 9.5mm 1000mm 5' 
14 6.3mm 50mm 2' 
15 6.3mm 50mm 3' 

IV 16 6.3mm 50mm 5' 
17 6.3mm 50mm 1 O' 
18 6.3mm 50mm 15' 

A Duplicate entries (multiple test groups) 

Test groups I, II and IV examined the effect of increasing harping angles with a fixed 

deviator for a given rod size. Test group III examined the effect of various deviator 

sizes against a fixed harping angle. Specimens 3 and 8 each appear in two different 

groups in the matrix and represent the crossover points for groups I and III, and 

groups II and III respectively. 
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3.2.2 Test Program - Phase II 

Additional tests were selected following an initial analysis of the data acquired from 

Phase I. The Phase II matrix of variables is shown in Table 3-2. 

Table 3-2: Test Pro!:iram Phase II Variable Matrix 

Test Group Specimen# 
Tendon Size Deviator Size Harping 

(diameter) (radius) Angle 

11-b 19 9.5mm 500mm 50 

20 9.5mm 500mm go 

21 9.5mm 250mm 20 

V 
22 9.5mm 250mm 30 

12A 9.5mm 250mm 50 

23 9.5mm 250mm 10° 
2A 9.5mm 50mm 30 

VI 
24 9.5mm 100mm 30 

22A 9.5mm 250mm 30 
7A 9.5mm 500mm 30 

A Duplicate entries (multiple test groups) 

Test group II-b extended group II by adding in two additional angles. Test group V 

was similar to groups I and II, using an additional deviator size. Test group VI 

reuses specimens from groups I, II and V, in addition to the new specimen 24, and is 

similar to group III from Phase I. 

3.3 TEST SPECIMEN 

The specimen tested in each test was a solid round CFRP tendon about 2m (6.6ft) 

long with an appropriate anchorage system affixed to each end. 

3.3.1 CFRP Tendon 

The CFRP tendon used in the experimental program was the Aslan 200 CFRP Rebar 

manufactured by Hughes Brothers as shown in Figure 3-2. These tendons are 

traditionally used for internal reinforcement and have a peel-ply surface treatment 
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that enhances concrete bonding properties, which can be seen in Figure 3-2. 

Tendons of two different sizes were used: #2 (6.3mm, 1/4in dia) and #3 (9.5mm, 3/Sin 

dia). The length of tendon used was 2m (6.6ft) with an approximate effective free­

length of 1.7m (5.6ft) between anchors, with the actual length varying with the 

harping angle. 

Figure 3-2: CFRP Tendon Specimen 

3.3.2 Material Properties 

The geometrical properties and guaranteed minimum material properties for the 

tendons published by the manufacturer are listed in Table 3-3. 

Table 3-3: Hughes Brothers Aslan 200 Published Properties 
(Hu!lhes Bros., 2002) 

Bar Size Cross Sectional Nominal Tensile Tensile Modulus of Ultimate 
Area Diameter Strength Elasticity Strain 

mm mm2 in2 mm in MPa ksi GPa ksi % 
#2 6 29.9 0.0464 6 0.254 2,068 300 124 18,000 0.017 
#3 9 65.2 0.1010 9 0.362 2,068 300 124 18,000 0.017 

Physical test data for the particular batches of tendons used were also provided by 

the supplier, and showed a significant scatter. Table 3-4 indicates the maximum 

material properties as supplied from the physical test data sheets by the supplier 

compared to the guaranteed minimum material properties. A significant variation 

of the material properties is evident. These minimum and maximum material 

property values can be used to determine the upper and lower bounds of an error 
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envelope that describes the expected deviation of the tensile-flexural and failure 

behaviour of different specimens resulting from the material property variability. 

Table 3-4: Guaranteed Material Properties versus Maximum Tested Properties 

Guaranteed Minimum Properties 
Maximum Tested Properties 

Tensile Tensile Modulus of Ultimate 
Strength Elasticity Strain 

MPa ksi GPa ksi % 
2,068 300 124 18,000 0.017 
2,521 366 132 19,100 0.019 

The shear modulus for the Aslan 200 CFRP was not tested for or provided by the 

supplier. However, the material properties are very similar to those of Leadline 

CFRP rods developed by the Mitsubishi Kasei Corporation of Japan, therefore a 

longitudinal shear modulus value of 7.2MPa (1,044ksi) (Al-Mayah, 1999) for the 

Leadline CFRP material was considered to be a reasonable estimate for the Aslan 200 

CFRP for investigative purposes. 

3.4 TEST SETUP 

A test setup was designed and built specifically for this testing program. The testing 

frame was designed to allow the specimen to be anchored at each end while 

applying a tension loading to the specimen. The frame was designed to 

accommodate several harping angles and deviator sizes as required by the test 

matrix. 

3.4.1 Test Frame 

The general configuration of the test frame is shown in Figure 3-3 and Figure 3-4. 

The anchor pivots at either end of the frame securely restrain the tendon anchors in 

their longitudinal position while allowing free rotation of the anchor in a vertical 

plane. This free rotation allows for the various harping angles as well as the 

dynamically changing harp angle that occurs during the loading procedure. The 
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plate in the jacking end anchor pivot was threaded to accept a lSOkN (20t) hydraulic 

jack which was used to apply a tension load to the test specimen. The hydraulic jack 

was fitted with an electric hydraulic pump with a variable flow valve to control the 

rate of loading. At the center of the frame, the deviator forks allow deviators of 

various sizes to be attached. The deviator forks have multiple bolt patterns to allow 

the deviator to be fixed in several different positions to create the desired nominal 

harping angles. Appendix A contains the shop drawings with detailed dimensions 

of the setup and fixtures. 

CFRP TENDON 

ANCHOR PIVOT 

l!) 

N 
N 

DEAD END 

1400 
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JACK 

JACKING END 

Figure 3-3: Test Frame Schematic 

Figure 3-4: Test Frame as Constructed 
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3.4.2 Deviators 

The deviators that were used in the experimental program were cut from 25mm 

(lin) thick steel plate with the geometric properties illustrated in Figure 3-5. The 

curved top bearing surfaces of the deviators were polished smooth in order to 

minimize friction with the tendon. The deviators were mounted in the testing frame 

with two bolts. Each deviator had two bolt patterns and these, combined with the 

five bolt patterns in the deviator forks, accommodated nine usable harping angles: 

2°, 3°, 5°, 6°, 9°, 10°, 14°, 15° and 19°. Figure 3-6 shows the deviators fabricated for 

the testing program. 

If the deviator is fabricated so that its tangential angle is less than the harping angle 

of the tendon and the tendon assumes the same curvature as the deviator radius, a 

sharp bending point will be induced in the tendon at the edge of the deviator. A 

high bending stress concentration would be created at this point that could lead to 

premature failure. With the exception of the 1000mm radius deviator, the deviators 

fabricated for this test program were designed large enough that this situation 

would not be encountered for any of the harping angles used. Because of size 

limitations, the 1000mm radius deviator was only useable for harping angles up to 

60. 
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Figure 3-5: Deviator Geometric Properties 
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Figure 3-6: Fabricated Deviators 

3.4.3 Anchorage System 

A mechanical action barrel and wedge type anchor was used at each end of the 

tendons to anchor the specimen in the frame. The anchorage system used in the 

testing program was developed at the University of Waterloo, specifically for use 

with the Aslan tendons used in the experimental program (Al Mayah, 2003). The 

anchorage system consisted of a stainless steel outer barrel with four stainless steel 

inner wedges. A heat-softened copper tube sleeve was utilized to provide an even 

distribution of contact stress on the tendon. The anchorage design allowed the 

barrel and wedges to be reused, but new copper sleeves were required for each test 

specimen. The anchorage system components are shown in Figure 3-7. 
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Figure 3-7: Anchorage System Components 

3.4.4 Safety Precautions 

The experimental program involved destructive testing of high-strength CFRP 

tendons. Because of the high load at which failure would occur, and the nature of 

this failure, several safety precautions were taken to contain the test setup and 

specimens. A box structure that could be completely opened and closed was built to 

contain the test frame, as shown in Figure 3-8. The top and front panels of the safety 

box were made of impact resistant clear plastic to allow visual monitoring of the test 

procedure. Kevlar explosion blankets were placed over the ends of the safety box to 

stop any specimen fragments that might penetrate the end panels. A restraining 

mechanism, shown in Figure 3-9, was designed to secure the anchorage systems to 

the anchor pivots and restrain them upon tendon failure. 
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Figure 3-8: Safety Enclosure 

*'' 'I. ., 
Figure 3-9: Anchorage Restraining Mechanism 
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3.5 INSTRUMENTATION AND DATA ACQUISITION 

3.5.1 Instrumentation 

Several different types of instrumentation were used to monitor important 

characteristics of the tendon behaviour during the test procedure. The 

instrumentation was arranged as illustrated in Figure 3-10. 

LOAD CEL 

TILT SEN SO 

DEAD END 
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TRAIN GAUGES 
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TILT SENSOR 

JACKING END 

Figure 3-10: Instrumentation Arrangement 

3.5.1.1 Load Cells 

Two 270kN (30t) barrel-type load cells were used, one at the jacking end and one at 

the dead end of the tendon between the anchor and the pivot. The load cells 

captured the load at both ends of the specimen during the testing procedure. The 

load cells were also used to assess any loss of force in the tendon over the deviator 

due to friction. 

3.5.1.2 Tilt Sensors 

Two tilt sensors were used, one at either end secured to the anchor pivot. These 

captured the actual angle of the anchor pivots throughout the testing procedure and, 

thus, the effective harping angle of the tendon. 
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3.5.1.3 L VDT 

One L VDT was secured to the jacking end anchor pivot to measure the stroke of the 

jack. This enabled the extension of the hydraulic jack to be monitored during 

testing, and allowed such problems as anchor slippage to be detected immediately. 

3.5.1.4 Strain Gauges 

Uniaxial 5mm Kyowa strain gauges, typically used for steel bars, were used for the 

program. The strain gauges were placed longitudinally at several positions along 

the tendon length to measure axial strains in the tendon. One strain gauge was 

located at the top of the tendon, at the middle of the deviator where the maximum 

strain was expected to occur in each test. One or two additional strain gauges were 

used to measure strains of interest on a test-by-test basis. Additional gauge 

locations included the tendon neutral axis at the deviator centre, the bottom of the 

tendon at the deviator centre and a position in the right or left tendon free length 

between the deviator and anchor pivots. 

3.5.2 Data Acquisition 

3.5.2.1 Hardware 

A computer system equipped with a data acquisition system (DAQ) was used to 

collect the data from the instrumentation. The data acquisition system consisted of 

an internal DAQ device and an external DAQ completion box, both manufactured 

by National Instruments. Strain gauge completion was performed externally using a 

Vishay completion box. Additional power sources and signal amplifiers were also 

used in conjunction with the data acquisition instrumentation as needed. 
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3.5.2.2 Software 

A data acquisition program was written using LabView 6.1 software. Figure 3-11 

shows a screen capture of the DAQ interface that was written specifically for this 

testing program. As can be seen in the figure, the interface allowed all the data to be 

continuously monitored during the testing program so that any problems could be 

detected immediately and the test halted if required. The DAQ captured the data at 

approximately 0.1-second intervals and recorded the raw voltages and the calibrated 

data directly to a text file. 

Figure 3-11: DAQ Interface 
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3.6 TEST PROCEDURE 

This section describes the procedure required to perform each test. The test 

procedure consisted of three different phases: preparation of the specimen, 

installation of the specimen and load testing. 

3.6.1 Specimen Preparation 

The CFRP tendons were delivered in 6.lm (20ft) lengths and were cut to 2m (6.6ft) 

lengths for use in the tests using a hacksaw. The strain gauges were fixed to the 

tendon before installing it in the frame so they could be calibrated while the tendon 

was in a 'stress-free' state. The peel-ply surface treatment of the CFRP tendons 

provided a rough surface; therefore, the areas where the strain gages were affixed 

were first sanded smooth and cleaned to facilitate a proper bond with the gauge. 

3.6.2 Specimen Installation 

After the strain gauges were installed and calibrated, the tendon was installed in the 

frame. The appropriate deviator was securely bolted into the position for the 

harping angle required, and layer of lubricant was applied to the bearing surface to 

minimize any friction with the tendon. The tendon was placed over the deviator 

and its ends inserted through the anchor pivots. The copper sleeves were installed 

over the tendon at each end where the anchors were to be attached. Next, the 

anchor barrel and wedges were installed over the copper sleeves with a layer of 

metal lubricant applied between the barrel and wedge contact surfaces to facilitate 

seating of the wedges. To ensure that the anchors were securely affixed to the 

tendon and that no slippage of the anchors would occur, the anchors were pre­

seated before progressing with the test. This involved using a special pre-seating 

rig, shown in Figure 3-12, to insert the wedges into the barrel to a load of 
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approximately lOOkN. Pre-seating the anchors to this load ensured that premature 

failure of the anchorage would not occur because of slippage. After pre-seating the 

anchors, the anchor restraints were installed. 

Figure 3-12: Pre-seating Rig 

3.6.3 Load Testing 

Once the specimen was installed and secured, the test was conducted. First, the 

safety cage was closed and fastened shut and the explosion blankets were placed 

over the ends. Any slack in the tendon was removed by loading the hydraulic jack 

until there was no gap between the anchors and the anchor plates at both ends. 

Next, the data acquisition equipment and program were started and loading of 

specimen was initiated. Loading was applied continuously using the electric pump, 

adjusting the hydraulic fluid flow to obtain a desirable loading rate. The tendon was 

loaded until failure was deemed to have occurred, at which point the jack was 

unloaded and the data file finalized. 
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4 EXPERIMENTAL DATA AND DISCUSSION 

4.1 INTRODUCTION 

In this chapter, the data obtained from the experimental program is presented. A 

brief discussion of the experimental data results and a performance evaluation of 

currently existing analytical models and design formulae follow. 

4.2 EXPERIMENTAL TEST RESULTS 

4.2.1 Observed Modes of Failure 

Previous research programs only reported the presence of a single mode of failure 

related to the tensile-flexural behaviour of CFRP prestressing tendons, bending­

tension failure. However, within this testing program, three distinct modes of 

failure were observed as illustrated in Figure 4-1: 

C/L deviator 

a) Bending-tension 
failure 

C/L deviator 

b) Bending-compression 
failure 

C/L deviator 
' 

tendon split ,, _ ___,,......._, 

~ 
c) Bending-shear 

failure 
Figure 4-1: Illustration of Tensile-Flexural Failure Modes 

Bending-Tension Failure (Figure 4-la) - Herein referred to as tension failure. This 

mode of failure was the most commonly observed mode and was the only 

failure mode previously reported for other research programs. Tension failure 

is characterized by an initial rupture of the top fibres of the tendon at the centre 

of the deviator. Depending upon the configuration variables, the initial failure 
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was followed by either complete tensile failure of the entire tendon, or 

subsequent rupture of additional fibres propagating from the top of the 

tendon. 

Bending-Compression Failure (Figure 4-lb) - Herein referred to as compression 

failure. Compression failure is characterized by a local buckling of the bottom 

fibres of the tendon at the deviator. Often, compression failure resulted in a 

visible sharp bend in the tendon at the location of the failure. 

Bending-Shear Failure (Figure 4-lc) - Herein referred to as shear failure. Shear failure 

is characterized by a horizontal splitting of the tendon at or near its neutral 

axis, initiating on either one or both sides of the deviator, and propagating 

through the length of the tendon. 

Specimens that exhibited compression or shear failure were often able to carry 

additional load beyond the point at which the initial failure occurs. However, the 

initial shear or compression failure mechanism results in a compromise of the 

composite action and fibre continuity of the CFRP material and the tendon's 

behaviour under the additional loading is unpredictable and unstable. Therefore, 

the load at the point of initial failure was considered to be the effective failure load 

for these specimens. 

Often, the moment of initial tendon failure can be difficult to determine solely from 

visual observation, especially in the case of compression failure where the failure 

mechanism can hidden from view by the testing equipment due to its location. 

However, along with the visual signs associated with the failure modes, inspection 

of the recorded strain data can give indications of the mode of failure. Figure 4-2 

plots the bending strain portion of the total top fibre strain versus the applied 

loading as recorded for test specimens 2, 3 and 4 from test group I. Specimen 2 

exhibited tension failure, specimen 3 exhibited shear failure and specimen 4 
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exhibited compression failure. The tension failure specimen, 2, shows a smooth, 

continuous strain-load plot all the way to failure. In the shear failure specimen, 3, a 

discontinuity can be seen in the strain-load plot at the point of where the initial 

shear failure occurred. The tendon is still able to carry additional loading beyond 

this failure point; however, the tendon exhibits a noticeable drop in stiffness as seen 

by the change in the trend of the strain-load plot beyond this point when compared 

to specimen 2. It can also be seen that the strain-load plot beyond the initial failure 

is no longer smooth, but exhibits an instability that results from the failure 

mechanism. In the compression failure specimen, 4, a discontinuity can again be 

seen at the point of initial failure. In this case, the discontinuity is much more 

significant because of failure and the sudden change in the local stiffness of the 

tendon in the area of the failure. 
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Figure 4-2: Strain-Load Plot Illustrating Failure Modes 

In all the harped tests, regardless of the failure mode, it was noted that the tendon 

failure occurred at the location of the deviator, indicating, as should be expected, 

that the greatest net stresses in the harped tendon occur at this location. 
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4.2.2 Experimental Test Results 

Table 4-1 summarizes the results of the experimental test program. The table gives 

the applied stress level at which effective failure of the tendon was determined to 

have occurred for each of the test specimens as well as the failure level as a 

percentage of the guaranteed tensile capacity (fu=2068MPa) of the CFRP tendon. 

Table 4-1: Ex£erimental Test Failure Stress and Mode 

Test Specimen Tendon Deviator Harp Failure % Ultimate Failure 
Group No. Diameter Radius Angle Stress Modec 

mm mm deg MPa (fu=2068MPa) 
1 9.5 50 2 1583.4 76.57% T 
2 9.5 50 3 1255.3 60.70% T 
3 9.5 50 5 199.4 9.64% s 
4 9.5 50 10 38.1 1.84% C 
5 9.5 50 15 12.5 0.60% C 
6 9.5 500 2 1798.2 86.95% T 
7 9.5 500 3 1519.0 73.45% T 
8 9.5 500 5 1335.38 64.57% T 

II 19 9.5 500 6 1185.8 57.34% T 
20 9.5 500 9 1320.4 63.85% T 
9 9.5 500 10 1042.78 50.42% T 
10 9.5 500 15 20.9 1.01% C 
3 9.5 50 5 199.4 9.64% s 
11 9.5 100 5 284.4 13.75% s 

Ill 12 9.5 250 5 1048.3 50.69% T 
8A 9.5 500 5 1335.38 64.57% T 
13 9.5 1000 5 1633.6 78.99% T 
14 6.3 50 2 1635.7 79.10% T 
15 6.3 50 3 1477.7 71.46% T 

IV 16 6.3 50 5 963.4 46.59% T 
17 6.3 50 10 116.0 5.61% C 
18 6.3 50 15 27.6 1.33% C 
21 9.5 250 2 1751.8 84.71% T 

V 22 9.5 250 3 1500.7 72.57% T 
12A 9.5 250 5 1048.3 50.69% T 
23 9.5 250 10 29.2 1.41% C 
2 9.5 50 3 1255.3 60.70% T 

VI 24 9.5 100 3 1165.1 56.34% T 
22A 9.5 250 3 1500.7 72.57% T 
7A 9.5 500 3 1519.0 73.45% T 

Duplicate entries (multiple test groups) 
8 Average value (more than one specimen tested) 
c Failure mode: T = tension, C = compression, S = shear 
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Often, the tendon was able to take additional loading beyond the initial failure, 

particularly in the case of compression and shear failures, however, the failure level 

indicated is the initial failure level, the level at which the first failure signs were 

observed. For specimen 8, three specimens were tested, and for specimen 9, two 

specimens were tested, and the table gives the average value of the test results for 

these two cases. Appendix B gives the test data for the individual test specimens for 

these two configurations and a significant scatter can be seen. This scatter may be 

attributed to the variability of the material properties of the CFRP tendons. The 

effect of the material property variability on the experimental data is discussed later 

in Section 5.5. Table 4-1 also gives the mode of failure for each specimen: 'T' 

indicates tension failure, 'C' indicates compression failure and 'S' indicates a shear 

failure. It can be seen that compression failures typically occurred at larger harping 

angles and that shear failures typically occurred at medium angles with smaller 

deviator radii. Also, note that the failure stress for these failure modes is very low in 

comparison with tension failures. 

4.3 DISCUSSION OF EXPERIMENTAL RESULTS 

In this analysis of the experimental data, only the specimen tests in which tensile 

failure occurred are considered. Compression and shear failure were observed to 

occur generally at significantly lower loading levels than tension failure and design 

parameters giving rise to these failure modes should be avoided. The significance 

and impact of the mode of failure, particularly in the case of compression or shear 

failure, is discussed and analysed in more detail in Chapter 6. 
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4.3.1 Observed Effect of Harping Configuration Variables 

Figure 4-3 and Figure 4-4 illustrate the effect of the harping configuration variables 

on the tensile capacity of the harped CFRP prestressing tendons. Figure 4-3 shows 

the experimental data from test groups I, II, IV and V in which the deviator size and 

tendon size remained constant while the harping angle was changed. The 

normalized failure level is plotted against the nominal harping angle for each test. 

The normalized failure level is calculated by dividing the measured failure stress by 

the guaranteed tensile stress capacity for the tendon ( ar/au). For all four of these 

groups, a decreasing trend can be seen. This indicates that as the nominal harping 

angle is increased, the tensile capacity of the harped tendon decreases. 
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Figure 4-3: Effect of Harping Angle on Tensile Capacity 

Figure 4-4 plots the experimental data for test groups III and IV in which the tendon 

size and nominal harping angle are held constant while the deviator size was 

changed. The normalized failure level is plotted against the deviator radius for each 

test. In both of these test groups, a increase in the capacity as the deviator size is 

increased can be seen. This indicates the tensile strength decreases as the deviator 

size decreases. 
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Figure 4-4: Effect of Deviator Size on Tensile Capacity 

4.3.2 Comparison with Existing Analytical Models 

In this section, the experimental data are compared to the three existing analytical 

models described in Chapter 2: the JSCE model (JSCE, 1997), the Gilstrap model 

(Gilstrap et al, 2001) and the Ahmad model (Ahmad et al, 1997). Figure 4-5, Figure 

4-7 and Figure 4-8 illustrate the normalized correlation between each of the three 

models and the experimental data using the published guaranteed properties for the 

CFRP material. In the figures, the 1:1 correlation line represents an ideal, exact 

correlation where the measured and predicted failure levels are identical. Data 

points situated below and to the right of the 1:1 correlation line represent 

conservative data points where the predicted tensile strength was less than the 

measured tensile strength, that is, the model under-estimates the tensile strength. 

Data points situated above and to the left of the 1:1 correlation line represent 

unconservative data points where the predicted tensile strength was greater than the 

measured tensile strength, that is, the model over-estimates the tensile strength. 

Figure 4-5 shows the normalized correlation plot for the JSCE model using the 

characteristic tensile strength equation for a bent FRP tendon. The majority of the 

data points are situated significantly on the unconservative side of the correlation 
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line. The majority of the failure levels predicted by the JSCE model can also be seen 

to be equal to 100% of the ultimate capacity while the measured values are 

significantly lower. This may be explained by the fact that the data used to develop 

the JSCE model had deviator radius to tendon diameter ratios (Rd!d,) of up to about 

10, whereas the tests in this experimental program had Rd!d, values as high as 100. It 

should be noted that all of the data points that are on the conservative side are for 

test configurations with Rd!d, values less than 10. The JSCE model shows a poor 

correlation to the measured capacity and greatly over-estimates the tensile capacity 

of the harped tendon. The JSCE model appears to be extremely unconservative for 

most cases, especially for higher Rd!d, values where the model greatly overestimates 

the harped tendon's capacity, which is not desirable, as practical Rd!d, ratios would 

tend to fall in this higher range. 
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Figure 4-5: Correlation Plot for JSCE Model Using Characteristic Strength 

Figure 4-6 shows the normalized correlation plot for the JSCE model using the 

tensile design strength equation for comparison. In this case, the data is, overall, 

closer to the 1:1 correlation line; however, the majority of the data is still 

unconservative and the margin of safety provided by the material coefficient is lost. 
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This further shows the overall deficiency of the JSCE model and its failure to 

calculate the tensile strength of harped FRP tendons safely. 
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Figure 4-6: Correlation Plot for JSCE Model Using Design Strength 

Figure 4-7 shows the normalized correlation plot for the Gilstrap model. The 

Gilstrap model exhibits a characteristic horizontal banding of data points. This 

occurs because the model is not influenced by the harping angle, so harping 

configurations with the same deviator and tendon sizes but different harping angles 

will produce the same strength values. All the data values for the Gilstrap model lie 

on the conservative side of the correlation line, however, for several of the test 

configurations, negative predicted values are produced (shown as zero in the figure) 

which suggest that the tendon cannot take any tensile loading. This was not the 

case, as the measured failure loads were significantly higher than zero. The Gilstrap 

model assumes that the tendon follows the curvature of the deviator regardless of 

the loading and configuration. For smaller deviator radii, this approach predicts 

bending stresses that can often be higher than the tensile strength of the tendon. 

Overall, the Gilstrap model shows very poor correlation with the measured tendon 

capacity. While the results of the correlation plot for the Gilstrap model are 

conservative, the model is often too conservative for an efficient usage of harped 
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CFRP tendons, as it severely limits the usable harping parameters and under­

predicts the harped tendon capacity, particularly as the Rd/d, ratio decreases. 
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Figure 4-7: Correlation Plot for Gilstrap Model 

Figure 4-8 shows the normalized correlation plot for the Ahmad model using the 

assumed, increased strain capacity of 0.0216 (21,600microstrain) as included directly 

in the model for their test program. A very poor correlation can be seen for the 

Ahmad model in this case. It is especially notable that all of the data points are 

unconservative. This may be accounted for by the fact that the strain capacity 

included in the model is for the specific CFRP material used in their test program. 
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Figure 4-8: Correlation Plot for Ahmad Model with Increased Strain Capacity 
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To make a fairer comparison with the experimental data, the Ahmad model was 

modified to use the guaranteed tensile strain capacity of 16,677microstrain for the 

CFRP tendons used in this research program. Figure 4-9 shows the normalized 

correlation plot for the modified model. Comparing Figure 4-9 to Figure 4-8, a much 

better correlation with the measured failure levels can be seen. A much better 

correlation with the measured failure levels is also seen with the modified Ahmad 

model than with either the JSCE or the Gilstrap model. There is some scattering of 

the data points, which can be expected due to the variability of the material 

properties. However, the scatter observed when using the Ahmad model produces 

several values that fall on the unconservative side. This could be corrected by the 

use of a material resistance factor or a factor of safety. However, an appropriate 

value for this factor would need to be assessed for CFRP tendons of varying material 

properties. 
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Figure 4-9: Correlation Plot for Ahmad Model with Guaranteed Strain Capacity 

Overall, both the JSCE and Gilstrap models showed a very poor correlation with the 

measured data. It should also be noted that the JSCE and Gilstrap models are not 

influenced by the harping angle, whereas the experimental data, as shown in Figure 

4-3, indicates that the harping angle does have an effect on the harped tendon 
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capacity. The Ahmad model, on the other hand, showed a much better correlation 

with the measured data, when modified to use the guaranteed tensile strain capacity 

for the CFRP material. However, the Ahmad model did still produce 

unconservative results. It was also found to be more difficult to use because the 

model is not dimensionally consistent and requires the variables to be in specific 

units of measure. In addition, the maximum tensile strain specific to the CFRP 

material used in their test program was included directly in the model rather than 

being specified as a variable. 

Because of the problems in the existing models and design formulae for harped 

CFRP prestressing tendons as highlighted in this chapter, one of the objectives of 

this research program was to develop a new analytical model that can predict the 

behaviour and failure characteristics of harped CFRP prestressing tendons safely 

and efficiently. The next chapter presents the analytical model developed within 

this research program and explains its development. 
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5 ANALYTICAL MODEL 

5.1 INTRODUCTION 

The development of an analytical model that can closely predict the failure 

behaviour of harped CFRP prestressing tendons would allow the technology to be 

used much more efficiently and confidently in practical applications. As shown in 

the previous chapter, there are some deficiencies in existing analytical models for 

predicting the failure strength of the deviated tendons. The JSCE model (1997) was 

shown to be very unconservative when parameters beyond those used in its 

development were used. The model by Gilstrap et al. (2001) was shown to be too 

conservative in most cases. The JSCE and Gilstrap models do not include the 

harping angle as a variable in the models. A better correlation with the 

experimental data was seen with the model by Ahmad et al. (1997), however, it was 

still found to be unconservative in some cases. The Ahmad model was also found to 

be more difficult to use because the maximum tensile strain specific to their test 

program was included directly in the model rather than being specified as a 

variable, and the model is not dimensionally consistent, that is, it requires the 

variables to be in specific units of measure. 

The objective of this portion of the research program was to develop a general 

analytical model based on the mechanics of the CFRP material and the statics and 

geometiy of the tendon and harping configuration. 

5.2 PRIMARY ANALYTICAL MODEL 

The Gilstrap model is based on simple mechanics of materials, however, one of the 

main assumptions made is that the deviated CFRP tendon achieves the full 
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curvature of the deviator, that is, the radius of curvature of the tendon is equal to the 

radius of the deviator used under any loading level or harping configuration. 

However, experimental data reported by Gilstrap et al and by the current research 

program suggests that the assumption that the radius of curvature of the tendon is 

equal to the radius of the deviator under any condition may be erroneous. 

Specifically, Gilstrap et al reported that CFRP tendons were successfully loaded in 

configurations in which their model predicted the tendon should fail. Additionally, 

for several specimens from the current research program, the Gilstrap model 

predicted the tendon could not carry any load. This was not the case and the 

tendons were able to carry significant loading before failure. 

The analytical model developed here is also based on mechanics and the elastic 

properties of the material. However, this model does not assume that the tendon 

achieves the curvature of the deviator. It is assumed that, because of the inherent 

stiffness of the tendon, it will achieve its own natural radius of curvature relative to 

the stiffness of the CFRP material, the harping configuration and the applied load. 

The model attempts to determine the natural curvature of the tendon based on its 

material properties, the geometry of the harped configuration and the applied load. 

5.2.1 Tendon Properties 

The CFRP tendon in the model is assumed to have a constant circular cross-section 

of radius, r. The CFRP material is assumed to be linear elastic in both tension and 

shear, and have the following properties: 

E: modulus of elasticity 

G : shear modulus 

e,,1 : tensile rupture strain 

er,,,: ultimate tensile failure stress ( er,,, = E · e,,1 ) 
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5.2.2 Harping Profile Geometry 

Figure 5-1 shows the general layout and configuration of the harped tendon. It is 

assumed that the tendon is harped symmetrically at an angle e over point A and 

that a load, P, is applied axially in tension to the tendon. Between points B and C, 

the tendon is assumed to be bent at a constant radius of curvature, R. Beyond points 

Band C, the tendon is assumed to be straight (R = 00). By geometry, it can be shown 

that angles ADB and ADC are equal toe. 

;~, ; / 
' I ~. 

-----------------~~ ----~-----~--
'. R 

,. p 

Figure 5-1: Assumed General Tendon Profile 

5.2.3 Axial Stress and Strain 

The mode of failure for the tendon is assumed to be a tension failure due to the total 

axial stresses exceeding the tensile capacity of the CFRP tendon in this model. It is 

also assumed that the only significant axial stresses and strains in the curved tendon 

at are those due to tensile loading, u, and s,, and bending, uh and sh, as shown in 

Figure 5-2. 

tension 
a, + 

bending 

= 

= 
total 
Gtot 

Et + Eh = £1n1 

Figure 5-2: Axial Stress and Strain Distribution across Tendon Cross Section 
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It is acknowledged that there are other forces present in the curved tendon including 

normal forces perpendicular to the tendon due to bearing on the deviator and 

longitudinal forces due to friction between the deviator and tendon. These forces 

will have an effect on the axial stress in the tendon, however, the magnitude of this 

effect is assumed to be negligible for the purposes of this analysis. 

5.2.3.1 Tension Stress and Strain 

The tension stress is assumed to be uniform over the tendon cross section fibres as 

shown in Figure 5-2. 

This stress is a direct result of the applied load P: 

For a circular cross section, A= 1r · r' 

Equation 5-1: 
p 

a,=--, 
7r. r 

The corresponding tension strain in the tendon is: 

Equation 5-2: 

CY, 
e =­
' E 

5.2.3.2 Bending Stress and Strain 

Bending stress and strain are a result of the curvature induced in the tendon over the 

deviator. Because the material is linear elastic and the tendon cross-section is 

symmetric, the bending stress is assumed to vary linearly across the tendon cross 

section with the neutral axis at mid-depth and compression stresses occurring in the 

bottom fibres and tension stresses occurring in the top fibres, as shown in Figure 5-2. 

To calculate the axial stress and strain due to bending, the relationship between the 
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curvature of the tendon and the axial stress and strain needs to be determined. 

Figure 5-3 illustrates a section of tendon curved to radius R through angle 8. 

·' .- -·- -·-·-

';,,-·~'.;/ 

·· .. ~ 
Figure 5-3: Curved Section of CFRP Tendon 

The undeformed, straight length of the tendon is equivalent to the neutral axis arc 

length: 

l=B·n·R 
I 180 

The deformed length of the top fibre is: 

B·n ( ) l =--· R+r 2 180 

Therefore, the strain experienced in the top fibre is: 

Equation 5-3: 

B·n ( ) B·n --· R+r ---·R 
5 

_ 180 180 
b - B·n 

-·R 
180 

r 
&b =-

R 

The corresponding bending stress in the top fibre is: 

Equation 5-4: 
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The bending stress and strain are assumed to vary linearly and symmetrically about 

the neutral axis; therefore, the maximum bending stress and strain in the bottom 

fibre of the tendon can be taken as the negative of Equation 5-4 and Equation 5-3 

respectively, and will be in compression. Equation 5-4 is similar to that used by 

Gilstrap et al. (2001), with the difference being that the radius of curvature, R, here 

represents the natural radius of curvature that the tendon has assumed, which is not 

necessarily equal to the radius of the deviator. This will be explained further in 

Ssection 5.2.4. 

5.2.3.3 Total Axial Stress and Strain 

Superposition of the axial tension and bending stresses gives the total axial stress 

state across a given tendon cross-section, as shown in Figure 5-2. 

The total axial stress is given as: 

Equation 5-5: 

Similarly, the total axial strain is: 

Equation 5-6: 

5.2.4 Radius of Curvature 

To determine the total axial stress and strain state in the tendon resulting from the 

applied load, P, both the tension and bending stress in the tendon need to be related 

to P. Equation 5-1 and Equation 5-2 show the direct relationship between the 

tension stress and strain and the applied load. Because there is a stiffness associated 

with the CFRP material, the tendon will not bend to assume a sharp corner across 

point A. Rather, the tendon will bend to a radius of curvature that restores 

equilibrium of the internal and external forces, which will be termed the natural 

radius of curvature, Rn. It is assumed that the natural radius of curvature of the 
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tendon is related to the applied load, P. As shown in Equation 5-4, the axial bending 

stress is related to the radius of curvature of the tendon, and therefore, it follows that 

the axial stress and strain due to bending is related to P. 

d' ' ' ' 

Figure 5-4: Bending Moment Ann 

p 

To determine the relationship between P and R,,, it is first assumed that the applied 

load, P, produces an applied bending moment, M,, at point A because of the 

moment arm, d, as shown in Figure 5-4. If point A is assumed to be the bearing 

point, the applied moment about the point A from load Pis: 

M =P·d a 

From geometry, the moment arm is: 

d =R -d' 
" 

Where: d'=R,, ·cos(e) 

d =R,, ·(1-cos(e)) 

Therefore, the applied bending moment is: 

Equation 5-7: Ma = P· R · (1-cos(e)) 

From classical elastic bending theory (Beer et al, 2002), beam curvature is related to 

the elastic bending moment by: 

l M 
-=--
R E·l 

Therefore, the elastic bending moment can be defined as: 
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Equation 5-8: M, = 
E·l 

R 

For equilibrium, the applied bending moment (Ma, Equation 5-7) and the elastic 

bending moment (M,, Equation 5-8) at point A must be equal. 

Setting these moments to be equal and solving for the applied load, P, gives: 

M,=M, 

Therefore: P·R,, ·(1-cos(e))= ~-I 
,, 

P=-~E-·1-~ 
R,,

2 ·(1-cos(e)) 

For a circular tendon cross-section: I=.!.· 1r • r 4 

4 

Equation 5-9: 
E · 1r • r

4 

P=-------
4·R,,2 ·(1-cos(e)) 

Conversely, rearranging Equation 5-9 in terms of the natural radius of curvature: 

Equation 5-10: 
r' 

R =-· 
" 2 P·(l-cos(e)) 

These two equations show the relationship between P and R required to satisfy 

moment equilibrium. Equation 5-9 solves for the load, P, required to achieve a 

radius of curvature, R,,, in the given tendon. Equation 5-10 solves for the radius of 

curvature, R,,, which results in the tendon from the applied load, P. Following the 

initial assumption, it can be seen from these equations that the natural radius of 

curvature of the tendon is related to the applied load and that the radius will 

decrease as the load is increased. 

Substituting Equation 5-10 into Equation 5-4 gives: 

~b ___ 2. ~E · P · (1-cos(e)) Equation 5-11: v 

r 7r 

56 



Similarly, substituting Equation 5-10 into Equation 5-3 gives: 

Equation 5-12: 

Equation 5-11 and Equation 5-12 give the bending stress and strain, respectively, in 

the extreme fibres of the tendon at point A that result from the applied load P for the 

given harping configuration. Assuming a symmetrical stress and strain distribution, 

this stress and strain is equal in magnitude to that for both tension in the top fibre 

and compression in the bottom fibre. 

5.2.5 Tendon Failure Criterion and Model Solution 

In order to solve for the load at which tendon failure will occur, a failure criterion 

needs to be employed. Ignoring any friction effects, axial stress and strain due to 

tensile loading is constant along the entire tendon. On the other hand, axial stress 

and strain due to bending will only be present in the curved segment of the tendon. 

It has already been shown that, as the applied load is increased, the axial stress and 

strain due to tensile loading (Equation 5-1 and Equation 5-2) will increase, and that 

the axial stress and strain due to bending (Equation 5-11 and Equation 5-12) will 

increase. Thus, it follows that the maximum total axial stress and strain (Equation 

5-5 and Equation 5-6) will be in the top fibre of the curved segment of the tendon, 

and that tendon failure will occur in this location in tension. Using the tensile 

rupture strain ( s,,,) of the material as the failure criterion, the tendon will fail in 

tension when the maximum total axial strain exceeds the rupture strain of the 

material. Therefore, Equation 5-6 can be redefined as: 

Equation 5-13: s,,, = 8 tf + 8 bf 

The failure criterion as given by Equation 5-13 needs to be solved for the tension and 

bending strains that satisfy both the failure criterion and equilibrium. 
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Substituting Equation 5-9 into Equation 5-2: 

From Equation 5-3: 

Therefore: 

[ 
E·tr·r

4 J 
4·R,/ ·(1-cos(e)) 

£ =~~~~~~~~ 
tf E·tr·r 2 

r 
£b =-

R 

5
tf = 4 · (1-~os(e))° (ebf )' 

Substituting into Equation 5-13 gives a quadratic equation with bending strain, £bf' 

as the only unknown: 

Solving the quadratic for the bending strain, £bf: 

Equation 5-14: £bf = 2 · (1-cos(B)){ 1 + (l-:~s(B)) -lJ 

Equation 5-14 gives the bending strain component of the total axial strain in the 

curved segment at tendon failure. This solution for the failure criterion assumes that 

the tendon is able to attain the natural radius of curvature corresponding to the 

moment equilibrium at the failure load, R,,. However, the radius of curvature of the 

tendon is physically limited by the radius of the deviator, Rd, that is, as the load is 

applied, once the tendon has reached the radius of curvature of the deviator, the 
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radius of curvature of the tendon will no longer be able to decrease. Therefore, the 

minimum radius of curvature attainable is: 

Equation 5-15: Rmio = Rd + r 

In this model, it is assumed that the tangential angle of the deviator used is greater 

than the effective harping angle so that a sharp bending point is not created in the 

tendon at the deviator edge when the tendon achieves a radius of curvature equal to 

Rmin. 

Substituting Equation 5-14 into Equation 5-3, the natural radius of curvature that the 

tendon assumes at failure can be determined: 

Equation 5-16: 

r 
8 bJ =­

R,if 

r 
R,if =-

8bJ 

Thus, if the natural radius of curvature, RnJ, given by Equation 5-16 is less than the 

minimum as limited by the deviator, R111111, given by Equation 5-15, and then R111111 

should be used, otherwise, RnJ should be used: 

Equation 5-17: R1 = max(R,if,Rmio) 

The radius, Rt, can then be used to determine the both the tension and bending strain 

components of the total axial strain at failure: 

Equation 5-18: 

From Equation 5-13, the tension strain component is: 

8 tJ = 6 111 - 6 bJ 
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Equation 5-19: 
r 

etf =But __ 
Rf 

It also follows that the tension and bending stress components of the total axial 

stress at failure are: 

Equation 5-20: 

Equation 5-21: 

r 
O"bf =E·­

Rf 

r 
a tf = a 111 - E. -

Rf 

The tension stress component of the total axial stress at failure is equal to the tensile 

capacity of the harped tendon. 

The tensile capacity of the harped tendon expressed as a percentage of the ultimate 

capacity of the straight tendon is: 

Equation 5-22: a:ir = ¢,, · a 111 

Equation 5-23: 

r 
CJ" -E·-

"' R 
" - f 'Ph -

r 
¢,, =1---

s,,, ·Rf 

The coefficient cp,, represents the tensile strength reduction factor for a harped 

tendon with the given configuration and properties. 

From Equation 5-1, the maximum tensile load capacity for the harped tendon is: 

Equation 5-24: Pf = CJ";,, ·Jr· r 2 

5.2.6 Primary Model Solution Characteristics 

Using the primary model developed in this chapter and illustrated in Figure 5-5 and 

Figure 5-6, the effect that the harping configuration variables, particularly the 
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harping angle and deviator radius, have on the harped CFRP prestressing tendon's 

tensile capacity can be clearly seen. 

Figure 5-5 shows the predicted tendon tensile capacity as a percent of the ultimate 

capacity of the CFRP tendon, in relation to the harping angle using the guaranteed 

minimum material properties for the CFRP material used in this research program 

( E = J 24GPa and s,,, = J 6,677microstrain ). It can be seen that the tendon capacity 

decreases as the harping angle is increased, from a maximum of 100% when the 

harping angle is zero or there is no harping. Also indicated in Figure 5-5 is a 

'plateau' effect for deviator radii of 500mm, 1000mm and 1500mm. This effect 

occurs when the calculated natural radius of curvature for the tendon would be less 

than the specified deviator radius. The radius of curvature of the tendon becomes 

physically limited at the deviator radius and, therefore, the tendon capacity is not 

affected by any further increase of the harping angle. 

100% -
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~ 
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Figure 5-5: Predicted Failure Level vs. Harping Angle 

Figure 5-6 shows the predicted failure level in relation to the deviator radius, using 

the same values for the elastic modulus and the tensile rupture strain as used for 
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Figure 5-5. It can be seen that the tendon capacity increases as the deviator radius is 

increased. The minimum failure strain curve in Figure 5-6 represents the condition 

where the tendon radius of curvature is equal to the deviator radius. This solution is 

exactly equal to that given by the Gilstrap model. However, when the natural 

radius of curvature for the tendon at failure is greater than that as limited by the 

deviator radius for the specified harping angle, the deviator radius has no effect on 

the tendon capacity. Examples of this condition are illustrated by the horizontal 

failure strain lines indicated for 2, 5 and 10 degrees. The point of intersection 

between the horizontal failure strain lines and the minimum failure strain curve 

indicates the natural radius of curvature of the tendon at failure for the given 

harping variables. Comparing the horizontal failure strain lines to the minimum 

failure strain curve, it can clearly be seen that using a natural radius of curvature, 

based on the tendon stiffness and equilibrium, can give a significant increase in the 

calculated tendon strength over using the deviator radius, especially with smaller 

deviators and at lower harping angles. 
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Figure 5-6: Predicted Failure Level vs. Deviator Radius 
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5.3 TRANSITION EFFECTS AND INTER-LAMINAR SHEAR DEFORMATION 

Under the model as developed so far, the assumption is that classical bending theory 

applies to the tendon: plane sections remain plane and perpendicular to the neutral 

axis. This means that within the curved portion of the tendon where it is assumed 

that the radius of curvature is constant, the bending stress and strain are constant, 

and within the straight portions, the bending stress and strain are zero, as shown in 

Figure 5-7. This results in a discontinuity in the bending stress in and an unbalanced 

bending moment at the transition point between the curved and straight segments. 

C/L deviator 

bending 
stress in 
top fibre 

tendon 
N/A 

[ ub=E-r/R 

curved 
section R 

transition 
point 

/ 
/ 

/ 

straight 
section 
(R=(X) 

plane sections remain 
perpendicular 
throughout tendon 

Figure 5-7: Top Fibre Bending Stress Distribution under Elastic Bending Theory 

The occurrence of an unbalanced bending moment at the transition point suggests 

that one or more of the assumptions for classical bending theory may not be valid 

for this scenario. Because the CFRP material is not infinitely rigid against shear 

deformation, it is possible that, for some distance across the transition point, plane 
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sections rotate from perpendicular to the neutral axis due to inter-laminar shear 

deformation, as shown in Figure 5-8. This results in a relaxation of the top fibre 

material, which allows the resulting bending moment to transition smoothly across 

the transition zone. This also means that for the segment of the curved tendon that 

lies within the transition zone, the top fibre bending stress and strain will be lower 

than that given by the pure elastic theory (Equation 5-4 and Equation 5-3). If the 

resulting transition zone is located such that the centreline of the deviator lies within 

it, then the maximum bending stress and strain at this point will also be lower than 

that calculated by the pure elastic theory, resulting in a larger tensile capacity in the 

tendon. 
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Figure 5-8: Top Fibre Bending Stress Distribution with Transition Effects 
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5.4 EQUIVALENT SPRING FRAME MODEL 

The exact characteristics and magnitude of the transition zone and transition effect 

are unknown, which makes calculating this transition effect analytically using 

external elastic equilibrium very complex and difficult. Thus, in order to assess the 

significance of the transition effect, a simplified finite element analysis (FEA) was 

used. The CFRP tendon was transformed into an equivalent spring frame model as 

shown in Figure 5-9. Because the stress and strain distribution is assumed to be 

linear and symmetric across the neutral axis, only the top half of the tendon was 

modeled. In addition, because the tendon profile is symmetric across the deviator 

centreline, it was only necessary to model the right half of the tendon and treat the 

frame as fixed at the deviator centreline. 

de'{iator C/L 

I 

r·-·-·-·-
1 - ' 

' ' 

harped 
CFRP tendon 

·, 

' ' 

deviat.or C/L 

neutral 
axis 

-ESZS2l- linear spring 

~ rotational spring 

Figure 5-9: Equivalent Spring Frame Model 

' 

The tendon was discretized into frame elements with a height equal to half the 

tendon height and a length dependent on the level of refinement of the frame model. 

The horizontal frame members were represented as linear springs as shown in 

Figure 5-9 and Figure 5-lOa. The vertical frame members were represented as a 

rigid body connected to the neutral axis by a rotational spring and pin-connected to 
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the linear springs at the top, as shown in Figure 5-9 and Figure 5-lOb. It is assumed 

that the linear spring coefficient is related to a linear deformation of the elements 

and that the rotational spring coefficient is related to an inter-laminar shear 

deformation of the elements. 

a) longitudinal deformation 
as linear spring 

M 

b) shear deformation 
as rotational spring 

Figure 5-10: Elemental Representation in Equivalent Spring Frame Model 

The axial strain resulting from the applied tensile loading is assumed to be constant 

both across the cross-section and along the length of the tendon, therefore, direct 

tension strains due to the applied load can be assumed to have no influence on the 

transition effect, and the spring frame needs to model only the axial bending strain. 

The axial bending strains are related to the deformation of the tendon because of the 

curvature of the tendon, therefore, the rotational springs can be assumed to be fixed 

in their linear position along the profile of the neutral axis, and no external loading 

needs to be applied to the model. 

Figure 5-11 illustrates the variables of a typical element in the spring frame model. 

The neutral axis of the curved tendon is described by a straight line for illustrative 

purposes. The angle, e,,, is used to indicate the global rotation or slope of the neutral 

axis of the tendon at element n due to curvature of the tendon. 
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right-hand rule 
sign 

convention 

Figure 5-11: Spring Frame Model Element Variables 

The frame model has the following geometric variables: 

H: element height (tendon radius, r, for circular tendon) 

L : element length 

L;, : deformed length of element n at top fibre 

M,, : net change in length of element n at top fibre (linear deformation) 

x,, : linear position of element n at the neutral axis 

x;, : deformed linear position of element n at top fibre 

&,, : net change in linear position of element n at top fibre 

B,, : global rotation or slope of neutral axis at element n due to curved 

tendon profile 

/J,,: rotation of element n from perpendicular to neutral axis (shear 

deformation) 

a,,: net global rotation of element n ( a,, = B,, + (J,,) 

k, : linear spring coefficient 

k2 : rotational spring coefficient 

Using the right-hand rule sign convention, counter-clockwise rotations are assumed 

to be positive. Therefore, setting up the model for the right side of the tendon 

profile, the global rotations, e .. , will be negative. 
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Solving for geometric compatibility: 

!::vc,, = -H · tan(a,,) 

However, a,, isassumedsmall, :. tan(a,,)=a,, 

L1.x
11

::::: -H ·a
11 

x;, = x,, + /j:( 11 

x' - -H·a II -XII II 

L' ' , 11 =xn -x11-1 

But L = (x,, - x,,_1) 

L;, =L-H ·(a
11 

-a,,_1) 

M - L-L' II - II 

M
11 

=-H·(a11 -a11 _ 1 ) 

M,, = -H. ((e,, + /J,, )- (e,,_1 + /J,,_1 )) 

Equation 5-25: M,, = -H · (e,, - B,,_1 + (J,, - (J,,_1 ) 

5.4.1 Matrix Stiffness Method 

The spring frame structure can be viewed as a force-displacement equilibrium 

problem, with unknown forces and displacements associated with the top fibre 

longitudinal deformation and the out-of-perpendicular shear deformation. 

Therefore, to solve the spring frame structure for the unknowns, the displacement or 

stiffness method for analysing indeterminate structures can be utilised in a matrix 

form. 

68 



The system of simultaneous linear equations for the matrix stiffness method is 

expressed as: 

Equation5-26: [FEM]+[K]·[D]= [M] 

Where: 

[FEM]: matrix of fixed-end moments: related to fixing the nodal degrees of 

freedom 

[K]: stiffness matrix: matrix of forces due to unit displacements related to 

the unknown displacements 

[D]: matrix of unknown displacements ( degrees of freedom) 

[M]: matrix of external moments: related to the unknown displacements 

Because the spring frame model only represents the bending strain resulting from an 

imposed curvature, it can be assumed that there are no external applied loads on the 

spring-frame nodes, that is, [M] = 0. 

Equation 5-27: [FEM]+ [K]· [D] = 0 

5.4.1.1 Matrix of Unknown Displacements 

In the spring frame model, the forces that result from the deformation of element n 

are shown in Figure 5-12. 

Tn+1 

H 

Figure 5-12: Reaction Forces Acting on Element n 
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For moment equilibrium, the sum of the moments about the base of the element 

must be equal to zero: 

I,M 0,, = 0 

Equation 5-28: M,, + H · T,, - H · T,,.1 = 0 

The horizontal tension force in the top member due to elongation of the linear spring 

is: 

Incorporating Equation 5-25 gives: 

Equation 5-29: T,, = -kl · H · [(e,, - e,,_\ )+ (/3,, - Pn-1 )] 

The base moment due to rotation of the rotational spring is given by: 

Equation 5-30: M,, = k, · /3,, 

From Equation 5-29 and Equation 5-30, since ki, k,, LJL,,, H and e are all known 

values, it can be seen that moment equilibrium (Equation 5-28) can be expressed in 

terms of a single degree of freedom at each element: the rotation 13,,, which 

represents the shear deformation. 

Therefore, in Equation 5-27, the matrix of unknown displacements [D] can be 

redefined as the matrix of unknown rotations [/3]: 

Equation 5-31: [FEM]+ [K] · [/3] = 0 

For a structure with i elements, the matrix of unknown rotations is given by: 

/31 
/3, 

Equation 5-32: [/3] = /33 
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5.4.1.2 Matrix of Fixed-End Moments 

The matrix of fixed-end moments, [FEM], is determined by fixing the degrees of 

freedom against displacement to create a kinematically determinate primary 

structure, as shown in Figure 5-13, and calculating the resulting fixed-end moments. 

deviatpr C/L 

neutral 
axis '/ ·-·-· 

c = curved element 
t = transition element 
s = straight element 

Figure 5-13: Kinematically Determinate Fixed-End Primary Structure 

There are no external applied forces to cause fixed-end moments. However, the 

curvature induced in the straight spring frame model causes fixed-end moments 

due to a "lack of fit" situation whereby the horizontal spring (top member) must be 

stretched to fit the fixed-end structure. 

Figure 5-14 shows a typical element in the curved segment of the primary structure. 

L'c ) I( L'c+t 

H 

L 

Figure 5-14: Typical Element in Curved Segment of Fixed-End Primary Structure 
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The fixed-end moment for node c is: 

FEM c = H · Tc+I - H · Tc 

From Equation 5-29: Tc = -k, · H · ((ec -Be-I)+ (/Jc - Pc-I)) 

For the primary structure: /Jc = 0 

FEM =H·(-k ·H·(B -e ))-H·(-k ·H·(B -e )) c I c+I c I c c-1 

FEMC = -k, "H 2 "((ec+I -eJ-(ec - ec-1 )) 

FEMC = -k, . H 2 
• (ec+I - 2. ec + ec-1) 

Within the curved section, f'..B is constant, :. ec-1 = ec - f'..B and ec+I = ec + f'..B 

FEM =-k ·H' ·(B +f'..B-2·6 +B -b.B) 
C I C C C 

Equation 5-33: FEM c = 0 

Figure 5-15 shows the transition point element of the primary structure. This is a 

unique element in the primary structure since to the left of the element there is 

curvature, and to the right of the element there is no curvature. 

H 

I_,, 
@ 

L 

L
, 
t 

Figure 5-15: Transition Point Element of Fixed-End Primary Structure 

The fixed-end moment for node tis: 

FEM,= H ·T,+, -H ·T, 

FEM, = -k, . H 2 
• (e,+1 - 2. e,_, + e,_,) 

Again, within the curved section, f'..B is constant, :. B,_, = B, -f'..B 
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Within the straight section, 6 is constant, : . 6,+i = 6, 

FEM = -k ·H2 ·(6 -2·6 +6 -t,.6) t I t t t 

FEM,= k, ·H2 -t,.6 

From the geometry of the structure: L = -1:,.6 · R 

Equation 5-34: FEM =-k ·H2 
• L 

' I R 

Figure 5-16 shows a typical element in the straight segment of the primary structure. 

H 

Figure 5-16: Typical Element in Straight Segment of Fixed-End Primary Structure 

Because the straight segment elements of the primary structure have no curvature, 

there is no deformation of the elements aRd it can be inferred that, therefore, there is 

no resulting fixed-end moment: 

Equation 5-35: FEM, = 0 

From Equation 5-33, Equation 5-34 and Equation 5-35, it can be seen that in the 

fixed-end moments in the primary structure are equal to zero everywhere except at 

the transition point, element t. 
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Assembling the matrix of fixed-end moments for a structure of i elements gives: 

0 

0 

0 

Equation 5-36: [FEM]= - k1 • H' · ~ 

5.4.1.3 Stiffness Matrix 

0 

0 

0 

The stiffness matrix defines the force-displacement relationship for each element of 

the structure and is independent of any applied loading, including that from the lack 

of fit. Therefore, to simplify calculations, the primary structure from Figure 5-13 can 

be treated as straight, as shown in Figure 5-17. 

deviator 
C/L 

neutral 
axis 

I 

Figure 5-17: Reconfigured Determinate Fixed-End Primary Structure 

The stiffness matrix is formed by releasing each node independently and applying a 

unit displacement in the direction of the unknown displacement. The reaction forces 

from the unit displacements make up the stiffness matrix. Figure 5-18 illustrates a 

unit displacement at a typical element, n. 
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Figure 5-18: Unit Displacement at Typical Element 

For the typical element as shown in Figure 5-18: 

en-I = ell = ell+\ = 0 I /3,1-l = /311+\ = 0 1 /Jn = I 

The resultant forces from the unit displacement are calculated as: 

From Equation 5-29, T,, = -k, · H · (B,, - B,,_1 + /3,, - /J,,_1 ) 

.',T=-k·HandT -k·H 
11 I 11+! - I 

From Equation 5-30, M,, = k 2 • /3,, 

:. M =k ,, 2 

Calculating the reaction forces at each node: 

node n-1: 

node n: 

node n+l: 

K --k ·H2 
11-l,11 - I 

K -H·T -H·T -M 11,11 - 11+1 II 11 

K,,,,, = k1 ·H' -(-k, -H 2 )-k, 

K -2-k ·H'-k 1111 - I 2 

K --H·T 11+!,11 - 11+\ 
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K =-k ·H2 
11+\ 11 I 

Therefore, the sub-matrix for the stiffness at node n is: 

Equation 5-37: 

K,, = {-k, ·H2 2·k, ·H2 -k2 -k, ·H 2
} 

K =k ·H
2 ·{-1 2- k2 -1} 

" I k ,H2 
I 

At either end of the spring frame structure, the structure is assumed to be fixed as 

illustrated in Figure 5-19. 

1 J 1 
@ G) @ 

Figure 5-19: End Conditions of a Spring Frame System with i Elements 

For a structure of i elements, nodes n=O and n=i+ 1 have known displacements, 

/30 = /3;., = 0, and, thus, can be removed from the stiffness matrix: 

Equation 5-38: K = k · H 2 
• {2 - k, -1} 

I I k ·H' 
I 

Equation 5-39: K. =k ·H 2 ·{-1 2--k~2 
-} 

' I k ·H' 
I 

Assembling the stiffness matrix for a structure of i elements gives: 

,1, -1 0 0 0 0 

-1 ,1, -1 0 0 0 

0 -1 ,1, 0 0 0 

Equation 5-40: [K]= ·k, ·H2 

0 0 0 ,1, -1 0 

0 0 0 -1 ,1, -1 

0 0 0 0 -1 ,1, 

Where: .-l=2- k2 
k ·H2 

I 
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5.4.1.4 Solution for Unknown Displacements and Top Fibre Strain 

Recall from Equation 5-31 that the system of simultaneous linear equations for the 

spring frame structure using the matrix stiffness method is expressed as: 

[FEM]+ [K]· [/3] = 0 

Using the assembled component matrices ([/3]: Equation 5-32, [K]: Equation 5-40 

and [FEM]: Equation 5-36) for a system of i elements, in Equation 5-31, the matrix of 

unknown displacements, [/3], for the structure can be calculated. The matrix of 

unknown displacements signifies the rotation of the vertical members from 

perpendicular in the spring frame. This corresponds to the inter-laminar shear 

deformation in the harped CFRP tendon that the spring frame represents. 

Once the matrix [/3] has been calculated, Equation 5-25 can be used to determine the 

matrix [M], which represents the net change in length at the top of each element in 

the balanced state. This also corresponds to the net linear deformation at the top of 

each element of the harped CFRP tendon. The strain in the top fibre of each element 

can then be determined by: 

Equation 5-41: [c,] = [~] 

The matrix, [c, ], corresponds to the bending strain distribution in the top fibre of the 

harped CFRP tendon along the tendon length with transition effects applied. 

5.4.2 Computation of Spring Constants 

To be able to use the spring frame model for the CFRP tendon, the spring constants 

need to be determined. Because the CFRP material is assumed to be linear elastic in 

both tension and shear, it is assumed that k, is directly related to the elastic modulus, 

E, and that b is directly related to the shear modulus, G. 
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The spring constants can be defined as: 

Equation 5-42: k 1 = K 1 • E 

Equation 5-43: k2 = K 2 • G 

5.4.2.1 Linear Spring 

The linear spring constant, ki, is assumed to be related to the linear deformation of 

the top fibre of the element, L1L,, and the total linear force on the element transposed 

to the top fibre, P,, as shown in Figure 5-20. 

L 

H=rr 
. ·-·-·-·-·-· 

linear deformation 
of element 

tensile stress 
distribution 

linear spring 
reoresentation 

Figure 5-20: Representation of Linear Spring 

For a linear spring: 

Equation 5-44: P, = k1 • M, 

The stress/strain distribution across the cross section is assumed to be linear: 

The total moment at the neutral axis resulting from this stress distribution is: 

r 

M= fu(y)·w(y)·y·dy 
0 

For a circular cross section with radius r: w(y) = 2 · ~r2 
- y' 
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' ' (TI.Ji 2 2 M=2·- r -y ·Y ·dy 
r o 

n: ' 3 M =-·rr ·r 
8 

Transposing this moment to a force at the top of the element: 

p =M 
I r 

Equation 5-45: P = n: · rr' · r 2 

I 8 

The stress in the top fibre of the element can be defined as: 

rr' = E·e' 

The top fibre strain can be expressed as: 

' !:,L, 
E:=-

L 

Therefore: 

rr' = E · M, 
L 

Substituting this into Equation 5-45 gives: 

Equation 5-46: 
n: r2 

p =-·-·E·M 
I 8 L I 

Therefore, comparing Equation 5-46 and Equation 5-44 it can be seen that: 

n: r2 
k =-·-·E 1 8 L 

Equation 5-47: 

From Equation 5-47 and Equation 5-42: 

Equation 5-48: 
n: r2 

K =-·-
I 8 L 

79 



5.4.2.2 Rotational Spring 

The rotational spring constant, ki, is assumed to be related to the average shear 

deformation, f, along the element and the total moment due to inter-laminar shear 

differential, M, across the element as shown in Figure 5-21. 

w'=Yz·1C·r 

Equivalent 
cross-section 

L 

Average shear 
deformation of element 

f3 

Rotational spring 
representation 

Figure 5-21: Representation of Rotational Spring 

The semicircular half-tendon cross-section is idealized for simplicity into a 

rectangular cross-section with an equivalent area and the same height as shown in 

Figure 5-21. If the semi-circular and equivalent rectangular cross sections are equal, 

the width of the rectangular cross section can be determined to be: 

A 7r 2 ' =-·r =w ·r 
2 

Equation 5-49: ' 7r w =-·r 
2 

To determine the spring constant, a relationship between the total shear stress, T, 

and the moment, M, needs to be derived. The total shear stress, T, is the shear stress 

distributed along the top surface of the element that produces the total shear 

deformation, f: 

Equation 5-50: r = G · /3 

The moment at the neutral axis resulting from this shear stress is: 

M =r·A' ·r 
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The top surface area of the element is: A' = w' · L 

M=,·w'·L·r 

Substituting in Equation 5-49 and Equation 5-50: 

Equation 5-51: 
;rr 2 

M=-·r ·L·G·/J 
2 

Recall for a rotational spring: 

Equation 5-52: M = k, · fJ 

Therefore comparing Equation 5-51 and Equation 5-52 it can be seen that: 

Equation 5-53: 
;rr 2 

k, =-·r ·L·G 
2 

From Equation 5-53 and Equation 5-43: 

Equation 5-54: 
;rr 2 

K 2 =-·r ·L 
2 

5.4.3 Characteristics of Equivalent Spring Frame Model 

The spring frame model was programmed into MathCAD, software for 

mathematical calculation, in the form of the matrix stiffness method described 

previously. This enabled a frame model with a large number of elements, to be 

assembled and calculated. Variables could be changed and the new solution 

obtained quickly and accurately. Figure 5-22 illustrates the distribution of tensile 

strain due to bending in the top fibre of a tendon for the harping configuration 

variables indicated in the figure, as calculated using MathCAD. For the calculation 

of this figure, 500 frame elements were used with an approximate size equal to 

0.05radians, as determined by a 500mm radius of curvature, or an approximate 

linear length of 0.436mm. 

The transition zone, characterised by the smooth transition across the transition 

point, can clearly be seen and is similar to that illustrated in Figure 5-8. The figure 
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shows the transition zone to have a finite length. However, theoretically, the 

transition zone does not have a finite length as shown in the figure. The axial 

bending strain curve is asymptotic with a limit of Bbum towards the deviator, and a 

limit of zero towards the tendon straight length. However, beyond a certain 

distance along the tendon length on either side of the transition point the effects are 

so minute that they can be ignored. It is notable that the limiting maximum possible 

bending strain is equal to the elastic bending strain defined by Equation 5-3, Bbum. 
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Figure 5-22: Typical Top-Fibre Axial Bending Strain Distribution along Tendon 

Figure 5-23 plots a series of bending strain distributions for several harping angles 

when all other variables are held constant. By changing the harping angle, the 

location of the transition point and transition zone relative to the centreline of the 

deviator changes. Decreasing the harping angle has the effect of moving the 

transition zone closer to the deviator centreline. As can be seen in the figure, the 

location of the transition zone relative to the deviator centreline has a noticeable 

effect on the top-fibre bending strain distribution and the maximum top-fibre 

bending strain, located at the deviator centreline. For harping angles equal to 5, 10 

and 15 degrees, the effective transition zone is located such that it does not overlap 
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the deviator centreline. It can be seen that for these distributions, there is no 

significant influence on the maximum top-fibre bending strain and that the top-fibre 

bending strain distribution across the transition zone is virtually identical, but shifts 

relative to the transition point location. However, for harping angles of 0.5, 1 and 2 

degrees, the effective transition zone does overlap the deviator centreline. Figure 

5-24 illustrates the effect that the location of the transition point, and, therefore, the 

location of the transition zone, has on the maximum top-fibre bending strain. As the 

transition point moves closer to the deviator centreline and more of the transition 

zone overlaps the centreline, the maximum bending strain in the top fibre decreases. 

As the transition point moves further from the deviator centreline, the maximum 

bending strain in the top fibre increases towards the limiting maximum possible 

bending strain given by &bum. 
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Figure 5-23: Effect of Transition Point Location on Bending Strain Distribution 
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Figure 5-24: Effect of Transition Point Location on Maximum Bending Strain 

Figure 5-25 illustrates the effect of the additional configuration variables on the 

transition zone and top fibre strain distribution, in the form of the G/E and r/R ratios. 

Figure 5-25a shows the effect of the G/E ratio, which represents the ratio of the shear 

modulus to the tensile modulus for the material. As GIE increases (increasing G or 

decreasing £), the transition zone gets smaller, indicating less influence from 

transition effects. This is because the shear stiffness is increased relative to the 

longitudinal stiffness, resulting in less longitudinal shear deformation. 

Figure 5-25b shows the effect of the Rlr ratio, which represents the ratio of the 

curvature of the tendon to the distance to the extreme fibres, from the tendon neutral 

axis. As Rlr increases (increasing R or decreasing r), the transition zone gets smaller, 

indicating less influence from transition effects. This results because the transition 

effects are dependent on the relative change in curvature of the tendon between the 

straight section and curved section. Decreasing R/r results in a larger relative 

change in curvature, and, therefore, a greater influence on transition effects. 
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Figure 5-25: Effect of Harping Variables on Top Fibre Strain Distribution 

Another unknown variable that is solved in the process of solving the equivalent 

frame model is f3, the out-of-plane rotation of the frame elements, which is 

representative of the plane section rotation and longitudinal shear deformation in 

the tendon as illustrated in Figure 5-8. Figure 5-26 shows the progression of this 

rotation along the tendon, across the transition zone for the same set of variables 

used for Figure 5-22, as indicated in the figure. As was expected, it can be seen that, 

outside the effective transition zone, the rotation is virtually zero and that the 

maximum rotation effectively occurs at the transition point. This is significant 

because this rotation or deformation can be assumed to be equivalent to the net 

longitudinal shear strain in the tendon and it is directly related to the tendon 

harping. Recalling that shear stress is proportional to the shear strain and modulus: 

Equation 5-55 r = G · /3 
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Figure 5-26: Typical Out-of-Plane Rotation along Harped Tendon 

Previously developed models did not account for the possibility of shear failure, 

however this failure mode was observed within this research program. One of the 

basic assumptions of the primary model is that the tendon behaves according to 

traditional elastic beam theory for pure bending: plane sections remain plane and 

perpendicular to the neutral axis. Under this assumption there is no shear 

deformation, only longitudinal deformation takes place. It would follow that, 

because there is no longitudinal shear deformation, that there is also no longitudinal 

shear stress. With the inclusion of transition effects, the extended model allows for 

the occurrence of shear deformation. Therefore, longitudinal shear stresses are 

present and, thus, there is a possibility that shear failure of the tendon can occur. 

5.4.4 Simplification of Equivalent Spring Frame Model Solution 

Using the equivalent frame model as developed is computationally intensive, and 

generally cannot be done by hand. To facilitate usage of the model, closed-form 

formulae that closely approximate the bending strain at the centreline, or maximum 

bending strain, and the maximum out-of-plane rotation, or longitudinal shear strain, 

as calculated by the model were developed. This was done by calculating these 
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values, using the model programmed in MathCAD, for numerous series of 

configuration variables and developing a regression formula that gave a best fit to 

the results. Figure 5-27, Figure 5-28 and Figure 5-29 illustrate this process as used to 

determine maximum bending strain. In these examples, only a few data points are 

shown for brevity, whereas many more points were used in the actual regression to 

ensure good accuracy. 

In the first stage (Figure 5-27a), the values of b, G, and E were kept constant while 

the harp angle was changed for several series of solutions to the model with 

constant Rlr values. A regression was performed on each Rlr series which 

determined the relationship between 8 and ¢,e. In the second stage, a regression is 

performed on R/r coefficients from the first stage regressions (Figure 5-27b), which 

determines the relationship between Rlr and ¢,e. In the third stage (Figure 5-28a), 

the values of b, r and R were now kept constant while the harp angle was changed 

for several series with constant G/E values. A regression is performed on each G/E 

series to gather G/E coefficients for the fourth stage. The relationship between e and 

¢,e can bee seen again in these regressions, and is noted to be the same as in stage 1. 

In the fourth stage, a regression is performed on G/E coefficients from the third stage 

regressions (Figure 5-28b), which determines the relationship between G/E and ¢". 

This process is then performed one more time for the elasticity shape factor, b 

(Figure 5-29). The value of b is computed as being equal to 4 for circular cross 

sections as shown below. However, this variable may be used to accommodate 

other cross-sectional shapes, and is included here for completeness. 
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Figure 5-27: Simplifying the Equivalent Spring Frame Model - Stage 1 and 2 
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Figure 5-28: Simplifying the Equivalent Spring Frame Model - Stage 3 and 4 
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Figure 5-29: Simplifying the Equivalent Spring Frame Model - Stage 5 and 6 

3 

It can be seen in Figure 5-27, Figure 5-28 and Figure 5-29, that, even though only a 

few data points are used in this regression example, the correlation values (r2) 

shown are very close to 1. The more data points and frame elements used in the 

equivalent spring frame model, the closer the correlation values get to unity. This 

indicates that the equations derived through the regression process are very accurate 

in comparison to the full frame model calculations. 

For the maximum bending strain, the following formula was found: 

sb = 1-e ,J°",:' ·-
[ 

- r;?I.l!..o, J r 
R 

Equation 5-56: 

Equation 5-57: 

Where: 

s b = Maximum top-fibre bending strain including transition effects 

G = CFRP longitudinal shear modulus 

E = CFRP tensile modulus 

R = Radius of curvature of the tendon 
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r = Tendon cross-sectional height (radius for circular cross-section) 

B, = Harping angle in radians 

b 
K 

--
2
~

2 
, elasticity shape factor (4 for a circular cross-section): L = Element 

K, ·L 

length, K 1 and K 2 are from Equation 5-48 and Equation 5-54 respectively 

This formula has a correlation value that is virtually equal to one; therefore, it can 

confidently be used in place of the full equivalent frame method. Comparing 

Equation 5-56 to the equation for bending strain, Equation 5-3, the factor ¢" as 

defined in Equation 5-57 can be seen to act as a reduction factor for the bending 

stress and strain due to transition effects. The variable b included here is essentially 

a shape factor for the CFRP tendon that describes the relationship between the 

tensile and rotational spring factors and the cross-sectional shape for the model. The 

variable b in Equation 5-57 is determined to be equal to 4 for a circular cross section. 

The same regression method used for the maximum bending strain equation above 

was used in deriving a closed-form equation for the maximum longitudinal shear 

strain and deformation. The maximum longitudinal shear strain was found to be 

proportional to the maximum longitudinal shear strain when the transition zone 

does not overlap the centreline, which can be defined as the shear strain limit: 

Equation 5-58: /Ji;m = ~ · ~ b ~ G · ~ 

Equation 5-59: 

Equation 5-60: 

=(- -2·H;"·J· /3 max 1 e /Ji;m 

/Jm,, = IPp · /Jlim 

IPp = I-e -2H-;o, 

Again, these formulae have a correlation value that is virtually equal to one, 

indicating they produce accurate results. 
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5.4.5 Extended Analytical Model: Incorporation of Transition Effects 

The next step was to incorporate the bending stress reduction formula from the 

equivalent frame model into the primary model for the evaluation of the transition 

effects on the primary model. From Equation 5-56, the transition effects simply 

create a reduction factor, therefore the sb term used in the primary model can 

simply be replaced with the sh term from the equivalent frame model. This, 

however, does not create a simple solution for the failure criterion as the reduction 

factor cf;'1, has the radius of curvature, R, included in an exponential form, and cannot 

be easily isolated for calculation. 

The most convenient way to find a solution is to solve for the radius of curvature at 

failure from Equation 5-16 incorporating the bending strain reduction factor: 

Equation 5-61: 

Where: 

R= ¢,e·r 

2·(1-cos(e))·( l+ s,, -1J 
(1-cos(e)) 

,1. = 1-e -f-%-•;-o, 
'l'te 

This equation cannot be solved directly as the unknown radius R is present on both 

sides of the equation. An iterative process is used where a value for R is substituted 

into the right side and the resulting R on the left side is calculated. This is repeated· 

until the value of the right side of the equation is equal to the substituted value of R. 

This value for the radius, R, can then be used in Equation 5-17 in place of R,,t and the 

failure level is calculated as before in Equation 5-18 to Equation 5-24 in section 5.2.5. 

In order to evaluate the influence of the transition effects on the ultimate tensile 

capacity, the predicted failure radius and ultimate capacity for a number of sample 

variables were computed both with and without the inclusion of transition effects, as 

given in Table 5-1. From the calculations in the table, it can be observed that for 
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configurations in which the tendon curvature was not physically limited by the 

deviator, there was a noticeable reduction in the minimum radius of curvature of the 

tendon at failure when including transition effects, up to 95% of the radius 

calculated without transition effects. The only specimens for which there is any 

noticeable increase in capacity were those in which the tendon radius of curvature 

was physically limited by the deviator. In all the other specimens, no significant 

increase in capacity is observed. This may be explained by the fact that while the 

transition effects allow a reduction in the bending strain, this decreases the tendon 

stiffness and the natural radius of curvature decreases accordingly, as seen by the 

values of Rt and R 'tin the table. If the radius of curvature is limited by the deviator, 

then it is unable to decrease further physically and a maximum bending strain 

reduction and increase in capacity may be seen, however, the magnitude of this 

effect is small, with a maximum of 1.5% for the configurations assessed. 

Table 5-1: Evaluation of the Influence of Transition Effects on Tensile Ca£acity 

Ra e Without Transition Effects With Transition Effects Curvature Capacity r Decrease R, Tensile Capacity R', Tensile Capacity Increase 
(mm) (mm) (deg) (mm) (% ultimate) (mm) (% ultimate) (R',/R,) 

4.75 50 2 903.4 68.39% 860.1 68.39% 0.95 0.00% 
4.75 50 3 660.9 56.79% 638.5 56.79% 0.97 0.00% 
4.75 50 5 474.0 39.76% 466.3 39.76% 0.98 0.00% 
4.75 50 7 399.7 28.55% 396.7 28.55% 0.99 0.00% 
4.75 50 10 349.6 18.31% 348.9 18.31% 1.00 0.00% 
4.75 50 15 317.0 9.93% 317.0 9.93% 1.00 0.00% 
4.75 500 2 903.4 68.39% 860.1 68.39% 0.95 0.00% 
4.75 500 3 660.9 56.79% 638.5 56.79% 0.97 0.00% 
4.75 500 5 504.8 43.43% 504.8 44.08% 1.00 1.51% 
4.75 500 7 504.8 43.43% 504.8 43.54% 1.00 0.25% 
4.75 500 10 504.8 43.43% 504.8 43.43% 1.00 0.02% 
4.75 500 15 504.8 43.43% 504.8 43.43% 1.00 0.00% 
4.75 50 5 474.0 39.76% 466.3 39.76% 0.98 0.00% 
4.75 100 5 474.0 39.76% 466.3 39.76% 0.98 0.00% 
4.75 250 5 474.0 39.76% 466.3 39.76% 0.98 0.00% 
4.75 500 5 504.8 43.43% 504.8 44.09% 1.00 1.52% 
4.75 750 5 754.8 62.16% 754.8 62.21% 1.00 0.08% 
4.75 1000 5 1004.8 71.58% 1004.8 71.58% 1.00 0.01% 
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From the data observed here, it may be concluded that the transition effects have 

very little influence on the capacity of the harped CFRP prestressing tendon, 

especially when the radius of curvature is not limited by the deviator. However, the 

model provides a mechanistic approach to describing the behaviour of the harped 

CFRP prestressing tendon. The model can be used to approximate and illustrate the 

top-fibre bending strain distribution along the tendon. The model can also be used 

to approximate the magnitude of the longitudinal shear stress and strain resulting 

from bending, for use in evaluating whether shear failure will take place. 

5.5 COMPARISON OF MODELS WITH EXPERIMENTAL DATA 

Figure 5-30 and Figure 5-31 plot the experimental data and a curve representing the 

primary model for varying harping angle and varying deviator radius respectively 

using both the minimum guaranteed material properties and the maximum 

properties for comparison. From the figures, it can be observed that the analytical 

model exhibits similar trends to the experimental data: the failure level decreases as 

the harping angle increases, and the failure level decreases as the deviator size 

decreases. In Figure 5-30a and Figure 5-31a, which use the guaranteed minimum 

material properties, all the data is situated on the conservative side of the analytical 

model. In Figure 5-30b and Figure 5-31b, which use the maximum material 

properties, the data is situated much closer to the analytical, however many of the 

data points are on the unconservative side. 

The minimum and maximum material properties used in the figures represent the 

lower and upper bounds of the expected material variability. When the minimum 

and maximum properties are used in conjunction with the analytical model, they 

produce an envelope based on the expected material variability, and the data points 

should be expected to fall within this envelope. When comparing Figure 5-30a to 

93 



Figure 5-30b and Figure 5-31a to Figure 5-31b, it can be seen that the majority of the 

data points fall within the expected material variability envelope. They are all 

situated on the conservative side of the lower envelope bound (Figure 5-30a and 

Figure 5-31a), and they are predominantly on the unconservative side of the upper 

envelope bound (Figure 5-30b and Figure 5-31b). This shows that the analytical 

model describes the expected strength variability very well. 
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As has already been discussed, the CFRP material used in the testing program 

exhibited a large variability in material property values including the elastic 

modulus, E, and the tensile rupture strain, s,,, . Table 5-2 lists a numerical evaluation 

of the expected deviance of the normalised failure level resulting from the known 

material variability: the guaranteed minimum and tested maximum material 

properties from the supplier. For the measured values, the expected deviance is a 

constant reduction of 0.82 as the normalised measured failure level is directly related 

to the material properties. The material properties are incorporated in the 

normalised predicted failure level in a much more complex manner and the 

expected deviance ranges from increases of 1.02 up to 1.17, depending upon the 

specimen configuration. The total expected deviance when comparing the measured 

values to the predicted values ranges from 20% to 30%. 

Table 5-2: Evaluation of Ex ected Deviance of Normalised Failure Levels 
Normalised Measured Normalised Predicted Total 

Specimen 
Failure Level Failure Level Expected 

fmffu Deviancem fp/fu Deviancep Deviance 

Min Max Max/Min Min Max Max/Min 1-Devm/Dev 
1 0.77 0.63 0.82 0.68 0.70 1.02 0.20 
2 0.61 0.50 0.82 0.57 0.59 1.04 0.21 
6 0.87 0.71 0.82 0.68 0.70 1.02 0.20 
7 0.73 0.60 0.82 0.57 0.59 1.04 0.21 
8 0.65 0.53 0.82 0.43 0.51 1.17 0.30 
19 0.57 0.47 0.82 0.43 0.51 1.17 0.30 
20 0.64 0.52 0.82 0.43 0.51 1.17 0.30 
9 0.50 0.41 0.82 0.43 0.51 1.17 0.30 
12 0.51 0.42 0.82 0.40 0.42 1.06 0.23 
13 0.79 0.65 0.82 0.72 0.75 1.05 0.22 
14 0.79 0.65 0.82 0.68 0.70 1.02 0.20 
15 0.71 0.59 0.82 0.57 0.59 1.04 0.21 
16 0.47 0.38 0.82 0.40 0.42 1.06 0.23 
21 0.85 0.69 0.82 0.68 0.70 1.02 0.20 
22 0.73 0.60 0.82 0.57 0.59 1.04 0.21 
24 0.56 0.46 0.82 0.57 0.59 1.04 0.21 

Figure 5-32 illustrates the correlation between the normalized failure level as 

predicted by the primary model and the normalized failure level as measured in the 
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experimental program for each specimen that exhibited a tension failure. The 1:1 

correlation line indicates an ideal, exact correlation between the measured and 

predicted data, assuming the guaranteed material properties. Data points situated 

on the upper left side of this line would represent an unconservative prediction by 

the model, that the model over-estimates the harped tendon tensile capacity. 

Conversely, data points falling on the lower right side of this line would represent 

an over-conservative prediction by the model, that is, the model under-estimates the 

harped tendon tensile capacity. The expected maximum deviation line also 

indicated in Figure 5-32 represents the maximum expected deviation from the 1:1 

correlation based on the material variability discussed above. 
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The correlation line and the maximum deviation line represent the upper and lower 

bounds for the expected data point deviance based on the material variability. It is 

evident from the figure that the normalized data points fall predominantly between 

these two lines, which indicates that the primary model gives a very good 

estimation of the harped tendon failure behaviour. More importantly, virtually all 
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of the data points fall on the conservative side when using the minimum guaranteed 

material properties. This means that using the primary model with guaranteed 

minimum material properties can give an efficient but safe estimation of the capacity 

of a harped CFRP prestressing tendon. 

As discussed in Section 5.2.3, the analytical models neglect the effect of the normal 

stresses due to bearing on the deviator and the longitudinal stresses due to friction 

between the deviator and the tendon. From Figure 5-30, Figure 5-31 and Figure 5-32, 

a very good correlation is seen between the analytical models and the experimental 

data. The scatter evident in the figures appears to be related to the known material 

property variability for the CFRP tendons as discussed above. This suggests that the 

assumptions made in the derivation of the models, regarding the total axial stress in 

the curved tendon, are valid. Specifically, that the normal stresses due to bearing 

and the longitudinal stresses due to friction do not have a significant effect on the 

tensile capacity of the harped CFRP tendon. 

5.6 SUMMARY 

In this chapter the development of the primary and extended models for predicting 

the behaviour of harped CFRP prestressing tendons were developed, based on the 

mechanical properties of the material. The primary model is based on classic elastic 

beam theory. The extended model supplements the primary model by adding 

transition effects, which affect the stiffness of the harped tendon and introduce 

longitudinal shear deformations. Comparison between the primary and extended 

models showed that, for the configurations investigated, the extended model had 

very little effect on the results, especially when the tendon curvature was not 

physically limited by the deviator. Comparisons with the experimental data showed 

very good agreement in the prediction of tension failure. While this model focused 
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primarily on tension failure, compression and shear failure modes also need to be 

considered and are looked at in the next chapter. 
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6 FAILURE MODE 

6.1 INTRODUCTION 

The analysis and discussion thus far has focused primarily on tensile failure. 

However, as was mentioned earlier in the thesis, two additional failure modes were 

observed in the process of this testing program: compression failure and shear 

failure. In this chapter, the significance and characteristics of these additional two 

potential failure modes are discussed. 

6.2 FAIL URE MODE SIGNIFICANCE 

The tendon failure level for compression and shear failures was defined as the point 

at which the initial signs of failure were observed as described in section 4.2.1, 

regardless of whether the tendon was able to carry any further load. Table 6-1 

shows the applied stress levels at which initial tendon failure occurred for 

specimens in the experimental program that exhibited either compression or shear 

failure behaviour. As can be seen in the table, tendon failures for compression and 

shear failures were observed to occur at significantly lower applied stress levels than 

for tension failures. Where tension failures often resulted in a sudden, complete 

failure of the tendon, in compressive and shear failure this was not the case. In all 

cases, the tendon was still able to take additional load after the initial failure was 

deemed to have occurred. However, the nature of the initial compression or shear 

failure causes the composite action of the CFRP material to be compromised and 

may result in an unstable or unpredictable behaviour of the tendon under further 

loading. Previous research studies in the literature did not report these additional 

failure modes. This may be attributed to the particular test configuration limitations 
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and conditions within the programs. However, for the practical application of 

harped CFRP prestressing tendons, the possible occurrence of these failures modes 

need to be considered. Because of the low loading levels at which the effective 

failure occurs for compression and shear failure, both of these types of failure are 

considered undesirable and should be avoided by the design process. 

Table 6-1: Experimental Test Failure Levels For Compression and Shear Failures 

Specimen 
No. 

Tendon Deviator 
Diameter Radius 

(mm) (mm) 

Harp Angle 

(deg) 

Failure Stress 

(MPa) 
Bending-Compression Failures 

4 9.5 50 10 38.1 
5 9.5 50 15 12.5 

23 9.5 250 10 29.2 
10 9.5 500 15 20.9 
17 6.3 50 10 116.0 
18 6.3 50 15 27.6 

Bending-Shear Failures 
3 9.5 50 5 ' 185.1 

11 9.5 100 5 284.4 

6.3 BENDING-COMPRESSION FAILURE 

% Ultimate 

(fu=2068MPa) 

1.84% 
0.60% 
1.41% 
1.01% 
5.61% 
1.33% 

8.95% 
13.75% 

Recall from Equation 5-6 that the total net axial strain is the sum of the axial strain 

due to direct tension and the axial strain due to bending: 

The axial strain due to direct tension results from the applied tensile loading on the 

tendon and, therefore, will always be positive. As discussed previously, the bending 

strains in harped CFRP tendons are assumed to be symmetric and linear about the 

neutral axis, resulting in a positive axial strain at the top of the tendon and negative 

axial strain at the bottom of the tendon. The net axial strain at the top of the tendon 

will be additive as in Equation 5-6, and, therefore, always be positive, resulting in a 

net tension. 
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Conversely, the net axial strain at the bottom of the tendon will be subtractive as in 

Equation 6-1: 

Equation 6-1: 

If the magnitude of the axial bending strain is less than that of the axial tensile strain, 

a net tensile strain will be present in the bottom fibre. However, if the magnitude of 

the axial bending strain is greater than that of the axial tensile strain, a net 

compressive strain will be present. Because the axial bending strains at the top and 

bottom of the tendon are equal but opposite and the axial tensile strain is always 

positive, it should be obvious that the magnitude of the axial strain at the top of the 

tendon will always be greater than that at the bottom of the tendon. From this, it 

follows that if the tension and compression failure stress for the CFRP tendon were 

equal, the tendon would always fail in tension. However, the compressive capacity 

of CFRP tendons is much less than the tensile capacity (Swanson, 1990, Piggot et al, 

1980), which would allow for the possible occurrence of compression failure of a 

harped CFRP tendon. This was confirmed by the observed compression failures in 

the testing program. 

Recall from Equation 5-2 and Equation 5-12 that the axial tensile strain and the axial 

bending strain as a function of the applied load are: 

Using these formulae in Equation 5-6 and Equation 6-1, a strain-load graph for the 

harped tendon that illustrates the total axial strain at the top and bottom of the 

tendon as tensile loading is applied can be obtained by plotting the top and bottom 

axial strains versus the applied load. Figure 6-1 shows a typical strain-load graph 

for a harped CFRP prestressing tendon, and indicates the tension failure load 
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solution as computed by Equation 5-24, which occurs when the top fibre strain, Smp, 

exceeds the tensile strain capacity of the tendon, s,,,. From the Figure 6-1, it can be 

seen that the net axial strain at the top of the tendon, s70p, is always positive and 

increases as the applied load increases. Figure 6-1 also illustrates that the net axial 

strain at the bottom of the tendon, s 807 , starts out negative or in compression, and 

increases to a maximum compressive strain magnitude, scMAX, before beginning to 

decrease in magnitude and eventually exhibiting a net tensile strain. 
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Figure 6-1: Typical Load History Graph for a Harped CFRP Tendon 

Also as illustrated in Figure 6-1, if the compressive strain capacity of the CFRP 

tendon, s,,c, is less than or equal in magnitude to the maximum compressive strain 

at the bottom of the tendon for a given configuration, scMAx, a compression failure 

will occur, assuming that no other failure mode has already occurred. However, if 

the compressive strain capacity of the tendon is greater in magnitude than the 
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maximum compressive strain at the bottom of the tendon, then compression failure 

cannot occur, since the compressive strain capacity will never be reached. 

If the compressive capacity for the CFRP tendon is known, a compressive failure 

load could be determined in a similar manner to that for tensile failure. However, 

since compression is not a desirable failure mode, as discussed earlier, it is only 

necessary to be able to determine whether compression failure will occur regardless 

of the applied loading at which it would occur. A simple design guideline for the 

effective compressive capacity was determined by observation of the experimental 

data obtained in the testing program. This was be done by calculating the maximum 

compressive strain at the bottom of the tendon, s,MAx, as illustrated in Figure 6-1, for 

each specimen that failed in either tension or compression. By inspecting the values 

obtained, a compressive strain that adequately captures all the compression failures 

was be determined, and this may be assumed to be the effective compressive 

capacity for design purposes. 

Setting up a failure criterion equation in a similar fashion to the tensile failure 

criterion equation, Equation 5-13, for the bottom axial strain using an arbitrary, 

unknown compressive failure strain, s,,,, gives: 

Equation 6-2: 

Proceeding through a derivation similar to that described previously for tension 

failure in section 5.2.5, and using the compression failure criterion equation, 

Equation 6-2, a quadratic equation with bending strain, s61 , as the only unknown 

can again be obtained: 

Equation 6-3: 

The solution to the quadratic gives the axial bending strain component of the total 

axial strain in the bottom fibres of the tendon at compression failure for a given 
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compressive failure strain, &,,, . When the quadratic in Equation 6-3 has a real 

solution, it means that the load history curve for the axial strain at the bottom of the 

tendon intersects the compression failure strain, and compression failure may occur. 

On the other hand, if there is no solution, it means that there is no intersection and 

the axial strain at the bottom of the tendon will not reach the compression failure 

strain, and therefore, the specimen will not exhibit a compression failure. 

Recall that the general solution for a quadratic equation of the form 

A · x 2 + B · x + C = 0 is: 

-B±.JB2 -4·A ·C 
X=--------

2·A 

In order for the quadratic equation to have a real solution, the portion inside the 

square root ( B 2 
- 4 ·A· C) must be greater than or equal to zero. 

The maximum value for the unknown compressive failure strain, &',,,, for which 

there is a solution to Equation 6-3 is equal to &,MAX, as illustrated in Figure 6-1, and is 

obtained when the portion inside the square-root is equal to zero: 

Therefore: 

Where: 

Equation 6-4: 

B 2 -4·A·C=O 

-B 
x=--

2·A 

I 
A= and B =-I 

4 · (1-cos(B)) 

&bf = 2 · (1-cos(e)) 

Solving for the natural radius of curvature associated with the axial bending strain: 

Therefore: 
r 

---=&bf 
RncMAX 
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Equation 6-5: R - r 
ncMAX - 2·(1-cos(e)) 

As before, the tendon radius of curvature is physically limited by the size of the 

deviator and, therefore cannot be less than R,,,;,, as given by Equation 5-15: 

Equation 6-6: RcMAX = max(R,,cMAX' Rmin) 

The actual axial bending stress associated with the maximum net compressive strain 

can then be given as: 

Equation 6-7: 
r 

& bcMAX = -R-­
cMAX 

Setting s,,c = &cMAX and &bf = &bcMAX in Equation 6-3 and solving for &cMAX: 

Equation 6-8: 

The solution to Equation 6-8 gives the maximum compression failure strain for the 

CFRP material for which compression failure will occur for a specific set of 

variables. 

Table 6-2 specifies the values of the maximum compressive strain, scMAX, as 

calculated by Equation 6-8 for the experimental program specimens for which either 

tension or compression failure occurred. The table also gives these values as a ratio 

of the guaranteed tensile strain capacity of the material, s,,,. As can be seen, the 

largest value for specimens for which tension failure occurred was 7,953 microstrain 

or 0.48 s,,, and the smallest value for specimens for which compression failure 

occurred was 8,761 microstrain or 0.53 s,,,. 
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Table 6-2: Maximum Comeressive Strain for Test S£ecimens 
Specimen Tendon Diameter Deviator Radius Harp Angle €cMAX Ecw,x/Eut 

No. (mm) (mm) (deg) microstrain (Eut= 16,677) 
Bending-Tension Failures 

1 9.5 50 2 609 0.04 
2 9.5 50 3 1,370 0.08 
6 9.5 500 2 609 0.04 
7 9.5 500 3 1,370 0.08 
8 9.5 500 5 3,805 0.23 
19 9.5 500 6 5,369 0.32 
20 9.5 500 9 7,612 0.46 
9 9.5 500 10 7,953 0.48 
12 9.5 250 5 3,805 0.23 
13 9.5 1000 5 3,259 0.20 
14 6.3 50 2 609 0.04 
15 6.3 50 3 1,370 0.08 
16 6.3 50 5 3,805 0.23 
21 9.5 250 2 609 0.04 
22 9.5 250 3 1,370 0.08 
24 9.5 100 3 1,370 0.08 

Bending-Comi:iression Failures 
4 9.5 50 10 15,192 0.91 
5 9.5 50 15 34,074 2.04 

23 9.5 250 10 12,925 0.77 
10 9.5 500 15 8,761 0.53 
17 6.3 50 10 15,192 0.91 
18 6.3 50 15 33,495 2.01 

By inspection of the failure results from the experimental program, a conservative 

value of approximately 0.45 e,,, may be used as the effective compression strain 

failure level for the CFRP tendons in determining whether compressive failure will 

occur: 

Equation 6-9: 

Where: ¢, = 0.45 

To determine if a set of harping configuration variables will produce a compressive 

failure, the maximum net compressive strain, ecMAX, is calculated using the variables 

for the specific harping configuration. If the magnitude of this strain is larger or 

equal to the effective compressive failure strain, then a compressive failure is likely 

to occur and the configuration should not be used. Table 6-3 compares the results of 
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the compression failure guideline with the behaviour observed in the experimental 

program. For all of the specimens in the experimental program that exhibited 

compression failure, the compression failure guideline also indicates a compression 

failure mode, which should be expected as the guideline is based on that data. For 

specimens 9 and 20, compression failure is given by the design guidelines while the 

failure mode observed was tension failure, but this is acceptable as it indicates it is 

very near the tension-compression failure division line and gives a conservative 

result. It is notable that these two specimens have large harping angles of 9° and 10° 

fitting with the previous observation that compression failures occur under large 

harping angles. 

Table 6-3: Com£arison of Com£ression Failure Guidelines to Test Data 
Specimen Tendon Deviator Radius Harp Failure Mode No. Diameter Angle EcMAX 

(mm) (mm) (de9) microstrain Actual Predicted 
1 9.5 50 2 609 T T 
2 9.5 50 3 1,370 T T 
6 9.5 500 2 609 T T 
7 9.5 500 3 1,370 T T 
8 9.5 500 5 3,805 T T 
19 9.5 500 6 5,369 T T 
20 9.5 500 9 7,612 T C 
9 9.5 500 10 7,953 T C 
12 9.5 250 5 3,805 T T 
13 9.5 1000 5 3,259 T T 
14 6.3 50 2 609 T T 
15 6.3 50 3 1,370 T T 
16 6.3 50 5 3,805 T T 
21 9.5 250 2 609 T T 
22 9.5 250 3 1,370 T T 
24 9.5 100 3 1,370 T T 
4 9.5 50 10 15,192 C C 
5 9.5 50 15 34,074 C C 

23 9.5 250 10 12,925 C C 
10 9.5 500 15 8,761 C C 
17 6.3 50 10 15,192 C C 
18 6.3 50 15 33,495 C C 

Eut = 16,677 microstrains 
Euc = 7,505 microstrains 
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6.4 BENDING-SHEAR FAIL URE 

Within the experimental program, two shear failures were observed. As already 

mentioned, a bending-shear failure was characterised by a horizontal, longitudinal 

splitting of the tendon near its neutral axis near the deviator. This type of failure 

occurs when the longitudinal shear stress in the tendon exceeds the longitudinal 

shear capacity of the tendon. The longitudinal shear stress is a result of the 

longitudinal shear deformation in the tendon. This cannot be predicted by the 

primary model, since it is based on classical bending theory for pure bending that 

plane sections remain plane and perpendicular to the neutral axis of the tendon. 

Using this assumption, no longitudinal shear deformation is present. The extended 

model, however, does calculate shear deformation due to transition effects. As 

discussed in section 5.4, in order to alleviate the unbalanced bending moment at the 

transition point under the primary model, under the extended model, plane sections 

rotate away from perpendicular through a transition zone to provide a smooth 

bending strain transition. This rotation of the plane sections out of perpendicular to 

the neutral axis is essentially shear deformation within the tendon, and results in a 

longitudinal shear stress and strain. 

Across the tendon section, the largest resultant shear stress will be at the neutral 

axis, and in the longitudinal direction along the tendon length, the greatest shear 

stress is at the transition point as illustrated in Figure 5-26, which helps to explain 

the location of the initiation of shear failure. Deriving a shear failure criterion for 

harped CFRP prestressing tendons is difficult as very little information is given 

concerning the longitudinal shear properties of the material. However, a general 

design guideline may be established through observation of the experimental results 

in conjunction with the extended analytical model. This may be done by 

determining the maximum shear deformation that results for each specimen within 
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the test program that exhibited either tension or shear failure, and establishing a 

design guideline that can safely avoid shear failure. Recalling from section 5-4, the 

approximate shear deformation and strain can be determined using Equation 5-58, 

Equation 5-59 and Equation 5-60: 

/Jmax = r/;p '/Ji;m 

r/;p = I-/'M~o, 

Table 6-4 indicates the values of the maximum longitudinal shear strain, 13,,,,,,, as 

determined using the extended model for the experimental program specimens that 

exhibited either a tension or shear mode of failure. 

Table 6-4: Maximum Lonliiitudinal Shear Strain for Test seecimens 

Specimen Tendon Deviator Harping 
R1

min P11m cj:,p Pmax Diameter Radius Angle No. 
(mm) (mm) (mm) (mm) radians radians 

Bending-Tension Failures 
1 9.5 50 2 860 0.005745 0.998 0.005732 
2 9.5 50 3 639 0.007739 0.999 0.007730 
6 9.5 500 2 860 0.005745 0.998 0.005732 
7 9.5 500 3 639 0.007739 0.999 0.007730 
8 9.5 500 5 505 0.009789 1.000 0.009788 
9 9.5 500 10 505 0.009789 1.000 0.009789 
12 9.5 250 5 466 0.010596 1.000 0.010593 
13 9.5 1000 5 1005 0.004918 1.000 0.004918 
14 6.4 50 2 573 0.005745 0.998 0.005732 
15 6.4 50 3 426 0.007738 0.999 0.007730 
16 6.4 50 5 311 0.010596 1.000 0.010593 
19 9.5 500 6 505 0.009789 1.000 0.009789 
20 9.5 500 9 505 0.009789 1.000 0.009789 
21 9.5 250 2 860 0.005745 0.998 0.005732 
22 9.5 250 3 639 0.007739 0.999 0.007730 
24 9.5 100 3 639 0.007739 0.999 0.007730 

Bending-Shear Failures 
3 9.5 50 5 466 0.010596 1.000 0.010593 

11 9.5 100 5 466 0.010596 1.000 0.010593 
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As can be seen, the largest assumed maximum shear strain, 13,,,,,,, for specimens for 

which tension failure occurred was approximately 0.0106 radians and the smallest 

maximum shear strain for specimens for which shear failure occurred was also 

0.0106 radians. This means that for the same assumed maximum bending shear, 

there were specimens that did exhibit shear failure and specimens that did not 

exhibit shear failure. This may be attributed to the variability in material properties. 

From the observations of Table 6-4, a conservative value of 0.01 radians may be used 

as the shear strength guideline for the tendon, based on the properties of the 

material used within this testing program: 

Equation 6-10: /3,, = 0.01 

It can also be noted from Table 6-4 that shear strain reduction factor, cfip, is very close 

to being equal to 1 for all the specimens. Indicating that, in practical harping 

configurations as used in the test program, the maximum shear strain, f3nmx, is, in 

effect, equal to the maximum limiting shear strain associated with the tendon radius 

of curvature, f3um, and this value may be used for simplicity in lieu of calculating cfip: 

/Jmax = /J1im 

Equation 6-11: /Jmax = ~ · ~ b ~ G · R~ 
mm 

Where: b = 4 for a circular cross-section 

Calculation of the minimum radius of curvature of the tendon within the extended 

model can be a rather lengthy procedure as stated in section 5.4.5. It was observed 

earlier (Table 5-1) that the minimum radius of curvature for the harped tendon, 

when calculated using the extended model, was reduced to up to 95% of the 

minimum radius of curvature calculated within the primary model. Therefore, for a 

simpler, but conservative shear failure design guideline, the minimum radius of 

110 



curvature can be set to be equal to 90% of the natural radius of curvature, R,,,,,;,,, from 

Equation 5-16: 

Equation 6-12: R~;, = max(0.9 · R,,m;, ,Rm;,) 

To determine if a set of harping configuration variables will produce a shear failure, 

the maximum shear strain can be estimated using Equation 6-11 and Equation 5-17. 

If the magnitude of this shear strain is larger than or equal to the shear failure strain 

given by Equation 6-10, then a shear failure is likely to occur and the configuration 

should not be used. 

Table 6-5: Comearison of Shear Failure Guidelines to Test Data 
Specimen Tendon Deviator Harping 

R
1

min f3MAX Failure Mode No. Diameter Radius Angle 
(mm) (mm) (deg) (mm) radians Actual Predicted 

1 9.525 50 2 813 0.006077 T T 
2 9.525 50 3 595 0.008307 T T 
6 9.525 500 2 813 0.006077 T T 
7 9.525 500 3 595 0.008307 T T 
8 9.525 500 5 505 0.009789 T T 
9 9.525 500 10 505 0.009789 T T 
12 9.525 250 5 427 0.011581 T s 
13 9.525 1000 5 1,005 0.004918 T T 
14 6.35 50 2 542 0.006077 T T 
15 6.35 50 3 397 0.008307 T T 
16 6.35 50 5 284 0.011581 T s 
19 9.525 500 6 505 0.009789 T T 
20 9.525 500 9 505 0.009789 T T 
21 9.525 250 2 813 0.006077 T T 
22 9.525 250 3 595 0.008307 T T 
24 9.525 100 3 595 0.008307 T T 
3 9.525 50 5 427 0.011581 s s 

11 9.525 100 5 427 0.011581 s s 
/Ju = 0.01 radians 

Table 6-5 compares the results of the shear failure guideline with the behaviour 

observed in the experimental program. For all of the specimens in the experimental 

that exhibited shear failure, the shear failure guideline also indicates a shear failure 

mode as expected as the guideline is based on that data. For specimens 12 and 16, 

shear failure is given by the design guidelines while the failure mode observed was 
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tension failure. This is a conservative result and, therefore, is considered acceptable. 

As stated above, this may be attributed to the factors stated earlier as well as the fact 

that the design guideline was developed as conservative. It is also notable that these 

two specimens have a medium harping angle of 5° and smaller deviator radii of 

50mm and 250mm, which agrees with the previous observation that shear failures 

occur with medium harping angles and small deviator sizes. 

The effective compressive strength and effective longitudinal shear strength are 

dependent upon the material used. The rules developed here for bending­

compression and bending-shear failure mode control are based upon observation of 

the experimental data from this research program, therefore, they can only be 

considered valid for the particular material tested in this program. 
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7 STRENGTH DESIGN RECOMMENDATIONS 

7.1 INTRODUCTION 

One of the main objectives of this research program was to develop a model that can 

predict the tensile-flexural and failure behaviour of harped CFRP prestressing 

tendons. In this chapter, factors and equations for determining the design strength 

of harped CFRP prestressing tendons, as derived from the analytical models 

developed within the research program, are presented. 

7.2 HARPING CONFIGURATION AND MATERIAL PROPERTY VARIABLES 

Figure 7-1 illustrates the overall harping configuration and geometric variables 

associated with a harped prestressing tendon that are used for the strength design 

presented here. 

anchor 

a) Overall harping configuration 

deviator 

NA-· 

' I • •\ 

.,--__-,L1e=2-e 

b) Tendon detail at the deviator 

Figure 7-1: Harping Configuration Variables 
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The CFRP tendon material properties can typically show significant scatter, unless 

the specific material properties for the tendons used can be accurately determined 

through lab testing, it is recommended that the guaranteed minimum values be used 

for all design calculations. The harping configuration and material property 

variables that are used for the design formulae in this chapter are: 

A, cross-sectional area of the prestressing tendon 

b shape factor(= 4 for circular cross-section) 

G guaranteed minimum Shear modulus for CFRP material 

E guaranteed minimum Young's modulus for CFRP material 

P1 tensile load applied to the harped tendon at which failure will occur 

r = tendon cross-section radius 

RcMAx tendon radius of curvature at point of maximum net bending-compression 

Rd deviator radius 

RI tendon radius of curvature of tendon at point of bending-tension failure 

Rm;n minimum tendon radius of curvature as physically limited by the deviator 

R,,cMAx = tendon natural radius of curvature at point of maximum net bending-

compression 

R,,r natural tendon radius of curvature at point of bending-tension failure 

Rp minimum tendon radius of curvature associated with maximum 

longitudinal shear strain 

/Jm., maximum longitudinal shear strain in tendon 

/3,, effective maximum longitudinal shear strain capacity 

E,,c = effective compressive strain capacity 

£,,, = guaranteed minimum tensile rupture strain for CFRP material 

EicMAx maximum net bending-compression strain at bottom of tendon 

Ei hcMAX = axial bending strain component of Ei cMAX 

E,cMAX axial tensile strain component of Ei cMAX 

u,,, guaranteed minimum tensile stress capacity of tendon ( u,,, = E · £,,,) 
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a-;,, reduced tensile stress capacity of harped tendon 

¢,, tensile capacity reduction factor for harped tendon 

¢,c bending stress reduction factor for transition effects 

¢, strain capacity reduction factor for compressive strain 

e,, overall harping angle 

Be effective harping angle 

B, effective harping angle in radians 

!'!,.6,, total change in harping angle over an individual deviator 

7.3 MINIMUM RADIUS OF CURVATURE 

When a CFRP prestressing tendon is placed in a harped configuration and loaded, it 

is assumes a natural radius of curvature based on the stiffness of the tendon and 

equilibrium. However, because the tendon is harped around a deviator of a fixed 

radius, the minimum radius of curvature that the tendon can assume is physically 

limited by the deviator size as illustrated in Figure 7-2. Therefore the minimum 

radius of curvature is: 

Equation 7-1: 

harped CFRP~ 
tendon 

.;--- deviator 

Figure 7-2: Minimum Tendon Radius of Curvature 

7.4 DEVIATOR DESIGN 

The strength reduction of the harped tendon is related to the minimum radius of 

curvature in the tendon. When the curvature of the tendon assumes the minimum 
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radius of curvature as limited by the deviator radius, if the deviator is designed such 

that its tangential angle is greater than the effective harping angle of the tendon, as 

shown in Figure 7-3a, the deviator radius will be the governing curvature. 

However, if the deviator is designed such that its tangential angle is less than the 

effective harping angle, a localized bending point or kink will be induced in the 

tendon at the deviator edge, as shown in Figure 7-3b. The curvature of the tendon at 

this location will be smaller than the minimum curvature defined by the deviator 

size and a bending stress concentration will be created. Therefore, the tensile 

strength reduction of the harped tendon will be greater than that calculated using 

the minimum radius of curvature defined by the deviator size. In order to avoid this 

situation, deviators should be designed so that the tangential angle, e,, of the 

deviator is larger than the effective harping angle, e,. 

Equation 7-2: B, >Be 

' deviator --- I .......... If 
- --:r:/f-----------------+----------------t--- ---- f ----~-

ee e, ' e. e, 

Figure 7-3: Deviator Design 

7.5 EFFECTIVE HARPING ANGLE 

Within the research program, only a single harped tendon configuration was used 

for the experimental tests and for illustrating the analytical model development. 

However, it is recognized that a reduced tendon strength results from the additional 

strains in stresses in the tendon resulting from the curvature of the tendon induced 

by harping. Figure 7-4 illustrates the distribution of axial bending stresses and 
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strains along the harped tendon in the region of the deviator. The figure shows that 

the axial bending stresses and strains induced in the tendon are localized around the 

deviator, within the curved portion of the tendon. 

NA-. 

bending stress -- ., 
and strain 

transition . transition 
point GIL point 

Figure 7-4: Bending Stress and Strain Distribution Along Tendon At Deviator 

The fact that the bending stresses and strains are localized should be considered 

when determining the effective harping angle to be used within the design 

formulae, especially when multiple deviators are used. Figure 7-5 illustrates the 

configuration for a tendon with a single deviator and harping point, as used within 

the research program. The effective tendon harping angle, B,, used for determining 

the design strength is the same as the overall harping angle, B1,. The total included 

angle or change in angle over the deviator, t,.B,,, is equal to twice the effective 

harping angle. Figure 7-6 illustrates the configuration for a tendon with two 

deviators and harping points. In this case, because the bending stresses and strains 

are localised at each individual deviator, the strength reduction of the tendon at the 

two deviators can be considered to act independently of each other. Therefore, the 

effective harping angle used for strength reduction calculation should be based on a 

set of axes local to each deviator. In this case, the effective harping angle, B,, at each 

deviator will be equal to one-half of the overall applied harping angle, e,,. The total 
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included angle or change in angle over the deviator, l'iB,,, is equal to twice the 

effective harping angle. 

anchor-- ~...,..-anchor 

deviator 

····-•.• /Jfih=2· fie ... 
' ' ' I j ·, 

fi.=fih -
__ ... -·-···-··+ ... ___________ t 

' ' transition C/L transition 
point point 

Figure 7-5: Effective Harping Angle for Single Harped Tendon 

anchor anchor 

fjfih=2·fi. 

NA-· 

ab=O --'7;:::::===::;;:;;;;;; 

' transition 

' C/L point 
transition 

point 

Figure 7-6: Effective Harping Angle for Double Harped Tendon 

In both the cases shown above, it can be seen that the effective harping angle is not 

directly related to the overall harping angle, but rather the change in angle at each 

individual deviator. It can be reasoned that this should hold true even for tendons 

with more than two deviators. Therefore: 
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Equation 7-3: 

Where: B, = effective harping angle at individual harping point 

/';.B,, = total change of harping angle at individual harping point 

7.6 HARPED TENDON TENSILE CAPACITY REDUCTION 

Two analytical models for determining the tensile capacity of harped CFRP tendons 

were developed within the research program: the primary model and the extended 

model. The extended model is based on the primary model, but with transition 

effects included. It was shown that the transition effects have no effect on the 

capacity of the harped tendon when the tendon radius is not physically limited by 

the deviator. When the tendon radius is physically limited by the deviator, the 

extended model produces slightly higher effective tendon capacities. Therefore, the 

extended model can be used when the radius of curvature is limited by the deviator, 

and the primary model can be used when it is not. The radius of curvature of the 

harped tendon at the point of tensile failure can be determined to be: 

Equation 7-4: 

R,if = 2 · (1- cos(B, )){ 

r 

1 + s,,, -11 
(1-cos(B, )) ) 

Equation 7-5: 

Depending whether the radius of curvature determined by Equation 7-5 is equal to 

the natural radius of curvature, R,,t, or the minimum physical radius of curvature 

limited by the deviator size, R,,,;,,, the tensile capacity reduction factor can be 

calculated as: 

Equation 7-6: ,i. = I '/'I, 
r 

when R 1 = R,if 
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Equation 7-7: 

Where: 

Equation 7-8: 

,I, = I '/'I, 
'P1e . r 

&,,, -R1 

,I, = 1-e-Ff ·: 0, 
'l'te 

when R 1 = Rm,n 

The reduced tensile capacity of the harped CFRP tendon can then be calculated as: 

Equation 7-9: 

The maximum tensile load that can be applied to the harped tendon before failure 

occurs can be defined as: 

Equation 7-10: P1 = u;,, · A, 

7.7 FAILURE MODE CONTROL 

It was shown that bending-compression and bending-shear failures occur at 

significantly lower loading levels than for bending-tension failures, and are 

undesirable from a usability standpoint. Therefore, one of the most important 

factors when checking the design strength of a harped tendon is to ensure that it will 

not fail in either a bending-compression or a bending-shear. 

7.7.1 Bending-Compression Failure 

As discussed previously, during the process of loading a harped tendon, net 

compressive stresses and strains will develop in the bottom of the tendon. In order 

to avoid a bending-compression mode of failure, the maximum net compressive 

strain must be kept less than the compressive capacity of the tendon. 

An effective compressive strength was developed based on an inspection of the 

experimental data and the analytical model, and based on the guaranteed tensile 

strength. The effective compressive strain capacity was determined to be: 
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Equation 7-11: s,,c = IPc · s,,, 

Equation 7-12: IPc = 0.45 

To check the harping configuration for the possibility that bending-compression 

failure will occur, the assumed maximum net compressive strain at the bottom of the 

tendon is determined and compared to the effective compressive strain capacity. 

The maximum net compressive strain at the bottom of the tendon is directly related 

to the radius of curvature of the tendon at the point of maximum compressive strain: 

Equation 7-13: R = r 
"cMAX 2 • (J- COs(eJ) 

Equation 7-14: RcMAX = max(RncMAX' Rmin) 

The maximum net compressive strain can then be calculated as: 

Equation 7-15: 

Equation 7-16: 

r 
sbcMAX = -R-­

cMAX 

Equation 7-17: 8 cMAX = & tcMAX - & bcMAX 

In order to avoid the occurrence of bending-compression failure, the maximum net 

compressive strain must be less than the effective compressive strain capacity: 

Equation 7-18: lscMAXI < is,,cl 
If it is determined that the tendon will exhibit a bending-compression failure, the 

maximum net compressive strain must be decreased to a value lower than the 

effective compressive strain capacity. This may be done either by increasing the 

deviator size such that it limits the minimum radius of curvature of the tendon, or 

by decreasing the effective harping angle, which has the effect of increasing the 

minimum radius of curvature of the tendon. Decreasing the effective harping angle 

is done by decreasing the change of angle of the tendon over the deviator(s) by 

either decreasing the overall harping angle or increasing the number of harping 
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points. Both of these methods for decreasing the effective harping angle have the 

same effect on the tensile design strength of the harped tendon. However, 

increasing the number of harping points can allow the overall harping angle to 

remain the same, which may be more desirable under circumstances where the 

vertical loading at the deviator, resulting from harping the tendon, needs to 

maintain a specific magnitude. 

It should be noted that this guideline for bending-compression failure control is 

based on the specific CFRP material used within this testing program, Aslan 200 

CFRP rebar by Hughes Brothers Inc., and may not hold true for other CFRP tendons. 

7.7.2 Bending-Shear Failure 

Within the development of the extended model, it was shown that when 

determining transition effects in the curved tendon, the presence of longitudinal 

shear deformation is highlighted. This shear deformation results in longitudinal 

shear stresses and strains in the tendon. In order to avoid a bending-shear mode of 

failure, the maximum longitudinal shear must be kept to a value less than the 

longitudinal shear capacity of the tendon. 

An effective longitudinal shear strength guideline was developed based on 

inspection of the experimental data and an analytical model. The effective 

longitudinal shear strain capacity was determined to be: 

Equation 7-19: /3,, = 0.01 

To check the harping configuration for the possibility that bending-shear failure will 

occur, the assumed maximum longitudinal shear strain in the harped tendon is 

determined and compared to the effective longitudinal shear strain capacity. The 

maximum longitudinal shear strain in the harped tendon is related to the minimum 

radius of curvature that the tendon will achieve. In lieu of having to determine the 
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minimum natural radius of curvature of the tendon including transition effects, 

which is an iterative and complex process, the minimum natural radius of curvature, 

as determined using the primary model, is used and a reduction factor of 0.9 applied 

to produce a conservative result. The minimum natural radius of curvature of the 

tendon is equal to the radius of curvature of the tendon at the point of tensile failure: 

Equation 7-20: Rp = max(0.9R,,r,Rm;.) 

The maximum longitudinal bending-shear strain can then be calculated as: 

1 /E r 
Equation7-21: /Jmax =2-~b-G·R 

p 

In order to avoid the possible occurrence of bending-shear failure, the maximum 

longitudinal bending-shear strain must be less than the effective longitudinal shear 

strain capacity: 

Equation 7-22: /Jm., < /3,, 

If it is determined that the tendon will exhibit a bending-shear failure, the maximum 

longitudinal shear strain must be decreased to a value lower than the effective 

longitudinal shear strain capacity. When the radius of curvature of the tendon is 

physically limited by the deviator size, this may be done by increasing the deviator 

size. When the radius of curvature of the tendon is not physically limited by the 

deviator size, this may be done by decreasing the effective harping angle, which has 

the effect of increasing the radius of curvature of the tendon. 

As with the bending-compression failure guidelines, this guideline for bending­

shear failure control is based on the specific CFRP material used within this testing 

program and may not hold true for other CFRP tendons. 
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7.8 DESIGN PROCEDURE 

From the design recommendations summarized in this chapter, a procedure for the 

tensile strength design of CFRP tendons in harped prestressing configurations can 

be assembled. The flowchart in Figure 7-7 outlines the design procedure. 

Material 
Properties 

Geometric 
Properties 

Determine: 

Effective compressive capacity, B,,c 

Determine: 

Effective harping angle, B, 

Minimum radius of curvature, Rmin 

Increase deviator radius 
or 

Decrease effective harping angle 

1 es 

Bending­
shear 

failure? 

no 

Bending­
compression 

failure? 

no 

Calculate: 
Reduced tensile 
capacity for harped 

CFRP tendon, u;,, 

Figure 7-7: Flowchart for Design Procedure 

7.9 DESIGN EXAMPLES 

In this section, two design examples are given to illustrate the procedure for strength 

design of a harped tendon using the design formulae from this chapter. These 
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examples use configuration variables that illustrate most of the design circumstances 

that may be encountered. 

7.9.1 Design Example 1 

anchor_.__ 

deviator 
Rd=100mm 

~-anchor 

Figure 7-8: Initial Harping Configuration for Design Example 1 

A 10mm diameter CFRP prestressing tendon is to be harped at an angle of 8° over a 

single deviator with a radius of 100mm as illustrated in Figure 7-8. Resolve any 

failure mode problems and determine the tensile design capacity of the tendon. 

The material properties of the CFRP tendon are as follows: 

E = 1240Pa 

e,,, = 16,677microstrains 

u,,, = E · e,,, = 2,068MPa 

G=7.2GPa 

The geometric harping configuration variables have been given as: 

e" = so 

r = 5mm, A,= 78.54mm' 

Rd= 100mm 

Therefore, the minimum physical radius of curvature of the tendon is: 

Rm,, =Rd+ r = 105mm 

Effective Harping Angle 

The tendon is given as having a single harping point with an overall harping angle 

of 8°. In this case, the effective harping angle would also be 8°. 
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Alternatively, the total change in angle at the deviator is: 

t:,.B,, =2·B,, =16° 

Therefore, the effective harping angle is: 

e =I..t:,.e, =8° 
C 2 ' 

Failure Mode Control 

Check for bending-compression failure: 

Determine effective compressive strain capacity: 

&,,c = ¢, · &,,, = 7,505microstrains 

Determine tendon radius of curvature at maximum compressive strain: 

R = r 
ncMAX 2. (J- cos(eJ) 

R,,cMAX = 257mm 

R,,cMAX > Rmin' therefore: RcMAX = R,,cMAX = 257mm 

Determine the maximum net compressive strain: 

&hcMAx = _,_. - = 19,464microstrains [CJ 
RcMAX 

&,cMAX = ( I ( ))° (&hcMAX )' = 9,732microstrains [TJ 
4 · I-cos e 

C 

ccMAX = &,cMAX - CbcMAX = 9,732miCrOS{rainS [CJ 

The maximum net compressive strain is greater than the effective compressive strain 

capacity; therefore, the CFRP tendon is likely to exhibit bending-compression failure 

and should not be used in this configuration. Figure 7-9 illustrates the strain versus 

applied load graph for design example 1 and highlights the occurrence of bending­

compression failure. 
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Figure 7-9: Strain vs. Loading Graph for Design Example 1 

In order to be able to use a harped CFRP tendon, the occurrence of bending­

compression failure needs to be resolved by either increasing the deviator radius to 

limit the tendon radius of curvature or decreasing the effective harping angle. 

Alternative 1: Increase Deviator Radius 

The harped tendon configuration is the same as before, but a larger radius deviator 

will be used. Try a 500mm radius deviator: 

Rd = 500mm 

Effective Harping Angle 

The effective harping angle is as before: 

() = go 
C 
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Failure Mode Control 

Check for bending-compression failure: 

Effective compressive strain capacity as before: 

s,,c = 7,505microstrains 

Determine tendon radius of curvature at maximum compressive strain: 

Ru,MAX = 257 mm 

Determine the maximum net compressive strain: 

sbcAfAX = _r_ = 9,90lmicrostrains [C] 
R,MAX 

stcMAX = ( 
1 

( ))° (sb,MAX )' = 2,518microstrains [TJ 4 · ]-cos B 
' 

&,MAX = s,cMAX -sb,MAX = 7,383microstrains [CJ 

The maximum net compressive strain is less than the effective compressive strain 

capacity; therefore, the CFRP tendon will not exhibit bending-compression failure. 

Check for bending-shear failure: 

Effective longitudinal shear strain capacity: 

/J,, = 0.01 

Determine minimum tendon radius of curvature: 

r 
R - --------,c-;=======--, = 397mm 

,if - 2. (1- cos(B, )) · ( I+ 8
"' -1J 

(1-cos(e,)) 

0.9R,if = 357mm 

Determine the maximum longitudinal bending-shear strain: 

I ff;; r /J =-· -·-=0.010272 
ma, 2 b·G R 

p 
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/Jmax > /3,, 

The maximum longitudinal shear strain is greater than the effective longitudinal 

shear strain capacity. Therefore, the CFRP tendon is likely to exhibit bending-shear 

failure and should not be used in this configuration. The minimum radius of 

curvature of the tendon is limited by the deviator size in this case; therefore, the 

deviator size should be increased. 

Try a 550mm radius deviator and recheck for bending-shear failure: 

Rd = 550mm 

Determine the maximum longitudinal bending-shear strain: 

0.9R,,r = 357mm 

0.9R,,r < Rm;n, therefore: Rp = Rm;n = 555mm 

Determine the maximum longitudinal bending-shear strain: 

I g;; r /3 =-· -·-=0.009347 
m" 2 b· G Rp 

/Jmo, < /3,, 

The maximum longitudinal shear strain is less than the effective longitudinal shear 

strain capacity; therefore, the CFRP tendon will not exhibit bending-shear failure. 

Tendon Tensile Capacity Reduction 

Determine tendon radius of curvature at the point of tensile failure: 

R,,r = 397mm 

R,,r < Rm;n, therefore: R J = Rm;n = 555mm 

The radius of curvature of the tendon at failure is equal to the minimum physical 

radius of curvature limited by the deviator size; therefore, the tensile capacity 

reduction factor can be calculated using transition effects with the extended model: 
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CT•1 
¢" = 1-e -vu-E·-;-·O, = 0.9994 

t/J,c · r = 0.460 I 
sw ·Rf 

Therefore, the tensile capacity of the tendon is reduced to approximately 46% of its 

ultimate tensile capacity: 

CT;,, = ¢,, · CT,,, = 952MPa 

The maximum tensile loading that can be applied to the tendon before failure can be 

calculated as: 

Figure 7-10 illustrates the strain versus applied load graph for the given harped 

CFRP tendon configuration with the increased deviator radius and highlights the 

occurrence of bending-tension failure. Comparing the strain-load curve to that for 

the initial configuration, it can be seen that the deviator size limits the bending strain 

component. By doing so, it prevents the maximum net compressive strain at the 

bottom of the tendon from reaching the effective compressive strain capacity. 
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Figure 7-10: Strain vs. Loading Graph with Increased Deviator Size 
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Alternative 2: Decrease Effective Harping Angle 

The effective harping angle is decreased by decreasing the total change in angle of 

the tendon at the deviator. This may be achieved in one of two ways: decreasing the 

overall harping angle or increasing the number of harping points. Either method 

will have the same effect on the design strength of the tendon. However, increasing 

the number of harping points can allow the overall harping angle to remain the 

same, which may be desirable. For this example, the overall harping angle will be 

kept at S0
, but two harping points will be used as illustrated in Figure 7-11. 

anchor-......._" 

deviator 
Rd=100mm 

deviator 
R"=100mm 

__,_anchor 

Figure 7-11: Harping Configuration for Design Example 1-Altemative 2 

Effective Harping Angle 

The tendon is given as having two harping points and an overall harping angle of S0
• 

The total change in angle at each deviator is: 

l'i.B,, =8° 

Therefore, the effective harping angle is: 

I 
B =-·/'J.B =4° e 

2 
h 

It can be noted that this has the same effect on the design strength as keeping a 

single harping point and reducing the overall harping angle to 4°. 

Failure Mode Control 

Check for bending-compression failure: 

Effective compressive strain capacity as before: 

&,,c = 7,505microstrains 
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Determine tendon radius of curvature at maximum compressive strain: 

R - r 
ncMAX - 2 • (1- COs(eJ) 

R,,cMAX = 1026mm 

R,wMAX > Rm;n, therefore: RcMAX = R,,cMAX = I 026mm 

Determine the maximum net compressive strain: 

sbcMAx = _r_ = 4,872microstrains [CJ 
RcMAX 

s,cMAX = ( 
1 

( )) · (sbcMAx )' = 2,436microstrains [T] 4· I-cos e e 

licMAX = li,cMAX - SbcMAX = 2,436,nicros/rains [CJ 

&cMAX < &uc 

The maximum net compressive strain is less than the effective compressive strain 

capacity; therefore, the CFRP tendon will not exhibit bending-compression failure. 

Check for bending-shear failure: 

Effective longitudinal shear strain capacity: 

/3,, = 0.01 

Determine minimum tendon radius of curvature: 

r 
R - -------,-======-~ = 570mm 

nf - 2·(1-cos(eJ)·( I+ 8
"' -IJ 

(1-cos(eJ) 

0.9R,,r =5l3mm 

0.9R,,r > Rm;,,, therefore: Rp = Rm;n = 513mm 

Determine the maximum longitudinal bending-shear strain: 

1 g; r /3 =-· -·-=0.010115 
max 2 b G R . p 

/Jmax > /Ju 
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The maximum longitudinal shear strain is greater than the effective longitudinal 

shear strain capacity. Therefore, the CFRP tendon is likely to exhibit bending-shear 

failure and should not be used in this configuration. Because the minimum radius 

of curvature of the tendon is not limited by the deviator size in this case, the 

effective harping angle should be decreased. 

Try an overall harping angle of 7°. 

Effective Harping Angle 

The total change in angle at each deviator is: 

!1B1, = 7° 

Therefore, the effective harping angle is: 

I 
B, = - · !1B" = 3.5° 

2 

Failure Mode Control 

The effective harping angle has been decreased, therefore, the maximum net 

compressive strain will also have decreased and will still be less than the effective 

compressive strain capacity; therefore, the CFRP tendon will not exhibit bending­

compression failure and need not be rechecked. 

Check for bending-shear failure: 

Determine minimum tendon radius of curvature: 

r 
R - -----------,c-;=======---, = 623mm 

,if - 2·(1-cos(eJ)·( I+ 8
"' -1J 

(1-cos(eJ) 

0.9R,1 = 560mm 

0.9R,1 > Rm,n' therefore: Rfl = Rm,n = 560mm 
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Determine the maximum longitudinal bending-shear strain: 

1 g; r /3 =-· -·-=0.009258 
m" 2 b·G Rp 

/Jmax < /3,, 

The maximum longitudinal shear strain is less than the effective longitudinal shear 

strain capacity; therefore, the CFRP tendon will not exhibit bending-shear failure. 

Tendon Tensile Capacity Reduction 

Determine tendon radius of curvature at the point of tensile failure: 

R,if = 623mm 

R,if > Rm,n, therefore: Rf = Rm,n = 623mm 

The radius of curvature of the tendon at failure is not limited by the deviator size; 

therefore, the tensile capacity reduction factor can be calculated using the primary 

model: 

¢,,=I __ r_ = 0.5184 
s,,1 ·Rf 

Therefore, the tensile capacity of the tendon is reduced to approximately 52% of its 

ultimate tensile capacity: 

a-;,, = ¢,, · a-,,1 = I,072MPa 

The maximum tensile loading that can be applied to the tendon before failure can be 

calculated as: 

Pf = a-;,, · A, = 84.2kN 

Figure 7-12 illustrates the strain versus applied load graph for the given harped 

CFRP tendon configuration with the decreased effective harping angle and 

highlights the occurrence of bending-tension failure. Comparing the strain-load 

curve to that for the initial configuration, it can be seen that lowering the effective 
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harping angle decreases the maximum net compressive strain at the bottom of the 

tendon and prevents it from reaching the effective compressive strain capacity. 
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Figure 7-12: Strain-Loading Graph with Decreased Effective Harping Angle 

7.9.2 Design Example 2 

anchor-,-_. ----anchor 

_L_ ___ __c ... = ................ ....... .. 
deviator 

R"=250mm 
deviator 

R"=250mm 

Figure 7-13: Initial Harping Configuration for Design Example 2 

A 10mm diameter CFRP prestressing tendon is to be harped at an angle of 3° over 

two deviators with a radius of 250mm as illustrated in Figure 7-13. Resolve any 

failure mode problems and determine the tensile design capacity of the tendon. 

The material properties of the CFRP tendon are as follows: 

E=l24GPa 

s,,, = 16,677microstrains 

u,,, = E · s,,, = 2,068MPa 

G = 7.2GPa 
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The geometric harping configuration variables have been given as: 

eh =30 

r = 5mm, A,= 78.54mm' 

Rd =250mm 

Therefore, the minimum physical radius of curvature of the tendon is: 

Rmin = Rd + r = 255mm 

Effective Harping Angle 

The tendon is given as having two harping points with an overall harping angle of 

3°. The total change in angle at each deviator is: 

;,,.eh =30 

Therefore, the effective harping angle is: 

I e, =2 -Lleh =l.5° 

Failure Mode Control 

Check for bending-compression failure: 

Effective compressive strain capacity as before: 

s,,, = 7,505microstrains 

Determine tendon radius of curvature at maximum compressive strain: 

R = r 7,296mm 
ucMAX 2 · (1-cos(eJ) 

R,,,MAX > Rmin' therefore: R,MAX = R,,,MAX = 7,296mm 

Determine the maximum net compressive strain: 

sb,MAX = _r_ = 685microstrains [CJ 
RcMAX 

1 
litcMAx = ( ( )) · (sb,MAX )' = 343microstrains [T] 4. 1-cos e 

e 

s,MAx = stcMAX - sbcMAX = 343microstrains [C] 
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The maximum net compressive strain is less than the effective compressive strain 

capacity; therefore, the CFRP tendon will not exhibit bending-compression failure. 

Check for bending-shear failure: 

Effective longitudinal shear strain capacity: 

/3,, = 0.01 

Determine minimum tendon radius of curvature: 

r 
R - ------,c-;::======--, = 1,206mm 

uf - 2·(1-cos(eJ)·( 1+ 8
"' -1J 

(1-cos(eJ) 

0.9R,1 = 1,086mm 

0.9R,1 > Rm,,, therefore: Rp = Rm,, = 1,086mm 

Determine the maximum longitudinal bending-shear strain: 

1 g; r /3 =-· -·-=0.00346 
max 2 b•G R 

p 

/3max < /3,, 

The maximum longitudinal shear strain is less than the effective longitudinal shear 

strain capacity; therefore, the CFRP tendon will not exhibit bending-shear failure. 

Tendon Tensile Capacity Reduction 

Determine tendon radius of curvature at the point of tensile failure: 

R,1 = 1,206mm 

R,1 > Rm,,, therefore: R 1 = Rm,, = 1,206mm 

The radius of curvature of the tendon at failure is not limited by the deviator size; 

therefore, the tensile capacity reduction factor can be calculated using the primary 

model: 
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¢,,=I 
r 

---=0.7515 
6 111 ·R1 

Therefore, the tensile capacity of the tendon is reduced to approximately 75% of its 

ultimate tensile capacity: 

u;,, = ¢,, · u," = l,655MPa 

The maximum tensile loading that can be applied to the tendon before failure can be 

calculated as: 

Figure 7-14 illustrates the strain versus applied load graph for design example 2 and 

highlights the occurrence of bending-tension failure. 
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Figure 7-14: Strain vs. Loading Graph for Design Example 2 
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8 CONCLUSIONS AND RECOMMENDATIONS 

8.1 INTRODUCTION 

The effect of harping CFRP prestressing tendons on their tensile capacity was 

investigated both experimentally and through development of an analytical model. 

Various harping configuration variables were used: tendon size, deviator size and 

harping angle. A range of practical values for the configuration variables were 

utilised in the test program - tendon diameter (9.5mm & 6.3mm), deviator radius 

(50mm, 100mm, 250mmm, 500mmm & lOOOmmm) and harping angle (2, 3, 5, 6, 9, 10 

& 15). Specimens subject to a total of 24 unique configuration variable combinations 

were tested to failure under tensile loading, recording the mode of failure and 

failure load level. 

Two analytical models for predicting the tendon capacity reduction due to harping 

were developed. The primary model was based on classic elastic bending theory 

and equilibrium. The extended model refined the primary model to include 

longitudinal shear deformation, by discretizing the tendon into an equivalent spring 

frame model and analysing it using the matrix stiffness method for structures. The 

equivalent spring frame model accounts for transition effects or stress 

discontinuities in the tendon where it transitions from the curved portion to the 

straight portion. Within this region, plane sections rotate away from perpendicular 

to the neutral axis to effect a smooth bending stress transition. The transition effects 

reduce the effective stiffness and can reduce the axial bending strains 

Further to the extended model, closed form equations for key values were 

developed by a regression analysis of the equivalent spring frame model solutions. 
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Based on the recorded data and the analytical models, harped CFRP prestressing 

tendon tensile strength design procedures were developed, including a failure mode 

control and a tensile capacity reduction calculation. 

8.2 CONCLUSIONS 

The harped CFRP prestressing tendon tensile strength design procedures developed 

from the experimental program and analytical models performed quite well. Good 

agreement was seen between the measured data and the predicted strength as 

determined by the analytical models. 

Based on the experimental research program and analytical model development, the 

following conclusions can be drawn: 

Material Properties 

1) The CFRP tendon material properties, as supplied by the tendon 

manufacturer, showed a significant scatter, which was reflected in the 

experimental data from testing harped tendons. 

2) The guaranteed minimum and laboratory tested maximum properties, as 

supplied by the tendon manufacturer, provided adequate lower and upper 

bounds for the expected deviation of the actual versus predicted failure level 

correlation. 

Experimental Test Data Tendon Behaviour 

1) Three possible failure modes were observed in the experimental program: 

bending-tension, bending-compression and bending-shear failure. 

2) Bending-compression and bending-shear failure modes typically occurred at 

much lower load levels than bending-tension failure, and should be avoided. 
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3) Bending-compression failures typically occurred at large harping angles. 

4) Bending-shear failures typically occurred at medium to large harping angles 

with small deviator sizes. 

5) Increasing the harping angle decreased the tensile capacity of the harped 

tendon. 

6) Decreasing the deviator size decreased the tensile capacity of the harped 

tendon when the tendon radius of curvature was physically limited by the 

deviator. 

Existing Analytical Models 

1) The JSCE model for characteristic strength showed a very poor correlation 

with the test data and was very unconservative. 

2) The JSCE model for the design strength, including a material coefficient, 

showed a slightly better correlation with the test data, but was still 

unconservative for many configurations. 

3) The Gilstrap model showed a very poor correlation with the test data and 

was too conservative to allow an efficient use of harped tendons. 

4) The Ahmad model was unconservative for all the data points when the 

maximum tensile strain determined in their test program was used as a 

failure criterion. 

5) The Ahmad model showed a much better correlation with the test data when 

the guaranteed minimum tensile strain for the CFRP material used in the 

current test program was substituted into the model, but was still 

unconservative for many harping configurations. 
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6) The Ahmad model was difficult to use, as it requires variables to be input in 

specific units of measure. 

Proposed Analytical Models 

1) A harped CFRP tendon assumes a natural radius of curvature determined by 

its stiffness, harping configuration variables and the equilibrium of internal 

and external forces, unless it is physically limited by the deviator radius. 

2) The primary model developed showed a good correlation with the test data 

when used with the guaranteed minimum material properties, and was 

moderately conservative. 

3) The extended model, an extension of the primary model that included 

transition effects, also showed a good correlation with the test data. 

4) The transition effects, as implemented in the extended model, gave only a 

small change in the calculated tensile strength reduction in comparison to the 

primary model, especially when the radius of curvature was not physically 

limited by the deviator. 

5) The extended model describes the top fibre axial strain distribution along the 

tendon through the transition zone. 

6) The extended model allowed longitudinal shear deformation and stress to be 

approximated. 

7) Closed form equations to compute the maximum top fibre strain and the 

maximum longitudinal shear deformation in the extended model, derived by 

regression analysis, showed a virtually perfect correlation with the full model 

calculations, and provided a simpler method for the calculation of these 

values. 
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Failure Mode Control 

1) The effective compressive capacity of the tendon was lower than its tensile 

capacity, which gives rise to the possibility of the occurrence of a bending­

compression failure. 

2) The longitudinal shear deformation and stress, computed using the extended 

model, was used to determine whether bending-shear failure would take 

place. 

3) Effective failure mode control guidelines were developed based on the 

effective compressive capacity, effective shear capacity and the analytical 

models. 

4) The use of multiple deviators can reduce the tensile strength reduction for 

harped CFRP tendons while maintaining the overall harping angle. 

8.3 RECOMMENDATIONS 

From the experimental program and analytical model development, 

recommendations can be made for improving CFRP material manufacturing and 

future research to increase the efficiency of harped CFRP tendons: 

1) The production of CFRP tendons with more consistent material properties 

should be considered. Large variations in the material properties result in 

guaranteed minimum material properties for CFRP tendons that can be 

substantially lower than their maximum material properties. Since the 

calculated design strength is based on the guaranteed minimum material 

properties, tendons with actual material properties that are closer to the 

maximum values would have calculated design strengths that are much 

lower than their potential design strengths. 

143 



2) The development of CFRP tendons with material properties that minimize 

their strength reduction due to harping should be investigated. This may be 

achieved by increasing the length of the transition zone, thereby increasing 

the influence of transition effects on the tendon behaviour. The length of the 

transition zone may be increased by reducing the magnitude of the 

longitudinal shear modulus relative to the magnitude of the tensile modulus 

for the CFRP material. 

3) Guaranteed minimum compressive strength, longitudinal shear strength and 

longitudinal shear modulus were shown to have an influence on the 

calculation of the design strength and failure mode for harped CFRP tendons. 

Therefore, these material properties need to be tested and published together 

with the other material properties for manufactured CFRP tendons. 

4) Failure mode control was shown to be an important aspect of harped CFRP 

tendon design. However, the design recommendations developed are 

specific to the particular material used in this research program. Further 

research should focus on the effects of bending-shear and bending­

compression failure. This will facilitate the further development of failure 

mode control criteria in conjunction with the previous recommendation for 

additional material property data. 
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APPENDIX A: SHOP FABRICATION DRAWINGS FOR 

TEST FRAME 
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APPENDIX B: FAILURE DATA FOR CONFIGURATIONS 

WITH MULTIPLE SPECIMENS 

Table B-1: Failure Data for Hareing Confi~urations with Multiple Specimens 
Tendon Deviator Harp % Ultimate Failure Specimen Diameter Radius Angle Failure Stress ModeA 

mm mm deg MPa (fu=2068MPa) 
A 9.5 500 5 1508.1 72.93% T 

8 B 9.5 500 5 1426.0 68.96% T 
C 9.5 500 5 1071.9 51.83% T 

Average 9.5 500 5 1335.3 64.57% 
A 9.5 500 5 1115.6 53.95% T 

9 B 9.5 500 5 969.8 46.90% T 
Averalile 9.5 500 5 1042.7 50.42% 

A Failure mode: T = tension, C = compression, S = shear 
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