
Evaluation of Shortest Path Query Algorithm in

Spatial Databases

by

Heechul Lim

A thesis

Presented to the University of Waterloo

in fulfillment of

the thesis requirement for

the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2003

© Heechul Lim 2003

I hereby declare that I am the sloe authour of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Abstract

Many variations of algorithms for finding the shortest path in a large graph have been

introduced recently due to the needs of applications like the Geographic Information

System (GIS) or Intelligent Transportation System (ITS). The primary subjects of those

algorithms are materialization and hierarchical path views. Some studies focus on the

materialization and sacrifice the pre-computational costs and storage costs for faster

computation of a query. Other studies focus on the shortest-path algorithm, which has

less pre-computation and storage but takes more time to compute the shortest path. The

main objective of this thesis is to accelerate the computation time for the shortest-path

queries while keeping the degree of materialization as low as possible.

This thesis explores two different categories: 1) the reduction of the I/O-costs for

multiple queries, and 2) the reduction of search spaces in a graph. The thesis proposes

two simple algorithms to reduce the I/O-costs, especially for multiple queries. To tackle

the problem of reducing search spaces, we give two different levels of materializations,

namely, the boundary set distance matrix and x-Hop sketch graph, both of which

materialize the shortest-path view of the boundary nodes in a partitioned graph. Our

experiments show that a combination of the suggested solutions for 1) and 2) performs

better than the original Disk-based SP algorithm [7], on which our work is based, and

requires much less storage than HEPV [3].

Acknowledgements

I would sincerely like to thank Dr. Edward P.F. Chan, my supervisor, for his support and

encouragement during my research. He gave me countless advices and opinions that

enabled me to finish this thesis, which felt like a never-ending work.

 I also would like to thank to Dr. M. Tamer Özsu and Dr. Frank Wm. Tompa for

their valuable comments, which improved my thesis significantly.

 I owe an enormous debt of gratitude towards others who have helped make this

thesis possible: Ning Zhang for helping me understand his work and revising the draft of

this work and Steve Aengels for showing me how to survive at Waterloo.

 Great thanks are also due towards the School of Computer Science and the Bell

Laboratory for funding my project. I am also grateful for the many interesting

discussions facilitated by the members of Database Research Group.

 Finally, I thank my parents for their endless love and support during my study and

throughout my life. I would like to dedicate this thesis for them.

Contents

1 Introduction

1.1 The Problems of Previous Studies …………………………………… 1

1.2 Terminology …………………………………………………………… 2

2 Study of Related Works

2.1 Dijkstra’s SP Algorithm …………………………………………………… 9

2.2 Hierarchical Encoded Path Views for Path Query Processing …………… 9

2.3 Disk-Based SP Algorithm ……………………………………………………11

2.4 Materialization Trade-Offs in Hierarchical Shortest Path Algorithms ……15

2.5 Multiple Range Query ……………………………………………………16

3 Algorithms for Improving the Disk-based SP Algorithm

3.1 Search Space Pruning Algorithm using Boundary Set Distance Matrix ……21

 3.1.1 Boundary Set Distance Matrix ……………………………………24

 3.1.2 Pruning Algorithm Description ……………………………………25

 3.1.3 Proof of Correctness ……………………………………………32

 3.1.3.1 Correctness of the -approximation ……………………32

 3.1.3.2 Correctness of the -approximation ……………………34

 3.1.3.3 Correctness of the Pruning Algorithm ……………38

3.2 Search Space Pruning Algorithm using x-Hop Sketch Graph ……………39

 3.2.1 x-Hop Sketch Graph ……………………………………………40

 3.2.2 The Pruning Algorithm an Using x-Hop Sketch Graph ……………41

 3.2.2.1 Making an Augmented x-Hop Sketch Graph ……………41

 3.2.2.1.1 Properties of an Augmented x-Hop Sketch Graph …45

 3.2.2.2 Calculating the -approximation ……………………50

 3.2.2.2.1 Correctness of the -approximations ……………53

 3.2.2.3 Calculating the -approximations ……………………55

 3.2.2.3.1 Correctness of the -approximations ……………56

 3.2.2.4 Pruning Boundary Sets ……………………………57

3.3 Query Optimization Using Query Graph ……………………………60

3.4 Shortest-Path Algorithm – Batch Disk-based SP Algorithm ……………63

3.5 An Example of the algorithms ……………………………………………65

4 Experiments

 4.1 System Environments and Data sets ……………………………………72

 4.2 Query Optimization Using the Algorithm Query Graph ……………………75

 4.3 Disk-based SP algorithm vs. Batched Disk-based algorithm ……………76

 4.4 Performance with Pruning Algorithms ……………………………………77

 4.4.1 Disk-Based SP algorithm ……………………………………78

 4.4.1.1 The Effect of Fragment Size ……………………………79

 4.4.1.2 The Effect of the Cache Size of the Distance Matrix ……80

 4.4.2 Pruning Algorithm Using BSDistMatrix ……………………81

 4.4.3 Pruning Algorithm Using an x-Hop Sketch Graph ……………86

4.4.4 Comprehensive Result ……………………………………………90

5 Conclusion and Future Research

5.1 Conclusion ……………………………………………………………94

5.2 Future Works ……………………………………………………………95

Bibliography 96

List of Tables

4.1 Test Set Statistics ……………………………………………………………………73

4.2 The Size (MB) of x-Hop Sketch Graphs ……………………………………………74

4.3 Cache Utilization of using QueryGraph algorithm ……………………………75

4.4 AverageTime per Query for Pruning Using BSDistMatrix ……………………82

4.5 Number of Edges in Augmented x-Hop Sketch Graphs and Time to Calculate ……88

4.6 Time to Calculate Skeleton Paths for Different Query Type ……………………88

4.7 Comparison of the -approximation ……………………………………………88

4.8 Comparison of the -approximation ……………………………………………88

List of Figures

1.1 Partition of a Graph ………………………………………………………… 8

2.1 Graph After Concatenation …………………………………………………11

2.2 2-level HEPV …………………………………………………………12

2.3 Super Graph of Disk-based SP Algorithm …………………………………14

2.4 Example of Range Query …………………………………………………18

3.1 -graph and -graph …………………………………………………………23

3.2 How to Make Boundary Set Distance Matrix …………………………………25

3.3 How to Calculate the -approximations …………………………………28

3.4 Example of Shortest Path …………………………………………………33

3.5 Probing a Boundary Set X …………………………………………………36

3.6 Example of x-Hop graphs …………………………………………………42

3.7 Making an Augmented 3-Hop Sketch Graph …………………………………43

3.8 Necessity of Augmentation …………………………………………………46

3.9 Dijkstra’s Algorithm with Mixed Values …………………………………52

3.10 Difference Between 1-Hop and 2-Hop Sketch Graph …………………58

3.11 Query Optimization …………………………………………………………61

3.12 Accessed Fragments …………………………………………………………64

3.13 Query Graph …………………………………………………………………65

3.14 -approximations …………………………………………………………68

3.15 Pruning a Boundary Set …………………………………………………69

3.16 Finding the Shortest Path with Pruned Graph …………………………70

3.17 Dealing with Multiple Queries …………………………………………71

4.1 Number of Fragment DB Accesses …………………………………………77

4.2 Calculation Time for the Different Size of Fragments …………………79

4.3 Calculation Time According to Different Cache Sizes …………………80

4.4 Average Number of Boundary Nodes Closed …………………………84

4.5 Average Calculation Time per Query …………………………………………85

4.6 Average Number of Boundary Nodes Closed …………………………89

4.7 Calculation Time …………………………………………………………93

4.8 I/O Activity of Distance Matrix …………………………………………93

1

Chapter 1

Introduction

1.1 The Problems of Previous Studies

The shortest path problem in very large spatial databases has been elegantly solved to

perform relatively well under certain constraints, such as memory and storage

requirements [7] [8]. The main idea presented in [7] and [8] is the materialization of

existing large databases, such as digital maps or large graphs—which sometimes cannot

be fit into the main memory or take too much time to load up to the main memory—and

then the application of Dijkstra’s shortest path algorithm to the materialized data set. The

usefulness of the proposed algorithms in [7] and [8] is that the materialized data are small

enough to fit into the main memory and to find the shortest paths without a loss of

performance. For the experimental algorithm in [7], their algorithm practically works

better than Dijkstra’s SP algorithm if we take into account the I/O time to load the whole

graph into the main memory. The problem with the algorithm, however, is in the case of

multiple queries waiting to be processed. Provided that there is a large enough memory to

load the whole graph, the I/O time to load it is a one-time cost for the first query. For all

subsequent queries, the only cost is the application of Dijkstra’s SP algorithm, which is

faster than, or as fast as, the new algorithm.

 The answers for speeding up the performance of the algorithm in [7] can be found

by minimizing I/O accesses to the data, narrowing search spaces in the graph, and so on.

This thesis proposes two simple algorithms to reduce the I/O costs, especially for

multiple queries. Some similar attempts to minimize I/O costs in a spatial database have

Chapter 1. Introduction 2

been done in [9], which deals with multiple range queries. For the problem of reducing

search spaces, we give two different levels of materializations. Narrowing search spaces

has also been tried in [7], even though the result is not promising.

1.2 Terminology

Many of the terms used in this thesis are adopted from [7], and we will repeat definitions

of those again briefly. The details and examples of the terms can be found in [7].

Definition 1. Graph

The 3-tuple G = (V, E, W) is defined to be a graph, where V = {vi | i [0, n – 1]}

is the set of vertices with size n. E = {eij | eij = <vi, vj>, vi, vj V} is the set of edges. Each

edge is determined by a “from” vertex vi and a “to” vertex vj, denoted as eij. W = {w : E

0 | w is a one-to-one function from the set of edges to non-negative real numbers}.

Graphs used in the thesis are typical undirected graphs.

Definition 2. Digital Map

A digital map D = (V, E, W) is defined to be a persistent graph on secondary

storage, where the V, E, and W are the same as defined in definition 1.

Definition 3. Sub-graph

A sub-graph S = (Vs, Es, Ws) of graph G = (V, E, W) has the following properties:

Vs V, and there are three one-to-one functions fv: Vs V, fe: Es E, fw: Ws W, such

that eij Es, fe(eij) = (fv(vi), fv(vj)), fw(ws(eij)) = w(fe(eij)).

 According to the definition of sub-graph, the vertices in the sub-graph are a subset

of the vertices in the original graph. There is an edge connection between the two vertices

in the sub-graph only if the two corresponding vertices in the original graph are adjacent.

The edge weights in the sub-graph are the same as those of the corresponding edges in

the original graph.

Chapter 1. Introduction 3

Definition 4. Fragment

A fragment F = (Vf, Ef, Wf) is a connected sub-graph of G = (V, E, W), where Vf

V, and eij Ef fe(eij) E, and eij E fv
-1(vi), fv

-1(vj) Vf fe
-1(eij) Ef. The

weight of the edge in the fragment is the weight of the corresponding edge in the original

graph.

 A fragment is a special kind of sub-graph with the following properties:

It is a connected component. For undirected graphs, it is a complete graph; i.e.,

every pair of vertices has a path connecting them.

There exists an edge connecting the two vertices in a fragment if, and only if, the

two corresponding vertices in the original graph are adjacent.

Definition 5. Partition

A partition of a graph G (V, E, W) is a set of fragments {Fi = (Vi, Ei, Wi) | i [0, n

– 1], Vi = V}.

Definition 6. Interior Vertex, Boundary Vertex

Vertices in a fragment F = (Vf, Ef, Wf) of graph G = (V, E, W) can be divided into

two sets: Vi and Vb, where Vf = Vi Vb. A vertex in fragment vi Vb an adjacent

vertex u of fv(vi) V, such that there does not exist a vertex vj in Vb, such that fv(vj) = u.

That is, every boundary vertex connects to at least two fragments of its partition. Vertices

in Vb are called boundary vertices. Any other vertices in Vi are called interior vertices.

 Intuitively, boundary vertices are vertices that appear in more than one fragment,

and interior vertices appear in only one fragment.

Definition 7. Boundary Set

A boundary set is the set of all boundary vertices shared by two or more

fragments. A boundary set can be denoted by BS [fi, fj, … , fk], where fi, fj, …, fk are the

fragments that share the boundary vertices in the boundary set. Each boundary set has its

own ID, which is unique.

Chapter 1. Introduction 4

Definition 8. Super Graph

A super graph S = (Vs, Es, Ws) of a graph partition F1, F2, … Fn has the following

properties: Vs = {vb | vb is the boundary vertex in Fi, i [1, n]}, Es = {(vi, vj) | Fk, vi, vj

Vk}, Ws = {ws(eij) | ws(eij) = min({SDk(eij) | k [1, n]})} where SDk is the shortest distance

function from vi to vj in fragment Fk, min is the minimum function, if vi and vj are not

connected in Fk, SDk(eij) = .

Definition 9. -value and minSD, -value and maxSD

The -value from a set of vertices S to a set of vertices D in graph G is the

minimum value of the shortest distances from any vertex v S to any vertex u D. It

can be written as a function, (S, D) = minSD(S, D) = min({SD(v, u) | v S, u D}).

Similarly, the -value from a set of vertices S to D can be written as a function, (S, D) =

maxSD(S, D) = max({SD(v, u) | v S, u D}).

Definition 10. Sketch Graph, -graph, -graph

A sketch graph S = (Vs, Es, Ws) of a graph partition {F1, F2, … , Fn} has the

following properties: Vs = {vs | vs corresponds to some boundary set in Fi}, that is, there

exists a bijection f, where BSi is the set of boundary sets in the ith fragment Fi. Es = {(vi, vj)

| Fk, f(vi) Vk}, where f is the bijection defined in Vs. Ws = {ws : Es (0, 0)},

where ws is a one-to-one function from the set of edges to a set of 2-pair (,), where

and are the -value and -value for the two corresponding boundary sets in the super

graph respectively. -graph is a sketch graph, but the weights of the edges are the -

value of the two boundary sets in super graph, instead of the 2-pair (,). Similarly, the

-graph is a sketch graph with the -values as edge weights.

 An example of the partition, including fragments, super graph, and sketch graph,

is shown in Figure 1.1.

Chapter 1. Introduction 5

a. Original Graph and Fragments b. Super Graph

c. Sketch Graph

Figure 1.1 Partition of a Graph

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14

0
1

3

2

8

5

6

4

7

9

10

11 12
13

16
15

14

17

18

19

24 23

20 22

21

34 35 36

37
38 39

41
40

42 43 44

45
48

46 47

51 52

25
26

27

28

29

30 31

32

33

49

53 54

55 56 57

58 59

50

14

16

18

14

16

18

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

0

2

4

6

8

10

1
2

0 2 4 6 8 10 1
2

14

14

16

18

14

16

18

BS(4, 5)

BS(2, 4)

BS(3, 5)

BS(2, 3)

BS(0, 2)

BS(0, 1)

BS(1, 3)

Fragment 4 Fragment 5

Fragment 2 Fragment 3

Fragment 0 Fragment 1

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14

8

9

10

24 23

22

21

41
40

51 52

32

33

14

16

18

14

16

18

Chapter 1. Introduction 6

Definition 11. Boundary Set Distance Matrix (BSDistMatrix)

 A boundary set distance matrix, or BSDistMatrix, is a data structure to contain the

shortest path distances between pairs of boundary sets in the sketch graph. The matrix is a

square matrix with (n n) entries, where n is the number of boundary sets in the sketch

graph. Each entry in the matrix is a set of 2-pair (-value, -value) between two

boundary sets.

BSDistMatrix = {((vi, vj), (vi, vj)) | vi, vj Vs}, where (vi, vj) and (vi, vj) are

functions in Definition 9, and Vs is a set of vertices in Definition 10.

 Each entry in the matrix gives us a lower and upper bound when we want to

calculate an approximation of a shortest distance between two boundary sets. For

example, a shortest distance from any vertex in boundary set A to any vertex in boundary

set B cannot be less than the -value of BSMatrix[A][B], and not more than the -value of

BSMatrix[A][B].

Definition 12. -Approximation, -Approximation

 The -Approximation from a node u to a node v is defined to be any distance

which is equal to, or less than, the actual shortest path distance from u to v. It serves as

the lower bound for the actual shortest path distance. The -Approximation from a node

u to a node v is defined to be any distance which is equal to, or more than, the actual

shortest path distance from u to v.

Definition 13. Shortest Hop, Shortest Hop Path

 The shortest hop refers the shortest distance of the shortest path from a node vi to

a node vj in a graph, provided that the weights of all the edges in the graph are set to 1.

Therefore, if the shortest hop of the shortest path from vi to vj in a graph is h, then the

path includes h edges, and (h – 1) intermediate nodes from vi to vj. It can be written as a

function, shG(vi, vj), which returns the shortest hop h from vi to vj in a graph G. The

shortest hop path naturally means that the path has the shortest hop from the source to the

destination. It is certainly possible that more than one shortest hop path exists.

Chapter 1. Introduction 7

Definition 14. x-Hop Sketch Graph, x-Hop -Sketch Graph, x-Hop -Sketch

Graph

An x-Hop sketch graph xSG = (VxSG, ExSG, WxSG) of a sketch graph S = (Vs, Es, Ws)

has the following properties: VxSG = Vs. ExSG = {eij | eij = <vi, vj>, vi, vj VxSG, shS(vi, vj) =

x}, where x > 0, and shS(vi, vj) is a function which returns the shortest hop h from vi to vj

in the sketch graph S as in Definition 13. WxSG = {wxSG : ExSG (0, 0)}, where wxSG

is a one-to-one function from the set of edges to a set of 2-pair (,), where are are

the -value and -value for the two corresponding boundary sets in the x-Hop sketch

graph xSG respectively.

 The sketch graph consists of edges where the two end vertices of each edge are in

the same fragment, which means each edge is confined inside the fragment where the two

end vertices of the edge are. The x-Hop sketch graph of the sketch graph has the same set

of the vertices as the sketch graph, but different edges from the sketch graph. The “x” in

x-Hop sketch graph indicates the shortest hops of an edge from a node vi to a node vj in

the sketch graph. Therefore, the sketch graph S is essentially a 1-Hop sketch graph. In the

2-Hop sketch graph of S, an edge from vi to vj denotes the shortest hops of 2 in S.

 In sum, if the shortest hop from vi to vj in the sketch graph S is x, a new edge from

vi to vj will be added to the x-Hop sketch graph.

An x-Hop -sketch graph is an x-Hop sketch graph with edges of -values.

Similar to the -graph in Definition 10, each edge in the x-Hop -sketch graph represents

the minimum shortest distance from any vertex v in BSi to any vertex u in BSj, where BSi

and BSj are boundary sets that the edge is connecting. Similarly, an x-Hop -sketch graph

is an x-Hop Sketch graph with edges of -values.

Definition 15. Augmented x-Hop Sketch Graph

 The primary use of an x-Hop sketch graph is to calculate approximations from a

node s in G to a node d in G, where G is a graph defined in Definition 1. However, the

vertices in an x-Hop Sketch Graph are not the same as those defined in G, because the

vertices in an x-Hop Sketch Graph represent the boundary sets from a partition of G.

Therefore, we have to add s and d, and edges connecting from s to the boundary sets in

Chapter 1. Introduction 8

the fragment FS where s lies, and from d to the boundary sets in the fragment Fd where d

lies, to the x-Hop sketch graph. The weight of an edge from s to BSi, where BSi is one of

the boundary sets of S, is the minimum shortest distance from s to any boundary node in

BSi. The edges from d to its boundary sets are defined in the same way. Last, after adding

s, d, and the edges to their boundary sets respectively, we need to add the edges from the

boundary sets of either FS or FD to the boundary sets which are h hops away from the

boundary sets of FS or FD respectively, where 0 < h < x. An example of the whole process

will be given in Section 3.3. Formally, an augmented x-Hop sketch graph axSG = (VaxSG,

EaxSG, WaxSG) of an x-Hop sketch graph xSG = (VxSG, ExSG, WxSG) has the following

properties: VaxSG = VxSG {s, d}, where s is the source and d the destination. EaxSG = ExSG

 {eij | eij = <s, vi>, vi corresponds to some boundary set in S} {eij | eij = <d, vi>, vi

corresponds to some boundary set in D} {eij | eij = <vi, vj>, vi corresponds to some

boundary set in FS, vj VxSG, 0 < shS(vi, vj) < x}, where s and d are the source and the

destination, and FS and FD are the fragments which s and d are in respectively, and shS(vi,

vj) is a function which returns the shortest hop h from vi to vj in a sketch graph S as in

Definition 13. The definition of EaxSG is based on the augmented x-Hop sketch graph

which has edges from the boundary sets of FS to the boundary sets which are h hops away

from the boundary sets of FS. WaxSG = {waxSG : EaxSG (0, 0)}, where waxSG is a one-

to-one function from the set of edges to a set of 2-tuple (,), where are are the -

value and -value for the two corresponding boundary sets in the augmented x-Hop

sketch graph axSG respectively.

9

Chapter 2

Study of Related Works

In Chapter 2, we review the shortest-path algorithms which directly or indirectly inform

our work. We first introduce Dijkstra’s SP algorithm, the fundamental algorithm for other

SP algorithms for extended problems. We then introduce several approaches to solving

the problems for various spatial-related queries.

2.1 Dijkstra’s SP Algorithm

Dijkstra’s SP algorithm is a general method to solve the single-source shortest-path

problem [18]. The runtime of the original version was O(n2), but many studies have been

done to improve its performance. One of the best examples is using double buckets on the

Dijkstra’s algorithm [1]. The new runtime is O(nlogn).

2.2 Hierarchical Encoded Path Views for Path Query Processing

Hierarchical path-finding has been proposed as a solution to the problems of computer

networks in [3] and planar graphs in [2]. In [4], a hierarchical routing algorithm called

HEPV, which offers advantages over alternative path-finding approaches in terms of

performance and space efficiency, has been investigated. HEPV divides a graph into sub-

graphs (fragments), each of which has boundary nodes, and the boundary nodes form a

higher-level graph. Edges in the graphs above the ground level are called boundary edges.

The cost associated with the boundary edge is the shortest-path cost through the fragment

Chapter 2. Study of Related Works 10

between the boundary nodes. If the size of the higher-level graph is still too large to load

into the memory, HEPV divides the higher-level graph into another set of fragments. For

a large graph, the authours of [4] claim that a three-level HEPV is normally efficient in

computing shortest-paths.

For each fragment at the ground level, they create and maintain a table called

Encoded Path View, containing the all-pair shortest-paths. The table stores the origin,

destination, direct successor (next hop) node, and the weight for a shortest-path from the

origin to the destination. Figure 2.2.(b) shows an example of fragments and their tables. It

is straightforward to decode the view from a table. For example, in Figure 2.2, if one

wants to find the shortest-path from node 1 to node 3 in fragment 1, one simply looks up

the table of node 1 and find the destination, node 3. The row of node 3 in the table

indicates the next hop of the shortest-path (node 0) and the weight (4) of the shortest-path.

For the graphs above the ground level, we need two more pieces of information to make

the tables in addition to the encoded path view of the ground-level graph: 1) the fragment

ID of the fragment at the ground level, through which the shortest-path from the origin to

the destination first crosses, and 2) the next hop of the shortest-path in that fragment.

Figure 2.2.(c) gives an example of a level-1 graph and its encoded path view. For each

node in the figure, we have a table, which has encoded path views for all reachable nodes

from the node. For example, the shortest-path from node 1 to node 7 in the encoded path

view for node 1 passes node 0 as the next hop in fragment 1 where node 0 is, and its

weight is 9.

 To retrieve the shortest-path from source s to destination d, the algorithm first

checks the sub-paths combined by all the boundary node pairs, each of which consists of

boundary nodes from fragments to which s and d belong respectively. The algorithm then

checks all the paths from s to its boundary nodes in its fragment S, and from the boundary

nodes of d’s fragment D to d. The shortest-path is simply the concatenation of the

shortest-path from s to the boundary node u in S, the shortest-path from u to the boundary

node v in D, and the shortest-path from v to d. For instance, in Figure 2.2, we want to find

the shortest-path from node 0 in fragment 1 to node 8 in fragment 4. The first step is

finding shortest-path pairs from the boundary nodes in fragment 1 to those in fragment 4.

Chapter 2. Study of Related Works 11

The boundary nodes in fragment 1 are nodes 0, 3, and 4, and the boundary nodes in

fragment 8 nodes 4, 5, and 7. There is a total of 6 possible shortest-paths: (1 4), (1

5), (1 7), (3 4), (3 7), and (4 7). Given that, we then concatenate the shortest-

paths from the source to the boundary nodes (nodes 3 and 4) in fragment 1 and the

shortest-paths from the boundary nodes (nodes 4, 5, 7) in fragment 4 to the destination.

The final result of the concatenation would appear as in Figure 2.1. Therefore, retrieving

the shortest-path is the same operation as finding the shortest-path from node 0 to node 8

in the graph of the figure. As shown in the example, the scheme of HEPV for finding the

shortest-path is an exhaustive comparative algorithm, which may cause a problem when

the number of levels in HEPV becomes large [7].

 The problem of HEPV is that the storage requirement of those views easily

reaches more than 2 gigabytes for a relatively small graph of 100,000 nodes with 100

fragments because the HEPV approach pre-computes the shortest-paths between all the

nodes in each fragment, and the storage requirement may become unacceptable for a

larger graph [10] [11].

2.3 Disk-based SP algorithm

The disk-based SP algorithm in [7] is another variance of Dijkstra’s algorithm for a very

large spatial database. Similar to HEPV, the disk-based SP algorithm divides a graph into

fragments, and the boundary nodes form a super graph. The difference from HEPV is it

uses a different partitioning algorithm, hierarchical scheme, materialization, and shortest-

path querying algorithm.

Figire 2.1 Graph After Concatenation

7

3

1

54

6

5

2

4

5

9

0

8

1

2

10

0 3 7 8: 10

0 3 4 8: 15

0 3 4 7 8: 13

0 4 8: 15

0 4 7 8: 13

(NO path exists from 0 to 1.)

3
5

Chapter 2. Study of Related Works 12

6 7

3

1 2

5

8

0

4

3 2

18

273

2

2

1

1 2

1

7

3

1

54

6

5

2

1

1

4 4

5

(a) Original Graph.

(b) Fragments and their encoded path views.

(c) level 1 graph.

Figure 2.2 2-level HEPV

Encoded Path View for 7
Dest Frag Hop Wgt

- - - -

Encoded Path View for 3
Dest Frag Hop Wgt

4 1 4 2
7 3 6 5

Encoded Path View for 1
Dest Frag Hop Wgt

3 1 0 4
4 2 2 5
5 2 2 4
7 1 0 9

Encoded Path View for 5
Dest Frag Hop Wgt

3 2 4 2
4 2 4 1
7 2 4 7

Encoded Path View for 4
Dest Frag Hop Wgt

3 3 3 1
7 3 3 6

3

10

4

72

1

3
244

WgtHopDest

244

WgtHopDest

Encoded Path View for 3

333

534

WgtHopDest

333

534

WgtHopDest

Encoded Path View for 0

100

403

604

WgtHopDest

100

403

604

WgtHopDest

Encoded Path View for 1

WgtHopDest

WgtHopDest

Encoded Path View for 4

WgtHopDest

WgtHopDest

Encoded Path View for 4

222

524

425

WgtHopDest

222

524

425

WgtHopDest

Encoded Path View for 1

354

255

WgtHopDest

354

255

WgtHopDest

Encoded Path View for 2

144

WgtHopDest

144

WgtHopDest

Encoded Path View for 5

1 2

54

2

2

1

377

WgtHopDest

377

WgtHopDest

Encoded Path View for 6

266

567

WgtHopDest

266

567

WgtHopDest

Encoded Path View for 3

336

133

637

WgtHopDest

336

133

637

WgtHopDest

Encoded Path View for 4

WgtHopDest

WgtHopDest

Encoded Path View for 7
6 7

3 4

3

2
1 288

WgtHopDest

288

WgtHopDest

Encoded Path View for 7

877

1078

WgtHopDest

877

1078

WgtHopDest

Encoded Path View for 4

188

WgtHopDest

188

WgtHopDest

Encoded Path View for 5

WgtHopDest

WgtHopDest

Encoded Path View for 87

5

8

4

2

18

Fragment 3 Fragment 4

Fragment 2 Fragment 1

Chapter 2. Study of Related Works 13

 The algorithm first requires pre-computation for partitioning a graph based on the

BFS and Hilbert R-Tree [17]. The results of pre-computation are fragments, a super graph,

and a sketch graph to capture the outline of the super graph.

 For the comparison with HEPV, we take the example in Figure 2.2. The original

graph is divided into four fragments. Therefore, the fragments are the same as in Figure

2.2.(b) except that the fragments do not have the encoded path views. All-pair shortest-

paths are calculated for the boundary nodes of each fragment, and they form the super

graph.

Each edge in the super graph contains the shortest distance between the two end

nodes of the edge within its fragment. The super graph of the graph 2.2.(a) is shown in

Figure 2.3.(a). As a result of the partition, the size of the materialized data, including the

fragments and super graph, does not exceed 110% of the size of the original graph,

because the fragments and the super graph does not have encoded path view. For a graph

of 100,000 nodes, the total storage requirement would be about 15MBytes regardless of

the number of fragments, as opposed to more than 2 GBytes in HEPV. The query phase

of the disk-based SP algorithm largely consists of two parts. The first part is finding a

skeleton path consisting of boundary vertices only. Intuitively, we calculate the shortest-

path by merging the source and destination fragments S and D with the super graph and

then applying Dijkstra’s SP algorithm to the merged graph. Figure 2.3.(b) shows a super

graph merged with the source fragment 1 and the destination fragment 4. With the

merged graph, we apply Dijkstra’s SP algorithm to find the skeleton path. The skeleton

path of the example will be “0 3 7 8.”

 The second part is finding actual paths. We achieve this by applying Dijkstra’s

algorithm to the fragments where two consecutive boundary nodes in the skeleton path lie.

Since the skeleton path passes nodes 3 and 7 in Fragments 1 and 3 in Figure 2.3, we need

to fill out the actual path from 3 to 7 by merging Fragments 1 and 3. We apply Dijkstra’s

SP algorithm to fill out, and the filled-out path from 3 to 7 is “3 6 7.” In the end,

the completed path is “0 3 6 7 8.”

 The testing result of the disk-based SP algorithm demonstrates that the algorithm

needs only less than 60MB of main memory even for a very large graph like the digital

Chapter 2. Study of Related Works 14

map of East 5 states, whose materialized data comprise around 350MBytes. The average

running time for a single query always is always less than that for using the original

Dijkstra’s algorithm, given that, in Dijkstra’s algorithm, the whole graph can be fit into

the main memory. If we disregard the I/O time for loading the whole graph, Dijkstra’s

algorithm is faster than a disk-based algorithm. In practice, a number of queries will

come into the system, and loading the graph will be a one-time occasion, which means

Dijkstra’s algorithm will perform better if we have enough memory to load the whole

graph. The main purpose of this thesis, in fact, is to reduce the run-time for the disk-

based algorithm while minimizing the costs of pre-computation and additional

materialization.

 The highest I/O costs are caused by the relaxation process of Dijkstra’s algorithm

on the super graph during the computation of skeleton paths since the super graph in the

disk-based SP algorithm is stored in the external memory. According to [5] [12], the I/O

cost of the best-known SP algorithm using external memory was O(V + (E/B)log(V/B)),

where V is the number of vertices, E the number of edges, N is the sum of V and E, and B

is the number of vertices and edges per disk block. With the disk-based SP algorithm, the

I/O cost can be reduced to O(sort(N)), where sort(N) = (N/B log(M/B)(N/B)), and M is the

number of vertices and edges that can be fit into internal memory.

7

3

1

54

6

5

2

1

1

4 4

5

6

8

7

3

1

54

6

5

2

1

1

4 4

5

6

8

0
1

3

8

1

2

Figure 2.3 Super Graph of Disk-based SP Algorithm

(a) Super Graph of Figure 2.1.(a) (b) Super Graph Merged
with Fragment 1 and 4

Chapter 2. Study of Related Works 15

2.4 Materialization Trade-offs in Hierarchical Shortest-path

Algorithms

A hierarchical shortest-path algorithm decomposes the original graph into a set of

fragments and a boundary node graph (super graph) which summarizes the fragment

graphs. While a fully materialized hierarchical shortest-path algorithm pre-computes and

stores the shortest-path view and the shortest-path-cost view for the fragments as well as

for the boundary node graph as we have seen in section 2.2, the storage cost can be

reduced by a virtual or hybrid materialization approach, in which few, or none, of the

relevant views are pre-computed. The authors in [11] explore the effect of materializing

individual views for the storage overhead and the computation time of the hierarchical

shortest-path algorithm.

 The degree of materialization is divided into two categories in [11].

Cost View (CV)

The cost (distance) of the shortest-path between all node pairs in the graph. It

does not store any path information. For a fragment, a partial materialization of

the CV, the C2B or cost-to-boundary-nodes view stores the cost of the shortest-

path from the interior nodes of the fragment to the boundary nodes of the

fragment.

Compressed Path View (CPV)

The set of optimal paths between all nodes on the graph as a series of “hops.”

 With CV and CPV, the authors chose four candidates of hybrid materialization for

direct comparison in order to facilitate studying the effects of materializing

individualization in either the boundary graph or the fragments.

F0 has no materialization in either the boundary graph or the fragments.

F1 materializes only the C2B table in the fragments.

F2 materializes the C2B table of the fragments and the CV table of the boundary

graph.

F3 materializes the C2B table in the fragments and both the CPV and CV tables in

the boundary graph.

Chapter 2. Study of Related Works 16

Between F0 and F1, they compare the effect of materializing the C2B table in the

fragments. By comparing F1 and F2, they try to determine the effect of materializing the

CV in the boundary graph. Comparing F2 and F3, they determine the effect of

materializing the CPV view in the boundary graph. In sum, F0 has the least (zero)

materialization, followed by F1 and F2. F4 has the most materialization. For example,

the disk-based SP algorithm, discussed in section 2.3, lies between F0 and F1 because it

materializes only the partial CV table of the boundary graph in a fragment. On the other

hand, HEPV, discussed in 2.2, materializes both the CPV and CV tables for the boundary

graph and the fragments, so it lies beyond F3.

They experimented with the CPU-costs, I/O-costs, and storage-costs of the

candidate hybrid materialization strategies using the Twin Cities metropolitan road map

with 123,000 nodes and 313,000 edges. In terms of the CPU-costs, the number of

operations decreases as more views are materialized, which means F3 performs best. On

the contrary, the storage-costs increase with more materialization. In sum, their

experimental results show that materializing the shortest-path-cost view (CV) for the

boundary graph provides the greatest computational savings for a given amount of

storage and a small number of fragments, followed by materializing the cost-to-

boundary-nodes view for the fragments, and then the shortest-path view for the boundary

graph.

2.5 Multiple Range Query

High I/O costs in using large graphs are inevitable given that the system does not have

enough memory to load all the necessary data. One of the ways to minimize the I/O-costs

is optimizing queries so that queries which may use the same objects to answer will be

dealt with together.

The idea of optimizing multiple-range queries in [9] is simple. In order to answer

range queries efficiently in 2-D R-trees, the authors in [9] devised various sorting

algorithms for those queries. Based on the fact that the processing cost of a range query is

affected mainly by the I/O time to fetch the appropriate disk pages, they focus on the I/O

activity to manage the queries effectively.

Chapter 2. Study of Related Works 17

 The first approach to servicing a number of requests processes them in a First-

Come-First-Served (FCFS) manner. In the case of a low rate of query arrivals, FCFS is a

reasonable service strategy because there is no additional cost to manipulate incoming

queries. However, there is a problem with this approach in real-life situations. If the order

of processing follows the arrival order, then the probability of having a cache hit will be

very low, leading to poor cache utilization. If a number of queries are waiting to be

served, we can take a look at them and rearrange them so that the I/O activity is minimal.

Their first attempt to achieve the goal is called Hilbert Sorting (HS) [13]. The HS

algorithm has the following steps:

For each query, calculate the Hilbert value of the query window’s centroid.

Sort the Hilbert values in increasing order to obtain the total order of the query

windows.

Execute queries in order.

The HS method guarantees up to a certain point that nearby requests will be

executed sequentially, thus enhancing the locality of references. The pitfall of this

method is that it depends heavily on the size of the cache buffer. If there is no buffer

space, the algorithm performs the same as the FCFS method. For example, assume that

two queries, q1 and q2, are pending, are next to each other, and are also likely to be

sharing a common page. However, if there is no buffer space to store the page, the HS

algorithm is useless since the system has to read in the page again for q2 after q1 is

executed.

To overcome the drawback of the HS method, they first derived an estimate for

the expected number of page references for a range query. Let us assume that function

EPR(qx, qy) returns the expected number of page references for a range query, where qx

and qy are the x and y extends of the window query q. Intuitively, if the return value of

EPR(qx, qy) is n, the expected number of page references for the query q is n. Therefore,

the smaller n is, the fewer I/O activities are necessary.

First, let us consider two window queries qi and qj. If these two queries share

common pages, we could execute them as one. What we need is the criterion to decide

when to group these queries, or when to execute them individually. They use EPR(qx, qy)

Chapter 2. Study of Related Works 18

to determine if the grouping of queries qi and qj is advantageous or not. Let Q denote the

MBR of the two query windows qi and qj. If we execute Q instead of executing qi and qj

individually, there will be less disk access if and only if EPR(Qx, Qy) EPR(qix, qiy) +

EPR(qjx, qjy), where x and y for Q, qi, and qj are the extends of the queries respectively.

The above equation means that the expected number of disk accesses of Q is less than the

sum of the ones of qi and qj. It is clear that there will be a reduction in the number of disk

accesses if the two range queries satisfy the inequality in the above equation. Based on

the simple-grouping criterion, they construct two algorithms in which this criterion can

be valuable.

Figure 2.4 shows an example of possible scenarios. The dashed-line rectangle

represents the Minimum Boundary Rectangle (MBR) of the two queries inside. Since the

two queries in Figure 2.4.(a) overlap a considerable amount, there is a higher probability

that the two queries share more pages. On the other hand, the queries in Figure 2.4.(b)

overlap very little, so the two queries are not likely sharing many pages. In terms of the

equation EPR(Qx, Qy) EPR(qix, qiy) + EPR(qjx, qjy), the example of Figure 2.4.(a) has a

greater probability of satisfying the equation. If it satisfies the equation, then grouping

two queries and processing them as one query save the I/O activities of reading page

references.

Figure 2.4 Example of Range Query

(a) Query 1 (a) Query 2

qix

qjx

Qx

qiy

qjy

Qy

qi

qj

Q

qix

qjx

Qx

qiy

qjy

Qy

qi

qj

Q

Chapter 2. Study of Related Works 19

2.5.1. The Linear Algorithm (Algorithm L)

The idea of this algorithm is that, given two requests, q1 and q2, this algorithm will

merely check whether the inequality is satisfied or not. If yes, the algorithm will execute

the queries as one. If not, it will execute q1 alone and proceed with q2 and q3 until it

reaches all pending requests.

 Let us assume we have N queries pending.

For each query, we must calculate the Hilbert values of the window’s centroid and

then sort the queries according to the Hilbert values in increasing order to obtain the

total order of the query windows.

Let pos denote the current query index. Initialize pos = 1

While (pos < N) do
begin
 Test the inequality for query rectangles qpos and qpos+1;
 If the inequality is satisfied
 Then process the two queries as one and set pos = pos + 2;
 Else process query qpos and set pos = pos + 1.
end
if pos reaches the last query then service qpos.

 The complexity of the algorithm is O(NlogN) because of the sorting of the

rectangles. After sorting, the algorithm is only O(N) because the queries are scanned only

once.

2.5.2. The Extended Linear Algorithm (Algorithm ExL)

The algorithm L considers only two consecutive queries. The authors of [9] extended

their idea, enabling the grouping of more than two queries.

 Consider the queries q1, … , qN in increasing order with respect to the Hilbert

value of the rectangle centroid. The algorithm tries to pack requests into disjointed sets.

The algorithm begins with query q1. Initially, the first group, G1, contains only q1. If the

processing of q1 and q2 together retrieves fewer pages than the processing of q1 plus q2

under the rule of the inequality, then G1 = {q1, q2}. If the processing of q3 plus G1

retrieves fewer pages than the processing of q3 plus q2 plus q1, then G1 = {q1, q2, q3}. The

algorithm continues with the same process until it reaches a query qk such that the

Chapter 2. Study of Related Works 20

expected number of disk accesses EPR(G1 + qk) > EPR(G1) + EPR(qk). When this

happens, the algorithm sets G1 = {q1, … , qk-1} and starts a new group. This process goes

until all queries are examined.

For each query, calculate the Hilbert values of the window’s centroid. Sort the queries

by the Hilbert values in increasing order to obtain the total order of the query

windows.

Let pos denote the current query index. Initialize pos = 1. Let GroupId denote the

current group. Initialize GroupId = 1.

While (pos < N) do
begin

 Initialize EndOfGroup = False and GGroupId = {qpos};
 While (not EndOfGroup) do
 begin
 If (P (GGroupId + qpos) < P(GGroupId) + P(qpos))
 Then assign qpos to GGroupId and set pos = pos + 1;
 Else set EndOfGroup = True and set GroupId = GroupId+1;
 Process as one all qj’s GGroupId;
 end

end
If (pos == N) then service qpos.

 Provided that the query windows have already been sorted with respect to the

Hilbert values of their centroid, the time complexity of the algorithm is linear to the

number of queries O(N), the same as with algorithm L.

 The results show that as buffer size increases, the performance of all methods is

improved. Also, the more range queries are in pending, the more efficient is the derived

processing plan. Another important point is that as the size of the query window increases,

so does the performance. Generally, algorithm HS is better in the case of large buffers,

while algorithm L is the choice in all other cases. What we learn from [9] is that using

simple sorting algorithms can significantly reduce the I/O-costs.

21

Chapter 3

Algorithms for Improving the Disk-based SP Algorithm

As we have seen in Section 2.3, the disk-based SP algorithm performs slower than the

original Dijkstra’s SP algorithm once the system has loaded the whole graph. In practice,

that scenario is certainly possible if we have enough memory to load the graph. In this

chapter, we will present three different approaches to making the disk-based SP

algorithm perform better while the additional materialized data necessary to achieve the

goal remain as small as possible.

 Sections 3.1 and 3.2 discuss algorithms for pruning the search space of a graph.

Section 3.1 gives a simple, yet effective pruning algorithm using BSDistMatrix. Section

3.2 explains another pruning algorithm using the x-Hop sketch graph for pruning search

spaces.

 Section 3.3 discusses an algorithm for optimizing multiple queries so that the I/O-

cost for the disk-based SP algorithm can be minimized.

 Section 3.4 explains an algorithm that focuses on minimizing the I/O-cost for

finding actual paths.

3.1 Search Space Pruning Algorithm Using Boundary Set Distance

Matrix

Dijkstra’s shortest path algorithm with proper data structure [12] is effective in finding a

path in a graph, and many modifications to the algorithm are made to fit in certain

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 22

situations. In [7], the authors developed the disk-based SP algorithm to find the shortest

path in a very large network system. The experimental results of their work show that the

average running time of their algorithm ranges from about the same as to two-and-a-half

times slower than that of Dijkstra’s algorithm, provided that, in Dijkstra’s algorithm, the

whole graph can reside in the system’s main memory and is loaded in advance. The

authours claimed, however, that if, for each query, the I/O-time for loading the whole

graph is counted, their algorithm performs better every time. In the specific case that a

whole graph can be fit into the main memory, there are not many advantages to using

their algorithm. For the example of the Connecticut area, if multiple-path queries are

waiting to be served, and the queries are confined, which can be converted into a digital

map of 20 Mbytes and loaded into the main memory, the obvious choice for the specific

situation is the traditional Dijkstra’s algorithm. Hence, the question is how can we make

the disk-based SP algorithm work at least as well as or better than Dijkstra’s algorithm.

One of the interesting algorithms in [19] is the graph-pruning algorithm. Even if

the proposed algorithm does not improve the performance much, the idea behind it can be

easily modified and can improve the performance by materializing additional information

during the pre-processing phase. The reason his pruning algorithm in [19] works poorly is

that it does not generate good approximations. In his algorithm, the -approximation

between s and d is calculated by Dijkstra’s SP algorithm on a –graph to ensure that the

approximation is never shorter than the distance of the real shortest path from s to d,

which produces the upper bound for the distance of the real shortest path. On the other

hand, the -approximations for pairs from s to all other boundary sets and from all the

boundary sets to d are calculated on an –graph to ensure that each approximation is

never longer than the distance of the real shortest path for each pair, which produces the

lower bound for the distance of the real shortest path from s and d to all other boundary

sets. The pruning algorithm is simple. If the approximation based on the -graph from s

to d passing a boundary set X is longer than the approximation based on the -graph from

s to d, then we can remove X safely for the calculation of a skeleton path. Figure 3.1

shows an example of a pitfall of the algorithm. For the convenience of the explanation,

we include boundary nodes in each boundary set even if the nodes in the actual sketch

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 23

graph represent the boundary sets. Each node in the figure represents a boundary node of

a fragment. Each arrow represents a distance between two connected nodes. The figure

shows parts of the - and -graph of a given graph. If we apply Dijkstra’s SP algorithm

from the boundary set X to the boundary set Y on the -graph, the outcome will appear as

3.1 (c). Figure 3.1 (d) shows the shortest path based on the -graph. The difference

between the distances of the two shortest paths is huge because of the definition of the -

and -values. Since the difference between the - and -values even with the same edge

of the sketch graph is usually large, the calculation is never expected to give good

pruning results.

 To tackle the problem, we need to use alternative values to obtain good

approximations instead of the - and -values. The main idea is to calculate all-pair

shortest distances for all the boundary node pairs in a super graph. From the calculated

distances between the pairs, we can draw the minimum and maximum shortest distances

(a) -graph (b) -graph

X Y X Y

(c) Shortest Path from X to Y
using -graph

YX

(d) Shortest Path from X to Y
using -graph

YX

Figure 3.1 -graph and -graph

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 24

between all the boundary sets, which we will then materialize and store in the secondary

storage. Therefore, it would take a long time to generate such data if there were many

boundary nodes in a graph to handle. Furthermore, if the boundary sets of the graph are

many, the size of the data will be large, and thus the data will be difficult to use. However,

properly setting the size will help us generate a reasonable amount of data in a reasonable

amount of time.

3.1.1 Boundary Set Distance Matrix

In order to prune a sketch graph efficiently, we need to build a set of matrices storing the

shortest distances between the boundary sets in the sketch graph. Since a boundary set

has a number of boundary nodes, there exist multiple shortest distances between two

boundary sets. Our solution is to keep only the minimum and maximum shortest

distances between the two boundary sets. Therefore, the shortest distance from a

boundary set A to a boundary set B is defined as the minimum of the shortest distances

from any node in A to any node in B. In other words, the minimum shortest distance from

a to b is the shortest among the shortest distances from any node in A to any node in B.

The maximum shortest distance is defined in a similar manner: it is the longest among the

shortest distances from any node in A to any node in B.

 To build a Boundary Set Distance Matrix (BSDistMatrix), we first need to

calculate all the shortest distances from the boundary nodes of the first set to the

boundary nodes of the other boundary sets. Once all the shortest distances have been

calculated, the minimum and maximum ones among them are selected.

 Figure 3.2 shows the steps of preparing a BSDistMatrix from the boundary set A

to the boundary set B. After step 2, the minimum and maximum shortest distance from A

to B is set to be min and max respectively. To build the entire BSDistMatrix for A, we

follow the same steps for every other boundary set in the graph.

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 25

3.1.2 Pruning Algorithm Description

Our objective in using the pruning algorithm is to eliminate as many boundary nodes as

we can so that we can reduce the calculation time of finding skeleton paths. The

suggested algorithm basically deals with boundary sets, and if a boundary set is proven to

be unnecessary for finding the skeleton path of a query, we can prune the whole boundary

set and do not need to include the boundary nodes in that boundary set while finding the

skeleton path.

 The pruning algorithm is independent of the disk-based SP algorithm because it is

applied before the disk-based SP algorithm starts. It first begins with building the

shortest-path trees rooted from a source and a destination in their respective fragments.

From the shortest-path trees, we know the - and -values from the source and the

destination to their respective boundary sets in their fragments. After the algorithm

prunes some of the boundary sets in the sketch graph, the search for the skeleton path

continues with the pruned sketch graph, which does not have unnecessary boundary sets,

which could be necessary during the disk-based SP algorithm without pruning.

The pruning process has two parts. First, we estimate the shortest distance (-

approximation) from source to destination and then in order to prune the boundary set,

BS A BS B BS A BS B

Step 1: Find all the shortest
paths from nodes in A to
nodes in B.

Step 2: Pick the minimum
shortest one min and max-
imum shortest one max

among the calculated ones.

min

Figure 3.2 How to Make Boundary Set Distance Matrix

max

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 26

compare it with the approximations (-approximations) of a path from the source to the

destination passing a specific boundary set. The key to pruning as many boundary sets as

possible is to estimate distances well.

For example, let us assume that the shortest distance from a source s to a

destination d is 10. By definition, the -approximation from s to d must be equal to, or

greater than, 10. If the -approximation of a path from s to d passing a boundary set X is

more than the -approximation, we can prune X because the path passing X cannot be the

shortest path by the definition of -approximation.

 The -approximation of the shortest distance from the source to the destination

consists of the minimum of the two cases:

Case 1 (Figure 3.3 (a))

the maximum shortest distances from the source node to boundary sets in the

source fragment.

the minimum shortest distances from the boundary sets in the source fragment

to the boundary sets in the destination fragment.

the maximum shortest distances from the boundary sets in the destination

fragment to the destination node.

Case 2 (Figure 3.3 (b))

the minimum shortest distances from the source node to boundary sets in the

source fragment.

the maximum shortest distances from the boundary sets in the source fragment

to the boundary sets in the destination fragment.

the minimum shortest distances from the boundary sets in the destination

fragment to the destination node.

We choose the minimum distance of the minimums from the two cases described

above. The number of combinations for each case is determined by 2 m n, where m is

the number of the boundary sets in the source fragment and n the number of the boundary

sets in the destination fragment. By doing that, we guarantee the -approximation is at

least equal to, or more than, the actual shortest distance, so that we can use the

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 27

approximation to prune those boundary sets which are parts of the paths having distances

of more than the actual shortest distance.

After deciding the -approximation, we must then calculate an -approximate

shortest distance passing a boundary set to decide whether the boundary set is eligible to

be pruned. The process of the -approximation is similar to the one above. It consists of

four parts:

the minimum shortest distances from the source node to the boundary sets in

the source fragment.

the minimum shortest distances from the boundary sets in the source fragment

to a boundary set X chosen to be probed.

the minimum shortest distances from the boundary set X to the boundary sets

in the destination fragment.

the minimum shortest distances from the boundary sets in the destination

fragment to the destination.

We choose the minimum distance of all possible combinations of the four parts

above. There are m ways, where m is the number of the boundary sets in the source

fragment, to choose from the first two cases, and n ways, where n is the number of the

boundary sets in the destination fragment, from the last two cases. Therefore, we have the

following number of combinations: m n. If an -approximation passing a specific

boundary set is longer than the -approximation, we prune the boundary set.

Since one boundary set usually consists of a number of boundary nodes and each

boundary node in a fragment is connected to all other boundary nodes of the fragment in

a super graph, pruning one boundary set allows us to eliminate all the boundary nodes in

the boundary set and their connected edges to the boundary nodes of all other boundary

sets in a fragment.

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 28

 Algorithm 3.1 describes how the disk-based SP algorithm for finding the skeleton

path is changed. In fact, no significant changes are made except that the algorithm calls

GraphPrune algorithm before it starts the main part of the disk-based SP algorithm. Lines

10 to 33 are the main body of the algorithm. When the algorithm finds boundary nodes, it

will use MainThrust, which is the routine for relaxing all the boundary nodes adjacent to

the current close boundary node; otherwise, it relaxes adjacent nodes to the current node,

max

max

min

min

min

min

max

max

src

dst

Source Fragment

Destination Fragment

min

min

max

max

max

max

min

min

src

dst

Source Fragment

Destination Fragment

(a) max – min – max approach

(b) min – max – min approach

Figure 3.3 How to Calculate the -approximations

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 29

using super graph. MainThrust is the part which takes advantage of the pruning algorithm

since MainThrust need not relax the boundary nodes of the pruned boundary sets. Lines 6

to 9 are the part preparing and calling the GraphPrune algorithm.

 Algorithm 3.2 describes how the pruning algorithm is executed. Lines 1 to 11 are

the process of calculating the -approximation from the source to the destination. The

process considers every possible combination with given information and chooses the

minimum value among them. Therefore, the approxSP is the -approximation to be

compared with the -approximations passing other boundary sets. Lines 12 to 30 are part

of the pruning boundary sets. From lines 13 to 19, sb, the -approximation from the

source to the currently probed boundary set, is determined, and from 20 to 26, bd, the -

approximation from the boundary set to the destination, is determined. The sum of sb and

bd is then compared to the approxSP, and whether it has to be pruned or not is described

from line 27 to 29.

Algorithm 3.1 FindSkeletonPath (s, d, S, D, M, B, k)

Input: s and d are the source and destination vertices respectively; S and D are the
fragments for s and d respectively; M is the distance matrix database; BSDM is the
boundary set distance matrix database; and k is the sketch graph.

Output: the skeleton path from s to d.

Precondition: s and d are in S and D respectively.

/*The distance vector (dv) is a data structure of boundary sets to keep track of the
shortest distance information from the source. */

1: Initialize distance vector dv database
/*bsQ is an updatable heap. bsQ holds the minimum distance information from s to
each boundary set. bsQ.enqueue(o) inserts an object o into the proper position in bsQ.
dv.delegate() returns objects consisting of all the boundary set IDs and their initial
distances (maximum integer) in the sketch graph.*/

2: bsQ.enqueue(dv.delegate())
3: s.distance 0
4: s.closed TRUE

/*interQ is a priority queue, implemented as a binary heap. interQ holds the minimum
distance information from s to nodes in S and D. interQ.enqueue(node) inserts a node
into interQ by its priority of the value of node. */

5: interQ.enqueue(s)

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 30

/*for giving information of min and max distances from the destination*/
6: build shortest path trees spTreeS, spTreeD for S and D

/*Get the and -values from the source to its boundary sets.
distS and distD are a simple table containing the minimum and maximum shortest
distances from the source and destination to their boundary sets
in their fragments respectively.*/

7: distS spTreeS.get Values();
/*Get the and -values from the destination to its boundary sets*/

8: distD spTreeD.get Values();
/*Execute the pruning process.*/

9: GraphPrune(k, BSDM, S.getBoundarySets(), D.getBoundarySets(), distS, distD);
10: while ~bsQ.isEmpty() ~interQ.empty() do

 /* interQ.min() and bsQ.min() returns the minimum values of their own.
11: a interQ.min()
12: b bsQ.min()

/*destination is found*/
13: if a.equals(d) b.equals(d) then

14: break

15: end if

16: if interQ.empty() (b.distance < a.distance) then

/*relax all boundary vertices adjacent to b*/
17: do MainThrust on b
18: b.closed = TRUE

19: else

 /* interQ.dequeue() removes the minimum-valued object in interQ.
20: interQ.dequeue()
21: if a.isBoundaryNode then

22: find all vertices adjacent to a in S and D and relax them
/*MainThrust relaxes every boundary node adjacent to a*/

23: do MainThrust on a
24: else if a.isInS then

25: relax all vertices adjacent to a in S
26: else

27: relax all vertices adjacent to a in D
28: end if

29: a.closed TRUE

30: interQ.enqueue(a)
31: end if

32: end while

Algorithm 3.2 GraphPrune (k, bsM, bsInS, bsInD, distS, distD)

Input: k is the sketch graph; bsM is the boundary set distance matrix; bsInS and bsInD

are the boundary sets in the source and destination fragments respectively; and distS and

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 31

distD are the minimum and maximum shortest distance matrices from source to boundary
sets in bsInS and from destination to boundary sets in bsInD, respectively.

Output: Pruned sketch graph.

/*Initialize the -approximation from source to destination as maximum possible
value*/

1: approxSP MAX

/*start estimating approxSP*/
2: for all the boundary sets b_S in bsInS do

3: for all the boundary sets b_D in bsInD do

/*temp1 is an approximation max – min – max approach (Figure 3.3 (a)). temp2 is
an approximation min – max – min approach (Figure 3.3 (b)).
The methods getMax(bs) and getMin(bs) of distS and distD return the maximum
and minimum values from the source to bs in the source fragment, and
from the destination to bs in the destination fragment respectively. */

4: temp1 distS.getMax(b_S) + bsM.getMin(b_S, b_D) + distD.getMax(b_D)
5: temp2 distS.getMin(b_S) + bsM.getMax(b_S, b_D) + distD.getMin(b_D)

/*Choose the minimum between temp1 and temp2.*/
6: temp = Min(temp1, temp2);
7: if approxSP > temp then

8: approxSP = temp

9: end if

10: end for

11: end for

/*probe all the boundary sets in the sketch graph*/
12: for all the boundary sets b in k do

 /*initialize temporary approximation from source to b*/
13: sb MAX

14: for all the boundary sets b_S in bsInS do

15: temp distS.getMin(b_S) + bsM.getMin(b_S, b)
16: if sb > temp then

17: sb temp

18: end if

19: end for

 /*initialize temporary approximation from b to destination*/
20: bd MAX

21: for all the boundary sets b_D in bsInD do

22: temp bsM.getMin(b_D, b) + distD.getMin(b_D)
23: if bd > temp then

24: bd temp

25: end if

26: end for

 /*the sum of sb and bd is greater than approxSP*/
27: if approxSP < (sb + bd) then

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 32

/*Remove boundary set b from sketch graph k.*/
28: k.remove(b)
29: end if

30: end for

3.1.3 Proof of Correctness

To prove the correctness of the pruning algorithm, we need to justify three statements:

1. The -approximation from the source to the destination is equal to, or more than,

the actual shortest distance. In other words, the approximation is an upper bound

for the actual shortest distance.

2. The minimum distance among the -approximations from the source to the

destination passing nodes in a boundary set X is less than the actual shortest

distance passing any node in X.

3. If the minimum approximation of a path passing a node in X is more than the -

approximation from the source to the destination, the actual shortest path cannot

pass through any node in X.

 Before proving those three statements, let us assume that we have the shortest-

path trees for the fragments where the source and the destination belong, and the

boundary set distance matrix, which has minimum shortest distances between all

boundary set pairs.

3.1.3.1 Correctness of the -approximation

To prove the first statement, we assume that there is a shortest path between

source src and destination dst, so the shortest distance from src to dst is minSD(src, dst)

according to definition 9 in Chapter 1. The shortest path passes src as the starting node,

bn_s as the first-node boundary node to be passed in the source fragment, bn_d as the

last-node boundary node to be passed in the destination fragment, and dst as the

destination node (Figure 3.4).

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 33

 We define the -approximation for the shortest distance by calculating a

minimum of the two cases. If the following two cases satisfy the condition of the -

approximation, then we choose the minimum of the two for the better approximation.

Case 1: maxSD(src, srcBSi) + minSD(srcBSi, dstBSj) + maxSD(dstBSj, dst), where

srcBSi and dstBSj are the boundary sets of the source and the destination fragment

respectively.

Proof

We assume that the nodes used in minSD(srcBSi, dstBSj) are bn_s’ and bn_d’. In

other words, the path from bn_s’ to bn_d’ gives the minimum shortest distance

from srcBSi to dstBSj. We are now able to derive the following equation.

minSD(src, bn_s’) + minSD(bn_s’, bn_d’) + minSD(bn_d’, dst) minSD(src, dst).

Since maxSD(src, srcBSi) minSD(src, bn_s’) and maxSD(dstBSj, dst)

minSD(bn_d’, dst), we have

maxSD(src, srcBSi) + minSD(srcBSi, dstBSj) + maxSD(dstBSj, dst) minSD(src,

dst).

src

bn_s

dst

Figure 3.4 Example of Shortest Path

bn_d

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 34

Case 2: minSD(src, srcBSi) + maxSD(srcBSi, dstBSj) + minSD(dstBSj, dst), where

srcBSi and dstBSj are the boundary sets of the source and the destination fragment

respectively.

Proof

We assume that the nodes used in minSD(src, srcBSi) and minSD(dstBSj, dst) are

bn_s’ and bn_d’. In other words, the path from src to bn_s’ gives the minimum

shortest distance from src to srcBSj and similarly, the path from bn_d’ to dst gives

the minimum shortest distance from dstBSj to dst. We are now able to derive the

following equation.

 minSD(src, bn_s’) + minSD(bn_s’, bn_d’) + minSD(bn_d’, dst) minSD(src, dst).

Since minSD(src, srcBSi) = minSD(src, bn_s’), minSD(dstBSj, dst) =

minSD(bn_d’, dst), and maxSD(srcBSi, dstBSj) minSD(bn_s’, bn_d’) we have

maxSD(src, srcBSi) + minSD(srcBSi, dstBSj) + maxSD(dstBSj, dst) minSD(src,

dst).

 Finally, we derive the following lemma for the -approximation.

Lemma 3.1: The -approximation from src to dst is equal to, or more than, the actual

shortest path from src to dst.

3.1.3.2 Correctness of the -approximation

To prove the second statement, we need to consider special cases, such as probing

boundary sets in the source and the destination fragments. We categorize the problems in

three ways.

Case 1: The minimum distance among the -approximations from the source to

the destination nodes in a boundary set X is less than the actual shortest distance

passing any node in X, where X is neither in the source nor in the destination

fragments.

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 35

Case 2: The minimum distance among the -approximations from the source to

the destination nodes in a boundary set X is less than the actual shortest distance

passing any node in X, where X is in the source fragment.

Case 3: The minimum distance among the -approximations from the source to

the destination nodes in a boundary set X is less than the actual shortest distance

passing any node in X, where X is in the destination fragment.

To prove Case 1, we assume that there is a shortest path between the source and

the destination passing a boundary set X, so the path passes src as starting node, bn_s as

the first boundary node to be passed in the source fragment, x_f as the first boundary

node to be passed in X, x_l as the last boundary node to be passed in X, bn_d as the last

boundary node to be passed in the destination fragment, and dst as the destination node

(Figure 3.5 (a)). Therefore, the distance of the shortest path can be calculated by

minSD(src, bn_s) + minSD(bn_s, x_f) + minSD(x_f, x_l) + minSD(x_l, bn_d) +

minSD(bn_d, dst).

We defined the -approximation of a path passing X by calculating the minimum

of the combinations minSD(src, BSi) + minSD(BSi, X) + minSD(X, BSj) + minSD(BSj, dst),

where BSi and BSj are the boundary sets in the source and the destination fragments

respectively, and i and j are the number of boundary sets in both fragments. We will

prove that the result of minSD(src, BSa) + minSD(BSa, X) + minSD(X, BSb) + minSD(BSb,

dst), where BSa and BSb are the boundary sets containing bn_s, bn_d respectively, is less

than the actual shortest path.

 The shortest distance passing X is

(iv) minSD(src, bn_s) + minSD(bn_s, x_f) + minSD(x_f, x_l) + minSD(x_l, bn_d)

+ minSD(bn_d, dst).

 The -approximation of the path passing BSa, X, and BSb where BSa has bn_s and

BSb has bn_d is

(v) minSD(src, BSa) + minSD(BSa, X) + minSD(X, BSb) + minSD(BSb, dst).

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 36

minSD(src, bn_s) in (iv) is equal to, or more than minSD(src, BSa) in (v) because

BSa contains bn_s and minSD(src, BSa) calculates the minimum shortest distance from

src to any node in BSa including bn_s. minSD(bn_d, dst) in (iv) is equal to, or more than,

minSD(BSb, dst) for the same reason.

src

bn_s in BSa

x_f in X

x_l in X

bn_d in BSb
dst

Figure 3.5 Probing a Boundary Set X

(a) X is neither in the source fragment nor the destination fragment

src

x_f in X

x_l in X bn_l in BSb

dst

(b) X is in the source fragment

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 37

minSD(bn_s, x_f) in (iv) is equal to, or more than minSD(BSa, X) in (v) because

BSa contains bn_s and X does x_f, and minSD(BSa, X) returns the minimum shortest

distance from any node including bn_s in BSa to any node including x_f in X. minSD(x_l,

bn_d) in (iv) is equal to, or more than minSD(X, BSb) in (v).

 From the above, we have the following equations:

minSD(src, bn_s) in (iv) minSD(src, BSa) in (v),

minSD(bn_s, x_f) in (iv) minSD(BSa, X) in (v),

minSD(x_l, bn_d) in (iv) minSD(X, BSb) in (v),

minSD(bn_d, dst) in (iv) minSD(BSb, dst) in (v).

 In addition, (iv) has minSD(x_f, x_l) added, so finally we get the result of (iv)

(v), which means the -approximation passing X is equal to, or less than the actual

shortest distance of the path passing any node in X.

 To prove Case 2, we assume that the shortest distance of the path is obtained by

calculating minSD(src, bn_f) + minSD(bn_f, x_f) + minSD(x_f, x_l) + minSD(x_f, bn_l) +

minSD(bn_l, dst) where bn_f, x_f, and x_l are in the boundary sets of the source fragment.

Proving that is exactly the same as Case 1. The special case is that bn_f is equal to x_f

(Figure 3.5 (b)). The shortest distance for the special case is minSD(src, x_f) +

minSD(x_f, x_l) + minSD(x_l, bn_l) + minSD(bn_l, dst). We already know minSD(src, X),

minSD(BSb, dst), and minSD(X, BSb) are less than minSD(src, x_f), minSD(bn_l, dst), and

minSD(x_l, bn_l), respectively, from the proof in Case 1. In addition, minSD(X, X) is “0”.

Therefore, we have the following result.

minSD(src, X) + minSD(X, X) + minSD(X, BSb) + minSD(BSb, dst) =

minSD(src, X) + 0 + minSD(X, BSb) + minSD(BSb, dst)

minSD(src, x_f) + minSD(x_l, bn_l) + minSD(bn_l, dst).

Therefore, the -approximation passing X, where X is the boundary set of the

source fragment can never be more than the actual shortest path passing X.

 Case 3 is very similar to the above. Finally, we have the following lemma for the

-approximation.

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 38

Lemma 3.2: The -approximation of the path from src to dst passing boundary set X is

equal to, or less than the actual shortest distance from src to dst passing X.

3.1.3.3 Correctness of the Pruning Algorithm

In Section 3.1.3.1 and Section 3.1.3.2, we proved the first and second statements

introduced in the beginning of 3.1.3, which are as follows:

The -approximation from the source to the destination is equal to, or more

than, the actual shortest distance. In other words, the -approximation is an

upper bound for the actual shortest distance.

The minimum distance among the -approximations from the source to the

destination passing nodes in a boundary set X is less than the actual shortest

distance passing any node in X.

The third statement can be easily proven using the first and second statements. Let

us assume the distance of the shortest path sd and the distance of the shortest path passing

a boundary set X sdX.

 If the path passes X and the minimum of the -approximations is more than the -

approximation from the source to the destination, then sdX is more than the -

approximation by Lemma 3.2, and the -approximation is more than sd by Lemma 3.1,

which means the actual distance of the path passing any node in X, is always more than

the actual shortest path. Therefore, we can prune X.

For the correctness of the pruning algorithm, we prove the following statement.

The boundary sets through which the shortest path passes will not be pruned.

Proof

Let us assume that the shortest path passes src, bn_s, x_s, x_l, bn_d, and dst in

order, where src is the source, bn_s the last node to be passed in the boundary set

of the source fragment, x_s the first node to be passed in boundary set X which is

one of the boundary sets the shortest path passes, x_l the last node to be passed in

X and bn_d the last node to be passed in the boundary set of the destination

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 39

fragment, and finally dst the destination. Then, the distance sp of the path can be

calculated as follows:

(i) minSD(src, bn_s) + minSD(bn_s, x_s) + minSD(x_s, x_l) + minSD(x_l, bn_d) +

minSD(bn_d, dst) = minSD(src, dst).

If we show the -approximation passing X is less than the actual distance,

then we cannot prune X since it does not satisfy the third statement. Consider the

-approximation calculated by the following.

(ii) minSD(src, BSa) + minSD(BSa, X) + minSD(X, X) + minSD(X, BSb) +

minSD(BSb, dst), where BSa contains bn_s, and BSb contains bn_d.

(ii) can be rewritten as follows:

(iii) minSD(src, BSa) + minSD(BSa, X) + minSD(X, BSb) + minSD(BSb, dst) since

minSD(X, X) = 0.

minSD(src, bn_s) in (i) minSD(src, BSa) in (iii) by the definition of minSD,

minSD(bn_s, x_s) in (i) minSD(BSa, X) in (iii) by the definition of minSD,

minSD(x_l, bn_d) in (i) minSD(X, BSb) in (iii) by the definition of minSD,

minSD(bn_d, dst) in (i) minSD(BSb, dst) in (iii) by the definition of minSD.

Lastly, minSD(x_s, x_l) in (i) = 0 if x_s = x_l; otherwise, minSD(x_s, x_l) > 0.

As shown in the comparison, (i) cannot be less than (iii), which means the

-approximation passing X is never more than the actual shortest distance;

therefore, X cannot be pruned if X is a boundary set through which the shortest

path passes.

3.2 Search Space Pruning Algorithm Using x-Hop Sketch Graph

The pruning algorithm presented in Section 3.1 takes advantage of the pre-computed

shortest distance information for all-pair boundary sets. As the test results show in

Chapter 4, the algorithm works very well, eliminating up to 70% of boundary sets out of

the total boundary sets. There are, however, two problems when one applies the

algorithm.

The first problem is the calculation time for BSDistMatrix. To build one entry in a

BSDistMatrix, we have to calculate all possible pairs of boundary nodes from two

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 40

boundary sets which the entry represents. If the graph is huge and each boundary set has

a relatively large number of boundary nodes, the calculation time will grow significantly.

For example, if each boundary set holds an average of n boundary nodes and the total

number of boundary sets is t, then we need to calculate the shortest path tree (n n) times

to fill out one entry of the BSDistMatrix, (n n t) times to fill out an entire row of the

BSDistMatrix, and (n n t (t - 1)) to fill out all the entries. The other problem is

storage space. Since the BSDistMatrix stores every possible pair from the entire boundary

sets, there should be enough space to store O(n2t2) entries, where t is the number of

boundary sets in a partitioned graph. For the BSDistMatrix to be effective, t should be

large, which in turn requires a large amount storage space. On the other hand, if we make

the number of boundary sets fewer to save storage space, the BSDistMatrix with fewer

boundary sets will not be as. Final problem is updating the graph. Even with a small

change in the graph, we must build a whole BSDistMatrix again because we do not have

information about which part has been affected by the change.

 An x-Hop sketch graph, defined in Chapter 1, can be an alternative solution to

BSDistMatrix. While BSDistMatrix has the shortest distance information of all-pair

boundary set shortest paths in the sketch graph, the x-Hop sketch graph has distance

information from one boundary set to a limited number of boundary sets, limited by the

number of hops. Therefore, by controlling x, we can adjust the calculation time and

storage space for the materialized data.

 Since a node in an x-Hop sketch graph does not each all other nodes, we cannot

use it to prune the graph in the same way as we use BSDistMatrix. Instead, we need a

different scheme to calculate approximations. We will apply Dijkstra’s SP algorithm on

an x-Hop sketch graph.

3.2.1 x-Hop Sketch Graph

As defined in Chapter 1, an x-Hop sketch graph is another form of sketch graph with

different edges from the original sketch graph. Each edge in the x-Hop sketch graph

connects two nodes, which would be apart from each other by x hops in the original

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 41

sketch graph. As in the original sketch graph, each edge in the x-Hop sketch graph has -

and -values.

An x-Hop sketch graph naturally has more edges than the original sketch graph

does since the number of neighbor nodes of a node grows as x grows in an x-Hop sketch

graph. However, the size of the materialized data of an x-Hop sketch graph with the

proper setting of x is normally less than the one of BSDistMatrix. The number of entries

of an x-Hop sketch graph is kn, while the one of BSDistMatrix is always n2, where n is

the number of nodes (boundary sets) and k is the average number of neighbor nodes of a

certain node in an x-Hop sketch graph.

 Figure 3.6 depicts an example of x-Hop sketch graphs. Each grid in the figure

represents a fragment and the edges of each grid represent boundary sets.

3.2.2 The Pruning Algorithm Using an x-Hop Sketch Graph

The process of the pruning algorithm with an x-Hop sketch graph consists of 4 steps.

Making an augmented x-Hop sketch graph.

Calculating the -approximation from source to destination.

Building the shortest path tree from the source and the destination on an

augmented x-Hop -sketch graph.

Pruning nodes in the sketch graph.

3.2.2.1 Making an Augmented x-Hop Sketch Graph

 In order to apply Dijkstra’s SP algorithm to calculate approximations on an x-Hop sketch

graph, we must do the following.

 We must add the source and the destination of a query of which we want to find

the shortest path. Since an x-Hop sketch graph consists of boundary sets as nodes, we

need the source and the destination nodes to calculate the approximations in the graph.

After adding those nodes, we add edges which are connecting them to the boundary sets

of the fragments which the source and the destination are in respectively. The weights of

those edges are the - and -values. Last, we add edges to the boundary sets in the source

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 42

Starting

Node

Starting

Node

Starting

Node

A partial 1-Hop graph A partial 2-Hop graph

A partial 3-Hop graph

Figure 3.6 Example of x-Hop graphs

Edges of the current hop

Edges of the next hop

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 43

Already added edges

Currently added edges

(a) Adding source and destination,
and their edges to 3-Hop graph

(b) Adding edges from 1-Hop
sketch graph to 3-Hop graph

(c) Adding edges from 2-Hop
sketch graph to 3-Hop graph

The pictures show the process of
adding nodes and edges to the 3-
Hop sketch graph.
Figure 3.7 (a) shows adding the
source and destination, and edges
from the source and the destination
to their boundary sets respectively.
Figures 3.7 (b) and (c) show adding
edges from 1 and 2-Hop sketch
graphs. It only shows edges from a
boundary set X in the source
fragment, but in practice, we have
to add edges of all the boundary
sets of the source fragment.

BS X

BS X

BS X

Figure 3.7 Making an Augmented 3-Hop Sketch Graph

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 44

fragment, and the edges are from k-Hop sketch graphs for all k, where 0 < k < x. The

resulting graph (Figure 3.7 (c)) is called an augmented x-Hop sketch Graph.

Figure 3.7 shows an example of the augmentation processes for a 3-Hop sketch

graph. For the sake of simplicity, it shows the process of attaching edges from boundary

set X of the source fragment. As in the example, we first add the source and the

destination nodes in the graph and then connect them to the boundary sets in the source

and destination fragments. The next steps are simply adding the edges of the boundary

sets in the source fragments from the 1 and 2-Hop sketch graphs.

Algorithm 3.3 shows the pseudo-code for making an augmented x-Hop sketch

graph. Lines 1 to 18 are the code for adding source and destination nodes, and edges to

the boundary sets in the source and destination fragments. Lines 19 to 29 are the code for

adding the edges of boundary sets in the source fragment in the k-Hop sketch graph,

where 0 < k < x.

Algorithm 3.3 MakeAugmentedXHopSG(xHopSG, src, dst, srcF, dstF)

Input: xHopSG is an array containing 1… x-Hop sketch graph, where x is the number of
hops, src a source node, and dst a destination node. srcF is a fragment where src is, and
dstF is a fragment where dst is.

Output: x-Hop sketch graph with added nodes and edges

/*Adding src and dst to the x-Hop sketch graph*/
1: xHopSG[xHopSG.length – 1].addNode(src)
2: xHopSG[xHopSG.length – 1].addNode(dst)

/*Get the shortest path tree rooted from src in the source fragment*/
3: SPTS Dijkstra(src, srcF)

/*Get the shortest path tree rooted from dst in the destination fragment*/
4: SPTD Dijkstra(dst, srcD)

/*Get the boundary sets in the source fragment*/
5: bsSetsInSrcF[] srcF.getBoundarySets();

/*Get the boundary sets in the destination fragment*/
6: bsSetsInDstF[] dstF.getBoundarySets();

/*Adding edges connecting from src to its boundary sets*/
7: for all the boundary sets bs in bsSetsINSrcF do

8: anEdge new Edge(src, bs)
/*Set value for the new edge*/

9: anEdge.setMin(SPTS.getMin(bs))

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 45

/*Set value for the new edge*/
10: anEdge.setMax(SPTS.getMax(bs))
11: xHopSG[xHopSG.length – 1].addEdge(anEdge)
12: end for

/*Adding edges connecting from dst to its boundary sets*/
13: for all the boundary sets bs in bsSetsINDstF do

14: anEdge new Edge(bs, dst)
/*Set value for the new edge*/

15: anEdge.setMin(SPTD.getMin(bs))
/*Set value for the new edge*/

16: anEdge.setMax(SPTD.getMax(bs))
17: xHopSG[xHopSG.length – 1].addEdge(anEdge)
18: end for

/*Adding edges from boundary sets in the source and the destination fragment to
(i + 1) hop away edges from (i + 1)-Hop sketch graphs*/

19: for elements from i = 0 to i = x – 1 in xHopSG do
 /*Add edges from the source boundary sets*/
20: for all the boundary sets bs in bsSetsInSrcF do

/*Get all the adjacent edges of bs*/
21: edges xHopSG[i].getEdges(bs)
 /*Add all the edges to the x-Hop sketch graph*/
22: xHopSG[xHopSG.length – 1].addEdges(edges)
23: end for

24: end for /*Have done the sketch graph preparation process*/

3.2.2.1.1 Properties of an Augmented x-Hop Sketch Graph

The reason for making an augmented x-Hop sketch graph is to calculate the

approximations which satisfy the conditions of definition 12 in Chapter 1. If we apply

Dijkstra’s SP algorithm directly on an x-Hop sketch graph, we cannot find shortest paths

correctly in some cases. Figure 3.8 shows a simple example which underscores the

necessity of the augmentation. When we want to find the shortest path from node0 to

node4, there is no path between those two nodes in the 3-Hop sketch graph, even if the

path does exist in the original sketch graph. If we add an edge of node0 in the 1-Hop

sketch graph and the 2-Hop sketch graph to the 3-Hop sketch graph (Figure 3.8 (c)), then

we can find the shortest path from node0 to node4. In fact, any path which can be found in

the original sketch graph can also be found in the augmented graph.

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 46

We derive two new lemmas, which will be used to prove the correctness of the

pruning algorithm using an x-Hop sketch graph.

If we convert all the boundary nodes of a skeleton path into the boundary sets in

which the boundary nodes are contained respectively, we obtain a “boundary set skeleton

path.” Since a sketch graph has nodes as boundary sets, each node in a boundary set

skeleton path is a boundary set which contains a boundary node in a skeleton path. Let us

assume that we have a skeleton path SKP of which boundary nodes are bn0, bn1, bn2 …,

bnn. If we have a simple function BS(bni) which returns a boundary set ID in which a

boundary node bni is contained, then we obtain a boundary set skeleton path of SKP by

node0 node1 node2 node3 node4 node5

node0 node1 node2 node3 node4 node5

node0 node1 node2 node3 node4 node5

Figure 3.8 Necessity of Augmentation

(a) 1-Hop sketch graph

(b) 3-Hop sketch graph

(c) Augmented 3-Hop sketch graph

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 47

applying the function for every boundary node in SKP. The order of nodes in a boundary

set skeleton path is the same total order as in a skeleton path, which means that, if a node

vi precedes a node vj in a skeleton path, a boundary set BSi containing vi precedes a

boundary set BSj containing vj in the corresponding boundary set skeleton path. Each

edge in a boundary set skeleton path has an -value and -value.

Lemma 3.3: We can express any skeleton path of a shortest path of a query as a boundary

set skeleton path consisting of nodes and edges of the augmented 1-Hop sketch graph.

Proof

A skeleton path, by definition, consists of a sequence of nodes and edges from

two fragments S and D in which source and destination are contained respectively,

and the super graph. The partial path from the source to the first boundary node in

S, which the path is passing, can be simplified by an edge from the source to the

boundary set in which the first boundary node is contained. In the same manner,

we can express the partial path from the last boundary node in D to the destination

as an edge from the boundary set in which the last boundary node is contained to

the destination. The partial path represented by nodes of the super graph is simply

a sequence of boundary nodes. Since the sketch graph is a simplified form of the

super graph using boundary sets as nodes, the boundary nodes and edges

connecting any pair of nodes of the path can be converted to the boundary sets in

which they are contained. As a result, we can express all nodes and edges in the

shortest path as the nodes and the edges in the augmented sketch graph.

 In a boundary set skeleton path, there is a possibility that some of nodes in the

path appear more than once. For example, let us assume that we have a skeleton path src

bn0 bn1 bn2 … dst, where bn0 and bn2 are in a boundary set BS0, and bn1

in BS1. Then, we have a boundary set skeleton path of the skeleton path, src BS0

BS1 BS0 … dst, which cannot be generated by Dijkstra’s SP algorithm with a

sketch graph because the shortest path calculated by Dijkstra’s SP algorithm cannot have

duplicated nodes in its path. In order to derive further lemmas, we need to simplify this

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 48

kind of skeleton paths. In the example above, we can simplify the boundary set skeleton

path by eliminating one of BS0, which is closer to src, and BS1, so we have a boundary set

skeleton path, src BS0 … dst. To generalize the idea, we derive lemma 3.4.

Lemma 3.4: If we find two or more duplicated nodes, that have the same boundary set ID

in a boundary set skeleton path, we can eliminate all the nodes between the first-

appearing duplicated node and the last-appearing duplicated node in the path, and then

eliminate the first-appearing duplicated node. If we repeat this for all duplicated nodes in

the path, we have a simplified boundary set skeleton path.

 A simplified boundary set skeleton path also keeps the same total order as the

boundary set skeleton path for the nodes existing in both paths, because the simplified

boundary set path is derived from the boundary set skeleton path by eliminating some of

its nodes.

Lemma 3.5: We can express any skeleton path of a shortest path as a simplified boundary

set skeleton path consisting of nodes and edges in an augmented x-Hop sketch graph.

Proof

Nodes from the source to the first boundary node in S and from the last boundary

node in D to the destination can be dealt with in the same way as in Lemma 3.3.

We focus on representing boundary nodes and edges, connecting them in the path

using nodes and edges in the augmented x-Hop sketch graph. Let us consider a

skeleton path P of a shortest path and assume that P passes src bn0 bn1

bn2 … dst in the super graph. We can convert P to a simplified boundary set

skeleton path P’ by Lemmas 3.3 and 3.4.

We now consider a new path P” in the augmented x-Hop sketch graph,

where x = k. P” must have the same total order as P’ for the nodes existing in

both P” and P’.

We give a short algorithm that converts P’ to P” while the same total

order as in P’ for P” is preserved.

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 49

// P’ is a simplified boundary set skeleton path.
// xSG is an augmented x-Hop sketch graph in which we want to find
// a simplified boundary set skeleton path of P’.
(1) Initialize P”; // Initialize a new path P” in xSG.
// currentInP’ is a reference of the current node position in P’.
// First, it is initialized as dst.
(2) currentInP’ = dst;
// currentInxSG is a reference to the current node in xSG.
// It is also initialized as dst.
(3) currentInxSG = dst;
// We need a temporary node previous to hold the current position
// in the following while loop.
(4) previous = null;
// Iterate the while loop until currentInxSG is src.
(5) while (currentInxSG != src) {

// P’.getPreviousNode(node) returns the previous node
 // of node in the path P’.
(6) previous = P’.getPreviousNode(currentInP’);

// xSG.getEdge(from, to) returns an edge between from and to
// in the x-Hop sketch graph xSG.
// It returns null if there is no such edge between them.

(7) if (xSG.getEdge(previous, currentInxSG) != null) {
 // If the edge is found between previous and currentInxSG,
 // then put previous as the first node of P”.
(8) P”.addNodeFirst(previous);
 // Set currentInxSG as previous.
(9) currentInxSG = previous;
 }
 // For every iteration, move currentInP’ backward in P’.
(10) currentInP’ = previous;
 }

 From lines 6 and 10, the while loop proceeds by moving the current

position backward by one node in P’ which ensures the total order in line 7. Line

7 finds an edge of the two nodes, previous and currentInxSG, which are h-hops

away from each other in the augmented x-Hop sketch graph xSG, where 0 < h < k.

The augmentation for x-Hop sketch graph makes it possible that the algorithm can

find an edge between two nodes which are less-than-k-hops away.

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 50

 Intuitively, the algorithm works as follows. We start from noden. Once we

identify noden, we must find nodei (0 < i < n) in the augmented k-Hop sketch graph and

nodei is an adjacent node of noden. In other words, we must find nodei existing in both P

and the k-Hop sketch graph, and one of the edges of nodei in the augmented k-Hop sketch

graph must be noden, where 0 < i < n. The question is whether the edge from nodei to

noden satisfying the above condition exists in the k-Hop sketch graph. Since the number

of hops from node0 to noden is more than k, there must be a node which is k hops or more

away to noden, and a k-Hop sketch graph, by definition, has a node k hops away to noden.

If nodei is less than k hops from node0, then we have an edge from node0 to nodei because

of the sketch graph preparation. If not, we find another node as we did above until we

find a node less than k hops from node0.

For example, in Figure 3.8 (b), we cannot find the path from node0 to node1 or

node2, but with the augmented 3-Hop sketch graph, we can always find the path, which is

analogous to this case. In Figure 3.8 (b), we cannot find the path from node0 to node4 or

node5. However, we can with the augmented 3-Hop sketch graph, which is analogous to

this case.

3.2.2.2 Calculating the -approximation

The -approximation between two nodes has to maintain the following property by

definition: the approximation is equal to or more than the actual shortest distance. It is

important to have a small difference between the approximation and the actual shortest

distance because the smaller the difference is, the more nodes can we prune. One simple

way is applying Dijkstra’s algorithm on an x-Hop -sketch graph. That will give us the

minimum sum of -valued edges in the path from a source to a destination. Another way

of calculation is applying Dijkstra’s algorithm on the same graph with both - and -

valued edges.

 The objective in using the dual-weighted graph is to make the approximation

better. To accomplish that, we add one more step to Dijkstra’s algorithm. In the usual

process, we open adjacent nodes of the node which we are going to close, and each edge

of those adjacent nodes has only one value, so the distance of each of those open nodes

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 51

will be c + o, where c is the distance of the closed node and o is the weight of the edge

from the closed node to the open node. Since we use the x-Hop sketch graph with both of

the - and -valued edges, we have to choose either - or -value for each open node to

add to the approximation of the closed node. If the approximation of the closed node is

determined by pc + c, where pc is the approximation of the predecessor of the closed

node and c is -value of the edge from the predecessor to the closed node, then we will

choose the -value for the newly opened nodes. Therefore, we use and -values

alternately along the path. The bottom line for the algorithm is using -value for the

edges of the source node when the path consists of only one edge. Other than that, we

choose the minimum of the two -approximations; one starting with -value for the

edges of the source node and the other starting with -value for the edges of the source

node.

Figure 3.9 illustrates the process. We determine the distance of Node2 by using

the -value (02). For the distances of its neighbor nodes Node5 and Node6, we use the -

values (25 and 26 respectively) to calculate their distances. For the distance of Node5,

we have two paths and choose the minimum of (02 + 26) and (01 + 14). In order to

open the neighbor nodes of Node5 and Node6, we will use the -values. We repeat this

process until we find the destination.

As in the example, the advantage of using values alternately over Dijkstra’s SP

algorithm is that we can use the -value to obtain the -approximation while we keep the

property of the -approximation.

Algorithm 3.4 shows the pseudo-code for calculating the -approximations. Line

2 determines whether the approximation starts with or . Lines 14 to 31 show the

process of choosing either the -value or -value. The priority queue used in the

algorithm is the same data structure used in Algorithm 3.1.

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 52

Algorithm 3.4 DijkstraWithDualValue(src, dst, dualValuedSG, OR)

Input: src is a source node, and dst a destination node. dualValuedSG is a sketch graph
with both and valued edges. OR is a Boolean value, which determines whether the
first value of the approximation starts with or .

Output: the approximation distance from src to dst.
/*Initialize the source node with distance 0*/

1: src.distance 0
/*Set true or false for the source node using or value for the distance*/

2: src.is OR
/*Put the distance information of the source node. table is a simple hash map.*/

3: table.put(src)
/*Initialize the distances of all the nodes in the graph as maximum possible value*/

4: for all the nodes iniNode in dualValuedSG except src do

 /*Assume is attributes of all the nodes are set to true*/
5: table.put(iniNode, MAX_VALUE)
6: end for

/*Add the source node to the priority queue with distance 0*/
7: pQueue.enqueue(src, 0)

/*Do this process until the priority queue is empty*/
8: while pQueue.isEmpty() do

/*Dequeue the minimum distanced node from the priority queue*/
9: node pQueue.dequeue()

/*If the destination is found, exit the while loop.*/
10: if node = dst then exit the while loop
11: end if

Node0

Node2

Node1

02

01

Node0

Node2

Node1

02

01

Node3

Node4

Node5

Node6

26

25

14
13

To open neighbor nodes of
Node0, use -values from
Node0 to Node1 and Node2.

To open neighbor nodes of Node1 and Node2,
use -values from those nodes to their
neighbors.

Figure 3.9 Dijkstra’s Algorithm with Mixed Values

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 53

/*Get the adjacent nodes of node*/
12: adjNodes dualValuedSG.getAdjacentNodes(node)
13: for all the nodes adjNode in adjNodes do /*Prepare open nodes*/

/*If the current node uses value to calculate the distance from its previous node,
do the following. This is the only different part from the original Dijkstra’s
algorithm*/

14: if node.is is true then

 /*Get the maximum distance from the graph*/
15: dist dualValuedSG.getMaxDistance(node, adjNode) + node.distance

 /*If dist is less than the distance stored in table*/
16: if dist < table.get(adjNode) then

17: adjNode.distance dist

/*Set is as false because the distance calculated for adjNode uses
maximum distance from node to adjNode.*/

18: adjNode.is false

19: end if

20: table.put(adjNode)
21: pQueue.enqueue(adjNode, adjNode.distance)
22: end if

/*If the current node uses value to calculate the distance from its previous node,
do the following. This is the only different part from the original Dijkstra’s
algorithm*/

23: else if node.is is false then

 /*Get the minimum distance from the graph*/
24: dist dualValuedSG.getMinDistance(node, adjNode) + node.distance

 /*If dist is less than the distance stored in table*/
25: if dist < table.get(adjNode) then

26: adjNode.distance dist

 /*Set is as true because the distance calculated for adjNode uses minimum
 distance from node to adjNode.*/

27: adjNode.is true

28: end if

29: table.put(adjNode)
30: pQueue.enqueue(adjNode, adjNode.distance)
31: end else if

32: end for

33: end while

34: return table.get(dst).distance

3.2.2.2.1. Correctness of the -approximations

The correctness of the process is similar to the argument presented in Section

3.1.3.1. We will prove that the distance of a shortest path from source src to destination

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 54

dst obtained from Dijkstra’s SP algorithm on an augmented x-Hop sketch graph with

dual-valued edges cannot be less than the actual shortest distance from src to dst. We

have the following cases:

Case 1: A path passes n boundary sets, where n = 1 or 2.

If n = 1, we choose the minimum of,

-approximation = maxSD(src, BS0) + minSD(BS0, dst) or

-approximation = minSD(src, BS0) + maxSD(BS0, dst).

If n = 2, we choose the minimum of,

-approximation = maxSD(src, BS0) + minSD(BS0, BS1) + maxSD(BS1, dst) or

-approximation = minSD(src, BS0) + maxSD(BS0, BS1) + minSD(BS1, dst).

We already proved similar or the same cases in Section 3.1.3.1.

Case 2: A path passes n boundary sets, where n > 2.

In that case, we have four possible approximations according to the number of

boundary sets and which value the source node takes, and we choose the

minimum of them.

-approximation = maxSD(src, BS0) + minSD(BS0, BS1) + maxSD(BS1, BS2) + …

+ minSD(BSn-3, BSn-2) + maxSD(BSn-2, BSn-1) + minSD(BSn-1, dst) or

-approximation = maxSD(src, BS0) + minSD(BS0, BS1) + maxSD(BS1, BS2) + …

+ maxSD(BSn-3, BSn-2) + minSD(BSn-2, BSn-1) + maxSD(BSn-1, dst) or

-approximation = minSD(src, BS0) + maxSD(BS0, BS1) + minSD(BS1, BS2) + …

+ minSD(BSn-3, BSn-2) + maxSD(BSn-2, BSn-1) + minSD(BSn-1, dst) or

-approximation = minSD(src, BS0) + maxSD(BS0, BS1) + minSD(BS1, BS2) + …

+ maxSD(BSn-3, BSn-2) + minSD(BSn-2, BSn-1) + maxSD(BSn-1, dst), where BSi is a

boundary set through which the path passes.

 In the proof, we show that any of the four approximations cannot be less

than the distance of the actual shortest path from src to dst.

Proof

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 55

We consider the first and last nodes in the paths of all the minSDs. Let us assume

that the nodes of minSD(BSi, BSi+1) are bni and bni+1, where 0 < i < n – 1. Thus,

for i, minSD(BSi, BSi+1) is minSD(bni, bni+1). Then, we can derive the following.

-approximation = maxSD(src, BS0) + minSD(BS0, BS1) + maxSD(BS1, BS2) + …

+ minSD(BSn-3, BSn-2) + maxSD(BSn-2, BSn-1) + minSD(BSn-1, dst) =

maxSD(src, BS0) + minSD(bn0, bn1) + maxSD(BS1, BS2) + … + minSD(bnn-3, bnn-2)

+ maxSD(BSn-2, BSn-1) + minSD(bnn-1, dst), and the other three approximations

form the similar equations.

 By the definitions of minSD and maxSD, we have the following.

maxSD(src, BS0) + minSD(bn0, bn1) + maxSD(BS1, BS2) + … + minSD(bnn-3, bnn-2)

+ maxSD(bnn-2, bnn-1) + minSD(bnn-1, dst)

maxSD(src, bn0) + minSD(bn0, bn1) + maxSD(bn1, bn2) + … + minSD(bnn-3, bnn-2)

+ maxSD(bnn-2, bnn-1) + minSD(bnn-1, dst) minSD(src, dst).

The other three approximations can be easily proved in the same way.

Therefore, the -approximation from src to dst on the x-Hop sketch graph with

dual-valued edges is equal to, or more than, the distance of the actual shortest distance.

3.2.2.3 Calculating the -approximations

After we determine the -approximation from source to destination, we calculate the -

approximations from the source to all other nodes in the x-Hop sketch graph, and from all

the nodes in the x-Hop sketch graph to the destination. That way, we can determine an -

approximation of a path from the source to the destination, passing an arbitrary node X,

by the sum of m + n’, where m is -approximation from the source to X and n’ -

approximation from X to the destination. We apply Dijkstra’s algorithm on the x-Hop -

sketch graph to calculate the -approximations. We must be careful to consider in

calculating the approximations that the distance must be equal to or less than the actual

shortest distance from the source to the destination, passing a certain boundary set which

is being probed for pruning.

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 56

 One thing we have to notice is the -approximations from all the nodes to the

destination in the augmented x-Hop sketch graph, because we have to calculate the -

approximation from each node to the destination, one by one for every node. However,

we can solve that problem by building an SP tree from the destination. Therefore, for the

-approximations, we need to build two SP trees, one rooted by the source and the other

by the destination. If we want to find the -approximation from the source to the

destination passing X, we first look up the SP tree rooted by the source to find the -

approximation from the source to X, and then look up the SP tree rooted by the

destination to find the -approximation from X to the destination. To make an augmented

x-Hop sketch graph for calculating the SP tree rooted by the source, we add edges of the

boundary sets of the source fragment from h-Hop sketch graphs, where 0 < h < x. In the

same way, we add edges of the boundary sets of the destination fragment from h-Hop

sketch graph, where 0 < h < x, in order to make an augmented x-Hop sketch graph for

calculating the SP tree rooted by the destination.

3.2.2.3.1. Correctness of the -approximations

We will prove that Dijkstra’s algorithm from A to B on the augmented x-Hop -sketch

graph finds a shortest path whose distance is equal to or less than the actual shortest path

from A to B. We will use the lemmas introduced in Section 3.2.2.1.1.

Lemma 3.6: The distance of the path found by Dijkstra’s algorithm from A to B on the

augmented x-Hop -sketch graph is equal to, or less than the distance of the shortest path

from A to B in the graph.

Proof

Let P be the boundary set skeleton path of the shortest path SP from src to dst in

the original sketch graph, where src is the source node and dst the destination

node. By lemmas 3.4 and 3.5, we can convert P into P’ which is the simplified

boundary set skeleton path of the shortest path in the augmented x-Hop -sketch

graph of the original sketch graph. Then, the distance of P’ is

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 57

(1) minSD(src, BS0) + minSD(BS0, BS1) + minSD(BS1, BS2) + … + minSD(BSn-1,

dst).

 The boundary sets in (1) are also the boundary sets through which the

actual shortest path passes. Therefore, we can assume the boundary nodes

represented by those boundary sets are bn0, bn1 … bnn-1, which are also the nodes

in SP. Then, we have the following by the definition of minSD, minSD(BSi, BSi+1)

minSD(bni, bni+1), where 0 < i < n – 1.

(2) The distance of SP = minSD(src, bn0) + minSD(bn0, bn1) + minSD(bn1, bn2)

+ … + minSD(bnn-1, dst) minSD(src, BS0) + minSD(BS0, BS1) + minSD(BS1,

BS2) + … + minSD(BSn-1, dst).

 (2) shows that the distance of P’ is equal to, or less than that of the

shortest path. Dijkstra’s algorithm on the augmented x-Hop -sketch graph finds

the shortest path of all possible paths including P’. Let us assume that PDijk is the

path found by Dijkstra’s algorithm on the augmented x-Hop -sketch graph.

There are two possible cases.

Case 1: PDijk = P’.

In case 1, we already proved that the distance of P’ is equal to, or less than the one

of the shortest distance.

Case 2: PDijk P’.

In case 2, PDijk cannot be more than P’ because if PDijk were more than P’, then

Dijkstra’s algorithm would find P’ as the shortest path and that would be a

contradiction. Therefore, Dist(PDijk) Dist(P’) Dist(SP), where Dist(Path) is a

function returning the shortest distance of Path.

 Therefore, the distance of P’ is equal to, or less than the distance of SP.

3.2.2.4 Pruning Boundary Sets

The last step of the pruning algorithm is to process every boundary set if it is eligible to

be pruned. A boundary set X, a node in the sketch graph, is pruned if and only if

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 58

SPTS(source, X) + SPTD(X, destination) > the -approximation, where SPTS

and SPTD represent the shortest-path trees rooted by the source and the

destination respectively on an augmented x-Hop sketch graph, and SPT(A, B)

is a function returning the shortest distance from A to B in the shortest-path

tree.

If the above condition is satisfied, we can safely eliminate the boundary set X. The

above statement is the same as discussed and proved in Section 3.1.3.3, so we will skip

the proof here.

In using an x-Hop sketch graph, the larger x is, the more accurate approximations

we can get. For example, let us assume we know the - and -values from the boundary

set X to the boundary set Y, from Y to the boundary set Z, and from X to Z. The - and -

values from X to Y and from Y to Z can be considered as values of edges in a 1-Hop

sketch graph and the values from X to Z as ones in a 2-Hop sketch graph. It is obvious

that the sum of the -values of edges from X to Y and from Y to Z is equal to, or smaller

than the one from X to Z (Figure 3.10). Since we want to get as large a value as possible

for the approximation for the lower bound, we should use an x-Hop sketch graph with a

larger x. For the approximation of the upper bound, the same argument is applied.

X

Y

Z

X

Y

Z

1-Hop sketch graph 2-Hop sketch graph

The graph on the left depicts a 1-Hop sketch graph, with 1-hop edges from

boundary set X to Y, to Z.

The graph on the right depicts a 2-Hop sketch graph, with 2-hop edge from

boundary set X to Z, which is 2-hop because it is passing boundary set Y.

Figure 3.10 Difference Between 1-Hop and 2-Hop Sketch Graph

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 59

After finishing the pruning process, we will use the only boundary sets which

have survived pruning to find the shortest path in the disk-based SP algorithm.

 Algorithm 3.5 shows the pseudo-code for the pruning process. Lines 2 to 8

calculate the -approximation by choosing the minimum of the two possible -

approximations. Lines 9 to 15 show the steps of pruning the boundary sets. Lines 9 and

10 build the shortest path trees rooted by the source and destination on the augmented x-

Hop -sketch graph.

Algorithm 3.5 X-HopSketchGraphPrune (sg, xHopSG[], src, dst, srcF, dstF)

Input: sg is an original sketch graph. xHopSG is an array containing a 1… x-Hop sketch
graph, where x is the number of hops, src a source node, and dst a destination node. srcF

is a fragment where src is, and dstF is a fragment where dst is.

Output: Pruned sg.

/*Convert x-Hop Sketch Graph for pruning process.*/
1: xHopSG[xHopSG.length – 1] MakeAugmentedXHopSG(xHopSG, src, dst, srcF,

dstF)
/*Calculate the -approximation starting with maxSD*/

2: thePivot_0 DijkstraWithDualValue(src, dst, xHopSG[xHopSG.length – 1], TRUE)
/*Calculate the -approximation starting with minSD*/

3: thePivot_1 DijkstraWithDualValue(src, dst, xHopSG[xHopSG.length – 1], FALSE)
/* Choose the minimum of thePivot_0 and thePivot_1.

4: if thePivot_0 < thePivot_1 then

5: thePivot thePivot_0

6: end if

7: else thePivot thePivot_1

8: else end

/*Build the shortest path tree rooted from src using sketch graph*/
9: SPTSxHopSG Dijkstra(src, xHopSG[xHopSG.length – 1])

/*Build the shortest path tree rooted from dst using sketch graph*/
10: SPTDxHopSG Dijkstra(dst, xHopSG[xHopSG.length – 1])
11: for all the nodes node in sg do /*Pruning process starts*/

 /*if the sum of two approximations for the lower bound is more than
 the approximation for the upper bound*/

12: if thePivot < (SPTSxHopSG.getMin(node) + SPTDxHopSG.getMin(node)) then

13: sg.remove(node) /*Remove the node*/
14: end if

15: end for

16: return sg

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 60

3.3 Query Optimization Using Query Graph

The problem we face when multiple queries come into the spatial database system is how

to sort the queries into a new order so that we can compute them with minimal system

resources. We assume that a query usually comes into the system with the following

information: a source, a destination coordinate, and fragments in which the source and

destination coordinate lie. As we have seen in Section 2.2, the first part of finding the

shortest path, namely finding the skeleton path of a query, requires those two fragments

in main memory. Another assumption is that we have only enough buffers to

accommodate two fragments at a given moment. In addition, the strategy for managing

buffers in this thesis is the Least Recently Used (LRU), which is the most widely used in

modern computer systems. Under these constraints, we can easily calculate how many

swaps of fragments are required to process queries. For example, we have two different

schedules of three queries pending in the queue, as illustrated in Figure 3.11 (a). In Figure

3.11 (b), the optimal schedule of processing those queries requires 4 I/O activities in the

LRU buffer: reading in fragment 0 and 1 for Query0, reading fragment 2 for Query3, and

reading fragment 3 for Query2. On the other hand, the poor schedule in Figure 3.11 (c)

requires 6 I/O activities: 2 reads of the fragments for each query respectively. In order to

get the optimal schedule for n queries, the expected calculation time is n!, which is non-

polynomial. Therefore, it is impossible to get the optimal schedule for n queries within a

reasonable time if n is large enough.

 If we think of the IDs of the source and the destination fragments as nodes in a

graph and draw a line between the two nodes, we can consider the above problem to be a

graph traversal problem, which is known as an NP-complete problem to get an optimal

result for visiting each node as little as possible [14]. Since it is an NP-complete problem,

we would rather try to find a heuristic algorithm which could lead to a near optimum

schedule. The heuristic algorithm we are proposing here is very simple and fast, but it is

effective. The test results of the algorithm will be given in a later chapter.

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 61

 One of our objectives in devising the algorithm is that the query-scheduling

algorithm should not affect the overall performance of the shortest path query, which

means it should not take more than a few seconds for a large number of queries. To

achieve the above, we have found an algorithm with an execution cost of O(n).

Before describing the algorithm, we need to clarify a simple step of grouping

queries. If two or more queries in the query set have the same source and destination

fragments, the buffer does not need to swap its contents in order to calculate those queries.

We call them an Equivalent Class (EC) of queries. Hence, an EC consists of queries

sharing the same source and destination fragments. In fact, we loosen the definition of EC

as we consider queries to be EC if they have the same fragments for the source and

destination fragments in either order. For example, one query with fragment ID 1 for the

source and fragment ID 2 for the destination, and the other one with fragment ID 2 for the

source and fragment ID 1 for the destination are EC in the loose sense.

Algorithm 3.6, QueryGraph, describes how we build a query graph for queries

and sort them. The advantages of the algorithm are that it is simple and efficient, and

Query0: Source Fragment 0, Destination Fragment 1

Query1: Source Fragment 2, Destination Fragment 3

Query2: Source Fragment 1, Destination Fragment 2

Query0 Query2 Query1

Frag 1

Frag 0

Frag 2

Frag 1

Frag 3

Frag 2

(a) Queries in pending

LRU Buffer State

(b) Scenario 1

Query0 Query1 Query2

Frag 1

Frag 0

Frag 3

Frag 2

Frag 2

Frag 1

LRU Buffer State

(c) Scenario 2

Figure 3.11 Query Optimization

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 62

does not need any complicated data structure. For the algorithm, we assume the buffer

size for the fragments is 2. We also need to define a few terms we are using for the

algorithm. A node is isolated if it is not connected to any edge in a graph. The node u is

called a terminal node if the degree of u is 1. An edge e = <n, u> is called a dangling

edge incident to n if u is terminal. Processing an edge is defined as outputting the edge

then removing the edge and removing any isolated nodes from the graph. The algorithm

basically examines the graph and removes edges and nodes step by step. Edges in the

graph denote queries, so when edges are removed, the queries denoted by the edges are

stored in a new sequence of the query set. Therefore, after removing all the edges in G,

the algorithm will generate a new query sequence with new ordering, possibly reducing

I/O activities in the buffer.

The complexity of the algorithm is O(n) since there is only one single loop. Inside

the loop, there is not much calculation, simply picking a random node, or terminal node,

and then removing possible dangling edges attached to the current node cn. The only

redundant calculation in the algorithm is finding dangling edges attached to cn because

non-dangling edges will be processed every time. However, the cost for that is limited

since finding dangling edges is trivial, which only requires checking the nodes of the

edges attached to cn.

The highlight of the algorithm is processing dangling edges. Since dangling edges

guarantee there will be at least one fragment in the buffer, the algorithm maximizes the

usage of the current contents in the buffer. In Chapter 4, we will show how much the

algorithm improves the buffer utilization compared to non-scheduled queries.

Algorithm 3.6 QueryGraph

Input: ECs and a query graph graph.

Output: ECs with new order

/* initialization */
1: cn = null

/* newly ordered queries will be stored in the query queue */
2: query queue is created.

/*do the loop until all the nodes in the graph are removed */

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 63

3: while graph != empty do

4: if (cn == null) then

5: if (there is an edge e = <u, v> such that
v is terminal and the degree of u is either one or two) then cn = v;

6: end if

7: else cn = w, where w is any node in graph.
8: end else

9: end if

10: if (there are dangling edges incident to cn) then

11: process the dangling edges one by one;
12: end if

13: if (cn exists) then

14: let e = <cn, v> be an edge incident to cn;
15: process e;
16: cn = v, if v exists and null otherwise;
17: end if

18: else cn = null

19: end if

20: end while

3.4 Shortest-Path Algorithm – Batch Disk-based SP Algorithm

The three algorithms introduced earlier in this chapter focus on how to organize a set of

queries and to minimize search spaces. They do not themselves find the shortest path;

they prepare queries for the better performance of the shortest-path algorithm on

partitioned graphs.

 The disk-based shortest path algorithm in [7] has two steps: finding a skeleton

shortest path and filling the skeleton path. Since a skeleton path consists of boundary

nodes in the path from the source to the destination, the next phase of the algorithm is to

fill out the intermediate nodes between any two consecutive boundary node pairs in the

skeleton path. Those two parts complete the algorithm. To fill out those intermediate

nodes, we apply Dijkstra’s SP algorithm on a fragment in which two consecutive

boundary nodes in the sketch graph lie. Since fragment DB is normally big, their solution

is to place those fragments in the external memory and load them when necessary.

If there are multiple queries pending in the system, a little modification of the

order of processing multiple queries would help the algorithm use fewer I/O activities.

Instead of processing them one by one, a batch disk-based SP algorithm process as a

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 64

certain number of queries together to find skeleton paths and then fill out those skeleton

paths together at a later stage. The scheme is very simple. First, we calculate the skeleton

paths of queries and then identify the fragments needed to compute the partial shortest

paths of the queries. After we know all the fragments, we calculate the partial paths with

respect to the fragments of the partial shortest paths. The last step is simply to place the

calculated partial paths into the proper positions in the skeleton paths.

 Figure 3.12 is an example of the processing of two queries. The shortest path of

the first query is to pass through fragments 0, 2, 3, 5, 6, and 7 after the computation of the

skeleton path. The shortest path of the second query passes through fragments 1, 2, 4, 5, 6,

8, and 9. After the computation of the skeleton paths of each query, we have to fill the

skeleton paths. To complete the computations, for query 1, we need to apply Dijkstra’s

algorithm on 6, 5, 3, and 2; for the query 2, we need to apply it on 8, 6, 5, 4, and 2. If we

have a buffer size of 2 and process query 1 first, and then query 2, we need 9 reads of the

fragments to fill out the skeleton paths of the two queries. If we consecutively compute

the partial shortest paths for the same fragment from different queries, we can save I/O

activities. In the example, fragments 2, 5, and 6 are necessary to fill both skeleton paths,

so we calculate the partial shortest paths for the two queries together for those fragments.

This strategy allows us to save 3 reads of fragments.

 This strategy works better if queries are scheduled properly. The suggested

algorithm in Section 3.3 is effective since it sorts queries by their locality.

52
3

2
1

0

4
5

Figure 3.12 Accessed Fragments

Query 1

Query 2
6

6
7

8
9

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 65

3.5 An Example of the Algorithms

This Section will give an example of the algorithms presented in previous sections, from

the start to the end of processing one query. For the pruning part, the example uses

BSDistMatrix instead of an x-Hop sketch graph. The only difference between the two lies

in how to calculate approximations, and the explanation of calculating with an x-Hop

sketch graph is given in its own section. We assume that we already have a partitioned

graph, the boundary node distance matrix, which holds all the shortest-distance

information of boundary nodes in each fragment, and the BSDistMatrix, which holds all

the shortest-distance information between boundary sets in a partitioned graph. Those are

outcomes of the pre-processing phase of the disk-based SP algorithm.

The first step of the query process is to accept queries and group them into

batches. After grouping, the program sorts each group so that queries in each group will

read in a fragment database.

 Let us assume we have the queries depicted in Figure 3.13, and we have only a

cache size of 2 for the fragment database. Each node represents a fragment. A node with

the beginning of an arrow indicates the source fragment, while a node with the ending of

an arrow indicates the destination fragment. For example, fragment 2 can be a destination

fragment with fragment 1 and a source fragment with fragments 3 and 4. As described in

1

0

2

4

7

3

5

6

8

9

Figure 3.13 Query Graph

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 66

Section 3.3, sorting those queries is simple. After constructing a query graph like Figure

3.13, we must randomly choose any node in the query graph. We assume that we select

fragment 2. With the selected fragment, we must go in the direction of the arrows.

Fragment 2 has two possible routes, but the arrow between fragments 2 and 3 is a

dangling edge, so we remove that arrow first. The next node will be 4; therefore, we

remove the arrow from fragments 2 to 4. Processing fragment 4, we find another

dangling edge, the arrow between fragments 4 and 5. We remove it first before going to

fragment 6. The possible result will be 2 3 4 5 6 7 8 9 1 0.

The underlined numbers indicate fragments with dangling edges.

 Once the sorting of queries in a group is completed, we then find the skeleton path

for each query individually. Finding a skeleton path of a query merely involves applying

Dijkstra’s SP algorithm using a partitioned graph and its auxiliary files, such as the

distance matrix, instead of a normal graph. In addition, we are going to insert the pruning

algorithm into the middle of the algorithm.

 As described in Chapter 2, we need source and destination fragments, and the

distance matrix to carry out the algorithm. The pruning process starts with calculating the

shortest-path tree rooted at the source in the source fragment and another shortest-path

tree rooted at the destination in the destination fragment. With those shortest path trees,

we are able to calculate the approximations with BSDistMatrix, taking the minimum

approximation from the possible approximations. There can be (2 × m n)

approximations, where m and n are the number of boundary sets in the source and

destination fragments respectively. Each approximation is the minimum of the sums of 1)

the maximum (minimum) shortest distance from the source node to a boundary set in the

source fragment, 2) the minimum (maximum) shortest distance between the boundary set

in the source fragment to a boundary set in the destination fragment, and 3) the maximum

(minimum) distance from the boundary set in the destination fragment to the destination

node respectively (Section 3.1.2). After calculating the approximation, we can compare it

with the minimum distances passing other boundary sets in the partitioned graph. A

minimum distance passing a boundary set X is selected out of a number of possible

minimum distances. There can also be m n possible minimum distances, the same as

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 67

above. Each possible minimum distance is the sum of 1) the minimum shortest distance

from the source node to a boundary set in the source fragment, 2) the minimum shortest

distance from the boundary set to boundary set X, and 3) the minimum shortest distance

from boundary X to a boundary set in the destination fragment. If the minimum distance

passing X is longer than the approximate shortest distance, then we can safely remove X,

which means we do not have to consider the boundary nodes in X during the remaining

part of finding a skeleton path. The remaining part of the process just follows the normal

procedure of the disk-based SP path algorithm. The figures from 3.14 to 3.16 depict an

example of finding the skeleton path in the pruning process. Figure 3.14 shows how to

calculate the -approximation from the source to the destination. For the sake of

simplicity, the figure only shows the (max– min – max) approach. Figure 3.15 explains

how to calculate the -approximation and prune a boundary set in a graph. The figure

shows the case of probing the boundary set X, whose distance is longer than the -

approximation calculated in Figure 3.14. Therefore, X can be pruned. We probe every

boundary set in the figure, in order to decide whether it can be pruned or not. Figure 3.16

shows finding the skeleton path of the query on the pruned graph. We assume that grey-

coloured boundary nodes are only eligible for the calculation, which means all other

boundary nodes are pruned. Therefore, the search space for the disk-based SP algorithm

becomes smaller with the pruning algorithm.

 After the pruning algorithm, we apply the batch disk-based SP algorithm, on the

pruned graph. Since the skeleton path consists only of boundary nodes, we complete the

path by filling out intermediate nodes between boundary nodes in the skeleton path, using

the traditional Dijkstra’s SP algorithm. In the batch disk-based SP algorithm with

multiple queries, the filling-out process is slightly different from the disk-based SP

algorithm. Since we know which fragments are required to be filled out, we can fill the

skeleton paths in each fragment. Figure 3.17 shows an example of two queries filling out

the skeleton paths. If we have only two cache entries for the fragment database and

process each query one by one, then we need 8 reads of the fragment database. However,

if we group the partial shortest paths by their fragments as in Figure 3.17, we need only 5

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 68

reads since 3 fragments overlap and we process the partial shortest paths for those

fragments together.

 In sum, the algorithm sorts out multiple queries so that we can minimize the

fragment database access. The algorithm then processes each query to find the skeleton

path. During the process of finding the skeleton path, once the algorithm gathers the

information of minimum and maximum distances from the source to the boundary sets in

the source fragment, the pruning algorithm is activated. After the pruning, the normal

disk-based SP algorithm is applied on the pruned graph. In the filling-out process, the

algorithm groups skeleton paths by fragments and then fills out each partial skeleton path.

1. We have the maximum shortest distances from src and dst to the

boundary sets in their fragments.

2. To calculate the -approximations, we need to access BSDistMatrix, and

get the minimum distances between boundary sets in the source and

destination fragments.

3. Since there are two boundary sets in each fragment, we have 4 possible

approximations. Select the minimum from them. In the example, we have

53 (8 + 35 + 10) is the minimum of all 4 candidates.

Figure 3.14 -approximations

12

35

45

32

40

10

12

src

dst

8

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 69

1. The dotted line represents the -approximation from the source to the

destination, with the distance of 53.

2. The solid lines in the source (destination) fragment represent the

minimum shortest distances from the source (destination) to the

boundary set in the source (destination) fragment.

3. We now compare the -approximation to other -approximations

passing a boundary set, in this example, X.

4. There are also 4 possible candidates for the approximation passing

the boundary set X, represented by solid lines.

5. We calculate those candidates and select the minimum distance, 60 (8

+ 25 + 23 + 4).

6. We remove the boundary set X since the -approximation (60) is

larger than the -approximation (53).

Figire 3.15 Pruning a Boundary Set

BS X
8

6
28

25

23

25

3

4

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 70

1. After pruning, we only need to consider the grey boundary nodes.

2. With the pruned graph, we now have the skeleton path, represented by

solid line.

Figure 3.16 Finding the Shortest Path with Pruned Graph

Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 71

1. We have two skeleton paths.

2. The first query passes through a, b, c, d, and e, and the second query

passes b, c, and d.

3. Both skeleton paths pass the grey coloured fragments, b, c, and d

commonly, which means we can fill out the partial shortest paths in

those fragments together.

a

b c d

e

Figure 3.17 Dealing with Multiple Queries

72

Chapter 4

Experiments

The main purpose of chapter 4 is to detail how the algorithms presented in this paper

perform, compared to Dijkstra’s algorithm and the disk-based algorithm proposed by [7].

We divided the performance testing into three sections: QueryGraph (Section 3.3), the

batch disk-based algorithm (Section 3.4), and pruning algorithms (Sections 3.1 and 3.2).

4.1 System Environment and Data Sets

The system for testing is a Pentium 4 1.7GHz with 256MB of main memory. The hard

disk of the system is Ultra ATA/100, with a 7,200 rpm spinning rate. Java is the primary

language, and the version is 1.3.1. To make a homogeneous environment for every test

case, we set the Java Virtual Memory (JVM) to be 128MB, which means the total

memory we use for the test is 128MB.

 The data for testing is from the Connecticut road system extracted from the

Tiger/Line file [15]. When the Connecticut road system is represented as a graph, the file

size is about 20MB. It consists of around 190,000 edges and 160,000 nodes. To partition

the graph, we adopt the partitioning algorithm in [7]. The details of the partitioned graph

and its auxiliary data files are summarized in Table 4.1. We use different fragment sizes,

ranging from 100 nodes to 15,000 nodes per fragment, to see how fragment size impacts

the performances.

Chapter 4. Experiments 73

 As shown in Table 4.1, the number of nodes per fragment does not affect the size

of the DB files, except that of BSDistMatrix. BSDistMatrix is a 2-dimensional matrix,

having rows and columns for boundary sets. Therefore, the file size of BSDistMatrix is

proportional to the square of the number of the boundary sets in each test set. The time to

build BSDistMatrix is different in each case because the process of building

BSDistMatrix is basically calculating the shortest paths between all possible pairs of

boundary nodes. For example, the case of 1,000 nodes per fragment takes about 4 times

longer than the one of 15,000 nodes per fragment, which is almost the same ratio as the

number of boundary nodes between the two cases.

No. of
Nodes

per
fragment

No. of
fragments

No. of
boundary

sets

No. of
boundary

nodes

Fragment
DB size
(MB)

Distance
Matrix
DB size
(MB)

BSDistMatrix
size (MB)

All 1 - - 18.9 - -

100 1693 3430 12251 23.4 2.76 185.221

1,000 138 347 3998 20.0 2.20 2.023

5,000 28 66 1649 19.4 1.72 0.09

10,000 14 29 1182 19.3 1.72 0.020

15,000 10 21 1120 19.3 2.04 0.013

Table 4.1 Test Set Statistics

 Table 4.2 shows the file size of the x-Hop sketch graph for fragments having

1,000 and 5,000 nodes. The reason that the file size of the graphs peaks at the 5-Hop

sketch graph in the 1,000 node fragment is that some of the nodes in the sketch graph do

not have nodes that are 6-hops away. The size of the graphs in the 5,000-node fragment

does not grow any more after a 7-Hop sketch graph, which means the maximum number

of hops in the sketch graph between any given two nodes does not exceed 7.

Chapter 4. Experiments 74

No. Of
Nodes

x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x =10

1000 0.395 0.562 0.676 0.745 0.772 0.768 0.735 0.664 0.589 0.519

5000 0.127 0.147 0.147 0.136 0.125 0.117 0.113 0.113 0.113 0.113

Table 4.2 The Size (MB) of x-Hop Sketch Graphs

 The time it takes to build a BSDistMatrix for a 1,000-node fragment is about

8,000 seconds using the system. Generating all x-Hop sketch graphs, where 0 < x 10,

for a 1,000-node fragment, takes about 5,000 seconds. As we expected, making x-Hop

sketch graphs at a certain level takes less time than making a BSDistMatrix.

 For the partitioned graph (i.e. fragments), we need less than 60MB of memory

with cache size management. To control the cache size for the databases of partitioned

graphs, we employed the VirtualHashtable technique introduced in [7]. The

VirtualHashtable is an array-like data structure which reads in and writes out memory

contents to the hard disk. Its key feature is that not all of its content is in the main

memory. The user specifies the maximum amount of content which the VirtualHashtable

can hold. Therefore, if the VirtualHashtable tries to load content while it already has the

maximum amount of content, then it writes some of the current content out to disk and

loads the new content by means of the LRU replacement scheme. In the following test

results, all the cache sizes being set up denote the maximum amount of content in the

VirtualHashtable.

 During the test, the most memory-consuming data bases are the fragment DB and

the distance matrix DB. BSDistMatrix is used at most once throughout the process of

each query; however, the fragment DB and the distance matrix DB are used at least once

throughout the computation of the shortest path, so the cache sizes of those DBs are

critical to the outcomes. Even if we have the JVM of 128MB for the test, we try to set the

cache size as low as possible to fit into 64MB, so that we can assume that the suggested

algorithms are scalable for larger graphs, which cannot be loaded in the main memory if

they are not partitioned.

Chapter 4. Experiments 75

4.2 Query Optimization Using Query Graph

Algorithm 3.1, QueryGraph, tries to minimize the I/O activities for the fragment DB.

There are two places where the fragment DB is necessary during the shortest-path

calculation: in finding the skeleton path and filling it out. The usefulness of QueryGraph

is for the stage of finding skeleton paths to read the source and destination fragments

from fragment DB as little as possible. The assumption is a cache size of 2, as mentioned

in Section 3.3, and that all the queries are pre-sorted to equivalent classes. With only 2

cache entries, the optimized schedule will be able to re-use a maximum of 50% of the

cache if the query graph of the equivalent classes is all connected, because, in the

optimized schedule, there will always be one cache entry for the next query to use. The

worst case is 0% cache utilization.

 For the test, we randomly generated 10,000 queries and then divided them into

small queues of specific sizes. The queues are the batches we process at the same time.

For example, if the size of a queue is 10, we use QueryGraph on queries in the queue and

calculate their shortest paths together.

 The result of the test is obtained by executing only QueryGraph with the pre-

sorted equivalent classes of the queries. Therefore, the test is independent of all other

phases.

No. of Queries in

the Queue

Non-

scheduled
10 20 50 100 1000

Cache Utilization 0.0144 0.047 0.120 0.223 0.343 0.471

Table 4.3 Cache Utilization of Using QueryGraph Algorithm

 Table 4.3 shows how much QueryGraph improves the cache utilization with

respect to the size of the queries in the queue. The cache utilization is calculated by p q,

where p is the number of cache-hits and q the number of total requests for the fragment

DB. It is obvious that more queries in a batch will increase the cache utilization since

there will be a greater possibility of sharing nodes when a large number of queries are in

the batch. Even a case of 10 queries in the queue performs more than 3 times better than a

Chapter 4. Experiments 76

non-scheduled case. A case of 1000 queries in the queue reaches near the maximum

utilization level, that is 50% of the optimized schedule, while the time to schedule takes

less than 0.1 seconds.

4.3 Disk-based SP Algorithm vs. Batch Disk-based SP Algorithm

The difference between the disk-based SP algorithm and the batch disk-based SP

algorithm lies in how to process multiple queries. The disk-based SP algorithm executes

queries one by one, which means that there is no interruption between queries. On the

other hand, the batch disk-based SP algorithm has two steps to process a unit of queries.

First, it calculates skeleton paths for all queries in the batch. With the calculated skeleton

paths, we know which fragment we need to read for filling-out process, so the batch disk-

based SP algorithm fills the skeleton paths by fragment (Section 3.4). Since the purpose

of the batch disk-based algorithm is to reduce the I/O activity for reading the fragment

DB during the filling-out phase, it should not affect the finding-skeleton-path phase and

is, in fact, implemented so as not to affect it.

 In this section, we group 10 queries together and calculate them by means of the

two algorithms above. A unit of 10 queries is also scheduled by the QueryGraph

algorithm. First, we calculate 300 queries sequentially using the disk-based algorithm,

and then count the number of requests for the fragment DB. We then calculate 300

queries, grouped 10 at a time. The skeleton paths of the 10 queries are calculated

individually, and the filling-out process for them is carried out together. For the same

reason as shown in Section 4.2, the more queries that are processed together, the more

benefits we get. The cache size of the fragment DB for testing is 2.

 The result of the test is obtained by executing two algorithms separately. Both

algorithms use QueryGraph to sort the queries. QueryGraph does not affect the result of

the test because the sequence of queries for calculating skeleton paths remains the same

regardless of the two algorithms. The pruning algorithms are not used in this test. The

cache size for the distance-matrix DB is set to the maximum so that the algorithms are

not affected by the cache size.

Chapter 4. Experiments 77

Figure 4.1 shows that the batch disk-based algorithm requests around 20% fewer

fragment DB accesses than the disk-based SP algorithm does. As the fragment size

increases, the number of fragment-DB accesses decreases, which increases the possibility

of overlapping fragments between different queries. The fewer fragment requests during

calculations also affect the calculation time.

 The savings in terms of calculation time are also one of the benefits of the

algorithm. Our results show that the calculation time decreases by up to 20% in the best

case with 10-query grouping. The details of the results will be shown in Section 4.4.5.

No. of Fragment DB accesses for 300 Queries

0

2000

4000

6000

8000

10000

12000

100

Nodes

1000

Nodes

5000

Nodes

10000

Nodes

15000

Nodes

No. Nodes per Fragment

N
o

.
A

c
c
e
s
s
e
s
 o

f
F

ra
g

m
e
n

t
D

B

Group of 1 Queries

Group of 10 Queries

Figure 4.1 Number of Fragment DB Accesses

4.4 Performance with Pruning Algorithms

We introduce two different pruning methods, one using BSDistMatrix and the other an x-

Hop sketch graph. For a consistent testing environment, we first find the optimum

parameters for some important factors. The factors for the test are as follows:

Query Type: We divide queries into three types of ranges: long, medium, and

short. The shorter query might benefit more from the pruning algorithm, while

the longer query might benefit less, in terms of the number of pruned

boundary sets. Long-range queries are more than 66% of the longest possible

Chapter 4. Experiments 78

distance in the graph, medium-range queries are less than 66% and more than

33%, and short-range queries are less than 33%. We will carry out all the

testing according to the differently sized sets of queries.

Fragment Size: Fragment size matters because, in partitioning a graph, we

have fewer fragments if we set the number of nodes in a fragment to a large

number, which in turn means we have a smaller number of boundary sets in

the partitioned graph. The number of boundary sets affects two aspects. One is

the size of materialized data because the size of materialized data increases as

the boundary sets grow. The other one is the effectiveness of the pruning

algorithm. Too many boundary sets take too much time to read in the data, as

well as more time to calculate. We test 5 different fragment sizes: 100, 1,000,

5,000, 10,000, and 15,000.

Cache size of Distance Matrix: As proved in [7], the cache size is set for the

best performance at some level smaller than the full cache size. For consistent

testing results, all tests should have standardized cache sizes. We test 5

different levels of cache sizes.

Degree of an x-Hop sketch graph: In an x-Hop sketch graph, x is an important

factor since the accuracy of the approximations changes according to x. We

test 1- to 10-Hop sketch graphs for a 1000-node fragment.

After finding optimum parameters for each case, we use those parameters for the

comprehensive performance testing.

4.4.1 Disk-based SP Algorithm

The main purpose of the test in this section is to find the optimum fragment size for the

best performance when using the disk-based SP algorithm suggested in [7]. In addition,

for the optimum cache size of a distance matrix, we test 5 different parameters.

 The results shown in this section are obtained by executing the disk-based SP

algorithm, modified and having eliminated some parts. In Section 2.3, we described the

disk-based SP algorithm and there are two places where the algorithm merges two

fragments: source and destination fragments in finding a skeleton path, and two

Chapter 4. Experiments 79

consecutive fragments in which the algorithm fills out the skeleton path of two boundary

nodes. After we eliminate those merging operations in the algorithm, we can speed up the

execution of the disk-based SP algorithm. In addition to the conditions above, it does not

pre-process queries with QueryGraph.

4.4.1.1 The Effect of Fragment Size

The fragment size affects the performance because materialized data, such as a distance

matrix, or the number of nodes in a fragment, are decided by the fragment size and

directly involved in the algorithm. Therefore, it is important to find the optimum size for

a partitioned graph.

 Figure 4.2 shows the performance difference according to the different fragment

sizes for the graph of Connecticut. For each query type, we process 100 queries, and the

time shown in the graph is an average time such query. The cache sizes for the fragment

DB and distance-matrix DB are set to the number of the entries in the fragment DB and

distance-matrix DB, i.e., the I/O activity is not a factor in the result of the test. As shown

in the figure, a 1000-node fragment generates the best performance in every range of

queries.

Figure 4.2 Calculation Time for the Different Size of Fragments

Calculation Time per Query

0

1

2

3

4

5

6

7

8

100 1000 5000 10000 15000

Number of Node per Fragment

Long Range

Med Range

Short Range

Seconds

Chapter 4. Experiments 80

4.4.1.2 The Effect of the Cache Size of the Distance Matrix

The effect of the cache size for a distance matrix is tested in this section, and we report

the result for a 1000-node fragment case since we determined that this size performs best

on the Connecticut graph in Section 4.4.1.1. All the settings for the test are same as in

Section 4.4.1.1 except the cache size of the distance-matrix DB. Figure 4.3 shows the

result of the test cases, each of which ran through 100 queries and calculated an average

per query. The 1000-node fragment of the Connecticut graph has a total of 347 distance

matrices, and we test 5 different cache sizes: 10, 20, 30, 40, and 150. For each range of

query sets, the result is very similar in that the best result is around 20 to 30. Even if we

increase the cache size above 30, the calculation time changes little. From these results,

we can ascertain that the cache size of around 10% of the total distance matrices in the

distance-matrix DB is enough.

Figure 4.3 Calculation Time According to Different Cache Sizes

 In short, the fragment of 1,000 nodes with the cache size of 30 for a distance

matrix performs best in the Connecticut graph. Therefore, we primarily investigate the

Calculation Time per Query

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

10/347 20/347 30/347 40/347 150/347

Cache Size for Distance Matrix

Seconds

Long Range

Med Range

Short Range

Chapter 4. Experiments 81

case of a 1000-node fragment in the following sections. In the coming sections, all the

tests are executed with 10% of the whole cache size for a distance matrix.

4.4.2 Pruning Algorithm Using BSDistMatrix

The advantage we expect from the pruning algorithms is to eliminate a number of

boundary sets in a sketch graph so that the disk-based SP algorithm [7] uses less search

space. In the disk-based SP algorithm, there are numerous I/O activities and calculations

when the algorithm processes boundary nodes, which makes pruning search spaces

important.

 For the tests in this section, we do not use QueryGraph nor the query-grouping

scheme, introduced in the batch disk-based SP algorithm. We test 300 queries, 100

queries for each query type. We use the modified disk-based SP algorithm described in

Section 4.4.1, with the cache sizes of 2 for the fragment DB and 10% of the total distance

matrices for the distance-matrix DB. We also modify the pruning algorithm for reason of

efficiency. The pruning algorithm explained in chapter 3 first builds two SP trees rooted

by the source and destination in their fragments respectively, and then calculates

approximations for pruning. However, the disk-based SP algorithm also builds the SP

tree from the source until it finds the destination. Therefore, we have the SP tree from the

source in the source fragment during the disk-based SP algorithm. That makes it

redundant that the pruning algorithm builds the SP tree from the source before executing

the disk-based SP algorithm, so we use the SP tree generated by the disk-based SP

algorithm and trigger the pruning algorithm as the completion of the SP tree. Finally, we

need to build the SP tree from the destination only, in order to start the pruning algorithm.

The trade-off is that the pruning algorithm may prune some of the boundary sets in the

source fragment. With the modified pruning algorithm, we trigger the pruning algorithm

after closing all the boundary nodes in the source fragment, so we do not take any

advantage from those pruned boundary sets in the source fragment. Because of the trade-

off, the number of boundary nodes accessed during the execution of the disk-based SP

algorithm with x-Hop sketch graph is, in fact, less than the one with BSDistMatrix for

Chapter 4. Experiments 82

some cases, which cannot happen if we use the original scheme for the pruning algorithm

with BSDistMatrix (Figure 4.6 in Section 4.4.3).

 The time for the pruning process using BSDistMatrix is expected to be minimal

since there is no complicated calculation involved. The only time-consuming task is

applying Dijkstra’s algorithm on the source and destination fragments in order to build an

SP tree. Table 4.4 shows the average time per query for the pruning algorithm using

BSDistMatrix, including loading it into the memory, calculating approximations, and

pruning boundary sets, according to the different sizes of the fragments. The number of

entries indicates the number of entries in the matrix of each case, which is the result of (n

n), where n is the number of nodes (boundary sets) in a sketch graph.

 100 nodes 1000 nodes 5000 nodes 10000 nodes 15000 nodes

Time (Sec.) 0.14 0.055 0.19 0.29 0.37

No of Entries 11764900 120409 4356 841 441

Table 4.4 AverageTime per Query for Pruning Using BSDistMatrix

 As in the table, the optimum fragment size for BSDistMatrix is interestingly a

1000-node fragment as well; the same optimum size as resulted in Section 4.4.1. The

100-node fragment takes more time in calculating approximations than the 1000-node

fragment, even though building an SP tree in the 100-node fragment for the source and

destination fragments takes less time than in the 1000-node fragment. This is the outcome

because there are many more entries in BSDistMatrix, which means it also has more

boundary sets to process. A fragment size of more than 5000 takes more than a 1000-

node fragment because the time for building an SP tree in the destination fragment

increases significantly as the size of a fragment grows.

 One of metrics for measuring the effectiveness of the pruning algorithm is to

count the number of boundary nodes used during the calculation of skeleton paths. If a

node in a sketch graph is pruned, then the disk-based SP algorithm does not include the

boundary set which the node represents. Since a boundary set contains a number of

boundary nodes, the more nodes (boundary sets) the pruning algorithm eliminates in the

Chapter 4. Experiments 83

sketch graph, the less boundary nodes the disk-based SP uses during the calculation.

Figure 4.4 shows how many boundary nodes we can save from the pruning algorithm.

Each bar in the figure represents the average number of closed boundary nodes per query

during the disk-based SP algorithm. For example, the algorithm needs to close about

2100 boundary nodes to calculate a skeleton path of a medium query without pruning in

the 1000-node-fragment case. On the other hand, the algorithm needs just over 1000

boundary nodes with pruning, saving over 40% of accesses for boundary nodes. In

closing a boundary node, the algorithm has to open and update the distances of neighbor

boundary nodes, and the number of the neighbor boundary nodes is huge. In the case of

the 1000-node fragment, each fragment has more than 100 boundary nodes, which means

every boundary node has about 100 neighbor nodes. Therefore, in order to close one

boundary node, the algorithm has to access 100 neighbor boundary nodes.

 The figure also shows that the pruning algorithm does not work well with larger

fragments. The reason is that we have a smaller number of boundary sets as we increase

the size of each fragment. The difference between the approximations and the actual

shortest distance becomes larger as the size of each fragment increases, so we lose the

accuracy of approximations in larger fragments.

 Figure 4.5 illustrates the average calculation time per query with and without the

pruning algorithm. The queries are the same query set used in Section 4.4.1. For the

pruning algorithm using BSDistMatrix to be effective, we should use fragment DB, in

which each fragment has fewer than 5000 nodes.

 The case of a 100-node fragment improves the most, but the performance is a

little slower than that of the 1000-node fragment. Therefore, we can conclude that

fragments with 1000 nodes are the best choice out of the 5 suggested fragment sizes for

pruning algorithms. The other query sets with different distance ranges behave in a

similar way, and the case of a 1000-node fragment works best.

Chapter 4. Experiments 84

Long Range Queries

0

2000

4000

6000

8000

10000

12000

100 Nodes 1000 Nodes 5000 Nodes 10000

Nodes

15000

Nodes

No. Nodes per Fragment

N
o

.
B

o
u

n
d

a
ry

 N
o

d
e
s
 C

lo
s
e
d

Prune

No Prune

Med Range Queries

0

1000

2000

3000

4000

5000

6000

7000

8000

100 Nodes 1000 Nodes 5000 Nodes 10000

Nodes

15000

Nodes

No. Nodes per Fragment

N
o

.
B

o
u

n
d

a
ry

 N
o

d
e
s
 C

lo
s
e
d

Prune

No Prune

Short Range Queries

0

500

1000

1500

2000

2500

3000

3500

4000

100 Nodes 1000 Nodes 5000 Nodes 10000

Nodes

15000

Nodes

No. Nodes pe Fragment

N
o

.
B

o
u

n
d

a
ry

 N
o

d
e
s
 C

lo
s
e
d

Prune

No Prune

Figure 4.4 Average Number of Boundary Nodes Closed

Chapter 4. Experiments 85

Caculcation Time for Long Range Query with Various

Fragment Size

0

2

4

6

8

10

12

100 1000 5000 10000 15000

No. Of Nodes per Fragment

S
e
c
o

n
d

s

No-Pruning

Pruning

Caculcation Time for Mid Range Query with Various

Fragment Size

0

1

2

3

4

5

6

7

100 1000 5000 10000 15000

No. Of Nodes per Fragment

S
e
c
o

n
d

s

No-Pruning

Pruning

Caculcation Time for Short Range Query with Various

Fragment Size

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

100 1000 5000 10000 15000

No. Of Nodes per Fragment

S
e
c
o

n
d

s

No-Pruning

Pruning

Figure 4.5 Average Calculation Time per Query

Chapter 4. Experiments 86

4.4.3 Pruning Algorithm Using an x-Hop Sketch Graph

Different from BSDistMatrix, a pruning algorithm with an x-Hop sketch graph requires

more calculations: building the shortest-path trees from the source and destination in the

source and destination fragments and finding the approximations using Dijkstra’s

algorithm on an x-Hop sketch graph. Therefore, the pruning procedure takes longer.

 We show a 1000-node-fragment case for this test only, because we already know

the 1000-node fragment works better than other cases and pruning with an x-Hop sketch

graph is not different.

 The testing environment is set as in Section 4.4.2 since we wish to compare the

results. Therefore, except for the pruning part which is independent of the disk-based SP

algorithm, we execute the disk-based SP algorithm with the same environment in Section

4.4.2.

 First, we show a table of the augmented x-Hop sketch graphs according to x.

Table 4.5 shows the number of edges in different augmented x-Hop sketch graphs and the

time to do the whole procedure of pruning. The number of edges is important because the

more edges a graph has, the more time it takes to calculate a shortest path using

Dijkstra’s SP algorithm. The number of edges peaks at x = 6 as x grows, and the average

calculation time keeps increasing up to x = 6 and flatters after that. The reason is that one

of the procedures for the pruning algorithm is making the augmented x-Hop sketch graph,

which takes some time. The query set for the test is 100-long range queries with 1,000-

node fragments. The other ranges of queries do not make any significant difference in the

tests because all the tests use a very similar size of the augmented x-Hop sketch graph.

Table 4.6 shows the average calculation time to obtain a skeleton path for a query

according to x in the x-Hop sketch graph. For a long-range query, the disk-based SP

algorithm works best when x = 10. For a medium-range query and a short-range query,

the best choices are x = 7 and x = 3 respectively. Even though the best performances

occur at x = 10, 7, and 3 for the long-, med- and short-range queries respectively, we

choose x = 5, 4, and 3 respectively, in order to compare with the pruning algorithm using

BSDistMatrix.

Chapter 4. Experiments 87

In order to compare the approximations between the x-Hop sketch graph and

BSDistMatrix, we calculate the - and -approximations of all the boundary set pairs in

the sketch graph with 1,000-node fragments. There are 347 boundary sets in the sketch

graph, so we have 3472 cases of the approximations, and then we categorize each case by

the length of the approximations. For the x-Hop sketch graph, we only test the cases of x,

where x = 1, 3, 5, 7 and 9. Table 4.7 shows the comparison for the -approximations

between the x-Hop sketch graph and BSDistMatrix. The figures in the table show the

average ratio of the -approximations with the x-Hop sketch graph to the -

approximations with BSDistMatrix. It clearly shows that the approximations with the x-

Hop sketch graph become closer to the approximations with BSDistMatrix as x increases.

Even in the case of x = 3 for a long-range query, the average approximation with the x-

Hop sketch graph is only 7.3% longer than the one with BSDistMatrix. Table 4.6 shows

the comparison for the -approximations. The figures in the table also represents the

average ratio of the -approximations with the x-Hop sketch graph to the -

approximations with BSDistMatrix. Unlike the -approximations, the changes become

more radical as x increases. In the case of x = 3 for a medium-range query, the average -

approximation with the x-Hop sketch graph is only about 74% of the one with

BSDistMatrix. If we compare the difference of the ratio between the - and -

approximations in the same case, we can easily find that the pruning algorithm with x-

Hop sketch graph calculates the -approximations better than does the -approximations.

 To see how the pruning algorithm with an x-Hop sketch graph works according to

x, we ran through 10 different x-Hop sketch graphs. Figure 4.6 shows the average number

of closed boundary nodes during the calculations of skeleton paths using the disk-based

SP algorithm, the same metric we used in Section 4.4.2 to test BSDistMatrix. In the figure,

all three ranges of queries are tested, and we can observe how the pruning algorithm

works with different x in x-Hop sketch graphs. For all three cases, the number of

boundary nodes closed decreases as the number of hops in the x-Hop sketch graph

increases. For the medium- and short-range queries, the number does not decrease

dramatically beyond some points, and that can be interpreted to mean we do not need

more than a certain x-Hop graph to have the best results. Therefore, we should choose

Chapter 4. Experiments 88

different x-Hop sketch graphs according to the length of the queries. Compared to

BSDistMatrix in terms of the number of nodes closed, the x-Hop-sketch-graph approach

works fairly well if we choose x carefully. For x = 5 for long-range queries, the algorithm

closes around 2,500 boundary nodes, which is about 20% more nodes closed compared to

BSDistMatrix. The calculation time including pruning, finding skeleton path, and finding

actual path for a query will be shown in Section 4.4.4.

x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x=10

No. of
Edges

1533 4109 6008 7212 7770 7881 7553 6668 5676 4719

Time for
Pruning

0.14 0.16 0.21 0.25 0.28 0.31 0.32 0.32 0.33 0.33

Table 4.5 Number of Edges in Augmented x-Hop Sketch Graphs and Time to Calculate

x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x=10

Long 2.15 2.09 1.96 1.86 1.74 1.69 1.65 1.60 1.52 1.50

Med 1.58 1.34 1.09 1.10 0.99 0.97 0.96 0.98 0.99 0.98

Short 0.91 0.66 0.56 0.57 0.60 0.64 0.66 0.69 0.70 0.70

Table 4.6 Time to Calculate Skeleton Paths for Different Query Type

x = 1 x = 3 x = 5 x = 7 x = 9

Long 1.36544 1.073148 1.034974 1.02139 1.012418

Med 1.349 1.062649 1.025602 1.006632 1.000628

Short 1.272677 1.027859 1.001732 1 1

Table 4.7 Comparison of the -approximation

x = 1 x = 3 x = 5 x = 7 x = 9

Long 0.239646 0.743585 0.872578 0.930323 0.952424

Med 0.265381 0.770313 0.907695 0.960071 0.99

Short 0.300416 0.862418 0.978902 0.999321 1

Table 4.8 Comparison of the -approximation

Chapter 4. Experiments 89

Number of Boundary Nodes with different X for a Long

Range Query

0

500

1000

1500

2000

2500

3000

3500

4000

x =

1

x =

2

x =

3

x =

4

x =

5

x =

6

x =

7

x =

8

x =

9

x =

10

X (Number of Hops)

N
u

m
b

e
r

o
f

C
lo

s
e
d

 B
o

u
n

d
a
ry

N
o

d
e
s Long w/ X-Hop Graph

Long w/o pruning

Long w/ BSDistMatrix

Number of Boundary Nodes with different X for a

Medium Range Query

0

500

1000

1500

2000

2500

x =

1

x =

2

x =

3

x =

4

x =

5

x =

6

x =

7

x =

8

x =

9

x =

10

X (Number of Hops)

N
u

m
b

e
r

o
f

C
lo

s
e
d

 B
o

u
n

d
a
ry

N
o

d
e
s Med w/ X-Hop Graph

Med w/o pruning

Med w/ BSDistMatrix

Number of Boundary Nodes with different X for a Short

Range Query

0

200

400

600

800

1000

1200

x =

1

x =

2

x =

3

x =

4

x =

5

x =

6

x =

7

x =

8

x =

9

x =

10

X (Number of Hops)

N
u

m
b

e
r

o
f

C
lo

s
e
d

 B
o

u
n

d
a
ry

N
o

d
e
s Short w/ X-Hop Graph

Short w/o pruning

Short w/ BSDistMatrix

Figure 4.6 Average Number of Boundary Nodes Closed

Chapter 4. Experiments 90

4.4.4 Comprehensive Results

We have seen the results of individual algorithms so far, and, in this section, we examine

results that give us the overall performance of all the algorithms in one combined

algorithm. The description of algorithms tested for this section is as follows:

Main memory version of Dijkstra’s SP algorithm

The algorithm takes the whole digital map into the main memory of the system

and applies Dijkstra’s SP algorithm to find the shortest paths. We assume that the

digital map of Connecticut is loaded in the main memory before executing

Dijkstra’s SP algorithm.

Disk-based SP algorithm

With pre-computed data such as fragment DB and distance matrix DB, the disk-

based SP algorithm calculates the shortest paths using the materialized data. The

algorithm is explained well in [7], and, in fact, the program we use is the exact

same algorithm with a little modification for efficiency. The modification we

made for the algorithm is explained in Section 4.4.1.

Disk-based SP algorithm with pruning using BSDistMatrix

The disk-based SP algorithm except that it adopts the pruning algorithm using

BSDistMatrix with the modification explained in Section 4.4.2.

Disk-based SP algorithm with pruning using BSDistMatrix and grouping 10

queries

In addition to the above, the algorithm groups 10 queries and processes them as

described in Section 3.1.

Disk-based SP algorithm with pruning using x-Hop sketch graphs

The same disk-based SP algorithm except that it adopts pruning algorithm using

x-Hop sketch graphs.

Chapter 4. Experiments 91

Disk-based SP algorithm with pruning using x-Hop sketch graphs, and grouping

10 queries

In addition to the above, the algorithm groups 10 queries and processes them as

described in Section 3.1.

For the pruning algorithm using x-Hop sketch graphs, we take different x’s for

different sets of queries: 3, 4, and 5 for short-, medium-, and long-range queries

respectively. The queries are the same sets of queries used in the previous sections, and

the fragment DB is a 1000-node fragment. The cache sizes for the fragment DB and the

distance-matrix DB are 2 and 30 respectively. Additional to all of the above, all tests

make use of QueryGraph before executing those algorithms, explained in Section 3.3.

 To compare these algorithms, we investigate two metrics: the calculation time and

I/O activity of a distance matrix. The calculation time is, of course, the most important

metric since the whole point of the work being done is to reduce calculation time. The

I/O activity of a distance matrix is also important because a distance matrix is a most-

used data. For the I/O activity, we do not include the main memory version of Dijkstra’s

algorithm, because it does not have any I/O activities during calculation. Also, we do not

include the algorithms with grouping queries in I/O-activity tests, because the grouping

scheme affects only the filling out of real paths, with no relationship to finding skeleton

paths.

 Figure 4.7 shows the calculation time for different types of queries. It clearly

shows that the main memory version of Dijkstra’s SP algorithm performs the worst and

that pruning algorithms in fact reduces the calculation time regardless of query types. The

pruning algorithm using BSDistMatrix takes about 20% less calculation time for the long-

range queries, compared to the original disk-based SP algorithm, and about 50% less

compared to the main memory version of Dijkstra’s SP algorithm. For the short–range

queries, the advantage goes up to 30%. Combined with the grouping scheme, its

performance for any type of queries is better than 30% of the original disk-based SP

algorithm. The pruning algorithm with an x-Hop sketch graph also performs about 10%

to 30% better than the disk-based algorithm according to the types of queries. With the

Chapter 4. Experiments 92

grouping scheme, the advantage goes up to 25% for the long-range queries, and 30% for

the med- and short-range queries. If we compare two pruning algorithms, BSDistMatrix

outperforms the x-Hop sketch graph by about 20%.

 Figure 4.8 illustrates the performance in terms of accessing the distance matrix

database during the process of finding skeleton paths in the algorithms. For this test, we

use the cache size of 30 out of 347 total cache entries, about 10% of the total. As shown

in the figure, using the pruning algorithm, we can reduce the I/O activity by more than

70% of the I/O activity of the original disk-based algorithm. The reason that the I/O

activity of medium-range queries is slightly more than the one of long-range queries in

the original disk-based algorithm is that the area covered by the medium-range queries in

a graph is not much different from the one by the long-range queries since the disk-based

algorithm itself is a greedy algorithm. Thus, we adopt the idea of pruning search spaces,

and the results reveal that the pruning algorithm narrows search spaces. Less I/O activity

for a distance matrix means the pruning algorithms make the disk-based algorithm access

a lesser-distance matrix DB, which means fewer boundary-node accesses.

 Overall, as proven by real-life test cases, the pruning algorithms combined with

the grouping schemes reduce the calculation time as well as the amount of I/O activity.

Chapter 4. Experiments 93

Calculation Time per Query

0

1

2

3

4

5

6

Long-Range Med-Range Short-Range

Query Type

S
e

c
o

n
d

s

Main Memory Dijkstra's SP

Disk-based SP

Disk-based SP w/ BSDistMatrix

Disk-based SP w/ BSDistMatrix,

Grouping 10 Queries

Disk-based SP w/ x-Hop Sketch

Graph

Disk-based SP w/ x-Hop Sketch

Graph, Grouping 10 Queries

Figure 4.7 Calculation Time

I/O Activity of Distance Matrix

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Long Range Med Range Short Range

Query Type

M
e
g

a
B

y
te

s

Disk-Based

Disk-Based w/ BSDistMatrix

Disk-Based w/ x-Hop SG

Figure 4.8 I/O Activity of Distance Matrix

94

Chapter 5

Conclusion and Future Research

5.1 Conclusion

We have studied various techniques for speeding up the Disk-based SP algorithm. We

divided the Disk-based SP algorithm into three steps and implemented the algorithms to

improve each step. The steps are query optimization, finding skeleton paths, and filling

out the skeleton paths. For query optimization, we sorted the queries so that the step of

filling out the skeleton paths accesses the fragment DB as little as possible. For finding

skeleton paths, we suggested two pruning algorithms, each of which requires pre-

computations to make the algorithms possible. Since the Disk-based algorithm uses the

idea of Dijkstra’s algorithm, it is basically a branch and bound algorithm. Our pruning

algorithms narrow down the search spaces so that the Disk-based algorithm does not have

to include unnecessary areas of a graph during calculation. For filling out the skeleton

paths, we group a number of queries and process them together as in the previous step.

When queries are grouped carefully, some of the queries may access common data, and

our grouping technique helps the Disk-based algorithm to minimize the accessing of

those common data.

 The experimental results show that our algorithms improve the calculation time as

well as I/O activities. In particular, both of the pruning algorithms significantly contribute

to reducing the calculation time and I/O activities at the same time. Even if they need pre-

computations, the benefits from the pruning algorithms make it worthwhile to do so. If

we deal with a huge graph, such as a digital map of California, we should choose the

Chapter 5. Conclusion and Future Works 95

pruning algorithm using x-Hop sketch graphs because it takes less time to build such

graphs. If a graph is small enough, we will probably choose the pruning algorithm using

BSDistMatrix because it does not take too much time to build and the benefit can be

maximized.

 In conclusion, we improved the Disk-based SP algorithm by using various

techniques while maintaining its essence—that it requires very little main memory.

5.2 Future Works

 Future research includes topics such as enhancing multiple-query processing,

reducing the building time of materialized data, and developing more efficient pruning

algorithms.

In this thesis, we assume that every query comes into the system sequentially,

which is very unlikely in real-life applications. For Disk-based algorithms to be useful,

the algorithm must be able to process multiple queries at the same time.

Building BSDistMatrix and x-Hop sketch graphs constitutes a huge trade-off with

the efficiency of the pruning algorithms. Even if we can control the calculation time of x-

Hop sketch graphs by choosing x, it still takes a large amount of time if a graph is big.

The other problem of BSDistMatrix and x-Hop sketch graphs is updating. If an original

graph is updated, all, or part of the BSDistMatrix and x-Hop sketch graphs have to be

updated as well, which requires a large amount of time. Therefore, minimizing the

calculation time can solve the problem of building time as well as updating.

Our pruning algorithms work very well throughout all kinds of queries. However,

there is still room for more pruning in a graph. The key to better pruning is calculating

more accurate approximations. The approximation for the upper bound in our algorithm

is close to the optimum value, but the one for the lower bound is not. Therefore, using

different methodologies or different structures of BSDistMatrix could make

approximations more accurate.

96

Bibliography

[1] Cherkassy B V, Goldberg A V and Radzik T., Shortest Path Algorithms: Theory and

Experimental Evaluation, Mathematical Programming, Vol. 73, 129-174, June 1996.

[2] Greg Frederickson, Searching Among Intervals and Compact Routing Tables,
Algorithmica, 448-466, 1996.

[3] Leonard Kleinrock, Farouk Kamoun, Hierarchical Routing for Large Networks,
Computer Networks, 1:154-174, 1977.

[4] Ning Jing, Yun-Wu Huang, Elke Rudensteiner, Hierarchical Optimization of Optimal

Path Finding for Transportation Application, In Proc. of ACM Conference on
Information and Knowledge Management, 1996.

[5] Lars Arge, Gerth Stolting Brodal, Laura Toma, On External-Memory MST, SSSP and

Multi-way Planar Graph Separration, Journal of Algorithms, November 2002.

[6] V. Kumar and E.Schwabe. Improved Algorithms and Data Structures for Solving

Graph problems in External Memory, In Proc. IEEE Symp. On Parallel and Distributed
Processing, pages 169-177, 1996.

[7] Edward P.F. Chan and Ning Zhang, Finding Shortest Paths in Large Network Systems,
In Proceedings of 9th ACM International Symposium on Advances in GIS, November,
2001.

[8] Jesper L. Traff, A Simple Parallel Algorithm for the Single-Source Shortest Path

Problem on Planar Digraphs, Journal of Parallel and Distributed Computing 60, 1103-
1124 (2000).

[9] Apostolos N. Papadopoulos and Yannis Manolopoulos, Multiple Range Query

Optimization in Spatial Databases, ADBIS 1998: 71-82, 1998.

[10] Sungwon Jung, and Sakti Pramanik, An Efficient Path Computation Model for

Hierarchically Structured Topographical Road Maps, IEEE TRANSACTIONS ON
KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 5, 2002.

[11] Shashi Shekhar, Andrew Fetterer, and Brajesh Goyal, Materialization Trade-Offs in

Hierarchical Shortest Path Algorithms, SSD 1997: 94-111, 1997.

[12] L. Arge, The buffer tree: A new technique for optimal I/O-algorithms. In Proc.
Workshop on Algorithms and Data Structure, NLCS 955, pages 344-345, 1995.

97

[13] H.V. Jagadish, Linear clustering of objects with multiple attributes, Proceedings of
the1990 ACM SIGMOD Conference, pp.332-342, Atlantic City, NJ, 1990.

[14] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory

of NP-completeness. W.H. Freeman and Co, 1979.

[15] Tiger/Line Files, 1998. Technical Documentation, US Department of Commerce
Economics and Statistics Administraion, Bureau Of Census.

[16] Ning Jing, Yun_Wu Huang, and Eike Rundenstener, Hierarchical Optimization of

Optimal Path Finding for Transportation Applications, Proceeding of the Conference on
Information and Knowledge Management, 1996. pp. 261-268.

[17] Ibrahim Kamel, Christos Faloutsos, Hilbert R-tree: An Improved R-tree using

Fractals. VLDB 1994: 500-509

[18] E. W. Dijkstra, A note on two problems in connection with graphs, Numerische
Mathematik 1 (1959), 269-271.

[19] Ning Zhang, Shortest Path Queries in Very Large Spatial Databases, a Thesis
presented to the University of Waterloo in Computer Science, 2001.

