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Abstract 

Many variations of algorithms for finding the shortest path in a large graph have been 

introduced recently due to the needs of applications like the Geographic Information 

System (GIS) or Intelligent Transportation System (ITS). The primary subjects of those 

algorithms are materialization and hierarchical path views. Some studies focus on the 

materialization and sacrifice the pre-computational costs and storage costs for faster 

computation of a query. Other studies focus on the shortest-path algorithm, which has 

less pre-computation and storage but takes more time to compute the shortest path. The 

main objective of this thesis is to accelerate the computation time for the shortest-path 

queries while keeping the degree of materialization as low as possible.  

This thesis explores two different categories: 1) the reduction of the I/O-costs for 

multiple queries, and 2) the reduction of search spaces in a graph. The thesis proposes 

two simple algorithms to reduce the I/O-costs, especially for multiple queries. To tackle 

the problem of reducing search spaces, we give two different levels of materializations, 

namely, the boundary set distance matrix and x-Hop sketch graph, both of which 

materialize the shortest-path view of the boundary nodes in a partitioned graph. Our 

experiments show that a combination of the suggested solutions for 1) and 2) performs 

better than the original Disk-based SP algorithm [7], on which our work is based, and 

requires much less storage than HEPV [3]. 
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Chapter 1 

Introduction 

1.1 The Problems of Previous Studies 

The shortest path problem in very large spatial databases has been elegantly solved to 

perform relatively well under certain constraints, such as memory and storage 

requirements [7] [8]. The main idea presented in [7] and [8] is the materialization of 

existing large databases, such as digital maps or large graphs—which sometimes cannot 

be fit into the main memory or take too much time to load up to the main memory—and 

then the application of Dijkstra’s shortest path algorithm to the materialized data set. The 

usefulness of the proposed algorithms in [7] and [8] is that the materialized data are small 

enough to fit into the main memory and to find the shortest paths without a loss of 

performance. For the experimental algorithm in [7], their algorithm practically works 

better than Dijkstra’s SP algorithm if we take into account the I/O time to load the whole 

graph into the main memory. The problem with the algorithm, however, is in the case of 

multiple queries waiting to be processed. Provided that there is a large enough memory to 

load the whole graph, the I/O time to load it is a one-time cost for the first query. For all 

subsequent queries, the only cost is the application of Dijkstra’s SP algorithm, which is 

faster than, or as fast as, the new algorithm. 

 The answers for speeding up the performance of the algorithm in [7] can be found 

by minimizing I/O accesses to the data, narrowing search spaces in the graph, and so on. 

This thesis proposes two simple algorithms to reduce the I/O costs, especially for 

multiple queries. Some similar attempts to minimize I/O costs in a spatial database have 
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been done in [9], which deals with multiple range queries. For the problem of reducing 

search spaces, we give two different levels of materializations. Narrowing search spaces 

has also been tried in [7], even though the result is not promising. 

1.2 Terminology

Many of the terms used in this thesis are adopted from [7], and we will repeat definitions 

of those again briefly. The details and examples of the terms can be found in [7]. 

Definition 1. Graph

The 3-tuple G = (V, E, W) is defined to be a graph, where V = {vi | i  [0, n – 1]} 

is the set of vertices with size n. E = {eij | eij = <vi, vj>, vi, vj V} is the set of edges. Each 

edge is determined by a “from” vertex vi and a “to” vertex vj, denoted as eij. W = {w : E

0 | w is a one-to-one function from the set of edges to non-negative real numbers}. 

Graphs used in the thesis are typical undirected graphs. 

Definition 2. Digital Map 

A digital map D = (V, E, W) is defined to be a persistent graph on secondary 

storage, where the V, E, and W are the same as defined in definition 1. 

Definition 3. Sub-graph 

A sub-graph S = (Vs, Es, Ws) of graph G = (V, E, W) has the following properties: 

Vs V, and there are three one-to-one functions fv: Vs V, fe: Es E, fw: Ws W, such 

that eij Es, fe(eij) = (fv(vi), fv(vj)), fw(ws(eij)) = w(fe(eij)).

 According to the definition of sub-graph, the vertices in the sub-graph are a subset 

of the vertices in the original graph. There is an edge connection between the two vertices 

in the sub-graph only if the two corresponding vertices in the original graph are adjacent. 

The edge weights in the sub-graph are the same as those of the corresponding edges in 

the original graph. 
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Definition 4. Fragment 

A fragment F = (Vf, Ef, Wf) is a connected sub-graph of G = (V, E, W), where Vf

V, and eij Ef fe(eij) E, and eij E fv
-1(vi), fv

-1(vj) Vf fe
-1(eij) Ef. The 

weight of the edge in the fragment is the weight of the corresponding edge in the original 

graph. 

 A fragment is a special kind of sub-graph with the following properties: 

It is a connected component. For undirected graphs, it is a complete graph; i.e., 

every pair of vertices has a path connecting them. 

There exists an edge connecting the two vertices in a fragment if, and only if, the 

two corresponding vertices in the original graph are adjacent. 

Definition 5. Partition 

A partition of a graph G (V, E, W) is a set of fragments {Fi = (Vi, Ei, Wi) | i  [0, n

– 1], Vi = V}.

Definition 6. Interior Vertex, Boundary Vertex 

Vertices in a fragment F = (Vf, Ef, Wf) of graph G = (V, E, W) can be divided into 

two sets: Vi and Vb, where Vf = Vi Vb. A vertex in fragment vi Vb  an adjacent 

vertex u of fv(vi) V, such that there does not exist a vertex vj in Vb, such that fv(vj) = u.

That is, every boundary vertex connects to at least two fragments of its partition. Vertices 

in Vb are called boundary vertices. Any other vertices in Vi are called interior vertices.

 Intuitively, boundary vertices are vertices that appear in more than one fragment, 

and interior vertices appear in only one fragment. 

Definition 7. Boundary Set 

A boundary set is the set of all boundary vertices shared by two or more 

fragments. A boundary set can be denoted by BS [fi, fj, … , fk], where fi, fj, …, fk are the 

fragments that share the boundary vertices in the boundary set. Each boundary set has its 

own ID, which is unique. 
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Definition 8. Super Graph 

A super graph S = (Vs, Es, Ws) of a graph partition F1, F2, … Fn has the following 

properties: Vs = {vb | vb is the boundary vertex in Fi, i  [1, n]}, Es = {(vi, vj) | Fk, vi, vj

Vk}, Ws = {ws(eij) | ws(eij) = min({SDk(eij) | k  [1, n]})} where SDk is the shortest distance 

function from vi to vj in fragment Fk, min is the minimum function, if vi and vj are not 

connected in Fk, SDk(eij) = .

Definition 9. -value and minSD, -value and maxSD

The -value from a set of vertices S to a set of vertices D in graph G is the 

minimum value of the shortest distances from any vertex v S to any vertex u D. It 

can be written as a function, (S, D) = minSD(S, D) = min({SD(v, u) | v S, u D}). 

Similarly, the -value from a set of vertices S to D can be written as a function, (S, D) = 

maxSD(S, D) = max({SD(v, u) | v S, u D}). 

Definition 10. Sketch Graph, -graph, -graph 

A sketch graph S = (Vs, Es, Ws) of a graph partition {F1, F2, … , Fn} has the 

following properties: Vs = {vs | vs corresponds to some boundary set in Fi}, that is, there 

exists a bijection f, where BSi is the set of boundary sets in the ith fragment Fi. Es = {(vi, vj)

| Fk, f(vi) Vk}, where f is the bijection defined in Vs. Ws = {ws : Es  ( 0, 0)}, 

where ws is a one-to-one function from the set of edges to a set of 2-pair ( , ), where 

and  are the -value and -value for the two corresponding boundary sets in the super 

graph respectively. -graph is a sketch graph, but the weights of the edges are the -

value of the two boundary sets in super graph, instead of the 2-pair ( , ). Similarly, the 

-graph is a sketch graph with the -values as edge weights. 

 An example of the partition, including fragments, super graph, and sketch graph, 

is shown in Figure 1.1. 
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a. Original Graph and Fragments b. Super Graph 

c. Sketch Graph 

Figure 1.1 Partition of a Graph 
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Definition 11. Boundary Set Distance Matrix (BSDistMatrix) 

 A boundary set distance matrix, or BSDistMatrix, is a data structure to contain the 

shortest path distances between pairs of boundary sets in the sketch graph. The matrix is a 

square matrix with (n n) entries, where n is the number of boundary sets in the sketch 

graph. Each entry in the matrix is a set of 2-pair ( -value, -value) between two 

boundary sets. 

BSDistMatrix = {( (vi, vj), (vi, vj)) | vi, vj Vs}, where (vi, vj) and (vi, vj) are 

functions in Definition 9, and Vs is a set of vertices in Definition 10. 

 Each entry in the matrix gives us a lower and upper bound when we want to 

calculate an approximation of a shortest distance between two boundary sets. For 

example, a shortest distance from any vertex in boundary set A to any vertex in boundary 

set B cannot be less than the -value of BSMatrix[A][B], and not more than the -value of 

BSMatrix[A][B].

Definition 12. -Approximation, -Approximation

 The -Approximation from a node u to a node v is defined to be any distance 

which is equal to, or less than, the actual shortest path distance from u to v. It serves as 

the lower bound for the actual shortest path distance. The -Approximation from a node 

u to a node v is defined to be any distance which is equal to, or more than, the actual 

shortest path distance from u to v.

Definition 13. Shortest Hop, Shortest Hop Path 

 The shortest hop refers the shortest distance of the shortest path from a node vi to 

a node vj in a graph, provided that the weights of all the edges in the graph are set to 1. 

Therefore, if the shortest hop of the shortest path from vi to vj in a graph is h, then the 

path includes h edges, and (h – 1) intermediate nodes from vi to vj. It can be written as a 

function, shG(vi, vj), which returns the shortest hop h from vi to vj in a graph G. The 

shortest hop path naturally means that the path has the shortest hop from the source to the 

destination. It is certainly possible that more than one shortest hop path exists.  
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Definition 14. x-Hop Sketch Graph, x-Hop -Sketch Graph, x-Hop -Sketch 

Graph

An x-Hop sketch graph xSG = (VxSG, ExSG, WxSG) of a sketch graph S = (Vs, Es, Ws)

has the following properties: VxSG = Vs. ExSG = {eij | eij = <vi, vj>, vi, vj VxSG, shS(vi, vj) = 

x}, where x > 0, and shS(vi, vj) is a function which returns the shortest hop h from vi to vj

in the sketch graph S as in Definition 13. WxSG = {wxSG : ExSG  ( 0, 0)}, where wxSG

is a one-to-one function from the set of edges to a set of 2-pair ( , ), where  are  are 

the -value and -value for the two corresponding boundary sets in the x-Hop sketch 

graph xSG respectively. 

 The sketch graph consists of edges where the two end vertices of each edge are in 

the same fragment, which means each edge is confined inside the fragment where the two 

end vertices of the edge are. The x-Hop sketch graph of the sketch graph has the same set 

of the vertices as the sketch graph, but different edges from the sketch graph. The “x” in 

x-Hop sketch graph indicates the shortest hops of an edge from a node vi to a node vj in 

the sketch graph. Therefore, the sketch graph S is essentially a 1-Hop sketch graph. In the 

2-Hop sketch graph of S, an edge from vi to vj denotes the shortest hops of 2 in S.

 In sum, if the shortest hop from vi to vj in the sketch graph S is x, a new edge from 

vi to vj will be added to the x-Hop sketch graph. 

An x-Hop -sketch graph is an x-Hop sketch graph with edges of -values.

Similar to the -graph in Definition 10, each edge in the x-Hop -sketch graph represents 

the minimum shortest distance from any vertex v in BSi to any vertex u in BSj, where BSi

and BSj are boundary sets that the edge is connecting. Similarly, an x-Hop -sketch graph 

is an x-Hop Sketch graph with edges of -values. 

Definition 15. Augmented x-Hop Sketch Graph 

 The primary use of an x-Hop sketch graph is to calculate approximations from a 

node s in G to a node d in G, where G is a graph defined in Definition 1. However, the 

vertices in an x-Hop Sketch Graph are not the same as those defined in G, because the 

vertices in an x-Hop Sketch Graph represent the boundary sets from a partition of G.

Therefore, we have to add s and d, and edges connecting from s to the boundary sets in 
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the fragment FS where s lies, and from d to the boundary sets in the fragment Fd where d

lies, to the x-Hop sketch graph. The weight of an edge from s to BSi, where BSi is one of 

the boundary sets of S, is the minimum shortest distance from s to any boundary node in 

BSi. The edges from d to its boundary sets are defined in the same way. Last, after adding 

s, d, and the edges to their boundary sets respectively, we need to add the edges from the 

boundary sets of either FS or FD to the boundary sets which are h hops away from the 

boundary sets of FS or FD respectively, where 0 < h < x. An example of the whole process 

will be given in Section 3.3. Formally, an augmented x-Hop sketch graph axSG = (VaxSG,

EaxSG, WaxSG) of an x-Hop sketch graph xSG = (VxSG, ExSG, WxSG) has the following 

properties: VaxSG = VxSG  {s, d}, where s is the source and d the destination. EaxSG = ExSG

 {eij | eij = <s, vi>, vi corresponds to some boundary set in S}  {eij | eij = <d, vi>, vi

corresponds to some boundary set in D}  {eij | eij = <vi, vj>, vi corresponds to some 

boundary set in FS, vj VxSG, 0 < shS(vi, vj) < x}, where s and d are the source and the 

destination, and FS and FD are the fragments which s and d are in respectively, and shS(vi,

vj) is a function which returns the shortest hop h from vi to vj in a sketch graph S as in 

Definition 13. The definition of EaxSG is based on the augmented x-Hop sketch graph 

which has edges from the boundary sets of FS to the boundary sets which are h hops away 

from the boundary sets of FS. WaxSG = {waxSG : EaxSG  ( 0, 0)}, where waxSG is a one-

to-one function from the set of edges to a set of 2-tuple ( , ), where  are  are the -

value and -value for the two corresponding boundary sets in the augmented x-Hop 

sketch graph axSG respectively. 
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Chapter 2 

Study of Related Works

In Chapter 2, we review the shortest-path algorithms which directly or indirectly inform 

our work. We first introduce Dijkstra’s SP algorithm, the fundamental algorithm for other 

SP algorithms for extended problems. We then introduce several approaches to solving 

the problems for various spatial-related queries. 

2.1 Dijkstra’s SP Algorithm

Dijkstra’s SP algorithm is a general method to solve the single-source shortest-path 

problem [18]. The runtime of the original version was O(n2), but many studies have been 

done to improve its performance. One of the best examples is using double buckets on the 

Dijkstra’s algorithm [1]. The new runtime is O(nlogn). 

2.2 Hierarchical Encoded Path Views for Path Query Processing

Hierarchical path-finding has been proposed as a solution to the problems of computer 

networks in [3] and planar graphs in [2]. In [4], a hierarchical routing algorithm called 

HEPV, which offers advantages over alternative path-finding approaches in terms of 

performance and space efficiency, has been investigated. HEPV divides a graph into sub-

graphs (fragments), each of which has boundary nodes, and the boundary nodes form a 

higher-level graph. Edges in the graphs above the ground level are called boundary edges. 

The cost associated with the boundary edge is the shortest-path cost through the fragment 
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between the boundary nodes. If the size of the higher-level graph is still too large to load 

into the memory, HEPV divides the higher-level graph into another set of fragments. For 

a large graph, the authours of [4] claim that a three-level HEPV is normally efficient in 

computing shortest-paths.  

For each fragment at the ground level, they create and maintain a table called 

Encoded Path View, containing the all-pair shortest-paths. The table stores the origin, 

destination, direct successor (next hop) node, and the weight for a shortest-path from the 

origin to the destination. Figure 2.2.(b) shows an example of fragments and their tables. It 

is straightforward to decode the view from a table. For example, in Figure 2.2, if one 

wants to find the shortest-path from node 1 to node 3 in fragment 1, one simply looks up 

the table of node 1 and find the destination, node 3. The row of node 3 in the table 

indicates the next hop of the shortest-path (node 0) and the weight (4) of the shortest-path. 

For the graphs above the ground level, we need two more pieces of information to make 

the tables in addition to the encoded path view of the ground-level graph: 1) the fragment 

ID of the fragment at the ground level, through which the shortest-path from the origin to 

the destination first crosses, and 2) the next hop of the shortest-path in that fragment. 

Figure 2.2.(c) gives an example of a level-1 graph and its encoded path view. For each 

node in the figure, we have a table, which has encoded path views for all reachable nodes 

from the node. For example, the shortest-path from node 1 to node 7 in the encoded path 

view for node 1 passes node 0 as the next hop in fragment 1 where node 0 is, and its 

weight is 9. 

 To retrieve the shortest-path from source s to destination d, the algorithm first 

checks the sub-paths combined by all the boundary node pairs, each of which consists of 

boundary nodes from fragments to which s and d belong respectively. The algorithm then 

checks all the paths from s to its boundary nodes in its fragment S, and from the boundary 

nodes of d’s fragment D to d. The shortest-path is simply the concatenation of the 

shortest-path from s to the boundary node u in S, the shortest-path from u to the boundary 

node v in D, and the shortest-path from v to d. For instance, in Figure 2.2, we want to find 

the shortest-path from node 0 in fragment 1 to node 8 in fragment 4. The first step is 

finding shortest-path pairs from the boundary nodes in fragment 1 to those in fragment 4. 
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The boundary nodes in fragment 1 are nodes 0, 3, and 4, and the boundary nodes in 

fragment 8 nodes 4, 5, and 7. There is a total of 6 possible shortest-paths: (1  4), (1 

5), (1  7), (3  4), (3  7), and (4  7). Given that, we then concatenate the shortest-

paths from the source to the boundary nodes (nodes 3 and 4) in fragment 1 and the 

shortest-paths from the boundary nodes (nodes 4, 5, 7) in fragment 4 to the destination. 

The final result of the concatenation would appear as in Figure 2.1. Therefore, retrieving 

the shortest-path is the same operation as finding the shortest-path from node 0 to node 8 

in the graph of the figure. As shown in the example, the scheme of HEPV for finding the 

shortest-path is an exhaustive comparative algorithm, which may cause a problem when 

the number of levels in HEPV becomes large [7].  

 The problem of HEPV is that the storage requirement of those views easily 

reaches more than 2 gigabytes for a relatively small graph of 100,000 nodes with 100 

fragments because the HEPV approach pre-computes the shortest-paths between all the 

nodes in each fragment, and the storage requirement may become unacceptable for a 

larger graph [10] [11]. 

2.3 Disk-based SP algorithm

The disk-based SP algorithm in [7] is another variance of Dijkstra’s algorithm for a very 

large spatial database. Similar to HEPV, the disk-based SP algorithm divides a graph into 

fragments, and the boundary nodes form a super graph. The difference from HEPV is it 

uses a different partitioning algorithm, hierarchical scheme, materialization, and shortest-

path querying algorithm.  

Figire 2.1 Graph After Concatenation 
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 The algorithm first requires pre-computation for partitioning a graph based on the 

BFS and Hilbert R-Tree [17]. The results of pre-computation are fragments, a super graph, 

and a sketch graph to capture the outline of the super graph. 

 For the comparison with HEPV, we take the example in Figure 2.2. The original 

graph is divided into four fragments. Therefore, the fragments are the same as in Figure 

2.2.(b) except that the fragments do not have the encoded path views. All-pair shortest-

paths are calculated for the boundary nodes of each fragment, and they form the super 

graph. 

Each edge in the super graph contains the shortest distance between the two end 

nodes of the edge within its fragment. The super graph of the graph 2.2.(a) is shown in 

Figure 2.3.(a). As a result of the partition, the size of the materialized data, including the 

fragments and super graph, does not exceed 110% of the size of the original graph, 

because the fragments and the super graph does not have encoded path view. For a graph 

of 100,000 nodes, the total storage requirement would be about 15MBytes regardless of 

the number of fragments, as opposed to more than 2 GBytes in HEPV. The query phase 

of the disk-based SP algorithm largely consists of two parts. The first part is finding a 

skeleton path consisting of boundary vertices only. Intuitively, we calculate the shortest-

path by merging the source and destination fragments S and D with the super graph and 

then applying Dijkstra’s SP algorithm to the merged graph. Figure 2.3.(b) shows a super 

graph merged with the source fragment 1 and the destination fragment 4. With the 

merged graph, we apply Dijkstra’s SP algorithm to find the skeleton path. The skeleton 

path of the example will be “0  3  7  8.”  

 The second part is finding actual paths. We achieve this by applying Dijkstra’s 

algorithm to the fragments where two consecutive boundary nodes in the skeleton path lie. 

Since the skeleton path passes nodes 3 and 7 in Fragments 1 and 3 in Figure 2.3, we need 

to fill out the actual path from 3 to 7 by merging Fragments 1 and 3. We apply Dijkstra’s 

SP algorithm to fill out, and the filled-out path from 3 to 7 is “3  6  7.” In the end, 

the completed path is “0  3  6  7  8.” 

 The testing result of the disk-based SP algorithm demonstrates that the algorithm 

needs only less than 60MB of main memory even for a very large graph like the digital 
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map of East 5 states, whose materialized data comprise around 350MBytes. The average 

running time for a single query always is always less than that for using the original 

Dijkstra’s algorithm, given that, in Dijkstra’s algorithm, the whole graph can be fit into 

the main memory. If we disregard the I/O time for loading the whole graph, Dijkstra’s 

algorithm is faster than a disk-based algorithm. In practice, a number of queries will 

come into the system, and loading the graph will be a one-time occasion, which means 

Dijkstra’s algorithm will perform better if we have enough memory to load the whole 

graph. The main purpose of this thesis, in fact, is to reduce the run-time for the disk-

based algorithm while minimizing the costs of pre-computation and additional 

materialization. 

 The highest I/O costs are caused by the relaxation process of Dijkstra’s algorithm 

on the super graph during the computation of skeleton paths since the super graph in the 

disk-based SP algorithm is stored in the external memory. According to [5] [12], the I/O 

cost of the best-known SP algorithm using external memory was O(V + (E/B)log(V/B)),

where V is the number of vertices, E the number of edges, N is the sum of V and E, and B

is the number of vertices and edges per disk block. With the disk-based SP algorithm, the 

I/O cost can be reduced to O(sort(N)), where sort(N) = (N/B log(M/B)(N/B)), and M is the 

number of vertices and edges that can be fit into internal memory.  
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2.4 Materialization Trade-offs in Hierarchical Shortest-path 

Algorithms 

A hierarchical shortest-path algorithm decomposes the original graph into a set of 

fragments and a boundary node graph (super graph) which summarizes the fragment 

graphs. While a fully materialized hierarchical shortest-path algorithm pre-computes and 

stores the shortest-path view and the shortest-path-cost view for the fragments as well as 

for the boundary node graph as we have seen in section 2.2, the storage cost can be 

reduced by a virtual or hybrid materialization approach, in which few, or none, of the 

relevant views are pre-computed. The authors in [11] explore the effect of materializing 

individual views for the storage overhead and the computation time of the hierarchical 

shortest-path algorithm. 

 The degree of materialization is divided into two categories in [11]. 

Cost View (CV)

The cost (distance) of the shortest-path between all node pairs in the graph. It 

does not store any path information. For a fragment, a partial materialization of 

the CV, the C2B or cost-to-boundary-nodes view stores the cost of the shortest-

path from the interior nodes of the fragment to the boundary nodes of the 

fragment. 

Compressed Path View (CPV)

The set of optimal paths between all nodes on the graph as a series of “hops.”  

 With CV and CPV, the authors chose four candidates of hybrid materialization for 

direct comparison in order to facilitate studying the effects of materializing 

individualization in either the boundary graph or the fragments. 

F0 has no materialization in either the boundary graph or the fragments. 

F1 materializes only the C2B table in the fragments. 

F2 materializes the C2B table of the fragments and the CV table of the boundary 

graph. 

F3 materializes the C2B table in the fragments and both the CPV and CV tables in 

the boundary graph. 
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Between F0 and F1, they compare the effect of materializing the C2B table in the 

fragments. By comparing F1 and F2, they try to determine the effect of materializing the 

CV in the boundary graph. Comparing F2 and F3, they determine the effect of 

materializing the CPV view in the boundary graph. In sum, F0 has the least (zero) 

materialization, followed by F1 and F2. F4 has the most materialization. For example, 

the disk-based SP algorithm, discussed in section 2.3, lies between F0 and F1 because it 

materializes only the partial CV table of the boundary graph in a fragment. On the other 

hand, HEPV, discussed in 2.2, materializes both the CPV and CV tables for the boundary 

graph and the fragments, so it lies beyond F3.

They experimented with the CPU-costs, I/O-costs, and storage-costs of the 

candidate hybrid materialization strategies using the Twin Cities metropolitan road map 

with 123,000 nodes and 313,000 edges. In terms of the CPU-costs, the number of 

operations decreases as more views are materialized, which means F3 performs best. On 

the contrary, the storage-costs increase with more materialization. In sum, their 

experimental results show that materializing the shortest-path-cost view (CV) for the 

boundary graph provides the greatest computational savings for a given amount of 

storage and a small number of fragments, followed by materializing the cost-to-

boundary-nodes view for the fragments, and then the shortest-path view for the boundary 

graph. 

2.5 Multiple Range Query 

High I/O costs in using large graphs are inevitable given that the system does not have 

enough memory to load all the necessary data. One of the ways to minimize the I/O-costs 

is optimizing queries so that queries which may use the same objects to answer will be 

dealt with together.  

The idea of optimizing multiple-range queries in [9] is simple. In order to answer 

range queries efficiently in 2-D R-trees, the authors in [9] devised various sorting 

algorithms for those queries. Based on the fact that the processing cost of a range query is 

affected mainly by the I/O time to fetch the appropriate disk pages, they focus on the I/O 

activity to manage the queries effectively.  
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 The first approach to servicing a number of requests processes them in a First-

Come-First-Served (FCFS) manner. In the case of a low rate of query arrivals, FCFS is a 

reasonable service strategy because there is no additional cost to manipulate incoming 

queries. However, there is a problem with this approach in real-life situations. If the order 

of processing follows the arrival order, then the probability of having a cache hit will be 

very low, leading to poor cache utilization. If a number of queries are waiting to be 

served, we can take a look at them and rearrange them so that the I/O activity is minimal.  

Their first attempt to achieve the goal is called Hilbert Sorting (HS) [13].  The HS

algorithm has the following steps: 

For each query, calculate the Hilbert value of the query window’s centroid. 

Sort the Hilbert values in increasing order to obtain the total order of the query 

windows.

Execute queries in order. 

The HS method guarantees up to a certain point that nearby requests will be 

executed sequentially, thus enhancing the locality of references. The pitfall of this 

method is that it depends heavily on the size of the cache buffer. If there is no buffer 

space, the algorithm performs the same as the FCFS method. For example, assume that 

two queries, q1 and q2, are pending, are next to each other, and are also likely to be 

sharing a common page. However, if there is no buffer space to store the page, the HS 

algorithm is useless since the system has to read in the page again for q2 after q1 is 

executed. 

To overcome the drawback of the HS method, they first derived an estimate for 

the expected number of page references for a range query. Let us assume that function 

EPR(qx, qy) returns the expected number of page references for a range query, where qx

and qy are the x and y extends of the window query q. Intuitively, if the return value of 

EPR(qx, qy) is n, the expected number of page references for the query q is n. Therefore, 

the smaller n is, the fewer I/O activities are necessary. 

First, let us consider two window queries qi and qj. If these two queries share 

common pages, we could execute them as one. What we need is the criterion to decide 

when to group these queries, or when to execute them individually. They use EPR(qx, qy)
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to determine if the grouping of queries qi and qj is advantageous or not. Let Q denote the 

MBR of the two query windows qi and qj. If we execute Q instead of executing qi and qj

individually, there will be less disk access if and only if EPR(Qx, Qy) EPR(qix, qiy) + 

EPR(qjx, qjy), where x and y for Q, qi, and qj are the extends of the queries respectively. 

The above equation means that the expected number of disk accesses of Q is less than the 

sum of the ones of qi and qj. It is clear that there will be a reduction in the number of disk 

accesses if the two range queries satisfy the inequality in the above equation. Based on 

the simple-grouping criterion, they construct two algorithms in which this criterion can 

be valuable. 

Figure 2.4 shows an example of possible scenarios. The dashed-line rectangle 

represents the Minimum Boundary Rectangle (MBR) of the two queries inside. Since the 

two queries in Figure 2.4.(a) overlap a considerable amount, there is a higher probability 

that the two queries share more pages. On the other hand, the queries in Figure 2.4.(b) 

overlap very little, so the two queries are not likely sharing many pages. In terms of the 

equation EPR(Qx, Qy) EPR(qix, qiy) + EPR(qjx, qjy), the example of Figure 2.4.(a) has a 

greater probability of satisfying the equation. If it satisfies the equation, then grouping 

two queries and processing them as one query save the I/O activities of reading page 

references.  

Figure 2.4 Example of Range Query 
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2.5.1. The Linear Algorithm (Algorithm L) 

The idea of this algorithm is that, given two requests, q1 and q2, this algorithm will 

merely check whether the inequality is satisfied or not. If yes, the algorithm will execute 

the queries as one. If not, it will execute q1 alone and proceed with q2 and q3 until it 

reaches all pending requests.  

 Let us assume we have N queries pending. 

For each query, we must calculate the Hilbert values of the window’s centroid and 

then sort the queries according to the Hilbert values in increasing order to obtain the 

total order of the query windows. 

Let pos denote the current query index. Initialize pos = 1 

While (pos < N) do 
begin 
 Test the inequality for query rectangles qpos and qpos+1;
 If the inequality is satisfied 
 Then process the two queries as one and set pos = pos + 2; 
 Else process query qpos and set pos = pos + 1. 
end
if pos reaches the last query then service qpos.

 The complexity of the algorithm is O(NlogN) because of the sorting of the 

rectangles. After sorting, the algorithm is only O(N) because the queries are scanned only 

once. 

2.5.2. The Extended Linear Algorithm (Algorithm ExL) 

The algorithm L considers only two consecutive queries. The authors of [9] extended 

their idea, enabling the grouping of more than two queries. 

 Consider the queries q1, … , qN in increasing order with respect to the Hilbert 

value of the rectangle centroid. The algorithm tries to pack requests into disjointed sets. 

The algorithm begins with query q1. Initially, the first group, G1, contains only q1. If the 

processing of q1 and q2 together retrieves fewer pages than the processing of q1 plus q2

under the rule of the inequality, then G1 = {q1, q2}. If the processing of q3 plus G1

retrieves fewer pages than the processing of q3 plus q2 plus q1, then G1 = {q1, q2, q3}. The 

algorithm continues with the same process until it reaches a query qk such that the 
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expected number of disk accesses EPR(G1 + qk) > EPR(G1) + EPR(qk). When this 

happens, the algorithm sets G1 = {q1, … , qk-1} and starts a new group. This process goes 

until all queries are examined. 

For each query, calculate the Hilbert values of the window’s centroid. Sort the queries 

by the Hilbert values in increasing order to obtain the total order of the query 

windows. 

Let pos denote the current query index. Initialize pos = 1. Let GroupId denote the 

current group. Initialize GroupId = 1. 

While (pos < N) do 
begin 

  Initialize EndOfGroup = False and GGroupId = {qpos}; 
  While (not EndOfGroup) do 
   begin 
    If (P (GGroupId + qpos) < P(GGroupId) + P(qpos))
    Then assign qpos to GGroupId and set pos = pos + 1; 
    Else set EndOfGroup = True and set GroupId = GroupId+1; 
    Process as one all qj’s  GGroupId;
   end 

end
If (pos == N) then service qpos.

 Provided that the query windows have already been sorted with respect to the 

Hilbert values of their centroid, the time complexity of the algorithm is linear to the 

number of queries O(N), the same as with algorithm L. 

 The results show that as buffer size increases, the performance of all methods is 

improved. Also, the more range queries are in pending, the more efficient is the derived 

processing plan. Another important point is that as the size of the query window increases, 

so does the performance. Generally, algorithm HS is better in the case of large buffers, 

while algorithm L is the choice in all other cases. What we learn from [9] is that using 

simple sorting algorithms can significantly reduce the I/O-costs. 
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Chapter 3 

Algorithms for Improving the Disk-based SP Algorithm

As we have seen in Section 2.3, the disk-based SP algorithm performs slower than the 

original Dijkstra’s SP algorithm once the system has loaded the whole graph. In practice, 

that scenario is certainly possible if we have enough memory to load the graph. In this 

chapter, we will present three different approaches to making the disk-based SP 

algorithm perform better while the additional materialized data necessary to achieve the 

goal remain as small as possible. 

 Sections 3.1 and 3.2 discuss algorithms for pruning the search space of a graph. 

Section 3.1 gives a simple, yet effective pruning algorithm using BSDistMatrix. Section 

3.2 explains another pruning algorithm using the x-Hop sketch graph for pruning search 

spaces. 

 Section 3.3 discusses an algorithm for optimizing multiple queries so that the I/O- 

cost for the disk-based SP algorithm can be minimized. 

 Section 3.4 explains an algorithm that focuses on minimizing the I/O-cost for 

finding actual paths. 

3.1 Search Space Pruning Algorithm Using Boundary Set Distance 

Matrix

Dijkstra’s shortest path algorithm with proper data structure [12] is effective in finding a 

path in a graph, and many modifications to the algorithm are made to fit in certain 
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situations. In [7], the authors developed the disk-based SP algorithm to find the shortest 

path in a very large network system. The experimental results of their work show that the 

average running time of their algorithm ranges from about the same as to two-and-a-half 

times slower than that of Dijkstra’s algorithm, provided that, in Dijkstra’s algorithm, the 

whole graph can reside in the system’s main memory and is loaded in advance. The 

authours claimed, however, that if, for each query, the I/O-time for loading the whole 

graph is counted, their algorithm performs better every time. In the specific case that a 

whole graph can be fit into the main memory, there are not many advantages to using 

their algorithm. For the example of the Connecticut area, if multiple-path queries are 

waiting to be served, and the queries are confined, which can be converted into a digital 

map of 20 Mbytes and loaded into the main memory, the obvious choice for the specific 

situation is the traditional Dijkstra’s algorithm. Hence, the question is how can we make 

the disk-based SP algorithm work at least as well as or better than Dijkstra’s algorithm. 

One of the interesting algorithms in [19] is the graph-pruning algorithm. Even if 

the proposed algorithm does not improve the performance much, the idea behind it can be 

easily modified and can improve the performance by materializing additional information 

during the pre-processing phase. The reason his pruning algorithm in [19] works poorly is 

that it does not generate good approximations. In his algorithm, the -approximation 

between s and d is calculated by Dijkstra’s SP algorithm on a –graph to ensure that the 

approximation is never shorter than the distance of the real shortest path from s to d,

which produces the upper bound for the distance of the real shortest path. On the other 

hand, the -approximations for pairs from s to all other boundary sets and from all the 

boundary sets to d are calculated on an –graph to ensure that each approximation is 

never longer than the distance of the real shortest path for each pair, which produces the 

lower bound for the distance of the real shortest path from s and d to all other boundary 

sets. The pruning algorithm is simple. If the approximation based on the -graph from s

to d passing a boundary set X is longer than the approximation based on the -graph from 

s to d, then we can remove X safely for the calculation of a skeleton path. Figure 3.1 

shows an example of a pitfall of the algorithm. For the convenience of the explanation, 

we include boundary nodes in each boundary set even if the nodes in the actual sketch 
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graph represent the boundary sets. Each node in the figure represents a boundary node of 

a fragment. Each arrow represents a distance between two connected nodes. The figure 

shows parts of the - and -graph of a given graph. If we apply Dijkstra’s SP algorithm 

from the boundary set X to the boundary set Y on the -graph, the outcome will appear as 

3.1 (c). Figure 3.1 (d) shows the shortest path based on the -graph. The difference 

between the distances of the two shortest paths is huge because of the definition of the -

and -values. Since the difference between the - and -values even with the same edge 

of the sketch graph is usually large, the calculation is never expected to give good 

pruning results. 

 To tackle the problem, we need to use alternative values to obtain good 

approximations instead of the - and -values. The main idea is to calculate all-pair 

shortest distances for all the boundary node pairs in a super graph. From the calculated 

distances between the pairs, we can draw the minimum and maximum shortest distances 

(a) -graph (b) -graph 

X Y X Y 

(c) Shortest Path from X to Y
using -graph 

YX

(d) Shortest Path from X to Y
using -graph 

YX

Figure 3.1 -graph and -graph 
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between all the boundary sets, which we will then materialize and store in the secondary 

storage. Therefore, it would take a long time to generate such data if there were many 

boundary nodes in a graph to handle. Furthermore, if the boundary sets of the graph are 

many, the size of the data will be large, and thus the data will be difficult to use. However, 

properly setting the size will help us generate a reasonable amount of data in a reasonable 

amount of time. 

3.1.1  Boundary Set Distance Matrix 

In order to prune a sketch graph efficiently, we need to build a set of matrices storing the 

shortest distances between the boundary sets in the sketch graph. Since a boundary set 

has a number of boundary nodes, there exist multiple shortest distances between two 

boundary sets. Our solution is to keep only the minimum and maximum shortest 

distances between the two boundary sets. Therefore, the shortest distance from a 

boundary set A to a boundary set B is defined as the minimum of the shortest distances 

from any node in A to any node in B. In other words, the minimum shortest distance from 

a to b is the shortest among the shortest distances from any node in A to any node in B.

The maximum shortest distance is defined in a similar manner: it is the longest among the 

shortest distances from any node in A to any node in B.

 To build a Boundary Set Distance Matrix (BSDistMatrix), we first need to 

calculate all the shortest distances from the boundary nodes of the first set to the 

boundary nodes of the other boundary sets. Once all the shortest distances have been 

calculated, the minimum and maximum ones among them are selected. 

 Figure 3.2 shows the steps of preparing a BSDistMatrix from the boundary set A

to the boundary set B. After step 2, the minimum and maximum shortest distance from A

to B is set to be min and max respectively. To build the entire BSDistMatrix for A, we 

follow the same steps for every other boundary set in the graph. 
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3.1.2 Pruning Algorithm Description 

Our objective in using the pruning algorithm is to eliminate as many boundary nodes as 

we can so that we can reduce the calculation time of finding skeleton paths. The 

suggested algorithm basically deals with boundary sets, and if a boundary set is proven to 

be unnecessary for finding the skeleton path of a query, we can prune the whole boundary 

set and do not need to include the boundary nodes in that boundary set while finding the 

skeleton path. 

 The pruning algorithm is independent of the disk-based SP algorithm because it is 

applied before the disk-based SP algorithm starts. It first begins with building the 

shortest-path trees rooted from a source and a destination in their respective fragments. 

From the shortest-path trees, we know the - and -values from the source and the 

destination to their respective boundary sets in their fragments. After the algorithm 

prunes some of the boundary sets in the sketch graph, the search for the skeleton path 

continues with the pruned sketch graph, which does not have unnecessary boundary sets, 

which could be necessary during the disk-based SP algorithm without pruning.  

The pruning process has two parts. First, we estimate the shortest distance ( -

approximation) from source to destination and then in order to prune the boundary set, 

BS A BS B BS A BS B

Step 1: Find all the shortest 
paths from nodes in A to 
nodes in B.

Step 2: Pick the minimum 
shortest one min and max-
imum shortest one max 

among the calculated ones. 

min

Figure 3.2 How to Make Boundary Set Distance Matrix 

max
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compare it with the approximations ( -approximations) of a path from the source to the 

destination passing a specific boundary set. The key to pruning as many boundary sets as 

possible is to estimate distances well. 

For example, let us assume that the shortest distance from a source s to a 

destination d is 10. By definition, the -approximation from s to d must be equal to, or 

greater than, 10. If the -approximation of a path from s to d passing a boundary set X is 

more than the -approximation, we can prune X because the path passing X cannot be the 

shortest path by the definition of -approximation. 

 The -approximation of the shortest distance from the source to the destination 

consists of the minimum of the two cases: 

Case 1 (Figure 3.3 (a)) 

the maximum shortest distances from the source node to boundary sets in the 

source fragment. 

the minimum shortest distances from the boundary sets in the source fragment 

to the boundary sets in the destination fragment. 

the maximum shortest distances from the boundary sets in the destination 

fragment to the destination node.  

Case 2 (Figure 3.3 (b)) 

the minimum shortest distances from the source node to boundary sets in the 

source fragment. 

the maximum shortest distances from the boundary sets in the source fragment 

to the boundary sets in the destination fragment. 

the minimum shortest distances from the boundary sets in the destination 

fragment to the destination node. 

We choose the minimum distance of the minimums from the two cases described 

above. The number of combinations for each case is determined by 2 m n, where m is 

the number of the boundary sets in the source fragment and n the number of the boundary 

sets in the destination fragment. By doing that, we guarantee the -approximation is at 

least equal to, or more than, the actual shortest distance, so that we can use the 
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approximation to prune those boundary sets which are parts of the paths having distances 

of more than the actual shortest distance. 

After deciding the -approximation, we must then calculate an -approximate 

shortest distance passing a boundary set to decide whether the boundary set is eligible to 

be pruned. The process of the -approximation is similar to the one above. It consists of 

four parts: 

the minimum shortest distances from the source node to the boundary sets in 

the source fragment. 

the minimum shortest distances from the boundary sets in the source fragment 

to a boundary set X chosen to be probed. 

the minimum shortest distances from the boundary set X to the boundary sets 

in the destination fragment. 

the minimum shortest distances from the boundary sets in the destination 

fragment to the destination.  

We choose the minimum distance of all possible combinations of the four parts 

above. There are m ways, where m is the number of the boundary sets in the source 

fragment, to choose from the first two cases, and n ways, where n is the number of the 

boundary sets in the destination fragment, from the last two cases. Therefore, we have the 

following number of combinations: m n. If an -approximation passing a specific 

boundary set is longer than the -approximation, we prune the boundary set.  

Since one boundary set usually consists of a number of boundary nodes and each 

boundary node in a fragment is connected to all other boundary nodes of the fragment in 

a super graph, pruning one boundary set allows us to eliminate all the boundary nodes in 

the boundary set and their connected edges to the boundary nodes of all other boundary 

sets in a fragment. 



Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 28 

  Algorithm 3.1 describes how the disk-based SP algorithm for finding the skeleton 

path is changed. In fact, no significant changes are made except that the algorithm calls 

GraphPrune algorithm before it starts the main part of the disk-based SP algorithm. Lines 

10 to 33 are the main body of the algorithm. When the algorithm finds boundary nodes, it 

will use MainThrust, which is the routine for relaxing all the boundary nodes adjacent to 

the current close boundary node; otherwise, it relaxes adjacent nodes to the current node, 

max 

max

min

min 

min

min

max 

max 

src

dst

Source Fragment 

Destination Fragment

min

min 

max

max 

max

max

min 

min

src

dst

Source Fragment 

Destination Fragment

(a) max – min – max approach

(b) min – max – min approach 

Figure 3.3 How to Calculate the -approximations 



Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 29 

using super graph. MainThrust is the part which takes advantage of the pruning algorithm 

since MainThrust need not relax the boundary nodes of the pruned boundary sets. Lines 6 

to 9 are the part preparing and calling the GraphPrune algorithm. 

 Algorithm 3.2 describes how the pruning algorithm is executed.  Lines 1 to 11 are 

the process of calculating the -approximation from the source to the destination. The 

process considers every possible combination with given information and chooses the 

minimum value among them. Therefore, the approxSP is the -approximation to be 

compared with the -approximations passing other boundary sets. Lines 12 to 30 are part 

of the pruning boundary sets. From lines 13 to 19, sb, the -approximation from the 

source to the currently probed boundary set, is determined, and from 20 to 26, bd, the -

approximation from the boundary set to the destination, is determined. The sum of sb and 

bd is then compared to the approxSP, and whether it has to be pruned or not is described 

from line 27 to 29. 

Algorithm 3.1 FindSkeletonPath (s, d, S, D, M, B, k)

Input: s and d are the source and destination vertices respectively; S and D are the 
fragments for s and d respectively; M is the distance matrix database; BSDM is the 
boundary set distance matrix database; and k is the sketch graph. 

Output: the skeleton path from s to d.

Precondition: s and d are in S and D respectively. 

/*The distance vector (dv) is a data structure of boundary sets to keep track of the 
shortest distance information from the source. */ 

1: Initialize distance vector dv database  
/*bsQ is an updatable heap. bsQ holds the minimum distance information from s to 
each boundary set. bsQ.enqueue(o) inserts an object o into the proper position in bsQ.
dv.delegate() returns objects consisting of all the boundary set IDs and their initial 
distances (maximum integer) in the sketch graph.*/ 

2: bsQ.enqueue(dv.delegate())  
3: s.distance  0 
4: s.closed TRUE

/*interQ is a priority queue, implemented as a binary heap. interQ holds the minimum 
distance information from s to nodes in S and D. interQ.enqueue(node) inserts a node 
into interQ by its priority of the value of node. */ 

5: interQ.enqueue(s)  
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/*for giving information of min and max distances from the destination*/ 
6: build shortest path trees spTreeS, spTreeD for S and D

/*Get the  and -values from the source to its boundary sets. 
distS and distD are a simple table containing the minimum and maximum shortest  
distances from the source and destination to their boundary sets  
in their fragments respectively.*/ 

7: distS spTreeS.get Values();  
/*Get the  and -values from the destination to its boundary sets*/ 

8: distD spTreeD.get Values();
/*Execute the pruning process.*/ 

9: GraphPrune(k, BSDM, S.getBoundarySets(), D.getBoundarySets(), distS, distD);
10: while ~bsQ.isEmpty()  ~interQ.empty() do

          /* interQ.min() and bsQ.min() returns the minimum values of their own. 
11:     a interQ.min() 
12:     b bsQ.min() 

/*destination is found*/ 
13:     if a.equals(d) b.equals(d) then

14:         break 

15:     end if 

16:     if interQ.empty()  (b.distance < a.distance) then

/*relax all boundary vertices adjacent to b*/
17:         do MainThrust on b
18:         b.closed = TRUE

19:     else  

              /* interQ.dequeue() removes the minimum-valued object in interQ.
20:         interQ.dequeue()
21:         if a.isBoundaryNode then

22:             find all vertices adjacent to a in S and D and relax them 
/*MainThrust relaxes every boundary node adjacent to a*/

23:             do MainThrust on a
24:         else if a.isInS then

25:             relax all vertices adjacent to a in S
26:         else 

27:             relax all vertices adjacent to a in D
28:         end if 

29:         a.closed TRUE

30:         interQ.enqueue(a)
31:     end if 

32: end while 

Algorithm 3.2 GraphPrune (k, bsM, bsInS, bsInD, distS, distD)

Input: k is the sketch graph; bsM is the boundary set distance matrix; bsInS and bsInD

are the boundary sets in the source and destination fragments respectively; and distS and 
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distD are the minimum and maximum shortest distance matrices from source to boundary 
sets in bsInS and from destination to boundary sets in bsInD, respectively. 

Output: Pruned sketch graph. 

/*Initialize the -approximation from source to destination as maximum possible 
value*/

1: approxSP MAX

/*start estimating approxSP*/
2: for all the boundary sets b_S in bsInS do

3:     for all the boundary sets b_D in bsInD do

/*temp1 is an approximation max – min – max approach (Figure 3.3 (a)). temp2 is 
an approximation min – max – min approach (Figure 3.3 (b)). 
The methods getMax(bs) and getMin(bs) of distS and distD return the maximum 
and minimum values from the source to bs in the source fragment, and 
from the destination to bs in the destination fragment respectively. */ 

4:         temp1 distS.getMax(b_S) + bsM.getMin(b_S, b_D) + distD.getMax(b_D)
5:         temp2 distS.getMin(b_S) + bsM.getMax(b_S, b_D) + distD.getMin(b_D)

/*Choose the minimum between temp1 and temp2.*/ 
6:         temp = Min(temp1, temp2);
7:         if approxSP > temp then

8:             approxSP = temp

9:         end if

10:     end for

11: end for

/*probe all the boundary sets in the sketch graph*/ 
12: for all the boundary sets b in k do

    /*initialize temporary approximation from source to b*/ 
13:     sb MAX

14:     for all the boundary sets b_S in bsInS do

15:         temp distS.getMin(b_S) + bsM.getMin(b_S, b)
16:         if sb > temp then

17:             sb temp

18:         end if

19:     end for

    /*initialize temporary approximation from b to destination*/ 
20:     bd MAX

21:     for all the boundary sets b_D in bsInD do

22:         temp bsM.getMin(b_D, b) + distD.getMin(b_D)
23:         if bd > temp then

24:             bd temp

25:         end if

26:     end for

    /*the sum of sb and bd is greater than approxSP*/
27:     if approxSP < (sb + bd) then
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/*Remove boundary set b from sketch graph k.*/ 
28:         k.remove(b)
29:     end if

30: end for

3.1.3 Proof of Correctness 

To prove the correctness of the pruning algorithm, we need to justify three statements: 

1. The -approximation from the source to the destination is equal to, or more than, 

the actual shortest distance. In other words, the approximation is an upper bound 

for the actual shortest distance. 

2. The minimum distance among the -approximations from the source to the 

destination passing nodes in a boundary set X is less than the actual shortest 

distance passing any node in X.

3. If the minimum approximation of a path passing a node in X is more than the -

approximation from the source to the destination, the actual shortest path cannot 

pass through any node in X.

 Before proving those three statements, let us assume that we have the shortest-

path trees for the fragments where the source and the destination belong, and the 

boundary set distance matrix, which has minimum shortest distances between all 

boundary set pairs. 

3.1.3.1 Correctness of the -approximation 

To prove the first statement, we assume that there is a shortest path between 

source src and destination dst, so the shortest distance from src to dst is minSD(src, dst)

according to definition 9 in Chapter 1. The shortest path passes src as the starting node, 

bn_s as the first-node boundary node to be passed in the source fragment, bn_d as the 

last-node boundary node to be passed in the destination fragment, and dst as the 

destination node (Figure 3.4). 
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 We define the -approximation for the shortest distance by calculating a 

minimum of the two cases. If the following two cases satisfy the condition of the -

approximation, then we choose the minimum of the two for the better approximation. 

Case 1: maxSD(src, srcBSi) + minSD(srcBSi, dstBSj) + maxSD(dstBSj, dst), where 

srcBSi and dstBSj are the boundary sets of the source and the destination fragment 

respectively. 

Proof

We assume that the nodes used in minSD(srcBSi, dstBSj) are bn_s’ and bn_d’. In 

other words, the path from bn_s’ to bn_d’ gives the minimum shortest distance 

from srcBSi to dstBSj. We are now able to derive the following equation. 

minSD(src, bn_s’) + minSD(bn_s’, bn_d’) + minSD(bn_d’, dst) minSD(src, dst).

Since maxSD(src, srcBSi) minSD(src, bn_s’) and maxSD(dstBSj, dst)

minSD(bn_d’, dst), we have 

maxSD(src, srcBSi) + minSD(srcBSi, dstBSj) + maxSD(dstBSj, dst) minSD(src,

dst).

src

bn_s 

dst

Figure 3.4 Example of Shortest Path 

bn_d 
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Case 2: minSD(src, srcBSi) + maxSD(srcBSi, dstBSj) + minSD(dstBSj, dst), where 

srcBSi and dstBSj are the boundary sets of the source and the destination fragment 

respectively.  

Proof 

We assume that the nodes used in minSD(src, srcBSi) and minSD(dstBSj, dst) are 

bn_s’ and bn_d’. In other words, the path from src to bn_s’ gives the minimum 

shortest distance from src to srcBSj and similarly, the path from bn_d’ to dst gives 

the minimum shortest distance from dstBSj to dst. We are now able to derive the 

following equation. 

 minSD(src, bn_s’) + minSD(bn_s’, bn_d’) + minSD(bn_d’, dst) minSD(src, dst).

Since minSD(src, srcBSi) = minSD(src, bn_s’), minSD(dstBSj, dst) =

minSD(bn_d’, dst), and maxSD(srcBSi, dstBSj) minSD(bn_s’, bn_d’) we have 

maxSD(src, srcBSi) + minSD(srcBSi, dstBSj) + maxSD(dstBSj, dst) minSD(src,

dst).

 Finally, we derive the following lemma for the -approximation. 

Lemma 3.1: The -approximation from src to dst is equal to, or more than, the actual 

shortest path from src to dst.

3.1.3.2 Correctness of the -approximation 

To prove the second statement, we need to consider special cases, such as probing 

boundary sets in the source and the destination fragments. We categorize the problems in 

three ways. 

Case 1: The minimum distance among the -approximations from the source to 

the destination nodes in a boundary set X is less than the actual shortest distance 

passing any node in X, where X is neither in the source nor in the destination 

fragments. 
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Case 2: The minimum distance among the -approximations from the source to 

the destination nodes in a boundary set X is less than the actual shortest distance 

passing any node in X, where X is in the source fragment. 

Case 3: The minimum distance among the -approximations from the source to 

the destination nodes in a boundary set X is less than the actual shortest distance 

passing any node in X, where X is in the destination fragment. 

To prove Case 1, we assume that there is a shortest path between the source and 

the destination passing a boundary set X, so the path passes src as starting node, bn_s as 

the first boundary node to be passed in the source fragment, x_f as the first boundary 

node to be passed in X, x_l as the last boundary node to be passed in X, bn_d as the last 

boundary node to be passed in the destination fragment, and dst as the destination node 

(Figure 3.5 (a)). Therefore, the distance of the shortest path can be calculated by 

minSD(src, bn_s) + minSD(bn_s, x_f) + minSD(x_f, x_l) + minSD(x_l, bn_d) + 

minSD(bn_d, dst).

We defined the -approximation of a path passing X by calculating the minimum 

of the combinations minSD(src, BSi) + minSD(BSi, X) + minSD(X, BSj) + minSD(BSj, dst),

where BSi and BSj are the boundary sets in the source and the destination fragments 

respectively, and i and j are the number of boundary sets in both fragments. We will 

prove that the result of minSD(src, BSa) + minSD(BSa, X) + minSD(X, BSb) + minSD(BSb,

dst), where BSa and BSb are the boundary sets containing bn_s, bn_d respectively, is less 

than the actual shortest path.  

 The shortest distance passing X is 

(iv) minSD(src, bn_s) + minSD(bn_s, x_f) + minSD(x_f, x_l) + minSD(x_l, bn_d)

+ minSD(bn_d, dst).

 The -approximation of the path passing BSa, X, and BSb where BSa has bn_s and 

BSb has bn_d is 

(v) minSD(src, BSa) + minSD(BSa, X) + minSD(X, BSb) + minSD(BSb, dst).
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minSD(src, bn_s) in (iv) is equal to, or more than minSD(src, BSa) in (v) because 

BSa contains bn_s and minSD(src, BSa) calculates the minimum shortest distance from 

src to any node in BSa including bn_s. minSD(bn_d, dst) in (iv) is equal to, or more than, 

minSD(BSb, dst) for the same reason. 

src

bn_s in BSa

x_f in X 

x_l in X 

bn_d in BSb
dst

Figure 3.5 Probing a Boundary Set X

(a) X is neither in the source fragment nor the destination fragment 

src

x_f in X 

x_l in X bn_l in BSb

dst

(b) X is in the source fragment 
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minSD(bn_s, x_f) in (iv) is equal to, or more than minSD(BSa, X) in (v) because 

BSa contains bn_s and X does x_f, and minSD(BSa, X) returns the minimum shortest 

distance from any node including bn_s in BSa to any node including x_f in X. minSD(x_l,

bn_d) in (iv) is equal to, or more than minSD(X, BSb) in (v). 

 From the above, we have the following equations: 

minSD(src, bn_s) in (iv) minSD(src, BSa) in (v), 

minSD(bn_s, x_f) in (iv) minSD(BSa, X) in (v), 

minSD(x_l, bn_d) in (iv) minSD(X, BSb) in (v), 

minSD(bn_d, dst) in (iv) minSD(BSb, dst) in (v). 

 In addition, (iv) has minSD(x_f, x_l) added, so finally we get the result of (iv) 

(v), which means the -approximation passing X is equal to, or less than the actual 

shortest distance of the path passing any node in X.

 To prove Case 2, we assume that the shortest distance of the path is obtained by 

calculating minSD(src, bn_f) + minSD(bn_f, x_f) + minSD(x_f, x_l) + minSD(x_f, bn_l) + 

minSD(bn_l, dst) where bn_f, x_f, and x_l are in the boundary sets of the source fragment. 

Proving that is exactly the same as Case 1. The special case is that bn_f is equal to x_f

(Figure 3.5 (b)).  The shortest distance for the special case is minSD(src, x_f) + 

minSD(x_f, x_l) + minSD(x_l, bn_l) + minSD(bn_l, dst). We already know minSD(src, X),

minSD(BSb, dst), and minSD(X, BSb) are less than minSD(src, x_f), minSD(bn_l, dst), and 

minSD(x_l, bn_l), respectively, from the proof in Case 1. In addition, minSD(X, X) is “0”.

Therefore, we have the following result. 

minSD(src, X) + minSD(X, X) + minSD(X, BSb) + minSD(BSb, dst) = 

minSD(src, X) + 0 + minSD(X, BSb) + minSD(BSb, dst)

minSD(src, x_f) + minSD(x_l, bn_l) + minSD(bn_l, dst).

Therefore, the -approximation passing X, where X is the boundary set of the 

source fragment can never be more than the actual shortest path passing X.

 Case 3 is very similar to the above. Finally, we have the following lemma for the 

-approximation. 
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Lemma 3.2: The -approximation of the path from src to dst passing boundary set X is 

equal to, or less than the actual shortest distance from src to dst passing X.

3.1.3.3 Correctness of the Pruning Algorithm 

In Section 3.1.3.1 and Section 3.1.3.2, we proved the first and second statements 

introduced in the beginning of 3.1.3, which are as follows: 

The -approximation from the source to the destination is equal to, or more 

than, the actual shortest distance. In other words, the -approximation is an 

upper bound for the actual shortest distance. 

The minimum distance among the -approximations from the source to the 

destination passing nodes in a boundary set X is less than the actual shortest 

distance passing any node in X.

The third statement can be easily proven using the first and second statements. Let 

us assume the distance of the shortest path sd and the distance of the shortest path passing  

a boundary set X sdX.

 If the path passes X and the minimum of the -approximations is more than the -

approximation from the source to the destination, then sdX is more than the -

approximation by Lemma 3.2, and the -approximation is more than sd by Lemma 3.1, 

which means the actual distance of the path passing any node in X, is always more than 

the actual shortest path. Therefore, we can prune X.

For the correctness of the pruning algorithm, we prove the following statement. 

The boundary sets through which the shortest path passes will not be pruned.  

Proof 

Let us assume that the shortest path passes src, bn_s, x_s, x_l, bn_d, and dst in 

order, where src is the source, bn_s the last node to be passed in the boundary set 

of the source fragment, x_s the first node to be passed in boundary set X which is 

one of the boundary sets the shortest path passes, x_l the last node to be passed in 

X and bn_d the last node to be passed in the boundary set of the destination 
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fragment, and finally dst the destination. Then, the distance sp of the path can be 

calculated as follows:

(i) minSD(src, bn_s) + minSD(bn_s, x_s) + minSD(x_s, x_l) + minSD(x_l, bn_d) + 

minSD(bn_d, dst) = minSD(src, dst).

If we show the -approximation passing X is less than the actual distance, 

then we cannot prune X since it does not satisfy the third statement. Consider the 

-approximation calculated by the following. 

(ii) minSD(src, BSa) + minSD(BSa, X) + minSD(X, X) + minSD(X, BSb) + 

minSD(BSb, dst), where BSa contains bn_s, and BSb contains bn_d.

(ii) can be rewritten as follows: 

(iii) minSD(src, BSa) + minSD(BSa, X) + minSD(X, BSb) + minSD(BSb, dst) since 

minSD(X, X) = 0. 

minSD(src, bn_s) in (i) minSD(src, BSa) in (iii) by the definition of minSD,

minSD(bn_s, x_s) in (i) minSD(BSa, X) in (iii) by the definition of minSD,

minSD(x_l, bn_d) in (i) minSD(X, BSb) in (iii) by the definition of minSD,

minSD(bn_d, dst) in (i) minSD(BSb, dst) in (iii) by the definition of minSD.

Lastly, minSD(x_s, x_l) in (i) = 0 if x_s = x_l; otherwise, minSD(x_s, x_l) > 0. 

As shown in the comparison, (i) cannot be less than (iii), which means the 

-approximation passing X is never more than the actual shortest distance; 

therefore, X cannot be pruned if X is a boundary set through which the shortest 

path passes.

3.2 Search Space Pruning Algorithm Using x-Hop Sketch Graph 

The pruning algorithm presented in Section 3.1 takes advantage of the pre-computed 

shortest distance information for all-pair boundary sets. As the test results show in 

Chapter 4, the algorithm works very well, eliminating up to 70% of boundary sets out of 

the total boundary sets. There are, however, two problems when one applies the 

algorithm.  

The first problem is the calculation time for BSDistMatrix. To build one entry in a 

BSDistMatrix, we have to calculate all possible pairs of boundary nodes from two 
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boundary sets which the entry represents. If the graph is huge and each boundary set has 

a relatively large number of boundary nodes, the calculation time will grow significantly. 

For example, if each boundary set holds an average of n boundary nodes and the total 

number of boundary sets is t, then we need to calculate the shortest path tree (n n) times 

to fill out one entry of the BSDistMatrix, (n n t) times to fill out an entire row of the 

BSDistMatrix, and (n n t  (t - 1)) to fill out all the entries. The other problem is 

storage space. Since the BSDistMatrix stores every possible pair from the entire boundary 

sets, there should be enough space to store O(n2t2) entries, where t is the number of 

boundary sets in a partitioned graph. For the BSDistMatrix to be effective, t should be 

large, which in turn requires a large amount storage space. On the other hand, if we make 

the number of boundary sets fewer to save storage space, the BSDistMatrix with fewer 

boundary sets will not be as. Final problem is updating the graph. Even with a small 

change in the graph, we must build a whole BSDistMatrix again because we do not have 

information about which part has been affected by the change. 

 An x-Hop sketch graph, defined in Chapter 1, can be an alternative solution to 

BSDistMatrix. While BSDistMatrix has the shortest distance information of all-pair 

boundary set shortest paths in the sketch graph, the x-Hop sketch graph has distance 

information from one boundary set to a limited number of boundary sets, limited by the 

number of hops. Therefore, by controlling x, we can adjust the calculation time and 

storage space for the materialized data. 

 Since a node in an x-Hop sketch graph does not each all other nodes, we cannot 

use it to prune the graph in the same way as we use BSDistMatrix. Instead, we need a 

different scheme to calculate approximations. We will apply Dijkstra’s SP algorithm on 

an x-Hop sketch graph. 

3.2.1 x-Hop Sketch Graph 

As defined in Chapter 1, an x-Hop sketch graph is another form of sketch graph with 

different edges from the original sketch graph. Each edge in the x-Hop sketch graph 

connects two nodes, which would be apart from each other by x hops in the original 
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sketch graph. As in the original sketch graph, each edge in the x-Hop sketch graph has -

and -values. 

An x-Hop sketch graph naturally has more edges than the original sketch graph 

does since the number of neighbor nodes of a node grows as x grows in an x-Hop sketch 

graph. However, the size of the materialized data of an x-Hop sketch graph with the 

proper setting of x is normally less than the one of BSDistMatrix. The number of entries 

of an x-Hop sketch graph is kn, while the one of BSDistMatrix is always n2, where n is 

the number of nodes (boundary sets) and k is the average number of neighbor nodes of a 

certain node in an x-Hop sketch graph. 

 Figure 3.6 depicts an example of x-Hop sketch graphs. Each grid in the figure 

represents a fragment and the edges of each grid represent boundary sets. 

3.2.2 The Pruning Algorithm Using an x-Hop Sketch Graph 

The process of the pruning algorithm with an x-Hop sketch graph consists of 4 steps. 

Making an augmented x-Hop sketch graph. 

Calculating the -approximation from source to destination. 

Building the shortest path tree from the source and the destination on an 

augmented x-Hop -sketch graph. 

Pruning nodes in the sketch graph. 

3.2.2.1 Making an Augmented x-Hop Sketch Graph 

 In order to apply Dijkstra’s SP algorithm to calculate approximations on an x-Hop sketch 

graph, we must do the following.  

 We must add the source and the destination of a query of which we want to find 

the shortest path. Since an x-Hop sketch graph consists of boundary sets as nodes, we 

need the source and the destination nodes to calculate the approximations in the graph. 

After adding those nodes, we add edges which are connecting them to the boundary sets 

of the fragments which the source and the destination are in respectively. The weights of 

those edges are the - and -values. Last, we add edges to the boundary sets in the source  
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Figure 3.6 Example of x-Hop graphs 
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Already added edges 

Currently added edges 

(a) Adding source and destination, 
and their edges to 3-Hop graph 

(b) Adding edges from 1-Hop 
sketch graph to 3-Hop graph 

(c) Adding edges from 2-Hop 
sketch graph to 3-Hop graph 

The pictures show the process of 
adding nodes and edges to the 3-
Hop sketch graph. 
Figure 3.7 (a) shows adding the 
source and destination, and edges 
from the source and the destination 
to their boundary sets respectively. 
Figures 3.7 (b) and (c) show adding 
edges from 1 and 2-Hop sketch 
graphs. It only shows edges from a 
boundary set X in the source 
fragment, but in practice, we have 
to add edges of all the boundary 
sets of the source fragment. 

BS X 

BS X

BS X 

Figure 3.7 Making an Augmented 3-Hop Sketch Graph 
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fragment, and the edges are from k-Hop sketch graphs for all k, where 0 < k < x. The 

resulting graph (Figure 3.7 (c)) is called an augmented x-Hop sketch Graph.

Figure 3.7 shows an example of the augmentation processes for a 3-Hop sketch 

graph. For the sake of simplicity, it shows the process of attaching edges from boundary 

set X of the source fragment. As in the example, we first add the source and the 

destination nodes in the graph and then connect them to the boundary sets in the source 

and destination fragments. The next steps are simply adding the edges of the boundary 

sets in the source fragments from the 1 and 2-Hop sketch graphs. 

Algorithm 3.3 shows the pseudo-code for making an augmented x-Hop sketch 

graph. Lines 1 to 18 are the code for adding source and destination nodes, and edges to 

the boundary sets in the source and destination fragments. Lines 19 to 29 are the code for 

adding the edges of boundary sets in the source fragment in the k-Hop sketch graph, 

where 0 < k < x.

Algorithm 3.3 MakeAugmentedXHopSG(xHopSG, src, dst, srcF, dstF)

Input: xHopSG is an array containing 1… x-Hop sketch graph, where x is the number of 
hops, src a source node, and dst a destination node. srcF is a fragment where src is, and 
dstF is a fragment where dst is. 

Output: x-Hop sketch graph with added nodes and edges 

/*Adding src and dst to the x-Hop sketch graph*/ 
1: xHopSG[xHopSG.length – 1].addNode(src)
2: xHopSG[xHopSG.length – 1].addNode(dst)

/*Get the shortest path tree rooted from src in the source fragment*/ 
3: SPTS Dijkstra(src, srcF)

/*Get the shortest path tree rooted from dst in the destination fragment*/ 
4: SPTD Dijkstra(dst, srcD)

/*Get the boundary sets in the source fragment*/ 
5: bsSetsInSrcF[] srcF.getBoundarySets();  

/*Get the boundary sets in the destination fragment*/ 
6: bsSetsInDstF[] dstF.getBoundarySets();  

/*Adding edges connecting from src to its boundary sets*/ 
7: for all the boundary sets bs in bsSetsINSrcF do 

8:     anEdge new Edge(src, bs)
/*Set  value for the new edge*/ 

9:     anEdge.setMin(SPTS.getMin(bs)) 
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/*Set  value for the new edge*/ 
10:     anEdge.setMax(SPTS.getMax(bs))
11:     xHopSG[xHopSG.length – 1].addEdge(anEdge)
12: end for

/*Adding edges connecting from dst to its boundary sets*/ 
13: for all the boundary sets bs in bsSetsINDstF do 

14:     anEdge new Edge(bs, dst)
/*Set  value for the new edge*/ 

15:     anEdge.setMin(SPTD.getMin(bs))  
/*Set  value for the new edge*/ 

16:     anEdge.setMax(SPTD.getMax(bs))  
17:     xHopSG[xHopSG.length – 1].addEdge(anEdge)
18: end for

/*Adding edges from boundary sets in the source and the destination fragment to  
(i + 1) hop away edges from (i + 1)-Hop sketch graphs*/ 

19: for elements from i = 0 to i = x – 1 in xHopSG do  
     /*Add edges from the source boundary sets*/ 
20:     for all the boundary sets bs in bsSetsInSrcF do 

/*Get all the adjacent edges of bs*/ 
21:         edges xHopSG[i].getEdges(bs)
           /*Add all the edges to the x-Hop sketch graph*/
22:         xHopSG[xHopSG.length – 1].addEdges(edges)
23:     end for

24: end for /*Have done the sketch graph preparation process*/

3.2.2.1.1 Properties of an Augmented x-Hop Sketch Graph 

The reason for making an augmented x-Hop sketch graph is to calculate the 

approximations which satisfy the conditions of definition 12 in Chapter 1. If we apply 

Dijkstra’s SP algorithm directly on an x-Hop sketch graph, we cannot find shortest paths 

correctly in some cases. Figure 3.8 shows a simple example which underscores the 

necessity of the augmentation. When we want to find the shortest path from node0 to 

node4, there is no path between those two nodes in the 3-Hop sketch graph, even if the 

path does exist in the original sketch graph. If we add an edge of node0 in the 1-Hop 

sketch graph and the 2-Hop sketch graph to the 3-Hop sketch graph (Figure 3.8 (c)), then 

we can find the shortest path from node0 to node4. In fact, any path which can be found in 

the original sketch graph can also be found in the augmented graph.  
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We derive two new lemmas, which will be used to prove the correctness of the 

pruning algorithm using an x-Hop sketch graph.  

If we convert all the boundary nodes of a skeleton path into the boundary sets in 

which the boundary nodes are contained respectively, we obtain a “boundary set skeleton 

path.” Since a sketch graph has nodes as boundary sets, each node in a boundary set 

skeleton path is a boundary set which contains a boundary node in a skeleton path. Let us 

assume that we have a skeleton path SKP of which boundary nodes are bn0, bn1, bn2 …, 

bnn. If we have a simple function BS(bni) which returns a boundary set ID in which a 

boundary node bni is contained, then we obtain a boundary set skeleton path of SKP by 

node0 node1 node2 node3 node4 node5

node0 node1 node2 node3 node4 node5

node0 node1 node2 node3 node4 node5

Figure 3.8 Necessity of Augmentation 

(a) 1-Hop sketch graph 

(b) 3-Hop sketch graph 

(c) Augmented 3-Hop sketch graph 
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applying the function for every boundary node in SKP. The order of nodes in a boundary 

set skeleton path is the same total order as in a skeleton path, which means that, if a node 

vi precedes a node vj in a skeleton path, a boundary set BSi containing vi precedes a 

boundary set BSj containing vj in the corresponding boundary set skeleton path. Each 

edge in a boundary set skeleton path has an -value and -value. 

Lemma 3.3: We can express any skeleton path of a shortest path of a query as a boundary 

set skeleton path consisting of nodes and edges of the augmented 1-Hop sketch graph. 

Proof 

A skeleton path, by definition, consists of a sequence of nodes and edges from 

two fragments S and D in which source and destination are contained respectively, 

and the super graph. The partial path from the source to the first boundary node in 

S, which the path is passing, can be simplified by an edge from the source to the 

boundary set in which the first boundary node is contained. In the same manner, 

we can express the partial path from the last boundary node in D to the destination 

as an edge from the boundary set in which the last boundary node is contained to 

the destination. The partial path represented by nodes of the super graph is simply 

a sequence of boundary nodes. Since the sketch graph is a simplified form of the 

super graph using boundary sets as nodes, the boundary nodes and edges 

connecting any pair of nodes of the path can be converted to the boundary sets in 

which they are contained. As a result, we can express all nodes and edges in the 

shortest path as the nodes and the edges in the augmented sketch graph. 

 In a boundary set skeleton path, there is a possibility that some of nodes in the 

path appear more than once. For example, let us assume that we have a skeleton path src

bn0 bn1 bn2  … dst, where bn0 and bn2 are in a boundary set BS0, and bn1

in BS1. Then, we have a boundary set skeleton path of the skeleton path, src BS0

BS1 BS0  … dst, which cannot be generated by Dijkstra’s SP algorithm with a 

sketch graph because the shortest path calculated by Dijkstra’s SP algorithm cannot have 

duplicated nodes in its path. In order to derive further lemmas, we need to simplify this 
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kind of skeleton paths. In the example above, we can simplify the boundary set skeleton 

path by eliminating one of BS0, which is closer to src, and BS1, so we have a boundary set 

skeleton path, src BS0 … dst. To generalize the idea, we derive lemma 3.4. 

Lemma 3.4: If we find two or more duplicated nodes, that have the same boundary set ID 

in a boundary set skeleton path, we can eliminate all the nodes between the first-

appearing duplicated node and the last-appearing duplicated node in the path, and then 

eliminate the first-appearing duplicated node. If we repeat this for all duplicated nodes in 

the path, we have a simplified boundary set skeleton path.

 A simplified boundary set skeleton path also keeps the same total order as the 

boundary set skeleton path for the nodes existing in both paths, because the simplified 

boundary set path is derived from the boundary set skeleton path by eliminating some of 

its nodes.  

Lemma 3.5: We can express any skeleton path of a shortest path as a simplified boundary 

set skeleton path consisting of nodes and edges in an augmented x-Hop sketch graph. 

Proof 

Nodes from the source to the first boundary node in S and from the last boundary 

node in D to the destination can be dealt with in the same way as in Lemma 3.3. 

We focus on representing boundary nodes and edges, connecting them in the path 

using nodes and edges in the augmented x-Hop sketch graph. Let us consider a 

skeleton path P of a shortest path and assume that P passes src bn0 bn1

bn2  … dst in the super graph. We can convert P to a simplified boundary set 

skeleton path P’ by Lemmas 3.3 and 3.4.  

We now consider a new path P” in the augmented x-Hop sketch graph, 

where x = k. P” must have the same total order as P’ for the nodes existing in 

both P” and P’.

We give a short algorithm that converts P’ to P” while the same total 

order as in P’ for P” is preserved. 



Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 49 

// P’ is a simplified boundary set skeleton path. 
// xSG is an augmented x-Hop sketch graph in which we want to find  
// a simplified boundary set skeleton path of P’.
(1) Initialize P”; // Initialize a new path P” in xSG.
// currentInP’ is a reference of the current node position in P’.
// First, it is initialized as dst.
(2) currentInP’ = dst;
// currentInxSG is a reference to the current node in xSG.
// It is also initialized as dst.
(3) currentInxSG = dst;
// We need a temporary node previous to hold the current position 
// in the following while loop. 
(4) previous = null;
// Iterate the while loop until currentInxSG is src.
(5) while (currentInxSG != src) { 

// P’.getPreviousNode(node) returns the previous node 
 // of node in the path P’.
(6) previous = P’.getPreviousNode(currentInP’);

// xSG.getEdge(from, to) returns an edge between from and to
// in the x-Hop sketch graph xSG.
// It returns null if there is no such edge between them. 

(7) if (xSG.getEdge(previous, currentInxSG) != null) { 
  // If the edge is found between previous and currentInxSG,
  // then put previous as the first node of P”.
(8)  P”.addNodeFirst(previous);
  // Set currentInxSG as previous.
(9)  currentInxSG = previous;
 } 
 // For every iteration, move currentInP’ backward in P’.
(10) currentInP’ = previous;
        } 

 From lines 6 and 10, the while loop proceeds by moving the current 

position backward by one node in P’ which ensures the total order in line 7. Line 

7 finds an edge of the two nodes, previous and currentInxSG, which are h-hops 

away from each other in the augmented x-Hop sketch graph xSG, where 0 < h < k.

The augmentation for x-Hop sketch graph makes it possible that the algorithm can 

find an edge between two nodes which are less-than-k-hops away. 
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 Intuitively, the algorithm works as follows. We start from noden. Once we 

identify noden, we must find nodei (0 < i < n) in the augmented k-Hop sketch graph and 

nodei is an adjacent node of noden. In other words, we must find nodei existing in both P

and the k-Hop sketch graph, and one of the edges of nodei in the augmented k-Hop sketch 

graph must be noden, where 0 < i < n. The question is whether the edge from nodei to 

noden satisfying the above condition exists in the k-Hop sketch graph. Since the number 

of hops from node0 to noden is more than k, there must be a node which is k hops or more 

away to noden, and a k-Hop sketch graph, by definition, has a node k hops away to noden.

If nodei is less than k hops from node0, then we have an edge from node0 to nodei because 

of the sketch graph preparation. If not, we find another node as we did above until we 

find a node less than k hops from node0.

For example, in Figure 3.8 (b), we cannot find the path from node0 to node1 or 

node2, but with the augmented 3-Hop sketch graph, we can always find the path, which is 

analogous to this case. In Figure 3.8 (b), we cannot find the path from node0 to node4 or

node5. However, we can with the augmented 3-Hop sketch graph, which is analogous to 

this case. 

3.2.2.2 Calculating the -approximation

The -approximation between two nodes has to maintain the following property by 

definition: the approximation is equal to or more than the actual shortest distance. It is 

important to have a small difference between the approximation and the actual shortest 

distance because the smaller the difference is, the more nodes can we prune. One simple 

way is applying Dijkstra’s algorithm on an x-Hop -sketch graph. That will give us the 

minimum sum of -valued edges in the path from a source to a destination. Another way 

of calculation is applying Dijkstra’s algorithm on the same graph with both - and -

valued edges.  

 The objective in using the dual-weighted graph is to make the approximation 

better. To accomplish that, we add one more step to Dijkstra’s algorithm. In the usual 

process, we open adjacent nodes of the node which we are going to close, and each edge 

of those adjacent nodes has only one value, so the distance of each of those open nodes 
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will be c + o, where c is the distance of the closed node and o is the weight of the edge 

from the closed node to the open node. Since we use the x-Hop sketch graph with both of 

the - and -valued edges, we have to choose either - or -value for each open node to 

add to the approximation of the closed node. If the approximation of the closed node is 

determined by pc + c, where pc is the approximation of the predecessor of the closed 

node and c is -value of the edge from the predecessor to the closed node, then we will 

choose the -value for the newly opened nodes. Therefore, we use  and -values 

alternately along the path. The bottom line for the algorithm is using -value for the 

edges of the source node when the path consists of only one edge. Other than that, we 

choose the minimum of the two -approximations; one starting with -value for the 

edges of the source node and the other starting with -value for the edges of the source 

node.  

Figure 3.9 illustrates the process. We determine the distance of Node2 by using 

the -value ( 02). For the distances of its neighbor nodes Node5 and Node6, we use the -

values ( 25 and 26 respectively) to calculate their distances. For the distance of Node5,

we have two paths and choose the minimum of ( 02 + 26) and ( 01 + 14). In order to 

open the neighbor nodes of Node5 and Node6, we will use the -values. We repeat this 

process until we find the destination. 

As in the example, the advantage of using values alternately over Dijkstra’s SP 

algorithm is that we can use the -value to obtain the -approximation while we keep the 

property of the -approximation. 

Algorithm 3.4 shows the pseudo-code for calculating the -approximations. Line 

2 determines whether the approximation starts with  or . Lines 14 to 31 show the 

process of choosing either the -value or -value. The priority queue used in the 

algorithm is the same data structure used in Algorithm 3.1.  
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Algorithm 3.4 DijkstraWithDualValue(src, dst, dualValuedSG, OR )

Input: src is a source node, and dst a destination node. dualValuedSG is a sketch graph 
with both  and  valued edges. OR  is a Boolean value, which determines whether the 
first value of the approximation starts with  or .

Output: the approximation distance from src to dst.
/*Initialize the source node with distance 0*/ 

1: src.distance  0  
/*Set true or false for the source node using  or value for the distance*/ 

2: src.is OR
/*Put the distance information of the source node. table is a simple hash map.*/ 

3: table.put(src)
/*Initialize the distances of all the nodes in the graph as maximum possible value*/ 

4: for all the nodes iniNode in dualValuedSG except src do

     /*Assume is  attributes of all the nodes are set to true*/ 
5:     table.put(iniNode, MAX_VALUE)
6: end for

/*Add the source node to the priority queue with distance 0*/ 
7: pQueue.enqueue(src, 0)  

/*Do this process until the priority queue is empty*/ 
8: while pQueue.isEmpty() do

/*Dequeue the minimum distanced node from the priority queue*/ 
9:     node pQueue.dequeue()  

/*If the destination is found, exit the while loop.*/ 
10:     if node = dst then exit the while loop  
11:     end if
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To open neighbor nodes of 
Node0, use -values from 
Node0 to Node1 and Node2.

To open neighbor nodes of Node1 and Node2,
use -values from those nodes to their 
neighbors. 

Figure 3.9 Dijkstra’s Algorithm with Mixed Values 
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/*Get the adjacent nodes of node*/
12:     adjNodes dualValuedSG.getAdjacentNodes(node)
13:     for all the nodes adjNode in adjNodes do /*Prepare open nodes*/ 

/*If the current node uses  value to calculate the distance from its previous node, 
do the following. This is the only different part from the original Dijkstra’s 
algorithm*/ 

14:         if node.is  is true then

                  /*Get the maximum distance from the graph*/ 
15:             dist dualValuedSG.getMaxDistance(node, adjNode) + node.distance

      /*If dist is less than the distance stored in table*/ 
16:             if dist < table.get(adjNode) then

17:                 adjNode.distance dist

/*Set is  as false because the distance calculated for adjNode uses 
maximum distance from node to adjNode.*/ 

18:                 adjNode.is false

19:             end if

20:             table.put(adjNode)
21:             pQueue.enqueue(adjNode, adjNode.distance)
22:         end if

/*If the current node uses  value to calculate the distance from its previous node, 
do the following. This is the only different part from the original Dijkstra’s 
algorithm*/ 

23:         else if node.is  is false then

            /*Get the minimum distance from the graph*/ 
24:             dist dualValuedSG.getMinDistance(node, adjNode) + node.distance 

      /*If dist is less than the distance stored in table*/ 
25:             if dist < table.get(adjNode) then

26:                 adjNode.distance dist

      /*Set is  as true because the distance calculated for adjNode uses minimum  
      distance from node to adjNode.*/ 

27:                 adjNode.is true

28:             end if

29:             table.put(adjNode)
30:             pQueue.enqueue(adjNode, adjNode.distance)
31:         end else if

32:     end for

33: end while

34: return table.get(dst).distance

3.2.2.2.1. Correctness of the -approximations

The correctness of the process is similar to the argument presented in Section 

3.1.3.1. We will prove that the distance of a shortest path from source src to destination 



Chapter 3. Algorithms for Improving the Disk-based SP Algorithm 54 

dst obtained from Dijkstra’s SP algorithm on an augmented x-Hop sketch graph with 

dual-valued edges cannot be less than the actual shortest distance from src to dst. We 

have the following cases: 

Case 1: A path passes n boundary sets, where n = 1 or 2.

If n = 1, we choose the minimum of, 

-approximation = maxSD(src, BS0) + minSD(BS0, dst) or

-approximation = minSD(src, BS0) + maxSD(BS0, dst).

If n = 2, we choose the minimum of,  

-approximation = maxSD(src, BS0) + minSD(BS0, BS1) + maxSD(BS1, dst) or

-approximation = minSD(src, BS0) + maxSD(BS0, BS1) + minSD(BS1, dst).

We already proved similar or the same cases in Section 3.1.3.1. 

Case 2: A path passes n boundary sets, where n > 2.  

In that case, we have four possible approximations according to the number of 

boundary sets and which value the source node takes, and we choose the 

minimum of them. 

-approximation = maxSD(src, BS0) + minSD(BS0, BS1) + maxSD(BS1, BS2) + … 

+ minSD(BSn-3, BSn-2) + maxSD(BSn-2, BSn-1) + minSD(BSn-1, dst) or 

-approximation = maxSD(src, BS0) + minSD(BS0, BS1) + maxSD(BS1, BS2) + … 

+ maxSD(BSn-3, BSn-2) + minSD(BSn-2, BSn-1) + maxSD(BSn-1, dst) or

-approximation = minSD(src, BS0) + maxSD(BS0, BS1) + minSD(BS1, BS2) + … 

+ minSD(BSn-3, BSn-2) + maxSD(BSn-2, BSn-1) + minSD(BSn-1, dst) or 

-approximation = minSD(src, BS0) + maxSD(BS0, BS1) + minSD(BS1, BS2) + … 

+ maxSD(BSn-3, BSn-2) + minSD(BSn-2, BSn-1) + maxSD(BSn-1, dst), where BSi is a 

boundary set through which the path passes. 

 In the proof, we show that any of the four approximations cannot be less 

than the distance of the actual shortest path from src to dst.

Proof 
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We consider the first and last nodes in the paths of all the minSDs. Let us assume 

that the nodes of minSD(BSi, BSi+1) are bni and bni+1, where 0 < i < n – 1. Thus, 

for i, minSD(BSi, BSi+1) is minSD(bni, bni+1). Then, we can derive the following. 

-approximation = maxSD(src, BS0) + minSD(BS0, BS1) + maxSD(BS1, BS2) + … 

+ minSD(BSn-3, BSn-2) + maxSD(BSn-2, BSn-1) + minSD(BSn-1, dst) =

maxSD(src, BS0) + minSD(bn0, bn1) + maxSD(BS1, BS2) + … + minSD(bnn-3, bnn-2)

+ maxSD(BSn-2, BSn-1) + minSD(bnn-1, dst), and the other three approximations 

form the similar equations. 

 By the definitions of minSD and maxSD, we have the following. 

maxSD(src, BS0) + minSD(bn0, bn1) + maxSD(BS1, BS2) + … + minSD(bnn-3, bnn-2)

+ maxSD(bnn-2, bnn-1) + minSD(bnn-1, dst)

maxSD(src, bn0) + minSD(bn0, bn1) + maxSD(bn1, bn2) + … + minSD(bnn-3, bnn-2)

+ maxSD(bnn-2, bnn-1) + minSD(bnn-1, dst)  minSD(src, dst). 

The other three approximations can be easily proved in the same way. 

Therefore, the -approximation from src to dst on the x-Hop sketch graph with 

dual-valued edges is equal to, or more than, the distance of the actual shortest distance. 

3.2.2.3 Calculating the -approximations 

After we determine the -approximation from source to destination, we calculate the -

approximations from the source to all other nodes in the x-Hop sketch graph, and from all 

the nodes in the x-Hop sketch graph to the destination. That way, we can determine an -

approximation of a path from the source to the destination, passing an arbitrary node X,

by the sum of m + n’, where m is -approximation from the source to X and n’ -

approximation from X to the destination. We apply Dijkstra’s algorithm on the x-Hop -

sketch graph to calculate the -approximations. We must be careful to consider in 

calculating the approximations that the distance must be equal to or less than the actual 

shortest distance from the source to the destination, passing a certain boundary set which 

is being probed for pruning. 
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 One thing we have to notice is the -approximations from all the nodes to the 

destination in the augmented x-Hop sketch graph, because we have to calculate the -

approximation from each node to the destination, one by one for every node. However, 

we can solve that problem by building an SP tree from the destination. Therefore, for the 

-approximations, we need to build two SP trees, one rooted by the source and the other 

by the destination. If we want to find the -approximation from the source to the 

destination passing X, we first look up the SP tree rooted by the source to find the -

approximation from the source to X, and then look up the SP tree rooted by the 

destination to find the -approximation from X to the destination. To make an augmented 

x-Hop sketch graph for calculating the SP tree rooted by the source, we add edges of the 

boundary sets of the source fragment from h-Hop sketch graphs, where 0 < h < x. In the 

same way, we add edges of the boundary sets of the destination fragment from h-Hop 

sketch graph, where 0 < h < x, in order to make an augmented x-Hop sketch graph for 

calculating the SP tree rooted by the destination.

3.2.2.3.1. Correctness of the -approximations

We will prove that Dijkstra’s algorithm from A to B on the augmented x-Hop -sketch 

graph finds a shortest path whose distance is equal to or less than the actual shortest path 

from A to B. We will use the lemmas introduced in Section 3.2.2.1.1.  

Lemma 3.6: The distance of the path found by Dijkstra’s algorithm from A to B on the 

augmented x-Hop -sketch graph is equal to, or less than the distance of the shortest path 

from A to B in the graph. 

Proof 

Let P be the boundary set skeleton path of the shortest path SP from src to dst in 

the original sketch graph, where src is the source node and dst the destination 

node. By lemmas 3.4 and 3.5, we can convert P into P’ which is the simplified 

boundary set skeleton path of the shortest path in the augmented x-Hop -sketch 

graph of the original sketch graph. Then, the distance of P’ is  
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(1) minSD(src, BS0) + minSD(BS0, BS1) + minSD(BS1, BS2) + … + minSD(BSn-1,

dst).

 The boundary sets in (1) are also the boundary sets through which the 

actual shortest path passes. Therefore, we can assume the boundary nodes 

represented by those boundary sets are bn0, bn1 … bnn-1, which are also the nodes 

in SP. Then, we have the following by the definition of minSD, minSD(BSi, BSi+1)

minSD(bni, bni+1), where 0 < i < n – 1. 

(2) The distance of SP = minSD(src, bn0) + minSD(bn0, bn1) + minSD(bn1, bn2)

+ … + minSD(bnn-1, dst)  minSD(src, BS0) + minSD(BS0, BS1) + minSD(BS1,

BS2) + … + minSD(BSn-1, dst).

 (2) shows that the distance of P’ is equal to, or less than that of the 

shortest path. Dijkstra’s algorithm on the augmented x-Hop -sketch graph finds 

the shortest path of all possible paths including P’. Let us assume that PDijk is the 

path found by Dijkstra’s algorithm on the augmented x-Hop -sketch graph. 

There are two possible cases. 

Case 1: PDijk = P’.

In case 1, we already proved that the distance of P’ is equal to, or less than the one 

of the shortest distance. 

Case 2: PDijk P’.

In case 2, PDijk cannot be more than P’ because if PDijk were more than P’, then 

Dijkstra’s algorithm would find P’ as the shortest path and that would be a 

contradiction. Therefore, Dist(PDijk) Dist(P’) Dist(SP), where Dist(Path) is a 

function returning the shortest distance of Path.

 Therefore, the distance of P’ is equal to, or less than the distance of SP.

3.2.2.4 Pruning Boundary Sets 

The last step of the pruning algorithm is to process every boundary set if it is eligible to 

be pruned. A boundary set X, a node in the sketch graph, is pruned if and only if 
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SPTS(source, X) + SPTD(X, destination) > the -approximation, where SPTS

and SPTD represent the shortest-path trees rooted by the source and the 

destination respectively on an augmented x-Hop sketch graph, and SPT(A, B)

is a function returning the shortest distance from A to B in the shortest-path 

tree. 

If the above condition is satisfied, we can safely eliminate the boundary set X. The 

above statement is the same as discussed and proved in Section 3.1.3.3, so we will skip 

the proof here. 

In using an x-Hop sketch graph, the larger x is, the more accurate approximations 

we can get. For example, let us assume we know the - and -values from the boundary 

set X to the boundary set Y, from Y to the boundary set Z, and from X to Z. The - and -

values from X to Y and from Y to Z can be considered as values of edges in a 1-Hop 

sketch graph and the values from X to Z as ones in a 2-Hop sketch graph. It is obvious 

that the sum of the -values of edges from X to Y and from Y to Z is equal to, or smaller 

than the one from X to Z (Figure 3.10). Since we want to get as large a value as possible 

for the approximation for the lower bound, we should use an x-Hop sketch graph with a 

larger x. For the approximation of the upper bound, the same argument is applied. 

X

Y

Z

X

Y

Z

1-Hop sketch graph 2-Hop sketch graph 

The graph on the left depicts a 1-Hop sketch graph, with 1-hop edges from 

boundary set X to Y, to Z.

The graph on the right depicts a 2-Hop sketch graph, with 2-hop edge from 

boundary set X to Z, which is 2-hop because it is passing boundary set Y.

Figure 3.10 Difference Between 1-Hop and 2-Hop Sketch Graph 
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After finishing the pruning process, we will use the only boundary sets which 

have survived pruning to find the shortest path in the disk-based SP algorithm. 

 Algorithm 3.5 shows the pseudo-code for the pruning process. Lines 2 to 8 

calculate the -approximation by choosing the minimum of the two possible -

approximations. Lines 9 to 15 show the steps of pruning the boundary sets. Lines 9 and 

10 build the shortest path trees rooted by the source and destination on the augmented x-

Hop -sketch graph. 

Algorithm 3.5 X-HopSketchGraphPrune (sg, xHopSG[], src, dst, srcF, dstF)

Input: sg is an original sketch graph. xHopSG is an array containing a 1… x-Hop sketch 
graph, where x is the number of hops, src a source node, and dst a destination node. srcF

is a fragment where src is, and dstF is a fragment where dst is.

Output: Pruned sg.

/*Convert x-Hop Sketch Graph for pruning process.*/ 
1:  xHopSG[xHopSG.length – 1] MakeAugmentedXHopSG(xHopSG, src, dst, srcF, 

dstF)
/*Calculate the -approximation starting with maxSD*/

2: thePivot_0 DijkstraWithDualValue(src, dst, xHopSG[xHopSG.length – 1], TRUE)
/*Calculate the -approximation starting with minSD*/

3: thePivot_1 DijkstraWithDualValue(src, dst, xHopSG[xHopSG.length – 1], FALSE)
/* Choose the minimum of thePivot_0 and thePivot_1.

4: if thePivot_0 < thePivot_1 then

5:     thePivot thePivot_0

6: end if 

7: else thePivot thePivot_1

8: else end 

/*Build the shortest path tree rooted from src using  sketch graph*/ 
9: SPTSxHopSG Dijkstra(src, xHopSG[xHopSG.length – 1])  

/*Build the shortest path tree rooted from dst using  sketch graph*/ 
10: SPTDxHopSG Dijkstra(dst, xHopSG[xHopSG.length – 1])  
11: for all the nodes node in sg do /*Pruning process starts*/ 

    /*if the sum of two approximations for the lower bound is more than  
    the  approximation for the upper bound*/ 

12:     if thePivot < (SPTSxHopSG.getMin(node) + SPTDxHopSG.getMin(node)) then

13:         sg.remove(node) /*Remove the node*/ 
14:     end if

15: end for

16: return sg
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3.3 Query Optimization Using Query Graph 

The problem we face when multiple queries come into the spatial database system is how 

to sort the queries into a new order so that we can compute them with minimal system 

resources. We assume that a query usually comes into the system with the following 

information: a source, a destination coordinate, and fragments in which the source and 

destination coordinate lie. As we have seen in Section 2.2, the first part of finding the 

shortest path, namely finding the skeleton path of a query, requires those two fragments 

in main memory. Another assumption is that we have only enough buffers to 

accommodate two fragments at a given moment. In addition, the strategy for managing 

buffers in this thesis is the Least Recently Used (LRU), which is the most widely used in 

modern computer systems. Under these constraints, we can easily calculate how many 

swaps of fragments are required to process queries. For example, we have two different 

schedules of three queries pending in the queue, as illustrated in Figure 3.11 (a). In Figure 

3.11 (b), the optimal schedule of processing those queries requires 4 I/O activities in the 

LRU buffer: reading in fragment 0 and 1 for Query0, reading fragment 2 for Query3, and 

reading fragment 3 for Query2. On the other hand, the poor schedule in Figure 3.11 (c) 

requires 6 I/O activities: 2 reads of the fragments for each query respectively. In order to 

get the optimal schedule for n queries, the expected calculation time is n!, which is non-

polynomial. Therefore, it is impossible to get the optimal schedule for n queries within a 

reasonable time if n is large enough. 

 If we think of the IDs of the source and the destination fragments as nodes in a 

graph and draw a line between the two nodes, we can consider the above problem to be a 

graph traversal problem, which is known as an NP-complete problem to get an optimal 

result for visiting each node as little as possible [14]. Since it is an NP-complete problem, 

we would rather try to find a heuristic algorithm which could lead to a near optimum 

schedule. The heuristic algorithm we are proposing here is very simple and fast, but it is 

effective. The test results of the algorithm will be given in a later chapter. 
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 One of our objectives in devising the algorithm is that the query-scheduling 

algorithm should not affect the overall performance of the shortest path query, which 

means it should not take more than a few seconds for a large number of queries. To 

achieve the above, we have found an algorithm with an execution cost of O(n).

Before describing the algorithm, we need to clarify a simple step of grouping 

queries. If two or more queries in the query set have the same source and destination 

fragments, the buffer does not need to swap its contents in order to calculate those queries. 

We call them an Equivalent Class (EC) of queries. Hence, an EC consists of queries 

sharing the same source and destination fragments. In fact, we loosen the definition of EC

as we consider queries to be EC if they have the same fragments for the source and 

destination fragments in either order. For example, one query with fragment ID 1 for the 

source and fragment ID 2 for the destination, and the other one with fragment ID 2 for the 

source and fragment ID 1 for the destination are EC in the loose sense.  

Algorithm 3.6, QueryGraph, describes how we build a query graph for queries 

and sort them. The advantages of the algorithm are that it is simple and efficient, and 

Query0: Source Fragment 0, Destination Fragment 1

Query1: Source Fragment 2, Destination Fragment 3 

Query2: Source Fragment 1, Destination Fragment 2 

Query0 Query2 Query1

Frag 1 

Frag 0 

Frag 2 

Frag 1 

Frag 3 

Frag 2 

(a) Queries in pending

LRU Buffer State 

(b) Scenario 1 

Query0 Query1 Query2

Frag 1 

Frag 0 

Frag 3 

Frag 2 

Frag 2 

Frag 1 

LRU Buffer State 

(c) Scenario 2 

Figure 3.11 Query Optimization 
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does not need any complicated data structure. For the algorithm, we assume the buffer 

size for the fragments is 2. We also need to define a few terms we are using for the 

algorithm. A node is isolated if it is not connected to any edge in a graph. The node u is 

called a terminal node if the degree of u is 1. An edge e = <n, u> is called a dangling 

edge incident to n if u is terminal. Processing an edge is defined as outputting the edge 

then removing the edge and removing any isolated nodes from the graph. The algorithm 

basically examines the graph and removes edges and nodes step by step. Edges in the 

graph denote queries, so when edges are removed, the queries denoted by the edges are 

stored in a new sequence of the query set. Therefore, after removing all the edges in G,

the algorithm will generate a new query sequence with new ordering, possibly reducing 

I/O activities in the buffer. 

The complexity of the algorithm is O(n) since there is only one single loop. Inside 

the loop, there is not much calculation, simply picking a random node, or terminal node, 

and then removing possible dangling edges attached to the current node cn. The only 

redundant calculation in the algorithm is finding dangling edges attached to cn because 

non-dangling edges will be processed every time. However, the cost for that is limited 

since finding dangling edges is trivial, which only requires checking the nodes of the 

edges attached to cn.

The highlight of the algorithm is processing dangling edges. Since dangling edges

guarantee there will be at least one fragment in the buffer, the algorithm maximizes the 

usage of the current contents in the buffer. In Chapter 4, we will show how much the 

algorithm improves the buffer utilization compared to non-scheduled queries. 

Algorithm 3.6 QueryGraph 

Input: ECs and a query graph graph.

Output: ECs with new order 

/* initialization */ 
1: cn = null 

/* newly ordered queries will be stored in the query queue */
2: query queue is created. 

/*do the loop until all the nodes in the graph are removed */ 
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3: while graph != empty do

4:    if (cn == null) then

5:  if (there is an edge e = <u, v> such that  
v is terminal and the degree of u is either one or two) then cn = v;

6: end if 

7:  else cn = w, where w is any node in graph.
8:  end else

9:    end if

10:    if (there are dangling edges incident to cn) then

11: process the dangling edges one by one; 
12:    end if 

13:    if (cn exists) then

14:  let e = <cn, v> be an edge incident to cn;
15:       process e;
16: cn = v, if v exists and null otherwise; 
17:    end if       

18:    else cn = null

19:    end if 

20: end while 

3.4 Shortest-Path Algorithm – Batch Disk-based SP Algorithm 

The three algorithms introduced earlier in this chapter focus on how to organize a set of 

queries and to minimize search spaces. They do not themselves find the shortest path; 

they prepare queries for the better performance of the shortest-path algorithm on 

partitioned graphs. 

 The disk-based shortest path algorithm in [7] has two steps: finding a skeleton 

shortest path and filling the skeleton path. Since a skeleton path consists of boundary 

nodes in the path from the source to the destination, the next phase of the algorithm is to 

fill out the intermediate nodes between any two consecutive boundary node pairs in the 

skeleton path. Those two parts complete the algorithm. To fill out those intermediate 

nodes, we apply Dijkstra’s SP algorithm on a fragment in which two consecutive 

boundary nodes in the sketch graph lie. Since fragment DB is normally big, their solution 

is to place those fragments in the external memory and load them when necessary. 

If there are multiple queries pending in the system, a little modification of the 

order of processing multiple queries would help the algorithm use fewer I/O activities. 

Instead of processing them one by one, a batch disk-based SP algorithm process as a 
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certain number of queries together to find skeleton paths and then fill out those skeleton 

paths together at a later stage. The scheme is very simple. First, we calculate the skeleton 

paths of queries and then identify the fragments needed to compute the partial shortest 

paths of the queries. After we know all the fragments, we calculate the partial paths with 

respect to the fragments of the partial shortest paths. The last step is simply to place the 

calculated partial paths into the proper positions in the skeleton paths. 

 Figure 3.12 is an example of the processing of two queries. The shortest path of 

the first query is to pass through fragments 0, 2, 3, 5, 6, and 7 after the computation of the 

skeleton path. The shortest path of the second query passes through fragments 1, 2, 4, 5, 6, 

8, and 9. After the computation of the skeleton paths of each query, we have to fill the 

skeleton paths. To complete the computations, for query 1, we need to apply Dijkstra’s 

algorithm on 6, 5, 3, and 2; for the query 2, we need to apply it on 8, 6, 5, 4, and 2. If we 

have a buffer size of 2 and process query 1 first, and then query 2, we need 9 reads of the 

fragments to fill out the skeleton paths of the two queries. If we consecutively compute 

the partial shortest paths for the same fragment from different queries, we can save I/O 

activities. In the example, fragments 2, 5, and 6 are necessary to fill both skeleton paths, 

so we calculate the partial shortest paths for the two queries together for those fragments. 

This strategy allows us to save 3 reads of fragments.  

 This strategy works better if queries are scheduled properly. The suggested 

algorithm in Section 3.3 is effective since it sorts queries by their locality. 
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3.5 An Example of the Algorithms 

This Section will give an example of the algorithms presented in previous sections, from 

the start to the end of processing one query. For the pruning part, the example uses 

BSDistMatrix instead of an x-Hop sketch graph. The only difference between the two lies 

in how to calculate approximations, and the explanation of calculating with an x-Hop 

sketch graph is given in its own section. We assume that we already have a partitioned 

graph, the boundary node distance matrix, which holds all the shortest-distance 

information of boundary nodes in each fragment, and the BSDistMatrix, which holds all 

the shortest-distance information between boundary sets in a partitioned graph. Those are 

outcomes of the pre-processing phase of the disk-based SP algorithm. 

The first step of the query process is to accept queries and group them into 

batches. After grouping, the program sorts each group so that queries in each group will 

read in a fragment database. 

 Let us assume we have the queries depicted in Figure 3.13, and we have only a 

cache size of 2 for the fragment database. Each node represents a fragment. A node with 

the beginning of an arrow indicates the source fragment, while a node with the ending of 

an arrow indicates the destination fragment. For example, fragment 2 can be a destination 

fragment with fragment 1 and a source fragment with fragments 3 and 4. As described in 

1

0

2

4

7

3

5

6

8

9

Figure 3.13 Query Graph 
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Section 3.3, sorting those queries is simple. After constructing a query graph like Figure 

3.13, we must randomly choose any node in the query graph. We assume that we select 

fragment 2. With the selected fragment, we must go in the direction of the arrows. 

Fragment 2 has two possible routes, but the arrow between fragments 2 and 3 is a 

dangling edge, so we remove that arrow first. The next node will be 4; therefore, we 

remove the arrow from fragments 2 to 4. Processing fragment 4, we find another 

dangling edge, the arrow between fragments 4 and 5. We remove it first before going to 

fragment 6. The possible result will be 2 3  4 5  6 7  8 9 1 0.

The underlined numbers indicate fragments with dangling edges.

 Once the sorting of queries in a group is completed, we then find the skeleton path 

for each query individually. Finding a skeleton path of a query merely involves applying 

Dijkstra’s SP algorithm using a partitioned graph and its auxiliary files, such as the 

distance matrix, instead of a normal graph. In addition, we are going to insert the pruning 

algorithm into the middle of the algorithm. 

 As described in Chapter 2, we need source and destination fragments, and the 

distance matrix to carry out the algorithm. The pruning process starts with calculating the 

shortest-path tree rooted at the source in the source fragment and another shortest-path 

tree rooted at the destination in the destination fragment. With those shortest path trees, 

we are able to calculate the approximations with BSDistMatrix, taking the minimum 

approximation from the possible approximations. There can be (2 × m n)

approximations, where m and n are the number of boundary sets in the source and 

destination fragments respectively. Each approximation is the minimum of the sums of 1) 

the maximum (minimum) shortest distance from the source node to a boundary set in the 

source fragment, 2) the minimum (maximum) shortest distance between the boundary set 

in the source fragment to a boundary set in the destination fragment, and 3) the maximum 

(minimum) distance from the boundary set in the destination fragment to the destination 

node respectively (Section 3.1.2). After calculating the approximation, we can compare it 

with the minimum distances passing other boundary sets in the partitioned graph. A 

minimum distance passing a boundary set X is selected out of a number of possible 

minimum distances. There can also be m n possible minimum distances, the same as 
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above. Each possible minimum distance is the sum of 1) the minimum shortest distance 

from the source node to a boundary set in the source fragment, 2) the minimum shortest 

distance from the boundary set to boundary set X, and 3) the minimum shortest distance 

from boundary X to a boundary set in the destination fragment. If the minimum distance 

passing X is longer than the approximate shortest distance, then we can safely remove X,

which means we do not have to consider the boundary nodes in X during the remaining 

part of finding a skeleton path. The remaining part of the process just follows the normal 

procedure of the disk-based SP path algorithm. The figures from 3.14 to 3.16 depict an 

example of finding the skeleton path in the pruning process. Figure 3.14 shows how to 

calculate the -approximation from the source to the destination. For the sake of 

simplicity, the figure only shows the (max– min – max) approach. Figure 3.15 explains 

how to calculate the -approximation and prune a boundary set in a graph. The figure 

shows the case of probing the boundary set X, whose distance is longer than the -

approximation calculated in Figure 3.14. Therefore, X can be pruned. We probe every 

boundary set in the figure, in order to decide whether it can be pruned or not. Figure 3.16 

shows finding the skeleton path of the query on the pruned graph. We assume that grey-

coloured boundary nodes are only eligible for the calculation, which means all other 

boundary nodes are pruned. Therefore, the search space for the disk-based SP algorithm 

becomes smaller with the pruning algorithm. 

 After the pruning algorithm, we apply the batch disk-based SP algorithm, on the 

pruned graph. Since the skeleton path consists only of boundary nodes, we complete the 

path by filling out intermediate nodes between boundary nodes in the skeleton path, using 

the traditional Dijkstra’s SP algorithm. In the batch disk-based SP algorithm with 

multiple queries, the filling-out process is slightly different from the disk-based SP 

algorithm. Since we know which fragments are required to be filled out, we can fill the 

skeleton paths in each fragment. Figure 3.17 shows an example of two queries filling out 

the skeleton paths. If we have only two cache entries for the fragment database and 

process each query one by one, then we need 8 reads of the fragment database. However, 

if we group the partial shortest paths by their fragments as in Figure 3.17, we need only 5 
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reads since 3 fragments overlap and we process the partial shortest paths for those 

fragments together. 

 In sum, the algorithm sorts out multiple queries so that we can minimize the 

fragment database access. The algorithm then processes each query to find the skeleton 

path. During the process of finding the skeleton path, once the algorithm gathers the 

information of minimum and maximum distances from the source to the boundary sets in 

the source fragment, the pruning algorithm is activated. After the pruning, the normal 

disk-based SP algorithm is applied on the pruned graph. In the filling-out process, the 

algorithm groups skeleton paths by fragments and then fills out each partial skeleton path. 

1. We have the maximum shortest distances from src and dst to the 

boundary sets in their fragments.  

2. To calculate the -approximations, we need to access BSDistMatrix, and 

get the minimum distances between boundary sets in the source and 

destination fragments.  

3. Since there are two boundary sets in each fragment, we have 4 possible 

approximations. Select the minimum from them. In the example, we have 

53 (8 + 35 + 10) is the minimum of all 4 candidates. 

Figure 3.14 -approximations
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1. The dotted line represents the -approximation from the source to the 

destination, with the distance of 53. 

2. The solid lines in the source (destination) fragment represent the 

minimum shortest distances from the source (destination) to the 

boundary set in the source (destination) fragment. 

3. We now compare the -approximation to other -approximations 

passing a boundary set, in this example, X.

4. There are also 4 possible candidates for the approximation passing 

the boundary set X, represented by solid lines. 

5. We calculate those candidates and select the minimum distance, 60 (8 

+ 25 + 23 + 4). 

6. We remove the boundary set X since the -approximation (60) is 

larger than the -approximation (53). 

Figire 3.15 Pruning a Boundary Set 
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1. After pruning, we only need to consider the grey boundary nodes. 

2. With the pruned graph, we now have the skeleton path, represented by 

solid line. 

Figure 3.16 Finding the Shortest Path with Pruned Graph 
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1. We have two skeleton paths. 

2. The first query passes through a, b, c, d, and e, and the second query 

passes b, c, and d. 

3. Both skeleton paths pass the grey coloured fragments, b, c, and d 

commonly, which means we can fill out the partial shortest paths in 

those fragments together. 

a

b c d

e

Figure 3.17 Dealing with Multiple Queries



72

Chapter 4

Experiments

The main purpose of chapter 4 is to detail how the algorithms presented in this paper 

perform, compared to Dijkstra’s algorithm and the disk-based algorithm proposed by [7]. 

We divided the performance testing into three sections: QueryGraph (Section 3.3), the 

batch disk-based algorithm (Section 3.4), and pruning algorithms (Sections 3.1 and 3.2). 

4.1 System Environment and Data Sets  

The system for testing is a Pentium 4 1.7GHz with 256MB of main memory. The hard 

disk of the system is Ultra ATA/100, with a 7,200 rpm spinning rate. Java is the primary 

language, and the version is 1.3.1. To make a homogeneous environment for every test 

case, we set the Java Virtual Memory (JVM) to be 128MB, which means the total 

memory we use for the test is 128MB. 

 The data for testing is from the Connecticut road system extracted from the 

Tiger/Line file [15]. When the Connecticut road system is represented as a graph, the file 

size is about 20MB. It consists of around 190,000 edges and 160,000 nodes. To partition 

the graph, we adopt the partitioning algorithm in [7]. The details of the partitioned graph 

and its auxiliary data files are summarized in Table 4.1. We use different fragment sizes, 

ranging from 100 nodes to 15,000 nodes per fragment, to see how fragment size impacts 

the performances. 
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 As shown in Table 4.1, the number of nodes per fragment does not affect the size 

of the DB files, except that of BSDistMatrix. BSDistMatrix is a 2-dimensional matrix, 

having rows and columns for boundary sets. Therefore, the file size of BSDistMatrix is 

proportional to the square of the number of the boundary sets in each test set. The time to 

build BSDistMatrix is different in each case because the process of building 

BSDistMatrix is basically calculating the shortest paths between all possible pairs of 

boundary nodes. For example, the case of 1,000 nodes per fragment takes about 4 times 

longer than the one of 15,000 nodes per fragment, which is almost the same ratio as the 

number of boundary nodes between the two cases. 

No. of 
Nodes 

per 
fragment 

No. of 
fragments 

No. of 
boundary 

sets 

No. of 
boundary 

nodes 

Fragment 
DB size 
(MB) 

Distance 
Matrix 
DB size 
(MB)

BSDistMatrix
size (MB) 

All 1 - - 18.9 - - 

100 1693 3430 12251 23.4 2.76 185.221

1,000 138 347 3998 20.0 2.20 2.023

5,000 28 66 1649 19.4 1.72 0.09

10,000 14 29 1182 19.3 1.72 0.020

15,000 10 21 1120 19.3 2.04 0.013

Table 4.1 Test Set Statistics 

 Table 4.2 shows the file size of the x-Hop sketch graph for fragments having 

1,000 and 5,000 nodes. The reason that the file size of the graphs peaks at the 5-Hop 

sketch graph in the 1,000 node fragment is that some of the nodes in the sketch graph do 

not have nodes that are 6-hops away. The size of the graphs in the 5,000-node fragment 

does not grow any more after a 7-Hop sketch graph, which means the maximum number 

of hops in the sketch graph between any given two nodes does not exceed 7. 
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No. Of 
Nodes 

x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x =10

1000 0.395 0.562 0.676 0.745 0.772 0.768 0.735 0.664 0.589 0.519

5000 0.127 0.147 0.147 0.136 0.125 0.117 0.113 0.113 0.113 0.113

Table 4.2 The Size (MB) of x-Hop Sketch Graphs 

 The time it takes to build a BSDistMatrix for a 1,000-node fragment is about 

8,000 seconds using the system. Generating all x-Hop sketch graphs, where 0 < x  10, 

for a 1,000-node fragment, takes about 5,000 seconds. As we expected, making x-Hop 

sketch graphs at a certain level takes less time than making a BSDistMatrix.

 For the partitioned graph (i.e. fragments), we need less than 60MB of memory 

with cache size management. To control the cache size for the databases of partitioned 

graphs, we employed the VirtualHashtable technique introduced in [7]. The 

VirtualHashtable is an array-like data structure which reads in and writes out memory 

contents to the hard disk. Its key feature is that not all of its content is in the main 

memory. The user specifies the maximum amount of content which the VirtualHashtable 

can hold. Therefore, if the VirtualHashtable tries to load content while it already has the 

maximum amount of content, then it writes some of the current content out to disk and 

loads the new content by means of the LRU replacement scheme. In the following test 

results, all the cache sizes being set up denote the maximum amount of content in the 

VirtualHashtable. 

 During the test, the most memory-consuming data bases are the fragment DB and 

the distance matrix DB. BSDistMatrix is used at most once throughout the process of 

each query; however, the fragment DB and the distance matrix DB are used at least once 

throughout the computation of the shortest path, so the cache sizes of those DBs are 

critical to the outcomes. Even if we have the JVM of 128MB for the test, we try to set the 

cache size as low as possible to fit into 64MB, so that we can assume that the suggested 

algorithms are scalable for larger graphs, which cannot be loaded in the main memory if 

they are not partitioned. 
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4.2 Query Optimization Using Query Graph 

Algorithm 3.1, QueryGraph, tries to minimize the I/O activities for the fragment DB. 

There are two places where the fragment DB is necessary during the shortest-path 

calculation: in finding the skeleton path and filling it out. The usefulness of QueryGraph

is for the stage of finding skeleton paths to read the source and destination fragments 

from fragment DB as little as possible. The assumption is a cache size of 2, as mentioned 

in Section 3.3, and that all the queries are pre-sorted to equivalent classes. With only 2 

cache entries, the optimized schedule will be able to re-use a maximum of 50% of the 

cache if the query graph of the equivalent classes is all connected, because, in the 

optimized schedule, there will always be one cache entry for the next query to use. The 

worst case is 0% cache utilization. 

 For the test, we randomly generated 10,000 queries and then divided them into 

small queues of specific sizes. The queues are the batches we process at the same time. 

For example, if the size of a queue is 10, we use QueryGraph on queries in the queue and 

calculate their shortest paths together. 

 The result of the test is obtained by executing only QueryGraph with the pre-

sorted equivalent classes of the queries. Therefore, the test is independent of all other 

phases. 

No. of Queries in 

the Queue 

Non-

scheduled 
10 20 50 100 1000 

Cache Utilization 0.0144 0.047 0.120 0.223 0.343 0.471 

Table 4.3 Cache Utilization of Using QueryGraph Algorithm 

 Table 4.3 shows how much QueryGraph improves the cache utilization with 

respect to the size of the queries in the queue. The cache utilization is calculated by p q,

where p is the number of cache-hits and q the number of total requests for the fragment 

DB. It is obvious that more queries in a batch will increase the cache utilization since 

there will be a greater possibility of sharing nodes when a large number of queries are in 

the batch. Even a case of 10 queries in the queue performs more than 3 times better than a 
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non-scheduled case. A case of 1000 queries in the queue reaches near the maximum 

utilization level, that is 50% of the optimized schedule, while the time to schedule takes 

less than 0.1 seconds.  

4.3 Disk-based SP Algorithm vs. Batch Disk-based SP Algorithm 

The difference between the disk-based SP algorithm and the batch disk-based SP 

algorithm lies in how to process multiple queries. The disk-based SP algorithm executes 

queries one by one, which means that there is no interruption between queries. On the 

other hand, the batch disk-based SP algorithm has two steps to process a unit of queries. 

First, it calculates skeleton paths for all queries in the batch. With the calculated skeleton 

paths, we know which fragment we need to read for filling-out process, so the batch disk-

based SP algorithm fills the skeleton paths by fragment (Section 3.4). Since the purpose 

of the batch disk-based algorithm is to reduce the I/O activity for reading the fragment 

DB during the filling-out phase, it should not affect the finding-skeleton-path phase and 

is, in fact, implemented so as not to affect it. 

 In this section, we group 10 queries together and calculate them by means of the 

two algorithms above. A unit of 10 queries is also scheduled by the QueryGraph

algorithm. First, we calculate 300 queries sequentially using the disk-based algorithm, 

and then count the number of requests for the fragment DB. We then calculate 300 

queries, grouped 10 at a time. The skeleton paths of the 10 queries are calculated 

individually, and the filling-out process for them is carried out together. For the same 

reason as shown in Section 4.2, the more queries that are processed together, the more 

benefits we get. The cache size of the fragment DB for testing is 2. 

 The result of the test is obtained by executing two algorithms separately. Both 

algorithms use QueryGraph to sort the queries. QueryGraph does not affect the result of 

the test because the sequence of queries for calculating skeleton paths remains the same 

regardless of the two algorithms. The pruning algorithms are not used in this test. The 

cache size for the distance-matrix DB is set to the maximum so that the algorithms are 

not affected by the cache size. 
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Figure 4.1 shows that the batch disk-based algorithm requests around 20% fewer 

fragment DB accesses than the disk-based SP algorithm does. As the fragment size 

increases, the number of fragment-DB accesses decreases, which increases the possibility 

of overlapping fragments between different queries. The fewer fragment requests during 

calculations also affect the calculation time.  

 The savings in terms of calculation time are also one of the benefits of the 

algorithm. Our results show that the calculation time decreases by up to 20% in the best 

case with 10-query grouping. The details of the results will be shown in Section 4.4.5. 
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Figure 4.1 Number of Fragment DB Accesses 

4.4 Performance with Pruning Algorithms 

We introduce two different pruning methods, one using BSDistMatrix and the other an x-

Hop sketch graph. For a consistent testing environment, we first find the optimum 

parameters for some important factors. The factors for the test are as follows: 

Query Type: We divide queries into three types of ranges: long, medium, and 

short. The shorter query might benefit more from the pruning algorithm, while 

the longer query might benefit less, in terms of the number of pruned 

boundary sets. Long-range queries are more than 66% of the longest possible 
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distance in the graph, medium-range queries are less than 66% and more than 

33%, and short-range queries are less than 33%. We will carry out all the 

testing according to the differently sized sets of queries. 

Fragment Size: Fragment size matters because, in partitioning a graph, we 

have fewer fragments if we set the number of nodes in a fragment to a large 

number, which in turn means we have a smaller number of boundary sets in 

the partitioned graph. The number of boundary sets affects two aspects. One is 

the size of materialized data because the size of materialized data increases as 

the boundary sets grow. The other one is the effectiveness of the pruning 

algorithm. Too many boundary sets take too much time to read in the data, as 

well as more time to calculate. We test 5 different fragment sizes: 100, 1,000, 

5,000, 10,000, and 15,000. 

Cache size of Distance Matrix: As proved in [7], the cache size is set for the 

best performance at some level smaller than the full cache size. For consistent 

testing results, all tests should have standardized cache sizes. We test 5 

different levels of cache sizes. 

Degree of an x-Hop sketch graph: In an x-Hop sketch graph, x is an important 

factor since the accuracy of the approximations changes according to x. We 

test 1- to 10-Hop sketch graphs for a 1000-node fragment. 

After finding optimum parameters for each case, we use those parameters for the 

comprehensive performance testing. 

4.4.1 Disk-based SP Algorithm 

The main purpose of the test in this section is to find the optimum fragment size for the 

best performance when using the disk-based SP algorithm suggested in [7]. In addition, 

for the optimum cache size of a distance matrix, we test 5 different parameters. 

 The results shown in this section are obtained by executing the disk-based SP 

algorithm, modified and having eliminated some parts. In Section 2.3, we described the 

disk-based SP algorithm and there are two places where the algorithm merges two 

fragments: source and destination fragments in finding a skeleton path, and two 
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consecutive fragments in which the algorithm fills out the skeleton path of two boundary 

nodes. After we eliminate those merging operations in the algorithm, we can speed up the 

execution of the disk-based SP algorithm. In addition to the conditions above, it does not 

pre-process queries with QueryGraph.

4.4.1.1 The Effect of Fragment Size 

The fragment size affects the performance because materialized data, such as a distance 

matrix, or the number of nodes in a fragment, are decided by the fragment size and 

directly involved in the algorithm. Therefore, it is important to find the optimum size for 

a partitioned graph. 

 Figure 4.2 shows the performance difference according to the different fragment 

sizes for the graph of Connecticut. For each query type, we process 100 queries, and the 

time shown in the graph is an average time such query. The cache sizes for the fragment 

DB and distance-matrix DB are set to the number of the entries in the fragment DB and 

distance-matrix DB, i.e., the I/O activity is not a factor in the result of the test. As shown 

in the figure, a 1000-node fragment generates the best performance in every range of 

queries.  

Figure 4.2 Calculation Time for the Different Size of Fragments 
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4.4.1.2 The Effect of the Cache Size of the Distance Matrix 

The effect of the cache size for a distance matrix is tested in this section, and we report 

the result for a 1000-node fragment case since we determined that this size performs best 

on the Connecticut graph in Section 4.4.1.1. All the settings for the test are same as in 

Section 4.4.1.1 except the cache size of the distance-matrix DB. Figure 4.3 shows the 

result of the test cases, each of which ran through 100 queries and calculated an average 

per query. The 1000-node fragment of the Connecticut graph has a total of 347 distance 

matrices, and we test 5 different cache sizes: 10, 20, 30, 40, and 150. For each range of 

query sets, the result is very similar in that the best result is around 20 to 30. Even if we 

increase the cache size above 30, the calculation time changes little. From these results, 

we can ascertain that the cache size of around 10% of the total distance matrices in the 

distance-matrix DB is enough. 

Figure 4.3 Calculation Time According to Different Cache Sizes 
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case of a 1000-node fragment in the following sections. In the coming sections, all the 

tests are executed with 10% of the whole cache size for a distance matrix. 

4.4.2 Pruning Algorithm Using BSDistMatrix

The advantage we expect from the pruning algorithms is to eliminate a number of 

boundary sets in a sketch graph so that the disk-based SP algorithm [7] uses less search 

space. In the disk-based SP algorithm, there are numerous I/O activities and calculations 

when the algorithm processes boundary nodes, which makes pruning search spaces 

important. 

 For the tests in this section, we do not use QueryGraph nor the query-grouping 

scheme, introduced in the batch disk-based SP algorithm. We test 300 queries, 100 

queries for each query type. We use the modified disk-based SP algorithm described in 

Section 4.4.1, with the cache sizes of 2 for the fragment DB and 10% of the total distance 

matrices for the distance-matrix DB. We also modify the pruning algorithm for reason of 

efficiency. The pruning algorithm explained in chapter 3 first builds two SP trees rooted 

by the source and destination in their fragments respectively, and then calculates 

approximations for pruning. However, the disk-based SP algorithm also builds the SP 

tree from the source until it finds the destination. Therefore, we have the SP tree from the 

source in the source fragment during the disk-based SP algorithm. That makes it 

redundant that the pruning algorithm builds the SP tree from the source before executing 

the disk-based SP algorithm, so we use the SP tree generated by the disk-based SP 

algorithm and trigger the pruning algorithm as the completion of the SP tree. Finally, we 

need to build the SP tree from the destination only, in order to start the pruning algorithm. 

The trade-off is that the pruning algorithm may prune some of the boundary sets in the 

source fragment. With the modified pruning algorithm, we trigger the pruning algorithm 

after closing all the boundary nodes in the source fragment, so we do not take any 

advantage from those pruned boundary sets in the source fragment. Because of the trade-

off, the number of boundary nodes accessed during the execution of the disk-based SP 

algorithm with x-Hop sketch graph is, in fact, less than the one with BSDistMatrix for 
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some cases, which cannot happen if we use the original scheme for the pruning algorithm 

with BSDistMatrix (Figure 4.6 in Section 4.4.3). 

 The time for the pruning process using BSDistMatrix is expected to be minimal 

since there is no complicated calculation involved. The only time-consuming task is 

applying Dijkstra’s algorithm on the source and destination fragments in order to build an 

SP tree. Table 4.4 shows the average time per query for the pruning algorithm using 

BSDistMatrix, including loading it into the memory, calculating approximations, and 

pruning boundary sets, according to the different sizes of the fragments. The number of 

entries indicates the number of entries in the matrix of each case, which is the result of (n

n), where n is the number of nodes (boundary sets) in a sketch graph. 

 100 nodes 1000 nodes 5000 nodes 10000 nodes 15000 nodes

Time (Sec.) 0.14 0.055 0.19 0.29 0.37

No of Entries 11764900 120409 4356 841 441

Table 4.4 AverageTime per Query for Pruning Using BSDistMatrix

 As in the table, the optimum fragment size for BSDistMatrix is interestingly a 

1000-node fragment as well; the same optimum size as resulted in Section 4.4.1. The 

100-node fragment takes more time in calculating approximations than the 1000-node 

fragment, even though building an SP tree in the 100-node fragment for the source and 

destination fragments takes less time than in the 1000-node fragment. This is the outcome 

because there are many more entries in BSDistMatrix, which means it also has more 

boundary sets to process. A fragment size of more than 5000 takes more than a 1000-

node fragment because the time for building an SP tree in the destination fragment 

increases significantly as the size of a fragment grows. 

 One of metrics for measuring the effectiveness of the pruning algorithm is to 

count the number of boundary nodes used during the calculation of skeleton paths. If a 

node in a sketch graph is pruned, then the disk-based SP algorithm does not include the 

boundary set which the node represents. Since a boundary set contains a number of 

boundary nodes, the more nodes (boundary sets) the pruning algorithm eliminates in the 
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sketch graph, the less boundary nodes the disk-based SP uses during the calculation. 

Figure 4.4 shows how many boundary nodes we can save from the pruning algorithm. 

Each bar in the figure represents the average number of closed boundary nodes per query 

during the disk-based SP algorithm. For example, the algorithm needs to close about 

2100 boundary nodes to calculate a skeleton path of a medium query without pruning in 

the 1000-node-fragment case. On the other hand, the algorithm needs just over 1000 

boundary nodes with pruning, saving over 40% of accesses for boundary nodes. In 

closing a boundary node, the algorithm has to open and update the distances of neighbor 

boundary nodes, and the number of the neighbor boundary nodes is huge. In the case of 

the 1000-node fragment, each fragment has more than 100 boundary nodes, which means 

every boundary node has about 100 neighbor nodes. Therefore, in order to close one 

boundary node, the algorithm has to access 100 neighbor boundary nodes.  

 The figure also shows that the pruning algorithm does not work well with larger 

fragments. The reason is that we have a smaller number of boundary sets as we increase 

the size of each fragment. The difference between the approximations and the actual 

shortest distance becomes larger as the size of each fragment increases, so we lose the 

accuracy of approximations in larger fragments. 

 Figure 4.5 illustrates the average calculation time per query with and without the 

pruning algorithm. The queries are the same query set used in Section 4.4.1. For the 

pruning algorithm using BSDistMatrix to be effective, we should use fragment DB, in 

which each fragment has fewer than 5000 nodes.  

 The case of a 100-node fragment improves the most, but the performance is a 

little slower than that of the 1000-node fragment. Therefore, we can conclude that 

fragments with 1000 nodes are the best choice out of the 5 suggested fragment sizes for 

pruning algorithms. The other query sets with different distance ranges behave in a 

similar way, and the case of a 1000-node fragment works best. 



Chapter 4. Experiments  84 

Long Range Queries

0

2000

4000

6000

8000

10000

12000

100 Nodes 1000 Nodes 5000 Nodes 10000

Nodes

15000

Nodes

No. Nodes per Fragment

N
o

. 
B

o
u

n
d

a
ry

 N
o

d
e
s
 C

lo
s
e
d

Prune

No Prune

Med Range Queries

0

1000

2000

3000

4000

5000

6000

7000

8000

100 Nodes 1000 Nodes 5000 Nodes 10000

Nodes

15000

Nodes

No. Nodes per Fragment

N
o

. 
B

o
u

n
d

a
ry

 N
o

d
e
s
 C

lo
s
e
d

Prune

No Prune

Short Range Queries

0

500

1000

1500

2000

2500

3000

3500

4000

100 Nodes 1000 Nodes 5000 Nodes 10000

Nodes

15000

Nodes

No. Nodes pe Fragment

N
o

. 
B

o
u

n
d

a
ry

 N
o

d
e
s
 C

lo
s
e
d

Prune

No Prune

Figure 4.4 Average Number of Boundary Nodes Closed 



Chapter 4. Experiments  85 

Caculcation Time for Long Range Query with Various 

Fragment Size

0

2

4

6

8

10

12

100 1000 5000 10000 15000

No. Of Nodes per Fragment

S
e
c
o

n
d

s

No-Pruning

Pruning

Caculcation Time for Mid Range Query with Various 

Fragment Size

0

1

2

3

4

5

6

7

100 1000 5000 10000 15000

No. Of Nodes per Fragment

S
e
c
o

n
d

s

No-Pruning

Pruning

Caculcation Time for Short Range Query with Various 

Fragment Size

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

100 1000 5000 10000 15000

No. Of Nodes per Fragment

S
e
c
o

n
d

s

No-Pruning

Pruning

Figure 4.5 Average Calculation Time per Query 



Chapter 4. Experiments  86 

4.4.3 Pruning Algorithm Using an x-Hop Sketch Graph 

Different from BSDistMatrix, a pruning algorithm with an x-Hop sketch graph requires 

more calculations: building the shortest-path trees from the source and destination in the 

source and destination fragments and finding the approximations using Dijkstra’s 

algorithm on an x-Hop sketch graph. Therefore, the pruning procedure takes longer. 

 We show a 1000-node-fragment case for this test only, because we already know 

the 1000-node fragment works better than other cases and pruning with an x-Hop sketch 

graph is not different. 

 The testing environment is set as in Section 4.4.2 since we wish to compare the 

results. Therefore, except for the pruning part which is independent of the disk-based SP 

algorithm, we execute the disk-based SP algorithm with the same environment in Section 

4.4.2. 

 First, we show a table of the augmented x-Hop sketch graphs according to x.

Table 4.5 shows the number of edges in different augmented x-Hop sketch graphs and the 

time to do the whole procedure of pruning. The number of edges is important because the 

more edges a graph has, the more time it takes to calculate a shortest path using 

Dijkstra’s SP algorithm. The number of edges peaks at x = 6 as x grows, and the average 

calculation time keeps increasing up to x = 6 and flatters after that. The reason is that one 

of the procedures for the pruning algorithm is making the augmented x-Hop sketch graph, 

which takes some time. The query set for the test is 100-long range queries with 1,000-

node fragments. The other ranges of queries do not make any significant difference in the 

tests because all the tests use a very similar size of the augmented x-Hop sketch graph. 

Table 4.6 shows the average calculation time to obtain a skeleton path for a query 

according to x in the x-Hop sketch graph. For a long-range query, the disk-based SP 

algorithm works best when x = 10. For a medium-range query and a short-range query, 

the best choices are x = 7 and x = 3 respectively. Even though the best performances 

occur at x = 10, 7, and 3 for the long-, med- and short-range queries respectively, we 

choose x = 5, 4, and 3 respectively, in order to compare with the pruning algorithm using 

BSDistMatrix.
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In order to compare the approximations between the x-Hop sketch graph and 

BSDistMatrix, we calculate the - and -approximations of all the boundary set pairs in 

the sketch graph with 1,000-node fragments. There are 347 boundary sets in the sketch 

graph, so we have 3472 cases of the approximations, and then we categorize each case by 

the length of the approximations. For the x-Hop sketch graph, we only test the cases of x,

where x = 1, 3, 5, 7 and 9. Table 4.7 shows the comparison for the -approximations 

between the x-Hop sketch graph and BSDistMatrix. The figures in the table show the 

average ratio of the -approximations with the x-Hop sketch graph to the -

approximations with BSDistMatrix. It clearly shows that the approximations with the x-

Hop sketch graph become closer to the approximations with BSDistMatrix as x increases. 

Even in the case of x = 3 for a long-range query, the average approximation with the x-

Hop sketch graph is only 7.3% longer than the one with BSDistMatrix. Table 4.6 shows 

the comparison for the -approximations. The figures in the table also represents the 

average ratio of the -approximations with the x-Hop sketch graph to the -

approximations with BSDistMatrix. Unlike the -approximations, the changes become 

more radical as x increases. In the case of x = 3 for a medium-range query, the average -

approximation with the x-Hop sketch graph is only about 74% of the one with 

BSDistMatrix. If we compare the difference of the ratio between the - and -

approximations in the same case, we can easily find that the pruning algorithm with x-

Hop sketch graph calculates the -approximations better than does the -approximations.

 To see how the pruning algorithm with an x-Hop sketch graph works according to 

x, we ran through 10 different x-Hop sketch graphs. Figure 4.6 shows the average number 

of closed boundary nodes during the calculations of skeleton paths using the disk-based 

SP algorithm, the same metric we used in Section 4.4.2 to test BSDistMatrix. In the figure, 

all three ranges of queries are tested, and we can observe how the pruning algorithm 

works with different x in x-Hop sketch graphs. For all three cases, the number of 

boundary nodes closed decreases as the number of hops in the x-Hop sketch graph 

increases. For the medium- and short-range queries, the number does not decrease 

dramatically beyond some points, and that can be interpreted to mean we do not need 

more than a certain x-Hop graph to have the best results. Therefore, we should choose 
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different x-Hop sketch graphs according to the length of the queries. Compared to 

BSDistMatrix in terms of the number of nodes closed, the x-Hop-sketch-graph approach 

works fairly well if we choose x carefully. For x = 5 for long-range queries, the algorithm 

closes around 2,500 boundary nodes, which is about 20% more nodes closed compared to 

BSDistMatrix. The calculation time including pruning, finding skeleton path, and finding 

actual path for a query will be shown in Section 4.4.4. 

x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x=10

No. of 
Edges

1533 4109 6008 7212 7770 7881 7553 6668 5676 4719

Time for 
Pruning 

0.14 0.16 0.21 0.25 0.28 0.31 0.32 0.32 0.33 0.33

Table 4.5 Number of Edges in Augmented x-Hop Sketch Graphs and Time to Calculate

x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x=10 

Long 2.15 2.09 1.96 1.86 1.74 1.69 1.65 1.60 1.52 1.50

Med 1.58 1.34 1.09 1.10 0.99 0.97 0.96 0.98 0.99 0.98

Short 0.91 0.66 0.56 0.57 0.60 0.64 0.66 0.69 0.70 0.70

Table 4.6 Time to Calculate Skeleton Paths for Different Query Type 

x = 1 x = 3 x = 5 x = 7 x = 9 

Long 1.36544 1.073148 1.034974 1.02139 1.012418

Med 1.349 1.062649 1.025602 1.006632 1.000628

Short 1.272677 1.027859 1.001732 1 1

Table 4.7 Comparison of the -approximation 

x = 1 x = 3 x = 5 x = 7 x = 9 

Long 0.239646 0.743585 0.872578 0.930323 0.952424

Med 0.265381 0.770313 0.907695 0.960071 0.99

Short 0.300416 0.862418 0.978902 0.999321 1

Table 4.8 Comparison of the -approximation 
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4.4.4 Comprehensive Results 

We have seen the results of individual algorithms so far, and, in this section, we examine 

results that give us the overall performance of all the algorithms in one combined 

algorithm. The description of algorithms tested for this section is as follows: 

Main memory version of Dijkstra’s SP algorithm 

The algorithm takes the whole digital map into the main memory of the system 

and applies Dijkstra’s SP algorithm to find the shortest paths. We assume that the 

digital map of Connecticut is loaded in the main memory before executing 

Dijkstra’s SP algorithm. 

Disk-based SP algorithm 

With pre-computed data such as fragment DB and distance matrix DB, the disk-

based SP algorithm calculates the shortest paths using the materialized data. The 

algorithm is explained well in [7], and, in fact, the program we use is the exact 

same algorithm with a little modification for efficiency. The modification we 

made for the algorithm is explained in Section 4.4.1. 

Disk-based SP algorithm with pruning using BSDistMatrix

The disk-based SP algorithm except that it adopts the pruning algorithm using 

BSDistMatrix with the modification explained in Section 4.4.2. 

Disk-based SP algorithm with pruning using BSDistMatrix and grouping 10 

queries 

In addition to the above, the algorithm groups 10 queries and processes them as 

described in Section 3.1. 

Disk-based SP algorithm with pruning using x-Hop sketch graphs 

The same disk-based SP algorithm except that it adopts pruning algorithm using 

x-Hop sketch graphs. 
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Disk-based SP algorithm with pruning using x-Hop sketch graphs, and grouping 

10 queries 

In addition to the above, the algorithm groups 10 queries and processes them as 

described in Section 3.1.  

For the pruning algorithm using x-Hop sketch graphs, we take different x’s for 

different sets of queries: 3, 4, and 5 for short-, medium-, and long-range queries 

respectively. The queries are the same sets of queries used in the previous sections, and 

the fragment DB is a 1000-node fragment. The cache sizes for the fragment DB and the 

distance-matrix DB are 2 and 30 respectively. Additional to all of the above, all tests 

make use of QueryGraph before executing those algorithms, explained in Section 3.3. 

 To compare these algorithms, we investigate two metrics: the calculation time and 

I/O activity of a distance matrix. The calculation time is, of course, the most important 

metric since the whole point of the work being done is to reduce calculation time. The 

I/O activity of a distance matrix is also important because a distance matrix is a most-

used data. For the I/O activity, we do not include the main memory version of Dijkstra’s 

algorithm, because it does not have any I/O activities during calculation. Also, we do not 

include the algorithms with grouping queries in I/O-activity tests, because the grouping 

scheme affects only the filling out of real paths, with no relationship to finding skeleton 

paths. 

 Figure 4.7 shows the calculation time for different types of queries. It clearly 

shows that the main memory version of Dijkstra’s SP algorithm performs the worst and 

that pruning algorithms in fact reduces the calculation time regardless of query types. The 

pruning algorithm using BSDistMatrix takes about 20% less calculation time for the long-

range queries, compared to the original disk-based SP algorithm, and about 50% less 

compared to the main memory version of Dijkstra’s SP algorithm. For the short–range 

queries, the advantage goes up to 30%. Combined with the grouping scheme, its 

performance for any type of queries is better than 30% of the original disk-based SP 

algorithm. The pruning algorithm with an x-Hop sketch graph also performs about 10% 

to 30% better than the disk-based algorithm according to the types of queries. With the 
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grouping scheme, the advantage goes up to 25% for the long-range queries, and 30% for 

the med- and short-range queries. If we compare two pruning algorithms, BSDistMatrix

outperforms the x-Hop sketch graph by about 20%. 

 Figure 4.8 illustrates the performance in terms of accessing the distance matrix 

database during the process of finding skeleton paths in the algorithms. For this test, we 

use the cache size of 30 out of 347 total cache entries, about 10% of the total. As shown 

in the figure, using the pruning algorithm, we can reduce the I/O activity by more than 

70% of the I/O activity of the original disk-based algorithm. The reason that the I/O 

activity of medium-range queries is slightly more than the one of long-range queries in 

the original disk-based algorithm is that the area covered by the medium-range queries in 

a graph is not much different from the one by the long-range queries since the disk-based 

algorithm itself is a greedy algorithm. Thus, we adopt the idea of pruning search spaces, 

and the results reveal that the pruning algorithm narrows search spaces. Less I/O activity 

for a distance matrix means the pruning algorithms make the disk-based algorithm access 

a lesser-distance matrix DB, which means fewer boundary-node accesses. 

 Overall, as proven by real-life test cases, the pruning algorithms combined with 

the grouping schemes reduce the calculation time as well as the amount of I/O activity.  
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Chapter 5 

Conclusion and Future Research 

5.1 Conclusion 

We have studied various techniques for speeding up the Disk-based SP algorithm. We 

divided the Disk-based SP algorithm into three steps and implemented the algorithms to 

improve each step. The steps are query optimization, finding skeleton paths, and filling 

out the skeleton paths. For query optimization, we sorted the queries so that the step of 

filling out the skeleton paths accesses the fragment DB as little as possible. For finding 

skeleton paths, we suggested two pruning algorithms, each of which requires pre-

computations to make the algorithms possible. Since the Disk-based algorithm uses the 

idea of Dijkstra’s algorithm, it is basically a branch and bound algorithm. Our pruning 

algorithms narrow down the search spaces so that the Disk-based algorithm does not have 

to include unnecessary areas of a graph during calculation. For filling out the skeleton 

paths, we group a number of queries and process them together as in the previous step. 

When queries are grouped carefully, some of the queries may access common data, and 

our grouping technique helps the Disk-based algorithm to minimize the accessing of 

those common data. 

 The experimental results show that our algorithms improve the calculation time as 

well as I/O activities. In particular, both of the pruning algorithms significantly contribute 

to reducing the calculation time and I/O activities at the same time. Even if they need pre-

computations, the benefits from the pruning algorithms make it worthwhile to do so. If 

we deal with a huge graph, such as a digital map of California, we should choose the 
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pruning algorithm using x-Hop sketch graphs because it takes less time to build such 

graphs. If a graph is small enough, we will probably choose the pruning algorithm using 

BSDistMatrix because it does not take too much time to build and the benefit can be 

maximized. 

 In conclusion, we improved the Disk-based SP algorithm by using various 

techniques while maintaining its essence—that it requires very little main memory. 

5.2 Future Works 

 Future research includes topics such as enhancing multiple-query processing, 

reducing the building time of materialized data, and developing more efficient pruning 

algorithms.  

In this thesis, we assume that every query comes into the system sequentially, 

which is very unlikely in real-life applications. For Disk-based algorithms to be useful, 

the algorithm must be able to process multiple queries at the same time. 

Building BSDistMatrix and x-Hop sketch graphs constitutes a huge trade-off with 

the efficiency of the pruning algorithms. Even if we can control the calculation time of x-

Hop sketch graphs by choosing x, it still takes a large amount of time if a graph is big. 

The other problem of BSDistMatrix and x-Hop sketch graphs is updating. If an original 

graph is updated, all, or part of the BSDistMatrix and x-Hop sketch graphs have to be 

updated as well, which requires a large amount of time. Therefore, minimizing the 

calculation time can solve the problem of building time as well as updating. 

Our pruning algorithms work very well throughout all kinds of queries. However, 

there is still room for more pruning in a graph. The key to better pruning is calculating 

more accurate approximations. The approximation for the upper bound in our algorithm 

is close to the optimum value, but the one for the lower bound is not. Therefore, using 

different methodologies or different structures of BSDistMatrix could make 

approximations more accurate. 
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