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Abstract

The hippocampus is one of the most intensely studied brain structures and the oscillatory activity
of the hippocampal neurons is believed to be involved in learning and memory consolidation.
Therefore, studying rhythm generation and modulation in this structure is an important step
in understanding its function. In this thesis, these phenomena are studied via mathematical
models of networks of hippocampal interneurons. The two types of neural networks considered
here are homogenous and heterogenous networks. In homogenous networks, the input current to
each neuron is equal, while in heterogenous networks, this assumption is relaxed and there is a
specified degree of heterogeneity in the input stimuli. A phase reduction technique is applied to the
neural network model of the hippocampal interneurons and attempts are made to understand the
implications of heterogeneity to the existence and stability of the synchronized oscillations. The
Existence of a critical level of heterogeneity above which the synchronized rhythms are not stable
is established, and linear analysis is applied to derive expressions for estimating the perturbations
in the network frequency and timing of the neural spikes. The mathematical techniques developed
in this thesis are general enough to be applied to models describing other types of neurons not
considered here. Possible biological implications include the application of high frequency local
stimulation to alleviate the synchronous neural oscillations in pathological conditions such as
epilepsy and Parkinson’s disease and the possible role of heterogeneity in controlling the rhythm
frequency and switching between various cognitive states.

iii



Acknowledgments

I acknowledge the support provided by my supervisors Dr. Sue Ann Campbell and Dr. Brian
Ingalls and their tireless reading of the various versions of this thesis. Their encouragement
and supervision were essential for the successful completion of this project. I also acknowledge
the partial financial support provided by the Department of Applied Mathematics through the
graduate teaching assistantships.

iv



Dedication

This thesis is dedicated to the following individuals: My father Vahid Bazzazi and mother Parisima
Charehsaz, for all their selfless sacrifices throughout my life, and to my aunt Ms. Gilan Bazzazi
who is a role model of faith and spiritual strength and a continual source of inspiration.

v



Contents

1 Introduction 1

1.1 Hippocampus and inhibitory interneuronal networks . . . . . . . . . . . . . . . . . 3

1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 The Hodgkin-Huxley Model and Basic Neuron Electrophysiology 7

2.1 Ion Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 The importance of ions and ion channels for excitability . . . . . . . . . . . 9

2.1.2 Electric circuit model of the membrane . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Introducing The Nernst equation . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.4 The Channel current-voltage relationship . . . . . . . . . . . . . . . . . . . 14

2.2 Biophysics of The Squid Giant Axon . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Ionic basis of the action potential generation . . . . . . . . . . . . . . . . . 15

2.2.2 The Hodgkin-Huxley equations . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Model of the Hippocampal Interneurons . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Synaptic Coupling Between Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Simple model for the chemical synapse . . . . . . . . . . . . . . . . . . . . . 28

3 System of Coupled Oscillators 33

3.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Phase equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vi



4 Synchronization in Neural Networks 43

4.1 Homogenous Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Two Neuron System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Network of N Neural Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Stability of the synchronous and anti-phase solution . . . . . . . . . . . . . 48

4.3.2 Change in the network frequency for synchronous and anti-phase scenarios 55

4.3.3 Concluding remarks and summary . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Heterogeneous networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.1 Existence and stability of the phase-locked solutions in heterogeneous networks 58

4.4.2 Re-visiting the two-cell network . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.3 Calculation of the upper bound for equally separated phases:First approach 61

4.4.4 Estimating the upper bound on the natural frequencies: Second approach . 65

4.4.5 Interaction function for the hippocampal interneurons . . . . . . . . . . . . 70

4.4.6 Heterogenous two-cell network: Numerical solution versus the phase-coupled
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Three and four cell networks: Estimation of the maximum heterogeneity . . . . . . 75

4.6 Estimating phase separation in the heterogenous network . . . . . . . . . . . . . . 83

4.6.1 Comparison of the first order analysis with numerical solutions . . . . . . . 85

5 Conclusion 90

5.1 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

vii



List of Figures

1.1 Schematics representation of the basic neural structures. . . . . . . . . . . . . . . . 2

1.2 Schematic view of the brain lobes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Consequences of a super and sub threshold stimulus current pulse. . . . . . . . . . 8

2.2 The cell membrane electrical circuit model. . . . . . . . . . . . . . . . . . . . . . . 10

2.3 The cell membrane electrical circuit model for the Hodgkin-Huxley model of the
squid giant axon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 The two compartments each containing a salt and separated by a membrane per-
meable to Na+ but not Cl−. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 The action potential and the ionic conductances in the Hodgkin-Huxley model. . . 16

2.6 The sodium and potassium currents following a voltage-clamp step from a holding
potential of −70mV to −10 mV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Comparing the first and fourth powers of the n gating variable following the voltage-
clamp step from a holding potential of −70 mV to 30 mV. . . . . . . . . . . . . . . 20

2.8 The gating variables and the action potential in the Hodgkin-Huxley model. . . . . 25
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Chapter 1

Introduction

A neuron is the basic functional unit of the brain involved in information storage, transmission,
and processing. Figure 1.1 presents a schematic representation of a single neuron with the impor-
tant structures labeled and below is the description of the parts labeled in the figure.

1. The axon terminal is the end of the axon where the neuron meets other neighboring neurons
and communicates with them.

2. The axons are long protein coated structures that conduct (transmit) signals.

3. The cell body, called the soma, contains the nucleus and other cellular organelles.

4. The nucleus is where all the cellular functions are programmed.

5. The dendrites receive signals from other nerve cells and direct them to the cell body for
processing.

Large population of neurons (neural networks) in the brain are connected via synapses (described
later) and function in concert to perform a desired function such as recognizing a sound, under-
standing an image, or retrieving a past memory ([35], [16]). Information in the brain is encoded
by carefully timed trains of pulse-like changes in the neural membrane potential, called action
potentials or spikes. The mechanisms responsible for the generation of these membrane potential
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Figure 1.1: Schematics representation of the basic neural structures.
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spikes will be described in greater detail in the next chapter as we present a detailed overview
of the basic neuron electrophysiology. The neural networks in the brain can be either homoge-
nous or heterogeneous. In homogenous networks, properties of all neurons and their connectivity
are exactly the same and are homogenous throughout the population. On the other hand, in
heterogenous networks, the external input to each neuron is different and the neural connectiv-
ity properties are also heterogeneous throughout the population. For example, if the coupling
between neurons are through resistive pathways (e.g. gap junctions), the resistivity property is
heterogeneous for different regions of the network. In this thesis, heterogeneity is characterized
by differences in external input (or external stimuli) to neurons and the connectivity properties
are assumed to be the same for all cells in the network.

1.1 Hippocampus and inhibitory interneuronal networks

Hippocampus is located within the temporal lobe of the brain and is the most widely studied
structure which is believed to be involved in memory formation and learning [32, pp. 191-193].
Figure 1.2 shows a schematic view of the brain with the temporal lobe labeled. Interneurons or
inhibitory GABAergic cells in the hippocampus make up about 10 − 20% of the total neuronal
population. Their biochemical content, morphology, and electrophysiological characteristics are
very diverse [29]. Networks of inhibitory cells have been found to be responsible for the gener-
ation and control of rhythmic brain activities ([6], [7])and several experimental studies support
that population (network) rhythms arise from coherent activities in interneurons ([40], [47], [48]).
According to the recent findings ([5], [6]), oscillatory activity in the hippocampus in the theta
(8-12Hz) and gamma (20-80Hz) frequency bands occur during memory consolidation and spatial
navigation and a type of inhibitory interneurons called the parvalbumium-containing basket cells
are responsible for generating these rhythms [13].
It was in 1992 that modelling studies showed the possibility of obtaining synchronous output from
purely inhibitory networks [44]. Since then, several research groups have performed modelling and
theoretical studies of homogenous inhibitory networks ([42] and [38]). Some of the studies focused
in particular on the hippocampal interneuronal networks ([39], [31]). In later studies, the inclusion
of heterogenous inputs to inhibitory networks were considered ([1], [2], [41], [43], [45], and [37]).
Some authors also carried out analytical studies of the of heterogenous neural couplings ([28]) as-
suming homogenous inputs. Since the focus of this thesis, is only on the effects of heterogeneous
inputs, we exclude the works that involve internal heterogeneities (heterogeneity in the coupling
strength and properties). From these studies, it is clear that input heterogeneity is an import
factor that strongly affects the ability of inhibitory networks to synchronize. For example, in-
hibitory networks can tolerate a specific level of heterogeneity above which synchronous solutions
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Figure 1.2: Schematic view of the brain lobes
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do not exist ([8], [37], [36]). Since the modeling studies ([1], [2], and [43])were performed using
large (100-cell)networks along with consideration of other issues (such as amount of connectivity
and electrical coupling), it is difficult to determine the underlying mechanisms that give rise to
different network characteristics such as frequency. However, it was shown that [45] studying
smaller networks (2-cell)is helpful in understanding larger network dynamics. Later studies using
two cells ([37], [36]) showed that there are optimal values of the biophysical parameters for toler-
ating the largest level of heterogeneity and further the stability characteristics of the synchronous
solutions of the two cell system are retained in larger networks.

Most of the results on heterogeneous networks are obtained by computer simulations (e.g. [41],
[43], [45], [15], [37], [36]) and some groups ([37], [36]) have performed bifurcation analysis of the
two cell network and observed that there is a strong correlation between range of the parameters
for the loss of synchrony in the 2-cell and that of the corresponding N -cell network. We have
taken a middle path in this thesis and combined numerical simulations with analytical approaches
based on the phase reduction of the recently developed model of hippocampal interneurons [43].
The advantage of using the phase reduction is that one can readily make connections between the
effect of biophysical parameters defining the network (e.g. coupling strength, and time constants)
and the network properties such as frequency and synchronization.

1.2 Outline of the thesis

Structure of this thesis is as follows: Second chapter presents a detailed review of the basic
concepts in neuron electrophysiology such as communication between neurons. The first mathe-
matical model of a neuron developed in 1950s by Alan Hodgkin and Andrew Huxley [19], and in
particular the recent model of the hippocampal interneurons [43] are then discussed in detail. The
third chapter, discusses phase reduction which is the approach taken in this thesis for simplifying
the hippocampal interneuron model. In the fourth chapter, we begin by presenting general results
for homogenous networks such as conditions for the stability of synchronous solutions and the
possibility of bi-stability between various rhythmic equilibrium solutions (the notion of rhythmic
equilibrium solutions will later be made more precise). The later part of chapter four is devoted
to the heterogeneous networks, beginning by presenting two analytical approaches for estimating
the maximum level of heterogeneity that can be tolerated by a network consisting of N neurons.
We then apply linear approximations to obtain analytical expressions quantifying the amount of
perturbation in the homogenous solutions resulting from the heterogeneous inputs. An expression
for the network frequency will also be derived and it will be shown that to the first order approx-
imation, it depends on the interneuronal coupling strength , time constant of signal transduction
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between neurons and the mean input to the neurons. The analytical results are then compared
with numerical simulations of networks consisting of three and four cell networks. It is found that
there is a very good correlation between the analytical and numerical results.
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Chapter 2

The Hodgkin-Huxley Model and

Basic Neuron Electrophysiology

In this chapter, a detailed introduction to fundamental ideas of the neuron electrophysiology
culminating in the Hodgkin-Huxley model of squid giant axon is presented. Following discussion,
is based closely on the presentation by Hille in his classic book on ion channels [18, pp. 1-58].

2.1 Ion Channels

Before proceeding into details, we need to make precise of what it means for a membrane to
be excitable. A working definition is that a membrane is excitable when small perturbations in
membrane potential cause a direct return to steady-state, while above threshold perturbations
cause large excursion before returning to the steady-state. This idea is illustrated in Figure
2.1. The large excursion in the membrane potential in response to an above threshold stimulus
is called an action potential. To describe the mechanistic reason behind this phenomena, it
it crucial to have a basic understanding of ion channels, which are the fundamental elements of
excitable membranes. They are macromolecular pores that regulate ion movement through the cell
membrane. The greatest technical progress in this study was the development of an experimental
technique to resolve the activity of individual channels. This technique lead to the discovery that
the rate of ion passage through a pore is often as high as 106 ions per seconds.
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2.1.1 The importance of ions and ion channels for excitability

It has long been observed that ions are central in excitability of neurons and muscle cells. In the
1880s, Sidney Ringer showed that sodium and potassium salts and calcium must be mixed in a
definite proportion in the medium perfusing frog heart in order for the heart to continue beat-
ing. Walther Nernst’s work (also in the 1880s), on electrical potentials arising from electrolyte
diffusion in a solution paved the way for a basic understanding of the generation of bioelectrical
potentials. For instance, it was conjectured that the inside of the cell should be negative relative
to the outside, because the tissue makes acid in the process of metabolism and protons (positively
charged) can diffuse to the extracellular space more easily than other larger negatively charged
molecules. Julius Bernstein (1902,1912) proposed that membrane potential is more permeable to
the potassium ions (K+) at rest and that during excitation the membrane permeability to other
ions increases. Bernstein explained the resting membrane potential in neurons, as the tendency
of positively charged ions to diffuse from their high concentration in the cytoplasm (inside of the
cell) to the extracellular solution while other ions are blocked. Following ground breaking ideas of
Bernestein, further studies by various investigators including Alan Hodgkin and Andrew Huxley
determined that the major ion channels involved in excitability are Na,+, K,+ and Ca2+.

The type of channels that are involved in the Hodgkin-Huxley model are sensitive to the
changes in the membrane potential and open or close as a result of perturbations in the membrane
potential. This opening and closing in response to external stimuli is called gating.

2.1.2 Electric circuit model of the membrane

Because the membrane separates charges and also allows for the flow of ionic currents through
specific pathways (channels), it can be thought of as a capacitor along with a resistor as shown in
Figure 2.2. The capacitor discharges through the resistor shown in the figure and the the current
flow through the resistor and the capacitor determines the membrane potential.
For a parallel plate capacitor, the formula relating the membrane potential to the excess charges
Q on each plate is

V =
Q

C
. (2.1)

Differentiating both sides of the equation 2.1 yields

dV

dt
=

IC

C
, (2.2)
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Figure 2.2: The cell membrane electrical circuit model.
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where, IC = dQ
dt is the current generated by the capacitor discharge which flows through the

resistor in Figure 2.2.
Recall the Ohm’s law :

V = −RI = −I/g, (2.3)

where V is the voltage (in volts), R is the resistance (in Ohms), I is the current flowing through
the resistor (in amperes), and g = 1/R is the conductance (in siemens). Substituting Ohm’s law
E = −RIC into equation ( 2.2) yields

dV

dt
= − V

RC
. (2.4)

The constant τm = RC is called the membrane time constant. In practice, the resistor in
Figure 2.1 is divided into several parallel resistors representing the specific ionic currents flow-
ing through the membrane. For instance, Figure 2.3 shows the circuit representation of the
Hodgkin-Huxley model of the squid giant axon, where the prominent ionic players are sodium
and potassium. In this figure there is also a leak current which represents the flow of other ions.
From Kirchhoff’s law, the current resulting from the capacitor discharge is equal to sum of the
currents flowing through each resistor but in the opposite direction

IC = −IK+ − INa+ − ILeak. (2.5)

Recall that

IC = C
dV

dt
,

Thus

−C
dV

dt
= IK+ + INa+ + ILeak, (2.6)

The Hodgkin-Huxley model was formulated by determining the dependence on voltage and time
of the currents on the right hand side of equation (2.6).

2.1.3 Introducing The Nernst equation

To understand the mechanism by which the equilibrium (or resting) membrane potential is gener-
ated in cells, consider Figure 2.4 which shows two compartments separated by a semi-permeable
membrane. The two compartments contains the salt, NaCl at a different concentrations. The
semi-permeable membrane is permeable to Na+ but not to Cl−. Suppose that sodium concentra-
tions in compartments A and B are [Na+]A and [Na+]B respectively, such that [Na+]A > [Na+]B .

11



Figure 2.3: The cell membrane electrical circuit model for the Hodgkin-Huxley model of the squid
giant axon.
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Figure 2.4: The two compartments each containing a salt and separated by a membrane permeable
to Na+ but not Cl−.
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Na+ ions will therefore diffuse down their chemical gradient from A to B. This movement sets up
an excess of Na+ ions in compartment B and generates an electric potential that opposes further
diffusion of the Na+ ions. At the equilibrium, the resultant electric force balances the thermal
force causing diffusion. The Nernst equation gives the resultant equilibrium potential between the
two compartments A and B. Since we are interested in the generation of the resting membrane
potential in cells, let us denote compartment A as the intracellular matrix and B, the extracellu-
lar matrix and let [Na]i and [Na]e be sodium concentrations in the intracellular and extracellular
matrices, respectively. The Nernst potential is then given by the following formula

VNa =
RT

zF
ln

(
[Na]e
[Na]i

)
, (2.7)

where R = 8.3145 J mol−1 K−1 is the gas constant, T , in Kelvins, is the temperature, F is the
Faraday constant and z is the valance of the charged ions. For example, z = 1, and z = 2 for the
sodium and the calcium ions respectively.

2.1.4 The Channel current-voltage relationship

There are different forms for the relationship between the current flow through the membrane
ion channels and the membrane potential. One form which is based on the Ohm’s law assumes a
linear current-voltage relationship. For example, in this form the potassium current is given by:

IK = gK(V − EK), (2.8)

where gK is the conductance (in siemens) which is time and voltage dependent. The term (V −EK)
is used to reflect the fact that at the potassium equilibrium potential (V = EK), IK vanishes and
if V > EK flow out of the cell. Similarly the sodium current is given by

INa = gNa(V − EK). (2.9)

Based on the above linear current-voltage relationships, we can calculate the equilibrium mem-
brane potential in the Hodgkin-Huxley model (Recall that in this model, the main currents are
the potassium, sodium and the leak current). Thus at the steady state we have

ITotal
.= INa + IK + ILeak = 0,

That is

gNa(Veq − ENa) + gK(Veq − EK) + gLeak(Veq − ELeak) = 0,
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so the equilibrium membrane potential is given by

Veq =
gNaENa + gKEK + gLeakELeak

gNa + gK + gLeak
. (2.10)

As mentioned earlier, this linear current-voltage relationship is only one form which is used in
formulating membrane models such as the original Hodgkin-Huxley model. Another formalism
which is used is the Goldman-Hodgkin-Katz (GHK) equation (see [23] for more details and the
derivation). For an ion S with valence z the GHK current equation is (in units of the current per
area of the membrane):

Is = Ps
z2F 2

RT
V

ci − ce exp
(− zFV

RT

)

1− exp
(− zFV

RT

) , (2.11)

where Ps is the permeability of the membrane to S,and ci and ce are the intracellular and extra-
cellular ionic concentrations respectively. It is instructive to notice that the flow is zero (Is = 0) if :

V = VS =
RT

zF
ln

(
ce

ci

)
. (2.12)

which is the Nernst equilibrium potential for S. We emphasize that the Hodgkin-Huxley model
assumes the linear current-voltage relationship.

2.2 Biophysics of The Squid Giant Axon

This section is based on a review written by M. Guevara [17] describing basic mechanisms behind
the Hodgkin-Huxley model of the squid giant axon.

2.2.1 Ionic basis of the action potential generation

Figure 2.5 shows a typical action potential simulated by the Hodgkin-Huxley equations. This
model consists of four coupled nonlinear ordinary differential equations. The sodium current is
responsible for generating the rapid upstroke of the action potential, while the potassium current
repolarizes (pushes the voltage down towards its resting value) the membrane. It is important to
remember that other types of neurons can have many more currents than the three involved in
the original Hodgkin-Huxley model.
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Figure 2.5: The action potential and the ionic conductances in the Hodgkin-Huxley model.
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Single-channel recording

The most direct evidence for the existence of single channels on the cell membrane comes from the
path-clamp technique. In 1991, Neher and Sakmann were awarded the Nobel prize in Physiology
or Medicine for inventing this widely used technique. In this technique, a glass microelectrode
with tip diameter on the order of 1µm is brought in contact with the cell membrane. It is hoped
that the membrane patch subtended by the electrode rim contains only one channel. If this is
the case, one can capture experimentally the stochastic opening and closing of the single channel.
Channel openings cause current flow with amplitude of a few picoamps [34] that are then recorded
over a range of time.

Voltage-clamp technique

Although the large size of the squid axon was invaluable in measurement of the transmembrane
potential, it was the invention of a technique called voltage-clamp that revolutionized the field of
excitable membrane electrophysiology. This technique was pioneered by Cole, Curtis, Hodgkin,
Huxley, Katz and Marmont. Two electrodes are placed in the internal medium: one to measure
the membrane potential, and the other to inject current. The current is injected using a feedback
circuitry in order to maintain a fixed voltage difference at a particular potential. The injected
current is in fact equal to the ionic current flowing through the membrane at the clamped po-
tential. Figure 2.6 shows a simulation of the voltage-clamp experiment obtained by solving the
Hodgkin-Huxley equations. In this simulation, the membrane potential is held at −70 mV for 200
milliseconds, in order to provide sufficient time for all the variables to reach their steady-state
values, and is then stepped to −10 mV for another 10 milliseconds. The Sodium and potassium
currents through the membrane are shown for this virtual experiment. It can be observed from the
figure that the potassium current turns on (activates) relatively slowly, while the sodium current
turns on (activates) very quickly and unlike the potassium current, it turns off (inactivates).

Kinetics of the potassium currents

The equation describing the potassium current is

IK = gK(V − EK), (2.13)

where gK is the potassium conductance which is time and voltage dependent. To device the
model, it is assumed that potassium channels contain a number of voltage-sensitive sensors that
move in response to membrane potential changes and plug or unplug the opening of the channel
pore. It would then be natural to assume the following form for the potassium conductance:
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Figure 2.6: The sodium and potassium currents following a voltage-clamp step from a holding
potential of −70mV to −10 mV.
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gK = gKO, (2.14)

where O is the fraction of the channels that are open at a given instant of time and gK is the
maximum potassium conductance. Assume that there are k types of sensors that can occupy two
states with fractions n and 1− n respectively. It is assumed that the channel pore will open if all
the sensors are in the state with fraction n. If the sensors move independent of each other, then
the fraction of the potassium channels that are open is given by

O = nk. (2.15)

The movement of the sensor is assumed to follow the first order kinetic

1− n
αn→ n

n
βn→ 1− n,

where αn and βn are the voltage-dependent functions. Hence

dn

dt
= αn(1− n)− βnn. (2.16)

Hodgkin and Huxley observed that the best fit to their data was obtained by choosing k = 4. The
equations for the potassium current are then:

IK = gKn4(V − EK) (2.17)
dn

dt
= αn(1− n)− βnn. (2.18)

where αn and βn are fitted to the specific voltage-clamp experimental data (see [19] for details of
the experiments) and are given by

αn =
0.01(V + 50)

1− exp
(−V +50

10

) (2.19)

βn = 0.125 exp
(
−V + 60

80

)
.

Figure 2.7 compares the trace of n and n4 following a voltage-clamp step from a holding potential
of −70 mV to 30 mV.
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Figure 2.7: Comparing the first and fourth powers of the n gating variable following the voltage-
clamp step from a holding potential of −70 mV to 30 mV.
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Kinetics of the sodium currents

As in the previous section, fitting the macroscopic currents generated from voltage-clamp steps
to different potentials led Hodgkin and Huxley to the following equation for sodium current

INa = gNa(V − ENa). (2.20)

From Figure 2.6, it is clear that kinetics of the sodium current is more complicated. As for the
potassium current, the sodium current activates and results in the opening of the channel; how-
ever, in contrast to the potassium current, the channel then inactivates and closes which results
in the decline of the current as shown in Figure 2.6. As in the previous section, the conductance
is given by the maximum conductance multiplied by the fraction of open channels O

gNa = gNaO.

It is assumed that there are two categories of voltage sensors:

• Activating voltage-sensors, that can occupy two states with fractions m and 1−m.

• Inactivating voltage-sensors that can occupy two states with fractions h and 1− h.

Suppose that there are l types of activating sensors, and r types of inactivating sensors. The
channel pore opens when all the activating sensor types are in the state with fraction m and all
the inactivating sensor types are in the state with fraction h. Assuming independent movement
of the sensors relative to each other, the fraction of the open channels is governed by

O = mlhr. (2.21)

Additionally, it is assumed that the voltage sensors follow the first order kinetics

1−m
αm→ m (2.22)

m
βm→ 1−m. (2.23)

Similarly for the inactivating sensor:

1− h
αh→ h (2.24)

h
βh→ 1− h. (2.25)
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Where all the rate constants are voltage-dependent functions. This leads to the following equa-
tions describing the the sensors dynamics

dm

dt
= αm(1−m)− βmm (2.26)

dh

dt
= αh(1− h)− βhh. (2.27)

(2.28)

In the Hodgkin-Huxley model, there are three types of activating (l = 3) and one inactivating
sensor (r = 1). These values were observed to best fit the experimental data (see [18] and [23],
[19] for details). The sodium current dynamics is then governed by the following set of equations

INa = gNam3h(V − ENa)
dm

dt
= αm(1−m)− βmm (2.29)

dh

dt
= αh(1− h)− βhh.

where the rate-constants are given by

αm =
0.1(V + 35)

1− exp
(−V +35

10

)

βm = 4 exp
(
−V + 60

18

)

αh = 0.07 exp
(
−V + 60

20

)
(2.30)

βh =
1

1 + exp
(−V +30

10

) .

2.2.2 The Hodgkin-Huxley equations

Gathering together all of the previous equations for the sodium and potassium currents, one ob-
tains the Hodgkin-Huxley equations that describe the membrane potential dynamics of the squid
giant axon [19]. The model equations are as follows:
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Table 2.1: Parameter values for the Hodgkin-Huxley model. The stimulus current is assumed to
be 3µA/cm2 throughout this thesis and the physiological range is between 1 and 10 µA/cm2.

Parameter Unit Parameter value
gNa mS cm−2 120
gK mS cm−2 36
gL mS cm−2 0.3

ENa mV 55
EK mV -72
EL mV -49.387
C µF cm−2 1

dV

dt
= − 1

C

(
gNam3h(V − ENa) + gKn4(V − EK) + gL(V − EL)− Istim

)

dm

dt
= αm(1−m)− βmm (2.31)

dh

dt
= αh(1− h)− βhh

dn

dt
= αn(1− n)− βnn,

where Istim is the total stimulus current to the neuron. Table 2.1 summarizes values of the
parameters involved in the model.

Istim is the total stimulus current to the neuron. The voltage dependent rate constants are
described by

αm =
0.1(V + 35)

1− exp
(−V +35

10

)

βm = 4 exp
(
−V + 60

18

)

αh = 0.07 exp
(
−V + 60

20

)

βh =
1

1 + exp
(−V +30

10

) (2.32)

αn =
0.01(V + 50)

1− exp
(−V +50

10

)

βn = 0.125 exp
(
−V + 60

80

)
.
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To summarize, Figure 2.8 shows all the gating variables during one action potential.

2.3 Model of the Hippocampal Interneurons

In this section, the Wang and Buszàki [43] model of the hippocampal interneurons is presented.
The model is a modification of the Hodgkin-Huxley equations for the squid giant axon. The
potassium and sodium currents are the main currents in this model as in the squid giant axon.
The equations are as follows

C
dV

dt
= Istim − gNam3

∞h(V − ENa)− gKn4(V − EK)− gleak(V − Eleak)

dh

dt
= 5(αh(1− h)− βhh) (2.33)

dn

dt
= 5(αn(1− n)− βnn)

m∞ =
αm

αm + βm
.

where the rate constants are given by

αm = − 0.1(V + 35)
exp(−0.1(V + 35))− 1

βm = 4 exp(−V + 60
18

)

αh = 0.07 exp(−V + 58
20

) (2.34)

βh =
1

exp(−0.1(V + 28))

αn = − 0.01 exp(−(V + 34))
exp(−0.1(V + 34))− 1

βn = 0.25 exp(−V + 44
80

)

and the model parameters are summarized in Table 2.2.
All currents are in units of µA/cm2. Notice that the activating variable m is assumed to be at

the steady-state. This assumption is valid since the kinetics of the sodium channel activation is
much more rapid than its inactivation. This implies that

dm

dt
= αm(1−m)− βmm ≈ 0
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Figure 2.8: The gating variables and the action potential in the Hodgkin-Huxley model.

Table 2.2: Values of the parameters for the mathematical model of hippocampal interneurons.

Parameter Unit Parameter value
gNa mS/cm2 35
gK mS/cm2 9

gleak mS/cm2 0.1
ENa mV 55
EK mV -90

Vleak mV -65
C µF/cm2 1
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and the voltage-dependent steady-state activating variable (denoted by m∞) is

αm

αm + βm
.

Figure 2.9 presents a series of action potentials generated by numerically integrating system (2.33).
For later convenience denote the total ionic current, Iionic, as

Iionic(V, n, h) = gNam3
∞h(V − ENa) + gKn4(V − EK) + gleak(V − Eleak). (2.35)

For completeness, we emphasize that the single neuron exhibits oscillatory behavior for a specific
range of the values of the stimulus current. As the stimulus current is increased from 0 to
a sufficiently large value, the neuron enters oscillatory phase via a saddle-node bifurcation [37].
Throughout this thesis, it is assumed that the stimulus current is large enough so that the neurons
exhibit oscillatory behavior. See [22] for an in depth discussion of the single neuron dynamics and
the corresponding bifurcation diagrams.

2.4 Synaptic Coupling Between Neurons

In this section a brief introduction will be given to synaptic communication between neurons
(see [23], and [3] for more details). Communication in the nervous systems is achieved mainly
via what is called a chemical synapse. The chemical synapse has two sides: presynaptic and
postsynaptic. The presynaptic cell is the neuron that sends the signal and the postsynaptic neuron
is the receiving side. There are several specialized structures that work in concert for regulating
synaptic communication. Figure 2.10 shows a schematic diagram of the synapse between two
neurons and the following is a description of the structures labeled in Figure 2.10:

1. Axon of the presynaptic neuron.

2. The axon terminal containing vesicles.

3. Membrane vesicles that contain special chemicals called neurotransmitters. When an action
potential reaches the axon terminal (see item 2), these vesicles move towards and fuse
with the terminal membrane and release their contents into the synaptic cleft (item 4).
The transmitter molecules then diffuse in the synaptic cleft and are received at specialized
receptors on the membrane of the postsynaptic neuron.

4. The space between the axon terminal of the presynaptic neuron and dendrites of the post-
synaptic neuron.

5. The dendrite of the postsynaptic neuron. This has special ion channels on its membrane
which open in response to the neurotransmitter molecules released from the vesicles.
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Figure 2.9: The action potentials in Wang-Buszàki model of the hippocampal interneurons.
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The axon terminal (Figure 1.1) contains vesicles that store chemicals called neurotransmitters
(also called synaptic transmitters). When an action potential reaches the terminal, these vesicles
release their contents into the region between the terminal and the postsynaptic neuron (this
space is called the synaptic cleft). There are different types of synaptic transmitters depending
on their effects on the postsynaptic membrane. For example, acetylcholine(ACh) binds to ACh
receptors on the postsynaptic cell, which act as cation (positively charged ion) channels. When
ACh binds to the ACh receptors it opens these channels and causes the flow of positive ions
into the postsynaptic membrane and therefore results in depolarization (moving the voltage to
more positive values) of the membrane potential in the postsynaptic neuron. The communication
between hippocampal interneurons is regulated by gamma-butiric acid (GABA) [43] which opens
anion (negatively charged ion) channels allowing flow of negatively charged ions through the post-
synaptic membrane and therefore hyperpolarizes (moves the voltage to more negative values) the
postsynaptic membrane potential. Synapses that cause depolarization of the postsynaptic mem-
brane are called excitatory, while the ones that result in hyperpolarization are called inhibitory.
The synapses between hippocampal interneurons are therefore inhibitory in nature.

2.4.1 Simple model for the chemical synapse

A simple model [33] for the current generated in the postsynaptic neuron membrane will be given
in this section and will be used throughout our study of the coupled hippocampal interneurons.
We assume that binding of the transmitter molecules to the channels on the postsynaptic mem-
brane causes opening of the channel. A simple reaction scheme can be assumed as follows

C + T
α→ O

O
β→ C + T.

Where:

• C: Closed channel state

• T: Transmitter molecules

• O: Open channel state

Let s and 1− s be the fraction of channels in the open and closed states respectively and let [T ]
be the transmitter concentration in the vicinity of the postsynaptic membrane channel (in the
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Figure 2.10: Schematic view of the chemical synapse between two neurons.
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synaptic cleft). Then from the above reaction scheme we have

ds

dt
= α(1− s)[T ]− βs. (2.36)

It only remains to specify the time course of the transmitter concentration [T ]. It is assumed that
[T ] depends on the membrane potential of the presynaptic neuron and the usual functional form
is taken to be sigmoidal to reflect switching effect of the transmitter concentration in turning the
postsynaptic channels on or off

[T ] =
1

1 + exp(−(Vpres − θ)/ksyn)
. (2.37)

where Vpres is the membrane potential of the presynaptic neuron and θ and ksyn are the shape
parameters of the sigmoidal function. For the hippocampal interneurons model [43], θ = 0 and
ksyn = 2. Thus, equation 2.36 becomes

ds

dt
= αs

1
1 + exp(−Vpres/2)

− β(1− s). (2.38)

Let the maximum conductance through the postsynaptic membrane be gsyn, the fraction of the
open channels is s, and the current through the postsynaptic membrane has the form

Isyn = gsyns(V − Vsyn). (2.39)

where Vsyn is the equilibrium potential for the ions flowing through the postsynaptic membrane
(note that when V = Vsyn no synaptic current flows) and depends on the concentration differences
for the ion species that flow through the open receptor channels.

We mentioned that there are excitatory or inhibitory synapses depending on whether the
synaptic current is depolarizing or hyperpolarizing respectively. These two distinct synaptic cou-
plings can be modeled by choosing the appropriate Vsyn. If Vsyn is lower than the threshold for
action potential generation, the synapse is called inhibitory (the resulting current hyperpolarizes
the membrane since V −Vsyn > 0 and −Isyn < 0), and if it is larger than the threshold, the synapse
is called excitatory. For the hippocampal model with inhibitory synapses, Vsyn = −75 mV. To
recapitulate what we have so far, the dynamics of the two hippocampal interneurons coupled via
chemical synapses is described by the following system:
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C
dV1

dt
= Istim1 − Iionic(V1, n1, h1)− gsyns21(V1 − Vsyn)

dh1

dt
= 5(αh1(1− h1)− βh1h1)

dn1

dt
= 5(αn1(1− n1)− βn1n1)

ds21

dt
= α

1
1 + exp(−V2/2)

s21 − (1− s21)/τsyn

C
dV2

dt
= Istim2 − Iionic(V2, n2, h2)− gsyns12(V2 − Vsyn)

dh2

dt
= 5(αh2(1− h2)− βh2h2)

dn2

dt
= 5(αn2(1− n2)− βn2n2)

ds12

dt
= α

1
1 + exp(−V1/2)

s12 − (1− s12)/τsyn,

where α = 6.25 ms−1 [36] and synaptic time constant is defined by τsyn = 1/β with biological
relevant values between 1 to 10 ms. The maximum conductance is estimated to be gsyn =
0.25 mS/cm2 [36].
Single cell total ionic currents, Iionic(V1, n1, h1) and Iionic(V2, n2, h2), were described as in equation
(2.35). Figure 2.11 shows schematic diagram of two neurons interacting via inhibitory synapses.
Throughout this thesis it is assumed that neurons reciprocally inhibit each other as shown.

In this thesis, we will be working with networks consisting of N neurons where the general
biophysical model of the interneuronal network is as follows

C
dVk

dt
= Istim − Iionic(Vk)− gsyn

N − 1
(Vk − Esyn)

N∑
j=1
j 6=k

sjk

dsjk

dt
= α

1
1 + exp(−Vj/2)

sjk − (1− sjk)
τsyn

, k, j = 1, . . . , N. (2.40)

where the effective synaptic coupling is denoted by gsyn

N−1 to account for the interaction of each
neuron with N − 1 other neurons. This model will be used to study action potential pattern
in networks consisting of two, three and four neurons and the results will be compared with
predictions of the phase coupled oscillator model which will be discussed in the next chapter.
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Figure 2.11: Schematic representation of two neurons reciprocally inhibiting each other.
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Chapter 3

System of Coupled Oscillators

System of coupled oscillators are ubiquitous in biological systems. Hippocampal interneurons
coupled via inhibitory synapses are an example of coupled oscillators that are being studied in
this thesis. The following section presents an overview of the coupled oscillator concepts and
techniques for simplifying general coupled dynamical systems having stable limit cycle solutions.

3.1 Basic definitions

We begin by introducing the notions of phase, synchronization and phase locking based on the
discussion in Hoppensteadt and Izhikevich [20].

Phase

Suppose that we are given an oscillator, that is a dynamical system

dX

dt
= F (X), X ∈ Rm (3.1)

having a limit cycle attractor γ ⊂ Rm. Let T and Ω = 2π
T be the period and frequency of the

limit cycle, respectively. Let x(t) ∈ Rm be a T -periodic solution starting from x(0) = x0 ∈ γ.
For each point y ∈ γ there is a unique t ∈ [0, T ) such that y = x(t). We can assign a phase (θ)
to each point on the limit cycle such that as x goes around a limit cycle from x(0) to x(T ), the
phase makes one rotation around the unit circle by going from θ(0) = 0 to θ = 2π (Figure 3.1).
In the other words, this parametrization is a transformation which deforms the limit cycle into a
circle (S1) by assigning an angle value to each point on the limit cycle. θ(t) defined in this way is
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called the natural phase of the point x(t) ∈ γ. In case of a single oscillator, the phase, θ(t) ∈ S1,
is the solution to the phase equation

dθ

dt
= Ω =

2π

T
, (3.2)

such that θ(0) = 0. For N uncoupled oscillators, the dynamical system is

dXj

dt
= Fj(Xj), Xj ∈ Rm j = 1, . . . , N (3.3)

where each ODE in the above system has a stable limit cycle attractor γj . The phase equations
in this case are

dθj

dt
= Ωj , θj ∈ S1, j = 1, . . . , N, (3.4)

where θj is coordinate of the jth oscillator on the torus TN = S1×. . .×S1. For coupled oscillators
the dynamical system becomes

dXj

dt
= Fj(Xj) + εGj(X), j = 1, . . . , N. (3.5)

The functions Gj(X1, . . . , XN ) describe the state dependent coupling between the oscillators and
ε is the coupling parameter. In this thesis we shall assume that, the parameter ε is sufficiently
small such that the oscillators do not leave the torus defined by the uncoupled system (3.4). As we
will see later, the assumption of sufficiently weak coupling, leads to the reduction of the dynamical
system (3.5) to a system describing the phase dynamics

dθj

dt
= Ωj + εgj(θ1, . . . , θN ), θj ∈ S1, j = 1, . . . , N. (3.6)

The functions gj(θ1, . . . , θN ) describe the influence of the coupling on the oscillator phases. The
original system containing m × N ODES (m for each of the limit cycle oscillator and N for the
number of oscillators in the system) is reduced to a system containing N equations. Phase models
are powerful tools for analyzing phenomena such as synchronization which would be impossible
to address with the full model (3.5).

Synchronization and phase locking

Suppose we are given two neural oscillators with the phases θ1(t) and θ2(t) which are coupled
weakly via some mechanism. Also assume that each oscillator oscillates with the same natural
frequency, Ω. Let φ1 = θ1 − θ2, be the phase-difference between the oscillators. We say that the
two-oscillator system is phase locked if dφ1

dt = 0. The system of two neural oscillators is said to be
synchronized if the following conditions hold
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Figure 3.1: Phase parametrization of the limit cycle.
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1. dφ1
dt = 0.

2. φ1 = 0.

These conditions guarantee concurrent oscillations of the two neurons. In study of the oscillator
networks, it is often instructive to study the case of antiphase oscillations. We say that the two-
neuron system exhibits antiphase oscillations, if dφ1

dt = 0 and φ1 ≡ θ1−θ2 ≡ π, which implies that
the two neural oscillators are a half-cycle apart.
The above definitions can be extended to a network of N neurons. Let θ1, θ2, . . . , θN be the phases
of the corresponding oscillators and take θ1 as the reference point from which all other phases are
measured. Suppose that the natural frequency of each oscillator is Ω and set φj = θj−θj+1, j =
1, . . . , N − 1 as the phase-difference between the jth and (j + 1)st neuron. The network is said to
be phase locked if

dφj

dt
= 0, j = 1, . . . , N − 1. (3.7)

This implies that φj , j = 1, . . . , N − 1 remain constant (not necessarily equal) over time. For
synchronization we further require the phase differences be zero.

φj ≡ 0, j = 1, . . . , N − 1. (3.8)

Additionally, in a synchronized network of N neurons the phases are given by

dθj

dt
= Λt, j = 1, . . . , N. (3.9)

Λ is called the network frequency which is in general different from the natural frequency, Ω.
For the anti-phase oscillations, with an appropriate choice of indexing, the following pattern is
retained for all times in the network

θ1 = Λt + 0

θ2 = Λt + π

θ3 = Λt + 0
...

θk = Λt + π for even k

θk = Λt for odd k.
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Equivalently, we may write:

θj = Λt +
1 + (−1)j

2
π, j = 1, . . . , N. (3.10)

and

φj = θj − θj+1 = (−1)jπ, j = 1, . . . , N − 1. (3.11)

An alternative definition of phase locking, which is used by some authors [10] and will be used in
some situations in this thesis, is a definition that puts constraints on the phases of the oscillators
(θj). Suppose that we have a network of neural oscillators having phases θ1, . . . , θN . The oscilla-
tors are said to be phase-locked if

dθj

dt
= Λ, j = 1, . . . , N. (3.12)

Physically this means that all of the neurons in the network are oscillating with the same fre-
quency. Integrating equation (3.12) shows that in a phase-locked network the phases have the form

θj = Λt + βj , j = 1, . . . , N. (3.13)

for some constants βj . Notice that for synchronous oscillations βk = 0 and for the anti-phase os-
cillations βk = 1+(−1)k

2 π. Additionally, the relationship between this definition and the previous
one can be established by noting that
φk ≡ θk − θk+1 = βk − βk+1 and dφk

dt = dβk

dt − dβk+1
dt = 0.

It is also instructive to discussed the concept of phase deviation which will be important in the
next section and understanding some of the related work on coupled oscillators ( [21], [22] and
[20]). The phases are sometimes written in the following form

θj(t) = Ωjt + ϕj(t), (3.14)

where Ωj are the natural frequencies and the variables ϕj ∈ S1 are the phase deviations. They
describes deviation of the phases θj from the natural oscillations Ωjt.

Following this overview, the next section presents an account of the phase reduction technique,
which greatly simplifies the analysis of the weakly coupled oscillatory networks. Our discussion
is based on Hoppensteadt and Izhikevich [20] and Izhikevich [22].
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3.2 Phase equations

Suppose that we have a network consisting of N neural oscillators. Recall from the previous
section that each oscillator in the system is a dynamical system

dXj

dt
= Fj(Xj , λ) Xj ∈ Rm j = 1, . . . , N. (3.15)

having an attracting limit cycle γj ∈ Rm, j = 1, . . . , N . λ is a parameter which will be asso-
ciated with the variation of the natural frequencies of the uncoupled oscillators. Based on the
discussion in the previous section, each limit cycle can be parametrized by the phases θj(t), and
the above system is reduced to the following

dθj

dt
= Ωj(λ), θj ∈ S1, j = 1, . . . , N. (3.16)

We next suppose that the oscillators are coupled via some nonlinear functions with coupling
strength ε. The dynamical system describing the coupled network is then

dXj

dt
= Fj(Xj , λ) + εGj(X) Xj ∈ Rm j = 1, . . . , N. (3.17)

The functions Gj(X) describe the interactions between the oscillators.
We are now in a position to state an important theorem regarding the reduction of the dynamical
system of the form (3.16) to a lower dimensional system.

Theorem 3.2.1 (Phase Equations For Oscillatory Neural Networks )
Consider a family of coupled systems

dXj

dt
= Fj(Xj , λ) + εGj(X, ε), j = 1, . . . , N (3.18)

such that each equation in the uncoupled system (ε = 0) has an exponentially stable limit cycle
attractor γj ⊂ Rm having natural frequency Ωj(λ) 6= 0. Then, there exists ε0 > 0 such that for
|ε| < ε0 there exists an open neighborhood W of M = γ1 × . . . × γN ⊂ Rnm and a continuous
function h : W → Tn, that maps solutions of (3.18) to those of

dθj

dt
= Ωj + εgj(θ1, . . . , θN ), θj ∈ S1, j = 1, . . . , N. (3.19)

defined on the torus Tn = S1 × . . .× S1.

The next theorem, due to Malkin ( [20] and [21]), presents an approximate formula for the inter-
action functions gj(θ1, . . . , θN ), and phase deviations described earlier.
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Theorem 3.2.2 (Malkin’s Theorem for Weakly Connected Oscillators)
Consider a coupled system of the form

dXj

dt
= Fj(Xj , λ) + εGj(X), Xj ∈ Rm, (3.20)

such that each equation in the uncoupled system

dXj

dt
= Fj(Xj , λ) (3.21)

has an exponentially stable T-periodic solution γj(t) ∈ Rm. Let τ = εt, and let ϕj(τ) ∈ S1 be
the phase deviations of the solution of the coupled system (2.20) from the uncoupled oscillations
γj(t).

Then, the vector of the phase deviations ϕ = (ϕ1, . . . , ϕN )T is a solution to

dϕj

dτ
= Hj(ϕ− ϕj) + O(ε). (3.22)

Here (ϕ− ϕj) = (ϕ1 − ϕj , . . . , ϕN − ϕj)T , and

Hj(ϕ− ϕj) =
1
T

∫ T

0

Qj(t)T Gj(γ(t + ϕ− ϕj))dt, (3.23)

where

γ(t + ϕ− ϕj) ≡ (γ1(t + ϕ1 − ϕj), γ2(t + ϕ2 − ϕj), . . . , γN (t + ϕN − ϕj))

and Qj(t) is the unique nontrivial T-periodic solution to the adjoint system

dQj

dt
= −DFj(γj(t))

T
Qj , (3.24)

satisfying the normalization condition

Qj(0)T Fj(γj(0)) = 1. (3.25)

It follows that the phase deviations are governed by

dϕj

dt
= εHj(ϕ− ϕj) + O(ε2). (3.26)

Suppose that we choose the parameter λ such that the natural frequencies Ω1, . . . , ΩN are ε close
to each other, |Ωi −Ωj | = O(ε) for all i, j. It can be shown that [20] the equations for describing
the phase dynamics for an oscillator network with heterogeneity in the oscillator frequencies are:
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dθj

dt
= Ωj + εHj(θ − θj) + O(ε2), j = 1, . . . , N. (3.27)

and for a homogenous network (all the natural frequencies are the same) the phase equations
become

dθj

dt
= Ω + εHj(θ − θj) + O(ε2), j = 1, . . . , N. (3.28)

For cells coupled via chemical synapses, the interaction function depends only on the state of the
mutually coupled cells. In other words, interaction between cell i and cell j in the population is a
function of state variables of i and j only. According to Theorem (3.2.1), the general phase model
of an oscillator network (dropping the O(ε2)) has the following form

dθj

dt
= Ωj + gj(θ1, . . . , θN )

Take cell j in the population and exclude self-interaction, then function gj has the following ad-
ditive form

gj(θ1, . . . , θN ) =
N∑

i=1
i6=j

gj(θi, θj) (3.29)

By application of the Malkin’s theorem, the interaction function for the cell j is given by εHj(θ1−
θj , . . . , θN − θj), and for a neural network with chemical synapses, the interaction function takes
the form

εHj(θ1 − θj , . . . , θN − θj) = ε

N∑
i=1
i 6=j

Hj(θi − θj) (3.30)

Therefore, the phase model in terms of the phase deviation (3.22) can be written as

dϕj

dt
= ε

N∑

k=1

H(ϕk − ϕj) (3.31)

and in terms of the phases (3.27), it becomes

dθj

dt
= Ωj + ε

N∑
k=1
k 6=j

Hj(θk − θj) (3.32)

Equation (3.32) describes a general situation where the cells are not identical (and hence the
interaction function is different for each interacting pair). For network of identical cells which are
being considered in this thesis, all the interaction functions are identical and hence
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Hj(θk − θj) = H(θk − θj), j = 1, . . . , N. (3.33)

The phase dynamics is then governed by

dθj

dt
= Ωj + ε

N∑
k=1
k 6=j

H(θk − θj). (3.34)

In a network of identically coupled neurons, we only need to compute the interaction function for
a pair of neurons and the only difficulty in using Malkin’s Theorem lies in finding the periodic
solution of the adjoint system

dQj

dt
= −DFj(γj(t))

T
Qj ,

satisfying the normalization condition

Qj(0)T Fj(γj(0)) = 1.

Williams and Bowetell [46] ( see also [12]) devised a simple way to compute Qj(t) for a stable
limit cycle:
start with random initial conditions and integrate

dQj

dt
= −DFj(γj(t))

T
Qj

backwards. Since all the Floquet multipliers (eigenvalues of the Poincaré map) are outside the unit
circle (except for a multiplier of 1), backward integration will converge to the periodic solution of
the adjoint system. The software XPPAUT [11] developed by G.B.Ermentrout, usee this method
to numerically compute the interaction functions. Furthermore, since the interaction function is
periodic, one can then expand the function in the Fourier series and use an appropriate truncation
of the series for further analysis:

H(x) ≈ a0 +
M∑

n=1

(an cos(nx) + bn sin(x)) . (3.35)

The software XPPAUT contains a subroutine for computing the Fourier coefficients and through-
out this thesis, where an explicit interaction function is needed, it will be used to numerically
compute the Fourier coefficients.

The next chapter is devoted to studying the existence and stability of the phase-locked solutions
with a particular emphasis on the synchronous oscillations. We will observe that in the case of
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a weakly coupled system, the phase equations provide a convenient mean of obtaining important
insights into the mechanisms responsible for modulating the network rhythms.
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Chapter 4

Synchronization in Neural

Networks

This chapter presents the main results of this thesis on the existence and stability of the syn-
chronized solutions. We begin by considering homogenous neural networks (i.e. networks where
the intrinsic (natural) frequencies of the neurons are equal). The effect of adding small per-
turbations to the intrinsic frequencies will be considered after analyzing the homogenous case.
The stability of the synchronous and phase-locked solutions is investigated. For the first part of
this chapter, we will work with a general interaction function H, and do not assume a specific
form. However, later on we will use XPPAUT [11] to compute the interaction function for the
hippocampal interneurons coupled through inhibitory synapses. This specific form of the inter-
action function will be then used to compare the analytical results with the numerical simulations.

4.1 Homogenous Neural Networks

We begin by analyzing the phase-locked solutions of a network consisting of just two neurons. An
interesting finding is that the condition for the stability of the phase-locked solutions in N -neural
network is exactly the same as that for the two-neuron case.
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4.2 Two Neuron System

Suppose that two neurons are mutually coupled and that θ1 and θ2 are their respective phases.
Let Ω be the intrinsic frequency of each neuron. The equations (see equation (3.32)) describing
the phase dynamics are

dθ1

dt
= Ω + εH(θ2 − θ1)

dθ2

dt
= Ω + εH(θ1 − θ2). (4.1)

Let φ1 = θ1 − θ2 denote the phase difference. Then the above system yields

dφ1

dt
= ε(H(θ2 − θ1)−H(θ1 − θ2)) =

ε(H(−φ1)−H(φ1)) = −2εHodd(φ1), (4.2)

where, Hodd(.) is the odd part of the function H(.).

To study phase-locking, we look for values of φ1 such that, dφ1
dt = 0. Thus the phase-locked

oscillations are characterized by the following algebraic equation

Hodd(φ1) = 0. (4.3)

As an example, let H be a simple sinusoidal function:

H(x) = A sin(x), A > 0.

as is the case with the Kuramoto phase model ([25], [26]). The zeros in [0, 2π) are 0 and π implying
the existence of synchronous and anti-phase oscillations respectively. The stability can be studied
by considering the sign of −2εH ′

odd at the equilibrium points. The condition for the stability is
therefore

Hodd(φ∗1) > 0. (4.4)

Notice that for the synchronous solution, H ′
odd(0) = A > 0 and for the anti-phase solution φ∗1 = π,

H ′
odd(π) = −A < 0, implying that the synchronous solution is stable while the anti-phase solution

is unstable for this particular choice of the interaction function.
The next section considers general network of all-to-all coupled neural oscillators and establishes
conditions that guarantee the stability of the synchronous and anti-phase solutions.
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4.3 Network of N Neural Oscillations

Recall the biophysically detailed equation for a network consisting of N neural oscillators coupled
via chemical synapses (2.40)

C
dVk

dt
= Istim − Iionic(Vk)− gsyn

N − 1
(Vk − Esyn)

N∑
j=1
j 6=k

sjk

dsjk

dt
= α

1
1 + exp(−Vj/2)

sjk − (1− sjk)
τsyn

, k, j = 1, . . . , N. (4.5)

Each cell in the population is coupled to N − 1 other cells and therefore the coupling strength ε

is defined by the maximum synaptical coupling conductance, gsyn, normalized by N − 1 to reflect
the effective interaction surface area between the two mutually coupled cells.

ε =
gsyn

N − 1
. (4.6)

For the rest of this thesis, we will assume this form of the coupling strength, ε ( [19], [36], [37]).

Consider a network consisting of N neurons where each neuron is coupled to all other neurons
in the population (all-to-all coupled network). Let θ1, . . . , θN be the phases, and Ω the intrinsic
frequency. The phase equations are then given by (3.32)

dθk

dt
= Ω + ε

N∑
j=1
j 6=k

H(θj − θk), k = 1, . . . , N. (4.7)

In terms of the pairwise phase differences, φk = θk − θk+1, the above system is transformed to

dφk

dt
= ε

N∑

j=1

(H(θj − θk)−H(θj − θk+1)) . (4.8)

It is also convenient for the later analysis to define a new function, fk

fk = ε

N∑

j=1

(H(θj − θk)−H(θj − θk+1)) (4.9)

the zeros of which characterize the phase locked solutions. Taking the first cell as the reference
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point and writing the phases as a function of the pairwise phase differences

θ2 = θ1 − φ1

θ3 = θ1 − (φ1 + φ2)
...

θk = θ1 −
k−1∑

j=1

φj (4.10)

Elements of the Jacobian matrix for (4.8) can then be calculated by the following

akl =
∂fk

∂φl
(φ∗1, . . . , φ

∗
N ), k, l = 1, . . . , N. (4.11)

where φ1∗, . . . , φ∗N are the phase locked pairwise phase differences. Recall that under phase lock-
ing, all the neurons are oscillating with the same frequency and the phases are given by

θk = Λt + βk, k = 1, . . . , N. (4.12)

thus

akl = ε

N∑

j=1

[
H ′(βj − βk)

(
∂θj

∂φl
− ∂θk

∂φl

)
−H ′(βj − βk+1)

(
∂θj

∂φl
− ∂θk+1

∂φl

)]
(4.13)

Based on equation (4.10)

dθj

dφl
= 0, for j ≤ l.

dθj

dφl
= −1, for j > l. (4.14)

We therefore separate the sums for j = 1, . . . , l and j = l + 1, . . . , N

akl = ε

l∑

j=1

[
H ′(βj − βk+1)

∂θk+1

∂φl
−H ′(βj − βk)

∂θk

∂φl

]
+

ε

N∑

j=l+1

[
H ′(βj − βk+1)(1 +

∂θk+1

∂φl
)−H ′(βj − βk)(1 +

∂θk

∂φl
)
]

(4.15)
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There are three cases to consider, namely l < k, l = k and l > l:

1. l < k

In this case,∂θk

∂φl
= −1 and ∂θk+1

∂φl
= −1, so that the equation 4.15 becomes :

akl = ε

l∑

j=1

[H ′(βj − βk)−H ′(βj − βk+1)] . (4.16)

2. l = k

Note that, ∂θk

∂φk
= 0 and ∂θk+1

∂φk+1
= −1 thus (4.15) becomes

akk = −ε




k∑

j=1

H ′(βj − βk+1) +
N∑

j=k+1

H ′(βj − βk)


 . (4.17)

3. l > k

In this case, ∂θk

∂φl
= 0, and ∂θk+1

∂φl
= 0, so that

akl = ε

N∑

j=l+1

[H ′(βj − βk+1)−H ′(βj − βk)] (4.18)

Stability of the synchronous and anti-phases solutions can be investigated by substituting the
appropriate βk, and looking for special structures in the Jacobian matrix. In particular, sufficient
conditions may be obtained using the following theorem.

Theorem 4.3.1 Geršgorin’s Theorem[27, pp. 225-226]
If A is an N ×N matrix, and

Rk =
N∑

j=1
j 6=k

|akj |.

is the sum of the off diagonal elements in the kth row, then every eigenvalue of A lies in at least
one of the disks

|z − akk| ≤ Rk, k = 1, . . . , N. (4.19)
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in the complex z plane.
Furthermore, a set of m of these disks having no point in common with the remaining N − m

disks contains m and only m eigenvalues of A.

Stability is guaranteed if the real part of all the eigenvalues are negative, which is satisfied if the
Geršgorin disks are all located in the left half of the complex plane. Therefore, if

1. akk < 0.

2. |akk| > Rk.

Then the equilibrium solution given by the vector β = (β1, . . . , βN )T is stable. We will study the
structure of the matrix for special cases of the synchronous and anti-phases oscillations and find
conditions for the stability of these solutions.

4.3.1 Stability of the synchronous and anti-phase solution

Since the function H is periodic, it can be expanded in a Fourier series

H(x) =
∞∑

n=0

[an cos(nx) + bn sin(nx))] . (4.20)

We will use this form of the interaction function in the analysis of the stability of the synchronous
and anti-phase oscillations.
Recall that for the synchronous solution, βk = 0 for all k, which implies that the off-diagonal
elements (by equations (4.16) and (4.18) ) are zero and the diagonal elements are given by

akk = −ε




k∑

j=1

H ′(βj − βk) +
N∑

j=k+1

H ′(βj − βk)


 (4.21)

= −ε




N∑

j=1

H ′(0) +
N∑

j=k+1

H ′(0)


 = −εNH ′(0). (4.22)

Thus the stability of the synchronous solutions are guaranteed if and only if:

H ′(0) > 0. (4.23)
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Note that

H ′(x) =
∞∑

n=1

n [bn cos(nx)− an sin(nx)] , (4.24)

therefore

H ′(0) =
∞∑

n=1

nbn = H ′
odd(0).

Thus we see that the condition for the stability of the synchronous solution in the N -cell network is
H ′

odd(0) > 0, which is exactly the same condition as the two-cell case ( equation (4.4) ). Stability
of the synchronous solution in the homogenous network of all-to-all coupled neural oscillators,
is therefore determined by the odd part of the interaction function only. For the anti-phase
solutions, βk = 1+(−1)k

2 π, and the population number, N , is assumed to be even for simplifying
the calculations. Note that

H ′(−π) = H ′(π).

The following cases should be considered.

• l < k

akl = ε

l∑

j=1

[H ′(βj − βk)−H ′(βj − βk+1)]

= ε

l∑

j=1

[
H ′

(
(−1)j − (−1)k

2
π

)
−H ′

(
(−1)j + (−1)k

2
π

)]
.

There are two cases for even or odd k

1. Even k:

akl = ε

l∑

j=1

[
H ′(

(−1)j − 1
2

π)−H ′(
(−1)j + 1

1
π)

]

= εnodd (H ′(−π)−H ′(0)) + εneven (H ′(0)−H ′(π))

= ε(nodd − neven)H ′(π) + ε(neven − nodd)H ′(0)

= ε(neven − nodd)(H ′(0)−H ′(π)).

Where neven = b l
2c and nodd = d l

2e are the number of even and odd integers from
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j = 1 to j = l.

– For odd l:

neven − nodd = −1,

therefore

akl = −ε(H ′(0)−H ′(π)).

– For even l

neven − nodd = 0,

Which implies that

akl = 0.

2. Odd k:

akl = ε

l∑

j=1

[
H ′(

(−1)j + 1
2

π)−H ′(
(−1)j − 1

2
π)

]

= εnodd [H ′(0)−H ′(−π)] + εneven [H ′(π)−H ′(0)]

= −ε(neven − nodd)(H ′(0)−H ′(π)).

Thus we have

– For odd l:

akl = ε (H ′(0)−H ′(π)) .

– For even l:

akl = 0.

• l > k

akl = ε

N∑

j=l+1

[H ′(βj − βk+1)−H ′(βj − βk)] ,
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akl = ε

N∑

j=l+1

[
H ′

(
(−1)j + (−1)k

2
π

)
−H ′(

(−1)j − (−1)k

2
π)

]

= εnodd

[
H ′

(−1 + (−1)k

2
π

)
−H ′(

−1− (−1)k

2
π)

]
+

εneven

[
H ′(

1 + (−1)k

2
π)−H ′(

1− (−1)k

2
π)

]
.

The two cases are:

1. Even k:

akl = εnodd [H ′(0)−H ′(π)] + εneven [H ′(π)−H ′(0)]

= ε(nodd − neven) (H ′(0)−H ′(π)) ,

Simplifying as in the previous case

– For odd l:

akl = −ε (H ′(0)−H ′(π)) .

– For even l:

akl = 0.

2. Odd k:

akl = εnodd (H ′(−π)−H ′(0)) + εneven (H ′(0)−H ′(π))

= ε(neven − nodd) (H ′(0)−H ′(π)) .

– For odd l:

akl = ε (H ′(0)−H ′(π)) .

– For even l:
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akl = 0.

Thus in general for any k 6= l we have

|akl| =
{

ε|H ′(0)−H ′(π)| If l is odd
0 If l is even.

(4.25)

This will be used later when we apply Geršgorin’s theorem to establish sufficient conditions
for stability.

• l = k

There are two cases as before:

1. Even k:

akk = −ε




k∑

j=1

H ′(βj − βk+1) +
N∑

j=k+1

H ′(βj − βk))


 .

Now

k∑

j=1

H ′(βj − βk+1) =
k∑

j=1

H ′(
(−1)j + 1

2
π)

=
k

2
H ′(0) +

k

2
H ′(π).

Further

N∑

j=k+1

H ′(βj − βk) =
N∑

j=k+1

H ′(
(−1)j − 1

2
π)

=
N − k

2
H ′(0) +

N − k

2
H ′(π),

Therefore
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akk = −ε
N

2
(H ′(0) + H ′(π)) .

2. Odd k:

k∑

j=1

H ′(βj − βk+1)

=
k∑

j=1

H ′(
(−1)j − 1

2
π)

=
k + 1

2
H ′(π) +

k − 1
2

H ′(0).

N∑

j=k+1

H ′(βj − βk) =
N∑

j=k+1

H ′
(

(−1)j − (−1k)
2

π

)

=
N∑

j=k+1

H ′
(

(−1)j + 1
2

π

)

=
(

N

2
− 1

)
H ′(0) +

(
N

2
+ 1

)
H ′(π).

akk = −ε

[
N

2
(H ′(0) + H ′(π)) + H ′(π)−H ′(0)

]
.

and

|akk| =
{

εN
2 |H ′(0) + H ′(π)| for even k

ε|N2 (H ′(0) + H ′(π)) + H ′(π)−H ′(0)| for odd k.
(4.26)

Recall that according to the Geršgorin’s Theorem, a condition for having all eigenvalues with
negative real parts is akk < 0 and |akk| > Rk for all k. According to the elements of the Jacobian
matrix, if H ′(0) > 0 and H ′(π) > 0 then akk < 0 and we will show that this implies that the other
inequality is automatically satisfied. There are two separate cases for even and odd row numbers
which are going to be considered.

• Even k:
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If H ′(0) > 0 and H ′(π) > 0,

|akk| = ε
N

2
|H ′(0) + H ′(π)| > ε

N

2
|H ′(0)−H ′(π)|

Rk =
N−1∑
l=1
l6=k

|akl|

= noddε|H ′(0)−H ′(π)|+ neven(0)

= ε
N

2
|H ′(0)−H ′(π)|.

therefore

|akk| > Rk.

• Odd k:

|akk| = ε|N
2

(H ′(0) + H ′(π)) + H ′(π)−H ′(0)|

= ε|
(

N

2
− 1

)
H ′(0) +

(
N

2
+ 1

)
H ′(π)|

> |
(

N

2
− 1

)
H ′(0) +

(
N

2
− 1

)
H ′(π)| if H ′(π) > 0

>

(
N

2
− 1

)
|H ′(0)−H ′(π)|.

and

Rk =
N−1∑
l=1
l6=k

|akl|

= noddε|H ′(0)−H ′(π)| =
(

N

2
− 1

)
|H ′(0)−H ′(π)|.

therefore
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|akk| > Rk if H ′(0) > 0 and H ′(π) > 0.

Thus if H ′(0) = H ′
odd(0) > 0 and H ′(π) = H ′

odd(π) > 0, then the anti-phase solutions are stable.
This condition implies that bi-stability between the synchronous and anti-phase oscillations in
the two-cell network which is guaranteed by the conditions H ′

odd(0) > 0 and H ′
odd(π) > 0 , is

preserved in the N -cell network.

The stability results for the synchronous and anti-phase oscillations are summarized as follows

• In an N -cell network the synchronous solution is stable if and only if
H ′

odd(0) > 0.

• Additionally, suppose that number of the cells N is even and π is a phase-locked solution
to the two-cell network. If H ′

odd(π) > 0, then the anti-phase solution is also stable which
implies bi-stability between the two solutions and network can switch from one solution to
another by appropriate change of a biophysically relevant parameter. The nature of this
parameter will be made clear in later sections when we use the hippocampal interneuron
model to compute the relevant form of the interaction functions.

4.3.2 Change in the network frequency for synchronous and anti-phase

scenarios

The network frequency can be calculated as described below, it will in general be different
from the intrinsic frequencies of the uncoupled neurons. Substituting the phase-locked solution,
θk = Λt + βk, into the phase equation of the kth neuron yields

dθk

dt
= Ω +

N∑

j=1

H(θj − θk)− εH(0)

Λ = Ω + ε

N∑

j=1

H(βj − βk)− εH(0).

Thus, for the synchronized oscillations
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Λ = Ω + ε(N − 1)H(0) = Ω + gsynH(0). (4.27)

where we have used ε = gsyn

N−1 .
Similarly, for the anti-phase oscillations:

Λ = Ω + ε

N∑

j=1

H

(
(−1)j − (−1)k

2
π

)
− εH(0)

= Ω + ε

(
N

2
H

(−1− (−1)k

2
π

)
+

N

2
H

(
1− (−1)k

2
π

))
− εH(0).

There are two cases, even and odd k, corresponding to the two population clusters:

• Even k:

Λ = Ω + ε
N

2
(H(0) + H(π)) = Ω +

gsyn

2
N

N − 1
(H(0) + H(π)) .

• Odd k:

Λ = Ω +
gsyn

2
N

N − 1
(H(0) + H(π)) .

As expected, both population clusters are oscillating with the same frequency:

Λ = Ω +
gsyn

2
N

N − 1
(H(0) + H(π)) . (4.28)

Note that for an odd interaction function, the network frequency will be the same as the intrinsic
frequency (Because Hodd(0) = Hodd(π) = 0 when H is odd).

4.3.3 Concluding remarks and summary

The above calculations imply that if H ′
odd(0) > 0 and H ′

odd(π) > 0, then by changing an appropri-
ate parameter (for instance the synaptic decay time constant, τsyn) the network can spontaneously
break into two population clusters each fully synchronized. Several authors have observed this
phenomena through numerical and analytical studies. In particular, Okuda [30] found analytically
that the eigenvalues determining the stability of the anti-phase solutions are given by
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λ1 = −gsyn

2
(H ′

odd(0) + H ′
odd(π)) (N − 2) multiplicity

λ2 = −gsynH ′
odd(π).

Where λ1 determines the stability of the phase difference between neurons within each cluster
(intra-cluster phase differences), while λ2 determines the stability of the phase differences between
the clusters (inter-cluster phase differences). Thus, the anti-phase solution is stable if and only if

H ′
odd(0) + H ′

odd(π) > 0

H ′
odd(π) > 0. (4.29)

These conditions are more general and encompass our results obtained by applying the Geršgorin’s
theorem. In another study, Golomb and Rinzel [14] considered (numerically and analytically) a
large network of inhibitory neurons and observed that the network converged into stable syn-
chrony. Additionally, the network could spontaneously break into smaller population clusters
each fully synchronized. In a more general study, Li [28] obtained conditions for stability and
existence of the population clusters in network with oscillators coupled via asymmetrical and
heterogeneous interaction functions (asymmetrical coupling implies that the coupling function
for interaction of say, cell i and cell j is not the same as that of cell j to cell i and heterogenous
interaction function implies that that form of the coupling function is not uniform in the network).

4.4 Heterogeneous networks

In this thesis, heterogenous networks are characterized by differences in the intrinsic frequencies
of neurons (The stimulus (input) current to each neuron determines its intrinsic frequency) in the
population. In a heterogeneous network the symmetry is broken and it is impossible to achieve
complete synchrony (characterized by zero pairwise phase differences between neurons). In this
case one considers near-synchrony which is characterized by different but still sufficiently small
pairwise phase differences. A heterogeneous network can tolerate a specific degree of heterogene-
ity above which the near-synchronous solution is lost. Numerical Bifurcation analysis taking an
appropriate parameter to represent heterogeneity (the applied currents to each neuron), can be
used to establish this critical value for neural networks consisting of small number of neurons.
In particular, it is found that, the near-synchronous solution is lost via a saddle-node bifurca-
tion ([36], [37]). Although bifurcation analysis is not feasible for large networks, some authors
(by performing large number of computer simulations starting from different initial conditions)
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have described the lose of near-synchrony in sufficiently heterogeneous large neural networks (see
[36], [43], [45], [41]) and linked the results from the two-cell to the N-cell network ([37], [36] )
by observing that the pattern for the loss of the synchronous oscillations are retained for larger
networks. They have also shown numerically that bi-stability between the synchronous and anti-
phase oscillations is preserved in the larger size networks.

In the first part of this section, our goal will be to estimate the maximum value of the hetero-
geneity above which phase-locked solutions do not exist. Two different approaches are developed
to be compared with the numerically obtained values for two,three and four cells. First, a special
phase-locked pattern is assumed and maximum heterogeneity is calculated for this special case.
Second, a network of N neurons is divided into two clusters with populations N1 and N2 = N−N1,
oscillating with frequencies Ω1 and Ω2, respectively. Assuming that the main interaction is be-
tween the two clusters, the maximum frequency difference max|Ω1 − Ω2| is calculated as for the
two-cell network. Predictions are compared with the numerical simulations. In the last part of this
section, linear expansion of the interaction function around the homogenous synchronous solution
is carried out to estimate the perturbation of the phases as a result of the added heterogeneity in
the network. Further, an expression for the network frequency is derived and a good correlation
is shown to exist between the analytical results and numerical simulations.

4.4.1 Existence and stability of the phase-locked solutions in heteroge-

neous networks

In this section we cite a theorem from literature that establishes the existence and stability of
phase-locked solutions in a heterogeneous network given that solutions exist for the homogenous
case.
We will study perturbation of the homogenous synchronous oscillations as a result of the het-
erogeneity and this theorem guarantees that as long as the homogenous solutions are stable, the
corresponding perturbed solutions will be stable.
Recall the phase equations for a network of oscillators

dθk

dt
= Ωj(λ) + ε

N∑

j=1

H(θj − θk)− εH(0), k = 1, . . . , N.

where Ωj is a continuous and differentiable function with respect to the parameter λ. For phase-
locked solutions, dθk

dt = Λ, where Λ is the constant network frequency. Thus
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Λ = Ωj(λ) + ε

N∑

j=1

H(θj − θk)− εH(0), k = 1, . . . , N. (4.30)

The parameter λ describes the heterogeneity in the intrinsic frequencies, and λ = 0 characterizes
the homogenous case when all the natural frequencies are equal.

Theorem 4.4.1 [10] (Existence and stability of the phase-locked solutions in a heterogenous
network)
Suppose that (4.30) has a solution θ0

k for λ = 0 and suppose that ajk = H ′(θ0
j − θ0

k) ≥ 0. Then,
there is a unique branch of solutions containing θ0

k for all λ ∈ (0, λ̃). Additionally, this solution
is asymptotically stable.

The next section begins our study of the heterogenous networks by re-visiting the two-cell network
and evaluating the insights obtained by the phase model.

4.4.2 Re-visiting the two-cell network

Recall the equations that govern the phase dynamics of the two-cell network

dθ1

dt
= Ω1 + εH(θ2 − θ1)

dθ2

dt
= Ω2 + εH(θ1 − θ2).

This, the equation for the phase-difference φ = θ1 − θ2, is

dφ

dt
= Λ1 + ε(H(−φ)−H(φ)) = Λ1 − 2εHodd(φ). (4.31)

The heterogeneity is characterized by Λ1 = Ω1−Ω2 and recall that (4.31) will be valid as long as
Λ1 = O(ε) and ε sufficiently small. The phase-locked solutions will be roots of

Λ1 − 2εHodd(φ) = 0. (4.32)

Figure 4.1 shows the graph of 2εHodd(φ) where, 2εH(x) = 0.25 sin(x). Notice that there are two
solutions and there is a critical value of the heterogeneity above which there are no intersections
and thus no phase-locked solutions. Additionally, if the frequency difference is considered as
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Figure 4.1: Phase-locked solutions of the two-cell network with a sinusoidal interaction function.

the bifurcation parameter, the phase-locked solutions are lost via saddle-node bifurcation as Λ1

increases through the maximum value. This fact is confirmed later for the hippocampal neural
model by numerical continuation using XPPAUT [11]. Below the critical level of the heterogeneity
(shown in the figure), the solution closest to zero is stable because H ′

odd(.) > 0 and while the other
solution is unstable. This confirms Theorem (4.4.1) presented earlier for the existence and stability
of the phase-locked solutions in the heterogeneous case. Our goal is to estimate the maximum
value of the heterogeneity for the N -cell network under special simplifying hypothesis and test
the estimations by numerical bifurcation analysis.
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4.4.3 Calculation of the upper bound for equally separated phases:First

approach

Consider the phase model for the N -cell network

dθk

dt
= Ωk + ε

N∑

j=1

H(θj − θk)− εH(0), k = 1, . . . , N.

and in terms of the pairwise phase differences

dφk

dt
= Γk + ε

N∑

j=1

(H(θj − θk)−H(θj − θk+1)) , k = 1, . . . , N − 1.

Γk = Ωk − Ωk+1 indicates the heterogeneity in the network. For the phase-locked solutions we
require

Γk = ε

N∑

j=1

(H(θj − θk+1)−H(θj − θk)) , k = 1, . . . , N − 1. (4.33)

Summing both sides of (4.33) yields

N−1∑

k=1

Γk =
N−1∑

k=1

(Ωk − Ωk+1) = Ω1 − ΩN

= ε

N∑

j=1

N−1∑

k=1

(H(θj − θk+1)−H(θj − θk))

= ε

N∑

j=1

(H(θj − θN )−H(θj − θ1)) . (4.34)

We next assume a specific phase-locking where the phases are equally separated and distributed
between 0 and 2π. In this situation the phases are characterized by the following

θk = Λt + (k − 1)ζ, k = 1, . . . , N, 0 ≤ ζ ≤ 2π

N
.
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and

βk = (k − 1)ζ, k = 1, . . . , N.

Thus the pairwise phase difference is fixed at

φk = βk − βk+1 = −ζ, k = 1, . . . , N. (4.35)

Substituting this into the equation (4.34) gives

Ω1 − ΩN

ε
=

N∑

j=1

(H (βj − βN )−H (βj))

=
N∑

j=1

H (ζ(j −N))−H (ζj − ζ) .

Using the truncated Fourier expansion for H(.), this becomes

Ω1 − ΩN

ε
=

N∑

j=1

(H(ζ(j −N)−H(ζj − ζ)))

=
N∑

j=1

M∑
n=1

an(cos(nζ(j −N))− cos(njζ − nζ)) + bn(sin(nζ(j −N))− sin(nζj − nζ))

=
M∑

n=1

N∑

j=1

an(cos(nζ(j −N))− cos(njζ − nζ)) + bn(sin(nζ(j −N))− sin(nζj − nζ))

=
M∑

n=1

[an cos(nζN)− bn sin(nζN)− an cos(nζ) + bn sin(nζ)]
N∑

j=1

cos(nζj)

+
M∑

n=1

[an sin(nζN) + bn cos(nζN)− an sin(nζ)− bn cos(nζ)]
N∑

j=1

sin(nζj).

where we have used the following identities for simplifying the expressions

cos(A±B) = cos(A) cos(B)∓ sin(A) sin(B)

sin(A±B) = sin(A) cos(B)± sin(B) cos(A).
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We need to evaluate sums of the form
∑N

j=1 cos(nζj) and
∑N

j=1 sin(nζj). Notice that

exp(injζ) = cos(njζ) + i sin(njζ),

and

N∑

j=1

exp(injζ) =
N∑

j=1

(exp(inζ))j

=
N∑

j=1

cos(njζ) + i

N∑

j=1

sin(njζ),

Therefore

Re




N∑

j=1

(exp(inζ))j


 =

N∑

j=1

cos(njζ) (4.36)

Im




N∑

j=1

(exp(inζ))j


 =

N∑

j=1

sin(njζ). (4.37)

Notice that the sums in the left hand side are geometric and can be evaluated easily using the
formula

N∑

j=1

rj = r
rN − 1
r − 1

, (4.38)

which implies that

N∑

j=1

(exp(inζ))j = exp(inζ)
exp(inNζ)− 1
exp(inζ)− 1

. (4.39)

So the sums of interest can be easily evaluated from (4.36)
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N∑

j=1

cos(jnζ)

= Re
(

exp(inζ)
exp(inNζ)− 1
exp(inζ)− 1

)

=
cos(nNζ)− cos(nζ(N + 1)) + cos(nζ)− 1

2(1− cos(nζ))
.

and similarly

N∑

j=1

sin(jnζ)

= Im
(

exp(inζ)
exp(inNζ)− 1
exp(inζ)− 1

)
(4.40)

=
sin(nNζ)− sin(nζ(1 + N)) + sin(nζ)

2(1− cos(nζ))
.

Define a new function UN (ζ), 0 ≤ ζ ≤ 2π
N as follows

Ω1 − ΩN

ε
= UN (ζ)

=
M∑

n=1

RN
cos(nNζ)− cos(n(1 + N)ζ) + cos(nζ)− 1

2(1− cos(nζ))

+
M∑

n=1

LN
sin(nNζ)− sin(n(1 + N)ζ) + sin(nζ)

2(1− cos(nζ))
. (4.41)

where

RN = an cos(nNζ)− bn sin(nNζ)− an cos(nζ) + bn sin(nζ)

LN = an sin(nNζ) + bn cos(nNζ)− an sin(nζ)− bn cos(nζ),

as this is a simpler formula to work with. There will be no phase-locked solutions if the following
condition for the pairwise frequency differences is satisfied
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|Ω1 − ΩN | > gsyn

N − 1
Max|UN (ζ)|. (4.42)

Recall that the coupling strength is ε = gsyn

N−1 . Figure 4.2 shows an example of the plot of |UN (ζ)|
N−1

for M = 1, a1 = b1 = 1 and four different population numbers (N = 10, 100, 1000, 10000). Notice
that for sufficiently large N , the maximum value is independent of N and approaches 1.5. Thus
there will be no phase-locked solutions if the pairwise intrinsic frequency difference is greater than
1.5gsyn. Values of the Fourier coefficients an and bn will be determined more precisely for the
hippocampal interneurons in the next section.

4.4.4 Estimating the upper bound on the natural frequencies: Second

approach

Consider an initially synchronous neural network. Distribute the applied currents such that N1 of
the neurons have natural frequency Ω1, while the other N2 = N −N1 neurons have frequency Ω2.
The units for the neural frequencies are in ms−1 or kHz throughout. Assume that neurons in each
cluster are in synchrony and that the difference between the two natural frequencies, Ω2 − Ω1, is
small enough such that the whole network is near-synchronous. Our aim is to find the maximum
value of Ω2 − Ω1 below which the stability of the near-synchronous oscillations is retained and
compare the results with the maximum heterogeneity obtained by numerical bifurcation analysis.
If the interactions inside a cluster are assumed to be negligible, the problem will be shown to be
equivalent to a two-neuron system.
Let θ1, . . . , θN1 , be the phases of the neurons oscillating with intrinsic frequency Ω1, and θN1+1, . . . , θN ,
be the phases for the neurons oscillating with frequency Ω2. The phase equations are then given
by

dθk

dt
= Ω1 + ε

N∑

j=1

H(θj − θk)− εH(0), k = 1, . . . , N1. (4.43)

dθk

dt
= Ω2 + ε

N∑

j=1

H(θj − θk)− εH(0), k = N1 + 1, . . . , N. (4.44)

Since the phases in each population are constant, the sums simplify as follows. Let θ̃1 and θ̃2

describe the phases in populations 1 and 2, respectively. So the equations become
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Figure 4.2: Plot of the function |UN (ζ)|
N−1 .
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dθk

dt
= Ω1 + ε

N∑

j=1

H(θj − θk)− εH(0)

= Ω1 + ε

N1∑

j=1

H(θj − θk) + ε

N∑

j=N1+1

H(θj − θk)− εH(0)

= Ω1 + εN1H(0) + εN2H(θ̃2 − θ̃1)− εH(0), k = 1, . . . , N1.

dθk′

dt
= Ω2 + ε

N∑

j=1

H(θj − θk′)− εH(0)

= Ω2 + ε

N1∑

j=1

H(θj − θk′) + ε

N∑

j=N1+1

H(θj − θk′)− εH(0)

= Ω2 + εN1H(θ̃1 − θ̃2) + εN2H(0)− εH(0), k′ = N1 + 1, . . . , N2.

Thus the final equations for the cluster phases, θ̃1 and θ̃2, become

dθ̃1

dt
= Ω1 + εN1H(0) + εN2H(θ̃2 − θ̃1)− εH(0) (4.45)

dθ̃2

dt
= Ω2 + εN2H(0) + εN1H(θ̃1 − θ̃2)− εH(0). (4.46)

Let φ = θ̃1 − θ̃2, then

dφ

dt
= Ω1 − Ω2 + ε(N1 −N2)H(0) + εN2H(−φ)− εN1H(φ). (4.47)

The phase-locked solution are given by roots of the following equation

Ω1 − Ω2

ε
= N1H(φ)−N2H(−φ)− (N1 −N2)H(0). (4.48)

Define the function f(φ) as the right hand side of (4.48)

f(φ) = N1H(φ)−N2H(−φ)− (N1 −N2)H(0). (4.49)
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Recall the truncated Fourier series expansion of the interaction function

H(φ) = a0 +
M∑

n=1

[an cos(nφ) + bn sin(nφ)]

H(−φ) = a0 +
M∑

n=1

[an cos(nφ)− bn sin(nφ)] ,

and

f(φ) = N1H(φ)−N2H(−φ)− (N1 −N2)H(0)

= N1a0 +
M∑

n=1

[N1an cos(nφ) + N1bn sin(nφ)]

−N2a0 −
M∑

n=1

[N2an cos(nφ) + N2bn sin(nφ)]

−(N1 −N2)a0 − (N1 −N2)
M∑

n=1

an

= (N2 −N1)
M∑

n=1

an(1− cos(nφ)) + (N1 + N2)
M∑

n=1

bn sin(nφ).

Thus, after using the identity 1− cos(x) = 2 sin
(

x
2

)2, the final expression becomes

f(φ) = 2(N2 −N1)
M∑

n=1

an sin
(

nφ

2

)2

+ (N1 + N2)Hodd(φ). (4.50)

As for the two-cell scenario, f(φ) is plotted and the phase-locked solutions are the intersections of
this curve with the line y = Ω1 −Ω2 (the solutions can also be obtained by using other softwares
with capabilities to solve non-linear algebraic equations). Saddle-node bifurcation occurs at the
intersection point where the slope of the line is zero. Figure 4.3 presents the method for a specific
choice of the function, εH(φ) = 0.25 sin(φ) + 0.05 cos(φ) and population numbers, N1 = 10, and
N2 = 15.

So far we have worked with the general form of the interaction function. In the next section,
we compute the specific form of the interaction functions for the hippocampal interneurons model.
We will see that the shape of the function is modulated by the synaptic decay time constant, τsyn

(ms).
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4.4.5 Interaction function for the hippocampal interneurons

Recall that the membrane potential dynamics for two mutually coupled hippocampal interneurons
is governed by

Cm
dV1

dt
= Istim + µ− Iionic(V1)− gsyns21(V1 − Esyn)

Cm
dV2

dt
= Istim − µ− Iionic(V2)− gsyns12(V2 − Esyn) (4.51)

ds21

dt
= α

1
1 + exp(−V2/2)

(1− s21)− s21

τsyn

ds12

dt
= α

1
1 + exp(−V1/2)

(1− s12)− s12

τsyn

The interaction function is computed for Istim = 3µA/cm2, µ = 0µA/cm2, and gsyn = 0.25
(mS/cm2). τsyn is selected from 1 to 10 ms. These parameter values are consistent with the lit-
erature ( [36], and [19]). The parameter µ characterizes the heterogeneity in the two cell network
and is used as a bifurcation parameter.
To simplify the analysis the interaction function is expanded in the Fourier series. Figures 4.4
and 4.5 show the numerically computed interaction functions (and their odd parts) superimposed
with the five term Fourier approximations. In the range of the values for the synaptic decay
time constant (τsyn), it is observed that the five term Fourier approximation is quite accurate in
approximating the true interaction function in this case. The interaction function can thus be
represented in the following truncated form

H(x) = a0 +
4∑

n=1

[an cos(nx) + bn sin(nx)] (4.52)

Notice that H ′
odd(0) > 0 for the biologically relevant range of the decay time constant (1− 10

ms) and therefore the synchronous oscillations are always stable in a homogenous network of
hippocampal interneurons. Additionally, for τsyn = 1 ms and τsyn = 2 ms, the slope of the
odd part of the interaction function at φ = π is positive (H ′

odd(π) > 0)) which implies that
the anti-phase oscillations will be also stable in the N cell network. Bi-stability between the
synchronous and anti-phase oscillations imply that in a homogenous network of N neurons, one
can switch between the two solutions by varying τsyn. For completeness, Tables 4.1 and 4.2
contain the coefficients of the five term Fourier series approximation of the interaction function
for the hippocampal interneurons.
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term fourier approximation for τsyn = 1 ms.
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Figure 4.5: The interaction function and its odd part superimposed with the corresponding five
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Table 4.1: Computed values of an for the five term Fourier series approximation of the interaction
function for the hippocampal interneurons.

τsyn (ms) a0 a1 a2 a3 a4

1 −0.457 0.281 0.0324 0.0062 0.0049
2 −0.785 0.345 0.0222 2.91× 10−5 7.59× 10−4

3 −1.077 0.374 0.0208 −0.0013 −9.031× 10−4

4 −1.347 0.398 0.0214 −0.0019 −0.0012
5 −1.597 0.415 0.0221 −0.00170 −0.00160
6 −1.834 0.434 0.0233 −0.0017 −0.0017
7 −2.058 0.451 0.0258 −0.0017 −0.0021
8 −2.278 0.470 0.028 −0.0014 −0.00240
9 −2.484 0.486 0.0295 −0.00110 −0.0024
10 −2.680 0.503 0.0298 −0.00170 −0.00220

Table 4.2: Computed values of bn for the five term Fourier series approximation of the interaction
function for the hippocampal interneurons.

τsyn (ms) b1 b2 b3 b4

1 0.0156 0.0686 0.0309 0.0145
2 0.0775 0.0716 0.0296 0.0135
3 0.105 0.0717 0.0281 0.0127
4 0.119 0.0736 0.0262 0.0127
5 0.131 0.0736 0.0257 0.0122
6 0.137 0.0748 0.0255 0.0118
7 0.138 0.0762 0.0261 0.0113
8 0.140 0.0779 0.0265 0.0113
9 0.142 0.0793 0.0267 0.0113
10 0.145 0.0816 0.0263 0.0105

73



Table 4.3: Upper bound on the parameter µ and the intrinsic frequency difference for the two-cell
network. Recall that the units are µ in µA/cm2, and frequencies in kHz.

τsyn(ms) Max(µ) Max|Ω1 − Ω2| Phase equation prediction Relative error (%)
1 0.134 0.0515 0.0577 12.0
2 0.190 0.0730 0.0732 0.274
3 0.231 0.0880 0.0802 8.86
4 0.254 0.0977 0.0846 13.4
5 0.267 0.103 0.0884 14.2
6 0.274 0.105 0.0913 13.0
7 0.278 0.107 0.0929 13.2
8 0.280 0.108 0.0949 12.1
9 0.280 0.108 0.0963 10.8
10 0.280 0.108 0.0980 9.26

4.4.6 Heterogenous two-cell network: Numerical solution versus the

phase-coupled model

As mentioned earlier, the parameter µ (in units of µA/cm2) determines the heterogeneity in the
the neural network. The applied current Istim + µ(µA/cm2) determines the intrinsic frequencies
and as discussed earlier there is an upper bound on µ above which the near-synchronous oscilla-
tions break down. In a previous work [36], the software XPPAUT [11] was used to numerically
compute the frequency ( 1

Oscillation period) of a single neuron as a function of its applied current
and a fourth order polynomial was then fitted to the points. The relationship between the fre-
quency (kHz) and the applied current for a single neuron is therefore

fr(x) = −0.000112x4 + 0.00188x3 − 0.0131x2 + 0.0705x + 0.000258. (4.53)

The intrinsic frequency is given by Ω(µ) = 2πfr(Istim ± µ). In what follows, µ is taken as the
bifurcation parameter and numerical continuation is used to follow the periodic solutions of (4.51)
for µ > 0 emanating. Referring to the figure of the heterogenous two-cell network, we see that
the phase-locked oscillations are lost via saddle-node bifurcation. Table 4.3 shows the µ values
for the occurrence of the saddle-node bifurcation. Note that there is a good correlation with the
numerically computed values and the values predicted by the phase coupled model. Through the
simulations we discovered that for τsyn ≥ 6, the stability of the near-synchronous oscillations is
lost via period doubling at a smaller values of µ, but the phase-coupled model is able only to
capture the saddle-node bifurcations.
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4.5 Three and four cell networks: Estimation of the maxi-

mum heterogeneity

In this section we present results of numerical bifurcation analysis for the three and four cell net-
works. As for the two-cell case, the stimulus current for the corresponding homogenous network
is taken to be Istim = 3 µA/cm2. The dynamics of the three-cell system is governed by

Cm
dV1

dt
= Istim + µ1 − Iionic(V1)− gsyn

2

3∑
j=1
j 6=1

sj1(V1 − Esyn)

Cm
dV2

dt
= Istim + µ2 − Iionic(V2)− gsyn

2

3∑
j=1
j 6=2

sj2(V2 − Esyn) (4.54)

Cm
dV3

dt
= Istim + µ3 − Iionic(V3)− gsyn

2

3∑
j=1
j 6=3

sj2(V3 − Esyn)

dsjk

dt
= α′

1
1 + exp(−Vj/2)

(1− sjk)− sjk

τsyn
, j, k = 1, 2, 3.

Recall the two approaches derived in estimating the upper bound on the heterogeneity

1. The first approach:
|Ω1 − ΩN | > gsyn

N − 1
Max|UN (ζ)|,

and the function UN (ζ) is given by

UN (ζ) =
M∑

n=1

RN
cos(nNζ)− cos(n(1 + N)ζ) + cos(nζ)− 1

2(1− cos(nζ))

+
M∑

n=1

LN
sin(nNζ)− sin(n(1 + N)ζ) + sin(nζ)

2(1− cos(nζ))
,

where
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RN = [an cos(nNζ)− bn sin(nNζ)− an cos(nζ) + bn sin(nζ)]

LN = [an sin(nNζ) + bn cos(nNζ)− an sin(nζ)− bn cos(nζ)] .

2. The second approach:
Ω1 − Ω2 >

gsyn

N − 1
f(φ∗), (4.55)

where φ∗ denotes the bifurcation point (Figure 4.3) and

f(φ) = 2(N2 −N1)
4∑

n=1

an sin
(

nφ

2

)2

+ (N1 + N2)Hodd(φ). (4.56)

N1 and N2 are the numbers of the population clusters having the natural frequencies Ω1

and Ω2, respectively.

Heterogeneity in the network is characterized by the parameters µ1, µ2, and µ3. Two sets of
parameter values are used for comparison between the analytical and the numerical solutions.
For the first set, µ1 = µ2 = 0 and µ3 is used as the bifurcation parameter. Table 4.4 summarizes
the results for four different values of the synaptic decay time constant τsyn. Figures 4.6 and
4.7 demonstrate graphically a sample calculation of the upper bound employing the first and the
second approaches respectively with the synaptic decay time constant, τsyn = 1 ms. According to
the data in Table 4.4, the first approach correlates much better with the numerical results. Figure
4.8 shows the corresponding action potentials for the three cells with the heterogeneity parameters
set to µ1 = µ2 = 0, µ3 = 0.2 and τsyn = 1ms. The cells are initially perfectly synchronized. By
increasing the applied current to the third cell, the third cell begins to move away from the rest
of the population, while the other cells remain perfectly synchronized together.
For the second set of simulations µ1, µ2 and µ3 are chosen randomly from the range (−µ̃, µ̃)

where µ̃ is the corresponding saddle-node bifurcation value of the parameter µ for the two-cell
network presented in Table 4.5 and are dependent on the synaptic decay time constant, τsyn ([36],
[37]). Once again, µ3 is taken as the bifurcation parameter. Columns six and seven present the
estimations from the first and second approaches similar to the previous case.

According to Table 4.4 the first method clearly correlates much better with the simulation
results as can be seen from the relative error values. However; for the second simulation set, the
first method has smaller relative error values for τsyn = 1 (ms) and τsyn = 5 (ms). For τsyn = 2
(ms) the second method has smaller relative error and for τsyn = 10 (ms) the errors are about the
same for the two approaches. It can therefore be seen that when the heterogeneities are selected
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Figure 4.6: Calculating the upper bound for the loss of the near-synchronous solutions using the
first approach when τsyn = 1 ms, gsyn = 0.25 mS/cm2 in a 3-cell network.

Table 4.4: Upper bound on µ3 and the natural frequency difference for the three-cell network for
the first set of simulations. µ3 is in units of µA/cm2 and the frequencies are in kHz.

τsyn(ms) Max(µ3) Max(|Ω3 − Ω1|) Approach 1 (% error) Approach 2 (% error)
1 0.240 0.0453 10.4 26.7
2 0.368 0.0688 2.03 32.7
5 0.462 0.086 3.49 35.2
10 0.462 0.0861 6.04 31.7
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Figure 4.7: Calculating the upper bound for the loss of the near-synchronous solutions using the
second approach for τsyn = 1 ms, gsyn = 0.25 mS/cm2 and N1 = 1, N2 = 2 in a 3-cell network.

Table 4.5: Upper bound on µ3 and the natural frequency differences for the three-cell network
considering the second set of simulations. µ3 is in units of µA/cm2, and frequencies are in kHz.

τsyn (ms) µ1 µ2 Max(µ3) Approach 1 (%error) Approach 2 (% error)
1 -0.023 0.052 0.238 1.21 32.8
2 -0.067 0.15 0.207 29.4 11.1
5 -0.0026 0.037 0.477 6.95 37.6
10 -0.13 0.057 0.268 20.4 22.4
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Figure 4.8: Sample Action potentials for the three cell network with heterogeneity parameters set
to µ1 = µ2 = 0, µ3 = 0.2 (in µA/cm2) and τsyn = 1 ms. The neurons 1 and 2 are completely
synchronous and their action potentials are superimposed and can not be distinguished.
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Table 4.6: The first set of numerical results for computing the upper bound on the heterogeneity
for the four cell network. The parameter µ is in units of µA/cm2 and the frequencies are in kHz.

τsyn (ms) Max(µ3) Max(|Ω3 − Ω1|) (kHz) First approach (%) Second approach (%)
1 0.183 0.0348 36.5 7.76
2 0.238 0.0450 42.4 11.56
5 0.292 0.0549 44.3 11.84
10 0.2885 0.0543 60.2 24.1

randomly, non of the methods has clear advantage over the other one. Further simulations and
theoretical investigations are necessary to reach definite conclusions regarding the two approaches.
We repeat the same analysis for the four cell network. The dynamics of the four cell network is
governed by

Cm
dV1

dt
= Istim + µ1 − Iionic(V1)− gsyn

3

4∑
j=1
j 6=1

sj1(V1 − Esyn)

Cm
dV2

dt
= Istim + µ2 − Iionic(V2)− gsyn

3

4∑
j=1
j 6=2

sj1(V2 − Esyn)

Cm
dV3

dt
= Istim + µ3 − Iionic(V3)− gsyn

3

4∑
j=1
j 6=3

sj1(V3 − Esyn)

Cm
dV4

dt
= Istim + µ4 − Iionic(V4)− gsyn

3

4∑
j=1
j 6=4

sj1(V4 − Esyn) (4.57)

dsjk

dt
= α′

1
1 + exp(−Vj/2)

(1− sjk)− sjk

τsyn
, j, k = 1, 2, 3, 4.

As before, µ1, µ2, µ3 and µ4 characterize the heterogeneity in the network. We follow similar
steps for carrying out simulations for the four cell network. The first set of the simulations as-
sume that µ1 = µ2 = 0, µ3 = µ4 and µ3 is then taken as the bifurcation parameter. Table 4.6
summarizes the results along with the analytical estimations. For the second set of simulations
we chose the heterogeneity parameters of the neurons 1, 2, and 3 randomly and take µ4 as the
bifurcation parameter. Table 4.7 summarizes the results and Figure 4.9 shows the correspond-
ing action potentials for τsyn = 5 ms and µ1 = −0.13 µA/cm2, µ2 = 0.07 µA/cm2, µ3 = −0.1
µA/cm2, µ4 = 0.23 µA/cm2.
The first approach has lower relative error when the heterogeneities are selected randomly and
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Figure 4.9: The action potentials in the four cell network with randomly chosen heterogeneities
(µ1 = −0.13 µA/cm2, µ2 = 0.07 µA/cm2, µ3 = −0.1 µA/cm2, µ4 = 0.23 µA/cm2) and τsyn = 5
ms.

Table 4.7: The second set of numerical results for computing the upper bound on the heterogeneity
for the four cell network. µ1, µ2, µ3, µ4 are in units of µA/cm2.

τsyn (ms) µ1 µ2 µ3 Max(µ4) Approach 1 (%) Approach 2 (%)
1 -0.031 0.081 0.063 0.219 0.210 20.9
2 -0.05 0.061 0.11 0.291 0.470 22.1
5 -0.13 0.070 -0.10 0.252 8.94 15.5
10 0.01 0.1 0.05 0.553 13.0 32.5
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higher error for the first simulation set where the heterogeneity selection is structured. As men-
tioned earlier, more simulations are necessary to reach a conclusive answer as which method is
more accurate; however, based on the three and four cell network simulations, we conjecture that
the first method better approximates the saddle node bifurcation values for the networks with
randomly selected heterogeneities. This choice of random input heterogeneity is in accordance
with larger network computer simulations (for example see [37], [36]). In the following we show
that the predictions using the first approach developed in this thesis correlate with results ob-
tained from a large scale computer simulation study. In particular, Skinner et al. [37] reported
that as the synaptic decay time constant increases from τsyn = 1 ms to τsyn = 5 ms, the loss
of the near-synchronous oscillations in a 10-cell network occurred at larger heterogeneities (see
Table 4 in [37]). They observed the same pattern with the two cell simulations which showed
that the two-cell network correctly reflected the modulation of the near-synchronous oscillations.
Furthermore, the loss of the near-synchronous oscillations in their 10 cell network occurred at
smaller heterogeneity than the two cell network for the values of τsyn they considered. Table
4.8 shows the values of the upper-bound for heterogeneity calculated for networks with N = 2,
N = 10, N = 1000 and N = 1000000 neurons using the first approach developed in this thesis.
The calculation results are summarized as follows which is confirmed by simulations by Skinner
et al. ( [37], [36]):

1. Loss of the near-synchronous oscillations occurs at larger heterogeneity as the synaptic decay
time constant, τsyn, is increased and the pattern is preserved as we go from the two cell
network to larger networks.

2. For a fixed τsyn, loss of the near-synchronous oscillations occurs at smaller heterogeneity as
the network size increases.

Furthermore, calculations predict that for a fixed τsyn, there exists an asymptotical value that
the upper bounds on heterogeneity approach as the network size increases. This is shown by the
last column in Table 4.8 which is performed for a network with a million cells. This prediction
remains to be confirmed by further computer simulations.

To better understand the implications of heterogeneity in neural networks, the next section
deals with estimating the effect of the perturbations in the neural phases of the corresponding
homogenous network.
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Table 4.8: Calculating the upper bounds on the heterogeneity (maximum mutual neural frequency
difference) using the first approach to show the modulation of the near-synchronous oscillations
by τsyn and more importantly, preservation of the pattern predicted by the two cell network in
larger networks. The stimulus current is measured in µA/cm2 and the percentage is computed by
finding µ′ such that fr(3 + µ′)− fr(3− µ′) = (the frequency difference) and then computing

µ′

Istim
× 100.

τsyn (ms) N = 2 N = 10 N = 1000 Asymptotic value Percentage of Istim = 3
1 0.0562 0.0436 0.0414 0.0414 6.13
2 0.0753 0.0590 0.0561 0.0560 9.13
5 0.0921 0.0730 0.0694 0.0694 11.1
10 0.101 0.0802 0.0762 0.0762 13.0

4.6 Estimating phase separation in the heterogenous net-

work

Assume that neurons in a homogenous network are oscillating synchronously. Adding heterogene-
ity to the network, perturbs the neural phases and separates the initially in-phase (zero phase
difference) neurons. The added heterogeneity also perturbs the network frequency and our aim
in this section is to predict this phase separation and network frequency alteration by applying
the first order analysis. The analytical results will then be compared with numerical simulations
for three and four cell networks.

First order analysis

Recall that in a synchronous network phases are given by

θk = Λt, k = 1, . . . , N.

We assume that adding heterogeneity perturbs the above phases by δk such that |δk| << 1

θk = Λt + δk, k = 1, . . . , N. (4.58)

The above equation is substituted in the phase equations and it is assumed that linear approxi-
mation to the interaction function holds true
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dθk

dt
= Λ′ = Ωk + ε

N∑

j=1

H(θj − θk)− εH(0)

= Ωk + ε

N∑

j=1

H(δj − δk)− εH(0)

≈ Ωk + ε

N∑

j=1

[H(0) + H ′(0)(δj − δk)]− εH(0)

= Ωk + εNH(0) + εH ′(0)
N∑

j=1

(δj − δk)− εH(0).

Similar expression holds for the k + 1st neuron and the equation for the phase difference, φk =
θk − θk+1 becomes

Ωk − Ωk+1 − εNH ′(0)(δk − δk+1) ≈ 0. (4.59)

Thus the perturbed phase difference, δk − δk+1 is approximated by

δk − δk+1 ≈ N − 1
N

Ωk − Ωk+1

gsynH ′(0)
. (4.60)

We take the first neuron as the reference point ( δ1 = 0), and the phase-shifts can easily be found

δ1 = 0 (4.61)

δ2 = −N − 1
N

Ω1 − Ω2

gsynH ′(0)
(4.62)

δ3 = −N − 1
N

Ω1 − Ω3

gsynH ′(0)
(4.63)

... (4.64)

δk = −N − 1
N

Ω1 − Ωk

gsynH ′(0)
. (4.65)

Let Λ′ be the new network frequency. Then

84



Λ′ = Ωk + ε

N∑

j=1

H(δj − δk)− εH(0)

≈ Ωk + εNH(0) + εH ′(0)
N∑

j=1

(δj − δk)− εH(0)

= Ωk + ε(N − 1)H(0) + εH ′(0)
N∑

j=1

Ωj − Ωk

εNH ′(0)
(4.66)

= Ωk + ε(N − 1)H(0) +
1
N

N∑

j=1

(Ωj − Ωk) (4.67)

=

∑N
j=1 Ωj

N
+ gsynH(0) (4.68)

= Ω̄ + gsynH(0), (4.69)

where Ω̄ =
∑N

j=1 Ωj

N denotes the mean intrinsic frequency of the neurons. It is interesting to notice
that the form of the network frequency is exactly the same as that of the homogeneous network
having the intrinsic frequency of Ω̄. Further, notice that for neurons with odd interaction func-
tion, the network frequency of the heterogeneous network is equal to the mean intrinsic frequencies
(since H(0) = 0 for an odd interaction function). Therefore, to estimate the network frequency
in a heterogenous network, it suffices to compute the mean intrinsic frequency and add gsynH(0).

4.6.1 Comparison of the first order analysis with numerical solutions

To test the analytical results, consider a network of four neurons initially in perfect synchrony.
The effect of adding heterogeneity results in temporal separation of the neural action potentials
(the peak action potentials move away from each other) as depicted in Figure 4.10. We compare
the analytical results with numerical simulations for the cases with τsyn = 1 ms and τsyn = 5 ms.
The heterogeneity parameters are: Istim = 3µA/cm2, µ1 = −0.05, µ2 = 0.08, µ3 = 0.1, µ4 = −0.1
all in units of µA/cm2. The perturbation in the phases for N = 4 is given by

|δk − δk+1| = 3
4
|Ωk − Ωk+1|
gsynH ′(0)

. (4.70)
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The intrinsic frequencies are given by

Ω1 = 0.846 kHz

Ω2 = 0.867 kHz

Ω3 = 0.864 kHz

Ω4 = 0.871. kHz

We provide the detailed calculations for the case of τsyn = 1 ms. In this case, H ′(0) = 0.303. The
phase differences are then calculated using equation 4.70

|δ1 − δ2| = 0.208

|δ2 − δ3| = 0.0297

|δ3 − δ4| = 0.0693.

Knowing the oscillation period, T = 7.70ms, the temporal separations (the time separation be-
tween the peak action potentials) can also be calculated

|∆t12| = |δ1 − δ2| T2π
= 0.255 ms

|∆t23| = |δ2 − δ3| T2π
= 0.0364 ms

|∆t34| = |δ3 − δ4| T2π
= 0.0849 ms.

The temporal differences are computed from the numerical simulations by calculating the time
difference between the two action potential peaks (Figure 4.10). The numerical values of the
temporal differences are as follows

|∆t12|numeric = 0.25 ms

|∆t23|numeric = 0.040 ms

|∆t34|numeric = 0.070 ms.
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Figure 4.10: The action potentials for neurons 1 and 2 in the four cell network with τsyn = 1 ms.
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Table 4.9: The relative error between the analytical and computed values of the temporal sepa-
ration of the action potentials in the four-cell network.

τsyn (ms) ∆t12 error (%) ∆t23 error (%) ∆t34 error (%)
1 1.96 9.00 21.3
5 21.5 26.8 13.8

For τsyn = 5 ms, similar calculations are carried out to yield

|∆t12| = 0.259 ms

|∆t23| = 0.0366 ms

|∆t34| = 0.0862 ms,

and the corresponding numerical results

|∆t12|numerical = 0.33 ms

|∆t23|numerical = 0.05 ms

|∆t34|numerical = 0.1 ms.

Table 4.9 summarizes the relative error between the analytical and numerical results. Notice that
for smaller value of the synaptic decay time constant the errors are smaller.
The change in network frequency (as an indicator of the input heterogeneity) can also be com-

pared. Recall the expression for the network frequency in a heterogeneous network

Λ = Ω̄ + gsynH(0), (4.71)

where Ω̄ is the mean intrinsic frequency. Table 4.10 summarizes the network frequencies for four
different choices of τsyn values and for the N = 3 cell network. As can be seen from Table
4.10, there is a good correlation between the numerically computed values and the analytical
estimations for τsyn < 5 ms and the prediction gets worse as the synaptic decay time constant is
increased. The above approximations for calculating the phase shifts and network frequency along
with the previously described approaches to estimate the upper bounds on the input heterogeneity,
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Table 4.10: Comparison of the numerically computed network frequency versus the analytical
results.

τsyn(ms) Λnumerical(kH) Λanalytical(kH) Relative error (%)
1 0.816 0.829 1.59
2 0.753 0.758 0.660
5 0.604 0.571 5.46
10 0.468 0.324 10.77

provide useful approaches in understanding implications of the heterogeneity on the existence and
stability of the synchronous oscillations.
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Chapter 5

Conclusion

We began by considering the general phase model for a network of all-to-all coupled neurons.
We provided conditions for the stability of the synchronous and anti-phase oscillations in a ho-
mogenous network consisting of N neurons. The phase reduction method was then applied to the
model of hippocampal interneurons [43] to gain a better understanding of the stability and exis-
tence of the synchronous oscillations in the heterogeneous network of hippocampal interneurons.
The results confirmed the notion that the heterogeneity of inputs (thus the intrinsic frequencies)
strongly affect the ability of the neurons to synchronize ([41], [43]) and reduces the basin of at-
traction of the stable synchronous oscillations. An interesting finding from the above analysis
is that in a synchronous network of N neurons, if the intrinsic frequency difference of any two
neurons goes beyond a critical value, the synchronous oscillation will be destroyed. In patho-
logical rhythms such as epilepsy [9] which is generated in hippocampus, this finding suggests a
method for using focused high frequency stimulation of a local region of a synchronized network,
for alleviating and controlling the synchronous oscillations. The local high frequency stimulation
has been applied for annihilating oscillations in biological neural networks. Kiss et al [24] showed
suppression of rhythms in rat thalamus and related their findings to oscillations in Parkinson
patients. Benabib et al [4] found symptom alleviation (tremor, rigidity) after the application of
high frequency stimulation of the brains (thalamus) of Parkinson patients. From their data the
extent of the localization of the stimulating field is not clear. The symptom alleviation can either
result from oscillation suppression where the neurons in the population fail to oscillate altogether,
or it may result from the loss of synchronous oscillations. Although, our results do not deal
with suppressing the oscillations, they support the idea that local high frequency stimulation can
annihilate synchrony in neural networks. Assuming that Parkinsonian tremors in patients result
from synchronization in an appropriate controlling neural network, the findings support the use
of local electrical fields to increase the input heterogeneity above critical value and alleviate the
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synchronous oscillations (and thus the tremors).

There has been only few serious analytical studies of heterogeneous networks. Ermentrout
[10] studied the existence and stability of phase-locked solutions in network of oscillators and the
theorem proved in his article was used here to establish the stability of the solutions resulting
from the perturbation of the corresponding homogenous solutions. Another work containing
significant analytical insight, carried out by Chow[8], who used a simplified model to establish
that there exists a a critical heterogeneity level above which phase-locked solutions do not exist
and that, if the homogenous solutions are stable, the corresponding heterogeneous solutions will
be stable for sufficiently weak heterogeneities. The above two results were confirmed by the
numerical and analytical approaches of this thesis. A result not mentioned in the literature,
was application of the first order analysis to derive a formula for the network frequency and
thus establish a direct correspondence between the input heterogeneity and frequency of the
rhythms. This result becomes intriguing when one contemplates the possibility of using input
heterogeneity by the brain to switch between different frequency regimes. Finally, as mentioned
earlier, synchronous oscillations are believed to be involved in different cognitive functions and
brain might switch between different cognitive states by changing patterns of input currents to
neural networks involved in modulating the rhythms. Additionally, the results of this thesis are
derived for general interaction functions and can therefore be applied to other types of neurons
not considered here.

5.1 Future directions

Heterogeneity seems to play an important role in modulating the brain rhythms and specifically in
the interneuronal population considered here. One immediate future step is to attempt to perform
bifurcation analysis of the networks with 5 to 10 cells and compare the numerical values of the
maximum heterogeneity with the analytical results obtained here. Another project would be
aimed at comparing validity of the network frequency formula developed here, with frequencies
computed numerically for large scale networks (N > 10) and confirming the hypothesis that
heterogeneity has a significant controlling effect on the network frequency. A long term future
project, may involve application of time dependent stochastic stimulating current to interneuronal
phase model, and determining its role in altering the stability of synchronous oscillations.
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