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Abstract 

Within the boreal region of Canada, river ecosystems are affected by naturally low flows 

in the summer months and hydropower operations, which can greatly influence the structure and 

function of river food webs. Few long-term studies exist that assess spatial and temporal 

variation in fish feeding in natural and regulated boreal rivers. Such studies would provide 

improved understanding of the role that temporal and spatial scale plays in the interpretation of 

how environmental influences such as flow affect food aquatic webs. The overall objective of 

this thesis was to examine factors affecting fish feeding in natural and regulated rivers, at over 

short and long-term and also within multiple river reaches.  

In Chapter 2, fish feeding niche and stable isotope composition were compared over two 

reaches and ten years within the Batchawana River (a natural boreal river in northern Ontario), 

and in relation to flow metrics such as mean, minimum and maximum flow and temperature. 

Fish δ
13

C and δ
15

N were found to be temporally invariant in upstream and downstream river 

reaches. Feeding niche was temporally invariant only at the lower Batchawana River reach, with 

a significant increase in feeding niche observed through time for the upper river reach. There was 

only one significant correlation between the standard deviation of δ
15

N and the standard 

deviation of mean daily flow, but no other significant correlations between fish isotope 

composition (δ
13

C or δ
15

N) and select flow metrics. In Chapter 3, two rivers in south-central 

Newfoundland allowed for comparison of stomach contents, stable isotopes and feeding niche in 

normal and low flow years. During a low flow year, feeding niche decreased in the natural river 

and was not significantly different from that of the regulated river. The work within this thesis 

provides a better understanding of how fish feeding varies over space and time in natural and 

regulated rivers and in response to normal and low flows.  
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General Introduction 

As open systems, rivers are intricately linked by hydrologic and geomorphic processes to 

the longitudinal, lateral and vertical environments (Ward 1989; Pinay 2002). Rivers are not only 

water, but represent the integration of local physical processes such as geography, 

geomorphology, climate, weather, as well as the biological communities that depend on them 

(Jungwirth et al. 2002). Rivers are naturally complex and support a broad diversity of aquatic 

species and provide a number of ecological goods and services (Cushman 1985; Sparks 1995; 

Karr and Chu 2000), along with having a long history of supporting the human population 

(Baxter 1977; Sparks 1995; Jungwirth et al. 2002). They provide an essential source of water to 

people in the surrounding watershed, and are used for drinking, recreation, and transportation 

(Sparks 1995; Jungswirth et al. 2002). Rivers are influenced by natural hydrological events, and 

the increasing number of human stressors such as hydropower and pollution (Ligon et al. 1995). 

Due to the significance of rivers for both human and ecosystem needs, it is important to make 

every effort to conserve them. Conserving river health and integrity depends on understanding 

the functional roles and linkages between riverine organisms, and the factors influencing river 

hydrology such as natural environmental variation and anthropogenic influences such as 

hydropower operations (Richter et al. 2003). 

 

Life within rivers 

Life history characteristics and seasonal phenologies of riverine organisms and the 

structure of river communities are closely linked to environmental conditions such as 

temperature (Powell and Logan 2005), the timing of flood events (Sparks 1995), the inherent 

physical factors of the river (e.g., substrate type, current speed); (Dudley et al. 1990), and how 
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these vary over space and time. Natural hydrological fluctuations such as seasonal high and low 

flows, have a strong influence on nutrient and subsidy exchange, are responsible for shaping the 

river channel and for distributing sediments, influencing the availability and diversity of taxon 

habitats (Sparks 1995), and contributing to the structure and function of the river ecosystem 

(Dudley et al. 1990). Naturally variable hydrological events, such as seasonal floods and 

droughts, influence habitat and resource availability, biological diversity, and interactions among 

river organisms (Poff et al. 1997; Maddock 1999). 

The natural flow paradigm 

Management of river systems has shifted towards a more complete understanding of the 

entire range of flow variability within the hydrological regime due to the importance of natural 

flow variability for maintaining the structure and function of river ecosystems, and the 

distribution and abundance of river species (Poff and Zimmerman 2010). The components of the 

flow regime believed to best characterize flow variability and to be responsible for maintaining 

the integrity of river systems are magnitude, frequency, duration, timing, and rate of change 

(Poff et al. 1997; Olden and Poff 2003). Magnitude refers to the quantity of water moving past a 

given point per unit time. Frequency of occurrence refers to the number of observations above or 

below a given flow magnitude over a specified time interval. Duration refers to the amount of 

time allocated to a particular flow event (e.g., how long a drought lasts). Timing refers to the 

calendar date in which a specific flow event occurs, indicating the predictability of flow events. 

Lastly, rate of change refers to how quickly measured flow changes from one time period to 

another (i.e., hourly change in magnitude); (Poff et al. 1997; Olden and Poff 2003). Accounting 

for natural variability within the flow regime allows for comparison of natural flow conditions to 

those that may be altered by human-induced changes to flow. 
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What constitutes a disturbance?  

Disturbances are rapid, prolonged, and unexpected changes in the immediate 

environment, exceeding the normal range of conditions to which organisms have adapted, and 

affecting the well-being and survival of organisms (Minshall 1988). Disturbances will affect 

organisms differently, depending on their size, life history characteristics, and movement 

capabilities (Minshall 1988; Statzner et al. 1988). While this thesis does not explicitly test for the 

influence of climate change on biological communities, it does touch upon the influence of 

temporal variations in flow on fish and invertebrates within rivers. Intra- or inter-annual variation 

in flow and temperature can be mediated by climatic patterns (Meyer 1999). Changes in climatic 

conditions are expected to alter ecosystems beyond natural ranges of environmental conditions 

(Kayler et al. 2015) and may interact with human mediated impacts (Gibson et al. 2005). 

Globally, climate change has affected the hydrological cycle through increases in temperature, 

changes to precipitation patterns and river discharge (Nijssen et al. 2001). At a more regional 

scale, climate changes can substantially alter river ecosystems through modifications to the 

frequency, magnitude, timing, duration and rate of change of flows, which affect the structure 

and function of biotic communities (Gibson et al. 2005).  

To assess how biological communities respond to changing hydrological and thermal 

conditions, long-term studies are needed. However, few long-term, multi-species, multi-site 

studies have explored how food webs vary naturally and in response to altered hydrological 

regimes and temperature fluctuations at differing spatial and temporal scales (Daufresne and 

Boët 2007). Those few studies that have explored impacts over relatively long periods (>10 

years) have indicated that shifts in fish and invertebrate abundance, and the timing of life cycle 

events were significantly correlated with temperature (Daufresne et al. 2003). For example, 1°C 
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increases in temperature have been correlated with declines of total invertebrate abundance by 

21% (Durance and Ormerod 2007). In the St. Lawrence River, a 1.3 °C increase in water 

temperature was associated with a decline in discharge over the last 50 years, which modified the 

recruitment of both cold and warm water fish species (Hudon et al. 2010). There is a need for the 

completion of more long term research on fish and invertebrate community feeding niches which 

explicitly evaluates the direct and indirect food web effects of possible environmental stressors, 

such as natural and altered variation in flow. 

General context of thesis 

 The work within this thesis provides empirical testing of the relationships between 

components of the flow regime and fish feeding niche, in natural and regulated boreal rivers. The 

thesis consists of a general introduction chapter, two data chapters (Chapters 2 and 3), and a 

conclusion and scientific contributions chapter. At the time of thesis submission, Chapter 2 and 3 

were published in Ecohydrology, and River Research and Applications (Brush et al. 2016 and 

Brush et al. 2014, respectively).  

 

Research Objectives 

The objective of this thesis is to address the need for assessment of the perceived 

relationships between components of the flow regime and food web metrics in regulated and 

natural rivers. The environmental factors influencing fish diet, feeding niche and food chain 

length are examined across two reaches and ten years within a natural river in Ontario, and one 

reach and two years using paired dam-affected and natural rivers in Newfoundland. 
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Study rivers 

Cold Spring Pond, Newfoundland, is a reservoir which distributes water for hydropower 

production, and also is used to supply water to the West Salmon River (N48°17′244″, 

W056°23′006″). A control structure (gate) was created between Cold Spring Pond and West 

Salmon River in 1981 to divert water from the West Salmon River to the hydropower facility 

(Scruton et al. 2008). The West Salmon River is located below the West Salmon dam at the most 

southern portion of Cold Spring Pond. Flow into the West Salmon is regulated seasonally and 

varies from 40% of the pre-project mean annual flow (MAF); (2.6 m
3
/s) from June 1- November 

30, and 20% of the pre-project MAF (1.3 m
3
/s) for the remainder of the year. Within the upper 

reach (where the study took place), flow is kept artificially steady by the outflow from the 

control structure. Twillick Brook (N48°10′592″, W055°57′137″) is a natural, unregulated river 

similarly sized to the West Salmon River, with an abundance of pool and riffle habitats 

favourable for Atlantic salmon (Salmo salar), brook charr (Salvelinus fontinalis) and three-

spined stickleback (Gasterosteus aculeatus) populations.  

North of Sault Saint Marie, Ontario three reaches spanning over 20 km on the 

Batchawana River (N47.0
o
W84.0

o
) were chosen. The Batchawana River follows a natural 

hydrograph, with increasing flows associated with precipitation and run-off events (Marty et al. 

2009; Patterson and Smokorowski 2011; Smokorowski et al. 2011). The work completed on the 

Batchawana River provides a better understanding of how natural levels of environmental 

variability can influence biological communities over space and time. 
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Study taxa 

Fish and invertebrates were chosen as study taxa because they are important components 

of the food web and are directly influenced by components of their environment (flow and 

temperature). Fish are easy to identify and life history information is available for most fish 

species (Karr 1981). Because they are relatively long-lived and mobile, fish serve as integrators 

of ecological processes at a range of spatial and temporal scales within rivers, providing an 

indication of the status of their habitats (Hynes 1970; Harris 1995). Information pertaining to fish 

communities as economic resources can be easily interpreted by the general public (Harris 1995). 

Invertebrates have been widely studied in river ecosystems, are easy to collect, and the impacts 

of flow modifications on community composition and diversity are known (Boon 1988; Valentin 

et al. 1995; Hart and Finelli 1999; Cortes et al. 2002; Jones 2010). 

In Newfoundland, Atlantic salmon (Salmo salar) and brook charr (Salvelinus fontinalis), 

spanning available size classes, were sampled. Benthic invertebrate species collected included: 

Trichoptera (mainly Hydropsychidae and Philopotamidae), Plecoptera (Perlidae), Ephemeroptera 

(Heptageniidae), Diptera (Chironomidae and Simuliidae), Hirudinea, and freshwater mussels. 

In the Batchawana River, the sampled fish community included: brook charr, rainbow 

trout (Oncorhynchus mykiss), white sucker (Catostomus commersonii), yellow perch (Perca 

flavescens), longnose sucker (Catostomus catostomus), American brook lamprey (Lampetra 

appendix), burbot (Lota lota), common shiner (Luxilus cornutus), longnose dace (Rhinichthys 

cataractae), blacknose dace (Rhinichthys atratulus), Northern redbelly dace (Phoxinus eos), 

creek chub (Semotilus atromaculatus), lake chub (Couesius plumbeus), slimy sculpin (Cottus 

cognatus), mottled sculpin (Cottus bairdii), logperch (Percina caprodes), trout perch (Percopsis 

omiscomaycus), brook stickleback (Culaea inconstans), Iowa darter (Etheostoma exile), and 
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johnny darter (Etheostoma nigrum). In some cases, not all fish species were captured at all 

sample locations. Invertebrate taxa sampled included: Ephemeroptera (Heptageniidae, Baetidae, 

Oligoneuriidae, Ephemerellidae), Stoneflies (Perlidae), Odonata (Gomphidae and Aeshnidae), 

Trichoptera (Hydropsychidae, Polycentropodidae, Philopotamidae, and Limnephilidae) and 

Gastropoda (Lymnaea stagnalis and Promenteus exacuous). 

 Following the objectives outlined above, the subsequent two chapters highlight key 

aspects and important findings of the thesis. Chapter 2 involves work on a natural river north of  

Sault Sainte Marie, Ontario, which examines long-term (10 year) data on stable isotopes of fish 

in relation to space, time, and selected flow and temperature metrics. Chapter 3 involves work 

from a natural and regulated river in Bay d’Espoir, Newfoundland where dietary and stable 

isotope analyses were used to investigate the influence of a low flow year on feeding ecology of 

resident fishes.  

Chapter 2 Summary: Fish feeding niche characterization over space and time in a natural 

boreal river 

Relationships between flow, temperature and trophic metrics (δ
13

C, δ
15

N and feeding 

niche area) were examined using fish collected from two sites over a 10-year period from a 

natural, unregulated river in the boreal forest region of northern Ontario over time and space. 

Specifically, based on the need to characterize fish feeding at spatial and temporal scales within 

unaltered rivers (Poff and Zimmerman 2010) and existing literature that suggests that there are 

predictable relationships between flow and river community structure and function (Poff and 

Ward 1989), the following hypotheses were tested: (i) trophic metrics representative of feeding 

opportunities available to the fish community do not vary temporally; (ii) if variation in trophic 

metrics exists, it will be positively correlated to the variation in flow and temperature; (iii) there 
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will be a significant difference in fish feeding niche between low and high flow years; and (iv) 

consistent with the predictions of the river continuum concept (Vannote et al. 1980), the upper 

river reach will have smaller fish feeding niche areas and isotopic resource widths compared 

with the lower reach. 

Chapter 3 Summary: The impact of low flow on riverine food webs in south-central 

Newfoundland 

Few studies have examined how low-flow events specifically affect the feeding ecology 

of fish in boreal forest rivers (Monk et al. 2008; Rolls et al. 2012). To address the knowledge 

gap, fish diet composition, mean and variance of fish δ
13

C and δ
15

N, resource use and overlap 

were compared in a low flow and normal-flow year using data collected for fish from a pair of 

boreal rivers; one regulated and one unregulated. Within the regulated river, it was expected that 

there would be no intra-annual or inter-annual differences in resource use owing to the relative 

lack of flow variation, and in the natural river, it was expected that there would be high intra-

annual and inter-annual differences in resource use owing to seasonal and inter-annual 

differences in flow. The study tested the hypotheses that: (i) there would be no inter-annual 

variation in resource use or overlap for fish in the regulated river, but within-river resource 

overlap between fish species would be higher in the low-flow year within the natural river, and 

(ii) resource overlap between rivers would be higher in the low-flow year. 

 Research explored within this thesis has provided a significant contribution to 

management through a better understanding of how scale and also how community diversity can 

affect the interpretation of fish community responses to spatial and temporal variation in 

temperature and flow. 
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Chapter 2 

Introduction 

 Within natural river ecosystems, environmental factors such as temperature and flow 

have a clear influence on community structure and function (Poff et al.1997; Maddock 1999; 

Bunn and Arthington 2002). The life history characteristics and phenologies of riverine 

organisms are closely linked to temperature (Powell and Logan 2005), the timing of flow events 

(Sparks 1995), the inherent physical factors of the river, e.g., substrate type, water velocity 

(Dudley et al. 1990), and how these vary over space and time. Natural hydrological fluctuations, 

such as seasonal high and low flows, have a strong influence on nutrient and subsidy exchange. 

Seasonal flows are also responsible for shaping the river channel and for distributing sediments 

that influence the availability and diversity of taxon habitats (Sparks 1995; Bradford and 

Heinonen 2008), thereby contributing to the structure of the river community (Dudley et al. 

1990).  

 In boreal regions across the globe, changes in climate are expected to decrease 

precipitation and increase temperature-induced evapo-transpiration (Xenopoulos and Lodge 

2006; Woo et al. 2008; Jellyman et al. 2013) and, as a result, decrease flows in lotic ecosystems 

(Woo et al. 2008). Such changes are predicted to directly influence the thermal and flow regimes 

of freshwater ecosystems (Malmqvist and Rundle 2002). While variability is a feature of all 

ecosystems (Holling 1973), climate change is expected to increase variability in environmental 

conditions such as temperature (McCarty 2001; Parmesan and Yohe 2003) and flow (Ward et al. 

2015). Higher variability in flow and temperature have been associated with higher variability in 

invertebrate abundance and diversity (Currie et al. 2004) and lower population growth rates in 

salmonid fishes (Ward et al. 2015), although greater invertebrate community stability has been 
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documented to occur in river reaches experiencing both higher variability in flow and higher 

relative flood sizes (Scarsbrook 2002).  

 The interpretation of how environmental factors affect aquatic communities is largely 

dependent on spatial and temporal scale (Martinez and Lawton 1995; Jackson et al. 2001; 

Jackson and Füreder 2006). To date, few long-term studies of riverine fishes in aquatic 

communities have been completed (Woodward and Hildrew 2002), and there remains a need to 

collect long-term data to better understand the long-term ecological dynamics of rivers and 

develop flow standards (Poff and Zimmerman 2010). The studies that have been completed have 

typically focussed on changes in fish community structure and/or constituent population 

abundance (Grossman et al. 1982; Elliott and Hurley 1998; Vøllestad and Olsen 2008; Lobón-

Cerviá 2012). Thus, there remains a need for more empirical studies that examine the structural 

factors affecting fish and their food webs at broad spatial and temporal scales (Woodward and 

Hildrew 2002).  

Longitudinal variation in river habitat can also influence fish community composition 

(Troia and Gido 2013). Specifically, downstream increases in channel width and water depth, 

and decreases in channel gradient and bed material size can affect the distribution and abundance 

of fishes (Inoue and Nunokawa 2002; Tejerina-Garro et al. 2005). Thus, along the length of 

rivers, fish communities undergo gradual changes in composition because of abrupt or gradual 

physicochemical changes driving biological and habitat features (Matthews 1986). As embodied 

in the river continuum concept, such changes should elicit corresponding changes in river-

resident biological communities as a result of changes in the patterns of nutrient loading, 

transport and utilization (Vannote et al. 1980). 
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Fish species richness generally increases along the upstream-downstream gradient within 

rivers because of increased habitat diversity and habitat size, e.g., wetted width (Tejerina-Garro 

et al. 2005). Downstream increases in habitat size, as well as tributary inputs can contribute to 

spatial differences in prey abundance and diversity (Vannote et al. 1980), which can broaden 

ecological feeding niches for fish. Where relative abundance measures of fish in the community 

have not been quantified, examining the ecological feeding niche is a useful way to examine 

community stability over space and time (Rosenfeld 2002). While the feeding niche is only one 

part of the total ecological niche of a species, it does provide a means of examining the response 

of fish communities to environmental variability over time and space. Quantifying long-term and 

spatial variability in fish δ
13

C, δ
15

N and feeding niche within a natural river ecosystem will thus 

help evaluate whether, and how, a natural fish community responds to environmental variability. 

 For this study, I used fish obtained from two sites over a ten year period from a natural, 

unregulated river in the boreal forest region of northern Ontario to investigate relationships 

between flow, temperature and trophic metrics (δ
13

C, δ
15

N, and feeding niche area) over time 

and space. Specifically, based on the need to characterize fish feeding at spatial and temporal 

scales within unaltered rivers (Poff and Zimmerman 2010) and existing literature which suggests 

that there are predictable relationships between flow and river community structure and function 

(Poff and Ward 1989), the following hypotheses were tested: i) trophic metrics representative of 

feeding opportunities available to the fish community do not vary temporally; ii) if variation in 

trophic metrics exists it will be positively correlated to the variation in flow and temperature, iii) 

there will be a significant difference in fish feeding niche between low and high flow years, and, 

iv) consistent with the predictions of the river continuum concept (Vannote et al. 1980), the 
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upper river reach will have smaller fish feeding niche areas and isotopic resource widths 

compared to the lower reach. 

 

Methods 

Study reaches 

Located on the north-eastern portion of Lake Superior, Ontario, Canada, the Batchawana 

River is typical of the boreal region, with slightly coloured waters originating from a relatively 

unperturbed watershed. Samples for analysis were collected from two reaches, designated as the 

upper Batchawana (N 47° 10’  W 84° 20’) and the lower Batchawana  (N 47° 01’ W 84° 31’), 

approximately 30 river kilometers apart (Figure 2.1). The flow regime (mean annual flow: 22 

m
3
s

-1
) follows a typical hydrograph for the region, with high flows at the spring freshet and in the 

fall (Marty et al. 2009). Substrate within the river is comprised of cobble, and small areas of 

gravel, and sand. Substrate grain size is larger in the upper than in the lower reaches of the river, 

with the upper reaches of the river having irregular patches of large boulder and bedrock. 

Relative channel width measurements increase from 31 m in the upper Batchawana to 36 - 44 m 

in the lower Batchawana. Terrestrial vegetation is typical of boreal shield species and is similar 

within both reaches, with dense canopy cover of speckled alder (Alnus incana), yellow birch 

(Betula alleghaniensis) and white spruce (Picea glauca).  

 

Study species and sample collection 

Fish species collected and their main prey items are represented in Table 2.1. Species 

sampled represented a similar variety of feeding habitats (benthic, water column and generalist) 

as classified by the standard handbook of Freshwater Fishes of Canada (Scott and Crossman 



 

13 

 

1973). Collectively the sampled fish species consume various stages of aquatic invertebrates, 

including the larvae of midges, mayflies, dragonflies, and caddisflies (Scott and Crossman 1973).  

All sampled fish ranged in size from 14 to 137 mm, and approximately equal numbers of male 

and female fishes were sampled. As fish home range size increases allometrically with body size 

(Minns 1995), use of smaller bodied fish ensured samples were representative of local 

conditions.  

 Permission for fish sampling was obtained from the Great Lakes Laboratory for Fisheries 

and Aquatic Science/Water Science and Technology Directorate Animal Care Committee, 

Burlington, Ontario, Canada. Collections were made using standardized protocols employing 

backpack (Smith-Root Model LR-24) electrofishing methods (Bohlin et al. 1989; Meador et al. 

2003; Reynolds et al. 2003) in each July of 2003-2012. Fish were sampled in locations of the 

river reach with depths less than 60 cm. Within a river reach of approximately 500 m
2
, 

electrofishing took place until an adequate sample had been randomly obtained (approximately 

3-5 of each individual fish taxa). Consistency of the sampling crew ensured minimal year to year 

variation in protocol use.  

 

Stable isotope analysis 

Stable isotope values were measured for all fish and invertebrate species following 

methods described in Marty et al. (2009). Stable carbon (δ
13

C) and nitrogen (δ
15

N) isotope 

analyses can be used to evaluate consumer dietary ecology, both at the individual and 

community level (Post 2002; Bearhop et al. 2004), as they integrate prey resource use over time 

(Bearhop et al. 2004). For fish, dorsal muscle tissue was removed from above the lateral line and 

posterior to the dorsal fin. Skin and bone were removed and the sample was dried in a standard 
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laboratory convection oven (Yamato Scientific, Model DX 600, California, USA) at 50
o
C for 48 

hours and then ground to a powder using a mortar and pestle.  

Approximately 300 µg of ground tissue was combusted for stable isotope analyses using 

a Delta Plus Continuous Flow Stable Isotope Ratio Mass Spectrometer (Thermo Finnigan, 

Bremen, Germany) coupled to a Carlo Erba elemental analyzer (CHNS-O EA1108, Carlo Erba, 

Milan, Italy). All analyses were completed at the Environmental Isotope Laboratory, University 

of Waterloo (Waterloo, Ontario, Canada), with results expressed in standard δ notation. Working 

internal laboratory standards were calibrated against the International Atomic Energy Agency 

standards CH6 for carbon and N1 and N2 for nitrogen and run as controls throughout the 

analysis to ensure the continued accuracy of all measurements. Analytical precision was assessed 

by mean differences of one in ten duplicate samples, where the mean ± standard deviation was 

0.13 ± 0.2 ‰ for δ
13

C and 0.17 ± 0.2 ‰ for δ
15

N.  

 

Data Analysis 

Calculated flow metrics considered in the study included: minimum, maximum, mean 

summer flow, standard deviation of summer flow, flow variability expressed as a rate of change 

(Marty et al. 2009; Armanini et al. 2014), and frequency of extreme flow events. Daily summer 

flow metrics were calculated using available daily flow data obtained for station 02BF001 from 

the Water Survey of Canada website (http://www.wsc.ec.gc.ca). Minimum, maximum, mean and 

standard deviation of daily summer flow data were calculated between June 1
st
 and August 31

st
 

within each year. Hourly flow variability (m
3
s

-1
h

-1
) was calculated as rate of change using the 

absolute difference in flow between hours (Marty et al. 2009). The mean of all the absolute 

differences gives the flow variability measurement for the period of interest. To calculate the 
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relative frequency of extreme flow events, each hourly discharge measurement (m
3
s

-1
) was given 

a z-score. Extreme flow events were identified by individual hours with z-scores indicating that 

they deviated from mean daily summer discharge by more than ± 2 SDs. The relative frequency 

of extreme flow was then determined by dividing the number of observations that exceeded ± 2 

SDs by the total number of observations within the period of interest. Daily water temperature 

data were obtained from the Ontario Ministry of Natural Resources (R. Metcalfe, personal 

communication). Daily water temperature data were available for all years, except 2012 where 

complete data were not available for the period of interest owing to equipment failure. 

All stable isotope data were tested for normality using the Shapiro-Wilks W test (Zar 2010). 

Equality of variances between years in δ
13

C and δ
15

N data was tested using Levine’s 

homogeneity of variance test to ensure similarity of variance in data (Zar 2010) used to 

subsequently calculate analytical measures. Statistical analyses were performed using Systat 

version 11 (Statsoft Inc. 2004) with significance set at α = 0.05. The SIBER (Stable Isotope 

Bayesian Ellipses in R; Jackson et al. 2011) method was used in the SIAR package (version 

4.1.3) to evaluate isotopic niche widths (measured as a standard ellipse area, SEA, in δ
13

C- δ
15

N 

space) for the fish. As a result of functional overlap between predators and prey in food webs, 

species in community food webs are commonly aggregated for analytical purposes (Solow and 

Beet 1998; Abrantes et al. 2014) as a means of reducing methodological biases that may arise in 

the data (Williams and Martinez 2000). Lumping fish species to calculate community metrics 

had little impact in overall ANOVAs because species variation represented a small portion of 

overall variance in our dataset (1.3 and 10.7 % for δ
13

C and δ
15

N, respectively). The Bayesian 

methods used in SIAR take account of uncertainty in sampled data and incorporate sampling 

error, thus allowing for statistical comparisons (Jackson et al. 2011). The methods are also 
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ideally suited to making comparisons between different communities (Jackson et al. 2011). The 

estimated SEA measure is unbiased with respect to sample size (Jackson et al. 2011), but 

encompass only 40 % of the available data points, approximately one standard deviation in the 

data (Batschelet 1981). Accordingly, the SEA measures were expanded here to include two 

standard deviations which encompass 95 % of the data and better represent data variability 

(Chew 1966; Jackson et al. 2011). All SEA ellipse estimates were further adjusted for small 

sample sizes (≤ 30) to obtain SEAc, which corrects for possible under-estimation of the ellipse 

area as a result of small sample sizes (Jackson et al. 2011; Brush et al. 2014). 

Because of the implications of non-stationarity in the data implied by possible 

autocorrelation, data series were examined for stationarity using standard statistical techniques as 

described in Abraham and Ledolter (1983) prior to further statistical analyses. Specifically, the 

autocorrelation and partial autocorrelation functions were estimated and the significance of peaks 

at lags 1 through 5 was assessed using the Ljung-Box Q statistic and necessary corrective action 

as prescribed by Abraham and Ledolter (1983) was applied. As a final precaution, linear 

regression residuals were also examined for evidence of residual autocorrelation using standard 

statistical procedures as outlined in Abraham and Ledolter (1983). 

The temporal invariability hypothesis (i) was tested by regressing the trophic metrics (SEAc, 

mean δ
13

C and δ
15

N) against time using least-squares linear regression on both the upstream and 

downstream data sets (Zar 2010).  Linear regression was similarly used to test hypothesis (ii) 

concerning the significance of relationships between variation in trophic metrics and variations 

in flow (SD mean daily flow, flow variability, and frequency of extreme flows) and temperature 

(SD mean daily temperature) metrics using the upstream and downstream data sets individually.  
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 Flow years were categorized as either a high or low flow year, on the basis of maximum, 

minimum and mean daily summer flow, using K-means analysis (Zar 2010). Low flow years had 

mean daily summer discharges that were below 4.5 m
3
s

-1
, except for 2010 where limited flow 

data were available. Supplementary data obtained from the Water Survey of Canada gauge on 

the nearby Magpie River (02BD007) were used to characterize 2010 as a low flow year. A two-

way ANOVA was used to test hypotheses (iii) and (iv) using trophic metrics (e.g., mean and 

variance of δ
13

C and δ
15

N, and SEAc) as the dependent factors and flow year type (high versus 

low) and river reach (upper versus lower) as the independent factors.  

 

Results 

Mean ± standard deviation (SD) summer discharge varied between 3.7 ± 1.9 m
3
s

-1
 and 

14.7 ± 6.3 m
3
s

-1
 (Table 2.2), with maximum summer discharge being on average slightly more 

variable (coefficient of variation, CofV = 75.5%) than minimum summer discharge (CofV = 72.8 

%). Hourly flow rate of change ranged between 0.02 m
3
s

-1
h

-1
 and 0.20 m

3
s

-1
h

-1
. The frequency of 

extreme flows across all years ranged between 2.50 % (year 2009) to 8.50 % (year 2010). Mean 

± SD daily summer temperature varied between 19.62 ± 2.49 
o
C and 22.83 ± 2.32 

o
C, and was 

consistently less variable between years (CofV = 5.20 %) than mean daily summer discharge 

(CofV = 85.82 %). Mean ± SD δ
13

C of the fish sampled from both sites ranged from -27.93 ± 

1.25 ‰ to -24.93 ± 1.36 ‰, and the mean ± SD δ
15

N ranged from 6.63 ± 0.48 ‰ to 8.30 ± 0.74 

‰ (Table 2.3).  

There was no pervasive evidence of non-stationarity in the annual data series with 12 of 

the 15 tested series, including those for flow, temperature and isotope measures, considered 

stationary (Ljung-Box Q statistic P < 0.5). The remaining 3 series were stationary at the 0.4 level 
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of significance and showed no evidence of significant period to period correlations when 

assessed using partial autocorrelation techniques (all lag P < 0.05). Given the lack of convincing 

evidence for autocorrelative structure in the data series and the implications of data loss 

associated with correction procedures (Abraham and Ledolter 1983), no autocorrelative 

corrective procedures were used. 

The standard ellipse areas (SEAc) ranged between 4.12 and 17.60 (Table 2.3). There was 

a significant increase in SEAc through time for the upper Batchawana (regression slope = 0.62, 

R
2
 = 0.62, p < 0.01; Figure 2.2). Consistent with the temporal invariance hypothesis (i), there 

was no significant trend (p = 0.28) in SEAc through time for the lower Batchawana (Figure 2.2). 

Furthermore, there was no significant trend in mean δ
13

C in either the upper (p = 0.20) or the 

lower (p = 0.07) river reaches (Figure 2.3).There was also no significant temporal trend in mean 

δ
15

N in the upper (p = 0.15) or the lower (p = 0.28) river reaches. All tested linear regression 

residuals showed no evidence of autocorrelative structure. 

Congruent with hypothesis (ii), where temporal variation in trophic metrics existed, there 

was a corresponding significant positive relationship (Figure 2.4) between variation (SD) in δ
15

N 

and variation (SD) in mean daily flow (R
2
 = 0.49, p = 0.03) in the upper Batchawana, but not the 

lower Batchawana (R
2
 = 0.14, p = 0.28). There were no other significant correlations between 

variation in flow and temperature and variation in δ
13

C and δ
15

N (all p > 0.05). All tested linear 

regression residuals showed no evidence of autocorrelative structure. 

The flow effect hypothesis (iii) was not substantiated by the data, with two-way ANOVA 

analysis indicating that fish SEAc did not differ significantly (p > 0.05) by flow year type (Table 

2.4; Figure 2.5; Figure 2.6). Data, substantiated the continuum hypothesis (iv), with two-way 

ANOVA indicating a significant difference in SEAc between the reaches (p < 0.01), with mean 
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SEAc in the lower reach exceeding that in the upper reach (13.05 vs 7.86 ‰)(Figure 2.5). 

Significant differences were observed in the variance of δ
13

C between river reaches (p < 0.01) 

but not in the variance of δ
15

N (p > 0.05). 

 

Discussion  

The influence of temperature and flow on fish community trophic metrics was 

investigated over time and space, using a long-term dataset from a riverine ecosystem with a 

natural flow regime. As hypothesized, trophic metrics as represented by δ
13

C and δ
15

N were 

found to be temporally invariant at both the upstream and downstream river reaches. Isotopic 

niche, as characterized by SEAc, was temporally invariant only at the lower Batchawana River 

sampling reach, with a significant increase in SEAc observed through time for the upper river 

reach. Where variation in the trophic metrics was observed, it was positively correlated with 

variation in the physical environment, as hypothesized. While SEAc did not differ between flow 

year types as expected, consistent with the river continuum concept (Vannote et al. 1980), fish 

from the lower Batchawana River had significantly higher SEAc values than fish from the upper 

Batchawana River. 

Despite variable temperature and flow, studied trophic metrics calculated using fish 

community data did not vary temporally with the exception of SEAc in the upper river reach. 

SEAc was temporally invariant in the lower Batchawana River, yet increased through time in the 

upper Batchawana. Fish can be generalist feeders and so will adapt to any changes in the 

abundance or diversity of their prey resources brought about by inter-annual variation in flow, 

temperature or other environmental parameters. Dietary generalism has been shown to enhance 

food web stability (Polis 1991) and has been suggested to confer stability on food webs (Layer et 
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al. 2010), with the result that feeding niches are not likely to vary much through time as has been 

noted here. As a result, fish assemblages are thought to be more persistent in river reaches with 

little flow variability compared with those subject to high flow variability (Grossman et al. 1982) 

and as demonstrated by Jellyman et al. (2013), fish biomass and community structure similarly 

display less temporal variability within stable river reaches than at disturbed sites. In addition, 

fish community biomass has been shown to be temporally stable relative to individual species 

(Smokorowski and Kelso 2002), with such stability having implications for within-community 

feeding. Temporal variability in the fish community metrics may be linked to the successional 

processes that occur following natural seasonal disturbances that require the re-establishment of 

a suitable resources base (e.g., invertebrates) as pre-requisite to re-occupancy of the habitat by 

fish (Taylor and Warren 2001) and in that way are linked to food web stability.  

Fish can be redundant in their ecological roles such that if one fish species is negatively 

affected by low flow (for example), through competitive release another similar fish species will 

be able to exploit “newly” available resources (Bolnick et al. 2010). Indeed within the 

assemblage of fishes considered here, there were multiple representatives of each trophic feeding 

guild, although benthic insectivores dominated as a group. The ability of species to varyingly 

exploit resources as physical conditions change is consistent with the niche 

compression/expansion hypothesis (MacArthur and Wilson 1967) that predicts an expansion of 

the habitat used by a species due to decreased competitive pressure without a major change in the 

feeding niche (Tracy and Christian 1986). 

In addition, consuming a varying diversity or abundance of prey resources may not 

necessarily result in major temporal changes in tissue δ
13

C/ δ
15

N of fish, because of possible 

similarity in isotopic composition among prey items. Mobility, short life cycles, high 
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reproductive rates, and the ability to encyst or to burrow into the substrate allows invertebrates to 

avoid or adjust to regular variations in the stream environment (Minshall et al. 1983), with the 

result that the available prey resource base may not vary substantially over time at any given site. 

Coupling between littoral and main channel habitats may further allow fish to buffer the effect of 

environmental variation and maintain constancy in prey selection given studies that suggest 

sufficient energy and taxonomic diversity at all trophic levels is present in the main channel to 

support functional food webs (Dettmers et al. 2001). The lack of temporal changes in fish isotope 

measures, therefore, may reflect the generalist feeding behaviour of fishes able to spatially 

average assimilated prey items.  

The upper reach of the Batchawana experienced a temporal increase in fish feeding niche, 

with an associated increase in the variability of fish δ
15

N driven by mean daily flow and there 

was a corresponding  significant temporal increase in SD δ
15

N (Table 2.3). As a result of the 

significant relationship between SD δ
15

N and SD mean daily flow, a temporal increase in δ
15

N 

variability results in higher SEAc via expansion of the δ
15

N axis. As flow variability increases, 

mechanical effects such as shear stress and drag forces can affect the composition and abundance 

of invertebrate communities, which in turn can influence predator feeding behaviour (Hart and 

Finelli 1999). Feeding broadly on multiple prey items (with distinct δ
15

N signatures) as flow 

variability increases (Bunn and Arthington 2002; Balcombe et al. 2005), will contribute to δ
15

N 

variability and feeding niche over time as observed here. In contrast, temporal constancy of 

feeding niche, fish δ
15

N and mean daily flow variability in the lower reach relative to the more 

variable upper reach emphasizes the ability of a tributary to moderate and stabilize flows 

(Horwitz 1978). When flows are less variable, invertebrate and fish communities tend to become 

more specialized (Poff and Allan 1995). Here, the consistency of feeding niche within the lower 
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reach may be related to influence of the Turkey Lakes watershed discharge entering above the 

lower reach sampling site (Beall et al. 2001).  

While there was no difference in mean δ
13

C or δ
15

N between the reaches, δ
13

C was more 

variable in the lower reach. Higher variability in mean δ
13

C and larger fish feeding niche 

observed downstream is consistent with the river continuum concept given that the mix of energy 

sources (allochthonous versus autochthonous) and the downstream transport of organic material 

from upstream leads to probable increases in available feeding niches for downstream fish 

species (e.g., Vannote et al. 1980), which would result in overall broader community niches 

(Flaherty and Ben-David 2010). Larger ellipses in the lower Batchawana reach compared to the 

upper may also be explained by spatial differences in fish and invertebrate abundance and 

community diversity. As Goldstein and Meador (2004) have noted, fish community function is 

structured by longitudinal differences in habitat along the river, with the differences being 

evident in variations in trophic ecology.  As a consequence, higher abundance and diversity of 

food resources should lead to feeding niche expansion as observed here. Furthermore, feeding on 

heterogeneous food sources should also increase variability in fish stable isotope composition 

and the SEAc, provided that fish are not selectively feeding on one or a few food sources. 

 

Conclusion 

The study is one of few that have used long-term datasets to examine relationships 

between flow, temperature and trophic metrics over space and time within a natural river 

ecosystem. There was an increase in fish community feeding niche over time within the upper 

reach of the Batchawana River, however, despite natural temperature and flow variability, fish 

community feeding niche was temporally invariant in the lower Batchawana River. In addition, a 
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significant relationship was observed between variation (SD) in δ
15

N and variation (SD) in mean 

daily flow in the upper reach. Fish SEAc was larger in the lower reach compared to the upper 

Batchawana. Because of spatial differences in fish responses observed in this study, other studies 

focussing on the influence of abiotic factors (temperature and flow) on fish community structure, 

therefore, need to account for how different spatial and temporal scales might affect the 

interpretation of data. When logistically feasible, long-term studies can provide important 

observations on the range of natural variation within river ecosystems, and such studies can serve 

as important baselines against which one can compare potential future environmental changes.   
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Figure 2.1. Location of sample reaches on the Batchawana River.  
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Figure 2.2. Standard ellipse areas calculated for all fish species in a given year for the upper and 

lower Batchawana River. The upper and lower Batchawana River are plotted as solid and open 

symbols, respectively.  



 

26 

 

2002 2004 2006 2008 2010 2012

M
e
a

n
 +

/-
 S

D
 F

is
h

 
1
3
C

-34

-32

-30

-28

-26

-24

-22

-20

-18

-16

Year

2002 2004 2006 2008 2010 2012

M
e

a
n
 +

/-
 S

D
 F

is
h

 
1
5
N

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

 

Figure 2.3. Mean ± SD δ
 13

C and δ
 15

N values computed for the sampled fish community over 

time. Values for the upper and lower Batchawana River are plotted as solid and open symbols, 

respectively.  
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Figure 2.4. Relationship between SD δ
15

N of fish and SD of mean daily flow (m
3
/s/day). The 

upper Batchawana is represented as solid symbols and the lower Batchawana is represented by 

open symbols.  
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Figure 2.5. Comparison of standard ellipse area between upper and lower Batchawana River. The 

upper Batchawana is represented by solid bars and the lower Batchawana is represented by open 

bars.  
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Figure 2.6. Mean ± SD fish δ
13

C and δ
15

N for 2007 (a high flow year) and 2012 (a low flow 

year) in the Batchawana River.  
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Table 2.1. Fish species collected and their main prey items, as described in Scott and Crossman 

(1973). 

Fish Species Main prey items 

Longnose dace (Rhinichthys cataractae) Chironomidae, simuliidae and ephemeroptera larvae 

Blacknose dace (Rhinichthys atratulus) Chironomidae larvae, diatoms and desmids also 

seasonally 

Slimy sculpin (Cottus cognatus) Aquatic insect larvae and nymphs 

Common white sucker (Catostomus 

commersonni) 

Chironomidae and trichoptera larvae and pupae, 

mollusca 

Longnose sucker (Catostomus 

catostomus) 

Amphipoda, trichoptera, chironomidae, 

ephemeroptera, ostracoda, gastropoda, coleoptera 

Juvenile Brook charr (Salvelinus 

fontinalis) 

Ephemeroptera, trichoptera, midge and simuliidae 

larvae, oligochaeta, annelida, cladocerans, 

amphipoda, terrestrial insects 

Juvenile Rainbow trout (Oncorhynchus 

mykiss) 

Plankton, crustaceans, aquatic insects, gastropoda, 

annelida, and possibly fish eggs 

Trout perch (Percopsis omiscomaycus) Chironomidae and ephemeroptera larvae 

Creek chub (Semolitus atromaculatus) Coleoptera, ephemeroptera, trichoptera, and 

chironomidae larvae and adults. Cladocerans, algae, 

and aquatic plants are also consumed 

Logperch (Percina caprodes) Cladocera, copepoda, ephemeroptera and midge 

larvae 

Emerald shiner (Notropis atherinoides) Microcrustaceans (zooplankton), midge larvae, and 

algae 

Northern redbelly dace (Phoxinus eos) Algae (diatoms and filamentous), zooplankton and 

aquatic insects 

Brook stickleback (Culaea inconstans) Larvae of aquatic insects, eggs and larvae of other 

fish, gastropoda, oligochaeta, and algae 
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Table 2.2. Maximum, minimum, mean ± standard deviation of daily summer flow (m
3
/s) and 

water temperature (
o
C) measured for the lower Batchawana River (Station 02BF001).  Flow year 

type is defined with respect to maximum, minimum, and mean daily summer flow. 

 

 Flow Temperature 

Year Max Min Mean ± SD Flow Year Type Max Min Mean ± SD 

2003 21.4 2.9 8.7 ± 4.6 High 25.3 15.9 21.0 ± 1.8 

2004 22.9 2.6 8.4 ± 5.3 High 26.2 13.8 19.9 ± 2.7 

2005 18.6 1.1 4.3 ± 4.1 Low 28.8 18.3 22.8 ± 2.3 

2006 22.2 1.7 3.8 ± 2.0 Low 27.8 17.3 22.1 ± 2.1 

2007 75.8 1.6 8.7 ± 12.3 High 27.7 17.2 21.6 ± 2.2 

2008 23.8 3.3 9.3 ± 4.9 High 24.6 17.1 20.8 ± 1.4 

2009 31.6 4.6 14.7 ± 6.3 High 25.0 13.0 19.6 ± 2.5 

2010 21.6 2.4 5.4 ± 3.4 Low 25.8 16.2 21.9 ± 2.5 

2011 39.3 2.7 9.9 ± 9.3 High 22.6 16.1 20.1 ± 1.5 

2012 9.24 1.6 3.7 ± 1.9 Low -- -- -- 
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Table 2.3. Number of fish collected (N), and calculated mean ± SD δ
13

C, δ
15

N, and standard ellipse area (SEAc) for each year and 

flow year type for the upper and lower Batchawana River. A significant temporal trend was observed in SD δ
15

N for the upper 

Batchawana sample site (R
2 

= 0.48, p < 0.03). 

 

  Upper Batchawana Lower Batchawana 

Year Flow Year 

Type 

N Mean ± SD δ
13

C Mean ± SD δ
15

N SEAc N Mean ± SD δ
13

C Mean ± SD δ
15

N SEAc 

2003 High 13 -27.47 ± 0.67 6.63 ± 0.48 4.12 63 -26.44 ± 1.55 7.01 ± 0.64 12.60 

2004 High 23 -27.93 ± 1.25 6.99 ± 0.42 6.88 63 -25.27 ± 2.09 7.23 ± 0.66 17.60 

2005 Low 43 -27.38 ± 1.23 7.29 ± 0.40 6.13 132 -26.07 ± 1.95 6.94 ± 0.72 16.71 

2006 Low 26 -26.12 ± 1.31 6.97 ± 0.44 7.03 25 -25.51 ± 1.51 6.97 ± 0.48 9.28 

2007 High 21 -26.55 ± 0.98 7.38 ± 0.66 8.46 17 -27.06 ± 1.49 7.36 ± 0.72 12.74 

2008 High 18 -25.97 ± 1.22 7.85 ± 0.46 7.48 32 -25.54 ± 1.68 7.56 ± 0.54 11.64 

2009 High 17 -26.62 ± 0.89 7.86 ± 0.75 8.80 55 -25.82 ± 1.42 7.08 ± 0.79 14.02 

2010 Low 36 -27.14 ± 1.05 7.55 ± 0.52 6.65 61 -24.93 ± 1.36 7.61 ± 0.65 11.06 

2011 High 20 -26.90 ± 1.31 8.30 ± 0.74 12.86 38 -25.60 ± 1.45 7.31 ± 0.83 15.48 

2012 Low 27 -26.32 ± 1.21 7.46 ± 0.65 10.15 46 -25.15 ± 1.51 7.22 ± 0.48 9.33 
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Table 2.4. Effect of river reach, flow year type, and the interaction effect on the mean and 

variance fish δ
13

C, δ
15

N and SEAc. 

 

Independent 

variable 

Factor F(1,18) p 

Mean δ
13

C River Reach 0.02 0.89 

 Flow Year Type 4.52 0.05 

 Interaction 0.09 0.77 

Variance δ
13

C River Reach 19.00 < 0.01 

 Flow Year Type 0.30 0.59 

 Interaction 0.71 0.41 

Mean δ
15

N River Reach 0.03 0.86 

 Flow Year Type 0.20 0.89 

 Interaction 0.19 0.67 

Variance δ
15

N River Reach 2.92 0.11 

 Flow Year Type 3.09 0.10 

 Interaction 0.12 0.74 

Fish SEAc River Reach 17.20 <0.01 

 Flow Year Type 1.57 0.23 

 Interaction 0.56 0.47 
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Chapter 3 

Introduction 

Climatic changes have had significant impacts on global and local hydrology, which 

affect the structure and function of river fish communities through effects on habitat quantity and 

quality, and biotic interactions (Carpenter et al. 1992; Poff et al. 1996; Bunn and Arthington, 

2002; Wrona et al. 2006). Although rivers within the boreal forest region of North America 

commonly experience low flow in the summer months due to decreased precipitation and 

increased temperature relative to spring and fall (Woo et al. 2008; Ström et al. 2011), extreme 

low flow events are expected to become more common with climate change (Ström et al. 2011; 

Walters and Post, 2011). Biotic communities within boreal rivers have adapted to deal with 

hydrologically seasonal phenologies (Monk et al. 2008). Nevertheless, low flow events can have 

significant effects on the availability of riverine food resources (Matthews and Zimmerman 

1990).  

Disruption of the flow regime as a result of river regulation and water diversion can also 

lead to loss of suitable habitat and associated food sources, and in turn represents a major threat 

to aquatic biodiversity and production (Stanford et al. 1996). Some of the negative impacts that 

dams and modifications to the natural flow regime have on the physical habitat within a river 

include alterations to: bank and channel morphology, sediment composition, suspended matter 

and water temperature (Maddock 1999; Scruton et al. 2003). Within the group of studies that 

have focused on variable flow conditions, there are a limited number of studies that focus on the 

consequences of flow variation for the riverine food webs within which fish and their prey 

operate. Those studies of low flow effects that do exist have reported negative effects on biota 

such as: migration interruption, or timing modification (Caudill et al. 2007), entrainment 
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mortality (Benstead et al.1999), increased potential for stranding (Scruton et al. 2005), changes 

to predator-prey interactions (Power et al. 1996; Bunn and Arthington 2002), changes in food 

chain length (Marty et al. 2009), declines in algal biomass (Blinn et al. 1995), changes in 

invertebrate community composition (Jones 2013), and declines in invertebrate abundance 

(James et al. 2008). Although knowledge gained from these studies has provided a better 

understanding of how modified flow conditions may affect many aspects of riverine fish ecology 

under forecasted changing hydrological and climate conditions, few studies have examined how 

low flow events specifically affect the feeding ecology of fish in boreal forest rivers (Monk et al. 

2008; Rolls et al. 2012). 

 To address the knowledge gap, fish diet composition, mean and variance of fish δ
13

C and 

δ
15

N, resource use and overlap are compared in a low flow and normal flow year using data 

collected for key fish species from a pair of boreal rivers, one regulated and one unregulated. 

Within the regulated river, it is expected there would be no intra- or inter-annual differences in 

resource use owing to the relative lack of flow variation, and in the natural river, high intra- and 

inter-annual differences in resource use owing to seasonal and inter-annual differences in flow. 

The following hypotheses were tested: that: i) within- river resource overlap between fish species 

would be higher in the low flow year, ii) as would resource overlap between rivers.  

 

Methods 

Fish and representative invertebrate taxa were collected from geographically proximate 

(Figure 3.1), and geomorphically similar sites on the West Salmon River (N48 17’ 244” W056 

23’ 006”) and Twillick Brook (N48 10’ 592” W055 57’ 137”) in May and August of 2011 and 

2012. The West Salmon River is regulated by a control structure at the southern end of the Cold 
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Spring Pond reservoir that feeds the river. Flow in the West Salmon River is maintained at 2.6 

m
3
s

-1
 from June 1- November 30, and 1.3 m

3
s

-1
 for the remainder of the year (Figure 3.2). Aside 

from a few short-term flow manipulation experiments (1999-2003), the flow regime has been 

maintained since construction in 1981 (Scruton et al. 2003; Robertson et al. 2004; Scruton et al. 

2005; Scruton et al. 2008). The West Salmon River has a boulder and cobble substrate, and a 

variety of riffle, run and flat water habitats (Robertson et al. 2004). At 2.5 m
3
s

-1
, the West 

Salmon River has a wetted width that ranges from 20 - 45 m (Scruton et al. 2008). Minimal 

terrestrial vegetation hangs over the river banks, which are steeply sloped. 

Twillick Brook is a similarly sized river (25-30 m wide and 11 km long) to the West 

Salmon River (approximately 30 m wide and 12.7 km long), with abundant pool and riffle 

habitats, but differs from the West Salmon River in the amount of riparian vegetation along the 

river banks. In 2011, Twillick Brook followed a natural hydrograph, with flows varying between 

2.84 and 7.71 m
3
s

-1
 in spring, and 1.31 and 5.30 m

3
s

-1
 in summer (Water Survey of Canada). In 

2012 the Twillick Brook catchment experienced above and below average summer temperatures 

and precipitation with the result that river discharge varied between 1 and 2 m
3
s

-1
 from May to 

August, lower than levels typically experienced in the West Salmon River during the same 

period (Figure 3.2).  

Study species and sample collection 

In spring and summer of each year, approximately 30 Atlantic salmon (Salmo salar), and 

brook charr (Salvelinus fontinalis) were collected using standard backpack electrofishing 

methods (Meador et al. 2003; Reynolds et al. 2003). All fish were euthanized and measured for 

fork-length (± 1 mm). Individual stomachs were removed and kept frozen for stomach content 

analysis.  
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Diet composition was quantified for all individual fish, using the method described in 

Cortès (1997). For each fish, stomach contents were identified to the lowest practical taxonomic 

level (Family or Order) and counted under a dissection microscope. The volume of each prey 

taxa was estimated as a proportion of total stomach volume, and each prey taxa was determined 

as present (1) or absent (0). For each prey item of a given type, the %number, %volume, and 

%frequency of occurrence were determined. An index of relative importance (IRI) for an 

individual prey type x was then determined as: 

IRIx = (%N + %V) * %O    (1). 

The percent index of relative importance (%IRI) for an individual prey item was calculated as: 

%IRIx = (IRIx / ∑IRI) * 100    (2). 

Stable isotope analysis 

A small (0.5-2.0 g) piece of dorsal muscle tissue was excised from an area dorsal to the 

lateral line and posterior to the dorsal fin on each fish and frozen for stable isotope analysis (e.g., 

Guiguer et al. 2002). Values of δ
13

C and δ
15

N were measured for all fish following methods 

described in Peterson and Fry (1987) and Post (2002). Briefly, dorsal muscle tissue from all fish 

were dried in an oven at 50 
o
C for 48 hours and then ground to a powder using a mortar and 

pestle. Approximately 275-300 µg of ground tissue was used for stable isotope analyses 

completed on a Delta Plus Continuous Flow Stable Isotope Ratio Mass Spectrometer (Thermo 

Finnigan, Bremen, Germany) coupled to a Carlo Erba elemental analyzer (CHNS-O EA1108, 

Carlo Erba, Milan, Italy). All analyses were completed at the Environmental Isotope Laboratory, 

University of Waterloo (Waterloo, Ontario, Canada), with results expressed in standard δ 

notation. Working internal laboratory standards were calibrated against the International Atomic 

Energy Agency standards CH6 for carbon and N1 and N2 for nitrogen and run as controls 
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throughout the analysis to ensure the continued accuracy of all measurements. Analytical 

precision was assessed by mean differences of one in ten duplicate samples, where the mean ± 

standard deviation was 0.13 ± 0.2 ‰ for δ
13

C and 0.17 ± 0.2 ‰ for δ
15

N. 

   

Data Analysis 

 Using stomach content data (proportional IRI values), the degree of resource overlap 

between individual fish species and rivers was calculated with Schoener’s index as: 

D = 100* (1- 0.5*(∑│pxi-pyi│))   (3), 

where pxi is the proportion of prey item i for predator x, and pyi is the proportion of prey 

item i for predator y. The index will vary between 0 and 1, with values > 0.6 indicating 

significant biological overlap or resource use (Wallace 1981; Scrimgeour and Winterbourn 

1987). Schoener’s index of overlap was also used with relative frequency histograms of δ
13

C to 

examine resource use similarity within and between rivers. Values of δ
13

C were binned into 0.5 

‰ intervals to account for analytical variability. 

Where stable isotope data were used in the statistical analysis, values of fish δ
13

C and 

δ
15

N were treated as dependent variables and factors such as year, season, river, and species were 

treated as independent variables. Preliminary analyses of linear relationships between consumer 

δ
13

C or δ
15

N and fork-length were generally non-significant (p > 0.05). Where significant 

relationships were found, they were generally inconsistent with respect to sign (positive or 

negative slopes), explained only a small portion of the variation (R
2
 ≤ 0.43), or yielded residuals 

inconsistent with the assumptions required of linear regression (e.g., heteroscedastic, non-

normal). Given the weakness, inconsistency and statistical inadequacy of the estimated length 
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relationship, length was not considered further as a significant explanatory variable in 

subsequent statistical analyses. 

 Separate factorial ANOVAs were used to evaluate the influence of year, season, river and 

species on either fish δ
13

C or δ
15

N. Equality of δ
13

C or δ
15

N variances between years, seasons 

and rivers was evaluated using Levene’s test (Zar 2010). All statistical analyses were performed 

using Systat version 11 (Systat Software Inc. 2004), with significance set at α = 0.05. 

The SIBER (Stable Isotope Bayesian Ellipses in R; Jackson et al. 2011) method was used 

in the SIAR package (version 4.1.3) to evaluate isotopic niche widths (measured as standard 

ellipse areas in δ
13

C- δ
15

N space) for intra- and inter-annual comparisons of river fish 

populations. The standard ellipse encompasses 40 % of the data points, which represents 

approximately 1 SD of the data (Batschelet 1981). Ellipse areas were expanded here to include 

two standard deviations, which encompass 95 % of the data and better represent variability in the 

data (Chew 1966; Jackson et al. 2011). All SEAB ellipse estimates were adjusted for small 

sample sizes (≤ 30) to obtain SEAc, which corrects for possible under-estimation of the ellipse 

area as a result of small sample sizes. The overlap area between ellipses was calculated following 

Jackson et al. (2011), with an overlap value of 0.6 or higher considered biologically significant 

(Guzzo et al. 2013). 

  

Results 

A total of 528 fish were collected across all sampling dates. Fork-length of captured 

Atlantic salmon ranged in size from 38 -197 mm, and 45-164 mm in the West Salmon River and 

Twillick Brook, respectively. Brook charr ranged in size from 46 -142 mm and 36-263 mm in 

West Salmon River and Twillick Brook, respectively.   
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Diet analysis 

All fish fed on invertebrate prey items, with differences evident from sampling dates 

among species, rivers, and year (Tables 3.1A, 3.1B). Baetidae mayflies dominated in spring 

samples, while Simuliidae larvae appeared to be more important in summer. Overall, brook charr 

diet composition was more variable than that of Atlantic salmon.  

In spring 2012, significant dietary similarity was observed between Atlantic salmon and 

brook charr in both rivers with Schoener’s index values for the West Salmon River and Twillick 

Brook, respectively, equalling 0.94 and 0.79. Within individual rivers, other seasonal inter-

specific comparisons were significantly different (all index values < 0.6). In contrast, intra-

annual comparisons of δ
13

C histograms within individual rivers completed using Schoener’s 

index, revealed no significant differences in resource use between seasons (all x > 0.6). 

Comparisons between rivers, however, revealed similar resource use between rivers in all 

seasons except spring 2011 (x < 0.6); (Table 3.2). 

Fish from the West Salmon River had more negative δ
13

C values compared to fish in 

Twillick Brook (Table 3.3). In spring 2011 and 2012, mean δ
13

C differed significantly between 

rivers. In both summers, however, mean δ
13

C was similar in both rivers. In the spring of 2011 

and 2012, δ
13

C variances were similar in both rivers (2011: F(1,130) = 2.18, p = 0.14 in 2011,  

2012: F(1,126) = 0.001, p = 0.97). In the summer of 2011, mean δ
13

C was similar in both rivers, 

however variances differed (F(1,134) = 12.43, p < 0.001). Whereas in summer of 2012, δ
13

C means 

and variances (F(1,134) = 0.003, p = 0.95) were both similar (Table 3.3). 

 In general, fish from the West Salmon River had higher mean δ
15

N values compared to 

fish in Twillick Brook, except in the summer of 2012 (Table 3.3). Mean δ
15

N was not 

significantly different between rivers in spring 2011, or in summer 2012. In contrast, δ
15

N was 
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significantly different in summer 2011 and in spring 2012. Fish from Twillick Brook had higher 

δ
15

N variances than fish from the West Salmon River in spring 2011 (F(1,130) = 0.50, p < 0.01) 

and summer 2012 (F(1,135) = 0.46, p < 0.01), but variances were not significantly different in 

summer 2011 (F(1,134) = 0.95, p = 0.84), and spring 2012 (F(1,126) = 0.65, p = 0.09). In the West 

Salmon River, variances were not different between years for spring (F(1,124) = 1.26, p = 0.36), or 

summer (F(1,132) = 1.30, p = 0.29). In both years, there was a pattern of increasing δ
15

N variance 

from spring to summer, and a comparison of spring versus summer variances revealed significant 

differences (2011: F(1,130) = 0.52, p = 0.008; 2012: F(1,126) = 0.53, p < 0.05).  

 In Twillick Brook, spring δ
15

N variances were significantly different between years 

(F(1,132) = 1.64, p = 0.047), whereas summer variances were similar between years (F(1,137) = 0.64, 

p = 0.06). In the normal flow year (2011), spring and summer variances were not significantly 

different (F(1,134) = 0.98, p = 0.94), while in the low flow year (2012), there was a significant 

increase in δ
15

N variance from spring to summer (F(1,135) = 0.38, p < 0.001).  

Resource overlap  

 Within the West Salmon River, the SEAc for brook charr was always higher than that for 

Atlantic salmon. Standard ellipse area and ellipse overlap between species was consistently 

lower in the spring and higher in the summer (Figure 3.3 and Table 3.4). Similarly, within 

Twillick Brook, the SEAc and ellipse overlap increased from spring to summer for both species 

and in both years. Despite a decrease in the SEAc for Atlantic salmon and an increase in the 

SEAc for brook charr in summer 2012 within Twillick Brook, the degree of overlap between 

species remained similar between years (Figure 3.4 and Table 3.4).  

 In both rivers, the SEAc values increased from spring to summer. In the West Salmon 

River, values increased from 4.07 to 5.15 in 2011, and from 3.09 to 6.61 in 2012. In Twillick 
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Brook, values increased from 5.74 to 9.04 from spring to summer 2011, and from 4.76 and 7.94 

in 2012. Ellipse areas were always larger in Twillick Brook compared to the West Salmon River 

(Table 3.4). In the West Salmon River, there was a decrease in ellipse area between spring 2011 

and 2012 (4.07 to 3.09), and an increase in ellipse area between summer 2011 and 2012 (5.15 to 

6.61). In Twillick Brook, there was also a decrease in ellipse area between spring 2011 and 2012 

(3.11 to 1.72), however, there was an increase in ellipse area between summer 2011 and 2012 

(4.01 to 5.71). Area of overlap between the West Salmon River and Twillick Brook ellipses was 

3.11 in spring 2011, and 4.01 in summer 2011. Overlap was lowest in spring 2012 (1.72), but 

highest in summer 2012 (5.71), when river flows were most similar (Figure 3.5). 

 

Discussion 

As hypothesized, no intra- or inter-annual differences in trophic niche area were 

demonstrated within the regulated river, however, within the natural river intra- and inter-annual 

differences in trophic niche were found. Niche areas were larger for brook charr compared to 

Atlantic salmon, larger in both rivers in the spring compared to summer, and smaller in the low 

flow year compared to the normal flow year. As hypothesized, resource overlap between fish 

species was higher in the low flow year, lower in the spring and higher in the summer as a result 

of differences in flow, and higher between rivers in the low flow year.  

Low flows arise largely due to elevated temperatures and decreased rainfall (Poff et al. 

1996), and the frequency of low flow events is predicted to increase because of climate change 

(Vorosmarty et al. 2000; Walters and Post 2011). The reduced niche areas experienced by the 

community of the natural river in the low flow year, the reduction in niche areas from spring to 

summer in both rivers, and the increase in overlap between fish species in summer likely arise 
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from similar mechanisms whereby low flow decreases habitat, reduces the availability of food 

resources and increases intra-and inter-specific interactions for food and space (Dewson et al. 

2007; Walters and Post 2011; Rolls et al. 2012). Decreasing flows generally result in a reduction 

in habitat space (Stanley et al. 1997; Brasher 2003) and can significantly alter benthic 

communities (Boulton and Lake 1992; Acuna et al. 2005; Stubbington et al. 2009). While some 

studies have found little or no effect (Caruso 2002; Suren et al. 2003; Dewson et al. 2007; 

Walters and Post 2011), others have indicated that low flow can reduce aquatic insect taxonomic 

richness and community composition (Englund and Malmqvist 1996; Rader and Belish 1999; 

Boulton 2003). Reduction of habitat area and volume can also lead to short-term increases in 

richness and abundance of river invertebrates (Stubbington et al. 2011) and an increase in 

benthic invertebrates in the drift (Minshall and Winger 1968). Low flows can decrease the 

densities and the distance traveled by drifting invertebrates (Rolls et al. 2012), thereby affecting 

prey availability for stream resident fishes. In general, however, low flows decrease invertebrate 

recruitment (Cowx et al. 1984), species richness and density of flow-dependent taxa (Larned et 

al. 2007; Haxton and Findlay 2008; Datry 2012), and the total biomass of food resources 

(Walters and Post 2011). As habitat decreases during low flow, the concentration of aquatic biota 

decreases, which results in increased potential for inter-specific interactions such as competition 

and predation (Rolls et al. 2012) reflected in the increasing feeding niche overlap observed in 

this study.  

Higher inter-specific overlap in the summer may indicate increased competition for food 

resources between Atlantic salmon and brook charr, given that habitat area is reduced and both 

species utilize similar invertebrate resources (Magnan et al. 1994; Amundsen et al. 2001; 

Mookerji et al. 2004). One consideration, however, is that the species use slightly different 
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habitats. Atlantic salmon are found in faster flowing waters, and so drifting invertebrates 

comprise a greater percentage of their diets (Klemetsen et al. 2003). Brook charr are found in 

slower flowing waters, with a strong preference for cover (Cunjak and Green 1983), meaning 

that terrestrial subsidies may be more important to their diets when available. Resource and 

habitat overlap between species should increase at low flows when habitat space and the 

available resource base are reduced (Morse 1974). Nevertheless, the degree of overlap between 

Atlantic salmon and brook charr was found to be similar between years in both rivers. In summer 

2012, niche area declined for Atlantic salmon while niche area for brook charr increased relative 

to summer 2011. The result may depend on diet differences, as in summer 2012 Atlantic salmon 

were dominated by Simuliidae (~72%) while in summer 2011 Chironomidae and 

Hydropsychidae larvae were important in the diet. Simuliidae larvae are generally inferior 

competitors to netspinning Hydropsychidae (Hemphill and Cooper 1983; Hemphill 1988; 

Hershey and Hiltner 1988), which explains the higher abundance of Trichoptera in our diet 

composition samples in normal flow years. However, with reduced flow and increased 

temperatures, black fly larvae become more abundant (Zhang et al. 1998).  

Low flows have known effects on river invertebrate communities. Under low flows (such 

as that experienced in summer 2012), net energy intake in drift feeding fish, such as salmonids, 

decreases as a consequence of reduced densities of drifting prey. Reduced availability of food 

resources, and increased potential for competition and predation under low flow may, therefore, 

hold significant negative consequences for individual and population growth as a result of the 

combined effect of increased metabolic demand and reduced ration (Elliott 1994; Elliott et al. 

1997; Rolls et al. 2012). Low flows can also contribute to elevated instream temperatures, which 

pose a significant risk to salmonids. Increases in salmonid mortality have been associated with 
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low flows (Cunjak et al. 2013) and elevated temperatures (Hedger et al. 2012), especially during 

the summer (Connor et al. 2003; Gunn and Snucins 2010). It is uncertain as to how the 

interaction between increased temperatures, reduced habitat and resource availability will affect 

growth and fitness of salmonids in with changing climates, but it is clear that both temperature 

and resource changes will be intertwined. 

 

Conclusion  

 There were no intra- or inter-annual differences in trophic niche area within the regulated 

river, however, within the natural river intra- and inter-annual differences in trophic niche were 

found. Niche areas were higher for brook charr compared to Atlantic salmon, higher in the spring 

compared to summer in both rivers, and smaller in the low flow year compared to the normal 

flow year. Resource overlap between fish species was higher in the low flow year, lower in the 

spring and higher in the summer, and resource overlap between rivers was higher in the low flow 

year. High resource overlap between rivers during decreased summer flow indicates a strong 

effect of flow on river organisms, where both fish and their invertebrate prey resources are 

concerned. Multiple approaches, such as stomach content and stable isotope analysis, provide 

detailed short- and long-term observations of fish feeding and resource overlap that yield insights 

into how the food webs of natural and regulated rivers function vary under changing flow 

conditions.  
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Figure 3.1. Location of sample collections on the West Salmon River and Twillick Brook.  
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Figure 3.2. Hydrograph of monthly mean discharge (m
3
/s) in Twillick Brook (a) and the West 

Salmon River (b).  
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Figure 3.3. West Salmon intra-annual ellipse comparisons between Atlantic salmon and brook charr. Atlantic salmon are represented 

by white symbols and dashed lines while brook charr are represented by black symbols and solid lines.
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Figure 3.4. Twillick Brook intra-annual ellipse comparisons between Atlantic salmon and brook charr. Atlantic salmon are represented 

by white symbols and dashed lines while brook charr are represented by black symbols and solid lines.
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Figure 3.5. Comparison of standard ellipse area between the West Salmon River and Twillick Brook. The West Salmon River is 

represented by white symbols and dashed lines while Twillick Brook is represented by black symbols and solid lines.
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Table 3.1A. Index of relative importance (%) of various prey items for Atlantic salmon (AS) and brook charr (BC) in spring and 

summer of 2011 and 2012 within the West Salmon River. Prey items comprising x < 3 %IRI were pooled into an “other” category. 

 Spring 2011 Summer 2011 Spring 2012 Summer 2012 

Prey Item AS BC AS BC AS BC AS BC 

Hydropsychidae 51.28%    7.00%    

Philopotamidae        16.80% 

Trichoptera  46.14% 9.57% 4.59%   34.47%  

Baetidae 38.19% 42.15% 5.60% 33.58% 91.03% 91.20%   

Perlidae 3.59% 5.11%       

Chironomidae   34.36% 19.80%     

Simuliidae   17.94% 23.06%   60.41% 18.58% 

Hydrachnida    3.66%     

Cladocera   23.33%      

Other 6.94% 6.60% 9.20% 15.31% 1.96% 8.80% 5.12% 64.62% 

 

Table 3.1B. Index of relative importance (%) of various prey items for Atlantic Salmon (AS) and brook charr (BC) in spring and 

summer of 2011 and 2012 within Twillick Brook. Prey items comprising x < 3 %IRI were pooled into an “other” category. 

 Spring 2011 Summer 2011 Spring 2012 Summer 2012 

Prey Item AS BC AS BC AS BC AS BC 

Hydropsychidae 2.59%  57.70%      

Trichoptera  36.40% 5.82% 11.91%   4.02%  

Baetidae 64.58% 17.09% 3.34%  96.58% 75.37%  23.96% 

Hymenoptera       4.89%  

Chironomidae   25.95%      

Simuliidae   3.24%    71.90%  

Oligochaeta 29.92% 7.10%    7.74% 4.36% 3.72% 

Gastropoda  12.42%  70.07%     

Other 2.91% 25.25% 3.95% 18.02% 3.42% 16.89% 19.19% 72.32% 
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Table 3.2. Within and between river intra-and inter-annual resource overlap values, calculated using relative frequency histograms of 

consumer δ
13

C. Atlantic salmon and brook charr δ
13

C values were pooled for analysis. Values ≤ 0.6 indicate no significant overlap. 

 

Comparison West Salmon River Twillick Brook 

Seasonal Between Years   

Spring 2011 vs Summer 2011 0.78 0.63 

Spring 2011 vs Spring 2012 0.81 0.77 

Spring 2012 vs Summer 2012 0.80 0.71 

Summer 2011 vs Summer 2012 0.77 0.94 

 

Annual Between Rivers 

Spring 2011 0.46 

Summer 2011 0.63 

Spring 2012 0.62 

Summer 2012 0.77 
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Table 3.3. Mean ± 1 SD stable carbon (δ
13

C) and nitrogen (δ
15

N) values of fish from the West 

Salmon River (WSR) and Twillick Brook (TB) in all seasons and years. Within a season, 

similarities and differences in mean δ
13

C and δ
15

N between rivers are denoted by the use of 

superscripts (A, B, C, etc.).  

  δ
13

C δ
15

N 

Spring 2011 WSR -26.89 ± 0.90 
A
 8.57 ± 0.47

A
 

 TB -26.12 ± 1.14 
B
 8.54 ± 0.66

A
 

Summer 2011 WSR -26.76 ± 0.99
 C

 8.66 ± 0.65
B
 

 TB -26.44 ± 1.38 
C
 8.27 ± 0.67

C
 

Spring 2012 WSR -27.17 ± 0.81 
D
 8.96 ± 0.42

D
 

 TB -26.35 ± 0.89 
E
 8.49 ± 0.52

E
 

Summer 2012 WSR -26.69 ± 1.09 
F
 8.60 ± 0.57

F
 

 TB -26.48 ± 1.15 
F
 8.77 ± 0.84

F
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Table 3.4. Species-specific standard ellipse areas (SEAc) by fish species and area of overlap 

within the West Salmon River and Twillick Brook. AS = Atlantic salmon, BC = brook charr. 

West Salmon River Fish Species SEAc Area of ellipse overlap 

Spring 2011 AS 3.46 2.70 

 BC 5.87 

Summer 2011 AS 7.85 7.40 

 BC 8.83 

Spring 2012 AS 3.02 3.02 

 BC 5.38 

Summer 2012 AS 7.39 6.56 

 BC 8.22 

Twillick Brook    

Spring 2011 AS 5.14 2.91 

 BC 6.33  

Summer 2011 AS 7.56 4.46 

 BC 8.43  

Spring 2012 AS 4.30 2.96 

 BC 5.66  

Summer 2012 AS 5.62 4.05 

 BC 11.98  

  



 

55 

 

Chapter 4: General Conclusion and Recommendations for Future Research 

Synopsis 

Rivers are diverse and complex systems (Jungwirth et al. 2002). They have historically 

been used more by humans than other ecosystems (Arthington and Welcomme 1995), and 

provide many benefits to human societies (Sparks 1995; Jungswirth et al. 2002). Despite their 

ecological and economic importance, river ecosystems have experienced significant chemical, 

geological and biological alterations as a result of human influences, especially due to 

hydroelectric power generation (Efford1974; Richter et al. 1996; Murchie et al. 2008; Poff and 

Zimmerman 2010).  

Short-term studies have investigated the influence of hydroelectric power operations on 

the ecology of regulated and natural river ecosystems (Marty et al. 2009; Jones 2010; Patterson 

and Smokorowski 2011; Smokorowski et al. 2011; Jones 2013; Jackson et al. 2007; Delong and 

Thoms 2016), however few long-term studies exist. The scientific literature has suggested that 

there are predictable relationships between components of the flow regime and biological 

communities (Poff et al. 1997; Olden and Poff 2003), however this has not been empirically 

tested in paired natural-regulated boreal rivers.  

The overall objective of this research was to address the need for assessment of how flow 

and temperature variations influence fish diet, feeding niche and food chain length on paired 

altered-and natural rivers in Newfoundland and a natural river in Ontario. This thesis comprises 

two studies, which tested the effect of low natural flow and regulated flow (Newfoundland), and 

naturally variable flow (Ontario) on the feeding ecology of fish and invertebrates measured using 

carbon (δ
13

C) and nitrogen (δ
15

N) stable isotopes, stomach contents of fish, and food chain 

length and fish feeding niche. 
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In Chapter 2, an increase in fish community feeding niche was found over time within the 

upper Batchawana River, however, despite natural temperature and flow variability, fish 

community feeding niche was temporally invariant in the lower Batchawana River. Fish feeding 

niche was influenced by flow variability within the upper reach but was likely moderated by 

tributary inputs downstream. Examining spatial variability in fish feeding and food web structure 

is important to account for how various environmental factors such as flow and temperature, as 

well as channel morphology can affect fish feeding ecology. Characterizing fish feeding at 

multiple reaches within rivers can help to avoid erroneous conclusions that could be made by 

quantifying food web metrics at single reaches within rivers. In addition, a significant negative 

relationship was observed between variation (SD) in δ
15

N and variation (SD) in mean daily flow. 

When logistically feasible, long-term studies can provide important information on the range of 

natural spatial and temporal variation within river ecosystems and how food webs respond to 

these variations. Such studies can serve as important baselines against which one can compare 

potential future environmental changes.  

In Chapter 3, I found no intra- or inter-annual differences in niche area within the 

regulated river, however, within the natural river intra- and inter-annual differences in trophic 

niche were found. Brook charr had larger niche areas compared to Atlantic salmon, higher in the 

spring compared to summer in both rivers, and smaller in the low flow year compared to the 

normal flow year. Resource overlap between fish species was higher in the low flow year, lower 

in the spring and higher in the summer, and resource overlap between rivers was higher in the 

low flow year. During decreased summer flow, high resource overlap between rivers indicates a 

strong effect of flow on influencing the food available to river organisms, which can ultimately 

influence feeding ecology, fish health and overall food web structure. Multiple approaches, such 
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as stomach content and stable isotope analysis, provide detailed short- and long-term 

observations of fish feeding and resource overlap. Fish communities with more diverse 

communities appear to be more resistant to variable flow and temperature than those with 

simpler fish communities. 

  

Synthesis 

Flow has been widely cited as a major determinant of food web structure and function in 

rivers (Poff et al. 1997; Finlay 2001; Bunn and Arthington 2002). Regular discharge pulses are 

critical in the dynamics of river systems (Junk et al. 1989; Puckridge et al. 1998). Rivers have 

been altered substantially beyond natural levels of variation due to hydropower operations, 

which affect hydrological and thermal regimes, as well as the feeding ecology of resident 

organisms (Bunn and Arthington 2002; Olden and Naiman 2010).  

The natural flow paradigm asserts that maintaining ecosystem integrity is largely 

dependent on conserving the natural features of the flow regime (Poff et al. 1997). Management 

and research interests have been directed towards restoration of affected ecosystems to a natural 

“reference” condition in an attempt to improve integrity (Bayley 1991; Landres et al. 1999; 

Jungwirth et al. 2002; Poff and Zimmerman 2010). 

To better understand how food web integrity may be altered by flow changes, it is 

important to test hypotheses related to effects of flow variation on fish feeding ecology over 

spatial and temporal scales. Natural environmental influences and anthropogenically-induced 

changes to the flow regime and consequently fish and their food resources, can affect the health 

and integrity of aquatic food webs.  
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Recommendations for future research 

Every river is unique and flow regimes are spatially and temporally complex (Rolls et al. 

2012), therefore it may be difficult to generalize findings from one regulated or natural river to 

the next. The studies of river food webs in northern Ontario and Newfoundland included in this 

thesis have sparked many ideas and have highlighted areas that I feel provide the basis for future 

research. My next step is to complete a long-term assessment of feeding ecology within a 

regulated river and identify food web differences between the natural and regulated rivers in 

northern Ontario. Preliminary findings from the regulated river demonstrated significant 

decrease in food chain length post-ramping rate change, following the period originally studied 

by Marty et al. (2009). Expanding upon the work completed by Marty et al. (2009) is important 

because of the continued decrease in food chain length over time, which is an indication of 

significant food web changes that have been mediated by the change in ramping rate regime. I 

would also like to explore the before-after impact-control for several years post ramping rate 

regime change, whether differences exist between natural and regulated rivers after considering 

the influence of regional climate impacts.  

Other studies that I feel would enhance the aforementioned studies as well as provide benefit 

to knowledge within the area of aquatic ecology are: 

1. Fatty acids and proximate body condition 

Traditional body condition metrics such as Fulton’s K and L-W relationships have been 

widely applied in fisheries research, however, rely on assumptions which may not be applicable 

to all species or all environments (Cone 1989). As an example, there is a loss of information 

when comparing L-W relationships between populations due to single statistic results, and 
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Fulton’s K assumes that the slope of the L-W relationship is 3.0 (indicating isometric growth) 

which may not be the case (Cone 1989).  

Lipids and their constituent fatty acids offer an additional tool to study food web dynamics 

and body condition. Polyunsaturated fatty acids (PUFAs) are obtained from the diet (DHA: 

docosahexaenoic acid and EPA: eicosapentaenoic acid), and are indicators of condition in 

freshwater fish because they affect growth, osmoregularity, membrane fluidity and immune 

responses (Arts et al. 2009; Tocher 2010). Because PUFAs such as EPA, DHA and ARA 

(arachidonic acid) are obtained from the diet, the availability of PUFA can be reduced under 

adverse environmental conditions, thus affecting organism health and condition (Arts et al. 

2009).  

Lipids can also provide an indication of habitat quality, as well as proximate body condition 

(Homyack 2010), which makes them ideal for studying the effect of hydropower operations, 

because of modifications to flow and temperature as well as indirectly affecting food availability 

(Hasler et al. 2009). Hydropeaking operations in particular, can create an energetic cost for fishes 

such as salmonids (Puffer et al. 2014), which can reduce feeding opportunities. Lipid or fatty 

acid analysis can be useful for studying the environmental stress response in fish (Wagner and 

Congelton 2004; Hasler et al. 2009)  

Fish experiencing widely fluctuating flow conditions may have fewer fat reserves due to 

potentially modified ability to obtain food resources (Hasler et al. 2009). Thus, highly variable 

flows can affect energy usage in fish and the influence of hydropower operations on lipid storage 

and energy requirements in fish can be determined (Wagner and Congelton 2004). It is possible 

that fish exposed to higher frequency of flow changes would be unable to consume higher 

quality prey items, although this is yet to be determined. Comparing fatty acid composition of 
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fish and their prey in natural and regulated river environments would provide an understanding 

of lipid dynamics in response to changing environmental conditions such as temperature and 

flow. 

2. Study design 

Replication is a limitation of my study design, whereby in each individual study 

(Newfoundland or Ontario), only two rivers were studied –one natural and one regulated. If more 

time permitted and with an unlimited research budget, I would have liked to include data from 

multiple natural rivers, and compare it to multiple regulated rivers with similar operational 

regime within the same region. Increasing the number of rivers studied across Canada would 

allow for the determination of how downstream rivers exposed to different flow regimes will 

respond. Although the biological community within each river may respond differently to 

environmental or anthropogenic stressors, there may be some generalizations that can be made 

about the influence of flow variations.  

Being part of HydroNet was a unique experience and I think it would have been very 

useful to coordinate efforts among other students in order to sample a wide range of natural and 

altered rivers so that multiple response variables were analyzed within the same period (stable 

isotope composition, growth, hydrology, geology, etc). By conducting sampling programs 

simultaneously, there would be more environmental variables available as explanatory factors for 

the biological responses (i.e., we could gain a better picture of how the biology and habitat, or 

hydrological or thermal regime are linked). 

The work completed within this thesis, the continued research plans, and the 

recommendations for future work has and will contribute to a better understanding of how 

varying fish communities (simple and more diverse) respond to variable flow and temperature 
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regimes and over short and long temporal periods. Why fish feeding ecology? Fish feeding, the 

attainment and consumption of food, is paramount to fish survival within variable lotic 

ecosystems. Flow variations can directly affect the quantity and quality of prey. Anticipating 

how fish communities and their prey resources respond to natural and artificially low flow, and 

flow and temperature variations in general, will allow managers to diagnose acute and chronic 

food web changes that may arise due to predicted alterations to temperature and flow regimes 

brought about by climate changes in boreal regions of Canada. 
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