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Abstract 

As people have begun to pay more attention to energy conservation and emission reduction in recent 

years, anti-idling has become a growing concern for automobile engineers due to the low efficiency 

and high emissions caused by engine idling, i.e., the engine is running when the vehicle is not 

moving. Currently, different technologies and products have emerged in an effort to minimize engine 

idling. By studying and comparing most of these methods, the conclusion can be drawn that there is 

still much room to improve existing anti-idling technologies and products. As a result, the optimized 

Regenerative Auxiliary Power System (RAPS) is proposed. 

Service vehicles usually refer to a class of vehicles that are used for special purposes, such as 

public buses, delivery trucks, and long-haul trucks. Among them, there are vehicles with auxiliary 

devices such as air conditioning or refrigeration (A/C-R) systems that are essential to be kept running 

regardless of the vehicle motion. In addition, such auxiliary systems usually account for a large 

portion of fuel from the tank. Food delivery trucks, tourist buses, and cement trucks are examples of 

such service vehicles. As a leading contributor to greenhouse gas emissions, these vehicles sometimes 

have to frequently idle to for example keep people comfortable, and keep food fresh on loading and 

unloading stops. This research is intended to develop and implement a novel RAPS for such service 

vehicles with the A/C-R system as the main auxiliary device. The proposed RAPS can not only 

electrify the auxiliary systems to achieve anti-idling but also use regenerative braking energy to 

power them.  

As the main power consuming device, the A/C-R system should be treated carefully in terms of its 

efficiency and performance. Thus, the developments of an advanced controller for A/C-R system to 

minimize energy consumption and an optimum power management system to maximize the overall 

efficiency of the RAPS are the primary objectives of this thesis. In this thesis, a model predictive 

controller (MPC) is designed based on a new A/C-R simplified model to minimize the power 

consumption while meeting the temperature requirements. The controller is extensively validated 

under both common and frosting conditions. Meanwhile, after integrating the RAPS into a service 

vehicle, its powertrain turns into a parallel hybrid system due to the addition of an energy storage 

system (ESS). For the sake of maximizing the overall efficiency, RAPS requires a power 

management controller to determine the power flow between different energy sources. As a result, a 

predictive power management controller is developed to achieve this objective, where a regenerative 
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braking control strategy is developed to meet the driver’s braking demand while recovering the 

maximum braking energy when vehicles brake. For the implementation of the above controllers, a 

holistic controller of the RAPS is designed to deal with the auxiliary power minimization and power 

management simultanously so as to maximize the overall energy efficiency and meet the high 

nonlinearities and wide operating conditions.  
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 Chapter 1

Introduction 

1.1 Objective 

There are different auxiliary systems that are used in service vehicles. Engines sometimes have to idle 

to power these auxiliary systems during vehicle stops. Large diesel engines of long-haul trucks are 

designed to run at high speeds on highways and are able to reach efficiencies of more than 40%. 

However, when the engine idles, the efficiencies drop to 1-11% and more pollutants are release [1]. 

Although in recent years many types of anti-idling products have been introduced to reduce this kind 

of idling, there are still many improvements that need to be made. As a result, the optimum 

regenerative auxiliary power system (RAPS) proposed in this thesis not only satisfies the auxiliary 

power device (e.g. A/C-R system) requirements of service vehicles to achieve anti-idling but also 

maximizes the use of regenerative braking energy and fuel efficiency. The application of RAPS in 

current service trucks can significantly improve their fuel efficiencies and reduce emissions by 

elimination of idling.  

Figure 1.1 shows the diagram of a RAPS with a holistic controller. The target vehicles of this 

research are service vehicles with A/C-R units as their main auxiliary power system. Thus, in the 

RAPS, there is a main power consumption source - the A/C-R system - and three energy providing 

sources - plug-in energy, regenerative braking energy, and the engine. Regarding high efficiency and 

energy saving, the following should occur: the A/C-R system should consume the minimum fuel 

while meeting the temperature or other requirements; the recovered kinetic energy during vehicle 

braking should be at maximum without affecting the drivability; the aforementioned power sources 

should be coordinated to pursue the maximum powertrain overall efficiency. Accordingly, the main 

roles of this thesis: development of a high efficient holistic controller, which is able to minimize the 

fuel consumption of A/C-R systems, maximize the recovered kinetic energy while maintaining the 

drivability, and coordinate different on-board power sources for the maximum powertrain efficiency.  
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Figure 1.1 Structural diagram of RAPS with the holistic controller 

The continuously increasing demands on lower emission levels and better fuel economy have 

driven researchers to develop more efficient, less polluting vehicles [2]. However, as the main 

auxiliary load of vehicles, the A/C-R systems can consume up to 25% of the total fuel or even more 

in long-haul service vehicles. In addition, as the main energy consumption source of the A/C-R 

system, the compressor is usually connected directly to the engine via a belt in conventional vehicles, 

such that engines sometimes have to idle to power A/C-R systems during vehicle stops. For example, 

long-haul trucks are equipped with a sleeper cabin where the drivers can live on the road [3]. Usually, 

trucks idle to provide power to the air conditioning system for cabin temperature control. Similarly, 

food service trucks need to idle to provide power to the refrigeration system while loading or 

unloading. When it comes to the vehicle idling, many drawbacks appear, such as the low efficiency of 

the engine and excessive emissions [1]. Thus, there are significant benefits in operating A/C-R 

systems efficiently, both in terms of both operating costs and their effects on the environment [4]. An 

important step in achieving better performance and higher energy efficiency is a control-based model 

and a proper control strategy [5].  

Making more efficient auxiliary devices can definitely bring many benefits to vehicle owners as 

well as the environment. But in most conventional vehicles, the compressor speed is proportional to 

engine speed instead of actively varying [6]. This impedes the advanced controller development for 
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the automotive A/C-R system given that the controllers are usually applied to manipulate the speeds 

of compressor and fans. However, as the development of anti-idling technologies such as the 

Auxiliary Battery Powered (ABP) units, hybrid electric vehicles (HEVs) and electric vehicles (EVs), 

the on-board ESS is capable to power the A/C-R system independently such that the A/C-R system 

can be disconnected from the engines [7]. That means the electrification of the A/C-R system and 

then the application of advanced controller in vehicles are possible [6]. As a result, the idling caused 

by powering auxiliary devices when the vehicle stops can be eliminated such that the performance 

and efficiency of the automotive A/C-R system largely improved [8]. This can be achieved partially 

by developing advanced controllers to replace the conventional on/off (bang-bang) controllers.  

The design of advanced controllers requires a control-based model of the A/C-R systems that is 

accurate but simple enough for real-time implementation. A control-based model is actually a trade-

off between accuracy and simplicity. If the model is too simple, it will not be able to reflect the main 

characteristics of the system, resulting a poor closed-loop control performance. On the other hand, if 

it is too complex, it slows down the controller by increasing computation time, which may not be 

used in real-time implementations [9], though it can describe the dynamics of the system well enough 

and produce good predictions. Consequently, this study presents a simplified but accurate model for 

A/C-R systems that has been validated by experimental results, and then several controllers are 

designed, tested and compared to obtain the most promising one.  

By introducing the RAPS to a conventional service vehicle, its powertrain turns into a parallel 

hybrid system due to the addition of a battery. The only difference from a standard parallel hybrid 

powertrain is that the ESS in RAPS only powers the auxiliary devices instead of assisting the engine 

in driving the vehicle. The ESS is able to power the auxiliary devices, such as an A/C-R system, 

independently so as to achieve the anti-idling purpose. For the sake of overall high efficiency, RAPS 

requires a power management strategy (PMS) to determine whether and when the ESS needs to be 

charged. Using the alternator connected to the engine via the serpentine belt or the gearbox via the 

power take-off (PTO), the RAPS is capable of recapturing a portion of the kinematic energy during 

vehicle braking. A strategy is used to guarantee the maximum braking energy recovered without 

affecting the drivability of the vehicle. Meanwhile, when the recaptured energy is not enough, the 

engine can directly charge the battery in an efficient way that is guaranteed by the developed MPC 

PMS [10]. Thus, these characteristics differentiate it from the existing auxiliary power unit (APU) 

and ABP. 
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In development of the above controllers, each controller is designed individually although the 

communications between them are considered as the predefined. For instance, the power consumption 

of the A/C-R system is preset and varied proportionally with the ambient temperature. However, 

under the real conditions, its power consumption should be optimized by its own controller and sent 

to the power management controller to coordinate the power flows. Therefore, a holistic controller is 

developed by combining the aforementioned controllers to automatically deal with the mutual 

communications. Actually, the holistic controller is a centralized MPC to guarantee the service 

vehicle saving energy by achieving three objectives: minimize the energy consumption of the 

auxiliary systems, maximize the energy recovered when braking happens, and optimize the output 

power of the engine. Thanks to the multi-objective optimization feature of the MPC, the proposed 

holistic controller optimizes the power consumption of auxiliary systems and power flow of the 

powertrain simultaneously for the first time. In order to show the advantages brought by the proposed 

RAPS with the controller over the conventional vehicles, a case study is performed and analyzed. The 

results demonstrate that the RAPS can help a light service vehicle to eliminate idling and obviously 

save fuel under the study scenario.  

In general, the contributions of this thesis are: 

I. A control-oriented dynamic model of an A/C-R system based on the moving boundary and lumped 

parameter method is developed and validated experimentally. Unlike existing models, the proposed 

model lumps the fins’ effects into two equivalent parameters without adding any complexity and 

considers the effect brought by the superheat section of the condenser, resulting in a model that is 

not only simpler but also more accurate than the existing models.  

II. A set-point controller is proposed for A/C-R system with two different time-scale layers. The outer 

or the slow time-scale layer called a set-point optimizer is used to find the set points related to 

energy efficiency by using the steady state model; whereas, the inner or the fast time-scale layer is 

used to track the obtained set points. In the inner loop, thanks to its robustness, an SMC is utilized 

to track the set point of the cargo temperature. The experimental results under several disturbed 

scenarios are analyzed to demonstrate how the proposed controller can improve performance while 

reducing the energy consumption by 9% comparing with the on/off controller. The controller is 

suitable for any type of A/C-R system even though it is applied to an automotive A/C-R system. 

III. To study the potential energy saving for A/C-R systems, a discrete MPC is designed based on the 

proposed model for an automotive A/C-R system with a three-speed compressor. A proper terminal 
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weight is chosen to guarantee its robustness under both regular and frost conditions. Following that, 

a case study is conducted under various heating load conditions. Two hybrid controllers are made; 

these combine the advantages of both the on/off controller and discrete MPC such that they will be 

more efficient under any ambient heating condition. In addition, a continuous MPC is developed for 

systems with continuous variable components. Finally, the experimental and simulation results of 

the new controllers and the conventional on/off controller are provided and compared to show that 

the proposed controllers can save up to 23% more energy.  

IV. Since service vehicles, such as delivery trucks or public buses, usually have predetermined routes, 

thus, it is possible and beneficial to utilize an MPC to improve the fuel economy of RAPS. 

However, the mass/load of such service vehicles is time-varying during a drive cycle. Therefore, an 

adaptive predictive power management controller is designed to account for the time-varying load 

of service vehicles. Although the drive cycle is preset, it would experience uncertainties or 

disturbances caused by traffic or weather conditions in real situations. To deal with this problem, a 

large step size prediction method is used in the adaptive MPC to enhance its robustness. The 

proposed adaptive MPC is compared with a prescient MPC in different scenarios to demonstrate its 

applicability and optimality. The proposed approach is independent of the powertrain topology such 

that it can be directly extended to other types of HEVs.  

V. To loosen the assumption that the route is preset, an average concept based MPC is developed to 

improve the overall efficiency of the RAPS without a priori driving information. The analysis shows 

that the RAPS with the proposed MPC obviously decreases the total fuel consumption. Meanwhile, 

the average concept based MPC has a similar performance as the prescient MPC. In addition, the 

robustness of this MPC is also tested under other drive cycles. The proposed MPC is independent of 

powertrain topology such that it can be straightforwardly extended to other types of HEVs, and it 

provides a way to apply the MPC even though the future driving information is unavailable. 

VI. For the sake of ease of implementation of the above controllers, a holistic controller of a RAPS is 

designed for service vehicles to reduce engine idling. The proposed controller is an MPC to 

guarantee the service vehicle saving energy by achieving three objectives: minimize the energy 

consumption of the auxiliary systems, maximize the regenerative braking energy and optimize the 

output power of the engine. Thanks to the multi-objective optimization feature of the MPC, the 

proposed holistic controller optimizes the power consumption of auxiliary systems and power flow 

of the powertrain simultaneously for the first time. In order to show the advantages brought by the 
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proposed RAPS with the controller over the conventional vehicles, a case study is performed and 

analyzed. The results demonstrate that the RAPS can help a light service vehicle significantly save 

fuel under the study scenario and save more for heavy vehicles. 

1.2 Outline 

This thesis is organized as follows:  

Chapter 2 presents a literature review on three different aspects. Firstly, the available anti-idling 

products and technologies in the market are studied and compared. The advantages of the proposed 

RAPS over such products are identified. Secondly, the modeling methods and control schemes used 

in all-purpose A/C-R systems are reviewed. Thirdly, power management strategies utilized in HEVs, 

especially the MPC-based, are studied. 

Chapter 3 begins by showing two potential structures of the RAPS for service vehicles and 

describes how to model the powertrain system as well as the A/C-R system.  

Chapter 4 briefly introduces the experimental A/C-R system and powertrain system, and then 

comprehensively validates the models built in Chapter 3 by test data obtained from the experimental 

systems.  

Chapter 5 elaborates the development process of several controllers for the A/C-R system and then 

implements them experimentally. After that, the real performance of all the controllers are presented 

and compared under several preset working conditions. Finally, the performance of the controllers is 

tested in a more realistic scenario to obtain a more efficient controller under any working conditions.  

Chapter 6 firstly shows a regenerative braking strategy to maximize the energy recovery while 

sustaining the drivability of the vehicle. Then, the predictive power management strategies are 

developed under two scenarios: with and without knowing the future drive cycles as a priori. 

Chapter 7 presents a centralized MPC as the holistic controller for RAPS, which combines the 

aforementioned controllers. Although all the individual controllers are developed and their 

performance is verified, they should communicate with each other when they are working. Therefore, 

a centralized controller is needed to guarantee the stability of the controlled system. 

Chapter 8 draws the conclusions and discusses the future work.  
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 Chapter 2

Literature Review 

In this chapter, the literature review is divided into three sections. Firstly, the current anti-idling 

technologies and products are discussed, followed by the modeling and control strategies of A/C-R 

systems. Lastly, the existing power management control strategies, especially the MPC-based, used in 

hybrid powertrains are examined. 

2.1 Anti-idling Technologies and Products 

Idling refers to a situation when the engine is running but the vehicle is not moving. It is one of the 

main contributors to poor air quality, extreme noise pollution, and serious health issues. In addition, it 

impacts drivers, site personnel at stations or nearby [11], and increases costs for drivers or companies. 

For example, diesel engines have efficiencies of 40% running at highways, however, when idling 

their efficiencies drop to 1-11% and discharge more pollutants. As such, it is imperative to reduce or 

even eliminate automotive idling. There are many quantitative studies [12-16] to demonstrate its 

negative impacts along with many corresponding regulations and bylaws, which require a complete 

ban on idling in many countries [12-13].  

Due to the urgent demand for high fuel economy and low emissions in the automotive industry, a 

number of anti-idling technologies have emerged over the last several decades [11-16]. A variety of 

products with exclusive functionalities have been developed by different manufacturers. In general, 

according to a comprehensive review of existing literature, two main classification methods were 

employed to categorize these technologies. First of all, the mobile and stationary products are utilized 

to differentiate the products whether move with vehicles or not [12]. In addition, they can be 

classified as fully functional and partial functional types depending on whether they can provide all 

power required by auxiliary systems.  

2.1.1 Mobile Anti-idling Products 

Mobile systems are installed in and moving with vehicles, including automatic engine shutdown 

devices, APUs, ABPs, and a number of individual components designed to meet part of the heating, 

cooling, and other requirements [11]. Among them, APUs and ABPs can fully provide the desired 

power, referred to as the fully functional type; while the other types belong to the partial functional 

type because they can only provide limited functionalities such as either heating or cooling.  
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2.1.1.1 APUs/Generator sets 

APUs, or fuel-fired APUs, are the most conventional and popular anti-idling solutions. APU consists 

of a comparatively small engine and an alternator that is fully integrated into a vehicle’s existing 

heating, ventilating, and air conditioning (HVAC) as well as the battery charging system [11]. Many 

types of APUs have been proposed and manufactured by different companies, such as Thermo King, 

Carrier, Pony Pack, Dometic, RigMaster Power, Dynasys, and Ecamion. For more information about 

corresponding APUs, please refer to [17] or their official websites. Test results of several APUs are 

also examined by [18]. 

 

Figure 2.1 Thermo King APU [19]

APUs usually can provide all the auxiliary power demanded by vehicles or drivers, and can thus 

reduce engine idling. Nevertheless, the addition of external components makes vehicles more 

expensive, heavier, noisier, and more maintenance intensive. Besides, the added engine may 

eventually produce more pollutes than the main engine if not properly designed [11]. 

2.1.1.2 ABPs with Inverters 

Recently, ABPs [20] have emerged as a competitive alternative to conventional APUs. The additional 

engine and generator in conventional APUs are replaced by a package of batteries, which offer the 

same functionalities without the extra emissions or noise asSoCiated with their conventional 

counterparts. The batteries are either charged by the engine during operation or charged by stationary 

type anti-idling devices (e.g., Shorepower); and discharged when the vehicle stops. Inverters are 

capable of converting the battery power into the desired AC power for other appliances or 

accessories. 
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Figure 2.2 ABP unit from eCAMION [21]

However, ABPs should confront some problems asSoCiated with batteries, such as the short 

lifecycle, and the asSoCiated costs, among others without properly being designed. As a result, other 

technologies have been proposed to replace the battery, including fuel cell systems and solar energy 

systems, but they are still in their early development stages. The shortcomings of these alternatives 

including expensive materials, large modification of the existing structure, and longer start-up times 

impede their popularization [3]. 

2.1.1.3 Hybrid Electric Trucks 

In 2003, GM introduced a hybrid diesel-electric military light truck equipped with a diesel engine and 

a fuel cell APU. Hybrid electric light trucks were proposed in 2004 by Mercedes-Benz [21], and after 

that, many truck companies have developed their own hybrid trucks and buses. As one of the most 

famous companies that develop and manufactures hybrid commercial vehicles [23], Eaton, currently, 

provides both electric and hydraulic hybrid powertrain systems. In Freightliner, the anti-idling 

technology employed by the M2 106 diesel-electric hybrid uses an optional electronic PTO (ePTO) to 

reduce idling, which makes the vehicle suitable for high-idling applications such as utility and tree-

trimming. Idling time is reduced by up to 87%, and fuel consumption up to 60% in ePTO mode. 

Truckers can also add an optional 5 kW auxiliary power generation (APG) unit and realize additional 

savings [24]. Other truck companies such as Mitsubishi Fuso Truck & Bus Corporation [25], Hino 

Motors, and UD Trucks also have their own hybrid products and adopt similar technologies to 

minimize the amount of idling time. 
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Figure 2.3 Hybrid trucks from Freightliner [26]

2.1.1.4 Automatic Shut-down/turn-on Systems 

Automatic shut-down/turn-on systems are referred to as engine management systems, and allow 

truckers to program their engines to turn on or off in accordance to some specific parameters, which 

include, for example, a preset period of time, compartment or engine temperature, and/or battery 

voltage. They are easy to install and costless, and capable of reducing idling to some extent. 

Nevertheless, they cannot power HVAC system and other appliances. Above all, they cannot address 

the inherent inefficiencies asSoCiated with idled engines [12]. 

2.1.1.5 Direct-fired Heaters and Thermal Energy Storage (TES) 

According to a study conducted by American Transportation Research Institute (ATRI), direct-fired 

heaters are one of the most popular idle-reduction technologies [27]. The working principle is that 

one portion of fuel is imported from the fuel tank and burnt in a small assembly, usually mounted 

beneath the bunk. It helps provide cabin space heating [11]. Instead, TES is charged during the 

daytime when the truck is being driven and uses an innovative cold storage cell to provide cooling for 

the driver at night without starting the engine. 

2.1.2 Stationary Anti-idling Products 

Stationary anti-idling products are fixed in locations where truckers can purchase services such as 

heating, cooling, electricity, and the Internet. They are also referred to as truck stop electrification 

(TSE) systems and classified as either onboard (dual system) or off-board (single system) systems. 

Onboard systems (e.g., Shorepower Technology and CabAire LLC [28]) require the installation of 
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dedicated heating and cooling systems and inverters in the truck, while off-board systems (IdleAire, 

Envirodock and AireDock [28]) offer heating, cooling, and electricity through an external device 

[12]. 

 

Figure 2.4 Advanced Travel Center Electrification services by IdleAir [29] 

2.1.3 Summary 

According to pros and cons of the aforementioned anti-idling products, to achieve the goal of anti-

idling in service vehicles with auxiliary devices such as A/C-R systems, APUs, and ABPs capable of 

providing enough power can be integrated into such vehicles. Besides, as a significant feature of the 

hybrid technologies, anti-idling can be achieved by hybrid vehicles. Nonetheless, the optimized 

RAPS presented in Figure 1.1 can be a promising alternative compared to its counterparts. After 

component-sizing via multi-disciplinary optimization, the optimized RAPS can be more compact, 

light-weight, and efficient, thus requiring less modification to the vehicles and fewer costs to the 

owners. It is able to not only satisfy power requirements of service vehicles but also utilize the 

recovered braking energy to maximize the fuel economy. Above all, compared to the aforementioned 

of anti-idling technologies, the optimized RAPS have the following main advantages: firstly, the 

optimized RAPS does not contain a small-scaled engine, therefore, it will be quieter and cleaner than 

the conventional APUs. Secondly, the optimized RAPS is similar to an ABP, but has the ability to 

recapture braking energy, therefore, a smaller battery pack can meet the requirements, resulting in 

lower costs after sizing the component. Thirdly, the developed PMS will guarantee the powertrain 

working in maximum efficiency. Lastly, the hybrid service vehicles are not very popular because of 

their high costs. Thus, the conventional ones will still dominate in the following decades. In the 

development process of HEVs, the auxiliary power is assumed as a constant or even neglected such 
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that the solutions will not be optimal. Therefore, the techniques adopted in the development process 

of RAPS can be directly extended to any types of HEVs.  

2.2 A/C-R System Modeling and Control Strategies 

A/C-R systems usually refer to vapor compression units, which operate on the vapor compression 

cycle and generally consist of a set of evaporator, compressor, expansive valve, and a condenser. 

They are extensively adopted in the automotive industry and have become the main auxiliary load on 

a vehicle engine or other energy sources when operating. Thus, there are significant benefits to 

operating A/C-R systems efficiently, both in terms of running costs, as well as its effect on the 

environment [30]. However, an indispensable factor to achieve good performance and efficient 

energy consumption is a control-based model and a proper control strategy [5].  

2.2.1 The Modeling Methods of A/C-R Systems 

Generally, only the dynamics of the four main components and connecting pipes are modeled. The 

dynamics of other auxiliary components such as the accumulator and receiver are incorporated into 

the connecting pipes or two heat exchangers. In the literature, the modeling of compressor and 

expansion valve, regardless of their types (electric, thermostatic or automatic expansion valve), is 

demonstrated by algebraic empirical equations [31]. This is because the dynamics of a compressor 

and expansion valve is an order of magnitude faster than those of heat exchangers (evaporator and 

condenser) [32].  

Several types of models have been built for heat exchangers according to different purposes. For 

instance, discretized or finite difference models are more accurate and usually utilized in many 

commercial software packages. These types of models can result in high accuracy in prediction [33]; 

however, they are too complicated to be used in real-time control strategy development and 

implementation. Another type of heat exchanger model is based on lumped parameters and is usually 

a first order time-invariant dynamic model; however, it has oversimplified most of the dynamic 

characteristics of heat exchangers [34]. Above all, the most popular modeling approach is the 

moving-boundary/interface lumped-parameter method, which is capable of capturing the dynamics of 

multiple fluid phase heat exchangers while keeping the simplicity of lumped parameter models [34]. 

Wedekind et al. [35] contributed significantly by simplifying a class of two-phase transient flow 

problems into a type of lumped-parameter systems. With experimental confirmation, the authors 

showed that the mean void fraction, i.e., the volumetric ratio of vapor to the total fluid of the two-
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phase region in a heat exchanger remains relatively unchanged. This suggests that it will stay 

invariant, regardless of how the refrigerant distributes throughout the heat exchanger and how the 

length of two-phase region changes [31]. With this assumption, this method allows the two-phase 

section to be modeled with lumped parameters. In this way, the model can be much more simplified 

than the discretized model. Based on the first law of thermodynamics, the dynamics of the length of 

the two-phase section (the movement of the interface between different regions) can be determined.  

X. He. used the moving interface and lumped parameter modeling method in [32]. Based on several 

assumptions such as assuming the heat exchanger is a long, thin, and horizontal tube, the author 

developed the complete evaporator and condenser nonlinear dynamic model with more than five 

states for each of them and then derived the entire system model by considering the boundary 

conditions of all the components. However, in his research, only the linearized model was partially 

verified. Recently, A. Alleyne and his teammates have improved the model derived by X. He. For 

instance, B. Li in [36] built a model for startup and shutdown periods by considering different 

distributions of the refrigerant inside the heat exchangers. The auxiliary components such as the 

accumulator and receiver were modeled in [34]. Parameter identification algorithms for A/C-R 

system modeling have also been improved in [37]. Furthermore, some special architecture of vapor 

compression cycle system that was modeled in [38] and further validated the models experimentally 

[39-41], and it showed overall improvements over the previous models. More importantly, literature 

[42] considered the fins’ effects by introducing several other parameters such as “fraction of the 

refrigerant-to-structure surface area on fins and refrigerant-side fin efficiency”, which makes the 

model more complex with 9 states in evaporator alone. In all the models above, there are more than 

ten states representing the complexity of the model which makes it difficult to guarantee the real-time 

running of controllers developed based on these models. That is why X. He [43] developed a simple 

model of the whole system by assuming the identical temperature of heat exchanger wall and reduced 

the number of states to five. Unfortunately, the simplified model has not been validated 

experimentally. 

The drawbacks of the models existing in literature are elaborated as follows. Firstly, the complete 

models with more than ten states are too complex to be adopted for developing controllers. Secondly, 

the simple model does not include fins’ effects when modeling heat exchangers, which brings 

discrepancies to the model. As a result, this study is intended to further improve the accuracy of the 

model in [42] by incorporating the fins in the model of heat exchangers in a new way without adding 
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the complexity of the model. Thus, a simplified control-oriented dynamic model of the A/C-R system 

is developed, where only six states are used instead of more than ten reported in the literature. In 

order to keep the accuracy of this simplified model comparable to high order models, the fins’ effects 

are considered and lumped into two equivalent parameters. In addition, the effects of the superheat 

section of in the condenser are also included into the model by studying the experimental data instead 

of the model used in [43]. This model is simulated and experimentally validated under several 

scenarios. The results show that this model is simple and accurate enough to be used in real-time 

control systems.  

2.2.2 The Control Strategies of A/C-R Systems 

Currently, many kinds of control strategies have been developed for A/C-R systems. At the 

beginning, the On/off controller, as the most conventional controller, is implemented and widely 

used. However, its drawbacks mentioned bellow hinder further development, resulting in other kinds 

of control strategies to emerge. In addition, recently, as the anti-idling technologies and electric 

vehicles become more and more popular, the electrification technology of the A/C-R system in the 

vehicle will separate the compressor from the engine such that the compressor is able to actively 

change its speed instead of passively following the engine speed. The electrification together with 

employment of continuous variable components in the A/C-R system makes the development of more 

efficient controllers possible. These control strategies include the capacity control, intelligent control 

and advanced control strategies, which have become promising alternatives. 

2.2.2.1 Conventional Control Strategies 

Besides on/off control, the single input single output (SISO), and multiple SISO control strategies 

belong to the conventional control strategies. They are often referred to as the capacity control, which 

usually employs PID control techniques by modulating different component parameters like electric 

motor speed, the speed of fans, or the flow rate of the refrigerant to meet the desired temperature or 

other control objectives [32, 44]. 

On/off Control 

Due to its simplicity and relative ease of implementation, the on/off approach is a dominant control 

strategy used in A/C-R systems. It can keep the temperature within a certain range via switching the 

whole system on or off. Nevertheless, its limitations include: 1), the inability to regulate the 

temperature oscillation amplitudes upon changing conditions, such as ambient temperature, and 
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varying food temperature requirements; 2), an excessive temperature swing may make the food 

deteriorate or may make people feel uneasy; 3), It is suitable for thermostats because of its slow 

dynamic, but not for the supply air-fan control; 4), Compressor activations can lead to excessive 

power consumption, and mechanical components wear over time [27]; 5), Most importantly, 

efficiency is not considered. That is why Alberto et al. [45] and B. Li et al. [46] improved the 

conventional on/off controller by adding adaptive or optimization algorithms to make it more efficient. 

However, such nature of the on/off controller makes greater enhancement difficult.  

Capacity Control 

Recently, A/C-R systems have incorporated capacity controllers to enhance energy efficiency and 

performance. This kind of input & output-based control is easily realized by PID controllers. A 

relevant example is superheat-expansion valve control. Usually, the superheat is controlled by 

adjusting the valve opening degree to regulate the refrigerant mass flow. Due to various advantages of 

implementation and design, these input-output controllers have been traditionally used in A/C-R 

systems. Thus, multiple SISO control loops, like the superheat-expansion valve loop, have been 

identified, and PID controllers have been used to a great extent. This leads to cross-coupling 

problems, and it is hard to find and tune the controller parameters due to the nonlinear and MIMO 

nature of A/C-R systems. As a result, a complicated decoupling procedure is usually required to 

achieve better control performance.  

2.2.2.2 Intelligent Control Strategies 

Artificial intelligent (AI) control approaches such as artificial neural network (ANN) control, fuzzy 

logic control, and expert system, etc., have been developed to deal with nonlinearities or uncertainties 

in A/C-R processes. ANN has a strong modeling capability for nonlinearities, while fuzzy logic can 

deal with uncertainties in a straightforward manner. Besides being used directly as controllers based 

on their own formulation characteristics, ANN, fuzzy logic, etc., also perform the roles of A/C-R 

models, computing methods, and approximations of other control algorithms. In some cases, these AI 

control approaches are combined with the A/C-R system control [44]. However, their drawbacks 

include overtraining, extrapolation, network optimization, and their lack of optimality, all of which 

impede their development [47]. 
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2.2.2.3 Advanced Control Strategies 

Advanced control strategies utilized in A/C-R systems include decoupling control, optimal control 

(e.g. MPC), nonlinear robust control (e.g. SMC), adaptive control, and so on. B. Koo et al. [48] 

presented a second-order SMC for the SISO refrigeration system, which regulates the refrigerant 

relative length in the evaporator, actually the superheat, by manipulating the compressor speed. This 

controller can also effectively alleviate chattering phenomenon but does not directly deal with power 

consumption. R. Shah, et al. [49] presented a multivariable adaptive controller. The idea behind is 

that this controller is able to identify different linear models for a nonlinear system over the domain of 

operating conditions, so it can be easily used for the complete vapor compression cycle control. This 

is a kind of nonlinearity compensation for a general dynamic system. There are also other kinds of 

nonlinearity compensation controls like robust control and Gain Scheduling control [32, 49]. L. 

Larsen proposed two kinds of optimization control methods [50]: set-point optimizing control and 

dynamic optimizing control. The objective of the former is to derive a general applicable set-point 

optimization method for refrigeration systems that can drive the set points towards optimal energy 

efficiency; whereas, the latter is to analyze the phenomenon of synchronization and derive a method 

for desynchronizing the operation of the distributed controllers.  

In all of these advanced control methods, the MPC is a more successful and promising control 

algorithm based on studies of model identification, optimized algorithm, control structure analysis, 

parameter tuning, relevant stability and robustness. Therefore, the MPC is gradually becoming a 

major control method for A/C-R systems. The main value of the MPC is its ability to control 

multivariable systems under various constraints, especially slow dynamic plants, in an optimal way. It 

can simultaneously control more than one objective to achieve multi-objective and multivariable 

control.  

A Takagi-Sugeno fuzzy model was utilized to represent the highly nonlinear HVAC system in 

temperature predictive control. In order to reduce the computational effort of the non-convex 

optimization problem, a combination of a branch-and-bound search technique was used [51]. Authors 

in [52] proposed a hierarchical multiple MPC for the temperature control of the HVAC system based 

on a Takagi–Sugeno fuzzy model. Literature [53] has applied a neuro-predictive controller for the 

temperature control of automotive air conditioning systems. However, the conclusions are tenuous 

without any supporting experimental work. A MPC was designed in [54] for a multi-evaporator vapor 

compression cooling cycle. A decentralized control structure was employed where the global MPC 
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was to find the set points of the required cooling as well as evaporator pressures and local PI 

controllers were used for set-point tracking. By properly controlling evaporator pressures and 

superheat, energy efficiency can be improved. A neuro-fuzzy network based offline optimization was 

utilized [55] to approximate the input-output relationship of a robust MPC, and validated it on an air-

handling unit for the temperature control to increase the computational efficiency of a nonlinear 

robust MPC. Jain & Alleyne incorporated an exergy-based objective function into a nonlinear MPC to 

improve the coefficient of performance (COP) of a vapor-compressor cycle operation [56]. Due to the 

nonlinear objective function, the fmincon command in MATLAB that was used for the simulation and 

real-time implementation is not feasible in practice due to its high computational time. An economic 

MPC in [57] was proposed to reduce costs for building HVAC systems. In each time interval, a min-

max optimization technique is used and transferred to a linear programming problem instead of 

solving the optimization problem directly; this technique minimizes electricity costs and finds the 

optimal input for the next step. In his thesis [58], Gustavsson adopted a complex nonlinear model of a 

vapor compressor system derived by [32], linearized it and subsequently designed a MPC to control 

the evaporator pressure and superheat by manipulating the compressor speed and electronic 

expansion valve. The purpose of this MPC was to improve the energy efficiency of the overall plant. 

In order to show its performance in real situations, several scenarios were simulated by using the 

linearized mode, but this was done without any experimental validation. In addition, the effects of 

model inaccuracy on the controller were not studied. An MPC was designed for a commercial multi-

zone refrigeration system to minimize the total energy consumption. This MPC employed a fast 

convex quadratic programming solver to solve a sequential convex optimization problem so as to 

handle the non-convexity of the objective function. In order to limit the size of the optimization 

problem in each step, a sample time of 15 mins was chosen for predictions of the next 24 hours [59]. 

A low-complexity MPC was developed for building cooling systems with thermal energy storage. In 

order to improve the computational efficiency, a periodic moving window blocking strategy is 

utilized [57]. A time-varying periodic robust invariant set discussed in [60] was used as the terminal 

constraint to guarantee the robustness under the time-varying uncertain cooling demand. The running 

time for each step was about 20mins, which satisfies the sample time of 1h chosen for the MPC for 

prediction of the next 24 hours. A learning-based MPC was proposed in [61] to minimize the energy 

consumption of an air conditioner while it maintains a comfortable temperature at the same time. A 

statistical method and a mathematical model for the temperature dynamics of a room were used to 

learn about the time-varying heating load caused by occupants and equipment. Based on the 
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information learned from the heating load, this MPC will determine the state (on/off) of the air 

conditioner. Ultimately, it is still a two position controller for the air conditioner, but it is more 

intelligent. M. Elliott et al. improved their study discussed in [54]. A multi-evaporator vapor 

compression system was still the research target and the global MPC was used to find the required 

cooling and pressure setpoints for each zone. The local MPCs and PIDs for each evaporator were 

used to track these set points by manipulating the valve position and evaporator fan speed. Energy 

efficiency was guaranteed by choosing the proper pressures and superheats instead of directly 

integrating the system’s inputs into the objective functions of the MPC [62]. Literature [63] 

conducted a comprehensive literature review on the theory and applications of controllers. In 

particular, they focused on the MPC in the HVAC systems of buildings, and they elaborated upon the 

factors that influence the performance of the MPC such as controller structure, process type, 

optimization algorithms, plant model, prediction horizon, control horizon, constraints, and an 

objective function. An adaptive MPC for a reefer container was proposed in [64]. Model parameters, 

states as well as the ambient temperature information for the next 24 hours were identified online. 

This long prediction period required a relatively long time interval of 1 hour to reduce the 

optimization problem size at each time step so as to guarantee the real-time application. Since the 

MPC is recalculated once every hour, the cooling provided by the refrigeration system could be 

incorrect for up to one hour. This MPC is not suitable for reefer containers in delivery trucks with 

small thermal inertia since such trucks unload their goods regularly resulting in some extra heating 

load in the container, which can ruin the quality of the goods. Due to the small thermal inertia and 

subsequent fast thermal dynamics, the 1 hour time interval is too large to be used.   

2.2.3 Summary 

Studies of the modeling and control strategies applied in A/C-R systems are summarized as follows: 

firstly, the conventional on/off controller cannot meet the requirements of the high control 

performance and energy efficiency. However, due to its robustness and ease of application, it still can 

be improved by adding auto-tuning algorithms or applied together with other control strategies; 

secondly, because of the highly nonlinear, MIMO and coupling nature of the A/C-R system, more 

advanced PID control methods are needed to improve control system performance such as speed, 

accuracy, and stability. This kind of method is usually combined with other intelligent control 

algorithms. To make full use of PID control advantages in multiple SISO A/C-R system controls and 

simplify the design and operation procedure of the control strategies, advanced control such as 
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decoupling can be used. In addition, due to the robustness and the capability to deal with the highly 

nonlinear plant, the SMC can be applied to the A/C-R system. However, the current studies on SMC 

for A/C-R system application are only limited in SISO control; last but not the least, in order to solve 

multi-objective problems in A/C-R systems mentioned above, the advanced control such as the MPC 

could be a best choice. A more accurate model of the A/C-R system, especially the physical-principle 

based model should be developed, and the real-time implementation problem should be solved.  

2.3 Power Management Control Strategies in Hybrid Electric Vehicles 

A leading challenge for designing hybrid vehicles is the coordination of multiple energy sources, 

converters, and, in the case of an HEV, power flow control for both the mechanical and the electric 

path. This requires an appropriate control or a PMS [65], which aims to satisfy the driver’s demand 

for drivability while pursue the maximum drivetrain efficiency, fuel economy, and minimum 

emissions and costs. Nevertheless, some of these objectives, such as emission reduction and 

efficiency maximization, are contending parameters. Thus, a good control strategy should be 

developed to satisfy a tradeoff between them. Recently, achieving smooth gear shifting and 

minimizing excessive driveline vibrations, known as drivability, are included in the powertrain 

control strategy [65, 66]. The existing power management strategies have been categorized into rule-

based and optimization-based according to survey papers [67~73]. A summary of the reported power 

management strategies is shown in Figure 2.5. It should be noted that these strategies are not mutually 

exclusive and can be used alone or in combinations [74]. 

 

Figure 2.5 Power management strategies currently used in literature 
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2.3.1 Rule-Based Control Strategies 

The rules are designed based on heuristics, intuition, and human expertise without a prior knowledge 

of a predefined cycle. The main feature involved in rule-based strategies is the effectiveness in the 

real-time supervisory control of power flow in a hybrid powertrain. If the rules are set properly, these 

strategies can result in a good efficiency in terms of fuel economy and emissions. However, due to the 

complexity and the non-linearity of the hybrid powertrain, determining accurate rules or thresholds is 

neither explicit nor straightforward, and experts in most cases fail to define these thresholds and rules 

with enough accuracy [75]. This is the leading factor that contributes to improving the rule-based 

strategies. 

2.3.1.1 Deterministic Rule-based Methods 

The deterministic rule-based controllers operate on a set of rules that have been defined and 

implemented prior to actual operation, in which some constraints and thresholds are set to try to 

achieve the optimal solution. 

Power follower Control Strategy (PFCS) 

In this strategy, the engine is the primary source of power, and the EM is used to assist the engine 

when needed while sustaining a charge in the batteries. As a popular strategy for power management 

in a hybrid powertrain, the main disadvantage of this method is that the efficiency of the whole 

powertrain is not optimized, and improvement in emissions is not directly taken into account. 

Nevertheless, the control strategies of the Toyota Prius and Honda Insight are developed based on the 

PFCS [65].  

Modified power follower strategy 

In order to improve PFCS, an adaptive version was proposed in [76]. The main goal of this approach 

is to optimize both energy usage and emissions by the introduction of a cost function representing 

overall fuel consumption and emissions at all candidate-operating points. The control strategy uses a 

time-averaged speed to find instantaneous energy use and emission targets. The detailed rules for the 

proposed control strategy are described in [65]. 

State machine-based strategy 

A state machine-based strategy has been utilized in for a parallel HEV [77]. The state machine 

dictates the operating mode of the vehicle such as ENGINE (engine propelling the vehicle), BOOST 
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(engine and motor, both propelling the vehicle), CHARGING (engine propelling the vehicle and 

charging the battery), etc. The transition between operating modes is decided based on a change in 

driver demand, a change in vehicle operating condition, or a system or subsystem fault. 

Implementation of a vehicle controller through state machines facilitates fault resilient supervisory 

control of the whole system. Nevertheless, optimal performance of the vehicle such as fuel economy 

is not guaranteed. Therefore, this approach brings no extra value to conventional deterministic rule-

based methods. Consequently, it seems that switching to fuzzy rule-based methods is a wise decision, 

as explained in the next section [65]. 

2.3.1.2 Fuzzy Rule-based Methods 

Due to decision-making, robustness, and adaption properties, fuzzy logic control also referred to as 

intelligent PMS, is a promising candidate to implement into a multi-domain, nonlinear, and time-

varying hybrid powertrain system. In fact, instead of using deterministic rules, which require 

accurately determining constraints and thresholds, the fuzzy logic can make a decision by itself to 

some extent. As a result, the fuzzy logic controller is an extension of the conventional rule-based 

controller. Because of the development of artificial intelligence, the intelligent power management 

strategies have also been experiencing improvement [78-82].  

2.3.2 Optimization-Based Control Strategies 

The optimization-based control strategy is the other main category. On one hand, a global optimum 

solution can be obtained by performing the optimization algorithm over a known driving cycle. In 

fact, the global optimal solution is non-casual in that it finds the minimum fuel consumption using 

knowledge of future and past power demands. Obviously, this approach cannot be used directly for 

real-time power management; however, it might be a benchmark of designing rules for online 

implementations or comparisons for evaluating the quality of other control strategies.  

On the other hand, by definition of an instantaneous cost function, a real-time optimization-based 

control strategy can be found. Such a function has to depend only on the system variables at the 

current time. The instantaneous cost function should include an equivalent fuel consumption to 

guarantee the self-sustainability of the electrical path. Thus, the solution of such a problem is not 

globally optimal, but can be used for real-time implementation. Recently, achieving smooth gear 

shifting and minimizing excessive driveline vibrations, known as drivability, are included into real-

time minimization-based control strategies [65, 83]. 
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Dynamic Programming 

Dynamic programming (DP) is a numerical technique that can be applied to any problem that requires 

decisions to be made in stages with the objective of finding a minimal penalty decision pathway [84]. 

Thus, if the drive cycle is given, the DP can be applicable to power management and find the global 

optimum solution. However, the conventional DP takes a significant amount time to perform and 

requires the drive information as a priori, so it cannot be used as the real-time control strategy. It can 

be used as a benchmark to evaluate other kinds of control strategies. Moreover, because stochastic DP 

has the ability to optimize a power split map for a probabilistic distribution of drive cycles, rather 

than a single cycle, Stochastic DP is another way to implement in a real-time controller [85]. 

Genetic Algorithm 

Genetic algorithm (GA) is a probabilistic global search and optimization method that is analogous to 

natural biological evolution. GA performs on a population of individuals (potential solutions), each of 

which is an encoding string (chromosome), containing the decision variables (genes) by three 

operators: selection, crossover, and mutation [86-88]. GA is pretty suitable for complex nonlinear 

optimization problems since it represents an intelligent exploitation of a random search in the solution 

space rather than a conventional gradient-based procedure. Due to computational costs and offline 

optimization, it does not provide the necessary view to the designer of the powertrain like an 

analytical approach, but can be used to size the powertrain components [65]. 

Simulated Annealing Algorithm 

Simulated annealing (SA) is a random-search technique which adopts an analogy between the way in 

which a metal cools and freezes into a minimum energy crystalline structure (the annealing process) 

and the search for a minimum in a more general system. It can deal with highly nonlinear problems 

effectively [89, 90]. It has the same functionality and application as the GA algorithm. The main 

drawback of the aforementioned global optimization approaches is too time-consuming to be applied 

in real time.  

Equivalent consumption minimization strategy (ECMS) 

The introduction of ECMS provides a way for the utilization of optimal control theory for real-time 

power management in hybrid vehicles. As an optimization-based method, it determines the optimal 

power split at each time instant rather than over a time horizon [91, 92]. Thus, no future driving 
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information needs to be known as a priori. An appropriate equivalence factor can help ECMS achieve 

near-optimal fuel economy [93]. However, tuning the equivalence factor is non-trivial, and there is no 

guarantee that ECMS is able to produce a globally optimal performance. ECMS can adjust the 

equivalence factor in order to achieve better fuel economy via adaptive ECMS if the future driving 

information can be identified beforehand [94, 95]. 

Model predictive control 

In recent years, different MPCs (conventional, adaptive and robust) have been widely utilized in 

automotive industry [96~101] because of their ability to deal with multivariable constrained problems 

and their potential for real-time application as a receding horizon control strategy.  

Literature [102] assessed two finite-horizon stochastic dynamic programming (DP) algorithms with 

different levels of access to the drive route from a GPS combined with a traffic flow information 

system. The discrete time Markov chain technique was employed to model vehicle’s states in each of 

strategy. The results were compared with those of a prescient MPC with a complete known drive 

route to demonstrate that a predictive controller is possible to be designed by using information 

received from the vehicle navigation system and traffic-flow-information. A stochastic MPC was 

designed in [103] for a series HEV, where the future power demand from the driver was modeled as a 

Markov chain. Its performance was compared with that of a prescient MPC with fully known power 

demand and a frozen-time MPC using a constant power demand in the prediction horizon. The 

authors showed that the proposed MPC provided a fuel economy similar to the prescient MPC. In 

order to alleviate the computational efforts of the MPC algorithm, a fast MPC was designed in [104] 

by using a new fast Karush-Kuhn-Tucker solving approach based on a totally known drive cycle. The 

authors in [105] integrated the engine transient characteristics into the MPC-based PMS for 

enhancing the overall fuel economy, as the engines experience frequent transient operations in HEV 

applications. The MPC strategy was then evaluated with the assumption that the drive cycle was 

known to show a superior equivalent fuel efficiency could be achieved.  In [106, 107] DP with a 

neural network (NN) based machine learning was used for predicting driving environments. The 

simulation by Powertrain Systems Analysis Toolkit (PSAT) showed that the trained NN is effective 

in predicting roadway type and traffic congestion levels, predicting driving trends. This machine 

learning algorithm can be combined with MPC for real-time applications. An MPC-based PMS was 

presented in [108], where both nonlinear MPC and linear time variant MPC were designed and tested 

over several standard drive cycles. The simulation results were compared with those from an 
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available controller in PSAT to show a noticeable improvement in fuel economy.  In the design 

process of MPCs, the drive demand torque was assumed to be exponentially decreasing over the 

prediction horizon. Literature [109] developed an MPC which does not require the time-ordered 

prediction of the driving condition but a prediction of their distribution under a constant costate 

assumption. A drive cycle prediction algorithm was designed for the optimization–based PMS 

development in [110]. Using the data received from an onboard GPS, CAN bus, and inertial 

measurement unit (IMU) under numerous repeated vehicle operations, the features of each velocity 

profile were extracted and stored in a database. In a real-time application, the database was searched 

for the prediction of the velocity profile based on the current vehicle location. The results showed that 

the proposed PMS with the prediction algorithm can obtain an extra 5% fuel saving, which is pretty 

close to that of the prescient MPC.  

In [111], a modified k-nearest neighbor regressor was utilized to generate weighted samples of the 

upcoming drive cycle by feature matching the current state to historical states and sequentially an 

MPC was developed based on the obtained information. The driver behavior was modeled as a 

Markov chain based on the several standard cycles [112]. Then a shortest path stochastic DP was 

designed and implemented in a test vehicle to evaluate the performance. The results presented that the 

fuel economy was improved with less engine on/off events. As an improvement in the process of real-

time implementation, a stochastic MPC was proposed in [113]. This stochastic MPC can handle 

larger state dimension than stochastic DP. A Markov chain that represents the power requested was 

learned to enhance the prediction capabilities of MPC. Due to the ability to learn the pattern of the 

driver behavior, the method shows a similar performance as the prescient MPC. A drive cycle 

estimation algorithm was presented in [114] based on the NN technique for service vehicles driving 

along the same route. An MPC was designed for a parallel HEV with a hybrid ESS, consisting of a 

supercapacitor and a battery [115]. The proposed MPC together with a DP and a rule-based strategy 

were evaluated under typical drive cycles. Dynamic traffic feedback data were used in the 

development of MPC for a power-split HEV [116]. By using real-time traffic data, the battery state of 

charge (SoC) trajectory was generated and employed as the final-state constraint. The results showed 

that a better fuel economy could be achieved by using the traffic flow data. A stochastic MPC was 

proposed for a parallel HEV particularly running in a hilly region with light traffic in [117]. This 

PMS considered the road grade and maintains the SoC inside its boundary to avoid degrading the 

energy efficiency. A finite-horizon Markov decision process was modeled in MPC, which was 

compared with an ECMS and DP to demonstrate its fuel economy. In [118], a driving-behavior-aware 
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stochastic MPC was developed for plug-in hybrid electric buses, where the K-means was used to 

classify driving behaviors, and the Markov chains were utilized to model the driver behavior. A 

reinforcement learning-based adaptive power management was presented for a hybrid electric tracked 

the vehicle in [119]. Different approaches for predicting the vehicle velocity were discussed in [120], 

such as the exponentially varying, stochastic, and the NN-based approach. The sensitivity to tuning 

parameters was also analyzed. In addition, the prediction precision, computational cost, and the 

resultant vehicle fuel economy were compared.  

Based on available future drive information, the existing MPCs in the current literature can be 

classified into the types as shown in Figure 2.6. The frozen-time MPC adopts the constant vehicle 

velocity or torque in the prediction horizon and it is used as a worst baseline to compare with. The 

exponential varying based MPC uses a simple exponential varying expression to represent the future 

information. The inaccurate prediction impedes its application. The stochastic MPC employs the 

Markov chain technique to model the driver’s future behavior. The prediction accuracy depends on 

the tuning parameters. The NN, fuzzy logic, and machine learning methods are adopted in the AI 

based MPC, which requires lots of training to guarantee its prediction accuracy. Like the frozen-time 

MPC, the prescient MPC in current literature acts as a benchmark to evaluate the developed. 

However, as the development of intelligent transportation systems (ITSs) and related telematics 

techniques, the future vehicle trajectory can be measured or planned somehow in advance and utilized 

in real-time PMSs [121].   

Figure 2.6 MPC-based PMS types 

2.3.3 Summary 

Owing to the complexity of hybrid powertrains, the PMS plays a crucial role in the performance of 

the hybrid vehicle [65]. From the above analysis, many power management strategies are introduced 

and used in theoretical research or in practice according to their advantages/disadvantages. The rule-

based strategies are capable of real-time applications but are not optimal; whereas, optimization-based 

ones are able to produce suboptimal or even optimal solutions but usually suffer from real-time 

implementations. This is because optimization algorithms are computationally expensive and require 
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partial or entire future information, such as the vehicle speed. This problem can be alleviated to some 

extent by using real-time optimization methods or the recent advances in ITSs, onboard global 

positioning systems (GPSs), geographical information systems (GISs), and advanced traffic flow 

modeling techniques [122].   
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 Chapter 3

Modeling of the A/C-R System and RAPS  

In this chapter, the configuration and model of RAPS are presented followed by the model of the 

A/C-R system. The models are essential to developing advanced controllers to reduce the power 

consumption of such systems. Generally, the RAPS is composed of an ESS, a transmission 

(according to the power that auxiliary devices need), a generator, and inverters as shown in Figure 1.1 

RAPS should be compact, modular, and easy-to-install to reduce the installation time and costs 

without modifying the original powertrain too much. 

3.1 Potential Configurations of RAPS  

Many prerequisites should be considered before the configuration of RAPS is determined because 

RAPS as an additional system is integrated into the original conventional vehicle. These prerequisites 

include the position of the engine in the chassis, drive and transmission types, auxiliary power 

demand, PTO method and so on. In this study, vehicles with pre-positioned engine and rear-wheel-

drive powertrain are studied for the configurations of RAPS.  

3.1.1 Power Takeoff via Serpentine Belt 

As known, the serpentine belt is a single, continuous belt utilized to drive multiple peripheral devices 

in an engine, such as an alternator, power steering pump, water pump, air conditioning compressor, 

air pump, etc. the alternator can be properly controlled to charge the ESS when the SoC is too low. 

Meanwhile, it can also recover a part of kinetic energy of the vehicle and engine when braking. The 

configuration schematic is shown in Figure 3.1 (a). Because of the power limit of the alternator and 

serpentine belts, this configuration can be employed in light service vehicles, such as small food 

delivery vans used mostly in city cores. The power demands of auxiliary devices in such vehicles are 

relatively low.  

3.1.2 Power Takeoff from PTOs 

Figure 3.1 (b) displays another configuration that a PTO is utilized to take power from the engine or 

recapture kinetic energy when the vehicle brakes. The PTO can be placed along with the gearbox or 

even the middle of the shaft [123]. The RAPS with this configuration is able to take much power to 

meet the large auxiliary power demands of the heavy service vehicle.  
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(a) (b) 

Figure 3.1 RAPS configuration for light (a) and heavy (b) service vehicles  

3.2 Modeling of the Powertrain System  

For vehicle mass identification and power management controller development, the model based on 

the backward modeling approach of the longitudinal vehicle dynamics is adequate. As shown in 

Figure 3.2, the main components are modeled in this section. 

eng vehP 

eng altP 

altP auxP

vehP

regP

regP

 

Figure 3.2 Schematic of the RAPS with light service vehicle 

3.2.1 Longitudinal Dynamics of Vehicle  

The vehicle power should meet the acceleration/deceleration while overcoming the gravity force, 

resistance forces and aerodynamic forces: 



 

 29 

 veh a g r vehP Ma F F F V     (3.1)

where, M is the vehicle total mass (i.e. curb mass plus cargo mass), vehV refers to the vehicle speed; a

indicates the vehicle acceleration; aF denotes aerodynamics resistance; 
gF means grade resistance; rF

represents the tire rolling resistance. By substituting the corresponding expression of each term, can 

be rewritten as: 

21
sin cos

2veh D f veh r vehP Ma C A V Mg C Mg V       
 

 (3.2)

where,  is the mass density of the air, DC is the coefficient of aerodynamic resistance, 
fA is the 

frontal area of the vehicle, g is the gravitational acceleration, is the road grade angle, and rC is the 

coefficient of rolling resistance.  

3.2.2 Engine 

The Willan’s line modeling approach [124] is utilized for engine modeling thanks to its scalability 

features. In Figure 3.2, the engine power is split into two portions. One portion is used to move the 

vehicle and the other to the alternator as follows: 

eng eng veh eng alt eng engP P P T    (3.3)

where,
eng vehP  and 

eng altP  are powers going to the vehicle and alternator, respectively; 
eng and 

engT

are the engine’s angular velocity and torque, which should not be smaller than the values when the 

engine is idling as long as the engine is on. The power going to the vehicle can be determined 

backwardly by 

     1

2
vehsign Pveh

eng veh veh tran

sign P
P P  



  
  

 
 (3.4)

In this equation, tran refers to the powertrain efficiency. Willan’s line method calculates the engine 

efficiency based on the mean effective pressure  MEp , which describes the engine’s ability to 

produce mechanical work, and fuel available mean effective pressure  MFp , which is the maximum 

mean effective pressure produced by an engine with 100% efficiency utilizing a unit fuel. In the 

steady-state running condition of the engine: 

ME eng
ED

N
p T

V


  (3.5)
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where, N is the number of engine strokes; EDV represents the displacement. Applying the concepts of 

thermodynamic efficiency and internal losses  MEp is estimated by, 

ME eng MF Lp e p p  (3.6)

L LG LFp p p   (3.7)

where, MFp is the thermodynamic properties of the engine related to the mean effective pressure, and 

Lp is the engine losses due to gas exchange  LGp and friction  LFp . LFp is estimated by 

  2

1 2 3 4LF engp k k k S PI k B   (3.8)

In this equation, B is the cylinder bore; PI is the maximum boost pressure and k parameters can be 

identified by the test data. The efficiency
eng and fuel mass flow Fm&  is defined as:  

eng ME MFp p  (3.9)

 F eng L engm P H &  (3.10)

where, LH represents fuel’s lower heating value.  

3.2.3 Alternator 

The output electrical power altP is calculated as, 

alt reg eng altP P P   (3.11)

     1

2
vehsign Pveh

reg alt reg veh tran

sign P
P P     

  
 

 (3.12)

where,
regP is the regenerative braking power;

eng altP   indicates the only input of the system;
reg refers 

to the regenerative braking efficiency; tran means the efficiency of the and alt  is the efficiency of the 

alternator, which can be obtained by the experimental data. 

3.2.4 Battery 

As shown in Figure 3.2, the battery is charged by an alternator and discharged by the A/C-R system. 

The dynamic of the SoC can be defined by, 

batt

OC batt

PdSOC

dt V C


  (3.13)

batt alt char aux disP P P     (3.14)
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where, OCV shows the open circuit voltage and battC means the nominal capacity of the battery; char and 

dis are the charging and discharging efficiency of the battery, respectively. 

3.3 Modeling of A/C-R Systems 

In this section, a new control-based model of A/C-R system is presented, which is different from the 

existing model. Nowadays, in order to keep passengers comfortable or food fresh, A/C-R systems are 

widely used in transportation systems and are the main auxiliary loads for service vehicles. In 

addition, they are widely employed in various places such as supermarkets, buildings, industries, 

etc.[36]. These systems all work the same way in principle, which utilize a vapor compression cycle 

to transfer heat. The purpose of the vapor compression cycle process is basically to remove heat from 

a cold reservoir (e.g., a cold storage room) and transfer it to a hot reservoir - normally the 

surroundings. 

An A/C-R system or a vapor compression cycle generally consists of four main components as 

shown in Figure 3.3, where the evaporator and condenser are divided into several sections under 

normal working conditions. There are two sections, i.e., two-phase and superheated sections in the 

evaporator and three sections, i.e., superheated, two-phase, and subcooling sections in the condenser. 

The valve is used to uphold the pressures of the two heat exchangers, while the compressor sends the 

refrigerant from low-pressure heat exchanger to high-pressure heat exchanger. The refrigerant flows 

through the aforementioned components, alternating its state according to Figure 3.4. 

The working principle of the A/C-R system is briefly described below. The refrigerant before 

entering the evaporator is characterized by low pressure, low temperature and two-phase state. In the 

evaporator, it will absorb heat from the specific space and change into vapor phase after exiting from 

the evaporator. The vapor refrigerant is compressed by the compressor and turned into high-pressure 

and high-temperature vapor. It will then be sent to the condenser where the removal of its heat results 

in a high-pressure and low-temperature liquid phase. Finally, after going through the expansion valve, 

the pressure will drop to the evaporator pressure and the liquid refrigerant will be changed into the 

two-phase state. The same cycle will repeat again.  
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Figure 3.3 Schematic diagram of A/C-R system Figure 3.4 Vapor compression cycle in a  logh p  

diagram [36] 

As is well known, the dynamics of the valve and compressor is so fast with respect to the cooling 

process that they can be treated by some empirical equations obtained from test data. However, for 

the two heat exchangers, evaporator, and condenser, due to their complex nature, the moving 

boundary and lumped parameter modeling methods will be employed to develop their control-based 

dynamic model. In the vapor compression system modeled and experimentally validated in this work, 

the expansion valve is a thermostatic expansion valve, which adjusts its opening degree according to 

the refrigerant temperature (superheat temperature) at the outlet of the evaporator. The evaporator is a 

fin-tube type and the condenser is a microchannel type as shown in Figure 3.5 and Figure 3.6. The 

refrigerant used is R134a [125]. This section only elaborates the main dynamic equations. For the 

complete version nonlinear and linearized model for MPC development, please refer to Appendix A. 

 

Figure 3.5 Fin-tube evaporator with plate fins Figure 3.6 Microchannel condenser with louver 
fins 

3.3.1 Evaporator 

Before presenting the model, the modeling assumptions [32] will be provided: 

1. The heat exchangers are regarded as long, thin, horizontal tubes. 
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2. The refrigerant is assumed as a one-dimensional fluid flow passing through the heat exchanger. 

3. The axial conduction of refrigerant is neglected. 

4. The pressure along the whole heat exchanger tube can be assumed to be constant. Thus, the 

equation for momentum conservation is negligible. 

By applying the above assumptions, the partial differential equations for the refrigerant mass and 

energy [49] can be simplified to one-dimensional PDEs shown as: 
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Equation (3.15) represents the mass conservation of refrigerant going through the heat exchanger, 

while the following two equations describe the conservation of the energy exchanged between the 

refrigerant and the tube wall as well as the wall and ambient media. To perform the integrations along 

the whole heat exchanger tube, Leibniz’s equation is utilized: 
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where, z is the spatial coordinate. The limits of this integration depend on how to divide the whole 

exchanger wall depending on the current working conditions. As a heat exchanger, the evaporator 

takes away heat from a cooler area to a warmer area; meanwhile, the refrigerant absorbs the heat and 

transfers from the two-phase state into the gas state. As Figure 3.3 indicated, the evaporator is simply 

divided into two zones - two-phase (liquid and gas) section and superheat section - when it is properly 

working. For other division methods please refer to [36]. Because of the objective of this study is to 

save energy while attaining a good temperature performance, it is reasonable to assume that only the 

properly working period is considered.  

Since the ability to absorb heat for liquid is much better than that of gas, the evaporator should 

accumulate as much two-phase refrigerant as possible to enhance the heat transfer efficiency; 

however, the liquid should be completely changed into gas before entering the compressor in order to 

protect the compressor from any damage. As such, the superheat zone was utilized to ensure the 

refrigerant totally evaporates before exiting the evaporator. From an efficiency perspective, the 

superheat section should be as small as possible to approach its ideal state (zero).  
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3.3.1.1 Dynamic Model 

As two sections are assumed in the evaporator, by introducing the time independent mean void 

fraction   , two zones can be lumped into two nodes as indicated in Figure 3.7. Mass and energy 

conservation equations for each node can be derived by Equation (3.15) to Equation (3.18) [32, 34], 

 

Figure 3.7 Two-zone mode of evaporator and condenser 

For the first node (two-phase zone), the mass and energy equations of refrigerant are as follows:  
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Regarding the second node (superheat zone), the mass and energy conservation equation are 

presented in the following two equations: 
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(3.22)

For the heat exchanger tube wall in each node, there should be an energy conservation equation 

between the heat absorbed from the ambient air and rejected to the refrigerant. The energy 

conservation processes for both nodes can be represented by, 
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The above six equations constitute the two-zone mode evaporator model with the input vector u  and 

state vector x  defined by: 
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Some important outputs with several important parameters are shown in the following equations: 
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After rearranging the above equations, a more compact form shown in Appendix can be obtained: 

   , ,G x u x f x u&   (3.32)

 ,y h x u   (3.33)
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3.3.1.2 Simplified Model 

The condenser model can be derived by using the same methods. It can be seen that the complete 

model of the whole cycle with more than ten states are too complex to be used to develop controllers. 

All the heat exchanger models in the literature are based on a long, thin, one-dimensional tube 

assumption. They do not consider the fins’ effects or consider them in a complicated way [42] when 

modeling the heat convection between the tube wall and the refrigerant inside. However, from Figure 

3.5 and Figure 3.6, it can be seen that there are many fins (plate type or louver shape type) around the 

tube walls. Usually, the fins and tubes are made from the same material. If it is not considered, the 

heat conduction throughout the fins would introduce inaccuracy to the model. 

 

Figure 3.8 Schematic of evaporator with equivalent parameters  

Unlike the thin tube wall where no temperature gradient is assumed, the fins are long, and a one-

dimensional temperature gradient exists along the length of the fins. This gradient is dependent on the 

structure of the fins and difficult to simulate. However, from the perspective of energy conservation, 

the energy transferred from the refrigerant to the tube wall and fins is identical to the energy taken 

away by the air and the energy kept on the wall and fins due to their thermal inertia. In this way, the 

wall and fins could be lumped together shown in dotted box of Figure 3.8. Thus, it is reasonable to 

utilize an equivalent temperature wfeT to represent the temperature of wall and fins. The other 

equivalent parameter used is the refrigerant-side heat transfer coefficient. In the evaporator, ie and

iesh are provided to represent the coefficients for the two-phase section and the superheat section 

respectively. After applying these equivalent parameters and by introducing another assumption that 

the tube wall temperatures in different sections are the same, the simplified nonlinear dynamic model 

of the evaporator can be written as [32, 43]:   
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where, the three states refer to the length  el of the two-phase section, the pressure   eP of the 

evaporator, and the equivalent temperature  wfeT of tube wall & fins. Equation (3.34) simulates the 

energy transfer from the refrigerant to the heat exchanger tube wall & fins of the two-phase section. 

The first term on the right-hand side of this equation shows the energy change after the refrigerant 

goes through the two-phase section; 
geh represents the enthalpy of the vapor refrigerant under the 

current pressure, or the enthalpy at the boundary of the two sections, and ieh denotes the enthalpy of 

the refrigerant at the inlet of the evaporator. The second term describes the energy absorbed from the 

evaporator tube wall and fins of the two-phase section where ieD means the inner diameter of the tube 

and reT indicates the saturation temperature of the refrigerant under the current pressure. Thus, the 

difference between these two terms represents the energy absorbed/rejected by the two-phase section 

or the energy needed to evaporate the liquid refrigerant in the two-phase section. Based on this energy 

change, the two-phase length change can be obtained by using the left-hand side term where lgeh

means the latent enthalpy;  le refers to the liquid refrigerant density;   1 e shows the liquid 

volumetric fraction of the two-phase section, and eA represents the sectional area of the tube [39]. All 

the enthalpies  lg, ,ge ie eh h h , densities/density variation with respect to pressure

 , , ,le ge ie ged dP    and temperature  reT of the refrigerant can be obtained by lookup tables built 
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according to thermodynamic properties [125] of the used refrigerant; whereas, the heat transfer 

coefficients are identified by experimental data and shown in Table 4.1.  

Equation (3.35) denotes the vapor refrigerant change rate throughout the evaporator tube. The first 

term on the right-hand side of this equation refers to the vapor mass at the inlet of the evaporator. As 

is known, the refrigerant will become a two-phase refrigerant after going through the expansion valve 

liquid. Based on the enthalpy  ieh of refrigerant, liquid enthalpy  leh , and latent enthalpy  lgeh the 

liquid percentage at the inlet of the evaporator can be found. The second term represents the mass 

flow rate leaving evaporator; whereas, the third term is the vapor refrigerant changed from the liquid. 

The left-hand side is the vapor mass change rate inside the evaporator. The pressure change rate can 

be found via the density change rate by using the chain rule. eL  means the total length of the 

evaporator tube wall, and
ge indicates the density of the vapor refrigerant under the current 

evaporator pressure  eP . 

Equation (3.36) reflects the heat conduction of the whole heat transfer process. The first term on 

the right-hand side refers to the total energy transferred to the tube wall & fins from the ambient air, 

and oe denotes the heat transfer coefficient, which can be found by Colburn J-factor correlation; oeA

represents the total outside area of the tube wall as well as fins; aeT means the mean air temperature. 

The last two terms refer to the energy transferred from the tube wall & fins to the refrigerant in the 

two-phase section and the superheated section, respectively; whereas, iesh  refers to the heat transfer 

coefficient in superheat section. The left-hand side shows the change of the temperature of the tube 

wall & fins because the mass m and
pC are the total mass and specific heat of the tube wall & fins.  

Since the equivalent wall and fins temperature are defined based on energy conservation, it is not 

the temperature of the wall or fins, so it could not be measured directly. After lumping the fins and 

the wall together, Pierre’s correlation [32] for calculating refrigerant-side heat transfer coefficient is 

no longer suitable. However, these equivalent parameters could be identified easily by Equation 

(3.35, 3.36). Thus, there are only three states in the evaporator model. The cooling capacity produced 

by the system can be represented by (3.37). The air mass flow rate generated by the fan is 

approximately proportional to the fan speed (3.38). The air-side heat transfer coefficient oe is varying 

with the air mass flow rate
_e airm& as shown in (3.39) [34]. Equation (3.40) describes the temperature of 

the air around the evaporator. The power consumption of the evaporator fan is calculated by (3.41).  
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3.3.2 Condenser 

As is mentioned above, the microchannel type condenser is modeled and used in the experimental 

work. It can be seen from Figure 3.6 that many louver-shape fins are around each tube. There are 

many parallel microchannels inside each tube. Under normal working conditions, the refrigerant 

distribution is more complex than that of the evaporator.  

The condenser can be divided into three sections; however, in order to simplify the model for the 

purpose of the real-time application, the study of the experimental data suggests that the subcooling 

section could be neglected due to the much lower subcooling temperature (about 2 C ) as compared 

to the superheat temperature (about 50 C ). Another reason is that the energy rejected to generate this 

lower subcooling temperature is also relatively small. Besides that, the small energy error caused can 

be compensated by the equivalent heat transfer coefficient of the two-phase section. To make up for 

this subcooling section from a temperature aspect, the refrigerant temperature at the outlet of the 

condenser could be found by experimental data. Using the above assumptions, the condenser 

equations can be obtained in a similar manner to those of the evaporator.  

It is known that the total mass totalm of the refrigerant inside the cycle is constant without 

considering the leakage. The mass of refrigerant outside of the two heat exchangers is defined as
pipem . 

Therefore, the difference between these two masses represents the mass inside the evaporator and the 

condenser, which can be shown by [43], 
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The first term of the right-hand side refers to the refrigerant mass of both vapor and liquid inside 

the evaporator, the second term to that inside the condenser; whereas, cl and c are the length and 

mean void fraction of the two-phase section of the condenser. Therefore, from Equations (3.34) and 

(3.42), the two-phase length of the condenser can be found. As a result, there are only two states, 

pressure  cP and equivalent temperature   wfcT with which the condenser equations similar to the 

evaporator can be written as [43]: 
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3.3.3 Compressor 

The mass flow of refrigerant through the compressor
compm& , where the volumetric displacement is dV , 

the pump speed
compN , the volumetric efficiency is vol  and also the refrigerant density

ref :  

 comp comp vol refd em N V P &  
(3.50)

the enthalpy at the outlet of compressor is represented by och ; ich is the enthalpy at the inlet of 

compressor;  ,is e ch P P refers to the isentropic enthalpy during the compression process, which can be 

found by thermodynamic property of the refrigerant; a is adiabatic efficiency, which can be obtained 

by polynomial correlations ( , )a a comp c ef N P P   with respect to the speed of compressor and two 

pressures [37]. 

      ,oc a is c ic ce eieh h P P h P h P    (3.51)

The power consumption [50] in the compressor compW& , assuming a constant heat loss coefficient
qf  is: 
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3.3.4 Expansion Valve 

The expansion valve is assumed to be isenthalpic i.e. the enthalpy at the inlet of the valve is identical 

to that at the outlet [37]. The other important parameter is the refrigerant mass flow rate vm& through 

the expansion valve that is modeled by 

 v v v v c em C A P P &  (3.53)

where, cP and eP are the pressures of condenser and evaporator; v is the refrigerant density at the inlet 

of the valve; vC represents the discharge coefficient mapped as a polynomial correlation 

 ( )v C c eC f P P   of the pressure difference between evaporator and condenser; vA  refers to the area 

of the valve opening mapped as a polynomial correlation  ( )v A sat eA f P P   of the pressure 

difference between evaporator and the saturation pressure of the evaporator outlet temperature. These 

correlations can be obtained by experimental data. The remaining parameters such as density can be 

obtained by the thermodynamic properties [125] of the refrigerant built in lookup tables. 

3.3.5 Other Components 

In the vapor compression cycle, the four main components are connected by several pipes of different 

sizes. Usually, the pipes are assumed to be adiabatic, and the pressure loss is neglected because of the 

short length. The refrigerant mass inside the pipe is pipem , and it is estimated by the length and inner 

diameter of each piece of pipe. Using the pressure inside the pipe, the density is found. The state of 

refrigerant in each pipe is assumed to be uniform except for the one between the expansion valve and 

evaporator, where the refrigerant is in a two-phase state. The vapor percentage can be approximated 

by  ie le lgeh h h as explained in the evaporator model. In this proposal, the refrigerant R134a is used. 

According to its test data, several lookup tables are created in order to calculate the state values and 

their derivatives of the refrigerant.  

3.3.6 The Cargo Space Model 

For any A/C-R system, there is one or more objective space to cool or warm. For example, for the 

cargo of a refrigerated vehicle, the temperature dynamic model is built based on the heat transfer 

theory (heat convection and conduction), and the following assumptions are made [36]:  

1) The air temperature in the cargo space is uniform; 

2) The temperatures for interior and exterior surface of the cargo wall are uniform; 
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3) One-dimensional heat conduction through the cargo wall is assumed. 

The whole heat transfer process can be divided into three parts: the ambient air to the exterior surface 

of the wall, then to the interior surface, and finally to the air into the cargo space. The heat balance 

process of the cargo is represented by Figure 3.9: 

 

Figure 3.9 Schematic of heat transfer processes in the cargo space model [36] 

In this figure, solarQ& is the solar heating load, inconvQ& and outconvQ& represent the convective heat transfer 

from the interior surface and the exterior surface of the cargo to the inside or outside air; condQ& is the 

conduction heat transfer from the exterior surface to the interior surface of the wall; doorQ& and infQ& are 

the load due to opening the door and infiltration load, respectively. Three states (exterior surface 

temperature, interior surface temperature and cargo space temperature) are employed to represent the 

heat transfer in the whole process. However, for the sake of simplicity, only the last process is 

considered in this study. For the detailed information, please refer to [41]. The dynamic response of 

the cargo temperature is simulated by: 
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 
argc o inconv inf door vcc

air

dT Q Q Q Q

dt MC

  

& & & &

 (3.54)

In the simulation and experimental work, the first two parameters will be treated together and 

identified by test data as the heating load from outside. As an extra heating load or a disturbance doorQ&  

will be added by to experiment process by a heater. The thermal inertia,  air
MC , of the air inside the 

whole cargo space.  

3.3.7 MATLAB/Simulink Model 

Based on the above equations, the Simulink model of the A/C-R system is built. In this model, the 

accumulator and receiver are not included and the pipe loss is also neglected. In order to simplify the 

model representation, the “go to” and “from” blocks are used to connect the four main components. It 

is easy to build the compressor and electric expansion valve according to their equations in the last 

section.  

However, for the modeling of heat exchangers, several steps should be followed in order to get the 

correct results. Firstly, it is important to calculate or estimate the suitable initial conditions after 

obtaining the physical parameter values and operating conditions. This is because, as previously 

mentioned, the initial conditions should be in the model feasible region to ensure the model runs 

correctly. Then, calculate  ,f x u and  ,G x u based on the initial conditions and lookup table outputs. 

Finally, integrate the derivatives of the model states and replace the initial conditions with the newly 

obtained state values [32, 36, 39, and 40]. The whole model structure for a heat exchanger is depicted 

in Figure 3.10,  
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Figure 3.10 Heat exchanger model structure diagram
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The schematic of Simulink model of the A/C-R system is depicted in Figure 3.11, 

 

Figure 3.11 Simulink model of A/C-R system with the cargo space 

3.4 Summary 

In this chapter, the model of the RAPS was developed and a new and simplified version of A/C-R 

system model was also proposed for the controller studies that will be discussed in Chapter 5. The 

models were implemented in MATLAB environment for simulations. In the following Chapters the 

models were evaluated and verified by experimental studies.  
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 Chapter 4

Experimental Studies and Model Validation  

In this chapter, the experimental system of an automotive A/C-R system is introduced, based on 

which, the model is validated comprehensively. In addition, the setup used to simulate the RAPS is 

briefly introduced, which will be utilized for testing the performance of the developed power 

management controllers in the future study.  

4.1 Experimental A/C-R System  

In order to validate the model and verify the performance of controllers, an automotive A/C-R system 

at Simon Fraser University is used. From the schematic of the experimental system in Figure 4.1, it 

can be seen that two independent environmental chambers are connected with the evaporator and 

condenser units by pipes. The evaporator-side chamber acts as the cargo and its temperature will be a 

controlled parameter while the temperature at the inlet of the condenser can be controlled and used as 

operating conditions when the experiments are conducted.   

  

Figure 4.1 Schematic of the A/C-R system  Figure 4.2 Experimental A/C-R system 

The experimental setup is shown in Figure 4.2, where the four main components of the whole 

system and the two chambers are labeled. Figure 4.3 shows one of the environmental chambers. The 

Micro Motion 2400S transmitter with 0.5% accuracy from Emerson Electric Co. is utilized to log the 

refrigerant mass flow rate, and it is located between the condenser and the thermostatic expansion 

valve presented in Figure 4.4. The T-type thermocouples and pressure transducers model PX309 
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manufactured by OMEGA with 0.25% accuracy shown in Figure 4.5. Figure 4.6 describes T-type 

thermocouples and the wind sensor model MD0550 from Modern Device. Pressure sensors, 

thermocouples, and flow meter are installed in different locations indicated in Figure 4.7 for the 

measurements. Also, The Data Acquisition (DAQ) system is used to collect data from the 

thermocouples, pressure transducers, DC power supply, and flow meters, and this data is sent to a 

computer. LABVIEW is employed to obtain all the measured data from equipment and save it in an 

EXCEL file.  

    

Figure 4.3 
Chamber 

Figure 4.4 Refrigerant 
mass flow meter 

Figure 4.5 Thermocouple 
&pressure transducer 

Figure 4.6 Air temperature 
& velocity sensors 

 

Figure 4.7 Schematic of the whole experimental system

The two fans of the evaporator and condenser are controlled by two VFDs such that the speed could 

be represented by frequency. While the compressor only has three different speeds, an NI relay 

module (NI9485) is used to switch between the three discrete speeds.  
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4.2 Validation 

4.2.1 Parameter Estimation 

In the vapor compression cycle model, there are three kinds of parameters: physical parameters, 

empirical parameters, and identified parameters.  

4.2.1.1 Physical Parameters 

The physical parameters such as the dimensions of pipes, lengths, inner and outer diameters, interior 

and exterior areas of heat exchangers can be easily measured or obtained from the manufacturers.  

4.2.1.2 Empirical Parameters 

Empirical parameters can be estimated by empirical equations obtained from experimental data. Most 

of these parameters vary with working conditions. Therefore, each parameter should be calculated on-

line to update its value. For each parameter, several correlations may exist. In the following section, 

the mean void fraction and the air-side heat transfer coefficient will be discussed in more detail. 

The Mean Void Fraction  

The mean void fraction    is defined as the ratio of vapor volume to total volume in the two-phase 

region and has been employed to describe the characteristics of two-phase flows [37]. Wedekind et al. 

mentioned that the mean void fraction can be assumed invariant during transient processes [35]. 

However, recently this parameter is assumed to be changed with the fluid quality, and it is defined as 

the ratio of vapor mass to total mass entering the heat exchangers and calculated by [36, 40]. 

1

2 1 2

1 1
ln

x

x x x

 
   

  
       

 (4.1)

with, α g

l

S



 
  
 

 and 1     

where, S is the slip ratio defined as the ratio of vapor velocity and liquid velocity in two-phase 

sections and identified by test data. 1x and 2x are the fluid quality at the inlet and outlet of the two-phase 

section, respectively.  
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Air-side Heat Transfer Coefficient o  

The air-side heat transfer coefficient is related to the energy transferred from the heat exchanger tube 

wall & fins. But, for different kinds of fins, there are different empirical correlations. In this study, the 

Colburn j factor is used, which gives a way of relating Reynolds number of airflow through a heat 

exchanger with experimentally determined heat transfer characteristics of the heat exchanger [34, 38]. 

The air-side heat transfer coefficient can be found from j factor by using, 

2/3j StPr  (4.2)

where, Colburn j factor is related to Reynolds number and the physical structure of the heat 

exchanger. For the fin-tube type evaporator, please refer to [126], and for the micro-channel 

condenser, refer to [127]. Prandtl's number Pr is calculated at air temperature; Stanton number St [34] 

is related to air-side heat transfer coefficient and defined by: 

 o pSt GC  (4.3)

where, G refers to the air mass flux across the heat exchanger and pC is the thermal conductivity of air 

at air temperature. By reconstructing the above two equations, the heat transfer coefficient becomes, 

2/3
o pjGC Pr   (4.4)

Mean Air Temperature around Heat Exchangers aT  

This parameter can be assumed as the mean temperature of the air temperature at the inlet and outlet 

of the heat exchanger [34]. Taking the evaporator as an example, in order to find the air temperature 

at the outlet of the heat exchanger, aeT should be calculated beforehand by: 

_ , _ _
_ _2 2 1air e p air air e p air

ae e air in wfe
oe oe oe oe

m C m C
T T T

A A 
      

                 

& &
 (4.5)

where, _air em& refers to the air mass flow rate going through the evaporator while _p airC means the 

specific heat of the air. In this process, _air em& is proportional to the evaporator fan control signal  evapN . 

This proportional coefficient can be identified by using experimental data. acT at the condenser side 

can be calculated in a similar manner. _ _e air inT  is the air temperature at the inlet of the evaporator and 

measured by thermal couples.  
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4.2.1.3 Identified Parameters 

Identified parameters, such as the equivalent refrigerant-side heat transfer coefficients and the 

equivalent temperature of wall & fins, refer to those that are obtained by experimental data. 

Regarding the steady state test for parameter identification, the system is fed by three inputs and the 

two temperatures shown in the known parameters column of Table 4.1. After running for about 30 

minutes, the system approaches the steady state. The data of temperatures, pressures, and refrigerant 

mass flow are collected by using the sensors mentioned in experiments and model validation section. 

The parameters and states in the identified parameter column are identified off-line by using the least 

square method based on the collected data.  

Table 4.1 The known and identified parameters at one steady state 

Known parameters Values Identified parameters Values 

  rpmcompN  4500  e ml  2.0137 

  evap HzN  41.3  c ml  0.2528 

  cond HzN  52.5  wfe CT   3.84 

 _ _e air in CT   20  wfc CT   33.9 

 _ _c air in CT   27   2
/ie kw m K  0.68 

 e barP  2.23   2
/ic kw m K  1.9 

 c barP  8.95   2
/iesh kw m K  0.045 

 sh CT   2.74   2
/icsh kw m K  0.13 

The known parameters include the inputs of the system, the working conditions as well as the 

measurements; whereas, the identified parameters consist of immeasurable states and refrigerant-side 

heat transfer coefficients. Here, the equivalent two-phase heat transfer coefficient,	α୧ୣ, for evaporator 

is elaborated. From Table 4.1, this parameter for evaporator is 0.68  2/kw m K ; whereas, the reported 

value in the literature is usually between 1 and 5  2/kw m K . That is because after considering the 

fins’ effects, the identified equivalent temperature of the tube wall & fins wfeT  becomes higher than the 

temperature of the exact tube wall at the evaporator side. The temperature difference  wfc rcT T  from 

the refrigerant saturation temperature at the current pressure is larger too. In order to balance the 
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transferred energy of the two-phase section  ie i e wfc rcD l T T   , the equivalent heat transfer 

coefficient must be smaller than that estimated by Pierre’s empirical correlation [40]. As a result, this 

coefficient is called the equivalent coefficient, and the same thing happens for its counterpart of the 

condenser. 

4.2.2 Comparison Results 

Using the experimental setup, different experiments are conducted, where some are used for 

parameter identifications and the rest for model validation. For the simulation work, the initial 

conditions and unknown parameters are identified off-line by one set of experimental data as stated in 

parameter identification section, and the model is evaluated using the other unseen data. In the 

following, several other sets of data are used to validate the model by comparing the experimental and 

simulation results in three different scenarios. 

In the first scenario, the speeds of the condenser fan and the compressor change while the speed of 

the evaporator fan remains unchanged during the 5500-seconds simulation as seen in Figure 4.8. 

Figure 4.9 shows the air temperature at the outlet of condenser and evaporator while the inlet 

temperatures are measured and fed to the model. The air temperature at the outlet agrees with test 

data but with a little discrepancy, which is probably caused by using the constant refrigerant-side heat 

transfer coefficient. For the sake of more accurate, in the future, this coefficient should be identified 

on-line.  

Figure 4.8 Inputs of the system Figure 4.9 Air temperature at the outlet of two heat 
exchangers 
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In order to keep the superheat to a certain degree, the expansion valve has to turn down or turn up. 

As a result, the real temperature at the outlet of evaporator always oscillates. Given that the 

thermostatic valve model is identified by steady state data, it is difficult to simulate this oscillation, 

but this phenomenon could be overcome by the use of dynamic test data in the future. Thus, the 

simulation result is located in almost the middle of the test data; whereas, the temperature at the inlet 

has a great match between simulation results and test data presented in Figure 4.10. Figure 4.11, the 

simulation results of the refrigerant temperature at the condenser side also fit the test data. Figure 4.12 

describes good agreements between actual evaporator and condenser pressures and model prediction.  

Figure 4.10 Refrigerant temperature at inlet and 
outlet of evaporator 

Figure 4.11 Refrigerant temperature at inlet and 
outlet of condenser 

Figure 4.12 Pressures of evaporator and condenser Figure 4.13 Inputs of the system 
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In the second scenario, the speeds of the evaporator fan and the compressor are varied and the 

speed of condenser fan is invariant indicated in Figure 4.13. From Figure 4.14 to Figure 4.17, 

conclusions similar to those from the first scenario can be drawn during the 2500-second simulation. 

Figure 4.14 Air temperature at the outlet of two 
heat  exchangers 

Figure 4.15 Refrigerant temperature at  inlet and 
outlet of evaporator 

Figure 4.16 Refrigerant temperature at inlet and 
outlet of condenser 

Figure 4.17 Pressures of evaporator and condenser 
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increases as compN  decreases and decreases evapN as decreases. That is why at the 560th second, the 

evaporator pressure does not change very much. While in Figure 4.20, the refrigerant temperatures 

are closely related to the evaporator pressure. The temperature at the inlet of the evaporator is the 

saturation temperature under the evaporator pressure, and the temperature at the outlet of the 

temperature is the sum of the saturation temperature and the superheat temperature. That is why they 

remain fairly constant when inputs are changed.  

Figure 4.18 Inputs of the system Figure 4.19 Air temperature at the outlet of two 
heat exchangers 

Figure 4.20 Refrigerant temperature at inlet and 
outlet of evaporator 

Figure 4.21 Refrigerant temperature at inlet and 
outlet of condenser 
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Figure 4.22 Pressures of evaporator and condenser 

The comparison results are given in the form of the mean absolute percentage error (MPAE) in Table 

4.2. The value is the average of the three scenarios. From the results, it can be seen that the model 

prediction is accurate and can be used in MPC development. 

Table 4.2 The MPAE between simulation and test data 

Parameters MAPE  %  

Evaporator pressure 2.77 

Condenser pressure 1.06 

Refrigerant temp at outlet of Condenser 1.66 

Refrigerant temp at inlet of Condenser 0.96 

Refrigerant temp at outlet of evaporator 8.66 

Refrigerant temp at inlet of evaporator 8.43 

Air temp at outlet of evaporator 8.69 

Air temp at outlet of condenser 3.27 

4.3 Experimental Powertrain System  

As illustrated in Figure 4.23, the HIL setup includes one input AC dynamometer motor for simulating 

vehicle engine and two identical output AC dynamometers for simulating drive and service loads. The 

input and output dynamometers, which are from Mustang Dynamometers, include +-0.1% accuracy 

torque meters, magnetic speed sensors, and Compact Logix controller. The input dynamometer (A) is 

connected to the output dynamometer (B) via a 6-speed manual transmission (Eaton Fuller FS-

5306A.), which can be automatically shifted by a designed pneumatic system based on shifting 
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strategy. The other output dynamometer (C) is connected to a PTO (E, Muncie CS6), which is 

attached to the gearbox (D) and utilized to transfer power from the engine to the auxiliary devices. 

The PTO is engaged or disengaged by a pneumatic system. A portion of the power generated by the 

input dynamometer is transferred through the transmission to one of the output dynamometers that 

simulates drive load. The remaining goes to the second dynamometer that simulates the auxiliary load 

through the PTO. The alternator (F) is connected to a battery (G) and the input dynamometer by a 

serpentine belt, where the battery is discharged by a controllable heater used to simulate the auxiliary 

device illustrated in Figure 4.24. 

 

Figure 4.23 HIL setup Figure 4.24 The controllable heater 

4.4 Summary 

This chapter elaborated both experimental systems for the A/C-R system as well as the powertrain 

system. The models are comprehensively validated experimentally.  The validation results of the A/C-

R system are presented; whereas, the results for the powertrain validation are provided in the thesis of 

my teammates [128].  
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 Chapter 5

Development of A/C-R Controllers and Analysis 

This chapter presents the development process of several A/C-R system controllers including an 

on/off controller, a PI controller, a set-point optimizer with an SMC and a linear MPC, as well as their 

results and comparison analysis [129] [130]. The objective is to find the most promising controller in 

terms of both the controlled temperature performance and energy saving. 

5.1 Controller Development  

5.1.1 On/off Controller 

The on/off controller is most commonly used in A/C-R systems. However, as mentioned in Chapter 2, 

the drawbacks hinder its future development. Thus, the on/off controller developed in this section is 

used as a basis to compare to other proposed controllers. In this study, only the constant compressor 

speed during the on mode is considered. The controller is driven by the error signal between the 

measured temperature and the temperature set point in the specific space [36], and the idea is that it is 

actually utilizing a simple logic: 

1) If the current cargo space temperature is higher than the upper band, the compressor will be 
turned on. 

2) If the current cargo space temperature is lower than the lower band, the compressor will be 
shut down. 

3) If the current cargo space temperature is between the upper and lower band, compressor state 
will keep unchanged. 

The schematic of the whole system with the on/off controller is displayed in Figure 5.1, 

Figure 5.1 Diagram of the on/off controller 
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The controller is modeled by using the state machine in MATLAB/Simulink in accordance with the 

logic rules above. After comparing the actual cargo temperature and its reference, the on/off control 

signal is delivered to the A/C-R system to switch on or off the whole system. 

5.1.2 PI Controller 

This controller is also commonly used in the A/C-R system with the variable-speed components, 

because of its simplicity and better performance than the On/off controller if properly being tuned. As 

known, generally, the A/C-R system is controlled to quickly reach and maintain the desired 

temperature. Meanwhile, it should maximize the coefficient of performance (COP) while guarantee 

properly operating (e.g. avoid the vapor-phase refrigerant entering the compressor). The COP, a ratio 

between the cooling or heating capacity taken away and the whole power consumption, is usually 

used to indicate the energy efficiency of the A/C-R system. Therefore, employing two PI controllers 

to control the cargo temperature and superheat respectively is the first choice for A/C-R control 

engineers [131]. In this method, one controller is for the cargo temperature control by manipulating 

the compressor pump speed, while the other one is for the superheat control by adjusting the electric 

expansion valve opening in order to enhance the system COP and prevent liquid refrigerant enters the 

compressor. Due to the features of the studied A/C-R system that the compressor with discrete speeds 

and thermostatic expansion valve are used, the existing PI controller cannot be utilized. Therefore, an 

updated version of PI controller is developed. A simple logic rule shown in Equation (5.1) will be 

applied for compressor speed control instead of using a PI controller. The cargo temperature is 

controlled by a PI controller to manipulate the evaporator fan speed. 
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(5.1)

The structure of the whole model is described in Figure 5.2. The outputs of the controller are 

compressor pump speed  compN  and  evapN , and they serve as two inputs for the A/C-R block; 

whereas, the other one input, condenser fan speed  condN is kept unchanged at their initial values. 
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Figure 5.2 PI controller model structure diagram 

5.1.3 Set-point Controller  

Due to the drawbacks of the on/off controller and the conventional PI controller, such as with large 

temperature oscillations and energy-consuming, an energy-saving controller is proposed in this 

section.  

The idea behind the proposed controller is that the steady state of the A/C-R system is mainly 

related to the temperature set point of the cargo  intsetpoT , the ambient temperature  ambT and the total 

heating load applied onto the cargo  loadQ& . That means the A/C-R system will stay at a steady state 

after settling down unless the above parameters change. However, these parameters represent 

working conditions and change in a very low frequency. The preliminary study of the steady state 

model demonstrates that the correlation of the total power consumption with respect to the condenser 

and evaporator pressure is a convex function shown in Figure 5.3.  

 

Figure 5.3 A/C-R system power consumption with respect to two pressures 
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Therefore, the condenser and evaporator pressure can be obtained according to the steady state 

model and sent to controllers as the set points, where the system consumes the minimum energy. 

Together with the pressure set points, there are totally three set points and three control inputs in the 

system. Intuitively, three individual classic controllers, such as PI controller, can be employed to 

track the obtained set points. The sensitivity analysis based on some preliminary simulations suggests 

that the evaporator pressure  eP , the condenser pressure  cP , and the cargo temperature  argc oT  are 

main changed with respect to and compN , condN as well as evapN , respectively.  

However, due to the MIMO and highly nonlinear nature of the A/C-R system, the classic 

controllers cannot bring better results than the on/off controller in terms of both control performance 

and energy consumption. Therefore, as the main control objective, the cargo temperature set point 

will be tracked by an SMC due to its robustness and applicability in nonlinear systems. For the sake 

of simplicity, a PI controller is still used for condenser pressure tracking. Due to the existence of a 

discrete input in the real experimental system, a simple logic rule shown in (5.1) will be applied for 

compressor speed control instead of using a PI controller, where, e  is the error of the real temperature 

and its set point.  

Two reasons support that the temperature error is used as the index to switch the compressor speed 

instead of the pressure error as mentioned above. First of all, as the main power consumption 

component in the A/C-R system, the compressor speed is roughly proportional to its power 

consumption. In order to save energy at the maximum, the compressor should run at its lowest 

possible speed under the condition that the cargo temperature should reach its set point. That is why 

the compressor speed decreases with the temperature error. This will be also demonstrated by the 

experimental test data in next section. Then, in case the set-point optimizer fails to find the optimal 

pressure set point under some extreme conditions, the controller is still working as long as the 

temperature sensor is working well. Finally, the whole controller structure is shown in Figure 5.4.  

As aforementioned, the optimizer as the supervisory controller is to find the set points of two 

pressures based on the varying working conditions, which is the outer loop and works in low 

frequency (e.g.in hours); whereas the inner loop controller is composed of a PI controller, a rule-

based controller, and an SMC. The optimizer can also be implemented as a lookup table to find 

pressure set points based on the working condition changes and the steady state model. The detailed 

developing process is discussed in Figure 5.5 and explained as follows: two pressures  ,e cP P as the 
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optimization variables firstly are sent to some predefined lookup tables to find all the thermodynamic 

parameters of the refrigerant, such as the temperatures, entropies, and enthalpies. All the steady-state 

values of the states are calculated based on Equation (3.34) ~ (3.36) and Equation (3.42) ~ (3.44). 

Together with the working conditions  int , ,setpo load ambT Q T& and the related equations, the total power 

consumption of the A/C-R system can be obtained. Thus, under each working condition, the whole 

process can be repeated until the minimum power consumption and the corresponding pressures are 

calculated. Finally, the optimal pressures and the working conditions are built into two 3D lookup 

tables for determining the pressure set points, which will be sent to the local controllers for set-point 

tracking.  

 

Figure 5.4 Diagram of A/C-R system with set-point controller 

 

Figure 5.5 The optimizer developing process 
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In the SMC, the saturation function is used instead of the sign one to get rid of the chattering 

phenomenon [132]. The sliding surface S and control input evapN  are derived by the algorithm [133] 

according to Equation (3.37) and (3.54): 

 argsetpoint c oS T T    (5.2)
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&&
  (5.3)

5.1.4 Nonlinear MPC  

Due to the high nonlinearity and MIMO nature of the A/C-R system, the conventional controllers 

cannot obtain the optimal performance. As a result, the advanced nonlinear MPC (NMPC) will be 

developed in this section, which is an optimal control method and suitable for MIMO system. The 

basic idea of the MPC is that it utilizes the dynamic model to predict the future behavior of the plant 

and decides the optimal system inputs based on a given objective function. The nonlinear model is 

considered as the predictive model and can be discretized and formulated in the following form: 

      
      

1 ,

,

x k f x k u k

y k g x k u k

 


 (5.4)

where, f and g are known and generally nonlinear mapping. nx R and mu R are the state vector and 

input vector. Each of these vectors can be subjected to linear or nonlinear constraints X andU . With 

this predictive model, the future states  x k  and outputs trajectories  , 0,1,2 1py k k N Λ can be 

predicted based on the current state vector  0x  measured or observed at the current time 0t and any 

given control sequence      0 , 1 , 1cu u u N Λ  with the control horizon length 2cN  The horizon 

length of the predictive states and outputs can be pN , a larger value than cN . However, in this study 

they are assumed the same and denoted by N .  

MPC is usually used to solve the tracking problems (regulation can be considered as the special 

case of tracking problems, where the reference signals are zeros). This means that if the current 

outputs (or states) are far away from the reference  refy k  then the MPC algorithm can drive the 

system towards the reference and if the current outputs are already close enough to the reference 

signals then the algorithm will keep it there. As a result, a cost function should be introduced to 

demonstrate how far the current outputs are away from their references. Generally, this function, not 
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only penalizing the deviation of the outputs from the reference but also the input effort, is formulated 

in a quadratic form: 

                  1 1
,

2 2

T T
ref refl y k u k y k y k Q y k y k u k Ru k     (5.5)

where, Q and R are weight matrices, the former one is semi-positive definite diagonal matrix while the 

later one is a positive definite diagonal matrix. The optimal problem can be formulated as follows: 

 
    

 
    

1

0

0 , ,
N

u u
k

min J x u min l y k u k


 


    (5.6)

with respect to all the admissible control sequence  u  , which is denoted by      0 , 1 , 1cu u u N Λ

and the current state vector  0x . The admissible control sequence means that the control sequence 

should belong to its constraintU and the state trajectory calculated by this control sequence should 

belong to its own constraint X . After this constrained optimal problem is solved, the optimal control 

sequence will be      * * *0 , 1 , 1cu u u N Λ . Only the first element  * 0u is applied to the system and 

the whole procedure is repeated with new measurements or observation  x k . This whole procedure 

is depicted in Figure 5.5. 

0t 1t 
Nt

history prediction horizon

history trajectory

0

current
state x

optimal prediction trajectory

 *optimal control trajectory u history control trajectory

 * 0u

 

Figure 5.6 Illustration of the MPC scheme [134] 

The nonlinear optimization problem at each time instant is solved by command “fmincon” in the 

MATLAB function library. This function is a general function for finding the minima of a 

constrained function, which includes many types of constraints, such as linear, nonlinear, terminal 

cost and terminal constraints.  
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5.1.5 Linear MPC  

As an optimal control method, the MPC originated in the chemistry industry’s control techniques. It 

is characterized by its slow dynamics, which provides enough time for optimization calculations [69]. 

As is known, the A/C-R system is a highly nonlinear MIMO system with slow dynamics making it 

suitable for MPC application. In general, three parts are included in an MPC: a predictive model that 

aims to predict future behavior of the process, a receding horizon optimization algorithm that will 

solve an explicit optimization problem formulated into several future sampling periods, and feedback 

correction to keep the controlled variables at the set points and enhance the robustness of the A/C-R 

control system [134]. 

Using a highly complex nonlinear model for the development of a model predictive controller, the 

computational efficiency will be extremely low, so its real-time implementation will become 

expensive or even unrealistic for industrial applications. To solve this problem, a linear MPC will be 

developed in this paper. After linearizing and discretizing the nonlinear model provided in the 

Appendix A, a finite horizon optimization problem [135] is formulated at each time interval. The 

objective function is shown below,  

 0 0,J x u                  
1

0

N
T T T T

k

k ke N Pe N e Qe u k Ru k u k S u k




        

(5.7)
. .s t  

  ,min maxx x k x    0, 1k N    

  ,min maxu u k u    0, 1k N   

  ,min maxu u k u       0, 1k N   

where, e  is the tracking error of the temperature; the first term on the right-hand side is the terminal 

cost; the second term is stage cost; the third term represents control effort cost and the last term is 

control input rate costs. , , ,P Q R  and S are weights to balance each term. The objective function is 

transferred into a quadratic form with respect to the increment of control inputs. As the prediction 

horizon length is N , the deviation trajectory of future states will be obtained by the discrete-time 

model: 
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(5.8)

Then, the deviation of the future outputs can be rewritten into a compact form by: 
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(5.9)

The convex quadratic objective function only with respect to the increment of inputs will be 

obtained by inserting Equation (5.8) into the original objective function shown in Equation (5.7) and 

neglecting the constant term: 

 0 0

1
,

2
T TJ x u U H U U g      

(5.10)

   2
TU X UXH C S Q C S R S     ,     2

Tx u x u
refg C S Q C S Y      

. .s t  

      , ,min min minU max U U U U U X       

      , ,max max maxU min U U U U U X       

where the Hessian matrix  H is symmetric and positive or semi-positive definite and g is the 

gradient vector. ,  , Q R S and refY  should be reformulated according to the prediction horizon length N

based on , , Q R S and refY . The updated constraints of the increment of the control can be found by the 

reformulation of Equation (5.8) and the constraints shown in Equation (5.7). For example, the 

constraints of the states can be applied to U as  maxU X  by Equation (5.8). Since the optimal 

result is the small variation U , the real optimal U  can be obtained by adding the initial input 0 U .The 

first element of the optimal solution will be applied to the real system. This linear MPC is 

implemented into MATLAB/SIMULINK and LabVIEW for simulation and experiment, respectively. 

The detailed structure of the MPC in the Control & Simulation Loop in LABVIEW is depicted in 

Figure 5.7. First, the thermodynamic properties, such as density, enthalpy, and entropy, of the 

refrigerant under the current working conditions are obtained online by feeding the fresh 

measurements into lookup tables followed by parameter and state identification, where some 
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unknown parameters and states are identified online. Then, all the known information is sent to the 

MPC algorithm, whose output is a quadratic problem (QP), shown in Equation (5.10). A QP open 

source solver [136] which is originally written in C, is also integrated into the Control & Simulation 

Loop in LABVIEW and solves the QP at each time interval. The outputs will be delivered to the 

evaporator and condenser fans as well as the compressor pump via some other NI DAQs control 

modules to regulate their speeds. If the three control inputs are continuously varying in their ranges, 

the MPC is the continuous one. Due to the discrete constraint of the compressor speed (i.e. low, 

medium and high speed), the discrete MPC (designed for the system with discrete input values) is 

designed as shown in Figure 5.8, where three continuous MPC (designed for the system with 

continuous input values) are employed and solved simultaneously at each time interval. Each of these 

works at one compressor speed to find the optimum solutions for the other two inputs and the cost 

values. Then, the three cost values are compared to determine the minimum value, and their three 

corresponding inputs are used as the optimal solutions.  

 

Figure 5.7 MPC structure in LabVIEW 

 

Figure 5.8 Discrete MPC structure in LabVIEW 
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5.2 Real Performance Comparison 

Due to the nonlinear and MIMO nature of the A/C-R system, it is difficult to tune the conventional PI 

controller in order to obtain the good performance. Besides, the development process of the PI 

controller is almost similar as that of the set-point controller but without considering the energy 

saving aspect. Therefore, some preliminary simulation results show that PI is worse than the set-point 

controller. In addition, the nonlinear MPC takes about 100 times computational time than the real 

time to obtain the optimal solution, and thus it cannot be run in the real system.  Therefore, the on/off, 

set-point controller and linear MPC are implemented into the real experimental system to test and 

compare their performance in terms of both controlled temperature performance and energy 

consumption.  

 

Figure 5.9 Diagram of experimental system with controllers 

To study the A/C-R energy consumption at different ambient temperatures, the condenser is 

connected to an environmental chamber whose temperature is controlled. Three different 

temperatures 20 ;25 ;30C C C  
ο ο ο are chosen for the experiments. The cargo used in the experiments is a 

32m  wooden chamber shown in Figure 4.2. 15 thermocouples are employed to measure the 

temperature at different locations. In the experiments, an average temperature of 7 thermocouples 

closer to the air inlet of the condenser was used as the controlled temperature. Three different 

temperatures 16 ;17 ;18C C C  
ο ο ο are chosen as the temperature set points of the air inside the cargo. 

Table 5.1 shows the operating conditions and system constraints for experiments.  

Table 5.1 Operating conditions and constraints of inputs and states 

 ambT C   arg _c o initT C   intsetpoT C   doorQ kW&   evapN Hz   condN Hz   compN rpm
 

 eP bar   cP bar
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 
 
 
  
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18

 
 
 
  

 0.15   0 ~ 40   0 ~ 40  
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 
 
 
  

 
 1 ~ 7   1 ~ 17  
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Experimental scenarios are provided in Table 5.2, and three cases with different cargo temperature 

set point and ambient temperature are studied and compared.  

Table 5.2 Experimental cases  

Case1 Case2 Case3 

 
ambT

C    
intsetpoT

C   
ambT

C   
intsetpoT

C
 

 
ambT

C
  

intsetpoT

C
 

25 16 25 17 30 17

5.2.1 On/off Controller 

The hysteresis band is an important parameter in the on/off controller, which should be determined 

before running the simulation. It decides the temperature oscillation and switching frequency of the 

whole cycle and subsequently, the wear condition of the compressor. If the threshold is too large, the 

temperature variation amplitude is too large. Otherwise, the system will be switched on and off too 

frequently. Therefore, for the sake of a trade-off between the two aspects, 1 C  is chosen as the band 

by the preliminary experiment study.  

For the controller performance analysis, several experiments in different scenarios mentioned in 

Table 5.1 are performed. During the tests, an external disturbance of approximately 20% of the 

original heating load (the 200-second dot-line region) was applied to the chamber to simulate the 

disturbance caused by an opening door.  

Figure 5.10 Controlled temperature under case1 Figure 5.11 System inputs under case1 
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Figure 5.12 Controlled temperature under case2 Figure 5.13 System inputs under case2 

Figure 5.14 Controlled temperature under case3 Figure 5.15 System inputs under case3 

In Figure 5.10, Figure 5.12 and Figure 5.14 the temperature response under three cases is 

presented.  The real temperature can reach the set points quickly and then fluctuate between the lower 

and upper bound with the system turning on and off. During the disturbed periods as indicated in dot-

line regions, the compressor will be in the on mode for a longer time to balance the extra heating. The 

remaining figures show the system inputs during the test, which are switched between the maximum 

speeds to zero. 

5.2.2 Set-point Controller  

After some preliminary simulation tests, the controller is tuned and its parameters are finalized and 

provided in Table 5.3. The sampling time of this controller in the experiment is 1 s.  
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Table 5.3 controller gains and parameters 

PI controller  SMC 

1
1

p

i

k
k


 


 
0.01

0.18, 0.5k





   

The results obtained by the set-point controller under case 1 are presented from Figure 5.16 to 

Figure 5.18, which indicate that the controller can drive the temperature to its set point as quickly as 

the on/off controller. Due to its robustness, the SMC can maintain the temperature at the set point 

with much smaller oscillations than the on/off controller. Although the large disturbance around 200s 

exists, the controller can still keep the temperature around its set point. Figure 5.17 describes the 

system inputs, and Figure 5.18 shows pressure responses with respect to their set points. The set 

points of two pressures can be obtained according to the aforementioned method. Due to an additional 

heating load, the total load is changed, which affects the set point of the evaporator pressure instead 

of both. It should also be noted that although the compressor speed is controlled according to the 

cargo temperature instead of the evaporator pressure, the evaporator pressure can still approach and 

remain at its set point. That means the temperature trajectory is close to the optimal one in terms of 

power consumption. The same conclusions can be drawn from the other two cases shown in Figure 

5.19~Figure 5.24.    

Figure 5.16 Controlled temperature under case1 Figure 5.17 System inputs under case1 
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Figure 5.18 Pressures response under case1 Figure 5.19 Controlled temperature under case2 

Figure 5.20 System inputs under case2 Figure 5.21 Pressures response under case2 

Figure 5.22 Controlled temperature under case3 Figure 5.23 System inputs under case3 
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Figure 5.24 Pressures response under case2

5.2.3 Discrete Linear MPC  

5.2.3.1 Controller Tuning 

In this section, the controller parameters are briefly discussed and chosen. As the sample time sT

decreases, the ability to reject disturbance improves, but the computational effort increases 

dramatically to guarantee the real-time application. Thus, the best choice is a trade-off between 

robustness and computational effort based on the dynamics of the system [137]. The prediction 

horizon is related to the size of the quadratic optimization problem (the computational effort) and the 

accuracy of the prediction. A larger value leads to a better suboptimal solution with much more 

computational effort and increases the prediction’s uncertainties. During the tuning process, N  starts 

with a small value until further increase cannot bring obvious impact on the controller’s performance. 

From Table 5.1, the scale factors of the three inputs and the output can be set as 2000, 40, 40 and 10, 

respectively. In order to ensure the value of each term in the objective function in the same scale, a 

larger Q  is chosen. For the weight matrix R of the control effort, a larger weight is selected for the 

compressor speed—the most energy-consuming component; whereas, the remaining values are zeros. 

Usually, the larger input rate weights of S lead to more conservative control moves and produce a 

more robust performance [138]. By properly choosing a terminal weight from the Riccati equation, a 

finite-horizon MPC equivalent to an infinite-horizon linear quadratic regulator can be designed to 

achieve the close-loop stability of the plant [137, 138]. If the applications involve constraints, it is 

difficult to find such a time-varying terminal weight, and it usually needs a terminal constraint to 

force the plant states into a defined region at the end of horizon [138]. However, as per the tuning 
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guideline suggested in [139, 140], a sufficiently large value of the terminal weight can lead to a better 

closed-loop performance in most cases. The controller’s parameters are presented in Table 5.4. 

Table 5.4 MPC parameters  

 sT s  N  Q R  S  P  

5 	 10 	 100000  
5 0 0

0 0 0

0 0 0

 
 
 
  

0 0 0

0 1000 0

0 0 1000

 
 
 
  

1000Q  

5.2.3.2 Results Presentation under Normal Conditions 

Figure 5.25 to Figure 5.30 shows the results from the discrete MPC. It can be seen that it performs 

better than the on/off controller and similar with the set-point controller. For instance, the MPC 

controller can keep the temperature of the cargo in a smaller range, compared to േ1Ԩ of the on/off 

controller. With the external disturbances up to 20% of the original heating load, the controller will 

optimally increase the cold air flow rate to balance the extra heating using the evaporator fan to 

maintain the closed-loop dynamics.  

Figure 5.25 Controlled temperature under case1 Figure 5.26 System inputs under case1 
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Figure 5.27 Controlled temperature under case2 Figure 5.28 System inputs under case2 

Figure 5.29 Controlled temperature under case3 Figure 5.30 System inputs under case3 

5.2.3.3 Results Presentation under Frosting Condition 

As mentioned above, a large disturbance is added to the plant and the results show good performance 

of the proposed controller. As a common phenomenon of the A/C-R system, the frosting problem 

always exists [143]. When frost appears, it can cause model inaccuracies. For example, the refrigerant 

mass flow rate through the valve will decrease when the system is frosting, and accordingly, so do 

many other parameters such as pressures, temperature and superheat. In order to further demonstrate 

the robustness of the developed controller, the experimental results during the thermostatic expansion 

valve (TXV) frosting under two cases are presented. Figure 5.31 and Figure 5.32 show the TXV with 

and without frost.  
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Figure 5.31 TXV without frost Figure 5.32 TXV with frost 

In the first scenario, the ambient temperature is 25 C  and the temperature set point is 18 C ; 

whereas, the ambient temperature is set at 30 C with 16 C set point in the second scenario. The 

temperature responses and system inputs are demonstrated in Figure 5.33 to Figure 5.36, respectively. 

It can be seen from the figures that the closed-loop performance of this proposed MPC is still 

satisfactory under both large external disturbances and frosting conditions.  

Figure 5.33 Temperature performance under the first 
scenario Figure 5.34 System inputs under the first scenario 

Figure 5.35 Temperature performance under second 
scenario 

Figure 5.36 System inputs under second scenario 
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5.2.4 Result Comparison 

The energy consumption for each controller under above cases is provided in the following table.  

Table 5.5 Result comparison of controllers 

 Case 1 Case 2 Case 3 

Controllers On/off Set-point MPC On/off Set-point MPC On/off 
Set-

point 
MPC 

performance Bad good good bad good good bad good good 

EC 0.205 0.188 0.190 0.204 0.182 0.179 0.206 0.190 0.191 

Improvement (%) basis 8.29 7.31 basis 9.25 12.2 basis 7.76 7.28 

EC: Energy consumption during 1200s experiment (kWh);  

5.3 Case Study 

In the previous section, the controller’s performance and energy-saving benefits are studied under 

three specific cases, so in this section, the performance of all the controllers are simulated under a 

more realistic time-varying heating load condition. Table 5.6 shows the energy consumptions of the 

on/off controller and the discrete MPC under different heating loads. It can be seen that under higher 

heating load (above 0.5 kW) conditions, the discrete MPC consumes less energy than the on/off 

controller while for lower heating loads, the on/off controller is more efficient. Thus, it cannot be 

concluded that the discrete MPC is better than the on/off controller, rather than the discrete MPC 

could alleviate temperature fluctuations. That is why the other controllers appear in the following 

sections. 

Table 5.6 Energy consumptions under different heating load conditions 

Heating load (kW) 
Energy consumption for 1200s (kWh) 

On/off Discrete MPC 

0.8 0.2311 0.2119 

0.7 0.2162 0.1955 

0.6 0.1895 0.1789 

0.5 0.1671 0.1657 

0.4 0.1451 0.1624 

0.3 0.1179 0.1523 

0.2 0.0925 0.1343 
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5.3.1 Hybrid Controllers 

By studying the energy consumptions under different heating load scenarios in Table 5.6, a direct 

hybrid controller could be intuitively designed by combining the discrete MPC and the on/off 

controller along with an identifier that could estimate the current heating load. The criterion for 

activating the discrete MPC is when the heating load is higher than 0.5 kW, and the on/off controller 

is activated in all other scenarios. Based on the experimental and simulated data, it is known that the 

cooling capacity produced by the system using the minimum compressor speed can balance the 

heating load under 0.5kW. In addition, the compressor is the most energy-consuming component in 

A/C-R system. As a result, the minimum compressor speed and maximum evaporator and condenser 

fan speeds are used in this on/off controller. 

Even with these parameters, during a low heating load period, the on/off controller will switch the 

system frequently. In order to alleviate the effects of this phenomenon, an adaptive hybrid controller 

is given. The main idea is that the system starts working by using the discrete MPC until the 

controlled temperature settles down at its set point. Then, the MPC is still used unless the heating 

load is under 0.5 kW. Furthermore, the speed of the evaporator fan will be updated by: 

 intevap evap mpc evap evap cham setpoN N k T T     (5.11)

In this equation, evap mpcN  is the speed found by the discrete MPC at the switching point; evapk , is a 

proportional coefficient and related to the switching frequency of the system when using on/off 

controller. When evapk is zero, this hybrid controller will be the discrete MPC. Otherwise, when it is 

high enough, it will become the direct hybrid controller. 

5.3.2 Continuous MPC  

In some recent applications of the A/C-R system, the continuous variable components instead of 

components with several different speeds are employed. In order to study the potential of the MPC in 

these cases, a continuous MPC is designed based on the same model and procedures shown above. In 

this controller, the input of the compressor speed can continuously change from zero to its maximum 

speed.  

5.3.3 Controllers Comparison 

In order to compare the controllers discussed above, a heating load cycle is shown in Figure 5.37 is 

applied to the system for the simulations. This cycle is used to represent the heating load during a day 
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in 1200 seconds. As is well-known, the temperature at noon is higher than that in the morning and 

evening; as such, the heating load applied to the chamber reflects daily temperature variances. 

Although the heating load changes in a much lower frequency in the real situation, this cycle could 

also examine the robustness of the controllers.  

 

Figure 5.37 A heating load pattern 

The controlled temperature behavior and total energy consumption are provided in Figure 5.38. 

The energy consumption will be also used as a basis of comparison for the following controllers. 

Figure 5.39 shows the system inputs of the on/off controller. The system stays on for a longer period 

of time under the large heating load condition and vice versa.  

Figure 5.38 Temperature performance and energy 
consumption 

Figure 5.39 System inputs of on/off controller 

The results of the discrete MPC are provided by Figure 5.40 and Figure 5.41.  

Figure 5.40 Temperature performance and energy 
consumption 

Figure 5.41 System inputs of discrete MPC 
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The results of the direct hybrid controller are presented in following two figures. It can be seen that 

the on/off controller and the discrete MPC are alternated when the heating load is 0.5 kW. 

Figure 5.42 Temperature performance and energy 
consumption 

Figure 5.43 System inputs of discrete MPC 

By choosing 1 as the value of evapk the results of the adaptive hybrid controller are shown as follow. 

In comparison to the direct hybrid controller, a lower activation frequency of the system is obtained at 

the expense of energy consumption. As a result, a trade-off performance between energy consumption 

and switching frequency can be obtained by using the desired value of evapk .  

Figure 5.44 Temperature performance and energy 
consumption 

Figure 5.45 System inputs of adaptive hybrid 
controller 

The controlled temperature performance and energy consumption of the continuous MPC are 

demonstrated as follows. In Figure 5.47, the compressor speed can be manipulated freely according to 

the changing heating load instead of alternating between several discrete values.  
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Figure 5.46 Temperature performance and energy 
consumption 

Figure 5.47 System inputs of continuous MPC 

5.3.4 Results Analysis 

All the above simulations are done under the same working conditions but with the new heating load 

cycle shown in Figure 5.37. The total energy consumption and improvements of the proposed 

controllers with respect to the conventional on/off controller are listed in Table 5.7. 

Table 5.7 Energy consumptions of different controllers 

Controllers Energy consumption 1200s (kWh) Improvement (%) 

On/off 0.1675 Basis 

Discrete MPC 0.1670 0.24 

Direct hybrid  0.1420 15.17 

Adaptive hybrid 0.1602 4.30 

Continuous MPC 0.1286 23.18 

Regarding the energy consumption, the two hybrid controllers are able to save more than both the 

on/off and discrete MPC. A more desired performance can be obtained by choosing a proper 

coefficient evapk , by balancing two aspects: the switching frequency and energy consumption. 

Obviously, after introducing the continuous MPC to the A/C-R system with continuously variable 

compressors, the continuous MPC helps the A/C-R system with a continuously variable compressor 

save 23% energy because all the inputs can work coordinately to achieve the energy-saving objective.  

5.4 Summary 

This chapter was aimed at developing the most energy-saving controllers for automotive A/C-R 

systems. Before developing the controllers, a simplified control-based model was developed and 
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validated. Based on this model, all the controllers were built and simulated under the same working 

conditions.  

The comparison of experimental results showed that the set-point controller and the discrete MPC 

could satisfy the objectives of the A/C-R system. Due to the high nonlinear and MIMO nature of the 

system, the PI controller in the set-point controller may deteriorate its performance when working 

conditions would change fast. However, it is computationally costless and could be easy to 

implement. The discrete MPC is an optimal controller, mostly suitable for complex, multivariable, 

and nonlinear plants. The energy consumption term was included in the objective function when this 

discrete MPC was designed, which was also applicable to the real system. All of these attributes 

differentiate this study from others in the literature. Therefore, the MPC is a promising controller for 

A/C-R systems with continuously variable components, and the hybrid MPCs can be the best choices 

for A/C-R systems with discrete variable components.  
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 Chapter 6

Power Management Control Systems for RAPS 

In this chapter, several power management controllers are designed for RAPS with different levels of 

access to the future drive cycles. In these controllers, a regenerative braking controller is also 

developed to ensure maximum energy recovery during vehicle braking.  

6.1 Regenerative Braking Controller Development 

Regenerative braking, as an important characteristic of HEVs and EVs, refers to a process in which 

the kinetic energy of the vehicle can be converted by a motor/generator into electrical energy when 

vehicle braking. The recovered energy can be used immediately or stored in the vehicle’s batteries or 

supercapacitors until needed. In this way, regenerative braking is able to extend the driving range to a 

great extent, about 8-25% [144] by recovering otherwise wasted energy, which is more obvious in 

stop-and-go-featured urban driving [145]. However, the amount of recaptured energy depends on 

many factors such as the amount of kinematic energy of the vehicle, the driver’s braking demand, the 

friction limit provided by the road, SoC of the ESS, the charging rate and the power limit of the 

generator.  

In practice, the regenerative braking should cooperate with the conventional friction braking in 

order to provide the satisfactory braking demand from the drivers. On one hand, there is a limitation 

to the maximum braking torque that the motor is capable of providing. On the other hand, the friction 

braking is necessary for a complete stop of a vehicle because the produced regenerative torque at low 

vehicle speeds is too small to stop a vehicle. In short, the regenerative braking and the friction braking 

have to co-exist in a vehicle.  

6.1.1 Braking Force Allocation between Mechanical and Electric 

As discussed above, in order to satisfy the driver’s demand on braking requirement, it is necessary for 

the regenerative braking system to coexist with the friction braking system. Usually, the regenerative 

braking system is located at the driven axle [146] and controlled electronically, and an apparent 

control purpose is to capture the kinetic energy during vehicle braking as maximum as possible. No 

doubt this purpose shall be achieved by meeting the braking demand and without affecting the 

drivability of the vehicle. Therefore, it is a challenge to manage well the relationship between the 

friction braking and the regenerative braking. Currently, many control strategies have been developed 



 

 82 

to make these two braking systems work properly and efficiently, and they can be classified into two 

categories: parallel and series braking systems. 

6.1.1.1 Parallel Braking System 

In a parallel braking system, the electric braking and mechanical braking take place simultaneously; 

whereas in the conventional friction braking system, the ratio of braking force allocation between the 

front and rear axle is established in advance. However, the regenerative braking system can add 

additional braking force to the axle which it is applied to, and this enables the regenerative braking 

system to be applied to a vehicle equipped only with a conventional braking system. Since the friction 

braking forces are distributed in a fixed way, the parallel braking system can work without a 

controller. The electric braking forces can be controlled according to the measurements from a 

pressure sensor in the hydraulic unit or a position sensor in the braking pedal. Thus, this makes the 

implementation of a parallel braking system relatively simple. Nevertheless, a parallel braking system 

has less potential for recovering energy than its counterpart [144, 147]. 

6.1.1.2 Series Braking System 

In contrast, in a series braking system the optimal distribution between the regenerative braking and 

the friction braking can be realized under the assist of a controller. Braking can be applied solely by 

the regenerative braking system, provided that the braking needed is no more than the maximum 

braking torque that the electric motor is capable of producing and the road adhesion permits. Thanks 

to the optimal allocation of the braking forces and the possibility of having the additional degrees of 

freedom, series braking systems are usually able to recover more energy than parallel braking 

systems. In addition, their better braking blending makes drivers have an enhanced perception of the 

pedal feel [144]. 

The distribution strategy of the braking forces between the front and rear axle is vitally important 

and usually designed on the basis of the Ideal Braking Force Distribution (IBFD) curve. This curve 

indicates that the front and rear wheels will lock simultaneously when the braking forces reach the 

limit that the tire-ground adhesive allows. In this section, for the sake of simplicity, the IBFD curve is 

also utilized. The regenerative braking controller aims to maximize the recovered energy without 

affecting the drivability of the vehicle. Therefore, the series one is utilized, where the friction braking 

only assists the regenerative braking. Then the following rules are used for the regenerative braking 

torque to maximize the recovered energy. 1), when the required braking force is less than the friction 
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force supported by the road, the regenerative braking force equals the minimum value of the power 

compactly of the generator and the one calculated by the SoC constraints to avoid the battery being 

overcharged; 2), when the required one is large than the maximum friction allowed by the road, the 

regeneration braking force will equal to the smaller one between the maximum friction and the 

generator power limit; 3), in other cases, the friction one will be activated, for example, when there is 

a sharply braking, or the braking happens in an extremely short time, the friction braking is activated 

due to the recharging rate limit; and, when the braking happens in an extremely slow vehicle speed 

due to the generator power limit.  

6.2 MPC-based PMS Development for RAPS 

In this section, several new MPC-based PMSs with different level of access to the future drive cycle 

are designed, which are different from the existing ones in current literature. 

6.2.1 Known Drive Cycles 

Service vehicles, such as delivery trucks or public buses, usually have predetermined routes, thus, it is 

possible and beneficial to utilize an MPC strategy to improve the fuel economy of RAPS. However, 

the mass/load of such service vehicles is time-varying during a drive cycle. Therefore, an adaptive 

MPC should be designed to account for this variation. Although the drive cycle is preset, it would 

experience uncertainties or disturbances caused by traffic or weather conditions in real situations. To 

deal with this problem, a large step size prediction method is used in the adaptive MPC to enhance its 

robustness. The proposed adaptive MPC is compared with a prescient MPC in different scenarios to 

demonstrate its applicability and optimality. The proposed approach is independent of the powertrain 

topology such that it can be directly extended to other types of hybrid electric vehicles. 

6.2.1.1 Vehicle Mass Identification  

For the sake of completeness, in the following a method for estimating the vehicle mass using a 

Kalman filter is discussed [128]. Generally, Kalman filter is used as a state observer. However, the 

parameter identification problem can be formulated in the state space form. To apply the Kalman 

filter, the first step is to form a parametric model by the component model presented in Chapter 3 in 

the form of: 
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where ݖ is the process output, ߠ represents the actual values of the parameters, and ߶ is the regression 

vector. The engine torque  engT , vehicle speed  vehV , and engine speed  eng  are the signals 

available through the vehicle control area network (CAN). The torque  eng altT  from engine to the 

alternator can be calculated by the system control input  eng altP  .The acceleration signal is provided 

by the vehicle accelerometer, and in a case that this signal is not available, it can be obtained from the 

vehicle speed. By comparing engine speed and vehicle speed, combined ratio of the transmission and 

final drive  tfN can be calculated. Moreover, road grade   is assumed to be provided by a GPS 

receiver. The efficiency of driveline  tran , rolling resistance coefficient  rC , mass density of the air

  , coefficient of aerodynamic resistance  DC , and frontal area of the vehicle  fA  are assumed to 

be known and constant with respect to time. The only unknown parameters will then be the vehicle 

mass  M , which need to be estimated. The goal of the estimation method is to find the model output

 ẑ that best approximates the process output  z . At each step, the estimation of the parameters is 

updated by: 

       ˆ ˆ 1k k K k e k     (6.2)

where, ̂  represents the estimated values of the parameters, and e is the estimation error which 

reflects the difference between the process and the model outputs: 

     ˆe k z k z k   (6.3)

Also, K is the Kalman gain which is calculated by: 
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 (6.4)

where,  P k is the estimation error covariance; 1R and 2R  represent the covariance matrices of the 

process and the measurement noise. The diagonal entries of 1R should be chosen based on how fast 
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the corresponding parameter changes with respect to time. Therefore, if a parameter is known to 

change quickly, the corresponding entry in 1R  should be large and vice versa. 

When there is no process noise (i.e. 1 20, 1R R  ), the above Kalman filter parameter identification 

algorithm is equivalent to the recursive lease square method. However, due to its ability to recursively 

calculate the parameters by combining prior knowledge, predictions from system models and noisy 

measurements, the Kalman filter based parameter identification algorithm is utilized in this study 

[148]. 

6.2.1.2 Model Predictive Control Strategy Development 

As an optimal control method, the MPC originated in the chemistry industry’s control techniques. It 

is characterized by slow dynamics, which provides enough time for optimization calculations [114]. 

As mentioned above, the RAPS with the slow battery SoC dynamics makes it suitable for an MPC 

application. The objective function is shown below,  
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(6.5)
. .s t  

  ,min maxy y k y    0, 1k N Κ   

  ,min maxu u k u    0, 1k N Κ   

where, the first term on the right-hand side is the terminal cost; the second term is the summation of 

the stage cost and the extra FC to charge the battery; it can guarantee the direct charging happening in 

high engine efficiency periods by introducing this form. , P Q and R are normalized weights to balance 

each term. The objective function is transferred into a quadratic form with respect to the control input. 

As the prediction horizon length is N , the trajectory of future states will be obtained by the discrete-

time model: 
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The convex quadratic objective function only with respect to the input will be obtained by inserting 

Equation (6.6) into the original objective function shown in Equation (6.5) and neglecting the 

constant term: 

 0 0

1
,

2
T TJ x u U HU U g   

(6.7)

       2 1 1
T Tu x uxH C S Q C S R   ,     2

Tu x u
ref

xg C S Q C S Y   

. .s t  

      , ,min min minU max U U U U U X  

      , ,max max maxU min U U U U U X  

where the Hessian matrix  H is symmetric and positive or semi-positive definite and g is the 

gradient vector. ,  Q R and refX should be reformulated based on , Q R and refX . The updated 

constraints of the control can be found by the reformulation of Equation (6.6) and the constraints 

shown in Equation (6.5).  

Figure 6.1 shows the predefined or the nominal drive cycle of a service vehicle as well as the real 

world drive cycle. Due to the aforementioned factors, the real drive cycle cannot exactly coincide 

with the predefined one but locate around it. The real drive cycle in the next future seconds is not 

known as a priori in real situations. The only information can be utilized is the nominal drive cycle. If 

the prediction step size (distance between two prediction points) is extended to a large value when 
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implementing the MPC strategy, on the one hand, the effects on state prediction of both drive cycles 

are similar, because both the positive and negative deviations around the nominal one will counteract 

each other’s effects; on the other hand, more future information will be included into the MPC 

development such that the solutions will be closer to the global optimal ones without adding any extra 

computational costs. In order to demonstrate the benefits introduced by the proposed MPC, the 

prediction step size of 10 seconds is chosen. That means the states are calculated every 10 seconds by 

Equation (6.6), and then use the new output trajectory shown in Equation (6.8) for quadratic problem 

(QP) formulation. 
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(6.8)

However, the first element of the optimal solutions will be applied to the system for 1 second, and 

then the MPC uses the fresh data to move forward. 

 

Figure 6.1 Drive cycles and prediction points of the proposed MPC 

6.2.1.3 Service Cycle 

The service cycle is defined as the power consumed by the auxiliary devices of the service vehicle. 

As the main auxiliary device, the power consumption of the A/C-R system is varying with the 

ambient and operating conditions of service vehicles. Figure 6.2 shows the ambient temperature and 

the HL applied to the cargo in a typical summer morning from 10:00 am to 12:30 pm. For simplicity, 

the HL is assumed to be proportional to the temperature difference.  
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Figure 6.2 The ambient temperature and corresponding HL

In addition, some extra HL exists during the periods of loading and unloading due to door open. 

Note that during these periods, the goods are assumed to be moved uniformly. The extra heating is 

roughly assumed to be 0.1 kW as shown in Figure 6.3, where the total HL load from the outside is 

calculated [36]. For the sake of simplicity, the cooling capacity produced by the A/C-R system is only 

used to balance the total HL to maintain the desired temperature, and the ratio of cooling capacity to 

the power consumed by the A/C-R system is assumed to be 1.  

 

Figure 6.3 Vehicle mass, extra HL, and total HL

6.2.1.4 Drive Cycle 

The nominal drive cycle is created based on the segment information provided in the first column of 
Table 6.1.  

Table 6.1 drive cycles 

Nominal Scenario 1 Scenario 2 

Segment Duration (s)  Segment  

Loading 900 

Nominal + disturbance 

Unloading 

Switch the orders of two segments + disturbance 

FTP75 1874 FTP75 

HWFET 765 HWFET 

FTP75 1874 UDDS 

Unloading 600 Unloading 

UDDS 1370 FTP75 

Unloading 600 Unloading 

UDDS 1017 UDDS 

2

4

Vehicle mass

vehicle mass curb weight

0

0.1

0.2
Extra HL due to door opening during unloading

10:00am 10:30am 11:00am 11:30am 12:00pm 12:30pm
0.8

1

1.2
Total HL from the ambient air
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   Two kinds of disturbances will be added onto the nominal drive cycle to simulate the real-world 

ones. In scenario 1, about 15% white noise is added, whereas the orders of two segments are switched 

to form the drive cycle in scenario 2. The drive cycles of 2.5 hours are visualized in Figure 6.4, where 

the middle figure shows the amplified vehicle velocity around 10:30 am.  

 

Figure 6.4 Drive cycles under two scenarios

6.2.1.5 Drive Cycle and Service Cycle Analysis 

In this research, our target vehicle is GMC SAVANA 2500, whose specification can be obtained in 

[149]. Take the UDDS drive cycle as an instance, according to Equation (3.1), the vehicle power can 

be calculated and shown in Figure 6.5, where only the power for driving the vehicle and its average 

value are presented. 

 

Figure 6.5 Drive cycles of UDDS and vehicle power

From Figure 6.3, it can be seen that the maximum auxiliary power is 1.1 kW. Compared to the 

driving power of the vehicle, the auxiliary power is relatively small. Thus, this type of vehicle refers 

to the light service vehicle, and the average driving power and auxiliary power are presented in Table 

6.2. 
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Table 6.2 Driving power and auxiliary power  

Drive cycle UDDS The proposed drive cycle  

Average driving (auxiliary) power (kW) 17.15(0.9) 21.53(0.9) 

6.2.1.6 MPCs Configuration and Results Analysis 

After the drive cycles and service cycle are defined, the known information will be input to the MPC 

and used to find the optimal solution of the problems [150].  In this section, 1MPC is the prescient one 

with the full knowledge of the real drive cycle, whereas 2MPC only knows the nominal drive cycle or 

the measured drive cycle information in next several seconds. The parameters of the MPCs are 

provided in Table 6.3.  

Table 6.3 MPC Parameters 

Parameters  secsT  N  Q  P  R  refy   

Value 10/1 10 
0.5 0

0 1

 
 
 

 10Q 1 
0.9

0

 
 
 

 

In order to protect and elongate the lifespan of the battery, the SoC should not be drained and reach 

its limits to pursue high overall efficiency [117]. In addition, the battery will be used to power the 

A/C-R system and reduce idling, so the SoC should maintain a high level during the vehicle in travel. 

Therefore, the SoC reference 0.9 is chosen and a relatively small weight 0.5 is used to avoid it 

deviating from the reference too far. The prediction horizontal length N should not be too large or 

small to balance the prediction accuracy and optimality. A ten-time larger terminal weight is chosen 

to enhance the stability of the controllers. The QP is solved by an open source solver, which can solve 

the QP in milliseconds and guarantee its real-time applicability [136].  

The results of the system input, SoC, and vehicle mass estimation are presented in the following 

figures. The results in both scenarios show that 1M PC uses less power to charge the battery resulting 

into a less FC. Although 2MPC uses the nominal drive cycle to predict the future response of the 

system, it still can have a similar performance with 1M PC both in final SoC and FC. However, the 

MPC with a large step size has a better performance because a large step size can make MPC predict 

further, eliminate the influence of the disturbance and response much earlier to achieve more optimal 

performance. The Kalman filter can correctly identify the mass in both scenarios except the periods 

when the vehicle stops. When the vehicle starts to move, the estimator can reach the real vehicle mass 

quickly and accurately.  
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Figure 6.6 System inputs under scenario 1

 

Figure 6.7 System inputs under scenario 2

 

Figure 6.8 SoC responses under scenario 1

 

Figure 6.9 SoC responses under scenario 2
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Figure 6.10 Vehicle mass estimation under scenario 1

 

 Figure 6.11 Vehicle mass estimation under scenario 2

Table 6.4 provides the results of the final SoC and the FC. In order to eliminate the effects of the 

deviation of the final SoCs on the FC, an SoC-correction approach [151] is used. The total FC (19.7L) 

of the vehicle without RAPS is provided as a basis to compare with. Meanwhile, the FC (18.14L) just 

used for driving vehicle instead of both vehicle and difference is FC for powering A/C-R system. 

Under scenario 1, fuel savings are more than 7 percent after RAPS is introduced to the conventional 

service vehicle in column Save1. In addition, the MPCs with 10 seconds step size save more than the 

ones with shorter step size. In this study, the average power (1kW) of A/C-R system is relatively 

smaller compared to vehicle power. These vehicles are called light service vehicle. However, for 

heavy service vehicles, they can witness more fuel saving using the RAPS. Regarding the FC2 and 

Save2, the FC of the A/C-R system in the conventional vehicle is 1.56 L, whereas the FC in the 

systems with RAPS is just 9 times less. Scenario 2 shows a similar characteristic. However, the drive 

cycle used for prediction is more different than the real one, thus, the savings are a little bit less than 

scenario 1. It means the performance of the proposed MPC was not affected by such large 

disturbances and its robustness is verified.  
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Table 6.4 Result comparison of Two Scenarios 

Systems 

Scenario 1 Scenario 2 

Final 

SoC 

FC1 

(L) 

Save1 

(%) 

FC2 

(L) 

Save2 

(%) 

Final 

SoC 

FC1 

(L) 

Save1 

(%) 

FC2 

(L) 

Save2 

(%) 

Without RAPS N/A 19.7 basis 1.56 basis N/A 19.7 basis 1.56 basis 

With 

RAPS 

1MPC

 10sT   
0.8649 18.273 7.24 0.133 91.46 0.8722 18.279 7.21 0.139 91.05 

2MPC

 10sT   
0.8782 18.277 7.22 0.137 91.19 0.8817 18.309 7.06 0.169 89.14 

1MPC  

 1sT   
0.7689 18.302 7.09 0.162 89.58 0.7708 18.308 7.07 0.168 89.26 

2MPC

 1sT   
0.7756 18.31 7.06 0.17 89.13 0.7756 18.412 6.54 0.272 82.53 

Vehicle N/A 18.14 N/A N/A N/A N/A 18.14 N/A N/A N/A 

FC1: total FC; FC2: FC of A/C-R system; Save1: fuel saving percentage due to RAPS; Save2: fuel saving percentage of A/C-

R system; 

Note: the above results are obtained based on a light service vehicle with only 10% braking power 

can be captured via a serpentine belt. For the heavy service vehicle with a PTO configuration, more 

fuel saving will be witnessed by recovering more braking power.  

6.2.2 Unknown Drive Cycles 

This section presents a model predictive PMS for RAPS used in service vehicles, which do not know 

the future drive information a priori. As an optimization-based approach, the MPC usually requires 

the drive cycle or the drivers’ command to be known a priori. However, in this study, an average 

concept based MPC is developed without such knowledge. The analysis shows that the RAPS with 

the proposed MPC saves fuel consumption. Meanwhile, the average concept based MPC has a similar 

performance as the prescient MPC. In addition, the robustness of this MPC is also tested under other 

drive cycles. The proposed MPC is independent of powertrain topology such that it can be directly 

extended to other types of HEVs, and it provides a way to apply the MPC even though the future 

driving information is unavailable [152]. 

6.2.2.1 Driving Information Estimation 

In this section, the future driving information required by the MPC is estimated by the proposed 

approach. Take the urban dynamometer driving schedule (UDDS) as an example. Figure 6.12 shows 
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the velocity, acceleration, and vehicle power calculated by Equation (1) during the first 1200s. The 

positive power represents the power needed to drive the vehicle; whereas, the negative power 

represents the available regenerative power, which can be partially recovered during vehicle braking. 

 

Figure 6.12 Driving information of UDDS

By observing the profile of the vehicle power, it can be seen that both the positive and negative 

power appears alternately; meanwhile, the amplitudes are relatively similar. Intuitively, it is possible 

to use a moving window with an appropriate width where the average vehicle power of the covered 

region can be calculated. 

In Figure 6.13, the blue window in the solid line is the current position of the moving window, and 

the one in the dotted line is the position in the last step, where w and t indicate the window width 

and moving interval, respectively. When the window moves at each step, the average value of the 

vehicle power over the covered region is assigned to the current point.   

 

Figure 6.13 Vehicle power with the moving window

In this study, the moving interval t is fixed at 1 second; whereas, the window width is studied with 

three different values (10, 50 and 100 seconds), shown in the following figures. Both the average 
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driving and regenerative power at each second are obtained with the moving average window.  

 

Figure 6.14 Vehicle power with a 50s window 

 
Figure 6.15 Vehicle power with a 100s window 

 
Figure 6.16 Vehicle power with a 200s window 

Figure 6.14 to Figure 6.16 indicate that as the window width increases, the profiles of the driving 

and braking power tend to be smoother. Finally, a window size of 100s will be chosen and used in the 

MPC development by considering the prediction accuracy and computational cost. 

As a prerequisite for developing the MPC, the vehicle power in the prediction horizon should be 

known a priori. In this research, inspired by the frozen-time MPC, the future vehicle power 
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information in the prediction horizon will be repeated by the latest historical data. In other words, the 

vehicle power in the last 100s will be mirrored by the one in the next 100s shown in Figure 6.17. 

 

Figure 6.17 Vehicle power estimation

6.2.2.2 Model predictive PMS Development 

The same procedure is used as that discussed in section 6.2.1. After the generic process of developing 

an MPC, different MPCs can be designed based on different future information acquisition methods. 

In Table 6.5, three MPCs are provided and compared in next section. The estimated average future 

information cannot know when the engine works at a high efficiency in the prediction horizon. Thus, 

an extra rule is added to the 2MPC . More specifically, 2MPC does not directly send it to the system 

after obtaining the solution. Instead, it calculates the current efficiency of the engine at the same time. 

If the efficiency is over a limit, the calculated optimal control input will send a signal to the system; 

otherwise, a zero is sent out. This way, the proposed MPC can only generate the control input during 

a high engine efficiency period.  

Table 6.5 MPC Types 

MPC types Description 

1MPC  Prescient MPC 

2MPC  Utilizes the latest 100s driving info as the future driving info 

3MPC  2MPC +a rule 

6.2.2.3 Case Study 

In this section, three cases are studied. First, the aforementioned three MPCs are simulated under the 

standard urban drive cycle UDDS, which is used to tune the controller parameters. Secondly, with the 

preliminary knowledge of the urban drive cycle obtained by studying UDDS, all the MPCs are tested 
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under a new highway drive cycle. Finally, a more real drive cycle for a long-haul truck or a delivery 

truck is created, under which all the simulations are conducted. The service load is the same as 

discussed in the previous section. 

6.2.2.3.1  UDDS 

Before running the simulation, the parameters of the MPC should be set. The tuned parameters of the 

MPCs are provided in Table 6.6. In order to protect the battery and elongate its lifespan, the SoC 

should be in a certain range. In addition, the energy stored in the battery will be used to power the 

A/C-R system and reduce idling, so the SoC should maintain at a high level during travel. 

Furthermore, the SoC should not reach its limits in order to enhance the overall efficiency [117]. 

Therefore, in this paper, the SoC reference  0.9 is chosen and a relatively small weight  0.5 is used 

to avoid the actual SoC deviating from its reference too far. The prediction horizontal length N

should not be too large or small to consider both the prediction accuracy and optimality. A weight 

that is ten times larger terminal is chosen to enhance the stability of the controllers [141].   

Table 6.6 MPC Parameters 

Parameters  secsT  N  Q  P  R  refy  

Value 10 10 0.5 10Q 1 0.9

The SoC performance for each MPC is presented in Figure 6.18, where all SoCs start from a same 

initial value of 0.9.  

 

Figure 6.18  SoC performance of different MPC 

The prescient MPC ( 1MPC ) charges the battery less than others because the SoC is still far from its 

lower limit of 0.6, and it only charges the battery during high engine efficiency if needed, as shown in 

Figure 6.19.  
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Figure 6.19 system input and engine efficiency 

The 2MPC utilizes the latest data as future information, and it charges the battery much more than 

others during both high and low engine efficiency periods while presenting the highest SoC. If an 

efficiency limit is added, it can be seen that the 3MPC charges the battery when the efficiency is over 

its limit. The engine efficiency is also provided.  

In order to demonstrate the advantage of the proposed RAPS as well as the MPC regarding the 

energy efficiency, the fuel consumption in different cases are provided in Table 6.7. The fuel 

consumption of the conventional configuration is 2.083L, while the power used for driving the 

vehicle is 1.755L. Since the RAPS is introduced to electrify the auxiliary system (e.g. A/C-R system 

in this study), it has nothing to do with the fuel used to power the vehicle. Instead, it can minimize the 

fuel consumption of the A/C-R system in an optimal way. To compensate for the SoC difference 

between the initial and final values, the correction method proposed in [151] is used such that the 

comparison can be performed. After introducing RAPS into the service vehicle, it witnesses obvious 

fuel savings under the studied scenario. However, the saving percentage depends on the MPC used. 

2MPC saves less than 1MPC , but after the efficiency limit is introduced, 3MPC performs similarly to

1MPC . The engine efficiency limit (15%) in 3MPC is tuned in this scenario and will be used in other 

cases.  
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Table 6.7 Result comparison for each MPC 

  FINAL SOC FC1
 (L) SAVE

1
 (%) FC2

 (L) SAVE
2
 (%) 

w/o RAPS N/A 2.083 basis 0.328 basis 

 

With  

RAPS 

1MPC  0.8251 1.841 9.22 0.136 58.55 

2MPC  0.8536 1.912 6.72 0.188 42.70 

3MPC  0.8326 1.849 9.08 0.139 57.63 

Vehicle N/A 1.755 N/A N/A N/A 

FC1: total fuel consumption; FC2: fuel consumption of A/C-R system; Save1: fuel saving percentage due to adding RAPS; 

Save2: fuel saving percentage of A/C-R system due to adding RAPS; 

6.2.2.3.2 Highway (HWFET+US06) 

In order to verify the reliability of the obtained parameters in the last section and the robustness of the 

proposed MPC, a highway drive cycle is created, which consists of two standard highway cycles. 

From the following figures and table, the similar conclusion as that of the UDDS can be drawn with 

less fuel saving.  

 

Figure 6.20 SoC performance of different MPC 

This is because highway driving cannot recover as much braking power as the urban driving and 

with much less engine idling. It can be seen that although vehicle power used for predictions obtained 

from the historical data (UDDS), 3MPC still guarantees good performance as 1MPC  under a totally 

different drive cycle. Thus, the robustness of the proposed MPC is verified. 
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Figure 6.21 System input and engine efficiency 

Table 6.8 Result Comparison for each MPC 

  FINAL SOC FC1
 (L) SAVE

1
 (%) FC2

 (L) SAVE
2
 (%) 

w/o RAPS N/A 4.240 basis 0.278 basis 

 

With  

RAPS 

1MPC  0.8744 4.158 1.93 0.153 34.86 

2MPC  0.8308 4.178 1.46 0.173 26.31 

3MPC  0.8298 4.165 1.77 0.160 31.99 

Vehicle N/A 4.005 N/A N/A N/A 

6.2.2.3.3 Combined Drive Cycle   

This drive cycle is created to simulate the driving schedule of long-haul trucks or delivery trucks. The 

combined drive cycle is composed of urban driving, highway driving, and even rest or loading & 

unloading stops. The detailed information of the combined drive cycle for 2.5 hours is shown in Table 

6.9 and Figure 6.22.  
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Table 6.9 Combined Drive cycle  

Segment Duration (s) 

FTP75 1874 

HWFET 765 

Resting 600 

UDDS 1370 

FTP75 1874 

US06 600 

Resting 600 

UDDS 1017 

 

 

Figure 6.22 Combined drive cycle 

All the MPCs are simulated over this drive cycle by using the same parameters as the first two 

cases. SoC performance and the system input are obtained and provided in the following two figures.  

It can be seen that even under a more complex and different  drive cycle and without knowing any 

future driving information, 3MPC performs similarly to the 1MPC . The conclusion can be drawn that 

the proposed, average concept based 3MPC can be applied in RAPS with a sub-optimal performance.  

 

Figure 6.23 SoC performance of different MPC 
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Figure 6.24 System input and engine efficiency 

In addition, two points should be noted. First, the auxiliary power is less than 1 kW, which makes it 

a light duty service vehicle. Even so, RAPS can save approximately 10% in fuel savings. For heavy 

duty service vehicles, more savings will be witnessed. Second, all the simulations above are running 

in a charge-sustaining mode. Actually, if the destination or charging station information is available 

from GPS, the charge-depleting model can also be implemented. The basic idea is that based on the 

average regenerative braking, the auxiliary power needed, the current SoC, and the time left to the 

charging station, the controller is able to decide if it is necessary to charge the battery such that the 

SoC reaches its lower limit when the vehicle arrives at the charging station.   

Table 6.10 Result comparison for each MPC 

  FINAL SOC FC1
 (L) SAVE

1
 (%) FC2

 (L) SAVE
2
 (%) 

w/o RAPS N/A 16.3941 basis 2.563 basis 

 

With  

RAPS 

1MPC  0.7414 14.955 8.75 1.126 56.02 

2MPC  0.8779 15.934 2.78 2.105 17.78 

3MPC  0.8106 14.990 8.54 1.160 54.70 

Vehicle N/A 13.831 N/A N/A N/A 

6.2.2.4 Conclusions 

The goal of this section was to develop a robust model predictive PMS without knowing future 

driving information for the proposed RAPS. By integrating the proposed RAPS and power 

management into the powertrain of a conventional service vehicle, auxiliary systems are electrified 

and idling will be eliminated. The RAPS with different MPCs were simulated under several cases. 
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The first case was used to find and tune the controller parameters while others were utilized to verify 

the robustness of the controller. The results demonstrated that approximately 10% fuel can be saved 

by applying the proposed RAPS and the MPC-based power management in light service vehicles 

under all cases. In addition, the proposed 3MPC can find a solution very close to the optimal one 

without knowing future driving information. The results demonstrate that the proposed MPC is robust 

and applicable to any drive and load cycles.  
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 Chapter 7

Holistic Controller Development for the Whole System 

This chapter presents a holistic controller of the RAPS. The holistic controller is an MPC to guarantee 

the service vehicle save energy by achieving two objectives: minimize the energy consumption of the 

auxiliary systems, optimize the output power of the engine. Thanks to the multi-objective 

optimization feature of the MPC, the proposed holistic controller optimizes the power consumption of 

auxiliary systems and power flow of the powertrain simultaneously for the first time. In order to show 

the advantages brought by the proposed RAPS with the controller over the conventional vehicles, a 

case study is performed and analyzed. The results demonstrate that the RAPS can help a light service 

vehicle save about 7 % fuel under the study scenario and even more for heavy vehicles. 

7.1 Holistic Controller Configuration and Modeling  

The dynamics of the powertrain, as well as the A/C-R system, can be represented by a seven-state 

model with four inputs: the direct charge power eng altP  , the compressor speed compN  as well as the 

frequencies ( evapN and condN ) of two variable frequency drives used to manipulate the speed of the 

evaporator and condenser fans. The frequencies are proportional to the two fan speeds. The seven 

states are pressures of the evaporator and the condenser, the two-phase section lengths, equivalent 

tube wall & fins temperatures of two heat exchangers, and the temperature of the cargo, respectively. 

The outputs are the air temperature argc oT of the cargo and the SoC of the battery. The whole model 

can be put into a discrete-time linear compact form after linearization and discretization as follows： 

           
     

1 u vx k A k x k B k u k B k

y k C k x k

    



 (7.1)

arg, , , , , ,
T

e c e wfe wfc c ox P P l T T T SOC     (7.2)

, , ,
T

comp evap cond eng altu N N N P      (7.3)

arg ,
T

c oy T SOC     (7.4)

The complete version of the whole system model is provided in Appendix B. 
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Figure 7.1 Whole structure of the RAPS with the holistic controller 

7.2 Case study 

7.2.1 Drive Cycle 

The nominal drive cycle is used to simulate the predefined drive cycle of the service vehicle and 

created based on the segment information shown in the first column of Table 7.1. 

Table 7.1 Drive cycles  

Nominal Real 
Segment Duration (s) Segment Description 

Loading 900 Unloading 

Switch the orders of two 

segments + disturbance 

FTP75 1874 FTP75 

HWFET 765 HWFET 

FTP75 1874 UDDS 

Unloading 600 Unloading 

UDDS 1370 FTP75 

Unloading 600 Unloading 

UDDS 1017 UDDS 

Due to the aforementioned factors that affect the driving in the real world, about 15% white noise is 

added and two segments are switched to form the real-world drive cycle. The new 2.5-hour drive 

eng altP 

regP

altP
auxP

, ,comp evap condN N NengP
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cycle is described in Figure 7.2, where the bottom figure shows the amplified vehicle velocity around 

10:30 am. 

 

Figure 7.2 Nominal and real drive cycles 

7.2.2 Service Cycle 

The service cycle shows the power consumed by the auxiliary devices of the service vehicle. As the 

main auxiliary device, the A/C-R systems consume much more fuel than other auxiliary systems, and 

its power consumption is varying with the ambient and operating conditions of service vehicles. 

Figure 7.3 shows the ambient temperature and the heating load (HL) applied to the cargo in a typical 

summer morning from 10:00 am to 12:30 pm. For simplicity, the HL is assumed to be proportional to 

the temperature difference.  

 

Figure 7.3 Ambient temperature and HL 

In addition, some extra HL appears during the periods of loading and unloading due to the door 

opening. The extra HL is roughly assumed to be 0.1 kW and added to the existing HL forming the 
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nominal service cycle as shown in Figure 7.3. The real one with the disturbances is obtained by using 

the same method as that of the drive cycle.  

7.2.3 Results Analysis 

In this section, in order to show the benefits brought by the proposed RAPS with the holistic 

controller, it is compared to the conventional vehicle with an On/off A/C-R system controller. 

Meanwhile, to demonstrate the proposed controller is robust, two MPCs are simulated and compared. 

The first one (MPC1) as the prescient MPC knows the full real-world drive cycle and service cycle as 

a priori; whereas the second one (MPC2) only knows the nominal drive and service cycle. The 

parameters of the MPCs are provided in Table 7.2.  

Table 7.2 MPC Parameters 

sT  N  Q  P  R  r  refy  

10s  10  
10 0

0 1

 
 
 

 10Q  

   1

0

0

0

1 1

1

T 

 
 
 
 
 
  

 1

0.1

0

0

 
 
 
 
 
 

 10

0.9

 
 
 

 

In order to protect and elongate the lifespan of the battery, it should not be drained and its SoC 

should not reach its limits to pursue high overall efficiency [117]. In addition, the battery is used to 

power the A/C-R system and reduce idling, so the SoC should maintain a high level during the 

vehicle in travel. Therefore, the SoC reference 0.9 is chosen and a relatively small weight is used to 

avoid it deviating from the reference too far. The prediction horizontal length N should not be too 

large or small to balance the prediction accuracy and optimality. A ten-time larger terminal weight is 

chosen to enhance the stability of the controllers as suggested in [141]. The engine efficiency item is 

added into the input weight matrix to guarantee the direct charging happens at the high-efficiency 

periods. The QP is solved by an open source solver, which can solve the QP in milliseconds to 

guarantee its real-time applicability [136].  

Figure 7.4 shows SoC response of the battery. During the loading & unloading periods, the battery 

is discharging without any charging from the engine in order to eliminate the engine idling. When the 

vehicle is braking, the battery is charged by the recovered braking energy. However, if the SoC is far 

from the reference or the regenerative braking energy is not enough, the battery is charged by the 

engine automatically during the high-efficiency periods. The controller determines whether or when 

to charge the battery according to the prediction behaviors. Figure 7.5 describes the inside 

temperature response of the cargo. The initial temperature is assumed to be equal to the ambient 
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temperature at 10 am when the A/C-R system starts working. After about 15 minutes, the temperature 

reaches its reference 10oC and stay there, even under the extra HL periods.  

  

 

Figure 7.4 SoC trajectories  

 

Figure 7.5 Temperature performance of the cargo  

The A/C-R system inputs are presented in Figure 7.6 to Figure 7.8. At the beginning, the initial 

temperature is far from the set point. The A/C-R system runs at the maximum capacity to cool the 

cargo. After it arrives at its set point, the inputs start to change according to the ambient HL. Figure 

7.9 shows the charging power of the battery by the engine during the high-efficiency periods when 

the SoC is too far from its set point. When the vehicle is not moving, the charging does not happen.  

 

Figure 7.6 Speed of the compressor 
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Figure 7.7 Frequency of the evaporator fan VFD 

 

Figure 7.8 Frequency of the condenser fan VFD 

 

Figure 7.9 Direct charging power  

To demonstrate the saving taken by the RAPS, the conventional service vehicle with an on/off 

controller of A/C-R system is used to compare to. Please refer to [129] for the on/off controller design 

procedure. 
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Figure 7.10 Temperature of the cargo in the conventional vehicle 

The corresponding inputs of the A/C-R system are shown in the following figure. It can be seen 

that when the temperature goes beyond the bounds, the system inputs will switch between the 

maximum and zeros. During the early morning, the outside HL is low, such that the switching 

frequency is high. Instead, during noon, the switching frequency is low.  

 

Figure 7.11 A/C-R system inputs in the conventional vehicle

The fuel consumption results are provided in Table IV. In order to eliminate the effects of the fuel 

consumption brought by the deviation of the final SoC of the controllers, an SoC-correction method 

[151] is adopted. The total fuel consumption (19.6 L) of the conventional vehicle with an on/off A/C-

R system controller [129] is provided as a basis to compare with; meanwhile, the fuel consumption 

(18.14L) just used for driving vehicle is also provided and their difference is utilized for powering 

A/C-R system. By using RAPS and two MPCs, 6.9 % and 6.7% fuel are saved, respectively. That 
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means MPC2 has a very close saving with the prescient MPC1 and MPC2 is robust enough under such 

large disturbed situation. In this paper, the average power (about 1kW) of A/C-R system is relatively 

smaller compared to vehicle power. These vehicles are called light service vehicle. However, for 

heavy service vehicles, they can witness more fuel saving using the RAPS. Regarding the FC2 and 

Save2, the FC of the A/C-R system in the conventional vehicle is 1.48 L, whereas the FC in the 

systems with RAPS is just 9 times less. In other words, the electrification of the A/C-R system can 

bring a significant saving to the vehicle owners and then to the environment. 

Table 7.3 Result comparison for each MPC 

  FINAL SOC FC1
 (L) SAVE

1
 (%) FC2

 (L) SAVE
2
 (%) 

Conventional & on/off 

controller 
N/A 19.62 basis 1.48 basis 

RAPS 
1MPC  0.86 18.27 6.9 0.13 91.3 

2MPC  0.82 18.31 6.7 0.17 88.8 

Vehicle N/A 18.14 N/A N/A N/A 

FC1: total fuel consumption; FC2: fuel consumption of A/C-R system; Save1: fuel saving percentage due to 
adding RAPS; Save2: fuel saving percentage of A/C-R system due to adding RAPS; 

Note: the above results are obtained based on a light service vehicle with only 10% braking energy 

can be captured via a serpentine belt. For the heavy service vehicle with a PTO configuration, more 

fuel saving will be witnessed by capturing more braking energy.  
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 Chapter 8

Conclusions and Future Work 

The ultimate goal of this thesis was to develop and realize a holistic controller for anti-idling systems 

for service vehicles with A/C-R systems as the major auxiliary devices.  

RAPS was proposed to achieve the anti-idling objective. A/C-R systems as the main auxiliary 

power devices in RAPS, their power consumption should be minimized in order to enhance the 

energy efficiency. Therefore, a simplified control-oriented dynamic model of the automotive A/C-R 

system was developed that could provide a similar accuracy as those more complex models reported 

in the literature. In this simplified model, the fins’ effects were considered and lumped into two 

equivalent parameters. In addition, the effects of the superheat section of the condenser were also 

included into the model by studying the experimental data. This model was simulated and 

experimentally validated under several scenarios. The results showed that this model is simple and 

accurate enough to be used in real-time control systems.  

Based on this model, several controllers were designed, analyzed and compared for both the control 

performance and energy consumption. The results illustrated that the MPC was a promising controller 

for A/C-R systems with continuously variable components, and the hybrid MPCs could be the best 

choices for A/C-R systems with discrete variable components. The robustness of the proposed MPC 

was also tested under a large disturbed scenario and frosting conditions.  

The introduction of the RAPS enables full electrification of A/C-R systems and using better 

controllers for them could effectively maximize the energy efficiency of the A/C-R systems in service 

vehicles. Another feature brought by the RAPS besides the electrification of A/C-R systems is the 

energy recovery by the regenerative braking to power the A/C-R systems. Obviously, the more 

energy captured by the RAPS the higher overall efficiency can be achieved. Therefore, a strategy 

based on series braking system was developed to exploit the potential of the recovered energy under 

the condition that the drivability of the vehicle is not affected.  

By introducing the RAPS to a conventional service vehicle, its powertrain turns into parallel hybrid 

due to the addition of a battery. The only difference is that the battery only powers the auxiliary 

devices instead of assisting the engine to power the vehicle. Even so, it necessitates a PMS to decide 

when and how to charge/discharge the battery. Accordingly, a predictive power management was 

designed for both service vehicles with and without a predefined driving route. In addition, an online 
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KF-based identification algorithm for the vehicle mass was integrated into the PMS to develop an 

adaptive MPC, accounting for the varying loads due to changing passengers or cargo masses. A large 

step size prediction method was used in the proposed MPC to alleviate uncertainties and reduce 

computational costs. The robustness of the proposed MPC-based power management strategies was 

also tested under the uncertainties caused by traffic situations, weather conditions, or other factors in 

practice. Finally, the proposed MPC was compared with the prescient MPC to demonstrate its 

advantages over the conventional MPC. It was shown that its performance was comparable to that of 

the prescient MPC.  

A robust model predictive PMS without knowing future driving information for the proposed 

RAPS was also proposed for service vehicles without a predefined driving cycle in the daily working 

environment. An average concept was adopted in this method. The controller was simulated under 

several driving scenarios and the results demonstrated that an obviously saving in fuel consumption 

could be achieved by applying the proposed RAPS and the MPC-based power management in light 

service vehicles under all cases. The results demonstrated that the proposed MPC was robust and 

applicable to many drive and load cycles.  

For the ease of implementation, a holistic controller was presented to solve the thermal 

management of the cargo and power management of the powertrain system simultaneously to 

maximize the fuel economy. Due to the ability of prediction and multi-objective optimization, the 

MPC method was used for the holistic controller development. The results demonstrated 

approximately 7 percent of the total fuel can be saved by applying RAPS and the proposed controller 

in light service vehicles and more for heavy service vehicles. In addition, the proposed MPC could 

find the solution very close to the optimal one even under situations that the prediction drive cycle 

deviates far from the real one.  

Future work could be focused on the following aspects: 

Regarding the modeling and controllers of the A/C-R system, future studies will focus on developing 

some online parameter estimator to improve the accuracy of the proposed model, integrating the 

power consumption model of the whole system into the objective function instead of only control 

efforts, designing a fully controllable experimental system to test the proposed continuous MPC 

controller, and implementing the controller into a real vehicle to test its performance in practice. 
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In terms of the regenerative braking controller, the normal force of each axle or wheel can be 

identified to calculate the accurate friction force for each axle. In this way, the system can extract the 

maximum energy without influencing the drivability or stability of the vehicle. 

A more adaptive algorithm for the window size should be developed to make the average-MPC 

concept a predictive controller to work well under all conditions. In addition, the route information 

obtained by the telematics technology and electric grid station information can be integrated into the 

power management algorithm to enhance its performance. The future work will also emphasize on the 

distributed MPC development for RAPS and the real performance study of the holistic or distributed 

controller in a delivery truck.  
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Appendix A 

The complete version of the simplified A/C-R system model: 
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Appendix B 

The discrete-time model of the whole system: 

           
     

1 u vx k A k x k B k u k B k
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 
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 
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C k

 
  
 

 

where dA and dB are the discrete version of the cA  and cB  in Appendix A. 

 


