
Algorithms for Normal Forms for Matrices of
Polynomials and Ore Polynomials

by

Howard Cheng

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2003

c©Howard Cheng 2003

I hereby declare that I am the sole author of this thesis. This is a true copy of

the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In this thesis we study algorithms for computing normal forms for matrices of Ore

polynomials while controlling coefficient growth. By formulating row reduction as

a linear algebra problem, we obtain a fraction-free algorithm for row reduction for

matrices of Ore polynomials. The algorithm allows us to compute the rank and

a basis of the left nullspace of the input matrix. When the input is restricted

to matrices of shift polynomials and ordinary polynomials, we obtain fraction-

free algorithms for computing row-reduced forms and weak Popov forms. These

algorithms can be used to compute a greatest common right divisor and a least

common left multiple of such matrices. Our fraction-free row reduction algorithm

can be viewed as a generalization of subresultant algorithms. The linear algebra

formulation allows us to obtain bounds on the size of the intermediate results and

to analyze the complexity of our algorithms.

We then make use of the fraction-free algorithm as a basis to formulate modular

algorithms for computing a row-reduced form, a weak Popov form, and the Popov

form of a polynomial matrix. By examining the linear algebra formulation, we

develop criteria for detecting unlucky homomorphisms and determining the number

of homomorphic images required.

iii

Acknowledgements

I wish to thank my supervisor, George Labahn, for his support for the duration of

this work. Without his suggestions, criticisms, friendship, and financial support, it

would not have been possible to complete this work. I also learned much from Bern-

hard Beckermann when we worked together to obtain some of the results reported

in this thesis. I also wish to thank Dr. Keith Geddes, Dr. Mark Giesbrecht, Dr.

David Saunders, and Dr. Cameron Stewart for serving on the thesis committee.

Past and present members of the Symbolic Computation Group and Ontario

Research Centre for Computer Algebra provided a wonderful environment for con-

ducting research. I had many interesting discussions with Reinhold Burger, Claude-

Pierre Jeannerod, Ha Le, Wen-shin Lee, Ziming Li, Arne Storjohann, and Eugene

Zima. In particular, I wish to thank Reinhold Burger for putting up with me as

an officemate during my stay at Waterloo. Additionally, a number of people have

made my life at Waterloo much more interesting and enjoyable. Amélie Bélanger,

Reinhold Burger, Yann d’Halluin, David and Elizabeth Pooley, and Dana Wilkinson

have all contributed to many activities in my social life, including sports, bridge,

cooking, and eating.

I would like to thank my parents Ben and Clara and my brother Vince for their

support. I also wish to thank Katerina Carastathis for her friendship over the years,

and for being a wonderful person to talk to when I needed to.

iv

“Algebraic symbols are used when you do not know what you are talk-

ing about.”

v

Contents

1 Introduction 1

1.1 Computational Challenges . 5

1.2 Applications . 9

1.3 Computation Techniques: Fraction-Free and Modular Algorithms . 13

1.4 Overview . 16

2 Preliminaries 18

2.1 Basic Definitions . 18

2.2 Notation . 24

2.3 Normal Forms . 27

2.4 Special Matrices Related to Row Operations 30

2.5 Previous Approaches . 34

2.5.1 Direct Methods . 34

2.5.2 Indirect Methods . 36

2.5.3 Fraction-free Method . 37

3 Fraction-free Row Reduction of Matrices of Ore Polynomials 39

vi

3.1 Some Results on Matrices of Ore Polynomials 39

3.2 Order Basis . 48

3.3 Determinantal Representations . 53

3.4 Fraction-free Recursion Formulas for Order Bases 56

3.5 The FFreduce Algorithm . 61

3.6 Complexity of FFreduce . 64

4 Fraction-free Algorithms for Matrices of Shift Polynomials 69

4.1 Additional Properties of FFreduce 70

4.2 Full Rank Decomposition and Solutions of Linear Functional Systems 73

4.2.1 Experimental Results . 77

4.3 Computing a Row-reduced Form . 82

4.4 Computing a Weak Popov Form . 85

4.5 Computing GCRD and LCLM . 87

4.6 Computing Subresultants . 88

5 A Modular Algorithm for Row-Reduced Form for Polynomial Ma-

trices 92

5.1 Issues in Designing a Modular Algorithm 93

5.2 Computing Homomorphic Images 94

5.3 Lucky Homomorphisms and Normalization 96

5.4 Number of Homomorphic Images Required 101

5.5 Complete Algorithm and Complexity 102

5.6 Experimental Results . 106

5.7 Images Under Unlucky Homomorphisms 108

vii

5.8 Coprime Polynomial Matrices . 109

6 A Modular Algorithm for Popov Form for Polynomial Matrices 112

6.1 Issues . 112

6.2 Detecting Unlucky Homomorphisms 114

6.3 Minimal Multipliers . 118

6.4 Computing Homomorphic Images 119

6.5 Number of Homomorphic Images Required 120

6.6 Complexity . 120

7 Conclusion and Future Work 123

7.1 Summary of Contribution . 123

7.2 Future Research Directions . 124

Bibliography 129

viii

Chapter 1

Introduction

Normal forms are tools commonly used in the study of equivalence of mathematical

objects. Such forms are associated with transformation functions which preserve

the equivalence. Objects in normal form are unchanged by such a transforma-

tion [36]. In effect, objects in normal forms are representatives chosen from a class

of equivalent objects. Certain properties of an object can be obtained easily once it

has been transformed into normal form. Normal forms also have many applications

in computer algebra, including simplification, equivalence tests, and determination

of properties from mathematical objects (sometimes called invariants).

There are many examples of normal forms in the area of linear algebra. For

example, given two matrices A and B with entries in some field K, we may consider

them to be equivalent if the rows of A generate the same subspace as the rows of B.

Mathematically, the two matrices are equivalent if there exists an invertible matrix

U with entries in K such that UA = B. Thus, A can be transformed into B by

a sequence of elementary row operations. The normal form commonly used is the

1

CHAPTER 1. INTRODUCTION 2

row echelon form. If B is in row echelon form, we can easily determine the rank

and nullity, a basis for the row space, and bases for the left and right nullspace. We

can also easily solve the system of linear equations associated with the matrix A.

In linear algebra, it is also useful to consider two matrices to be equivalent if

they represent the same linear transformation up to a change of coordinates. In

this case, A and B are equivalent if there exists an invertible change of coordinate

matrix P such that P−1AP = B. The normal forms in this case include the

Jordan canonical form and the Frobenius form (also known as the rational canonical

form) [31]. A matrix in the Jordan canonical form is a block diagonal matrix

that gives the eigenvalues, and the corresponding transformation matrix gives the

generalized eigenvectors. The Frobenius form is also block diagonal, such that its

blocks are the companion matrices of its invariant factors. Other invariants such

as the minimal polynomial, the characteristic polynomial, and other properties

derivable from eigenvalues can easily be obtained once A has been transformed into

these forms.

We can also have normal forms when the entries do not come from a field.

In computer algebra, we often encounter matrices with entries from a Euclidean

domain D, such as the integers Z or the polynomial ring K[x] over some field K.

We may define two matrices to be equivalent if their rows generate the same D-

module (or lattice). One useful normal form is the Hermite normal form, which is

triangular and has size restrictions on the off-diagonal entries. Any matrix A can

be transformed into a matrix in Hermite normal form H, so that there exists an

invertible transformation matrix U such that UA = H. In this case, U is invertible

CHAPTER 1. INTRODUCTION 3

in D, so that U−1 exists and has entries in D. Such matrices are called unimodular

matrices. The Hermite form is useful for solving systems of linear diophantine

equations. It can also be used to compute one-sided greatest common divisors of

polynomial matrices, a topic discussed in this thesis.

Another notion of equivalence for matrices over a Euclidean domain D considers

two matrices A and B to be equivalent if one can be transformed into another

by means of both elementary row and column operations. That is, there exist

unimodular matrices U and V satisfying UAV = B. Any matrix can be transformed

into a diagonal form known as the Smith normal form, which reveals the invariant

factors of the matrix [31]. It is also useful for solving systems of linear equations [34,

35].

In this thesis, we consider matrices whose entries are polynomials and, more

generally, Ore polynomials [52]. Ore polynomials are generalizations of linear dif-

ferential operators, linear difference operators, and ordinary polynomials. They

differ from ordinary polynomials in that multiplication is not commutative. We

consider two matrices to be equivalent if their rows generate the same module.

Some useful operations on such matrices are division and the computation of one-

sided greatest common divisor and least common multiple. One difficulty is that

the set of matrices do not form an integral domain. If we consider these matrices

as univariate polynomials with matrix coefficients, we cannot easily perform these

operations in the same way as ordinary polynomials because the leading coefficient

may be singular.

We study algorithms to transform these matrices into equivalent ones whose

CHAPTER 1. INTRODUCTION 4

“leading coefficients” are nonsingular. These include the row-reduced (or column-

reduced if we consider two matrices to be equivalent if their columns generate

the same module) form [41], the weak Popov form [50], and the Popov form [41].

Informally, the leading coefficient with respect to row degrees has full row rank

for a matrix in row-reduced form, while it is in upper echelon form for a matrix

in weak Popov form. A matrix in the Popov form is in weak Popov form, and

additionally its leading coefficient with respect to column degrees is the identity

matrix. The leading coefficient with respect to row degrees is natural when we

consider taking polynomial combinations of the rows of the matrix. In some cases,

we can also reverse the coefficients to obtain algorithms to transform matrices so

that the trailing coefficient is nonsingular. The applications of these normal forms

are considered in Section 1.2.

Example 1.1 Consider the following matrices with entries in Z[z].

A(z) =

z4 + z3 + 10z + 4 4z4 + 2z3 + z2

z3 + 10 4z3 + z2

 B(z) =

 z3 + 4 z3 + z2

z3 + 10 4z3 + z2


C(z) =

z3 + 4 z3 + z2

6 3z3

 D(z) =

z3 + 2 z2

2 z3

 .

The leading coefficient with respect to row degrees of A(z) is

1 4

1 4

, which is

singular. Subtracting z times the second row from the first row gives B(z) with

leading coefficient

1 1

1 4

, which is nonsingular. Thus, B(z) is in row-reduced

CHAPTER 1. INTRODUCTION 5

form. Similarly, subtracting the first row from the second row gives C(z) with

leading coefficient

1 1

0 3

, so that C(z) is in weak Popov form (and hence row-

reduced). Finally, D(z) can be obtained from C(z) by row operations. Its leading

coefficient with respect to column degrees is the identity matrix. Thus, D(z) is in

Popov form. �

1.1 Computational Challenges

The row-reduced form and Popov form are obtained classically by performing in-

vertible row operations [41]. However, these classical algorithms often perform

poorly when coefficient growth is a concern. Although the size of the coefficients

in the input and the final output is often small, the size of the coefficients in the

intermediate results can grow exponentially. Since the complexity of arithmetic

operations (e.g. addition and multiplication of ring elements) depends on the size

of the operands, it is not sufficient to analyze only the number of arithmetic op-

erations performed by an algorithm. Instead, we must analyze the number of bit

operations performed.

CHAPTER 1. INTRODUCTION 6

Example 1.2 Consider the matrix

A =



−20 0 −7 −196 49

9 1 2 −4 0

−1 0 1 32 −7

−46 −5 −10 21 0

81 10 20 −35 1


∈ Z5×5.

It turns out that det A = 1 and so A is unimodular. Therefore, its Hermite form is

the identity matrix and its entries are small. If we eliminate the first two columns

using the extended Euclidean algorithm, the intermediate result is



1 0 −109 −3376 763

0 1 11 284 −63

0 0 −27 −836 189

0 0 −4969 −153855 34783

0 0 8739 270581 −61172


.

The size of the coefficients in the intermediate result has increased significantly.

Hafner and McCurley gave a more impressive example where a 20 × 20 ma-

trix with entries between 0 and 10 gave a Hermite form with an entry exceeding

105011 [39]. �

CHAPTER 1. INTRODUCTION 7

Example 1.3 Consider the matrix

A(z) =



−5z2 + 15z + 1 −z2 + z + 6 0 0 z − 3

8z2 + 5z − 3 −9z − 8 2z + 1 0 3

8z + 4 −6 2 0 0

−4z − 2 −2z2 − 6z − 7 z 1 2z + 2

−8z2 − 21z − 6 5z + 7 −2z − 3 0 1


∈ Q[z]5×5.

Here, detA(z) = 2 and again, A(z) is unimodular. Thus, its Hermite normal form

is a diagonal matrix whose nonzero entries are either 1 or 2. After eliminating

the first two columns, the intermediate result can be presented as a matrix of pairs

(α, β) where α is the degree and β is the number of decimal digits in the largest

coefficient of the polynomial entry:



(0, 1) (−∞, 0) (5, 20) (−∞, 0) (4, 23)

(−∞, 0) (0, 1) (2, 12) (−∞, 0) (1, 15)

(−∞, 0) (−∞, 0) (3, 2) (−∞, 0) (2, 3)

(−∞, 0) (−∞, 0) (6, 21) (0, 1) (5, 21)

(−∞, 0) (−∞, 0) (7, 23) (−∞, 0) (6, 24)


.

Notice that both the degree and the coefficient size of the entries increase. Again,

this growth is significant for larger matrices. �

In this thesis, we study algorithms for computing the row-reduced form, the

weak Popov form, and the Popov form for polynomial matrices (also known as

matrix polynomials). The row-reduced form and the weak Popov form are also

CHAPTER 1. INTRODUCTION 8

considered for matrices of shift polynomials, which are special cases of Ore poly-

nomials. For the general case of matrices of Ore polynomials our algorithm cannot

be used to obtain these normal forms. Nevertheless, our algorithm can be used to

perform row operations to determine the rank and a row-reduced basis for the left

nullspace. In the case of polynomial matrices our algorithms can also be used to

compute the corresponding normal forms based on column operations. The algo-

rithms considered in this thesis compute the normal forms (and the corresponding

transformation matrices) via row operations while controlling the growth of the

coefficients in the intermediate results. We concentrate our study for the case when

the coefficients of the polynomials in the matrix are integers or multivariate poly-

nomials, which covers many applications in computer algebra. In this case, näıve

implementations of the classical algorithms can lead to exponential growth in the

size of the intermediate results [36]. As a result, these algorithms may fail to com-

pute the answer due to a lack of resources (either time or space). When coefficient

growth is not a concern (e.g. when the coefficients are elements of a finite field),

other efficient algorithms can also be used [1, 3, 4, 11, 16, 38, 41, 50, 51, 53].

The Fast Fraction-Free Gaussian (FFFG) elimination algorithm by Beckermann

and Labahn [12] is the starting point of our study. We formulate the computation

of the normal forms in terms of finding certain solutions of linear systems of equa-

tions over the coefficient field. While standard techniques for solving linear system

of equations can be applied [6, 36], our algorithms take advantage of the special

structure in the coefficient matrix to perform Gaussian elimination efficiently. We

then apply fraction-free and modular techniques to control the coefficient growth

CHAPTER 1. INTRODUCTION 9

in the intermediate expressions. By studying the associated linear systems of equa-

tions, we obtain bounds on the size of intermediate results leading to bounds on

complexity. Moreover, our algorithms are general in that no special properties on

the input are assumed (e.g. full rank).

1.2 Applications

Row-reduced (and column-reduced) form and Popov form of polynomial matri-

ces have numerous applications in control theory. For example, the differential

equations describing multivariable systems can be transformed into algebraic de-

scriptions by the Laplace transform. Hence, the transfer functions can be modelled

by matrix-fraction descriptions (MFDs) represented by ratios of polynomial matri-

ces [8, 41, 43].

Example 1.4 Let u1(t) and u2(t) be the inputs of a linear system, and y1(t) and

y2(t) be the outputs. Suppose that the inputs and outputs are related by the differ-

ential equations

y′′
1(t) + 5y1(t) + y′

2(t) − 5y2(t) = 2u′
1(t) + u1(t) + 3u′′

2(t) + 3u2(t)

y′
1(t) + 5y1(t) + 3y′′

2(t) + y2(t) = 3u′′
1(t) + u1(t) + u′

2(t) + u2(t).

Applying the Laplace transform we get the system (assuming that the initial condi-

CHAPTER 1. INTRODUCTION 10

tions are zero)

s2 + 5 s − 5

s + 5 3s2 + 1

 ·

Y1(s)

Y2(s)

 =

 2s + 1 3s2 + 3

3s2 + 1 s + 1

 ·

U1(s)

U2(s)

 .

Thus,

Y1(s)

Y2(s)

 =

s2 + 5 s − 5

s + 5 3s2 + 1


−1

·

 2s + 1 3s2 + 3

3s2 + 1 s + 1

 ·

U1(s)

U2(s)

 ,

so that the outputs are represented by a matrix fraction multiplied by the inputs.

�

When the numerator and the denominator are relatively prime, one can obtain

a minimal state-space realization of the system. That is, one obtains a model with

the fewest number of states that realize the input-output relation. Algorithms to

compute a column-reduced form or the Popov form can be used to compute the

greatest common (one-sided) divisor (GCD) of the numerator and the denominator

and remove the common factor [12, 21, 41]. These algorithms can also be used

to compute a one-sided least common multiple (LCM) and a minimal polynomial

basis. Furthermore, they can be used to solve related problems such as the minimal

partial realization problem [41], which finds the shortest matrix recurrence relation

for a sequence of matrices.

Example 1.5 Let A(z) and B(z) be two matrices having the same number of

CHAPTER 1. INTRODUCTION 11

columns. If we form the matrix

F(z) =

A(z)

B(z)


and compute the row-reduced form, we obtain a matrix of the form

G(z)

0

 .

It can be shown that G(z) is a greatest common right divisor of A(z) and B(z) (see

Section 4.5). �

Different types of state-space realization can be obtained depending on whether

the denominator is in row-reduced (and column-reduced) form or in Popov form. In

addition, these normal forms have the advantage that the row degrees are minimal

among all equivalent matrices. These normal forms also ensure that the leading

coefficient with respect to row degrees is nonsingular, which is a standard assump-

tion if one wishes to perform division on polynomial matrices [26, 54, 55, 56]. We

also point out that if we “shift” the input matrix and compute the Popov form, we

obtain the shifted Popov form which includes the Hermite form [14, 15].

Transforming a polynomial matrix into weak Popov form and Popov form can

also be viewed as lattice reduction in the module generated by the rows of the

matrix [50]. This has applications in factoring bivariate polynomials.

Matrices of Ore polynomials can be used to represent systems of linear differen-

tial equations, difference equations, and other generalizations. By performing row

CHAPTER 1. INTRODUCTION 12

operations on the matrices to obtain a normal form, we can determine the rank and

obtain a row-reduced basis of the left nullspace of such matrices [9]. This allows us

to determine if an inhomogeneous system of equations has any solution.

Matrices of shift polynomials (a special case of Ore polynomials) can be used to

represent systems of linear recurrence equations [1, 2, 3, 4, 7, 9, 10]. By transform-

ing such matrices into row-reduced form, one can obtain bounds on the degrees of

the numerator and the denominator of any rational solution of the system. The

method of undetermined coefficients can then be used to solve for the solution.

This approach can also be used to find rational solutions of linear functional sys-

tems, which include linear systems of equations containing linear differential and

difference operators as well as other generalizations.

Example 1.6 As an example, we show how to obtain degree bounds of polynomial

solutions of a homogeneous system of linear differential equations with polynomial

coefficients. We represent a polynomial as a sequence of its coefficients, and the

action of the operators on this sequence can be represented by shift operators on the

sequences. For example, multiplication by x corresponds to shifting the coefficient

of xn to the coefficient of xn+1; differentiation corresponds to shifting the coefficient

of xn to the coefficient of xn−1 while multiplying by n. A system of differential

equations can then be represented as a system of linear recurrences on the coefficient

sequences

R(n, Z) · Xn = 0,

where R(n, Z) is a square matrix of linear shift operators, Z is the shift operator,

and X = {Xi}∞i=0 is a sequence of the coefficients of the polynomials. If we write

CHAPTER 1. INTRODUCTION 13

R(n, Z) =
∑N

i=0 Ri(n)Zi where Ri(n) are polynomial matrices in n, we get

R0(n) · Xn = −
N∑

i=1

Ri(n)Zi · Xn = −
N∑

i=1

Ri(n) · Xn+i, (1.1)

By reversing coefficients, our algorithm can be used to transform the system into

an equivalent one such that R0(n) is nonsingular for all n ≥ K for some K that

can be easily obtained from R0. In particular, we can set K to be larger than the

largest integer root of det R0, which is not identically zero because R0 is nonsingular.

This allows us to “solve” the coefficient Xn in terms of Xn+i. If Xn+i = 0 for all

i > 0 and R0(n) is nonsingular, it follows from (1.1) that Xn = 0. Therefore, if

a polynomial solution of degree D exists then K ≥ D. Hence, K can be used as a

degree bound on the polynomial solutions. �

1.3 Computation Techniques: Fraction-Free and

Modular Algorithms

In this section, we examine two methods to control growth in the coefficient size

in intermediate results. While the size of the coefficients in the input and the

required normal form is often small, the size of coefficients in intermediate results

can grow significantly. Any efficient algorithm must control this growth. We will

use Gaussian elimination to illustrate these methods.

Row operations are often used to eliminate an entry in the matrix. For example,

CHAPTER 1. INTRODUCTION 14

given the matrix

A0 =



a b c · · · · · ·
d e f · · · · · ·
g h i · · · · · ·
...

...
...


∈ Dm×s,

we can subtract d/a times the first row from the second row to eliminate the first

column. Notice that fractions are introduced and the simplification of fractions

involve hidden computations (e.g. GCD computations). Alternatively, we may

multiply the second row by a and then subtract d times the first row. Applying

this to all rows gives

A1 =



a b c · · · · · ·
0 ae − bd af − cd · · · · · ·
0 ah − bg ai − cg · · · · · ·
...

...
...


.

If we perform Gaussian elimination with these row operations, we have division-free

Gaussian elimination. The entries of the transformed matrix remain in D, but the

size of the entries may double after each step. This leads to an algorithm with an

exponential complexity. GCD computations can be performed to remove common

factors in each row, but then there is little advantage of using division-free Gaussian

elimination.

If we perform one more step of elimination to eliminate the second column, we

CHAPTER 1. INTRODUCTION 15

get

A2 =



a b c · · · · · ·
0 ae − bd af − cd · · · · · ·
0 0 a(· · ·) · · · · · ·
...

...
...


,

where every element in the last m − 2 rows is divisible by a. Therefore, we can

remove the common factor without any GCD computation. Continuing this way,

it can be shown that the entries in the last m − k rows of Ak are divisible by

Ak−1
(k−1,k−1), the pivot element used in the previous step. A known common factor

is easily predicted without any GCD computation. This is known as the fraction-

free Gaussian elimination [6, 36]. It can be shown that this is the largest possible

factor removed in general (i.e. if the entries of the matrix are distinct indeter-

minates), and that all intermediate results obtained during the algorithm can be

represented as minors of the input matrix. This gives a polynomial bound on the

size of the intermediate results, leading to an efficient algorithm.

Another method to control growth is to use modular homomorphisms to map

the problem into other domains in which coefficient growth is not an issue (or less

severe) [36]. The results computed under a number of different modular homo-

morphisms are used to reconstruct the final answer using the Chinese remainder

theorem. For example, if D = Z, we can perform the computations over the finite

field Zp where p is a prime. If D = Z[x] we may apply an evaluation homomorphism

and perform the computation in Z. Instead of performing Gaussian elimination on

A over Z, we may perform the elimination over Zp for several primes p and recon-

struct the result by Chinese remaindering. An algorithm using this approach is

CHAPTER 1. INTRODUCTION 16

called a modular algorithm.

There are two main issues in modular algorithms. First, the result computed

under a modular homomorphism must be the homomorphic image of the desired

result. If the answer is not unique then we need to choose a normalization to ensure

that the results computed under different modular homomorphisms correspond to

the same answer in the original domain. However, it is possible that the result

computed under a modular homomorphism is not the image of the desired result,

regardless of the normalization chosen. For example, a matrix that is nonsingular

over the field of fractions of D may become singular when a modular homomorphism

is applied. We call such a modular homomorphism unlucky, and the computed

result is typically discarded. Secondly, a bound on the size of the coefficients in the

result needs to be established. This allows us to obtain a bound on the number of

homomorphic images required to reconstruct the final result. These two issues are

usually dealt with using linear algebra.

Fraction-free and modular algorithms have also been used successfully for com-

puting GCDs of polynomials and Ore polynomials [19, 20, 28, 29, 36, 44, 45, 47].

1.4 Overview

The remaining chapters of this thesis are organized as follows.

In Chapter 2, we define the mathematical objects of interest and the notation

used in this thesis. We also briefly review some of the existing approaches.

In Chapter 3, we consider the problem of performing row reduction of a matrix

of Ore polynomials in a fraction-free way. This allows us to determine the rank

CHAPTER 1. INTRODUCTION 17

and a row-reduced basis for the left nullspace of a matrix of Ore polynomials. This

work has been reported in [9].

In Chapter 4, we show that the algorithm in the previous chapter guarantees

additional properties when it is applied to matrices of shift polynomials (which

include ordinary polynomials). Using these properties we obtain a fraction-free

algorithm for computing a weak Popov form. This also leads to a fraction-free

algorithm for computing one-sided GCD and LCM that generalizes the classical

subresultant theory [19, 20, 28, 44, 45]. This work has been reported in [9, 10].

In Chapter 5, we consider an alternate approach to control coefficient growth.

Based on the algorithm given in the previous chapter, we develop a modular algo-

rithm for computing a row-reduced form of a polynomial matrix. We define lucky

primes and give a bound on the number of primes needed to reconstruct the final

result. We also examine how we can make use of the results computed under an

unlucky prime in some cases. Part of this work has been reported in [24].

In Chapter 6, we give a modular algorithm for computing the Popov form of a

polynomial matrix. We define lucky primes based on the definition of lucky primes

in the previous algorithm. We also give a bound on the size of the coefficients in the

final result, leading to a bound on the number of primes required for reconstruction.

Finally, in Chapter 7 we give some concluding remarks and a discussion on

future research directions.

Chapter 2

Preliminaries

In this chapter we give definitions of the mathematical objects of interest in this

thesis. We also briefly review existing approaches for computing normal forms of

matrices of polynomials and Ore polynomials.

2.1 Basic Definitions

Linear differential equations are often studied in terms of the associated differential

operator [18]. For example, the differential equation

y′′(x) − (2x + 3)y′(x) + (6x − 2)y(x) = 0

can be rewritten in terms of a linear differential operator as

(D2 − (2x + 3)D + (6x − 2))y(x) = 0,

18

CHAPTER 2. PRELIMINARIES 19

where D denotes differentiation with respect to the independent variable x. We

can view linear differential operators as polynomials in D, with the exception that

multiplication by D obeys the product rule

(Df)g = D(fg) = fg′ + f ′g = (fD + f ′)g.

Therefore,

Df = fD + f ′. (2.1)

Algebraic operations (e.g. factoring) on linear differential operators can help in

determining the solutions of the equation. A similar multiplication rule is used when

dealing with operators arising from linear recurrence equations or other similar

equations. For example, the recurrence equation

yn+2 − (2n + 3)yn+1 + (6n − 2)yn = 0

can be represented by the operator

E2 − (2n + 3)E + (6n − 2)

where E denotes the shift operator with respect to n. In this case, we have

(Ef)g = E(fg) = (Ef)(Eg).

CHAPTER 2. PRELIMINARIES 20

Therefore,

Ef = (Ef)E. (2.2)

Ore polynomials [52] allow us to study all such operators in a unified way.

Definition 2.1 (Ore ring) Let D be an integral domain and QD be its field of frac-

tions. The set of polynomials QD[Z; σ, δ] in Z is an Ore ring, with σ (the conjugate)

an automorphism on QD, and δ (the σ-derivation) an additive homomorphism on

QD such that the ring multiplication obeys the rule

Z · a = σ(a) · Z + δ(a)

for all a ∈ QD. �

Notice that by expanding both sides of Z · (ab) = (Z · a) · b, we see that δ satisfies

δ(ab) = σ(a)δ(b) + δ(a)b.

Example 2.2 Let K be a field. Some examples of Ore rings are

(a) D = K[x] with Z the differential operator and σ(f(x)) = f(x), δ(f(x)) =

d
dx

f(x). Therefore, Z · f(x) = f(x) ·Z + f ′(x). This models linear differential

operators as shown in (2.1);

(b) D = K[n] with Z the shift operator such that σ(f(n)) = f(n + 1) and δ = 0.

This models linear shift operators as shown in (2.2);

CHAPTER 2. PRELIMINARIES 21

(c) D = K[x] with Z the q-differentiation operator. In this case, σ(f(x)) = f(qx)

and δ(f(x)) = f(qx)−f(x)
qx−x

;

(d) D = K[n, q] with Z the q-shift operator. In this case, σ(f(n)) = f(qn) and

δ(f(n)) = 0.

(e) D = K[x] with Z the Eulerian operator. Here, σ(f(x)) = f(x) and δ(f(x)) =

xf ′(x);

(f) D = K[x] where Z is the Mahlerian operator and let p > 1 be an integer.

Then, σ(f(x)) = f(xp) and δ = 0.

More examples can be found, for example, in [25]. �

When δ = 0, we have the ring of shift polynomials1 and we use the notation

QD[Z; σ]. If σ = 1QD
, the identity function on QD, and δ = 0, then we have the usual

commutative polynomial ring QD[Z]. We will often use z instead of Z to emphasize

that the indeterminate commutes with the coefficients under multiplication, and

denote the ring of polynomials as QD[z]. We note that by a suitable change of

variables, we may always transform an Ore ring into an equivalent in which σ is

the identity function or δ is the zero function [27], but the transformation may

introduce fractions even if the original Ore polynomials have coefficients in D.

1We note that some authors call these “skew polynomials” (or “skew Laurent polynomial” if
negative powers are allowed), while other authors use the term “skew polynomials” synonymously
with “Ore polynomials.” We will use the term “shift polynomials” to avoid confusion.

CHAPTER 2. PRELIMINARIES 22

Given an m × s matrix of Ore polynomials F(Z) ∈ QD[Z; σ, δ]m×s, we denote

by MF(Z) the QD[Z; σ, δ]-module generated by the rows of F(Z). That is,

MF(Z) =
{

q1(Z) · F(Z)(1,·) + · · · + qm(Z) · F(Z)(m,·) : qi(Z) ∈ QD[Z; σ, δ]
}

=
{
Q(Z) · F(Z) : Q(Z) ∈ QD[Z; σ, δ]1×m

}
,

where F(Z)(i,·) denotes the ith row of F(Z). The left nullspace of F(Z), denoted

NF(Z), is the QD[Z; σ, δ]-module defined as

NF(Z) =
{
V(Z) ∈ QD[Z; σ, δ]1×m : V(Z) · F(Z) = 0

}
.

We also define the rank of the matrix F(Z), denoted rank F(Z), to be the maximum

number of QD[Z; σ, δ]-linearly independent rows of F(Z). We remark that our

definition of rank is different from (and perhaps simpler than) that of [3, 4] or [27]

who consider the rank of the QD[Z; σ, δ]-module generated by the rows of F(Z) or

the rank of the matrix over the skew field of left fractions of elements in QD[Z; σ, δ].

These quantities are shown to be equivalent in [9].

We are interested in performing two types of elementary row operations on

F(Z). An elementary row operation of the first type, or simply elementary row

operation, is one of the following operations:

(a) interchange two rows;

(b) multiply a row by a nonzero element in QD[Z; σ, δ];

(c) add a polynomial multiple of one row to another.

CHAPTER 2. PRELIMINARIES 23

An elementary row operation of the second type is one of the following:

(a) interchange two rows;

(b) multiply a row by a nonzero element in QD;

(c) add a polynomial multiple of one row to another.

The difference between the two types of operations is the multiplier allowed in

(b). We note that elementary row operations of the first type are not necessarily

invertible over QD[Z; σ, δ]. Row operations are also called row reductions.

Formally, we can view a sequence of elementary row operations of the first type

as a matrix U(Z) ∈ QD[Z; σ, δ]m×m with the result of these row operations given by

T(Z) = U(Z) ·F(Z) ∈ QD[Z; σ, δ]m×s. For row operations of the second type U(Z)

has the additional property that there exists a left inverse V(Z) ∈ QD[Z; σ, δ]m×m

such that V(Z) · U(Z) = Im. It can be shown that V(Z) is also a right inverse of

U(Z) [9]. We say that U(Z) is unimodular if U(Z) has an inverse.

We can similarly define elementary column operations. Sequences of column

operations correspond to multiplication by a transformation matrix on the right.

In this thesis we will study column operations only for polynomial matrices2, and

describe our algorithms in terms of row operations. In this case, we may perform

column operations by performing row operations on the transpose of F(z) and then

taking the transpose of the results. The normal forms studied in this thesis satisfy

2For matrices of Ore polynomials, we can use a similar technique by applying row operations to
the adjoint F(Z)∗, where (F(Z)∗)(i,j) = (F(Z)(j,i))∗ and ∗ is the adjoint of an Ore polynomial [5].
However, the adjoint of an Ore polynomial is only defined in some cases, and the usefulness of the
corresponding column normal forms is unclear. Therefore we will only consider row operations
and normal forms based on row operations for matrices of Ore polynomials in this thesis.

CHAPTER 2. PRELIMINARIES 24

the property that a matrix is in normal form defined in terms of row operations

if and only if its transpose is in the corresponding normal form defined in terms

of column operations. One can, of course, reformulate the algorithms in terms of

column operations for efficiency.

2.2 Notation

We shall adopt the following conventions for this thesis. We denote the ring of

integers Z and the field of rational numbers Q. For any prime p ∈ Z, we denote by

Zp the finite field of p elements.

We assume that F(Z) ∈ QD[Z; σ, δ]m×s. Let N = deg F(Z), and write

F(Z) =
N∑

j=0

FjZ
j, with Fj ∈ Qm×s

D .

We also write cj (F(Z)) = Fj as the coefficient of Zj in F(Z). We denote the

elements of F(Z) by F(Z)(k,�), and the elements of Fj by Fj
(k,�). The ith row of

F(Z) is denoted F(Z)(i,·) and the jth column is denoted F(Z)(·,j). For any sets of

row and column indices I and J , F(Z)(I,·) is the submatrix of F(Z) consisting of

the rows indexed by I, F(Z)(·,J) is the submatrix of F(Z) consisting of the columns

indexed by J , and F(Z)(I,J) is the submatrix of F(Z) consisting of the rows and

columns indexed by I and J .

For any vector of integers (also called multi-index) �ω = (�ω(1), . . . , �ω(p)), we de-

note by |�ω| =
∑p

i=1 �ω(i). When <, ≤, >, and ≥ are used to compare vectors it

is understood that the relationship is true if and only if it is true for each pair of

CHAPTER 2. PRELIMINARIES 25

components in the vectors. Similarly max and min give the vectors whose compo-

nents are the maximum and minimum of the corresponding components of their

input vectors. Additionally, two vectors can be compared in lexicographical order.

We say that �v ≤lex �w if �v = �w or if the leftmost nonzero entry in �v − �w is negative.

The vector �ei denotes the ith unit vector (of the appropriate dimension) such that

�e
(i)
i = 1 and �e

(j)
i = 0 for j �= i; we also have �e = (1, . . . , 1) (of the appropriate

dimension). We denote by Im the m×m identity matrix, and by Z�ω the matrix of

Ore polynomials having Z�ω(i)
on the diagonal and 0 everywhere else.

A matrix of Ore polynomials F(Z) is said to have row degree �ν = rdeg F(Z) (col-

umn degree �µ = cdeg F(Z)) if the ith row has degree �ν(i) (the jth column has degree

�µ(j)). The leading coefficient of F(Z), denoted LC (F(Z)), is FN . The leading row

coefficient, denoted LCrow (F(Z)), is defined as LC
(
ZN ·�e−rdeg F(Z) · F(Z)

)
, and

the leading column coefficient, denoted LCcol (F(Z)), is defined as LCrow

(
F(Z)T

)T

if F(Z) is a polynomial matrix.

Example 2.3 Let

A(Z) =

nZ2 + 2 (n − 1)Z2

nZ (n − 1)Z − 3

 .

Here N = 2 and rdeg A(Z) = (2, 1). If A(Z) ∈ Q(n)[Z; σ]2×2 such that σ(a(n)) =

a(n + 1), then

LCrow (A(Z)) = LC
(
Z(0,1) · A(Z)

)
=LC


 nZ2 + 2 (n − 1)Z2

(n + 1)Z2 nZ2 − 3Z


 =

 n n − 1

n + 1 n

 .

CHAPTER 2. PRELIMINARIES 26

On the other hand, if we consider A(Z) ∈ Q(n)[z]2×2, then

LCrow (A(Z)) =

n n − 1

n n − 1

 .

�

Remark 2.4 The leading row coefficient is defined in this manner because we are

interested in the elements of MF(Z). That is, we wish to examine elements of

the form Q(Z) · F(Z) for some Q(Z) ∈ QD[Z; σ, δ]1×m. If �µ = rdeg F(Z) and

d = max1≤j≤m

{
deg Q(Z)(1,j) + �µ(j)

}
, then it is useful if we can guarantee that

deg(Q(Z) · F(Z)) = d. In other words, we need to guarantee that the coefficient of

Zd in Q(Z) · F(Z) does not vanish. This coefficient can be written in terms of the

leading row coefficient as

m∑
j=1

Qd−�µ(j)
(1,j) · Zd−�µ(j) · F(Z)(j,·)

=
m∑

j=1

Qd−�µ(j)
(1,j) · Zd−N · ZN−�µ(j) · F(Z)(j,·)

=

[
Qd−�µ(j)

(1,1) · · · Qd−�µ(j)
(1,m)

]
· Zd−N · LCrow (F(Z)) .

This allows us to easily predict the degree of Q(Z) · F(Z) from the degrees of

Q(Z) and F(Z) in a similar way as in the case of scalar polynomials, provided

that LCrow (F(Z)) satisfies additional properties (see Lemma 3.3). �

CHAPTER 2. PRELIMINARIES 27

2.3 Normal Forms

A normal form is simply a representative chosen from a class of equivalent objects.

An object in normal form usually has some desirable properties. For example, it

may be easy to obtain from the normal form invariants for all equivalent objects.

In this thesis, we focus on row-equivalent matrices of Ore polynomials. We consider

two matrices of Ore polynomials to be equivalent if their rows generate the same

QD[Z; σ, δ]-module. In other words, two matrices A(Z) and B(Z) are equivalent if

there exists a unimodular matrix U(Z) such that A(Z) = U(Z) · B(Z).

We first give the definition of the row-reduced (column-reduced) form.

Definition 2.5 A matrix F(Z) ∈ QD[Z; σ, δ]m×s is in row-reduced form (or F(z)

is row-reduced) if rank LCrow (F(Z)) = m. If F(z) ∈ QD[z]m×s then F(z) is in

column-reduced form (or F(z) is column-reduced) if rank LCcol (F(z)) = s. Here,

the rank of a matrix is defined over QD. �

Properties of polynomial matrices in row-reduced and column-reduced forms are

well known [41]. Some of these properties for row-reduced forms are extended to

matrices of Ore polynomials in [9].

Example 2.6 Let A(Z) be the matrix of Ore polynomials defined in Example 2.3.

If A(Z) ∈ Q(n)[Z; σ]2×2 such that σ(a(n)) = a(n + 1), then LCrow (A(Z)) is

nonsingular, so that A(Z) is row-reduced. On the other hand, if we consider

A(Z) ∈ Q(n)[z]2×2, then LCrow (A(Z)) is singular and so A(Z) is not row-reduced.

�

Before we define the Popov form, we first define a normal form called the weak

CHAPTER 2. PRELIMINARIES 28

Popov form (also called quasi-Popov form [14]). The weak Popov form is often the

intermediate form obtained when one wishes to compute the Popov form from a

matrix in row-reduced form [50].

Definition 2.7 A matrix F(Z) ∈ QD[Z; σ, δ]m×s is in weak Popov form if the

leading row coefficient of the submatrix formed from the nonzero rows of F(Z) is in

upper echelon form (up to row permutation). In other words, if we define the pivot

index of row i, denoted Πi, to be

Πi =


min1≤j≤s

{
j : deg F(Z)(i,j) = deg F(Z)(i,·)

}
F(Z)(i,·) �= 0

0 F(Z)(i,·) = 0

,

then Πi �= Πj whenever i �= j, and F(Z)(i,·) and F(Z)(j,·) are both nonzero. �

A matrix in weak Popov form is also row-reduced if there are no zero rows. We

can also define the weak Popov form in terms of the leading column coefficient for

polynomial matrices. We are now ready to define the Popov form.

Definition 2.8 A matrix F(Z) ∈ QD[Z; σ, δ]m×s is in Popov form if it is in weak

Popov form, and for all i such that F(Z)(i,·) is nonzero,

(a) F(Z)(i,Πi) is monic;

(b) deg F(Z)(j,Πi) < deg F(Z)(i,Πi) for all j �= i. �

A Popov form based on column operations can also be defined for polynomial

matrices.

CHAPTER 2. PRELIMINARIES 29

Example 2.9 The matrix A(Z) in Example 2.3 is not in weak Popov form because

Π1 = Π2 = 1. Let

P(Z) =

nZ2 + 2 (n − 1)Z2

Z (n − 1)Z3 − 3

 .

Here, Π1 = 1 and Π2 = 2 and so P(Z) is in weak Popov form. Furthermore, the

degree constraints in Definition 2.8(b) are satisfied. Thus, the matrix

P∗(Z) =

 1
n

0

0 1
n−1

 · P(Z)

is in Popov form. �

Remark 2.10 We note that whether the matrix P(Z) in Example 2.9 is in weak

Popov form does not depend on whether the entries are considered to be Ore poly-

nomials, shift polynomials, or ordinary polynomials. This is true in general because

σ is an automorphism on the coefficient field, so that the upper echelon structure

of the leading coefficient is unaffected by the application of σ. Similarly, whether

P∗(Z) is in Popov form does not depend on σ. �

Any matrix F(Z) ∈ QD[Z; σ, δ]m×s can be transformed into one of the above

normal forms by means of elementary row operations of the second type. Nei-

ther the row-reduced form nor the corresponding transformation matrix is unique.

However, it can be shown that the row degree of the row-reduced form is minimal,

and is unique up to permutation. The weak Popov form and the corresponding

transformation matrix are also not unique, but the set of pivot indices are unique.

Finally, the Popov form is unique (up to row permutation) for any input matrix

CHAPTER 2. PRELIMINARIES 30

F(Z), but the transformation matrix is only unique when F(Z) has full row rank.

Otherwise, the transformation matrix is unique only if we impose additional degree

constraints on its elements [15].

Remark 2.11 The Popov form provides a useful tool since it is unique among all

matrices equivalent under elementary row operations. It has the further advantage

that the row degree is minimized. On the other hand, although the Hermite form

is also unique, the degrees of its entries can be large. The Popov form is most

useful if we are only interested in having a “nice” leading coefficient. It is useful

for determining if rows of two matrices generate the same module. It is not useful

for solving systems of linear diophantine equations because a matrix in Popov form

is not triangular. �

2.4 Special Matrices Related to Row Operations

In this section we define the striped Krylov matrix, which is a tool that allows us to

study row operations on matrices of Ore polynomials in terms of linear algebra. By

reformulating row operations as linear systems of equations over QD, it is possible

to apply standard tools from linear algebra such as determinants and fraction-free

Gaussian elimination [6] to study row operations.

We represent row operations on the matrix F(Z) as multiplication by a matrix

of Ore polynomials U(Z) on the left. Writing the result of the row operations as

T(Z) = U(Z) ·F(Z), we see that each row of T(Z) can be written as a polynomial

combination of the rows of F(Z). If �µ = cdeg U(Z), we can write the ith row of

CHAPTER 2. PRELIMINARIES 31

T(Z) as

T(Z)(i,·) =
m∑

j=1

U(Z)(i,j) · F(Z)(j,·) =
m∑

j=1

�µ(j)∑
k=0

Uk
(i,j) · Zk · F(Z)(j,·). (2.3)

To study this equation using linear algebra, we rewrite (2.3) into an equation over

QD. We define for any A(Z) ∈ QD[Z; σ, δ]m×s and multi-index �ω the corresponding

matrix

A�ω =

[
A0

(·,1) · · · A�ω(1)
(·,1) | · · · | A0

(·,m) · · · A�ω(m)
(·,m)

]
.

We also define

K(�µ,F(Z)) =



F(Z)(1,·)

...

Z�µ(1) · F(Z)(1,·)

...

F(Z)(m,·)

...

Z�µ(m) · F(Z)(m,·)



.

This allows us to write (2.3) as

T(Z)(i,·) = U�µ
(i,·) · K(�µ,F(Z)), (2.4)

where U�µ
(i,·) is a vector over QD. We see from (2.4) that

T�ω
(i,·) = U�µ

(i,·) · K(�µ,F(Z))�ω. (2.5)

CHAPTER 2. PRELIMINARIES 32

Row operations are often done to eliminate certain coefficients. Thus, if we wish to

eliminate the first �ω(j) coefficients of T(Z)(i,j) it is equivalent to solving the linear

system of equations (over QD)

U�µ
(i,·) · K(�µ, �ω,F(Z)) = 0 (2.6)

for some multi-index �µ, where K(�µ, �ω,F(Z)) := K(�µ,F(Z))�ω−�e, such that if �ω(j) =

0, column j is not present in K(�µ, �ω,F(Z)).

Definition 2.12 The matrix K(�µ, �ω,F(Z)) is called the striped Krylov matrix of

degree �µ and order �ω for F(Z). When F(Z) is clear from the context, we will simply

write K(�µ, �ω). �

Notice the striped Krylov matrix can be thought of as having m stripes, each corre-

sponding to a row of F(Z). The first row in each stripe gives the coefficients of F(Z)

in the corresponding row, and each successive row is obtained by multiplying the

previous row by Z on the left while ignoring the higher order terms introduced. The

structure inherent in the striped Krylov matrix will be exploited in our algorithms.

Example 2.13 Let a(z), b(z) ∈ QD[z] of degrees n1 and n2, respectively, such that

n1 ≥ n2. Consider the reciprocal polynomials a∗(z) = zn1 · a(1/z) and b∗(z) =

zn2 · b(1/z). If F(z) = [a∗(z), b∗(z)]T is a 2 × 1 polynomial matrix, we see that

K((n2 − 1, n1 − 1), n1 + n2) is the well-known Sylvester matrix [36]. �

CHAPTER 2. PRELIMINARIES 33

Example 2.14 Let �µ = �ω = (2, 2), and

F(Z) =

2Z2 + 2xZ + x3 Z2 − Z + (2x + 1)

(x − 1)Z + 2 3xZ − x

 ∈ Q(x)[Z; σ, δ]2×2,

with σ(a(x)) = a(x) and δ(a(x)) = d
dx

a(x). Then

K(�µ, �ω,F(Z)) =



x3 2x 2 2x + 1 −1 1

3x2 x3 + 2 2x 2 2x + 1 −1

6x 6x2 x3 + 4 0 4 2x + 1

2 x − 1 0 −x 3x 0

0 3 x − 1 −1 −x + 3 3x

0 0 4 0 −2 −x + 6


.

�

Example 2.15 We can write K(�µ, �ω) as a matrix consisting of m × s blocks Bij,

such that K(�µ, �ω) = [Bij] where Bij is a (�µ(i)+1)×�ω(j) block. If F(Z) ∈ QD[Z; σ]m×s

and �ω(j) = k, then

Bij =



σ0(F0
(i,j)) σ0(F1

(i,j)) σ0(F2
(i,j)) · · · · · · σ0(Fk−1

(i,j))

0 σ1(F0
(i,j)) σ1(F1

(i,j)) · · · · · · σ1(Fk−2
(i,j))

...
.

...

0 · · · 0 σ�µ(i)
(F0

(i,j)) · · · σ�µ(i)
(Fk−�µ(i)−1

(i,j))


.

�

The striped Krylov matrix is rectangular in general, and we also need to define

CHAPTER 2. PRELIMINARIES 34

particular submatrices that are often useful in analyzing pivoting schemes.

Definition 2.16 Let J be the lexicographically smallest set of column indices such

that K(�ν, �ω,F(Z))(·,J) has full column rank for some �ν. The matrix K∗(�µ, �ω,F(Z))

is defined to be the submatrix K(�µ, �ω,F(Z))(·,J). �

Intuitively, K∗(�µ, �ω) removes from K(�µ, �ω) the columns that are zero (and hence

do not require elimination) if one performs Gaussian elimination to eliminate the

columns in order, regardless of the pivoting scheme chosen. We note that K∗(�µ, �ω)

is square if rank K(�µ, �ω) = |�µ + �e|.

2.5 Previous Approaches

In this section we give a brief overview of other approaches for computing the

normal forms we are interested in.

2.5.1 Direct Methods

In the first group of algorithms [1, 3, 4, 11, 41, 50], elementary row operations of

the second type are used to eliminate unwanted coefficients until the desired prop-

erties are satisfied. The row operations are chosen such that the process eventually

terminates. For example, a polynomial matrix F(z) can be transformed into row-

reduced form by repeatedly finding a nonzero vector in the left kernel of the leading

row coefficient of the intermediate result [11]. That is, a vector �w �= �0 such that

�w · LCrow (F(z)) = �0,

CHAPTER 2. PRELIMINARIES 35

where we assume that �w(k) = 0 if F(z)(k,·) is the zero row. Such a vector exists if

and only if F(z) is not in row-reduced form. Let �µ = rdeg F(z) and choose a row

k such that �µ(k) is maximal among the rows j with �w(j) �= 0. We can apply the

following elementary row operations of the second type represented by the identity

matrix with the kth row replaced,

Q(z) =



1

. . .

�w(1) · z�µ(k)−�µ(1) · · · �w(k) · · · �w(m) · z�µ(k)−�µ(m)

. . .

1


, (2.7)

which reduces the degree of the kth row. Therefore, this process must eventually

terminate and we obtain a polynomial matrix in row-reduced form. The same

approach can be extended to matrices of Ore polynomials [9] (see Theorem 3.1).

As suggested in [3, 4], the vector �w in the above algorithm could be chosen in D1×m

by performing fraction-free Gaussian elimination on LCrow (F(z)) [6], leading to a

fraction-free algorithm for row-reducing a matrix of Ore polynomials. However,

extraneous factors are not removed between two steps. In order to prevent an

exponential growth of coefficients, it would still be necessary to remove the content

of the rows of the intermediate results during the computations, an operation which

could be very expensive.

Similarly, a weak Popov form and the Popov form can be obtained by eliminating

high order coefficients by elementary row operations of the second type. These

CHAPTER 2. PRELIMINARIES 36

algorithms are often sufficient when coefficient growth is not a concern (e.g. if

the coefficients of the polynomials come from a finite field). However, there is no

explicit control of coefficient growth in other cases.

2.5.2 Indirect Methods

Other algorithms obtain the normal forms indirectly by solving systems of linear

equations instead of applying elementary row operations. They typically make use

of algorithms for computing a solution with special properties, such as a minimal

polynomial basis, and extract the normal form from the solution. It is well known

that the rows of a polynomial matrix form a minimal polynomial basis for the mod-

ule generated by the rows if and only if the polynomial matrix is row-reduced [41].

For example, to find U(z) · F(z) = T(z) such that T(z) is in row-reduced form, a

minimal polynomial basis of the left nullspace of the matrix [F(z)T · zb, −Im]T is

computed for a sufficiently large b [16, 38, 51]. The minimal polynomial basis can

then be written as [U(z), T(z) ·zb] where T(z) ·zb (and hence T(z)) is row-reduced

because U(z) does not contribute to the leading row coefficient of [U(z), T(z) · zb]

when b is sufficiently large. Such a “shift” in the input is also used in [14, 15] to

compute the Popov form of a polynomial matrix indirectly. The indirect methods

are often used in a numerical setting (i.e. with floating-point numbers) because

the algorithms used for solving the system of equations have desirable numerical

properties. A disadvantage of these methods is that even if the input matrix is

already in normal form, the algorithm cannot detect this easily and must perform

all of its calculations. In addition, both the degree and the dimensions of the input

CHAPTER 2. PRELIMINARIES 37

are increased because of the shift and the augmented matrix.

2.5.3 Fraction-free Method

The Fast Fraction-free Gaussian (FFFG) elimination algorithm of Beckermann and

Labahn [12] is an algorithm that can be used to perform row operations on polyno-

mial matrices in a fraction-free way. The algorithm has been extended to compute

the row-reduced form for polynomial matrices [13]. We give a very brief overview

of the FFFG elimination algorithm here. The details of this algorithm can also be

found as a special case of the algorithm in Chapter 3 and Chapter 4, where we

generalize the algorithm for matrices of Ore polynomials and shift polynomials.

Roughly speaking, the FFFG elimination algorithm performs fraction-free elim-

ination of a polynomial matrix by performing fraction-free Gaussian elimination [6]

on the corresponding striped Krylov matrix. However, it exploits the structure

inherent in the striped Krylov matrix to make the elimination more efficient. The

FFFG algorithm uses the polynomial representation of the rows and performs elim-

ination only on the rows corresponding to z�µ(i) ·F(z)(i,·) from the ith stripe for each

i, where �µ is a multi-index recording how many times some row in each stripe has

been used as a pivot. If a row in the ith stripe is chosen as the pivot row, then the

row corresponding to the new �µ in the ith stripe has to be computed. This is done

by multiplying the pivot row by z followed by “degree adjustments”. This ensures

that we obtain the same result as if fraction-free Gaussian elimination is applied to

the striped Krylov matrix. As in the fraction-free Gaussian elimination algorithm,

the pivot element used in the previous elimination step is a common factor of the

CHAPTER 2. PRELIMINARIES 38

intermediate results and can be removed. Furthermore, the intermediate results

can be represented as minors of the striped Krylov matrix so that bounds on the

size of the coefficients can be obtained using Hadamard’s inequality [40].

We remark that Bitmead et al. proposed a numerical algorithm (i.e. for floating-

point numbers) that performs Gaussian elimination on a “generalized Sylvester

matrix,” which is similar to the striped Krylov matrix we define [17, 41]. In this

case, the intermediate results in the next stripe are computed simply by multiplying

by z without the degree adjustments. Gentle [37] proposed a fraction-free version

of this algorithm provided that the desired rows can always be chosen as pivot. A

fraction-free algorithm for the general case is not known.

Chapter 3

Fraction-free Row Reduction of

Matrices of Ore Polynomials

In this chapter we give a fraction-free algorithm to perform row reductions on

matrices of Ore polynomials. Using this algorithm we show how to compute the

rank and a row-reduced basis of the left nullspace of a matrix of Ore polynomials.

3.1 Some Results on Matrices of Ore Polynomials

We first give some results on matrices of Ore polynomials, which generalize the

well-known results for polynomial matrices [41]. These results are necessary in the

development of our algorithm and are not found elsewhere (except in [9]). First,

we prove that any matrix of Ore polynomials can be transformed into row-reduced

form. We also give degree bounds on the entries of the transformation matrix.

The degree bounds will be used to determine the number of steps required in our

39

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 40

algorithm.

Theorem 3.1 For any F(Z) ∈ QD[Z; σ, δ]m×s there exists a unimodular matrix

U(Z) ∈ QD[Z; σ, δ]m×m, with T(Z) = U(Z) · F(Z) having r ≤ min{m, s} nonzero

rows, rdeg T(Z) ≤ rdeg F(Z), and where the submatrix consisting of the r nonzero

rows of T(Z) is row-reduced. Moreover, the unimodular multiplier satisfies the

degree bound

rdeg U(Z) ≤ �ν + (|�µ| − |�ν| − α) · �e (3.1)

where �µ := max(�0, rdeg F(Z)), �ν := max(�0, rdeg T(Z)), and α = minj{�µ(j)}.

Proof. We construct U(Z) and T(Z) in a way similar to that for polynomial

matrices as described in Section 2.5.1. In addition, we will also verify the degree

bound (3.1) at each step of the construction.

Starting with U(Z) = Im and T(Z) = F(Z), we construct a sequence of uni-

modular matrices U(Z) and T(Z) = U(Z)·F(Z). The degree bound (3.1) is clearly

satisfied initially.

To compute the results in the next step, U(Z)new and T(Z)new, denote by J the

set of indices of zero rows of T(Z), and L = LCrow (T(Z)). If the matrix formed by

the nonzero rows of T(Z) is not row-reduced, we can find �w ∈ Q1×m
D with �w �= �0,

�w · L = �0, and �w(j) = 0 for j ∈ J . We choose the index of the updated row k as

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 41

before. Following (2.7) we define Q(Z) ∈ QD[Z; σ, δ]1×m to be the matrix



1

. . .

σ�ν(k)−t
(
�w(1)

) · Z�ν(k)−�ν(1) · · · σ�ν(k)−t
(
�w(i)

) · · · σ�ν(k)−t
(
�w(m)

) · Z�ν(k)−�ν(m)

. . .

1


.

If we define U(Z)new = Q(Z) · U(Z) and T(Z)new = Q(Z) · T(Z), then

T(Z)(k,·)
new = Q(Z)(k,·) · T(Z)

=
∑

�w(j) �=0

σ�ν(k)−t(�w(j)) · Z�ν(k)−�ν(j) · T�ν(j)
(j,·) · Z�ν(j)

+ lower degree terms

=
m∑

j=1

σ�ν(k)−t(�w(j))σ�ν(k)−�ν(j)

(T�ν(j)
(j,·)) · Z�ν(k)

+ lower degree terms

= σ�ν(k)−t(�w · L) · Z�ν(k)

+ lower degree terms,

where t = deg T(Z). Hence deg T(Z)(k,·)
new ≤ �ν(k) − 1, showing that rdeg T(Z)new ≤

rdeg T(Z). Since Q(Z)(k,k) �= 0 by construction, we may consider W(Z) obtained

from Im by replacing its (k, j) entry by −
(
Q(Z)(k,k)

)−1

· Q(Z)(k,j) for j �= k,

and by
(
Q(Z)(k,k)

)−1

for j = k. It can easily be verified that W(Z) · Q(Z) =

Q(Z) · W(Z) = Im. Thus, U(Z)new is also unimodular. Making use of the degree

bounds for U(Z), we also get that deg(Q(Z)(k,·) · U(Z)) ≤ �ν(k) + |�µ| − |�ν| − α.

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 42

Hence the degree bounds for U(Z)new are obtained by observing that

rdeg U(Z)new ≤ �ν + (|�µ| − |�ν| − α) · �e ≤ �νnew + (|�µ| − |�νnew| − α) · �e.

Finally, we notice that, in each step of the algorithm, we either produce a new zero

row in T(Z), or else decrease |�ν|, the sum of the row degrees of nonzero rows of

T(Z), by at least one. Hence the procedure terminates, which implies that the

nonzero rows of T(Z) form a row-reduced submatrix. �

Remark 3.2 There is an example [15, Example 5.6] of a polynomial matrix F(z)

which is unimodular (and hence T(Z) = I), has row degree N · �e, and where its

multiplier satisfies rdeg U(Z) = (m − 1)N · �e. Hence the worst case estimate of

Theorem 3.1 for the degree of U(Z) is sharp. �

In fact, the quantity r of Theorem 3.1 equals rank F(Z). Before we prove this result,

we need some essential properties of row-reduced matrices that are well known for

polynomial matrices (e.g. see [41]).

Lemma 3.3

(a) Let F(Z) ∈ QD[Z; σ, δ]m×s, with �µ = rdeg F(Z). F(Z) is row-reduced if and

only if, for any Q(Z) ∈ QD[Z; σ, δ]1×m,

deg Q(Z) · F(Z) = max
1≤j≤m

{
�µ(j) + deg Q(Z)(1,j)

}
.

(b) Let A(Z) = B(Z) ·C(Z) be matrices of Ore polynomials of sizes m×s, m×r,

and r × s, respectively. Then rank A(Z) ≤ r.

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 43

(c) Let A(Z) = B(Z) ·C(Z) be as in part (b), with A(Z) and C(Z) row-reduced

and row degrees �α(1) ≤ �α(2) ≤ . . . ≤ �α(m) and �γ(1) ≤ �γ(2) ≤ . . . ≤ �γ(r),

respectively. Then m ≤ r, and �α(j) ≥ �γ(j) for j = 1, . . . ,m.

(d) Let T(Z) = U(Z) · S(Z), such that U(Z) is unimodular and both S(Z) and

T(Z) are row-reduced. Then, up to permutation, the row degrees of S(Z) and

T(Z) coincide.

Proof. For any Q(Z) ∈ QD[Z; σ, δ]1×m, let N ′ := max1≤j≤m

{
�µ(j) + deg Q(Z)(1,j)

}
.

Let �h ∈ Q1×m
D be the vector such that

Q(Z)(1,j) = �h(j)ZN ′−�µ(j)

+ lower degree terms.

Note that �h �= �0. Clearly, deg Q(Z) · F(Z) ≤ N ′, with the coefficient at ZN ′
being

given by
m∑

j=1

�h(j)σN ′−�µ(j)

(F�µ(j)
(j,·)) = �h · σN ′−N(LCrow (F(Z))).

Since σ is an automorphism on QD, the matrix F(Z) is row-reduced if and only

if σj(LCrow (F(Z))) is of full row rank for any integer j; that is, if and only if

�h · σj(LCrow (F(Z))) �= �0 for all �h �= �0 and all integers j. This in turn holds if and

only if deg Q(Z) · F(Z) = N ′ for any Q(Z) ∈ QD[Z; σ, δ]1×m. Therefore, (a) holds.

In order to show (b), we may suppose by eliminating a suitable number of rows

of A(Z) and B(Z) that rank A(Z) = m. Then MB(Z) ⊆ QD[Z; σ, δ]1×r, the latter

being a QD[Z; σ, δ]-module of rank r. Hence r ≥ rank MB(Z) ≥ rank B(Z). If

m > r, then B(Z) has more rows than columns. Thus, by definition of rank B(Z)

there exists a nontrivial Q(Z) ∈ QD[Z; σ, δ]1×m with Q(Z) · B(Z) = 0. Hence,

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 44

Q(Z) · A(Z) = 0, a contradiction to the fact that A(Z) has full row rank m.

Therefore r ≥ m, as claimed in part (b).

For a proof of part (c), recall first that the rows of the row-reduced A(Z) are

QD[Z; σ, δ]-linearly independent by part (a), and hence m = rank A(Z) ≤ r by

part (b). Suppose that �α(j) ≥ �γ(j) for j < k, but �α(k) < �γ(k). Part (a) implies that

deg B(Z)(j,�) ≤ �α(j) − �γ(�). Since �α(j) < �γ(k) ≤ �γ(�) for j ≤ k ≤ 	, we may conclude

that B(Z)(j,�) = 0 for j ≤ k ≤ 	. Thus, the first k rows of A(Z) are QD[Z; σ, δ]-

linear combinations of the first k − 1 rows of C(Z). From part (b) it follows that

the first k rows of A(Z) are QD[Z; σ, δ]-linearly dependent, a contradiction. Hence

the assertion of part (c) holds.

Finally, part (d) is obtained by applying part (c) twice, using the fact that U(Z)

is invertible. �

Remark 3.4 Lemma 3.3(a) is usually known as the predictable degree property

in the case of polynomial matrices [41]. �

We now prove a theorem on recovering a row-reduced basis of the left nullspace

NF(Z). This is a crucial result needed in the development of our algorithm in this

chapter, as it allows us to obtain a termination criteria and prove the correctness

of our algorithm.

Theorem 3.5 Let F(Z) ∈ QD[Z; σ, δ]m×s, U(Z) ∈ QD[Z; σ, δ]m×m be unimodular,

and T(Z) = U(Z) · F(Z) having r nonzero rows, such that the nonzero rows of

T(Z) form a row-reduced matrix. Then

r = rank MF(Z) = rank F(Z) = m − rank NF(Z), (3.2)

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 45

with a basis of NF(Z) given by those rows of U(Z) corresponding to the zero rows

of T(Z).

Moreover, there exists a row-reduced W(Z) ∈ QD[Z; σ, δ](m−r)×m with rows

forming a basis of NF(Z), and rdeg W(Z) ≤ (m − 1)N · �e.

Proof. We first prove (3.2) with F(Z) replaced by T(Z) and then prove (3.2).

Denote by J the set of indices of zero rows of T(Z). For any P(Z) ∈ QD[Z; σ, δ]1×m

we have

P(Z) · T(Z) =
∑
j �∈J

P(Z)(1,j) · T(Z)(j,·).

By Lemma 3.3(a) the rows T(Z)(j,·) for j �∈ J are QD[Z; σ, δ]-linearly independent.

Therefore P(Z) ∈ NT(Z) if and only if P(Z)(1,j) = 0 for all j �∈ J . Hence,

r = rank T(Z) = m − rank NT(Z).

It is easily seen that r = rank T(Z) ≤ rank MT(Z) =: ρ. Now, given ρ elements of

MT(Z) which are QD[Z; σ, δ]-linearly independent, they can be written as rows of

the matrix B(Z) ·T(Z) for some B(Z) ∈ QD[Z; σ, δ]ρ×m. Then rank B(Z) ·T(Z) =

ρ by construction of B(Z). Since T(Z) contains only r nonzero rows, we have

ρ = rank B(Z) · T(Z) ≤ r by Lemma 3.3(b). Thus, r = ρ. Consequently, (3.2)

holds if F(Z) is replaced by T(Z).

Since U(Z) is unimodular, it has an inverse V(Z) ∈ QD[Z; σ, δ]m×m. Conse-

quently, Q(Z) ∈ NF(Z) if and only if P(Z) = Q(Z) · V(Z) ∈ NT(Z). That is,

NF(Z) = {P(Z) · U(Z) : P(Z)(1,j) = 0 for j �∈ J} = MU(Z)(J,·) .

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 46

Since U(Z) has a right inverse, we may conclude that NU(Z) = {�0}, showing that

rows of unimodular matrices are linearly independent over QD[Z; σ, δ]. Thus the

rows of U(Z)(J,·) form a basis of NF(Z), and

m − rank MF(Z) = m − rank MT(Z) = m − r = rank NF(Z). (3.3)

Since again the relation ρ := rank F(Z) ≤ rank MF(Z) is trivial, for a proof of (3.2)

it only remains to show that ρ < r leads to a contradiction. Suppose without loss

of generality that the first ρ rows of F(Z) are linearly independent. Then for any

j = ρ + 1, . . . ,m, there exists Q(Z) ∈ QD[Z; σ, δ]1×m such that

Q(Z)(j,j) �= 0, Q(Z)(j,j) · F(Z)(j,·) +

ρ∑
k=1

Q(Z)(j,k) · F(Z)(k,·) = 0.

This gives m − ρ QD[Z; σ, δ]-linearly independent elements of NF(Z), contradicting

(3.3) that rank NF(Z) = m − r < m − ρ.

In order to show the second part, suppose that U(Z) and T(Z) are those defined

in Theorem 3.1. Applying Theorem 3.1 again to U(Z)(J,·) transforms it into a row-

reduced matrix W(Z) = V(Z) · U(Z)(J,·) for some unimodular V(Z). From the

degree bound in Theorem 3.1, we have

deg U(Z)(j,·) ≤ �ν(j) − α + (|�µ| − |�ν|) ≤ |�µ| − α ≤ (m − 1)N

for all j ∈ J . This gives the desired degree bound on W(Z). �

Remark 3.6 The quantity rdeg W(Z) of Theorem 3.5 is an invariant of F(Z)

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 47

since any row-reduced basis of NF(Z) has the same row degree (up to permutation)

by Lemma 3.3(d). For polynomial matrices, the components of rdeg W(Z) are

referred to as left minimal indices or left Kronecker indices [41, §6.5.4]. �

Finally, we will require a basic property of rank for matrices of Ore polynomials.

Lemma 3.7 For any F(Z) ∈ QD[Z; σ, δ]m×s, rank F(Z) does not change after

applying elementary row operations of the first or second type, or by multiplying

F(Z) on the right by a full rank square matrix of Ore polynomials.

Proof. Suppose that A(Z) ∈ QD[Z; σ, δ]s×s is of rank s. Then NA(Z) = {�0} by

(3.2), implying that NF(Z)·A(Z) = NF(Z). Hence F(Z) · A(Z) and F(Z) have the

same rank by (3.2). If U(Z) is unimodular, then MU(Z)·F(Z) = MF(Z), showing

that the rank remains the same after applying elementary row operations of the

second type. Finally we need to examine the row operation of multiplying one

row of F(Z) with a nonzero element of QD[Z; σ, δ]. Since QD[Z; σ, δ] is an integral

domain, it is easy to check that F(Z) and the new matrix will have the same number

of QD[Z; σ, δ]-linearly independent rows, and hence the same rank. This shows that

the rank remains the same after applying elementary row operations of the first

type. �

Remark 3.8 We remark that while the rank remains unchanged under the opera-

tions specified in Lemma 3.7, the module generated by the rows of the matrix may

be different. �

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 48

3.2 Order Basis

In this section we introduce the notion of order and order bases for a given matrix

of Ore polynomials F(Z). These are the primary tools which will be used for our

algorithm.

Informally, we are interested in taking linear combinations of rows of F(Z)

in order to eliminate low order terms, where the number of terms eliminated in

each column may be different. Formally such an elimination is captured using the

concept of order. The components of the order vector gives the number of terms

eliminated in each column.

Definition 3.9 Let P(Z) ∈ QD[Z; σ, δ]1×m be a vector of Ore polynomials and �ω a

multi-index. Then P(Z) is said to have order �ω (with respect to F(Z)) if

P(Z) · F(Z) = R(Z) · Z�ω (3.4)

with R(Z) ∈ QD[Z; σ, δ]1×s. The matrix R(Z) in (3.4) is called a residual. �

We are interested in all possible row operations which eliminate lower order

terms of F(Z). Using our formalism, this corresponds to finding all QD[Z; σ, δ]-

linear combinations of elements of a given order. This in turn is captured in the

definition of an order basis, which gives a basis of the module of all vectors of Ore

polynomials having a particular order.

Definition 3.10 Let F(Z) ∈ QD[Z; σ, δ]m×s, and �ω and �µ be multi-indices. A

matrix of Ore polynomials M(Z) ∈ QD[Z; σ, δ]m×m is said to be an order basis of

order �ω and (column) degree �µ if

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 49

(a) every row of M(Z) has order �ω,

(b) every P(Z) ∈ QD[Z; σ, δ]1×m of order �ω can be written as P(Z) = Q(Z)·M(Z)

for some Q(Z) ∈ QD[Z; σ, δ]1×m, and

(c) there exists a nonzero d ∈ QD such that

M(Z) = d · Z�µ + L(Z)

where deg L(Z)(k,�) ≤ �µ(�) − 1.

If in addition M(Z) is row-reduced with rdeg M(Z) = �µ, we say that M(Z) is a

reduced order basis. �

Part (a) of Definition 3.10 states that every row of an order basis eliminates rows

of F(Z) up to a certain order while part (b) implies that the rows describe all

eliminates of the order. The intuition of part (c) is that �µ(i) gives the number of

times row i has been used as a pivot row in a row elimination process. A reduced

order basis has added degree constraints, which can be thought of as choosing a

specific pivoting strategy.

Remark 3.11 By the predictable degree property for matrices of Ore polynomials

in Lemma 3.3(a), we can show that an order basis is a reduced order basis if and

only if rdeg M(Z) = �µ and we have the added degree constraint in Definition 3.10(b)

that, for all j = 1, . . . ,m,

deg Q(Z)(1,j) ≤ deg P(Z) − �µ(j). (3.5)

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 50

We remark that the definition of order basis given in [10] is slightly more restrictive

than our definition of reduced order basis given here. We use the more general

definition in order to gain more flexibility with our pivoting. �

Remark 3.12 In fact, a reduced order basis is a scalar multiple of a matrix in

Popov form. Without loss of generality, we may assume that 0 ≤ �µ(1) ≤ · · · ≤ �µ(m).

By Definition 3.10(c) it follows that deg M(Z)(k,Π1) < �µ(1) for k > 1, so that

Πk �= Π1 for all k > 1. Applying a similar argument to the remaining rows shows

that the pivot indices are unique. �

A key theorem for proving the correctness of the fraction-free algorithm deals

with the uniqueness of order bases. Recall that �e = (1, . . . , 1) and �ek is the kth unit

vector.

Theorem 3.13 (a) There exists only the trivial row vector P(Z) = 0 with col-

umn degree ≤ �µ − �e and order ≥ �ω.

(b) For any k = 1, . . . ,m, there exists a unique row vector with column degree

≤ �µ − �e + �ek and order ≥ �ω, up to multiplication with an element from QD.

(c) An order basis of a particular order and degree is unique up to multiplication

by constants from QD.

Proof. We only need to show part (a) as (b) and (c) follow directly from (a).

Suppose that P(Z) �= 0 has order �ω and column degree �µ−�e. By Definition 3.10(b),

there exists Q(Z) ∈ QD[Z; σ, δ]1×m such that P(Z) = Q(Z) · M(Z). Let j be

an index such that deg Q(Z)(1,j) is maximum. Since P(Z) �= 0, it follows that

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 51

deg Q(Z)(1,j) ≥ 0. Now,

deg P(Z)(1,j) = deg

(
m∑

k=1

Q(Z)(1,k) · M(Z)(k,j)

)
.

Note that if k �= j, then

deg
(
Q(Z)(1,k) · M(Z)(k,j)

)
= deg Q(Z)(1,k) + deg M(Z)(k,j)

≤ deg Q(Z)(1,j) + deg M(Z)(k,j)

≤ deg Q(Z)(1,j) + �µ(j) − 1.

Also,

deg Q(Z)(1,j) · M(Z)(j,j) = deg Q(Z)(1,j) + �µ(j),

so that

deg P(Z)(1,j) = deg Q(Z)(1,j) + �µ(j) ≥ �µ(j).

This contradicts the assumption that deg P(Z)(1,j) ≤ �µ(j) − 1. �

We illustrate the notion of order basis with an example related to the pseudo-

division of a shift polynomial by another (see [44]). This is well known in the case

of ordinary polynomials (see, for example, [49]).

Example 3.14 Let a(Z), b(Z) ∈ D[Z; σ] with degrees da, db, respectively, such that

da ≥ db. Set t = da − db. We make the substitution Ẑ = Z−1, σ̂ = σ−1, and define

the shift polynomials

a(Ẑ) = a(Ẑ−1) · Ẑda , b(Ẑ) = σt
(
b(Ẑ)−1 · Ẑdb

)
, (3.6)

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 52

where σ
(∑db

i=0 biẐ
i
)

:=
∑db

i=0 σ(bi)Ẑ
i. Let q(Z), r(Z) be such that

b
[t+1]

0 · a(Z) = q(Z) · b(Z) + r(Z), (3.7)

with deg q(Z) = t, deg r(Z) < db, and b
[t]

0 :=
∏t

i=0 σ̂i(b0) =
∏t

i=0 σi (bdb
). We define

q(Ẑ) = q(Ẑ−1) · Ẑt, r(Ẑ) = r(Ẑ−1) · Ẑdb−1.

Then we can easily verify that

a(Ẑ) = q(Ẑ) · b(Ẑ) + r(Ẑ) · Zt+1.

Setting F(Ẑ) = [a(Ẑ), b(Ẑ)]T , we see that

M(Ẑ) =

d −q(Ẑ)

0 d · Ẑt+1

 , (3.8)

satisfies Definition 3.10(a) and (c) with d = b
[t+1]

0 , degree �µ = (0, t + 1), and order

�ω = (t + 1) because

M(Ẑ) · F(Ẑ) =

d −q(Ẑ)

0 d · Ẑt+1

 ·

a(Ẑ)

b(Ẑ)

 = d ·

 r(Ẑ)

σ̂t+1(b(Ẑ))

 · Ẑt+1.

We will show later (Example 3.19) that Definition 3.10(b) is also satisfied, so that

M(Ẑ) is an order basis of degree �µ and order �ω. �

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 53

3.3 Determinantal Representations

We are interested in constructing an algorithm for computing recursively order

bases M(Z) for increasing orders. In order to predict the size of these objects and

predict common factors, we derive in this section a determinantal representation

together with a particular choice of the constant d arising in Definition 3.10(c).

As we have noted in Section 2.4, the elimination of a certain number of low

order terms is equivalent to solving a system of linear equations whose coefficient

matrix is a striped Krylov matrix. Using the notation in Section 2.4, row i of an

order basis M(Z) of degree �µ and order �ω can be represented as the coefficient

vector M�µ−�e+�ei

(i,·). As in (2.6), we have

M�µ−�e+�ei

(i,·) · K(�µ − �e + �ei, �ω) = 0. (3.9)

If an order basis of degree �µ and order �ω exists, then Theorem 3.13 implies that

rank K(�µ − �e + �ei, �ω) = rank K(�µ − �e, �ω) = |�µ|. (3.10)

Thus, K∗(�µ−�e, �ω) is a |�µ|× |�µ| submatrix of K(�µ−�e, �ω), and we can rewrite (3.9)

as

M�µ−�e
(i,·) · K∗(�µ − �e, �ω) = −d · b∗(�µ, i), (3.11)

where b∗(�µ, i) is the row of K∗(�µ − �e + �ei, �ω) corresponding to Z�µ(i) · F(Z)(i). By

choosing d = ± det K∗(�µ−�e, �ω), we obtain a solution with entries in D by Cramer’s

rule. We give the corresponding chosen order basis a special name.

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 54

Definition 3.15 We call d a multi-gradient if d = ± det K∗(�µ − �e, �ω) for some

degree �µ and order �ω. An order basis with a multi-gradient d in Definition 3.10(c)

is called a Mahler system. �

Moreover, we may formally write down a determinantal representation of the ele-

ments of a Mahler system. Namely,

M(Z)(i,j) = ± det

[
K∗(�µ − �e + �ei, �ω) Ej,�µ(j)−1+δi,j

(Z)

]
(3.12)

with

Ej,ν(Z) = [0, . . . , 0|1, Z, . . . , Zν |0, . . . , 0]T ,

where the nonzero entries in Ej,ν(Z) occurring in the jth stripe. In addition, we

have

R(Z)(i,j) · Z�ω =
m∑

k=1

M(Z)(i,k) · F(Z)(k,j)

= ± det

[
K∗(�µ − �e + �ei, �ω) Ej,�µ−�e+�ei

(Z)

]
,

(3.13)

where

Ej,�ν(Z) =
[
F(Z)(1,j), . . . , Z�ν(1)−1 · F(Z)(1,j)| · · · |F(Z)(m,j), . . . , Z�ν(m)−1 · F(Z)(m,j)

]T

.

In both (3.12) and (3.13) the matrices have commutative entries in all but the last

column. It is understood that the determinant in both cases is expanded along the

last column.

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 55

Example 3.16 Let a(Z), b(Z), a(Ẑ), b(Ẑ) be the shift polynomials defined in Ex-

ample 3.14. If �µ = (0, t + 1) and �ω = (t + 1), the system of equations (3.9) for the

first row has the coefficient matrix

K(�µ − �e + �e1, �ω) =



a0 · · · ada

b0 · · · bdb

σ̂(b0) · · · σ̂(bdb
)

.

σ̂t(b0) · · · σ̂t(bdb
)


. (3.14)

By (3.6), we see that K(�µ − �e + �e1, �ω) can also be written as

K(�µ − �e + �e1, �ω) =



ada · · · a0

σt(bdb
) · · · σt(b0)

σt−1(bdb
) · · · σt−1(b0)

.

bdb
· · · b0


. (3.15)

It is clear that rank K(�µ − �e + �e1, �ω) ≥ t + 1 from the last t + 1 rows. We see

that fraction-free Gaussian elimination on K(�µ − �e + �e1, �ω) using the rows of b(Z)

as pivots corresponds to the left pseudo-division of a(Z) by b(Z). The pseudo-

remainder can also be obtained using (3.13). �

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 56

3.4 Fraction-free Recursion Formulas for Order

Bases

In this section we show how to compute order bases in a fraction-free way recur-

sively. This can also be thought of as constructing a sequence of eliminates of lower

order terms of F(Z). In terms of linear algebra, the recursion can be viewed as a

type of fraction-free Gaussian elimination which takes into consideration the special

structure of the striped Krylov matrix associated to the elimination problem.

For a Mahler system M(Z) of degree �µ and order �ω, we look at the terms of the

residuals that we wish to eliminate. If they are all equal to zero then there is no need

to eliminate and we already have an order basis of a higher order. Otherwise, we

give recursive formulas for constructing an order basis of higher order and degree.

However, the formulas involve divisions and a priori the new order basis may have

coefficients in QD. In our case, the new order basis will be a Mahler system according

to the existence and uniqueness results established before, and hence we will obtain

the order bases and the residuals with coefficients in D.

In the following theorem we give a recurrence relation which closely follows the

case of shift polynomials [10] and the commutative case [12, Theorem 6.1(c)]. The

resulting order bases have properties similar to those in [12, Theorems 7.2 and 7.3].

Theorem 3.17 Let M(Z) be an order basis of degree �µ and order �ω, and λ ∈
{1, . . . , s}. Denote by rj = c�ω(λ)

(
(M(Z) · F(Z))(j,λ)

)
, the (j, λ) entry of the first

term of the residual of M(Z). Finally, set �̃ω := �ω + �eλ.

(a) If r1 = · · · = rm = 0 then M̃(Z) := M(Z) is an order basis of degree �̃µ := �µ

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 57

and order �̃ω.

(b) Otherwise, let π be an index such that rπ �= 0. Then an order basis M̃(Z)

of degree �̃µ := �µ + �eπ and order �̃ω with coefficients in QD is obtained via the

formulas

pπ · M̃(Z)
(�,k)

= rπ · M(Z)(�,k) − r� · M(Z)(π,k) (3.16)

for 	, k = 1, . . . ,m, 	 �= π, and

σ(pπ) · M̃(Z)
(π,k)

= (rπ ·Z − δ(rπ)) ·M(Z)(π,k) −
∑
��=π

σ(p�) · M̃(Z)
(�,k)

(3.17)

for k = 1, . . . ,m, where pj = c�µ(j)+δπ,j−1

(
M(Z)(π,j)

)
.

(c) If in addition M(z) is a Mahler system of order �ω and degree �µ, then M̃(Z) is

a Mahler system of order �̃ω and degree �̃µ. In particular, M̃(Z) has coefficients

in D.

Proof. Part (a) is clear from the fact that the rows of M(Z) have order �̃ω when

r1 = · · · = rm = 0.

For part (b) notice first that M̃(Z)
(�,·)

for 	 �= π has order �̃ω by construction, as

required in Definition 3.10(a). In addition the row (rπ · Z − δ(rπ)) · M(Z)(π,·) also

has order �̃ω since (rπ · Z − δ(rπ))(rπ) = rπσ(rπ) · Z. By construction therefore row

M̃(Z)π,· has order �̃ω.

We now focus on the properties of Definition 3.10(b). If P(Z) ∈ QD[Z; σ, δ]1×m

has order �̃ω, then it has order �ω and so there exists Q(Z) ∈ QD[Z; σ, δ]1×m such

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 58

that

P(Z) =
m∑

j=1

Q(Z)(1,j) · M(Z)(j,·).

Applying (3.16) to rows 	 �= π results in

P(Z) = Q̂(Z)
(1,π) · M(Z)(π,·) +

∑
j �=π

Q̂(Z)
(1,j) · M̃(Z)

(j,·)
(3.18)

where

Q̂(Z)
(1,j)

=


Q(Z)(1,j) · pπ

rπ
j �= π∑m

i=1 Q(Z)(1,i) · ri

rπ
j = π

. (3.19)

Since P(Z) and all the M̃(Z)
(j,·)

terms for j �= π have order �̃ω this must also be

the case for Q̂(Z)
(1,π) ·M(Z)(π,·). We can divide Q̂(Z)

(1,π)
by rπ · Z − δ(rπ) on the

right to obtain

Q̂(Z)
(1,π)

= q(Z) · (rπ · Z − δ(rπ)) + r

for some q(Z) ∈ QD[Z; σ, δ] and r ∈ QD. Since Q̂(Z)
(1,π) · M(Z)(π,·) has order �̃ω

and (rπ · Z − δ(rπ))rπ = rπσ(rπ)Z, we see that r · rπ = 0. Therefore, r = 0 by our

choice of π. Hence,

P(Z) =
∑
j �=π

Q̂(Z)
(1,j) · M̃(Z)

(j,·)
+ q(Z) · (rπ · Z − δ(rπ)) · M(Z)π,·. (3.20)

Completing the row operations which normalize the degrees of M̃(Z) in (3.17) gives

a Q̃(Z) with P(Z) = Q̃(Z)·M̃(Z). Consequently, the property of Definition 3.10(b)

holds.

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 59

The verification of the new degree constraints of Definition 3.10(c) (with �µ being

replaced by �̃µ) for M̃(Z) is straightforward and is the same as in the commutative

case [12, Theorem 7.2]. In addition, notice that pπ is the leading coefficient of

M(Z)(�,�), so the leading coefficient of M̃(Z)
(�,�)

equals rπ for all 	 by construction.

This shows part (b) of the theorem.

To show (c), we see from Section 3.3 and the existence of order bases of a spec-

ified degree and order that both (�µ, �ω) and (�̃µ, �̃ω) satisfy (3.10). By the uniqueness

result of Theorem 3.13 we only need to show that the “leading coefficient” d̃ of

M̃(Z) in Definition 3.10(c) is a multigradient of (�̃µ, �̃ω), the latter implying that

M̃(Z) is a Mahler system and in particular has coefficients from D.

Denote by d the corresponding “leading coefficient” of M(Z). In the case dis-

cussed in part (a), we do not increase the rank by going from K(�µ, �ω) to K(�̃µ, �̃ω)

since we just add one column and keep full row rank. Hence d = d̃ being a multi-

gradient with respect to (�µ, �ω) is also a multigradient with respect to (�̃µ, �̃ω). In

the final case described in part (b) we have d̃ = rπ. Using formula (3.13) for the

residual of the πth row of M(Z) we see that rπ coincides (up to a sign) with the

determinant of a submatrix of order |�̃µ| of K(�̃µ, �̃ω). Since rπ �= 0 by construction,

it follows that d̃ = rπ is a new multigradient, as required for the conclusion. �

In fact, we can make a stronger statement about the recurrence formulas (3.16)

and (3.17) when M(Z) is a reduced order basis and the pivot π is chosen in a special

way.

Corollary 3.18 If M(Z) is a reduced order basis then the order basis M̃(Z) com-

puted by (3.16) and (3.17) in Theorem 3.17 is also a reduced order basis of degree

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 60

�̃µ and order �̃ω, provided that the pivot π is chosen such that

�µ(π) = min
1≤j≤m

{
�µ(j) : rj �= 0

}
. (3.21)

Proof. First, note that if M(Z) is a reduced order basis, then p� = 0 whenever

�µ(π) < �µ(�) − 1, so that formula (3.17) can be rewritten as

σ(pπ) ·M̃(Z)
(π,k)

= (rπ ·Z − δ(rπ)) ·M(Z)(π,k) −
∑

�µ(�)≤�µ(π)+1

σ(p�) ·M̃(Z)
(�,k)

, (3.22)

showing that deg M̃(Z)
(π,·)

= �̃µ
(π)

. If 	 �= π then it is easy to see that the pivoting

strategy (3.21) gives deg M̃(Z)
(�,·)

= �̃µ
(�)

. Thus, rdeg M̃(Z) = �̃µ, and hence,

by Lemma 3.3(a), it suffices to show that cdeg Q̃(Z) ≤ (deg P(Z)) · �e − �̃µ, with

P(Z) = Q̃(Z) · M̃(Z) as in the proof of Theorem 3.17.

By Lemma 3.3(a), we have cdeg Q(Z) ≤ (deg P(Z)) · �e − �µ because M(Z) is

a reduced order basis. We see in (3.19) that deg Q̂(Z)
(1,j) ≤ deg P(Z) − �µ(j) =

deg P(Z) − �̃µ
(j)

for all j �= π while deg Q̂(Z)
(1,π) ≤ deg P(Z) − �µ(π) because of the

minimality of �µ(π). In (3.20), deg q(Z) ≤ deg P(Z) − (�µ(π) + 1) = deg P(Z) − �̃µ
(π)

.

Completing the row operations which normalize the degrees of M̃(Z) in (3.22) gives

Q̃(Z) with P(Z) = Q̃(Z) · M̃(Z) having the correct degree bounds. �

Once again, we will illustrate the recursion formulas with an example related to

pseudo-division of shift polynomials.

Example 3.19 Let a(Ẑ) and b(Ẑ) be those defined in Example 3.14. If we use the

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 61

pivoting strategy

π = max
i

{i : ri �= 0} ,

we find that p1 = 0 at each step, so we obtain M(Ẑ) given in (3.8) with d = ±b
[t+1]

0 .

By Theorem 3.17, M(Ẑ) is an order basis. �

3.5 The FFreduce Algorithm

Theorem 3.17 gives a computational procedure that results in the FFreduce al-

gorithm given in Algorithm 3.5. The resulting algorithm computes the rank and

a row-reduced basis of the left nullspace NF(Z). For brevity, we will drop the in-

determinate Z in the matrices of Ore polynomials in the description. Since we are

interested in a fraction-free algorithm, we will assume that F(Z) ∈ D[Z; σ, δ]m×s.

This can be achieved by clearing the denominators of the entries in the matrix.

We now prove that the algorithm is correct.

Theorem 3.20 Let r = rank F(Z). Then the final residual R(Z) computed by the

FFreduce algorithm has rank r and m−r zero rows. Moreover, if J ⊆ {1, . . . , m}
is the set of row indices corresponding to the zero rows of R(Z), then the rows of

M(Z)(J,·) form a row-reduced basis of the left nullspace NF(Z).

Proof. We first recall that the last computed Mahler system M(Z) results from

iteration k = sκ, κ = mN + 1, and has order �ω = κ · �e and degree �µ.

The statement rank F(Z) = rank R(Z) follows from Lemma 3.7 since R(Z) ·Zκ

is obtained from F(Z) by applying row operations of the first type.

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 62

Algorithm 3.1 The FFreduce Algorithm

Input: Matrix of Ore polynomials F ∈ D[Z; σ, δ]m×s.
Output: Mahler system M ∈ D[Z; σ, δ]m×m of degree �µ and order �ω, and residual

R ∈ D[Z; σ, δ]m×s.

{Initialization}
M0 ← Im, R0 ← F, d0 ← 1, �µ0 ← �0, �ω0 ← �0, N ← deg F, ρ ← 0, k ← 0

while k < (mN + 1)s do
ρk ← ρ, ρ ← 0
for all λ = 1, . . . , s do

for all 	 = 1, . . . ,m do

r� ← c0

(
Rk

(�,λ)
)

{first term of residuals}
end for
Λ ← {	 ∈ {1, . . . ,m} : r� �= 0}
if Λ = {} then

Mk+1 ← Mk, Rk+1 ← Rk, dk+1 ← dk, �µk+1 ← �µk

else
πk ← min

{
	 ∈ Λ : �µ

(�)
k = minj

{
�µ

(j)
k : j ∈ Λ

}}
{choose pivot}

for all 	 = 1, . . . ,m, 	 �= πk do

p� ← c
�µ

(�)
k −1

(
Mk

(πk,�)
)

Mk+1
(�,·) ← 1

dk

[
rπk

· Mk
(�,·) − r� · Mk

(πk,·)
]

{apply (3.16)}
Rk+1

(�,·) ← 1
dk

[
rπk

· Rk
(�,·) − r� · Rk

(πk,·)
]

end for

{apply (3.17)}
Mk+1

(πk,·) ← 1
σ(dk)

[
(rπk

· Z − δ(rπk
)) · Mk

(πk,·) −∑
��=πk

σ(p�) · Mk+1
(�,·)

]
Rk+1

(πk,·) ← 1
σ(dk)

[
(rπk

· Z − δ(rπk
)) · Rk

(πk,·) −∑
��=πk

σ(p�) · Rk+1
(�,·)

]
dk+1 ← rπk

, �µk+1 ← �µk + �eπk
, ρ ← ρ + 1

end if
Rk+1

(�,λ) ← Rk+1
(�,λ)/Z (formally) {adjust residual in column λ}

�ωk+1 ← �ωk + �eλ, k ← k + 1
end for

end while
M ← Mk, R ← Rk, �µ ← �µk, �ω ← �ωk

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 63

In order to show that R(Z) has m− r zero rows, let W(Z) be the row-reduced

basis of NF(Z) as in Theorem 3.5, with �α = rdeg W(Z) such that �α ≤ (m−1)N ·�e.
Since the rows of W(Z) have order κ · �e, there exists Q(Z) ∈ QD[Z; σ, δ](m−r)×m

such that W(Z) = Q(Z) · M(Z). By construction and Corollary 3.18, M(Z) is a

reduced order basis, and therefore row-reduced with row degree �µ. Lemma 3.3(c)

then implies that there is some permutation p : {1, . . . ,m− r} → {1, . . . ,m}, with

�α(j) ≥ �µ(p(j)) for j = 1, . . . , m − r. Hence, for j = 1, . . . ,m − r,

deg R(Z)(p(j),·) = −κ + deg
(
R(Z)(p(j),·) · Zκ·�e

)
= −κ + deg

(
M(Z)(p(j),·) · F(Z)

)
≤ −κ + N + deg M(Z)(p(j),·) = −κ + N + �µ(p(j))

≤ −κ + N + �α(j) ≤ −κ + mN = −1,

showing that these m − r rows R(Z)(p(j),·) are indeed zero rows.

It remains to show that the rows of M(Z)(J,·) form a row-reduced basis of NF(Z).

The submatrix M(Z)(J,·) is row-reduced because it consists of the rows of the row-

reduced matrix M(Z). Since any P(Z) ∈ NF(Z) has order κ ·�e, there exists Q(Z) ∈
QD[Z; σ, δ]1×m such that P(Z) = Q(Z) · M(Z). Thus,

Q(Z) · R(Z) · Zκ = Q(Z) · M(Z) · F(Z) = P(Z) · F(Z) = 0.

The relation r = rank R(Z) implies that the nonzero rows of R(Z) are QD[Z; σ, δ]-

linearly independent, and hence Q(Z)(1,j) = 0 for j �∈ J . Consequently, the rows of

M(Z)(J,·) form a basis of NF(Z). �

The theorem above was based on the estimate �α(j) ≤ (m − 1)N for the left

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 64

minimal indices of NF(Z), which for general polynomial matrices is quite pessimistic,

but can be attained, as shown in Remark 3.2. If a lower bound γ is available for |�ν|
in Theorem 3.1, it would be sufficient to compute Mahler systems up to the final

order (mN + 1 − γ) · �e, since then we get from Theorem 3.1 and Theorem 3.5 the

improved estimate �α(j) ≤ (m − 1)N − γ.

Remark 3.21 The row-reduced basis of NF(Z) computed by the FFreduce algo-

rithm is a scalar multiple of a matrix in Popov form by Remark 3.12. �

3.6 Complexity of FFreduce

In this section, we examine the computational complexity of the FFreduce algo-

rithm. We obtain bounds on the size of the intermediate results in the FFreduce

algorithm, leading to a bound on the complexity of the algorithm. For our analysis,

we assume that the coefficient domain D satisfies

size(a + b) = O(max(size(a), size(b)))

size(a · b) = O(size(a) + size(b))

size(σ(a)), size(δ(a)) = O(size(a))

cost(a + b) = O(max(size(a), size(b)))

cost(a · b) = O(size(a) · size(b))

cost(σ(a)) = O(size(a)2)

cost(δ(a)) = O(size(a)),

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 65

where the function “size” measures the total storage required for its arguments and

the function “cost” estimates the number of bit operations required to perform the

indicated arithmetic operations. These assumptions are valid in many cases. For

example, if D = Z or D = Z[n], then size refers to the number of bits to represent

an integer or the degree of the polynomial, respectively. The complexity analysis

can easily be adapted for a different set of assumptions. For example, we may

assume that the cost of multiplication is sub-quadratic, using fast multiplication

algorithms such as Karatsuba’s algorithm or the FFT method [42].

In what follows we denote by cycle the set of iterations k = κs, κs + 1, . . . , (κ +

1)s − 1 in the FFreduce algorithm for some integer κ (that is, the execution of

the inner loop). Let us first examine the size of the coefficients and the complexity

of one iteration of algorithm FFreduce.

Lemma 3.22 Let K be a bound on the size of the coefficients appearing in F(Z)(j,·),

Z ·F(Z)(j,·), . . . , Z�µ
(j)
k ·F(Z)(j,·) for j = 1, . . . ,m. Then the size of the coefficients in

Mk and Rk is bounded by O(|�µk|K). Moreover, the cost of iteration k is bounded

by O((msN |�µk|2 + (m + s)|�µk|3)K2).

Proof. Equations (3.12) and (3.13) show that both the Mahler system and the

residual can be represented as determinants of square matrices of order |�µk|. The

coefficients in these matrices are the coefficients of F(Z)(j,·), Z ·F(Z)(j,·), . . . , Z�µ
(j)
k ·

F(Z)(j,·). Hence the well-known Hadamard inequality [40] gives the above bound

for the size of the coefficients.

In order to obtain the cost, we have to take into account the multiplication of

each row of (Mk,Rk) by two scalars and the multiplication of the pivot row by at

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 66

most m+1 scalars. The number of additions is approximately the same and can be

ignored. Also, there are m applications of σ and one application of δ. It remains to

count the number of coefficients, and to take into account that each multiplication

with a coefficient has a cost bounded by O(|�µk|2K2). �

By slightly generalizing [12, Theorem 6.2], we deduce the following complexity

bound for the FFreduce algorithm.

Theorem 3.23 Let K be a bound on the size of the coefficients appearing in

F(Z)(j,·), Z · F(Z)(j,·), . . . , Z�µ
(j)
k · F(Z)(j,·) for j = 1, . . . ,m, where �µk of iteration

k of FFreduce. Then the total cost for computing Mk and Rk by the FFre-

duce algorithm is bounded by O((msN |�µk|3 + (m + s)|�µk|4)K2). Therefore, the

worst case bit complexity of the FFreduce algorithm is O((m + s)m4s4N4K2).

Proof. The first part of the Theorem is an immediate consequence of Lemma 3.22

and of the fact that the number of iterations in the FFreduce algorithm in which

any reduction is done equals |�µk|. In order to show the second part, we use the fact

that |�µ| ≤ |�ω| with �ω = (mN + 1) · �e, and |�ω| = (mN + 1)s. �

Remark 3.24 If we assume that multiplication can be done in O (̃size(a)+size(b))

operations1, the complexity in Theorem 3.23 becomes O (̃(m + s)m3s3N3K). �

Remark 3.25 Suppose that D is the polynomial domain Z[x]. We wish to consider

the size of coefficients in terms of both the degree in x and the integer coefficients

of x. For a ∈ Z[x], let degx(a) denote the degree of a with respect to x, and ‖a‖ be

1This is the “soft-O” notation. If f(n) ∈ O (̃g(n)) then f(n) ∈ O(g(n) logb(n)) for some b ≥ 0.

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 67

the maximal absolute value of the integer coefficients of a. Suppose that a, b ∈ Z[x].

The model of arithmetic in Z[x] satisfies:

size(a) = O(degx(a) log ‖a‖)

size(b) = O(degx(b) log ‖b‖)

size(a + b) = O(max(size(a), size(b)))

size(a · b) = O (̃size(a) + size(b))

cost(a + b) = O(max(size(a), size(b)))

cost(a · b) = O(size(a) · size(b)).

Thus, the size of the intermediate results given in Lemma 3.22 still holds.

In the case where σ(x) = αx for some nonzero α ∈ Z and δ(a) = 0 for all

a ∈ Z[x], it can be shown that

size(Zk · a) = O(ksize(a)2 log α)

cost(Zk · a) = O(ksize(a)2 log α)

Therefore, we can set the quantity K to be the maximum of ((mN+1)s)size(a)2 log α

where a ranges over all coefficients in F(Z). Performing the same analysis, we

obtain a complexity of O (̃(m + s)m4s4N4K2 log α).

Consider the case where σ(x) = αx+β for some nonzero α, β ∈ Z with δ(a) = 0

CHAPTER 3. MATRICES OF ORE POLYNOMIALS 68

for all a ∈ Z[x]. Then

size(Zk · a) = O(ksize(a)2 log αβ)

cost(Zk · a)) = O(ksize(a)2 log αβ)

Therefore, we can set the quantity K to be the maximum of ((mN +1)s)size(a) log α

where a ranges over all coefficients in F(Z). Performing the same analysis, we

obtain a complexity of O (̃(m + s)m4s4N4K2 log αβ).

Finally, we consider the differential case in which σ is the identity and δ(a) =

d
dx

a for all a ∈ Z[x]. Then

size(Z · a) = O(size(a) + log size(a))

cost(Z · a) = O (̃size(a))

We can set the quantity K to be the maximum of size(a) + (mN + 1)s log size(a)

over all coefficients a of F(Z). We obtain a complexity analysis of O (̃(m +

s)m4s4N4K2).

A tighter estimate could be obtained if we specify the size and cost of the sums

and products in two components (degx(a) and ‖a‖) separately [46]. We use the

above model to simplify the presentation.

Chapter 4

Fraction-free Algorithms for

Matrices of Shift Polynomials

In this chapter we show how the FFreduce algorithm given in the previous chapter

can be used to solve a number of different problems for F(Z) ∈ D[Z; σ]m×s. Of

course, when σ is the identity function on QD the same techniques give fraction-

free algorithms for polynomial matrices. We will consider the computation of full

rank decomposition (for finding solutions of linear functional systems), row-reduced

form, and weak Popov form of a matrix of shift polynomial. We also show that

our algorithm can be used to compute a GCRD and an LCLM of matrices of

shift polynomials. Finally, we show that our algorithm can be used to compute

subresultants of two shift polynomials [44, 45].

69

CHAPTER 4. MATRICES OF SHIFT POLYNOMIALS 70

4.1 Additional Properties of FFreduce

In this section, we show a number of additional properties satisfied by the FFre-

duce algorithm when the input is restricted to matrices of shift polynomials. These

properties are crucial in the development of the algorithms in this chapter.

We first show that any order basis has a “shifted left inverse,” which is a vari-

ation of the notion of invertibility that will be useful in applications.

Lemma 4.1 Let κ ≥ 0, �ω = κ · �e ∈ Z1×s, �ν = κ · �e ∈ Z1×m. If M(Z) is an order

basis of order �ω and degree �µ, then there exists a shifted left inverse M∗(Z) ∈
QD[Z; σ]m×m such that M∗(Z) ·M(Z) = Z�ν. Moreover, if M(Z) is a reduced order

basis, then M∗(Z) satisfy the additional degree constraint cdeg M∗(Z) ≤ �ν − �µ.

Proof. Every row of the matrix Z�ν has order �ω. Therefore, the existence of

M∗(Z) is implied by Definition 3.10(b). If M(Z) is a reduced order basis then the

degree constraint is implied by Remark 3.11. �

Next, we prove two lemmas relating the pivots used in each cycle to the rank

of the trailing coefficient. This will be used in computing a row-reduced form and

a weak Popov form of a matrix of shift polynomials.

Lemma 4.2 Let κ ≥ 0. Then ρ(κ+1)s = rank Rκs(0). Furthermore, if T(Z) is the

matrix formed by the rows of Rk(Z) chosen as pivots during the κth cycle, then

T(0) is a matrix of full row rank ρ(κ+1)s and is in upper echelon form (up to row

permutations).

Proof. Denote by Hk ∈ Dm×s, the coefficient of Zκ of Mk(Z) · F(Z), for κs ≤
k ≤ (κ + 1)s. First, we claim that when row πk is chosen as a pivot for column

CHAPTER 4. MATRICES OF SHIFT POLYNOMIALS 71

k − κs + 1, the subspace generated by the rows of Hk is the same as the subspace

generated by row πk of Hk (a pivot row) and the rows of Hk+1. This is clearly

true after the order has been increased for rows 	 �= πk as the recurrence (3.16)

is invertible. Multiplying row πk of Mk(Z) by Z produces zeros in row πk in the

updated matrix, so that row πk of Hk must be kept. Finally, the degree adjustment

from rows 	 �= πk is again invertible. Therefore, the subspaces are the same.

It follows that the rows of H0 = Rκs(0) span the same space as all pivot rows

together with the rows of H(κ+1)s. Since Mk(Z) is an order basis of order �ωk ≥ �ωκs =

κ · �e, it follows that the first k − κs columns of Hk are zero. Thus, H(κ+1)s = 0. In

addition, the (k − κs)th component of the pivot row in iteration k equals rπk
�= 0.

Therefore the pivot rows form a full row rank upper echelon matrix (up to row

permutations). Since ρ(κ+1)s gives the number of pivot rows in the κth cycle, it

follows that ρ(κ+1)s = rank Rκs(0). �

Lemma 4.3 The pivots used in one cycle of FFreduce are distinct, or equiva-

lently, �µ(κ+1)s ≤ �µκs + �e for any κ ≥ 0. Moreover, rank Rκs(0) is increasing in

κ.

Proof. By the argument in Remark 3.12, we may assume that LCrow (Mκs(Z))

and LCrow

(
M(κ+1)s(Z)

)
are nonsingular and in upper echelon form after row per-

mutation. By Remark 3.11, there exists Q(Z) ∈ QD[Z; σ]m×m such that

Z · Mκs(Z) = Q(Z) · M(κ+1)s(Z), deg Q(Z)(j,�) ≤ �µ(j)
κs + 1 − �µ

(�)
(κ+1)s for all j, 	.

Comparing the coefficients at Z�µ
(j)
κs +1 in position (j,), we have on the left a nonsin-

gular upper triangular matrix, and on the right the leading row coefficient matrix

CHAPTER 4. MATRICES OF SHIFT POLYNOMIALS 72

B of Q(Z) (with coefficients at power �µ
(j)
κs + 1 − �µ

(�)
(κ+1)s) multiplied by an upper

triangular matrix A. Since the entries of the coefficient matrices are in QD, A must

be nonsingular, and so B is also nonsingular and hence upper triangular. Hence the

degrees on the diagonal cannot be smaller than 0, showing that �µ
(j)
κs + 1 ≥ �µ

(j)
(κ+1)s,

or, in other words, �µ(κ+1)s ≤ �µκs+�e. Thus, the pivots in one cycle are distinct. Also,

denoting by C the trailing coefficient of Q(Z), we easily obtain that C ·R(κ+1)s(0)

coincides with σ(Rκs(0)) (which has the same rank as Rκs(0)). Hence the rank of

Rκs(0) is increasing. �

The two lemmas above also allow us to terminate the algorithm earlier in most

cases. In particular, we may terminate the algorithm when

ρκs + number of zero rows in Rκs(Z) = m. (4.1)

For the remainder of this chapter we will assume that the FFreduce algorithm

has been modified to use the termination condition (4.1).

Theorem 4.4 The matrix R(Z) computed by FFreduce satisfies

rank R(0) = rank R(Z) = rank F(Z).

Proof. By Theorem 3.20, rank R(Z) = rank F(Z). Furthermore, rank Rκs(Z) =

rank F(Z) for all κ by Lemma 3.7. If the algorithm stops after the (κ + 1)st cycle

and r = ρ(κ+1)s, then

r = rank Rκs(0) ≤ rank R(κ+1)s(0) ≤ rank R(κ+1)s(Z) ≤ r

CHAPTER 4. MATRICES OF SHIFT POLYNOMIALS 73

by Lemma 4.2, Lemma 4.3, and the fact that R(κ+1)s(Z) contains r nonzero rows.

Consequently, r = rank R(κ+1)s(Z) = rank F(Z). �

Remark 4.5 We have shown implicitly in the proof that, if we stop after cycle

(κ + 1), then Rκs(0) already has full rank r = ρ(κ+1)s. Since all the pivots in one

cycle are distinct by Lemma 4.3, it follows that the set of pivot rows in Rκs(0) also

has rank r. �

We now give a tighter complexity bound of FFreduce in the case of matrices

of shift polynomials.

Theorem 4.6 Let K be an upper bound on the size of the coefficients appearing in

F(Z). Then the total cost for computing M and R by the FFreduce algorithm is

bounded by O((m + s)m4 min(m, s)4N4K2).

Proof. Since the pivots in one cycle are distinct by Lemma 4.3, the number of

pivots in each cycle is bounded by rank F(Z) ≤ min(m, s). This gives the bound

|�µ| ≤ min(m, s)(mN + 1). The complexity now follows from Theorem 3.23. �

4.2 Full Rank Decomposition and Solutions of

Linear Functional Systems

When F(Z) ∈ D[Z; σ]m×s represents a system of linear recurrence equations, one

can show that an equivalent system with a nonsingular leading (or trailing) coeffi-

cient allows one to obtain bounds on the degrees of the numerator and the denom-

inator of all rational solutions. This has been used to compute rational solutions

CHAPTER 4. MATRICES OF SHIFT POLYNOMIALS 74

of linear functional systems [1, 3, 4], which include systems defined by differen-

tial operators, difference operators, and q-difference operators. These systems are

transformed into a system of linear recurrence equations by studying the action

of the operators on the coefficients corresponding to an appropriately chosen basis

(e.g. {xn}n≥0) as illustrated in Example 1.6. The transformation may introduce

negative powers of Z, but they can be removed by multiplying by an appropriate

power of Z on the right.

Let QD[Z; σ][Z−1; σ−1] be the iterated domain where we have the identities

Z · Z−1 = Z−1 · Z = 1, Z · a · Z−1 = σ(a), Z−1 · a · Z = σ−1(a)

for all a ∈ QD. The rank revealing transformations of Abramov and Bronstein [3, 4]

can be formalized as follows. Given F(Z) ∈ D[Z; σ]m×s, we wish to find T(Z−1) ∈
D[Z−1; σ−1]m×m such that

T(Z−1) · F(Z) = W(Z) ∈ D[Z; σ]m×s, (4.2)

with the number of nonzero rows r of W(Z) coinciding with the rank of the trailing

coefficient W0, and hence with the rank of W(Z). In addition we require the

existence of S(Z) ∈ QD[Z; σ]m×m such that

S(Z) · T(Z−1) = Im.

Thus, the process of elimination for obtaining W(Z) is invertible. More precisely,

CHAPTER 4. MATRICES OF SHIFT POLYNOMIALS 75

we obtain for F(Z) the full rank decomposition

F(Z) = S(Z) · W(Z) = S̃(Z) · W̃(Z) (4.3)

with W̃(Z) ∈ D[Z; σ]r×n obtained by extracting the nonzero rows of W(Z), and

S̃(Z) ∈ QD[Z; σ]m×r by extracting from S(Z) the corresponding columns. More-

over, the rank of the trailing coefficient of W̃(Z) is of full row rank r, and this

quantity coincides with the rank of W̃(Z). Finally, from (4.3) we see that the

rank of F(Z) is bounded above by r, whereas (4.2) implies that rank F(Z) ≥
rank W(Z) = r. Thus we have r = rank F(Z).

The full rank decomposition problem can be solved by the FFreduce algorithm

as follows.

Theorem 4.7 Let M(Z) be the final order basis of order �ω = κ · �e and degree �µ,

and let M∗(Z) be the shifted left inverse of M(Z) in Lemma 4.1. Then

W(Z) = Z−κ·�e · R(Z) · Zκ·�e

T(Z−1) = Z−κ·�e · M(Z)

S(Z) = Z−κ·�e · M∗(Z) · Zκ·�e

solves the full rank decomposition problem (4.3).

Proof. The equations (4.2) and (4.3) can easily be verified by substitution, using

the properties that M(Z) · F(Z) = R(Z) · Zκ·�e and M∗(Z) · M(Z) = Zκ·�e. �

Remark 4.8 We may modify the FFreduce algorithm to also compute the shifted

CHAPTER 4. MATRICES OF SHIFT POLYNOMIALS 76

inverse M∗(Z) incrementally by examining how Q(Z) is updated in the proof of

Theorem 3.17. This corresponds to applying column operations to M∗(Z) to obtain

the new shifted inverse. However, the entries of M∗(Z) may contain fractions and

we no longer have a fraction-free algorithm. In practice, we only need to ensure

that a shifted inverse exists. It is not important to compute it explicitly. �

Example 4.9 Let D = Z[n, 2n] and consider

F(Z) =

0 −1

0 −12356

 +

 −80 0

−988480 −8029

Z +

 −32 0

−1037712 750

Z2+

 0 0

−196928 −300

Z3 +

0 1

0 120

Z4 +

2n(n + 1) 0

0 3077(n + 1)

Z5,

which is the same as the example from [3] except that it is multiplied (on the right)

by Z4. Using our algorithm, we terminate at �ω = (6, 6) in which the residuals

are not all zero in the last two iterations. The trailing coefficient of the residual

R(Z) obtained one cycle earlier at �ω = (5, 5) has a determinant that is an integer

constant times 2n(n + 1) − 80.

Writing W(Z) = Z−(5,5) ·R(Z) ·Z(5,5), the determinant of the trailing coefficient

of W(Z) is the same as that in [3], up to a constant. We remark that the product

of all the factors removed during the complete process is

2350159171880334461640000000000 (2n(n + 1) − 80) .

�

CHAPTER 4. MATRICES OF SHIFT POLYNOMIALS 77

4.2.1 Experimental Results

An exact arithmetic method involving coefficient GCD computations for the com-

putation of T(Z−1) ·F(Z) = W(Z) with W(Z) as above has already been given by

Abramov and Bronstein [3, 4]. We now give some experimental results comparing

their approach with FFreduce1.

As we have mentioned in Section 2.5.1, their “fraction-free” algorithm cannot

remove common divisors between two cycles (after the row degree is decreased)

without coefficient GCD computations. In particular, for 2×2 matrices such as the

one in Example 4.9, the algorithm always encounters a trailing coefficient of rank

at most 1 except in the last cycle. In such a case fraction-free Gaussian elimination

on the trailing coefficient alone does not remove any common factor at all. Unlike

our algorithm, however, the pivot row in their algorithm is not modified and does

not grow.

We compare FFreduce against Abramov and Bronstein’s algorithm imple-

mented as LinearFunctionalSystems[MatrixTriangularization] (we abbrevi-

ate this as AB) in Maple 82. In this implementation, GCD computations are

performed when computing the elements in the kernel of the trailing coefficient in

order to obtain “small” vectors. No other GCD computations are performed.

Experiments generated randomly by applying random row operations in reverse

1The experiments were performed on an Intel Pentium 4 1.7 GHz machine with 1GB of RAM.
2This implementation performs additional optimizations when the trailing coefficient has a zero

row or a zero column. This reduces the number of iterations required to obtain the final result.
The FFreduce algorithm can be adopted to perform such shifts as well. In our comparison, such
optimizations are enabled in AB but disabled in FFreduce. Disabling the optimizations in AB
does not significantly affect the results in our experiments.

CHAPTER 4. MATRICES OF SHIFT POLYNOMIALS 78

from a final desired result show that AB can be significantly faster than FFre-

duce. In all such cases, the reason is that the small vectors computed in the kernel

effectively control the growth of coefficients. On the other hand, coefficient growth

in FFreduce is larger even though it is controlled. In some cases, FFreduce can

be slower by a large factor (e.g. 1000). When computing small vectors does not

effectively control the coefficient growth, however, FFreduce is faster than AB.

We can construct examples in which controlling coefficient growth only in the

kernel computation is insufficient. For the first set of experiments, we consider the

commutative case in Z[z]2×2, where the input matrices are

Fd(z) =

 ∑d
i=0 pi+1z

i
∑d−1

i=0 pi+1z
i∑d

i=0 pi+d+2z
i

∑d−1
i=0 pi+d+2z

i

 , (4.4)

where pi is the ith prime. The choice of distinct primes as coefficients improves

the chance that the “small” kernel vectors have size close to the ones obtained

by fraction-free Gaussian elimination. Also, the number of iterations required is

relatively large by this choice of the input. Figure 4.1 shows the computing time

and the size of the final results (the length3 of all integer coefficients) depending

on d. We remark that the size of the final results for FFreduce includes both the

residual and the transformation matrix, while the size for AB includes only the

residual. As we expect, the growth in both the size and the computation time in

AB is much higher than that in FFreduce. Note that in AB, the growth in the

size of the intermediate results between cycles cannot be avoided regardless of the

3This is the result returned by the length command in Maple.

CHAPTER 4. MATRICES OF SHIFT POLYNOMIALS 79

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300

se
co

nd
s

d

FFreduce
AB

(a) Computation time

5

10

15

20

25

30

0 50 100 150 200 250 300

lo
g2

(s
iz

e)

d

FFreduce
AB

(b) log2(size) of final results

Figure 4.1: Comparison of AB and FFreduce on input matrices defined in (4.4).

algorithm used to compute the kernel.

In the next set of experiments, we consider F(Z) ∈ Z[n][Z; σ]2×2, where σ(a(n)) =

a(n + 1). The input matrices are chosen to be

Fd(Z) =

 q0,d(Z) q0,d−1(Z)

q2d+2,d(Z) q2d+2,d−1(Z)

 , (4.5)

where qj,k(Z) =
∑k

i=0(p2i+j+1n + p2i+j+2)Z
i. Table 4.1 shows the experimental

results. We see again that FFreduce performs much better than AB in this case.

We also note that the growth in the size of the final results in FFreduce is much

less than that in AB.

Next, we examine a set of experiments performed in Z[n][Z; σ]3×3 such that

CHAPTER 4. MATRICES OF SHIFT POLYNOMIALS 80

AB FFreduce
d Time (sec) Size Time (sec) Size
1 0.055 75 0.013 107
2 0.063 403 0.021 337
3 0.131 1015 0.035 689
4 0.330 3533 0.056 1327
5 0.651 10796 0.123 2092
6 1.541 35920 0.129 3302
7 3.949 101031 0.276 4684
8 13.994 288935 0.375 6743
9 145.125 719619 0.492 9008

10 720.742 1835504 0.730 12389
11 4246.829 4414659 1.329 15757
12 15025.581 10593921 2.442 20595

Table 4.1: Comparison of AB and FFreduce on input matrices defined in (4.5).

σ(a(n)) = a(n + 1). We define

Fd(Z) =


q0,d(Z) q0,d−1(Z) q0,d−2(Z)

q2d+2,d(Z) q2d+2,d−1(Z) q4d+4,d−2(Z)

q4d+4,d(Z) q4d+4,d−1(Z) q2d+2,d−2(Z)

 . (4.6)

Both AB and FFreduce were applied on this set of input matrices, with a time

limit of four hours. Table 4.2 shows the results, showing once again that FFreduce

performs significantly better when coefficient growth cannot be avoided by simply

controlling the size of the vectors in the kernel computation.

Finally, we give results on another class of examples in Z[n][Z; σ]2×2 with

CHAPTER 4. MATRICES OF SHIFT POLYNOMIALS 81

AB FFreduce
d Time (sec) Size Time (sec) Size
2 0.123 654 0.101 1488
3 0.125 2606 0.239 4589
4 0.287 7920 0.455 8621
5 0.691 27972 0.900 17267
6 1.582 84523 1.867 27208
7 4.656 265003 2.717 44369
8 19.342 714330 6.334 62900
9 331.509 1948947 20.334 92194

10 1943.193 4770766 148.652 122964
11 5821.765 12177824 516.682 169323
12 10144.400 27971967 631.781 213626
13 ? ? 1528.602 280124
14 ? ? 1660.289 340995
15 ? ? 2403.154 432665

Table 4.2: Comparison of AB and FFreduce on input matrices defined in (4.6).
An entry of “?” means that the test did not finish within four hours.

CHAPTER 4. MATRICES OF SHIFT POLYNOMIALS 82

AB FFreduce
d Time (sec) Size Time (sec) Size
1 0.422 1325 0.048 1430
2 2.547 12012 0.287 6057
3 47.703 123110 1.394 15706
4 2045.412 837021 5.059 26665
5 ? ? 87.209 65876
6 ? ? 228.244 102301
7 ? ? 488.750 165810
8 ? ? 924.529 229896
9 ? ? 1417.518 296447

10 ? ? 4439.551 453021

Table 4.3: Comparison of AB and FFreduce on input matrices defined in (4.7).
An entry of “?” means that the test did not finish within three hours.

σ(a(n)) = a(n + 1). Let

Fd(Z) =

ad(Z)

bd(Z)

 ·
[
cd(Z) dd(Z)

]
, (4.7)

where ad(Z), bd(Z), cd(Z), dd(Z) are random polynomials of degree d. Note that

deg F(Z) = 2d and rank F(Z) = 1. The results are given in Table 4.3. Experiments

on 3 × 3 matrices give similar results.

4.3 Computing a Row-reduced Form

The FFreduce algorithm can be used to compute a row-reduced form in the case

of matrices of shift polynomials. In particular, given F(Z) ∈ D[Z; σ]m×s we can

compute U(Z) and T(Z) such that U(Z) · F(Z) = T(Z) with the nonzero rows

CHAPTER 4. MATRICES OF SHIFT POLYNOMIALS 83

of T(Z) being row-reduced. Since we wish to eliminate high-order coefficients, we

perform the substitution Ẑ = Z−1, σ̂ = σ−1 and perform the reduction over D[Ẑ; σ̂].

We further assume that σ−1 does not introduce fractions, so that σ−1(a) ∈ D for

all a ∈ D. We write

F̂(Ẑ) := F(Ẑ−1) · ẐN , (4.8)

and let M̂k(Ẑ), R̂k(Ẑ), �µk, and �ωk be the intermediate results obtained from the

FFreduce algorithm with the input F̂(Ẑ). If we define

Uk(Z) = Z�µk · M̂k(Ẑ), Tk(Z) = Z�µk · R̂k(Ẑ) · Ẑ�ωk−N ·�e, (4.9)

then Uk(Z) · F(Z) = Tk(Z). In this case simple algebra shows that the recursion

formulas for Uk(Z) obtained from (3.16) and (3.17) become

σ�µ
(�)
k (pπk

) · Uk+1(Z)(�,·) = σ�µ
(�)
k (rπk

) · Uk(Z)(�,·) − σ�µ
(�)
k (r�) · Z�µ

(�)
k −�µ

(πk)

k · Uk(Z)(πk,·)

(4.10)

for 	 �= πk and

σ�µ
(πk)

k +2(pπk
) · Uk+1(Z)(πk,·)

= σ�µ
(πk)

k +1(rπk
) · Uk(Z)(πk,·) −

∑
��=πk

σ�µ
(πk)

k +2(p�) · Z�µ
(πk)

k −�µ
(�)
k +1 · Uk+1(Z)(�,·),

(4.11)

CHAPTER 4. MATRICES OF SHIFT POLYNOMIALS 84

where

r� = σ−�µ
(�)
k

(
c
N+�µ

(�)
k −�k/s	

(
Tk(Z)(�,(k mod m)+1)

))
,

p� = σ−�µ
(πk)

k

(
c
�µ

(πk)

k −�µ
(�)
k −δπk,�+1

(
Uk(Z)(πk,�)

))
.

Since �µ
(πk)
k ≤ �µ

(�)
k whenever r� �= 0 and p� = 0 whenever �µ

(πk)
k < �µ

(�)
k − 1 by

the definition of a reduced order basis, it follows that Uk+1(Z) ∈ D[Z; σ]m×m and

hence Tk+1(Z) ∈ D[Z; σ]m×s. Moreover, [Uk+1(Z), Tk+1(Z)] is obtained from

[Uk(Z), Tk(Z)] by elementary row operations of the second type, so if Uk(Z) is

unimodular then Uk+1(Z) is also unimodular.

Theorem 4.10 Let k = κs, and M̂k(Ẑ), R̂k(Ẑ), �µk, and �ωk = κ · �e be the final

output obtained from the FFreduce algorithm with the input F̂(Ẑ). Then

(a) Uk(Z) ∈ D[Z; σ]m×m and Tk(Z) ∈ D[Z; σ]m×s;

(b) Uk(Z) is unimodular;

(c) Uk(Z) · F(Z) = Tk(Z);

(d) the nonzero rows of Tk(Z) form a row-reduced matrix.

Proof. Parts (a), (b), and (c) have already been shown above. By Theorem 4.4,

we see that rank R̂k(0) = rank F̂(Ẑ) = rank R̂k(Ẑ), which is also the number of

nonzero rows in R̂k(Ẑ). Therefore, the nonzero rows of R̂k(Ẑ) form a matrix with

trailing coefficient of full row rank. It is easy to see that rdeg Tk(Z) = �µk+(N−κ)·�e

CHAPTER 4. MATRICES OF SHIFT POLYNOMIALS 85

and that

Tk(Z)(i,·) = σ�µ
(i)
k (R̂k(0)

(i,·)
) · Z�µ

(i)
k +N−κ + lower degree terms.

Therefore, LCrow (Tk(Z)) = σdeg Tk(Z)−N+κ(R̂k(0)). Since σ is an automorphism on

QD, it follows that rank LCrow (Tk(Z)) = rank R̂k(0), and hence the nonzero rows

of Tk(Z) form a row-reduced matrix. �

We remark that Theorem 3.5 implies that the rows of Uk(Z) of Theorem 4.10

corresponding to the zero rows of Tk(Z) gives a basis of the left nullspace of F(Z).

4.4 Computing a Weak Popov Form

The FFreduce algorithm can be modified to obtain U(Z) and T(Z) such that

T(Z) is in weak Popov form (Definition 2.7). Formally, if �ω = κ · �e is the order

obtained at the end of the FFreduce algorithm, we form the matrices U(Z) and

T(Z) by

[U(Z)(i,j), T(Z)(i,j)]

=


[Uk(Z)(i,j), Tk(Z)(i,j)] if πk = i for some κs − s ≤ k < κs,

[Uκs(Z)(i,j), Tκs(Z)(i,j)] otherwise;

We note that U(Z) and T(Z) are well-defined because the pivots πk are distinct

for κs − s ≤ k < κs by Lemma 4.3. We now show that T(Z) is in weak Popov

form.

CHAPTER 4. MATRICES OF SHIFT POLYNOMIALS 86

Theorem 4.11 Let �ω = κ ·�e be the order obtained from the FFreduce algorithm

with the input F̂(Ẑ). Then

(a) U(Z) ∈ D[Z; σ]m×m and T(Z) ∈ D[Z; σ]m×s;

(b) U(Z) is unimodular;

(c) U(Z) · F(Z) = T(Z);

(d) T(Z) is in weak Popov form.

Proof. Part (a) is clear, and (b) follows from the fact that U(Z) can be obtained

from Uκs−s(Z) by applying elementary row operations of the second type on each

row until it has been chosen as a pivot. Moreover, we have that for all k and 	,

Uk(Z)(�,·) · F(Z) = Tk(Z)(�,·) and hence (c) is true.

Note that the non-pivot rows of T(Z) must be zero because of the termination

condition (4.1). By reversing the coefficients of T(Z) we see that

T(Z)(i,·) = σ�µ
(i)
κs−s(H(i,·)) · Z�µ

(i)
κs−s+N−κ + lower degree terms,

where H is the matrix whose nonzero rows are the pivot rows used during the last

cycle.

By Lemma 4.2, the nonzero rows of H form a matrix in upper echelon form

(up to row permutations). Thus, LCrow (T(Z)) = σdeg T(Z)−N+κ(H). Since σ is an

automorphism on QD it follows that the nonzero rows of LCrow (T(Z)) is also in

upper echelon form. Thus, T(Z) is in weak Popov form (see also Remark 2.10). �

Again, Theorem 3.5 implies that the rows of U(Z) of Theorem 4.11 correspond-

ing to the zero rows of T(Z) gives a basis of the left nullspace of F(Z).

CHAPTER 4. MATRICES OF SHIFT POLYNOMIALS 87

4.5 Computing GCRD and LCLM

Using the preceding algorithm for row reduction allows us to compute a greatest

common right divisor (GCRD) and a least common left multiple (LCLM) of ma-

trices of shift polynomials in the same way it is done in the case of matrices of

polynomials [12, 41]. Let A(Z) ∈ D[Z; σ]m1×s and B(Z) ∈ D[Z; σ]m2×s, such that

the matrix

F(Z) =

A(Z)

B(Z)


has rank s. Such an assumption is natural since otherwise we may have GCRDs of

arbitrarily high degree [41, page 376]. After row reduction and possibly a permu-

tation of the rows, we obtain

U(Z) · F(Z) =

U11(Z) U12(Z)

U21(Z) U22(Z)

 ·

A(Z)

B(Z)

 =

G(Z)

0


with G(Z) ∈ D[Z; σ]s×s, and U1,j(Z), U2,j(Z) matrices of shift polynomials of size

s × mj, and (m1 + m2 − s) × mj, respectively, for j = 1, 2.

To see that G(Z) is a right divisor of A(Z) and B(Z), we use the fact that

U(Z) is unimodular, so that an inverse V(Z) exists. Then

F(Z) =

A(Z)

B(Z)

 = V(Z) ·

G(Z)

0

 =

V11(Z) V12(Z)

V21(Z) V22(Z)

 ·

G(Z)

0

 ,

CHAPTER 4. MATRICES OF SHIFT POLYNOMIALS 88

so that A(Z) = V11(Z) · G(Z) and B(Z) = V21(Z) · G(Z). From

U11(Z) · A(Z) + U12(Z) · B(Z) = G(Z)

we see that any right divisor of A(Z) and B(Z) must be a right divisor of G(Z).

This shows that G(Z) is a GCRD of A(Z) and B(Z). Since U(Z) is unimodular,

it follows that U21(Z) and U22(Z) are left coprime. In the case of polynomial

matrices with A(Z) being nonsingular, the matrix fraction B(Z) · A(Z)−1 can be

represented by the irreducible matrix fraction U−1
22 (Z) · U21(Z).

Let 	 > 0. Then for any common left multiple W1(Z) · A(Z) = W2(Z) · B(Z)

with Wj(Z) ∈ QD[Z; σ]�×mj , the rows of [W1(Z), −W2(Z)] belong to the left

nullspace NF(Z). Since [U21(Z), U22(Z)] is a basis of NF(Z) by Theorem 3.5, there

exists Q(Z) ∈ QD[Z; σ]�×(m1+m2−s) such that

[
W1(Z) −W2(Z)

]
= Q(Z) ·

[
U21(Z) U22(Z)

]
,

implying that U21(Z) · A(Z) = −U22(Z) · B(Z) is an LCLM of A(Z) and B(Z).

We remark that in contrast to the method proposed in [12], our GCRD has the

additional property of being row-reduced or being in weak Popov form.

4.6 Computing Subresultants

The method of Section 4.5, applied to two 1 × 1 matrices, gives the GCRD and

LCLM of two shift polynomials a(Z) and b(Z). In this section we examine the

CHAPTER 4. MATRICES OF SHIFT POLYNOMIALS 89

relationship of the intermediate results obtained during our algorithm to the sub-

resultants of shift polynomials defined by [44, 45]. Denoting the degrees of a(Z),

b(Z) by da ≥ db ≥ 1, the jth subresultant sresj(a, b) for shift polynomials is defined

by taking the determinant of the matrix

σdb−j−1(ada) σdb−j−1(ada−1) · · · · · · · · · σdb−j−1(a2j+2−db
) Zdb−j−1 · a(Z)

. . .
...

...

σ(ada) · · · · · · σ(aj) Z · a(Z)

ada · · · aj+1 a(Z)

σda−j−1(bdb
) σda−j−1(bdb−1) · · · · · · · · · σda−j−1(b2j+2−da) Zda−j−1 · b(Z)

. . .
...

...

σ(bdb
) · · · · · · σ(bj) Z · b(Z)

bdb
· · · bj+1 b(Z)



.

Theorem 4.12 Let a(Z) and b(Z) be two shift polynomials of degrees da and db,

respectively, such that da ≥ db ≥ 1. Then sresj(a, b) �= 0 if and only if there exists

an 	 = 	j with �µ2da−2j−1 = (da − j, da − j) − �e�. In this case,

T2da−2j−1(Z)(�,1) = ±γ · sresj(a, b), γ =

da−db−1∏
i=0

σdb−j+i(ada).

CHAPTER 4. MATRICES OF SHIFT POLYNOMIALS 90

Proof. After expanding with respect to the first columns, we see that the quantity

γ · sresj(a, b) coincides with the determinant of the matrix

σda−j−1(ada) σda−j−1(ada−1) · · · · · · · · · σda−j−1(a2j+2−da) Zda−j−1 · a(Z)
. . .

...
...

σ(ada) · · · · · · σ(aj) Z · a(Z)

ada · · · aj+1 a(Z)

σda−j−1(bda) σda−j−1(bda−1) · · · · · · · · · σda−j−1(b2j+2−da) Zda−j−1 · b(Z)
. . .

...
...

σ(bda) · · · · · · σ(bj) Z · b(Z)

bdb
· · · bj+1 b(Z)



.

Denote by Sj the (2da − 2j)× (2da − 2j − 1) matrix obtained by dropping the last

column. Notice that

σ−(da−j−1)(Sj) = K((da − j, da − j), 2da − 2j − 1), (4.12)

the striped Krylov matrix associated to F̂(Ẑ) = [â(Ẑ), b̂(Ẑ)]T with â(Ẑ) = a(Ẑ−1) ·
Ẑda and b̂(Ẑ) = b(Ẑ−1) · Ẑda . Thus sresj(a, b) �= 0 if and only if the dimension (over

QD) of the left nullspace of Sj is equal to one, which in turn is true if and only if

there is a unique P(Z) ∈ QD[Z; σ] (up to multiplication with an element from QD)

of order �ω = (2da − 2j − 1) and deg P(Z) ≤ da − j − 1.

One verifies using Lemma 5.2 of [10] and da �= 0 that |�ωk| = k = |�µk| for all

k in the FFreduce algorithm. Let k = 2da − 2j − 1, then from Lemma 3.3(a)

and Definition 3.10(b) we conclude that sresj(a, b) �= 0 if and only if �µk has one

component being equal to da − j − 1 and the other one being at least as large as

CHAPTER 4. MATRICES OF SHIFT POLYNOMIALS 91

da − j, that is, �µk = (da − j, da − j) − �e� for some 	 ∈ {1, 2}.
Finally, if sresj(a, b) �= 0, then we use (4.12) and the determinantal represen-

tations of Section 3.3 together with the uniqueness of Mahler systems in order to

conclude that

γ · sresj(a, b) = ±Z�µ(�) · R̂k(Ẑ)
(�,·) · Ẑ�ω−da·�e = Tk(Z)(�,1).

�

Whenever �µ2k−1 is of the form (k, k)−�e� for some 	 ∈ {1, 2} during the execution

of our algorithm, we can recover the nonzero sresda−k(a, b) from R̂2k−1(Ẑ) ·Z�ω−da·�e

after multiplying by Zk and dividing by the extra factor of γ (or by dividing

T2k−1(Z)(�,1) by γ).

Notice that the extra factor of γ is introduced at the beginning of the algorithm,

before any step with |Λ| > 1. There is no reduction performed in these first da − db

steps. Thus, we may modify our algorithm so that no reduction is done until |Λ| = 2

for the first time, except that �µk is still updated. Then

sresda−k(a, b) =


±Z�µ

(1)
2k−1−da+db · R̂2k−1(Ẑ)

(1,1) · Ẑ2k−1−da if �µ2k−1 = (k − 1, k),

±Z�µ
(2)
2k−1 · R̂2k−1(Ẑ)

(2,1) · Ẑ2k−1−da if �µ2k−1 = (k, k − 1).

Chapter 5

A Modular Algorithm for

Row-Reduced Form for

Polynomial Matrices

In this chapter, we give a modular algorithm for computing a row-reduced form of a

polynomial matrix. The modular algorithm is based on the fraction-free FFreduce

algorithm given in Algorithm 3.5.

For simplicity, we assume that D = Z or D = QR[x] for some integral domain

R. Given an ideal I ⊆ D, a modular homomorphism φ : D → D/I can be defined

by φ(a) = a + I for all a ∈ D. For example, if D = Z then we set I = pZ for some

prime p ∈ Z, so that φ reduces integers modulo p and D/I = Zp. On the other

hand, if D = QR[x], then we set I = (x − α)QR[x] for some α ∈ R (or α ∈ QR),

so that D/I = QR and the modular homomorphism corresponds to evaluation at

x = α. We will denote the reduction homomorphism by φp or φx−α if we wish to

92

CHAPTER 5. MODULAR ALGORITHM FOR ROW-REDUCED FORM 93

explicitly specify the ideal I. Finally, if D is a multivariate polynomial ring over

Z, our modular algorithm can be applied recursively to eliminate one variable at a

time and reduce the coefficients to Zp. We may also first reduce D to a multivariate

polynomial ring over Zp and then eliminate the variables.

5.1 Issues in Designing a Modular Algorithm

The basic framework of a modular algorithm can be stated as follows [36]. First, a

number of pairwise comaximal ideals I1, . . . , Ik ⊆ D (i.e. Ii + Ij = D if i �= j) [30]

are chosen. In our case, pairwise comaximality is guaranteed by choosing distinct

primes (when D = Z) or distinct evaluation points (when D = QR[x]). Let φi

be the modular homomorphism defined by the ideal Ii. For i = 1, . . . , k, a row-

reduced form Ti(z) of φi(F(z)) ∈ (D/Ii)[z]m×s is computed. At the end, those Ti(z)

which are images of the desired result T(z) ∈ D[z]m×s are used to reconstruct

T(z) by Chinese remaindering (e.g. Garner’s algorithm [32]). The unimodular

transformation matrix U(z) can also be reconstructed in a similar way from Ui(z).

In order to design a modular algorithm, we must recognize when the com-

puted result Ti(z) is an image of the desired result. That is, we need to recognize

whether Ti(z) = φi(T(z)). This equality may not hold for two reasons. First,

a polynomial matrix can have many different row-reduced forms, so that Ti(z)

may be the homomorphic image of another row-reduced form T′(z) for F(z). This

can be addressed by normalization, so that the computed row-reduced form sat-

isfies Ti(z) = φi(T(z)). Secondly, the computed result Ti(z) may not be the

homomorphic image of any row-reduced form of F(z). If we cannot normalize

CHAPTER 5. MODULAR ALGORITHM FOR ROW-REDUCED FORM 94

the result so that Ti(z) = φi(T(z)), we say that φi is an unlucky homomorphism

and the computed result Ti(z) is discarded. For example, if F(z) is square and

deg φi(detF(z)) < deg detF(z), then the row degree of a row-reduced form of F(z)

in D/Ii will be different from rdeg T(z) (under any row permutation). In such

cases, Ti(z) does not correspond to any row-reduced form of F(z). Thus, we must

be able to recognize when φi is unlucky and discard the corresponding results.

Since the Chinese remainder theorem is only able to guarantee correctness of the

reconstructed results in D/(I1∪· · ·∪Ik) = D/(I1 · · · Ik) [30], additional information

is required to ensure that the reconstructed results are correct in D. Typically,

bounds on the size of the results are obtained and the number of lucky homomorphic

images is determined. For a large enough k, there is only one representative in the

coset in D/(I1 · · · Ik) satisfying the bounds. This representative gives the correct

answer. Thus, we must also determine the number of lucky homomorphic images

required.

We address each of these issues with linear algebra techniques, since the FFre-

duce algorithm can be viewed as an algorithm for solving specific systems of linear

equations.

5.2 Computing Homomorphic Images

We view the domain D/I as a field in which coefficient growth is limited. Therefore,

a number of different algorithms can be used to compute a row-reduced form for

F(z) over D/I. In our algorithm we choose the FFreduce algorithm given in

Algorithm 3.5 with the modified termination condition given in (4.1). We also

CHAPTER 5. MODULAR ALGORITHM FOR ROW-REDUCED FORM 95

need to reverse the coefficients using (4.8) and (4.9), or rewrite the algorithm using

the recurrence formulas (3.16) and (3.17). To simplify our presentation, we will

assume that the coefficients are reversed in the algorithm before any computation

is done, and the output is reversed at the end. However, to simplify our analysis,

we will study the reversed transformation matrix M(z) and residual R(z) instead

of U(z) and T(z). Note that the reversal of coefficients is trivial in the case of

polynomial matrices, and does not involve operations on the coefficients.

Since the multi-gradient d of a Mahler system is defined only up to sign, the

computed images may have incorrect signs. Therefore, we insist that d = det K∗(�µ−
�e, �ω) to ensure that the sign is correct. This is done in the FFreduce algorithm

by keeping track of the sign εk. We have ε0 = 1, and the update formula [12]

εk+1 ←


εk if Λ = {},

εk · (−1)
∑n

i=π+1 �µ
(i)
k otherwise.

We also record in a vector �σk the values of i + 1 such that Λ �= {} in iteration

i. Thus, �σk has |�µk| components, and �σ
(j)
k = i + 1 if Λ �= {} in iteration i and

j = |�µi| + 1. Then, the final results returned are modified to be

M ← εk · Mk, R ← εk · Rk, �σ ← �σk.

We remark that �σ gives the elements of the set of column indices J in Definition 2.16.

We supply the additional input parameter D/I to the FFreduce algorithm

to specify the domain of computation. We perform exactly the same arithmetic

CHAPTER 5. MODULAR ALGORITHM FOR ROW-REDUCED FORM 96

operations as stated in Algorithm 3.5 in D/I, where the division of the predicted

divisor is replaced by multiplication of the inverse in the field. It is unusual to use

a fraction-free algorithm for computation over D/I because coefficient growth is

limited. However, this ensures that the computed results are images of the results

computed in D using the same sequence of operations. This solves part of our

normalization problem. In the remainder of this chapter, we call the modified

algorithm FFreduce2.

5.3 Lucky Homomorphisms and Normalization

We define lucky homomorphisms in this section. Let M(z), R(z), �µ, �ω, and �σ be the

results obtained by the FFreduce2 algorithm when the operations are performed

over D. Similarly, let Mi(z), Ri(z), �µi, �ωi, and �σi be the results computed over

D/Ii
1. We also define d and di to be the normalization constant in Definition 3.10(c)

corresponding to M(z) and Mi(z), respectively. Note that Mi(z) and Ri(z) can

be used in the reconstruction if

φi(M(z)) = Mi(z), φi(R(z)) = Ri(z). (5.1)

If this is not the case, we say that φi is unlucky. Since we require the computed

results to be the exact images of M(z) and R(z), we have solved the normalization

problem as well provided that φi is lucky. Formally, we define a lucky homomor-

1These quantities are not the intermediate results computed in the FFreduce2 algorithm,
although the notation is the same.

CHAPTER 5. MODULAR ALGORITHM FOR ROW-REDUCED FORM 97

phism in the following way.

Definition 5.1 Let φi be a modular homomorphism. Then φi is lucky if φi(d) �= 0

and |�µ| = |�µi|. Otherwise, φi is unlucky. �

We also say that a prime p or an evaluation point α is lucky (or unlucky) if the

corresponding modular homomorphism is lucky (or unlucky). We remark that if

deg φi(F(z)) < deg F(z), then φi is unlucky because column �σ(1) of φi(K
∗(�µ−�e, �ω))

consists only of zeros and therefore φi(d) = 0 (since the coefficients are reversed).

Before we prove that this definition is sufficient (i.e. (5.1) is satisfied) and show

how to detect whether a modular homomorphism is unlucky, we need to state an

additional property satisfied by the degrees of the Mahler systems computed in the

FFreduce2 algorithm [12, Theorem 7.3]. Roughly speaking, this describes how

the sequence of row indices of pivot rows deviates from the “normal” sequence in

which all residuals are nonzero at every iteration.

Theorem 5.2 Let w = {�wk}k=0,1,2... be the sequence of multi-indices defined by

�w0 = �0

�wk+1 = �wk + �eπ, where π = min
1≤i≤m

{
i : �w

(i)
k = min

1≤j≤m
�w

(j)
k

}
.

Then �µ is the unique closest point to the sequence w such that K∗(�µ − �e, �ω) is

nonsingular. That is, if K∗(�ν −�e, �ω) is nonsingular for some �ν such that |�ν| = |�µ|,
then ∣∣∣max{�0, �wk − �µ}

∣∣∣ ≤ ∣∣∣max{�0, �wk − �ν}
∣∣∣ for k ≥ 0. (5.2)

�

CHAPTER 5. MODULAR ALGORITHM FOR ROW-REDUCED FORM 98

To facilitate the presentation, we let K∗
i (�µ−�e, �ω, φi(F(z))) be the submatrix of

the corresponding striped Krylov matrix Ki(�µ−�e, �ω, φi(F(z))) over D/I as defined

in Definition 2.16, so that the set of column indices J is given by �σi. In the following,

we will often make use of the following fact.

Lemma 5.3 If |�µi| = |�µ|, then the columns indexed by �σ are also contained in

Ki(�µi, �ωi, φi(F(z))). In other words, if �ωi = κ · �e, then �σ(k) ≤ κ for k = 1, . . . , |�µ|.

Proof. If �σ(k) > κ, then rank Ki(�µi, �ωi, φi(F(z))) < |�σ| = |�σi| by Definition 2.16,

which is a contradiction. �

We now prove a lemma which will be used for detecting whether a homomor-

phism is lucky.

Lemma 5.4 Suppose deg F(z) = deg φi(F(z)) and |�µi| = |�µ|. Then �σ ≤lex �σi.

Moreover, if �σ = �σi, then �µ is at least as close to w as �µi, as defined in (5.2).

Proof. The columns indexed by �σi in Ki(�µi−�e, �ωi, φi(F(z))) are linearly indepen-

dent over D/I. Therefore, the same columns in K(�µi − �e, �ω,F(z)) are also linearly

independent over QD by Lemma 5.3. By Definition 2.16, it follows that �σ ≤lex �σi.

If �σ = �σi, then φi (det K∗(�µi − �e, �ω,F(z))) = det K∗
i (�µi −�e, �ωi, φi(F(z))) = di �=

0, it follows that K∗(�µi − �e, �ω,F(z)) is nonsingular over QD. The second part now

follows from Theorem 5.2. �

We now give an equivalent definition of lucky homomorphisms which is more

useful for the detection of unlucky homomorphisms.

Theorem 5.5 Suppose deg F(z) = deg φi(F(z)). Then φi is lucky if and only if

�µi = �µ and �σi = �σ.

CHAPTER 5. MODULAR ALGORITHM FOR ROW-REDUCED FORM 99

Proof. Suppose φi is lucky. Since φi(d) �= 0, φi(K
∗(�µ−�e, �ω,F(z))) is nonsingular

over D/I. Thus, the columns of K(�µ − �e, �ω, φi(F(z))) indexed by �σ are linearly

independent over D/I, so that �σi ≤lex �σ. But �σ ≤lex �σi by Lemma 5.4, hence

�σi = �σ. Moreover, �µ is at least as close to w as �µi by Lemma 5.4. On the other

hand, �µi is the unique closest point to w by Theorem 5.2. This implies that �µi = �µ.

Conversely, assume that �µi = �µ and �σi = �σ. Clearly |�µ| = |�µi|. In addition,

φi(K
∗(�µ − �e, �ω,F(z))) = K∗

i (�µi − �e, �ωi, φi(F(z))) by Lemma 5.3, so that φi(d) =

di �= 0. �

We now show that Definition 5.1 is sufficient.

Theorem 5.6 If φi is lucky, then φi(M(z)) = Mi(z) and φi(R(z)) = Ri(z).

Proof. Suppose that φi is lucky, so that �µ = �µi and �σ = �σi by Theorem 5.5.

Then φi(K
∗(�µ−�e +�ej, �ω,F(z))) = K∗

i (�µi −�e +�ej, �ωi, φi(F(z))) for all j. It follows

by (3.12) that φi(M(z)) = Mi(z). Finally, over D/Ii we have

φi(R(z)) = φi(M(z) · F(z)) = φi(M(z)) · φi(F(z)) = Mi(z) · φi(F(z)) = Ri(z).

�

To determine if φi is lucky, We need to check that �µi = �µ and �σi = �σ. However,

�µ and �σ are not known in advance. Instead, we can compare the results computed

under two modular homomorphisms and detect which, if any, is unlucky.

Theorem 5.7 Suppose φi and φj satisfy deg F(z) = deg φi(F(z)) = deg φj(F(z)).

Then φi is unlucky if either of the following holds:

(a) |�µi| = |�µj| and �σi >lex �σj.

CHAPTER 5. MODULAR ALGORITHM FOR ROW-REDUCED FORM 100

(b) |�µi| = |�µj|, �σi = �σj, and �µj is closer to w than �µi;

Furthermore, if |�µi| �= |�µj|, then at least one of φi and φj is unlucky.

Proof. Conditions (a) and (b) follow from Lemma 5.4. If |�µi| �= |�µj|, then they

cannot be both equal to |�µ|, so at least one of φi and φj must be unlucky. �

Remark 5.8 Note that when |�µi| �= |�µj|, we cannot determine whether one of φi

or φj is lucky by the criteria above. Thus, we must discard both φi and φj.

If the termination condition of FFreduce2 is the original termination con-

dition of FFreduce (i.e. perform (mN + 1)s iterations), then we must have

|�µi| ≤ |�µ| in all cases. This is because �ωi = �ω for all i, and |�µ| is the maximum

rank of K(�ν − �e, �ω,F(z)) over all multi-indices �ν. The rank of such matrices over

D/I cannot increase, so that |�µi| ≤ |�µ|. Using the original termination condition,

we can discard only φi if |�µi| < |�µj|. Since unlucky homomorphisms are rarely en-

countered, the advantage of this approach is offset by the increased average running

time of FFreduce2. Therefore, we will not consider this approach. �

Finally, we need to bound the number of unlucky homomorphisms. If φi is un-

lucky, then either φi(d) = 0 or |�µ| �= |�µi| by Definition 5.1. In the latter case, the

required number of nonzero rows is obtained prematurely and the algorithm termi-

nates, which implies that some of the determinants given by (3.13) vanishes under

the homomorphism. In either case, we have φi(d
′) = 0 where d′. Now d′ is a minor of

K∗(�µ, �ω) of order min(m, s)(mN+1). Each minor has size O(min(m, s)(mN+1)K)

by Lemma 3.22. If D = Z, the product of all unlucky primes must divide the prod-

uct of the m + 1 minors, which is in O(m min(m, s)(mN + 1)K). Similarly, the

CHAPTER 5. MODULAR ALGORITHM FOR ROW-REDUCED FORM 101

number of unlucky evaluation points is finite if D = QR[x]. In practice, unlucky

homomorphisms are rarely encountered.

5.4 Number of Homomorphic Images Required

In order to determine the number of lucky homomorphisms required to guarantee

the correctness of the reconstructed results, we need to obtain a bound on the size of

the coefficients in M(z) and R(z). This was given in Lemma 3.22 and Theorem 4.6.

We restate the result here for the special case of polynomial matrices.

Lemma 5.9 Let K be a bound on the size of the coefficients appearing in F(z).

Then the size of the coefficients in M(z) and R(z) is O(min(m, s)mNK).

Moreover, if D = Z and K is a bound on the number of bits required to store

each coefficient, then the magnitude of each coefficient of M(z) and R(z) is bounded

by nn/22nK with n = min(m, s)(mN + 1). If D = QR[x] and K is a bound on the

degree of each coefficient, then the degree of each coefficient of M(z) and R(z) is

bounded by min(m, s)(mN + 1)K. �

Therefore, in the case of D = Z we need to have enough lucky primes such that

their product exceeds 2nn/22nK . Hence, the number of lucky primes required is

O(min(m, s)(mN + 1)) where we assume that the primes chosen have size approx-

imately K and log n < K, which are usually satisfied. From the previous section,

there are potentially O(m min(m, s)(mN + 1)) unlucky primes. As a result, we

may have to use primes of size approximately mK to achieve the same number of

primes. Alternatively, we may choose primes from a set whose size is at least three

CHAPTER 5. MODULAR ALGORITHM FOR ROW-REDUCED FORM 102

times the number of potential unlucky primes. Then the probability of encounter-

ing an unlucky prime is less than 1/2, and it is extremely unlikely to encounter

Ω(min(m, s)(mN + 1)) unlucky primes. In the case of D = QR[x] we need to have

min(m, s)(mN + 1)K + 1 lucky evaluation points.

5.5 Complete Algorithm and Complexity

We give the complete modular algorithm Modreduce in Algorithm 5.1. For

simplicity, we give the algorithm only in the case of D = Z. The case D = QR[x]

is similar. We also assume that there is a CRA subroutine using Garner’s algo-

rithm that updates the reconstructed matrices by Chinese remaindering after each

additional image has been computed.

Instead of terminating the algorithm after the product of primes exceeds 2nn/22nK

as implied by Lemma 5.9, we may instead terminate the algorithm when the re-

constructed result does not change for one step, the nonzero rows of R(0) have full

row rank, and the relation U · F = T holds (after reversing coefficients). One way

to guarantee that the nonzero rows of R(0) has full row rank is to ensure that Ri

have zero rows at the same row indices. Although the computed results may not

match the ones computed by the FFreduce algorithm over Z, we can still obtain

a unimodular transformation such that the result is row-reduced. This idea of early

termination is similar to the trial division technique commonly used in the case of

modular algorithms for polynomial GCD [36], and is useful in practice because the

Hadamard’s bound is usually too pessimistic.

CHAPTER 5. MODULAR ALGORITHM FOR ROW-REDUCED FORM 103

Algorithm 5.1 The Modreduce Algorithm for Row-Reduced Form for D = Z

Input: Polynomial matrix F ∈ Z[z]m×s.
Output: Mahler system M ∈ Z[z]m×m of degree �µ and order �ω, and residual

R ∈ Z[z]m×s.

Compute the bound of coefficient size K from F
n ← min(m, s)(mN + 1)
(i, q, �µ, �σ,M,R) ← (1, 1,�0,�0,0,0)
while q ≤ 2nn/22nK do

repeat
p ← a new prime of size K

until deg φp(F) = deg F
(�µi, �σi,Mi,Ri) ← FFreduce2(φp(F), Zp)
if q = 1 then

(q, �µ, �σ,M,R) ← (p, �µi, �σi,Mi,Ri)
else

if |�µ| �= |�µi| OR �σ >lex �σi OR (�σ = �σi AND �µ is further from w than �µi)
then
{Previous primes are unlucky}
(q, �µ, �σ,M,R) ← (1,�0,�0,0,0)

end if
if q = 1 OR (�µ, �σ) = (�µi, �σi) then
{Current prime may be lucky}
(M,R) ← (CRA(M,Mi, q, p), CRA(R,Ri, q, p))
q ← qp

end if
end if

end while

CHAPTER 5. MODULAR ALGORITHM FOR ROW-REDUCED FORM 104

Example 5.10 Let

F(z) =

A(z)

B(z)


with

A(z) =

 3 z4 + 3 z3 + 4 z2 − 2 z − 4 3 z4 + 3 z2 + 14 z + 8

z4 + 5 z3 + 3 z2 + 3 z + 1 z4 + 7 z3 + 6 z2 + z + 1

 ,

B(z) =

 z3 + 9 z2 + 5 z + 1 z3 + 15 z2 + 19 z + 5

z5 + z4 + 2 z3 + 3 z2 + 2 z + 1 z5 + z3 + 7 z2 + 6 z + 1

 .

Then FFreduce2 over Z gives

d = −2480256 = −27 · 32 · 2153,

�µ = (5, 4, 3, 2),

�σ = (1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16).

When p1 = 2, FFreduce2 returns �µ1 = (3, 3, 2, 2), and when p2 = 3, FFreduce2

returns �µ2 = (3, 2, 2, 2). These two primes are unlucky because they both divide d.

Since |�µ1| �= |�µ2|, we simply assume that �µ1 is unlucky and the corresponding results

are discarded. The prime p3 = 5 is lucky and the previous results are discarded.

However, for p4 = 7 we get �µ4 = (4, 3, 3, 2) and so 7 is unlucky as |�µ4| �= |�µ|. Since

|�µ3| �= |�µ4|, the previous results are also discarded. The primes pi = 11, 13, . . . , 37

CHAPTER 5. MODULAR ALGORITHM FOR ROW-REDUCED FORM 105

are all lucky, and we can terminate the algorithm because the reconstructed results

satisfy U(z) · F(z) = T(z). �

For the complexity analysis of Modreduce, we assume that Garner’s algo-

rithm has complexity O(size(a)2) for reconstructing the final result of a. These are

satisfied when D = Z and D = QR[x] [33].

Theorem 5.11 Let D = Z and K be a bound on the size of the coefficients

appearing in F(z). The worst case bit complexity of Modreduce is O((m +

s)m4s3N3K2).

Proof. If we apply the same reasoning as Theorem 3.23 and Theorem 4.6 while

assuming all arithmetic operations can be done in O(K2) time, we see that the bit

complexity of FFreduce2 in Zp is O((m + s)m2 min(m, s)2N2K2), where p is a

prime of size approximately K. Moreover, we can compute φp(F(z)) in O(msNK2)

bit operations. From the remark after Lemma 5.9, we need O(m min(m, s)(mN +

1)) primes, so that the total cost of all invocations of FFreduce2 is O((m +

s)m4 min(m, s)3N3K2).

Finally, we see from Lemma 3.22 that each coefficient in M(z) and R(z) can be

reconstructed in O((mNsK)2) by the CRA algorithm (over all iterations). Since

there are potentially O(m2N min(m, s)) nonzero coefficients in M(z) and O(msN)

nonzero coefficients in R(z), it follows that the reconstruction process has complex-

ity O((m + s)m3N3 min(m, s)s2K2). Combining the two parts gives the desired

result. �

From the remark after Lemma 5.9, we can choose the primes in such a way that

it is unlikely to require more than O(min(m, s)(mN + 1)) to obtain enough lucky

CHAPTER 5. MODULAR ALGORITHM FOR ROW-REDUCED FORM 106

primes. Therefore, we have the following expected bit complexity.

Corollary 5.12 Let D = Z and K be a bound on the size of the coefficients appear-

ing in F(z). The expected bit complexity of Modreduce is O((m+s)m3s3N3K2).

�

Compared to the complexity given in Theorem 4.6 for FFreduce, we see that

the modular algorithm is an order of magnitude faster in each of the three param-

eters m, s, and N . When D = QR[x], we have

Theorem 5.13 Let D = QR[x] and K be a bound on the degree of the coefficients

appearing in F(z). Then Modreduce requires O((m+s)m4s3N3K2) operations in

QR in the worst case. The expected complexity is O((m + s)m3s3N3K2) operations

in QR. �

5.6 Experimental Results

Both FFreduce and Modreduce have been implemented in Maple for D = Z.

Since Maple uses base-10 arithmetic, the size of a coefficient is the number of

decimal digits required to represent it. Instead of using primes of size K, we chose

primes that are half the machine word size, so that modular arithmetic can be

performed efficiently. We used the modp1 representation for polynomials for the

efficient implementation of the modular algorithm. We also implemented early

termination in Modreduce.

We now present some experimental results to support the complexity analysis

CHAPTER 5. MODULAR ALGORITHM FOR ROW-REDUCED FORM 107

s N K Size FFreduce (s) Modreduce (s) Ratio
1 20 4 302 1.53 3.93 0.39
1 40 4 599 14.21 17.63 0.81
1 60 4 905 61.36 44.82 1.37
1 20 9 699 5.12 9.82 0.52
1 40 9 1428 86.58 47.70 1.82
1 60 9 1533 114.58 60.04 1.91
2 20 4 622 28.16 79.10 0.36
2 40 4 1210 413.55 342.67 1.21
2 60 4 1680 1511.62 940.47 1.61
2 20 9 1507 158.79 231.82 0.68
2 40 9 2751 1664.87 827.86 1.99
2 60 9 3933 6432.79 2191.53 2.94

Table 5.1: Comparison of FFreduce and Modreduce for various values of s, N ,
and K. Also shown is the size (in number of decimal digits) of the largest coefficient
in the result.

given in Theorem 5.112. We note the multiplications in Maple are subquadratic, so

that the actual improvement may not be accurately predicted by Theorem 5.11. The

input were chosen to compute a row-reduced GCRD of two s×s polynomial matrices

(Section 4.5) A(z) and B(z), so that m = 2s. In the first set of experiments, we

chose various values of s, N , and K, and generated A(z) and B(z) randomly. In

these cases, A(z) and B(z) are usually right coprime. The experimental results are

presented in Table 5.1. In the second set of experiments, we randomly generated

C(z) of degree d. We generated A(z) and B(z) by multiplying C(z) on the right

to random polynomial matrices of degree N − d. This allows us to have some

control over the degree of the computed GCRD3. The results from the second set

2The experiments were performed on an Intel Pentium III 650 MHz with 256MB of RAM.
3To precisely control the degree, we would have to control the degree of detC(z).

CHAPTER 5. MODULAR ALGORITHM FOR ROW-REDUCED FORM 108

d Size FFreduce (s) Modreduce (s) Ratio
1 3858 6895.10 2315.51 2.98

10 3213 3381.31 1432.72 2.36
20 2719 2200.21 1130.49 1.95
40 1425 212.83 256.36 0.83

Table 5.2: Comparison of FFreduce and Modreduce for various values of d
with s = 2, N = 60, and K = 9. Also shown is the size (in number of decimal
digits) of the largest coefficient in the result.

of experiments are presented in Table 5.2. We see that as s, N , and K increases,

the advantage of the modular algorithm over the fraction-free algorithm becomes

clear. Moreover, this advantage is also apparent when the degree of C(z) is small.

These conditions encourage coefficient growth, and so the modular algorithm is

significantly better in these cases. For small values of these parameters, the modular

algorithm is slower because of the additional overhead performed.

5.7 Images Under Unlucky Homomorphisms

While unlucky homomorphisms are rarely encountered, it is still wasteful to discard

the computed results. In this section, we look at the special case when |�µi| �= |�µ|.
Here we can sometimes determine the image φi(M(z)) and φi(R(z)) even if φi is

unlucky. This is based on same technique given by Cabay [22, 48], which states

that if the n × n coefficient matrix A for a system of linear equations over QD

has rank n over QD but has rank less than n − 1 over D/I, then the image of the

Cramer solution in D/I is zero; if the rank over D/I is exactly n−1, then additional

calculations are required to compute the image.

CHAPTER 5. MODULAR ALGORITHM FOR ROW-REDUCED FORM 109

Suppose that |�µi| < |�µ|, so that φi is unlucky. We will further assume that

�ω ≤ �ωi. We recall from (3.10) and (3.11) that the rank of the coefficient matrix

K∗
i (�µi − �e, �ωi) over D/I is |�µi|. Now Definition 2.16 implies that rank φi(K

∗(�µ −
�e, �ω)) ≤ |�µi| over D/I. From the previous discussion, we have the following.

Theorem 5.14 Let �µi be the degree of the Mahler system computed by FFre-

duce2 at order �ωi over D/I. If |�µi| < |�µ| − 1 and �ω ≤ �ωi, then φi(M(z)) = 0 and

φi(R(z)) = 0. �

On the other hand, it is also easy to compute φi(M(z)) and φi(R(z)) if |�µi| =

|�µ| − 1 and �µ = �µi + �eπ for some 1 ≤ π ≤ m. In fact, we may simply perform

FFreduce2 from the intermediate results Mi(z) and Ri(z) corresponding to order

�ω for one additional iteration, using row π as the pivot. Since the known divisor dk

is nonzero in the previous step, the division is valid and mirrors the computation

performed over D.

However, if �µi �≤ �µ, it is not clear how to compute φi(M(z)) and φi(R(z)) when

φi is unlucky, because the computed results Mi(z) and Ri(z) correspond to systems

of linear equations with coefficient matrix K(�µi − �e, �ω), which is not a submatrix

of K(�µ − �e, �ω).

5.8 Coprime Polynomial Matrices

It is well known that there exists a fast modular algorithm to decide if two polynomi-

als are relatively prime. Namely, if deg φ(a(z)) = deg a(z), deg φ(b(z)) = deg b(z),

and g′(z) is the GCD of φ(a(z)) and φ(b(z)) in (D/I)[z], then deg GCD(a(z), b(z)) ≤

CHAPTER 5. MODULAR ALGORITHM FOR ROW-REDUCED FORM 110

deg g′(z) [36]. In particular, if deg g′(z) = 0, it follows that deg GCD(a(z), b(z)) = 0

and so a(z) and b(z) are relatively prime. In this section, we examine the possibility

of an efficient test for relatively primeness of two polynomial matrices.

The observation above can be extended to the case of polynomial matrices. For

simplicity we assume that the input matrices are square and nonsingular.

Theorem 5.15 Let A(z) ∈ D[z]s×s, B(z) ∈ D[z]s×s. Let G(z) be a GCRD of A(z)

and B(z) over QD, and G′(z) be a GCRD of φ(A(z)) and φ(B(z)) over D/I. If

deg φ(detA(z)) = deg detA(z) or deg φ(detB(z)) = deg detB(z), then

deg detG(z) ≤ deg detG′(z).

Furthermore, if deg detG′(z) = 0 then A(z) and B(z) are right coprime.

Proof. Suppose that A(z) = Q1(z) · G(z) and B(z) = Q2(z) · G(z) for some

Q1(z) and Q2(z) with entries in QD[z]. Examining these equations over D/I shows

that φ(G(z)) is a common right divisor of φ(A(z)) and φ(B(z)). Thus, there exists

Q(z) with entries in (D/I)[z] such that G′(z) = Q(z) · φ(G(z)) in (D/I)[z].

Now, detA(z) = (detQ1(z))(detG(z)) and detB(z) = (detQ2(z))(detG(z)).

Hence, deg φ(detA(z)) = deg detA(z) or deg φ(detB(z)) = deg detB(z) implies

that deg detG(z) = deg φ(detG(z)). Therefore,

deg detG(z) = deg φ(detG(z)) ≤ deg φ(detG(z)) + deg detQ(z) = deg detG′(z)

as required, where detG(z) is computed in QD[z] and detQ(z) and detG′(z) are

computed in (D/I)[z]. Finally, if deg detG′(z) = 0, then G(z) must be unimodular

CHAPTER 5. MODULAR ALGORITHM FOR ROW-REDUCED FORM 111

so that A(z) and B(z) are right coprime. �

In order to use Theorem 5.15 for a more efficient modular algorithm to detect

coprimeness, we first have to compute deg detA(z) and deg detB(z). This can be

done by computing row-reduced forms A′(z) and B′(z) of A(z) and B(z), respec-

tively. The second part of the algorithm then computes a row-reduced form of

[A′(z)T , B′(z)T]T . While Theorem 5.15 may apply to the second part to detect

coprimeness of the algorithm quickly, it is not clear how to speed up the first part.

If A(z) and B(z) are already row-reduced, however, this step can be made more

efficient as well. The following theorem gives a more efficient test to detect whether

a polynomial matrix is row-reduced.

Theorem 5.16 Let T(z) be a row-reduced form of φ(A(z)) over D/I. If

|rdeg A(z)| = |rdeg T(z)|, then A(z) is row-reduced over QD.

Proof. Let T2(z) be a row-reduced form of A(z) over QD. Then |rdeg T2(z)| =

deg detA(z). Therefore,

|rdeg T(z)| = deg φ(detA(z)) ≤ deg detA(z) = |rdeg T2(z)| ≤ |rdeg A(z)|.

It follows that if |rdeg T(z)| = |rdeg A(z)|, then |rdeg T2(z)| = |rdeg A(z)| and so

A(z) is row-reduced over QD. �

Chapter 6

A Modular Algorithm for Popov

Form for Polynomial Matrices

In this chapter we give a modular algorithm for computing the Popov form for

polynomial matrices. Our algorithm uses the Modreduce algorithm given in

Algorithm 5.1 as a subroutine. As in the previous chapter, we will assume that

D = Z or D = QR[x] in this chapter.

6.1 Issues

As noted in Section 2.3, if P(z) is the Popov form of any input polynomial matrix

F(z) ∈ D[z]m×s, then P(z) ∈ QD[z]m×s and is unique up to row permutation. Unlike

the row-reduced and weak Popov form, we cannot choose P(z) ∈ D[z]m×s. There

are two ways to handle this difficulty.

First, we may instead compute c ∈ D and P′(z) ∈ D[z]m×s such that P(z) =

112

CHAPTER 6. MODULAR ALGORITHM FOR POPOV FORM 113

(1/c) · P′(z) is the desired Popov form. Beckermann, Labahn, and Villard [14, 15]

gave an algorithm to compute c, P′(z), and the corresponding transformation ma-

trix of any polynomial matrix using an indirect algorithm similar to the ones de-

scribed in Section 2.5.2. The algorithm used for computing the minimal polynomial

basis is the FFFG algorithm, which is a special case of the FFreduce algorithm.

Applying the same techniques from Chapter 5 automatically gives a modular algo-

rithm to compute the Popov form.

However, we are interested in a direct algorithm based on row operations. In-

stead, we view the image of each coefficient a/b ∈ QD as ab−1 ∈ D/Ii and perform

the computations appropriately. We must ensure, of course, that φi(b) �= 0 for any

denominator b appearing in the coefficients of F(z). The result reconstructed by

Chinese remaindering gives the image of a/b as ab−1 ∈ D/(I1 · · · Ik). Rational num-

ber reconstruction (if D = Z) or rational function reconstruction (if D = QR[x])

can then be applied to obtain a and b [33].

We also noted in Section 2.3 that the unimodular transformation matrix U(z)

is not unique if F(z) does not have full row rank. This is easily seen as any row

of U(z) corresponding to an element in the left kernel NF(z) can be added to any

other row of U(z) to give another transformation matrix with the same Popov form.

In order to apply the modular algorithm to compute the unimodular multiplier,

we need to ensure that the results computed under each modular homomorphism

correspond to the same result in QD. Another issue deals with the detection of

unlucky homomorphisms. It is not easy to compare the results computed under

two homomorphisms and decide which one, if any, is unlucky. For example, if we

CHAPTER 6. MODULAR ALGORITHM FOR POPOV FORM 114

compute the GCD of two polynomials a(z) and b(z) by computing the Popov form

of

F(z) =

a(z)

b(z)

 , (6.1)

the row degree of the resulting Popov form under an unlucky modular homomor-

phism may be too high [36]. On the other hand, for the polynomial matrix

F(z) =

z2 0

0 3z2 + z

 , (6.2)

the Popov form computed in Z3 has row degree that is too low. Thus, it is not

possible to compare two results based on row degrees alone.

6.2 Detecting Unlucky Homomorphisms

In this section, we give criteria for detecting unlucky homomorphisms for computing

a weak Popov form. These criteria will be the same for detecting unlucky homo-

morphisms for computing the Popov form. As a side effect, we obtain a modular

algorithm for computing a weak Popov form.

While the row degree of the computed Popov form may be either too high or

too low, we observe that F(z) in (6.1) does not have full row rank, while F(z) in

(6.2) has full row rank. In fact, when the input polynomial matrix has full row

rank, it is easier to detect unlucky homomorphisms. Our strategy is to first ensure

that the modular homomorphism is lucky for the computation of row-reduced form

CHAPTER 6. MODULAR ALGORITHM FOR POPOV FORM 115

using the results of the previous chapter. This gives us a row-reduced form over

D/I, as well as �µ and �σ which allow us to detect unlucky homomorphisms without

reconstructing the results over D. Once this has been done, the row-reduced form

has full row rank and we can compute a weak Popov form.

The Modreduce algorithm can be modified to compute a weak Popov form.

First, we have to modify FFreduce2 appropriately to compute a weak Popov

form over D/I as described in Section 4.4. However, the previous definition of

lucky homomorphisms is not sufficient to guarantee that the computed result is an

image of the same desired result over D. We must also ensure that the pivot indices

are identical. In that case, the reconstructed image in D will also be in weak Popov

form.

In the following, we assume that T(z) is a weak Popov form computed over D,

where �µ is the degree of the final Mahler system computed and d is its “leading

coefficient.” Similarly, we define Ti(z), �µi, and di to be the corresponding quantities

computed over D/Ii.

Definition 6.1 Let φi be a modular homomorphism. Let Πk be the pivot index of

row k of T(z) over D, and Πi,k be the pivot index of row k of T(z) over D/Ii. Then

φi is lucky if φi(d) �= 0, |�µ| = |�µi|, and Πk = Πi,k for all k = 1, . . . ,m. Otherwise,

φi is unlucky. �

For detecting unlucky homomorphisms, we define the vector �Π such that

�Π(j) =


k if Πk = j for some k,

0 otherwise.

CHAPTER 6. MODULAR ALGORITHM FOR POPOV FORM 116

This is well-defined since the pivot indices are unique. Intuitively, �Π(j) gives the

index of the row containing a leading element in column j. Similarly, we define �Πi

corresponding to the pivot indices over D/Ii. If we use the pivoting strategy

π = min
1≤j≤m

{
j : �µ(j) = min

1≤k≤m

{
�µ(k) : rk �= 0

}
, rj �= 0

}
(6.3)

in the FFreduce2 algorithm, the following result is easy to show.

Lemma 6.2 For any modular homomorphism φi such that φi(d) �= 0 and |�µ| = |�µi|,
we have �Π ≤′ �Πi if pivoting strategy (6.3) is used, where �v ≤ �w if and only if

(a) �v = �w, or

(b) there exists j such that �v(k) = �w(k) for all k < j and

(i) �µ(�v(j)) < �µ(�w(j)), or

(ii) �µ(�v(j)) = �µ(�w(j)) and �v(j) < �w(j)

Proof. If �Π >lex
�Πi, then there exists a column j such that �Π(k) = �Π

(k)
i for all

k < j and �Π(j) > �Π
(j)
i . This implies that the first term of the residual in row �Π

(j)
i is

nonzero in D/Ii and hence in D, contradicting the minimality of �Π(j) in the pivoting

strategy (6.3). �

Combining Theorem 5.7 and Lemma 6.2 allows us to compare the results com-

puted under two modular homomorphisms and detect which is unlucky.

Theorem 6.3 Suppose φi and φj satisfy deg F(z) = deg φi(F(z)) = deg φj(F(z)).

Then φi is unlucky if any of the following holds:

CHAPTER 6. MODULAR ALGORITHM FOR POPOV FORM 117

(a) |�µi| = |�µj| and �σi >lex �σj.

(b) |�µi| = |�µj|, �σi = �σj, and �µj is closer to w than �µi;

(c) �µi = �µj, �σi = �σj, and �Πi >lex
�Πj.

Furthermore, if |�µi| �= |�µj|, then at least one of φi and φj is unlucky. �

The remaining parts (and their analysis) of the Modreduce algorithm do not need

to be changed. This gives us a modular algorithm for computing a weak Popov

form of a polynomial matrix.

Finally, we will show that Definition 6.1 also serves as the definition of lucky

homomorphisms for computing the Popov form.

Theorem 6.4 Suppose that φi is a lucky homomorphism by Definition 6.1. Let

P(z) be the Popov form of F(z) over QD, and Pi(z) be the Popov form of F(z) over

D/Ii. Then φi(P(z)) = Pi(z).

Proof. Let T(z) be the weak Popov form computed by our algorithm over D,

and Ti(z) be the weak Popov form computed by our algorithm over D/Ii. Since

φi is lucky, it follows that φi(T(z)) = Ti(z). If we compute the Popov form P(z)

of T(z) (and hence of F(z)) over QD without row exchanges, the pivot indices re-

main unchanged. We observe that φi(P(z)) is in Popov form because the entries

P(z)(k,Πk) are monic. Furthermore, since Πk = Πi,k for all k = 1, . . . ,m, it follows

that the leading coefficients of T(z)(k,Πk) do not vanish under φi, so the transfor-

mation matrix to Popov form is also unimodular over D/Ii. Therefore, φi(P(z)) is

the Popov form of F(z) over D/Ii. On the other hand, computing the Popov form

CHAPTER 6. MODULAR ALGORITHM FOR POPOV FORM 118

Pi(z) of F(z) from Ti(z) over D/Ii in a similar way gives the same pivot indices.

Since the Popov form is unique, it follows that φi(P(z)) = Pi(z). �

6.3 Minimal Multipliers

Since we also wish to compute the unimodular transformation matrix corresponding

to the Popov form, we need to ensure that the transformation matrices computed

under different modular homomorphisms correspond to the same result over QD.

Although the transformation matrix is not unique in general, we can ensure that the

transformation matrix is unique if we require its column degree to be minimal [15].

Definition 6.5 Let F(z) ∈ QD[z]m×s be of rank r. Let U(z) be a unimodular

matrix such that U(z) · F(z) = P(z) where P(z) is in Popov form with I being the

set of m− r row indices of the zero rows, and J being the set of pivot indices. The

unimodular matrix U(z) is called the minimal multiplier if

(a) U(z)(I,·) is in Popov form (and hence row-reduced);

(b) U(z)(Ic,J) ·
(
U(z)(I,J)

)−1

= O(z−1)z→∞,

where Ic denotes the complement of I. �

Intuitively, Definition 6.5(b) implies that for the columns indexed by J , the rows

in I have been used to reduce the degrees of the entries in the rows in Ic as far as

possible. It was also shown by Beckermann, Labahn, and Villard that the minimal

multiplier is unique [15, Theorem 3.3].

CHAPTER 6. MODULAR ALGORITHM FOR POPOV FORM 119

Theorem 6.6 The minimal multiplier U(z) is unique (up to row permutation) for

any F(z) ∈ QD[z]m×s, and |rdeg U(z)| is minimal among all unimodular multipliers

transforming F(z) into Popov form. �

By computing the minimal multiplier we can ensure that the result computed under

each modular homomorphism corresponds to the same desired result in QD.

6.4 Computing Homomorphic Images

We now describe how to compute the Popov form Pi(z) and the minimal multi-

plier Ui(z) of F(z) over D/Ii. As we have already mentioned, we first apply the

Modreduce algorithm to compute a weak Popov form Ti(z). Once this is done,

the pivot entry in each nonzero row of Ti(z) is made monic and is used to reduce

the degrees of other rows in the corresponding column. In order to ensure that

each row operation do not cancel the progress from the ones already performed, we

perform row operations to bring the polynomial matrix into Popov form one row

at a time, using as pivots only the rows that have already been transformed into

Popov form [50]. The operations are applied to rows of increasing row degrees, and

if there is a tie, it is applied to these rows of decreasing pivot indices. To guarantee

uniqueness, we will also sort the rows based on the order in which they are pro-

cessed. This gives us the Popov form Pi(z) and the corresponding transformation

matrix Vi(z). Finally, the rows of Vi(z) corresponding to the zero rows of Pi(z)

are already in Popov form except for a scalar multiple by Remark 3.12, and the

pivot entries are used to reduce the degrees in the remaining rows. This gives us

the minimal multiplier Ui(z).

CHAPTER 6. MODULAR ALGORITHM FOR POPOV FORM 120

6.5 Number of Homomorphic Images Required

In order to examine the complexity of the overall algorithm, we obtain a bound

on the size of the coefficients appearing in the Popov form P(z) and the minimal

multiplier U(z).

Theorem 6.7 Let K be a bound on the size of the coefficients appearing in F(z) ∈
D[z]m×s, and a/b ∈ QD be any coefficient appearing in P(z) and U(z). Then

size(a), size(b) ≤ 2sN(min(m, s) + 1)K.

Proof. We see from Theorem 4.2 and Corollary 5.9 of [15] that the FFFG

algorithm can be used to compute c, P′(z), and the corresponding transformation

matrix with order | �σ0| ≤ 2sN(min(m, s) + 1). The result now follows from the

Hadamard inequality. �

This gives us a bound on the number of homomorphic images required. In

the case of D = Z the product of lucky primes must exceed 2nn22nK where n =

2sN(min(m, s) + 1). In the case of D = QR[x] we need to have 2(nK + 1) lucky

evaluation points.

6.6 Complexity

To determine the complexity of the algorithm, we first consider the case where

D = Z.

Theorem 6.8 Let D = Z, and K be a bound on the size of the coefficients ap-

pearing in F(z). Suppose that the primes chosen have size approximately K and

CHAPTER 6. MODULAR ALGORITHM FOR POPOV FORM 121

log n < K with n = 2sN(min(m, s) + 1). Then the complexity for computing the

Popov form and the minimal multiplier is O(m3s2(m + s) min(m, s)2N3K2).

Proof. First, note that we need O(sN min(m, s)) primes with the stated as-

sumptions. To compute the Popov form Pi(z) of F(z) over D/Ii, we first compute

a weak Popov form using a variation of the FFreduce2 algorithm in O((m +

s)m2 min(m, s)2N2K2) operations. The cost of the transformation to Popov form

is O(m3N2K2) [50, Theorem 7.1]. Therefore, the total cost over all primes is

O((m + s)m2s min(m, s)3N3K2).

To compute the minimal multiplier Ui(z), we note that after the computation of

the weak Popov form the corresponding transformation matrix has degree bounded

by min(m, s)(mN+1). For the rows corresponding to the nonzero rows of Pi(z), the

transformation from weak Popov form to the Popov form may increase the degree

of the transformation matrix by at most deg Pi(z) ≤ N . By [15, Lemma 3.5], the

row degree of the multiplier cannot increase while reducing the rows corresponding

to the nonzero rows of Pi(z). Thus, the complexity for computing the minimal

multiplier is O(m3(min(m, s)(mN +1)+N)K2) = O(m4 min(m, s)NK2). Over all

primes the cost is O(m4s min(m, s)2N2K2).

Finally, the reconstruction for Chinese remaindering and rational reconstruc-

tion can both be done in O(s2 min(m, s)2N2K2) operations for each coefficient [33].

Since there are at most O(msN) nonzero coefficients in P(z) and O(m3(m + s)N)

nonzero coefficients in U(z) (Theorem 5.1(a) with �a = �b = 0 of [15]), the recon-

struction process has complexity O(m3s2(m + s) min(m, s)2N3K2). �

Similarly, we obtain the complexity for the case of D = QR[x].

CHAPTER 6. MODULAR ALGORITHM FOR POPOV FORM 122

Theorem 6.9 Let D = QR[x] and K be a bound on the degree of the coefficients ap-

pearing in F(z). Then the Popov form and the minimal multiplier can be computed

in O(m3s2(m + s) min(m, s)2N3K2) operations in QR. �

This compares favorably to the complexity of the indirect fraction-free algorithm

of Beckermann, Labahn, and Villard [14] of O(m4s5N4K2).

Chapter 7

Conclusion and Future Work

7.1 Summary of Contribution

In this thesis, we first gave the FFreduce algorithm which allows us to determine

the rank and a row-reduced basis of the left nullspace of a matrix of Ore polynomials

in a fraction-free way. By expressing row reduction as a linear algebra problem, we

were able to obtain bounds on the size of the intermediate results and gave a com-

plexity analysis of the algorithm. In the case of matrices of shift polynomials, the

FFreduce algorithm satisfies additional properties and it can be used to compute

rational solutions of linear functional systems, as well as a row-reduced form or a

weak Popov form of such matrices in a fraction-free way. The unimodular trans-

formation matrices corresponding to the row-reduced form and the weak Popov

form are also computed. We also showed that our approach can be considered as a

generalization of the subresultant to the matrix case, and can be used to compute

the GCRD and LCLM of matrices of shift polynomials.

123

CHAPTER 7. CONCLUSION AND FUTURE WORK 124

We then examined the computation of the desired normal forms in the special

case of polynomial matrices using modular homomorphisms and Chinese remain-

dering. Using the linear algebra formulation for the fraction-free algorithm, we

obtained the criteria for lucky homomorphisms for computing a row-reduced form,

a weak Popov form, and the Popov form of polynomial matrices. We also studied

efficient tests for coprimeness and row-reducedness of polynomial matrices.

Our work can be viewed as an extension of the FFFG algorithm by Beckermann

and Labahn [12] in a number of ways. The FFFG algorithm is extended to the case

of Ore polynomials, where we had to modify the fraction-free recursion and the

termination criteria. We also extended the FFFG algorithm to compute the weak

Popov form in the case of shift polynomials. Finally, we used the FFFG algorithm

as a basis to design a modular algorithm for polynomial matrices.

7.2 Future Research Directions

Extension of the subresultant algorithms. The FFreduce algorithm is de-

signed to eliminate low order coefficients. In the case of matrices of shift

polynomials, we can easily reverse the coefficients to eliminate the leading co-

efficients as well. Unfortunately, this approach does not work in the general

case of matrices of Ore polynomials. In addition, our algorithm makes use of

the Mahler system in the prediction of known factors. This forces us to also

compute the transformation matrix whose coefficients may be much larger

than those in the residual. On the other hand, the subresultant algorithms

for both polynomials and Ore polynomials eliminate leading coefficients di-

CHAPTER 7. CONCLUSION AND FUTURE WORK 125

rectly and predict known divisors without computing the corresponding co-

factors [19, 20, 28, 44, 45]. It may be possible to extend these subresultant

algorithms to matrices of Ore polynomials. To our knowledge this has not

been studied even in the case of polynomial matrices.

Direct fraction-free algorithm for the Popov form. The fraction-free FFre-

duce algorithm cannot be used to compute the Popov form, even in the case

of polynomial matrices. While fraction-free Gaussian elimination can be ap-

plied to make the leading row coefficient diagonal (up to row permutation)

by back-substitution [6], we do not know how to apply it to make the leading

column coefficient diagonal as well. As noted before, an indirect fraction-free

algorithm for the Popov form already exists [14, 15].

Different linear algebra formulation. It may be possible to formulate the prob-

lem in a different way instead of using the notion of order basis. Since the

order increases after each iteration in the algorithm, the pivot row is forced to

be modified. This causes the coefficients to grow, and the module generated

by the rows of the result is no longer the same as the module generated by the

original input matrix. On the other hand, standard row reduction algorithms

for computing these normal forms do not modify the pivot row in each step.

A different linear algebra formulation of row reduction may eliminate these

problems.

Row-reduced and weak Popov forms with smaller coefficients. While the

coefficient growth in our fraction-free algorithms is controlled, the coefficients

CHAPTER 7. CONCLUSION AND FUTURE WORK 126

can be large because they are defined as determinants of large matrices. In

fact, the algorithms compute exactly the same intermediate results as if the

fraction-free Gaussian elimination of Bareiss [6] was applied to the striped

Krylov matrix. While this elimination produces the smallest possible coeffi-

cients in general, in most cases a large content in each row remains and can

be removed. If we perform the Gaussian elimination in a different way, we

may obtain smaller coefficients. For example, we can remove the content of

each row after removing the known divisor. If we keep track of the content

removed from each row we may be able to continue predicting the known

divisor.

The FFreduce algorithm was used as a basis for the modular algorithms.

Consequently, the results computed by the modular algorithms were the same

as those computed by the FFreduce algorithm. We have experimented with

making results smaller, for example, by dividing the results by the multigradi-

ent d and use rational reconstruction to obtain the final result. Unfortunately,

we have not observed significant improvements due to the size of the coeffi-

cients in the transformation matrix. It would be interesting to investigate

other ways to detect unlucky homomorphisms and solve the normalization

problem so that the reconstructed normal forms over D have smaller coeffi-

cients.

Early termination for modular algorithms. Our modular algorithms termi-

nate early when the reconstructed result has not changed for additional ho-

momorphisms. In order to ensure that the correct result is obtained, we

CHAPTER 7. CONCLUSION AND FUTURE WORK 127

check our result by comparing U(z) ·F(z) = T(z). On the other hand, Cabay

showed that it is possible to ensure the correctness of the reconstructed re-

sult without additional checks if the reconstructed result is not updated for a

sufficient number of steps [22]. Such a termination criterion is especially im-

portant if we have an algorithm that computes the normal form without the

corresponding transformation matrix. Without it we would have to perform

“trial division” as in the case of modular polynomial GCD algorithms. It is

not completely clear how Cabay’s technique can be applied to our algorithms.

For row-reduced form and weak Popov form, it can be used to ensure that the

reconstructed result is the correct Mahler system of a particular row degree,

it cannot be used to ensure that the Mahler system of the correct row degree

is reached. In other words, we cannot be sure that the number of zero rows

in the residual is correct. However, if we perform the algorithm over D/I to

obtain an order basis of order (mN + 1) · �e, then Theorem 3.20 and the fact

that the Mahler system is correct ensure that the number of zero rows in the

residual is also correct. This requires more iterations to be performed for each

homomorphic image, and it is not clear if the trade-off is advantageous. Also,

our modular algorithm for the Popov form is not formulated as the solutions

of a linear algebra system, so Cabay’s technique is not directly applicable.

Modular algorithm for matrices of Ore or shift polynomials. We described

modular algorithms only for polynomial matrices. If we restrict to the case of

D = Z[n], we may also use our modular algorithms for the modular homomor-

phisms φp : Z[n][Z; σ, δ] → Zp[n][Z; σ, δ]. As shown by Li and Nemes [44, 47],

CHAPTER 7. CONCLUSION AND FUTURE WORK 128

the evaluation homomorphisms φn−α : Z[n][Z; σ, δ] → Z[Z; σ, δ] are not an

Ore ring homomorphisms. Therefore, the same approach cannot be applied

directly in this case. Li and Nemes solved the problem by performing row

reductions on the image of the Sylvester matrix under φn−α. Since our al-

gorithm is based on row reductions on the striped Krylov matrix, we expect

that a similar approach would work.

Other methods for controlling coefficient growth. It would also be interest-

ing to examine other ways to control coefficient growth that have been applied

successfully to the polynomial GCD problem or linear system solving. For

example, Hensel lifting allows us to solve the linear systems of equations un-

der a single modular homomorphism and successively lift the results [36]. In

the case of polynomial matrices, the heuristic GCD method may allow us to

eliminate the variable z by substitution [23]. By choosing a sufficiently large

evaluation point, a polynomial matrix in Hermite form corresponds to an inte-

ger matrix in Hermite form under such substitutions (up to scalar multiples).

However, it is not clear what the corresponding integer normal forms are for

the normal forms studied in this thesis because they are defined in terms of

leading row coefficients. Such connections between polynomial matrices and

integer matrices would be interesting.

Bibliography

[1] S. Abramov. EG-eliminations. Journal of Difference Equations, 5:393–433,

1999.

[2] S. Abramov and M. Barkatou. Rational solutions of first order linear difference

systems. In Proceedings of the 1998 International Symposium on Symbolic and

Algebraic Computation, pages 124–131. ACM, 1998.

[3] S. Abramov and M. Bronstein. On solutions of linear functional systems. In

Proceedings of the 2001 International Symposium on Symbolic and Algebraic

Computation, pages 1–6. ACM, 2001.

[4] S. Abramov and M. Bronstein. Linear algebra for skew-polynomial matrices.

Technical Report RR-4420, INRIA, 2002.

[5] S. Abramov and M. van Hoeij. A method for the integration of solutions of Ore

equations. In Proceedings of the 1997 International Symposium on Symbolic

and Algebraic Computation, pages 172–175. ACM, 1997.

[6] E. Bareiss. Sylvester’s identity and multistep integer-preserving Gaussian elim-

ination. Mathematics of Computation, 22(103):565–578, 1968.

129

BIBLIOGRAPHY 130

[7] M. Barkatou. On rational solutions of systems of linear differential equations.

Journal of Symbolic Computation, 28(4/5):547–567, 1999.

[8] S. Barnett. Matrices in Control Theory: with applications to linear program-

ming. Van Nostrand Reinhold Company, 1971.

[9] B. Beckermann, H. Cheng, and G. Labahn. Fraction-free row reduction of ma-

trices of Ore polynomials. Technical Report CS-2002-37, School of Computer

Science, University of Waterloo, 2002.

[10] B. Beckermann, H. Cheng, and G. Labahn. Fraction-free row reduction of ma-

trices of skew polynomials. In Proceedings of the 2002 International Symposium

on Symbolic and Algebraic Computation, pages 8–15. ACM, 2002.

[11] B. Beckermann and G. Labahn. Recursiveness in matrix rational interpolation

problems. Journal of Computational and Applied Mathematics, 77:5–34, 1997.

[12] B. Beckermann and G. Labahn. Fraction-free computation of matrix rational

interpolants and matrix GCDs. SIAM Journal Matrix Analysis and Applica-

tions, 22(1):114–144, 2000.

[13] B. Beckermann and G. Labahn. On the fraction-free computation

of column-reduced matrix polynomials via FFFG. Technical Report

ANO436, Laboratoire ANO, University of Lille, 2001. Available at

http://ano.univ-lille1.fr/pub/2001/ano436.ps.Z.

[14] B. Beckermann, G. Labahn, and G. Villard. Shifted normal forms of polyno-

BIBLIOGRAPHY 131

mial matrices. In Proceedings of the 1999 International Symposium on Symbolic

and Algebraic Computation, pages 189–196. ACM, 1999.

[15] B. Beckermann, G. Labahn, and G. Villard. Normal forms for general polyno-

mial matrices. Technical Report RR2002-01, ENS Lyon, France, 2002.

[16] Th. G. Beelen, G. J. van den Hurk, and C. Praagman. A new method for

computing a column reduced polynomial matrix. Systems & Control Letters,

10:217–224, 1988.

[17] R. R. Bitmead, S. Y. Kung, B. D. O. Anderson, and T. Kailath. Greatest

common divisors via generalized Sylvester and Bezout matrices. IEEE Trans-

actions on Automatic Control, AC–23:1043–1046, 1978.

[18] W. E. Boyce and R. C. DiPrima. Elementary Differential Equations and

Boundary Value Problems. John Wiley & Sons, Inc., 5th edition, 1992.

[19] W. Brown and J. Traub. On Euclid’s algorithm and the theory of subresultants.

Journal of the ACM, 18(4):505–514, 1971.

[20] W. S. Brown. On Euclid’s algorithm and the computation of polynomial great-

est common divisors. Journal of the ACM, 18(4):478–504, 1971.

[21] A. Bultheel and M. van Barel. A matrix Euclidean algorithm and the matrix

Padé approximation problem. In C. Brezinski, editor, Continued Fractions and

Padé Fractions. Elsevier, North-Holland, 1990.

[22] S. Cabay. Exact solution of linear equations. In Proceedings of the Second

Symposium on Symbolic and Algebraic Manipulation, pages 392–398, 1971.

BIBLIOGRAPHY 132

[23] B. W. Char, K. O. Geddes, and G. H. Gonnet. GCDHEU: Heuristic polynomial

GCD algorithm based on integer GCD computation. Journal of Symbolic

Computation, 9:31–48, 1989.

[24] H. Cheng and G. Labahn. A modular greatest common divisor algorithm

for matrix polynomials. Technical Report CS-2002-04, School of Computer

Science, University of Waterloo, 2002.

[25] F. Chyzak and B. Salvy. Non-commutative elimination in Ore algebras

proves multivariate holonomic identities. Journal of Symbolic Computation,

26(2):187–227, 1998.

[26] B. Codenotti and G. Lotti. A fast algorithm for the division of two polynomial

matrices. IEEE Transactions on Automatic Control, 34(4):446–448, 1989.

[27] P. M. Cohn. Free Rings and Their Relations. Academic Press, 1971.

[28] G. E. Collins. Subresultants and reduced polynomial remainder sequences.

Journal of the ACM, 14(1):128–142, 1967.

[29] G. E. Collins. The calculation of multivariate polynomial resultants. Journal

of the ACM, 18(4):515–532, 1971.

[30] D. S. Dummit and R. M. Foote. Abstract Algebra. Prentice-Hall, Inc., 1991.

[31] S. H. Friedberg, A. J. Insel, and L. E. Spence. Linear Algebra. Prentice-Hall,

Inc., 2nd edition, 1989.

BIBLIOGRAPHY 133

[32] H. Garner. The residue number system. IRE Transactions on Electronic Com-

puters, EC-8:140–147, 1959.

[33] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge

University Press, 1999.

[34] J. von zur Gathen and S. Hartlieb. Factoring modular polynomials. In Pro-

ceedings of the 1996 International Symposium on Symbolic and Algebra Com-

putation, pages 10–17. ACM, 1996.

[35] J. von zur Gathen and S. Hartlieb. Factoring modular polynomials. Journal

of Symbolic Computation, 26(5):583–606, 1998.

[36] K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for computer algebra.

Kluwer Academic Publishers, 1992.

[37] C. Gentle. Computing greatest common divisors of polynomial matrices. Mas-

ter’s thesis, University of Waterloo, 1999.

[38] A. J. Geurts and C. Praagman. Algorithm 7667: A Fortran 77 package for

column reduction of polynomial matrices. ACM Transactions on Mathematical

Software, 23(1):111–129, 1997.

[39] J. L. Hafner and McCurley. Asymptotically fast triangularization of matrices

over rings. SIAM Journal on Computing, 20(6):1068–1083, 1991.

[40] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press,

1985.

BIBLIOGRAPHY 134

[41] T. Kailath. Linear Systems. Prentice-Hall, 1980.

[42] D. E. Knuth. The Art of Computer Programming, volume 2. Addison Wesley,

3rd edition, 1998.

[43] V. Kučera. Discrete Linear Control. John Wiley & Sons, 1979.

[44] Z. Li. A Subresultant Theory for Linear Differential, Linear Difference and

Ore Polynomials, with Applications. PhD thesis, RISC-Linz, Johannes Kepler

University, Linz, Austria, 1996.

[45] Z. Li. A subresultant theory for Ore polynomials with applications. In Proceed-

ings of the 1998 International Symposium on Symbolic and Algebraic Compu-

tation, pages 132–139. ACM, 1998.

[46] Z. Li. Private communication, Jun 2003.

[47] Z. Li and I. Nemes. A modular algorithm for computing greatest common

right divisors of ore polynomials. In Proceedings of the 1997 International

Symposium on Symbolic and Algebraic Computation, pages 282–289. ACM,

1997.

[48] J. D. Lipson. Elements of Algebra and Algebraic Computing. Addison-Wesley,

1981.

[49] R. Loos. Generalized polynomial remainder sequences. In Computer Algebra:

Symbolic and Algebraic Computation, pages 115–137. Springer-Verlag, 1982.

BIBLIOGRAPHY 135

[50] T. Mulders and A. Storjohann. On lattice reduction for polynomial matrices.

Journal of Symbolic Computation, 35(4):377–401, 2003.

[51] W. H. L. Neven and C. Praagman. Column reduction of polynomial matrices.

Linear Algebra and Its Applications, 188,189:569–589, 1993.

[52] O. Ore. Theory of non-commutative polynomials. Annals of Mathematics,

34:480–508, 1933.

[53] G. Villard. Computing Popov and Hermite forms of polynomial matrices.

In Proceedings of the 1996 International Symposium on Symbolic Algebraic

Computation, pages 250–258. ACM, 1996.

[54] Q. G. Wang and C. H. Zhou. An efficient division algorithm for polynomial

matrices. IEEE Transactions on Automatic Control, 31(2):165–166, 1986.

[55] S. Y. Zhang. The division of polynomial matrices. IEEE Transactions on

Automatic Control, 31(1):55–56, 1986.

[56] S. Y. Zhang and C. T. Cheng. An algorithm for the division of two polynomial

matrices. IEEE Transactions on Automatic Control, 28(2):238–240, 1983.

