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Abstract

Quantum information is promising in solving certain computational problems and in-
formation security. The power of its speed up and privacy is based on one of the most
tested physical theory: quantum mechanics. Many of the promises of quantum information
has already been demonstrated in different implementations, which could also be viewed
as witness of quantum mechanics. As we progress further in quantum information, we find
that some of the aspects of quantum mechanics could be tested in a novel way. Performing
those tests may lead to new physical theory or at least reinforce our belief of the accuracy
of quantum mechanics. In this thesis, I report a few different approaches in testing the
foundation of quantum mechanics using results obtained from quantum optics. While de-
veloping such test, quantum state tomography is heavily used to characterize our system.
I also report a simplified way of performing quantum state tomography for quantum state
that is close to pure state.
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Chapter 1

Introduction

Quantum Mechanics is arguably the most tested physical theory in human history. It has
been directly and indirectly tested in numerous experiments since its discovery in the early
20th century. Many promises of quantum mechanics has been realized such as transistor
and atomic clock, and those discovery are verification of quantum mechanics themselves.
Moreover, with the help of those technology, one was able to design more precise exper-
iments testing quantum mechanics. In the past few decades, quantum information was
developed to help us understand unique advantages of quantum mechanics over classical
counter parts such as computational power and information security. It has been realized in
many systems such as NMR, optics, superconducting electrode and ion trap. It is another
piece of evidence that quantum mechanics as we known is accurate. A natural question
arises: could one use quantum information as a tool to further test quantum mechanics?

The key to above question is knowing what to test. As many existing proposal of
testing quantum mechanics pointed out, to test a theory, one should find some generalized
theory that reduce to the original one when certain parameters become negligible. The
development of quantum information gave us many different angles to look at quantum
mechanics, which gave birth to a few theories which one could use to test the foundation
of quantum mechanics.

Many predecessors have proposed and performed tests to quantum mechanics. Like
Steven Weinberg in the 80s who proposed a family of generalization to quantum mechanics
which could be tested using spinning particles in external fields. In that work, he points
out the inconsistency of many other attempts to generalize the quantum mechanics by
introducing non-linear terms in the Schrodinger equation. From a mathematician’s per-
spective, Andrew M. Gleason proved that for a system whose state lives in a separable
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Hilbert space of complex dimension at least 3, an unique trace class operator exist for any
quantum probability measurement with Hermitian observables. In other words, Born rule
of probability naturally follows when we describe our state in the complex Hilbert space,
and require probability measurement to be non-negative and always normalized under dif-
ferent basis. More recently, a 3-slit photon interference experiment is done which put
bounds on deviations from the Born rule. The success of quantum mechanics in various
test and the incompatibility with general relativity motivate us to seek different angle in
the test of quantum foundations.

In this thesis, I am going focus on two separate proposal testing quantum mechanics.
First is to look at gravitationally induced entanglement de-correlation[2]. A generalized
theory proposed by Ralph and Milburn in a sequences of papers gives entangled photons
traveling in curved space time some additional de-correlation due to an additional degree
of freedom from the said theory. This theory is adopted to develop potential experiment
proposal for a satellite with only quantum uplink capacity. Second, we turn our attention
to environmental induced invariance(envariance), and its application to test quantum me-
chanics. The symmetry of envariance could be used to explain decoherence and therefore
bypass the need of introducing Born rule as an axiom of quantum mechanics. In an optics
experiment, we tested this symmetry and used the result to bound the Born rule using cer-
tain extended theory of quantum mechanics[3]. At last, we discuss something we discover
along the line while we are investigating the above tests: the tomography of quantum state
that is close to a pure state using Pauli observables. When dealing with state that is close
to pure state, we discovered that much less quantum operation are needed to reconstruct
our quantum state compared to the general case. For two and three qubits system, we
listed the minimum number of Pauli operation required to perform tomography on a pure
quantum state, and tested the robustness in experiments[4].

My contribution of the thesis have already been published in the following papers:

[1] D Rideout, T Jennewein, G Amelino-Camelia, T F Demarie, B L Higgins, A Kempf,
A Kent, R Lalamme, X Ma, R B Mann, et al. Fundamental quantum optics experiments
conceivable with satellitesreaching relativistic distances and velocities. Classical and Quan-
tum Gravity, 29(22):224011, 2012.

[2] L Vermeyden, X Ma, J Lavoie, M Bonsma, Urbasi Sinha, R Laflamme, and KJ Resch.
Experimental test of environment-assisted invariance. Physical Review A, 91(1):012120,
2015.

[3] X Ma, T Jackson, H Zhou, J Chen, D Lu, M D Mazurek, K AG Fisher, X Peng,
D Kribs, K J Resch, Z Ji, B Zeng, and R Laflamme Pure-state tomography with the
expectation value of Pauli operators.Physical Review A, 93(3):032140, 2016.
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Chapter 2

Background: quantum optics and
quantum information

In this chapter, we are going to introduce some basic background material in quantum
optics and quantum information, which would be useful to understand the subsequent
chapters. It will also serve to establish the notation and terminology used in this work.
The background material is separated into two sections: Section 2.1, Quantum optics and
Section 2.2, Quantum information. Both will give the basic information that is required
and direct to more resources if interested.

2.1 Quantum optics

2.1.1 Photon modes and evolution

First, we would like to expand the optical fields over a set of modes {â1, â
†
1, â2, â

†
2...}.

For convenience, we pick âki and âkj to be orthogonal modes when ki 6= kj. Therefore,
operators âki and âkj have boson commutation relations

[âki , âkj ] = [â†ki , â
†
kj

] = 0 (2.1)

[âki , â
†
kj

] = δkikj (2.2)

In Heisenberg picture, the quantum modes of the output state could be write as rearrange-
ment of the modes and their conjugates. Without losing generality, we define the evolution
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to be
b̂k = fk(â1, â

†
1, â2, â

†
2...) (2.3)

where b̂k is the output mode k. In other word, if we have a detector designed to measure
mode k at the output, the mode arrived at the detector would be b̂k. The form of fk depends
on the unitary(or sometimes non-unitary) evolution U(â1, â

†
1, â2, â

†
2...) we are interested in.

Here, we assume this initial state is the vacuum state, where âk|0〉 = 0 for any mode k.
We can consider the expectation value for a photon number at detector k of the form

n = 〈0|b̂†kb̂k|0〉. (2.4)

Moreover, if we measure the correlation between modes ki and kj, the coincidence is given
by

Ckikj = 〈0|b̂†ki b̂ki b̂
†
kj
b̂kj |0〉. (2.5)

2.1.2 Parametric down converted photons

To create entangled photons, one would require nonlinear interaction between photons.
One of the most common nonlinear interaction is the parametric down conversion. It
happens when photon modes enters a medium with nonlinear susceptibility tensor χ̃, where
the dielectric polarization density could be expressed as

P (t) = ε0(χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ...), (2.6)

where ε0 is the vacuum permittivity and E(t) is the electrical field. The coefficients χ(n)

are the n-th order susceptibility, and we are interested in the nonlinear effects due to the
χ(2) term. The interaction Hamiltonian of the parametric down conversion has the form of
an integral over the volmue of the crystal [5]

HI(t) =
ε0χ

(2)

2

∫
V

dV Ê(+)
p Ê(−)

s Ê
(−)
i + h.c., (2.7)

where Ê
(+)
p is the positive frequency part of the pump optical field, Ê

(−)
s and Ê

(−)
i are

the negative frequency part of the signal and idler optical field, respectively. Using this
Hamiltonian, it is possible to generate pairs of entangled photons. In this section we are
going to consider a simple case where all pump, signal and idler modes are single mode
plane waves traveling in the ẑ direction. For a more general derivation, please see Ref. [5]
and [6].
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Under our plane wave assumption, the field operators could be expressed as

Ê(+)
p = i

√
~ωp
2ε0V

âp exp[i(kpz − ωpt)], (2.8)

Ê(−)
s = −i

√
~ωs

2ε0V
â†s exp[−i(ksz − ωst)], (2.9)

Ê
(−)
i = −i

√
~ωi

2ε0V
â†i exp[−i(kiz − ωit)]. (2.10)

where âp is the annihilation operator for the pump, â†s and â†i are creation operators for
the signal and the idler respectively.

If the signal and the idler are initialize as vacuum state and the pump initialized in a
coherent state, where the wave function at t = 0 is |φ(0)〉 = |α〉p|0〉s|0〉i. The wave function
of the three modes in the first-order perturbation theory takes the form

|φ(t)〉 = |φ(0)〉+
1

i~

∫ t

0

dt′HI(t
′)|φ(0)〉

= |φ(0)〉+
1

i~

∫ t

0

dt′
ε0χ

(2)

2

∫
V

dV Ê(+)
p Ê(−)

s Ê
(−)
i |φ(0)〉

= |φ(0)〉 − ε0χ
(2)

2~
(

~
2ε0V

)
3
2
√
ωsωiωp

∫ t

0

dt′
∫
V

dV âp exp[i(kpz − ωpt′)]

×â†s exp[−i(ksz − ωst′)]â†i exp[−i(kiz − ωit′)]|φ(0)〉

= |φ(0)〉 − ε0χ
(2)

2~
(

~
2ε0V

)
3
2
√
ωsωiωp

∫ t

0

dt′
∫
V

dV exp[i(kp − ks − ki)z]

× exp[i(ωs + ωi − ωp)t′]âpâ†sâ
†
i |φ(0)〉 (2.11)

If we ignore the pump and output vacuum state, the second term in Eq 2.11 gives us wave
function of a photon pair

|ψ(t)〉 = −αε0χ
(2)

2~
(

~
2ε0V

)
3
2
√
ωsωiωp

∫ t

0

dt′
∫
V

dV exp[i(kp−ks−ki)z] exp[i(ωs+ωi−ωp)t′]|1〉s|1〉i.

(2.12)
We could make a few observations by looking at this wave function. First, since the
interaction time t is usually much longer than the optical frequency. We have∫ t

0

dt′ exp[i(ωs + ωi − ωp)t′] ≈
∫ ∞

0

dt′ exp[i(ωs + ωi − ωp)t′] = 2πδ(ωs + ωi − ωp), (2.13)
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so the frequencies of the two photon should satisfy

ωs + ωi = ωp. (2.14)

This is the energy conservation of the process. Moreover, if we assume the interaction
happen in a area with length and L, we have∫ L

0

dz exp[i(kp − ks − ki)z] = exp[i(kp − ks − ki)
L

2
]sinc[(kp − ks − ki)

L

2
]. (2.15)

In order to maximize the entangled photon output, the function sinc[(kp − ks − ki)
L
2
]

needs to be maximized. This is called phase matching. Note that we used the first-order
perturbation theory in Eq 2.11. The higher order terms in the series of expansion would
lead to terms describing multiple photons generated in each mode. It is worth pointing
out that those multiple photon output are not simply product of entangle pairs[7].

Energy-time entangled photons

As described in Eq 2.14, the two photons generated by parametric down conversion have
natural correlation in energy. This could be used to produce energy-time entangled pho-
tons [8][9] that we use later in Chapter 3.

To verify the idler and the signal photon are indeed entangled, one could measure
both photons in distant detectors. If the difference of arrival time ti and ts violates
∆(ti − ts)∆(ωi + ωs) > 1, it is sufficient to show bipartite entanglement between the
two photons[10]. With the energy conservation ωs + ωi = ωp, the inequality could be
simplified as ∆(ti − ts)∆(ωp) > 1.

Polarization entangled photons

To discuss the polarization entangled photon, it is important to review the polarization
states of photon pairs generated by parametric down conversion. There are two types
correlated polarizations. When the signal and idler photons have parallel polarization,
it is called type I correlation. When the signal and idler photons have perpendicular
polarizations, it is called type II correlation. In this section, we are going to introduce
one method to generate polarization entangled photons using type II parametric down
conversion, which we use later in Chapter 4. For other interesting methods to generate
polarization entangled photons please refer to Ref [11].
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Figure 2.1: Preparation of polarization entangled photons. The blue line represents the
pump beam, which gets removed at filter(IF). The pink and purple lines represent the signal
and idler. The pump light is a 45 degree polarized beam. The horizontal photons from the
pump beam travels counterclockwise after the polarizing beam splitter, and generate pairs
of horizontal idler and vertical signal photons through type II PDC at PPKTP. The vertical
photons from the pump beam travels clockwise, and generate pairs of vertical idler and
horizontal signal photons. The half wave plate is put in for phase matching purpose. As
two path are indistinguishable, we create polarization entangled photons at the couplers.
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As shown in Fig 2.1, we input a 45 degree polarized pump beam:

|ψ〉 =
1√
2

(|H〉+ |V 〉). (2.16)

The horizontal photons from the pump beam gets transmitted at the polarizing beam
splitter, and generating horizontal idler and vertical signal photons at the nonlinear crystal
PPKTP. The horizontal idler gets transmitted by the polarized beam splitter to the coupler
A, while the vertical signal gets reflected to the coupler B. Therefore, the setup produces
the transformation |H〉 → |H〉A|V 〉B. The vertical photons from the pump beam gets
reflected at the polarizing beam splitter, and generating vertical idler and horizontal signal
photons. The vertical idler gets reflected by the polarized beam splitter to the coupler A,
while the horizontal signal gets transmitted to the coupler B. Therefore, the setup produces
the transformation |V 〉 → |V 〉A|H〉B. Since to path are indistinguishable, we arrived at
polarization entangled state:

|φ〉 =
1√
2

(|H〉A|V 〉B + |V 〉A|H〉B). (2.17)

By adjusting the angle of the QWP at the couple A, we could produce

|φ〉 =
1√
2

(|H〉A|V 〉B + eiθ|V 〉A|H〉B). (2.18)

By tilting the quarter wave plate, this source generates two of the four Bell states.

2.1.3 Dual-rail qubits and its relation to polarization qubits

In the original linear optics quantum computing scheme [12], dual-rail qubits are used to
build an ideal quantum computer. The location of a photon in two possible paths are
used to encode a qubit. If we name the two spatial mode a and b, the logic 0 is given
by a photon traveling in spatial mode a, |0〉L = |10〉ab, while logic 1 is given by a photon
traveling in spatial mode b, |1〉L = |01〉ab. The single qubit unitaries for dual-rail qubits
could be implemented with beam splitters and phase shifters. To show that using both
phase shifters and beam splitters are sufficient for any single qubit gates, we first observe
that phase shifter on mode a would give us arbitrary rotation about the Z axis up to a
global phase. The unitary for a phase shifter placed on the path of mode is given by

UPS(φ) =

(
eiφ 0
0 1

)
(2.19)

8



A beam splitter with transmittance sin θ could be described by

UPS(θ) =

(
cos θ − sin θ
sin θ cos θ

)
(2.20)

If one put a phase shifter UPS(φ1) after a beam splitter UPS(θ) after a phase shifter UPS(φ1),
one could have universal single qubit gate for dual-rail qubits.

UPS(φ2)UPS(θ)UPS(φ1) =

(
ei(φ1+φ2) cos θ −eiφ2 sin θ
eiφ1 sin θ cos θ

)
(2.21)

The two polarization degree of freedom for photons, the horizontally and vertically
polarization |H〉, |V 〉, could also be used as basis for implementing qubits. The polarization
qubits can be converted to the dual-rail qubits by introducing a piece of polarized beam
splitter(PBS), which transmits |H〉 and reflects |V 〉. If we name the transmitted spatial
mode, mode a, and the reflected mode, mode b. PBS transforms input state α|H〉+ β|V 〉
as a polarization qubit to α|10〉ab + β|01〉ab as a dual rail qubit. It is worth noting, one
could easily reverse the setting to convert a dual-rail qubit into a polarization qubit.

2.1.4 Unitary gates for photon-polarization qubits

In order to perform universal one qubit unitary on a photon-polarization qubits, one uses
sets of waveplates to alter the polarization state of photons traveling through it. Wave-
plates are made of birefringent material, whose index of refraction varies depending on the
polarization and propagation direction light. By controlling the thickness of such crystal,
one could build half wave plate(HWP) and quarter wave plate(QWP). By rotating the
major axis of HWP or QWP, the waveplates’ unitary changes. For an HWP with its major
axis at an angle θ, we have

UHWP (θ) = e−iθY e−i
π
2
ZeiθY

= −i
(

cos 2θ sin 2θ
sin 2θ − cos 2θ

)
= −i (Z cos 2θ +X sin 2θ) (2.22)

where X, Y and Z are Pauli Matrices,

X =

(
0 1
1 0

)
(2.23)
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Y =

(
0 −i
i 0

)
(2.24)

Z =

(
1 0
0 −1

)
(2.25)

similarly, for a QWP with its major axis at an angle θ, we have

UQWP (θ) = e−iθY e−i
π
4
ZeiθY

=
1√
2

(
1− i cos (2θ) −i sin 2θ
−i sin 2θ 1 + i cos (2θ)

)
=

1√
2

(1− iX sin 2θ − iZ cos 2θ) (2.26)

Note that using either a single QWP or a HWP will not give us all universal single qubit
unitaries by rotating the crystal. Therefore, we stack a few waveplates together to get
universal single qubit rotations. One of the simplest way to implement it would be to
stack a QWP after an HWP and finally after a QWP.

UQWP (θ1)UHWP (θ2)UQWP (θ3)

= Z (cos 2θ2 − cos 2θ3 cos (2θ2 − 2θ1)− sin 2θ3 sin (2θ2 − 2θ1))

Y (sin (2θ3 − 2θ2) + sin (2θ2 − 2θ1))

X (sin 2θ2 − sin 2θ3 cos (2θ2 − 2θ1) + cos 2θ3 sin (2θ2 − 2θ1))

−iI (cos (2θ3 − 2θ2) + cos (2θ2 − 2θ1)) (2.27)

By rotating the major axis of the three crystal, any single qubit gate could be realized by
this set up.

2.2 Quantum information

2.2.1 Quantum state tomography and Maximum Likelihood Es-
timation

One key task in quantum information is quantum state tomography, where the density ma-
trix representing our quantum state is determined via a number of measurements. With
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many identically prepared copies of a quantum system, one perform a series of measure-
ments on the system. If the measurements are chosen carefully, one could infer the quantum
state of such system with good precision. For example, say we have a one qubit quantum
state ρ. We could alway write ρ in Pauli basis, where

ρ = α0I + α1X + α2Y + α3Z. (2.28)

We could prepare multiple copies of ρ and measure them with Pauli observables X, Y and
Z. The expected value of measurement could be written as Tr(ρX) = e1, Tr(ρY ) = e2,
and Tr(ρZ) = e3. Combined with the normalization, we get Tr(ρI) = 1, where α0 = 1

2
.

Therefore, we can reconstruct our state as

ρ =
1

2
I + e1X + e2Y + e3Z. (2.29)

This naive method of using linear combination of experiment data to reconstruct density
matrix works when we ignore any noise in the process. After we introduce experimental
noise, it might give us a density matrix which does not fulfill the requirement of being
positive semidefinite. This problem is more severe among low rank states, which are more
likely to obtain a negative eigenvalue from random perturbation. In order to guarantee
the reconstruction yield a positive semidefinite matrix, one could implement maximum
likelihood method in the state reconstruction.

To use maximum likelihood method, one start by assuming certain noise model for the
measurement results. Imagine we performed 4 sets of measurements to obtain the experi-
mental values for Tr(ρI) = e0, Tr(ρX) = e1, Tr(ρY ) = e2, and Tr(ρZ) = e3. Note that the
observable of identity operator is counted here. In most implementation, this is done with
calibration which is usually not noise free. One would assume the measurement outcomes
{e0, e1, e2, e3} are normally distributed with some unknown mean and variance, which is
reasonable given a large number of instance are measured to obtain the experimental ex-
pected values. It is fair to use central limit theorem to assume the experimental values are
following normal distribution. Each measurement is assigned with an expectation value
ēi and a variance σ2

i , where σ2
i could be determined with further assumption of our error

model. Therefore, the probability of getting the measured outcome {e0, e1, e2, e3} is given
by

P (e1, e2, e3, e4|ē0, ē1, ē2, ē3) =
1

N

4∏
n=1

exp[−(ei − ēi)2

2σ2
i

], (2.30)

where N is the normalization constant.
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Instead of directly use the experimentally measured value in our state reconstruction,
maximum likelihood estimation tries to find the set of values of the model parameters that
maximizes the probability of getting the experimentally measured value given such model
parameters. Our optimization task becomes to find such expectation value {ē0, ē1, ē2, ē3}
which maximize the probability P (e1, e2, e3, e4|ē0, ē1, ē2, ē3). To simplify the expression, we
can take logarithm of Eq. 2.30:

lnP (e1, e2, e3, e4|ē0, ē1, ē2, ē3) = − lnN −
4∑

n=1

(ei − ēi)2

2σ2
i

. (2.31)

To further simplify Eq. 2.31, we need to make assumptions on the variances σ2
i according

to our physical system. For example, when photon number is measured, we could assume
the measurement outcome follows the Poisson distribution, where σi =

√
ēi. Therefore,

our optimization task could reduce to finding the minimum of following function:

L(e1, e2, e3, e4|ē0, ē1, ē2, ē3) =
4∑

n=1

(ei − ēi)2

2ēi
, (2.32)

where L(e1, e2, e3, e4|ē0, ē1, ē2, ē3) is called the likelihood function. Some times the variance
σ2
i are the same for different measurements, where σi = σ̄. The optimization is further

reduced to finding the minimum of likelihood function

L(e1, e2, e3, e4|ē0, ē1, ē2, ē3) =
4∑

n=1

(ei − ēi)2, (2.33)

which is also known as the least squares fitting.
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Chapter 3

Testing quantum foundations in
space using artificial satellite

3.1 Introduction

Quantum mechanics and general relativity are two of the most successful theories in the
20th century. Although both of them survived numerous tests with great accuracy, they
are not compatible in certain area. Quantum theory exceptionally describes the behaviour
of physical systems at small scales, while general relativity theory predicts systems at large
scales. One expects that both theories are limiting cases of one set of unified laws of physics.
However, the success of both theory makes it extremely difficult to find experimental
evidence that points us towards such unifying laws of physics.

Going forward, we need more experimental guidance. We could observe and capture
events that naturally occurs in the universe, such as the cosmic microwave background
(CMB), which is so far the best potential for solid experimental evidence for quantum
gravitational effects. However, the observation of CMB counts only a passive one-shot
experiment since the big bang can not be repeated.

Therefore, it is important that we push our direct tests of quantum theory to scales
where the curvature of spacetime is no longer negligible. Some experiments have been
already performed up to hundreds of kilometers on the Earth[13]. Such tests still fall short
to probe the potential important physics that arises at the intersection of quantum theory
and general relativity. The next step would be looking at potential experiments in even
larger scale, in the outer space. A test conceivable with artificial satellites in Earth orbit
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or elsewhere in the solar system may be helpful to eliminate various alternative physical
theories and place bounds on phenomenological models.

At time of this project was conducted, there was a scientific proposal, where an artificial
satellite with uplink quantum channel capacity would be available. The task was to look
at different alternative physical theories and find ones that have significant difference to
the standard quantum fields theory that could be detected on the satellite.

In this Chapter, we look an alternative quantum optics theory proposed by T. Ralph and
G. Milburn in a series of papers. By introducing a second time-like degree of freedom called
event operator, entangled photon traveling in curved space time would gain additional
de-correlation under this alternative quantum optics theory. My work in this chapter
is described in Section 3.3, where we adopted this theory for our uplink satellite and
determined the required photon detector resolution for the satellite.

3.2 T. Ralph and G. Milburn’s alternative quantum

optics theory

The standard quantum fields theory in curved spacetime [14] allows quantum entanglement
to survive unchecked in a wide variety of gravitational environments. Ideally, entangled
photons created locally and traveling through regions of different gravitational background
will still possess all the entanglement they begin with. Local detectors can be carefully
designed to reveal this. One would need to take into account other factors which may
also alter the amount entanglement, such as redshift, time-of-arrival delay, phase locking,
modification, mode shape, etc. Of course, there is always the possibility that the descrip-
tion of standard quantum field is not accurate, and an alternative theory is needed. An
alternative theory of the behaviour of photons under different gravitational background
was introduced by Ralph and Milburn in a series of papers [15, 16, 17, 18, 19] originally
designed to explain the thought experiment of quantum information propagation in pres-
ence of closed timelike curves but later used to predict measurable decoherence induced by
gravitation.

The motivation of this alternative theory is to allow photon modes to interact with its
past. Under Deutsch model [20] for closed timelike curves, a quantum state is allowed to
interact with a version of itself in the past as long as we enforce the density operator of
the state to match. This can not be done with photon modes in standard quantum field
theory, since the all point along the geodesic of the light ray commutes. This alternative
theory attempts to localize the photon modes in the temporal degree of freedom, so that
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photon mode of the present and the past no longer commute. This theory also provides
some visible changes to entangled pairs traveling in curved spacetime, which could be used
to test the theory.

The essence of this proposal is to supplement ordinary field theory with an additional
degree of freedom called an event operator, which is associated with the detectors used to
measure the field quanta in a given setup. In flat spacetime with detectors in the same
reference frame, the event operator is of no visible consequence because time passes at the
same rate for all detectors. But when two detectors are in curved spacetime, their local
clocks run at different rates and fall out of sync gradually. When the amount by which
they desynchronize during the photons’ times of flight is longer than the timing resolution
of the detectors, then, although the delay in the time of arrival can be accounted for in the
detector design, the presence of the event operator (whose duration is associated to the
detector’s temporal resolution) ensures that the two photons lose coherence.

What is the event operator? Lets start by writing out the mode annihilation operator
for a field traveling in the positive x direction:

â(t, x) =

∫
dk G(k) eik(x−t+ψ)âk (3.1)

where t is the time, k is the optical frequency and G(k) is a normalized spectral mode
distribution and ψ is the phase shift. Note that we have chosen the speed of light to be
c = 1 so that the time t is in units of space. It is natural to assume G(k) = 0 for k < 0,
since optical modes with negative frequency would not be physical.

It is easy to verify that all points along the geodesic of the light ray are equivalent for
this traveling field. In other word a translation of Eq. 3.1 by x→ x+ δ, t→ t+ δ produces
no change in the mode operator:

â(t+ δ, x+ δ) =

∫
dk G(k) eik(x+δ−t−δ+ψ)âk = â(t, x). (3.2)

The essence of this alternative quantum optics theory is the event operator. We introduce a
second spectral degree of freedom, Ω, and a distribution, J(Ω), over this degree of freedom
to each of the input modes, such that Eq. 3.1 becomes

ā(x, t) =

∫
dk G(k) eik(x−t+ψ) ×

∫
dΩ J(Ω) eiΩtāk,Ω (3.3)

where ā(x, t) is called the event operator. Note that

[āk,Ω, ā
†
k′,Ω′ ] = δ(k − k′)δ(Ω− Ω′). (3.4)
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We can view āk,Ω as a description of optical mode localized not only in the frequency k
but also in the second spectral degree of freedom Ω. By adding this independent, local
temporal parametrization of the quantum optical modes, we aim to make observable at
different points along the geodesic commute.

3.3 Testing quantum mechanics with artificial satel-

lites

The scheme proposed in Ref. [19] involves preparing a pair of entangled photons via spon-
taneous parametric down-conversion (SPDC). One of the entangled photons is measured
directly on the ground station after a time delay, while the other is sent to the satellite,
traversing a varying gravitational potential. Figure 3.1 illustrates the process.

Using the localized event operator introduced in this alternative theory, the maximum
coincidence detection rate of two photons should decline due to intrinsic decoherence by
the curved spacetime. As described earlier in this chapter, the local clock of two detector
experiencing different gravitational potential falls out of sync. The difference in proper
time ∆ between the two detectors during the time of flight of the photons determine the
timescale for the event operators in question, and therefore sets the timescale on which
decoherence will take place. In our setting, one of the entangled photon is reflected at
the surface of the Earth, and remained in the lab until measured. Therefore it is always
at the distance xl = re to the Earth center, where re = 6.38 × 106m is the radius of the
Earth. The other photon is sent to the satellite, which is at distance xs = re + h to the
Earth center, where h is the height of the satellite. Therefore, in a Schwarzschild metric,
the difference in proper time ∆ between the two detectors is given by

∆ = M ln(
xs
xl

)

≈ M
h

re
(3.5)

where 2M = 8.87× 10−3m is the Schwarzschild radius of the Earth. When the difference
in proper time ∆ is larger than the detector temporal resolution dt, decoherence occurs. In
the model proposed by Ralph and Milburn in Ref. [19], the reduced correlation function is
given by

C = Cmax exp

(
−∆2

4d2
t

)
, (3.6)
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the modal functions to occur !as for the classical case" when
2#xp−xm+2M ln! xp

xm
"$=xd2−xd1 !again with td1= td2 and as-

suming the detectors are far from the massive body". How-
ever the size of the maximum is reduced in the event opera-
tor formalism. In the limit that !"1 /#J, where #J is the
variance of the distribution J!$" the coincidences will disap-
pear to first order in %. Note though that the maximum single
detector count rates remain %%max%2. Thus the effect of the
different local propagation times in the event formalism is to
decorrelate the entanglement.

To estimate the size of this effect we consider placing the
source and detectors on a geostationary satellite with the mir-
ror at ground level and the polarizing beam splitter at height
h. At geostationary orbit the curvature can be neglected, and
we find approximately

! & 2M
h

re
. !46"

We assume a Gaussian form for the function J!$",

J!$" =
dt

'&
e−$2dt

2
. !47"

As commented earlier, the effect of the J!$" function is to
isolate a localized detection event that is then projected back
onto the initial state. It seems natural then to associate dt
with the temporal uncertainty in the measurement. Given that
the detectors have been positioned to maximize the modal
functions then the correlation function becomes

C = %%max%2e−!2/4dt
2
, !48"

and we conclude significant decorrelation will occur when
!'2dt. We estimate the intrinsic temporal uncertainty of a
silicon photon counter to be around 200 fs and hence set the
standard deviation in units of length to dt=6(10−5 m.
Using Eq. !46", the mass of earth in units of length,
M =4.4(10−3 m, and the radius of earth re=6.38(106 m,
we find this implies significant decorrelation when
h'90 km.

C. Experimental proposal

The estimate at the close of the last section suggests that a
testable effect exists for Earth scale curvatures. Nonetheless,
directing entangled beams down from geostationary orbit to
reflectors separated by a hundred kilometers and back is not
currently practical. However a slight rearrangement of the
setup, shown in Fig. 4, leads to a more practical proposal. We
now assume that the source, polarizing beam splitter and
second detector are all approximately at height xp=re+h,
while the mirror, first detector and the correlator are all ap-
proximately at ground level, xm=re. A classical channel links
the second detector and the correlator. Mathematically the
situation is still described by the general equations of the
previous section. In particular it is still possible to maximize
the modal correlation function although clearly we must now
allow for different detection times. The first line of Eq. !45"
still describes the magnitude of ! but now with xd1&xm and
xd2&xp. With the modal functions maximized !which im-
plies xi1=xi2" we have

! & M ln( xp

xm
) . !49"

Following the arguments of the previous section we thus
conclude that the correlations between detection of one beam
of a parametric source on a satellite and the subsequent de-
tection of the other beam at ground level will be significantly
reduced when h'180 km.

V. CONCLUSION

Motivated by toy models of exotic general relativistic po-
tentials and more general considerations we have introduced
a nonstandard formalism for analyzing quantum optical
fields on a curved background metric. In contrast to the stan-
dard approach in terms of global mode operators, our non-
standard formalism involves local event operators that act on
Hilbert subspaces that are localized in space-time. As such
the quantum connectivity of space-time is reduced in our
model. We have shown that for inertial observers in a flat
space-time the predictions of the standard and nonstandard
formalisms agree. However, for entangled states in curved
space-time differences can arise. To illustrate this we have
studied the effect on optical entanglement of evolution
through varying gravitational fields using both formalisms.
The non-standard formalism predicts a decorrelation effect
that could be observable under experimentally achievable
conditions.

Although previous studies have found decorrelation of en-
tanglement in noninertial frames #14$, the effects are much
smaller than the one predicted here. They also differ from the
ones found here in several ways. First note that although,
because of the loss of photon correlations, one might refer to
this effect as decoherence, in fact the effect is in principle
reversible. Considering the setup of Fig. 3, correlation would

C

time

radial distance

source

t
i

t
d

x
m

x
p

mirror pbs

FIG. 4. !Color online" Schematic of modified correlation experi-
ment. Now the source, polarizing beam splitter, and second detector
are approximately at height xp, while the mirror, first detector, and
the correlator are approximately at height xm. A classical communi-
cation channel sends the information from the second detector to
the correlOTator.

QUANTUM CONNECTIVITY OF SPACE-TIME AND… PHYSICAL REVIEW A 79, 022121 !2009"

022121-7

EPS

Satellite, 
altitude h

Classical 
Comms

Figure 3.1: Left: The original proposed scheme to test gravitationally induced decorrela-
tion. A source prepares a pair of orthogonal polarization modes with entangled photons.
Two modes initially propagate towards the surface of the Earth. Using the polarizing
beamsplitter (pbs), two modes are separated at height xp. The detectors located at height
xp and xm pick up the signals and feed the measurement result to the correlator via classi-
cal channels. Figure taken from Ref. [19]. Right: A possible implementation could employ
an uplink of the quantum signals from the source on the ground to the receiver in the
satellite, which inverts the signs of the gravitational potential difference, but should lead
to the same effect. The entangled photons prepared using SPDC are initially perfectly
correlated and spatially degenerate. Two single photon detectors capture the detection
times of photons and stream the data to a computer. The detection data from the satellite
is sent to the ground for analysis.
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dt � 2 ps

dt � 10 psdt � 500 fs

10 100 1000 104 105
h�km�

0.2

0.4

0.6

0.8

1.0
C�Cmax� Coincidence rate vs height of the satellite

LEO GEO

Figure 3.2: Coincidence predictions from the experiment proposed in Ref. [19]. The coin-
cidence detection rate (i.e. detection events in both detectors) as a function of temporal
difference of the detection td2− td1 should be peaked around the light traveling time differ-
ence in the two “arms”. The maximum coincidence rate C describes the photon correlation
upon detection, within the (intrinsic) detection time dt.

where Cmax is the maximum correlation function we should observe in flat spacetime, and
dt is the temporal resolution of the photon detectors.

If the photodetector resolution time is 500 fs, then the decoherence should easily be
observed for satellite altitudes above 400 km,1 as illustrated in Figure 3.2. With a GEO
satellite, which orbits at altitude 36,000 km, the effect would be more significant, and even
with 10 ps response time (the response time of a typical contemporary photodetector), a
visible decorrelation effect could occur.

Due to the careful timing required, this scheme is challenging but still possibly doable.
It is interesting to note that the predicted decoherence induced by gravity under this alter-
native theory applies only to quantum entanglement, and is in addition to any spreading
of classical correlations. Because there are many sources of decoherence for photons trav-
eling between satellites and the ground, it will be much easier to refute the event-operator
hypothesis than to confirm it — if we were able to generate entanglement beyond what
is predicted by Eq. 3.6, the hypothesis as proposed would be contradicted. On the other

1This is a conservative estimate compared to the 200 fs quoted in Ref. [19], which would result in
decoherence above 90 km.
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hand, if decoherence were found, it would be difficult to rule out other source of deco-
herence, which we may overlooked. If that is the case, one could employ a satellite in an
elliptical orbit to perform the test when the satellite is at different heights to see whether
the decorrelation changes in accord with Eq. 3.6.

Note that an alternative approach to the setup of Figure 3.1 (right panel) is to equip
a retroreflecting mirror on the satellite instead of a photon detector. However, one of
the entangled photon pair would have to travel through the atmosphere twice instead of
just once, which would cause further loss of photon. It would have the benefit that the
requirement of satellite orbit height is halved at which an effect can be seen. The theory
would predict the same curves as in Figure 3.2 but with each tick mark on the horizontal
axis replaced with half its current value. As a trade off between photon loss and satellite
height requirement, it might be advantageous in certain setups.
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Chapter 4

Testing envariance

4.1 Introduction

Envariance, or environment - assisted invariance, is a quantum symmetry that discovered
by Zurek in attempt to explain the origin of decoherence [21, 22, 23]. It applies in cases
where a bipartite quantum state is present. The state consists of a system part, labeled
S, and an environment part, labeled E. If some non-trivial action is applied to the system
part only, described by some unitary evolution, US = uS ⊗ IE, then the state is said to
be envariant under US if another unitary applied to the environment, UE = IS ⊗ uE, can
restore the initial state. Mathematically, it can be expressed,

US|ψSE〉 = (uS ⊗ IE)|ψSE〉 = |ψ′SE〉 (4.1)

UE|ψ′SE〉 = (IS ⊗ uE)|ψ′SE〉 = |ψSE〉. (4.2)

Envariance is an example of an assisted symmetry [21] where once the system is transformed
under some unitary US, it can be restored to its original state by another operation on
a distinct system: the environment. It is hard to imagine such symmetry in a classical
framework, since non-trivial changes applied to a classical system could be never be restored
by action on a distant classical system.

Envariance is a uniquely quantum symmetry in the following sense. A pure state
represents complete knowledge of the quantum system. In an pure entangled quantum
state, however, complete knowledge of the whole system does not imply complete knowledge
of its parts. It is therefore possible that an operation on one part of a quantum state can
alter the global state, but its local effects are masked by incomplete knowledge of that
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part; the effect on the global state can then be undone by an action on a different part. In
contrast, complete knowledge of a composite classical system implies complete knowledge
of each of its parts. Thus transforming one part of a classical system cannot be masked by
incomplete knowledge and cannot be undone by a change on another part.

Envariance plays a prominent role in work related to fundamental issues of decoher-
ence and quantum measurement [21, 22, 23]. Decoherence converts amplitudes in coherent
superposition states to probabilities in mixtures and is central to the emergence of the
classical world from quantum mechanics [24, 25]. Mathematically the mixture appears in
the reduced density operator of the system which is extracted from the global wavefunction
by a partial trace [26, 27]. This partial trace limits the approach for deriving, as opposed to
separately postulating, the connection between the wavefunction and measurement proba-
bilities known as Born rule [28], since the partial trace assumes Born rule is valid [22, 25].
Envariance was employed in a derivation of Born rule which sought to avoid circularity
inherent to approaches which rely on partial trace [22]. For comments on this derivation,
see for example [25].

In the present work, we subject envariance to experimental test in an optical system.
We use the polarization of a single photon to encode the system, S, and the polarization
of a second single photon to encode the environment, E. We subject the system photon to
a wide range of polarization rotations with the goal of benchmarking the degree to which
we can restore the initial state by applying a second transformation on the environment
photon. My contribution for this work was designing the experiment described in section
4.3 and putting bounds on the Born rule in section 4.4.

4.2 Deriving Born rule from envariance

Before we go into the experiment, lets give the brief introduction of deriving Born rule
from envariance. Like other derivation of the Born rule such as Gleason’s theorem, this
derivation follows a number of general assumptions behind quantum mechanics. One could
argue that under the same set of assumptions, Gleason’s theorem should also follow. It is
worth pointing out that this derivation is aimed to provide a different perspective at the
Born rule, which is more accessible for people from physics background. Moreover, one
may argue that Gleason’s theorem gives no insight into physical significance of quantum
probabilities, in other word, it is not clear why the observer should assign probabilities in
accord with the measure provided by the Gleason’s approach. This derivation attempts to
justify the quantum definition of probability. In this section, our final goal is to show the
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Born rule for quantum state |ψSE〉 =
∑N

k=1 αk |σk〉 |εk〉. Mathematically, we would like to
show that

Theorem 1. For state in Schmidt form

|ψSE〉 =
N∑
k=1

αk |σk〉 |εk〉 (4.3)

The probability of measuring |σk〉 in system pk ∝ |αk|2.1

The derivation could be divided into two parts.

First, prove that for |αi|2 = 1
N

, pk = 1
N

. Then, generalize the result to any rational

|αi|2.

Theorem 2. For state in Schmidt form

|ψSE〉 =
N∑
k=1

1√
N
eiθk |σk〉 |εk〉 (4.4)

The probability of measuring |σk〉 in system is pk = 1
N
∀k ∈ {1, 2, ..., N}.

Let’s swap the ith and jth elements in the system. We could do this by swap the label
of those 2 eigenstate without touching any experimental setup. The unitary for the swap
could be written as:

uS = |σi〉 〈σj|+ |σj〉 〈σi|+
∑
k 6=i,j

|σk〉 〈σk| (4.5)

The state after the swap operation becomes

(uS ⊗ 1) |ψSE〉 =
1√
N
eiθj |σi〉 |εj〉+

1√
N
eiθi |σj〉 |εi〉

+
∑
k 6=i,j

1√
N
eiθk |σk〉 |εk〉 (4.6)

The initial state is envariant under unitary (uS ⊗ 1). One may apply a unitary uE solely on
the environment to recover the original state |ψSE〉. The said unitary uE could be expressed
as

uE = ei(θj−θi) |εi〉 〈εj|+ ei(θi−θj) |εi〉 〈εj|+
∑
k 6=i,j

|εk〉 〈εk| (4.7)

1Born rule for bipartite entangled state
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We could check that

(uS ⊗ uE) |ψSE〉 =
∑
k 6=i,j

1√
N
eiθk |σk〉 |εk〉+

1√
N
eiθiei(θj−θi) |σj〉 |εj〉

+
1√
N
eiθjei(θi−θj) |σi〉 |εi〉 (4.8)

=
∑
k

1√
N
eiθk |σk〉 |εk〉 (4.9)

= |ψSE〉 (4.10)

Before we ask what is the probability of getting outcome |σi〉 and |σj〉 when we measure
the system, we make the following three assumptions.

First, unitary transformations must act on the system to alter its state. Probabilities
of getting outcome |σi〉 or outcome |σi〉 should not be affected by transformation uE , which
acts only on the environment.

Second, the state of the system S is all that is needed to predict measurement outcomes,
including their probabilities.

Finally, the state of a larger composite system that includes S as a subsystem is all
that is needed to determine the state of the system S.

Assume we have probability pi of getting outcome |σi〉 and probability pj of getting
outcome |σi〉. Since the swap operation only relabels eigenstate i and j, we have

p (i| |ψSE〉) = p (j| (uS ⊗ 1) |ψSE〉) (4.11)

Since operations solely on the environment should not change the measurement outcome
in the system, we have

p (j| (uS ⊗ 1) |ψSE〉) = p (j| (uS ⊗ uE) |ψSE〉) (4.12)

After the applying both unitary, we got the original state back, where (uS ⊗ uE) |ψSE〉 =
|ψSE〉. Therefore,

p (j| (uS ⊗ uE) |ψSE〉) = p (j| |ψSE〉) (4.13)

Now, from Eq. 4.11, Eq. 4.12 and Eq. 4.13, we conclude that

p (j| |ψSE〉) = p (i| |ψSE〉) (4.14)
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Due to the freedom of choice of index i and j, the probabilities of measuring any state
in this system are the same! Since there are N possible outcomes, and the probabilities
should sum up to 1. Thus, the probability of measuring any eigenstate |σk〉 in the system
is pk = 1

N
.

We could use the result in Theorem 2 to show Theorem 1. Consider the special example
where N = 2.

|ψSE〉 =

√
N −M√
N

|σl〉 |εl〉+

√
M√
N
|σj〉 |εj〉 (4.15)

Now we put in a large enough ancillary pointer state, and entangle the state with the
pointer state.

|ψSE〉 |e0〉 =

√
N −M√
N

|σl〉S |εl〉E |p0〉P +

√
M√
N
|σj〉S |εj〉E |p1〉P (4.16)

The entangling operation Up is done between the environment and pointer state.

1S ⊗ Up |ψSE〉 |e0〉 =

√
N −M√
N

|σl〉S |εl〉E |p0〉P +

√
M√
N
|σj〉S |εj〉E |p1〉P (4.17)

Since the ancillary system is large enough, we could rewrite the pointer states in a different
basis where

|p0〉P =
N−M∑
k=1

1√
N −M

|ηk〉P (4.18)

|p1〉P =
N∑

k=N−M+1

1√
M
|ηk〉P (4.19)

Thus, we could rewrite the state 1S ⊗ Up |ψSE〉 |e0〉 as

1S ⊗ Up |ψSE〉 |e0〉 =

√
N −M√
N

|σl〉S |εl〉E
N−M∑
k=1

1√
N −M

|ηk〉P

+

√
M√
N
|σj〉S |εj〉E

N∑
k=N−M+1

1√
M
|ηk〉P

=
N−M∑
k=1

1√
N
|σl〉S |εl〉E |ηk〉P

+
N∑

k=N−M+1

1√
N
|σj〉S |εj〉E |ηk〉P (4.20)
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Now we can use Theorem. 2, where the probability of measuring each |ηk〉P should be the
same. In other words,

P (|ηk〉P |1S ⊗ Up |ψSE〉 |e0〉) =
1

N
. (4.21)

Thus, the probability of detect |σl〉S in system and |ηk〉P in the pointer where k ∈ [1, N−M ]
is N−M

N
. The probability of detect |σj〉S in system and |ηk〉P in the pointer where k ∈

[N −M + 1, N ] is M
N

.

The probability of measuring |σj〉S in the system given state 1S⊗Up |ψSE〉 |e0〉 should be
M
N

. Since the transformation Up does not act on the system, the probability of measuring
|σj〉S in the system given state |ψSE〉 |e0〉 is M

N
. This proof could be easily extended to any

N > 2, which prove the Theorem 1. Therefore, we have shown that with a few assumptions,
we could derive Born rule from envariance.

4.3 Experimental testing envariance

The derivation presented in Section. 4.2 could be divided into 2 parts. The first part is
the core idea of the derivation, which relates the symmetry to probability of measurement
outcomes. It also requires less resources, where only a two-qubit system is needed. Testing
the second part is more difficult, and the proposal is listed in Appendix A, where a minimum
of 4 qubits is needed. In this section, the first part of the derivation is tested.

Our test requires a source of high-quality two-photon polarization entanglement, an
optical set-up to perform unitary operations on zero, one, or both of the photons, and
polarization analyzers to characterize the final state of the light. Our experimental setup
is shown in Fig. 4.1. We produce pairs of polarization-entangled photons using spontaneous
parametric down-conversion (SPDC) in a Sagnac interferometer [29, 30, 31]. In the ideal
case, this source produces pairs of photons in the singlet state,

|ψSE〉 =
1√
2

(|H〉S|V 〉E − |V 〉S|H〉E) , (4.22)

where |H〉 (|V 〉) represents horizontal (vertical) polarization, and S and E label the photons.
This state is envariant under all unitary transformations and has the convenient symmetry
that uS = uE for all uS. This symmetry could also be understand by noticing that only
one singlet state exist with 0 angular momentum. We pump a 10 mm periodically-poled
Potassium titanyl phosphate crystal (PPKTP), phase-matched to produce photon pairs
at 809.8 nm and 809.3 nm from type-II down-conversion using 6 mW from a CW diode
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Figure 4.1: Experimental setup. The entangled photon pairs are created using type-II
spontaneous parametric down-conversion. The pump laser is focused on a periodically-
poled KTP crystal and pairs of entangled photons with anti-correlated polarizations are
emitted. The pump is filtered using a band-pass filter, and polarization controls adjust
for the alterations due to the coupling fibers. The entangled photon pairs are set so one
photon is considered the system, and the other is considered the environment. After the
source the unitary transformations are applied. A three wave plate combination is required
to apply an arbitrary unitary transformation: quarter wave-plate (QWP), half wave-plate
(HWP), QWP. A set of this combination of wave plates is mounted on each translation
stage which can slide the wave plates in and out of the path of the incoming photons. The
photons are then detected using polarizing beam splitters (PBS) and two wave plates to
take projective measurements. The counts measured using avalanche photodiode (APD)
are then analyzed using coincidence logic.
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Rotation Axis α(θ) β(θ) γ(θ)

x̂ π/2 −θ/4 π/2
ŷ π/2 + θ/2 θ/4 π/2
ẑ π/4 −π/4− θ/4 π/4

Table 4.1: Wave plate settings used to implement polarization rotations. The angles α,
β and γ are the wave plate angles for the first QWP, the HWP and the second QWP
respectively. The angle θ is the rotation angle of the polarization about the specified axis
on the Bloch sphere.

pump laser with center wavelength 404.8 nm. The output from the source is coupled into
single-mode fibres, where polarization controllers correct unwanted polarization rotations
in the fiber. The light is coupled out of the fibers and directed to two independent polar-
ization analyzers. Each analyzer consists of a half-wave plate (HWP), quarter-wave plate
(QWP), and a polarizing beam-splitter (PBS). Between the fiber and the analyzers are
two sets of wave plates—a QWP, a HWP, then another QWP—which can be inserted as a
group into the beam paths to implement controlled polarization transformations. Photons
from both ports of each PBS are detected using single-photon counting modules (Perkin-
Elmer SPCM-AQ4C) and analyzed using coincidence logic with a 1 ns coincidence window,
counting for 5 s. We typically measured total coincidence rates of 5.4 kHz across the four
detection possibilities for photons S and E.

For our experiment, we implemented rotations about the standard x̂, ŷ, and ẑ axes of
the Bloch sphere; in addition we implemented rotations about an axis m̂ = (x̂+ ŷ+ ẑ)/

√
3.

The wave plate angles used to implement rotations by an angle θ about the x̂, ŷ, and ẑ
axes are shown in Table 4.1; The angles to implement rotations about m̂ were determined
numerically using Mathematica.

Our experiment proceeds in three stages as depicted in Fig. 4.2: first characterizing
the initial state (I), then characterizing the state after a transformation is applied to the
system photon (II), and finally characterizing the state after that same transformation is
applied to both system and environment (III). We record a tomographically-overcomplete
set of measurements at each stage, performing the 36 combinations of the polarization
measurements, |H〉, |V 〉, |D〉=(|H〉+|V 〉)/

√
2, |A〉=(|H〉−|V 〉)/

√
2, |R〉=(|H〉+i|V 〉)/

√
2,

and |L〉=(|H〉 − i|V 〉)/
√

2 on each photon and counting for 5 s for each setting. The 5 s
time is chosen to gives us enough photon counts to reduce short noise while minimize the
changes in pump leaser overtime. The states were then reconstructed using the maximum
likelihood method from Ref. [32]. This procedure was repeated for a diverse range of
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Figure 4.2: Experimental measurement procedure. We investigated the impact of each
unitary transformation by performing quantum state tomography at three different stages:
directly on the initial state with no unitary transformations (I), on the state with a trans-
formation applied to the system photon (II), and on a state with the same transformation
applied to both the system and environment photon (III).

transformations. We configured our setup to implement unitary rotations in multiples of
30◦ from 0◦ to 360◦ about each of the x̂, ŷ, ẑ, and m̂ axes. The data acquisition time for
this procedure over the set of 13 rotation angles about each axis was approximately six
hours. The source was realigned before each set of rotations to achieve maximum fidelity
with the singlet state from 0.985 to 0.990.

Figure 4.3a)–c) show the real and imaginary parts of the reconstructed density matrix
of the quantum state at the three stages in the experiment, I, II, and III respectively. The
fidelity [33] of the state with the ideal |ψ−〉 state during these samples of two of the stages
are 0.987 for both I, and III, respectively, and is defined as [33]:

F (ρ, σ) = {Tr[(
√
ρσ
√
ρ)1/2]}2

(4.23)

We can use this definition to calculate the fidelity between the state at stages I and III.
Comparing between the states shown in Fig. 4.3 panels a) and c) the resulting fidelity is
0.995.

The summary of the results from our experiment is shown in Fig. 4.4. The coloured
data points in Fig. 4.4a)–d) show the fidelity of the experimentally reconstructed state
at stage III with the reconstructed state from the initial stage I, i.e., F (ρIexpt, ρ

III
expt), as a

function of the rotation angle for rotations about the x̂, ŷ, ẑ, and m̂, respectively. The
open circles show the theoretical expectation for the fidelity between the measured state
at stage I with the expected state in stage III, calculated by acting the unitaries on the
measured state from stage I, i.e., F (ρIexpt, ρ

III
th ). The fidelities are very high, close to the

limit of 1, in all cases and we see reasonable agreement with expectation.
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Figure 4.3: a) The real and imaginary parts of the reconstructed density matrix of the
initial state from the source (stage I of the procedure). It has 0.987 fidelity [33] with the
ideal. b) The system photon is transformed using wave plates set to implement the rotation
of 90◦ about the x̂ axis, stage II. The resulting density matrix shown has 0.488 fidelity with
the ideal initial state,0.501 with the initial reconstructed state and 0.995 with the expected
state, calculated by transforming the density matrix from a). c) The reconstructed density
matrix after the same unitary from b) is applied to both photons, stage III. This state has
a 0.987 fidelity with the ideal, 0.995 with the reconstructed state from a), and 0.997 with
the expected state calculated by transforming the state from part a).

We considered the effects of Poissonian noise, which describes the fluctuations of the
number of photons detected, and waveplate calibration on our results and found that these
effects were too small to explain the deviation between F (ρIexpt, ρ

III
expt) and F (ρIexpt, ρ

III
th ).

To account for this, we characterized the fluctuations in the state produced by the source
itself by comparing the state produced in subsequent stage I sates in the data collection;
recall that stage I for each choice of unitary is always the same (no additional waveplates
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Figure 4.4: Analysis of the experimental results. Panels a)–d) show the fidelity analysis
results for unitary rotations about x̂, ŷ, ẑ, and m̂ axes as functions of rotation angle. The
coloured data points are the comparison between stage I and stage III (comparing the
source state and the state after the unitary has been applied to both qubits). The open
circles show a theoretical comparison. Panels e)–h) show the quantum Bhattacharyya
results comparing stage I and stage III in the coloured data points for each of the four
axis, with the open circles being the theoretical comparison. For plots which include a
comparison of stage I and II (applying the unitary to one qubit only) and theoretical
comparisons, see the appendix. The error bar for each graph is the standard deviation of
comparisons of source state measurements during the experiment.
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Rotation Axis Average Fidelity Average BC

x̂ 0.997± 0.001 0.9997± 0.0001
ŷ 0.9973± 0.0007 0.99966± 0.00008
ẑ 0.9984± 0.0006 0.99975± 0.00007
m̂ 0.9941± 0.0007 0.9994± 0.0001

Overall average: 0.9966± 0.0004 0.99963± 0.00005

Table 4.2: Summary of the results for comparing stages I and III using fidelity and Bhat-
tacharyya Coefficient (BC) analysis and averaging over each unitary rotation. The overall
average is representative of the overall envariance of our state.

inserted) and thus provides a good measure of the source stability. Specifically, we cal-
culated the standard deviation in the fidelity of the state produce at a stage I in the ith

round of the experiment to that produced in the next, (i + 1)th, stage I, F (ρI,iexpt, ρ
I,i+1
expt ).

The standard deviation in these fidelities calculated from the data taken within each set
of rotation axes are shown as representative error bars on the plots in Figs. 4.4a)–d). The
standard deviation of this quantity over all the experiments was 0.0008. We characterize
the difference between the measured and expected fidelities by calculating the standard
deviation in the quantity, F (ρIexpt, ρ

III
expt)− F (ρIexpt, ρ

III
th ), for each experiment. (This is the

difference between the coloured and open data points in Figs. 4.4a)–d).) over all exper-
iments to be 0.002. This value is comparable to the error in the fidelity due to source
fluctuations. Refer to the appendix to see the comparison between stage I and stage II,
which would not fit on the scale of Fig. 4.4.

From our data, we extract the average fidelity F (ρIexpt, ρ
III
expt) for the set of measurements

made for each unitary axis and show the results in Table II. As measured by the average
fidelity, our experiment benchmarks envariance to 0.9966± 0.0004,((99.66± 0.04)% of the
ideal) averaged over all rotations.

Fidelity has conceptual problems as a measure for testing quantum mechanics, since the
density matrix we used to compute the fidelity is reconstructed using state tomography,
which is under the assumption of Born rule. The Bhattacharyya Coefficient (BC) is a
measure of the overlap between two discrete distributions P and Q, where pi and qi are
the probabilities of the ith element for P and Q respectively. The BC is defined [34],

BC =
∑
i

√
piqi. (4.24)

If we normalize the measured tomographic data by dividing by the sum of the counts,
we can treat this as a probability distribution. The BC then can be calculated using the
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distribution of measurements at each stage in the experiment, directly analogous to the
approach used with fidelity. It should be noted that the BC has some limitations when
applied in this case. If two quantum states produce identical measurement outcomes, its
value is 1. Unlike fidelity though, it is not the case that the BC goes to 0 for orthogonal
quantum states. For example, the BC for two orthogonal Bell states measured with an
overcomplete set of polarization measurements is 7/9. Furthermore, the value of the BC
is dependent on the particular choice of measurements taken. While we are employing a
commonly-used measurement set for characterizing two qubits, other choices would produce
different BCs. Nevertheless, this metric can be employed to quantify the envariance in our
experiment without quantum assumptions, making it appropriate for testing quantum
mechanics.

The Bhattacharyya Coefficients from our measured data are shown in Fig. 4.4e)–h). We
normalize the measured counts from stages I and III to give us probability distributions
pIexpt and pIIIexpt. The coloured data points in Figs. 4.4e)–h) show the BC between these
distributions, BC(pIexpt, p

III
expt). The open circles are a theoretical expectation of the BC

given the tomographic measurements from stage I; for these theoretical values we used state
tomography, and thus assumed quantum mechanics, to obtain the expected distribution
pIIIth and calculate the expected BC, BC(pIexpt, p

III
th ).

Using an analogous procedure to that employed with the fidelity, we estimate the un-
certainty in the BC by comparing subsequent measured distributions in stage I throughout
the experiment, i.e., BC(pI,iexpt, p

I,i+1
expt ). A representative error bar calculated from the data

for a set of unitaries around the same axis are shown in Fig. 4.4e)–h). The standard
deviation in this quantity over all the data is 0.00005. As before we characterize the dif-
ference between the measured and expected BCs as the standard deviation of the quantity
BC(pIexpt, p

III
expt) − BC(pIexpt, p

III
th ) which is 0.00009 over all experiments. As before, this

value is comparable to the error due to source fluctuations. Data showing the BC between
stage I and II are shown in the appendix along with analogous theoretical comparison.
A summary of the BC analysis results are in Table 4.2. The average measured BC is
0.99963± 0.00005 ((99.963± 0.005)% of the ideal) across all tested unitaries.

4.4 Bounds to Born rule

In our experiment, we place a bound on the degree of envariance. It has been shown
that envariance can be used to derive Born rule [23, 28]. However, the derivation does not
relate bounds on Born rule to bound on envariance. In order to do so, we explore a recently
proposed extension of quantum mechanics by Son [1]. Son’s theory generalizes Born rule,
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replacing the familiar power of 2 which relates wavefunctions to probabilities with a power
of n. In this section, we summarize Son’s theory and use it to put a bound on n using our
experimental data.

We first consider measurements on a pair of qubits in the maximally entangled singlet
state using standard quantum mechanics. We define measurement observables â = ~α · ~σ1

and b̂ = ~β · ~σ2 where ~α, ~β are unit vectors and ~σ1, ~σ2 are the Pauli matrices for the two
qubits. The result of measurements a and b for qubits 1 and 2 respectively can take on the
values ±1. The correlation function is defined by

E = 〈ab〉 = Pa=b − Pa6=b, (4.25)

where Pa=b and Pa6=b are probabilities that a = b and a 6= b respectively. The correlation

function only depends on the angle 2θ between ~α and ~β for the singlet state. From Born
rule, we have the probability amplitudes ψa=b and ψa6=b satisfy Pa=b = |ψa=b|2 and Pa6=b =
|ψa6=b|2. Therefore, the correlation function in standard quantum mechanics is given by

EQM(θ) = |ψa=b|2 − |ψa6=b|2 = − cos 2θ. (4.26)

We now consider Son’s theory, where Born rule is generalized to be Pa=b = |ψa=b|n and
Pa6=b = |ψa6=b|n, and the correlation function is thus,

E(θ, n) = |ψa=b|n − |ψa6=b|n, (4.27)

where standard quantum mechanics is the special case E(θ, 2) = EQM(θ). As in standard
quantum mechanics, Son assumed that the correlation function depends only on the angle
between measurement settings. Son showed that the constraints |∂ψa=b

∂θ
|2 + |∂ψa 6=b

∂θ
|2 ∝ 1

and |ψa=b|n + |ψa6=b|n = 1 and the boundary condition E(0, n) = −1 and E(π
2
, n) = 1 are

sufficient to solve for E(θ, n). See [1] for further details on the deviation. Figure 4.5 shows
E(θ, n) for different value n.

In the experiment, we rotated one qubit while leaving the other qubit unchanged dur-
ing the stage II (See Figure 4.2) . If we use the same measurement basis on both qubits
for that rotated state, we are effectively measuring the singlet state input with two mea-
surement basis with angle θ apart. For example, we can choose the rotation axis and the
measurement basis to be [Z,(D,A)], where the first qubit is rotated around Z axis, while
measurements on the qubits are done in (D,A) basis. Since the rotation axis Z is orthogo-
nal to the measurement basis (D,A), we could view the rotation of qubit as a rotation of
the measurement basis in the D-A plane. For a rotation angle φ, the angle between two
measurement basis is given by 2θ = π − |π − 2φ|. We could derive prediction of E(φ, n)
from Son’s theory, and test it with our data.
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Figure 4.5: Generalized correlations for the singlet state as a function of n using Son’s
theory [1]. The correlation as a function of θ is shown for n = 1 (dashed blue line), n = 2
(purple line), n = 5 (dash-dotted brown line) and n = 10 (dotted green line). The n = 2
case corresponds to standard quantum mechanics.

34



Son’s derivation assumes a perfect singlet state which must be relaxed to obtain a
comparison with experiment. For a realistic state, the correlation function will not nec-
essarily depend only on θ. In his derivation, Son additionally assumed E(0, n) = −1
and E(π/2, n) = 1, i.e., perfect correlations, which are not experimentally achievable. To
relax these assumptions, we consider the difference between two correlation functions mea-
sured for a general state ρ and the ideal state |ψ−〉, E(φ, n, ρ) and E(φ, n, |ψ−〉) where
φ is the rotation angle of one of the settings. For n ≈ 2, we make the assumption that
E(φ, n, ρ) − E(φ, n, |ψ−〉) ≈ E(φ, 2, ρ) − E(φ, 2, |ψ−〉). Thus for states close to the ideal
singlet state and for n close to 2, we have the relation:

E(φ, n, ρ) ≈ E(φ, n, |ψ−〉) + E(φ, 2, ρ)− E(φ, 2, |ψ−〉). (4.28)

We calculated E(φ, 2, ρ) and E(φ, 2, |ψ−〉) from standard quantum mechanics, and use
Son’s theory to calculate E(φ, n, |ψ−〉). For a given set of data Eexp(φi), we find ρ and
n to minimize the objective function L = Σi[E(φi, n, ρ) − Eexp(φi)]

2/[δEexp(φi)]
2, where

δEexp(φi) is the standard deviation of correlation function Eexp(φi) predicted assuming
Poissonian count statistics. Figure 4.6 shows the results of fitting the correlation functions
for 6 sets of data. From this, we extracted n = 2.04, 2.01, 2.00, 2.01, 2.01, 2.00; averaging
these results and using their standard deviation to estimate the uncertainty yields n =
2.01± 0.02 in good agreement with Born rule where n = 2.

4.5 Conclusion

Our deviation from perfect envariance can be understood from our initial state fidelity.
However, we also consider the magnitude of the violation of Born rule if one instead assumes
all of the deviation stems from such a violation. One recently proposed extension of Born
rule [1] determines probabilities by raising the wavefunction to the power of n rather than
Born rule which raises the wavefunction to the power of 2. In this theory, the correlation
between measurement outcomes as a function of measurement setting on a singlet state
depends on the power of n, thus we can test this theory using our experimental data.
Fitting our experimental data to this model, we find n = 2.01 ± 0.02 in good agreement
with Born rule.

We have experimentally tested the property of envariance on an entangled two-qubit
quantum state. Over a wide range of unitary transformations, we experimentally showed
envariance at (99.66±0.04)% when measured using the fidelity and (99.963±0.005)% using
the Bhattacharyya Coefficient. Deviations from perfect envariance are in good agreement
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Figure 4.6: Correlation functions versus the rotation angle φ. The experimental correla-
tions are extracted from our data for the case where the rotation axis and the measurement
basis are given by {[Z,(D,A)], [Z,(R,L)], [Y,(D,A)], [Y,(H,V)], [X,(R,L)], [X,(H,V)]} shown
as {red squares, blue circles, green up triangles, yellow down triangles, black empty squares,
pink diamonds} as a function of the rotation angle φ. The best fit using Eq. 4.28 for each
correlation is shown as a line whose colour matches the corresponding data points. These
fits yield estimates for the value of n of {2.04, 2.01, 2.00, 2.01, 2.01, 2.00}, respectively.
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with theory and can be explained by our initial state fidelity and fluctuations in the proper-
ties of our state. Fitting our results to a recently published model which does not explictly
assume Born rule yields nevertheless good agreement with it. Our results serve as a bench-
mark for the property of envariance, as improving the envariance of the state significantly
would require substantive improvements in source fidelity and stability. It would be in-
teresting to extend tests of envariance to higher dimensional quantum state and to other
physical implementations.
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Chapter 5

Pure State Tomography using Pauli
Observables

5.1 Introduction

Quantum state tomography is one of the essential tasks in quantum information. It is very
expensive since the required resources grow exponentially with the number of qubits.

What is the task of quantum state tomography? Mathematically, let us consider a
d-dimensional Hilbert space Hd, and denote D(Hd) the set of density operators acting on
Hd. We then measure a set of m linearly independent observables

A = (A0, A1, A2, . . . , Am−1), (5.1)

where each Ai is Hermitian. Without loss of generality, we assume A0 = I (i.e. the identity
operator on Hd), and trAi = 0 for i = 1, 2, . . . ,m− 1.

For any ρ ∈ D(Hd), the Born rule tells us that the measurement returns a set of
outcomes

α = (tr ρ, tr(ρA1), tr(ρA2), . . . , tr(ρAm−1)). (5.2)

Since ρ ∈ D(Hd), we should theoretically always have tr ρ = 1. However we keep this entry
in α for the reason of experimental calibration [35, 36, 37, 38].

For an arbitrary ρ ∈ D(Hd), full quantum state tomography requires order d2 measure-
ment outcomes to determine ρ [39]. However for a pure state |ψ〉 ∈ Hd, in general only
order d measurements are needed to determine |ψ〉. It could be by chose any orthonormal
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base to expand the pure state |ψ〉, where only d complex numbers are required to uniquely
determine this expansion. By measuring the amplitude of |ψ〉 projected onto each basis
state and their relative phase, pure state |ψ〉 can be determined with 2(d − 1) measure-

ments. For a general mixed state, one would need to determine d(d−1)
2

elements of the
density matrix to uniquely determine the quantum state. For a pure state, one could use
only order d parameters to describe the state. An ideal protocol should only require order
d measurements.

In literature, people has come up with two slight different ways in interpreting the term
‘determine’, as clarified in a recently paper [40] and could be summarized in the following
definition.

Definition 1. A pure state |ψ〉 is uniquely determined among pure states (UDP) by
measuring A if there does not exist any other pure state which has the same measurement
results as those of |ψ〉 when measuring A. A pure state |ψ〉 is uniquely determined among
all states (UDA) by measuring A if there does not exist any other state, pure or mixed,
which has the same measurement results as those of |ψ〉 when measuring A.

The physical interpretation in this case is clear: it is useful in quantum tomography to
have some prior knowledge that the state to be reconstructed is pure or nearly pure. It is
known that there exists a family of 4d−5 observables such that any d-dimensional pure state
is UDP [41], and 5d−6 observables such that any d-dimensional pure state is UDA [40]. A
few other methods for pure-state tomography have also been theorized, and experimentally
tested to demonstrate the drop of the number of measurements needed [42, 43, 44, 45, 46,
47, 48, 49]. However, even if there are constructive protocols for the measurement set A,
in practice these sets may not be easy to measure in an experiment.

One idea of the compressed sensing protocols as discussed in [50, 51] considers measure-
ments of Pauli operators for n-qubit systems, with Hilbert space dimension d = 2n. Since
no joint measurements on multiple qubits are needed for Pauli operators, these operators
are relatively easy to measure in practice. It is shown that order d log d random Pauli
measurements are sufficient to UDA almost all pure states [52]. That is, all pure states
can be determined, up to a set of states with measure zero (i.e. ‘almost all’ pure states are
determined). Experiments also demonstrate the usefulness of this method in pure-state
tomography in practice [53]. However, it remains open how many Pauli measurements are
needed to determine all pure states (UDP or UDA) of an n-qubit system.

In this work, we examine the problem of the minimum number of Pauli operators needed
to UDA all n-qubit pure states. For n = 1 the number is known to be 3, i.e. all three Pauli
operators X, Y, Z are needed. We solve the problem for n = 2 and n = 3, where at least 11
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Pauli operators are needed for n = 2 and at least 31 Pauli operators are needed for n = 3.
We then demonstrate that our protocol is robust under depolarizing error with simulated
random pure states. We further implement our protocol in our nuclear magnetic resonance
(NMR) system and compare our result with other methods. As a direct application of this
result, we show that our scheme can also be used to reduce the number of settings needed
for pure-state tomography in quantum optical system. My contribution in this work is
finding the optimum Pauli set for 2 qubit pure state tomography in section 5.3, proposed
test in NMR then process the experimental result and analysis the robustness in section
5.5, and at last generalize the result to optics in section 5.6.

5.2 Historical results on UDP and UDA

In this work we consider two different kinds of “unique determinedness” for |ψ〉:

1. We say |ψ〉 is uniquely determined among pure states (UDP) by measuring A if there
does not exist any other pure state which has the same measurement results as those
of |ψ〉 when measuring A.

2. We say |ψ〉 is uniquely determined among all states (UDA) by measuring A if there
does not exist any other state, pure or mixed, which has the same measurement
results as those of |ψ〉 when measuring A.

It is known that there exists a group of 4d−5 observables, under which any pure state is
UDP, in contrast to the d2−1 observables in the standard method of quantum tomography
for arbitrary state [41]. Therefore, we can safely say that it is useful for the purpose of
quantum state tomography to have the prior knowledge that the state to be reconstructed
is pure or nearly pure.

When the state is UDP, to make the result useful, one needs to verify that the state
is indeed pure. This is not in general practical. One solution to that would be readily
generalize the above mentioned UDP results to low rank states, where the physical con-
straints (e.g., low temperature, locality of interaction etc.) may ensure that the actual
physical state (which ideally supposed to be pure) is indeed low rank. Alternatively, if the
state is UDA, however, in terms of tomography one does not need to bother with these
physical assumptions, because in the event there is only a unique state compatible with
the measurement results, which turns out to be pure (or low rank).
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There is also another clear physical intuition for the states that are UDA by measuring
observables from A. Let us consider a Hamiltonian of the form

HA =
m∑
i=1

αiAi. (5.3)

We observe that any unique ground state |ψ〉 of HA is UDA by measuring A. It is easy
to verify: if there is any other state ρ that gives the same measurement results, then ρ
has the same energy as that of |ψ〉, which is the ground state energy. Therefore, any pure
state in the range of ρ must also be a ground state, which contradicts the fact that |ψ〉
is the unique ground state. In other words, UDA is a necessary condition for |ψ〉 to be
a unique ground state of HA. It is in general not sufficient, but the exceptions are likely
rare [54, 55].

5.3 2 qubit pure state tomography using Paulis mea-

surements

We define the single-qubit Pauli operators by σ1 = X, σ2 = Y, σ3 = Z, and the identity
operator σ0 = I. For a single qubit, it is straightforward to check that measuring only two
of the three operators cannot determine an arbitrary pure state.1 Therefore all three Pauli
operators are needed in the single-qubit case.

For the two-qubit system, there are a total of 16 Pauli operators, including the identity.
These are given by the set {σi⊗σj} with i, j = 0, 1, 2, 3. For simplicity we omit the tensor
product symbol by writing, e.g. XY instead of X ⊗ Y . Of these 16 Pauli operators, there
exists a set of 11 Pauli operators A such that A is UDA for any pure state, as given by
the following theorem [56].

Theorem 3. Any two-qubit pure state |φ〉 is UDA by measuring the following set of Pauli
operators.

A = {II, IX, IY, IZ,XI, Y X,
Y Y, Y Z, ZX,ZY, ZZ}, (5.4)

1Some state can still be determined using only two of the three operators. For example, any state
1
2 (I + αX + βY ), where α2 + β2 = 1 could be determined without measuring observable Z
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and no set with fewer than 11 Pauli operators can be UDA for all two-qubit pure states.
Moreover, any set of Pauli operators which is Clifford equivalent to A is UDA for any
two-qubit pure states.

This is to say, 11 is the minimum number of Pauli operators needed to UDA any
two-qubit pure state, and an example of such a set with 11 Pauli operators is given in
Eq. (5.4).

Proof. In order for A to UDA all two-qubit pure states it is known [40] that any Hermitian
operator H ∈ (S(A))⊥ must have at least two positive and two negative eigenvalues, where
S(A) means the linear span of A.

In this case (S(A))⊥ = S({XX,XY,XZ, Y I, ZI}). Note that the 5 operators which are
not measured all mutually anti-commute with each other. It is easy to see that this property
is required for if two operators in (S(A))⊥ commuted, then they would be simultaneously
diagonalizable and a linear combination would exist which would have at least one 0-
eigenvalue. Since two-qubit Pauli operators only have four eigenvalues total, having a
single 0 eigenvalue fails the UDA condition.

Furthermore it is easy to show by exhaustive search that there exists no set of more
than 5 mutually anti-commuting Pauli operators. So no fewer than 11 Paulis could be
measured.

To show that this set of 11 Pauli operators is sufficient to be UDA, we construct a
parametrization of all H ∈ (S(A))⊥;

H = α1XX + α2XY + α3XZ + α4Y I + α5ZI (5.5)

and show that either H has two positive and two negative eigenvalues or H = 0. Note that
H then has the following form:

α5 0 α3 + α4i α1 + α2i
0 α5 α1 − α2i −α3 + α4i

α3 − α4i α1 + α2i −α5 0
α1 − α2i −α3 − α4i 0 −α5

 .
The determinant of H can be calculated and the result is:

α4
5 + α2

5|α3 + α2i|2 + α2
5|α1 + α2i|2

+ |α3 − α4i|4 + |α3 − α4i|2|α1 + α2i|2 + |α3 − α2i|2α2
5

+ |α1 − α2i|4 + |α1 − α2i|2|α3 − α4i|2 + |α1 − α2i|2α2
5.

42



This quantity, being the sum of non-negative terms, is greater than or equal to 0.
Equality is reached if and only if all terms in the sum are 0, which only occurs when
α1 = α2 = α3 = α4 = α5 = 0. Since H is a 4-by-4 traceless Hermitian matrix, it can
only have positive determinant if and only if it has exactly two positive and two negative
eigenvalues.

The same logic follows for any set that is unitarily equivalent to this set. A particular
class of unitary operators which maps the set of Pauli operators to itself is called the Clifford
group. Thus, the set A in Eq. 5.4 and any set which is Clifford equivalent [57] to it are our
optimum sets of Pauli measurement operators for two-qubit pure-state tomography.

5.4 3 qubit pure state tomography using Paulis mea-

surements

The situation for the 3-qubit case is much more complicated [56]. We start by noticing
that

V = IIZ + IZI + ZII + ZZZ

= 4 (|000〉〈000| − |111〉〈111|) (5.6)

has one positive and one negative eigenvalue. Therefore, if the set F1 = {IIZ, IZI, ZII, ZZZ}
is a subset of S(A)⊥, the set A cannot UDA all pure states. Similarly any set Fi which is
Clifford equivalent to F1 cannot be a subset of S(A)⊥. Sets such as these we call failing
sets.

Definition 2. A failing set F is a set of Pauli operators such that there exists a nonzero
real combination of elements chosen from F such that it has only 1 positive eigenvalue or
1 negative eigenvalue.

Namely, for an arbitrary pure state |φ〉 to be UDA by measuring operators in a set A,
span(Fi) 6⊂ (span(A))⊥ holds for every set Fi that is Clifford equivalent to F1. Thus, for
all 945 sets of Fi, at least one element in each Fi should be included in span(A).

Theorem 4. The following set of 31 Pauli operators are sufficient to UDA any given
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three-qubit pure state |φ〉

A = {IIX, IIY, IIZ, IXI, IXX, IXY, IY I, IY X,
IY Y, IZI,XIZ,XXX,XXY,XY X,XY Y,

XZX,XZY, Y XX, Y XY, Y XZ, Y Y X, Y Y Y,

Y Y Z, Y ZI, ZII, ZXZ,ZY Z,ZZX,ZZY,

ZZZ, III}, (5.7)

and no set with less than 31 Pauli operators can be UDA for all three-qubit pure states.
Moreover, any set of Pauli operators which is Clifford equivalent to A can be used to UDA
for any three-qubit pure states.

Similarly to the two-qubit case this set is obtained by finding the largest set of Pauli
operators which do not contain any of the identified failing sets and taking the complement
producing the smallest set of measurement operators which could UDA all pure states.

To show that this set A will be UDA for any pure state, we look at the traceless
Hermitian operator H ∈ (span(A))⊥, where

H = α1IXZ + α2IY Z + α3IZX + α4IZY + α5IZZ

+α6XII + α7XIX + α8XIY + α9XXI

+α10XXZ + α11XY I + α12XY Z + α13XZI

+α14XZZ + α15Y II + α16Y IX + α17Y IY

+α18Y IZ + α19Y XI + α20Y Y I + α21Y ZX

+α22Y ZY + α23Y ZZ + α24ZIX + α25ZIY

+α26ZIZ + α27ZXI + α28ZXX + α29ZXY

+α30ZY I + α31ZY X + α32ZY Y + α33ZZI.

It can be shown that H either has at least two positive and two negative eigenvalues
or H = 0 (see Appendix B for details). Therefore, set A in Eq. 5.7 and any set which is
Clifford equivalent to it are our optimum Pauli measurement sets for 3-qubit pure-state
tomography.
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5.5 Pure state tomography in NMR system

A nuclear magnetic resonance (NMR) system is an ideal testbed for our protocol. However,
the creation of a pure state in NMR requires unrealistic experimental conditions such as
extremely low temperatures or high magnetic fields, which makes it impractical for a liquid
sample. To overcome this problem, one can prepare a pseudo-pure state (PPS) alternatively

ρPPS =
1− ε
2N

I + ε|φ〉〈φ|, (5.8)

where I is the identity matrix, N is the number of qubits and ε ∼ 10−5 represents the polar-
ization. For a traceless Pauli observable σ, only the pure state portion ε|φ〉〈φ| contributes
to the measurement result. Therefore, the behavior of a system in the PPS is exactly the
same as it would be in the pure state.

To test our protocol, we carried out the experiments in 2- and 3-qubit NMR quantum
systems, respectively. The qubits in the 2-qubit system are denoted by the 13C and 1H spins
of 13C-labeled Chloroform diluted in acetone-d6 on a Bruker DRX-500 MHz spectrometer,
and in the 3-qubit system by the 13C, 1H and 19F spins in Diethyl-fluoromalonate dissolved
in d-chloroform on a Bruker DRX-400 MHz spectrometer. The molecular structures and
relevant parameters are shown in Fig. 5.1, and the corresponding natural Hamiltonian for
each system can be described as

Hinternal =
∑
i=1

πνiσ
i
z +

∑
i<j,=1

πJij
2
σizσ

j
z, (5.9)

where νi is the resonance frequency of spin i and Jij are the scalar coupling constants
between spins i and j. All parameters are listed in the right table of Fig. 5.1. Note that
in experiment we set νi = 0 in the multi-rotating frame for simplicity.

In experiment, the entire tomography process for a PPS becomes: given measurements
Tr(ρσk) = εTr(ρtσk) = Mk, find a density matrix ρrec to best fit the data Mk. In order to
evaluate the performance of our protocol, two comparisons will be made. First, we compare
the reconstructed state using the optimum number of Pauli measurements with the one
obtained with full tomography. It gives us an idea how good the reconstruction is, and
whether the protocol works. Second, we compare our result with the state reconstructed
by randomly choosing Pauli measurements. This tells us how different the performance is
between selecting the optimum set and a random set of Pauli measurements.
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1H 13C 19F T1 (s) T2 (s)
1H 400M 2.8 1.2
13C 160.7 100M 2.9 1.1
19F 47.6 ‐194.4 376M 3.1 1.3

1H 13C T1 (s) T2 (s)
1H 500M 4.8 3.3
13C 214.6 125M 17.2 0.35

(a)

(b)

Figure 5.1: Molecular structure of (a) 2-qubit sample 13 C-labeled Chloroform and (b) 3-
qubit sample Diethyl-fluoromalonate. The corresponding tables on the right side summa-
rize the relevant NMR parameters at room temperature, including the Larmor frequencies
(diagonal, in Hertz, M = 106), the J-coupling constant (off-diagonal, in Hertz) and the
relaxation time scales T1 and T2.

5.5.1 Pure state tomography for a 2-qubit state

For the 2-qubit protocol, the system is firstly initialized to the PPS

ρ00 =
1− ε

4
I + ε|00〉〈00| (5.10)

via spatial average technique [58, 59], where I is the 4 × 4 identity and ε ∼ 10−5 the
polarization. The NMR signal of this PPS is used as references for further comparisons
with the tomographic results. We then turn on the transversal field with the strength ωx
(in terms of radius), so the Hamiltonian includes both internal and external Hamiltonian
becomes

H =
ωx
2

(
σ1
x + σ2

x

)
+
ωz
2

(
σ1
z + σ2

z

)
+ π

J12

2
σ1
zσ

2
z (5.11)

By ignoring the identity in ρ00, the system should evolve to a time-dependent pure state

|φ〉 = α(t)|00〉+ β(t)(|01〉+ |10〉)/
√

2 + γ(t)|11〉, (5.12)
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where t is the evolution time and α(t), β(t) γ(t) could be calculated using the Hamiltonian
in Eq. 5.11. We measured in total 16 different states at a few different time steps using
Pauli observables. The measurement result at each time step is used as one instance of the
input to our tomography algorithm. We then adopted the maximum likelihood method to
reconstruct the states. The reconstructed density matrices for the first and sixteenth ex-
periments are shown in Figs. 5.2. Note that as the time progresses, the relaxation becomes
more prominent, where the purity of state Tr(ρ2) drops. Since our protocol is designed for
pure-state tomography, the performance of our protocol is expected to drop along with the
decrease of purity in a quantum state. The fidelity of different reconstructions compare
to the state intended to prepare also drops(See Appendix B for detail), but it is irrelevent
for the propose of comparing two tomography methods. In order to further demonstrate
the advantages of our protocol, we compare it to a quantum state tomography with Pauli
measurements. Using the same number of random Pauli measurements, one could also
perform the maximum likelihood method to get a reconstruction of the density matrix.
Note that the optimum set of 11 Pauli measurements may be randomly hit in this case,
which means the best performance of random Pauli measurement algorithm is the same
compared with our protocol. However, in a realistic setting, only one set of random Pauli
measurements will be chosen. To show the advantage of our protocol, we only have to
outperform the average case of this random algorithm.

We randomly generated 11 distinct 2-qubit Pauli measurements (including identity),
and used the maximum likelihood method to get an estimate of our density matrix. If the
density matrix given by this set of measurements is not unique, the maximum likelihood
method runs multiple times to get an average estimation. For each experiment, 100 sets
of random Pauli measurements were chosen. The result is shown in Fig. 5.3. We can see
that for high purity, our method significantly outperforms the random Pauli algorithm.
The advantage decreases as purity decreases, which indicates our method is more efficient
for a state that is close to pure.

5.5.2 Pure state tomography for 3-qubit state

For 3-qubit system, we are interested in the GHZ state |GHZ〉 = (|000〉+ |111〉)/
√

2. The
experimental data is from [60], and the GHZ state is prepared via global controls in closed
linear Ising spin chains with nearest-neighbor couplings as shown in Fig. 5.4. We measured
all 64 Pauli measurements (the measured purity of the prepared state is about 0.89), and
only use 31 of them described in Eq. (5.7) for our protocol. As shown in Fig. 5.5, only
using less than half of the desired measurements, we reconstructed density matrices for
the GHZ state via the maximum likelihood method with 0.96 fidelity. We then compare it
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Figure 5.2: The reconstruction of density matrix for state number one. The upper two
figures are real and imaginary part of density matrix of state reconstruction using all
16 Pauli measurements. The bottom two figures are real and imaginary part of density
matrix of state reconstruction using 11 optimum Pauli measurements described earlier.
The fidelity between the two density matrices is 0.992.

to a quantum state tomography algorithm implementing 31 random Pauli measurements
(including identity). Since the number of unused Pauli measurements are much more
compared to the 2-qubit case, we are less likely to hit the optimum set in this random
algorithm. By implementing a similar maximum likelihood reconstruction, we found the
average fidelity of this random algorithm to be 0.87 with standard deviation of 0.16. The
detailed result is shown in Fig. 5.6, which shows clearly that our protocol has a decent
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Figure 5.3: Performance of 2-qubit protocol using selected Pauli measurements against
randomly Pauli measurements.The blue diamond dots are the fidelity between density ma-
trix reconstructed from all 16 Pauli measurements with density matrix reconstructed from
random 11 Pauli measurements. The red line represents fidelity of reconstruction using
our protocol, and the green dashed line shows the purity of density matrix reconstructed
from all Pauli measurements.

advantage over the average case in the randomized algorithm.

5.6 Pure state tomography for polarized photon qubits

Figure 5.7 depicts a typical scheme for measuring a polarization-encoded n-photon state [61,
62, 63, 64, 65, 66]. Quarter- and half-waveplates in each photon’s path are rotated to choose
a separable polarization basis. We call the set of angles specifying each waveplate’s position
the setting of the measurement. The n-photon state is projected onto the basis set by the
waveplate angles with n polarizing beamsplitters. A single-photon detector is present in
each of the 2n output ports of the beamsplitters, and n-fold coincident detections among
the n paths are counted. There are 2n combinations of n-fold coincident detection events
that correspond to a state with one photon entering each of the n beamsplitters before
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Figure 5.4: (a) General scheme to create the GHZ state via global controls. X(θ) and Y(θ)
are, respectively, the global rotations with θ angle along x and y directions, and ZZ(τ)
denotes a free evolution with the τ time under the model Ising Hamiltonian. (b) NMR
sequence to realize the GHZ state creation from the PPS. Blue and red rectangles represent
π/2 and π rotations, respectively. The evolution times are t1 = 6.76 ms, t2 = 6.49 ms,
t3 = 2.84 ms with our sample.

being detected in one of the two output ports. Summing the total number of n-fold coin-
cidences over these 2n combinations gives the total number of copies of the state detected
by the measurement.

A minimum of 3n measurement settings are required for general state tomography
using separable projective measurements [36]. We note that, if one performs nonseparable
measurements, then general state tomography can be performed with 2n + 1 measurement
settings [67]. However, these types of measurements are difficult to perform in practice, so
we restrict the discussion here to separable ones.

One can think of each setting as a projective measurement that produces results for
multiple Pauli operators simultaneously. For example, consider measuring a 2-photon
state with the waveplates set such that a photon in the positive eigenstate of the Pauli
X or Y operator will be deterministically transmitted at the first or second beamsplitter,
respectively. For simplicity we will call this the XY setting. There are four relevant two-
fold coincident detection events, which we denote Ntt, Ntr, Nrt, and Nrr, and where the
first and second subscripts represent which output port (i.e. transmitted or reflected) the
first or second photon was detected, respectively. These counts can be summed in specific
ways to find expectation values of different Pauli operators. For example the expectation
value of 〈XY 〉 is given by 〈XY 〉 = (Ntt − Ntr − Nrt + Nrr)/N , where the total number
of copies N is given by N = Ntt + Ntr + Nrt + Nrr. Similarly, 〈XI〉 can be found with
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Figure 5.5: The reconstruction of density matrix for GHZ state. The upper two figures
are real and imaginary part of density matrix of state reconstruction using all 64 Pauli
measurements. The bottom two figures are real and imaginary part of density matrix of
state reconstruction using 31 optimum Pauli measurements described in Eq. (5.7). The
fidelity between the two density matrices is 0.960.

〈XI〉 = (Ntt + Ntr −Nrt −Nrr)/N . In total, the XY setting measures the following four
Pauli operators:

XY,XI, IY, II.

Based on this observation, we can use the results of Theorem 3 and Theorem 4 to
reduce the number of settings to UDA pure states. For the two-qubit case, recall that the
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Figure 5.6: Performance of 3-qubit protocol using selected Pauli measurements against
randomly Pauli measurements. Blue dots represents fidelity between density matrix recon-
structed from all 64 Pauli measurements and density matrix reconstructed from random 31
Pauli measurements. The red squre represents fidelity of reconstruction using our protocol.

11 Pauli operators to UDA any pure states are

A = {II, IX, IY, IZ,XI, Y X, Y Y, Y Z, ZX,ZY, ZZ}.

Notice that any of the 6 Paulis with no I component (the two-qubit correlations) only
appear in the setting which measures it. However, looking at the remaining 5 Paulis, II
is included in every setting, IX is included in the Y X setting, IY in Y Y , IZ in Y Z. The
only operator which does not appear in the settings of the two-qubit correlations is XI, so
for the two qubit case, 6 + 1 = 7 settings are required to be sufficient for UDA.

And similar analysis can be done for the three qubit case, with the aid of computer
search. That is, we find the minimum number of settings that can produce all the 31 Pauli
operators as given in Eq. (5.7). We summarize these results as the corollary below.

52



Figure 5.7: Measurement scheme for a polarization-encoded n-photon state. The n-qubit
state is encoded in the polarizations of the n photons. Each photon is measured using
a quarter-waveplate (QWP), half-waveplate (HWP) and a polarizing beamplitter (PBS)
with a single-photon counting detector (SPD) at each of its output ports. The quarter- and
half-waveplates are rotated to choose the measurement basis for each photon. Separable
projective measurements are performed by counting coincident detection events between
all n photons.
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Corollary 1. Only 7 settings

{XI, Y X, Y Y, Y Z, ZX,ZY, ZZ}.

are needed to UDA any two-qubit pure states, compared with 9 settings needed for general
two-qubit state tomography. And only 19 settings

{XXZ,XY Z,XZX,XZY,XZZ, Y XX,
Y XY, Y Y X, Y Y Y, Y ZX, Y ZY, Y ZZ,

ZXX,ZXY,ZXZ,ZY X,ZY Y, ZY Z, ZZX} (5.13)

are needed to UDA any three-qubit pure states, compared with 27 settings needed for general
three-qubit state tomography.

We remark that Corollary 1 is a direct application of Theorem 3 and Theorem 4. It
is possible for even better results to be obtained by including knowledge of settings in the
first optimization. However, proving sufficiency becomes more difficult in these cases.
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Chapter 6

Conclusion

In this thesis, we looked at two separate proposal testing quantum mechanics utilizing tools
we found in quantum information. In those proposal, different aspect of quantum mechan-
ics are challenged. In the large scale, where the curvature of spacetime is not negligible, a
test was proposed to probe the potential important physics that arises at the intersection
of quantum theory and general relativity. The experiment with artificial satellites in Earth
orbit proposed in the thesis should be able to refute or be consistent with the alternative
quantum optics theory proposed. Many other tests of quantum foundation could be per-
formed using similar setup. Going forward, we could observe and capture natural occurring
events and push the experiment to larger scale with more precise detectors

In the small scale, we indirectly tested a cornerstone of quantum mechanics, the Born
rule, by directly testing a quantum symmetry called envariance. For the later proposal, we
put a bound for the Born rule for a generalized quantum mechanics theory. Our experiment
demonstrated the quantum symmetry envariance and was able to bound the Born rule. It
also gives us new perspective on Born rule. Future experiment includes testing envariance
in a larger system, where the boundary of system and environment could be changed.

In chapter 5, the main question at hand is whether the priori information of state
being pure helps us reconstruct the quantum state. The usefulness of such information was
proven theoretically for ideal situations, then tested in experiment with noise. We concludes
that the knowledge of quantum state being close to a pure state helps us reconstruct the
quantum state. With Pauli observables, 2 and 3 qubits pure state could be reconstructed
with a minimum of 11 and 31 measurements respectively. The next step would be looking
at a larger number of qubits, and what are the optimum sets of observables for state
tomography. The result motivates us to look into the structure of quantum states, and
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make efficient tomography of a multi-qubit system realizable.
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Appendix A

Testing of envariance to Born rule
continued

From Sec 4.2, the derivation of Born rule consists of two parts, which are presented in
two theorems. We have tested the first part of derivation, where maximumly entangled
bipartite is measured, namely the theorem 2. Although this part is undeniable the core of
the derivation, it is not exactly Born rule. Combined with the second part of the derivation,
where probability of getting a eigenstate is related to the modular square of its eigenvalue,
the derivation is complete. The second part of the derivation is called ”fine graining” of
the state, where the pointer state is expanded to a superposition of eigenstates.

Let’s begin with looking at what is the minimum number of qubits needed for this
test. The most simplified example it to show that the state |Φ〉 = 1√

3
|0〉 |0〉 +

√
2√
3
|1〉 |1〉

satisfies Born rule. one just have to show that the probability of measuring the first qubit
in |0〉 is 2

3
and the probability of measuring it in |1〉 is 1

3
. We call the first qubit system A,

and the second qubit system B. If system B is large enough, say at least an 6 dimension
Hilbertspace, we could add an additional qutrit to system B. The state becomes

|Φ0〉 =

(
1√
3
|0〉 |0〉+

√
2√
3
|1〉 |1〉

)
|0〉

=
1√
3
|0〉A |00〉B +

√
2√
3
|1〉A |10〉B (A.1)

Find a transformation acting on system B alone which maps |00〉B to |00〉B and |10〉B
to 1√

2
(|11〉B + |02〉B). The state after this transformation becomes
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|Φ′〉 =
1√
3
|0〉A |00〉B +

1√
3
|1〉A |11〉B +

1√
3
|1〉A |02〉B

=
1√
3
|0〉A |0〉B1

|0〉B2
+

1√
3
|1〉A |1〉B1

|1〉B2
+

1√
3
|1〉A |0〉B1

|2〉B2
(A.2)

We could use the envariance property of |Φ′〉 to show that the probability of getting
|0〉A |0〉B1

, |1〉A |1〉B1
and |1〉A |0〉B1

from measuring |Φ′〉 in computational basis are the
same.

We denote the probability of getting |0〉A |0〉B1
, P|Φ′〉

(
|0〉A |0〉B1

)
, and the probability

of getting |1〉A |1〉B1
, P|Φ′〉

(
|1〉A |1〉B1

)
. If we swap the state |0〉A |0〉B1

and |1〉A |1〉B1
on

system A and system B1, we get a updated state

|Φ′〉Swap =
1√
3
|0〉A |0〉B1

|1〉B2
+

1√
3
|1〉A |1〉B1

|0〉B2
+

1√
3
|1〉A |0〉B1

|2〉B2

Note that the swap operation could be done by swapping the measurement outcome
|1〉A |1〉B1

and |0〉A |0〉B1
. Thus, P|Φ′〉

(
|1〉A |1〉B1

)
= P|Φ′〉Swap

(
|0〉A |0〉B1

)
and P|Φ′〉

(
|0〉A |0〉B1

)
=

P|Φ′〉Swap

(
|1〉A |1〉B1

)
. From the envariance property of |Φ′〉 , we know that the swap

|0〉A |0〉B1
and |1〉A |1〉B1

on system A and system B1 could be undone by a swap |1〉B2

and |0〉B2
on system B2. The operation on system B2 should not affect the probabili-

ties we got in system A and system B1. Thus, P|Φ′〉
(
|1〉A |1〉B1

)
= P|Φ′〉Swap

(
|1〉A |1〉B1

)
and P|Φ′〉

(
|0〉A |0〉B1

)
= P|Φ′〉Swap

(
|0〉A |0〉B1

)
. In sum, we should have P|Φ′〉

(
|0〉A |0〉B1

)
=

P|Φ′〉
(
|1〉A |1〉B1

)
.

Similarly, we could derive P|Φ′〉
(
|1〉A |0〉B1

)
= P|Φ′〉

(
|1〉A |1〉B1

)
. Thus, P|Φ′〉

(
|0〉A |0〉B1

)
=

P|Φ′〉
(
|1〉A |0〉B1

)
= P|Φ′〉

(
|1〉A |1〉B1

)
, the probability of getting |0〉A |0〉B1

, |1〉A |1〉B1
and

|1〉A |0〉B1
from measuring |Φ′〉 in computational basis are the same.

Assumes Alice have access to the first and the second qubit of |Φ′〉 and Bob have access
to the first qubit only. Alice should be measuring |00〉, |10〉 and |11〉 with same probability
from the argument above.The measurement result from Bob can’t be conflict with the one
from Alice, so he should be getting |1〉 twice as much as |0〉. Thus, the probability of
measuring |1〉 is 2

3
while the probability of measuring |0〉 is 1

3
for the first qubit.

By running experiments on envariance testing, we would like to put bounds on the
Born rule.
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In the previous experiment, we tested envariance for the state |Φ+〉 = 1√
2

(|00〉+ |11〉).
Ideally for state |Φ+〉, any unitary US on the first qubit could be undone by an unitary

UE on the second qubit. Define US =

(
1 0
0 eiθ

)
, we could get the corresponding recover

unitary UE =

(
1 0
0 e−iθ

)
. Note that US ⊗ 1 |Φ+〉 = 1√

2

(
|00〉+ eiθ |11〉

)
, which gives a

relative phase eiθ. This could be undone by operation on the second qubit, which should
not affect any probability distribution we can get from the first qubit. We could conclude
that probability of measuring |0〉 or |1〉 for the first qubit is independent of the phase eiθ.
Moreover, using the argument in section 1.2, we could also conclude that the probability
of getting|0〉 or |1〉 is 1

2
. The experimental result indicates that after operation US⊗UE we

could recover |Φ+〉 with high fidelity. We can’t conclude |Φ+〉 is envariant underUS since
we can’t get fidelity 1. However, we can try to put bounds on Born rule for state like |Φ+〉
once we could get bounds on the experimental errors. (on going)

One might want to consider a more general state |ψSE〉 =
∑N

k=1 αk |σk〉 |εk〉, where
|αi|2 6= 1

N
. To provide evidence or put bound on Born rule for this type of states, additional

experiments are required.

The goal is to perform an experiment to transform the state from |Φ0〉 = 1√
3
|000〉 +

√
2√
3
|111〉 to |Φ′〉 = 1√

3
|000〉 + 1√

3
|111〉 + 1√

3
|102〉 followed by an experiment to test the

envariance property of the state |Φ′〉. Since qubit is more accessible than qutrit in the lab,
we could replace the qutrit with two qubits and use |00〉, |11〉 and |10〉 as our three level
system.

We could summarize the task as followed:

1)Construct state |Φ0〉 = 1√
3
|0000〉 +

√
2√
3
|1111〉, and find a transformation without

touching the first qubit to map |Φ0〉 to |Φ′〉 = 1√
3
|0000〉+ 1√

3
|1111〉+ 1√

3
|1010〉

2)Test the state |Φ′〉 = 1√
3
|0000〉 + 1√

3
|1111〉 + 1√

3
|1010〉 is envariant under swap op-

erations on the first two qubits. For example, the swap between |00〉 and |11〉 on the first
and second qubit could be undone by the same operation on the third and fourth qubit.

Here we propose a experiment with linear optics. We use polarization of photons as
our qubits, where |1〉 = |V 〉 and |0〉 = |H〉. Figure A.1 shows a circuit which outputs

|Φ′〉 = 1√
3
|0000〉+ 1√

3
|1111〉+ 1√

3
|1010〉 if we in put |Φ〉 = 1√

3
|0〉 |0〉+

√
2√
3
|1〉 |1〉 at node A

and B.

To understand what does the circuit in Figure A.1 does, first we take a closer look at
what the elements in the blue dash line box do A.1. If the detector 1 detects a photon
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Input state |>

Detector 1

Detector 2

C

A B

D

E F G

H

PBS1

PBS2 PBS3

PBS4

J

Figure A.1: Testing “Fine graining”.The input state at A and B is|Φ〉 = 1√
3
|0〉 |0〉 +

√
2√
3
|1〉 |1〉. where |0〉 = |H〉 represents horizontal polarization |1〉 = |V 〉 represents vertical

polarization. Node C prepares a pair of photons in the state 1√
2
|0〉 |0〉 + 1√

2
|1〉 |1〉, while

Node D emits a single photon with random polarization. Upon detect exactly one photon at
detector 1 and detector 2, The state coming out from E,F,G,H could be |Φ′〉 = 1√

3
|0000〉+

1√
3
|1100〉+ 1√

3
|1111〉
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Detector 1 C
PBS1

A

E

C1

C2

Figure A.2: Preparation of entangled state α|00〉+ β|11〉

in horizontal polarization, that photon must coming from C1. The photon in C2 should
be in horizontal polarization as well since we prepared 1√

2
|0〉 |0〉 + 1√

2
|1〉 |1〉 at node C.

Moreover, the photon from A should be in horizontal polarization since it went through
the PBS. Thus, the photon in C2 and E are both in |0〉. Similarly, if detector 1 detect a
photon in vertical polarization, the photon in C2 and B are both in |1〉. Upon post select
exactly one photon detected at detector 1, we know that the state in B and C2 should
have the form α |0〉 |0〉+ β |1〉 |1〉.

The elements in the red dash line box is a C-NOT gate upon detect one photon at
detector 2. We could conjugate the C-NOT gate with two π

4
− Z gate to get a controlled-

Hadamard gate.

Thus, if we input |Φ〉 = 1√
3
|0〉A |0〉B +

√
2√
3
|1〉A |1〉B, the elements in the blue box will

transform the state into 1√
3
|0〉E |0〉F |0〉B +

√
2√
3
|1〉E |1〉F |1〉B . The controlled-Hadamard

gate will further transform the state into 1√
3
|0〉E |0〉F |0〉B+ 1√

3
|1〉E |1〉F |0〉B′+ 1√

3
|1〉E |1〉F |1〉B′ .

We consider the spatial degree of freedom for the photon through PBS4 as our fourth qubit.
Thus, we get the state coming out from E,F,G,H could be |Φ′〉 = 1√

3
|0000〉 + 1√

3
|1100〉 +
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1√
3
|1111〉.

Once we have prepared state |Φ′〉 = 1√
3
|0000〉+ 1√

3
|1010〉+ 1√

3
|1111〉, we could proceed

to test the envariance operation for state |Φ′〉. We would like to swap |00〉 and |10〉 for the
first two qubits, and see if the same swap operation for the last two qubits recovers |Φ′〉.
We propose the two possible tests as followed:

1)Perform a state tomography experiment, and get the 16×16 density matrix ρ for the
output state|Φ′〉. The swap operations could be done by rearrange the rows and columns of
ρ . Ideally, after swapping |00〉 and |10〉 for the first two qubits and the last two qubits, we
should get the same ρ . The possible deviation from ρ could come from either experimental
error or the failure of envariance theory.

2)Pick a random orthonormal basis {Bi} and measure |Φ′〉 with this basis. After large
number of trials, we could estimate the probability Pi of getting outcome Bi. Then we
swap |00〉 and |10〉 for the first two qubits and same for the last two qubits for all Bi , and
we could get another orthonormal basis {B′i} . Measure |Φ′〉 with {B′i}, and estimate the
probability P ′i of getting outcome Bi. We will have two arrays at the end of experiment,
{Pi} and {P ′i}. Ideally they should be the same. Any difference should come from either
experimental error or the failure of envariance theory.
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Appendix B

Proof of UDA using selected Paulis
for 3 qubits

In order to prove Theorem 4, it suffices to prove the following result.

Theorem 5. Any Hermitian operator perpendicular to

{IIX, IIY, IIZ, IXI, IXX, IXY, IY I, IY X, IY Y, IZI,
XIZ,XXX,XXY,XY X,XY Y,XZX,XZY, Y XX,

Y XY, Y XZ, Y Y X, Y Y Y, Y Y Z, Y ZI, ZII, ZXZ,ZY Z,

ZZX,ZZY, ZZZ} (B.1)

must have at least two positive and two negative eigenvalues.

Proof. The proof proceeds as follows. First construct an 8-by-8 traceless Hermitian ma-
trix H which is orthogonal to all the above Pauli operators. This will be a real linear
combination of every Pauli operator that is not being measured. This H is then a general
description of any Hermitian matrix in the complement of the span of all measured op-
erators. We will show through a case by case analysis that if we assume H only has one
positive eigenvalue, then it follows that H must be the zero matrix. A similar argument
holds for having only one negative eigenvalue therefore H must have at least two positive
and two negative eigenvalues.

Let us begin by constructing H which is a real linear combination of the 33 Pauli
operators not being measured (excluding the identity). H is then:
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H = x1IXZ + x2IY Z + x3IZX + x4IZY

+x5IZZ + x6XII + x7XIX + x8XIY

+x9XXI + x10XXZ + x11XY I + x12XY Z

+x13XZI + x14XZZ + x15Y II + x16Y IX

+x17Y IY + x18Y IZ + x19Y XI + x20Y Y I

+x21Y ZX + x22Y ZY + x23Y ZZ + x24ZIX

+x25ZIY + x26ZIZ + x27ZXI + x28ZXX

+x29ZXY + x30ZY I + x31ZY X + x32ZY Y

+x33ZZI.

Writing H in matrix form will give the form:

c11 c12 c13 c14 c15 c16 c17 0
c∗12 c22 c23 c24 c25 c26 0 c28

c∗13 c∗23 c33 c34 c35 0 c37 c38

c∗14 c∗24 c∗34 c44 0 c46 c47 c48

c∗15 c∗25 c∗35 0 c55 c56 c57 c58

c∗16 c∗26 0 c∗46 c∗56 c66 c67 c68

c∗17 0 c∗37 c∗47 c∗57 c∗67 c77 c78

0 c∗28 c∗38 c∗48 c∗58 c∗68 c∗78 c88


(B.2)
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where

c11 = x5 + x26 + x33;

c22 = −x5 − x26 + x33;

c33 = −x5 + x26 − x33;

c44 = x5 − x26 − x33;

c55 = x5 − x26 − x33 = c44;

c66 = −x5 + x26 − x33 = c33;

c77 = −x5 − x26 + x33 = c22;

c88 = x5 + x26 + x33 = c11;

c12 = x3 + x24 − i(x4 + x25);

c34 = −x3 + x24 + i(x4 − x25);

c56 = x3 − x24 − i(x4 − x25) = −c34;

c78 = −x3 − x24 + i(x4 + x25) = −c12;

c13 = x1 + x27 − i(x2 + x30);

c24 = −x1 + x27 + i(x2 − x30);

c57 = x1 − x27 − i(x2 − x30) = −c24;

c68 = −x1 − x27 + i(x2 + x30) = −c13;

c14 = x28 − x32 − i(x29 + x31);

c23 = x28 + x32 + i(x29 − x31);

c58 = −x28 + x32 + i(x29 + x31) = −c14;

c67 = −x28 − x32 − i(x29 − x31) = −c23;

c15 = x6 + x13 + x14 − i(x15 + x18 + x23);

c26 = x6 + x13 − x14 − i(x15 − x18 − x23);

c37 = x6 − x13 − x14 − i(x15 + x18 − x23);

c48 = x6 − x13 + x14 − i(x15 − x18 + x23)

= c15 − c∗26 + c∗37;

c16 = x7 − x17 − x22 − i(x8 + x16 + x21);

c25 = x7 + x17 + x22 + i(x8 − x16 − x21);

c38 = x7 − x17 + x22 − i(x8 + x16 − x21);

c47 = x7 + x17 − x22 + i(x8 − x16 + x21)

= c∗16 + c25 − c∗38;
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c17 = x9 + x10 − x20 − i(x11 + x12 + x19);

c28 = x9 − x10 − x20 − i(x11 − x12 + x19);

c35 = x9 + x10 + x20 + i(x11 + x12 − x19);

c46 = x9 − x10 + x20 + i(x11 − x12 − x19)

= c∗28 + c35 − c∗17;

Note that the anti-diagonal terms are all zeros. This was by design, since any set of
Pauli operators Clifford equivalent to the result from the hyper-graph dualization program
is also a solution, we had the freedom to choose a set which would make the proof simpler.
Choosing the set of operators which contained all Pauli operators constructed by tensoring
only X operators and Y operators meant H would have zero main anti-diagonal. The only
reason for choosing this set is it makes this proof a little simpler.

Here we assume H is a Hermitian matrix with only one positive eigenvalue. We first
show all diagonal entries of H must be zero. Observe that c55 = c44, c66 = c33, c77 =
c22, c88 = c11. In order for the traceless condition on H to hold, it is then clear that
c11 + c22 + c33 + c44 = 0. If H has some nonzero diagonal entry, then at least one of
c11, c22, c33 and c44 will be positive. Without loss of generality, let c11 > 0, then the
submatrix of H formed by the rows (1, 8) and columns (1, 8), which will be of the form
c11 ∗ I, will have two positive eigenvalues.

Lemma 1. Cauchy’s Interlacing Theorem states[68]:
Let:

A =

[
B C
C† D

]
be an n-by-n Hermitian matrix, where B has size m-by-m (m<n). If the eigenvalues of A
and B are α1 ≤ . . . ≤ αn and β1 ≤ . . . ≤ βm respectively. Then:

αk ≤ βk ≤ αk+n−m, k = 1, . . . ,m.

It follows from Cauchy’s interlacing property that if a principle submatrix of H has 2
positive eigenvalues then H also has at least two positive eigenvalues.

Hence, H must be in the following form:
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H =



0 c12 c13 c14 c15 c16 c17 0
c∗12 0 c23 c24 c25 c26 0 c28

c∗13 c∗23 0 c34 c35 0 c37 c38

c∗14 c∗24 c∗34 0 0 c∗28 + c35 − c∗17 c∗16 + c25 − c∗38 c15 − c∗26 + c∗37

c∗15 c∗25 c∗35 0 0 −c34 −c24 −c14

c∗16 c∗26 0 c28 + c∗35 − c17 −c∗34 0 −c23 −c13

c∗17 0 c∗37 c16 + c∗25 − c38 −c∗24 −c∗23 0 −c12

0 c∗28 c∗38 c∗15 − c26 + c37 −c∗14 −c∗13 −c∗12 0


.

In fact, under the assumption that H has only 1 positive eigenvalue, it follows from
Cauchy’s interlacing theorem that any principle submatrix of H cannot have more than
one positive eigenvalue. Otherwise, we will have a contradiction.

Let us look at the submatrix formed by rows 1, 2, 4, 5 and the same columns. It is a
traceless Hermitian matrix with determinant |c14c25 − c15c24|2. Again, if the submatrix
has positive determinant, then it must have exactly two positive eigenvalues. Once again
by applying Cauchy’s interlacing property, H will have at least two positive eigenvalues.
This immediately contradictions our assumption. The above argument implies that, under
our assumption H has only 1 positive eigenvalue, we have |c14c25 − c15c24|2 ≤ 0. It is
not surprising that the inequality holds if and only if the equality holds. Then we have
c14c25 − c15c24 = 0.

Similarly, by considering other 4-by-4 submatrices constructed from the rows and
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columns a, b, 4, 5 where a, b are any two of the remain six rows, we can show that:

c14c35 − c15c34 = 0;

−c14c
∗
34 − c15(c28 + c∗35 − c17) = 0;

−c14c
∗
24 − c15(c16 + c∗25 − c38) = 0;

−c14c
∗
14 − c15(c∗15 − c26 + c37) = 0;

c24c35 − c25c34 = 0;

−c24c
∗
34 − c25(c28 + c∗35 − c17) = 0;

−c24c
∗
24 − c25(c16 + c∗25 − c38) = 0;

−c24c
∗
14 − c25(c∗15 − c26 + c37) = 0;

−c34c
∗
34 − c35(c28 + c∗35 − c17) = 0;

−c34c
∗
24 − c35(c16 + c∗25 − c38) = 0;

−c34c
∗
14 − c35(c∗15 − c26 + c37) = 0;

−c∗24(c28 + c∗35 − c17) + c∗34(c16 + c∗25 − c38) = 0;

−c∗14(c28 + c∗35 − c17) + c∗34(c∗15 − c26 + c37) = 0;

−c∗14(c16 + c∗25 − c38) + c∗24(c∗15 − c26 + c37) = 0.

The above equations will imply that the 8-by-2 submatrix formed by the 4-th and 5-th
columns has rank at most 1.

The same argument can be used to prove that the 8-by-2 submatrices formed by columns
(1, 8), (2, 7) or (3, 6) also have rank at most 1.

As a straightforward consequence, H has rank no more than 4.

In other words, the k-th column and the (9−k)-th column are linearly dependent. This
means that there exist λ1, λ2, λ3, λ4 such that the following equations hold:

λ1
−→
C1 + (1− λ1)

−→
C8 = λ2

−→
C2 + (1− λ2)

−→
C7 = 0 (B.3)

λ3

−→
C3 + (1− λ3)

−→
C6 = λ4

−→
C4 + (1− λ4)

−→
C5 = 0 (B.4)

Here we have used
−→
Ck to represent the k-th column of the matrix (B.3).

Let us start with a special case. Let λ1 = 0. Then c12 = c13 = c14 = c28 = c38 = 0 and
c15 = c∗26 − c∗37. H can be simplified as the following:
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H =



0 0 0 0 c∗26 − c∗37 c16 c17 0
0 0 c23 c24 c25 c26 0 0
0 c∗23 0 c34 c35 0 c37 0
0 c∗24 c∗34 0 0 c35 − c∗17 c∗16 + c25 0

c26 − c37 c∗25 c∗35 0 0 −c34 −c24 0
c∗16 c∗26 0 c∗35 − c17 −c∗34 0 −c23 0
c∗17 0 c∗37 c16 + c∗25 −c∗24 −c∗23 0 0
0 0 0 0 0 0 0 0


.

If we set c23 = c24 = c34 = 0, then the top-left 4-by-4 submatrix is zero. In this case, the
characteristic polynomial of H contains only even powers. Thus H has only one positive
eigenvalue implies H has only one negative eigenvalue too. As a consequence, the top-right
4-by-4 submatrix of H has rank exactly 1.

As a result, any 2-by-2 submatrix of the top-right submatrix must have determinant
zero. From suitable choices of submatrices we can obtain the following equations:

c26c37 = 0; (B.5)

c26(c∗26 − c∗37) = c16c25; (B.6)

c37(c∗26 − c∗37) = c17c35; (B.7)

c16(c∗16 + c25) + c17(c∗17 − c35) = 0. (B.8)

Using the above equations we can obtain:

0 = c16(c∗16 + c25) + c17(c∗17 − c35)

= c16c25 − c17c35 + |c17|2 + |c16|2

= c26(c∗26 − c∗37)− c37(c∗26 − c∗37) + |c17|2 + |c16|2

= |c26 − c37|2 + |c17|2 + |c16|2 (B.9)

This implies c16 = c17 = 0 and c26 = c37. Also since c26c37 = 0 we know that c26 = c37 = 0.
Furthermore c25(c∗16+c25) = 0 and c35(c35−c∗17) = 0 will guarantee c25 = c35 = 0. Therefore
H is once again the zero matrix.

We must then assume at least one of c23, c24, c34 must be nonzero. If c23 6= 0, then
by considering submatrices formed by rows/columns (1, 2, 3, k) (5 ≤ k ≤ 8), we have
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c16 = c17 = 0 and c26 = c37. For the case that c24 = 0 or c34 = 0, we will also have
c16 = c17 = 0 and c26 = c37 by considering appropriately chosen submatrices.

We are then left with H in the form:

H =



0 0 0 0 0 0 0 0
0 0 c23 c24 c25 c26 0 0
0 c∗23 0 c34 c35 0 c26 0
0 c∗24 c∗34 0 0 c35 c25 0
0 c∗25 c∗35 0 0 −c34 −c24 0
0 c∗26 0 c∗35 −c∗34 0 −c23 0
0 0 c∗26 c∗25 −c∗24 −c∗23 0 0
0 0 0 0 0 0 0 0


.

Now, recall the fact that the submatrices formed by the k-th and the (9−k)-th columns
will always have rank 1. From this it can be shown we will have H is a zero matrix.

Take the submatrix formed by the second and seventh columns for example. Since they
are linearly dependent, the determinant of any 2-by-2 submatrix must be zero. From this
we can get that |c23|2 + |c26|2 = 0. Therefore c23 = c26 = 0. By similar arguments on
various submatrices, H can be shown to be the zero matrix.

Thus, under our assumption that H has exactly one positive eigenvalue, λ1 6= 0. Sim-
ilarly, we can also prove that λ1 6= 1, λ2, λ3, λ4 6= 0, 1. We can then assume from now on
that H has no zero columns or rows.

Hence, there exists certain λ1, λ2, λ3 and λ4 6= 0, 1 which satisfies equation B.3.

Let us use < and = to denote the real part and imaginary part of a complex number.
Then the above equations can be rewritten as linear equations of real numbers.

Let us use M(λ1, λ2, λ3, λ4) to denote the 48-by-30 coefficient matrix. If we can prove
that the coefficient matrix always has rank 30 for any λ1, λ2, λ3 and λ4, then it will imply
that all cij’s are zeros which will immediately contradict our assumption.

Unfortunately, we are not that lucky. M(λ1, λ2, λ3, λ4) will be degenerate under certain
assignment of variables (λ1, λ2, λ3, λ4). For example, rank(M(1+i

2
, 1+i

2
, 1+i

2
, 1+i

2
)) = 27 <

30. However, we can still show that M(λ1, λ2, λ3, λ4) will have rank 30 except for some
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degenerate cases which will be dealt with separately . The top-left 2-by-2 submatrix has
rank 2 if and only if λ1 6= 0

At least one of the following situations must happen:

1.

[
−C1 A1

B2 C2

]
has full rank. This implies c12 = c17 = 0.

2.

[
A1 C1

−D2 A2

]
has full rank. This implies c12 = c28 = 0.

3.

[
B3 C3

−C1 A1

]
has full rank. This implies c13 = c16 = 0.

4.

[
A1 C1

−D3 A3

]
has full rank. This implies c13 = c38 = 0.

5.

[
−C1 A1

B4 C4

]
has full rank. This implies c14 = c15 = 0.

6.

[
−C2 A2

B3 C3

]
has full rank. This implies c23 = c26 = 0.

7.

[
A2 C2

−D3 A3

]
has full rank. This implies c23 = c37 = 0.

8.

[
−C2 A2

B4 C4

]
has full rank. This implies c24 = c25 = 0.

9.

[
−C3 A3

B4 C4

]
has full rank. This implies c34 = c35 = 0.
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10.

det

([
−C1 A1

B2 C2

])
= det

([
A1 C1

−D2 A2

])
= det

([
B3 C3

−C1 A1

])
= det

([
A1 C1

−D3 A3

])
= det

([
−C1 A1

B4 C4

])
= det

([
−C2 A2

B3 C3

])
= det

([
A2 C2

−D3 A3

])
= det

([
−C2 A2

B4 C4

])
= det

([
−C3 A3

B4 C4

])
= 0.

With assistance of symbolic computation package like Mathematica, we find that the
only solution to the above equations is <λ1 = <λ2 = <λ3 = <λ4 = 1

2
.

Here we will prove that there is no Hermitian matrix in the form ( B.3) with only one
positive eigenvalue for every situations:

1. c12 = c17 = 0. Any H with only one positive eigenvalue must be in the following
form:

H =



0 0 c13 c14 c15 c16 0 0
0 0 c23 c24 c25 c26 0 c28

c∗13 c∗23 0 c34 c35 0 c37 c38

c∗14 c∗24 c∗34 0 0 c∗28 + c35 c∗16 + c25 − c∗38 c15 − c∗26 + c∗37

c∗15 c∗25 c∗35 0 0 −c34 −c24 −c14

c∗16 c∗26 0 c28 + c∗35 −c∗34 0 −c23 −c13

0 0 c∗37 c16 + c∗25 − c38 −c∗24 −c∗23 0 0
0 c∗28 c∗38 c∗15 − c26 + c37 −c∗14 −c∗13 0 0


.

By considering submatrices formed by row/columns (1, 2, p, q) where 3 ≤ p < q ≤ 8,
we have that the first two rows are linearly dependent. Under our assumption that
there is no row of H containing only zero entries, we have c28 = 0.

Recall that the 4-th and 5-th rows are linearly dependent, thus c34(−c∗34) = c35(c28 +
c∗35) which now can be simplified as |c34|2 + |c35|2 = 0. Hence c34 = c35 = 0. Then
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H =



0 0 c13 c14 c15 c16 0 0
0 0 c23 c24 c25 c26 0 0
c∗13 c∗23 0 0 0 0 c37 c38

c∗14 c∗24 0 0 0 0 c∗16 + c25 − c∗38 c15 − c∗26 + c∗37

c∗15 c∗25 0 0 0 0 −c24 −c14

c∗16 c∗26 0 0 0 0 −c23 −c13

0 0 c∗37 c16 + c∗25 − c38 −c∗24 −c∗23 0 0
0 0 c∗38 c∗15 − c26 + c37 −c∗14 −c∗13 0 0


.

Again, by applying our submatrix argument, we have the submatrix formed by
(3, 4, 5, 6) columns must has rank 1.

If there is a zero element in the submatrix formed by rows (1, 2, 7, 8) and columns
(3, 4, 5, 6), then there must be a row or a column containing only zero elements in H.
So, here we assume the submatrix formed by rows (1, 2, 7, 8) and columns (3, 4, 5, 6)
does not contain any zero element.

Then c15
c25

= c13
c23

= c38
c37

which implies c38c25 = c37c15.

Follows from the rank 1 condition, we have

c15(c∗15 − c26 + c37) = −|c14|2,
c25(c16 + c∗25 − c38) = −|c24|2.

By substituting c38c25 = c37c15 and c15c26 = c25c16 into the above two equations, we
have

|c15|2 + |c14|2 = c15c26 − c15c37

= c25c16 − c25c38

= −|c24|2 − |c25|2

which implies c15 = c14 = c24 = c25 = 0. However, it contradicts our assumption that
there is no zero element in the submatrix formed by (1, 2, 7, 8) rows and (3, 4, 5, 6)
columns.

Similarly, we can also prove that there is no Hermitian matrix in the form B.3 with
only one positive eigenvalue if any of the following conditions apply.

2. c12 = c28 = 0.
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3. c13 = c16 = 0.

4. c13 = c38 = 0.

5. c14 = c15 = 0.

6. c23 = c26 = 0.

7. c23 = c37 = 0.

8. c24 = c25 = 0.

9. c34 = c35 = 0.

Now, the only case we left is the following:

10. <λ1 = <λ2 = <λ3 = <λ4 = 1
2
. In this case, rank(

[
−C1 A1

B2 C2

]
) = 3. Hence

(<c12,=c12,<c17,=c17) lies in the nullspace of

[
−C1 A1

B2 C2

]
=


−1

2
−b1

1
2

b1

b1 −1
2

b1 −1
2

1
2
−b2

1
2

b2

b2
1
2
−b2

1
2

.

Thus

[c12 : c17]

= [2(b2 − b1) + (1 + 4b1b2)i : 2(b1 + b2) + (4b1b2 − 1)i].
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Similarly, we will have

[c12 : c17 : c28]

= [2(b2 − b1) + (1 + 4b1b2)i :

2(b1 + b2) + (4b1b2 − 1)i : −2(b1 + b2)− (4b1b2 − 1)i];

[c13 : c16 : c38]

= [2(b1 − b3)− (1 + 4b1b3)i :

−2(b1 + b3)− (4b1b3 − 1)i : 2(b1 + b3) + (4b1b3 − 1)i];

[c23 : c26 : c37]

= [2(b3 − b2) + (4b2b3 + 1)i :

2(b2 + b3) + (4b2b3 − 1)i : −2(b2 + b3)− (4b2b3 − 1)i];

[c14 : c15]

= [2(b4 − b1)− (4b1b4 + 1)i :

2(b1 + b4) + (4b1b4 − 1)i];

[c24 : c25]

= [2(b4 − b2) + (4b2b4 + 1)i :

2(b2 + b4) + (4b2b4 − 1)i];

[c34 : c35]

= [2(b4 − b3) + (4b3b4 + 1)i :

2(b3 + b4) + (4b3b4 − 1)i].

Here [ q1 : q2 : · · · : qm] = [r1 + s1i : r2 + s2i : · · · : rm + smi] means there exists some
µ ∈ R such that qi = µ(ri + sii) for any 1 ≤ i ≤ m.

Observe that c28 = −c17, c38 = −c16, c37 = −c26, we thus simplify the matrix form of
H as the following:

H =



0 c12 c13 c14 c15 c16 c17 0
c∗12 0 c23 c24 c25 c26 0 −c17

c∗13 c∗23 0 c34 c35 0 −c26 −c16

c∗14 c∗24 c∗34 0 0 c35 − 2c∗17 c25 + 2c∗16 c15 − 2c∗26

c∗15 c∗25 c∗35 0 0 −c34 −c24 −c14

c∗16 c∗26 0 c∗35 − 2c17 −c∗34 0 −c23 −c13

c∗17 0 −c∗26 c∗25 + 2c16 −c∗24 −c∗23 0 −c12

0 −c∗17 −c∗16 c∗15 − 2c26 −c∗14 −c∗13 −c∗12 0


.
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It follows from the fact that the submatrix formed by 4-th and 5-th columns has
rank exactly 1, we have c14(−c∗14) = c15(c∗15−2c26). Thus at least one of the following
cases must happen:

(10.1) c14 = c15 = 0. We can still assume there is no column containing only zero
elements as this is the case that we have already discussed. Thus c26 = 0 which
would also lead to c23 = 0.

(10.2) c26 = c∗15.

Similarly, at least one of the following conditions:

(10.I) c24 = c25 = c16 = c13 = 0; or

(10.II) c16 = −c∗25

and one of the following conditions:

(10.A) c34 = c35 = c17 = c12 = 0; or

(10.B) c17 = c∗35

must apply.

We have already discussed the cases that c12 = c17 = 0, c13 = c16 = 0 or c23 = c26 = 0
previously. Hence the only remaining case is c26 = c∗15, c16 = −c∗25, c17 = c∗35. Thus

H =



0 c12 c13 c14 c15 −c∗25 c∗35 0
c∗12 0 c23 c24 c25 c∗15 0 −c∗35

c∗13 c∗23 0 c34 c35 0 −c∗15 c∗25

c∗14 c∗24 c∗34 0 0 −c35 −c25 −c15

c∗15 c∗25 c∗35 0 0 −c34 −c24 −c14

−c25 c15 0 −c∗35 −c∗34 0 −c23 −c13

c35 0 −c15 −c∗25 −c∗24 −c∗23 0 −c12

0 −c35 c25 −c∗15 −c∗14 −c∗13 −c∗12 0


.

According to c26 = c∗15, we have 2(b2 + b3)(1− 4b1b4) = (4b2b3 − 1)(2b1 + 2b4) which
implies 4(b1b2b3 + b1b2b4 + b1b3b4 + b2b3b4) = b1 + b2 + b3 + b4.

1. 4b1b2 + 4b1b3 + 4b2b3 = 1. Thus b1 + b2 + b3 = 4b1b2b3. However, one can easy to
verify that there do not exist three real numbers b1, b2, b3 satisfying these two
equations.
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2. 4b1b2 + 4b1b3 + 4b2b3 6= 1. Hence b4 = b1+b2+b3−4b1b2b3
4b1b2+4b1b3+4b2b3−1

. By substituting the
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assignment of b4 into Equation B.10, we have

c14 = p ·
(

2(1− 4b2
1)(b2 + b3) + 4b1(1− 4b2b3)

4b1b2 + 4b1b3 + 4b2b3 − 1

+
−8b1(b2 + b3) + (1− 4b2

1)(1− 4b2b3)

4b1b2 + 4b1b3 + 4b2b3 − 1
i

)
;

c15 = p ·
(

2(1 + 4b2
1)(b2 + b3)

4b1b2 + 4b1b3 + 4b2b3 − 1

+
(1 + 4b2

1)(1− 4b2b3)

4b1b2 + 4b1b3 + 4b2b3 − 1
i

)
;

c23 = p ·
(

2(1 + 4b2
1)(b3 − b2)

4b1b2 + 4b1b3 + 4b2b3 − 1

+
(1 + 4b2

1)(1 + 4b2b3)

4b1b2 + 4b1b3 + 4b2b3 − 1
i

)
;

c24 = q ·
(

2(1− 4b2
2)(b1 + b3) + 4b2(1− 4b1b3)

4b1b2 + 4b1b3 + 4b2b3 − 1

+
8b2(b1 + b3)− (1− 4b2

2)(1− 4b1b3)

4b1b2 + 4b1b3 + 4b2b3 − 1
i

)
;

c25 = q ·
(

2(1 + 4b2
2)(b1 + b3)

4b1b2 + 4b1b3 + 4b2b3 − 1

+
(1 + 4b2

2)(1− 4b1b3)

4b1b2 + 4b1b3 + 4b2b3 − 1
i

)
;

c13 = q ·
(

2(1 + 4b2
2)(b1 − b3)

4b1b2 + 4b1b3 + 4b2b3 − 1

− (1 + 4b2
2)(1 + 4b1b3)

4b1b2 + 4b1b3 + 4b2b3 − 1
i

)
;

c34 = r ·
(

2(1− 4b2
3)(b1 + b2) + 4b3(1− 4b1b2)

4b1b2 + 4b1b3 + 4b2b3 − 1

+
8b3(b1 + b2)− (1− 4b2

3)(1− 4b1b2)

4b1b2 + 4b1b3 + 4b2b3 − 1
i

)
;

c35 = r ·
(

2(1 + 4b2
3)(b1 + b2)

4b1b2 + 4b1b3 + 4b2b3 − 1

+
(1 + 4b2

3)(1− 4b1b2)

4b1b2 + 4b1b3 + 4b2b3 − 1
i

)
;

c12 = r ·
(

2(1 + 4b2
3)(b2 − b1)

4b1b2 + 4b1b3 + 4b2b3 − 1

+
(1 + 4b2

3)(1 + 4b1b2)

4b1b2 + 4b1b3 + 4b2b3 − 1
i

)
.
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Again, with assistance of symbolic computation package like Mathematica, we
can verify that the characteristic polynomial of H contains only even powers.
This implies H has nonzero eigenvalue λ if and only if it also has eigenvalue −λ.
Therefore, under our assumption that H has only 1 positive eigenvalue, H also
has only 1 negative eigenvalue.

However, let us consider the 3-by-3 submatrix of H formed by (5, 7, 8)-th rows
and (1, 2, 3)-th columns . Its determinant is (−i + 2b1)(i + 2b1)2(1 + 2ib2)(i +
2b2)2(i−2b3)2(i+2b3)2r((1+4b2

1)p2+(1+4b2
2)q2+(1+4b2

3)r2). It is always nonzero
unless p = q = r or r = 0. If r = 0 this implies that c12 = c34 = c35 = 0. This
case has already been covered, Thus H has rank at least 3 which contradicts
our previous conclusion that H has only one positive eigenvalue and only one
negative eigenvalue.

To summarize, under our assumption that H has only one positive eigenvalue, a con-
tradiction always exist in every situation we studied. Hence, H must has at least 2 positive
eigenvalues and at least 2 negative eigenvalues. This completes our proof.

86


	List of Tables
	List of Figures
	Introduction
	Background: quantum optics and quantum information
	Quantum optics
	Photon modes and evolution
	Parametric down converted photons
	Dual-rail qubits and its relation to polarization qubits
	Unitary gates for photon-polarization qubits

	Quantum information
	Quantum state tomography and Maximum Likelihood Estimation


	Testing quantum foundations in space using artificial satellite
	Introduction
	T. Ralph and G. Milburn's alternative quantum optics theory
	Testing quantum mechanics with artificial satellites

	Testing envariance
	Introduction
	Deriving Born rule from envariance
	Experimental testing envariance
	Bounds to Born rule
	Conclusion

	Pure State Tomography using Pauli Observables
	Introduction
	Historical results on UDP and UDA
	2 qubit pure state tomography using Paulis measurements
	3 qubit pure state tomography using Paulis measurements
	Pure state tomography in NMR system
	Pure state tomography for a 2-qubit state 
	Pure state tomography for 3-qubit state

	Pure state tomography for polarized photon qubits

	Conclusion
	References
	APPENDICES
	Testing of envariance to Born rule continued
	Proof of UDA using selected Paulis for 3 qubits

