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Abstract 

Electrical energy generation from clean and renewable energy sources is a topic of growing importance, 

considering the concerns over the environmental impacts and the resource constraints of fossil fuels, 

combined with the increasing worldwide energy demand. Development of low-cost energy storage 

systems is necessary to realize economical harvest of energy from intermittent renewable sources, such 

as the wind and solar energy. Lithium-ion battery, the state-of-the-art energy storage technology, 

provides high energy density and long cycle life, leading to its extensive use in portable electronic 

devices and its rapidly increasing application in electric vehicles. However, the large-scale application 

of electrical energy storage systems, to integrate renewable energy sources into the grid or to supply 

energy stored from local solar plants in remote areas, calls for important requirements: low-cost, 

material sustainability, and environmental safety. Lithium-ion batteries are presumed to fail these 

requirements as their cost is estimated to increase by the growth of electric vehicle market, due to the 

resource limitations of lithium.   

   Owing to the large abundance of sodium, sodium-ion battery technology is emerging as a promising 

alternative to the lithium-ion battery for large-scale applications, where sustainability and cost-

effectiveness are more important criteria than gravimetric energy. Over the past few years, many efforts 

have been devoted to the development of sodium-ion batteries, including exploring new materials and 

novel chemistries and understanding the science underlying those systems. Layered oxides are the most 

studied and promising materials for the positive electrode in sodium-ion batteries; among them, P2-

Na0.67[Mn0.5Fe0.5]O2 has attracted much attention from the research community. P2-Na0.67[Mn0.5Fe0.5]O2 

is made from earth-abundant elements and delivers high specific energy, higher than 500 Wh.kg-1, 

which is comparable to LiFePO4 positive electrode material in lithium-ion batteries. Despite the 

advantages that P2-Na0.67[Mn0.5Fe0.5]O2 offers, instability in the ambient atmosphere and capacity 

fading are important challenges that hinder the commercial application of this material. Understanding 
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of those aging mechanisms and implementing tailored cation substitutions to mitigate them have been 

the objective of this thesis.  

   The instability of layered sodium transition metal oxides in ambient atmosphere is known. The study 

presented in Chapter 3 shows the important impact of exposure of P2-Na0.67[Mn0.5Fe0.5]O2 to air on its 

electrochemical performance; this issue was underestimated in the previously reported studies and is 

probably not limited to this particular material. An air exposed P2-Na0.67[Mn0.5Fe0.5]O2 electrode 

demonstrates lower capacity and higher voltage polarization compared to an air-protected one. The 

nature of the reactivity of this material with air is investigated by a combination of thermogravimetric 

analysis, mass spectrometry, diffraction techniques, electron microscopy, and electrochemical 

measurements. A mechanism is proposed to describe this reactivity; carbonate anions are formed upon 

the exposure of the material to CO2, H2O, and O2 in air at room temperature and are inserted into the 

lattice, balanced by oxidation of Mn3+ ions to Mn4+. The Ni-substituted materials, P2-

Na0.67[Mn0.5+yFe0.5-2yNiy]O2 (y = 0.1, 0.15) exhibit lower reactivity, as evidenced by the electrochemical 

performance.  

   The structural evolutions of P2-Na0.67[Mn0.5Fe0.5]O2 and P2-Na0.67[Mn0.65Fe0.20Ni0.15]O2 induced by 

electrochemical extraction and insertion of sodium ions upon charge and discharge are investigated by 

Operando X-ray diffraction measurements (Chapter 4). The materials undergo similar phase 

transitions: one at high voltage and one at low voltage. The phase emerging at high voltage is 

investigated by pair distribution function analysis and Mössbauer spectroscopy; the migration of 

transition metals out of MO2 layers into the interlayer space is proposed to occur at high voltage, 

induced by the stabilization of Fe4+ ions. The phase transitions are shown to have a detrimental impact 

on the electrochemical performance of the materials. Similar operando X-ray diffraction 

characterization, pair distribution function analysis, and electrochemical measurements are performed 

on P2-Na0.67[Mn0.66Fe0.20Cu0.14]O2 (Chapter 5). P2-Na0.67[Mn0.65Fe0.20Ni0.15]O2 outperforms the parent 



 

 v 

P2-Na0.67[Mn0.5Fe0.5]O2 and the Cu-substituted composition, owing to its increased structural stability 

upon cycling and higher specific capacity achieved by Ni2+/Ni4+ redox couple.  

   The redox processes involved in the cycling of P2-Na0.67[Mn0.66Fe0.20Cu0.14]O2 and 

Na0.67[Mn0.65Fe0.20Ni0.15]O2 are investigated by operando X-ray absorption spectroscopy. The evolution 

of the local structure of each transition metal upon charge and discharge is probed by the change in the 

X-ray absorption near-edge structure spectra collected at the transition metal K-edge. The data suggests 

the reversible contribution of oxide ions to the redox processes at high voltage.  
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Figure 3.8 The SEM images and XRD patterns of Na0.67[Mn0.5Fe0.5]O2 exposed to air for: a day 

showing no evidence of impurity (a), a couple of weeks showing small amounts of ribbon-like 

particles (b) (see arrows), a couple of months showing numerous ribbon-like particles(c); the 

corresponding diffraction patterns (d). ................................................................................................. 65 

Figure 3.9 High temperature X-ray diffraction under helium of Na0.67[Fe0.5Mn0.5]O2 exposed to air for 

months. Scan 1 was collected as the temperature was reached and scan 2 was collected after 50 

minutes at isothermal condition............................................................................................................ 66 

Figure 3.10 The effect of the reactivity of Na0.67[Mn0.5+yFe0.5-2yNiy]O2 a) y = 0, b) y = 0.1 and c) y = 

0.15 with air on charge/discharge profiles. The grey curves show the profiles for the air-protected 

electrodes for comparison..................................................................................................................... 67 

Figure 3.11 Charge/discharge profiles of Na0.67[Mn0.5Fe0.5]O2 annealed under vacuum at 600 °C (a) 

(for comparison), annealed under oxygen at 600 °C (b), exposed to wet argon at room temperature 

and dried at 90 °C under vacuum (c), and exposed to air for months, washed with distilled water, 

filtered, and dried at 200 ° under vacuum (d). ...................................................................................... 69 

Figure 3.12 Cycling data of air-exposed (a) and air-protected Na0.67[Mn0.5Fe0.5]O2 electrode, and the 

corresponding CO2 evolution signal measured by OEMS (c and d). The peaks marked by ↓ are due to 

sudden pressure change in the system and do not correspond to the sample. ...................................... 71 

Figure 4.1 Combined Rietveld refinement of neutron (a,c) and X-ray (b,d) powder diffraction data of 

Na0.67[Mn0.6Fe0.3Ni0.1]O2 (a,b) and Na0.67[Mn0.65Fe0.20Ni0.15]O2 (c,d). For each pattern, the observed 

data is shown in red, and the calculated pattern is shown in black, the difference curve is shown in 

blue, and the calculated Bragg reflections are shown in green............................................................. 76 

Figure 4.2 First two galvanostatic charge/discharge cycles and specific capacity of P2-

Na0.67[Mn0.5+yFe0.5-2yNi2y]O2 (y = 0, 0.1, 0.15) over 25 cycles at 13 mAh.g-1 (C/20). .......................... 78 

Figure 4.3 Operando XRD data recorded during galvanostatic cycling of Na0.67[Mn0.5Fe0.5]O2 at a rate 

of C/20 (left) along with illustration of the voltage profile of the cell (right) for the first cycle. The 

XRD patterns are color-coded with respect to the electrochemical profile on the right to reflect the 

structural composition of the positive electrode material. The sign × marks the diffraction peak from 

iron in the cell. ...................................................................................................................................... 81 

Figure 4.4 Operando XRD data recorded during galvanostatic cycling of Na0.67[Mn0.65Fe0.20Ni0.15]O2 

at a rate of C/20 (left) along with illustration of the voltage profile of the cell (right) for the first cycle. 

The XRD patterns are color-coded with respect to the electrochemical profile on the right to reflect 

the structural composition of the positive electrode material. .............................................................. 82 
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Figure 4.5 Phase evolution within Na0.67[Mn0.5Fe0.5]O2 (a) and Na0.67[Mn0.65Fe0.20Ni0.15]O2 (b) as a 

function of the sodium content during the first cycle. The sign * shows the starting point of cycling. 83 

Figure 4.6 Evolution of lattice parameters, in-plane (a),(c) and out of plane (b),(d) of 

Na0.67[Mn0.5Fe0.5]O2 (a),(b) and Na0.67[Mn0.65Fe0.20Ni0.15]O2 (c),(d) as a function of sodium content 

during the first discharge. .................................................................................................................... 84 

Figure 4.7 Representation of the bilayer models used to fit the PDF curves of Na0.1[Mn0.5Fe0.5]O2 and 

Na0.1[Mn0.65Fe0.20Ni0.15]O2. The fitting of the PDF data showed mitigated migration of transition 

metals into the tetrahedral sites of the interlayer space in the Ni-substituted sample. ......................... 87 

Figure 4.8  57Fe Mössbauer spectra of Nax[Mn0.5+yFe0.5-2yNiy]O2 pristine (a-c) and charged to 4.3 V (d-

f) for y = 0 (a and d), y = 0.1 (b and e), and y = 0.15 (c and f). Raw data is shown in black. Individual 

spectral components of Fe3+O6, Fe3+O4 and Fe4+O6 from fitting are shown in green, blue, and red. The 

sum of all spectral components results in the orange curves. .............................................................. 88 

Figure 4.9 Evolution of in-plane lattice parameters (left) and average interlayer distance (right) of 

Nax[Mn0.65Fe0.20Ni0.15]O2 as a function of the sodium content for the first cycle and the second charge.  

Parameters and phase domains are not labeled for clarity and can be found in Figure 4.6. The insets 

show expanded views of the stability domain of the P2 phase, highlighting the perfect overlap of the 

lattice parameters over the first and second charge. ............................................................................ 92 

Figure 4.10 The galvanostatic charge/discharge profile of Na0.67[Mn0.5Fe0.5]O2 and 

Na0.67[Mn0.65Fe0.20Ni0.15]O2 cycled at C/20 in different voltage windows. ........................................... 94 

Figure 4.11 Specific capacity (a,b) and specific energy (c,d) of Na0.67[Mn0.5Fe0.5]O2 (a,c) and 

Na0.67[Mn0.65Fe0.20Ni0.15]O2 (b,d) as a function of cycle number, cycled at C/20 within different 

voltage windows. Specific energy of Na0.67[Mn0.5Fe0.5]O2 and Na0.67[Mn0.65Fe0.20Ni0.15]O2 cycled at 

C/10 in the 2.1 - 4.0 V and 2.0 - 4.1 V window, respectively; energy fade rate for the latter is 0.13% 

per cycle (c).......................................................................................................................................... 95 

Figure 4.12 Coulombic efficiency of Na0.67[Mn0.5Fe0.5]O2 and Na0.67[Mn0.65Fe0.20Ni0.15]O2 cycled over 

P2- phase region and the full voltage range of 1.5 - 4.3 V at the rate of C/20. .................................... 96 

Figure 5.1 XRD pattern of pristine Na0.67[Mn0.65Fe0.2Cu0.15]O2 (blue), pristine 

Na0.67[Mn0.66Fe0.2Cu0.14]O2 (red), and aged Na0.67[Mn0.66Fe0.2Cu0.14]O2 in air for 3 months (black) (a). 

Symbol (↓) marks the CuO impurity peak. Schematic presentation of P2-NaxMO2 (b). SEM images of 

pristine Na0.67[Mn0.66Fe0.2Cu0.14]O2 (c) and  the sample aged in air for 3 weeks (d) and 3 months (e).
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Figure 5.2 Rietveld refinement of X-ray powder diffraction data of P2-Na2/3[Mn1/2Fe1/2]O2. The 

observed data is shown in red markers, the calculated pattern is shown in black, the difference curve 

is shown in blue, and the Bragg reflection are shown in green. The unit cell parameters and atomic 

parameters are presented in the inset of the figure. ............................................................................ 104 

Figure 5.3 Color map illustration of evolution of XRD pattern of Nax[Mn0.66Fe0.2Cu0.14]O2 recorded 

over the first discharge during galvanostatic cycling at a rate of C/20, along with voltage profile of the 

cell vs. time (a).  The hkl reflections corresponding to the P2 phase are marked on the map. XRD 

pattern of pristine Nax[Mn0.66Fe0.2Cu0.14]O2 is shown in black, at “Z” phase collected over full charge 

at 4.3 V is presented in red, and at P2 phase collected over full discharge at 1.5 V  is shown in blue 

(b). ...................................................................................................................................................... 106 

Figure 5.4 Phase evolution of Nax[Mn0.66Fe0.2Cu0.14]O2  vs. sodium content over the first cycle (a).  

sign shows the starting point of the cycling. Evolution of the average interlayer distance (b) and in-

plane lattice parameter of Nax[Mn0.66Fe0.2Cu0.14]O2 (c) as a function of sodium content during the first 

discharge. The abrupt decrease of average interlayer distance due to transition from P2 to “Z” phase is 

highlighted with the arrow.................................................................................................................. 108 

Figure 5.5 Comparison of experimental PDF data of chemically oxidized Nax[Mn0.66Fe0.20Cu0.14]O2 

with pristine P2 and chemically oxidized Z phase Nax[Mn0.5Fe0.5]O2 and chemically oxidized Z phase 

Nax[Mn0.65Fe0.20Ni0.15]O2 (a). The purple and red spheres represent the transition metals and oxygen 

atoms, and yellow and green polyhedral represent two different NaO6 polyhedra. Representation of 

interatomic distances d1, d2, d3, d4, and d5, corresponding to peak 1, peak 2, peak 3, peak 4, peak 5 in 

PDF data  (grey shading in part a) on pristine P2 structure and O2 stacking scheme of oxidized Z 

phase (b). ............................................................................................................................................ 110 

Figure 5.6 Schematic representation of bilayers in Z-Na0.1[Mn0.66Fe0.2Cu0.14]O2  (a). Fit of PDF curve 

of Z-Na0.1[Mn0.66Fe0.2Cu0.14]O2  in a orthorhombic 4×2×10 supercell (b). Comparison of experimental 

PDF curves of Z-Na0.1[Mn0.66Fe0.2Cu0.14]O2 and Z-Na0.1[Mn0.65Fe0.20Ni0.15]O2 within the inter-atomic 

distance range of 6 - 20 Å................................................................................................................... 113 

Figure 5.7 The galvanostatic charge/discharge profiles at the cycling a rate of C/20 (a,b) and voltage 

curves vs. discharge specific capacity (c,d) of Na0.67[Mn0.66Fe0.2Cu0.14]O2  cycled within the voltage 

range of 1.5 - 4.3 V (a,c) and 2.1 - 4.1 V (b,d). Specific energy vs. the cycle number of 

Na0.67[Mn0.66Fe0.2Cu0.14]O2 cycled within the voltage window of 1.5 - 4.3 V at a rate of C/20 (filled 

circles) (e) and cycled within the voltage range of 2.1 - 4.1 V at different rates (hollow circles). .... 116 
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Chapter 1 

Introduction 

1.1 Overview 

Electrical energy generation worldwide is currently estimated above 20 trillion kilowatt-hours and is 

predicted to reach 39 trillion kilowatt-hours in 2040.1 Fossil fuels supply the majority of the electrical 

energy today and are expected to make a major contribution to electrical energy generation for at least 

next 25 years (Figure 1.1). The growing demand for energy combined with concerns about the 

environmental consequences of the use of fossil fuels and their resource constraints have incited the 

importance of the development of alternative sources of energy. Solar and wind energies are the 

cleanest and the most abundant sources of renewable energies. The capacities of power generation from 

these sources have expanded significantly over the past decade. Solar photovoltaic (PV) power capacity 

grew remarkably from 2.6 GW in 2004 to 177 GW in 2014, and the total installed capacity of wind 

power increased from 48 GW to 370 GW over the same period.2 Further progress in the share of solar 

Figure 1.1 World net electricity generation by energy source, 

2010-2040 (trillion kilowatt-hours). Adapted from reference 1. 
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and wind energy sources in the energy supply mix requires the development of large-scale, efficient 

energy storage systems due to the intermittent nature of renewable sources of energy.  

Currently, pumped hydroelectric systems dominate large-scale energy storage.3 However, 

electrochemical energy storage (EES) technologies have emerged as promising candidates owing to 

many breakthroughs in the field. Batteries, in particular, represent a feasible energy storage technology 

for the integration of renewable resources into the grid and storage and management of the energy, such 

as load leveling. Off-grid, batteries can be used to store the energy produced by local solar plants to 

supply energy for remote areas. Lithium-ion (Li-ion), high-temperature sodium sulfur (Na/S), and lead 

acid (Pb-acid) batteries are dominant among commercially available electrochemical energy storage 

technologies; Li-ion battery (LIB) is preeminent. Li-ion batteries are the major power supply utilized 

in portable electronic devices, hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles 

(PHEVs), and electric vehicles (EVs). The application of LIBs is expected to expand with the forecasted 

growth of the electric vehicle market. Nonetheless, increased demand for LIBs has raised concerns 

about the resource availability and cost increase of lithium. The potential for the cost of lithium to 

increase makes currently expensive lithium ion batteries less affordable for large-scale applications.  

   Sodium ion battery (NIB) technology has emerged as a promising candidate for LIB for large-scale 

applications, where cost is a more important criterion than the volumetric and gravimetric energy 

density, owing to the high abundance and low cost of sodium. The amount of sodium in the earth’s 

crust is over 1000 times higher than that of lithium.4 Sodium is also found in vast amounts in the ocean. 

Moreover, aluminum foil can be used as the current collector at the negative electrode since sodium 

does not alloy with it, whereas copper current collectors are used for LIBs because lithium alloys with 

aluminum. This feature is advantageous regarding both the cost and energy density. Sodium is the 

second-lightest alkali element, after lithium. The redox potential of sodium (Eº(Na+/Na) = -2.71 V versus 

the standard hydrogen electrode) is only 0.3 V above that of lithium, resulting in a small drop in energy 
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compared to the Li+/Li redox. The lower potential of sodium host positive electrodes is advantageous 

from a different perspective; opportunities are available to explore materials whose lithium analogues 

have potentials higher than the stability limits of many conventional electrolytes.   

   The electrochemical energy storage based on the sodium redox chemistry has a long history. The 

discovery of the high-temperature solid-state sodium ionic conductor β”-alumina5 about fifty years ago 

was a breakthrough in the field of solid-state ionic conductors and sodium electrochemistry. The 

material was used as a separator/electrolyte in high-temperature Na/S batteries, which were 

commercialized in 2003 and are used for grid storage.6 The Na/S cell operates at about 300 ºC at which 

both sulfur and sodium are molten and the ionic conduction of β”-alumina is enhanced. Safety concerns 

and the costly high-temperature requirements of the Na/S technology have increased interest in the 

development of lower temperature operating batteries. Natrium (sodium) super ion conductor 

(NASICON) types of materials, NaxM2(XO4)3; X = P5+, Si4+, S6+, Mo6+, As5+, have gained much 

attention for the solid-state electrolyte application in sodium batteries that operate at lower temperatures 

between 110-130 ºC.7 Room temperature all solid state sodium batteries based on sulfide glass-ceramics 

have shown promise for further exploration.8 

   Sodium batteries based on an intercalation material positive electrode, a sodium metal negative 

electrode, and a non-aqueous electrolyte were explored in the mid-1980s9,10 along with lithium 

intercalation batteries. However, the higher energy density of lithium ion batteries (LIBs) and their 

commercialization in the 1990s shifted the focus of rechargeable batteries research to this technology. 

The need for a cost-effective and sustainable alternative to the LIB technology, along with the discovery 

of promising new chemistry of sodium intercalation materials, has boosted research interest in Na-ion 

batteries. The fundamental principles of the Na-ion battery technology are identical to those of Li-ion 

batteries. The structures investigated for Li-ion batteries are suitable starting points for exploring 

electrode materials for their sodium analogues even though novel chemistries have been found.11-13 



 

 4 

Because of the importance of the knowledge developed on LIBs for NIB research, next section presents 

a brief introduction to the working mechanism and principles of LIBs. It is followed by an introduction 

to NIBs focusing on layered oxide positive electrode materials, which are investigated in the study 

presented in this thesis.  

1.2 Li-Ion Batteries (LIBs) 

A lithium ion battery cell works based on insertion and extraction of lithium ions between a positive 

electrode and a negative electrode through an electrolyte (Figure 1.2). A battery is composed of 

electrochemical cells connected in parallel or in series to provide the desired power and voltage. Upon 

discharge, lithium ions shuttle from the negative electrode to the positive electrode through the 

electrolyte, whereas electrons spontaneously flow in the same direction through an external circuit. The 

driving force for this process is the difference in the chemical potential of the electrode materials with 

respect to Li. Upon charge, the lithium ions are deintercalated from the positive electrode and move to 

the negative electrode through the electrolyte by applying a voltage higher than the electrochemical 

potential difference between the negative electrode and positive electrode. The electrolyte is 

electronically insulating and prevents direct flow of electrons between the electrodes. A thin 

electronically insulating porous membrane, which is permeable to Li+, separates the positive and 

negative electrodes and prevents a short circuit. Current collectors provide electronic conduction to and 

from the electrodes. An aluminum current collector is typically used for the positive electrode, and a 

copper current collector is used for the negative electrode due to the reactivity of lithium with 

aluminum. The positive and negative electrodes are composite materials made from a mixture of the 

active material, an additive carbon, and a binder. The additive carbon increases the electronic 

conductivity, and the binder enhances the contact between the particles. 
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The electrochemical redox reactions in a LiCoO2/graphite cell upon charge can be described as 

follows: 

Positive electrode:               LiCoO2 → Li1−xCoO2 + xLi+ + xe− 

 

(1.1)          

 

 

Negative electrode:                  C6 + xLi+ + xe− → LixC6 (1.2)          

 

 

where during discharge, the reactions occur in the opposite direction. The application of LiCoO2 as an 

intercalation material in an electrochemical cell with the lithium metal negative electrode was first 

introduced by Goodenough et al. in 1980.14 The application of lithium metal in batteries was eventually 

rejected due to safety concerns. Lithium tends to form a dendritic structure on the metal surface after 

repeated lithium plating during charge after several cycles. Lithium dendrites actively reduce the 

electrolyte and may penetrate into the separator and reach the positive electrode leading to a short 

circuit, overheating of the cell, and a fire. The introduction of much safer carbonaceous materials as the 

negative electrode active material provided a great leap forward in the development of Li-ion batteries. 

A LiCoO2/carbon cell with a nonaqueous electrolyte (1M LiPF6 in a 1:1 (by volume) mixture of 

propylene carbonate and 1,2-dimethoxyethane) was commercialized first by Sony Corporation in the 

Figure 1.2 Schematic representation of a Li-ion battery cell. 



 

 6 

1990s.15 The positive electrode materials used in the majority of current generation of electric vehicles 

are either from the family of oxides, including layered and spinel structures, or olivine structure: layered 

Li1+xNi1-y-zMnyCozO2 (NMC) in Daimler Smart EV; layered LiNi1-x-yCoxAlyO2 (NCA) in Tesla Model 

S and BMW Active Hybrid 7, a blend of layered NMC with spinel LiMn2O4 (LMO) in Chevrolet Volt, 

BMW i3, and Nissan Leaf; olivine LiFePO4 in BMW Active Hybrid 3 and 5 series, Fisker Karma, and 

Chevrolet Spark.16 The energy density, power, cycle life, safety, and cost are the critical criteria based 

on which a battery system is evaluated. A key limiting factor of LIBs is the positive electrode material. 

The practical specific capacity and the average operating voltage of three important classes of positive 

electrode materials for LIB are as follows: 170 mAh.g-1 and 3.8 V for Li[Ni1/3Mn1/3Co1/3]O2, 190 

mAh.g-1 and 3.8 V for Li[Ni0.8Co0.15Al0.05]O2, 120 mAh.g-1 and 4.7 V for Li[Mn3/2Ni1/2]O4, 160 mAh.g-

1 and 3.45 for LiFePO4.17,18 In general, positive electrode materials that contain polyanionic groups, i.e., 

(PO4)3-, (SiO4)4-, and (SO4)2-, provide superior structural and thermal stability, therefore long cycling 

life and safety, to the layered oxide host materials. The major drawback with olivine LiMPO4 (M = Fe, 

Mn) materials is their poor electronic and ionic conductivity, in addition to low volumetric energy 

density. Particle size reduction, carbon coating, and aliovalent cation doping are strategies that 

remarkably enhance the ionic and electronic conduction of olivine LiMPO4.19,20 

   In general, aging mechanisms in each particular Li-ion cell is influenced by the nature of the cell 

components, e.g., active materials, electrode design, electrolyte composition, etc., and depend on 

cycling conditions, and state of the charge. The dominant aging mechanisms of a graphite/layered 

lithium metal oxide cell with an organic electrolyte can be summarized as follows:21 

Negative electrode side: 

- Reductive decomposition of the electrolyte at the negative electrode/electrolyte interface at the 

charged state of the electrode results in the formation of a protective layer, which is so-called solid-
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electrolyte interphase (SEI). The protective SEI layer decreases further electrolyte decomposition and 

is permeable to lithium ions, but not electrolyte components and electrons. Irreversible consumption of 

lithium ions due to SEI formation, however, causes irreversible capacity loss. SEI layer formation is 

usually accompanied by the release of gaseous electrolyte decomposition products, which raises safety 

concerns. Electrolyte decomposition and SEI formation occur mainly upon the first few cycles. The 

SEI layer grows over the following cycles causing an increase in the cell impedance. Elevated 

temperatures accelerate the growth of the SEI layer upon cycling and storage. Also, the reaction of the 

electrolyte salt LiFeP6 with trace water forms HF that makes a destructive impact on the SEI layer.  

- At low temperatures and high current rates, lithium plating might occur at the negative electrode 

surface. The growth of lithium dendrites and the reaction of metallic lithium with electrolyte are the 

consequences. 

- Graphite exfoliation and graphite particles crack might occur due to the co-intercalation of solvent 

molecules and contribute to electrode aging. 

- Mechanical or electronic contact loss among different components of the composite electrode, e.g., 

current collector, active material, binder, is another origin of electrode degradation. Important sources 

of the contact loss include volume change of the active material, reaction of the negative electrode with 

fluorine-containing materials in the cell (such as binder) that forms LiF, and corrosion of the current 

collector.  

   Positive electrode side: 

Important aging mechanisms occurring at the positive electrode side include: 

- Phase transitions and structural evolution of the active material 

- Chemical decomposition and dissolution reactions 
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- Oxidation of the electrolyte and formation of surface films  

- Degradation of composite electrode components (binder, conductor additive, and current collector) 

- Interaction of the degradation products with the negative electrode 

Chemical composition modification (cation substitution), surface coating, and the use of electrolyte 

additives are important strategies to address these challenges.19  

1.3 Na-Ion Batteries (NIBs) 

The operation principle of a Na-ion battery cell is similar to its Li-ion analogue; sodium ions are 

shuttled between the positive and negative electrodes through an electrolyte, in parallel with the transfer 

of electrons through an external circuit. A common electrolyte is comprised of a sodium salt, e.g., 

NaClO4 or NaPF6, in an organic solvent, such as propylene carbonate (PC). Application of electrolyte 

additives, fluorinated ethylene carbonate (FEC) in particular, was found critical for a satisfactory 

capacity retention, owing to the enhanced passivation at the negative electrode and the electrolyte 

interface.22,23,24 The negative electrode is one of the most troublesome components of the NIBs. Sodium 

metal cannot be employed as the negative electrode in a full cell because of safety concerns and unstable 

passivation in most organic electrolytes.25 Nevertheless, sodium ions do not intercalate significantly 

into graphite. Hard carbon (disordered carbon) is one of the most studied materials for the negative 

electrode in NIBs.23-26 The electrochemical potential of sodium inserted hard carbon is close to that of 

sodium metal itself. Na ions fill the porosity in the disordered hard carbon structure rather than 

intercalate between graphitic layers.27  

   The development of sodium ion batteries was sought after in the 1980s, along with lithium-ion 

batteries.  Shortly after the report of the electrochemical intercalation of lithium ions into TiS2 and its 

application as the basis of a new battery system by Whittingham in 1976,28 electrochemical intercalation 
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of sodium ions in a NaTiS2/Na cell at room temperature was demonstrated in 1980.29 Several polytypes 

of layered structure NaxCoO2 (0.5 ≤ x ≤ 1) were examined as the positive electrode in the sodium cell 

in 1981,30 following the report of the electrochemical performance of LiCoO2 in a lithium cell in 1980.14 

Li-ion batteries dominated the research for electrochemical energy storage in the 1990s owing to their 

higher potential and lower mass, and therefore, higher specific energy compared to their sodium 

counterpart. Figure 1.3 shows a comparison of the charge and discharge profile of Li/LiCoO2 and 

Na/NaCoO2 cells.4 LiCoO2 and NaCoO2 adopt similar layered structure made up of edge-sharing CoO6 

layers accommodating lithium or sodium octahedra within the interlayer space. However, the operating 

voltage of the Na/NaCoO2 cell is much lower (> 1.0 V) than the voltage of the Li/LiCoO2 cell at the end 

of discharge. Consequently, the available energy density of NaCoO2 as a positive electrode is about 

30% lower than that of LiCoO2.4 Also, there are several flat and sloping regions on the voltage profile 

of NaCoO2 indicating the structural evolution of the material over charge/discharge. There are no 

reports of direct synthesis of sodium analogues of spinel LiMn2O4 and olivine LiFePO4 positive 

electrode materials, to the best of the author’s knowledge. Sodium manganese oxide cannot be prepared 

in the spinel structure due to the unavailability of tetrahedral sites for sodium ions. NaFePO4 crystallizes 

Figure 1.3  Charge/discharge curves of Li/LiCoO2 (blue) and Na/NaCoO2 (red) cells, and a 

schematic illustration of LiCoO2 and NaCoO2 crystal structure. Adapted from Ref. 4.  
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in the more thermodynamically stable maricite structure, which has no open channels for the diffusion 

of Na ions.31,32 These examples indicate the importance of the discovery of new materials with different 

chemistry compared to that of the Li system to realize the commercialization of Na-ion batteries. 

Substitution of lithium by sodium enables the access to redox couples, such as NaFeO2
11,12 and 

NaCrO2
13, that are inactive in the corresponding lithium metal oxides. Electrochemically active 

materials based on Fe3+/Fe4+ redox, which is unique to the Na system, are promising candidates to 

explore for high energy and low-cost positive electrodes in sodium-ion batteries. The size difference 

between sodium ions and lithium ions provides the opportunity of various material structures. Owing 

to the large mismatch between the ionic radii of sodium ions and transition metal ions, sodium layered 

oxides with different stacking schemes are synthesized for many transition metals.33 Polyanionic 

compounds with open-framework structures, thermal stability, and tunable potential (by modifying the 

local environment) open another avenue of opportunity for the electrode materials research.34,35 Larger 

ionic radius of Na+ compared to that of Li+ provides other advantages for NIBs over LIBs:35 i) relatively 

lower energy for the sodium ion desolvation process in polar solvents (which is probably at the origin 

of higher ion conductivity of Na+ electrolytes compared to Li+ electrolytes)36, and ii) relatively lower 

activation energy of Na+ diffusion compared to that of Li+ calculated for layered structure ACoO2 (A = 

Li, Na).37   

In spite of all the opportunities and the promise that room temperature NIBs offer for sustainable and 

efficient energy storage, several barriers should be overcome to accomplish NIBs commercialization. 

One important challenge is insufficient cycle life, which requires the design of new materials for the 

positive and negative electrodes and the electrolyte. Research in NIBs has significantly increased over 

the last few years. Many efforts have been devoted to addressing the challenges with this technology. 

This section is followed by a brief review of some important knowledge achieved from the studies 
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performed over the last few years on manganese and iron-based sodium metal oxide materials, which 

are the focus of the study presented in this thesis. 

1.4 Layered Sodium Transition-Metal Oxides for Positive Electrode Materials in 

NIBs 

1.4.1 Classification of Layered Oxides 

Layered NaxMO2 and LixMO2 (M: transition metal, x ≤ 1) are built up of layers of edge-sharing MO6 

octahedra in the ab-plane. Various stacking orientations of MO2 layers along the c-axis result in 

polytypism. Layered sodium transition metal oxides commonly crystallize in two polytypes: P2 and O3 

(Figure 1.4), according to the Delmas’s notation.38 In this notation, P and O represent the trigonal 

prismatic and octahedral sites, respectively, at which sodium ions are accommodated between MO2 

layers. The number (2, 3, etc.) following the sodium site coordination (O, P) indicates the number of 

MO2 layers in each unit cell, e.g., two MO2 layers in P2 and three MO2 layers in O3. 

   The P2-type phase is empirically known to be synthesized upon sodium deficiency condition 

(NaxMO2, x < 1). An ideal P2-type phase (ABBA oxygen stacking) is described with the space group 

of P63/mmc. An ideal O3 phase with the space group 𝑹𝟑̅𝒎 consists of a cubic close packed (ccp) 

oxygen array (ABCABC stacking) which accommodates alternate layers of M and Na, due to their 

different ionic radii. A prime symbol () in the Delmas’s nomenclature represents an in-plane distortion, 

such as monoclinic distortion in O3-NaMnO2 (space group C2/m)39 and orthorhombic distortion in 

P2-NaxMnO2 (Cmcm space group)40. Electrochemical extraction of sodium ions form O3 and P2-type 

phases (and also insertion of sodium ions into the P2 phase) results in phase transitions.41-43 When 

sodium ions are partially extracted from an O3-type phase, prismatic sites could be energetically 

favored for sodium ion accommodation. Prismatic sites can be realized by the gliding of MO2 slabs, 
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without breaking metal-oxygen bonds, resulting in the formation of a P3-type phase (Figure 1.4). The 

P3-type phase is possible to be directly synthesized by a solid-state reaction method.44 Electrochemical 

extraction of sodium ions from a P2-type phase can derive a transition to the O2-type phase, which is 

achieved by the gliding of MO2 layers.43 The oxygen array in O2-type structure can be described as an 

alternate cubic close packed and hexagonal close packed stacking. The obtained phases of synthesized 

layered sodium metal oxides rely on the synthesis conditions, such as the precursor compositions and 

preparation method (grinding and pelletizing), heating temperature, heating atmosphere, and cooling 

rate, as demonstrated by Ceder et al.42 and Obrovac et al.45 

Figure 1.4 The classification of layered sodium transition metal oxides. 
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In an O3-type structure, sodium ions migrate through the interstitial tetrahedral sites that share faces 

with the MO6 octahedra (Figure 1.5)4 because of high activation energy required for a direct ion-

hopping from one octahedral site to the neighboring one. Nevertheless, in a P2-type structure, sodium 

ions migrate from one prismatic site to the adjacent one, leading to a smaller activation barrier due to 

the smaller repulsive interactions between the sodium ion and the cations in the adjacent MO2 layers. 

This difference in sodium ion migration paths is probably the origin of the higher ionic conductivity of 

P2-type structure materials compared to that of O3-type structure materials at the same sodium/vacancy 

concentrations.46 It should be noted that phase transitions (such as O3-P3 or P2-O2) change the ion 

transport mechanism. The calculated activation energy for sodium ion transport in Nax[Ni1/3Mn2/3]O2 

(x < 1) was reported to increase by more than 100 meV upon the P2-O2 phase transition.47  

1.4.2 Recent Advances in Manganese and Iron-Based Oxides 

Solid solutions of layered structure NaxMnO2, NaFeO2, NaNiO2, and NaxCoO2 (x ≤ 1) have been 

extensively investigated to design positive electrode materials with high energy density and long cycle 

life for NIBs.33 Low cost and sustainability, which are the major motivations for the development of 

Figure 1.5 Schematic illustration of sodium ion transport path in O3 and P2 type structures. 

Reproduced from Ref. 4.  
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NIBs, should be considered for the choice of electrode materials. Therefore, low cobalt content and 

especially manganese and iron-rich materials have gained much attention from the NIBs research 

community.  

   O3-NaFeO2 is electrochemically active,11 contrary to its lithium analogue where oxygen evolution is 

believed to be the favorable process at high potentials.48 However, the reversibility of the reaction 

(Fe3+/4+ redox in O3-NaFeO2) depends on the cutoff voltage because an irreversible phase transition 

occurs at high voltage. This deleterious structural evolution is characterized by diffraction and 

spectroscopy methods4. Excellent reversibility of the electrode performance is achieved when the cutoff 

voltage is limited to 3.4 V, at the expense of the specific energy.  

   Yamada et al. 49 investigated the effect of Ni substitution on the electronic and electrochemical 

properties of O3-NaFeO2. Solid solutions of O3-NaFeO2 and NaNiO2 were formed only for a narrow 

compositional range, 0.5 ≤ y ≤ 0.7 in Na[Fe1-yNiy]O2. The electrochemical performance of                      

O3-Na[Fe1-yNiy]O2 (y = 0, 0.5, 0.7) showed that substituting iron with nickel ions results in enhanced 

discharge capacity and improved cyclability (Figure 1.6). X-ray diffraction and charge/discharge 

profile revealed that sodium deintercalation from Nax[Fe0.3Ni0.7]O2 progresses through a solid-solution 

process for most of the cycling range in contrast to the two-phase process in NaxFeO2. It is proposed 

that the improved cycling stability in the Ni-substituted electrode materials originates from the large 

contribution of Ni4+/3+ redox couple to the capacity and decreased formation of Jahn-Teller active Fe4+ 

ions. 

   Layered structure sodium manganese oxide is reported to crystallize in O3,39,50 P2,51 and P239,52 type 

structures by controlling the synthesis conditions. O3-NaMnO2 
50 delivers a high specific capacity          

≈ 185 mAh.g-1 when cycled between 2 - 3.8 V at a rate of C/10. Its pronounced stepwise voltage profile 
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is indicative of structural transitions during charge/discharge. These structural changes limit the cycling 

life and rate capability of the electrode. Similar behavior is observed for P2-NaxMnO2.4  

 

   There is no report of the synthesis of P2-type NaxFeO2, to the best of the author’s knowledge. 

However, partially substituted composition, P2-Na2/3[Mn1/2Fe1/2]O2, which is one of the most promising 

positive electrode materials for Na-ion batteries in terms of both sustainability and the electrochemical 

performance, was synthesized and studied first by Komaba et al.53 In addition to the low cost of 

manganese and iron, P2-Na2/3[Mn1/2Fe1/2]O2 delivers a high specific capacity about 190 mAh.g-1 and a 

specific energy over 520 Wh.kg-1. This is comparable to LiFePO4, which exhibits a practical positive 

electrode specific energy of ≈ 530 Wh.kg-1. The crystallographic density of P2-Na2/3[Mn1/2Fe1/2]O2 (4.1 

g.cm-3) is higher than that of olivine LiFePO4 (3.6 g.cm-3), and carbon coating and particle size reduction 

Figure 1.6 Galvanostatic charge/discharge curves of O3-Na[Fe1-yNiy]O2 (y = 0, 0.5, 0.7) 

cycled in the voltage range of 2 - 3.8 V at a rate of 30 mA.g-1. Reproduced from Ref. 49. 
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are not necessary for the electrochemical activity of P2-Na2/3[Mn1/2Fe1/2]O2, contrary to LiFePO4. The 

P2-Na2/3[Mn1/2Fe1/2]O2/Na cell retains about 70% of its reversible capacity when the discharge rate is 

increased from C/20 to 1C. The superior rate capability of P2-Na2/3[Mn1/2Fe1/2]O2 compared to that of 

many other layered transition metal oxides is correlated to its smooth charge/discharge voltage profile, 

which suggests a facile de/intercalation reaction. Pronounced structural transitions dominate in 

NaxMnO2
50 and NaxCoO2

54, for example, and are limiting factors for the high rate performance. The 

galvanostatic charge/discharge voltage profile of Na0.7CoO2
54 shows potential plateaus, indicative of 

biphasic regions, and nine potential drops that are related to sodium/vacancy ordering (Figure 1.7).  

     In spite of much promise that P2-Na2/3[Mn1/2Fe1/2]O2 offers as the positive electrode material for 

NIBs, there are three important drawbacks associated with this material. First, it is unstable in ambient 

atmosphere, similar to many other sodium host oxide materials. A study55 of the reactivity of P2- 

Figure 1.7 Galvanostatic cycling of Na0.7CoO2, 1st discharge (red dot), 1st charge (orange line), 2nd 

discharge (black line) and shifted 2nd discharge (blue line) in order to compensate the effect of 

electrolyte decomposition and match the first discharge. The crystal structure of Na0.7CoO2 is 

schematically illustrated in the inset. Reproduced from Ref. 54. 
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Na2/3[Mn1/2Fe1/2]O2 with the atmosphere and the effect of this reactivity on the electrochemical 

properties of the material are described in Chapter 3. The second challenge with this material is its 

cyclability. P2-Na2/3[Mn1/2Fe1/2]O2 retains over 75% of its initial capacity after 30 cycles. In the first 

study of this material,53 the capacity fading was attributed to a transition from the P2 phase to a low 

crystalline new phase upon charge. Due to the low crystallinity of the new phase achieved at high 

voltages, the structure of the phase was not solved. However, an OP4-type structure, consisting of a 

mixture of O and P-type of stacking, was proposed based on the indexation of the X-ray diffraction 

pattern. The phase transitions of Na2/3[Mn1/2Fe1/2]O2 upon galvanostatic charge/discharge were studied 

by operando XRD analysis in our research group56 (presented in Chapter 4) and some other groups57,58 

in parallel. A reversible transition from the hexagonal P2 to the orthorhombic P2-type structure is 

induced by the insertion of sodium ions into Nax[Mn1/2Fe1/2]O2 (x > 0.8), originating from the 

cooperative distortion of Jahn-Teller active Mn3+ ions. Another challenge with P2- Na2/3[Mn1/2Fe1/2]O2, 

or any other P2-type phase in general, is sodium deficiency for application in a full Na-ion cell. Adding 

some sources of sodium ions, such as Na2NiO2
59

 (which electrochemically decomposes to sodium and 

NaNiO2) and NaN3
60

 (which electrochemically decomposes to sodium and N2 gas), to the positive 

electrode is reported to be a beneficial approach to overcome the sodium deficiency, in general due to 

Na+ loss in the formation of passivating solid-electrolyte-interphase (SEI), and specially for P2-

NaxMO2 electrode materials (x < 1). O3-type Na[Mn1/2Fe1/2]O2 was also synthesized by controlling the 

ratio of sodium to the transition metals in the precursors.53  The O3-type material, however, showed a 

larger voltage polarization and a lower specific capacity compared to the P2-type one.  

   As demonstrated by X-ray absorption spectroscopy and Mössbauer spectroscopy, the Fe3+/4+ redox 

couple is active in the desodiation process of P2-Na2/3[Mn1/2Fe1/2]O2.53 The fitting of the Mössbauer 

spectrum of the sample charged to 4.5 V revealed oxidation of about 32% of iron ions. However, 

assuming that all the manganese ions are oxidized to tetravalent state in the charged sample (4.2 V, x 
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= 0.13 in Nax[Mn1/2Fe1/2]O2), more than 70% of iron ions are expected to be oxidized based on the 

charge balance (Na0.13[Mn+4
0.5Fe+4

0.37Fe+3
0.13]O2). Much less concentration of oxidized iron ions 

detected by the Mössbauer spectroscopy raised questions about the nature of charge compensation 

mechanisms in this system. This question is addressed in the research presented in this thesis (Chapter 

4).   

   Following the initial report of the auspicious properties of P2-Na2/3[Mn1/2Fe1/2]O2,53 many efforts 

have been devoted to exploring various compositions of P2 and O3-type Nax[MnyFe1-y]O2
61-65 and their 

solid solutions with other NaxMO2 (M = Ti, Co, Ni, Cu) oxides41,66-70 to improve their electrochemical 

performance, in particular stability. Rojo et al.66 reported an excellent capacity retention of 87% over 

300 cycles for Mn-rich P2-phase Na2/3[Mn0.8Fe0.1Ti0.1]O2 cycled within the voltage range of 4.0 - 2.0 V 

at the 1C rate (the average 0.04 % capacity degradation per cycle) (Figure 1.8). An average 0.1% 

capacity degradation on each cycle was observed for the cycling of that material at the same conditions, 

but at the lower cycling rate of C/10. The improvement of the capacity retention by increasing the 

cycling rate indicates that the degradation originates from the interaction of the electrode and 

Figure 1.8 Charge/discharge profile of pristine P2-phase Na2/3[Mn0.8Fe0.1Ti0.1]O2 electrode (a) and 

moisture exposed electrode (b) cycled within the voltage range of 4.0 - 2.0 V at 1C for 300 cycles. 

Reproduced from Ref. 66. 
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electrolyte, in addition to the electrode aging. A moisture exposed electrode showed lower capacity and 

faster degradation under the same conditions and maintained 70% of discharge capacity after 300 cycles 

at the 1C cycling rate (Figure 1.8). It is proposed that only manganese is electrochemically active in 

the charge/discharge processes, and electrochemically inactive Ti4+ and Fe3+ ions enhance the structural 

stability of the oxide layer and dilute the deleterious effect of Jahn-Teller distortion induced by Mn3+ 

ions. 

Ceder et al.67 have reported the highest rate capability for P2-Na2/3[Mn1/2Fe1/4Co1/4]O2 among all the 

layered oxide electrode materials for NIBs. P2-Na2/3[Mn1/2Fe1/4Co1/4]O2 delivers a high specific 

capacity of 195 mAh.g-1 at the first discharge when cycled between 1.5 and 4.5 V at the C/10 rate. 

When the cycling rate is increased to 30C, a specific capacity of 130 mAh.g-1 is achieved, over a slightly 

extended voltage window (Figure 1.9). The excellent rate capability is attributed to the effect of 

transition metal mixing in the layered material that perturbs the transition metal ordering and 

sodium/vacancy ordering. The structural evolution of the material over the charge/discharge at the C/50 

rate was investigated by operando XRD analysis. A reversible transition from the pristine P2-type 

structure to a new phase similar to the high voltage Nax[Mn1/2Fe1/2]O2 phase was observed upon charge. 

Figure 1.9 First galvanostatic charge/discharge curves of P2-Na2/3[Mn1/2Fe1/4Co1/4]O2 

cycled at different current rates. Reproduced from Ref. 67. 
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The P2-type structure was preserved at voltages as low as 1.5 V, contrary to sodiated Nax[Mn1/2Fe1/2]O2. 

This extended range of the P2 single phase domain in the Co-substituted composition is achieved owing 

to the reduction of Co3+ to Co2+ instead of Mn4+ to the Jahn-Teller active Mn3+ ions over the discharge, 

as shown by electron energy loss spectroscopy. The large Na+ diffusivity in the wide P2 single phase 

domain contributes significantly to the high rate performance of P2-Na2/3[Mn1/2Fe1/4Co1/4]O2. Limiting 

the high cutoff voltage in order to avoid the phase transition was demonstrated to enhance the capacity 

retention of the cell cycled at a low current rate (C/10). The cyclability of P2-Na2/3[Mn1/2Fe1/4Co1/4]O2 

at high current rates was not evaluated in this research.    

   Ceder et al.41 investigated a quaternary layered material O3-Na[Mn1/4Fe1/4Co1/4Ni1/4]O2 with a high 

specific energy 578 Wh.kg-1 as the positive electrode for NIBs. X-ray absorption spectroscopy (XAS) 

measurements revealed the valence states of the material’s constituent transition metal cations as 

follows: Mn4+, Fe3+, Co3+, and Ni2+, similar to their valence states in O3-Na[Ni1/2Mn1/2]O2
71 and O3-

Na[Fe1/2Co1/2]O2
72. Three reversible phase transitions (to new hexagonal phases) over the first 

charge/discharge were detected by an operando XRD experiment for Nax[Mn1/4Fe1/4Co1/4Ni1/4]O2, 

Figure 1.10 The capacity retention of O3-Na[Mn1/4Fe1/4Co1/4Ni1/4]O2 (MFCN) cycled between 1.9 

- 4.3 V, O3-Na[Ni1/2Mn1/2]O2 (NM) and O3-Na[Fe1/2Co1/2]O2 (FC) cycled between 1.9 - 4.2V at 

the C/10 rate. Reproduced from Ref. 41. 
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explaining its moderate capacity retention. The capacity retention of this material is, however, much 

superior to those of binary compositions O3-Na[Ni1/2Mn1/2]O2 and O3-Na[Fe1/2Co1/2]O2 at comparable 

cycling voltage ranges (Figure 1.10). An important feature in the structural evolution of 

Nax[Mn1/4Fe1/4Co1/4Ni1/4]O2 is that no monoclinic distortion was observed for this composition upon 

charge/discharge, contrary to Nax[Ni1/2Mn1/2]O2.
71

 It is proposed that the suppression of monoclinic 

distortion in the quaternary composition indicates the absence of sodium ordering. The sodium disorder 

originates from transition metals disorder and explains the improved capacity retention of O3-

Na[Mn1/4Fe1/4Co1/4Ni1/4]O2 compared to that of O3-Na[Ni1/2Mn1/2]O2.  

   Pursuing electrode materials with stabilities acceptable for practical Na-ion batteries, Meng et al.73 

conducted a comprehensive study on the effect of Li-substitution on the structural and electrochemical 

properties of a P2 structured binary system, Nax[LiyNizMn1-y-z]O2 (0 < x,y,z < 1). A smooth voltage 

profile over the entire range of cycling is exhibited by P2-Na0.8[Li0.12Ni0.22Mn0.66]O2, indicating sodium 

de/intercalation through a solid solution process, in contrast to its structural analogue, 

Na2/3[Ni1/3Mn2/3]O2,43 which undergoes a P2-O2 phase transition at high voltages. The cell delivers 115 

mAh.g-1 capacity between 2.0 - 4.4 V, with excellent retention (91% after 50 cycles) and rate capability. 

Operando synchrotron x-ray diffraction showed no phase transition in the structure upon charge up to 

4.4 V (Figure 1.11), although the broadening of the peaks deep in charge implies emerging of local 

stacking faults. Delay in the occurrence of the P2-O2 phase transition in the Li-substituted composition 

is explained by the presence of more Na+ ions in the structure (including at the charged state) because 

of the substitution of low valence Li ions (Na0.8[LiyM1-y]O2 vs. Na0.67MO2). Ex-situ solid state nuclear 

magnetic resonance (NMR) spectroscopy showed that Li ions are mostly located in the transition metal 

layers as-synthesized, but tend to migrate to Na layers upon charge to higher voltages since octahedral 

and tetrahedral positions are available as stacking faults develop. However, the Li migration process is 

reversible (Figure 1.11).   
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   Also on the topic of Li-rich layered sodium metal oxides, Komaba et al. 74 reported a high reversible 

capacity of 200 mAh.g-1 for P2-Na5/6[Li1/4Mn3/4]O2 cycled at 1.5 - 4.4 V, which is higher than its 

theoretical capacity based on Mn3+/4+ redox. A long voltage plateau at 4.1 V at the first charge 

characterizes this system similar to layered lithium-rich oxides.75,76 No transition to O2 or OP4 phases 

at the fully charged state occurs, similar to the P2-Na0.8[Li0.12Ni0.22Mn0.66]O2 phase discussed above. 

Interestingly, superlattice peaks associated with Li/Mn ordering disappear when the cell is charged to 

the high voltage, indicating an in-plane cation rearrangement. Because of the similarities with lithium-

rich Li2MnO3-based electrodes, (high capacities associated with high voltage plateaus and disappearing 

superstructure by in-plane cation rearrangement), it is proposed that charge compensation in this 

material is fulfilled by partial removal of oxygen from the structure. This material shows high promise 

Figure 1.11  (Left and middle): Na0.8-x[Li0.12Ni0.22Mn0.66]O2 preserves its initial-P2 type structure upon 

charge to 4.4 V, accompanied by progressive increase of O2-like staking faults (Right): Ex-situ solid 

state NMR reveals the reversible migration of Li+ ions from the transition metal layer to the Na+ layer 

upon charge. Adapted from Ref. 73. 
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for Na-ion battery applications because of its high specific capacity, moderate capacity retention, and 

also a relatively high sodium content which is advantageous for use in a full Na-ion cell. The long cycle 

life of the cell, however, was not evaluated in this research74.  

   Bruce et al.77 investigated P2-Na0.67[Mn1-yMgy]O2 (y = 0, 0.05, 0.1, 0.2) made of earth-abundant 

elements. Electrochemical studies demonstrated that substitution of Mn by Mg (up to 20%) enhances 

the capacity retention, decreases the polarization, and suppresses the phase transitions that pure P2-

Na0.67MnO2 undergoes during charge/discharge process. The effect of the cooling rate during synthesis 

on the crystal structure and electrochemical performance of the compounds were also examined. Both 

Mg-substitution and slow cooling suppress the orthorhombic distortion by increasing the average 

oxidation state of Mn - or in other words, decreasing the concentration of Jahn-Teller active Mn3+ ions, 

which leads to improved cyclability at the expense of slight loss of capacity. P2-Na0.67[Mn0.8Mg0.2]O2 

delivers an initial discharge capacity of 150 mAh.g-1 between 1.5 - 4 V with an excellent capacity 

retention of 96% over 25 cycles. On the other hand, Komaba et al.78 reported a surprisingly high 

discharge capacity for a similar composition, Na0.67[Mg0.28Mn0.72]O2, when charged to higher voltages. 

This material delivers a discharge capacity of 220 mAh.g-1 between 1.5 - 4.5 V, beyond the capacity 

Figure 1.12 Charge/discharge curves of a Na0.67[Mg0.28Mn0.72]O2/Na cell cycled at a rate of 10 

mA.g-1 in the voltage range of 1.5 - 4.4 V (a), Specific capacity and coulombic efficiency of the 

cell over 30 cycles (b). Reproduced from Ref. 78. 
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based on the Mn3+/4+ redox reaction, although fading occurs on cycling (Figure 1.12). A large fraction 

of this reversible capacity is associated with a well-defined voltage plateau at 4.2 V. This anomalous 

reversible capacity is proposed to originate from the activation of the oxide ion redox reaction by Mg 

ions, similar to the effect of lithium in Li-rich manganese oxides and P2-Na5/6[Li1/4Mn3/4]O2. This is the 

first report of the activation of oxide ions by Mg ions. While the problem of voltage fading in the Li 

and Mn-rich analogues of these materials used in Li-ion batteries has proven to be insurmountable to 

date,79 it remains an open question as to whether the different structural features of the sodium-based 

“high voltage” layered oxides will be sufficient to overcome this issue. The concept shows promise for 

future explorations.   

Johnson et al. 80 have investigated the performance of a layered sodium metal oxide electrode in a 

full cell based on O3-Na[Ni1/3Fe1/3Mn1/3]O2/hard carbon. The capacity of the cell is limited due to 

irreversible processes associated with the carbon negative electrode emerging from the formation of a 

solid electrolyte interphase (SEI) in the first cycle. Nevertheless, the cell demonstrates excellent 

stability and a smooth charge/discharge profile coupled with an impressive rate capability. The cell 

delivered a specific capacity of 100 mAh.g-1 for 150 cycles in the voltage range of 1.5 – 4.0 V at a rate 

of 0.5 C. Ex-situ x-ray diffraction analysis showed that the initial structure of the positive electrode 

material was preserved after 123 cycles.  

   Johnson et al.81 reported the synthesis of P2/O3 intergrowth layered structure                                              

Na1-xLixNi0.5Mn0.5O2+d positive electrode materials. Both the end member compositions of the series, 

Na[Ni0.5Mn0.5]O2 and Li[Ni0.5Mn0.5]O2, adapt an O3-type structure. However, a slight substitution of 

sodium ions in O3-Na[Ni0.5Mn0.5]O2 (referred to as Na-O3 phase) by lithium ions derives formation 

and growth of a P2 phase (referred to as Na-P2 phase) at the expense of the O3 phase, as confirmed by 

the XRD analysis (Figure 1.13a). By the increase of the lithium ions concentration, a new O3 phase 

(Li-O3 phase) with different lattice parameters emerges. Figure 1.13 b,c shows high-resolution TEM 
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images of Na0.7Li0.3Ni0.5Mn0.5O2+d, directly illustrating P2 and O3 domains. High-resolution 

synchrotron X-ray diffraction (SXRD) analysis of Na0.7Li0.3Ni0.5Mn0.5O2+d detected sodium-based O3 

(monoclinic) and P3 (hexagonal) phases, in addition to Na-O3, Na-P2, and Li-O3 phases. The P3 and 

monoclinic O3 phases are usually found in sodium deficient compositions. These two phases are 

speculated to form due to the chemical reaction of the initial O3 phase with atmospheric moisture and 

carbon dioxide resulting in the extraction of sodium from the layered structure and formation of surface 

Figure 1.13  X-ray diffraction patterns of Na1-x[LixNi0.5Mn0.5]O2+d with different Li content, 

x (0 ≤ x ≤ 1) (a). High resolution TEM images of Na0.7[Li0.3Ni0.5Mn0.5]O2+d directly showing 

P2 and O3 domains (b). Adapted from Ref. 81. 
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sodium hydroxide and sodium carbonate. Higher intensities of P3 and O3 phases in the Li-substituted 

phase (compared to the pristine one) suggests the contribution of lithium ions to the instability of the 

structure. 7Li magic angle spinning nuclear magnetic resonance (MAS-NMR) showed that the lithium 

ions are located mainly in octahedral sites of interlayer space of each domain, contrary to P2-

Na0.8[Li0.12Ni0.22Mn0.66]O2
73. Substitution of lithium into O3-Na[Ni0.5Mn0.5]O2 was found enhancing the 

electrochemical performance, even within a P2/O3 intergrowth layered structure. 

1.5 Scope of Thesis 

This thesis presents a study of high promising P2-Na0.67[Mn0.5Fe0.5]O2 positive electrode material for 

sodium-ion battery; modification of the composition, by tailored substitution of transition metals, was 

explored to enhance its electrochemical performance, especially the cycle life. Chapter 1 presents a 

brief introduction to Na-ion batteries with a focus on recent important achievements on Mn and Fe-

containing layered sodium transition metal oxides. Some parts of section 1.4.2 are adapted from 

reference 34 (D. Kundu, E. Talaie, V. Duffort, L. F. Nazar, Angew. Chem. 2015, 54, 3431). The 

experimental methods employed in this research study are described in Chapter 2.  

Chapter 3 presents a study of air-instability of P2-Na0.67[Mn0.5Fe0.5]O2 and its effect on the 

electrochemical performance of the material. The nature of this reactivity is described using X-ray and 

neutron diffraction, mass spectrometry, thermal analysis, electron microscopy, and electrochemical 

measurements. It is shown that this reactivity is mitigated in Ni-substituted materials, P2-

Na0.67[NixMn0.5+xFe0.5−2x]O2, making them more promising candidates for the practical applications. Dr. 

Victor Duffort and I collaborated in performing the diffraction and thermogravimetric 

characterizations. Dr. Duffort performed the neutron diffraction analysis and proposed the insertion of 

carbonate anions into the structure in the air-exposed sample. I performed all the syntheses, 

electrochemical measurements, the ICP-AES and SEM characterizations. Dr. Robert Black contributed 
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to this study by operating the mass spectrometry experiments. This study is published in reference 55 

(V. Duffort, E. Talaie, R. Black and L. F. Nazar, Chem. Mater. 2015, 27, 2515).  

The structural evolution of P2-Na0.67[Mn0.5Fe0.5]O2 and P2-Na0.67[Mn0.65Fe0.20Ni0.15]O2 induced by 

extraction/insertion of sodium ions upon charge/discharge and their effect on the cycle life of the cells 

are discussed in Chapter 4. A combination of operando X-ray diffraction analysis, pair distribution 

function analysis, Mössbauer spectroscopy, and electrochemical measurements were employed to 

investigate the nature of these transitions. We demonstrate that the cyclability of the cell can be 

significantly improved by modifying the chemical composition (substitution of Fe ions by Mn/Ni ions 

in P2-Na0.67[Mn0.5Fe0.5]O2) and preventing the phase transitions by limiting the cut-off voltages. Dr. 

Victor Duffort and I worked together on the diffraction analyses. Dr. Duffort conducted the PDF 

analysis and solved the high voltage phase. A detailed description of the PDF analysis of the high 

voltage phase of studied materials is presented in reference 56, and the results are mentioned briefly 

here. The Mössbauer spectroscopy analysis was accomplished by collaboration with Dr. Hillary L. 

Smith and Prof. Brent Fultz in California Institute of Technology. I performed all the electrochemical 

characterizations. This study is reported in reference 56 (E. Talaie, V. Duffort, H. L. Smith, B. Fultz, 

L. F. Nazar, Energy Environ. Sci. 2015, 8, 2512).  

Chapter 5 presents the study of P2-Na0.67[Mn0.66Fe0.20Cu0.14]O2, with a focus on its structural stability, 

against the atmosphere and electrochemical insertion and extraction of sodium ions, and its 

electrochemical performance. Because of the similarity of the compositions of P2-

Na0.67[Mn0.66Fe0.20Cu0.14]O2 and auspicious material P2-Na0.67[Mn0.65Fe0.20Ni0.15]O2, this study provides 

an evaluation of the effect of incorporation of copper versus nickel into P2-Na0.67[Mn0.5Fe0.5]O2 to 

address the material’s cyclability issue.  
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Chapter 6 describes the operando measurements of X-ray absorption spectra of 

Nax[Mn0.66Fe0.20Cu0.14]O2 and Nax[Mn0.65Fe0.20Ni0.15]O2 collected at transition metal K-edges. This study 

suggests the redox activity of oxide ions in the studies materials. Se Young Kim contributed to this 

project by assisting in the preparation of the operando cells and conducting the measurements at the 

synchrotron facility. The study was performed in collaboration with Dr. Ning Chen, the beamline 

scientist at the Canadian Light Source (CLS).  

   Chapter 7 presents the overall summary and some suggested challenges to address for future work. 
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Chapter 2 

Characterization Methods and Techniques 

2.1 Overview 

The design and development of efficient batteries requires an in-depth understanding of the science 

underpinning these devices, including the characteristics of the electrode materials. In the research 

presented in this thesis, much effort was put into investigating a promising family of materials for the 

positive electrode in Na-ion batteries. The studies were focused mainly on the structural evolution of 

the materials, both caused by ambient atmosphere reactivity and induced by insertion and extraction of 

sodium ions during discharge/charge. Several characterization techniques were employed for this 

purpose.  

   The crystal structures of materials were determined by combined X-ray and neutron powder 

diffraction (XRPD, NPD). Specifically, neutron powder diffraction analysis assisted with the 

exploration of possible cation ordering in the synthesized materials and also the determination of the 

impact of atmosphere-reactivity on crystal structure. The phase transitions of the positive electrode 

materials induced by the insertion and extraction of sodium ions during galvanostatic discharge and 

charge were monitored by operando XRD analysis. Pair distribution function (PDF) analysis was 

performed to characterize the low-crystalline phase emerged over charge. The evolution of the local 

structure of each transition metal during the first charge/discharge cycle was probed by X-ray 

absorption spectroscopy (XAS). 

Scanning electron microscopy (SEM) provided information about the morphology, purity, and 

chemical composition of the samples. Elemental concentrations of the samples were accurately 

determined using the inductively coupled plasma atomic emission spectroscopy (ICP-AES) technique. 
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Thermogravimetric analysis (TGA) was conducted to probe the thermal stability of the materials. The 

valence and coordination environment of iron ions were probed by Mössbauer Spectroscopy. The 

electrochemical performance of materials as positive electrodes vs. sodium metal was examined using 

galvanostatic cycling. This chapter presents a brief basic introduction to each experimental method and 

characterization technique employed in this research.  

2.2 Diffraction Techniques 

2.2.1 Powder X-Ray Diffraction 

When an electron is affected by an X-ray beam, it is forced to oscillate at the same frequency as the 

electric field component of the incident beam, thereby re-emitting electromagnetic radiation in all 

directions. When a periodic distribution of electrons is irradiated by an X-ray beam, the scattered beams 

from every individual scattering center interfere with another to form an X-ray diffraction pattern.   

Historically, X-ray diffraction by crystals was described and formulated by two approaches82,83 in 

direct space: the Laue equations and Bragg’s law. The Laue approach provides a rigorous mathematical 

description of diffraction. Bragg’s law, on the other hand, is a highly simplified approach for describing 

the complicated process of diffraction, effectively giving the same results as the Laue treatment. In 

Bragg’s approach, crystals are regarded as a built up of planes that behave as semi-transparent mirrors 

when interacting with X-rays, and that reflect some of them with the angle of reflection equal to the 

angle of incidence; the rest are transmitted and then reflected by adjacent planes. When two 

monochromatic parallel X-ray beams with a wavelength of λ encounter two subsequent crystallographic 

planes separated by a distance of d with an incident/reflected angle of θ (Figure 2.1), the reflected 

beams interfere constructively if  the path difference they have traveled (2dsinθ) is equal to integer 

multiples (n) of the wavelength. This relation is known as Bragg’s law: 
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2dsinθ = nλ (2.1) 

   The θ angle at which Bragg’s law is satisfied is called Bragg angle, θB. When the incident angle does 

not correspond to the crystal plane spacing and the beam wavelength to fulfill Bragg’s law, the X-rays 

interfere destructively.  In a fine powder specimen, crystallites are randomly oriented in every possible 

direction. Therefore, when a polycrystalline sample is irradiated by a monochromatic X-ray beam, for 

each set of crystallographic planes, some crystallites are oriented so that Bragg’s law is satisfied and 

diffraction occurs. In a diffractometer, either the incident beam or the sample is rotated with respect to 

the other one for a certain range of angles and a moving detector collects the diffracted beam. An X-

ray powder diffraction (XRPD) pattern presents the intensity of the diffracted beam at each Bragg angle 

and is a characteristic of the sample. An XRPD pattern could be considered as the superimposition of 

discrete Bragg reflections and a continuous background. Peak positions, peak intensities, and shapes of 

peaks are three different components, disregarding the background, that describe a typical powder 

diffraction pattern and present some information about the crystal structure of the material, properties 

of the specimen (e.g., absorption, preferred orientation, grain size, etc.) and instrumental parameters. 

The positions of Bragg peaks follow the Bragg diffraction equation and depend on the radiation 

wavelength and distances between the crystallographic planes, or in other words, the unit cell 

Figure 2.1 Schematic representation of Bragg's law 
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parameters. Atomic parameters (e.g., atoms type, coordinates in the unit cell, occupancy, atomic 

displacement factor) are the key parameters determining the Bragg peak intensities. The shapes of the 

peaks are dependent mainly on instrumental parameters and also on specimen properties. 

For the purpose of phase identification, XRD patterns were collected using Cu-Kα radiation with a 

Bruker D8-Advance powder diffractometer equipped with a Vantec-1 detector using θ-2θ Bragg-

Brentano geometry. For structural refinement, air-sensitive samples were loaded in 0.3 mm capillaries 

in an argon-filled glovebox, and the XRD patterns were recorded on a PANalytical Empyrean 

instrument with a PIXcel bidimensional detector in Debye-Scherrer geometry using a parabolic X-ray 

mirror in the incident beam optics. In-situ high temperature and operando XRD experiments were 

performed using the same diffractometer with θ-θ Bragg-Brentano geometry. For the high-temperature 

XRD data, samples were heated in an Anton Paar HTK 1600 chamber under controlled atmosphere. 

Lattice parameter evolution during in-situ and operando diffraction experiments was determined by the 

Le Bail84 fitting method using the FullProf 85 software suite. 

2.2.2 Rietveld Refinement 

Rietveld refinement is a structural refinement approach that employs the least squares method to 

minimize a function that represents the difference between a calculated powder pattern and an observed 

data. For a powder X-ray diffraction pattern, the calculated integrated intensity of a Bragg reflection 

with hkl Miller indices is described as follows83: 

𝐼ℎ𝑘𝑙 = 𝐾 × 𝑝ℎ𝑘𝑙 × 𝐿𝜃 × 𝑃𝜃 × 𝐴𝜃 × 𝑇ℎ𝑘𝑙 × |Fℎ𝑘𝑙|2 

 

(2.2) 

where 𝐾 is a scale factor, which normalizes the experimentally observed integrated intensity to the 

calculated value; 𝑝ℎ𝑘𝑙 is the multiplicity factor, which accounts for the number of symmetrically 

equivalent reflections; 𝐿𝜃  is the Lorentz factor, which is relevant to the geometry of diffraction; 𝑃𝜃 is 

the polarization factor, which arises from partial polarization of electromagnetic wave; 𝐴𝜃 is the 
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absorption factor, which accounts for absorption of the beam by the sample, 𝑇ℎ𝑘𝑙is the preferred 

orientation factor, and 𝐹ℎ𝑘𝑙 is the structure factor. The structure factor represents the overall scattering 

ability of all the atoms in a unit cell and is formulated as follows83: 

Fℎ𝑘𝑙 = ∑ 𝑔𝑛𝑡𝑛(𝑠)𝑓𝑛(𝑠)exp [2πi(h𝑥𝑛 + ky𝑛 + lz𝑛)]

𝑁

𝑛=1

 (2.3) 

where N is the total number of atoms in the unit cell, 𝑔𝑛 is the occupation factor, 𝑡𝑛 is the atomic 

displacement (temperature) factor and 𝑓𝑛 is the atomic scattering factor, which depend on 𝑠 = 𝑠𝑖𝑛𝜃/𝜆 

for X-ray scattering, and (𝑥𝑛, y𝑛, z𝑛) represents fractional coordinates of the nth atom.  

   An initial reasonable structural model including the space group, unit cell parameters, atomic 

positions, peak shape parameters, etc. is required as the input for Rietveld refinement. The crystal 

structure of a known compound with a similar structure may be used as the starting model. Background, 

lattice parameters, sample displacement, and the profile shape function can be obtained through profile 

matching by use of the Le Bail method prior to running the Rietveld refinement. Following that, atom 

positions, atomic displacement (temperature) factor, occupancies, and microstructure parameters can 

be refined to obtain a precise model. The quality of a refinement is evaluated based on the agreement 

between the observed and calculated profiles determined by several figures of merit, including the 

Bragg residual: 

𝑅𝐵𝑟𝑎𝑔𝑔 =
∑ |𝐼𝑗

𝑜𝑏𝑠 − 𝐼𝑗
𝑐𝑎𝑙|𝑚

𝑗=1

∑ 𝐼𝑗
𝑜𝑏𝑠𝑚

𝑗=1

× 100% (2.4) 

 and the goodness of fit: 

𝜒2 =
∑ 𝜔𝑖(𝑌𝑖

𝑜𝑏𝑠 − 𝑌𝑖
𝑐𝑎𝑙)

2𝑛
𝑖=1

𝑛 − 𝑝
 (2.5) 
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where 𝑚 is the number of Bragg reflections, 𝐼𝑗
𝑜𝑏𝑠is the observed integrated intensity of the jth Bragg 

peak, 𝐼𝑗
𝑐𝑎𝑙is the calculated integrated intensity of the jth Bragg peak, 𝑛 is the total number of data points 

used in the refinement, 𝑝 is the number of refined parameters, 𝜔𝑖 is the weight of the ith data point 

(= 1/𝑌𝑖
𝑜𝑏𝑠) , 𝑌𝑖

𝑜𝑏𝑠is the observed intensity of the ith Bragg peak, and 𝑌𝑖
𝑐𝑎𝑙is the calculated intensity of 

the ith Bragg peak. A refined structural model is considered satisfactory when minimum figures of 

merits are achieved and are sufficiently small, and also the crystal structure makes sense physically and 

chemically. The crystal structures presented in this thesis were refined using the Rietveld method within 

FullProf 85 software suite.    

2.2.3   Neutron Powder Diffraction 

A beam of thermal neutrons, with the energy range of 5 - 100 meV, can produce a diffraction pattern 

when interacting with a crystalline material. Because neutron has a zero net charge, it does not interact 

with electronic charge cloud of the atom and is scattered by the nuclei. The scattering of neutrons by 

nuclei is described by a coherent scattering length, which is equivalent to the scattering factor for X-

rays. Neutron diffraction is a complementary technique to X-ray diffraction analysis for the structural 

characterization of crystals. This technique is especially advantageous for locating light elements such 

as hydrogen or lithium and can distinguish among many neighboring atoms. For example, Mn and Fe 

are indistinguishable by X-ray scattering because of their atomic number (Z) difference of one. 

However, a site occupancy distribution study is possible by neutron diffraction owing to different bound 

coherent scattering lengths: -3.73 fm for Mn and 9.45 fm for Fe.86  

A neutron powder diffraction pattern can be collected by two different experimental setups based on 

the source of neutrons: fixed wavelength powder diffractometer and fixed angle time of flight (t.o.f) 

instrument. In a powder diffractometer at a reactor neutron source, the sample is irradiated by a 

continuous monochromatic beam of neutrons, and the intensity of diffracted neutrons is recorded as a 
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function of the angle of which they are scattered from the sample (I(θ) vs. 2θ). In the time of flight 

technique, a pulsed beam of neutrons with a wide spectrum of energies strikes the sample. The neutrons 

in a pulsed beam disperse on their way to the sample because of their different wavelengths. The 

scattered neutrons are recorded in banks of detectors located at fixed scattering angles. The wavelength 

of the scattered neutrons λ can be calculated from the measured total time of flight from the source to 

the detector and De Broglie’s equation, 𝜆 = ℎ/𝑃, as follows: 

𝑡 =
𝑚𝑛𝐿

ℎ
𝜆 

(2.6) 

where 𝑚𝑛 is the mass of neutron, ℎ is Planck’s constant, and L is the total length of the flight path 

(source to sample distance + sample to detector distance).  

   Neutron powder diffraction data presented in this thesis was recorded by the time-of-flight (t.o.f.) 

diffractometer POWGEN at the Spallation Neutron Source (SNS) of the Oak Ridge National 

Laboratory (ORNL). The powders were loaded in 8 mm vanadium sample holders in an argon filled 

glovebox and sealed. Combined Rietveld refinement of neutron and X-ray powder diffraction data was 

performed using FullProf 85 software suite.  

2.3 Pair Distribution Function (PDF) Analysis 

In conventional crystallographic analyses, e.g., X-ray and neutron powder diffraction, only Bragg peaks 

are taken into account, and the diffuse scattering is discarded in the form of the background. However, 

pair distribution function (PDF) analysis uses the information obtained from diffuse scattering intensity, 

which contains information about the local structure, in addition to Bragg peaks, which provide 

information about the average structure. Diffuse scattering intensity is covered between the Bragg peaks 

and is widely spread over Q space (Q is the magnitude of momentum transfer vector, 𝑄 = 4𝜋sin(𝜃)/𝜆). 

However, at high Q regions, where the intensity of Bragg peaks is low, the diffuse scattering intensity 

is more prominent. The atomic pair distribution function, 𝑔(𝑟), represents the probability of finding 
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two atoms separated by a distance 𝑟 and is related to the reduced pair distribution function, 𝐺(𝑟), as 

follows:87 

𝐺(𝑟) = 4𝜋𝑟𝜌0(𝑔(𝑟) − 1) =
2

𝜋
∫ 𝑄[𝑆(𝑄) − 1] sin(𝑄𝑟) 𝑑𝑄

∞

0

 (2.7) 

where 𝜌0 is the number density of atoms; and 𝑆(𝑄) is total scattering structure function and is obtained 

from the normalization of coherent scattering function, Icoh (Q), which is the diffracted intensity data 

that is corrected for Compton scattering, fluorescence, multiple scattering, and scattering from the 

sample environment (sample holder, air, instrument). 

    Although 𝐺(𝑟) is a less physically intuitive function than 𝑔(𝑟), it offers two important advantages. 

First, it is calculated directly from the Fourier transform of 𝑆(𝑄), wheras calculation of 𝑔(𝑟) requires 

an input of the average intensity value, 𝜌0. Second, random uncertainties are constant along 𝑟 for 𝐺(𝑟) 

because it is the direct Fourier transform of the intensity data, whereas the uncertainties falls off as 1/𝑟 

for 𝑔(𝑟). 𝑔(𝑟)is normalized so that as 𝑟 → ∞, 𝑔(𝑟) → 1 and as 𝑟 → 0, 𝑔(𝑟) → 0. Consequently, as 𝑟 →

∞, 𝐺(𝑟) oscillates around zero and as 𝑟 → 0, 𝐺(𝑟) behaves like (−4𝜋𝜌0𝑟). For a perfect crystal, the 

limitation imposed by finite 𝑄-resolution in a real experiment causes a gradual decrease in the peak-

peak amplitude of the signal in 𝐺(𝑟). In a sample with higher structural disorder, the signal amplitude 

falls off faster indicating lower structural coherence. Another consequence of the collection of 

experimental data over a finite range of 𝑄 is the appearance of termination ripples (false oscillations in 

the data) in 𝐺(𝑟) function.  

   The most physically intuitive correlation function is the radial distribution function (RDF), 𝑅(𝑟):87  

𝑅(𝑟) = 4𝜋𝑟2𝜌0𝑔(𝑟) = ∑ ∑
𝑏𝜈𝑏𝜇

〈𝑏〉2

𝜇𝜈

𝛿(𝑟 − 𝑟𝜈𝜇) (2.8) 
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The sum is over all pairs of atoms 𝜈 and 𝜇 with an interatomic distance of 𝑟𝜈𝜇. 𝑏𝜈 is the Q-independent 

scattering amplitude of atom 𝜈, which is equal to the atomic number for X-rays and the coherent 

scattering length for neutrons; 〈𝑏〉 is the average scattering amplitude of the sample. The coordination 

number for a specific coordination shell is given by 

𝑁𝐶 =  ∫ 𝑅(𝑟)𝑑𝑟
𝑟2

𝑟1

 (2.9) 

where 𝑟1 and 𝑟2 define the RDF peak corresponding to the specific coordination shell. The combination 

of equations 2.7 and 2.8 gives 

𝐺(𝑟) =
1

𝑟
∑ ∑ [

𝑏𝑖𝑏𝑗

〈𝑏〉2
𝛿(𝑟 − 𝑟𝑖𝑗)]

𝑗𝑖

− 4𝜋𝑟𝜌0 (2.10) 

   The peak positions of the PDF curve give the distances of atom-pairs; the integrated intensity of the 

peaks is related to the number of neighbors in that coordination shell around the origin atom, and the 

shape of the peaks represents the probability distribution of the atom pairs.  

   Experimental data for PDF analysis presented in this thesis was collected by a PANalytical Empyrean 

diffractometer outfitted with Ag-Kα radiation, a Rh Kβ filter, and a NaI scintillation point detector. Each 

sample was loaded in a 1mm glass capillary in an argon filled glovebox. The collection time was 

increased at high 𝑄, and the total data collection time was 48 h. The contributions of scattering intensity 

from the sample holder, air, and the diffractometer were taken into account by measurement of an 

empty capillary with the same experimental conditions and were subtracted from the data. The data 

transformation was performed using PDFGetX3 software88 and the real space data was fitted by PDFgui 

software89. The instrument dependent Q damping factor was obtained by calibration of a standard 

silicon sample.   
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2.4 Mössbauer Spectroscopy 

Mössbauer spectroscopy, a technique based on the Mössbauer effect and Doppler effect, probes the 

nuclear structure of certain isotopes in a solid matrix by emission and absorption of γ-rays. Mössbauer 

spectroscopy is used primarily to study the hyperfine interactions, interactions between the nucleus and 

the neighboring electrons, which perturbs the energies of nuclear states. The γ-rays have energies of        

~ 104 to105 eV, and the energy perturbations caused by hyperfine interactions are as small as ~ 10-9-    

10-7 eV.90 These small hyperfine perturbations to the energy of the γ-ray can be measured by the 

Mössbauer spectroscopy technique for some nuclei. A Mössbauer spectrum may provide information 

about the local environment of the Mössbauer atom, such as the oxidation state and coordination. 57Fe 

is one of the most common isotopes investigated by Mössbauer spectroscopy. 

   There are two main restrictions for measurement of energy perturbations of nuclear states induced by 

hyperfine interactions. First, these energy changes are extremely small, as mentioned above. Second, 

when an excited nucleus emits a γ-ray, it recoils in order to fulfill the momentum conservation law 

because the γ-ray has a momentum, 𝑃𝛾. The recoil of the nucleus consumes energy resulting in a 

decrease in the energy of the γ-ray (𝐸𝛾). On the other hand, the recoil of the second nucleus requires 

higher energy of γ-ray upon absorption to compensate for its recoil energy. The recoil energy, 𝐸𝑟𝑒𝑐𝑜𝑖𝑙 , 

is inversely proportional to the mass: 

𝐸𝑟𝑒𝑐𝑜𝑖𝑙 =
𝑃𝛾

2

2𝑚
=

𝐸𝛾
2

2𝑚𝑐2
 (2.11) 

where 𝑐 is the speed of light. The recoil energy for a single 57Fe nucleus, ~ 10-3 eV when the mass of 

the nucleus is adapted, is orders of magnitude larger than the precision (∆𝐸 ~ 10-9 eV) required, so that 

the second 57Fe nucleus absorbs the γ-ray.90 Mössbauer discovered that, under some conditions, the 

recoiling mass is effectively equal to the mass of crystal instead of the nucleus. Therefore, the recoil 
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energy would be significantly small, and the energy of the emitted γ-ray has the precise energy required 

to be absorbed by the second nucleus. Mössbauer spectroscopy is feasible for nuclei with high 

probability of recoil-free γ-ray emission and absorption. This condition is met for 57Fe owing to its 

appropriate first nuclear transition energy, i.e., the γ-ray energy, and its lifetime. In practice, the energy 

of the γ-ray is tuned by the Doppler effect; the sample’s position is kept fixed and the radiation source 

moves at a velocity of 𝑣 either toward or away from the sample. The shift to the γ-ray energy, ∆𝐸, 

imposed by the Doppler effect is given by the following equation: 

∆𝐸 =
𝑣

𝑐
𝐸𝛾 (2.12) 

The movement of the radiation source with a velocity of 𝑣 = 2 𝑚𝑚. 𝑠_1 provides a Doppler shift of 

Δ𝐸~10−7𝑒𝑉 to the energy of a 14.4 KeV γ-ray of 57Fe, which is large enough to cover the energy width 

of the Mössbauer resonance (~ 10-9 eV). The Mössbauer spectrum is plotted as the absorption intensity 

versus the radiation source velocity.  

Three important features that represent three hyperfine interactions can be identified in a Mössbauer 

spectrum: isomer shift (IS), electric quadrupole splitting (EQS), and hyperfine magnetic field (HMF). 

These three characteristic features in a Mössbauer spectrum are sensitive to the local environment of 

the resonant nucleus and might be temperature dependent.  

An isomer shift is an observable shift in the position of peaks in the Mössbauer spectrum of a specific 

atom in different materials. IS originates from the interaction of the nucleus and the electron density at 

the nucleus. The Coulombic interaction due to the overlap of the s-electron cloud with the finite nucleus 

perturbs the nuclear energy levels. The energy levels of the nuclear ground state and excited state are 

not shifted equally because of a different nucleus radius in each state, resulting a shift in the transition 

energy. The difference between the transition energy of the nucleus in the radiation source and the 

nucleus in the sample is compensated for by the Doppler effect and enforces a shift in the position of 
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the peaks in the Mössbauer spectrum. The isomer shift depends on the s-electron density at the nucleus 

and is also affected by the partial screening of the d orbital electrons. This effect is more important in 

ionic compounds.  

The nucleus has an electric quadrupole moment that originates from the asymmetrical shape of its 

charge distribution. The asymmetry of the nucleus shape depends on its spin. The interaction of the 

electric quadrupole moment of the nucleus with an electric field gradient results in the split of the 

excited state energy into two levels for the I = 3/2 level in 57Fe. The split of energy levels of the excited 

state is detectable by the appearance of a doublet in the Mössbauer spectrum (Figure 2.2). 

The interaction of the nuclear spin with a magnetic field splits a nuclear level of spin I into (2I+1) 

levels. For 57Fe, six transitions, which appear as a sextet in the Mössbauer spectrum are allowed based 

on selection rules for I=1/2 to I=3/2 transition (Figure 2.2).  

Mössbauer spectra of the samples studied in this research were acquired with a conventional constant 

acceleration system with a radiation source of 57Co in a Rh matrix. The velocity and isomer shift were 

Figure 2.2 Energy diagrams of 57Fe in an electric field gradient (a) and hyperfine magnetic field (b) 
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calibrated with reference to a room-temperature α-Fe spectrum. The spectrometer linewidth obtained 

from the calibration is 0.31 𝑚𝑚. 𝑠−1and was used for all spectral components resulting from fitting 

with Lorentzian doublets.   

2.5 Mass Spectrometry 

Mass spectrometry is an analytical technique to measure the relative abundance of molecules in the gas 

phase. A mass spectrum represents the intensity of detected ions as a function of mass to charge ratio 

(𝑚/𝑧). Various designs of mass spectrometers have three basic functions in common: ionization, mass 

separation, and ion detection. At the first stage, the molecules are bombarded by a high energy beam 

of electrons emitted from a hot filament. Collision of high energy electrons with a molecule forces 

ejection of an electron and, therefore, ionization. The ionized molecules might fragment into smaller 

ions and neutral species. The ion beam is accelerated and focused by use of electrodes. The ions are 

generated and handled under vacuum. In the next stage, the cations in the ion beam are separated by 

means of magnetic or electric fields. If a uniform magnetic field is used, the ion trajectory is deflected 

in an arc whose radius is proportional to the mass to charge ratio (𝑚/𝑧), the magnitude of the magnetic 

field, and the accelerating voltage. By tuning the magnetic field and accelerating voltage, each ion with 

a particular mass to charge ratio can be separated and sent into the detector. An alternative to the use 

of the magnetic field is a quadrupole mass filter, which consists of four parallel rod-like electrodes to 

which both DC and AC electric voltages are applied. Quadrupole mass analyzer resolves the ions based 

on their 𝑚/𝑧. By tuning the DC and AC (RF) voltages, all the desired ranges of 𝑚/𝑧  are scanned. The 

mass sensitivity (resolution) can be set electronically by changing of DC and RF voltages in a 

quadrupole mass analyzer, whereas in the case of a magnetic field mass separation the resolution is set 

mechanically by changing slits at the flight path of the ion beam.  



 

 42 

The residual gas analysis for this research was carried out with an online electrochemical mass 

spectrometer (OEMS) instrument with a modified design based on a setup reported by Tsiouvaras et 

al.91 A commercial electrochemical flow cell (EL-Cell, ECC-DEMS) was attached in-line to a gas flow 

controller (Bronkhurst, F-200CV) and a quadrupole mass spectrometer (Standford Research Systems, 

RGA 200). The evolved gasses from the cell were swept by a controlled flow of Ar (Praxair, 5.0 grade)  

to the quadrupole mass spectrometer through a fused silica capillary (50 μm ID). The pressure inside 

the chamber was 2 × 10−6 Torr during the experiment.  

2.6 Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) 

Inductively coupled plasma-atomic emission spectrometry (ICP-AES) is one of the most common 

elemental analysis techniques. Most elements can be detected and quantified by a commercial ICP-

AES with a parts per billion limit of detection. In this technique, the sample is introduced into a plasma 

source at where the sample is dissociated into its constituent elements and then excited to higher energy 

levels. The excited atoms and ions return to their ground state by emission of photons with characteristic 

wavelengths. The elemental concentrations can be determined by comparing the intensities of 

emissions to the intensities of standards of known concentration. 

   Solid samples should be digested into a solution before analysis. The sample solution is then 

transformed to an aerosol by a nebulizer. The small droplets (~1-10 μm) are transferred to the plasma 

by an argon flow, and the large droplets are removed from the system. Desolvation, evaporation, 

atomization, and finally excitation or ionization of the sample takes place in an RF-induced argon 

plasma that sustains a high temperature (~ 4000-10000 K).  When the excited atoms and ions relax to 

their ground states or lower excitation states, atoms emit photons of particular energies in the 

ultraviolet/visible range. Each element has its own characteristic emission spectrum, and the emission 

intensity is proportional to the element concentration in the sample.  
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A Prodigy high dispersion ICP (Teledyne Leeman Labs) instrument was used for elemental analysis 

in this research. The powder samples were digested by dilute HNO3 and HCl.  

2.7 Scanning Electron Microscopy (SEM) 

A scanning electron microscope presents a highly magnified image of a sample using a focused beam 

of electrons instead of the light and provides information about the morphology and chemical 

composition of the material. In a scanning electron microscope instrument, electrons are produced by 

an electron gun and then accelerated to an energy level of 1 - 30 keV. The electron beam is focused, 

and its diameter is set by electromagnetic lenses and apertures. The microscope is held under vacuum 

during the experiment. The electron beam is scanned over the specimen surface along x- or y-axis by 

means of scanning coils. As a result of the interaction of the incident electron beam with the specimen, 

several signals are produced, detected, processed, and converted to images or spectra. 

   As the specimen surface is bombarded by an electron beam, different interactions can occur. The 

electron may be scattered by atomic nuclei resulting in a change in the direction of the electron with a 

slight reduction of energy (< 1 eV). The electron deflected back of the specimen is called a 

backscattered electron (BSE). The fraction of backscattered electrons is proportional to the atomic 

number of the scattering element. The incident electrons may interact inelastically with the specimen 

electrons resulting in the emission of low energy (< 50 eV) secondary electrons (SE). If the vacancy 

due to the emission of a secondary electron is filled by an electron at a higher level of energy, an X-ray 

of characteristic energy is emitted. In addition to the BSE and SE that are used to produce an image, 

other kinds of emissions may occur by the interaction of the electron beam and the specimen, including 

Auger electrons and cathodoluminescence. Detection of characteristic X-rays emitted from the surface 

of the specimen provides the option of identification and quantification, in the case of the calibration 



 

 44 

of the instrument, of the constituent elements of the specimen. This technique is called energy 

dispersive X-ray spectroscopy (EDS). However, light elements cannot be detected by this technique.  

The SEM images presented in this thesis were recorded using a Zeiss Ultra Plus scanning electron 

microscope (FE-SEM) at 15 kV in the secondary electron mode. The molar ratios of transition metal 

ions of the samples were verified by energy dispersive X-ray spectroscopy (EDS) (EDAX). The 

samples were coated with a thin layer of gold to increase the electron conduction.  

2.8 Thermogravimetric Analysis 

Thermal gravimetric analysis (TGA) measures the variation of the mass of a sample as a function of 

temperature under a controlled atmosphere and provides information about the thermal stability and 

composition of the material. The thermogravimetric analyses presented in this thesis were performed 

using a TA Instrument SDT Q600 under various atmospheres (air, high purity argon and oxygen, and 

carbon dioxide). The samples were loaded in platinum crucibles. 

2.9 X-ray Absorption Spectroscopy (XAS) 

X-ray absorption spectroscopy (XAS) is a widely used analytical technique that measures the energy-

dependent fine structure of the X-ray absorption coefficient near the absorption edge of an element. 

This technique can provide information about the chemical nature and environment of atoms in a 

material.92,93   

   When X-rays of intensity I0 hit a sample, the beam absorption depends on the photon energy (E) and 

the sample thickness; the transmitted beam intensity (It) is given by Beer’s law 

𝐼𝑡 = 𝐼0𝑒−𝜇(𝐸)𝑡 (2.13) 

where 𝜇(𝐸) is the energy dependent X-ray absorption coefficient and 𝑡 is the sample’s thickness. Over 

a wide range of energy, 𝜇(𝐸) is inversely proportional to the photon energy (𝜇(𝐸) ∝ 𝐸−3). However, 
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when the photon energy exceeds the binding energy of a core-electron, a sharp increase in the 

absorption coefficient appears. XAS is about the measurement of the energy dependence of  𝜇 at 

energies near and just above the absorption edges. Each absorption edge presents a specific core-

electron binding energy, e.g., K for n = 1, L for n = 2, M for n = 3, etc. (n is the principal quantum 

number). The L and M absorption edges are in fact 3 and 5 edges, respectively, due to spin-orbit 

coupling. 

   When a core-electron absorbs a sufficiently high energy photon, it is ejected from the atom, thereby 

creating a vacancy. The excited state atom is relaxed typically within a few femtoseconds of the 

absorption event. One important relaxation mechanism is X-ray fluorescence, in which a higher energy 

core-level electron fills the core-vacancy, concomitant with the emission of X-rays. The emitted X-rays 

have characteristic energies for each atom and can be used for the identification and quantification of 

the concentration of the specific atom. Another important relaxation process is the Auger effect, which 

occurs when a higher electron level fills the vacancy followed by ejection of a shell electron (Auger 

electron). The X-ray absorption spectra can be measured by any of these processes mentioned above. 

The X-ray absorption fine structure is commonly described in two distinct regions: X-ray absorption 

near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) (Figure 2.3). The 

structure in the vicinity of the absorption edge is referred to as XANES, and the oscillations above the 

edge are referred to as EXAFS. There is not a distinct definition that distinguishes XANES from 

EXAFS. However, these terms are widely used because these two regions are analyzed differently. 

XANES is sensitive to the oxidation state and the geometry and is analyzed mostly qualitatively. 

EXAFS is sensitive to the atomic arrangement around the absorber atom and provides quantitative 

information about the bond length and the coordination number.  
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X-ray absorption spectra can be measured for all the elements (in the vacuum for the elements lighter 

than phosphorous). The measurements can be performed for solids, liquids, and gases, for both 

crystalline and amorphous materials, at high pressures, and in a wide range of temperatures. The use of 

XAS, on the other hand, is limited to the access to an intense and tunable X-ray source, i.e., synchrotron.  

 

 

The X-ray absorption coefficient can be measured either directly by measuring the intensities of the 

incident and transmitted beams (transmission mode) or indirectly by detecting the decay products, such 

as fluorescence X-ray radiation or Auger electrons. Transmission mode measurements require 

concentrated samples so that the difference between the incident and transmitted beam is sufficiently 

larger than the variation due to counting statistics. Moreover, samples must be highly homogeneous 

and of constant thickness. Fluorescence mode measurements are particularly effective for dilute and 

non-homogenous samples. For concentrated samples, the self-absorption effect should be considered 

and corrected. In the electron yield mode, the electrons emitted from the sample, such as photoelectrons, 

secondary electrons, and Auger electrons, are detected. Due to the short mean free path of the electrons, 

this technique is surface sensitive.  

Figure 2.3 Schematic illustration of an X-ray absorption spectrum. Reproduced from Ref. 93. 
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2.10 Electrochemical Measurements  

Galvanostatic charge and discharge experiments are standard procedures of evaluation of the 

electrochemical performance of batteries. Over a galvanostatic cycling experiment, a constant current 

is applied to the cell, and the cell voltage is measured as a function of time. The applied current is 

reversed when a cut-off voltage is reached. Specific capacity, specific energy, rate capability, and 

cycling stability of the electrochemical cell can be determined by this analysis.   

   Theoretical specific capacity (𝐶) of an electrode material, the quantity of the charge involved in the 

electrochemical reaction per unit mass of the active material, can be calculated from the equation below: 

𝐶 = 𝑛𝐹/𝑀           (2.14) 

where 𝐹 = 26.901 𝐴. ℎ/𝑚𝑜𝑙 is the charge of one mole of electrons, i.e., Faraday’s constant; 𝑛 is the 

number of electrons transferred per mole of reaction; and 𝑀 is the molar mass of the active material. 

The specific capacity of the cell is often given in terms of 𝑚𝐴ℎ. 𝑔−1. The specific energy of a cell is 

equal to multiplication of the voltage and specific capacity. The internal resistance of an 

electrochemical cell to the flow of the ionic and electronic currents deviates the operating voltage of 

the cell compared to its equilibrium open circuit value. This effect, called polarization, decreases the 

discharge voltage and increases the charge voltage from the open circuit voltage value. The voltage and 

specific capacity of a cell are sensitive to the current magnitude. The rate capability indicates the ability 

of a material to retain the capacity as the current is varied during cycling. The galvanostatic cycling 

rate is often expressed as 𝐶/ℎ, where h is the number of hours at which the material becomes fully 

charged or discharged. In this thesis, rate 𝐶/20 refers to insertion or extraction of one mole of sodium 

ion per mole of active material every 20 hours. Cycling stability is often presented as a plot of capacity 

versus the cycle number. When the cell voltage changes over the cycling, specific energy retention, 

rather than the capacity retention, is a more appropriate parameter for the investigation of cycling 
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stability. Another figure of merit of an electrochemical cell is Coulombic efficiency, which is defined 

as the ratio of the charge capacity to the preceding discharge capacity or vice versa (discharge capacity 

divided to the preceding charge capacity). The former definition is used in this thesis. The deviation of 

the Coulombic efficiency from 100% indicates the occurrence of undesired reactions in the cell that 

lead to capacity loss. 

   The electrochemical performance of the positive electrode materials presented in this thesis was 

measured by a multiple channel MPG-2 galvanostat/potentiostat in galvanostatic mode. Active 

materials were examined as the positive electrodes in 2325 coin cells. Sodium metal (Sigma-Aldrich, 

ACS reagent) on a stainless steel current collector was used as the negative electrode. Figure 2.4 is a 

schematic representation of the coin cell assembly. The positive and the negative electrodes were 

separated by two glass fiber separators (Merck Millipore). A spring was placed in the cell to ensure 

good contact between different components of the cell.  

 

Figure 2.4 Schematic representation of a coin cell 
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The positive electrodes were prepared from a mixture of the active material, super P carbon 

(TIMCAL), to increase the conductivity of the mixture, and polyvinylidene fluoride (PVDF) (Aldrich 

average Mw ∼ 

534000), as a binder to increase the contact between the particles of the active material and between 

the active material and the current collector, with a mass ratio of 80:10:10. The mixture was suspended 

in N-methyl-2-pyrrolidinone (NMP) (Sigma-Aldrich, 99.5%) and cast on the aluminum foil with a 

typical loading of 7 - 9 𝑚𝑔. 𝑐𝑚−2. Electrodes were dried in a vacuum oven at 90 ºC. The electrolyte 

was 1 M NaClO4 (Alfa Aesar, ≥ 98%) in propylene carbonate (BASF, 99.98%) with 2 vol% of 4-fluoro-

1,3-dioxolan-2-one (FEC) (Sigma-Aldrich, 99%) as an electrolyte additive. Cell assembly was carried 

out in an argon filled glovebox. To prepare air-protected electrodes, all the stages of the electrode 

preparation were performed in an argon-filled glovebox.  
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Chapter 3 

Air-Reactivity of P2-Na0.67[Mn0.5Fe0.5]O2  

3.1 Introduction 

Layered sodium transition metal oxides are the most extensively explored materials for the positive 

electrode in Na-ion batteries.4,33,34 After komaba et al.53 introduced the promising properties of P2-

Na0.67[Mn0.5Fe0.5]O2, i.e., made from earth-abundant elements and showing high specific energy and 

moderate capacity retention, as the positive electrode for NIBs, many efforts were devoted to 

investigating various P2-Na0.67[Mn1-xFex]O2 compositions61-65. Despite the advantages that P2-

Na0.67[Mn0.5Fe0.5]O2 offers, the reactivity of this material with ambient atmosphere is an important 

challenge.  

Many sodium transition metal oxides are known to be reactive under ambient atmosphere.34 This is 

an important challenge in terms of the reproducibility of the research study results. Moreover, reactivity 

under ambient atmosphere is a critical concern regarding the storage and handling of these materials 

from a practical application perspective. About 15 years ago, Dahn et al.94 reported that water molecules 

can intercalate into P2-Na2/3[CoxNi1/3-xMn2/3]O2 ( x = 1/6, 1/3), but not into T2-Li2/3[CoxNi1/3-xMn2/3]O2 

(x = 1/6, 1/3). This T2 phase is obtained from the ion exchange of Li atoms for Na atoms in the P2 

structure and accommodates the Li atoms in tetrahedral sites. What differentiates these two structures 

are the larger interlayer distance and high concentration of large empty prismatic sites that are available 

in the P2 structure, making it more susceptible to the intercalation of water molecules. On the other 

hand, no water intercalation was observed for P2-Na2/3[Ni1/3Mn2/3]O2, as reported in the same study. 

The resistance of P2-Na2/3[Ni1/3Mn2/3]O2 to the intercalation of water molecules was attributed to the 

stronger coupling between adjacent MO2 layers induced by superlattice ordering of Mn and Ni, and 

absence of Mn3+ ions. In a more recent study, Passerini et al. 95 investigated the correlation between the 
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intercalation of water and the sodium content in the mixed P2/P3 structure Nax[Ni0.22Co0.11Mn0.66]O2. 

The cells were charged to different voltages corresponding to specific sodium contents, disassembled, 

and exposed to air for analysis. The analysis of X-ray diffraction (XRD) patterns collected from those 

electrodes suggested that water does not intercalate into this material until the sodium vacancy increases 

above a threshold amount. The appearance of intense (00l) peaks in the XRD patterns of air-exposed 

Nax[Ni0.22Co0.11Mn0.66]O2 electrodes with x ≤ 0.33 illustrates a highly ordered hydrated phase with large 

interslab distances. In another study, Prakash et al.96 reported the structural instability of O3-

Na[Ni1/3Mn1/3Co1/3]O2 in the ambient atmosphere. XRD analysis revealed transition of pristine 

rhombohedral O3 phase to monoclinic O1 and then rhombohedral P3 phase, as aged in air. It was 

suggested that the reaction of the material with H2O and CO2 in air and formation of NaOH and Na2CO3 

is at the origin of those phase transitions. 

   The study55 of Na0.67[Mn0.5Fe0.5]O2 clearly demonstrated the reactivity of this material under ambient 

atmosphere. Despite the fact that the research community is aware of the air instability issues of sodium 

layered oxides, which is why these materials are stored in inert atmosphere,53,61,97 the impact of air 

reactivity on the structural properties and electrochemical performance of substituted manganese oxides 

has been underestimated, leading to discrepancies in previously published reports (see below). In this 

study, rigorously air-protected Na0.67[Mn0.5Fe0.5]O2 was prepared and its structural and electrochemical 

properties was investigated compared with its air-exposed counterpart. The reactivity of 

Na0.67[Mn0.5Fe0.5]O2 with H2O, CO2, and O2 and their combinations was examined to understand the 

responsible mechanism for the instability of the material in ambient atmosphere. A combination of 

neutron diffraction, mass spectrometry, thermogravimetric analysis, and electrochemical measurements 

revealed the intercalation of carbonate anions into the layered structure as a result of exposure of the 

material to air. Large voltage polarization and reduced specific capacity of air-exposed 

Na0.67[Mn0.5Fe0.5]O2 electrodes compared to rigorously air-protected electrodes exhibit the detrimental 
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impact of air-reactivity. The effect of composition modification on the air reactivity of the material was 

explored.   

3.2 Synthesis 

   Na0.67[Mn0.5+yFe0.5-2yNiy]O2 phases with y = 0, 0.1, 0.15 were synthesized by a solid-state method. 

Stoichiometric amounts of Na2CO3 (EMD Millipore, ≥ 99.5%), Mn2O3 (Sigma-Aldrich, 99%), NiO 

(Sigma-Aldrich, 99.8%), and Fe2O3 (Sigma-Aldrich, ≥ 99%) powders were mixed using a ball mill (250 

ml agate jars, 10 mm diameter agate balls, 20 balls for 1 g of precursors mix powder, milled at 250 rpm 

for 1 h) and were pressed into pellets. The pellets were heated in air at 750 °C for 4 hours followed by 

a final annealing at 900 °C for 6 hours. Samples referred to as “air-exposed” were then cooled to room 

temperature in the furnace and stored under ambient conditions, whereas “air-protected” samples were 

obtained through heat treatment in an inert atmosphere (Ar, He or vacuum) at 600 °C for 12 hours and 

transferred to an argon-filled glovebox. Air-protected electrodes were prepared in an Ar-filled glovebox 

and dried under vacuum.  

3.3 Results and Discussions 

3.3.1 Air-Protected Na0.67[Mn0.5Fe0.5]O2 

The crystal structure of air-protected samples of Na0.67[Mn0.5Fe0.5]O2 was studied by combined 

Rietveld refinement of X-ray and neutron powder diffraction (XRPD and NPD) data (Figure 3.1 a,b 

and Table 3.1). Na0.67[Mn0.5Fe0.5]O2 crystallizes in undistorted P2 structure (space group P63/mmc),  

(Figure 3.2 a) and no evidence of Mn/Fe ordering at the transition metal site was obtained. The lattice 

parameters calculated for air-protected Na0.67[Mn0.5Fe0.5]O2 is different from those previously reported 

for this composition.53, 63 This discrepancy originates from the evolution of lattice parameters even upon 

minor exposure to air.  
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hkl-dependent peak broadening is clearly noticeable in the XRPD and NPD patterns of 

Na0.67[Mn0.5Fe0.5]O2, as previously reported;53 The peak profiles of (10l) reflection are much broader 

than (00l) and (hk0) peaks (demonstrated for two different reflections in the inset of Figure 3.1 a and 

Figure 3.1 b). The appearance of hkl-dependent broadening in the XRD pattern of Na0.67[Mn0.5Fe0.5]O2 

was attributed to stacking faults.53 The stacking faults could originate from the Jahn-Teller distortion 

of Mn3+ ions. It was shown that the high concentration of Mn3+ in the parent P2-Na2/3MnO2 results in 

an orthorhombic distortion of the ideal hexagonal symmetry.39,51,98,99  Because of the impact of the 
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Figure 3.1 Combined Rietveld refinement of neutron (a) and X-ray powder (b) 

diffraction data of Na0.67[Mn0.5Fe0.5]O2. For each pattern, the observed data is shown in 

red, and the calculated pattern is shown in black; the difference curve is shown in blue, 

and the calculated Bragg reflections are shown in green. The insets show two different 

reflections normalized in intensity to compare the hkl-dependent broadening.  
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stacking faults, the peak shape of the patterns could not be modeled properly in the refinement, even 

with Stephens strain correction,100 which is why the obtained RBragg (equation 2.4) (the figure of merit 

based on integrated peak intensity) is more satisfactory compared to χ2 (equation 2.5) (the figure of 

merit using all the measured points) (Table 3.1).    

Table 3.1 Atomic parameters and unit cell parameters of Na2/3[Mn1/2Fe1/2]O2 calculated from Rietveld 

refinement of neutron and X-ray powder diffraction data. 

P63/mmc, a = 2.9429(1) Å, c = 11.1881(3) Å, Cell volume = 83.895(6) Å3 

2 (XRPD/NPD) = 14.5/9.12,        RBragg (XRPD/NPD) (%) = 13.8/6.27 

 

Site Wyck. x y z Ueq (Å2) at./f.u. 

 Nae   6h  0.625(5)  0.375(5)  1/4  0.02(1) 0.45(1) 

 Naf 6h 0.04(2) 0.96(2) 1/4 0.02(1) 0.22(1) 

 Fe/Mn 2a 0 0 0 0.015(1) 1 

 O     4f 1/3 2/3  0.0925(3) 0.012(1)  2 

          

Anisotropic Uij (Å2) 

Atom U11 = U22 (Å2) U33 (Å2) U12 (Å2) 

Fe/Mn 0.013(1) 0.021(2) 0.006(2) 

O 0.012(2) 0.012(2) 0.006(2) 

    

In the refinement, the fraction of sodium ions to transition metal ions was fixed to 0.67 and the ratio 

of Mn/Fe was fixed to 1, in agreement with the ICP-AES results. The two sodium sites available in the 

P2 structure (Figure 3.2 a), Nae and Naf (Figure 3.2 b), exhibit significant configurational disorder in 

Na0.67[Mn0.5Fe0.5]O2, as observed in P2-type Na5/6[Li1/4Mn3/4]O2 and Na2/3CoO2.74,101 High disorder in 

the position of sodium ions could appear as anomalously large isotropic displacement parameters.74,102 

This disorder is modeled here by splitting the positions Nae (2d) and Naf (2b) into the lower symmetry 

6h Wyckoff position (Figure 3.2 c,d), similar to the strategy used before in previous studies.74,101 The 
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occupancy of the Nae site (edge-sharing with MO6 octahedra) is twice that of the Naf site (face-sharing 

with MO6 octahedra), consistent with the larger Na-M distance of the former (i.e., higher stability). 

 The combined refinement of the NPD and XRPD of Na0.67[Mn0.5Fe0.5]O2 showed no evidence of 

Mn/Fe ordering. The configurational disorder prevents long-range ordering of Na+/vacancy, which is 

reflected as pronounced stepwise features in the voltage profile of some layered sodium metal oxides, 

such as those observed in P2-Na2/3CoO2,54 P2-Na2/3VO2,103 P2-Na2/3[Co2/3Mn1/3]O2,102,104 O3-

Na[Ni1/2Mn1/2]O2,71,105 P2-Na2/3[Mn2/3Ni1/3]O2
43. The structural modifications associated with this 

ordering results in poor capacity retention and limited rate capability. Na0.67[Mn0.5Fe0.5]O2 shows a 

Naf Nae

(a) (b)

(c) (d)

MO2 layer

2b2d 6h

Figure 3.2 Schematic illustration of P2-Na2/3MO2 structure (a). Purple and red spheres represent 

M (transition metal) and O atoms and green and yellow spheres represent Na atoms in two different 

sites. Face-shared and edge-shared sodium sites (b), sodium arrangement in 2d and 2b sites (c), and 

in 6h sites (d). 
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smooth voltage profile (Figure 3.3 a) and delivers a large specific capacity of ≈ 200 Wh.kg-1 over the 

first discharge, corresponding to the sodium intercalation over a wide range of stoichiometry (0.15 < x 

< 0.9 in Nax[Mn0.5Fe0.5]O2). The capacity fading of Na0.67[Mn0.5Fe0.5]O2 is moderate with 65% retention 

after 50 cycles (Figure 3.3 b), showing that, despite its reversibility, the phase transitions induced by 

insertion and extraction of sodium ions (discussed in Chapter 4) impacts the cycling properties of this 

material. 

The voltage profile of Na0.67[Mn0.5Fe0.5]O2 shows small polarization in the low voltage region and 

much higher polarization in the high voltage range. The origin of the polarization at two different 

regions is described in Chapter 4. The voltage profile of an air-protected Nax[Mn0.5Fe0.5]O2 electrode 
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retention (b) of air-protected P2-Na0.67[Mn0.5Fe0.5]O2 cycled at 13 mAh.g-1 (C/20). 
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(Figure 3.3 a) exhibits a voltage jump at x = 0.5. This feature is probably related to the switch of charge 

compensation mechanism from Mn3+/Mn4+ to Fe3+/Fe4+ couple. The appearance of this feature at 

exactly the expected sodium stoichiometry of Na0.5[Mn0.5
4+Fe0.5

3+]O2 in an air-protected electrode, 

contrary to the previous report of this material,53 confirms the excellent control of oxygen stoichiometry 

in the air-protected samples.  

An evident difference between the results presented here and in the previous works53,68 is the perfect 

overlap of the first and second charge profiles of an air-protected electrode. The similarity of the first 

and second charge processes implies the excellent reversibility of sodium insertion/extraction in air-

protected electrodes. The feature in the voltage profile of the first discharge of Nax[Mn0.5Fe0.5]O2 at ≈ 

2.7 V is expected to originate from the decomposition of FEC (the electrolyte additive) over the first 

cycle.106  As discussed below, the exposure of the material to air, even for a short period of time, causes 

reaction with carbon dioxide and water, resulting in the modification of electrochemical properties.  

3.3.2 Air Sensitivity of the Studied Materials 

Many layered sodium transition metal oxide materials are unstable in air. Various mechanisms are 

proposed for the reactivity of these materials in ambient atmosphere, such as the intercalation of water 

molecules into the interlayer space of the layered structure,94,95 uptake of oxygen accompanied with 

formation of cation vacancies,39,40,98,107 reaction with carbon dioxide (CO2) and moisture (H2O) in air 

and formation of sodium carbonate (Na2CO3) at the surface of the material.96 The reactivity of the 

materials depends on the precise composition of the atmosphere, temperature, and the exposure time. 

The changes in the appearance of the samples stored in air, such as cracks in the pellets caused by 

volume expansion and change of the powder color from back to brown, clearly indicate the air reactivity 

of P2-Na0.67[Mn0.5Fe0.5]O2.  
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   Thermogravimetric analysis (TGA) under argon atmosphere demonstrates a two-step mass loss of 

more than 7% (reported with respect to the mass after heating) for a one-week-old air-exposed sample 

of Na0.67[Mn0.5Fe0.5]O2 (Figure 3.4). The nature of the released gases was investigated by Mass 

spectrometry (MS). The mass loss (≈ 2% wt) observed at ≈ 100 °C corresponds to the release of CO2 

and H2O on the surface of the grains (physisorption). During the high-temperature mass loss (≈ 4.8% 

wt) process starting at ≈ 300 °C, CO2 and O2 gases are evolved, consistent with the decomposition of 

carbonate ions. 
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Figure 3.4 Gases evolution and mass loss of air-exposed Na0.67[Mn0.5Fe0.5]O2 

during heat treatment up to 600 °C under argon, studied by TGA-MS. 



 

 59 

Figure 3.5 shows the evolution of the lattice parameters of an air-exposed powder sample of 

Na0.67[Mn0.5Fe0.5]O2 with temperature, calculated from XRD data collected at certain temperatures over 

the heating and cooling stages of a heat treatment. In this in-situ XRD experiment, the sample was 

subjected to sequential temperature ramps (1 h temperature ramp) under helium atmosphere. At certain 

temperatures, 6 successive XRD patterns (10 minutes each) were collected at isothermal conditions (for 

1 h). For temperatures at which the XRD patterns evolved (at the isothermal condition), the lattice 

parameters obtained from both the first and the last scans are presented (Figure 3.5). The lattice 

parameters are affected slightly with the mass loss mechanism occurring at ≈ 100 °C related to the 

decomposition of surface bound species. The more evident evolution of lattice parameters, elongation 
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Figure 3.5 TGA curve and lattice parameters of air-exposed Na0.67[Mn0.5Fe0.5]O2 powder 

measured from thermo-diffraction data collected under a helium atmosphere. The arrows show 

the sequence in the heating and cooling processes. The red, orange, and blue markers correspond 

to the cell parameters reported for Na0.67[Mn0.5Fe0.5]O2 in the references 53,61,63, respectively. 
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of a lattice parameter and contraction of c lattice parameter, at the second mass loss implies a 

modification of structure at high temperature.  

   The formation of carbonate on the surface of layered sodium metal oxides is well-known. In the case 

of P2-Na0.67[Mn0.5Fe0.5]O2, no evidence of the formation of a carbonate phase was obtained from XRD 

pattern of aged sample, even after several months of exposure to air. This observation is very interesting 

considering that XRD analysis of an aged sample of O3-Na[Mn0.5Fe0.5]O2 clearly contains peaks 

corresponding to thermonatrite (Na2CO3·H2O), a hydrated sodium carbonate phase (Figure 3.6 a), and 

scanning electron microscopy (SEM) reveals the presence of an impurity phase (Figure 3.6 b).  
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Figure 3.6 XRD pattern (a) and SEM images (b) of O3-Na[Mn0.5Fe0.5]O2 exposed to 

air for months showing the presence of a crystalline sodium carbonate phase. 



 

 61 

By employing neutron powder diffraction, carbonate anions were found within the crystal structure 

of an air-exposed sample of P2-Na0.67[Mn0.5Fe0.5]O2. A full description of this neutron diffraction 

analysis is presented in reference 55. The Rietveld refinement of the air-exposed sample shows the 

formation of cationic vacancies (uptake of oxygen), similar to its parent composition P2-Na2/3MnO2.40,99 

The difference Fourier map revealed a large residual nuclear density within the tetrahedral sites of the 

MO2 layer. This residual nuclear density cannot be assigned to hydrogen or manganese ions because 

their negative neutron scattering lengths would result in opposite sign of nuclear density. On the other 

hand, this tetrahedral site is too small to accommodate the iron ion. Therefore, considering the TGA 

and MS data, it was concluded that the residual nuclear density in the difference Fourier map should 

represent carbon atoms. The structure was refined with the stoichiometry fixed to 

Na0.60[Fe0.44Mn0.44C0.08]O2, corresponding to the complete oxidation of Mn3+ to Mn4+ balanced by the 

insertion of CO3
2− ions formed by the reaction with CO2, O2 (see below), as shown in equation 3.1: 

Na2/3Fe3+
1/2Mn3+

1/6Mn4+
1/3O2 + 

1

12
 (CO2 + 

1

2
 O2 ) → 

9

8
 (Na16/27Fe3+

4/9Mn4+
4/9C4+

2/27O2) (3.1) 

   The equation is in close agreement with the mass loss detected by TGA (i.e., the ratio of the mass of 

inserted carbonate ions to the mass of the original composition is equal to 0.048). The quality of the fit 

was significantly increased by adding the carbonate ions into the structure according to the 

stoichiometry in equation 3.1. This equation can be understood as a process by which the oxygen atoms 

of carbonate ions are added into the hexagonal oxygen framework of the original structure, forming 

cation vacancies. The carbon atom at the center of the carbonate ion is located within the tetrahedral 

site of the transition metal layer. It should be noted that only the average position of the atom can be 

resolved by a diffraction technique. It is proposed that the static picture is one where the carbon atom 

shifts toward the center of one of the faces of the “CO4 tetrahedron” to adopt a 3-fold coordination 
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consistent with the CO3
2− ion. A similar disorder has been observed for carbonate anions within the 

lattice of tetragonal perovskite-related Ba3YCu2Ox phase.108 

   The following mechanism is proposed for the reactivity of P2-Na0.67[Mn0.5Fe0.5]O2 with air, resulting 

in the insertion of carbonate anions; the CO2 and H2O molecules adsorbed on the surface of the material, 

demonstrated by TGA-MS (Figure 3.5), combine and form carbonic acid (H2CO3) that readily 

dissociates to carbonate anions and protons (equation 3.2). The consumed water molecules are 

reformed as molecular oxygen is reduced at the surface of the grains with the presence of the protons 

(equation 3.3). Overall, this accounts for oxygen reduction in the presence of CO2 (and water) to form 

carbonate (equation 3.4). This process is accompanied by the oxidation of Mn3+ to Mn4+. P2-

Na0.67[Mn0.5Fe0.5]O2 has a suitable redox potential to carry out this reaction. This is suggested by its 

open circuit voltage (OCV) of 2.4 V vs. Na (-0.3 vs. standard hydrogen electrode, SHE). Carbonate 

anion intercalated layered metal double hydroxides are well known.109 However, the charge 

compensation mechanism in layered sodium metal oxides is completely different.  

CO2(ads.) + H2O(ads.) → 2H+
(surf.) + CO3

2−
(insert.)

 

 

(3.2) 

+2H+
(surf.) +

1

2
O2 (gas) + 2e− → H2O(ads.) 

 

(3.3) 

 
CO2 +

1

2
O2 + 2e− → CO3

2− (3.4) 

      The role of each reactant in the air was investigated by thermogravimetric analysis under different 

atmospheres: air, dry oxygen, wet oxygen, wet nitrogen, dry carbon dioxide, and wet carbon dioxide. 

For each experiment, the sample was first heated under dry argon at 600 °C to release any air 

contamination and obtain a “reference material” (equivalent to an “air-protected” sample). After 

cooling down to room temperature under dry argon, the atmosphere was switched to the gas of interest, 

and the reactivity of the material was monitored at room temperature for 12 h. The temperature was 
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then raised to 600 °C. Figure 3.7 shows the mass variations of the “reference material” at room 

temperature and upon heat treatment under different atmospheres. The mass of sample exposed to air 

increases at a steady rate during the entire isothermal analysis, showing that the reaction is not complete 

after 12 h. Further heating results in marginal mass loss up to 200 °C; the mass then increases again to 

reach its maximum value at ≈ 450 °C, but recovers to about its original one when heated higher up to 

600 °C.  

   The experiment under wet CO2 demonstrates that the reactivity with the combination of carbon 

dioxide and water is both fast and significant. The mass increase at room temperature is more than 5.5% 
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Figure 3.7 Reactivity of Na0.67[Fe0.5Mn0.5]O2 studied by TGA under different atmospheres. In 

each experiment, the sample was first annealed under dry Ar at 600 °C in order to obtain a 

reference sample free from any air contamination. After cooling down to room temperature, the 

atmosphere was switched to the gas of interest and the reactivity of the material with the flowing 

gas was inspected at 25 °C for 12 h followed by annealing to 600 °C. 
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after 12 h and is not saturated. An important mass loss in observed at ≈ 100 °C, related to the release 

of the surface species. The mass loss at temperatures higher than 400 °C should be attributed to the 

decomposition of the carbonate species as observed for the sample under air. The mass increase under 

dry CO2 flow is lower than that of water-saturated CO2 flow and is probably due to surface adsorption. 

The mass uptake under water-saturated O2 flow starts rapidly but almost saturates after 12 hours. The 

mass variations upon heating under wet oxygen flow is clearly different from the experiment under air.  

    Figure 3.8 illustrates discernible structural evolutions of a sample of P2-Na0.67[Mn0.5Fe0.5]O2 

exposed to air, revealed by scanning electron microscopy (SEM) and XRD in the study of the long-

term reactivity of the material. The SEM images of a sample exposed to air for less than a week (Figure 

3.8 a) show no evidence of an amorphous impurity phase. The SEM images of a sample exposed to air 

for a couple of weeks demonstrate particles with a ribbon-like morphology (Figure 3.8 b). Many of 

those particles were found in a sample exposed to air for a couple of months (Figure 3.8 c). These 

particles can be washed away with distilled water, as shown by SEM, whereas the XRD pattern remains 

unchanged. The nature of the ribbon-like particles could not be identified by SEM-EDS because they 

are damaged under the electron beam. However, the pH of the wash solution (≈ 11) and release of 

bubbles of gas (CO2, presumably) suggest that the impurity particles are an amorphous carbonate phase. 

The ribbon-like morphology is in good agreement with a formation mechanism consisting of a 

progressive extrusion of the carbonate and sodium ions from within the layered structure.  

   The exposure of a P2-Na0.67[Mn0.5Fe0.5]O2 sample to air immediately induces small changes in the 

lattice parameters. New peaks appear in the XRD pattern of the sample aged in air for a long time 

(Figure 3.8 d). The XRD pattern of a sample aged in air for approximately two weeks shows a new 

broad peak appearing on the left side of the (002) reflection, suggesting the formation of a new poorly 

crystalline phase, Phase 2, with a larger interlayer spacing of ≈ 6.3 Å ( compare to ≈ 5.6 Å for the 

pristine material). A new set of sharp reflections appears on the XRD pattern of a sample aged in air 
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for months, indicating a new phase, Phase 3, with a larger interlayer spacing of ≈7.1 Å. The growth of 

Phase 3 is concomitant with a decrease in the intensity of the peaks assigned to the P2 phase. We 

propose that these new phases are attributed to the intercalation of water between the MO2 layers, 

because of the similarity of the positions of their XRD reflections, particularly for Phase 3, to the 

“hydrated phases” reported by Lu and Dahn for P2-Na2/3[Co1/3Mn2/3]O2.94 Recently, Passerini et al.95 

reported that water molecules were intercalated into P2/P3-Nax[Ni0.22Co0.11Mn0.66]O2 when the sodium 

content was electrochemically decreased lower than a threshold value. We conclude that the same 

phenomenon is true for the P2-Na0.67[Mn0.5Fe0.5]O2 composition; the formation of the sodium carbonate 
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Figure 3.8 The SEM images and XRD patterns of Na0.67[Mn0.5Fe0.5]O2 exposed to air for: a day 

showing no evidence of impurity (a), a couple of weeks showing small amounts of ribbon-like 

particles (b) (see arrows), a couple of months showing numerous ribbon-like particles(c); the 

corresponding diffraction patterns (d). 
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ribbons extract the sodium from the structure, yielding a sodium-depleted P2 phase, facilitating the 

intercalation of water molecules. Thermo-diffraction analysis (Figure 3.9) shows that Phase 3 

disappears below 100 °C, and Phase 2 is decomposed at 200 °C.    
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Figure 3.9 High temperature X-ray diffraction under helium of Na0.67[Fe0.5Mn0.5]O2 

exposed to air for months. Scan 1 was collected as the temperature was reached and scan 

2 was collected after 50 minutes at isothermal condition. 
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3.3.3 Influence of the Reactivity of Na0.67[Mn0.5Fe0.5]O2 with Air on Electrochemical 

Properties 

Figure 3.10 a exhibits a comparison of the charge/discharge profile of an air-exposed P2-

Na0.67[Mn0.5Fe0.5]O2 sample (red curve) with an air-protected one (gray curve). The air-exposed sample 

shows much lower discharge capacity (about 70% of the air-protected electrode) and larger 

polarization, more profound in the low voltage region. A particularly significant difference is that the 

first charge curve does not superimpose with the second charge curve in the air-exposed sample, 

contrary to the air-protected one. This fact clearly indicates a transformation after the first cycle. On 

the first charge profile of the air-exposed sample, the potential immediately rises. Such potential jump 

is observed at x = 0.5 in the air-protected sample and is attributed to the start of Fe3+/4+ redox process. 
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Figure 3.10 The effect of the reactivity of Na0.67[Mn0.5+yFe0.5-2yNiy]O2 a) y = 0, b) y = 0.1 and 

c) y = 0.15 with air on charge/discharge profiles. The grey curves show the profiles for the 

air-protected electrodes for comparison. 
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This observation indicates that almost all the Mn3+ ions in the pristine material are oxidized to Mn4+ in 

the air-exposed sample balanced by the insertion of carbonates as described in equation 3.1. The 

substitution of Fe3+ by Mn4+/Ni2+ has been shown improving the average voltage of P2-

Na0.67[Mn0.5Fe0.5]O2.68,69 We find that this substitution is also beneficial to mitigate the impact of 

exposure to air, as shown in Figure 3.10 b,c for P2-Na0.67[Mn0.6Fe0.3Ni0.1]O2 and P2-

Na0.67[Mn0.65Fe0.20Ni0.15]O2. The higher the nickel content, the smaller is the discrepancy between the 

performance of the air-protected and air-exposed electrodes. This improved stability can be related to 

the increase of the mean oxidation state of Mn as the Ni content increases. The instability of Mn3+ 

species was previously described in P2-Na2/3MnO2,40 highlighting that the insertion of carbonate in the 

P2 structure might be a concern of many Mn3+-containing compositions.  

   The TGA-MS study of air-exposed P2-Na0.67[Mn0.5Fe0.5]O2 (Figure 3.4 and Figure 3.7) showed that 

insertion of carbonates is not the only aging mechanism. The effect of the other contaminants, water 

and oxygen, on the electrochemical properties of the sample was also investigated. Figure 3.11 b shows 

the first and second charge/discharge profiles of a P2-Na0.67[Mn0.5Fe0.5]O2 sample annealed at 600 °C 

under oxygen. The sample was protected against air after the heat treatment. It shows a potential jump 

at x = 0.57 on the first charge voltage profile, in agreement with the oxidation of some of Mn3+ ions. 

However, the second charge voltage perfectly overlaps with the first charge voltage. The voltage step 

in the profile of the material exposed to wet argon and dried at 90 °C under vacuum (Figure 3.11 c) 

appears at x = 0.51, suggesting only a marginal oxidation of the sample. These experiments demonstrate 

that solely oxygen or water exposure cannot independently reproduce the electrochemical behavior 

observed for the air-exposed material. Figure 3.11 d illustrates the voltage profile of a sample exposed 

to ambient conditions for 5 months, washed with water to remove the carbonate particles, and dried at 

200 °C under vacuum to remove intercalated water and produce a sodium deficient P2-

Na0.5[Mn0.5Fe0.5]O2 phase. The immediate potential jump on the first charge confirms the expected 
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sodium stoichiometry. The superimposability of the first and second charge implies that washing the 

electrode material with water, as reported by others,69 effectively removes the carbonate contamination. 

However, the P2-Nax[Mn0.5Fe0.5]O2 material annealed at 600 °C under vacuum or argon outperforms 

the material obtained by washing, possibly due to proton exchange in the latter case. 

3.3.4 Online Electrochemical Mass Spectrometry Study of Na0.67[Mn0.5Fe0.5]O2 

An online electrochemical mass spectrometry (OEMS) investigation of P2-Na0.67[Mn0.5Fe0.5]O2 was 

performed to monitor the gases released upon cycling (Figure 3.12) to obtain a better understanding of 

the processes responsible for the difference between air-exposed and air-protected samples. O2, H2O, 

H2, and CO2 gases were monitored. However, only the signal corresponding to CO2 showed meaningful 

changes.  
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Figure 3.11 Charge/discharge profiles of Na0.67[Mn0.5Fe0.5]O2 annealed under vacuum at 600 °C 

(a) (for comparison), annealed under oxygen at 600 °C (b), exposed to wet argon at room 

temperature and dried at 90 °C under vacuum (c), and exposed to air for months, washed with 

distilled water, filtered, and dried at 200 ° under vacuum (d). 
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   Upon the first charge. Figure 3.12 a shows the significant evolution of CO2 from the air-exposed 

sample in the range of 0.55 < x < 0.4, highlighted by the circle region. This feature is not observed for 

the air-protected sample (Figure 3.12 b), indicating that it is related to the evolution of carbonates 

inserted upon air exposure, as previously described.  The carbonate ions decompose to CO2 and oxygen 

species; because no oxygen evolution was detected, we assume that the oxygen reacts with the 

electrolyte and/or is incorporated into the lattice as oxide ions. Small amounts of CO2 is released from 

the air-exposed sample at x = 0.67 and from the air-protected sample at x = 0.5, i.e., at the potential 

jump of each sample. CO2 evolution at the onset of Fe4+ formation suggests that Fe4+ ions decompose 

the electrolyte. The small range in which these peaks are observed is probably due to the passivation of 

the surface by the decomposition products. 

   Upon the first discharge. A large amount of CO2 is released from the air-exposed sample and the air-

protected sample, starting at x ≈ 0.7 and x ≈ 0.5, respectively. The CO2 evolution upon discharge starts 

at the same sodium stoichiometry at which the second charge gas evolution initiated, i.e., where the 

redox couple switches between Mn3+/4+ and Fe3+/4+. This fact suggests that the gas evolution upon 

discharge is related to the formation of Mn3+ ions. This probably originates from surface 

disproportionation of Mn3+ and dissolution of Mn2+, which induces the decomposition of the electrolyte. 

A similar mechanism was proposed for lithium manganese spinel electrode materials.110,111 

   Upon the second charge. Larger amounts of CO2 are released from the both samples, at the 

stoichiometry which the Fe4+ formation starts, upon the second charge compared to the first one. This 

is consistent with the higher concentration of iron ions at the surface of the grains after the dissolution 

of some manganese ions upon discharge. The shift in the sodium stoichiometry at which the Fe3+/4+ 

redox couple is activated upon the first and second charge of the air-exposed sample suggest that some 

oxygen species produced from the decomposition of carbonate ions in the first charge are incorporated 

into the structure as oxide ions.   
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3.4 Conclusions  

The layered P2-Na0.67[Mn0.5Fe0.5]O2 is a promising electrode material for sodium-ion battery, owing to 

its high specific energy and the earth-abundant and non-toxic nature of its constituent elements. It shows 

a smooth voltage profile resulting from the disorder on the transition metal site, revealed by the neutron 

diffraction characterization. However, similar to many other layered sodium transition metal oxides, 

P2-Na0.67[Mn0.5Fe0.5]O2  is unstable in ambient conditions. This study reveals the nature of the reactivity 

of this material with air and demonstrates its important impact on the electrochemical properties.  

Rigorous protection of P2-Na0.67[Mn0.5Fe0.5]O2 is necessary to obtain good electrochemical 
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electrode, and the corresponding CO2 evolution signal measured by OEMS (c and d). The 

peaks marked by ↓ are due to sudden pressure change in the system and do not correspond 

to the sample. 



 

 72 

performance. Using neutron and X-ray diffraction coupled with mass spectrometry and 

thermogravimetric analysis, we have demonstrated the insertion of carbonate ions into the structure of 

P2-Na0.67[Mn0.5Fe0.5]O2 on exposure to CO2, H2O, and O2 in air at room temperature, concomitant with 

oxidation of Mn3+ to Mn4+. Online electrochemical mass spectrometry demonstrates the decomposition 

of the carbonate ions over the first charge. Electrochemical characterization of samples subjected to 

different air contaminants confirmed that the non-superimposability of the first two charge curves and 

the large polarization observed in the voltage profile of an air-exposed electrode originates from the 

presence of carbonate ions. Substituted materials P2-Na0.67[Mn0.6Fe0.3Ni0.1]O2 and P2-

Na0.67[Mn0.65Fe0.20Ni0.15]O2 exhibit lower reactivity to ambient conditions, making them more promising 

compared to the parent composition P2-Na0.67[Mn0.5Fe0.5]O2 for practical applications. The complex 

reactivity described in this work is probably not limited to the compositions studied here and should be 

considered when studying sodium layered oxides.  
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Chapter 4 

Structural Investigation and Electrochemical Evaluation of            

P2-Na0.67[Mn0.5+xFe0.5-2xNix]O2 (x = 0, 0.15) as the Positive Electrode 

for Na-ion Batteries 

4.1 Introduction 

Layered oxides of various transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, Cu and their combinations) have 

been synthesized and evaluated as host materials for the intercalation of sodium ions for Na-ion 

batteries (NIBs) application.4,33,35 Layered NaxMO2 (x ≤ 1, M = transition metal) are built up of edge-

sharing MO6 layers with different oxygen stacking order along the c-axis resulting in several polytypes. 

The most common polytypes are P2, with trigonal prismatic sodium environment and ABBA oxygen 

stacking, and O3, with octahedral sodium environment and ABCABC oxygen stacking, according to 

the notation of Delmas et al.38. Each unit cell contains 2 and 3 MO2 layers in the P2 and O3 structures, 

respectively.  

   Not only sodium layered oxides deliver comparable energy densities to their Li counterparts, but also 

they show important advantages. Some redox couples unavailable in lithium host materials are active 

in their sodium analogues (i.e., Fe3+/4+ and Cr3+/4+).12,13 Also, large ionic radius difference between the 

sodium ion and transition metal ions impedes cation mixing that is observed in Li-ion host materials. 

On the other hand, many sodium layered oxides are known to be reactive to ambient atmosphere 

(Chapter 3). Structural evolution induced by insertion/extraction of sodium ions during 

discharge/charge are also critical challenges intrinsic in these systems, resulting from strong 

Na+/vacancy interactions, and cause poor capacity retention and rate capability.42,43,54,57,112 For example, 

NaCoO2, which is isostructural to LiCoO2, goes through a sequence of phase transitions, O3-O′3-P′3-

P3-P′3, as sodium ions are extracted from the structure during the charge. Modifying the chemical 
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composition and limiting the cutoff voltage are two important approaches to limit the phase transitions 

and their detrimental effects. For instance, the capacity retention in a Nax[Mn2/3Ni1/3]O2/Na cell 

increases from 65% after 10 cycles to 95% after 50 cycles when the P2-O2 phase transition was avoided 

by limiting the high voltage range from 4.5 V to 4.1 V.47  P2-Na0.80[Li0.12Ni0.22Mn0.66]O2 73 preserves its 

structure up to 4.4 V and demonstrates superior capacity retention, more than 91% after 50 cycles, to 

P2-Na2/3[Mn2/3Ni1/3]O2.  

   Na0.67[Mn0.5Fe0.5]O2 exhibits promising electrochemical performance based on Fe3+/4+ redox couple 

as a positive electrode material and was introduced by Komaba et al.53. Following that, much effort 

was devoted to exploring manganese and iron based oxides.61-63,65,113,114 Na0.67[MnxFe1-x]O2 is composed 

of non-toxic and low-cost elements and delivers high specific energy. However, this family of material 

is air-sensitive55 (Chapter 3) and shows poor capacity retention due to phase transitions occurring upon 

cycling.53,57 Substitution of nickel is shown to improve the structural stability in ambient atmosphere55 

(Chapter 3) and enhances the capacity retention and average voltage.68      

   In the study56 presented in this chapter, the structural evolution of P2-Na0.67[Mn0.5Fe0.5]O2 and P2-

Na0.67[Mn0.65Fe0.20Ni0.15]O2 upon cycling and its impact on the electrochemical performance of these 

materials are investigated. The phase transitions during the first charge and discharge were monitored 

by operando X-ray diffraction (XRD) analysis. The high voltage phase was investigated by PDF 

analysis and Mössbauer spectroscopy. The effect of each phase transition on the electrochemical 

performance are described.     

4.2 Experimental 

Synthesis. P2-Na0.67[Mn0.5+xFe0.5-2xNix]O2 (x = 0, 0.1, 0.15)  were synthesized by a solid-state method. 

For each composition, a mixture of stoichiometric amounts of Na2CO3 (EMD Millipore, ≥99.5%), 

Mn2O3 (Sigma-Aldrich, 99, %), Fe2O3 (Sigma-Aldrich, ≥99%) and NiO (Sigma-Aldrich, 99.8%) was 

ball-milled at 250 rpm for 1 hour and then pelletized. The pellets were heated at 700 ºC for 4 hours and 



 

 75 

then 900 ºC for 6 hours in air. To prepare materials free from any air contamination, the pellets were 

heated at 600 ºC under an argon flow and then transferred into an Ar-filled glovebox in a sealed tube. 

Operando X-ray Diffraction (XRD). Operando XRD experiments were performed in a home-made cell. 

During the acquisition, the cells were cycled at a rate of C/20 with a pattern collection time of ≈ 20 min 

(Δx ≈ 0.02 in NaxMO2). The lattice parameters evolution during charge/discharge were determined 

using the Le Bail method.84 The electrode preparation and cell assembly for operando XRD 

experiments were similar to those described in Chapter 2, but the electrodes were deposited on a thin 

glassy carbon (SIGRADUR, HTW) substrate to allow the penetration of X-rays.  

4.3 Results and Discussions  

4.3.1 Structural and Electrochemical Overview 

The X-ray and neutron time of flight diffraction analyses were carried out on air-protected powder 

samples of Na0.67[Mn0.6Fe0.3Ni0.1]O2 and Na0.67[Mn0.65Fe0.20Ni0.15]O2. The crystal structures of both 

compositions were solved by combined Rietveld refinement of X-ray and neutron time of flight 

diffraction data (Figure 4.1, Table 4.1), which demonstrate an undistorted P2 structure (P63/mmc) for 

both compositions, similar to Na0.67[Mn0.5Fe0.5]O2. The data shows that the substitution of Fe3+ in 

Na0.67[Mn0.5Fe0.5]O2 by Mn4+/Ni2+ ions affects only the cell parameters, which correlate with the cation 

diameter, i.e., the cell parameters of Na0.67[Mn0.5Fe0.5]O2, a = 2.9429(1) Å, c = 11.1881(3) Å, decrease 

to a = 2.9276(1) and c = 11.1690(2) in Na0.67[Mn0.6Fe0.3Ni0.1]O2  and a = 2.9207(1) and c = 11.1598(8) 

in Na0.67[Mn0.65Fe0.20Ni0.15]O2 as Fe3+ ions (radius 0.65 Å) are partially replaced by Mn4+/Ni2+ ions (radii 

of 0.53 Å, and 0.69 Å, respectively).115  
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 Two trigonal prismatic sites are available in the P2 structure to accommodate sodium ions: Nae and 

Naf, which share edges and faces, respectively, with the MO6 octahedra. In many P2 structures, the 

electron density is not localized at those two prismatic sites and is found distributed over the layer.74,101 

Configurational disorder in the sodium or lithium sites is considered the origin of the good mobility of 

those ions in the host structures.74,116 The high distribution of electron density in the sodium layer is 

reflected as anomalously large isotropic displacement parameters for sodium atoms in some layered 

structures.74,102 Similar to the strategy employed before to model this disorder,74,101 off-centered (split) 

positions were considered for sodium ions, i.e., lower symmetry 6h Wyckoff position rather than 2d 
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Figure 4.1 Combined Rietveld refinement of neutron (a,c) and X-ray (b,d) powder diffraction data 

of Na0.67[Mn0.6Fe0.3Ni0.1]O2 (a,b) and Na0.67[Mn0.65Fe0.20Ni0.15]O2 (c,d). For each pattern, the observed 

data is shown in red, and the calculated pattern is shown in black, the difference curve is shown in 

blue, and the calculated Bragg reflections are shown in green. 
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and 2b sites. The refinements showed that occupancy of the Nae site is about twice that of Naf in both 

compositions, implying the higher stability of Nae site over Naf due to longer Na-M distances.  

Table 4.1 Atomic parameters and unit cell parameters of Na0.67[Mn0.6Fe0.3Ni0.1]O2 and 

Na0.67[Mn0.65Fe0.20Ni0.15]O2 calculated from Rietveld refinement of neutron and X-ray powder 

diffraction data. 

  Na0.67[Mn0.6Fe0.3Ni0.1]O2 Na0.67[Mn0.65Fe0.20Ni0.15]O2 

 Space Group P63/mmc P63/mmc 

 2 (XRPD/NPD) 10.1/6.04 12.6/14.4 

 Rbragg (XRPD/NPD) (%) 4.71/4.72 3.58/4.87 

 a (Å) 2.9276(1) 2.9207(1) 

 c (Å) 11.1690(2) 11.1598(8) 

 Cell Volume (Å3) 82.904(6) 82.444(6) 

 - U11 = U22 (Å2) 0.014(2) 0.016(2) 

Mn/Fe/Ni (2a) 

(0, 0, 0)  
- U33 (Å2) 0.023(2) 0.021(2) 

 - U12 (Å2) 0.007(2) 0.008(2) 

 - x 0.623(4) 0.621(5) 

Nae (6h) 

 (x, 2x, 1/4)  
- occ. 0.154(4) 0.150(5) 

 - Uiso (Å2) 0.02(1) 0.02(1) 

 - x 0.04(2) 0.03(2) 

Naf (6h) 

 (x, 2x, 1/4)  
- occ. 0.069(4) 0.074(5) 

 - Uiso (Å2) 0.02(2) 0.02(1) 

 - z 0.0925(2) 0.0926(3) 

O (4f) 

 (1/3, 2/3, z)  
- U11 = U22 (Å2) 0.013(2) 0.015(2) 

 - U33 (Å2) 0.011(2) 0.013(2) 

 - U12 (Å2) 0.007(2) 0.007(2) 

 

   The combined refinement of the neutron and X-ray data showed no evidence of ordering of cations 

(Ni, Fe, and Mn) over the transition metal site. The long range ordering of Na+/vacancies in many 

layered sodium metal oxides, such as P2-Na2/3VO2,103 P2-Na2/3CoO2,54 and P2-Na2/3[Mn2/3Ni2/3]O2,43 

cause structural transitions, which are reflected as step-wise features on the charge/discharge voltage 

profiles. Those structural transitions impede the capacity retention and rate capability. Disorder on 

transition metal site seems to prevent the long-range Na+/vacancy ordering.41 Smooth voltage profiles 
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of Na0.67[Mn0.5+yFe0.5-2yNiy]O2 (y = 0, 0.10, 0.15) imply the facile (de)intercalation of sodium ions, and 

perfectly superimposable first and second charges exhibit the reversibility of the process (Figure 4.2).  

All three compositions deliver a specific capacity close to 200 mAh.g-1 at the first discharge and exhibit 

similar capacity retention. The capacity fading is more prominent over the first five cycles. The voltage 

profiles of Na0.67[Mn0.5+yFe0.5-2yNiy]O2 (y = 0, 0.10, 0.15) show large polarization at high voltage region. 

The cell polarization at high voltage clearly shrinks as the nickel content increases in the composition.  
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Figure 4.2 First two galvanostatic charge/discharge cycles and specific capacity of P2-

Na0.67[Mn0.5+yFe0.5-2yNi2y]O2 (y = 0, 0.1, 0.15) over 25 cycles at 13 mAh.g-1 (C/20). 
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The specific energy of Na0.67[Mn0.65Fe0.20Ni0.15]O2, 561 Wh.kg-1, is slightly higher than that of the 

nickel-free composition (545 Wh.kg-1).  

   The combined refinement of X-ray and neutron diffraction data showed that the substitution of nickel 

into P2-Na0.67[Mn0.5Fe0.5]O2 does not significantly impact the average crystal structure. Therefore, the 

improved electrochemical performance of Ni-substituted compositions seems to originate from the 

change in charge compensation mechanism from the Fe3+/4+ couple to Ni2+/4+. A comparative study on 

the structural evolution upon cycling of Nax[Mn0.5Fe0.5]O2 and Nax[Mn0.65Fe0.2Ni0.15]O2 was performed 

to investigate the effect of composition modification on structural evolution induced by insertion and 

extraction of sodium ions and its effect on the electrochemical performance.  

4.3.2 Operando XRD Study of Nax[Fe0.5Mn0.5]O2 and Nax[Mn0.65Fe0.20Ni0.15]O2 Upon 

Cycling 

The structural changes upon cycling of P2-Na0.67[Mn0.5Fe0.5]O2 and P2-Na0.67[Mn0.65Fe0.20Ni0.15]O2 were 

investigated by Operando X-ray diffraction (XRD) analysis. The evolution of the diffraction patterns 

of Nax[Mn0.5Fe0.5]O2 and Nax[Mn0.65Fe0.20Ni0.15]O2 along with the voltage profile of the cells over the 

first cycle are demonstrated in Figure 4.3 and Figure 4.4, respectively, and the comparison of the phase 

diagram for the two compositions are shown in Figure 4.5. Nax[Mn0.5Fe0.5]O2 and 

Nax[Mn0.65Fe0.20Ni0.15]O2 show the same three phases over cycling; in agreement with reports previously 

published on P2-Na0.67[Mn0.5Fe0.5]O2,53,57 the initial P2 converts to a distorted P'2 phase at low voltage 

and to an low-crystalline phase, referred here to as the “Z” phase, at high voltage.  

P2 phase. The initial P2 phase is preserved over a wide range of x in Nax[Mn0.5+yFe0.5-2yNi2y]O2 (y = 0, 

0.15). Figure 4.6 (blue markers) shows the evolution of lattice parameters as a function of sodium 

content during the first discharge. As the sodium ions are inserted into the structure during the 

discharge, the in-plane cell parameters (ahex = bhex) increases in both compositions, in agreement with 

the reduction of transition metal ions. The interlayer distance (chex/2) shows the opposite trend, 
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however; the increase of the sodium content screens more effectively the electrostatic repulsion 

between the adjacent oxygen layers in the structure resulting in a decrease of interlayer distance. Figure 

4.5 shows that the voltage window at which the material upholds the P2 structure is extended to 2.0 - 

4.1 V in Nax[Mn0.65Fe0.20Ni0.15]O2 compared to 2.1 - 4.0 V in Nax[Mn0.5Fe0.5]O2. 

P2-P'2 transition. As the sodium content exceeds x ≈ 0.8 in Nax[Mn0.5+yFe0.5-2yNi2y]O2 (y = 0, 0.15) 

upon discharge, a transition occurs from hexagonal P2 (P63/mmc) phase to orthorhombic P'2 (Cmcm) 

phase. The P'2 phase is triggered by cooperative distortion of Mn3+ ions and was previously described 

in NaxMnO2 
51 and Na[Mn0.5Fe0.5]O2 

57. The P'2 is reported in the Ni-substituted composition for the 

first time in this study. The P'2 phase converts back to the P2 phase during the second charge as the 

concentration of Mn3+ ions decreases.  

   The hexagonal cell can be described in an orthorhombic space group using the following relationship, 

aortho = ahex, bortho = ahex + 2bhex and cortho = chex. Therefore, aortho = bortho/√3 in an undistorted cell. The 

P2-P'2 phase transition occurs at the same sodium content in both compositions during the first 

discharge due to the similar concentration of Mn3+ ions. The operando XRD analysis shows the 

presence of both P2 and P'2 phases in Nax[Mn0.5Fe0.5]O2 at low voltage (< 2.1 V), whereas 

Nax[Mn0.65Fe0.20Ni0.15]O2 completely converts to P'2 phase at ≈ 2.0 V upon discharge. Figure 4.6 (green 

markers) shows that the orthorhombic distortion increases (i.e., the bortho/aortho ratio deviates 

progressively from √3) as more sodium ions are intercalated into the structure and concentration of 

Mn3+ ions increases. However, the lattice parameters of Nax[Mn0.5Fe0.5]O2 do not show any significant 

evolution in the P'2 domain, as expected for a two-phase mechanism.  
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Figure 4.3 Operando XRD data recorded during galvanostatic cycling of 

Na0.67[Mn0.5Fe0.5]O2 at a rate of C/20 (left) along with illustration of the voltage profile of the 

cell (right) for the first cycle. The XRD patterns are color-coded with respect to the 
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electrode material. The sign × marks the diffraction peak from iron in the cell.  
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P2-Z transition. When Nax[Mn0.5+yFe0.5-2yNiy]O2 (y = 0, 0.15) is charged vs. Na in an electrochemical 

cell, a new phase is formed at high voltage (at 4.0 V for y = 0, at 4.1 V for y = 0.15) that shows weak 

and broad diffraction peaks. The structure of this phase cannot be solved by conventional diffraction 

techniques due to the low crystallinity of the phase. The operando experiment clearly demonstrate that 

the (100) and (110) reflections (located at 2𝜃 ≈ 36º and 65º, respectively, in Figure 4.3 and Figure 4.4) 

are preserved as the P2 structure converts to the high voltage phase (Z phase), whereas (hkl) reflections 
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with l ≠ 0 (any other peaks in Figure 4.3 and Figure 4.4) broaden evidently. These evolutions of XRD 

patterns revealed by operando experiment implies the destruction of long range order along the c-axis 

at high voltage, but very little change within the MO2 layer. Komaba et al.53 proposed an indexation in 

𝑃6̅𝑚2 space group for charged Nax[Mn0.5Fe0.5]O2 structure, compatible with the OP4 structure 

comprised of alternate stacking of O and P-type layers. However, the pair distribution function (PDF) 

analysis of the high voltage phase does not support an OP4 structure (see below). Delmas et al.57 

referred to the high voltage phase of charged Nax[Mn0.5Fe0.5]O2 as “Z phase” because of the 

uncharacterized nature of its structure. We follow Delmas’s nomenclature in this study. 
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Figure 4.6 Evolution of lattice parameters, in-plane (a),(c) and out of plane (b),(d) of 

Na0.67[Mn0.5Fe0.5]O2 (a),(b) and Na0.67[Mn0.65Fe0.20Ni0.15]O2 (c),(d) as a function of sodium 

content during the first discharge. 
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   The shift in the position of (002) peak from 2 ≈ 15° to ≈ 17° shows an important contraction of the 

interlayer distance in the transition from the P2 to Z phase. Figure 4.6 (red markers) demonstrates the 

evolution of lattice parameters of the Z phase calculated using a hexagonal cell (𝑃6̅𝑚2 space group). 

The abrupt decease in the interlayer spacing in transition from the P2 to Z phase can be explained by a 

transition from a P-type to an O-type structure, because in a P stacking type structure the oxygen atom 

of neighboring MO2 layers are aligned with each other along the c-axis, whereas they are not in an O 

stacking type structure. However, the progressive contraction of the interlayer spacing of the Z phase 

with deintercalation of sodium ions is opposite to the expected trend in the layered structures. This 

observed trend indicates that at high voltage, a mechanism is involved that increases the interlayer 

interaction. The P2-Z phase transition occurs at different sodium content during the first charge of two 

studied compositions, i.e., Na0.35[Mn0.5Fe0.5]O2 and Na0.29[Mn0.65Fe0.20Ni0.15]O2, implying that the 

mechanism involved in high voltage modifications depend on the chemical composition of the oxide.  

4.3.3 Study of High Voltage Z-Phase  

4.3.3.1 Pair Distribution Function (PDF) Analysis  

The conventional diffraction techniques cannot provide much information about the structure of the Z 

phase due to its poor crystallinity. However, pair distribution function (PDF) analysis is a powerful 

technique for characterization of the local structure of non-crystalline and crystalline materials. PDF 

presents the probability of finding any pair of atoms at a specific interatomic distance, regardless of 

crystallinity of the structure. The PDF technique has been successfully employed for the 

characterization of complex battery materials. 117-119   

   Because of the sensitivity of the PDF technique to amorphous phases, chemically oxidized samples 

were prepared for this study to prevent any interference that would arise from the additive carbon and 

binder in composite electrode materials. Pristine Na0.67[Mn0.5Fe0.5]O2 and Na0.67[Mn0.65Fe0.20Ni0.15]O2 
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materials were mixed with an excess amount of NO2BF4 in acetonitrile and fully washed (by 

acetonitrile) and dried after 2 days inside a glovebox. The extraction of sodium in the oxidized samples 

were confirmed by inductively coupled plasma (ICP) spectroscopy.   

   A full description of the PDF analysis of Z-Na0.14[Mn0.5Fe0.5]O2 and Z- Na0.1[Mn0.65Fe0.20Ni0.15]O2 are 

presented in reference 56, and only the conclusions are mentioned here. The comparison of the PDF 

curves of P2-Na0.67[Mn0.5Fe0.5]O2 and Z-Na0.14[Mn0.5Fe0.5]O2 revealed three important facts: (i) The 

peak assigned to the first neighbor M-O distance is neither split nor broadened in the PDF curve of the 

Z-phase. (ii) The intense peaks assigned to the interlayer M-M distances in the pristine phase disappear 

in the PDF curve of the oxidized sample. (iii) The peak representing the first neighbor in-plane M-M 

distance in the pristine phase split in the PDF curve of the Z phase, whereas the M-O distances remain 

in the Z phase. The observation (i) indicates that the PDF analysis does not show any evidence of 

cooperative distortion of Jahn-Teller active Fe4+ ions in the Z phase and therefore rules out Jahn-Teller 

stabilization of Fe4+ as a driving force of the structural transition at high voltage, in contrary to the low 

voltage phase transition that is triggered by Jahn-Teller stabilization of Mn3+ ions. The observation (ii) 

illustrates the complete destruction of long-range correlation along the c-axis. The observation (iii) 

implies the modification of the hexagonal packing of transition metal layers and can be explained by 

displacement of transition metal atoms along c-axis.   

   The best fit for the experimental PDF data of Z-Na0.14[Mn0.5Fe0.5]O2 and Z-Na0.1[Mn0.65Fe0.20Ni0.15]O2 

were achieved for a supercell made up of MO2 bilayers. This model is referred to as “bi-layer model”. 

The position of bilayers in the supercell was randomized in the ab-plane. Each bilayer upholds the O2 

oxygen stacking scheme, and some transition metals are accommodated in the tetrahedral sites available 

between two adjacent MO2 layers (Figure 4.7). The best agreement with the experimental PDF data 

was obtained for 1/8 and 1/32 transition metals accommodated in the tetrahedral sites in Z-

Na0.14[Mn0.5Fe0.5]O2 and Z- Na0.1[Mn0.65Fe0.20Ni0.15]O2, respectively. 
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4.3.3.2 Mössbauer Spectroscopy 

The pristine and deintercalated Nax[Mn0.5+yFe0.5-2yNiy]O2 (y = 0, 0.10, 0.15) materials were studied by 

57Fe Mössbauer spectroscopy for further investigation of the high voltage phase transition. The 

deintercalated samples were recovered from the composite electrodes in the electrochemical cells that 

were charged to 4.3 V and then disassembled in an Ar-filled glovebox. The spectra of the pristine 

materials (x = 0.67, Figure 4.8 a-c) and the fully charged materials (x ≈ 0.15, Figure 4.8 d-f) were 

recorded at room temperature. 

     The pristine samples show similar spectra composed of a single sharp doublet with an isomer shift 

(IS) of ≈ 0.24 mm.s-1 and a quadrupole splitting (QS) of ≈ 0.73 mm.s-1 (Table 4.2), consistent with Fe3+ 

in an octahedral environment. The spectra of charged samples demonstrate asymmetry in the doublets, 

with more spectral weight shifted to negative velocity. This effect is more evident in the spectrum of 

Na0.15[Mn0.5Fe0.5]O2 than that of Na0.15[Mn0.65Fe0.20Ni0.15]O2. The spectra of the charged materials (x ≈ 

0.15, Figure 4.8 d-f) were fitted using three components (Table 4.2). The main component is assigned 

Figure 4.7 Representation of the bilayer models used to fit the PDF curves of Na0.1[Mn0.5Fe0.5]O2 and 

Na0.1[Mn0.65Fe0.20Ni0.15]O2. The fitting of the PDF data showed mitigated migration of transition 

metals into the tetrahedral sites of the interlayer space in the Ni-substituted sample.  
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to Fe3+O6 in an octahedral environment and has a similar isomer shift and quadrupole splitting values 

compared to its pristine counterpart. The second component with an isomer shift of 0.17 mm.s-1 and a 

large quadrupolar splitting of ≈ 1.5 mm.s-1 is assigned to Fe3+O4 (tetrahedral coordination) owing to the 

non-centrosymmetry of its ligand environment. The third component with an isomer shift close to zero 

and a quadrupole splitting of ≈ 0.7 mm.s-1 is consistent with Fe4+O6 in sodium layered oxides.11,49,62,120  
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Figure 4.8  57Fe Mössbauer spectra of Nax[Mn0.5+yFe0.5-2yNiy]O2 pristine (a-c) and charged to 4.3 V (d-

f) for y = 0 (a and d), y = 0.1 (b and e), and y = 0.15 (c and f). Raw data is shown in black. Individual 

spectral components of Fe3+O6, Fe3+O4 and Fe4+O6 from fitting are shown in green, blue, and red. The 

sum of all spectral components results in the orange curves. 
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Table 4.2 Parameters resulting from fitting of 57Fe Mössbauer spectra of Nax[Mn0.5+yFe0.5-2yNiy]O2            

(y = 0, 0.1, 0.15); pristine and charged to 4.3 V. 

y in 

Nax[Mn0.5+yFe0.5-2yNiy]O2 
  Component IS (mm/s) QS (mm/s) % Area 

y = 0.00 

 

 

 

pristine Fe3+O6 0.25 0.75 100.0 

charged 

  

  

Fe3+O6 0.28 0.76 50.9 

Fe3+O4 0.17 1.51 16.6 

Fe4+O6 0.00 0.69 32.5 

y = 0.10 

 

 

 

pristine Fe3+O6 0.24 0.73 100.0 

charged 

  

  

Fe3+O6 0.26 0.79 69.5 

Fe3+O4 0.17 1.53 6.5 

Fe4+O6 0.00 0.69 24.0 

y = 0.15 

 

 

pristine Fe3+O6 0.24 0.72 100.0 

charged 

  

Fe3+O6 0.25 0.71 84.2 

Fe4+O6 0.00 0.70 15.8 

 

 

   The data shows that the refined ratio of Fe4+O6 (Table 4.2) is systematically lower than what is 

expected for Na0.15[Mn0.5+yFe0.5-2yNiy]O2 according to a simple, purely ionic model, i.e., 70%, 50% and 

25% respectively for y = 0, 0.1, 0.15, assuming that all the manganese and nickel ions are oxidized to 

tetravalent, i.e., Na0.15[Mn4+
0.5Fe4+

0.35Fe3+
0.15]O2, Na0.15[Mn4+

0.60Fe4+
0.15Fe3+

0.15Ni4+
0.10]O2, and 

Na0.15[Mn4+
0.65Fe4+

0.05Fe3+
0.15Ni4+

0.15]O2. This important discrepancy indicates that the charge 

compensation mechanism at high voltage is more complex than the straightforward oxidation of Fe3+ 

to Fe4+. Moreover, the X-ray absorption spectroscopy (XAS) of P2-Nax[Mn0.5Fe0.5]O2 reported by 

Komaba et al.53 illustrated evident shift in the position of the spectrum at the Mn K-edge from the 

pristine material to the charge one, but no shift was observed in the position of the spectrum at the Fe 

K-edge and only the absorption maxima were affected.  
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   Yamada et al. 49 have proposed the important role of ligand-to-metal charge transfer (LMCT) in the 

electrochemical properties of layered sodium metal oxides. Moreover, electron transfer from oxygen p 

orbitals to iron d orbitals is demonstrated in Fe4+ containing perovskite structures such as CaFeO3 and 

SrFeO3.121-123 The Fe4+ oxidation state can be stabilized by transferring electrons from oxide ions. A 

similar mechanism is proposed to be involved in the case of Na0.15[Mn0.5+yFe0.5-2yNiy]O2 materials. The 

electron transfer from oxygen anions to iron atoms weakens the chemical bonding of the surrounding 

metal atoms, facilitating their migration out of MO2 plane that was identified by PDF analysis.  

   The fitting of Mössbauer spectra revealed that the concentration of iron atoms in tetrahedral 

coordination decreases from 16.6% in Na0.15[Mn0.5Fe0.5]O2 to 6.5 % in Na0.15[Mn0.6Fe0.3Ni0.1]O2 (Table 

4.2). The signal corresponding to the tetrahedrally coordinated iron atoms was probably too small to be 

refined for Na0.15[Mn0.65Fe0.20Ni0.15]O2, in agreement with the lower concentration of tetrahedral species 

illustrated by PDF analysis. On the other hand, detecting no Fe3+O4 in Na0.15[Mn0.65Fe0.20Ni0.15]O2 might 

be due to the preferred migration of Mn4+ ions rather than Fe3+ ions. Fe4+ and Ni4+ are usually not 

found in tetrahedral coordination, but cannot be completely ruled out. 

4.3.3.3 Discussion of the Mechanism 

Based on the combination of operando XRD experiment, PDF analysis, and Mössbauer spectroscopy, 

The following mechanism for the deintercalation of P2-Nax[Mn0.5+yFe0.5-2yNiy]O2 electrode materials is 

proposed; the formation of Fe4+ species is stabilized by transfer of electrons from the oxygen orbitals. 

The hybridization of iron with oxygen orbitals weaken the bonding of neighboring atoms and results in 

the migration of transition metals, mostly Fe3+ ions, out of the MO2 planes. High concentrations of 

sodium vacancies and the interaction of the migrated atom with adjacent MO2 layers induce gliding of 

the layers and the formation of an O2-type oxygen stacking scheme in the bi-layer model with available 

tetrahedral sites. The increased number of migrated atoms into the interlayer tetrahedral sites driven by 
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extraction of sodium ions explains the contraction of interlayer space over the Z phase domain during 

charge. 

   As the Fe ions in Nax[Mn0.5Fe0.5]O2 are substituted by Mn/Ni, fewer atoms are affected by this 

mechanism, owing to the lower concentration of Fe4+ ions. A lower concentration of migrated atoms 

out of the MO2 plane is consistent with the delay of P2-Z transition in Nax[Mn0.65Fe0.20Ni0.15]O2 

compared to Nax[Mn0.5Fe0.5]O2 and the lower polarization in the voltage profiles of nickel substituted 

samples, meaning that lower energy is required for reversibility of the transition (Figure 4.2).  

   It is worth noting that for O3-NaFeO2, a degradation mechanism triggered by the migration of some 

Fe3+ ions into tetrahedral sites at high voltage is proposed based on ex-situ XRD and XAS studies.4 The 

important difference in the high voltage degradation mechanism of O3-NaFeO2 and P2-

Na0.67[Mn0.5+yNiyFe0.5-2y]O2 is the reversibility of the transition; the charge capacity of O3-NaFeO2 

increases by the increase of the cut-off voltage, whereas the reversible capacity highly diminishes by 

the expansion of cut-off voltage higher than 3.5 V, indicating the irreversibility of its high voltage 

structural modifications. However, the high voltage and low voltage phase transitions in the P2-

Na0.67[Mn0.5+yNiyFe0.5-2y]O2 are reversible proven by the perfect overlap of the lattice parameters as a 

function of the sodium content during the first and second charge (shown for Nax[Mn0.65Fe0.20Ni0.15]O2 

in Figure 4.9). 
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4.3.4 Electrochemistry: Effect of Structural Transitions on Cycling 

4.3.4.1 Effect of Voltage Window on Capacity 

Structural transitions induced by insertion/extraction of sodium ions during discharge/charge cause 

changes in crystallographic cell volume, imposing mechanical stress on the material. These structural 

modifications results in the energy fading of electrode materials when charged and discharged in a wide 

range of voltage. Phase transitions occurs in many layered sodium metal oxides when cycled, which is 

why electrode degradation is an important drawback with these materials. P2-Na0.67[Mn0.5Fe0.5]O2 is a 

promising positive electrode material owing to its relatively wide range of P2 stability domain. 
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Figure 4.9 Evolution of in-plane lattice parameters (left) and average interlayer distance (right) of 

Nax[Mn0.65Fe0.20Ni0.15]O2 as a function of the sodium content for the first cycle and the second charge.  

Parameters and phase domains are not labeled for clarity and can be found in Figure 4.6. The insets 

show expanded views of the stability domain of the P2 phase, highlighting the perfect overlap of the 

lattice parameters over the first and second charge.   
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Moreover, Operando XRD analysis showed that the substitution of nickel increases the stability domain 

of the P2 phase.  

   The effect of phase transitions on the electrochemical performance of Nax[Mn0.5Fe0.5]O2 and 

Nax[Mn0.65Fe0.2Ni0.15]O2 was investigated by cycling each material in four different voltage ranges, at 

which both the P2-Z and P2-P2 phase transitions occur (Figure 4.10, dark cyan), only the P2-Z phase 

transition is allowed (Figure 4.10, red), only the P2-P2 phase transition happens (Figure 4.10, blue), 

and no phase transition occurs (Figure 4.10, green). Operando XRD experiments show that the P2 

phase is preserved in the Nax[Mn0.5Fe0.5]O2 and Nax[Mn0.65Fe0.2Ni0.15]O2 materials when the cutoff 

voltage is limited to 2.1- 4.0 V and 2.0 - 4.1V, respectively (Figure 4.5).  

   Figure 4.10 illustrates that preventing the formation of the orthorhombic P'2 phase does not impact 

significantly the low voltage polarization. Therefore, the low voltage polarization can be related to 

intrinsic properties of the P2 phase such as the sodium mobility. On the other hand, when the cutoff 

voltage is limited so that the formation of the Z phase is avoided, the high-voltage polarization 

substantially decreases, indicating that the high voltage polarization is related to the energy required to 

convert the Z phase back to the P2 phase. When cycled at the stability domain of the P2-phase, the 

voltage profile of Nax[Mn0.5Fe0.5]O2 shows slightly larger polarization at x = 0.50 compared to 

Nax[Mn0.65Fe0.2Ni0.15]O2. The polarization around the potential jump at the voltage profile of the 

Nax[Mn0.5Fe0.5]O2 was attributed to the decrease in electronic conductivity due to the absence of 

transition metals with a mixed valence state.57 The absence of that polarization in the voltage profile of   

Nax[Mn0.65Fe0.2Ni0.15]O2 cycled over the P2 Phase stability domain indicates that the material remains 

electronically conductive over the whole cycling range.  
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4.3.4.2 Improving the Specific Energy 

Figure 4.11 shows the specific capacity (a,b) and specific energy (c,d) delivered by Na0.67[Mn0.5Fe0.5]O2 

(a,c) and Na0.67[Mn0.65Fe0.20Ni0.15]O2 (b,d) cycled within four different voltage ranges at the rate of C/20 

over 30 cycles. Because the structural modifications affect the polarization in addition to the capacity, 

energy retention is a more relevant parameter to study the cycling performance of the materials rather 

than capacity retention. Figure 4.12 shows the evolution of columbic efficiency of the cells cycled  
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Figure 4.10 The galvanostatic charge/discharge profile of Na0.67[Mn0.5Fe0.5]O2 and 

Na0.67[Mn0.65Fe0.20Ni0.15]O2 cycled at C/20 in different voltage windows. 
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Figure 4.11 Specific capacity (a,b) and specific energy (c,d) of Na0.67[Mn0.5Fe0.5]O2 (a,c) 

and Na0.67[Mn0.65Fe0.20Ni0.15]O2 (b,d) as a function of cycle number, cycled at C/20 within 

different voltage windows. Specific energy of Na0.67[Mn0.5Fe0.5]O2 and 

Na0.67[Mn0.65Fe0.20Ni0.15]O2 cycled at C/10 in the 2.1 - 4.0 V and 2.0 - 4.1 V window, 

respectively; energy fade rate for the latter is 0.13% per cycle (c). 
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within the extended (1.5 - 4.3 V) and the limited (P2 phase stability domain) voltage ranges. Coulombic 

efficiency is defined here as the ratio of charge capacity to the preceding discharge capacity. The cells 

cycled within 1.5 - 4.3 V voltage window show poor coulombic efficiencies over the first five cycles, 

which is reflected in their pronounced fading (Figure 4.11 a-d). However, Coulombic efficiencies are 

within 1 ± 0.5% range from cycle 6 to 30. The accuracy of the measured charge values in this study is 

~ 0.5%.  More accurate measurement of charge values by high precision instruments is necessary for 

attributing Coulombic efficiency of the cells to their electrochemical performance.  

   Na0.67[Mn0.5Fe0.5]O2 and Na0.67[Mn0.65Fe0.20Ni0.15]O2 show about 70 % specific energy retention after 

30 cycles when cycled within 1.5 - 4.3 V. Avoiding the formation of orthorhombic P'2 phase slightly 

enhances the specific energy retention. However, when the high voltage P2-Z phase transition is 

prevented, the energy retention is increased by about 15 %. Beyond 90% of specific energy is retained 

after 30 cycles when the phase transitions are avoided by limiting the cutoff voltage. Within the same 

voltage range and with twice current rate (C/10 or 26 mA.g-1), the Na0.67[Mn0.65Fe0.20Ni0.15]O2 cell 

exhibited ≈ 80 % energy retention over 150 cycles (Figure 4.11). It should be noted that the electrodes 
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Figure 4.12 Coulombic efficiency of Na0.67[Mn0.5Fe0.5]O2 and Na0.67[Mn0.65Fe0.20Ni0.15]O2 

cycled over P2- phase region and the full voltage range of 1.5 - 4.3 V at the rate of C/20.    
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were not optimized and were cycled vs. sodium metal; considering that, Na0.67[Mn0.65Fe0.20Ni0.15]O2 

exhibits promising performance for further development of positive electrode material for NIBs.  

   These results show that limiting the cut-off voltage is a greatly effective approach to increase the 

cycle life of P2-Na0.67[Mn0.5+yFe0.5-2yNiy]O2, at the expense of energy loss, however. P2-

Na0.67[Mn0.65Fe0.20Ni0.15]O2 delivers only ≈ 3% higher specific energy compared to P2-

Na0.67[Mn0.5Fe0.5]O2 when cycled in 1.5 - 4.3 V window (561 Wh.kg-1 vs. 545 Wh.kg-1 on the first 

discharge). However, when cycled within the P2-stability domain, the specific energy obtained from 

P2-Na0.67[Mn0.65Fe0.20Ni0.15]O2 is 25% higher than that of P2-Na0.67[Mn0.5Fe0.5]O2 (345 Wh kg-1 vs. 278 

Wh.kg-1), owing to the extended range of the P2 region in the nickel substituted composition.  

4.4 Conclusions 

Here, a comparative study of structural evolution induced in P2-Na0.67[Mn0.5Fe0.5]O2 and P2-

Na0.67[Mn0.65Fe0.20Ni0.15]O2 upon (de)intercalation of sodium ions is presented. Operando X-ray 

diffraction experiments showed that both compositions maintain the P2 phase over a wide range of 

stoichiometry, transform to a P'2 orthorhombic phase induced by cooperative Jahn-Teller distortion of 

Mn3+ cations at low voltage, and convert to a poor crystalline disordered phase, Z phase, at high voltage. 

Pair distribution function analysis showed the destruction of long-range order along c-axis and the 

migration of transition metal ions out of MO2 planes. In contrast to O3-NaFeO2 
4 and NaCrO2

124, for 

which a similar degradation mechanism at high voltage was proposed, the migration of transition metals 

are reversible in Nax[Mn0.5+yNiyFe0.5-2y]O2, although results in significant voltage polarization.  

   The impact of both P2-P'2 and P2-Z phase transitions on the electrochemical performance of P2-

Na0.67[Mn0.5Fe0.5]O2 and P2-Na0.67[Mn0.65Fe0.20Ni0.15]O2 were investigated by adjusting the cycling 

voltage window. The high voltage phase transition cause a more significant destructive effect on the 

cycling performance of the cells. If both phase transitions are avoided by limiting the cutoff voltage, 
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92% specific energy is retained by P2-Nax[Mn0.65Fe0.20Ni0.15]O2 after 30 cycles, showing a significant 

improvement to  ≈ 71 % in 1.5 - 4.3 V range at C/20. This material maintains 80% of original specific 

energy after 150 cycles when cycled within 2.0 - 4.1 V at C/10.  The detrimental P2-Z phase transition 

is delayed to slightly higher voltage when 60% of Fe3+ ions in Na0.67[Mn0.5Fe0.5]O2 are substituted by 

Mn4+/Ni2+, resulting in 25% energy boost when the cell is cycled within the P2 stability domain.  

   The concentrations of oxidized iron ions (Fe4+) in charged Nax[Mn0.5+yFe0.5-2yNiy]O2 samples detected 

by Mössbauer spectroscopy were lower than the values required to compensate the charge measured 

from electrochemical cells based on only cationic redox reactions. Electron transfer from oxygen to 

transition metal orbitals is proposed to be the driving force for the high voltage transition. Further 

studies are needed to fully understand the role of LMCT in these oxides. 
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Chapter 5 

Structural Investigation and Electrochemical Evaluation of            

P2-Na0.67[Mn0.66Fe0.20Cu0.14]O2 as the Positive Electrode for            

Na-ion Batteries 

5.1 Introduction 

Sodium ion battery (NIB) technology is considered as a promising alternative for lithium ion battery 

(LIB) for large-scale application, such as grid storage, where cost is a more important criterion than the 

volumetric and gravimetric energy density, due to the cost and resource availability concerns about 

lithium, whereas sodium has high abundance. Therefore, low cost and environmental impact are among 

important criteria of material design for NIBs. Various oxide compositions are investigated to 

accomplish high-performance electrode materials which offer a balance among different criteria: 

energy density, cyclability, rate capability, cost, and safety.47,56,67,73,77 Layered oxide sodium host 

materials composed of low-cost and non-toxic transition metals, such as Mn and Fe, have been the 

focus of many studies and show auspicious performance.53,57,63,62,65,112 Copper-based sodium metal 

oxides are promising owing to their cost and safety advantages and have been explored over only the 

last couple of years as potential positive electrode materials for Na battery based on Cu2+/3+ redox 

activity. O3-NaCuO2 was first reported by Takahashi et al.125 to deliver a specific capacity of more than                     

140 mAh.g-1 in the voltage range of 0.75 - 3.0 V, but with poor capacity retention (≈ 30 mAh.g-1 at 15th 

cycle). P2-Na0.68[Cu0.34Mn0.66]O2 and P2-Na0.68[Cu0.34Mn0.50Ti0.16]O2 were investigated as positive 

electrode materials in Na half-cells and both showed specific capacities less than 70 mAh.g-1 in the first 

cycle at the current rate of C/10.126 In another study127, O3-Na0.9[Cu1/4Fe1/4Mn1/4Ti1/4]O2 was reported 
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to deliver a specific capacity of 78 mAh.g-1 with a capacity retention of 60% after 90 cycles when 

cycled within 2.5 - 4 V at a rate of 1C. It was reported that P2-Na2/3[Cu1/3Mn2/3]O2
128 delivered a specific 

capacity of 67 mAh.g-1 at the first discharge in a Na half-cell cycled in the voltage range of 3.0 - 4.2 V 

at the rate of C/4 and survived after 1000 cycles with 61% of capacity retained. X-ray absorption 

spectroscopy revealed a charge compensation mechanism based on the Cu2+/3+ redox couple, whereas 

manganese ions remained electrochemically inactive. In a different study, Cu2+/3+ and Fe3+/4+ ions were 

proved responsible for the redox activity of O3-Na0.9[Cu0.22Fe0.30Mn0.48]O2.129 In another recent research 

by Hu et al.,70 P2-Na7/9[Cu2/9Fe1/9Mn2/3]O2 was synthesized and studied. Excellent capacity retention 

(87% of initial 69 mAh.g-1 capacity was maintained after 150 cycles at the cycling rate of 1C), stability 

of the P2 structure over the potential window of 2.5 - 4.2 V, and air stability was reported for this 

material.  

   The studies mentioned above provide evidence of the promise and advantages that substitution of 

copper into layered sodium metal oxides may offer regarding cost reduction, safety, and the 

improvement of stability. However, further in-depth structural characterizations are required to 

understand the effect of substitution of copper in different sodium metal oxide systems on their phase 

transitions during charge/discharge, the reactivity to the ambient atmosphere, and charge compensation 

mechanisms. Clear insight into these issues is necessary to optimize the composition for obtaining 

suitable stability with minimum compromise on the energy density. The study on the positive effect of 

substitution of Mn4+/Ni2+ for Fe3+ on the structural stability and electrochemical performance of P2-

Na2/3[Mn1/2Fe1/2]O2 are presented in Chapter 4. In the study presented in this chapter, P2-

Na0.67[Mn0.66Fe0.20Cu0.14]O2, a composition close to Na0.67[Mn0.65Ni0.15Fe0.20]O2, was synthesized to 

systematically investigate the effect of substitution of copper for nickel. Air stability, electrochemical 

performance, and the structural evolution during charge/discharge are described. 
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5.2 Experimental    

Synthesis. P2-Na0.67[Mn0.66Fe0.20Cu0.14]O2 was synthesized by a solid state method. A mixture of 

stoichiometric amounts of Na2CO3 (EMD Millipore, ≥99.5%), Mn2O3 (Sigma-Aldrich, 99, %), Fe2O3 

(Sigma-Aldrich, ≥99%), and CuO (J. T. Baker, 99.5%) was ball-milled at 250 rpm for 1 hour and then 

pelletized. The pellets were heated at 700 ºC for 4 hours and then 900 ºC for 6 hours in air. To prepare 

a material free from any air contamination, the pellets were heated at 600 ºC under an argon flow and 

then transferred into an Ar-filled glovebox in a sealed tube.  

Operando X-ray Diffraction (XRD). Operando XRD experiment was performed in a home-made cell. 

During the acquisition, the cell was cycled at a rate of C/20 with a pattern collection time of ≈ 20 min 

(Δx ≈ 0.02 in NaxMO2). The lattice parameters evolution during charge/discharge were determined 

using the Le Bail method.84 The electrode preparation and cell assembly procedures for the operando 

XRD experiment were similar to those described in Chapter 2, but the electrode was deposited on a 

thin glassy carbon (SIGRADUR, HTW) substrate to allow the penetration of X-rays.  

5.3 Results and Discussion 

5.3.1 Structure and Air Stability 

The target composition, Na0.67[Mn0.65Fe0.20Cu0.15]O2, was synthesized by a solid state method. The XRD 

pattern of the sample (Figure 5.1, blue) confirms an undistorted P2 structure (space group P63/mmc) 

for the material. The P2 structure (Figure 5.1 b) can be described as a stack of edge-sharing MO6 layers 

accommodating two different prismatic sodium sites in between, Nae and Naf, which share edges and 

faces, respectively, with the MO6 octahedra. The XRD pattern of the material reveals the presence of a 

minor impurity phase (marked by ↓). The small peak at ≈ 38.7º matches with the main characteristic 

peak of CuO XRD pattern. The second main peak of CuO at ≈ 35.5º has overlap by (100) reflection of 

the P2 phase. The appearance of CuO or another unidentified impurity was reported before for the 

synthesis of copper-substituted P2 compositions.126,128 These observations suggest that only limited 



 

 102 

amount of copper could be incorporated in the P2 layered structure, probably due to the larger ionic 

radius of Cu2+ (0.73 Å) compared to the other transition metal cations; Mn4+ (0.53 Å), Mn3+ (high spin, 

0.65 Å), Fe3+ (high spin, 0.65 Å), and Ni2+ (0.69 Å).115 A single phase material was achieved when 10 

wt% less copper oxide was used in the precursors, resulting in the Na0.67[Mn0.66Fe0.20Cu0.14]O2 

composition (Figure 5.1 a, red).  
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Figure 5.1 XRD pattern of pristine Na0.67[Mn0.65Fe0.2Cu0.15]O2 (blue), pristine 

Na0.67[Mn0.66Fe0.2Cu0.14]O2 (red), and aged Na0.67[Mn0.66Fe0.2Cu0.14]O2 in air for 3 months (black) (a). 

Symbol (↓) marks the CuO impurity peak. Schematic presentation of P2-NaxMO2 (b). SEM images of 

pristine Na0.67[Mn0.66Fe0.2Cu0.14]O2 (c) and  the sample aged in air for 3 weeks (d) and 3 months (e). 
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   Figure 5.2 shows the result of Rietveld refinement of the X-ray powder diffraction data of 

Na0.67[Mn0.66Fe0.20Cu0.14]O2. The analysis was performed on a sample loaded into a glass capillary in an 

argon filled glovebox and sealed from exposure to air. The lattice parameters, a = 2.9280 Å and c = 

11.1800 Å, are slightly larger than those of Na0.67[Mn0.65Ni0.15Fe0.20]O2, a = 2.9207 Å and c = 11.1598 

Å (Chapter 4), in agreement with the larger size of Cu2+ than Ni2+. hkl-dependent peak broadening was 

observed in the XRD pattern of Na0.67[Mn0.66Fe0.20Cu0.14]O2, similar to previously reported NaxMO2 

materials53,55; (10l) Bragg peaks are broader than (00l) reflections. Application of a micro-strain 

correction100 improved much the modeling of peak profiles. The atomic displacement parameters of 

sodium sites were fixed and off-centered site positions were taken to model the high disorder in electron 

density distribution in the sodium layer, similar to the approach reported before74. The total occupancy 

of sodium ions to the transition metal ions was fixed to 0.67.  

   Figure 5.1 c shows the SEM image of an as-prepared sample of Na0.67[Mn0.66Fe0.20Cu0.14]O2. The 

particles have mostly plate-like morphology, with hundreds of nanometer thickness and several micron 

diameters. No impurity phase based on morphology is distinguished by SEM images. However, the 

SEM image of a sample exposed to air for three weeks (Figure 5.1 d) shows the initiation of growth of 

a new phase (marked by a yellow arrow). The SEM image of a sample aged in air for three months 

(Figure 5.1 e) clearly demonstrates the new phase with ribbon-like morphology. EDS detected carbon, 

oxygen, and sodium as the constituent elements of the emerged impurity. The XRD pattern of an aged 

sample for about 3 months (Figure 5.1 a, black) shows the appearance of new peaks. The growth of 

ribbon-like sodium carbonate particles and similar evolution of XRD pattern were previously observed 

for an aged sample of its parent composition, P2-Na2/3[Mn1/2Fe1/2]O2, reported in a previous study55 

(Chapter 3). A comprehensive study of air reactivity of P2-Na2/3[Mn1/2Fe1/2]O2 showed that carbonate 

anions are inserted into the structure as a consequence of exposure of the material to the moisture and 

CO2 in the atmosphere. Carbonate anions and sodium cations progressively form amorphous sodium 
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carbonate ribbons resulting in depletion of sodium ions. Water molecules are finally intercalated into 

the sodium deficient P2 phase and form hydrated phases detected by XRD. The hydrated phases with 

similar XRD patterns were previously reported for air-exposed P2 phases.43,95 Substitution of Mn4+/Ni2+ 

for Fe3+ was shown to decrease the reactivity of P2-Na2/3[Mn1/2Fe1/2]O2 to the atmosphere (Chapter 3). 

Recently, it was reported that no air reactivity was observed for P2-Na7/9[Cu2/9Fe1/9Mn2/3]O2 up to two 

months.70 These results imply that incorporation of copper into P2-Na2/3[Mn1/2Fe1/2]O2 could mitigate 

its reactivity, but does not suppress it, and the stability of P2-Na7/9[Cu2/9Fe1/9Mn2/3]O2 should have 

another origin. Further investigations of Na0.67[Mn0.66Fe0.20Cu0.14]O2 discussed in this work were 

performed on air-protected samples.  
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P63/mmc, a = 2.9280(2) Å, c = 11.1800(2) Å, V = 83.006(2) Å3

χ2 = 4.35, RBragg = 12.7%

Site Wycko. x y z Uiso (Å2) at./f.u.

Nae 6h 0.734(5) 0.266(5) 1/4 0.012 0.42(2)

Naf 6h 0.088(5) 0.912(5) 1/4 0.012 0.25(2)
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Figure 5.2 Rietveld refinement of X-ray powder diffraction data of P2-Na2/3[Mn1/2Fe1/2]O2. The 

observed data is shown in red markers, the calculated pattern is shown in black, the difference curve 

is shown in blue, and the Bragg reflection are shown in green. The unit cell parameters and atomic 

parameters are presented in the inset of the figure. 
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5.3.2 Operando X-ray Diffraction Analysis (XRD) 

Phase transitions of Nax[Mn0.66Fe0.20Cu0.14]O2 during galvanostatic charge and discharge were 

examined by operando XRD analysis. Figure 5.3 a presents a color map illustration of the evolution 

of Nax[Mn0.66Fe0.20Cu0.14]O2 diffraction peaks over the first discharge between 4.3V to 1.5 V at a cycling 

rate of C/20. It is worth noting that recent studies130,131 showed the dependency of phase transitions in 

layered NaxMO2 to the cycling rate. Operando XRD analysis showed that the phase transitions induced 

by insertion and extraction of sodium ions into/from Nax[Mn0.66Fe0.20Cu0.14]O2 occurs similarly as in 

Nax[Mn0.5Fe0.5]O2
57, and Nax[Mn0.65Fe0.20Ni0.15]O2

56. Initial P2 structure is preserved over a wide range 

of composition range, converts to a low-crystalline phase, referred to as “Z” phase,57,56 at high voltage, 

and a P2-P2 phase transition occurs at low voltage. 

   The P2 stability voltage window in Nax[Mn0.66Fe0.20Cu0.14]O2, 2.1 – 4.1 V (Figure 5.4 a), is slightly 

broadened compared to its parent composition Nax[Mn0.5Fe0.5]O2, 2.1 - 4.0 V. In-plane lattice parameter 

of the P2 structure (ahex), i.e., the first neighbor M-M distance (M = transition metal), increases by 

insertion of sodium ions (Figure 5.4 c, blue, blue) in agreement with reduction of transition metal ions. 

On the other hand, the interlayer distance contracts (Figure 5.4 b, blue) due to increasing of the 

screening effect of sodium ions resulting in weaker electrostatic repulsion between adjacent oxygen 

layers.    

   The low voltage P2 phase (space group: Cmcm) can be described as the orthorhombic distortion of 

hexagonal P2 phase (space group: P63/mmc) which is induced by the cooperative effect of Jahn-Teller 

active ions.57,132 It is clearly visible (Figure 5.3 a) that (10l) reflections of P2 phase split into two peaks 

over P2 domain, whereas (00l) peaks are preserved. The P2-P2 phase transition in 

Nax[Mn0.66Fe0.20Cu0.14]O2 commences at x ≈ 0.72 and  2.1 V (Figure 5.4 a), which is at lower sodium 

content compared to the transition onset in Nax[Mn0.5Fe0.5]O2 and Nax[Mn0.65Fe0.20Ni0.15]O2 (x ≈ 0.8) 

(Chapter 4). All of these three compositions have a similar concentration of Jahn-Teller active Mn3+ 
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ions at a particular x (in NaxMO2). The advanced occurrence of the P2-P2 transition in the copper-

substituted composition should be attributed to the role of Jahn-Teller active Cu2+ ions (d9 electronic 

state)133. It was reported that no distortion of the hexagonal cell was observed when P2-

Na2/3[Mn1/2Fe1/4Co1/4]O2
 was discharged to 1.5 V. 70 That extended domain of stability was attributed to 

the reduction of Co3+ to Co2+ during discharge, instead of the reduction of Mn4+ to the Jahn-Teller active 

Mn3+ ions. A direct P2-P2 transition occurs in Nax[Mn0.66Fe0.20Cu0.14]O2 at low voltage, whereas a 
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Figure 5.3 Color map illustration of evolution of XRD pattern of Nax[Mn0.66Fe0.2Cu0.14]O2 recorded 

over the first discharge during galvanostatic cycling at a rate of C/20, along with voltage profile of the 

cell vs. time (a).  The hkl reflections corresponding to the P2 phase are marked on the map. XRD pattern 

of pristine Nax[Mn0.66Fe0.2Cu0.14]O2 is shown in black, at “Z” phase collected over full charge at 4.3 V 

is presented in red, and at P2 phase collected over full discharge at 1.5 V  is shown in blue (b). 
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biphasic region is observed for the parent composition Nax[Mn0.5Fe0.5]O2. An undistorted hexagonal 

phase can be described in an orthorhombic cell with the following relationship between lattice 

parameters; aortho = ahex, bortho = ahex + 2bhex (i.e., aortho = bortho/√3) and cortho = chex. Therefore, the 

divergence of bortho/aortho from √3 implies higher distortion from the hexagonal cell. Increased 

orthorhombic distortion is observed in P2-Nax[Mn1/2Fe1/4Co1/4]O2 by insertion of more sodium ions 

into the structure (Figure 5.4 c, green).  

   The transition to the “Z” phase at high voltage initiates at 4.1 V, x ≈ 0.30 in Nax[Mn0.66Fe0.2Cu0.14]O2 

at the first charge and proceeds through a two-phase mechanism until 4.2V and x ≈ 0.21, at which it 

thoroughly converts to the “Z” phase. Figure 5.3 shows that (100)P2 and (110)P2 reflections are 

maintained in the XRD pattern of the charged material, Na0.1[Mn0.66Fe0.2Cu0.14]O2, which proves uphold 

of coherence within MO2 layers. Nevertheless, the substantial broadening of (00l)P2 and (10l)P2 peaks 

indicates the loss of the long-range order along the c-axis. The transition from the P2 structure to this 

low crystalline phase is reported for iron-containing layered oxide compositions Nax[Mn1/2Fe1/2]O2, 

53,57,58 Nax[Mn0.65Fe0.20Ni0.15]O2,56 Nax[Mn1/2Fe1/4Co1/4]O2
67. Formation of an OP4 structure 

(𝑃6̅𝑚2 space group) with stacking faults was first proposed for the high voltage phase of 

Nax[Mn1/2Fe1/2]O2.53,58 The OP4-type structure is composed of alternative stacking of P-type and O-

type layers. Structural evolution resulting in the formation of octahedral environment for sodium ions 

(ABAC oxygen stacking) is expected for high concentration of sodium vacancies, in order to avoid the 

high columbic repulsion due to the alignment of oxygen ions of adjacent layers along the c-axis in the 

P2 stacking (ABBA oxygen array). For example, appearance of the O2 stacking faults was reported for 

charged Nax[Mn2/3Ni1/3]O2.43 In the previous study presented in Chapter 4,56 a model was proposed to 

describe the “Z” phase, using x-ray pair distribution function (PDF) analysis. According to this model, 

migration of transition metals (mainly iron) into the interlayer space causes a short range order between 

two adjacent layers with an O2 stacking scheme, referred to as a “bi-layer”. The interlayer space within 
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a bi-layer is shrank significantly, explaining the trend observed in the lattice parameter evolution 

(Figure 5.4 b, red). Irreversible migration of transition metals into interlayer tetrahedral sites upon 

charge was proposed in O3-NaxFeO2 
4 and O3-NaxCrO2

124. The growth of the pre-edge peak at the X-

ray absorption near-edge structure (XANES) spectra of charged samples was attributed to occupation 

of tetrahedral sites upon charge. This structural rearrangement, which is irreversible in O3 oxides, 

results in significant capacity fading. However, the high voltage phase transition in P2 oxides is 
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Figure 5.4 Phase evolution of Nax[Mn0.66Fe0.2Cu0.14]O2  vs. sodium content over the first cycle 

(a).  sign shows the starting point of the cycling. Evolution of the average interlayer distance 

(b) and in-plane lattice parameter of Nax[Mn0.66Fe0.2Cu0.14]O2 (c) as a function of sodium content 

during the first discharge. The abrupt decrease of average interlayer distance due to transition 

from P2 to “Z” phase is highlighted with the arrow. 
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reversible, as proven by the electrochemical performance and also the perfect correspondence of the 

evolution of lattice parameters with the sodium content in the first and second cycle (Chapter 4). 

5.3.3 Pair Distribution Function (PDF) Analysis of the “Z” Phase 

Pair distribution function (PDF) analysis using laboratory X-ray data was employed to investigate the 

low-crystalline Z-Nax[Mn0.66Fe0.20Cu0.14]O2 observed at high voltage. PDF presents the probability of 

finding any pair of atoms at a specific interatomic distance, regardless of the crystallinity of the 

structure. PDF analysis is a complementary technique to Rietveld refinement for the characterization 

of crystalline structures and provides information about the short-range order. However, it becomes 

much more beneficial when the structural study of a low-crystallinity material is concerned.  

   Because of the sensitivity of the PDF technique to amorphous phases, a chemically oxidized sample 

was prepared for this study to avoid any complexity that would arise from additive carbon and binder 

in an electrochemically oxidized electrode sample. Na0.67[Mn0.66Fe0.20Cu0.14]O2 was mixed with an over-

stoichiometric amount of NO2BF4 in acetonitrile. The average interlayer distance of the oxidized 

sample was measured ≈ 5.1 Å by XRD, based on which the composition stoichiometry is estimated as 

Na0.1[Mn0.66Fe0.20Cu0.14]O2 by interpolating from the data in Figure 5.4 b. The chemical oxidation 

resulted in the depletion of a higher amount of sodium compared to an electrochemical charge.  

   Figure 5.5 a shows a comparison of the experimental PDF data of Z-Na0.1[Mn0.66Fe0.20Cu0.14]O2, with 

Z-Na0.1[Mn0.65Fe0.20Ni0.15]O2, Z-Na0.1[Mn0.5Fe0.5]O2, and pristine P2-Na0.67[Mn0.5Fe0.5]O2, in the 

interatomic distance range of 1 - 6 Å. For all four graphs, “Peak 1” and “Peak 4”, highlighted by gray 

shading, correspond to the 1st M-O (d1) and 3rd M-O (d4) correlation length (Figure 5.5 b), respectively. 

The 2nd M-O correlation length gives rise to a small peak at ≈ 3.6 Å for P2- Na0.67[Mn0.5Fe0.5]O2 (Figure 

5.5 a, magenta markers) which has low intensity because it has half the coordination number of the 3rd     

M-O neighbor. This peak is screened by Peak 3 in the oxidized samples. “Peak 2” and “Peak 5” are 

ascribed to the 1st M-M (d2) and 2nd M-M (d5) correlation lengths, respectively. A peak attributed to M-
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M correlation is stronger than M-O at the same distance and with the same coordination number because 

of a higher X-ray scattering factor of transition metals than oxygen. Contraction of M-O and M-M 

distances in Nax[Mn0.5Fe0.5]O2 after chemical oxidation is clearly observable. In the oxidized samples, 

a new peak, “Peak 3”, emerges, whereas the intensity of “Peak 2” decreases. The split of 1st M-M peak 
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Figure 5.5 Comparison of experimental PDF data of chemically oxidized Nax[Mn0.66Fe0.20Cu0.14]O2 

with pristine P2 and chemically oxidized Z phase Nax[Mn0.5Fe0.5]O2 and chemically oxidized Z phase 

Nax[Mn0.65Fe0.20Ni0.15]O2 (a). The purple and red spheres represent the transition metals and oxygen 

atoms, and yellow and green polyhedral represent two different NaO6 polyhedra. Representation of 

interatomic distances d1, d2, d3, d4, and d5, corresponding to peak 1, peak 2, peak 3, peak 4, peak 5 in 

PDF data  (grey shading in part a) on pristine P2 structure and O2 stacking scheme of oxidized Z 

phase (b). 



 

 111 

in Z-Na0.1[Mn0.5Fe0.5]O2 and Z-Na0.1[Mn0.65Fe0.20Ni0.15]O2 phases along with the disappearance of 

interlayer M-M correlation peaks were explained by the migration of transition metals into the 

interlayer space and destruction of P2 stacking.56 It was proposed that the transfer of electrons from 

oxygen orbitals to Fe4+ cations weakens the bonding of neighboring atoms. This mechanism induces 

migration of most possibly Fe3+ and Mn4+ ions out of octahedral sites of MO2 layer. The interaction of 

removed transition metals with the adjacent oxygen layers causes contraction of the interlayer distance, 

in agreement with the trend observed by operando XRD. The presence of migrated transition metal 

cations within the interlayer space and high concentration of sodium vacancies result in glide of 

adjacent MO2 layer and formation of a bilayer with O2 stacking scheme that accommodates the 

migrated M cations in the interlayer tetrahedral sites, and sodium ions in the octahedral sites.   

    The PDF curve of Z-Na0.1[Mn0.66Fe0.20Cu0.14]O2 was fit by use of a modification of the bilayer model 

(Figure 5.6 a) previously proposed for Z-Na0.1[Mn0.5Fe0.5]O2 and Z-Na0.1[Mn0.65Fe0.20Ni0.15]O2,56  in 

which a 2×2×10 and 4×4×10 supercell of the pristine hexagonal cell was adopted, respectively. Each 

supercell was built up of 10 bilayers with random translation in ab-plane to model the disorder along 

the c-direction. Each bilayer, which holds an O2 oxygen stacking scheme, accommodates sodium ions 

in octahedral sites and the migrated transition metal cations in interlayer tetrahedral sites. Sodium ions 

can be neglected in the model for simplicity, owing to their low concentration in the Z-phase and their 

low scattering factor. The interlayer distance of each bilayer in Z-Na0.1[Mn0.66Fe0.20Cu0.14]O2 was set so 

that both MOh-O and MTd-O distances are equal to the value, d1 = 1.91 Å, determined by peak 1 (Figure 

5.5). The distance between centers of bilayers (10.2 Å) was determined from the position of the first 

peak in the XRD pattern assuming that it represents (00l) reflection. The in-plane distances were set 

based on the positions of M-M peaks in the PDF data. In an ideal hexagonal packing, the ratio of the 

second M-M distance to the first one (d5/d2 in Figure 5.5 b) is equal to √3. In Z-

Na0.1[Mn0.66Fe0.20Cu0.14]O2, there is a small deviation of d5/d2 = (4.91 Å)/(2.89 Å) = 1.70 from the ideal 



 

 112 

value (1.73) of an undistorted hexagonal array of cations, contrary to Z-Na0.1[Mn0.5Fe0.5]O2 (d5/d2 = 

(4.97 Å)/(2.88 Å) = 1.73). Although it is a small deviation (compare it to the significant distortion of 

bortho/aortho=1.88 in the electrochemically discharge sample, Na0.9[Mn0.66Fe0.20Cu0.14]O2 in Figure 5.5 c), 

choice of an orthorhombic cell and the refinement of a and b lattice parameters improved fitting of the 

PDF data, specially at higher atomic distances. Therefore, an orthorhombic 4×2×10 supercell, which 

contains 320 transition metal atoms and 640 oxygen atoms, was used to model the structure of Z-

Na0.1[Mn0.65Fe0.20Ni0.15]O2.  

   Superposition of the peaks corresponding to two MTd-MOh distances, d3(i) = 3.28 Å and d3(ii) = 3.42 Å 

(Figure 5.5 b), give rise to peak 3 (Figure 5.5 a) in the PDF data of Z-Na0.1[Mn0.66Fe0.20Cu0.14]O2. An 

important feature observed in Figure 5.5 a is that ratio of the Peak 3 intensity to Peak 2 intensity, 

related to the concentration of migrated M cations, in PDF data of Z-Na0.1[Mn0.66Fe0.20Cu0.14]O2 is lower 

than Z-Na0.1[Mn0.5Fe0.5]O2, but higher than Z-Na0.1[Mn0.65Fe0.20Ni0.15]O2. It was reported56 that the best 

fits were obtained for Z-Na0.1[Mn0.5Fe0.5]O2 and Z-Na0.1[Mn0.65Fe0.20Ni0.15]O2 phases accounting for 

migration of 1/8 and 1/32, respectively, of transition metal cations from each bilayer. In this study, we 

examined bilayer models with the migration of 2/32 and 3/32 of transition metal cations to fit the PDF 

data of Z-Na0.1[Mn0.66Fe0.20Cu0.14]O2. The concentration of migrated transition metal cations affects 

mainly the ratio of the Peak 3 intensity to the Peak 2 intensity (Figure 5.5 a). The best fit was obtained 

when migration of 3/32 of cations into interlayer tetrahedral sites was considered (Figure 5.6 a). 

   Figure 5.6 b shows the experimental (red markers) and calculated (black graph) PDF of Z-

Na0.1[Mn0.66Fe0.20Cu0.14]O2 fit by use of a bilayer model with 3/32 of M cations migrated. 

Overestimation of the intensity of peak located at ≈ 4.9 Å in calculated PDF (Figure 5.6 b) originates 

from superimposition of 2nd in-plane M-M and 1st interlayer M-M correlation lengths. Similarly, the 

peak located at ≈ 5.7 Å represents both 3rd in-plane M-M and 2nd interlayer M-M distances. In the 

pristine crystalline P2-Na0.67[Mn0.66Fe0.20Cu0.14]O2, 1st interlayer M-M distance is located at ≈ 5.6 Å, but 
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has low coordination number, and the 2nd interlayer M-M shows up at ≈ 6.3 Å. Overestimation of 

calculated PDF peaks at interlayer M-M correlation lengths implies the absence of order along c-axis 

even at this short range, and there is probably a distribution of bilayer distances. In addition, comparison 

of the experimental PDF data of Z-Na0.1[Mn0.66Fe0.20Cu0.14]O2 and Z-Na0.1[Mn0.65Fe0.20Ni0.15]O2 at the 

interatomic distance of 6 - 20 Å (Figure 5.6 c) shows intensity decrease and/or broadening for many 

peaks of the copper-substituted sample, suggesting lower structural coherence and increased disorder 
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Figure 5.6 Schematic representation of bilayers in Z-Na0.1[Mn0.66Fe0.2Cu0.14]O2  (a). Fit of PDF curve 

of Z-Na0.1[Mn0.66Fe0.2Cu0.14]O2  in a orthorhombic 4×2×10 supercell (b). Comparison of experimental 
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in this sample. Further improvement of the structural modeling of this phase requires more powerful 

approaches for solving complicated disordered structures, such as Reverse Monte Carlo (RMC) 

calculations which are shown significantly beneficial in the modeling of complicated features in 

electrode materials.117,118,119  

   The average interlayer distance in Na0.1[Mn0.66Fe0.20Cu0.14]O2, ≈ 5.1 Å, is larger than the value in Z-

Na0.1[Mn0.65Fe0.20Ni0.15]O2, 4.95 Å, although a higher concentration of migration has occurred in the 

copper substituted sample. This observation shows that the higher concentration of migrated cations 

does not yield lower interlayer distance and the average interlayer distance in Z-phase is probably 

related to the nature of the cations. It was proposed that the majority of the migrated transition metal 

cations are Fe3+, and the oxidation of iron is the driving force of the P2-Z transition, using structural 

characterizations and Mössbauer spectroscopy (Chapter 4). Hence, the higher concentration of 

migration in the Z-phase copper-substituted material might be related to the higher concentration of 

Fe4+ compared to that in the charged nickel-substituted sample. On the other hand, operando XRD 

shows that the P2-Z phase transition commences at a similar voltage and sodium content, which 

suggests a similar concentration of oxidized iron cations. This observed contradiction might originate 

from the different reaction rates of chemical oxidation and slow galvanostatic oxidation, which possibly 

influence each composition in different ways. On the other hand, the intensified high voltage migration 

in the Cu-substituted material, compared to the Ni-substituted composition, might originate from 

increased ligand to metal charge transfer (LMCT) effect. It was proposed that stabilization of Fe4+ in 

Nax[Mn0.5+xNixFe0.5-x]O2 (x = 0, 10, 0.15) by transfer of electrons from oxygen orbital weakens the 

bonding of the surrounding atoms and facilitates the migration of transition metal out of the MO2 plane 

(Chapter 4). The ligand to metal (O-to-Cu) charge transfer energy for Cu3+ containing oxides was found 

to be negative.134-136 Charge transfer from oxygen p-orbital to Cu3+ d-orbital is proposed to facilitate the 
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migration of transition metals out of the MO2 layers at high voltage. Further experimental and 

calculation studies are required to validate the role of these mechanisms.  

5.3.4 Electrochemical Performance  

Na0.67[Mn0.66Fe0.20Cu0.14]O2 delivers a high specific capacity of ≈ 176 mAh.g-1 when cycled within the 

voltage range of 1.5 - 4.3 V with a rate of C/20 (13 mA.g-1). The smooth galvanostatic charge/discharge 

profile (Figure 5.7 a) indicates facile (de)intercalation of sodium ions. The perfect superimposition of 

the first and second electrochemical charge profiles shows the reversibility of the mechanism. The large 

voltage polarization observed at high voltage, similarly observed for the voltage profiles of 

Na0.67[Mn0.5+yFe0.5-2yNiy]O2, (y = 0, 0.15) (Chapter4), disappears when the P2-Z phase transition is 

avoided by limiting the cutoff voltage (Figure 5.7 b), indicating the high energy required for the 

reversible structural evolution at this region. Preventing the P2-P2 phase transition, however, does not 

impede low voltage polarization, indicating that it is related to the P2 phase properties. The stress 

imposed to the structure due to the phase transitions drastically affect the voltage profile over cycling 

(Figure 5.7 c), resulting in fading of the average voltage and thus delivered energy. Voltage fading is 

also a critical challenge with the high energy density Li2MnO3-based electrode materials and is 

proposed to be caused by irreversible structural changes.137 When Na0.67[Mn0.66Fe0.20Cu0.14]O2 is cycled 

within its P2-stability window, 2.1 - 4.1 V (determined from operando XRD analysis), only                          

≈ 94 mAh.g-1 reversible capacity is obtained. However, the voltage profile shows excellent stability 

over 100 cycles (Figure 5.7 d).  
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Figure 5.7 The galvanostatic charge/discharge profiles at the cycling a rate of C/20 (a,b) and 

voltage curves vs. discharge specific capacity (c,d) of Na0.67[Mn0.66Fe0.2Cu0.14]O2  cycled within 

the voltage range of 1.5 - 4.3 V (a,c) and 2.1 - 4.1 V (b,d). Specific energy vs. the cycle number 

of Na0.67[Mn0.66Fe0.2Cu0.14]O2 cycled within the voltage window of 1.5 - 4.3 V at a rate of C/20 

(filled circles) (e) and cycled within the voltage range of 2.1 - 4.1 V at different rates (hollow 

circles). 
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   Na0.67[Mn0.66Fe0.20Cu0.14]O2 delivers an initial specific energy of ≈ 491 Wh.kg-1 when cycled between 

1.5 - 4.3 V at a rate of C/20 and retains only 39% after 100 cycles. The cell exhibits much lower initial 

specific capacity of ≈ 272 Wh.kg-1 when cycled between 2.1 - 4.1 V. However, it shows an improved  

specific energy retention of 84% after 100 cycles. Na0.67[Mn0.66Fe0.20Cu0.14]O2 exhibits relatively good 

rate capability when cycled within the P2 stability window; it retains 93% of specific energy when the 

rate is increased from C/20 (13mA.g-1) to C/10 (26 mA.g-1) and from C/10 to C/5. However, when a 

large specific current of 190 mA.g-1(C/1.4) is applied to the cell, it shows poor specific energy retention. 

  Figure 5.8 shows a comparison of specific energy retention for Na0.67[Mn0.66Fe0.2Cu0.14]O2 (red 

markers), Na0.67[Mn0.65Fe0.20Ni0.15]O2 (blue markers), Na0.67[Mn0.5Fe0.5]O2 (green markers) cycled at a 

rate of C/20 within 1.5 - 4.3 voltage window (filled circles) and at a rate of C/10 over P2 stability 
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domain of each composition (hollow circles), 2.1 - 4.1V, 2.0 - 4.1 V, 2.0 - 4.0 V, respectively. At the 

full voltage range, Na0.67[Mn0.5Fe0.5]O2 shows more severe fading over initial five cycles. However, all 

three compositions exhibit similar fading over the next 25 cycles. Na0.67[Mn0.66Fe0.20Cu0.14]O2 and 

Na0.67[Mn0.50Fe0.5]O2 deliver comparable specific energy in the both P2 and the extended voltage 

window. Na0.67[Mn0.65Fe0.20Ni0.15]O2 shows superior specific energy to those of the parent composition, 

Na0.67[Mn0.50Fe0.5]O2, and the Cu-substituted material, owing to the contribution of Ni2+/4+ to redox 

processes.  

5.4 Conclusions 

Here, a comprehensive study of structural stability and electrochemical performance of P2-

Na0.67[Mn0.66Fe0.20Cu0.14]O2 is presented and the effect of incorporation of copper, in comparison with 

nickel (Chapter 4), into a high-performance positive electrode material, P2-Na0.67[Mn0.5Fe0.5]O2, is 

investigated. 

   All the characterization procedures were performed on air-protected samples due to the reactivity of 

P2-Na0.67[Mn0.66Fe0.20Cu0.14]O2 to the atmosphere, similar to most of other layered sodium transition 

metal oxides. Nax[Mn0.66Fe0.20Cu0.14]O2 shows a  P2-Z phase transition at x = 0.30 and V = 4.1 V over 

galvanostatic charge, and a P2-P2 phase transition at x = 0.72 and V = 2.1 V over discharge at a rate 

of C/20, exhibited by Operando XRD. The stability domain of P2-structure for 

Nax[Mn0.66Fe0.20Cu0.14]O2 is slightly limited compared to Nax[Mn0.65Fe0.20Ni0.15]O2 (2 - 4.1 V), most 

probably because of cooperative effect of Jahn-Teller active Cu2+ in addition to Mn3+ ions. The 

disordered Z phase formed at high voltage, driven by migration of transition metal ions into interlayer 

tetrahedral sites, commences at the similar voltage and sodium content as in Nax[Mn0.65Fe0.20Ni0.15]O2, 

but is delayed compared to Nax[Mn0.5Fe0.5]O2. PDF analysis of a chemically oxidized sample revealed 

that the migration of transition metals into the interlayer space is mitigated in Z-

Na0.1[Mn0.66Fe0.20Cu0.14]O2 compared to Z-Na0.1[Mn0.5Fe0.5]O2. However, an increased fraction of 
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transition metals, more than twice, was found to have migrated in Z-Na0.1[Mn0.66Fe0.20Cu0.14]O2 in 

comparison to Z-Na0.1[Mn0.65Fe0.20Ni0.15]O2. Electron transfer from the oxygen p-orbital to the copper 

d-orbital is proposed to be at the origin of the intensified transition metal migration in the high voltage 

phase. 

   Na0.67[Mn0.66Fe0.20Cu0.14]O2 was evaluated as a positive electrode material versus sodium metal. The 

cell delivers a high specific energy of 491 Wh.kg-1 at the first discharge when cycled between 1.5 - 4.3 

V with a rate of C/20. Phase transitions cause poor cycling and voltage fading, similar to 

Na0.67[Mn0.5Fe0.5]O2 and Na0.67[Mn0.65Fe0.20Ni0.15]O2. When cycled within the voltage window 

corresponding to the P2-structure domain, Na0.67[Mn0.66Fe0.20Cu0.14]O2 shows excellent stability in its 

voltage profile over 100 cycles. Na0.67[Mn0.66Fe0.20Cu0.14]O2 and Na0.67[Mn0.5Fe0.5]O2 show comparable 

values of delivered specific energy in the P2-stability window, but ≈ 15% lower than that value obtained 

from Na0.67[Mn0.65Fe0.20Ni0.15]O2. 
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Chapter 6 

Operando X-Ray Absorption Spectroscopy Investigation of P2-

Na0.67[MnyFezM1-y-z]O2 (M: Ni, Cu) Electrodes in Sodium Batteries 

6.1 Introduction 

Layered sodium transition metal oxides have been extensively explored in the recent years as promising 

candidates for the positive electrode material in Na-ion batteries. Many efforts have been devoted to 

investigating the effect of the composition modifications (i.e., cation substitution) on the structural 

stability of the oxide materials upon cycling.4,33,34 Operando X-ray diffraction technique has been 

employed by many research groups to characterize the structural evolution of materials upon cycling 

and understand their correlation to the electrochemical performance.41,57,66 However, not much attention 

seems to be paid on an in-depth understanding of redox reactions in these systems. The comprehensive 

understanding of the charge compensation mechanism in these materials is necessary for the future 

design and development of high-performance electrode materials for Na-ion batteries that are capable 

of competing with the state-of-the-art Li-ion battery technology. 

   X-ray absorption spectroscopy (XAS) techniques are recognized as powerful means of probing redox 

processes in the energy storage research. Operando measurements of X-ray absorption spectra have 

been widely employed to investigate the contribution of various redox reactions to the charge 

compensation mechanism in layered lithium metal oxides.138-140 The ambient atmosphere structural 

stability, phase transitions upon cycling, and electrochemical performance of P2-type Na0.67[MnyFezM1-

y-z]O2, M: Ni, Cu are studied (Chapters 4 and 5). This chapter presents an operando XAS study of the 

samples to shed light on the charge compensation mechanisms involved in the charge and discharge 

processes. The X-ray absorption spectra of the materials were measured at the Mn, Fe, and Cu K-edges 

for P2-Na0.67[Mn0.66Fe0.20Cu0.14]O2, and at the Ni K-edge for Na0.67[Mn0.65Fe0.20Ni0.15]O2 at different 
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states of charge and discharge of the first cycle to probe the evolution in the atomic and electronic local 

structures of each transition metal during cycling.     

6.2 Experimental 

6.2.1 Synthesis 

P2-Na0.67[Mn0.66Fe0.20Cu0.14]O2 and P2-Na0.67[Mn0.65Fe0.20Ni0.15]O2 were synthesized by a solid-state 

method, as described in Chapters 4 and 5. A mixture of stoichiometric amounts of oxide precursors was 

ball-milled and pelletized. The pellets were heated at 700 ºC for 4 hours and then 900 ºC for 6 hours in 

air. To prepare samples free from any air contamination, the pellets were heated at 600 ºC under an 

argon flow and then transferred into an Ar-filled glovebox in a sealed tube.  

6.2.2 Electrochemistry 

Each active material was mixed with 10 wt% carbon black (TIMCAL) and 10 wt% polyvinylidene 

fluoride (PVDF) (Aldrich average Mw ∼ 534 000) suspended in N-methyl-2-pyrrolidinone (NMP) 

(Sigma-Aldrich, 99.5%) and cast on porous carbon paper (AvCarb P50, Ballard Material Products) with 

a loading of ≈ 3-5 mg.cm-2. 1M NaClO4 (Alfa Aesar, ≥ 98%) in propylene carbonate (BASF, 99.98%) 

with 2 vol% fluoroethylene carbonate (FEC) (Sigma-Aldrich, 99%) was used as the electrolyte, and 

sodium metal (Sigma-Aldrich, ACS reagent) was used as the counter electrode. Modified coin cells 

were used for operando X-ray absorption spectroscopy experiments. An 8μm aluminized KaptonTM 

(Sheldahl) window was placed on the positive case of a 2325 coin cell for the penetration of the X-ray 

beam (Figure 6.1). Each electrode was located in a coin cell so that the active material faces the Kapton 

window. The electrodes were separated by two sheets of glass fiber separators (Merck Millipore). All 

the steps of electrode preparation and cell assembly were carried out in an Ar-filled glovebox to protect 

the air-sensitive samples from exposure to air. The cells were continuously charged up to 4.3 V vs. 
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Na/Na+ at a rate of C/20 and discharged to 1.5 V vs. Na/Na+ at a rate of C/10 in the galvanostatic mode. 

Each cell was relaxed at open circuit voltage (OCV) for an hour at the end of charge. 

 

6.2.3 X-Ray Absorption Spectroscopy 

Mn, Fe, Cu, Ni K-edge XANES spectra of the samples were collected at the Hard X-ray Micro-Analysis 

(HXMA) beamline (06ID-1) at the Canadian Light Source (CLS). The CLS storage ring operated at 2.9 

GeV and 200-250 mA in the injection mode during the experiment. The beamline was equipped with 

Si (111) and Si (220) double crystal monochromators and Rh and Pt-coated focusing mirrors. Reduction 

of higher-order harmonics was achieved by detuning the 2nd monochromator crystal to 50% of the peak 

intensity. Data collection was performed in the fluorescence mode using a 32 element Ge detector. The 

scan step-sizes were 10 eV/step, 0.25 eV/step, and 0.1 Å-1/step for pre-edge, XANES, and EXAFS 

regions, respectively. The data acquisition time was set to 1 s/step for the pre-edge and XANES regions 

and was progressively increased to 5 sec/step for the EXAFS region. The total collection time for each 

pattern was 40 minutes, equivalent to ∆𝑥 ≈ 0.03 and 0.07 in NaxMO2 during charge and discharge, 

respectively. The energy calibration for each spectrum was performed using the first inflection point of 

the reference channel spectrum, which was simultaneously collected from the metal foil. The reference 

spectra were aligned for comparison of the ensemble of data. The raw XAS data were corrected for pre-

Figure 6.1 Schematic representation of the coin cell used for operando XAS study. 
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edge and post-edge background and normalized to unit step height. The X-ray absorption near edge 

structure (XANES) data were analyzed using Athena software package.141  

6.3 Results and Discussions 

6.3.1 The Electrochemical Cell for Operando XAS Measurements 

Figure 6.2 shows a comparison of the first and second galvanostatic charge/discharge profile of P2-

Na0.67[Mn0.66Fe0.20Cu0.14]O2 cycled vs. Na metal obtained from a conventional coin cell and a cell 

designed for operando XAS measurements, at a current rate of C/20. The data collected from the cell 

developed for operando XAS experiment shows good similarity to the data obtained from the standard 

coin cell; the former has a slightly higher voltage polarization, however, which is expected due to the 

modified coin cell design used for the operando measuerements. Lack of uniform stack pressure and 

conductivity in the modified coin cell designs for operando experiments are shown to affect the 

electrode reactivity.142 The overlap of the charge voltage profiles of the first and the second cycles of 

the sample in this cell confirms that the electrode is well protected against the air contamination during 

preparation and also within the modified coin cell. This data shows that this simple design of the coin 

cells can be effectively used for an operando experiment during charge and discharge. The XANES 

spectra of Nax[Mn0.66Fe0.20Cu0.14]O2 at Mn, Fe, and Cu K-edges and the XANES spectra of 

Nax[Mn0.65Fe0.20Ni0.15]O2  at the Ni K-edge were collected during the first charge and discharge in order 

to gain insight into the charge compensation mechanisms and local structure perturbations induced by 

insertion and extraction of sodium ions.  
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6.3.2 X-Ray Absorption Spectra of Nax[Mn0.66Fe0.20Cu0.14]O2  at the Mn K-Edge 

Figure 6.3 a and Figure 6.4 a show the first cycle charge/discharge profile of a 

Nax[Mn0.66Fe0.20Cu0.14]O2 electrode (vs. Na metal), from which the XANES spectra of the sample at the 

Mn K-edge were measured at various compositions (sodium contents). The marks on those graphs 

demonstrate the points at which each scan was started. Those marks are color coded with their 

corresponding normalized XANES spectra presented in Figure 6.3 b-f, and the first derivative of 

normalized XANES spectra presented in Figure 6.4 b-f. The XANES spectra of 

Nax[Mn0.66Fe0.20Cu0.14]O2 at the Mn K-edge progressively shifted to higher energy form scan M1 to M5 

over the first charge (Figure 6.3 b), indicating the oxidation of Mn ions within this voltage range. The 

capacity obtained up to the point that the scan M5 was started (V = 3.4 V and t = 3.94 h, equivalent to 

∆𝑥 ≈ 0.20 in NaxMO2) is in excellent agreement with the oxidation of all the trivalent manganese ions  
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Figure 6.3 The voltage profile of a Nax[Mn0.66Fe0.20Cu0.14]O2 electrode (vs. Na metal) from which 

the X-ray absorption spectra at the Mn K-edge were collected (a). The marks on the graph show 

the points at which data collection was started. Normalized XANES spectra of 

Nax[Mn0.66Fe0.20Cu0.14]O2 at the Mn K-edge during the first charge (b,c), first discharge (d,e), and 

the comparison of the initial state and the end of discharge (f). 
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Figure 6.4  The voltage profile of a Nax[Mn0.66Fe0.20Cu0.14]O2 electrode (vs. Na metal) from which the 

X-ray absorption spectra at the Mn K-edge were collected (a). The marks on the graph show the points 

at which data collection was started. Normalized first derivative of XANES spectra of 

Nax[Mn0.66Fe0.20Cu0.14]O2 at the Mn K-edge during the first charge (b,c), first discharge (d,e), and the 

comparison of the initial state and the end of discharge (f). 
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 in Na0.67[Mn3+
0.19Mn4+

0.47Fe3+
0.20Cu2+

0.14]O2 to the tetravalent state, assuming that Cu and Fe ions are 

not electrochemically active in this voltage range (see below), and no parasitic reaction occurs. The Mn 

K-edge XANES spectra did not change significantly from scan M5 to M10, implying that Mn ions do 

not participate in the redox process at voltages higher than 3.4 V. Over discharge, the Mn K-edge 

spectra remained unchanged from scan M10 to M13, but shifted to lower energy from scan M13 to 

M17, indicating the reduction of Mn ions (Figure 6.3 d,e). The edge position in the XANES spectrum 

of scan M17 is at lower energy compared to that of M1, which corresponds to the pristine composition 

(Figure 6.3 f). This shift indicates that the concentration of trivalent manganese ions in the discharged 

material exceeds the value in the pristine composition. Higher concentration of Mn3+ ions explains the 

orthorhombic distortion of Nax[Mn0.66Fe0.20Cu0.14]O2 at low voltage, revealed by operando XRD 

analysis (Chapter 5). The changes in the first derivative curves are in perfect agreement with the 

modifications observed in the normalized XANES spectra. 

   The Mn K-edge XANES spectrum of Na0.67[Mn0.66Fe0.20Cu0.14]O2 shows a well-resolved doublet pre-

edge peak (Figure 6.5 a). The pre-edge peak in a K-edge XANES spectrum appears mainly due to two 

mechanisms.143 First, the electric dipole transition from the 1s orbital to the p component of p-d 

hybridized orbitals. Second, a 1s-3d transition, which is forbidden in the electric dipole transition 

mechanism, but can occur due to the electric quadrupole transition. The probability of an electric 

quadrupole transition is much lower than that of an electric dipole transition, meaning much lower 

intensity of the pre-edge peak resulting from an electric quadrupole transition. An electric quadrupole 

transition can occur for any symmetries, whereas the p-d hybridization, therefore electric dipole 

transition from 1s to the p-d hybridized orbitals, does not happen for an ideal octahedral symmetry. 

However, the distortion of octahedral symmetry causes mixing of 3d and 4p orbitals resulting in an 

increase in the intensity of the pre-edge peak. The pre-edge peaks in K-edge XANES spectra of 
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transition metals are sensitive to, and therefore provide information about, the coordination number, 

symmetry, and the number of electrons of the absorbing atom.  

   A doublet pre-edge peak in the K-edge XANES spectrum of a 3d transition metal with the octahedral 

environment is assigned to quadrupole electric transitions to t2g and eg orbitals.138,139,143 The intensity of 

Mn pre-edge peaks increased from scan M1 to scan M8 and remained unchanged from scan M8 to 

M10, the region at which the material adopts the Z-phase (Chapter 5) (Figure 6.5 a). The positions of 

the pre-edge peaks of Mn K-edge spectra do not demonstrate any discernible shift upon charge although 

the continuous shift of the edge from scan M1 to M5 indicates the change of oxidation state of Mn ions. 

The pre-edge peak intensity is inversely related to the number of 3d electrons.143,144 However, the pre-

edge peak intensity of the initial composition was not recovered at the end of discharge (Figure 6.5 b). 

The pre-edge peak intensity depends significantly on the coordination number; the pre-edge peak 

intensities of four-coordinated transition metal compounds are much higher than those of six-

coordinated compounds.143 Migration of transition metals into the interlayer tetrahedral site is known 

to occur in some LixMO2
137,145 and NaxMO2

4,56 (M: 3d metal) at high voltage. However, the increase in 

the intensity of pre-edge peak of this material at voltages lower than 4.1 V cannot be assigned to the 

migration of a fraction of manganese ions into a tetrahedral site because no tetrahedral site exists within 

the interlayer space of a P2 structure and the tetrahedral site in the transition metal layer is too small to 

accommodate any manganese ions (a distance of ≈ 1.7 Å between X and O in XO4 tetrahedron). 

Formation of O-type stacking faults with available tetrahedral sites does not seem to happen because 

the operando X-ray diffraction analysis of the material did not show any notable peak broadening. The 

increase in the intensity of the pre-edge peaks of XANES spectra at the Mn K-edge during the charge 

was also observed in Li1.2[NixMnyCoz]O2.138-140 It was reported that the initial oxidation state of 

manganese ions is 4+ in those compositions and remains unchanged during cycling. However, the  
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Figure 6.5 Pre-edge normalized XANES spectra of 

Nax[Mn0.66Fe0.20Cu0.14]O2 electrode during the first charge (a) and the first 

discharge (b) collected at the Mn K-edge. The insets show the voltage profile 

and the points at which each scan was started.  
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progressive increase and decrease in the distortion of octahedral symmetry of manganese ions in 

Li1.2[NixMnyCoz]O2
 during the charge and discharge are proposed to cause increase and decrease in the 

intensity of pre-edge peaks during the charge and discharge. The higher intensity of Mn pre-edge peaks 

compared to those of Fe, Cu, and Ni pre-edge peaks in the XANES spectra of the materials in this study 

can be attributed to the lower number of 3d electrons in Mn3+ and Mn4+. The significant increase of the 

pre-edge intensity at the Mn K-edge spectra should originate from the Mn ions octahedral symmetry 

distortion that we do not have an exact description of, similar to the case of some Li-rich transition 

metal oxides.138-140  

6.3.3  X-Ray Absorption Spectra of Nax[Mn0.66Fe0.20Cu0.14]O2  at the Cu K-Edge 

Sodium metal oxide positive electrode materials working based on oxidation/reduction of copper ions 

were introduced not long ago.125 Ex-situ XAS measurement at K-edge revealed the reversible oxidation 

of Cu ions in Na2/3[Cu1/3Mn2/3]O2 from divalent state in the pristine material to the trivalent state in the 

sample charged to 4.2 V (vs. Na/Na+), whereas no significant redox activity was detected for Mn ions.128 

In another study, oxidation of Cu2+ and Fe3+ ions were shown responsible processes during the charge 

of O3-Na0.9[Cu0.22Fe0.30Mn0.48]O2.129 Figure 6.6 and Figure 6.7 show the normalized XANES spectra 

of Nax[Mn0.66Fe0.20Cu0.14]O2 and their first derivative curves measured at Cu K-edge during the first 

charge and discharge, along with the charge profile of the cell. The spectra do not show any significant 

changes from scan C1 to scan C5. A small shift to higher energy is observed in the position of XANES 

spectra from scan C5 to scan C7.  Following that, no important change in the position and the shape of 

the spectra is observed, indicating that the oxidation of copper ions are suppressed. During the 

discharge, the K-edge peak position shifts to lower energy from scan C11 to C12, in agreement with 

reduction of Cu ions. The overlap of absorption edges in scan C15 with scan C1 (Figure 6.6 f) indicates 

that all the copper ions oxidized during the charge are reduced to the divalent state at the end of the first 
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Figure 6.6 The voltage profile of a Nax[Mn0.66Fe0.20Cu0.14]O2 electrode (vs. Na metal) from 

which the X-ray absorption spectra at the Cu K-edge were collected (a). The marks on the 

graph show the points at which data collection was started. Normalized XANES spectra of 

Nax[Mn0.66Fe0.20Cu0.14]O2 at the Cu K-edge during the first charge (b-d), first discharge (e), 

and the comparison of the initial state and the end of discharge (f). 
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Figure 6.7 The voltage profile of a Nax[Mn0.66Fe0.20Cu0.14]O2 electrode (vs. Na metal) from which the 

X-ray absorption spectra at the Cu K-edge were collected (a). The marks on the graph show the points 

at which data collection was started. Normalized first derivative of XANES spectra of 

Nax[Mn0.66Fe0.20Cu0.14]O2 at the Cu K-edge during the first charge (b-d), first discharge (e), and the 

comparison of the initial state and the end of discharge (f). 
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discharge. It is worth noting that the shift in the position of the absorption edge and the modification of 

the peak features due to the charging process are more prominent in the spectrum collected from 

Nax[Cu1/3Mn2/3]O2 reported before128 compared with the material studied in this work. This observation 

suggests that most probably not all the copper ions are oxidized in Nax[Mn0.66Fe0.20Cu0.14]O2 during 

charge. Another mechanism that might be involved in the alteration of the local structure of Cu ions is 

electron transfer from oxide ions to copper ions. Negative ligand to metal charge transfer energy is 

reported for high valence transition metals such as Cu3+ and Fe4+ in oxide framework.135,146,147 

   The Cu K-edge spectrum of Na0.67[Mn0.66Fe0.20Cu0.14]O2 shows a very weak single pre-edge peak 

(Figure 6.8). A single pre-edge peak is expected for Cu2+ (d9) absorbing atoms because the t2g orbital 

is fully occupied and only an electric quadrupole transition to the eg orbital can occur. The X-ray 

absorption spectra of the latter elements of the first-row transition metals, particularly Cu, show much 

weaker intensity in the pre-edge peak compared to those of early transition metals; however, their pre-

edge peak intensities increase significantly by changing from a six-fold coordination to a four-fold 

coordination environment.143 The intensity of the pre-edge peak in the Cu K-edge spectrum of 

Na0.67[Mn0.66Fe0.20Cu0.14]O2 is much lower than that of the Mn K-edge spectrum. Moreover, the pre-

edge peak does not show any significant changes during the first charge and discharge, suggesting that 

the octahedral environment of copper ions is well preserved during cycling. 
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Figure 6.8 Pre-edge of the normalized XANES spectra of 

Nax[Mn0.66Fe0.20Cu0.14]O2 electrode during the first charge (a) and the first 

discharge (b) collected at the Cu K-edge. The insets show the voltage profile 

and the points at which each scan was started. 
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6.3.4 X-Ray Absorption Spectra of Nax[Mn0.66Fe0.20Cu0.14]O2  at the Fe K-Edge 

The X-ray absorption spectra of Fe ions in Nax[Mn0.66Fe0.20Cu0.14]O2 demonstrate no discernable change 

in the rising edge of absorption spectra from scan F1 to F6 during charge, but small modifications are 

observed in the absorption maxima (Figure 6.9 b). The most noticeable evolution in the Fe K-edge 

spectra during charge appears at scan F7 (the scan started at the voltage of 4.06 V); the peak maximum 

intensity obviously decreased (Figure 6.9 c). Similar behavior was observed for the Fe K-edge XANES 

spectrum of P2-Na2/3[Mn1/2Fe1/2]O2 when charged from 3.8 V to 4.2 V.53 The operando XAS 

measurements show that scan F8 and scan F9 overlap perfectly over both the rising edge and the peak 

maximum, and change slightly at the absorption maximum compared to scan F7 (Figure 6.9 d). 

However, scan F10, collected at open circuit voltage after charging to 4.3 V, shows a slight change of 

the absorption edge and maximum compared with scans F8 and F9. During discharge, the Fe K-edge 

XANES spectra do not change much from scan F10 to scan F12, but an evident modification is noticed 

from scan F12 to scan F13 (Figure 6.9 e). A comparison of scan F1 and F13 demonstrates an 

irreversible modification in the shape of the spectrum, at the absorption maximum and higher energy 

region, caused by charge and discharge processes (Figure 6.9 f). Importantly, no shift is observed in 

the position of the Fe K-edge in the first derivative curves of the normalized XANES spectra of 

Nax[Mn0.66Fe0.20Cu0.14]O2 at various compositions during the charge and discharge although the 

intensity changes at high voltage (Figure 6.10). This behavior is contrary to those of observed for other 

transition metals measured in this study that the evolution in the normalized XANES spectra is reflected 

in the position of peaks in the derivative curves. The changes in the shape and the intensity of absorption 

maxima in Fe K-edge XANES spectra seem to originate from Fe ions local structure modifications, 

although no change in the position of dμ/dE curve occurs; similar behavior is reported for 

Nax[Mn1/2Fe1/2]O2 
53 and NaxFeO2 

4, in which the oxidation of Fe3+ to Fe4+ is proved by Mössbauer 

spectroscopy. 
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Figure 6.9 The voltage profile of a Nax[Mn0.66Fe0.20Cu0.14]O2 electrode (vs. Na metal) from 

which the X-ray absorption spectra at the Fe K-edge were collected (a). The marks on the 

graph show the points at which data collection was started. Normalized XANES spectra 

of Nax[Mn0.66Fe0.20Cu0.14]O2 at the Fe K-edge during the first charge (b-d), first discharge 

(e), and the comparison of the initial state and the end of discharge (f). 
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Figure 6.10  The voltage profile of a Nax[Mn0.66Fe0.20Cu0.14]O2 electrode (vs. Na metal) from which the 

X-ray absorption spectra at the Fe K-edge were collected (a). The marks on the graph show the points 

at which data collection was started. Normalized first derivative of XANES spectra of 

Nax[Mn0.66Fe0.20Cu0.14]O2 at the Fe K-edge during the first charge (b-d), first discharge (e), and the 

comparison of the initial state and the end of discharge (f). 
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   If the modifications in the shape and intensity of the normalized XANES spectra of Fe K-edge is 

attributed to the oxidation of iron ions, only a small fraction of Fe ions get oxidized during the charge 

of the Nax[Mn0.66Fe0.20Cu0.14]O2/Na cell, i.e., less than 25% of Fe ions assuming that Fe3+/4+ redox 

process is the only responsible mechanism within the narrow voltage window of 3.9 to 4.1 V 

(corresponding to scan F6 to F7). In the study56 presented in Chapter 4, it was reported that the 

concentrations of Fe4+ ions in the oxidized states of Nax[Mn0.5+yNiyFe0.5-2y]O2 (x ≈ 0.15, y = 0, 0.1, 0.15) 

measured by Mössbauer spectroscopy were systematically lower than the values expected from 

electrochemical measurements. The redox activity of oxide ions was suggested based on a combination 

of structural characterizations, Mössbauer spectroscopy, and electrochemical measurements. In another 

study, 148  it was shown that about 20% of Fe4+ ions formed by charging O3-NaFeO2 to 3.6 V were 

reduced back to Fe3+ during the storage of the charged cell at open circuit voltage. It was suggested that 

although conventional organic electrolytes are expected to be stable over this voltage range, the 

catalytic effect of Fe4+ ions facilitates the oxidation of the electrolyte. However, the chemical instability 

of Fe4+ ions is not expected to affect the spectra in this study because of the real-time nature of this 

characterization. 

   The shape of the pre-edge peak in the Fe K-edge spectrum of Na0.67[Mn0.66Fe0.20Cu0.14]O2 is unclear 

due to the level of noise induced by the interference from the Mn ions X-ray absorption. However, it is 

clearly observable that the pre-edge peak intensity increases from scan F7 to F9 (Figure 6.11 a), at the 

voltage region which the Z-phase is formed. Similarly, the intensity of pre-edge peak was increased in 

the Fe K-edge XANES spectra of O3-Na1-xFeO2 when it was charged up to 4 V vs. Na.4 Moreover; the 

EXAFS data showed decreases in the length of the first coordination shell (Fe-O) and the intensity of 

the second coordination shell (Fe-Fe). Significant improvement is found in the capacity retention and 

the voltage polarization of O3-NaFeO2 when the cutoff voltage is limited to 3.4 V. Electrochemical 

measurements, and ex-situ XRD analysis indicated an irreversible phase transition in Na1-xFeO2  
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Figure 6.11 Pre-edge of normalized XANES spectra of 

Nax[Mn0.66Fe0.20Cu0.14]O2 electrode during the first charge (a) and the first 

discharge (b) collected at the Fe K-edge. The insets show the voltage profile 

and the points at which each scan was started. 
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induced by extraction of sodium ions upon charge.4 Based on the evolution of Fe K-edge XANES data, 

irreversible migration of some of Fe3+ ions into tetrahedral sites available in the interlayer space at high 

voltage was suggested as the origin of the degradation of O3-NaFeO2.4 The increase in the intensity of 

pre-edge peak in the Fe K-edge XANES spectra supports the migration of a small fraction of Fe ions 

into interlayer tetrahedral sites at high voltage (> 4 V) suggested by the PDF analysis of this material 

and other Fe-containing P2-type sodium metal oxides.56 The intensity of the pre-edge peak did not 

recover to its initial value during discharge to 3.4 V, at which scan F13 was collected (Figure 6.11 b). 

However, the reversibility of the high voltage phase in the P2-type Fe-containing oxides is importantly 

different from O3-type ones as evidenced by the electrochemical performance; a P2-

Na0.67[Mn0.66Fe0.20Cu0.14]O2/Na cell delivers ≈ 96% of its initial capacity in the fifth discharge when 

cycled within 1.5 - 4.3 V range (Chapter 5), whereas an O3-NaFeO2/Na cell shows less than 20% of its 

initial capacity after 5 cycles when cycled within the 2.5 - 4.0 V range. Moreover, the first discharge 

capacity of O3-NaFeO2 is decreased by increasing the upper limit of the cycling voltage from 3.5 to 

4.5 V.  

6.3.5 X-Ray Absorption Spectra of Nax[Mn0.65Fe0.20Ni0.15]O2  at the Ni K-Edge 

The X-ray absorption spectra of Nax[Mn0.65Fe0.20Ni0.15]O2 at the Ni K-edge do not show any notable 

change from scan N1 to N3 (Figure 6.12 b, Figure 6.13 b). The spectra shifted progressively to higher 

energy from scan N3 to scan N7 (Figure 6.12 c, Figure 6.13 c), demonstrating the oxidation of Ni ions 

upon charge within this range. The XANES spectra remain unchanged upon charge from scan N7 to 

scan N10 (Figure 6.12 d, Figure 6.13 d). During discharge, the absorption spectra shifted to lower 

energy from scan N11 to scan N15, indicating the reduction of nickel ions (Figure 6.12 d, Figure 6.13 

e). Excellent overlap of scan N17 and scan N1 demonstrates the reversibility of the nickel redox reaction 

in Nax[Mn0.65Fe0.20Ni0.15]O2 in this voltage range (Figure 6.12 f). 
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Figure 6.12 The voltage profile of a Nax[Mn0.65Fe0.20Ni0.15]O2 electrode (vs. Na metal) from 

which the X-ray absorption spectra at the Ni K-edge were collected (a). The marks on the 

graph show the points at which data collection was started. Normalized XANES spectra of 

Nax[Mn0.65Fe0.20Ni0.15]O2 at the Ni K-edge during the first charge (b-d), first discharge (e), 

and the comparison of the initial state and the end of discharge (f). 
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Figure 6.13 The voltage profile of a Nax[Mn0.65Fe0.20Ni0.15]O2 electrode (vs. Na metal) from which the 

X-ray absorption spectra at the Ni K-edge were collected (a). The marks on the graph show the points 

at which data collection was started. Normalized first derivative of XANES spectra of 

Nax[Mn0.65Fe0.20Ni0.15]O2 at the Ni K-edge during the first charge (b-d), first discharge (e), and the 

comparison of the initial state and the end of discharge (f). 
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   The shift in the position of the absorption peak at the Ni K-edge in Nax[Mn0.65Fe0.20Ni0.15]O2 from the 

pristine composition to the charged one is about two times higher than that value for the Mn K-edge in 

Nax[Mn0.66Fe0.20Cu0.14]O2. This fact suggests the oxidation of Ni2+ to Ni4+ upon charge. Reversible 

oxidation of Ni2+ ions to Ni4+ or Ni3/4+ is commonly observed during the charge/discharge of lithium 

metal oxides139,140,149 and sodium metal oxides.49,150 The maximum capacity that can be achieved from 

charging a Nax[Mn0.65Fe0.20Ni0.15]O2/Na cell from scan N3 to N7 is equivalent to the extraction of ≈ 0.26 

mole Na+ from one mole of active material (Figure 6.12 a), implying partial oxidation of nickel ions 

to tetra-valence.  

   A low-intensity doublet pre-edge peak in the Ni K-edge XANES spectrum of 

Na0.67[Mn0.65Fe0.20Ni0.15]O2 is evident (Figure 6.14). The presence of two pre-edge peaks in the XANES 

spectra of Ni2+ (d8) ions was reported in Li[Li0.2Ni0.16Mn0.56Co0.08]O2.139 The first and the second peaks 

in the pre-edge peak of Ni2+ ions were assigned to the dipole transition and quadrupole transition, 

respectively, in rock-salt type NiO.151 The intensity of the pre-edge peak in this study did not change 

during the first charge and discharge. However, the peak positions shifted to higher/lower energy during 

oxidation/reduction.  
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Figure 6.14  Pre-edge of Ni K-edge normalized XANES spectra of 

Nax[Mn0.65Fe0.20Ni0.15]O2 electrode during the first charge (a) and the first 

discharge (b). The inset shows the voltage profile and the points at which 

each scan was started. 
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6.3.6 Discussion 

A Na0.67[Mn0.66Fe0.20Cu0.14]O2/Na cell was cycled at a constant current rate of 13 mA.g-1 (C/20) in the 

4.3 - 1.5 V window. Electrochemical measurements showed the extraction of ≈ 0.45 mol Na+ per one 

mole of active material in the first charge. The operando X-ray absorption spectra of 

Nax[Mn0.66Fe0.20Cu0.14]O2 collected at Mn, Fe and Cu K-edges during the first charge showed 

modifications at certain voltage ranges, indicating the contribution of each transition metal ion to the 

oxidation reaction. An important observation is that the XANES spectra of the transition metals show 

no discernable evolution at voltages higher than 4.1 V, at which the high voltage phase transition occurs 

as demonstrated by operando XRD. In other words, the oxidation of Mn3+, Fe3+ and Cu2+ to Mn4+, 

Fe3+,4+, Cu2+,3+, respectively, compensate the charge for the extraction of ≈ 0.35 mol Na+, demonstrated 

by the shift in the position of the absorption edges. This observation suggests the contribution of the 

oxide anions to the redox reaction. Moreover, the XANES spectra of Nax[Mn0.66Fe0.20Cu0.14]O2 collected 

at Mn, Cu, and Fe K-edges do not show any discernible evolution when discharged from high voltage 

to 3.6 V. This fact implies the reversibility of the oxygen redox reaction.  

   The role of ligand to metal charge transfer was previously proposed in P2-Na0.67[Mn0.5Fe0.5]O2, based 

on a combination of Mössbauer spectroscopy, structural analyses, and electrochemical measurements.56 

The redox chemistry of oxide anions in Li2MO3-based oxides (M: transition metal), such as 

Li1+x[NiyCozMn1-x-y-z]O2 and Li2[Ru1-yMy]O3, is known and has gained much attention for 

investigation.145,152,153,154 Lithium-excess manganese-rich transitional metal oxides deliver high 

capacities (beyond the values expected from cationic redox reactions) along with a characteristic 

voltage plateau during the first charge. Oxygen evolution from the structure has been considered an 

important mechanism involved in the first charge oxidation process of Li2MnO3-based oxides.155,156 It 

was reported that the oxygen participation into the first charge process of Li1.20[Mn0.54Co0.13Ni0.13]O2
153 

is in the form of irreversible O2 gas evolution at the surface, whereas oxide ions are partially oxidized 
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without leaving the structure within the bulk and are reduced back at the following discharge. A 

combination of X-ray photoelectron spectroscopy, transmission electron microscopy, and density 

functional theory (DFT) calculations studies of Li2[Ru1-yMy]O3 revealed the reversible oxidation of 

oxide ions to peroxo-like O2
2- species, concomitantly with the migration of transition metals within the 

metal and lithium layers.145 In a recent study,157 a significant contribution of oxygen orbitals to the 

redox reaction of O3-NaFe0.5Ni0.5O2 was disclosed by a combination of X-ray spectroscopy, Mössbauer 

spectroscopy, and density functional theory calculations.  

   This operando XANES study of P2-Na0.67[Mn0.66Fe0.20Cu0.14]O2 suggests the reversible participation 

of oxide anions in the redox process. Electrolyte decomposition cannot be the main responsible 

mechanism that accounts for the charge obtained at voltages higher than 4.1 V because the phase 

transition occurring at that voltage implies an evolution of the structure. The evolution of oxygen gas 

from the structure is not the principal oxidation mechanism in this system as demonstrated by the good 

reversibility of the redox reaction. The reversible contribution of oxide anions is concomitant with the 

migration of transition metals, as suggested by pair distribution function analysis (Chapter 5). Further 

study of anionic redox chemistry in this material, such as O K-edge and 3d metal L-edge XANES 

measurement, is in the process in our research team to achieve an in-depth understanding of the 

involved redox reactions, which is necessary for the design of high-performance electrode materials for 

Na-ion batteries.  

6.4 Conclusions 

   In this study, the redox reactions involved in the charge and discharge processes of P2-

Na0.67[MnxFeyM1-x-y]O2 (M: Cu, Ni) were investigated by operando X-ray absorption spectroscopy. The 

X-ray absorption spectra were measured at the Mn, Fe, and Cu K-edges in Nax[Mn0.66Fe0.20Cu0.14]O2, 

and at the Ni K-edge in the Nax[Mn0.65Fe0.20Ni0.15]O2 during the first charge and discharge. The 

modifications of the local structure of each transition metal were probed by monitoring the evolution 
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of the XANES data. The first charging process in Nax[Mn0.66Fe0.20Cu0.14]O2 starts with the oxidation of 

Mn3+ ions to Mn4+, and is followed by the partial oxidation of Cu2+ to Cu3+ and Fe3+ to Fe4+. Ni2+ ions 

in Na0.67[Mn0.65Fe0.20Ni0.15]O2 are oxidized to Ni3+/4+ during the first charge. Fe, Cu, and Ni ions are 

reduced back to their initial valence states in the pristine compositions during the first discharge, 

whereas the concentration of Mn3+ increases as the electrode is discharged to 1.5 V vs. Na. The XANES 

spectra collected at Mn, Cu, Fe, and Ni K-edges remained unchanged during the first charge at voltages 

higher than 4.1 V and during the first discharge at voltages higher than 4.0 V. This observation suggests 

a reversible contribution of oxide ions to the redox process. The redox chemistry of oxide anions is 

recognized in lithium-rich transition metal oxides.145,152,154  

   The intensity of the pre-edge peaks in the XANES spectra increased from the start of the charge up 

to 4.1 V at the Mn and K-edge, and from 4.1 V to the end of charge at the Fe K-edge, indicating the 

irreversible evolution of their local structures at different voltage ranges. The increase of the pre-edge 

peaks at the Fe K-edge at voltages higher than 4.1 V, at which the high voltage phase transition occurs, 

supports the degradation mechanism caused by the migration of Fe4+ cations into the interlayer 

tetrahedral sites, proposed by PDF analysis.   
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Chapter 7 

Summary and Future Outlook 

This thesis presents a study of manganese and iron containing layered P2-type oxides as auspicious 

materials for positive electrodes in Na-ion batteries. P2-Na0.67[Mn0.5Fe0.5]O2 is a promising candidate 

for this application owing to its high specific energy (> 500 Wh.Kg-1), sustainability, and safety. 

Nevertheless, this material suffers from air-instability, similar to many other layered sodium metal 

oxides. The instability of this material in ambient conditions was known by the research community. 

However, the nature of this reactivity was not understood, and its important impact on electrochemical 

performance was underestimated. The TGA-MS characterizations, diffraction analyses, and SEM 

investigations, coupled with electrochemical measurements revealed the complex reactivity of P2-

Na0.67[Mn0.5Fe0.5]O2 with air, including the room temperature insertion of carbonate anions into the 

lattice, concomitant with oxidation of Mn3+ ions into Mn4+ (Chapter 3). The rigorous protection of 

electrodes against air is necessary for good electrochemical performance; an air-exposed electrode of 

P2-Na0.67[Mn0.5Fe0.5]O2 demonstrates larger polarization and lower capacity compared to an air-

protected electrode. Moreover, in contrary to the case of an air-protected electrode, the second charge 

profile of an air-exposed electrode does not superimpose with the first charge, due to the decomposition 

of carbonate anions upon the first charge, as revealed by online electrochemical mass spectrometry. 

We demonstrated that the substitution of Fe in P2-Na0.67[Mn0.5Fe0.5]O2 by Mn/Ni ions diminishes the 

air-reactivity of the material, as evidenced by electrochemical characterization. This fact indicates the 

importance of composition modifications to address the instability issue of layered oxides for further 

development of Na-ion batteries. 

Chapter 4 presents a study of the structural evolution of P2-Na0.67[Mn0.5Fe0.5]O2 and P2-

Na0.67[Mn0.65Fe0.20Ni0.15]O2 when subjected to electrochemical extraction and insertion of sodium ions, 
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and its correlation with the electrochemical performance of those materials. As demonstrated by 

operando X-ray diffraction analysis, Nax[Mn0.5Fe0.5]O2 and Nax[Mn0.65Fe0.20Ni0.15]O2 uphold their initial 

P2 structure over a wide range of stoichiometry, but show two phase transitions when cycled between  

4.3 - 1.5 V vs. Na/Na+; first, a transition to a poor crystalline phase, referred to as Z-phase, at high 

voltage, and second, a transition to the orthorhombic P2 phase at low voltage, induced by cooperative 

distortion of Jahn-Teller active Mn3+ ions. The high voltage Z phase, which is observed only in Fe-

containing layered oxides, was characterized by PDF analysis. It was proposed that the Z-phase 

formation is induced by migration of transition metals from MO2 layers into the interlayer space at high 

sodium vacancy concentrations. The impact of the phase transitions on the electrochemical 

performance of the P2-Na0.67[Mn0.5Fe0.5]O2 and P2-Na0.67[Mn0.65Fe0.20Ni0.15]O2 electrodes was 

investigated by adjusting the cut-off voltage. The delivered specific energy of the cells as a function of 

cycle number deteriorates due to the impact of phase transitions, especially the high voltage one. When 

the cutoff voltage is set so that the phase transitions are avoided, a P2-Na0.67[Mn0.65Fe0.20Ni0.15]O2/Na 

cell retains ≈ 80% of the initial specific energy after 150 cycles (C/10 rate). This remarkably enhanced 

cycle life is achieved at the expense of energy. The P2 phase stability domain in the nickel-substituted 

composition, P2-Na0.67[Mn0.65Fe0.20Ni0.15]O2, is slightly larger than that of the parent P2-

Na0.67[Mn0.5Fe0.5]O2, resulting in a 25% energy boost when cycled within a range that the phase 

transitions are hindered.   

The most likely future application of Na-ion batteries would be for large-scale energy storage, such 

as grid storage, where cost-effectiveness and sustainability are more critical concerns compared to 

gravimetric and volumetric energy density. This is because of the estimated increasing price of high-

performance Li-ion batteries, whereas Na-ion batteries are more cost-effective and sustainable, but 

deliver lower energy. Therefore, resource availability and low cost are important criteria for Na-ion 

battery materials design. P2-Na0.67[Mn0.66Fe0.20Cu0.14]O2, a material composed of low-cost transition 
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metals, was synthesized and investigated (Chapter5). This study presents a systematic comparison of 

the impact of substitution of copper and nickel ions into the parent sodium manganese iron oxide 

material. Operando X-ray diffraction analysis upon charge/discharged revealed slightly limited P2 

stability domain of Nax[Mn0.66Fe0.20Cu0.14]O2 compared to the nickel-substituted composition, due to 

Jahn-Teller effect of Cu2+ ions and increased migration of transition metals at high voltage, as revealed 

by PDF analysis. Besides that, the total capacity delivered by Nax[Mn0.66Fe0.20Cu0.14]O2 is lower than 

that of Nax[Mn0.65Fe0.20Ni0.15]O2, due to lower contribution of the Cu2+/Cu3+ couple to the redox process, 

compared with Ni2+/Ni3+,4+.  

The redox reactions involved in the charge and discharge processes of the substituted materials 

reported in previous chapters were investigated by operando X-ray absorption spectroscopy (Chapter 

6). The evolution of the local structure of each transition metal in Nax[Mn0.66Fe0.20Cu0.14]O2 upon 

cycling was probed by monitoring the XANES spectra collected at the Mn, Fe, and Cu K-edges. The 

data indicated the complete oxidation of Mn3+ ions to Mn4+ upon charge, followed by partial oxidation 

of Cu2+ to Cu3+ and Fe3+ to Fe4+. The operando measurement of the XANES spectra of 

Nax[Mn0.65Fe0.20Ni0.15]O2 at the Ni K-edge showed the oxidation of Ni2+ to Ni3+/4+ upon the first charge. 

A particularly important observation was that the XANES spectra of Nax[Mn0.66Fe0.20Cu0.14]O2 at the 

Mn, Fe, and Cu K-edges did not show any discernible evolution at high voltage region ( > 4.1 V vs. 

Na/Na+ upon charge), suggesting the contribution of oxide ions into the redox processes, similar to the 

case of Li-rich transition metal oxide positive electrode materials for Li-ion batteries.  

The specific energy delivered by Nax[Mn0.65Fe0.20Ni0.15]O2 is comparable to that of LiFePO4, which 

is employed as a positive electrode material in some commercial Li-ion batteries. Moreover, this 

amount of energy is obtained from a material synthesized by the simple and scalable conventional solid 

state method and without any carbon coating, whereas carbon coating and small particle size are 

necessary to obtain the good electrochemical performance of LiFePO4. The future development of 
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layered Mn, Fe-containing oxides for Na-ion batteries should address the instability and inadequate 

cyclability of these materials. The necessity of storage and handling of these materials with avoiding 

the exposure to moisture and CO2 in air increases the cost of their practical application. The air 

reactivity issue described in this study is probably not limited to this family of materials and could be 

a concern with any P2-type Mn3+-containing oxide. The systematic investigation of air instability in a 

larger group of layered oxides and the exploration of tailored substitutions to suppress this issue should 

be an avenue of the future work. Positive electrode materials based on the Fe3+/4+ redox couple are 

attractive regarding providing a high voltage, and therefore high energy. However, transition metal 

migration induced by the formation of Fe4+ needs to be prevented. In this study, the damaging impact 

of phase transitions induced upon cycling, especially the high voltage transition, on energy retention 

was demonstrated. The reversibility and the onset of transition metal migration at high voltage are 

related to the type of structure (it differs in the P2 and O3 structures), the concentration of Fe ions, the 

nature of the other transition metals in the lattice, and the concentration of sodium vacancies. The strong 

hybridization of Fe4+ 3d orbitals with oxygen 2p orbitals is probably the origin of the high voltage phase 

transition. The contribution of oxide ions into the redox processes was also concluded from an operando 

XAS study. Further investigation of this process by a combination of XAS experiments and 

computational studies would provide in-depth understanding and insightful information for the future 

of this research path.  

We demonstrated that when the electrode is protected against exposure to air and the cut-off voltage 

is adjusted so that the phase transitions are avoided, a Na0.67[Mn0.65Fe0.20Ni0.15]O2/Na cell with an 

organic electrolyte cycled at C/10 rate loses 20% of its initial capacity after 150 cycles. The interactions 

of the positive and the negative electrodes with the electrolyte solution should contribute to the capacity 

fading. For example, dissolution of transition metals from the surface of lithium metal oxide positive 

electrodes is a well-known aging mechanism in Li-ion batteries.154 Surface coating and using electrolyte 
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additives are two approaches to address this issue.158-161 The surface chemistry of oxide materials in 

contact with electrolytes is not much explored for Na-ion batteries and deserves further investigation. 

Certainly, finding suitable negative electrodes is inevitable for the development of Na-ion batteries.    
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