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Abstract

Various feasibility problems in Combinatorial Optimization can be stated using systems
of polynomial equations. Determining the existence of a stable set of a given size, finding
the chromatic number of a graph or more generally, determining the feasibility of an Integer
Programming problem are classical examples of this. In this thesis we study a powerful tool
from Algebraic Geometry, called Hilbert’s Nullstellensatz. It characterizes the infeasibility
of a system of polynomial equations by the feasibility of a possibly very large system of
linear equations. The solutions to this linear system provide certificates for the infeasibility
of the polynomial system, called Nullstellensatz Certificates.

In this thesis we focus on the study of Nullstellensatz Certificates for the existence of
proper colorings of graphs. We use basic ideas from duality theory to determine various
properties of the Nullstellensatz Certificates. We give new proofs to several known results in
the current literature and present some new results that shed some light on the relationship
between the sparsity of a graph and the size of the Nullstellensatz Certificates for k-
colorability.
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Chapter 1

Introduction

Linear Algebra is probably one of the most useful mathematical tools to solve a wide range
of theoretical and applied problems in mathematics and other sciences. Either in real world
applications or pure theoretical questions, Linear Algebra has found its way to contribute
to the development and the deep understanding of a variety of mathematical objects and
structures of study. One of the main reasons for such a great impact in science is the fact
that, the Theory of Linear Algebra has characterized when a system of linear equations
has a solution and has provided efficient algorithms to solve such systems. To phrase it on
Edmonds’ terms ([23], [13]), Linear Algebra provides us with a good characterization for
the existence of solutions of linear systems. Such characterization is often called Fredholm’s
Theorem of the Alternative: for every matrix A ∈ Rm×n and every vector b ∈ Rm,

Ax = b
has no solution,

⇐⇒ A>y = 0, b>y = 1
has a solution.

(1.0.1)

Fredholm’s Theorem of the Alternative lets us certify the nonexistence of solutions of
systems of linear equations with the existence of solutions of another system of linear
equations. More concretely, if one wishes to convince someone that the system Ax = b
has no solution, then we can provide a solution y ∈ Rm to (1.0.1) as a certificate of such
assertion. Of course, among all possible certificates, one would like to provide the best (in
some suitable sense) certificate. For example, in the context of systems of linear equations,
one would like to provide a certificate y with as few non-zero entries as possible.

Even though linear systems are very powerful, numerous problems of great interest
cannot, at a first glance be modeled using systems of linear equations. For instance,
problems of a discrete nature such as Integer Programming feasibility problems, where the
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variables are required to be integers, are examples of this. For these types of problems a
more elaborate machinery needs to be constructed. A natural generalization is to consider
systems of polynomial equations instead of linear systems. More concretely, given a set
of multivariate polynomials p1, p2, . . . , pm over the complex numbers with n variables, we
consider the system:

p1(x) = p2(x) = · · · = pn(x) = 0, x ∈ Cn. (1.0.2)

Clearly, systems like (1.0.2) are more powerful than linear systems. For example, they can
model much harder problems such as 0, 1 Integer Programming feasibility problems. This,
since a polynomial equation like x2

j − xj = 0 would force the variable xi to be either zero
or one. In particular, the problem of deciding the existence of solutions to (1.0.2) lies in
the complexity class of NP-hard problems ([29]).

Despite the difficulty of solving systems of polynomial equations, their theoretical im-
portance is astonishing. For instance, David Hilbert ([31]), while studying the Theory of
Algebraic Invariants, proved in 1893 the following good characterization for the existence
of solutions to (1.0.2):

p1(x) = · · · = pm(x) = 0
has no solution x ∈ Cn,

⇐⇒ r1(x)p1(x) + · · ·+ rm(x)pm(x) = 1
for some polynomials r1, . . . , rm.

(1.0.3)

This characterization, called Hilbert’s Nullstellensatz or Hilbert’s Theorem of Zeros, is one
of the building blocks of Algebraic Geometry and Commutative Algebra as it shows a
deep connection between algebraic objects (ideals of polynomials, cf. Definition 2.1.5) and
geometric objects (affine varieties, cf. Definition 2.1.1). The polynomials r1, r2, . . . , rm on
the right hand side of (1.0.3) provide a certificate for the non-solubility of (1.0.2). Such
certificate is called a Nullstellesatz Certificate and its degree is the maximum degree of
the polynomials ri with i ∈ {1, 2, . . . ,m}. Determining the existence of a Nullstellensatz
Certificate of a given degree can be done using a system of linear equations. Indeed, if we
fix the degree of the polynomials r1, . . . , rm, then the equation

r1(x)p1(x) + · · ·+ rm(x)pm(x) = 1 (NCERT)

becomes nothing but a system of linear equations, where the variables are the coefficients
of the polynomials ri with i ∈ {1, 2, . . . ,m}. Thus, Hilbert’s Nullstellensatz transforms the
non-solubility of (1.0.2) into a family of (possibly large) systems of linear equations.

János Kollar ([34]) in 1988 proved that if (1.0.2) has no solution and the polynomials pi
with i ∈ {1, 2, . . . ,m} have degree at most d, then there exists a Nullstellesatz Certificate
r1, r2, . . . , rm having degree at most max(3, d)min(n,m). Moreover, Kollar showed that his
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bounds were sharp and as a consequence the linear system induced by (NCERT) might
end up being enormous.

Nonetheless, for many important classes of polynomial equations the bounds found
by Kollar are far from being optimal. For instance, Daniel Lazard [37] showed that if
the polynomials p1, p2, . . . , pm have no common roots and no common roots at infinity (cf.
Definition 2.3.9), then the bound on the degree of the certificates can be lowered to n(d−1).
Examples of such systems of polynomials are the ones containing the equations xj(xj−1) =
0 or xkj − 1 = 0 for every j ∈ {1, 2, . . . , n} and any k ≥ 1. Thus, when dealing with
combinatorial problems that can be encoded as systems of polynomial equations, better
bounds can be expected and the linear system (NCERT) might gain some computational
interest.

These observations were carried out by Jesús de Loera and many of his coworkers
([20], [17]). They implemented an algorithm, known as the Nullstellensatz Linear Algebra
(NulLA) Algorithm, which uses the linear system derived from (NCERT) to detect the
feasibility of (1.0.2) (cf. Algorithm 4.1.1). Several graph theoretic problems such as finding
a stable set of a given size, determining whether a graph can be colored with k-colors and
determining the existence of a hamiltonian cycle, among others were tested with NulLA
([20]). Although for some of these problems Lazard’s bounds were sharp, their computer
experiments showed that NulLA outperformed several other known algorithms for checking
the non-3-colorability of a graphs ([21]). Moreover, the degrees of the certificates for non-
3-colorability seemed to be much smaller than Lazard’s bounds.

The polynomial encoding that De Loera and his co-authors used for graph coloring is
due to David Bayer in 1982 ([5]) who noted that a graph G = (V,E) is k-colorable if and
only if the system of polynomial equations

xkv − 1 = 0 ∀v ∈ V,
xk−1
u + xk−2

u xv + · · ·+ xux
k−2
v + xk−1

v = 0 ∀uv ∈ E,
(BCOL)

has a solution x ∈ KV over any closed field K of characteristic p not dividing k. Indeed,
the first equation in (BCOL) assigns a k-root of the unity to each variable xv with v ∈ V
and the second equation guarantees that xu 6= xv for every edge {u, v} ∈ E (cf. Theorem
5.1.3).

Besides its apparent practical value as a computational tool for detecting the k-colorability
of graphs, only few results about the properties of the Nullstellensatz Certificates for
(BCOL) are known and many problems are still open. Recently, Bo Li, Benjamin Lowen-
stein and Mohamed Omar [39] gave a clean combinatorial characterization of all graphs
that have Nullstellensatz Certificate of degree one for (BCOL) with k = 3 over the finite
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field F2 (see also [19]). Moreover, they showed (via exhaustive computations) that ev-
ery non-3-colorable graph with at most twelve vertices has a Nullstellenstaz Certificate of
degree at most four for (BCOL) over F2.

Jesús De Loera, Jon Lee, Peter Malkin and Susan Margulies [20] proved that unless
P = NP , for every integer d ≥ 1 there exists a non-3-colorable graph with minimal Null-
stellensatz Certificate for (BCOL) (over any field K as above) of degree greater than or
equal to d. However, it is still an open problem to find a graph whose minimal Nullstel-
lensatz Certificate has degree greater than four for (BCOL) (over any field K as above).

The main purpose of this thesis is to study (BCOL) and other systems of polynomials
equations from a dual point of view. That is, instead of trying to show the existence of
Nullstellensatz Certificates using the system of linear equations derived from (NCERT)
directly, we will use Fredholm’s Theorem of the Alternative to study the non-existence
of Nullstellensatz Certificates of certain degree. More concretely, an infeasible system of
polynomial equations (1.0.2) over some closed field K has a Nullstellesatz Certificate of
degree d̄ if and only if the constant polynomial 1 lies in the finite dimensional vector space

Vd̄ := {r1(x)p1(x) + · · ·+ rm(x)pm(x) : each polynomial ri has degree at most d̄}.

We can see Vd̄ as a subspace of the vector space V of all polynomials on n variables with
coefficients in K. Thus, (1.0.2) does not have a Nullstellesatz Certificate of degree d̄ if and
only if there exists a linear functional λ ∈ V∗ in the dual space of V such that

λ(p) = 0, ∀p ∈ Vd̄, (DNCERT)

and λ(1) 6= 0. Such linear functionals λ are called Dual Nullstellensatz Certificates of degree
d (cf. Definition 4.2.7). These dual certificates (sometimes referred as Designs [9],[10])
were introduced by Stephen Cook et. al. ([6]) to find lower bounds for Nullstellensatz
Certificates of systems describing a version of the Pigeon Principle. Later, Jesus De Loera,
Peter Malkin and Pablo Parrilo ([22]) did a very general study of the set of all λ ∈ V∗

satisfying (DNCERT), i.e. the annihilator of Vd̄ (cf. Definition 4.2.5). However, no specific
study of Dual Nullstellensatz Certificates of the systems like (BCOL) or other systems of
polynomial equations arising from combinatorial problems has been done until now.

Our contributions are the following. First, using this dual approach, we found new
proofs to many of the results found in the current literature. For instance, we give a
shorter and combinatorial proof to the following result due to De Loera et. al. [20] (see
Theorem 4.2.11).
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Theorem A. Let G = (V,E) be a graph with maximum stable set of size α(G). Then, for
any k ≥ α(G) + 1 the system∑

i∈V

xi − k = 0,

xixj = 0, ∀{i, j} ∈ E,
xi(xi − 1) = 0, ∀i ∈ V,

(STAB)

has a minimal Nullstellensatz Certificate of degree α(G).

We also give a new proof of the following recent result due to De Loera et. al. [18] (see
Corollary 5.2.4 )

Theorem B. Let G = (V,E) be a non-k-colorable graph with k > 3 and suppose that
(BCOL) has minimal Nullstellensatz Certificate of degree d∗. Then,

d∗ ∼= 1 mod k. (1.0.4)

Moreover, d∗ ≥ k + 1.

Systems like (BCOL) have the great advantage of having its set of solutions contained in
a finite abelian group: each coordinate of any solution x to (BCOL) lie in the multiplicative
group generated by the k-th roots of the unity. We use this basic observation throughout
the thesis to derive beautiful connections between Fourier Analysis of finite abelian groups
and the Nullstellensatz (cf. Chapter 3 and Section 5.2.2). In particular, this connection
leads to the study of the following equivalent system of polynomial equations

xku − 1 = 0 ∀u ∈ V,
1 + xux

k−1
v + x2

ux
k−2
v + · · ·+ xk−1

u xv = 0 ∀{u, v} ∈ E.
(FCOL)

The system (FCOL) can be seen as a relaxation of the system (BCOL). More concretely,
if a non-k-colorable graph has a Nullstellensatz Certificate for (FCOL) of degree d, then it
has a Nullstellensatz Certificate for (BCOL) of degree d + 1 or d− k + 1 (cf. Proposition
5.1.5). We prove the following theorem (see Theorem 5.3.7).

Theorem C. Let G = (V,E) be non-3-colorable graph with minimal Nullstellensatz Cer-
tificate for (FCOL) of degree d∗. If G has girth at least six, then

d∗ ≥ 6.
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We believe that the techniques used to prove the above theorem may work for the case
(BCOL) as well and we could possibly derive a more general statement.

Next, we use the theory of Dual Nullstellensatz Certificates to find instances on which
it is possible to guarantee the existence of Nullstellensatz Certificate of some degree. In
particular we prove the following theorem relating the k-colorability of a graph and the set
of cliques of size k contained in them (see Theorem 5.4.3).

Theorem D. Let G = (V,E) be a graph and let k ≥ 3 be an odd integer. Consider the
group

Γk := 〈eu1 + · · ·+ euk : u1, . . . , un ∈ V form a k-clique 〉 ⊆ ZVk ,

where eu ∈ ZVk with u ∈ V are the canonical vectors of the group ZVk . If there exists an
edge {u, v} ∈ E such that eu − ev ∈ Γk, then G is not k-colorable.

It is possible to use Theorem D to find Nullstellensatz Certificates for the non-3-
colorability of graphs that have a rich triangle structure (cf. Lemma 5.4.5). In particular,
we can use it to prove that every odd wheel has a Nullstellensatz Certificate of degree 4
for (BCOL) (see [20] and Proposition 5.4.7).

This dissertation is organized as follows. In Chapter 2 we give a quick introduction
to the basics of Agebraic Geometry. Several examples and comments are provided. At
the end of this chapter we give a simple proof of Hilbert’s Nullstellensatz due to Enrique
Arrondo ([4]). In Chapter 3, we study the theory of Fourier Analysis for Finite Abelian
Groups. We introduce the dual group and construct the Fourier Transform. We also study
some basic properties of Cayley Graphs and their spectra. In Chapter 4, we study some
upper bounds for the degree of Nullstellensatz Certificates. We prove a slightly weaker
version of Lazard’s bound using Fourier Analysis. Then, we introduce the concept of Dual
Nullstellensatz Certificate and use it to derive lower and upper bounds for (STAB). In
Chapter 5 we use Fourier Analysis to derive an alternative formulation to (BCOL). Using
this formulation, along with Dual Nullstellensatz Certificates, we prove the main results in
our thesis, namely Theorem B, Theorem C and Theorem D. Finally, in Chapter 6 we give
some final remarks and discuss some open problems.
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Chapter 2

Hilbert’s Nullstellensatz

In this chapter we introduce a well known result in Algebraic Geometry due to Hilbert called
Hilbert’s Nullstellensatz ([31]). This theorem is a mathematical tool to certify insolubility
of system of polynomial equations by transforming the original problem into a system
of linear equations. Later on, we will see that this transformation allows us to create
algorithms for deciding the existence of combinatorial structures using systems of linear
equations.
Throughout this thesis, we let K[x1, x2, . . . , xn] be the set of polynomials on n variables
with coefficients in the the field K. Common choices for K are the fields of complex numbers
C, real numbers R or finite fields Fq with q = pm for some prime p ∈ Z and some integer
m ≥ 1. A field K is algebraically closed if every non-constant polynomial p ∈ K[x] has
a root, i.e. there exists some x̄ ∈ K such that p(x̄) = 0. The Fundamental Theorem of
Algebra is the statement asserting that C is a closed field.
We will often use the multi-index notation for polynomials in K[x1, x2, . . . , xn]. A multi-
index α ∈ Zn is a vector of non-negative integers and its size or degree is defined to be the
sum

|α| := α1 + α2 + · · ·+ αn.

Every monomial in K[x1, x2, . . . , xn] can be written as xα := xα1
1 x

α2
2 · · ·xαnn for some multi-

index α ∈ Zn and every polynomial p ∈ K[x1, x2, . . . , xn] can be written as

p(x) =
∑
α∈A

pαx
α,

where A is a finite subset of multi-indexes. If pα 6= 0 for every α ∈ A, then we say that A
is the support of p and we denote such set by supp(p). The degree of the polynomial p,
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denoted by deg(p) is the maximum size of the multi-indexes in its support. The degree of
the zero polynomial is equal to −1 by convention.

2.1 From Linear Algebra To Algebraic Geometry

Probably the most important theorem in linear algebra is that of characterizing whether
a system of linear equations has a solution or not. Given a matrix A ∈ Kn×m and a vector
b ∈ Kn, the system of linear equations

Ax = b, (2.1.1)

has a solution if and only if the b lies in the linear span of the columns of A. If we have
access to an inner product on Kn, then (2.1.1) has a solution if and only if every vector
y ∈ Kn orthogonal to the columns of A is orthogonal to the vector b. In particular, this
implies that if the system (2.1.1) has no solution, then there exists some y orthogonal to
the columns of A satisfying 〈y, b〉 = 1. Such y is called a certificate for the infeasibility of
the system (2.1.1) and can be found by solving the system of linear equations

A∗y = 0,

〈b, y〉 = 1.
(2.1.2)

Here, A∗ is the adjoint of A with respect the inner product 〈·, ·〉, that is the unique matrix
satisfying the equality 〈A∗y, x〉 = 〈y, Ax〉 for every x ∈ Rm and y ∈ Rn.
Notice that a system of linear equations is nothing but a system of polynomial equations
where each polynomial has degree equal to one. Can we find certificates for the infeasibility
of systems of polynomial equations?. More concretely, let p1, p2, . . . , pm be polynomials in
K[x1, x2, . . . , xn] such that the system

pj(x) = 0, j ∈ [m] := {1, 2, . . . ,m}, (2.1.3)

has no solution x ∈ Kn. Does there exist some polynomial or polynomials in K[x1, x2, . . . , xn]
that certify the infeasibility of (2.1.3)? If so, is there an algorithm to find such certificate?
In order to solve this problem let us go back to the linear case once more. Notice that for
the system (2.1.1) there were two objects in play: the affine space of all vectors x ∈ Km

satisfying Ax = b (a geometric object) and the vector space generated by the columns of
A (an algebraic object). We can generalize these two objects for polynomials as follows:
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Definition 2.1.1. Let p1, p2, . . . , pm be polynomials in K[x1, x2, . . . , xn]. The affine va-
riety defined by the polynomials p1, . . . , pm, denoted by VK(p1, . . . , pm), is the set of all
points x ∈ Kn satisfying the equalities

p1(x) = p2(x) = · · · = pm(x) = 0. (2.1.4)

Example 2.1.2. Let us consider the problem

min f(x, y) := x4 + y2x+ 1,
s.t. g(x, y) := x2 + y2 = 1,

x, y ∈ R.
(2.1.5)

A common way of solving this type of optimization problem is, in fact, by studying
certain affine algebraic variety. More concretely, one can use the method of Lagrange
multipliers: if (2.1.5) has an optimal solution (x̄, ȳ) and the gradient ∇g(x̄, ȳ) is not equal
to zero, then there exists some λ̄ ∈ R such that (x̄, ȳ, λ̄) is a solution to{

∇f(x, y)− λ∇g(x, y) = 0,

g(x, y) = 1,
⇐⇒


4x3 + y2 − 2λx = 0,

2y(x− λ) = 0,

x2 + y2 − 1 = 0.

(2.1.6)

The affine variety VR(4x3 + y2 − 2λx, 2y(x− λ), x2 + y2 − 1) consists of four points in R3.
Indeed, if y = 0 in (2.1.6) then x ∈ {−1, 1} and the first equation in (2.1.6) implies that
λ = 2. If y 6= 0, then the second equation in (2.1.6) implies that x = λ. Thus, every triple
(x, y, λ) with y 6= 0 satisfies 

4x3 − 3x2 + 1 = 0,

x− λ = 0,

x2 + y2 − 1 = 0.

(2.1.7)

The polynomial 4x3 − 3x2 + 1 has only one real root given by x0 := −a2−a+1
4a

where a :=

(7 −
√

3)
1
3 . Moreover, |x0| ≤ 1 which implies that (x0,±

√
1− x2

0, x0) are the other two

solutions to (2.1.6). It is not hard to see that f(x0,±
√

1− x2
0) < 2 and it gives us an

optimal solution to the problem.

Remark 2.1.3. The problem (2.1.5) is a particular example of a Polynomial Optimization
Problem (POP), that is problems of the form

max f(x) ,
s.t. hi(x) = 0,∀i ∈ [s],

gi(x) ≤ 0, ∀j ∈ [t],
x ∈ Rn.

(2.1.8)
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where the functions f, h1, . . . , hs and g1, . . . , gt are polynomials in R[x1, x2, . . . , xn]. Under
some mild conditions (constraint qualifications), one would use the Karush-Kuhn-Tucker
Theorem to transform (2.1.8) into a system of polynomial inequalities (see Chapter 12 of
[47] ).

Example 2.1.4. Every Integer Programming (IP) feasibility problem of the form{
Ax = b,

x ∈ {0, 1}n,
(2.1.9)

where A is an m × n real matrix and b ∈ Rn is equivalent to the system of polynomial
equations {

Ax = b,

x2
i − xi = 0, ∀i ∈ [n].

(2.1.10)

Hence, checking the feasibility of these problems is equivalent to determining whether some
affine algebraic variety (defined by polynomials of degree at most two) is empty or not.

Let us now introduce the analog of vector spaces for polynomials:

Definition 2.1.5. Let p1, p2, . . . , pm be polynomials in K[x1, x2, . . . , xn]. The ideal gen-
erated by p1, . . . , pm is the set of all of its polynomial combinations with coefficients from
K[x1, x2, . . . , xn], i.e. it is the set defined by

〈p1, . . . , pm〉K :=

{∑
i

ri(x)pi(x) : ri ∈ K[x1, . . . , xn] for all i ∈ {1, . . . ,m}

}
. (2.1.11)

Ideals I := 〈p1, . . . , pm〉K are called finitely generated ideals (e.g. Definition 2.1.8) and
the set {p1, . . . , pm} of polynomials is said to be a basis for I. An ideal can have many
different bases and not all of them may have the same number of elements. For example,
take the polynomials p1(x, y) := x2y+1 and p2(x, y) := x in R. The ideal 〈p1, p2〉R contains
the polynomial

1 · (x2y + 1)− xy · (x) = 1.

Therefore, 〈p1, p2〉R = 〈1〉R = R[x, y]. However, as the following lemma shows, all bases for
a polynomial ideal always define the same affine variety.

Lemma 2.1.6. Let I be an ideal with bases {p1, . . . , pm} and {q1, . . . , q`} in K[x1, . . . , xn].
Then,

VK(p1, . . . , pm) = VK(q1, . . . , q`).
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Proof. Since the polynomials p1, . . . , pm and q1, . . . , q` generate the same ideal, there exist
some polynomials rij ∈ K[x1, . . . , xn] for each i ∈ [m] and j ∈ [`], such that

qj =
∑
i∈[m]

rijpi, ∀j ∈ [`].

In particular, if x ∈ VK(p1, . . . , pm), then pi(x) = 0 for all i ∈ [m]. However, this implies
that qj(x) = 0 for each j ∈ [`] and x ∈ VK(q1, . . . , q`). The reverse inclusion can be proven
similarly.

Example 2.1.7. An affine variety may come from different ideals. For example, the ideals
〈x− 1, x+ 1〉C and 〈x2 − 1〉C define the same variety:

VC(x− 1, x+ 1) = VC(x2 − 1) = {1,−1}.

However, the ideal 〈x2 − 1〉C does not contain polynomials of degree less than two, whereas
x− 1 ∈ 〈x− 1, x+ 1〉C.

We end this section with a more general definition of ideal that will be useful later.

Definition 2.1.8. A subset I of K[x1, . . . , xn] is an ideal if it satisfies all of the following:

1. The zero polynomial is in I.

2. If p and q are polynomials in I, then p+ q is in I.

3. If p is in I, then for every polynomial h ∈ K[x1, . . . , xn], the polynomial h · p is in I.

Remark 2.1.9. Clearly, every finitely generated ideal is an ideal in the sense of Definition
2.1.8. Moreover, Hilbert’s Basis Theorem states that every ideal in the sense of Definition
2.1.8 is finitely generated (see Chapter 2 of [14]).

2.2 An important case: Polynomials in one variable.

Let us study the case of systems of polynomials with only one indeterminate, i.e. univariate
polynomials. The leading term of a polynomial p ∈ K[x], denoted by LT(p), is the mono-
mial with highest degree appearing in p. For example, the leading term of p(x) = 2x2+x−1
is the polynomial LT(p) = 2x2. A remarkable property of polynomials in one variable is
that we have access to a division algorithm. The idea of the algorithm, originally due to
Euclid (300 BC) and called the Euclidean Division Algorithm, is given in the following
proposition.
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Proposition 2.2.1. Let p, q ∈ K[x] be any two given polynomials with q 6= 0. Then, there
exist polynomials s and r ∈ K[x] such that

p = sq + r and deg(r) < deg(q). (2.2.1)

Proof. If the degree of p is smaller than the degree of q, then we can set s = 0 and r = p.
Therefore we may assume that deg(p) ≥ deg(q) and as a consequence the polynomial

LT(q) divides LT(p). Let us define the polynomials s = −LT(p)
LT(q)

and r = p − sq. Notice

that deg(r) is strictly smaller than deg(p). If deg(r) is greater than or equal to deg(q),
then we continue this process with r instead of p until we obtain a polynomial with degree
less than deg(q). This process terminates in a finite number of steps as we are strictly
decreasing the degree of r on each iteration of the algorithm.

The following pseudo code shows the division algorithm for a pair of given univariate
polynomials p and q 6= 0. Notice that the coefficients of the polynomials s and r in the
algorithm are polynomial functions on the coefficients of p and q divided by some power
of the coefficient of LT(q).

Algorithm 2.2.1: Division Algorithm (DIV)

Data: Polynomials p and q 6= 0 in K[x]
Result: Polynomials s, r such that p = sq + r and deg(r) < deg(q)

1 p̃ = p;
2 s = LT(p̃);
3 while deg(p̃) ≥ q do
4 r = p̃;

5 p̃ = p̃− LT(p̃)
LT(q)q;

6 s = s+ LT(p̃);

7 s = s
LT(q) ;

We have the following corollary:

Corollary 2.2.2. Let I = 〈p1, . . . , pm〉K be a given ideal of K[x]. Then,

I = 〈p〉K

for some polynomial p in K[x]. Moreover, p is unique up to multiplication by constants in
K.

12



Proof. We use induction on m with the base case m = 1 being trivial. Suppose that for
any m − 1 set of polynomials polynomials p1, . . . , pm−1 in K[x], there exists some other
polynomial q such that

〈p1, . . . , pm−1〉K = 〈q〉K .

Let pm be any other polynomial in K[x]. Clearly, the ideals 〈p1, . . . , pm−1, pm〉K and 〈q, pm〉K
are the same by our the definition of ideal. If q = 0 then the result follows trivially. Hence,
without loss of generality we may assume that 0 ≤ deg(q) ≤ deg(pm). By Proposition 2.2.1
there exists a pair of polynomials r and s such that pm = sq + r and deg(r) < deg(q). As
a consequence, the ideals 〈q, pm〉K and 〈q, r〉K are the same, but with

deg(pm) + deg(q) > deg(r) + deg(q).

If r = 0, then q divides pm and the result follows. Otherwise, we can use Proposition 2.2.1
again to find some polynomial r′ such that

〈q, r〉K = 〈r′, r〉K and deg(q) + deg(r) > deg(r′) + deg(r).

We can continue this process until one of the two polynomials generating the ideal is zero
and the ideal 〈p1, . . . , pm〉K is generated by some polynomial p.
It remains to prove that p is unique up to multiplication by constants, but this is easy.
Indeed, suppose that 〈p〉K = 〈p′〉K, then p divides p′ and p′ divides p. This only happens
when p = cp′ for some c ∈ K.

The unique polynomial p (up to multiplication by constants in K) found in Corollary
2.2.2 is called the greatest common divisor (GCD) of the polynomials p1, p2, . . . , pm. Notice
that any polynomial r that divides all of p1, p2, . . . , pm, divides p as well. Indeed, since
p ∈ 〈p1, . . . , pm〉K, there exist polynomials s1, . . . , sm such that p = s1p1 + · · · + smpm. If
each of the pi is divisible by r, then there exists some ri such that pi = rir and

p = (s1r1 + · · ·+ smrm)r,

proving our claim. Notice that the proof of Corollary 2.2.2 gives us an algorithm to
determine the GCD of a given set of polynomials. However, it does not express the GCD
as a polynomial combination of the original polynomials. We can modify the proof of
Corollary 2.2.2 to obtain the following algorithm:
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Algorithm 2.2.2: The Extended Euclidean Algorithm (GCD)

Data: p1, p2, . . . , pm ∈ K[x]
Result: Their GCD p and polynomials r1, . . . , rm such that p = r1p1 + · · ·+ rmpm.

1 p := p1; r1 := 1;
2 i := 2;
3 while i ≤ m do
4 if pi = 0 then
5 ri = 0, i := i+ 1;
6 if i > m then
7 return: p, r1, . . . , rm;

8 else
9 q := pi;

10 s1 := 1; s2 := 0; t1 := 0; t2 := 1;
11 j = 2;
12 while deg(g) ≥ 0 do
13 j := j + 1;
14 [s, r] := DIV(p, q);
15 p := q;
16 q := r;
17 sj := sj−2 − ssj−1;
18 tj := tj−2 − stj−1;

19 r1 := sjr1, . . . , ri−1 := sjri−1;
20 ri := tj ;
21 i := i+ 1;

Corollary 2.2.2 implies that every affine variety in K is equal to the set of zeros of a single
polynomial in K[x]. Hence, in an algebraically closed field K, every system of univariate
polynomial equations p1(x) = p2(x) = · · · = pm(x) = 0 has no solution if and only if the
constant polynomial 1 is in the ideal 〈p1, . . . , pm〉K. In particular, we can guarantee the
existence of polynomials r1, . . . , rm such that

1 = r1p1 + · · ·+ rmpm.

These polynomials will be our certificate for the infeasibility of the system p1(x) = p2(x) =
· · · = pm(x) = 0. In fact, we have the following slightly stronger result:

Theorem 2.2.3 (The Univariate Nullstellensatz). Let p1, p2, . . . , pm and q be non-zero
polynomials in K[x] with K algebraically closed. Exactly one of the following holds:
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1. The system of equations p1(x) = p2(x) = · · · = pm(x) = 0, q(x) 6= 0 has a solution in
K.

2. There exist polynomials r1, r2, . . . , rm in K[x] and some integer ` ≥ 1 such that

q` = r1p1 + r2p2 + · · ·+ rmpm.

Proof. Let p be the GCD of the polynomials p1, p2, . . . , pm and let g̃ be the GCD of p and
q. Clearly, if (2) holds, then (1) has no solution. Hence, let us assume that (2) does not
hold. Thus, we have that deg(p) ≥ 1 and p does not divide any power of q.
By Corollary 2.2.2, if g̃ = 1 then every root x ∈ K of p satisfies q(x) 6= 0. Such x ∈ K
exists by the Fundamental Theorem of Algebra and it is a solution to (1). If deg(q̃) ≥ 1,
then let p̃ and s be polynomials such that p = q̃p̃ and q = q̃s.
We claim that deg(p̃) ≥ 1 and p̃ does not divide any power of q̃. Indeed, if deg(p̃) = 0
then p̃ is a constant and p divides q̃, whence p divides q which is a contradiction. Now,
if p̃ divides (q̃)` for some integer ` ≥ 1, then p = p̃q̃ divides q`+1 = q̃(q̃)`s`+1 which is a
contradiction.
Notice that deg(p) + deg(q) > deg(p̃) + deg(q̃). Moreover, if x ∈ K is a solution to the
system p̃(x) = 0, q̃(x) 6= 0, then p(x) = 0 and q(x) 6= 0. This follows from the fact that
q̃ is the GCD of p and q. Hence, we have reduced the problem to a problem involving
polynomials of smaller degree. We continue this process by setting p := p̃ and q := q̃ until
the GCD of p and q equals the constant 1. In this final instance, any root of p will be a
solution to (1).

Example 2.2.4. The results of Theorem 2.2.3 may not be true if K is not algebraically
closed or if the integer ` is fixed to some constant. For example, let p = (x2 + 1)`+1 and
q = (x2 + 1), then the system p(x) = 0, q(x) 6= 0 has no solution in R and there is not a
polynomial r(x) such that

(x2 + 1)`+1r(x) = (x2 + 1)`.

It is important to mention that the proof of Theorem 2.2.3 gives us an algorithm to
detect whether a system of univariate polynomial equations has a solution or not, in which
case, finds a certificate of infeasibility:
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Algorithm 2.2.3: Univariate Nullstellensatz Algorithm (UniNull)

Data: Polynomials p1, p2, . . . , pm, q ∈ K[x]
Result: A certificate of infeasibility r1, . . . , rm ∈ K[x], ` ≥ 1 or statement that the

system is feasible.
1 [p, r1, . . . , rm] := GCD(p1, p2, . . . , pm);
2 if p = 0 then
3 if q = 0 then
4 return: ` = 1, r1 = · · · = rm = 0;
5 else
6 return: The system is feasible. Some integer x ∈ [deg(g) + 1] is a solution. ;

7 else
8 p̃ := p; q̃ := q; ` = 1;
9 while STOP=0 do

10 if deg(p̃) = 0 then

11 r := q`

p
;

12 r1 := rr1, r2 := rr2, . . . , rm := rrm;
13 return: r1, . . . , rm, `; STOP=1;

14 else if deg(q̃) = 0 then
15 return: System is feasible, any root of p̃ gives a solution; STOP=1;
16 else
17 [q̃, q1, q2] := GCD(p̃, q̃);

18 p̃ := p̃
q̃
;

19 ` := `+ 1;

2.3 Hilbert’s Nullstellensatz

In this section we will prove the multivariate version of Theorem 2.2.3. The proof we are
presenting here is due to Enrique Arrondo ([4]) and it is one of the simplest proofs found
in the literature. For the proof we will need two easy technical lemmas. The first of them
is the Noether Normalization Lemma:

Lemma 2.3.1. Let p be a polynomial in K[x1, x2, . . . , xn] of degree d ≥ 1 with K alge-
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braically closed. Then, there exist some λ1, λ2, . . . , λn−1 in K such that

p(x1 + λ1xn, x2 + λ2xn, . . . , xn−1 + λn−1xn, xn) =

cxdn + . . . other terms where degree of xn is less than d,
(2.3.1)

where c is a nonzero constant in K.

Proof. Suppose that

p(x1, . . . , xn) =
∑
|α|≤d

cαx
α,

for some cα ∈ K and multi-indexes α ∈ Zn. Then,

p(x1 + λ1xn, . . . , xn−1 + λn−1xn, xn) =
∑
|α|=d

cα(x1 + λ1xn)α1 · · · (xn−1 + λn−1xn)αn−1xαnn + . . .

· · ·+ other terms where degree of xn is less than d,

=

∑
|α|=d

cαλ
α1
1 · · ·λ

αn−1

n−1

xdn + . . .

· · ·+ other terms where degree of xn is less than d.

Now, the polynomial q(λ1, . . . , λn−1) =
∑
|α|=d cαλ

α1
1 · · ·λ

αn−1

n−1 in K[λ1, . . . , λn−1] has at
least one non-zero coefficient and hence it is non-zero at some constants λ∗1, . . . , λ

∗
n−1 ∈ K.

This can be proven by induction on n and using the fact that K is not finite (since it is
algebraically closed).

The second result involves the resultant of two polynomials. Given two polynomials

p = pdx
d
n + pd−1x

d−1
n + · · ·+ p1xn + p0,

q = qex
e
n + qe−1x

e−1
n + · · ·+ q1xn + q0,

for some p0, . . . , pd, q0, . . . , qe ∈ K[x1, x2, . . . , xn−1] and d, e ≥ 0, the resultant of p and q is
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the polynomial in K[x1, x2, . . . , xn−1] defined as

Rp,q := det



p0 p1 . . . pd 0 0 . . . 0
0 p0 . . . pd−1 pd 0 . . . 0

. . .

0 . . . 0 p0 p1 . . . pd−1 pd
q0 q1 . . . qe−1 qe 0 . . . 0
0 q0 . . . qe−2 qe−1 qe . . . 0

. . .

0 . . . 0 q0 q1 . . . qe−1 qe


(d+e)×(d+e)

. (2.3.2)

The resultant has many applications in algebraic geometry. It is a useful tool if one
wants to determine whether two multivariate polynomials have a common factor: Rp,q = 0
if and only if there exist some polynomials s, r1, r2 such that p = sr1 and q = sr2 (see
Chapter 3 of [14] for this and some more properties of the resultant).

Lemma 2.3.2. Let p and q be two polynomials in K[x1, x2, . . . , xn]. Then, the resultant of
p and q belongs to the ideal 〈p, q〉K.

Proof. For every j ∈ [d+ e] multiply the j-th column of the matrix in (2.3.2) by xj−1
n and

add it to the first column. After these column operations, the i-th component of the first
column will be equal to xi−1f for 1 ≤ i ≤ e and equal to xi−1g for e + 1 ≤ i ≤ e + d.
Clearly, these column operations don’t affect the determinant of the matrix (2.3.2) and as
a result

Rp,q = det



p p1 . . . pd 0 0 . . . 0
xnp p0 . . . pd−1 pd 0 . . . 0

. . .

xe−1
n p . . . 0 p0 p1 . . . pd−1 pd
xenq q1 . . . qe−1 qe 0 . . . 0
xe+1
n q q0 . . . qe−2 qe−1 qe . . . 0

. . .

xe+d−1
n q . . . 0 q0 q1 . . . qe−1 qe


(d+e)×(d+e)

. (2.3.3)

If we expand the determinant (2.3.3) over the first column, we obtain that

Rp,q =
e∑
i=1

xi−1
n psi +

e+d∑
i=e+1

xi−1
n qsi,
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for some polynomials si ∈ K[x1, x2, . . . , xn−1]. Therefore, Rp,q ∈ 〈p, q〉K and the result
follows.

Now, we are ready to prove the Nullstellensatz:

Theorem 2.3.3 (Weak Hilbert’s Nullstellensatz). Let I be an ideal of K[x1, x2, . . . , xn]
with K algebraically closed. Then, exactly one of the following holds:

1. There exist some x ∈ K such that p(x) = 0 for all p ∈ I.

2. I = K[x1, x2, . . . , xn].

Proof. The proof is by induction on the number of variables. The case n = 1 is easy due
to Theorem 2.2.3. Indeed, let I be any ideal of K[x] and let q be a non-zero polynomial
in I with the smallest degree possible (if I = {0} the result is trivial). Then, given any
other polynomial p ∈ I, the division algorithm (Proposition 2.2.1) states that p = sq + r
for some r ∈ K[x] with deg(r) < deg(q). By the minimality of q, r has to be equal to zero
and I = 〈q〉K. Since I is a finitely generated ideal, we can use Theorem 2.2.3.
Now, suppose that we have proven the statement for any ideal of K[x1, . . . , xn−1] and let I
be any ideal in K[x1, . . . , xn]. Moreover, suppose that I 6= K[x1, . . . , xn] (i.e. it is a proper
ideal) and let us prove the existence of some x ∈ Kn such that p(x) = 0 for all p ∈ I.
Since I 6= K[x1, . . . , xn], there exists some polynomial q ∈ I of degree e ≥ 1. By Lemma
2.3.1, we can make a change of variables y1 := x1 + λ1xn, y2 := x2 + λ2xn, . . . , yn−1 =
xn−1 + λn−1xn, yn = λnxn such that

q(y1, . . . , yn) = yen + (other terms where degree of yn is less than e)

for some λ1, . . . , λn in K. Let Ĩ be the ideal of all polynomials of the form p(y1, . . . , yn)
with p ∈ I. Then, if we prove the existence of some y ∈ Kn such that p(y) = 0 for all
p ∈ Ĩ, then xi = yi− λi

λn
yn for i ∈ [n−1] and xn = 1

λn
yn will be our desired solution (notice

that λn 6= 0 by construction).
Let J̃ be the ideal of all polynomials p ∈ Ĩ ∩ K[y1, . . . , yn−1]. Clearly, the constant poly-
nomial 1 is not in J̃ since this would imply that 1 ∈ Ĩ and as a consequence 1 ∈ I,
contradicting our assumptions on I. In particular, J̃ is a proper ideal of K[y1, . . . , yn−1]
and by our induction hypothesis, there is some y∗1, . . . , y

∗
n−1 such that

p(y∗1, . . . , y
∗
n−1) = 0, ∀p ∈ J̃ .

We claim that there exists some y∗n ∈ K such that p(y∗1, . . . , y
∗
n−1, y

∗
n) = 0 for all p ∈ Ĩ.

Indeed, if no such y∗n ∈ K exists, then by the case n = 1, there is some p ∈ Ĩ of degree d
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such that p(y∗1, . . . , y
∗
n−1, yn) = 1 for all yn ∈ K. By Lemma 2.3.2, the resultant Rp,q of p

and q is an element of J̃ . Moreover, by the way we chose q,

Rp,q = det



p0 p1 . . . pd 0 0 . . . 0
0 p0 . . . pd−1 pd 0 . . . 0

. . .

0 . . . 0 p0 p1 . . . pd−1 pd
q0 q1 . . . qe−1 1 0 . . . 0
0 q0 . . . qe−2 qe−1 1 . . . 0

. . .

0 . . . 0 q0 q1 . . . qe−1 1


(d+e)×(d+e)

, (2.3.4)

for some p0, . . . , pd, q0, . . . , qe−1 ∈ K[y1, y2, . . . , yn−1] such that

p = pdy
d
n + pd−1y

d−1
n + · · ·+ p1yn + p0,

q = yen + qe−1y
e−1
n + · · ·+ q1yn + q0.

However, if we plug in the values y∗1, . . . , y
∗
n−1 in equation (2.3.4), we will obtain a lower

triangular matrix with diagonal entries equal to 1. In particular, Rp,q(y
∗
1, . . . , y

∗
n−1) = 1

and this contradicts our induction hypothesis. The proof follows.

Remark 2.3.4. Notice that the above proof needed the second definition of ideal (Definition
2.1.8). We used it strongly when stating that the set J̃ was an ideal of K[y1, . . . , yn]. Of
course, as we mentioned before, this technicality can be omitted since every ideal is a finitely
generated ideal by Hilbert’s Basis Theorem.

Now, let us prove a more general version of the Nullstellensatz:

Theorem 2.3.5 (Hilbert’s Nullstellensatz). Let p1, p2, . . . , pm and q be non-zero polynomi-
als in K[x1, . . . , xn] with K algebraically closed. Then, exactly one of the following holds:

1. The system of equations p1(x) = p2(x) = · · · = pm(x) = 0, q(x) 6= 0 has a solution in
Kn.

2. There exist polynomials r1, r2, . . . , rm in K[x1, . . . , xn] and some integer ` ≥ 1 such
that

q` = r1p1 + r2p2 + · · ·+ rmpm. (2.3.5)
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Proof. Suppose that (1) does not hold and consider the ideal

I := 〈p1, p2, . . . , pm, 1− tq〉K ⊆ K[x1, . . . , xn, t].

We claim that I = K[x1, . . . , xn, t]. Indeed, suppose that I is a proper ideal of K[x1, . . . , xn, t].
Then, by the Weak Nullstellensatz (Theorem 2.3.3), there exist some x∗ ∈ Kn and t∗ ∈ K
such that

p1(x∗) = p2(x∗) = · · · = pn(x∗) = 1− t∗q(x∗) = 0.

However, this implies that q(x∗) 6= 0 contradicting our initial hypothesis. Therefore, there
exist polynomials r1, r2, . . . , rm, s ∈ K[x1, . . . , xn, t] such that

r1(x, t)p1(x) + r2(x, t)p2(x) + · · ·+ rm(x, t)pm(x) + s(x, t)(1− tq(x)) = 1, ∀x ∈ Kn, t ∈ K.
(2.3.6)

But then, setting t = 1
q(x)

and multiplying both sides by a proper power of q(x) we
obtain the desired equality.

Remark 2.3.6. Hilbert proved the Nullstellensatz in the context of the Theory of Algebraic
Invariants. His original proof (in German) can be found in [31]. An English translation
can be found in [32]. See also [38] for a very nice historical note on Hilbert’s contributions
to algebraic invariants.

The set of polynomials r1, . . . , rm appearing in (2.3.5) is called a Nullstellensatz
Certificate for the insolubility of the system p1(x) = p2(x) = · · · = pm(x) = 0, g(x) 6= 0.
Notice that the constant ` ≥ 1 found in the proof of Theorem 2.3.5 is bounded above by
the maximum degree of the polynomials r1, . . . , rm in (2.3.6). We say that a system of
polynomial equalities has a Nullstellensatz certificate of degree d if there exists a Null-
stellesatz certificate r1, . . . , rm of polynomials of degree at most d.
Our main goal throughout this thesis is to study Nullstellensatz certificates of small degree
for certain systems of polynomial equations arising from combinatorial problems. At a
first glance, there is no reason to think that the degrees of the Nullstellensatz certificates
are uniformly bounded for systems of a given dimension. Surprisingly, the following deep
result by Kollar shows that this is the case:

Theorem 2.3.7 (Kollar [34]). Let p1, . . . , pm ∈ K[x1, . . . , xn] polynomials with no common
zeros with K algebraically closed. Let d := max{deg(pi) : i ∈ {1, . . . ,m}} be the maximum
degree of these polynomials. Then, there exists a Nullstellensatz certificate of degree

dB := max(3, d)min(n,m) (2.3.7)
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In particular, Theorem 2.3.7 implies that we can determine whether a system of poly-
nomial equations over the complex numbers has a solution or not, by using a large but
finite system of linear equations. Indeed, if we set polynomials ri =

∑
|α|≤dB ci,αx

α for

i ∈ [m], then the equation

r1p1 + r2p2 + · · ·+ rmpm = 1,

will be a system of linear equations over the variables ci,α.

Example 2.3.8. Consider the following system of polynomial equations over C3:

p1(x, y, z) := xy − 1 = 0,

p2(x, y, z) := xz − 1 = 0,

p3(x, y, z) := y − z − 1 = 0.

(2.3.8)

Then, we see that (2.3.8) has no solution as the equations p1(x, y, z) = p2(x, y, z) = 0
imply y = z, but the equation p3(x, y, z) = 0 implies y 6= z. Let us see if (2.3.8) has a
Nullstellensatz Certificate of degree at most one. In order to do this, we create the following
system of equations:

(a1 + axx+ ayy + azz)(xy − 1) + (b1 + bxx+ byy + bzz)(xz − 1) + . . .

· · ·+ (c1 + cxx+ cyy + czz)(y − z − 1) = 1.
(2.3.9)

Which can be written in tableau (zeros omitted) form as follows

a1 ax ay az b1 bx by bz c1 cx cy cz Cert.
1 −1 −1 −1 1 1
x −1 −1 −1
y −1 −1 1 −1 1

2

z −1 −1 −1 −1 −1
2

y2 1
z2 −1
xy 1 1 1
xz 1 −1 1
yz −1 1 −1

2

x2y 1
x2z 1
xy2 1 1

2

xz2 1 1 −1
2

xyz 1 1
2

.

22



This system is infeasible and the rightmost column of the tableau shows a certificate of
infeasibility of the system. Thus, we need to increase the degree of the polynomials defining
our system and consider polynomials of degree at most two,

(a1 + axx+ · · ·+ ayzyz+)(xy − 1) + (b1 + bxx+ · · ·+ byzyz+)(xz − 1) + . . .

(c1 + cxx+ · · ·+ cyzyz+)(y − z − 1) = 1.
(2.3.10)

This system has size 20× 30 and it is too big to show here. However, the following tableau
shows a few columns of this system,

a1 ay by cxy
1 −1 1
y −1 1
xy 1 1
xy2 1 1
xyz −1 −1

−1 1 −1 −1

Thus, (2.3.8) has a Nullstellensatz Certificate of degree two given by

(−1 + y)(xy − 1)− y(xz − 1)− xy(y − z − 1) = 1.

We need to point out that Kollar’s bounds are in fact sharp and thus, the system
of linear equations used to find a Nullstellensatz Certificates might end up being huge.
However, for some special cases, namely when the polynomials do not have a common
root at infinity, Lazard [8] proved that it is possible to obtain much better bounds for the
degrees of the certificates.

Definition 2.3.9. Let p be a polynomial in K[x1, x2, . . . , xn] of degree d. The homoge-
nization of p is the polynomial p̃ ∈ K[x0, x1, . . . , xn] defined by

p̃(x) = xd0p

(
x1

x0

,
x2

x0

, . . . ,
xn
x0

)
.

A point x ∈ Kn \ {0} is called a root of p at infinty if p̃(0, x) = 0.

Example 2.3.10. Consider the polynomial p(x1, x2) := x2
1 − x2 in C[x1, x2]. Then, the

homogenization of p is the polynomial

p̃(x0, x1, x2) := x2
1 − x2x0.

Moreover, for every y ∈ C\{0} the point (0, y) is a root of p at infinity since p̃(0, y, 0) = 0.
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Theorem 2.3.11 (Lazard, see [8]). Let p1, . . . , pm ∈ C[x1, . . . , xn] be polynomials having no
common roots and no common roots at infinity. Let d := max{deg(pi) : i ∈ {1, . . . ,m}}.
Then, there exists a Nullstellensatz certificate of degree

dL := n(d− 1). (2.3.11)

The proof of Lazard’s theorem uses advance techniques from Algebraic Geometry and
Cohomological Algebra that go beyond the scope of this thesis. Nevertheless, it is not hard
to prove Lazard’s theorem for systems of polynomial equations coming from combinatorial
problems (see Proposition 4.1.1).

Notice that Theorem 2.3.11 is more restrictive than Theorem 2.3.7 as two polynomials
may have common roots at infinity while having no roots in common. For instance, consider
the polynomials p(x1, x2) := x2

1− x2 and q(x1, x2) := x2
1x2− x2

2 + 1. Then, p and q have no
common roots as q = x2p+ 1. However, after homogenization, we have that p̃(0, x, y) = x2

and q̃(0, x, y) = x2y, thus every (0, y) with y 6= 0 is a root of p and q at infinity.

This great improvement on the upper bound dB is still very useful. As we will see in
Chapter 4 and Chapter 5, this theorem applies to systems of polynomials coming from the
combinatorial optimization problems studied in this thesis.
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Chapter 3

Fourier Analysis for Finite Abelian
Groups

In this chapter we develop an important tool to understand Nullstellensatz Certificates
arising from some special types of varieties (see Chapter 5). Since every monomial xα

of K[x1, . . . , xn] is completely characterized by the multi-index α ∈ Zn, it will be useful
to study the set of multi-indexes appearing in a given polynomial. An example of this
relationship was given by Bruce Reznick ([49]), who showed that the convex hull C(p) of
all the multi-indexes appearing in a given homogeneous polynomial p =

∑
j h

2
j satisfies the

inclusions C(hj) ⊆ 1
2
C(p) for every j. This result has a great practical use when one wants

to determine if a non-negative polynomial is a sum of squares (see [48]). As we will see in
the following chapters, the strong connection between multi-indexes and polynomials will
allow us to transform a system of polynomial equations into a system of functions over
abelian groups and vice-versa.
Throughout this chapter (Γ,+, 0) will denote a finite additive abelian group with identity
equal to 0. Simple examples of finite abelian groups are the group Zk of integers modulo
k and direct products of these. In fact, it is a well known result of group theory that up
to isomorphism, these are the only examples of finite abelian groups. That is, every finite
abelian group Γ is isomorphic to a direct product

Γ ' Zk1 × Zk2 × · · · × Zkn ,

for some integers k1, . . . , kn ≥ 1. Thus, the elements of an abelian group Γ will be denoted
in the same way as multi-indices, i.e. we will use Greek letters α, β, γ, . . . to denote them.
The multiplicative group of complex numbers is the group (C×, ·, 1) where C× := C \ {0}
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and · is the usual multiplication of complex numbers. For a complex number c = a + ib
with a, b ∈ R we let c̄ = a− ib be its complex conjugate.
Most of the results and definitions found in this chapter are taken from the books [56] and
[28]. Nevertheless, the idea of using Fourier Analysis for the study of Hilbert Nullstellensatz
was inspired by a recent work of Hamza Fawzi, Pablo Parrilo and James Saunderson ([25]).
They used Fourier transform techniques along with some chordal coverings of Cayley graphs
to obtain sparse sum of squares certificates for non-negative functions over the hypercube
Zn2 and the groups Zk with k ≥ 1.

3.1 Characters and the Dual Group

A powerful tool often used in mathematics is the notion of suitably defined dual spaces.
For example, given a vector space V over the field C, the dual space V ∗ is defined as
the vector space of all linear functions f : V → C over the field C. It is a well known
fact, that many problems involving structures in the space V usually have some “dual”
interpretation concerning structures over the space V ∗. This new interpretation often lead
to simpler solutions to the problem and a more deeper understanding of the structures
involved on it. For instance, using duality arguments one can show very easily that every
bounded polyhedron (the intersection of finitely many closed half-spaces) is equal to the
convex hull of a finite set of points, i.e. a polytope.
The main task of the this section is to construct a notion of duality for finite abelian
groups. As in vector spaces, we will construct such dual using the vector space L2(Γ) of
complex-valued functions f : Γ→ C as follows:

Definition 3.1.1. A character of Γ is a complex-valued function κ ∈ L2(Γ) such that:

1. κ(α) 6= 0 for every α ∈ Γ,

2. κ(α + β) = κ(α)κ(β) for all α, β ∈ Γ.

In other words, characters are group homomorphisms from (Γ,+, 0) to the multiplicative

group (C×, ·, 1). We let Γ̂ be the set of characters of Γ.

Clearly, Γ̂ is non-empty since the function κ0, defined as κ0(α) := 1 for all α ∈ Γ, is a
character of Γ.
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Example 3.1.2. Let (Γ,+, 0) := (Z3,+, 0) be the group of integers modulo 3. Then,

for every κ ∈ Ẑ3 and every element α ∈ Z3 we have κ(α) = κ(α + 0) = κ(α)κ(0) and
κ(0) = κ(3α) = [κ(α)]3. Hence, κ(0) = 1 and κ(α) is a 3-th root of the unity for every

α ∈ Z3. If κ(1) = er
2πi
3 , then κ(2) = [κ(1)]2 = e2r 2πi

3 . In particular,

Ẑ3 =
{
er·α

2πi
3 : r ∈ Z3

}
.

From the above example we see that Ẑ3 can be seen as a finite abelian group. This is
no coincidence as the following lemma shows

Lemma 3.1.3. Let Γ̂ be the set of characters of a finite abelian group Γ. Then, (Γ̂, ·, κ0)
is a finite abelian group, called the dual group of Γ, where · denotes the usual product of
complex-valued functions and κ0 is the constant character defined as above.

Proof. Let (Γ,+, 0) be a finite abelian group. Then, for every α ∈ Γ we have that

|Γ|α = α + · · ·+ α︸ ︷︷ ︸
|Γ| times

= 0.

Since for every α ∈ Γ and κ ∈ Γ̂ we have that κ(α) 6= 0, the equalities κ(0) = 1 and
[κ(α)]|Γ| = 1 must hold. This implies that the image of every character is a subset of the

|Γ|-roots of the unity and Γ̂ must be finite.

For every pair of characters κ, κ′ ∈ Γ̂ their multiplication κκ′ is clearly a character. For
every character κ ∈ Γ̂, the conjugate κ is also a character. Since |κ(α)| = 1 for every
α ∈ Γ, then κκ = κ0. Thus, every character has an inverse.
The fact that Γ̂ is an abelian group easily follows from the commutativity of (C×, ·, 1).

A very useful property of characters is that they separate points. That is, for every
pair of distinct α and β in Γ, one can find some character κ such that κ(α) 6= κ(β). This

property will be useful to prove that in fact Γ̂ forms an orthonormal basis for L2(Γ) (see
Theorem 3.2.1).

Lemma 3.1.4. Suppose that |Γ| ≥ 2. Then, for every α ∈ Γ \ {0} there exists some
character κ ∈ Γ satisfying κ(α) 6= 1.

Proof. Let α be any non-zero element of Γ. We will prove the existence of the desired
character by induction over the size of all subgroups of Γ containing α. The base case is
easy, as for the subgroup Γ0 = {kα : k ∈ {1, 2, . . . , |Γ|}} the function

κ(kα) := e
k 2πi
|Γ0| ∀kα ∈ Γ0,
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defines a character of Γ0 with κ(α) 6= 1. Notice that κ is well defined since given any pair
k, k′ ∈ {1, 2, . . . , |Γ|} satisfying kα = k′α, the congruence k ≡ k′ mod |Γ0| must hold.
Now, suppose that for some proper subgroup Γ0 ⊂ Γ containing α, we have proved the
existence of some κ ∈ Γ̂0 with κ(α) 6= 1. Let β be any element of Γ \ Γ0 and consider the
subgroup

Γ1 := {η + kβ : η ∈ Γ0, k ∈ {1, 2, . . . , |Γ|}}.

Notice that Γ1 is the smallest subgroup containing both β and the elements of Γ0.
Let ` ≥ 1 be the smallest integer such that `β ∈ Γ0. Clearly, ` is well defined as |Γ|β =
0 ∈ Γ0. Let z ∈ C be any `-root of κ(`β) and define

κ̃(η + kβ) := κ(η)zk.

We claim that κ̃ is a character of Γ1 with κ̃(α) 6= 1. First, let us show that κ̂ is well defined.
Indeed, suppose that η+kβ = η′+k′β for some η, η′ ∈ Γ0 and k, k′ ∈ {1, 2, . . . , |Γ|}. Thus,
(k − k′)β = (η − η′) ∈ Γ1 and by the minimality of `, we can write k = k′ + r` and
η = η′ + r`β for some integer r ∈ Z. In particular,

κ̃(η′ + k′β) = κ(η′)zk
′
,

= κ(η′)κ(r`β)zk,

= κ(η)zk = κ̃(η + kβ),

(3.1.1)

and κ̃ is well defined. It is straightforward to check that κ̃ satisfies conditions 1. and 2. of
Definition 3.1.1. Moreover, κ̃(α) = κ(α) 6= 1 and hence, it defines a character of Γ1. The
proof follows.

Corollary 3.1.5. Let α and β be two distinct elements of Γ. Then, there exists some
κ ∈ Γ̃ such that κ(α) 6= κ(β).

Proof. By Lemma 3.1.4, there is some κ ∈ Γ̂ such that κ(α − β) 6= 1. Then, κ(α) 6=
κ(β).

We have to point out that the proof of Lemma 3.1.4 gives us a general technique to lift
characters of proper subgroups into the group itself. More concretely, given any subgroup
Γ0 of Γ and any character κ ∈ Γ̂0, we can generate some κ̃ ∈ Γ̂ such that κ̃(α) = κ(α)
for every α ∈ Γ0. Clearly, the way κ̃ was constructed in the proof of Lemma 3.1.4 is
not unique, since in the process of its construction, we selected arbitrary roots of some
previously determined complex number (e.g. the number z ∈ C in the proof). However,
we can enumerate the number of such lifts as follows.
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Corollary 3.1.6. Let Γ0 be a subgroup of Γ and let κ ∈ Γ̂0. The number of lifts κ̃ ∈ Γ̂
satisfying κ̃(α) = κ(α) for every α ∈ Γ0 is equal to

|Γ|
|Γ0|

.

Proof. The proof is by backwards induction on the size of Γ0, with the case Γ0 = Γ being
trivial. Now, suppose that Γ0 is any proper subgroup of Γ and let β ∈ Γ \ Γ0. As in the
proof of Lemma 3.1.4 let

Γ1 := {η + kβ : η ∈ Γ0, k ∈ {1, 2, . . . , |Γ|}},

and suppose that `β ∈ Γ0 for some minimal ` ≥ 0. Then, it is easy to see from the proof
of Lemma 3.1.4 that the number of lifts from any character of Γ0 to Γ1 is equal to

` =
|Γ1|
|Γ0|

.

By our inductive hypothesis, the number of lifts from any character of Γ1 to Γ is equal to
|Γ|
|Γ1| . Hence, the number of lifts from any character of Γ0 to Γ is equal to |Γ|

|Γ0| and the proof
follows.

3.2 The Fourier Transform

In order have a better understanding of the dual group, it is useful to give L2(Γ) a more
algebraic structure. Notice that L2(Γ) is a finite dimensional vector space over C isomorphic
to C|Γ|. The canonical basis of L2(Γ) is given by the set of all Dirac Delta functions

δβ(α) :=

{
1 if α = β,

0 otherwise,

defined for each β ∈ Γ. If we let µ be the uniform measure over the group Γ, then for every
function f ∈ L2(Γ) we can define its integral as∫

Γ

f(α) dµ(α) =
1

|Γ|
∑
α∈Γ

f(α).

This integral induces an inner product on L2(Γ) given by

〈f, g〉 :=

∫
Γ

f(α)g(α) dµ(α), f, g ∈ L2(Γ).

It turns out that the set of characters behaves well under this inner product.

29



Theorem 3.2.1. The dual group Γ̂ forms an orthonormal basis for L2(Γ). In particular,

|Γ| = |Γ̂|.

Proof. Let κ ∈ Γ̂ be any character of Γ. From the proof of Lemma 3.1.3, we know that
|κ(α)| = 1 for every α ∈ Γ. Therefore,

〈κ, κ〉 =

∫
Γ

κ(α)κ(α) dµ(α) =

∫
Γ

|κ(α)| dµ(α) = 1.

Now, let κ and κ′ be different characters of Γ and let β ∈ Γ be such that κ′(β) 6= κ(β).
Thus,

〈κ′, κ〉 =

∫
Γ

κ′(α)κ(α) dµ(α) =

∫
Γ

κ′(βα)κ(βα) dµ(α),

= κ′(β)κ(β)〈κ′, κ〉.

Since κ′(β) and κ(β) are different non-zero complex numbers, the above equality can only
hold when 〈κ′, κ〉 = 0. This proves that the characters are orthonormal under the inner
product 〈·, ·〉. It only remains to show that the dual group spans the whole space L2(Γ). To
that end, let us prove that any Dirac Delta function can be written as a linear combination
of characters. Moreover, we claim that

δβ(α) =
1

|Γ̂|

∑
κ∈Γ̂

κ(β)κ(α), ∀β ∈ Γ. (3.2.1)

In order to see this, take any α ∈ Γ different from β. By Corollary 3.1.5, there exists
some κ′ ∈ Γ̂ such that κ′(α− β) 6= 1. Hence,

1

|Γ̂|

∑
κ∈Γ̂

κ(β)κ(α) =
1

|Γ̂|

∑
κ∈Γ̂

κ(α− β)

=
1

|Γ̂|

∑
κ∈Γ̂

κ′(α− β)κ(α− β),

= κ′(α− β)

 1

|Γ̂|

∑
κ∈Γ̂

κ(β)κ(α)

 .

Therefore, the right hand side of (3.2.1) is zero whenever α 6= β. The claim follows since

κ(β)κ(β) = 1 for every κ ∈ Γ̂.

30



The above theorem tells us that every function in L2(Γ) can be written as a linear
combination of characters of Γ. This re-parametrization of functions has a very special
name:

Definition 3.2.2. Let f ∈ L2(Γ) be any complex-valued function. The Fourier trans-

form of f is the function f̂ ∈ L2(Γ̂) defined by the equality

f(α) =
∑
κ∈Γ̂

f̂(κ)κ(α). (3.2.2)

The value f̂(κ) is called the Fourier coefficient of f in κ.

Example 3.2.3. Let us consider the function f ∈ L2(Z3) given by f(α) = 2α for every

α ∈ Z3. By the orthonormality of the characters, we know that 〈f, κ〉 = f̂(κ). In Example

3.1.2 we showed that the characters of Z3 are κβ(α) := eβα
2πi
3 for every α, β ∈ Z3. Hence,

f̂(κ0) =
1

3

∑
α∈Z3

2αe−0·α 2πi
3 =

7

3
,

f̂(κ1) =
1

3

∑
α∈Z3

2αe−α
2πi
3 =

1

3

∑
α∈Z3

2α
(−1 +

√
3i)2α

22α
= −2 +

√
3i

3
,

f̂(κ2) =
1

3

∑
α∈Z3

2αe−2α 2πi
3 =

1

3

∑
α∈Z3

2α
(−1 +

√
3i)α

2α
= −2−

√
3i

3
.

In the above example we used the orthonormality of the characters to obtain the fol-
lowing equality, which is called the Fourier Transform formula:

f̂(κ) =

∫
Γ

f(α)κ(α) dµ(α) =
1

|Γ|
∑
α∈Γ

f(α)κ(α). (3.2.3)

Similarly, the equation (3.2.2) is called the Fourier Inversion formula as we can recover

f from f̂ using such formula. The Fourier Transform defines a linear isomorphism from
L2(Γ) to L2(Γ̂) given by f 7→ f̂ . This isomorphism let us transform problems involving

structures of L2(Γ) into problems involving structures in L2(Γ̂) (see Chapter 5). Next, we
define the convolution of functions:

31



Definition 3.2.4. For any two functions f, g ∈ L2(Γ) their convolution is the function
f ∗ g ∈ L2(Γ) defined by

f ∗ g(α) :=

∫
Γ

f(β)g(α− β) dµ(α).

As the following lemma shows, the Fourier Transform behaves well under convolution:

Lemma 3.2.5 (Convolution Theorem). Let f, g ∈ L2(Γ), then

f̂ ∗ g(κ) = f̂(κ)ĝ(κ), ∀κ ∈ Γ̂.

Proof. The proof follows by the equalities

f ∗ g(α) =

∫
Γ

f(β)g(α− β) dµ(α),

=
∑
κ∈Γ̂

ĝ(κ)

∫
Γ

f(β)κ(α− β) dµ(α),

=
∑
κ∈Γ̂

ĝ(κ)κ(α)

∫
Γ

f(β)κ(β) dµ(α),

=
∑
κ∈Γ̂

ĝ(κ)f̂(κ)κ(α).

Another beautiful consequence of Theorem 3.2.1 is the connection between Abelian
Groups, Roots of the Unity and Polynomials:

Theorem 3.2.6. Let Γ ∼= Zk1 × Zk2 × · · · × Zkn be an abelian group. Then,

1. The dual group Γ̂ is equal to the set of all functions κα ∈ L2(Γ) with α ∈ Γ, defined
by

κα(β) := e
β1α1

2πi
k1 e

β2α2
2πi
k2 · · · eβnαn

2πi
kn , ∀β ∈ Γ. (3.2.4)

2. The double dual group
̂̂
Γ, that is, the dual group of the dual group of Γ is equal to the

set of all monomials xβ = xβ1

1 x
β2

2 · · · xβnn ∈ L2(Γ̂) with β ∈ Γ, defined by

xβ(κα) := (e
α1

2πi
k1 )β1(e

α2
2πi
k2 )β2 · · · (eαn

2πi
kn )βn , ∀κα ∈ Γ̂. (3.2.5)
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Proof. 1. It is clear that the functions κα are characters of Γ. We claim that κα 6= κα′
whenever α 6= α′. Indeed, suppose that αj 6= α′j for some j ∈ [n]. Then, as there

are exactly kj different kj-roots of the unity, e
αj

2πi
kj 6= e

α′j
2πi
kj . If we let β = ej be the

multi-index which equals one in the j-th coordinate and zero elsewhere, then

κα(β) 6= κα′(β).

The proof follows by Theorem 3.2.1 as the number of elements of Γ̂ and Γ are the
same.

2. The proof is similar to part 1. of this theorem as the product of two monomials xα

and xβ as elements of L2(Γ̂) equals the monomial xα+β for every α, β ∈ Γ.

We finish this section with a nice application of the Nullstellensatz to functions over
groups:

Theorem 3.2.7 (Group Nullstellensatz). Let Γ be a finite abelian group and let f1, f2, . . . , fm
be functions in L2(Γ). Then, exactly one of the following holds:

1. There exists some α ∈ Γ such that

f1(α) = f2(α) = · · · = fm(α) = 0.

2. There exist some r1, r2, . . . , rm ∈ L2(Γ) such that

r1f1 + r2f2 + · · ·+ rmfm = 1.

Proof. Without loss of generality, we may assume that

Γ = Zk1 × Zk2 × · · · × Zkn ,

for some integers k1, k2, . . . , km. Now, for each j ∈ [m] let us define the polynomials
pj ∈ C[x1, x2, . . . , xn] given by

pj(x) :=
∑
α∈Γ

f̂j(κα)xα.
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We claim that there is a solution to f1(α) = f2(α) = · · · = fm(α) = 0 if and only if the
system of polynomial equations

p1(x) = p2(x) = · · · = pm(x) = 0,

xkii − 1 = 0, i ∈ [n],
(3.2.6)

has a solution. Indeed, for every β ∈ Γ and j ∈ [m] we have that

fj(β) =
∑
α∈Γ

f̂j(κα)κα(β),

=
∑
α∈Γ

f̂j(κα)(e
β1

2πi
k1 )α1(e

β2
2πi
k2 )α2 · · · (eβn

2πi
kn )αn ,

= pj(e
β1

2πi
k1 , e

β2
2πi
k2 , · · · , eβn

2πi
kn ).

(3.2.7)

The claim follows as every solution x̄ ∈ Cn to (3.2.6) the scalars x̄i ∈ C are ki-roots of
the unity for every i ∈ [n]. Now, if system (3.2.6) has no solution, then by Hilbert’s
Nullstellensatz, there exists polynomials s1, . . . , sm and t1, . . . , tn in C[x1, . . . , xn] such that∑

j∈[m]

sj(x)pj(x) +
∑
i∈[n]

ti(x)(xkii − 1) = 1.

The proof follows since the functions r1, r2, . . . , rm ∈ L2(Γ) defined by the equation

rj(β) := sj(e
β1

2πi
k1 , e

β2
2πi
k2 , · · · , eβn

2πi
kn ), ∀β ∈ Γ,

satisfy the required property.

3.3 Cayley Graphs

Another aspect of Fourier Analysis is that it lets us calculate the spectra of some well
known graphs called Cayley Graphs. Recall that a set S ⊆ Γ is symmetric if α ∈ S implies
that −α ∈ S.

Definition 3.3.1. Let S be a symmetric subset of Γ. The Cayley Graph Cay(Γ,S) is the
graph with vertex set Γ and edge set formed by all pairs {α, β} ⊆ Γ satisfying α− β ∈ S.

Remark 3.3.2. The classical definition of Cayley Graphs does not allow symmetric sets
to contain the identity of the group ([28]). We have chosen to remove this extra constraint
in order to simplify some of the discussion in Chapter 5.
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Figure 3.1: The graph Cay(Z6,S)

Example 3.3.3. Let Γ = Z6 and let S = {−2,−1, 0, 1, 2}. Then, the Cayley Graph
Cay(Z6,S) is the graph shown in Figure 3.1 (we have omitted loops).

The adjacency matrix of the Cayley Graph Cay(Γ,S) is the matrix AΓ,S with entries

AΓ,S(α, β) =

{
1 if β − α ∈ S,

0 otherwise.
(3.3.1)

As the following lemma shows, we can calculate the eigenvalues of the adjacency matrix of
Cayley Graphs very easily:

Lemma 3.3.4. Consider the function

δS(α) :=

{
1 if α ∈ S,

0 otherwise.
(3.3.2)

Then, for every function f ∈ L2(Γ) we have

AΓ,Sf = |Γ|δS ∗ f. (3.3.3)

Proof. Let f ∈ L2(Γ) be any given function and let g := AΓ,Sf . Then,

g(α) =
∑
β∈Γ

AΓ,S(α, β)f(β) =
∑
β∈Γ

δS(α− β)f(β),

= |Γ|δS ∗ f(α).
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Theorem 3.3.5. The characters of Γ form a basis for the eigenspace of AΓ,S . Moreover,

for every κ ∈ Γ̂ we have that
AΓ,Sκ = |Γ|δ̂S(κ)κ.

Proof. By the above lemma, for any character κ ∈ Γ̂ and any α ∈ Γ we have that

AΓ,Sκ(α) = |Γ|δS ∗ κ(α),

=
∑
β∈Γ

δS(β)κ(α− β),

= κ(α)
∑
β∈Γ

δS(β)κ(β) = |Γ|δ̂S(κ)κ(α).

(3.3.4)

The proof follows by the fact that the dual group Γ̂ form a basis for L2(Γ).

Example 3.3.6. Let Γ = Z6 and let S = {−2,−1, 0, 1, 2} be as in Example 3.3.3. Then,
the adjacency matrix of the graph Cay(Z6,S) is

AZ6,S =


1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0
0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1

 .

In order to calculate the eigenvalues of AZ6,S we need first to calculate the Fourier Trans-

form of δS . By Theorem 3.2.6 we know that the characters of Z6 are κα(β) = eαβ
2πi
6 with

α ∈ Z6. Hence,

〈δS , κ0〉 =
5

6
,

〈δS , κ1〉 = e2 2πi
6 + e

2πi
6 + 1 + e−

2πi
6 + e−2 2πi

6 =
1

6
,

〈δS , κ2〉 = e4 2πi
6 + e2 2πi

6 + 1 + e−2 2πi
6 + e−4 2πi

6 = −1

6
,

〈δS , κ3〉 = e6 2πi
6 + e3 2πi

6 + 1 + e−3 2πi
6 + e−6 2πi

6 =
1

6
,

〈δS , κ4〉 = 〈δS , κ2〉 = −1

6
,

〈δS , κ5〉 = 〈δS , κ1〉 =
1

6
.

(3.3.5)
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In particular

δS =
5

6
κ0 +

1

6
κ1 −

1

6
κ2 +

1

6
κ3 −

1

6
κ4 +

1

6
κ5,

and the eigenvalues of AZ6,S are −1, 1 and 5.

Remark 3.3.7. The matrix AZ6,S of the above example is a circulant matrix, i.e. for
every i ≥ 2, the i-th row of the matrix is obtained after i − 1 shifts to the right of the
first row. Moreover, it is not hard to show that the adjacency matrix of the Cayley graph
Cay(Γ,S) is circulant when Γ is a cyclic group.

37



Chapter 4

Applied Hilbert’s Nullstellensatz for
Combinatorial Problems

In this chapter we will apply the algebraic geometry tools we developed in Chapter 2 and
Chapter 3 to create algorithms for determining the existence of combinatorial objects. Ex-
amples of such problems in graphs are determining the existence of cycles of a given length,
determining if a graph is k-colorable or determining the existence of stable sets of a given
size. The main idea will be to associate a given combinatorial problem P with an ideal of
polynomials IP over some field K. This will be done in a way that the problem P will have
a solution if and only if the variety VK(IP ) is non-empty. Therefore, the Nullstellensatz
will detect if the problem P has no feasible solution. In fact, as we mention at the end
of Chapter 2, there exists an algorithm that uses the Nullstellensatz to detect if a given
variety is empty or not. Such algorithm is called Nullstellensatz Linear Algebra (NulLA)
algorithm and it will be the central topic of this chapter.
The use of the Nullstellensatz for proving the existence of combinatorial objects is some-
times referred as the Polynomial Method and it was popularized by Noga Alon’s seminal
paper [1]. Nevertheless, Jesus De Loera, Jon Lee, Peter Malkin and Susan Margulies ([20])
were the first to give a concrete computational study of the method.

4.1 Nullstellensatz Linear Algebra (NulLA) Algorithm

Let p1, p2, . . . , pm be given polynomials in K[x1, x2, . . . , xn] of degree at most d with K
algebraically closed. As we saw in Chapter 2, if the system p1(x) = · · · = pm(x) = 0
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has no solution, then by Kollar’s Theorem (see Theorem 2.3.7), there exist polynomials
r1, . . . , rm ∈ K[x1, x2, . . . , xn] of degree at most dB = max(3, d)n such that

r1(x)p1(x) + r2(x)p2(x) + · · ·+ rm(x)pm(x) = 1. (4.1.1)

Clearly, if we set

ri(x) =
∑
|α|≤dB

ai,αx
α, i ∈ [m],

then equation (4.1.1) will be equivalent to a system of linear equations on the variables
ai,α ∈ K (a concrete instance of this system can be found in Example 4.1.6 below). However,
the size of this system is considerably large. The number of rows is equal to the number of
monomials of degree at most dB + d in n variables, which equals

(
n+dB+d

n

)
. Hence, the size

of the system is doubly exponential in d, n and m. Although Kollar’s bounds are sharp
([34]), for some specific families of systems of polynomial equations we can obtain much
better bounds:

Proposition 4.1.1. Consider the system

p1(x) = p2(x) = · · · = pm(x) = 0,

x
kj
j − 1 = 0, ∀j ∈ J ⊆ [n],

xj(xj − 1) = 0, ∀j ∈ [n] \ I
(4.1.2)

for some polynomials pk ∈ C[x1, · · ·xn] of degree at most d and integers kj ≥ 1 with j ∈ J .
Let d∗ := max{2, d, kj : j ∈ I} be the maximum degree of the polynomials in the system. If
(4.1.2) has no solution, then it has a Nullstellensatz certificate of degree

d̃L = 2n(d∗ − 1). (4.1.3)

Proof. Without loss of generality we may assume that J = [n], otherwise we can make the
change of variables xj =: 1

2
(yj + 1) for every j ∈ [n] \ J and end up with a new system of

polynomials containing the equation y2
j −1 = 0. Since this change of variables is linear and

invertible, the new system has a solution if and only if the original system has a solution.
Moreover, in the case that they do not have a solution, both will have Nullstellensatz
certificates of same degree.
Now, let k1, k2, . . . , kn ≥ 1 as in the statement and define the finite abelian group Γ :=
Zk1 × Zk2 × · · ·Zkn . Then, for every i ∈ [m] we can write each polynomial pi as

pi(x) = p̃i(x) +
∑
j∈[n]

sij(x)(x
kj
j − 1),
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where p̃i(x) is a polynomial supported on the monomials xα with α ∈ Γ and the polynomials
sij(x) have degree at most d. In particular, system (4.1.2) is equivalent to the system

p̃1(x) = p̃2(x) = · · · = p̃m(x) = 0,

x
kj
j − 1 = 0, ∀j ∈ [n].

(4.1.4)

Clearly, by Theorem 3.2.6 we can see each polynomial p̃i as a function in L2(Γ̂) so that the
system (4.1.4) is equivalent to the system

p̃1(x) = p̃2(x) = · · · = p̃m(x) = 0, x ∈ Γ̂. (4.1.5)

By the Group Nullstellensatz (Theorem 3.2.7), if (4.1.5) has no solution, then there exist

functions r̃1, r̃2 . . . , r̃m ∈ L2(Γ̂) such that

m∑
i=1

r̃i(x)p̃i(x) = 1, ∀x ∈ Γ̂.

Again, by Theorem 3.2.6, each r̃i can be written as a sum of the monomials xα with α ∈ Γ,
whence they are polynomials of degree at most

∑
kj − n. Let us define the polynomial

q(x) :=
m∑
i=1

r̃i(x)p̃i(x).

Then, q has degree at most 2(
∑

j∈[n](kj − 1)) and it satisfies q(x̄) = 1 for every x̄ ∈ Cn

such that x̄
kj
j = 1 for each j ∈ [n]. Again, as we did with the polynomials pi, we can write

q as

q(x) = q̃(x) +
∑
j∈[n]

tj(x)(x
kj
j − 1),

where q̃ is a polynomial supported on the monomials xα with α ∈ Γ and the polynomials
tj(x) have degree at most 2(

∑
j∈[n](kj − 1)). We claim that q̃ ≡ 1 and as a consequence

m∑
i=1

r̃i(x)pi(x)−
n∑
j=1

(
m∑
i=1

r̃i(x)sij(x) + tj(x)

)
(xkii − 1) = 1,

gives us a Nullstellensatz certificate of degree

max

{∑
j

(kj − 1) + d, 2
∑
j

(kj − 1)

}
≤ 2n(d∗ − 1).

We give the proof of our claim in the following lemma
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Lemma 4.1.2. Suppose that p ∈ C[x1, x2, . . . , xn] is a polynomial supported on the mono-

mials xα with α ∈ Γ. If p(x̄) = 0 for every solution x̄ ∈ Cn to x̄
kj
j = 1 with j ∈ [n], then p

is the zero polynomial.

Proof. We will prove the statement by induction on the number of variables. If Γ = Zk
for some integer k, then the claim follows by the fundamental theorem of algebra, as p will
be a polynomial of degree k − 1 having k roots. Now, suppose that the statement holds
for polynomials of at most n − 1 variables. Let p ∈ C[x1, x2, . . . , xn] as in the statement.
Notice that we can write the polynomial p as

p(x) =
kn−1∑
r=0

xrnqr(x1, . . . , xn−1),

for some polynomials qr in C[x1, . . . , xn−1] with r ∈ Zkn . We claim that qr(x̄) = 0 for every
solution x̄ ∈ Cn−1 to x̄j

kj = 1 with j ∈ [n − 1]. Indeed, for any such x̄, the univariate
polynomial

p̄(xn) =
kn−1∑
r=0

xrnqr(x̄)

vanishes on every kn-root of the unity. In particular, p̄ ≡ 0 and each qr(x̄) = 0. By our
induction hypothesis, each qr is zero and p is as well.

The proof that q̃ ≡ 1 follows by using the above lemma with p = q̃ − 1.

Remark 4.1.3. We can use the use Proposition 4.1.4 to get bounds for more general
problems. Indeed, suppose that

VC(p1, p2, . . . , pm) ⊆ A1 × A2 × · · · × An

where each Ai ⊂ C is finite and the polynomials pi have degree at most d. Now, let
fi : Ẑ|Ai| → Ai be any bijection from the dual group Ẑ|Ai| to Ai for i ∈ [n]. We can
write each fi as a univariate polynomial supported on the monomials yαi with α ∈ Z|Ai|.
Moreover, the variety VC(p1, p2, . . . , pm) will be non-empty if and only if the system given
by

p1(f1(y1), . . . , fn(yn)) = . . . = pm(f1(y1), . . . , fn(yn)) = 0,

y
|Aj |
j − 1 = 0, ∀j ∈ [n],

(4.1.6)

has a solution. By Proposition 4.1.4, if (4.1.6) has no solution, then we can guarantee the
existence of certificates (in the variables yi) of degree at most

2n(dmax{‖Ai‖ : i ∈ [n]} − 1).
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Notice that using simple algebraic arguments, we were able to reduce considerably the
sharp bounds of Kollar. As the following proposition shows, we can also use Lazard’s
Theorem (Theorem 2.3.11) to improve the bound d̃L by a constant factor.

Proposition 4.1.4. The statement of Proposition 4.1.1 still holds if we replace the bound
d̃L by

dL = n(d∗ − 1). (4.1.7)

Proof. By Lazard’s Theorem (Theorem 2.3.11) we only need to check that the polynomials
in (4.1.2) have no common root at infinity. In order to see this, notice that the homoge-

nization of the polynomials x
kj
j − 1 and xj(xj − 1) is x

kj
j − x

kj
0 for all j ∈ I and x2

j − xjx0

for all j ∈ [n] \ I. Hence, after setting x0 = 0 we see that xj = 0 is will be the only root of
the corresponding polynomial for all j ∈ [n]. Therefore, the polynomials in (4.1.2) do not
share a root at infinity.

We must stress the fact that Lazard’s Theorem relies on advance techniques of coho-
mological algebra and algebraic geometry. However, we were able to prove a very similar
bound to that of Lazard using much simpler ideas. This shows that systems like (4.1.2)
are not pathological and we might expect even better bounds for some systems of this
type. Jesus de Loera, Jon Lee, Peter Malkin and Susan Margulies [20] made these obser-
vations and proposed Algorithm 4.1.1 (NulLA) below to detect the feasibility of systems of
polynomial equations.
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Algorithm 4.1.1: Nullstellensatz Linear Algebra Algorithm (NulLA)

Data: Polynomials p1, p2, . . . , pm ∈ K[x1, . . . , xn]
Result: A certificate of infeasibility r1, . . . , rm ∈ K[x1, . . . , xn] or a certificate y of

feasibility for the system.
1 d← 0;
2 while d ≤ dB do
3 Set ri(x) =

∑
|α|≤d ai,αx

α, for each i ∈ [m];

4 Compute the system of linear equations Ma = e on the variables ai,α obtained
from: r1(x)p1(x) + r2(x)p2(x) + · · ·+ rm(x)pm(x) = 1;

5 if Ma = e has no solution then
6 if d = dB then
7 Find a solution y to the system y>M = 0, y>e = 1.
8 print: p1, p2, . . . , pm have a common root, bound dB reached;
9 return: y.

10 else
11 d← d+ 1.

12 else
13 print: p1, p2, . . . , pm have no common root;
14 return: r1, r2, . . . , rm.

Remark 4.1.5. Notice that NulLA also returns certificates of feasibility. If d = dB and
Ma = e has no solution, then the solution y>M = 0, y>e = 1 provides such certificate (see
Section 4.2 for more details on this).
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Example 4.1.6. Consider the system of polynomial equations

x1 + x2 + x3 = 3,

x1 + x2 = 2,

x1 + x3 = 1,

xi(xi − 1) = 0, i ∈ {1, 2, 3}.

(4.1.8)

Clearly, the system (4.1.8) has no solution. On the one hand, Kollar’s Theorem implies
that this system has a Nullstellensatz certificate of degree dB = max(3, 2)min(3,6) = 27. On
the other hand, polynomials in (4.1.8) have no common root at infinity. Hence, by Lazard’s
Theorem, there exists a Nullstellensatz certificate of degree dL = n(d− 1) = 3. Let us use
NulLA to find a minimum degree Nullstellensatz certificate.
First, we must check if the system has a zero degree Nullstellensatz certificate. Therefore,
we must solve the system of linear equations given by:

a1(x1 + x2 + x3 − 3) + a2(x1 + x2 − 2) + a3(x1 + x3 − 1)+ . . .

· · ·+ a4(x1(x1 − 1)) + a5(x2(x2 − 1)) + a6(x3(x3 − 1)) = 1,

a4x
2
1 + a5x

2
2 + a6x

2
3 + (a1 + a2 + a3 − a4)x1+ . . .

· · ·+ (a1 + a2 − a5)x2 + (a1 + a3 − a6)x3 + (−3a1 − 2a2 − a3) = 1.

(4.1.9)

Notice that the monomials of degree two have single variables multiplying them, thus the
variables a4, a5 and a6 must be equal to zero. After deleting these variables, we obtain the
following system (in tableau form):

a1 a2 a3

1 −3 −2 −1 1
x1 1 1 1 0
x2 1 1 0 0
x3 1 0 1 0

. (4.1.10)

Clearly, this system is infeasible as the unique solution of the subsystem corresponding to
the rows x1, x2, x3 is zero. Since we do not have a certificate of degree zero, we need to look
for certificates of degree at most one:

(a11x1 + a12x2 + a13x3 + a14)(x1 + x2 + x3 − 3)+ . . .

· · ·+ (a61x1 + a62x2 + a63x3 + a64)(x3(x3 − 1)) = 1.
(4.1.11)

As in the previous case, the terms of degree three of the above equation appear multiplied
by single variables:

a41x
3
1 + a42x

2
1x2 + a43x

2
1x3 + a52x

3
2 + a51x

2
2x1 + a53x

2
2x3 + a63x

3
3 + a62x

2
3x2 + a61x

2
3x1.

44



Therefore, we can eliminate the variables a41, a42, a43, a51, a52, a53, a61, a62 and a63, and ob-
tain the following system (zeros omitted):

a11 a12 a13 a14 a21 a22 a23 a24 a31 a32 a33 a34 a44 a55 a66

1 −3 −2 −1 1
x1 −3 1 −2 1 −1 1 −1
x2 −3 1 −2 1 −1 −1
x3 −3 1 −2 −1 1 −1
x2

1 1 1 1 1
x2

2 1 1 1
x2

3 1 1 1
x1x2 1 1 1 1 1
x1x3 1 1 1 1 1
x2x3 1 1 1 1

− 1
12
− 7

12
−1

3
−1

6
1
12
−1

6
1
4

3
4

1
2

.

(4.1.12)
Using a linear system solver, we can see that (4.1.12) has a solution. Hence, the polynomial
system (4.1.8) has a Nullstellensatz Certificate of degree one given by(

− 1

12
x1 −

7

12
x2 −

1

3

)
(x1 + x2 + x3 − 3)+

(
−1

6
x1 +

1

12
x2 −

1

6
x3

)
(x1 + x2 − 2) + . . .

· · ·+
(

1

4
x1 +

3

4
x2

)
(x1 + x3 − 1) +

(
1

2

)
(x2

2 − x2) = 1.

(4.1.13)

4.2 Nullstellensatz Dual Certificates and the Maxi-

mum Stable Set Problem

As we mentioned in the introduction, for some combinatorial problems, NulLA can be
inefficient as it might return certificates of degree equal or very close to Lazard’s bounds.
The purpose of this section is to provide an example of such bad instances, namely the
Maximum Stable Set problem.

Definition 4.2.1. Let G = (V,E) be a graph and let S ⊆ V be any subset of vertices
of the graph. We say that S is stable if for every pair of vertices i, j ∈ S we have that
{i, j} /∈ E. The size of a stable set S is the cardinality of S.
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Example 4.2.2. Consider the graph G as shown in Figure 4.1 called the Generalized
Petersen Graph GP (7, 2). The diamond shaped vertices of G form a stable set of size 5.

Figure 4.1: The Generalized Petersen Graph GP (7, 2).

It is not hard to prove that this stable set is maximal, i.e. G has no stable set of size 6.

The maximum stable set problem is the problem of finding the stable set of maximum
size in the graph. This value is called the stability number of G and it is denoted by α(G).
For a given graph G = (V,E) and any integer 1 ≤ k ≤ |V | the problem of determining
whether G has a stable set of size k or not belongs to the complexity class NP − hard.
László Lovász ([42]) proposed the following formulation for this problem as a system of
polynomial equations:

Lemma 4.2.3. Let G = (V,E) be a graph. Then, G has a stable set of size k if and only
if the polynomial system

pV,k(x) :=
∑
i∈V

xi − k = 0,

pij(x) :=xixj = 0 ∀{i, j} ∈ E,
qi(x) :=xi(xi − 1) = 0 ∀i ∈ V,

(STAB)

has a solution. Moreover, the number of solutions is equal to the number of stable sets of
size k in G.
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Proof. For every set S ⊆ V consider its incidence vector xS ∈ {0, 1}V given by

xSi :=

{
1 if i ∈ S,
0 otherwise.

Then, it is straightforward to see that xS is a solution to (STAB) if and only if S is a stable
set of size k. The claim follows as every solution x to (STAB) is in {0, 1}V and hence x is
the incidence vector of its support set.

Example 4.2.4. Let G = (V,E) be the 3-cycle, that is V := {1, 2, 3} and
E := {{1, 2}, {2, 3}, {1, 3}}. Consider the system

pV,2(x) = x1 + x2 + x3 − 2 = 0,

pij(x) = xixj = 0 ∀{i, j} ∈ E,
qi(x) = xi(xi − 1) = 0 ∀i ∈ {1, 2, 3}.

(4.2.1)

Since the stability number of G is one, the above system has no solution. Again, by Lazard’s
Theorem, we see that the system (4.2.2) has a Nullstellenstaz Certificate of degree dL = 3.
We claim that G has a Nullstellensatz Certificate of degree one. As before, let us define
the degree one polynomials

rV,2(x) := aV,2x1
x1 + aV,2x2

x2 + aV,2x3
x3 + aV,21 ,

rij(x) := aijx1
x1 + aijx2

x2 + aijx3
x3 + aij1 , ∀{i, j} ∈ E,

si(x) := bix1
x1 + bix2

x2 + bix3
x3 + bi1, ∀i ∈ V,

(4.2.2)

and solve the system

rV,2(x)pV,2(x) +
∑
{i,j}∈E

rij(x)pij(x) +
∑
i∈V

si(x)qi(x) = 1.

This linear system has size
(

6
3

)
×
(

4
3

)
7 = 20×28 and it is too big to show it completely here.
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However, if look at some of the columns of this system we can guess its structure:

aV,2x1
aV,2x2

aV,2x3
aV,21 a12

x1
a12
x2

a12
x3

a12
1 b1

x1
b1
x2

b1
x3

b1
1 · · ·

1 −2 · · · 1
x1 −2 1 −1 · · ·
x2 −2 1 · · ·
x3 −2 1 · · ·
x2

1 1 −1 1 · · ·
x2

2 1 · · ·
x2

3 1 · · ·
x1x2 1 1 1 −1 · · ·
x1x3 1 1 −1 · · ·
x2x3 1 1 · · ·
x3

1 1 · · ·
x3

2 · · ·
x3

3 · · ·
x1x

2
2 1 · · ·

x1x
2
3 · · ·

x2x
2
1 1 1 · · ·

x2x
2
3 · · ·

x3x
2
1 1 · · ·

x3x
2
2 · · ·

x1x2x3 1 · · ·

(4.2.3)

We notice that the columns of this system are very sparse. For example, the columns in-
dexed by the variable aijxr has only one non-zero entry located in the row corresponding to the
monomial xrxixj. This tells us that it should be easier to guarantee the existence of a solu-
tion using Fredholm’s Theorem of the Alternative. Thus, let λ = (λ1, λx1 , . . . , λx2

2x3
, λx1x2x3)

be orthogonal to the columns of (4.2.3). Then, λ is a solution to the system of linear equa-
tions

λ1 −
1

2
(λx1 + λx2 + λx3) = 0, (4.2.4)

λxi −
1

2
(λxix1 + λxix2 + λxix3) = 0 ∀i ∈ V, (4.2.5)

λxixj = λxrxixj = 0 ∀r ∈ V, ∀{i, j} ∈ E, (4.2.6)

λx2
i
− λxi = 0 ∀i ∈ V, (4.2.7)

λx2
i xj
− λxixj = 0 ∀i, j ∈ V. (4.2.8)
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Thus, we see that λp(x) = 0 whenever p(x) is a monomial that can be divided by some xixj
with {i, j} ∈ E. That is, λ is supported only on the monomials defined by the stable sets
of G. Hence, any solution to the above system is a solution to the system

λ1 −
1

2
(λx1 + λx2 + λx3) = 0,

λxi −
1

2

(
λx2

i

)
= 0 ∀i ∈ V,

λx2
i
− λxi = 0 ∀i ∈ V.

(4.2.9)

It is straightforward to check that this latter system implies λ1 = 0. Hence, λ is orthog-
onal to the right hand side of the system (4.2.3) and as a result the system must have a
solution. Moreover, we can use the transpose of system (4.2.9) to generate a Nullstllensatz
Certificate:

aV,21 aV,2x1
aV,2x2

aV,2x3
b1

1 b2
1 b3

1

1 −2 0 0 0 0 0 0 1
x1 1 −2 0 0 −1 0 0 0
x2 1 0 −2 0 0 −1 0 0
x3 1 0 0 −2 0 0 −1 0
x2

1 0 1 0 0 1 0 0 0
x2

2 0 0 1 0 0 1 0 0
x2

3 0 0 0 1 0 0 1 0

−1
2
−1

2
−1

2
−1

2
1
2

1
2

1
2

. (4.2.10)

A solution is aV,21 = aV,2x1
= aV,2x2

= aV,2x3
= −1

2
and b1

1 = b2
1 = b3

1 = 1
2
. Thus, we obtain the

equation

−1

2
(x1 + x2 + x3 + 1) (x1 + x2 + x3 − 2) +

1

2
(x2

1 − x1) + . . .

· · ·+ 1

2
(x2

2 − x2) +
1

2
(x2

3 − x3) = 1− x1x2 − x1x3 − x2x3.
(4.2.11)

The use of Fredholm’s Theorem of the Alternative to certify the existence of certificates
is sometimes referred as the Design Method ([9],[10]). Clearly, this technique is useful
when the polynomials defining the system are formed by a small number of monomials i.e.
they are sparse. Stephen Cook et. al. ([6]) were the first to use this technique to find
lower bounds of Nullstellensatz Certificates of systems describing a version of the Pigeon
Principle. Jesus De Loera, Peter Malkin and Pablo Parrilo ([22]) formalized these notions
in terms of the annihilator of a set of polynomials:
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Definition 4.2.5. Let P be a set of polynomials of degree at most d∗ in K[x1, x2, . . . , xn]
with K being any algebraically closed field. The annihilator of P is the set P◦ of vectors
λ = (λxα)|α|≤d∗ such that the equality ∑

|α|≤d∗
pαλxα = 0 (4.2.12)

holds for for every polynomial p(x) =
∑
|α|≤d∗ pαx

α of P.

Viewing K[x1, x2, . . . , xn] as a vector space, we see that the annihilator of a set P
is equal to the annihilator of its linear span. Moreover, we see that (4.2.12) is a linear
relaxation of the polynomial system

p(x) = 0, ∀p ∈ P . (4.2.13)

Indeed, any solution x ∈ Kn to (4.2.13) generates an element of P◦ by setting λxα := xα

for every multi-index |α| ≤ d∗. Clearly, the reverse direction does not hold as the variables
λxα do not take into account constraints of the type λxα+β = λxβλxβ .
Now, let d ≥ 1 be any integer and consider the set

Pd := {xαp : |α| ≤ d, p ∈ P}.

Then, we see that the annihilator of Pd is equal to the set of vectors λ orthogonal to the
columns of the linear system derived from

r1(x)p1(x) + · · ·+ rm(x)pm(x) = 1,

where the polynomials ri have degree at most d. In particular, using Fredholm’s Theorem
of the Alternative we obtain the following simple result.

Proposition 4.2.6. Suppose that the system (4.2.13) is infeasible. Then, this system has
a Nullstellensatz Certificate of degree d if and only if every λ ∈ P◦d satisfies λ1 = 0.

The proposition above motivates the following definition:

Definition 4.2.7. Let P and Pd as above. A vector λ ∈ P◦d with λ1 6= 0 is called a
Nullstellensatz Dual Certificate of degree d.

As we mentioned before, proving the existence or non-existence of Nullstellensatz Dual
Certificates is much easier than proving the existence of Nullstellensatz Certificates in cases
when the polynomials are sparse. In what follows we will use these ideas to give a much
shorter prove of a result due to De Loera et. al. [20] stating that if k ≥ α(G) + 1, then
(STAB) has a minimum Nullstellensatz Certificate of degree α(G). We begin with the
following theorem:
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Theorem 4.2.8. The polynomial system (STAB) has a Nullstellensatz Dual Certificate of
degree d if and only if there exists a solution to the system

−kλS +
∑
i∈V

λS∪{i} = 0 |S| ≤ d, S ⊆ V stable,

λS = 0 |S| ≤ d+ 2, S ⊆ V not stable,

λ∅ 6= 0.

(4.2.14)

Proof. Let P be the set of polynomials defined in (STAB) and let Pd be defined as above.
Then, every λ ∈ P◦d satisfies the equations:

−kλxα +
∑
i∈V

λxixα = 0 ∀|α| ≤ d,

λxαxixj = 0 ∀{i, j} ∈ E, ∀|α| ≤ d,

λxαx2
i
− λxαxi = 0 ∀i ∈ V, ∀|α| ≤ d.

(4.2.15)

In particular, if a monomial xα with |α| ≤ d+ 2 is divisible by some xixj with {i, j} ∈ E,
then λxα = 0. Indeed, if αi ≥ 1 and αj ≥ 1 for some {i, j} ∈ E, then β = α − ei − ej is a
multi-index of size at most |α| − 2 ≤ d and (4.2.15) implies that

λxα = λxβxixj = 0.

Moreover, if two multi-indexes α and β of size at most d+ 2 are supported in the same set,
then λxα = λxβ . Indeed, if αi ≥ 2 for some i ∈ V , then λxα = λxα−2eix2

i
= λxα−2eixi and we

have reduced the coordinate αi by one. Repeating this process, we obtain that λxα = λxβ
where β ∈ ZV2 and supp(α) = supp(β). In particular, λ is uniquely determined by the
coordinates λxα with α ∈ ZV2 and |α| ≤ d+ 2.
Let us use the notation λS := λxα for every multi-index |α| ≤ d + 2 supported on S ⊆ V .
As a consequence, every solution to (4.2.15) is uniquely determined by a solution to

−kλS +
∑
i∈V

λS∪{i} = 0 |S| ≤ d and S is stable,

λS = 0 |S| ≤ d+ 2 and S is not stable.

(4.2.16)

The theorem follows as any solution (λS)|S|≤d+2 to (4.2.16) with λ∅ 6= 0 will generate a
solution λ to (4.2.15) with λ1 6= 0.

We have the following corollaries.
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Corollary 4.2.9. Let G be a graph and let k ≥ α(G) + 1. Then, (STAB) has a Nullstel-
lensatz Certificate of degree at most α(G).

Proof. We claim that (STAB) does not have a Nullstellensatz Dual Certificate of degree
d := α(G). Indeed, suppose that (λS)|S|≤d+2 is a solution to the system

−kλS +
∑
i∈V

λS∪{i} = 0 |S| ≤ d and S is stable,

λS = 0 |S| ≤ d+ 2 and S is not stable.

(4.2.17)

We claim that λS = 0 for every stable set S and as a consequence λ∅ = 0. We proceed by
induction on |S|. If S is stable and |S| = α(G), then (4.2.17) implies that

−kλS +
∑
i∈S

λS∪{i} +
∑

S′=S∪{i}
i∈V, S′ not stable

λS′ = −kλS + |S|λS = 0⇒ λS = 0.

Now, suppose that λS′ = 0 for every stable set S ′ of size greater than or equal to m ≥ 1
and let S be a stable set of size m− 1. The equations in (4.2.17) imply that

0 = −kλS +
∑
i∈S

λS∪{i} = −kλS +
∑
i∈S

λS∪{i} +
∑

S′=S∪{i}
i∈V, S′stable

λS′ = −kλS + |S|λS.

Hence, λS = 0 and the statement follows.

Corollary 4.2.10. Let G be a graph and let k ≥ α(G) + 1. Then, (STAB) has no Null-
stellensatz Certificate of degree α(G)− 1.

Proof. Let us show the existence of a Nullstellensatz Dual Certificate of degree α(G)− 1.
By Theorem 4.2.8, it is enough to prove the existence of some (λS)|S|≤α(G)+1 such that

−kλS +
∑
i∈V

λS∪{i} = 0 |S| ≤ α(G)− 1 and S is stable,

λS = 0 |S| ≤ α(G) + 1 and S is not stable,

λ∅ 6= 0.

(4.2.18)

We can create such vector as follows. Suppose that S∗ is a stable set of size α(G). Then,

set λ̃S∗ := 1 and λ̃S := 0 for every set S not contained in S∗. For every stable set S ( S∗

define

λ̃S :=
(α(G)− |S|)!

(k − |S|)!
. (4.2.19)
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We claim that (λ̃S)|S|≤α(G)+1 is a solution to (4.2.18). Indeed, for every stable set S of size

at most α(G)− 1 we have two cases. If S is not contained in S∗, then λ̃S = λ̃S∪{i} = 0 for
every i ∈ V and as a consequence

−kλ̃S +
∑
i∈V

λ̃S∪{i} = 0.

Now, if S is contained in S∗, then

−kλ̃S +
∑
i∈V

λ̃S∪{i} = −kλ̃S +
∑
i∈S

λ̃S +
∑

S′=S∪{i}
i∈V, S(S′⊆S∗

λ̃S′ ,

= −kλ̃S + |S|λ̃S + (α(G)− |S|) (α(G)− |S| − 1)!

(k − |S| − 1)!
,

= − (α(G)− |S|)!
(k − |S| − 1)!

+
(α(G)− |S|)!
(k − |S| − 1)!

= 0.

(4.2.20)

Clearly, if S is not a stable set of G, then λ̃S = 0. The result follows as λ̃∅ = α(G)!
k!
6= 0.

Let us collect these two corollaries in the following theorem:

Theorem 4.2.11 (De Loera et. al. [20]). Let G be a graph and let k ≥ α(G) + 1.
Then, (STAB) has minimal Nullstellensatz Certificate of degree α(G). Moreover, this
Nullstellensatz Certificate contains at least one monomial per stable set of G.

Proof. By Corollary 4.2.9 we have the existence of such certificate and by Corollary 4.2.10
we know that it is minimal. Now, let S∗ be an arbitrary stable set and let us prove that
there exists a monomial xα in the certificate such that the support of α is S∗. Suppose that
this is not the case, hence we can still generate a Nullstellensatz Certificate if we remove
all the columns of the system of linear equations associated to monomials xα with α having
support equal to S∗. This is equivalent to saying that the system

−kλS +
∑
i∈V

λS∪{i} = 0 |S| ≤ α(G), S 6= S∗ and S stable,

λS = 0 |S| ≤ α(G) + 2 and S not stable,

λ∅ 6= 0,

(4.2.21)

has no solution. However, if we define the vector with coordinates λ̃S∗ := 1, λ̃S := 0 for
every set S not contained in S∗ and λ̃S := (α(G)−|S|)!

(k−|S|)! for every S ( S∗, then (λ̂S)|S|≤α(G)+2

will be a solution to (4.2.21). This is a contradiction and the proof follows.
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Chapter 5

Hilbert’s Nullstellensatz and Graph
Coloring Problems

In this chapter we will study the behavior of NulLA for Graph Coloring Problems. The
computational studies of Jesus De Loera, Jon Lee, Peter Malkin and Susan Margulies ([20])
showed a good behavior of NulLA for systems of polynomial equations derived from some
graph coloring problems. They focused on graphs having no 3-coloring and considered
systems of polynomial equations over the finite field F2.
Several families of graphs were tested, these included the graphs from the DIMACS Compu-
tational Challenge (1993-2002, http://mat.gsia.cmu.edu/COLOR03/), Mycielski Graphs
([46]), Kneser Graphs ([41]) and randomly generated graphs. Their results showed that
the majority of these graphs had small Nullstellensatz Certificates. In fact, no graph hav-
ing a minimal Nullstellensatz Certificate of degree bigger than four has been found yet
(see [21] and [39]).
These results showed a big potential of NulLA for Graph Coloring. However, a concrete
understanding of the Nullstellensatz Certificates is still missing. The main objective of this
chapter is to give a concrete study of the Nulltellensatz Dual Certificates derived from these
problems. As we will see, this study will allow us to derive lower bounds for the degrees
of minimal Nullstellensatz Certificates and we will be able to improve our understanding
of NulLA for graph coloring problems.
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5.1 Graph Colorability

Probably, one of the most beautiful and strikingly powerful concepts in Graph Theory is
that of graph colorings:

Definition 5.1.1. Let G be a graph with no loops and no multiple edges. A multi-index
α ∈ ZVk is called a k-coloring of G. A k-coloring α is called proper if αu 6= αv for every
edge {u, v} ∈ E. We say that G is k-colorable if it has a proper k-coloring. The minimum
k such that G is k-colorable is called the chromatic number of G and it is denoted by
χ(G).

Example 5.1.2. Consider the graph H of Figure 5.1. The multi-index

(0, 1, 2, 0, 1, 0, 2, 1, 3, 2) ∈ Z10
4

is a proper 4-coloring of H. It is not hard to see that H is not 3-colorable. Indeed, suppose

1

2

4

3

5

76

8

9

10

Figure 5.1: The graph H.

that α ∈ Z10
3 is a proper 3-coloring of H. As the 3-cycles generated by the vertices 1, 2, 3

and 2, 3, 4 share the edge {2, 3} we see that α1 = α4. Similarly, we see that the equality
α5 = α8 must hold as well. But then, the 3-cycles generated by the vertices 1, 5, 10 and
4, 8, 9 imply that α9 = α10 which is a contradiction. Thus, κ(H) = 4.

Clearly, the main question we would like to answer is how to detect if a given graph
is k-colorable or not. When k = 2 this problem is easy. Indeed, a graph is 2-colorable
if and only if is bipartite (i.e. it has no cycle of odd length), and we can check this
efficiently using a simple depth-first search on the vertices of the graph. By the Four Color
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Theorem ([2], [3],[52]), every planar graph is 4-colorable and as a consequence, the problem
of deciding the existence of a 4-coloring for planar graphs becomes trivial. Moreover, Neil
Robertson, Daniel Sanders, Paul Seymour and Robin Thomas ([50]) provided a quadratic
time algorithm for finding such 4-coloring. Nevertheless, it is a hard task to detect the
k-colorability of general graphs with k ≥ 3. Richard Karp ([33]) proved that, among
many other combinatorial problems, such decision problem lies in the complexity class
NP − complete. In fact, Michael Garey, David Johnson and Larry Stockmeyer ([26])
proved that deciding the 3-colorability of a planar graph is an NP − complete problem as
well.
The reason why we have chosen to define colorings using multi-indexes is the following. For
every graph G = (V,E) and every edge {u, v} ∈ E let us define the function guv ∈ L2(ZVk )
given by

guv(α) :=

{
1 if αu = αv,

0 otherwise.
(5.1.1)

Then, we see that G is k-colorable if and only if the system

guv(α) = 0, ∀{u, v} ∈ E, (COL)

has a solution α ∈ ZVk . Moreover, the number of solutions to (COL) is equal to the number
of proper colorings of the graph G. We can use Fourier Analysis to transform (COL) into
an equivalent system of polynomial equations:

Theorem 5.1.3. A graph G is k-colorable if and only if the following system of polynomial
equations has a solution over the complex numbers.

quv(x) := 1 + xux
k−1
v + x2

ux
k−2
v + · · ·+ xk−1

u xv = 0 ∀{u, v} ∈ E,
pu(x) := xku − 1 = 0 ∀u ∈ V.

(FCOL)

Moreover, the number of solutions to (FCOL) equals the number of proper k-colorings of
G.

Proof. Let {u, v} ∈ E be an edge of G and let guv ∈ L2(ZVk ) be defined as above. Let

β ∈ ZVk be any multi-index and let κβ ∈ ẐVk be the character associated to it, i.e.

κβ(α) := eβ1α1
2πi
k eβ2α2

2πi
k · · · eβnαn

2πi
k , ∀α ∈ ZVk . (5.1.2)
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By the Fourier Transform Formula (equation (3.2.3)), we know that

ĝuv(κβ) =
1

k|V |

∑
α∈ZVk

gij(α) exp

(
2πi

k

∑
w∈V

αwβw

)
,

=
1

k|V |

∑
α∈ZVk ,
αu=αv

exp

(
2πi

k

∑
w∈V

αwβw

)
,

=
1

k|V |

(∑
r∈Zk

er(βu+βv) 2πi
k

) ∏
w∈V \{u,v}

(∑
r∈Zk

erβw
2πi
k

)
.

(5.1.3)

Recall that for every k-th root of the unity ζ := es
2πi
k the equality

∑
r∈Zk ζ

r = 0 holds.
Thus, equation (5.1.3) is equivalent to

ĝuv(κβ) =

{
1
k

if β = r(eu − ev) for some r ∈ Zk,
0 otherwise,

(5.1.4)

where ev ∈ ZVk denotes the canonical multi-index having its single non-zero component in
the coordinate indexed by v ∈ V . In particular, we can write (COL) as

guv(α) =
1

k

∑
r∈Zk

erαu
2πi
k e(k−r)αv 2πi

k = 0, ∀{u, v} ∈ E. (5.1.5)

The proof follows by setting xu := eαu
2πi
k for every u ∈ V in the formula above.

We can modify (FCOL) to obtain a well known result due to Bayer in 1982:

Corollary 5.1.4 (Bayer [5]). Theorem 5.1.3 still holds if we replace the system (FCOL)
by the following polynomial system over the complex numbers.

q̃uv(x) := xk−1
u + xk−2

u xv + · · ·+ xux
k−2
v + xk−1

v = 0 ∀{u, v} ∈ E,
pu(x) := xku − 1 = 0 ∀u ∈ V.

(BCOL)

Proof. For each edge {u, v} ∈ E multiply the polynomial quv by xk−1
u to obtain

xk−1
u quv(x) = xk−1

u + xkux
k−1
v + xk+1

u xk−2
v + · · ·+ x2k−2

u xv,

= q̃uv(x) + q̃uv(x)pu(x).

Hence, for every x ∈ CV such that xku = 1 with u ∈ V , the equation quv(x) = 0 holds
if and only if the equation q̃uv(x) = 0 holds. This proves that (FCOL) is equivalent to
(BCOL).
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As a consequence of the above results, we can use NulLA to detect k-colorability using
either (FCOL) or (BCOL). The choice between these two systems has some advantages and
disadvantages. On the one hand, the polynomials in (FCOL) are all defined by monomials
of size congruent with 0 modulo k and they have a nice dual interpretation with colorings
via (COL). On the other hand, the polynomials q̃uv in (BCOL) have degree equal to k− 1
and this helps to reduce the size of the certificates (see Example 5.1.6 below). Nevertheless,
as the following proposition shows, the gap between the size of the certificates for these
two systems is not large.

Proposition 5.1.5. Let G be a non-k-colorable graph. Then,

1. If (BCOL) has a Nullstellensatz Certificate of degree d, then (FCOL) has a Null-
stellnesatz Certificate of degree d+ k − 1.

2. If (FCOL) has a Nullstellensatz Certificate of degree d, then (BCOL) has a Nullstel-
lensatz Certificate of degree d+ 1.

Proof. 1. As in the proof of Corollary 5.1.4, for any edge {u, v} ∈ E we have that

xk−1
u quv(x) = q̃uv(x) + q̃uv(x)pu(x). (5.1.6)

Let r̃uv and s̃u be polynomials of degree d such that∑
u∈V

s̃u(x)pu(x) +
∑
{u,v}∈E

r̃uv(x)q̃uv(x) = 1.

Then, the equation∑
u∈V

s̃u(x)pu(x) +
∑
{u,v}∈E

r̃uv(x)
(
xk−1
u quv(x)− q̃uv(x)pu(x)

)
= 1

gives a Nullstellensatz Certificate of degree d+ k − 1 for (FCOL).

2. In the same fashion, it is not hard to see that for each edge {u, v} ∈ E we have the
equality

xuq̃uv(x) = quv + pu(x). (5.1.7)

Hence, following the same steps as in the proof of part 1., we see that if (FCOL) has a
Nullstellensatz Certificate of degree d, then (BCOL) has a Nullstellensatz Certificate
of degree d+ 1.
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Notice that Lazard’s bounds apply for both system (FCOL) and (BCOL) (see Proposi-
tion 4.1.4). Hence, in case thatG is not k-colorable, there exists a Nullstellensatz Certificate
of degree at most |V |(k − 1). Let us now look at some particular instances.

Example 5.1.6. Let G be 3-cycle with vertex set V = {1, 2, 3}. This graph is not 2-
colorable and we can certify this with a Nullstellensatz Certificate of degree |V |(k − 1) = 3
for either (FCOL) and (BCOL). Let us use NulLA with system (BCOL) to find a minimal
degree certificate. Thus, consider the system

q̃uv(x) := xu + xv = 0 ∀{u, v} ∈ E,
pu(x) := x2

u − 1 = 0 ∀u ∈ V.
(5.1.8)

It is easy to see that there is no certificate of degree zero as for each u ∈ V the mono-
mial x2

u appears in only one polynomial of the system. Hence, the scalars multiplying the
polynomials pu must be equal to zero which is impossible. Therefore, define the polynomials

r̃uv(x) := bq̃uv1 + bq̃uvx1
x1 + bq̃uvx2

x2 + bq̃uvx3
x3 ∀{u, v} ∈ E,

s̃u(x) := apu1 + apux1
x1 + apux2

x2 + apux3
x3 ∀u ∈ V,

and let us check the solubility of the system∑
u∈V

s̃u(x)pu(x) +
∑
{u,v}∈E

r̃uv(x)q̃uv(x) = 1.

Using NulLA, the linear system we obtain has size 20× 24 and it is formed by the column
concatenation of the following tableaux:

apu1 apux1
apux2

apux3

1 −1
x1 −1
x2 −1
x3 −1
x2
u 1

x2
ux1 1
x2
ux2 1
x2
ux3 1

,

bq̃uv1 bq̃uvx1
bq̃uvx2

bq̃uvx3

xu 1
xv 1
x1xu 1
x2xu 1
x3xu 1
x1xv 1
x2xv 1
x3xv 1

. (5.1.9)

Let λ := (λxα)|α|≤3 be an orthogonal vector to the columns of the system described by (5.1.9).
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We see that λ satisfies the following system of equations:

λ1 = λx2
u

∀u ∈ V, (5.1.10)

λxwxu = −λxwxv ∀w ∈ V, ∀{u,w} ∈ E, (5.1.11)

λxu = λxux2
v

∀u, v ∈ V, (5.1.12)

λxu = −λxv ∀w ∈ V, ∀{u,w} ∈ E. (5.1.13)

Using the equations (5.1.10) and (5.1.11), we see that

λ1 = λx2
1

= −λx1x2 = λx2x3 = −λx2
3

= −λ1. (5.1.14)

Hence, λ1 = 0 and this shows that (5.1.8) has a Nullstellensatz Certificate of degree one.
Moreover, the equations in (5.1.14) tell us which of the 20 rows and 24 columns we need
to generate the certificate:

ap1

1 bq̃12
x1

bq̃13
x2

bq̃23
x3

ap3

1

1 −1 −1 1
x2

1 1 1
x1x2 1 1
x2x3 1 1
x2

3 1 1

−1
2

1
2
−1

2
1
2
−1

2

(5.1.15)

As the following theorem shows, we can generalize the ideas of the above example to
any non-bipartite graph G.

Theorem 5.1.7. Let G be a non-bipartite graph. Then, (BCOL) has a minimal Nullstel-
lensatz Certificate of degree one for the non-2-colorability of G.

Proof. Again, let us consider the polynomials

r̃uv(x) := bq̃uv1 +
∑
w∈V

bq̃uvxw xw ∀{u, v} ∈ E,

s̃u(x) := apu1 +
∑
v∈V

apuxvxv ∀u ∈ V.

Let λ := (λxα)|α|≤3 be orthogonal to the linear system associated to the equation∑
u∈V

s̃u(x)pu(x) +
∑
{u,v}∈E

r̃uv(x)q̃uv(x) = 1.
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Then, it is not hard to see that λ is characterized by the system

λ1 = λx2
u

∀u ∈ V, (5.1.16)

λxwxu = −λxwxv ∀w ∈ V, ∀{u,w} ∈ E, (5.1.17)

λxu = λxux2
v

∀u, v ∈ V, (5.1.18)

λxu = −λxv ∀w ∈ V, ∀{u,w} ∈ E. (5.1.19)

Since G is not bipartite, it has an odd cycle. Suppose that u0, u1, . . . , u2m are the vertices
of such cycle and {u0, u2m}, {ui, ui+1} ∈ E for every i ∈ {0, 1, . . . , 2m − 1}. Thus, using
the equations (5.1.16) and (5.1.17) we see that

λ1 = λx2
u0

= −λxu0xu1
= λxu0xu2

= · · · = λxu0xu2m
= −λx2

u2m
= −λ1. (5.1.20)

A minimal certificate is

−1

2
(x2

u0
− 1)− 1

2
(x2

u2m
− 1) +

1

2
xu0

2m−1∑
i=0

(−1)i(xui + xui+1
) +

1

2
xu2m(xu0 + xu2m) = 1.

We get a similar result for (FCOL) as follows.

Corollary 5.1.8. Let G be a non-bipartite graph. Then, (FCOL) has a minimal Nullstel-
lensatz Certificate of degree two for the non-2-colorability of G.

Proof. By Proposition 5.1.5 and Theorem 5.1.7, we know that (FCOL) has a Nullstellensatz
Certificate of degree two. Let us show that this certificate is minimal by proving the
existence of a Nullstellensatz Dual Certificate of degree one for (FCOL). Once again, let
us define the polynomials

ruv(x) := bquv1 +
∑
w∈V

bquvxw xw ∀{u, v} ∈ E,

su(x) := apu1 +
∑
v∈V

apuxvxv ∀u ∈ V.

Let λ = (λxα)|α|≤d be orthogonal to the columns of the system defined by the equation∑
u∈V

s̃u(x)pu(x) +
∑
{u,v}∈E

ruv(x)quv(x) = 1.

61



Then, it is not hard to see that λ is characterized by the system

λ1 = λx2
u

∀u ∈ V, (5.1.21)

λ1 = −λxuxv ∀{u,w} ∈ E, (5.1.22)

λxu = λxux2
v

∀u, v ∈ V, (5.1.23)

λxw = −λxwxuxv ∀w ∈ V, ∀{u,w} ∈ E. (5.1.24)

Let us define the vector λ with coordinates

λxα :=


1 if xα ∈ {x2

u : u ∈ V } ∪ {1},
−1 if xα ∈ {xuxv : {u, v} ∈ E},
0 otherwise.

We clearly see that λ gives a Nullstellensatz Dual Certificate of degree one and the proof
follows.

The above results show that NulLA always detects 2-colorability after two iterations if
we use the system (BCOL). A natural question to ask is whether for every k there exists
a degree d(k), independent from |V | and |E|, such that every non-k-colorable graph has a
Nullstellensatz Certificate of degree d(k). As one might expect from the results of Karp
concerning the hardness of k-colorability, this may be too much to ask for:

Theorem 5.1.9 (De Loera et al. [20]). Let k ≥ 3 be an integer. Suppose that there exists
a number d(k) such that every non-k-colorable graph has a Nullstellensatz Certificate of
degree d ≤ d(k), then P = NP .

Proof. We will prove that the existence of such d(k) implies the existence of a polynomial-
time algorithm for detecting k-colorability. Since this latter problem is in the class NP −
complete ([33]) the result will follow. But this is easy. Indeed, if such d(k) exists, then
NulLA would detect the k-colorability of a graph G = (V,E) after solving a system of
linear equations of size

(|V |+d(k)+k
|V |

)
×
(|V |+d(k)
|V |

)
(|E|+ |V |), which is a polynomial in |V | and

|E|. Since the entries of such system are only zeros, ones and minus ones, the encoding size
of such system is polynomial in the size of |V | and |E|. The result follows as every system
of linear equations over the rationals can be solved in a number of elementary arithmetic
operations that is polynomial in the encoding size of the system ([53]).

Therefore, for any k ≥ 3 there should exists an infinite family of graphs {Gi}i∈N with
minimal degree certificates {di}i∈N being unbounded. It is still an open problem to find
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such family for any k ≥ 3. Moreover, it is still an open problem to construct a graph with
Nullstellensatz Certificate bigger than 4 for (BCOL), even if we consider such system over
any field K. We will come back to this question later on (see Section 5.3).

5.2 Nullstellensatz Dual Certificates and k-colorability

In this section we will study the annihilator of the polynomials defined by (FCOL) and
(BCOL). Let G = (V,E) be a non-k-colorable graph and let d, d̃ ≥ 1 be a pair of non-
negative integers. Let us define the sets of polynomials

PF := {pw, quv : w ∈ V, {u, v} ∈ E},
PB := {pw, q̃uv : w ∈ V, {u, v} ∈ E}.

(5.2.1)

As in Chapter 4, for integers d, d̃ ≥ 1 consider the sets,

PFd := {xαp : |α| ≤ d, p ∈ PF},
PB
d̃

:= {xαp : |α| ≤ d̃, p ∈ PB}.
(5.2.2)

Thus, a vector λ = (λxα)|α|≤d+k is in the annihilator of PFd if and only if λ is a solution to
the system

λxα − λxαxkw = 0 ∀|α| ≤ d, ∀w ∈ V
λxα + λxαxk−1

u xv
+ · · ·+ λxαxuxk−1

v
= 0 ∀|α| ≤ d, ∀{u, v} ∈ E.

(5.2.3)

Similarly, a vector λ̃ = (λ̃xα)|α|≤d̃+k is in the annihilator of PB
d̃

if and only if λ̃ is a solution
to the system

λ̃xα − λ̃xαxkw = 0 ∀|α| ≤ d̃, ∀w ∈ V
λ̃xαxk−1

u
+ λ̃xαxk−2

u xv
+ · · ·+ λ̃xαxk−1

v
= 0 ∀|α| ≤ d̃, ∀{u, v} ∈ E.

(5.2.4)

Notice that we can reduce the size of the systems (5.2.3) and (5.2.4) using the equations
λxα = λxαxkw and λ̃xα = λ̃xαxkw . More concretely, we have the following result.

Theorem 5.2.1. Let G = (V,E) be a non-k-colorable graph. Then,

1. (FCOL) has a Nullstellensatz Certificate of degree d if and only if the system∑
r∈Zk

λα+r(eu−ev) = 0 ∀α ∈ ZVk , |α| ≤ d, ∀{u, v} ∈ E, (DFCOL)

has no solution with λ0 6= 0.
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2. (BCOL) has a Nullstellensatz Certificate of degree d̃ if and only if the system∑
r∈Zk

λ̃α+r(eu−ev)−ev = 0 ∀α ∈ ZVk , |α| ≤ d̃, ∀{u, v} ∈ E, (DBCOL)

has no solution with λ̃0 6= 0.

Proof. We will prove the theorem for (FCOL), the proof for (BCOL) is similar. Thus,
suppose that (FCOL) has a Nullstellensatz Certificate of degree d. By Proposition 4.2.6,
every vector λ in the annihilator of PFd satisfies λ1 = 0. Let f := (fα)α∈ZVk be a solution

to (DFCOL), we shall prove that f0 = 0.
Define the vector λ = (λxα)|α|≤d+k given by

λxα := fβ provided that β ∈ ZVk and α ∼= β mod ZVk . (5.2.5)

We claim that λ ∈ (PFd )◦. Indeed, let α be any given multi-index such that |α| ≤ d and
let β ∈ ZVk be such that β ∼= α mod ZVk . Then, we see that |β| ≤ d. Moreover, for every
vertex w ∈ V , β is also congruent with α + kew modulo ZVk and as a consequence

λxαxkw − λxα = fβ − fβ = 0, ∀|α| ≤ d, ∀w ∈ V.

Similarly, for every edge {u, v} ∈ E and every r ∈ Zk we have that β + r(eu − ev) is
congruent with α + reu + (k − r)ev. Hence,

λxα + λxαxk−1
u xv

+ · · ·+ λxαxuxk−1
v

=
∑
r∈Zk

fβ+r(eu−ev) = 0. (5.2.6)

This implies that λ is in the annihilator of PFd and f0 = λ1 = 0.
Now, suppose that (FCOL) has no degree d certificate. Then, by Proposition 4.2.6, (FCOL)
has a Nullstellensatz Dual Certificate λ ∈ (PFd )◦ such that λ1 6= 0. We claim that λxα = λxα′

provided that α ∼= α′ mod ZVk and the size of each α and α′ is at most d+ k. Indeed, let
β be the unique multi-index in ZVk congruent to both α and α′. Then, |β| ≤ d + k and
there exist two sequences of multi-indexes β0, β1, . . . , βs and β′0, β

′
1, . . . , β

′
t such that

β0 = β, βs = α,

β′0 = β, β′t = α′,

βi+1 = βi + kewi , for some wi ∈ V , ∀i ∈ {0, 1, . . . , s− 1},
β′j+1 = β′j + kew′j , for some w′j ∈ V , ∀j ∈ {0, 1, . . . , t− 1}.

(5.2.7)
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Since λ is in the annihilator of PFd , we conclude that λxβi+1 = λxβi and λ
x
β′
j+1

= λ
x
β′
j

for

every i ∈ {0, . . . , s− 1} and every j ∈ {0, . . . , t− 1}. In particular, λxβ = λxα = λxα′ and
our claim follows.
Define the vector f given by fα := λxα for each α ∈ ZVk \ {0} with |α| ≤ d+ k, and fα := 0
otherwise. Then, by our previous claim, we see that∑

r∈Zk

fα+r(eu−ev) = λxα + λxαxk−1
u xv

+ · · ·+ λxαxuxk−1
v

= 0. (5.2.8)

Hence, f is a solution to (DFCOL) with f0 = λ1 6= 0 and the theorem follows.

We have the following corollaries:

Corollary 5.2.2. Let G be a non-k-colorable graph. Let IV be the ideal generated by the
polynomials pw(x) = xkw − 1 with w ∈ V . Then, (FCOL) has a Nullstellensatz certificate
of degree d if and only if the system

quv(x) = 0, ∀{u, v} ∈ E, x ∈ VC(IV ), (5.2.9)

has a Nullstellensatz certificate of degree d over the ring C[x1, . . . , x|V |]/IV .

Proof. Consider the set

Pd := {xαquv + IV : {u, v} ∈ E, α ∈ ZVk , |α| ≤ d} ⊆ C[x1, . . . , x|V |]/IV

and the vector space Vd = spanC{Pd} ⊆ C[x1, . . . , x|V |]/IV . Then, the system (5.2.9) has
a Nullstellensatz certificate of degree d if and only if 1 + IV ∈ Vd.
Notice that Vd can be seen as a subspace of the finite dimensional space Wd spanned by
the monomials xα + IV with α ∈ ZVk and |α| ≤ d+ k. We can identify the dual space W∗

d

with the set of all vectors (λα)α∈ZVk , |α|≤d+k via the mapping

λ ∈W∗
d 7−→ (λ(xα + IV ))α∈ZVk , |α|≤d+k.

Thus, a linear functional λ ∈ W∗
d satisfies λ(p(x) + IV ) for every p(x) + IV ∈ Vd if and

only if its corresponding vector (λα)α∈ZVk , |α|≤d+k given by λα := λ(xα + IV ) is a solution

to (DFCOL).
In particular, 1 + IV ∈ Vd if and only if every solution (λα)α∈ZVk , |α|≤d+k to (DFCOL)
satisfies λ0 = 0. The claim follows by the preceding theorem.
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Corollary 5.2.3. Let G = (V,E) be a non-k-colorable graph and suppose that (FCOL)
has minimal Nullstellensatz Certificate of degree d∗. Then,

d∗ ∼= 0 mod k. (5.2.10)

Moreover, d∗ ≥ k.

Proof. Notice that the size of α is congruent with the size of α+ r(eu− ev) modulo Zk for
every r ∈ Zk and every {u, v} ∈ E. In particular, the equation∑

r∈Zk

λα+r(eu−ev) = 0

in (DFCOL) will always involve multi-indexes of size congruent with |α| modulo Zk. Since
the existence of a certificate only depends on the value λ0 for every solution λ to (DFCOL),
the existence of a certificate depends only on the solutions to the subsystem∑

r∈Zk

λα+r(eu−ev) = 0, |α| ∼= 0 mod k, |α| ≤ d, ∀{u, v} ∈ E. (5.2.11)

This implies that d∗ ∼= 0 mod Zk.
Let us show the existence of a Dual Nullstellensatz Certificate of degree zero. Thus,
consider the vector (λα)|α|≤3 defined as

λ0 = 1,

λr(eu−ev) = − 1

k − 1
, ∀{u, v} ∈ E,∀r ∈ Zk \ {0}

λα = 0, for any other |α| ≤ 3.

Then, λ clearly satisfies the equations∑
r∈Zk

λα+r(eu−ev) = 0, ∀|α| ≤ 0,∀{u, v} ∈ E.

Since λ0 = 1, it follows that d∗ ≥ k.

Corollary 5.2.4 (De Loera et al. [18]). Let G = (V,E) be a non-k-colorable graph with
k ≥ 3 and suppose that (BCOL) has minimal Nullstellensatz Certificate of degree d∗. Then,

d∗ ∼= 1 mod k. (5.2.12)

Moreover, d∗ ≥ k + 1.
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Proof. Suppose that G has a minimal Nullstellensatz Certificate of degree d∗. By the same
arguments used in Corollary 5.2.3, it is clear that

d∗ ∼= 1 mod k.

Let us show the existence of a Dual Nullstellensatz Certificate (λ̃α)|α|≤k+1 of degree one.
We will consider the cases k ≥ 4 and k = 3 separately.
First, suppose that k ≥ 4 and let ζ 6= 1 be a k-th root of the unity (if k = 4 choose
ζ := −1). Let us identify the set of vertices of G with the set of integers [n] where |V | = n.
Define λ̃ := (λ̃α)|α|≤k+1 as follows,

λ̃r(eu−ev) := ζr, ∀r ∈ Zk, ∀{u, v} ∈ E, u < v,

λ̃ew+2eu−3ev := −λ̃ew−ev , ∀{u, v}, {v, w} ∈ E,
λ̃α := 0 for any other multi-index |α| ≤ k + 1.

(5.2.13)

Notice that λ̃ is well defined. The only possible inconsistency might came up for the case
k = 4, as the multi-indexes ew + 2eu − 3ev and −3ew + 2eu + ev are the same. However,
since we set ζ = −1 for this case, the equalities

λ̃ew−ev = λ̃ev−ew = ζ = ζ3,

hold and λ̃ is well defined.
We claim that λ̃ is a Nullstellensatz Dual Certificate of degree one. Indeed, since λ̃0 = 1,
we only need to prove that λ̃ satisfies the equalities∑

r∈Zk

λ̃ew+r(eu−ev)−ev = 0

for every w ∈ V and every {u, v} ∈ E. On the one hand, if w ∈ {u, v} then∑
r∈Zk

λ̃ew+r(eu−ev)−ev =
∑
r∈Zk

λ̃r(eu−ev) =
∑
r∈Zk

ζr = 0.

On the other hand, if w /∈ {u, v}, then by the way we defined λ̃, we see that

λ̃ew+r(eu−ev)−ev = 0, ∀r /∈ {0, 2, k − 3, k − 1}.

In particular,∑
r∈Zk

λ̃ew+r(eu−ev)−ev = λ̃ew−ev + λ̃ew+2eu−3ev + λ̃ew−3eu+2ev + λ̃ew−eu . (5.2.14)
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Now, if the edges {u,w} and {v, w} are not in E, then (5.2.14) is zero as

λ̃ew−ev = λ̃ew+2eu−3ev = λ̃ew−3eu+2ev = λ̃ew−eu = 0,

by the definition of λ̃. If any of {u,w} or {v, w} is in E, then

λ̃ew−ev + λ̃ew+2eu−3ev = 0 or λ̃ew−3eu+2ev + λ̃ew−eu = 0.

Thus, (5.2.14) is zero and λ̃ is a Dual Nullstellensatz Certificate of degree one.
Now, let us consider the case k = 3. This time, define λ̃ := (λ̃α)|α|≤k+1 as

λ̃0 := 1,

λ̃eu−ev = λ̃ev−eu := −1

2
, ∀{u, v} ∈ E,

λ̃ew+eu+ew :=
1

2
, ∀{u, v}, {v, w} ∈ E, {u,w} /∈ E,

λ̃ew+ev+eu := 1, ∀{u, v}, {v, w}, {u,w} ∈ E,
λ̃α := 0 for any other multi-index |α| ≤ k + 1,

(5.2.15)

We will show that for every w ∈ V and every {u, v} ∈ E the equation

λ̃ew+2eu + λ̃ew+eu+ev + λ̃ew+2ev = 0 (5.2.16)

holds. Since λ̃0 6= 0, the statement follows. Again, if w ∈ {u, v}, then

λ̃ew+2eu + λ̃ew+eu+ev + λ̃ew+2ev = λ̃0 + λ̃eu+2ev + λ̃2eu+ev = 1− 1

2
− 1

2
.

If w /∈ {u, v} and the edges {u,w} and {v, w} are not in E, then

λ̃ew+2eu + λ̃ew+eu+ev + λ̃ew+2ev = 0 + 0 + 0 = 0.

If w /∈ {u, v} and {v, w} ∈ E, but {u,w} /∈ E, then

λ̃ew+2eu + λ̃ew+eu+ev + λ̃ew+2ev = 0 +
1

2
− 1

2
= 0.

Finally, if w /∈ {u, v} and {v, w}, {u,w} ∈ E, then

λ̃ew+2eu + λ̃ew+eu+ev + λ̃ew+2ev = −1

2
+ 1− 1

2
= 0.

This concludes the proof.
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4

1

2
3

Figure 5.2: A 3-star

Remark 5.2.5. We must point out that the proof of the case k > 3 is independent from
the underlying field. Thus, it can be seen as an alternative proof to that of [18]. For the
case k = 3, there exist graphs with minimal Nullstellensatz Certificates of degree one over
F2. Such graphs have been already characterized ([39], [19]).

Example 5.2.6. Consider the graph of Figure 5.2. Clearly, this graph is 3-colorable (it
is 2-colorable) and hence (FCOL) has Nullstellensatz Dual Certificates of any degree for
k = 3. We can find such certificates using proper three colorings of the graph. For instance,
let β := (0, 1, 0, 2) and set

λα := κβ(α), ∀α ∈ Z3
3.

Notice that β is a proper three coloring of the graph. Thus, for every multi-index α ∈ Z3
3

and every edge {u, v} ∈ E we have

λα + λα+(eu−ev) + λα+2(eu−ev) = κβ(α) (1 + κβ(eu − ev) + κβ(2eu − 2ev)) ,

= κβ(α)
(

1 + e(βu−βv) 2πi
3 + e2(βu−βv) 2πi

3

)
,

= 0

Since λ0 = 1, the vector λ is a Dual Nullstellensatz Certificate (of any degree).

5.2.1 Using symmetries to find Nullstellensatz Certificates

It is possible to reduce the size of (DFCOL) using the symmetries of the graph G. Indeed,
let φ : V → V be a graph automorphism, i.e, φ is a bijection such that {φ(u), φ(v)} ∈ E
for every {u, v} ∈ E. Then, φ naturally defines a mapping φ : ZVk → ZVk given by

φ(α) = (αφ−1(u))u∈V .
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The set of all group automorphisims of a graph G forms a group under composition of
functions. Such group is called the automorphism group of G and it is denoted by Aut(G).

Lemma 5.2.7 (See [20] Theorem 3.5 for a similar result). Let G = (V,E) be a non-k-
colorable graph and let Aut(G) be the automorphism group of G. Then, G has a Nullstel-
lensatz Certificate of degree d if and only if every solution to the system∑

r∈Zk

λα+r(eu−ev) = 0, |α| ≤ d, ∀{u, v} ∈ E,

λα − λφ(α) = 0, |α| ≤ d+ k, ∀φ ∈ Aut(G).

(Aut-DFCOL)

satisfies λ0 = 0.

Proof. Let λ be a solution to (DFCOL) and define the vector λ given by

λα :=
1

|Aut(G)|
∑

φ∈Aut(G)

λφ(α), |α| ≤ d+ k.

We claim that λ is a solution to (Aut-DFCOL). Indeed, for every multi-index α of size at
most d and every edge {u, v} ∈ E, we have

∑
r∈Zk

λα+r(eu−ev) =
∑
r∈Zk

 1

|Aut(G)|
∑

φ∈Aut(G)

λφ(α+r(eu−ev))

 ,

=
1

|Aut(G)|
∑

φ∈Aut(G)

(∑
r∈Zk

λφ(α)+r(eφ(u)−eφ(v)))

)
︸ ︷︷ ︸

=0

,

= 0.

The last equality follows from the fact that λ is a solution to (DFCOL), the size of φ(α) is
at most d for every φ ∈ Aut(G) and that {φ(u), φ(v)} ∈ E.
Now, for every φ′ ∈ Aut(G) and every multi-index α of size at most d+ k we have

λφ′(α) =
1

|Aut(G)|
∑

φ∈Aut(G)

λφ◦φ′(α),

=
1

|Aut(G)|
∑

φ∈Aut(G)

λφ(α),

= λα.
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This proves our claim. Now, since λ0 = λ0, the above shows that the existence of a Nullstel-
lensatz Dual Certificate of degree d implies the existence of a solution λ to (Aut-DFCOL)
with λ0 6= 0. As every solution to (Aut-DFCOL) is a solution to (DFCOL), the result
follows.

Example 5.2.8. Let G = K4 be the complete graph with four vertices and let k = 3. Using
the above results we can easily prove that K4 has a Nullstellensatz Certificate of degree 3
for (FCOL). Indeed, the automorphism group of G is the symmetric group S4. Thus, every
solution λ to (Aut-DFCOL) satisfies

λ(0,0,0,0) + λ(1,2,0,0) + λ(2,1,0,0) = λ(0,0,0,0) + 2λ(1,2,0,0) = 0,

λ(1,2,0,0) + λ(1,2,1,2) + λ(1,2,2,1) = λ(1,2,0,0) + 2λ(1,1,2,2) = 0,

λ(1,2,0,0) + λ(1,0,2,0) + λ(1,1,1,0) = λ(1,1,1,0) + 2λ(1,2,0,0) = 0,

λ(1,1,1,0) + λ(1,1,0,1) + λ(1,1,2,2) = 2λ(1,1,1,0) + λ(1,1,2,2) = 0.

Therefore,

λ(0,0,0,0) = −2λ(1,2,0,0) = 4λ(1,1,2,2) = −8λ(1,1,1,0) = 16λ(1,2,0,0) = −8λ(0,0,0,0).

This proves that λ(0,0,0,0) = 0 and the result follows.

Example 5.2.9. The next case to consider is G = K5 and k = 4. First, let us try to
determine the existence of a Nullstellensatz Certificate of degree d = 4 for (FCOL). Up
to permutation, there are only five multi-indexes in ZV4 of size at most four and congruent
with zero modulo 4. These are

α0 := (0, 0, 0, 0, 0),

α1 := (1, 3, 0, 0, 0),

α2 := (2, 2, 0, 0, 0),

α3 := (1, 1, 2, 0, 0),

α4 := (1, 1, 1, 1, 0).

Now, the only equation of (Aut-DFCOL) generated by α0 is

λ(0,0,0,0,0) + 2λ(1,3,0,0,0) + λ(2,2,0,0,0) = 0.
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The equations generated by α1 are

2λ(1,3,0,0,0) + 2λ(2,3,3,0,0) = 0,

2λ(1,3,0,0,0) + 2λ(1,1,2,0,0) = 0,

λ(1,3,0,0,0) + 2λ(1,1,3,3,0) + λ(1,2,2,3,0) = 0.

The equations generated by α2 are

2λ(2,2,0,0,0) + λ(1,1,2,0,0) + λ(2,3,3,0,0) = 0,

λ(2,2,0,0,0) + 2λ(1,2,2,3,0) + λ(2,2,2,2,0) = 0.

The equations generated by α3 are

2λ(1,1,2,0,0) + 2λ(1,2,2,3,0) = 0,

2λ(1,1,2,0,0) + λ(1,1,1,1,0) + λ(1,1,3,3,0) = 0,

λ(1,1,2,0,0) + 2λ(1,1,1,2,3) + λ(1,1,2,2,2) = 0.

And the only equation generated by α4 is

2λ(1,1,1,1,0) + 2λ(1,1,1,2,3) = 0.

From the above equations we can see that the system (Aut-DFCOL) for d = 4 is equivalent
to the system

λ(1,3,0,0,0) = −λ(2,3,3,0,0) = −λ(1,1,2,0,0) = λ(2,2,0,0,0) = λ(1,2,2,3,0) = −λ(1,1,3,3,0),

λ(0,0,0,0,0) = λ(1,1,1,1,0) = λ(2,2,2,2,0) = −λ(1,1,1,2,3),

λ(0,0,0,0,0) + 3λ(1,3,0,0,0) = 0,

−λ(1,3,0,0,0) − 2λ(0,0,0,0,0) + λ(1,1,2,2,2) = 0.

(5.2.17)

Hence, we can just set λ(0,0,0,0,0) = 1 and generate a Nullstellensatz Dual Certificate of
degree 4 for (FCOL) using the above equations.
It is not hard to see that K5 has a degree d = 8 certificate. Indeed, we can add to the
system (5.2.17) the equations

2λ(2,2,2,2,0) + λ(1,1,2,2,2) + λ(2,2,2,3,3) = 0,

2λ(1,2,2,3,0) + 2λ(2,2,2,3,3) = 0,

2λ(1,2,2,3,0) + 2λ(1,1,2,2,2) = 0.

(5.2.18)
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Using the equalities λ(2,2,2,2,0) = λ(0,0,0,0,0) and λ(1,3,0,0,0) = λ(1,2,2,3,0), we conclude that
λ(0,0,0,0,0) = λ(1,3,0,0,0). However, the equation

λ(0,0,0,0,0) + 3λ(1,3,0,0,0) = 0,

implies that λ(0,0,0,0,0) = 0 and our claim follows.

Remark 5.2.10. Using computing software, we found that K6 has a minimal Nullstellen-
satz Certificate for (FCOL) of degree 10 and K7 has a minimal Nullstellensatz Certificate
for (FCOL) of degree 14. However, we could not find any short proof of this statement.
As far as we are aware of, the above example shows the first proof (without the aid of
computing software) that K5 has a Nullstellensatz Certificate of degree 9 for (BCOL).

5.2.2 Fourier Analysis and Nullstellensatz Certificates

Recall from the last section that a graph G = (V,E) is not k-colorable if and only if the
system

guv(α) = 0, ∀{u, v} ∈ E, (COL)

has no solution α ∈ ZVk . By the Group Nullstellensatz, (COL) has no solution if and only
if there exist functions fuv ∈ L2(ZVk ) such that∑

{u,v}∈E

fuvguv = 1. (FNCERT)

From the way we derived the system (FCOL) and (BCOL), the following theorem should
be no surprise at all.

Theorem 5.2.11. Let d ≥ 1 and let Td be the set of multi-indexes of size at most d.
Then, G has a Nullstellensatz Certificate of degree d for (FCOL) if and only if there exist
functions fuv ∈ L2(ZVk ) with Fourier support contained in Td such that (FNCERT) holds.

Proof. By Corollary 5.2.2, G has a Nullstellensatz Certificate for (FCOL) of degree d if
and only if there exist polynomials ruv with {u, v} ∈ E of degree at most d such that∑

{u,v}∈E

ruv(x)quv(x) ≡ 1 mod IG,k.

Now, suppose that

ruv(x) =:
∑
|β|≤d

ruvβ x
β, ∀{u, v} ∈ E,
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and define the functions
fuv(α) :=

∑
|β|≤d

ruvβ κβ(α).

Then, for every α ∈ ZVk and {u, v} ∈ E we have

fuv(α)guv(α) =

∑
|β|≤d

ruvβ κβ(α)

(∑
β

ĝuv(β)κβ(α)

)
,

=

∑
|β|≤d

ruvβ e
2πi
k

∑
u∈V βuαu

(∑
r∈Zk

erαu
2πi
k e(k−r)αv 2πi

k

)
= ruv(x)quv(x),

where xu := eαu
2πi
k for every u ∈ V . In particular,∑

{u,v}∈E

fuvguv = 1.

The converse is similar.

Example 5.2.12. It is possible to use (COL) and an a simple inclusion-exclusion argument
to find (large) Nullstellensatz Certificates as follows. Let {u1, v1}, {u2, v2}, . . . , {um, vm} ∈
E be any enumeration of the edges of a non-k-colorable graph G. Let fu1u1 := 1 and for
every 2 ≤ s ≤ m define the functions

fusvs := 1−

(
s−1∑
r=1

gurvrfurvr

)
.

Then,
m∑
s=1

gusvsfusvs = 1.

Indeed, for each {u, v} ∈ E, let Suv be the support of the function guv. Let us define the
sets

Rs := Susvs \

(⋃
r<s

Survr

)
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for every s ∈ [m]. Then, since G is not k-colorable, the sets R1,R2, . . . ,Rm form a
partition of the set Znk . We claim that

gusvsfusvs(α) =

{
1 if α ∈ Rs,

0 otherwise.
(5.2.19)

hence, proving our initial claim. We use induction on s with the cases s = 1 being trivial.
Suppose that for every r < s, the function gururfvrvr satisfies (5.2.19). Now, notice that

gusvsfusvs = gusvs − gusvs

(
s−1∑
r=1

gurvrfirjr

)
.

But then, our induction hypothesis implies that the support of gusvsfusvs is equal to

Sisjs \

(⋃
r<s

(Sisjs ∩Rr)

)
= Rs,

and the statement follows.

From the convolution theorem, we see that (FNCERT) is equivalent to∑
{u,v}∈E

ĝuv ∗ f̂uv(α) = δ0(α). (5.2.20)

We can rewrite the above equation as follows. For each {u, v} ∈ E, consider the matrices

Auv(α, β) :=

{
1 α− β = r(eu − ev), for some r ∈ Zk,
0 else.

Then, we see that Auv is the adjacency matrix of the Cayley graph Cay(ZVk ,Suv) where
Suv : {r(eu − ev) : r ∈ Zk}. Moreover, (5.2.20) is equivalent (up to some constant factor)
to the system of linear equations. ∑

{u,v}∈E

1

k
Auvf̂uv = δ0. (5.2.21)

Using the results from Chapter 3 and the properties of the functions guv, we can summarize
the properties of the matrices Auv in the following proposition.
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Proposition 5.2.13. Let G = (V,E) be a graph. For each {u, v} ∈ E let Auv be as above.
Then,

1. For every α ∈ ZVk , the character κα ∈ ẐVk is an eigenvector of Auv with associated
eigenvalue equal to kguv(α).

2. The matrix 1
k
Auv defines a projection of L2(ZVk ) onto the space of all functions

spanned by the characters of the form κα with αu = αv. In particular, the equa-
tion 1

k2A
2
uv = 1

k
Auv holds.

3. For every pair of edges {u1, v1}, {u2, v2} ∈ E the matrices Au1v1 and Au2v2 commute.

4. Let F ⊆ E be any subset of edges and let T ⊆ F be a spanning forest of F . Then,

1

k|F |

∏
uv∈F

Auv =
1

k|T |

∏
uv∈T

Auv. (5.2.22)

We also have an interpretation of Dual Nullstellensatz Certificates as follows. First,
notice that if we want to obtain Nullstellensatz Certificates of degree d, then the system
(5.2.21) should be ∑

{u,v}∈E

1

k
Auvf̂uv = δ0, supp(f̂) ⊆ Td. (5.2.23)

By Fredholm’s Theorem of the Alternative, (5.2.23) has no solution if and only if there
exists some function h ∈ L2(ZVk ) such that

Auvĥ(α) = 0, ∀|α| ≤ d, ∀{u, v} ∈ E,
ĥ(0) = 1.

(5.2.24)

Equivalently, h ∈ L2(ZVk ) will be a Dual Nullstellensatz Certificate if and only if

supp
(
ĥguv

)⋂
Td = ∅, ∀{u, v} ∈ E,∑

α∈Zk

h(α) = 1.
(5.2.25)
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5.3 Girth and Nullstellensatz Certificates

In this section we will take a closer look at the structure of the system (DFCOL). In
particular, we will see that it is possible to exploit the sparsity of a graph to construct
Dual Nullstellensatz Certificates and hence, obtain lower bounds for the degrees of Null-
stellensatz Certificates. Throughout this section we will always assume that G = (V,E)
is a simple, connected graph with at least two vertices. We start with a very simple
observation.

Lemma 5.3.1. Let Z0 be the set of all multi-indexes in ZVk of size congruent with zero
modulo Zk. Let T ⊆ E be a spanning tree of G, then

Z0 =

α ∈ Zk : α =
∑
{u,v}∈T

ruv(eu − ev), ruv ∈ Zk

 . (5.3.1)

Proof. The proof is by induction on |V |. Clearly, if |V | = 2 then G has a single edge and
the result follows. Suppose that the result holds for every connected graph with at most
n− 1 vertices.
Let G be a connected graph with n vertices and let T ⊆ E be a spanning tree of G. Let
u ∈ V be a leaf of T with {u, v} ∈ T . For every α ∈ Z0 consider the multi-index α̂ ∈ ZV \{v}k

defined by

α̂w =

{
αw if w 6= u,

αu + αv if w = u.

By our induction hypothesis, as the graph G \ {u, v} is connected, we can write α̂ as

α̂ =
∑

{u′,v′}∈T\{u,v}

ru′v′(eu′ − ev′).

Hence,

α =
∑

{u′,v′}∈T\{u,v}

ru′v′(eu′ − ev′) + αv(ev − eu),

thus Z0 is contained in the right hand side of 5.3.1. The reverse inclusion is immediate.

The above lemma naturally motivates the following definitions. For each 0 ≤ ` ≤ |E|
let us denote by M` the set of all multi-indexes that can be written as a combination of
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exactly ` different multi-indexes of the form eu − ev with {u, v} ∈ E. In other words, M`

is the set of all multi-indexes α ∈ ZVk such that

α =
∑
{u,v}∈F

ruv(eu − ev),

for some set of edges F ⊆ E with |F | = ` and ruv ∈ Zk \ {0} for each {u, v} ∈ F . Notice
that for two different ` and `′ the setsM` andM`′ might intersect. In fact, the way these
sets intersect is characterized by all the Zk-circulations of the graph G (see [7] for basic
results on Zk-circulations). Instead, we can study the partition of Z0 given by the sets

N` :=M` \

( ⋃
j≤`−1

Mj

)
.

The following lemma relates the structure of the system (DFCOL) with the sets N`.

Lemma 5.3.2. Let ` ≥ 1 be a positive integer and let α ∈ N`. Then, for every edge
{u, v} ∈ E and every r ∈ Zk we have that

α + r(eu − ev) ∈ N`−1 ∪N` ∪N`+1.

Moreover, if α + r′(eu − ev) ∈ N`−1 for some r′ ∈ Zk, then

α + r(eu − ev) ∈ N`−1 ∪N` ∀r ∈ Zk.

Proof. Let α ∈ N`, {u, v} ∈ E and r ∈ Zk be as in the statement. Suppose that α+ r(eu−
ev) ∈ Nj for some j < `− 1. Hence, there exist some F ⊆ E such that |F | = j and

α + r(eu − ev) =
∑

{u′,v′}∈F

ru′v′(eu′ − ev′).

for some ru′v′ ∈ Zk. Hence, if we let F ′ = F ∪ {u, v} then

α =
∑

{u′,v′}∈F ′
ru′v′(eu′ − ev′),

for some ru′v′ ∈ Zk. In particular, α ∈Mj+1 with j+1 < `. This contradicts the definition
of N` and the claim follows.
Now, suppose that α + r′(eu − ev) ∈ N`−1 and let F ⊆ E be such that |F | = `− 1 and

α + r′(eu − ev) =
∑

{u′,v′}∈F

ru′v′(eu′ − ev′).
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Then, for every r ∈ Zk we have

α + r(eu − ev) =
∑

{u′,v′}∈F

ru′v′(eu′ − ev′) + (r − r′)(eu − ev) ∈M` ∪M`−1.

The claim follows.

Lemma 5.3.3. Let α ∈ N` be such that

α =
∑
{u,v}∈F

ruv(eu − ev), (5.3.2)

for some set of edges F ⊆ E with |F | = ` and some ruv ∈ Zk \ {0} with {u, v} ∈ F . Then,

1. F is a forest of G.

2. Let T ⊆ F be a connected component of F . Then,

αT :=
∑

v∈V (T )

αvev ∈ N|T |.

In particular, αT has size congruent with zero modulo Zk.

Proof. 1. Suppose that F has a cycle and let F ′ be a spanning forest of F . Since α is
supported on V (F ) by our previous lemma, we can write α as

α =
∑

{u,v}∈F ′
r′uv(eu − ev).

Hence, α ∈M|F ′| with |F ′| < |F | = ` which is a contradiction.

2. Let T ⊆ F be a connected component of F . Then,

α =
∑
{u,v}∈T

ruv(eu − ev) +
∑

{u,v}∈F\T

ruv(eu − ev).

As T is a connected component, we see that

αT =
∑

v∈V (T )

αvev =
∑
{u,v}∈T

ruv(eu − ev) ∈M|T |.
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Now, suppose that αT ∈ Nj for some j < |T | and let F ′ be a forest of G such that
|F ′| = j and

αT =
∑

{u,v}∈F ′
r′uv(eu − ev).

In particular,

α =
∑

{u,v}∈F ′
r′uv(eu − ev) +

∑
{u,v}∈F\T

ruv(eu − ev),

with |F ′ ∪ (F \ T )| < ` which is a contradiction.

By the above lemma, a multi-index α ∈ N` can always be described by a labeled forest
having exactly ` edges. For instance, if F is a forest with ` edges satisfying (5.3.2), then
we can view α as the forest F where each vertex u ∈ V has been given the label αu. Of
course, such description is not always unique as we may find different ways of writing the
multi-index α using ` edges of the graph. Nevertheless, as the following lemma shows, if `
is small and α has two different descriptions, then the graph must have a small cycle.

Lemma 5.3.4. Let α ∈ N` for some ` ≥ 1. Suppose that F and F ′ are two different
forests of G such that |F | = |F ′| = ` and

α =
∑
{u,v}∈F

ruv(eu − ev) =
∑

{u,v}∈F ′
r′uv(eu − ev), (5.3.3)

for some ruv, r
′
uv ∈ Zk \ {0}. Then, F ∪ F ′ has a cycle of length less than or equal to 2`.

Proof. Without loss of generality, let us assume that V = [n] for some integer n ≥ 1 and

α =
∑

{u,v}∈F,u<v

ruv(eu − ev) =
∑

{u,v}∈F ′,u<v

r′uv(eu − ev), (5.3.4)

80



for some forests F and F ′ as in the statement of the lemma. Then,

0 =
∑
{u,v}∈F,
u<v

ruv(eu − ev)−
∑

{u,v}∈F ′,
u<v

r′uv(eu − ev),

=
∑

{u,v}∈F∩F ′,
u<v

(ruv − r′uv)︸ ︷︷ ︸
:=r′′uv

(eu − ev) +
∑

{u,v}∈F\F ′,
u<v

(ruv)︸︷︷︸
:=r′′uv

(eu − ev) +
∑

{u,v}∈F ′\F,
u<v

(−r′uv)︸ ︷︷ ︸
:=r′′uv

(eu − ev),

=
∑

{u,v}∈F∪F ′,
u<v

r′′uv(eu − ev).

Thus,

0 =
∑
u∈V

 ∑
{u,v}∈F∪F ′,

u<v

r′′uv −
∑

{u,v}∈F∪F ′,
v<u

r′′uv

 eu. (5.3.5)

Let F ′′ ⊆ F ∪ F ′ be the set of edges {u, v} ∈ F ∪ F ′ with u < v such that r′′uv 6= 0. Since
F and F ′ are different, we have that r′′ 6= 0 and hence F ′′ 6= ∅. Moreover, by (5.3.5), the
graph G′′ := (V, F ′′) has no vertices of degree one. Thus, G′′ contains a cycle of size less
than or equal to |F ′′| ≤ |F ∪ F ′| ≤ 2`.

Remark 5.3.5. The above lemma can be strengthened a little more. Indeed, suppose that
F and F ′ are forests as in the statement where each has at least three leaves, then it is not
hard to see that F ∪ F ′ actually has a cycle of length strictly less than 2`.

If the graph G has no cycles of length less than or equal to 2`, i.e. G has girth at least
2` + 1, then for every α ∈ N` there will be a unique forest F (α) with ` edges satisfying
(5.3.2). In particular, we can represent α using the labeled forest F (α).

Example 5.3.6. Let G = K11 and consider the multi-index α = (1, 4, 7, 8, 3, 4, 4, 5, 5, 9, 0) ∈
Z11

10. Let us find ` ∈ [10] such that α ∈ N`. We can use a simple greedy algorithm to find
this. First, we start by finding pairs of coordinates whose sum is equal to zero modulo 10.
Such pairs are (α1 = 1, α9 = 9), (α3 = 7, α5 = 3) and (α8 = α9 = 5). Now, we seek triples
of numbers whose sum is congruent to zero in the remaining values α2 = 4, α4 = 8, α6 = 4
and α7 = 4. No such triple exists, thus we obtain a partition of the support of α given by
the sets U1 := {1, 9}, U2 := {3, 5}, U3 := {8, 9} and U4 = {2, 4, 6, 7}. Since G = K11, we
see that

α = (e1 − e9) + 3(e5 − e3) + 5(e8 − e9) + 2(e2 − e4) + 2(e2 − e6) + 4(e7 − e6) ∈M5.
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But α /∈ M4, otherwise the size of the support of α would be at most 8, however the size
of the support of α is 10. Hence, α ∈ N5. Notice that we can represent α with the forests:

1

9

3

7

5

5

4

4

4

8

,

1

9

3

7

5

5

4

4

4

8

, and so on...

We now state the main result of this section.

Theorem 5.3.7. Let G = (V,E) be non-3-colorable graph with minimal Nullstellensatz
Certificate for (FCOL) of degree d∗. If G has girth at least six, then

d∗ ≥ 6.

Proof. Suppose that G has girth at least six. We will prove that G has a Dual Nullstel-
lensatz Certificate of degree three for (FCOL). By Theorem 5.2.1 and Corollary 5.2.3 this
implies that a minimal Nullstellensatz Certificate for (FCOL) must have degree at least
six.
First, notice that if α ∈ ZVk has size |α| ∈ {0, 3}, then the support of α has at most three
vertices. In particular, the support of the multi-indexes of the form α+ r(eu− ev) for some
{u, v} ∈ E and some r ∈ Zk has at most five vertices. Since G has girth at least six, then
the subgraph induced by the vertices in the support of α+r(eu−ev) is necessarily a forest.

Consider the vector λ := (λα)|α|≤6 defined by the following table.
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Type α λα Induced Graph

(i) 0 1 –

(ii) eu − ev −1
2

1 2

(iii) eu + ev + ew
1
2

1

1 1

(iv) 2eu + 2ev + 2ew
1
2

2

2 2

(v) eu − ev + eu′ − ev′ 1
4

1

2 2

1

(vi) eu − ev + eu′ − ev′ 1
2

1

2 1

2

(vii) eu − ev + eu′ − ev′ −1
2

2

2 1

1
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Type α λα Induced Graph

(viii) eu − ev + eu′ − ev′ −1
2

1

2 1

2

(ix) eu − ev + eu′ − ev′ 1
2

1

1 2

2

(x) eu + ev + ew + eu′ − ev′ −1
4

1

1 1 1

2

(xi) eu + ev + ew + eu′ − ev′ −1
2

1

1 1 1

2

(xii) eu + ev + ew + eu′ − ev′ −1
2

1

1 1

1 2

α 0 Any other |α| ≤ 6

We claim that λ is a Dual Nullstellensatz Certificate of degree 3. Clearly, since λ0 = 1 6= 0,
we only need to prove the λ is a solution to (DFCOL), i.e. we need to verify that the
equation

λα + λα+eu′−ev′ + λα+ev′−eu′ = 0 (F)

holds for every multi-index α ∈ {0, 3} and every {u′v′} ∈ E. Notice that this reduces to
prove that if α is of any of the types (i), ..., (xi) and there exists some edge {u′, v′} ∈ E
such that |α + r(eu′ − ev′)| ∈ {0, 3} for some r ∈ Z3, then the equation (F) holds.
In order to ease notation, we will identify each of the variables λα with the labeled graph
induced by the vertices in the support of α. For instance, say we have a multi-index
α̃ := eu + ev + ew and an edge {u′, v′} ∈ E such that the graph induced by the vertices
u, v, w, u′ and v′ only contains the edges {u, v}, {v, w}, {u′, v′} and {u′, w} (i.e. α̃+eu′−ev′
is of type (xi) in the table). Then, the variable λα̃+eu′−ev′ (whose value equals −1

2
) will be

represented by the figure

1

1 1 1

2 .
(−1

2
)
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We will also write equations using these graphs. For instance, the multi-index α̃ has size
three and hence the equation

λα̃ + λα̃+eu′−ev′ + λα̃−eu′+ev′ = 0

appears in (DFCOL) (of degree 3). Thus, the above equation can be written as

1

1 1

+ 1

1 1 1

2 + 1

1 1 2

1 =0.
(1

2
) (−1

2
) (0)

(5.3.6)

Notice that the multi-index α̃− eu′ + ev′ does not appear on the table so λα̃−eu′+ev′ = 0.
We continue the proof of the theorem by considering the following cases.

1. Type (i). Suppose that α is of type (i). Then, α = 0 and for every edge {u, v} ∈ E
the equation

λ0 + λeu−ev + λev−eu = 1− 1

2
− 1

2
= 0, (5.3.7)

shows that (F) holds for any multi-index of type (i). Notice that we can write the
above equation using the graph representation of the multi-indexes:

+ 1

2

+ 2

1

=0
(1) (−1

2
) (−1

2
)

(5.3.8)

2. Type (ii). Suppose that α := eu−ev is of type (ii). Then, α has size three and hence,
for every {u′v′} ∈ E the equation (F) holds. There are three cases we consider:

1. Suppose that {u, v} = {u′, v′}, then (F) is the same as equation (5.3.8).

2. Suppose the graph induced by u, v, u′ and v′ has two disjoint edges. Thus, (F)
is the equation:

1

2

+ 1

2 2

1 + 1

2 1

2 =0
(−1

2
) (1

4
) (1

4
)

(5.3.9)
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3. Suppose the graph induced by u, v, u′ and v′ has only two meeting edges. Then
(F) can be either

1

2

+ 1

1 1

+ 1

2

=0
(−1

2
) (1

2
) (0)

(5.3.10)

or,

2

1

+ 2

2 2

+ 2

1

=0
(−1

2
) (1

2
) (0)

(5.3.11)

4. Suppose the graph induced by u, v, u′ and v′ has only three edges. Since G has
girth six, such graph cannot have a three cycle. Thus, the equation (F) can be
either

1

2

+ 1

2 2

1 + 1

2 1

2 =0
(−1

2
) (0) (1

2
)

(5.3.12)

or,

2

1

+ 2

1 2

1 + 2

1 1

2 =0.
(−1

2
) (1

2
) (0)

(5.3.13)

3. Type (iii). Suppose that α := eu + ev + ew is of type (iii) with {u, v}, {v, w} ∈ E.
Then, for every {u′, v′} ∈ E the equation (F) appears in (DFCOL).

1. If {u′, v′} is equal to either {u, v} or {v, w}, then (F) equals the equation
(5.3.10).

2. If {u′, v′} meets one of {u, v} or {v, w}, then (F) equals to either

1

1 1

+ 1

1 2

2 + 1

1

1 =0,
(1

2
) (−1

2
) (0)

(5.3.14)
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or,

1

1 1

+ 1

2 1

2 + 1

1

1 =0.
(1

2
) (−1

2
) (0)

(5.3.15)

3. If {u′, v′} is disjoint from the edges {u, v} or {v, w} and no other edge is in the
graph induced by the vertices u, v, w, u′ and v′, then (F) equals to

1

1 1

+ 1

1 1

1

2

+ 1

1 1

2

1

=0.
(1

2
) (−1

4
) (−1

4
)

(5.3.16)

4. If {u′, v′} is disjoint from the edges {u, v} or {v, w} and the graph induced by
the vertices u, v, w, u′ and v′ contains another edge, then (F) is equal to either

1

1 1

+ 1

1 1 1

2 + 1

1 1 2

1 =0,
(1

2
) (−1

2
) (0)

(5.3.17)

or,

1

1 1

+ 1

1 1

1 2 + 1

1 1

2 1 =0.
(1

2
) (1

2
) (0)

(5.3.18)

Notice that the graph induced by the vertices u, v, w, u′ and v′ cannot have five
edges as this would imply the existence of a cycle of length less than or equal
to five.

Type (iv). Suppose that α := 2eu + 2ev + 2ew is of type (iv) with {u, v}, {v, w} ∈ E. Since α
has size six and G has no cycles of length three, the only edges {u′, v′} ∈ E for which
|α + eu′ − ev′| ∈ {0, 3} are precisely the edges in the graph induced by the vertices
u, v and w. Thus, the only equation on which λα appears is (5.3.11).

Type (v). Suppose that α = eu − ev + eu′ − ev′ is of type (v) with {u, v}, {u′, v′} ∈ E. Since
α has size six and there is no edges between the vertices u, v and u′, v′, by the girth
constraints of the graph, the variable λα only appears on equations of the form (5.3.9).
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Type (vi). Suppose that α = eu − ev + eu′ − ev′ is of type (vi) with {u, v}, {u′, v}, {v′, v} ∈ E.
Then, λα appears in the following equations:

1. The equations of the form (5.3.12).

2. The equations of the form

1

2 1

2 + 1

1 2

2 + 1 2 =0,
(1

2
) (−1

2
) (0)

(5.3.19)

Type (vii). Suppose that α = eu − ev + eu′ − ev′ is of type (vii) with {u, u′}, {u′, v′}, {v, v′} ∈ E.
Then, λα only appears on the equations of the form (5.3.14) and (5.3.19).

Type (viii). Suppose that α = eu− ev + eu′ − ev′ is of type (viii) with {u, u′}, {u′, v′}, {v, v′} ∈ E.
Then, λα only appears on the equations of the form

(a) 1. Equations of the form (5.3.15).

(b) 2. Equations of the form

1

2 1

2 + 1

1 2

2 + 1 2 =0,
(−1

2
) (1

2
) (0)

(5.3.20)

Type (ix). Suppose that α := eu − ev + eu′ − ev′ is of type (ix) with {u, u′}, {u′, v′}, {u′, v} ∈ E.
Then, λα only appears on the equations of the form (5.3.20).

Type (x). Suppose that α := eu+ev+ew+eu′−ev′ is of type (x) with {u, v}, {v, w}{u′, v′} ∈ E.
Since there are no edges between the vertices u, v, w and u′, v′, λα appears only on
the equations of the form (5.3.16).

Type (xi). Suppose that α := eu+ev+ew+eu′−ev′ is of type (xi) with {u, v}, {v, w}, {w, u′}, {u′, v′} ∈
E. Then, λα only appears on the equations of the form (5.3.17).

Type (xii). Suppose that α := eu+ev+ew+eu′−ev′ is of type (xi) with {u, v}, {v, w}, {v, u′}, {u′, v′} ∈
E. Then, λα only appears on the equations of the form (5.3.18).
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We should point out that the vector λ of the above theorem is not a Dual Nullstellensatz
Certificate of degree 6. Indeed, if G is not 3-colorable, then it has vertex v ∈ V of degree at
least three. Now, suppose that α := 2eu + 2ev + 2ew is of type (iv), with {u, v}, {v, w} ∈ E
and let v′ ∈ V some other neighbor of v. Then, the system (DFCOL) (of degree six) has
the equation

λα + λα+ev′−ev + λα−ev′+ev = 0.

However, we see that α + ev′ − ev is of type (ix) and hence

2

2 2

+ 2

1 2

1 + 2

2

2 6= 0.
(1

2
) (1

2
) (0)

(5.3.21)

We believe that it is possible to find Dual Nullstellensatz Certificates of higher degree
for graphs with large girth and chromatic number. In general, suppose that d := 3r for
some r ≥ 2 and G = (V,E) is a non-3-colorable graph with girth at least 6r + 4. Then,
for every multi-index α of size less than or equal to d and every edge {u, v} ∈ E, the
multi-index α + eu − ev is supported in at most 3r + 2 vertices and its induced graph
is necessarily a forest. We might be able to use such local property to construct a Dual
Nullstellensatz Certificate of degree d from a previously constructed Dual Nullstellensatz
Certificate of degree d− 3.

The existence of graphs with large girth and chromatic number is due to Paul Erdös
[24], who introduced the probabilistic method to the field of combinatorics. However, László
Lovász [40] was the first to give an explicit construction of such graphs. An important
family of regular graphs with large girth and chromatic number are the non-bipartite
Ramanujan Graphs introduced by Lubotzky, Phillips and Sarnak [43].

Theorem 5.3.8 ([43]). Let p, q ∈ Z be prime numbers congruent with one modulo 4. If
q is a quadratic residue modulo p, then there exists a (p + 1)-regular graph Xp,q with the
following properties:

1. Xp,q has q(q2−1)
2

vertices.

2. Xp,q has girth greater than or equal to 2 logp(q)

3. χ(Xp,q) ≥ p+1
2
√
p
.
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Their proof is constructive. In fact Xp,q is the Cayley Graph Cay(PSL(F2
q),Sp) where

PSL(F2
q) is the projective special linear group of F2

q and Sp is a set of p + 1 matrices
determined by some particular solutions (a0, a1, a2, a3) of the equation

a2
0 + a2

1 + a2
2 + a2

3 = p.

Example 5.3.9. Let us find out the number of vertices and edges of a non-3-colorable
graph Xp,q of girth at least six. First of all, the chromatic number of Xp,q should be at least
four, thus

p2 + 1

2
√
p
≥ 4 ⇔ p ≥ 62.

The smallest prime number p ≥ 62 congruent with one modulo four is p := 73. Now, the
girth of Xp,q should be greater than or equal to six. Thus,

2 logp(q) ≥ 6 ⇔ q ≥ 733 = 389017.

The smallest prime q ≥ 733 congruent with one modulo four and being a quadratic residue
modulo 73 is q := 389297. In conclusion, there exists a non-3-colorable graph of girth at
least six with

n := 29499399488355888 ≈ 2.9× 1016

number of vertices and m ≈ 1.09× 1018 number of edges.

5.4 Using Degree-Cutter Equations

We can reduce the size of the certificates by carefully appending redundant polynomial
equations to the systems (FCOL) and (BCOL) as follows. Let us denote by IG,k the ideal
generated by the polynomials in (FCOL). By the proof of Proposition 5.1.5, the ideal
IG,k and the ideal generated the polynomials in (BCOL) are equal. For any polynomial
p ∈ IG,k and any solution x ∈ Kn to (FCOL) we have that p(x) = 0, hence we can append
such equation into the polynomial system and hope to obtain lower degree certificates.
Moreover, we have the following lemma.

Lemma 5.4.1. Let p ∈ C[x1, . . . , x|V |] be a polynomial that vanishes on every solution to
(FCOL), then p ∈ IG,k. In other words, the ideal IG,k is radical.

Proof. By Proposition 2.7 of [15] (page 41), every zero dimensional ideal I (i.e. V(I)
is finite) is radical if and only if it contains a square free univariate polynomial. Now,
IG,k is clearly zero dimensional and for any u ∈ V the polynomial xku − 1 is a square free
polynomial in IG,k. The statement follows.
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Now, one way to obtain polynomials p as in the above lemma is to translate basic ‘graph
theoretic’ statements into polynomial equations and add them to (FCOL). For instance, if
a graph G has a Kk as a subgraph, then we know that every proper k-coloring of G must
use all the k colors in such subgraph. We can translate this basic idea into a polynomial
equation as follows.

Lemma 5.4.2. Let G = (V,E) be a non-k-colorable graph. Suppose that G contains a Kk

as a subgraph and let u1, u2, . . . , uk be the vertices of such subgraph. Then, the polynomial

s(x) := (xu1xu2 . . . xuk) + (−1)k,

is in the ideal IG,k.

Proof. By Lemma 5.4.1 we only need to prove that every solution x̄ ∈ CV to (FCOL) is
a zero of the polynomial s. Since all the vertices u1, . . . , uk have an edge in common, for
every solution x̄ to (FCOL) the values x̄uj with j ∈ [k] are different, in particular they are
all the possible k-th roots of the unity. Hence,

x̄u1x̄u2 . . . x̄uk = e
2πi
k e2 2πi

k · · · e(k−1) 2πi
k = (−1)k+1.

The statement follows.

We obtain the following interesting result.

Theorem 5.4.3. Let G = (V,E) be a graph and let k ≥ 2 be an odd integer. Consider the
subgroup

Γk := 〈eu1 + · · ·+ euk : u1, . . . , un ∈ V form a k-clique 〉 ⊆ ZVk ,
i.e. Γk is the group generated by all the multi-indexes of the form eu1 + · · · + euk where
u1, u2, . . . , uk form a Kk. If there exists an edge {u, v} ∈ E such that eu− ev ∈ Γk, then G
is not k-colorable.

Proof. Once again, consider the sets

PF := {pw, quv : w ∈ V, {u, v} ∈ E}, and

PFd := {xαp : |α| ≤ d, p ∈ PF},
(5.4.1)

for integers d ≥ 1. Let Vd := spanC{PFd } be the complex vector space spanned by the
polynomials in PFd . By Lemma 5.4.2, there exists some d∗ such that for every set of vertices
u1, u2, . . . , uk of a k-clique in G, we have

(xu1xu2 . . . xuk)− 1 ∈ Vd∗ .
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Hence, if λ ∈ (PFd∗)◦ is in the annihilator of PFd∗ , then

λxu1xu2 ...xuk
= λ1.

In particular, every solution λ to (DFCOL) (of degree d∗) satisfies

λeu1+···+euk = λ0.

Moreover, for any given α ∈ ZVk , we have that

xα (xu1xu2 . . . xuk − 1) ∈ Vd∗+|α|.

Thus, every solution λ to (DFCOL) (of degree d∗ + |α|) satisfies the equation

λeu1+···+euk+α = λα.

Now, suppose that there exists some edge {u, v} ∈ E such that eu− ev ∈ Γk. Then, by the
above discussion, for a sufficiently large degree d, every solution λ to (DFCOL) (of degree
d) satisfies

λ0 = λeu−ev = λ2(eu−ev) = · · · = λ(k−1)(eu−ev).

Thus, the equation

λ0 + λeu−ev + λ2(eu−ev) + · · ·+ λ(k−1)(eu−ev) = 0

implies that λ0 = 0 and G has a Nullstellensatz Certificate of degree d for its non-k-
colorability.

Example 5.4.4. Consider the graph H discussed at the beginning of the chapter. We can
use Theorem 5.4.3 to prove that H is not 3-colorable (see Figure 5.3 below). Indeed, notice
that

e9 − e10 = 2(e10 + e1 + e5) + (e1 + e2 + e3) + 2(e2 + e3 + e4) + . . .

· · ·+ (e5 + e6 + e7) + 2(e6 + e7 + e8) + (e9 + e4 + e8).

Thus, e9 − e10 ∈ Γ3 and H is not 3-colorable.

Notice that the proof of Theorem 5.4.3 states that if eu − ev ∈ Γk for some edge
{u, v} ∈ E, then there exists some degree d such that every solution λ to (DFCOL) (of
degree d) satisfies

λ0 = λeu−ev = λ2(eu−ev) = · · · = λ(k−1)(eu−ev).

In such case, we would guarantee the existence of a Nullstellensatz certificate of degree d
for (FCOL). For the case of 3-colorability we can find such d using the following lemma:
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Figure 5.3: The graph H.

Lemma 5.4.5. Let G = (V,E) be a graph, let k = 3 and let λ be a solution to (DFCOL)
(of degree d) for some integer d ≥ k. Suppose that u, v and w are the vertices of a 3-cycle
in G and let β ∈ {eu + ev + ew, 2eu + 2ev + 2ew} ⊆ ZVk . Then,

λα = λα+β

for every α ∈ ZVk such that

1. |α| ≤ d− k, or

2. |α| = d and αu + αv + αw ≥ 3, or

3. |α| = d, {αu, αv, αw} = {2, 0, 0} and β = eu + ev + ew.

Proof. Let α and β be as in the statement, by Corollary 5.2.3 we may assume that d and
|α| are congruent with zero modulo k = 3. We will prove that system (DFCOL) (of degree
d) contains the equations

λα = −λα+eu+2ev − λα+2eu+ev ,

= −λα+eu+2ew − λα+2eu+ew ,

= −λα+ev+2ew − λα+2ev+ew ,

(5.4.2)

and
λα+β = −λα+β+eu+2ev − λα+β+2eu+ev ,

= −λα+β+eu+2ew − λα+β+2eu+ew ,

= −λα+β+ev+2ew − λα+β+2ev+ew .

(5.4.3)
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By the way we have chosen β, it is not hard to see that if we sum up the equations in
(5.4.2) and (5.4.3), the equation

3λα = 3λα+β

follows. We consider the three cases separately.

1. Suppose that |α| ≤ d − k and β = eu + ev + ew. Since |β| ≤ k, we have that
|α+ β| ≤ d. Thus, the equations (5.4.2) and (5.4.3) will appear on (DFCOL) as the
edges {u, v}, {u,w} and {v, w} are in G.
Now, suppose that |α| ≤ d − k and β = 2eu + 2ev + 2ew. It is not hard to see that
for every edge {u′, v′} ∈ {{u, v}, {u,w}, {v, w}} we have

|α + β + (e′u − e′v)| ≤ d.

Indeed, this readily follows from the equation (2, 2, 2) + (1, 2, 0) ≡ (0, 1, 2) mod Z3
3.

In particular, the equation

λα+β+(e′u−e′v) + λα+β+2(e′u−e′v) + λα+β = 0 (5.4.4)

appears in (DFCOL) for every such edge {u′, v′}. However, these equations are
equivalent to the equations in (5.4.3). Since |α| ≤ d−k, the equations (5.4.2) appear
in (DFCOL) as well and the statement follows.

2. Suppose that |α| = d, αu + αv + αw ≥ 3 and β = eu + ev + ew. Then,

{αu, αv, αw} ∈ {{0, 1, 2}, {1, 1, 1}, {1, 1, 2}, {0, 2, 2}, {1, 2, 2}, {2, 2, 2}} ,

and

{αu + 1, αv + 1, αw + 1} ∈ {{1, 2, 0}, {2, 2, 2}, {2, 2, 0}, {1, 0, 0}, {2, 0, 0}, {0, 0, 0}} .

Hence, if {αu, αv, αw} 6= {1, 1, 1} then |α + β| ≤ d and the equations (5.4.2) and
(5.4.3) will appear on (DFCOL).
Now, suppose that {αu, αv, αw} = {1, 1, 1}. Let α′ := α− β, so that |α′| ≤ d− k and
by the above case, the equations

λα′ = λα′+β = λα′+2β.

hold for every solution λ to (DFCOL) (of degree d). In particular, λα = λα+β and
this case follows as well.
Finally, suppose that |α| = d, αu + αv + αw ≥ 3 and β = 2eu + 2ev + 2ew. Then,

{αu + 2, αv + 2, αw + 2} ∈ {{2, 0, 1}, {0, 0, 0}, {0, 0, 1}, {2, 1, 1}, {0, 1, 1}, {1, 1, 1}} .

In particular, |α + β| ≤ d for every such α. Hence, the equations (5.4.2) and (5.4.3)
appear in (DFCOL) (of degree d) and the statement follows.
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3. Suppose that |α| = d, {αu, αv, αw} = {2, 0, 0} and β = eu + ev + ew. Then,

{αu + 1, αv + 1, αw + 1} = {1, 1, 0}.

Hence, |α+β| ≤ d and the equations (5.4.2) and (5.4.3) appear in (DFCOL) (of degree
d). Notice that the above is equivalent to case |α| = d, {αu, αv, αw} = {1, 1, 0} and
β = 2eu + 2ev + 2ew.

Example 5.4.6. We can use the above lemma to show that the graph H has a Nullstel-
lensatz Certificate of degree d := 6 for (FCOL) with k = 3 (see Figure 5.4 for a graphic
interpretation of this proof). Thus, let λ be a solution to (DFCOL) of degree 6. Now, the
multi-index e9 − e10 has size d− k, hence

λe9−e10 = λe9−e10+(e10+e4+e8) = λe9+e4+e8 .

The size of e9 + e4 + e8 is d− k, hence

λe9+e4+e8 = λe9+e4+e8+(2e2+2e3+2e4) = λe9+e8+2e2+2e3 .

The size of α := e9 + e8 + 2e2 + 2e3 is d, however α1 + α2 + α3 = 4 ≥ 3. Thus,

λe9+e8+2e2+2e3 = λe9+e8+2e2+2e3+(e1+e2+e3) = λe9+e8+e1 .

The size of e9 + e8 + e1 is d− k, hence

λe9+e8+e1 = λe9+e8+e1+(2e6+2e7+2e8) = λe9+e1+2e6+2e7 .

Once again, the size of α := e9 + e1 + 2e6 + 2e7 with α5 + α6 + α7 = 4 ≥ 3. Thus,

λe9+e1+2e6+2e7 = λe9+e1+2e6+2e7+(e5+e6+e7) = λe1+e5+e9 .

Finally, the multi-index e1 + e5 + e9 has size d− k and as a consequence

λe1+e5+e9 = λe1+e5+e9+2(e1+e5+e9) = λ0.

The above proves that λe9−e10 = λ0. Similarly, one can prove that λ−e9+e10 = λ0 and the
proof follows.
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Figure 5.4: H has a degree six Nullstellensatz Certificate for (FCOL). Each labelled graph
represents a multi-index (except for the first one).

Proposition 5.4.7 (Odd Wheels). Let n ≥ 3 be an odd integer and let Wn be the wheel
on n + 1 vertices i.e., the graph with vertex set V (Wn) = {0, 1, . . . , n − 1, v} and edge
set E(Wn) = {{i, i+ 1} : i ∈ Zn} ∪ {{i, v} : i ∈ Zn}. Then, Wn has a Nullstellensatz
Certificate of degree d := 3 for (FCOL) with k = 3.

Proof. Let λ be a solution to (DFCOL) (of degree 3). We will prove by induction that the
equations

λ0 = λe0−ei = λen−1−en−1−i

hold for every i ∈ {0, 2, 4, . . . , n− 1}. In particular, since the edge {0, n− 1} is in E(Wn)
and the equations

λ0 = λe0−en−1 = λen−1−e0
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hold, the statement follows.
The base case i = 0 is trivial. Thus, assume that the statement holds for i − 2 ≤ n − 3
and let us prove it for i even. Notice that the sets of vertices {i− 2, i− 1, v}, {i− 1, i, v}
and {n − i + 1, n − i, v}, {n − i, n − 1 − i, v} form 3-cycles in G. Thus, by Lemma 5.4.5,
we have that

λe0−ei = λe0−ei+(ei−1+ei+ev) = λe0+ei−1+ev ,

= λe0+ei−1+ev+2(ei−1+ei−2+ev) = λe0−ei−2

= λ0.

Similarly,

λen−1−en−1−i = λen−1−en−1−i+(en−1−i+en−i+ev),

= λen−1+en−i+ev = λen−1+en−i+ev+2(en−i+en−i+1+ev),

= λen−1−en−1−(i−2)
= λ0.

The claim follows.

The following corollary follows immediately.

Corollary 5.4.8 (De Loera et al. [17]). Let n ≥ 3 be an odd integer and let Wn be the
wheel on n + 1 vertices. Then, Wn has a Nullstellensatz Certificate of degree d = 4 for
(BCOL) with k = 3.

Remark 5.4.9. We must point out that the proof in [17] of the above corollary uses differ-
ent techniques. De Loera et al. [19] also proved that Wn has a Nullstellensatz Certificate
of degree one for (BCOL) over the field F2.
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Chapter 6

Final Remarks and Future Work

In this dissertation we gave a concrete study of the applications of Hilbert’s Nullstellen-
satz to some combinatorial problems such as the Maximum Stable Set Problem and Graph
Colorability Problems. We have seen that, through the lenses of duality, it is possible to ob-
tain a much better understanding of the Nullstellensatz Certificates and the theory behind
them. In particular, when a system of polynomial equations is sparse, the annihilators
of the system are useful if one wants to determine both upper and lower bounds for the
degrees of Nullstellesatz Certificates.

We have introduced new techniques and given new proofs to most of the results known
in the literature. In particular, the results in Section 5.3 shine a new light to the Nullstel-
lensatz Paradigm for Graph Colorability: we have stated a possible structural property a
graph must satisfy in order to have no small degree Nullstellensatz certificates. Although
our results seem to be far from being optimal, we believe that this is the right path to obtain
the so desired family of non-k-colorable graphs with minimal Nullstellesatz Certificates of
large degree.

There are several questions that remain open.

1. Probably the most important open problem is the following:

Problem 6.0.1. For given integers k ≥ 3 and d ≥ k, characterize all non-k-colorable
graphs with minimal Nullstellensatz Certificates for (BCOL) (or (FCOL)) of degree
d.

Moreover, we would like to solve the following problem.
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Problem 6.0.2. Find a non-3-colorable graph whose minimal Nullstellensatz Cer-
tificate for (BCOL) has degree greater than four.

We believe that any non-3-colorable graph of girth at least eight should suffice.

2. In Section 5.2.1 we used basic group theory to determine the degree of a minimal
Nullstellensatz Certificate for (FCOL) to prove the non-3-colorability and non-4-
colorability of the complete graphs K4 and K5 respectively. Using computing soft-
ware, we could determine the degree of a minimal Nullstellensatz Certificate for the
non-5-colorability of K6. However, we could not find a short proof of such finding.
We would like to solve the following problem.

Problem 6.0.3. For every integer k ≥ 6, find the degree of a minimal Nullstellensatz
Certificate for (FCOL) to prove the non-k-colorability of Kk+1.

We believe that such degree should be 2k (for (FCOL)).

3. Let G = (V,E) be a graph and an let k ≥ 2 be an integer. Consider the functions
guv ∈ L2(ZVk ) with {u, v} ∈ E defined as in Section 5, i.e.

guv(α) :=

{
1, if αu = αv,

0, otherwise.

Then, G is not-k-colorable if and only if the function

hG,k :=
∑
{u,v}∈E

guv − 1

is non-negative. In particular, if G is not k-colorable, then there exist functions
r1, r2, . . . , rm ∈ L2(ZVk ) such that

hG,k = r2
1 + r2

2 + · · ·+ r2
m. (6.0.1)

Thus the functions r1, . . . , rm provide a Sums of Squares (SOS) Certificate for the
non-k-colorability of G.

Problem 6.0.4. Given a non-k-colorable graph G, find SOS certificates r1, . . . , rm
with the sparsest Fourier support.
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The above problem is closely related to the recent work of Hamza Fawzi, Pablo Parrilo
and James Saunderson ([25]). We believe this problem can be attacked using their
techniques. It would be interesting to see if these certificates share some relation
with the Nullstellensatz Certificates (e.g. Theorem 5.2.11).

4. Let G = (V,E) be a non-k-colorable graph and let Adzd = bd be the Nullstellensatz
Linear System (NLS) of degree d ≥ 0 for (FCOL). That is, the linear system derived
from the equation ∑

u∈V

su(x)pu(x) +
∑
{u,v}∈E

ruv(x)quv(x) = 1,

where the polynomials su and ruv have degree at most d and the polynomials pu
and quv are as in the definition of (FCOL). If G has a minimal Nullstellensatz
Certificate of degree d∗ for (FCOL), then the support of a (sparse) solution z∗d∗ to
the (NLS) of degree d∗ defines a (small) sub-matrix Bd∗ of Ad∗ which encodes the non-
k-colorability of G. For instance, in Example 5.1.6 and Theorem 5.1.7 we saw that for
the 2-colorability of non-bipartite graphs, the (NLS) contained a much smaller sub-
system encoding an odd cycle in the graph. In particular, this sub-matrix encoded a
well known structural theorem for the 2-colorability of graphs.

Conversely, given a structural theorem characterizing the non-k-colorability of G,
there should exist a corresponding sub-matrix Bd or sub-system derived from Ad for
some d ≥ d∗ exposing such structure (e.g. Lemma 5.4.1). However, we do not have
concrete results linking structures that certify the non-k-colorability of G and the
sub-matrices or sub-systems derived from Ad. Such results should be helpful as one
might use well known theorems in graph theory to deduce properties of the (NLS).
For instance, Maria Chudnovsky, Alex Scott and Paul Seymour recently proved a
series of beautiful results relating the chromatic number of a graph and the existence
of holes (i.e. an induced cycle of length at least four) of prescribed length.

Theorem 6.0.1 (Scott, Seymour [54]). Let G be a graph with no odd holes. Then,

χ(G) ≤ 22ω(G)

,

where ω(G) is the size of the maximum clique of G.

Theorem 6.0.2 (Chudnovsky, Scott, Seymour [11]). Let G be a graph with no holes
of length ≥ `. Then,

χ(G) ≤ φ(`, ω(G)),

for some constant φ(`, ω(G)).
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In particular, if a graph G is not φ(`, ω(G))-colorable, then G must have a hole of
length at least `. Such a hole should be implicit in some sub-system derived from Ad
and hence, it is important to study the structure of matrices Ad in the presence (or
absence) of even and odd holes.

101



References

[1] Noga Alon. Combinatorial Nullstellensatz. Combin. Probab. Comput., 8(1-2):7–29,
1999. Recent trends in combinatorics (Mátraháza, 1995).
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