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Abstract

Regional anthropogenic climate change poses significant risks to the security of water re-

sources for communities throughout the world. Current climate simulations seek to predict

the risks to water resources by employing land surface models (LSMs). While LSMs in-

corporate biogeophysics, heat, albedo, surface water, and shallow subsurface water, they

do not include lateral surface/subsurface flow, groundwater storage, or critical feedbacks

between surface and subsurface hydrology. Consequently, the shortfalls of current models

severely limit our abilities to predict and understand risks to water resources.

Therefore, this study investigates the development of coupling HydroGeoSphere (HGS),

an advanced 3D control-volume finite element surface and variably-saturated subsurface

model, to two separate atmospheric models to capture the interactions between the deep

subsurface, surface, and atmosphere. Initially, HGS was coupled to a simple 0D atmo-

spheric boundary layer (ABL) model, hereafter referred to as the HGS-ABL model. The

coupled HGS-ABL model physically resolves boundary layer dynamics, precipitation, evap-

otranspiration, energy balance, surface water, and groundwater flow. The experimental

simulations showed that current LSMs are too shallow for handling deep root-zones and

do not provide an adequate representation of subsurface heat storage. Furthermore, the

HGS-ABL simulations showed a positive correlation between the soil moisture and the

energy feedbacks.

To transition from a 0D to a 3D atmosphere, this study then coupled HGS to the

Weather Research and Forecasting (WRF) Model, a 3-dimensonal mesoscale nonhydro-

static atmospheric model, hereafter referred to as the HGS-WRF model. HGS replaces
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the land surface components of WRF by providing the actual evapotranspiration (AET)

and soil saturation from the porous media to the atmosphere. In exchange, WRF provides

HGS with the potential evapotranspiration (PET) and precipitation fluxes. The flexible

coupling technique uniquely accepts independent model meshing and projections and links

domains based on their geographic coordinates (i.e., latitude and longitude).

The newly coupled HGS-WRF model was then implemented over the entire California

Basin. This 3D California Basin Model is 14-layers thick with over 400,000 nodes. The geo-

logical model was based on the STATSGO2 soil data, USGS HYDRO1K topographic data,

and USGS water use data. Initially, the HGS model was spun-up with historic precipitation

and PET data (provided by CMIP5). Once the model reached steady state, groundwater

pumping was turned on, and the HGS model was run to present-day conditions. The HGS

California Basin Model simulated similar drawdown rates to the Gravity Recovery and

Climate Experiment (GRACE), a 21st century remote sensing satellite. Finally, the HGS-

WRF model simulated the California Basin for a 200 day period and successfully replicated

the Klamath river, Sacramento river, precipitation, and evapotranspiration fluxes.
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Introduction
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Regional climate change will pose significant risks to the security of water resources

that support human activities throughout the world (Bartholomeus et al., 2011; Karl et al.,

1995; Easterling et al., 2000; Kundzewicz et al., 2007; Sebestyen et al., 2009; Skoulikaris and

Ganoulis , 2011). Projected global warming will cause an increase in evapotranspiration

and a decrease in available water in arid climates (Oki and Kanae, 2006). For example,

streamflow in the Colorado River Basin may decrease by up to 35% from just a 2.5◦C

temperature increase (Vano et al., 2014). Human activities already have played a negative

role on water resources, as seen in California’s Central Valley’s unsustainable loss of water

storage, which loses 31 mm of stored water per year (Famiglietti et al., 2011). Scanlon et al.

(2012) predict that under current pumping conditions, the water reserves of the Central

Valley will last for only another 370 years while portions of the High Plains aquifer may

only have enough water for an additional 81 years.

Climate simulations seek to predict these current and future risks to water resources

by employing land surface models (LSMs). The first generation of LSMs were elemen-

tary bucket models that approximated the subsurface as a single soil layer (Manabe et al.,

1965; Noilhan and Planton, 1989). As models grew in sophistication with the availability

of computer power, land surface modelers employed 1-D vertical soil columns based on

vadose-zone hydrology, biogeophysics, and heat transport; the most prominent of these

is the Noah LSM (McCumber and Pielke, 1981; Gusev and Nasonova, 1998; Mengelkamp

et al., 1999; Chen and Dudhia, 2001).

The Noah LSM was originally developed by Oregon State University as a two layer soil

model for calculations of the sensible and latent heat fluxes. It was later extended by the

National Center for Atmospheric Research (NCAR) as a robust 1-D land surface scheme
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with vertical unsaturated flow, heat transport, and evapotranspiration solved by the mois-

ture based Richards’ Equation, diffusion equation, and the Penman Equation. Although

the Noah LSM was an advancement over previous land surface models, it lacks horizontal

subsurface flow processes and assumes that the soil column remains unsaturated and never

reaches a fully-saturated case at any of the node layers. Once water exceeds saturation, the

Noah LSM removes the excess water as runoff, interflow, or drainage (Chen and Dudhia,

2001). While these assumptions may be reasonable for deep groundwater tables, the Noah

LSM will underestimate soil moisture under heavy rain events or shallow groundwater ta-

bles.

Due to the limitations of the Noah LSM, NCAR advanced their first generation model

to include horizontal two dimensional groundwater flow. This second generation model,

named Noah Distributed, adds in many hydraulic features that were commonly seen in hy-

drologic models, including surface water flow and subsurface percolation (Gochis et al.,

2013). The interflow between columns is achieved utilizing the steady-state Dupuit-

Forchheimer approximation, an analytical equation describing horizontal 1-D flow in an

unconfined aquifer (Gochis and Chen, 2003; Gochis et al., 2013). The Dupuit-Forchheimer

assumption breaks down when groundwater tables are steep - e.g., near pumping wells or

around mountainous topography.

Only recently has ParFlow, a finite difference 3-D groundwater and 2-D surface water

model, been incorporated into Weather Research and Forecasting (WRF) Model, a 3-D

mesoscale atmospheric model, replacing the hydrologic portion of the Noah LSM (Maxwell

et al., 2011). ParFlow strengthens land surface modeling by implementing physics-based

hydrology equations; however, it relies on the 1-D Noah LSM for land surface energy and
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moisture balance. Similarly, CATHY, a 3-D variably saturated subsurface model with sur-

face water routing, was coupled to the Noah-MP (Noah LSM with multi-physics options)

(Niu et al., 2014). There are benefits of continuing to adopt the Noah LSM for the near

surface, including a large user base familiar with the model, its low numerical cost, and its

well-established soil/vegetation data sets. However, evapotranspiration processes are only

solved in the near surface, usually the top two meters, by the 1-D Noah LSM (Maxwell

et al., 2011). Even though the work achieved by coupling an integrated hydrologic model to

the Noah LSM was a drastic improvement for land surface schemes, the current generation

of coupled models are still constrained to the 1-D LSM framework.

In order to extend LSMs beyond the 1-D formation, this study will demonstrate a

novel method of applying an integrated surface/subsurface flow, heat and solute transport

model, HydroGeoSphere (HGS) (Aquanty, Inc., 2015; Therrien and Sudicky , 1996), as a

third generation land surface model coupled to atmospheric models. The method discussed

in this work is currently the most complete LSM approach because of the incorporation

of 2-D surface and 3-D subsurface water flow with evapotranspiration processes into one

global domain, rather than the previous methods of relying on two separate hydrology and

land surface models.

1.1 Thesis Organization

This thesis is organized into 5 chapters and the contents are shown below.

Chapter 2 describes the coupling of HGS to a simple 0D atmospheric boundary layer
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(ABL) model. The coupled model physically resolves boundary layer dy-

namics, precipitation, evapotranspiration, surface energy balance, surface

water, and groundwater flow. Chapter 2 was published in the December

2015 issue of Advances in Water Resources and titled Coupled atmospheric,

land surface, and subsurface modeling: Exploring water and energy feedbacks

in three-dimensions (Davison et al., 2015).

Chapter 3 explains the iterative coupling of Weather Research and Forecasting (WRF),

a 3-dimensonal mesoscale nonhydrostatic atmospheric model, to HydroGeo-

Sphere. The 3D HGS model replaces the land surface components of WRF

by providing the actual evapotranspiration and soil saturation from the

porous media to the atmosphere. In exchange, WRF provides HGS with

the potential evapotranspiration and precipitation fluxes.

Chapter 4 discusses the development of the HGS California Basin Model. Initially, the

HGS model was spun-up with historic precipitation and PET data (provided

by CMIP5). Once the model reached steady state, groundwater pumping

was turned on, and the HGS model run to present-day conditions. Finally,

this chapter implements the HGS-WRF model over California.

Chapter 5 analyses the results from coupling HGS to atmospheric models, and dis-

cusses the future and limitations of coupled models.
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1.2 Contributions to Science

The interactions between the subsurface, surface, and atmosphere are poorly understood.

Currently, there are only a few tools that incorporate the physics of all three domains into

one numerical package. These previous coupled numerical models have significant limi-

tations, including a shallow groundwater assumption, maximum vegetation root depths

of 2 meters (due to the Noah LSM formulation), and coarse model resolutions to match

atmospheric domains.

These above problems are solved by first coupling the HydroGeoSphere (HGS) model

to a simple 0D Atmospheric Boundary Layer (ABL) model. This straightforward model,

referred to as the HGS-ABL model, highlighted the importance of moving land surface

models from a 1-D to a 3-D framework that implicitly includes groundwater, surface wa-

ter, and evapotranspiration processes into a single global domain. It is shown that the

subsurface–specifically groundwater flow–critically alters the atmosphere. It is also demon-

strated that deeper roots buffer the atmosphere during drought conditions by maintaining

higher evapotranspiration rates than shallow roots.

By understanding the fundamental interactions between the subsurface, surface, and at-

mosphere from the HGS-ABL model, HGS was coupled to the three-dimensional Weather

Research and Forecasting (WRF) Model. The HGS-WRF model is currently the most

complete water resource model available today, because the deep subsurface, surface, and

atmosphere are included into one simulation. The HGS-WRF model was then applied to

the California Basin for a 200 day simulation period. To the best of my knowledge, the

coupled model simulation of the California Basin is the first of its kind to:
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• Include deep groundwater flow within a coupled subsurface, surface, and atmospheric

model.

• Include root depths that extend past the 2 meter near surface.

• Implement different spatial and temporal resolutions for the coupled atmospheric and

hydrological models.

• Create the first three-dimensional geological model for the entire California Basin.

• Simulate a fully-integrated surface and subsurface model for the California Basin.

• Simulate the largest application of a coupled three-dimensional subsurface, surface,

and atmospheric model.

1.3 Definition of Variables

Throughout this thesis we implement several variables and constants that appear in em-

pirical and partial differential equations. The following three tables (Tables 1.1, 1.2, and

1.3) define the variables used within this thesis.
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Table 1.1: Global variables.

Variable Name Dimension

t Time T
T Temperature Θ
ρw Density of water ML−3

cw Specific heat of water L2T−2 Θ−1

G Ground heat flux MT−3

PET Potential evapotranspiration LT−1

ET Actual evapotranspiration LT−1

i Precipitation LT−1

A Overlapping elemental area L2

wrfi WRF index (-)
hgsj HGS index (-)
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Table 1.2: Variables used in the HGS model.

Variable Name Dimension

θs Saturated water content (-)
Sw Water saturation (-)
Γex Volumetric fluid exchange between domains L3L−3T−1

Q Volumetric exchange outside the domain L3L−3T−1

q Darcy flux LT−1

K Hydraulic conductivity LT−1

ψ Pressure head L
z Elevation head L
kr Relative permeability (-)
Ss Specific storage L−1

Kox, Koy Manning equation conductances LT−1

φo Surface domain porosity (-)
ho Water surface elevation L
do Depth of surface water L

nx, ny Manning roughness coefficients TL−1/3

s Direction of the maximum surface slope L
kb Thermal conductivity of soil L
D Thermal diffusivity L2T−1

QT Thermal source or sink M2L−1T−3

Ω0 Thermal interaction between the surface/subsurface M2L−1T−3

ρb Density of soil ML−3

cb Specific heat of soil L2T−2 Θ−1

Ecan Canopy evaporation rate LT−1

Tp Transpiration rate LT−1

Es Evaporation rate LT−1

f1, f2, α∗ Fitting functions (-)
RDF Root density function (-)
EDF Energy density function (-)
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Table 1.3: Variables used in the atmospheric models.

Variable Name Dimension

Rnet Net Energy Flux ML−1T−3

α Albedo (-)
SWdn Shortwave solar radiation flux ML−1T−3

Ta Atmospheric temperature Θ
εa Atmospheric emissivity (-)
εs Surface emissivity (-)
σ Stefan-Boltzmann constant MT−3Θ−4

LE Latent heat flux MT−3

H Sensible heat flux MT−3

ρa Density of air ML−3

cp Specific heat of air L2T−2 Θ−1

Ga Atmospheric conductance LT−1

qf Specific humidity in free atmosphere (-)
qa Specific humidity in the ABL (-)
E Surface moisture flux MT−1L−2

W ABL subsidence rate LT−1

ha Height of the ABL L
ra Atmospheric resistance TL−1

rv Vegetative resistance TL−1

q∗ Saturation specific humidity (-)
RH Relative humidity (-)
f100 Cloud cover at 100% RH (-)
RHe e-folding relative humidity (-)
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Chapter 2

HydroGeoSphere
Atmospheric Boundary Layer Model
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2.1 Integrated Hydrologic-Climate Model

Advanced earth system modeling requires a comprehensive understanding of the major

physical processes in the environment, including atmospheric dynamics, precipitation,

evapotranspiration, surface energy balance, surface water, and variably-saturated subsur-

face flow. The goal is to combine the above phenomena into one numerical model, referred

to as HydroGeoSphere-Atmospheric Boundary Layered model (HGS-ABL), conceptually

shown in Figure 2.1, that incorporates the surface, subsurface and simple atmospheric dy-

namics. HGS, a 3-D control-volume finite element surface/subsurface model, handles the

bottom portion of the domain whereas the ABL model, a single 0-D element atmospheric

code, addresses the top portion.

Between the two coupled models, a direct spatially-weighted grid-averaging scheme

manages the energy and water interactions. The HGS-ABL model implements an explicit

sub-time stepping scheme allowing the atmospheric domain to perform multiple smaller

time steps for every larger and more expensive time step that HGS performs. The time

looping procedure, shown in Figure 2.2, illustrates the principal components between the

two models. The ABL model calculates the time-dependent values for potential evapo-

transpiration, atmospheric temperature, ground heat flux, and precipitation. In contrast,

HGS supplies the atmosphere with the actual evapotranspiration (ET ) and ground level

temperature.

A simple 0-D ABL model was chosen as a starting point because it minimizes the

number of independent variables, which simplifies the analysis of the various interactions

between the atmosphere, surface, and subsurface domains. The HGS-ABL model is only
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forced by solar radiation, and it does not require any additional input parameters. The

model has an additional benefit in that it can be readily used for probabilistic simulations

for future climate changes.

Using the coupled model, the results of a simplified vertical column test case are com-

pared with the 1-D Noah-LSM. After the comparison, it is demonstrated that the depth

of the water table plays a pivotal role in determining the temperature and energy bal-

ance. The importance of modeling an adequately thick domain for extended simulations is

also discussed. Finally, this chapter investigates the atmospheric buffering capacity during

drought conditions for a broad range of root-zone depths.

2.1.1 Land Surface Scheme

HGS, originally developed (for subsurface flow) by Therrien and Sudicky (1996), is a three-

dimensional control-volume finite element model. HGS is a physically-based model with

global implicit coupling of the surface and subsurface domains using the common node

or dual-node approach. HGS’ surface domain solves two-dimensional surface flow and

water storage by utilizing the diffusion-wave equation, while the subsurface implements

the Richards’ equation for three-dimensional flow. Solute and energy transport processes

are solved in both domains with the advection-dispersion equation (Graf and Therrien,

2007). Brookfield et al. (2009) successfully verified the HGS land surface processes by

comparing results of test problems to those obtained from the Canadian Land Surface

Scheme (CLASS) (Verseghy , 2000).
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Figure 2.1: Coupled atmosphere, surface and subsurface conceptual model. The dark
lines show a 3-D finite element mesh for the surface/subsurface discretization. The 0-D
atmospheric domain is represented as a single averaged element above the surface.
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Figure 2.2: Coupling flow chart. HydroGeoSphere represents the surface/subsurface com-
ponent while the ABL Model with a sub-time loop handles the atmospheric domain.
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Subsurface

The Richards’ equation for variably-saturated conditions governs the subsurface flow in

HGS. The general form implemented by HGS is:

SwSs
∂ψ

∂t
+ θs

∂Sw
∂t

= ∇ · (K · kr∇ (ψ + z)) +
∑

Γex +Q (2.1)

where Sw is the water saturation, Ss is the specific storage for the porous media, ψ is the

pressure head, t is the time, θs is the saturated water content, K is the hydraulic conduc-

tivity tensor, z is the elevation head, Γex is the volumetric fluid exchange rate between

coupled domains, and Q represents external volumetric fluid sources and sinks. The rela-

tive permeability, kr, is calculated as a function of the water saturation (e.g., (Brooks and

Corey , 1964; Van Genuchten, 1980)). Evapotranspiration is internally calculated based

on the Kristensen and Jensen (1975) method, which takes into account the availability of

water versus the potential evapotranspiration. HGS’ vegetation parameters include root

zone depth and distribution (constant distribution, quadratic decay distribution, or cubic

decay distribution), leaf area index, and soil saturation control.

Surface Water

Surface water flow, an implicitly integrated component of HGS, is solved at every time

step using the common or dual-node approach. In HGS, overland flow is solved for over a

two-dimensional mesh draped over the subsurface, and employs the diffusion wave approx-
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imation:

∂φoho
∂t

=
∂

∂x

(
doKox

∂ho
∂x

)
+

∂

∂y

(
doKoy

∂ho
∂y

)
− doΓex +Q (2.2)

The Manning equation conductances, Kox and Koy, for the x and y directions are repre-

sented as:

Kox =
d

2/3
o

nx

1

[∂ho/∂s]1/2
(2.3)

Koy =
d

2/3
o

ny

1

[∂ho/∂s]1/2
(2.4)

where φo is the surface domain porosity, ho is the water surface elevation, do is the depth

of surface water, nx and ny are the Manning roughness coefficients, and s is the direction

of the maximum surface slope.

Heat Transport

Heat convection and conduction on the land surface and in the subsurface employ the heat

transport equation:

∂ρbcbT

∂t
= −∇ · (qρwcwT − (kb + cbρbD) · ∇T ) +G+QT + Ω0 (2.5)

where T is the temperature, kb is the thermal conductivity of soil, q is Darcy flux, D

is the thermal diffusivity tensor, QT is a thermal source or sink, and Ω0 is the thermal

interaction between the surface/subsurface. The density and specific heat of water are ρw

and cw, respectively. Similarly, the density and specific heat of soil are ρb and cb. The

ground heat flux, G, is calculated by the ABL model (see Eq. 2.7) and only interacts

17



with HGS’ top surface layer. A two dimensional form of Equation 2.5 is used on the

surface domain, whereas the three-dimensional form is used in the subsurface. As with

the solution of the surface and subsurface water flow equations (Sections 2.1.1 and 2.1.1),

the heat flow equations are solved simultaneously using a globally-implicit control volume

finite element method. A complete description of the theoretical basis and the numerical

solution procedures used in HGS can be found in Aquanty, Inc. (2015).

2.1.2 Atmospheric Boundary Layer

The ABL is the lowest layer in the troposphere and connects the earth’s surface to the

free atmosphere (Stull , 1988). During the day, the ABL is unstable and turbulent because

the surface, heated by solar radiation, is warmer than the atmosphere. At night, however,

the surface is cooler than the atmosphere, resulting in a stable boundary layer (Wallace

and Hobbs , 2006). As an approximation of the rapid mixing within the ABL, the zero-

dimensional ABL model is adapted from Garratt (1994) which simplifies the atmosphere’s

interactions to a homogenous, well-mixed layer with energy and water balance calculations.

The ABL model’s single averaged element, shown in Figure 2.1, is directly attached to

the top of HGS’ surface domain and is primarily driven by the external input of solar

shortwave radiation, while the rest of the energy and mass calculation (i.e. longwave

radiation, sensible heat, latent heat, and precipitation) are internally calculated by the

ABL model. The ABL model does not include the lateral transport of mass and energy,

consequently limiting our solution domain to site and small catchment scales.

18



Energy Balance

Solar energy warms the earth’s surface by shortwave radiation heating up the ground.

After the surface is warmed by the sun, the ground emits longwave radiation back to the

atmosphere. The atmosphere also emits longwave radiation back to the ground. The net

energy to the ground surface from both shortwave and longwave radiation is shown as:

Rnet = (1− α)SWdn + σεaT
4
a − σεsT 4 (2.6)

where α is the albedo, SWdn is the shortwave solar radiation, Ta and T are the atmospheric

and surface temperatures, εa and εs are the atmospheric and surface emissivity, and σ is

the Stefan–Boltzmann constant. The combination or sum of the long and shortwave energy

fluxes is the net energy flux, Rnet.

Equation 2.7, as shown below, combines into the energy balance all of the thermal

exchanges between the atmosphere and surface, including the turbulent heat fluxes. The

total combination of the net energy flux, latent heat flux, and sensible heat flux is:

Rnet = LE +H +G (2.7)

where LE is the latent heat flux and G is the ground heat flux. The sensible heat flux

H = ρacpGa(T − Ta) is calculated as the difference between temperatures of the surface

and atmosphere multiplied by the density of air ρa and the specific heat of air cp. The

atmospheric conductance, Ga, is the inverse of the atmospheric resistance and is calculated

as a function of wind velocity (Liu et al., 2007).
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Water Balance

Above the ABL, the free atmosphere typically remains drier than the ABL and can reduce

the averaged ABL humidity through entrainment. The time discretized moisture content

water balance equation for the ABL model is described as:

∂qa
∂t

=


E

ρaha
+

(qf−qa)( ∂ha
∂t

−W)
ha

if ∂ha
∂t
≥ 0

E
ρaha

if ∂ha
∂t

< 0

(2.8)

where qf is the specific humidity in the free atmosphere, qa is the specific humidity inside

of the ABL, E is the surface moisture flux, W is the ABL subsidence rate, and ha is the

height of the ABL. Entrainment only occurs when the ABL is growing.

The theoretical rate that water can move from the earth’s surface into the atmosphere

is the potential evapotranspiration (PET ) and is calculated within HGS-ABL using a

Jarvis-type model (Jarvis , 1976), shown as:

PET =


ρa

ρw(ra+rv)
(q∗ − qa) if q∗ ≥ qa

0 otherwise

(2.9)

where ra is the atmospheric resistance, rv is the vegetative resistance function, and q∗ is

the saturation specific humidity. Equation 2.9 describes the PET as a proportion of the

dryness of the air divided by the resistance of the air and vegetation. HGS calculates the

actual ET from the updated atmospheric PET. Then, the ABL model uses the actual ET
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to find the latent heat flux as required by the atmospheric model:

LE = ET · λ · ρw (2.10)

where λ is the latent heat of vaporization. As water accumulates in the ABL, the relative

humidity, RH, increases and clouds form based on a parameterized exponential function

(Walcek , 1994) and is shown as:

f(%) = min

[
f100 exp

(
RH − 100%

100%−RHe

)
, 100%

]
(2.11)

where f100 is the precent cloud cover extrapolated at 100% relative humidity and RHe is

the e-folding relative humidity.

Excess water in the atmosphere is removed as precipitation once the humidity exceeds

saturation. Next, the precipitation is applied to the surface domain of the hydrological

model, and the specific humidity is set to saturation. The precipitation rate i is calculated

as:

i = (q∗ − qa)
(
ρa
ρw

)(
ha
∆t

)
(2.12)

where ha is the height of the atmospheric boundary layer, and ∆t is the model’s time step.

2.1.3 Model Coupling

A combined surface, subsurface, and atmospheric model is achieved by an explicit coupling

technique between the surface/subsurface and the atmosphere. The first task is to calcu-
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late the surface/subsurface flow using Newton iterations until convergence is achieved for

the coupled nonlinear surface and subsurface flow equations. Once the flow is solved, HGS

saves and passes the actual evapotranspiration on to the ABL model as shown in step two.

The atmospheric model updates the cloud cover using Equation 2.11 in order to cal-

culate the new energy balance with Equations 2.6, 2.7, and 2.10. The atmospheric water

balance, Equations 2.9 and 2.12, calculates the new precipitation and potential evapotran-

spiration for the next surface/subsurface flow solver time step. From the energy balance

equations, the calculated ground heat flux is updated for the current heat transport solver

in HGS. The last atmospheric step is to update the required parameterized variables, in-

cluding the moisture flux, boundary layer height, and atmospheric temperature.

The last step in the coupled simulation is to perform HGS’ heat transport calculations.

The atmospheric energy calculated by the energy balance Equation 2.7 is updated and the

heat transport equation, Equation 2.5 is solved. The final coupled process is to update the

grid-averaged surface temperature for the next atmospheric computational time step. The

pseudocode, shown in 2.2, runs through a single coupled model time step.

The sub-time stepping routine shown in Figure 2.2 drastically decreases the total sim-

ulation time in the coupled HGS-ABL model. Solving the implicit global matrix in HGS is

the most numerically costly part of each time step, because the ABL model simulation is a

simple set of scalar-vector operations. By increasing the number of independent sub-time

steps, N , the atmospheric model runs at a much smaller time step, ∆tABL, while HGS

continues to run at a longer time step value, ∆tHGS. By increasing the time step ratio, the

coupled simulation speed drastically increases. Our computational approach implements a

time-weighted arithmetic mean to average the atmospheric components over the multiple
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smaller time steps.

2.2 HGS-ABL Pseudocode

The HGS pseudocode, shown in Figure 2.3, is for a single time step of the coupled HGS-

ABL model. The bold items represent the information passed from HGS to the ABL

model and the italics represent the information passed from the ABL model to HGS.

HydroGeoSphere initiates the time step with the surface/subsurface flow solved by the

Newton-Raphson solver. After calculating the land surface water balance, the ABL model

computes the energy and water balance equations. Finally, HGS executes its heat trans-

port solver and updates the land surface temperature.
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Begin time step
1. Surface/subsurface flow solver (HGS) - Implicit

a. Newton-Raphson iterative solver
b. Update actual evapotransipiration

2. Atmospheric computation loop (ABL) - Explicit
a. Cloud cover
b. Energy balance: SW, LW, H, and LE
c. Update precipitation and PET
d. Update ground heat flux
e. Atmospheric parameterization:

Moisture entrainment flux
Boundary layer height
Atmospheric temperature

3. Heat transport solver (HGS) - Implicit
a. Newton-Raphson iterative solver
b. Update surface temperature

End time step

Figure 2.3: HGS-ABL model’s pseudocode for a single time step.
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2.3 Noah LSM Comparison

Numerical models are generally validated against simple analytical solutions. However,

because no known analytical solution exists due to the complex nature of the environmental

interactions, HGS was compared against the Noah LSM for a simple test case of a two-

meter vertical 1-D column. Two simulations were implemented with the same model

conditions including a steady-state fully-saturated subsurface, similar vegetation (grass)

and soil types (sand) parameters, with the same subsurface domain discretization (dz = 0.2

m). Groundwater flow was turned off for the comparison between the two models because

the Noah LSM does not properly handle the Richards’ equation and subsurface saturated-

zone flow. For both cases, we fixed the atmosphere to a constant temperature (10◦C),

humidity (20%), and downward long-wave radiation (350 W/m2), but used a diurnal solar

radiation cycle with a peak radiation of 850 W/m2.

The two models correspond well over the 10 day simulation period (Figure 2.4). In order

to achieve this fit, the Noah LSM was set to have a vegetative resistance of 40 s/m while the

HGS model used an effective vegetative resistance of 50 s/m. Prior to the adjustment of the

vegetative resistance, HGS yielded a slightly larger evapotranspiration rate and latent heat

flux than the Noah LSM because of the different numerical implementations between each

of the two models. After the adjustment, the latent heat flux responded nearly the same

in both numerical models, with a root-mean-square deviation (RMSD) of 26.6 W/m2. The

Noah LSM exhibited sharp surface temperature and sensible heat flux peaks during the

night when the surface temperature dipped below the constant 10◦C atmosphere. Even

though HGS did not show the same strong peak behavior, the overall temperature and
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sensible heat flux showed a satisfactory correlation between the two models with an RMSD

of 0.9◦C and 30.2 W/m2, respectively.
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Figure 2.4: Noah LSM comparison: Surface temperature, sensible heat flux, latent heat
flux, and net energy flux for a 10 day comparison of the HGS model (solid red line) to the
Noah LSM (dash black line).
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2.4 Illustrative Example

To display the abilities of the coupled HGS-ABL model, an elementary example was used

to simulate prolonged drought conditions. The surface/subsurface model domain, a 2-D

V-shaped catchment shown in Figure 2.5, is 1 km long, 10 m wide, and has a thickness

ranging between 8 m and 10 m. The numerical mesh was resolved to a 10 m horizontal

discretization with 40 subsurface layers. The grass vegetation was approximated with a

cubically distributed shallow root zone of 1 m and a leaf area index of 2.5. Five wells were

monitored (labeled Well #1 to #5), and they are located at 100 m intervals at a vertical

elevation of five meters, as shown in Figure 2.5.

The solar forcing for the ABL model was a diurnally varying downward shortwave input

with a maximum amplitude of 850 W/m2. In order to spin-up the ABL model, HGS’

subsurface domain initially ran (0-20 days) with a constant head boundary condition of

8 m. After running for 20 days, the fixed head condition was removed and a no flow

boundary was added around the domain perimeter to prevent any additional water from

entering or leaving the model. Additionally, HGS’ heat transport component implemented

a no flux boundary around the subsurface perimeter.

Extended drought conditions decreased the subsurface head after the first 20 days as

seen in Figure 2.6. Until day 30, the available water sufficiently maintains an average daily

latent heat flux above 50 W/m2 and a sensible heat flux below 60 W/m2 as shown in

Figure 2.7. With a decreasing near-surface soil moisture content, the quantity of available

water for evapotranspiration decreases, producing lower latent and higher sensible heat

fluxes. By the end of the 100 day simulation, the daily average latent and sensible heat
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fluxes changed to 2.7 W/m2 and 68.2 W/m2, respectively. Overall, the low latent heat

fluxes are due to the low initial groundwater levels. Additionally, the daily averaged

sensible heat fluxes are smaller than expected because the nightly fluxes were negative.

Averaging the negative nightly sensible heat with the daily positive sensible heat results

in lower than expected values.

Correspondingly, the atmospheric and surface temperatures increased in response to the

overall decrease in available soil moisture as seen in Figure 2.8. Because of the decrease in

actual ET and latent heat, the temperatures began to increase after 30 days. The mean

atmospheric and surface temperature for the first 30 days was 20.0 and 24.5 ◦C, and by

the end of the 100 day simulation the average daily temperatures warmed to 29.9 and 35.7

◦C, respectively.

The time series of hydraulic head, Figure 2.6, clearly depicts why the atmosphere has a

10 day lag period after the first 20 days of simulation. For the first 20 days, the subsurface

head does not change because the external boundary condition forces all of the subsurface

nodes to remain at a constant value equal to 8 m. From 20 to 30 days, the hydraulic head

rapidly decreases, especially in Wells #4 and #5. The principal reason for this decrease is

because Wells #4 and #5 are located near the ground surface, allowing the shallow grass

root zone to transpire the most water. Wells #1, #2, and #3 are located deeper below the

ground surface and exhibit less drawdown because they are less affected by transpiration.

After 55 days, the rate of drawdown in the wells drastically decreases because the water

table has been sufficiently lowered such that all of the available soil moisture is below the

root zone. At this point, the higher heads in Wells #1, #2, and #3 reflect the influence of

regional groundwater flow and are providing water for evapotranspiration in the bottom
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of the V-notch. As the simulation continues, less water is available for evapotranspiration

resulting in a decrease in latent heat flux. Furthermore, a decrease in the latent heat flux

corresponds with an increase in atmospheric and surface temperatures and an increase in

PET. Even though the PET continues to increase, the actual evapotranspiration decreases

because of the lack of available water in the near surface.
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Figure 2.5: Illustrative Example: Vertical section showing the discretization for the V-
catchment domain, which is 1 km long and 10 m wide. The domain ranges between 8 m
and 10 m in thickness.
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2.5 Subsurface Temperature

Land surface models use a shallow near-surface domain to model the moisture and heat

transport within the subsurface. The heat stored in the subsurface buffers the daily temper-

ature variations by emitting sensible heat and longwave energy. For extended simulations,

the thickness of the subsurface becomes an important factor, requiring a thicker subsurface

that properly regulates the atmospheric dynamics. Two similar 2-D V-shaped catchments

are analyzed, both solved with the HGS-ABL model. The first model is 2.0 m thick, which

is the same thickness of the land surface used in the Noah LSM. The second model has an

8.0 m thick land surface and illustrates the advantage of using a fully coupled 3-D hydrol-

ogy/heat transport model. Both of the domains have a vertical discretization of 0.2 m with

the same hydrological and atmospheric parameters as described in Section 2.4. The model

simulations were initialized with a 20 day spin up and then monitored for an additional 80

days.

The final 100-day subsurface temperatures, shown in Figure 2.9, qualitatively describe

a warmer subsurface for the smaller 2.0 m domain while the larger 8.0 m domain remained

cooler. The 8.0 m domain is cooler because it has four times the thermal heat capacitance

resulting in a subdued heating profile. Additionally, Figure 2.10 displays the subsurface

temperature along a profile (x = 500 m, y = 5 m) for both of the domains over the 100

day period. For first 25 days, the 2.0 m model has virtually no temperature difference in

the first meter below ground surface compared to the 8.0 m model (8.0 m to 7.0 m), but

for the second meter (7.0 m to 6.0 m), the two temperature profiles deviate to a maximum

of 1.04◦C. For the next 75 days, the 2.0 m domain continues to increase in temperature

35



at a faster rate than the 8.0 m domain. By the 100th day, the spatially averaged 2.0 m

subsurface domain temperature increased by 5.19◦C over the 8.0 m domain.

As a result of the increased subsurface temperatures, the 2.0 m domain had a cor-

responding increase in mean daily atmospheric and surface temperatures shown in Fig-

ure 2.11. The final atmospheric and surface daily averaged temperatures for the 2.0 m

domain were 32.3◦C and 38.0◦C, while the 8.0 m domain maintained cooler temperatures

of just 29.6◦C and 35.3◦C for the atmosphere and surface. Overall, by reducing the thick-

ness of the LSM by six meters, the model produced a 100-day bias that increased the mean

daily atmospheric and surface temperatures by 2.7◦C.

A thicker domain increases the subsurface-atmospheric memory. The influence of model

depth becomes quite important for extended simulations with extreme radiative forcings.

The required minimum depth of the subsurface model is case specific and thus requires

attention in its selection.
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Figure 2.9: Subsurface Temperature: The 2.0 m case shown on top and 8.0 m case shown
on bottom, both at 100 days.
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Figure 2.10: Subsurface Temperature: The 25, 50, 75, and 100 day subsurface temperature
profile for the 2.0 m model (shown in red) and 8.0 m model (shown in black) at x = 500
m.
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2.6 Root Zone Depth

Previous coupled LSM efforts cannot simulate a deep root-zone depth because of the in-

herent limitations of the Noah LSM. One of the benefits of using HGS is that it is not

constrained to a prescribed subsurface thickness while maintaining the appropriate energy

and water balance calculations. Eight numerical simulations were performed using the

HGS-ABL model, with root depths of 0.1, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, and 6.0 m, to test

the impact of root-zone depth on the atmosphere. The simulation domain used the same

parameters as provided in Section 2.4 and this example was simulated in three dimensions.

The domain is 100 m in the x and y-directions with a 10 m grid size, a thickness of 6 m

along the z-axis with a 0.15 m vertical discretization, and it also has a gentle 2.0% slope

along the z-axis. The initial condition for the moisture is shown in Figure 2.12.

The simulation was run for 10 days to spin up the atmospheric model, and then it

was run for an additional 90 days. The atmospheric results, including temperature and

turbulent heat fluxes, are shown in Figure 2.13. The corresponding head results are shown

for well #1 (x = 50 m, y = 65 m) and well # 2 (x = 50 m, y = 25 m) in Figures 2.14

and 2.15.

The shallower rooting depth result in a smaller latent heat flux, producing higher tem-

peratures than the deeper root cases. The shallow root-zone models quickly produced a

drop in latent heat flux; the latent heat flux for the 0.1 m root depth case quickly decreases

after just 25 days. The cause of the decrease in latent heat is clearly evident in the results

for well #1; at day 25 the rate of decline of head for the 0.1 m root zone case drastically

slows indicating that the evapotranspiration has decreased. Furthermore, a similar behav-
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ior is exhibited in well #2, where the rate of decline of head starts to decrease at day

35. The head in well #1 ceases to decline earlier than well #2 because well #2 is down

gradient and is supplied with regional groundwater flow.

The deeper root zone models continue to transpire water from the subsurface resulting

in a larger decrease of the water table with time. The deeper roots act as a buffer to the

environment and are able to keep the atmosphere and land surface at a nearly constant

daily average temperature. The marginal buffering capacity of a deeper root zone declines

once the roots exceed 3.0 m.

2.6.1 Water-Level Fluctuation

Water-level oscillations, shown in Figures 2.14 and 2.15, are a common phenomena observed

in environments with phreatophytic vegetation. When the sun rises each day, plants open

their stomata and transpire groundwater taken up by the roots, resulting in a lowered

groundwater table. At night the plants close their stomata, which stops transpiration and

the groundwater table recovers from regional flow. These fluctuating behaviors are only

noticeable when the groundwater table is close to the surface, the vegetation root zone is

below the water table, transpiration is more dominant than evaporation, and no additional

water is added to the surface. White (1932) hypothesized that daily water-level oscillations,

observed in wells, could be used to approximate evapotranspiration rates, ET :

ET = Sy

(
∆s

∆t
+R

)
(2.13)
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where Sy is the effective specific yield and ∆s is the average water level response over

one day, ∆t. The net groundwater flux, R, is the rate of hydraulic response during the

night, because transpiration is approximately equal to zero and the only process is the

regional groundwater flow recharging the aquifer. Recent work by Runyan and Welty

(2010); Carlson Mazur et al. (2014) provide a more detailed explanation of the White

method.

Applying White’s method to the water level data from Wells #1 and #2, Tables 2.1

and 2.2, we see a strong correlation between the calculated evapotranspiration and the

distance along the y direction (the y-axis is parallel to the primary flow direction). Well #2

located in the lowlands, generally over predicted the average evapotranspiration directly

calculated by HGS-ABL, while Well #1 located in the highlands, under-predicted the

average evapotranspiration. Additional work beyond the scope of this thesis is required to

explore possible ways to better interpret actual evapotranspiration rates from water level

data.
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Table 2.1: White analysis of fluctuating head data for Well #1, at 20 days.

Root Depth (m) Sy
∆s
∆t

(m/s) R (m/s) Calculated ET (m/s) Actual ET (m/s)
(White 1932) (HGS model)

1.0 0.28 8.1 · 10−8 2.1 · 10−7 8.1 · 10−8 6.2 · 10−8

2.0 0.28 1.2 · 10−7 8.5 · 10−8 5.9 · 10−8 6.8 · 10−8

3.0 0.28 1.2 · 10−7 6.5 · 10−7 5.2 · 10−8 7.3 · 10−8

4.0 0.28 1.2 · 10−7 5.7 · 10−8 5.0 · 10−8 7.5 · 10−8

5.0 0.28 1.2 · 10−7 5.3 · 10−8 4.8 · 10−8 7.6 · 10−8

6.0 0.28 1.1 · 10−7 5.2 · 10−8 4.7 · 10−8 7.6 · 10−8

Table 2.2: White analysis of fluctuating head data for Well #2, at 20 days.

Root Depth (m) Sy
∆s
∆t

(m/s) R (m/s) Calculated ET (m/s) Actual ET (m/s)
(White 1932) (HGS model)

1.0 0.28 5.4 · 10−8 4.8 · 10−7 9.5 · 10−8 6.2 · 10−8

2.0 0.28 4.7 · 10−8 4.9 · 10−7 1.5 · 10−7 6.8 · 10−8

3.0 0.28 4.7 · 10−8 5.4 · 10−7 1.6 · 10−7 7.3 · 10−8

4.0 0.28 4.9 · 10−8 5.5 · 10−7 1.7 · 10−7 7.5 · 10−8

5.0 0.28 4.6 · 10−8 5.7 · 10−7 1.7 · 10−7 7.6 · 10−8

6.0 0.28 3.9 · 10−8 5.9 · 10−8 1.7 · 10−7 7.6 · 10−8
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Chapter 3

HydroGeoSphere
Weather Research and Forecasting
Model
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Water cycle modelers typically subdivide the environment into multiple parts and inde-

pendently simulate each region. The most common approach is to first run the atmospheric

model, and then apply its output to a hydrologic simulation. Although sequential modeling

may be seen as the best practice, current climate models do not correctly handle the near

surface water balance, which may produce large simulation bias once forecasts exit their

calibration envelope. A fully-coupled framework should have more skill than serial methods

because the hydrologic model would replace the climate model’s shallow earth assumption,

producing a dynamically linked atmosphere, surface, and subsurface system. For this rea-

son, it is believed that a fully-coupled water cycle model follows the famous phrase the

whole is greater than the sum of its parts. In this chapter we explore the fundamentals of

coupling an advanced hydrologic model, HydroGeoSphere, to a mesoscale meteorological

model, Weather Research and Forecasting (WRF Model Version 3.7.1, August 14, 2015).

3.1 HydroGeoSphere

HydroGeoSphere is a fully-integrated, globally implicit, finite difference or control-volume

finite element, surface and variably-saturated subsurface flow model with evapotranspi-

ration processes, solved by a Newton-Raphson parallelized solver and an adaptive time-

stepping scheme (Therrien and Sudicky , 1996; Hwang et al., 2014; Park et al., 2009). HGS

has been implemented over a large range of scales including small-scale test catchments

(Jones et al., 2008; Abdul , 1985; Aquanty, Inc., 2015), regional flow problems (Sudicky

et al., 2008), drainage basins (Bolger et al., 2011), and continental scale problems (Chen,

2015). Furthermore, HGS was adapted to include heat transport processes and was used as
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a LSM coupled to an atmospheric boundary layer model (Brookfield et al., 2009; Davison

et al., 2015).

HGS implements the non-linear three-dimensional variably-saturated Richards’ equa-

tion for subsurface flow:

SwSs
∂ψ

∂t
+ θs

∂Sw
∂t

= ∇ · (K · kr∇(ψ + z)) +
∑

Γex +Q (3.1)

where Γex is the internal fluid exchanges between domains (surface, subsurface, fractures,

macropores, and tile drains) and Q is the external fluid exchanges (pumping, evapotran-

spiration). The known constants Ss, z, θs, and K are the specific storage, elevation head,

saturated water content, and hydraulic conductivity, respectively. The water saturation,

Sw, and the relative degree of permeability, kr, are functions of the pressure head, ψ, which

is approximated by lookup tables or numerical parametizations (e.g., Brooks and Corey,

van Genuchten).

The two-dimensional surface domain is draped over the subsurface domain, and the two

domains are directly linked by applying either the common node or dual node techniques.

The common node method enforces the exact same head values for each shared node, while

the dual node approach estimates a flux between the two domains. Overland flow in the

surface domain applies the diffusion-wave equation:

∂(do + z)

∂t
= ∇ · (Ko · ∇(do + z))− doΓ +Q (3.2)

which assumes mild slopes, depth integrated velocities, hydrostatic pressure, and neglects

inertial effects. The surface hydraulic conductivity Ko is approximated as a function of
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depth, do, by the Manning, Chezy, or Darcy-Weisbach equations.

HGS implements a process-based framework to calculate evapotranspiration (ET) based

on the soil saturation, potential evapotranspiration (PET), soil type and vegetation pa-

rameters. ET processes are an implicit component of HGS’ flow simulation and are si-

multaneously solved within the flow solution. Actual evapotranspiration (AET) in HGS is

comprised of three components (canopy evaporation Ecan, transpiration Tp, and evapora-

tion Es):

AET = Ecan + Tp + Es (3.3)

where each component is always greater than or equal to zero and the sum of the compo-

nents can never exceed the PET. The transpiration and evaporation functions are imple-

mented as:

Tp = f1(LAI)f2(S)RDF [PET − Ecan] (3.4)

Es = α∗(PET − Ecan − Tp)EDF (3.5)

where LAI is the leaf area index, S is the soil moisture content, RDF is the root density

function, EDF is the energy density function, and f1, f2, and α∗ are fitting functions.

3.2 Weather Research and Forecasting

The Weather Research and Forecasting (WRF) Model is a non-hydrostatic mesoscale finite

difference atmospheric model. The WRF modeling suite hosts two separate dynamical cores

(for the purpose of this study we used only the Advanced Research WRF (ARW) core),
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data assimilation, advanced physics based parameterization, numerous radiative schemes,

and multiple land surface models. The WRF model implements the terrain following flux-

based Euler equations solved by the third-order Runge-Kutta temporal discretization with

a second-order split-time acoustic wave. A detailed description of WRF’s development

can be found in the NCAR Technical Note, A Description of the Advanced Research WRF

Version 3 (Skamarock et al., 2008).

The Noah LSM is one of the most popular land surface schemes in the WRF model. It

simplifies the near surface as a shallow 2 m thick one-dimensional column and incorporates

vadose zone hydrology and heat transport. The subsurface domain is modeled with four

vertical layers that range between 10 to 100 cm thick. The benefits of using the Noah LSM

coupled to WRF are that it includes vadose zone hydrology, subsurface heat transport,

plant physics, and it is computationally efficient and easy to use. However, the Noah

LSM fails to include three-dimensional subsurface flow, surface water flow, and saturated

groundwater flow.

3.3 Coupling Method

3.3.1 Spatial Coupling

Atmospheric and hydrologic models are inherently different because of their drastically

contrasting fluid properties, physical equations, time-scales, and geometrical arrangement.

HydroGeoSphere a temporally implicit model, implements three types of meshing algo-

rithms: a finite difference hexahedra (8-point elements), finite element triangular prisms
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WRF

Figure 3.1: Coupled linking between the HGS and WRF models.
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(6-point elements), or finite element tetrahedra (4-point elements). However WRF, a tem-

porally explicit model, only employs a regular finite difference hexahedral elemental mesh.

Linking HGS to WRF required the development of a custom coupling framework that in-

dependently correlates the communication of information between the two model’s unique

meshes.

The HGS-WRF coupling framework allows for independent model meshing and projec-

tion characteristics by comparing the geographic coordinates (i.e., latitude and longitude)

between the two domains. Our coupling method, shown in Figure 3.1, handles overlap-

ping grid cells by computing the spatially-weighted area-based arithmetic mean, which

maintains energy and mass conservation. For instance, the HGS model may implement an

Albers projection with a horizontal discretization of 4 km, while the WRF simulation will

use the Lambert conformal projection with a 10 km discretization.

Initially, the WRF model internally calculates the potential evapotranspiration (PET )

and precipitation (I) rates and passes them to HGS:

PEThgsj =

∑n
i Ai · PETwrf i∑n

i Ai
(3.6)

Ihgsj =

∑n
i Ai · Iwrf i∑n

i Ai
(3.7)

where A is the overlapping elemental or cell area, and the subscripts wrf i and hgsj are the

indices for Weather Research and Forecasting and HydroGeoSphere, respectively. After

calculating the fluxes from WRF to HGS, our modeling framework passes HGS’ actual
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evapotranspiration and soil saturation back to the WRF model:

Swrf i =

∑n
j Aj · Shgsj∑n

j Aj
(3.8)

AETwrf i =

∑n
j Aj · AET hgsj∑n

j Aj
(3.9)

where S is the soil water saturation and AET is the actual evapotranspiration. The cur-

rent numerical implementation of HGS-WRF is for finite difference meshes, as shown in

Figure 3.1. However, since HGS can also use unstructured element meshes (e.g. prisms or

tetrahedra), Equations 3.6-3.9 can be readily adapted for the finite element method.

Hydrogeologic models typically use basin divide boundaries, which eliminates interflow

from upstream catchments. The only water fluxes left are flows out of the basin and ex-

changes between the atmosphere via precipitation and evapotranspiration. Atmospheric

models, on the other hand, implement rectangular domains that overlap multiple basins,

water bodies, and political boundaries. Combining the two models together, required a

domain splitting algorithm that allows for separate boundaries for each individual model.

The smaller HGS domain is a subset of the larger WRF simulation. Inside of the WRF

model, the HGS portion overrides the internal LSM with HGS’ soil saturation and evap-

otranspiration. However, outside of the HGS portion, the WRF model uses its own land

surface scheme (Noah LSM).

Furthermore, to aid with the linkage between models, HGS implements the same near

surface layering used in the Noah LSM. In both models the first, second, third, and fourth

layers are 10, 30, 60, and 100 cm thick, respectively. The fourth layer in the Noah model

is the last layer, while the HGS model further discretizes the subsurface deeper than these
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four layers. As described earlier, HGS passes its soil saturation values to Noah and over-

writes the values per layer.

3.3.2 Temporal Coupling

Integrated hydrology traditionally has slow long-term problems, with time scales rang-

ing from hourly (surface water) to millennial processes (groundwater flow). In contrast

atmospheric physics have much faster time scales and require small time steps (seconds

to minutes) to capture acoustic waves, radiative energy, and convective flow; for example

WRF recommends 6 second global time steps per kilometer of horizontal resolution (e.g. a

WRF simulation with a grid spacing of 10 km would use a 60 second time step). Combining

atmospheric and hydrologic models together creates a major time scale problem that must

be resolved.

The simplest temporal coupling method is to run both models at the same time step

and directly exchange boundary information between the models at every time step. How-

ever, running both models at the same time step results in wasted computational resources,

because the hydrological model’s moisture balance does not rapidly change over the course

of seconds. For this reason, we implemented a sub-time stepping routine such that the

atmospheric model can run at a much smaller time step, while the hydrological model runs

a coarser temporal resolution. This assumption is acceptable because WRF’s radiative en-

ergy balance routine does not run every time step; the recommended WRF radiative time

step is 10 times the global time step. This means that the potential evapotranspiration, a

component of the radiative energy balance, is only updated during the larger time steps.
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Our explicit temporal method, shown in Figure 3.2, remains first-order accurate which

requires small time steps to resolve the diurnal PET forcing. HGS passes saturation and

actual evapotranspiration fluxes to WRF. Meanwhile WRF transfers its potential evapo-

transpiration and precipitation fluxes to HGS.

Modified Coupling

The HGS-WRF coupling package can also run in a modified coupling case, such that the

WRF model internally calculates the actual evapotranspiration, shown in Figure 3.3. WRF

then provides the net precipitation rate, which is defined as the precipitation minus actual

evapotranspiration, to HGS. The HGS model now can calculate its internal water balance,

using the Newton-Raphson solver, and send its saturation values back to WRF.

This method drastically speeds up the simulation times for the HGS-WRF model,

because the requirement to pass information between the two models can be delayed to

several hours. The net precipitation rate (precipitation - ET) outputted from the WRF

simulation, will often have negative values, since ET fluxes diurnally cycle throughout the

day and precipitation is only an intermittent process. This net precipitation rate is then

inputed into HGS as a top boundary condition. However, this method imposes several real

limitations, especially in regions with low precipitation, high ET, and low soil moisture.

For instance, if the WRF simulation internally calculates large evapotranspiration fluxes

over a dry soil region within HGS, then the HGS model will not be able to supply this flux;

creating large mass balance errors. Eventually, the HGS near surface soils will reach resid-

ual saturation (during drought periods), which creates zones with extremely low hydraulic

conductivity (hydraulic conductivity is a function of soil saturation). Correspondingly,
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WRF’s internal ET calculator will continue to maintain high ET fluxes, even when the soil

saturations are at residual values for HGS.

The modified HGS-WRF coupling scheme is not the most accurate method available

and will artificially remove water from the domain. For this reason, the traditional HGS-

WRF scheme is the best method for coupled simulation because it minimize error within

the mass balance and thus is used herein.

3.4 Parallelization

Both the HGS and WRF models are extremely complex software packages that are imple-

mented with advanced numerical solvers. HydroGeoSphere implements a shared memory

OpenMP approach, and is optimized for multi-core workstations (Hwang et al., 2014). The

HGS parallelization efforts were focused on optimizing the matrix construction and solver,

while minimizing error between serial and parallel solutions (difference in head between

solution is less than 10−3 m). In contrast, WRF has multiple parallel choices including

OpenMP, MPI (a distributed memory algorithm better suited for multi-processor cluster

computing), and a hybrid OpenMP + MPI option (for shared and distributed memory).

Ensuring parallelization in HGS-WRF is not a luxury, but rather a requirement to

efficiently solve complicated problems. Our method, which passes data between the two

models, implements a quasi-parallel scheme. Each model is running as a standalone par-

allel process, that alternate compute cycles. Initially, the WRF model will compute the

PET and precipitation fluxes and pass them to HGS. Once WRF outputs these fluxes, the

WRF simulation is placed on pause until HGS computes the AET and saturation values.
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After HGS outputs its values to WRF, the HGS simulation is placed on pause. This cycle

continues till the end of the numerical simulation. Currently the parallelization is written

for both models to only run OpenMP, but several simple additions to the parallelization

routine could allow the HGS-WRF model to be extended to a hybrid scheme, where HGS

uses OpenMP and WRF implements OpenMP + MPI.

3.5 Advantages over previous models

There have been several studies that have successfully coupled groundwater flow to atmo-

spheric models, and each of these previous coupling methods have had serious limitations.

Currently, all coupled models require that the groundwater flow component be included

over the entire land surface domain of the atmospheric model. The required atmospheric

domain is much larger than the domain of interest of the hydrological model, due to the

obligation of having the atmospheric boundaries much farther away than the domain of

interest (to eliminate influence from the model boundary). In some cases, as with the

2-D Noah Distributed groundwater model (Gochis and Chen, 2003), including the coupled

groundwater flow simulation over the entire atmospheric domain is acceptable because

the addition of groundwater flow is such a small component of the simulation. Nonethe-

less, more comprehensive 3-D surface/subsurface models such as ParFlow still require the

surface/subsurface domains to cover the complete atmospheric domain, which may cost

additional computational resources and requires significantly more effort to construct the

large-scale basin model.

The next main limitation that other coupling methods have is their reliance on the land
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surface model for calculating actual evapotranspiration. The previous methods export the

near surface soil moisture values (typically the first 2 meters) to the atmospheric model,

then the atmospheric model’s land surface routine internally calculates the evapotranspira-

tion. Here lies the problem. Root zones often extend past the shallow subsurface of just 2

meters, and well draining sandy-soils with shallow water tables may have dry near-surface

conditions limiting actual evapotranspiration, in zones where high ET legitimately occurs.

The simplest method to couple atmospheric and hydrological models is to directly

overlay the meshing so that each model’s node overlaps. In this method, no mass/energy

interpolation is calculated between domains, thus simplifying continuity conditions. How-

ever, this assumption forces the atmospheric model to run at the same grid spacing as the

hydrological model. Depending on the system, either the atmospheric model will require an

excessively tight model mesh (extra computational expense) or the hydrological model will

be overly coarse (not properly resolving the physical problem). In our coupling method, we

implemented a custom domain splitting framework such that each model utilizes it’s own

separate model mesh. This allows the hydrological and atmospheric models to use separate

projection methods, different mesh resolutions, and independent numerical methods (i.e.

finite difference or finite element).

An additional benefit of using independent model meshes is that our method can take

existing HGS and WRF models that have been calibrated and tuned, and then they can

be quickly coupled by running the HGS-WRF code. Integrated basin-scale modeling is an

extremely time intensive process, which can require months to develop a well tuned model.
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3.6 Example Simulation

In the following chapter, we simulate HGS-WRF over the entire state of California. Chap-

ter 4 includes the development of the HGS and WRF models for the California Basin.

After spinning up the hydrological model from predevelopment to current day conditions,

the HGS-WRF model was implemented for the year 2011. The California Basin model

simulations demonstrate the capabilities of the HGS-WRF simulator. The model results

capture both the weather and climate trends within the state. However, the model lacks

several key features like winter processes, hydraulic control structures, and crop irrigation.
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Chapter 4

California Model
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4.1 Introduction

Water resources are fundamentally a transboundary issue; groundwater and surface water

continuously flow between neighboring states regardless of international treaties or inter-

state compacts. Adjoining nations and regions regularly negotiate fair water use agree-

ments based on population, agriculture, and industrial demands. However, governments

often fail to establish minimal base flow guidelines, resulting in decreased ecosystem health

(Gleick , 1998). Furthermore, water agreements often disregard the fundamental connection

between groundwater and surface water, ignore the significant temporal variability in pre-

cipitation fluxes, and avoid the non-stationarity of climate change. Quantifiable analysis of

water resources is critically important when considering domestic policies and agreements

regarding agricultural, industry, and the environment. For instance, California has allowed

farmers unrestricted access to groundwater resources. This lack of regulation has resulted

in dire environmental impacts, including extreme land subsidence (2 inches per month),

decreased surface water storage (8.1 km3), and diminished agricultural yields ($2.2 billion)

(Mann and Gleick , 2015; Farr et al., 2015; Howitt et al., 2014) and has significant impact

on interstate and US-Mexico transboundary water agreements.

Current climate models coupled to land surface models (LSM) are often utilized to pre-

dict the risks to water resources. Typically, LSMs are one-dimensional vertical columns that

include shallow vertical subsurface flow, biogeophysics, heat transport, and snow processes.

However, LSMs lack physics-based lateral surface/subsurface water flow, groundwater stor-

age, and the critical feedbacks between surface and subsurface hydrology (Davison et al.,

2015).
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To overcome these limitations, land-surface scheme modelers have replaced their sim-

ple one-dimensional hydrological models with more advanced water balance approaches,

although even these remain constrained by limitations. For example, the Weather Research

and Forecasting (WRF) Model, a 3-D mesoscale nonhydrostatic atmospheric model, has

been coupled to several groundwater flow models, including Noah Disturbed, a 2-D Boussi-

nesq groundwater flow model (Gochis and Chen, 2003), which fails when groundwater ta-

bles are steep (e.g. near pumping wells or around mountainous topography). In a separate

study, WRF was coupled to Parflow, a 3-D finite difference surface/subsurface flow model

(Maxwell et al., 2011). However, Parflow relies on the Noah LSM for evapotranspiration

process, which limits root-zones to a maximum depth of two meters.

4.1.1 Previous California Models

California’s water resource system relies on a vastly interconnected network of groundwa-

ter, surface water, snow melt, and interbasin transfers. The California state government

has conventionally viewed each hydrologic component as an independent element, ignoring

the vital fluxes between domains. Furthermore, this confined view of water resources has

resulted in a proliferation of new models that only analyze a single part or region of the

water cycle.

Currently, the only model that simulates the entire California basin is the California

Basin Characterization Model (CA-BCM) (Flint et al., 2013). The Basin Characterization

Model is a distributed-parameter water-balance model that accounts for evapotranspira-

tion, runoff, groundwater recharge and several other processes, as shown in Figure 4.1. The
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CA-BCM model is discretized on a 270 m grid and runs a monthly time step. However, the

CA-BCM does not implement physics-based equations (e.g. Richards’ equation, diffusive

wave equation, and heat transport equation) and relies on a simplified mass balance, shown

as:

AW = P + Sw − PET − Sa + Ss (4.1)

where AW is the available water, P is the precipitation, Sw is snow melt, PET is potential

evapotranspiration, Sa is snow accumulation, and Ss is stored surface water.

Additional large-scale research studies modeling California have focused on simulating

particular regions within the basin. These attempts include: the Central Valley Hydrologic

Model (CVHM) with MODFLOW Farm Processes; San Joaquin Valley (SJV) model with

HydroGeoSphere; and San Joaquin Basin Model (SJBM) with ParFlow (Faunt , 2009; Bol-

ger et al., 2011; Gilbert and Maxwell , 2014). These three domains are shown in Figure 4.2.

The CVHM implements the Farm Processes package, which adds transpiration and infiltra-

tion processes to the traditional finite difference MODFLOW-2000 groundwater-only flow

model. The model simulates the entire Central Valley (52,000 km2) at a 1.6 km horizontal

resolution, with 10 vertical layers ranging from 15 to 550 m thick. The groundwater system

was initialized with historical water table elevations, and was simulated from 1961 to 2003

(42.5 years) (Faunt , 2009).

The San Joaquin Valley (SJV) model was designed as a pre-development hydrological

simulation. The SJV was implemented with the control-volume finite element HGS model

and covers a 17,232 km2 area, with 11 vertical layers and a horizontal discretization ranging

between 60 and 3,000 m. The model was run to steady-state conditions, and it implements
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Figure 4.1: The California Basin Characterization Model (CA-BCM) schematic of water
processes (Flint et al., 2013).
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historically averaged (1870-1884 AD) streamflow, precipitation, and evapotranspiration

rates for its surface boundary conditions. Also, the subsurface portion of the domain has

a zero-flux boundary condition along the bottom and sides (Bolger et al., 2011).

The latest large-scale hydrological model simulating a substantial region of California

is the San Joaquin Basin Model (SJBM) performed with ParFlow. The rectangular do-

main covers 59,400 km2 area at a 1 km horizontal resolution and includes a portion of the

Southern Coastal Range, San Joaquin Valley, and Sierra Nevada mountains. Initially the

model was spun-up with the coupled ParFlow-Community Land Model (CLM) code which

adds near-surface moisture and energy balance calculations to the standalone ParFlow

mode (Gilbert and Maxwell , 2014). Additionally, the SJBM model was simulated with the

ParFlow-WRF model at a high resolution of 1 km (Gilbert et al., 2015).

Although these three models cover vast regions of California (17,232 - 59,400 km2),

they only account for a small portion of the entire 410,000 km2 California Basin domain

(4-15%). The only model that captures the entire basin is the highly parameterized CA-

BCM simulations.

4.2 California Basin Model

4.2.1 Geological Model

In an effort to improve upon previous water resource simulations of California and to

demonstrate the utility of HGS-WRF, the California Basin Model was created, which in-

corporates large-scale geologic datasets (e.g. topography, soil stratigraphy, land use and
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geologic formation), consumptive water use, precipitation, and potential evapotranspira-

tion into one modeling platform. When creating a hydrological model, the first important

task is to define the exterior region of the watershed by selecting the hydrologic divides

that serve as the perimeter of the watershed. Conveniently, the USGS created a system

of hydrological units that delineates each watershed as a Hydrologic Unit Code (HUC),

shown in Figure 4.3. The California Basin is the 18th regional watershed, extends over

a 410,000 km2 area, and covers the majority of the state of California, southern Oregon,

western Nevada, and a small region of north western Mexico (Seaber et al., 1987).

After establishing the domain boundary, the USGS HYDRO1k topographic dataset, a

hydrologically corrected digital elevation model (DEM) at a one kilometer resolution, was

applied to the model creating the top surface elevations (U.S. Geological Survey , 2015b).

Because HYDRO1k is provided in the Lambert Azimuthal Equal Area coordinate system,

the DEM was converted and reprojected to the hydrological model’s Albers projection co-

ordinate system (coordinate system values Table 4.1). Next, the DEM files were upscaled

from the native 1 km resolution to the more coarse 4 km model mesh. In the last step,

the major rivers were burned into the surface topography. This step is critical because it

maintains a monotonic flow path along riverbeds and prevents undesirable surface water

ponding. The completed DEM for the California Basin Model is shown in Figure 4.4.

After defining the topography and model boundary, the three-dimensional hydrogeo-

logical model was then constructed. The bottom of the domain consists of a flat continuous

surface at a constant 6,000 m below sea level. This deep hydrologic system is necessary

to capture the thick sediments found in the Central Valley. The next layer defined was

the bedrock unit; this layer was approximated by subtracting the sediment thickness layer
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from the topographic elevations (Laske and Masters , 1997). The bedrock system was ap-

proximated as a homogenous unit with a low hydraulic conductivity and subdivided into

three discrete layers. Each sediment layer was then characterized by soil texture, Table 4.2

from the Digital General Soil Map of the United States STATSGO2 dataset, shown in

Figure 4.5 (Soil Survey Staff , 2015).

The HGS simulation was discretized at a 4km horizontal resolution using a finite

difference mesh, an option within HGS, as shown in Figure 4.6. The first four near-surface

layers are the thinnest layers and are set at 0.1, 0.3, 0.6, and 1.0 m thickness (for layers

1-4), which is the same discretization used in the Noah LSM. The next ten layers are

significantly coarser, with the 5th layer at 3.0 m thick, layers 6-8 are 65 m thick each,

and layers 9-11 vary in thickness based on the soil sediment depths. The last three layers

(12-14) equally span across the bedrock unit.

4.2.2 Boundary Conditions

Our geological model correctly delineates the California Basin along its groundwater di-

vides. Therefore, the zero-flow boundary condition is the most appropriate boundary for

the horizontal sides of the model. Additionally, the bottom of the model utilizes a no

flow boundary because vertical flow in the deep subsurface is assumed to be negligible.

Meanwhile, the top of the subsurface domain directly interacts with the surface domain by

implementing HGS’ dual node coupling approach.

The tight coupling of HGS’ surface and subsurface domains supports precipitation and

surface water infiltrating in the uplands, which recharges the aquifer and creates ground-
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Figure 4.4: Topographic relief map for the California Basin Model.
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Figure 4.6: California Basin Model 4 km resolution discretization.
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water flow towards the lowlands. This groundwater exfiltrates from the subsurface and

creates low lying lakes and provides baseflow for the regional rivers. Once surface water

reaches the lateral boundary of the domain, the surface domain implements the critical

depth boundary condition, which allows water to freely exit the domain and into the Pa-

cific Ocean.

Precipitation and potential evapotranspiration patterns are the predominant control for

water distribution throughout the domain. Northern California receives drastically more

precipitation and has lower PET fluxes than southern California. For this reason, the

northern region of California has more water—higher soil saturations, shallower ground-

water tables, and more powerful rivers—than southern California. To spin-up the model,

we used CMIP5 30-year (1980-2010) ensemble average precipitation and PET data provided

by Climate Commons California Landscape Conservation Cooperative (Climate Commons ,

2015), shown in Figure 4.7 and 4.8.

Once the model reached steady-state, current groundwater and surface water extrac-

tions were turned on, and the HGS model was run from pre-development to present-day

conditions. No transient water use data is presently available for the California Basin. For

this reason, the 2010 water use data was used for the entire simulation, which is provided

by the USGS and is defined by each county (U.S. Geological Survey , 2015a). In order to

avoid any local cones of depression, we implemented a high-resolution network of pumping

centers (nearly 20,000 wells), shown in Table 4.3-4.5.
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Table 4.1: Albers Projection for HGS model.

φ1 Standard Parallel 1 29.5

φ2 Standard Parallel 2 45.5

φo Reference Latitude 23.0

λo Reference Longitude -96.0
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Table 4.2: Soil texture hydraulic properties with van Genuchten parameters.

Soil Type Kx (m/s) η Ss (1/m) α γ

Sand 2.92E-3 0.437 1.0E-4 0.74 0.66

Loamy Sand 8.50E-4 0.350 1.0E-4 0.80 0.42

Sandy Loam 3.60E-4 0.453 1.0E-4 2.85 0.42

Loam 1.84E-4 0.464 1.0E-4 1.03 0.21

Silt Loam 9.45E-5 0.501 1.0E-4 0.565 0.16

Silt 9.45E-5 0.501 1.0E-4 0.565 0.16

Sandy Clay Loam 1.19E-5 0.397 1.0E-3 0.275 0.26

Clay Loam 3.20E-5 0.464 1.0E-3 0.29 0.22

Silty Clay Loam 2.09E-5 0.471 1.0E-3 0.50 0.21

Sandy Clay 1.67E-5 0.43 1.0E-3 0.34 0.21

Silty Clay 1.25E-5 0.479 1.0E-3 0.34 0.21

Clay 8.35E-6 0.475 1.0E-3 0.34 0.09

Unconsolidated Rock 1.0E-5 0.10 1.0E-5 0.74 0.66

Consolidated Rock 2.5E-6 0.05 1.0E-5 0.74 0.66
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Table 4.3: California 2010 water use by county (U.S. Geological Survey , 2015a).

County Fresh Water Use (m3/s) # of Wells Area (km2)

Alameda 11.02 125 1,911

Alpine 0.20 5 1,914

Amador 1.42 219 1,570

Butte 31.33 175 4,248

Calaveras 1.02 150 2,642

Colusa 36.58 200 2,981

Contra Costa 11.07 153 1,865

Del Norte 0.60 61 2,611

El Dorado 2.44 159 4,434

Fresno 122.95 925 15,444

Glenn 27.57 225 3,406

Humboldt 2.53 386 9,254

Imperial 4.47 289 10,813

Inyo 51.23 984 26,397

Kern 90.76 1125 21,088

Kings 56.91 125 3,600

Lake 1.92 325 3,258

Lassen 8.87 556 11,805

Los Angeles 70.42 505 10,515
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Table 4.4: California 2010 water use by county (U.S. Geological Survey , 2015a).

County Fresh Water Use (m3/s) # of Wells Area (km2)

Madera 32.80 350 5,537

Marin 1.88 57 1,347

Mariposa 0.23 321 3,758

Mendocino 3.57 248 9,088

Merced 65.47 325 4,996

Modoc 11.46 526 10,215

Mono 10.06 167 7,884

Monterey 23.39 387 8,604

Napa 4.24 150 1,953

Nevada 2.12 100 2,481

Orange 23.80 100 2,046

Placer 8.38 257 3,893

Plumas 5.29 300 6,615

Riverside 46.40 1144 18,669

Sacramento 29.83 150 2,502

San Benito 3.73 200 3,597

San Bernardino 28.01 1719 51,960

San Diego 29.27 302 10,888

San Joaquin 76.76 225 3,623
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Table 4.5: California 2010 water use by county (U.S. Geological Survey , 2015a).

County Fresh Water Use (m3/s) # of Wells Area (km2)

San Luis Obispo 9.25 544 8,557

San Mateo 4.07 54 1,163

Santa Barbara 11.33 384 7,091

Santa Clara 13.05 175 3,344

Santa Cruz 2.91 55 1,155

Shasta 10.46 550 9,806

Sierra 1.71 295 2,468

Siskiyou 18.01 894 16,283

Solano 19.83 125 2,145

Sonoma 9.97 291 4,082

Stanislaus 71.96 225 3,872

Sutter 31.62 125 1,562

Tehama 36.16 475 7,643

Trinity 0.98 550 8,234

Tulare 113.93 600 12,494

Tuolumne 1.57 244 5,791

Ventura 18.00 277 4,781

Yolo 34.18 125 2,621

Yuba 11.28 150 1,632
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Figure 4.7: California 30 year average (1980-2010) precipitation data shown in meters per
year.
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Figure 4.8: California 30 year average (1980-2010) potential evapotranspiration data shown
in meters per year.
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4.3 Atmospheric Model

The WRF model requires extensive input, parametrization, and data. Inside of the WRF

model, each physical component (e.g. radiative, cumulus, land surface, planetary boundary

layer) has several to tens of options to optimize the simulation based on domain location,

discretization, and the research questions. One of the first of many steps is to select the

simulation domain for the atmospheric model. In the case of our coupled simulation, the

WRF domain was centered around the HGS California Basin model, shown in Figure 4.9.

The WRF model was discretized to a horizontal resolution of 12 km and 42 vertical layers

(2.8 million nodes). Temporally, the WRF simulation runs at a 50 second time step and

the radiative scheme runs every 10 minutes.

Once the domain and discretization is selected, the next phase is to download GCM

data sets that cover the entire simulation domain. For lateral boundary conditions, we

implemented the ERA-Interim six-hour global reanalysis data set provided by the European

Centre for Medium-Range Weather Forecasts (ECMWF) (Berrisford et al., 2011). The

global data sets were then processed for all of 2011 using the WPS (WRF Preprocessing

System). Lastly, the WRF model physics parameterization were selected as the following:

Radiation – Community Atmosphere Model (CAM 3.0)

Planetary Boundary Layer – Mellor-Yamada-Janjic (MYJ)

Cumulus Parameterization – Kain-Fritsch

Microphysics – New Thompson

Land Surface Model – Noah LSM

Hydrological Model – HydroGeoSphere
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Figure 4.9: The WRF domain is the entire rectangular box, inside of the atmospheric
model the land surface is prescribed by HGS for the California Basin and the Noah LSM
for the rest of the domain.
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4.4 Results

4.4.1 Model Spin-up

The California Basin is in a continuously transient state, as a result of dramatic ground

subsidence in the Central Valley due to groundwater mining across the entire domain. In

short, California’s aquifers and aquitards are consistently changing (Farr et al., 2015; Mann

and Gleick , 2015). In order to run HGS, the model requires initial state values (hydraulic

head) for the surface and subsurface domain. In most scenarios, the initial condition can be

approximated with a steady-state model that incorporates average climate and pumping

data. However, because California’s groundwater levels continue to decrease year upon

year, the steady-state solution (with groundwater extractions) would be an inappropriate

initial condition, because the water table would be at a much lower elevation than the

current measured values.

In order to properly create the correct initial condition, we spun-up the HGS model

(with no groundwater and surface water extractions) in its offline mode with historical

CMIP5 precipitation and PET data. Once the model reached steady state (year 1915),

groundwater and surface water extractions were turned on for 100 years, and the HGS

model was run to present-day conditions (year 2015). The uncalibrated depth to ground-

water table results are shown in Figures 4.10 - 4.12. Due to the relatively coarse discretiza-

tion of HGS, the use of simplified geology and the inclusion of groundwater extraction by

lumping individual wells into pumping centers, no attempt was made to compare HGS-

calculated groundwater levels to available, albeit sparse, observation. A rapid drop in
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groundwater head occurred across the domain especially in the southern regions of Cal-

ifornia. This result is expected because the southern region has low precipitation, high

potential evapotranspiration, and high water use.

Furthermore, HGS (≈12 km3/year) and the Gravity Recovery and Climate Experiment

(GRACE) satellite (≈4–15 km3/year) estimated similar drawdown rates in the California

Basin in the 21st century, shown in Figure 4.13. Although the GRACE estimations pro-

vided by Chen et al. (2016) are based on a relatively coarse spatial resolution of 200,000

km2, the close agreement lends credence to both the GRACE and uncalibrated HGS cal-

culations. The HGS drawdown behavior illustrates that the California Basin is still in a

transient condition and water storage continues to decline. If pumping rates remain the

same, the California Basin will experience continuous water level declines over the next

decade, which will have a severe impact on agricultural production and water supplies for

human and industrial consumption.
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Figure 4.10: The California Basin offline simulation plotting depth to groundwater table
for 1915.
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Figure 4.11: The California Basin offline simulation plotting depth to groundwater table
for 1965.
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Figure 4.12: The California Basin offline simulation plotting depth to groundwater table
for 2015.
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4.4.2 Coupled Simulation

Diurnal Cycle

After successfully running the model to current day conditions, the coupled HGS-WRF

model was executed. The coupled model time frame was 200 days (January 1st to July

20th 2011), and the results for the first day and half are shown in Figure 4.14 and Fig-

ure 4.15. The plots include surface water in log meter depth, precipitation, evapotranspi-

ration, and change in soil saturation over 6 time intervals. Naturally, the ET undergoes

a diurnal cycle from the sun rising and setting during the day. As the ET increases it

removes water from the land surface and shallow subsurface, and moves the water into the

atmospheric domain—increasing the atmospheric humidity. Once water is removed from

the surface and subsurface, the ET rates decline because it takes more energy to move

deeper subsurface water into the atmosphere.

Conversely, as more water enters the atmosphere, the PET values decline due to a

build up of humidity. Once the atmospheric humidity exceeds saturation, the water leaves

the atmosphere and re-enters the surface and subsurface domains as precipitation. During

heavy precipitation events, water quickly moves over the surface, collects into larger rivers,

and discharges into the Pacific Ocean. Additionally, groundwater discharge replenishes the

ET water loss and can continue supplying surface water flows and ET during low precipi-

tation conditions.
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Figure 4.14: HGS-WRF simulation for the first 0.6 days.
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Figure 4.15: HGS-WRF simulation for day 0.9 to 1.5.
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Mass Balance

The HGS-WRF mass balance for the California Basin, shown in Figure 4.16 and 4.17,

summarizes the results of the simulation. The diurnal cycle of the evapotranspiration is

evident in not only the AET, but also appears in the river outflow. During the large

precipitation events from 40 days to 90 days, the model showed lower evapotranspiration

rates due to cloud cover, colder temperatures, and high relative humidity. Moreover,

the large rain events caused a sharp increase in river discharge and masked the diurnal

outflow pattern. After the large precipitation events, the river outflow returns to base flow

conditions.

The strong diurnal nature in the overland flow is a product of the high PET levels during

the day, which removes water from the surface and subsurface. At night, PET levels drop

to a fraction of the daily fluxes, and subsurface water exfiltrates into the surface domain,

thus replenishing the local streams and rivers. The surface water in the rivers, with an

increased stage height, produce higher river flows and more water leaves the surface domain

at the outflow (via the critical depth boundary condition).

Furthermore, the cumulative mass balance for the simulation, shown in Figure 4.18,

and for the 10-day averaged volumetric fluxes, shown in Table 4.6, clearly illustrates the

changes in precipitation, evapotranspiration, and river flows for the simulation. Over the

course of the first 40 days, evapotranspiration was the most dominant flux; however, after

this period, precipitation fluxes become more influential in the overall water balance. The

increased precipitation produces higher peak river flows, and overall greater overland flow

discharge. Ultimately, the increase in precipitation rates for the 40 to 90 day interval
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correlates with a sudden decrease in actual evapotranspiration.

After 90 days, the evapotranspiration fluxes dominate the simulation. The precipitation

fluxes are much lower with short periods of intense rainfall. Additionally, the 10-day

averaged outflow boundary fluxes monotonically decline from 90 days untill the end of

the simulation. The low precipitation rates and large evapotranspiration rates cause this

decline in the surface water storage.

There is a noticeable correlation between increased precipitation and a decrease in

evapotranspiration rates. For example, days 30 to 40 exhibited a mean ET of 6,600 m3/s

and precipitation rate of 300 m3/s. The following 10-day period (days 40-50), should

have higher evapotranspiration rates, due to higher solar radiation. However, the large

precipitation event, 26,000 m3/s, reduces the ET fluxes to just 5,400 m3/s; 1,200 m3/s

lower than the previous 10-day period. Precipitation events reduce the ET fluxes by

increasing the relative humidity, decreasing the surface temperature, and reducing solar

radiation (from cloud cover).
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Table 4.6: California Basin 10 day averaged volumetric fluxes.

Days Evapotranspiration (m3/s) Precipitation (m3/s) River Outflow (m3/s)

0 – 10 3,600 2,100 1,400

10 – 20 4,400 1,000 1,400

20 – 30 5,100 2,300 1,300

30 – 40 6,600 300 1,200

40 – 50 5,400 26,000 1,500

50 – 60 5,600 12,700 1,400

60 – 70 6,300 17,300 1,800

70 – 80 6,500 39,100 2,700

80 – 90 8,700 24,000 3,000

90 – 100 11,800 5,000 2,700

100 – 110 10,700 7,000 2,500

110 – 120 12,000 6,400 1,900

120 – 130 13,500 2,000 1,400

130 – 140 10,600 12,000 1,300

140 – 150 12,600 6,000 1,100

150 – 160 11,300 9,600 1,100

160 – 170 14,300 700 800

170 – 180 13,500 3,200 700

180 – 190 14,500 800 600

190 – 200 10,900 1,300 500

Mean 9,400 8,900 1,500
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Mean Results

The simulation results are shown in Figures 4.19 to 4.28 and include the 20-day averaged

log river depths (m), precipitation (mm/day), evapotranspiration (mm/day), and changes

in near surface soil saturation (-). The saturation change in the simulation initially starts

at time zero; as the simulation creates precipitation, the saturation increases as shown by

the blue colors. Alternatively, as more evapotranspiration removes water from the subsur-

face domain, the change in saturation becomes negative and trends towards the red colors.

The first forty day (January 1 to February 9), shown in Figures 4.19 and 4.20, produced

low amounts of precipitation and moderate levels of evapotranspiration, producing little

to no change in the surface and subsurface water storage. The trend in the precipitation

patterns caused water to increase in the lowlands (e.g. Central Valley) and decrease in the

highlands.

The next 60 days, from day 40 to day 100 (February 10 to April 10), shown in Fig-

ures 4.21 to 4.23, show a drastic increase in precipitation, predominately along the north-

ern regions and the windward side of the Sierra Nevada Mountains. This water quickly

increases the subsurface water quantity and replenishes the local streams and rivers. The

strong increase in precipitation and cloud cover decreases the evapotranspiration fluxes

which helps retain water in the surface and subsurface domains.

The last 100 days of the simulation (April 11 to July 20), shown in Figures 4.24 to

4.28 have a much lower rate of precipitation and almost no simulated precipitation in the

southern portion of the state. The low levels of precipitation account for the decreasing

surface and subsurface water levels. The change in saturation becomes predominately red
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for the entire domain, with the exception of several small regions in northern California

and the Sierra Nevadas. The southern California desert regions did not show significant

change in soil moisture because the soil from the initial condition was already dry, reducing

the amount of available water for evapotranspiration.
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Model Comparison: Precipitation and Evapotranspiration

The HGS-WRF simulation results were compared to three data observation stations that

are part of California Department of Water Resources’ California Irrigation Management

Information System (California Department of Water Resources , 2016). The three stations

are the Fair Oaks (Sacramento County in the Sacramento Valley), Arvin (Kern County in

the Central Valley), and Hopland2 (Mendocino County in the North Coast Valleys). The

20-day mean precipitation and evapotranspiration are shown in Figures 4.29 and 4.30. In

both figures, the HGS-WRF simulation produces an overall higher precipitation and higher

evapotranspiration rates.

Furthermore, the simulated vs. the observed data for precipitation and evapotranspira-

tion are shown in Figures 4.31 and 4.32, and the mean absolute error for the three stations

is shown in Table 4.7. These biases may be tied together; the extra available water (from

precipitation) will produce more evapotranspiration, and the stronger evapotranspiration

fluxes will produce more precipitation.

Table 4.7: California Basin Mean Absolute Error.

Precipitation (mm/day) Evapotranspiration (mm/day)

Fair Oaks 0.7 1.7

Arvin 0.2 0.4

Hopland2 0.9 1.9

Overall the precipitation and evapotranspiration fluxes show a moderate bias. However,

the general behavior of the simulation follows the observed data: during the weeks of
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high observed precipitation, the HGS-WRF model simulated higher precipitation rates;

during the weeks of lower precipitation rates, the model displayed lower simulated rates.

This behavior is encouraging; it indicates that the modeling physics are correct but the

parametrization of the surface and subsurface domains need improvement. Tuning several

parameters (e.g. hydraulic conductivity, leaf area index, root zone depth, and transpiration

coefficients) would improve the skill of the simulation.
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Figure 4.31: Simulated vs. Observed precipitation for three MET stations in the California
Basin.
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Figure 4.32: Simulated vs. Observed evapotranspiration for three MET stations in the
California Basin.
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Model Comparison: Overland Flow

California’s water resources are altered with manmade infrastructure (e.g. dams, canals,

channels, culverts, weirs, and pumping) distributed throughout the region. For example,

California has 1,594 dams, and each one has its own lengthy operating guideline manuals

to optimize for flood protection, hydropower, consumptive use, and environmental impact

(United States Army Corps of Engineers , 2016). The public often misunderstands the

drainage of reservoirs to maintain minimum base flows, believing that water stored in a

reservoir should be primarily set aside for agriculture and human use.

Farmers, implementing their riparian rights, directly irrigate their crops from local

rivers and aquifers. Additionally, these same farmers divert their excessive soil moisture

(using tile drains and drainage ditches) back into the river. Including each individual

stakeholder and infrastructural detail is extremely difficult, especially at the 4km horizon-

tal resolution. With these limitations in mind, a comparison of river fluxes to measured

flow for the Freeport, CA (Sacramento river) and Klamath, CA (Klamath river) gauging

stations are shown in Figures 4.33 and 4.34, respectively (United States Geological Survey ,

2016). The Freeport and Klamath gauging stations are the most downstream locations for

both of the rivers, before they discharge into the San Francisco Bay and Pacific Ocean. The

Sacramento river is the largest river in California and the Klamath is the second largest.

The coupled HGS-WRF simulation captures the general trend of the observed hydro-

graph for both the Freeport and Klamath stations. Starting from initial conditions, the

simulated surface water flow is underpredicted for both rivers. Once the larger precipitation

events start (40 to 90 days), the flow increases for the Freeport station and the peak flow
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matches the measured levels. After the peak event, the Sacramento river continues to flow

at a higher rate than the simulated results. This behavior may be explained by the lack

of dams and reservoirs being incorporated in the simulation. Additionally, the observed

Sacramento river data shows a strong tidal influence, and the HGS-WRF simulation did

not include tidal physics.

Overall, the HGS-WRF simulation better matches the peak flow behavior for the Sacra-

mento river than it does for the Klamath river. The HGS-WRF simulation maintained

baseflow for the Klamath river but was not able to match the flashy peak response of the

northern watershed. Decreasing the subsurface hydraulic conductivity for the Klamath

basin would increase the rainfall response and could potentially increase the simulation

skill during peak flows. However, this modification could potentially cause a decrease in

overall base flows and may drastically alter groundwater infiltration. Without the inclusion

of dams and reservoirs, matching baseflow and peak behavior is problematic. Furthermore,

the 4 km grid spacing dissipates and averages the surface water flow over a large wetted

perimeter, which decreases the depth of surface water and decreases the peakiness of flow.

Nevertheless, the results presented here are encouraging for an uncalibrated model that

excludes important engineered structures within the California Basin.
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Chapter 5

Conclusion
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Coupled atmospheric, surface and subsurface models have advanced significantly in recent

years. Previous modeling attempts have limited the connection between the atmosphere

and the subsurface to, at best, the first 2-meters of the soil column using a 1-D concep-

tualization, and, at worst, an uncoupled model forcing. By coupling HydroGeoSphere, an

advanced 3-D surface/subsurface flow and transport model, to two separate atmospheric

models, we have demonstrated the path forward to employ fully-coupled models that can

be used to assess the relative importance of various interactions between the atmosphere,

the land surface, and the subsurface.

In this study, the HGS model is first coupled to a simplified zero-dimensional Atmo-

spheric Boundary Layer model. The HGS-ABL modeling platform is then compared with

the Noah LSM and found a reasonably good fit between the two methods. The HGS-ABL

simulations show that current LSMs are too shallow for handling deep root-zone inter-

actions and do not provide an adequate representation for subsurface heat storage. The

HGS-ABL simulation results also found that a positive correlation exists between the soil

moisture and the energy feedbacks similar to the results of Quinn et al. (1995), Maxwell

et al. (2007), and Maxwell and Kollet (2008). The principal advantage of implementing

HGS as a land surface model over the previous generation of LSMs is that our approach

integrates heat transport, water flow, and evapotranspiration processes, for both the sur-

face and subsurface domains, into one complete modeling framework.

The coupling of HGS with the simplified ABL model was the first step in the devel-

opment of the coupled atmospheric, lands surface, and subsurface models. The lessons

learned coupling HGS to the ABL model directly guided the the framework to couple HGS

to a three-dimensional atmospheric model.
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The next step after the HGS-ABL model was to couple HGS to the Weather Research

and Forecasting (WRF) Model, a three-dimensional nonhydrostatic mesoscale atmospheric

model. HGS replaces the land surface components of WRF by providing the actual evap-

otranspiration (AET) and soil water saturation from the porous media to the atmosphere.

In exchange, WRF provides HGS with the potential evapotranspiration (PET) and pre-

cipitation fluxes. The two-way coupling technique uniquely accepts independent model

meshing and projections and links domains based on their geographic coordinates (i.e.,

latitude and longitude).

This study then demonstrates the HGS-WRF model over the California Basin to investi-

gate the interactions of the subsurface, surface, and atmosphere in a fully three-dimensional

environment. Furthermore, this work is the first of its kind to:

• Develop the first three-dimensional geological model for California.

• Implement the first fully-integrated three-dimensional model of the California Basin.

• Incorporate the subsurface, surface, and atmosphere into one complete framework

over a large scale basin model.

• Include deep groundwater flow within a coupled atmospheric model.

The framework presented in this thesis is currently the most complete water resource

model, because the deep subsurface, surface and atmosphere are included into one coupled

platform. The implementation of HGS-WRF captures the dynamic patterns of weather and

climate within the California Basin. Furthermore, the 200 day simulation results shown in

this work are the beginning stages of the California Basin Model.
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However, the California Basin Model does not include several important processes (e.g.

hydraulic control structures, irrigation, and winter processes), which limits the skill of the

numerical simulations. Even with these drawbacks, the California Basin Model successfully

demonstrated the potential of HGS-WRF and further research is required to develop a

more complete coupled model. As this research progresses, the simulation results will

directly inform water managers about the sustainable yield of water resources and will help

policymakers to develop science-based plans to better manage their resources. Moreover,

this framework of research will help project the potential impact of water policy decisions

on water resources, local economies, and communities.

5.1 Future Work

Heat transport was not included in the current version of the HGS-WRF coupling. The

water balance was the primary focus for the first version of HGS-WRF, and it was desired

to minimize the number of independent variables in the coupling scheme to reduce compu-

tational demand. In future releases, it is planned to incorporate heat transport processes

as an option in the coupled HGS-WRF model. From experience with the HGS-ABL model,

the depth of the subsurface may play a critical role for temperature regulations, especially

during prolonged drought conditions.

The current HGS-WRF model does not include snow processes (a major water balance

component in the Sierra Nevada Mountains), and the inclusion of sediment freeze-thaw

processes would be the next logical advancement to the coupled model. Currently, HGS-

WRF treats all water as liquid precipitation, which may artificially increase stream flow
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during the winter months and decrease streamflow during the summer. HydroGeoSphere

already has snowmelt and soil freeze-thaw built into the model, and the WRF simulation

would provide the correct fluxes to accurately simulate winter processes.

Ultimately, it is planned to continue the development of the California Basin model by

incorporating a significantly more advanced geological model that includes detailed bore-

hole data. The presented version of the California model uses averaged water use data.

Other issues to explore include testing an unstructured HGS mesh that can better represent

land cover and topographic details, refinement of the HGS-WRF time-stepping controls,

inclusion of engineered hydraulic features, and model calibration to available field data.
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