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Abstract

There exists strong evidence that vaccines are extremely effective in the prevention

of pediatric infectious disease, yet despite this evidence, vaccine refusal is still popular

amongst some parents. Existing mathematical models of disease and vaccinating dynam-

ics are parsimonious with post scare empirical data, yet lack the ability to predict when

a scare will occur. This thesis frames the problem of predicting when a vaccine scare is

imminent as a problem in bifurcation theory and critical transitions theory. As a system

of differential equations nears a bifurcation point, the system experiences critical slowing

down, a loss in resilience to small perturbations from equilibrium. This loss in resilience

manifests itself as an increase in the variance and lag-1 autocorrelation of the time series.

Using an existing model for vaccinating dynamics, I demonstrate this critical slowing as

the system bifurcates from a state of high vaccine coverage to a state of suboptimal vaccine

coverage. I also demonstrate that critical slowing can be detected in the population by

using the social media site Twitter and Google Trends data. It will be shown that lead-

ing to the 2014 measles outbreak in Disneyland, a statistically significant increase in the

lag-1 autocorrelation in the time series of tweets with anti-vaccine sentiment is detected.

Post outbreak, a statistically significant decrease in the lag-1 autocorrelation is detected,

suggesting that population comes sufficiently close to a vaccine scare to elicit outbreaks in

those individuals who ceased vaccinating. The results of this thesis provide new tools to

monitor vaccine sentiment and maintain vaccine coverage.
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Chapter 1

Introduction
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1.1 Mathematical Epidemiology

Mathematical epidemiology is the application of tools in dynamical systems and applied

mathematics to the study of how diseases spread. In this section, I motivate the study

of epidemiology through a mathematical lens. I then go on to formulate a mathemati-

cal model of epidemics, describing the details of the formulation. I then discuss disease

transmissibility and how disease transmissibility can be used to determine the size of the

epidemic, demonstrating that in the absence of numerical solvers, the model still provides

a wealth of inference.

1.1.1 An Advantage Over Traditional Methods

Mathematical epidemiology differs from most sciences in that it does not lend itself to

experimental validation of models. Experiments would be costly, impossible to replicate,

and would above all else be completely unethical. On the other hand, computational ex-

periments can be run orders of magnitude faster than any physical experiment, and can

be repeated multiple times for a variety of conditions. The inability to perform tradi-

tional experiments, coupled with the speed and flexibility of computation, underscores the

importance of mathematical and computational models of disease dynamics. The first

mathematical model of disease dynamics was introduced by Kermack & McKendrick in

their seminal paper A contribution to the mathematical theory of epidemics [1].

1.1.2 The SIR Model

Models of disease dynamics are often illustrated using compartmental diagrams. These

illustrations divide the population into compartments and make assumptions about the

nature and time rate of transfer between them. Shown in figure 1.1 is the compartmental

3
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Figure 1.1: The SIR compartmental diagram for Kermack & McKendrick’s model. Indi-
viduals move from compartment to compartment in the direction of the arrows.

diagram for the Kermack-McKendrick model, known commonly as the SIR model [1]. In

the SIR model, individuals are classified as either:

• Susceptible: These individuals are presently not infected and do not have immunity

to the disease. They may become infected if they come in contact with an infected

individual.

• Infected : These individuals are presently infected and infectious (i.e they are able to

spread the disease through contact with an individual in the susceptible compartment,

but not with contact with an individual from the recovered compartment).

• Recovered : These individuals have no effect on transmission dynamics. They have left

the infected compartment through recovery and are immune to new infections.

Several assumptions about the population and time rate of transfer between compartments

are made:

a) The size of the population remains constant throughout the epidemic. Let the size of

the population be N , the number of susceptible individuals in the population be S, the

number of infected individuals in the population be I, and the number of recovered

individuals be R. Therefore, since the population is partitioned into the three compart-

ments, S + I + R = N . Often, it will be the case that N = 1 so that the size of the

compartments are understood to be proportions of the population.

4



b) An average member of the population makes contact sufficient to transmit infection

with βN other members of the population. This assumption is known as mass action

mixing [2, 3]. The parameter β is called the infectious contact rate (i.e the rate of

infection per susceptible an per infective) [3].

c) Members of the infected compartment recover at a rate of γI. Here, γ is the rate of

recovery [3].

Assumption (a) asserts that the timescale of the epidemic is much smaller than the

timescale for births and deaths. This is especially applicable to epidemics like influenza,

which may only last a few months. Assumption (b) implies that the rate of new infections

is the product of the probability of an infected individual encountering a susceptible (S/N),

the number of new infections per unit time (βN), and the number of infected individuals

in the population (I). Thus, the rate of new infections is (βN)(S/N)I = βSI. Assumption

(c) requires more mathematical finesse. Consider those members of the population who

were all infected at one time, and let y(t) denote the number of these individuals who

are still infected after t time units after having been infected. If a proportion γ of these

individuals leave in unit time, then

y′ = −γy ,

which is a separable differential equation with solution y(t) = y(0)e−γt. The function y(t)

is the proportion of individuals infected at the same time who remain infectious at time t.

Hence, the time to recovery from infection is exponentially distributed. The mean of this

distribution is thus 1/γ, and hence the mean length of the infectious period is 1/γ [2].
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1.1.3 SIR as a Differential Equation Model

With the rates of infection and recovery in hand, as well as the flow between compartments

from the compartmental diagram, a system of differential equations describing the density

as a function of time for each compartment can be created.

S ′ = −βSI , (1.1)

I ′ = βSI − γI , (1.2)

R′ = γI . (1.3)

Here, the primes indicate derivatives with respect to time, t. Closed form solutions for S,

I, and R as functions of time cannot be found, and so to gain insight into the dynamics as

functions of time, numerical methods can be used. See figure 1.2b for numerical solutions

to the SIR model. Though no closed form solutions can be found, several inferences can

be made directly from the system.

1.1.3.1 The Basic Reproductive Ratio

It has been shown that the expected length of the infectious period is 1/γ, and that βN

possible disease transferring contacts are made by an average member of the population.

Thus, βN/γ new infections are produced by an index case in a population sufficiently

dense in susceptible individuals. This dimensionless quantity is of utmost importance

in mathematical epidemiology, so important that it is given a formal name: the basic

reproductive ratio, R0
1. The size of R0 determines if the disease becomes epidemic in the

population. Let N = 1, and consider the non-dimensionalization of equations (1.1) to (1.3)

1R0 is pronounced R-nought and is much less of a mouthful than the basic reproductive ratio
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by letting τ = γt. The non-dimensionalized system is then

S ′ = −R0SI , (1.4)

I ′ = R0SI − I , (1.5)

R′ = I . (1.6)

Here, the primes indicate derivatives with respect to the non-dimensional time τ . Fixed

point analysis shows that the disease free equilibrium (S∗, I∗, R∗) = (1, 0, 0) is unstable only

when R0 > 1. In other words, a disease will become epidemic in a population sufficiently

dense in susceptible when an index case of the disease causes more than one new infection.

1.1.3.2 Solutions in Phase Space

Clever manipulation of equations (1.4) to (1.6) yields solutions in the S−I plane. Note first

that the differential equation for R can be decoupled from the system, as R is determined

when S and I are known, reducing the dimension of the system from 3 × 3 to 2 × 2. By

leveraging the chain rule, it can be shown that

dI

dS
= −1 +

1

R0S
, (1.7)

which can be integrated to obtain level curves in the S − I plane [2, 3]

I(S) = −S +
1

R0

ln(S) + C . (1.8)

Here, C = I(0) + S(0) − 1

R0

ln(S(0)). Since the initial conditions must be positive for

physical reasons, there are no domain issues with the logarithm in the definition of C.

See figure figure 1.2a for level curves of I(S) for varying R0. With some determination,

the final size of the epidemic as a function of R0 can be obtained. Let Sfin, and Rfin be

the final sizes of the compartments S and R once the epidemic finishes. At the end of

7



the epidemic, note that Sfin + Rfin = 1. The final size of the epidemic is achieved once

I(S) = 0. Massaging I(S) = 0 into

−R0Sfin exp(−R0Sfin) = −R0 exp(−R0C) .

The equation above is now in the form of

f(Sfin) exp(f(Sfin)) = z .

The inverse of this function is f(Sfin) = W (z), where W is the Lambert W function [4].

Applying the Lambert W function yields

−R0Sfin = W (−R0 exp(−R0C) ) ,

Sfin =
−W (−R0 exp(−R0C) )

R0

,

and since Sfin +Rfin = 1,

Rfin = 1 +
W (−R0 exp(−R0C) )

R0

.

Note that the argument of the Lambert W function in the above expression tends to 0

from below as R0 becomes arbitrarily large, and that W (x)→ 0− as x→ 0− [4]. It is now

clear to see that as R0 → ∞, Rfin → 1−, indicating that the final size of the epidemic

will approach the size of the population as R0 increases in magnitude. In the absence of

closed form expressions for S, I, and R, the model equations allow for inferences to be

made about the size of the infection, and the number of expected new infections. The SIR

model can be altered so as to account for other epidemiological and biological phenomena,

including but not limited to: Exposure to a disease, quarantine, vector-borne diseases,

spatial dynamics, and meta-populations. In the following sections, the SIR model will be

altered so as to account for births, deaths, and vaccination.
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Figure 1.2: Evolution of the relative risk as a function of time.
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1.2 Vaccination

In this section, I demonstrate the value of vaccination in reducing infectious disease in-

cidence and sometimes eliminating infectious disease altogether. I will motivate an SIR

model of endemic infection and investigate how vaccination effects disease prevalence. I will

conclude with the phenomena known as herd immunity, demonstrating that herd immunity

can not only prevent a disease from becoming endemic, but can prevent an epidemic as

well.

1.2.1 An Endemic Model with Vaccination

Endemics differ from epidemics insofar as disease prevalence is sustained through time.

In the SIR model, disease prevalence tends to zero as time becomes sufficiently large. In

endemic models, the density of infectives at equilibrium will be non-zero and positive. To

demonstrate the difference between endemics and epidemics, consider an SIR model with

births, deaths, and vaccination. To simplify the analysis, suppose the following:

a) The per capita birth rate is equal to the per capita death rate. This will assumption

will allow the population size to remain constant, allowing S + I +R = 1.

b) There is no natural immunity to the disease, and no vertical transmission. This means

that newborns only enter the S compartment

c) A fraction 0 < p < 1 of newborns are vaccinated, and thus are moved to the R com-

partment.

d) The vaccine is perfectly effective. Once vaccinated, immunity is guaranteed, and there

is no possibility of vaccine related morbidity.
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Figure 1.3: The compartmental diagram for the SIR model with births, deaths, and vac-
cination.

The compartmental diagram for this system is shown in figure 1.3, and the model equations

are

S ′ = µ(1− p)− βSI − µS , (1.9)

I ′ = βSI − γI − µI , (1.10)

R′ = µp+ γI − µR . (1.11)

Here, the primes indicate derivatives with respect to time, t. As before, R is determined

when S and I are known, so R can be decoupled from the system. Using arguments from

the previous section, it can be shown that R0 = β/(γ+µ). Fixed point analysis yields two

equilibria: A disease free equilibrium (S∗, I∗) = (1− p, 0) stable only when R0(1− p) < 1

and an endemic equilibrium (S∗, I∗) = ( 1/R0,−µ(R0p−R0 + 1)/(R0(µ+ γ)) ). Using

the Routh-Hurwitz Stability Criterion [3], the endemic equilibrium is stable when the

following two inequalities are satisfied:

µ

µ+ γ
R0(p− 1) < 0 ,

0 < − µ

µ+ γ
(1−R0(1− p)) .
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Note that since 0 < p < 1 is a proportion, the first inequality is always satisfied. The

second inequality is satisfied when 1 < R0(1− p), or equivalently, when

p < 1− 1

R0

= pcrit .

1.2.2 Herd Immunity

When p = pcrit, the disease free equilibrium and the endemic equilibrium collide, and

when pcrit < p ≤ 1, the endemic equilibrium leaves the feasible space and destabilizes The

collision of equilibra and subsequent exchange of stability happens for p < 1, demonstrating

that in order to prevent a disease from becoming endemic, only sufficiently many people

need be vaccinated, and not the entire population. The phenomenon whereby disease spread

can be limited if individuals are mostly immune is called herd immunity [5, 6]. When herd

immunity is achieved, the population is so dense in members immune (or recovered, in the

context of the SIR model) to the disease, that an index case has a difficult time finding

individuals to infect. Thus, the spread of a disease is curbed by the immunity that the herd

provides for those unable or unwilling to vaccinate. See figure figure 1.4 for a visualization

of the threshold for herd immunity as a function of the basic reproductive ratio.

Consider now a case where there is no disease present in the population but individuals

continue to vaccinate at rate p. The introduction of an index case will cause an epidemic,

and if p < 1 − 1/R0 the disease may remain endemic. Under what circumstances can

an epidemic be prevented due to vaccination? Prevention of an epidemic will occur on a

short time scale, and so to examine this question, consider the SIR model once more. The

differential equation governing the density of infectives is

dI

dt
= βSI − γI .
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In order to prevent an epidemic dI/dt < 0 for all 0 ≤ t. Equivalently,

βSI − γI < 0

I(R0S − 1) < 0

R0S − 1 < 0

S <
1

R0

In order for vaccination to prevent an epidemic, the density of susceptible at the time the

index case is introduced to the population must be less that 1/R0. Since S is a decreasing

function in the SIR model, if S(0) < 1/R0 then S(t) < 1/R0 for all 0 < t. This means

that the density of removed individuals must be greater than or equal to 1− 1/R0, which

was shown to be the threshold for herd immunity. Thus, vaccination can prevent a disease

from becoming endemic in the population, and can also prevent an epidemic. Vaccination

presents tremendous value in disease prevention and public health, but the model given
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by equations (1.9) to (1.11) ignores an important aspect of vaccination; risk. In North

America, parents are not required to immunize their children They may choose to refuse

vaccination for religious or personal reasons, or may choose not to vaccinate because of

rumours of vaccine related morbidity. It can be shown through a game theoretical analysis

that if a non-zero risk is associated with vaccination, it is impossible for the vaccination

rate, p, to meet the required threshold for herd immunity [7]. Thus, a model accounting for

vaccinating choices must be developed. Before such a model is put forth, the reasons why

a parent may forgo or postpone vaccination must be examined. In the following section,

vaccine scares and their motivators are discussed.
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1.3 Vaccine Scares

A vaccine scare is a sudden drop in the vaccine coverage due to an increase in risk (actual or

perceived) associated with vaccination. Most recently, the Measles, Mumps, and Rubella

vaccine (henceforth referred to as the MMR vaccine) has undergone a vaccine scare in

the United Kingdom as rumours of an association with autism have surfaced [8, 9]. In

this section, I deconstruct vaccine scares, examining how they are caused and how they

affect disease incidence. At the end of this section, I present a formalization of vaccinating

dynamics via game theory and a differential equation model.

1.3.1 Salient Factors in Determining Vaccinating Habits

Vaccine refusal begins with a lack of confidence in the safety or effectiveness of a vaccine.

Though decisions regarding vaccination are multifactorial with high variability from indi-

vidual to individual, factors affecting vaccination habits can be broadly placed into one of

three categories: perceived disease risk, perceived vaccine risk, and social norms.

Vaccines have become victims of their own success. Control over once common pediatric

infectious diseases has lead to an unfamiliarity with these diseases, an underestimation of

the risks of the disease, and a lack of confidence in the efficacy and safety of vaccines [10, 11,

12, 13]. As seen in section 1.2.2, a population sufficiently dense in immune individuals can

eradicate a disease via herd immunity. This poses a paradox between optimal vaccinating

habits in order to eradicate a disease and optimal vaccinating habits for the individual. As

vaccine coverage climbs, the incentive to vaccinate drops, as the benefits of immunization

can be achieved via herd immunity without any of the costs or risks. These acts of self

preservation make eradication of a disease difficult under compulsory vaccination [7, 14, 15].

Similarly, an increase in disease prevalence can cause a redoubling effort of vaccination, as
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individuals are reminded of the dangers of the disease [7]. Leading up to 1874, Stockholm

Sweden saw vaccine coverage drop as low as 40% until a smallpox epidemic shocked the city

into widespread vaccination [16]. After rumours surfaced in the 1970s that the whole cell

pertussis vaccine caused neurological damage, Wales and Great Britain saw a decrease in

vaccine coverage until disease incidence spiked in unvaccinated individuals [14, 17]. Hence,

ceteris paribus, disease incidence is a salient factor in determining vaccinating habits.

Risks associated with vaccination are also salient factors when determining vaccinating

habits. The most notable and visible example is the association of the MMR vaccine with

autism and gastrointestinal problems [14, 10, 13]. Parents have noticed a population level

increase in autism diagnosis as the number of vaccine administrations and recommended

vaccinations has coincidently and simultaneously increased. As parents see diagnosis of

infants with autism after vaccination, they form a causal relationship of “vaccines cause

autism”. However, this causal inference is in fact fallacious, and readers will recognize this

rhetoric as post hoc ergo propter hoc. There exists a confluence of other factors relating

to perceived risks of vaccines: The unpredictability of adverse reactions to vaccinations,

waning trust in corporations, public health agencies, and the pharmaceutical-industrial

complex (i.e Big Pharma), and a demand for a more “natural” lifestyle all contribute to

perceived vaccine risk [10]. Despite these concerns, there exists no evidence of a relationship

between autism and the MMR vaccine [18, 19, 20].

Finally, the interactions between individuals, especially peers, has a high impact on

vaccinating habits. Vaccine refusal is the exception and not the rule in most developed

countries. Polio eradication has been maintained for decades in European countries with

voluntary vaccination [21], and vaccine coverage for MCV1 (the first dose of the measles

containing vaccine) has been well over 93% for the last ten years in countries like Portugal,

Sweden, Germany, and The Netherlands [22]. Though vaccine refusal can be problematic
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during times of low disease incidence, local elimination can be maintained, suggesting that

perceived disease risk and perceived vaccine risk are not the only salient factors in deter-

mining vaccinating habits. The Health Belief Model posits that social factors, specifically

social norms, play an important role in determining vaccinating habits [23, 24]. Social

norms are behaviours considered “normal” that are enforced by some form of social pun-

ishment [25]. With respect to vaccination, punishments may include being type cast with

others violating the norm as an irresponsible or a bad parent [26]. It is evident from

the literature that childhood vaccination is a social norm. Participants in one particular

study thought of childhood vaccination as “normal”, “the right thing to do”, and “natural

[...] you’re just supposed to do it” [25]. Hence, pressure from social norms may outweigh

any risks or costs of vaccination, causing conscientious objectors to follow the norm and

vaccinate themselves or their children

1.3.2 Modelling Vaccine Scares

Previous models of vaccinating dynamics did not account for social norms [14, 7]. These

models often predicted oscillations in vaccine coverage, which was not observed in vaccine

coverage data. Oraby, Thampi, and Bauch have extended an imitation dynamic model of

vaccination to account for social norms [15].

For the imitation dynamic, it is assumed that each individual in the population plays

one of two strategies: vaccinating or non-vaccinating. The members sample one another

at some constant rate and compare payoffs for their strategy. If two members playing

different strategies sample one another, then the member with lower payoff will change

strategies with probability proportional to the difference in payoffs [27, 28, 29]. The payoff

to vaccinate is given by

ev = −rv + δ0x .
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Here, rv is the perceived risk associated with vaccinating, x is the proportion of the popu-

lation who chooses to vaccinate, and δ0 is the strength of the social norms. The payoff not

to vaccinate is given by

en = −cI(t) + δ0(1− x) .

Here, c is the product of cost of infection, reporting probability, and a proportionality

constant governing perceived probability of becoming infected. The function I(t) is the

density of infective individuals in the population at time t. The difference in payoffs for

both strategies is then

∆E = ev − en = −rv + cI(t) + δ0(2x− 1) ,

which after some rescaling can be written as

∆E = −w + I(t) + δ(2x− 1) .

Here, w = rv/c is a rescaled measure of how risky the vaccine is in comparison to infection.

Since perceived vaccine risk is dynamic in time, w is usually a function of time (i.e w =

w(t)). When ∆E > 0 non-vaccinators will switch strategies to become vaccinators, and

when ∆E < 0 vaccinators will switch strategies to become non-vaccinators.

The imitation dynamic has vaccinators (x) sampling non-vaccinators (1 − x) at some

constant rate (k) with the sign of ∆E determining if vaccinators increase or decrease.

Hence, the differential equation for the rate change in vaccinators with respect to time can

then be written as

x′ = kx(1− x)(−w + I(t) + δ(2x− 1)) .

Here, the prime indicates a derivative with respect to time, t, and k is the rate at which

individuals sample one another. This equation is formally equivalent to those in evolution-

ary game theory [29], except that the payoffs are functions of time. Using a differential
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equation model similar to the one found in section 1.2.1, I(t) can be determined. Thus,

the entire model is

S ′ = µ(1− x)− βSI − µS , (1.12)

I ′ = βSI − (γ + µ)I , (1.13)

x′ = kx(1− x)(−w + I + δ(2x− 1)) . (1.14)

When the relative risk is constant (i.e w(t) = m), model equilibria can be computed.

There exist five feasible equlibria. Three of the five have zero disease incidence, corre-

sponding to full susceptibility and no disease incidence

ϑ1 := (S∗, I∗, x∗) = (1, 0, 0) ,

full vaccine coverage with no susceptibility,

ϑ2 := (S∗, I∗, x∗) = (0, 0, 1) ,

and partial vaccine coverage

ϑ3 := (S∗, I∗, x∗) =

(
δ −m

2δ
, 0,

δ +m

2δ

)
.

The remaining two equilibria are endemic equilibria with no vaccine coverage

ϑ4 := (S∗, I∗, x∗) =

(
1

R0

,
µ

µ+ γ

(
1− 1

R0

)
, 0

)
,

and partial vaccine coverage,

ϑ5 := (S∗, I∗, x∗) =

(
1

R0

,
µ(m− δ + (2δ/R0))

µ− 2δ(µ+ γ)
,
µ(1− 1/R0)− (δ +m)(µ+ γ)

µ− 2δ(µ+ γ)

)
.

Here, R0 has its familiar definition as R0 = β/(µ+ γ).
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1.3.3 Stability & Bifurcations of the Oraby et al. Model

The stability of each equilibria is shown in table 1.1. See figure 1.5 for bifurcation2 diagrams

for x(t).

Equilibrium Stability Condition

ϑ1 R0 < 1

ϑ2 m < δ

ϑ3 Never stable in feasible space.

ϑ4
µ

µ+ γ
(1− 1/R0)− δ < m

ϑ5 2δ <
µ

µ+ γ

Table 1.1: The stability criteria for the Oraby et al. model.

Note that as usual, the disease free equilibrium ϑ1 is unstable when 1 < R0. The

full vaccine coverage equilibrium ϑ2 is stable when the relative risk of the vaccine, m, is

strictly less than the strength of the social norms, δ. When ϑ3 exists, it is always unstable.

This is because when disease incidence is 0, the social norms will force vaccine coverage

to 0 or 1. Note that when ϑ5 is stable, there exists a region of bistability between ϑ5 and

ϑ2. In this region, partial coverage and full coverage are stable, and the behaviour of the

system as t→∞ will depend on the initial conditions. Endemic infection with no vaccine

coverage stabilizes when m becomes sufficiently large, eventually becoming the only stable

equilibrium. Physically, when vaccination is exceedingly risky, not even social norms can

force parents to accept the risk and vaccinate.

2For those unfamiliar with bifurcations, a small review is presented in section 1.5.2
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(a) Here δ = 5 × 10−4, which violates
the stability condition under this particular
parametrization Hence, ϑ5 is unstable.
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(b) Here, δ = 2.5× 10−4 which satisfies the
stability condition. Hence, the endemic par-
tial vaccine coverage equilibrium is stable

Figure 1.5: Bifurcation Diagrams of the Oraby et al model. Diagrams are for model
parameterized for measles: µ = 1/50, γ = 365/13, β = 281, k = 594.95, and t is measured
in years. Stable equilibria in black, unstable equilibria in dashed grey. Not pictured here
is the the disease free equilibrium ϑ1 as it is always unstable when R0 > 1, which is the
case for measles.

In either case, the system demonstrates how a vaccine scare results when the relative risk

of vaccination increases. Consider figure 1.5b when m = 0. The full coverage equilibrium

is the only stable equilibrium (no risk associated with vaccinating always beats a non-zero

risk associated with the chance of infection.). As m increases further, the system runs

the possibility of dropping off the ϑ2 branch when m = δ onto the ϑ5 branch. This drop

into suboptimal vaccine coverage due to an increase in the relative risk of vaccination is a

vaccine scare in the context of bifurcation. It can be shown that the maximum of the ϑ5

branch is

1− (γ + µ)

µ

1

R0

< pcrit ,
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thus explaining why the disease remains endemic on ϑ5. If m continues to increase, then

the vaccine is perceived to be too risky and eventually no parents will vaccinate.

Suppose that m increases to m = δ+ ε where 0 < ε� 1, forcing the system onto the ϑ5

branch. Decreasing the relative risk to m = δ − ε will not force the system back onto the

full vaccine coverage branch due to bistability of ϑ5 and ϑ2. This demonstrates a hidden

obstacle to recovering from a vaccine scare. Returning perceived risk to pre-scare levels

will not guarantee that a population will achieve herd immunity. The relative risk must

be decreased sufficiently so that ϑ2 is the only stable equilibrium. Physically, this could be

expensive, time consuming, or not possible given the available resources. The bistability

of this system echoes the importance of maintaining vaccine coverage and preventing an

increase in the relative risk of vaccination.
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1.4 Machine Learning & Text Classification

With the emergence of “big data”, machine learning has become an indispensable tool

for deriving insights from a proverbial sea of information. Machine learning has been

described as the application of induction algorithms and other algorithms that can be

said to “learn” from data [30]. That is to say, the application of those algorithms which

may make inferences based on data. The foundations of machine learning lay in computer

science and statistics, though applications are far reaching, and can be found in fields as

diverse as biology, epidemiology, marketing, and finance [31, 32, 33, 34]. This section is by

no means a thorough review of the expansive and ever expanding topic of machine learning3,

but instead will serve as a primer to understand later applications of machine learning in

the context of classification. In this section, I discuss: problems machine learning can

be applied to, an example of a probabilistic classifier, and common metrics for algorithm

performance.

1.4.1 Supervised Learning & Classification

Consider the following problems:

• Predict whether a patient, whom has suffered a heart attack, will suffer a second

heart attack based on the patient’s clinical measurements, demographic, and diet.

• Predict the selling price of a house based on the house’s location, square footage, and

number of bedrooms.

• Predict the price of a stock 6 months into the future given the company’s performance

and other economic indicators.
3For if it were, this book would be just one volume of many. Consequently, please excuse the excessive

use of the phrases “...not examined here” and “...beyond the scope of this thesis.”
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In each of these problems, there exists a qualitative/categorical outcome measurement

(e.g price of a stock, occurrence of a second heart attack, etc.), that is to be predicted

based on a set of features (e.g company performance, clinical measurements, etc.). There

exists a training set which includes previous outcome measurements and the associated

features for those outcomes.

The problems listed above are all examples of supervised learning problems. The avail-

ability of an outcome measurement (e.g data on patients who have suffered heart attacks,

prices of houses which have been sold in the recent past, etc.) to guide the learning process

is what makes these problems supervised learning problems [35, 36]. Problems where no

outcomes are previously observed are called unsupervised learning problems, and usually

focus on relating, or clustering, the data to reveal hidden relationships.

The above problems can be categorized into regression and classification problems.

Regression problems seek to predict a continuous outcome (e.g the selling price of a house,

the price of a stock, etc.), while classification problems seek to predict a categorical outcome

(e.g heart attack or no heart attack) from a finite set of possible classes [35, 36].

Mathematically, there exists a set of observations and outcomes (x1, y1), (x2, y2), . . . ,

(xn, yn), where xi ∈ Rp and yi ∈ Rm. Each outcome is related to its observation by

yi = f(xi) + ε .

Here, ε ∼ N (0, Im), where Im is the m×m identity matrix. Thus, ε represents white noise

inherent in the observations,and is thus independent of the observations xi. The function

f : Rp → Rm is an unknown function. Since f is unknown, it must be estimated. This is

the essence of machine learning. In many problems, a set of features, x, is readily available,

but the outcome y is not easily obtained. Using the an estimate of the unknown function,

f̂ , an estimated outcome can be obtained using ŷ = f̂(x).
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In the following sections, X will be an n × p matrix, where the ith row is observation

xi. Denote the outcome matrix (or outcome vector if m = 1) as y, where the ith row is yi.

As stated previously, y will be used to guide the learning process in supervised problems.

1.4.2 Supervised Classification of Natural Language

Text analysis is a major field of machine learning, but the raw text itself can not be fed

into learning algorithms, as the algorithms expect numerical feature vectors with fixed size

and not raw text documents with variable length [37]. The goal is to somehow map the raw

text to a numerical representation so as to obtain an X capable of being used by learning

algorithms. The process by which a document is converted to a numerical feature vector

is called feature extraction [37].

Let C be a corpus housing documents, which can be as long or as short as needed. Each

document is composed of words, separated by punctuation or white space. By counting

the number of occurrences of each word in the corpus with respect to each document, a

corpus can be turned into numerical matrix, where entry (i, j) is the number of occurrences

of word j in document i. This particular strategy is dubbed bag of words [37, 38].

Consider this process of feature extraction by means of example. Let D1 = “My dog

has fleas”, D2 = “All dogs go to heaven”, D3 = “No dog in heaven has fleas”, and D4 =

“It is a dog eat dog world”. Thus, C = {D1, D2, D3, D4}. There are 15 unique words

in C and 4 documents, so the numerical representation of the corpus, figure 1.6, will be

4×15. The result is a numerical representation of a corpus capable of being fed into various

algorithms.
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D1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0
D2 1 0 1 0 0 1 0 1 0 0 0 0 0 1 0
D3 0 1 0 0 1 0 1 1 1 0 0 0 1 0 0
D4 0 2 0 1 0 0 0 0 0 1 1 0 0 0 1


Figure 1.6: The feature matrix for the corpus C. The rows of the matrix represent a
document from the corpus, and the entries indicate the occurrence of each indicated word.
Thus, D1 has one occurrence of the word “dog”, one occurrence of the word “fleas”, no
occurrences of the word “eat”, and so on. This approach is named “bag of words” because
it is akin to breaking the document into words, and jumbling them in a bag. This particular
representation ignores syntactical relationships between words, and so some information is
lost.

1.4.3 Classifying with Naive Bayes Classifier

When performing classification of any type, creating a decision boundary (a partition of

the feature space indicating the separation between elements of different classes) is often

the final goal [35, 36]. Some algorithms seek to directly partition Rp so that elements in a

common set belong to a like class, while probabilistic methods may classify by classifying

according to whichever class leads to maximum posterior probabilities. In this section, a

common probabilistic method is illustrated by means of example with a toy text corpus.

This method is known as The Naive Bayes Classifier.

1.4.3.1 Naive Bayes Classifier

Given some feature vector, x ∈ Rp, the Naive Bayes Classifier assigns probabilities that

the feature vector belongs to class Ck for K classes by computing

Pr(Ck |x) = Pr(Ck |x1, . . . , xp) .
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Using Bayes’ Rule, this conditional probability can be decomposed as

Pr(Ck |x) =
Pr (Ck) Pr (x |Ck)

Pr (x)
(1.15)

The numerator of equation (1.15) is equivalent to a conditional distribution Pr (Ck ,x),

thus repeated application of the chain rule allows for the numerator to be written as

Pr (Ck) ·
p∏
j=1

Pr (xj |xj , xj+1, . . . , xp, Ck) .

The “naive” part of the Naive Bayes Classifier is that the algorithm assumes that feature

xj is independent of xi for j 6= i, and so the numerator collapses to

Pr (Ck)

p∏
j=1

Pr (xj |Ck) .

In the context of text classification, Pr (xj |Ck) has easy interpretation. It is the prob-

ability of finding word xj in class Ck. Since the denominator is the same for all Ck, it can

be neglected, yielding that

Pr (Ck |x) ∝ Pr (Ck)

p∏
j=1

Pr (xj |Ck) . (1.16)

The classifier then will predict that a given feature vector x belongs to the class that

maximizes Pr (Ck |x). Put mathematically,

ŷ = arg max
Ck∈{C1,...,CK}

{
Pr (Ck)

p∏
j=1

Pr (xj |Ck)
}

1.4.3.2 Classification in Action

Suppose that a corpus contains the following documents about either breakfast or dessert:

“Eggs over easy”, “Crispy bacon”, “Chocolate is scrumptious”, “Chocolate cake? Yum!”.
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Figure 1.7: The numerical representation of the breakfast/dessert corpus.

As in section 1.4.2, the feature extraction can be done on the corpus to obtain a numerical

representation, shown in section 1.4.3.2. Let y = [B ,B ,D ,D], where B indicates a

document is about breakfast, and D indicates a document is about dessert. Suppose the

new document “Eggs over bacon” is to be classified.

The predicted class will be that which maximizes the posterior probability. To de-

termine which class does this, Pr (B), Pr (D), and the prior probabilities will need to be

calculated. An easy interpretation for determining Pr (Ck) is either to: determine proba-

bility based on prevalence in the training data, or make each class equiprobable. In either

case, the example has Pr (D) = 0.5 = Pr (B).

The likelihood is calculated by examining the relative frequencies of words in a partic-

ular class. Thus,

Pr (xi |Ck) =
count(xj, Ck) + 1

|V |+∑x∈V count(x,Ck)
.

Here, V is the vocabulary, or the set of all words unique words in the corpus, count(xj, Ck) is

a function that returns how many times xj occurs in class Ck. Adding 1 in the numerator

and |V | in the denominator prevents multiplying by 0 or 0/0 in the case that a word

not found in the corpus is found in a new document. This technique is called “Laplace

Smoothing”.
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The document ”Eggs over bacon” is now ready to be classified. The calculations are as

follow:

Pr (D |x) = Pr (D) ·
3∏
j=1

Pr (xj |D) =
1

2

(
1

16

)3

≈ 1.2× 10−4

Pr (B |x) = Pr (B) ·
3∏
j=1

Pr (xj |B) =
1

2

(
2

15

)3

≈ 1.2× 10−3

Thus, Pr (D |x) < Pr (B |x), and so ŷ = B.

1.4.4 Performance Metrics

Suppose that some corpus, C, has been mapped to a numerical representation X, through

feature extraction. If each document in C has been assigned to a class ck, then supervised

learning can be performed on X using y = [ck1 , . . . ckn ] to guide the learning.

Before using a learning algorithm on new data, the algorithm’s performance must first

be examined, to ensure that the algorithm is not producing dubious classifications.

1.4.4.1 Estimating Test Error Rate Through a Test/Train Split

No classifier is a perfect classifier, and so a given classifier may produce incorrect classifi-

cations. A good classifier is one which produces correct classifications for new data (that

is to say, observations not in X). Define the test error rate as

E [I(y0 6= ŷ0)] .

Here, I is an indicator function, y0 is the true class for observation x0 which is not in X,

and ŷ0 is the predicted class obtained from the classifier. Hence, a good classifier is one

with small test error rate.
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Measuring the test error rate can be difficult, because true classifications for a given

observation may not be readily available. The test/train split approach leverages the

availability of elements of y, which are true classifications for observations in X, to estimate

the test error rate.

The test/train split approach divides the training data into two unequal parts: an r×p
matrix Xtrain, and an (n − r) × p matrix Xtest, where r is chosen4 so that bn/2c < r

[35, 36, 37]. The outcome vector, y , is split accordingly into ytrain and ytest. The classifier

is trained on Xtrain and ytrain and the test error is estimated by using the data in Xtest to

produce classifications ŷtest. Hence, an estimation of the test error rate is

t̂er =
1

n− r
n−r∑
k=1

I(ytesti 6= ŷtesti) .

1.4.4.2 Confusion Matrices

Knowing how a given classier is misclassifying can give important insight into algorithm

selection. For instance, the physician in section 1.4.1 may prefer a classifier which more

often incorrectly predicts a patient will have a heart attack over one that more often predicts

a patient will not have a heart attack. The occurrence of true/false positives/negatives can

be visualized by a confusion matrix.

By means of example, suppose the physician has trained a classifier using the test/train

split method, and has obtained the following predicted classifications

ŷtest = [cH , cH , cN , cH , cH , cN , cN , cH , cN , cN ] ,

ytest = [cH , cN , cN , cH , cN , cN , cN , cN , cN , cH ] .

4A popular choice is r = 0.6n, often called the sixty-forty split [36].
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True Label
cA cB Total

Predicted Label
cA TP FN
cB FP TN

Total

Figure 1.8: A typical confusion matrix for binary classification. Entries in the matrix
indicate the classifier’s performance with respect to each class. Totals are calculated by
summing along rows and columns.

Here, cH has been coded to represent the occurrence of a heart attack, and cN has been

coded to represent the absence of a heart attack. The chosen classifier has correctly clas-

sified in some instances, and has misclassified in other instances.Using the layout found in

figure 1.8, a confusion matrix can be constructed for the physician’s classifier.

From the the confusion matrix in figure 1.9, a number of conclusions can be made:

• The classifier correctly predicts the occurrence of a heart attack twice. This measure

is called True Positive (TP in figure 1.8). Similarly, the classifier correctly predicts

a heart attack will not occur four times. This measure is called True Negative (TN

in figure 1.8) [35, 36].

• Misclassifications are found on the anti diagonal The classifier predicts the occurrence

of a heart attack when none occur three times, and predicts no heart attack will occur,

when in reality it does, only once. These measures are called False Negative and False

Positive (FN and FP in figure 1.8) respectively [35, 36].

• The accuracy of the classifier is the number of times the classifier correctly classifies.

In terms of confusion matrix entries, this is (TP + TN)/n, where n is the total

number of classifications made. The physician’s classifier has an accuracy of 6/10, or

60% [35, 36].
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True Label
cH cN Total

Predicted Label
cH 2 3 5
cN 1 4 5

Total 3 7 10

Figure 1.9: The physician’s confusion matrix for ytest and ŷtest.

• The classifier’s sensitivity is the proportion of the time the classifier predicts a heart

attack will occur when when a heart attack actually does occur. In terms of the

confusion matrix, the sensitivity is the ratio of TP and the sum of the first column.

The physician’s classifier has a sensitivity of 2/3 or 66.66%. Thus, when a heart

attack will occur, the classifier will correctly classify 2/3 of the time [35, 36].

• Similar to sensitivity is specificity. A classifier’s specificity is the proportion of time

the classifier will correctly classify that a heart attack will not occur when no heart

attack occurs. The specificity is the ratio of TN and the sum of the second column.

The physician’s classifier has a specificity of 4/7 or approximately 57%. Thus, when

no heart attack occurs, the classifier will correctly classify 57% of the time [35, 36].
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1.5 Critical Transitions & Early Warning Signals

Changes in external conditions usually result in a smooth response of a state variable.

Such responses are gradual and reversible. For instance, stretching an elastic band and

then slowly releasing the band results in a deformation and an eventual restoration of

the band’s original shape. In other cases, small changes in external conditions result

in disproportionally strong changes in the state variable. Such responses may still be

continuous and reversible.

There exist systems where minute changes in the external conditions result in catas-

trophic, discontinuous changes in the state variable, that while theoretically reversible, may

be extremely difficult to reverse in practice Such dramatic shifts in a state variable due to

changes in external conditions are called critical transitions [39] . Mathematically, critical

transitions are bifurcations of a dynamical system to a contrasting alternate stable steady

state. Such bifurcations are observed in physiological phenomena [39] ,ecological systems

[40], and most importantly to this thesis, in vaccine coverage. Since critical transitions

may lead to undesirable system states, predicting these transitions has become an active

area of interest in the literature. This section discusses critical transitions and bifurcations

in general. I review how and when bifurcations occur and discuss their physical interpre-

tation and consequences. I also examine tools for detecting so called early warning signals,

evidence of an impending critical transition.

1.5.1 A Brief Review of Local Asymptotic Stability

The following proof can be found in many elementary books on dynamical systems. It is

a brief review of the conditions for local asymptotic stability. Let x(t) ∈ Cn be a solution
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to the differential equation

ẋ = F(x) . (1.17)

Here, F : Cn → Cn is smooth in x. Suppose that F(x∗) = 0. Consider now small

perturbations ε(t) ∈ Cn , ‖ε(t)‖ � 1 from x = x∗. Let x̃(t) = x∗ + ε(t), and linearize

equation (1.17) about x̃(t).

˙̃x = ẋ∗ + ε̇(t)

= F(x̃)

= F(x∗) + DF(x∗)ε(t) +O
(
‖ε(t)‖2

)
,

which can be simplified to

ε̇(t) = DF(x∗)ε(t) +O
(
‖ε(t)‖2

)
,

ε̇(t) ≈ DF(x∗)ε(t) . (1.18)

Here, DF(x∗) is the Jacobian of F. Equation 1.18 determines how the perturbations

change over time. Of particular interest are the conditions on DF under which x∗ is a

locally asymptotically stable equilibrium (i.e the conditions under which ‖ε(t)‖ → 0 as

t→∞).

Note that DF(x∗) ∈ Mn×n(C), and so let DF(x∗) = A, a constant matrix. Therefore,

equation (1.18) is a linear system of differential equations with constant coefficients

ε̇(t) = Aε(t) ,

which has solution

ε(t) = eAtε0 (1.19)

Here, ε(0) = ε0. In the case where A is diagonalizable, equation (1.19) can be understood

in a simpler way. Let T ∈ Mn×n(C) be the matrix consisting of column eigenvectors of
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A. Then, since the eigenvectors of A are linearly independent, T has an inverse, and

Λ = T−1AT is a diagonal matrix with eigenvalues of A. It follows that A = TΛT−1, and

so

ε(t) = e(TΛT−1)tε0 ,

which by properties of the matrix exponential is equivalent to

ε̇(t) = TeΛtT−1ε0 .

Left multiply by T−1 and let z = T−1ε(t). Then, equation (1.19) is equivalent to

z(t) = eΛtz0 =
[
z0(0)eλ1t, . . . , zn(0)eλnt

]T
. (1.20)

Therefore,

‖ε(t)‖2 = ‖Tz(t)‖2 ,

≤ ‖T‖2 · ‖z(t)‖2 ,

= ‖T‖2 ·
(

n∑
i=1

z2
i (0)e2λit

)
. (1.21)

Here, ‖·‖ denotes the `2 norm. It is clear to see from equation (1.21) that ‖ε(t)‖ vanishes

as t → ∞ if and only if the real parts of the eigenvalues of A are less than 0. Thus, x∗

is locally asymptotically stable if and only if the real parts of all the eigenvalues of the

Jacobian evaluated at x∗ are less than 0.

1.5.2 Bifurcations of a Dynamical System

Differential equations are used to study a wide variety of physical phenomena from finan-

cial markets to theoretical physics. Consequently, understanding dynamic regimes under

different parameterizations is a crucial part of understanding the phenomena as a whole
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since different parameterizations may produce qualitatively different orbits in phase space.

A dynamical system is said to undergo bifurcation if the system experiences a qualitative

change in its behaviour when a parameter crosses some threshold value [41]. Consider the

system

ẋ = F(x; θ) . (1.22)

Here, θ ∈ R is a parameter of the system. It can be the case that the eigenvalues of

DF(x∗; θ) are functions of θ (i.e λj = λj(θ)). Suppose that when θ < θ0, then all eigenvalues

have real part less than 0, and that as θ → θ0 the real part of at least one eigenvalue

approaches zero from below. If when θ0 < θ the real part of at least one eigenvalue

changes sign and becomes positive, then x∗ will destabilize, and the system will undergo a

qualitative change in behaviour.

1.5.3 Critical Slowing Down

As the real part of an eigenvalue of DF approaches zero from below due to variation in

a control parameter θ, the system experiences a loss in resilience to perturbations from

equilibrium. This loss in resilience is experienced by all systems approaching bifurcation

[?, 42] and is known as critical slowing down [39, 40, 43]. In the system described by

equations (1.12) to (1.14), critical slowing should be observed as w → δ−. Indeed, shown

in figure 1.10 is a numerical solution to the stochastically forced version of equation (1.14).

This numerical experiment confirms that the system experiences critical slowing when

equation (1.14) is parameterized close to the bifurcation value. In section 1.5.1, it was

shown that near equilibrium

zj(t) ∼ eλjt .

With this in mind, it is clear to see why systems experience critical slowing down. Assume

that the real part all eigenvalues of DF are negative. Since zj(t) behaves approximately
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Figure 1.10: Numerical experiments of critical slowing down. Here, δ = 5 × 10−4,and w
is parameterized as indicated. As can be seen, the system parameterized such that w is
closer to the bifurcation value returns to equilibrium slower than the system where w is
parameterized far from the bifurcation.

exponentially, the orbits of zj(t) will return to equilibrium faster if 1 < |<(λj)| as compared

to when 0 < |<(λj)| � 1. Since near a bifurcation 0 < |<(λj)| � 1 for at least one

1 ≤ j ≤ n, the system is expected to experience critical slowing down.

1.5.4 Critical Transitions & Early Warning Signals

In some systems, a small smooth change in a control parameter will result in a smooth

change in the state variable. This will be the case if the state variable is continuous in

the control parameter. The bifurcation diagram shown in figure 1.11a demonstrates such a

system. A small change in the control parameter will result in a small change in the state

variable.

Some systems will undergo an abrupt bifurcation to an alternative steady state under
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(b) An example of a critical transition.
Smooth variation of the control parame-
ter may lead to a discontinuous, irreversible
change in the state variable. Such a bifur-
cation is an example of a critical transition
[39]. Stable equilibria shown in solid black,
unstable shown in dashed black.

Figure 1.11: Bifurcation diagrams for two different systems. The system on the right will
undergo a critical transition. Examples taken from [43]

a smooth change in the control parameter. These bifurcations can be sudden, violent, and

may come without any noticeable change in the state variable. Such bifurcations are called

critical transitions [39, 40]. See figure 1.11b for an example of a system which undergoes

a critical transition. If the control parameter is close to, but less than, A, then the system

remains on the upper stable branch. Smoothly increasing the control parameter for this

system will force the state variable off the top branch onto the bottom branch. If the state

variable is the health of an ecosystem, such a bifurcation would send the ecosystem into

an unfavourable state. Furthermore, the bifurcation would not be reversible, as simply
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changing the value of the control parameter back to its original value would result in the

system remaining on the lower branch due to bistability. Hence, to return the system to

its original state, the control parameter would have to be moved an area where bistability

ceases to exist. Physically, this could difficult, expensive, time consuming, or impossible

given the interpretation of the control parameter.

Though the state variable may show no signs of an impending critical transition, there

do exist other generic early warning signals of critical transitions [44, 39, 40]. As a con-

sequence of critical slowing, an increase in the lag-1 autocorrelation and variance of the

stochastically forced dynamical system should be observed [44, 40, 39, 43, 45, 42]. The

increases in these statistics appear in all systems approaching a critical transition, and are

said to be early warning signals of an impending critical transition [46, 39].
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1.6 Objectives & Direction

Thus far, this thesis has discussed: mathematical modelling of infectious diseases (sec-

tion 1.1), the effects of vaccination on disease dynamics (section 1.2), salient factors for

vaccinating habits (section 1.3), machine learning practices and metrics (section 1.4), and

critical transitions (section 1.5).

The remainder of this thesis will examine vaccine scares through the lens of critical

transitions theory. It was shown in section 1.3 that the system of differential equations

described by equations (1.12) to (1.14) undergoes a discontinuous irreversible bifurcation

when w(t) = δ. Bifurcations of this type are called critical transitions. As the the system

draws closer to the bifurcation point due to a slow variation in a control parameter, the

system becomes less resilient to small perturbations. This results in an increase in the

variance and lag-1 autocorrelation in the stochastically forced system. Increases in these

statistics are called early warning signals, and may indicate that a critical transition is

imminent.

By monitoring the early warning signals as equations (1.12) to (1.14) approach a critical

transition, the occurrence of a vaccine scare may be predicted well before it happens.

Equations (1.12) to (1.14) will be turned into a system of stochastic differential equations

(SDEs) and the early warning signals will be examined as w(t)→ δ−.

December 2014 saw an epidemic of measles after unvaccinated individuals were exposed

to an infected individual [47]. This presents an ideal instance to study the early warning

signals (if they exist) leading up to, and immediately after, an epidemic. Temporally

dense data is required in order to detect early warning signals, and so for this study,

traditional vaccine coverage data is not appropriate as it is calculated annually. Research

demonstrates that the sentiment on the social media site Twitter is a good proxy for the
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sentiment in the population[48, 49], and that the sentiment on twitter regarding vaccines

correlates well with population vaccine coverage [33]. Researchers have investigated how

sentiment surrounding the H1N1 vaccine had evolved over time and found that the pro-

vaccine sentiment on twitter correlated strongly with CDC vaccine coverage estimates [33].

Tweets are sufficiently temporally dense, and so early warning signals may manifest in

tweets made about measles and vaccination. Machine learning algorithms will be used to

classify each tweet based on the sentiment the tweet displays toward vaccines. An attempt

to extract early warning signals from the time series of tweets will be made.

Vaccines are vital for infectious disease prevention, but vaccine scares can cause renewed

disease outbreaks, or even delay global eradication by years. The ability to anticipate

which populations are at highest risk of vaccine scares is therefore valuable. Through the

methods presented in the following chapter, it could be possible to identify populations

at risk for undergoing a vaccine scare. Public health officials may then target their trust

building efforts to these populations in hopes of mitigating risk and preventing the scare

from occurring

The objective of this thesis is to investigate vaccine scares through the lens of critical

transitions. Since early warning signals precede a critical transition, detecting early warn-

ing signals of vaccine scares could provide a way to predict when the scare is imminent.

Readily available data from the Twitter, along with Google search data, will be analysed

in hopes of detecting early warning signals in the population. The chapter that follows is

the draft of a manuscript being developed for submission to a peer-reviewed journal. This

is followed by a discussion chapter. Because the chapter is formatted as a paper, please

note that it includes supplementary figures that appear in an appendix instead of the main

text of the paper.
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2.1 Introduction

By 2003, polio had been eradicated from all parts of the world except for northern Nigeria,

where unsubstantiated rumours that the oral polio vaccine contained HIV and caused

infertility resulted in a vaccination ban [50]. As a result, polio resurged in Nigeria and

sparked epidemics in other countries where polio had been eliminated [50, 51]. Vaccine

scares have also occurred for the Measles-Mumps-Rubella (MMR) and whole cell pertussis

vaccines, causing a return to endemic transmission [12, 19, 50, 51, 52].

The theory of critical transitions and their associated early warning signals may provide

the ability to tell which populations are most susceptible to a widespread vaccine scare. A

critical transition occurs when a system shifts abruptly from its current state to a strongly

contrasting state. These shifts provide little or no obvious warning signs. However, they

may exhibit characteristic early warning signals as a consequence of critical slowing down;

as the system approaches the critical transition, the dominant eigenvalue becomes smaller,

causing the system to lose its ability to recover from disturbances [39, 53, 40, 54]. This

loss in resiliency is detectable and manifests as an increase in measures such as the lag-1

autocorrelation and variance of the time series of the state variables [40, 54, 39]. In order

to detect these early warning signals, high resolution data is required.

Like the recent polio outbreaks, the 2014-15 Disneyland, California measles outbreak

was driven largely by vaccine refusal, often originating in the unfounded perception that the

MMR vaccine causes autism and irritable bowel syndrome [12, 19]. It attracted significant

national attention in both mainstream media and online social media, causing an enormous

spike in both United States geocoded tweets for “MMR” or “measles”(figure 2.1A) and

Google searches for “measles”(figure 2.1B). This data provides an opportunity to look for

early warning signals in high resolution time series concerning vaccine refusal.
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Figure 2.1: A: Time series of tweets mentioning “measles” or “MMR”. The spike in early
2015 is in reaction to the news of the Disneyland outbreak. B: Time series of google
searches for “measles” and “MMR”. C: Cases of Measles in California. It is estimated
that the Disneyland outbreak occurred sometime in December 2014, and so many cases
are classified as having happed in 2015. D: Pictured is kindergarten vaccine coverage for
the MMR vaccine over time. A clear decrease in vaccine coverage in the years leading up
to the outbreak is observed. As the CDC releases a public health advisory notice in early
February 2016, a resurgence of vaccinators can be observed.

The Disneyland outbreak was preceded by significant outbreaks in previous years (fig-

ure 2.1C). In fact, the number of US measles cases in 2013 dwarfed the number in the

Disneyland outbreak, but the 2013 outbreak was localized in Amish populations and there-

fore went relatively unnoticed by online social or mainstream media. The MMR vaccine

coverage in California kindergartens declined from 93.6% in 2010 to 92.3% statewide in

2013-14, and even lower in certain populations [55]. Following the Disneyland outbreak,

the MMR vaccine coverage in California kindergartens rebounded to 94.5% by 2015 [55]
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(figure 2.1D) , appearing to exemplify the coupled behaviour-disease dynamics [15].
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2.2 Methods

2.2.1 Model

We build on a model of coupled behaviour-disease dynamics [15]. The model posits that

members of the population play one of two strategies (vaccinator or non-vaccinator), and

that members sample one another at some constant rate. If two individuals playing dif-

ferent strategies sample one another, the individual with lower expected payoff will switch

strategies with probability proportional to the difference in payoffs. The payoff to vaccinate

is given by

ev = −rv + δ0x . (2.1)

Here, −rv is the perceived risk associated with vaccinating, x is proportion of the population

playing the vaccinate strategy, and δ0 is the effect of injunctive social norms. The payoff

not to vaccinate is

en = −cI(t) + δ0(1− x) . (2.2)

Here, c is the multiplicative product of the cost of infection, reporting probability, and a

proportionality constant governing the perceived probability of becoming infected. The

proportion of the population infected with the disease is given by I(t). The differential

equation governing the density of vaccinators is then

dx

dt
= kx(1− x)(−w + I(t) + δ(2x− 1)) (2.3)

Here, k is a rescaled social learning rate, δ is a rescaled effect of injunctive social norms, and

w = w(t) is a rescaled measure of how risky the vaccine is compared with infection. The

following mathematical model of coupled behaviour-disease dynamics describes a popula-

tion where measles transmission occurs due to contact between susceptible and infectious
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individuals, and where individuals talk to other individuals and change their vaccine sen-

timent according to a perceived health gain that depends on perceived vaccine risk, the

perceived risk of infection and infection complications, and injunctive social norms in the

population:

dS

dt
= µ(1− x)− µS − βSI (2.4)

dI

dy
= βSI − (µ+ γ)I (2.5)

dx

dt
= kx(1− x)(−w + I + δ(2x− 1)) (2.6)

Here, S is the proportion of susceptible individuals, I is the proportion of infectious

individuals, x is the proportion of individuals who vaccinate their children, µ is the per

capita birth and death rate, β is the transmission rate, γ is the rate of recovery from

infection. Note that the proportion of recovered individuals, R, is determined when S and

I are known since R = 1− S − I, and thus need not appear in the model equations.

The system is studied as it approaches a bifurcation point from high vaccine coverage

to low vaccine coverage which happens when w(t) = δ. To study the dynamics leading to

the bifurcation, w(t) is written as a piecewise monotonic function, increasing linearly from

a baseline value until the bifurcation value is reached.

To study the effects of critical slowing down, the system developed by Oraby et al. was

converted into a stochastic differential equation with additive noise

dy = F(t,y, w, δ)dt+ σdW . (2.7)

Here, dW is a Wiener process, and σ ∈ R3 is a vector housing the additive noise for the

S, I, and x compartments (i.e σ = [σS, σI , σx]
T ) .
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2.2.2 Parameterization

Measles parameter values were taken from a previous investigation of the coupled behaviour-

disease model [15], with µ = 0.02 per year, γ = 365/13 per year, R0 = 16, and β =

R0(µ+ γ) per year. The sampling rate was calibrated to k = 500 per year, similar to that

found in the previous investigation[15], so as to obtain a rate of time evolution of vaccine

uptake similar to that observed in the Disneyland, California outbreak (figure 2.1). The

effect of social norms, δ, was set to 5× 10−4. This value of the strength of the injunctive

norms was selected so as to investigate the worst case scenario; the critical transition would

drop from full vaccine coverage to no vaccine coverage. Under this parameterization, the

endemic branch is unstable, and so the system will bifurcate from a state of full vaccine

coverage to no vaccine coverage.

2.2.3 Simulations

Equation (2.7) was simulated in Matlab 2015b using the SDETools Library by Andrew

Horchler[56]. The SDE was solved using the sde_euler() function, which implements

the Euler-Maruyama Method for numerically solving stochastic differential equations[57].

Stochastic noise may force the solutions out of physical phase space, and so to ensure

numerical solutions remained in physical space (i.e in [0, 1]), an additional line of code was

inserted in line 486. The inserted code read

% Force solution to be <=1

if NonNegative

Yi = min(Yi,1);

end

Random seeds were controlled using the RandSeed option for the solver to ensure repro-

ducibility. The simulation in figure 2.3B was run for 30 years with a step size of 5× 10−4.
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Figure 2.2: Evolution of the relative risk for figures figure 2.3B and figure 2.3D

The relative risk in figure 2.3D took a functional form of

w(t) = δH(t− 10)

(
t

10
− 1

)
(2.8)

Here, H is the Heaviside function, as implemented by Matlab 2015b. Under this functional

form, the bifurcation value is reached when t = 20 (i.e w(20) = δ). The simulation for

figure 2.3D was run for 100 years. The relative risk in figure 2.3D took a functional form

of

w(t) = δ
(

H(t− 30)− H(t− 70)
)(

1− 1

20
| t− 50 |

)
(2.9)

Under this parameterization, w(50) = δ, and so w(t) ≤ δ for all time. Additive noise was

used in the model to account for case importations. Noise was applied directly to each

compartment, with σ = [10−2 , 10−6 , 10−2].
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In each simulation, the initial conditions were S(0) = 0.016, I(0) = 0, and x(0) =

0.9903. To obtain these initial conditions, the system was simulated for 100 years with

w(t) = 0 from a random physically real initial condition. This was done so as to obtain a

state of the system without any transient dynamics. The state of the system at t = 100

was used to as the initial conditions for further simulations.

Detection of Early Warning Signals

The Kendall tau rank correlation coefficient[58] is used to measure the increase in the lag-

1 autocorrelation and variance as the critical transition is approached. A pair of points

(xi, yi) and (xj, yj) are said to be concordant if xj < xi and yj < yi and are said to be

discordant if xj < xi and yi < yj. If xj = xi or yj = yi then the pair is neither discordant

or concordant. The Kendall tau rank correlation coefficient for n points is then

τ = 2
Number of Concordant Pairs− Number of Discordant Pairs

n(n− 1)
.

The Kendall tau calculation was performed using Python’s scipy.statistics.kendalltau

function[59, 60]. The lag-k autocorrelation for a stationary signal Xt with mean µ and vari-

ance σ2 is defined[61] as

R(k) =
E [(Xt − µ)(Xt+k − µ)]

σ2
.

Alternatively, for a discrete array, the autocorrelation at lag k can be written as

R(k) =

∑N−k
i=1 (Xi − µ)(Xi+k − µ)∑N

i=1(Xi − µ)2

Note that −1 ≤ R(k) ≤ 1 for all k and that R(k) = R(−k).
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Time series were generated so that an epidemic occurred in the support of w(t). For

the detection of the early warning signals, the earlywarnings R library [62] was utilized.

The function qda_ews() was used to detect increases in variance and autocorrelation. The

Nadaraya Watson estimator, given by

ŷ(y) =

∑N
k=1 yiK

(
x− xk
h

)
∑N

k=1K

(
x− xk
h

)
was used to smooth the stochastic time series. Here, K is a Gaussian function, and h is the

bandwidth for the Gaussian function K. The bandwidth was selected using Silverman’s

rule of thumb [63], which asserts that the bandwidth should be chosen as

h = 0.9N−0.2min {σ̂, IQR/1.34}

so as to minimize the mean integrated square error. Python was used to calculate the rolling

statistics. Residuals were converted to pandas.Series objects, which have a rolling

routine, allowing for various functions to be computed for a specified rolling window. Lag-

1 autocorrelation was calculated using

Res.rolling(window_length).apply( lambda x: pd.Series(x).autocorr(1) )

while variance was calculated in a similar fashion, using

Res.rolling(window_length).apply(lambda x: pd.Series(x).std() )

See [64] for further information on the pandas library. The rolling statistics for figure 2.3C

were calculated using a window width of 10 years, while the rolling statistics in figure 2.3E

were calculated using a window width of 20 years.
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Since it is not clear when (if at all) the relative risk is equal to the strength of the

injunctive norms in the population, pre and post maximum risk sections are determined

by splitting the rolling statistic at its maximum value. Hence, to calculate the pre or

post Kendall tau coefficient, the rolling statistic curve was split into two halves at the

point where it attains its maximum value, and the Kendall tau coefficient was computed

accordingly for each half.

2.2.4 Machine Learning

The Twitter API [65] was used to collect tweets which mentioned keywords related to

measles and vaccination. A total of 29,727 tweets from March 2nd, 2011 to May 3rd,

2016 were collected. Tweets were collected if they contained specific key words or key

phrases related to measles and if their location was within the continental United States.

Keywords/phrases included:

((vaccine* OR immuni*) AND (ingredient* OR risk* OR lies OR disease*

OR exemption* OR safe* OR unsafe OR killing* OR conspiracy OR scandal*

OR whistleblower* OR pharmaceutical OR CDC OR documentary OR truth*

OR theory OR health OR infant* OR baby OR babies OR newborn* OR

school* OR aluminum OR death* OR dead OR children OR kid* OR child* OR

poison* OR toxic OR mercury OR injur* OR harm* OR brain OR paraly* OR

scare* OR fear* OR autism OR IBS OR autistic or ”irritable bowel syndrome”))

OR measles OR mmr OR ”andrew wakefield”

Hence, if the above logical was returned as True, the tweet was collected into the database.

The machine learning was done using Python’s sci-kit learn library [37]. Classifi-

cation was performed using a supervised learning algorithm, and so a training set of 3667
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(roughly split equally among the negative sentiment, positive sentiment, and no sentiment

classes) was created. A tweet was classified as “anti-vaccine” if it clearly demonstrated

an anti-vaccine sentiment or underestimated the risk associated with infection. Tweets

like “Have measles? Eat an orange 3 times a day” and “Diarrhoea kills more people than

HIV/AIDS, TB and measles put together” were classified and anti-vaccine. A tweet was

classified as “pro-vaccine” if it clearly demonstrated a pro-vaccine sentiment, warned of the

dangers of not vaccinating, or warned of the dangers of the disease. Tweets like “That is

terrifying: Measles infects 90% of people who come into contact with it” and “oh no..not

ever. BS. I bet you wouldn’t willingly let your child hang out with a measles patient? ”

were classified as pro-vaccine. A tweet was classified “neutral” if it was factual or did not

display a sentiment. Tweets like “Nationalism is an infantile disease. It is the measles of

mankind” and “I feel the measles, it came on strong lmao okay calm down” were classified

as neutral.

A support vector classifier with linear kernel, which aims to construct a maximum-

margin hyperplane between training examples of different classes [66, 67], was trained on

the tweets. A support vector classifier was chosen because it is effective in high dimensional

problems, and is robust to over fitting [37]. To estimate prediction accuracy, 3-fold cross

validation [36] was used. To improve prediction accuracy, a grid search cross validation

[36] was performed to ensure the classifier’s hyperparameters were appropriately chosen.

Cross validation shows that the classifier predicts classes with 77% accuracy.

2.2.5 Sensitivity Analysis

To ensure results were robust, sensitivity analysis was performed on the coupled behaviour-

disease model. For each risk evolution curve (linear and triangular), the system was sim-

ulated 500 times with a different random seed. For figures A.2, A.3, A.12 and A.13,
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epidemiological parameters, as well as the sampling rate k, were drawn from a triangular

distribution ranging from half the baseline value to three halves times the baseline value.

The onset of the risk evolution curve was also sampled from a triangular distribution. For

the linear case, the onset was drawn from a triangular distribution ranging from 8 to 12

years. Likewise, the onset of the triangular curve was drawn from a triangular distribution

ranging from 20 to 40 years. The triangular curve remained symmetric about the t = 50

line, attaining a value of δ when t = 50.

Each of the 500 realizations was smoothed using R’s ksmooth, which implements

Nadaraya Watson kernel regression with a Gaussian kernel [68]. The bandwidth was chosen

using R’s implementation of the Silverman rule of thumb [63], nrd0. When estimating uni-

variate data with a Gaussian kernel, Silverman’s rule of thumb will produce a bandwidth

that minimizes the mean integrated squared error. Residuals were obtained by taking the

difference of the simulated data and the kernel regression. The rolling statistics were com-

puted on the residuals. In the linear case, a rolling window size of 10 years was used, while

a rolling window of length 20 years was used in the triangular case. The element-wise mean

was computed for each statistic, and a 95% confidence interval was constructed.

To test the robustness of results over varying window length, 9 different window lengths

were chosen with which to compute the rolling statistics. In the linear case, 9 evenly spaced

window lengths were chosen ranging from 2 years to 10 years. In the triangular case, 9

evenly spaced window lengths were chosen ranging from 2 years to 20 years. The rolling

statistics were computed for each of the 500 simulations, and the element-wise mean was

plotted along with a 95% confidence interval.
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2.3 Results

In its deterministic version with σ = 0 and fixed vaccine risk w(t) = m, the model described

by equations (2.4) to (2.6) has multiple stable equilibria (see section 1.3.2). Of particular

interest is the stable equilibrium (S, I, x) = (0, 0, 1) corresponding to a disease-free state of

full vaccine coverage. This is stable so long as the strength of the social norms, δ, exceeds

the perceived vaccine risk w(t). But, if w(t) exceeds δ due to rising perceived vaccine risk,

a transcritical bifurcation occurs: the state of full vaccine coverage loses stability and the

system shifts to a state of endemic infection and zero vaccine coverage (figure 2.3A). At

other parameter values, a drop to endemic infection and intermediate vaccine coverage is

also possible (figure A.1).

Notably, once the system has passed the w = δ bifurcation, a decrease in the perceived

risk w to pre-transition levels is not sufficient to move the system back to a state of full

vaccine coverage; this would require that the relative risk be decreased sufficiently so that

the full vaccine coverage becomes the only stable equilibrium. This may not be feasible,

so the population may remain at a suboptimal vaccine coverage for years. Avoiding such

a catastrophic transition is clearly desirable.

Unlike the deterministic version of the model with σ = 0, real populations are subject

to random perturbations (stochasticity). When σ > 0, and the risk perception parameter

w(t) is gradually increased over time, the system again exceeds the transcritical bifurcation

and collapses to zero vaccine coverage (figure 2.3B). But before this happens, the system

exhibits critical slowing down as the transition is approached: The lag-1 autocorrelation

and variance increases as w → δ (figure 2.3C and figure A.3). The pattern occurs across a

broad range of parameter values (figure A.2) and other window widths (figure A.4).

Applying descriptive statistics to predict future trends in vaccine coverage would work

57



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

w/δ

0.0

0.2

0.4

0.6

0.8

1.0

V
a
cc

in
a
to

rs
 x

(t
)

A

0 5 10 15 20 25 30

Time (Years)

0.85

0.90

0.95

1.00

V
a
cc

in
a
to

rs
 x

(t
)

B

0 5 10 15 20 25 30

Time (Years)

0.84

0.86

0.88

0.90

0.92

La
g
-1

 A
C

C

τ = 0.64

0 20 40 60 80 100

Time (Years)

0.90

0.92

0.94

0.96

0.98

1.00

V
a
cc

in
a
to

rs
 x

(t
)

D

0 20 40 60 80 100

Time (Years)

0.80

0.85

0.90

0.95

1.00
La

g
-1

 a
c

E

pre τ = 0.64

post τ = -0.73

0

1

2

3

In
fe

ct
io

n
 p

re
v
a
la

n
ce

 I
(t

)

1e 3

0.0

0.5

1.0

1.5

In
fe

ct
io

n
 p

re
v
a
la

n
ce

 I
(t

)

1e 3

Figure 2.3: A: Bifurcation diagram for coupled behaviour-disease model with δ = 5 ×
10−5. Stable equilibira in solid black, unstable equilibria in dashed grey. Under this
parameterization, no partial vaccine coverage is possible. B: Simulation of the coupled-
behaviour disease model. Relative risk w evolves linearly from t = 10. Indicated in the grey
dashed line is the point where the critical transition occurs. Post critical transition, vaccine
coverage drops steeply. C: Lag-1 autocorrelation leading up to the critical transition,
indicated by the grey dashed line. The length of the rolling window used to calculate
the statistic is represented by the black arrow. The Kendall τ rank correlation coefficient
measures the increase in the lag-1 autocorrelation. D: Simulation of the coupled behaviour-
disease model. Risk evolves linearly from t = 20 to t = 50 at which point w(50) = δ,
then decreases linearly to 0. As relative risk increases, vaccine coverage drops allowing
for epidemics to occur. As relative risk decreases, vaccine coverage recovers. E: Lag-1
autocorrelation for panel D. The length of the rolling window is indicated by the black
arrow. Lag-1 autocorrelation increases and decreases due to change in the modulus of the
dominant eigenvalue. Pre Kendall τ coefficient measures the increase in the autocorrelation
before the critical transition is reached, and the post Kendall τ coefficient measures the
decrease once the relative risk rebounds from the critical transition. A positive and negative
pre and post Kendall τ confirms that the parameter responsible for the critical transition
increases towards the threshold and then decreases away from the threshold.
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Figure 2.4: Lag-1 autocorrelation of tweets from each sentiment class (anti-vaccine senti-
ment in A, pro-vaccine sentiment in B, and all tweets in C) from mid 2011 to mid 2016.
The length of the rolling window is given by the black arrow.

well away from the critical transition, but would fail close to it: Extrapolating future

vaccine coverage based on linear regression to recent vaccine coverage at w/δ = 1 would

fail to detect the vaccine scare (figure 2.3B).

The x variable in equation equation (2.6) corresponds to the proportion of the popula-

tion with pro-vaccine sentiment. Sentiment expressed in tweets is known to be indicative

of the sentiment in the general population [49], and machine learning algorithms have been

successfully used to evaluate sentiment content for influenza vaccines [33] . Using machine

learning algorithms (see Methods), the sentiment of all US geo-coded tweets from March

2nd, 2011 to May 3rd, 2016 were classified as either pro-vaccine, anti-vaccine, or neutral

(figure A.5). The sentiment classified tweets show a similar spike due to the Disneyland

outbreak.

To help adjust for non stationarity, the time series was smoothed using Nadaraya Wat-

son Kernel Regression with Gaussian kernel. The rolling lag-1 autocorrelation and variance
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were performed on the residuals (i.e the difference between the time series and the ker-

nel regression). The lag-1 autocorrelation of sentiment-classified tweets was computed over

this time period (see Methods). The lag-1 autocorrelation of the residual increases steadily

in the years preceding the Disneyland outbreak as vaccine coverage steadily decreased, for

negative tweets (figure 2.4A), positive tweets (figure 2.4B), and all tweets (figure 2.4C). No-

tably, this increase begins even before the rolling window reaches the large spike in tweets

corresponding to reaction on social media to news of the Disneyland outbreak. Hence, the

analysis reveals a long-term trend toward increasingly autocorrelated sentiment through-

out this time period that is not driven solely by the Disneyland spike. This is robust to

rolling window width and also appears when computing variance (figures A.6 to A.11).

Uncoupled systems are simply conceived of as exceeding the critical transition when a

parameter is changed sufficiently. However, the Disneyland outbreak resulted in significant

media coverage and concern about infections among parents, thereby boosting the vaccine

coverage to levels not seen since before 2002. Thus suggests coupled human-and-natural

dynamics. As a result, the population appears to pull back from the brink of a critical

transition. We observe that the lag-1 autocorrelation first plateaus immediately after the

outbreak (as the rolling window moves past the peak), and then declines in the months

after the outbreak. We call this effect “critical rebound”, and it occurs for negative tweets

(figure 2.4A), positive tweets (figure 2.4B), and all tweets (figure 2.4C). The decrease in

lag-1 autocorrelation after the outbreak is statistically significant for a broad range of other

rolling window widths, as well as for tweets with negative sentiment, positive sentiment,

and all tweets (figures A.6 to A.8). The plateau and decline in the lag-1 autocorrelation

is also observed in the mathematical model when perceived vaccine risk , w, increase to δ

and then falls back down to baseline values (figure 2.3E), and this too is robust to window

width (figure A.14) and other parameterizations (figure A.12). The same increase, plateau,
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and decrease is observed in the variance (figure A.13). We note that such a decline and

fall is not observed in regular pre and post outbreak dynamics away from the critical

point, suggesting that the dynamics observed in Disneyland are not explicable in terms of

ordinary transient dynamics near a fixed point away from the bifurcation (figure A.16).

The pattern is repeated for Google search data at the state and national levels over the

same time period (figure 2.5), and the results are also robust to window widths (figures A.17

to A.24). However, the trend is not as strong for measles searches. There seem to be

spurious modes in the lag-1 autocorrelation even at larger window lengths.

The possibility of critical rebound in coupled systems suggests that the understanding

of critical transitions and their inevitability a coupled human-and-natural systems should

be reframed. A full endogenization of the risk perception parameter in future work would

clarify why some populations respond to an outbreak by boosting vaccine coverage to

prevent endemic transmission while others, such as Japan and the United Kingdom, went

past the critical transition into endemic transmission and widespread vaccine refusal before

starting to recover [69].

The mathematical model in equations equations (2.4) to (2.6) is relatively simple and

does not capture relevant features of vaccinating behaviour. However, detecting early

warning signals only relies on the dominant eigenvalue approaching zero from below, which

occurs in a broad range of dynamical systems. Hence, we expect more sophisticated models

to show similar results (although exceptions do occur). Additionally, early warning signals

cannot predict a particular critical transition in a specific system with complete accuracy

due to stochasticity, making accurate prediction of an upcoming climate shift, for instance,

difficult. However, for vaccine scares, many replicates in the form of statistics from very

many countries are accessible. National and international health authorities could use

these methods to rank populations based on their lag-1 autocorrelation to determine which
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Figure 2.5: Lag-1 Autocorrelation for Google Searches of “MMR” and “measles” at the
state and national level. Length of the rolling window given by the black arrow. A:
National searches for “measles”. B: National Searches for “MMR”. C: State searches for
“measles”. D: State searches for “MMR”.

countries are most susceptible to an episode of widespread vaccine refusal, and thus in most

need of targeted efforts to build trust and disseminate accurate information about vaccines.

This may help prevent some vaccine scares and accelerate the global eradication of some

vaccine preventable infections.
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Chapter 3

Conclusions & Future Work
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3.1 Conclusions

When the perceived risk of a vaccine becomes sufficiently high, a vaccine scare may occur

which may push vaccine coverage levels below those required to achieve herd immunity.

Detecting when a vaccine scare is imminent is therefore valuable. Examining vaccine scares

as critical transitions of a coupled behaviour-disease model allows for detection of early

warning signals of an impending vaccine scare. As the critical transition is approached,

the system experiences critical slowing down. This results in a detectable increase in the

variance and lag-1 autocorrelation of the stochastically forced time series.

The 2014 Disneyland measles outbreak presents an opportunity to study these early

warning signals through social media. In the years leading up to the Disneyland outbreak,

increases in both the lag-1 autocorrelation and variance are detectable in tweets related to

measles as well as Google searches for “measles” and “MMR”.

These methods present public health officials with tools for monitoring, and possibly

intervening in, vaccine scares.

3.2 Limitations

The coupled behaviour-disease model is a simplistic model, and does not capture all of the

complex interactions that exist in the population. The model assumes homogeneous mixing

between members of the population, which is not realistic for populations of this nature.

Furthermore, the process by which members of the population make their vaccinating

decisions is extremely simplified and does not capture all factors that one may consider.

The size of the Disneyland outbreak is far smaller than what the model predicts, and so

other methods (such as network models) may be more appropriate. It is important to note
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that critical transitions are quite common, and thusly, early warning signals are relatively

generic [70]. There are important exceptions, but these relate more to model mechanisms,

and so a more complex model is expected to display early warning signals.

The largest area for improvement is in the machine learning. Since tweets are so

small relative to other text corpora (140 characters vs. what could potentially be tens of

thousands of characters), the syntactical relationships amongst words becomes increasingly

important. Phrases like “Are vaccines bad?” and “Vaccines are bad.” clearly display

different sentiments but use the same words. Since the bag of words model examines only

the words used in the sentence, and ignores their order, each of these two phrases are

mapped to the same feature vector. This means the classifier will assign both sentences

to the same class, leading to an erroneous classification. Attempts to pre-process the data

(such as removing common words like “is”, “or”, “and” etc.) may make classification even

more difficult, as tweets like “Vaccines are not bad!” may be truncated to “Vaccines bad”

after pre processing. The sentiment is completely lost from this tweet, making classification

prone to error, especially if the remaining words are used commonly between two or more

classes. More advanced techniques that incorporate syntactical relationships are needed.

Since early warning signals are detectable in all tweets relating to measles and vaccines, is

not expected that a change in classification accuracy will drastically change the results of

the analysis, so long as the classification is not purposefully erroneous.

The time evolution of the relative risk w presented in the results is ad hoc and represents

one possible scenario. In reality, the time evolution may not be symmetric, or may be

discontinuous and highly non-linear.
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3.3 Future Work

More advanced text analytics and machine learning algorithms will allow for the syntactical

relationships of words to be learned, hence leading to better classification accuracy. More

sophisticated algorithms have been examined but not yet implemented [71, 72]. One such

model that shows promise is Word2Vec [71], which maps words used in the text corpus

to a low dimensional vector space. Once mapped, computation is able to be done on the

elements in the vector space. This allows for practitioners to ask questions like “Man is to

Woman as King is to ” to which the algorithm will correctly respond with “Queen”.

This demonstrates a much more in depth “learning” of the language used in the corpora,

and may lead to better classification.

The endoginization of the relative risk w would present a step forward. The relative risk

is itself dynamic in time and depends many complex interactions such as, but not limited

to: The time since the last outbreak, the current disease prevalence, trust in authority,

etc. Thus, a differential equation for w must be developed and incorporated into the

coupled behaviour-model. A theory of what should be observed in social media may also

be beneficial. From the analysis, it seems that activity spikes when an outbreak occurs but

else is relatively dormant. If a differential equation for the activity in social media could be

developed, investigators may have a better idea of what kinds of trends should be observed

in times leading to a vaccine scare. Investigations into slow-fast time scale dynamics may

prove fruitful in theoretical applications, as the change in the relative risk w may increase

over years while the outbreak happens on a much faster timescale.

Network models would be a beneficial extension. It may be the case that the population

is not homogeneously mixed (as is assumed by ODE models), and that those whom share

similar views group together. This may cause an echo chamber effect, whereby anti-
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vaccinator’s and pro-vaccinator’s beliefs are reinforced not through injunctive norms but

for fear of being rejected from their existing social group. Data from social media would

be extremely useful in modelling vaccinating dynamics in this fashion. Examining who

follows whom is essentially an examination of a social network whereby individuals are

nodes and their follows are edges. On top of the social network is a physical network,

which represents which individuals come in sufficient contact with one another to transmit

a disease. This suggests that a multilayer network model may be fruitful.
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Figure A.1: Alternative bifurcation diagram for the coupled behaviour-disease incidence
model represented by equations (2.4) to (2.6). Here, the strength of the injunctive norms δ
is 2.5× 10−4, allowing for partial vaccine coverage. Solid black lines are stable equilobria.
Dashed grey lines are unstable equilibira . Not shown here is the disease free equilibria
(S, I, x) = (1, 0, 0), which is always unstable when β/(µ + γ) > 1, which is the case for
measles.

80



0 5 10 15 20

Time (Years)

0.755

0.760

0.765

0.770

0.775

0.780

0.785

0.790

La
g
-1

 A
C

τ = 0.93

Figure A.2: Sensitivity analysis of lag-1 autocorrelation as critical transition is approached.
Here, epidemiological parameters are sampled from a triangular distribution ranging from
50% to 150% of their baseline values. The strength of the injunctive social norms is
δ = 5 × 10−4. The relative risk evolves linearly from t = 10. The critical transition is
achieved at t = 20. Length of the rolling window is indicated by the black arrow.
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Figure A.3: Sensitivity analysis of variance as critical transition is approached. Here,
epidemiological parameters are sampled from a triangular distribution ranging from 50%
to 150% of their baseline values. The strength of the injunctive social norms is δ = 5×10−4.
The relative risk evolves linearly from t = 10. The critical transition is achieved at t = 20.
Length of the rolling window is indicated by the black arrow.
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Figure A.4: Sensitivity analysis of the rolling window width for coupled behaviour-disease
model. Relative risk evolves linearly from t = 10 and undergoes a critical transition at
t = 20. Length of the rolling window is indicated by the black arrow
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Figure A.5: Time series of sentimented tweets (A: Anti-vaccine tweets. B: Pro-vaccine
tweets. C: All tweets). The spike in activity near the beginning of 2015 is in reaction to a
CDC public health advisory notice about the Disneyland outbreak.
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Figure A.6: Sensitivity Analysis of window width and lag-1 autocorrelation for anti senti-
mented tweets. Length of the moving window is indicated by the black arrow.
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Figure A.7: Sensitivity Analysis of window width and lag-1 autocorrelation for pro senti-
mented tweets. Length of the moving window is indicated by the black arrow.
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Figure A.8: Sensitivity Analysis of window width and lag-1 autocorrelation for all tweets.
Length of the moving window is indicated by the black arrow.
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Figure A.9: Sensitivity Analysis of window width and variance for anti sentimented tweets.
Length of the moving window is indicated by the black arrow.
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Figure A.10: Sensitivity Analysis of window width and variance for pro sentimented tweets.
Length of the moving window is indicated by the black arrow.
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Figure A.11: Sensitivity Analysis of window width and variance for all tweets. Length of
the moving window is indicated by the black arrow.
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Figure A.12: Sensitivity analysis of lag-1 autocorrelation approaching and rebounding
from the critical transition. Epidemiological parameters are sampled from a triangular
distribution ranging from 50% to 150% of their baseline values. The relative risk evolves
triangularly, reaching a maximum value of δ at t = 50. The risk begins to increase at
t = 30 and returns to the baseline value at t = 70. The lag-1 autocorrelation can be seen
to increase and decrease as the relative risk increases and decreases.Grey shaded region
represents a 95% confidence interval constructed from 500 independent simulations. Length
of the rolling window is indicated by the black arrow.
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Figure A.13: Sensitivity analysis of variance approaching and rebounding from the critical
transition. Epidemiological parameters are sampled from a triangular distribution ranging
from 50% to 150% of their baseline values. The relative risk evolves triangularly, reaching
a maximum value of δ at t = 50. The risk begins to increase at t = 30 and returns to the
baseline value at t = 70. The variance can be seen to increase and decrease as the relative
risk increases and decreases. Grey shaded region represents a 95% confidence interval
constructed from 500 independent simulations. Length of the rolling window is indicated
by the black arrow.
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Figure A.14: Sensitivity Analysis of window width and lag-1 autocorrelation approaching
and rebounding from the critical transition. Grey shaded regions are 95% confidence
intervals constructed from 500 simulations with different random seeds. Epidemiological
parameters are fixed in this instance. The length of the rolling window is different in each
panel, and is indicated by the black arrow.
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Figure A.15: Transient dynamics of system far from the critical transition. The relative
risk is constant throughout the simulation. As can be seen, the variance (bottom left)
and lag-1 autocorrelation (bottom right) do not change. This is corroborating evidence
that the observed increases in the variance and lag-1 autocorrelation observed in previous
figures is due to the variation of the relative risk.
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Figure A.16: Dynamics of the coupled behaviour-disease system as w is brought near the
critical transition. The top three panels are vaccine coverage x(t), infection prevalence I(t),
and relative risk w(t). The red line in panel three is where the critical transition occurs.
Variance and lag-1 autocorrelation (bottom left and right panels) increase and decrease as
relative risk approaches and rebounds from the critical transition.
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Figure A.17: Sensitivity analysis of window width and lag-1 autocorrelation for “measles”
Google searches in California
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Figure A.18: Sensitivity analysis of window width and lag-1 autocorrelation for “measles”
Google searches in The United States

97



0

5

10

15

20

25

30

Pre τ = 0.46 

Post τ = -1.00 

A

Pre τ = 0.52 

Post τ = -1.00 

B

Pre τ = 0.62 

Post τ = -1.00 

C

0

5

10

15

20

25

30

V
a
ri

a
n
ce

 (
M

e
a
sl

e
s)

Pre τ = 0.61 

Post τ = -0.90 

D

Pre τ = 0.72 

Post τ = -0.98 

E

Pre τ = 0.80 

Post τ = -0.98 

F

2011 2012 2013 2014 2015
0

5

10

15

20

25

30

Pre τ = 0.85 

Post τ = -0.58 

G

2011 2012 2013 2014 2015

Date

Pre τ = 0.92 

Post τ = -0.90 

H

2011 2012 2013 2014 2015

Pre τ = 0.95 

Post τ = -0.67 

I

Figure A.19: Sensitivity analysis of window width and variance for “measles” Google
searches in California
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Figure A.20: Sensitivity analysis of window width and variance for “measles” Google
searches in The United States

99



0.0

0.2

0.4

0.6

0.8

1.0

Pre τ = 0.51 

Post τ = -0.85 

A

Pre τ = 0.60 

Post τ = -0.94 

B

Pre τ = 0.55 

Post τ = -0.06 

C

0.0

0.2

0.4

0.6

0.8

1.0

La
g
-1

 A
C

 (
M

M
R

)

Pre τ = 0.58 

Post τ = 0.22 

D

Pre τ = 0.66 

Post τ = -0.53 

E

Pre τ = 0.66 

Post τ = -0.58 

F

2011 2012 2013 2014 2015
0.0

0.2

0.4

0.6

0.8

1.0

Pre τ = 0.78 

Post τ = -0.67 

G

2011 2012 2013 2014 2015

Date

Pre τ = 0.85 

Post τ = -0.85 

H

2011 2012 2013 2014 2015

Pre τ = 0.83 

Post τ = -0.69 

I

Figure A.21: Sensitivity analysis of window width and lag-1 autocorrelation for “MMR”
Google searches in California
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Figure A.22: Sensitivity analysis of window width and lag-1 autocorrelation for “MMR”
Google searches in The United States
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Figure A.23: Sensitivity analysis of window width and variance for “MMR” Google searches
in The United States
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Figure A.24: Sensitivity analysis of window width and variance for “MMR” Google searches
in California

103



0 20 40 60 80 100

Time

8.0

8.2

8.4

8.6

8.8

9.0

9.2

9.4

La
g
-1

 A
C

1e 1

pre τ = -0.12

post τ = -0.49

Figure A.25: The lag-1 autocorrelation in the times leading up to, and immediately after,
the peak in relative risk for the stochastic coupled behaviour-disease model. The data
within a one year radius has been removed and the lag-1 autocorrelation is calculated for
each half of the remaining data. Length of the rolling window is 20 years, indicated by the
length of the black arrows. Though the pre peak Kendall τ coefficient is negative, there is
still a clear increase in the lag-1 autocorrelation as the peak in relative risk draws nearer,
which is parsimonious with theory.
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Figure A.26: An analysis of the early warning signals in twitter data for A anti-vaccine
sentimented tweets, B pro-vaccine sentimented tweets, and C all tweets. The data within
a 5 day radius of the spike in twitter activity is removed and the lag-1 autocorrelation
is calculated for each half accordingly. Anti-vaccine, pro-vaccine, and all tweets show a
positive Kendall τ leading to the spike in activity and a negative Kendall τ after the
activity. This suggests that the relative risk increased up until the CDC reported on the
outbreak, and then the coupled nature of the system forced the relative risk to decrease
due to disease incidence.
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Figure A.27: A visualization of the confusion matrix for the classifier used to classify tweets
as either anti-vaccine, pro-vaccine, or neutral. A color closer to yellow shows the classifier
performs well. From this visualization, it is clear that the classifier is often confusing
pro-vaccine and anti-vaccine tweets as neutral This confusion leads to poorer performance.
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Appendix B

Code
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B.1 Code for SDE Simulation

1 Disease Parameters
2

3 mu = 1/50; R = 16;
4 gamma = 365/13; b = R∗(mu+gamma);
5

6 Parameters of interest
7

8 k = 500;
9 delta = 5e−4;

10 alpha = 1.0; %How far are we coming to the bif point.
11

12 Time Parameters
13 time step = 5e−4;
14 T = 100;
15 t = 0:time step:T;
16

17 w start = 30;
18 w end = 70;
19 w mid = (w start + w end)/2;
20 w spread = (w end − w start)/2; %symmetric
21

22 w = @(t) (alpha∗delta)∗( heaviside(t − w start) − heaviside(t − w end)).∗(1−1/w spread∗(
abs(t−w mid)));

23

24 system = @(t,y)[mu∗(1−y(3))−b∗y(1)∗y(2)−mu∗y(1);... %S
25

26 b∗y(1)∗y(2)−gamma∗y(2)−mu∗y(2);... %I
27

28 k∗y(3)∗(1−y(3))∗(−w(t)+y(2)+delta∗(2∗y(3)−1))]; %x
29

30 IC
31 y0 = [0.010 0.0000 0.9900];
32

33 Noise Params
34 sigma = 0.01;
35 G = @(t,y) sigma∗[1;1e−4;1];
36

37 Solver Options
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38 ops = sdeset(’SDEType’,’Ito’,’ConstGFUN’,’yes’,’NonNegative’,’yes’);
39 1
40 Solve
41

42 y = sde euler(system,G,t,y0,ops);
43

44 y = min(y,1);
45 I = y(:,2);
46 x = y(:,3);
47 %
48 subplot(3,1,1);
49 plot(t,I)
50 axis([−inf, inf, −inf, 5e−3])
51 subplot(3,1,2);
52 plot(t,x);
53 axis([−inf, inf, 0.85, 1])
54

55 subplot(3,1,3);
56 plot(t,w(t));
57

58 [vals, idx] = intersect(t,0:5e−2:100);
59

60 t = t(idx);
61 x = x(idx);
62 I = I(idx);
63

64 X = [t’ w(t’) I x];
65

66 csvwrite(’triangular data.csv’,X)
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B.2 Smoothing Data in R

1 setwd(’/Users/Demetri/Google Drive/Work for Paper/Figures/’)
2

3

4 which = ’tweets’
5

6 data file = paste(which,’csv’,sep = ’.’)
7

8 write me = paste(which,’ smooth’,sep = ’’)
9

10 write me = paste(write me,’csv’, sep = ’.’)
11

12 data = read.csv(data file)
13

14

15 x = as.matrix(data[,2])
16 timeindex = 1:dim(x)[1]
17

18

19 bw = round(bw.nrd0(timeindex))
20 smoother = ksmooth(timeindex,x,kernel = ’normal’, bandwidth = bw, range.x = range(

timeindex), x.points = timeindex)
21

22 res = x −smoother$y
23

24 residual matrix = matrix(0,nrow = dim(x)[1],ncol = 1)
25

26 residual matrix[,1] = res
27

28

29 residual matrix = data.frame(residual matrix)
30 colnames(residual matrix) = c(’smoothed’)
31 write.csv(residual matrix,write me, row.names = FALSE)
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B.3 Data Analysis in Python

1

2 import pandas as pd
3 import numpy as np
4 from scipy.statistics import kendalltau
5

6 df = pd.read csv(’residual.csv’)
7

8

9 #Lag−1 Autcorr
10 lag1autocorrelation = df.residual.rolling(len(df)/2).apply(lambda x: pd.Series(x).autocorr

(1))
11

12 #Variance
13 variance = df.residual.rolling(len(df)/2).apply(lambda x: pd.Series(x).std() )
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B.4 Machine Learning in Python

1 #!/Users/Demetri/Library/Enthought/Canopy 64bit/User/bin/python
2

3

4 #Test−Train Split
5 #Note that Test/Train splits tend to overestimate the error.
6

7 #Read in Data
8 import pandas as pd
9

10 #Classifiers and other MLA functions. These tend to be the best/most frequently used
text classifiers

11 from sklearn.naive bayes import MultinomialNB
12 from sklearn.linear model import SGDClassifier
13 from sklearn.svm import SVC, LinearSVC
14 from sklearn import cross validation
15 from sklearn.pipeline import Pipeline
16 from sklearn.feature extraction.text import TfidfVectorizer
17 from sklearn.metrics import classification report, confusion matrix, accuracy score,

precision score, recall score
18 from sklearn.grid search import GridSearchCV
19 from sklearn.feature selection import SelectKBest
20 from sklearn.feature selection import chi2
21

22 import pickle
23 import os
24

25 #plotsSGD
26 import matplotlib.pyplot as plt
27 import numpy as np
28

29

30 #I am going to visualize a confusion matrix. Here is some nice code to do that in MPL
31

32 def plot confusion matrix(cm, title=’Confusion matrix’, cmap=plt.cm.viridis):
33 plt.figure()
34 plt.imshow(cm, interpolation=’nearest’, cmap=cmap, vmax = 1, vmin = 0)
35 plt.title(title)
36 plt.colorbar()
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37 tick marks = np.arange(3)
38 plt.xticks(tick marks, ’Anti Neutral Pro’.split(), rotation=0)
39 plt.yticks(tick marks, ’Anti Neutral Pro’.split())
40 plt.tight layout()
41 plt.ylabel(’True label’)
42 plt.xlabel(’Predicted label’)
43

44 #Close any old plots
45 plt.close(’all’)
46

47 #Load the training set
48 training set = pd.read csv(’Training Data/New Training Data.csv’)
49

50

51 #test−train split
52 X train,X test,y train,y test = cross validation.train test split(
53 training set.Tweet, #Characteristics
54 training set.Class, #Classes
55 test size= 0.40, #Size of Split
56 random state = 1
57 )
58

59 #Now, we will build the pipeline for our classifier
60 # Training Data −−> Vectorizer−−>TfIdf−−>Feature Selection−−>Classifier
61

62

63

64 tf idf vectorizer = TfidfVectorizer()
65 selector = SelectKBest(chi2)
66 classifier = SVC(kernel = ’linear’)
67

68

69 #Set up the pipe for the pipeline
70 pipe = [
71

72 (’TF IDF V’,tf idf vectorizer),
73 (’features’,selector),
74 (’classifier’,classifier)
75

76 ]
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77 #Build the pipe
78 CLF = Pipeline(pipe)
79

80

81 #Parameter Space for GSCV
82 parameters = {
83 ’TF IDF V ngram range’:((1,1),(1,2)),
84 ’TF IDF V use idf’:(True,False),
85 ’features k’:(100,500,1000,2000,’all’),
86 }
87

88

89

90

91 #Perform the GS
92 grid search = GridSearchCV( CLF, parameters, n jobs = −1, verbose = 0,cv = 3, scoring

= ’accuracy’)
93

94

95 #Make the classifier the best estimator
96 CLF = grid search.fit(X train,y train)
97

98

99

100 print(’\nResults of Grid Search CV\n’)
101 print(”Best score: %0.3f +/− %0.3f” % (grid search.best score ,2∗CLF.grid scores [−1][2].

std()) )
102 print(”Best parameters set:”)
103 best parameters = CLF.best estimator .get params()
104 for param name in sorted(parameters.keys()):
105 s = ”\t%s: %r” % (param name, best parameters[param name])
106 print s
107

108

109 clf = CLF.best estimator
110

111

112

113 y predicted = clf.predict(X test)
114
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115

116

117 print(’\nClassifier Report:\n’)
118 print(classification report(y test, y predicted))
119

120 cm = confusion matrix(y test,y predicted)
121 cm = cm.astype(’float’) / cm.sum(axis=1)[:, np.newaxis]
122 print(’\nClassifier Confusion Matrix\n’)
123 print(cm)
124 print(’\nPrecision Score\n’)
125 print(precision score(y test, y predicted,average = None))
126 print(’\nRecall Score\n’)
127 print(recall score(y test, y predicted,average = None))
128

129

130 plot confusion matrix(cm, title = ’Confusion Matrix’)
131 plt.show()
132

133

134

135

136 with open(’SVC.txt’,’w’) as f:
137

138 s = pickle.dumps(clf)
139 f.write(s)
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