
The Impress Context Store:
A Coordination Framework for Context-Aware

Systems

by

Herman Hon Yu Li

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2006
c© Herman H. Y. Li 2006

I hereby declare that I am the sole author of this thesis. This is a true copy of
the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The dream of weaving technology into our everyday fabric of life is recently be-
ing made possible by advances in ubiquitous computing and sensor technologies.
Countless sensors of various sizes have made their way into everyday commercial
applications. Many projects aim to explore new ways to utilize these new technolo-
gies to aid and interact with the general population. Context-aware systems use
available context information to assist users automatically, without explicit user in-
put. By inferring user intent and configuring the system proactively for each user,
context-aware systems are an integral part of achieving user-friendly ubiquitous-
computing environments.

A common issue with building a distributed context-aware system is the need to
develop a supporting infrastructure providing features such as storage, distributed
messaging, and security, before the real work on processing context information
can be done. This thesis proposes a coordination framework that provides an
effective common foundation for context-aware systems. The separation between
the context-processing logic component and the underlying supporting foundation
allows researchers to focus their energy at the context-processing part of the system,
instead of spending their time re-inventing the supporting infrastructure.

As part of an ongoing project, Impress, the framework uses the open standard,
Jabber, as its communication protocol. The Publish-Subscribe (pubsub) extension
to Jabber provides interesting features that match those needed by a context-aware
system. The main contribution of this thesis is the design and implementation
of a coordination framework, called the Impress Context Store, that provides an
effective common foundation for context-aware systems. The separation between
the context-processing logic and the underlying supporting foundation allows re-
searchers to focus their energy at the context-processing part of the system, instead
of spending their time re-inventing the supporting infrastructure.

iii

Acknowledgments

First and foremost, I would like to express my gratitude to my supervisor Prof.
James P. Black for all his advice and patience during my undergraduate and gradu-
ate career at the University of Waterloo. His wisdom and wonderful sense of humor
never cease to amaze me.

I want to thank my dear friend Alex Sung. It was his fun-loving, easy-going,
and forever optimistic personality that made my time in graduate school full of
rewarding times.

Next, I thank my parents for their love and patience for all the years I was in
school.

The faculty members and staff, as well as my wonderful friends, all contributed
to my success. I want to thank them for their help, support, and interest. I am
much obliged to my readers Prof. Johnny Wong, Prof. Michael Terry; my colleagues
Michael Kwok, Omar Khan, Hao Chen, Dr. David Evans, Prof. Srinivasan Keshav,
Prof. Martin Karsten, Prof. Paul Ward; and our extremely helpful secretary Jessica
Miranda.

iv

Contents

1 Introduction 1

1.1 Motivating Example . 3

1.2 Separation of Context Logic and Communication 4

2 Background and Related Work 7

2.1 Message Passing . 7

2.2 Tuple Space and Linda . 8

2.3 Publish-Subscribe . 11

2.4 Context Toolkit . 13

2.5 Interactive Workspaces . 14

2.6 EDSAC(21) . 17

3 Impress and Context-Aware Systems 19

3.1 System Requirements . 19

3.2 Impress . 25

3.3 Jabber’s Publish-Subscribe Extension Protocol 27

4 The Impress Context Store 31

4.1 Features of iCS . 32

4.1.1 Plain Nodes . 32

4.1.2 Collection Nodes . 32

4.1.3 Typed Nodes . 33

4.2 Access Methods . 40

v

5 Implementation 43

5.1 iCS on XMPP / Jabber . 43

5.2 Applications . 44

5.2.1 iCS Browser . 44

5.2.2 Security-Monitoring Application 47

5.2.3 Smart Bed Application . 50

5.2.4 Towards the Big Picture . 52

6 Performance Evaluation 57

6.1 Node Creation . 58

6.2 Node Deletion . 59

6.3 Node Subscription . 60

6.4 Subscribers and Publishers . 61

6.5 Searching . 62

7 Conclusions and Future Work 65

7.1 Conclusions . 65

7.2 Future Work . 66

A iCS API Methods 75

B Content-Node Item Schema 77

vi

List of Figures

1.1 Motivating Example . 4

1.2 Context Producers and Context Consumers 5

2.1 Example Tuple Space Operations 9

2.2 Space and Time Uncoupling . 10

3.1 Components of a Pubsub Service 28

4.1 Typed Node Structure . 33

4.2 Node-Attribute Item XML Format Example 36

4.3 Content-Type Field XML Format Example 36

4.4 Content-Node Item XML Format Example 37

4.5 Attribute-Node Item XML Format Example 39

4.6 API Access Methods . 41

5.1 iCS Browser User Interface . 45

5.2 Components of the Security-Monitoring Application 48

5.3 Item Payload Published by the Motion Detector 48

5.4 Example Item Payload in Attribute Node 49

5.5 Example Item Payload in Content Node 50

5.6 Motion-Sensing Smart Bed . 51

5.7 Components of the Smart Bed Application 53

5.8 Big-Picture Scenario . 54

vii

6.1 Load Test Setup . 58

6.2 Node Creation Response Time vs. Mean Request Rate 59

6.3 Node Deletion Response Time vs. Mean Request Rate 60

6.4 Node Subscription Response Time vs. Mean Request Rate 61

6.5 Publish Response Time vs. Number of Active Subscribers 62

6.6 Retrieval Response Time vs. Payload Size 63

viii

List of Tables

2.1 Different Variations of Publish-Subscribe Models 12

3.1 Requirements for Supporting Infrastructure for Context-Aware Sys-
tems . 20

A.1 Main Methods in the PubSubService interface 75

A.2 Main Methods in the ICSService interface 76

ix

Chapter 1

Introduction

New technology has enabled many advances in ubiquitous computing. Originally
proposed by Mark Weiser [52] almost 20 years ago, the dream of weaving technology
into our everyday fabric of life is recently being made possible by electronic devices
that are getting smaller, cheaper, better connected and simpler to deploy. Countless
sensors of various sizes have already made their way into everyday commercial
applications in factories, airplanes, cars, and home appliances. Many projects aim
to explore new ways to utilize these new technologies to aid and interact with the
general population. Researchers in artificial intelligence have been trying to find
ways for systems to reason based on the environment that these systems are in. The
more independent the systems are from the users, the less obstructive and more
user-friendly they are [50]. Without explicit input from the users, these systems
need more sources of input to improve accuracy of machine reasoning.

Context-aware systems use available context information to assist users auto-
matically, without explicit user input. By inferring user intent and configuring
the system proactively for each user, context-aware systems are an integral part
of achieving user-friendly ubiquitous-computing environments. Dey defines context
as:

any information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user
and applications themselves [7].

Context-aware systems can benefit from having a standardized computing infrastruc-
ture to provide and organize context information. There have been some ubiquitous

1

projects which aim to provide a distributed infrastructure for coordinating a range
of devices under their control. However, few of these focus on context information
or have received wide-spread adoption. These systems are discussed in more detail
later.

A common issue with building a distributed context-aware system is the need to
develop a supporting infrastructure providing features such as storage, distributed
messaging, and security, before the real work on processing context information can
begin. When commenting on the obstacles experts faced in building large intelligent
systems, Hasha commented accurately:

I saw all these really smart people spending lots of energy on the same
kinds of plumbing-related work just so they could begin focusing on
their areas of interest. What a big waste of gray matter! [21]

This thesis proposes a coordination framework that provides an effective com-
mon foundation for context-aware systems. The separation between the context-
processing logic component and the underlying supporting foundation allows re-
searchers to focus their energy at the context-processing part of the system, in-
stead of spending their time re-inventing the supporting infrastructure. A robust
framework for such an infrastructure is easy to extend and maintain, supports the
addition and removal of devices from the system without affecting the rest of it, is
reliable despite transient failures, is secure, and is available on a wide number of
commonly-used platforms.

The work presented in this thesis is part of an ongoing project, Impress [3].
The Impress project aims to explore the convergence of Instant Messaging and
Presence in Smart Spaces [3]. Following the direction of the Impress project, our
proposed framework uses the open standard Extended Messaging and Presence
Protocol (XMPP) [45, 46, 47, 48], more widely known as Jabber, as its communica-
tion protocol. Jabber is an open-source, standards-based XML protocol with many
extensions. The Jabber protocol is based on the instant messaging (IM) and pres-
ence protocol developed by the Jabber Software Foundation. There is a growing
adoption of Jabber. Private and public implementations, including Google Talk
[20], use Jabber as the communication protocol for their IM services. The Jab-
ber Publish-Subscribe (pubsub) extension provides interesting features that match
those needed by a context-aware system.

Our contribution is first to identify a list of requirements for context-aware sys-
tems. Then, we propose a coordination framework for context-aware systems using
Jabber and its pubsub extension. We further extend the current pubsub semantics

2

to provide type information for context information, for the purpose of identifica-
tion and data searching. In addition, we identify the need for a tool to explore the
pubsub service. Last, we develop applications to evaluate our framework. Through
these applications, we argue that the proposed framework is ideal for context-aware
systems. We call our framework the Impress Context Store (iCS). Advantages of our
framework are explored in detail in this thesis. Lessons learned from our research
experience are discussed and future work is identified.

1.1 Motivating Example

For some time, doctors have known that the amount of motion cognitively impaired
patients make in bed is related to the health of the patients [31, 32, 33]. Signif-
icant events, such as sitting up, leaving bed, and rolling over in bed, are often
hard to capture, or are misreported by the patients themselves or their caretakers
[9]. However, these events are strong indicators of the patients’ health. A system
that automatically and continuously tallies medically significant events can provide
tremendous information to assist the doctors in diagnosis. Furthermore, once these
medically significant events can be measured, nurses may find that it is useful to
be able to have a picture of the area around a patient’s bed when certain events
occur, such as when the patient leaves the bed. This apprises the nurses of the
current situation before they assist the patient. Figure 1.1 illustrates the minimal
components involved in such a scenario.

Commercial off-the-shelf sensors can transform a regular bed into a smart bed
that detects pressure exerted on it. Rolling and sitting events can be detected by
a “smart bed,” using strips of sensors, positioned across the bed, that can detect
deformation of the strip due to patient movement. Using this technology, we can
capture the medically significant events above, such as a patient entering the bed.
We can also determine the amount of time a person spends in the bed. Moreover,
a camera can be placed in the patient’s room to monitor the area surrounding the
bed. When the patient leaves the bed, such as in the case of falling off the bed or
wandering from the room, the nurses are notified along with a current picture of
the room.

Using the iCS framework, all parts of the system are connected using the
XMPP/Jabber protocol. Sensors and other components are publishers and sub-
scribers in the Publish-Subscribe extension. Events and notifications are handled
by the pubsub service. We refer to this scenario throughout this thesis to reinforce
how the framework, sensors, actuators, and other components fit together.

3

Significant

event

detected

Take picture

Notify

staff

Jabber entity

connected to

camera

Nursing Station

Impress Context Store

Figure 1.1: Motivating Example: 1) Smart bed detects when the bed is empty;
2) Camera takes a picture of the room; 3) Nurses get notified of the event with a
current picture of the room.

1.2 Separation of Context Logic and Communi-

cation

Context-aware systems, such as the Context Toolkit [49], usually require various
sensors as inputs and some actuators as outputs. In between the inputs and outputs,
there are context processors that aggregate the inputs into context information, and
use the context information to produce output. Sometimes, the context information
is combined into higher-level context information. In this thesis, we call sensors and
other sources of context information context producers. Similarly, we call actuators
and other users of context information context consumers. Figure 1.2 illustrates
the relationship among context producers, context consumers and context proces-
sors. Collectively, we call all participants of the context-aware system, including
context producers, context consumers and context processors, entities. Because the
entities of the system are often separate units, communication channels must link
them. Security, availability, robustness, and persistence are but a few requirements
commonly associated with any communication model.

It is crucial to focus the development of context-aware systems in two sepa-
rate areas: i) the context processor for processing context information, and ii) the
underlying foundation for providing communication and coordination among all

4

Context Processor

Impress

Context Store

Context

Producer

Context

Consumer

Context

Producer

Context

Consumer

Figure 1.2: Context Producers and Context Consumers

of the devices and entities in the system. This thesis focuses on the latter area.
A well-designed coordination framework needs to provide enough features for the
context-aware system to process context information through high-level function
calls, without worrying about details in the communication foundation. Further-
more, the framework needs to be generic enough to support different context-aware
systems. We will see how this framework achieves these goals.

In this thesis, we introduce a coordination framework for context-aware systems.
This framework uses the pubsub model to take advantage of its decoupled nature.
Furthermore, with the help of the Jabber protocol, the framework is adaptable,
fault-tolerant, language-neutral, efficient, secure, and is expected to enjoy industry
adoption. Key contributions of our work include identifying a list of requirements
for context-aware systems, proposing a system to address these requirements by
tagging data with type information for data identification and searching, identifying
and filling a need for a tool to explore data stored in the system, and developing
proof-of-concept applications to evaluate the proposed system.

Chapter 2 discusses background and work related to this thesis and outlines
major differences among the various projects. Chapter 3 introduces the Impress
project and its relationship with context-aware systems. Chapter 4 presents our
work, the Impress Context Store. Chapter 5 and 6 explain our implementation
and performance evaluations respectively. Chapter 7 concludes with a discussion
of contributions and future work.

5

Chapter 2

Background and Related Work

There are many projects that attempt to take the basic Publish-Subscribe model
and improve its scalability or efficiency, or augment it with new semantics such as
subscribing to contents instead of topics. However, only a handful of them apply
the Publish-Subscribe model to large deployments such as context-aware systems
in hospitals or university campuses. The Context Toolkit proposes a framework
that has the potential to be used in large deployments. However, there is no
implementation for such scenarios. The Interactive Workspace project at Stanford
and the EDSAC(21) (Event Driven, Secure Application Control for the twenty-first
century) project at Cambridge are among the few that envision deployment in real
systems.

In this chapter, we provide some background information on three different com-
munication models: i) Message Passing, ii) Tuple Space, and iii) Publish-Subscribe.
Each has its own characteristics and they provide the groundwork that leads to the
motivation for our work. Then, we present the related work mentioned above in
more detail.

2.1 Message Passing

Message passing is the most prevalent method of communication in networks today.
Message-passing systems are point-to-point systems consisting of message senders
who send items of information directly to the message receivers. The majority of
message-passing systems have a one-to-one sender-to-receiver relationship. Message
passing is efficient, because only two parties are involved in each message trans-
fer. Although there needs to be a way for senders to find the addresses of the

7

receivers, there are already mechanisms such as Domain Name Service (DNS) and
various service discovery schemes to aid in that task. Despite the fact that message
passing dominates network communication, it has some drawbacks. The senders
and receivers are completely coupled in both space and time. The senders need to
know exactly who they are communicating with. The senders and receivers also
need to be running concurrently. This tight coupling characteristic makes faults in
communication channels visible to the programs. A lot of effort needs to be put
into the software design to make them fault-tolerant.

Next, we introduce the Tuple Space model of communication. It is completely
different from message passing and offers a different set of benefits.

2.2 Tuple Space and Linda

In the early days of networked computers, Gelernter proposed a new communication
model in distributed systems called, the generative communication model, using the
Linda programming language [19]. The model has been incorporated into many
languages such as C, Fortran, C++, Scheme, and recently, Java [4, 53]. The heart
of the generative communication model is the existence of a Tuple Space shared
by Linda programs in a distributed system. To communicate between process A
and process B, process A generates tuples, which are ordered lists of data, and
adds them to the Tuple Space. Process B later withdraws the tuples. The Tuple
Space relays the tuples from A to B. Therefore, the processes are distributed in
space, as is the case in normal distributed systems, and are distributed in time. It is
the distributed-in-time nature that sets the generative communication model apart
from conventional message-passing models.

Tuples in the Tuple Space can either be i) passive data values, or ii) executing
or executable code. The latter gives Linda the ability to run distributed code. In
this section, however, we focus on the data tuples.

There are four possible operations in the Tuple Space: out(), in(), read(),
and exec(). The exec() operation is used to execute code stored in a tuple and is
not relevant to our discussion here. The operation out() adds a tuple to the Tuple
Space, in() withdraws a tuple, and read() reads a tuple without withdrawing it
from the Tuple Space.

In its simplest form, a tuple is an ordered list of parameters. Each tuple is tagged
with a character-string identifier. For example, to add a tuple with identifier N
and parameters P2, ..., Pn, the operation out(N, P2, ..., Pn) is invoked. To retrieve

8

1. out(N, P1, …, Pn)Sender Tuple Space

ReceiverTuple Space

2. in(N, P1, …, Pn)

3. (N, P1, …, Pn)

Figure 2.1: Example Tuple Space Operations

the same tuple, one can invoke the operation in(N, P2, ..., Pn). If a tuple with
identifier N exists, the tuple is removed from the Tuple Space and P2, ..., Pn are
assigned the values in the tuple. If no tuple has the identifier N , the in() operation
suspends until such a tuple becomes available. The read() operation works like
the in() operation except that the tuple remains in the Tuple Space instead of
being withdrawn. Figure 2.1 depicts the out() and in() operations.

Tuples can be matched and retrieved by in() and read() using more than the
identifier. For example, a tuple added to the Tuple Space using out("sit up",

14, "yesterday") will be matched using read("sit up", ?i, "yesterday") [4].
The variable i gets the value 14 when the call completes.

The generative communication model is significantly different from others due
to “orthogonal communication.” In orthogonal communication, the process adding
tuples to the Tuple Space has no knowledge of the process withdrawing or reading
the same tuples. This is significantly different from normal network communication,
where the senders need to address the receivers directly. Orthogonal communica-
tion leads to space uncoupling, time uncoupling and distributed sharing. Space
uncoupling refers to the fact that a tuple may be added by any process sharing the
Tuple Space and may be withdrawn or read by any process. Figure 2.2 illustrates
the case of space uncoupling. Time uncoupling, on the other hand, refers to the
fact that tuples remain in the Tuple Space until explicit removal. Processes do
not necessarily have to execute at the same time in order to communicate with
one another. Figure 2.2 also shows this relationship. Distributed sharing is the re-
sult of the two earlier properties. The Tuple Space provides atomic shared storage
space among address-space-disjoint processes. We will see similar characteristics in
Publish-Subscribe systems in Section 2.3.

A weakness of Linda and Tuple Space is the lack of security built into the model.

9

Sender Tuple Space

Receiver

Tuple Space Receiver

T
im
e

a)

b)

Receiver

Receiver

Sender

Sender

Sender

Figure 2.2: Space uncoupling: a) A tuple from a sender can have multiple recipients
that may be unknown to the sender; b) A receiver can retrieve tuples from multiple
senders that may be unknown to the receiver.
Time uncoupling: a) A sender can send a tuple to the Tuple Space at time t0; b)
A receiver can retrieve a tuple from the Tuple Space at time t1, where t1 > t0.
Note that the sender and receiver do not have to be running at the same time.

10

There is no inherent security model to protect tuples in the shared space. The tu-
ples are accessible to all participating processes. Adding authorization mechanisms
to Tuple Space can be cumbersome. Security constraints may need to be spec-
ified per tuple since there is no concept of a group of tuples. The Tuple Space
service must also enforce some client-to-server encryption scheme to ensure data is
transmitted securely. Moreover, type checking is an issue in Linda. Tuples with
the same identifier but parameters of different types can be added to the Tuple
Space. However, the process waiting for a tuple with specific parameter types can
be blocked forever because the desired tuple does not exist in the Tuple Space.

Since their introduction, many extensions and improvements have been made to
Linda and Tuple Space. For example, fault-tolerant Tuple Space [40] was introduced
to minimize the effects of transient failures. With the increasing popularity of
mobile and wireless devices, Linda has been extended to the mobile environment
[41]. The uncoupling in space and time are suitable for limited bandwidth and
frequently disconnected devices. Tuple Space has also been used in coordination
systems to communicate among devices participating in the smart space [25, 38].
The uncoupling characteristics again play a crucial role in the success of these
systems.

Similar to Linda and Tuple Space, Publish-Subscribe is another messaging
model that uncouples participants in the system in both time and space. How-
ever, the Publish-Subscribe model has received more refinements by the research
community and has enjoyed wider adoption.

2.3 Publish-Subscribe

The Publish-Subscribe (pubsub) model is similar to a message-board system in
the way that a user (publisher) publishes his message publicly to everyone viewing
the message board. The viewers (subscribers) essentially subscribe to this message
board to receive any messages posted. A pubsub service is middleware that provides
messaging services to its publishers and subscribers. It has many advantages over
traditional point-to-point communication. The pubsub model has been in existence
for a long time. The earliest incarnation was in topic-based pubsub services. Newer
research directions include content-based, type-based and location-based pubsub
services. Pubsub services are middleware that decouple message propagation in
time and space. The survey by Eugster et al. [11] provides an excellent treatment
of Publish-Subscribe systems in general. We cover some of the major findings in
the following section.

11

Pubsub Models Characteristics

Topic-based Messages are published to topics. Subscribers sub-
scribe to topics of interest.

Content-based Subscribers specify queries to match message con-
tents.

Type-based Messages are published as data types or objects.
Typed-based pubsub services require strong integra-
tion with the programming language.

Table 2.1: Different Variations of Publish-Subscribe Models

First, the publishers post messages to the pubsub service. Once the pubsub
service determines a message matches the interest of one or more subscribers, it
notifies them. Therefore, events are propagated asynchronously from the publishers
to the subscribers. Space decoupling is achieved because neither the publishers nor
the subscribers necessarily know the identity of one another. They only need to
know the existence of the pubsub service. Time decoupling is also achieved because
publishers and subscribers do not need to be available at the same time. Events
can be dropped if the subscribers are not available, or can be stored until they
are delivered. Synchronization decoupling refers to the situation where publishers
are not blocked when publishing events. Events are subsequently pushed to the
subscribers asynchronously.

There are some variations among pubsub models in how a service accepts mes-
sages from publishers and matches messages satisfying the interests of the sub-
scribers. The most common types, topic-based, content-based, and type-based
pubsub services, are presented in Table 2.1.

Topic-based pubsub services are well studied and implemented by industry and
academia [11]. Topics can be viewed as containers for messages. Messages are
published to these topics, and the pubsub service pushes them to subscribers in-
terested in the topics. A topic is therefore very similar to a multicast group. In
content-based pubsub services, instead of topics, subscribers subscribe to contents,
such as data values. A subscription contains a query that includes a satisfaction
condition. Therefore, topic-based pubsub is a special case of content-based pub-
sub, and can be constructed by using the topic names as query conditions. Finding
efficient matching algorithms to match the query to past and future events is an
area of active research. Type-based pubsub services have gained attention recently.
Messages are published in terms of data types or objects. The pubsub service is tied
strongly to the programming language used. An advantage is that these systems
provide type-checking at compile time. Lastly, location-based pubsub services have

12

also been introduced [12]. The subscription queries are constructed in terms of the
current location of the subscribers. As such, they receive events that are relevant
to their present locations.

Publish-Subscribe is a general term used to describe a wide variety of implemen-
tations. Besides the range of topic-based, typed-based and location-based pubsub
services, features that make a pubsub service usable in real-life deployments are
also different among implementations. For instance, some pubsub services allow
persistent storage of messages while others do not. Most implementations allow a
configurable persistence model. Another example is security. The security models
of different pubsub services are wildly different from one another. Depending on the
intended usage of the pubsub service, different authentication and role-assignment
methods are used. Furthermore, the set of configurable parameters also varies
from product to product. Therefore, when discussing features offered by a pubsub
service, it is important to know exactly which pubsub service is under discussion.

2.4 Context Toolkit

The Context Toolkit [7, 8, 49] is some of the earliest work on developing a framework
for context-aware systems. It models the context-aware system based on graphical
user-interface (GUI) widgets. Dey identified the following differences between the
explicit user-input model in GUI and context-aware systems.

1. Distributed source of input: In a traditional GUI, user input is generally from
the same computer. However, context-aware systems take context information
from multiple, distributed sources.

2. Unlike user input through a GUI, context information is not always in the
form required by the application. For example, a context-aware system may
have to convert coordinates obtained from global positioning system (GPS)
into postal addresses.

3. The application that requires the GUI user input usually runs on the com-
puter to which the input device is connected. However, applications requiring
context information usually run on a different computer than the one collect-
ing the information.

Based on these differences, the Context Toolkit incorporates the following com-
ponents.

13

1. Widgets: A widget communicates directly with a sensor and encapsulates a
single piece of context information. Context information can be retrieved by
polling or subscription mechanisms.

2. Aggregators: Aggregators combine context information from multiple widgets
and reduce the combined, and often complicated, context information into
something applications can use.

3. Interpreters: An interpreter takes context information from a widget or ag-
gregator to form context information that is higher-level and easier for appli-
cations to understand.

The goal of the Context Toolkit is to integrate a large number of sensors to form
a context-aware system. However, there are some shortcomings. First, although
the Context Toolkit supports subscriptions to context information, the aggregators
or the applications need to contact the widgets directly. The widgets are responsi-
ble for managing the subscription lists and disseminating the context information.
The context source and the applications communicate directly with one another.
Furthermore, they have to be running concurrently to communicate. Space and
time coupling between the context source and applications is strong. While this
may be suitable for realtime systems, transient failures are difficult to mask and
can lead to the system not being able to scale to large deployments. Second, there
is no security mechanism in place to limit access to sensor data. Once a sensor
is added to the system, its data is available for all participating applications. For
such a decentralized system, implementing and managing security constraints can
be difficult. For sensitive sensor data such as the precise location of a person, se-
curity mechanisms need to be in place before the system will gain trust from its
users.

2.5 Interactive Workspaces

The Stanford Interactive Workspaces project augments rooms with various tech-
nology to enable groups to perform collaborative problem solving [13, 26, 27]. The
system integrates permanent computers, I/O resources, and portable devices that
are brought into the room by its occupants. Based on their experiences with dif-
ferent iterations of the system, the Interactive Workspaces team has defined the
following critical requirements for their system.

1. It must assume frequent changes in device configuration. Devices must be able
to be added and removed with minimal disturbance to the overall system.

14

2. It must tolerate frequent transient failures. Due to the nature of wireless
networks with frequent connection and disconnection, transient failures are
the norm. The overall system must not be affected by transient failures.

3. It must be easy to add new devices. The access methods should be simple
enough to allow a large number of devices access to the system.

4. The software infrastructure and applications running on it must be portable
across instances of the Interactive Workspaces. Since some devices are mobile,
they should be able to move from an instance of the workspace to another
without modifying the software.

The group also referred to Human Computer Interaction (HCI) studies and
identified the following important technological factors.

1. Heterogeneity: Because the system is built for integrating devices brought
together by room occupants, heterogeneity of devices and software is an in-
herent property of the system. Promoting heterogeneity in the system also
encourages evolution of the system to support new devices and software.

2. Changing Environment: It is inevitable that transient failures occur in the
Interactive Workspaces. Therefore changes occur in the environment on short
timescales as devices fail and recover, and enter and leave the environment.
On longer timescales, the environment changes as devices and software are
upgraded.

Based on the requirements identified, the Interactive Workspaces group chose
to build the coordination mechanism on top of Tuple Space. The Event Heap is
their implementation of the coordination mechanism [25]. Interactive Workspaces
extends Tuple Space with the following features.

1. Self-describing Tuples: Without self-describing tuples, the semantic meaning
of fields in a tuple is not available to new applications. To allow discovery of
semantic meaning of the fields, a string is used to identify the type of each
field.

2. Flexible Typing: By adding an extra tuple that identifies the minimal set of
fields and their semantic meaning, tuples with reordered fields but intended
to contain the same information can be matched by the matching algorithm.

15

3. Standard Routing Fields: A set of pre-defined fields is used to describe routing
information in a tuple. For example, a tuple may have the source and target
information embedded. Other participants in the Tuple Space can query for
tuples that are specifically intended for them.

4. Tuple Expiration: Because accumulation of tuples in the Tuple Space may
lead to performance degradation, Interactive Workspaces includes an expiry
field in each tuple. Expired tuples are garbage-collected to ensure resources
will not be used up by useless tuples.

5. Query Persistence/Registration: Interactive Workspaces allows a process to
register queries with the Tuple Space. If a tuple matches a query, the process
will be notified. This adds event notification to the existing polling model.

6. FIFO, At Most Once Ordering: To solve the multiple-read problem, where a
single tuple may be matched multiple times without a way to identify matches
from the same tuple, Interactive Workspaces enforces first-in-first-out ordering
from the same source, and ensures a process sees each tuple at most once.

7. Modular Restartability: Failures in one area of the system do not affect
the overall functionality of the system. Failed components in the Interac-
tive Workspaces are designed to be able to restart independently while the
other parts of the system keep running.

Publish-Subscribe. The Interactive Workspaces project considered using Publish-
Subscribe instead of Tuple Space. The group felt that the Publish-Subscribe model
is a close match with Tuple Space and fulfills all requirements of the Interactive
Workspace except persistent storage. In other words, the Publish-Subscribe model
failed the time uncoupling criteria.

Open Issues. The Interactive Workspaces project identified some open issues.
Similar to Tuple Space, tuples in a space are shared openly with all participating
processes. A security model is needed to restrict access to the tuples if we cannot
assume the users of the Interactive Workspaces can be trusted. Second, due to the
introduction of type information in tuples, name collision and the use of different
names for the same type are problematic. In an environment that aims to integrate
heterogeneous devices, these issues are likely to occur. Third, the original targeted
frequency of use for the Interactive Workspaces is a few tuples per second at a
latency of about 100ms per event. For applications that have higher frequency

16

or lower latency requirements, the Tuple Space model may not be appropriate.
However, the group indicates that there is further evidence to suggest that the
latency can stay below 50ms with several hundred tuples per second. Further
studies are needed to confirm this claim.

Besides these open issues, the Event Heap lacks flexibility in handling unforseen
applications. Their system assumes the application space is known. Therefore, they
have complete control over the applications written to run inside the workspace.
The types of messages in the pubsub system are for application events only. While
this assumption is completely valid, it limits the openness of the system and pre-
vents the inclusion of new applications.

With the help of extended type information, item attributes, and XML payload,
our framework allows new applications to integrate with existing applications while
providing new functionalities, all without downtime from the system.

2.6 EDSAC(21): Event-Driven, Secure Applica-

tion Control for the twenty-first century

EDSAC(21): Event-Driven, Secure Application Control for the twenty-first century
is a research project at University of Cambridge Computer Laboratory, with a goal
of integrating an event-based, wide-area distributed framework with an open access-
control architecture [1]. The application of their framework is similar to ours. They
use Hermes to provide communication among devices. Hermes is an event-based
middleware that uses the attribute and type-based Publish-Subscribe model [42].

We mention EDSAC(21) here because it shows that our research direction is
pointing at a new and exciting area. The proposal for this project was published
in 2004 and there is much on-going work. Their use of typed-based pubsub model
can be used to compare with our topic-based pubsub model at some time in the
future.

Throughout these research projects in context-aware systems, we see a com-
mon theme emerge: A context-aware system needs to deal with transient fail-
ures and adapt to the changing environment, by allowing decoupling between con-
text providers and context consumers. Recent projects suggests that the Publish-
Subscribe model holds much potential. In this thesis, we build on results from past
research and propose a coordination framework for context-aware systems. We
address previously-ignored issues and propose a robust, decoupled, scalable, and
secure system suitable for these systems. Next, we highlight key requirements in

17

context-aware systems. Then, we introduce the Impress project and how it relates
to context-aware systems.

18

Chapter 3

Impress and Context-Aware
Systems

Context-aware systems take relevant state information from all participating enti-
ties into consideration, and modify the state of the system. The Context Toolkit
developed by Dey [7, 8, 49] is one of the first frameworks directed at integrating and
managing multiple sensor sources to provide a seamless context-aware system to
the users. He suggested many requirements similar to the ones we have identified.

In this chapter, we explore key requirements that are essential to building and
using context-aware systems. Then, we introduce the Impress project and its rela-
tionship to context-aware systems.

3.1 System Requirements

As explained in Section 1.2, the separation of context logic and communication is
essential in building context-aware systems. This thesis focuses on developing an
effective supporting infrastructure for context-aware systems. Specific details on
processing context information are covered in other literature. In this section, we
call all participating devices in the context-aware system entities. Following previ-
ous work and experience from our own research, we now identify the requirements
for such an infrastructure. These requirements address common issues faced in
distributed systems, pervasive-computing systems, and context-aware systems. We
summarize these requirements in Table 3.1.

19

Requirements Motivating factors

R1: Distributed commu-
nication in an overlay
network

Entities are inherently distributed in space.
Overlay networks support mobility, easy ad-
dress lookup, and can cross heterogeneous net-
works.

R2: Secured communica-
tion

Messages contain sensitive information and
must be protected. There needs to be clear au-
thentication and authorization mechanisms.

R3: Adaptability in het-
erogeneous environment

The system consists of widely heterogeneous en-
tities. Entities come and go and the system con-
stantly evolves to satisfy different needs. Mini-
mal human intervention is desired.

R4: Recovery from tran-
sient failures

Transient failures are the norm. They need to
be contained and cannot cause system-wide fail-
ures.

R5: Context information
aggregation

The system needs to provide means to retrieve
varied context information in order to create
higher level context from it.

R6: Continuous context
acquisition

For some studies, samples need to be continuous
over time.

R7: Persistent context
information

Storing messages allows time decoupling and
provides context history.

R8: Synchronized
timestamps

Clocks of distributed entities should be reason-
ably well synchronized. The order of messages
is important.

R9: Efficient searching of
context information

Some context information is in the form of large
textual or binary data. Searching this data can-
not incur high latency.

R10: Resource discovery Entities need to discover services and resources
on their own to minimize explicit human in-
volvement.

R11: Efficiency Human-perceived latency should be bounded to
a few seconds.

Table 3.1: Requirements for Supporting Infrastructure for Context-Aware Systems

20

R1: Distributed communication in an overlay network. It is easy to un-
derstand why a useful context-aware system needs to be distributed. With various
miniature mobile devices gaining popularity, these tiny, wireless or wired, network
devices form the basis of the sensing network. The sensors can appear anywhere
in the users’ space, and make continuous reading of the relevant environmental
parameters. The actuators should also exist on a distributed network to provide
feedback to the users in a wide area. Because of the potentially large distance
between these devices and constraints on physical deployment, such as wire length
restrictions, these devices ought to be distributed over a network.

The distributed network should exist in an overlay fashion, to simplify the
process of looking up entities and increasing the mobility of entities. An overlay
network sits on top of the existing network and routes messages via the existing net-
work. However, the overlay network has its own addressing scheme. For example,
an overlay network can exist on top of IP networks or even Bluetooth networks.
This is similar to the electronic mail mechanism in that emails are routed from
one SMTP (Simple Mail Transfer Protocol) server to another, with an addressing
scheme known as an email address. Email users can roam around the globe without
worrying about emails not arriving at their inboxes. Senders do not need to know
where the receiver is located physically. Operating in the overlay network greatly
simplifies issues associated with entity relocation, which happens very often in such
a dynamic environment. Using an addressing scheme such as an IP address is not
appropriate when entities move in the network. Furthermore, an overlay network
can allow addressing schemes that are human-readable. This is especially beneficial
in context-aware systems, which are often human-centric.

R2: Secured communication. Referring to our motivating example in Sec-
tion 1.1, communication among entities and the middleware components needs to
be secured. It is especially true in medical or home-monitoring scenarios that mes-
sages passing through the network often contain sensitive information. Privacy
must be maintained if the system is to receive widespread adoption.

Besides securing the communication medium, authentication and authorization
protocols must be enforced. The system must support reasonably fine-grained
access restrictions on a case-by-case basis. This ensures that only users who have
the proper permission can access the potentially sensitive data in the system.

R3: Adaptability in a heterogeneous environment. As mentioned in Sec-
tion 2.5, the Interactive Workspaces group suggests that context-aware systems

21

exist in a heterogeneous environment that is changing constantly. Context-aware
systems evolve in functionality over time. In our scenario, this occurred when the
nurses discovered the benefit of having a camera in the room once the patient’s
bed was equipped with the motion detectors. Adding and removing entities from
the system is normal and happens frequently. The context-aware system needs
to service other parts of the system continuously while entities are being added
or removed. Entities in the system each have their own purpose and will always
have unique requirements. The context-aware system must be flexible enough to
accommodate the differences among these entities. One obvious approach to run-
ning heterogeneous entities on a system is to use platform-independent protocols
for communication among different hardware and operating systems.

Because our target users are not necessarily computer experts, the system must
adapt to changes with minimal human intervention. New entities need to be added
to the system with minimal configuration, and hardware that is being replaced
because of failures or upgrades cannot bring the whole system down.

R4: Recovery from transient failures. This requirement relates closely to
adaptability in a heterogeneous environment. However, it is important enough to
warrant mentioning separately. The context-aware system must be robust against
transient failures. In a ubiquitous computing environment, where many hetero-
geneous entities interact with one another, transient failures are normal. Many
simple, yet common, situations such as temporary network disconnections, battery
power failures, or users restarting the entities may cause transient failures. While
the system loses some functionality directly related to the entities having these
intermittent failures, the failures need to be transparent to the rest of the entities
in the system. A system that shields failures from other parts of the system helps
prevent cascading failures and promotes scalability.

R5: Context information aggregation. As introduced in Section 1.2, the
context processors exist to transform existing context information into new context
information. Very often, many pieces of context information spreading over multiple
sources or over time are used to produce a single piece of context information. In
our example, bed motion over time can determine whether a patient was rolling
and turning while sleeping through the night. Therefore, the framework must allow
entities to retrieve many items of context information and add processed context
information back into the system. To the high-level users of the system, who
are not interested in the low-level details of the context information, the context
aggregation is done “under the hood” and is completely transparent.

22

R6: Continuous context acquisition. In a context-aware system, data from
a single context producer may be needed by many entities. Therefore, it makes
sense for the sensors to make their data available for sharing, instead of requiring
high-level entities to acquire their own low-level context data. This requires the
context acquisition entity to run independently of entities that require its data.
Hence, continuous context acquisition is needed to promote reuse of context data
and simplify the data-acquisition task for high-level entities.

Furthermore, in some studies, such as in Rasch analysis of the HABAM [33],
data acquired at set intervals is necessary to produce results with high confidence.
The system must ensure all context information collected at predefined intervals
is sent to the appropriate receivers. An entity responsible for continuous data
acquisition, run independently from the data receivers, is appropriate in this case.

R7: Persistent context information. Sections 2.2 and 2.3 mentioned the ben-
efits of time decoupling between entities. Time decoupling is essential in mitigating
the effects of transient failures. In order to achieve time decoupling, messages must
be stored. By storing messages, the senders and receivers do not have to be in
synchronization and do not need to be running concurrently.

Storing messages is also important for keeping a history of context information.
There is a need to keep history of context for studies such as trend analysis and
prediction [8]. For example, in our scenario, a doctor may later want to combine
bed data for the past year for a long-term trend analysis. It is not always clear
what analyses will be done, or who will be doing them in the future. Therefore,
message data needs to be stored inside the system itself to facilitate future studies.

R8: Synchronized timestamps. Requirement R1 suggests that entities are
distributed over a network. Because of the nature of our universe, entities in the
system will never agree on the time. However, the ordering of messages is impor-
tant because items of context information often have cause-and-effect relationships
with one another. Therefore, there need to be mechanisms to synchronize message
timestamps within acceptable error margins. One approach might be to timestamp
messages at the middleware. This works as long as the middleware runs on a single
machine. Another approach might be to synchronize the clocks of all entities in the
system using some clock-synchronization mechanism. Local times are then used for
message timestamps. Regardless of the mechanism, message timestamps must be
accurate to within an acceptable error margin.

23

R9: Efficient searching of context information. The stored context infor-
mation is useless unless there are ways to retrieve it. Because much higher-level
context information is dependent on lower-level context information over time, the
ability to store and search context information is crucial. The first requirement for
searching is to know the type of the data stored. It must be known before we can
understand its semantics and search for the desired information. Moreover, since
much stored context information is from sensors, they may be large text or binary
logs. Searching through these large chunks of data can be inefficient and decrease
performance of the system. There needs to be ways to tag the large data with
smaller, searchable attributes. For example, a video clip of a patient’s room can be
tagged with the date, time, name of the patient, location of the room, format, and
the length of the video clip. Then, we can search the short tag instead of the large
binary object.

R10: Resource discovery. Because of the nature of context-aware systems,
explicit human intervention must be kept to a minimum. Therefore, it is essential
that an entity be able to familiarize itself with other services and resources offered by
the system, without excessive human configuration. Automatic resource discovery
can be used to promote auto-configuration when new entities are added to the
system. The sensors and other resources should make available, at a minimum,
their location, communication mechanism and the services they offer.

R11: Efficiency. With today’s networking technology, networks with high through-
put and low latency can be achieved with very low cost. Furthermore, since the
context-aware system interacts primarily with humans, depending on the applica-
tion, latency as high as a few seconds is usually acceptable. Therefore, we do not
need to worry about performance when exchanging short messages. However, low-
level context information usually involves detailed sensor data such as long textual
logs or large binary files. Therefore, efficient search of context information men-
tioned above is important in this scenario. Without sacrificing other criteria listed
in this section, we should aim to limit the user-perceived latency to within a few
seconds.

Requirements R1, R4, R8, and R10 address issues related to distributed systems.
Requirements R2, R3, R4, R10, and R11 make sure the system is usable under the
dynamic and demanding environments presented by pervasive-computing systems.
R5, R6, R7, and R9 are functional requirements of context-aware systems.

Next, we introduce the Impress project and how it can help address these re-
quirements.

24

3.2 Impress

The Impress project at the University of Waterloo explores the convergence of
Instant Messaging and Presence in Smart Spaces [3]. The project envisions an
integrated ubiquitous-computing platform built with existing systems and open-
source standards.

We’re interested in how to make some of the vision of pervasive and
ubiquitous computing a reality. Start with an existing, stable, open-
source project with well-proven, standards-based technology and a vi-
brant community of contributors and users [3].

Leveraging tried and tested technologies, the platform should provide bene-
fits such as extensibility, maintainability, reusability, scalability, and the ability to
evolve.

The focus of Impress is to explore the use of the open Jabber standards [45, 46,
47, 48] in building a ubiquitous-computing platform. This thesis is one of the early
results of the Impress project, and provides a generic coordination framework for
context-aware systems.

Jabber. The Extensible Messaging and Presence Protocol (XMPP), also widely
referred to as Jabber, became an IETF Internet standards-track protocol in 2004.
It has its roots in the Jabber community dating back to 1999. Jabber protocols
have received quick adoption since their inception. This is partly because its open-
source, standards-based, XML protocols are easy to learn and use. Developers and
users already possess most knowledge necessary to use these protocols. Numerous
public and private implementations have been made. The Publish-Subscribe exten-
sion supports topic-based publish and subscribe functions, persistent storage, and
includes various security features. It is a prime candidate for building a coordina-
tion infrastructure for a context-aware system. Being a generic Publish-Subscribe
model, we explain next how Jabber’s pubsub service can help satisfy some of the
requirements outlined in Section 3.1.

Advantages of Publish-Subscribe. The most visible advantage is that the
pubsub service decouples the publishers and the subscribers in space [11]. The
publishers do not necessarily need to know anything about the subscribers. They
only need to know about the pubsub service. Similarly, the subscribers have no

25

knowledge of the publishers. They are only concerned about the messages relayed
by the pubsub service. Space decoupling contributes to requirements R1 and R3.
We assume that in a context-aware system, the context producers are publishers
and the context consumers are subscribers. Since context processors can aggregate
low-level context information into higher-level context information, they are both
subscribers and publishers. Adding new hardware to the context-aware system
amounts to adding publishers or subscribers to the pubsub service. Since publishers
and subscribers are decoupled, the addition of new hardware does not affect the
rest of the system. Similarly, the impact of removing any hardware is limited to
only publishers or subscribers that directly use the context information produced
or consumed. These changes do not require reconfiguration of the pubsub service
and are invisible to the rest of the system. This greatly simplifies maintenance
since human intervention is kept to a minimum. Therefore, the system is able to
scale. Furthermore, the availability of the pubsub service is also increased because
hardware and software changes are localized to a small area and do not require
bringing down the whole system.

The Publish-Subscribe model further allows messages to be persistent in the
pubsub service (R7). If needed, messages can be stored until delivered or deleted
explicitly. Combined with decoupling publishers and subscribers in space, the ef-
fects of transient failures can be alleviated (R4). Since publishers and subscribers
are decoupled in time and are not tied to one another directly, a transient failure
in the publisher will only register as a slightly delay in publishing the message. On
the other hand, the pubsub service can store the message when a transient failure
occurs in the subscriber. The subscriber can still retrieve the messages that would
have been dropped otherwise. Since we are not dealing with real-time applications,
transient failures do not have a visible effect on the system as a whole. For applica-
tions that process failure information, such as performance monitoring tools, extra
context producers that monitor the status of the entities in question can be added
to publish failure information to the pubsub service. Therefore, relevant failure
information is available to be consumed by the context consumers but irrelevant
failures are hidden from them. A persistent pubsub service also enables the sub-
scribers to access stored messages to perform searches. This feature is essential for
the context processor to aggregate context information (R5, R11).

The Publish-Subscribe model is not as efficient as point-to-point communica-
tion. Each message is passed through the pubsub service. Therefore, each message
takes a two-hop path. However, with today’s affordable high speed networks and
our forgiving latency requirements, this additional delay does not pose any signifi-
cant problem (R11).

26

The persistent Publish-Subscribe model itself contributes to requirements R1,
R3, R4, R5, R7, and R11. The following section introduces Jabber’s Publish-
Subscribe service and how it contributes to more requirements of context-aware
systems.

3.3 Jabber’s Publish-Subscribe Extension Proto-

col

Jabber’s Publish-Subscribe service not only provides basic pubsub semantics such
as publication and notification of messages, but also features such as message per-
sistence, security, authentication, authorization, and service discovery that are es-
sential to a functional pubsub service. The fact that Jabber is an open-source,
standards-based protocol enables heterogeneous entities to communicate with one
another with ease (R3).

Jabber’s pubsub service is topic-based. Figure 3.1 illustrates key components
that make up the pubsub service. Each topic is a leaf node and is usually simply
called a node. Publishers publish messages, or items, to these nodes. Subscribers
can in turn subscribe to the nodes and receive notifications. Each node operates
independently in the sense that each node has its own list of items, publishers, sub-
scribers, and security constraints. “Collection” nodes encapsulate other collection
nodes or leaf nodes to form a hierarchical namespace structure and security domain.
Subscribers can potentially configure their subscription options to receive notifica-
tions from all leaf nodes under a collection. Nodes can be transient or persistent.
While a transient node does not store messages published to it, a persistent node
stores them until explicit removal. Messages are stored in a node as items. Each
item has a unique identifier.

The followings are some security and authorization features provided by Jab-
ber’s pubsub service. These features contribute to requirement R2.

Affiliations. The pubsub service supports multiple affiliations of entities to nodes
and collections. This essentially enables an administrator to grant read-only access,
read-write access, or to deny access altogether. An entity can also initiate subscrip-
tion requests to a node on its own. This case is discussed next.

Subscription States. The pubsub service allows administrative approval or de-
nial of subscriptions to a node by setting subscription states. Each node has a list

27

Jabber Service

Publish-Subscribe

Service

Node
Node
Node

Item

Item

Item

Item

item

Figure 3.1: Components of a Pubsub Service

of owners who can perform administrative tasks to the node. A node can also be
configured to always accept subscription requests. Having approval of subscription
requests is essential in maintaining the privacy of sensitive material by allowing
access to them by approved entities only.

Encryption. Security is critical for context-aware systems that may contain sen-
sitive information. Jabber is able to use TLS and SSL to encrypt the communi-
cation channel between the entity and the Jabber server. However, this approach
may not be sufficient to transfer private data, such as the medical history of a
patient. Even when an entity uses TLS or SSL, messages are not guaranteed to
be encrypted between Jabber servers or between the Jabber server and the pub-
sub server. The “End-to-End Signing and Object Encryption for the Extensible
Messaging and Presence Protocol (XMPP)” protocol [48] specifies a way to en-
crypt Jabber messages between two entities. Using this encryption scheme, we can
achieve end-to-end security between an entity and the pubsub service it is inter-
acting with. Since the publishers generally do not know about the subscribers,
messages cannot be encrypted beforehand to achieve publisher-to-subscriber secu-
rity. However, using entity-to-entity encryption is sufficient because the pubsub
service has its own authentication and authorization mechanisms to protect the
sensitive data. In the end, only authorized subscribers are able to have access to
the payloads. In Section 5.2.4, we discuss complementary work that can strengthen
the security of the system. With the necessary features provided by Jabber, the
entities do not have to worry about implementing extra security measures or about

28

the type of medium the messages travel on.

With requirement R2 being provided by the security model in Jabber’s pubsub
service, we now move onto extending the generic pubsub semantics to satisfy the
rest of the requirements, namely R6, R8, R9, and R10. Next, we will refer to
the requirements set forth and propose a coordination framework for context-aware
systems using Jabber.

29

Chapter 4

The Impress Context Store

Chapter 3 outlined some critical requirements for context-aware systems. To recap,
the devices in the system must be distributed in space over an overlay network
and communicate using cross-platform protocols. Communication among entities
must be secure to protect the privacy of its users. The environment in which
the heterogeneous devices participate is highly dynamic. The system must adapt
to new hardware environments and contain transient failures to prevent cascad-
ing failures. For the purpose of further study such as trend analysis and future
prediction, context information must be collected continuously and stored for re-
trieval later. Timestamps used to tag context information must be reasonably
accurate to preserve message ordering. Logic-processing components must be able
to search lower-level context information and aggregate it into higher-level context
information. They need to discover and utilize new services with minimal human
intervention. While searching large textual or binary data, efficiency can become
an issue. User-perceived latency must be bounded to a reasonable time, usually no
more than a few seconds.

We propose the Impress Context Store (iCS), a novel coordination framework
for context-aware systems. In the next sections, we describe our framework and
argue that it meets all criteria listed in the previous section.

Proposed Framework. As part of the Impress project [3], the Impress Context
Store (iCS) framework uses the Jabber protocol [45, 46, 47, 48] as the communica-
tion protocol. The Publish-Subscribe extension [36] is added on top of Jabber to
form the framework. Certain semantics are enforced to further tailor the pubsub
service for use by a context-aware system. At this stage of the project, our goal
is to augment Jabber without changing its protocol. In time, we may be able to

31

convince the protocol designers to include some of our recommendations into the
protocol.

4.1 Features of iCS

The Impress Context Store aims to augment Jabber’s Publish-Subscribe service
to enable continuous context acquisition, synchronized timestamps, and resource
discovery. New semantics are introduced and are discussed in detail in the following
sections. First, we introduce plain nodes and collection nodes. They are provided
by Jabber’s pubsub service as specified in JEP-0060 [36]. Then, we introduce
the typed nodes, which are the augmented nodes designed to fulfill the remaining
requirements.

4.1.1 Plain Nodes

The original semantics of pubsub nodes are very generic and can be adapted to
many uses. However, they do not support specific features that are important to
a context-aware system, such as type identification and efficient content searching.
For example, to search through a node that stores large binary data, all data must
be transferred to the client for processing. This will no doubt incur high delay in
the search request, and may be unacceptable for a human user. We call an original
node, or leaf node as specified by Jabber, the plain node. Plain nodes can be used
for topics that do not need explicit type information and identifying attributes.
However, without this additional information, some requirements listed before, such
as efficient content searching, cannot be done. Furthermore, the publishers and
subscribers of a plain node can be very much coupled, because they need to agree
on the fixed semantics of the items in the plain node. Plain nodes are “light-weight,”
but lack the richness in features required by context-aware systems. Due to these
limitations, we introduce a new kind of node called the typed node. First, however,
we describe Jabber pubsub’s collection-node concept.

4.1.2 Collection Nodes

Besides plain nodes, Jabber’s pubsub service also supports collection nodes. A
collection node is a container of leaf nodes and collection nodes. Leaf nodes can be
plain nodes or typed nodes. A tree of collection and leaf nodes can be created. User

32

tsn

ts2

ts1

tsn

ts2

ts1

attr-item

collection/node-attr collection/node-cont

collection/node

Typed-node name

Content node name

Node attribute item

Attribute node name

(for item attributes)

Item attribute

Payload

Figure 4.1: Typed Node Structure

permissions and subscriptions, such as affiliations and subscription states discussed
in Section 3.3, can be applied to a collection node instead of each individual leaf
node in the collection. Jabber indicates that the hierarchy separator in the node-
naming scheme is flexible. For simplicity, we follow the UNIX file naming scheme
and use “/” as the separator.

4.1.3 Typed Nodes

Section 3.1 mentioned the need for strong type information to facilitate data identi-
fication, searching, and retrieval. This subsection explains the new semantics used
in typed nodes to incorporate various type information and application-defined
custom attributes into the pubsub service. We use Figure 4.1 to illustrates the
construction of a typed node.

Nodes

First, type information specific to a node must be stored. Jabber’s pubsub service
allows several meta-data attributes to be associated with a node. These are: cre-

33

ation date, creator, description, language, publisher, title and type. We use these,
and expand on the pubsub specification to allow additional attributes to be stored.
However, these alone are not enough to fulfill the missing requirements.

To facilitate efficient content searching, it is useful to distinguish the various
types of data published to the pubsub service. We tag each piece of data with its
content type. Since much of the context data stored is sensor data, we propose the
use of Multipurpose Internet Mail Extensions (MIME) Media Types as specified
by RFC 2045 and RFC 2046 [14, 15] to identify the type of context data. We use
the abbreviated name MIME Types in this document. MIME was used originally
to identify the types of attachments in Internet mail messages. It has now been
extended to the HTTP protocol to identify the type of data stream associated with
an HTTP connection. The success of MIME is partly due to the standardization
with multiple RFCs [14, 15, 16, 17, 39]. It has been proven to be cross-platform
and is used by different email clients and Internet browsers on different platforms.
Furthermore, MIME is also extensible. Application developers can create new
MIME types if none of the existing ones describe the new content adequately.
With the help of MIME content types, new context producers can be added to the
system without additional configuration. Context consumers that understand the
new content type can use it immediately.

Since many entities are sensors or other devices that publish data of the same
type periodically, we limit each node to one content type. This makes searching
through a node easier because we know all items in the node are of the same
content type. Entities that produce data with varying types can create a different
node for each type. These nodes can be created under a common collection so
that subscribers can subscribe to the collection and get notifications for all items
published by the entity.

The W3C standard [28] suggests that content type should be stored with the
encoded binary. This implies that the content type needs to be stored in each item.
Tagging the binary with the MIME type allows quick identification of the encoded
data. However, since we have established that all items in a node should have
the same content type, we believe content type is also a valuable node attribute.
Tagging the node with a MIME type allows users to quickly retrieve a list of nodes
matching the desired MIME type. Although there is some redundancy, the overhead
of storing the MIME type in both the node attribute and item attributes is usually
minimal compared to the large binary payload.

Besides the type of data published, the identity of the publisher is also impor-
tant. We should limit the number of publishers, or context sources, for a node.
Ideally, there is a one-to-one publisher-to-node ratio. For example, a node can be

34

responsible for storing data only from the smart bed in the room. Another node
can be responsible for picture data captured by the camera. This separation of
responsibility simplifies maintenance and promotes usability. Context sources can
have ownership of a node and provide data to that node. This helps realize con-
tinuous context acquisition (R6). Furthermore, discovering services (R10) is made
easier because items in the node are from the same source. The idea is to make
the full node names as descriptive as possible to identify the context source, while
using collection nodes to group nodes and form levels of abstraction.

Using this scheme of limiting publishers to each node, new data sources can
be added easily by creating a new node. Access control to data in one node is
independent of other nodes. Removal of nodes also has minimal impact on the rest
of the system. Subscribers only need to subscribe to relevant nodes. Collection
nodes can be used to combine multiple leaf nodes into a logical group.

Node attributes. The content type is one of the required items of type informa-
tion for a node. However, applications using the iCS may want to specify additional,
custom attributes for the node. To allow this, we add a special node-attribute
item in the node. The payload of this item is determined by the application. How-
ever, for greater compatibility during the service-discovery phrase, the Data Forms
protocol [10] should be used to store custom attributes whenever possible. For
example, a node-attribute item should have the format listed in Figure 4.2

Because the content type is instrumental in identifying the data, we make it
a required node attribute. Therefore, the data form in the node-attribute item
must contain a field such as listed in Figure 4.3.

Items

Items are individual pieces of data stored in a node. Each item has an identifier
and a payload.

Identifier. The timestamp of the item is important in many instances. We pro-
pose to use timestamps as item identifiers. There are many representations of a
timestamp. In order for a timestamp to become an effective identifier, there are
a few criteria: i) it must be sortable in its string representation, ii) it must be
human-readable and easy to understand, and iii) it must be cross-platform. W3C
has proposed a dateTime format in its “XML Schema Part 2: Datatypes Second
Edition” [2]. Section 3.2.7 defines the dateTime format in lexical representation as:

35

<item id="node-attr" xmlns="{node-attr-namespace}">

<!-- All custom attributes wrapped in a Data Form. -->

<x xmlns="jabber:x:data"

type="result">

<field type="{field-type}"

var="{field-name}">

<value>{field-value}</value>

</field>

<!-- Other fields -->

...

</x>

<!-- Other custom XML stanza. -->

...

</item>

Figure 4.2: Node-Attribute Item XML Format Example

<field type="text-single"

var="mime-type">

<value>{data-mime-type}</value>

</field>

Figure 4.3: Content-Type Field XML Format Example

36

<item id="{item-timestamp}">

<base64 xmlns="http://impress.uwaterloo.ca/ics/base64"

xmlns:xmime="http://www.w3.org/2005/05/xmlmime"

xmime:contentType="{mime-type}">

<!-- Base64-encoded binary goes here. -->

...

</base64>

</item>

Figure 4.4: Content-Node Item XML Format Example

’-’? yyyy ’-’ mm ’-’dd ’T’ hh ’:’ mm ’:’ ss (’.’ s+)? (zzzzzz)?

In fact, Jabber Date and Time Profiles [44] also use this dateTime format. We use
this format as it satisfies all requirements listed above.

Although Jabber’s pubsub service does not support range queries, range queries
based on time can be emulated by implementing the logic in an entity. The pubsub
service can discover all item identifiers for a given node. With the list of all item
identifiers, an entity can apply a filter to these identifiers and retrieve individual
items of interest based on the time of publication.

The identifiers are timestamped by the entities. Therefore, their clocks need to
be in close synchronization with one another. Fortunately, there are many solutions
for accurate clock synchronization. A few examples include highly accurate GPS
clocks [34] for outdoor entities, and the NTP or SNTP protocols for reasonable
accuracy [30]. Using these mechanisms, synchronized timestamps (R8) can be
achieved.

Payload encoding scheme. Because the Jabber protocol is XML-based, only
XML stanzas can be exchanged between the pubsub service and a Jabber entity.
For publishing binary data, such as a video clip, the content of the file needs to be
encoded as text. Referring to W3C’s “Describing Media Content of Binary Data
in XML” [28], Base64 encoding is used to encode the binary. A content type is
provided for each item. The format of an item payload is shown in Figure 4.4. The
corresponding schema is listed in Appendix B.

Item attributes. Some binary data or large textual data published to the pubsub
service can benefit from being accompanied with application-customizable, textual,

37

searchable attributes. For a piece of text-encoded binary data in an item, the only
attributes defined so far that are specific to the item are its timestamp and content
type. For instance, an audio clip could be tagged with the duration of the clip, and
a video clip could be tagged with its location. Having this summary data can aid a
human user to scan quickly through the node and select only items of interest. It
also decreases bandwidth and processing requirements of an entity by not having to
download the entire item to search the payload after decoding. Efficient searching
of content information (R9) depends on these searchable attributes.

Due to the item discovery semantics in Jabber’s pubsub service, the attributes
should not be stored in the same item as the payload. We cannot retrieve the
attributes without retrieving the entire item if they are stored together. We define
two nodes, named the attribute node and the content node, for each typed node.
While the attribute node and content node are actual nodes in the pubsub service,
the typed node is a concept realized by these two nodes. Figure 4.1 illustrates the
structure of a typed node. The payload of each item in the attribute node contains
attributes of the published data. The published data is stored as the payload of
an item in the content node. These two items are linked by the same timestamp
identifier. In the database sense, this is a vertical partition of the typed node.
The attribute node name and content node name are derived from the typed node
name appended with the -attr and -cont suffixes respectively. For example, the
typed node sensor/bed is represented by the attribute node sensor/bed-attr and
content node sensor/bed-cont.

The node-attribute item is placed in the content node. Therefore, this item can
be hidden from users when browsing the item attributes.

Some attributes of interest are the publisher of the item and the location of
the publisher. The location can be either a geographical location or a physical
location, defined by JEP-0080 and JEP-0112 respectively, or both. Depending on
higher-level needs, other attributes can also be added by the application designer.
Although the format of the payload is ultimately determined by the application,
the custom attributes should be stored using the Data Forms protocol whenever
possible. The format of an item in the attribute node is shown in Figure 4.5.

Garbage collection. The Impress Context Store does not enforce any garbage
collection rules on its own. However, if needed, a garbage-collecting context proces-
sor can be made to monitor nodes that need garbage collection. For example, items
can be published with expiry times as one of the custom attributes. It is up to the
application policy to decide how to tag and clean unwanted items.

38

<item-attr xmlns="{item-attr-namespace}">

<x xmlns=’jabber:x:data’ type=’result’>

<field type=’{field-type}’

var=’{field-name}’>

<value>{field-value}</value>

</field>

...

</x>

<physloc xmlns=’http://jabber.org/protocol/physloc’

xml:lang=’en’>

<country>{country}</country>

<locality>{locality}</locality>

<building>{building}</building>

<room>{room}</room>

<text>{text}</text>

</physloc>

...

</item-attr>

Figure 4.5: Attribute-Node Item XML Format Example

39

4.2 Access Methods

In order for a context-aware system to be functional, there must be application
programming interfaces (API) available for the developers. Because context-aware
systems exist in dynamic heterogeneous environments, the APIs must also be able
to adapt quickly to new platforms.

Figure 4.6 shows some access methods as examples. As the pubsub service uses
XML for its messages, APIs for different languages and platforms can be developed
without platform-compatibility issues. The bottom of the hierarchy is Jabber. The
pubsub service sits on top and exposes its XML interface. From there, there are
multiple options. One can use any programming language that supports XML. In
this day and age, that means virtually all modern languages. We choose to illustrate
our example with Java and .NET. These are two of the few languages that are
potentially portable across a wide range of operating systems. They also have easy
migration paths for wrapping libraries written in these languages as web interfaces.
Because many handheld devices have limited processing power, web APIs can be
especially useful. For devices that can run customized programs but do not have
the processing power or storage space to handle XML parsing or XML packages,
URL rewriting, where one embeds parameter values in the URLs, can be used to
issue iCS commands securely over HTTPS. Alternatively, web services can be used
for the same purpose. For devices that cannot run customized applications but
have a built-in web browser, one can write a web application to expose specific iCS
functions for use with the devices’ browsers. Callback-type asynchronous events,
which make the Publish-Subscribe model so powerful, can also be imitated in web
applications using the new Asynchronous JavaScript + XML (AJAX) paradigm
[18].

By using an open-source and standard XML protocol, Jabber and its pubsub
service enable support from a wide variety of access methods. This flexibility is
welcome because the highly dynamic heterogeneous environments that the context-
aware systems are in require heterogeneous access methods to fit different client
needs.

40

XML over SSL

https

XML over SSL

XMPP / Jabber

JEP-0060 Publish-Subscribe

Java API

Web API

Web Client

Java Application

.NET API (CLR)

.NET Application Web Application

Web Browser

http or https

Figure 4.6: API Access Methods

41

Chapter 5

Implementation

An implementation of the framework has been made to verify the feasibility of
the Impress Context Store and its benefits discussed so far. The iCS framework
must first have a simple API to aid rapid deployment of entities. Then, we discuss
applications built using the framework and how they perform.

5.1 iCS on XMPP / Jabber

We have chosen the open-source jabberd 2 [24] as our Jabber server. On the pubsub
service side, Idavoll 2 [35] is used since it is one of the few working open-source
Jabber pubsub services available for jabberd 2. Other open-source and commercial
implementations of the Jabber and pubsub server are available and are listed on
the Jabber web site [23]. Since our goal is to evaluate the iCS semantics and not to
optimize its performance, using third-party software such as jabberd 2 and Idavoll
serve to demonstrate benefits iCS brings.

To access Jabber and its pubsub service, we use the client-side Java library
called Muse [5]. Although Muse does not support the Jabber pubsub service, it is
an extensible library and we have extended it to include basic pubsub features, as
well as iCS features. We call our extended library the iCS API.

The iCS API provides interfaces for traditional pubsub features, as well as the
extended iCS features. A reference implementation using Muse is developed. The
API has been tested on jabberd 2 and Idavoll 2. For a complete list of methods
provided by the iCS API, please refer to Appendix A.

43

In the next section, we demonstrate proof-of-concept applications that use this
combination of software. However, any Jabber server, pubsub service, and client
library conforming to the required standards should work.

5.2 Applications

A few applications have been developed to test the feasibility and usability of the
iCS framework. First and foremost, we needed a tool to explore the data stored
in the pubsub service. We could not find such a tool elsewhere, so we developed
the iCS Browser. It understands basic pubsub semantics, as well as the extended
semantics proposed in this thesis. Next, we developed a security-monitoring ap-
plication with a context producer, a context consumer, and a context processor.
This application uses both the plain and typed nodes. Then, we demonstrate how
different context sources can be reconfigured easily to work together, by integrating
the smart-bed sensors with the security-monitoring application. Finally, drawing
on the experiences with the iCS framework, we reiterate the Impress vision.

5.2.1 iCS Browser

The iCS Browser is a Jabber entity that explores a Jabber pubsub service. It is
a research tool that allows us to conveniently explore the pubsub service. Besides
basic functions as specified in the pubsub specification, the iCS Browser also un-
derstands iCS semantics such as the typed node. It uses the Java iCS API with the
Echomine Muse library, as discussed above. In this section, we call the person using
the browser the user. Figure 5.1 illustrates a sample iCS Browser user interface.

The browser exposes many of the API functions in GUI form. This ensures the
API contains functions commonly used by the entities. Many of the browser features
discussed below have direct mapping to API functions outlined in Appendix A.

At the top of the window is the Quick Connect panel. It accepts user credentials
for security purposes. Once a user is authenticated, she can navigate the context
store. The left side of the browser lists all the nodes available in the context store,
grouped into a tree structure. Plain nodes and typed nodes can be created. There
are certain operations that can be applied to a node. These include subscription,
unsubscription, publication, deletion of a node and purging of items in a node.
When a node is selected in the Nodes panel, the node attributes and the list of
items in the node are retrieved automatically. The Node Information panel shows

44

Figure 5.1: iCS Browser User Interface

45

node attributes. The Node Items panel shows the list of items in the selected node.
For a typed node, the item attributes are shown and the payloads are hidden.
Finally, the Messages panel in the bottom displays status messages on the left and
incoming events on the right.

Creating Nodes. The iCS Browser can create both plain nodes and typed nodes.
Only a node name is required to create a plain node. For a typed node, the node
name and the content type are required. Custom attributes are optional. Upon
creation of the plain or typed node, the user logged onto the browser becomes the
owner of the node and can therefore perform administrative tasks.

Subscribing and Unsubscribing. An iCS Browser user, including the owner
of the node, needs to subscribe to a node before viewing the items (pull-based)
or receiving events (push-based). As the current Idavoll implementation has no
mechanism for approving or denying subscriptions, all subscription requests are
approved automatically. This feature will be available once the pubsub service is
compliant to all requirements in the JEP-0060 specification. A user can unsubscribe
at any time to stop receiving events.

Publishing. For a plain node, a user can publish a piece of text or an XML
stanza. The difference is that certain characters (such as “<” and “&”) are escaped
when publishing as text. On the other hand, a valid XML stanza is published as
is. The browser will try to publish the given text as XML. If the text is not a valid
XML stanza, it will escape necessary characters and publish it as normal text.

For a typed node, a user can publish data in the form of a file. The browser
asks for optional custom attributes to accompany the data. The contents of the file
is encoded with Base64 and published along with the content type as an item in
the content node. The attributes are published as an item in the attribute node.

Browsing. The browser presents a list of nodes available in the pubsub service
through service discovery. Subject to sufficient permission (such as the user being
subscribed to the node), the browser displays the list of node attributes and the
list of items. For a typed node, only the item attributes are displayed in the Node
Items panel. The payload in encoded form is assumed to be of no direct use to a
human user for viewing.

46

Viewing and Saving. After locating an item in a typed node, the user can
launch an external application that matches the content type to view its content.
The content-type-to-application mapping is specific to the operating system. For
example, on Microsoft Windows, the text/html MIME type is associated with In-
ternet Explorer by default. When viewing items in a node with the MIME type
text/html, the decoded data is handed to Internet Explorer and it, in turn, dis-
plays the data. For a plain node, the text is assumed to have the content type
text/plain.

The user can also save the payload of a typed node to a file instead of opening
it with an application. In this case, the browser will attempt to find the correct file
extension for the user. Again, this is operating-system-specific.

Receiving Events. When an event is received by the browser, it logs the event
in the Messages panel as a link. If the message is of interest to the user, he can click
the link and locate the message in the browser. This is similar to many instant-
messaging clients. Once the item is located in the browser, the user can then view
or save the content as described above.

5.2.2 Security-Monitoring Application

Our first proof-of-concept application is a security-monitoring application. It mon-
itors motion in an area using a motion detector and notifies a person with a picture
of the area when motion is detected. The relationships among the different com-
ponents are shown in Figure 5.2.

Motion Detector. The motion detector is a commercial off-the-shelf X10 device
[54] that informs the host computer whenever motion is detected in the area it
views. When motion is detected, the host publishes an item to an iCS plain node
(for example, the WebCam/motion node). A typical payload is shown in Figure 5.3.

Referring to Figure 1.2, the motion detector is clearly a context producer.

Event Interpreter. The event interpreter is a context processor that subscribes
to the WebCam/motion node and waits for events published by the motion detector.
Once the event interpreter determines that sufficient motion exists in the area, it
takes a picture. Issuing the capture command is outside the scope of iCS. The event
interpreter can contact the camera entity via Jabber Ad-Hoc Commands [37] or

47

Notify:

<physloc>

 <text>shoshin</text>

</physloc>

Motion Detector Event Interpreter Image Viewer

Camera

Impress Context

Store

Publish:

Motion detected

Notify:

Motion detected

Ad-Hoc Command:

Take picture

Publish:

<physloc>

 <text>shoshin</text>

</physloc>

Ad-hoc command:

Figure 5.2: Components of the Security-Monitoring Application

<sensor location="DC3552D">Motion detected</sensor>

Figure 5.3: Item Payload Published by the Motion Detector

48

<x xmlns="jabber:x:data" type="result">

<field xmlns="jabber:x:data"

var="publisher"

type="text-single"

label="Publisher of this item">

<value>ics@jabber.uwaterloo.ca/WebCam</value>

</field>

</x>

<physloc xmlns="http://jabber.org/protocol/physloc">

<country>Canada</country>

<region>Ontario</region>

<locality>Waterloo</locality>

<area>Waterloo</area>

<street>200 University Ave. W.</street>

<building>Davis Center</building>

<floor>3</floor>

<room>DC 3552D</room>

<postalCode>N2L 3G1</postalCode>

<text>Facing door</text>

</physloc>

Figure 5.4: Example Item Payload in Attribute Node

other out-of-band methods. Upon receiving the picture from the camera, the event
interpreter publishes it to an iCS typed node (for example, the WebCam/snapshot

node). The picture is tagged with attributes including publisher, textual reason for
taking a picture, and the location of the camera. An example payload is shown in
Figures 5.4 and 5.5.

The event interpreter is both a context consumer and context producer. It
transforms low-level context into high-level context.

Image Viewer. The image viewer is the last piece of the application. It sub-
scribes to the snapshot node and waits for pictures published by the event inter-
preter. Upon receiving a picture, signifying motion in the area, the image viewer
notifies the computer user and displays the picture. Currently this application runs
on a desktop computer. However, it is simple to redeploy this application on a
mobile device such as a Pocket PC or cellular phone, to act as a pager.

49

<base64 xmlns="http://impress.uwaterloo.ca/ics/base64"

xmlns:xmime="http://www.w3.org/2005/05/xmlmime"

xmime:contentType="image/png">

<!-- Base64 encoded binary goes here -->

</base64>

Figure 5.5: Example Item Payload in Content Node

Summary. The security-monitoring application demonstrated typical usage and
key benefits of iCS. The motion detector, event interpreter, and image viewer are
components that communicate directly with iCS and not one another. With the
additional level of indirection, any one the three components can fail for a short
amount of time without causing a cascading failure. By the same token, components
can be updated with improved versions without the need to take down the whole
system or to reconfigure other components. The communication channels among all
components are secured with SSL. Therefore, data between the Jabber server and
clients is safe from prying eyes. Because messages are XML-based, a component can
be re-written for another operating system and this is transparent to those other
components. With sufficient user-defined attributes, such as time and location
information in the case of the pictures published, another context consumer can
search and locate stored pictures efficiently, given a specific location and a certain
time range.

5.2.3 Smart Bed Application

Returning to our motivating example in Section 1.1, we now illustrate how we can
construct such a system easily with the iCS framework.

First, we need the smart bed that captures the occupant’s motion. At Dalhousie
University as part of a larger project, we equipped a bed with sensors that can detect
the magnitude and location of bending from rest. Using these sensors, placed
at strategic locations, we can infer the location of the occupant and some other
meaningful activities such as sleeping, sitting up, and leaving the bed. Figure 5.6
shows the actual smart bed equipped with the sensors. Although the details of
setting up such a smart bed are interesting, in this thesis, we are only concerned
with the events that it publishes to the iCS.

Among the voluminous data that the bed provides to generate reports for the
doctors, one piece of information stands out in our example. When an Alzheimer’s

50

Sensors

Figure 5.6: Motion-Sensing Smart Bed: Sensors underneath the mattress in parallel
formation. Each sensor can detect the magnitude and location of the deformation
from its resting position.

51

patient leaves her bed in a patient-care environment, the nurses may want to know
about it because the patient may have fallen, or may wander off and get lost.
Therefore, it is important for the bed, or other context processors that aggregate
context information produced by the bed, to publish a message to the iCS when
a patient leaves her bed. With the appropriate monitoring application subscribing
to that event, the nurses can be notified in near realtime when the patient leaves
the bed.

We mentioned one of the benefits of using Publish-Subscribe systems is to allow
the system to evolve while minimizing maintenance efforts. Imagine that after the
nurses have the ability to know immediately when a patient leaves the bed, they
want to know more about the state of the room before determining a course of
action. The system needs to evolve to satisfy that new requirement. At CASCON
2005 [22], we integrated the smart bed at Dalhousie University and the security-
monitoring application at the University of Waterloo to satisfy the request from
the nurses. Figure 5.7 illustrates the setup. Notice how similar this figure is to
Figure 5.2. In fact, we replaced the motion detector component with a bed compo-
nent and a bed-motion interpreter that collectively publish events when the patient
leaves the bed. The event interpreter needs to know how to interpret the new
empty-bed message. However, the camera entity and image viewer can be left un-
touched. We did the integration on the day of the conference and the system was
up and running within half an hour.

5.2.4 Towards the Big Picture

As part of a larger project entitled “Intelligent System Requirements for Cognitively
Impaired Individuals,” [43] we have worked with medical doctors to further investi-
gate use cases for collecting data that is indicative of a patient’s health. Besides the
patient’s motion in bed, as described above, appliance and telephone-usage patterns
also contain valuable information. With the help of the Impress team, we have ex-
panded our implementation from the scenario depicted in Figure 1.1 to Figure 5.8.
All sensors and actuators communicate through the iCS. Different context proces-
sors are in place to aggregate and transform low-level context in iCS to higher-level
context. Using a private branch exchange (PBX), we are able to monitor telephone
usage, such as the frequency of local and long-distance calls made. With this aggre-
gated usage data, we can compile a trend report that can aid doctors in diagnosing
patients’ health more accurately. For example, doctors believe that a decrease in
making long-distance calls or an increase in dialing wrong numbers are early signs
of dementia. Moreover, using X10 technologies, we are able to monitor electric-

52

Notify:

<physloc>

 <text>cascon</text>

</physloc>

Smart Bed Event Interpreter Image Viewer

Camera

Impress Context

Store

Publish:

Leave-bed

event detected

Notify:

Leave-bed

event

detected

Ad-Hoc Command:

Take picture

Publish:

<physloc>

 <text>cascon</text>

</physloc>

Ad-hoc command:

Bed-Motion

Interpreter

Publish:

Occupant

position

Notify:

Occupant

moved

Figure 5.7: Components of the Smart Bed Application

53

Nursing Station

Doctor’s Report

PBX

Impress Context Store

Context

Processor

Context

Processor

Context

Processor

Context

Processor

Bed
with motion sensor

Care-taker

X10 module

Figure 5.8: Big-Picture Scenario

appliance usage such as the time the stove or toaster was turned on and off. From
this data, we can provide our system with even more context information that can
aid trend analysis and pattern prediction. Furthermore, integrating the PBX with
the appliance monitoring allows us to build an early-warning system that notifies
the care-takers via the telephone, should a dangerous event occur. Utilizing the
iCS framework, we are able to identify and exchange context information securely
and efficiently among entities with minimum effort.

To this point, we have treated the iCS as an independent service located within
the home or the hospital. This is desirable because the data stays close to where it
will be used most frequently. Privacy concerns are also reduced because sensitive
data can be contained in a relatively small area. Again in the context of the
larger project, we have used TPIC, the “Token-passing Peer-to-Peer Interaction
Coordination” protocol [6], to decide to disseminate, securely and with a fine grain
of control, part of the data stored in one context store to other application entities.

[TPIC] allows distributed users and data warehouses to transfer infor-
mation to/from those who need/store it without requiring any knowl-

54

edge of global state, database architecture, or even implementation de-
tails [51].

The properties provided by TPIC are favorable for a large context-aware system
because they are in line with the requirements we laid out in Section 3.1. Imagine
having a wide-area context-aware system where individual context stores scattered
around the service area manage minute-to-minute context around local areas, and
these context stores communicate aggregated context with one another, based on
predefined security constraints specified by the TPIC protocol. This is the vision
that the Impress project, along with our sister projects, aspire to.

Next, to ensure iCS can scale, we evaluate its performance by comparing re-
sponse times between plain-node operations with typed-node operations using the
iCS API.

55

Chapter 6

Performance Evaluation

Scalability is a crucial requirement for context-aware systems. In order to support a
large number of context producers and context consumers, the additional complex-
ity required by iCS semantics has to be evaluated. We claim that iCS semantics can
scale because the added complexity, compared to plain nodes, is constant. That is,
the response times of typed-node operations are a small constant multiple of their
counterparts. In this chapter, we discuss various experiments performed to justify
this claim.

The focus of our performance evaluation investigates the performance and scala-
bility of our framework. We do that through exercising the iCS API and comparing
results between the plain-node and typed-node operations. Third-party software
used by the API, such as jabberd 2 and Idavoll 2, are also contributing factors when
interpreting the actual performance results. However, optimizing these third-party
software is out of the scope of this thesis.

Throughout this chapter, we use the setup of Figure 6.1 to conduct our exper-
iments. All machines - jabber1 to jabber4, are dual Intel Pentium III 550 MHz
machines with 256 MB of RAM, running Fedora Core 4. As we are interested in
testing the performance of iCS semantics, to isolate performance bottlenecks and
remove networking issues, the machines are connected via a Gigabit network with
a Gigabit switch. While jabber1 and jabber4 run jabberd 2 and Idavoll 2 re-
spectively, jabber2 and jabber3 are used for driving the requests. In these tests,
messages are sent to the server asynchronously. This means that at any time, there
may be multiple outstanding requests whose responses have yet to be received. Re-
sponse time is defined as the time between when the test client sends a request and
when it receives the corresponding response from the server.

57

jabber2

Test client 1

jabber4

Hosting: Idavoll 2

1 Gbit LAN

1 Gbit LAN

Gigabit Switch

jabber3

Test client 2

jabber1

Hosting: jabberd 2

1 Gbit LAN

1 Gbit LAN

Figure 6.1: Load Test Setup

For the graphs below, each data point shows the mean of at least 1000 measure-
ments. Error bars mark the 95% confidence interval about the means. For tests
that involve varying the arrival rate of requests, a Poisson process is used and the
mean response times of the operations are recorded on the graphs.

6.1 Node Creation

Depending on the application, creating a node may be a one-time or frequent op-
eration. We expect node creation to be a low frequency operation in most cases.
For example, it may only happen when a sensor or a context producer is added to
the system. However, in Khan’s work [29], node creation (and deletion) is a very
frequent operation. Therefore, we want to make sure this operation is reasonably
efficient even in the extreme case. Referring to Section 4.1.3, creating a typed node
involves three messages to the pubsub service (i.e., creating the attribute node,
creating the content node, and publishing the node attribute item). The publish
request can only be sent upon receiving a successful response to a creation request.
Therefore, the minimum response time for creating a typed node is max((tc+ti), ta),
where ta = time to create the attribute node, tc = time to create the content node,
and ti = time to publish the node attribute item. Assuming tc = ta, this minimum
time is approximately tc + ti. The server still observes thrice the load because of
the need to service three messages.

We compare the response times for creating a plain node and a typed node with
varying request rates. Figure 6.2 shows that the response time for creating a typed

58

Create Nodes

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50 60

Mean Request Rate (req/s)

M
e
a
n
 R
e
s
p
o
n
s
e
 T
im
e
 (
m
s
)

Plain Nodes

Typed Nodes

Figure 6.2: Node Creation Response Time vs. Mean Request Rate

node is about three times that of the plain nodes when the request rate is low.
The additional time is due to the relatively higher service time for publishing an
item. Also, the load of the server is relatively higher because of the additional steps
needed in creating a typed node.

We see that the saturation point of the typed node, compared to the plain
node, has reduced by a factor of five. We believe that the five-fold increase may
be caused by inefficiencies in the server software. For example, we observed that
the time it takes to create two nodes concurrently exceeds two to three times the
time to create one. This may be contributed by inefficient thread management or
database design. Further investigation and optimization of the third-party server
implementation and the underlying PostgreSQL database, which is out of the scope
of this thesis, should be able to pinpoint the issue.

6.2 Node Deletion

We expect that deleting a typed node takes twice as long as deleting a plain node.
This is due to the fact that there are two nodes to delete in a typed node. We
compare node deletion response times with varying request rates.

59

Delete Nodes

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25

Mean Arrival Rate (req/s)

M
e
a
n
 R
e
s
p
o
n
s
e
 T
im
e
 (
m
s
)

Plain Nodes

Typed Nodes

Figure 6.3: Node Deletion Response Time vs. Mean Request Rate

Figure 6.3 shows that the response times of the typed nodes are indeed roughly
twice those of the plain nodes. The saturation point is slightly below half of the
plain nodes, because while the plain node requests come one by one, the pubsub
server is momentarily overwhelmed by the need to service two simultaneous requests
for typed nodes.

6.3 Node Subscription

Subscribing to a node is another regular operation that needs to be performed effi-
ciently. We expect the performance pattern to be similar to that of node deletion.
In other words, response time for typed nodes should be doubled and the satura-
tion point halved. In this test, we compare node subscription response times with
varying request rates.

As expected, Figure 6.4 shows that the trend is similar to node deletion. The
mean response time of subscribing to a typed node is up to twice the time of the
plain node and the saturation point is reduced by about half.

60

Subscribe to Nodes

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20

Mean Arrival Rate (req/s)

M
e
a
n
 R
e
s
p
o
n
s
e
 T
im
e
 (
m
s
)

Plain Nodes

Typed Nodes

Figure 6.4: Node Subscription Response Time vs. Mean Request Rate

6.4 Subscribers and Publishers

Publishing to the pubsub service is one of the core operations. Its performance has
serious implications on the usability of iCS. We expect a small increase in response
time when publishing to typed nodes. Furthermore, we wish to see how the number
of active, connected subscribers to a node affects the performance of the publisher
of that node. In this test, we publish to plain nodes and typed nodes with a varying
number of subscribers. Because this is not a load test of the pubsub service, the
inter-arrival time is adjusted so that the CPU is not fully loaded.

Figure 6.5 shows that publishing to a typed node takes slightly longer than
plain nodes and is linear. Given our test setup, the fluctuations we see in response
time, around 50ms, is relatively small. More importantly, we see that the number
of subscribers does not significantly affect the response time of the publisher. In re-
ality, it is worth noting that CPU utilization increases as the number of subscribers
increases.

61

Publishing with Varying Number of Active Subscribers

0

20

40

60

80

100

120

140

0 20 40 60 80 100

Number of Active Subscribers

M
e

a
n

 R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

)

Plain Nodes

Typed Nodes

Figure 6.5: Publish Response Time vs. Number of Active Subscribers

6.5 Searching

To highlight how plain nodes and typed nodes differ in searching capabilities, we
constructed a test to retrieve published items of varying sizes. In this test, the size
of the custom attributes is set conservatively at 10KB. As we will see later, the
actual size does not affect the conclusion of this test.

Figure 6.6 shows that the mean retrieval time of a typed node is constant. This
is because only the attributes are retrieved in order to perform searches. However,
using a plain node, the whole payload is retrieved when performing a search. The
time needed for searching after retrieving the payload will also likely be less if
meta-data exists. In this test, because the attribute node is 10KB in size, we see
benefit when the payload is larger than 10KB. In general, as long as the size of
the attributes is less than the actual payload, which is typical for most binary data
or textual logs, typed nodes offer time-saving benefits. Moreover, similar effects
can be seen when publishing large items. Since attribute items are used as event
notifications, each subscriber only receives a fraction of the published data. On the
other hand, when a large item is published to a plain node, all subscribers receive
this large item regardless of whether the item is useful to them. The pubsub service
may well grind to a halt while disseminating these items.

62

Retrieving Item / Item Attributes with Varying Payload Sizes

0

50

100

150

200

250

0 20 40 60 80 100

Payload Size (KB)

M
e
a
n
 R
e
s
p
o
n
s
e
 T
im
e
 (
m
s
)

Plain Nodes

Typed Nodes

Figure 6.6: Retrieval Response Time vs. Payload Size

Summarizing these tests, we see that response times of the typed-node oper-
ations are at most two to three times that of their counterparts. Creating typed
nodes is three times more expensive. However, the node-creation operation is an
infrequent operation in general. Frequently-used operations such as publishing an
item to multiple subscribers show little increase in time. When searching large
binary data or textual logs, typed nodes are more efficient than plain nodes. The
server load is kept down when publishing large payloads as well.

Next, we conclude the thesis and identify future work.

63

Chapter 7

Conclusions and Future Work

7.1 Conclusions

Thanks to rapid advances in miniaturized computers and electronic devices, sensors
and actuators will be pervasive in our everyday lives in the foreseeable future. Intel-
ligent systems are needed to manage these devices and process their data without
human intervention. An underlying supporting infrastructure needs to be in place
for context-aware systems, so that the system designers can focus their energy on
the context part of the system, instead of reinventing the supporting infrastructure
for each system.

The Impress Context Store (iCS) addresses the need for the separation of re-
sponsibility and provides a coordination framework for context-aware systems. It
uses the open-source, standards-based XML protocol Jabber to ensure interoper-
ability and compatibility. Using a persistent Publish-Subscribe model for iCS allows
decoupling of context producers and context consumers. The effects of transient
failures can be mitigated, and new devices can be added and removed effortlessly
because of the decoupled nature of these devices. The system can scale easily due
to its self-configuration character. Finally, security to ensure that sensitive data is
kept private is provided naturally by Jabber.

This thesis proposes semantics to enhance the Jabber pubsub service to allow
storing type information, and to enable searching using node and item attributes.
Both are necessary to identify the items stored in the pubsub nodes. Bandwidth
requirements are reduced, and processing time for binary data and long textual
data is improved by providing searchable attributes along with the payload.

65

The work presented in this thesis takes a slightly different approach to building
context-aware system than the concurrent work done by Omar Khan. In his thesis
[29], Khan discussed an incremental approach to allow the context-aware system
to self-learn using a set of ontologies. Underneath the context and the ontologies,
however, is the iCS detailed in this thesis. The ontology approach is more heavy-
weight and is suitable for higher-level context. On the other hand, the iCS typed-
node approach is suitable for low-level context that is often larger in size. The iCS
framework provides the groundwork to build robust context-aware systems. The
iCS API and the iCS Browser provide accessible tools to speed up future research
on these projects.

The Impress Context Store provides the context-system designers with a func-
tional framework to manage context producers, context consumers, and context
information. Development time and maintenance costs for feature-rich context-
aware systems can be reduced as a result.

7.2 Future Work

In the future, we will develop more context-aware applications using iCS as the
underlying coordinating framework. For example, we can publish daily walking
patterns to iCS for analysis by a context consumer. Each application has its unique
functional and performance requirements. It will be interesting to explore the
maximum extent of the benefits iCS brings to these new applications. Our vision
is to build a complete context-aware system to enhance the lives of elderly people.

There is one limitation of iCS that can be best addressed by modifying the
Publish-Subscribe specification [36]. So far, in order to retrieve the content type of
a typed node, the entities must, at least, subscribe to the attribute node. However,
we believe some node attributes, including the content type, should be available
to the public during service discovery. In order to achieve this, the specification
will have to allow user-customized meta-data to be made available during service
discovery. Node attributes can then store sensitive attributes and be viewed only
by approved entities.

For the moment, we have concentrated on events that can tolerate high latency,
up to the order of a few seconds. However, it may be possible to open up a wide
range of use cases by considering low-latency communication, or even perhaps en-
abling initiation of out-of-band communication. We have seen such a case in the
security-monitoring application. Last, incorporating a scheme to specify relation-
ships between published events may be beneficial to the users. For instance, we

66

may be able to specify an item in iCS is caused by the aggregation of several other
items. The cause-and-effect relationship enables a user to trace and search for
related events.

During the development of the pilot applications, we found two defects in the
libraries we use. First, Muse is not able to handle “x messages” (XML element with
the name “x”) in a pubsub item payload. Without loss of generality, we altered the
“x message” format slightly to continue with our work. We notified the authors
of Muse and a fix is underway. Second, Idavoll 2 has problem parsing the xmime
XML stanza. The service corrupts the XML item. The author has issued a fix
in the development tree that will be available to the public in the near future.
We have found workarounds to mitigate the effects of these defects without loss of
generality.

67

Bibliography

[1] J. Bacon and K. Moody. EDSAC(21): Event-driven, secure application con-
trol for the twenty-first century. http://www.cl.cam.ac.uk/users/jmb/

edsac21.ps, April 2004.

[2] P. V. Biron, K. Permanente, and A. Malhotra. XML Schema Part 2: Datatypes
Second Edition. http://www.w3.org/TR/xmlschema-2, October 2004.

[3] J. Black. The Impress Project. http://www.cs.uwaterloo.ca/∼jpblack/

research/Impress.html, July 2005.

[4] N. Carriero and D. Gelernter. Linda in context. Communications of the ACM,
32(4):444–458, 1989.

[5] C. Chen. Muse home. http://open.echomine.org/confluence/display/

MUSE/Muse+Home, July 2005.

[6] T. Chiasson. Token-based Peer-to-Peer Interation Coordination. PhD thesis,
Dalhousie University, 2003.

[7] A. K. Dey. Understanding and using context. Personal and Ubiquitous Com-
puting, 5(1):4–7, 2001.

[8] A. K. Dey, G. D. Abowd, and D. Salber. A conceptual framework and a toolkit
for supporting the rapid prototyping of context-aware applications. Human-
Computer Interaction, 16(2, 3 & 4):97–166, 2001.

[9] S. E. Doble, J. D. Fisk, and K. Rockwood. Assessing the ADL functioning of
persons with Alzheimer’s Disease: Comparison of family informants’ ratings
and performance-based assessment findings. In International Psychogeriatrics,
volume 11, pages 399–409, 1999.

69

http://www.cl.cam.ac.uk/users/jmb/edsac21.ps
http://www.cl.cam.ac.uk/users/jmb/edsac21.ps
http://www.w3.org/TR/xmlschema-2
http://www.cs.uwaterloo.ca/~jpblack/research/Impress.html
http://www.cs.uwaterloo.ca/~jpblack/research/Impress.html
http://open.echomine.org/confluence/display/MUSE/Muse+Home
http://open.echomine.org/confluence/display/MUSE/Muse+Home

[10] R. Eatmon, J. Hildebrand, J. Miller, T. Muldowney, and P. Saint-André. JEP-
0004: Data Forms. http://www.jabber.org/jeps/jep-0004.html, January
2006.

[11] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many
faces of publish/subscribe. ACM Computing Surveys, 35(2):114–131, 2003.

[12] L. Fiege, F. C. Gärtner, O. Kasten, and A. Zeidler. Supporting mobility
in content-based publish/subscribe middleware. In Middleware 2003, volume
2672, pages 103–122, Rio de Janeiro, Brazil, 2003.

[13] A. Fox, B. Johanson, P. Hanrahan, and T. Winograd. Integrating informa-
tion appliances into an interactive workspace. IEEE Computer Graphics and
Applications, 20(3):54–65, 2000.

[14] N. Freed and N. Borenstein. RFC 2045: Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message Bodies. http://www.ietf.

org/rfc/rfc2045.txt, November 1996.

[15] N. Freed and N. Borenstein. RFC 2046: Multipurpose Internet Mail Extensions
(MIME) Part Two: Media Types. http://www.ietf.org/rfc/rfc2046.txt,
November 1996.

[16] N. Freed and N. Borenstein. RFC 2049: Multipurpose Internet Mail Extensions
(MIME) Part Five: Conformance Criteria and Examples. http://www.ietf.
org/rfc/rfc2049.txt, November 1996.

[17] N. Freed, J. Klensin, and J. Postel. RFC 2048: Multipurpose Internet Mail
Extensions (MIME) Part Four: Registration Procedures. http://www.ietf.

org/rfc/rfc2048.txt, November 1996.

[18] J. J. Garrett. AJAX: A new approach to web applications. http://www.

adaptivepath.com/publications/essays/archives/000385.php, February
2005.

[19] D. Gelernter. Generative communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1):80–112, 1985.

[20] Google. Google Talk. http://www.google.com/talk, August 2005.

[21] R. Hasha. Needed: A common distributed-object platform. In Intelligent
Systems and Their Applications, volume 14, pages 14–16, Mar/Apr 1999.

70

http://www.jabber.org/jeps/jep-0004.html
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2049.txt
http://www.ietf.org/rfc/rfc2049.txt
http://www.ietf.org/rfc/rfc2048.txt
http://www.ietf.org/rfc/rfc2048.txt
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.google.com/talk

[22] IBM. IBM Centers for Advanced Studies: CASCON - CASCON 2005. https:
//www-927.ibm.com/ibm/cas/cascon, 2005.

[23] Jabber Software Foundation. Jabber Servers. http://www.jabber.org/

software/servers.shtml, 2005.

[24] Jabber Studio. jabberd 2. http://jabberd.jabberstudio.org/2, 2004.

[25] B. Johanson and A. Fox. The Event Heap: A coordination infrastructure
for Interactive Workspaces. In WMCSA ’02: Proceedings of the Fourth IEEE
Workshop on Mobile Computing Systems and Applications, pages 83–93, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

[26] B. Johanson and A. Fox. Extending tuplespaces for coordination in interactive
workspaces. Journal of Systems and Software, 69(3):243–266, 2004.

[27] B. Johanson, A. Fox, and T. Winograd. The Interactive Workspaces project:
Experiences with ubiquitous computing rooms. IEEE Pervasive Computing,
1(2):67–74, 2002.

[28] A. Karmarkar and Ümit Yalçinalp. Describing media content of binary data
in XML. http://www.w3.org/TR/2005/NOTE-xml-media-types-20050504,
May 2005.

[29] O. Z. Khan. Incremental deployment of context-aware applications. Master’s
thesis, School of Computer Science, University of Waterloo, 2006.

[30] C. Liebig, M. Cilia, and A. Buchmann. Event composition in time-dependent
distributed systems. In COOPIS ’99: Proceedings of the Fourth IECIS Inter-
national Conference on Cooperative Information Systems, pages 70–78, Wash-
ington, DC, USA, 1999. IEEE Computer Society.

[31] C. MacKnight and K. Rockwood. A hierarchical assessment of balance and
mobility. Age and Ageing, 24(2):126–30, 1995.

[32] C. MacKnight and K. Rockwood. Mobility and balance in the elderly: A guide
to bedside assessment. In Journal of Postgraduate Medicine, volume 99, pages
269–271, 275–276, 1999.

[33] C. MacKnight and K. Rockwood. Rasch analysis of the hierarchical assess-
ment of balance and mobility (HABAM). In Journal of Clinical Epidemiology,
volume 53, pages 1242–1247, 2000.

71

https://www-927.ibm.com/ibm/cas/cascon
https://www-927.ibm.com/ibm/cas/cascon
http://www.jabber.org/software/servers.shtml
http://www.jabber.org/software/servers.shtml
http://jabberd.jabberstudio.org/2
http://www.w3.org/TR/2005/NOTE-xml-media-types-20050504

[34] J. Mannermaa, K. Kalliomäki, T. Mansten, and S. Turunen. Timing perfor-
mance of various GPS receivers. In Joint Meeting of the European Frequency
and Time Forum and the IEEE International Frequency Control Symposium,
volume 1, pages 287–290, Besançon, France, April 1999.

[35] R. Meijer. Idavoll. http://idavoll.jabberstudio.org/2, April 2005.

[36] P. Millard, P. Saint-André, and R. Meijer. JEP-0060: Publish-Subscribe.
http://www.jabber.org/jeps/jep-0060.html, March 2003.

[37] M. Miller. JEP-0050: Ad-Hoc Commands. http://www.jabber.org/jeps/

jep-0050.html, July 2005.

[38] J. C. Moon and S. J. Kang. A multi-agent architecture for intelligent home
network service using tuple space model. Consumer Electronics, 46(3):791–794,
August 2000.

[39] K. Moore. RFC 2047: Multipurpose Internet Mail Extensions (MIME) Part
Three: Message Header Extensions for Non-ASCII Text. http://www.ietf.

org/rfc/rfc2047.txt, November 1996.

[40] L. I. Patterson, R. S. Turner, and R. M. Hyatt. Construction of a fault-tolerant
distributed tuple-space. In SAC ’93: Proceedings of the 1993 ACM/SIGAPP
Symposium on Applied Computing, pages 279–285, New York, NY, USA, 1993.
ACM Press.

[41] G. P. Picco, A. L. Murphy, and G.-C. Roman. LIME: Linda meets mobility.
In ICSE ’99: Proceedings of the 21st International Conference on Software
Engineering, pages 368–377, Los Alamitos, CA, USA, 1999. IEEE Computer
Society Press.

[42] P. R. Pietzuch and J. Bacon. Hermes: A distributed event-based middleware
architecture. In ICDCSW ’02: Proceedings of the 22nd International Con-
ference on Distributed Computing Systems, pages 611–618, Washington, DC,
USA, 2002. IEEE Computer Society.

[43] Precarn. Intelligent system requirement for cognitively impaired individu-
als. http://www.precarn.ca/IRIS/PrecarnUnivLedPrgm/prjILNWDJhoBi

en.html, April 2003.

[44] P. Saint-André. JEP-0082: Jabber Date and Time Profiles. http://www.

jabber.org/jeps/jep-0082.html, May 2003.

72

http://idavoll.jabberstudio.org/2
http://www.jabber.org/jeps/jep-0060.html
http://www.jabber.org/jeps/jep-0050.html
http://www.jabber.org/jeps/jep-0050.html
http://www.ietf.org/rfc/rfc2047.txt
http://www.ietf.org/rfc/rfc2047.txt
http://www.precarn.ca/IRIS/PrecarnUnivLedPrgm/prjILNWDJhoBi_en.html
http://www.precarn.ca/IRIS/PrecarnUnivLedPrgm/prjILNWDJhoBi_en.html
http://www.jabber.org/jeps/jep-0082.html
http://www.jabber.org/jeps/jep-0082.html

[45] P. Saint-André. RFC 3920: Extensible Messaging and Presence Protocol
(XMPP): Core. http://www.ietf.org/rfc/rfc3920.txt, October 2004.

[46] P. Saint-André. RFC 3921: Extensible Messaging and Presence Proto-
col (XMPP): Instant Messaging and Presence. http://www.ietf.org/rfc/

rfc3921.txt, October 2004.

[47] P. Saint-André. RFC 3922: Mapping the Extensible Messaging and Presence
Protocol (XMPP) to Common Presence and Instant Messaging (CPIM). http:
//www.ietf.org/rfc/rfc3922.txt, October 2004.

[48] P. Saint-André. RFC 3923: End-to-End Signing and Object Encryption for
the Extensible Messaging and Presence Protocol (XMPP). http://www.ietf.
org/rfc/rfc3923.txt, October 2004.

[49] D. Salber, A. K. Dey, and G. D. Abowd. The Context Toolkit: Aiding the
development of context-enabled applications. In CHI ’99: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages 434–441,
New York, NY, USA, 1999. ACM Press.

[50] T. Selkar and W. Burlesson. Context-aware design and interaction in computer
systems. IBM Systems Journal, 39(3-4):880–891, 2000.

[51] M. Smit, M. McAllister, and J. Slonim. Privacy of electronic
health records: Public opinion and practicalities. In Network-
ing and Electronic Commerce Research Conference, Lake Garda, Italy,
2005. http://torch.cs.dal.ca/∼smit/publications/public opinion

electronic health records solutions.pdf.

[52] M. Weiser. The computer for the 21st century. Human-computer interaction:
Toward the year 2000, pages 933–940, 1995.

[53] G. C. Wells. New and improved: Linda in Java. In PPPJ ’04: Proceedings of
the 3rd International Symposium on Principles and Practice of Programming
in Java, pages 67–74, Las Vegas, Nevada, 2004. Trinity College Dublin.

[54] X10. X10 Home Security, Wireless Security Camera, Home Automation, Elec-
tronics and More! http://www.x10.com, 2005.

73

http://www.ietf.org/rfc/rfc3920.txt
http://www.ietf.org/rfc/rfc3921.txt
http://www.ietf.org/rfc/rfc3921.txt
http://www.ietf.org/rfc/rfc3922.txt
http://www.ietf.org/rfc/rfc3922.txt
http://www.ietf.org/rfc/rfc3923.txt
http://www.ietf.org/rfc/rfc3923.txt
http://torch.cs.dal.ca/~smit/publications/public_opinion_electronic_health_records_solutions.pdf
http://torch.cs.dal.ca/~smit/publications/public_opinion_electronic_health_records_solutions.pdf
http://www.x10.com

Appendix A

iCS API Methods

The iCS API contains the methods listed in Tables A.1 and A.2. The PubSubService
interface provides basic pubsub features while the ICSService interface provides
additional features offered by iCS. Complete API documentation is available along
with the API library.

Methods Details

connect Connects to a pubsub service via a Jabber server.
createNode Creates a node.
deleteNode Deletes a node.
disconnect Disconnect from the pubsub service.
discoverItems Discovers items in a node.
discoverNodeInfo Discovers node info and metadata.
discoverNodes Discovers a list of available nodes.
getItem Retrieves an item by the node and item identifier.
getItems Gets a list of items for a node.
publish Publishes an item to the pubsub service.
purgeNode Purges items in a node.
subscribe Subscribes to a node.
unsubscribe Unsubscribes from a node.

Table A.1: Main Methods in the PubSubService interface

75

Methods Details

createTypedNode Creates a typed node with node attributes.
getContentType Retrieves the content type of a typed node.
getItem Retrieves the payload and item attributes by typed

node and item identifier.
getNodeAttributes Retrieves the node attributes of a typed node.
publishBinary Publishes data as binary to typed node.
publishText Publishes data as text to plain node.

Table A.2: Main Methods in the ICSService interface

76

Appendix B

Content-Node Item Schema

<?xml version="1.0" ?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:tns="http://impress.uwaterloo.ca/ics/base64"

xmlns:xmime="http://www.w3.org/2005/05/xmlmime"

targetNamespace="http://impress.uwaterloo.ca/ics/base64">

<xs:import namespace="http://www.w3.org/2005/05/xmlmime"

schemaLocation="http://www.w3.org/2005/05/xmlmime"/>

<xs:complexType name="BinaryType">

<xs:simpleContent>

<xs:restriction base="xmime:base64Binary" >

<xs:attribute ref="xmime:contentType"

use="required"/>

</xs:restriction>

</xs:simpleContent>

</xs:complexType>

<!-- This element designates the range of values

that the element definition will accept -->

<xs:element name="base64" type="tns:BinaryType"

xmime:expectedContentTypes="*"/>

</xs:schema>

77

	Introduction
	Motivating Example
	Separation of Context Logic and Communication

	Background and Related Work
	Message Passing
	Tuple Space and Linda
	Publish-Subscribe
	Context Toolkit
	Interactive Workspaces
	EDSAC(21)

	Impress and Context-Aware Systems
	System Requirements
	Impress
	Jabber's Publish-Subscribe Extension Protocol

	The Impress Context Store
	Features of iCS
	Plain Nodes
	Collection Nodes
	Typed Nodes

	Access Methods

	Implementation
	iCS on XMPP / Jabber
	Applications
	iCS Browser
	Security-Monitoring Application
	Smart Bed Application
	Towards the Big Picture

	Performance Evaluation
	Node Creation
	Node Deletion
	Node Subscription
	Subscribers and Publishers
	Searching

	Conclusions and Future Work
	Conclusions
	Future Work

	iCS API Methods
	Content-Node Item Schema

