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Abstract

In this thesis, we study deterministic compartmental epidemic models. The conventional
mass-mixing assumption is replaced with infectious disease contraction occurring within a
heterogeneous network. Modeling infectious diseases with a heterogeneous contact network
divides disease status compartments into further sub-compartments by degree class and thus
allows for the finite set of contacts of an individual to play a role in disease transmission.

These epidemiological network models are introduced as switched systems, which are
systems that combine continuous dynamics with discrete logic. Many models are investi-
gated, including SIS, SIR, SIRS, SEIR type models, and multi-city models. We analyze the
stability of these switched network models. Particularly, we consider the transmission rate
as a piecewise constant that changes value according to a switching signal. We establish
threshold criteria for the eradication of a disease or stability of an endemic equilibrium using
Lyapunov function techniques. Simulations are also conducted to support our claims and
conclude conjectures.

We test constant control and pulse control schemes, including vaccination, treatment,
and screening processes for the application of these infectious disease models. Necessary
critical control values are determined for the eradication of the disease.

iii



Acknowledgements

First and foremost, I would like to thank my supervisor Dr. Xinzhi Liu, for all of his
advice and guidance throughout my time as a graduate student. I am forever thankful for
his patience, encouragement, and suggestions. I would also like to extend a thank you to my
committee members, Dr. Jun Liu and Dr. Matthew Scott, for their helpful comments and
corrections.

I would like to thank the Applied Mathematics Department of the University of Wa-
terloo. I especially would like to recognize Laura Frazee, whose talents as administrative
coordinator aided in keeping me organized and on track. Thank you to the members of my
research group, my classmates, and everyone who has shown me kindness during my time
at Waterloo. I will never forget the friendship shown to me by my fellow graduate students,
César and Humeyra.

I especially thank Walter and Regina, who are always there to help me and encour-
age me to be the best I can. I also thank my friends Florian, Hillary, Angela, Lisa, Mary,
Sarah, and Kim for their continued encouragement.

I am eternally grateful to my love, Phil, who has selflessly given more to me than I
could ever ask for. Thank you for the infinite love, support, and encouragement you have
shown me. Thank you for being my partner, my mentor, my confidante, and my best friend.
This thesis would not have been possible without you.

I would like to thank my sister, Jeanny, who has a unique ability to subtly show me
how to face my fears, become independent, and aspire for greater things.

I would like to thank my Mother and Father, whose efforts lead me to complete my
master’s degree, and whose lives depict great role models for me to aspire to be. Thank you
for everything.

Last but not least, I thank God, who is always faithful.

iv



Dedication

To my Mother and Father.

v



Table of Contents

List of Figures viii

List of Tables x

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Guide to Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Mathematical Background 5
2.1 Differential Equation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 System of Ordinary Differential Equations . . . . . . . . . . . . . . . 6
2.1.2 Impulsive Differential Equations . . . . . . . . . . . . . . . . . . . . . 10

2.2 Switched Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Equilibria and Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Epidemic Modelling Background . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Threshold Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Classical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.4 Control Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Network Models 28
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Model Formation and Degree Distribution . . . . . . . . . . . . . . . . . . . 31
3.3 The SIS Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 The SIS Network Model with Vertical Transmission . . . . . . . . . . . . . . 37
3.5 The SIR Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 The SIRS Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7 The SIRS Network Model with Vaccination . . . . . . . . . . . . . . . . . . . 43
3.8 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Network SIS Models with Switching 51
4.1 The SIS Network Model with Switched Transmission Rate . . . . . . . . . . 51

vi



4.2 The SIS Network Model with Vertical Transmission and Switched Transmis-
sion Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 The SIS Network Model with Switched Transmission, Recovery, Birth and
Death Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Network SIR, SIRS, SEIR and Multi-City Models with Switching 69
5.1 The SIR Network Model with Switched Transmission Rate . . . . . . . . . . 69
5.2 The SIR Network Model with Switched Transmission Rate without Population

Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 The SIR Network Model with Switched Transmission Rate and Vertical Trans-

mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 The SIRS Network Model with Switched Transmission Rate . . . . . . . . . 75
5.5 The SEIR Network Model with Switched Transmission Rate . . . . . . . . . 77
5.6 Network Multi-City Models with Switching . . . . . . . . . . . . . . . . . . . 78

5.6.1 Two Cities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.6.2 η Cities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.7 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Control Schemes for Switched Network Epidemiological Models 91
6.1 Constant Control Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1.1 Switched SIR Network Model with Treatment of Infectives . . . . . . 91
6.1.2 Switched SIR Network Model with Vaccination of Newborns . . . . . 93
6.1.3 Switched SIR Network Model with Vaccination of Susceptibles . . . . 94
6.1.4 Switched SIR Network Model with Constant Treatment of Infectives

and Waning Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.1.5 Switched SIR Network Model with Constant Vaccination of Suscepti-

bles and Waning Immunity . . . . . . . . . . . . . . . . . . . . . . . . 97
6.1.6 Screening Process Control Scheme in a Multi-City Model . . . . . . . 98

6.2 Pulse Control Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2.1 Switched SIR Network Model with Pulse Treatment of the Infectives 101
6.2.2 Switched SIR Network Model with Pulse Vaccination of the Susceptibles106

6.3 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Conclusions and Future Directions 114

Bibliography 116

vii



List of Figures

2.1 Flow diagram of a basic SI model . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Flow diagram of population movement in a basic SIS model . . . . . . . . . 19

3.1 Structures at different scales in epidemic modelling . . . . . . . . . . . . . . 29
3.2 A graphical solution of the equation Θ = f(Θ) . . . . . . . . . . . . . . . . . 35
3.3 Network SIS Model with R0 < 1 . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Network SIS Model with R0 > 1 . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Network SIS Model with R0 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6 Network SIS Model with Vertical Transmission . . . . . . . . . . . . . . . . . 50

4.1 Network SIS Switched Model with R01, R02 > 1 . . . . . . . . . . . . . . . . 64
4.2 Network SIS Switched Model with R01, R02 < 1 . . . . . . . . . . . . . . . . 64
4.3 Network SIS Switched Model with 〈R0〉 > 1 . . . . . . . . . . . . . . . . . . 65
4.4 Network SIS Switched Model with 〈R0〉 < 1 . . . . . . . . . . . . . . . . . . 65
4.5 Network SIS Switched Model with 〈R0〉 < 1 and larger variance . . . . . . . 66
4.6 Network SIS Switched Model with 〈R0 < 1 and varying switching intervals . 66
4.7 Network SIS Switched Model with 〈R0 > 1 and varying switching intervals . 67
4.8 Network SIS Switched Model with Vertical Transmission and 〈R0〉 > 1 . . . 67
4.9 Network SIS Switched Model with Vertical Transmission and 〈R0〉 < 1 . . . 68

5.1 Network SIR Switched Model with R01, R02 > 1 . . . . . . . . . . . . . . . . 85
5.2 Network SIR Switched Model with R01, R02 < 1 . . . . . . . . . . . . . . . . 86
5.3 Network SIR Switched Model with R01, R02 > 1 . . . . . . . . . . . . . . . . 86
5.4 Network SIR Switched Model with R01, R02 > 1 . . . . . . . . . . . . . . . . 87
5.5 Network SIR Switched Model with Vertical Transmission with R01, R02 > 1 . 87
5.6 Network SIRS Switched Model . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.7 Network SEIR Switched Model . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.8 Network SEIR Switched Model . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.9 Network Multi-City Switched Model . . . . . . . . . . . . . . . . . . . . . . 89
5.10 Network Multi-City Switched Model . . . . . . . . . . . . . . . . . . . . . . 90

6.1 Constant Vaccination of Newborns in an SIR Model Endemic . . . . . . . . 109
6.2 Constant Vaccination of Newborns in an SIR Model Eradicated . . . . . . . 109
6.3 Constant Vaccination of Susceptibles in an SIR Model Endemic . . . . . . . 110

viii



6.4 Constant Vaccination of Susceptibles in an SIR Model Eradicated . . . . . . 110
6.5 Constant Treatment of Infectives in an SIR Model Endemic . . . . . . . . . 111
6.6 Constant Treatment of Infectives in an SIR Model Endemic . . . . . . . . . 111
6.7 Constant Treatment of Infectives in an SIR Model Endemic . . . . . . . . . 112
6.8 Constant Vaccination of Susceptibles with Waning Immunity in an SIR Model 112
6.9 Constant Vaccination of Susceptibles with Waning Immunity in an SIR Model 113
6.10 Constant Treatment of Infectives with Waning Immunity in an SIR Model . 113

ix



List of Tables

2.1 Threshold Values for Epidemiology . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Comparison of Thresholds for Uniform mixing and network mixing . . . . . 47

x



Chapter 1

Introduction

The history of the world is intertwined with the impact of infectious diseases [10]. Infec-
tious diseases have threatened humanity for centuries; 3000 year old Egyptian mummies
were found with evidence of smallpox and art and literature dating several centuries back
reference the spread of disease [10]. With scientific research and human advancements, hu-
man life expectancy has improved from approximately 30 years in 1700 to 70 years in 1970,
with one of the main causes being a decline in deaths due to infectious diseases. [2]. In the
20th century, the proven effectiveness of better sanitization and the discovery of antibiotics
and vaccination lead the world to believe infectious diseases would soon be eliminated [26].
However, infectious diseases continue to be one of the major causes of death and suffering
in developing countries [26]. As disease agents adapt, survive, and evolve, the emergence
of new diseases and re-emergence of existing diseases have become a significant worldwide
problem [10, 26]. Newly identifies diseases include Lyme disease in 1975, Legionnaire’s dis-
ease in 1976, toxic-shock syndrome in 1978, hepatitis C in 1989, hepatitis E in 1990 and
hantavirus in 1993 [26]. The human immunodeficiency virus (HIV), which can lead to the
acquired immunodeficiency syndrome (AIDS) emerged in 1981 and has become an impor-
tant sexually transmitted disease as well as the fourth leading cause of death throughout
the world [10, 26]. Antibiotic resistant strains of tuberculosis (TB), pneumonia and gonor-
rhea have evolved [26]. Malaria, dengue, and yellow fever have re-emerged and spread into
new regions as climate changes occur [26]. In 2014, a major outbreak of Ebola occurred in
Guinea, Sierra Leone, and Liberia [50]. Diseases such as ebola, plague, and cholera continue
to erupt occasionally [26].

Human and animal invasions of new ecosystems, global warming, and environmental
changes continue to provide opportunities for new and existing diseases [47]. Mass migra-
tions, international trade and travel are notoriously effective at spreading disease to even the
most remote parts of the globe [18]. While emerging and re-emerging diseases are likely to
appear in poorer countires first, they can easily spread to the richer parts of the world [18].
Infectious diseases, especially when an epidemic occurs, continually make costly disruptions
to trade and commerce all over the world [18]. The economic impact has many factors, in-
cluding lowering productivity, reducing foreign investment, and increasing health care costs,
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all which can affect the gross national product in many countries [18]. Even a relationship
between disease and political stability, although indirect, exists [18]. Studies have shown
a correlation between TB prevalence, an indicator of overall quality of life, and political
instability [18]. Infectious diseases have an impact on the health of individuals as well as
whole societies, economies and political systems [18]. Thus, the emergence and re-emergence
of diseases have lead to a revived interest in infectious diseases [26].

Mathematical models are important tools in analyzing the spread and control of in-
fectious diseases [26]. Mathematical models and computer simulations are useful to build
theories, test them, assess quantitative conjectures, answer specific questions, and determine
conceptual results such as thresholds, basic reproduction numbers and contact numbers [26].
The first known epidemiological model was formulated and solved by Daniel Bernoulli in
1760 to evaluate the smallpox virus [26]. In 1906, Hamer analyzed a discrete time model
to understand the recurrence of measles epidemics, which may have been the first model
to assume that disease incidence is related to the population densities of susceptibles and
infectives [26]. Ross developed differential equation models for malaria in 1911 [26]. Starting
1926, Kermack and McKendrick published papers on epidemic models and first obtained the
epidemic threshold result that if a critical value of the susceptibles density was exceeded then
an epidemic outbreak would occur [26]. Deterministic epidemiological models mostly started
in the 20th century, yet have grown exponentially be the middle of the 20th century [26].
Mathematical models have been formulated for diseases such as measles, rubella, chicken
pox, whooping cough, diphtheria, smallpox, malaria, onchocerciasis, filariasis, rabies, gonor-
rhea, herpes, syphilis, and HIV/AIDS [26].

The prediction of disease evolution and social contagion processes can be conceptualized
with mathematical models of spreading [8]. These models evolved from simple compartmen-
tal approaches to structured frameworks in which heterogeneities present at the community
and population levels are becoming increasingly important features [3, 8]. As the case is in
many models, there is an interplay between the simplicity of the models and the accuracy of
its predictions [8]. A vast majority of these models assume that individuals in populations
interact uniformly, which is called the “mass-mixing” assumption. While this assumption
simplifies most models and allows for straightforward analysis and understanding of the dy-
namics, it can be beneficial to formulate models with a more realistic approach and compare
the behaviour to the simpler models. The assumption that all individuals have a uniform
contact pattern; that is, any person has an equal chance of contracting or transmitting the
disease with any other person in the population, is oversimplified and unrealistic. One alter-
native to the mass-mixing assumption is the concept that each individual interacts within
a network of relationship and contact patterns. It is more realistic that a person would
transmit or contract the disease from their own neighbourhood of individuals which they
have contact relationships with. Network analysis has been a useful explanatory tool that is
relevant to epidemiology because social importance of an individual is closely linked to their
role in disease spread [29]. Networks and epidemiology of directly transmitted diseases are
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fundamentally linked [29].

Another convention of infectious disease models in epidemic literature assume that the pa-
rameters, such as the transmission rate, are constant in time [40]. A more realistic approach
is to assume that the transmission rate is time-varying, for instance, childhood infections
have been shown to peak at the start of a school year and decline significantly in the summer
months [30]. There are many factors that possibly cause a seasonality effect in the spread
of disease, for instance changes in host behaviour, changes in the abundance of vectors (due
to weather), changes in host immunity, and changes in pathogen survivability outside their
hosts [16, 21].

Many systems encountered in practice exhibit switching behaviour between different sub-
systems depending on various external or environmental factors [36]. Switched systems are
types of hybrid systems that can model real world complex systems, such as mechanical
systems, the automotive industry, aircraft and traffic control, robotics, integrated circuit
design, multimedia, manufacturing, power electronics chaos generators, and chemical pro-
cesses [14, 17, 22, 36, 42]. A switched system is a hybrid system consisting of a family of
continuous-time subsystems and a rule that orchestrates the switching between them [36].

1.1 Contributions

The main objective of this thesis is to extend existing literature by formulating new epidemi-
ological models with network contact patterns and time-varying transmission rates and to
study the behaviour of these models. We will develop critical threshold criteria for epidemic
outbreaks in network disease models with the addition of switching, the abrupt change in
dynamics of the systems at certain switching times. The switching will allow for the trans-
mission rate to vary in time and be approximated by a piecewise constant function. Although
there are some studies on disease models with the network mixing assumption, there is a lack
of deterministic models over networks with time-varying parameters. The switching is a new
approach to combine in models with interpersonal contact patterns of disease transmission
thought of as a network.

Classical models such as SIS, SIR, SIRS and SEIR models will be studied over the net-
work mixing assumption and with a time-varying transmission rate. Further, the network
approach will be considered on multi-city models, at first on a model with two cities and then
with an arbitrary number of cities. Control schemes including constant and pulse control will
be considered on these models. Vaccination and treatment are control schemes often found
in literature. We also consider screening processes as a control for multi-city models, where
infected individuals are screened and restricted of travel. We will use the control schemes
and determine how they apply to switched epidemic network models.

We support our theory with simulation results.
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1.2 Guide to Thesis

The thesis is structured as follows:

Chapter 2 This chapter provides necessary mathematical background including ODE
theory, epidemiological modeling and switched hybrid systems.

Chapter 3 Introduction to epidemiological models using a network mixing assump-
tion in lieu of the conventional mass mixing assumption. Stability of the disease-free and
endemic equilibria is analyzed and simulations are given to back up analysis.

Chapter 4 A switching parameter is introducted to basic SIS network models including
only two main disease classes, susceptible and infective (to then be divided into sub-classes
by network degree). Numerical simulations are given under simple switching techniques to
support analysis.

Chapter 5 Switched transmission rates are introduced to more complicated models,
with 3 or more disease classes as well as multi-city models. Lyapunov techniques are used
to show exponential and asymptotic stability and simulations are provided to demonstrate
numerical examples.

Chapter 6 Control schemes are applied to switched SIR type network models. Con-
stant control is first investigated where vaccination and treatment are considered. Also,
screening processes where travel is restricted is studied in multi-city models. Then pulse
vaccination and pulse treatment are studied and compared.

Chapter 7 Conclusions and ideas for future directions are given.
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Chapter 2

Mathematical Background

In order to study epidemiological network models with switching, we first need to estab-
lish mathematical background theory covering ordinary differential equation (ODE) theory,
switched systems theory, and mathematical epidemiology.

In Section 2.1, some preliminary theory will be given on ordinary differential equations,
which is the backbone for all the topics covered in this thesis. It will formally provide im-
portant fundamental theories including the structure of ordinary differential equations, the
existence and uniqueness of a solution to the system, and methods of proving the stability
of equilibrium points using Lyapunov functions.

In Section 2.2, a brief introduction to switched systems will be given, including equi-
libria and stablity analysis methods using common Lyapunov functions.

In Section 2.3, mathematical epidemiological theory will be covered including the model
formulation of infectious disease spread. The idea stems from compartmental models, and
the use of deterministic ordinary differential equations. Important concepts such as popu-
lation densities, threshold criteria, and whether or not an epidemic outbreak will occur will
be discussed. Further, some background on control schemes as they apply to epidemiology
is given.

2.1 Differential Equation Theory

In this section we provide some preliminary background theory on differential equations.
The material in this section is taken from [38] unless stated otherwise. A general ordinary
differential equation (ODE) has the form

x′(t) = f(t, x(t)) (2.1)

which is a general dynamical system often used in epidemiology. This system is called
nonautonomous because the right-hand side is dependent on the time variable t as well as
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the state variable x(t). The system is called an initial value problem (IVP) if we have an
initial condition (IC)

x(t0) = x0

It is important to analyze whether this system (2.1) of differential equations has a solution,
whether or not it is unique, and the stability of that solution in order to understand and
predict its behaviour.

2.1.1 System of Ordinary Differential Equations

Consider a general system of automonous ordinary differential equations (ODEs) having the
form:

x′ = f(x) (2.2)

where x = (x1(t), ..., xn(t))T and f(x) = (f1(x1, ..., xn), ..., fn(x1, ..., xn))T . This system
is called autonomous because f(x) is independent of t. If an initial condition is known,
x(t0) = x0 ∈ Ω ⊂ Rn, where Ω is an open subset of the n-dimensional Euclidean space, Rn,
and t0 ∈ R, then the system becomes an initial value problem (IVP) as follows:{

x′ = f(x)

x(0) = x0

(2.3)

The solution to this IVP is a differentiable function φ(t;x0) if φ′(t;x0) = f(φ(t;x0)), for
all t ∈ R+. Without loss of generality, we can take t0 = 0 since the IVP is autonomous.
In general, there is no known method to solving system (2.3). However, it is not always
necessary to know the exact solution(s) of (2.3), but rather more interesting to know whether
or not a solution exists, and if that solution is unique. The following theorems explain some
conditions on which a unique solution exists, starting with local uniqueness.

Theorem 2.1.1. Let Ω be an open subset of Rn and assume that f ∈ C1[Ω,Rn]. Then
∀x0 ∈ Ω, there exists an α > 0 such that the IVP (2.3) has a unique solution φ(t;x0) on the
interval [−α, α].

The set of continuously differentiable functions that map Ω to Rn is denoted as C1[Ω,Rn].
This theorem gives us local uniqueness in a neighbourhood of radius α > 0 however in
applications including epidemiology, it is important to know that a unique solution exists
for all time t ≥ 0. Before establishing global existence, we need the following definitions:

Definition 2.1.1. Let φ(t) be a solution to the initial value problem (2.3) on an interval J .
The interval J is called a right-maximal interval of existence for φ(t) if there does not exist
an extension of φ(t) over an interval J1 with φ(t) remaining a solution of the IVP and J is
a proper subset of J1 with different right endpoints. A left-maximal interval of existence for
φ(t) can be defined similarly. A maximal interval of existence for φ(t) is an interval which
is both a left-maximal and right-maximal interval.

The following theorem and corollaries can now be stated.
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Theorem 2.1.2. Let Ω be an open subset of Rn and assume that f ∈ C1[Ω,Rn] and let φ(t)
be a solution of the IVP (2.3) for some initial condition x0 ∈ Ω on some interval. Then
φ(t) can be extended over a maximal interval of existence, (α∗, β∗), and φ(t) tends to the
boundary of Ω as t→ β∗ and t→ α∗.

Corollary 2.1.1. Let f(x) be continously differentiable on Rn and φ(t) be a solution on
a right(left)-maximal interval J . Then either J = [0,∞) (J = (−∞, 0]) or J = [0, β∗)
(J = (α∗, 0]) with β∗ <∞ (α∗ > −∞) and ||x(t)|| → ∞ at t→ β∗ (α∗)

Here the Euclidean norm is assumed, so ||x(t)|| =
√
x1(t)2 + x2(t)2 + ...+ xn(t)2.

Corollary 2.1.2. Let f(x) be continously differentiable on Rn and φ(t) be a solution on a
maximal interval J . Then J = (−∞,∞) if one of the following is true

1. φ(t) is bounded on J ,

2. f(x) is bounded on Rn

The following definitions are helpful in understanding the sufficient conditions for a so-
lution to exist for all future time, t ≥ 0, or on a maximal interval of J = [0,∞).

Definition 2.1.2. A subspace D ⊂ Ω is said to be an invariant set of (2.3) if all solutions
x(t;x0) starting in D remain in D for all time t ∈ R.

Definition 2.1.3. A subspace D ⊂ Ω is said to be a positively invariant set of (2.3) if all
solutions x(t;x0) that start in D remain in D for all time t ≥ 0.

Definition 2.1.4. A set D ⊂ Ω is said to be compact if it is closed (contains all of its limit
points) and bounded (there exists an M > 0 such that ||x|| ≤M for all x ∈ D.

Corollary 2.1.3. Let f(x) ∈ C1[Rn,Rn] and let x(t;x0) be a solution of the IVP (2.3) on a
right maximal interval J . Suppose that D is a compact set that is positively invariant to the
IVP (2.3). If x0 ∈ D then the maximal interval of existence is J = [0,∞)

Unfortunately, there is no general method for solving a nonlinear IVP analytically, and
often it can be difficult to do so. However, information about the behaviour of the solu-
tion can still be gathered for many real world applications including disease modelling. For
instance, finding what the long-term behaviour of the solution is, whether the solution con-
verges to a constant value, a periodic solution, or diverges. This leads us to studying the
stability of the IVP.

Suppose that n = 2 and the rates of growth of x1(t) and x2(t) are governed by sys-
tem (2.3). We are not really interested in the exact values of x1(t) and x2(t) at every time t,
but rather we are interested in the qualitative properties of x1(t) and x2(t). Do there exist
specific values η1 and η2 such that x1(t) = η1 and x2(t) = η2 are solutions of the system
and allow for both rates to co-exist and maintain their values in steady state? Such val-
ues in differential equation theory are called equilibrium values, leading us to the following
definition.
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Definition 2.1.5. A point x̄ is said to be an equilibrium point of the system (2.3) if f(x̄) = 0.

We introduce these stability concepts to aid in analyzing the long-term behaviour of the
IVP.

Definition 2.1.6. Assume f(0) = 0 and suppose there exists a solution of the IVP (2.3)
φ(t;x0) such that φ(0, ;x0) = x0 where x0 ∈ Ω, then the equilibrium point x = 0 is said to be

1. stable if ∀ε > 0, t0 ∈ R+, there exists δ = δ = δ(t0, ε) > 0 such that if |x0| < δ then
||φ(t;x0)|| < ε for t ≥ 0,

2. asymptotically stable if (1) holds and ∀t0 ∈ R+ there exists σ(t0) > 0 such that if
|x0| < σ(t0) then limt→∞ φ(t;x0) = 0,

3. exponentially stable if ||φ(t;x0|| < k||x0||e−γt, ∀t ≥ 0 where k ≥ 1, γ > 0, for all
||x0|| < c for some c > 0,

4. globally asymptotically (exponentially) stable if it is asymptotically (exponentially) sta-
ble and σ (c) is arbitrary,

5. unstable if (1) fails to hold.

Also note that exponential stability implies asymptotic stability. Asymptotic stablity is
useful to understand the long term behaviour of the system, while exponential stability gives
more information about the rate of convergence of the solution to the origin. Stability in
general is helpful in understanding whether two solutions that initially start close to each
other will stay close to each other. Another useful theorem in analyzing stability is the
following in regards to the linear case.

Theorem 2.1.3. Suppose we have the system:

x′ = Ax (2.4)

where A ∈ Rn×n is a Hurwitz matrix (all eigenvalues have negative real part), then the origin
of the system (2.4) is asymptotically stable. If there exists an eigenvalue λ of A that has
positive real part, then the origin is unstable.

In the case of nonlinear IVPs, one approach is linearizing the system about an equi-
librium point to obtain information about the stability of that point. We define the Ja-
cobian matrix as the n × n matrix denoted as Df(x) which represents the derivatives of
f(x) = (f1(x1, ..., xn), ..., fn(x1, ..., xn)),

Df(x) =
∂fi
∂xj

where i, j = 1, ..., n. If we let x be close to the equilibrium point x̄, then by Taylor’s
theorem,
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f(x) = f(x̄) +Df(x̄) · (x− x̄) +R(x̄, x)

Because all equilibrium points can be shifted to the origin, and because f(0) = 0 then,

f(x) = Df(0) · x+R(x)

where R(x)/||x|| → 0 as x→ 0. Then the nonlinear system can be written as

x′ = Df(0) · x+R(x)

which leads to the linearization of the nonlinear system.

z′ = Df(0) · z (2.5)

This linearized system (2.5) can give information about the general nonlinear system
(2.4) in the following theorem.

Theorem 2.1.4. Suppose that f(0) = 0 and the constant matrix Df(0) is Hurwitz. Then
there exists a neighbourhood U about the origin such that for some constants M , k > 0 the
solution φ(t;x0) satisfies

||φ(t;x0)|| ≤Me−kt||x||, ∀x ∈ U, t ≥ 0

and the equilibrium is asymptotically stable.

Another technique to determine stability is the method of Lyapunov functions, developed
by A.M. Lyapunov in 1892.

Definition 2.1.7. Let V : Ω → R be a continuous and differentiable function. Then the
derivative of V along solutions of the IVP is defined as follows:

V̇ (x) =
dV (x(t))

dt
= ∇V (x) · f(x)

where ∇ represents the gradient operator and · is the dot product. This auxilary function
V is often called the Lyapunov function and in many cases V (x) represents the total energy
of the system.

Theorem 2.1.5. Let f(x̄) = 0, Ω ⊂ Rn be an open set containing x̄, and let V ∈ C1[Ω,R].
Assume that V (x̄) = 0 and V (x) > 0 if x 6= x̄. Then,

1. if V̇ (x) ≤ 0, x ∈ Ω then x̄ is stable.

2. if V̇ (x) < 0, x ∈ Ω\{x̄} then x̄ is asymptotically stable.

3. if V̇ (x) > 0, x ∈ Ω\{x̄} then x̄ is unstable.

Lyapunov functions will be used to prove asymptotic stability of epidemic models later
in the thesis.
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2.1.2 Impulsive Differential Equations

Many evolution processes are characterized by the fact that at certain moments of time they
experience an abrupt change of state [32]. The short-term perturbations have a duration
which is negligible compared to the duration of the process [32]. This leads to a natural
assumption that these perturbations act instantaneously in the form of impulses [32]. Im-
pulsive effects are exhibited in many real-world problems, including bursting rhythm models
in medicine, optimal control models in economics, and many biological phenomena involving
thresholds [32]. This leads to the idea of impulsive differential equations (IDEs), differential
equations involving impulsive effects.

First, we construct the Dirac delta function in order to introduce a system of impul-
sive differential equations. Consider the following function for any ε > 0,

Iε(t) =


1

ε
, 0 ≤ t ≤ ε,

0, t > ε

The Dirac delta function is defined by the integral:

∞∫
−∞

f(t)δ(t)dt = f(0)

The Dirac delta function is a generalized function, which can be regarded as the limit of
the sequence of functions δ(t) = lim

ε→0
Iε(t). It is possible to translate this result,

∞∫
−∞

f(t)δ(t− a)dt = f(a)

If we introduce the Dirac delta function to the IVP (2.3) as an input control u(t) as
in [22], we get {

x′(t) = f(x(t)) + u(t),

x(t0) = x0

(2.6)

where

u(t) = c
∞∑
k=1

x(t)δ(t− tk)

for some constant c > 0. We take {tk}∞k=1 to be a sequence of times which define the
moments of impulses where t0 < t1 < t2 < ... < tk < ...→∞ as k →∞. During intervals of
no impulses, t 6= tk, the system acts as the ordinary differential equation system (2.3), and at
the times t = tk, an impulsive force with magnitude c is applied to the system. The control
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acts as an impulsive force. Define x(t+k ) = limh→0+ x(tk + h) and ∆x(tk) = x(t+k ) − x(tk),
then the system (2.6) with the impulsive control can be re-written as [32]:

x′ = f(x), t ∈ (tk−1, tk],

∆x = cx, t = tk,

x(t+0 ) = x0, k = 1, 2, ...

(2.7)

This system is called an impulsive differential equation (IDE) IVP. It models the impul-
sive effect by the change in the system at impulse times, shown in the second equation of
the system.

To further generalize an impulsive differential system, we consider an evolution process
described by the following [32]:

1. a system of differential equations, as explicitly stated in the IVP (2.3)

2. the sets M(t), (N(t) ⊂ Ω for each t ∈ R+

3. the operator A(t) : M(t)→ N(t) for t ∈ R+

With φ(t, x0) being a solution to the IVP (2.3), the point Pt = (t, φ(t)) begins its mo-
tion from the initial point, Pt0(t0, x0) and moves along the curve {(t, φ) : t ≥ t0, φ = φ(t)}
until the time t1 > t0 at which the point Pt meets the set M(t) [32]. At the impulse time,
t = t1, the operator A(t) transfers the point Pt1 = (t1, φ(t1)) to Pt+1 = (t1, x

+
1 ) ∈ N(t1), with

x+
1 = A(t1)x(t1). The point continues to move along the curve with φ(t) = φ(t, x+

1 ) as the
solution of (2.3) now starting at Pt1 = (t1, x

+
1 ) until t2 > t1 when it reaches the set M(t) [32].

The process continues again with the point Pt2 and so forth, as long as the solution of (2.3)
exists. The set of relations (1.), (2.), and (3.) characterizes an impulsive differential sys-
tem [32]. The curve described by the point Pt, the integral curve and the function defines
the solution of the impulsive differential system [32].

The impulsive differential solution may be a continuous function if the integral curve
does not cross the set M(t), or if it hits it at the fixed points of the operator A(t) [32]. The
solution may also be a piecewise continuous function with a finite number of discontinuities if
the integral curve meets M(t) at a finite number of points which are not fixed points of A(t),
or the solution could be a piecewise continuous function with a countably infinite number of
discontinuities.

The impulses tk at which the point Pt crosses the set M(t) are called moments of im-
pulsive effect [32]. Without loss of generality, we can assume the solutions of the impulsive
differential system are left continuous at tk, k = 1, 2, ..., that is [32]:

x(t−k ) = lim
h→0+

x(tk − h) = x(tk)
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This generalization of impulsive differential systems gives rise to a variety of types of
systems. We will discuss systems with impulses at fixed times. Let the set M(t) represent
a sequence of places t = tk where tk → ∞ as k → ∞. Let A(t) be defined for t = tk so the
sequence of operators {A(k)} is given by [32]

A(k) : Ω→ Ω, x→ A(t)x = x+ Ik(x)

where Ik : Ω → Ω. Then the set N(t) is also defined only for t = tk and therefore
N(k) = A(k)M(k). This describes a simple impulsive differential system with impulses
occurring at fixed times [32]:

x′(t) = f(x), t 6= tk, k = 1, 2, ...

∆x = Ik(x), t = tk

x(t+0 ) = x0

(2.8)

The impulsive functions Ik(x) provide a more general characterization than the impulsive
system from (2.7) with the constant c. A solution φ(t, x0) of the impulsive differential system
(2.8) on the interval (α, β) satisfies [32]

1. (t, φ(t, x0)) ∈ R× Ω for t ∈ (α, β) and (φ(t+k , x0)) = x0 where x0 ∈ Ω,

2. for t ∈ (α, β), t 6= tk, φ
′(t, x0) = f(φ(t, x0)), and

3. φ(t, x0) is continuous from the left in (α, β) and if tk 6= α 6= β then φ(t+k , x0) =
φ(tk, x0) + Ik(φ(tk, x0)).

Note that if t0 6= 0, it is possible to shift the initial time to zero using τ = t− t0. Then
system (2.8) becomes 

x′ = f(x), τ ∈ (hk−1, hk],

∆x = px, τ = hk,

x(0+) = x0

(2.9)

where hk = tk − t0 [32]. Then without loss of generality, we may take t0 = 0.

Next, we establish some existence and uniqueness theorems for impulsive differential sys-
tems. The following two theorems are based on those found in [6] for the non-autonomous
case. First we establish existence on a local interval.

Theorem 2.1.6. If f ∈ C1[Ω,Rn] and y + Ik(y) ∈ Ω for each k = 1, 2, ... and y ∈ Ω, then
for each x0 ∈ Ω there exists a unique solution φ(t, x0) of the IVP (2.8) which is defined in
an interval of the form (t0, ω) where ω is a constant, and is not continuable to the right.

Now we establish conditions for global existence of a solution, also based on a theorem
found in [6].
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Theorem 2.1.7. Suppose f ∈ C1[Ω,Rn] and y + Ik(y) ∈ Ω for each k = 1, 2, ... and y ∈ Ω.
Let φ(t, x0) be a unique solution of the IVP (2.8) on a maximal interval J+. If there exists
a compact set D ⊂ Ω such that φ(t, x0) ∈ D for t ∈ J+ then J+ = (t0,∞).

Uniqueness is straightforward from the non-impulsive case [32].

Theorem 2.1.8. Uniqueness of solutions of the IVP (2.3) for every (t0, x0) implies the
uniqueness of solutions of the IVP (2.8).

2.2 Switched Systems

2.2.1 Introduction

A hybrid system is a system in which continuous and discrete dynamics interact to gener-
ate the evolution of the system state [51]. Switched systems are types of hybrid systems
that evolves according to mode-dependent continuous and discrete dynamics. The system
experiences abrupt transitions between modes triggered by a logic-based switching rule [51].
The switching rule could be based on a vast variety of concepts, for instance by environ-
mental, seasonal, or behavioural factors. The switching rule could be time-dependent, or
state-dependent. A switched model is a family of invariant ordinary differential equations,
as shown below:

dx

dt
= fi(x)

with {fi : i ∈ P} being a family of sufficiently regular functions and P is the index set,
assumed to be finite, P = {1, 2, ...,m}. The switching signal, σ(t) is a function which
is assumed to be deterministic where σ : [tk−1, tk) → P .. Note that σ(t) is a piece-wise
continuous function from the left. For this thesis, we denote S as the set of all possible
switching signals, thus σ(t) ∈ S. From this we get a family of ODE systems. The set of
{tk}∞k=0 are the switching times with 0 < t1 < t2 < ... < tk < ... and tk →∞ as k →∞. At
switching time tk the system changes from σ(t−k ) to σ(tk).

σ(t−k ) = lim
h→)+

σ(tk − h)

This system has a family of solutions x(t) that depend on the switching signal σ and the
initial conditions. Thus the switched system can be written more compactly:

dx

dt
= fσ(x)

with initial condition of x(0) = x0. For a particular choice i ∈ P , x′ = fi(x) is called a
subsystem or mode of the switched system.

13



2.2.2 Equilibria and Stability

The switched system has an equilibrium point x̄ if fi(x̄) = 0 ∀i ∈ P . Basically each i-th
subsystem have this equilibrium point in common. The interest is in analysing the equilibria,
and what the requirements are for asymptotic stability. Clearly a necessary condition for
asymptotic stability under arbitrary switching is that all individual subsystems are asymp-
totically stable [36].

If the p-th subsystem is unstable, then by setting σ(t) = p the switched system will
be unstable. Also, this condition is not sufficient if the switching signal causes instability.
One condition that guarantees that the trivial equilibrium is asymptotically stable is the
existence of a common strict Lyapunov function.

Definition 2.2.1. [4] The auxiliary function V (x) ∈ C1[D,R+], where D ⊂ Rn is an open
set, is a common strict Lyapunov function if V is positive definite and ∇V (x) · fi(x) < 0 for
all x ∈ D\{0} and for all subsystems i.

Theorem 2.2.1. [36] If the switched system has a common strict Lyapunov function V (x)
then the origin of the system is globally asymptotically stable for arbitrary switching.

Another important concept is multiple Lyapunov functions. Assume that all subsystems
i are stable and each of them has a Lyapunov function.

Definition 2.2.2. [4] A switched system has multiple strict Lyapunov functions if for each
subsystem i there exists a function Vi ∈ C1[D,R+], D ⊂ Rn an open set, that is positive
definite, and for all x ∈ D\{0}, ∇Vi(x) · fi(x) < 0.

Theorem 2.2.2. [24] If the switched system has multiple strict Lyapunov functions {Vi : i ∈
P} such that

Vp2(x(tk)) ≤ Vp1(x(tk))

at every switching time tk where the switching rule σ switches from p1 to p2, then the trivial
solution of the system is globally asymptotically stable for arbitrary switching.

2.3 Epidemic Modelling Background

This section provides a brief overview of how infectious disease models are formulated and
analyzed. We will cover some classical models which will later be further investigated by the
addition of network mixing and a switched transmission rate.

2.3.1 Model Formulation

In this thesis, the continuous deterministic approach is taken where the spread of infectious
disease is modelled as a system of ordinary differential equations. The simplest class of epi-
demic models makes the assumption that the population can be divided into different classes
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or compartments depending on the stage or status of the disease [3, 5, 13, 15, 26]. Typical
compartments include the susceptible class, S, for individuals that are currently healthy but
able to contract the infectious disease, the infected class, I, for infected individuals that
already have the disease and can pass the disease to others, and the recovered class, R,
individuals who have recovered from the disease and have immunity from the disease. Oc-
caisionally there are added classes, for instance an exposed class, E, that have experienced
exposure from the disease but are not currently infectious, or perhaps a vaccinated class,
V , that have received vaccination and thence also have some immunity from the disease,
without having contracted the disease. The flow of individuals between classes depends on
the specific disease in analysis, whether incubation periods, vaccination control schemes,
short-term or life-long immunity for recovered individuals are included in the assumptions
or not. Naming types of models depends on the flow of these individuals, for instance there
can be SIS, SIR, SIRS, SEIR, SEIRS models to name a few.

The flow of individuals depends on model assumptions and parameter values, however
in many cases the flow of individuals from the susceptible class S into the infected class I
depends on a contact rate, β. Assuming the population mixes at random means that each
individual has a small and equal chance of coming into contact with any other individual.
This traditional assumption is called the fully mixed or mass-action approximation. The
term, mass-mixing or uniform mixing is also used. The disease is transmitted when an in-
fected person comes into contact with a susceptible person. Thus the force of infection can
be calculated as broken down as in [29]:

λ = transmission rate

× effective number of contacts per unit time

× proportion of contacts which are infectious

= τ × n̂ × 1

N
(2.10)

= β
1

N

The term β consequently and conventionally represents the contact rate, which is the trans-
mission rate times the effective number of contacts per unit time. In many cases, we consider
population proportions instead of numbers of individuals, which then N = 1 and the contact
rate is a constant term, thus the force of infection becomes λ = β.

This method of transmitting and contracting the disease is known as horizontal trans-
mission. However, the disease can also be obtained by a second way: vertical transmission.
Vertical incidence is usually represented in models by assuming that a fixed fraction of new-
borns are infected transplacentally, by a mother who has the disease and transfers it to their
unborn or newborn child [26]. Both ways of obtaining the disease will be considered in the
models in this thesis.
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It has been discovered that in acute infections, the duration of the infecious period is
distributed around a mean value [30]. The probability that an individual recovers from the
infected class is dependent on how long they have been infected [30]. Conventional models
assume that the infected individuals recover linearly with recovery rate g > 0 which corre-
sponds to an average infectious period of 1/g. This assumption leads to an exponentially
distributed infectious period, and the fraction of infectives that are still infected after t units
of time is P (t) = e−gt [26]. For instance, the average infectious period for having measles is
about one week [26]. There are other approaches to constructing the recovery concept such
as assuming individuals have a waiting time τ and then are immediately recovered which
results in a delay differential equation, but the models we investigate will use the constant
recovery rate assumption. The recovery incidence will be gI, which is removed from the
infected class but added to another class, such as the susceptible class or the recovered class,
depending on the flow of the model. More detail will be explained in the examples of classical
models.

2.3.2 Threshold Values

An important threshold value in epidemiology is the average number of secondary infections
produced when one infected individual is introduced into a host population where everyone
is susceptible is called the basic reproductive number, usually denoted as R0 [26]. Note
that R0 is also called the basic reproduction ratio or the basic reproductive rate [26]. In
many deterministic epidemiological models, an infection can get started in a fully susceptible
population if and only ifR0 > 1 [26]. In mathematical epidemiology, it is usually the case that
if the model’s basic reproduction number satisfies R0 ≤ 1, then the disease will eventually
be eradicated. If the disease is not eradicated, it is said that the disease is persistent and
there is usually an endemic equilibrium. It is usually the case that R0 > 1 implies that the
endemic equilibrium is asymptotically stable. However, this is not always straightforward to
prove, and so an alternative method of demonstrating that the disease maintains an endemic
state is proving the persistence or permanence of the disease, definitions of which are found
in [20].

Definition 2.3.1. A disease is said to be persistant if there exists an η > 0 (independent
of initial conditions) such that the solution of I(t) of the system with initial conditions
I(0) = I0 > 0 satisfies

lim
t→∞

infI(t) ≥ η

Definition 2.3.2. A disease is said to be permanent if there exists a compact region Ω0

in the interior of Ω such that every solution I(t) of the epidemiology system with initial
condition I(0) will eventually enter and remain in the region Ω0

There are two other threshold quantities, the contact number σ and the replacement
number R. The contact number σ is defined as the average number of adequate contacts of
a typical infective during the infectious period [26]. Here, by adequate contact we mean one
that is sufficient for successful transmission of the disease, if the contact by a susceptible
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R0 Basic reproduction number
σ Contact number
R Replacement number

Table 2.1: Threshold Values for Epidemiology

individual is an infective [26]. The replacement number R is defined as the average number
of secondary infections produced by a typical infective during the entire period of infectious-
ness [26].

Note that these three threshold quantities, R0, σ, R, are all equal at the beginning of the
spread of an infectious disease [26]. R0 is only defined at the time of the disease invasion,
but σ and R are defined for all time [26]. Either σ remains equal to R0 as it does in most
models, or it becomes less than the basic reproduction number, in cases where new classes
of infectives with lower infectivity appear when the disease has entered the population [26].
The replacement number is the number of secondary infections from a single infective, so as
time goes on and there are less susceptible people to infect, R is always less than R0 [26].
Further, the replacement number R is always less than the contact number σ after the
invasion, therefore: [26]

R0 ≥ σ ≥ R

with all quantities equal at the time of invasion. Thresholds that dictate whether a disease
eradicates or persists are very important in epidemiology [54].

2.3.3 Classical Models

The SI Model

The fully mixed susceptible-infected model (or SI model for short) is one of the most sim-
plest versions of disease models where there are just two states, susceptible (denoted by S),
and infected (denoted by I). The flow of this model is S → I, which gives the name the SI
model [45].

S Iinfection

Figure 2.1: Flow diagram of population movement in a basic SI model (S: Suscep-
tible, I: Infected)

Assume the total population consists of N people, and the number of people that are
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susceptible and infected are denoted, respectively, as Sc(t) and Ic(t), thus N = Sc + Ic. To
formulate the model, the following assumptions are made:

1. All individuals in the population mix homogeneously; every individual has an equal
probability of coming into contact with any other individual in the population.

2. The rate of increase of infectives (and rate of decrease of susceptibles) by the con-
traction and transmission of the disease is proportional to the number of infectives
and susceptibles, normalized by the total population. This calculation of the force of
infection demonstrates the mass-mixing assumption, causing the incidence rate to be
βScIc/N where β > 0 is the contact rate, defined as the transmission rate times the
average number of contacts a person makes per unit time.

3. The incubation period of the disease is negligible; we assume when a susceptible makes
adequate contact with an infective, they are immediately infectious and able to transmit
the disease to a different susceptible.

4. The dynamics of the disease are short enough such that population dynamics are
negligible, thus we assume a constant population.

Then we have the following system as shown in [45]:
S ′c(t) = −βScIc

N

I ′c(t) = β
ScIc
N

(2.11)

Since S ′c(t) + I ′c(t) = 0, the total population remains constant and it is often convenient
to normalize the variables using S = Sc/N and I = Ic/N ,{

S ′ = −βSI
I ′ = βSI

(2.12)

Population proportions will be considered in the models constructed for the remainder
of the thesis. The meaningful physical domain is DSI = {(S, I) ∈ R2

+|S + I = 1}, which is

invariant to the system since Ṡ + İ = 0 and Ṡ|S=0 = 0 and İ|I=0 = 0. Moreover, because
S + I = 1 we can reduce the system to just one equation,

I ′ = β(1− I)I

which takes the form of a Bernoulli differential equation which can be solved by dividing by
I2 and making the substitution v = I−1. After plugging in the initial condition I(0) = I0 we
get the following solution:

I(t) =
I0e

βt

I0eβt + 1− I0
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Clearly, this I(t) approaches the value of 1 as t → ∞. This can be seen easily by plot-
ting this function and seeing that it produces the S-shaped logistic growth curve [45]. The
disease takes over, since infected individuals remain infectious forever, causing the disease
to eventually spread to every person. The curve grows exponentially at first, but then satu-
rates as the number of susceptibles decreases and the disease has a difficult time finding new
victims [45]. The SI model is a very simplified model and often can be extended to make it
more realistic or appropriate for a specific disease [45].

The SIS Model

An extension of the SI model allows for reinfection, while remaining a simple model with
just two states, is the susceptible-infected-susceptible model, or SIS model for short [45]. The
SIS model assumes that susceptible individuals that contract the disease are then moved
into the infected class, but once they have recovered from the disease they are immediately
considered susceptible again. In other words, individuals cannot gain any sort of immunity
after having the disease. Some diseases, such as gonorrhea and other sexually transmitted
diseases, do not give acquired immunity to the host [54]. The SIS model has been thoroughly
analyzed in literature, for example [25, 27, 30, 49]. The SIS model is predominanatly used
for sexually transmitted diseases (STDs) such as chlymadia and gonorrhea, where repeat
infections are common [19,28].

We have the same assumptions as in the SI model, but additionally a fifth one,

5. Assume that the recovery rate of infectives is proportional to the number of infectives,
with recovery rate g and hence the average infectious period is 1/g.

S Iinfection

recovery

Figure 2.2: Flow diagram of population movement in a basic SIS model allowing reinfection
(S: Susceptible, I: Infected)

The differential equations for the SIS model, taken from [45], are as follows:{
S ′ = gI − βSI
I ′ = βSI − gI

(2.13)

where S and I are the proportion of the population that are susceptible and infected, re-
spectively, and the physically meaningful domain is again DSI from the previous SI model.
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The domain is invariant to this system since Ṡ + İ = 0 and Ṡ|S=0 = gI ≥ 0 and İ|I=0 = 0.
Substitute S = 1 − I to reduce the system to one-dimension, we get a similar Bernoulli
differential equation:

I ′ − (β − g)I = −βI2

which has the solution [45]:

I(t) =
(β − g)e(β−g)tI0

βe(β−g)tI0 + (β − g)− βI0

Note that if β < g then the disease will die out exponentially. However, if β > g then the
function produces a logistic growth curve but the disease never infects the entire population
(i.e., I(t) does not approach 1) and instead there is a limit where the system finds a stable
state [45]. Another perspective of this dynamic is to consider the basic reproduction ratio,
R0 = β/g, which determines the threshold criteria. If R0 < 1 then the disease is eradicated
in the population, but if R0 > 1 then the system reaches an endemic solution and the disease
persists. R0 = 1 marks an epidemic transition between a state in which the disease spreads
and one in wihch it does not [45].

One assumption that could be added to epidemic model is that the duration of the
disease is significantly long enough such that population dynamics become important. We
can choose to incorporate the birth and death of the population. Assume that µ > 0 is the
birth rate, which is equal to the natural death rate. This implies that the average lifetime
is 1/µ. It is assumed that all individuals may have children, and that the children are born
healthy and thus enter the susceptible class. The SIS model with population dynamics is
given as [25,26,30,49]: {

S ′ = µ− βSI − µS + gI

I ′ = βSI − gI − µI
(2.14)

where S, I represent population proportions in each class. The physically meaningful domain
DSI is invariant to the system as Ṡ + İ = 1, Ṡ|S=0 = µ + gI > 0 and İ|I=0 = 0. The basic
reproduction ratio is now also dependent on µ:

R0 =
β

µ+ g

This system has two equilibria, a disease-free solution E0 = (1, 0) and an endemic equi-
librium E∗ = (S∗, I∗) where

S∗ =
µ+ g

β
, I∗ =

β − µ− g
β

The system can be reduced to one-dimension, and again solve the Bernoulli differential
equation to get:

I(t) =
(β − µ− g)e(β−µ−g)tI0

βe(β−µ−g)tI0 + (β − µ− g)− βI0
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If R0 ≤ 1 then I(t) converges to zero and the disease-free solution E0 is asymptotically
stable. For R0 > 1, I(t) converges to the endemic value, I∗ and therefore E∗ is asymptoti-
cally stable [26]. This threshold criteriaR0 determines the long-term behaviour of the disease.

The SIR Model

A common extension of the SIS model is asserting the possibility of recovery from dis-
ease [45]. SIR models have been studied extensively in many literature, including Kermack
and McKendrick in 1927 [25, 31, 49]. In an SIR model, people recover from the infection
because their immune system fights off the agent. The infected gain life-long immunity and
are moved into the recovered class and can never contract the disease again. Then infected
persons recover at some constant average rate, g > 0.

The system of differential equations have 3 variables, with the added R class for re-
covered individuals [45]. 

S ′ = −βSI
I ′ = βSI − gI
R′ = gI

(2.15)

where β is the contact rate and g is the recovery rate. The physically meaningful domain is
DSIR = {(S, I, R) ∈ R3

+|S + I + R = 1}. We assume the initial conditions are inside this
domain, so S(0) ≥ 0, I(0) ≥ 0 and R(0) ≥ 0 such that S(0) + I(0) +R(0) = 1. To make the
problem biologically interesting, often S(0), I(0) 6= 0. Since Ṡ + İ + Ṙ = 0 and Ṡ|S=0 = 0,
İ|I=0 = 0 and Ṙ|R=0 = gI ≥ 0, the domain is invariant to the system. Also, the model can
be reduced to be two-dimensional, by omitting the equation for R. This model is well-posed,
mathematically and epidemiologically, and has a unique solution for which all t ≥ 0 given
certain initial conditions [26]. For the disease-free equilibria when I = 0, there are infinitely
many equilibrium points on the S-axis.

We have I ′ = βSI−gI = I(βS−g). At initial time t = 0, then I ′|t=0 = I(0)(βS(0)−g) <
0 if S(0) < g/β, thus I ≤ I(0) for all future time and I(t) converges to 0. If S(0) > g/β then
I ′|t=0 > 0 and I is initially increasing, thus there is an epidemic. The basic reproduction
number is defined as,

R0 =
β

g

If we use I = R′/g to eliminate I, we get

1

S

dS

dt
=
−β
g

dR

dt

which can be integrated with respect to t to get [45]:

S = S(0)e−BR/g
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which can be used to determine that limt→∞ S(t) is the positive root z of the equation,

S(0) exp(−β(1− z)

g
) = z

with 0 < z ≤ g/β [49]. So the disease dies out due to a lack of infectives.

If we are given the value of g then the mean infectious period if 1/g. The probabil-
ity of recovering in any time interval δτ is g δτ and the probability of not recovering is
1− g δτ . The probability that the individual is still infected after time τ is given by

limδτ→0(1− g δτ)τ/δτ = e−gτ

The probability that the individual remains infected for time τ and then recovers in the
interval between τ +dτ is this quantity times g dτ , which is a standard exponential distribu-
tion. Thus, a person is likely to recover quickly after becoming infected, however in theory
they may remain infectious for a period of time that is multiple times longer than the mean
infectious period, 1/g.

This behaviour is not very realistic, but is one of the things that will improve when
we look at network disease models.

The SIR Model with Population Dynamics

It may also be beneficial to consider population dynamics into the SIR model, with the as-
sumption that the disease is long enough that population dynamics are no longer negligible.
If we assume that µ is the birth and death rate, then we get the following system [25,26,30]:

S ′ = µ− βSI − µS
I ′ = βSI − gI − µI
R′ = gI − µR

(2.16)

The physically meaningful domain is DSIR and the initial conditions are S(0) > 0, I(0) > 0,
and R(0) ≥ 0 such that the problem is biologically interesting. Note that since S+I+R = 1
then we have µ representing the flow of the birth of the population into the susceptible class.
The basic reproduction ratio does not change, as the addition of the recovered class does not
affect the rate of spread of the disease,

R0 =
β

µ+ g
,

which is the same as it was in the SIS case with population dynamics.
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There is a disease-free solution, S = 1, I = 0, and R = 0. Moreover there is an en-
demic solution (S∗, I∗, R∗) where

S∗ =
γ + µ

β
, I∗ =

µ

γ + µ
(1− γ + µ

β
), R∗ =

γ

γ + µ
(1− γ + µ

β
)

which is in the physically meaningful domain if and only if R0 ≥ 1. Note when R0 = 1, we
get S∗ = 1, I∗ = 0, R∗ = 0. This threshold criteria, R0, dictates the long-term behaviour of
R0 [26]. It is shown in [26] that if R0 ≤ 1 then (1, 0, 0) is globally asymptotically stable in
DSIR while if R0 > 1 then (S∗, I∗, R∗) is globally asymptotically stable.

The SIRS Model

In SIRS models, reinfection is incorporated and the recovered individuals will move into
the susceptible class again after some time of short-term immunity. A new parameter δ is
introduced which represents the average rate that recovered individuals lose their immu-
nity [45]. The equations for this model are:

S ′ = δR− βSI
I ′ = βSI − gI
R′ = gI − δR

The variables have been normalized so that S+ I +R = 1 and each compartment represents
the proportion of the population in each class. The physical domain for this system is
QSIR = {(S, I, R) ∈ R3

+|S + I + R = 1} which is invariant becase Ṡ + İ + Ṙ = 0 and

Ṡ|S=0 = δR ≥ 0, İ|I=0 = 0 and Ṙ|R=0 = gI ≥ 0. The basic reproduction number is

R0 =
β

g

where this quantity represents the threshold criteria for whether a disease will die out or
persist.

The SEIR Model

Some diseases incubate inside their hosts for an amount of time before the individual be-
comes infectious. In the previous models, the incubating period is assumed to be negligible.
This may be a poor approximation for certain diseases such as heptatitus B, Chagas’ disease,
HIV/AIDS and tuberculosis (TB) which have very long latent periods, in some cases which
may last years [46].

In SEIR models, healthy individuals are exposed to the disease but are not yet conta-
gious, and then when they become infectious then they are considered to be in the infected
class. This leads to a fourth compartment, the exposed class, E. Assume that susceptible
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individuals that make adequate contact with infectives enter the exposed class, and then
leave the exposed class and become infectious at a rate a > 0. This leads to the following
model, common in literature [30,46].

S ′ = µ− βSI − µS
E ′ = βSI − aE − µE
I ′ = aE − gI − µI
R′ = gI − µR

(2.17)

with initial conditions S(0) > 0, I(0) > 0, E(0) > 0, R(0) > 0 such that S0+E0+I0+R0 = 1.
The flow of this model is S → E → I → R. The physically meaningful domain is QSEIR =
{(S,E, I, R) ∈ R4

+|S + E + I + R = 1}. Since Ṡ + Ė + İ + Ṙ = 0 and Ṡ|S=0 = µ > 0,

Ė|E=0 = βSI ≥ 0, İ|I=0 = aE ≥ 0 and Ṙ|R=0 = gI ≥ 0 then the domain is invariant to the
system. For this model, the basic reproduction ratio is

R0 =
βa

(g + µ)(a+ µ)
(2.18)

which is again a threshold that determines whether the disease dies out, or there is an
endemic.

2.3.4 Control Schemes

Constant Control

Cohort immunization programs, also known as time-constant vaccination, have been im-
plemented in most developed countries with varying degrees of success [1]. There have
been numerous studies on constant control schemes in the mathematical epidemiology lit-
erature [41]. Under this control strategy, vaccinations are regularly given to individuals in
the population who are susceptible to the disease [41]. We assume that 0 ≤ p ≤ 1 is the
proportion of the susceptibles that are constantly being applied the vaccination control. The
vaccinated individuals then move to the removed class R with permanent or waning immu-
nity, depending on the model. When this control scheme is applied to the SIR model, the
model becomes [30] 

Ṡ = µ(1− p)− βSI − µS
İ = βSI − gI − µI
Ṙ = gI − µR + µp

(2.19)

with the variables normalized such that S+I+R = 1 and the initial conditions are biologically
interesting, so S(0) > 0, I(0) > 0 and R(0) = 1 − S(0) − I(0). The physically meaningful
domain is DSIR = {(S, I, R) ∈ R3

+|S + I +R = 1}. The effect of the control scheme reduces
the amount of healthy individuals to which the disease can spread, seen in the µ(1−p) term.
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If we consider a change of variables where S = (1−p)Ŝ, I = (1−p)(̂I) and R = (1−p)R̂+p
then the system above becomes [30]:

Ŝ ′ = µ− (1− p)βŜÎ − µŜ
Î ′ = (1− p)βŜÎ − gÎ − µÎ
R̂′ = gÎ − µR̂

(2.20)

which gives the SIR model with population and without vaccination but with a reduced
contact rate of (1− p)β. The basic reproduction ratio for this system is [30]:

Rp
0 =

(1− p)β
µ+ g

= (1− p)R0 (2.21)

where R0 is the basic reproduction number from the non-vaccinated model. Therefore we
can make the same analytical conclusions about the asymptotic stability of the disease-free
solution. The control strategy is that for successful eradication of the disease, we require
p > pcrit where

pcrit = 1− 1

R0

In a case with no vaccination, R0 > 1 would have caused an epidemic but can now be con-
trolled by p to reduce Rp

0 to become less than 1. The larger R0 is, the greater the critical
value of pcrit becomes.

Pulse Control

In contrast to constant control, pulse vaccination schemes are based on the strategy of
applying vaccinations periodically to a large fraction of the population in a very short time
period [41]. Theoretical results have shown that the critical value of pcrit such that p > pcrit
will achieve eradication is lowered in pulse control schemes [1]. Pulse vaccination gained
prominent achievement due to its highly successful application to control poliomyelitis and
measles throughout Central and South America [35]. There was also a successful program of
pulse vaccination in the US for measles in 1994 [35]. Pulse vaccination is a control technique
motivated by noticing that in the SIR model, I ′ = βSI − gI − µI = I(βS − g − µ) < 0 if
S < (g + µ)/β.

The idea is to control the susceptible population to remain below the critical value (for
example, Scrit = (g + µ)/β in the SIR model) and eradicate any epidemic by maintaining
I ′ < 0. By applying this pulse control scheme, a proportion 0 ≤ p ≤ 1 of the susceptible
population is impulsively immunized every T time units. Vaccinated individuals enter the
recovered class and gain immunity to the disease. This control scheme can be modeled by
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an impulsive differential equation system [52]:

Ṡ = µ− βSI − µS, t ∈ ((k − 1)T, kT ]

İ = βSI − gI − µI
Ṙ = gI − µR
S(t+) = S(t)− pS(t), t = kT

I(t+) = I(t)

R(t+) = R(t) + pS(t)

(2.22)

with k = 1, 2, ... and normalized variables such that S + I + R = 1. The biologically in-
teresting initial conditions are S(0+) > 0, I(0+) > 0 and R(0+) = 1 − S(0+) − I(0+) such
that these belong in the physically meaningful domain DSIR, which is invariant to the system.

In the model, S(kT+) = limh→0+ S(kT + h) is the right hand limit, and kT+ is the
moment immediately after the k-th pulse. Here (1, 0, 0) is no longer an equilibrium point
but I∗ = 0 is still an equilibrium solution for the variable I(t). Under this condition, the
susceptible population S(t) oscillates with period T , and with I ′ = 0 the system becomes [52]:

Ṡ = µ(1− S), t ∈ ((k − 1)T, kT ]

Ṙ = −µR
S(t+) = S(t)− pS(t), t = kT

R(t+) = R(t) + pS(t)

(2.23)

Assuming I = 0, the growth of susceptibles in the time interval t ∈ ((k − 1)T, kT ]), the
solution of the system is{

S(t) = 1 + (S((k − 1)T )− 1)e−µ(t−(k−1)T )

R(t) = 1− S(t)

Immediately after pulse vaccination,

S(kT+) = (1− p)(1 + (S((k − 1)T )− 1)e−µT

The initial condition S† may change from one pulse interval to another [52]. If we set
S† = S†(kT ) = Sk then we can deduce a stroboscopic mapping F such that Sk = F (Sk−1)
with Sk−1 = S((k − 1)T ). The map F has a unique fixed point,

S∗ = F (S∗) =
(1− p)(e−µT − 1)

p− 1 + e−µT

Pulse vaccination yields the sequence Sk which must converge to the fixed point S∗. As the
orbit converges to the fixed point, the evolution of S(t) converges to the periodic disease free
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solution for t ∈ ((k − 1)T, kT ] [52]:
S̃(t) = 1− pe−µ(t−(k−1)T )

1− (1− p)e−µT
Ĩ(t) = 0

R̃(t) = 1− S̃(t)

Notice that,
dF (S(kT ))

dS(kT )

∣∣∣∣
S(kT )=S∗

= (1− p)e−µT < 1

implying global asymptotic stability of the fixed point [37].

Floquet theory provides a well-defined framework for examining linear systems with pe-
riodic coefficients [52] (for more information about Floquet theory, see [44]). It can be shown

that if (1/T )
∫ T

0
S̃(t)dt < (g + µ)/β then the periodic solution is locally asymptotically sta-

ble [52].

If we take RT
0 = (β/(g + µ))(1/T )

∫ T
0
S̃(t)dt then the condition for local asymptotic

stability becomes RT
0 < 1. Notice that since (1/T )

∫ T
0
S̃(t)dt < 1 then RT

0 < R0 = β/(µ+g).
The basic reproduction number has been reduced, which is expected of the control strategy.
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Chapter 3

Network Models

3.1 Introduction

One of the most important advancements of theoretical epidemiology has been the devel-
opment of methods that account for realistic host population structure [33]. Models that
predict disease evolution have evolved from simple compartmental approaches into struc-
tured frameworks in which heterogeneities present at community and population levels are
becoming increasingly important features [3, 8] (see Figure 3.1).

The foundations of epidemiology and early models were based on population wide random-
mixing, but realistically each individual has a finite set of contacts to whom they can pass
infection, which forms a mixing network [29]. In order to enhance understanding and pre-
diction of epidemic patterns and intervention measures, knowledge about the structure of
mixing networks is important [29]. It is unrealistic that a population mixes randomly and
that each individual has an equal chance of contacting any other individual. It is usually
the case that the number of contacts an individual has is considerably smaller than the
population size [45]. Models that incorporate network structure avoid the random mixing
assumption by assigning to each individual a finite set of permanent contacts who they can
transmit disease to and from [29]. Networks capture the permanence of interactions because
it is not constantly changing as in random mixing models [29].

Basic Network Theory

The study of networks has its grounding in two disparate fields: social sciences and graph
theory [29]. Some terminology in networks, depending on the field of study:

• Graph Theory: “Nodes” and “Edges”

• Social Literature: “Actors” and “Relations”

• Epidemiology: “Hosts” and “Contacts”
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Figure 3.1: Structures at Different Scales in Epidemic Modelling, with different
shades corresponding to different stages of the disease. Based on an image from [8]. The
left-most image represents homogeneous mixing, where the population is assumed to interact
homogeneously at random. The center image represents a social structure, in which peo-
ple are classified by demographic information. The right-most image represents a contact
network model, where a network of social interactions provide virus propagation paths.

In graph theory, the terminology used are nodes and edges, however a network is any col-
lection of objects with connections between them [45]. A network could be used to describe
people in a society or community, and the relationships between them or even the World
Wide Web, descibing links between web pages. Typically in epidemiology, the nodes often
represent individuals and the edges represent relationships between the individuals in which
the infection can pass between [29]. Definitions in our context [29]:

Definition 3.1.1. A neighbourhood is the set of contacts of an individual.

Definition 3.1.2. The degree of a contact is the size of an individual’s neighbourhood. Also
known as the connectivity of a node, the degree is the number of links connected to that node.

Definition 3.1.3. Symmetry: relationship between A and B implies a relationship between
B and A

Definition 3.1.4. Transivity: relationship between A and B and relationship between B and
C implies a relationship between A and C (in other words, whether a friend of a friend is a
friend)

These properties may be determined by social dynamics, thus the research in social sci-
ences is relevant to epidemiology as studies about social importance of an individual and
how communities interact may be linked to how disease is spread.

All networks can be represented by a matrix A, called an adjacency matrix (or socioma-
trix), which may describe the connections within a population [29,45].

aij =

{
1, if there is a connection such that an infection could pass from individual i to j

0, otherwise

Matrix A summarizes all connections within the network. A is sometimes symmetric but
not always. Consider a situation of donated blood, then the infection can only travel one
way along a link.
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Definition 3.1.5. A network is said to be an undirected graph if all connections are bidi-
rectional.

Definition 3.1.6. A network is said to be a directed graph if all edges point in a direction.

Three of the techniques to gather network information are outlined below [29]:

Infection Tracing
Field based epidemiologists determine the source of infection for each case. The networks
observed are tree-like, and contain no loops. Interactions that occurred but did not result
in an infection are not recorded and remain unknown.

Complete Contact Tracing
The aim is to identify all potential transmission contacts from a source individual, revealing
a set of individuals who might be infected and can further be studied to trace. Problems
with this type of network is defining potential transmission routes, and also is time consum-
ing and relies on individuals sharing personal information. Contact tracing is applied as a
control tool, often in the case of STDs. Asymptomatic individuals (infected persons who
show no symptoms) can be treated or quarantined. Only a subset of the full mixing network
will be uncovered, however it is still generally the most detailed. Example: sexual mixing
networks. Snowball sampling is a non-probability sampling where existing subjects recruit
future subjects from among their acquantainces.

Diary-based Studies
Diary-based studies rely on subjects to record contacts as or shortly after they occur. This
shifts the workload from the researcher to the subject and allows for a larger number of
individuals to be sampled. Problems include inconsistent definitions due to subject bias.

Next we list some types of networks [29]:

Random Networks
Connections are formed at random, each individual has a fixed number of contacts through
which infection can spread. The random network thus usually has a lack of clustering but
are homogeneous on the individual level. Dynamics of disease spread on random networks
can be studied as simple branching proccesses.

growth rate in a random network = τ(n− 2)− g

growth rate with randommixing = τ n̂− g
where τ is the transmission rate across a contact, n is the number of contacts in a network,
and n̂ is the effective number of contacts per unit time in a random mixing model. Random
networks have short path lengths, since we can have long-range links and low clustering. A
common random network used is the Erdos-Renyi random network, in which we start with
N finite nodes and connect every pair of nodes with the probability p, thus creating a graph
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with approximately pN(N − 1)/2 edges.

Lattices
Lattices are homogeneous at the individual level. An example of this would be the forest-fire
model (see [7] for more detail). Contact between sites can be characterized as “on” or “off”.
Lattices can be used for SIS models (similar to forest-fire model) or SIR models (particularly
with births since when trees burn, empty sites are left for recolonization). In disease trans-
mission, there is slow growth at the beginning and the infection spreads out in a roughly
circular manner, causing spatial clustering. This effect captures the wave-like progression of
an infection across geographical locations. Lattices display long path lengths, that is, many
steps to move between two randomly selected individuals.

Small-world Networks
Small-world networks can be formed by adding random connections to a lattice. Usually
rare, long-range connections have a large effect by allowing the infection to reach all parts
of the lattice relatively quickly, hence the phrase “small-world”. These type of networks are
characterized by long-range transmission and high clustering. Human social networks are
thought to be small worlds, but neural networks and gene networks are also examples.

Spatial Networks
Spacial networks are considered one of the most “flexible” types of networks. Nodes or indi-
viduals are placed within a given area or volume and connected by a probability depending
on their separation. These networks generally show a high degree of heterogeneity.

Scale-free Networks
Scale-free networks have a degree distribution which follows the power law, or at least asymp-
totically.

Barabasi-Albert Network
The Barabasi-Albert network is a type of network in which new nodes are added and form
new links with the previously existing nodes of the network, with a higher probability of
linking to a node with a greater degree [9]. A practical example of this would be the Inter-
net, or the World Wide Web, where users are connecting to web pages and more popular
webpages gain connections more rapidly.

3.2 Model Formation and Degree Distribution

Interpersonal contact patterns of disease transmission can be thought of as a network where
nodes are individuals who interact with each other and edges are relations [29]. Earlier
described as a “neighbourhood” of an individual, the term connectivity or degree of a node
is also used, k, which is defined as the number of links connected to the node. The degree
distribution, p(k) is defined as the probability that a randomly chosen node in the net-
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work will have degree k. Since these probabilities describe what is called the “connectivity
distribution”, then the expected value of k gives the average degree of the network [8,29,45].

〈k〉 =
n∑
k=1

kp (k)

In homogeneous networks, a first approximation is to consider that each node or individual
has the same number of contacts, the degree k ' 〈k〉. This case is identitcal to the uniform
mixing model where β = λ〈k〉, where λ is the transmission rate or infection rate, defined as
the probability per unit time that the infection will be transmitted between a susceptible
individual and infective individual who are connected by a link in a network. However, net-
works that are relevant to the spread of a disease are heterogeneous, including the scale-free
network, in which the degree distribution follows a power law, p(k) ∼ k−σ, where generally
2 ≤ σ ≤ 3 [29]. One key assumption that is considered is a degree block approximation that
assumes all nodes with the same connectivity are statistically equivalent [8, 45]. Nodes can
be grouped in the same class of degree k. It is assumed that individuals in the same degree
class are statistically identical, thus instead of only dividing the population into classes by
disease status (example: Susceptible, Infected, Recovered, etc) we also divide the population
by degree. Therefore, if we have m disease classes then we will have a system of n × m
dimensons, where k = 1, ..., n describes the degree and n is the greatest number of links a
node has in the network of analysis.

Where the term that describes the flux of susceptible individuals contracting the dis-
ease from infectious individuals is conventionally βS(t)I(t), with β being the contact rate,
the term is now λkSk(t)Θ(t), where Sk(t) is the proportion of susceptible individuals in de-
gree class k at time t [11, 34, 48, 53]. In this way, we divide the nodes in the network into
groups of individuals with the same number of relations, and model that the disease will
spread at an increased rate among individuals who have more contacts. Note that the value
of λ is both influenced by the type of disease and the network structure. Some diseases are
transmitted more easily and often than others, however the transmission rate is also a prop-
erty of the network structure by the degree distribution and the social behaviours of that
population. For instance, in some countries it is common etiquette to wear face masks to pre-
vent the spread of disease but these conventions are not as widely used in other countries [29].

We assume that the connectivity of the nodes on the network is uncorrelated, thus we
have an equation for the Theta function,

Θ (t) =
1

〈k〉

n∑
k=1

kp (k) Ik (t)

which represents the probability that an arbitrary link (relation) points to an infected node
[29]. With these equations, our first infectious disease model on a network can be formulated.
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3.3 The SIS Network Model

We begin by adding the network mixing assumption to a simple SIS model with population
dynamics, modeled after the disease models in [8, 11,45,53,55,57].{

Ṡk = µ− λkSkΘ + gIk − µSk
İk = λkSkΘ− gIk − µIk, k = 1, 2, ..., n

(3.1)

where µ is the birth and natural death rate of the population, λ is the transmission rate, and g
is the recovery rate at which infected individuals are no longer infectious. Sk(t) and Ik(t) are
the proportion of susceptible and infected individuals, respectively, in degree class k at time t.
The physically meaningful domain is ΩSI = {(S1, I1, ..., Sn, In) ∈ R2n

+ |Ṡk + İk + Ṙk = 1 ∀k}.
This domain is invariant to the network model (3.1) since Ṡk|Sk=0 = µ + gIk > 0 and
İk|Ik=0 = λkSkΘ ≥ 0, and also Ṡk + İk = 0 for all k.

Note how the incidence rate of disease transmission changes from the model with uniform
mixing, where it is βSI, it is now λkSkΘ. If we consider a homogeneous network where all
nodes (or individuals in the population) have the same given degree k, then the average
degree

∑n
j=1 jp(j) would then be equal to the given k. Further, p(j), the probability that

a randomly chosen node has degree j, becomes 0 for all j ∈ {1, ..., n} with the exception of
p(k) = 1. Then the incidence rate becomes

λkSkΘ = λkSk
1

k

n∑
j=1

jp(j)Ij

= λSk

n∑
j=1

(1 · 0 · I1 + 2 · 0 · I2 + ...+ k · 1 · Ik + ...

+ (n− 1) · 0 · In−1 + n · 0 · In)

= λkSkIk

= βSkIk

if we take β = λk to be the contact rate (the transmission rate times the number of adequate
contacts made in one time unit). Therefore if the network is homogeneous, i.e. the degree
distribution is uniform, then the network model reduces to the conventional disease model
with the mass mixing assumption.

This general network model can be easily solved at the early stage of the epidemics
when we can assume that the number of infected individuals is a very small fraction of the
total population; assume I2

k << 1 for all k. In the initial epidemic stages, we neglect terms
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of order O(I2
k) and then we can obtain the evolution equation for Θ(t) [8].

dIk(t)

dt
= λk(1− Ik)Θ(t)− (g + µ)Ik

dΘ(t)

dt
= [

λ〈k2〉
〈k〉

− (g + µ)]Θ

These equations can be solved and under a uniform initial condition Ik(0) = I0:

Θ(t) = I0e
(λ〈k2〉/〈k〉−(g+µ))t

Ik(t) = I0(1 +
k〈k〉
〈k2〉

(et/τ − 1))

with

τ =
〈k〉

λ〈k2〉 − (g + u)〈k〉
The prevalence therefore increases exponentially fast, with larger degree nodes display-
ing larger prevalence levels [8]. The total average prevalence can be obtained as I(t) =∑

k p(k)Ik,

I(t) = I0(1 +
〈k〉2

〈k2〉
(et/τ − 1))

Since τ represents the typical outbreak time, this leads to the crucial epidemiological concept,
the epidemic threshold [8].

τ−1 =
λ〈k2〉
〈k〉

− (g + µ)

The epidemic threshold condition can be readily written in the form

τ−1 = (g + µ)(R0 − 1) > 0

where R0 = λ〈k2〉/(g + µ)〈k〉 which idenitifies the basic reproductive rate, which has to
be larger than 1 for spreading to occur. If the spreading rate is not large enough, (i.e.
λ < (g+µ)〈k〉/〈k2〉), the epidemic outbreak will not affect a finite portion of the population
and will die out in a finite time. For uncorrelated networks, this result implies the growth
time scale of an epidemic outbreak is related to the heterogeneity ratio, κ = 〈k2〉/〈k〉, a
characteristic known as graph heterogeneity. In scale-free networks with a degree exponent,
2 ≤ α ≤ 3, we have that κ → ∞ as the network size N → ∞. Therefore, for uncorrelated
scale-free networks there is a virtually instantaneous rise of the epidemic incidence. Dis-
ease can spread very rapidly among the networks following a ”cascade” of decreasing degree
classes.

It is clear that there exists a disease-free equilibrium point, E0 = {S0k, I0k}nk=1 where
for all k, S0k = 1 and I0k = 0, and also a positive endemic equilibrium point under certain
conditions. The endemic equilibrium point takes the form E∗ = (S∗k , I

∗
k) where

S∗k =
µ+ g

λkΘ + µ+ g
, I∗k =

λkΘ

λkΘ + µ+ g
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To impose the stationary condition we substitute Ik = I∗k into the equation for Θ(t),

Θ(t) =
1

〈k〉

n∑
k=1

kp(k)
λkΘ

λkΘ + µ+ g
= f(Θ) (3.2)

Clearly Θ = 0 satisfies this equation and is a fixed point. The equation is a monotonously
increasing function and in order to have a solution Θ∗ 6= 0, the slope of f(Θ) at the point
Θ = 0 must be larger than or equal to 1. To allow a non-trivial solution Θ ∈ (0, 1) we need
df(Θ)/dΘ at Θ = 0 to be greater than 1.
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Figure 3.2: A graphical solution of the equation Θ = f(Θ) A: If the slope of the
function f(Θ) at Θ = 0 is less than 1, then there is only one solution to the equation (and
thus the system) at Θ = 0. B: When the slope is larger than 1, a non-trivial solution Θ∗ 6= 0
exists. Based on a figure from [8]. Created in Matlab.

df(Θ)

dΘ

∣∣∣∣
Θ=0

=
1

〈k〉

n∑
k=1

kp(k)
λk(λkΘ + µ+ g)− λkΘ(λk)

(λkΘ + µ+ g)2

∣∣∣∣
Θ=0

=
1

〈k〉

n∑
k=1

kp(k)
λk(µ+ g)

(µ+ g)2

=
1

〈k〉
λ

(µ+ g)

n∑
k=1

k2p(k)

=
λ〈k2〉

(µ+ g)〈k〉
= R0

35



If R0 > 1 then there exists a positive endemic equilibrium E∗. This would suggest that if
R0 < 1 then only the disease-free equilibrium exists, and intuitively it would be globally
asymptotically stable. This is shown in the theorem below, adapted from [11].

Theorem 3.3.1. Assume R0 ≤ 1, then the disease-free equilibrium E0 is globally asymptot-
ically stable in the meaningful domain, ΩSI .

Proof. Consider a non-negative solution {Sk(t), Ik(t)}nk=1. Knowing that Sk + Ik = 1 the
system can be reduced to n-dimensions.

S ′k = µ− λkSkΘ + g(1− Sk)− µSk, k = 1, 2, ..., n

By removing the second term which is clearly non-positive, we have that

S ′k ≤ µ+ g(1− Sk)− µSk

Therefore we can consider the following auxiliary system:

S ′k = (µ+ g)− (µ+ g)Sk

which has the equilibrium point S0
k = 1. We can use a change of variables where y = Sk − 1:

y′ = S ′k
= (µ+ g)− (µ+ g)(1 + y)

= −(µ+ g)y

which is a linear first order differential equation and the solution is globally asymptotically
stable.

To prove global asymptotic stability of the endemic equilibrium, we use a Lyapunov
function.

Theorem 3.3.2. Assume R0 > 1. Then the endemic equilibrium E∗ is globally asymptoti-
cally stable in the meaningful domain, ΩSI .

Proof. Consider a non-negative solution, {(Sk(t), Ik(t))}nk=1. Then consider the following
Lyapunov function:

V (t) =
1

2

n∑
k=1

{ω1(Sk − S∗k)2 + ω2(Ik − I∗k)2}

We calculate the derivative along the endemic equilibrium point:

dV (t)

dt
=

n∑
k=1

{ω1(Sk − S∗k)S ′k + ω2(Ik − I∗k)I ′k}

=
n∑
k=1

{ω1(Sk − S∗k)(µ− λkSkΘ + gIk − µSk) + ω2(Ik − I∗k)(λkSkΘ− gIk − µIk)}
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Using Sk + Ik = 1, µ− λkS∗kΘ + gI∗k − µS∗k = 0, and λkS∗kΘ− µI∗k − µI∗k = 0

dV (t)

dt
=

n∑
k=1

{−ω1(λkΘ + µ+ g)(Sk − S∗k)2 − ω2(λkΘ + µ+ g)(Ik − I∗k)2}

which is clearly negative definite with respect to E∗.

3.4 The SIS Network Model with Vertical Transmis-

sion

A common modification to the SIS model is the concept of vertical transmission, in which
a disease may be passed down from a mother once they give birth to a new child. If we
consider that p is the probability that a mother with the disease does not pass down to the
child, 0 ≤ p ≤ 1, then (1−p) is the probability the child gains the infection transplacentally.
With µ once again representing the birth rate, then µ(1 − p)Ik represents the flux entering
Ik through birth and µpIk representing the flux entering the susceptible class as normal, for
all degree values k. Then our model is:{

Ṡk = µ(Sk + pIk)− λkSkΘ− µSk + gIk

İk = µ(1− p)Ik + λkSkΘ− gIk − µIk, k = 1, 2, ..., n
(3.3)

where physically meaningful domain is ΩSI . This domain is invariant to the system since
Ṡk + İk = 0 and Ṡk|Sk=0 = µp + g > 0 and İk|Ik=0 = λkSkΘ ≥ 0, therefore the model
is biologically well posed. Again, E0 = {S0k, I0k}nk=1, where S0k = 1, I0k = 0 for all k is
a disease-free equilibrium of the system. Setting İk = 0 and Ṡk = 0 and applying that
Sk + Ik = 1 then we get the following endemic equilibrium point E∗ = (S∗1 , I

∗
1 , ..., S

∗
n, I

∗
n)

where

S∗k =
pµ+ g

λkΘ + pµ+ g
, I∗k =

λkΘ

λkΘ + pµ+ g
.

Using the same technique as previously to get the reproductive threshold ratio, we get
that

R0 =
λ〈k2〉

(pµ+ g)〈k〉
which must be greater than 1 for a positive endemic equilibrium to exist.

At the early stage of the epidemics, we neglect terms of order O(I2
k) or higher and

then we can obtain the evolution equation for Θ(t):

İk = λkΘ− (pµ+ g)Ik

Θ̇ = (
〈k2〉λ
〈k〉

− (pµ+ g))Θ
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Similar to the SIS model without vertical transmision, these equations can be solved such
that

Ik(t) = I0(1 +
k〈k〉
〈k2〉

(e1/τ − 1)

where

τ =
〈k〉

λ〈k2〉 − (pµ+ g)〈k〉
.

Further, we have similar analysis to the previous model in that the reproductive threshold
ratio decides whether the disease-free equilibrium is globally asymptotically stable or the
endemic equilibrium is globally asymptotically stable.

Theorem 3.4.1. Assume R0 < 1, then the disease-free equilibrium E0 for all k is globally
asymptotically stable in the physically meaningful domain, ΩSI .

Proof. Consider a non-negative solution {Sk(t), Ik(t)}nk=1.

S ′k = µ(Sk + pIk)− λkSkΘ− µSk + gIk

= µpIk − λkSkΘ + gIk

= µp− λkSkΘ− µpSk + gIk

Clearly,
S ′k ≤ µp+ g(1− Sk)− µpSk

Consider the auxiliary system:

S ′k = (µp+ g)− (µp+ g)Sk

which has the equilibrium point S0
k = 1. We can use a change of variables by letting

y = Sk − 1.

y′ = S ′k
= (µp+ g)− (µp+ g) ∗ 1 + y)

= −(µp+ g)y

which is a linear first order differential equation and the solution is globally asymptotically
stable.

Theorem 3.4.2. Assume R0 > 1. Then the endemic equilibrium E∗ is globally asymptoti-
cally stable in the physically meaningful domain, ΩSI .

Proof. Following the proof of Theorem 3.3.2 and using the same Lyapunov function which is
clearly positive definite with respect to E∗ for the system (3.3) as well, the derivative along
the endemic equilibrium point is:

dV

dt
=

n∑
k=1

{−ω1(λkΘ + µp+ g)(Sk − S∗k)2 − ω2(λkΘ + µp+ g)(Ik − I∗k)2

which, assuming R0 > 1, is negative definite with respect to E∗. Thus the endemic equilib-
rium is globally asymptotically stable.
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3.5 The SIR Network Model

In many cases, individuals who have recovered from the disease gain immunity and thus
cannot contract the disease once again. Introduce the network mixing assumption into the
SIR model with population dynamics. This leads to the following new SIR network model:

Ṡk = µ− λkSkΘ− µSk
İk = λkSkΘ− gIk − µIk
Ṙk = gIk − µRk, k = 1, 2, ..., n

(3.4)

where Θ = (1/〈k〉)
∑n

k=1 kp(k)Ik, 〈k〉 =
∑n

k=1 kp(k) and µ is the birth and natural death rate
and g is the recovery rate. Since there are three classes of disease status for each degree, where
we had Sk + Ik = 1 for the SIS model we now have Sk + Ik +Rk = 1 for the SIR model. Also
note that the physically meaningful domain ΩSIR = {(S1, I1, R1, ..., Sn, In, Rn) ∈ R3n

+ |Sk +

Ik +Rk = 1 ∀k} is invariant to the system, since Ṡk|Sk=0 = µ > 0, İk|Ik=0 = λkSkΘ ≥ 0, and
Ṙk|Rk=0 = gIk ≥ 0. This however does not change the picture obtained in the SIS model.
Using the same approximations, the time scale for the SIR is:

τ =
〈k〉

λ〈k2〉 − (g + µ)〈k〉
.

Using the same technique as previously to get the reproductive threshold ratio, we get

R0 =
λ〈k2〉

(µ+ g)〈k〉
.

Clearly a disease-free equilibrium E0 point exists, where {S0k, I0k, R0k}nk=1, where S0k = 1,
I0k = 0, R0k = 0 for all k. There is also a positive equilibrium E∗ point under the condition
that R0 > 1, where

S∗k =
µ(g + µ)

(g + µ)(λkΘ + µ)
,

I∗k =
µλkΘ

(g + µ)(λkΘ + µ)
,

R∗k =
gλkΘ

(g + µ)(λkΘ + µ)

for all k = 1, 2, ..., n.

Theorem 3.5.1. Assume R0 < 1, then the disease free equilibrium E0 is globally asymptot-
ically stable in the meaningful physical domain, ΩSIR.

Proof. The system can be easily reduced to 2n dimensions, knowing that Rk = 1 − Sk −
Ik, we only consider the first two differential equations. Consider a non-negative solution
{Sk(t), Ik(t)}nk=1. Clearly,

S ′k ≤ µ− µSk, k = 1, 2, ..., n
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Therefore we can consider the auxiliary system,

S ′k = µ− µSk

which has the equilibrium point S0
k = 1. Using a change of variables, y = Sk − 1,

y′ = S ′k
= µ− µ(y + 1)

= −µy

which is a linear first order differential equation. Then for any ε > 0, Sk(t) ≤ S0
k + ε for t

sufficiently large. Thus,
I ′k ≤ λk(S0

k + ε)Θ− (g + µ)Ik

Thus consider the auxiliary system:

I ′k = λk(S0
k + ε)Θ− (g + µ)Ik

We will prove stability by the following Lyapunov function,

V (t) =
n∑
k=1

bkIk(t)

where bk =
kp(k)

〈k〉(g + µ)
. Then bk > 0, Ik > 0 for all k thus V is positive definite.

V ′ =
∑

bkI
′
k

=
∑

bk(λk(S0
k + ε)Θ− (g + µ)Ik)

=
∑ kp(k)

〈k〉(g + µ)
(λkΘ(1 + ε)− (g + µ)Ik)

= Θ(R0 +
λ〈k2〉ε
〈k〉(g + µ)

− 1)

From assumption R0 < 1, fix ε > 0 small enough so R0 + λ〈k2〉ε/(〈k〉(g + µ)) < 1. Then we
have V ′ is negative definite with respect to Ik = 0 for all k. By the comparison theorem, we
get global asymptotic stability for the disease-free equilibrium.

Theorem 3.5.2. Assume R0 > 1. Then the endemic equilibrium E∗ is globally asymptoti-
cally stable in the meaningful domain, ΩSIR.

Proof. Consider a non-negative solution {Sk(t), Ik(t)}nk=1 of the reduced system, then use
the following Lyapunov function:

V (t) =
1

2

∑
ω1(Sk − S∗k)2 + Θ−Θ∗ −Θ∗ ln

Θ

Θ∗
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where Θ∗ =
1

〈k〉
∑
kp(k)I∗k and ω1 is a positive constant that depends on k. Clearly V (t) is

positive definite with respect to E∗. Calculating the derivative of V (t):

dV

dt
=
∑

ω1(Sk − S∗k)S ′k +
Θ′

Θ
(Θ−Θ∗)

=
∑

ω1(Sk − S∗k)(µ− λkSkΘ− µSk)−
(1/〈k〉)

∑
kp(k)I ′k

Θ
(Θ−Θ∗)

=
∑

ω1(Sk − S∗k)(µ− (λkΘ + µ)(Sk − S∗k)− (λkΘ + µ)S∗k)

+
(1/〈k〉)

∑
kp(k)(λkSkΘ− (g + µ)Ik)

Θ
(Θ−Θ∗)

=
∑
{−ω1(λkΘ + µ)(Sk − S∗k)2 + ω1(Sk − S∗k)(µ− λkΘS∗k − µS∗k}

+
(Θ/〈k〉)(

∑
k2p(k)λSk − (g + µ))

Θ
(Θ−Θ∗)

=
∑
{−ω1(λkΘ + µ)(Sk − S∗k)2 + ω1(Sk − S∗k)(µ− λkS∗k(Θ−Θ∗)− λkS∗kΘ∗ − µS∗k}

+ (1/〈k〉)(
∑

k2p(k)λ(Sk − S∗k) +
∑

k2p(k)λS∗k − (g + µ))(Θ−Θ∗)

=
∑
{−ω1(λkΘ + µ)(Sk − S∗k)2 − ω1λkS

∗
k(Sk − S∗k)(Θ−Θ∗)}

+ (1/〈k〉)
∑

k2p(k)λ(Sk − S∗k)(Θ−Θ∗)

=
∑
{−ω1(λkΘ + µ)(Sk − S∗k)2 + (−ω1λkS

∗
k +

1

〈k〉
k2p(k)λ)(Sk − S∗k)(Θ−Θ∗)}

Using the equalities µ − λkS∗kΘ
∗ − µS∗k = 0 and g + µ = λ〈k2〉/(〈k〉)S∗k , then we choose

ω1(k) = (kp(k)/〈k〉S∗k) such that V ′(t) ≤ 0. Also, V ′(t) = 0 if and only if Sk = S∗k , Ik = I∗k
for k = 1, ..., n. Thus the proof is completed.

3.6 The SIRS Network Model

In some cases, the individuals who have recovered from the infection only have partial immu-
nity, eventually allowing them to be susceptible to the disease again. The following model
incorporates the network mixing assumption in a standard SIRS model with population
dynamics. 

Ṡk = µ− λkSkΘ + δRk − µSk
İk = λkSkΘ− gIk − µIk
Ṙk = gIk − δRk − µRk, k = 1, 2, ..., n

(3.5)

Again, λ is the transmission rate, µ is the birth and death rate of the population, g is the
recovery rate and lastly δ is the rate at which recovered individuals lose their immunity to the
disease and move into the susceptible class once more. There is a disease-free equilibrium,
E0 = {S0k, I0k, R0k}nk=1, where S0k = 1, I0k = 0, R0k = 0 for all k for all k. There is also an
endemic equilibrium point, E∗, where
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S∗k =
(δ + µ)λkΘ

λ(g + δ + µ)kΘ + (g + µ)(δ + µ)
,

I∗k =
(δ + µ)(g + µ)

λ(g + δ + µ)kΘ + (g + µ)(δ + µ)
,

R∗k =
gλkΘ

λ(g + δ + µ)kΘ + (g + µ)(δ + µ)
.

By substituting Ik = I∗k in the equation for Θ = f(Θ) and solving
df(Θ)

dΘ
> 1 at Θ = 0

as previously we get the basic reproduction number,

R0 =
λ〈k2〉

〈k〉(g + µ)
.

Notice that R0 does not depend on δ. This is due to the disease spreading at the same
rate as the SIR or the SIS model; the fact that the disease immunity is temporary does not
change the basic reproduction rate.

Theorem 3.6.1. Assume R0 < 1, then the disease-free equilibrium E0 is globally asymptot-
ically stable in the meaningful domain, ΩSIR.

Proof. If we reduce the system to 2n dimensions using Rk = 1 − Sk − Ik, then we only
consider two differential equations:{

Ṡk = µ+ δ − λkSkΘ− δIk − δSk − µSk
İk = λkSkΘ− gIk − µIk, k = 1, 2, ..., n

Consider a non-negative solution {Sk(t), Ik(t)}nk=1. It is easy to see that

S ′k ≤ (µ+ δ)− (µ+ δ)Sk, k = 1, 2, ..., n.

Therefore we can consider the auxiliary system,

S ′k = (µ+ δ)− (µ+ δ)Sk

which has the equilib-rium point S0
k = 1. Using a change of variables, y = Sk − 1, we can

show this auxiliary system reduced to a linear first order differential equation. Then, for any
ε > 0, Sk(t) ≤ S0

k + ε for t sufficiently large. Thus,

I ′k ≤ λk(S0
k + ε)Θ− (g + µ)Ik.

Therefore we can consider the auxiliary system,

I ′k = λk(S0
k + ε)Θ− (g + µ)Ik.
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We will prove stability by the following Lyapunov function,

V (t) =
n∑
k=1

bkIk(t)

where bk =
kp(k)

〈k〉(g + µ)
. Then since bk > 0, then V is positive definite with respect to the

disease-free equilibrium. Further, we can show that

V ′ = Θ(R0 +
λ〈k2〉ε
〈k〉(g + µ)

− 1).

From assumption, R0 < 1, fix ε > 0 small enough so that R0 + λ〈k2〉ε/(〈k〉(g + µ)) < 1.
Then we have that V ′ is negative definite with respect to Ik = 0 for all k. By the comparison
theorem, we get global asymptotic stability for the disease-free equilibrium.

3.7 The SIRS Network Model with Vaccination

The following is an SIRS epidemic model integrating the concept of modeling contact patterns
of disease transmission using networks [11]

Ṡk = −λkSkΘ + δRk − uSk
İk = λkSkΘ− gIk
Ṙk = gIk − δRk + uSk, k = 1, 2, ..., n

(3.6)

where λ is the transmission rate when susceptible individuals contact with infectious indi-
viduals, g is the recovery rate from infection, the rate at which individuals move from the
infected class to the recovered class, δ is the rate at which recovered individuals move into the
susceptible class once again and u is the vaccination efficient (the percentage of susceptible
individuals that are vaccinated and thus given short-term immunity.

In order to analyze the solutions of physical relevance, we only consider non-negative
solutions of the system (2). So the initial conditions are all of the form Sk(0) > 0, Ik(0) >
0, Rk(0) = 1 − Sk(0) − Ik(0) > 0. The physically meaningful domain is ΩSIR. Since
Ṡk + İk + Ṙk = 0, and Ṡk|Sk=0 = δRk ≥ 0, İk|Ik=0 = λkSkΘ ≥ 0 and Ṙk|Rk=0 = gIk +uSk ≥ 0
we have that this domain is invariant to system (3.6).

Futhermore, the system can be reduced into two dimensions due to the fact that
Rk(t) = 1− Sk(t)− Ik(t),{

Ṡk = −λkSkΘ + δ(1− Sk − Ik)− uSk
İk = λkSkΘ− gIk, k = 1, 2, ..., n.
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Clearly there is a trivial equilibrium point E0 = (0, 0, ..., 0, 0). Another solution to solving
S ′k = 0 and I ′k = 0 is E∗ where:

S∗k =
gδ

g(δ + u) + λ(δ + g)kΘ
,

I∗k =
λδkΘ

g(δ + u) + λ(δ + g)kΘ
.

Therefore, we have another disease-free equilibrium point E0 = (δ/(δ+u), 0, ..., δ/(δ+u), 0)
and an epidemic equilibrium E∗(S∗1 , I

∗
1 , ..., S

∗
n, I

∗
n) with S∗k and I∗k as defined above.

To find the reproductive threshold ratio, we substitute I∗k into the equation for Θ(t).

Θ =
1

〈k〉

n∑
k=1

kp(k)
λδkΘ

g(δ + u) + λ(δ + g)kΘ
= f(Θ) (3.7)

Θ = 0 satisfies equation (3.7) and is a fixed point. To allow a non-trivial solution Θ ∈ (0, 1)
we need:

df(Θ)

dΘ

∣∣∣∣
Θ=0

> 1

df(Θ)

dΘ

∣∣∣∣
Θ=0

=
1

〈k〉
∑

kp(k)
λδ(g(δ + u) + λ(δ + g)kΘ + λδkΘ(λ(δ + g)k)

(g(δ + u) + λ(δ + g)kΘ)2

=
1

〈k〉
∑

kp(k)
λδk(g(δ + u))

(g(δ + u))2

=
1

〈k〉
∑

kp(k)
λδk2

g(δ + u)

=
λδ

g(δ + u)〈k〉
∑

k2p(k)

=
λδ〈k2〉

g(δ + u)〈k〉
= R0

If R0 > 1 then ∃ a positive endemic equilibrium E∗. If not, then there is only one possible
equilibrium: the disease-free equilibrium which brings us to the following theorems.

Theorem 3.7.1. (modified from [11]). Assume R0 < 1, then disease-free equilibrium E0 is
globally asymptotically stable in the meaningful domain, ΩSIR.

Proof. Consider a non-negative solution {Sk(t), Ik(t)}nk=1. Comparing to system (3.6), by
removing the first term which is clearly less than zero, we have that
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dSk(t)

dt
≤ δ − (δ + u)Sk(t).

Therefore we can consider the following auxiliary system:

dSk(t)

dt
= δ − (δ + u)Sk(t), k = 1, 2, ..., n (3.8)

which has the equilibrium point S0
k = δ/(δ + u). We can use an integrating factor to solve

system (3.8) :

dSk(t)

dt
+ (δ + u)Sk(t) = δ

e(δ+u)tdSk(t)

dt
+ e(δ+u)t(δ + u)Sk(t) = e(δ+u)tδ

(e(δ+u)tSk(t))
′ = δe(δ+u)t∫

(e(δ+u)tSk(t))
′dt =

∫
δe(δ+u)tdt

e(δ+u)tSk(t) =
δ

δ + u
e(δ+u)t + C

Thus the solution is Sk(t) = δ/(δ + u) + Ce−(δ+u)t. Clearly, we have that limt→∞ Sk(t) =
δ/(δ+u), and it is the only equilibrium point in the positive quadrant and so the equilibrium
is globally asymptotically stable.

Alternatively we could use a change of variables, which is much simpler and quicker.
Let y = Sk − δ/(δ + u):

y′ = S ′k

= δ − (δ + u)(y +
δ

δ + u
)

= δ − (δ + u)y − δ
= −(δ + u)y

which is a linear first order differential equation and the solution is globally asymptotically
stable.

Then, for any ε > 0, Sk(t) ≤ S0
k + ε for t sufficiently large. Thus,

dIk(t)

dt
≤ λk(S0

k + ε)Θ− gIk(t)

Again we can consider the auxiliary system:
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dIk(t)

dt
= λk(S0

k + ε)Θ− gIk(t), k = 1, 2, ..., n. (3.9)

Let us consider the following Lyapunov function,

V (t) =
n∑
k=1

bkIk(t)

where bk =
kp(k)

g〈k〉
. We have that bk > 0, Ik > 0 ∀k and V is positive definite.

V ′ =
∑

bkIk(t)
′

=
∑

bk[λk(S0
k + ε)Θ− gIk]

=
∑ kp(k)

g〈k〉
[λk(S0

k + ε)Θ− gIk]

=
∑

k2p(k)
λ(S0

k + ε)

g〈k〉
Θ− gIk

kp(k)

g〈k〉

=
∑

[
k2p(k)

g〈k〉
λ(

δ

δ + u
+ ε)Θ− kp(k)Ik

〈k〉
]

= Θ(R0 +
〈k2〉ε
g〈k〉

− 1)

From assumption we have R0 < 1. We can fix ε > 0 small enough so that R0+〈k2〉ε/(g〈k〉) <
1. Therefore we have V ′ ≤ 0 and dV/dt = 0 if Ik = 0. Thus limt→∞ Ik = 0 as we have asymp-
totic stability.

By the comparison theorem, we get global asymptotic stability for the disease-free equi-
librium of the original reduced system.

Theorem 3.7.2. [11] Assume R0 > 1, and u < g. Then E∗ is globally asymptotically stable
in the meaningful domain, ΩSIR.

Proof. Consider a non-negative solution {Sk(t), Ik(t), Rk(t)}nk=1. Then use the following Lya-
punov function,

V (t) =
1

2

∑
{w1(k)(Sk − S∗k)2 + w2(k)(Rk −R∗k)2}+ (Θ−Θ∗ −Θ∗ ln

Θ

Θ∗
)

where R∗k = 1−Sk ∗−Ik∗, Θ∗ = (1/〈k〉)
∑
kp(k)I∗k , and w1(k), w2(k) are positive constants.

By using the fact that (−λkS∗kΘ∗+ δR∗k−uS∗k) = 0, g = λ〈k2〉/(〈k〉)S∗k and g(1−S∗k−R∗k)−
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Model uniform mixing network mixing

SIS
β

µ+ g

λ〈k2〉
(µ+ g)〈k〉

SIR
β

µ+ g

λ〈k2〉
(µ+ g)〈k〉

SIRS
βδ

γ(δ + µ)

λδ〈k2〉
γ(δ + µ)〈k〉

Table 3.1: Comparison of Thresholds for Uniform mixing and network mixing

δR∗k + uS∗k = 0 we get the following expression for dV/dt,

dV

dt
= −

∑
w1(λkΘ + u)(Sk − S∗k)2 −

∑
w2(g + δ)(Rk −R∗k)2

+
∑

(δw1 − (g − u)w2)(Sk − S∗k)(Rk −R∗k)

+
∑

(−λkS∗kw1 + )(Sk − S∗k)(Θ−Θ∗).

We can choose w1 and w2 so that the last two sums are zero. That is, w1(k) = (kp(k)/〈k〉)S∗k
and w2(k) = (δ/(g+u))w1(k). Thus we impose that V ′(t) ≤ 0 if and only if Sk = S∗k , Ik = I∗k
and Rk = R∗k for k = 1, 2, ..., n. According to the LaSalle invariance principle, we have that:

lim
t→∞

Sk(t) = S∗k

lim
t→∞

Ik(t) = I∗k

lim
t→∞

Rk(t) = R∗k

Therefore, the endemic equilibrium E∗ is globally asymptotically stable.

Table 3.1 is a summary of some simple models and their respective reproductive thresh-
old value for when the uniform mixing assumption is used and when the network mixing
assumption is used.

Note the difference between β and λ, which is the contact rate and the transmission rate
respectively. Recall that β is the transmission rate times the effective number of contacts
per unit time. If we were to consider a given connectivity k, then β = λk. However,
since we are considering the entire coupled system as a whole, on average the number of
contacts would be the average connectivity, 〈k〉. Therefore, we see a common theme of the
reproductive threshold values for the network models being a multiple of the values for the
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uniform mixing values by a factor of
〈k2〉
〈k〉2

. Another way to analyze this is by the variance

of the degree or connectivity. In general,

V ar(k) = E((k − E(k))2)

= E(k2)− E(k)2

=
n∑
k=1

k2p(k)− [
n∑
k=1

kp(k)]2

= 〈k2〉 − 〈k〉2

This brings us to the effect of the network structure on the dynamics. The more spread the
connectivity or degree distribution is, the more the reproductive threshold value increases.
In general, if all individuals in the network have the exact same number of relations, then
there is no change on the reproductive threshold value. However, for any V ar(k) > 0, there
will be an increase in the reproductive threshold value.

3.8 Numerical Simulations

The following simulations were completed in MATLAB, using the built-in ode solver ode45
which was used to analyze the disease models with a mixing network. A scale-free network
that follows a power law degree distribution, p(k) ∼ k−α where α = 2.1. Also we assume
that n = 50 so the maximum number of links any single node in the network has is 50. For
the parameter values, µ = 0.2 and g = 1.

For this network we have that the average degree is 〈k〉 = 2.4733 and 〈k2〉 = 24.0974.
Since the reproductive threshold for the following simulations was R0 = λ〈k2〉/((µ + g)〈k〉)
then we get that the critical value of λ is λ∗ = 0.123.
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Figure 3.3: Network SIS Model with λ = 0.12 which causes R0 < 1: the disease dies
out in this simulation as expected in conjunction with Theorem 3.3.1.
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Figure 3.4: Network SIS Model with λ = 0.15 which causes R0 > 1: and the disease
persists in conjunction with Theorem 3.3.2.
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Figure 3.5: Network SIS Model with λ = λ∗ so R0 = 1: the disease dies out in this
simulation as expected in conjunction with Theorem 3.3.1.
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Figure 3.6: Network SIS Model with Vertical Transmission with λ = 0.12 and
p = 0.4: The addition of vertical transmission causes the disease to persist instead of die
out.
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Chapter 4

Network SIS Models with Switching

In this chapter, we begin to investigate the addition of switching to a parameter, the trans-
mission rate, to network epidemic models that first only have two main compartments. We
start with models that only have two main compartments because they can typically be re-
duced to n-dimensions which will be represented by one single equation based on the degree
distribution, k, which goes from 1 to n.

We will analyze three SIS type models, first the basic SIS model with population dynam-
ics in Section 4.1, then the SIS model with population dynamics and vertical transmission in
Section 4.2, and finally the SIS model with switched transmission, recovery, and birth rate
in Sectio 4.3. At the end of the chapter we support our results with computer simulations.

4.1 The SIS Network Model with Switched Transmis-

sion Rate

We start with an SIS Model in which individuals who contract the disease and recover are
immediately susceptible to the disease repeatedly; there is no immunity. We want to intro-
duce switching to the SIS model by assuming that the transmission rate, λ, is a parameter
that varies over time. Assume a simple way for λ to vary; assume that it is a piecewise
constant that switches value at switching times, tl, with t0 = 0 < t1 < t2 < ... < tl → ∞
as l → ∞. We can assume without loss of generality that the initial time is zero. Assume
there are m different transmission rates that λi can take on. Then the switching signal σ(t)
is a function which maps the set of all positive real numbers R+ to the set of integers from
1 to m, {1, 2, ...,m}. We assume that σ(t) is piecewise continuous from the left, and that i
follows this switching rule σ. The system of differential equations are given as follows,{

Ṡk = µ− λikSkΘ + gIk − µSk
İk = λikSkΘ− gIk − µIk, k = 1, 2, ..., n

(4.1)

with k ∈ {1, ..., n} where n is the highest degree in the network and i ∈ {1, 2, ...,m} following
the switching rule σ(t). As before, 0 < µ ≤ 1 is the birth and natural death rate and
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0 < g ≤ 1 is the recovery rate. The variables Sk, Ik are the proportion of susceptible and
infected individuals with degree k, respectively. The meaningful physical domain for this
system is ΩSI = {(S1, I1, S2, I2, ..., Sn, In) ∈ R2n

+ |Sk + Ik = 1 ∀ k ∈ {1, ..., n}}. Since we have

that Sk + Ik = 1 then Ṡk + İk = 0. Also, Ṡk|Sk=0 = µ + gIk > 0, and İk|Ik=0 = λikSkΘ > 0.
Therefore the physically meaningful domain is invariant to the switched system. For each
subsystem, define the basic reproduction number, from the non-switched case,

R0i =
λi〈k2〉

(µ+ g)〈k〉

which is the average number of secondary infections produced by a single infected individual
in a wholly susceptible population. Each subsystem has its own basic reproductive number,
due to switching the transmission rate. All subsystems have a disease-free equilibrium in
common, E0 = (S01, I01, S02, I02, ..., S0n, I0n) where (S0k, I0k) = (1, 0) ∀k = 1, ..., n. Each
subsystem has a unique endemic equilibrium, E∗ = (S∗1 , I

∗
1 , S

∗
2 , I
∗
2 , ..., S

∗
n, I

∗
n) where

S∗k =
µ+ g

λikΘ + µ+ g
, I∗k =

λikΘ

λikΘ + µ+ g

which exist in the meaningful domain if R0i > 1 for all k.

The overall switched system has only one equilibrium, which is the disease-free equi-
librium E0, since it is an equilibrium point of all subsystems. Therefore, we can study E0

using a common Lyapunov function. This leads us to the following theorem on global asymp-
totic stability of the disease-free equilibrium.

Since Sk = 1 − Ik, we can reduce this system into n-dimensions and write the system
with one differential equation for each value of k:

dIk(t)

dt
= λikΘ(t)− (λikΘ + g + µ)Ik(t)

Theorem 4.1.1. Assume that for all subsystems i ∈ σ we have the following inequality

λi〈k2〉
(µ+ g)〈k〉

< 1

then we have that the equilibrium point E0 = (S01, I01, S02, I02, ..., S0n, I0n) where (S0k, I0k) =
(1, 0) ∀k = 1, ..., n is globally asymptotically stable in the meaningful domain ΩSI , and thus
the disease dies out.

Proof. Consider the following common Lyapunov function

V (t) =
1

2

n∑
k=1

ω1(k)I2
k + 〈k〉Θ

52



where ω1(k) is a positive constant that depends on k and is to be determined suitably. The
auxiliary function V is clearly positive definite for all i ∈ σ. Calculating the derivative of
V (t) along the disease-free solution of the switched system, it follows that

dV

dt
=

n∑
k=1

{−ω1(λikΘ + µ+ g)I2
k + λik(ωi − kp(k))IkΘ}+ (λi〈k2〉 − (µ+ g)〈k〉)Θ

To make the second term in the sum zero, we choose ω1(k) = kp(k). Then since we assume
that λi〈k2〉/((µ + g)〈k〉) < 1 then dV/dt ≤ 0 and dV/dt = 0 if and only if Ik = 0 for all
values of k. Then the disease-free solution is globally asymptotically stable.

This criterion that all the basic reproductive numbers for each subsystem is less than 1
makes logical sense biologically, since an infected person on average infects at most one other
person, then the disease dies out. To broaden this condition, we consider the average of the
reproductive numbers. Define the time-weighted mean of R0 as follows,

〈Rσ〉 =
1

t

∫ t

0

Rσ(s)ds.

Define Ti(t) to be the total activation time for the i-th subsystem in the interval (0, t]. This
way we can calculate the time-weighted mean of R0 as a summation of the m subsystems,

〈Rσ〉 =
1

t

m∑
i=1

RiTi(t).

Use this definition in determining stability of the disease-free equilibrium based on the aver-
age R0, thus allowing for Ri > 1 in some subsystems, as long as Ri < 1 in other subsystems
to balance it out.

Lemma 4.1.1. (adapted from theorem 2.1 in [40]) Consider a general switched epidemiology
system with basic reproductive numbers Ri = Ai/B for i = 1, 2, ...,m where A1, ..., Am, B > 0
are positive constants. If

〈Rσ〉 < 1− ε

for t ≤ h, with constants ε > 0, h ≥ 0 and switching rule σ ∈ S, then it follows that∑m
i=1(Ai −B)Ti(t) < −ct for t ≥ h, with c > 0 a constant.

Proof.

〈Rσ〉 < 1− ε
1

t

∫ t

0

Aσ(s)

B
ds < 1− ε

1

t

∫ t

0

(Aσ(s) −B)ds < −εB
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Let c = εB, then

∫ t

0

(Aσ(s) −B)ds < −ct∫ T1(t)

0

(A1 −B)ds+ ...+

∫ Tm(t)

0

(Am −B)ds < −ct
m∑
i=1

∫ Ti(t)

0

(Ai −B)ds < −ct

m∑
i=1

(Ai −B)Ti(t) < −ct

for t ≥ h.

This Lemma will be used to prove exponential stability of the disease-free equilibrium in
many theorems, including the following one, motivated by [22].

Theorem 4.1.2. If 〈Rσ〉 < 1 − ε for all t ≥ 0 and ε > 0, with switching rule σ ∈ S, then
the disease-free solution is exponentially stable in the meaningful domain, QSI .

Proof. Let il follow the switching rule σ(t) ∈ S. Then for t ∈ (tl−1, tl], il = σ(t) and

Θ′(t) =
1

〈k〉

n∑
k=1

kp(k)I ′k(t)

=
1

〈k〉
∑

kp(k)(λilkΘ− λilkΘIk − (µ+ g)Ik

≤ 1

〈k〉
∑

kp(k)(λilkΘ− (µ+ g)Ik)

=
1

〈k〉
(λilΘ

∑
k2p(k)− (µ+ g)

∑
kp(k)Ik)

= (
λil〈k2〉
〈k〉

− (µ+ g))Θ

= CilΘ

where Cil =
λil〈k2〉
〈k〉

− µ− g. Then for (tl−1, tl],

Θ(t) ≤ Θ(tl−1) exp[Cil(t− tl−1)] (4.2)

Since Θ ≥ 0 for all t ≥ 0, Θ is bounded in the 1-norm, based on the effects of the switching
rule. Apply this onto each subinterval. For t ∈ (0, t]:

Θ(t) ≤ Θ(0) exp[Ci1t],

so Θ(t1) ≤ Θ(0) exp[Ci1t1]
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For t ∈ (t1, t2]:

Θ(t) ≤ Θ(t1) exp[Ci2(t− t1)]

≤ Θ(0) exp[Ci1t1 + Ci2(t− t1)]

...

For (tl−1, tl]:

Θ(t) ≤ Θ(0) exp[Ci1t1 + Ci2(t2 − t1) + ...+ Cil(tl − tl−1)]

= Θ(0) exp[
m∑
i=1

CiTi(t)]

It then follows with the previous Lemma with Ai = λi〈k2〉/〈k〉 and B = µ + g that Θ ≤
Θ(0) exp[−ct] for some c > 0 and for all t ≥ 0. Then if Θ(t) converges to 0 exponentially
and Θ = (1/〈k〉)

∑
kp(k)Ik, then for all k, Ik must be converging to 0 exponentially and the

disease-free equilibrium is exponentially stable in the physically meaningful domain.

It becomes clear that we can produce the following corollary to note that convergence to
the disease-free equilibrium applies for all future time, t ≥ h for some h > 0 constant. In
other words, even if the 〈Rσ〉 is not less than 1 − ε currently, the system will still converge
to the disease-free solution as long as 〈Rσ〉 < 1− ε eventually.

Corollary 4.1.1. If 〈Rσ〉 < 1− ε for t ≥ h where ε > 0, h ≥ 0 are constants and σ ∈ S is
the switching rule, then the solution converges to the disease-free solution in the meaningful
domain ΩSI .

Proof. We have Θ(t) ≤ Θ(0) exp[
∑
CiTi(t)] for t ≥ h, then Θ(t) ≤ Θ(0) exp(−ct) for some

c > 0 and t ≥ h. Since Θ = (1/〈k〉)
∑
kp(k)Ik then each Ik is converging to 0 and since

Sk = 1− Ik, the solution is converging to the disease-free equilibrium.

It could be impractical or difficult to approximate R0. Suppose that

R1, ..., Rr < 1 and Rr+1, ..., Rm ≥ 1

and define
R− = max

i=1,...,r
Ri and R+ = max

i=r+1,...,m
Ri

where, without loss of generality, subsystems 1, ..., r are stable and subsystems r + 1, ...,m
are unstable, and T−(t) is the total activation time of the all the stable subsystems and
T+(t) is the total activation time of all the unstable subsystems during the interval (0, t],
thus T−(t) + T+(t) = t. With these definitions, we can introduce a special case of periodic
switching. Suppose τl = tl − tl−1 is the activation time of subsystem l in one period, where
the length of one period is T = τ1 + ... + τm. Then, motivated by [22], we get the following
result.
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Corollary 4.1.2. If 〈Rσ〉 < 1 and the switching rule is periodic, then the disease-free solution
is asymptotically stable in the meaningful domain, ΩSI .

Proof. First show that if 〈Rσ〉 < 1 then (R1 − 1)τ1 + ...(Rm − 1)τm < 0.

〈Rσ〉 < 1

⇐⇒ 1

t

t∫
0

Rσ(s)ds < 1

⇐⇒ 1

t

t∫
0

(Rσ(s) − 1)ds < 0

⇐⇒
t∫

0

(Rσ(s) − 1)ds < 0

⇐⇒
T1∫

0

(R1 − 1)ds+ ...+

Tm∫
0

(Rm − 1)ds < 0

⇐⇒ (R1 − 1)T1 + ...+ (Rm − 1)Tm < 0

Then show convergence. For t ∈ (0, T ],

Θ(t) ≤ Θ(0) exp[C1τ1 + ...+ Cm(t− (T − τm))]

where Ci =
λi〈k2〉
〈k〉

− (µ+ g) as before.

Θ(t) ≤ Θ(0) exp[C1τ1 + ...+ Cmτm]

= Θ(0) exp[(µ+ g)((R1 − 1)τ1 + ...+ (Rm − 1)τm)]

Let η = exp[(µ+g)((R1−1)τ1 + ...+(Rm−1)τm)]. Since (R1−1)T1 + ...+(Rm−1)Tm < 0
then η < 1. Thus we have,

Θ(t) ≤ ηΘ(0) ≤ Θ(0).

Then consider Θ(hT ), where h is an integer, h = 1, 2, .... Then it can be shown similarly
that

Θ(hT ) ≤ ηΘ((h− 1)T )

for any h. Inductively,

Θ(hT ) ≤ ηΘ((h− 1)T )

≤ η2Θ((h− 2)T )

≤ ...

≤ nhΘ(0).
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Since η < 1, then as h → ∞, we have ηh → 0. Thus as h approaches infinity, the
sequence {Θ(hT )} converges to 0. Without loss of generality, for some t ∈ (tl−1, tl] and with
hT < tl ≤ (h+ 1)T ,

Θ(t) ≤ Θ(hT ) exp[C1τ1 + ...+ Cl(t− tl)] ≤ Θ(hT )eM

where M is a constant, M > 0. Then since the sequence {Θ(hT )} is converging to 0 as
k →∞ and h→∞, then Θ(t) is converging to 0.

We can also use the same definitions of activation times of the stable and unstable
subsystems to introduce the following theorem motivated by [23].

Theorem 4.1.3. If T+(t) ≤ qT−(t) for some constant q ≥ 0 then (R−− 1) + q(R+− 1) < 0
implies that the disease-free solution is exponentially stable.

Proof. Note that t = T− + T+ ≤ (1 + q)T−.

Θ(t) ≤ Θ(0) exp[Ci1t1 + ...+ Cil(t− tl−1)]

= Θ(0) exp[(µ+ g)(Ri1 − 1)t1 + ...+ (µ+ g)(Ril − 1)(t− tl−1)]

= Θ(0) exp[(µ+ g)(R− − 1)T−(t) + (µ+ g)(R+ − 1)T+(t)]

≤ Θ(0) exp[(µ+ g)((R− − 1)T−(t) + (R+ − 1)qT−(t))]

≤ Θ(0) exp[(µ+ g)((R− − 1) + q(R+ − 1))T−(t)]

≤ Θ(0) exp[(µ+ g)((R− − 1) + q(R+ − 1))
t

q + 1
]

Then we have that Θ ≤ Θ(0) exp[−ct] with −c = (µ + g)((R− − 1) + q(R+ − 1)) < 0 and
for all t ≥ 0. Then if Θ(t) converges to 0 exponentially then for all k, Ik must be converging
to 0 exponentially and the disease-free equilibrium is exponentially stable in the physically
meaningful domain.

Note that previously we showed that the endemic equilibrium point exists for each sub-
system under certain conditions, but we did not fully solve for the equilbrium point since Θ
is a function of t. We now consider the evolution equation for Θ.

dΘ

dt
=

1

〈k〉

n∑
k=1

kp(k)
dIk
dt

=
1

〈k〉

n∑
k=1

kp(k)(λikΘ− (λi + µ+ g)Ik)

=
1

〈k〉
(λi〈k2〉 − λi

∑
k2p(k)Ik − (µ+ g)〈k〉)Θ
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Impose the stationary condition in order to solve for the value of Θ∗(t) = (1/〈k〉)
∑
kp(k)I∗k

when Θ′(t) = 0. Clearly Θ∗ = 0 is a solution so we only consider the endemic solution.

λi〈k2〉 − λi
∑

k2p(k)I∗k − (µ+ g)〈k〉 = 0

λi〈k2〉 − λi
∑

k2p(k)
λikΘ

λikΘ + µ+ g
− (µ+ g)〈k〉 = 0

n∑
k=1

(λik
2p(k)− (µ+ g)kp(k)− λ2

i k
3p(k)

λikΘ∗ + µ+ g
Θ∗) = 0

After allowing an equal denominator for all three terms and setting the numerator to 0,
we get that

Θ∗ =
λi〈k2〉 − (µ+ g)〈k〉

λi〈k2〉

Θ∗ = 1− (µ+ g)〈k〉
λi〈k2〉

Θ∗ = 1− 1

Ri

which yields the endemic equilibrium equations:

S∗k =
(µ+ g)〈k2〉

(λi〈k2〉 − (µ+ g)〈k〉)k + (µ+ g)〈k2〉
,

I∗k =
(λi〈k2〉 − (µ+ g)〈k〉)k

(λi〈k2〉 − (µ+ g)〈k〉)k + (µ+ g)〈k2〉

Conjecture 4.1.1. If 〈Rσ〉 > 1 − ε for all t ≥ h for some h ≥ 0 and with switching rule
σ ∈ S then the disease of the system will be persistent.

See simulations of when 〈Rσ〉 > 1 and the result is the persistence of the disease which
is often an oscillating solution due to the switching.

4.2 The SIS Network Model with Vertical Transmis-

sion and Switched Transmission Rate

We modify the previous model to add the concept of vertical transmision, to compare the
changes with the previous SIS Network Model without switching. The system equations are,{

Ṡk = µ(Sk + pIk)− λikSkΘ− µSk + gIk

İk = µ(1− p)Ik + λikSkΘ− gIk − µIk,
(4.3)
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where k = 1, 2, ..., n.

The transmission rate, λi, is a piece-wise constant function where i follows the switch-
ing signal, σ(t) ∈ S. Again, µ is the birth/death rate and g is the recovery rate from the
disease. The addition of vertical transmission intoduces the parameter p, where 0 ≤ p ≤ 1,
which represents the proportion of newborns with infected mothers that do not get infected.
Therefore, (1 − p) is the proportion of newborns with infected mothers that get the dis-
ease via vertical transmission. The physically meaningful domain is the same as in system
(4.1), denoted by ΩSI . Clearly since Sk + Ik = 1 then Ṡk + İk = 0. Further, we have that
Ṡk|Sk=0 = (µp+g)Ik ≥ 0 and İk|Ik=0 = λikSkΘ ≥ 0, thus ΩSI is invariant to the system (4.2).

There is a disease-free equilibrium, E0 which is defined the same as in section 4.1, where
Sk = 1 and Ik = 0 for all k ∈ {1, ..., n}. Also there is an endemic equilibrium unique for
each i-th subsystem, where

S∗k =
g + µp

λikΘ + g + µp
, I∗k =

λikΘ

λikΘ + g + µp

for k = 1, 2, ..., n. The endemic value of Θ for these equilibria, calculated in a similar manner
as in section 4.1, is found to be

Θ∗ = 1− 1

Ri

where Ri, the basic reproduction number, for system (4.2) is

Ri =
λi〈k2〉

(pµ+ g)〈k〉

for i ∈ {1, ...,m}. Clearly, we have the same result where if all the subsystems’ basic
reproductive number meets certain criteria, then we have global asymptotic stability of the
disease free equilibrium.

Theorem 4.2.1. Assume that for all i ∈ σ we have the following inequality

λi〈k2〉
(pµ+ g)〈k〉

< 1

then we have that the equilibrium point E0 = (S01, I01, S02, I02, ..., S0n, I0n) where (S0k, I0k) =
(1, 0) for all k = 1, ..., n is globally asymptotically stable, and thus the disease dies out.

Proof. The proof follows using the common Lyapunov function

V (t) =
1

2

n∑
k=1

ω1(k)I2
k + 〈k〉Θ
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where ω1(k) is a positive constant that depends on k and is to be determined suitably. The
auxiliary function V is clearly positive definite for all i ∈ σ. Calculating the derivative of
V (t) along the disease-free solution of the system, it follows that

dV

dt
=

n∑
k=1

{−ω1(λikΘ + pµ+ g)I2
k + λik(ω1 − kp(k))IkΘ}+ (λi〈k2〉 − (pµ+ g)〈k〉)Θ

To make the second term in the summation zero, we choose ω1(k) = kp(k). Then since we

assume that
λi〈k2〉

(pµ+ g)〈k〉
< 1 then

dV

dt
≤ 0 and

dV

dt
= 0 if and only if Ik = 0 for all k. Then

the disease-free solution is globally asymptotically stable.

Again, a less strict condition is desired here, in order to allow some subsystems to be con-

sidered unstable but overall average out by the time-weighted mean of Ri given by
t∫

0

Rσ(s)ds.

Theorem 4.2.2. If 〈Rσ〉 < 1− ε for all t ≥ 0 and ε > 0 with switching rule σ ∈ S, then the
disease-free solution is exponentially stable in the meaningful domain, QSI . If 〈Rσ〉 < 1 and
the switching rule is periodic then the disease-free equilibrium is asymptotically stable in the
domain QSI .

Proof. Let il follow the switching rule σ(t) ∈ S. Then for t ∈ (tl−1, tl], il = σ(t) and

Θ′(t) = (
λil〈k2〉
〈k〉

− (pµ+ g))Θ(t) = CilΘ(t)

where Cil =
λil〈k2〉
〈k〉

− pµ− g. Then beginning with equation (4.2) and following the proof of

Theorem 4.1.2. and Lemma 4.1.1. where Ai =
λil〈k2〉
〈k〉

and B = pµ+ g that the disease-free

equilibrium is exponentially stable. If the switching rule is periodic then the proof follows
from Corollary 4.1.2.

4.3 The SIS Network Model with Switched Transmis-

sion, Recovery, Birth and Death Rate

The following SIS Model allows for the recovery rate and the birth and death rate as well as
the transmission rate to be a piece-wise parameter that follows a switching signal. Perhaps
it is not just the transmission rate that in reality exhibits seasonality, but even the birth
rate and recovery rate could change due to environmental changes [46]. Consider the model,{

Ṡk = µi − λikSkΘ + giIk − µSk
İk = λikSkΘ− giIk − µiIk

(4.4)
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for k = 1, 2, ..., n and with i ∈ {1, 2, ...,m} following the switching rule σ(t). As before, λi
is the switched transmission rate. Moreover, µi is the birth rate for subsystem i and gi is
the recovery rate for subsystem i, both also switched parameters. The meaningful physical
domain for this system is ΩSI = {(S1, I1, ..., Sn, In) ∈ R2n

+ |Sk + Ik = 1 ∀ k}. Note that

Sk + Ik = 1 so Ṡk + İk = 0. Also, Ṡk|Sk=0 = µi + giIk > 0, İk|Ik=0 = λikSkΘ ≥ 0, therefore
the domain ΩSI is invariant to the system. For each subsystem, define the basic reproduction
number as,

Ri =
λi〈k2〉

(µi + gi)〈k〉
.

Each subsystem has its own basic reproduction number, now varying by three different
parameters. Similarly, each subsystem as a unique endemic equilibrium point,

S∗k =
µi + gi

λikΘ + µi + gi
,

I∗k =
λikΘ

λikΘ + µi + gi

which exist in the meaningful domain if R0i > 1. Also note that again, Θ∗ = 1 − 1/Ri is
the endemic value of Θ. Since these endemic equilibrium points vary for each subsystem,
the overall switched system has only one equilibrium, the disease-free equilibrium E0 =
(1, 0, ..., 1, 0), since it is common to all subsystems. Since Sk = 1 − Ik, we can reduce this
system into n-dimensions and write the system with one differential equation for each degree
class k,

İk = λikΘ− (λikΘ + gi + µi)Ik.

Theorem 4.3.1. Assume that for all subsystems i ∈ σ we have the following inequality

λi〈k2〉
(µi + gi)〈k〉

≤ 1

then we have that the equilibrium point E0 = (S01, I01, S02, I02, ..., S0n, I0n) where (S0k, I0k) =
(1, 0) for all k is globally asymptotically stable, and thus the disease dies out.

Proof. Considering the common Lyapunov function,

V (t) =
1

2

n∑
k=1

ω(k)I2
k + 〈k〉Θ

where ω1(k) is a positive constant. The auxiliary function V is clearly positive definite for
all i ∈ σ. Calculating the derivative of V (t) along the disease-free solution of the switched
system, it follows that

dV

dt
=

n∑
k=1

{−ω1(λikΘ + µi + gi)I
2
k + λik(ωi − kp(k))IkΘ}+ (λi〈k2〉 − (µi + gi)〈k〉)Θ.
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To make the second term in the sum zero, we choose ω1(k) = kp(k). Then since we assume

that
λi〈k2〉

(µi + gi)〈k〉
< 1 then

dV

dt
≤ 0 and

dV

dt
= 0 if and only if Ik = 0 for all values of k.

Then the disease-free solution is globally asymptotically stable.

This condition, however, is very strict and thus a more broad condition is desirable.

Theorem 4.3.2. If
m∑
i=1

(Ai − Bi)Ti(t) < −ct where Ai =
λi〈k2〉
〈k〉

and Bi = µi + gi and c > 0

is a constant and for all t ≥ 0 and if 〈Rσ〉 < 1− ε for all t ≥ 0 and ε > 0 with switching rule
σ ∈ S, then the disease-free solution is exponentially stable in the meaningful domain, ΩSI .

Proof. Let il follow the switching rule σ(t) ∈ S. Then for t ∈ (tl−1, tl] we have that

Θ′(t) =
1

〈k〉
∑

kp(k)(λilkΘ− (λilkΘIk + µi + gi)Ik)

≤ (
λil〈k2〉
〈k〉

− (µi + gi))Θ

= CilΘ

where Cil = Ai − Bi and Ai =
λil〈k2〉
〈k〉

and Bi = (µi + gi). Then it follows from

Theorem 4.1.2. starting with equation (4.2) that Θ(t) ≤ Θ(0) exp[
m∑
i=1

(Ai − Bi)Ti(t)]. From

the assumption, we get that Θ ≤ Θ(0) exp[−ct] for some c > 0 and for all t ≥ 0. Then
Θ converges to 0 exponentially as for all k, Ik is converging to 0 exponentially and the
disease-free equilibrium is exponentially stable in the physically meaningful domain.

4.4 Numerical Simulations

In MATLAB, the built-in ode solver ode45 was used to analyze the switched network mod-
els from this chapter on a scale-free network that follows a power law degree distribution,
p(k) ∼ k−α where α = 2.1. Also, we assume that n = 50 so the maximum number of links
any single node in the network has is 50. For the parameter values, µ = 0.2 and g = 1. Then
for simplicity, there are two subsystems i = {1, 2} and λ1 and λ2 varied to change the value
of R0.

In such a network that follows the aforementioned power law distribution, we have that
the average degree is 〈k〉 = 2.4733, also signifying the mean number of contacts an individual
in the network is linked to that which the infectious disease may be transmitted. Further,
another notable value is 〈k2〉 = 24.0974. In such a case, we get that Ri < 1 if and only if
λi < 0.123 = λ∗. We assume a simple switching rule between 2 subsystems where switching
occurs after every 5 time steps. Also, the simulation is run for 100 time steps or more to get
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a picture of the stability of the system. The initial values were set by setting In−1 = 1, thus
providing the population with a superspreader (an infectious individual with 49 contacts).

Since Sk + Ik = 1, the SIS model can be reduced to one dimension and only the In-
fected, Ik, is drawn on the curves of the graphs. In this particular system, we have:

dIk(t)

dt
= λik(1− Ik(t))Θ(t)− µIk(t)− gIk(t)

where Θ(t) =
1

〈k〉
∑n

k=1 kp(k)Ik(t) and 〈k〉 =
∑n

k=1 kp(k). Three varying degrees, 1, 5, and

20 are displayed on the graphs for comparative purposes in blue, green and red continuous
curves respectively. Note that the higher the degree, the more the disease spreads and the
longer it remains.

From Figure 4.1, if both the reproductive numbers are greater than 1, then the disease-
free equilibrium is unstable, as we see that the disease persists in a periodic solution. This
periodic motion is attributed to the switching effect between two subsystems. In Figure 4.3,
we test to see what happens when one subsystem’s reproductive number is greater than 1,
while the overall average between the two Ri values maintains greater than 1. As one might
predict, the disease also persists and has a periodic solution.

A similar observation is made in Figures 4.2 and 7.4. In Figure 4.2, both reproduc-
tive threshold values are below 1, and thus while the disease spreads initially, as t→∞ the
disease dies out. In Figure 4.4, the disease-free equilibrium is also asymptotically approached
in this case where the average R0 is less than 1. However, we do have one subsystem’s repro-
ductive threshold value above 1, and thus we see an initial spread of the infectious disease,
as well as a continual ‘spike’ that decreases in amplitude as time goes on and as the disease
eventually gets eradicated.
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Figure 4.1: Network SIS Switched Model with λ1 = 0.13 and λ2 = 0.15 so both λ1, λ2 >
λ∗ and R1 = 1.055, R2 = 1.218 > 1: On average, 〈Rσ〉 = 1.137 and the disease persists, as
Theorem 4.1.1. would suggest.

0 50 100 150 200 250 300 350 400 450 500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

time

In
fe

ct
ed

Infected trajectory

 

 
Degree=1
Degree=5
Degree=20

Figure 4.2: Network SIS Switched Model λ1 = 0.1 and λ2 = 0.015, so both λ1, λ2 < λ∗

and R1 = 0.839, R2 = 0.126 < 1: On average, 〈Rσ〉 = 0.483 and the disease dies out in
conjunction with Theorem 4.1.1.
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Figure 4.3: Network SIS Switched Model with λ1 = 0.3 and λ2 = 0.015 resulting in
an average λ̄ > λ∗, R1 = 2.518 and R2 = 0.126 thus on average 〈Rσ〉 = 1.322 > 1 and the
disease persists as expected from Theorem 4.1.2.
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Figure 4.4: Network SIS Switched Model with λ1 = 0.13 and λ2 = 0.09, R01 = 1.091
and R02 = 0.755 resulting in an average λ̄ < λ∗, thus on average R0 = 0.923 < 1 and the
disease dies out in this simulation as expected from Theorem 4.1.2.
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Figure 4.5: Network SIS Switched Model with λ1 = 0.22 and λ2 = 0.015, also resulting
in an average λ̄ < λ∗, R1 = 1.846 and R2 = 0.126 thus on average 〈Rσ〉 = 0.986 < 1 and the
disease dies out in this simulation as expected from Theorem 4.1.2., but persists longer due
to the greater difference between the two transmission rates.
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Figure 4.6: Network SIS Switched Model with λ1 = 0.15 and λ2 = 0.11, which giveR01 =
1.218 and R02 = 0.893. This time different time intervals were chosen for each subsystem
and the weighted average 〈Rσ〉 = 0.974 < 1 and the disease dies out, in conjunction with
Theorem 4.1.2.
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Figure 4.7: Network SIS Switched Model with λ1 = 0.11 and λ2 = 0.13, which give
R1 = 0.893 and R2 = 1.055. This time different time intervals were chosen for each subsystem
and the weighted average 〈Rσ〉 = 1.015 and the disease dies out in conjunction with Theorem
4.1.2.
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Figure 4.8: Network SIS Switched Model with Vertical Transmission where λ1 =
0.22 and λ2 = 0.015, and p = 0.4 which give R1 = 2.051 and R2 = 0.140. On average
〈Rσ〉 = 1.096 and the disease persists in conjunction with Theorem 4.2.2. Note that the
addition of vertical transmission results in the persistence of the disease.
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Figure 4.9: Network SIS Switched Model with Vertical Transmission where λ1 =
0.13 and λ2 = 0.09, and p = 0.4 which give R1 = 0.812 and R2 = 1.173. On average
〈Rσ〉 = 0.9925 and the disease dies out in conjunction with Theorem 4.2.2. but persists
longer than without vertical transmission.
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Chapter 5

Network SIR, SIRS, SEIR and
Multi-City Models with Switching

We have established that the mixing network assumption is far more realistic than the
uniform mixing assumption, and that it is necessary to investigate switched systems that
account for changes in environment and other external factors. The alternative approach
to the previous network models is to approximate the transmission rate as a piecewise con-
stant, which is applied to models with 3 or more disease status compartments in this chapter.

In Section 5.1, we apply the time-varying transmission rate to the SIR Network Model.
The switched SIR network model without population dynamics is studied in Section 5.2, and
then the switched SIR network model with vertical transmission is studied in Section 5.3. In
Section 5.4, the addition of waning immunity extends the switched network model into an
SIRS model. In Section 5.5, we study an SEIR model to account for the incubation period.
Finally, Section 5.6 studies the addition of switching to multi-city network models. At the
end of the chapter, numerical simulation results are given.

5.1 The SIR Network Model with Switched Transmis-

sion Rate

In some cases, it is necessary to include the recovered compartment, R, in order to portray
partial or life-long immunity. We add a switched transmission rate to the SIR model with
the network mixing assumption,

Ṡk = µ− λikSkΘ− µSk
İk = λikSkΘ− gIk − µIk
Ṙk = gIk − µRk, k = 1, 2, ..., n.

(5.1)

The physically meaningful domain is ΩSIR = {(S1, I1, R1, ..., Sn, In, Rn) ∈ R3n
+ |Sk + Ik +

Rk = 1 ∀k = 1, 2, ..., n}. We have Ṡk + İk + Ṙk = 0 since Sk + Ik +Rk = 1. Also,
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Ṡk|Sk=0 = µ > 0, İk|Ik=0 = λikSkΘ ≥ 0, Ṙk|Rk=0 = gIk ≥ 0

therefore ΩSIR is invariant to the system.

Due to the third compartment, the system is 3n-dimensional, although with the fact
that Sk + Ik + Rk = 1, the system can intrinsically be reduced to 2n-dimensions. Clearly
there is a disease-free equilibrium E0 for all i ∈ σ where Sk = 1, Ik = 0, and Rk = 0, and an
endemic disease free equilibrium E∗ where,

S∗k =
µ(g + µ)

(λikΘ + µ)(g + µ)
,

I∗k =
λikΘµ

(λikΘ + µ)(g + µ)
,

R∗k =
λikΘg

(λikΘ + µ)(g + µ)

which is unique for the i-th subsystem. Recall from the non-switched case, the basic repro-
ductive number for the i-th subsystem is,

Ri =
λi〈k2〉

(µ+ g)〈k〉
.

Then we can also solve the evolution equation for Θ(t), impose stationary conditions by

setting
dΘ

dt
= 0 and Ik = I∗k and Sk = S∗k to solve for the stationary Theta equation, Θ∗ at

the endemic equilibrium,

dΘ

dt
=

1

〈k〉

n∑
k=1

kp(k)
dIk
dt

=
1

〈k〉

n∑
k=1

kp(k)(λik(1− Ik −Rk)Θ− (g + µ)Ik)

=
1

〈k〉
(λi〈k2〉 − λi

∑
k2p(k)(Ik +Rk) + (µ+ g)〈k〉)Θ

1

〈k〉
(λi〈k2〉 − λi

∑
k2p(k)(I∗k +R∗k) + (µ+ g)〈k〉)Θ = 0

1

〈k〉
(λi〈k2〉 − λi

∑
k2p(k)

λikΘ

λikΘ + µ
+ (µ+ g)〈k〉)Θ = 0∑

(λik
2p(k)− (g + µ)kp(k)− k3p(k)λ2

iΘ

λikΘ + µ
) = 0
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After allowing an equal denominator for all terms and setting the numerator to 0, we get
that

Θ∗ =
µ(λi〈k2〉 − (g + µ)〈k〉)

λi〈k2〉(g + µ)

=
µ

g + µ
(1− 1

Ri

).

Since Rk = 1− Sk − Ik, we can reduce this system into 2n-dimensions.

Theorem 5.1.1. Assume that for all subsystems i ∈ σ we have the following inequality

λi〈k2〉
(g + µ)〈k〉

< 1

then we have that the disease-free equilibrium point is globally asymptotically stable, and thus
the disease dies out.

Proof. Consider the following common Lyapunov function,

V (t) =
1

2

n∑
k=1

{ω1(k)(Sk − 1)2}+ 〈k〉Θ

where ω1(k) is positive constants that depend on k and are to be determined suitably. The
auxiliary function V is clearly positive definite for all i ∈ σ. Calculating the derivative of
V (t) along the disease-free solution of the switched system, it follows that

V ′(t) =
n∑
k=1

{−ω1(λikΘ + µ)(Sk − 1)2 + λik(kp(k)− ω1)SkΘ}+ (
n∑
k=1

λiω1k − 〈k〉(g + µ))Θ

To make the second term zero, we choose ω1(k) = kp(k). Then the coefficient for Θ in the
third term becomes (λi〈k2〉 − 〈k〉(g + µ)) and due to the inequality assumed for all i we get
that V ′(t) ≤ 0 and V ′(t) = 0 if and only if Sk = 1, Ik = 0 for all values of k. Then the
disease-free solution is globally asymptotically stable.

Theorem 5.1.2. Assume 〈Rσ〉 < 1 − ε for all t > 0 and ε > 0 with switching rule σ ∈ S,
then the disease-free solution is exponentially stable in the meaningful domain, QSI .

Proof. Let il follow the switching rule σ(t) ∈ S. Then for t ∈ (tl−1, tl], il = σ(t) and

Θ′(t) =
1

〈k〉
λi〈k2〉Θ− 1

〈k〉
∑

k2p(k)(Ik +Rk)Θ− (g + µ)Θ

≤ [
λi〈k2〉
〈k〉

− (g + µ)]Θ

= CilΘ
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where Cil =
λi〈k2〉
〈k〉

− (g+µ). Then starting with equation (4.2) using the proof of Theorem

4.1.2. and Lemma 4.1.2. where Ai =
λil〈k2〉
〈k〉

and B = g+µ that Θ ≤ Θ(0) exp[−ct] for some

c > 0 and for all t ≥ 0. Then if Θ(t) converges to 0 exponentially and Θ =
1

〈k〉
∑
kp(k)Ik

then for all k, Ik must be converging to 0 exponentially and the disease-free equilibrium is
exponentially stable in the physically meaningful domain.

Based on the simulations, we can make a conjecture about the endemic equilibrium.

Conjecture 5.1.1. Assume 〈Rσ〉 > 1 for all t ≥ 0 and switching signal σ ∈ S, then the
disease persists and there will be an epidemic.

5.2 The SIR Network Model with Switched Transmis-

sion Rate without Population Dynamics

Introduce switching into the SIR model without population dynamics. It is assumed that the
time scale of the disease is short and thus any change in the population size can be ignored
(the birth and death rate is removed from the previous model). Assume the transmission
rate switches between m subsystems, λ1, ..., λm > 0:

Ṡk = −λikSkΘ
İk = λikSkΘ− gIk
Ṙk = gIk, k = 1, 2, ..., n

(5.2)

with i ∈ {1, 2, ...,m} following the switching rule σ(t). The physically meaningful domain is
ΩSIR. This domain is invariant to the system because Ṡk + İk + Ṙk = 0 and Ṡk|Sk=0 = 0,
İk|Ik=0 = λikSkΘ ≥ 0 and Ṙk|Rk=0 = gIk ≥ 0. All subsystems have a basic reproduction
number depending on the piece-wise constant λi,

Ri =
λi〈k2〉
g〈k〉

By setting each of the differential equations in the system to 0, it is clear that for all
k ∈ {1, 2, ..., n}, I∗k = 0. S∗k + R∗k = 1, with S∗k , R

∗
k ≥ 0 ∈ R. There are an infinite number

of disease-free equilibrium points however there is no endemic equilibrium point. Therefore,
we consider two questions:

1. Will the disease die out?

2. Will an epidemic occur?
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From the system equations, it is clear that Sk(t) ≤ Sk(0) for all time t ≥ 0. Thus,

Θ′(t) =
1

〈k〉
∑
kp(k)(λikSk(t)Θ(t)−gIk(t)) ≤ [

λi〈k2〉
〈k〉

Sk(0)−g]Θ. If
λi〈k2〉
g〈k〉

<
1

max
k∈{1,...,n}

Sk(0)

for all i, then Θ′(t) < 0 hence Θ ≤ Θ(0) for t ≥ 0. Therefore, the disease dies out.

Theorem 5.2.1. If 〈Rσ〉 <
1

max
k∈{1,...,n}

Sk(0)
− ε for all t ≥ 0 and ε > 0 and switching rule

σ ∈ S, then the disease will be eradicated and there will be no epidemic.

Proof. Let il follow the switching rule σ ∈ S. Then for t ∈ (tl−1, tl], il = σ(t), we have that:

Θ′ ≤ (
λil〈k2〉
〈k〉

− g)Θ

Then, using that Θ′ ≤ CilΘ with Cil =
λil〈k2〉
〈k〉

− g then we can use Theorem 4.1.2. starting

with equation (4.2) and Lemma 4.1.1. with Ai =
λil〈k2〉
〈k〉

and B = g to show that Θ′(t) ≤

Θ(0) exp[−ct]. This concludes that Θ(t) ≤ Θ(0) and there will not be an epidemic. Further,
this also shows that limt→∞Θ(t) = 0 which shows the disease will be eradicated.

5.3 The SIR Network Model with Switched Transmis-

sion Rate and Vertical Transmission

Now introduce switching into an SIR network model with vertical transmission as well as
horizontal transmission. In this scenario, not only does the infection spread through contact,
but the infection may also be passed down from mother to child. If we let p be the proportion
of newborns with infected mothers that do not catch the disease, then the model is as follows:

Ṡk = µ(Sk +Rk + pIk)− λikSkΘ− µSk
İk = µ(1− p)Ik + λikSkΘ− gIk − µIk
Ṙk = gIk − µRk

(5.3)

with k = 1, 2, ..., n.

The physically meaningful domain is ΩSIR = {(S1, I1, R1, ..., Sn, In, Rn) ∈ R3n
+ |Sk + Ik +

Rk = 1 ∀k}. Clearly Ṡk + İk + Ṙk = 0, and

Ṡk|Sk=0 = µ(Rk + pIk) ≥ 0, İk|Ik=0 = λikSkΘ ≥ 0, Ṙk|Rk=0 = gIk ≥ 0

therefore, the domain is invariant to the system. There are 2 equilibrium values, clearly the
disease-free equilibrium E0 where Sk = 1, Ik = 0, Rk = 0 for all k. The endemic equilibrium
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is E∗ = (S∗1 , I
∗
1 , R

∗
1, ..., S

∗
n, I

∗
n, R

∗
n) where

S∗k =
µ(g + µp)

λikΘ(µ+ g) + µ(g + µp)

I∗k =
λikΘµ

λikΘ(µ+ g) + µ(g + µp)

R∗k =
λikΘg

λikΘ(µ+ g) + µ(g + µp)

for each i-th subsystem. Moreover, we can use the substitution of Ik = I∗k into the equation
for Θ to solving similarly as previously for the basic reproduction number, which gives:

Ri =
λi〈k2〉

(g + µp)〈k〉
for each i-th subsystem. Notice how the basic reproduction number is the same as before,
the addition of vertical transmission does not change the rate of spread of the disease.

We can solve the evolution equation for Θ(t) by imposing stationary conditions Ik = I∗k ,
Sk = S∗k , Rk = R∗k and setting dΘ/dt = 0 and we get the endemic value of Θ:

Θ∗ =
µ(λi〈k2〉 − (g + µp)〈k〉)

λi〈k2〉(g + µ)

=
µ

g + µ
(1− 1

Ri

)

Theorem 5.3.1. Assume that for all subsystems i ∈ σ we have the following inequality:

λi〈k2〉
(g + µp)〈k〉

< 1

then the disease-free equilibrium is globally asymptotically stable and the disease dies out.

Proof. Consider the following common Lyapunov function

V (t) =
1

2

n∑
k=1

ω1(k)(Sk − 1)2 + 〈k〉Θ

where ω1(k) is a positive constant that depends on k and is to be determined suitably. The
auxiliary function V is positive definite for all i ∈ σ. Calculating the deriviative of V (t)
along the disease-free solution of the switched system, it follows that

V ′(t) =
n∑
k=1

{−ω1(λikΘ + µ)(Sk − 1)2 + ω1µ(1− p)(Sk − 1)Ik + λik(kp(k)− ω1)SkΘ}

+
n∑
k=1

(ω1λik − kp(k)(g + µp))Θ.
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The first and second term will be less than or equal to zero, where Sk = 1 or p = 1 gives
equality. Then, to make the third term zero, we select ω1(k) = kp(k). This causes the last
term to become (λi〈k2〉 − 〈k〉(g + µp))Θ and by the inequality in the assumption of this
theorem, this term is negative as well. Then for all i we get that V ′(t) ≤ 0 and V ′(t) = 0
if and only if Sk = 1, Ik = 0, Rk = 0 for all k. Therefore the disease-free equilibrium is
globally asymptotically stable, and the disease dies out.

However, once again a less strict condition is desired for the eradication of the disease.

Theorem 5.3.2. Assume 〈Rσ〉 < 1 − ε for all t > 0 and ε > 0 with switching rule σ ∈ S,
then the disease-free equilibrium is exponentially stable in the meaningful domain, ΩSIR.

Proof. Let il follow the switching rule σ(t) ∈ S. Then for t ∈ (tl−1, tl], il = σ(t) and

Θ′(t) =
1

〈k〉

n∑
k=1

{λik2p(k)Θ(1− Ik −Rk)− (g + µp)kp(k)Ik}

≤ (
λi〈k2〉
〈k〉

− (g + µp))Θ

= CilΘ

where Cil =
λi〈k2〉
〈k〉

− (g + µp). Then the proof follows using the proof of Theorem

4.1.2. starting at equation (4.2) and Lemma 4.1.1. where Ai =
λi〈k2〉
〈k〉

and B = g + µp

that Θ(t) ≤ Θ(0) exp[−ct] for some c > 0 and for all t ≥ 0. Then if Θ(t) converges to 0
exponentially then Ik must be converging to 0 exponentially for all k and the disease-free
equilibrium is exponentially stable in the physically meaningful domain.

Conjecture 5.3.1. If the dwell-time average of the basic reproduction ratio is greater than
1, 〈Rσ〉 > 1, then the disease persists and there will be an epidemic.

5.4 The SIRS Network Model with Switched Trans-

mission Rate

We now introduce switching into the SIRS Network Model, which allows for the loss of
immunity to the disease at a rate δ > 0. Infected individuals who recover gain partial
immunity, but then become susceptible to the disease once again. The system equations for
the model are as follows,

Ṡk = µ− λikSkΘ + δRk − µSk
İk = λikSkΘ− gIk − µIk
Ṙk = gIk − δRk − µRk, k = 1, 2, ..., n.

(5.4)

75



The physically meaningful domain is ΩSIR. There are 2 equilibrium values, clearly the
disease-free equilibrium E0 where Sk = 1, Ik = 0, Rk = 0 for all k. The endemic equilibrium
is E∗ = (S∗1 , I

∗
1 , R

∗
1, ..., S

∗
n, I

∗
n, R

∗
n) where

S∗k =
(g + µ)(δ + µ)

(δ + g + µ)λikΘ + (g + µ)(δ + µ)
,

I∗k =
(δ + µ)λikΘ

(δ + g + µ)λikΘ + (g + µ)(δ + µ)
,

R∗k =
gλikΘ

(δ + g + µ)λikΘ + (g + µ)(δ + µ)

for each i-th subsystem. Further, the basic reproduction number for the i-th subsystem is
the same as in the SIS and SIR case,

Ri =
λi〈k2〉
〈k〉(g + µ)

as the rate of spread of the disease remains the same, regardless of partial immunity to the
infection. Solving the evolution equation for Θ(t) by imposing stationary conditions and
setting dΘ/dt = 0 we get the endemic value of Θ:

Θ∗ =
(δ + µ)(λi〈k2〉 − (g + µ)〈k〉)

(δ + g + µ)λi〈k2〉

=
δ + µ

δ + g + µ
(1− 1

Ri

).

Theorem 5.4.1. Assume 〈Rσ〉 < 1 − ε for all t > 0 and ε > 0 with switching rule σ ∈ S,
then the disease-free equilibrium is exponentially stable in the meaningful domain, ΩSIR.

Proof. Let il follow the switching rule σ(t) ∈ S. Then for t ∈ (tl−1, tl], il = σ(t) and

Θ′(t) =
1

〈k〉

n∑
k=1

{λik2p(k)Θ(1− Ik −Rk)− (g + µ)kp(k)Ik}

≤ (
λi〈k2〉
〈k〉

− (g + µ))Θ

= CilΘ

where Cil =
λi〈k2〉
〈k〉

− (g+µ). Then it follows using the proof of Theorem 4.1.2. and Lemma

4.1.1. where Ai =
λi〈k2〉
〈k〉

and B = g + µp that Θ(t) ≤ Θ(0) exp[−ct] for some c > 0

and for all t ≥ 0. Then if Θ(t) converges to 0 exponentially then Ik must be converging
to 0 exponentially for all k and the disease-free equilibrium is exponentially stable in the
physically meaningful domain.
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5.5 The SEIR Network Model with Switched Trans-

mission Rate

In many infectious diseases, it is more realistic to account for the incubation period, which
is the time it takes from first being exposed to the disease to start showing symptoms and
becoming infectious. In this case, another disease class called Exposed (Ek) will represent
individuals with degree k who have contracted the disease but not yet contagious. The
parameter, a > 0, represents the rate at which exposed individuals become infectious. Then
1/a represents the average incubating period. The system equations are as follows

Ṡk = µ− λikSkΘ− µSk
Ėk = λikSkΘ− aEk − µEk
İk = aEk − gIk − µIk
Ṙk = gIk − µRk, k = 1, 2, ..., n

(5.5)

with µ being the birth/death rate and g is the recovery rate as usual. Also, Θ(t) =
(1/〈k〉)

∑n
k=1 kp(k)Ik as usual since even though the exposed class have been exposed to

the disease, only the infectious class can transmit the disease. The physically meaningful
domain is ΩSEIR = {(S1, E1, I1, R1, ..., Sn, En, In, Rn) ∈ R4n

+ |Sk + Ek + Ik + Rk = 1 ∀k}. We

have Ṡk + Ėk + İk + Ṙk = 0 and,

Ṡk|Sk=0 = µ > 0, Ėk|Ek=0 = λikSkΘ ≥ 0, İk|Ik=0 = aEk ≥ 0, Ṙk|Rk=0gIk ≥ 0

so the physically meaningful domain is positively invariant to the system. There are two
equilibrium values; the disease-free equilibrium E0 is common to all subsystems where Sk = 1,
Ek = 0, Ik = 0, Rk = 0 for all k. The endemic equilibrium E∗ for the i-th subsystem is:

S∗k =
λikΘµ

λikΘ + µ
,

E∗k =
λikΘµ

(λikΘ + µ)(a+ µ)
,

I∗k =
λikΘaµ

(λikΘ + µ)(a+ µ)(g + µ)
,

R∗k =
λikΘg

(λikΘ + µ)(a+ µ)(g + µ)

Further, the basic reproduction number for the i-th subsystem is:

Ri =
λia〈k2〉

(a+ µ)(g + µ)〈k〉
Solving the for endemic stationary value of Theta:
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Θ∗ =
aµ

(a+ µ)(g + µ)
(1− 1

Ri

)

Note that here, the same argument to prove stability for when 〈Rσ〉 < 1 − ε for some
ε > 0 cannot be used, since I ′k = aEk − gIk − µIk and thus it is not easily shown that
Θ′ ≤ C(Ri − 1)Θ where C is some positive constant. Note that if positive sums of Ek
and Ik are grouped, convergence is also not easily shown. However, we can prove that if
for all subsystems i ∈ {1, ...,m}, Ri < 1, and the solution of the system converges to the
disease-free equilibrium.

Theorem 5.5.1. If R1, ..., Rm < 1 then the solution of system (5.5) converges to the disease-
free equilibrium E0, which is globally asymptotically stable in the meaningful domain, ΩSEIR

under arbitrary switching.

Proof. Consider the Lyapunov function V (t) =
∑n

k=1{akp(k) Ek + (a + µ)k p(k) Θ}. We
have that V = 0 when Ek = 0 and Ik = 0 for all k, and V > 0 for all trajectories in the
physically meaningful domain excluding the disease-free equilibrium. The derivative of V
along the disease-free solution is

dV

dt
= (λia

n∑
k=1

k2p(k)Sk − (a+ µ)(g + µ)
n∑
k=1

kp(k))Θ

Using Sk ≤ 1, it is clear that

dV

dt
≤ (λia〈k2〉 − (a+ µ)(g + µ))Θ = (a+ µ)(g + µ)(Ri − 1)Θ.

Therefore, if Ri < 1 for all i ∈ {1, ..,m}, then V ′ ≤ 0 and thus V (t) is a common strict
Lyapunov function. Then the disease-free equilibrium is globally asymptotically stable for
arbitrary switching.

5.6 Network Multi-City Models with Switching

Many infectious diseases can be transmitted from one region to another due to people trav-
elling [39]. For example, in 2003 SARS which had started in one area of China spread to
most of China and other cities in the world due to infected individuals traveling [43]. In
2009, the H1N1 influenza which appeared first in Mexico soon spread to countries all over
the world [56]. In many developing countries, the travelling conditions such as sanitization
in mass transit can be relatively poor, leading to an increase in the spread of disease while
traveling [12]. We will study multi-city models to try to understand the geographic spread
of disease.

78



5.6.1 Two Cities

For simplicity, assume there are two cities and that only healthy members from both pop-
ulations may travel between the two cities at a rate α > 0. While this assumption is not
realistic, it allows for the model to remain simple enough to first analyze before considering
more realistic models. For the multi-city systems, assume that both cities have the same type
of degree distribution network and switched transmission rate, λi, which follows a switching
rule σ ∈ S. Assume the birth and death rate is µ > 0 and the recovery rate is g > 0 for
both cities. The system equations are,

Ṡc1,k = µ(Sc1,k + Ic1,k)− λikSc1,kΘc1 − µSc1,k + gIc1,k − αSc1,k + αSc2,k

İc1,k = λikSc1,kΘc1 − gIc1,k − µIc1,k
Ṡc2,k = µ(Sc2,k + Ic2,k)− λikSc2,kΘc2 − µSc2,k + gIc2,k − αSc2,k + αSc1,k

İc2,k = λikSc2,kΘc2 − gIc2,k − µIc2,k

(5.6)

where k = 1, 2, ..., n. Also, Θc1,k = 1/〈k〉
n∑
k=1

kp(k)Ic1,k and Θc2,k = 1/〈k〉
n∑
k=1

kp(k)Ic2,k.

Note that Ṡc1,k + İc1,k + Ṡc2,k + İc2,k = 0 as they are proportions of a constant popu-
lation. Suppose that Sc1,k + Ic1,k = n1 and Sc2,k + Ic2,k = n2 and that n1 + n2 = 1. The
physically meaningful domain is QSISI = {(Sc1,1, Ic1,1, Sc2,1, Ic2,1, ..., Sc1,n, Ic1,n, Sc2,n, Ic2,n) ∈
R4n

+ |Sc1,k + Ic1,k + Sc2,k + Ic2,k = 1 ∀k}. We have that Ṡc1,k + İc1,k + Ṡc2,k + İc2,k = 0 and

Ṡc1,k|Sc1,k=0 = (µ+ g)Ic1,k + αSc2,k ≥ 0, İc1,k|Ic1,k=0 = λikSc1,kΘc1 ≥ 0,

Ṡc2,k|Sc2,k=0 = (µ+ g)Ic2,k + αSc1,k ≥ 0, İc2,k|Ic2,k=0 = λikSc2,kΘc2 ≥ 0.

Thus, the domain QSISI is invariant to the multi-city switched system. For each i-th sub-
system, the basic reproduction number is

Ri =
λi〈k2〉

(µ+ g)〈k〉

and there is a disease-free equilibrium point, E0 = (S0
c1,k, I

0
c1,k, S

0
c2,k, I

0
c2,k)

n

k=1
where S0

c1,k =

1/2, I0
c1,k = 0, S0

c2,k = 1/2, I0
c1,k = 0.

Theorem 5.6.1. If 〈Rσ〉 < 1− ε for all t ≥ 0 with constant ε > 0 and switching rule σ ∈ S
then the disease-free equilibrium is exponentially stable.

Proof. Let il follow the switching rule σ ∈ S. Then for t ∈ (tl−1, tl], il = σ(t), we have that

Θcj

dt
=

1

〈k〉

n∑
k=1

kp(k)(λilkScj,k − gIcj,k − µIcj,k)

≤ (
λil〈k2〉
〈k〉

− (g + µ))Θcj

= CilΘcj
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with Cil =
λil〈k2〉
〈k〉

− (g + µ) which applies to both j = 1 and j = 2. Starting with

equation (4.2) and following the proof of Theorem 4.1.2. and using Lemma 4.1.1. then we
have that Θ′cj ≤ Θcj(0) exp[−cjt] for j = 1, 2 and cj > 0 for all t ≥ 0. Then Ic1,k and Ic2,k
are exponentially converging to 0 for all k.

Note that if we assume different degree distribution networks for the two cities, the dy-
namics remain mostly the same except for the expected value of the degree, and the variance
of the degree for both networks. In this case, the threshold value is re-calculated to take in
a maximum or minimum of these two values, based on the system.

Now assume both susceptible and infected individuals are allowed to travel between
the two cities, and that individuals can contract the disease while traveling. Instead of the
network mixing, it makes more sense for a uniform mixing assumption during travel. If
we introduce another parameter, γ > 0, which is the contact rate for catching the disease
amongst traveling individuals, the model is as follows:

Ṡc1,k = µ(Sc1,k + Ic1,k)− λikSc1,kΘc1 − µSc1,k + gIc1,k − αSc1,k + αSc2,k − αγSc2,kIc2,k
İc1,k = λikSc1,kΘc1 − gIc1,k − µIc1,k − αIc1,k + αIc2,k + αγSc2,kIc2,k

Ṡc2,k = µ(Sc2,k + Ic2,k)− λikSc2,kΘc2 − µSc2,k + gIc2,k − αSc2,k + αSc1,k − αγSc1,kIc1,k
İc2,k = λikSc2,kΘc2 − gIc2,k − µIc2,k − αIc2,k + αIc1,k + αγSc1,kIc1,k

(5.7)
where k = 1, 2, ..., n.

Again the physically meaningful domain is

QSISI = {(Sc1,1, Ic1,1, Sc2,1, Ic2,1, ..., Sc1,n, Ic1,n, Sc2,n, Ic2,n) ∈ R4n
+ |Sc1,k+Ic1,k+Sc2,k+Ic2,k = 1∀k}

Then Ṡc1,k + İc1,k + Ṡc2,k + İc2,k = 0 for all k. Moreover since 0 ≤ γ ≤ 1 then,

Ṡc1,k|Sc1,k=0 = µIc1,k + gIc1,k + αSc2,k(1− γIc2,k) ≥ 0,

İc1,k|Ic1,k = λikSc1,kΘc1 + αIc2,k(1 + γSc2,k) ≥ 0,

Ṡc2,k|Sc2,k=0 = µIc2,k + gIc2,k + αSc1,k(1− γIc1,k) ≥ 0,

İc2,k|Ic2,k=0 = λikSc2,kΘc2 + αIc1,k(1 + γSc1,k) ≥ 0,

thus QSISI is invariant to the multi-city system (5.7). There is a disease-free equilibrium that
is common to all subsystems, E0 = (S0

c1,k, I
0
c1,k, S

0
c2,k, I

0
c2,k)

n

k=1
where S0

c1,k = 1/2, I0
c1,k = 0,

S0
c2,k = 1/2, I0

c1,k = 0 for all k.

Theorem 5.6.2. If 〈λσ〈k
2〉+ αγ〈k〉
〈k〉(g + µ)

〉 < 1−ε for all t ≥ 0 with constant ε > 0 and switching

rule σ ∈ S then the disease-free equilibrium is exponentially stable in QSISI .

80



Proof. Let il follow the switching rule, σ(t). Then for t ∈ (tl−1, tl], il = σ(t), we have that

(Θc1 + Θc2)′ =
1

〈k〉

n∑
k=1

kp(k)(Ic1,k + Ic2,k)
′

=
1

〈k〉

n∑
k=1

kp(k)(λikSc1,kΘc1 + λikSc2,kΘc2 − (g + µ)(Ic1,k + Ic2,k)

+ αγ(Sc1,kIc1,k + Sc2,kIc2,k))

≤ 1

〈k〉

n∑
k=1

(λik
2p(k)(Θc1 + Θc2)− (g + µ)kp(k)(Ic1,k + Ic2,k)

+ αγ(Ic1,k + Ic2,k))

= (
λi〈k2〉+ αγ〈k〉

〈k〉
− (g + µ))(Θc1 + Θc2)

= Cil(Θc1 + Θc2)

where Cil =
λi〈k2〉+ αγ〈k〉

〈k〉
− (g + µ). Then following the proof of Theorem 4.1.2. and

Lemma 4.1.1., with Ai =
λi〈k2〉+ αγ〈k〉

〈k〉
and B = g + µ, we can show that (Θc1 + Θc2) ≤

(Θc1(0) + Θc2(0)) exp[−ct] for some c > 0 and for all t ≥ 0. Since Θc1,Θc2 are converging to
zero, then Ic1,k, Ic2,k must be converging to 0 for all k. Then, the limiting equations for Sc1,k
and Sc2,k are {

Ṡc1,k = −αSc1,k + αSc2,k

Ṡc2,k = −αSc2,k + αSc1,k

which implies that both Sc1,k and Sc2,k are converging to 1/2. Therefore the solution con-
verges to the disease-free equilibrium in the meaningful domain QSISI .

Another idea is to incorporate media coverage into the multi-city models. We suppose
that as information gets spread throughout the city about the disease the citizens gain
awareness and can take preventative measures which then reduces the transmissibility of
the disease. If c1, c2 < 0 represent the rate of media coverage throughout city 1 and city 2
respectively, then the transmission rate becomes λi−c1 and λi−c2, respectively. We assume
here that c1, c2 are both small enough so that λi − c1 ≥ 0 and λi − c2 ≥ 0. Here we also
choose to have different birth/death rates, recovery rates and travelling rates for each city.

Ṡc1,k = µ1(Sc1,k + Ic1,k)− (λi − c1)kSc1,kΘc1 − µ1Sc1,k + g1Ic1,k

−α1Sc1,k + α2Sc2,k − α2γSc2,kIc2,k

İc1,k = (λi − c1)kSc1,kΘc1 − g1Ic1,k − µ1Ic1,k − α1Ic1,k + α2Ic2,k + α2γSc2,kIc2,k

Ṡc2,k = µ2(Sc2,k + Ic2,k)− (λi − c2)kSc2,kΘc2 − µ2Sc2,k + g2Ic2,k

−α2Sc2,k + α1Sc1,k − α1γSc1,kIc1,k

İc2,k = (λi − c2)kSc2,kΘc2 − g2Ic2,k − µ2Ic2,k − α2Ic2,k + α1Ic1,k + α1γSc1,kIc1,k

(5.8)
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with k = 1, 2, ..., n. The physically meaningful domain is QSISI . We have that

Ṡc1,k|Sc1,k=0 = µ1Ic1,k + g1Ic1,k + α2Sc2,k(1− γIc2,k) ≥ 0,

İc1,k|Ic1,k=0 = (λi − c1)kSc1,kΘc1 + α2Ic2,k(1 + γSc2,k) ≥ 0,

Ṡc2,k|Sc2,k=0 = µ2Ic2,k + g2Ic2,k + α1Sc1,k(1− γIc1,k) ≥ 0,

İc2,k|Ic2,k=0 = (λi − c2)kSc2,kΘc2 + α1Ic1,k(1 + γSc1,k) ≥ 0

therefore this domain is invariant to the switched system. There is a disease-free equilibrium
that is common to all subsystems, where Sc1,k = α2/(α1 +α2), Ic1,k = 0,Sc2,k = α1/(α1 +α2),
and Ic2,k = 0 for all k. The non-physical basic reproduction number is

Rnon
i =

(λi − cmin)〈k2〉+ αmaxγ〈k〉
〈k〉(gmin + µmin)

Theorem 5.6.3. If 〈Rnon
σ 〉 < 1 − ε with ε > 0 a constant for all t ≥ 0 and switching rule

σ ∈ S then the solution of the system converges to the disease-free equilibrium which is
exponentially stable.

Proof. Let il follow the switching rule, σ(t). Then for t ∈ (tl−1, tl], il = σ(t) we have that

Θ′c1 =
1

〈k〉
(λi − c1)〈k2〉Θc1 − (g1 + µ1 + α1)Θc1 + (α2 + α2γ)Θc2

≤ [
(λi − c1)〈k2〉

〈k〉
− (g1 + µ1 + α1)]Θc1 + [α2(1 + γ)]Θc2

and similarly

Θ′c2 =
1

〈k〉
(λi − c2)〈k2〉Θc2 − (g2 + µ2 + α2)Θc2 + (α1 + α1γ)Θc1

≤ [
(λi − c2)〈k2〉

〈k〉
− (g2 + µ2 + α2)]Θc2 + [α1(1 + γ)]Θc1

therefore,

(Θc1 + Θc2)′ ≤ [
(λi − c1)〈k2〉+ α1γ〈k〉

〈k〉
− (g1 + µ1)]Θc1 + [

(λi − c2)〈k2〉+ α2γ〈k〉
〈k〉

− (g2 + µ2)]Θc2

≤ [
(λi − cmin〈k2〉+ αmaxγ〈k〉

〈k〉
− (gmin + µmin)](Θc1 + Θc2)

≤ Cil(Θc1 + θc2)

where Cil =
(λil − cmin〈k2〉+ αmaxγ〈k〉

〈k〉
− (gmin+µmin). Then following the proof of Lemma

4.1.1. and Theorem 4.1.2., with Ai =
(λi − cmin〈k2〉+ αmaxγ〈k〉

〈k〉
and B = gmin + µmin we
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can show that (Θc1 + Θc2) ≤ (Θc1(0) + Θc2(0)) exp[−ct] for all t ≥ 0 where c > 0 is some
constant. This further implies that Θc1 and Θc2 are exponentially converging to 0, and since
both functions are composed of the sum of non-negative multiples of Ic1,k and Ic2,k, then for
all k, Ic1,k and Ic2,k are both converging to 0 exponentially. Then, the limiting equations for
Sc1,k and Sc2,k are

Ṡc1,k = −α1Sc1,k + α2Sc2,k,

Ṡc2,k = −α2Sc2,k + α1Sc1,k

which implies that both Sc1,k and Sc2,k are converging to α2/(α1 + α2) and α1/(α1 + α2).
Therefore the solution converges to the disease-free equilibrium in the meaningful domain,
which is exponentially stable.

5.6.2 η Cities

The next model extends the multi-city concept to an arbitrary number of cities. If we have
η cities, each modelled as an SIS-model with susceptible and infectives traveling at a rate
0 ≤ α ≤ 1 and transport-related infections at a rate 0 ≤ γ ≤ 1:



Ṡc1,k = µ(Sc1,k + Ic1,k)− λikSc1,kΘc1 − µSc1,k + gIc1,k − αSc1,k
+

α

η − 1
[
η∑
l=2

Scl,k − γ
η∑
l=2

Scl,kIcl,k]

İc1,k = λikSc1,kΘc1 − gIc1,k − µIc1,k − αIc1,k +
α

η − 1
[
η∑
l=2

Icl,k + γ
η∑
l=2

Scl,kIcl,k]

...

Ṡcj,k = µ(Scj,k + Icj,k)− λikScj,kΘcj − µScj,k + gIcj,k − αScj,k
+

α

η − 1
[

η∑
l=1,l 6=j

Scl,k − γ
η∑

l=1,l 6=j
Scl,kIcl,k]

İcj,k = λikScj,kΘcj − gIcj,k − µIcj,k − αIcj,k +
α

η − 1
[

η∑
l=1,l 6=j

Icl,k + γ
η∑

l=1,l 6=j
Scl,kIcl,k]

...

Ṡcη,k = µ(Scη,k + Icη,k)− λikScη,kΘcη − µScη,k + gIcη,k − αScη,k

+
α

η − 1
[
η−1∑
l=1

Scl,k − γ
η−1∑
l=1

Scl,kIcl,k]

İcη,k = λikScη,kΘcη − gIcη,k − µIcη,k − αIcη,k +
α

η − 1
[
η−1∑
l=1

Icl,k + γ
η−1∑
l=1

Scl,kIcl,k]

(5.9)

The physically meaningful domain is

Ω(SI)η = {(Sc1,1, Ic1,1, ..., Scη,1, Icη,1, ..., Sc1,n, Ic1,n, ..., Scη,n, Icη,n)|
η∑
j=1

(Scj,k + Icj,k) = 1 ∀k}
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Since 0 ≤ γ ≤ 1 then Ṡcj,k|Scj,k=0 ≥ 0 and İcj,k|Icj,k=0 ≥ 0 hence the domain is invariant
to this switched system.

Theorem 5.6.4. If 〈Rσ〉 < 1 − ε with ε > 0 a constant for all t ≥ 0 and switching rule
σ ∈ S then the solution of the system converges to the disease-free equilibrium which is
exponentially stable.

Proof. Let il follow the switching rule, σ(t). Then for t ∈ (tl−1, tl], il = σ(t) we have that

Θ′cj =
1

〈k〉
[λi
∑

k2p(k)Θcj(1− Icj,k)− (g + µ+ α)〈k〉Θcj +
α

η − 1
(
∑
〈k〉Θcl + γ

∑
Icl,k(1− Scl,k))]

≤ 1

〈k〉
[λi〈k2〉Θcj − (g + µ+ α)〈k〉Θcj +

α

η − 1
(1 + γ)

η∑
l=1,l 6=j

Θcl]

thus

(

η∑
j=1

Θcj)
′ ≤ [

λi〈k2〉+ α〈k〉(1 + γ)

〈k〉
− (g + µ+ α)](

η∑
j=1

Θcj)

= Cil(

η∑
j=1

Θcj)

where Cil =
λi〈k2〉+ α〈k〉(1 + γ)

〈k〉
− (g+µ+α). Then following the proof of Theorem 4.1.2.

and Lemma 4.1.1. with Ai =
λi〈k2〉+ α〈k〉(1 + γ)

〈k〉
and B = g + µ + α we can show that

(
η∑
j=1

Θcj) ≤ (
η∑
j=1

Θcj(0)) exp[−ct] for all t ≥ 0 where c > 0 is some constant. This further

implies that all Θcj for j = 1, ..., η are exponentially converging to 0, and since all Θ functions
are composed of the sum of non-negative multiples of Icj,k, then for all j, k, Icj,k is converging
to 0 exponentially. Then, the limiting equations for Scj,k:

Ṡcj,k = −αScj,k +
α

η − 1

η∑
l=1,l 6=j

Scl,k

which implies that Scj,k is converging to 1/(η − 1). Therefore the solution converges to the
disease-free equilibrium in the meaningful domain, which is exponentially stable.

5.7 Numerical Simulations

In MATLAB, the built-in ode solver ode45 was used to analyze the switched network mod-
els in this chapter on a scale-free network that follows a power law degree distribution,
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p(k) ∼ k−α where α = 2.1. Also, we assume that n = 50 so the maximum number of links
any single node in the network has is 50. For the parameter values, µ = 0.2 and g = 1. Then
for simplicity, there are two subsystems i = {1, 2} and λ1 and λ2 varied to change the value
of R0.

In such a network that follows the aforementioned power law distribution, we have that
the average degree is 〈k〉 = 2.4733, also signifying the mean number of contacts an individual
in the network is linked to that which the infectious disease may be transmitted. Further,
another notable value is 〈k2〉 = 24.0974. In such a case, we get that R0i < 1 if and only if
λi < 0.123 = λ∗. We assume a simple switching rule between 2 subsystems where switching
occurs after every 5 time steps. The initial values were set by setting In−1 = 1, thus providing
the population with a superspreader (an infectious individual with 49 contacts).

Figure 5.1: Network SIR Switched Model with λ1 = 0.13 and λ2 = 0.15 so both
λ1, λ2 > λ∗ and R1 = 1.055, R2 = 1.218 > 1: On average, 〈Rσ〉 = 1.137 and the disease
persists in conjunction with Theorem 5.1.1.
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Figure 5.2: Network SIR Switched Model with λ1 = 0.1 and λ2 = 0.09 so both λ1, λ2 <
λ∗ and R1 = 0.812, R2 = 0.731 < 1: On average, 〈Rσ〉 = 0.772 and the disease dies out in
conjunction with Theorem 5.1.1.
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Figure 5.3: Network SIR Switched Model with λ1 = 0.09 and λ2 = 0.15 so R1 =
0.731, R2 = 1.218 > 1: On average, 〈Rσ〉 = 0.975 and the disease dies out in conjunction
with Theorem 5.1.2.
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Figure 5.4: Network SIR Switched Model with λ1 = 0.3 and λ2 = 0.09 so R1 =
2.436andR2 = 0.731 > 1 but on average, 〈Rσ〉 = 1.584 > 1 and the disease persists leading
to Conjecture 5.1.1.
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Figure 5.5: Network SIR Switched Model with Vertical Transmission with λ1 = 0.13
and λ2 = 0.15 so both λ1, λ2 > λ∗ and R1 = 1.055, R2 = 1.218 > 1: On average, 〈R0〉 = 1.137
and the disease persists as expected from Theorem 5.3.2.
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Figure 5.6: Network SIRS Switched Model with λ1 = 0.13 and λ2 = 0.09, on average
〈Rσ〉 = 0.975 < 1 and the solution converges to the disease-free equilibrium as expected from
Theorem 5.4.1.
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Figure 5.7: Network SEIR Switched Model with λ1 = 0.13 and λ2 = 0.16, on aver-
age 〈R0〉 = 1.299 and the solution converges to the endemic equilibrium as expected from
Theorem 5.5.1.
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Figure 5.8: Network SEIR Switched Model with λ1 = 0.13 and λ2 = 0.09, on average
〈R0〉 = 0.985 and the solution converges to the disease-free equilibrium in conjunction with
Theorem 5.5.1.
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Figure 5.9: Network Multi-City Switched Model with λ1 = 0.13 and λ2 = 0.16, then
〈Rσ〉 = 1.177 > 1 and the disease persists as expected.
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Figure 5.10: Network Multi-City Switched Model with λ1 = 0.13 and λ2 = 0.08, then
〈Rσ〉 = 0.852 < 1 and the disease dies out as expected.
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Chapter 6

Control Schemes for Switched
Network Epidemiological Models

Control schemes are very important tools in the application of mathematical epidemiology. In
Section 6.1, we will investigate constant control strategies including treatment of infectives,
vaccination of newborns, and vaccination of susceptibles. We will also consider a constant
control for multi-city models, where the travel of infected individuals is restricted due to a
screening process. In Section 6.2, pulse control schemes will be investigated. Simulations
will be presented at the end of the chapter.

6.1 Constant Control Schemes

6.1.1 Switched SIR Network Model with Treatment of Infectives

The first control strategy we will investigate is to provide treatment to the infectives and
reduce the transmissibility of the disease. A proportion 0 ≤ p ≤ 1 of all infectives will receive
constant treatment which is assumed to be successful and then these treated individuals will
enter the recovered class. This control scheme is implemented in the SIR network model
with switching, given by the differential equations below,

Ṡk = µ− λikSkΘ− µSk
İk = λikSkΘ− gIk − µIk − pIk
Ṙk = gIk − µRk + pIk, k = 1, 2, ..., n.

(6.1)

where the initial conditions follow Sk(0) > 0, Ik(0) > 0 and Rk(0) = 1 − Sk(0) − Ik(0) > 0
and the physically meaningful domain is ΩSIR. Since Ṡk|Sk=0 = µ > 0, İk|Ik=0 = λikSkΘ ≥ 0,
Ṙk|Rk=0 = (g + p)Ik ≥ 0 and Ṡk + İk + Ṙk = 0 for all k = 1, 2, ..., n then the meaningful
domain is invariant to the system (6.1). The reproductive threshold ratio for each subsystem
i of this switched system is:
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Rp
i =

λi〈k2〉
(g + µ+ p)〈k〉

.

There is a disease-free equilibrium E0 that is common to all subsystems, Sk = 1, Ik = 0,
Rk = 0 for all k, and an endemic equilibrium E∗ that is unique for every subsystem i

S∗k =
µ

λikΘ + µ
,

I∗k =
λikΘµ

(λikΘ + µ)(g + µ+ p)
,

R∗k =
λikΘ(g + p)

(λikΘ + µ)(g + µ+ p)

and the stationary value of Theta is:

Θ∗ =
µ

g + µ+ p
(1− 1

Ri

).

Theorem 6.1.1. If 〈Rp
σ〉 < 1− ε for all t ≥ 0 and some constant ε > 0 with switching rule

σ ∈ S, then the disease-free equilibrium is exponentially stable in the physically meaningful
domain. If the switching rule is periodic then the solution of the system converges to the
disease-free equilibrium E0 asymptotically in the meaningful domain ΩSIR.

Proof. Let il follow the switching rule, σ(t) ∈ S. Then for t ∈ (tl−1, tl], il = σ(t) and

Θ′ =
1

〈k〉

n∑
k=1

kp(k)(λikSkΘ− gIk − µIk − pIk)

≤ (
λi〈k2〉
〈k〉

− (g + µ+ p))Θ

= CilΘ

where Cil =
λi〈k2〉
〈k〉

−(g+µ+p). Then, following the proof of Theorem 4.1.2. and Lemma

4.1.1. where Ai =
λi〈k2〉
〈k〉

and B = g+µ+ p, we have that Θ(t) ≤ Θ(0) exp[−ct] for all t ≥ 0

and for some constant c > 0. If the switching signal is periodic, then it follows Corollary
4.1.2. that the solution converges to the disease-free solution which is asymptotically stable
in the meaningful domain.

This control strategy allows for more straightforward analysis than the constant vaccina-
tion models since the treatment is being applied to the infected population directly, and the
dynamics of the system are similar to the switched SIR network model without treatment.
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However, treating infectives may be more difficult to conduct realistically, it is not always
simple to identify infected individuals and then provide the effective treatment, rather than
to vaccinate a healthy individual and prevent them from contracting the disease. Further,
the inequality 〈Rp

σ〉 < 1 − ε defines a critical treatment proportion, p ≥ pcrit in order to
achieve disease eradication,

pcrit = (g + µ)(
〈Rσ〉
1− ε

− 1)

6.1.2 Switched SIR Network Model with Vaccination of Newborns

The next control strategy is constant vaccination of newborns, which will be applied onto
the SIR network model with switching. Here, a fraction 0 ≤ p ≤ 1 of all newborns are
continuously vaccinated and will be considered as recovered since they are not susceptible to
the disease and have gained some kind of immunity against contracting the disease. Switching
will be considered by approximating the transmission rate as a piecewise constant, again
motivated by varying in time due to seasonality.

Ṡk = µ(1− p)− λikSkΘ− µSk
İk = λikSkΘ− gIk − µIk
Ṙk = gIk − µRk + µp, k = 1, 2, ..., n.

(6.2)

In this model, the control strategy is to vaccination a proportion p of all newborns. This is
a straightforward method but can easily get expensive, especially when the required propor-
tion p to eradicate the disease is very high.

The reproductive threshold ratio for each subsystem i of this switched system is:

Rp
i =

(1− p)λi〈k2〉
(g + µ)〈k〉

.

There is a disease-free equilibrium E0 that is common to all subsystems, where Sk =
(1 − p), Ik = 0, Rk = p for all k. There is also an endemic equilibrium E∗ which is unique
for each i-th subsystem where,

S∗k =
µ(1− p)
λikΘ∗ + µ

,

I∗k =
µ(1− p)λikΘ∗

(g + µ)(λikΘ∗ + µ)
,

R∗k =
g(1− p)λikΘ∗ + µp

(g + µ)(λikΘ∗ + µ)

for all k = 1, 2, ..., n. The stationary value of Theta is

Θ∗ =
µ

g + µ
(1− p)(1− 1

Ri

).
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If we implement a change of variables, Sk = Ŝk(1−p), Ik = Îk(1−p), Rk = R̂k(1−p)+p,
the system transforms into the switched SIR network model without vaccination. The system
is identical to the model without vaccination if p = 0. Motivated by the analysis of that
system, we conclude with the following conjecture,

Conjecture 6.1.1. If 〈Rp
σ〉 < 1 − ε with constant ε > 0 for all t ≥ 0 and switching rule

σ ∈ S, then the solution of the system converges to the disease-free equilibrium, which is
exponentially stable in the physically meaningful domain. If the switching rule is periodic
and 〈Rp

σ〉 < 1 then the solution of the system converges asymptotically to the disease-free
equilibrium.

If we denote 〈Rσ〉 as the time-weighted average of the reproductive threshold ratios for the
switched SIR network model without vaccination, then 〈Rp

σ〉 = (1− p)〈Rσ〉. The conjecture
leads us to a critical value for p, the minimum vaccination proportion that will eradicate the
disease (that is, if p > pcrit then the disease will die out).

pcrit = 1− 1− ε
〈Rσ〉

In many cases, pcrit may be a large value close to 1, which makes the control strategy
very expensive.

6.1.3 Switched SIR Network Model with Vaccination of Suscep-
tibles

Here we implement the vaccination of all susceptibles instead of newborns, with 0 ≤ p ≤ 1
represnting the proportion of successful vaccinations that continuously occur. The system
equations are as follows,

Ṡk = µ− λikSkΘ− µSk − pSk
İk = λikSkΘ− gIk − µIk
Ṙk = gIk − µRk + pSk, k = 1, 2, ..., n.

The reproductive threshold ratio for each i-th subsystem is

Rp
i =

λi〈k2〉µ
(g + µ)〈k〉(µ+ p)

.

Again, there is a disease-free equilibrium E0 that is common to all subsystems, where
Sk = µ/(µ+ p), Ik = 0, and Rk = p/(µ+ p) for all k. There is also an endemic equilibrium
point E∗ unique for each i-th subsystem where,
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S∗k =
µ

λikΘ + µ+ p
,

I∗k =
λikΘµ

(g + µ)(λi + µ+ p)
,

R∗k =
λikΘg + (g + µ)p

(g + µ)(λikΘ + µ+ p)

for all k = 1, 2, ..., n where the stationary value of Theta is

Θ∗ =
µ

g + µ
(1− 1

Rp
i

).

Note that Rp
i ≤ Ri if Ri is the reproductive threshold ratio from the switched SIR network

model without vaccination.

Conjecture 6.1.2. If 〈Rp
σ〉 < 1 − ε with constant ε > 0 for all t ≥ 0 and switching rule

σ ∈ S, then the solution of the system converges to the disease-free equilibrium E0, which
is exponentially stable in the physically meaningful domain. If the switching rule is periodic
and 〈Rp

σ〉 < 1 then the solution of the system converges to the disease-free equilibrium.

The conjecture leads us to a critical value for p, the minimum vaccination proportion
that will eradicate the disease, that is, if p > pcrit then the disease will die out.

pcrit = µ(
〈Rσ〉
1− ε

− 1)

with Ri = λi〈k2〉/((µ+ g)〈k〉).

6.1.4 Switched SIR Network Model with Constant Treatment of
Infectives and Waning Immunity

Now consider the control scheme of constant treatment of the infectives being applied to the
switched SIR network model. Suppose that the immunity gained from the treatment or from
recovery from the disease is temporary. If δ represents the waning rate of the immunity, then
we have the model system equations as follows,

Ṡk = µ− λikSkΘ− µSk + δRk

İk = λikSkΘ− gIk − µIk − pIk
Ṙk = gIk + pIk − µRk − δRk, k = 1, 2, ..., n

(6.3)

with i ∈ {1, ...,m} that follows the switching rule σ(t) ∈ S, and Sk(0) > 0, Ik(0) > 0,
Rk(0) > 0 for all k ∈ {1, ..., n). The physically meaningful domain for this system is ΩSIR.
There is a disease-free equilibrium E0 that is common for all subsystems, Sk = 1, Ik = 0,
Rk = 0 for all k. There is also an endemic equilibrium unique for each i-th subsystem,
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S∗k =
(µ+ δ)(g + µp)

λikΘ(g + p+ µ+ δ) + (µ+ δ)(g + µ+ p)

I∗k =
λikΘ(µ+ δ)

λikΘ(g + p+ µ+ δ) + (µ+ δ)(g + µ+ p)

R∗k =
λikΘ(g + p)

λikΘ(g + p+ µ+ δ) + (µ+ δ)(g + µ+ p)

Then the basic reproduction ratio for the i-th subsystem is:

Rp
i =

λi〈k2〉
(g + µ+ p)〈k〉

(6.4)

In this case, Rp
i = Ri(g + µ)/(g + µ + p), thus Rp

i ≤ Ri with equality when p = 0, or
there is no treatment.

Theorem 6.1.2. If 〈Rp
σ〉 < 1 − ε with ε > 0 a constant and for all t ≥ 0 with switching

rule σ ∈ S, then the solution of the system converges to the disease-free equilibrium, which
is exponentially stable in the physically meaningful domain. If the switching rule is periodic
and 〈Rp

σ〉 < 1 then the solution of the system converges to the disease-free equilibrium.

Proof. Let il follow the switching rule, σ(t) ∈ S. Then for t ∈ [tl−1, tl), il ∈ σ(t), we have
that

Θ′ =
1

〈k〉

n∑
k=1

kp(k)(λikSkΘ− (g + µ+ p)Ik)

≤ [
λi〈k2〉
〈k〉

− (g + µ+ p)]Θ

= CilΘ

where Cil =
λi〈k2〉
〈k〉

− (g+ µ+ p). Then, following the Theorem 4.1.2. and Lemma 4.1.1.

with Ai =
λi〈k2〉
〈k〉

and B = g + µ + p, we have that Θ converges exponentially to 0 since

Θ(t) ≤ Θ(0) exp[−ct] for some constant c > 0 and for all t ≥ 0. Since Θ is a sum of all
non-negative multiples of Ik, each Ik is converging exponentially to 0. Therefore we have
that the disease-free equilibrium is exponentially stable, and the disease dies out. Further, if
the switching signal is periodic, then it follows that the solution converges to the disease-free
solution which is asymptotically stable in the meaningful domain.

From this inequality from the theorem, we can determine the critical value pcrit such that
if p > pcrit then eradication is achieved.
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pcrit = (g + µ)(
〈Rσ〉
1− ε

− 1)

where 〈Rσ〉 is the activation time weighted mean of the basic reproductive ratios from
the switched SIR network model without control.

6.1.5 Switched SIR Network Model with Constant Vaccination of
Susceptibles and Waning Immunity

Consider the constant vaccination control of the susceptibles to be applied to a switched SIR
network model, but now suppose that the immunity gained from the vaccination or from
recovery is temporary. If 0 ≤ δ ≤ 1 is the waning rate of the immunity, then the immune
period is 1/δ. The model is represented by the following system of equations,

Ṡk = µ− λikSkΘ− µSk − pSk + δRk

İk = λikSkΘ− gIk − µIk
Ṙk = gIk + pSk − µRk − δRk, k = 1, 2, ..., n

(6.5)

with i ∈ {1, ...,m} that follows the switching rule σ(t) ∈ S, and Sk(0) > 0, Ik(0) > 0,
Rk(0) > 0 for all k ∈ {1, ..., n). The physically meaningful domain for this system is
ΩSIR = {(S1, I1, R1, ..., Sn, In, Rn) ∈ R3n

+ |Sk + Ik +Rk = 1 ∀k}.

There is a disease-free equilibrium that is common to all m subsystems, where Sk =
(µ + δ)/(µ + δ + p), Ik = 0, and Rk = p/(µ + δ + p) for all k ∈ {1, ..., n}. Each subsystem
also has a unique endemic equilibrium, where

S∗k =
(g + µ)(µ+ δ)

λikΘ(µ+ δ + g) + (g + µ)(µ+ δ + p)
,

I∗k =
λikΘ(µ+ δ)

λikΘ(µ+ δ + g) + (g + µ)(µ+ δ + p)
,

R∗k =
λikΘg + (g + µ)p

λikΘ(µ+ δ + g) + (g + µ)(µ+ δ + p)
.

The basic reproductive ratio for the i-th subsystem is:

Rp
i =

λi〈k2〉(µ+ δ)

(g + µ)〈k〉(µ+ δ + p)
. (6.6)

Since Rp
i = Ri(µ + δ)/(µ + δ + p) then Rp

i ≤ Ri with equality when p = 0, with Ri

representing the basic reproduction number of the i-th subsystem from the switched SIR
network model without control.
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Conjecture 6.1.3. If 〈Rp
σ〉 < 1 − ε with constant ε > 0 for all t ≥ 0 and switching rule

σ ∈ S, then the solution of the system converges to the disease-free equilibrium E0, which
is exponentially stable in the phsyically meaningful domain. If the switching rule is periodic
and 〈Rp

σ〉 < 1 then the solution of the system converges to the disease-free equilibrium.

The conjecture leads us to a critical value for p, the minimum vaccination proportion
that will eradicate the disease, that is, if p > pcrit, then the disease will die out.

pcrit = (µ+ δ)(
〈Rσ〉
1− ε

− 1) (6.7)

6.1.6 Screening Process Control Scheme in a Multi-City Model

In the multi-city models, an idea for a control scheme is restricting travel as a means to
control the disease spread. This can be difficult to implement, as the main problem is first
identifying the infected individuals. SARS was an example of using a screening process
to restrict travel and trying to contain the disease, which was effective due to the global
awareness of SARS and the seriousness of the disease. As individuals were traveling, visual
inspections, thermal scanning, and administering questionnaires were helpful in identifying
infected individuals.

To demonstrate the screening process control scheme, we first assume that there are
two cities, and that susceptible and infective individuals are travelling between the cities.
Suppose that α1 > 0 is the rate of travel of people from city 1 to city 2, and similarly α2 is
the rate of travel of people from city 2 to city 1. Then suppose that the screening process
has a success rate of identifying infected individuals of 0 ≤ p ≤ 1, and assume that there
are no false positives in the test (i.e., none of the people identified as infected are actually
not infected). The individuals who are screened then enter a separate class, Vc1,k and Vc2,k,
placed in isolation in city 1 and city 2 respectively for treatment, and further sub-categorized
by their network degree k. The parameter f > 0 is the rate at which individuals leave the
screened class by successfully receiving treatment and enter the susceptible class once more.
Also assume a standard incidence rate for the infection of the disease while individuals are
traveling, with contact rate 0 ≤ γ ≤ 1. Then the model is represented by,

98





Ṡc1,k = µ(Sc1,k + Ic1,k)− λikSc1,kΘc1 − µSc1,k + gIc1,k + fVc1,k

−α1Sc1,k + α2Sc2,k − α2γSc2,kIc2,k

İc1,k = λikSc1,kΘc1 − gIc1,k − µIc1,k − α1Ic1,k + (1− p)α2Ic2,k

+(1− p)α2γSc2,kIc2,k

V̇c1,k = pα2Ic2,k + pα2γSc2,kIc2,k − fVc1,k
Ṡc2,k = µ(Sc2,k + Ic2,k)− λikSc2,kΘc2 − µSc2,k + gIc2,k + fVc2,k

−α2Sc2,k + α1Sc1,k − α1γSc1,kIc1,k

İc2,k = λikSc2,kΘc2 − gIc2,k − µIc2,k − α2Ic2,k + (1− p)α1Ic1,k

+(1− p)α1γSc1,kIc1,k

V̇c2,k = pα1Ic1,k + pα1γSc1,kIc1,k − fVc2,k

(6.8)

with k = 1, 2, ..., n. Here, i ∈ {1, ...,m} follows a switching rule, σ(t) ∈ S. Furthermore we
have that Sc1,k + Ic1,k + Vc1,k + Sc2,k + Ic2,k + Vc2,k = 1, as these represent proportions of the
population in each class. The initial conditions are Sc1,k(0) > 0, Sc2,k(0) > 0, Ic1,k(0) > 0,
Ic2,k(0) > 0. The physically meaningful domain for this system is:

ΩSIV SIV ={(Sc1,1, Ic1,1, Vc1,1, Sc2,1, Ic2,1, Vc2,1, ..., Sc1,n, Ic1,n, Vc1,n, Sc2,n, Ic2,n, Vc2,n) ∈ R6n
+

|Sc1,k + Ic1,k + Vc1,k + Sc2,k + Ic2,k + Vc2,k = 1∀k}

Since we have that 0 ≤ γ ≤ 1, then

Ṡc1,k|Sc1,k=0 = µIc1,k + gIc1,k + fVc1,k + α2Sc2,k(1− γIc2,k) ≥ 0

İc1,k|Ic1,k=0 = λikSc1,kΘc1 + (1− p)α2Ic2,k(1 + γSc2,k) ≥ 0

V̇c1,k|Vc1,k=0 = pα2Ic2,k(1 + γSc2,k) ≥ 0

Ṡc2,k|Sc2,k=0 = µIc2,k + gIc2,k + fVc2,k + α1Sc1,k(1− γIc1,k) ≥ 0

İc2,k|Ic2,k=0 = λikSc2,kΘc2 + (1− p)α1Ic1,k(1 + γSc1,k) ≥ 0

V̇c2,k|Vc2,k=0 = pα1Ic1,k(1 + γSc1,k) ≥ 0

which implies that the physically meaningful domain ΩSIV SIV is invariant to the switched
system. There is a disease-free equilibrium that is common to all subsystems where

Sc1,k =
α2

α1 + α2

Ic1,k = 0

Vc1,k = 0

Sc2,k =
α1

α1 + α2

Ic2,k = 0

Vc2,k = 0
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For this model, we define the non-physical basic reproduction number for the i-th sub-
system,

Rp,non
i =

λi〈k2〉+ (1− p)(1 + γ)αmax〈k〉
〈k〉(g + µ+ αmin)

(6.9)

where αmax = max{α1, α2}, and αmin = {α1, α2}. The use of the max and min functions
mean these basic reproduction numbers are not physically meaningful but they still take
into account the screening process probability p. The theorems established are sufficient but
perhaps not necessary.

Theorem 6.1.3. If 〈Rp,non
σ 〉 < 1 − ε for all t ≥ 0, with constant ε > 0 and switching rule

σ(t) ∈ S, then the solution of the system converges to the disease-free equilibrium which is ex-
ponentially stable in the meaningful domain. If the switching rule is periodic and 〈Rp,non

σ 〉 < 1
then the solution of the system converges to the disease-free equilibrium, which is asymptot-
ically stable.

Proof. Let il follow the switching rule σ(t) ∈ S. Then for t ∈ (tl−1, tl], il = σ(t),

Θ̇c1 =
1

〈k〉

n∑
k=1

kp(k)[λikSc1,kΘc1 − (g + µ+ α1)Ic1,k + (1− p)α2Ic2,k + (1− p)α2α2γSc2,kIc2,k]

≤ (
λi〈k2〉
〈k〉

− (g + µ+ α1))Θc1 + (1− p)α2(1 + γ)Θc2

and

Θ̇c2 =
1

〈k〉

n∑
k=1

kp(k)[λikSc2,kΘc2 − (g + µ+ α2)Ic2,k + (1− p)α1Ic1,k + (1− p)α1α1γSc1,kIc1,k]

≤ (
λi〈k2〉
〈k〉

− (g + µ+ α2))Θc2 + (1− p)α1(1 + γ)Θc1.

Thus we have that

(Θc1 + Θc2)′ = (
λi〈k2〉+ (1− p)αmax(1 + γ)〈k〉

〈k〉
− (g + µ+ αmin))(Θc1 + Θc2). (6.10)

Therefore we have that

(Θc1 + Θc2)′ ≤ Cil(Θc1 + Θc2)

where Cil =
λi〈k2〉+ (1− p)αmax(1 + γ)〈k〉

〈k〉
− (g + µ+ αmin).

Following the proof of the Theorem 4.1.2. and Lemma 4.1.1. where

Ai =
λi〈k2〉+ (1− p)αmax(1 + γ)〈k〉

〈k〉
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and B = g + µ + αmin, we have that Θc1 + Θc2 ≤ (Θc1(0) + Θc2(0)) exp[−ct] for all t ≥ 0
and for some constant c > 0. Therefore, if 〈Rp,non

σ 〉 < 1 − ε we have that the solution is
exponentially converging to the disease-free equilibrium of the overall switched system. Fur-
ther, if the switching signal is periodic, then the disease-free equilibrium is asymptotically
stable.

The condition for the theorem 〈Rp,non
σ 〉 < 1 − ε above leads us to the critical value pcrit

such that if p > pcrit then eradication of the disease will be achieved. Since we used max
and min functions and this basic reproduction number is non-physically meaningful, then
this critical value will likely be higher than necessary for eradication.

6.2 Pulse Control Schemes

6.2.1 Switched SIR Network Model with Pulse Treatment of the
Infectives

Now we implement a pulse control strategy, where instead of applying a constant treatment
to the infectives, we impulsively treat a proportion of the infectives. Assume a certain frac-
tion of the infected population is given treatment then cured of the disease at certain times tl.
It may seem non-physically acceptable that infected individuals are cured instantaneously,
but it is sometimes reasonable to assume that the time scale of the treatment is very short
compared to the time scale of the dynamics of the disease.

Suppose that there are m different pulses, and 0 ≤ p1, ..., pm ≤ 1, and at the pulse
times, tl with l = 1, 2, ..., it is possible to apply one of the pulses. The switching times are
t1 = 0 < t1 < t2 < ... < tl < ...→∞. At each switching time, tl, an impulsive cure is applied
to a fraction 0 ≤ pi ≤ 1 of the infected individuals in the population. We also introduce
switching the transmission rate λ1, ..., λm > 0 so that this parameter is time-varying. Then
we have the model as follows:

Ṡk = µ− λikSkΘ− µSk, t ∈ (tl1 , tl]

İk = λikSkΘ− gIk − µIk
Ṙk = gIk − µRk

Sk(t
+) = Sk(t), t = tl

Ik(t
+) = Ik(t)− piIk(t)

Rk(t
+) = Rk(t) + piIk(t)

(6.11)

Here k ∈ {1, 2, ..., n} is the degree as before, and i ∈ {1, ...,m} follows the switching rule
and there are m subsystems that the system switches between. Also l = 1, 2, ... indicates the
switching and impulsive times, tl. We assume that solutions are continuous from the left at

101



tl, thus

{(Sk(tl), Ik(tl), Rk(tl))}nk=1 = {(Sk(t−l ), Ik(t
−
l ), Rk(t

−
l ))}nk=1

= lim
h→0+
{(Sk(tl − h), Ik(tl − h), Rk(tl − h))}nk=1

and

{(Sk(t+l ), Ik(t
+
l ), Rk(t

+
l ))}nk=1 = lim

h→0+
{(Sk(tl + h), Ik(tl + h), Rk(tl + h))}nk=1.

We also assume that there is no impulsive effect at the initial time t0, and we take t0 = 0
without loss of generality. The initial conditions, Sk(0

+) = Sk,0 > 0, Ik(0
+) = Ik,0 > 0,

Rk(0
+) = Rk,0. The basic reproduction number for the i-th subsystem is

Ri =
λi〈k2〉

(µ+ g)〈k〉
(6.12)

Clearly there is a disease-free equilibrium point that is common to all subsystems from
1, ...,m where Sk = 1, Ik = 0, Rk = 0 for all k. Recall that Ti(t) is the total activation time
of subsystem i in the interval (0, t].

Theorem 6.2.1. If we have that (m− 1) ln(1− p) +
m∑
i=1

CiTi(t) ≤ −ct then the solution con-

verges to the disease-free equilibrium, which is exponentially stable in the physically mean-
ingful domain.

Proof. Let il follow the switching rule σ(t) ∈ S. Then for t ∈ (tl−1, tl], il ∈ σ(t) and

Θ′ =
1

〈k〉

n∑
k=1

kp(k)(λikSkΘ− gIk − µIk)

≤ [
λi〈k2〉
〈k〉

− (g + µ)]Θ

= CilΘ

where Cil =
λi〈k2〉
〈k〉

− (g + µ).

For t ∈ (tl−1, tl]:
Θ(t) ≤ Θ(t+l−1) exp[Cil(t− tl−1)].

Since for all k, Ik(t) ≥ 0 for all t ≥ 0 and since Θ is a sum of positive multiples of Ik
then Θ(t) ≥ 0 for t ≥ 0 as well. Then Θ(t) is bounded.
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Immediately after tl:

Ik(t
+
l ) = (1− p)Ik(tl)

Θ(t+l ) =
1

〈k〉

n∑
k=1

kp(k)(1− p)Ik(tl)

= (1− p)Θ(tl)

Then we consider each subinterval. For t ∈ (0, t]:

Θ(t) ≤ Θ(0) exp[Ci1t]

Θ(t1) ≤ Θ(0) exp[Ci1t1]

Θ(t+1 ) = (1− p)Θ(t1)

Θ(t+1 ) ≤ (1− p)Θ(0) exp[Ci1t1]

For t ∈ (t1, t2]:

Θ(t) ≤ Θ(t+1 ) exp[Cil(t− t1)] ≤ Θ(0)(1− p) exp[Cilt1 + Ci2(t− t1)]

Θ(t+2 ) = (1− p)Θ(t2)

Θ(t+2 ) ≤ (1− p)2Θ(0) exp[Ci1t1 + Ci2(t2 − t1)]

...

For t ∈ (tl−1, tl]:

Θ(t) ≤ Θ(t+l−1) exp[Cil(t− tl−1)]

≤ Θ(0)(1− p)l−1 exp(Ci1t1 + Ci2(t2 − t1) + ...+ Cil(t− tl−1))

Θ(t+l ) = (1− p)Θ(tl)

Θ(t+l ) ≤ (1− p)lΘ(0) exp[Ci1t1 + Ci2(t2 − t1) + ...+ Cil(tl − tl−1)]

Θ(t+l ) ≤ Θ(0)(1− p)eCi1 t1(1− p)eCi2 (t2−t1) . . . (1− p)eCil (tl−tl−1)

Θ(t+l ) ≤ Θ(0)eln(1−p)eCi1 t1 . . . eln(1−p)eCil (t−tl−1)

Θ(t+l ) ≤ Θ(0) exp(
m∑
i=1

(ln(1− p) + CiTi(t)))

Θ(t) ≤ Θ(0) exp[(m− 1) ln(1− p) +
m∑
i=1

CiTi(t)] ≤ Θ(0) exp[−ct]
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Therefore, if we have that (m−1) ln(1−p)+
m∑
i=1

CiTi(t) ≤ −ct then the solution converges

to the disease free equilibrium which is exponentially stable in the physically meaningful
domain.

The unfortunate thing is that this condition that (m − 1) ln(1 − p) +
m∑
i=1

CiTi(t) ≤ −ct

is not easily verified. Consider if for all i, Ri ≥ 1. We will define Sdwell as the set of all
switching signals considered to have a dwell time, meaning there exists an η > 0 such that
tl− tl−1 ≥ η for all l = 1, 2, ... in the switching signal. The idea is that the transmission rate
does not switch too quickly, and each λil dwells for a long enough time.

Theorem 6.2.2. Suppose that 0 ≤ pi ≤ 1 for all i = 1, ...,m and R1, ..., Rm ≥ 1. If the
switching signal is considered to have a dwell time, that is σ(t) ∈ Sdwell and there exists a
constant α > 1 such that ln(α(1 − pi)) + η(µ + g)(Ri − 1) ≤ 0 for all i, then the solution
asymptotically converges to the disease-free equilibrium.

Proof. Let il ∈ σ(t) ∈ Sdwell. Then for t ∈ (tl−1, tl] and σ(t) ∈ S and

Θ′(t) ≤ (
λi〈k2〉
〈k〉

− (µ+ g))Θ = CilΘ

with Cil =
λi〈k2〉
〈k〉

. Note that since we assume for all i, Ri ≥ 1 then Cil ≥ 0. Also, since

Θ(t) ≥ 0 and Θ′(t) ≤ CilΘ then Θ is bounded.

For t ∈ (tl−1, tl]:
Θ(t) ≤ Θ(t+l−1) exp[Cil(t− tl−1)].

Immediately after each tl:

Θ(t+l ) = (1− pil)Θ(tl).

We will use these equations to apply to each sub-interval:

For t ∈ (0, t1]:

Θ(t) ≤ Θ(0) exp(Cilt)

Θ(t1) ≤ Θ(0) exp(Cilt1)

Θ(t+1 ) = (1− pil)Θ(t1)

Θ(t+1 ) ≤ (1− pil)Θ(0) exp(Cilt1)

104



For t ∈ (t1, t2]:

Θ(t) ≤ Θ(t+1 ) exp[Ci2(t− t1)]

Θ(t) ≤ (1− pi1)Θ(0) exp[Cilt1 + Ci2(t− t1)]

Θ(t+2 ) = (1− pi2)Θ(t2)

Θ(t+2 ) ≤ (1− pi1)(1− pi2)Θ(0) exp(Ci1t1 + Ci2(t2 − t1))

...

For t ∈ (tl−1, tl]:

Θ(t) ≤ Θ(0)(1− pi1) . . . (1− pil−1
) exp(Ci1t1 + ...+ Cil(t− tl−1))

≤ Θ(0)(1− pi1) . . . (1− pil−1
) exp(Ci1η + ...+ Cilη)

≤ Θ(0)
1

αl(1− pil)
α(1− pi1)e(Ci1η)α(1− pi2)e(Ci2η) . . . α(1− pil)e(Cilη)

≤ Θ(0)
1

αl(1− pil)
α(1− pi1)e(µ+g)(Ri1−1)ηα(1− pi2)e(µ+g)(Ri2−1)η . . . α(1− pil)e(µ+g)(Ril−1)η

≤ Θ(0)
1

αl(1− pil)
Then we have the disease-free equilibrium is asymptotically stable.

What about the case where the switching signal is periodic? If we have that τl = tl− tl−1

and for m subsystems, τl+m = τl, then the switching signal is said to be periodic. We assume
that if Rl = Ri on (tl−1, tl] then Rl+m = Rl and pi = 0 unless t = lT with T = τ1 + ... + τm
being the period, then pi = p. In other words, the pulses are applied at the end of each
period. Denote the set of all periodic switching signals as Speriodic ⊂ S. This leads us to the
following theorem:

Theorem 6.2.3. If the switching rule is periodic, that is σ(t) ∈ Speriodic, and if we have the
following inequality:

ln(1− p) + (µ+ g)((R1 − 1)τ1 + ...+ (Rm − 1)τm) < 0

then the solution converges to the disease-free solution which is asymptotically stable.

Proof. First show convergence. For (0, T ]:

Θ(t) ≤ Θ(0) exp[C1τ1 + ...+ Cm(t− (T − τm)]

with Ci =
λi〈k2〉
〈k〉

− (µ+ g).

Immediately after T , the first impulse is applied:

Θ(T+) ≤ Θ(0)(1− p) exp[C1τ1 + ...+ Cmτm]

= Θ(0) exp[ln(1− p) + C1τ1 + ...+ Cmτm]

= ηΘ(0)
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where η = exp[ln(1 − p) + C1τ1 + ... + Cmτm] < 1. Similarly we can show that Θ(hT+) ≤
ηΘ((h− 1)T+) for any integer h = 1, 2, ... Then,

Θ(hT+) ≤ ηΘ((h− 1)T+)

≤ η(ηΘ((h− 2)T+))

≤ ...

≤ ηhΘ(0)

Then it becomes clear that the sequence {Θ(hT+)}∞h=1 is converging to zero. Therefore,
as h→∞, Θ(T+) is converging to zero.

Then show stability. Suppose that R1, ..., Rr ≥ 1 and Rr+1, ..., Rm < 1. Then we have
that C1, ..., Cr ≥ 0 and Cr+1, ..., Cm < 0. Then during the first period, (0, T ], the maximum
vvalue of Θ is:

Θmax = Θ(0)eC1τ1+...+Crτr = Θ(0)B

For any ε > 0, choose δ = ε/B. Then if Θ(0) < δ in the interval (0, T ],

Θ ≤ Θmax = Θ(0)B < δB = δε/δ = ε

which completes the definition of stabilty. More generally for any interval (tl−1, tl], and
hT < tl ≤ (h + 1)T then Θ(t) ≤ Θ(hT+)(1 − p)hB < Θ(0)(1 − p)hB < δB = ε. Then the
solution is asymptotically stable.

From this theorem, we can use the inequality condition to determine the critical value
pcrit such that if p > pcrit, and the switching signal is periodic, σ(t) ∈ Speriodic, then the
eradication of the disease is achieved.

pcrit = 1− e−(µ+g)((R1−1)τ1+...+(Rm−1)τm)

6.2.2 Switched SIR Network Model with Pulse Vaccination of the
Susceptibles

We can also consider pulse vaccination into the model with pulse treatment. Then the
switched SIR network model becomes:

Ṡk = µ− λikSkΘ− µSk, t ∈ ((l − 1)T, lT ]

İk = λikSkΘ− gIk − µIk
Ṙk = gIk − µRk

Sk(t
+) = Sk(t)− pSk(t), t = lT

Ik(t
+) = Ik(t)− pIk(t)

Rk(t
+) = Rk(t) + pSk(t) + pIk(t)

(6.13)
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for k = 1, 2, ..., n.

Assume that the switching signal is periodic, σ ∈ Speriodic, and the pulses occur at
the end of each period which are T = τ1 + ... + τm long. The initial conditions are
Sk(0

+) = Sk,0 > 0, Ik(0
+) = Ik,0 > 0, Rk(0

+) = Rk,0 for all k ∈ {1, ..., n}, with n be-
ing the highest degree in the network. We assume that Sk(t)+Ik(t)+Rk(t) = 1 for all k and
for all t ≥ 0, thus these represent proportions of the population. The meaningful domain is
ΩSIR = {(S1, I1, R1, ..., Sn, In, Rn) ∈ R3n

+ |Sk + Ik +Rk = 1 ∀k}.

We have that Ṡk + İk + Ṙk = 0 since Sk + Ik + Rk = 1. Also, Ṡk|Sk=0 = µ > 0,
İk|Ik=0 = λikSkΘ ≥ 0, Ṙk|Rk=0 = gIk ≥ 0. Therefore the physically meaningful domain is
invariant to the switched system. The impulsive differene equations do not move the solution
outside the domain. The basic reproduction ratio for the i-th subsystem is

Ri =
λi〈k〉

(µ+ g)〈k〉
as it is in the non-pulse switched SIR network model. The disease-free equilibrium from the
non-pulse model where Sk = 1, Ik = 0, Rk = 0 is no longer an equilibrium for this pulse
switched system, due to the pulse vaccination which moves the subsystem even when Ik = 0.
However Ik = 0 is still an equilibrium solution, and since Ik = 1 − Sk − Rk, we can reduce
this system to 

Ṡk = µ− µSk, t ∈ ((l − 1)T, lT ]

Ṙk = −µRk

Sk(t
+) = Sk(t)− pSk(t), t = lT

Rk(t
+) = Rk(t) + pRk(t)

(6.14)

for k = 1, 2, ..., n.

This reduced system is no longer a switched system as it does not depend on the piece-
wise parameter, the transmission rate, λi.

Theorem 6.2.4. If the switching rule is periodic, σ ∈ Speriodic, and we have that

ln(1− p) + (µ+ g)((R1 − 1)τ1 + ...+ (Rm − 1)τm) ≤ 0

then the periodic disease-free equilibrium is globally asymptotically stable.

Proof. If the switching rule is periodic, σ ∈ Speriodic, and t ∈ (tl−1, tl], il = σ(t) and

Θ′(t) =
1

〈k〉
(λikSkΘ− gIk − µIk)

≤ (
λi〈k2〉
〈k〉

− (g + µ))Θ

= CilΘ
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with Cil = λi〈k2〉/〈k〉 − µ − g. After each period Θ(lT+)Θ(lT ) − pΘ(lT ). Using the proof
from Corollary 4.1.2, then the periodic disease-free solution is asymptotically stable. The
limiting system becomes 

Ṡk = µ− µSk
Ṙk = −µRk

Sk(t
+) = Sk(t)− pSk(t)

Rk(t
+) = Rk(t) + pSk(t)

(6.15)

For (l − 1)T < t ≤ lT , integrate and solve the equation between pulses:{
Sk(t) = 1 + (Sk((l − 1)T )− 1)e−µ(t−(l−1)T )

Rk(t) = 1− Sk(t)
(6.16)

Then, immediately after pulse vaccination:

Sk(lT
+) = (1− p)Sk(lT )

= (1− p)(1 + (Sk((l − 1)T )− 1)e−µT )

= F (Sk((l − 1)T ))

which defines a stroboscopic mapping which has a fixed point where

Ŝk =
(1− p)(1− e−µT )

1− (1− p)e−µT
(6.17)

and
dF (Sk(lT ))

dSk(lT )

∣∣∣∣
Sk(lT )=Ŝk

= (1− p)e−µT < 1.

Therefore this fixed point is globally asymptotically stable.

Again, the restraint given by the theorem provides the critical value pcrit where if p > pcrit
then eradication is achieved.

pcrit = 1− e−(µ+g)((R1−1)τ1+...+(Rm−1)τm)

6.3 Numerical Simulations

In MATLAB, the built-in ode solver ode45 was used to analyze the SIR and SIRS switched
network models on a scale-free network that follows a power law degree distribution, p(k) ∼
k−α where α = 2.1. Also, we assume that n = 50 so the maximum number of links any
single node in the network has is 50. For the parameter values, µ = 0.1 and g = 1. Then for
simplicity, there are two subsystems i = {1, 2} and λ1 and λ2 varied to change the value of
R0.
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Figure 6.1: Constant Vaccination of Newborns in an SIR Model with λ1 = 0.85 and
λ2 = 0.50 so both and R1 = 7.53, R2 = 4.42 > 1 with Ri representing the basic reproduction
ratio of the non-vaccinated system. Here p = 0.3 is still not strong enough to eradicate the
disease, and there is an epidemic and the disease persists.
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Figure 6.2: Constant Vaccination of Newborns in an SIR Model with λ1 = 0.85 and
λ2 = 0.50 so both and R1 = 7.53, R2 = 4.42 > 1 with Ri representing the basic reproduction
ratio of the non-vaccinated system. Here p = 0.83 eradicates the disease, since pcrit = 0.82.

0 50 100 150
time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Po
pu

la
tio

n 
pr

op
or

tio
ns

Population proportions for degree=20

Susceptible
Infected
Removed

109



Figure 6.3: Constant Vaccination of Susceptibles in an SIR Model with λ1 = 0.85 and
λ2 = 0.50 so both and R1 = 7.53, R2 = 4.42 > 1 with Ri representing the basic reproduction
ratio of the non-vaccinated system. Here p = 0.3 does not eradicate the disease, and there
is an epidemic.
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Figure 6.4: Constant Vaccination of Susceptibles in an SIR Model with the same pa-
rameter values as above. Here p = 0.5 eradicates the disease, since pcrit = 0.4972. Vaccinating
the susceptible appears to be a better control scheme than vaccination of the newborns.
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Figure 6.5: Constant Treatment of Infectives in an SIR Model with the same pa-
rameter values as above. Treating the infected individuals is a less effective control scheme,
since even with p = 1 eradication is impossible.
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Figure 6.6: Constant Treatment of Infectives in an SIR Model with λ1 = 0.15 and
λ2 = 0.20 so both and R1 = 1.329, R2 = 1.771 > 1 have been reduced. When p = 0 we get
the usual switched SIR network model where the disease persists.
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Figure 6.7: Constant Treatment of Infectives in an SIR Model with the same pa-
rameter values as above. Now with the reduced transmission rates and p = 1 eradication is
achieved.
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Figure 6.8: Constant Vaccination of Susceptibles with Waning Immunity in an
SIR Model with δ = 0.1 and λ1 = 0.85, λ2 = 0.5. Here p = 0.5 is no longer effective.
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Figure 6.9: Constant Vaccination of Susceptibles with Waning Immunity in an
SIR Model with δ = 0.1 and λ1 = 0.85, λ2 = 0.5. Due to the waning immunity, the
pcrit = 0.9944. In this figure, p = 1 demonstrates the eradication of the disease.
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Figure 6.10: Constant Treatment of Infectives with Waning Immunity in an SIR
Model with δ = 0.1 and λ1 = 0.85, λ2 = 0.5. Even with p = 1 eradication is not achieved
again, again showing that treatment is less effective.
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Chapter 7

Conclusions and Future Directions

In this thesis, we have extended the mathematical epidemiological literature on models that
consider interpersonal contact patterns as networks by the addition of time-varying trans-
mission rates. We have introduced switching into these network type models, motivated by
differences in seasons, by modeling the transmission rates and other parameters as a piece-
wise constant function.

In Chapter 4, we first investigate n-dimensional disease network models consisting of
two main disease classes, susceptible and infective. We first introduce switching into the ba-
sic network SIS type model with population dynamics, then compare the results to a model
with vertical transmission, as well as a model that includes switching for more than one pa-
rameter. We show that if the activation time weighted basic reproduction rate, 〈Rσ〉, is less
than 1− ε for any small ε > 0, then the disease will be eradicated and the disease-free solu-
tion is exponentially stable. We have also shown that if the switching signal is periodic and
〈Rσ < 1 then the solution converges to the disease-free equilibrium, which is asympotically
stable. These results were then supported with numerical examples and computer simula-
tions which also lead to conjectures about the permanence of the disease when 〈Rσ〉 > 1.

In Chapter 5, we introduce switching into more complicated infectious disease network
models, that consist of at least three or more main disease classes. These models include
the SIR type models, with and without population dynamics, with vertical transmission,
SEIR model, and multi-city models (first with two cities and then with η number of cities).
We establish stability results for these models as well, and provide numerical examples and
simulations as evidence to the results.

In Chapter 6, we implement a few constant control strategies involving vaccination and
treatment, with and without waning immunity, and determine critical 0 ≤ p ≤ 1 values that
eradicate the disease or allow the disease to survive. We also consider pulse control and
determine critical p values.

In the future, there are many more types of models that could be investigated, as well
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as a variety of control schemes that could be investigated to further the application of these
network models. One popular type of disease modeling to consider would be using delay
differential equations to describe an latent period, and how the network mixing assumption
affects these models. There were also some concepts in disease modeling that were not dis-
cussed in this thesis, such as disease mortality and a varying population size.

The stability analysis of this thesis can be improved upon, for instance, the stability
of the endemic equilibria for each subsystem of the switched network model. The interest
would be to find sufficient and necessary conditions that will cause the disease to persist, and
what the endemic solution of a switched system is, whether it follows an oscillation between
all i-th endemic equilibria, i = 1, 2, ...,m, or perhaps moves outside the convex hull of the
endemic equilibria.

More theory could be expanded on the network mixing assumption, how this is modeled
beyond the use of the Theta function that sums and averages the probability of transmission
from an infected individual proportional to the number of links that a node has. Types of
networks other than the scale-free network could be considered, such as a growing network
with preferential attachment. In this thesis we considered networks that do not change over
time, but one idea would be to investigate dynamic networks, where nodes and links are
continually added or removed over time.

Another variation to consider is the flexibility of the switching signal. It would be of
interest to investigate state-dependent switching, as opposed to time-dependent switching.
That is, the parameters would change based on the values of the proportions of epidemiolog-
ical compartments. This leads to another class of control schemes, considering the switching
signal as a control and what are necessary conditions that the switching rule should have to
achieve disease eradication. Some switching control ideas might be media coverage or other
types of public disease awareness that will be implemented as a control strategy to reduce
the transmission rate, dependent on time or the state of the system.
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