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Abstract 

In last few decades, studies on defining mechanical behaviour of materials with significant 

microstructure have increased drastically. This is due to the lack of compatibility between the 

experimental data of mechanical behaviour of such materials and obtained results from 

classical elasticity theory. Moreover, with growing demand and need of using microstructural 

materials such as polymers and composites in mechanical, physical, and engineering 

applications, it has become crucial to have a good insight about their behaviour and how to 

analyse it. 

As mentioned before, the classical theory cannot provide suitable formulae to model the 

behaviour of microstructural materials. Thus, a new theory had to be developed in order to 

describe such materials. The basis of a new elasticity theory, which considers the 

microstructure of materials, was formed during the 1950s. This theory is known as Cosserat 

theory of elasticity or micropolar elasticity. 

An effective way to solve the problems in Micropolar elasticity is to use the boundary 

integral method. Nevertheless, this method forces some limitations on the properties of 

boundaries of considerate domains. To be more specific, this method demands more detail to 

characterize the boundary. By using this method, boundaries can be defined and presented by 

a twice differentiable curve. As a result, it cannot be applied on domains with reduced 

boundary smoothness, or the ones containing cracks or cuts. Hence, there is a need of finding 

methods to define irregular boundaries. There has been some research in this particular area, 

however this issue has not been completely addressed. 
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 In order to overcome this difficulty of defining irregular boundaries, an advanced 

mathematical approach can be used. This method includes using the distribution setting in 

Sobolev spaces to formulate the corresponding boundary value problem. The benefit of using 

this method is finding the appropriate weak solution in terms of integral potentials, which 

works perfectly for the aforementioned boundaries. 

In this work, boundary integral equation method has been used to find the integral potentials 

which are the exact analytical solutions, for the corresponding boundary value problems. 

Moreover, the boundary element method has been used to approximate these exact solutions 

numerically. Then these solutions can be applied in many practical engineering problems. 

As an illustration of the importance of this method, then a crack in a human bone was 

modeled and solved using these solutions. The bone assumed to follow plane Cosserat 

elasticity. The stress intensity factor around this crack was calculated and compared to 

classical analysis. The results approves the high effect of microstructure of the material in 

stress distribution around the crack. 
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Chapter 1 Introduction 

1.1 Background 

The classical theory of elasticity is the perfect tool in order to describe the mechanical 

behaviour of the elastic continuum. This theory focuses on materials with reversible 

deformations. In this theory, the stress vector is transferring the internal loading through 

material. For a wide range of materials, such as construction materials, the classical theory of 

elasticity is very reliable. 

Despite the accurate obtained results from the classical theory of elasticity compare to 

experimental data, this theory cannot provide the appropriate outcomes, when the 

microstructure of the material influences its behaviour. In so called materials, each element 

of material will have a microrotation as well as displacement. These microrotations will 

affect the whole material’s deformation.  

In order to use the elasticity theory for such materials, a modification and change has to be 

applied on the classical theory. The new adjustment of theory of elasticity counts 

aforementioned microrotations as well as displacement for each particle in a material. This 

new approach, leads to calculating more reliable and exact results for materials such as 

polymers and granular materials.  

1.2 Scope and Objectives of Thesis 

The objective of this thesis is to consider a crack problem in a plane Micropolar elasticity, 

obtain the results for a stress intensity factor and compare it with the results for the stress 

intensity factor for the same crack but considered under the assumptions of the classical 
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theory. Theoretical background for the computational results presented herein was developed 

by (Shmoylova, 2006). 

1.3 Outline 

Next chapter of this thesis (Chapter 2), will focus on literature review. First, a brief history of 

developing the micropolar elasticity will be provided. As it follows an explanation of 

granular materials, the fundamentals of cosserat theory, and a brief definition of stress 

intensity factor will come. 

Chapter 3 will give a brief overview of the three-dimensional theory of micropolar elasticity, 

which comes in detail in a paper published by (Nowacki, 1986). The motivation of this 

chapter is to introduce the governing equations describing three-dimensional deformations of 

a linearly elastic Cosserat solid and to formulate the basic constitutive and kinematic 

relations that will be used for derivation of corresponding relations of the theory of plane 

Cosserat elasticity in the subsequent chapters. 

Chapter 4 is devoted entirely to the plane problems of micropolar elasticity. On the basis of 

the governing equations and constitutive relations of the three-dimensional Cosserat theory. 

In this chapter, the governing equations has been derived. Moreover, the fundamental 

boundary value problems of plane micropolar elasticity has been formulated. The boundary 

integral equation method that has been used in this chapter, proved the uniqueness and the 

existence of theorems and obtained the exact solutions to these problems in the form of 

integral potentials. 

Chapter 5 will define the solutions for a crack problem and provides the solutions of these 

problems. Since the solutions in the form of integral potentials may not be convenient for 
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applications, later in this chapter, the boundary element method has been introduced as a 

powerful tool to approximate the solutions numerically.  

In order to illustrate the importance of study in this area, a brief comparison between the 

results of analysis with classical and Micropolar elasticity theory for a human bone with a 

crack will be represented in chapter 6. 

Finally, in Chapter 7 several important conclusions and recommendations for future work 

will be made. 
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Chapter 2 Literature Review 

2.1 Cosserat Media 

The mechanical behaviour of a number of materials cannot be completely described using the 

classical theory of elasticity. The length scales have an effect on the behaviour of such 

materials, which is known as Cosserat materials. Soils, polycrystalline and composite 

materials, granular and powder like materials, masonries, cellular or porous media and 

foams, bones, liquid crystals, as well as electromagnetic and ferromagnetic media are some 

examples of Cosserat continua. Some of these examples can be seen in Figure 2-1 and Figure 

2-2. 

 

 

Figure 2-1 Some of the Cosserat Materials examples- (a) Bone texture (adopted from 

http://ic.steadyhealth.com/causes-of-bone-cance). (b) Liquid crystalline polymer (adopted from 

(Zheng, et al., 2006)). (c) Ceramic composite (adopted from 

http://www.globalspec.com/learnmore/materials_chemicals_adhesives/ceramics_glass_materials/cer

a b 

c d 
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amic_matrix_composites). (d) Conglomerate (adopted from 

http://www.savalli.us/BIO113/Labs/02.Rocks.html). 

 

Figure 2-2 Some of the Cosserat Materials examples- (a) Ceramic texture (adopted from 

http://cerdak.co.za/Technical-Information/). (b) Stones (adopted from 

http://mail.ipb.ac.rs/~vrhovac/sloba/science/gs.html).  

 

When these materials face a stress, their deformation is influenced by local rotational as well 

as stress translational behaviour of their particles. A brief overview of the behaviour of such 

materials under the stress can be seen in Figure 2-3. 

 

 

Figure 2-3 Response to stress in Cosserat media (adopted from (Wellmann, et al., 2009)) 

a b 
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2.2 Development of Cosserat Theory of Elasticity 

The classical theory of elasticity is inspired by the mechanics of the elastic continuum which 

is, in turn, defined by the transfer of internal loading through the element by only the (force) 

stress vector. In this theory all the deformations of the body can be described as symmetric 

strain and stress tensors. 

The classical theory of elasticity is reliable for most of the construction materials, such as 

concrete, steel, or aluminium, as the analytical models obtained from this theory show 

relatively equivalent results as the experimental results of these materials in their elastic 

range. 

On the other hand, the classical theory of elasticity cannot provide accurate results when the 

influence of the microstructure of materials on the deformation is particularly evident. As an 

example, in granular bodies with large molecules (e.g. polymers) or human bones (see, for 

example, Kruyt, 2003; Rothenburge, et al., 1991; Bathurst, et al., 1988; Lakes, 1982; Lakes, 

1995). This inadequacy of the classical theory of elasticity has been more notable in design 

and manufacture of the modern advanced materials in which the microstructure of the 

material is playing a vital role in predicting the total mechanical behaviour of it. 

In 1886, Voigt, for the first time, considered these small-scale effects of the materials that 

were absent from the classical theory of elasticity. Voigt assumed that the interactions 

between two elements of the body transfers through a surface element using both (force) 

stress vector and an independent moment (couple-stress) vector (Voigt, 1887). 

Nonetheless, the first modified and new elasticity theory was established by the Cosserat 

brothers in 1909 (Cosserat, et al., 1907; Cosserat, et al., 1896; Cosserat, et al., 1909). As a 
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development to Viogt's theory, Cosserat brothers proposed that displacement vector  (!, "), 

and independent microrotation vector  (!, ") should be used to describe the deformation of a 

body. In spite of classical theory of elasticity that describes the deformation by a symmetric 

stress tensor, in Cosserat theory the deformation of the body will be described as asymmetric 

strain and stress tensors, due to six degree of freedom of a body element in this theory. 

Regardless of their whole new ideas, this theory was ignored for a long time. The main 

downsides of the Cosserat theory caused it to remain unnoticed were, first, it was a non-

linear theory, second, the way it was formulated was very unclear and complicated and last 

and the most important one, the theory was consisted of numerous problems which were 

exceeded the classical theory of elasticity's framework. Cosserat brothers tried to create a 

theory that combines mechanics, optics and electrodynamics in which they could address the 

elasticity problems as well as non-ideal fluid problems, quasi-elastic continuum model of the 

McCullagh and Kelvin Ether, and some problems related to electrodynamics and magnetism 

(Schaeffer, 1967). 

In the middle of twentieth century, researches and studies in solid mechanics and mechanics 

of fluids showed that the classical theory of elasticity is dysfunctional in describing certain 

types of materials and fluids, therefore the Cosserat theory was considered to address these 

problems. 

The simplified Cosserat theory or asymmetric elasticity in so-called Cosserat 

pseudocontinuum which is sometimes called couple-stress elasticity, was the first area of 

interest of this theory. There is a possibility of creating asymmetric stresses and couple 

stresses during a deformation in a Cosserat pseudocontinuum, but the microrotation vector Φ 

and the displacement vector u are assumed to be dependent like in classical theory of 
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elasticity, thus the whole deformation of the body is describing by displacement field (Lurie, 

et al., 2005), by means of the following relation: 

 = #$&' * × +-                                                                                                                                  22.1                                        

where . × +- is the curl of vector u.  

One of the first comprehensive works on developing couple-stress theory of elasticity has 

been done by (Toupin, 1962; Toupin, 1962; Truesdell, et al., 1960), on the linear and non-

linear elasticity of Cosserat pseudocontinuum. Grioli, Mindlin and Thiersten continued on 

expanding the research on this theory (Grioli, 1960; Mindlin, 1963; Mindlin, 1964; Mindlin, 

1965; Mindlin, et al., 1963).  

It has to be mentioned that, all the papers that were published during that time on simplified 

Cosserat theory were focusing on general problems of derivation and methods of solutions 

governing the equations of the couple-stress theory of elasticity and on the applications of the 

theory, for example calculating the influence of couple stresses on stress concentration factor 

around holes and rigid inclusions or analysing of bending plates in pseudo-Cosserat media. 

Nevertheless, the simplified couple-stress theory, like other simplified theories, cannot 

determine the deformations of granular media accurately. This inaccuracy was confirmed by 

a series of experiments (Sternberg, et al., 1965; Sternberg, et al., 1967; Itou, 1977; Ellis, et 

al., 1968; Gauthier, et al., 1975). As the aim of couple-stress theory was to simplifying the 

Cosserat theory, there are some similarities between this simplified theory and classical 

theory of elasticity, for example, the Navier's equations with respect to three unknown 

equations are the governing equations here as it is in classical theory of elasticity. Because of 

aforementioned flaws of couple-stress theory, after couple of attempts to use this theory, 
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researchers have come up with general Cosserat theory, which is also more mathematically 

rigorous. 

It was only by the late fifties and early sixties of the twentieth century that Gunther and 

Schaefer formulated the basis of the Cosserat theory continuum for the first time, in which 

the microrotations and displacements were independent (Gunther, 1958; Schaefer, 1967; 

Schaeffer, 1967). Gunther focused on and studied the three-dimensional model of the 

Cosserat continuum and showed the significant influence of Cosserat theory on dislocation 

theory, and Schaefer worked on the basis of the Cosserat theory for the plane strain and 

rediscovered it again. After these authors, constitutive relations and governing equations of 

the general theory of Cosserat elasticity was presented by (Aero, et al., 1964; Palmov, 1964; 

Palmov, 1964). 

The most systematic development of Cosserat theory was given by Eringen and his 

coworkers, who named the theory as micropolar or asymmetric elasticity (Eringen, 1966; 

Eringen, 1967; Eringen, 1999). His main work focused on formulating the general provisions 

of the theory of micropolar plates, approximating solutions of micropolar plates and shells, 

and crack growth in a micropolar media (Eringen, 1967). As a more comprehensive reference 

for the explanation of the theory, a paper by Schaeffer (Schaeffer, 1967) and, a book with an 

extensive bibliography by Nowacki can be mentioned (Nowacki, 1986). 

In the meanwhile of expanding Cosserat theory of elasticity, some developments had been 

achieved on theory of Cosserat fluids. For more clarification on Cosserat fluids one can use a 

paper published by (Payne, et al., 1989), and another paper in the same journal, which was 

published by (Payne, et al., 1989). 
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As it mentioned before, all of these works were huge steps in developing the Cosserat theory, 

however, the mathematically rigorous formulation of the boundary value problems appearing 

in micropolar theory of elasticity and the methods of their solution has never been addressed 

in any of those papers or monographs. The reason for this problem is the rigorous 

mathematical analysis of the governing equations and boundary conditions of a micropolar 

media which is a complicated structure, cannot be addressed by methodology, procedure, and 

approaches of the classical theory of elasticity (such as, theory of analytical functions, 

Fredholm's theory of integral equations, theory of one-dimensional singular integral 

equations). Fortunately, this situation is now changing mostly due to the important work in 

the area of three-dimensional classical elasticity carried out in the last 40 years. 

There are different ways of solving three-dimensional problems of classical theory of 

elasticity. Some of which can be developed in order to use in the analysis of the boundary 

value problems of micropolar elasticity. The first possibility is the modern theory of 

generalized solutions of differential equations (the method of Hilbert spaces, variational 

methods). The second one is the theory of multidimensional singular potentials and singular 

integral equations. 

The first type of methods which is different than the classical mechanics and built on the 

state-of-art practical analysis, are addressing general cases with different variable coefficients 

and numerous different boundaries. As this method covers widespread number of situations, 

it is the ideal method for demonstrating theorems on existence of non-classical solutions. In 

order to use it for classical solution, some extra limitations have to be added to this method. 

Two books that have been published by (Chudinovich, et al., 2000), and (Constanda, 1990) 

are including a brief investigation on these topics. 
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The second type of methods relying on the singular integrals and integral equations, which 

are growing fast, is an expansion on the theory of potentials and Fredholm equations. These 

ideas are known as a prevalent approach of the classical mechanics. In spite of the first 

method, this procedure is not covering so many general cases. This will permit to keep the 

regulations of the classical mechanics of continua while analyzing the most important cases 

for the theory and applications thoroughly. The remarkable and initiate research of 

Muskhelishvili (Muskhelishvili, 1953) on singular integral equations was a breakthrough in 

this approach. This method then used by Kupradze and his co-workers (Kupradze, 1965), 

(Kupradze, et al., 1979) to develop the research on the boundary value problems of three-

dimensional theory of elasticity. Furthermore, Constanda employed this method to 

investigate the bending of plates with transverse shear deformation (Constanda, 1990). 

Kupradze has established the effective tools for researches on the micropolar theory of 

elasticity area. One of the remarkable works, using the formulas and tools provided by 

Kupradze, is Iesan investigation on the three-dimensional problems of micropolar elasticity 

(Iesan, 1970). He had formulated uniqueness and existences theorems for the boundary-value 

problems of plain strain of three-dimensional micropolar continuum. Nevertheless, his 

research cannot be used as a thoroughly solution to the problems, due to the ignorance of 

considering different possible cases. Schiavone, and Schiavone and Constada, have modified 

the framework of singular integral equations to form the analytical solutions and analysis of 

boundary value problems of the theory of micropolar plates, in their research on this topic 

(Schiavone, et al., 1989; Schiavone, 1989; Schiavone, 1991; Schiavone, 1996). However, 

none of these works were focused on the cases when the boundary of the domain is not 
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smooth enough or there is a crack in the boundary. In this thesis, a Sobolev setting and 

distributional approach was used to obtain the exact analytical solutions in the closed form. 

One type of deformations in solids is anti-plane shear deformation. The classical anti-plane 

shear is considered as a compatible method to the more complex classical plane strain. Under 

the=e assumption of this method, which is more familiar, the deformation will only have two 

in-plane displacements. Therefore, the displacements will be defined in !$ and !& directions, 

and a microrotation will be defined on !$!& / 01234. This scenario can be seen in solids, 

when their length in !5 direction is considerably longer than the other dimensions. 

As it mentioned before, considering plane strain will reduce the equilibrium equations of 

Micropolar elasticity from six equations to three partial differential equations. The governing 

equations and fundamental boundary value problems of a linearly elastic, homogeneous, and 

isotropic Micropolar continua in plain strain have been formulated and analyzed by some 

other researchers (Nowacki, 1986; Iesan, 1970; Schiavone, 1996).  

The boundary element method has been developed from classical integral equations and 

finite elements. One of the advantages of this method, same as boundary integral equation, is 

the fact that the dimension of the problem can be reduced by one and the domain can 

approach to infinity while having very reliable solutions. Moreover, there is no need to 

specify the shape functions in this method, to calculate the stresses. However, it makes it 

possible to distinguish the matrix of fundamental solutions to smoothen the calculation of the 

stresses and providing more accurate results.  
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2.3 The Description of Cosserat Theory of Elasticity 

The Cosserat theory of elasticity, considers a media as a rigid body in which every small 

particle has microrotations as well as translations in all directions. The assumption of 

translation is same as the classical theory of elasticity (Rubin, 2000). This definition has been 

shown in Figure 2-4.  

 

Figure 2-4 The representation of the degrees of freedom in the Cosserat 

model (adopted from (Kapiturova, 2013)) 

Another characteristic of this theory is considering a couple stress   (a torque per unit are) 

as well as force stress   (force per unit area) (Altenbach, et al., 2013). This has been shown 

in Figure 2-5, as a brief comparison between the classical representation of a point and 

micropolar representation of the same point in a body. 
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Figure 2-5 Free body diagram of a corner element- (a) Classical theory. (b) Micropolar theory 

(adopted from (Lakes, et al., 1985)). 

 

In terms of defining the Cosserat theory mathematically, four elastic constants are added to 

those ones from classical theory. These constants are (!, ", #, $) in addition to Lame 

constants in classical theory of elasticity (&, ')  (Yang, et al., 1982).  

Overall, it can be said that based on the Cosserat theory of elasticity, the description  of 

motion of any particle in a media can be defined by six degree of freedom, three translational 

(same as classical theory of elasticity) and three others are local rotational motions (Eringen, 

1999). 

By considering Cosserat elasticity theory in order to describe the behaviour of materials, 

basically, the deformations of each point and each domain assumed to be like Figure 2-6. 
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Figure 2-6 Deformation of a point from the reference configuration () to the current 

configuration (. Vectors *,+-, ., /0 are representing spatial couple stress, angular velocity, force 

stress vector, and velocity, respectively (adopted from (Segerstad, et al., 2009). 

 

The importance of this theory will be more illustrated in some practical examples. As a brief 

explanation, in Figure 2-7 a crack exist in a corner of a body. The crack growth cannot be 

modeled using the classical theory of elasticity, due to the lack of the existence of any couple 

stress at the corner in classical theory of elasticity. On the other hand, this growth can be 

modeled using the Cosserat theory of elasticity. 

 

Figure 2-7 Crack growth- (a) Classical theory of elasticity. (b) Cosserat theory 

of elasticity (adopted from (Lakes, et al., 1985)). 
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As it is mentioned in section 2.2, the main focus of this work is on plain strain Micropolar 

elasticity. The importance of such research can be put in two categories. First of all, as it 

mentioned before, the plain strain has three equation for three unknowns (two displacements 

and one microrotation), which are relying on two independent variables. This hybrid nature 

of the problems, will ease finding the analytical solutions. Secondly, In addition to the fact 

that plane problems are of very interesting nature on their own, a number of practical three 

dimensional problems often can be reduced to the consideration of plane problems which 

makes them easier to solve rather than in the case of the formulation using the assumptions of 

three dimensional theories. 

2.4 The Application of Cosserat Theory 

Although the experimental data of this theory is still rare, there are some applications of 

the theory that made it notable and more popular. One of these applications is referring to 

solids with periodic microstructures. These materials ranges from crystals to composite 

materials and engineering structures such as infinite-fiber composites, sandwich 

structures, grid structures, trusses and honeycombs (Pabst, 2005). Some works have 

calculated the micropolar elastic moduli of different crystals exhibiting polar phenomena 

(Askar, 1972; Fischer-Hjalmars, 1981; Fischer-Hjalmars, 1982; Pouget, et al., 1986). In 

other attempt (Bazant, et al., 1972) analysed the steel-concrete grid structures 

numerically, using Cosserat theory.  

Gaining the experimental data from Cosserat materials with random microstructures is 

very hard and complicated. The reason for this is the need of high precautions in 
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performing the experiment in order to obtain reliable results. Due to this, the information 

for the experiments on these materials could not be found (Gauthier, 1982). 

The other application is very useful for heterogeneous materials. These materials become 

dispersive under dynamic conditions following the classical elastic theory, due to the 

same order of magnitude of the wavelength and the size of the heterogeneities. The 

dispersion relations exist for transverse and rotational waves, which can be stabilized 

using the micropolar theory of elasticity relations (Bertram, et al., 1998). 

Finally, this theory can be used to regulate the methods in the computation of localization 

phenomena (De Borst, 1991). 

2.5 Discontinuities Models 

Two types of discontinuities can be defined, first one is the weak discontinuities, and second 

one is the strong one. In the first type the displacement field in materials remains continuous, 

and strain field may or may not be continues. These problems are basically continues 

problems. As an example, material interfaces and inclusions can be named, which has been 

illustrated in Figure 2-8. 
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Figure 2-8 Weak discontinuities- (a) Material interface (adopted from (Gan, 2009)). (b) A visible inclusion 

defect in composite materials (adopted from (BEJGER, et al., 2015)). (c) Inclusion of foreign material (adopted 

from http://www.prometlab.com/en/index.asp). (d) Oxide inclusion in nodular graphite cast iron (adopted from 

https://blogs.msdn.microsoft.com/murrays/2015/05/14/equation-numbering-in-office-2016/). (e) 

Microstructure and inclusion (adopted from (Deng, et al., 2015)). (f) An inclusion in fine granular area (FGA) 

located at the center of fisheye (adopted from (Deng, et al., 2015)). 

 

a b 

c d 

e f 
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However, in strong discontinuities, both displacement field and strain one are discontinuous. 

Cracks, dislocations, and voids can be some of the examples of this type problems Figure 2-

9. 

 

Figure 2-9 Strong discontinuities- (a) Dislocation (adopted from (Robertson) (b) A screw dislocation (adopted 

from (Velben, et al., 1983)). (c) Branching and blunted crack (adopted from (Yi, et al., 2011)). (d) Crack 

propagation (adopted from http://www.mpie.de/3173155/Hydrogen-Embrittlement). 

As this thesis topic is focused on stress distribution around cracks, different methods of 

simulating cracks will be represent below.  

Some of the most famous models for describing cracks are non-local model, the continuous 

smeared crack model, and the discrete crack model (Ozbolt, et al., 1996; Willam, et al., 1987; 

Parsad, et al., 2002).  

a 
c 

d b 
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In non-local models, the fracture behaviour of each point of a material can be influenced by 

the stress state at that point and some points which are close to that point. One of the most 

important advantages of these models is the lack of mesh modeling in order to describe crack 

propagation. Cosserat theory is included in these types of models (Li, et al., 2015).  The 

smeared crack model describes the crack with its stiffness and strength reduction. These 

models need a crack mesh model and a predefined crack growth path. By which there will be 

no need to remesh the crack while it’s propagating. Finally, the discrete crack model, 

simulate the discontinuity along finite element edges or the sub-mesh inside the elements. 

This method needs remeshing the crack, and due to this, it is time consuming and expensive 

(Rots, et al., 1989).  

2.6 Fracture Mechanics  

Fractures happens due to many different reasons, from designing inadequacy to defects in 

materials, which sometimes might lead to failure. In order to prevent the happening of such 

incidents, fracture mechanics became one of the most important and active fields of research 

during last decades. Fracture mechanics tries to find a quantitative relation between the crack 

length, the material’s inherent resistance to crack growth, and the stress which makes the 

crack propagates catastrophically. 

2.6.1 Modes of Crack Growth 

Three basic modes is defined to describe the crack growth. Mode I, called the opening mode 

in which crack propagates in the normal direction of its plane. The displacements in this 

mode are symmetric with respect to x-z and a-y planes. This mode is the most common 

fracture mode. Mode II, the edge sliding mode, describes crack growth in normal direction to 

crack front Figure 2-10 (a). The displacements are symmetric with respect to x-y plane and 
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anti-symmetric with respect to x-z plane Figure 2-10 (b). Mode III, the anti-plane shear mode 

or tearing mode refers to the modes when crack growth parallel to its front. The 

displacements are asymmetric with respect to x-y and x-z directions Figure 2-10 (c). 

 

 

Figure 2-10 Modes of Fracture (adopted from (Kanninen, et al., 1985)) 

 

2.6.2 Stress Intensity Factor 

 

Stress intensity factor quantifies the stresses at a crack tip. It defines the happening of 

fracture only if a critical stress intensity factor reached. In a paper published by (Diegele, et 

al., 2004) the displacement fields near a crack tip for Mode I opening in a Cosserat medium 

has been defined and formulated, as it can be seen below. 
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 ! !"#$%!"#& = '  () *+,-[-./012(34] 56 789
%( 5:0; < >?4 < @ A [: A @0B < C?4]59DE( %(5555555555555555< 9DE %( 5 [>0: A @40; < ?4 < @ A [: A @0B < C?4]5789( %(

F A

G H,(- I>0789( J < ?4< 9DE0>J45555555K A 6L MG1 (N O
L MG1 (N OF                                                                                                            2.2                                           

                                                                                                                                   

P!"# = '( ) Q,R.S 9DE %( A L MG1 (N O                                                                                                       2.3                                                       

Where T+U and VU are the Mode I stress intensity factor for micropolar elasticity, and WU is the 

second order stress intensity factor. A notable point is that the couple stresses are singular for 

Mode I crack, on the other hand these stresses are regular for Mode II. The stress intensity 

factor can be defined as: 

T+U X YDZ \^_`>aGb%%0Gc J4|J = de                                                                                                    2.4          

VU X YDZ \^_`>aGfg%0Gc J4|J = de5                                                                                         2.5        

where b%% and fg% are non-vanishing stress and couple stress, and h+i and VU are force stress 

intensity factor and couple stress intensity factor, respectively (Diegele, et al., 2004; Li, et al., 

2009). 

The elastic constant @ governs the degree of coupling for the rotations and translations. 

(Diegele, et al., 2004). It has to be mention that for @ = d, the problem will become the 

classical linear elasticity, and for @ \ j the problem will reduce to couple stress linear 

elasticity.  
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In Figure 2-11 and Figure 2-12 the effect of the material parameters @ and k on the stress intensity 

factor can be seen. It has to be noted that normalized stress intensity factor has been shown in 

both graphs Ml+m*,O (Diegele, et al., 2004). 

As it can be seen in figure 2-11 for values of 
/n o5;d21 the values for h+i will remains the 

same for different k parameter values. Then for ;d21 o /n o 5;d materials show different 

values and patterns for different k values. Finally, as it is obvious from the graph for 
/n 

greater than 10, 
l+m*, takes a constant value for each k values. 

On the other hand, referring to (Figure 2-12), for k \ d and k \ j, the graph shows 

constant values of 
l+m*, for different 

/n values. These constant values are below 1 for larger 

values of k, and they are greater than 1 for smaller amounts of k. Another notable point in 

(Figure 2-12) is for smaller values of 
/n (i.e. 

/n o ;d21) the 
l+m*, graph vs. k shows almost no 

change (straight line), which will match the observation in 
l+m*, graph vs. 

/n. 
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Figure 2-11 Distribution of normalized SIF as a function of 
/n against parameter   

for Mode I fracture. (adopted from (Diegele, et al., 2004). 

 

Figure 2-12  Distribution of normalized SIF as a function of   against  
!

"
 for 

Mode I fracture. (adopted from (Diegele, et al., 2004). 
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Moreover, Figure 2-13 and Figure 2-14 are showing the relation between couple stress 

intensity factor (#$) and material parameters. Again in #$ vs. 
!

"
 graph, for 

!

"
< 10&' the chart 

remains at the same value of #$ independently from the   parameter value. This value is 

equal to zero. Then for 10&' <
!

"
< 10 the #$ values decrease to below one and for values of 

!

"
 greater than 10 the graph shows a constant behaviour. On the other hand, the zero same 

zero value in #$ vs.   will start at  = 1 and ends at  = 10, and the graph shows the 

constant behaviour after  = 10(. It is noticeable that for   = 1, the values of #$ remains 

equal to zero, which matches the observation from the #$ vs.   graph. It should be noted that 

for 
!

"
= 10&), same as 

*+,

-.

 vs. 
!

"
, #$ graph shows the same behaviour, and has a constant value 

of zero for different values of  . Finally, it should be mentioned that 
*+,

-.

 had only positive 

values but #$ is having zero or negative values. 



26 

 

 

Figure 2-13 Distribution of  #$ as a function of 
!

"
 against parameter γ for Mode I 

fracture (adopted from (Diegele, et al., 2004)). 

 

Figure 2-14 Distribution of #$ as a function of γ against  
!

"
 for Mode I fracture 

(adopted from (Diegele, et al., 2004)). 
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Chapter 3 The Basic Foundations of Theory of 

Cosserat Elasticity 

3.1 Basic Definitions 

In this chapter, the provisions of the three-dimensional theory of Cosserat elasticity will be 

reviewed. As the past works on this topic will be presented here, the detailed procedure of 

obtaining constitutive equations will be skipped. A detailed description of three-dimensional 

theory of elasticity can be found in (Nowacki, 1986). 

Throughout what follows, Greek and Latin indices take the values 1, and 2 and 1, 2, and 3, 

respectively, the convention of summation over repeated indices is understood,  !×" is the 

space of (# × $) matrices, &" is the identity element in  "×", a superscript ' indicates 

matrix transposition and(� ),* =
+(�)

+-*
. . Also, if / is a space of scalar functions and 01a 

matrix, 0 2 / means that every component of 0 belongs to1/. 

Let an elastic isotropic Cosserat body occupy a domain V in 34 and be bounded by surface 

S. Assume that the body undergoes deformation due to the action of external forces / =

(/5, /6, /7)8  and external moments 9 = (95, 96, 97)8. The elastic properties of the body can 

be characterized by elastic constants :, ;, <, >, ?, @, where : and ; are usual Lame 

coefficients as in the classical theory of elasticity and <, >, ? and κ are micropolar elastic 

constants, representing the contribution of material microstructure to the elastic properties of 

the body. The state of deformation is characterized by a displacement field 

A(-) = BAC(-), AD(-), A4(-)E
8
                                                                                              3.1                             
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and a microrotation field 

 (!) = " #(!),  $(!),  %(!)&'
                                                                                            3.2 

 where ! = (!*,!+, !-) is a generic point in .³.  

This leads to the description of deformation of the body in terms of asymmetric strain, 

torsion, and stress and couple-stress tensors (Nowacki, 1986). These tensors can be 

represented in the form below 

/ = 0/## /#$ /#%/$# /$$ /$%/%# /%$ /%%
1 2222222222223 = 03## 3#$ 3#%3$# 3$$ 3$%3%# 3%$ 3%%

1                                                              3.3 

4 = 04## 4#$ 4#%4$# 4$$ 4$%4%# 4%$ 4%%
1 2222222222225 = 05## 5#$ 5#%5$# 5$$ 5$%5%# 5%$ 5%%

1                                                             3.4        

where / is the strain tensor, 3 the torsion tensor, 4 the stress tensor, 5 the couple-stress 

tensor. 

3.2 Equilibrium Equations 

The equations of equilibrium can be derived in terms of stresses and couple stresses, 

following the method provided in some other research (Nowacki, 1986; Eringen, 1966). 

These equations are: 

4676 8 96 = :                                                                                                                                   

;76<4676 8 >7 = :                                                                                                                      3.5 

where ;76<2alternating symbol. 
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It has to be indicate that the equilibrium equations for a micropolar media are formulated in a 

more complex way compare to classical theory of elasticity. The reason for this complication 

is the extra equations because of considering couple stresses. This impression defines the 

behaviour of a Cosserat solid in terms of asymmetric stress and stress-couple tensors. 

Evidently, if the all couple stresses set equal to zero, the symmetric stress tensor of the 

classical theory of elasticity will be obtained. Therefore, the asymmetric stress tensor is a 

result of the existence of couple stress.  Using the constitutive relations (Nowacki, 1986) 

467 = (? 8 @)/67 8 (? A @)/67 8 B<<C67                                                                                         
567 = (D 8 E)367 8 (D A E)367 8 F3<<C67                                                                              3.6 

where C67 2is the Kronecker symbol, 

and the kinematic relations 

/67 = G67 A ;67 <2222                                                                                                                                  
2367 =  76                                                                                                                                 3.7 

the equilibrium equations can be defined in terms of displacements and microrotations, in the 

vector forms below:  

(? 8 @)HG 8 (B 8 ? A @)IJ G 8 K@(I ×  ) 8 922 = 2:,                                                            
[(D 8 E)H A L@] 8 (F 8 D A E)IJ  8 K@(I ×  ) 8 >22 = 2:                                           3.8                                            

where Δ is the Laplace operator,  . ! is the divergence of vector u, and  × " is the curl of 

vector ". 
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As it mentioned before, the governing equations of micropolar elasticity, the system (3.8) is 

more complicated than the ones in classical theory of elasticity. The system of governing 

equations for a Cosserat solid is a system of coupled partial differential equations. This 

system consists of six unknowns. Three of these unknowns representing the displacements, 

which are the same in classical theory of elasticity. The other three, present microrotations. 

As it noted before, these microrotations are independent. If the micropolar elastic constants, 

#, $, &, ', set to be equal to zero, Navier's equations, the governing equations in classical 

theory of elasticity, can be obtained from micropolar governing equations. It shows, the 

micropolar theory of elasticity is more general than the classical one. 

In the studies that has been done before, the boundary integral method had been used to 

model and formulate the related boundary value problems of (3.5), and (3.8) (Nowacki, 

1986). In some other studies, the method of potentials under different sets of boundary 

conditions was used to integrate the system (3.8) (Nowacki, 1986; Kessel, 1967; Kluge, 

1969; Cowin, 1970; Cowin, 1970). In this thesis, the main focus is on studying and solving 

plane problems of Cosserat Elasticity. In order to reach this goal, the integration of the 

system (3.8) won’t be written here. However, this system will be used to derive the 

governing equations for plane deformation. 
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Chapter 4 Plane Deformation of Micropolar Elastic 

Bodies 

4.1 Basic Definitions 

In this chapter, the governing equations of plane micropolar elasticity will be derived, using 

the equations of general three-dimensional theory of Cosserat elasticity (which represented in 

last chapter). With these equations, the Dirichlet and Neumann boundary value problems will 

be formed in Sobolev space setting. 

Adding to last chapters explanations, along the following calculations, it has been assumed 

that the convention of summation over repeated indices is understood. Also, the columns of a 

(3 × 3)- matrix ( are denoted by (). 

Assuming S be a domain in *+ that has been occupied by a homogeneous and isotropic 

elastic Micropolar material. In this domain, the boundary can be represented as -/. Also, the 

notations 0. 01;2 and 4. , . 51;2, are representing the norm and inner product in 6+7/89:<×= 

for any > ? @. Moreover, when / A *+, the norm and inner products will get the form of 

0. 01 and 4. , . 51. 

The state of plane Micropolar strain can be characterized by a displacement field 

!7BC8 A D!=7BC8, !+7BC8, !E7BC8F
G
                                                                                         4.1                                                          

and a microrotation field 

 (x!) = " #(x!),  $(x!),  %(x!)&'                                                                                        4.2 
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of the form 

*+(x!) = *+(-),                                             *%(x!) = 0 

.+(x!) = 0,                                             .%(x!) = .%(-) 
where x! = (-#, -$, -%) and - = (-#, -$) are generic points in /% and /$, respectively. 

4.2 Plane Micropolar Elasticity 

Now the equilibrium equations of plane Micropolar strain which was formulated in terms of 

displacements and microrotations can be written here (Schiavone, 1996), and (Shmoylova, 

2006). 

1(23)*(-) 4 5(-) = 0,     - 6 7                                                                                            4.3 

where vector 5(-) = (5#, 5$, 5%)8 represents body forces and body couples. 

If .% is shown as *%, then *(-) = (*#, *$, *%)8 , the matrix of partial differential operator 

1(23) = 1 92 23: ; can be defined as 

1(<) = 1(<+)                                                                                                                          4.4 

= >(? 4 @)A 4 (B 4 ? C @)<#$ (B 4 ? C @)<#<$ D@<$(B 4 ? C @)<#<$ (? 4 @)A 4 (B 4 ? C @)<$$ CD@<#CD@<$ D@<# (E 4 F)A C G@H 
where A = <I<I 
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Moreover, the boundary stress operator can be defined as 

J(<) = J(<+)                                                                                                                          4.5 

= >(B 4 DK)<#L# 4 (? 4 @)<$L$ (? C @)<#L$ 4 B<$L# D@<$(? C @)<$L# 4 B<#L$ (B 4 DK)<$L$ 4 (? 4 @)<#L# CD@<#0 0 (E 4 F)<MLMH 
where L = (L#, L$)8 is the unit outward normal to 27. 

In order to assure about the ellipticity of equation (4.1), and the subsequent operators, it has 

been assumed that: 

N 4 K O 0,     K O 0,     E 4 F O 0,     P O 0 

The integral energy density is given by 

DQ(*, R) = DQS(*, R) 4 K"*#,$ 4 *$,#&"R#,$ 4 R$,#&                                                             4.6 

4P"*#,$ C *$,# 4 D*%&"R#,$ C R$,# 4 DR%& 
4(E 4 F)(*%,#R%,# 4 *%,$R%,$ 

DQS(*, R) = (N 4 DK)"*#,#R#,# 4 *$,$R$,$& 4 N"*#,#R#,# 4 *$,$R$,$&                                    4.7 

Clearly Q(*, R) is a positive quadratic form. 

The space of rigid displacements and microrotations T is spanned by the columns of the 

matrix 

U = VW 0 C-$0 W -#0 0 W X 
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From which it can be seen that 1U = 0 in /$, JU = 0 on 27, and a general rigid 

displacement can be written as UY, where Y 6 Z%×# is constant and arbitrary. 

Now let 7[ be a domain in /$ bounded by a closed curve 27, and 7\ = /$]7^[. Using the 

same technique as in the derivation of the Betti formula, as it shown by (Constanda, 1990), it 

can be shown that if * is a solution of equation (4.1) in 7[, then for any R 6 _$(7[) `
_#(7^[) 
a R85bc d- = Ca R81*bc d- = Da Q(*, R)bc d- C a R8J*eb df                                          4.8 

A Galerkin representation for the solution of equation (4.1) when  (!) = "#(|! " $|), 

where #&is Dirac delta distribution, yields the matrix of fundamental solutions (Schiavone, 

1996). 

'(!, $) = *+(-!).(!, $)                                                                                                         4.9 

where *+ is the adjoint of *, 

.(!, $) = /

0123
{[45|! " $|5 6 7] ln|! " $| 6 789(4|! " $|)}                                           4.10 

where 89 is the modified Bessel function of order zero and the constants /, 45 are defined by 

/:; = (< 6 >)(? 6 @A)(A 6 B)                                                                                           4.11 

45 = CDE

(FGH)(DGE)
                                                                                                                     4.12                             

In view of equation 4.9 and equation 4.10 

'(!, $) = 'I(!, $) = '($, !)                                                                                             4.13 

Along with matrix '(!, $) the matrix of singular solutions can be considered as 
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J(!, $) = KL(-$)'($, !)M
I
                                                                                                 4.14 

It is easy to verify '(N)(!, $), and J(N)(!, $) can satisfy equation (4.1) with  (!) = O at all 

! P Q5, ! R $. 

A class S&of vectors T P UV×; can be introduced, having its components in terms of polar 

coordinates when W = |!| X Y, in the form of 

T;(W, Z) = W:;(\^9 sin Z 6^; cos Z 6^9 sin _Z 6^5 cos _Z 6 `(W:5) 

T5(W, Z) = W:;(^V sin Z 6 \^9 cos Z 6^V sin _Z 6^9 cos _Z 6 `(W:5) 

T;(W, Z) = W:;(^a sin @Z 6^b cos @Z 6 `(W:V) 

where 

\ =
_A 6 ?
? 6 A

 

and ^9, � ,^b are arbitrary constants.  

Also let 

S+ = {Td T = ef 6 gS} 

where f P UV×; is an arbitrary constant and gS P (UV×; hS). 

For the exterior domain the Betti formula, that came in a book published by (Constanda, 

1990), can be represented as below 

If T is a solution of equation (4.1) in j:, then for any k P m5(j:) h m;(jp:) h S+ 

q kI rt u! = "q kI*Trt u! = @q v(T, k)rt u! " q kILTwr ux                                        4.15 
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Further the corresponding area, single layer potential, and double layer potential can be 

represented respectively as below 

(yz)(!) = q '(!, $)z($)u$Q~                                                                                             4.16 

(�z)(!) = q '(!, $)z($)ux($)wr                                                                                        4.17 

(�z)(!) = q J(!, $)z($)ux($)wr                                                                                       4.18 

where z P UV×; is an unknown density matrix. 

It can be concluded that *(y ) =   in Q5. 

The properties of single and double layer potentials can be seen in the following theorem. 

These properties have been proven in a book published by (Constanda, 1990). 

Theorem 4.1   

i. If  ! "(#$), then & , and ' , are analytic and satisfy *(& ) = *(' ) =
0 in $+ , $-. 

ii. If  ! "./1(#$), and 2 ! (0/3), then the direct values &. , and '.  of & , 

and '  on #$ exist (the latter as principle value), the functions &+( ) = (& )|456, 

and &-( ) = (& )|457 are of class "8/1($5+), and "8/1($5-) respectively. Also 

9&+( ) = ('.: ; 8
< >) , and 9&-( ) = ('.: ? 8

< >)  on #$, where '.: is the 

adjoint of '. and I is the identity operator. 

iii. If  ! "8/1($), and 2 ! (0/3), then the function '+( ) is of class "8/1($5+), 
and the function '-( ) is of class "8/1($5-), and 9'+( ) = 9'-( ) on #$. 

Functions  '+( ), and '-( ) have been represented below 
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'+( ) = @(' )|46 /AAAAAAAAAAAAABCA$+D'. ? 8
< >E  /AAAAAFCA#$,              

 

 '-( ) = G(' )|47 /AAAAAAAAAAAAABCA$-D'. ; 8
< >E  /AAAAAFCA#$ 

 

For any H ! I, let JK(I<) be the standard real Sobolev space of three component 

distributions, equipped with the norm 

LMLK< = N (3 ; |O|<)K|MP(O)|<QOIR   

where MP  is the Fourier transform of M. 

In the following calculations, the equivalent norms has not been distinguished from each 

other and has been denoted by the same symbol. Hence, the norm in J8(I<) can be defined 

by 

LML8< = LML.< ; S LTMUL.<VUW8                                                                                                 4.19 

The spaces JK(I<) and J-K(I<) are dual with respect to duality induced by XY / Y Z.. 

The space *[< (I<) of 3*1-vector functions M = (M\/ MV)], where M\ = (M8/ M<)], such that 

 LML./[< = N |_̂(`)|R(8+|`|)R(8+ab|`|)RIR Qc ; N |^d(`)|R(8+|`|)e(8+ab|`|)RIR Qc f g                                        4.20 

The bilinear form h(M/ i) = jN k(M/ i)IR Qc has been considered in this analysis. Assuming 

J8/[(I<) to be the space of three component distributions on I< for which 

LML8/[< = LML./[< ; h(M/ M) f g                                                                                         4.21 
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J-8/[(I<) is dual to J8/[(I<) with respect to duality generated by XY / Y Z.. The norm in 

J-8/[(I<) is denoted by LY L-8/[. 

Let JlK($+) be the subspace of JK(I<) consisting of all M which have a compact support in 

$+. JK($+) is the space of the restrictions to $+ of all M ! JK(I<). The norm of M !
JK($+A) will be introduced by LMLKm46 = BCno!pqrIRstu6oW^LiLK, if the operators of 

restrictions from I< to $±, denote by v±. If H = 3, then the norms of M ! Jl8($+) and M !
J8($+) are equivalent to 

wLML.m46< ; S N |TMU(c)|<Qc46VUW8 x8 <y                                                                                    4.22 

The spaces JlK($+) and J-K($+) are dual with respect to duality induced by XY / Y Z.m46. 

Let Jl8/[($-) be the subspace of J8/[(I<) consisting of all M which have a compact support 

in $-. J8/[($-) is the space of the restrictions to $- of all M ! J8/[(I<). The norm of 

M ! J8/[($-A) will be introduced by  

LML8/[m47 = BCno!pz/{rIRstu7oW^LiL8/[                                                                               4.23 

if the operators of restrictions from I< to $±, denote by v±.  

From the definition it follows that J8/[($-) is isometric to 
pz/{(IR)plz(46) . It can be shown that the 

norm of M ! J8/[($-) equivalent to 

}LML./[m47< ; h(M/ M)~8 <y                                                                                                        4.24 

where 
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LML./[m47< = N |_̂(`)|R(8+|`|)R(8+ab|`|)R47 Qc ; N |^d(`)|R(8+|`|)e(8+ab|`|)R47 Qc                                             4.25 

and h±(M/ i) = jN k(M/ i)4± Qc. This norm is compatible with asymptotic class �. 

The dual of Jl8/[($-) with respect to the duality generated by XY / Y Z.m47 is the space 

J-8/[($-), with norm LY L-8/[m47 . The dual of J8/[($-) is Jl-8/[($-), which can be 

identified with a subspace of J-8/[(I<). It can be shown that if M ! Jl-8($-) and has 

compact support in $-, or if 

N |M\(c)|<(3 ; |c|)<(3 ; ��|c|)<47 Qc ; N |MV(c)|<(3 ; |c|)�(3 ; ��|c|)<47 Qc f g        4.26 

then M ! Jl-8/[($-). 
Let JK(#$) be the standard Sobolev space of distributions on #$, with norm LY LKm�4. 

JK(#$), and J-K(#$) are dual with respect to the duality generated by the inner product 

XY / Y Z.m�4 in *<(#$). 
The trace operators are defined on ".�($±). Then by denoting �+, and �-, it can be extended 

by continuity to surjections �+t J8($+) � JzR(#$), and �-t J8/[($-) � JzR(#$). This 

conclusion is accurate due to the local equivalency of J8/[($-) and J8($-). Moreover, a 

continuous extension operators has been considered as �+t JzR(#$) � J8($+), and 

�-t JzR(#$) � J8($-). Since the norm in J8($-) is stronger than the norm in J8/[($-), the 

latter operator can also be regarded as a continuous operator from  JzR(#$) into J8/[($-). 
To proceed further, the following fact from functional analysis is needed. 
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Theorem 4.2 (Lax-Milgram Lemma) Let   be a Hilbert space and !(", #) be a bilinear 

functional defined for every ordinate pair ", # $  , for which there exist two constants & and 

' such that 

|!(", #)| * &+"++#+,    +"+- * '|!(", #)|....../", # $                                                     4.27 

In this case it can be said that !(", #) is coercive. Although the bounded linear functional 

0(#) has been assigned on  , there exist one and only one " such that 

!(", #) = 0(#),....../# $  ,.....+"+ * 1+0+                                                                         4.28 

where +2 +3 is the norm on the dual  4 of  . 

The proof for this lemma can be found in a book published by (Miranda, 1970). 
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Chapter 5 Crack in Plane Micropolar Elasticity 

5.1 Background 

When a domain is weakened by a crack, the representation of the boundary conditions across 

the crack region could be challenging in the boundary integral analysis in a classical setting. 

Several researches has been done focusing on a crack problem in two-dimensional Cosserat 

elasticity under the assumption of classical elastic setting, using the finite element method 

(Lakes, et al., 1990). Another types of attempts to investigate a crack problem in two-

dimensional Cosserat elasticity, has been taken under the assumption of a simplified theory 

of plane Cosserat elasticity, when displacements and microrotations are constrained (couple-

stress elasticity) (Mühlhaus, et al., 2002) (Atkinson, et al., 1977). Moreover, it has to be 

mentioned that some researches has been done to investigate the crack analysis in three-

dimensional Cosserat elasticity (De Borst, et al., 1998) (Yavari, et al., 2002) (Diegele, et al., 

2004) (Garanjeu, et al., 2003). However, an analysis on the crack problem under plane 

Cosserat elasticity assumption in the general case is still absent from the literature. 

The boundary integral equation method in a weak (Sobolev) space setting has been used to 

obtain the solutions for several crack problems in a theory of bending of classical elastic 

plates (Chudinovich, et al., 2000). Although, the method that has been used in the 

aforementioned research is mathematically complicated, it can be counted as one of the most 

effective methods in this area that produces very reliable results. Due to this fact, in this work 

the effectiveness of this method has been studied with a view to the analysis and solution of 

the plane problems of Cosserat elasticity.  
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In this chapter, the boundary value problems for both finite and infinite domains that has 

been weakened by a crack has been formulated. These calculations were taken by 

consideration of plane micropolar elasticity, when displacements and microrotations or 

stresses and couple stresses exist on both sides of the crack, in Sobolev spaces. The aim was 

to find the corresponding weak solutions in terms of integral potentials with distributional 

densities. 

5.2 Basic Definitions 

In this research an infinite domain with a crack has been considered. The crack is modelled 

by an open arc 56, which is a part of a simple closed 7--curve,.5. This curve divides 8- into 

interior and exterior domains 9: and 9;. The superscripts + and – in  ! and  " are 

denoting the limiting values of functions as  # $ &. Also,  = '(\&)* and &+ = &\&)*. 

Regarding definition of  , for the norm and inner product in ,(- ., /0 /* and 10 2 0 3* can be 

used respectively.  

Let 45-&. be the standard Sobolev space of distributions on &, with the norm product 

/0 /526. 45-&. and 4"5-&. are dual with respect to the duality generated by the inner 

product 10 2 0 3*26 in ,(-&.. The subspace of all 7 8 45-&. with a compact support on &* will 

be denoted by 495-&*.. Also, the space of the restrictions to &* of all 7 8 45-&. will be 

denoted by 45-&*.. Moreover, :* and :+ are set to be the operators from & to &* and &+.  

The norm of 7 8 45-&*. can be defined by /7/526; = <>7?8@A-6.BC;?DE/F/526. For any G 8
', 495-&*. and 4"5-&*. are dual with respect to the duality generated by the inner product 

10 2 0 3*H6; in ,(-&*.. 
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Assume I! and I" are continuous trace operators from 4+- !. and 4+2J- ". to 4KL-&.. 
Also, it has been assumed that IM± = :MI±NN2 < = O2P. For any Q defined in   or '(, it can be 

written that Q = {Q!2 Q"}, where Q± = :±Q. 

Let 4+2J- . be the space of all Q = {Q!2 Q"} such that Q! 8 4+- !. and Q" 8 4+2J- ". and  

I+!Q! = I+"Q". The norm in 4+2J- . can then be defined as 

/Q/+2JHR( = /Q!/+HRS( T /Q"/+2JHRU(   

From defining 49+2J- . as the subspace of 4+2J- ., 49+2J- . can be identified with a 

subspace of 4+2J-'(.. It should be mentioned that 4+2J- . consists of all Q that I*!Q! =
I*"Q" = O.  

The duals of 49+2J- . and 4+2J- ., with respect to the duality induced by 10 2 0 3*, can be 

defined as 4"+2J- . and 49"+2J- .. Moreover, the norms in 4"+2J- . and 49"+2J- . are 

denoted by /0 /"+2JHR and /0 /"+2J. 

5.3 Boundary Value Problem 

As it mentioned in introduction chapter of this thesis, two types of boundary value problems 

have been considered, Dirichlet and Neumann boundary value problems.  

The first boundary value problem consist of seeking Q 8 V²N-W. NX VN-W).2NNNQ" 8 YZ such 

that 

[,Q-#. T ]-#. N= NO2NNN# 8 W2NNNNNNNNNNNNNNNNNNNNNNNNNNQ^-#. NN= N7^-#.2NNNQ_-#. = 7_-#.2NNN# 8 `a                                                                          5.1                                

where 7^ and 7_ are prescribed on `a.  
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The second one is focusing on finding 8 V²N-W. NX V¹N-W).2NNNQ" 8 Y such that 

b ,Q-#. T ]-#. = NO2NNN# 8 W2NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
-cQ.^-#. NN= Nd^-#.2NNN-cQ._-#. = d_-#.2NNN# 8 `aN                                                            5.2                                            

where g^ and g_ are prescribed on Γ . Asymptotic classes !" and ! have been introduced in 

chapter 4. 

In the following the variational formulation of Dirichlet can be seen. Noting that the goal is 

to find # $ &',()*+ 

-)#, .+ = /0, .12          3. $ &4',()5+                                                                                    5.3 

67#7 = 87,                  69#9 = 89 

where 0 $ &9',()5+ and 87, 89 $ &:
;
)<2+ are given. 

In the following the variational formulation of Neumann can be seen. Noting that the goal is 

to find # $ &',()*+ 

-)#, .+ = /0, .12 > /g7, ?27v712@AB C /g9, ?29v912@AB          3. $ &',()5+                            5.4 

67#7 = 87,                  69#9 = 89 

where 0 $ &49',()5+ and D7, D9 $ &:
;
)<2+ are given. 

In what follows E8 = 87 C 89 and ED = D7 C D9 are representing the jump across the 

crack. 

Theorem 5.1 Problem (5.1) has a unique solution # $ &',()*+ for any 0 $ &9',()*+ and 

87, 89 $ &:
;
)<2+, such that E8 $ &4 :

;
)<2+. This solution satisfies 
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F#F',(@G H I)F0F9',(@G > F87F' JK @AB > FE8F' JK @A                                                               5.5 

Proof Assume that 87 = 89 = L. In order to prove this assumption, it is necessary to verify 

that -)#, .+ is coercive on &4',()5+. It can be shown that any # = {#7, #9} $ &4',()5+ can 

satisfy F#9F',(@GMJ H I-7)#7, #7+ and F#9F',(@GNJ H I-9)#9, #9+, where -±)#, .+ =

OP Q±)#, .+G± RS. As a result it can be concluded that 

F#F',(@GJ = F#7F',(@GMJ > F#9F',(@GNJ H I[-7)#7, #7+ > -9)#9, #9+] = I-)#, #+ 

By the Lax-Milgram lemma, Dirichlet boundary value problem, with 87 = 89 = L, has a 

unique solution # $ &4',()5+ and 

F#F',( H IF0F9',(@G                                                                                                              5.6 

In the full problem of Dirichlet boundary value, the operator T2 will be considered from <2 

toU<, which maps &:
;
)<2+ continuously to &:

;
)<+. Let V7 = T287, and let V9 be the extension 

of 89 to < such that W'V7 = W'V9. The operators of extension from < to 5± by T±, which 

map &:
;
)<+ continuously to &')57+ and &',()59+, respectively. Let X = T7V7 $ &')57+, 

and X9 = T9V9 $ &')59+. It is obvious from this definition that X = {X7, X9} $ &4',()5+. 
The goal is to find a solution for Dirichlet boundary value problems in the form of # = #2 >
X, where #2 $ &4',()5+ satisfies 

-)#2, .+ = /0, .12 C -)X, #+UUUUUUUUU3. $ &4',()5+                                                                   5.7 

On the other hand, it can be said for all . $ &4',()5+ 

|-)X, .+| H |-7)X7, .7+| > |-9)X9, .9+| H IYFX7F'@GM > FX9F',(@GNZF.F',( 



46 

 

H I \FV7F' JK @A > FV9F' JK @A^ F.F',( H I \F87F' JK @AB > F89F' JK @AB^ F.F',(   

H I \F87F' JK @AB > FE8F' JK @A^F.F',( 

The right hand side of the equation (5.7), _).+ = /0, .12 C -)X, #+, defines the continuous 

linear functional on &4',()5+, and F_F',(@G H I \F0F9',(@G > F87F' JK @AB > FE8F' JK @A^. 

Hence the equation (5.7) has a unique solution #2 $ &4',()5+, and 

F#2F',(@G H I \F0F9',(@G > F87F' JK @AB > FE8F' JK @A^ 

The theorem now follows from this inequality and the estimate 

FXF',(@G H I \F87F' JK @AB > FE8F' JK @A^ 

` 

For Neumann boundary value problems, it can be clearly understood that, from the properties 

of rigid displacements point of view, the equation (5.8) is a necessary solvability condition 

for these boundary value problems. 

/0, a12 > /D7, a12@AB C /D9, a12@AB = LUUUUUUUUUU3a $ b                                                              5.8 

Theorem 5.2 Problem (5.2) is solvable for any 0 $ &49',()*+ and any D7, D9 $ &9:
;
)<2+, 

such that E8 $ &49:
;
)<2+ satisfies equation (5.8). Each solution is differ from the other by a 

rigid displacement. Hence, there is a solution #2 that satisfies the estimate 

F#2F',(@G H I)F0F9',( > FEDF9' JK @A > FD9F' JK @AB 

Proof Assume the expression _).+ such that 
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_).+ = /g7, ?27v712@AB C /g9, ?29v912@AB  

= /ED, ?27v712@AB > /g9, E.12@AB          3. $ &',()5+  

where E. = ?27v7 C ?29v9, which defines a continuous linear function on &',()5+. 

Therefore, it can be concluded that 0' $ &4',()5+ exists, which will satisfy _).+ = /0', v12 

for all . $ &',()5+, and 

F0'F9',( H I cFD9F9:
;,AB > FEDF9:

;,A
d                                                                                  5.9 

Now by setting 0 > 0' = 0e the equation (5.2) can be rewritten in the form of -)#, .+ =
/0e, .12U, . $ &',()5+. Also, the factor space has been defined as f',()5+ = &',()5+hb. The 

norm for the factor space is FiFf:,j)G+ = kl8m$n:,j)G+,m$oF#F',(@G. Moreover, a bilinear 

form p)i, q+, and a linear functional r)q+,  will be defined as 

p)i, q+ = -)#, .+,           r)q+ = _).+ = /0e, .12                                                             5.10 

where # and . are arbitrary representatives of the classes i, q $ f',()5+. Since -)a, a+ = L 

and /0e, a12 = L for any a $ b, the definitions (5.10) are consistent. 

The goal of the problem that will be considered now is to find i $ f',()5+, such that 

p)i, q+ = r)q+,UUUUUUUUUU3q $ f',()5+                                                                                  5.11 

It is claimed that equation (5.11) has a unique solution. From equation (5.9) it can be 

concluded that 

|r)q+| H I cF0F9',( > FD9F9:
;,AB > FEDF9:

;,A
d F.F',(@GUUUUU. $ q    

which will results 
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|r)q+| H I cF0F9',( > FD9F9:
;,AB > FEDF9:

;,A
d FqFf:,j)G+  

This conclusion means that r)q+ is continuous. The continuity of p can be clearly 

understood. In every class i a representative # has been chosen that /627#7, a12@AB = L for all 

a $ b. 

 ! ",#;$% & '()*+!*, !*- .  /"*!* 0,12% 3 & '()*+!*, !*- .  /"4!4 0,12% 3  

& '()*+!*, !*- .  !4 ",$5% 3  

where  6  0,12 is the norm in 7%+8"-, and 

 !4 ",$5% & '[)4+!4, !4-]  

Consequently 

 9 :2,<+$- &  !4 ",$5% & =+9, >-  

This proves that = is coercive on :",#+?-. By the Lax-Milgram lemma, equation (5.10) has 

a unique solution 9 @ :",#+?-, and 

 9 :2,<+$- & ' A B *",# .  C* *2
D,1E

.  FC *2
D,1
G  

Clearly any element ! in 9 is a solution of equation (5.2).If !" and !% are two solutions of 

equation (5.2), then H I !" J !%, which satisfies  

)+H, H- I K,LLLLLLLLLLH @ :",#+?-  

It can be concluded now that H @ M. By choosing !0 @ 9 that will satisfy  !0 ",#;$ I
 9 :2,<+$-, the proof will be completed. N 
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Theorem 5.3 O*",#+P- consists of all B I +BQR, BS-R. Also, BQ is defined as BQ I +BT, BU-R. BQ 

and BS satisfy the equation (5.12). 

BQ I VWXY . Z\^_`,LLLBS I _WX> J a`                                                                               5.12 

where Y @ 7²+b²- cde×", ` @ 7²+b²- cd"×", and > @ 7²+b²- cd%×". VWX shows the 

divergence of a vector and Z\^_ represents the gradient. Moreover, the constants 'T f K and 

'U f K are defined as 

'T g B g*",#;h&g Y g i.g ` g i.g > g i & 'U g B g*",#;h  

The proof of this theorem can be find in (Shmoylova, 2006). 

In the following, it will be shown that equation (5.1) and equation (5.2), by using the area 

potential, can be reduced to similar problems for the homogeneous equilibrium. 

In order to show this for equation (5.1), using theorem (5.3), it has been assumed that any 

B @ O*",#+P- can be represented in the form (5.12), where the range of the equality is 

defined on jk+P-. Let B @ O*",#+b²- be defined by the same formula (5.12), in which the 

range of the equality is defined on S′(R²). Now, the solution of equation (5.1) can be 

represented in the form  = !("#$) + %.  

Since  

&(!("#$), ') = *#$, '-. = *#, '-.  

for 

' / 01,2(3)  

it will be concluded that % / 01,2(3), which satisfies 
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&(%, ') = 4555556' / 01,2(3)  

7.8%95 = 5:8 " 7.8(!("#$))9, 7.;%< = :; " 7.;(!("#$))<  

Let 7. be the trace operator defined on 01,2(3) by 7.' = {7.8'9, 7.8'9 " 7.;'<}. It can 

clearly be understood that 7. is continuous from 01,2(3) to 01
>?
(@.) × 0A 1

>?
. In the 

following, the goal is finding  / 01,2(3) as a solution of problem (5.1), without the loss of 

generality, which will satisfy   

&( , ') = 45556' / 01,2(3),55557. = {:8, B:}                                                                     5.13 

On the other hand, in problem (5.2), the aim is to seek  / 01,2(3) such that 

&( , ') = *#C, '-.,5556' / 01,2(3)                                                                                         5.14 

where #C / 0D1,2(3) was defined in Theorem (5.2) and satisfies 

*#C, E-. = 4555556E / F                                                                                                            5.15 

Since 01,2(G²) is a subspace of 01,2(3), it is possible to consider #C which belongs to 

0D1,2(G²). Moreover, from (5.14) it can be understood that # / 0D1,2(G²). So, the solution 

of equation (5.14) can be represented in the form  = !#C + %. Then equation (5.14) 

becomes 

&(%, ') = *#C, '-. " &(!#C, ')55556' / 01,2(3)  

Lemma 5.1 For all #C / 0AD1,2(3) satisfying equation (5.15), the expression 

H(7.') = *#C, '-. " &(!#C, '), ' / 01,2(3)                                                                        5.16 
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defines a continuous linear functional on 01
>?
(@.) × 0A 1

>?
. Hence, H(7.')5can be written in 

the form 

*#C, '-. " &(!#C, ') = *BI, 7.8'9-JKL. + *I;, B'-JKL., ' / 01,2(3)  

where {BI, I;} / 0AD1
>?
(@.) × 0D1

>?
(@.) 

Proof Let 'M, 'N / 01,2(3) such that 7.'M = 7.'N. The difference ('1 " '>) / 01,2(3) O

01,2(G²). Also, it is understandable that &P!#C, ('1 " '>)Q = *#, ('1 " '>)-. Due to these 

definitions, the following equation can be concluded 

 H(7.'M) = H(7.'N) 

This means that definition (5.16) of H on 01
>?
(@.) × 0A 1

>?
 is consistent.  

Let {:8, B:} / 01
>?
(@.) × 0A 1

>?
. Repeating the proof of Theorem (5.1), this time by choosing 

' / 01,2(3) so that 7.' = {:8, B:} and R ' R1,2KST U(R :8 R1V>KL.+R B: R1V>KL). It then will 

be concluded that 

|H({:W, B:})| T U R #C RD1,2R ' R1,2KST U R #C RD1,2 (R :8 R1V>KL.+R B: R1V>KL), 

which shows that H is continuous on 01
>?
(@.) × 0A 1

>?
(@.). By definition, 0D1 >?

(@.) ×

0AD1 >?
(@.) is the dual of 01

>?
(@.) × 0A 1

>?
, so the proof is completed.X 

Lemma (5.1) implies that, without loss of generality, it is possible to consider equation 5.2 

only for the homogeneous equilibrium equation. So, if the goal has been defined as seeking 

 / 01,2(3) such that 

&( , ') = *BI, 7.8'9-JKL. + *I;, B'-JKL.5555556' / 01,2(3)                                                  5.17 
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equation (5.17) is solvable only if 

*E, BI-JKL. = 4555556E / F                                                                                                      5.18 

5.4 Poincaré--Steklov operator for the crack problem 

For Y = {:8, B:} / 0 !" (#$) × %&  !" (#$) and ' = {*+, +-} . %/ !" (#$) × %&/ !" (#$), the 

following notation has been used 

0[1, ']2;3$ = 456, *+72;3$ 8 4*5, +-72;3$  

Now the Poincaré-Steklov operator 9 can be defined on % !" (#$) × %&  !" (#$) by 

0[91,:]2;3$ = <(>, ?)0000@: . % !" (#$) × %&  !" (#$)                                                          5.19 

1 . % !" (#$) × %&  !" (#$)  

where > is the solution of equation (5.13) and ? is any element in % ,A(B) such that C$? =

: = {D6, *D}. The definition is independent of the choice of ?. In particular, ? might be 

taken as ? = E:, where E is an operator of extension from #$ to B which maps % !" (#$) ×

%&  !" (#$) continuously to % ,A(B). 

To continue, F will be identified with the subspace of % !" (#$) × %&  !" (#$) consisting of all 

G = {H, I}, H . F. Also, the spaces JK L!(#$) and JK/ L!(#$)00will be introduced as 

JK L!(#$) = 0 {1 . % !" (#$) × %&  !" (#$)M 456, H72;3$ = I0000@H . F}, 

JK/ L!(#$) = {' . %/ !" (#$) × %&/ !" (#$)M 4*+, H72;3$ = I0000@H . F}, 
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Theorem 5.4  

i. 9M% !" (#$) × %&  !" (#$) N %/ !" (#$) × %&/ !" (#$) is self-adjoint and 

continuous. 

ii. The kernel of 9 coincides with F. 

iii. The range of 9 coincides with JK/ L!(#$). 

iv. The restriction O of 9 to JK L!(#$)  is a homeomorphism from JK L!(#$)  to 

JK/ L!(#$). 

Proof  

i. If > is the solution of equation 5.13, and ? = E:, then, by the definition of 9, 

for 1,: . % !" (#$) × %&  !" (#
2) 

|[91,:]|² = |<(>, ?)|² P <(>, >)<(?, ?) P Q<(>, >) R : RST U"
(3$)×S& T U"

(3V)
!   

Consequently 

91 . %/ !" (#$) × %&/ !" (#$)  

and 

W95WSXT U"
(3$)×S&XT U"

(3$)
! P Q<(>, >) = Q[91, 1]2;3$                                                 5.20 

P 0QW95WSXT U"
(3$)×S&XT U"

(3$)W1WST U"
(3$)×S& T U"

(3$)  

From equation (5.20) it follows that 

W91WSXT U"
(3$)×S&XT U"

(3$) P QW1WSXT U"
(3$)×S&XT U"

(3$)                                                   5.21 

which proves the continuity of 9. The definition of 9 shows that it is self-adjoint in 

the sense that 
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[91,:]2;3$ = [:,91]2;3$000@1,: . % !" (#$) × %&  !" (#$)  

ii. It is clear that 9G = I for G . F. If 1 . % !" (#$) × %&  !" (#$), then 91 = I. 

Also, > is the solution of equation (5.13) As a result, it can be concluded that 

<(>, >) = I. Hence, > . F, which implies that 1 = C$> . F. This also proves that O 

is injective. 

iii. By equation (5.21), it can be understood that the range of 9 is a subset of 

JK/ L!(#$). Let {HY(Z)}Z\ ^  be an _²(#$)-orthonormal basis forF. From the previous 

explanations it follows that any > . % ,A(B)0satisfies 

W>W ,A;`! P Qa<(>, >) 8 b 4C2c>c, H(Z)72;3V!^
Z\ d                                                       5.22 

Let 1 . JK/ L!(#$). By the trace theorem from (Chudinovich, et al., 2000), and 

equation (5.22) 

W1WST U"
(3$)×S& T U"

(3$)
! P QW>W ,A;`! P Q<(>, >) = Q[91, 1]2;3$  

hence, 

W1WST U"
(3$)×S& T U"

(3$) P QW91WSXT U"
(3$)×S&XT U"

(3$)  

which shows that O-¹ is continuous.  

When the range of 9 is not dense in JK/ L!(#$), then there is a nonzero 1e in the dual 

f% !"
(#2) × %&  !"

(#2)g hF of  JK/ L!(#$) such that  

491,:72;3$ = I  

for all representatives 1 of the class 1e and all : . % !" (#$) × %&  !" (#$).  

Now by taking 1 . JK L!(#$) and : = 1, it will be found that  

[91, 1]2;3$ = I  
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therefore, 1 . F and 1e = I. This contradiction proves the third statement. 

iv. This claim has been proved in the las ones.i 

5.5 Boundary equations 

Here the single and double layer potentials on the crack will be defined by 

 ( !)(") = # # $(", %)!(%)&'*(%)+-  

 (.!)(") = # # /(", %)!(%)&'*(%)+-  

Let 01 2345(6-) be the subspace of 712345(6-) of all 8 such that 98, :;<>+- = ?&for all : @ A. 

The modified single layer potential   of density ! @ 012345(6-) can be defined by 

&(B!)(") = ( !)(") C 9( !)-, :D(E);<>+-:D(E)("), " @ F²  

where  ! is the single layer potential, and  - is the  boundary operator defined by 

( !)- = G<
±H± !  

Let B-! be the operator defined on 01 2345(6-) by 

! I (B!)< = G<
±H±B!  

From the results established in (Shmoylova, 2006), B-&is continuous from 012345(6-)  to the 

subspace 02345(6-)  of all JK @ 7_{L4M}(6-)&such that N JK, : O _{?> 6-} = ?&for all : @ P. 

Let BQ&be the continuous operator from 01 2345(6-)   to 0R2345(6-)&&defined by  BQ! =

{B-!, ?}. 

Theorem 5.5 The operator B- is a homeomorphism from 01 2345(6-) to 02345(6-). 
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Proof The continuity of B- has been proved in (Shmoylova, 2006). From the jump formula 

for the normal boundary stresses and couple stresses of the single layer potential it follows 

that the first component of SBQ! @ 0R2345(6-)&is !. By Theorem (5.4), 

T!T2345>+- U VSBQ!V
WXY Z[

(+-)×W1XY Z[
(+-)

  

&U &\VBQ!V
WY

Z[
(+-)×W1 Y

Z[
(+-)

= \TB-!T345>+-  

which shows that B-]¹&is continuous.  

Now, it can be claimed that the range of B- is 03
5[
(6-). Let JK @ 03

5[
(6-)&and P =

{JK, ?} @ 0R2345(6-), and let ^ @ 73,`(a)&be the solution of equation (5.13) with bJ = ?. 

The c and ! will be taken as 

c = {b8, 8]} = SP @ 0R2345(6-)&  

! = b8 @ 012345(6-)&  

 On the other hand, there is a d which d = ^ C B-!&and satisfies 

G-d = {JK C B-!, ?} = e  

By the jump formula, the first component of Se is zero. It can be resulted that f(d,d) =

gSe,eh<>+- = ?. This conclusion means that d @ A, so G-Kdi&is a rigid displacement on Γ-. 

Since γ-Kdi = JK C B-! @ 03
5[
(6-), it can be concluded that, JK = B-!, and the assertion 

is proved.j 

For the double layer potential, the modified double layer potential can be introduce by k of 

density l @ 71345(6-), which will satisfy 
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&(kl)(") = (.l)(") C 9H-.Kl, :m{(n)};<>+-:~(E)("), " @ a  

Clearly, if l @ 71345(6-), then .l @ 73,`(a) and T.lT3,`>o U \TlT345>+. Hence, for l @

71345(6-), the operators k±&has been defined. These operators are of the limiting values of 

the modified double layer potential on 6 from within a±, which can be shown by writing 

k±l = G±H±kl. It is obvious that all k±&are continuous from 71345(6-)&to 7345(6)&and 

satisfy the jump formula 

kKl Ck]l = Cl                                                                                                             5.23 

For  ! "#$/%(&')*, the operator +' of the limiting values of the modified double layer 

potential on &' from within ,, can be defined by writing 

+' = {-'+. 0 -'(+. 1+2 )} = {-'+. 01 }  

Clearly, +' is continuous from "#$/%(&')*to 34$/%(&'). 

Let 56 = 7+'8*From the jump formula for the normal boundary stresses and couple stresses 

of the double layer potential it follows that the first component of 56  is zero for any  !
"#$/%(&'). Hence, as a result, it can be written that 56 = {90 5 }*for all  ! "#$/%(&'). 

Theorem 5.6 5*is a homeomorphism from "#$/%(&')* to ":$/%(&'). 

Proof The continuity of 5 follows from the properties of +' and 7. The claim is that 

*5*2¹*is continuous. Let  ! "#$/%(&'). By equation (5.23) and the trace theorem 

(Chudinovich, et al., 2000), it can be concluded 

; ;$/%<>% = ;+. 1+2 ;$/%<>% ? @;+ ;$0A<B%   
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*? *@C(+ 0+ ) = 1@D5 0  EF<>'  

? *@;5 ;:$/%<>'; ;$/%<>  

consequently, ; ;$/%<> ? @;5 ;:$/%<>'. If the range of 5 is not dense in ":$/%(&'), then 

there is a nonzero   in the dual "#$/%(&')*such that D 0 5GEF<>' = 9 for all G ! "#$/%(&')*. So 

it is assumed that G =  , hence, it will be obtained that D 0 5 EF<>' = 9. This result means 

that + ! H. Therefore,  = +2 1+. = 9. And it can be said that this contradiction 

completes proof.I  

Now the solution of equation (5.13)  will be represented in the form 

J = (KL)B MN M O                                                                                                          5.24 

where L ! 3# :$/%(&')*and  ! "#$/%(&')*are unknown densities, (KL)B is the restriction of 

KP to , and 

O = DQ. 1 -'N. 0 O(R)EF<>'O~(R)  

Representation of equation (5.24) leads to the system of boundary equations 

{K'P M -'N. M S'.O0 1 } = {Q.0 TQ}                                                                              5.25 

Theorem 5.7 For any {Q.0 TQ} ! "$/%(&') *× "#$/%(&')*, system (5.25) has a unique solution 

{L0  } ! 3# :$/%(&') *× "#$/%(&')  

respectively, and 

;{L0  };U#VW/X(>')×U# W/X(>') ? @;{Q.0 TQ};UW/X(>')*×U# W/X(>')*  

In this case, equation (5.24) is the solution of problem (5.13). 
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Proof From system (5.25)  = 1TQ ! "#$/%(&'), consequently the equation for L becomes 

K'L = Q. M -'N.TQ 1 DQ. M -'N.TQ0 O~(R)EF<>'O~(R)}                                                      5.26 

The right-hand side in equation (5.26) belongs to 3$/%(&'). By referring to Theorem (5.6), 

equation (5.26) has a unique solution L ! 3# $/%(&')*and 

;L;:$/%<> ? @ Y;QZ;WX<>[ M ;-FN
ZTQ;W

X<>[
\  

? *@ Y;QZ;W
X<>[

M ;TQ;W
X<>

 = !"{#$, %#}"&'/()*+-.×&0 '/()*+-.  

1  

In the next attempt, the solution of problem (5.17) will be represented in the form 

2 = )34-_{5} 678 6 9                                                                                                    5.27 

where 4 : ;0 </>)?+-.and 8 : @0</>)?+-.are unknown densities, and 9 : A is arbitrary. 

Representation of equation (5.27) leads to the systems of boundary equations 

B3C4 6 DE8 = {%F, FG}                                                                                                        5.28 

Theorem 5.8 For any {%F, FG} : @H</>)?+- .× @0H</>)?+-.satisfying equation (5.18), system 

(5.28) has a unique solution {4, 8} : ;0 </>)?+- .× @0</>)?+-.and 

"{4, 8}"&0I'/()*+-.×&0 '/()*+- J !"{%F, FG}"&I'/()*+-.×&0I'/()*+-  

In this case, equation (5.27) is the solution of problem (5.17). 

Proof Comparing first components on both sides of equation (5.28), it can be seen that 4 =
%F. Hence, equation (5.28) takes form 
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D8 = FG K )B3C%F-G                                                                                                           5.29 

where LB3C%FMHis the second component of B3C%F. By Theorems (5.6), and (5.7), equation 

(5.28) has a unique solution 8 : @0</>)?+-.and 

"8"</>N* J ! O"FH"H'
(N*P

6 "%F"H'
(N*

   

1  

5.6 The boundary equations for a finite domain 

Assuming QR is a simple closed S²-curve that divides T² into interior and exterior domains 

R$ and RG. It has been undertaken that R$ holds inside an auxiliary simple closed S²-curve 

? = ?+ U ?V, where ?+ is an open arc modeling crack. Then it can be written that 5 = R$\?+. 
Let 5$ be the interior domain bounded by ?, and 5G = R$\5$. 

If 2 is defined in 5, then its restrictions to 5$ and 5G  will be represented by 2W and 2X, 
respectively. So it can be shown as 2 = {2W, 2X}. The spaces @V)5±-.are introduced in the 

usual way. The traces of the elements 2± : @V)5±-.on ? are denoted by Y$2W.and YG2X. 

Also, the operators of restrictions from ? to ?Z. will be represented by [Z , ] = ^,`. So  

YZ± = [ZY±....., ] = ^,`  

The space @V)5-.consists of all 2 = {2W, 2X}.defined in 5 and such that 

 2W : @V)5$-,                          2X : @V)5G-. 

and  

YV$2W = YVG2X  
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The norm in @V)5-.is defined by  

"2"<Na> = "2W"<Na$> 6 "2X"<NaG>   

Let γ  be the trace operator that acts on ! " #$(&) according to the formula ' ! =

{' *!+, ' *!+ - ' .!/}01Clearly, ' 1is continuous from #$(&)1to #234(5 )1× #6234(5 ). The 

trace of ! " #$(&) on 78 is denoted by '9:
; !. #6 $(&)1is the subspace of #$(&) consisting of 

all ! " #$(&)1such that ' ! = {<,<} and '9:
; ! = <. 

Let 5 = 5 > 78. In what follows the spaces #234(5?) = #234(5 ) × #6234(5 ) × #234(78)1of 

all @? = {@, A9:} will be used. In the aforementioned spaces @ = {A*, BA}, and #C234(5?) =

#C234(5 ) × #6C234(5 ) × #C234(78)1of all D? = {D, E9:}, where D = {BE, E.}. It is clear that 

these spaces are dual with respect to the duality [@, D]FGH = [@, D]FGH I JA9:, E9:KFG9:. This 

duality is generated by the inner product [L,L]FGH in M²(5) = M²(5 ) × M²(5 ) × M²(78). 

the following boundary value problems has been considered. 

Assuming @ = {@, A9:} " #234(5?), the aim is to seek ! " #$(&)1such that 

NO(!, P) = <1111QP " #6 $(&),11111' ! = @, '9:
; ! = A9:                                                          5.30 

where  

NO(!, P) = R S(!, P)TUO . 

Assuming D? = {D, E9:} " #234(5?), the aim is to seek ! " #$(&)1such that 

NO(!, P) = [D, ' P]FGH I JE9:, '9:PKFG9:,1111QP " #$(&)                                                    5.31 

Clearly, equation (5.31) is solvable only if 
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JBE, VKFGH I JE9:, VKFG9: = <,111QV " W                                                                                5.32 

In what follows it has been assumed that equation (5.32) holds. The proofs of the unique 

solvability of equations (5.30) and (5.31) repeat those of Theorems (5.1) and (5.2) with the 

obvious changes, so they will be omitted. 

The Poincaré-Steklov operator XY  by [XY@?, Z\]FGH = NO(!, P), where @?,Z\ " #234(5?)1are 

arbitrary. P " #$(&)1is any extension of Z\  to &. Let W(5?)1be the space of all _̂ = {^, V}, ^ =

{V, <}, where V " W1is arbitrary. The spaces below then defined as 

2̀34(5?) = 1 {@? " #234(5?)a [@, ^]FGH = <11Q^ " W(5?)}  

C̀234(5?) = 1 {D " #C234(5?)a [D, ^]FGH = <11Q^ " W(5?)}  

Theorem 5.9 

i. XY  is self-adjoint and continuous from #b
c
(5?)1 to #Cb

c
(5?). 

ii. The kernel of T coincides with W(5?). 

iii. The range of XYcoincides with `C234(5?). 

iv. The restriction d\  of XY  from #b
c
(5?) to 2̀34(5?) is a homeomorphism from 

2̀34(5?) to `C234(5?). 

Proof the proof of this theorem is same at theorem 5.5. e 

Let 6̀ C234(5?)1be the subspace of #6C234(5 ) × #C234(78)1of all f = {f ,f9:}1such that 

Jf , VKFGH I Jf9:, VKFG9: = <1 for all V " W. \̀234(5?) is the subspace of #234(5 ) ×

#234(78)1 consisting of all A = {A*, A9:} such that JA*, VKFGH I JA9:, VKFG9: = <1for all V " W. 
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The single layer potential of density f " 6̀C234(5?)1 has been defined by 

1(gf)(U) = (g f )(U) I (g9:f9:)(U),1111U " h²  

where g f 1and g9:f9:1are the single layer potentials defined on 5  and 78, respectively. 

Let { _̂ (i)}ij2
k 1be an M²(5?)-orthonormal basis for W(5?), where _̂(i) = {^(i), V(i)} and ^(i) =

{V(i), <}. The rigid displacements V(i)1satisfies equation (5.30) with boundary data @ =

_̂ (i), A9: = V(i). The modified single layer potential can be introduced as 

1(lf)(U) = (gf)(U) - mJ(gf)F, V
(i)KFGHn I J(gf)9:, V

(i)KFG9:oV(i)(U), U " h²  

where (gf) 1and (gf)9:1are the restrictions of gf to 5  and 78. The corresponding 

boundary operator lH\  is defined by lH\f = {'F
;(lf)+, '9:

; (lf)O}, where (lf)±1are the 

restrictions of gp1qr1&±. Moreover, a boundary operator l?s has been defined which satisfies 

  l?f = {'F
;(lf)+, '9:

; (lf)O}. 

Theorem 5.10 lH\ 1is a homeomorphism from 6̀ C234(5?) to \̀234(5?). 

Proof From the properties of the single layer potential it follows that 

(lf)O " #$(&),      (lf):. " #2,t(8.) 

and 

u(lf)Ou2GO
4 v wNO((lf)O, (lf)O)                                                                                    5.33 

Here (lf):.1is the restriction of lf to 8.. By using the properties of the Poincaré-Steklov 

operator X., and knowing that for any f = {f , f9:} " 6̀C234(5?), the jump formula for 

normal boundary stresses and couple stresses can be written as 
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f = (d\l?f)$,111111f9: = (d\l?f)x - X.(lH\f)y                                                                 5.34 

where (d\l?f)i1are the components of d\l?f and (lH\f)z1are the components of lH\f. From 

equation (5.34) it follows that 

NO((lf)O, (lf)O) I N:|((lf):| , (lf):|) = J(lH\f)$, f KFGH I J(lH\f)y, f9:KFG9:     5.35 

It can be claimed that lH\ 1is continuous.  

Let f = {f , f9:} " 6̀C234(5?). By the trace theorem (Chudinovich, et al., 2000), 

ulH\fu~b3c(H )×~b3c(9:)
4 v wu(lf)Ou2GO. By equation (5.33) and equation (5.35) 

ulH\fu~b3c(H )×~b3c(9:)
4 v 1w[J(lH\f)$, f KFGH I J(lH\f)y, f9:KFG9:]  

v 1wulH\fu~b3c(H )×~b3c(9:)ufu~6|b3c(H )×~|b3c(9:)  

consequently,  

ulH\fu~b3c(H )×~b3c(9:) v wufu~6|b3c(H )×~|b3c(9:)  

 which proves the continuity of lH\ . 

If lH\f = <, then l?f = <1also, and equation (5.34) gives that f = <; therefore, lH\ 1is 

injective. By equation (5.34)  

ufu~6|b3c(H )×~|b3c(9:) v wulH\fu~b3c(H )×~b3c(9:)  

which means that lH\
C21is continuous. 

To complete the proof, it sufficient to show that the range of lH\ 1 is \̀234(5?).  

Let 
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A = {A*, A !} " #$%/&(')*+  

and  

, = {-.0 1} " 23%/&('4* × 2%/&('4*  

and let  

,) = {,0 - !} " 2%/&(')*  

the solution of equation (5.30) will be represented by 56 " 27(8* and the solution of 

problem below will be denoted by 5!9 " 2%0:(;9*+ 

<!9(5!90 >!9* = 1++++?>!9 " 23%0:(;9*0+++@!9
A5!9 = - !  

Let 

 BCD) = E) = {FG0 G90 G !
H } 

and let  

B9- ! = G !
A   

By taking I4 = FG, I ! = G !
H J G !

A , and I = {I40I !}, it is possible to write  

K6 = 56 J (DI*6 " 27(8*  

and  

K!9 = 5!9 J (DI*!9 " 2%0:(;9*+  

Then 

@4K6 += + {-. J @4.(DI*L0 1}+  
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@ !
H K6 += + - ! J @ !

H (DI*6  

@ !
A K ! += +- ! J @ !

A (MI*!9 = - ! J @ !
H (DI*6  

From the jump formulae and the definition of I it follows that 

++<6(K60 K6* N <!9(K!90 K!9*  

+= + OG !
H J (P$D)I*Q0 - ! J @ !

H (DI*6RST !  

++JOG !
A J B9(DU$I*V0 - ! J @ !

H (MI*!9RST !  

+= + OG !
H J G !

A J I !0 - ! J @ !
H (DI*6RST ! = 1  

hence, W$ = {-. J @4.(MI*L0 10 - !} J @ !
H (DI*6} " X(')). Since W$ " #%/&(')*, it can be 

concluded that W$ = 1, which completes the proof.Y 

Let #%/&(Z;*+be the subspace of 2%/&(Z;*+consisting of all - such that O-0 [RST ! = 1 for all 

[ " X\#A%/&(Z;*++is the subspace of 2A%/&(Z;*+of all G such that OG0 [RST ! = 1 for all [ "

,. 

The double layer potential of density ] = {]40 ] !} " 23%/&('4* ×#%/&(Z;*  can be defined 

as  

(^]*(_* = (^4]4*(_* N (  ̂!] !*(_*0+++++_ " 80 _ " ;9  

where ^4]4+and  ̂!] !+are the double layer potentials defined on '4 and Z;, respectively. 

The modified double layer potential can be introduced 

+(`]*(_* ++= + (^]*(_* J aO(^]*S
H0 [(b*RSTU4 N O(^]* !

H 0 [(b*RSTU4c[(b*(_*0+  

_++ " +80 _ " ;9  
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where (^]*S
H and (^]* !

H  are the limiting values of ^] on '4 and Z; from within 8. and 

;.. Also the limiting values `± of the modified double layer potential on ' from within 8± 

will be defined by writing `±] = @±d±`]. The corresponding boundary operator $̀ ] =

{d4(`.]*0 d4(`.] J`9]*,@ !
H (`]*6} = {@4.d.(`]*0J]40 @ !

H (`]*6}. 

Let ef = P$ $̀ . From the jump formula for the normal boundary stresses and couple stresses 

of the double layer potential it follows that the first component of ef] is zero for any ] "

23%/&('4* ×#%/&(Z;*. As a result, it can be written ef] = {10 (ef]*90 (ef]* !} for all ] "

23%/&('4* ×#%/&(Z;*. Moreover, the boundary operator eU$] = {(ef]*90 (ef]* !} has been 

defined from 23%/&('4* ×#%/&(Z;* to 2A%/&('4* ×#A%/&(Z;*. 

Theorem 5.11 eU$  is a homeomorphism from 23%/&('4* ×#%/&(Z;* to 2A%/&('4* ×

#A%/&(Z;*. 

Proof From the properties of the double layer potential it can be understood that (`]*6 "

27(8*0 (`]*!9 " 2%0:(;9*, and 

g(`]*6g%T6
& h i<6((`]*60 (`]*6*                                                                                5.36 

Here (`]*!9 is the restriction of `] to ;9. For any ] = {]40 ] !} " 23%/&('4* ×#%/&(Z;*. 

The jump formula for double layer potential can be written as 

]4 = J(`]*V0+++] ! = J((`]*Q J @ !
A (`]*!9*                                                             5.37 

where (^]*b are the components of `]. From equation (5.37) it results that 

<6((`]*60 (`]*6* N <!9((`]*!90 (`]*!9*                                                                   5.38 

+= +JO(eU$]*70]4RSTU4 J O(eU$]*V0] !RST !  
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It can be claimed that eU$  is continuous. Let ] = {]40 ] !} " 23%/&('4* ×#%/&(Z;*. By 

using the proof of Theorem (5.9), equation (5.36) and equation (5.38) 

geU$]gj
klm
(U4*×#

klm
( !*

& h +ig $̀ ]gjkl/m(U$*
& h ig(`]*6g%T6

&   

h +i{<6((`]*60 (`]*6* N <!9((`]*!90 (`]*!9*}  

+h +i{nO(eU$]*%0 ]SRSTUon N nO(eU$]*V0 ] !RST !n}  

+h +igeU$]gjkl/m(U4*×jl/m( !*g]gj3 l
m
(U4*×jl

m
( !*  

consequently,  

geU$]gjkl/m(U4*×jl/m( !* h ig]gj3 l
m
(U4*×jl

m
( !*, which proves the continuity of eU$ . 

If eU$] = 1, then from the properties of P$ , and $̀ ] = 1, also noting that B9@ !
A (^]*!9 =

(eU$]*V = 1, from equation (5.37) it will be obtained that ] = 1. Hence, eU$  is injective. By 

using equation (5.37) and Theorem (5.9), 

g]gj3 l
m
(U4*×jl

m
( !* h igeU$]gj

klm
(U4*×jl

m
( !*  

which means that  !"#¹ is continuous. 

To complete the proof, the verification of density of the range,  !" , is needed.  So, it can be 

said that the range of  !"  is dense in $&'/()*+, ×-&'/().0,. If the range of  !"  is not dense 

in $&'/()*+, ×-&'/().0,, then there is a nonzero 1 in the dual $2 3
4
)*+, × -3

4
).0, such that 

51+6 ) !"7,89:;!+ < 51=>6 ) !"7,?9:;=> @ A for all 7 B C$2 3
4
)*+, ×-3

4
).0,C. it can be easily 

understood that 7 @ 1 and it is possible to obtain 51+6 ) !"1,89:;!+ < 51=>6 ) !"1,?9:;=> @
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[16  D1]:;!" @ A, which means that E"1 B FG*HIJ Therefore, 1+ @ K)L+EM1 K L+E#1, @

A, 1=> @ K)N=>
O )P1,Q K N=>

& )P1,>#, @ A. This contradiction completes the proof.R 

the solution of problem (5.30) can be represented in the form 

S @ )TU,_{V} <P+1 < W                                                                                                   5.39     

where U B -2 &'/()*H,. P+1 is the double layer potential of density 1 B $2'/()*+,, 

W @ [5XM < N+M)P+YX,ZW)\,9:;! < 5X=> < N=>
O )P+YX,Q6 W)\,9:;=>]W)\,                                 5.40 

and )P+YX,Z and )P+YX,Q are the restrictions of P+YX to VM and V. This representation 

yields the system of boundary equations 

THU < {N+M)P+1,Z6K16 N=>
O )P+YX,Q} @ Ĥ K {W6 A6 W}                                                        5.41 

Theorem 5.12 For any Ĥ B $'/()*H,, system (5.41) has a unique solution {`6 1} B

-2 '/()*+, × $2'/()*+,, which satisfies the estimate 

a {U6 1} ab2
c34
)!+,×b3

4
)=>,×b2

c34
)!+,d e a Ĥ ab3/4)!",  

In this case, S that has been defined by equation (5.39) is a solution of problem (5.30). 

Proof Assuming 1 @ KYX. Also, the system (5.40) will be reduces  

T!"U @ {XM6 X=>} < {N+M)P+YX,Z6 N=>
O )P+YX,Q} K {W6 W}                                                     5.42 

By equation (5.40), the right-hand side in equation (5.42) belongs to -"'/()*H,. The rest of the 

proof is similar to the proof of Theorem (5.10).R 

The solution of (5.31) will now be represented in the form 
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S @ T!+U < )P1,Q < W                                                                                                       5.43 

where T!+U is the modified single layer potential of densityU B $2&'/()*+,, U and 1 B

$2'/()*+, ×-'/().0, are unknown densities, and W B F is arbitrary. This representation 

yields the system of boundary equations 

f"{N+M)T!+U,6A6 N=>
O )T!+U,Q} <  D1 @ gH                                                                             5.44 

Theorem 5.13 For any gH B $&'/()*H,, system (5.44) has a unique solution {U6 1} B

-&'/()*+, × $2'/()*+, ×-'/().0, , which satisfies the estimate 

a {U6 1} ab2c3/4)!+,×b2 3/4)!+,×b3/4)=>,d e a gH abc3/4)!",  

In this case, S that has been defined by equation (5.43) is a solution of problem (5.31) 

Proof From the jump formula for normal boundary stresses and couple stresses of the single 

layer potential the first component of 

f"{N+M)T!+U,6A6 N=>
O )T!+U,Q}  

is equal to U. Comparing the first components on the both sides of equation (5.44) it can be 

seen that U @ Yh. The rest of the proof can be found in proving previous theorems.R 

Remark Till now * and .0 are assumed to be i²-curves. However, the results will remain 

the same for hybrid, and smooth i:6'-curves that consist of finitely many i²-arcs (Maz'ya, 

1985). 
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5.7 Boundary Element Method 

5.7.1 Background 

In section 5.6 a rigorous analysis of Dirichlet and Neumann boundary value problem for a 

domain weakened by a crack in Cosserat continuum has been performed. As a result, the 

corresponding solution in the form of modified integral potentials has been constructed, with 

unknown distributional densities. However, it is impossible to find these densities 

analytically. In order to overcome this drawback, it is necessary to find a numerical technique 

which will provides a procedure to approximate the solutions numerically. One of the most 

effective approaches to achieve this goal is the boundary element method (Brebbia, 1978). 

Later, it has been became a very popular approximation technique in different research areas, 

including fracture mechanics (Aliabadi, et al., 1993). 

The origin of the boundary element method goes back to classical integral equation and finite 

elements, which inherited the advantages of both techniques. From one point of view, this 

method allows the reduction of the dimension of a problem by one. Also, it defines domains 

extending to infinity with a high degree of accuracy. Both of aforementioned benefits are the 

same as boundary integral equation. On the other hand, in this method there is no need to 

differentiate the shape functions, which is a major requirement in finite element method in 

order to find the stresses. Here, the method allows to differentiate the matrix of fundamental 

solutions, which will ease the way of the calculations of the stresses and provides more 

accurate results. 

In what follows, the boundary element method has been used to find the solution for an 

infinite domain weakened by a crack in Cosserat continuum, when stresses and couple 
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stresses are prescribed along both sides of the crack (Neumann boundary value problem), and 

discuss its convergence.  

 

5.7.2 Boundary Element Method 

As it has been shown in section (5.6), the solution to problem (5.17) can be represented in the 

form of equation (5.27), as a reminder, this representation will come below 

 = (!")# +$% + &  

and the corresponding boundary integral equations are uniquely solvable with respect to 

distributional densities " and %. As it mentioned in the background section of this chapter, 

these densities cannot be found analytically. In order to approximate these entities 

numerically, the boundary element method has been used (Gaul, et al., 2003).  

Lemma 5.2 (Somigliana formula) Using classical techniques, we can prove that if  '

*,-.(/) is a solution of 0 = 12342/, then 

5 [6(7- 8)9(:(;<) (8)) > ?(7- 8)9 (8)]2@A(8)BC = (,
D
)9 (7)-2227 ' EC                           5.45 

where 9(:(;<) (8)) denotes the jump of :(;<) (8) on the crack. 

From Theorem (5.9), the density of the modified single layer potential is  

" = 9(:(;<) (8)) = 9F  

The next step is to find the density of the modified double layer potential % = >9 . To 

achieve this goal, EC has been divided into 4 elements EG
(H)

, each of which possesses one 

node I(H) located in the middle of the element. The values of 9F and 9  are constant 
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throughout the element and correspond to the values at the node 9F(I(H)) and 9 (I(H)). 

Then equation (5.45) becomes 

J 5 [6(7- 8)9F(I(H)) > ?(7- 8)9 (I(H))]2@A(8)
BK
(L)

M
HN, = (,

D
)9 (7)-22227 ' EC  

By putting27 sequentially at all nodes, the linear algebraic system of equations can be 

obtained 

 J (5 O6OI(P)Q- 8Q@A(8))9 (I(H))
BK
(L)

M
HN, > J (5 O?OI(P)Q- 8Q@A(8))9 (I(H))

BK
(L)

M
HN, 222 

=  (!
")#$(&(')),       *, + = 1, -                                                                                               5.46 

with respect to #$(&(')). 
It should be noted that / 020&(')3, 4356(4)78(9)  is defined for any * and + (Schiavone, 1996). 

    The approximation to : has been constructed by solving problem (5.46). If the shape 

function ;<(>) has been introduced by 

;<(>) = ?1                > @ AB(<)
C          > @ AD\AB(<)  

then the approximated densities can be represented as 

EFGH(>) = I ;<(>)#J0&(<)3K<L!   

:(G)(>) = M I ;<(>)#$0&(<)3K<L!   

Consequently, the approximate solution is  

$FGH = (NOFGH)P Q R:FGH Q S  
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where S is arbitrary.  

Now it has to be proven that the approximate numerical solution $FGH will converge to exact 

analytical solution $ when - T U. 

Theorem 5.14 $FGH T $ as - T U. 
Proof Since the Neumann problem has been considered, rigid displacement terms are not 

determined. Hence, it only necessary to show that NEFGH T NE and R:FGH T R: as - T U.  
In order to prove the firs claim, for > @ V 

WNE(>) M NE(G)(>)W  
X  I Y/ 2(')(>, 4)E(4) 56(4)7D M I Z/ 2(')(>, 4)56(4)78(9) [ E(&(<))K<L! Y]'L!   

 =  I YI / ^2(')(>, 4)E(4) M 2(')(>, 4)E(&(<))_78(9)K<L! 56(4)Y]'L!   

 =  I YI / 2(')(>, 4)^E(4) M E0&(<)3_78(9)K<L! 56(4)Y]'L!   

X  I I `2(')(>, C)`!,abPK<L!]'L! WE(4) M E0&(<)3Wc<  

where c<  is the length of the +de element. Assuming the elements are all equal it can be 

concluded, c< = c = (f
K), where L is the length of AD.  

Also 

WE(4) M E0&(<)3W  
X I WE'(4) M E'0&(<)3W]'L!   
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= I I WghE'0&(<)3Wc Q i(c")"hL!]'L!   

Then by denoting jk as 

jk = lm>hL!,"b'L!,]b<L!,KWghE'0&(<)3W  
Since `2(')(>,n)`!,abP are uniformly bounded (Iesan, 1970), it can obviously be concluded 

that there exists jo p C such that 

`2(')(>,n)`!,abP X j"     q> @ r  

Now it may be written 

|NE(>) M NEFGH(>)| X Z0!stutvfv3
K [ T C as - T U. 

Repeating the proof for R:FGH, it will be concluded that $FGH T $. 

 w 
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Chapter 6 Stress Intensity Factor for a Crack in 

Human Bone 

6.1 Crack in Human Bone 

For comparing the results of this calculation and classical analysis and showing the 

effectiveness of this method, a crack in human bone has been modeled as an open arc of the 

circle. The circle can be described by equation 6.1.  Plane micropolar elasticity was the other 

assumption in this problem, which will make the problem as a Neumann problem described 

before. A brief illustration of the problem can be found in Figure 6-1. Changing radius r, will 

change the crack length. The elastic constants for human bone are having below values: 

 = 4000!"#$                                                                            & = 193.6!' 

( = 3047!'                                                                                 ) = 5332!*#$ 

+ = 4000!"#$  

Moreover, the crack lengths is taken from the experimental values and put equal to 0.26 mm, 

0.52 mm, 0.75 mm, and 10 mm. Another assumption in the example was the assumption of 

force, which is equal to # = 2!"#$.  

In what follows, n is the elements of ,-, and / is the distance from the crack tip. Also it has 

to be noted that 0 < 8 <
:

;
.  
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>? = @ ABC 8 

>D = @ CEF 8!                                                                                                                           6.1                                                                                  

Recalling the definition of normalized stress intensity factor: 

 !"#$&'()*+ =  ! =
 ,-

.2/01
=
344

1
=
3!

1
 

In (Table 6-1), the approximated solutions for normalized stress intensity factor ( !), 

tangential traction (35), and moment about z or x3-axis (67) for a crack of length 0.52 mm 

can be seen. 

 

 

limit 

89, 

mm 

r 

θ 

1:; 

8<, mm 

Figure 6-1 Illustration of the thesis problem

 ! 
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Table 6.1 Approximate solutions for a crack with length of 0.52 mm 

ρ (mm) 0.1 0.5 0.7 1 

n=4 

Kn  0.491628 0.0543215 0.0411755 0.028641 

Ts (Mpa) 1.175489 0.538926 0.213505 0.156437 

M3 (N.m) 162.5682 91.24553 79.45362 70.64523 

n=10 

Kn  0.2846805 0.0343675 0.026339 0.016268 

Ts (Mpa) 0.634936 0.264282 0.091475 0.045343 

M3 (N.m) 84.24634 49.86301 44.26856 36.09357 

n=30 

Kn  0.2137745 0.030931 0.019877 0.010915 

Ts (Mpa) 0.506874 0.184756 0.075982 0.033547 

M3 (N.m) 69.24764 34.25447 30.25879 24.62579 

n=50 

Kn  0.199231 0.026959 0.015014 0.007622 

Ts (Mpa) 0.454906 0.108063 0.061039 0.026688 

M3 (N.m) 61.11549 29.69127 22.59611 15.80458 

n=52 

Kn  0.199228 0.026955 0.0150105 0.0076195 

Ts (Mpa) 0.454899 0.108054 0.061033 0.026678 

M3 (N.m) 61.11542 29.69119 22.59604 15.80451 

 

In Figure 6-2 to Figure 6-4 the results from Table 6.1 have been plotted. In Figure 6-2 the 

effect of the distance from crack on the stress intensity factor can be seen. As it is obvious 

from the graph, for distance values greater than 0.7 mm, all the calculation (with different n) 

show an almost constant value, which is equal to zero. In Figure 6-3 and Figure 6-4, 
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however, the effect of n is obvious. The graph with n=4 in both cases is having a distance 

from the other plots. This difference in Figure 6-3, after the distance almost equal to 0.7, for 

plots with n greater than 4 is vanished. Nevertheless, the effect of n, can be obviously seen in 

graph 6-4. 

 

Figure 6-2 Plotting normalized stress intensity factor vs. distance from crack for different 

elements on the boundary 
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Figure 6-3 Plotting tangential traction vs. distance from crack for different elements on the 

boundary 

 

Figure 6-4 Plotting moment vs. distance from crack for different elements on the boundary 

 

As a comparison between the approximate solution from micropolar elasticity and classical 
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below. It has to be noted that the numbers that represented in all of the following tables are 

matching the experimental results of another research in this field (Lakes, et al., 1990). 

Nevertheless, the assumption in that experiment was slightly different than the assumptions 

here. In previous experiment, crack assumed to be a squashed ellipse. However, crack here is 

a piece of a curve, so its shape will affect the stress intensity factor and stress distribution. 

The main finding in the aforementioned experiment was finding and proving the differences 

between the classical tractions and micropolar ones are the largest, when the crack length is 

comparable to the characteristic lengths (Lakes, et al., 1990). 

In all of the graphs, as it expected, the stress intensity factor decreases by increasing the 

distance from the crack tip. It is notable from Figure 6-5 to Figure 6-7, that the stress 

intensity factor from micropolar calculations is considerably higher than the one from 

classical. However this difference is decrease when the crack length is equal to 10 mm 

(figure 6-8). It is interesting to mention that when crack length is equal to 0.26 mm, the 

classical method finds higher SIFs than micropolar, for far distances from crack tip Figure 6-

5. The data in Table 6-2 to Table 6-5 demonstrate these observations. 

Table 6.2 Approximate solution for Normalized SIF for a crack with length of 0.26 mm (r= 0.5 mm) 

Point (mm) ρ (mm) 

Micropolar 

Knormalized 

Classical 

Knormalized 

Difference (%) 

(0.5, -0.05) 0.05 0.204210 0.165991 -18.72 

(0.5, -0.15) 0.15 0.057154 0.05581 -2.35 

(0.5, -0.25) 0.25 0.024529 0.029394 19.84 

(0.5, -0.30) 0.30 0.017189 0.022937 33.44 

(0.5, -0.35) 0.35 0.012381 0.018456 49.06 
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Figure 6-5 Plotting the normalized SIF in micropolar and classical theory for a crack with length of 0.26 

mm (r= 0.5 mm) 

Table 6.3 Approximate solution for Normalized SIF for a crack with length of 0.52 mm (r= 1 mm) 
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Figure 6-6 Plotting the normalized SIF in micropolar and classical theory for a crack with length of 0.52 

mm (r= 1 mm) 

 

Table 6.4 Approximate solution for Normalized SIF for a crack with length of 0.75 mm (r= 1.42 mm) 
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Figure 6-7 Plotting the normalized SIF in micropolar and classical theory for a crack with length of 0.75 

mm (r= 1.42 mm) 
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Figure 6-8 Plotting the normalized SIF in micropolar and classical theory for a crack with length of 10 

mm (r= 20 mm) 
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Chapter 7 Conclusion and Future Work 

7.1 Conclusion 

This thesis focused on the boundary value problems of plane micropolar elasticity. From this 

work, it can be concluded that the microstructure of materials have a notable influence on the 

distribution of the stress around a crack. This effect depends on the length of the crack and 

the effect becomes more prominent moving towards the crack tip.  

Another result obtained from this work shows that the formulated interior and exterior 

Dirichlet and Neumann boundary value problems of plane micropolar elasticity were clearly 

presented and solved using boundary integral equation method. The analytical solutions have 

obtained in the form of the corresponding integral potentials with distributional densities are 

the exact solutions. However, in order to approximate these solutions numerically, 

considering another method was necessary. Overall, it has been shown that the boundary 

element method, is a very effective method for approximating the solutions numerically. 

In last chapter, it has been shown that the stress intensity factor will have a higher value 

using the micropolar elasticity assumption. This demonstrates the significance of 

microstructures of materials on their mechanical behaviour. Moreover, the micropolar and 

classical theories of elasticity show different results for different crack sizes. It has been 

shown that this difference is more noticeable for smaller cracks. This conclusion is consistent 

with the results from previous research (Savin, 1965; Mindlin, 1963; Weitsmann, 1965; 

Hartranft, et al., 1965;  Potapenko, 2005). 
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7.2 Future Work  

The method that has been used in this thesis can be extended to find the solutions of two-

dimensional and three-dimensional boundary value problems. The other possibility of using 

this method is to find the solutions for problems dealing with structures in classical and 

micropolar elasticity. 

Another area of work can be focus on formulating mixed boundary value problems of plane 

micropolar elasticity. Imposing Dirchlet conditions for two displacements and Neumann 

condition for microrotation, can be named as an example in this field of work. Considering 

the crack problem under such assumption reduces the problem to displacement discontinuity 

problem, which has many applications in geomechanics. 

The next important field of work is about finding solutions for boundary value problems of 

anti-plane micropolar elasticity in Sobolev spaces. (Potapenko, 2005) has formulated the 

boundary value problems of anti-plane Cosserat elasticity for twice differentiable boundaries 

using boundary integral equation method. However, this work can be extended to solve the 

torsion problem of micropolar beams with complicated cross-sections (e.g. rectangular, or 

square cross-section). 

For the other direction of future work, the integration of thermoelastic components in the 

model can be named. In this area, the fundamental solutions of boundary value problems of 

three-dimensional thermoelasticity has been found by using boundary integral equations. 

(Kupradze, et al., 1979). These solutions can be used to find the solutions for thermoelastic 

deformations problems in weak setting, which will lead to a more general domain. 
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All of these fields of work in this area will help to have a better understanding of the 

material’s microstructure influence on their mechanical behaviour. This will have many 

practical applications in structural mechanics and modern day advanced composite materials. 
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