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ABSTRACT 

This thesis is based on a study of Lagran�e scalar 

densities which are, in general, concomitants of the metric 

tensor gij (and its first and second derivatives) together

with a scalar field� (and its first derivative). Three 

invariance identities relating the "tensorial derivatives" 

of this Lagrangian are obtained. These identities are used 

to write the Euler-Lagrange tensors corresponding to our 

scalar density in a compact form. Furthermore it is shown 

that the Euler-Lagrange tensor corresponding to variations 

of the metric tensor is related to the Euler-Lagrange tensor 

corresponding to variations of the scalar field in a very 

elementary manner. 

The so-called Brans-Dicke scalar-tensor theory of grav­

itation is a special case of our previous results and the 

field equations corresponding to this theory are derived and 

investigated at length. As a result of studying the effects 

of conformal transformations on the general Lagrange scalar 

density it is shown that solutions to the Brans-Dicke field 

equations are conformally related to solutions to a certain 

system of Einstein field equations. A detailed study of a 

particular static, spherically symmetric vacuum solution to 

the Brans-Dicke field equation is then undertaken and compared 

with the corresponding Einstein case. 
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~ Introduction 

This thesis is based on a study of Lagrange scalar 

densities of the form* 

L=L(gij; gij,h; gij,hk; ¢; ¢,i) ' (1.1) 

where the gij's are the symmetric components of the metric 

tensor of an n-dimensional Riemannian space V n , and ¢ is 

a scalar field. With (1.1) we may associate two Euler-

Lagrange expressions, viz., 

1 

Eij(L) = d {dL o dL }- oL , 
oxk c3gij ,k oxm ogij ,km agij 

(1.2) 

and 

E(L) = d (dL ) - oL , w o/6,i ~ 
(1.3) 

where the former is obtained from (1.1) through a variation 

of the gij 's regarcling ¢ and ¢, i as arbitrary preassigned 

functions of position, and the latter is obtained from (1.1) 

through a variation of¢ regarding the gij's and their der­

ivatives as arbitrary preassigned quantities. 

Our analysis of (1.1) follows very closely the method 

outlined by Rund in [22] and [23]. In these two papers Rund 

makes an e:x;tensive study of the properties of Lagrange scalar 

densities of the form 

L=L(gJ..J.; g .. h; g .. hk)' J.J, . J.J, 
and, more generally 

L = L(gij; gij ,h; 

where 't'i is a covariant vector 

g .. hk; 
J.J' '+'· ; 'Y: . ) ' J. J.,J 

field. 

(1.4) 

(1.5) 

In (1.1) Latin indices run from 1 ton, and a comma is 
used to denote partial differentiation with respect to the 
local coordinates, xi, of our V n. The summation convention 
is used throughout this thesis. 
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Following Rund's method we first construct the various 

tensors associated with the derivatives of (1.1) with respect 

to each of its arguments. These tensors make it possible 

for us to write the Euler-Lagrange expressions Eij(L) and 

E(L) in manifestly tensorial form. Our next step in the study 

of (1.1) is devoted to the derivation of the so-called 

"invariance identities." These identities are obtained by 

examining the behaviour of (1.1) under essentially arbitrary 

coordinate transformations. The invariance identities make 

it possible to greatly simplify the form of the Euler-Lagrange 

tensors corresponding to (1.1 ). We conclude section 2 by 

showing that 

(1. 6) 

where the vertical bar is used to denote covariant differen­

tiation. As a consequence of (1.6) we see that whenever the 

field equations governing the metric tensor are satisfied; i.e., 

then the field equation for p5; viz. t 

E(L) = 0 , 

will be satisfied automatically. 

(1.7) 

(1.8) 

In section 3 we apply the results of section 2 to examine 

four special Lagrange scalar densities of the form (1.1) • 
. 

Three of these examples are then used to discuss the construe:.. 

tion of Lagrangians of the form (1.1) that yield field 

equations which are at most of second order in the derivatives 

of both gij and ;5. It is shown that al though the scalar 

density used by Brans and Dicke to obtain their vacuum field 
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equations satisfies the above condition; i.e., is of the form 

(1,1) and'yieldssecond order field equation, it is not the 

most general Lagrangian of the form (1;1) which enjoys this 

property. Furthermore it is shown that even the more general 

Lagrangian suggested by Bergmann [3] is not the most general 

scalar density of the form (1,1) which yields second order 

field equations, 

Section 4 is the first of eight sections dealing exclu­

sively with the Brans-Dicke theory. In this section we use 

the results presented in section 2 to derive the Brans-Dicke 

field equations from a suitably chosen Lagrange scalar density. 

Section 5 is devoted to a study of the behaviour of 

Eij(L) under a conformal transformation of the form 

gij = e2<Tgij ' (1,9) 

where O' is an arbitrary function of class c2• It is shown 

that if Lis of the form (1.1) then under (1,9) 

Eij(L) = e20-Eij(L) , 

where L denotes the form assumed by Las a result of 

(1.10) 

(1.9). 

Using (1.10) we show in section 6 that it is possible 

to obtain solutions to the Brans-Dicke field equations from 

solutions o'f a certain system of Einstein field equations. 

The theory presented in section 6 is then used to develop 

a method for generating static•solutions to the Brans-Dicke 

vacuum field equations from static solutions to the Einstein 

vacuum field equations. To illustrate the use of the above 

method the Schwarzschild vacuum solution is employed to 

obtain a static solution to the Brans-Dicke vacuum field 
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equations. The solution so obtained is in fact one of the 

four possible static, spherically symmetric, isotropic solutions 

to the Brans-Dicke vacuum field equations. Sections 8 and 9 

are essentially devoted to showing that the remaining three 

(i.e., those which were not obtained from the Schwarzschild 

vacuum solution) static, spherically symmetric vacuum solutions 

are, in a certain sense, physically unacceptable. 

In section 10 we use the weak field approximate solution 

to the Brans-Dicke field equations presented in section 8 

to identify the constants appearing in the physically accept­

able static solution of the Brans-Dicke vacuum field equations, 

After making this identification we examine other properties 

of this exact vacuum solution, e.g., it singularities and 

its geodesics. 

We conclude the thesis by showing that whenever the 

metric tensor of the Brans-Dicke theory is known throughout 

a matter free region of space (excluding certain patholog­

ical cases) then it is possible to express the Brans-Dicke 

scalar field in te:('ms of geometrical objects; i.e., objects 

constructed from the metric tensor and its derivatives. 
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2. Lagrangian Scalar Densities--Invariance Identities 

In the Brans Dicke theory we shall be dealing with a 

Riemannian V 4 ; however, for the purposes of this section 

we shall consider an n-dimensional Riemannian space Vn with 

line element1 

2 i j 
ds = gijd.x dx; 

5 

where all Latin indices run.from 1 ton. The functions gij 

appearing in the above expression are the symmetric compo­

nents of the metric tensor, and are assumed to be of class c5. 
We shall place no restriction upon the signature of gij but 

we do demand that 

g = det(gij) Io. 
In all further calculations we shall make use of the 

Christoffel symbols of the second kind, r'fk, along with the 

Riemann curvature tensor, Rj i kl , the Ricci tensor Rjk , and 

the scalar curv2.ture invariant, R. \'le define these objects 

as follows 2 : 

i il 
r.k = )Ilg Cg ·1 k 

J J ' 
+ gkl ,·j - gjk,l) ' 

rJ1,k + r;k rm\ -
Rjk = Rkj 

where the gjk 

i "k 
= Rj ki , and R = gJ Rjk 

are characterised by 
jk . 

g gik = Sr · 

' 

' 

1 The summation convention will be used throughout this 
thee:is. 

2 ( ,k) dcnotr;,s partial differentiation v.:i th respect to 
the coordinate xK, and (lk) denotes covariant differentiation 
with respect to xK. Rer,eated partial differentiation, e.g., 
1;,,0):'is denoted by ( ,kl) , while repeated covuriant differ­
entiation with respect to xK, x1 , ••• is denoted by (Jkl •.• ). 



We concentrate our attention·on scalar densities L of 

the form 
L = L(g .. ; g .. h' g .. hk; /6; /6 , 1.) , (2.1) l.J J.J, .J.J, 

where /6 represents any scalar field of class c4 , and thus 

/6,i is a covariant vector field. In what follows L will be 

assumed to be of class c4 in its arguments. 

6 

When ·computing the Euler-Lagrane;e equations corresponding 

to the gij's of the above Lagrangian, L; we shall regard /6 

as a preassigned function of position. Similar considera­

tions are made with regards to gij when calculating the Euler­

Lagrange equation for /6. 

It is essential to note that there are certain symmetry 

properties associated with the first three functions in the 

argument of L. Thus if one desires to take a partial deriv-

ative of L with respect to gkl it is necessary to replace 

each gij appearing in L by 

~(gij + gji) ' 

and then to regard the 

when differentiating L 

' gij s as n2 independent quantities 

with respect to gk1 • Similar consid-

erations have to be made for the quantities g .. k and g .. kl • J.J, J.J, 

Rund [22] has considered in detail Lagrangian scalar 

densities of the type 

L = L(g .. ; g .. 1 ; g .. hk) J.J l.J,, J.J, 

and has obtained results which, in many cases, are directly 

applicable to the Lagrangian (2.1). In what follows we shall 

adhere very closely to the presentation of Rund. 

We shall first construct tensors which are associated 

with the various derivatives of the Lagrangian (2.1). In 
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order to simplify the form of the ensuing expressions we 

shall adopt the following notation: 

and 

~ = cl.L , 
~ 

• 

' 
oL -ag .. k 

J.J' 
' 

Since the essence of tensorial character is contained 

in transformation properties let us now study the .behaviour 

of Land its derivatives under coordinate transformations 

of the form 
-h -he k) X = X X , (2.2) 

which are arbitrary except that they be of class c3 and that 

We shall set 

and by the above we have 

det/ox~ > o. 
oxJ 

B~ = 
J 

clxi 
oxj ' 

B = det(B~) > O. 

The higher derivatives of xi with respect to xh ,,ill be de-

noted by 

and 

, and • 

Under the coordinate transformation (2.2) we have 

;ex)= pf(x), 

; ' . = p5' • B~ , 
J. J J. 

(2.3) 

(2.4) 

where; cienotes the functional form of¢ in the new, barred, 

coorciinate system. We also find: 

ghk = gij~~ (2.5) 

(2.6) 

and 

7 
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' Since Lis a scalar density we have 

g .. hk; f}j J.J, ¢',i) = 

= B L(gij; gij,h; gij,hk; ¢; ¢,i). <2 •8 ) 

Upon differentiating this expression with respect to¢ 

and ¢,i we find: 

B9i= i, 
and 

B lli i = 91kBi 
(2,9) 

(2.10) 

respectively. The above equations imply that !:P. is a scalar 

density and ~i is a contravariant vector density. Following 

Rund we see that differentaition of (2.8) with respect to 

g .. kl , g .. k and g .. yields: J.J, J.J, J.J 

and 

B /\ij,kl = i\rs,tu grs,tu 

gij,kl 

B (\ij ,k = 
-re, t -
/\ grs, t + 

g .. k J.J, 

-rs -

, (2.11) 

/\s,tu - (2.12) grs,tu , 
g .. k J.J , 

8 

B (\ij = /\. grs + (\i:s, t 
grs,t + xs,tu 

grs,tu (2.13) 
gij gij gij 

respectively. 
. . . kl 

Quite clearly j\1 J, is a contravariant tensor density 
i. k i•' 

of rank four, whereas A J, and/\ J are not tensorial quantities. 

However, Hund has shown that when'suitably combined with 

/\ij ,kl and the Christoffel symbols we can construct tensor 
.. k .. 

densities from them. These are denoted by Tf1 J' and TT 1 J 

and are re:c;pecti vely defined by 

nij,k = Nj,k + r;.~Kj,rs 

(whic.h is a contravariant tensor density of rank 3), 
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and 

nij = ,_'"ij +ri /\kj,lm rj 11ki,lm 
r' kl , ml\ + kl, ml\ + 

(which is a symmetric contravariant tensor density of rank 2). 

The Euler-Lagrange equations corresponding to (2.1) are 

Eij(L) = 0 (2.16) 
and 

E(L) = O, (2.17) 

where 

= . d ( dL 
Cl k 'Jg .. k 
C/X J.J, 

, (2.18) 

and 
E(L) = ~i'i - gi • (2.19) 

Equation (2.18) was obtained. from (2.1) through a variation 

of the gij's regarding¢ as an arbitrary preassigned function, 

whereas equation (2.19) was obtained from (2.1) by varying 

¢ with the gij's being regarded as arbitrary preassigned 

functions. 

From our previous remarks it is obvious that each of the 

terms in the expression for Eij(L) are non-tensorial. 

However, Rund has shown that (2.18) may be written in tensor 

form in terms -of /\hk,lm, Tihk,l, and·nhk. More exactly we have 
t I EijcL) = -cAij,k11c1 - nij,11c + nij) • c2.20) 

Of the two components in the .expression for E(L) only 

the first could be non-tensorial. However, since ~i is a 

contravariant vector density 1~e have 

;r.i _i "'kr.i -irk i 
:J: I i = <J? 'i + '!'. I ki - cp ki = §? 'i 

which is a scalar density. Thus each term in (2.19) is tensorial. 
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We shall now derive the so-called "invariance i'dentities" 

of our Lagrangian (2.1), To accomplish this we must first 

substitute into the left hand side of (2.8) the eA'J)licit 

functional representations for the gij , 

;J and ¢',i, thereby obtaining an identity 

-g .. k 
J.J' 

. Bi in j 

'gij,kl I 

and its dcriv-

atives. If we now compute the three first derivatives of 
r r r this identity with respect to Bstv, B

8
t, and Bs we find 

that each derivative yields an identity. The computations 

necessary to obtain these three identities are given below. 

We begin by differentiating (2.8) with respect to B~tv· 

Since the right hand side of (2.8) is independent of this 

quantity we obtain 
dL 
'Br 0 stv 

= 0. (2.21) 

From our expressions relating the barred an unbarred argu-

ments of L we find that B~tv appears only in the transforma­

tion of ghk,lm, So (2.21) may be written 
;;.hk,lm,-
/ \ Oghk,lm = 0. (2.22) 

dB~tv 

After using (2,7) to compute oghk,lm we find that (2.22) 

becomes 
Ahk,lmd-: 
/\ ghk 2lm 

. oB~tv 

oB~tv 

= ~ grj~ 1 Ask, tv + Atk, vs + ;\vk, stJ = 0 , 

(2.23) 

If 1ve now multiply the above expression by Bfg1 P we obtain 

/\sp,tv + Atp,vs + Avp,st = O. ( 2 •24 ) 

From our previous work we know that J{k' tv is tensorial, and 

thus (2.24) is val:i:d in all coordinate systems; in particular 

we have 
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~k,tv + ~k,vs + /\k,st = 0 (2.25) 

which is our FIRST INVARIANCE IDENTITY, and is identical 

with Rund's. By repeated use of (2.25) we obtain 
Kk , tv = /\tv , sk 

where we have used 
/fi. kj = if i • jk = ;\1h. kj • 

(2.26) 

To determine our second invariance identity we differen­

tiate (2,8) with respect to B~t. Since the right hand side 

of (2.8) is independent of this quantity we find 
ot (2.27) = 0 • 
oBft 

The Br's st arise in the transformations of ghk,l and ghk lm • , 
Thus (2.27) may be 

~'ldg hk,l 
clBr 

st 

written 
-hk,lm\-

+ /\ dghk,lm 
dBr st 

= 0. (2.28) 

Using (2.6) we easily obtain 

,i\"1k,\:Jghk,l = grj~( /i.sk,t + fi..tk,s). ( 2 • 29 ) 

oB~t 

From (2.7) and our first invariance identity we find 

that the second term in (2.28) may be written 

Ahk,lmdg 
/\ hk,lm 

OB~t 
. 

The above e~'"Pression 
-hk,lm\-
/\. oghk lm -~--

dBr 
st 

= 

= 

_2rr .Rj i\mk,st + g. . RiRj (\hk,st + 
0 rJ-km J.J ,r-n-k 

-2g . BpRj /\mk,st (2,30) 
rJ,P m-k ' 

may be rewritten as follows: 

_2 Rj /\-mk, st 
grj-1,m + 

2 ( ru ' ru ) BpRj /'i-mk, st 
- guj rp + gru jp m-k + 

( ru ru )Biµj -hk st 
+ guj ir + giul jr h°it/\ ' • (2.31) 

The last term appearing iµ (2.31) may be simplified to yield 

2g .ru BpRj Amk, st , 
uJI rp m-k 

which cancels with the first part of the second term on the 



right hand side of 
r;hk,lmdg 
r \ hk,lm 

dBr 
st 

(2.31) leaving us with 
= _ 2g .Bj /\-mk,st _ 2 r~ BpR.j/\-mk,st 

rJ km gru JP m-~ • 

To further reduce the form of the above expression it 

will be necessary to make use of the well known transforma­

tion law of the Christoffel symbols; viz., 

ru j p -a u u 
jp~Bm = rkmBa - Bmk ' 

Upon inserting this expression into. (2. 32) we obtain 
Ahk,lm\-
'' dghk,lm 

dBr 
st 

= _ 2 ra Bu ,.mk,st. 
gru1 km at\ (2.33) 

12 

(2.32) 

Combining (2.33) with (2.29) we find that (2.28) becomes 

grj ~ <,7',sk,t + r,..tk,s _ 2 rfm A1m,st) = 0 • <2 •34 ) 

If we now multi ply the above quantity by Bf g1P we find 

Asp,t + /\tp,s = 2rfm A1m,st • c2.35) 

Upon replacing the left hand side of (2.35) with the tensorial 

quantities introduced in (2.14) we obtain 

1T 
sk , t .,,. tk, s _ 0 + ii - • (2,36) 

If we now use a little algebra and the tensorial properties 

of lTsk,t, noting that lTsk,t = ·TTks,t , we find that (2.36) 

is equivalent to 

11sk, t = o, (2.37) 

which is our SECOI~D INVARIANCE IDBNTI'.I'Y, and again agrees 

with Rund's. 

An immediate consequence of (·2. 37) is that if one has 

a LagranGe density of the type 

then Lis actually independent of 

L of the form (2.38) then ;fk,lm 

becomes 

(2.38) 

g .. k' For if we had an 
l.J' 

= O. Thus equation (2.14) 
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' r. 
' 

1 ,, 

' [ 

But since lThk,l = 0, we have ;\hk,l = 0, and therefore L must 

be independent of gij ,k • 

From the procedure used to obtain the first and second 

invariance identities it is obvious that similar identities 

hold for any relative tensor of weight w, contravariant 

valency p and covariant valency q which is of the form 
il ... i il ... i 

Tj
1 
... j: = Tj

1 
... j:(gab; gab,v; gab,vw; ¢; ¢,a)• 

13 

i1···ip 
T. . is independent 

J1 ••• Jq 
In particular we may conclude that if 

of gab,vw, then it is also independent of gab,v• 

It should also be noted that due to our second invariance 

identity the ex:;_)ression for Eij(L), given by (2.20), reduces to 

. Eij(L) = -(Aij,kllkl + Tfij). (2.39) 

To determine our final invariance identity we begin by 

differentiating (2.8) 

ill. + ~ha;; 'h 

with respect 

+ 
-hk"\­
(\ oghk 

to B~ to obtain 
-hk 1,-

+ /\ ' oghk,l + 

where 

and 

oBr 
s dBr 

s 

= clB 

= dxs 
dxr ' 

As Br= ('S 
r m Om •. 

dBr 
s 

(2.40) 

The first term on the left hand s:j.de of (2.40) does not con-

tribute since o¢r 
c)Bs 

and 

= O • Rund has found that /\hkdghk , 

dBr 
s 

-hk,lm,-
/\ oghk,lm are ;;iven by: 

dBr 
s 
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f 
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= g. . RiRj 1-,hk,s 2 .Rj /\-hs,l 
iJ,r-n-k + grJ-nl + 

+ 2g . BpRj /\-sk,l 
. rJ ,P 1-k ' 

and 
= 2RiRji;i(g .. Ask,hm + g. . iihk,sm) + 

-n-k m rJ,iq iJ,rW\ 

+ 2 .Rj /\-hs,lm 4 . . Ri Rj /\-hk,ls + 
grJ-hlm + giJ,r-nl-k 

+ 2g . (BP Rj + 2Rj BP)/-\sk,lm • 
rJ,P 1m-k -km 1 

Thus diii 'h 
OBr 

s 
· Since 

we wee that 

remains to be calculated. 

iii 'h 

Upon substituting the above expressions for 

-hkc)-A ghk ' 
i\hk,ld-

ghk,l 
-hk,lma-

'/\ ghk,lm and d iii 'h 

OBr 
s 

OBr 
s 

dBr 
s 

dBr 
s 

into (2.40), dividing that result by 2 and multiplying through 

by B~ we obtain 

Rj Br /\-hs, lm 
grj-nlm t 

RiBjBrBq /-hk,sm 2 BrBi Rj /\-hk,ls 
+ gij,rq-n kt m \ + gij,r t hl-1~ + 

+ g . iisk,lmBr(BP Rj + 2Rj BP) + }fg. . BrBiRj/\-hk,s + 
rJ,V' t 1m-k -km 1 iJ,r t h-k 

Brl3pRj/\-sk,l BrRj /\-hs,:\- - /\-sk }f:ss" Br = 
+ grj,p t 1-k + grj t-n1 + gtk + ~ P,r t 

= }f6~BL. (2.41) 

Using (2,7) we see that the first three terms appearing 

j on the left hand side of the above expression involve ~lm. 

Rund has shown that the coefficient of Bglm appearing in (2.41) 



is 
Bi(/\-sk,hm 2· /\-hk,sm) 

:-gji k + • (2.42) 

If we now make use of our first invariance identity we find 

that3 
RiBj (j\-sk,hm 2 /\-hk,sm) _ 0 -gji-k hlm + - • 

Due to (2.43) equation (2.41) may be rewritten 

!\hk,sm J ghk tm + gtm hk} + 2,:mk,sh{g .. Bi Rj + 
'- ' ' " l.J ht-km 

(2.43) 

+ g. . BpRjBi } - /\-hk,smg. . nP iJ.Rj + )2g. . BriJ.Rj/\-hk,s + 
1.J,P m-k th l.J,P tm-~-k 1.J,r t-n-k 

+ g . BrRl?Rj 1\-sk,l + 
rJ,P t-i-k 

g .BrRj ,:hs,l 
rJ t-n1/\ 

= )20~ BL • (2.44) 

The last term on the left hand side of (2.44) was obtained 

from )-2is¢',rB~ by using equatiun (2.4). 

After further manipulations similar to those performed 

by Rund equation (2.44) becomes 

Ahk,sm{ghk,tm + gtm,hk} + 

- -Sk ,L-S~ 1Lss.r; 
+ gtk/\ + ~f P,t - 1' t = 

- -sk,1 1L- -hk,s 
gtk 1/\ + ,,ghk t/\ + 

' ' 

= -gij~Bih { 2r~;/\mp,sh _ /\hk,s _ /\sk,h} • 

If we now make use of our second invariance identity we 

find that the right hand side of the above expression is 

zero. Since the left hand side of equation (2.45) refers 

15 

(2.45) 

to a single cqordinate syatem 

one4 , and so (2.45) becomes 

we shall let that be the unbarred 

/\hk,sm{ J ghk,tm + gtm,hk + 
g /\sk,l 
tk,l )

l 11hk, S 
+ ,ghk ti\ + 

' 
+ gtk/\sk + )Hs¢'' t = )2S~ L • 

3To obtain this result 

nglm 

we make use 
- Bj 
- mlh 

(2.46) 

of the fact that 

4This step is in order since the left hand sicle of 
(2.45) will be shown to be tensorial. 
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We desire to express the left hand side of (2.46) in 

tensorial fo.rm. . s . 
We know that~ ~.t. is a mixed tensor density, 

thus we need.only consider the remaining terms. However, 

these are precisely the terms dealt with by Rund. 

nsk i /\hk, sm 
gtk + gimRh tk 

s /\hk,lm 
- 1gtkRl hm + 

3 
= /2():L. 

multiplying this result by gtr we obtain 

Thus we find 

/2 \l?s ~, t = 

(2.47) 

Upon 

nsr + R r /\hk,sm _ lR s Ahr,km + 129? ~,r = ,~gr8L , (2•48) 
k mh 3 k hm/\ 

where 
..1,r = rt..1 ,, g ,,,t . 

Since Tirs and grs are symmetric in rands the remaining 

group of terms in (2.48) must also be symmetric under the 

interchange of rands; i.e., 

and 

R r /\hk' sm _ lR s /\hr,km + 121s~,r = 
k mh 3 k hm 

= R s /\hk,rm _ lR r J\hs,km + J2St~,s • 
kmh 3 khm 

Using our first invariance identity we obtain 

R r /\hs,km _ -R r /\'hk,sm 
k mh - k mh ' 

thus equation 

4R r ;\hk,sm 
3 k mh 

(2.49) becomes 

Upon rearrangement of equation (2.50) we find 

(2.49) 

R~s mhlfk,rm = Rkrmh!\hk,sm + i(fs~,r - g;_\15,s) • (2.51) 

The substitution of (2.51) into equation (2.48) yields 

Tirs + gnkrmhtfk,sm +f 2ilis¢",r + l~r~,s} = )2grsL' (2.52) 
3 . ls 'S 

which is the THIRD INVARIAliCE IDENTITY for our Lagrangian 

(2.1). This result differs from Rund's owing to the presence 

of the term within the curly brackets. However, (2.52) 

reduces formally to the form of Rund's result if Lis inde­

pena.ent of ~, r • 
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In passing we note that it is possible to obtain precisely 

the three invariance identities (2.25), (2.37) and (2.52) 

from the eA'I)ression obtained by differentiating (2.8) first 

with respect to B~ and subsequently with respect to B~tu 

and B~t respectively. However, in general this technique 

is not as general as the method we have used. 

The next step in the study of our Lagrangian (2.1) is 

devoted to the divergence of Ehk(L), viz., 

Ehk(L)lk = -(/\hk,lmllmk + Tihkik) • (2.53) 

Rund has shown that in his case the covariant divergence 

of Ehk(L) is identically zero. In general, this will not 

be true in our case. 

Our calculation of ~k(L)lk is carried out in three 

steps. The first step is to determine /\hk,lmllmk , the second 

Tih~k , and then finally Ehk(L)Jk• Firstly we see that 

/\hk,lm = 1 ( Ph + qh) (2.54) 
llmk 3 • 

where 

Ph = /\hl,km 
lmkl 

/\hl ,km 
Jmlk (2.55) 

and5 
qh _ J\hm,kl . 

- lklm - Ahm,k1 
lmlk • (2.56) 

Equation (2.55) may be rewritten by using Ricci's 

identity6 alo~g with our first invariance identity to obtain 

in 

r _ Ahk,ij R r ( 2 • 57) 
P - n Ii. h jk 

The moclifying of (2.56) is quite a lengthy task resulting 

qr= 2 Ahk,ij R. r 
I\ Ii h jk + /\

rk,hj R i _ 11hk,ijR r 
Ii h jk 11 h kilj + 

_ 11rk,ihR j 
I\ h ki j • 

5In Rund' s paper 1111 is used in place of qh • 
6[1q, page 32. 

(2.58) 



Equation (2.58) may be further simplified if we· make 

use of equation (2.51), which can be written as 

Rhrk · /\hk,ij = Rhi k ·/\hk,rj + 3( !\,5,r - g{¢"'i) • (2.59) 
J J . 8 

By taking the covariant derivative of each side of equation 

(2.59) with respect to xi we obtain 

R r /\hk,ij 
h kjli / \ 

r /\hk,ij i 1.hk,rj 
+ Rh l,l:j Ii= Rh kjti/\ + 

+ Rhi kj/\hk,rjli + g<1'l¢'•r - 1r¢',i)li • 

This expression may be rewritten in the form 

/\hk,ijli Rhrkj - /\hk,rjli Rhikj - g<g/¢',r - g{¢'•i)Ji = 

( Ahk,ij r /\rk,ih j ) 
= - I\ Rh kil j + Rh kil j ' 

which when substituted into (2,58) yields 

qr = /\hk,ij R r R i ( .rk,hj /\hk,rj ) 
. Ii h jk + h jk /\ Ii + / I Ii + 

- 2( g;i ¢'' r - g{¢'' i )Ii • (2. 60) 
8 

By the use of our first invariance identity and the 

symmetry properties of the curvature tensor qr reduces to 

qr = Rhrjk/\hk,ijli - i( ~i¢',r :.. g:,r¢',i 1i • (2.61) 

18 

. Combining (2,54), (2,57) and (2.61) we obtain the final 

expression for 

Ark,lm 
/\ llmk 

/\rk,lm h" h i· s 
llmk ' W J.C 

= 2R r /\hk,ij _ 

3 h jk Ii 
l( ;i:_i,,{,r ;i;r,,{,i) 

. 8 '.±'."' -:r"' Ii' (2.62) 

We shall now determine Tfhklk , This may be accomplished 

throuc;h the use of our third invcc:piance identity, which can 

be rewritten as 

The first step in this calculation is the evaluation of Llr • 

In terms of our notation Llr is given by 
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/\
hk · · /ihk , 1 /\hk , lm 

+ ghk,r + ghk,lr + ghk,lmr + 

' 
and since 

¢'' lr = ¢'11r + ~rfr 

we may rewrite the above expression .for Llr in the .form 

Llr "' !lci¢',r + 9!1¢'11r + 1lit,mrfr + ;\hkghk,r + ;\hk'lghk,lr + 
11hk,lm rj ( ) 

+ I \ ghk, lmr - L j r • 2 • 64 

In order to evaluate equation (2.64) we shall use normal 

coordinates. In this case ghk,j and rfj vanish at the pole 

P, and from equations (2.14) and (2,37) we see that ;\hk,l 

also vanishes at P. Consequently 

L 11hk,lm ·-;.:.,1 

Ir = /\ ghk,lmr + ~"''r 

Rund shows that at P 

/\
hk,lm = 

ghk,lmr 

Thus at P we find 

at P we have 

+ 1?¢'11r • 

2R Ahk,lm 
- lkhmlr/\ • 
3 

11hk, lm ;i;" ;i;l ,1 ( ) 
Llr = ~Rlkhmlr /\ + ~"',r+ '±'. >"ilr • 2 •65 

Since both sides o.f the above expression are tensorial 

quantities we no longer need restrict ourselves to the pole 

P of a normal coordinate syst.em, and thus equation (2.65) 

is valid everywhere in all coordinate systems. By applying 

the Bianchi identities to the first term on the right hand 

side of equation (2.65) we finally obtain 

4 ihk, ij i¢' g;lo( ( ) 
L1r = 

3
Rhrjkti' 1 + 'r + '1lr 2 • 66 

With this knowledge of Llr at· our disposal we may now 

TTrs · com11lete the computation of Is by taking the covariant 

derivative of both sides of (2.63) with respect to xs. Upon 

so doing we find: 

11rs
1 
s = _ 2R r /\hk, sm 

3 k mhls 
_ 2R r Ahk,sm + 

'3 k rah Is 



Equation (2.66) allows us to rewrite the above expression 

in the form 

lTrs _ 
Is - _2R r Abk.,sm + ~ f~,r -t ~ ~1~

11
ir + 

3 k mh Is 

- §(31is~,r + g{~'s)ls , (2.67) 

" tr · sr 
"'11 = ~lls g • 

where 

Upon combining equations (2.62) and (2,67) with (2.53) 

we find:. 

Erk(L)lk = .;.. J 2R r. ;fk,ij. _ l(fi~,r _ Jr~,i) : + l °3 h ;ik b. E Ii 

- 2Rkr h/\bk.,sml - 1(3li~,r + ;rr~,i)I. + 3 m s S ~ J. 

+~~~,r + ~il~lllr} • 

This expression may be rewritten in the form 

Erk(L)lk = ~ { (pk~,r)lk - J~,r - Jk~lklr} 
' 

(2.68) 

which reduces to 

(2.69) 

Using (2.19) we may rewrite the above expression in its 

final form; viz., 

(2.70) 

We may-summarize the results of this section with the 

following 

Theorem 2.1: If Lis a scalar density of the form 

(2.1) ~. 
(1) Land its associated tensor densities J\hk,lm, TTbk.,l, 

(2.14), (2.15), oL , 
aA11 

20 
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and~ respectively), satisfy~ following three identities: 

(i) /\hk,lm + ;\hl,mk + ;\hm,kl = 0 , ( 2 ~25) 

(ii) 11hk,1 = o <2.37) 

(iii) Tfrs + ~Rkr mhjfk,sm + iis~,r + ~ifr~,s = (2.52) 

(2) ~ Euler-Lagrange tensors corresponding to Lare given }2Y 

Eij(L) = -(;?j,lmllm + Tiij), 

1 
E(L) = ~ 'l - ~ , 

and these two tensors are related }2Y 

(2.39) 

(2.19) 

(2.70) 

From equation (2.70) we see that when ihe field equations 

governing the gij's are satisfied; i.e., 

Erk(L) = 0, 

then the field equation for~ will automatically be satisfied;i.e., 

E(L) = O. 

However, if 
E(L) = 0 

we can use equation (2.70) to conclude that 

Erk(L)ik= 0 ' 

but this does not necessarily imply that 

Erk(L) = 0 •. 
• The vacuum .fieJdequations of the Brans-Dicke theory serve 

to exemplify this fact (c.f. equation (4.15) and (4.23)). 

In a later section we shall consider a Lagrange scalar 

density of the form 

LT= L(gij; gij,h; gij,hk; ~; ~,i) +yg Lm' (2 .7l) 

where Lm denotes the scalar Lagrangian of matter and may 

contain vector fields, charge densities, matter densities, etc. 

r 1 



However, Lm will always be independent of both the scalar 

field~. and.the derivatives of gij greater than the first. 

We shall let Eij(L) denote the Euler-Lagrange tensor derived 

from the first term on the right hand side of (2.71) and 

Eij(LT) denote the Euler-Lagrange tensor obtained from LT. 

The field equations governing the metric potentials 

will then be 

22 

Eij(LT) = Eij(L) - .Q_(-y'gLm) + L( a -(-y!gLiJ) = o. 
c)gij dxk dgij ,k 

(2.72) 
The Euler-Lagrange equation for~ will still be 

E(LT) = E(L) = 0, 

where E(L) is given by (2.19). The field equations describing 

the behaviour of the matter variables contained within-ylgLm 

are the usual Euler-Lagrange equations which pertain to a 

matter Lagrangian. We should also note that 

Eij(LT)lj = Eij(L)lj +f_Q_(. d (-y!gLm))- _Q_(-ylgLm)i. , 
- lax1c ogij ,k cJgij jJJ 

whicn uue to (2.70) can be written in the form7 

Eij(LT)lj = ~~'iE(L) +{]_(cl (v'gLm)I - L(VgL m)\. • 
oxk\3gij,k ) ogij )IJ 

- (2.73) 

7The term appearing within the curly brackets on the 
right hand side of (2.73) is not in general identically zero. 
As an example consider the matter Lagrangian associated 
with the electromagnetic field 

where 

.,-L 1t.1- Fhk vg m = ,2vg fhk , 

Fhk = Ahlk - Aklh ' 

and Ah denotes the electromagnetic vector potentials. In 
this example 

{ ]_( d (ygLm))- _c)_(-ylgLm)t. = yg FikFkjlj, 
ox1' c)sij ,k clgij )IJ 

which is not identically zero. 

., . 
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3. Lagrange Scalar Densities~-Applications8 

This section will essentially consist of two parts. 

In the first part we shall consider four examples of possible 

Lagrange scalar densities of the type (2.1), Three of thes.e 

examples will be used in the second part of this section 

where we consider the "uniqueness" of the Brans-Dicke vacuum 

Lagrange scalar density. 

Example ill 
The purpose of our first example is to examine the 

peculiar form of our third invariance identity (2.52). We 

consider (2,52) to be peculiar because of the non-symmetrical 

f ;r.r,,(,s appearance o ~ ,, and 1s;5,r in this expression. We 

might have expected the linear combination of ~r;5,s and 

Js;5,r to be symmetric in rands. However, if this were 

the case the symmetries of (2,52) would have implied that 

R r Ahk,sm _Rs Ahk,rm ( 3.l) 
k mh - k mh · 

(as is the case9 for Lagrange scalar densities of the form 

L = L(gi. J.; g .. h; g ... hk) ) • l.J, l.J, 

To show that (3,1) is not in general true for scalar 

densities of the form (2.1) let us consider the following 

scalar density 

(3.2) 

8Throughout the course of this thesis we shall be dealing 
with various Lagrange scalar densities. These Lagrangians 
will be denoted by LA , where A may represent either a number 
or a letter. We shall denote the various derivatives and 
tensors obtainable from LA by placing an (A) beneath these 

objects; e.g. 
oLA 

ogrs tv 
9Rund 1 [22) , [23] , ' 

= /{s,tv 
<Al 



24 

From (3.3) we find 

Rkr mh/\hk,sm = 3vg (RkrmsP,kP'm + Rrm~,m~'s) • (3.4) 
(I) 2j: . 
. krms ..1 ..1 Now since R "''k"''m is symmetric in rands and 

Rrm¢,m~,s is non-symmetric in rands we may conclude that 

. R r Ahk,sm I R a ;\hk,rm. ( 3 • 5) 
k mh 111 k mh11, 

Thus in general 
R r Ahk,sm 1 Rs Ahk,rm 

k mh' 1 r k mh/\ (3.6) 

when dealing with Lagrangians of the form (2.1). 

Example ffi2. 
The following scalar density 

LB =-ytg(fl (~) R + f2(~)~,i~,i + f3(~))' (3.7) 

where f 1 , f 2 , and f 3 are arbitrary scalar functions of 

class c2 in their arguments, was first investigated by 

Bergmann(3). He has suggested that (3.7) is the most general 

Lagrange scalar density of the form (2.1) which yields field 

equations of second order in the derivatives of both gij 

and¢. The merits of Bergmann's choice of Lagrangian will 

be discussed later in this section. However, we shall now 
> 

give a trivial example which shows that LB is not the most 

general scalar density of the form (2.1) compatible with the 

above restiction upon the field equations. 

L t . d 10 e us consi e;r-
(3.8) 

lONote that Bergmann's Lagrangian (3.7) does not contain 
a term of the form (3.8). 



where f is an arbitrary scalar function of class o2 in its 

argument ~ =· ¢,i95,i. In order to obtain the field equations 

corresponding to L2 it will be 

ii. These are given by 
(l) 

t t Aij and necessary o compu e ,, 
(2) 

and 

where 

Aij = Jcy'g gij f - vg f I 95,ip5, j' 
(2) 2 

ii= 2-vgf' 95,i, 
"' 
f' = df •. 

(3.9) 

d s, 
Thus we may use equations (2.18) 

(3.10) 

(3.11) 

and (2.19) to conclude that 

and 

where 

Equations 

Eij(L2 ) =-y'g {f 1 p!•ip5,j - lgij fJ ' . 2' 

E(L2 ) = 2-vg{op! f' + 2f" p5,Pp5,ip5lpi] , 

pf = .J:..._(yg gijp!,i)'j = gij pflij • 
yg 

(3.12) 

(3.13) 

(3.14) 

(3.12) and (3.13) show that L2 could be added to 

LB without changing the order of the field equations. 

Example ill11 

The purpose of our present example is to obtain the 

Euler Lagrange tensors corresponding to the.following scalar 

density 
L3 = f 4 (9f) L4 , (3.15) 

where 2 · · . "hk J::4 = yg(R - 4RijRl.J + Rijhk:Rl.J ) , (3.16) 

and f 4 = f 4 (¢) is an arbitrary scalar function of class o2 • 

The calculations necessary to determine Eij(L
3

) will be 
• 
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simplified slightly if we first consider some of the properties 

of L4 • 

We begin by rewriting L4 in the form 

L 1 _,-rabcd R efR hi 
4 = - vgoefhi ab cd ' 

4 
(3.17) 

11Throughout the rest of this thesis we shall confine 
our attention to Li- dimensional Riemannian spaces. 
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where 
&a 

e o: s~ st 
b s~ s~ 6~ 

6abcd det e (3.18) = efhi 
6~ 6~ 6~ tf 
6~ t d d f Jh Ji 

Using (3.17) Lovelock [15]has shown that 

Ars,tv =-r;;. rabc<?- (Cr(S crrs)(()t!v 6tfV) 
{1} ~ Oefh:i. Oa01 + 010a bUk + kUb 

ke lfR hi 
g g cd ' 

(3.19) 
and that the covariant divergence of the above expression 

zero; i.e., with respect to xt is identically 

Ifs, tv "' 0 
t11 It - · (3.20) 

Now since ~r is identically 
(<l 

zero we may use equation 

(2.52) to deduce that 

nrs = l grs L _ 2 R r Ahk, sm • 
111 ~ 4 3 k mh 1si 

(3.21) 

Using (3.19) we find that the second term on the right hand 

side of (3,21) may be written 

_ 2 R r ;\hk,sm = -lvg {10ascd(Rfre + R ref) + 
3 k mh 1~1 6 g ~ efpq a a 

rabcd(Rfr + R r f )gse] R pq} 

A straightforward 
cabcdR pq _ 
Oefpq cd -

+ o efpq ba a b cd • (3.22) 

(3.23) 

Upon combining (3.23) with (3.22) we find 

_ 2 R r fk,sm · = _ 2(RRrs _ 2RrfRs + R s Rfrab 
3 k mh'r,') . f f ab + 

-2RafRarf s) ~ (3.24) 

If we now make use of equations (3.16), (3.21) and (3.24) 

we see that 

(3.25) 



which vanishes identically in a four dimensional space as 

a result of the Bach identity [2}.12 

With the above information with regards to L4 at our 

disposal we may now easily obtain Eij(L
3
). 

To begin we have 

(ts,tv = 

and using (3.20) we find . 

(3.26) 

Ars,tv = f (/6) . ifS,tv • ( 3•27) 
131 ltv 4 ltv (1i 

Since ~r is identically zero we may use our third invariance 
(3) 

identity (2.52) to obtain 

Tfrs = l grsL - 2 R r Ahk,sm • (3.28) 
(.3) ~ 3 3 k mh,31 

Equations (3.15), (3.21) and (3.26) per~1it us to rewrite 

the above expression in the form 

nrs = f (s6) lTrs • (3.29) 
13) 4 ,~, 

Due to the fact that 1Trs is identically zero we have ,,, 
lTrs = 0 • (3.30) 
(3) 

If we now insert equations (3.27) and (3.30) into 

(2.39) we find 

Ers(L) = - f (s6) Ars,tv, (3.31) 
3 4 ltv 11i 
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where Ars,tv is given by (3.19). (3.31) is clearly of second 
(;) 

order in the derivatives of gij and /6. 

Using (2.19) we obtain 

. E(L
3

) = - df4 L4 , 

dT' 
(3,32) 

which is of second order in the derivatives of gij and of 

zeroth order in the derivatives of /6. 

In passing we note that if the field equation 

~s(L3) = 0 

12This identity is usually referred to as the Lanczos 
identity [12) , but since it was first discovered by Bach [ 2 ) 
we shall refer to it as the Bach identity. 



is satisfied, and if df4 is non-zero then equations (2.70) 
~ 

and (3.32) imply that 

(3.33) 

We shall now show that our present example may be used 

to construct a multitude of scalar densities of the form 

L = L(giji gij,h; gij,hk; ¢; ¢,ii ¢,ij) 

which identically satisfy both sets of Euler-Lagrange 

equations. To see this let us begin by considering 

(3.34) 

which is given by 
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~= - grsf4(¢)ltv"4-6!~~~(&~cSf + 6rrs)(~trv Jt,v)gkeglfR hi 
1°a 0 b0 k + k0 b cd ' 

Using (3.23) 

;{_ = 

Now since 

we find that (3.35) simplifies to 

- 4 f4(¢)ltvvg(Rtv - lgtvR) • 
. ~ 

(yg ( Rtv - lgtvR)) ::0 
- Iv 2 . 

we may rewrite (3.36) as follows: 

t__ = - 4(f4(¢)ltyg(Rtv - !gtvR))lv • 

However, 

(3.35) 

(3.36) 

(3.37) 

is a vector density, implying that the covariant divergence 

appearing in (3.37) may be replaced by an ordinary divergence. 

Thus ;(is an ordinary divergence. Consequently we may apply . 
Lovelock' s [16) result, (with regards to divergences .identically 

satisfying their Euler-Lagrange equations), and conclude 

that 

and 
Eij([) == 0 , 

E(;;() s O • 



The above analysis of ;(admits an immediate general­

ization which assumes the form of the following 

Theorem 3.1: .Let Pij ~ ~ contravariant tensor density of 

valency two whi£!l is~ concomitant of gab and its first p 

derivatives (wh~ p is any integer ~O) and which enjoys 

the following property 

and let Ai, 

29 

Ai = Ai (,0; .0,i
1

; • • •; .0,i
1 

••. iq; gab; gab,j
1

; • • •; gab,j
1
., .jr) ' 

(where q and r ~ any integers ~O) be~ covariant vector, 

then the scalar density 
ij 

= Ailj p 

identically satisfies the Euler-Lagrange equations corresponding 

~ 13 to both g .. and P• --- J.J -

proof: Due to the fact that Pijlj = 0 we may write LG as 

follows: 
LG = (Ai pij )lj • 

Since Pij is a tensor density. AiPij is a contravariant vector 

density and thus 

LG = (Ai pij) 'j • 

Thus LG is an ~rdinary divergence and we may now apply Lovelock's 

[16]results to conclude that the Euler-Lagrange tensors 
14 corresponding to LG are identically zero. Q.E.D. 

l3This theorem is also valid if 

Ai= Ai(Vk; 

where Vk is 

vk 4 ; • ' • ; vk • • ; gab ; gab J0 

; ' • • j g b . • ) ' ,~1 ' 1 1"'' 1 q '1 a ,J1•••Jr 
a covariant vector. 

14Note that the proof is actually independent of the 
dimension of the space under consideration. 



In passing we remark that Lov·elock [141 has constructed 

all symmetric divergence free contravariant tensor densities 

of rank 2 which are concomitants of gij , and its first two 

derivatives. Thus by combining any one of Lovelock's 

divergence free tensors with an Ai of the form 

Ai = H(¢)\i' 

where H(¢) is an arbitrary function of class c4 , we can 

construct a multitude of scalar densities of the form 

L = L(g. ·i g .. h; g .. hk; ¢; ¢,i·; ¢,i·J.) J.J J.J' J.J' 
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which identically satisfy both sets of Euler-Lagrange equations. 

In particular when n = 4 Lovelock has shown that the most 

general symmetric, divergence free, contravariant tensor 

density of rank 2 which is a concomitant of gij, gij,h, and 

g .. hk is given by 
J.J' . ayg (Rij lgijR) + byg gij , 

2 
where a and bare constants. Thus the Euler Lagrange tensors 

corresponding to 
aVg H(¢)lij (Rij . - ~gijR) + bvg H(¢)1ij gij ' 

are identically zero. In fact this statement is valid for 

a space of any dimension. 

Examule (IV) • 

As our last example we shall consider the Euler-Lagrange 

tensors corresponding to 

(3.38) 

where 
L6 - EpqhiR R jk 

- hijk pq ' (3.39) 

and Epqhi denotes the Levi-Civita four dimensional permutation 

symbol which is a tensor density. f 5 = f 5 (¢) is an arbitrary 
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scalar of class c2• 

As in our last example let us begin by examining the 

various properties and tensors associated with L6 • The first 

tensor we must consider is Ars 'tv which is given by 't,! 

{Js 'tv = E. pqhiglj gmk J ~Rhijk R + R .. dRpglm 1 
@grs,tv pqlm hiJkdgrs,t;J· 

Now since 
Epqhi = €hip~ , 

we may rewrite the above expression in the form 

Ars,tv = 2Epqhi lj mkR dRh. 'k 
~I g g pqlm iJ 

clgrs,tv 
• 

After a lengthy calculation we find 

EpqhigljgmkdRhijk = lJE.pqrt(glvgms_ glsgmvJ + 

c)grs,tv 4 l 
+ Epqrv[gltgms _ glsgmt] + Epqst [glvgmr_ glrgmvJ + 

+ €pqsv [gltgmr _ glrgmt]}. ( 3 .40) 

To obtain Ars,tv we must multiply (3.40) by 2R 1 l6J pq m 

and sum over p, q, 1 and m. Now since each of the terms 

appearing within square brackets in (3.40) are antisymmetric 

Thus 

with 

Let us now examine the covariant divergence of (3.41) 

respect to 

1rs, tv = 

xt, which may be written as follows: 

pqhi(R ('V r:V )(cSr s rs) lj mk 
E pqlmJi O j . + RpqlmJj 0 i h ~ + okoh g g • 

(3.42) 
The form of the above expression may be simplified if 

(b) It 



we note that 
Epqhi = Eqihp = €iphq, 

and consequently 

pqhi - pqhi( 
E ~qlmli - ! E Rpqlmji + Rqilm\p + 

which vanishes identically due to the Bianchi identity. 

Thus (3.42) can be written in the form 

1,.rs, tv = EpqhvR j . ( rr6s 6r rs) mk ( 3.43) 
(1,} It pq IillJ 0 h k + k 0 h g • 
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Using the Bianchi identity once again we find that (3.43) 

may be written as follows: 

/\.rs,tv = 2 EpqhvRk (Xr0s + &rJs). 
(6) ft q\p "b. k k h 

(3.44) 

From (3.44) we find that 

/\.rs,tv = 2€pqhvRk (orf/ + 0r 0s), 
tG> ltv qJpv h k k h (3.45) 

which may be rewritten 

/{s,tv = 2{pqrvRs + EpqsvRr J. (3•46) 
(!,> ltv ~ qlpv qlpv 

Upon making use of the antisymmetry of Epqrv we see that 

(3.46) may pe put in the following form 

1,.rs,tvl = Epqrv(Rs _ Rs ) + E.pqsv(Rr _ Rrq\v ). ( 3•47 ) 
(1,, tv q\pv q1vp q\pv P' 

The Ricci identity permits us to rewrite the above expression 

as follows: 

/{s, tv
1 

= 
l6l tv 

+ E.pqsv(RmR r RrRm ) (3 48) 
q m pv + -ll! qpv • • 

However, due to the fact that 
m ID Rm 0 R qpv + R pvq + = ' vqp· 

we have that 
EpqrvRm = 0 

' qpv 
and thus (3.48) bec·omes 

/\rs,tv ·= EpqrvRmR s + EpqsvRmqR rpv. ( 3•49 ) 
({,> I tv q m pv -ll! 

Now since !fS 'tvlt is symmetric in r and s we finally obtain 
(bl V 
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Ifs, tv = 2 E:pqrvRmR s • (3. 50) 
l&l ltv q-111 pv 

By combining equation (2.52) and (2.39) we may write 

the expression for Ers(L6) as follows: 

Ers(L) = _ Jfs,tv _ 1 grsL + 2 R r Ahk,sm 
6 16l ltv ~ 6 3 k mh 161 • (3.51) 

Using equation (3.41) it is possible to show that 

2 R r Ahk,s~ = .. R r (€hmpqR sk + €kspqR mh). ( 3•52 ) 
3 k mh1&> ·. k. mh pq -1)q 

Thus by combining equations (3.39), (3.50) and (3.52) we. 

see that (3.51) becomes 

Ers(L) = _2EpqrvRmR s _ 1 grsrpqhiR .. R jk + 
6 q-111 pv ~ c. hi;ik pq 

+ R r (EhmpqR sk EkspqR mh) 
· k mh pq + pq • (3.53) 

However, the right hand side of the above expression 

is propGrtional to 
· ·· sd r:t>qklr E?-jhmR _ ·R tu 

- g 0:i.jtud . ..-·hmpq kl ' (3.54) 

which vanishes identically in a four dimensional space, since 

when n ·= 4 we have* 
r:pqklr 
O;i.jtud == O • 

We. may now use the above information to obtain Eij(L
5
). 

To begin we have 
Ars,tv = f (!'f)!fs,tv 
(51 5 l&l ' 

(3.55a) 
and thus 

/\rs;tv = f (pf) Ars,tv + 2f (¢') Ars,tv + 
151 ltv 5 ftv l•> 5 It 161 Iv 

+ f5(¢')es,tvltv • (3.55b) . 
Since L

5 
is independent of the derivatives of¢' we obtain 

Ir= o. (3.56) 
(S) 

Upon combining (3.56) with our third invariance identity we find 

lTrs = 1 gr5L _ 2 R r /\hk,sm ( 3•57) 
(S) ~ 5 · 3 k mh(Sl • 

which, due to (3.38) and (3.55a), may be rewritten as follows: 

* This type of an approach to the derivation of dimensionally 
dependent identities is due to D.Lovelock [17]. 



34 

1Jirs = f5(1$){~grsL6 ~ ~~kr mh~,sm} • (3.58) 

If we now insert equations (3,56b) and (3.58) into (2.39) 

we obtain 

rs( ) (~) .rs,tv (~) Ars,tv 
E L5 = - f 5 P ltv fs} - 2f 5 P It {s\ Iv + 

- f (pf'lf;fs,tv + lgrsL - 2R r _..fk,sm} • (3.59) 
5 ' l<Gl itv ~ 6 '3 k mh(6l 

The term within curly brackets in the above expression is 

simply -Ers(L6) (c.f.(3.5i)) which we know vanishes identi­

cally in a four dimensional space. Thus (3.59) reduces to 

Ers(L ) = - f (pf) !fs,tv - 2f (pf) _f(s,tv , . (3,60a) 
5 5 (tv <•> 5 It Iv 

which, due to equations (3.41) and (3.44), is obviously of 

second order in the derivatives of pf and of third order in 

the derivatives of gij. 

Due to equation (3.56) we may use equation (2.19) to. find 
df 

= - if L6' (3.60b) 

which is of zeroth order in the derivatives of pf and of second 

order in the derivatives of 

As in example (III) we 

gij • 

note that 

Ers(L5) = 0 

if the field equation 

is satisfied, and if ~5 is non-zero, then equations (2.70) 

and (3.60b) imflY that 
L6 = 0. 

This completes example (IV). 

We shall now proceed to discuss the problem of choosing 

a Lagrange scalar density of the form (2.1) when working in 

a Riemannian v4 • In order to limit the field of possible 

choices let us demand that the Euler-Lagrange tensors 

' . 



corresponding to our scalar density be at most second order 

in the derivatives of gij and¢'. 
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To begin we shall analyze the approach used by Bergmann 

[3)to obtain the Lagrangian presented in equation (3.7), viz., 

LB =.,/g (fl(¢') R + f 2 (¢')¢',i¢''i + f 3(¢')). (3.7) 

The above scalar density has been suggested by Bergmann as 

the most general Lagrangian compatible with second order 

field equations. The argument used by Bergmann to obtain 

(3. 7) is as follows:. 

(i) The only two scalar densities of the form (2.1) which 

are independent of¢' and yield second order field equations 

in gij are 
ygR and .Jg . 

(ii) Upon introducing¢' the most general Lagrange scalar 

density compatible with second order field equarions in 

both gij and¢' may be obtained by considering a linear com­

bination of the above scalar densities and yg¢',i¢''i. 

The coefficients appearing in this linear combination are 

to be arbitrary functions of ·class c2 in their argument ¢'. 

From (i) and (ii) Bergmann obtains (3.7). 

Let us now examine Bergmann's reasoning. First of all 

we note that the statement made in (i) is false: i.e., 

yg R and.lg are not the only scalar densities which yield 

field equations of second 

This has been pointed out 

order in the derivatives of g ..• 
. 1J 

by Bach [ 2} who was the first to 

prove that the scalar densities L4 and L6 , given by (3.16) 

and (3.39) respectively, satisfy the Euler-Lagrange equations 

identically, and thus trivially satisfy our demand of second 



order field equations.15 In fact it has been shown by 

Lovelock[l3)that the most general scalar density of the form 

L = L(gi. J'; g .. h; g .. hk-) ' J.J, J.J, . 
(3.61) 

which yields field equations of second order when in a four 

dimensional space is given by 

L = a-,/g + b.../g R + c-jg(R2 

dEijrsR Rkh 
+ rskh ij ' 

where a, b, c and dare constants. 
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Before proceeding to examine the second step of Bergmann's 

argument let us replace (i) by the following correct conclusion: 

(i') The only four scalar densities of the form (3.61) 

which yield Euler-Lagrange tensors which are at most of 

second order in gij ·are given by 
2 . . 

a yg , b-y'g R , c yg(R - 4RijRl.J 

and dEijrsR Rhk 
rshk ij ' 

where a, b, c and dare constants.16 

In the second step, (ii), of Bergmann's argument there 

is an oversight in that he neglects to include terms of 

the form 

in his Lagrang.ian, where f is an arbitrary scalar function 

of class c2 in its argument. From example (II) we know that 

such terms are in fact compatible yi th second order field 

equations and thus must be considered. 

Step (ii) also gives rise to another difficulty when 

we try to apply it to (i'), our corrected version of (i). 

In this case we not·e that (ii) would imply that 

1 5This result was also established by Lanczos[12). 
16This result is valid only in a four dimensional space. 



L = f (~)EijrsR -Rhk_. 
- 5 5 rshk J.J • 

should yield·field equations of second order. However, we 

have seen in example (IV) that this is not the case, since 

Eij(L5) is of third order in the derivatives of gij• 

Due to the above considerations it appears that a more 

general scalar density of the form (2.1) compatible with the 

deman:'l.for field equations which are at most of second order 

+ 

(3.63) 

where h1 , h2 and h3 are arbitrary scalar functions of class 

c2 , and a is a constant. 

The Brans and Dicke vacuum field equations are derived 

from the following scalar density: 

LBD = -y'g { ~R - GJ~,i~,i l , (3.64) 
¢ j 

where w is a dimensionless constant.18 From the form of 

(3.64) it is obvious that LBD could not be the most general 

scalar density of the form (2.1) which yields second order 

field equations. However, we shall now show that LBD and 
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• · 19 LB are closely related by means of a conformal transformation. 

To see the relationship between LBD and LB let us 

begin by considering a conformal t'ransformation of the form 

gij = e20"'gij, (3.65) 
17\'le are not claiming (3,63) to be the most general scalar 

density of the form (2.1) with the aforementioned properties. 
18In section 4 we shall replace the g appearing in (3.64) 

by (-g), since it is customary to assume that g<O in general 
relativity. 

l9The conformal relationship between LBD and \ has been 
pointed out by Bergmann in [3]. 

' . 



where O-is a scalar function 9f.class c2 in its argument. 

Under the above transformation we find20 

(3.66) 

and 
2cr~ Li{T( -20"' ,~-i~~) 

R = e .n + ~ e -v 1:, g '"'U, 1 , j 
-ij 2<T a: ( 6 ) + 6g e a; i , j • 3. 7 

~ 

Equations (3.65), (3.66) and (3.67) permit us to rewrite 

as follows: 

LB = e-40"~{f1 e20''.n + 

We shall now choose O"'so that the coefficient of 

38 

y'g R appearing in the above expression is p5. Thus CJ' is given by 

where 

(J' = ! in(~) • (3.69) 

f:i_ = dfl • 
ciT 

follows: 

(3.70) 

Upon combining similar terms the above expression becomes 

LB= p5,/gR + 3rp5gijjl (f:i_ :- ~) p5,i}'j + 

+ y'ggij p5, i95, j{ ~ [ 1 -(;1:JJ~ ~
1
2 f + ~(tl A . (3. 71) 

The second term appearing on the right hand side of 

(3.71) is a divergence of the type considered by Lovelock in 

[16]. Drawing upon Lovelock's results we may conclude that 

261.rhese results were obtained from Eisenhart [1.0), pages 
89-90. Note that Eisenhart's Ricci tensor is the negative 
of ours. 



the Euler-Lagrange tensors corresponding to this second term 

are identically zero, So upon neglecting this term (?,71) 

becomes21 

LB =yg{ ,r6R+ F1(J6)J6,iJ6'j gij + F2(¢)} ' (3,72) 

where we have set 

' 
(3,73) 

and 

F2 (J6) = f 3 (~_)
2

• (3,74) 

If we now set F2 (,r6) = 0 equation (3,72) reduces to 

LB= yg{J6R + F1 (.r6),r6,i,r6,jgij}. (3,75) 

setting F2(J6) = 0 is not a severe restriction, since it is 

equivalent to setting f
3

(j?J) = 0; i.e., in assuming that the 

cosmological term is negligible. 

It is now apparent that LBD can be obtained from (3,75) 

if we set 
(3,76) 

which is quite a severe restriction upon the functions 

f 1 (,r6) and f 2 (,r6). 

To summarize the above results we have the following 

Theorem 3,2: Under the conformal transformation 

the Bergmann Lagro.ngian 

becomes 
LB = -vg{ fl(¢) R + 'f2(¢),r6,i,r6, jgij + f3(¢)} 

LB = -yg{.r6R + Fl (J6)J6,i¢, }iij + F2C.r6)} , 

(where F1 (¢) and F2 (.r6) ~ giveg £l equatio~ (3,73) and 

(3,74) respectively') which~~ the for~ of the Brans-

21rn order to compute the Euler-Lagrange tensors cor­
responding to (3,72) we would have to assume that f 1 (¢) 

is of class c3. 
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Dicke Lagrangian 

LBD = ..jg { ¢R- ~ ¢,iFJ.~j gi;j} ' 

when the cosmological~ F2 (FJ) is neglected and 

Fl (f5) = - ~ • 

Now it should be noted that Theorem 3.2 tells us 
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nothing about the relationship between the Euler-Lagrange 

tensors corresponding to LB and LBD~ The problem of relating 

the Euler-Lagrange tensors of conformally related scalar 

densities will be dealt with in section 5. 
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4. The Field Equations of the Brans-Dicke Theory 

The Lagrange scalar density from which the field equations 

are to be obtained is22 

(4.1) 

where 
(4.2) 

and Wis a dimensionless constant. In (4.1) 161'1' L plays 
-zj'." m 

C 

the role of ths scalar Lagrangian of matter mentioned at 

the conclusion of section 2. 23 

The Euler-Lagrange equations for the metric potentials 

are given by 
(4.3) 

where 

We shall now proceed to determine the explicit functional 

form of (4.4). 

Using the fact that du Plessis 

d(-y'.=gR) = -A{ gijgkl 
agij,k1 

we easily find that 

24 has. shown 

1( ik jl 
- g g 

'2: 
, (4.5) 

and thus 

(~tj ,kl = _ .£!-v-g { gijgk~ _ ~ (gikgjl + gilgjk)} , ( 4. 6) 

Aij,kl ~ _r-::: { ij kl ( ik jl il jk)} ( ) /\ !kl = - 1-'lkl-y -g g g - l g g + g g • 4. 7 
(BO) °2: 

22Throughout the rest of this thesis Latin indices will 
run from Oto 3 and Greek indices will run from 1 to 3. 
We shall also assume that the signature of gi. is(-1, 1, 1, 1). 

23Brans and Dicke([4], page 929) assume tRat Lm is inde­
pendent of g .. 1.; however, we shall assume that L contains iJ,, m 
both gij and its first derivative. 

24Reference [22], page J.69, or [23) 1 page 258 • 



The above expression may be written 

/\ij ,kllkl = _ -Fg(gij0¢ _ p5lij) , 
(BO) 

(4.8) 

kl 
DP = g Plkl • 

where 
(4.9) 

,,{lij - ,,{ gkigjl 
P - Pjkl • 

and 
(4.10) 

In obtaining (4.8) we made use of the fact that since p 

is a scalar 
¢Jkl = P(lk • 

In order to determine<Tiij we shall use our third invar­
BO> 

iance identity (2.52); viz., 
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nij = 1 gijL - 211c i Ahk,jm - 3 ~j,5,i - 1 pi p5'j. (4.11) 
1001 ~ BD 3 mh,001 g 1so) g 1001 

From (4.2) we readily obtain 

Using (4.6) we find 
R i J\hk,jm _ 

k mhreo1 -

which simplifies to 

gji = -2~<J:•i. 
(BO) 

Rkimh1G~'jm= ;¢-v-g Rij • 

Upon inserting (4.2), (4.12) and (4.13) into 

Tiij = lgij-v-g(¢"R- w¢",.¢"'i)- ¢"-v-gRij 
(60) ~ °j5 J. 

which may be written in the form 

(4.12) 

(4.13) 

(4.11) we obtain 

+ (.1-/=gg p5,ip5,j 
-;r ' 

,1J;j = - p5y-g{Rij - !gij R} - ~A{1~j¢",k.ro'k - p5,ip5,j}· (4.14) 

If we now combine equations (2.39), (4.8) and (4.14) we find 

Eij(LBD) = ¢"y-g{Rij - ~jj Rf+ ~-/=g{~f5,k¢"'k- p5,ip5,jj + 

+ v=i; ( gijD¢"- ¢"lij) ' (4.15) 

which is the Euler-Lagrange tensor corresponding to a variation 

of the gij I s within" the Brans-Dicke vacuum Lagrangian. 

Thus by combining equations (4.4) and (4.15) we find that 



our first set of field equations (4-.3) may be written 

Rij - l.gij R = 811' Tij + W(,6'ip;j 1 gij p p'k) + 
~ pc4 ~ ~ 'k 

+ ic.0lij_ gijo.6)' (4-.16) 
';J 

where we have set 

=..LJ _Q_(v--gLm) - d (J (v-e;Lm )\}. (4-.17) 
v-g l clgij dxk \()gij ,k ) 

In the presence of matter equation (4-.16) governs the be-

haviour of the metric potentials in the Brans-Dicke theory 

of gravitation. 

4-3 

The form of equation (4-.16) is not completely unfamiliar 

to us, since many of the elements in this expression appear 

in the field equations of Einstein's theory. On the left 

hand side of this equation we have the Einstein tensor, 

and the first term on the right is the usual energy momentum 

tensor of matter, however, the gravitational constant has 

been replaced by the variable coupling parameter 1 • The 
';J 

second term on the right hand side of (4-.16) is the conventional 

energy momentum tensor of a zero rest mass scalar field, 

however, once again we have 1 replacing the gravitational 
';J 

11 constant 11
• 'Ehe last term in e·quation ( 4-.16) is peculiar 

to the Brans-Dicke theory. 

We shall no1t proceed to obtain the Euler-Lagrange tensor 

for /6. At the close of section 2 we remarked that for a 

Lagrangian scalar density of the form 

L = L'(gij; gij,h; gij,hk; ,6; /6,i) + -/=@;Lm 

we have 
E(L) = E(L'), 

Thus equation (2.70) may be used to determine E(L) where, 



in our case, L is given by (4-:1) and L'=LBD. 

Taking the covariant derivative of (4-.15) with respect 

to xj gives us 
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Eij(LBD)/j = ¢/j-y-g(Rij - 1 gij R) + c..i-v-g gij(¢,k¢''1 gkl) . + 
~ ~ ¢ Jj 

- (.Jv'=i!; ¢,h ¢,k g 1.g J + -v'=g(gl.Jg ¢'(hkj - gl. gJ ¢lhkj). (4-.l8 ) ( 
h. k' . . hk . h 'k 

¢ jj 

Using the Ricci identity we may rewrite the last term appearing 

in (4-.18) as follows: 
ij hk ih jk 

-A(g g ~hkj - g g ¢lhkj) = 

_ r-::.( ij hkc~ ~ m ) ih jk~ ) ( 9) = y-g g g Plhjk + Pim R hkj - g g Pjhkj • 4-,l 

Since ¢lhk = ¢lkh the above expression reduces to 
.. hk ih 'k . 

v-g(gl.Jg ¢'/hkj - g gJ ¢lhkj ) = -A R1.m¢'lm • (4-.20) 

Let us now examine the second and third terms on the 

right hand side of (4-.18) which we denote by Ai; viz., 

Ai= ~y::ggij(i61ki611gk1\. - wA(i6,h¢'1kghigkj) .• 
¢ JIJ l. ¢' IJ 

Upon making use of Ricci's Lemma we find that the above 
. i 

expression for A reduces to 

Ai=. ~A{1'i¢',k¢''k - 2¢''i0¢'}. (4-.21) 

If we now insert equations (4-.20) and (4-,21) into (4-.18) 

we find 

2 0¢'} • (4-. 22) 

By applying (2,70) we can conclude that 

= --v=-gfR- W¢,k¢"k + 2wQ6J. (4-,23) 
¢2 ¢ 

Thus the field equation governing the behaviour of the 
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scalar field in the Brans-Dicke theory of gravitation is 

given by 
+ 2w0¢' = 0. 

7 
(4.24) 

From our previous work in section 2 we have. 

Efj (L)
1

. = 1 ¢''iE(L) - 81'(-v'=g TijjJ· • 
. J~ -zj: 

. C 

(4.25) 

We shall now assume that our energy momentum tensor, Tij, 

has been constructed so that Tijjj vanishes when the field 

equations governing the matter variables have been satisfied. 25 

Thus when this is the case we may conclude (as we did for 

Lagrange scalar densities of the form (2.1)) that the field 

equation:!.£.!: p5 ie. superfluous, and perhaps may more properly 

be considered as a consistency equation. For when the field 

equations governing the metric potentials, (4.16), and the 

field equations for the matter variables are satisfied we have 

and 
(4.26) 

(4.27) 

Equation (4.25) then implies that E(L) must automatically 

vanish. 

However, it should be noted that when E(L) (=E(LBD)) 

vanishes neitner Eij(L) nor Eij(LBD) will vanish in general. 

In passing we note that when 

(4.28) 
· then 

LBD = 0 • (4.29) 

To see this let us examine gij~(LBD) and p5E(LBD). From 

equations (4.2), (4_.15) and (4.23) we easily find that 

gijEij (LBD) = - LBD + 3 y-g0,0 , ( 4. 30) 

25In conventional general relativity Tij is usually 
constructed so as to be compatible with this demand. 



and 
¢'E(LBD) = - LBD - 2w,!=g 0¢' , (4.31) 

where 
A 0¢' = CA gi.i ¢',i) ,.i • 

Using the above expressions we obtain 

(4.32) 

Thus when 

we assume 

3¢'E(LBD)+ 2wgijEij(LBD) = - (2W+ 3)LBD. (4.33) 

Eij(LBD) and E(LBD) vanish so does LBD (provided 

thatlJ/-~ ). 

We shall now proceed to use equation (4.16) to rewrite 

our expression for E(L) which is given by (4.23), We begin 

by multiplying (4.16) by gij to obtain 

R = -81rT + W ¢',k¢',k + 2.0¢'. 
26 

(4.34) 
c4¢' ~ ¢ . 

Upon inserting (4.34) into (4.23) we find 

E(L) = -y''.:g{(2W¢ 3)0¢' - :r;} , (4,35) 

and so the field equation for¢' becomes 

0¢' = 81TT • (4.36) 
(2W+ 3)c4 

Thus we see that¢' obeys a scalar wave equation in which 

the source of the scalar wave is the contracted energy 

momentum tensor of matter. 
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Let us now return to equation (4.16) and ask the following 
• 

question: Is it ever possible for the first term on the 

right hand side of (4.16) to be so "large" as to completely 

dominate that side of the equation and thereby yield the 

approximate field equation 

~ 81l"Tij 
c4~ 

? (4.37) 

Brans and Dicke ( [ 4), page 930) assert that the answer to this . 

26T is given by Tij gij • 



question is in the affirmative. However, (4.36) permits 

us to replace the 

- P?i~op5 

term appearing in (4.16) by 
i . 

- . 81tg J T 

(2<.u+ 3)c4 f6 
• 

Thus when Tij is "large" T may also be "large" and hence the 

term need not necessarily dominate the right hand side of 

(4.16). 27 Therefore we must disagree with Brans and Dicke 

and conclude that (4.37) is not a generally valid approx­

imation to (4.16) in the limit of "large" Tij. 

Given below (.for the ease of later refrence) are the 

Brans-Dicke field equations of gravitation: 

and 

Rij - 1 jj R = 81tTij + w (¢'' it5, j - 1 gij ,0 ¢''k ) + 
~ ¢'c4 "?- 2 'k 

+ 1 ( /Dlij - gij0¢') ' (4.16) 
p 

R - w ¢',k¢''k + 

"?-
2w0¢' = 
7 

0 ' (4.24) 

or equivalently 
0¢' = 811'T , 

(2"-i+ 3)c4 
(4.36) 

where 
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, (4.17) 

and 
(4.38) 

27when T1 J is "large" T need not be large, as is the 
case for the electromagnetic .field tensor, TsO. 



z.:. The Effe~ of Conformal Transformations Upon Scalar 

Densities of the Form 

L=L(gi.j; g .. h; g .. hk; /6; /6,.) J.J, J.J, J. 
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Recall that in section 3 we considered how Bergmann's 

Lagrangian (3,7) transformed under a conformal transformation 

of the form 

gij 

where 0- is a scalar function 

20"'. . 
= e gij , 

of class c2 , 

(5,1) 

However, we have 

thus far neglected to consider the relationship between the 

Euler-Lagrange tensors corresponding to conformally related 

scalar densities of the form (2,1), This section will be 

devoted to examining this relationship, 

To begin let us consider the following 

Examule: 

When 
L =A /6,i/6,jgij 

it is easily shown that 

E(L) = 20¢, 

(5,2) 

(5,3) 

If we now perform the following conformal transformation: 

g .. = 1 g .. ' 
J.J i J.J 

we find that in terms of the barred metric L becomes 

- ". T,:. -ij L = p v -g g ¢, i¢, j , 

from which it can be shown that28 , 

(5,4) 

(5,5) 

E (L) = 2¢ ( ..;-g gkj ¢, k) , j + ..;-g gkj ¢, k¢, j , ( 5, 6) 

Using (5.4) to rewrite (5,3) in terms of the barred metric 

we find that E(L) becomes 

E(L) = 2~(;/,=ggkj ¢,k)'j + 2-v-g gkj¢,k¢"'j , (5,7) 

28To obtain (5.6) from (5,5) we have performed a vari­
ation of¢ regarding the gij as arbitrary preassigned functions 
of position, 



Thus it is apparent that a solution to 

E(L) = o 

need not yield a solution to 

E(L) = 0, 
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even though Landt" are related by a conformal transformation. 

From the above example it is apparent that E(L) and 

E(L) will not, in general, be related although Land Lare 

related by the conformal transformation (5.1). We shall now 

proceed to show that Eij(L) and Eij(L) are closely connected, 

when Lis of the form (2.1). We shall then exploit this 

connection to show that even though E(L) and E(L) are not 

related (in general) this difficulty can be overcome through. 

the use of equation (2.70). 

Let us now assume that we have two Lagrange scalar 

densities L1 and L2 of the form29 

Ll = Ll(gij; gij,h; gij,hk; ¢.; ¢,i) (5.B) 
and 

L2 = L2(gij; gij,h; gij,hk; ¢.; ¢,i; er; a;i; cr,ij)' (5.9) 

where L1 can be transformed into the form of L2 (up to the 

addition of a divergence) by the conformal transformation 

(5,1). We shall now consider the problem of relating 
• 

Eab(L
1

) to Eab(L2 ) where 

and 

Eab(L1) = d (0L1 - d d.Ll ) - dLl , (5.10) 
dxc \dgab, c clxd dgab, cd Ogab 

Eab(L2) = L. (.2JL2 - d c)L2 ) 2JL2 • (5.11) 
dxc\ogab,c Jxd agab,cd ogab 

It will be shown that under (5.1) Eab(L1 ) transforms to 

e2rrEab(L2 ), and this transformation is exact; i.e., there 

29L1 and L2 should not be confused with the L1 and L2 
introduced in section 3, 



is no divergence dropped from consideration as in the case 

of transforming L1 to L2 • 

In order to establish this relationship between Eab(L1 ) 

and Eab(L2 ) we begin by examining how the derivatives of 

gij are related to_ gij and its derivatives. From equation 

(5.1) we find: 
2<f 2CJ' (5.12) g .. k = 2~ke gij + e gij k ' J. ;J ' 

and . ' 
2cr 2() 

g .. kl = 2o-;kl e gij + 4 o;k~l e gij + 
J.J ' 
2(J' 2() 20- (5.13) + 2o;ke gi. 1 + 2(f,le g .. k + e g. · kl • J, J.J, J. ;J ' 

Upon combining equation (5.10) with the above results 

we may conclude that under (5.1) 

Eab(L1 ) = 2._f7dL2 c}gij 2 k + c)L2 dgij
1
k:L)+ 

axcL\agij,k Ogab,c Ogij,kl Ogab,c 

- _£_(0L2 dgi,i ,kl)~ + 
dXd agij,kl Ogab,cd IJ 

- d a~2 dgi,j + 0L2 dgi,j ,k + c3L2 . dgi.j ,kl} • (5.14) 
( agij ogab agij,k ogab dgij,kl ogab 

In order to simplify the form of equation (5.14) we must 

compute the following derivatives: 

50 

(5.15) 

From equations (5.1), (5.12) and (5.13) we easily obtain: 

"- 2fJ'~a {b <c <d ca b 1c 1d a c b ,<S ,1_d a r b _(C cd} ( ) o~,jJ.{1=%_- biUjUkC/1 +ojOiUkDl +OiOjvivk+OjoiOl"k , 5.16 
agab, cd · · 

c}gij ,kl er. 2C>( i a rb .1C 1a 1b rC) er. 20"( a b c a b c 
= 'ke CliOjUl + OjUiOl + 'le 0i0j~+ 0jOi6k), (5.17) 

agab,c 

c)g,. kl 0: 2crcca1b (a(b) 2rr er 2<rc<acb 1a,b) ( ) 
J.J, = 'kle oioj +ojoi + v,k 'le oioj +ojOi , 5.18 

ogab 



dg .. k 1J, 
Ogab,c 

dgi,j ,k 
c)gab 
and 

c)gi,j = 

ogab 

(5.19) · 

(5.20) 

(5.21) 

We shall now proceed to use the above results to put 

equation (5.14) into a more familiar form. 

Using equations (5.17) and (5.19) we find 

oL2 dgij ,k + <:3L2 dgi,j ,kl = e2<i'~2 
Ogij,k Ogab,c dgij,kl Ogab,c J~g='a~b-,-c 

+ 

' 
(5.22) 

and from (5,16) we obtain 

0L2 dgi,j ,kl = 2JL2 e2<T • (5.23) 
agiJ. kl agab cd ogab cd 

' ' ' Upon differentiating equation (5.23) with respect to xd 

By combining equations (5.22) and (5.24) we find that 
• 

the term within square brackets appearing in equation (5.14) 

is given by 
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e3r c) L2 

c)gab C 

2cr -..r. · 
+ 2e er, d,,-0-a:'2"-- e2(f d JL2 • (5.25) 

' 
;)tab, cd oxd ogab, cd 

If we now differentiate the above expression with respect 

to x0 we find that under (5.1) 

d (iJL1 . - d c)Ll ) 
oxc ogab,c oxa dgab,cd 

becomes 



ear ..£_(2JL2 - _g_ d.==,2 ) + 2cr,ceN~JL,,;;:.2_ 
dxc\~ab,c oxd oe;ab,cd dgab,c 

+ 

+ 4<T,c(f,de2C\~L2 + 2~cde2<> ~L2 • 
ogab,cd agab,cd 

(5.26) 

Using equations (5.18), (5.20) and (5.21) we find that 

the term appearing within curly brackets in equation (5.14) 

is given by 

dL2 e2cr + 

dgab 
2cr, k e 2CJ_c)_L-=.2_ + 2 IT, kl e 2().,..d=12aa-_ 

agab,k dgab,kl 

• (5.27) + 4 CT, k CT, 1 e 2cr_a __ L.=2 __ 
cJgab,kl 

From equations (5.26) and (5.27) it is now apparent 

that under (5.1) 

(5.28) 

Similarly, under 

(5.29) 

we have 

(5.30) 

Let us now assume that we have found a solution to 
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(5. 31) 

that is, we have determined gij , $6 and CT which are such that 

Eab(L2 ) , as given by equation (5.11), is zero. We shall 

now consider the transformation (5.29) where gij, and CJ 

are such that (5.31) is valid. It is obvious that under . 
(5.29) zero is transformed to zero. Thus we may use (5.30) 

to conclude that in the present case 

Eab(Ll) = 0, (5.32) 

when gij is given by (5.29). Furthermore it should be 

noted that the same scalar function $6 will satisfy both(5.31) 



and (5,32). 

Now equation (2,70) tells us that 

Eab(Ll)\b = 

and thus when (5,32) holds 

1 pf'aE(L) 
~ l ' 

(5.33) 

E(L1 ) = 0, (5,34) 

Thus the vanishing of Eab(L2)implies that both Eab(L1 ) 
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and E(L1 ) vanish. This is true independently of the vanishing 

or non-vanishing of E(L2 ) , and hence serves to emphasize 

the fact that.E(L1 ) and E(L2 ) are quite unrelated (in general). 

It should also be noted that since L2 is not (in 

general) of the form (2.1) we cannot say that 

Eab(L2)lb = ! pf'aE(L2) • (5,35) 

However when the above relationship does hold30 the vanishing 

of Eab(L2 ) implies that Eab(L1 ), E(L1 ) and E(L2 ) all vanish, 

To summarize the above results we have the following 

Theorem 5,1: If L1 and L2 ~re scalar densities 

Ll = Ll(gij; gij,h; gij,hk; pf; pf,i) 
and 

of the form -----

L2 = L2(gij; gij,h; gij,hk; pf; pf,i; CT; U,i; O";ij) 

and if L1 ~ be transformed~ the form of L2 (£2. to the 

addition of ~·divergence) through~ conformal transformation 

of the £2.E!! 

where (T is the scalar function of class c2 appearing in L2 , 

30L2 will be of the form (2,1) whenever O' is a function 
of pf, and the <;,ij terms appearing in L2 can all be put into 
the form of a divergence. This type of situation arose when 
we considered conformal transformations of the Bergmann 
Lagrangian (3,7) (c.f. equation (3,71)). 
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then whenever 

a ~aL2 - d ~~2 ))-
0L2 = 0 ' 

dxc Ogab,c dxd <)gab, cd Jgab 

~ have both 

d (JL1 - d ~dLl )) dLl = 0 ' 
axe ogab,c dxd dgab,cd dgab 

and 

d (~1 )- OLl = 0 • 
clxc 0¢,c a7 



~ Using a Conformal Transformation to Relate the Brans­

Dicke and Einstein Field Eguations31 

We have previously seen that Brans and Dicke's field 

equations are more complex than Einstein's field equations. 
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This can be attributed to the scalar field f6 , whose reciprocal 

appears to play the role of a variable gravitational "constant". 

The purpose of this section is to show that the solution to 

a certain system of Einsteinian field equations can be used 

to obtain a solution to the Brans-Dicke field equations. 

We begin with the Brans-Dicke Lagrangian in the presence 

of matter, viz., 

L =-M{f6R - W[6,.,S'i 'i> J. 
+ 1611' L J . --zj:" ID 

C 

(6.1) 

Let L denote the form assumed by (6.1) after we have performed 

the conformal transformation 

(6.2) 

In the previous section we saw that if L1 and L2 , as given 

by equations (5.8) and (5.9) _respectively, are related by 

a conformal transformation of the type (6.2) then under 

(6.2) we have 
Eij(L) 

1 = e20'Eij (L2) • (6.3) 

The above result can obviously be applied to L and L to 

conclude that under (6.2) 32 

(6.4) 

3lThe material found in Dicke' s paper [91 serves to 
motivate this section. However, the approach given below 
is not due to Dicke. 

32That (6.3) can be applied to L, as 
is due to the fact that the derivation of 
upon L1

1 s being a concomitant of g .. , and 
J.J 

~iven by (6.1) 
(6.3) depends only 
its first and 

second derivatives. Since Lm contains no derivatives of 
gij greater than the first (6.4) follows quite readily from (6.3). 



Thus a solution to 

can be used to obtain a solution to 

Eij(L) = 0. 

(6.5) 

(6.6) 

Now after applying (6.2) to (6.1) it is quite possible 

that 
161r-y'-g L ~ 
-ij."" m 

C 

where L: is obtained from Lm by simply replacing gij and 

g .. k J.J, • appearing in Lm by gij and gij,k respectively, and 

Lm is the 

conformal 

form assumed by Lm after we have performed the 

transformation (6.2). (For example, if 

Lm = FhkF abgahgbk , 

then L; would be given by 
-ah-bk 

L; = FhkFabg g ' 

whereas Lm would be given by 
- 46": -ah-bk ) LID = e FhkFabg g • 

(6.8) 

(6.9) 

(6.10) 

Whenever (6.7) holds we cannot conclude (in general) that 

when a matter variable satisfies the matter field equations 

obtained from Lit will also satisfy the matter field 

equations obtained from L. In order to overcome this 

difficulty we,shall henceforth assume that under (6.2) 

v'-g Lm ~ e-40"' -v-g L = -J-=g L* • (6,11) m m 

This implies that 
(6.12) 

and thus Lm must be homogenuous of degree -2 in gij' 

(6.8) serves as an example of such a Lagrangian. 

Let Tij correspond to the energy momentum tensor 

obtained from -y'-g Lm ; viz., 
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=_2_{L(A Lm) - d ( 0 (,,t=g Lm)l} • 
-A dgij clxk \dgij, k ) 

(6.13) 

We shall assume that Tij has been constructed so that when 

the field equations governing the matter variables are 

satisfied 
,nij - 0 
J.: lj - • 

From equation (4.25) we have that 

Eij(L)j. = 1 ¢'iE(L) - 81ry-g 
;J '2' 4 

C 

(6.14) 

ij 
T lj ' (6.15) 

and thus when the field equations governing.the matter 

variables are satisfied we find 

Eij(L)
1

• = 1 ¢'iE(L) • 
;J '2' 

If we now assume that a solution ha.s been found to 

Eij(L) = 0 , 

(6.15a) 
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then we may use equations (6.4) and (6.15a) to conclude that both 

and 
E(L) = O. 

In summary we have shown that if under (6.2) y-gLm 

transforms as follows: 
y::g L ~ -y'-g L* m m 

and if Tij has been constructed so that 
• 

Tijlj = 0 

when the matter field equations are satisfied, then when 

Eij(L) = o, 

and the matter field equationscbtained from 
16 -./=gL* -zj:" g m , 

C 

are satisfied we shall find that the field equations 

Eij(L) = 0 , 

E(L) = 0 , 



and the matter field equations obtained from 

l 6i1' y:::g L --zr m 
C 

are all satisfied. 
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Let us now consider the following conformal transformation 

(6.16) 

where k is a constant. Dicke motivates this conformal 

-transformation by a discussion of units. Our reason for 

introducing (6.16) is that it transforms our original Lagrang­

ian, (6.1), into the form of an Einstein type Lagrangian, 

and consequently leads to a system of Einstein field equations. 

In section 3 (c.f. equations (3.7) and (3.68)) it was 

shown that under the conformal transformation (6.2) a scalar_ 

density of the type 

y=e; { f 1 (¢) R + f 2 (¢)¢,i¢,jgij + f 3 (¢)} (6.17a) 

becomes 

e-Lt<r.;=g {~1 (¢)e2a'R + 6e4<J' f 1(f]) ( e-20-y:=g gijcr,i)'j + 
-v-g 

-ij (-L) 20- (-L)-L ,; 20'-ij (-L)} ( ) + 6g f 1 P e a; i o-, j + f 2 P. P, iP, j e g + f 3 P • 6. l 7b 

In order to use (6.17a) and (6.17b) to assist in transforming 

(6.1) into the barred metric we make the following identifications: 

f1(¢) = ¢ ' 
f2(¢) = - (,.J 

"i 
and 

f3(¢) = 0 • 

Using equations (6.2) 

and consequently 

' 

and (6.16) we see that 

e20- = k¢ 

0- = 1 ln(k¢). 
~ 

(6.18) 

(6.19) 

(6.20) 

(6.21) 

(6.22) 



Thus by combining equations (6.1) and (6.11) in conjunction 

with equat~ons (6.16)-(6.22) we find that Lis given by 
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L =-v-g 1 {R +--2£. ll ...;::g gij¢',·1•. + (3 -w)¢,.¢',. gij}+ k _f"""= ~ 1 J ~ 1 J 
y-g ¢' . ¢2 

+ 1611'-v'-g L* • (6.23) --zr m 
C 

The second term appearing within the curly brackets 

of the above expression may be rewritten·as follows: 
-ij,,{ ,,{ 
g "'' i"' 'j • 

(6.24) 

Upon inserting (6.24) into (6.23) we find that L may be 

written 
L = y::'g 1 {R - 1(2W + 

k 2 

k i 1 J 

+ 161ik 
c4 

(6.25) + .2 [lv-g gij¢,·J· .• 

Since k is a constant the last term appearing in (6.25) 

is a divergence. Hence we may use Lovelock I s result [1.6] 

to conclude that from the point of view of the calculus of 

variations the following Lagrangian, L', is equivalent to L 

L' = ...;=g {R - 1 (2W+ 3)¢',.¢', .gij + 16Tlk L* t, (6.26) 
2¢'2 1 J 7 mj 

where we have dropped the constant factor~ which appears 

in (6.25). If we now set 
4 

Ly5 = -(3 + 2W)c 
3211'k ¢'2 

,,{ ,,{ -ij 
·"' ' i"' ' jg ' 

we may rewrite L' in its final form; viz., 

L' = y-g{R + 161fk ( L¢' + L; )J , 
c4 

(6.27) 

(6.28) 

which is identical in form to the Lagrangian used to obtain 

the field equations of Einstein's theory of gravitation when 
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matter and a zero rest mass scalar field, /6, are present. 

We shall now use (6.28) to obtain the field equations 

governing the barred metric potentials gij , and the roalar 

field /6. Since (6.28) is of the form of Einstein's.Lagrangian 

the Euler-Lagrange tensor corresponding to a variation of 

the gij 's, regarding /6 and all other matter variables as. 

arbitrary preassigned quantities, is given by 

Eij (LI ) = y-g { Rij - ~ gij R - 871'k @~j} + 
T 

- y-g 811'k 
7+ 

Tij 
(rnl ' 

(6.29) 

where 

, (6.30) 

(6. 31) 

Thus the field equations governing the barred metric potentials 

are given by 
Rij - 1 gij R = 8'iTk iTij + ;p:ij} • (6.32) 

2 -zr- (M) (\f) 
C 

To obtain the field equation governing /6 from (6.28) 

This is so because we may apply the results of section 2. 
• 

L' ' 
as given by (6.28), is of the form 

L' =L'(g .. ; 
l.J g .. hi 

l.J' 
g .. hk; 

l.J' 
/6; /6' i) + 16'11'k -v-g L* , (6. 33) 

4 m 

-y':g { R + 1~4k L/6). L' = 

C 

(6.34) 
where 

Since we have assumed that under (6.2) 
-Fg \i ~ -y::g- L* 

m (6.11) 

33since L/6 is independent of the derivatives of gij, (6.31) 
need not involve a derivative with respect to g .. k • 

l.J' 



we are guaranteed that y-gL* is independent of ¢ and con-
. m 

sequently L'. is formally identical to the Lagrangian given 

in (2.71). Thus we may conclude that 

E(L I) = E(L I) ' 

and since E(L') and Eij(L') are related by34 

Eij(L')\j = ! ¢' 1E(L') , 

we have 

(6.35) 

(6.36) 

Eij(L')\. = l f6• 1E(L') • (6.37) 
. J ~ 

Now by comparing (6.28) and (6.33) we readily deduce 

that Eij(L') is given by the term appearing within the 

curly brackets of equation (6.29), viz., 

Eij (L') = y-g {Rij - l gijR - 8'l1'k Tij} • 
~ --ir- (Ill 

C 

(6.38) 

Thus Eij (L 1 ) lj is found to be 

Eij (LI )1· = - 8'l1'k Y-g Tij I . • 
J -ir- <J') J 

C 

(6.39) 

Using equations (6.27) and (6.31) we easily find 
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- 8-rrk yCg 'l'ij = (3 + 2w) y-g J gijgrso{ ¢\s - p5\i p5lj}. (6.40) 
c4 (¢) 2¢2 ( 2 rir 

Upon inserting (6.40) into (6.39) we obtain 

E1 j(L')lj= (3 + 2w)"\l'=g{gijgrs(¢1rj¢1s+ ¢1r¢lsj) + 
. 2. 2?f2 

(¢Iii~ ¢\j + ¢Ii ¢1jlj ) - 2f61,i (gi~grs¢1r ¢Is - ¢Ii p5Jj )i ' (6.41) 

¢2 .¢3 ) 

which simplifies to 

Eij(L')lj = - f6• 1~¢2w),l::g0ln¢, (6.42) 

where 
(6.43) 

34The covariant derivatives appearing in equations (6.36) 
and (6.37) are taken with respect to the barred metric tensor. 



Thus we may use (6.37) to conclude that 

E(L') = - (3 + 2CJ) ../=g Oln.¢ , 
iS 

(6.44) 

and hence the field equation governing¢, in terms of the 

barred metric tensor is 
Oln¢ = o , (6.45) 

provided we assume that w ,c~ . 
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Equation (6.45) does not agree with ·Dicke's field equation 

for ¢?5 This is so because, as previously mentioned, we are 

not following Dicke 1 s procedure. Dicke's considerations 

are based upon a transormation of the system of units being 

used, from which he motivates the conformal transformation 

gij = k ¢ gij • 

However, Dicke's transformation of units also effects the 

matter variables within Lm, and for this reason 

dL~ 
~Io 

in his case, Thus Dicke's field equation for¢ is given by 

Oln¢ = - 161ikpf -ar.~ 
(2W+3)c4 d9) • 

In passing we must point out that in our case 

the field equation for¢ is superflous, This is so because 

we've assumed that Tij has been constructed so that Tijl· 
(ml <,nl J . 

vanishes when the matter field equations have been solved, 

Consequently once we've found a soiution to (6,32) and a 

solution to the field equations governing the matter variables 

we can use equation (4.25); viz., 

Eij (L)IJ. =. i ¢'iE(L) - 81ik -yC°g TJjl. 
C. ---ir- (fnl .· J 

35In [9]Dicke sets ¢ = A , 
k 

C 
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to conclude that the field equation governing~. (6.45), 

will also be satisfied. 

We shall now summarize what we have shown. We began 

with the Brans-Dicke matter Lagrangian 

L =-y'-g{~R - ~~•:f•;j gi;j + lct'l1Lm}, (6.1) 

and assumed that under the conformal transformation 

we have 
(6.11) 

We then saw that under this conformal transformation L 

becomes 
L 1 = -y'-'g {R + 161Tk 

c4 
( L~ + L:i )} , (6.28) 

where L~ is given by (6.27). Thus under (6.16) our original 

Brans-Dicke Lagrangian takes on the form of an Einstein 

type Lagrangian. We then used (6.28) to find the field 

equations governing gi;j and~; 

= 8'11'k Tij + 7 (ml 

and 
'Bin~ = o , (6.45) 

respectively; where we have used (6.40) to rewrite (6.32), 

-i;j . ( ) and T is given by 6.30. 
(IT\) . 

Thus according to the remarks 

made earlier in this section we may conclude that when we 

have a solution to (6.46) and when the field equations 

governing the matter variables (in.terms of the barred metric) 

have been satisfied then, our original Brans-Dicke field 

equations (4.16) and (4.36) shall also be satisfied, along 

with the field equations governing the matter variables 

(in terms of the unbarred metric) provided we set 
- 1 -gi;j - k~ gi;j . 
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' 2!_ ~ Method fQE Obtaining Exact Solutions to the Brans-

Dicke Vacuum Field Eguations36 

In the previous section it was shown how a solution· 

to a certain system of Einstein field equations can be used 

to obtain a solution to the Brans-Dicke field equations. 

In particular a solution to the following Einstein 

r;ij = ( 3 + 2 2w) {¢',i¢', j - ~gijgrs¢',rf5,s} ' 
2¢' and 

Dln¢' = O, 

equations 

(7.1) 

(7.2)· 

can be used to obtain a solution to the Brans-Dicke vacuum 

.field equations 

and 

where 

G •• = 
l.J 

0¢' = 0, 

GiJ" = RiJ" - lg .. R. 
~ l.J 

(7.3) 

(7.4) 

(7.5) 

Consequently let us begin our search for exact solutions 

to equations (7.3) and (7.4) by studying the following system 

of Einstein field equations 

liij = 81rk Tij ' (7.6) 
7 

and 
D 'j-' = 0 ' (7.7) 

where 
- -km~ 'Y. Tij = 'f, i 'f, j - ! gijg 'k 'm ' (7.8) 

36The results appearing in this section were obtained 
from a paper by A.I.Janis, D.C.Hobinson and J.Winicour [11]. 
However, the author has recently discovered that many of the 
results presented in this section also apP.ear in a paper 
by N. De [ 8 ], which was published prior to [11] • 
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k is a constant and '!J is a scalar field of class c2 • It should 

be noted that equations (7.6) and (7.7) become identical with 

equations (7.1) and (7.2) when we set 

where 
'P = p ln k~ 

p =J c
4 (3 + 2w)}12 • L 16Tl'k 

We shall restrict our considerations to static fields in 

which case we can write the line element in the form37 

ds2 = -e2U(dx0
)
2 + e-2Uh~~dx~dx~, (7.9) 

where 
U = U(x") 

are functions of class 
and ho<'/3 = he<;?, (x~) 
c2 and 

XO = Ct. 

Using this line element it will be shown that our field 

equations (7.6) and (7.7) can be rewritten as follows: 
lie( 

~10( = o, 
\I<-( 

U11« = 0 , 

and 

(7.10a) 

(7.10b) 

Ho/3 -2U '"' U ,;.i = 81tk '\;. 't'"' , ( 7. lOc) 
~ 

where HO(~ is the Ricci tensor for the auxilliary metric tensor 

h'Y.l and (II) denotes covariant differentiation with respect 

to the ha;, 1 s. 

We sha'll now proceed to establish the results appearing 

in (7,lOa)-(7,lOc). We begin by multiplying (7,6) by gij 

to obtain 
-R = -

' d, ,11 -ij 
81'1'k T,. T, .g • --re- J. J 

C 

Thus the following equation is equivalent to (7,6) 

Rij = 81ik f, . 'Y, . --re- J. J 
C 

• (7.11) 

37Recall that Greek indices run from 1 to 3. 



Our line element (7.9) 

ds2 ~ e-2U(-e-4U(dxo)2 

66 

can be written in the form 

+ hd/3 a.x« dx/3) ' (7.12) 

and when expressed as such we see that calculations may be 

simplified if we make the conformal transformation 

Pij = e2Ugij. (7.13) 

The above transformation implies that 

p"'/3 = h.,;.i , Poto = o and p00 = -e4u. (7.14) 

The Christoffel symbols corresponding to each of the 

two metrics, pij and gij , are related by38 

1lj = {iqj} - bfU,j - 03U'i + Pijpqmu,m (7.15) 

where {i~} denotes the Christoffel symbols constructed from 

the pij's and liqj denotes the Christoffel symbols constructed 

from - I the gij s. 

By examining the matrix representing pij it is apparent 

that 
00 -4U p = -e , p OrJ. = 0 and p o1;.3 = h "'"3 , (7.16) 

where h~~ is characterized by 

h"\l.lh~ = &~ (7.17) 

Since {,'.;" t} is defined by 

• {;.i"o}= !p"<i( pf.li,<l' + Pti,,1.3 - P13t',i ) ' (7.18) 

and all quantities are assumed to be time independent we have 

{/3:}= ~(h/Jf,t ~ h•t'.r1 - h;.s~t' ) . (7.19) 

The components of ·f i~J which contain the index O are 

easily found to be: 

{ o~} = {o~ r = O ' 

{ob}= 2h"V-lUY3e4U' 

38Eisenhart [10], page 89, 

(7,20a) 

(7.20b) 
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and 

(7.20c) 

With this information at our disposal we may now proceed 

to determine D 't' and Rij in terms of the h~' s and U. 

Fran (7.13) and the definition of o'P we find 

-f 2U ij('\-'. 'f. rm ) 
D = e P 'ij - 'm ij ' 

which, due to 

o'Y= 

time independence, may be rewritten as follows: 
2U( OOw ,--,o1 "'/.l ( w 

e -p I ,o1 I 00 + P T ,~ 

Using (7,15) we may rewrite the above expression in the form 

o'V= e2U{e-4U'f""(lo~} - s;u,o - b;U,o +PooP"'/.luy.,) + 

+ h ¥ < f,o/-3 - 'Y.r[ {.~J - (u 'fl - c);u_t< + P,sa pf-'l'u ,rl ) } • 
(7.21) 

Using (7.20b) we find that (7.21) becomes 

-,11 2U{ ~ u1 \JJ i 't'l -4U w 4U "'/.3 
OT = e h ( r,.,.;3 - 1, 1 ¥5) + e (2 1,o1 u,/Je h + 

W\l/ ~) ~ ~} - e 1,o1 U ,;3 h + 2U '"' U 'f.l h - 3U '-< U ~ h • 

Thus we see that o'Y is given by 

o'r' = h""t-3< f,oy., - 'Y,, f~} )e2u. (7.22) 

Since o/is governed by 

o't'= o , (7.7) 
't' must also satisfy · 

h "'/3 ( 't' ,<>'/.J - 'f, ( £ ~ } ) 
• 

I.I) lie( 
= 'ii« = 0 ' (7.23) 

which establishes (7.10a). 

One should. note that (7,22) is valid if f is replaced 

by any other time independent scalar function such as U; i.e., 
-bk o113 J \' l ) 2U 

OU = g ulhk = h (U,o1/I- U,r ("'/3) e • . (7.24) 

We shall now proceed to use equation (7,11) to establish 

(7.10b) and (7,l~c). By examining (7.11) when i=j=O we shall 

arrive at (7,10b), Similarly by considering (7,11) when 
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i=~ and j=f3 it will be shown that (7.10c) is valid. In order 

to establish each of these results it will be necessary to 

construct the Ricci tensor in terms of the{iqj} affinities .• 

This Ricci tensor will be denoted by K .. and is defined by . 1J 

Kij = adxk {i~J - 0::dxJ (lnA) - 1i~}fm~} + if}fl} , (7.25) 

where 
(7.26) 

From Eisenhart39 we find that Kij and Rij are related by 

( - -hk 
Rij = Kij + 2 ulij - uli ulj ) + gijg ulhk + 

- -hk + 2gijg u1h u1k • (7.27) 

Let us consider equation (7.11) when 1=J=0, Due to the 

fact that'+' is independent of time (7.11) becomes ip this case 

R00 = o • (7.2s) 

We shall now use (7.27) to rewrite the above expression in 

terms of K00 and u. 

From (7.25) we have 

Koo.= L 1to} - L_(lnFP) +{tori!}- {o~Jlmko} 
dxk · d(x0 ) 2 ' 

which may be rewritten as follows: 

KOO = -~ 1o6J + {o~rim°of + 1to}f:J- ~0}10°01 - 2 {o~}t
0
0} + 

ox - {o~J1c/oJ • 

Using (7.20a), (7,20b) and (7.20c) we find that the above. 

expression becomes 

39Eisenhart, [lO]page 90. Recall that Eisenhart's 
Ricci tensor is the negative of ours, 
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After performing the indicated differentiation we obtain 

4 u1 " o113 "'/3 o//3} Koo = 2e ~ U '.f.l + h U •,/Jl + 4U '" U yi h + 
dx . 

oV-l 4 U "</3 { /-"- } - 4U,,(U,i6h e + 2h U,o1 Pt' , 

which can be rewritten in the form 

K00 = 2e4u{ - (h,u,a{;Jr ho(r<{io<})uy.i + ho113 u,o<;.; + 

"JJ 4U ct./3 .[ f< }} + 4U ,"( U 'JJ h e + 2h U ,ol l;.l f-! • 

The above equation simplifies to our final expression for 

K00 which is 

4U "'-/3 ( K00 = 2e h u,"fl - (7.29) 

From (7.27) we obtain 

Roo = Koo + 2 Cu100 - u,ou,o) + googhkulhk + 

- -bk + 2goog u,hu'k. (7.30) 

Using (7.15), (7.16) and (7.20b) we find that u100 is given by 
«(..I 4U 

u100 = - u,o1,Uy.ih . e • (7.31) 

Equations (7.13), (7.14), (7.16), (7.24), (7.29), (7.30) 

and (7.31) allow us to write R00 as follows: 

- 4U 0<(..I f ~ J 4U c</3 
R00 = 2e h (U ,o1,t.3- U, t {o1/.3 ) + 4e U ,.( U '13 h + 

c<(..I 4U 4U "'/.3 { !'1 
- 2U ,"'- U ,p h e - e h (U '"'/l - U, ( cv:iJ ) + 

4U o113 
- 2e h U '" U ,,a • 

After obvious cancellations the above expression reduces to 
4U U llo< 

Roo = e 11o1 • (7.32) 

Thus we can conclude that the field equation (7.28) will 

be valid only if 
lie< 

Ullo< = O, (7.33) 

which establishes (7.10b). 

In order to obtain (7.10c) it will be necessary to 

examine K c<(.3. 



where 

From equation (7,14) it is apparent that 

-p = e4Uh 

h = det(~) , 
Consequently we have 

ln-FP = lnv'n + 2U. 
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(7,34) 

(7,35) 

(7,36) 

Using (7.25) we find that Ko(,ll may be written in the form 

K«r' = .L {~} - d
2
;nvli - 2u,~ - {cl~}{g13} -{q~}{~} + 

oxt' Ox dx 13 

- f~}f~p}-{I,}{;} +{;} a!{' (lnyh) + 2u,r{~} .(7.37) 

Upon applying (7,20a) and (7,20c) we find that (7,37) becomes 

K"/3 = H-<,1.1 - 2U ll'f-1 -4U ,.,< U ~ , (7,38) 

where H.cp is the Ricci tensor for our auxilliary metric h"Y-1 ; viz., 

H'Y3= {d~},Y - (ln.Jii ),«p + {~~}(1nvii ),r-~~}{~} • (7.39) 

In order to determine R~~ from (7,27) we shall examine 

( ) - -hk 
2 Ul"/3 - U ,0( U •,ll + goy.:i g Ulbk + 2- ~hk u 

g.,../3 g u 'h 'k • (7,40) 

(7.15) permits us to write Ul<>l'f.l as follows: 

u,ol/J = u,<y.l - u,t'<{;} - s:u,13 - s;u,o( 
which simplifies to 

Ut«p = U111-3 + 2U ,« U ,;.i - R,,:J p!t-' U ,(U •t' • (7,41) 

Thus the first term appearing in (7,40) becomes 
• 

2(u1<X.f.l - u,"' u,13 ) = 2(u11c113 - Po1f-l prf-'u,0 uy, + u,o<u,f.l ). (7.42) 

By combining (7,13), (7.24), (7,33) and (7,42) we find that 

(7,40) reduces to 
2U1Jci/3 + 2U '"' U '/3 • (7,43) 

Using (7,27), (7,38) and (7,43) we find 

R'\13 = ~~ - 2U11~ - 4U ,o1 U ,;3 + 2U11 "'f.l + 2U ,o1 U •/3 , 

which simplifies to 

R «,o = H"'f.l - 2U, "'U '.cl • (7,44) 



Upon inserting (7.44). into (7.11) we 

H.13 - 2U '"' U ,;.i 

which establishes (7.10c). 

= 8Ti'.k f, .. 
4 

C 
i'" 
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obtain 

' 
(7.45) 

For the sake of completeness we remark that by using the 

above approach it is easy to establish that R0o( = 0 for the 

line element (7.9). 

We shall now apply the above results. Let us begin by 

assuming that we have found a static line element 

ds2 = -e2V(dxo)2 + e-2Vhcsedx"'a.x,8 ' (7.46) 

which yields a solution to the Einstein vacuum field equations 

(7.47) 

Due to our previous work we know that we can write Rij 

as follows: 

Roo = 
4VV. 11cx 

e Jlcx ' 
(7.48) 

Roo( - 0 
' 

(7.49) 
and 

R«,.,, = H"'f' - 2V '"' V "8 • (7.50) 

Since (7.46) is a static solution of (7.47) we can now 

·conclude that 
4V II« 

(7.51) e Vj,« = 0 
and 

H°'/.l - 2V ,,c V ~ = 0 • (7.52) 

Using (7.24) we find that (7.51) may be written in the form 

ov = o·. (7.53) 

We shall now define two new variables u and 'P by the 

following equations: 

V = (1 + (sJ)~2)12u, (7.54) 

and 
'1'=AU, (7.55) 
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where A is a non-zero constant. Upon substituting (7.54) 

and (7.55) into equations (7.52) and (7.53) we obtain 

(7.56) 

and 
o'i' = o • (7.57) 

It is now apparent that a solution to the equations 

(7.6) 

and 
at'= o , (7.7) 

is given by the metric of the line element (7.9) and 'Vwhen 

U and 'V are given by (7.54) and (7.55) respectively. 

Corresponding to the above solution of equations (7.6) 

and (7.7) we have a solution to the Brans-Dicke vacuum field 

equations (7.3) and (7.4). To establish this result it 

will be necessary to make use of the results of the previous 

section. 

Recall that we have shown that if functions gij and¢ 

have been found which satisfy equations (7.1) and (7.2) then 

the same scalar function¢ and the function gij'defined by 

gij = ~ gij (7.58) 

will satisfy the Brans-Dicke vacuum field equations (7.3) 

and (7.4). Thus if we can show that solutions to (7.6) and 

(7.7) can be used to construct.solutions to (7.1) and (7.2) 

we are essentially finished. However, this problem is easily 

solved because if gij and 'I-' satisfy (7.6) and (7.7) then 

~j and¢, where¢ is defined by 

(7.59) 

with 
(7.60) 
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will be a solution to equations (7.1) and (7.2). In summary 

we have shown that a static solution to 

(7.47) 

generates a static solution to the Brans-Dicke vacuum field 

equations (7.3) and (7.4). 

To illustrate the procedure involved we shall now use 

the Schwarzschild solution to the free space Einstein field 

equations to obtain a solution to the Brans-Dicke vacuum 

field equations. The solution which we shall obtain corre­

sponds to the first of Brans I s vacuum solution presented in[5). 

The isotropic form of the Schwarzschild line element 

can be written in the form 

e2dg2 + e2sin2g dE-2)' 

(7.61) 
where Bis a constant and G denotes the azimuthal angle. 

To begin we make the following coordinate transformation 

t = T, r = B(i + ~) , g• = 9 , and E' =E • 

Under the above- coordinate. transformation we find: 

and 

If we set 

(7.62) 

(7.63) 

(7.64) 

(7.65) 

m = 2B (7.66) 
and then substitute equations (7.63)-(7.65) into (7.61) we 

obtain 

ds2 
= 

where 
-(~: :)c2

dt
2 +(~ 

dn2 
= de2 + 

)-1{ 2 
: : dr (7.67) 

sin2e dG2 . 
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It is apparent that the above line element can be brought 

into the form of (7.46) if we set 

e2V 1 h22 = 2 2 1 = r - m ' h11 = ' 
(r - m) , 

r + m (7.68) 

h33 = (r2 - m2)sin2~ and h otp = 0 if o/ /13. 
To obtain a static spherically symmetric solution to 

equations (7.6) and (7.7) we use (7.54) and (7.55) to find 

u = 1 ln(r :) ' 
(7.69) 

qi. r + 
and 

'11 = A ln(r - :) ' 
(7,70) 

~ r + 
where 

f = (1 + (:1£k j ~) ~ ' 
(7.71) 

and A is a £Q!!-~ constant. Thus the line element corre­

sponding to our solution of equations (7.6) and (7.7) is given 

by 

must 

ds
2 

= -(r - m)~c
2
dt

2 
r + m 

In order for rand U 

demand A to be real. 

~1 2 2 2 2} +(~~:)Ldr + (r -m )d!t , (7.72) 

to be real valued functions we 

This condition implies that 

/J. = (1 + (8citk} ~) ~ > 1 , · (7.73) 

(recall that A must be £Q!!-~). 

To obtain a solution to the Brans-Dicke vacuum field 
• 

equations (7.3) and (7,4) we define 

g .. = 1 g .. 
1J ~ 1J 

and ' 
where in the present case the gij's correspond to the metric 

coefficients appearing in (7, 72), A Thus we obtain: 

p5 = 1(r - m)
2
t"P, (7.74) 

k r + m 

g00 = (r + m)(A2;:,2/) , (7.75) 
r - m 



and 

. rA+2P) 
= (r + m )\ '2.f P , 

r - m/ 

gi;j = 0 if i /. ;j • 
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(7.76) 

The line element corresponding to the above g .. •s has 
l.J 

the form 
ds2 

+ (r2 - m2)a.n2} • 

(7.77) 
In order to put (7.77) into the isotropic form used by 

Brans we shall make the following transformations: 

t = t; r = B(r + B) ; Q = B; E. =f ; m = 2B ; 
B ~ 

D = A • A - 2 = -2 , - - ' - -?.. f',P f-P I'- ;l 

where B, D and A are constants. 

The above transformations yield: 

(r - m) =(r - B)2 , 
r+m r+B 

'2. 
r2 - m2 = B2(Ii + i) , 
dr

2 
= B2(B - 1)2 

dr
2 

~ B ' r 
A - 2P = - 1 

2,-,.p ?: 
and A+ 2p = n + 1 • 

2,MP ,\. .a. 
Inserting equations (7.79)-(7.82) into (7.74) 

gives us 

and 2 ds 

where 

= -(r + 
f' -

~o = 1 • 
k 

(7.78) 

(7.79) 

(7.80) 

(7.81) 

(7.82) 

and (7.77) 

(7.83a) 
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The functions appearing in (7.83a) and (7.83b) are just 

those which appear in Brans' s "physical" vacuum solution, (51• 

We shall return to this solution in section 9. 

The only task remaining before us is to confirm that 

the range of ?.. in terms of D agrees with the range determined 

by Brans. To accomplish this we shall examine our definitions 

off, A, Dand ). . From these definitions we have 

/A2 = 1 +(8'l1'k) A
2 

72 
(7.84) 

and 

~=~(~+~) • (7.85) 

The second of the above expressions may be rewritten as follows: 

f = 2;\ • 
D + 2 

(7.86) 

From the last expression appearing in (7.78) we see that 

A = 2p(l - µ) , 
:X 

and thus (7.84) 

f-2 

can be rewritten in the form 

(7.87) 

If we now make use of equations (7.60) and (7.86) we find that 

(7.87).becomes 
2 · 2 .X = (D + 1) - D(l - l,JD) • 

2 
(7.88) 

For ~.and the components of our metric tensor to be 

finite and real?. roust be non-zero and real. Therefore we 

must demand that 
).2 = (D + 1)2 . - D(l - wD) >0 , 

2 
which agrees with Brans. 

(7.89) 

In section 9 we shall see that Brans has found exactly 

four static sph~rically symmetric solutions of equations 
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(7.3) and (7.4) corresponding to the isotropic line element 

ds2 ~ -e2ctc2dt2 + eZ1(dr2 + r 2d92 + r 2sin29dt2 ), 

where o( and /3 are functions of r. We have just seen how to 

obtain the first of Brans's four solutions. However, at 

present, we are not sure whether the above procedure can 

be used to generate the·remaining three. 
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8. The Weak Field Approximation40 

This section is devoted to finding an approximate 

solution the the Brans-Dicke field equations; viz., 

Rij - 1_2gijR = 8'11' T .. + w ()6, .)6,. - 1_2gijJ6,kJ6'k) + 
i6c4 J.J ~ i J 

+ 1()61 .. - g. -Oi6) , ¢ J.J J.J 
(8.1) 

and 

D J6 = 8'11'T 
(2w + 3)c4 

• (8.2) 

We shall find this approximate solution to be of great value. 

when we attempt to identify the constants which appear in 

the exact solutions to the above system of equations. It 

will also be convenient to have a weak field solution available 

when we begin our study of the scalar field i6 in the next 

section. 

·we begin by assuming that gij and i6 may be approximated 

as follows: 41 

and 

where the 

l\oo = 

(8.3) 

(8.4) 

t\ .. 's are the components of the Minkowski tensor; viz. , 
J.J 

...:1 , 1\ 11 = l\22 = ~ 3 = 1 and l'\ij = 0 if i/ j.(8.5) 

Our task is now to determine the constant )6
0 

, along with the 

functions hij and ~, which we· assume to be of class c2 • 

In the calculations which follow it will be assumed that 

40The material used in this section is based on a paper 
by C.Brans and R.H.Dicke (41. 

41The functions hijgiven in equation (8.3) should not 
confused with the functions hc<jl introduced in equation (7.9), 
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all quantities which are not linear in hij and} are negligible 

compared with h. . and ?. ; 
1J T 

e.g., terms like 

hi hkl ' }, i y, jk ' hijhkp,mn and j hij , 

will be neglected in this approximation. As a result of 

this assumption it is easily seen that 

and 
gij = ~j - rfk ~~km 

1 = 1 c1 - r) .. 
-;r Po ~ 

' 
(8.6) 

(8.7) 

The first equation to be considered is the scalar wave 

equation (8.2). Upon expanding the left hand side of that 

equation we find 

0¢ = (gij'ipj''j + gij,0'ij) + -v-g,i 
y'-g 
. ij d 

In the above expression we may replace g 'i"', j 
k. . ik j 

-Cg Jr:i + g rik)95, j • 

by 

However, 

see that 

f":
1
~J. contains terms of the form g . and thus we pm,J 

gij'i¢'j is of second order and may be dropped from 

Op, . Similarly, since 

y::g,i 
y'-g 

ijd 
g "''j = 

the last term appearing on the right hand side of (8.8) may 

be neglected, leaving us with 

0¢ ~ gij¢'ij • (8.9) 

Due to equation (8.6) we find -t;;hat our expression for 0¢ 

becomes 
095:::::; 'V2'§ - 1 d2

~ 

· ~ dt2 ' 
where 'y 2 is the Laplacian operator for a three dimensional 

flat space. Consequently under our present approximation 



(8.2) assumes the following form: 

"tJ
2f - 1 ~ = - 8'1'fT • 

~ dt (2w+ 3)c4 

A retarded time "solution'' to {8.10) is given 

f = - 2 fgkqTkg (r', t - ~ Ir - ~· I ) d3x, , 
(2w+3)c4 · 

1 
...... ,

1 r- r V . 

BO 

(8.10) 

by42 

(8.11) 

where r denotes a position vector to the field point of 

observation, and r' is a vector whose end point denotes the 

source points. The integral appearing in (8.11) is performed 

over the spatial volume Vin which Tis different from zero, 

and this volume is generally a function of time. 

It should be noted that at present the intergral appearing 

on the right hand side of (8.11) cannot be evaluated. This 

is so because the integrand involves gkq and hence contains 

the unknown functions hij• Now we know that Tkq is independent 

of $if , and consequently can be a first order quantity only if 

it contains hkq• If such were the case we could set 
kq ,..., kq 

g Tkq,..., f\ Tkq • 

However, is would still be impossible (in general) to evaluate 

the integral appearing in (8.11) because Tkq would still 

involve the unknown hij's, Consequently (8.11) should not 

be regarded as a solution to (8.2) but rather as an integral 

equation. Later in this sectic;,n it will be shown that for 

a special choice of Tkq the integral equation (8,11) can 

be solved quite simply, 

42we are using a retarded time solution because we do 
not plan to investigate the problem of radiative reactions; 
i.e., we are not interested in the behaviour of the scalar 
field in the immediate vicinity of the source. For a study 
of radiative reaction in electromagnetic theory see[24]. 
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We shall now rewrite equation (8.1) in accordance with 

our present approximation. To begin let us examine Rij which· 

is defined by 

rk rk m rk m r:k R. . = . . k - . k . + r. . ' ·mk - r. k . • J.J J.J' J. 'J J.J J. mJ 
(8.12) 

The last two terms appearing in the above expression involve 

a product of the derivatives of gij• Thus these terms are 

of second order and hence may be neglected. In order to 

complete our rewriting of (8.12) it will be necessary to 

examine the form assumed by the derivatives of the Christoffel 

symbols in our approximation. 

and 

Using (8.3) and (8.6) we .. . k 
r.q. = t\9. (h.k . 

J.J 2 J. 'J 

easily find that 

+ h "k . - h .. k) ' J ,i J.J, 

consequently ri\,q and ri\,j are given by 

r q = 11. qkc 
ij ,q t<l\ hik,jq 

ri\,j = 12 ~kchik,qj 

+ hjk,iq - hij,kq) ' 

+ hkq,ij - hiq,kj) • 

(8.12a) 

From the above expressions we find that, in our approxi­

mation, the Ricci tensor is given by 

R .. = -~k(hk .·. + hi.J",kq - h. k" - h.k. ) ' J.J 2 q,J.J iq, J J ,iq 

and as a consequence of (8.6) the curvature invariant R assumes 

the followi,ng form 

R = -~j\\Slk(lik · .. + h .. k - hi·q,kJ" - h.k. ). 2 q,J.J J.J, q J ,iq 

Combining these two equations v'1e find, as usual, the lineari·zed 

Einstein tensor to be 

GiJ" = RiJ" - ~giJ.R = -12{ h' .. + !\.kq(h h J.J ij,kq - iq,kj + 

) 
1, mn ,L ( kq kq mn 

- hjk,iq - 12 1'\j_jh'mnl'\ - r<'\_j h'kql\: - I'\'. f\ hmq,kn + 

- n:cqr{nnh ) (8.13) 
kn,mq ' 
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where 

h = l\kqh 
kq • 

(8.13) may be rewritten in a simpler form if we intro-

duce two new quantities rij ' 
and a;_ ' 

defined by 

yij = hij - /2~j h (8.14) 
and "k "k 

(Ji = Y, • k~ = h .. k 1t - 12h,i • (8.15) 
l.J ' l.J' 

Using (8.14) and (8.15) we find that (8.13) may be rewritten 

as follows: 

Gij = -12(D'tij - <ri,j - ~,i + l'\ij~,ql\kq).(8.16) 

Now that we have linerarized the Einstein tensor let 

us devote our attention to the right hand side of equation 

(8.1). The first thing we observe is that the term 

~(¢,i¢'j - /2gijgkq~'k¢,q) 
s6 

is second order in Y•i and thus may be neglected. The 

remaining terms on the right hand side of equation (8.1) 

may be written as follows: 

1 {'·, .. - n .. ol.J + 811' (1 - ·t )T ..• i?: T 1.J . \iJ T --4 i?: 1 J 
o ¢

0
c . o 

(8.17) 

In obtaining (8.17) we made use of equation (8.7). 

At this point Brans and Dicke choose to drop 

- 8'1T~Tij (8.18) 
~4 

PO C 

from consideration. This would be permissible if we knew 

that this term was of second or higher order. However, at 

present we have no grounds for believing that this is the 

case. Furthermore, later in this section we shall choose 

Tij to be of zeroth order and consequently it is impossible for 

us to neglect (8.18) at this stage. 
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If we now equate (8.16) to (8.17) we obtain the linearized 

field equations governing h .. ; viz,, 
l.J 

-Jl\{orij - cr;_,j - ~,i + l\ijcrk,ql\kq} = 

= 1 fl·, .. - r\· .01-} + -~ r l.J l.J r 
0 

811'(1 - i )Tij • 
~ ~ 

(8.19) 

At this point we shall find it useful to impose a 

coordinate condition. In order to mo.ti vate our particular 

choice of a coordinatB condition we shall make use of the 

results of section 6, Recall that in that section the con­

formal transformation 
(8.20) 

made it possible for us to obtain solutions to the Brans­

Dicke field equations from solutions to the Einstein field 

equations, At that time we wrote the Einstein field equations 

in terms of the barred metric tensor and the Brans-Dicke 

field equations were written in terms of the unbarred metric, 

Now when working with the Einstein field equations it is 

frequently found convenient to impose the following coordinate 

condition 
(8.21) 

which is u~ually referred to as the harmonic coordinate 

condition. Thus the most natural coordinate condition to 

impose when dealing with the Brans-Dicke field equations 
' 

would be (8,21) written in terms of the unbarred metric. 

Let us now use (8.20) to rewrite (8.21) in terms of the 

unbarred metric. 

From Eisenhart ((10), page 89) we find that under (8,20) 

.-
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the barred Christoffel symbols transform as follows: 

~&!(lnki),i - ~gijgqm(lnki),q. 
(8.22) 

Thus we see that in terms of the unbarred metric the harmonic 

coordinate condition, (8.21), becomes 

~{gjkrjk - gqm(lnkJ!$),q} = 0. (8.23) 

We shall now proceed to re,'l:II'i te the above expression in 

accordance with our present approximation. 

Using equation (8.12a) we find that 

gjkr~k ~ 1t. ljkhmp(h. k . h h ) J µ \ ., JP, + kp,j - jk,p • (8.24) 

By combining equation (8.6) with (8.7) we find 

gpm(lnki) ,i':< .rfm~ • 

0 

(8.25) 

Upon inserting (8.24) and 

~ l'\jk'\mp (h . 

(8.25) into (8.23) we obtain 

Jp,k ) · pm f 
+ hkp,j - hjk,p - t\ 7:" = 0 , 

. 0 

which after multiplying through by~mi becomes 

"k 
hi (8.27) I\J h .. k - ~h'i = • J1, 
7; 

Due to equation (8.15) the above expression may be written 

as follows: 
er, = ~'i (8.28) l. 

' ?;" 
which is precisely the coordinate condition exployed by 

Brans and Dicke. We shall henceforth assume that our coor­

dinates have been chosen so as to be compatible with (8.28). 

Returning now to equation (8.19) we find that our 

coordinate condition (8.28) permits us to rewrite that 



85 

expression as follows: 

+ 8'!1' (1 
-4-
c ~o 

- i)T ..• (8.29) 'i: l.;:J 
0 

This expression assumes a simpler appearance if we let 

Using (8.30) we find that (8.29) becomes 

OoCij = - 16'11'(1 - ~ )T ..• 
q:-;- 'i: l.;:J 
C ~O 0 

(8.30) 

(8.31) 

A'Tormal retarded time solution"(c.f. footnote, 42) to 

the above partial differential equation is given by 

C{ •• = 4 jl1 -~<r', t - !1r-r•1)}T· .(r', t-11r-r'l)d3x' 
l.;:J -;-,:j: l C l.J C • 

~oc V o Ir- r'I 
(8.32) 

We refer to this solution as a "formal solution" because 

(c.f. remarks following equation (8.11)) the functions which 

appear within the integrand on the right hand side of (8.32) 

have not as yet been determined. However, we shall show that 

(8.32) can be used to obtain an integral equation for hij• 

We begin by showing that hij may be expressed in terms 

of c(ij and ~. From (8.30) we know that 

~ij = hij - ~\_jh - nijf:. 
0 

Upon multiplying this equation by \ij we obtain 

<X=-h-~' 
0 

where we have set 

(8.33) 

(8.34) 

(8.35) 
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If we solve (8.34) for hand insert that result into (8.33) 

we find that 
hij = o(ij - ~l\ijo( - l\ij"k • 

0 

(8.36) 

Combining equation (8.32) with our definition of~ 

gives us 

cl. = ~J{l - }}!\ijTij d3x, , 
p C O 1- .... ,1 o V r- r . 

(8.37) 

where it is to be understood that all quantities appearing 

within the above integrand are evaluated at the retarded 

time (the same convention applies to the integrals given 

below). 

Thus equations (8.11), (8.32), (8.36) and (8.37) permit 

us to conclude that in our approximation hij satisfies the 

following integral equation: 

h
1
.J. = 4 j< 1 - ~ )T .. d3x' - 2(\ .. j<1- i )l\kqTk d3x, + 

--4 t:: J.J ~ pJ: g 
p C v· 0 \-> .... ,, 7'+ 0 ,... -,1 o r - r "'oc V r - r 

+ 21\i;i J(l'\kq - l'\kil'\qjh .. )T d3x, , (8.38) ------4r. J.J kq 
Po(2w+ 3)c V lr - 1•1 .. 

where the function~ is governed by 

l = - 2 1(1\kq - !\kit\qjhi .)Tk d3x, • (8.11) 
'f '( ) 4 - ~ 

2 w + 3 c v Ir - r' I 

In general the coupled system of integral equations 

represented by (8.11) and (8.38) is quite complicated. However, 

we shall only be interested in solving this system when 

Tkq corresponds to the energy momentum tensor of a static 

point mass l'l situated at the origin of our coordinate system. 

In this case it is quite simple to determine a solution 
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for ~o, f and hij which is·in accordance with our approxima­

tion. We shall regard the resultant solution as our weak 

.field solution, 

We begin by assuming that the energy momentum tensor 

Tjk corresponding to a static point mass Mat the origin 

may be represented by 

{

Mc2 ti(r) i.f j=k=O, 
T.k = . 

J O, otherwise , 
(8.39) 

where o(r) is the three dimensional Dirac delta .function. 

Upon inserting (8,39) into (8.11) we find that~ is 

given by 

j = - 2 41( fO -
(2w+ 3)c V 

which due to (8,5) becomes 

f = 2M J1 
(2w + 3)c2 

V 

+ h 00 (1r- r'I)) &(r') d3x, 

Ir - r'I 
Upon performing the above integration we .find that 

f = 2 M {! + h00(r) l , 
(2w + 3)c2 r r J 

where 
r = lrl . 

.(8.40) 

(8.41) 

(8.42) 

Now recall that in our approximation ~ h00 and (h00) 2 

are considsred to be negligible in comparison with ~ and h00 • 

Thus we may use (8,41) to conclude that 
h00(r) ~o , 

r 
and hence in our approximation? is given by 

~ = • 

(8.43) 

(8.44) 

Using (8,39) and (8.44) we find that our integral 
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Upon evaluating the above integrals we find that hij is 

given by: 

4M {l 
~oc2 

+ 

which due to (8.43) may be rewritten as follows: 

h .. = 4M { ti? f:R + '\· . f 1 + W) } + 
1J ~ c2r i J 1J 2w + 3) . 

o 2 0 0 
- 4 M (2oi 6j + %_j) • 

~: c
4

(2w + 3)r2 

(8.46) 

(8.47) 

Since hoo has been shown to be a higher order term we can 

use 
r 

(8.47) to conclude that 

- 4 M
2 {20? 1R + '1· ·} 2 4 2 1 J l.J 

~o c (2w+ 3)r 

is also of higher order and hence can be discarded from the 

above Thus we find that hij is given by 

+ '1ij (lw! ~)} · (8.48) 

It is now a, trivial task to show that when Tjk is given 
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by (8.39) then in our approximation¢ and gij are given by: 

p = ¢
0 

+ 2 M , 

(2w + 3)c2r 
(8.49) 

= -1 + (8.50) 

= 1 + (8.51) 

and 
g .. = o if i I j • J.J (8,52) 

It should now be noted that in the limit as wgoes to 

infinity equations (8.49)-(8.52) go over to the corresponding 

weak field solution of the linearized Einstein field equations~3 

provided we set the gravitational coupling constant, k, 
1 equal to -:z • 

. "'0 
Thus we shall henceforth regard¢ as being 

0 . 
the 

reciprocal of the conventional gravitational constant. 

We shall now list the assumptions which have been made 

in order to obtain the cbove weak field solution to equations 

(8.1) and (8.2): 

(i) The me.tric tensor gij and the scalar field ¢ can be 

approximated by 

gij = t\ij + hij ' (8.3) 
and 

¢ ¢0 + ~ (8.4) = ' 
where ¢

0 
is a constant, hij and f are functions of class c2, 

and 1\ij is the Minkowski tensor • 
• 

(ii) All quantities which are not linear in hij and f can 

be regarded as negligible in comparison with hij and f • 
(iii) The coordinates can be chosen so that 

"k I\J (h . . k - )fu "k . ) = ;,, . • JJ., J ,i 'f J. 

Ta 
(8.27) 

4-3The Einstein weak field solutions can be found in 
[ 1), page 24-2. 
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and 
' (iv) The energy momentum tensor corresponding to a static 

point mass M situated at the origin can be represented by 

Tjk = . {Mc2 6 (r) if j = k = 0 , 
0 , otherwise , 

(8.39) 

where b(r) is the three dimensional Dirac delta function. 



9. ~ Boundary Condition Governing the Scalar Field¢ 

in the Region Outside a Static Spherically Symmetric Mass 

Shell44 
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The purpose of this section is to examine the behaviour 

of the scalar field¢ in the region outside a static spher­

ically symmetric mass shell. Our mass shell will be located 

between r = R1 and r = R2 , where R1 <R2 , and at the center 

of this mass shell we shall place a small mass m. The following 

picture depicts a crossection of the physical situation we 

have in mind. 

Figure 1 

By analyzing the above example we shall obtain a boundary 

condition for¢ which is valid in the region outside of 

(i.e., for r>R2 ) our spherically symmetric static mass shell. 

For convenience we shall denote the three regions of 

interest in figure 1 as follows: 

I = { r: o:;;;r<R1} 
' (9.1) 

II = {r: R1 :S" r::::R2} , (9.2) 
and 

{r: R2 <r} III = • (9.3) 

We shall also denote differentiation with respect tor 

by a prime. 

44The material in this section is based on a paper 
by C. Brans, [5]. · 
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To begin we make three assumptions: 

(i) In region I, II and III the line element assumes the 

following isotropic form: 

ds2 = -e2cl.c2dt2 + e21-l(dr2 + r 2d(,i + r 2 sin29 df'2 ) , (9.4) 

where~ and /3 are functions of rand are of class c2 in 

regions I, II and III. 

(ii) The functions c,.,,1.3and th~· seal~ .f.ie],p. ~: are of class 

c1 across the boundarys separating region I from region II, 

and region II from region III. 

(iii) Region II makes no contribution to the gravitational 

field within region I, and the gravitational field in region I 

can be approximated by our weak field solution. 

Due to the above assumptions we may use our weak field 

solution, equations (8.49)-(8.52), (which is, valid in region I) 

to obtain the sign of ol 1
, /j1

, Ff' and Ff at r = R1 • From 

equations (8.49)-(8.51) we find that in region I e2
~, e

2
/3, 

and 95 are given by: 

e2cJ. = 1 - 2A 
' r 

where 
• 

k= 1 )-0 

~ 
' A 

and 

l R: )«i. 

95 = 1( 1 + 
k 

m>O, G =k(2w+4), 0 2w+ 3 

A ) ; 
r(w+ 2) 

(9.5) 

From (9.5) we readily obtain the following expressions for 

o( 1
, 131

, 95' and o<' + /31
: 

(9.6) 
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i 

r 

and 

/J' = -1 /_A(w+ 1)) , 
(1 + ~A(~: ~))~2(W+ 2) 

,5' = -2m 
' 

.t' + 
13

, = (2km ) 1 (1 + 4(w+ l)A) 
c2r2 (2w+ 3) r 

(1- 2A)(l + 2ew+ 1
5
A) 

r w+ 2 r 

• 
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(9.7) 

(9.8) 

(9.9) 

Brans states that equations (9,5)-e.9) "justify the 

assumption that at r = R1 the following inequalities are 

valid," 

p5>0, o1.1 ~0, 13• ~o, (2w+ 3),5'~0 and (2w+ 3)(o<' +;3')?: O 
(9.10) 

However, the validity of these inequalities cannot 

be accepted unconditionally,· For it is easily seen that 

when 
-2< (,J <-1'2 

the value of c1,..1 at r = R1 is.negative, while when 

-}2<w<-l 

the value of ;3' at r= R1 is positive, 

In order to assure the validity of the inequalities 

presented in equation (9,10) it is sufficient to assume that 

\w\>2, (9.11) 

In a future section it will be shown that w must be greater 

than 5 if the Brans-Dicke theory is to correspond reasonably 

well with the general relativistic e:>..'J)eriments performed 

to date. This fact is used by Brans to justify the imposition 

of (9,11) on purely physical grounds. 

Following Brans let us choose the energy momentum tensor 
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T.j for region II to be a diagonal fluid type matter tensor 
1 

in which all components are functions only of rand are such 

that 
and i 

T=T-<0. 
1 -

An example of such a matter tensor is 

(9.12) 

T11 = T2 
2 

= T33 = P , To O = - e , Ti j = 0 for i/j , 

where P=P(r) is the pressure and e=e (r )_ is the energy 

density. In this exru~ple we see that assumption (9.12) is 

equivalent to requiring that the pressures and densities be 

non-negative, and that the sum of the pressures in all three 

directions does not exceed the energy density. 

We shall now establish that the condition that 91 

vanish anywhere in region III is not consistent with (9.11) 

and (9,12) when the signs of~·, /.l', 91' and 91 at R1 are 

determined by (9.10). In order to establish this result 

it will be necessary to use the explicit functional form of 

the Brans-Dicke field equations (4.16) and (4.36). Under 

our· present assumptions the Brans-Dicke field equations 

are 
. · 45 

given by: 

(t-J' )2 + 2o<'f-l' + ~(-<' +13') - f + 4l: - ~(~)2 

= 8'1i e2/J(Ti- T ) , 

c491 2C,J+ 3 

= 8 'l'r 

c4 91 
) ' 

(9.13) 

(9.14) 

45In Brans'.s paper [5J the first field equation (9,13) 
is written incorrectly. The error occurs in the fifth term 
on the left hand side which in [5) is written as ~ , 

instead of~· 
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c(II + /JII + (ol1)2 + (o(I; ,31) - d.f - fr+ ~(@i-)2 

and 

= 81T e2/.3(T
3

3 - T ) , 
c4p 2w+ 3 

2p" + (fJ' )2 + 4~' - ~ + ~(f )2 

= 8tr e2J-3(To O - T ) , 
c4p 2{..J+ 3 

p" + ~ + (o(' + /3' )p' 
r 

= 8'11' e~ T 
? 2w+3 

(9.15) 

(9.16) 

• (9.17) 

The vanishing of the divergence of the energy momentum 

tensor leads to 

(Tl1 )• + d..'(Tl1- Too)+ (p'+!)(2Ti1- T22 -T33)=0.(9.18) 
r 

As written equations (9.13)-(9.18) apply to region II. 

To obtain the field equations which are valid in region III 

we must set T. ;j = 0 , thereby ovtaining the Brans-Dicke vacuum 
l. 

field equations corresponding to the isotropic line element 

(9.4). Brans (6] has solved this problem; i.e., Brans has 

found all the exact vacuum solutions to the system of equations 

(9.13)-(9.18). These solutions are summarized below. 

(l)** 

(9.19) 

Brans implicitly assumes in [5] that solution (1) is 
valid only for wz.-:j • However, it is easily seen that for all 

. 2 
real values of w real values of D can be found such that 
(D + Ji - D(l - ~wD)> 0. We shall choose to consider solution (1) 
for w>-~, for in this case sol~tion (1) is valid for arbitrary 

real values of n. 
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(3) 

(4) 
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o( = c;( + ~ Tan-l(n)·, 0 

/3 = 4 - 2(D; 1) Tan-l(~) - ln( r2 ) ' . r2 + B2 (9.20) 

~ = /50 exp(~ Tan-\i)) , 

"2 = D(l-wD)-(D+l)2 > 0 
' f,J <-~-2. . 

d. = «>{0 - i ,/3 =/30 - 2_1~)+ (D+l)(~), } 

(9.21) 

-~ = ~0 exp(-n;), D = -1 :1:::/;-2w-3 ,w<:-~2 • 
t,.J +. 2 

o( = <1,. - 1 , /-3 = /3
0 

+ (D + 1) , 
0 Br Br 

D = -1 ± (-2(..)- 3)~ , 
w+2 

(9.22) 

In each ,of these four solutions c,t
0 

, /-6 , ~o , and B are 

·arbi traryconstants, and D is a constant whose range is governed 

by w. 

It should immediately be noted that solution (1) has 

already.beep. obtained in S$Ction 7, and that solutions (2)­

(4) are the three other solutions previously referred to. 

The derivation of all four of these solutions will be found 

in the appendix to this thesis (page 15~. 

The solutions (1) through (4), given above, are math­

ematically valid solutions to the Brans-Dicke field equations 

in region III, corresponding to our isotropic line element 

(9.4). By examining the behaviour of the scalar field,~. 

in region III we shall show that solution (1) is the most 

physically acceptable of the four solutions. 
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Let us begin by demanding that i vanish somewhere in 

region III. This demand will be satisfied if either 
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(i) p --+ 0 as r ~ o0 , 

or 

(9.23a) 

(ii) p "-+ 0 as r ~ a ,where R2 < a (/o0). (9.23b) 

We shall now proceed to consider each of the above cases 

in turn. 

Case (i). p ~ 0 as r ~ o0 • (9.23a) 

Of Brans's four vacuum solutions only the third could 

be compatible with the present demand on i. Solution (3) 

will be valid provided 

2w+ 3 < 0. (9.24) 

The implications of equation (9.24) are quite far reaching. 

to see this let us examine the field equation governing p 

in region II. 

When in region II the scalar field i satisfies the 

following field equation: 

DP = 8'11'T 
(2w+ 3)c4 ' (9.25) 

where 
Op = (-g)-'2((-g)'2gijp,i)'j • 

Since we are assuming that the line element in region I~ 

is of the form (9,4) we easily find that Op may be written 

as follows: 

Thus equation (9~25) becomes 

d ((-g) 12e-9'3$6 1 ) = 
dr 

8Tf(-g)'2T 
(2w+ 3)c4 ' (9.26) 



where according to our previous assumptions 

T=T(r). 

Equation (9.26) may be immediately integrated to yield 

(-g)~e-21-3,s• = 8'11' Jr (-g(p))~T(p)dp + 
(2CJ+ 3)c4 

Rl 
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+ Q ' (9.27) 

where Q is an integration constant and r lies in region II. 

To determine Q we set r = R1 obtaining 

Thus equation (9.27) may be written 

(2w+ 3)(-g(r))~exp(-5'8(r)),S 1 (r) = 

(9.28) 

= -§'ff-I (-g(p)JfT(p)dp + (2w+ 3)(-g(RJ?)~exp(-2f3(R_i_)).¢' 1 (R_i_). 

C R1 ' . ( 9, 29) . 

According to our assumption (9.12), T<O , and con­

sequently the integrand appearing in (9.29) is negative, 

implying that in region II 

(2w+ 3)(-g(r))~exp(-'1"3(r)),S 1 (r) 

< (2w+ 3)(-g(R1 ))~exp(-2j.3(R1 ))¢' 1 (R1 ) • (9.30) 

Since (-g(~))~exp(-2j.3(r)) is a positive quantity (9.30) may 

be rewritten as follows: 

(2w+'3)¢' 1 (r)i (2w+ 3)¢' 1 (R_i_,)(-g(R1 ))~exp(-~(R1 ) + q'J(r)) • 

(-g(r))% (9.31) 

From ( 9 .10) we know that when r = R1 
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which when combined with (9.31) implies that 

(2w+ 3);5' (r) < 0 , (9.32) 

for all r in region II. 

Now we have previously seen that when working in region 

III the demand that s6---;,,- 0 as r --+ o0 implies that 2w+ 3 < a. 

If we combine this fact with equations (9.11) ·Md (9.32) we 

can conclude that 

;J 1 (r)2:o, (9.33) 

when in region II. However, equation (9.10) tells us that 

;5(11_) > 0 • (9.34) 

Combining this with (9.33) permits us to conclude that 

(9.35) 

In the present case the scalar field in region III 

is given by 
;5 = ;5 exp(-Dr) • 

o 1f 
(9.36) 

Now if ;5 is to vanish as r --;"oO D must be positive. 
B 

Due to equation (9.35) we can say that ;5
0 

must be positive 

and consequently 
;5' = -D,5 exp(-Dr) , 

TI 0 1f 
(9.37) 

is negativ~ throughout region III. In particular, ;5'(R2 ) 

is negative which contradicts (9.33). 

Thus we see that the demand that ;5 ~ 0 as r --r oo 

is incompatible with our assumptions (9.10), (9.11) and 

(9.12). So rather than revise thesea:ssumptions we shall 

assert that the ·demand that ;5---+ 0 as r ---+oo is physically 

unreasonable. 
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Case (ii). t5 ~ 0 as r--r a, R2< a (foo). (9.23b) 

We shall now examine the possibility that t5 vanish at 

some point r = a(f~) lying in region III. In this case 

solution (1) is the only possible vacuum solution we may 

consider, and it will be valid provided 

(D+l)2 -D(l-wD) :;,o. 
2 

(9.38) 

It will always be possible to determine real values of D 

which are compatible with (9.38) provided 

> .3, w - -,,2· 

However, since we are assuming thatlwl>2 we shall confine 

our considerations of solution (1) to 

w >2 • (9.39) 

Consequently we may use equation (9.32) to conclude that 

throughout region II 

f5'(r)<O. (9.40) 

From equation (9.10) we know that 

,5(R1 )) 0 , 

so it now appears that t5 may possibly vanish somewhere out­

side of r = R1 • However, it will be shown that provided t5 

remains uositive in region II the vanishing of f5 outside 

the shell contradicts atleast one of our assumptions (9,10) 1 

(9,11) and (9.12). In order to establish this result we 

shall examine the restrictions imposed upon the signs of 

d.1 , 13', /6' and ()(.1 +;31 at r= R2 by (9.10), (9.12) and the 

field equations (9,13)-(9.18) which govern region II., 
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' We begin by adding (9,13) 

p {z, + z2 + 2f} = (p" + f) 

where we have set 

to (9,14) to obtain 

+ 811' (Tll + T2 2)e2;3 + 7 . 

z = d.' + 1.3' • 
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(9,41) 

(9,42) 

Using equation (9,17) to replace the last term on the right 

hand side of (9,41) we find that the above expression may 

be written as follows: 

z I + z2 + ,2& 
r 

- ~. (9.43) 

Since we are assuming that s6 is positive in region II 

we may use (9,40) to conclude that in the present case 

-£:?: 0 ' (9.44) 
r. 

throughout region II. Upon combining (9,44) with our assump-

tion (9,12) we can deduce that the right hand side of equation 

(9,43) is non-negative, Thus whenever z vanishes at some 

point in region II z' is non-negative at that point and 

consequently z cannot decrease from positive to negative 
• 

values, Since equations (9,39) and (9,10) imply that 

(9.45) 

we may conclude that z is non-negative throughout region II. 

We shall now turn our attention to equation ( 9 .16.) 

which may be written as follows: 

x' + 2rx + i + ~ = e2(3 fs'lr T0 o - 81YT 
c. ~ 2/?" [c4 (2w+ 3)c4 

+ 

+ e-2f3cs6'z -~)} ' (9,46) 
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where 

X = /3' ; (9.47) 

Due to our previous assumptions and the results we have 

established with regard to ¢ 1 and z we can conclude that the 

right hand side of (9 ,46) is non-positive throughoui:; '..region II. 

Thus whenever x vanishes at some point in region II, x• is non­

positive at that point, and consequen.tly x cannot increase 

from negative to positive values. From equation (9.10) we 

f'ind that 
x(R1 ) = /J' (R1 ) < 0 , 

and consequently /,:1 is non-positive throughout region II, 

As an immediate consequence of' the above results we 

may conclude that in the present case. 

d.' > 0 

throughout region II. 

To recapitulate we have shown that in the present case 

¢' < 0 - , 
oe:' > 0 - ' 
;31 i 0 

and 

cl + 13' > 0 
• throughout region II. 

(9,40) 

(9.48) 

(9.49) 

(9.50) 

We shall now examine whether solution 01) is compatible 

with equations (9.39), (9.40) and (9,48)-(9,50). 

For solution (1) we find that¢ is given by 

¢ 
3r;i.. 

= ¢ (r - ~) , o r+ B 
(9,51) 

where 

i = (D + 1)2 - D(l - wD) > 0 , (9,52) 
2 
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and ~o is a non-zero constant. From (9,51) it is obvious 

that~ will vanish in region III on only the following two 

occasions: 

(i) B>R2 and i>o; 

(ii) IBl>R2 , B<O and i <0. 

Conditions (i) ·and (ii) may be written in the following 

abridged form 
R2 <1BI and 

We shall presently show that 

equations (9,39), (9.40) and 

BD ~O, (9,53) 
,\ 

(9,53) is inconsistent with 

(9.48)-(9,50). 

To begin we may use equation (9,51) to find 

' ~' = ~ 0 ;Q (r - B) 2B , 
;I. r + B (r2 _ B2) . 

(9.54) 

and thus f is given by 

(9.55) i'_ = 2BD 
7 )..(r2- B2) 

• 

The values of cl. and /3 corresponding to solution (1) 

are given by: 

cJ. = o< + 1. ln(r- B) , (9,56) 
o ;I. r+ B 

/3 ~j.30 + 2ln(r+B) 2lnr +(:t-~-l)ln(~:~) .(9,57) 

Thus we find that «' and /3' are given by 

o(' = 
' 

(9.58a) 

and 

;3' = 2 - 2 + ( ;\- D - 1) 2B 
r + B r ).. r2 _ B2 

• (9,58b) 

Due to equation (9,58a) we see that (9,55) may be 
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rewritten as follows: 

Do(' • (9.59) 

Since we are assuming that ,5>0 in region II we may use equation 

(9.40) to conclude that 

< 0. 

Due to equation (9.48) we find that 

t:1...' (R2 ) > 0 • 

(9.60) 

(9.61) 

Thus by combining equations (9.59)-(9.61) we may conclude that 

D.< 0. 

Upon inserting this result into (9.53) we find that 

.:§<0, 
A. 

if pJ is to vanish in region III. 

Equation (9.50) can be used to tell us that 

0 :5 o<' (R2 ) + /3' (R2 ) • 

(9.62) 

(9,63) 

(9.64) 

Thus by adding equation (9.58a) to (9.58b) we find that when 

r= R2 

O< 2BD 

which may be rewritten as followst 

(1- D) B > B 
:X (R

2
)2 _ B2 - R2 (R2 + B) 

In order for Band A to satisfy equation 

must have either: 

(a) B>O and ;:l.<O, 
or 
(b) B < 0 and A'> 0 • 

' 

• (9.65) 

(9.63) we 

We shall now proceed to examine each of these cases separately. 
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When Band A satisfy (a) we find that (9.65) becomes 

. (1 - ~)R2 1_ BL ~ > 0 • 

Upon applying (9.53) to (9.66) we may concl~de that 

1-D <0 , 
~ 

or 

(9.66) 

(9.67) 

We shall now assume that B and A satisfy condition (b). 

Using (9.53) we can deduce that 
R2 +B<O, 

and consequently (9.65) ~educes to 

(1- Q) 1 > .1.. > .0 (9.68) 
.,\. R

2
-B-R2 • 

Since B < 0, R2 - B will be positive and hence the above 

expression implies that 

1-Q>l- B • 
?.. - R2 

Using (9.69) we may conclude that 

I!< L < -1' 
;1.-R 

2 

which in turn implies that 

D2 > A.2• 

(9.69). 

(9.70) 

(9.71) 

In summary we see that for both cases (a) and (b) 

D2> )...2 • 

Now A2 is defined by 

>,.2 = n2 + wD2 + D + 1 , 
2 

and consequently we may use (9.71) to conclude that 

0 > )26lD
2 + D + 1 • (9.72) 

Equation (9.72) implies that the range of real D corresponds 



106 

to the following three intervals: 

(i) -1 - (1- 2w)~ < D < -1 + (1 - 2w)~ , when O<w<~ ; 
w w 

(ii) D<-1, whenw= O; 
and 
(iii) D< -1 + (1- 2w)~ , or 

w 
-1- (1- 2w)~ < D , when w<O. 

w 
Thus a real value of D compatible with equation (9.72) can 

always be found provided 

w<~• (9.73) 

However, it was shown earlier that in ord.er for the function 

p, corresponding to solution (1), to vanish in region III 

and also be compatible with assumption (9.11) w must be. 

greater than 2. Consequently (9.73) is inconsistent with 

our previous work. 

Thus we see that the following five assumptions imply 

that in the vacuum surrounding a static spherically symmetric 

mass shell the scalar field¢ cannot vanish. 

(i) In regions I, II and III the line element assumes the 

following isotropic form:. 

ds2 = -e2<:tc2dt2 + e2~(dr2 + r 2d92 + r 2sin2Qd1: 2 ) , 

with ~,/3 and the scalar field¢ being functions of r which 

are of class c2 in regions I, II and III, 

(ii) The functions~. )3 and¢ are of class c1 across the 

boundarys separating region I from region II and region II 

from region III. 

(iii) Region II makes no contribution to the gravitational 

field in region I, and the gravitational field in region I 

can be approximated by our weak field solution. 
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(iv)lwl>2. 

(v) In region II the matter tensor T.a is diagonal, i> O, 
l. 

i T .. > 0 and T. < 0 • 
l.J - l. -

Thus we may conclude that in the vacuum surrounding our 

static spherically symmetric mass shell the scalar field i 

will always be greater than some positive constant N. We 

shall henceforth take this to be the boundary condition 

satisfied by~ in region III. 

Our boundary condition on~ eliminates the third of 

Brans's four vacuum solutions (provided we assume.that the 

scalar field ~ must remain fiii.i te as r ~ oo ) • In order to 

reduce the choice even further we have to resort to Brans's 

interpretation of the gravitational "constant." Out of such 

a study Brans [51 has shown that w must be greater than -2 

if the Brans-Dicke theory is to conform with Brans's inter­

pretation of Nach's pr:i,nciple. We shall not discuss how 

Brans has obtained this result, but we shallaisume that it 

is valid. Consequently ( due to our assumption that lwb 2) 

we can disregard solutions on the grounds that they are 

physically µnacceptable if they are only valid for values of 

w~2, For this reason 1-;e may dismiss solutions (2) and (4) 

as being physically unacceptable. 46 Thus we see that solution 
' 

(1) is the only static spherically symmetric vacuum solution 

of the four presented by Brans which is compatible with our 

demand on 6.J and which is such that it can have its arbitrary 

46It should be noted that solution (3) could also be 
eliminated on these grounds, 
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constants chosen to be compatible with our boundary _condition 

on¢. We shall henceforth choose to call solution (1) the 

"physical" vacuum solution to the Brans-Dicke field equations 

corresponding to the isotropic line element-(9.4). 
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10. Further Properties of Brana's "Physical" Vacuum Solution47 

Recall that in the previous section it was shown that 

the most physically acceptable of Brana's four static vacuum 

solutions, corresponding to a spherically symmetric particle 

at rest at the origin was given by the isotropic line element 

ds2 
= -e2o{c2dt2 + e~(dr2 + r 2d92 + r 2sin2Qd6 2 ) , (10.1) 

where 

(10.2) 

(10.3) 

(10.4) 

and 

(10.5) 

We i,;hall now proceed to identify the constants appearing in 

the above solution. After doir:gso the resultant line element 

will then be written in non-isotropic form and compared with 

the Schwarzschild non-isotropic line element. 

To determine the constants ct A d Band D appearing o' o'"'o' 
in equations (10.2)-(10.5) we shall compare these expressions • 
with our weak field solutions (8.49)-(8.51). In order to 

perform this comparison it will be necessary to expand the 
• 

above expressions for e2
C( , e2f.3 and ¢ in Maclaurin series 

expansions. To begin let us write e2°', e2/3 and¢ in the 

47The material found in this section is b&sed upon 
H. Nariai I s paper, reference [2:l). 



following form: 

e2cl. = 

e2f3 = 

and 
p = 

where 

\ 
e

2
do(l - ~} ' l+x 

2('-- D - 11: 
e213o(l+x)4(i-x) · A 

l+x 

-~ 
110 (1-x) A 

l+x 

X= ~ • 
r 

110 

(10.6) 

' 
(10.7) 

(10.8) 

Using a Maclaurin series to expand equations (10.6)-(10.8) 

we find that to first order in x 

and· 

and 

where 

2~ 2<t,., e ~ e- -,1 - 4x) , 
,: 

eq-3~ e~l + 4(D + l)x) , 
~ 

p ~ f6 (1 - 2Dx) • 
. 0 ~ 

From our weak field approximation we have 

e2cl"' 1 _ 2MG
0 

' "' 
rc2 

e2/.3~ 1 + 2MGo(l +w) 
~2+w ' 

f6~ 1 1 + o , ( MG ) 
k rc2 (w + 2) 

G0 = k(2w+ 4) , 
2w+ .3 • 

(10.9) 

:(.10.10) 

(10.11) 

(10.12) 

(10.13) 

(10.14) 

and M denotes the mass of the source of our gravitational 

field. 

Recall that by examining equations (8.50)-(8,52) in 

the limit as w ~ cD the constant f6 
0 

, appearing in our 
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weak field solution, was shown to be the reciprocal.of the 

Newtonian gravitational constant, k. However, this does not 

imply that the· (locally measured) gravitational constant in 

the Brans-Dicke theory is 1 • In fact it has been sho~m by 
. Po 

Brans in (5] that G
0 

represents the (locally measured) grav-

itational constant in the vacuum surrounding our mass M. 

One should note that in the limit as w~ o0, G ~ k = 1 . 
0 7-:: 

0 

Upon comparing (10.9), (10.10) and (10.11) with (10.12), 

(10.13) and (10.14) we can thus make the following identifi­

cations:. 

and 

' 

(D+l)B ·~/2 MG
0 

fw+l) 
?- 7 w+2; 

C 

• 

If we now divide (10.17) by (10.16) we find 

D+ 1~ w+ 1 
w+2 

which implies that 

(10.15) 

(10.16) 

(10.17) 

D~ -1 • (10,18) 
W+ 2 

Equations (10,5) and (10.18) permit us to conclude that 

?.. ~ ( 2w + 3Y2, • 
2W+ 4) • 

Subsituting (10.19) into (10.16) gives us 

MGo(2w+ 31 • 
2c2 2w+ 4) 

(10.19) 

(10.20) 

In summary we have found that the constants appearing 
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in (10.2)-(10.5) are given by 

. 0 J l ~ 
olo~l-10~ ; "'o ~ k ; D::=' w+ 2 

and 

Using the above results we find that the line element 

corresponding to Brans's "physical" vacuum solution is 

given by 

where 

and 

ds
2 

= -~
2
q(r)c2dt2 + (1 + ~)4f2Q(r)(dr2 + r 2dcf) , (10.21) 

r. 

q =(2w+ 4y'l , 
. 2w+ ;J 

Q = (g - l) (g + 2) 
q 

~(r) = r- B 
r+B 

, 

, 

(10.22) 

(10.23) 

(10.24) 

(10.25) 

The associated scalar field p may be written in the form 

where 

~ = 1 ~P(r) , (10.26) 
k i 

p = -2(92 - 1) • 
q 

(10.27) 

In pa~sing we note that in general~ will have to be 

strictly positive (i.e., r 2> B2) for the line element {10.21) 

and the scalar field (10.26) to be real. 

In section 8 it was shown that in the limit as w goes 

to infinity the Brans-Dicke weak field solutions (8.49)­

(8.51) assume the form of the Einstein weak field solutions 

provided we set ~o = ~. Simailarly we note that in the 

limit as w goes to infinity (or equivalently as q goes to 1) 
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the line element given in (10.21) reduces to the isotropic 

form of the Schwarzschild line element; viz., 

[

1- kM 2 

ds2 
= - ~ 

kM . l+:::T 
. 2c r 

, (10.28) 

and the scalar field given in (10.26) becomes~. One should 

note that if kM>O then the line element (10.28) has only 

one singular point, viz., r = 0 • 

For the purposes of comparison with the non-isotropic 

Schwarzschild metric of general relativity, namely, 

ds2 
= -(1- 2kM)c2d'l;2 + dr2 

+ r 2 (d92 
+ sin2~de2 ) , (10.29) 

c
2r (1- ~~) 

we wish to express the isotropic form.of Brans's line element 

(10.21) in the form 

ds2 = - ev'(r)c2d:i;2 + eA(r)dr2 + r 2 (d~2 + sin2~d£°2). (10.30) 

In order to rewrite (10.21) in the form of (10.30) we 

shall perform the following coordinate transformation: 

t = 'I; , (10.31) 

(1 + ~)4r2~2Q(r) -2 (10.32) = r 
' r 

Q = ~ ' 
(10.33) 

and 
E = € • (10.34) 

To assist in rewriting (10. 21) in terms of the barred co- . 

ordinates we shall use 

(10.35) 

where 
(10.36) 
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Due to the fact that our line element (10.21) is diagonal 

we can use (10.35) to conclude that: 

and 

Since 

ev(:r) 
gij = o if i I j , 

= goo 
2 

= goo(!;) 

e;\(r) 2 = gll = g11(!;) 

g22 = g22(:;1 

g33 
2 

= g33(:~; 

dt = dQ = dE: = 1 , 
d'E d~ df 

' 

' 

' 

• 

(10.37) 

(10.38) 

(10.39) 

. (10.40) 

(1U41) 

(10.42) 

we can use equations (10.21), (10.32), (10.38), (10.40) 

and (10,41) to conclude that 

ev'Cr) = gooCr) = ~2q(r) 
' and 

- - -2 
g22 = g33 = r ' 

Using equation (10,39) we find that 

-~A(r) ( )-~d-
e = gll 2:: ' 

dr 

which due to equation (10.21) may be rewritten 
dr 

e-~A(r) = cir _ __;:::;.=... __ _ 

(1 + ~)2~ Q (r) 
r, 

• 

From (10.32) we find 

(10.43) 

(10.44) 

(10.45) 

as follows: 

(10.46) 

dr=2(r - B)(Q- l){B(Q - 1) + B2} + 
dr r+'B r 2 r 

(1 + ~)
2(r - B)Q , 

r r+ B 

which can be written in the form 

dr =(r- B)(Q- l)Jl + B2 + 
dr r + B I r2 

(10.47) 
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Upon inserting (10.47) into (10.46) we find after simpli-

fication that 

e-~A(r) = r- B + 
r+B 

2BQr , 
(r - B)2 

(10.48) 

Making use of our definition of ; , (10.24), we find that 

the above expression may be rewritten as follows: 

e-~:>-(r) = ~ + ~(1? §2) . (10.49) 

To summarize we now have our original Brans-Dicke vacuum 

line element (10.21) in the form 

ds2 e./(r) 2d,.,2 :l(r)d-2 =- c "+e r 

where e-~~ is given by (10,49) 

(10.43) 
and 

r = 2G0M(~) • 
~1-§ 

(10,50) 

This last expression for r can easily be obtained from 

equations (10.24) and (10,32). Associated with the above 

line element is our scalar field p which in the present case 

is given by 

\'/here 

p = ;b ~p ' 
k 

· (10,51) 

P = -2(9 2 -1) , (10.27) 
q 

Clearly equations (10,43), (10.49), (10.50) and (10051) 

can also be obtained directly by solving the Brans-Dicke free 

space field equations (which are obtained from equations 

(4.16) and (4,36) by setting Tij = 0 and T= 0 respectively) 

for a line element of the form (10,30), Henceforth we shall 
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work solely with the new form of our line element (10.30). 

It should be noted that in the limit as q goes to 1 

the line element (10,30) obviously goes over to the Schwarz­

schild non-isotropic line element given in equation (10.29)~ 

The usual non-isotropic form of the Schwarzschild line 

element is given by (10.29); viz., 

·-

d~
2 

= - (1- 2kM) c
2
dt2 

+ dr2 . + r 2 (d92 + sin2Qd€'2 ) • (10.29) 

c
2
r (i -~~~) . 

At r= Rg = 2kM , (10.29) experiences a singularity, and when 
7 

r<Rg (10.29) can no longer be interpreted in the same sense 

as it was when r>Rg. This results from the fact that as r 

passes through Rg from above the signature of (10.29) changes 

from (-1, 1, 1, 1) to (+1, -1, ·1, 1). (One should note that 

the the signature of the isotropic Schwarzschild line element 

(10.28) never changes, even though g00 goes to zero for r = kM.) 

2c2 

For the non-isotropic form of the Brans-Dicke vacuum 

line element 

we must have 

(10. 30) to experience a singularity at r = Rs 

. -12" 12v1 -e1. ther e ~ 0 or e ~ o0 as r ~ Rs • We 

shall now examine each of these possibilities in turn. 

If e-]2';1,~ Oas r~ Rs then from (10.49) we see that 

(10.52) 

where Q is given by equation (10.23), It will now be shown 

that (10.52) is not valid. To see this it will be necessary 

to rewrite_ Q in terms ofW. Using equations (10.22) 
Q'=2 
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and (10.23) we find that 

_2 (~ + 1) + (2w+ 4) ~ 
= lv+ 3 2w+ 3 . 

_2 (w + 1)- (2W+ 4)1:\ (10.53) 

2W+ 3 2W+ 3 

Since we are dealing with Brans's "physical" vacuum 

solution we know from our previous experience that it is a 

valid solution · when W'> ~~. However, to be consistent 

with the assumption thatlw\)2, which was made in section 9, 

we shall examine equation (10.53) forG..>>2. In this case it 

is apparent that 

(10.54) 

Combining the above result with equations (10.52) and 

(10.50) permits us to conclude-that~ and hence Rs will be 

complex except when Q = O. However, the case .. Q = 0 
Q:::z Q:::z 

corresponds to the limiting case w = oo. Now as previously 

mentioned when w-+ oo (10. 30) becomes the non-isotropic 

Schwarzschild line element (10.29) and consequently we expect 

(10.30) to experience a singularity for Rs= 2kM. 

7 
In summary we have shown that for finite values of w > 2 

th . t · . - h" h -~;l. ere exis s no positive real value of r for w ic e ~ o. 
We shall now examine the possibility that e~v1-+ oo 

. 
as r...+ Rs for W> 2. Using equations (10.22) and (10.23) 

it is easily seen that when w> 2, Q and q lie in the following 

intervals 
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and 

[ 1' (8!7'f)' 
respectively, Now sine e e:)2v-' = J, q we see that ~:)2v-'-+ 00 

as r-+ Rs if and only if f-+ 00 • However, from (10,50) 

we see that~ --;, oo implies that Rs= 0, Since we have been 

working under the implicit presupposition that there is a 

singularity in the metric at the. origin we can conclude that 

e:)2v'-+ oo as r--;, Rs leads to no new singularities, 

Thus we have shown that for finite values ofW>2 the 

only singularity in the non-isotropic Brans-Dicke line 

element (10.30) occurs at the origin. 
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11. Equations of l'iotion in ~ Brans-Dicke Theory 

In this section we shall study the geodesics corresponding 

to the "most physically acceptable" of Brans's four vacuum 

solutions. It should be recalled that this solution has 

been identified with the gravitational field outside a 

spherically symmetric static particle of mass M which is 

at rest at the origin. The line element corresponding to 

this solution is given by48 

\oJhere 

and 

ds2 = -e2clc2dt2 + e2f.3(dr2 + r 2 (d92 + sin29d¢'2 )) , (11.1) 

~ ·r 2c:l. 1 - -e = __ r , 

l+~ . r 

1 ·rQ e 2/3 = [l + ~]4 : : i ' 
q = (2w+ 41~ 

2w+ 3 ' 
Q = ~g-12~g+22 ' q 

B = MG
0 

' 2c2q 

(11.2) 

(11.3) 

(11.4) 

(11. 5) 

(11.6a) 

2 G = k q • 
0 

(11.6b) 

Recall that' G
0 

, and !!Q! k, represents the 0.ocally measured) 

gravitational constant (throughout the vacuum surrounding 

a single mass) in the Brans-Dicke theory of gravitation 

(c.f. remarks following equation0.0.14).) 

It is well known (e.g., R.Adler, M.Bazin and 

Jli. Schiffer, (1]) that the non-null geodesics corresponding 

48·:rhroughout this section ¢' will be used to denote the 
azimuthal angle and not the scalar field. 
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to an isotropic line element of the form (11.1) are identical 

to the Euler-Lagrange equations corresponding to the single 

particle Lagrangian 

L2 = -e2~c2t/ + e2fa(r2+ r 2 ( r;/ + sin29 ¢2)) , (11.7) 

where a dot is used to denote differentiation with respect 

to the arc lengths. In writing (11,7) it has been assumed 

that the mass of the corresponding particle is constant, 

and thus does not appear in L2 since its presence would add 

nothing to the equations of motion. 

The Euler-Lagrange equations corresponding to the 

Lagrangian (11,7) are 

d dL2 

ds o:x:i 
= 0. (11.8) 

These differential equations are to be solved for the un­

known coordinates, xi= xi(s). We shall now proceed to deter­

mine the functional form of the Euler-Lagrange equations 

corresponding to L2 • 

and 

For the O, or t coordinate we have 
:::-L2 · 2 20C: • 
o = -2c e t, 
dt; 

oL2 
= 0. 

c)t 

Thus in this case (11,8) takes on the form 
2C(. 

£_(e t) =·0 • 
ds 

For the 1, or r coordinate we find 

oL2 = 2e2f3r , 
ar 

(11,9) 
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and 
?A 2 ?A•2 

2~ e'-rr + 2r(l + r~ ) e'-fJQ + 

The above two expressions yield the following Euler-Lagrange 

equation for r: 

d (e2.f3r) = -
ds 

2cl. 2•2 2/3.2 ?A '2 
~ e c t + d/3 e r + re'-f-(1 + r M ) Q + 
dr cir dr 

and 

+ re2f.3(1 + r .M )sin2Q p52 • 
dr 

For the 2, or Q coordinate we obtain 

oL2 = 2r2e2fJQ , 
dQ 

2 2 ?A •2 dL = 2r e'-fJsinQcosQ p • 
ag 

Thus the Euler-Lagrange 

d (r2 e 2/Jg) = 
ds 

equation for Q is 
2 2f3 •2 r e sinQcosQ f6 , 

Lastly, for the 3 or p coordinate we have 

oL2 = 2r2e2.f3sin29 ¢ , 
d~ 

and 

So we find ihe Euler-Lagrange equation for p to be 

(11.10) 

(11.11) 

d (r2e2/3sin29 p5) = 0, (11.12) 
ds 

We shall now show that all of the above Euler-Lagrange 

equations may be integrated atleast once without appealing 

to the explicit functional form of cJ. and /3. 

To begin let us orientate the axes of our coordinate 

system so that when s = 0 our particle lies in the plane g = 11' 
~ 

l 
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• 
with Q = 0 • In this case we can use equation (11.11) to con-

clude that when s = 0 

(11.13) 

and hence 
Q = 0 • (11.14) 

We shall now assume that Q(s) admits a Maclaurin series 

expansion; i.e., 
00 

Q(s) = z (11.15) 
n=O 

The expansion coefficients 

' 
(11.16) 

may easily be determined by successively differentiating 

equation (11.11) with respect to s. Due to (11.14) and our 

choice of coordinates we find that our process of successive 

differentiation yields 

dn~ I = o , 
ds s=O 

(11.17) 

for all n~ 1 • Thus we may use equations · (11.15) and (11.17) 

to conclude that 

for all s~d. 

Upon inserting (11.18) into (11.12) we obtain 

§;_(r2e2f3;,) = O , 
ds 

which may be immediately integrated to yield 

where his a constant. 

(11.18) 

(11.19) 
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Equation (11.9) may also be integrated to give. 
2d• e t = d, (11.20) 

where dis a constant, 

Since we are presently dealing with the non-null geodesics 

of (11,1) we can use (11.1) tp pbtain the following first 

integral of (11.10) : 

(11.21) 

Making use of (11.18), (11.19) and (11.20) we find that 

(11.21) may be written 

(11.22) 

In summary we have the following first integrals of 

our Euler-Lagrange equations: 

Q = 'I'( 

' 
(11.18) 

~ 

if = h 
' (11.23) 

r2e2/3 

• de-2ol (11.24) t = ' and 2d2 -2cl. 2fJ·2 h2 -2/3 1 = -c e + e r + e , (11.22) 
7 

We shall now concentrate upon rewriting (11.22). To 

begin let ~s assume that 

<rbus we have 

r = r(¢'(s)) • 

dr = r'p 
ds ' 

(11.25) 

where a prime denotes differentiation with respect to¢'. 

Using (11.23) we find that (11.25) may be written ,, 
• (11.26) . 
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From (11.26) we find that (11.22) can be written in the form 

1 = -c2d2e-2
c( + e-21\r• )2h2 + h2e-2/3 • (11.27) 

r4 r2 
Let us now perform the usual change of variables by 

setting 
u = 1 • (11.28) 

r 
This gives us 

r 1 = -1 U I• 

~ 
(11.29) 

Upon combining (11,28) with (11.29) we find that (11.27) 

becomes 
(11.30) 

It is now formally possible to solve (11.30) to obtain 

¢ = ¢(u). This can be seen from the fact that (11.30) may 

be written in the form 

(
du)2 = e2f3 + e2 (/J - ol.)c2d2 
c& h2 --~--

2 
- u • (11.31) 

However, we shall be interested in treating the problem of 

perihelion rotation and consequently we shall need u = u(¢) , 

In order to proceed further it will be necessary for us 

to differentiate (11.30) with respect to¢, However, before 

taking the desired derivative we shall multiply (11,30) by 

e
2ci., and thus upon differentiating the resultant expression 

we obtain an equation independent of the constant d, Upon 

carrying out the above two operations 1·1e find 

u'dc!. = u'u 11 h2e-2f:I + h2u•(u'•)2 (dcl. - sl&)e-2/3 + 
du du du 

+ u 1 h2(dcl. - d8)u2e-2f3 + h2u•ue-2f-3, 
du du 

One obvious solution of (11,32) is simply 

u' = 0, 

(11.32) 

(11,33) 
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which yields 
r = constant , "(11.34) 

i.e., circular motion. If u' / 0 then (11. 32) becomes 

e2f>dr:J. = h2 (u" + u) + h2 (dc1. - M)(u' ) 2 + 
du du du 

+ h
2

(dcl - ga)u2
, 

du du 
which can be rewritten ·in the form 

(11.35) 

u" + u = .1_e2f.ldo1. + (d/3 - dr:J.)((u;) 2 +u2 ) • (11.36) 
h2 du du du 

Equations (11.18), (11.23), (11.24) and (11.36) are 

our final equations governing the non-null geodesics of a 

general isotropic line element of the form (11.1). One 

should note that no approximations were used to obtain these 

expressions. 

We shall now write out the differential equations 

governing the non-null geodesics of the Brans-Dicke theory. 

In order to accomplish this it will be necessary to determine 

.M- do! and dt:J.e2/3 • 
du du du 

and 

From equations (11.2) and (11.3) 

d. = q {1n(l - Bu) - ln(l + Bu)} , 

we find 

(3 = 2ln(l + Bu) + Q{ln(l - Bu) - ln(l + Bu)} • 

Using the above E:xpressions we easily find 

dd. = -2gB 
' du 1 - B2u2 

and 
dl.3 = 
~ 

2B(l- Bu- Q) • 
du . 1- B2u2 

Upon subtracting (11.39) from (11.40) we find: 

M - d.;,, = 2B(l - Bu - ~ + g) • 
du du (l _ B2u ) 

(11.37) 

(11.38) 

(11.39) 

(11.40) 

(11.41) 
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If we now combine equation (11.3) with (11.39) we find 

e2f3dd = -2~B (1 + Bu) 4(1- Bu\2Q • (11.42) 
du l _ B u2 1 + Bu) 

Substituting (11.2), (11.3), (11.41) and (11.42) into 

(11.23), (11.24) and (11.36) gives us: 

u" + u 

¢ = hu2 (1 + Bu)-4 (1 + Bu\2Q , 
1- Bu/ 

t = d (1 + Bu}q , 
1- Bu/ 

= -¥1 + Bu)3(1- Bu\
2

Q + 
h (1 - Bu) 1 + Bu/ 

+ 2B(l-B~-~((u•)
2

+u
2
), 

. (1- B u ) 

respectively. 

(11.43) 

(11.44) 

(11.45) 

These are the exact differential equations which have 

to be satisfied by the "physical" non-null geodesics of the 

Brans-Dicke theory. '.le shall now use these geodesics dif­

ferential equations to treat the "classical" problems of 

perihelion rotation and light deflection. Equation (11.45) 

will suffice to handle the. former problem. For the latter 

problem we shall find it necessary to modify the above 

equations since they apply to the non-null geodesics whereas 

light is ESsumed to follow the null geodesics of our line 

element. 

Before proceeding to consider the above "classical" 

problems let us compare the non-null Brans-Dicke geodesic 

differential equations (ll.43)-(ll,Lf5) with the corresponding 

differential equations of Newton's and Einstein's theories 

of gravitation. 
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In Newtonian theory u and p are governed by ( c ._f. [1) , 

page 183) 

and 

u" + u = kM 

~ ' 

2 M = Hu , 
dt 

(11.46) 

(11.47) 

where His a constant. To begin we note that equations 

(11.45) and (11.46) are quite different. However, upon 

dividing (11.43) .by (11.44) we find that in the Brans-Dicke 

theory M = Q u2 (1 + Bu)-4 (1 + Bu~(Q - q) • 
dt d 1- Bu/ 

(11.48) 

Thus we see that if !Bu\«l , then equations (11,47) and (11.48) 

are quite similar. 

Using the results presented in chapter 6 of [11 we can 

show that the differential equations governing the geodesics 

of the isotropic Schwarzschild line element are: 

and 
u" + u = 

p5 = 

• t = 

-2G(l + Gu)3 
H2 (1- Gu) 

Hu2 
4 (1 + Gu) ' 

D(l + Gu)
2 

1- Gu ' 

+ 2G(2-Gu)((u•) 2 +u2), 
1- G2u2 

(11.49) 

(11.50) 

(11.51) 

where H, D and Gare constants. Upon comparing equations 

(11.43)-(11.45) with equations,(11.49)-(11.51) we find that 

the Brans-Dicke and Einstein expressions for p5 , t , and u 

are quite similar and in fact become identical (up to the 

choice of constants) when q= 1 and Q= 0 (i.e., whenw-+ oo). 
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We shall now proceed to use (11.45) to examine the 

problem of perihelion rotation. In order to treat this 

topic we shall find it necessary to replace (11.45) by an 

approximate differential equation. 

Assuming that 
IBul<l 

we may use a binomial series expansion to rewrite (11.45) 

as follows: 

where 

u" + u = -2~B(l + 3x) (1 + x) (1 - 2Qx)2 + 
h 

+ 2B(l - Q + q - x) ( (u' )2 + (u)2 ) + o(x2) , (11.52) 

x = Bu • (11.53) 

Upon multiplying out the terms appearing in. (11.52) we find 

u"+u = -2~(1+4(1-Q)x)_+2B(l-Q + q-x)((u•)2 +u2) + 

. h + O(x2 ) • . (11.54) 

From equation (11.5) we see that 

1-Q+q=g, 
q 

and consequently (11. 54) m_ay be written in the form 

u" + u = -2~(1 + 4(1- Q)x) + 2B(g- x) ( (u' ) 2 + u2 ) + O(x2). (11.55) 
h q 

Before we can proceed any further with (11.55) we have 
• 

to return to (11.19); viz., 

i, r2 e2f.3 = h , (11.19) 

in order to determine the value of the constant h. 

When dealing with the classical central force problem 

of Newtonian physics we find that 
2 Mr = H, 

dt 
(llo56) 
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where H den9tes twice the constant areal velocity of our 

particle. Using (11.56) we may rewrite (11.19) in the form 

h2 
= e o/3(?s)2 H2 • (11. 57) 

Upon multiplying equation (11.21) by (~)2 (recall that 

• 
Q = 'I'( and G = 0 ) we find 

~ 

'f 2« 2 
(~:) = -e C + • (11.58) 

In thea:>ove expression the term within the curly brackets 

denotes the square of the particles velocity as it moves 

along the geodesic. From (11.2) and (11.3) we see that 
2cl. 2(J for fairly large values of r , e and e are approximately 

1. Thus for slow moving particles we can use (11.58) to 

conclude that 
2 2 

(~!) ~ -c . ' 

and consequently (11.57) becomes 

h2~- H2 
' ~ 

(11.59) 

(11.60) 

where we have replaced e4/.3 by its limit as r goes to infinity. 

Equation (11.60) permits us to rewrite (11.55) in the 

form 
u" + u = 2gBc2 (1 + 4(1- Q)x) + 

H2 
2B(2- x)((u 1 

)
2 + u2) + O(x2). 

q (11.61) 

In order to further simplify this equation we shall 

dema11d that terms of order greater than first in ~ be 
C 

neglected. 

Since Bis given by 
B= MG 

0 

2c2q ' 
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we can keep terms proportional to c2B and c2B2 , but must 

neglect all other terms. Thus (11,61) becomes 

u" + u" 2gc2
B + 8gc2B2 (1 - Q)u + 4B( (u' )2 + u2 ) 

H2 H2 q" 
• (11.62) 

It is fairly apparent·that the first term on the right 

hand side of (11.62) dominates that ·side of the above 

differential equation, This is so because the other terms 

on the right hand side of (11.62) are of first order in~, 
2 

whereas 292B is of zeroth 
H 

d . l or er in 2 • 
C 

Consequently (11.62) 
C 

differs only slightly from the differential equation 

arises in the classical central force problem; viz,, 

u" + u " A , 

which 

where A is a constant. Hence we shall use a classical per­

turbation approach to s:;udy (11. 62). 

To begin let us set 

A " 2gc2B 
' 

(11.63) 
H2 

€ " 4B 
' 

(11.64) 
A q 

and 
8c2B2 

(: " • (11.65) 
H2 

Using (11,63)-(11,65) we may rewrite (11,62) in the form 

u"+u,,A+ Eq(l-Q)u + 1:((u 1 )
2 +u2). (11,66) 

A 

To obtain an approximate solution to (11,66) we shall 

assume a solution of the form 

U " U
0 

+ EV + 0(€ 2) , (11,67) 
Upon inserting (11,67) into (11.66) we obtain 

u0 "+Ev"+u
0

+E.v =A+ Eq(l-Q)u
0

+\((u
0

•)
2 +u

0
2 ) + 

+ O(E2), (11,68) 
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u "+u =A 0 0 • 
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(11.69) 

The general solution to this differential equation is 

u
0 

= A + K cos(¢ + 6) , 

where Kand dare constants. However, by a judicious choice 

of axes we may make o = O, and consequently our solution to 

(11.69) becomes 

u
0 

= A + K cos $6 • (11.70) 

It should immediately be noted that (11.70) is the equation 

of a conic section with one focus at the origin and 

eccentricity K • 
A 

If we now equate the first order terms in € which appear 

in (11.68) we obtain 

V 11 + V = q(l-Q)u + 1_((uo')2+uo2) • 
o A 

Due to (11.70) the above equation becomes 

(11.71) 

v"+v = {q(l-Q)A + ~2 +A}+ {2+q(l-Q)}Kcos$6. (11,72) 

The exact solution of (11.72) is easily found to be 

v = {q (1 - Q)A + ~ + A} ~ W cos$6 + 

+ K(2+~(1-Q))$6sin$6 , (11.73) 

where Wis a constant. Howeve~ since our zeroth order solution 

already contains a term proportional to cos $6 we can set W = o. 
So to 0(€2 ) we find that an q)proximate solution to 

(11,66) is given by 

U=A+Kcosi + E(q(l-Q)A+A+K2) + 
A 

+ e(2+q(l-Q))K$6sin$6. 
~ 

(11.74) 



132 

In order to put (11.74) into a more useful form we 

note that to first order in E 

cos(p - e(2 + q (1 - Q) )95)~ cos f6 + ~(2 + q (1- Q) )p sin 91 
~ ~ 

Using this (11.74) becomes 

• 

U= {A+€(~(1-Q)A+A+\=)} + Kcos(0-;(2+q(l-Q))p).(ll.75) 

Thus we see that our radial coordinate r = 1 "almost-" 
u 

traces out a conic section of eccentricity~ given by 

K 

A+ e.(q(l - Q)A +A+ K2) 
T 

• (11.76) 

However, just as in the corresponding case in general 

relativity, we find the appearance of a non-periodic term 

in the expression for u. 

Let us now assume that~ lies in the range (O,l), 

implying that our geodesic will have an elliptical appearance. 

This assumption permits us to consider the problem of 

perihelion rotation. 

The perihelion of a b_ound orbit occurs when r is at a 

minimum or, correspondingly, u is at a maximum. From (11,75) 

it is apparent that u attains its maximal value when 

~(1- e(2 + q(l- Q))) = 2'T'{n, 
~ 

(11,77) 

where n = 0, 1, 2,.. • • Using a binomial expansion we find that 

to first order in€ 

p5~2T1'n(l+E(2+q(l-Q))) • 
~ 

(11.78) 

Consequently the successive perihelia will be found to 

occur when 
AP = 2-rr( 1 + E(2 + q(l- Q))). 

~ 
(11.79) 
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Thus from the above expression it is obvious that the per-
• 

ihelion shift per revolution is 

f, p = 11' E (2 + q (1 - Q)) • 

Using (11.5) we find that (1- Q) is given by 

1- Q = 2- 92 
q 

and thus (11,80) becomes 

b~ = t!E.(4- q2 ). 

From (11,4) we obtain 
2 4-q = 8+6w • 

3 + 2t:..J 

' 

(11.80) 

(11,81) 

(11,82) 

Upon combining (11,6a), (11,65), (ll·.81) and (11,82) we 

find that the perihelion shift per revolution in the Brans­

Dicke theory, 6~BD , is given by 

M2G 2 
J~BD = 2't< o (3w+ 4) 

i2" c2 <.>+ 2 
• (11,83) 

· From conventional theory we know ( c, f, [ 1], page 187) 

that the 

and thus 

perihelion shift per revolution is 
3M2G 2 

0 
' 

(11,84) 

(11.8,5) 

which agrees with Brans and Dicke (c,f,[4], page 931), 

The observations made of the perihelion shift of Mercury's 
• orbit about the sun seem to be quite good. Thus the obser-

vations of Mercury can be used in conjunction with 6~E to 

determine a range for w. 

As of present the observed perihelion rotation of 

Mercury's geodesic (after subtracting planetary perturbations 
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and other effects presumed to be known)_is 42.6":t .9i• per 

century (c.f.(4], page 931). We shall now assume (as is done 

by Brans and Dicke in [4]) that the above result can be reduced 

by as much as 8%. The cause of such a reduction might be 

poor experimental technique or perhaps the discovery of 

other perturbation effects, such as a quadrupole moment of 

the sun. Thus one would desire the predicted value of the 

perihelion rotation of Mercury to fall in the range 

(38.4", 43. 5") per century. 

Now /,pE for the perihelion rotation of Mercury is 

(c.f .[1], page 187) 

ipE = 42.89" per century. (11.86) 

Thus if 
w~5 

we see that (11.85) gives us 

38.4" per century< (.2w+ 4)DPE <43.5" 
3w+ 6 

(11.87) 

per century. (11.88) 

Consequently we must choose w~5 if we desire the Brans-

Dicke theory to compare favorably with the perihelion rotation 

of Mercury. Brans and Dicke have not fixed their choice 

of w at any, specific value of w ~5 • However, if we choose 

a certain experiment to fix wthen we must stick to this 

choice of C.J when comparing the Brans-Dicke theory with 
• 

other experiments. 

We shall now consider the null geodesics of our line 
. 2 

element (11, l). In this case ds = 0 , and consequently we 

shall choose to parameterize the coordinates of our null 
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geodesics by an arbitrary parameter Y. The differential 

equations governing the null geodesics of (11.1) are the 

Euler-Lagrange equations corresponding to the following 

Lagrangian 

L02 = -e~c2(i~)2 + e2/3 {(~i)2 
+ r2 [(i~)

2
+ sin

2
G(~f]}, (11.89). 

Using our previous results we find that the Euler-Lagrange 

equations corresponding to (11.89) are: 

L(e2
°'dt) = o, 

dY dY 

L fe2f3dr) = - dJl(e
2

Clc
2
(dt)

2 
+ §Jle2(J(dr)

2
+ 

d)' ~ dt dr \.ax dr d( 

and 

(11.90) 

(11.91) 

(11.92) 

(11.93) 

We may obtain a fifth, non-independent, differential equation 

from (11.1) by setting ds2 
= 0. This differential equation is 

~e2t\c
2
(i~)

2 
+ e

2
1i~)2+ r

2
[(:)2+ sin2G(~l]} = o • (11.94) 

Reasoning similar to that used to obtain equations 
• 

(11.18), (11.22), (11.23) and (11.36) can be applied to 

equations (11,90)-(11,94) to give us: 

G = t1' 
~ ' 

(11,95) 

M = a u2 e-2/.l 
' 

(11.96) 
d'( 
dt = b e-2« 

' 
(11,97) 

dY 



and 

u" + u = (M -
du 

where a and bare 

do() ((u 1
)
2 +u

2
), 

du . 
constants, 

u = !. ' 
r 
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(11.98) 

and a prime is used to denote differentiation with respect to~. 

Equations (ll.95)~(11.98) represent the exact differential 

equations governing the null geodesics corresponding to an 

arbitrary line element of the form (11,1). 

Using equations (11.2), (11.3) and (11.41) we find that 

the exact differential equations governing the null geodesics 

of Brans I s "physical II vacuum solution are:. 

M = a u2 (1 + B~\2Q , 
dl' (l + Bu/~ 1- Bu/ 

(11,99) 

dt = b(l + Bu\2q , 
dY 1- Bu/ 

(11,100) 

and 
u"+u = 2B(l-Q+g - Bu)((u•) 2 +u2). 

1- B2u2 
(11.101) 

. As in our previous treatment of the non-null geodesics 

corresponding to (11.1) we shall replace (11.101) by an 

approximate differential equation. Using a binomial series 

expansion we find that to first order in~, (11,101) 
C 

becomes 
u"+u = 2B(l-Q+q)((u•)2 +u2). 

Using equation (11.5) it is easily shown that 
' 

1-Q+q=g 
q ' 

and consequently (11.102) may be written as follows: 

(11.102) 

u"+u = 4B((u•) 2 +u2 ) • (11,103) 
q 
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The differential equation corresponding to (11,103) 

in Einstein's theory of gravitation is 

u"+u = 4Bq((u•)2 +u2), (11,104) 

Thus we see that there is only a slight difference between 

equations (11,103) and (11,104), In the limit as G.>--+ oo 

q--+ l and hence in that case the two equations become 

identical, 

In order to obtain an approximate solution to (11,103) 

we shall make use of a perturbation approach, Such an 

approach will be permissible since the right hand side of 

(11,103) is of first order in~ while the left hand side 
C 

is of zeroth order in~, 
C 

To begin let us set 
E = 4B , 

q 
(11.105) 

Using (11.105) we may rewrite (11.103) as follows: 

u"+u = E((u•)2 +u2), (11,106) 

We shall assume that an approximate solution to (11.106) 

is given by 
(11.107) 

If we now repeat the procedure used to obtain an approx-
• imate solution to (11. 66) we find that to first order in€ 

u is given by 
(11,108) 

where r
0 

represents the distance of closest approach to the 

origin. Upon replacing u by~ we find 

1 = l cos s;1 + E. 

r ro ro2 

that 

• 

(11,108) becomes 

(11,109) 



r 

138 

The above expression is the equation of a conic section 
2r 2 

with eccentricity and latus rectum given by ro and o 
€ ~ 

respectively. Since E. is quitesmall in comparison to r
0 

(in most cases of interest) we shall have an eccentricity 

much greater than one. This implies that the trajectory of 

our light ray is virtually rectilinear and only "slightly" 

hyperbolic. 

To determine the asymptotes of (11.109) we let r go to 

infinity in that expression to obtain 

cos p = -E • 
. - (11.110) 

ro 

Since .; 
0 

is quite small we may conclude that the angles 

corresponding 

by setting 

to the asymptotes are close to± 11". 
2 

p=±'l1+~ 
2 

.we find that (11.110) becomes 

-sin(± tr)sin 6 = - .§.. , 
. 2 r

0 

which may be written 
+ sin6 = - ..s_ • 

ro 

Thus 

We expect f,. to be small, thus we may approximate sin o by c5 

in the above expression to obtain 

+ E. - - . (11.111) 
r, 

0 

Thus the asymptotes corresponding to equation (11.109) 

are given by 
p = 'Tl' + .§_ (11.112) 

'2 ro 
and p - ·l( - .§_ (11.113) = • 

'2 ro 
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The above pair of equations permits us to conclude 

that the total angular deflection, ABD, of our light ray 

from a straight line trajectory is 

(11.114) 

Upon combining equations (11.4), (11.6a), (11.105) and (11.114). 

we find that ABD is given by 

6-Bn ,;, 4MGo(2w+ 3) . 
~ 2W+4 

0 .. 

(11.115) 

The Schwarzschild solution to Einstein's vacuum field 

equations predicts that the angular deflection of light, .ti.E , 

in Einstein's theory of gravitation should approximately be 

L:!.E = 4MG0. (11.116) 

~ 
0 

Consequently we find that 

~BD 

which agrees with Brans 

=(2w+ 3) AE , 
2W+4 

and Dicke ( c, f, ~] , 

(11,117) 

page 931), 

As a result of (11,117) we see that for all finite 

values of W~5 , LlBD will always be less than ~ • 

Conclusion• 

Our analysis of the geodesics corresponding to Brans's 

"most physical" line element has shown that the parameter w 

can be chosen so as to bring the "classical" predictions of 

the Brans-Dicke theory into close agreement with the pre­

dictions of Eins.tein I s theory. However, we have seen that 
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for all finite values ofw(~5) the predictions of the 

Brans-Dicke theory, with regards to perihelion rotation and 

light deflection, will always be less than the corresponding 

predictions made by Einstein's theory. 

The "classical" tests of general relativistic theories 

performed to date do not have the precision necessary to 

choose between the Brans-Dicke and Einstein theories of 

gravitation. 49 In an attempt to choose between these two 

theories R.E.Morganstern and H.Y.Chiu [19] have devised a 

test of the Brans-Dicke theory. This test is based upon the 

radiation of scalar waves which, unlike pure gravitational 

waves, can be. radiated from a spherically symmetric, radially 

pulsating star. However, Morganstern and Chiu's experiment 

requires very precise observational techniques which, unfor­

tunately, have not as yet been developed. 

' 

49Recently the Pasadena Jet Propulsion Laboratory has 
succeeded in obtaining a fairly accurate measurement of the 
time of flight for a radio wave sent from the earth past the 
sun to a spacecraft near Mars. The results obtained in this 
e:>..-periment seem to favor Einstein's theory over Brans and 
Dicke's theory of gravitation, An account of this experi-
ment can be found in Time Magazine (November 23 1 1970, page 52), 



141 

12. The Geometrization £f. the Brans-Dicke Scalar Field50 

The Einstein theory of general relativity is said to 

have geometerized the gravitational field in the sense that 

all gravitational interactions can be described by the geometry 

of the space time rather than by field variables independent 

of the geometry. In this same sense it appears that the 

Brans-Dicke theory is not completely geometrical since grav­

itational phenomenon are described by both a scalar field /6 

and the components of the metric tensor. In this section 

we shall show that /6 is not independent of the gij's. 

In order to establish the relationship between /6 and 

the components of the metric tensor we confine our attention 

to source free regions of space, as is similarly done in the. 

geometrization of the electromagnetic fields in the Rainich, 

Misner and Wheeler theory. 

The vacuum field equations governing the metric potentials 

of the Brans-Dicke theory are given by equation 

~(.0,i.0'j - ~gij.0,k.0'k) + 
.0 

+ ~C.01ij - gijD/6) • 

(7 • .3); viz., 

(12.1) 

• Upon multiplying this equation through 

- R = - W(/6,k/6'k) + 

by gij we find 

~ 
When this expression for -Ris substituted into0.2.1) we obtain 

= w/6, . .(!5,. 
2 l. J 
.0 

+ 1 .0, .. 
"i? l.J 

• (12.2) 

50The material presented in this section is based upon 
a paper by P.C.Peters, [2_J]. 
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We shall now replace¢ by 

'I'= ln ¢ • 

From 0.2.3) we find: 

· (12.3) 

91- = ot + o/,k f,k , (12.4) 

and 
¢¢i,j = 'Yiij +t\i'llj • (12.5) 

The result of substituting 0.2.3), 0.2.4) and 0.2.5) into 

0.2. 2) is 
Rij = (w + i)fii'Yij + 'ltij + ~gij (o't' + fik'l''k). (12.6) 

The field equation for¢, (4.24), is given by 

D ¢ 1 tl,k¢'k + R = 0 • (12.6a) 
7 ~ ~ 

In terms of our new notation the above expression may be 

rewritten 
o'f+ ~f. '1.llk 

lk 1 + R = 0 • (12.7) 
2tJ 

Upon multiplying equation 0.2.6) by gij we obtain, 

R = (w+ 3)'t'1kflk + 30'r'. (12.8) 

If we now insert equation 0.2.8) into 0.2.7) we find that the 

field equation for¢ becomes 

(12.9) 

One should recall that in section 2 it was shown that 

the Euler-Lagrange tensor corresponding to¢ could be obtained 

from the divergence of the Euler-Lagrange tensor corresponding . 
to the gij's. In the present case this implies that a 

solution to 0.2.1) will also be a solution to 0.2.6a). Con­

sequently we may conclude that any solution to 0.2.6) will 

also satisfy ().2.9). 

We shall now assume that the field equa~ions for the 
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metric potentials, ~2.6), are satisfied and proceed to show 

that it is possible to solve for ~i in terms of geometrical 

quantities. 

To begin let us use ~2.6) to calculate 

kijm 
C Rij\m ' 

where ckijm is the Weyl conformal curvature tensor, and is 

defined as follows: 

where 

gk[m Rj}i + gi[j Rm)k + ~Rgk[j gniji 

(mj) = ~(mj- jm). 

, (12.10) 

The well known symmetry properties of the Weyl tensor are: 

i 
and ck ji = O •. 

Using (12.6) and (12.10) we find 

ckijmRijlm = ckijm { ( c.J + l) (fiim fij + '!ti tijm ) + fiijm + 

+ ~gij(ot' + 'Y1ktlk \m} • 

which simplifies to 

CkijmR _ 
ij\m - ( ) kijm,u l.lJ 

W + l. C T1im I ij 
kijm,u ( ) + C Tlijm • 12.11 

The last term in (12 •. 11) may be rewritten by using 

Ricci's identity in conjunction with the fact that't'lijm ='Yijim 

to obtain 
0kijmt,. . = 't;' RP .. 0kijm 

liJm IP Jim • 
(12.12) 

The first term on the right hand side of (12.11) may 

be simplified by considering ckijmR . . <l.l • From (12. 6) we find , ij ltm 
kijm w kij11w f,( )Ill '1.1 ( u1 -.11 .. Ak ·} 

C Rijl\m = C Ttm "(w+ 1 . 11i'fij + 1\ij + ~gij Di + llk1 --) ' 

which simplifies to 

ckijmR . . w = - ckijmlj{ '4.1. (12.13) 
ijltm limllJ • 

Inserting 0.2,12) and (12.13) into (12.11) gives us 

0kijmR __ r ) kijmw '1J p kijm ( 
ijlm - ,w+ 1 C 1imRij + r1PR jimc • 12.14) 



By exploiting a property of the Riemann curvature 

tensor we have 
0kijm(RP . . + RP. . + RP .. ) = 0 , 

J1m 1mJ mJ1 
which may be rewritten 

0kijmRp.. _ 
J1m 

Thus we obtain 

o. 

which permits us to write equation U2~4) in the form 
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ckijmR. . = -(w 1) ckijmR. ,'t: Jf'\:'. RP .. ckijm (12.15) 
1Jlm + 1J Im + IP iJm • 

From the definition of the Weyl tensor given in (12.10) 

we can express the Riemann tensor in terms of the conformal 

curvature tensor and the Ricci tensor. Doing so gives us 

Rpijm = cPijm - Jf(6~Rij - o~Rim) - Jf(gij~ - gimR~) + 

- !(6~gmi - 6~gij) • (12.16) 

expression we find Using the above 

0kijmRp .. 
1Jm 

= 0kijm0p_. _ Jf(CkijpR .. _ 0kipmR. ) 
1Jm 1J 1m ' 

which reduces to 

0kijmRp .. 
1Jm 

(12.17) 

This expression may be further simplified if we make use of 

the Bach[~) identity; viz., 

ckijmcp .. 
1Jm 

_ kp
0 0

ijmq - 6i- ijmq • (12.18) 

So we see that (12.17) may be written 

0kijmRp .. 
1Jm 

= kpc. . cijmq -6i- 1Jmq 
CkijpR .. ,(12.19) 

1J 
and thus (12.15) becomes 

0kijmR. . = lo/k O . . 0 ijmq 
· 1J\m 8 iJmq - (w+ 3)CkijpR. -~ · 

"2 1J \p • 

(12 .20) 
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When W= -~ equation (12.20) reduces to 

'l''k = sckijmR .. 
(12.21) l.j]lm 

' .. 
C. c 1 Jmq 

ijmq 

and thus we have found an expression for \\'1k in terms of 

gij and its derivatives, 

For the purpose of further considerations we shall 

assume that W / - ~ • With this assumption we find from 

equation (12.9) that 

't'1k'P'k + o'\J = o ' 
and thus equation (12.6) becomes 

Rij = (w + l)'Mi'l'lj + \J-lij • 

Equation (12.7) now tells us that 

(12.22) 

g = 'f,k'l'1k = -of. (12.23) 
w 

We shall use· (12.22) and (12.23) to express the second term 

on the right of equation (12. 20) in a form in which '+''p 

appears with the free index k. 

To accomplish this we shall first consider Ri(jlm) • 

Using (12.22) we find 

Rijlm = (W+ 1 ) ('\Jiim'Yij + 'tii'Pijm ) + i,ijm ' 
and 

I\im\j = (w+ 1) ('l-'tijfim + 'Kio/imj ) + 't(imj • 

Thus we have 

Ri[j\m] = ~(w + l) ('t(im <Jij - .'tfij'-l-/m) + J2('+11ijm -'1-limj) ' 

which simplifies to 

Ri[jlm)"' (w + l)'lfi[:n'rb] + ~'\(p RP ijm · 

:B'rom (12. 22) we find 

Ri[mfij] = ~(Rim'-Prj -Rijfim) = 'l{i[m'Yij) • 

(12.24) 

(12. 25) 
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Using (12.25) we find that (12.24) now assumes the following 

form 

Ri[jlm] = (w+ l)Ri[m'Pij] + ~o/lp RP ijm , 

which may be written 

'Pip RP ijm = 2Ri[jlm] - 2(w + 
0 

l)Ri(mli-ljJ • (12.26) 

Upon multiplying (12.26) by g1 m we find 

o/imRj = Rjlm - Rlj + (w+ l)(Rj'fllm- R'tjj) • 

From the Bianchi identity we have 

Rjlm = ~Rlj ' 

and so the above expression becomes 

'It R1:1 = ( w + 1) R '\i. + 1 R1 • mJ w J 2W J • (12.27) 

In order to take advantage of equations (12.26) and 

(12. 27) we must rewrite ckijpR .. IP, in a manner in which terms 
1J lp 

of the form ~PRpijm and \iRj appear. To accomplish this 

we shall make use of the Weyl tensor. 

Using the contravariant version of the Weyl tensor we 

find that we can write the second term appearing on the 

right hand side of (12.20) in the form 

ckijpR, .~J = RkijpR .. 'P, + ~(gkpRji 
1J Ip 1J Ip 

kj pi) llJ - g R R, . Tlj + 1J p 

+ ~(gijRpk _ gipRjk) R .. ~ + R(gkjgpi 
, 1J Ip 6 

kp ij) U) - g g R. · r11 • 1J p 

This expression simplifies to 

CldjpR .. 'P. = RkijpR .. lj) 
1J Ip 1J Ip 

- RkjRl?\\,l + 2RRki'tj. • 
J p 3 1 

( 12. 28) 

· Equations ( 12. 26) and ( 12, 27) permit us to rewrite the 

first, fourth and last terms on the right hand side of 
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equation (12.28) as : 

RkijpR. -~ =R .. (Rijlk - Rjkli) - (W+l)RjkRI. + 
l.J p l.J 2 w . J 

- ( W + 1)2 RRlk +{ (w+ l)R .. Rij - (w+ 1)3R2J-rk ; 
2 l.J 2 

2w w 
(12.29) 

1 RkjRlj + (w+ 1)2RSptk + (wJ) RR1k. (12.30) 
2w 1,)2 2 ' 

RkjR~'Y. = J IP 

2R2 (w+l)qJ1k + RR1k. (12.31). 
3 w ·:x;; 

and 
2RRki~. 
',' Ii = 

Upon inserting (12.29), (12.30) and (12.31) into (12.28) 

we find after a little algebra 

ckijpRij'l'lp = (w+~){RijRij - R2(w2 + 2W+ 'l3)}'t'1k + 

w2 
. . k k "k 

+ Rl.J (Ri .1 - R. 1 · ) - /. W+ 2)RJ RI. + 
J 1 J , 2w J 

- (w2 + 'l
3
w + 2) RRlk • (12. 32) 

2(J2 

Inserting (12,32) into (12,20) gives us 

'tlk = elk ' 
(12,33) 

where o(k 

(X.k 

is defined by . 

{ 
ijm ( 31 ) [ ij ( ) = ~ Ck Rijjm + W+ 12 R Rijlk - Rik\j + 

with 

- (w+ 2)RjkR1j - (w2 + "l3w + 2)RR1kl} , (12,34-a) 
, 2W 2 j 

2(.) 

- R2(w2 + 2(JJ + '73)] 

2J. . 
(12.34-b) 

From (12.6) we see that the geometrical equations 

which necessarily must be satisfied if the Brans-Dicke 

scalar field is present are 

Rij = (w+l)o(ici.j+o(ilj +)2gij(C(k\k+<:1.1t,k), (12.35a) 
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where ~k is given by equation (12,34a) and satisfies 

cl[ilj] = 0, (12,35b) 

Due to (12.35b) we may use (12,34a) to obtain '\I by 

employing the technique used by Misner and Wheeler (18) to 

obtain the complexion of -the electromagnetic field in their 

"already unified field theory." This procedure yield 

'I-'= Jo{i dxi • 

Since '\' = ln ¢ we have 

¢ = /5
0 

exp {a.dxi 
0 l. ' 

(12,36) 

where ¢
0 

is a constant which serves to indicate the value 

of pat some initial point. It is not possible to obtain 

the value of ¢
0 

from our original field equations (12,2) 

and (12,6a); since these equations ar~ invariant under a 

constant change in the scale of¢. One should note that 

since we desire ¢ to be determined by ct.i we must avoid those 

regions of space for which P, as given by (12,34b), is zero, 

We summarize the above results with the following 

Theorem 12,l: When the metric tensor of the Brans-Dicke ---
theory of f£:avitation is known throughout a matter free region 

of space and ~ such that cli , ~ given by equation (12. 34a), 

is~ de£ined throughout~ region then the scalar field 

¢ in the region under consideration is fii~ £Y 

where¢ is a constant. 
0 - -

¢ = ¢0 expf cti dxi ' 
0 

At this point we must emphasize that the above procedure 

can be used to o.btain the scalar field ¢ only when the gij I s 
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are known, However, we have not shown how to obtain the 

gij's; i.e., we have not given a system of equations which 

govern the gij's and which are independent of the scalar 

field p5, In this sense our geometrization of the scalar 

field falls short of the Rainich, Misner and Wheeler geo­

metrization of the electromagnetic field. 

The case W= - 1'2 is quite interesting in itself for 

reasons unrelated to the Brans-Dicke theory. To see this 

let us consider the form of the Ricci tensor when we perform 

the conformal transformation g .. = p5g .. , For a conformal ]. ;J l.;J 
transformation of the type 

we find 

Rl..; = R .. - 2(cr., .. - ~-<f.1-) - g .. (gkmO"ilkm + 20ilko-ik) 
u l.;J . l.;J ]. ;J l.;J 

when the dimension of the space is four. In our case 
20-p5 = e or 

Thus we obtain 

)2ln p5 = 'I' = er • 
~ 

Rij = Rij - ('!'iij - J2fii~j) - )2gij(O~+ ~'P1k) .(l2,37) 

If our original field equations(l2,6) are satisfied for 

w = - 1'2 we, find that (12, 37) reduces to 

Rij = 0, 

Consequently we see that a sol~tion to (12, 6) for w = -1'2 

can be used to obtain a solution to the Einstein vaccum 

field equations Rij = O. 

Now let us assume that we have a Riemannian V 4 , and we 

want to know if this space is conformal to another Riemannian 



space, V 4 , whose geometry ·is a solution of the Einstein 

vacuum field equations51 

Rij = 0. 
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To solve this problem we would construct dk for c..>= -~2 , 

which we shall denote by /.3k • Using equation ( 12. 34a) we 

find thatp k is given by 

I-\ = 
ijm 

SCk Rijlm 
c. . cijmq 

l.Jmq 

• 

One then constructs the following tensor from At , 
w ij = - ~/3iflj + l\1 j + ~gij < Pk 1k + .41.3k ) • 

( 12. 38) 

(12.39) 

If W ij equals the Ricci tensor for the original V 4 , then 

that v4 is conformal to a v4 with the property that 

Rij = o • 
Furthermore the function¢ needed to perform this conformal 

transformation may be obtained from equation (12.36) by 

replacing o{i by ;.3i • 

51For an alternative approach to this problem see the 
paper by H.W.Brinkmann [7]. 



151 

bJ2Eendix 

The purpose of this appendix is to datermine all solutions 

to the Brans-Dicke vacuum field equations corresponding to 

the following isotropic line element: 

ds2 = - e20(c2dt2 + e2J3(dr2 + r 2d92 + sin29 d€ 2 ) , (A.l) 

where ct,/3 and i6 are functions of r. In this case the Brans­

Dicke field equations assume the. following form: 

(;3' )2 + 2c:J..'/3' + 2(ot.' r+.13') - f + ¥ -~(f)2 = 0 , (A.2) 

cl" + /.311 + (cl.' )
2 

+ (<X' ; 13') - ¥ - fr + ~(f)2 
= O, (A.3) 

2/J' + (;31 
)

2 
+ 4f - !!lf- + ~(f-)2 

= o , (A,4) 

i6" + 2l'._ + (o(' + 13')i6' = 0' 
r 

(A.5) 

where a prime is used to denote differentiation with respect 

to r, 

To begin we set 
t = ct +f3 (A.6) 

which in turn permits us to rewrite equations (A.2), (A.4) 

and 

and 

(A.5) as follows: 

(2'6''fl' - CfJ' )2 
+ 2.£..) 

r 

(2j," + (1-31 
)

2 
+ 4£i_) = 

r 

= ~ - ¥ + ~ (:~)2 ' 

~ - o/- - ~(f )2 ' 
i6" + 2..f.. + o'i6' = 0 ·, 

r 

(A.7) 

(A.8) 

(A.9) 

respectively. Upon adding (A.2) to (A,3) we find that we 

may put the resultant expression into the form 

¢(¥" + er )2 + 3£) = ¢" + l'._ • (A,10) 
r r 
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(It should be noted that the system of equations (A.7)­

(A.10) is equivalent to our original system (A.2)-(A.5~) 

Equation (A.9) can be immediately integrated to yield 

ll' = - ln Ji{' - 21n r + ln:K; , (A.11) 

where K is a constant. Using either (A.9) or (A.11) we. 

easily find that r• an<). t' are given by 

¥'' = - - 2 . - ' r 
and 

+ 2 

~ 
• 

(A.12) 

(A.13) 

Upon inserting equations (A.12)· and (A.13) into (A.10) 

we obtain the following differential equation for Ji{ 

- p'"p'p + 2p(¢")2 + ¢"¢'¢ = (¢')2¢" + ~3 • (A.14) 
r r 

We shall now concentrate upon determining all solutions to 

the above equation for Ji{. 

We begin our search for solutions to (A.14) by setting 

where Eis a constant and 
Y = y(r) • 

Using (A.15) we find that p I t p" and ¢ Ill are given by 

¢' = Ey' eY 
' 

¢" = E(y" + (y' )2) eY ' 
and 

¢'"= E(y'": 3y'y" + (y')3) eY • 

If we now insert equations (A.15) and (A.17)-(A.19) 

(A.14) we find that y must satisfy 

- y'"y' + 2(y11
)
2 

+ ~ = 0. 
r 

(A.15) 

. (A.16) 

(A.17) 

(A.18) 

(A.19) 

into 

(A.20) 
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In order to simplify the form of the above equation 

let us set 

y' = u' 
where 

u = u(r) • 
Using (A.21) we find that (A.20) becomes 

-u"u+2(u•)2 +uu' =0. 
r 

(A.21) 

(A.22) 

To reduce the form of equation (A.22) even further we 

shall make the following substitution 

where His a constant 

Using (A.23) we find 

and 

X u = H e , 

and 
X = x(r) • 

that 
u' = Hx' ex 

u" = H( x" + 
' 

(x' )2) ex , 

and hence equation (A.22) becomes 

If we now set 

- x" + (x•)2 + x' = O. 
r 

X 1 ;= V t 

we find that (A.26) may be written 

- v' + v2 + y = 0 • 
r 

An immediate solution to (A.28) is simply v = 0 • 

(A.23) 

(A.24) 

(A.25) 

(A.26) 

(A.27) 

(A.28) 

To obtain other solutions to (A.28) let us assume that v /. O. 

In this case the function w, def.ined by 

w = 2r + r 2 
V ' (A.29) 

is a constant, when v obeys equation (A.28). To see this 

let us examine w' which may be written as follows~ 
w1 = - 2rv' + 2rv2 + 2v • 

V 

(A.30) 
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Due to equation (A,28) w' vanishes, and thus w must·be a 

constant which we shall denote by Q, Consequently we have 

determined a second, non-trivial, solution to 

V = 2r • 
Q 2 - r 

(A,28); viz,, 

(A.31) 

In order to obtain the solutions to our original dif­

ferential equation for ¢, (A, 14), we shall now reverse the 

order of the steps which lead from (A~5) to (A,28). We 

begin by examining the case v = 0 first, and then proceed to 

examine (A, 31) for each of the three cases, Q<O , Q = 0 

and Q>O, 

Case (i), v = 0 • 

When v=O we may use equation (A.27), (A.23) and (A,21) 

to conclude that 
y = -Ar + B , (A. 32) 

where A and Bare constants. Combining (A.32) in conjunction 

with (A,15) leads to the following solution for¢ 

where ¢
0 

is 

Case (ii). 

• 

a constant, 

V = 2r 

Q 2 - r 

,l -Ar 
¢ = "'o e ' 

' 
Q<O, 

In order to handle this case we shall set 

(A,33) 

2 Q = - B , (A. 34) 

where Bis a non-zero real number, Thus v can be written 

as follows: 
V = -2r • 

B2 + r2 

Using (A,27) we .find that xis given by 

x';. - ln(B2 +r2) + G, 

(A,35) 

(A.36) 
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where G is a constant. Thus we can use (A.23) to conclude 

that 
u = (A.37) 

where His a constant. From equation (A.21) we may deduce 

that 
y = I Tan-l(i) + J , (A.38) 

and consequently 

present case 

(A.15) permits us to conclude that' in the 

are constants. where J and p
0 

Case (iii). v = 2r , 

Q 2 
- r 

Q = 0 • 

In this case our expression for v reduces to 

V = - g • 
r 

Upon inserting (A.40) into (A.27) we find that 

x = - 2 ln r + G, 

(A.39) 

(A.40) 

(A.41) 

where G is a constant. Using equations (A.41), (A.23) and 

(A.21) we find that 

y = - !! + J ' 
r 

and hence equation (A.15) permits us to conclude that 

where H, J and p
0 

are constants. 

Case (iv). V = 2r 

Q 2 - r ' 
Q >0 • 

In order to handle this case let us set 

Q = B2' 

(A.42) 

(A.43) 

where Bis a real, non-zero, constant. This permits us to 



write v as follows: 
V = 2r 

B2 - r2 
• 

Upon inserting (A.44) into (A.27) we find 
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(A.44) 

(A.45) 

where G is a constant. Equations (A.45), (A.23) and (A.21) 

permit us to conclude that 

Y = -,J\ln(~: ~) + F , (A.46) 

where Hand Fare constants. If (A.46) is now substituted 

into (A.15) we obtain -H 

s6 s60 (~ 
) '12B (A.47) = - B • + B 

where i,5
0 

is a constant. 

We shall now proceed to determine the functions~ and 

/.3 which correspond to the function /6 determined in each of 

the above cases. 

Case (i). (A.33) 

Upon adding equation (A.7) to (A.8) we find thatj.3 

satisfies the following linear second order differential 

equation: 

21311 + (~ + 2"t' + ~ )/.3' = f + ¥ - 2;' , (A.48) 

where, as we have previously shown, 'I is given by 

'( = - ln /6' - 2 ln r + ln K • 
. 

Using equation (A.33) we find that 
/6' = -Ai,5~e-Ar, 

/6" = A2/6 o e-Ar , 

and 
Y = Ar - 2 ln r + ln (;fo) . 

(A.11) 

(A.49) 

(A.50) 

(A.51) 
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Equations (A.22) and (A.49)-(A.51) permit us to rewrite 

(A.48) as follows (in our case): 

1-3" = 2 • 
~ 

Consequently /l is given by 

j.3 = - 2 ln r + G r + ln P , 
where G and Pare constants. 

Since 
y = d.+j.3 

' 

(A.52) 

(A.53) 

we may use equations (A.51) and (A.53) to conclude that in 

the present case 

For 

and 

cl...= (A-G)r+ ln~~KP) 
0 

• 

Let us now redefine our constants as follows: 

p = 

this choice 

A= D 
B 

and 

of constant we find that 

cl.. = (:/.. - ! ' 0 B 

J3 = !-3o - 21nm) + (D 

95 = 95
0 

exp (-Dr) • 
B 

+ 1) r , 
B 

(A.54) 

(A.56) 

(A.57) 

(A.58) 

The constant D appearing in the above expressions is 

not arbitrary. To see this we simply have to insert (A.56)­

(A.58) into either equation (A.7) or (A.8). Upon doing so 

we easily find that 
D2( W+ 2) + 'D + 1 

2 

must vanish if the above expressions for cl., /.3 and 95 are to 

yield a solution to equations (A.7)-(A.10). Thus we may 

conclude that a solution to equations (A.2)-(A.5) is furnished 
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by«, ;3and p, as given by (A.56)-(A.58) respectively, 

provided 
D = -1 ± .../ -2w - 3 

w+ 2 
• 

This corresponds to Brans's third solution (9.21). 

Case (ii), 

Using (A.39) we find that 

p' = H~ ' B2 + r2 

p" = -2Hr ~ + 
(B2 + r )2 

H2~ 
(B2 + r2)2 ' 

and consequently 

' 

(A.59) 

(A.39) 

(A.60) 

(A.61) 

(A.62) 

Upon inserting (A.60) into (A.11) we find that Y is 

given by 

· ¥ = - ln(p
0

H) + ln(B2 + r 2 ) -

From (A.63) we find 

'(
1 

= 2 r H - 2 
B2 + r2 B2 + r2 r 

• 

- 2lnr + lnK. 
(A.63) 

(A.64-) 

If we now insert (A.62) and (A.64-) into (A.48) we see 

that/3 sati~fies the following differential equation: 

/.3 II + 2r /.3' = -2 + 2 • (A.65) 
B2 + r2 B2 + r2 ""'2 r 

To solve the above differential equation we set 

w = .1.3' ' (A.66) 

and thus obtain 

W' + 2rW = -2 + 2 • (A.67) 
B2 + r2 B2 + 2 ~ r 
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Using the standard techniques for handling a linear first 

order differential equation we find 

W = - 2B2 

r(B2 + r 2) 
+ ' 

(A.68) 

where G is a constant. Upon combining (A.66) with (A.68) 

we find 

/.3 = ln(B
2 

+ r
2

) 
\ r2 

where Pis a constant. 

Since 

+ G 
B 

t=d+/.3 

+ lnP , (A.69) 

we may use equations (A.63) and (A.69) to conclude that in 

the present case 

d.. = - ln(°K_HP) - (H; G) Tan-l(~) • (A.70) 

We shall now choose to redefine our constants as follows: 

c( 0 = - lnto;-p) ; /.3
0
= lnP; H = 2~ and G = -2B(~ +.Jl. (A.71) 

Thus we now find that c:{,)3 and pJ may be written in the 

following form: 

d.. = o( 0 + X Tan-\j).; (A.72) 

)3 =j.3
0

- 2(D+l) Tan-1 ,t -
• I\ B 

; (A.73) 

and 
t5 = ¢'0 exp(~ Tan-\f)) .• (A.74) 

As in the previous case our field equations impose a 

constraint upon our choice of constants. In the present 

case we shall show that /\2 must be given by 

/\2 
= D(l-wD) - (D+l)2 • (A.75) 

~ 
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Using equations (A,62), (A,64) and (A,71) we find that 

(A,76) 

and 
¥' = - 2BD 

/\(r2 + B2) 
- g + 2r 

r r2 + B2 
• (A,77) 

From equation (A,73) we find that 
. 

/.3' = - 2~D + l~B - g + 2r , 
A(r + B) r r2 + B2 

(A,78) 

and 
+ 2 + 2 

;2 -r2,..=.+-B..,.2 
2 - 4r , (A,79) 

r2+ B2 

If we now insert equations (A,76)-(A,79) into (A.8) 

we find: 

2- B2 r + 

4 4r2 

(r2 + B2)2 

= 4B2D 
-1'{""2-( r'2<-+.=.B_,2,.,..)..,.,2 • (A,80) 

Upon multiplying (A.80) through by /f(r2 + B2) 2 we obtain 

4/\2 (r2 + B2) - 4r2A2 + 4B2 (D + 1)2 = 4B2D - 2wB2D2 , (A,81) 

which reduces to 
A2 2 
" = - D (w+ 2) - D - 1 , 

2 

(A,82) may be rewritten in the 

' A.2 = D(l- D) 
2 

following form 

- (D + 1)2 , 

(A,82) 

(A,83) 

which agrees with (A,75), (If we had used equation (A,7) 

rather than (A. 8) we would hav~ still obtained (A, 75).) 

Thus we have shown that the functions rJ.., f3 and $6 

given by equations (A,72), (A,73) and (A,74) respectively 

will provide a solution to equations (A.2)-(A,5) provided 
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that the constants /\and Dare related as in equation 

(A.75) and A2)0. The latter demand must be made upon A 

in order to guarantee that our expressions for«, ;.3 and¢ 

are finite and real, 

The above solution corresponds to Brans's second 

solution (9.20), 

Case (iii). ~ = ~ exp(-H). 
0 -r 

(A.43) 

Using (A.43) we find that 

¢' = 1V5, 
r 

(A.84a) 

p" = -2H¢' + H2 P 
' 

(A.84b) 
r3 r4 

and consequently 

f = H 
' 2 r 

(A.85a) 

and 
+ H2 f= -2H • 

~ ~ 
(A.85b) 

Upon inserting (A.84a) into (A.11) we find that¥ is given by 

'( = ln( K ) + H 
' 

(Aj36a) 
H/60 r 

and thus 
I 

(A.86b) ( = -H • 
~ 

• 
If we now substitute (A.85a), (A.85b) and (A.86b) into (A.48) 

we find that, in the present case, 1-3 is governed by the 

following differential equation 

;3" + g&'._ = 0 • 
r 

To solve (A,87) we first set 

w = 13' ' 

(A.87) 

(A.88a) 



and as a result (A.87) becomes 

W' = - 2W. 
r 

A simple integration then yields 

W = G , 
;?-

and consequently/! is given by 

;3 = - Q + lnP, 
r 

where G and Pare constants. 

Due to the fact that 
"=o(+jl 
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(A.88b) 

(A.89) 

we may:.use equations (A.86a) and (A.89) to conclude that 

d. = (H + G) + ln ( K ) 
r ~ 

• (A.90) 

Let us now redefine our constants as follows: 

rf..0 = ln( K ) 
H¢

0
P 

;)3
0
=lnP ;G=-(D+l)andH=D 

B B 
.(A.91) 

Using·(A.91) we find that in the present case ~.1-3 and¢ 

may be written in the form 

and 

o( = c(o - .1:. t 
· Br 

/-l =;30 + (D+l), 
Br 

¢ = ¢0 exp (=-12...) • 
Br 

Once a~ain we have to check and see if the above 

(A.92) 

(A.93) 

(A.94) 

expressions for cl, 1-3 and ¢ are ·compatible with equations 

(A.7) and (A.8). It will be shown that they will be consistent 

with these equations provided' 

• (A.95) 
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In order to establish (A.95) we shall need expressions 

for (3', r', f and f. Using equations (A.85a), (A.85b), 

(A.86b), (A.88a), (A.88b) ,and. ·(A •. 91).we find:. 

and 

/31 = ..:.~ , t' = -D 
Br Br2 ' 

~ = -2D + n2 .• 

7 ·~- B~3 J7l+ 

D 

Br2 ' 

Upon substituting (A.96) into (A.7) we find: 

D2(1 + w) + D + 1 = 0 • 
~ 

Equation (A.97) implies that D must be given by 

D = -1 ;1: )I -2w - 2 
w+ 2 ' 

(A.96) 

(A.97) 

(A.95) 

if ~,/land¢, as given by (A.92)-(A,94) respectively, are 

to yield a solution to equations (A.2)~(A.5), (The same 

constraint upon D would have been found if we had used 

equation (A.8) rather than (A.7).) 

The solution which we have obtained in this case 

corresponds to Brans's fourth solution (9.22). 

Case (iv). 
-H; 

¢ = ¢ (r-B) 2B • 
o r+ B 

(A,47) 

As in our three previous cases we begin by determining 

¢' and ¢" 

¢' = 

and 

which we easily find to be 
;:( H + 1) 

-H¢0 (r- B) 2B 1 ; 
r+B (B=t,r)2 

-( H + 2) 

)6 11 = i;f 0H(H + 2B) /r - B) 2B 1 
lr + B (r + B)4 

·+· 

(A,98) 

+ 

(A,99) 
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Upon combining equations (A.47), (A.98) and (A.99) we rind 

and· 

~= 

~= 

-H 
2 B2 r -

' 
(A.100) 

+ __ _,2::..:;H,,___,.,,_ 
(r+ B)(r2 - B2) 

• (A.101) 

Using equations (A,11) and (A.98) we see that in the present 

case 

'{ = - ln(-/6 H)+ ( H + l)ln /r - B) ,+ 2i3 / \r+B 
+ 2ln(B + r) - 2 ln r, (A,102) 

and consequently¥' is given by 

y' = (H + 2B~ + 2 - g • (A,103) 
r2 _ B B+r r 

Upon inserting (A,100), (A.101) and (A,103) into (A.48) 

we rind: 

213" + (~ + 2(H+2B) + 4 - 4 -
r r2- B2 B+ r r 

2 H )/3' = 
2 B2 r -

= H(H + 2B) + 2H - H(H + 2B) + 
(r2- B2)2 (r+ B)(r2 - B2) (r2- B2)2 

2H + 2H 2(H + 2B) + 
(r+ B)(r2 - B2) r(r2 - B2 ) r(r2 - B2) 

4 + 4 
r(B+ r) ~ ' 

which simpliries to 

' ,1.3" + 2r 13' = - 2B2 
r2 - B2 -r"'"2-( r-;2;.=.._-B..,.2:-) 

• 

In order to solve (A.104) we begin by setting 

w = 1.3' ' 

and consequently (A.104) becomes 

W' + 2r W = 
2 B2 r -

• 

(A.104) 

(A.105) 

(A.106) 
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Using the standard techniques for dealing with a linear 

first order differential equation we find that Wis 

w = 2B2 + G 
' r(r2 - B2) 2 B2 r -

where G is a constant. From equations (A.105) and 

we obtain, through a straightforward integration, 

;.3 = ln P + 
2
; ln~: ~) + ln(r

2 
-
2

B
2

) , 
.r 

where Pis a constant. 

Due to the fact that 

Y=c(+/3 

we may use equations (A.102) and (A.108) to find 

cl. = -1n/-¢0 HP) +(H- G + 2)ln(r- B) • 
\ K 2B r+ B 

given by 

(A.107) 

(A.107) 

(A.108) 

(A.109) 

We shall now choose to redefine our constants as follows: 

e{.0 = - ln(-~ HP);A=lnP; 1 = H-G + 2; and -H = D. (A.110) ,f O ?.'. 2B 2B ;t 

Using (A.110) we find that in the present case ~./3 and~ 

are given by 

(A.111) 

(A.112) 

and 
'¢ = (A.113) 

As in our three previous ~ases (A.111)-(A.113) will not 

yield a solution to equations (A.7)-(A.10) for an arbitrary 

choice of constants. In the present case we shall show 

that A and D must be related by 

"J,.
2 

= (D + 1)2 - D(l - wD) • 
2 

(A.114) 
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In order to establish (A.114) we shall need expressions 

for 13' , 13", t' and @i • 
find. that: 

Using our previous results we 

1.3" 

and 
2BD • 

2B 
r(r+ B) ' 

+ 2 
r+B 

2 

(r+ B) 2 

- 2 ' r. 

(A.115) 

' 
(A.116) + 2 

;J 

(A.117) 

(A.118) 

Upon inserting (A.115)-(A.118) into equation (A.8) 

and then multiplying the resultant expression by 

r 2 (r + B)2(r- B)2 

we find after simplification that 

-4B
2

r
2 

+ ( D2 + 1 + 2D)4B2r 2 
= 

?f x- --; 
+ ( D + 1 \4B2r 2

D -x- J) 
The above expression reduces to 

t= D2(l+w)+D+l, 
2" 

which may be rewritten in the following form 

'A.2 
= (D+l)2 - D(l-wD). 

2 

+ 

(A.119) 

(A.120) 

(A.114) 

(This Bame result can be obtained using equation (A.7) 

rather than (A.8).) 

In order to guarantee that our solutions for r:J. ,,1.3 and 

~ be finite and real we shall demand that 

;i...2 >O • (A.121) . 

In summary we have shown that in the present case when 
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cl ,/3 and p are given by equations (A,lll)-(A,113) respectively, 

and when A and Dare related by (A,114) with 

).2 >O 
then we have found a solution to equations (A,2)-(A,5), 

This solution corresponds to Brans's first solution (9,19), 

Thus we h~ve constructed all of' the exact solutions 

to the system of' differential equations represented by (A,2)­

(A,5), We list our solutions below. 

Case 

where 

Case 

where 

(i). 

(ii). 

p = p
0 

exp(-Dr) 
T ' 

ol,. = cl. - r ' 0 B 

/3 = 1-30 - 2ln(i) +(D;l)r, 

D = -1 ± -...:'.'.-2w ::-2_ 
<..>+ 2 

• 

p = p0 exp(~ Tan-\i)) , 

cl. = o(o + ~ Tan-l(i) , 

ln( r2 ) , 
r2 + B2 

t..2 = D(l-wD) -(D+l)2 >0 • 
2 

(A,58) 

(A,56) 

(A,57) 

(A.59) 

(A,74) 

(A,72) 

(A,73) 

(A,75) 
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Case (iii). 

where 

Case 

where 

p = p
0 

exp(- D) , 
Br 

l ' '.Sr 

/3 = J.3o + D+l 
Br ' 

D = -1 ± ..J- 2w -
W+ 2 

(iv). 
~ 

¢ = ¢0 (r- B) ' r+B 

2 • 

(A.94) 

(A.92) 

(A.93) 

(A.95) 

(A.113) 

o(. = ~o + 1 ln(r - B) , (A.111) 
). r+ B 

/J = j.30 +(.:l-~-l)ln(~:~) + 2 ln(r;B), (A.112) 

(D + 1)2 - D(l - wD) )0 • 
2 

(A.114) 
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