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ABSTRACT

This thesis is based on a study of Lagrange scalar
densities which are, in general, concomitants of the metric
tensor gij (and its first and second derivatives) together
with a scalar field g (and its first derivative). Three
invariance identities relating the "tensorial derivatives®"
of this Lagrangian are obtained. These identities are used
to write the Euler-Lagrange tensors corresponding to our
scalar density in a compact form. Furthermore it is shown
that the Euler-Lagrange tensor corresponding to variations
of the metric tensor is related to the EFuler-Liagrange tensor
corresponding to variations of the scalar field in a very
elementary manner. |

The so-~called Brans-Dicke scalar-tensor theory of grav-
itation is a special case of our previous results and the
field equations corresponding to this theory are derived and
investigated at length. As a result of studying the effects
of conformal transformations on the general Lagrange scalar
density it is shown that solutions to the Brans-Dicke field
equations are conformally related to solutions to a certain
system of ﬁinsteiniield equations. A detailed study of a
particular statlic, spherically symmetric vacuum solution to
the\Brans-Dicke field equation'is then undertaken and compared

with the cerresponding Einstein case.
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1. Introduction

This thesis is based on a study of Lagrange scalar
densities of the form*

I"""L(Sij; gi;j,h; gi,j,hk; a3 ‘d’i) ’ (1.1)
where the gij's are the symmetric components of the metric
tensor of an n~-dimensional Riemannian space Vn, and £ is
a scalar field. With (1.1) we may associate two Euler-

Lagrange expressions, viz,,

@) = 9 {-SL -3 0L - 3L _, (1.2)

Ix% {9815k Ox™ Bij,km) 98ij
and
E(L) = J AL - aL R (1.3)
x> \OPsy ) OF

where the former is obtained from (1L.l) through a variation

of the 8; 's regarding g and ﬁ,i as arvitrary preassigned

functionsaof position, and the latbter is obtained from (1.1)
through a variation of ¢ regarding the gij's,and their der-
ivatives as arbitrary preassigned quantities.

Our anslysis of (1L.1) follows very closely the method
outlined by Rund in [22] and [23]. In these two papers Rund
makes an extensive study of the properties of Lagrange scalar

densities of the form

L= L(g,

lj; gij,h;.gigj,hk) ’ (1.4)

and, more generally
L=L(Siji gij,h; gij,hk; ‘Pi; \‘Yi,a') ’ (1.5)

where %& is a covariant vector field.

%
In (1.1) Latin indices run from 1 to n, and a comma is
used to denote partial differentiation with respect to the

. 1 . .
local coordinates, x, of our V,+ The summation convention
is used throughout this thesis,



Following Rund's method we first construct the various
tensors aésociated with the derivatives of (l.1) with respect’
to each of its arguments. These teﬁsors meke it possible
for us to write the Euler-Lagrange expressions Eij(L) and
E(L) in manifestly tensorial form. Our next step in the study
of (L.1) is devoted to the derivation of the so-called |
"invariance identities." These identities are obtained by
examining the behaviour of (1.15 under essentialiy arbitrary
coordinate transformations., The invariance identities make
it possible to greatly simplify the form.of the Euler-Lagrange
tensors corresponding to (I.1). We conclude section 2 by
showing that

B - ketlg, BT , (1.6)
where the vertical bar is used to denote covariant differen-
tiation. As a consequence of (1.6) we see that whenever the
field equations governing the metric tensor are satisfied; i.e.,

Ed@) =0, (1.7)
‘then the field equation for £ viz.,
E@L) =0, (1.8)

will be satisfied automatically,

In sec%ion % we apply the results of section 2 to examine
four special Lagrange scalar densities of the form (1.1).
Three of these examples are then used to discuss the construc-
tion of Lagrangians of the form tl.l) that yield field
equations which areat most of second order in the derivatives
of both gij and g. It is shown that although the scalar

density used by Brans and Dicke to obtain their vacuum field



equations satisfies the above condition; i.e., is of the form
(1.1) and ylelds second order field equation, it is égg the
most general Lagrangian of the form (1l.l) which enjoys this
property. Furthermore it is shown that even the more general
Lagrangian suggested by Bergmann Eﬂ is not the most general
scalar density of the form (1.l) which yields second order
field équations. |

Section 4 is the first of eight sections dealing exclu-
sively with the Brans-Dicke theory. 1In this section we use
the results presented in section 2 to derive the Brans-Dicke
field equations from a suitably chosen Lagrange scalar density.

Section 5 is devoted to a study of the behaviour of

E'9(T) under a conformal transformation of the form

- 20
gij = e gij 3 (1.9)

where 0 is an arbitrary function of class 02. It is shown
that if I is of the form (1.1) then under (1.9)
EH@) = @) (1.10)

where L denotes the form assumed by I as a result of (1.9).

Using (1.10) we show in section 6 that it is possible
to obtain solutioﬁs to the Brans-Dicke field equations from
solutions of a certain system of Einstein field equations.
The theory presented in section © is then used to develop
a method for generating static:solutions to the Brans-Dicke
vacuum field equations from static solutions to the Einstein
vacuum field equations. To illustrate the use of the above
method the Schwarzschild vacuum selution is employed to

obtain a static solution to the Brans-Dicke vacuum field



equations, The solution so obfained is in fact one of the
four possible static, spherically symmetric, isotropic solutions
to the Brans-Dicke vacuum field equations. Sections 8 and 9
are essentially devoted to showing that the remaining three
(i.e., those which were not obtained from the Schwarzschild
vacuum solution) static, spherically symmetric vacuum solutions
are, in a certain sense, physically unacceptable.

In section 10 we use the weak field approximate solution
to the Brans-Dicke field equations presenﬁed in section 8
to identify the constants appearing in the physically accept-
able static solution of the Brans-Dicke vacuum field eguations.,
After making this identification we examine other properties
of this exacﬁ vacuum solution, e.g., it singularities and
its geodesics,

Ve conclude the thesis by showing that whenever the
metric tensor of the Brans-Dicke theory is known throughout
a matter free region of space (excluding certain patholog-
ical cases) then it is possible to express the Brans~Dicke
scalar field in terms of geometrical objects; i.e., objects

constructed from the metric tensor and its derivatives.



2. Lagrangian Scalar Densities—-Invariance Identities

In the Brans Dicke theory we shall be dealing with a
Riemannian V4; however, for the purposes of this section
we shall consider an n-dimensional Riemannian space Vn with
line elementl

2

ds” = gijdxldxj;

where all Latin indices run from 1 to n. The functions 83
appearing in the above expression are the symmetric compo-
nents of the mebric tensor, and are assumed to be of class 05.

We shall place no restriction upon the signature of 84 but

J
we do demand that
g = det(gij) £ 0.
In all further calculations we shall make use of the
Christoffel symbols of the second kind, r?k’ along with the
Riemann curvature tensor, lekl’ the Ricci tensor Rjk’ and

the scalar curveture invariant, R. We define these objects

as followse:

;k = %gil(gjl,k * By 5 " Bax,1)
Rjikl - ;k,l - ;i,k + r}i ;i = §il“£g ’
Ry = By = Rjiki ;and R = gﬁ‘Rjk ,
where the gjk are characterised by
ey, = 67

lThe summation convention will be used throughout this
thesis.,

2(,k) denotes partial differentiation with respect to
the coordinate x*, and (lk) denotes covariant éifferentiation
with respect to x*. Repeated partial differentiation, e.g.,

) . . . .
S7aris denoted by (,kl1) , while repeated covuriant differ-

K

entiation with respect to x¥, %*,... is denoted by (Jkl...).



We concentrate our attention on scalar densities I of
the form _ .
L = chij; gij;hé gij,hk; g; ﬁ’i) ’ (2.1)
where ¢ represents any scalar field of class 04, and thus
ﬂ,i is a covariant vector field. In what follows L will be
assumed to be of class ¢* in its arguments.

When computing the Euler-Lagrange equations corresponding
to the gij‘s of the above Lagrangian, L, we shall regard 1
as a preassigned function of position. BSimilar considera=-
tions are made with regards to gij when calculating the Euler-
Lagrange equation for 4. (

It is essential to note that there are certain symmetry
properties associated with the first three functions in the
argument of L. Thus if one desires to take a partial deriv-
ative of L with respect to By it is necessary to replace

each gij appearing in L by
%(gij + gji) s
and then to regard the gij's as n2-independent quantities
when differentiating L with respect to By Similar consid-
erations have to be made for tﬁe guantities gij,k and gij,kl'

Rund [22] has considered in detail Lagrangian scalar
densities of éhe type

L = L(8345 85,1 Bi3,nk)
and has obtained results which, in many cases, are directly
applicable to the Lagrangian (2.,1). In what follows we shall
adhere very closely to the presentation of Rund.

wWe shall first construct tensors which are associated

with the various derivatives of the Lagrangian (2.1). In




order to simplify the form of the ensuing expressions we

shall adopt the following notation:

. . . 5k
é = oL , @l = BI’ ) /ea = 0L 1 /%a’h = ji&__“ ’
; o4 B?ﬂi Sgid 'asij,k
an .
1j.k1
/\ ? = ’aI' .
0854 x1

Since the essence of tensorial character is contained
in transformation properties let us now study the - behaviour

of L and its derivatives under coordinate transformations

of the form
- 22EE) (2.2)
which are arbitrary except that they be of class 05 and that
get| 2% | > o.
oxY
We shall set . .
Bg = x|,

| o5
and by the above we have
‘ B

det(B§)> 0.

The higher derivatives of xt with respect to Eh will be de-

noted by ) ) ) 3 :
BY, = dx* s, and B: = ’axl .
Jk 5% Jkl =55y
0399% 0%99x 5%
Under the coordinate transformation (2.2) we have
g(x) = #4(x), (2.3)
and 3
B’i = ﬁsjBi ] ) (2-4)

where @ denotes the functional form of g in the new, barred,

coordinate system. We also find:
- 1.4
Ehk githBﬂ 3 (2.5)

= . Dplng i pd in3d
Bhk,1 = 8i3,pB1BnBk * 813BmaBk * 8i3BpBh o (2.6
and



z ; i pd, pipd J
ghk,lm - g13(Bh1mBk Bthlm + BhlBkm + maBkl) +
b i
ot gla me(Bh Bk Bthl) + gla p( 1m th +
D J D Drd
+ B maBk + B Bthm) * 853, qu B Bth (2.7)
Since I is a scalar density we have
L(gij; gij,h; gij,hk; g3 B’i) =
= B L(gij; gij,h; gij,hk; 23 ﬁsi)- (2.8)
Upon differentiating this expression with respect to &
and #,; we find:
BE = 3, | (2.9)
and . ki

B8 = B (2.10)
respectively. The above equations imply that @ is a scalar

density and $' is a contravariant vector density. Following

Rund we see that differentaition of (2.8) with respect to

gij,kl R gij,k and B3 yields:

B ATEL o RTS»TU Bpg gy (2.11)
8ij,k1
ij,k _ =#=rgt = —rs,tu =
BN = AN grs,t * /\ . grs:tu ,»  (2.12)
and i3,k 81,k
ij . =rs = =rs,t = =rs,tu =
BN = A Epg A rs,t LEAN rs,tu (2.13%3)
gij gij gij
respectively.

Quite cléarly'ﬂéa’kl

is a contravariant tensor density
of rank four, whereas ﬁea’k and ﬂ}u are not tensorial quantities.
However, Rund has shown that when suitably combined with
f&j’kl and the Christoffel symbols.we can construct tensor
densities from them. These are denoted by TTij’k ana 749
and are respectively defined by

TTij,k - ﬁej,k + rg;/%j,rs + 2r§5f€j,ks + 2rq}f%r JKS (2.14)

(which is a .~ - contravariant tensor density of rank 5),



and .
ij ij i kj,1lm j ki,1lm
T = N+ Mg oA+ N

i, %3,1 1 kj,mn o~k .03,ln -3 amk,ln
e - [ > “ TN e\ )+

i ki1 1 ,ki.mn k ,mi,ln 1 .mk,ln,
+ rﬁicﬂ - mn ’ - rhnA ’ - rﬁnA 77, (2.15)

(which is a symmetric contravariant tensor density of rank 2).

The Euler-Lagrange equations corresponding to (2.1) are

EF@) = 0 (2.16)
and .
E(L) = 0, . (2.17)
where
() = 9 (BL - (BL | ) - 9L, (2.18)
x5 \ 98i; x %™ 10813, xn 084 3
and

E(L) =&y - F - i S (229
Equation (2.18) was obtained from (2.1) through a variation
of the gij‘s regarding ¢ as an arbitrary preassigned function,
whereas equation (2.19) was obtained from (2.1) by varying
g with the gij's being regarded as arbitrary prezssigned
functions.
From our previous remarks 1t is obvious that each of the
terms in the expression for Eij(L) are non-tensorial.
However, Rund has shown that (2.18) may be written in tensor
form in terms of ﬂ@k’lm,TThk’l, and"ﬁhk. More exactly we have
E1(L) - ..('iii'kl‘kl - 'ﬁij’klk fTF9 . (2.20)
Of the two components in the ,expression for E(IL) only
the first cculd be non-tensorial. However, since @é is a
contravariant vector density we have
T A N @lﬁi{i =%
which is a scalar density. Thus each term in (2.19) is tensorial.
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We shall now derive the so-called "invariance identities"
of our Lagrangian (2.1). To accomplish this we must first
substitute into the left hand side of (2.8) the explicit
functional representations for the gij v 814,k 0 Bij,k1 o
g and B,. , thereby obtaining an identity in Bg and its deriv-
atives., If we now compute the three first derivatives of

f oz . . - ; T T r :
this identity with respect to Bstv s Bst , and BS we find
that each derivative ylelds an identity. The computations

necessary to obtain these three identities are given below,

r
stv

We begin by differentiating (2.8) with respect to B
Since the right hand side of (2.8) is independent of this

quantity we obtain
9T
0BT

stv

= 0. _ (2.21)

From our expressions relating the barred an unbarred argu-

ments of L we find that Bgtv appears only in the transforma-
tion of éhk,lm’ So (2.21) may be written
~hk,1m\ =
N T 0Bric,in = o. |  (2.22)
: T
aBstv
After using (2.7) to compute aéhk 1y We find that (2.22)
' m
=
aBstv
becomes )
—hk,1my= B J | =sk,tv A =tk,vs ~vk s?}_
/\’a_g_m;lm_%gerk“{/\’ AT AT =0,
_-aB-I‘ (2.23%)
stv '

If we now multiply the above expression by Bfélp we obtain

r REPIVS L RVPYSY 5 (5,24)
k,tv

—=sp,tv

A

From our previous work we know that /f is tensorial, and
thus (2.24) is valid in all coordinate systems; in particular |

we have
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fsk,tv_+ f¢k,vs + fyk,st =0 (2.25)
which is our FIRST INVARIANCE IDENTITY, and is identical

with Rund's. By repeated use of (2.25) we obtain
ﬁgk,tv - »?v,sk (2.26)
where we have used
APELkG | ABL, Gk A3h, K

Po determine our second invariance identity we differen-
tiate (2.8) with respect to Bgt. Since the right hand side

of (2.8) is independent of this quantity we find
L -o. (2.27)
r o, . . OBy . - -
The Bst s arise in the transformations of ghk,l and ghk,lm'

Thus (2.27) may be wriltten

~hk,l\= ~hk,lmi=
A ,éﬁék_:.l + , ‘}Ellls.,i@. = 0. (2.28)
xIr ™ .
ABst . aBst
Using (2.6) we easily obtain
hk, 1 —sk,t . =tk,s
L raBk( RO L RS, (2.29)

AT
OBL,
From (2.7) and our first invariance identity we find

that the second term in (2.28) may be written

ﬁPk,lmé§g5¢;g ) 2ngB£m <mk,st 4 %13 rB;Bﬂfhk st
dBL, s p mBk”Fk 5t (2.50)
The above expfession may be rewritten as follows:
ﬁ?k 1ma~hk lm = 2ngBkm mk St
dBSt —2(gujr;p + grurg% Bk mk s

+(gujr;; * giurg;)B 3%-hk St. (2.31)

The last term appearing in (2 31) may be simplified to yield -

=nk,st
eguar;p /\

which csancels with the first part of the second term on the
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right hand side of (2.31) leaving ﬁs with

=hk,lm\= _ - g Tmk,st _ U Prd ~mk,st

JBT |
st

To further reduce the form of the above expression it
will be necessary to make use of the well known transforma-
tion law of the Christoffel symbols; viz.,

U odpP _ =&u _ QU
r}kaBm *{kmPa — Bk *

Upon inserting this expression into (2.32) we obtain

=hk,lm\= _ =8 LU =nk,st
N aghk,lm - _2grurkmBa;\ e (2.33)
JBT
st
Combining (2.33%3) with (2.29) we find that (2.28) becones
i . =8k —tk ek o |
By B (F0F « AP - 2P R =0 @)
If we now multiply the above quantity by Bf E;lp we find
. /-:\Sp,t + /'-\tp,s = Erﬂfm Alm,st R (2.35)

Upon replacing the left hand side of (2.35) with the tensorial
guantities introduced in (2.14) we obtain

iTsk;t N iTtk,s -0 . (2.36)
If we now use a little algebra and the tensorial properties
of T T noting that TS ¥ - 7789 % | e rind that (2.%6)

is eguivalent to

| %% = o, | (2.37)
whicﬁ is our SECORD INVARIANCE IDENTIT?, and again agrees
with Rund's.

An immediate conseguence of (2.37) is that if one has
a lLagrange density of the type
L = L(gy45 855,03 B3 £oy) (2.28)

then 1. is actually independent of g For if we had an

ij,k*
L of the form (2.38) then APk’lm = 0. Thus equation (2.14)

becomes 1Thk,l =ﬁPk’l
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hk,1

But since [ = 0, we have Ahk’l&=0, and therefore L must

be independent of gld K

From the procedure used to obtain the first and second
invariance identities it is obvious that similar identities
hold for any relative tensor of weight w, conbtravariant
valency p and covariant valency q which is of the form
ll“‘lp -

P
T’jl"'aq Jl-..aq(gab: gab v gab,vw’ ,d, ﬂf,a).

l.l.l

.O!l
In particular we may conclude that if Tal Jp is independent
l LA ] q
of gab,vw s then it 1s.also independent of gab,v‘

It should also be noted that due to our second invariance
identity the expression for E'YJ(L), given by (2.20), reduces to

B () = ~(AMRY T, (2.39)

To determine our final invariance identity we begin by

differentiating (2.8) with respect to B to obtain
" =h whk~ ~ ~hk, 1~ =
§a + +- ') + 3 o+
22 + § 0By R 0Bye + A 0By 1

JBE r T T
s BBS BBS BBS
=hk,lm~\- s
L aghk im = BBr'L = AZBL, (2.40)
BBg aBs
where 5 —s
Ar = OX ’
1 axr
and
S T _ S
AL B = Sm .

The first term on the left hand side of (2.40) does not con-

tribute since 28~ = 0. Rund has found that ﬂékaéhk s

0B :
BBS
~hk,1 —hk,lm~= o s i
AT OBy ) and AT aghk,lm are given by:
OBE oBY

S S
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—~hk <= .
k
A Buk - 25,5 A7 B
aBr . !
S
<hk ,1~= _ hk s zhs,1
AN aghk,l - 13,rBth + 28;J:' BhLA
r Pnd =sk,l
aBs ¥ 28r3 pBlBk'A o
and )
—~hk,lm q —sk,hm ~hk , sm
A aghk K,lm °~ 2BthB (gra 1@“ + gij,rqﬂ )+
' ’aBr J Fhs,lm i .3 =hk,ls
o f 2grthlm * 4813 rBhlBk ’ +

J J sk, 1m
* 28rj,p 1mBk + 2Bkm )/\

Thus aa’h remains to be calculated.

r
OBy _
* Since 1
Bah = ﬁslBh 4

we wee that

BE,h = ‘d’r .
OB
Upon substituting the above expressions for
=hk~ = =hk, 1= =hk,lmy=
A OB o A OBuey o A OBpy 1y 204 0By
OBL OB ~ JdB} OB

into (2.40), dividing that result by 2 and multiplying through

by Bg we obtain

J BT ~hs,1ln Jdnd =sk,hm
rJBhlm t:A grg iq tBhB B \ *

'}
=sk 1m T J D —hk,s
* 8rj,pA _, (BlmBk * gBkmB ) + %gij rBtBth/\ +
Pnd skl J =hs,1 -8k r
¥ gra,thBlBk/\ T By BrBA + By v KT A, By =

= BEEBL v (2.41)

hk ,18
¥ 2g13 r t hlBk *

Using (2.7) we see that the first three terms appearing
on the left hand side of the above expression involve Bﬂlm'

Rund has shown that the coefficient cﬁ?Bglm appearing in (2.41)
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18 ~sk, hm

hk sm |
B33 k(/\ + 2R ). (2.42)
If we now make use of our first invariance identity we find
5
that
sk hm +hk,sm
JlBk him€ + 24 ) = (2.43)
Due to (2.43) equation (2.41) may be rewritten
-hk,sm‘{- - s .
+mk, sh
N €nk,tm T g‘tm,hk} + 2A S {gijBitBﬂm +
Prndnl _  =hk,sm P wing
+ gij,meBkBth} /ﬂ ’ gij,thmBth + %gla r tBth/\
rPnd +wsk,l ~hs,l = =sk =8
* Brj,pottitk ATt 8pj BLBY)A + B+ BBy -
= %63 BL . (2.44)

The last term on the left hand side of (2.44) was obtained
from %isﬁ,rBi by using equaticn (2.4).
After further manipulations similar to those performed

by Rund equation (2.44) becomes

~hk, sm [~ | - —sk,1 | - —hk,
A0S '{ Ehk,tm * Btm h_k}' * gtk,l/\s + B8 v\ %
-+ étk /-\S + fé§sa,t - }éssﬂ =
~hk ~sk,h
- glaBkBth{2Fmp/\mp’Sh - RS _ gEBL (o us)

If we now make use of our second invariance identity we

031

find that the right hand side of the above expression is

zero. Since the left hand side of equation (2.45) refers

to a single cqordinate syatem we shall let that be the unbarred
oneq, and so {2.45) becomes

hk, sm
A {e Enic,tm * Btm bk} * Bk, + By, g
+ B AT+ Mssz,t - #65 L. | | (2.46)

fﬁk’l p&k,s +

5To obtain this result we make use of the fact that

Bhlm = mlh '

4Thls step is in order since the left hand side of
(2.45) will be shown to be tensorial.
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We desire to express the left hand side of (2.46) in
tensorial form. We know that'ﬁsﬁ,t-is a nmixed tensor density,
thus we need only consider the remaining terms. However,

these are precisely the terms dealt with by Rund. Thus we find
X .
gtkﬂs . gimRhltk/\hk,sm _ %gthlshm/\hk’lm . $ES bop =

= %8, L. . (2.47)

tr

Upon multiplying this result by g we obtain

ST+ g T AMSE 1% 8 NPEED L 43S 0T o 5eTSL, (2.48)

p"r = grtldat .

. T's A -
Since T and grs are symmetric in r and s the remaining

where

groﬁp of terms in (2,48) must also be symmetbric under the

interchange of r and s; i.e.,

ko hk,.sm S hr, km S .,
B - m 5 P g

hk hs,k
T A %erhm/\ RS A (2.49)
Using our first invariance identity we obtain
r hs,km r  hk
R K250 =
and thus equation (2.49) becomes

SRS NS e BT < R S OTE T (2.50)

Upon rearrangement of equation (2.50) we find
hk,r hk . -
R AT = R T AT gcsﬁsw - &4°%) . (2.51)
The substitution of (2.51) into equation (2.48) yields
‘ hk =5 4 T
T e T A 4SBT 4 1880} < KT, (2.52)
5 : 8 8

which is the THIRD INVARIANCE IDENTITY for our Lagrangian
(2.1). This result differs from Rund's owing to the presence
of the term within the curly brackets. However, (2.52)
reduces formally to the form of Rund's result if L is inde-

pendent of ﬁ,r.
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In passing we note that it.ié possible to obtain precisely
the three invariance identities (2.25), (2.37) and (2.52)

from the expression obtained by differentiating (2.8) first

T

with respect to Bg and subsequently with respect to Bstu

and Bgt respectively. However, in general this technique
is not as general as the method we have used.
The next step in the study of our Lagrangian (2.1) is
devoted to thé divergence of Ehk(L), viz.,
B @ = =N e + T) (253
Rund has shown that in his case the covariant divergence
of EP¥(1) is identically zero. In general, this will not

be true in our case,

Qur calculation of Ehk(L)”{is carried out in three

steps. The first step is to determine APk’lmnﬂm:, the second
'ﬂhﬁk , and then finally Ehk(L)hi- Firstly we see that
ﬂPk,lﬂlmk -1 CpP + gh)’ (2.54)
where g '
1)h - /\hl,km!mkl - /\hl’km{mlk_ (2.55)
and5 |
o - Ahm,kl!klm _ /\hm’klmlk' (2.56)

Equation (2.55) may be rewritten by using Ricci's

identity6 along with our first invariance identity to obtain
r _ ahk,ij T '
b = /\ ? li'Rh jk ° (2.57)
The modifying of (2.56) is quite a lengthy task resulting

in .
r o_ hk,ij T rk,hj i hk,ij, r
T = AT Rt AT i B g A  Re ey

)

5In Rund's paper'h‘J is used in place of q .

114, page 32.
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Equation (2.58) may be further simplified if we make
use of equation (2.51), which can be written as '
r hk,ij _ i hk,r] i, r T i
Bpieg/\ T = Ry +g(§¢’ -8 . (2.5
By taking the covariant derivative of each side of equation
(2.59) with respect to xi we obtain

hk,ij r hk,ij hk,r
N0 RF AT thllA I

+ Rh'ka/\hk T+ S gty -

By w111

This expression may be rewritten in the form
hk,ij T hk,rj i i,r T i _
/\ K liRh kj "'/\ ? ‘iRh kj "%(& ﬁ’ -§¢, )li‘
hk,ij, r rk,ih, J
SN T R Ty AT Bty )
which when substituted into (2.58) yields

r hk.i3 i rk,hj hk,r3

i *h 3k ) o+

- %@iﬁ’r - @rﬁ’i)ii . | (2.60)

d I3

By the use of our first invariance identity and the

LI § I' >
symmetry properties of the curvature tensor g~ reduces to

o = Ry ak/\hk »id  _ g( él’d,r = érﬁ,l)li . (2.61)
. Combining (2.54), (2.57) and (2.61) we obtain the final
expression for ,Ark’lﬂﬂlmk , which is |

k,1 hk, is,r r,,i
AI‘ mllmlc = %Rh Jk/\ l‘l - _%(@ ﬁ - § ﬁ )Iio (2062)

We shall now determine'ﬁhk

kx ¢ This may be accomplished
through the use of our third invariance identity, which can

be rewritten as

hk
= - %ermh - é‘—ﬁsf‘“r - %ﬁd’s + %5 L. (2.63)

The first step in this calculation is the evaluation of Iﬁr‘

In terms of our notation Lh? is given by
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' 1 hk - nk,1 hk,1m
Lip = $8,p + &4y, + A Enk,r * "Bpk,1r * " 8k, lmr t
- J )
Ll“jr ,
and since o
g"lr = ﬁllr + Slin

we may rewrite the above expression for Lh?in the form

) 1 1 m hk hk,1
hk,im

(2.64)

-+

- J
* %mﬂﬂr LGr‘

In order to evaluate equation (2.64) we shall use normal
coordinates. In this case g, 3 and. rg} vanish at the pole
4
P, and from equations (2.14) and (2.3%7) we see that,Ahk’l

also vanishes at P. Consequently at P we have

hk,1lm : 1
e = N T eme,ime * $or ¢ T, -
Rund shows that at P
hk,lm . nk,ln
AN epy amp = %lehmlr/\ .

Thus at P we find
B hk,1lm 1
ir = %lehmlr/\ T éﬁ-,r"' 1y . (2.65)

Since both sides of the above expression are tensorial

L

quantities we no longer need restrict ourselves to the pole
P of a normal coordinate system, and thus equation (2.65)
is valid everywhere in all coordinate systems. By applying
the Bianchi identities to the first term on the right hand
side of equation (2.65) we firnally obtain
A = %thjkﬁﬁPk,ij + 84, + §141r : (2.66)
With this knowledge of Lh?at’our disposal we may now
complete the computaticn of'ﬁrskaby taking the covariant
derivative of both sides of (2.63) with respect to x°. Upon

so doing we find:

rs ~ T hk, sm T hk,sm
il s = ~2Ry mhis/\ ’ - 2Ry mh/\ ’ s ¥
3 5



- %(5§85’r + érﬁ’shs + %grsljs .

Equation (2.66) allows us to rewrite the above expression

in the form

-n-rsls - _%ermh/\hk,smis + % BT §1¢I1'r +
- %(ﬁsﬁ’r + %) (2.67)

where
i _ sr
Ay = Fis8 -

Upon combining equations (2.62) and (2.67) with (2.53)
we find.:.

Erk(L>lk - .—{%—thjk/l\hk,ijli _%(§i¢sr _ &I‘p’,i)Ii +

_ %ermhAhk’smhs _ %(5§i¢,r + §rﬁs,i)li +
+ 53T 4 Ml;a,l'r} :

This expressicn may be rewritten in the form

B @) - }é‘{@kﬁ’r),k - &7 - @kﬁlk'r} , (2.68)

which reduces to
EE@), = w07, -8 ) . (2.69)
Usging (2.19) we may rewrite the above expression in ite
final form; visz.,
E™ L)y = #8TE@) . (2.70)
Ve may‘suﬁmarize the results of this section with the
following |

Theorem 2,1: EE iF EE a scalar density 2£ the form

L = L(gij; gij,h; gij,hk; g3 ﬁ"i) (2.1)
then,

(1) L and its asscciated tensor densities ﬁPk’lm,'ﬂhk’l,

ﬁhk, 38, and $(defined by OJL , (2.14), (2.15), 9L _,
aEJshk.‘.lm %y

20
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and JL respectively), satisfy the following three identities:
(11) Tl -0 | (2.37)
(i11) T 4+ 2p T NS §§S¢’r + 185675 = 8751 . (2.52)
5 8
(2) The Euler-Lagrange tensors corresponding to I are given by

(@) = ~(AR e TR, (2.39)
and 1 '
E(L) = @ 1 - @ 3 . o (2-19)
and these two tensors are related by '
| BN @) = w6 B . (2.70)

From equation (2.70) we see that when the field equations
's are satisfied; i.e.,

E¥@) = 0,

governing the 85

J

then the field equation for ¢ will subtomatically be §gtis£i§g;i.e.,

E(L) = 0.

However, if
B(L)

I

0
we can use eguation (2.70) to conclude that
EE (L) 0 ,
but this does not necessarily imply that
ER(L) =0 ..
The vacuum.fiéliequations of the Brans-Dicke theory serve
to exemplify this fact (c.f. equation (4.15) and (4.23)).
In a léter section we shall consider a Lagrange scalar
density of the form
Lp = L0813 813,05 Big,mci 43 £rg) +VEB Iy . (2.71)
where Lm denotes tye scalar Lagrangian of matter and may

contain vector fields, charge densities, matter densities, etc.
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However, Lm will always be independent of both the scalar

field #, and .the derivatives of g; . Breater than the first.

Ve shall let Eij(L) denote the EulgréLagrange tensor derived
from the first term on the right hand side of (2.71) and
Eij(LT) denote the Euler-Lagrange tensor obtained from Lipe

The fleld equations governing the metric potentials
will then be 7

EiJ(LT) = () ....__@_-_('\/g;l,m) + 9 ( o '(w/ng)) = 0.

08; 3 dxF \ 0814,k (2.72)

The Fuler-Lagrange equation for 4 will still be

E(Lg) = E(L) = 0,

where E(L) is given by (2.19). The field equations describing
the behaviour of the matter variables contained withinx/éLm
are the usual Euler-Lagrange equations which pertain to a

matter Lagrangian. We should also note that
i _ gld ' =1, )\ - =
E (LT)IJ =k (L)‘J +{ al{( g ('\/ng) _a_......( '\/ng)}] )
' dx*\081j,k 084 5 d
whica aue to (2.70) can be written in the form’

E(g)); = %R +f D (D (vELD) - 2 (vET DL .
’ a;x:k agij,k agij [J

(2.73)

7The term appearing within the curly brackets on the
right hand side of (2.73) is not in general identically zero.
As an example consider the matter Lagrangian associated
with the electromagnetic field

_ ~ hlk
Vg Lm = %\Vg .FhkF 3

where F

nk = Anik T Axn
and Ah denotes the electromagnetic vector potentials. In
this example

2 (2 (vEr))- D (vEr)} - vE B,
C{Bxk(agijJ: m agij il 13 k|3

which is not identically zero. |
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%, Lagrange Scalar Densities-’--Applications8

This section will essentially consist of twe parts.
In the first part we shall consider four examples of possible
Lagrange scalar densities of the type (2.1). Three of these
examples will be used in the second part of this section
where we consider the "uniqueness" of the Brans-Dicke vacuunm

Lagrange scalar density.

Example (I)

The purpose of our first example is to examine the
peculiar form of our third invariance identity (2.52). We
consider (2.52) to be peculiar because of the non-symmetrical.
appearance of & #'° and 354°T in this expression. We
might have expected the linear combination of 374" and
$34*T 4o be symmetric in r and s. However, if this were
the case the symmetries of (2.52) would have implied that

ermhﬁpk,sm - RksmhﬁPk,rm (3.1)
(as is the base9 for Lagrange scalar densities of the form
L = L(gs55 8i5,n’ 83, mc) )

To show that (3.1l) is not in general true for scalar

densities of the form (2.1) let us consider the fdllowing

scalar density

Ll =VE ﬂ‘oiﬁajRij . ‘ (3.2)

BThroughout the course of this thesis we shall be dealing
with various Lagrange scalar densities. These Lagrangians
will be denoted by LA’ where A may represent either a number

or a letter. We shall denote the various derivatives and
tensors obtainable from LA by placing an (A) beneath these

objects; e.g.
) BLA - ﬂfs,tv
—_— A
9 - agrs,tv
Rund, [22] ’ [23] .
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Using (3.2) we find after a iengthy, but straight

forward calculation that APk S

is given by
/l\hk s SH 1@4{5, ﬁ,k hm + ﬁ,mﬁ,k sh ﬁ, ﬁ,s km
{2
4 gBGIMgkS _ pga8yumeble o pahyk Sm]’ (3.3)
From (3.3) we find
hk
Rl T = 3VE (R hy + BT 800) L (58
. krms . < s
Now since R ﬁ,kd,m is symmetric in r and s and

erﬁ,mﬁ’s is non-symmetric in r and s we may conclude that

hk , sm hk yT
Rean 0 A Rmn | (3.5)
Thus in general
hk,sm s ,hk,rm ‘
R mn A R mn\ (3.6)

when dealing with Lagrangians of the form (2.1).

Example (IT)

The following scalar density
Ly =VEE (D R+ £,(8)6, 8" + £5(8)), (3.7
where f,, f,, and f5 are arbitrary scalar functions of
class 02 in thelr arguments, was first investigated by
Bergmann| 3]. He has suggested that (3.7) is the most general
Lagrange scalar density of the form (2.1) which yields field

equations of second order in the derivatives of both 8;

4

1]
and g. The merits of Bergmann's choice of Lagrangian will

be discussed later in this section. However, we shall now
give a trivial example which shows that LB is not the most
general scalar density of the form (2.1) compatible with the

above restiction upon the field equations.
10

L =ve1(y), (3.8)

Let us considexr

1Oxote that Bergmann's Lagrangian (3.7) does not contain
a term of the form (3.8).
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where £ is an arbitrary scalar function of class 02 in its
argument ?='ﬁ,i¢’i. In order to obtain the field equations
corresponding to L2 it will be necessary to compute é?a and

gf. These are given by

N9 = wEgls - vEL gigd, (3.9)
arld (2) . 2 .
gt = 2vE L' 400, | (3.10)
where :
£1 = %;_ .. | (3.11)
Thus we may use equaté;ns (2.18) and (2.19) to conclude that
B9y =vE{s1pisd - 16te}, (3.12)
and 2 ]
E(L,) = %{Dgs £+ 20PN L, (3013)
where

4

_!'—(-\/g glaﬁai)sj = 813 ¢11{] . (5-14)
Ve '
Equations (3.12) and (3.13) show that L, could be added %o

LB without changing the order of the field equations.

Example (IIDll
The purpose of our present example is to obtain the
FBuler Lagrange tensors éorresponding to the following scalar

density

L5 = f4(ﬁ) Ly | (3.15)
where > - . s

= - 1d ijhk
L, = VERS - 4R B9 + Ry B, (3.16)
and f4==f4(¢) is an arbitrary scalar function of class 02.
The calculations necessary to determine Eij(L5) will be
simplified slightly if we first consider some of the properties
of L“f
We begin by rewriting L4 in the form

_ -~ cabecd ef hi
Ly = 1vBberni Rap Req o (3.17)

llThroughout the rest of this thesis we shall confine
our attention to 4 dimensional Riemannian spaces.
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where .
So 8 &p &
b b ,b
4L

gaped - detﬁgg 52 1y, (3.18)

§e b5 Sn 65

a a (&

\Se 5% Jh Ji

Using (%.17) Lovelock [15] has shown that
ke 1fp hi

T - VE 65208 (558t + STSDWHok + Sidy) €8 R S
) 4 ' (3.19)

and that the covariant divergence of the above expression

with respect to xt is identically zero; i.e.,
rs,tv = _
Now sincegf’ is identically zero we may use egquation
(2.52) %o deduce that

TS rs _ T shk,sm
EE = % g L4 % Rk mhé . (3.21)

Using (3.18) we find that the second term on the right hand

side of (%.21) may be written

hk,sm _ ascd, fre ref
- % K mnly T 'l‘/é '{[‘%qucp‘ at By )t
bcd fr r £ _se Pa
gequ(R Ra'p 78 | Reg } (3.22)

A straightforward computatlon ylelds

§erpqRoa’® = 206562 - 62600 + 4(STRY ~ §2RY) +

efpqg cd
b.a b,a ab
Upon combining (3.23) with (3.22) we find
sm - _ rs rf_s S Trab
~2r*'R r o) (3.24)

If we now make use of eguations (3.16), (3.21) and (3.24)

we see that
rs rs,. 2 ab . abecdy- rs Ia,s
" = % g (RS = 4R" Ry + Ropeg® ) - 2(RR°° - 2R R, +

o S arbe b r
RO - 2r%°R 1 7)), (%.25)

+ Ra be
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which vanishes identically in a four dimensional space as

a result of the Bach identity [2].12
With the above information with regards to L4 at our

disposal we may now easily obtain Eij(LB).
To begin we have '
}
and using (3%.20) we find -
rs,tv - . ADS,tv
/\ ? Ity = f;_]_(ﬂ;)itvé\l ? . (5-2?)

)
Since g) is identically zero we may use our third invariance

rs,tv _ rs,tv
N2 = £, BN, (3.26)

identity (2.52) to obtain ‘
rs _ rs _ T ahk,sm
Equations (3.15), (3.21) and (%.26) permit us to rewrite

the above expression in the form

s _ rs
T = 2,06 T°°. (3.29)
Due to the fact that‘HrS is identically zero we have
e =o0. (3.30)

Q)
If we now insert equations (3%.27) and (3.30) into

(2.39) we find
s - ' TS,V
L) = - 8By ST, (3030)
where £fs,tv is given by (%.19).  (3.31) is clearly of second
order in the derivatives of 85 and g. |
Using (2.19) we obtain

*E(L5) = - af, L, . - (3.32)
ag-

which is of second order in the derivatives of gij and of
zeroth order in the derivatives of 4.

In passing we note that if the field equation

EFS(Lé) =0

12Tbis identity is usually referred to as the Lanczos
identity[12) , but since it was first discovered by Bach[2 ]
we shall refer to it as the Bach identity.
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is satisfied, and if df,  is non-zero then equations (2.70)
dg

and (3.32) imply that _
I.I‘4 = 0. : (5'35)

We shall now show thaf our present example may be used
to construct a multitude of scalar densities of the form
L =T(8145 813 ns Bignkd B3 Fags Fagy)
which identically satisfy both sets of Euler-Lagrange
equations., To see this lét us begin by considering
L= 8. Eo(Ly), (3.34)

which is given by

e - et SHENOLS + DAY LD
(3.35

Using (3.23) we find that (3.35) simplifies to
L= -t 2,0 VERY - %gt"R) . (3.36)
Now since -
V& ( R*Y - 1g%VR)) _ =0
z v
we may'rewrite (3.36) as follows:

L= = My VEERT - 167R) . (337

However,

- WE L, R - 16°'R)
is a vector density, implying that the covariant divergence
appearing in {3.57) may be replaced by an ordinary divergence.

Thus Jiis an ordinary divergence. Consequently we may apply

Lovelock's [16] result, (with regards to divergences identically

satisfying their Euler-Lagrange equations), and conclude
that
V(L) =0,
E(X) =0,

and

.
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The above analysis of L admits an immediate general-
ization which assumes the form of the following

Theorem 5.1§‘ Let pHd be a contravariant tensor density of

valency two which is a concomitant of g, and its first p

derivatives (where p is any integer >0) and which enjoys

the following property

pid

1= 9

and let A, ,

Ai = Ai(‘d; .dsi1§ vee} ‘d,'il“'iq; Bap? gab,jl;”.; gab’jl"‘jr) ’

(where q and r are any integers >0) be a covariant vector,

then the scalar density

L

) 13
¢ = Ay F

identically satisfies the Euler-Lagrange eguations corresponding

and g.72

to both gij
proof: Due to the fact that Plﬂj =0 we may write LG as

follows: 13

Since ptd is‘a tensor density.AiPiJ is a contravariant vector
density and thus _ |

Ly = (AiPlj),j.
Thus LG is an ordinary divergence and we may now apply Lovelock's
[16]results to conclude that the Euler-Lagrange tensors

corresponding to LG are identically zero. 14 Q.E.D.

15This theorem is also wvalid if

A- =A- H V » se e e, : 0 H H s se s ey . >
i 1(vk’ k,ll’ ’ Vk,ll...lq’ 8ap? gab,al’ ! gab,al...ar)’
whers Vk is a covariant vector. -

14Note that the proof is actually independent of the
dimension of the space under consideration.
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In passing we remark that Lovélock‘ﬁ!ﬂhas constructed

all symmebtric divergence free contravariant tensor densities
'of rank 2 which are concomitants of gij’ and its first two
derivatives. Thus by combining any one of Lovelock's
divergence free tensors with an Ai of the form
Ai = H(ﬂf)lia

where H(g) is an arbitrary function of class 04, we can
construct a multitude of écalar densities of the form

L = L(gij; 855,ni 814, hK g; 8553 ff,ij)
which identically satisfy both sets of Euler-Lagrange equations.
In particular when n=4 Lovelock has shown that the most
general symmetric, divergence free, contravariant tensor
density of rank 2 which is a concomitant of 8;4 1 85 h, and

J Jo

gij nk is given by
yhk - . - .
a/E ('Y - %g”R) + VB,

where a and b are constants. Thus the Euler Lagrange tensors

corresponding to . . .
avE B(#); s (R*? - 1g79R) + b/BH(A); &Y,

|id 5 1ij
are identically zero. In fact this statement is valid for

a space of any dimension.

Example (IV)
As our last example we shall consider the Euler-Lagrange
tensors corresponding to
Lg = £5(8) Lg s (3.38)
where | '
Lg = PR R K, (3.39)

and quhl denotes the Levi-Civikta four dimensional permutation

symbol which is a tensor density. f5==f5(ﬁ) is an arbitrary
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scalar of class 02.
As in our last example let us begin by examining the

various properties and tensors associated with L6. The first

rs,tv
1

(G\'l‘sstv - ¢Pabi ddomk [ORy; 5i Roam * RhijkBREglm .
agrs,tv agrs,tv

tensor we must consider is which is given by

Now since
hi .
QPQ 1 _ Ehlp?,

we may rewrite the above expression in the form

rs,bv _ 5.pghi 1j mk, aR
A =€ e s pqlma

grs,tv

After a lengthy calculation we find

epqhigljgmkaRhi.k -1 qurt[glvgms ls m ]
agrs,tv ol

mr_ glrgmf] +

pqrv[glt ms ls mt] epqst[ lvg |
. epqsv[glt ny 1rgmt1} (3.40)
To obtain éfs '8V e must mltiply (3.40) by 2R bqlm

and sum over P, q, 1 and m, Now since each of the terms
appearing within square brackets in (3.40) are antisymmebtric

in 1 and m we have

- la mb
pqlm 2g qulm *
is given by

[gla ll'lb lb ma]R

Thus we find that
ﬂFS’tv ={%pqrtglvgms + €pqrv 1t ms Cpqst lvgmr +

@ pqsv 1t _mr
+ € g } qulm . (3.41)

Let us now examine the covariant divergence of (3.41)

'Cfs , TV

with respect to xt, which may be written as follows:

QI‘SgtVIt = quhi(%qlmligg K qulmlaav )((S (Sk +5k5h )gla mk
(3.42)

The form of the above expression may be simplified if
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we note that ] ] i
gpabl _ cqibp _ iphg ,
and consequently

pghi pghi
S qulml S le (qulmli + qulmlp + Riplmuf ?

which vanishes identically due to the Bianchi identity.

Thus (3.42) can be written in the form

éfs’tvhi - quhVqu 13 (5ﬁdk 6ﬁ6§)gmk- (3.43)

Using the Bianchi identity once again we find that (3.43)

may be written as follows:

rs,tv - pqhv k
N2 e = 2R (SR - et - (3.44)
From (3.44) we find that
rs,tv _ pghv k r.s TS
é ’ ltv ~ 2€ qupv (cSthk + CSkéh) ) (3.45)
which may be rewritten
rs,tv - PQrvps pPQsvy,
(/‘3 v 2% Rgpv * € qipv} (3.46)

Upon making use of the antisymmetry of ePTY ye see that
(3.46) may be put in the following form

rs,tv paxrv pgsv BT
A7 ey =€ (qupv Q|VP)+ € (qupv Rywp+ (347

The Ricci identity permits us to réwrite the above expression
as follows:
rs,tv parv Sm
& tv =€ (Rqu pVv + RmR qpv)
‘ PQSV,olpn I T, m
. + € (Rqu ov * Fn® qpv % (3.48)
However, due to the fact that

m m n
Rapv * B pvg * Foygp-= 0o
we have that
Parv,m =
€ Bapv = 0 s
and thus (3.48) beccmes
rs,tv PQIVLm Pasv m '

ﬂFs,tv
{6}

Now since [tvls symmetric in r and s we finally obtain
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rs,tv - pqQrvom, S .50
é\) [t = 2€T Ry py (5.50)

By combining equation (2.52) and (2.39) we may write

the expression for ErS(L6) as follows:
ErS(L6) - - éfs,tvhnr % grSL6 + % krmhéfk,sm. (3.51)
Using equation (3.41) it is possiblelto show that
% M mhdfk o - ing?mh(ehmquPQSk * ekquﬂpth)' (3.52)

Thus by combining equations (3.39), (3.50) and (3.52) we
see that (%3.51) becomes |
s . _opPdrv m., S _ 1 LS.pghi Jk
E (L6) = -2€ Rqu PV % g€ Rhiijpq
hmpqg sk kspq mh -
o+ kmh(e Rpq  *+ € Ryg Je (3.53)
However, the right hand side of the above expression

+

is prepertional to

sd pgklr Ajhm.
Jiatude} Rhmqukl ' (3.54)

which vanishes identically in a four dimensional space, since

when n=4 we have*

6qu1r
ijtua <

We. may now use the above information to obtain ElJ(L5).

To begin we have

rs,tv _ , s,tv
e A = £5(OA, (3.55a)
an us
é}rs,tvltv = (ﬁ)ltv Ars ybv 2f5(‘d)lt /\rs tv‘v .
+ f5(¢>fFS AT (3.550)

Since L5 is independent of the derivatives of 4 we obtain

=0, (3.56)
s)
Upon combining (3.56) with our third invariance identity we find

EIrS - % grsLS - g ermhﬁpk sm, (3.57)

which, due to (3.38) and (3.55a), may be rewritten as follows:

*
This type of an approach to the derivation of dimensionally
dependent identities is due to D.Lovelock Evﬂ.
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ﬂrs 5(;5)-{%5’%6 - gnk mh/\hk’sm} (3.58)
If we now insert equations (3.56b) and (3.58) into (2.39)

we obtain

E™(Lg) = - £5(B e 20 - 225y NS,

{6> |v

- f5("'5)(§s oy + 367 T - %ermhé?k’sm} + (3.59)

The term within curly brackets in the above expression is

simply-—ErS(L6) (c.f.(3.51)) which we know vanishes identi—r

cally in a four Qimensional space. Thus (3.59) reduces to

E¥(Lg) = - £5(B)j4y (/G\fs'“GV - 2f5(52f)lt/\rs’tv|v , (3.60a)

which, due to equations (3.41) and (3.44), is obviously of

second order in the derivatives of & and of third orde; in

the derivatives of gij‘

Due to equation (3.56) we may use equation (2.19) to find

E(Lg) = - (_;‘;5 Lg (3.60b)

which is of zeroth order in the derivatives of g and of second

order in the derivatives of 84

iy’
As in example (III) we note that if the field equation
TS '
E (L5) = 0

is satisfied, and if dfs 54 non-zero, then equations (2.70)

d

and (3.60b) imply that

L6=O-

This completes example (IV).

We shall now proceed to discuss the problem of choosing
a Lagrange scalar density of the form (2.1) when working in
a Riemannian V4. In order to limit the field of possible

choices let us demand that the Euler-Lagrange tensors
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corresponding to our'scalar denéiﬁy be at most second orderx
in the derivatives of 8 ; and 4.
To begin we shall analyze the approach used by Bergmann

[3]to obtain the Lagrangian presented in equation (3.7), viz.,
Ly = VE (£, (B R+ £,(8)8,,8°% + £5(8)). (3.7)

The above scalar density has been suggested by Bergmann as

the most general Lagrangign compatible with second order

field equations., The argument used by Bergmann to obtain

(3.7) is as follows:.

(1) The only two scalar densities of the form (2.1) which

are independent of g and yield second order field equations

in g are

- VvVER and /g .
(ii) Upon introducing g the most general Lagrange scalar
density compatible with second order field equarions in
both gij and ¢ may be obtained by considering a 1ineér com-
bination of the above scalar densities and:vﬁiﬁ,ié’l.
The coefficients appearing in this linear combination are
to be arbitrary functions of class 02 in their argument g.
From (i) and (ii) Bergmann obtains (3.7).
Let us ngw examine Bergmann's reasoning. First of all
we note that the statement made in (i) is false: i.e.,
& R and+/g are not the only scalar densities which yield
field equations of second order iﬁ'the derivatives of gij'
This has been pointed out by Bach[Eﬁ]who was the first to
prove that the scalar densities L, and L6, given by (3.16)
and (3.3%9) respectively, satisfy the Fuler-Lagrange equations

identically, and thus trivially satisfy our demand of second
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order field equations;15 In fact it has been shown by
Lovelock [13] that the most general scalar density of the'form

L = L(g3 45 854,n) sij,mg),, (3.61)
which yields field equations of second order when in a four
dimensional space is given by

L = a</E + bvER+ cVER® - 4Rinij " Rijhkaif'hk) +

+ deljrersi{thhij , | (3.62)
where a, b, ¢ and 4 are constant®s.

Before proceeding to examine the second step of Bergmann's
argument let us replace (i) by the following correct conclusion:
(i') The only-four scalar densities of the form (3.61)
which yield Euler-lLagrange tensors ﬁhich are at most of
second order in gij'are given by
avE , bVER, cVEER® - 4Ry R0+ By R

geidrsg  ghk

rshk ij ?
16

ijhk)
k]
and

where a, b, ¢ and d are constants.
In the second step, (ii), of Bergmann's argument there
is an oversight in that he neglects to include terms of

5

the form
VE £(4,36" D)

in his Lagrangian, where f is an arbitrary scalar function
of class 02 in its argument. From example (II) we know that
such terms are in fact compatible with second order field
equations and thus must be considered.

Step (ii) also gives rise to another difficulty when
we try to apply it to (i'), our corrected version of (i).

In this case we nobte that (ii) would imply that

159his result was also established by Lanczos[l12].
16This result is valid only in a four dimensional space.
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Lg = f5(d)€ijrershthkij ’
should yield field equations of second order. However, we
have seen in example (IV) that this is not the case, since
Eij(L5) is of third order in the derivatives of g .
Due to the above considerations it appears that a more
general scalar density of the form (2.1) compatible with the
demarmd for fie;d equations_which are at most of second order

in the derivatives of g.. and & would bet?

13
LH =\[é{hl(ﬁ5)3+ hg(.d; ﬁai; gij) +.

- 2 13 i3hk
+ hz(8) (R ~ umy B 4 By R )} .

ij i
ijrs hk
+ a€ RognicR i | (3.63)
where hl’ h2 and h5 are arbitrary scalar functions of class

02’ and a is a constant,

The Brans and Dicke vacuum field equations are derived

from the following scalar density:

bep - VE{6% - wﬁgiwi} , (3.64)

where w is a dimensionless constant.18 FProm the form of

(%3.64) it is obvious that LBD could not be the most general
scalar density of the form (2.l1) which yields second order

field equations., However, we shall now show that LBD and

19

LB are closely‘related by means of a conformal transformation.
To see the relationship between LBD and LB let us

begin by considering a conformel transformation of the form
- 207

17We are not claiming (3.63) to be the most general scalar
density of the form (2.1) with the aforementioned properties.

l8In section 4 we shall replace the g appearing in (3.64)
by (~g), since it is customary to assume that g<0 in general
relativity.

19'l‘he conformal relationship between L D and Hahas been

B
pointed out by Bergmann in [3].
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where 0" is a scalar function of class 02 in its argunent.

Under the above transformation we find20

VB = ¢ VE , | (3.66)
and :
R = ¥R + ge® (VB EN ), + 680X 075 (3.67)

VB

Equations (3.65), (3.66) and (3.67) permit us to rewrite

J°

L., as follows:

B
Ly = "M-\/'g';‘{ e+ Ge f l 1 (e a%gl‘?(fi),j +
- VE

~i3 2 20=1]
+ 68+ T, e _0’0’,10’.,3. + fggf,ipf,a. e~ gd 4+ f5} . (3.68)
We shall now choose 0 so that the coefficient of .
\/gfiappearing in the above expression is.ﬁ. Thus ¢ is given by
o =1 1n(f1) . (3.69)
5 \F |
Using (3.69) we find that (3.68) may be written as follows:
- SVER + BVESEI 1(£] - T g0} .5
T 3— AP T g

1
- ngié{ﬁ(ﬁ)"_ ALy v 3B é‘iﬁ{gf(fi)a- 211 4 1};5,1:5,3 ;
I,/ 7] I, %

+ fExf"glaﬁ}ld, + £ ( ) g , (3.70)
y 4
where o1 - dfl )
; 1 a

Upon combining similar terms the above expression becomes

- pVER + sVEAFIL (21 - T1) 40y}
G e e 2
+’\/§éla ﬁ’iﬁ’j{-z%ﬂ[l —('f;‘l'd)J-ll- 'd.fZI‘ + I‘B('%._)-\/Zg— . (3.71)

1 Ty
The second term appearing on the right hand side of

(3.71) is a divergence of the type considered by Lovelock in
[lGL Drawing upon Lovelock's results we may conclude that
20These results were obbtained from Blsenhart[ld] pages

89-90. Note that Eisenhart's Ricci tensor is the negatlve
of ours.
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the Euler-Lagrange tensors corresponding to this second term

are identicaily zero. So upon neglecting this term (3.71)
21

Ly =VE{ #K+ T (96,18, 8 + @} . G2

where we have set

becomes

' 2
F,(8) = 3 [1 - fl‘*‘) + 82, (3.73)
2 = 5| (ﬁ IS
and ’ | .
F(4) = fa(_i)a , (3.74)
t; e
If we now set Fz(é) = 0 equation (3.72) reduces to
Iy = VE{$ + 7 ()6, 5,7} - (3.75)

Setting Fg(ﬁ) = O is not a severe restriction, since it is
equivalent to setting fa(ﬁ) = 03 i.e., in assuming that the
cosmological term is negligible. |

It is now apparent that Lp, can be obtained from (3.75)

if we set

) = -9 (3.76)
which is quite a severe restriction upon the functions

fl(ﬁ) and fg(ﬁ)'

To summarize the above results we have the following

Theorem 3.2: Under the conformal transformation
[ s — fl(ﬁ) g

Bij —z i
the Bergmann Lagrangian

Ly = VE{ £ (D) R+ (D), 4, 6" fz,(sa’)}

becomes .
Ly = VE{#E + B (9,36, 8 4 (0]
(where F,(4) and F,(#) are given by equations (3.73) and

(3.74) respectively) which assumes the form of the Brans-

21In order to compute the Euler-Lagrange tensors cor-
responding to (3.72) we would have to assume that fl(ﬁ)

is of class 05.
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Dicke Lagrangian

LBD = '\/é{‘d-R-' %3 -dsi‘drlg.jéla} ]
when the cosmological term Fa(ﬁ) is neglected and

Fl(ﬁ) = - %l.

Now it should be noted that Theorem %.2 tells us
nothing about the relationship between the Euler~Lagrange
tensors corresponding to Ly and LBD; The problem of relating
the Euler-Lagrange tensors of conformally related scalar

densities will be dealt with in section 5.
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4, The Field Egquations of thé Brans~-Dicke Theory

The Lagrange scalar density from which the field equations

are to be obtained is<e

L

Lpp + L6TCVTEL . (#.1)
[+

and W is a dimensionless constant. In (4.1) 16’rfLﬂ1 rlays
c .
the role of ths scalar Lagranglan of metter mentioned at

23

where

Lpp

the conclusion of section 2.
The Euler-Lagrange equations for the metric potentials

are given by .
EJ(@) =0, (#.3)

where

19

By - By + 16-17{ d (8 (Ve Lm))- 9 (\/-_-é_Lm)} .
(uon)

ot ( 0xX 0815,k OB 5

We shall now proceed to determine the explicit functlonal

form of (4.4),

Using the fact that du Plessis has.shown24

» » lk » 01 - )
J&/ER) = —w/-g{glagkl - %(sl gl 4 gt gak)} , (4.5)
085 4,k1 |
we easily find that
. & . 4 '3 'y il »
NEL o g {glagkl ~ 1(g™¥gdt 4 g gak)} , (4.6)

[§:10)] :
and thus 2.

/\ij’kllkl = - By VB {gijgkl - %Cgikgji + gilg'jk)} o (4.7)

(eo)

22Throughout the rest of this thesis Latin indices will
run from O to % and Greek indices will run from 1 to 3.
We shall also assume that the signature of 8 is(~1, 1, 1, 1),

25Brans and Dicke([#], page 929) assume that Ly is inde=
pendent of g, ; however, we shall assume that Lm contains

ij.k
both gij and its first derivative.
24

Reference EZ%, page 169, or[éﬁ], page 258 .
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The above expression may be written

A - - vEEGEting - 4, (4.8)
where
and s ,
ﬁllJ - ﬁ[kl gklgal (4.10)

In obtaining (4.8) we made use of the fact that since ¢

is a scalar
A1 = Pk -
In order to determine(g;"J we shall use our third invar-

iance identity (2.52); viz.,

13 o 3e¥dp . -2 A, dm 1§ 0. (s
QL;]).) 2 ) BD Rk mh{BD} g( B) %(g;) ﬁ ( 11)
From (4.,2) we readily obtain '
cam = =28 ? (#.12)
Using (4.6) we find -
k h k
R mnd) ’Jm="¢‘/_ngmh{hkam 1(ha " ma)},
which simplifies to
i Abk,jm _ —_ 1] "
Relanf) 0" = 38VE B @

Upon inserting (4.2), (4.12) and (4.13) into (4.11) we obbain
T - 169 VR4 R - rgmid’i) - VERD 4 uVE grigd

(60} o]

which may be written in the form
.- w—{ ¥ - 1% } - %x/——g{%i%,kwk - gsﬂiwa}. (4.14)
If we now combine equatlons (2.39), (4.8) and (4.14) we find
59005 - sV (R - L8R+ v gt ek pri0d)
BD 5 3 5,k

(BD)

+ V7E (g'og - 419y, (4.15)
which is the Euler-Lagrange tensor corresponding to a variation
of the 8; 5 's within the Brans-Dicke vacuum Lagrangian.

Thus by combining egquations (4.4) and (#.15) we find that
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our first set of field equations (4.3) may be written

s 2 ’ i- : ,. ". i. ,k
R - 1gtr = e o L T - 16T ) 4

ge 4

+ %w‘i«"- 5908 ) (4.16)
where we have set

i . o J (VEL) - 9 _[(J /EI, ))} . (4.17)
K
V=E | 081 i3,k

In the presence of matter equation (4.16) governs the be-

haviour of the metric potentials in the Brans-Dicke theory
of gravitation.

The form of equation (4.16) is not completely unfamiliar
to us, since many of the elements in this expression appear
in the field equations of Einétein‘s theory. On the left
hand side of this equation we have the Einstein tensor,
and the first term on the fight is the usual energy momentunm
tensor of matter, however, the gravitational constant has

been replaced by the variable coupling parameter 1. The

second term on the right hand side of (#.16) is the conventional
energy momentum tensor of a zero rest mass scalar field,

| however, once again we have 1 replacing the gravitational

"constant". The last term in equation (#.16) is peculiar
to the Brans-Dické theory.
We shall now‘proceed to obtain the Fuler-Lagrange tensor
for #. At the close of section 2 we remarked that for a
Lagrangian scalar density of the form
L = L'(8543 B34 mi Bij,mes B3 £r3) + Vo8BI

we have
E(L) = B(L'),

Thus equation (2,70) may be used to determine E(L) where,



in our case, L is given by (4.1) and.L':LBD.
Taking fhe covariant derivative of (4.15) with respect

to xj gives us

- 4;vEED - 18V R) + ovE e;ij(ff'kﬁsl 8kl)l +
5

SRCYE
- &J\/“'—g(.dsh ﬁfsk ghigkj + V=g (gljghkndlhkj - gihgjkﬁlhkj)- (4.18)
9 B -

Using the Ricci identity we may rewrite the last ﬁerm appearing

in (4.18) as follows:
{3 hk ih ik
VTE(E 8 s ~ &8 Bpgs) = |
= i3 hk m _ _ih 3k '
= Y 8(8 g (ﬂ‘ihjk"“ FflmR h.ka) g B ﬁfh.k;])' ;4.19)
Since ﬁhﬂsz ﬁﬂﬂl the above expression reduces to
L5 hk in s .
V"g(glagh gflhka - g hgakﬁlhk'j ) = =-y=-g le.d!m * (4,20)
Let us now examine the second and third terms on the

right hand side of (4.18) which we denote by Al; viz.,

At - L,;g\/-_ggij By By 8 _ WOVEE (B, By gt .
é [ 4 [3

Upon making use of Ricci's Lemma we find that the above

. . i
expression for A~ reduces to

At ,ng,xf‘—g{ iy, gF - 2;5'1::1;5} : (4.21)
If we now insert equations (4.20) and (4.21) into (4.18)

we find
ﬁ,kﬁ,k - 2Dﬁ§ . (4022)

B (gpliy = 347 VER + 0V g™

By applying (2.70) we can conclude that
E(L) = E(Lgy) = -w/:‘é{a- _oéqﬁ,kd’k + §wm¢}. (4.23)
g

Thus the field equation governing the behaviour of the
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scalar field in the Brans-Dicke theory of gravitation is

given by X -
R - ‘d,kd, + 2(:3[1,6 =0, ) (4.24)
3 = N

g

From our previous work in section 2 we have

Eij‘(L)lJ. -1 #iga) - _S%:‘r-\/-—g miif,j . (4.25)

We shall now assume that our energy momentum tensor, Tla,
has been constructed so that Tldh'vanishes when the field
equations governing the matter variables have been satisfied.25

Thus when this is the case we may conclude (as we did for

Lagrange scalar densities of the form (2.1)) that the field

equation for 4 is superfluous, and perhaps may more properly

be considered as a consistency equation. . For when the field
equations governing the metric potentials, (4.16), and the
field equations for the matter variables are satisfied we have

0 (4.26)

il

B .
(L)w
and

.

'Tijkj 0. (#.27)
Equation (4.25) then implies that E(L) must automatically
vanish.

However, it should be noted that when E(L) (EE(LBD))
vanishes neither Eij(L) noxr Eij(LBD) will vanish in general.
In passing we note that when

ij
E™(Igp)

E(LBD) = 0 (4.28)
" then
Lgp = O« (4.29)

To see this let us examine gingKLBD) and ¢E(LBD). From
equations (4.2), (4.15) and (4.23) we easily find that

gijEij(LBD) = - Lgy + 3VEDE, (4.30)

251n conventional general relativity Tij is usually
constructed so as to be compatible with this demand.
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and
ﬁE(LBD) == LBD - 20'\/’% D¢ * (4051)
where s s ‘
VEDE = (VB g7V 4,50, « (4.32)

Using-the above expressions we obtain
BefE(LBD) + 2085 s B (Iyp) = = (204 3) Ty . (4.33)
Thus when E- (LBD) and E(LBD) vanish so does Lap (provided
we assume that&)#—%).
We shall now proceed to use equation (4.16) to rewrite
our expression for E(L) which is given by (4.23). We begin
by multiplying (4.16) by g'J to obtain

k| 26
R = -8’n'T + _% L. guﬁ . (4.34)

s g
Upon inserting (4.%4) into (4.23) we find

E(L) = -v-g{ + 304 - gw} O (4.35)

and so the field equation for &g becomes

0g = g1l . o (4.36)
. (2w+ 5)04 '
Thus we see that g obeys a scalar wave equation in which

the source of the scalar wave is the contracted energy
momentum tensor of matter, _
Let us now return to equation (4.16) and ask the following
gquestion: Is it ever possible for the first term on the
right hand side of (4.16) to be so "large" as to completely
dominate that side of the equatioﬂ and thereby yield the
approximate field equation
14 15 L 44
Rau%g JR=§'IT:?"3 ? (4.37)
Brans and Dicke ([4L page 930) assert that the answer to this

260 i given by gijTi'j.
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question is in the affirmative. However, (4.36) permits

- £iing

term appearing in (4.16) by

us to replacé the

—'8'Irgi'j T, o
(2w+ 5)04;6
Thus when ptd is "large" T may also be "large" and hence the
8wTij
——
c'g

term need not necessarily dominate the right hand side of
(4.16).27 Therefore we must disagree with Brans and Dicke
and conclude that (%4.37) is not a generally valid approx-
imation to (4.16) in the limit of "large" T°9,

Given below (for the ease of later refrence) are the

Brans-Dicke field equations of gravitation:

Rij - %gin= STrTij + w(‘é’iﬁ’j - ;gij F‘gkﬁf’k) +
2

ge g
+ %(é'ij - &904) (4.16)
and . |
R - j‘% ndakﬁ, + %J_D‘d = 0 ) ) (4.24)
or eguivalently
Og = 8T , (4.36)
(2w 3)e
where . '
9= 2 JO  (vEL)- 2 (a (w/”—'éL@ y (4.17)
VE (9813 0x°\081 3,k
and - .
= gy T (4.38)

27yhen 19 is "large"™ T need not be large, as is the
case for the electromagnetic field tensor, T=0,
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5. The Effects of Conformal Transformations Upon Scalar

Densities of the Form

L = L(gij; gij,h; gi{j,hk; ﬁ; .Ffai)

Recall that in section 3 we considered how Bergmann's
Lagrangian (3.7) transformed under a conformal transformation
of the form

By - 850 0 (5.1)
where O is a scalar function of class 02. However, we have
thus far neglected to consider the relationship between the
Euler~Lagrange tensors corresponding to conformally related
scalar densities of the form (2.1). This section will be

devoted to examining this relationship.

To begin let us consider the following

Example:
When : ‘. '
L =v7E #,;6,;8 (5.2)
it is easily shown that
E(L) = 204 . | (5.3)
If we now perform the.follbwing conformal transformation:
By5 = % By | (5.4)
we find that in terms of the barred metric I becomes
I-4vEEId b (5.5)

from which it can be shown thatea*

E(T‘-) = eﬁ(V"gékj g"k)’j + V"gékj ﬁakﬁaj . (5.6)
Using (5.4) to rewrite (5.3) in terms of the barred metric

we find that E(L) becomes
EL) = 26(VEEV 6))sy + VEE ey o (5.7)

28To obtain (5.6) from (5.5) we have performed a vari-
ation of g regarding the gij as arbitrary preassigned functions

of position.
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Thus it is apparent that a solutidn to
E(T) = 0

need not yield a solﬁtion to
E(L) = 0,

even though I and T are related by a conformal transformation.

From the above example it is apparent that E(L) and
E(T) will not, in general, be related although L and I are
related by the conformal transformation (5.1). We shall now
proceed to show that Eij(L) and Eij(f) are closely connected,
when I is of the form (2.1). We shall then exploit this
connection to show that even though E(L) and E(L) are not
related (in general) this difficulty can be overcome through.
the use of equation (2.70).

Let us now assume that we have two Lagrange scalar

densities Ll and L2 of +the form29

Ly = Llﬁgijﬁ 85,0 Bij,nks A3 Bss) (5.8)
and
Ly = Lo(B5 55 By ni Bijg,nis B3 Boi3 03 Tags Gigg) s (549

where L, can be transformed into the form of Ly (up to the
addition of a divergence) by the conformal transformation
(5.1). We shqll now consider the problem of relating
Eab(Ll) to Eab(LE) where

) =3 [l -9 ol - ok, (5.10)
Jx®\08ap,c  3x“ IBab,cd 08ap

ab L L L, °
E%(n,) = 3 (o%2 - &d_ OL2 - k2 | (5.a1)
ox° agab.,c ax agab,cd agab
It will be shown that under (5.1) Eab(Ll) transforms to

and

eacﬁab(Lz), and this transformation is exact; i.e., there

291,1 and L, should pot be confused with the L, and L,
introduced in section 3.
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is no divergence dropped from consideration as in the case
of transforming Ll to L2. | |
In order to establish this relationship between E2"(L,)

and Eab(La) we begin by examining how the derivatives of

éij are related to gij and its derivatives. From equation
(5.1) we find:

- _ 20" 20°

. Bij,k 203, B3 + © gij,k s (5.12)

an

- 20" 26

Bij, k1 = 2O ® By + 405000 ey +

2q” 20' 20°

Upon combinlng equatlon (5.10) with the above results

we may conclude that under (5.1)

(81’2 OBis x + O%2 5513.1:1) +

Eab(Ll) = a [ -
0813,k OBab,c  O8ij,k1 OBap,c

-3 (5342 agij,kl) +
JxI\0B1 ;5. x1 08ab,ca
- 4052 OB8ij4 . ol OBig.x + OLp aéij.kl}.(B.w)

agla agab agla k agab aglg,kl O8ap
In order to simplify the form of equation (5.14) we must

compute the following derivatives:

OBiji k1 , 9Bij,k1 , OBij,x1 , OBijk , OBijk , OBij . (5.15)
agab,cd agab',c agab agab,c agab agab

From equations (5.1), (5.12) and (5.13) we easily obbain:
a_al&—-fo‘é ébékél +636 Peess +(51<5(_3 +(§J(§bc5§:’(5k}' " (5.16)
0Ban, cd
085 11
agab,c

. . 8 (b |
aszlb“’kl = 0y0070 (8385 +85d5) + 20,0, (280 +200) , (5.18)
a

0e?0(628365 + 56065) + 03T (28258 + 26862), (5.17)
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20 b b ‘ :
o (65838 + 8581600 : (5.19) -

By 20 ¢a (b b | |
a:zgak 0@ (5?63 + 5361) 1 o (5.20)

. 0 b b
g::i = %e (5?63 + é?éi)f | (5.21)

We shall now proceed to use the abé%e results to put
equation (5.14) into a more familiar form.

Using equations (5.17) and (5.19) we find
Olp  Bijx + 9%  Bijun - M +

agla k agab c agij,kl agab,c agab,c
v 20990, 0% 4+ 20%0,9% (5.22)
agab ke agab cl

and from (5.16) we obtain
ol OBijua = Ofp 20, (5.23)
08ij,x1 FBab,ca OBab,cd

Upon differentiating equation (5.23) with respect to x

d

we obtain

(BL__e 08: 4 k1 \= 2G,deggéfa + % 9 (3o .(5.24)
dx9\08; 5, x1 OBab,ca 0Bab, cd X3\ 081, ca

By combining equations (5.22) and (5.24) we find that

the term within square brackets appearing in equation (5.14)

is given by

eI a_Lz + cr,daLe - D) oLz . (5.25)
FEap,c Bab,cd x% 08ab,ca

If we now differentiate the above expression with respect

to x° we find that under (5.1)
fony  _ 3 )

axc\agab,c Oxd 9Bab,ca

becomes
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e _QEE - 0 Q?E + 20}ceaja52 +
0x°\Bab,c  Ox% 0Babv,ca O8ab,c
+ 40, 0 62092 v 20, 62000 (5.26)

agab,cd égab,cd
Using equations (5.18), (5.20) and (5.21) we find that

the term appearing within curly brackets in equation (5.14)

is given by

a:_[’2 e 4 2Ojke268}2 + 20‘;1{1320—832 ot -
Bap O8ab,k 08ab,x1
+ 40’,k0',1e20-a_]_:'2 . (5.27)
98, k1

From eguations (5.26) and (5.27) it is now apparent
that under (5.1)

Eab(Ll) = eeo'Eab(LE),. (5.28)
Similarly, under | o
gij = e éij (5.29)
we have '
EP@,y) = P . (5.30)

Let us now assume that we have found a solution to |
E*P (L) = 0; (5.31)

that is, we have debtermined g. # and O which are such that

ij?
Eab(La), as given by equation (5.,11), is zero. We shall

now consider the transformation (5.29) where éij’ and O
are such that (5.31) is valid. It is obvious that under
(5.29) zero is transformed to zero. Thus we may use (5.30)

to conclude that in the present case

Eab(Ll) -0, (5.32)

when g; is given by (5.29). Furthermore it should be

J
noted that the same scalar function ¢ will satisfy both(5.31)
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and (5.32).
Now equation (2.70) tells us that

2P (L 1 #%5(1) ~ (5.33)

Uy
and thus when (5.32) holds
| E(Ll) = 0, (5.34)
Thus the vanishing of E®U(L,)implies that both E#P(T;)
and E(Ll) vanish. This is true in@ependently of the vanishing
or non-vanishing of E(Lz), and henée serves to emphasize
the fact that'E(Ll) and E(Lg) are quite unrelated (in general).
It should also be noted that since L, is not (in
general) of the form (2.1) we cannot say.that
B0 (o)) =1 8B L,) - (5.35)
. However when the above relationship does hold50 the vanishing
of E®®(L,) implies that E*P(L,), E(L;) and E(L,) all vanish.
To summarize the above results we have the following

Theorem 5.1: If L, and L, are scalar densities of the form

Ll = Ll(gij; gij,h; gij,hk; g3 .dai)
and . .
Lg = L2(§i;j; gij,h; éi,j,hk; 83 ‘daii 03 0—;13 U;:LJ)

and if L, can be transformed into the form of L, (up to the

addition of a‘divergence) through a conformal transformation

of the form .
—_— -20 -
gi,j = € rgij ’

where (" is the scalar function of class c? appearing in L, ,

5OL2 will be of the form (2.1) whenever O is a function
of g, and the 0}13 terms appearing in L, can all be put into

the form of a divergence. This type of situation arose when
we considered conformal transformations of the Bergmann
Lagrangian (3.7) (¢.f. equation (3.71)).



then whenever

3 (o -9 (_@Le
a:jcc 08ab,c 9x% \PBap, cd
we have both
J (31'1 -9 (d
3x°\08an, ¢ dx4|08ab, ca
and
3 [t Y- 9t - o
0x°\08re/ OF

54
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6. Using a Conformal Transformation to Relate the Brans-

Dicke and Einstein Field Equations >+

We have previously seen that Brans and Dicke's field
equations are more complex than Einstein's field eguations.
This can be attributed to the scalar field # , whose reciprocal
appears to play the role of a variable gravitational "constant".
The purpose of this section is to show that the solution to |
a certain system of Einsteinian field equations can be used
to obtain a solution to the Brans-Dicke field equations.

We begin with the Brans~Dicke Lagrangian in the presence
of matter, viz., _

L=-\/-_g‘{¢R -%J,d,ip”i +}6__E_Lm}. (6.1)
. C '
Let I denote the form assumed by (6.1) after we have performed

the conformal transformation

- '
Bij5 = ¢85y ¢ _ (6.2)
In the previous section we saw that if Ll and L, , as given
by equations (5.8) and (5.9) respectively, are related by
a conformal transformation of the type (6.2) then under
(6.2) we have o | _

. (1) = B @,) . (6.3)
The above result can obvicusly be applied to L and T o
conclude that under (6.2)32 .

B (1)=e295(T) (6.4)

5Line material found in Dicke's paper [9] serves to
motivate this section. However, the approach given below
is not due to Dicke.

52hat (6.3) can be applied to L, as given by (6.1)
is due to the fact that the derivation of %6.5) depends only
upon Ll's being a concomitant of 8340 and its first and

second derivatives, Since Lm contains no derivatives of

85 5 greater than the first (6.4) follows quite readily from (6.3).



Thus a solution to _
BT =0 (6.5)
can be used to obtain a solution to

EY9(@) = 0. (6.6)

Now after applying (6.2) to (6.1) it is quite possible

that 16 c 40"
1r1/'g;L —_—> 16T e /-E L # 1w /- L*
=2 == & = -8

c c c

where L* is obtained from L by simply replacing gla and

and g. respectively, and

gij,k appearing in Ly by g ij ij,k

fﬁ is the form assumed by Lm after we have performed the

conformal transformation (6.2). (For example, if
ah bk

L, = FhkFabg g (6.8)
then L* would be given by

whereas iﬁ would be given by
AT

Ty = e P Fo8

Whenever (6.7) holds we cannot conclude (in general) that

ah—Hk )

when a matter variable satisfies the matter field equations

obtained from L it will also satisfy the matter field
equations obbtained from L. In order to overcome this

difficulty we shall henceforth assume that under (6.2)

VEL — e PVEI VB I . (6.11)
This implies that o,
T, g
e Ly =1Ir, (6.12)

and thus L must be homogenuous of degree -2 in 8; i
(6.8) serves as an example of such a Lagrangian.
Let Tij correspond to the energy momentum tensor

obtained fromw/-glhl; viz.,

(6.10)

56

(6.7)
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.2 [ (VEIy -2 (a (-\/—_E;Lm))],,. (6.13)
V=g ( 9813 Ox\081 3,k

We shall assume that le has been constructed so that when

the field eguations governing the matter variables are

satisfied .
Tlalj =0 . 7 (6-14)
From equation (4.25) we have that
13e1), . = 1 yIp(L) - p Tij. 6.1
@) - 3 @) - BrvTE 1)y (6.15)
¢

and thus when the field equations governing the matter

variables are satbtisfied we find

Eli'cL)L_j = % #PTE@) . - (6.153)
If we now assume that a solution has been found to
E9@E@) =0,
then we may use equations (6.4) and (6.15a) to conclude that both
@) =0,
and
) E(L) = 00

In summary we have shown that if under (6.2)‘v—glﬁl

transforms as follows: _
-\/-_é Lm —_— -5 L;]
and if Tij hag been constructed so that

1
™v% .= 0
|3

when the matter field equations are satisfied, then when

Elj(f) = O 3
and the matter field equations dbtained from

16 _V-BL: ,
C

are satisfied we shall find that the field equations
g9 (1)
E(L)

I

o,
0,
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and the matter field equations obfained from
1677VZE L
T m
c
are all satisfied.

Let us now consider the following conformal trénsformation
gij = kﬁgij ) (6.16)
where k is a constant. Dicke motivates this conformal
transformation by a discussion of units. Our reason for
introducing (6.16) is that it transforms our original Lagrang-
ian, (6.1), into the form of an Einstein type Lagrangian,
and consequently leads to a system of Einstein field gquations.
In section 3 (¢.f. equations (3.7) and (3.68)) it was
shown that under the conformal transformation (6.2) a scalar
density of the type _ :
V{1 R+ 8,48, 587 + 36} (6170)

becomes
- = 205 =20 —= =1j :
SN {glme R+ 6" 1.08) (VB E IO, g ¢
V-8

s o Y
+ 6892 (#6773, 0,5 + £,(8)8, 38,6 E D 4 f3(¢)} . (6.17b)
In order to use (6.17a) and (6.17b) to assist in transforming

(6.1) into the barred metric we make the following identifications:

2,08 = # , (6.18)
28 = - g, (6.19)
and
f5(¢) = 0 . . (6.20)
Using equations (6.2) and (6.16) we see that
e = x4 (6.21)

and consequently
o = JE_ In(kdg) . (6.22)
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Thus by combining equations (6.1) and (6.11) in conjunction
with equations (6.16)-(6.22) we find that I is given by
L= V-8 %{ﬁ +_251 I:l V-8 éljﬁai]sj + (2 “w)ﬁgiﬁs . §13}+

v=E |#° —
+ 1_%"1\/—“@' L . | (6.23%)
C

The second term appearing within the curly brackets

of the above expression may be rewritten as follows:

28 [LVEEW]y - Z[LVE él%s,i] TR 94,34, -
'\/:é ?{ '\/% 55 55 (6.24)

Upon inserting (6.24) into (6.23) we find that L may be

written o
= _ =105 _ . 4. 5id
T = V-8 %{R %(2w+ 5);12 136458 . + 1_3;;11& L&‘i}*
: = =1] |
+ ké{%\/:% g Jﬁ‘,i],_j . (6.25)

Since k is a constant the last term appearing in (6.25)
is a divergence. Hence we may use Lovelock's result[lé]
to conclude that from the point of view of the calculus of

variations the following Lagrangian, L', is equivalent to T

- == =13 .
L' = VB {R . E?;E(am 338,58, &0 + 13111«: Lm}’ , (6.26)

where we have drobped the constant factor % which appears
in (6.25). If we now set
Ty = (5« 2w2)c4 $138s 589 (6.27)
32Tk g
we may rewrite L' in its final form; viz.,
I—[:'=\/-_§_»{'§+_]_._§%f_lg_(f¢+lu;1 )}, (6.28)

which is identical in form to the Lagrangian used to obtain

the field equations of Einstein's theory of gravitation when
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matter and a zero rest mass scalar field, 4, are present.

Ve shall now use (6.28) to obtaln the fleld equations
governing the barred metric potentials gij’ and the salar
field #. Since (6.28) is of the form of Einstein's Lagrangian
the Euler-Lagrange tensor corresponding to a variation of
the éij's, regarding £ and all other mabtter variables as

arbitrary preassigned quantities, is given by

ENY@E) = vVBqRY - 18R - gk gij +
2 R

- /& 81k (‘T‘ij ' (6.29)
R m) ?
C

™ - 2 [9 (vEIy - 9 (a' (%—EL@ , (6.30)
083 j oKX k .

53 V-8 €1

a
- 2 JJ WEETIY (6.31)
’ V% [98ij | |

Thus the field equations governing the barred metric potentials

are given by

""Z;"" (m} {&)

c
To obtain the field equation governing ¢ from (6.28)

B -1 89F - em {@id . @-‘13}, . (6.32)

we may apply the results of section 2. This 1s so because

L', as given by (6.28), is of the form
' = L' (813, gla hi gij,hk; ?5 d’i) + &g%%&‘/'g L; » (6.33)

where ©
—\/—g{R + 16Tk L‘é} (6.34)
ci
Since we have assumed that under (6.2)

VgL, —> V=g Lj (6.11)

BBSince'iﬁ is independent of the derivatives of éij’ (6.31)

need not involve a derivative with respect %o Eij X *
2
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we are guaranteed that 1/¢§Iﬁ; is independent of # and con-
sequently'f"is formally identical to the Lagrangian given

in (2.71). Thus we may conclude that

EET') = BL') , - (6.35)
and since E(IL') and ET9(L') are related by~ '
Ei'j(L')‘. =1 grig@y) , (6.36)
J 2
we have .. .
ElJ(L')b = % g EE) . - (6.37)

Now by comparing (6.28) and (6.,33) we readily deduce
that Eij(L‘) is given by the term appéaring within the
curly brackets of equation (6.29), viz.,

) - ‘\/——{R J -1 EM9R - 8k (T;LJ} . (6.38)
c

Thus ElJ(L')b is found to be
1d(n1).= - 8w V=g 7itd
E-e (L )D 8wk g (%'} |J . (6.,7)9)
ci

Using equations (6.27) and (6.31) we easily find

- Bk v/ T T - gz + 20) VE 13'r5¢1r¢18 - A ﬁlj}v . (6.40)

Upon inserting (6.40) into (6 33) we obtain

Eij(L')\ -Q—l+ 26) V-E§ E—25—-—1;}“1.8(’2511*3' p’]s + "”{Ir ’Jisj )+

-t g gf‘l ¢13.) - 28, (B-087%, 6y - A ) } , (6.41)
4° #7
which simplifies to '

Eij(L‘),j - - ;s*ig_; 20) vVETing , (6.42)

where

Oing= _1 (v*-gte:-ij ;sli),. . (6.43)
— P J
V=g

>4 The covariant derivatives appearing in equations (6.3%6)
and (6.%7) are taken with respect to the barred metric tensor.



62
Thus we may use (6.37) to conclude that .
E(T') = - (3 + 26) V-EO1lng, (6.44)
and hence the field equation governing ¢, in terms of the

barred metric tensor is

Olng =0 , (6.45)
provided we assume that w{% .
Equation (6.45) does not agree with Dicke's field equatibn
for gf.35 This is so because, as previously mentioned, we are
not following Dicke's procedure. Dicke's considerations
are based upon a transormation of the system of units being

used, from which he motivates the conformal transformation

| Big = kf8yy-
However, Dicke's transformation of units also effects the

matter variables within L, and for this reason

ol
Y4 # 0
in his case., Thus Dicke's field equation for 4 is given by
. — *
Olnd = - 167kd__ O'm

(2W+ 5)04 o
In passing we must point out that in our case

the field equation for ¢ is superflous, This is so because
we've assumed that Eﬁj has been constructed so that(??jh’
vanishes when the matter field equations have been solved.
Consequently once we've found a solution to (6.32) and a
solution to the field equations governing the matter variables
we can use equation (4.25); viz., .

CE :

52In [9)Dicke sets # = A .
k
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to conclude that the field equation governing ¢, (6.45),
will also be satisfied.
We shall now summarize what we have shown., -We began

with the Brans-Dicke matter Lagrangian

L =~./:§{¢R - %w,iﬁ,jgij ; 16wam} . (e.1)

: ci
and assumed that under the conformal transformation
gij = k‘dgij ’ (6.16)
we have _
V=g Lo — o -E LI’E . (6.11)
We then saw that under this conformal transformation L
becomes _
' = /< {f{ + 167k (__’5 + L* )} ) (6.28)
4 m
c

where'ig is given by (6.27). Thus under (6.16) our original
Brans-Dicke Lagrangian takes on the form of an Einstein
type Lagrangian. We then used (6.28) to find the field

equations governing g.. and g; viz.,

iJ

wid _1=idg i3 i g _ o sid=ms
B - 1ER . e T 4 (3 ;ezwz{sd #9- 3598 4. 51 )
c 2 ' -
’ (6.46)
and — . -
Olng =0 , (6.45)

respectively; where we have used (6.40) to rewrite (6.32),
and(??j is given by (6.30). Thus according to the remarks
made earlier in this section we may conclude that when we

have a solution to (6.46) and when the field equations
governing the matter variables (in terms of the barred metric)
have been satisfied then, our original B;ans-Dicke field
equations (4.16) and (4.36) shall also be.satisfied, along
with the field equations governing the matter variables

(in terms of the unbarred metric) provided we. setb

.= 1 B...
81 8 51



Zs A Method for Obtaining Exact Solutions to the Brans-

Dicke Vacuum Field Equations36

In the previous section it was shown how a solution -
to a certain system of Einstein field equations can be used
to obtain a solution to the Brans-Dicke field equations.
In particular a solution to the following Einstein equations

= =T8

Gi,‘j = .(24‘22“-’2 {d’iﬂf’j - %gijg ﬁ’rﬂ,s ’ (7.1)

and 24 : :
ﬁlnﬁ = O’ (7-2)-

can be used to obtain a solution to the Brans~Dicke vacuum

field equations

G135 = L (Fhoy - 1655878, 080) +
+ %(’dlij - gijﬂﬁ ) - (7.3)
and ' .
0Og = 0, (7.4)
where
G:: = R.. = lg..R. o (7.5)

19 idJ 314
Consequently let us begin our search for exact solutions
to equations (7.3) and (7.4) by studying the following system

of Einstein field equations

) Gij = 8Tk Tia. . (7.6)
ci
and .
aY= o0, . (7.7)
where - —km
Tij = %1%3 = .]2;35_3'8 \Hpk\ﬁm ’ (7.8)

56The results appearing in this section were obtained
from a paper by A.IL.Janis, D.C.Robinson and J.Winicour |11].
However, the author has recently discovered that many of the
results presented in this section also appear in a paper
by N.De[8], which was published prior to [1l].
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X is a constant and Y is a scalar field of class 02. It should
be noted that equations (7.6) and (7.7) become identical with

equations (7.1) and (7.2) when we set

fV=p1nk¢
where

p ={ H3r2a)% .

1ok
We shall restrict our considerations to static fields in
which case we can write the line element in the i‘orm37
ds2 - _eEU(dxo)2 + e—EUh“ﬁdxadXﬁ s (7.9)
whexre ¥y
U = U(x*) and hys = hga(x)

are functions of class 02 and
xo = ¢t
Using this line element i1t will be shown that our field

equations (7.6) and (7.7) can be rewritten as follows:

et
\qu = 0 s . (7.10&)
n
. Um‘ = 0, : (7.10b)
and .
Hoy —2U,q Uy = Bty _ (7.10c)
ci

where Hys is the Ricei tensor for the auxilliary metric tensor
h.; and (Il ) denotes covariant differentiation with respect
to the haﬁ's.

We shall now proceed to establish the results appearing
in (7.10a)=(7.10¢). We begin by multiplying (7.6) by &9

to obtain : .
B - - s Y. VLE
== 17

c

Thus the following equation is equivalent to (7.6)

Ry = 8'n’41~< ﬁiﬁ{j . (7.11)
C

57Rec:all that Greek indices run from 1 to 3.
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Our line element (7.9) can be written in the form
as® = e7¥U(-e™U(ax®)2 + nax"axP) , (7.12)
and when expressed as such we see that calculations may be

simplified if we make the conformal transformation

pys = eaUéij. (7.13)
The above transformation implies that
Pag = Doy 3 Pxg = 0 and Dy, = _e*U (7.14)
The Christoffel symbols cofresponding to each of the
two metrics, P; 5 and gij , are related by58
B - (&) - 630s;- 630y + 2320, 5 (7.15)

where {;%} denotes the Christoffel symbols constructed from

the pij's and r?% denotes the Christoffel symbols constructed

from the éij's

By examining the matrix representing Pij it is apparent

that

pQO = —e—4U, pod =0and p¥ =1, (7.16)

where h°” is characterized by
of

o
hﬁhw = 53’: (7‘17)
Since {:,}is defined by

o o |
. p{,ﬂb’ =1p (P/J‘i,f + p&'i,ﬁ - Pﬂy,i ) 5 (7.18)

2
and all quantities are assumed to be time independent we have
o oM
{4 }= Ez_(h@pﬁ'+ byus = Bagu ). (7.19)

The components of 1;%} which contain the index O are

easily found to be:

{8%}’= %;L} = 0, _ (7,20a)

“[oqo} - v U,/aeL‘U ,  (7.200)

58Eisenhart[:10], page 89.
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and .
With this information at our disposal we may now proceed
to determine TV and Eij in terms of the hopu's and U.
Fran (7.13) and the definition of GY we find
v 2U ij
D\V— e p (\IJ’:LJ - \Hm
which, due %o time independence, may be rewritten as follows:
= 2U = : s
OV= e (2% l50 + P (hys = Huli).
Using (7.15) we may rewrite the above expression in the form
o 2U ~47 ® w3
oY { T Cloo} - 890 = U0 +PooP Ups) +

+ b7 (Y, ’I‘[QL é(Uw - é:U,u+ PosapHrU?X] )J‘ .
' (7.21)

Using (7.20b) we find that (7.21) becomes
aV¥ = eau{hﬁﬁ(‘ﬂwa - ‘H;{;Z}) + e'uU(E‘KMUyGequh%e +‘
- Y, U,,0%) 4 20,,U,, 2% - 30, U, n**
Thus we see thatFVYis given by |
BY= 0" (Y - ¥y ;};} )e?l,  (7.22)

since Yis governed by

oY= o0, (7.7
Y must also satisfy :
‘ h%(\ﬁuﬂ - \Hxi,?,;} ) =‘ﬂld”q= 0, (7.23)
which establishes (7.10a).
One should note that (7.22) is valid if Yis replaced
by any other time independent scalar function such as U; i.e.,
OU = ghkumk_ 1™ (U, - U,x‘{ })e‘gU . (7.24)
We shall now proceed to use equation (7.11) to establish
(7.10b) and (7.10c). By examining (7.11l) when i=j=0 we shall
arrive at (7.10b). Similarly by considering (7.11) when
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i=d and j=8 it will be shown that (7.10c¢) is valid. In order
to establish each of these results it will be necessary to
construct the Ricci tensor in terms of the{fg}affinities,

_This Ricci tensor will be denoted by K, . and is defined by

?3 { } 18 J(ln\/_) l%{}{m]’g} + {%Hml’;{} , (7.25)

where
p = det(pij) . (7.26)
From Eisenhart®? we f£ind that Kij and ﬁ;d are related by
= _ hk
=hk
+ 2B. 158 Un Y - (7.27)

Let us consider equation (7.11) when i=j=0. Due to the
fact that Y is independent of time (7.11) becomes in this case
Ry = 0 . A (7.28)
We shall now use (7.27) to rewrite the above expression in
terms of KOO and U,
From (7.25) we have

Koo = 2 {éco} - 2" __aav) +{ooﬁ }‘ {on;g}{m%} )

IxE d(x°)2

which may be rewritten as follows:
o) m),[d 01{0 d})Jo
‘)(oo} '{ H }* oond}“ {oo}{oo} - 2{00}‘{@}*
ilﬁ}iio}
Using (7.20a), (7.20b) and (7.20c) we find that the above

expression becomes

= 2 aq(h"pr,ﬂe ) - L"U,Q(U,/ah Ll_ -+ 2h U,di}f&}
Ox

59Eisenhart,[j.0f]page 90. Recall that Eisenhart's
Ricel tensor is the negative of ours,

Koo
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After performing the indicated differentiation we obtain

Kop = .'afaL”L{BJL1°"j Uys+ 0¥ U, 0+ 40, Uy oh ﬁJs +
ox™ "
- 40,,U,, 0" &*U 2h“‘”U,d{pF} ,

which can be rewritten in the form

47 HA[ A3 %3
Koo = 26 {-(h ‘{Pq}fh‘{‘“q oy + B Uyyg +

+ 84U, U, 0% e o 2nu ﬂH}
The above equation simplifies to our final expression for
KOO which is
4 B «/3

From (7.27) we obtain

] 3,5 ohk
00 = Koo + 2(Ujgg = UsgUsg) + BopB  Upye +

R,
Using (7.15), (7.16) and (7 20b) we find that ka)ijigiven by

Equations (7.13), (7.14), (7.16), (7.24), (7.29), (7.30)
and (7.31) allow us to write Ebo as follows:

oo = 26700 (Uyua- U,g“[;;j}) + 4e*0u,, U, 0% 4
- 20U, 0% - Ty, , - U,,{Oﬁ) +
- 2¢"%n v, Uy, .
Affer vaiéus cancellations the above expression reduces to
Ryo = @ Uy, (7.32)

Thus we can conclude that the field equation (7.28) will

be valid only if
. e

Upg = O, (7.33)
which establishes (7.10b).
In order to obtain (7Y.10¢) it will be necessary to

mmMmeK%.
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From equation (7.14) it is apparent that

.—p = e4Uh (7- 54)

whexre
h

det(hes) - (7.35)

Consequently we have

lnv~-p = lnvh + 2U. (7.36)
Using (7.25) we find that K, may be written in the form

Kup = 9__ a,;]’ - Fin/E - 2y - {doo}{c?ﬂ} "{d?*} '{Of;}'

ox" dx ox”

{O‘X Hﬂ} {d( {Nﬂ} dﬁ}aaﬂ(lnﬁ) + ZUarA{ } 0(7-57)
Upon applying (7.20a) and (?;200) we find that (7.37) becomes

Keg = Hoyg= 20y =40, Uy (7.38)

where Hys is the Ricci tensor for our auxilliary metric heg; ViZ.,
¥ ¥ Y L4 €
Ho$0={d/3 3Y — (ln\/l—l)’dp + “{dﬁ}(ln\/ﬁ),y— e M . (7039)
In order to determine Ry, from (7.27) we shall examine
2(Uiws = UpaUsp) + BogB Uy + 2Bys B UspUny »  (7.40)
(7. 15) permits us to write Ujyz as follows:

M M
Ulo(/_l, = Uyqs - iﬂ({dﬁ} 8 ':/3 (S so( + P%P U,{)
which simplifies to
y .
Ulo(p = Ulldp + 2U90(Ua/1 = Pus pﬂU,rU,/q . (7.41)

Thus the first term ap pearing in (7.40) becomes
2(U[o(/3 - Usa;U-:/_:,) = 2(Uuo£/3 - p,(ﬁp Us{Ua/-& + Uao(Ua/_g)'('?-q”g)
By combining (7.13), (7.24), (7.33) and (7.42) we find that

(7.40) reduces to
2U||Id/_?, + 2U9q U,/_-l, . (7043)

Using (7.27), (7.38) and (7.43) we find
E‘% = Ho(ﬂ - 2Un% - J‘"U,D{U,ﬂ + 2U”Nﬂ + 2U,°(UW ’
which simplifies to

ﬁqp = Hc{ﬂ - 2U1°(U!/3 . (7'44)
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Upon inserting (7.44) into (7.11) we obtain

Hup = 2U,uU,, = 5%15__ ) I A (7.45)
c
which establishes (7.10c).

For the sake of completeﬁess we remark that by using the
above approach it is easy to establish that ﬁbusso for the
line element (7.9).

We shall now apply the above results. Let us begin by

assuming that we have found a static line element

ds® = —e2v(dx°)2 + e_gvh%adxfdxﬁ . (7.46)
which yields a solution to the Einstein vacuum field equations
Rij = O » (7‘47)

Due to our previous work we know that we can write ﬁij

as follows:

Roo = € ' (7.48)

Ry =0y (7.49)
and _

R«p = H“ﬁ - 2V9ocvg,a . (7.50)

Since (7.46) is a static solution of (7.47) we can now

‘¢gonclude that
av e

e Viio‘ = 0 ’ (7¢51)
and .
] Haﬁ bt 2V,,,(V,/3 = 0 . (7‘52)
Using (7.24) we find that (7.51) may be written in the form
Gvy = 0. (7.53)
We shall now define two new variables U and ¥ by the
following équations:
2\%
Vv ={14+ [8uk)A U (7.5%)
e ()"

and

Y=avU, (7+55)
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where A is a non-~zero constant. Upon substituting (7.54)

and (7.55) into equations (7.52) ahd (7,55) we obtain

He, - 2U, U,, = 8vk ¥, Y, (7.56)
/3 1% - 93 ¢ 19
. _;E—
and .
gf=o. (7.57)
It is now apparent that a solution to the equations
—G-i{j = 81k (‘Kl\HJ - %éiqum\lj’q\h’m) ) (7.6)
ci
and _ .
Dv= o ’ . (?0?)

is given by the metric of the line element (7.9) and Y when
U and ¥ are given by (7.54) and (7.55) respectively.
Corresponding to the above solution of equations (7.6)
and (7.7) we have a solution to the Brans-Dicke vacuum field
equations (7.%) and (7.4). To establish this result it
will be necessary to make use of the results of the previous
section.
Recall that we have shown that if functions éij and 4

have been found which satisfy equations (7.1) and (7.2) then

the same scalar function 4 and the function gij,defined by
o= 1 g.. «58
Bij = g Bij (7.58)

will satisfy the Brans-Dicke vacuum field equations (7.3)
and (7.4). Thus if we can show that solutions to (7.6) and
(7.7) can be used to construct solutions to (7.1) and (7.2)
we are essentially finished. However, this problem is easily
solved because if éij and ¥ satisfy (7.6) and (7T7) then
éij and g, where ¢ is defined by

g i,J(L___eXP(*_P), o (7.59)

]

D

4 % ‘ '
2
( c (56;1{@) . (7.60)

with

P
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will be a solution to equations (7.1) and (7.2). In summary
we have shown that a static solution to |
‘ﬁij =0 (7.47)

generates a static solution to the Brans-Dicke vacuum field
equations (7.3) and (7.4).

To illustrate the procedure involved we shall now use
the Schwarzschild solution to the free space Einstein field
equations to obtain a soclution fo the;Brans-Dicke vacuum

field equations. The solution which we shall obtain corré-

sponds to the first of Brans's vacuum solution presented in[5].

The isotropic form of the Schwarzschild line element
can be written in the form

as® = - (¢~ )2 ¢2ar® +§g+ B)* (ae? + p%a0% + ¢ZsinZ0 ac
*+ B (7.61)

wvhere B is a constant and ¢ denotes the azimuthal angle.

To begin we make the following coordinate transformation

t=T,r=B(_g+§),0'=9,and e =€ . (7.62)
B ¢ : _
Under the above coordinate transformation we find:
2
- B\ = r - 2B (7.63)
e+ B ) T + 2B ’
(Ji___ *ap® =(r_+ 2B\ar® , (7.64)
Tr - 2B
and 4 2 2
(¢ + B) =(r + 2B)(r - 4B%). : (7.65)
2 r - 2B
¢ )
If we setb ] '
= 2B (7.66)
and then substitute equations (7.63)=(7.65) into (7.61) we
obtain
as® = -fr = m\c2at® +/r - m -l{ér2 + (re-mg)dﬂ? (7.67)
T + T + m
where
an® = a6° + sin®0 de.

2y,
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It is apparent that the above line element can be brought

into the form of (7.46) if we set

— 2 2 ') 2 : _ -
h55 = (r® - m“)sin“6 and ho(p = 0 if «#a, |

To obtain a static spherically symmebtric solution to

equations (7.6) and (7.7) we use (7.54) and (7.55) to find

B U = éﬁ.ln(ﬁ—i_%) . - (7.69)
Y=4 Ilnfe - my , (7.70)
where 2F nCﬁ * 22 % | ' .
M= (1 +(%¥)A?_) . (7:71)

and A is a non-zero constant. Thus the line element corre-
sponding to our solution of equations (7.6) and (7.7) is given
by 2 ho o Wl 2 2 2.2
ds =-(r—m c—dat +(_r_+m)‘@r + (r“=-m )dfl.}. (7.72)
, T+ m r -m
In order for ¥ and U to be real wvalued functions we

must demand A to be real. This condition implies that
2\ %
o= 1 +fBrk) A >1, (7.73)
AT EE)
(recall that A must be non-zero).
To obﬁain a solution to the Brans-Dicke vacuum field
equations (7.3) and (7.4) we define
and 4 = 1 exp f) .
.~ D
where in the present case the éij's correspond to the metric

Bij = 1% 85 3

coefficients appearing in (7.72). , Thus we obtain:

A
g = %(z_—_r_n_ wh, (7.74)
I + m

A=-2
8op = (I‘? __": _g_)(mfz) ’ : (7.75)
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A+2P -

811 = 8op = B r + mY} 2P/, (7.76)

11 = B22 = B33 (r_m)
and : L

%j==01f1#a.
The line element corresponding to the above gij's has
the form A-2
Gl 2

ds® = -[p BP0 C 32
- m

T
A+2p
+(r + ms 2FP)°{dI'2 + (1‘2—1!12)dﬂz} .
T - _
| (2.77)
In order to put (7.77) into the isotropic form used by

Brans we shall make the following transformations:

‘b='1‘:'; r=B’(‘f"+B);G=5; ¢=€ ; m=2B ;

BT (7.78)
D=A 3 A -2=-2,
A pp pmp M A
where B, D and A are constants.
The above transformations yield:
(r - m) =(? - B)E R (7.79)
T+ ! T + B '
» .
r® - n® = Be("z’ + §) : (7.80)
B T
ar® = 332(13 - ;_)2 aF2 (7.81)
~e B
T
A-—2D=—_l_ and A + 2 D+1 . (7.82)
§/U~p A 2P 2 X
Inserting equations (7.79)-(7.82) into (7.74) and (7.77)
gives us , D/ | '
g =4 (F- B\ (7.83%a)
o\F T B) ’ (
and -2 2(D +1-2)
d82 = --('f + B /2 cgd‘b2 +(r + B /ﬁ(]_ + B)L‘( ar +"f-2dn_2),
-8B ¥ - B T
(7.83b)
where 4 =
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The functions appearing in (7.83%a) and (7.855).are just
those whiéh appear in Brans's “pﬁysical" vacuum solution, [5).
We shall return to this solution in section 9.

The only task remaining before us is to confirm that
the range of A in terms of D agrees with the range determined
by Brans. To accomplish this we shall examine our definitions

of u, 4, D and A . Prom these definitions we have

2 2
=1 +/81mk\A (7.84)
o CE)E
c
and
-3_... = 1 .]_)‘ + _2_ . (7085)
moo2\% R
The second of the above expressions may be rewritten as follows:
= 21 . (7'86)
A D +2

From the last expression appearing in-(?.78) we see that
A=2P(l"%*)1

and thus (7.84) can be rewritten in the form

/@=1+161rkp_2(i-gg+§z). (7.87)
c? A A

If we now make use of equations (7.60) and (7.86) we find that
(7.87). becomes
B = (U+1)2 - D(L~wD) . (7.88)
z
For 4.and the components of our metric tensor to be
finite and real A must be non-zero and real. Therefore we
must demand that i
22 - 0+1)2 - D@ ~wd) >0 ,  (7.89)
z
which agrees with Brans.,
In section.9 we shall see that Brans has found exactly

four static spheérically symmetric solutions of eguations
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(7.3) and (7.4) corresponding to the isotropic line element
d52 = -eadcedt2 + eaﬁ(dr2 + r2d92 + resineedez) ,
where € and 4 are functions of r. We have just seen how to
obtain the first of Brans's four solutions. However, at
present, we are not sure whether the above procedure can

be used to generate the remaining three.
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8. The Weak Field Approximation4o

This section is devoted to finding an approximate

solution the the Brans-Dicke field equations; viz.,

Rss = %@in = 8wy + i%(ﬁ,ié,j - %gijﬁ,ké’k) +
ge g
+ %(‘dli;j - gijﬂﬁf) ’ (8.1)
and .
ug = 8T . (8.2)
2wt 3yt

We shall find this approximate solution to be of great value
when we attempt to identify the constants which appear in
the exact solutioné to the above system of equations. It
will also be convenient to have a weak field solutionavailable
when we begin our study of the scalar field g in the next
sectione.

‘We begin by assuming that gij and g may be approximated

as follows:4l

85 Nij + Biy o (8.3)

g =8, +§ (8.4)

where the qij's are the components of the Minkowski tensor; viz,

Noo = =1 s My =Npp = Nz = 1 and N5 = 0 if i#3.(8.5)

J
‘and '

Our task is now to determine the constant ﬁo, along with the

functions hj; . and §, which we assume to be of class 02.

3
In the calculations which follow it will be assumed that

40The material used in this section is based on a paper
by C.Brans and R.H.Dicke {4].

“lope functions hijgiven in equation (8.%) should not
confused with the functions h%ﬂ introduced in equation (7.9).
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all quantities which are not linear in hij

compared with hij and %3 e.g., terms like

and ; are negligible

$14Diy 1 JriFoa 2 Pyghiep pp @04 Fhys

will be neglected in this approximation. As a result of

this assumption it is easily seen that

gi;j-= i3 _ 1kr€ (8.6)
and 1 =1 (1L - ). | (8.7)
;T3

The first equation to be considered is the scalar wave
equation (8.2). Upon expanding the left hand side of that
equation we find

- (g i VTR, @bl
0og = (g ’iﬁ’j + & ﬁ’ij) + €s4 B ﬁ‘qa . (8.8)
Vg,
In the above expression we may replace g;,lﬁ,
. & ik
(g Fkl + 8 |-| )ﬁ, .
However, rgﬁ contalns terms of the form g . and thus we
ig Pm, g
see that gla,lﬁ,a is of second order and may be dropped from
Og . Similarly, since
ij -k 1]
V=814 & 3;5,3. = r‘ikg adsj
V-8
the last term appearing on the right hand side of (8.8) may
be neglected, leaving us with
~ gt
Of =g 98,5 . (8.9)

Due to equation (8.6) we find that our expression for Og

becomes e V2§ -1 Bz; »
o? 9%°

where Vziﬁ-the Laplacian operator for a three dimensional

flat space. Consequently under our present approximation
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(8.2) assumes the following form:
v -1 @f% - 8wr__ . (8.10)
o2 0t (20.)-1-5)0i
A retarded time "solution" to {8.10) is given by42
f - =2 fgkquq(f' bz (F- 2] yadxt ,  (8.11)

(20.)-1-5)0i
v

'-t --1~||

where T denotes a position vector to the field point of
observation, and T' is a vector whose end point denotes the
source points. The integral appearing in (8.11) is performed
over the spatial volume V in which T is different from zero,
and this volume is generally a function of time.

It should be noted that at present the intergral appearing
on the right hénd side of (8.11) cannot be evaluated. This
is so because the integrand involves gkq and hence contains
the unknown functions hij‘ Now we know that'qu is independent
of 4, and consequently can be a first order guantity only if
it contains hkq’ If such were the case we could set
gqukq nFquq
However, is would still be impossible (in general) to evaluate
the integral appearing in (8.11) becazuse qu would still
involve the unknown hij's. Consequently (8.11) should not
be regarded as a solution to (8.2) bub rather as an integral
equation. Later in this section it will be shown that for

a special choice of T the integral equation (8.11) can
kq

be solved quite simply.

42We are using a retarded time solution because we do
not plan to investigute the problem of radiative reactions;
i.e., we are not interested in the behaviour of the scalar
field in the immediate vicinity of the source. For a_study
of radiative reaction in electromagnetic theory seeE¥+.
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We shall now rewrite equation (8.1) in accordance with

our preseht approximation. To begin let us examine Rij which -

is defined by
k m —k m —~k
=550 = Thie, 5 + Moy Mok ~ Mk g+ (8422)
The last two terms appearing in the above expression involve

a product of the derivatives of gla Thus these terms are

of second order and hence may be neglected. In order %o
complete our rewriting of (8.125 it will be necessary to
examine the form assumed by the derivatives of the Christoffel

symbols in our approximation.

Using (8.3) and (8 6) we easily find that
g gk -
r& = N\ (hlk,j + hjk,i hij,k) (8.12a)

and consequently 3  and |73 are given by

id,q 14,

q 3% A . = h..
(33, = 2N iy, iq * hak,lq 13,kq?

il

A S Y L I WU S SN
Ma,s = ®N (i g5 * Brg,iy = Pig,ky’
FProm the above expressions we find that in our approxi-

mation, the Ricci tensor is given by

+ h. - h

lJakq iq,kj jkaiq) }

and as a consequence of (8.6) the curvature invariant R assumes

the following form

R = -fdrgk
—z

h hoc "'h- > "'h- - .
LS kq,la " ij,kq 1g,k3 Jkslq)
Combining these two equalions we find, as usual, the linearized

Einstein tensor to be

Gij = Rij 1églaR = %{ i ¥ W 9Un,

o 1a,kq Pigxg *
- - 14 q _ mn
By i) 50y By N0 = %0y 5 (B N - ey Dog,xn t
kg on
- Y\ hkn,mq) 3 (8-15)
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where

k
h= r\qhkq L]

(8.13) may be rewritten in a simpler form if we intro-

duce two new quantities y.. , and 01 , defined by

iJ
. Yia. = . - }én. . h (8.14—)
and
_ Jk _ Xk
o‘i - 13’ \'\ hla kre }éth (8 15)

Using (8.14) and (8.15) we find that (8.13) may be rewrltten
as follows:
Gyg = By -0y 5= 055 + r\ij(!ic,qf\kq).(&l@
Now that we have linerarized the Einstein tensor let
us devote our attention to the right hand side of equation
(8.1). The first thing we observe is that the term
jug(ﬁ,ipf,j - Yy 8% )

is second order in §’i and thus may be neglected. The
remaining terms on the right hand side of equation (8.1)
may be written as follows:
R (T (1 - Z)T.. . .
ﬁ—{gf’la r\lamji} + 8 4(1 f—,)Tla (8.17)
o ﬁoc o
In obtaining (8.17) we made use of equation (8.7).

At this point Brans and Dicke choose to drop

‘ "_ff;“’ i (8.18)

from consideration. This would be permissible if we knew

that this term was of second o£ higher order. However, at
present we have no grounds for believing that this is the

case. Furthermore, later in this section we shall choose

T.. to be of zeroth order and conseguently it is impossible for

1J
us to neglect (8.18) at this stage.
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If we now equate (8.16) to (8,17) we obtain the linearized
field equations governing hij; viz,.,
- - — kgl _
%5 = 95,5 = T5,1 * Nagf,q\ J’ |
= 1 {%,, . = N .D§}+ 8l - zZ_)’.IJ. . (8.19)
: i3 Ty iJ
R %o o
At this point we shall find it useful to impose a
coordinate condition. In order to motivate our particular
choice of a coordinate condition we shall make use of the
results of section 6. Recall that in that section the con-

formal transformation
= kﬁgi;j ’ (8.20)

made 1t possible for us to obtain solutions to the Brans-—

gij

Dicke field equations from solubtions to the Einstein field
equations. At that time we wrote the Einstein field equations
in terms of the barred metric¢ tensor and the Brans-Dicke
field equations were written in terms of the unbarred metric.
Now when working with the Einstein field equations it is
frequently found convenient to impose the following coordinate

condition ~jkFm o
) ik =

which is usually referred to as the harmonic coordinate

, : (8.21)

condition. Thus the mostvnatural coordinate condition to
impose when dealing with the B?ans—Dicke field equations
would be (8.21) written in terms of the unbarred metric.
Let us now use (8.20) to rewrite (8.21) in terms of the
unbarred metric.

From Eisenhart ([10}, page 89) we find that under (8.20)




the barred Christoffel symbols transform as follows:

=m m m m m

rlij = r‘lJ + }ésl(lnkd)aa + }ésa(lnkﬂf)sl - }égiqu (1nkg), .
. (8.22)
Thus we see that in terms of the unbarred metric the harmonic

coordinate condition, (8.21), becomes
%{gjkr‘;’k - gqmclnkgf),q} =0. (8.23)
We shall now proceed to rewrite the above expression in
accordance with our present approximation.
Using equation (8.12a) we find that
67T = APy o0+ By 5 = By
By combining equation (8.6) with (8.7) we find
ngclnk¢),5sy€m§, . (8.25)
R
Upon inserting (8.24) and (8.25) into (8.23) we obtain

JENIP (y, h. . - h. S =0
BTN (g g0 + By 5 = By p) = N b ’
. Q

) . (8.24)

7

whidh after multiplying through'bytlmi becomes

Jk

nd“h

Jl,k - ]éh’l = ;,i . (8.27)
. ol

0
Due to equation (8.15) the above expression may be written
as follows: -

: 03 = §oy | (8.28)

which is precisely the coordinate condition exployed by

Brans and Dicke. We shall henceforth assume that our coor-

dinates have been chosen so as to be compatible with (8.28).
Rebturning now to equation (8.19) we find that our

coordinate condition (8.28) permits us to rewrite that
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expression as follows:
- 2Oy 5 - 2§y, + Ni 4N frig?
0 #o

- - kq -
Bl; (gﬂij rliarl ’kq) + 08; (1 %)TJ-J . (8.29)

This expression assumes a simpler appearance if we let
d-.= . . - . . =h-.'— . . * 8.0
' o o

Using (8.30) we find that (8.29) becomes

Doty = = 1677(1 - é)T -. (8.31)
RS R A

A '"formal retarded time solution"(c.f., footnote 42) to

the above partial differential equation is given by

g = A, f{l - @, - %'f'f'l)}iij(f" b-gl2-Fa%x!

1]
#oc %o |2~ R

(8.32)
We refer to this.solution as a "formal solution" because
(c.f. remarks following equabtion (8.11)) the functions which
appear within the integrand on the right hand side of (8.32)
‘have not as yet been determined. However, we shall show that
(8.32) can be used to obtain an integral equation for hia'
We begin by showing that hij may be éxpressed in terms

of o 5 and §. From (8.3%0) we know that

oy = Byg = Kb - “i;j;— . (8.33)
+ Q )
Upon multiplying this equation by “}J we obtain
o

where we have set

L= I | (8.35)
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If we solve (8.34) for h and insert that result into (8.33)
we find that : ( )
- ‘\ij . 8. 56

EN

Combining equation (8,32) with our definition of o

d -t (- p)dn, o .
;O:;;f{ é;} ij s (8.37)

) 7 2

where it is to be understood that all quantities appearing

gives us

within the above integrand are evaluated at The retarded
time (the same convention applies to the integrals given
below).

Thus equations (8.11), (8.3%2), (8.36) and (8.37) permit
us to coﬁclude that in our approximatién hij satisfies the
following integral equation:

f(l - ;_)T ,&Pxt - 2'\1af(1 bﬁ_) kqu asxt +
ey =1

- T

+ 21 4 j( T\qah T d5x' , (8.38)
ﬁo(2w+ B)G 7 :

- "l\

where the function ; is governed by

5€= -2 j(! r\qah )T x1 . (8.11)
|

(2w + 5)01;

-

T - ?’l

In general the coupled system qf integral eguations
represented by (8.11) and (8.38) is quite complicated. However,
we shall only be interested in solving this system when
qu corresponds to the energy momentum tensor of a static

point mass M situated at the origin of our coordinate system.

In this case it is quite simple to determine a solution
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for ¢ ; and hy which is in accordance with our approxima~

ij
tion. Ve shall regard the resultant solution as our weak
field solution,

We begin by assuming that the energy momentum tensox

P.. corresponding to a static point mass M at the origin

gk
may be represented by

| McZ §(2) if 5=k=0,
Tjk =

0, otherwise,

(8.39)

where §(2) is the three dimensional Dirac delta function.

Upon inserting (8.39) into (8.11) we find that (} is

given by
} - J‘( oo Ol Oah ) Me? § (21 a%x!
(20J+ 3)0 lr - 7

which due to (8.5) becomes
; = 2M f(l + by (I - 2)) 8 (®Y) a’x' .(8.40)
(2w + 3)c

[ - B
Upon performing the above integration we find that
(2w + 3)e T
_where ‘
o (8.42)

Now recall that in our approximation.?hoo and (hoo)2
are considéred to be negligible in comparison with §and hOO'

Thus we may use (8.41) to conclude that

hyo(r) 20 , (8.43)
T
and hence in our approximation § is given by
= oM . (8.44)
(2w+ 5)02r

Using (8.39) and (8.44) we find that our integral
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equation for h, ., (8.38), may be written as follows:

hyy o= _b j{l-— oM }Mczégégcf(?')dsx'+
v

H
.

#oC g(2w+ 3)e” |7~ 1| = - 2]
- g {1 - 24 }(-Mcgy?(iﬂ ) &%t .
gl 420+ 3)CIF -7 |F - 2 |
+ ' 2ny f(-Mc X3+ hOOOI"' 211)) 5(3:2 39«1 .
(2&)+ 3)ct 7 - 7

A (8.45)
Upon evaluating the above integrals we find that hi;j is

given by:

0
by = 4N { - oM }55_59 .
r

#ocz g§0(2w+ 5)023:'

(8.46)

+ 2NNy .{1'- 2M , }, - 2Mn; 5 {l + h 0(:‘)}

fdoc T ﬁo(2w+ 3)c“r gf (2w + 5)0 T

which due to (8.,43) may be rewritten as follows:

h., = 4M 6969 + l..%lqddz
1J ﬁ——?—oc.r{ Ry \13 o3 }' |
- aw? (26963 + ngg) » (8.47)
p’02 04(2w+ 5)1'2

Since hOO has been shown to be a higher order term we can

r
use (8.47) to conclude that
, - 41 28080 + 1. .
2 21 *9 +d
p’o ¢ (2w+ 3)r

is also of higher order and hence can be discarded from the

above expression for hij’ Thus we find that hi,j is given by

_ 0 0
by = - 4y {51(53. " qij( lw:(%)}” (8.48)
OC I

It is now g trivial task to show that when Tjk is given
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by (8.39) then in our approximation ¢ and By 4 are given by:

6 =g 2M . (8.49)

(2w + 5)c2r
Bop = -1 + 4N ( 2 +w) s | (8.50)

ﬁoc r\ 2w+ 3
By = Bpp = B33 =1 + _4M ( 1 +w) , (8.51)

ﬁocgr 2W+ 3
and

Bi3 =0 if 143, . (8.52)

It should now be noted that in the limit as w goes to
infinity equations (8.49)-~(8.52) go over to the corresponding
weak field solution of the linearized Einstein field equa_t-ior}sl',['5
provided we set the gravitational coupling constant, k,
eqpal to %o. Thus we shall henceforth regard ¢0 as being the
reciprocal of the conventional gravitational constant.

We shall now list the assumptions which have been made
in order Yo obtain the &ove weak field solution to equations
(8.1) and (8,2):

(1) The metric tensor 85 3 and the scalar field 4 can be

épproximated by

I

and f‘ = ﬁo + % ’ (8.4)
where éo is a constant, hij and § are functions of class 02,

and\.‘\i‘j is the Minkowski tensor,

¥

(ii) All quantities which are not linear in hij

be regarded as negligible in comparison with hij and.?.

and ? can

(iii) The coordinates can be chosen so that
gk
Wy e - ;,l . (8.27)
0

45‘I'he Einstein weak field solutions can be found in
[1]}, page 242.

ak 1
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and
(iv) The energy momentum tensor cd}reSPQnding to a static

point mass M situated at the origin can be represented by

M2 () if j=k=0 ,
¢, otherwise ,

where §(¥) is the three dimensional Dirac delta function.
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9. TIThe Boundary Condition Governing the Scalar Field 4

in the Region Outside a Static Spherically Symmetric Mass
she11**

———————

The purpose of this section is to examine thé behaviour
of the scalar fieid # in the region outside a static spher-
ically symmetric mass shell. Our mass shell will be locabted
between r= Rl and r= R, , where R1<R2J, and at the center
of this mass shell we shall place a small mass m. The following
picture depicts a crossection of the physical situation we

have in mind.

Figure 1

By analyzing the above example we shall obtain a boundary

condition for ¢4 which is valid in the region outside of

(i.e., for r>R, ) our spherically symmetric static mass shell.
For convenience we shall denote the three regions of .

interest in figure 1 as follows:

I = {r : 05r<Rl}’ , (9.1)
: II = {r: R15r£R2} s (9.2)

and. :
IIT = {r: Ry<z} . (9.3)

We shall also denote differentiation with respect to

by a prime,

44The material in this secticn is based on a paper
by C.Brans, [5]. -
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To begin we make three assumptioﬁs:
(i) In region I, II and III the line element assumes the
following isotropic form: ]

as2 = -e2%:2a42 4 2A(ar? + r2a02 + 1°sin®0de”) , (9.4)
where ot and 3 are functions of r and are of class 02 in
regions I, IIL and III. .
(ii) The functions «,Band the: scalar Field g are of class
Gl across the boundarys separating region I from region II,
and regicn II from region III.
(iii) Region II makes no contribution to the gravitational
field within region I, and the gravitational field in regionI
can be approximated by our weak field solution.

Due to the above assumptions we may use our weak field
. solution, equations (8.49)~-(8.52), (which is valid in regionI)
to obtain the sign of «', 4', #' and & at r=Ry. TFrom
requétions (8.49)-(8.51) we.find that in region I ead, eaﬁ,

and ¢ are given by:

et -1 .28, e2ﬁ=1+2%w+1g1\ Cof=1(1+ _A D)
T w+2) T k W+ 2)

(9.5)
where
k=1 >0 A=G m n>0 , G =kf2w+4
2 ’ o5’ » o (2w+5),
o} c
and

&L,

12&
B
From (9.5) we readily obtain the following expressions for
o', ', g' and '+ 4

a(' = 1 A Py (9-6)
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g = . 2;1 r (rg(w+ l)) ’ (9.7)
(S ERI w2 |
g' = —2m , (9.8)
c2(2w+ 5)1‘2
and okm |\ 1 (1 AGwsL)A)
] t A
Wts o= (0222)(2w+ 3) TR . (9.9)
(L=28)(1 + 2(w+1)4)
r W+ 2)r

Brans states that equations (9.5)-6.9) "justify the
assumption that at r::Rl the following inequalities are
valigd,"

>0, £'20, 4 <0, (20w+3)8'<0 and (2w+3)'+3')20
' (9.10)

However, the validity of these inequalities cannotb
be accepted unconditionally. For it is easily seen that

when -3
-2< W <7

the value of «' at r=R; is negative, while when

"5/2<w<-1
.the value of ' at r=Ry is positive.
In order to assure the validity of the inequalities
presented %n equation (9.10) it is sufficient to assume that
lwi>2. (9.11)
In a future sectlion it will be shown that W must be greater
than 5 if the Brans-Dicke theoéy is to correspond reasonably
well with the general relativistic experiments perfcrmed
to date. This fact is used by Brans to justify the imposition
of (9.11) on purely physicél grounds., |

Following Brans let us choose the energy momentum tensor
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Tia for region II to be a diagonal fluid type matter tensor
in which all components are functions only of r and are such

that

Tij?_o and T=Tii50 . 7(9.12)
An example of such a matter tensor is

| T11=T22=T53=P y I =-e, 0,90 for ifj ,

where P=P(r) is the pressure and e=e(r) is the energy
density. In this example we see that assumption (9.12) is
equivalent to reguiring that the pressures and densities be
non-negative, and that the sum of the pressures in all three
directions does not exceed the energy density.

We shall now establish that the condition that 4
vanish anywhere in region III is not consistent with (9.11)
and (9.12) when the signs of «', &', £' and 4 at R, are
determined by (9.10). In order to establish this result
it will be necessary to use the explicit functional form of
the Brans—Dicke.field equations (4.16) and (4.%6). Under
our present assumptions the Brans-Dicke field equations

45

are given by:

t | I | | ] 1 1t t Lt I2
(/3)2+2e</3 +§_(« +ﬂ)‘%_+%§_“%’(%)

1

- g eP(m-_2 ), (9.13)
;E; 26+ A

R ]

v e l- 2 ), (9.14)

——

: c4¢ 20+ 5

193]

*5In Brans's paper [5] the first field equation (9.13)
is written incorrectly. The error occurs in the fifth term
on the left hand side which in [5] is written as ﬁ%?_,

instead of és'é'.
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N R CO RN CL ;a') -. ﬁ'ﬁﬂf' - g% + %(%'_)2

- 2Bem 3 ' | .
_(E_:_&r_e (75 wT+ 5) . (9.15)
= 8w e O. .16
2 (10- 2 ), 98
and :
" + __,eﬁ + (' + p g = Sﬁe% T . (9.17)
cll- 2w+ 5

The vanishing of the divergence of the energy momentum
tensor leads to

(D s (e 10 + (g +1)(2n - 1,2
Ir

3 _
- T5 ) =0.(9.18)

As written equations (9.13)-(9.18) apply to region II,
To obtain the field equations which are valid in region IIT
we must set Tij==0, thereby ovtaining the Brans-Dicke vacuum
field equations corresponding to thé isotropic line element
(9.4). Brans [6] has solved this problem; i.e., Brans has
found all the exact vacuum solutions to the system of equations

(9.13)-(9.18)., These solutions are summarized below.

A)** « = o + ]_iln(r-B y '\
A

r+B
3= 14 +( —]))L-l)ln(?;g) + 21n(£_ﬂ3_) .

D, , : r’ (9.19)

A
g = d(r+B) ’
£ = (D+1)2 ~D(1—<_.>§.D)>O, w?'-5/2' J

L3
Brans implicitly assumes in [5] that solution (1) is
valid only for wz- 5/ However, it 1is easily seen that for all
real values of w recxl values of D can be found such that

(D+1)2 D(L ~ }éwD))O. We shall choose to consider solution (1)
for w>-—% for in this case solution (1) is valid for arbitrary

real values of N,



96

(@) o =dy + 2 Tan(z), | |
S S i = R G
g = éoexp(% Tan“l(,g)) .
K = D(l-:_%lg)f(n+1)2>q ) w.<—§-
(3) A=o§o-%~ ,ﬂ=ﬁ0—2-ln(§).+(])+l)(%) .
(9.21)

N
[

Foexp () + D= L avCBus3 v wg % .
B
N W+ 2
(4) =& -1 ,8=0 +D+1) ,
‘ Br Br
(9.22)

'E:
i

ﬁoexp(%) , D=zl (2w-%% wsT,
W+ 2

In each)of these four solutionset , 4, ﬁo, and B are
arbitraryconstants, and D is a constant whose range is governed
by w.

It should immediately be noted that solution (L) has
already been obtained in section 7, and that solutions (2)-
(4) are the three other solutions previously referred to.

The derivation of all four of these solutions will be found
in the appendix to this thesis (page 15)).

The solutions (1) through (4), given above, are math-
ematicaily valid solutions to the Brans-Dicke field equations
in region III, corresponding to our isotropic line element
(9.4). By examining the behaviour of the scalar field, ¢,
in region III we shall show that soluticn (1) is the most

physically acceptable of the four solutions.
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o

Let us begin by demanding that g vanish somewhere in

region III, This demand will be satisfied if either

(1) 4 —> Oas o —> oo , . | (9.2%a)
or _ | -
(i1) £ > 0 as ¥ —> a ,where Ry< a (#o0) . (9.23b)
We shall now proceed tq consider each of the above cases

in turn. . _

Case (i). # ——> O as r —> oo . (9.23a)

Of Brans's four vacuum solutions only the third could
be compatible with the present demand on g. Solution (3)
will be valid provided

2w+3<0. (9.24)

The implicaﬁions of equation (9.24) are quite far reaching.
to see this let us examine the field equation governing 4
in region II,

When in region II the scalar field ¢ satisfies the .
following field equation:

0g = SR ' (9.25)

(2w+ 3)e

o = (&) ()% 34, -

Bince we are assuming that the line element in region II

where

is of the form (9.4) we easily find that OF may be written

as follbws: ’

0 = (-2)%a_((-)%e~7%") ,
dr

Thus equation (9,25) becomes

d_((~g)%e %%ty = _an(-g)’n , (9.26)
dr (2w4-5)04
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where according to our previous assumptions
T= T(r) . ‘ \
Equation (9.26) may be immediately integrated to yield

(-g) %55 - (~g(p))P1(p)dp +
(2&H—5)ciL/\
1 )
+ Q _ (9.27)

where Q is an integration constant and r lies in region II.

To determine Q we set r==R1 obtaining

= (-8 e PR g () . (9.28)
Thus equatlon (9. 2?) may be written
(2w+ 3) (~g(x) Y exp(-28(2))8" (x) =

_Tf(—g(p)i%(p)dp + (2w+ 5)(-g(Rl))%exp(-2ﬁ(Rl))d (R
(9.29)
_ Accordlng to our assumption (9.,12), T<0, and con-
sequently the integrand appearing in (9.29) is negative,
implying that in region II
(2w+ 3)(~g(x)) ’exp(-24(x))8" (x)
< (20+ 3) (~g(Ry ) ) *exp (~2/0(R, D)6 (R) +(9.30)

Since (—g(n))ﬁexp(-aﬂ(r)) is a positive quantity (9.30) may
be rewritten as follows:

(2wt 3381 (2) € (2w 3)8" (R,) (-5 (R, )) exp(-25(R)) + 23(x)) .
(-e(=))” (9.31)

FProm (9.10) we know that when r=Ry

(20+ 3)6' (B)) €0 ,
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which when combined with (9.31) implies that _
2w+ 3)F' (<0, . (9.32)
for all r in region II, |
Now we have previously seen that when working in region
IITI the demand that ge—» Oas r > o implies that 2w+ 3< Q
If we combine this fact with equations (9.11) and (9.32) we

can conclude that

g'(x) 20 , (9.33)

when in region II, waever, equation (9.10) tells us that

| | 8(R;) >0 . (9.34)
Combining this with (9.33) permits us to conclude that

F(Ry) > 0 . ©(9.35)

In the present case the scalar field in region III
is given by
?‘ = ﬁoexp(*E) . (9-56)
B

Now if g is to vanish as r ——3>c0 % must be positive.

Due to equation (9.35) we can say that ﬁo must be positive

and conseguently
g = -%ﬁoexP(-DBg) ) (9.37)

is negative throughout region III. In particular, ﬁ‘(Ra)
is negative which contradicts (9.33).

Thus we see that the demand that § —> 0 as T —p o0
is incompatible with our assumptions (9.10), (9.11) and
(9.12). 8o rather than revise these assumptions we shall
assert that the demand that g-—p 0 as r——»co is physically

unreasonable,
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Case (ii). g=—> Oas r-——> a.; R2<a'(;!oo) (9.23b)

We shall now examine the p0331b111ty that [ vanish at

some point r= a(#£w) lylng in region III._ In thls case
solution (1) is the only possible vacuum solution we may
consider, and it will be valid provided

(D + 1)2-13(1-@;) >0 . (9.38)

It will always be possible to determine real wvalues of B
which are compatible with (9.38) provided

w > -5
However, since we are.assuming that |wl >2 we shall confine
our considerations of solution (1) to |

w>2 . (9.39)
Consequently we may use equation (9.32) to conclude that
throughout region II
| F'(x)<0. (9.40)

From equation (9.,10) we know that
ﬁ(Rl>>()9

so it now appears that g may possibly vanlsh somewhere out-
side of r=R, . However, it will be shown that provided 4

remains positive in region IT the vanishing of g outside

L1

the shell contradicts atleast one of our assumptions (9.10),
(9.11) and (9.12). In order to establish this result we ..
shall examine the restrictions'imposed upon the signs of

s Ay 4" and & + 38" at r=R, by (9.10),.(9.12) and the
field equations (9.13)~(9.18) which govern region II,.
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We begin by adding (9.13) to (9.14) to obtain
) 2 1] 1 2 Eﬂ
,dz'+z+z}.= (" +g8'") + 8 (D~ + T,)e +
& & o E

- awredr - awer

. (9.41)
¢t (2w+ 3) F2w+ 3)
wvhere we have set | |
4 = d‘ + ﬁ' . ' (9‘42)

Using equation (9.17) to replaceé the last term on the right
hand side of (9.41) we find that the above expression may
be wrltten as follows:

z' + 28 + 3% + zg'= 8'n‘e%6(fﬁ +T22)-_ grwre Py - 41, (9.43)
TP Ay get(2w+3) T

Since we are assuming that ¢ is positive in region II

we may use (9.40) to conclude that in the present case

“'%Il.?_ 0 ’ (9.4-4)

throughout region II. Upon combining (9.44) with our assump-
tion (9.12) we can deduce that the right hand side of equation
(9.43) is non-negative, Thus whenever z vanishes at some
‘point in region II z' is non-negative at that point and
consequently z cannot decrease from positive to negative
values. Since equations (9.39) and (9.10) imply that
2(Ry)>0, | - (9.45)
we may conclude that z 1is non-negative throughout regilon II.
We shall now turn our atteﬁtion to equation (9.16)
which may be written as follows:

x' + 2x + ?% 8’n’ TOO 81T +
(2w+ 5)ci

+ e"gp(ﬁ'z-wgg' 22)} ’ (9.46)
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where ) :

ox=g s 9.4
Due to our previous assumptions and the results we have
established with regard to g' and z we can conclude that the
right hand side of (9,46) is non-positive throughout region II.
Thus whenever x vanishes at some point in region II, x' is non-
positive at that point, and consequently x cannot increase

from negative to positive values. From eguation (9.10) we

£ind that : |

x(Ry) = B (R)ILO,

and consequently 4 1is non-positive throughout region II,
As an immediate consequence'of the above results we

may conclude that in the present case . |

o' >0
throughout region 1I.

To recapitulate we have shown that in the present case

g'<0, | (9.40)
«'> 0, : (9.48)
'<0 - (9.49)
and. ) _
'+ 4 >0 (9.50)

throughout‘region II.
We shall now examine whether solution (1) is compatible
with eguations (9.%9), (9.40) and (9.48)-(9.50).

For solution (1) we find that g is given by

A
g = ﬂfo(;_?__-_-_B,) ; (9.51)

r+ B

where
£ = (D+1)° - D(l-%g)';-o . (9.52)
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and ﬁ is a non-zero constant. From (9.51) it is obvious
that ¢ will vanish in reglon II1I on only the following two
occasions:

(i) B>R,and %>0;

(11) JBD>R,, B<Oand D4\<o .

Conditions (i) and (ii) may be written in the following

abridged form .
R,<IBl and BD 70 . _ (9.53)

We shall presently show that (9 53) is 1ncon81stent with
equations (9.39), (9.40) and (9.48)-(9.50).
To begin we may use equation (9.51) to find
Eﬁ .
4! ;sz(r B) 2B . (9.54)
2I‘+B (I‘E—Be) ]

and thus %‘_ is given By

% . (9.55)
R(r - B<)

The values of o and /3 corresponding to solution (1)
are given by:

o = d. + 1 1n(r By , (9.56)
a r+ B . .

/= ﬁo+21n(r+B) -21lnrx +(3\ D l)ln(r g . (9.57)

Thus we find that &' and g' are given by

o = SR , , : (9.58a)
X(rz-BE)
and
''= 2 -2 +fA=-D-1\_ 2B . (9.58Db)
& T+B T +( A )r2—32

Due to equation (9.58a) we see that (9.55) may be
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rewritten as follows:

%_ = Det' , (9.59)

Since we are assuming that g>0 in region II we may use equation

(9.40) to conclude that

g'(Ry) <o (9.60)

Twy 0 '
Due to equation (9.48) we find that ’

L(R)Z20. (9.61)

Thus by'combining equations (9.59)-(9.61) we may conclude that
| DLO. ' (9.62)
Upon inserting this result into (9.5%) we find that
§<0’ : - (9-65‘)

if ¢ is to vanish in regioﬁ ITT.
Equation (9.50) can be used to tell us that
0<ot'(Ry) + 4'(Ry) | (9.64)
Thus by adding equation (9.58a) to (9.58b) we find that when
Ir= R2

0< 2 =~2 + 2B - 2BD .
R2+ B R2 (R2)2_ B2 2((32)2— B2)

which may he rewritten as follows:

(1-D) _B > B . (9.65)

In order for B and A to satisfy equation-(9.65) we

myst have eithexr:

(a) B>0 and A< 0,
or
(b) B<O and A>0.

We shall now proceed to examine each of these cases separately.
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When B and A satisfy (a) we find that (9.65) becomes

l1-D 1 1 (9.66)
. ( ﬁ)ﬁgjj§2,§§:> o . ]
Upon applying (9.53) to (9.66) we may conclude that
1-D <O
i k J
or
12> . (9.67)

We shall now assume that B and A safisfy condition (b).

Using (9.53%) we can deduce that
R2+B<O,

and consequently (9.65) reduces to

-2 1 _>1sy (9.68)
X mEBlE 0

Since B<0, R,~B will be positive and hence the above

expression dimplies that

1-D%1- 3B . (9.69)
27 K

Using (9.69) we may conclude that

D<B <«-1, (9.70)
AT R,

which in turn implies that
| 0% > . O (9.71)
In summary we see that for both cases (a) and (b)
p°> 22 .
Now X is defined by

AoD? 4D + D41,

and consequently we may use (9.71) to conclude that
0> $eD°4+D + 1 . ' (9.72)

Equation (9.72) implies that the range of real D corresponds
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to the following three intervals:

(1) =1 - (Q-2w)” <D ¢ =1+ (1 - 2w)* » when Ocw<}
W W :

(ii) D< -1, vhen w= 0 ;

and '

(iii) D« =1+ (1-2@%)}"f sy O =l - (1--20\1)]{Z < D, when w<O,
) o (E%)

Thus a real value of D compatible with equation (9.72) can

always be found provided

W<k o ' (9.73)
However, it was shown earlier that in order fér the 'function
#, corresponding to solution (1), to vanish in region III
and also be compatible with assumption (9.11) w must be
greater than 2. Consequently (9.73) is inconsistent with
our previous work. |

Thus we see that the following five assumptions imply
that in the vacuum surrounding a static spherically symmetric
mass shell the scalar field. g cannot vanish.
(1) In regions i, IT and IIT the line element assumes the
following isotropic form: .

2_ _g2%,2,,2

ds® < c2at® + e (ar? + r2ae® + rsin

+ r“sin Gdez) ,

with o, /3 and the scalar field g being functions of r which
are of class C° in regions I, IT and III.

(ii) The functions o, /3 and 4 are of class Cl-across the
boundai'ys separating region I frorﬁ region II and region II
from region III.

(iii) Region II makes no conbribution to the gravitational

field in region I, and the gravitational field in region I

can be approximated by our weak field solution.
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(iv) twi> 2.
(v) In reglon II the matter tensor T J is diagonal, ¢:>o R
) 0 and T -<0 .

Thus we may conclude that in the vacuum surfounding our
static spherically symmetric mass shell the scalar field #
will always be greater than some positive constant N. We
shall henceforth take this to be the boundary condition
satisfied by £ in region III, -

Our boundary condition on # eliminates the third of
Brans's four vacuum solutions (provided we assume. that the
scalar field # must remain finite as r—>oc). In order to
reduce the choice even further we have to resort to Brans's
iﬁterpretation of the gravitational "constant." Out of such
a study Brans [5] has shown that w must be greater than -2
if the Brans-Dicke theory is to conform with Brans's inter-
pretation of Mach's principle. We shall not discuss how
Brans has obtained this result, but we shall sssume that it
is velid. Consequently (due +to our assumption thatlw>2)
we can disregard solutions on the grounds that they are
physically unacceptable if they are only valid for values of
w<?2 . For this reason we may dismiss solutions (2) and (&)

46 Thus we see that solution

as being physically unacceptable..
(1) is the only static spherically symmetric vacuum solution
of the four presented by Brans vhich is compatible with ouxr

demand on & and which is such that it can have its arbitrary

46It should be noted that sclution (3) could also be
eliminated on these grounds.
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constants chosen to be compatible with our boundary condition
on g. Ve shall henceforth choose to call solution (1) the
"physical" vacuum solution to the Brans-Dicke field equations

corresponding to the isotropic line element-(9.4).
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10. PFurther Properties of Brans's "Physical” Vacuum Solution47

Recall that in the previous section it was shown that
the most physically acceptable of Brans's four static wvacuunm
solutions, corresponding to a spherically symmetric particle

at rest at the origin was given by the isotropic line element

as® = ~e2%c2at? + e¥B(az® + 12202 + rPsinZ0ac?) , (10.1)
where
%
e engr-B) s (10.2)
r+B o _
2(1-D-1zﬁ
e e%(l + ]_3_)4(1' - B) R (10.3)
r/\r+B
A
g = ﬁo(r— B) , (10.4)
Tr+ B
and . _
y (D+1)2-D(1-%D)>o . (10.5)

We shall now proceed to identify the constants appearing in
the above solufion. After doirgso the resultant line element
will then be written in non-isotropic fopm and compéred with
the Schwarzschild non-isotropic line element.

To determine the constants Ao B g,, B and D appearing
in equations (10.2)-(10.5) we shall compare these expressions
with our weak field solutions (8.49)-(8.51). In order to
perform this comparison it wil} be necessary to expand the
above expresssions for ezu, e2f6 and g in Maclaurin series

20l

expansions, To begin let us write e“, e ana g in the

47’l‘he material found in this section is bused upon
H.Nariai's paper, reference [20],
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following form:

%ﬁ .
24 e2°‘°(1-x) , . (10.6)
1l+x -
2(A-D- l)/}l
ezﬂ = e2ﬂ° (1+ x)q'(l -X . , (10.7)
_ l1+x
and : D
4 = .do(l-x A (10.8)
l+x
where ‘
A= E .
T

Using a Maclaurin series to expand equations (10.6)-(10.8)

we find thét‘to first order in x

2% engl-iE) ’ (10.9)
A
e P14+ u(D+Dx), (10.10)
A
and .
g7 4, (1-2Dx) . - (0.11)
' A
From our weak field approximation we have
eadgsl - 2MG, , (10.12)
_rc2
24 2MG,
eesl + o 144u) | (10.13)
~ rcz (2 Wl
and
P 1(1 v __ MG ) . (10.14)
) k rc§@d4-2)
where

G, = k(2w+ 4) ,

Sw+ 3/

and M denotes the mass of the source of our gravitational
field,

Recall that by examining equations (8.50)-(8,52) in

the limit as w-—-> o the constant ﬁo, appearing in our



111

weak field solution, was shown to be the reciprocal of the
Newtonian gravitational constant, k. However, this does not
imply that the (locally measured) gravitational constant in

the Brans-Dicke theofy is 1l . In fact it has been shown by
) o '
Brans in.[5]that G0 represents the (locally measured) grav-

itational constant in the vacuum surrounding our mass M.

One should mote that in the limit asw—po, G —> k= 1.
(o]

Upon comparing (10.9), (10.10) and (10.11) with (10.12),
(10.13) and (10.14) we can thus make the following identifi-

cations:
eam%:l., ePPo] y B = % ’ (10.15)
B, MG, | (10.16)
Sl n
c
and

§D+11!B'z}éM_G22 %3:% . (10.17)
c

If we now divide (10.17) by (10.16) we find

D+loe w1l
w+

which implies that
W+
Equations (10,.5) and (10,18) permit us to conclude that

A (%}ﬂ . (10.19)

1

Subsituting (10.19) into (10.16) gives us

By M0 /004 3% (10.20)
202 2w+ 4

In summary we have found that the constants appearing
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in (10.2)-(10.5) are given‘by

- 1 MG
doﬂﬂoxo; ﬁfof-'E H D:-"m 3 B 0(26.)-!- 36;

'2—0'2 W+
and
A (B -
Using the above results we find that the line element
corresponding to Brans's "physical" vacuum éolution is

given by
ds® = =8 (r)c2at2 + (1 + §)"’§2Q(r)(dr2 » r2acfy , (10.21)
T :

where
q ={20+ uf (10.22)
. (§w+ 3 ’
Q= (g-2)(q+2) , . (10.23) -
q
- §(x) = z-3B , (10.24)
r+ B
and
AF = a6° + sin°oae® . (10.25)
The associated scalar field g may be written in the form
g=1 §P(r) . (10.26)
k
where
' P=-2(q°~1) . (10.27)
q

In paqsing we note that in general ; will have to be

2>B2) for the line element (10.21)

strictly positive (i.e., T
and the scalar field (10.26) to be real.

In section 8 it was shown’that in the limit as w goes
to infinity the Brans-Dicke weak field solutions (8.49)-
(8.51) assume the form of the Einstein weak field solutions

provided we set ¢0 = %. Simailarly we note that in the

limit asw goes to infinity (or equivalently as g goes to 1)
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the line element given in (10.21) reduces to the isotropic

form of the Schwarzschild line element; viz.,
2
1-_kM

as® = - 2021‘- c2ate + (L+ kM )4(dr2+r2d(22) , (10.28)

14--2— 2c r

and the scalar field given in (10.26) becomes  » One should

oY Lo

note that if kM>O then the line element (10.28) has only
one singular point, viz., »r=0,
For the purposes of comparison with the non-isotropic
Schwarzschild metric of general relativity, namely,
45 = = 1 - 2KM\c2aF2 + _ dF° + T°(a8° + sinZBag?) , (10.29)
e ZEM)
T (l-*z:
cr
we wish to express the isobtropic form of Brans's line element

(10.21) in the form
ds® = - evtr>c2d¥24—e1(r)d52 + 52(d§24-sin2§d52). (10.3%0)
In order to rewrite (10.21) in the form of (10.30) we

shall perform the following coordinate transformation:

t=% , (10.31)

(1+§)4r2§2Q(r) - 7@, (10.32)

- ¥ 06=0 , (10.33)
) €=¢€ . : (10.34)

To assist in rewriting (10.21) in terms of the barred co~ .

ordinates we shall use

éij = gth?Bg y (10.35)
where
BD = 54b | (10.36)
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Due to the fact that our line element (10.21) is diagonal

we can use (10.35) to conclude that:

'éia. =0 if i£j5, _ (10.37)
ME) Eoo = goo(dt)2 , (10.38)

at

dr
§22 ==g22(g9 s (10.40)

as

and - )

353 = g;a(d_s_) . (lQ’-l-l)

de

Since
dt = d6 = de =1 ,

at a8 a€
we can use equations (10.21), (10.32), (10.38), (10.40)

(Qo.42)

and (10,41) to conclude that

MB 5 @) - 3% (10.43)
and _ _ 2
Bop = Bzz = T . (10.44)
Using equation (10.%9) we find that
A _ (g,0) Tz (10.45)
T .

which dve to equabtion (10.21) may be rewritten as follows:

- dr
o EAE) _ = . (10.46)
1+ 2% |

II »

From (10,.,3%2) we find

dF - gcr p\Q-1) gg 1)+ B° } + (14-2)2(2;;§Y2,

dr \T+B T \r+B

which can be written in the form

4T =(r—B)(Q“l){l+§_2_ + 2}3{9-12} . (10.47)
T

dr r+ B r2
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Upon inserting (10.47) into (10.46) we find after simpli-
fication that

e"%2(5)=:r-B + 2BQr . (10.48)
r+ B (I""B)E

Making use of our definition of ; R (10.24); we find that

the above expression may be rewritten as follows:

e~ #A(T) _ ;- %(1 - 4}2) . (10.49)
; .

To summarize we now have our original Brans-Dicke vacuum
line element (10.21) in the form

d52==-ev«5)02d€2 + en(-f)di2 + fg(dﬁza-sinaﬁdég) , (10.30)
where e_%z is given by (10.49)

o? - ;,Cl , (10,43)
and ' ‘
= _ SGM 2R N, (10.50)
T == 2]
cg \l ~ §

This last expression for T can easily be obtained from
equations (10.24) and (10.32). Associated with the above
line element is our scalar field g which in the present case

is given by

g = §P . - (10.51)

where

P=-2(q5-1) , (10.27)

q .
Clearly equations (10.43), (10.49), (10.50) and (10.51)

can also be obtained directly by solving the Brans~Dicke free
space field equations (which are obtained from egquations
(4.16) and (4.36) by setting Tij==0 and T= 0O respectively)
for a line element of the form (10.30). Henceforth we shall
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work solelj with the new form of our line element (10.30).
It should be noted that in the limit as q goes to 1

the line element (10.30) obviously goes over to the Schwarz—

schild non-isotropic line element'given in equation (10,29).
The usual non-isotropic form of the Schwarzschild line

element is éiven by (10.29); viz.,

ds2 = - (1 - 2kM ) c?at%+ _ aF% '+ $2(aB2 + sin“0ag?) .(10.29)

cT 1___2_21:1*_’1) g
c“T . _
At T=R_ = 2kM , (10.29) experiences a singularity, and when
g :F? -
':E'<R8 (10.29) can no 1ongei- be interpreted in the same sense

as it was when §>Rg o This results from the fact that as T

passes through Rg from above the signature of (10.29) changes
from (-1, 1, 1, 1) to (+1, -i,'l, 1). (One should note that
the the signature of the isotropic Schwarzschild line element

(10.28) never changes, even though Bop 80es to zero for r=kli.)
2
| c:E
For the non-isotropic form of the Brans-Dicke vacuum
line element (10.30) to experience a singularity at T= RS.

A 1A

we must have either e'}é > Q0 Or € ~—p0as *—> R, . Ve
shall now examine each of these possibilities in turn.

If e")ﬂ—> 0 85 T e R, then from (10.49) we see that
5> —> g2y 0 28 P Ry (20.52)
where § is given by equation (10.25)_. It will now be shown

that (10.52) is not valid. To see this it will be necessary
to rewrite in terms of W ., Using equations (10.22)
J=-2 .
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and (10.23) we find that

, %
2 - -2(85% %)+ (e §) .

¥%
-2(s2+1) - (321%)

(10.53)

Since we are dealing with Brans's "physical vacuum
solution we know from our previous experience that it is a
valid solution "when (WY —2. However, to be consistent
with the assumption that lt;Jl> 2, which was made in section 9,
we shall examine equation (10.53) for®>2. In this case it

is apparent that

0o . « 54
Q_fz__zs . (10.54)

Combining the above result with equations (10.52) and

(10.50) permits us to conclude. that ; and hence RS will be

complex except when _Q = O. However, the case _Q =0
Q= Q-

corresponds to the limiting casew= oo. Now as previously
mentioned when &> —» 00 (1.0,30) becomes the non~isotropic
Schwarzschild line element (10.29) and consequently we expect

(10.30) to experience a singularity for R, = 2kM.
cz
In summary we have shown that for finite values of w2
there exists no positive real value of T for which e"ﬁa-—-r O,
We shall now examine the possibility that e%w-,\ o
as T —> R, for w)>2. Using ec:{uations (10.22) and (10.23)

it is easily seen that whenw>2, Q and g lie in the following

intervals [0 , (S/Yé -i/'Z)
(%

)
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and

[ (/7> )

reépectivély: Now since e = } we see that e%vJ——+ (o]
as T—p R, if and only if § —> . However, from (10.50)
we see thatgl——} oo implies that R ,=0. Since we have been
working under the implicit presupposition that there is a
singularity in the metric at the origin we can conclude that
e}t"w——) 00 as T > R, leads to no new singularities,

Thus we have shown that for finite values of w»2 the
only singularity in the non-isotropic Brans-Dicke line

element (10,30) occurs at the origin.
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11, Eguations of lMotion in the Brans-Dicke Theory .

In this section we shall study the gecdesics corresponding
to the "most physically acceptable" of Brans's four vacuum
solutions. It should be recalled that thié solution has
been identiflied with the gravitational field outside a
spherically symmetric static particle of mass M which is
at rest at the origin.  The line elemént corresponding to
48

this solution is given by

ds2==-eadcadt24-eag(dr24-12(d924'Sinzgdﬁe)) y (11.1)

where B 2q |
A Lt (11.2)
B
1+'£
ufy - B}
e - [1+§] - T , (11.3)
L. 1-+§
5
g =(2w+ & (11.4)
(§w+ Bj ’
Q= (g-13(q+2) , (11.5)
g
B = MG, (11.6a)
2c§q
and >
GO = kg~ . (11.6b)

Recall that G, , and not k, represents the (Locally measured)
gravitational constant (throughout the vacuum surrounding
a single mass) in the Brans-Dicke theory of gravitation
(c.f. remarks following equation (10.14).)

It is well known (e.g., R.Adler, li,Bazin and

F.Schiffer, {1]) that the non-null geodesics corresponding

48'1‘hroug;hout this section & will be used to denote the
azimuthal angle and not the scalar field.
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to an isotropic line element of the form (1l.1) are identical
to the Euler-Lagrange equations corresponding to the single
particle Lagrangian

12 = —e2%c24% e2ﬂ(52+ re( 62 + sino ;32)) R (11.7)
where a dot is used to denote differentiation with respect
to the arc length s. In writing (11.7) it has been assumed
that the mass of the corresponding particle is constant,
and thus does not appear in L2 since its presence would add
nothing to the equations of motion.

The Euler-Lagrange equations corresponding to the
Lagrangian (11.7) are

a ual -u? = o, (11.8)
ds aii axi

These differential equations are to be solved for the un~-

known coordinates, x* =x-(s). We shall now proceed to deter—
mine the functional form of the Xuler-Lagrange equations
corresponding to L2.

For the O, or t coordinate we have

AP = -2c%e?f |
%t
and
aL2 = 0 .
[} a-t
Thus in this case (11.8) takes on the form
a (™) =0, (11.9)
ds
For the 1, or r coordinate we find
dL® = 261 .
or
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and

31,2 = _2do( ee‘)‘cgt2 + 2g_ﬁ e2/3 72 + 2r(l+r%) egﬁée +

or . ar

+ 2r(1l + rdpg )eeﬂsinag 32
dr

The above two expressions yield the following Euler-Lagrange

equation for x:

g_'_(epr" ) = - dd e2%c242 4 %@ eeﬂfe + rea/j(l +1df ) 6%+
ds dr T dr
+ re2/3(1 +rdp )sin29 ;32. (11.10)
dr

For the 2, or © coordinate we obtain

BL -~ 20284 .
3
and 52 2 23 '
oL = 2r“e“sinGcoso &
oe
Thus the Euler-Lagrange equation for & is
d (z7e8) = r2ePsinocose #°, (11.11)
, as '
Lastly, for the 3 or g coordinate we have
aL = 2r°ePsin? oF,
9%
and
ar? -
o8

So we find the Euler-Lagrange eciuation for 4 to be

d (r 32/581:1 0g) = (11.12)
ds

We shall now show that all of the above Euler-Lagrange
equations may be integrated atleast once without appealing
to the explicit functional form of o and /3.

To begin let us orientate the axes of our coordinate

system so that when s =0 our particle lies in the plane =1
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with é=f0. In this case we can use equation (11l.11) to con-

clude that when s=0
r2eBE- 0, (11.13)

and hence

,re

g = O » (llol‘q')
We shall now assume that ©0(s) admits a Maclaurin series

expansion; i.e.,

o0
_ n
o(s) = 5 .I%T(__d 2 O)SH . (11.15)
n=90 "'\ds
8=
The expansion coefficients
a’e , (11.16)
n
ds 5=0

may easily be determined by successively differentiating
equation (11.,11) with respect to s. Due to (11l.14) and our
choice of coordinates we find that our process of successive
differentiation yields

| a’e

=0 , (11.17)
as® '

s5=0

for all n>1, Thus we may use equations (11.15) and (11.17)

Yo conclude that
8 = E{ s (11.18)

for all s3»0.
Upon inserting (11.18) into (11.12) we obtain
_@__(rgeeﬂfﬁ) =0,

as
which may be immediately integrated to yield
2Py - n (11.19)

where h is a constant.
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Equation (11.9) may also be integrated to give
e%% = a (11.20)
where 4 1s a constant.

Since we are presently dealing with the non-null geodesics
of (11.1) we can use (11.1) to obtain the following first
integral of (11.10) :

1= -8 o242, ca‘g/"'(:r':'2 + 7°0° + rsing 52) . (11.21)

Making use of (11.18), (11.19) and (11.20) we find that
(11.21) may be written ,

1=~ c2q2e=e® + eaﬂ(52+-h2e—%6) . (11.22)

r2

In summary we have the following first integrals of

our EuleréLégrange equations:

e = T | (11.18)
§=_h , (11.23)
2o

ke
)
jol}
[4+]
-

(11.24)

and
1 = —cPdfe2% , 8P/12 gge‘aﬁ . (11.22)

r
We shall now concentrate upon rewriting (11.22), To

begin let ys assume that

r = r(4(s)) .
Thus we have .
dr = r'g , (11.25)
ds

where a prime denotes differentiation with respect to 4.
Using (11.23) we find that (11.25) may be written

b
r=1r' h . (11.26)
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From (11.26) we find that (11.22) can be written in the form

1 = ~c2a%e™®%, ¢=2A (21122 4 n2e~2R  (11.27)
5
r ki

Let us ncw perform the usual change of variables by

setting
n = -]-_- . (11.28)
r
This gives us . '
rt = -1 ut, (11.29)
u?

Upon combining (11.28) with (11.29) we find that (11.27)

becomes
1 = —cP3%e™2% 4 =2y ) ve + nle3hPy2

(11.30)
It is now formally possible to solve (11.3%0) to obtain
g=¢g(u). This can be seen from the fact that (11.30) may

be written in the form
au¥ = R + ee(ﬁ"d‘)cad2 - W@ . (11.31)
B 2 oz

However, we shall be interested in treating the problem of

perihelion rotation and consequently we shall need u=u(g).
In order to proceed further it will be necessary for us
to differentiate (11.30) with respect to 4. However, before
taking the desired derivative we shall multiply (11.30) by
2d

e y and thus ugpon différentiating the resultant expression

we obtain an equation independent of the constant d. Upon

carrying out the above two operations we find

u'dd =u! u"h2 ~2f3 + h u' (u )e(da - _@) %6-+
du du

. u'he(gg - gg)u 27 4 nPurue=ah (11.32)
du au

One obvious solution of (11.32) is simply
u' = 0, (11.33)
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which yields _
r = constant , (11.34)

i.e., circular motion. If u'# 0 then (11.32) becomes

e2Pad = he(u" +u) + h‘?(_a_a - g@)(u')2 N

du du du
. he(gg - ap\u® (11.35)
du du
which can be rewritten in the form
W+ w o= 1edPad + (a2 - gg)((u'i)2+u2) . (11.36)
h2 du du du

Equations (11,18), (1l1.23), (11.24) and (11.36) are
our final eguations governing the non-null geodesics of a
general isotropic line element of the form (11.1). One
should note that no approximations were used to obtain these
expressions;

We shall now write out the differentizl eguations
governing the non-null geodesics of the Brans-Dicke theory.
In ordexr to accomplish this it will be necessary to determine

dfB~-dd and ggegﬂ .

du du du

From equations {(11.2) and (11.3) we find

o = q{}n(l-Bu) - ln(l4—Bu)} ) (11.37)
and

(= 21n(l + Bu) + Q4ln(l-Bu) - 1n(l +Bu)} . (11.38)

Using the above expressions we easily find

dd = -2qB , (11.39)
& s

1 -3B"u
and
i = 2B(1=Bu~-0Q) ., (11.40)
du Y

Upon subtracting (11.39) from (11.40) we find:
dp - dod = 2B(l-Bu-Q + qg) . (11.41)
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If we now combine egquation (1l. 5) with (11.39) we find

Epda = -283 (1 + Bu) (1 Bu (11.42)
1 - B%u 1+ Bu

Substituting (11.2), (11.3), (11.41) and (11l.42) into
(11.23), (11.24) and (11.36) gives us:

; 2 -4 2Q

g =nu“(1+Bu)""{1L+B . (11.43)
v=(1 + Bu ( ::Bg)

i = d(l+Bu)2q . (A1.44)

1~ Bu
u"+u = -29B(1 + Bu) (l-Bu)gQ +
" ne(1-3Buw) \1+3Bu

+ 2B(1-Bu—-Q4—q)((u')24-u2) . (11.45)

(l-Bzug)

respectively.

These are the exact differential equations which have
to be satisfied by the "physical" non-null geodesics of the
Brans-Dicke theory. Ve shall now use these geodesics dif-
ferential equations to treat the "classical" problems of
perihelion rotation and light deflection. Equation (11.45)
will suffice to handle the former problem. For the latter
-problem we shall find it necessary to modify the above
equations since they apply to the non-null geodesics whereas
1light is sssumed to follow the null geodesics of our line
element.

Before proceeding to consider the above "classical”
.problems let us compare the non-null Brans-Dicke geodesic
differential eguations (11.43)-(11.45) with the corresponding
differential equations of Newtor's and Einstein's theories

of gravitation.
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In Newtonian theory u and ¢ are governed by (c,f.tﬂ R
page 183)

u'+u = ﬁg . (11.46)
and >
ad = Hu® , (11.47)
dat ' ‘

where H is a constant. To begin'we note that equations
(11.45) and (11.46) are quite different. However, upon
dividing (11.43) by (11.44) we find that in the Brans-Dicke
Fheoxy 4 = nu® (1+Bu)” 1+Bu)2(Q ~4) |, (11.48)
4t d 1-8u :

Thus we see that if Eﬁﬂ«i , then equations (11,47) and (11.48)
are quite similar. ‘

Using the results presented in chapter 6 of [1] we can
show that the differential equations governing the geodesics

of the isotropic Schwarzschild line element are:

' 2
= BHu , (11.49)
(1 + Gu) :
b = 13(1+Gu)2 , (11.50)
1l =Gu

and
u'+u = -2G(1+Gu)3 + 2G(2-Gu)((u')2-+u2)

. H°(1-Gu) 1 - g°u

s (11.51)

where H, D and G are constgnts. Upon comparing equations
(11.43)-(11.45) with equations (11.49)-(11.51) we find that
the Brans-Dicke and Einstein expressions for B, %, and u
are quite similar and in fact become identical (up to the

choice of constants) when g=1 and Q=0 (i.e., whene—> 00 ).
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We shall now proceed to use (11.45) to examine the
problem of perihelion rotation. Iﬁ order to treat.this
topic we shall find it necessary to replace'(ll.45) by an
approximate differential equation.

Assuning that
|Bul<1

we may use a binomial series expansion to rewrite (11.45)
as follows:

u'"+u = -g%?(lq-5x)(14-x)(1-2Qx)2 +
h

+ 2B(1-Q+q-x)((u")2%+ W) + 0(z%) , (11.52)

where }
x = Bu . (11.53)

Upon multiplying out the terms appearing in (11.52) we f£ind
@M+ u = —20B(L+ 4(L- Q)x) +2B(L=Q + a=-x)((u')°+u?) +
B 2y . | (11.54)
From equation (11.5) we see that

+ 0(x

1-Q+q =2,
q
and consequently (11.54) may be written in the form

u' +us= -g_qé_B(l +4(1-Q)x) +2B(2~- x)((u‘)2 + u2) + 0(x2). (11.55)
h q

Before we can procced any further with (11.55) we have
to return to (11,19); visz.,
Brg e% = h . (11.19)
in order to determine the value of the constant h. .
When dealing with the classical central forée problem

of Newtonian physics we find that

ag > = H , | (11.56)
at
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wvhere H denotes twice the constant areal velocity of our
particle. Using (11.56) we may rewrite (11.19) in the form
' h2==e“ftdtje B® h (11.57)

ds

Upon multiplying equation (11.21) by (ggf!(recall that
at

G=g£mdé=0 ) we find

%%)2 = --egclc2 + 82/5{(%%)2 + re(%%)z} . (11.58)

In the dove expression the term within the curly brackets
denotes the square of the particles velocity as it moves
along the geodesic. From (11.2) and (11.3) we see that

for fairly large values of r, e2d and eaﬂ are approximately
1, Thus for slow moving particles we can use (11.58) to

conclude that

(.@.8,2;:: -c? (11.59)
_ at | -
and consequently (11.57) becomes
2 2 '
B~ B (11.60)

¢
where we have replaced e%ﬂ by its limit as r goes to infinity.
Equation (11.60) permits us to rewrite (11.55) in the

form * :
uh +u=29Be2(1 + 4(1~ Q)x) + 2B(2=x)((u')2+ud) + 0(x2).
He 4 (11.61)

In order tc further simplify this equation we shall

demand that terms of order greater than first in 2? be

¢
neglected.

Since B is given by
B:MGo
202q

?
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2B and ¢°B°

we can keep terms proportional to ¢ s but must

neglect all other terms., ' Thus (11;61) becomes

u“+-u==agczB*-§g02B2(1-Q)u4—&§((u')24-u2) . (11l.62)
e - q '
It is fairly apparent that the first term on the right

hand side of (11.62) dominates that side of the above

differential equation. This is so because the other terms
1

on the right hand side of (11.62) are of first order in S5
2 c2B A ¢
whereas —%;r— is of zeroth order in ;E . Consequently (11.62)

differs only slightly from the differential eqﬁation which

arises in the classical central force problem; visz.,
u"+u = A,

where Ais a constant. Hence we shall use a classical per-

turbation approach to study (11.62).

To begin let us set

A = 29¢°B , | (11.63)

(11.64)

i
I~
tov)

e ———
K
and A '
e = 8¢°B° , (11.65)
H2
Using (11.63)~(11.65) we may rewrite (11.62) in the form
u'+u=A+ €q (1-Qu + e((u)2+u?) . (11.66)
A .

To obtain an approximate solution to (11.66) we shall
assume a solution of the form

U= u, +Ev + 0(€2) . ' (11.67)

Upon inserting (11.67) into (11.66) we obtain
uf+revi+u +€v = A +eq(l=-Qu_+e((u ')2+u2) +
o 0 -ﬁ 0

0 0

+ 0(e2) . | (11.68)
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Equating the zeroth order terms in ¢ we find

x

u, "+ u =4. | (11.69)
The general sclution to this differential equation is
| uo,=A-'s-Kcos(d+6) .

where K and 4 are constants. However, b:} a jﬁdicious choice
of axes we may make § = 0, and consequently our solution to
(11.69) becomes . -

u, = A+ Kcosg . _ (11.70)
It should immediately be noted that (11.70) is the equation
of a conic section with one focus at the origin and

eccentricity K.

If we now equate the first order terms in ¢ which appear
in (11.68) we obtain . o

vi+v = q(l- Q)uq + _]K((uo')2+u02) . : (11.71)
Due to (11.70) the above equation becomes

vV = {q(l-—Q)A + Ii_e_ + A} + {2+ q(l-—IQ)}Kcosgf. (11.72)

The exact solution of (11.72) is easily found to be

v= {q(l-q)mg; + A} + Weosd +

+ K(2 + %(l -Q)) p’ singd , (11.73)

where W is a constant. Howevern since our zeroth order solution
already contains a term proportional to cosg we can set W=0,
So to 0(62) we find that a'm gpproximate solution to
(11.66) is given by
u=A+Xcos ¢ + e(q(l-Q)A+A+K2)

A
+ £(2+9(1-Q))Kgsing . (11.74)

+
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In order to put (11.74) into a more useful form we
note that to first order in €

cos($- £(2+a(1- )M cong + £(2+a(1- QS sing .

Using this (11.74) becomes ' _
u= -[A+ cCa(l-QA+A+ ;{Ie)} + Koos@=g(2+a(1- Q)$). (11.75)

Thus we see that our radial coordinate r=1 "almost!
u

traces out a conic section of eccentficity ; given by
= . K ’ L) ‘ (11.76)
A+ e(q(l-Q)A+A+1f£)
A

However; Just as.in the corresponding case in general
relativity, we find the appearance of a non-periodic term _
in the expression for u. _

Let us now assume that % lies in the range (0,1),
implying that our géodesic will have an elliptical appearance.
This assumption permits us to consider the problem of
perihelion rotation.

The perihelion of a bound orbit occurs when r is at a
-minimum or, cdrrespondingly, u is at a maximum. From (11.75)
it is apparent that u attains ité maximal value when

d(l-§(2+q(l—Q)))=2ﬂn, (11.77)

where n=0,1, 2,... « Using a binomial expansion we find that
to first order in €

daz 21in (1+§(2+Q(1—Q))) . (11.78)

Conscsquently the successive perihelia will be found to

occur when

Af = 21T(l+§(2+ q(1-Q))). (11.79)
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Thus from the above expression it is obvious that the per-

-

ihelion shift per revolution is

§8 =1e(2+q(1-Q)). | (11.80)

Using (11.5) we find that (1 -~Q) is given by

| .l'Q = .2;93 ’

q
and thus (11.80) becomes

b4 = me(h-q°).  (a1.81)

From (11.4) we obtain _ ‘
b-g® = 8460 . - (11.82)
7t ot .

Upon combining (11.6a), (11.65), (11.81) and (11.82) we
find that the perihelion shift per revolution in the Brans-

Dicke theory, 5ﬁBD’ is given by

1° ¢© \w+ 2

- From conventional theory we know (c.f.[l], page 187)

2, 2
8§85y = 2™ %o (5w+ 4) . (11.83)

that the perihelion shiftper revolution is
2, 2

8¢y = 21 5M2Go . (11.88)
H c
and thus
E§don =30+ &\ (11.85)
- (g18)% =

which agree; with Brans and Dicke (c.f.[#], page 931).

The observations made of the perihelion shift of Mercury's
orbit about the sun seem to be’quite good. Thus the obser-
vations of Mercury can be usedin conjunction with 6¢E to
determine a range for w.

As of present the observed perihelion rotation of

Mercury's geodesic (afﬁer subtracting planetary perturbations
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and other effects bresumed to be knbwn);is'42.6“i;9ﬁjper
century (caf{qq, page 931), We shall now assume (as is done
by Brans and Dicke in[ﬁﬂ) that the above result can be reduced
by as much as 8%, The cause of such a reduction miéht be
poor experimental fechnique or perhaps thé discovery of
other perturbation effects, such as a quadrupole moment of
the sun. Thus one would desire the ppedicted value of the
perihelion rotation of Mercury to fall in the range
(38.4", 43,5") per century.
Now 5¢E for the perihelion rotation of Mercury is

(c.f.[1], page 187)

5¢E = 42,89" per cenbury. _ (11.86)

Thus if
w25 : . (11087)

we see that (11.85) gives us

38.4" per century< [3w+ 4\é4, <43.5" per century., (11.88)
(B:2)

Consequently we must choose w25 if we desire the Brans-
Dicke theory to compare favorably with the perihelion rotation
of Mercury. Brans and Dicke have not fixed their choice
of w at any, specific value of w25. However, if we choose
a certain experiment to fix w then we must stick to this
choice of & when comparing the’Brans—Dicke theory with
other experiments.

We shall now consider the null geodesics of our line
element (11.1). In this case ds€=0 , and consequently we

shall choose to parameterize the coordinates of our null
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geodesics by an arbitrary parameter ¥, The differential
equations governing the null geodeéics of (11.1) are the
Euler~Lagrange equations corresponding to the following

Lagrangian

Loz__ = -6 2 2, egﬁ{ g@)2+ s:.neg(%éf]} .{(11.89)

Using our previous results we find that the Euler-Lagrange

equations corresponding to (11.89) are:

2 (ez‘*%) -0, (11.90)
o3 oo 24 2.2 24 28
%i_(e %?) %e ¢ (dY + gge (g‘::;) + eFr(l+ rg,_@)(%g)
+ 2ePL 4 rg@)sinEG(%g)z . (11.91)
W( 2ﬂ'§_§> = r e s:LnQ cosgzg)z (11.92)
d .
- %(reeaﬁsineggg) - 0. o (11.93)

We may obtain a fifth, non-independent, differential equation

from (11.1) by setting d32=;0. This differential equation is
e 0T _@)2 + egp(g_g_:'_)a+ r° dae °, sinEG(g_.é)g =0 .(11.94)
ay a¥r axr ay

Reasoning similar to that used to obtain equations
(11.18), (11.22), (11.23) and (11.36) can be applied to
equations (11.90)-(11.94) to give us:

9 = »21' , (11.95)
%é = au® e , (11.96)
it = be % | (11.97)

ar
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and
u'+u = (gé - do ((u')24~u2) s - (11.98)
du du .
where a and b are constants,
u=1 ,
r

and a prime is used to denote differentiation with respect to #.
Equations (11.95)-(11,98) represent the exact differential
equations governing the null geodesics corresponding to an
arbitrary line element of the form (ll.i).
Using equations (11.2), (11.3%) and (11,.41) we find thab
the exact differential equations governing the null geodesics

of Brans's "physical'" vacuum solution are:.

ag = aus L(lq-Bde . (11.99)
at = b(1 +Bu)2q . (11.100)
ar 1~ Bu :
and > >
u"+u = 2B(1l~Q+g - Bu)((u")“+u°) . (11.101)
1l 32u2

. As in our previous treatment of the non-null geodesics
corresponding to (11.1) we shall replace (11.101l) by an
approximate differential equation, Using a binomial series

expansion we find that to first order inm <5 , (11.101)
' C

becomes 'l > 2
uwf+u = 2B(L~Q+ q@)((u)“+u")., (11.102)

Using equation (11.5) it is easily shown that
1-Q+qg =2 ,

Q
and conseguently (11.102) may be written as follows:
u'+u = &g((u‘)24~u2) . (11.103)

q
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The differential equaﬁion-corresponding to (11.103%)

in Einstein's theory of gravitation is '
| utsu = 4Bq ((u)Zau®) . (11.104)

Thus we see that there is only a slight differenée between
equations (11.103) and (11.104). In the limit as©-— o
g —>»1 and hence in that case the t&o—equations becone
identical.

In order to obtain an approximate solution to (11.103)
we shall make use of a perturbation -approach. Such an
approach will be permissible since the right hand side of

(11.103) is of first order in ‘lz while the left hand side

¢
R . 1
is of zeroth order in ;2 .
To begin let us set
€= &_]_3' . (110105)
q
Using (11.105) we may rewrite (11.103) as follows:
| usu = €((u)%+u) . (11.106)

We shall assume that an approximate solution to (11.106)

is given by
u=u, + €v + o(e?) . (11.107)

If we now repeat the procedure used to obtain an approx-
smate solution to (11.66) we find that to first order ine

u is given by

u=lcosd + € ., (11.108)

I
Q I‘O

where T, represents the distance of closest approach to the
origin. Upon replacing u by % we find that (11.108) becomes

1= lcosgd+ € . (11.109)
T T 2

r r
o r
0
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The above expression is the equation of a conic section
) _r op 2
~oand "o
c
respectively. Since &€ is quitesmall in comparison Tto r

with eccentricity and latus rectum given by

0

(in most cases of interest) we shall have an eccentricity

much greater than one, This implies that ﬁhe trajectory of

our light ray is virtually rectilinear ana only "slightliy"
hyperbolic. _ -

To determine the asymptotes of (11.109) we let r go to

infinity in that expression to obtain

cosf= -E_ . '  (11.110)
| r,
Since ;E is quite small we may conclude that the angles
o ;

corresponding to the asymptotes are close to £ 1 . Thus

by setting p : y
= X +
2

.we find that (11.110) becomes

—— 2

Ir

~sin(x T)sind = -¢€
2 o

which may be written

Tsind =~ ¢ .
r

o}
We expect 5.to be small, thus we may approximate sin é by S

in the above expression to obtain

§ =+ € . (11.111)
Ts

Thus the asymptotes corresponding to equation (11.109)

are given by ‘ :
g =17+ € (11.112)

2 T

. o]
and p - ¢ . (11.113)

r- L
I.0
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The above pair of equations permits us to conclude
that the total angular deflection, Apy, of our light ray

from a straight line trajectory is

To

Upon combining equations (1l.4), (1l.6a), (11.105) and (11.114) .

we find that Apqy is giﬁen by

- 4MG ’ ‘
= 2 . 11,11
By = g( Wi 3) ‘ ( 5)

20 + 4
r,C _

’ The Schwarzschild solution to Einstein's vacuum field
equations predicts tﬁat the angular deflection of 1ight,;ﬁE,
in Finstein's theory of gravitation should appfoximately be
ag = MG, . (11.116)
T,C
Consequently we find that

e (ﬁ) £

which agrees with Brans and Dicke (c.f. Eﬂ , page 931).
As a result of (11.117) we see that for 211 finite
values of 25, bgp will always be less than ACE .

Conclusion*

Our analysis of the geodesics corresponding to Brans's
"most physical! line element hés shown that the parameter w
can be chosen so as to bring the "classical' predictions of
the Brans-Dicke theory into close agreement witﬁ the pre-

dictions of Einstein's theory. However, we have seen that



140

for all finite values ofw (»5) the predictions of the
Brans-Dicke theory, with regards té perihelion rotation and
light deflection, will always be less than the corresponding
predictions made by Einstein's theory.

The "classical" tests of general relativistic theories
performed to date do not have the precision necessary to
choose between the Brans-Dicke and Einstein.theories of
gravitation.49 In an attempt td choose between these two
theories R.E.lMorganstern and H.Y.Ohiu[}9] have devised a
test of the Brans—Dicke theory. This test is based upon the
radiation of scalar waves which, unlike pure gravitational
waves, can be radiated from a spherically symmetric, radially
pulsating star. However, Morganstern and Chiu's experiment
requires very pfeciSe observational techniques which, unfor-

tunately, have not as yet been developed.

49Recently the Pasadena Jet Propulsion Laboratory has
succeeded in obtaining a fairly accurate measurement of the
time of flight for a radio wave sent from the earth past the
sun to a spacecraft near Mars. The results obtained in this
experiment seem to favor Einstein's theory over Brans and
Dicke's theory of gravitation., An account of this experi-
ment can be found in Time Magazine (November 23, 1970, page 52).
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12, The Geometrization of the Brans-Dicke Scalar Field™®

The Einstein theory of general relativity is said to
have geometerized the gravitational field in the sense thét
all gravitational interactions can be described by the geometry
of the space time rather than by field variables independent
of the geometry. In this same sense it appears that the
Brans-Dicke theory is not completely geometrical since grav-
itational phenomenon are described by both a scalar field 4
and the components of the metric tensor. In this section
we shall show that 4 is not independent of the gij's.

In order to establish the relationship between g and
the components of the metric tensor we confihe our attention
to source free regions of space, as is similarly done in the
geometrization of the electromagnetic fields in the Rainich,
Misner and Wheelexr theory.

The vacuum field equations governing the metric potentials

of the Brans-Dicke theory are given by equation (7.3); viz.,

s K
}égin = %(ﬁf’iﬁq;j - Jégijﬂ;akﬁf ) o+
g

Upon multiﬁlying this equation through by gij we find
k
- R = "_‘%(ﬁ,kfj’ ) o+ gtlp' .

g ,
When this expression for -~ Ris substituted into (l2.1) we obtain
Rij = j_é_;j,igf,j + %ﬁlij + }égijﬂ? . (12.2)

5O’.I)he material presented in this section is based upon
a paper by P.C.Peters, [21],
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We shall now replace ¢ by

Y= 1ng . (12.3)
Prom (12,3) we find: .
[_:lf_ =0OY + "Kk%k , (12.4)
and Pig = Y5 + % ¥ - (12.5)
i]j 131

The result of substituting a2.5), (i2,4) and @2,5) into
@2.2) is

ik
lJ = (W+ l)ﬂif i * %gij(EfF+‘ﬂﬁf ).(12.6)
The field equation for 4, (&4.24), is given by
k ‘
D¢ - ﬂ;, + R = 0 * (12.66)
___zﬁ,k 2._
E 2g
In terms of our new notation the above expression may be
rewritten
Ik
D\P'l' }é\') \i) + R =0, (120?)
fk T, |
Upon multiplying equation (12.6) by gla we obtain,
R = (w+ 3, Y™ + 307, (12.8)

If we now insert equation 12.8) into (2.7) we find that the
field eguation for g becomes

(W + g)(D\V g k) = 0. (12.9)

One should recall that in section 2 it was shown that
the Euler-Lagrange tensor corresponding to g could be obtained
from the divergence of the Euler-~Lagrange tensor corresponding
to the gij's. In the present éase this implies that a
solution to 12.1) will also be a solution to (2.6a). Con-
sequently we may conclude that any solution %o @2.6) will
also satisfy (12.9).

We shall now assume that the field equations for the
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metric potentials, (L2.6), are satisfied and proceed to show
that it is possible to solve for‘ﬂijjltermsof geometrical
quantities.

To begin let us use (L2.6) to calculate
kijm

N ¢ Ry 0
where Cklam is the Weyl conformal curvature tensor, and is

defined as follows:

Ckijm = Rkijni + gk[m Rj]i + gi[;j Rm]k + %ng[j gm]i . (131‘0)
where

Ril=%(nj- jn).
The well known symmetry properties of the Weyl tensor are:

Lo _ i _
Cxism = = Cixgm = = Ckimg ™% O 43 =0 ¢

Using (12.6) and (12.10) we find
Ckiijijlm - am {(w-:- LSty +Yatn ) * Yagm *
+ }égij([]\l"+ ‘ﬂk""lk )lm} s
which simplifies to
KT, o= (w+ 1)EHIM W v I L (2a11)

The last term in (12.11) may be rewritten by using

ijim

Ricci's identity in conjunction with the fact that *I’,ia.m = ﬁjim

to obtain . . . .
kijm _ D kijm
G ‘ﬁijm —‘{TPR 5imC . (12.12)

The first term on the right hand side of (12.11) may

1

kijm .
Rijtm . From (12.6) we find

kijm _ ki ’ \
A A {(““ LYty + By + ey 5@0Y+ ‘Hﬁﬂk)} ’
which simplifies to
kijm - kijm
G Rij\ﬁm = = C Vi e (12.13)
Inserting (12.12) and (12.,13) into (12.11l) gives us

kijm - kigjm 18] kijm
C Ria‘lm (w+ 1)C ‘i{mRij + ‘f“’pR jimc . (12.14)

be simplified by considering C
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-

By exploiting a property of the Riemann curvature

tensor we have

kijm,p P, P _
C (R sin * BPyps + B p3i) = O

which may be rewritten

- gkidmgp . _ ckidmpp, o, FImIRP . = 0,

Jim Jm mi. Jj

Thus we obtain

Ckiijp _ %cki;mei

Jim Jm

which permits us to write equation (I214) in the form

kigjm L kijm P kijm
C Riij.. (e+1)C Rijﬂm + ﬁﬁpR ijmc . (12,15)

From the definition of the Weyl tensor given in (12.10)

we can express the Riemann tensor in terms of the conformal

curvature tensor and the Ricci tensor. Doing so gives us
P _oP. . _ (PR . - (P - P _ P
RP;gm = CPigm = #CSpRey ~ 65Rsn) = %(By 4Ry - 834R5) +

ijm
- g(éggmi - SuBi3) - (12.16)

Using the above expression we find
kijm,p . pkijm.p kijp _ ~Kipm
which reduces to
kijm,p
C R4

- oKidp
jm 3m o} Rij . (12.17)

This expression may be further simplified if we make use of

- okijm.p
= C Y5

the Bach { 2] identity; viz.,
kijm.p _ kp ijmq
| C C igm = BZ C.. C . (12.18)
So we see that (12.17) may be written
kijm,p _ kp ijmg _ ~kijp
c R®i5m = 54 Ci 5mq® © C Rij,(12.19)
and thus (12.15) becomes

| Cki_ij - \‘jkc

o =2 ijmq _ kijpp, v
ijim 3 C (w‘+ %)C Rl,j\y[p .

ijmg
(12.20)
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When = -2 equation (12.20) reduces to
k kij ' :
£ _ JI
voo= 8 R , o (12.21)
o Cljmq

ijmg
and thus we have found an expression for ¥ in terms of

gij and its derivatives.

For the purpose of further considerations we shall
assume that u)%-—%. With this assumption we find from
equation (12.9) that

\ﬁﬁyﬂ{ + EPP =0,
and thus equation (12.6) becomes
= (W+ 1yﬂ£ﬂj + Y
Equation (12.7) now tells us that .
R = \Vik(ylk = ""D\P- (12.23%)
&
We shall use (12.22) and (12.23) to express the second term

on the right of equation (12.20) in a form in which Wi®
appears with the free index k.

To accomplish this we shall first consider Riﬁ!ﬁ]'
Using (12.22) we find

R = (L+ 1)(%1111 + l'Pll\l’iam) + \ﬂijm ’

ijlm ©
and

= @ DWWy *+ ¥y )+ Hipg -

1mb
Thus we have

Ryfjim = B0+ 1) Mgty = Migtn) + BNy gn =Winy)

which simplifies to
Rigim ™ (W + ¥y + #Yp R - (12.24)
From (12.22) we find
Rl[mkl—‘a] = }é(leLHJ -Rla\ﬂm) ]l[m\ﬂal (12.25)



146

Using (12.25) we find that (12.24) now assumes the following
form
= . ) D
which may be written ’
P = -
Yy By g = 2R3 151 2(w+.1)Ri[m\Hj] . (12.26)
Upon multiplying (12.26) by g " we find
m _ ,m m _
YuR3 = Rjim = Rig + (w+ L(R5Y, - RYy) .
From the Bianchi identity we have

il
th1= %Rﬁ )

and so the above expression becomes
‘FR”?=(w+1R‘P. # 1 Ry . (12.27)
I
In order to take advanbtage of equations (12.,26) and
(12,27) we must rewrite OklapRijWh) iri a manner in which terms
of the form %pRPijm and WER? appear. To accomplish this
we shall make use of the Weyl tensor.
Using the contravariant version of the Weyl tensor we
find that we can write the second term appearing on the

right hand side of (12.20) in the form

cHIPR o = RUIPR v PRI - g URPR Y
+ }é(glaRpk - gPRY )Rij\Plp _I_%(gkagpl - gkpgla)Rijxylp .

This expression simplifies to

kijrp w _ pK1dp K ypld - g%
C Rij\;’IP— Ri,jLPlp Y (¥R™YR, . zg_) +

J

. (12.28)

3D ki

" Equations (12.26) and (12.27) permit us to rewrite the

first, fourth and last terms on the right hand side of
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equation (12,.,28) as :

kijp ighe | odkliy _ Jk
R Rla‘ﬂp Ri:j(R R ) ﬁ%‘:)_l)R Ry
2 ik { ij 3_2) k
- (W+ 1)“RR (w+ 1R, ;RY = (+1) RJ“Pl H
1
2w w
| (12.29)
X3P ) K j 2.2 1k ik
RORIY, = LRR; + 91:11 R + £§§E!LRR ; (12.30)
e opRkly. - pg? (s YE + rEE (12.%31)
3 i "3 w 3w

Upon inserting (12.29), (12.30) and (12.31) inta (12.28)
we find after a little algebra

liPR ‘V,P = (w+ 5_) Ry ]E{:La R‘?((,o2 + 2w+ q'/a)}\{)‘k +

=

ij ik _p k _ Jk
+ RV(Ry 4 =By y5) (1%532)3 Ry +

ik

- W + %+ 2) R (12.32)

20)°

Inserting (12.32) into (12.20) gives us
where &, is defined by _
1img 5
oy = 1 {Ck Rygm * (W /2)[R (B; 5ic = Ripgg) *

P
- gw2+w2_)_RijIJ - (w + /3&)-1- E)RRIk]} , (12.34a)

. 2,
_ 20)
with 5 "
- ijmg 3 iJ 2
P = %Cijch - (w+ /) [R R - R (" + 2w+ /5>J
26f |
(12.34b)

From (12.6) we see that the geometrical equations
which necessarily must be satisfied if the Brans-Dicke
scalar field is present are

= \k k
Ry = (w+ LJol; dy + ey 5 + gy () H AT (12.35a)
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where o, is given by equation (12.34a) and satisfies

Due to (12.35b) we may use (12.3%4a) to obtain Y by
employing the technique used by Misner and WheeleI-LIS] to
obtain the complexion of -the electromagnetic field in their

nglready unified field theory."™ This procedure yield

Y= f o ax’
Since Y= 1ng we have
g = 4, exv {:‘ daxt (12.36)

where ﬁo is a constant which serves to indicate the value

of # at some initial point. It is not possible to obtain
the value of ﬁo from our original field equations (12.2)

and (12.,6a), since these equations are invariant under-a
constant change in the scale of g. One should note that
since we desire ¢ to.be determined by(ii we must avoid those
regions of space for which P, as given by (12.34b), is zero.

We summarize the above results with the following

Theorem 12,1: When the metric tensor of the Brans-Dicke

theory of gravitation is krnown throughout a matter free region

of space and is such that o, , as given by equation (12.%4a),

is well defined throughout this region then the scalar field

g in the region under consideration is given by
i
ﬁ—ﬁo e@fdidx ’
0

where #  is a constant.

At this point we must emphasize that the above procedure

can be used to obtain the scalar field g only when the gij's
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are known, However, we have ggg shown how to obtain the
gij's; i.e., we have not given a sjstem of equations which
govern the gij's and which are independent of the scalar
field g. In this sense our geometrization of the séalar
field falls short of the Rainich, Misner and Wheeler geo-—
metrization of the electromagnetic field.

The case W= = é& is quite interesting in itself for
reasons unrelated to the Brans-Dicke theory. To see this
let us consider the form of the Ricci tensor when we perform

the conformal transformation gij = ﬁgij. For a conformal

transformation of the tyﬁe

- 20
8ig = ¢ Bij
we find
R, = Ry~ 2004 = O30 ) - 854 (& 00y + 27,0
ig = fig T eVl T il €138 Oixm * "l
when the dimension of the space is four. In our case

p’:eQG or ¥lng '=%’=O’.

Thus we obtain

ﬁij = Rij - (\P‘i;j = }é\llli\h'j ) - }égij(D\V‘*‘ \I'ik"l}lk) -(12-5?)

If our original field equations(12.6) are satisfied fox
w= = 7 we find that (12,37) reduces to
f{ij = 0.
Consequently we see that a solution to (12.6) forco==—%é
can be used to obtain a sclution to the Einstein vaccum
field equations ﬁij = 0.

Now let us assume that we have a Riemannian V, , and we

want to know if this space is conformal to another Riemannian
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space,'?4, whose geometry is a solution of the Einstein

51

vacuum field equations
To solve this problem we would construct o(k for w= -5/2 )

=Oo

which we shall denote by‘ﬂk. Using equation (12,34a) we

find that/3k is given by

- ijm .
P = B% " Rigim . (12.38)
ijmg
cijch
One then constructs the following tensor from A4, ,

Wiy == RAS Ay v ey (A ¢ £AT) L (12.59)

If wij equals the Ricci tensor for the original Vd, then
that V, is conformal to a V, with the property that
Ri,j:O.

Furthermore the function g needed to perform this conformal
transformation may be obtained from equation (12.36) by

replacing Xy by,ﬁi.

51For an alternative approach to this problem see the
paper by H.W.Brinkmann[7].
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Appendix

The purpose of this appendix is to dtermine all solutions
to the Brans-Dicke vacuum field equations corresponding to

the following isotropic line element:

2 | _ oM.252 , o2Bcar? . +2a0?

ds ccdtc + e + -39 +s:Ln9d€ ),(Al)

where o, /3 and 4 are functions of r. In this case the Brans-

Dicke field eguations assume the following form:

1ye 1t 1 1y _ A bt |2= .
(a')° + 20’3 + 2(a r+ﬁ ) %_ + _:é_)(%_) o, (A.2)
1] n 1y2 ' Yy (R g |2= .
o+ ()T (o + ) /J;sef 55+§(§_) 0,(2.3)
23" + (ﬁ')a + '4@17' - 0&'?' + _c_.2_J ')2 =0, (4.4
g" + 24" + (At + 3')8'=0, (4.5)

T

where a prime is used to denote differentiation with respect
to T,

To begin we set

¥= d+4 ' (A.6)
which in turn permits us to rewrite equations (A.2), (A.4)

and (A.5) as follows:
czm (3)° + 21D =g - L8y , (A7)
2 Al 4. = - L '2 , A.8
(24" + (p) + %) K;S ﬁf %(%‘) (A.8)

and

g" + 24 +¥4' = 0., (A.9)
T

respectively. Upon adding (A.2) to (A.3) we find that we
may put the resultant expression into the form

Oy + (Y2 + 3x) = g" + g1 . (4.10)
r

r
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(It should be noted that the system of equations (A.7)-
(A.10) is equivalent to our original system (A.2)-(A.5))
Equation (A.9) can be immediately integrated to yield
¥= - 1lng'- 2lnr+ 1nk , (A.11)
where K is a constant. Using either (4.9) or (A.1ll) we

easily find that ¥' and y" are given by

r'=—§$-

xn _.. g{n: + (ﬁf")2 + 2 . . (A.l;)
)% 1°
Upon inserting equations (A.12) and (A.13) into (4.10)

(A.12)

B

and

]

we obtain the following differential equation for #

- GIE + 24(8")2 + gl = (81)%6" + ()7 . (A.14)
, r

b
We shall now concentrate upon determining all solutions to
the above equation for 4.

We begin our search for solutions to (A.14) by setting

g = Ee7 (4.15)
where E is a constant and
v =y . (4.186)
Using (A.15) we find that g', g" and g"' are given by
‘ g' = Ey' e , (4.17)
g = B + (3037, (4.18)

| gw= E(y"+ By'y" + (31)7)ed . (4.19)

If we now insert equations (A.15) and (A.17)-(A.19) into
(A.14) we find that y must satlsfy

-y"yt o+ 2(y)? + y'y" = 0, (4.20)
r .
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In order to simplify the form of the above equation
let us set

y'=u, - (4.21)

wheTe
u = u(r) .

Using (A.21) we find that (A.20) becomes
- u'u+ 2(u')2 + ﬁ11' = 0 . ' (A.22)

ertere—

T
To reduce the form of equation (A.22) even further we

shall make the following substitution

u=HeX,  (A.23)
where H is a constant and ,
x = x(x) .
Using (A.23) we find that
u' = Hxte® |, . (A.24)
and u" = H(x" + (x')2) X, (4.25)
and hence equation (A,22) becomes
- x" + (x)° +x! =0, (4.26)
T
If we now set
Xl = v ) (A.a?)
‘we find that (A.26) may be written |
- v+ v e v =20, (A.28)
T

L]

An immediate solution to (A.28) is simply v=0 ,
To obtain ofther solutions to (4.28) let us assume that v£O0.
In this case the function w, defined by |
Ww=2r +r1° | (A.29)

-
is a constant, when v obeys equation (A,28), To see this

let us examine w' which may be written as follows:

W' = - 2rv! 4+ 2pve 4 2v . (4.30)

ve
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Due to equation (A.28) w' vanishes, and thus w must be a
constant which we shall denote by Q. Consequently we have
determined a second, non-trivial, solution to (4.28); viz.,

v = 21‘ - (A' 31)

Q - r2

In order to obta@n the solutions to our original dif-
ferential equation for g, (A.14), we shall now reverse the
order of the steps which lead from (AJ5) to (4.28), Ve
begin by examining the case v=0 first, and then proceed to
examine (A.31) for each of the three cases, Q<0 , Q=0
and Q>0.,

Case (i), v=0.
When v=0 we may use equation (4427), (4.23) and (4.21)

to conclude that
y:—AI"l'B 3 (A'52)
" where A and B are constants. Combining (A.32) in conjunction

with (A.15) leads to the following solution for ¢
=g e, (4.33)

where ﬁo is a constant.

Case (ii). v = _2x , QR<O0,
Q -~ x
In order to handle this case we shall set
Q=- 58, (A.34)

where B is a non-zero real number. Thus v can be written
as follows:.

v=_2r _ . (4.35)

Bg+:{'2

Using (A.27) we find that x is given by
X = - 1n(B2+-r2) + G, (4.%6)
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where G is a constant. Thus we can use (A.23) to conclude

that ( )
u = H s A,37
B2 + :r'2

where H is a constant. From equation (A.21l) we may deduce

that 1
y = H Tan (g) + J (A.38)
. B B

and consequently (A4.15) permits us to conclude that in the

present case

g = §, exp(H Tan‘l(z_:) ), (4.39)
B B
where J and ﬁo are constants,
Case (iii). v = 2x s, Q =0,
Q - r2
In this case our expression for v reduces to
_v = - g . (A.LI-O)

T
Upon inserting (A.4#0) into (4.27) we find that
' X==2lnr+ G, (A.41)
where G is a constant. Using equations (A.41), (A.23) and
(4.21) we find that

y:—_I'_I.+J, (A.’-l-Z)
r
and hence equation (A.15) permits us to conclude that
‘ g=goexp (-0 , (4.43)
T
where H, J and ﬁo are constants.
Case (iv). v = __ 2r ’ Q:>é .
Q -1
In order to handle this case let us set
2
Q=3B )

where B is a real, non-zero, constant. This permits us to
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write v as follows:

v = 2r e (A.44)

BE - ré

Upon inserting (A.44) into (A.27) we find
x = —1n(B°-1%) + & , (A.45)
where G is a constant. ZEgquations (A.45), (A.23) and (4.21)

permit us to conclude that

y = -H1n r-B) +F , (A.46)
2B \r+ B
where H and ¥ are constants. If (A.46) is now substituted
into (4.15) we obtain ~H, .
4= g (r - B) 2B (4.47)
o|lz—=%
T + B :

where ﬁo is a constant.

We shall now proceed to determine the functions « and
/3 which correspond to the function g determined in each of
the above cases.
Case (1). # = g, e~*%. (4.33)
Upon adding equation (A.7) to (A.8) we find that 3
satisfies the following linear second order differential

equation:

248 + (4 + 2% + 28" )3 = g" + ¥4 - 2% A48
/.s+(f+ + )13 %_-l- g __r_,( )

where, as we have previously shown, Y is given by

| ¥ = - 1lng'-21lnr + 1lnK. (A.1L)
Using equation (A.33) we find that
g' = ~ag AT, (A.49)
\ 2, -
g = A e~AT (4.50)
and
Y =

Ar-—21nr+ln(-K>. (A.51)

4,
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Equations (A.22) and (A.49)-(A.51) permit us to rewrite
(A.48) as follows (in our case):

an = 2 . (A.52)

Consequently »4 is given by

B==2lnr + Gr+ 1nP, (4.53)
where G and P are constants. '

Since

Y=d+48 ,
we may use equations (A.51) and (A.53) to conclude that in

the present case

d = (A-G)r+ 111(I§K_P) . | (A.54)
(o)

Let us now redefine our constants as follows:

P = B2 do= 1n(-K ) » A=D and G=(D ). (A55)

ABOP B
FPor this choice of constant we find that .
d = dO b £ 3 (Ao56)
B
ﬁ=ﬁ0-21n£) +(D+1)r s (A.57)
B
and
g = B,exp ('%13) . (4.58)

The constant D appearing in the above expressions is
not arbitrary. To see this we simply have to insert (4,.56)-
(4.58) into either equation (A.7) or (A.8). Upon doing so

we easily find that

p2(w+ 2) + D+ 1

must vanish if the above expressions for &, 4 and ¢ are to
yield a solution to equations (A.7)-(A.10). Thus we may

conclude that a scolution to equations (A.2)-(A.5) is furnished
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by &, A and 4, as given by (A4.56)-(A.58) respectively,

provided

D=<=1%f /"0~ 3% . - (A.59)

W+ 2

This corresponds to Brans's third solution (9.21).

Case (ii). g = doexp (gfmnl-l(g)) . (A.39)
B B

Using (A.39) we find that _
ﬁ. = Hé ’ (A.60)
B~ + '

4" = -PHrd + Ho4 , (4.61)
(B° + p°)°  (B® + p°)° '

and consequently

%'_ - H , %; - -PHr + H° (1.62)
B2 + rZE (32 + r2)2
Upon inserting (4.60) into (4A.11) we find that ¥ is
given by
¥ = - 1n(,doH) + ln(B2+r2) - I_{_Tan'lg - 2lnr+ 1lnkK.
B B (4.63)
From (A,63) we find
YI= 2]? - H had g . (Ao6‘q‘>
B2 + rz 32 + r2 T

If we now insert (A.62) and (A.64) into (A.48) we see

that 8 satisfies the following differential equation:

Y+ _2r at= =2 + 2 . (A.65)
Bz + r2 B2 + r:E ;2
To solve the sbove differential equation we set
w = ﬁ' . (A.66)
and thus obtain
W' + 2ry = -2 + 2 . (Ao67)
2 2 2 2 2

B~ 4+ r B+ oy
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Using the standard techniqﬁes for handling a linear first
order differential equation we find

W = —232 + G 3 (A°68)

r(B2 + r2) 32 + r2

where G is a constant. Upon combining (4.66) with (4.68)

we find
= 1n(32 + ::-2) + G Tan-l(r) + 1nP , (A.69)
~—=2 | B . B .
where P is a constant.
Since
Y = d + /3

we may use equations (A.63) and (A.69) to conclude that in

the present case

A = = 1n(’doHP) - (H+G) Tan-l(r) . (A.70)
K B B

We shall now choose to redefine our constants as follows:

o, = - ln(,zfoHP) 3 A=1inkP g Ho= _2_3%12 and G= -gi%ﬁ. (A.71)

K
Thus we now find that &, 4 and £ may be written in the

following form:

K = ot 72'\ Tan"l(%)'; (A.72)
- 2
LB =48-20+1) Tanl_x_- - 111( r 3 (A.73)
' A B :c'2 + Bz

and 1

(%)), . | (A7)

I g, exp (_22 Tan~

A

As in the previous case our field eguations impose a
constraint upon our choice of constants. In the present
case we shall show that /\2 must be given by

A = D-gD) - (0 1) (4.75)
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Using equations (A.62),'(A.64) and (A.71) we find that

%'_ = 2BD . (A1.76)
A(r2 + Be)
and 2BD o4 2 (4.77)
x' = - -z + r . .
A(r2 + B2) T :r.-2 + B2

From equation (A.73) we find that

4 = z2(D+1)B -2 + _2r . (4.78)
Az + B9) T 2 g

and

. 2 '
ﬁ" = 4(D+1)Br + 2 =+ 2 - 4= . (A.79)
/\(r2+32)2| ;2 1'72+:B2 r“+B
If we now insert equations (A.76)-(A.79) into (A.8)
we find: .
4 - 4y + 432(D4-1)2 =
“4+ B (224 B°)°  (xF+B2)°

- 4% - _20B°D° (4.80)
AE‘(I_2 N 32)2 AE(rE + 32)2
Upon multiplying (A.80) through by-/@(rg-bBe)e we obtain
4N (2° + B2) - 42" + 4BP(D+1)2 = 48D - 20B2D?, (4.81)

which reduces to .
A= - ge(w 2) =D -1 . - (A.82)

(A.82) may be rewritten in the following form
\ P = D(1-_D) - (0+1)2, (4.83)

which agrees with (A.75). (If we had used equation (4.7)

rather than (A.8) we would have still obtained (A.75).)
Thus we have shown that the functions &, B and 4

given by eguations (A.72), (A.73) and (A.74) respectively

will provide a solution to equations (A4.2)-(A.5) provided.
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that the constants Aand D aré related as in equation
(A.75) and /\2>0 . The latter demaﬁd must be made upon A
in order to guarantee that our expressions for «, 4 and g
are finite and real,

The above solution corresponds to Brans's second

solution (9.20).

Case (iii). & = g exp(-H). (A.43)
T
Using (A.43) we find that
g = B4, |  (A.8%a)
¥
g" = 204 + B> 4, (A.84D)
> o
and consequently
g' = H (4.85a
%_ g )
T i
and >
é; = -2H + HT- ., (A.85Db)
=

Upon inserting (A.8%a) into (A.11) we find that ¥ is given by

Y:ln(K)+_H_, ' (AB6a)
0g r
and thus /
= -H . (A.86D)
r

If we now substitute (A.85a), (A.85b) and (A.86b) into (4.48)
we find that, in the present case, J41is governed by the
following differential equation

4" +248 = 0. (4.87)
r

To solve (A.87) we first set
w = ﬁ' 3 (Ao 88&)
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and as a result (A,.87) becomes

W'=—gﬂ.
7 Ir

A simple integration then yields

W = _G’z ’ (Aoaab)
r
and consequently A3 is given by
= -G+ 1nP, | (4.89)
T

where G and P are constants.

Due to the fact that

¥ = o +/5
we may-use equations (A.86a) and (4.89) to conclude that
oA = (H+G) + 1n( K . (A.90)
r HBOP)

Let us now redefine our constants as follows:

A, = 1Inf K : A=1nP : G =~ (D+1) and H =D .(4.91)
e

Using (A.91) we find that in the present case o, 8 and 4

nay be written in the form

oL =y -1, (4.92)
- Br
A =0+ (D+1) , (4.93)
Br
and
. g =g exp (D) . (A.9%)
Br

Once again we have %o check and see if the above
expressions for o, 4 and g are’'compatible with equations
(4.7) and (A.8). It will be shown that they will be consistent

with these equations provided

D=1 /20 =3 . (4.95)

o)+ 2
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In order to establish (A.95) we shall need expressions
forﬁ', ', ' and g". Using equations (A.85a), (A.85b),
(4.86b), (A.88a), (A.88b) .and (4.91) we find:

pmRe =D, gD,

Br By Br
and _ (4.96)

g - =2+ .
'-“..,Br3 B2r4

Upon substifuting (4.96) into (Ai?) we find:

D2(1+c20)+D+1=0. (4.97)
Equation (A.97) implies that D must be given by
D=-L o053 |, (A.95)
w+ 2 '

if «, 4 and 4, as given by (A.92)-(A4.9%4) respectively, are
to yield a éolution to equations (A.2)=-(A.5). {(The same
constraint upon D would have been found if we had used
equation (A.8) rather than (A.7).)

The solution which we have obtained in this case

corresponds to Brans's fourth solution (9.22).

Case (iv). & = ﬁo(r-B)/éB . (A.47)

r+ B

As in our three previous cases we begin by determining

g' and ¢* which we easily find to be
gt = Hg, (=3} 3B (4.98)
~Hf [r- B\ 2B 1 . A.98
_ °(r+-B) .. 2 ’
(B4 r)

and —-(H +2)
B" = § H(H + 2B) (_r_:_g) 2B 1«

r+ B (I‘+B)E

~(H +1) _
4 24 H (r__ B) 5B . (A.99)

(r+B)3 T+ B
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Upon combining equations (A.47), (A.98) and (4.99) we find

| %'_ = -H (4.100)
2 - B

%;'_ H(H+2B) + 2 . (4.101)
(2°-B°)2  (r+B)(x" - B°)
Using equations (A.11) and (A4.98) we see that in the present

i

case .
Y = ~1lnf-4 H)+ (H +1)1n(r-B) + 21ln(B+r) - 21lnr, (A.102)
s 2B r+ B :
and consequently y' is given by
Yy = (B+2B) + _2_ ~2. . (4.103)
r2 _ B2 B+r r
Upon inserting (A.100), (A.101) and (A.103) into (4.48)
we find:
28" + (4 + 2(H+2B) + 4 -4 - _2H )43 =
r ° _ p2 B+r I_?_BE
= H(H+ 2B) + 2H - B(H + 2B) +
. (®-392% (z+B)=°-B°) - (z°-B°)
- 2H + 2H - 2(H+2B) +

(x+B)(x°-3%)  »(z°-B°) z(z°-B°)

- 4 + 4,
r(B+r) ;2
which simplifies to
1 11 t 2
:l:'z - B2 :|:'2(:c'2 - 32)

In order to solve (A.104) we begin by setting
W= g, © (A.105)

W' + 21:' W = "'2 B * (A0106)
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Using the standard techniques for dealing with a linear

first order differential equation we find that W is given by

W=  2B° + _ G, (4.107)

r(r2 - B2) r2 - 132

where G is a constant. From equations (A.105) and (A.107)

we obtain, through a straightforward integration,

A= 1nP+ __G_ln(:;‘-B) + 1n(r2-B2) s : (4.108)
2B + B ‘IZ

where P is a constant.

Due to the fact that

Y¥=d+/3
we may use equations (4.102) and (4.108) to find
of = =1nf~-F HP\ +(H=G + 2)111(1'-]3) . (4.109)
) ( E ) 28 r+ B _

We shall now choose to redefine our constants as follows:

2 2B 2B A
Using (A.110) we find that in the present case &, 3 and &

olo = - ln(—;a’oHP);Af InP; L =H-G+ 2 ; and =H = D. (4.110)

are given by

ol = olg+ 1 ln(r-B , (A.111)
A T+ B
/3 =ﬁ°+(2- 1;)1- 1)111(%_:_%) + 21n(y_%__3_) s (A.112)
and ' % ' .
% = ﬁo(i_;% . (A.113)

As in our three previous cases (A.111)-(4.113) will not
yield a solution to equations (A4.7)-(4,10) for an arbitrary.
choice of constants. In the present case we shall show
that A and D must be related by

22 = (D+1)° - D(l—u_?) . (A.114)
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In order to establish (A.1l4) we shall need expressions

for g'y 4", y' and %} . Using our previous results we

find that:
' =2-D-1y_2B - 2B ,
A ( 2 )ra-BE r(r+ B)
A" =(A=D=1) _ -4rB - 2 + 2,
(=3 C-3)°7 (x+B)P 1

y' %(Z-D) 2B+ _2 =2
2 ré_;cf T+ B r.
and
%% = 2BD .
(rz-Bé)

(A.115)

(A.1186)

(A.117)

(A.118)

Upon inserting (4.115)-(4.118) into equation (4.8)

and then multiplying the resultant expression by
. r2(r4-B)2(r-B)2

we find after simplification that

~4B°r° 4 (Qg + j§ + 2D)4B2r2 = -48°r°p° 4
A X X

+(D_+ 1\48°r°D - 20B°D°r° ,
2 2

The above expression reduces to

12=D2(1+c§o) +D+1,

which may be rewritten in the following form

. 2 2
A = (D+1)° -~ D(L~wD) .
+1) ( an)

(A.119)

(4.120)

(A.114)

(This same result can be obtained using equation (A.7)

rather than (4.8).)

In order to guarantee that our sclutions fordo,,s and

g be finite and real we shall demand that
2 >0,

(A.l2l) 

In summary we have shown that in the present case when
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o ,3 and g are given by equations (4.111)-(A.113) respectively,
and when A and D are related by (A.114) with

| 2 >0 |
then we have found a solution to equations (4.2)-(4.5).

This solution corresponds to Brans's first solution (9.19).

Thus we have constructed all of the exact solutions -
to the system of differential equations represented by (4A.2)-

(A.5). We list our solubtions below.

Case (i),
g =4, exp(—%) , (A.58)
d=dky -z, (A.56)
A= - 21n(%) +(DB4;'\‘)I', (A.57)
where
D=-12% /2w =3 . (4.59)
W+ 2
Gase (ii).
g = 4, oxp(2D Ten”(z)) (4.74)
-1 .
o = ol + /_2{ Tan (g) . (A.72)

™

r + B

B — gD/—\rl} Tan—l(%)— 1n( r2 ) . (A.73)

where

%o
il

D(l-%p_) ~(D+1)>0 . (A.75)
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Case (iii).

g=42, exp(-}_sb_r_) s | .(-‘L-94)
' - (a.92)
0 BT : .
3=/ + D+r1 , (4.93)
where : o
D=o-l22 /-20=3 . (A.95)
W+ 2
Case (iv). Bﬁ
- -8y , | 4.113)
g ﬁo(id-B) ¢
o = 1 lnfr-3B (4,111
oio ¥ ';'{- n(§+ B) ’ ( )
= A=D~ 1)1 -~ B 21 B A,112)
= £y +(E=peapin(eag) + 2 n(agD) s C
where

2 2
(D+1) D(1 - wD) > ( )

O
i
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