
Copper-mediated C-S Bond Formation and C(sp
2
)-H Functionalization via 

Cascade Cyclization 

 

 

by 

 

Tianyu Yang 

 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Master of Science 

in 

Chemistry 

 

 

 

Waterloo, Ontario, Canada, 2016 

© Tianyu Yang 2016  



ii 
 

Author’s Declaration 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, 

including any required final revisions, as accepted by my examiners.  

 

I understand that my thesis may be made electronically available to the public. 

  



iii 
 

Abstract 

Organosulfur compounds have a wide variety of applications in pharmaceutical 

compounds and synthetic materials. Carbon-sulfur bonds are often found in natural and 

important bioactive compounds, thus the formation of C-S bonds is of high research interest. 

A novel method has been discovered to generate C-S bonds in tandem with C-C bond 

formation. This new reaction starts with aryl diynes and a sulfinate salt under 

copper-mediated conditions to form a new C-S bond and two new C-C bonds, which involves 

the functionalization of an aromatic C-H bond and a formal [3+2] cycloaddition. This thesis 

will discuss the reaction optimization, reaction scope and preliminary mechanistic 

investigations.  
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Chapter 1 Introduction 

1.1 Organosulfur compounds 

1.1.1 Introduction 

Organosulfur compounds are essential in pharmaceuticals and organic materials as 

well as many other industrial fields. Some typical examples are given in Figure 1. 

Methionine and cysteine are two of the sulfur-containing amino acids, both of which have 

biological functions such as promoting body development and antioxidant activity and 

involvement in biosynthesis of proteins (Figure 1).
[1]

 Garlic is not only a food flavoring 

but a kind of traditional medicine; it contains various biologically active compounds that 

have been shown to decrease rates of cancer.
[2]

 Allicin and ajoene are biologically active 

compounds (Figure 1), which were isolated from garlic in 1944 and 1983, respectively, 

and it was reported that both compounds have antibacterial activities.
[3]

 In the 

pharmaceutical field, organic sulfur compounds are also employed widely. For example, 

sulfamethoxazole and its derivatives are used to produce antibiotic or antiprotozoal drugs 

such as Bactrim.
[4]

 Organic sulfur compounds are also very popular in material science; 

one such important example is the thiophene-based conjugated polymers, such as 

poly(1,3-dithienylisothianaphthene) (PDTITN), that have promising application in 

organics electronics and photonics;
[5]

 moreover, organosulfur compounds with S-S bonds 

were proposed as a novel class of cathode material for batteries.
[6]
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Figure 1 Organosulfur compounds 

 

Sulfur and oxygen belong to the same oxygen group, so sulfur has many properties 

similar to oxygen; however, due to sulfur’s larger orbital size, sulfur is more polarizable 

and it has more available valence states than oxygen. Organosulfur compounds can be 

classified by the oxidation state of the sulfur atom of the sulfur-containing functional 

groups, from the low valence state to high valence state, such as thiol, sulfide, sulfoxide, 

sulfone and so on (Figure 2). Most of these organic sulfur compounds involve at least 

one C-S bond; therefore, synthetic methods to form C-S bonds are very important for the 

preparation of the organosulfur substrates.     
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Figure 2 General structures of major sulfur-containing functional groups 

1.1.2 Formation of C-S bonds 

The generation of a carbon-sulfur bond can be achieved in multiple ways, including 

addition reaction, substitution reaction, and cross-coupling reaction, as well as biological 

strategies (Scheme 1).
[7]

 Generally, the addition reactions involve a nucleophilic sulfur 

reagent and an electrophile with carbon-carbon double bonds, triple bonds or epoxides. 

Weiss and Marks reported an organozirconium-catalyzed hydrothiolation of terminal 

alkynes, which follows the Markovnikov selective rule to offer vinyl sulfides with a new 

C-S bond generated between the thiol 1.1 and the terminal alkyne 1.2 (Scheme 1, eq 1).
[8]

  

Another strategy for the synthesis of C-S bonds is the substitution reaction, which 

involves either nucleophilic or electrophilic sulfur sources.
[9]

 Mitsodo and colleagues 

firstly investigated the ruthenium-catalyzed allylation of thiols to construct allylic sulfides 

1.6 in 1999.
[10]

 In the presence of ruthenium-catalyst, thiol acts as a nucleophile, reacting 
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with allyl methyl carbonate 1.5 to provide the desired product 1.6 with high yield via 

allylic substitution (Scheme 1, eq 2).  

 

 

Scheme 1 Examples of synthetic strategies for the generation of C-S bonds 

 

An electrophilic sulfur reagent with a good leaving group attached to the sulfur atom 

reacting with a nucleophile to give the corresponding sulfide is called sulfenylation. 

Marigo and co-workers devised an organocatalytic enantioselective α-sulfenylation of 

aldehydes 1.7. In the presence of catalytic L-prolinol derivatives, this reaction offered 

α-sulfenylated aldehydes 1.9 in excellent yields and high enantioselectivities (Scheme 1, 

eq 3).
[11]

  

Metal-catalyzed cross-coupling reaction is a significant synthetic strategy that can 
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also be applied in forming C-S bonds. For example, Zeni presented a copper-catalyzed 

thiol cross-coupling reaction (Scheme 1, eq 4),
[12]

 in which 2-iodo-5-phenyltellurophene 

1.10 reacted with 4-methoxybenzenethiol 1.11 effectively in the presence of copper 

catalyst without any ligand or co-catalyst to give (2-sulfides)-chalcogenophenes 1.12 in 

excellent yield.  

In biological processes, the formation of C-S bonds is also important. For example, 

acrylamide (1.14) is a carcinogen that forms in intensely heated food, for example in 

frying.
[13]

 The metabolism of acrylamide occurs via sulfa-Michael addition from 

glutathione (1.13) to form a C-S bond in adduct 1.15. (Scheme 1, eq 5).
[14]

  

1.2 C(sp
2
)-H bond functionalization 

The carbon-hydrogen bond is ubiquitous in organic compounds. Traditionally the 

C-H bond has been considered as an unreactive bond, the cleavage of which often 

requires forcing reaction conditions such as high temperature or high pressure. Therefore, 

the investigation of C-H bond functionalization has received much attention recently.
[15]

 

The transformation of C-H bonds to carbon-carbon or carbon-heteroatom bonds (such as 

C-S, C-O, C-N or C-X bond) provides a significant strategy for organic synthesis. The 

activation of the C-H bond can provide a concise and streamlined pathway to build 

carbon-carbon or carbon-heteroatom bonds, which gives access to more effective and 

atom-economical synthesis. As shown in Scheme 2, traditionally the transformation from 

1.16 to 1.17 is achieved through the conversion of 1.16 to a compound 1.18, in which the 

H atom is replaced with a functional group, such as a halogen or an unsaturated group. 
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Afterwards, intermediate 1.18 reacts with another compound that is modified with 

another functional group to provide final structure 1.17. The traditional approach involves 

extra but unavoidable reaction steps that may change the structures and properties of the 

starting material significantly and consequently causes potential complications in many 

cases, while the direct transformation of the C-H bond offers a much more 

straightforward way to achieve the new and desired bond formation in a single step.
[16]

 

 

 

Scheme 2 Traditional functional group (FG) transformation vs. C-H bond 

functionalization 

 

The activation of the C-H bond is significant for organic synthesis, and the C-H 

bond undergoes cleavage through four possible pathways in C-H bond activation, which 

includes oxidative addition, concerted metalation deprotonation, electrophilic substitution 

and metal-mediated insertion reaction (Scheme 3).
[17] 
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Scheme 3 Classification of C-H bond functionalization 

 

Oxidative addition reactions involve electron-rich complexes with low-valent 

transition-metals such as Fe, Ru, Rh, Pt and so on, in which reaction the C-H bond is 

broken by the species LnM
x
 generated in situ (Scheme 3, eq 1). Concerted metalation 

deprotonation involves the formation of carbon-metal bond along with the cleavage of 

C-H bond (Scheme 3, eq 2). Transition-metal complexes in high valent are applied in 

electrophilic attack, which is followed by deprotonation to achieve the functionalization 

of the C-H bond (Scheme 3, eq 3). The fourth approach is metal-mediated insertion that 

involves carbene, nitrene or oxo insertion products to build new C-C (including 

C(sp
3
)-C(sp

3
), C(sp

2
)-C(sp

2
) and C(sp

2
)-C(sp

3
) bonds), C-N or C-O bonds respectively 

(Scheme 3, eq 4).  

Compared with the relatively unreactive C(sp
3
)-H bond, it is easier to activate the 
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C(sp
2
)-H bond, and there are many more reports about the functionalization of C(sp

2
)-H 

bonds than that of C(sp
3
)-bonds. For example, an early report about Pd-catalyzed C(sp

2
)–

H activation on the benzene ring was developed by Fujiwara in 1967 (Scheme 4).
[18]

 

Afterwards, more related works were reported. There are several ways to build new bonds 

between the C(sp
2
) and carbon or heteroatoms.  

 

 

Scheme 4 Pd(II)/Pd(0) catalyzed olefination of benzene ring 

 

Specifically, aromatic substrates containing C(sp
2
)-H bonds can be treated by 

alkylation, olefination, arylation, amination, borylation and so on to construct new 

C-carbon or C-heteroatom bonds (Scheme 5). In the following section, C(sp
2
)-H 

activation and functionalization will be discussed in these different aspects. 

 

 

Scheme 5 C(sp
2
)-H activation and functionalization 

1.2.1.1 Olefination of C(sp
2
)-H bonds 

An early report about the olefination of C(sp
2
)-H bonds was mentioned earlier, 
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which was also reported by Fujiwara in 1967.
[18]

 The possible mechanism started from 

C-H bond activation, with subsequent steps perhaps following the Heck-type mechanism 

to give the E-product (Scheme 6).  

 

Scheme 6 Possible mechanism of olefination of C(sp
2
)-H bond activation 

 

Interestingly, an important olefination of pyridine N-oxides was reported by Chang 

and colleagues (Scheme 7).
[19]

 This reaction involves a highly regioselective C-H bond 

activation at the ortho position, and no di-alkenylation product was observed. 

Furthermore the main product 1.24 is the E-olefin with a yield of up to 91%, so this 

reaction is stereoselective (Scheme 7, eq 1). Therefore, this strategy can be applied in 

synthesizing highly regioselective and stereoselective pyridine derivatives.  
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Scheme 7 Alkenylation of pyridine N-oxides 

 

Hiyama and co-workers described a similar reaction, which is the nickel-catalyzed 

alkenylation of pyridine N-oxides through addition with alkynes (Scheme 7, eq 2).
[20]

 It is 

also a highly stereoselective alkenylation with 72% E-product 1.26. A possible 

mechanism for this alkenylation reaction is given in Scheme 7. Firstly, the alkyne 

coordinates catalytic Ni(0), which is followed by C(sp
2
)-H activation to give the 

intermediate 1.27. Along with the syn-addition, it provides another intermediate 1.28 with 

a new C-H bond formation. The last step involves reductive elimination and regeneration 

of the Ni(0) species. The mechanism for the second reaction is distinct from the first one, 

which perhaps follows the mechanism shown in Scheme 6. 
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1.2.1.2 Arylation of C(sp
2
)-H bonds 

There are abundant reports about the direct arylation of C(sp
2
)-H bonds.

[21]
 Most of 

them involve metal-catalysts such as Pd, Ru or Cu. For instance, Shi and co-workers 

developed a direct arylation of C(sp
2
)-H bonds in combination with a Suzuki-Miyaura 

coupling.
[22]

 This reaction avoided the presence of halogen, and the boronic acid reacted 

with C(sp
2
)-H bonds directly. They utilized the amide group as a directing group to help 

the C-H functionalization. Shi and colleagues proposed two plausible mechanisms 

(Scheme 8). Path (a) is initiated by electrophilic aromatic substitution to activated C-H 

bond, which is followed by transmetalation to give the important intermediate 1.33. Path 

(b) is initiated by transmetalation, which is followed by C-H bond activation to provide 

1.33. Both of these proposed mechanisms proceed by reductive elimination to produce the 

final product.    
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Scheme 8 Suzuki–Miyaura Coupling Reaction involved in aromatic C-H bond activation 

 

Most Pd-catalyzed arylation with directing groups would provide ortho-position 

C(sp
2
)-H activated products.

[23]
 Gaunt and Phipps in 2009 published a paper that 

discussed a meta-position selective C(sp
2
)-H arylation in the presence of copper catalyst 

(Scheme 9).
[24]

 They studied differently substituted benzene rings, and the yields of 1.37 

ranged from 11% to 93%. They also investigated and proposed a plausible mechanism 

(Scheme 9) that started from the reduction of Cu(OTf)2 to Cu(I)OTf by amide
[31]

 then 

was followed by the oxidation of diaryl-iodine(III) compound 1.36 to generate Cu(III) 

species 1.38 that was demonstrated to be highly electrophilic due to a +3 charge and a d
8
 

configuration. Then it provided a new bond between meta-C(sp
2
) and Cu(III) in the 

intermediate 1.40 via a Friedel-Crafts-type reaction and aromatization. The final product 
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1.37 was generated through reductive elimination, and at the same time the Cu(I) species 

was regenerated. This protocol prompted others to investigate C-H bond activation by 

utilizing copper reagent to get regioselective product, which is more economical than Pd 

or Ru catalysts. 

 

 

Scheme 9 meta-position selective C(sp
2
)-H arylation in the presence of copper catalyst 

1.3 Cyclization reaction of alkynes  

The cyclization reaction is one of the most important strategies for the construction 

of organic ring-structures. One of the most popular cyclization reactions for diynes is the 
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Diels-Alder reaction, which is a [4+2] cycloaddition.
[25]

 Most recent examples related on 

alkyne cycloaddition were catalyzed by transition metal such as Pd, Ru, Ag, Au, Cu and 

so on. The following section will discuss the intermolecular and intramolecular 

cyclization of alkynes in detail.   

1.3.1 Intermolecular cyclization of diynes 

Pyrrole and its derivatives are very important compounds, as they are frequently 

used in producing some medicines.
[26]

 Chen and co-workers investigated a Pd-catalyzed 

cyclization from diyne 1,8-diphenylacetylenyl naphthalene 1.41 and amine 1.42 to 

prepare pyrrole derivatives.
[27]

 In the presence of Pd-catalysts, they screened solvent 

systems, temperature, bases, as well as different diynes and amines. Under their optimal 

conditions, they examined a possible mechanism with the PdCl2 catalyst (Scheme 10). It 

started from the coordination between catalyst and one of the triple bonds, which made 

the electron transfer from the alkyne to the metal catalyst. Then the electron-deficient 

triple bond was attacked by the amine as a nucleophile to provide a new bond between N 

and one of the carbons from the activated triple bond, and at the same time one mole of 

HCl was generated, which was consumed by the base Et3N. The syn addition of the other 

triple bond was proposed to occur in the following step and to gave a new C-C bond 

between the two former triple bond carbon atoms. After that, the coupling step formed the 

C-N bond that provided the final heterocyclic compound. The PdCl2 could be regenerated 

by oxidation by DMSO from Pd(0) (Scheme 10).  
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Scheme 10 Intermolecular cyclization of 1, 8-diphenylacetylenyl naphthalene 

 

The formation of a benzene ring can be achieved by a [2+2+2] cycloaddition. 

Hashimoto et al. proposed iridium-catalyzed [2+2+2] cycloaddition of diynes and alkynyl 

ketones or alkynyl esters.
[28]

 Distinct from the previous example (Scheme 10), this 

reaction involves the reaction between diynes and another C-C triple bond to give a 

substituted benzene ring (Scheme 11). Based on the mechanistic study, a plausible 

intermediate 1.50 iridacyclopentadiene, shown in Scheme 11, was proposed. This 

protocol provides a convenient and atom-economical manner to synthesize substituted 
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benzene moieties, and it acts as an alternative method to the Friedel-Crafts type reaction. 

Besides this example of [2+2+2] cycloaddition, there is another similar reaction that 

replaces monoyne to alkene under Ru-catalyst.
[29]

   

 

 

Scheme 11 Iridium-catalyzed [2+2+2] cycloaddition 

1.3.2 Intramolecular cyclization of diynes 

There is an early report about intramolecular [4+2] cycloaddition reactions under 

metal-free thermal conditions (Scheme 12, eq 1),
[30]

 while most of the later works were 

utilizing metal catalysts that could lower the reaction temperatures. For example, Lian et 

al. described a gold-catalyzed intramolecular [3+2] cycloaddition;
[31]

 under 

metal-catalyzed conditions, it occurred at ambient (23℃) temperature. The related 

mechanism was investigated by isotope labeling, and it was demonstrated that the 

reaction was initiated by coordination between the Au-catalyst and one of the triple bonds, 

which undergoes a nucleophilic attack by the other benzene ring, which afforded an 
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intermediate 1.55 along with the loss of a proton, which can be also considered a C-H 

bond activation. The following protonation at the other C-C triple bond gives complex 

1.56 that underwent a ring-closing process to generate the intermediate 1.57. Ultimately, 

the major product was formed (Scheme 12, eq 2). Later, Nieto-Oberhuber and colleagues 

also reported gold-catalyzed intramolecular [4+2] cycloadditions of arylalkynes. They 

performed molecular modeling to further explain the mechanism.
[32]

 

 

Scheme 12 Intramolecular cyclization via thermal and catalytic conditions 
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1.4 Cascade reactions 

Cascade reactions, which are also referred to as tendem reactions or domino 

reactions,
[33]

 are defined as reactions in which several intermediates are generated in one 

sequence (Figure 3). Cascade reactions are very useful for organic synthesis, because 

they simplify the synthetic process. There is no need to isolate the intermediates, change 

reaction conditions, or add reagents during the reaction. One-pot reactions are similar to 

cascade reactions, but there is a key difference from the cascade reaction: a one-pot 

reaction might involve changing reaction conditions or adding new reagents into the 

reactor; thus, a cascade reaction can also be considered a one-pot reaction, but not vice 

versa. Nicolaou and co-workers classified the cascade reactions depending on the 

different mechanisms involved, such as nucleophilic cascades, electrophilic cascades, 

radical cascades, pericyclic cascades and transition-metal-catalyzed cascades.
[34]

      

 

 

Figure 3 Cascade reaction 

 

Cascade reactions are gaining popularity in organic synthesis. Parsons and 

co-workers published a review on tandem reactions in organic synthesis in 1996,
[35]

 and 

after that, more related works were published; for example, Nicolaou and co-workers 
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investigated tandem reactions in total synthesis,
[34][36]

 and in 2007 Padwa and Bur 

developed the formation of heterocycles via tandem reactions.
[37]

 In consideration of the 

convenience of tandem reactions, this thesis project would exert this approach to 

synthesizing our target structures.   

For example, Zhao and co-workers performed a novel Pd-catalyzed cascade 

annulation of o-alkynylarylhalides and diarylacetylenes, since it combined a cyclization 

and a C-H bond activation.
[38]

 As seen in Scheme 13, they optimized the reaction 

conditions, such as ligands, bases, and so on. The R1 groups were also scoped by this lab, 

and it was found that electron-donating groups are more reactive, while the 

electron-withdrawing groups need longer reaction times and greater quantities of catalyst. 

Zhao also carried out the mechanistic study to give a plausible mechanism (Scheme 13). 

The first step is oxidative addition, as is very common for metal-catalyzed cycles, which 

is followed by carbopalladation to provide intermediates 1.62 and 1.63 in turn. In the next 

step, the base CsOPiv helped the activation of the C-H bond to afford intermediate 1.64. 

The presence of DBU as base completed the deprotonation. After that, a six-membered 

palladacycle 1.65 was generated, which underwent the reductive elimination to produce 

the final dibenzo[a,e]pentalenes 1.60. Dibenzo[a,e]pentalene moieties could have 

potential electronic properties, and this method provides an efficient approach to these 

conjugated structures.   
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Scheme 13 Intermolecular annulation of o-alkynylarylhalides and diarylacetylenes via 

C(sp
2
)-H bond activation 

 

Maekawa and colleagues reported work that was also related to the cascade 

annulation of dibenzo[a,e]pentalenes 1.66.
[39]

 Relative to the previous example with only 

one C-H bond activation (Scheme 13), this reaction involved two C-H bonds activations. 

The mechanism for this reaction is distinct from the previous one in the first step, which 
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started from aromatic C-H electrophilic palladation (Scheme 14). The following 

mechanistic step was essentially the same as the previous reaction.  

 

 

Scheme 14 C–H/C-H annulation to dibenzo[a,e]pentalenes 

 

Strom and co-workers developed tandem Ga(III)-associated cyclization of 

1,6-diynes, and the structure of the final product is similar to that from Lian’s work 

(Scheme 12, eq 2), but the proposed mechanism is totally different.
[40]

 This reaction is a 

two-step and cascade reaction as shown in Scheme 15. The first step is an iodocyclization 

and the second one is an intramolecular Friedel−Crafts reaction. Strom et al. conducted a 

mechanistic study of the formation of vinyl iodide 1.72, in which the first step is the 

activation of one C-C triple bond, and then the intramolecular cyclization provided a 

vinyl carbenium complex 1.70 and a positive charge on one C-C double bond. Vinyl 
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carbenium ion was trapped by iodide, which was followed by aqueous workup to give the 

vinyl iodide. In this reaction, the metal reagent is used in stoichiometric amount instead of 

catalytic amount, so it suffers from a high cost of catalyst. Even so, this protocol provides 

a feasible approach to fused rings.  

 

 

Scheme 15 Cascade Ga(III)-associated cyclization 

 

Another interesting metal-mediated cascade cyclization is reported by Liang’s group, 

which was demonstrated to follow a radical mechanism.
[41]

 This reaction is a multi-task 

strategy; it not only afford two new cycles with two C-C bonds generated, but a new C-S 

bond on the alkene (Scheme 16).  
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Scheme 16 Ag-mediated cascade radical cyclization 

 

The Liang group optimized reaction conditions and they also scoped different 

substitutions on the benzene ring, and there was no significant difference between 

electron-donating groups and electron-withdrawing groups, which suggests the electron 

density of the benzene ring does not affect the reaction much. In order to obtain more 

information about the mechanism, the Liang lab conducted radical trapping experiments 

as well as a kinetic isotope effect study (Scheme 16). Firstly, AgSCF3 was oxidized by 

K2S2O8 to form the SCF3• radical, which initiated the reaction with the construction of a 

new C-S bond (1.75). Subsequently, a six-membered ring intermediate 1.76 was 
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generated, which was followed by the formation of aryl radical structure 1.77. The 

oxidant K2S2O8 converts Ag(I) to Ag(II), and then Ag(II) completes the transition of 1.78 

from radical 1.77, at the same time as Ag(I) was regenerated. That process also activates 

the aromatic C-H bond. By losing a proton, the target structure is formed. It can be seen 

from the mechanistic cycle that the whole process did not involve coordination between 

the metal reagents and substrates, which is very different from the previous examples 

(such as Scheme13 and 14). This strategy provides some inspiration to this thesis project, 

which will be discussed in depth in Chapter 2.   
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Chapter 2 Copper-mediated C-S Bond Formation and C-H 

Functionalization via Cascade Cyclization 

2.1 Research proposal 

At the beginning of this thesis project, the Schipper lab sought methods to synthesize 

small molecules of thiophene, since thiophene and its corresponding polymers are an 

important class of organic electronic materials, which have enabled significant 

breakthroughs and important applications in fields such as photovoltaics and field-effect 

transistors.
[42]

 There are several ways to generate thiophene rings. The first method is the 

Paal-Knorr synthesis (Scheme 17).
[43]

 A 1,4-dicarbonyl compound 2.1 reacts with a sulfur 

source such as phosphorus pentasulfide to generate a 1,4-disubstituted thiophene 2.2. 

Another method is the reaction of a diyne 2.3 with sodium sulfide or sodium hydrosulfide 

to form the thiophene ring (Scheme 17).
[44]

 The two approaches are useful for the 

formation of 1,4-substituted thiophenes, but they are only intramolecular reactions and 

there is no new intermolecular C-C bond formation. There is a third reaction that involves 

two equivalents of alkyne 2.5 with zirconocene dichloride, followed by quenching with 

disulfur dichloride to form the thiophenes (2.7–2.9) (Scheme 17).
[45]

 This reaction is an 

intermolecular reaction that involves the formation of a new C-C σ-bond. However, this 

reaction has some disadvantages. For example, when unsymmetrical alkynes are 

employed, the transformation suffers from regioselectivity problems.   
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Scheme 17 Three synthetic approaches to thiophene rings 

 

To solve the current issues in thiophene synthesis, an alternative synthetic method 

for the formation of thiophenes was proposed by the Schipper group. An extensive 

screening of conditions, including different transition metal catalysts, sulfur donating 

reagents, reaction additives, solvents and temperatures, is required (Scheme 18). 

Selection of transition metals is based on their ability to form metallacycles upon reacting 

with alkynes and to form the necessary C-S bonds upon reaction with a sulfur source. 

Multiple transition metals are capable of reacting with alkynes to form the corresponding 

metallacycles.
[46]

 Therefore, a wide range of transition metals need to be screened, 

especially those catalysts that have been previously utilized successfully in [2+2+2] 

cycloaddition reactions, such as [Ti], [Zr], [Co] and other metal catalysts. The sulfur 



27 
 

reagents can be any commercially available ones that have been reported to be capable of 

generating a C-S bond from a C-metal bond. Additionally, various solvents can be tested, 

including, but not limited to DCM, DMF, THF and DCE. Different temperatures would 

also be examined. Initial screening will examine both the intermolecular and a more 

controlled intramolecular reaction to form the thiophene. Once this proposed method 

could successfully generate thiophene molecules, the route might also be applied to 

synthesize polythiophenes and other conjugated polymer materials (Scheme 18).  

 

 

Scheme 18 Proposed synthesis of thiophene ring 

 

According to the proposal, previous work in the Schipper group (by Christopher 

Baigent and Sushant Bhasin) studied the intermolecular reaction of phenylacetylene 2.10 

to form 2,5-diphenylthiophene 2.11 with sulfur sources to generate thiophene materials. 

Numerous catalysts, solvents, as well as sulfur sources were screened while all reactions 

were carried out at 100 ℃  overnight (Scheme 19). Finally dichloro-(p-cymene) 
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ruthenium(II), p-toluenethiosulfonate (TsSK) and DCE gave 21% gas chromatography 

-mass spectrometry (GCMS) conversion of the starting material, which was better than 

other conditions. So [Ru], TsSK and DCE were chosen to investigate the following 

studies. 

 

 

Scheme 19 The generation of thiophene materials by intermolecular reaction 

 

The diyne 2.12 with NTs linker was used to study the intramolecular reaction to 

generate the thiophene ring. 2.12 acted as the starting material and potassium TsSK as the 

sulfur source, and in the presence of a transition metal catalyst (such as [Ru], [Rh], [Pd] 

and so on) this reaction did not offer the target thiophene structure but complex mixtures. 

Interestingly when the catalyst Ru(II) (dichloro(p-cymene)ruthenium(II)) was used in this 

reaction, two new structures were generated, which were isolated and purified by column 

chromatography and characterized by NMR and HRMS as well as single crystal X-ray. 

These two new structures are tricyclic products 2.14 and 2.15 as shown in Scheme 20.  
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Scheme 20 The original project and the discovery of new structures 

 

Compound 2.15 was previously reported by Lian et al. (Scheme 21).
[31]

 A 

Au-catalyst was used to achieve the construction of compound 2.15 at room temperature 

and the corresponding mechanism was shown in Scheme 21.  
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Scheme 21 Gold-catalyzed intramolecular cycloaddition of 2.15 by Lian
[31]

 

 

Compound 2.14 is a completely new compound and its single crystal structure is 

shown in Scheme 20. Because of the formation of a new bond between the C and S and 

the aromatic C-H bond functionalization, 2.14 has redirected our attention to investigate a 

novel method to synthesize organosulfur compounds. Based on the new discovery of the 

new sulfone tricyclic product 2.14, the Schipper lab proposed a metal-mediated C-S bond 

formation and C(sp
2
)-H bond functionalization via cascade cyclization (Scheme 22).  

 

 

Scheme 22 New project starting from diynes to form tricyclic substrates 

2.2 Optimization of reaction conditions 

As shown in Scheme 20, the catalyst Ru(II) only provides a 7% yield of the desired 

structure, which is lower than that of product 2.15 (14%). In order to obtain a higher yield 

of organosulfur product 2.14, reaction conditions were optimized by using a different 
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salt—sodium p-toluenesulfinate (TsNa) instead of TsSK—and a series of metal reagents, 

including Cu and Ag reagents (Table 1). On one hand, the sulfur atom from TsSK was 

absent from the final product, and we cannot trace it, so TsNa was tested in the reaction; 

on the other hand, Ru-catalysts are relatively expensive, so we would like to try some 

other metal reagents to set up the reaction; moreover, copper and silver reagents are 

utilized in activating C-H bond reactions as mentioned in Chapter 1. 

 

Table 1 The screening of reaction conditions
a 

 

Entry Salts (2.0 eq.) Metal reagents (eq.) Yield of 2.14 (%)
b
 Yield of 2.15 

(%)
b
 

1 TsSK [Ru] (0.05) 7
c
 14

 c
 

2 TsSK Cu(OAc)2·2H2O (1.0) 22 0 

3 TsNa [Ru] (0.05) 0 0 

4 TsNa [Ru] (0.05) 

Cu(OAc)2·2H2O (1.0) 

11 8 

5 TsNa Cu(OAc)2·2H2O (1.0) 33 0 

6 TsNa CuSO4·5H2O (1.0) 37 0 

http://www.sigmaaldrich.com/catalog/product/aldrich/455652?cm_sp=Insite-_-recent_fixed-_-recent5-3
http://www.sigmaaldrich.com/catalog/product/aldrich/455652?cm_sp=Insite-_-recent_fixed-_-recent5-3
http://www.sigmaaldrich.com/catalog/product/aldrich/455652?cm_sp=Insite-_-recent_fixed-_-recent5-3
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7 TsNa (CuOTf)2· 

C6H5CH3 (1.0) 

26 0 

8 TsNa Cu(OTf)2 (1.0) 42 0 

9 TsNa Cu(OTf)2 (0.2) 12 0 

10 TsNa AgOAc (1.0) 22 10 

11 TsNa AgSbF6 (1.0) 37 12 

a
All of the listed reactions were carried out in DCE at 100 ℃ under argon, the concentration 

of 2.12 is 0.025mmol/ml, in this table TsNa is hydrous with 2H2O. 
b
NMR yield; 

c
Isolated yield. 

 

 

Entry 1 is the original reaction conditions with the Ru-catalyst, and when 1 eq. of 

copper acetate replaced the Ru-catalyst, the yield of product 2.14 increased to 22% along 

with the absence of generation of 2.15. When 1 eq. of Cu(OAc)2 was added to the 

conditions of reaction 3 (entry 4), it was found that 11% of 2.14 and 8% of 2.15 were 

generated, which indicated that copper acetate works well in the presence of TsNa. When 

copper reagent was used without the presence of Ru-catalyst, that reaction provided 33% 

of product 2.14 (Table 1, entry 5). By comparing the results entries 1, 4 and 5, it is known 

that Ru-catalyst is beneficial for the formation of compound 2.15. In entry 3, TsNa was 

used instead of TsSK to react with 2.12, but there was no product 2.14 or 2.15 observed, 

which suggested that only in the presence of TsSK does the Ru-catalyst work for this 
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reaction. Based on the utilizing of TsNa, this thesis work sequentially tested several 

copper reagents such as copper triflate, copper (II) sulfate and copper (I) triflate (Table 1, 

entries 5 to 8). Among the copper reagents examined, 1.0 eq. of Cu(OTf)2 gave 42% yield 

of desired product 2.14, whereas using less than1.0 eq. of Cu(OTf)2 led to a much lower 

yield (entry 9). Moreover, silver salts such as sliver acetate were also applied to screen the 

reaction conditions, and it was found that copper reagents offered more product 2.15 but 

less 2.14 (Table 1, entries 10 and 11). Upon the testing results, it was found that 

stoichiometric copper reagents, such as copper (II) triflate or copper acetate, worked 

better than other metal candidates. Additionally, when replacing TsSK with TsNa, the 

yield of compound 2.14 was getting higher than that of compound 2.15 (entry 2 vs. 5). 

Finally, copper reagents and sulfinate salts were chosen for the following optimization.  

Based on the preliminary screening of reaction conditions, our group proposed a new 

project that is to apply aryl diynes with different linkers (such as NTs, malonate, 

methylene and oxygen linkers) as the starting materials to react with sulfinate salts in the 

presence of a copper reagent to prepare organosulfur products through cascade reaction. 

First of all, this thesis work optimized reaction conditions, including solvents, 

temperature, time, copper reagents and sulfinate salts, and then different linkers and 

substitutions on the benzene rings were examined as well. 

The first part is the optimization of reaction conditions (Table 2). The first seven 

trials show the screening of different solvents, including non-polar and polar solvents at 

room temperature. In toluene, 1,4-dioxane and THF, there was no desired product 2.14 

generated; however, in chloroform, chlorobenzene, DCM and DCE, the organosulfur 
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compound 2.14 was observed (Table 2, entries 1, 2, 6 and 7), among which DCE gave the 

highest yield (20%). Therefore, in the following optimizing reactions, DCE was used as 

the chosen solvent. In order to increase the reaction yield of 2.14, reaction temperature 

and reaction time were examined. The two other reactions were conducted, one of which 

was heated and stirred on a hot plate inside a sealed tube at 100 ℃ for five hours and the 

other was reacted under microwave (MW) conditions inside a sealed tube. As shown in 

entries 8 and 9, there was no significant difference between the two yields (34% and 37%, 

respectively). It is indicated that heating by hot plate and MW machine are both 

acceptable for this reaction. Extending reaction time is another way to improve reaction 

yields. At 100 ℃, the reaction was conducted for 16 hours instead of 5 hours, and it was 

found that the yield increased from 37% to 42% (entry 10), which suggested that longer 

time is beneficial to the reaction; however, when even longer time was tested for this 

reaction, the yield showed no improvement. In terms of the copper reagents, this thesis 

work involved trials with copper (II) acetate hydrate, copper (II) sulfate pentahydrate and 

copper (II) tetrafluoroborate hydrate to set up reactions (Table 2, entries 10, 11, 12 and 

13), and these experimental results indicated that Cu(OTf)2 is the most efficient reagent 

among the tested copper catalysts (Table 2, entry 10).  
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Table 2 Optimization of conditions
a
 

 

Entry Solvent Time Temp. Cu Reagent (eq.) Yield of 2.14 

(%)
b 

1 chloroform 16 h r.t. Cu(OTf)2(1.0) 15 

2 chlorobenzene 16 h r.t. Cu(OTf)2(1.0) 11 

3 toluene 16 h r.t. Cu(OTf)2(1.0) 0 

4 THF 16 h r.t. Cu(OTf)2(1.0) 0 

5 1,4-dioxane 16 h r.t. Cu(OTf)2(1.0) 0 

6 DCM 16 h r.t. Cu(OTf)2(1.0) 16 

7 DCE 16 h r.t. Cu(OTf)2(1.0) 20 

8 DCE 5 h 100 Cu(OTf)2(1.0) 34 

9 DCE 5 h MW/100 Cu(OTf)2(1.0) 37 

10 DCE 16 h 100 Cu(OTf)2(1.0) 42 

11 DCE 16 h 100 Cu(OAc)2·2H2O
 

(1.0) 

33 

12 DCE 16 h 100 CuSO4·5H2O
 

(1.0) 

36 
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13 DCE 16 h 100 Cu(BF4)2·5H2O 

(1.0) 

28 

14
c,d

 DCE 16 h 100 Cu(OTf)2(2.0) 83
d
 

15
c,d

 DCE 16 h 80 Cu(OTf)2(2.0) 72
d
 

a
Most of listed reactions applying sodium p-toluenesulfinate hydrate (2.0 equiv), and the 

concentration of 2.12 is 0.025 mmol/mL. 
b
NMR yield for product 2.14, the yields of product 

2.15 is less than 5%. 
c
Anhydrous sodium p-toluenesulfinate (2.0 equiv) is applied. 

d
Isolated 

yields. 
 

 

Subsequently, when the equivalent of copper (II) triflate was doubled (Table 2, entry 

14), it presented a much higher yield (83% vs. 42% when only 1.0 eq. of Cu(OTf)2 was 

used, entry 10) When more copper reagent was tested for the reaction, such as 3.0 and 4.0 

eq. of Cu(OTf)2, there was no improvement in the yield of 2.14. In fact, there was a slight 

difference between using hydrate sodium salt and anhydrous one; the anhydrous salt can 

increase the yield slightly (around 3%). Later, this thesis work also assessed the influence 

of different temperatures, such as 60 ℃, 80 ℃, 100℃, 120 ℃. As shown in entry 15, 

reaction at 80 ℃ provides a 72% yield that is lower than that at 100 ℃, but higher than 

at room temperature and 60 ℃. When the reaction was carried out at 120 ℃, the 

corresponding yields decreased significantly, which may be due to the likely 

decomposition of the desired product at high temperature. The optimal conditions were 

screened out as shown in entry 14. 
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2.3 The scope of different linkers 

In order to extend the application of this reaction, different linkers were going to be 

scoped after optimizing reaction conditions. Besides the NTs linker, other linkers such as 

dimethyl malonate linker, methylene linker, and oxygen linker were considered. Firstly, 

the corresponding diyne starting materials need to be synthesized since none of them are 

commercially available (Scheme 23). Compound 2.12 with NTs linker was synthesized 

from p-toluenesulfonamide and 3-phenylpropargyl chloride in the presence of a base 

(Cs2CO3) in acetone for 16 hours via an SN2 reaction. Under the same condition 

compound 1.47 was generated from dimethyl malonate and 3-phenylpropargyl chloride. 

The yields for both of these two diynes were around 80%. The preparation of diyne 2.16 

involved the Sonogashira coupling reaction, which used Cu(I)-catalyst and Pd-catalyst in 

the presence of base Et3N that also acted as solvent at 50 ℃ for 16 hours to afford the 

diyne product 2.16 in 66% yield. Later, Wayne Wang, an undergraduate student in the 

Schipper lad, synthesized compound 2.17 also under Sonogashira conditions. In his 

reaction he applied 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as the base and toluene as 

the solvent to get 37% of product 2.17.   
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Scheme 23 Synthesis of the diyne starting materials with different linkers 

    

After obtaining the desired diynes, the next step is to perform the cascade reaction 

on these diynes possessing different linkers under the previously optimized conditions. As 

shown in Scheme 24, diyne with the dimethyl malonate linker gave the corresponding 

tricyclic product in 85% yield, which is slightly higher than that of the diyne possessing 

the NTs linker (83%), while the starting material with the methylene linker provided a 

lower 67% yield of 2.19. Wayne Wang of the Schipper group conducted the reaction on 

the diyne with the oxygen linker, which afforded only a 37% yield of compound 2.20. 

The reason for the observed low yields for the methylene linker and oxygen linker may be 
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because the two carbon-carbon triple bonds are slightly far away from each other, 

whereas the NTs and malonate groups are bulky groups that can push the two C-C triple 

bond closer to each other; moreover, the result that the oxygen linker only gave 37% of 

desired product 2.20 may be because of the electronegativity of oxygen, which lowers the 

reactivity of the diyne 2.17. Upon these testing results, the malonate linker provided the 

highest yield among the candidates, and it was applied in the following work to scope 

various substitutions on the terminal benzene rings. 

 

 

Scheme 24 Scope of different linkers under optimal conditions 

2.4 The scope of aromatic groups 

Under the optimal conditions, a series of diynes with different substituted benzene 

rings were synthesized in this thesis work. First, dimethyl dipropargylmalonate 2.21 was 

prepared in 69% yield using sodium hydride (NaH) as the base in THF (Scheme 25). 

Then, the intermediate 2.21 was used as the precursor to prepare the diynes (2.22–2.36) 
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under the Sonogashira coupling conditions, which involved a Cu(I)-catalyst, a Pd-catalyst, 

and Et3N as both the base and solvent. Both electron-withdrawing groups (such as 

trifluoromethyl, chloro, fluoro, nitro) and electron-donating groups (like methoxy and 

dimethylamine groups) were included in the prepared compounds. Most of these 

compounds were obtained under the conditions shown in Scheme 25, but the product 

2.31 could not be obtained under the typical Sonogashira conditions. After several 

attempts, a suitable condition was developed, which involves Pd(OAc)2 as the catalyst, 

DBU as the base and P(p-Tol)3 as the ligand (Scheme 25) to afford 2.31 in 17% yield. 

The low yield of 2.31 is because the electronic density was increased between C-Br due 

to the electron-donating group (dimethylamino), which makes it difficult to break the 

bond between the carbon of the benzene ring and the Br atom.
[47]

 Moreover, diynes with 

thiophene and pyridine were also synthesized and most yields were satisfying (60% to 

90%). The pyridine species were obtained from aryl iodide and the yields were 70–90%. 

Aryl bromides were initially tested for the preparation of compounds 2.32–2.34, but they 

gave no desired product, which is because the aryl iodide is more reactive than the aryl 

bromide due to the weaker C-I bond.  
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Scheme 25 Synthesis of the diyne starting materials with different aromatic substrate 

group 

 



42 
 

After obtaining the above diynes with different aromatic substitutions, the scope 

experiments were performed under the optimal conditions (Scheme 26). This thesis work 

involved the synthesis of compounds 2.37-2.44, which were generated from starting 

materials 2.22–2.29, respectively. The yields of these products ranged from 41% to 90% 

and the highest yield was provided by compound 2.44. Other aryl aromatic groups with 

heteroatoms were also involved in the investigation, such as thiophene ring and pyridine 

ring (compounds 2.32–2.36). Unfortunately, there was no desired product observed but 

some uncharacterized highly polar products. Hetero atoms may block the reactants or 

they may lead to some undesirable polymerizations. 
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Scheme 26 Scope of different aromatic substituents 

 

Obviously, the diynes bearing aromatic substituents containing electron-withdrawing 
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groups gave good yields. When electron-donating groups were involved in scoping, such 

as the methoxy group and the dimethylamine group, the results were different. 

Specifically, the reaction of 2.30 only offered a trace amount of 2.45 (Scheme 27) and 

there was no product observed when dimethylamino-substituted compound 2.31 was used. 

The reason why the yields for electron rich groups were low is still not clear, but it was 

speculated that the electron-donating group may lower the reactivity of this reaction or 

the electron rich group may quench the copper reagent. This thesis work conducted two 

comparative experiments (Scheme 27), both of which involved starting material 2.26. 

The first reaction is the regular reaction under the optimal conditions. When 1.0 

equivalent of 2.30 was added into the regular reaction, it was found that the yield of 2.41 

was decreased significantly to trace amount; therefore, it was speculated that the methoxy 

group possibly interacted the copper reagent or some intermediates. Based on a previous 

literature report,
[48]

 it was speculated that the methoxy group may be oxidized by copper 

(II) to generate a radical cation and copper (I) species. 
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Scheme 27 Comparative experiments between diynes with 2.30 and without 2.30 

2.5 The scope of sodium sulfinate salts 

Based on the results of the scope of different aromatic substitutions, the 

trifluoro-substituted substrate 2.29 provided the highest isolated yield (90%) of the 

desired structure. The following work was conducted under the optimal conditions, 2.29 

reacted with three different sodium sulfinate salts to offer the corresponding products 2.44, 

2.46 and 2.47. As shown in Scheme 28, the sulfinate salt with the tolyl group afforded 90% 

yield of 2.44, and methyl group provided 53% yield of 2.46, while when Wayne Wang of 
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the Schipper group tested the trifluoromethyl group, there was no observation of the 

desired product 2.47. Moreover, this thesis work also conducted another reaction that 

involved hydroxymethanesulfinic acid monosodium salt dihydrate 2.48, in which 

compound 2.12 was used instead of the malonate-linker diyne (Scheme 28).  The 

desired compound with the formation of C-S bond was not observed but compound 2.15 

was isolated in 15% yield, which suggested that 2.48 is not a good nucleophile in this 

reaction when compared to TsNa. Upon these results, it is indicated that sodium 

p-toluenesulfinate salt is more active than than the other sodium sulfinate salts.  

 

Scheme 28 The scope of sodium sulfinate salts 
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2.6 The study of mechanism 

So far, this thesis work had investigated the optimal conditions of proposed reactions, 

the scope of different linkers, aromatic substitutions as well as sodium sulfinate salts. The 

next important aspect is the mechanistic study. To gain more information about the 

mechanism of the proposed reaction, more reactions were set up. Based on the 

mechanistic study by the Liang group,
[41]

 a stable radical,  (2,2,6,6-tetramethylpiperidin 

-1-yl) oxidanyl (TEMPO), and a common radical inhibitor, butylated hydroxytoluene 

(BHT), were applied in the reaction system (Scheme 29). Liang and co-workers 

conducted two radical trapping reactions. To one was added 1.5 eq. TEMPO and to the 

other was added 1.5 eq. BHT, and it can be seen that both of these reactions resulted in 

recovery of 97% and 93% starting material (SM), respectively, which indicated that this 

reaction involved some radical intermediates and hence both the radical reagent and 

radical inhibitor could quench the reaction dramatically. The corresponding mechanism is 

shown in Scheme 16.  
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Scheme 29 Radical trapping experiments by Liang’s group
[41]

 

 

In terms of our own mechanistic study, BHT was also used to investigate the 

mechanism. We conducted two parallel experiments with NTs-starting material (Scheme 

30), one of which is NTs starting material reacting with other two optimal reagents at 80 ℃ 

for 4 hours, resulting in an isolated yield for 2.14 of 65%; The other one was with 2.0 

equivalents of BHT added into the comparative experiment and the isolated yield of the 

product 2.14 was 63%, which indicated that there was no radical intermediate generated 

in the reaction, and it does not follow Liang’s radical mechanism (Scheme 30). 
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Scheme 30 Radical trapping experiments by our group 

 

Besides the investigation of radical trapping experiments, the Schipper lab also 

investigated a kinetic experiment that was also inspired by Liang.
[41]

 Liang conducted a 

kinetic isotope experiment under their optimal conditions, which started from a mixture 

of 1.73 and 1.73-D (with fully deuterated benzene ring) to afford product 1.74 and 1.74-D, 

and the relative rates of products formation KH/KD = 1.0 (Scheme 31), which indicated 

that the C(sp
2
)-H bond activated step was not a rate determining step (RDS). 
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Scheme 31 Kinetic isotope effect (KIE) study
[41]

 

 

The kinetic study was conducted by Geoffrey Sinclair, one of the graduate students 

in the Schipper lab. Firstly, Geoffrey synthesized the corresponding deuterated diynes 

under Sonogashira coupling conditions. By applying compound 2.49, Geoffrey developed 

the internal competition experiment as shown in Scheme 32. This reaction gave two 

possible products 2.50 and 2.51 under optimal conditions and the ratio of yields between 

these two products was around 1:1, which can verify some results about the mechanism 

of this reaction. One possibility is if the aromatic C-H bond cleavage is the 

rate-determining step (RDS), then the previous steps are non-reversible due to the 

probability of attacking either C-C triple bond being the same; the other possibility is if 

the aromatic C-H bond cleavage is not the RDS, that steps before aromatic C-H bond 

activation can be reversible or non-reversible. So only setting up the internal competition 

experiment is not enough to determine if it is a reversible reaction or not. Our group also 

needed to conduct relative rate experiments to establish whether the C-H bond activation 

is the rate-determining step.   
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Scheme 32 Internal competition experiment by Geoffrey Sinclair 

 

In the following work, Geoffrey compared the relative rates of product formation of 

2.14 and 2.52 (KH/KD), which can provide some information about C-H bond 

functionalization (Figure 4). Based on the experiment results, it was found that KH/KD = 

1.0, it indicates that C-H bond activation step is not the RDS. The relative experiment 

about the mechanism of the cleavage of C-H bond is still under investigation by Geoffrey.  

 

 

Figure 4 Relative rate experiments 

 

According to the experimental outcome from the many and recent mechanistic 

studies, a five-step copper-mediated mechanism is proposed in Scheme 33. The diyne 

compound 2.53 reacted with copper (II) triflate to afford a coordinated intermediate 2.54, 

which is followed by the attack of p-toluenesulfinate at one of the carbon-carbon triple 
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bonds to give the desired C-S bond. At the same time, a bond between copper and the 

other carbon atom from the same C-C triple bond is formed (intermediate 2.55). The 

migratory insertion step provides a new carbon-carbon bond between the two carbon 

triple bonds in intermediate 2.56. Along with C-H bond activation, the second 

copper-involved six-membered ring was obtained (2.57). In the C-H bond activation step, 

there are two possible pathways. One may follow the electrophilic aromatic substitution 

as shown in Scheme 33, which involves the attack by triflate to achieve the deprotonation; 

the other path is a concerted metalation deprotonation and the corresponding transition 

state is shown in Scheme 33 as well. Following an elimination reaction, the final product 

is formed.  
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Scheme 33 Proposed mechanism for copper-mediated C-S bond formation and C(sp
2
)-H 

functionalization via cascade cyclization 

2.7 Summary and future work 

In conclusion, our group has developed a convenient methodology to synthesize 

organosulfur compounds through the application of copper reagents via aromatic C-H 

activation and cascade reaction. As shown above, this thesis work optimized the reaction 

conditions, including solvent systems, temperatures, copper reagents and reaction time. 

Additionally, this thesis work also explored the scope of different linkers, aromatic 

substitutions, as well as sodium sulfinate salts. Based upon the experimental results, it has 
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been determined that electron-withdrawing groups are more effective than 

electron-donating groups under the optimal conditions, because electron-rich group may 

quench the copper reagent. By developing radical trapping experiments and kinetic 

experiments, a plausible copper-mediated mechanism is proposed as shown in Scheme 

33.  

 

Scheme 34 The synthesis of product 2.61 and future work 

 

As mentioned above, the mechanistic study is still ongoing. After the determination 

of the mechanism of this proposed reaction, our group can try to use other nucleophiles 

besides sulfinate salts. Moreover, similar starting materials also can be employed under 

optimal conditions. Recently in the course of this thesis work, new starting material 2.61 

was synthesized in 56% yield, in which a C-N triple bond replaces one C-C triple bond 

(Scheme 34). 2.59 reacted with TsCl to afford the intermediate 2.60 in 86% yield, from 

which 2.61 was generated in the presence of potassium carbonate. In future work, 2.61 

may be applied to synthesize β-carboline analogues, which have biochemical and 

pharmacological significance (Scheme 34).
[49]
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Chapter 3 Experimental Procedures 

3.1 General synthetic experimental procedures 

All reactions were carried out in flame or oven-dried glassware under an argon or 

nitrogen atmosphere. Solvents were either reagent grade or HPLC grade. Dry DCE was 

prepared using dry molecular sieves which were dehydrated by heating metal (200–300℃) 

under argon. Most chemical reagents were purchased from Sigma-Aldrich. Reactions 

were monitored using commercial thin-layer chromatography (TLC) plates. Developed 

TLC plates were examined under a UV lamp (254 nm) or exposed to iodine stain. Flash 

chromatography was performed using 230–400 mesh silica gel and Teledyne Isco 

CombiFlash. 

1
H-NMR spectra were recorded on either a Brüker AVANCE300 (300 MHz) or 

Brüker AC300 (300 MHz) NMR spectrometer. 
13

C-NMR spectra were broad band 

decoupled and recorded on a Brüker AVANCE300 (75.5 MHz) or Brüker AC300 (75.5 

MHz) NMR spectrometer, using the carbon signal of the deuterated solvent as the internal 

standard.  The following abbreviations are used for NMR peak multiplicities: s, singlet; 

d, doublet; t, triplet; q, quartet; dd, doublet of doublets; dt, doublet of triplets; m, multiplet; 

br, broad. Chemical shifts are reported in parts per million (ppm) relative to either TMS 

(δ 0.0), chloroform (δ 7.26) or acetone (δ 2.05) for 
1
H-NMR, and either chloroform (δ 

77.16) or acetone (δ 29.84) for 
13

C NMR. High resolution mass spectra (HRMS) and low 

resolution mass spectra (LRMS), obtained via electrospray ionization (ESI) and direct 

analysis in real time (DART), were measured on a Thermo Scientific Q Exactive
TM

 Plus 
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Hybrid Quadrupole-Orbitrap
TM

 Mass Spectrometer in the Mass Spectrometry Facility in 

the Department of Chemistry, University of Waterloo. X-ray crystal structures were 

determined by Dr. Jalil Assoud and figures of X-ray crystal structures were generated 

using Mercury. 

3.2 Synthetic procedures 

4-Methyl-N,N-bis(3-phenylprop-2-yn-1-yl)benzenesulfonamide (2.12) 

 

4-Methyl-N,N-bis(3-phenylprop-2-yn-1-yl)benzenesulfonamide was synthesized 

according to general substitution reaction conditions and exhibited spectroscopic data 

identical to that previously reported.
[50]

  4-Methylbenzenesulfonamide (49.91 mg, 0.29 

mmol) was dissolved in 10 mL acetone, then CsCO3 and 3-chloro-1-phenyl-1-propyne 

(0.12 mL, 0.87 mmol) were added into the solution. The mixture was stirred at room 

temperature for 16 hours. After that, the solvent was removed in vacuo. The residual solid 

was dissolved in water and DCM was added. The layers were separated and the aqueous 

layer was extracted with DCM. The combined organic layers were dried over MgSO4 and 

filtered. Concentration in vacuo gave the diyne 2.12 as a pale yellow oil, which was 

purified by column chromatography (silica gel 230–400 mesh, hexanes) to give a white 

solid compound 94.4 mg. Yield  = 82%; Rf = 0.3 (EtOAc : Hexane = 1 : 4); 
1
H NMR 

(CDCl3, 300 MHz) δ 7.79 (d, J = 8.3 Hz, 2H), 7.18–7.32 (m, 12H), 4.44 (s, 4H), 2.30 (s, 
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3H).  

Dimethyl 2,2-bis(3-phenylprop-2-yn-1-yl)malonate (1.47) 

 

Dimethyl 2,2-bis(3-phenylprop-2-yn-1-yl)malonate was synthesized according to 

standard substitution reaction conditions and exhibited characterization data identical to 

those previously reported.
[31]

 The procedure follows that for the synthesis of 

4-methyl-N,N-bis(3-phenylprop-2-yn-1-yl)benzenesulfonamide. Yield = 72%; Rf = 0.36 

(EtOAc : hexanes = 1 : 4); 
1
H NMR (CDCl3, 300 MHz) δ 7.38–7.35 (m, 4H), 7.28–7.24 

(m, 6H), 3.79 (s, 6H), 3.25 (s, 4H).    

1,7-Diphenylhepta-1,6-diyne (2.16) 

 

1,7-Diphenylhepta-1,6-diyne was synthesized according to standard Sonogashira 

coupling reaction conditions and exhibited spectroscopic data identical to those 

previously reported.
[51]

 A MW tube was charged with Pd(Ph3P)2Cl2 (90.48 mg, 0.125 

mmol) and CuI (49.60 mg, 0.25 mmol), then purged with Argon for 15 minutes. To this 

was added 25 mL of N2-purged Et3N, followed by hepta-1,6-diyne (0.3 mL, 2.5 mmol) 

and iodobenzene (0.7 mL, 6.25 mmol). The MW tube was sealed with a cap. The mixture 

was stirred at 50 ℃ for 16 hours. After the reaction, the reaction mixture was filtered 
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through celite, and rinsed with diethyl ether. The filtrate was concentrated and then 

purified by column chromatography (silica gel 230–400 mesh, hexanes) to give an oily 

transparent compound (400 mg). Yield = 66%; Rf = 0.25 (hexanes); 
1
H NMR (CDCl3, 

300 MHz) δ 7.44–7.47 (m, 4H), 7.30–7.34 (m, 6H), 2.64 (t, J = 7.2 Hz, 4H), 1.95 (q, J = 

7.2 Hz, 2H).    

(Oxybis(prop-1-yne-3,1-diyl))dibenzene (2.17) 

 

(Oxybis(prop-1-yne-3,1-diyl))dibenzene was synthesized according to standard 

Sonogashira coupling reaction conditions and exhibited characterization data identical to 

those previously reported.
[51]

 A MW tube was charged with Pd(Ph3P)2Cl2 (90.48 mg, 

0.125 mmol), CuI (49.60 mg, 0.25 mmol) and DBU (1.9 ml, 12.5 mmol), then purged 

with Argon for 15 minutes. Toluene (25 mL) was added, followed by propargyl ether 

(0.26 mL, 2.5 mmol) and iodobenzene (0.7 mL, 6.25 mmol). The MW tube was sealed 

with a cap. The mixture was stirred at 50 ℃ for 16 hours. After the reaction, the reaction 

mixture was filtered through celite and rinsed with diethyl ether. The filtrate was 

concentrated and then purified by column chromatography (silica gel 230–400 mesh, 

hexanes) to give an oily transparent compound. Yield = 37%; Rf = 0.63 (EtOAc : Hexane 

= 1 : 9); 
1
H NMR (CDCl3, 300 MHz) δ 7.45–7.48 (m, 4H), 7.31–7.33 (m, 6H), 4.55 (s, 

4H). 
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Dimethyl 2,2-di(prop-2-yn-1-yl)malonate (2.21) 

 

Dimethyl 2,2-di(prop-2-yn-1-yl)malonate was synthesized by standard substitution 

reaction conditions and exhibited identical data to those previously reported.
[52]

 Dimethyl 

malonate (3.5 mL, 30.0 mmol) was added dropwise to a solution of sodium hydride (60% 

in mineral oil, 3 g, 75.0 mmol) in dry THF (90 mL) at 0 °C. Stirring was continued for 30 

minutes while the reaction mixture was allowed to warm up to room temperature. After 

cooling down to 0 °C, the propagyl bromide was added. The solution was stirred 

overnight while warming up to room temperature. The reaction was quenched with water 

and the aqueous layer was extract with EtOAc. The combined organic layers were dried 

over MgSO4 and filtered. Concentration in vacuo gave the diyne 2.21 as a pale yellow 

powder, which was purified by column chromatography (silica gel 230–400 mesh, 9:1 

hexane-ethyl acetate and then 7:3 hexane-ethyl acetate) to give a white solid compound 

(4.2 g). Yield = 69%; Rf = 0.45 (EtOAc : hexane = 1 : 4); 
1
H NMR (CDCl3, 300 MHz) δ 

3.77 (s, 6H), 2.97 (d, J = 2.4 Hz, 4H), 2.02 (t, J = 2.4 Hz, 2H).  

General procedure A for the synthesis of starting material diynes (2.22–2.36) 

 

The strating material diynes was synthesized according to the general Sonogashira 
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coupling reaction.
[53]

 A 5 mL MW tube was charged with Pd(Ph3P)2Cl2 (0.125 mmol) and 

CuI (0.25 mmol), then purged with argon for 15 minutes. To this was added 2.5 mL 

N2-purged Et3N, which was followed by the addition of diyne 2.21 (2.5 mmol) and aryl 

halides (6.25 mmol). The MW tube was sealed with a cap. The mixture was stirred at 80 ℃ 

for 16 hours. After the reaction, the reaction mixture was filtered through celite, and 

rinsed with diethyl ether. The filtrate was concentrated and then purified by column 

chromatography (silica gel 230–400 mesh, hexanes/EtOAc) to give the starting materials. 
 

Dimethyl 2,2-bis(3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-yl)malonate (2.22) 

 

Dimethyl 2,2-bis(3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-yl)malonate was 

synthesized according to the general procedure A. White solid. Yield = 60%; Rf = 0.2 

(EtOAc : hexane = 1 : 4); 
1
H NMR (CDCl3, 300 MHz) δ 7.54–7.46 (m, 8H), 3.81 (s, 6H), 

3.31 (s, 4H); 
13

C NMR (CDCl3, 75 MHz) δ 169.4, 132.3, 130.3 (q, J = 32.5 Hz), 127.1, 

126.0, 125.5 (q, J = 3.75 Hz), 122.4, 86.8, 83.1, 57.3, 53.5, 24.2; HRMS calculated for 

C25H19F6O4 (M+H) 497.1181; found: 497.1182. 

Dimethyl 2,2-bis(3-(3,5-bis(trifluoromethyl)phenyl)prop-2-yn-1-yl)malonate (2.23) 
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Dimethyl 2,2-bis(3-(3,5-bis(trifluoromethyl)phenyl)prop-2-yn-1-yl)malonate was 

synthesized according to the general procedure A. White crystals. Yield = 30%; Rf = 0.6 

(EtOAc : hexane = 1 : 4); 
1
H NMR (CDCl3, 300 MHz) δ 7.79 (s, 6H), 3.84 (s, 6H), 3.30 

(s,4H); 
13

C NMR (CDCl3, 75 MHz) δ 168.9, 131.9 (q, J = 33 Hz), 128.3, 125.1, 124.7, 

121.6-121.7 (m), 121.1, 117.4, 87.5, 81.4, 56.5, 53.4, 23.9; HRMS calculated for 

C27H17F12O4 (M+H) 633.0927; found: 633.0930. 

Dimethyl 2,2-bis(3-(4-chlorophenyl)prop-2-yn-1-yl)malonate (2.24) 

 

Dimethyl 2,2-bis(3-(4-chlorophenyl)prop-2-yn-1-yl)malonate was synthesized 

according to the general procedure A. White solid. Yield = 51%; Rf = 0.5 (EtOAc : 

hexane = 1 : 3); 
1
H NMR (CDCl3, 300 MHz) δ 7.20-7.29 (m, 8H), 3.77 (s, 6H), 3.22 (s, 

4H); 
13

C NMR (CDCl3, 75 MHz) δ 169.1, 134.0, 132.8, 128.4, 121.3, 84.8 82.7, 57.0, 

53.0, 23.8; HRMS calculated for C23H19Cl2O4 (M+H) 429.0657; found: 429.0655. 

Dimethyl 2,2-bis(3-(4-nitrophenyl)prop-2-yn-1-yl)malonate (2.25) 

 

Dimethyl 2,2-bis(3-(4-nitrophenyl)prop-2-yn-1-yl)malonate was synthesized 

according to the general procedure A. Pale yellow oil. Yield = 8%; Rf = 0.4 (EtOAc : 
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hexane = 1 : 3); 
1
H NMR (CDCl3, 300 MHz) δ 8.15 (d, J = 8.7 Hz, 4H), 7.52 (d, J = 8.7 

Hz, 4H), 3.82 (s, 6H), 3.30 (s, 4H);
 13

C NMR (CDCl3, 75 MHz) δ 168.8, 147.0, 132.4, 

129.6, 123.4, 89.3, 82.4, 56.7, 53.3, 24.0; HRMS calculated for C23H19N2O8 (M+H) 

468.1401; found: 468.1401. 

Dimethyl 2,2-bis(3-(4-cyanophenyl)prop-2-yn-1-yl)malonate (2.26) 

 

Dimethyl 2,2-bis(3-(4-cyanophenyl)prop-2-yn-1-yl)malonate was synthesized 

according to the general procedure A. White solid. Yield = 72%; Rf = 0.2 (EtOAc : 

hexane = 1 : 3); 
1
H NMR (CDCl3, 300 MHz) δ 7.55 (d, J = 8.1 Hz, 4H), 7.43 (d, J = 8.1 

Hz, 4H), 3.79 (s, 6H), 3.25 (s, 4H);
 13

C NMR (CDCl3, 75 MHz) δ 168.8, 132.1, 131.9, 

127.6, 118.3, 111.5, 88.4, 82.5, 56.7, 53.2, 23.8; HRMS calculated for C25H19N2O4 (M+H) 

411.1336; found: 411.1339. 

Dimethyl 2,2-bis(3-(4-fluorophenyl)prop-2-yn-1-yl)malonate (2.27) 

 

Dimethyl 2,2-bis(3-(4-fluorophenyl)prop-2-yn-1-yl)malonate was synthesized 

according to the general procedure A. White solid. Yield = 67%; Rf = 0.6 (EtOAc : 

hexane = 1 : 2); 
1
H NMR (CDCl3, 300 MHz) δ 7.35 (m, 4H), 6.96 (m, 4H), 3.80 (s, 6H), 
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3.24 (s, 4H); 
13

C NMR (CDCl3, 75 MHz) δ 169.2, 163.9, 160.6, 133.4 (d, J = 8.25 Hz), 

118.9, 115.4 (d, J = 22.5 Hz), 83.1 (d, J = 58.5 Hz), 57.1, 53.0, 23.7; HRMS calculated 

for C23H19F2O4 (M+H) 397.1227; found: 397.1246. 

Dimethyl 2,2-bis(3-(4-acetylphenyl)prop-2-yn-1-yl)malonate (2.28) 

 

Dimethyl 2,2-bis(3-(4-acetylphenyl)prop-2-yn-1-yl)malonate was synthesized 

according to the general procedure A. White solid. Yield = 60%; Rf = 0.2 (EtOAc : 

hexane = 1 : 3); 
1
H NMR (CDCl3, 300 MHz) δ 7.84 (d, J = 8.1 Hz, 4H), 7.43 (d, J = 8.1 

Hz, 4H), 3.79 (s, 6H), 3.27 (s, 4H), 2.55 (s, 6H);
 13

C NMR (CDCl3, 75 MHz) δ 197.1, 

169.0, 136.1, 131.7, 128.0, 127.7, 87.3, 83.2, 56.9, 53.1, 26.5, 23.9; HRMS calculated for 

C27H25O6 (M+H) 445.1645; Found: 445.1646. 

Dimethyl 2,2-bis(3-(3,4,5-trifluorophenyl)prop-2-yn-1-yl)malonate (2.29) 

 

Dimethyl 2,2-bis(3-(3,4,5-trifluorophenyl)prop-2-yn-1-yl)malonate was synthesized 

according to the general procedure A. White solid. Yield = 76%; Rf = 0.6 (EtOAc : 

hexane = 1 : 3); 
1
H NMR (CDCl3, 300 MHz) δ 6.98 (m, 4H), 3.80 (s, 6H), 3.20 (s, 4H); 

13
C NMR (CDCl3, 75 MHz) δ 168.8, 152.4 (dd, J = 10.2, 4.5 Hz), 149.1 (dd, J = 10.2, 



64 
 

4.5), 141.9 (t, J = 15.2 Hz), 138.5 (t, J = 15.2 Hz), 118.8–118.5 (m), 116.1–115.8 (m), 

85.5, 81.1, 56.6, 53.1, 23.6; HRMS calculated for C23H15F6O4 (M+H) 469.0869; found: 

469.0869. 

Dimethyl 2,2-bis(3-(4-methoxyphenyl)prop-2-yn-1-yl)malonate (2.30) 

 

Dimethyl 2,2-bis(3-(4-methoxyphenyl)prop-2-yn-1-yl)malonate was synthesized 

according to the general procedure A. White solid. Yield = 36%; Rf = 0.3 (EtOAc : 

hexane = 1 : 3); 
1
H NMR (CDCl3, 300 MHz) δ 7.31 (d, J = 8.7 Hz, 4H), 6.80 (d, J = 8.7 

Hz, 4H), 3.79 (s, 6H), 3.78 (s, 6H), 3.24 (s, 4H);
 13

C NMR (CDCl3, 75 MHz) δ 169.4, 

159.3, 133.0, 115.1, 113.7, 83.5, 82.3, 57.3, 55.1, 52.9, 23.7; HRMS calculated for 

C25H25O4 (M+H) 421.1641; found: 421.1641. 

Dimethyl 2,2-bis(3-(4-(dimethylamino)phenyl)prop-2-yn-1-yl)malonate (2.31) 

 

Dimethyl 2,2-bis(3-(4-(dimethylamino)phenyl)prop-2-yn-1-yl)malonate was 

synthesized according to standard Sonogashira coupling reaction conditions and exhibited 

spectroscopic data identical to those previously reported.
[52]

 A 5 mL MW tube equipped 

with a magnetic stirring bar and a rubber septum was charged with Pd(OAc)2 (10 mg, 
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0.045 mmol) and P(p-tol)3 (27.4 mg, 0.09 mmol). After purging with argon, degassed 

THF (3mL), DBU (0.3 mL, 2 mmol), diyne 2.21 (104 mg, 0.5 mmol) and 

4-bromo-N,N-dimethylaniline (250 mg, 1.25 mmol) were added via a syringe (solid 

compound was dissolved in degassed THF). The reaction mixture was stirred at 80 ℃ 

for 16 hours. After cooling to room temperature, water was added to the reaction mixture, 

which was then extracted with EtOAc (60 mL). The combined organic layers were dried 

over MgSO4 and filtered. Concentration in vacuo gave the diyne 2.31 as a pale yellow 

powder, which was purified by column chromatography (silica gel 230–400 mes–, 9:1 

hexane-ethyl acetate and then 7:3 hexane-ethyl acetate) to give a white solid compound 

(37 mg). Yield = 17%; Rf = 0.25 (EtOAc : hexane = 1 : 3); 
1
H NMR (CDCl3, 300 MHz) δ 

7.23 (d, J = 8.4 Hz, 4H), 6.57 (d, J = 8.4 Hz, 4H), 3.77 (s, 6H), 3.23 (s, 4H), 2.93 (s, 12H); 

13
C NMR (CDCl3, 75 MHz) δ 169.6, 149.9, 132.6, 111.7, 110.1, 84.2, 81.3, 57.6, 52.8, 

40.2, 23.8; HRMS calculated for C27H31N2O4 (M+H) 447.2276; found: 447.2278. 

Dimethyl 2,2-bis(3-(pyridin-2-yl)prop-2-yn-1-yl)malonate (2.32) 

 

Dimethyl 2,2-bis(3-(pyridin-2-yl)prop-2-yn-1-yl)malonate was synthesized 

according to the general procedure A. White solid. Yield = 98%; Rf = 0.1 (EtOAc : 

hexane = 1 : 2); 
1
H NMR (CDCl3, 300 MHz) δ 8.47 (d, J = 4.5 Hz, 2H), 7.55 (t, J = 7.5 

Hz, 2H), 7.24 (d, J = 7.5 Hz, 2H), 7.12–7.7.14 (m, 2H), 3.75 (s, 6H), 3.28 (s, 4H);
 13

C 

NMR (CDCl3, 75 MHz) δ 168.9, 149.7, 142.9, 135.9, 127.2, 122.7, 83.9, 83.4, 56.7, 53.1, 
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23.7; HRMS calculated for C21H19N2O4 (M+H) 363.1319; found: 363.1339. 

Dimethyl 2,2-bis(3-(pyridin-3-yl)prop-2-yn-1-yl)malonate (2.33) 

 

Dimethyl 2,2-bis(3-(pyridin-3-yl)prop-2-yn-1-yl)malonate was synthesized 

according to the general procedure A. White solid. Yield = 95%; Rf = 0.15 (EtOAc : 

hexane = 1 : 2); 
1
H NMR (CDCl3, 300 MHz) δ 8.58 (d, J = 1.5 Hz, 2H), 8.48 (dd, J = 1.5 

Hz, J = 4.8 Hz, 2H), 7.63 (dt, J = 7.8 Hz, J = 1.8 Hz, 2H), 7.19 (dd, J = 4.8 Hz, J = 7.8 Hz, 

2H), 3.79 (s, 6H), 3.26 (s, 4H);
 13

C NMR (CDCl3, 75 MHz) δ 169.1, 152.4, 148.6, 138.6, 

122.9, 120.0, 87.3, 80.7, 56.9, 53.3, 23.9; HRMS calculated for C21H19N2O4 (M+H) 

363.1319; found: 363.1339. 

Dimethyl 2,2-bis(3-(pyridin-4-yl)prop-2-yn-1-yl)malonate (2.34) 

 

Dimethyl 2,2-bis(3-(pyridin-4-yl)prop-2-yn-1-yl)malonate was synthesized 

according to the general procedure A. White solid. Yield = 75%; Rf = 0.1 (EtOAc : 

hexane = 1 : 2); 
1
H NMR (CDCl3, 300 MHz) δ 8.53 (d, J = 6 Hz, 4H), 7.22 (d, J = 6 Hz, 

4H), 3.80 (s, 6H), 3.26 (s, 4H);
 13

C NMR (CDCl3, 75 MHz) δ 168.9, 149.7, 131.0, 125.8, 

88.8, 81.7, 56.8, 53.3, 23.9; HRMS calculated for C21H19N2O4 (M+H) 363.1319; found: 

363.1339. 
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Dimethyl 2,2-bis(3-(thiophen-2-yl)prop-2-yn-1-yl)malonate (2.35) 

 

Dimethyl 2,2-bis(3-(thiophen-2-yl)prop-2-yn-1-yl)malonate was synthesized 

according to the general procedure A. White solid. Yield = 69%; Rf = 0.3 (EtOAc : 

hexane = 1 : 4); 
1
H NMR (CDCl3, 300 MHz) δ 7.17–7.19 (m, 2H), 7.12–7.14 (m, 2H), 

6.92 (dd, J = 3.6 Hz, J = 5.1 Hz, 2H), 3.79 (s, 6H), 3.27 (s, 4H);
 13

C NMR (CDCl3, 75 

MHz) δ 169.0, 131.8, 126.8, 126.7, 122.8, 87.8, 57.0, 53.1, 30.7, 24.6; HRMS calculated 

for C19H17O4S2 (M+H) 373.0559; found: 373.0563. 

Dimethyl 2,2-bis(3-(thiophen-3-yl)prop-2-yn-1-yl)malonate (2.36) 

 

Dimethyl 2,2-bis(3-(thiophen-3-yl)prop-2-yn-1-yl)malonate was synthesized 

according to the general procedure A. White solid. Yield = 60%; Rf = 0.5 (EtOAc : 

hexane = 1 : 3); 
1
H NMR (CDCl3, 300 MHz) δ 7.34 (d, J = 2.1 Hz, 2H), 7.19–7.24 (m, 

2H), 7.02 (d, J = 4.8 Hz, 2H), 3.76 (s, 6H), 3.23 (s, 4H);
 13

C NMR (CDCl3, 75 MHz) δ 

169.2, 131.6, 129.9, 128.5, 125.1, 121.9, 87.4, 78.8, 57.1, 53.0, 23.8; HRMS calculated 

for C19H17O4S2 (M+H) 373.0559; found: 373.0563. 
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General procedure B for the synthesis of final structure 

 

A 5 mL MW tube equipped with a magnetic stirring bar and a rubber septum was 

charged with sodium sulfinate salt (0.1 mmol), Cu(OTf)2 (0.1 mmol), and starting 

material (0.05 mmol). After purging with argon, dry DCE (2mL) was added into the MW 

tube, which was then sealed. The reaction mixture was stirred at 100 ℃ for 16 hours. 

After the reaction, the product was purified directly via column chromatography (silica 

gel 230–400 mesh, hexanes/EtOAc).  

9-Phenyl-2,4-ditosyl-2,3-dihydro-1H-indeno[2,1-c]pyridine (2.14) 

 

9-Phenyl-2,4-ditosyl-2,3-dihydro-1H-indeno[2,1-c]pyridine was synthesized 

according to general procedure B. Yellow crystal. Yield = 83%; Rf = 0.2 (EtOAc : hexane 

= 1 : 4); 
1
H NMR (CDCl3, 300 MHz) δ  8.57–8.58 (m, 1H), 7.92 (d, J = 8.1 Hz, 2H), 

7.07–7.54 (m, 14H), 4.38 (s, 2H), 4.29 (s, 2H), 2.48 (s,3H), 2.25 (s, 3H);
 13

C NMR 

(CDCl3, 75 MHz) δ 145.5, 143.9, 143.8, 143.3, 143.1, 134.1, 133.8, 132.3, 130.8, 130.3, 

130.1, 129.5, 128.3, 128.2, 127.9, 127.5, 126.9, 120.4, 46.9. 43.5, 29.7, 21.7, 21.3; 

HRMS calculated for C32H28NO4S2 (M+H) 554.1453; found: 554.1454. 
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Dimethyl 9-phenyl-4-tosyl-1H-fluorene-2,2(3H)-dicarboxylate (2.18) 

 

Dimethyl 9-phenyl-4-tosyl-1H-fluorene-2,2(3H)-dicarboxylate was synthesized 

according to general procedure B. Yellow crystal. Yield = 85%; Rf = 0.43 (EtOAc : 

hexane = 2 : 3); 
1
H NMR (CDCl3, 300 MHz) δ 8.65–8.68 (m, 1H), 7.95 (d, J = 8.4 Hz, 

2H), 7.33–7.51 (m, 7H), 7.17–7.22 (m, 2H), 7.06–7.09 (m, 1H), 3.59 (s, 6H), 3.39 (s, 2H), 

3.13 (s, 2H), 2.43 (s, 3H);
 13

C NMR (CDCl3, 75 MHz) 170.0, 145.0, 144.7, 144.2, 137.5, 

135.9, 133.1, 131.2, 131.1, 129.9, 129.8, 128.8, 128.5, 128.4, 127.4, 126.6, 120.1, 55.6, 

53.0, 34.6, 29.2, 21.7; HRMS calculated for C30H26O6S (M+NH4) 532.1791; found: 

532.1788. 

9-Phenyl-4-tosyl-2,3-dihydro-1H-fluorene (2.19) 

 

9-Phenyl-4-tosyl-2,3-dihydro-1H-fluorene was synthesized according to general 

procedure B. Yellow crystal. Yield = 67%; Rf = 0.4 (EtOAc : hexane = 1 : 4); 
1
H NMR 

(CDCl3, 300 MHz) δ 8.72–8.74 (m, 1H), 7.88 (d, J = 8.4 Hz, 2H), 7.11–7.49 (m, 10H), 

2.71 (t, J = 6 Hz, 2H), 2.58 (t, J = 6 Hz, 2H), 2.43 (s, 3H), 1.81 (quintet, J = 6 Hz, 2H);
 

13
C NMR (CDCl3, 75 MHz) δ 144.6, 144.4, 144.3, 141.3, 140.0, 137.6, 135.0, 133.7, 

131.3, 129.7, 129.4, 128.6, 128.4, 128.2, 127.9, 127.3, 125.9, 119.4, 29.7, 24.0, 23.6, 21.5; 

HRMS calculated for C26H23O2S (M+H) 399.1412; found: 399.1413. 
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9-Phenyl-4-tosyl-1,3-dihydroindeno[2,1-c]pyran (2.20) 

 

9-Phenyl-4-tosyl-1,3-dihydroindeno[2,1-c]pyran was synthesized according to 

general procedure B. Yellow crystal. Yield = 37%; Rf = 0.3 (EtOAc : hexane = 1 : 6); 
1
H 

NMR (CDCl3, 300 MHz) δ 8.76–8.78 (m, 1H), 7.88 (d, J = 8.4 Hz, 2H), 7.90 (d, J = 8.1 

Hz,2H), 7.23–7.50 (m, 10H), 4.63 (s, 2H), 4.60 (s, 2H), 2.42 (s, 3H);
 13

C NMR (CDCl3, 

75 MHz) –145.2, 144.2, 142.4, 140.8, 137.5, 136.8, 132.7, 131.1, 130.1, 130.0, 128.8, 

128.7, 128.5, 128.3, 127.7, 127.2, 126.9, 120.5, 65.9, 64.1, 21.7; HRMS calculated for 

C25H21O3S (M+H) 401.1211; found: 401.1206. 

9-Phenyl-2-tosyl-2,3-dihydro-1H-indeno[2,1-c]pyridine (2.15) 

 

9-Phenyl-2-tosyl-2,3-dihydro-1H-indeno[2,1-c]pyridine was a side product from the 

reaction of synthesizing compound 2.15 and exhibited characterization data identical to 

those previously reported.
[68]

 Pale yellow crystal. Yield < 15%; Rf = 0.3 (EtOAc : hexane 

= 1 : 4); 
1
H NMR (CDCl3, 300 MHz) δ 7.18–7.64 (m, 13H), 6.63 (t, J = 3.9 Hz, 1H), 4.47 

(s, 2H), 4.19 (d, J = 3.9 Hz, 2H), 2.32 (s,3H). 
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Dimethyl 4-tosyl-7-(trifluoromethyl)-9-(4-(trifluoromethyl)phenyl)-1H-fluorene- 2,2 

(3H)-dicarboxylate (2.37) 

 

Dimethyl 4-tosyl-7-(trifluoromethyl)-9-(4-(trifluoromethyl)phenyl)-1H-fluorene-2,2 

(3H)-dicarboxylate was synthesized according to general procedure B. Yellow crystal. 

Yield = 74%; Rf = 0.15 (EtOAc : hexane = 1 : 3); 
1
H NMR (CDCl3, 300 MHz) δ 8.88 (d, 

J = 8.1 Hz, 1H), 7.94 (d, J = 8.1 Hz, 2H), 7.79 (d, J = 8.1 Hz, 2H), 7.56 (d, J = 8.1 Hz, 

2H), 7.49 (d, J = 8.1 Hz, 1H), 7.38 (d, J = 8.1 Hz, 2H), 7.23 (s, 1H), 3.59 (s, 6H), 3.40 (s, 

2H), 3.12 (s, 2H), 2.45 (s,3H);
 13

C NMR (CDCl3, 75 MHz) δ 169.5, 145.2, 144.9, 141.8, 

139.9, 136.6, 136.1, 134.0, 131.0 (q, J = 32.2 Hz), 130.0, 128.8, 127.5, 125.9–126.0 (m), 

123.8, 116.0, 115.9, 55.3, 53.1, 34.6, 29.0, 21.6; HRMS calculated for C32H25F6O6S 

(M+H) 651.1272; found: 651.1271. 

Dimethyl 9-(3,5-bis(trifluoromethyl)phenyl)-4–tosyl-6,8-bis(trifluoromethyl)- 

1H-fluorene-2,2(3H)-dicarboxylate (2.38) 

 

Dimethyl 9-(3,5-bis(trifluoromethyl)phenyl)-4-tosyl-6,8-bis(trifluoromethyl)- 

1H-fluorene-2,2(3H)–dicarboxylate was synthesized according to general procedure B. 
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Yellow crystal. Yield = 41%; Rf = 0.25 (EtOAc : hexane = 1 : 3); 
1
H NMR (CDCl3, 300 

MHz) δ 9.19 (s, 1H), 7.94–7.97 (m, 3H), 7.79 (s, 1H), 7.65 (s, 2H), 7.40 (d, J = 8.1 Hz, 

2H), 3.67 (s, 6H), 3.48 (s, 2H), 2.83, (s, 2H), 2.45 (s, 3H);
 13

C NMR (CDCl3, 75 MHz) δ 

169.1, 145.8, 144.1, 141.0, 139.5, 138.8, 136.0, 135.8, 133.1, 131.7 (q, J = 33.6 Hz), 

130.1, 129.3, 128.3, 127.7 (m), 127.6, 124.8, 122.3, 121.2, 55.3, 53.3, 35.1, 29.1, 21.6; 

HRMS calculated for C34H23F12O6S (M+H) 787.1014; found: 787.1018. 

Dimethyl 7-chloro-9-(4-chlorophenyl)-4-tosyl-1H-fluorene-2, 2(3H)-dicarboxylate 

(2.39) 

 

Dimethyl 7-chloro-9-(4-chlorophenyl)-4-tosyl-1H-fluorene-2,2(3H)-dicarboxylate 

was synthesized according to general procedure B. Yellow crystal. Yield = 65%; Rf = 0.3 

(EtOAc : hexane = 1 : 3); 
1
H NMR (CDCl3, 300 MHz) δ 8.64 (d, J = 8.4 Hz, 1H), 7.91 (d, 

J = 8.4 Hz, 2H), 7.46–7.49 (m, 2H), 7.33–7.37 (m, 4H), 7.16 (dd, J = 8.4 Hz, J = 2.1 Hz, 

1H), 6.99 (d, J = 2.1 Hz, 1H), 3.58 (s, 6H), 3.35 (s, 2H), 3.08 (s, 2H), 2.43 (s, 3H);
 13

C 

NMR (CDCl3, 75 MHz) δ 169.6, 146.4, 144.9, 142.3, 141.8, 137.3, 136.9, 136.1, 134.6, 

133.2, 130.8, 129.9, 129.7, 129.3, 129.2, 127.4, 126.1, 120.1, 55.35, 53.0, 34.4, 29.2, 29.1, 

21.6; HRMS calculated for C30H25Cl2O6S (M+H) 583.0743; found: 583.0743. 
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Dimethyl 7-nitro-9-(4-nitrophenyl)-4-tosyl-1H-fluorene-2,2(3H)-dicarboxylate (2.40) 

 

Dimethyl 7-nitro-9-(4-nitrophenyl)-4-tosyl-1H-fluorene-2,2(3H)-dicarboxylate was 

synthesized according to general procedure B. Yellow crystal. Yield = 50%; Rf = 0.3 

(EtOAc : hexane = 1 : 3); 
1
H NMR (CDCl3, 300 MHz) δ 8.98 (d, J = 8.4 Hz, 1H), 8.42 (d, 

J = 8.4 Hz, 2H), 8.13 (dd, J = 8.4 Hz, J = 2.1 Hz, 1H), 7.91 (d, J = 8.4 Hz, 2H), 7.81 (d, J 

= 2.1 Hz, 1H), 7.65 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 3.60 (s, 6H), 3.38 (s, 

2H), 3.13 (s, 2H), 2.47 (s, 3H);
 13

C NMR (CDCl3, 75 MHz) δ 169. 4, 148.7, 148.0, 145.8, 

145.3, 142.7, 140.5, 140.2, 138.7, 136.3, 136.1,130.3, 129.5, 129.0, 127.8, 124.6, 122.3, 

114.0, 55.3, 53.4, 34.9, 29.3, 21.8; HRMS calculated for C30H25N2O10S (M+NH4) 

622.1488; found: 622.1490. 

Dimethyl 7-cyano-9-(4-cyanophenyl) -4-tosyl-1H-fluorene -2,2 (3H)-dicarboxylate 

(2.41) 

 

Dimethyl 7-cyano-9-(4-cyanophenyl)-4-tosyl-1H-fluorene-2,2(3H)-dicarboxylate 

was synthesized according to general procedure B. Yellow crystal. Yield = 79%; Rf = 0.1 

(EtOAc : hexane = 1 : 3); 
1
H NMR (CDCl3, 300 MHz) δ 8.90 (d, J = 8.1 Hz, 1H), 7.90 (d, 
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J = 8.1 Hz, 2H), 7.82 (d, J = 8.1 Hz, 2H), 7.54 (d, J = 8.1 Hz, 3H), 7.39 (d, J = 8.1 Hz, 

2H), 3.59 (s, 6H), 3.36 (s, 2H), 3.09 (s, 2H), 2.46 (s, 3H);
 13

C NMR (CDCl3, 75 MHz) δ 

169.3, 145.6, 144.5, 141.6, 141.0, 140.4, 136.8, 136.1, 134.9, 134.6, 132.8, 131.0, 130.1, 

129.2, 129.1, 128.8, 127.6, 122.1, 118.4, 118.2, 113.1, 112.7, 55.2, 53.2, 34.7, 29.1, 21.6; 

HRMS calculated for C32H25N2O6S (M+H) 565.1430; found: 565.1428. 

Dimethyl 7-fluoro-9-(4-fluorophenyl)-4-tosyl- 1H-fluorene-2,2 (3H) - dicarboxylate 

(2.42) 

 

Dimethyl 7-fluoro-9-(4-fluorophenyl)-4-tosyl-1H-fluorene-2,2(3H)-dicarboxylate 

was synthesized according to general procedure B. Yellow crystal. Yield = 85%; Rf = 0.6 

(EtOAc : hexane = 1 : 2); 
1
H NMR (CDCl3, 300 MHz) δ 8.66–8.71 (m, 1H), 7.92 (d, J = 

8.4 Hz, 2H), 7.35–7.42 (m, 4H), 7.19 (t, J = 8.4 Hz, 2H), 6.84 (td, J = 8.4 Hz, J = 2.4, 1H), 

6.73 (dd, J = 8.4 Hz, J = 2.4 Hz, 1H), 3.58 (s, 6H), 3.36 (s, 2H), 3.09 (s, 2H), 2.44 (s, 3H);
 

13
C NMR (CDCl3, 75 MHz) δ 169.7, 165.0 (d, J = 105.0 Hz), 161.7 (d, J = 105.0 Hz), 

147.6 (d, J = 8.9 Hz), 144.8, 142.4, 141.7 (d, J = 2.1 Hz), 137.1, 136.2 (d, J = 2.1 Hz), 

133.3, 129.5-130.2 (m), 128.4 (d, J = 3.3 Hz), 127.3, 126.7 (d, J = 3.3 Hz), 115.9 (d, J = 

22.5 Hz), 112.3 (d, J = 22.5 Hz), 108.0, 107.6, 55.4, 53.0, 34.3, 29.1, 21.6; HRMS 

calculated for C30H25F2O6S (M+H) 551.1333; found: 551.1334. 
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Dimethyl 7-acetyl-9-(4-acetylphenyl)-4-tosyl- 1H- fluorene-2,2 (3H) - dicarboxylate 

(2.43) 

 

Dimethyl 7-acetyl-9-(4-acetylphenyl)-4-tosyl-1H-fluorene-2,2(3H)-dicarboxylate 

was synthesized according to general procedure B. Yellow crystal. Yield = 71%; Rf = 

0.15 (EtOAc : hexane = 1 : 3); 
1
H NMR (CDCl3, 300 MHz) δ 8.83 (d, J = 8.1 Hz, 1H), 

8.10 (d, J = 8.1 Hz, 2H), 7.93 (d, J = 8.1 Hz, 2H), 7.81 (d, J = 8.1 Hz, H), 7.61 (s, 1H), 

7.53 (d, J = 8.1 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 3.59 (s, 6H), 3.38 (s, 2H), 3.12 (s, 2H), 

2.67 (s, 3H), 2.57 (s, 3H), 2.44 (s, 3H);
 13

C NMR (CDCl3, 75 MHz) δ 197.6, 197.5, 169.7, 

145.2, 144.9, 142.5, 142.4, 139.4, 137.9, 137.5, 137.1, 136.8, 135.2, 133.5, 130.0, 129.0, 

128.8, 128.4, 127.7, 127.6, 118.7, 55.4, 53.2, 34.8, 29.2, 26.8, 21.7; HRMS calculated for 

C34H31O8S (M+H) 599.1742; found: 599.1734. 

Dimethyl 6, 7, 8-trifluoro-4-tosyl–9-(3,4,5-trifluorophenyl) -1H –fluorene-2,2(3H ) 

-dicarboxylate (2.44) 

 

Dimethyl 6,7,8-trifluoro-4-tosyl-9- (3,4,5-trifluorophenyl) -1H- fluorene -2,2 (3H)- 

dicarboxylate was synthesized according to general procedure B. Yellow crystal. Yield = 
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90%; Rf = 0.35 (EtOAc : hexane = 1 : 3); 
1
H NMR (CDCl3, 300 MHz) δ 8.57–8.62 (m, 

1H), 7.87 (d, J = 8.1 Hz, 2H), 7.38 (d, J = 8.1 Hz, 2H), 7.00–7.05 (m, 2H), 3.60 (s, 6H), 

3.31 (s, 2H), 2.95 (s, 2H), 2.46 (s, 3H);
 13

C NMR (CDCl3, 75 MHz) δ 169.2, 145.6, 140.8, 

136.0, 128.9 (d, J = 187.5 Hz), 114.5 (d, J = 3.0 Hz), 114.2 (d, J = 3.0 Hz), 113.2–112.9 

(m), 55.2, 53.1, 34.6, 28.9, 21.6; HRMS calculated for C30H21F6O6S (M+H) 623.0964; 

found: 623.0958. 

Dimethyl 6,7,8-trifluoro-4-(methylsulfonyl) -9- (3,4,5-trifluorophenyl) -1H- fluorene 

-2,2(3H)-dicarboxylate (2.46) 

 

Dimethyl 6,7,8-trifluoro-4-(methylsulfonyl)-9-(3,4,5-trifluorophenyl)-1H-fluorene 

-2,2 (3H)-dicarboxylate was synthesized according to general procedure B. Yellow 

crystal. Yield = 53%; Rf = 0.07 (EtOAc: hexane = 15 : 85); 
1
H NMR (CDCl3, 300 MHz) δ 

8.34 (dd, J = 6.6 Hz, J = 6.6 Hz, 1H), 6.95–7.04 (m, 2H), 3.74 (s, 6H), 3.38 (s, 2H), 3.19 

(s. 3H), 3.06 (s, 2H);
 13

C NMR (CDCl3, 75 MHz) δ 169.5, 152.7–152.9 (m), 149.4–149.6 

(m), 143.1, 141.7, 141.1, 140.8, 137.8, 134.3 (d, J = 3.0 Hz), 128.3–128.7 (m), 127.0–

127.2 (m), 126.1–126.4 (m), 113.9 (d, J = 2.8 Hz), 113.6 (d, J = 3.0 Hz) ,113.0–113.2 (m), 

55.8, 53.5, 41.5, 34.2, 28.9; HRMS calculated for C24H17F6O6S (M+H) 547.0649; found: 

547.0645. 

  



77 
 

References 

1. Brosnan, J. T; Brosnan, M. E. J. Nutr. 2006, 136, 1636S-1640S. 

2. Dorant, E.; Brandt, P. A. van den; Goldbohm, R. A.; Hermus, R. J. J.; Sturmans, F. Br. 

J. Cancer 1993, 67, 424-429. 

3. (a) Cavallito, C. J.; Bailey, J. H. J. Am. Chem. Soc. 1944, 66, 1950-1951. (b) Block, 

E.; Ahmad, S.; Jain, M. K; Crecely, R. W.; Apitz-Castro, R.; Cruz, M. R. J. Am. 

Chem. Soc. 1984, 106, 8295-8296. 

4. Tatake, J. G.; Knapp, M. M.; Ressler, C. Bioconjugate Chem. 1991, 2, 124-132. 

5. (a) Raimundo, J. M.; Blanchard, P.; Brisset, H.; Akoudad, S.; Roncali, J. Chem. 

Commun. 2000, 11, 939-940; (b) Sun, Y.; Tan, L.; Jiang, S.; Qian, H.; Wang, Z.; Yan, 

D.; Di, C.; Wang, Y.; Wu, W.; Yu, G.; Yan, S.; Wang, C.; Hu, W.; Liu, Y.; Zhu, D. J. 

Am. Chem. Soc. 2007, 129, 1882-1883; (c) Sonmez, G.; Meng, H.; Wudl, F. Chem. 

Mater. 2003, 15, 4923-4929; (d) Vangeneugden, D. L.; Vanderzande, D. J. M.; 

Salbeck, J.; Hal, P. A. van; Janssen, R. A. J.; Hummelen, J. C.; Brabec, C. J.; Shaheen, 

S. E.; Sariciftci, N. S. J. Phys. Chem. B 2001, 105, 11106-11113; (e) Chen, H. Y.; 

Hou, J.; Zhang, S.; Liang, Y.; Yang, G.; Yang, Y.; Yu, L.; Wu, Y.; Li, G. Nat. 

Photonics 2009, 3, 649-653. 

6. NuLi, Y.; Guo, Z.; Liu, H.; Yang, J. Electrochem. Commun. 2007, 9, 1913-1917. 

7. Chauhan, P.; Mahajan, S.; Enders, D. Chem. Rev. 2014, 114, 8807-8864. 

8. Weiss, C. J.; Marks, T. J. J. Am. Chem. Soc. 2010, 132, 10533-10546. 

9. Liu, W.; Zhao, X. Synthesis 2013, 45, 2051-2069. 

10. Kondo, T.; Morisaki, Y.; Uenoyama, S. Y.; Wada, K.; Mitsudo, T. A. J. Am. Chem. 



78 
 

Soc. 1999, 121, 8657-8658. 

11. Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A. Angew. Chem. Int. Ed. 

2005, 44, 794-797. 

12. Zeni, G. Tetrahedron Lett. 2005, 46, 2647-2651. 

13. Tareke, E.; Rydberg, P.; Karlsson, P.; Eriksson, S.; Törnqvist, M. J. Agric. Food Chem. 

2002, 50, 4998-5006. 

14. (a) Fennell, T. R.; Friedman, M. A. Comparison of Acrylamide Metabolism in 

Humans and Rodents, Chemistry and Safety of Acrylamide in Food Advances in 

Experimental Medicine and Biology; Springer: New York, 2005, 561, 109-116; (b) 

Sumner, S. C. J.; MacNeela, J. P.; Fennell T. R. Chem. Res. Toxicol. 1992, 5, 81-89. 

15. (a) Jones, W.; Fehe, F. Acc. Chem. Res. 1989, 22, 91-100. Labinger, J. A.; Bercaw, J. 

E. Nature 2002, 417, 507-514. (b) Dyker, G. Handbook of C–H Transformations. 

Applications in Organic Synthesis (Wiley-VCH, 2005); (c) Godula, K.; Sames, D. 

Science 2006, 312, 67-72; (d) Bergman, R. G. Nature 2007, 446, 391-393; (e) 

Wencel-Delord, J.; Dröge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 

4740-4761. 

16. Godula, K.; Sames, D. Science 2006, 312, 67-72.  

17. Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507-513. 

18. (a) Moritani, I.; Fujiwara, Y. Tetrahedron Lett. 1967, 8, 1119-1122; (b) Fujiwara, Y.; 

Moritani, I.; Danno, S.; Asano, R.; Teranishi, S. J. Am. Chem. Soc. 1969, 91, 

7166-7169. 

19. Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254-9256. 



79 
 

20. Kanyiva, K. S.; Nakao, Y.; Hiyama, T. Angew. Chem., Int. Ed. 2007, 46, 8872-8874. 

21. (a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174-238; (b) Corbet, 

J. P.; Mignani, G. Chem. Rev. 2006, 106, 2651-2710; (c) Catellani, M.; Motti, E.; 

Faccini, F.; Ferraccioli, R. Pure Appl. Chem. 2005, 77, 1243-1248; (d) Shabashov, D.; 

Daugulis, O. Org. Lett. 2006, 8, 4947-4949; (e) Lafrance, M.; Fagnou, K. J. Am. 

Chem. Soc. 2006, 128, 16496-16497; (f) Denmark, S. E.; Kallemeyn, J. M. J. Am. 

Chem. Soc. 2006, 128, 15958-15959; (g) Schaub, T.; Backes, M.; Radius, U. J. Am. 

Chem. Soc. 2006, 128, 15964-15965; (h) Lane, B. S.; Brown, M. A.; Sames, D. J. Am. 

Chem. Soc. 2005, 127, 8050-8057; (i) Deprez, N. R.; Kalyani, D.; Krause, A.; Sanford, 

M. S. J. Am. Chem. Soc. 2006, 128, 4972-4973; (j) Campeau, L. C.; Parisien, M.; Jean, 

A.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 581-590; (k) Terao, Y.; Wakui, H.; 

Nomoto, M.; Satoh, T.; Miura, M.; Nomura, M. J. Org. Chem. 2003, 68, 5236-5243. 

22. Shi, Z.; Li, B.; Wan, X.; Cheng, J.; Fang, Z.; Cao, B.; Qin, C.; Wang, Y. Angew. 

Chem. Int. Ed. 2007, 46, 5554-5558. 

23. (a) Daugulis, O.; Zaitsev, V. G. Angew. Chem. Int. Ed. 2005, 44, 4046-4048. (b) Xiao, 

B.; Fu, Y.; Xu, J.; Gong, T. J.; Dai, J. J.; Yi, J.; Liu, L. J. Am. Chem. Soc. 2010, 132, 

468-469. 

24. Phipps, R. J.; Gaunt, M. J. Science 2009, 323, 1593-1597. 

25. Diels, O.; Alder, K. Justus Liebigs Annalen der Chemie 1928, 460, 98–122.  

26. (a) Trost, B. M.; Osipov, M.; Dong, G. J. Am. Chem. Soc. 2010, 132, 15800-15807; (b) 

Patil, N. T.; Kavthe, R. D.; Shinde, V. S.; Sridhar, B. J. Org. Chem. 2010, 75, 

3371-3380; (c) When, P. M.; Bois, J. D. Angew. Chem. 2009, 121, 3860-3863; Angew. 



80 
 

Chem. Int. Ed. 2009, 48, 3802-3805; (d) Fürstner, A.; Radkowski, K.; Peters, H.; 

Seidel, G.; Wirtz, C.; Mynott, R.; Lehmann, C. W. Chem. Eur. J. 2007, 13, 1929-1945; 

(e) Hutchison, G. R.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 

2339-2350. 

27. Chen, X.; Jin, J.; Wang, Y.; Lu, P. Chem. Eur. J. 2011, 17, 9920-9923. 

28. Hashimoto, T.; Okabe, A.; Mizuno, T.; Izawa, M.; Takeuchi, R. Tetrahedron 2014, 70, 

8681-8689. 

29. Fang, X.; Sun, J.; Tong, X. Chem. Commun. 2010, 46, 3800–3802.  

30. Danheiser, R. L.; Gould, A. E.; de la Pradilla, R. F.; Helgason, A. L. J. Org. Chem. 

1994, 59, 5514-5515. 

31. Lian, J. J.; Chen, P. C.; Lin, Y. P.; Ting, H. C.; Liu, R. S. J. Am. Chem. Soc. 2006, 

128, 11372-11373. 

32. Nieto-Oberhuber, C.; Pérez-Galán, P.; Herrero-Gómez, E.; Lauterbach, T.; Rodríguez, 

C.; López, S.; Bour, C.; Rosellón, A.; Cárdenas, D. J.; Echavarren, A. M. J. Am. 

Chem. Soc. 2008, 130, 269-279. 

33. Tietze, L. F.; Beifuss, U. Angew. Chemie Int. Ed. 1993, 32, 131-163. 

34. Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chemie Int. Ed. 2006, 45, 

7134-7186. 

35. Parsons, P. J.; Penkett, C. S.; Shell, A. J. Chem. Rev. 1996, 96, 195-206. 

36. Nicolaou, K. C.; Montagnona, T.; Snyder, S. A. Chem. Commun. 2003, 551-564. 

37. Padwa, A.; Bur, S. K. Tetrahedron 2007, 63, 5341-5378. 

38. Zhao, J.; Oniwa, K.; Asao, N.; Yamamoto, Y.; Jin, T. J. Am. Chem. Soc. 2013, 135, 



81 
 

10222-10225. 

39. Maekawa, T.; Segawa, Y.; Itami, K. Chem. Sci. 2013, 4, 2369-2373. 

40. Strom, K. R.; Impastato, A. C.; Moy, K. J.; Landreth, A. J.; Snyder, J. K. Org. Lett. 

2015, 17, 2126-2129. 

41. Qiu, Y. F.; Zhu, X. Y.; Li, Y. X.; He, Y. T.; Yang, F.; Wang, J.; Hua, H. L.; Zheng, L.; 

Wang, L. C.; Liu, X. Y.; Liang, Y. M. Org. Lett. 2015, 17, 3694-3697. 

42. Leclerc, M.; Faïd, K. Adv. Mater. 1997, 9, 1087. 

43. Campaigne, E.; Foye, W. O. J. Org. Chem., 1952, 17, 1405. 

44. Tang, J.; Zhao, X. RSC Adv. 2012, 2, 5488. 

45. Fagan, P. J.; Nugent, W. A.; Calabrese, J. C. J. Am. Chem. Soc. 1994, 116, 1880. 

46. Dominguez, G.; Perez-Castells, Chem. Soc. Rev. 2011, 40, 3430. 

47. Chinchilla, R.; Nájera, C. Chem. Rev., 2007, 107, 874-922.  

48. Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem. Int. Ed. 2011, 50, 

11062-11087. 

49. Cao, R.; Peng, W.; Wang, Z.; Xu, A. Curr. Med. Chem. 2007, 14, 479-500. 

50. Lim, D.; Park, S. B. Chem. Eur. J. 2013, 19, 7100-7108. 

51. Yang, J. M.; Tang, X. Y. Wei, Y.; Shi M. Adv. Synth. Catal. 2013, 355, 3545-3552. 

52. Ghosh, D.; Pal P.; Basak, A. Tetrahedron Lett. 2015, 56, 1964-1967. 

53. Caporale, A.; Tartaggia, S.; Castellin, A.; Lucchi, O. D. Beilstein J. Org. Chem. 2014, 

10, 384-393. 

 



82 
 

Appendix 

Crystallographic data for 9-phenyl-2,4-ditosyl-2,3-dihydro-1H-indeno[2,1-c]pyridine 
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Table 3 Crystal data and structure refinement for C32H27NO4S2 

 

Empirical formula  C32H27NO4S2 

Formula weight  553.66 g/mol 

Temperature  296(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic  

Space group  P21/c 

Unit cell dimensions a = 10.9530(2) Å, 

               b = 26.2844(6) Å, 

c = 9.7874(2) Å 

 = 105.7060(14)° 

Volume 2712.52(10) Å3 

Z 4 

Density (calculated) 1.356 g/cm
3
 

Absorption coefficient 0.236 mm
-1

 

F(000) 1160 

Crystal size 0.400 x 0.040 x 0.010 mm
3
 

Theta range for data collection 1.549 to 25.998°. 

Index ranges -13<=h<=12, -32<=k<=32, -12<=l<=12 

Reflections collected 23247 

Independent reflections 5318 [R(int) = 0.0738] 

Completeness to theta = 25.242° 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.745986 and 0.695736 

Refinement method Full-matrix least-squares on F
2
 

Data / restraints / parameters 5318 / 0 / 352 

Goodness-of-fit on F
2
 1.038 

Final R indices [I>2 (I)] R1 = 0.0576, wR2 = 0.0898 

R indices (all data) R1 = 0.1456, wR2 = 0.1205 

Largest diff. peak and hole 0.258 and -0.260 e.Å
-3
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Table 4 Atomic coordinates ( x 10
4
) and equivalent  isotropic displacement parameters 

(Å
3
x 10

3
) for C32H27NO4S2  

 

________________________________________________________________________ 

 x y z U(eq) 

_______________________________________________________________________ 

S(1) 4633(1) 3614(1) 808(1) 52(1) 

S(2) 9298(1) 3990(1) 1327(1) 59(1) 

O(1) 3768(2) 3242(1) 1044(3) 63(1) 

O(2) 4657(2) 3724(1) -627(2) 71(1) 

O(3) 10569(2) 3876(1) 2102(3) 79(1) 

O(4) 8990(3) 4070(1) -170(3) 81(1) 

N(1) 8439(3) 3526(1) 1626(3) 50(1) 

C(1) 11783(4) 2846(2) 8046(4) 62(1) 

C(2) 11443(4) 2586(2) 6787(4) 57(1) 

C(3) 10957(4) 3187(2) 8376(4) 58(1) 

C(4) 9780(4) 3271(1) 7447(4) 50(1) 

C(5) 10271(3) 2672(1) 5841(4) 49(1) 

C(6) 9418(3) 3013(1) 6150(3) 42(1) 

C(7) 8178(3) 3106(1) 5135(4) 39(1) 

C(8) 7957(3) 3186(1) 3731(4) 40(1) 

C(9) 8880(3) 3186(1) 2848(3) 47(1) 

C(10) 7133(3) 3478(2) 809(4) 57(1) 

C(11) 6211(3) 3444(1) 1727(4) 42(1) 

C(12) 6606(3) 3290(1) 3083(4) 42(1) 

C(13) 5980(3) 3217(1) 4242(4) 42(1) 

C(14) 4725(3) 3207(1) 4286(4) 52(1) 

C(15) 4458(4) 3094(2) 5563(4) 60(1) 

C(16) 5404(4) 2999(1) 6762(4) 59(1) 

C(17) 6661(4) 3004(1) 6739(4) 51(1) 

C(18) 6944(3) 3112(1) 5484(4) 42(1) 

C(19) 4342(3) 4192(1) 1577(4) 48(1) 

C(20) 3291(4) 4241(2) 2063(4) 67(1) 

C(21) 5109(4) 4606(2) 1606(5) 80(1) 

C(22) 4843(4) 5062(2) 2154(5) 87(2) 

C(23) 3032(4) 4700(2) 2596(5) 76(1) 

C(24) 3809(4) 5113(2) 2678(5) 70(1) 

C(25) 3538(5) 5613(2) 3288(6) 112(2) 

C(26) 8828(3) 4540(1) 2074(4) 51(1) 

C(27) 8730(5) 4538(2) 3431(4) 87(2) 

C(28) 8578(5) 4980(2) 1323(5) 83(1) 

C(29) 8271(5) 5413(2) 1949(5) 92(2) 

C(30) 8425(5) 4974(2) 4029(5) 91(2) 

C(31) 8184(4) 5421(2) 3296(5) 68(1) 
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C(32) 7844(5) 5895(2) 3960(5) 96(2) 

H(1B) 12575 2791 8679 75 

H(2B) 11999 2352 6568 68 

H(3B) 11193 3362 9232 69 

H(4B) 9224 3500 7685 60 

H(5A) 10051 2498 4981 59 

H(9A) 9704 3298 3419 57 

H(9B) 8968 2843 2519 57 

H(10A) 7044 3175 223 68 

H(10B) 6909 3769 182 68 

H(14A) 4074 3274 3474 62 

H(15A) 3618 3084 5599 72 

H(16A) 5202 2930 7607 71 

H(17A) 7304 2935 7557 61 

H(20A) 2754 3965 2034 80 

H(21A) 5814 4579 1252 96 

H(22A) 5374 5340 2170 104 

H(23A) 2306 4731 2909 91 

H(25A) 4188 5854 3253 169 

H(25B) 2730 5739 2743 169 

H(25C) 3522 5564 4255 169 

H(27A) 8872 4239 3956 104 

H(28A) 8615 4989 385 100 

H(29A) 8117 5711 1420 110 

H(30A) 8380 4965 4964 109 

H(32A) 7831 5824 4918 144 

H(32B) 8461 6155 3962 144 

H(32C) 7021 6011 3426 144 

________________________________________________________________________  

U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

 

 

  



86 
 

Table 5 Bond lengths [Å] and angles [°] for C32H27NO4S2 

_____________________________________________________  

S(1)-O(1)  1.424(3) 

S(1)-O(2)  1.440(2) 

S(1)-C(19)  1.761(4) 

S(1)-C(11)  1.776(3) 

S(2)-O(3)  1.425(3) 

S(2)-O(4)  1.427(3) 

S(2)-N(1)  1.616(3) 

S(2)-C(26)  1.758(4) 

N(1)-C(10)  1.443(4) 

N(1)-C(9)  1.465(4) 

C(1)-C(2)  1.370(5) 

C(1)-C(3)  1.373(5) 

C(1)-H(1B)  0.9300 

C(2)-C(5)  1.383(5) 

C(2)-H(2B)  0.9300 

C(3)-C(4)  1.379(5) 

C(3)-H(3B)  0.9300 

C(4)-C(6)  1.398(4) 

C(4)-H(4B)  0.9300 

C(5)-C(6)  1.386(4) 

C(5)-H(5A)  0.9300 

C(6)-C(7)  1.471(4) 

C(7)-C(8)  1.345(4) 

C(7)-C(18)  1.481(4) 

C(8)-C(12)  1.470(4) 

C(8)-C(9)  1.497(4) 

C(9)-H(9A)  0.9700 

C(9)-H(9B)  0.9700 

C(10)-C(11)  1.524(4) 

C(10)-H(10A)  0.9700 

C(10)-H(10B)  0.9700 

C(11)-C(12)  1.343(4) 

C(12)-C(13)  1.489(4) 

C(13)-C(14)  1.387(4) 

C(13)-C(18)  1.404(4) 

C(14)-C(15)  1.390(5) 

C(14)-H(14A)  0.9300 

C(15)-C(16)  1.362(5) 

C(15)-H(15A)  0.9300 

C(16)-C(17)  1.383(5) 

C(16)-H(16A)  0.9300 

C(17)-C(18)  1.375(4) 
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C(17)-H(17A)  0.9300 

C(19)-C(20)  1.366(5) 

C(19)-C(21)  1.371(5) 

C(20)-C(23)  1.375(5) 

C(20)-H(20A)  0.9300 

C(21)-C(22)  1.376(6) 

C(21)-H(21A)  0.9300 

C(22)-C(24)  1.371(5) 

C(22)-H(22A)  0.9300 

C(23)-C(24)  1.369(5) 

C(23)-H(23A)  0.9300 

C(24)-C(25)  1.504(6) 

C(25)-H(25A)  0.9600 

C(25)-H(25B)  0.9600 

C(25)-H(25C)  0.9600 

C(26)-C(28)  1.359(5) 

C(26)-C(27)  1.362(5) 

C(27)-C(30)  1.368(6) 

C(27)-H(27A)  0.9300 

C(28)-C(29)  1.376(6) 

C(28)-H(28A)  0.9300 

C(29)-C(31)  1.348(5) 

C(29)-H(29A)  0.9300 

C(30)-C(31)  1.365(6) 

C(30)-H(30A)  0.9300 

C(31)-C(32)  1.498(6) 

C(32)-H(32A)  0.9600 

C(32)-H(32B)  0.9600 

C(32)-H(32C)  0.9600 

 

O(1)-S(1)-O(2) 118.98(16) 

O(1)-S(1)-C(19) 108.55(17) 

O(2)-S(1)-C(19) 107.28(18) 

O(1)-S(1)-C(11) 110.07(16) 

O(2)-S(1)-C(11) 105.78(16) 

C(19)-S(1)-C(11) 105.34(16) 

O(3)-S(2)-O(4) 120.14(18) 

O(3)-S(2)-N(1) 106.12(17) 

O(4)-S(2)-N(1) 108.11(17) 

O(3)-S(2)-C(26) 107.77(18) 

O(4)-S(2)-C(26) 106.90(18) 

N(1)-S(2)-C(26) 107.18(16) 

C(10)-N(1)-C(9) 117.2(3) 

C(10)-N(1)-S(2) 120.3(3) 
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C(9)-N(1)-S(2) 121.9(2) 

C(2)-C(1)-C(3) 120.1(4) 

C(2)-C(1)-H(1B) 120.0 

C(3)-C(1)-H(1B) 120.0 

C(1)-C(2)-C(5) 119.9(4) 

C(1)-C(2)-H(2B) 120.1 

C(5)-C(2)-H(2B) 120.1 

C(1)-C(3)-C(4) 120.5(4) 

C(1)-C(3)-H(3B) 119.8 

C(4)-C(3)-H(3B) 119.8 

C(3)-C(4)-C(6) 120.4(3) 

C(3)-C(4)-H(4B) 119.8 

C(6)-C(4)-H(4B) 119.8 

C(2)-C(5)-C(6) 121.2(3) 

C(2)-C(5)-H(5A) 119.4 

C(6)-C(5)-H(5A) 119.4 

C(5)-C(6)-C(4) 118.0(3) 

C(5)-C(6)-C(7) 120.9(3) 

C(4)-C(6)-C(7) 121.0(3) 

C(8)-C(7)-C(6) 126.4(3) 

C(8)-C(7)-C(18) 108.1(3) 

C(6)-C(7)-C(18) 125.4(3) 

C(7)-C(8)-C(12) 110.6(3) 

C(7)-C(8)-C(9) 128.8(3) 

C(12)-C(8)-C(9) 120.6(3) 

N(1)-C(9)-C(8) 110.2(3) 

N(1)-C(9)-H(9A) 109.6 

C(8)-C(9)-H(9A) 109.6 

N(1)-C(9)-H(9B) 109.6 

C(8)-C(9)-H(9B) 109.6 

H(9A)-C(9)-H(9B) 108.1 

N(1)-C(10)-C(11) 113.2(3) 

N(1)-C(10)-H(10A) 108.9 

C(11)-C(10)-H(10A) 108.9 

N(1)-C(10)-H(10B) 108.9 

C(11)-C(10)-H(10B) 108.9 

H(10A)-C(10)-H(10B) 107.8 

C(12)-C(11)-C(10) 120.8(3) 

C(12)-C(11)-S(1) 125.8(3) 

C(10)-C(11)-S(1) 113.3(2) 

C(11)-C(12)-C(8) 120.0(3) 

C(11)-C(12)-C(13) 134.6(3) 

C(8)-C(12)-C(13) 105.3(3) 

C(14)-C(13)-C(18) 119.3(3) 
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C(14)-C(13)-C(12) 133.7(3) 

C(18)-C(13)-C(12) 107.0(3) 

C(13)-C(14)-C(15) 118.9(3) 

C(13)-C(14)-H(14A) 120.5 

C(15)-C(14)-H(14A) 120.5 

C(16)-C(15)-C(14) 121.1(3) 

C(16)-C(15)-H(15A) 119.4 

C(14)-C(15)-H(15A) 119.4 

C(15)-C(16)-C(17) 120.9(3) 

C(15)-C(16)-H(16A) 119.6 

C(17)-C(16)-H(16A) 119.6 

C(18)-C(17)-C(16) 118.8(4) 

C(18)-C(17)-H(17A) 120.6 

C(16)-C(17)-H(17A) 120.6 

C(17)-C(18)-C(13) 121.0(3) 

C(17)-C(18)-C(7) 130.1(3) 

C(13)-C(18)-C(7) 108.8(3) 

C(20)-C(19)-C(21) 119.2(4) 

C(20)-C(19)-S(1) 119.8(3) 

C(21)-C(19)-S(1) 120.9(3) 

C(19)-C(20)-C(23) 119.7(4) 

C(19)-C(20)-H(20A) 120.2 

C(23)-C(20)-H(20A) 120.2 

C(19)-C(21)-C(22) 120.4(4) 

C(19)-C(21)-H(21A) 119.8 

C(22)-C(21)-H(21A) 119.8 

C(24)-C(22)-C(21) 121.0(4) 

C(24)-C(22)-H(22A) 119.5 

C(21)-C(22)-H(22A) 119.5 

C(24)-C(23)-C(20) 122.0(4) 

C(24)-C(23)-H(23A) 119.0 

C(20)-C(23)-H(23A) 119.0 

C(23)-C(24)-C(22) 117.6(4) 

C(23)-C(24)-C(25) 122.0(4) 

C(22)-C(24)-C(25) 120.4(4) 

C(24)-C(25)-H(25A) 109.5 

C(24)-C(25)-H(25B) 109.5 

H(25A)-C(25)-H(25B) 109.5 

C(24)-C(25)-H(25C) 109.5 

H(25A)-C(25)-H(25C) 109.5 

H(25B)-C(25)-H(25C) 109.5 

C(28)-C(26)-C(27) 118.2(4) 

C(28)-C(26)-S(2) 120.9(3) 

C(27)-C(26)-S(2) 120.9(3) 
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C(26)-C(27)-C(30) 120.6(4) 

C(26)-C(27)-H(27A) 119.7 

C(30)-C(27)-H(27A) 119.7 

C(26)-C(28)-C(29) 120.1(4) 

C(26)-C(28)-H(28A) 120.0 

C(29)-C(28)-H(28A) 120.0 

C(31)-C(29)-C(28) 122.7(4) 

C(31)-C(29)-H(29A) 118.7 

C(28)-C(29)-H(29A) 118.7 

C(31)-C(30)-C(27) 122.1(4) 

C(31)-C(30)-H(30A) 119.0 

C(27)-C(30)-H(30A) 119.0 

C(29)-C(31)-C(30) 116.4(4) 

C(29)-C(31)-C(32) 122.0(4) 

C(30)-C(31)-C(32) 121.6(4) 

C(31)-C(32)-H(32A) 109.5 

C(31)-C(32)-H(32B) 109.5 

H(32A)-C(32)-H(32B) 109.5 

C(31)-C(32)-H(32C) 109.5 

H(32A)-C(32)-H(32C) 109.5 

H(32B)-C(32)-H(32C) 109.5 

_____________________________________________________________  
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Table 6 Anisotropic displacement parameters (Å
3
x 10

3
) for C32H27NO4S2   

________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

________________________________________________________________________  

S(1) 41(1)  60(1) 52(1)  -8(1) 7(1)  -2(1) 

S(2) 58(1)  64(1) 66(1)  -2(1) 37(1)  -6(1) 

O(1) 49(2)  58(2) 78(2)  -12(1) 8(1)  -16(1) 

O(2) 66(2)  101(2) 45(2)  -2(2) 12(1)  6(2) 

O(3) 45(2)  83(2) 118(2)  -1(2) 37(2)  -5(2) 

O(4) 117(3)  85(2) 61(2)  0(2) 58(2)  -7(2) 

N(1) 41(2)  60(2) 53(2)  3(2) 20(2)  -3(2) 

C(1) 50(3)  70(3) 59(3)  11(2) 2(2)  2(2) 

C(2) 46(2)  59(3) 65(3)  4(2) 16(2)  15(2) 

C(3) 62(3)  60(3) 46(2)  -2(2) 6(2)  -9(2) 

C(4) 59(3)  46(2) 49(2)  -4(2) 20(2)  2(2) 

C(5) 47(2)  52(3) 49(2)  -4(2) 15(2)  6(2) 

C(6) 45(2)  35(2) 47(2)  0(2) 15(2)  -1(2) 

C(7) 40(2)  31(2) 48(2)  -4(2) 15(2)  2(2) 

C(8) 34(2)  39(2) 49(2)  -8(2) 15(2)  1(2) 

C(9) 41(2)  50(2) 54(2)  -4(2) 18(2)  4(2) 

C(10) 50(2)  75(3) 47(2)  -2(2) 17(2)  -1(2) 

C(11) 38(2)  43(2) 47(2)  -10(2) 13(2)  -4(2) 

C(12) 45(2)  39(2) 48(2)  -9(2) 19(2)  -4(2) 

C(13) 41(2)  38(2) 51(2)  -7(2) 21(2)  -3(2) 

C(14) 46(2)  54(3) 59(2)  -2(2) 21(2)  -4(2) 

C(15) 47(3)  63(3) 81(3)  -6(2) 34(2)  -8(2) 

C(16) 70(3)  53(3) 68(3)  0(2) 45(3)  0(2) 

C(17) 61(3)  46(2) 53(2)  2(2) 26(2)  7(2) 

C(18) 45(2)  36(2) 50(2)  -5(2) 22(2)  2(2) 

C(19) 39(2)  47(2) 58(2)  2(2) 12(2)  -4(2) 

C(20) 62(3)  53(3) 94(3)  -6(2) 36(3)  -10(2) 

C(21) 56(3)  62(3) 133(4)  -7(3) 42(3)  -8(2) 

C(22) 69(3)  53(3) 142(5)  -11(3) 36(3)  -14(3) 

C(23) 79(3)  65(3) 98(3)  -4(3) 51(3)  -1(3) 

C(24) 73(3)  52(3) 90(3)  -5(2) 29(3)  0(3) 

C(25) 142(5)  57(3) 150(5)  -18(3) 59(4)  7(3) 

C(26) 57(3)  52(3) 50(2)  -1(2) 22(2)  -8(2) 

C(27) 149(5)  56(3) 68(3)  8(3) 52(3)  9(3) 

C(28) 129(4)  64(3) 62(3)  6(3) 37(3)  -4(3) 

C(29) 143(5)  54(3) 80(3)  9(3) 33(3)  10(3) 

C(30) 157(5)  62(3) 66(3)  -8(3) 52(3)  0(3) 

C(31) 80(3)  55(3) 68(3)  -11(3) 20(2)  -5(2) 

C(32) 126(4)  66(3) 98(4)  -15(3) 35(3)  4(3) 
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The anisotropic displacement factor exponent takes the form:  -2
2
[ h

2
 a*

2
U11 + ...  + 2 

h k a* b* U12 ] 

 

 


