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Abstract

Researchers have been investigating the optimal route query problem for a long time. Op-

timal route queries are categorized as either unconstrained or constrained queries. Many

main memory based algorithms have been developed to deal with the optimal route query

problem. Among these, Dijkstra’s shortest path algorithm is one of the most popular algo-

rithms for the unconstrained route query problem. The constrained route query problem is

more complicated than the unconstrained one, and some constrained route query problems

such as the Traveling Salesman Problem and Hamiltonian Path Problem are NP-hard.

There are many algorithms dealing with the constrained route query problem, but most of

them only solve a specific case. In addition, all of them require that the entire graph resides

in the main memory. Recently, due to the need of applications in very large graphs, such

as the digital maps managed by Geographic Information Systems (GIS), several disk-based

algorithms have been derived by using divide-and-conquer techniques to solve the shortest

path problem in a very large graph. However, until now little research has been conducted

on the disk-based constrained problem.

This thesis presents two algorithms: 1) a new disk-based shortest path algorithm

(DiskSPNN), and 2) a new disk-based optimal path algorithm (DiskOP) that answers an

optimal route query without passing a set of forbidden edges in a very large graph. Both

algorithms fit within the same divide-and-conquer framework as the existing disk-based

shortest path algorithms proposed by Ning Zhang and Heechul Lim. Several techniques,

including query super graph, successor fragment and open boundary node pruning are

proposed to improve the performance of the previous disk-based shortest path algorithms.

Furthermore, these techniques are applied to the DiskOP algorithm with minor changes.

The proposed DiskOP algorithm depends on the concept of collecting a set of boundary

vertices and simultaneously relaxing their adjacent super edges. Even if the forbidden

edges are distributed in all the fragments of a graph, the DiskOP algorithm requires little

memory. Our experimental results indicate that the DiskSPNN algorithm performs better

than the original ones with respect to the I/O cost as well as the running time, and the

DiskOP algorithm successfully solves a specific constrained route query problem in a very

large graph.
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Chapter 1

Introduction

1.1 Optimal Route Query Problem in Spatial Databases

Optimal route queries can be divided into unconstrained and constrained route queries [23].

The most frequently asked queries, the shortest path (SP) queries belong to the former

category, and some classical path problems such as the Traveling Salesman Problem and

Hamiltonian Path Problem [6] fall into the latter category. In Geographical Information

Systems (GIS), a user defined route query can involve multiple restrictions rather than just

computing a path with the minimum cost. Constrained route queries have many applica-

tions in areas such as transportation, tourism, urban planning, and networks. Graphs are

used to represent the road maps and the networks. In addition, we can label the vertices

and the edges in a graph with a set of attributes like name and weight.

The unconstrained path problem which is to find an SP from the source to the desti-

nation in a graph has been well-studied. There are many mature SP algorithms such as

Dijkstra’s algorithm, Bellman-Ford algorithm and Floyd-Warshall algorithm [6]. However,

when the main memory is not large enough to load the entire graph, these algorithms

do not work properly. Recently, several disk-based algorithms ([19], [20], [21], [31]) adopt

divide-and-conquer techniques to solve this particular problem. This thesis presents several

techniques, including query super graph, successor fragment, sketch graph pruning with

breadth first search, and open boundary vertex pruning to improve the performance of the

algorithms proposed in [21] and [31]. Experimental results shows that the I/O cost of our

1



2 Optimal Path Queries in Very Large Spatial Databases

new algorithm is only 40% of the algorithm in [31], and 65% of the algorithm in [21]. In

addition, the search space of our algorithm is just one third of that of the algorithm in

[31].

Many real-life constrained route optimization problems are difficult to address in prac-

tice. Even a simple constrained query as: “find an SP from A to B with a gas cost less than

$50”, is NP-hard [14]. There are many papers ([1], [5], [9], [10], [15], [17], [25]) that deal

with the constrained problem, but most solve only a specific case. Until now, little work

has been conducted to find a constrained path in a very large graph. Another example of

a frequently asked constrained query is “find an SP from A to B not via any area with bad

weather conditions”, which is a forbidden edge problem. Other real-world route queries

such as “find an SP from A to B not via any express way”, and “find an SP from A to B

not via any traffic jam roads” are queries with forbidden edge constraint. The answer of

these forbidden edge queries is an SP in the modified graph that is achieved by deleting all

the edges in the affected area. When the graph is small enough to be loaded in the main

memory, the problem could be solved easily. Otherwise, it is difficult. This thesis describes

an efficient algorithm to find a shortest path not via any forbidden edge in a very large

graph.

Chapter 2 discusses the survey of the related work. Chapter 3 and Chapter 4 propose

a new disk-based SP algorithm and a new disk-based OP algorithm respectively. Chapter

5 shows the experimental results of the algorithms. Chapter 6 presents conclusions and

future work.

1.2 Terminlogy

In order to clarify the description of the proposed algorithms in the thesis, all the fre-

quently used terms are defined in this section. Since this thesis is based on the work of

two previous disk-based SPs algorithms ([21], [31]), many terms have been defined in [21]

and [31]. Here, those terms are briefly defined.

Definition 1. Directed Graph

The 3-tuple G=(V, E, w) is defined to be a directed graph, where V ={vi | i ∈ [0, n−1]}
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is the vertex set with size n, E={ek | ek with properties (vi, vj), i, j ∈ [0, n − 1], k ∈
[0,m − 1]} is the directed edge set with size m, and w is a one-to-one function from the

set of edges to non-negative numbers, denoted as w : E→wk∈<≥0. Each directed edge ek

has three properties: a head vertex vi, a tail vertex vj, and a non-negative real number wk

representing its weight, which are denoted as head(ek), tail(ek) and w(ek) respectively. In

addition, these three properties uniquely determine an edge in G. Also, multiple edges in

a digraph are allowed. For example, Figure 1.1 illustrates a typical directed graph. Here,

the vertices are labelled from 0 to 42, and (v2, v8, 6) denotes the edge from vertex 2 to

vertex 8 with weight 6. Edge (v7, v9, 4) and (v7, v9, 5) are multiple edges from vertex 7 to

vertex 9 with weights 4 and 5, respectively.

Definition 2. Digital Map

A digital map D=(V, E, w) is defined as a persistent graph in the secondary storage,

where V, E, and w are the same as those defined in Definition 1. Since both a digital map

and a graph are the same in theory and differ only in implementation, we use “graph” for

describing the graph algorithms and other theoretical concepts.

Definition 3. Sub-graph

A sub-graph g=(Vg, Eg, w) of graph G=(V, E, w) has the following properties: Vg ⊆V,

Eg ⊆E. Also, there exist two one-to-one functions fv: Vg→V, fe: Eg→E such that ∀vi ∈ Vg,

fv(vi)=vi, ∀ek ∈ Eg, fe(ek)=ek and w(ek)= w(fe(ek)). Here, the edge weight function w is

the same as that of G. According to the definition of a sub-graph, the vertices (edges) in

the sub-graph are a subset of the vertices (edges) in the original graph.

Definition 4. Fragment

A fragment F=(VF , EF , w) is a connected sub-graph of G=(V, E, w). F and G use

the same weight function w. The weight of an edge in a fragment is the weight of the

corresponding edge in the original graph. A fragment is a special kind of sub-graph. There

exists an edge connecting two vertices in a fragment, if and only if the two corresponding

vertices in the original graph are adjacent. In Figure 1.1, the original graph is divided into

six fragments as indicated by the dashed line. Each fragment is a sub-graph of the original
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Figure 1.1: Sample directed graph
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graph and when the fragments are merged, we obtain the original graph.

Definition 5. Partition, Fragment ID

A partition of graph G(V, E, w) is a set of fragments {Fi=(Vi, Ei, w) | i∈[1, n],

∪Vi=V, where i is the ID of Fi}. It can be concluded that ∪Ei=E and the previous frag-

ments can be sorted according to their IDs.

Definition 6. Interior Vertex, Boundary Vertex

The vertices in fragment F=(VF , EF , w) of graph G(V, E, w) can be partitioned into

two sets: Vi and Vb, where VF = Vb∪Vi. A vertex in fragment vi∈Vb iff there exists an adja-

cent vertex u of fv(vi)∈V such that u /∈VF , implying that each boundary vertex connects

to at least two fragments of its partition. The vertices in Vb are boundary vertices, and

those in Vi are interior vertices. In Figure 1.1, vertex 8, 9, 10, 14, 18, 19, 20, 23, 26, 30,

32, and 37 are boundary vertices; the others are interior vertices.

Definition 7. Boundary Set

A boundary set is the set of all boundary vertices shared by two or more fragments,

denoted as BS [fi, fj, . . . , fk], where fi, fj, . . . , fk are the fragments sharing the boundary

vertices in the boundary set. The sorted fi, fj, . . . , fk sequence uniquely determines the

boundary set and is the ID of the boundary set.

A boundary vertex can be shared by multiple fragments, when its adjacent edges lie

in these fragments. If a boundary vertex appears in more than one boundary set, the

boundary sets are restricted to the boundary sets between two fragments. For example,

for a boundary vertex v shared by fragments f1, f2, f3, v exists in boundary sets [f1, f2],

[f2, f3], and [f1, f3]. To avoid too many boundary vertices in more than two boundary

sets, and to make the process of finding boundary vertices shared by two fragments easier,

all the boundary sets are between two fragments.

Definition 8. SD-value, OD-value, and Optimal Distance

The SD-value of vertex u to vertex v in graph G, denoted as SD(u, v, G), is defined

as the shortest distance from u to v in G.
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The OD-value of vertex u to vertex v in graph G wrt forbidden edge set Ef , denoted

as OD(u, v, G, Ef ), is the shortest distance from u to v in G not via any edge in Ef .

Definition 9. Optimal Route Query, Optimal Path, Optimal Distance, and

Optimal Path Tree

In this thesis, we define an optimal route query Q=(s, d, G, Ef ) as a search to find a

path p from vertex s to d with the minimum weight of all the paths from source vertex s

to destination vertex d in graph G, not via any edge in forbidden edge set Ef . Path p is

an optimal path (OP) of query Q with the following properties: for any edge e∈p, e /∈Ef ,

and w(p)=SD(s, d, G’ ), where G’ (V, E -Ef , w). Therefore, the OP can be thought of as

an SP in graph G’, which is a sub-graph of G by removing all the edges in Ef . The weight

of path p is the optimal distance from s to d in G wrt Ef and denoted as w(p)=OD(u, v,

G, Ef ).

A shortest path tree (SPT) T in G’ (V, E-Ef , w) is also an optimal path tree (OPT)

in G(V, E, w) wrt forbidden edge set Ef . Let s be the root of T and v be a tree node.

Therefore, the path from s to v in T is an OP from s to v in G wrt forbidden edge set Ef .

Definition 10. Optimal Path Forest, Virtual Root, Ancestor, and Descen-

dant

Given a vertex set X={x1, x2, . . . , xn} with a value set C={c1, c2, . . . , cn} in graph G

and forbidden edge set Ef , where ci∈<≥0 is the attached value of xi (i∈[1, n]), an optimal

path forest (OPF) rooted at X in G is computed as follows:

• Add a vertex r into G with outgoing edges e(r, xi, ci), where 1≤i≤n; here, name r

as a virtual root and its adjacent edges as virtual edges ;

• Compute an outgoing OPT T rooted at r in G wrt Ef ;

• Remove virtual root r and its adjacent edges from T ; the obtained data structure is

an OPF, denoted as OPF (X, C, G, Ef ).

OPF (X, C, G, Ef ) consists of a set of sub-trees of T. The roots of these sub-trees are

vertices in set X. For each vertex u in graph G, if there is a path from any vertex of X to
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Figure 1.2: Optimal path forest rooted at X with value C

u, not via any forbidden edge of Ef , then u is a node of the forest. Let the sub-tree with

root xi∈X (1≤i≤n) be the tree holding u. Then ci+OD(xi, u, G, Ef )=min({cj+ OD(xj,

u, G, Ef ) | 1≤j≤n}), xi is the ancestor of u, and u is the descendant of xi. For example,

in Figure 1.2, vertex yk is the descendant of x2 and x2 is the ancestor of yk.

Definition 11. Super Graph, Query Super Graph and Skeleton Path

A super graph S=(VS, ES, wS) of graph partition {F1, F2, . . . , Fn} has the following

properties: VS= {vb | vb is a boundary vertex in Fk, k∈[1,n]}, ES={e(vi, vj, Fk) | vi and

vj are the boundary vertices in fragment Fk, k∈[1, n]}. For any eijk= e(vi, vj, Fk)∈ES,
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wS(eijk)= SD(vi, vj, Fk), where vi, vj are the boundary vertices in fragment Fk, k∈[1, n].

The vertices of the super graph are the boundary vertices in the fragments. For each pair

of the boundary vertices, there is an edge connecting them. Edge e(vi, vj, Fk)∈ES maps

to a shortest path from vi to vj in fragment Fk. If there is no path from vi to vj in Fk,

its weight is infinity. Figure 1.3 presents the super graph of the sample graph. For each

pair (vi, vj) of the boundary vertex inside the same fragment, there is an edge from vi to

vj and another edge from vj to vi.

8
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14


20


18


19


23


26


30
 32


37


F4
 F5


F2
 F3


F0
 F1


Figure 1.3: Super graph

For an optimal query Q=(s, d, G, Ef ), a query super graph SQ=(VQ, EQ, wQ) cor-

responds to Q with the following properties: VQ=VS∪{s, d}, EQ= ES∪Esrc∪Edst, where
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Esrc={e(s, vi, Fs) | vi is a boundary vertex in the fragment Fs holding s. If both s and

d are in Fs, vi is a boundary vertex in Fs or d}, Edst={e(vi, d, Fd) | vi is a boundary

vertex in the fragment Fd holding d}. For any eijk=e(vi, vj, Fk)∈EQ , wQ(eijk)=OD(vi,

vj, Fk, Ef ), where vi and vj are boundary vertices in fragment Fk, vi, vj∈VQ, and k∈[1,

n]. The vertices and edges in a super graph (query super graph) are named super nodes

and super edges respectively.
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27


3


Figure 1.4: Query super graph

A query super graph is constructed according to a super graph by adding the source and

the destination vertices and their adjacent edges. Due to the forbidden edge constraint, the

weights of the super edges are the optimal distances inside the fragment from one vertex



10 Optimal Path Queries in Very Large Spatial Databases

to the other vertex. If a fragment contains a forbidden edge, the fragment is affected ;

otherwise, it is unaffected. In Figure 1.4, the query super graph of Q=(v3, v27, G, Ef ),

where G is the sample graph in Figure 1.1 and Ef={(v5, v6, 4), (v24, v22, 5)}. F0 and F4

contain a forbidden edge and are affected fragments, whereas the remaining fragments are

unaffected fragments. F0 is the source fragment and F5 is the destination fragment. The

adjacent edges of v3 are e(v3, v8, F0), e(v3, v9, F0), and e(v3, v10, F0). The adjacent edges

of v27 are e(v23, v27, F5), e(v26, v27, F5), e(v30, v27, F5), and e(v32, v27, F5).

A skeleton path is an SP in a super graph or a query super graph consisting of super

nodes and super edges.

Definition 12. Optimal Skeleton Path Tree and Optimal Skeleton Path

A SPT T in a query super graph is named an optimal skeleton path tree in original

graph G. T is an outgoing tree with root s, a tree node v is a super node and a tree edge

e is a super edge in the query super graph. The path from s to tree node v in T is an

optimal skeleton path in G.

Definition 13. Predecessor, Successor, and Predecessor (Successor) Frag-

ment

Let skeleton path ps be 〈e1, e2, . . . , em〉, where ei is a super edge in the query super

graph, i∈[2, m], tail(ei)= head(ei−1) and head(ei)=tail(ei+1). Let ei−1= (vx, vy, Fk) and

ei=(vy, vz, Fk′). Therefore, there is a boundary vertex sequence 〈vx, vy, vz〉 corresponding

to edge sequence 〈ei−1, ei〉. The predecessor of boundary vertex vy in path ps is vx and

the successor of vy is vz. Obviously, fragments Fk and Fk′ are adjacent to each other.

The fragments containing vy can be denoted by Fk and Fk′ , where Fk is the predecessor

fragment of vy and Fk′ is the successor fragment of vy.

Definition 14. Closed, Open, Relaxed, Finished, and Un-finished

During the process of computing an optimal skeleton path starting from s in query

super graph SQ= (VQ, EQ, wQ), when the distance from s to super node u∈VQ is finalized,

that is OD(s, u, G, Ef ) is obtained, u is closed. Otherwise, it is open. The proposed

disk-based optimal path algorithm (DiskOP) is a variant of Dijkstra’s algorithm. The
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DiskOP iteratively chooses a super node u with the minimum distance of all the open

super nodes, adds u into closed vertex set, and relaxes all the outgoing super edges of

u. When the DiskOP finishes the relaxation of all the super edges leaving vertex u, u is

relaxed. Otherwise, it is un-relaxed. When a super node is both closed and relaxed, it is

finished. Otherwise, it is un-finished.

Definition 15. Pivot, Pivot Path, Pivot Fragment, Pivot Graph and PD-

Value

For each boundary set BSi of partition {F1, F2, . . . , Fn}, we randomly choose a bound-

ary vertex v∈BS as the pivot of BS such that there exists a one to one mapping fp: BS→Vp,

where BS is the set of boundary sets in the partition, and Vp is the set of pivots. The

path between any two pivots inside a fragment is called a pivot path. In fragment Fi, we

can construct one or more pivot paths for each pair of pivots and merge all these paths

into a graph, which is a pivot fragment. Pivot graph Gp is obtained by merging a set of

pivot fragments; that is Gp= ∪Fpi(i∈[1, n]). Figure 1.5(b) provides an example of the

pivot fragment of F2. Vertices v10, v20, and v19 are the pivots of BS [F0, F2], BS [F2, F3],

and BS [F2, F4], respectively. Path p10−19=〈e(v10, v13, 4), e(v13, v16, 7), e(v16, v19, 6)〉 is

an SP from v10 to v19. There is no path from v19 to v10. p10−20= 〈e(v10, v13, 4), e(v13, v16,

7), e(v16, v19, 6), e(v19, v20, 4)〉 is an SP from v10 to v20. There is no path from v20 to v10.

p19−20= 〈e(v19, v20 , 4)〉 is an SP from v19 to v20; p20−19=〈e(v20, v16 , 5), e(v16, v19 , 6) 〉 is

an SP from v20 to v19 . If only one path is materialized for each ordered pivot pair, then

Fp2 consists of the edges in paths p10−19, p10−20, p19−20 and p20−19.

Let vi and vj be two pivots inside fragment Fk. PD-value from vi to vj in Fk is the

optimal distance from vi to vj in Fpk wrt forbidden edge set Ef , where Fpk is the pivot

fragment of Fk, PD(vi, vj, Fk, Ef )=OD(vi, vj, Fpk, Ef ).

Definition 16. α-value, β-value

α-value of vertex set X to vertex set Y in graph G is the minimum value of the

shortest distances from any vertex x∈X to any vertex y∈Y, and α(X, Y, G)=min({SD(x,

y, G) | x∈X, y∈Y }), where min is the minimum function. Also α-value is defined as the

minimum value of the shortest distances between any vertex x∈X and vertex v in graph



12 Optimal Path Queries in Very Large Spatial Databases

10


11
 12
 13


14


20


15


1

6


17


18
 19


6


5


4


3

8


7


6


3
 4


7


6


4


5


6


4


(a) Fragment F2

10


20


19


4


7


6


4


5


(b) Pivot fragment Fp2

Figure 1.5: Pivot fragment

G. Therefore, α(v, X, G)= min({SD(v, x, G) | x∈X, v is a vertex in G}); and α(X, v,

G)=min({SD(x, v, G) | x∈X, v is a vertex in G}).
Similarly, β-value is the maximum value of the shortest distances from any vertex x∈X

to any vertex y∈Y, and β(X, Y, G)=max ({SD(x, y, G) | x∈X, y∈Y }), where max is

the maximum function. β-value can be extended to a vertex and a vertex set, denoted as

either β(v, X, G) or β(X, v, G), respectively, and defined as β({v}, X, G) or β(X, {v},
G), respectively.

Definition 17. Sketch Graph and Query Sketch Graph

Sketch graph K=(Vk, Ek, wk) of graph partition {F1, F2, . . . , Fn} has the following

properties:

• Vk={vi | vi corresponds to some boundary set Bi in fragment Fp, where p∈[1, n]};

• Ek={e(vi, vj, Fp) | vi and vj correspond to some boundary sets Bi and Bj in Fp

respectively, where p∈[1, n]};
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• for any eijp=e(vi, vj, Fp)∈Ek, wk(eijp)=SD(pvi, pvj, Fp), where pvi, pvj are the pivots

of vi and vj, respectively, and both of them are in fragment Fp (p∈[1, n]).

F4
 F5


F2
 F3


F0
 F1
BS
(0,2)


BS
(0,1)


BS
(1,3)


BS
(2,3)


BS
(2,4)
 BS
(3,5)


BS
(4,5)


Figure 1.6: Sketch graph

In a sketch graph, each boundary set has an attribute to indicate its pivot. Figure 1.6

gives the sketch graph of the example super graph in Figure 1.3. The vertices and edges in

a sketch graph are called sketch nodes and sketch edges, respectively. Since the boundary

vertices of a boundary set are shared by the same set of fragments, a boundary set can be

contracted into a sketch node to easily indicated the adjacency of the boundary sets. For

example, to find the adjacent super edges of a boundary vertex v in a super graph with
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BS [F1, F2] as the boundary set holding v, we can retrieve the adjacent sketch node set BSET

of BS [F1, F2] efficiently due to the small size of sketch graph. Therefore, BSET∪{BS[F1,

F2]} contains all the boundary sets of fragment F1 and F2, and all boundary vertices

belonging to the boundary set in BSET∪BS[F1, F2] excluding v are the adjacent super

nodes of v in a super graph.

Given an optimal query Q=(s, d, G, Ef ), a query sketch graph KQ= (VKQ, EKQ, wKQ)

corresponds to Q with the following properties:

• VKQ=VK∪{s, d}, EKQ= EK∪EKs∪ EKd, where EKs={e(s, vi, Fs) | vi corresponds

to some boundary set Bi in fragment Fs holding s, or vi= d if d∈Fs}, EKd={e(vi, d,

Fd) | vi corresponds to some boundary set Bi in fragment Fd holding d};

• For any eijp=e(vi, vj, Fp)∈Ek, wKQ(eijp)=PD(pvi, pvj, Fp, Ef ), where pvi, pvj are

two pivots in fragment Fp (p∈[1, n]), and are the pivots of vi and vj, respectively;

• For any esi=e(s, vi, Fs)∈EKs, wKQ(esi)=OD(s, pvi, Fs, Ef ), where pvi is the pivot

of vi in fragment Fs holding s ;

• For any eid=e(vi, d, Fd)∈EKd, wKQ(eid)=OD(pvi, d, Fd, Ef ), where pvi is the pivot

of vi in fragment Fd holding d.

The query sketch graph is constructed according the sketch graph by adding source

and destination vertices and their adjacent edges, which are from the source to the pivots

in the source fragment and from the pivots to the destination in the destination fragment,

respectively. When a fragment is unaffected, the weights of all the sketch edges inside

the fragment remain the same as those in the sketch graph. Otherwise, we must compute

the weights of the sketch edges in the pivot fragment of an affected fragment. Figure 1.7

illustrates the query sketch graph of the sample query super graph in Figure 1.4. Since F0

and F4 are affected, the weights of the sketch edges inside them need to be updated.

Definition 18. Distance Matrix Database

Distance matrix (DM) is a data structure that contains the SP distances between any

ordered pair of boundary vertices in the same fragment. Let m be the number of boundary
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Figure 1.7: Query Sketch graph

vertices in fragment Fk. The matrix contains (m×m) entries. DMk={SD(vi, vj, Fk) | vi,

vj are boundary vertices in Fk}.
Distance matrix database (DMDB) consists of the distance matrices of all the fragments

in a graph. In other words, DMDB contains the weights of all the super edges in a super

graph. When the super graph is too large to be loaded into the main memory, the DMDB

and the sketch graph are used to compute an SP in a graph.

Definition 19. Boundary Set Distance Matrix

Boundary set distance matrix (BSDM) is a data structure that contains the α-value and
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the β-value between each pair of boundary sets in the sketch graph. Let m be the number

of boundary sets, BSDM has (m×m) entries and is {(α(vi, vj), β(vi, vj)) | vi, vj∈VK}.
The α-value (β-value) of the boundary set pair helps us to estimate a lower (upper) bound

of an SP distance efficiently. Since the optimal distance is no greater than the shortest

distance, the lower bound is still valid for optimal route queries. However, the lower bound

to an optimal query is not as tight as that to a shortest path query with the same source

and destination.

Definition 20. α-Approximation and β-Approximation

α-approximation from vertex u to vertex v in graph G, denoted as αA(u, v, G), is de-

fined to be a value no greater than the shortest distance from u to v in G, that is αA(u, v,

G)≤SD(u, v, G). Therefore, α-approximation is the lower bound of the shortest distance

from u to v in G. The α-approximation can be generalized to denote the lower bound of the

minimum shortest distances between two vertex sets, or a vertex and a vertex set. Let X

be a vertex set. αA(u, X, G) is less than or equal to the minimum value of the shortest dis-

tances from u to all the vertices of X ; that is, αA(u, X, G)≤min({SD(u, v, G) | v∈X }).
Then, αA(X, u, G)≤min({SD(X, u, G) | v∈X }), and αA(X, Y, G)≤min({SD(u, v,

G) | u∈X, v∈Y }), where X, Y are vertex sets, and u, v are vertices.

Similarly, β-approximation is defined to be an upper bound value of the shortest

distance in graph G with the following properties: βA(u, v, G)≥SD(u, v, G); βA(u,

X, G)≥min({SD(u, v, G) | v∈X }); βA(X, u, G)≥min({SD(X, u, G) | v∈X }); and

βA(X, Y, G)≥min({SD(u, v, G) | u∈X, v∈Y }), where X, Y are the vertex sets, and u,

v are the vertices.

Definition 21.γ-Approximation

γ-approximation from vertex u to vertex v in graph G wrt forbidden edge set Ef , de-

noted as γA(u, v, G, Ef ), is defined to be a value no less than the optimal distance from

u to v in G wrf Ef , that is, γA(u, v, G, Ef )≥OD(u, v, G, Ef ). Clearly, γ-approximation

is the upper bound of the corresponding optimal distance.



Chapter 2

Survey of Related Work

In this chapter, the literature for both constrained and unconstrained route optimization

problems is reviewed. The approaches to deal with these two problems are introduced in

Sections 2.1 and 2.2, respectively.

2.1 Constrained Route Optimization

A constrained optimal route query is to find an OP, satisfying a set of constraints from

the source to the destination in a given graph. Of all the paths satisfying the user-defined

constraints, an OP is a path with the minimum weight. The constraints can be on the

vertices or the edges, or on both of them. A constrained query can involve more than one

weight metric, and aggregate functions. Many constraints are based on some aggregate

functions (e.g, find an SP from town A to town B with a toll fee less than 100 dollars),

which is a Weight Constrained Shortest Path Problem (WCSPP), defined as: attach a cost

and a weight (or a vector of weights) to each edge in the graph, and then find a path with

the minimum cost from the source to the destination such that the path’s total weight is

less than a specified value (or a vector of values). WCSPP is NP-hard, as proved in [14]. In

the worst case, the running time is exponential wrt the number of the vertices in the given

graph. Section 2.1.1 reviews several K shortest paths algorithms to solve the constrained

route optimization problem by enumeration. Section 2.1.2 introduces approaches to solve

the WCSSP. For the constraints such as avoiding certain areas or roads, the problem

17
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becomes easier. In Section 2.1.3, the dynamic SP algorithms are introduced to avoid the

re-computation from scratch.

2.1.1 K Shortest Paths Algorithms

Enumeration is an alterative to obtain an OP for a constrained route query Q. The idea

is simple, which is to list the first, second, . . . , Kth SP from the source to the destination

in the given graph until the one satisfying all the restrictions. Then, the Kth SP is an OP

to Q. The algorithms, described by D.R. Shier [29], David Eppstein [11], E. Martins et al.

[24], and Victor M.Jimenez et al. [18], find the K SPs which may not be simple. Yen [30],

E. Martins et al [22], and John Hershberger[16] propose solutions for the K simple SPs.

K Shortest Non-simple Paths Algorithms

In this section, three K shortest non-simple paths algorithms are described briefly. Note

that the returned paths may contain loops.

For source s and destination d in a digraph G, Eppstein’s algorithm (Epp) [11] generates

an implicit representation of those paths from s to d. The K SPs can be found in order of

increasing weight with time O(m+nlogn+KlogK ). The Epp algorithm is the asymptotically

fastest known one solving the problem. After finding a SPT T rooted at d, the Epp can

compute sidetrack value for each edge e(u, v), which is sc(e)=SD(v, d, G)-SD(u, d,

G)+w(e). The sidetrack value of an edge denotes the increased weight by going through

this edge instead of taking the SP to d. Then, a tree of paths is built, where each tree node

is represented by a set of edges corresponding to a path from s to d, and the node’s weight

is the sum of the sidetrack value of the path edges. Any child node in the tree has one

more edge than its parent node, indicating that the weight of the path to which the parent

node corresponds is no more than that of the child node. Since any path in the given graph

consists of a set of SPT edges and a set of non SPT edges, a node in the tree of paths can

be represented as an ordered non-tree edge sequence. Figure 2.1(d) is the tree of paths

with source v1, destination v5 for the graph G in Figure 2.1(a). The Epp first computes

a SPT T rooted v5 in Figure 2.1(b). For each edge of T, its sidetrack value is zero while

for a non-tree edge, the value is greater than or equal to zero (Figure 2.1(c)). The Epp
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builds the tree of paths TP from an SP from v1 to v5, which is the root of TP denoted

as ”{}”. The children of the root are {3}, {4}, {6}, {7}, and {9}, which are the non-tree

edges labelled by sidetrack value in Figure 2.1(c), because the tails of these non-tree edges

are on the SP from v1 to v5. Node {3} corresponds to path 〈v1, v4, v5〉 and the children of

node {3} are {3, 4}, {3, 9}, representing path 〈v1, v4, v3, v4, v5〉 and 〈v1, v4, v1, v2, v4, v5〉,
respectively, because the tails of the edge labelled by 4 and 9 are on the SP from the head

of edge labelled by 3 to the destination. For example, {3, 7} is not the child of {3} since

there is no path v1 to v5 consisting of exactly the two non SPT edges e(v1, v4), e(v1, v3)

and other SPT edges. In this way, the Epp builds the tree of paths and easily enumerates

the K shortest paths from the source to the destination.
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Figure 2.1: Example of the Epp algorithm
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Victor M. Jimenez et al. presented Recursive Enumeration Algorithm (REA) [18] to

recursively compute each new path by visiting, at most, the vertices in the previously

computed path from s to d. The REA attaches a heap of candidate paths to each vertex,

from which we can choose the next SP from source node s to the vertex. The REA

computes the kth shortest path from s to v by choosing the path with the minimum weight

from v ’s candidate path set. Let pk(v) denote the kth SP from s to v. The most important

task in the algorithm is to maintain v ’s candidate path set by replacing the latest found

SP pk(v) =pk′(u)¦e(u, v) with pk′+1(u)¦e(u, v), where u is the predecessor vertex of v on

the path pk(v), and ¦ is used to concatenate two paths. Thus, the path with the minimum

weight in the candidate path set is the (k +1)st SP from s to v. The REA finds the K SPs

in time O(m+Knlog(m/n)).
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Figure 2.2: Outgoing SPT T rooted at v1

Now, an example to find the first two SPs from v1 to v5 in graph G of Figure 2.1(a)

with the REA is described. Denote Ck(v) as the candidate path set for the kth SP.

Figure 2.2 gives an outgoing SPT rooted at v1 in G. Because C1(v5)={p1(v2)¦e(v2, v5),

p1(v3)¦e(v3, v5), p1(v4)¦e(v4, v5)}, and p1(v5)=p1(v4)¦e(v4, v5), C2(v5)={p1(v2)¦e(v2, v5),

p1(v3)¦e(v3, v5), p2(v4)¦e(v4, v5)}. Then p2(v4) is computed as follows: since C1(v4)

={p1(v1)¦e(v1, v4), p1(v2)¦e(v2, v4), p1(v3)¦e(v3, v5)} and p1(v4)=p1(v2)¦e(v2, v4), C2(v4)=

{p1(v1)¦e(v1, v4), p2(v2)¦e(v2, v4), p1(v3)¦e(v3, v5)}. Now compute p2(v2) is computed, be-

cause C1(v2)={p1(v1)¦e(v1, v2)} and p1(v2)=p1(v1)¦e(v1, v2), C2(v2)={p2(v1)¦e(v1, v2)}.
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Since v1 is the source, p2(v1)=p1(v4)¦e(v4, v1) and w(p2(v1))=9, p2(v2)=p2(v1)¦e(v1, v2),

w(p2(v2))=9+3=12. Hence, p2(v4)=min(C2(v4))=p1(v1)¦e(v1, v4), and w(p2(v4))=8. As a

result, p2(v5)=min(C2(v5))=p2(v4)¦e(v4, v5)=〈v1, v4, v5〉 and w(p2(v5))=12.
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Figure 2.3: Resulting graph G2

The idea of the MSA algorithm proposed by E. Q. V. Martins et al. in [24] is to

construct a sequence of growing graphs G1, G2, . . . , Gk such that the first SP in Gk is

the kth SP in G, where G=G1. The MSA constructs Gk based on Gk−1 by finding the

first vertex on the (k − 1)st SP with more than one incoming edge, builds Gk, and then

determines the next SP in Gk. For example, the first SP from v1 to v5 in graph G of

Figure 2.1(a) is 〈v1, v2, v4, v5〉, and v4 is the first vertex on the path with more than one

incoming edge. Vertex v4’ is created and new edges e(v1, v4’, 8), e(v3, v4’, 2) are added.

Hence, the SP from v1 to v4’ is 〈v1, v4〉. Then, a new vertex v5’ is created, which is the

successor of v4’ on the first SP, and new edges e(v4’, v5’, 4), e(v2, v5’, 12), e(v3, v5’, 6)

are added. As a result, the SP from v1 to v5’ is 〈v1, v4’, v5’〉, and the resulting graph is

G2 in Figure 2.3. The second SP is 〈v1, v4, v5〉. This idea is straightforward and easily

understood. But when the graphs are constructed, the number of vertices and edges grows

quickly. The authors present a technique to avoid the increase on the number of edges, thus

reducing the space complexity. After the SP from s to each vertex is computed, the total
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time required by the MSA to output K SPs in the order of increasing weight is O(Km) in

the worst case.

Among these algorithms, the Epp is outstanding due to its low asymptotic complexity.

However, the Epp includes an initial stage to build an implicit representation graph from

which K SPs are then computed quickly. If K is not large enough, the time to construct

the implicit graph is not worth to the effort. Under certain conditions, the MSA and the

REA run faster than the Epp, according to the experimental results in [24] and [18]. The K

SPs computed by these algorithms may contain some loops. After all loops in the paths are

removed, the number of distinct paths is probably far less than K. In a real-world optimal

path problem, the optimal paths are most likely simple. As a result, the algorithms for

finding the K shortest simple paths are favored.

K Shortest Simple Paths Algorithms

Since there is a simplicity restriction on the K SPs problem, intuitively, it is more difficult

to solve than the one without any restriction. There are two principal approaches dealing

with the K SPs problem: label setting and deviation. Label setting (e.g., the REA) is based

on an Optimality Principle which asserts that there is an SP formed by the shortest sub-

paths [23]. Because the K shortest simple paths problem does not satisfy this principle,

we can no longer use it. The main idea of a deviation algorithm (e.g., the Epp and the

MSA) is to construct a tree of paths containing K SPs. The theory to justify deviation

algorithms is still valid when the goal is to find the K shortest simple paths between a pair

of vertices. Therefore, the deviation algorithms are our only choice for the problem.

Yen’s algorithm [30] is classical for finding the K shortest simple paths between a source

node and a destination node in a given graph with non-negative loops. It can be applied

in both directed and undirected graphs. The deviation idea is derived from this algorithm

which constructs the kth SP based on the k -1 SPs that have already been computed. The

kth SP consists of two sub-paths: a path from the source to some deviation vertex i which

is a sub-path of the (k− 1)st path, and the SP from vertex i to the destination. To satisfy

the simplicity constraint, the latter sub-path does not include any vertex in the former

one, and the successor of i in the kth SP differs from any of i ’s successors among the k -1

available SPs with the same sub-path from the source to vertex i of the (k− 1)st path. In
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this algorithm, list A is used to store the k -1 shortest simple paths that have been found,

and list B is used to store the candidate paths of the kth shortest simple path. After the

termination of the algorithm, the K shortest simple paths between the two ordered given

nodes are in list A. For example, the first SP from v1 to v5 in graph G (Figure 2.1(a))

is 〈v1, v2, v4, v5〉; based on this, the second shortest simple path can be computed. The

deviation path on v1 is 〈v1, v4, v5〉, that on v2 is 〈v1, v2, v5〉, and that on v4 is 〈v1, v2, v4,

v3, v5〉. Hence, list A contains the first SP and list B holds the previous three deviation

paths. The one with the minimum weight should be extracted from B and add into A so

that the path is the second shortest simple path, which is 〈v1, v4, v5〉. The time complexity

of this algorithm is O(Kn3). Compared with those K SPs algorithms mentioned in the

previous section, the algorithm is rather slow due to the simplicity constraint.

The MPS algorithm [22] employs the idea of the sidetrack value to significantly reduce

the number of arithmetic operations. The algorithm computes a set of deviation paths for

each well-determined path. The merit of the algorithm is that it is unnecessary to remove

the edges and the vertices from the given graph. The MPS concatenates two simple paths

to be a deviation path, which is probably not simple. The first simple path is a sub-path of

some previous determined path. The second simple path is combined by an edge e(u, v),

where vertex u is the end of the first simple path, and the SP from vertex v to destination d.

Since the found deviation paths are probably not simple, their simplicity must be checked

before setting as the next shortest simple path. The MPS uses a data structure called

sorted forward star form. Denote the set of nodes V in the given diagraph G(V, E, w) as

{v1, v2, . . . , vn}, denote E=E (v1)∪E (v2)∪. . .∪E (vn), where E (vk) is the set of arcs whose

tail node is vk and vk∈V. Thus, E (vi)∩E (vj)=∅, for any vi, vj∈E, i 6=j. For any vertex

vi∈V, i is the index of vi in vertex set V. Therefore, the vertices in V are sorted according

to their indices. The MPS defines sorted forward star form as follows:

• Let ek, el∈E such that ek∈E (vϑ) and el∈E (vξ);

• When ϑ 6= ξ, ek<el, if and only if ϑ<ξ;

• When ϑ=ξ, ek<el, if sc(ek)≤sc(el)

We also can explain it in this way. For any two edges e(vk, vj), e(vi, vl)∈E, (k, j )<(i, l),

if k<i or (k=i, and sc(e(vk, vj))≤sc(e(vi, vl))).
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The MPS algorithm sorts the edge set of the given graph according to the sorted

forward star form. Assume the resulting edge set E={e1, e2, . . . , em}, where for any edge

ek(1≤k≤m), k is the position of the edge in the sequence of E. Obviously, sc(ek)>sc(ek+1),

only if the tail node of ek is less than the tail node of ek+1. If the tail nodes of ek and ek+1

are the same, then sc(ek)≤sc(ek+1). For the diagraph in Figure 2.1(a), E={e12, e14, e13,

e24, e25, e34, e35, e45, e43, e41} is in the sorted forward star form, where eij=e(vi, vj) and vi,

vj∈E. In the following, a concrete example is presented to explain the MPS more clearly.

Consider the given diagraph in Figure 2.1(a) and the incoming SPT T rooted at v5 is in

Figure 2.1(b). The SP p1=〈v1, v2, v4, v5〉 is a path of T from vertex v1 to root v5. For any

tree node vi of T, denote pi5 as the path of T from vi to v5. Add p1 to the candidate path

set X. Extract the path p=〈v1, v2, v4, v5〉 with the minimum weight from X as p1. The

path is simple and its deviation nodes are v1, v2, and v4. Analyze v1: the edge in the sorted

forward star edge set E following e12 is e14. Then, by concatenating e14 with the path of

T from vertex v4 to root v5, the deviation path of v1: e14¦p45=〈v1, v4, v5〉 is obtained and

placed in X. Analyze v2: the edge in E following e24 is e25. Then, the deviation path is

e12¦e25¦p55=〈v1, v2, v5〉, and is inserted into X. Analyze v4: the edge in E following e45 is

e43. Then, the deviation path is 〈v1, v2, v4〉¦e43¦p35=〈v1, v2, v4, v3, v4, v5〉, and is placed

in X. The path with the minimum weight in X is 〈v1, v4, v5〉. Since the path is simple, its

is the second shortest simple path from v1 to v5. Although the complexity is still an open

problem, the MPS performs well in practice. The experiment results demonstrate that the

MPS algorithm runs much faster than Yen’s algorithm.

The HSB algorithm [16] proposed by John Hershberger and al. can only be adapted to

directed graphs. It runs in time O(K (m+nlogn)) which is the best of all the algorithms

for solving the K shortest simple paths problem. The HSB uses a branching structure to

divide candidate paths set for the (i + 1)st shortest simple path into O(i) classes, and

stores the shortest one in each class in a heap. The path with the minimum weight in the

heap is the (i + 1)st shortest simple path. For example, Figure 2.4(a) exhibits the first

four shortest simple paths from v1 to v5 in G (Figure 2.1(a)), and Figure 2.4(b) reveals

the branching structure of these paths. The branch from v1 to v2 represents edge e(v1, v2,

3) in G, and is shared by the first and fourth paths. The branch from v4 to v53 represents

edge e(v4, v3, 2) and e(v3, v5, 6) in G, and belongs to the third path. This path branching
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(c) Path branching structure T1– T4

Figure 2.4: Example of the HSB algorithm

structure Ti is a rooted tree with source node s as its root. In Ti, we know how the first i

shortest simple paths deviate from each other topologically. The property that Ti+1 can be

easily generated from Ti by some modifications is very useful to solve the problem. As a

result, TK can be constructed from T1, T2, . . . , TK−1 and the K shortest simple paths are

obtained from it. The first shortest simple path p1 corresponds to T1 with only one branch

from the source to the destination representing p1. Then the HSB computes the paths with

the minimum weight deviating from the branch from v1 to v51 and vertex v1 respectively,

which is 〈v1, v4, v5〉 and 〈v1, v2, v5〉. Then the HSB inserts them into candidate path set X.

Next, the HSB extracts the path with the minimum weight from X as the second shortest

simple path p2=〈v1, v4, v5〉. T1 is updated to T2 as depicted in Figure 2.4(c). Since p2 is

removed from X, and deviates from v1, another path with the minimum weight deviating

from v1 not via e(v1, v4) and e(v1, v2), which is 〈v1, v3, v4, v5〉, is inserted into X. The
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branch from v1 to v52 is new. A path with the minimum weight deviating from the branch

is 〈v1, v4, v3, v5〉, and is inserted into X. After the next shortest simple path is extracted,

the branch structure is updated and the candidate path set X is maintained. Figure 2.4(c)

reflectes the updating process of path branching structure from T1 to T4.

Yen’s algorithm, a classical algorithm, uses the deviation concept to solve the problem

efficiently. However, its running time is not competitive. According to the experimental

results, the MPS outperforms Yen’s algorithm and is very efficient, but the running time

complexity of the MPS is unknown. The complexity of the HSB is the best of all the

algorithms.

The Problem of Enumeration

The complexity of applying K SPs algorithms to solve the WCSSP is exponential [10].

In [15], G. Y Handler and I. Zang compare their implementation of Yen’s algorithm with

their Lagrangean relaxation approach, and reach the conclusion that their method is sub-

stantially faster, in some cases, by an order of magnitude.

2.1.2 Weight Constrained Shortest Path Problem

Except for the previously mentioned K SPs algorithms, some other approaches such as node

labelling and Lagrangean relaxation can be applied to solve the WCSPP. The node labelling

approach is based on dynamic programming equations, and can be found in a number of

papers ([1], [9], [17]). Particularly, the LSA algorithm proposed in [9] is widely regarded

as the most effective for the WCSPP [10]. The Lagrangean relaxation is another popular

method applied to the WCSPP ([15], [5], [25]). Here, the idea is to divide the constraints

into different levels from easy to difficult by using a Lagrangean dual multiplier to penalize

the hard constraints. However, since the space required by the Lagrangean method is too

large, it is not practical.

In this section, the LSA is introduced to solve the WCSPP in directed graph G(V, E,

w). Let R≥1 be the number of weight dimensions. For each edge e(i, j )∈E, cij∈< is its cost

and wij=(w1
ij, . . . , wR

ij)∈ZR
+ is the weight of the edge, where wr

ij indicates the rth weight of

the edge (r∈[1, R]). Let W =(W1, . . . , WR)∈ZR
+ be the specified weight constraint. The
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weight constrained SP p from source s to destination d is the minimum cost s-d path

satisfying wr
p≤Wr. The LSA attaches a label set for each vertex i in the graph such that Ii

is the index set of the labels on vertex i. The labels on any vertex differ from each other.

For each label k∈Ii, the label corresponds to a path from s to i with cost Ck
i and weight

W k
i =(W 1k

i , . . . , WRk
i ). For any other label k’∈Ii, if Ck′

i <Ck
i , there is at lease one weight

item such that W rk′
i >W rk

i . For any two distinct labels (Cx
i , W x

i ) and (Cy
i , W y

i ) on vertex

i, representing two different paths P x
i ) and P y

i ), respectively, (Cx
i , W x

i ) dominates (Cy
i ,

W y
i ), if and only if Cx

i ≤Cy
i and W x

i ≤W y
i . If a label on a vertex is not dominated by any

other label on the vertex, then the label and its corresponding path is efficient.
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Figure 2.5: Digraph G with edges labelled by cost(weight)

The LSA is similar to Dijkstra’s algorithm. The difference is that the LSA has to take

care of the weight aggregation along paths in addition to the cost. The goal of the LSA

is to find all the efficient labels on each vertex in the given graph. Initially, the only label

is (0, 0) on s. For some total order on weights, the LSA iteratively chooses an untreated

label with the minimum weight, and treats it in the following way: assuming the label is

on vertex i, for each outgoing edge e(i, j ), a new label on j is created. If the new label (Cx
j ,

W x
j ) is not dominated by any other label on j, then it is added to j ’s label set and all the

existing labels dominated by (Cx
j , W x

j ) are removed from the label set. Consequently, the

first treated label is (0, 0) on s, and the set of labels is expanded during each treatment.

The algorithm terminates, when all the labels of each vertex in the graph have been treated.

Figure 2.5 gives a diagraph G with one dimension weight. We want to find an SP from
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v1 to v5 with a weight less than 6. Obviously, path 〈v1, v2, v4, v5〉 is an SP from v1 to

v5, but its weight is 10 which is greater than 6. The LSA computes as follows: first, treat

label (0, 0) on v1 so that label (3,2) is on v2, label (8,3) on v4, and label (10, 4) on v3.

The min-priority Q is ordered by (weight, cost) so that after the treatment, Q contains

elements (v2, 3, 2), (v4, 8, 3), and (v3, 10, 4). Extract the minimum item (v2, 3, 2) from Q

and treat it by adding label (5, 8) on v4 and label (15, 7) on v5. Q is updated to be (v4, 8,

3), (v3, 10, 4), (v5, 15, 7), and (v4, 5, 8). Again, extract (v4, 8, 3) from Q and treat it. The

label (9, 4) is on v3 and label (12, 5) is on v5. Since label (9, 4) dominates label (10, 4)

on v3, label (10, 4) is removed from the label set of v3 and the item (v3, 10, 4) is removed

from Q. Because label (12, 5) dominates label (15, 7) on v5, delete label (15, 7) from the

label set of v5 and item (v5, 15, 7) from Q. Now Q contains elements (v3, 9, 4), (v5, 12,

5), and (v4, 5, 8). When all the labels of each vertex are treated, the LSA terminates. An

optimal path of the query is 〈v1, v4, v5〉 with cost 12 and weight 6.

The complexity of the LSA is O(|E|∏R
r=1(Wr+1)), if the appropriate data structures

are employed. When there is only one weight restriction W which is R=1, its complexity is

O(|E|W ), assuming that no zero weight is allowed. In practice, the algorithm will perform

well, if the value of W is not very large [10].

2.1.3 Dynamic Shortest Path Problem

The dynamic graph problem is divided into two categories based on the type of the update

allowed. The fully dynamic graph problem allows insertion and deletion on edges, whereas

the partially dynamic graph problem accommodates only either insertion or deletion on

edges. The problem is said to be incremental to an edge insertion and decremental to an

edge deletion. Another class of constrained route query in the real-world, which is to find

an SP between two vertices without passing a set of edges, can be regarded as a decremental

dynamic problem. After deleting the previous edge set, the SP in the modified graph is the

solution to this kind of constrained query. If the SPs information in the original graph is

available, these SPs can be maintained without a computation from scratch. The study of

dynamic SPs maintenance began more than thirty years ago. Some of the algorithms that

have been proposed to deal with this problem focus on the maintenance of the all-pairs

SPs ([4], [8], [7]), whereas others ([13], [12], [26], [27]) concern the maintenance of SPTs.
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In this section, we introduce the dynamic SPT algorithm (BSM) proposed in [26], which

has the best performance in terms of computational complexity, as well as the minimum

number of changes made to the topology of an SPT [26].
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Figure 2.6: Digraph G

Dijkstra’s algorithm maintains a min-priority queue Q holding vertices with its potential

shortest distance from the source as a value, and iteratively, extracts a vertex with the

minimum value from the queue. Also the BSM maintains such a queue, but the value of

each item is the potential distance change. The BSM removes the vertex with the minimum

distance change from the queue. Furthermore, Dijkstra’s algorithm selects one vertex at a

time, whereas the BSM selects a sub-tree from the out-dated SPT at a time. Figure 2.6

represents a digraph G, and Figure 2.7(a) gives a SPT T with v1 as root in G. If edge

e(v1, v5) is deleted from G, e is also removed from T which is divided into two parts. The

following example demonstrates how the BSM works.

Denote vertex v in Q as v, (p, d, 4), where p is the potential predecessor of v, d is

the potential distance from the source to v, and 4 is the potential distance change of v.

The BSM maintains T in the following way: initially the only item in Q is {v1, (null, 0,

0)}. The BSM extracts v1 from Q, closes all the vertices in sub-tree T1 rooted at v1, and

relax the outgoing edges of the vertices. For example, the outgoing edges of v2 are e(v2,

v3), e(v2, v5). When v3 is closed, the BSM deals with only v5. The distance of v5 obtained

from v2 is 2+4 =6, and the change of distance is 6-3=3. Finally Q contains items {v5, (v2,
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(b) New SPT rooted at v1

Figure 2.7: Example of the BSM algorithm

6, 3)}, {v14, (v7, 24, 4)}, and {v13, (v6, 14, 4)}. Then, the BSM extracts minimum item

v5 from Q, closes all the vertices in sub-tree T2 rooted at v5 to obtain a new SPT rooted

at v1. Therefore, the BSM uses only two iterations to complete the SPT maintenance.

Obviously, using the BSM is much more efficient than computing a new SPT from scratch.

However, for all the dynamic SP algorithms, it is noteworthy that the pre-condition is an

SPT or all the SPs have been available.

2.2 Unconstrained Route Optimization

An unconstrained optimal route query is actually an SP problem. When the main memory

is large enough to hold a whole graph, many algorithms such as Dijkstra’s algorithm,

Bellman-Ford algorithm, and Floyd-Warshall algorithm [6] can solve the problem efficiently.

However, if the given graph is very large, these algorithms do not work correctly. For

example, the disk file size of the graph for the east five states road system is 310M. When
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loading the graph into the main memory, it occupies around 1G main memory. In this

section, the focus is on introducing some SP algorithms for a very large graph.

Many algorithms have been proposed to solve the SP problem within a disk-based

framework. Although their approaches differ, the concept is the same. All of them depend

on the divide-and-conquer technique, and consist of pre-processing and SP query evaluation

phases. During the pre-processing, we first divide the graph into a set of fragments, which

is small enough to be loaded into the main memory, and materialize them in some disk-

based data structure, where the vertices shared by two or more sub-graphs are boundary

vertices. After some pre-computation has been conducted on the partitioned graph, some

resultant data is stored. During the SP query processing, the algorithms make full use

of the pre-computed data in order to speed up answering the query and to reduce the

I/O access. There are two materializations of the pre-computed data. One is to store the

paths information between all pairs of boundary vertices in each sub-graph; the other is to

materialize the distance data between the boundary vertices. The Hierarchical Encoded

Path View algorithm (HEPV) [19] takes the path materialization, causing excessive storage

overhead to maintain a large amount of pre-computed path information [20]. According to

the experimental results in [28], materializing the shortest distances between the boundary

vertices inside the same fragment provides the best savings in computation time with a

given amount of storage and a small number of fragments. The algorithms, proposed in

[31] (DiskSP) and [21] (DiskSPN), adopt the distance materialization.

In the pre-processing phase, [31] describes a scalable algorithm, based on breadth first

search (BFS) and Hilbert R-Tree, to partition a graph into a set of fragments. Then, for

each fragment, a DM holding the shortest distances between every pair of the boundary

vertices in the fragment is materialized. A super graph is constructed from these DMs and

boundary vertices. The nodes of the super graph are the boundary vertices, and its edges

correspond to the SPs between two boundary vertices in the same fragment with their

weights stored in DMDB. Since the size of the super graph is still too large, a sketch graph

is proposed to capture the information of the super graph. According to the partition

algorithm, a set of boundary vertices shared by two fragments is called a boundary set.

Each node in a sketch graph represents a boundary set; if two boundary sets are in same

fragment, then there is an edge between them in the sketch graph. Because the number of
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boundary sets in a fragment is small, the size of a sketch graph is also small. To find the

adjacent super edges of boundary vertex v of boundary set BS [Fi, Fj] in the super graph,

the adjacent edges of BS [Fi, Fj] in the sketch graph are found, providing all the boundary

sets (including BS [Fi, Fj] itself) in Fi and Fj. Then the boundary vertices held by the

previous boundary sets are retrieved, and finally with the help of the DMs of Fi and Fj, all

the information of the adjacent super edges of v are obtained. In this way, no real super

graph, which almost has the same size as the original graph, needs to be constructed. After

this phase, the materialized data consists of a fragment database holding all the fragments,

a DMDB, a boundary set database containing boundary vertices data, and a sketch graph.

In the query processing stage, there are two steps to answer query Q(s, d, G), where

S and D be the fragments holding s and d, respectively. The first step is to compute an

SP p from s to d in the merged graph, built by combining S and D into the super graph,

with Dijkstra’s algorithm. Then, for each super edge of p, find the corresponding actual

path in the graph, and merge these paths into a complete path from s to d, which is the

answer to query Q(s, d, G).

According to [21] and [31], the relaxation of a closed boundary vertex during the com-

putation of SP in the merged graph leads to the highest I/O costs, since the weights of the

super edges are stored in the external memory. The complexity of DiskSP’s I/O cost is

O(sort(N ))=Θ(N /B* log(M /B)(N /B)), where N=|V|+|E|, B is the number of vertices

and edges per disk block, and M is the number of vertices and edges that can be put into

the internal memory [31]. This complexity is better than the best-known disk-based SP

algorithm, which is O(|V|+|E|/B)log(|V|/B))([3],[2]).

The DiskSPN algorithm is an improved version of the DiskSP algorithm. In the pre-

processing phase, the DiskSPN pre-computes and materializes a boundary set distance

matrix, containing the α-value and β-value between each pair of boundary sets in the

sketch graph. Then, in the query processing phase, the DiskSPN prunes search space with

the BSDM before the SP computation in the merged graph. First, the algorithm computes

the β-approximation of SD(s, d, G). Then, for each boundary set BS in the sketch graph,

the algorithm calculates the α-approximations from s to BS and from BS to d, respectively.

When the sum of two α-approximations is greater than the β-approximation, the boundary

set is pruned from the sketch graph, the detailed proof is in [21]. As a result, the merged
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graph is also pruned. The remaining work is to compute an SP in the pruned merged

graph, and fill in the actual path from each edge on the path. The SP is called skeleton

path. The algorithm avoids a blind search and reduces the searching space in the super

graph.

[21] describes how to compute βA(s, d, G) and α-approximation between a vertex and

a boundary set. βA(s, d, G) is the minimum of the following two values:

• min({βA(s, bss, S )+α(bss, bsd, G)+βA(bsd, d, D) | bss is a boundary set in S and

bsd a boundary set in D});

• min({αA(s, bss, S )+β(bss, bsd, G)+αA(bsd, d, D) | bss is a boundary set in S and

bsd is a boundary set in D}).
The DiskSPN algorithm calculates αA(s, bs, G) and αA(bs, d, G), where bs is a boundary

set in the partition of graph G, as follows:

• αA(s, bs, G)=min({αA(s, bss, S )+α(bss, bs, G) | bss is a boundary set in S});

• αA(bs, d, G)=min({α(bs, bsd, G)+αA(bsd, d, D) | bsd is a boundary set in D}).
In these equations, the α-value and β-value between the two boundary sets are retrieved

from the BSDM, the α-value and β-value from s to a boundary set in S, and from a

boundary set in D to d are obtained from the SPT computation in S and D. The sum of

αA(s, bs, G) and αA(bs, d, G) are the lower bound of the shortest distance from s to d

in G via any boundary vertex in boundary set bs. If the α-approximation via bs is greater

than βA(s, bs, G) which is an upper bound of the shortest distance from s to d in G ;

that is, αA(s, bs, G)+αA(bs, d, G))>βA(s, d, G), then boundary set bs can be pruned.

According to the experimental results in [21], the DiskSPN performs 30% better than the

original algorithm DiskSP.

2.3 Proposed Disk-based Shortest Path Algorithm and

Optimal Path Algorithm

Until now, little research has been conducted on the constrained route optimization prob-

lem in a very large graph. From the survey of the constrained path problem, it is evi-
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dent that it is rather difficult to extend the previous K SPs algorithms or the weighted

constrained path algorithms within the disk-based framework due to the large space re-

quirement. For a dynamic SP problem, all the dynamic SP algorithms require either an

existing SPT or all the SPs as the input data. In the disk-based algorithms, discussed

in the last section, it is almost impossible to materialize the path information due to the

scalability requirement [20]. However, for the forbidden edge route optimization problem,

it is a different story. In this thesis, we attempt to solve the problem to find an SP from

one vertex to another without passing a set of edges in a very large directed graph. In the

following sections, we name the SP wrt the forbidden edge constrained as an optimal path

(OP). Our work is based on the DiskSP [31] and DiskSPN [21] algorithms:

• Introduces several new improvements on the DiskSP and the DiskSPN, including the

successor fragment idea to speed up the relaxation process of a closed vertex, and

improved sketch graph pruning and boundary vertex pruning during the skeleton

path computation. All of these ideas can be used in the new disk-based optimal path

algorithm(DiskOP);

• Adopts the concept of pseudo-relaxation to balance the I/O cost and the CPU cost.

Due to the forbidden edge constraint, if a fragment contains a forbidden edge, its

DM is no longer valid. Two brute-force approaches address the problem: re-compute

the distance matrix wrt the forbidden edge constraint, and compute an SPT wrt the

previous constraint during the relaxation of each closed boundary vertex when its

adjacent super edges lie in an affected fragment. The first approach minimizes the

I/O cost of swapping in and out the fragments but we have to compute all pairs of

the SP for boundary vertices in the fragment which increases the CPU cost. The

second approach minimizes the CPU cost due to computing the SPT only when it is

needed, but fragments can be swapped in and out of the main memory frequently,

increasing the I/O cost. Our approach is to use the pseudo-relaxation idea to collect

a set of boundary vertices of an affected fragment and relaxes their outgoing super

edges inside the fragment together. This is achieved by computing one OPF, whose

running time is almost the same as that of an SPT computation. In this way, the

I/O cost and the CPU cost are balanced.



Chapter 3

Improvements to the Disk-Based SP

Algorithms

The DiskSP algorithm [31] and its new version the DiskSPN algorithm [21] were reviewed

in the last chapter. In this chapter, some improvements are proposed for the two algo-

rithms and proved. Furthermore, some adjustments on the implementation of DiskSP and

DiskSPN are described.

3.1 Relaxation in Successor Fragment

For an SP query Q(s, d, G), in the query-processing phase, DiskSP applies Dijkstra’s algo-

rithm to the merged graph that consists of the source fragment, the destination fragment,

and the super graph, to compute a skeleton path from s to d. DiskSP iteratively selects a

boundary vertex u with the minimum shortest distance from the source vertex of all the

open boundary vertices in the super graph, adds u into a closed vertex set, and relaxes

the outgoing super edges of u. Let n be the number of iterations in the while loop of

DiskSP and BS [F1, F2] be the boundary set holding u, closed in the ith iteration (i∈[1,

n]). Obviously, all the boundary vertices in fragments F1 and F2 except u, are u’s adjacent

vertices in the super graph.

According to the definition of the super graph in Chapter 1, the weight of a super

edge in the super graph is the shortest distance from the edge’s head to its tail inside the

35
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fragment holding it. The triangle property for any boundary vertex x, y, and z in fragment

F is SD(x, y, F )+SD(y, z, F )≥SD(x, z, F ). It indicates that the shortest distance from

x to z in F is less than or equal to the sum of the shortest distance from x to y and that

from y to z in F. Let u be a boundary vertex in F. Assume that p is the SP from s to u by

applying Dijkstra’s algorithm to the merged graph. Therefore, p is a skeleton path. Let F

be the predecessor fragment of u on p. With the triangle property, it can easily be proved

that it is unnecessary to relax the outgoing super edges of u inside F, because the distance

of a closed boundary vertex cannot contribute to the distance of any boundary vertex in its

predecessor fragment. In the following sections, x.distance denotes the potential shortest

distance from source s to vertex x in given graph G. Once x is closed, x.distance = SD(s,

x, G).

Lemma 3.1. Let vertex u be the closed boundary vertex in the ith iteration of the

DiskSPNN algorithm (as in Algorithm 3.4), where i∈[1, n] and n is the number of iter-

ations in the algorithm. Denote p as the skeleton path from source s to u in the super

graph. Assume that F1 is the predecessor fragment of u on p. Then, it is unnecessary to

relax any super edge of u inside F1.

Proof Assume that boundary vertex v is the predecessor of u on skeleton path p, and v

is closed in the jth iteration. Obviously, fragment F1 is the successor fragment of v on p,

and 1≤j<i. Because the super edge e(v, u, F1) is relaxed only when v is closed, all the

outgoing super edges of v inside F1 has been relaxed in the jth iteration. Thus, during the

relaxation process of v in the jth iteration, for any boundary vertex x in F1, if SD(s, v,

G)+SD(v, x, F1)<x.distance , then x.distance is updated to SD(s, v, G)+SD(v, x, F1). As

a result, at the end of the jth iteration, x.distance≤SD(s, v, G)+SD(v, x, F1). Since j<i,

in the ith iteration, we still have x.distance≤SD(s, v, G)+SD(v, x, F1). According to the

triangle property, SD(v, x, F1)≤SD(v, u, F1)+SD(u, x, F1). Since SD(s, u, G)=SD(s, v,

G)+SD(v, u, F1), x.distance≤SD(s, v, G)+SD(v, x, F1)=SD(s, u, G)-SD(v, u, F1)+SD(v,

x, F1)≤SD(s, u, G)+SD(u, x, F1). Consequently, u is not the predecessor of any boundary

vertex x in its predecessor fragment F1 on the skeleton path from s to x. It is unnecessary

to relax any super edge of u inside F1.2
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Assume BS [F1, F2] is the only boundary set holding the above boundary vertex u.

When u is closed, DiskSP and DiskSPN relax the outgoing super edges of u inside both F1

and F2. According to Lemma 3.1, let F1 be the predecessor fragment of u on the skeleton

path from s to u. Relaxing the super edges inside F2 is enough. If u is the predecessor of

boundary vertex x on skeleton path p’ from s to x, where x is in F2, F2 is the successor

fragment of u and the predecessor fragment of x on p’. F2 is called a potential successor

fragment of vertex u.
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(b) Boundary vertex shared by three fragments

Figure 3.1: Relaxation on super edges

If more than two fragments, without the loss of generality, assume that fragment F1,

F2, and F3, hold boundary vertex u, then u has three copies u1, u2, and u3 in boundary set

BS [F1, F2], and BS [F1, F3], BS [F2, F3], respectively (Figure 3.1). Let u1, u2, and u3 be

the first, second, and third copy to be closed. For both u1 and u2, assume that boundary

vertex v is the predecessor, and F1 is the predecessor fragment on the skeleton paths from

s to u1 and u2, respectively. According to Lemma 3.1, relaxing the outgoing super edges of

u1 inside F2 is enough. Since u3 belongs to BS [F2, F3], u3.distance is updated to SD(s, u1,

G), u1 is u3’s potential predecessor, and F2 is u3’s potential predecessor fragment on the

skeleton path from s to u3. Similarly, the relaxation process of u2 is inside F3 only. Finally,
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with closing u3, the relaxation on u3’s super edges is inside F3. DiskSP and DiskSPN relax

the outgoing super edges for each copy of the boundary vertex in both the predecessor and

successor fragments. In this example, F2 and F3 are the potential successor fragments of

u. From the previous analysis, it is evident that even if boundary vertex u is shared by

more than two fragments, only the outgoing super edges of u inside potential successor

fragments are relaxed.

With the successor fragment concept, the speed of the relaxation process will be in-

creased. Since DiskSP retrieves the adjacent super edges of a boundary vertex by a sketch

graph and a DMDB, stored in the external memory, the I/O cost of reading the DMs is

reduced to 50% by reading one DM instead of two DMs. The same idea can be applied to

solve the disk-based OP problem. For any super edge e(u, v, F ) inside unaffected fragment

F, the edge’s weight remains as its corresponding shortest distance, w(e)=SD(u, v, F ).

For any super edge e(u, v, F ) inside affected fragment F, the edge’s weight is the optimal

distance from u to v in F and w(e)=OD(u, v, F, Ef ), where Ef is the forbidden edge set

given in the optimal route query. According to the definition, the optimal distance is the

shortest distance in the modified graph by removing all the forbidden edges. Consequently,

the successor fragment idea is still valid to the disk-based OP problem.

3.2 Query Super Graph

For an SP query Q(s, d, G), the DiskSP [31] algorithm directly computes a skeleton

path from s to d in the merged graph consisting of the source fragment, the destination

fragment, and the super graph. With DiskSPN [21], the merged graph is pruned first,

and then the skeleton path is computed in the pruned merged graph. During the pruning

phase of DiskSPN, in order to calculate the β-approximation and the α-approximations,

an outgoing SPT SPTs rooted at source s in source fragment S and an incoming one

SPTd rooted at destination d in destination fragment D are computed. Thus, the shortest

distance from s to any vertex of S inside S and those from any vertex of D to d inside D

can be directly obtained from SPTs and SPTd. However, when computing a skeleton path

in the pruned merged graph, DiskSP and DiskSPN must read the interior vertex or edge
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data of S and D and re-calculate on them. Our approach is to use the query super graph

of Q(s, d, G) to replace the merged graph and compute a skeleton path from s to d in the

query super graph. In this way, we can ignore the interior vertices and edges in S and D.
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Figure 3.2: Skeleton path with s and d in the different fragments

According to [31], skeleton path p from s to d in the merged path consists of three

parts (Figure 3.2 and Figure 3.3(a)):

• An SP p1 from s to the first boundary vertex v on p, which is a boundary vertex of

S ;

• An SP p2 from v to u in the super graph, where u is the last boundary vertex on p

which is a boundary vertex of D ;

• An SP p3 from u to d inside D.

The exception case is portrayed in Figure 3.3(b): here, s and d are in the same fragment,

and SD(s, d, S ) is equal to SD(s, d, G), p is an SP from s to d inside S. Since p1 and
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Figure 3.3: Skeleton path with s and d in the same fragment

p3 are inside S and D respectively, they are real paths in G. However, each edge of p2

corresponds to a super edge in the super graph. An actual path for each edge must be

found. After p1 and p3 are merged with these paths, we obtain the answer to the SP query

Q(s, d, G).

Now the construction of a query super graph is briefly described. Given an SP query

Q(s, d, G), SPTs and SPTd, we can build a query super graph for the query as follows:

• Add s and d into the super graph;

• For each boundary vertex v in S, insert a super edge e(s, v, S ) with weight w(e)=SD(s,

v, S )obtained from SPTs, into super graph;

• For each boundary vertex u in D, insert a super edge e(u, d, D) weight w(e)=SD(u,

d, D) obtained from SPTd, into super graph;
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• When s and d are in the same fragment, insert a super edge e(s, d, S ) with weight

w(e)=SD(s, d, S ) obtained from SPTs, into super graph.

DiskSP and DiskSPN use a sketch graph to obtain the data of a super graph. Similarly,

we build a query sketch graph on a sketch graph to retrieve data of a query super graph

efficiently. First, add s and d with the adjacent edges from s to each boundary set in S

and from each boundary set in D to d, respectively, into the sketch graph; if S and D are

the same, add an edge from s to d. The detailed definition of query super graph and query

sketch graph are in Chapter 1, where the only difference is that the weight of an edge in

the query super graph corresponds to the optimal distance, whereas here the weight is the

shortest distance. Actually, if there is no forbidden edge constraint, the optimal distance is

equal to the shortest distance. For a merged graph and a query super graph, the differences

lie in the source fragment and the destination fragment. The former includes all data in

S and D, whereas the latter one contains all the outgoing super edges of s inside S and

the incoming super edges of d inside D. Let nSb and nDb be the number of the boundary

vertices of S and D, respectively. Denote nS(mS) as the number of the vertices (edges)

in S, and nD(mD) as the number of the vertices (edges) in D. Obviously, a merged graph

contains more vertices and edges than a query graph. The difference in the number of

vertices is nS-nSb+nD-nDb+2, where 2 represents the additional vertices s and d, and that

in the number of edges is mS-mSb+mD-mDb. Since it is necessary to compute SPTs and

SPTd during the pruning stage anyway, the time to obtain the weights of the adjacent

super edges of s and d can be ignored here. Consequently, computing a skeleton path in a

query graph is faster than in the merged graph.

It is known that skeleton path p=p1¦p2¦p3 is an SP from s to d in a merged graph.

Therefore, sub-path p1 is a real path from s to a boundary vertex v of S inside S, sub-path

p3 is a real path from a boundary vertex u of D to d inside D, and sub-path p2 is a path

consisting of the super edges and boundary vertices from v to u. By using some super

edges to denote the actual SPs inside the source fragment and the destination fragment,

we can ignore the details of S and D. Therefore, for an SP query, its query super graph

is equal to its merged graph. Skeleton path p’ from s to d in a query graph consists of a

set of super edges and boundary vertices. Let 〈e1, e2, . . . , ei, . . . , ek〉 be the super edge

sequence of p’ and pi be an SP corresponding to ei, where 1≤i≤k. Then, p1 is from s to
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a boundary vertex of S inside S and pk is from a boundary vertex of D to d inside D.

Thus, p1 and pk are obtained from SPTs and SPTd, respectively. For any other super edge

ei(u, v, F ) on p’ (1<i<k), its corresponding real path pi is an SP from u to v in fragment

F. Finally a resulting path p” of the SP query Q(s, d, G) can be obtained by concate-

nating the previous SPs in sequence, denoted as p”=p1¦p2¦. . . ¦pi¦. . . ¦pk. For the special

case in Figure 3.3(b), p’ has only one super edge, representing an SP from s to d inside

S. Therefore, p” is retrieved immediately from SPTs, and is a resulting path to Q(s, d, G).

3.3 Search Space Pruning

It is noteworthy that the DiskSPN algorithm [21] prunes boundary sets in a sketch graph

statically. Section 3.3.1 describes an idea of pruning boundary sets by a breadth first

search (BFS). Section 3.3.2 presents an approach to prune open boundary vertices during

the process of a skeleton path computation.

3.3.1 Sketch Graph Pruning

The pruning technique used by the DiskSPN algorithm [21] reduces the SP search space

with a pre-computed BSDM in the query-processing phase. DiskSPN computes a β-

approximation βA(s, d, G), where βA(s, d, G)≥SD(s, d, G). Then, for each boundary

set BS in a sketch graph, two α-approximations αA(s, BS, G) and αA(BS, d, G) are com-

puted, where αA(s, BS, G)≤min({SD(s, v, G) | v∈BS}) and αA(BS, d, G)≤min({SD(v,

d, G) | v∈BS}). If αA(s, BS, G)+αA(BS, d, G)>βA(s, d, G), then an SP from s to d

in G will not pass any vertex of BS. Consequently, BS can be removed from the sketch

graph. Let nk be the number of nodes in a sketch graph. The number of α-approximation

computations in the sketch graph pruning is 2nk in DiskSPN.

We define three operations on a tree T with root r :

• getDistance(v): Returns the distance between r and v on T ; If v is not a tree node,

returns the positive infinity;
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• getMinDistance(bs): Returns the minimum distance between r and a boundary ver-

tex set bs on T which is min({getDistance(v) | v∈bs});

• getMaxDistance(bs): Returns the maximum distance between r and a boundary

vertex set bs on T, which is max ({getDistance(v) | v∈bs}).
There are two operations on a BSDM of a partitioned graph G :

• getAlphaValue(bs1, bs2): Returns α-value from boundary set bs1 to boundary set bs2

in G which is ( bs1, bs2, G);

• getBetaValue(bs1, bs2): Returns β-value from boundary set bs1 to boundary set bs2

in G which is (bs1, bs2, G).

Algorithm 3.1 AlphaApprox(r, F, T, bs, BM, out)

Input: r is a vertex, F is a fragment containing r, T is an SPT rooted at r in F, bs is a

boundary set in a partitioned graph G, BM is the boundary set distance matrix, out is a

Boolean value indicating if T is an outgoing tree or not.

Output: α-approximation between r and bs in G.

1: min = +∞
2: for each boundary set bs1∈F do

3: if out then

4: alpha=T.getMinDistance(bs1)+BM.getAlphaValue(bs1, bs)

5: else

6: alpha=BM.getAlphaValue(bs, bs1)+T.getMinDistance(bs1)

7: end if

8: if alpha<min then

9: min=alpha

10: end if

11: end for

12: return min

The AlphaApprox algorithm returns the α-approximation between vertex r and bound-

ary set bs in the given partitioned graph. If parameter out is true, it returns αA(r, bs,
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G)=min({α(r, bsf , F )+α(bsf , bs, G) | bsf is a boundary set in F}). Otherwise, αA(bs,

r, G)=min({α(bs, bsf , G)+α(bsf , r, F ) | bsf is a boundary set in F}).
The BetaApprox algorithm returns βA(s, d, G) which is the minimum of the following

two values:

• min({βA(s, bss, S )+α(bss, bsd, G)+βA(bsd, d, D) | bss is a boundary set in S and

bsd is a boundary set in D});

• min({αA(s, bss, S )+β(bss, bsd, G)+αA(bsd, d, D) | bss is a boundary set in S and

bsd is a boundary set in D}).
However, for those short queries, we observe that after pruning the boundary sets close

to s, there is no path from the source to many of the boundary sets at all. Therefore, it

is unnecessary to compute the two α-approximations on them. For an SP query Q(s, d,

G), construct a query sketch graph for it by adding s, d, and their adjacent edges into

the sketch graph (details in Chapter 1). Then, traverse the query sketch graph starting

from s with BFS, instead of visiting the sketch nodes one by one, and prune sketch nodes.

Finally, for those unvisited sketch nodes, directly remove them from the query sketch

graph. Although the worst-case complexity of the new approach is comparable to the

previous one [21], when the sketch graph is large and the SP query is short, the new

method improves the performance of pruning the query sketch graph significantly. The

PruneSketchGraph algorithm is a detailed description of how to prune a query sketch

graph with BFS. Maintain a First in First Out (FIFO) queue Q in the PruneSketchGraph

algorithm. A vector implements a FIFO queue interface with the two operations:

• addLast(v): add an item v at the end of the FIFO queue;

• Q.removeFirst(): remove the first item from the queue and return the item.

Attach two attributes to every sketch node in the sketch graph: visited and dstAlpha. For

any sketch node n, the initial value of visited attribute is false. Once n.visited becomes

true, when accessing n again, we can skip it. Two α-approximations αA(s, BS, G) and

αA(BS, d, G) are calculated for each visited sketch node n, where BS is the corresponding

boundary set of n. The value of αA(BS, d, G) is stored for the later dynamic open boundary

vertex pruning (details in the next section).
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Algorithm 3.2 BetaApprox(s, S, SPTs, d, D, SPTd, BM )

Input: s and d are the source and destination vertices respectively, S and D are the

fragments in which s and d are in respectively, SPTs is an outgoing SPT rooted at s in S,

SPTd is an incoming SPT rooted at d in D, BM is the BSDM of G.

Output: β-approximation between r and bs in G.

1: minA = +∞
2: minB = +∞
3: for each boundary set bss in S do

4: for each boundary set bsd in D do

5: betaA=SPTs.getMaxDistance(bss)+BM.getAlphaValue(bss,

bsd)+SPTd.getMaxDistance(bsd)

6: betaB=SPTs.getMinDistance(bss)+BM.getBetaValue(bss,

bsd)+SPTd.getMinDistance(bsd)

7: if betaA<minA then

8: minA=betaA

9: end if

10: if betaB<minB then

11: minB=betaB

12: end if

13: end for

14: end for

15: if betaA<betaB then

16: return betaA

17: else

18: return betaB

19: end if
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Algorithm 3.3 PruneSketchGraph(s, S, SPTs, d, D, SPTd, k, BM, β)

Input: s and d are the source and destination vertices respectively, S and D are the

fragments in which s and d are in respectively, SPTs is an outgoing SPT rooted at s in S,

SPTd is an incoming SPT rooted at d in D, BM is the BSDM, k is the sketch graph, β is

βA(s, d, G), where G is the given whole graph.

Output: none.

Ensure: sketch graph k is pruned

1: Q=new Vector() {Q is a FIFO queue for sketch graph traversal (BFS)}
2: for each boundary set bs∈S do

3: Q.addLast(bs)

4: bs.visited=true

5: end for

6: while ¬Q.empty() do

7: bs=Q.removeFirst()

8: alphas=AlphaApprox(s, S, SPTs, bs, BM, true)

9: alphad=AlphaApprox(d, D, SPTd, bs, BM, false)

10: if (alphas+alphad)>β then

11: remove bs from k

12: else

13: for each adjacent boundary set bs0 of bs in k do

14: if ¬bs0.visited then

15: Q.addLast(bs0)

16: bs0.visited=true

17: end if

18: end for

19: bs.dstAlpha=alphad

20: end if

21: end while

22: for each bs in k do

23: if ¬bs.visited then

24: remove bs from k {remove unvisited boundary sets in sketch graph}
25: end if

26: end for
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Figure 3.4: Query sketch graph pruning

Figure 3.4 provides an example of an improved query graph pruning. First, check the

adjacent boundary sets of s, BS [F0, F2] and BS [F0, F1] in source fragment F0, where

αA(s, BS [F0, F2], G)+αA(BS [F0, F2], d, G)=17>βA(s, d, G)=13 and αA(s, BS [F0, F1],

G)+αA(BS [F0, F1], d, G)=11<βA(s, d, G)=13. Hence, prune BS [F0, F2]. Then, check

the adjacent unvisited boundary set of BS [F0, F1], which is BS [F1, F3], and αA(s, BS [F1,

F3], G)+αA(BS [F1, F3], d, G)=15>βA(s, d, G)=13. Thus, BS [F1, F3] is pruned. After

BS [F1, F3] and BS [F0, F2] are removed, no path is available from s to BS [F2, F3], BS [F2,

F4], BS [F3, F5], BS [F4, F5] in the sketch graph. Thus, an SP from the source to the desti-
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nation will never pass through any boundary vertex of BS [F2, F3], BS [F2, F4], BS [F3, F5],

BS [F4, F5]. Consequently, we can prune them without computing any α-approximation.

After pruning, BS [F0, F1] is the only boundary set in the query sketch graph. With the

pruning approach in DiskSPN, we need to compute 2*7 =14 α-approximations, whereas

with the new method, in this example, only 2*3 = 6 α-approximations are calculated.

Lemma 3.2 proves the correctness of the PruneSketchGraph algorithm. The experimental

results are discussed in Chapter 5.

Lemma 3.2. Let bs be a boundary set removed from k in the PruneSketchGraph al-

gorithm, and p be an SP from s to d in graph G. Then, there does not exist a vertex v

such that v∈p and v∈bs.

Proof For any boundary set bs, if αA(s, bs, G)+αA(bs, d, G)>βA(s, d, G), bs is eligible

for removal from the sketch graph. Q is a FIFO queue in the algorithm. The PruneSketch-

Graph algorithm traverses the query sketch graph with BFS. According to lines 13–18,

there exists a path from s to any visited boundary set in the pruned query sketch graph,

and the unvisited boundary sets have never been added into Q. Hence, no path is avail-

able from s to the unvisited boundary sets in the pruned query sketch graph, based on

the connectivity property of a BFS tree. The PruneSketchGraph algorithm removes the

boundary sets in line 11 and line 24. Therefore, any removed boundary set is either visited

and satisfies the previous inequality or unvisited. In the former case, the boundary set is

removed in line 11, and obviously, any SP p from s to d will not go through any of its

boundary vertices. In the latter case, the boundary set bs is removed in line 24 and is un-

visited. There is no path from s to bs in the pruned query sketch graph. This implies that

there is no path from any visited boundary set bs’ to bs such that αA(s, bs’, G)+αA(bs’,

d, G)<βA(s, d, G), according to lines 13–18. All the paths from s to bs in the original

query sketch must pass through the nodes removed in line 11. Based on the analysis of

removed visited boundary sets, αA(s, bs, G)+αA(bs, d, G)>βA(s, d, G), and the lemma

holds.2
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3.3.2 Dynamic Open Boundary Vertex Pruning

As discussed in Section 3.1, the DiskSP algorithm selects a boundary vertex or a vertex

inside the source fragment or the destination fragment and relaxes the outgoing edges of

the selected vertex iteratively. When DiskSP selects a boundary vertex v∈bs, where bs is

the boundary set holding v, if v.distance+αA(bs, d, G)>βA(s, d, G), the SP from s to d

will never go through v, and is eligible to be pruned. In addition, all the open vertices of bs

can be pruned at this time. The cost of each boundary vertex pruning check is constant,

since during the process of pruning query sketch graph, the α-approximations from those

remaining boundary sets to destination d have been computed. If αA(s, d, G) and αA(bs,

d, G) are tight, boundary vertex pruning will to further reduce the search space.
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Figure 3.5: Pruned query super graph

Figure 3.5 is the pruned query super graph corresponding to the pruned query sketch

graph in Figure 3.4. With our approach, v10 is the first closed boundary vertex and its out-

going super edges are relaxed. The next closed boundary vertex is v9. However, since SD(s,

v9, G)+αA(BS [F0, F1], d, G)=10+4>βA(s, d, G)=13, prune v9 immediately. Lemma 3.3

provides the correctness proof of the boundary vertex pruning.
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Lemma 3.3. Let vertex u be the closed boundary vertex in the ith iteration of the

DiskSP algorithm, where i∈[1, n] and n is the number of iterations in the algorithm. Let

bs be u’s host boundary set. If u.distance+αA(bs, d, G)>βA(s, d, G), then u and all the

open vertices in bs can be pruned.

Proof After u is closed in the ith iteration, u.distance is SD(s, u, G). In addition, from

the definition of α-approximation, SD(u, d, G)≥αA(bs, d, G). Hence, we have SD(s, u,

G)+SD(u, d, G)≥u.distance+αA(bs, d, G)>βA(s, d, G)≥SD(s, d, G). Consequently, the

weight of any path from s to d via u is greater than SD(s, d, G); that is u is eligible for

pruning. Let v be an open boundary vertex of bs in the ith iteration of DiskSP. Since

the DiskSP algorithm applies Diskstra’s algorithm to a merged graph consisting of a super

graph, a source fragment, and a destination fragment, SD(s, v, G) must be greater than or

equal to u.distance. Hence, SD(s, v, G)+SD(v, d, G)≥u.distance+αA(bs, d, G)>βA(s,

d, G)≥SD(s, d, G). Similarly, we can prune v. 2

We can also apply the idea of boundary set and boundary vertex pruning in the disk-

based OP algorithms just by using γ-approximation instead of β-approximation. Because

γA(s, d, G, Ef )≥OD(s, d, G, Ef ) is the upper bound of the optimal distance, and

αA(s, bs, G)≤min({SD(s, v, G) | v∈bs})≤min({OD(s, v, G, Ef ) | v∈bs}), αA(bs,

d, G)≤min({SD(v, d, G) | v∈bs})≤min({OD(v, d, G, Ef ) | v∈bs}). Thus, the key of

the search space pruning during an OP computation is to calculate γA(s, d, G, Ef ), which

is discussed it in the next chapter.

3.4 Description of the DiskSPNN algorithm

In this section, we give the pseudo-code of the new disk-based SP algorithm (DiskSPNN)

incorporating the approaches presented in the previous sections, and discuss the data

structure used for the proposed algorithm, based on the data structure used in DiskSP and

DiskSPN.

There are eight inputs in the DiskSPNN algorithm: source vertex s, destination vertex
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d, source fragment S and destination fragment D, fragment database FDB, DMDB M,

sketch graph k, and BSDM BM. FDB is the partitioned graph including the whole set

of fragments. The data structures FDB, M and BM are stored in virtual hash table, a

disk-based version of the hash table, details in Chapter 4 of [31]. Each object stored in

a virtual hash table has a key, can be stored or retrieved by the key. Virtual hash table

maintains a buffer in the main memory. When the buffer is full and we want to access a

new object, some object must be swapped onto the disk according to some strategy, and

the new object is read into the main memory.

DiskSP and DiskSPN compute an SP in a merged graph, and maintain two min-priority

queues. The vertices in S and D are in a binary heap. The boundary vertices are clustered

into boundary sets, whose attributes are stored in a disk-based data structure distance

vector [31]. Each distance vector maintains a Fibonacci heap for the boundary vertices of

a boundary set with an ascendant order by the distance from s. A main memory U-Heap

( the details are in Chapter 3 of [31]) contains one delegate vertex for each boundary set,

which is the one with the minimum distance from s of all the open boundary vertices in

the boundary set. The merit of U-Heap is that it allows the updating of the key of an entry

in the heap. DiskSP selects iteratively the minimum item of all the items in the binary

heap and U-Heap.

In the new DiskSPNN algorithm , since we do an SP computation in the query super

graph, the binary heap is unnecessary. A U-heap and a distance vector database are

enough. Moreover, after a graph is partitioned into a set of fragments, the set of boundary

sets, as well as the boundary vertices in a boundary set, are fixed. Therefore, we replace a

distance vector with a distance array. Each distance array corresponds to a boundary set,

and consists of an array and a Fibonacci Heap. The Fibonacci Heap is almost the same

as the one in the distance vector. The array holds the boundary vertices in a boundary

set, and the vertices are sorted according to their coordinates. Each item in the array has

a key as the coordinate of the boundary vertex and has a value as its auxiliary data. The

auxiliary data includes four attributes: closed, distance, predecessor and predecessorFrag.

The index of an item in the array is its position; for example, the index of the first item

is 0 and that of the second item is 1. Closed indicates if the boundary vertex is closed

or not, distance is the potential shortest distance from s to the current boundary vertex,
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Figure 3.6: Data structures for DiskSPNN algorithm

predecessor is the potential predecessor of the boundary vertex, and predecessorFragment

is its predecessor fragment. Therefore, we can find a boundary vertex by the ID of the

boundary set holding it, and the array index of the distance array, called boundary vertex

ID. Obviously, retrieving a boundary vertex with its boundary vertex ID is more efficient

than finding the boundary vertex with its coordinate. In our new implementation, the

key of any item in the U-Heap or Fibonacci Heaps is its boundary vertex ID. Since the

source vertex and the destination vertex may not be boundary vertices, we need create an

item for each of them in U-heap Q. In our implementation, the boundary IDs of s and

d are (BS [FS, FS], 0) and (BS [FD, FD], 1), respectively, where FS is the fragment ID of

S, and FD is that of D. Each of them has a pointer to the location holding its auxiliary

data. Figure 3.6 exhibits the distance array database and the U-Heap. Two operations on

U-heap Q are defined as follows:
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• extractMin(): Returns the the item with the minimum value in the heap. It first finds

the minimum item x of all the items in Q ; then visits the distance array corresponding

to the boundary set holding x, removes x from its Fibnaccio heap FibQ, and replaces

x in Q with the minimum item in FibQ ;

• update(item, key): Updates the value of an item in a distance array or in Q or

according to the given key. For example, if the key of the item is a boundary vertex

ID (BS [Fi, Fj], index), go to the distance array representing BS [Fi, Fj], and update

the value of the item in the Fibnaccio heap FibQ with key ; if the minimum item

is changed in FibQ, then replace the delegate vertex of the boundary set in Q with

item.

In the initialization step, step A, the new algorithm computes two SPTs SPTs and

SPTd, and computes a β-approximation for an SP from s to d in G, and prunes the

boundary sets in the sketch graph. In addition, DiskSPNN initializes a distance array

database to contain the distance arrays for the boundary sets during the SP computation.

At this time, all the boundary vertices are open, and their distance attribute is infinity.

Furthermore, DiskSPNN sets s to be closed and its distance to be zero, and relaxes the

outgoing super edges of s in the query graph. In the iteration step, step B, DiskSPNN iter-

atively selects one vertex with the minimum value from queue Q, and relaxes the outgoing

super edges of the selected vertex in its successor fragment. Since the predecessor fragment

of each boundary vertex u is stored in u’s auxiliary data. Let boundary set BS [F1,F2] be

u’s host boundary set and F1 be u’s predecessor fragment. Thus, F2 is the successor frag-

ment of u. Finding the outgoing super edges of u inside fragment F2 is easy. First obtain

the adjacent node set BSET of BS [F1,F2] from the sketch graph. Then, for each boundary

set bs in BSET∪{BS [F1,F2]}, if bs is in fragment F2, then DiskSPNN relaxes super edge

e(u, v, F2) such that v∈bs. Moreover, the weights of these super edges are in the DM of F2.

When either the selected vertex is d or Q is empty, step B terminates. In the termination

step, if d is closed, DiskSPNN retrieves the skeleton path from s to d from the distance

array database. For each super edge e(u, v, F ) in the skeleton path, DiskSPNN finds a

real SP corresponding to the super edge inside F with Dijkstra’s algorithm, and merges

these sub-paths into one complete path which is the output of the algorithm. Otherwise, d
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is still open, which means no path from s to d is available in G, and the algorithm returns

null.
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Algorithm 3.4 DiskSPNN(s, d, S, D, FDB, M, k, BM )

Input: s and d are the source and the destination respectively, S and D are the fragments

in which s and d are respectively, FDB is the fragment database of the given graph G, M

is the DMDB, k is the sketch graph, BM is the BSDM.

Output: an SP from s to d in G

Step A: Initialization

1: Build outgoing SPT SPTs rooted at s in S

2: Build incoming SPT SPTd rooted at d in D

3: β=BetaApprox(s, S, SPTs, d, D, SPTd, BM ) {compute β-approximation from s to d

in G}
4: PruneSketchGraph(s, S, SPTs, d, D, SPTd, k, BM, β) {Prune sketch graph k}
5: Initialize distance array database daDB

6: Initialize priority queue Q {Q is the U-Heap containing delegates of boundary sets}
7: s.closed=true

8: s.distance=0

9: if S==D then

10: d.distance=SPTs.getDistance(d)

11: d.predecessor=s

12: d.predecessorFrag=S

13: Q.update(d, d.distance)

14: end if{relax the super edge e(s, d, S )}
15: for each boundary set b in S do

16: if k.contains(b) then

17: for each boundary vertex v∈b do

18: v.distance=SPTs.getDistance(v)

19: v.predecessor=s

20: v.predecessorFrag=S

21: Q.update(v, v.distance)

22: end for{relax the outgoing super edges of s}
23: end if

24: end for

(continued next page)



56 Optimal Path Queries in Very Large Spatial Databases

Step B: Iteration

1: while ¬Q.empty() do

2: v=Q.extractMin()

3: v.closed=true

4: if v==d then

5: goto Step C

6: end if

7: find the boundary set bs=[F1, F2] in which v locates {bs.dstAlpha is αA(bs, d, FDB)

computed in Step A line 4}
8: if (v.distance+bs.dstAlpha)> β then

9: prune v and open vertices in bs

10: remove bs from k

11: end if

12: find successor fragment F of v {F is either F1 or F2}
13: MainThrust(v, dist, k, Q, daDB, M, F ) {relax the outgoing super edges of v in F}
14: end while

Step C: Termination

1: if d.closed then

2: construct the complete SP p from the obtained skeleton path{details in [31], use

Dijsktra’s algorithm to compute a real path for each edge of the previous computed

skeleton path and merge them into one}
3: else

4: p=null

5: end if

6: return p
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Algorithm 3.5 MainThrust(u, dist, k, Q, daDB, M, F0)

Input: u is the closed boundary vertex, dist is the optimal distance of u, k is the sketch

graph, Q is the U-Heap containing delegates of boundary sets, daDB is the distance array

database, M is the DM, F0 is the successor fragment of u

Output: none.

Ensure: the outgoing super edges of u in F0 are relaxed

1: m=M.get(F0) {get the DM for fragment F from fragment database}
2: find all adjacent boundary sets B of bs from k and add bs into B

3: for each boundary set b∈B do

4: if b.inFragment(F0) then

5: for each boundary vertex v∈b do

6: if v.distance>dist+m.get(u,v) then

7: v.distance=dist+m.get(u,v)

8: v.predecessor=u

9: v.predecessorFrag=F0

10: Q.update(v, v.distance)

11: end if

12: end for

13: end if

14: end for



Chapter 4

Design of the OP Query Engine

The new disk-based SP (DiskSPNN) algorithm was discussed in the last chapter. An ef-

ficient disk-based OP (DiskOP) algorithm to find an OP not via a set of edges in a very

large graph is now introduced. Section 4.1 describes how to prune the search space with

some pre-materialized data, Section 4.2 reviews two brute-force approaches to solve the

OP problem in a very large graph, and Section 4.3 proposes our disk-based OP algorithm.

4.1 Search Space Pruning

The pruning on the sketch graph and open boundary vertices of the DiskSPNN algorithm

can be easily applied to prune the search space during an OP computation in a very large

graph. A pre-computed BSDM is adopted to calculate an upper bound of the shortest

distance efficiently. Unlike the SP queries, it is impossible to obtain an upper bound of

the optimal distance directly from BSDM due to the forbidden edge constraint. In short,

the β-approximation of the shortest distance in the diskSPNN algorithm is not an up-

per bound of the optimal distance any longer. Fortunately, since an OP is actually an

SP in the modified graph, obtained by removing those forbidden edges from the original

graph, the α-approximation is still a lower bound of the optimal distance. Intuitively, to

tighten α-approximation according to the forbidden edge constraint, those affected frag-

ments must be read into the main memory, which is too time-consuming. Therefore, the

58
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α-approximation is also used in the OP problem. As a result, what we have to solve is how

to efficiently compute a γ-approximation of the optimal distance. Our approach is to ma-

terialize a pivot fragment for each fragment of the given partitioned graph and construct

a query sketch graph KQ for a given OP query Q(s, d, G, Ef ), detailed in Chapter 1.

Thus, the shortest distance from s to d in the query sketch graph is a γ-approximation for

OD(s, d, G, Ef), denoted as γA(s, d, G, Ef ). Section 4.1.1 gives four different approaches

to materialize a pivot fragment database. The algorithm to compute the γ-approximation

from s to d in G wrt Ef are discussed in Section 4.1.2. Section 4.1.3 presents the details

of adapting the pruning techniques for the disk-based OP.

4.1.1 Materializations of Pivot Fragments

The DM of an affected fragment is invalid to answer an OP query Q(s, d, G, Ef ) due to

the forbidden edges inside the fragment. It is impossible to obtain a tight upper bound

of the optimal distance OD(s, d, G, Ef ) without the reading the interior data of those

affected fragments. However, to compute the γ-approximation by reading all of the affected

fragments into the main memory is not practical due to the high I/O cost. Therefore,

partial fragment materialization is a better alternative to speed up the calculation process.

Since a boundary set consists of those vertices shared by two adjacent fragments, intu-

itively, it is assumed that any two boundary vertices in the same boundary set are close to

each other. Therefore, we choose a boundary vertex randomly as the pivot of a boundary

set in fragment F and materialize some paths between two pivots inside F. Then, merge all

the edges of the materialized paths into a graph, which is the pivot fragment of F, denoted

as Fp. Therefore, the optimal distance between any pivot pair (pvi, pvj) in Fp is an upper

bound of the optimal distance between them in F, that is, OD(pvi,pvj, Fp, Ef )≥OD(pvi,

pvj, F, Ef ). OD(pvi, pvj, Fp, Ef )=PD(vi, vj, F, Ef ) is the weight of sketch edge e(vi, vj,

Fp) in KQ, where pvi and pvj are the pivots of sketch nodes vi and vj, respectively. During

the process of computing an SP p from s to d in a query sketch graph KQ, when relaxing

the outgoing sketch edges of a sketch node inside an unaffected fragment, the weights of

the edges can be read directly from the sketch graph. However, if its outgoing sketch edges

are inside an affected fragment F and their weights have not been updated yet, we have
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to compute the optimal distances between each pivot pair in Fp as the new weights of the

corresponding sketch edges. Since the size of Fp is small and the number of the pivots in

F is that of the boundary sets in F, the cost of computing the weights of the sketch edges

inside F is affordable. In the worst case, if there is no path from s to d in KQ, then γA(s,

d, G, Ef ) is infinity and we cannot prune the search space at all.

There are many approaches to build a pivot fragment. This section presents four differ-

ent methods to materialize a partial fragment: single pivot path (SPP), double pivot path

(DP), single branch pivot path (SBP), and double branch pivot path (DBP). In Chapter 5,

we compare the performance of these methods, which shows that the DBP is the best

of all methods. In the rest of this chapter, the pivot fragment database that is used is

materialized by DBP.

Algorithm 4.1 SPP(F, ps)

Input: F is a fragment holding u and v, ps is a set of pivots in F.

Output: pivot fragment Fp of F with SPP

1: initialize a graph Fp

2: for each pivot u in ps do

3: for each pivot v in ps (v 6=u) do

4: compute a SP p from u to v in F

5: for each edge e of p do

6: if ¬Fp.contains(e) then

7: Fp.add(e)

8: end if

9: end for

10: end for

11: end for

12: return Fp

Pivot fragment Fp of fragment F consists of all the edges of the pivot paths. One or

more pivot paths are computed for each sorted pivot pair in F, and each edge of the pivot

paths is added into Fp. A vertex in Fp is either a pivot or an internal vertex. If the number

of the computed pivot paths of a pivot pair is one, the materialization approach is SPP; if



Chapter 4. Design of the Optimal Path Query Engine 61

Algorithm 4.2 DP(F, ps)

Input: F is a fragment holding u and v, ps is a set of pivots in F.

Output: pivot fragment Fp of F with DP

1: initialize a graph Fp

2: for each pivot u in ps do

3: for each pivot v in ps (v 6=u) do

4: compute a SP p1 from u to v in F

5: for each edge e of p1 do

6: if ¬Fp.contains(e) then

7: Fp.add(e)

8: end if

9: end for

10: p2=SecondPivotPath(u, v, F, p1) {compute a second pivot path from u to v in F}
11: for each edge e of p2 do

12: if ¬Fp.contains(e) then

13: Fp.add(e)

14: end if

15: end for

16: end for

17: end for

18: return Fp

it is two, the approach is DP. The materialized pivot paths of SPP are the SPs inside F. In

DP, for a pivot pair (pvi, pvj), first path p1 is an SP from pvi to pvj in F. The second path

p2 is computed in the following way: let p1=〈e1, e2, . . . , el〉, check edges of p1 in order: for

each edge ex (1≤x≤k), if there exists a path from pvi to pvj in F not via ex, delete ex from

F. Then, compute an SP from pvi to pvj in the modified F, which is the second pivot path.

Finally, recover the modified fragment to be its original status by inserting those removed

edges back. Algorithm 4.3 describes the way to compute the second pivot path in detail.

Intuitively, the second pivot path tries to avoid the edges overlapping with the first pivot

path. Consequently, for a set of forbidden edges, the probability of finding a tight upper
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Algorithm 4.3 SecondPivotPath(u, v, F, p1)

Input: u and v are pivots, F is a fragment holding u and v, p1=〈e1, e2, . . ., ek〉 is a SP

from u to v in F.

Output: a second pivot path from u to v in F

1: for i=1 to k do

2: F.remove(ei)

3: if there is no path from u to v in F then

4: F.add(ei)

5: end if

6: end for{check edge sequence 〈e1, e2, . . ., ek〉 of p1}
7: compute a SP p2 from u to v in F

8: for i=1 to k do

9: if ¬F.contains(ei) then

10: F.add(ei)

11: end if

12: end for{recover the removed edges of p1 in F, such that F remains unchanged}
13: return p2

bound for a pivot path in a fragment is increased. Algorithms 4.1 and 4.2 describe SPP

and DP, respectively.

Figure 4.1 gives an example of the SPP, where v1,v2, v3, v4, v5 are the pivots; the others

are internal vertices. An internal vertex with the incoming degree 1 and outgoing degree 1

is said to be a 1-1 internal vertex. When the adjacent edges of all the 1-1 internal vertices

are merged into one branch, the number of vertices in the pivot fragment decreases, and

there is no data loss, because the branch consists of the merged edges. Branch br has

three properties: a tail vertex, a head vertex, and an edge ID set, denoted as tail(br),

head(br), and edgeIDs(br), respectively. Edge ei(u,v) and branch br(v, y) can be merged

into a new branch with head u, tail y, and edge ID set edgeIDs(br)∪{ei}. The branch idea

is applied to SPP and DP to obtain two new approaches: single branch pivot path (SBP)

and double branch pivot path (DBP). Figure 4.2 illustrates the pivot fragment with SBP

for the example in Figure 4.1. There are 17 vertices with an SPP materialization and 9
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Figure 4.1: Pivot fragment with SPP
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Figure 4.3: Forbidden objects of a pivot fragment with SBP

vertices with an SBP materialization without any precision or efficiency loss. Algorithm

4.4 describes the details of applying the branch idea into a pivot fragment.

Let F be an affected fragment, Fp be its pivot fragment, and Ef be a given forbidden

edge set of partitioned graph G. If any edge or branch in Fp contains a forbidden edge, it

is a forbidden object. Let an object o be an edge, a vertex, or a branch in graph g. There

are three operations on o in g :

• contains(o): if g contains o, return true; otherwise, false;

• add(o): insert o into g ;

• remove(o) : if o is an edge or a branch, then remove o from g ; if it is a vertex, then

remove it and its adjacent edges from g.

If it is assumed that the forbidden object set of Fp is Epf , the optimal distance from pivot

pvi to pivot pvj in Fp is the shortest distance from pvi to pvj in Fp not via any branch or edge

in set Epf , that is PD(pvi, pvj, F, Ef )=OD(pvi, pvj, Fp, Epf ). Since Fp is a sub-graph of

F, and Epf is actually a subset of Ef , obviously PD(pvi, pvj, F, Ef )≥OD(pvi, pvj, F, Ef ).

Figure 4.3 provides an example of a forbidden object set, where the given forbidden edges
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Algorithm 4.4 BranchPF(Fp)

Input: Fp is a pivot fragment with SPP or DP

Output: Fbp is a pivot fragment applying branch idea to Fp

1: new a graph Fbp, which is a copy of Fp

2: for each vertex u in ps do

3: if u is a 1-1 internal then

4: br=new branch(e(x, u), e(u, y)) {e(x, u) and e(u, y) are u’s adjacent

edges/branches}
5: Fbp.remove(u))

6: Fbp.add(br)

7: end if

8: end for

9: return Fbp

are e(c, d), e(b, f ), e(g, v4), and its corresponding forbidden objects are br(c, v3), br(b, v4).

4.1.2 γ-approximation

Given an OP query Q(s, d, G, Ef ), according to the definitions of γ-approximation and

the query sketch graph in Chapter 1, the shortest distance from s to d in query sketch

graph KQ wrt Q(s, d, G, Ef ) is a γ-approximation from s to d in G. Given an outgoing

OPT OPTs rooted at s in S and an incoming OPT OPTd rooted at d in D, we can build

KQ based on sketch graph K of G as follows:

• For each sketch edge e(vi, vj, F ) in K, if F is an affected fragment, then w(e)=PD(pvi,

pvj, F, Ef ), where pvi and pvj are the pivots of sketch vertices vi and vj, respectively;

• Add s and d to the sketch graph K ;

• For each boundary set bs of S in K, insert a sketch edge from s to bs with weight

OD(s, pv, S, Ef ) into K, where pv is the pivot of bs, and OD(s, pv, S, Ef ) is obtained

from OPTs;



66 Optimal Path Queries in Very Large Spatial Databases

• For each boundary set bs of D in K, insert a sketch edge from bs to d with weight

OD(pv, d, D, Ef ) into K, where pv is the pivot of bs, and OD(pv, d, D, Ef ) is

obtained from OPTd;

• If s and d are in the same fragment, insert a sketch edge from s to d with weight

OD(s, d, S, Ef ) into K, where OD(s, d, S, Ef ) is obtained from OPTs.

In the process, operation getDistance(v) is used to return the distance on a tree between

root and a tree node v (detailed in Chapter 3). Essentially, the γApprox algorithm com-

putes an SP from s to d in KQ with Dijkstra’s algorithm. Since the weights of the sketch

edges inside the affected fragment are unknown, we need to compute them in real-time.

When the sketch edges of a sketch node v are relaxed in affected fragment F, it is neces-

sary to check if the weights of the sketch edges in F are computed. If not, the γApprox

reads pivot fragment Fp of F from the pivot fragment database, and computes the optimal

distances between each pivot pairs wrt the forbidden edges constraint in Fp. Then, the

weights of the sketch edges are updated with their corresponding optimal distances. To

relax the outgoing sketch edges of a sketch node in an unaffected fragment, the γApprox

obtains their weights directly from sketch graph K according to the definition of the query

sketch graph.

The γApprox algorithm maintains a min-priority queue Q with two operations, extract-

Min() and enqueue(bs,dist). Q.extractMin() returns the item with the minimum value in

Q, and Q.enqueue(bs,dist) inserts item bs with value dist into Q. Each sketch edge e(vi,

vj, F ) in K has an attribute weight indicating SD(vi, vj, F ). If F is affected, the edge

weight is updated to be PD(pvi, pvj, F, Ef ) during the computation. Each sketch node bs

in K has attributes: pivot, distance, and predFrag, indicating the pivot of its corresponding

boundary set, the potential γ-approximation from s to bs in G, and the potential prede-

cessor fragment of bs on the SP from s to bs in KQ, respectively. Algorithm 4.5 describes

the process of γA(s, d, G, Ef ) calculation. Lemma 4.1 indicates the correctness proof of

the γApprox algorithm.

Lemma 4.1. γA(s, d, G, Ef ) is the output of the γApprox for Q(s, d, G, Ef ).

Proof Let K be a sketch graph of partitioned graph G. Given a sketch edge e(bsi, bsj, F )

in K, according to the definition of a sketch graph, w(e)=SD(vi, vj, F ), where vi and vj
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Algorithm 4.5 γApprox(s, S,OPTs, d, D, OPTd, k, Ef , PDB)

Input: s and d are the source and destination vertices respectively, S and D are the

fragments in which s and d are in respectively, OPTs is an outgoing OPT rooted at s in

S, OPTd is an incoming OPT rooted at d in D, k is the sketch graph, Ef is the forbidden

edge database, PDB is pivot graph database

Output: γA( s, d, G, Ef )

Step A: Initialization

1: for each boundary set bs∈k do

2: bs.distance=+∞
3: end for

4: initialize a priority queue Q

5: for each boundary set bs in S do

6: pv=bs.pivot

7: bs.distance=OPTs.getDistance(pv)

8: bs.preFrag=S

9: Q.enqueue(bs, OPTs.getDistance(pv)) {insert boundary set bs with the optimal dis-

tance from s to pv in S into Q}
10: end for{get the pivots in S}
11: if S.contains(d) then

12: γ=OPTs.getDistance(d)

13: Q.enqueue(d,γ)

14: else

15: γ=+∞
16: end if

(continued next page)
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Step B: Iteration

1: while ¬Q.empty() do

2: bs [F1,F2]=Q.extractMin()

3: if bs is d then

4: goto Step C line 1

5: end if

6: if bs.inFragment(D) ∧ γ>(bs.distance+OPTd.getDistance(bs.pivot)) then

7: Q.enqueue(d, bs.distance+OPTd.getDistance(bs.pivot)){relax to d}
8: γ=bs.distance+OPTd.getDistance(bs.pivot)

9: end if

10: if F1==bs.preFrag then

11: F=F2

12: else

13: F=F1

14: end if{find the successor fragment of bs}
15: if Ef .contains(F ) ∧ weights of sketch edges in F not updated then

16: for each sketch edge e(u, v) in F do

17: Fp=PDB.get(F ) {get pivot fragment of F}
18: e.weight=OD(u, v, Fp, Ef ){compute the optimal distance from u to v in Fp}
19: end for

20: end if

21: for each sketch edge e(bs, bs0, F ) in k do

22: if bs0.distance>(bs.distance+e.weight) then

23: bs0.distance=bs.distance+e.weight

24: Q.enqueue(bs0, bs0.distance)

25: bs0.preFrag=F

26: end if

27: end for

28: end while

Step C: Termination

1: return γ
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are the pivots of boundary sets bsi and bsj, respectively. the γApprox algorithm constructs

an augmented graph K ’ of K by adding s, d, and their adjacent sketch edges. For each

boundary set bss in a source fragment S, insert a sketch edge e(s, bss, S ) with weight SD(s,

vs, S ) in K, and vs is the pivot of bss. For each boundary set bsd in destination fragment

D, insert sketch edge e(vd, d, D) with weight SD(vd, d, D), and vd is the pivot of bsd.

Denote p’ as an SP from s to d in K ’. Obviously, w(p’ )≥SD(s, d, G).

Let KQ be the query sketch graph of the given query. As per the definition of KQ, the

only difference between K ’ and KQ is the weights of the sketch edges inside the affected

fragments. By assuming F is affected, e(bsi, bsj, F ) is with weight OD(vi, vj, Fp, Ef ),

where Fp is the pivot fragment of F, and vi, vj are the pivots of sketch nodes bsi, and bsj.

Because Fp is a sub-graph of F, OD(vi, vj , Fp, Ef )≥OD(vi, vj, F, Ef ). Denote p to be

the SP from s to d in KQ. Because p corresponds to an actual path from s to d in G not

via a forbidden edge, w(p)≥OD(s, d, G, Ef ), and w(p)=γA(s, d, G, Ef ).

According to Step A lines, 5–16, the outgoing sketch edges of source vertex s in KQ are

relaxed. According to Step B, lines 6–9, all the incoming sketch edges of d in K’ are re-

laxed. According to Step B, lines 15–20, the weights of those sketch edges wrt the affected

fragments are re-computed in the corresponding pivot fragments. Therefore, K’ is the

same as KQ. γApprox applies Dijkstra’s algorithm to compute the SP p’ in K’. According

to Step B, line 21, extracted boundary set bs relaxes only in its successor fragment. Lemma

3.1 indicates that it is unnecessary to relax the predecessor fragment. Based on the anal-

ysis, the algorithm incorporates the successor fragment idea into Dijkstra’s algorithm to

find the SP p’ from s to d in KQ. As a result, w(p’ )=γA(s, d, G, Ef )≥OD(s, d, G, Ef ). 2

4.2 Two Brute-Force Disk-Based OP Algorithms

According to the discussion in Chapter 3, given an SP query Q(s, d, G), a query super

graph SQ can be constructed. Let p be an SP from s to d in SQ. Compute an SP for each

super edge of p, and concatenate them in sequence. The obtained path is the answer to

Q(s, d, G). The three disk-based OP algorithms proposed in this thesis are under the same

framework as the DiskSPNN algorithm described in Chapter 3; that is, to find the SP in
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a query super graph built for a given route query. As shown in DiskSPNN, when relaxing

the outgoing edges of boundary vertex v in SQ, the weights of the edges can be retrieved

directly from the pre-computed DMDB. However, for the OP problem, the DMs of these

affected fragments are invalid due to the given forbidden edge constraint; the weights of the

involved affected super edges need to be computed in real time. This section introduces

two straightforward approaches for solving the OP problem in a very large graph: the

Optimal Path Tree Approach (NOPT) and the New Distance Matrix Approach (NDM),

and discusses their drawbacks.

Both NOPT and NDM are based on the DiskSPNN algorithm which computes an SP

from s to d in query super graph SQ, corresponding to SP query Q(s, d, G). The weight

of each super edge e(u, v, F ) in SQ is SD(u, v, F ). Given an optimal query Q ’(s, d, G,

Ef ), let SQ’ be a query super graph wrt Q ’. The weight of any super edge e(u, v, F ) in

SQ’ should be the optimal distance from u to v inside F. If F does not hold a forbidden

edge, w(e) remains SD(u, v, F ); otherwise, it is OD(u, v, F, Ef ). Thus, the SP p’ from

s to d in SQ’ represents an OP in G not via any edge of Ef . The NOPT algorithm

and the NDM algorithm compute p’ in SQ’. When an affected super edge is relaxed, its

weight must be computed; otherwise, the weight from the pre-computed DM is read. Also,

NOPT and NDM incorporate the successor fragment concept and the pruning techniques

introduced in Chapter 3. From Lemmas 3.1–3.3 and Lemma 4.1, the correctness of the two

approaches is obvious. They use the same data structure as DiskSPNN. Moreover, their

initialization steps and termination steps are almost the same as DiskSPNN, except that

they build OPTs instead of SPTs in a source and a destination fragment, and compute

γ-approximation instead of the β-approximation. The iteration step of the two approaches

must compute the weights of the affected super edges to be relaxed, and the rest is the

same as that of DiskSPNN.

The NOPT algorithm applies Dijkstra’s algorithm in SQ’ to find skeleton path p from a

source to a destination, and then fills in each edge of p, to obtain a real path. The NOPT

algorithm maintains min-priority queue Q. It iteratively extracts a boundary vertex v with

the minimum optimal distance from a source vertex and relaxes its outgoing super edges

inside its successor fragment F. If F does not contain a forbidden edge, then NOPT reads

the weights of the super edges from the DM of F. Otherwise, the algorithm reads F into
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Algorithm 4.6 NOPT(s, d, S, D, FDB, M, k, BM, Ef , PDB)

Input: s and d are the source and destination vertices respectively, S and D are the

fragments in which s and d are respectively, FDB is the fragment database, M is the

DMDB, k is the sketch graph, BM is the BSDM, Ef is the forbidden edge database, PDB

is pivot graph database.

Output: an OP from s to d in FDB wrt Ef

Step A: Initialization

1: Build an outgoing OPT OPTs rooted at s in S wrt Ef

2: Build an incoming OPT OPTd rooted at d in D wrt Ef

3: γ=γApprox(s, S, OPTs, d, D, OPTd, k, Ef , PDB)

4: PruneSketchGraph(s, S, OPTs, d, D, OPTd, k, BM, γ){Prune sketch graph k}
5: Initialize distance array database daDB

6: Initialize priority queue Q{Q is the U-Heap containing delegates of boundary sets}
7: s.closed=true

8: s.distance=0

9: if S==D then

10: d.distance=OPTs.getDistance(d)

11: d.predecessor=s

12: d.predecessorFrag=S

13: Q.update(d, d.distance)

14: end if{relax the super edge e(s, d, S ), when s and d are in the same fragment}
15: for each boundary set b in S do

16: if k.contains(b) then

17: for each boundary vertex v∈b do

18: v.distance=OPTs.getDistance(v)

19: v.predecessor=s

20: v.predecessorFrag=S

21: Q.update(v, v.distance)

22: end for

23: end if

24: end for{relax the outgoing super edges of s in S}
(continued next page)
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Step B: Iteration

1: while ¬Q.empty() do

2: v=Q.extractMin()

3: v.closed=true

4: if v==d then

5: goto Step C

6: end if

7: find the boundary set bs=[F1, F2] in which v locates

8: if (v.distance+bs.dstAlpha)>γ then

9: prune v and open vertices in bs

10: remove bs from k

11: end if{boundary vertex pruning, bs.dstAlpha is αA( bs, d, FDB) computed in Step

A line 4}
12: find successor fragment F of v{F is either F1 or F2}
13: if Ef .contains(F ) then

14: Build an outgoing OPT OPTv rooted at v in F wrt Ef

15: MainThrustOPT(v, dist, k, Q, daDB, OPTv, F )

16: else

17: MainThrust(v, dist, k, Q, daDB, M, F ){relax the outgoing super edges of v in F}
18: end if

19: end while

Step C: Termination

1: if d.closed then

2: construct the complete OP p from the obtained skeleton path

3: else

4: p=null

5: end if

6: return p
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Algorithm 4.7 MainThrustOPT(u, dist, k, Q, daDB, OPTu,F0)

Input: u is the closed boundary vertex, dist is the optimal distance of u, k is the sketch

graph, Q is the U-Heap containing delegates of boundary sets, daDB is the distance array

of boundary sets, M is the DM, OPTu is an OPT rooted at u in F0, F0 is the successor

fragment of u.

Output: none.

Ensure: u’s outgoing super edges in F0 are relaxed

1: find all the adjacent boundary sets B of bs from k and add bs into B

2: for each boundary set b∈B do

3: if b.inFragment(F0) then

4: for each boundary vertex v∈b do

5: if v.distance>(dist+OPTu.getDistance(v)) then

6: v.distance=dist+OPTu.getDistance(v)

7: v.predecessor=u

8: v.predecessorFrag=F0

9: bQ.decreaseKey(v, v.distance) {bQ is the Fibonacci queue of b in daDB}
10: Q.update(v, v.distance)

11: end if

12: end for{relax the outgoing super edges of u in F0}
13: end if

14: end for

the main memory first, computes an outgoing OPT OPTv rooted at v inside F, and obtains

the weights of the super edges from OPTv. Algorithm 4.7 describes the relaxation of the

super edges inside an affected fragment, and algorithm 4.6 gives the description of NOPT.

However, when the graph is very large and the main memory is not large enough to hold

all the affected fragments, the affected fragments must be frequently swapped. As a result,

the I/O cost is high. Since NOPT computes only an OPT when doing the relaxation on

a closed super node with an affected successor fragment, it minimizes the CPU time for

computing the OPTs.

NDM is similar to NOPT. The only difference is that NDM updates the DM according



74 Optimal Path Queries in Very Large Spatial Databases

Algorithm 4.8 NDM(s, d, S, D, FDB, M, k, BM, Ef , PDB)

Input: s and d are the source and destination vertices respectively, S and D are the fragments
in which s and d are respectively, FDB is the fragment database, M is the DMDB, k is the
sketch graph, BM is the BSDM, Ef is the forbidden edge database, PDB is pivot graph database
Output: an OP from s to d in FDB

Step A: Initialization

1: The NOPT algorithm step A
2: initialize a new DMDB NM

Step B: Iteration

1: while ¬Q.empty() do
2: v=Q.extractMin()
3: v.closed=true
4: if v==d then
5: goto Step C
6: end if
7: find the boundary set bs=[F1, F2] in which v locates
8: if (v.distance+bs.dstAlpha)>γ then
9: prune v and open vertices in bs

10: remove bs from k
11: end if{prune boundary vertex, bs.dstAlpha=αA(bs, d, FDB) computed in Step A}
12: find successor fragment F of v{F is either F1 or F2}
13: if Ef .contains(F ) then
14: if NDM.contains(F ) then
15: MainThrust(v, dist, k, Q, daDB, NM, F ){the new DM of F was computed}
16: else
17: compute the new DM of F wrt Ef and put it into NM
18: end if
19: else
20: MainThrust(v, dist, k, Q, daDB, M, F ){relax the outgoing super edges of v in F}
21: end if
22: end while

Step C: Termination

1: The NOPT algorithm Step C
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to the given forbidden edge constraint for each involved affected fragment. For extracted

boundary vertex v with affected successor fragment F, NDM checks whether the DM of F

has been updated or not. If the matrix is not updated, it reads F into the main memory,

and computes the optimal distances between each boundary vertex pair in F, and updates

the DM for F, storing it in a new DMDB NM. Otherwise, NDM retrieves the computed

one from the NM. This approach reads each affected fragment into the main memory only

once during the optimal skeleton path computation, minimizing the I/O cost. Let k be

the number of boundary vertices in an affected fragment F. The NDM needs to compute k

OPTs inside F to obtain the updated DM. Consequently, the CPU cost of NDM is high.��������F4
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 (b) Example of NDM


Figure 4.4: Two brute-force disk-based OP approaches
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Figures 4.4 depicts examples of NOPT and NDM. Let F3 and F4 be the affected frag-

ments in a given portioned graph. NOPT and NDM iteratively extract a super node from

Q and do relaxation on its outgoing super edges inside its successor fragment. Since F6, F7,

F8, F9, F10 and F11 do not contain a forbidden edge, their DMs are valid, and the weights

of the super edges are directly retrieved from them. However, when v12 is extracted with

affected fragment F4, the weights of its outgoing super edges need to be computed. NOPT

builds an outgoing OPT rooted at v12 in F4 wrt the forbidden edge constraint, and ob-

tains the weights of the edges from the tree; NDM computes an OPT for each boundary

vertex in F4 to obtain a new DM. Thus, at the time of relaxing the outgoing super edges

of v13 in its successor fragment F4, NOPT must build an OPT with root v13 in F4. NDM

attains the weights of the super edges from the updated DM of F4. In summary, NOPT

computes an OPT for a boundary vertex inside affected fragment F only if it is required;

NDM computes an OPT for each boundary vertex of F. NOPT has to swap frequently the

affected fragments; and NDM reads them only once. From the previous analysis, a good

solution to the OP problem should balance the I/O cost and CPU time of computing the

OPTs at the same time.

4.3 Proposed DiskOP algorithm

The DiskOP is also a variant of Dijkstra’s algorithm. Given an OP query Q(s, d, G,

Ef ) and query super graph SQ, DiskOP, NOPT, and NDM compute an SP from s to d

in SQ. When closing boundary vertex v with affected successor fragment F, NOPT and

NDM relax v immediately by computing an OPT with v as the root in F or calculates

a new DM for F wrt Ef . However, DiskOP attempts to find a closed but un-relaxed

boundary vertex set CU in F, which is the successor fragment of all the vertices in CU.

In addition, CU should contain as many boundary vertices as possible that satisfy the

previous restriction. Then, DiskOP relaxes the outgoing super edges of the boundary

vertices in CU inside F simultaneously by computing an OPF wrt the forbidden edge

set, decreasing the computation and I/O time. The reason for finding CU is to continue

Dijkstra’s algorithm on the graph as if no forbidden edge constraints exist, until all the
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unfinished vertices in F are closed. If a vertex is both closed and relaxed, it is a finished

vertex. Otherwise, it is unfinished. As per the analysis in Section 3.1, let v belong to

boundary set bs [F ’, F ], where bs is shared by the predecessor and successor fragments.

Assume the predecessor fragment of v is F ’. Then, F is its successor fragment. Obviously,

the successor fragment of a super node held by a boundary set is uniquely determined.

From Lemma 3.1, we only need to relax the outgoing super edges of v inside F. It may

require a number of iterations to close all the boundary vertices in an affected fragment.

The details of this approach follow.

One or more vertices are finished during each iteration in DiskOP. If the successor

fragment F of v is unaffected, DiskOP relaxes the outgoing super edges of v in F imme-

diately, and v is the only finished vertex during the iteration; otherwise, DiskOP triggers

a PseudoOP process with a closed but un-relaxed vertex v to find CU, and relaxes all the

outgoing super edges of the vertices in CU. At the end of the PseudoOP process, all the

vertices of CU are finished. Any vertex v that is selected by DiskOP with an affected

successor fragment F is the seed triggering a PseudoOP process, denoted as PseudoOP(v,

F ).

Let T be an outgoing SPT rooted at s in SQ and Ti be the status of T at the end of

the ith iteration that holds all the finished vertices as tree nodes, where i∈[1, n] and n is

the number of iterations in DiskOP. Assume that in the (i + 1)st iteration, vertex v with

affected successor fragment F is selected. Define UR(v, F ) as a set of unfinished boundary

vertices in F at the time v is selected such that, for any vertex x∈UR(v, F ), SD(v, x,

F )6=+∞ and v /∈UR(v, F ). Obviously, e(v, x, F ) is the outgoing super edge of v in SQ with

a finite weight.

The DiskOP continues the tree computation based on Ti by ignoring the forbidden

edge constraint until each vertex of UR(v, F ) is closed. Let Ti’ be the obtained tree.

Intuitively, in order to maximize the number of unfinished boundary vertices to be relaxed

with the seed v together in F, we should wait until Ti’ contains all the unfinished boundary

vertices in F. However, if there exists a boundary vertex z in F such that there is no path

available from s in G, to build Ti’ is time consuming. Consequently, we choose UR(v,

F ) as the termination condition to guarantee that only a limited number of boundary

vertices are involved in computing Ti’. Let wm(UR(v, F ))=max ({SD(v, x, F )|x∈UR(v,
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F )}). Therefore, for any tree node y in Ti’, the weight of the tree path from s to y is less

than or equal to OD(s, v, G, Ef )+wm(UR(Ef , F )). According to the partition approach

used in [31], we can assume wm(UR(v, F )) is not large wrt the entire graph G. As a result,

obtaining Ti’ does not consume too much time.

Since Ti’ is built by ignoring the forbidden edge constraint, the relaxation on the out-

going super edges of a boundary vertex inside an affected fragment is pseudo-relaxation,

and the relaxed super edges are pseudo-edges. To categorize the tree nodes in Ti’-Ti, we

colour them with white, black or grey. For any vertex u∈Ti’-Ti, let p be a path from s to

u on Ti’. If any of the edges on p is a pseudo-edge, u is grey. When none of the edges on

p is a pseudo-edge, u is either white or black. The successor fragment of the white vertex

should be affected, where that of the black vertex is unaffected. We will prove later that

the black vertex is finished, the white one is closed but un-relaxed yet and the grey one is

open and un-relaxed. Therefore, the grey vertex is pseudo-closed, and the white or black

vertex is real-closed. Figure 4.5 shows the colours of the tree nodes in Ti’-Ti.
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Figure 4.5: Colour of boundary vertex
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Denote CU (v, F, Ti’-Ti) as a boundary vertex set such that for any vertex x∈CU (v, F,

Ti’-Ti), x∈ Ti’-Ti, and x is a white vertex with F as its successor fragment. The vertices of

CU (v, F, Ti’-Ti) are the boundary vertices we try to collect. Since all the white vertices are

real-closed, their distances are the optimal distances from the source vertex in the graph.

Hence, we can compute an OPF rooted at CU (v, F, Ti’-Ti) in F with the optimal distances

as the value referred to Chapter 1.

Let u be an open boundary vertex in F. If it is a vertex of the OPF, according to

the definition of the OPF, it is easy to find an ancestor a∈CU (v, F, Ti’-Ti) for u such

that OD(s,a, G, Ef )+OD(a, u, F, Ef )=min({OD(s, x, G, Ef )+OD(x, u, F, Ef )|x∈CU (v,

F, Ti’-Ti)}). As a result, for a super edge e(x, u, F ), where x∈CU (v, F,Ti’-Ti), it is

unnecessary to relax e when u is not in the OPF or x is not the ancestor of u. In other

words, in order to finish the relaxation on the vertex set CU (v, F, Ti’-Ti), we need to relax

only the super edges e(a, u, F ), where a is the ancestor of open vertex u in F. Obviously,

the weights of these super edges in SQ can be retrieved easily from the OPF. The process

for the relaxation on vertex set CU (v, F, Ti’-Ti) is called co-relaxation. The CPU time of

building one OPF is almost the same as that of that of building one OPT. Furthermore,

the relaxation on|CU (v, F, Ti’-Ti)|boundary vertices requires reading F only once.

Let ε be the number of the PseudoOP processes triggered by the seeds with F as the

successor fragment of the seeds. Therefore, the number of times of reading F is, at most,

ε, and our approach computes, at most, ε OPFs in F. In this way, the I/O cost and the

CPU time are balanced. Despite the process of building vertex set CU (v, F, Ti’-Ti), the

saved I/O cost and CPU time is significant.

After the co-relaxation on CU (v, F, Ti’-Ti), the finished vertex set in the (i + 1)st iter-

ation consists of the black vertex set and CU (v, F, Ti’-Ti). The unfinished vertices in Ti’

are either the grey vertices or the white vertices which are not in CU (v, F, Ti’-Ti). Thus,

Ti+1 can be obtained by removing those unfinished vertices from Ti’, and Ti+1 holds all the

finished vertices in SQ at the end of the PseudoOP process during the (i + 1)st iteration of

DiskOP. Although our approach employs the same schema as Dijkstra’s algorithm, there

are some differences between them. Dijkstra’s algorithm selects a vertex iteratively, and

relaxes its adjacent edges immediately, since the weights of its outgoing edges are avail-

able. Also, our approach selects a vertex iteratively. When the successor fragment of the
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selected vertex is unaffected, DiskOP relaxes the outgoing edges of the vertex at once, but

when it is affected, DiskOP calls a PseudoOP process with the vertex as the seed inside

the affected successor fragment. Section 4.3.1 describes DiskOP and presents a concrete

example, Section 4.3.2 proves the correctness of DiskOP, and Section 4.3.3 analyzes the

CPU complexity and the I/O complexity.

4.3.1 Algorithm Description

DiskOP Algorithm

There are ten inputs to DiskOP algorithm: source vertex s, fragment S holding s, desti-

nation vertex d, fragment D holding d, the partition of the original entire graph G (also

called the fragment database) FDB, DMDB M, sketch graph k, BSDM BM, forbidden edge

database Ef where the forbidden edges are grouped by the fragments holding them, and

the pivot fragment database PDB. The DiskOP finds a skeleton path from s to d in query

super graph SQ wrt given optimal query Q(s, d, FDB, Ef ), and then completes the skeleton

path to be an OP to the query. The DiskOP uses the same data structure as DiskSPNN.

The only difference is that DiskOP attaches one more relaxed attribute to each super node

v, indicating whether all the outgoing super edges of v are relaxed or not. The initialization

and termination steps of DiskOP are the same as that of NOPT. Since s is relaxed in the

step A, DiskOP sets its relaxed attribute as true.

In the iteration step, DiskOP extracts boundary vertex v with the minimum value from

priority queue Q iteratively. When v.distance+αA(bs, d, G)>γA(s, d, G, Ef ), where bs

is the boundary set holding v, DiskOP prunes v and all the open boundary vertices of

bs, which is dynamic open boundary vertex pruning, proved in Chapter 3. Otherwise,

DiskOP relaxes the outgoing super edges of v. Let F be the successor fragment of v. If F

contains a forbidden edge, DiskOP triggers a PseudoOP process with v as the seed. The

process attempts to find boundary vertex set CU in F, and then relaxes all the outgoing

super edges of the vertices of CU inside F by computing an OPF. When F is unaffected,

DiskOP conducts a MainThrust on v, relaxing all the outgoing super edges of v in F with

its pre-computed DM, as detailed in the Chapter 3. The terminate condition of this step
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Algorithm 4.9 DiskOP(s, d, S, D, FDB, M, k, BM, Ef , PDB)

Input: s and d are the source and destination vertices respectively, S and D are the

fragments in which s and d are respectively, FDB is the fragment database, M is the

DMDB, k is the sketch graph, BM is the BSDM, Ef is the forbidden edge database, PDB

is pivot graph database.

Output: an OP from s to d in FDB wrt Ef

Step A: Initialization

1: Build an outgoing OPT OPTs rooted at s in S wrt Ef

2: Build an incoming OPT OPTd rooted at d in D wrt Ef

3: γ=γApprox(s, S, OPTs, d, D, OPTd, k, Ef , PDB)

4: PruneSketchGraph(s, S, OPTs, d, D, OPTd, k, BM, γ){Prune sketch graph k}
5: Initialize distance array database daDB

6: Initialize priority queue Q{Q is the U-Heap containing delegates of boundary sets}
7: s.closed=true

8: s.distance=0

9: if S==D then

10: d.distance=OPTs.getDistance(d)

11: d.predecessor=s

12: d.predecessorFrag=S

13: Q.update(d, d.distance)

14: end if{relax the super edge e(s, d, S ), when s and d are in the same fragment}
15: for each boundary set b in S do

16: if k.contains(b) then

17: for each boundary vertex v∈b do

18: v.distance=OPTs.getDistance(v)

19: v.predecessor=s

20: v.predecessorFrag=S

21: Q.update(v, v.distance)

22: end for

23: end if

24: end for{relax the outgoing super edges of s in S}
25: s.relaxed=true

(continued next page)
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Step B: Iteration

1: while ¬Q.empty() do

2: v=Q.extractMin()

3: v.closed=true

4: if v==d then

5: goto Step C

6: end if

7: find the boundary set bs=[F1, F2] in which v locates

8: if (v.distance+bs.dstAlpha)>γ then

9: prune v and open vertices in bs

10: remove bs from k

11: end if{boundary vertex pruning, bs.dstAlpha is αA(bs, d, FDB) computed in Step

A}
12: find successor fragment F of v{F is either F1 or F2}
13: if ¬Ef .contains(F ) then

14: v.relaxed=true

15: MainThrust(v, dist, k, Q, daDB, M, F ){relax the outgoing super edges of v in F}
16: else

17: PseudoOP(v, dist, k, Q, daDB, M, F, FDB, Ef )

18: end if

19: end while

Step C: Termination

1: if d.closed then

2: construct the complete OP p from the obtained skeleton path

3: else

4: p=null

5: end if

6: return p
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is either the extracted vertex is d, meaning that a skeleton path from s to d is found, or

the min-priority queue Q is empty, indicating there is no path from s to d satisfying the

given forbidden edge constraint Ef .

Let n be the number of iterations in step B of DiskOP. Denote Qi as the status of

priority queue Q at the end of the ith iteration, where i∈[1, n], and Q0 is the status at the

beginning of the first iteration. Step B, line 2 demonstrates that a vertex is extracted from

Q during each loop. Let 〈λ1, λ2, . . . , λn〉 be the extracted vertex sequence, and λi be the

one extracted in the ith iteration, where i∈[1, n]. Denote Fi as the successor fragment of

λi. Correspondingly, we have a successor fragment sequence 〈F1, F2, . . . , Fn〉. According

to step B, lines 13–18, when Fi does not contain a forbidden edge, DiskOP relaxes the

outgoing super edges of i inside Fi in SQ with the pre-computed DM of Fi; otherwise,

trigger a PseudoOP process with i as the seed in Fi.

PseudoOP Process

From step B, lines 13–18 of DiskOP, the PseudoOP process is called only when the successor

fragment F of an extracted vertex v contains a forbidden edge. Assume DiskOP triggers

PseudoOP in the ith iteration with seed λi. Denote the tree status at the end of the jth

iteration of PseudoOP as T j
i−1, where j∈[1, m], m is the number of iterations in PseudoOP,

and T 0
i−1 is the tree status exactly after the initialization step which is the tree with λi

adding into Ti−1. There are two queues; a global queue Q and a local queue psQ in

PseudoOP. Q and psQ hold the candidate vertices to be real-closed and pseudo-closed,

respectively. Let Qj
i−1 and psQj be the status of Q and psQ, respectively, at the end of

the jth (j∈[1, m]) iteration of PseudoOP. Q0
i−1 and psQ0 are their status at the end of the

initialization step of PseudoOP. After the unfinished tree nodes are trimmed from Tm
i−1, we

obtain tree Ti and all of the tree nodes are finished.

According to PseudoOP, step B, line 2, an item with the minimum value of all the

items in Q and psQ is extracted iteratively. Let 〈µ1, µ2, . . . , µm〉 be the extracted vertex

sequence, and 〈 f1, f2, . . . , fm〉 be the successor fragment sequence, where µj is the vertex

extracted in the jth iteration with successor fragment fj (j∈[1, m]). Before describing

the algorithm PesudoOP, we introduce several new terms and some symbols. Given graph
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Algorithm 4.10 PseudoOP(v, dist, k, Q, daDB, M, F, FDB, Ef )

Input: v is the seed, dist is the optimal distance of v, k is the sketch graph, Q is the

U-Heap containing delegates of boundary sets, daDB is the distance array of boundary

sets, M is the DMDB, F is the successor fragment of u, FDB is the fragment database,

Ef is the forbidden edge database

Output: none

Ensure: real-close a set of open boundary vertices B in F and do relaxation on vertices

in B and v together in F

Step A: Initialization

Initialize pseudo-distance array database psdaDB

Initialize priority queue psQ{psQ is local queue and Q is global queue}
PseudoThrust(v, dist, k, daDB, psQ, psdaDB, M, F )

if psQ.empty() then

return

end if{no outgoing super edges of u needed to relaxed in F}
Find an un-relaxed boundary vertex set UR in F, s.t. for any x∈UR, SD(v, x, F )6=+∞
and v∈UR{find un-relaxed outgoing super edges of the v in F}
CU=new Set(){a set to hold all white boundary vertices with F as successor fragment}
CU.add(v)

BQ=new Set(){a set to hold vertices needed to be recovered in Q}
(Continued next page)
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Step B: Iteration

1: while ¬UR.empty() do
2: (minv, mindist, grey)=ExtractMin(Q, psQ)
3: if grey then
4: minv.pseudoClosed=true{minv is from psQ}
5: if minv.closed then
6: continue{minv has already been real-closed}
7: end if
8: else
9: if (minv==d)∨(minv.pseudoClosed) then

10: BQ.add(minv)
11: continue
12: end if{minv has been pesudo-closed or is d}
13: minv.closed=true{minv is real-closed}
14: end if
15: find the boundary set bs=[F1, F2] to which minv belongs
16: find successor fragment F0 of minv{F0 is either F1 or F2}
17: if UR.contains(minv) then
18: UR.remove(minv)
19: if (¬grey)∧(F0==F ) then
20: CU.add(minv)
21: end if
22: end if
23: if (¬grey)∧(F0==D) then
24: if d.distance>(OPTd.getDistance(minv)+mindist) then
25: d.distance=OPTd.getDistance(minv)+mindist
26: d.predecessor=minv
27: Q.update(d, d.distance)
28: end if
29: end if{relax to d}
30: if (¬grey)∧(¬Ef .contains(F0)) then
31: minv.relaxed=true{minv is black}
32: MainThrust(minv, mindist, k, Q, daDB, M, F0)
33: else
34: PseudoThrust(minv, mindist, k, daDB, psQ, psdaDB, M, F0)
35: if (¬grey)∧(F0 6=F ) then
36: BQ.add(minv){minv is white vertex and not in CU }
37: end if
38: end if
39: end while(Continued next page)
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Step C: Maintenance

1: for each boundary vertex b∈BQ do

2: Q.update(b, b.distance)

3: end for{recover those extracted unfinished vertices in Q}

Step D: Co-relaxation

1: find open boundary vertex set OV in F

2: OPF(F, CU, OV, Ef )

3: for each vertex b∈OV do

4: if OV.getDistance(b)<b.distance then

5: b.distance=OV.getDistance(b)

6: b.predecessor=OV.getAncestor (b)

7: b.predecessorFrag=F

8: bQ.decreaseKey(b, b.distance){bQ is the Fib Heap of the boundary set holding b}
9: Q.update(b, b.distance)

10: end if

11: end for

12: for each boundary vertex b∈CU do

13: b.relaxed=true

14: end for{set the relaxed attribute of vertices in CU true}
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Algorithm 4.11 PseudoThrust(u, dist, k, daDB, psQ, psdaDB, M, F0)

Input: u is the closed boundary vertex, dist is the optimal distance of u, k is the sketch

graph, daDB is the distance array of boundary sets, psQ is the local priority queue con-

taining pseudo-relaxed boundary vertices, psdaDB is the pseudo-distance array database

containing auxiliary pseudo data of vertices, M is the DM, F0 is the successor fragment of

u.

Output: none

Precondition: F0 contains forbidden edge

Ensure: u’s outgoing super edges in F0 is pseudo-relaxed

1: m=M.get(F0)

2: find adjacent boundary sets B of bs from k

3: for each boundary set b∈B do

4: if b.inFragment(F ) then

5: if ¬psdaDB.contain(b) then

6: initialize a pseudo distance array of b in psdaDB

7: end if

8: for each boundary vertex v∈b do

9: if ¬v.pseudoClosed ∧ ¬v.closed then

10: if v.distance>(dist+m.get(u,v)) ∧
v.pseudoDist>(dist+m.get(u,v)) then

11: v.pseudoDist=dist+m.get(u,v)

12: v.pseudoPredecessor=u

13: v.pseudoPredeFrag=F0

14: bQ.decreaseKey(v, v.distance) {bQ is the Fib heap of b}
15: psQ.update(v, v.distance)

16: end if

17: end if

18: end for{pseudo-relax the outgoing super edges of u in F0 }
19: end if

20: end for
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Figure 4.6: Composed path p

H (V, E, w), reduced edge set Ed and weight function w ’, where Ed⊆E, for each edge e⊆Ed,

decrease its weight w(e) to w ’(e), and 0≤w ’(e)≤w(e) to obtain a reduced graph graph H ’

of H wrt Ed and w ’. Denoted H’ as H (Ed, w ’). In other words, H ’ is the same as H

except that the weights of some edges are decreased. Let T be a partial outgoing SPT

with root r for both H and H ’. Let p be an SP from r to vertex v in H ’, where v is not

on T. Assume vertex x is the last tree node of T on the vertex sequence of path p. Let

pT be the sub-path from r to x on p, and pN be the sub-path from x to v on p. If pT is

an SP in H ’ but not a tree path of T from r to x, we can replace pT with the tree path

of T. Hence, any SP p from r to a non-tree node v in H ’ is regarded as a composed path

consisting of tree path pT from r to tree node x in T, and an SP from x to v not via any

tree node in H ’ (Figure 4.6).

Lemma 4.2. Given a graph H (V, E, w) and its reduced graph H ’ wrt Ed and w ’,

let p be an SP from vertex r to vertex v in H ’,

(a) if ∀e∈p⇒e /∈Ed, then p is an SP in graph H and w(p)=SD(r, v, H );

(b) if ∃e∈p such that e∈Ed, then w(p)≤SD(r, v, H ).

Proof Let p’ be any path from r to v in H ’, then w(p’)≥w(p). Because H is the graph

with the weights of a set of edges increased in H ’, let p” be the corresponding path of p’

in H. Then, w(p”)≥w(p’) and w(p”)≥w(p). In other words, w(p) is less than or equal to



Chapter 4. Design of the Optimal Path Query Engine 89

the weight of any path from r to v in H. For case (a), p is valid in H. Therefore p is an SP

in H and w(p)=SD(r, v, H ); for case b) , p is invalid in H. When p” is the SP in H, then

w(p)≤SD(r, v, H ).2

Define an edge set Ei
r as follows: Ei

r⊆EQ, where EQ is the edge set of the query super

graph SQ. For any edge e∈Ei
r, if head(e) is a tree node of Ti−1, then e∈Ei

r . Therefore, Ei
r

consists of all the outgoing super edges of the finished vertices in the previous (i -1) iter-

ations. Let Ei
u be the complement set of Ei

r and Ei
u= EQ-Ei

r. For any super edge e(u, v,

F )∈EQ, according to the definition of a query super graph, w(e)=OD(u, v, F, Ef ), which

means that if F contains a forbidden edge, w(e)≥SD(u, v, F ). Otherwise, w(e)=SD(u, v,

F ). Let w ’ be a weight function on Ei
u such that for each e(u, v, F )∈Ei

u, w ’(e)=SD(u, v,

F )≤w(e). Denote Si
Q as a reduced graph of SQ wrt the reduced edge set Ei

u and w ’.

Lemma 4.3. Given 1≤x<y≤n, let p be a path from s in Tx−1. If p is an SP in Sx
Q,

then p is also an SP in Sy
Q.

Proof Because Tx−1⊆Ty−1, Ex
r⊆Ey

r and Ex
u⊇Ey

u. Therefore, Sx
Q is the reduced graph of

Sy
Q wrt Ex

u-Ey
u and w ’. Let e be an edge of p, since p is a path in Tx−1, e∈Tx−1. According

to the definition of Sx
Q, e∈Ex

r , e /∈Ex
u and e /∈Ex

u-Ey
u. Because p is an SP in Sy

Q, according

to Lemma 4.2 (a), p is also an SP in Sy
Q.2

The essence of PseudoOP is to continue the OPT computation based on Ti−1 in Si
Q until

tree Ti−1’ is obtained including all the vertices in UR(λi, Fi). For any tree node in Ti−1,

there exists Si′
Q(0<i’<i) such that the tree path from s is an SP in Si′

Q. From Lemma 4.3,

we can conclude that Ti−1 is the partial SPT in Si
Q. Later, it will be proved that Tm

i−1 is also

a partial SPT in Si
Q. The PseudoOP process builds vertex set CU (λi, Fi, Tm

i−1-Ti−1), and

does a co-relaxation on CU (λi, Fi, Tm
i−1-Ti−1). Finally, the PseudoOP process removes the

unfinished vertices from Tm
i−1 to create a new tree Ti, and maintains min-priority queue Q

such that Q contains all the relaxed data of the nodes in Ti. Then, the DiskOP continues

the (i + 1)st iteration. Again, the PseudoOP algorithm is another variant of Dijkstra’s

algorithm. Intuitively, it is assumed that the shortest distance between the two boundary

vertices in the same fragment is small. Computing Tm
i−1 will not cost very much time.
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In order to distinguish the real-closed vertices from the pseudo-closed vertices, local

min-priority queue psQ and local distance array database psdaDB are used. The auxiliary

data of vertex u in psdaDB are u.pseudoClosed, u.pseudoDist, u.pseudoPredeFrag, and

u.pseudoPredecessor. Likewise, the auxiliary data of u in daDB are u.closed, u.distance,

u.predecessorFrag, and u.predecessor. For any vertex u in Q, its potential predecessor up

must be finished, and the path from the source vertex to u via up does not contain any

pseudo-edge. For any vertex pu in psQ, there exists at least one pseudo-edge on the path

from the source vertex to pu via its pseudoPredecessor. A vertex can have one copy in

Q with auxiliary data in daDB, and another copy in psQ with auxiliary data in psdaDB,

simultaneously. Let x be a vertex in Q. During the relaxation of super edge e(y, x, Fy)

with y.dist+SD(y, x, Fy)<x.distance, if y is pseudo-closed or Fy is affected, then another

copy of x is inserted into psQ. It is possible to extract a vertex twice during the while loop

of the PseudoOP process. The first extracted copy of the vertex determines if the vertex is

real-closed or pseudo-closed, because the PseudoOP process extracts vertices in ascending

order wrt their distance attribute.

Define operation ExtractMin(Q, psQ) to extract a vertex with the minimum distance

attribute of all the items in Q and psQ. Let v1 and v2 be the vertex with the minimum

distance in Q and psQ, respectively. When v1.distance is equal to v2.pseudoDist, Extract-

Min(Q, psQ) extracts v1 from Q. It returns minv, mindist, and a Boolean value grey, to

represent the extracted vertex, its distance attribute, and whether it is from psQ or not,

respectively.

PseudoOP extracts a vertex from Q and psQ iteratively. If the extracted vertex is

from Q and has not been extracted from psQ in the previous iterations, it is real-closed.

If the vertex is from Q and has been extracted from psQ in some previous iteration, it is

pseudo-closed. If it is from psQ and has not been real-closed yet, it is also pseudo-closed.

Otherwise, u is still real-closed. Thus, we can colour the pseudo-closed vertices grey, the

real-closed vertices with the affected successor fragment white, and the real-closed vertices

with unaffected successor fragment black. PseudoOP conducts a MainThrust on a black

vertex; whereas it conducts a PseudoThrust on a white or grey vertex, because a vertex

with a white or grey predecessor in Ti−1’ is grey and pseudo-closed. Both the MainThrust

and PseudoThrust relax the outgoing super edges of the extracted vertex with the DMDB.
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The MainThrust enqueues the tail vertices of the relaxed super edges into the global queue

Q, and updates their auxiliary data in the global distance array database psdaDB. However,

the PseudoThrust enqueues the tail vertices of the relaxed super edges into local queue

psQ, and puts their auxiliary data in local distance-array database psdaDB. Once a vertex

is extracted and processed in the while loop of the PseudoOP process, it is either real-closed

or pseudo-closed. Consequently, we can add the vertex to tree Ti−1. The DiskOP initializes

each boundary set of the pruned sketch graph in daDB. Boundary set bs is initialized in

psdaDB, if and only if boundary vertex v∈bs is inserted into psQ in the PseudoOP process.

Because a PseudoOP while loop terminates when all the vertices in UR(λi, Fi) are closed

or pseudo-closed, only the limited boundary sets are involved in the PseudoOP process.

As a result, it is unnecessary to initialize all the boundary sets in psdaDB.

The PseudoOP algorithm can easily construct vertex set CU (λi, Fi, Tm
i−1-Ti−1), con-

sisting of the extracted white vertices with successor fragment Fi during the while loop.

PseudoOP calls for the OPF algorithm to build an OPF rooted at CU (λi, Fi, Tm
i−1- Ti−1),

and then co-relaxes CU (λi, Fi, Tm
i−1-Ti−1). Therefore, all the vertices of CU (λi, Fi, Tm

i−1-

Ti−1) are finished after the co-relaxation. Since, in the while loop, the PseudoOP process

extracts some vertices from Q, which are not finished in this PseudoOP process. Therefore,

we need to recover them in Q. These vertices include a) grey vertices extracted twice, first

time from psQ, and then from Q ; and b) white vertices excluding the ones in set CU (λi,

Fi, Tm
i−1- Ti−1). Denote BQ(λi, Fi, Tm

i−1- Ti−1) as the set consisting of the vertices needed

to be recovered in Q. There are four operations on an open boundary vertex set OV :

• OV.setDistance(b, dist): sets the distance attribute of b∈OV to dist ;

• OV.getDistance(b): returns the distance attribute of b∈OV ;

• OV.setAncestor(b, a): sets vertex a as the ancestor of b∈OV ;

• OV.getAncestor(b): returns the ancestor of b∈OV.

In the initialization step, the PseudoOP process does the following: initializes psQ

to hold the vertices which are potentially pseudo-closed; initializes psdaDB to hold the

auxiliary data of the potential pseudo-closed vertices; build boundary vertex set UR which

is UR(λi, Fi) as defined early in this section; initializes set CU which becomes CU (λi, Fi,
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Tm
i−1-Ti−1) at the end of the iteration step; initializes set BQ ; that is, BQ(λi, Fi, Tm

i−1- Ti−1)

at the end of the iteration step; conducts PseudoThrust on v to relax the outgoing super

edges of λi inside Fi with its out-dated DM.

In the iteration step, the PseudoOP process extracts vertex minv with the minimum

value among all the elements in psQ and Q. When minv has been pseudo-closed or is

destination d, add it into set BQ and continue the next iteration. If minv comes from

psQ and has not been real-closed yet, it is pseudo-closed, and we do a PseudoThrust on

it. Otherwise, minv is from Q and is real-closed. Denote F0 as the successor fragment of

minv. Perform a MainThrust on minv in case F0 is unaffected, and a PseudoThrust on

minv in case F0 is affected. In addition, if minv is in UR, then remove it from UR, and add

it to set CU when minv is real-closed and F0 is Fi. In this way, all the vertices of CU are

real-closed with F0 as its successor fragment. When the successor fragment of a real-closed

vertex minv is D, we need to relax the super edge e(minv, d, D). For a real-closed and

pseudo-relaxed vertex, if its successor fragment is not Fi, it is placed in the set BQ.

At the end of Step B, all the vertices in set CU obtain the optimal distances from s,

and we can co-relax them with the seed inside Fi by computing an OPF. Vertex d is the

vertex that is specially treated. Since it is the destination, it requires relaxation on its

incoming edges, and its pseudo-distance can be ignored. Hence, we need not take care of

d in the PseudoThrust. Even if d is the extracted vertex in some iteration of step B from

the global queue Q, since the relaxation on the outgoing super edges of the vertices in CU

are not completed yet, the distance of d may not be optimal. Therefore, we must insert d

back into Q into the maintenance step.

The maintenance step of the PseudoOP process recovers the vertices in set BQ and

returns them to global queue Q. Any vertex x in BQ is one of the following two cases:

• After x has been pseudo-closed, the PseudoOP process extracts it from global queue

Q again. Since x is actually open, it must be returned to Q after the iteration step;

• x is real-closed, but is pseudo-relaxed. A PseudoThrust is conducted on it, and

the forbidden edges inside its successor fragment are ignored. Thus, x is reinserted

in Q to wait for its real-relaxation. The real-relaxation on a vertex is either in

the MainThrust process or in the step C co-relaxation of the PseudoOP process.

However, if x is a pseudo-relaxed boundary vertex with successor fragment Fi, we
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need not recover it in Q, because the next step is the real-relaxation on the outgoing

super edges of x in Fi.

In the last step, the PseudoOP algorithm co-relaxes set CU inside successor fragment

Fi of the seed λi. PseudoOP finds the open boundary vertex set OV in Fi, and then

computes OPF OPFCU rooted at CU with the optimal distances from s as the value. For

each open boundary vertex y in F, if there exists a path from any vertex of CU to y under

the forbidden edge constraint, we can find a vertex x∈CU such that OD(s, x, G)+OD(x,

y, Fi)=min({OD(s, v, G)+OD(v, y, Fi) | v∈CU }), and x is the ancestor of y in OPFCU .

As a result, y obtains distance dist from its ancestor. If dist is less than y.distance, x is the

potential predecessor of y. After the co-relaxation on CU, all the vertices of CU are finished.

Optimal Path Forest

The OPF algorithm is also a variant of Dijkstra’s algorithm. Dijkstra’s algorithm computes

an SPT rooted at vertex r with value 0, whereas the OPF algorithm builds an OPF rooted

at a set of vertices CU= {x1, x2, . . . , xz} with value {d [x1], d [x2], . . . , d [xz]}, respectively.

Let g be the given graph. Add a virtual vertex r into g with adjacent edges from r to each

vertex x in CU with weight d [x ]. Compute an outgoing SPT T with root r in g ’, which

is the modified graph g by deleting the given forbidden edges. Then, the OPF rooted at

CU with value {d [x1], d [x2], . . . ,d [xz]} is obtained by removing r from T.

In the initialization step, the OPF algorithm inserts all the vertices with their values

into empty priority queue q. In the iteration step, OPF selects vertex u with a minimum

value, and relaxes u’s outgoing non-forbidden edges iteratively until q is empty. In this

way, we build an OPF consisting of a set of OPTs in g. For each vertex u in g, if there

is a path from any vertex of CU to u not via a forbidden edge in g, then u is a vertex

of the forest, and u is in the tree rooted at xa∈CU ( 1≤a≤z ) such that d [xa]+OD(xa,

u, g, Ef )=min({db+OD(xb, u, g, Ef ) | 1≤b≤z}), xa is the ancestor of u, and u is the

descendent of xa. In the last step, the OPF algorithm finds the ancestors for a set of

vertices Y ={y1, y2, . . . , yc } in g.

The PseudoOP algorithm calls the OPF algorithm to compute an OPF rooted at vertex

set CU in affected fragment F, and finds the ancestor for each open boundary vertex in F.
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During the OPF computation, the auxiliary data of vertex v includes d [v ], p[v ] and c[v ]

to denote the potential distance, predecessor, and closed status of v, respectively. After it

returns to PseudoOP, the distance of each open vertex obtained from the OPF is compared

with its corresponding value in daDB. If the former value is less than the latter, then its

auxiliary data in daDB is updated. In this way, DiskOP finishes the relaxations of the

vertices in set CU. Algorithm 4.12 provides a description of the OPF algorithm and Lemma

4.4 and 4.5 prove its correctness.

Let τ be the number of iterations in step B. Denote qa as the status of q at the end

of the ath iteration and exactly before the (a + 1)st iteration, where a∈[1, τ ], and q0 is q ’s

status at the beginning of the first iteration. From step B, line 2, we conclude that ex-

tracted vertex ua is the minimum item of qa−1. After extracting ua from qa−1 and relaxing

its adjacent non-forbidden outgoing edges, we obtain qa+1 according to step B, lines 4–12.

Lemma 4.4. Let 〈u1,u2, . . . , ua, . . . , uτ 〉 be the extracted vertex sequence in the OPF

algorithm Step B,τ is the number of iterations, if 1≤a<b≤τ , then d [ua]≤d [ub].

Proof Basis : when a=1, as per step A, lines 4–7, all the vertices in set CU are the only

elements in q before the first iteration. Thus, u1∈CU and d [u1]=min({d [x ] | x∈CU }).
Because u2 is the minimum element in q1, either u2∈CU or d [u2] is improved by d [u1];

that is, d [u1]<d [u2]. Obviously, for both cases, d [u1]≤d [u2].

Induction: when 1<a<τ , suppose d [ua−1]≤d [ua], the objective is d [ua]≤d [ua+1]. Be-

cause ua+1 is the minimum element in qa, d [ua+1] is either improved by ua or remains the

same as the moment it is in qa−1. For the former case, as per step B, line 8, d [ua]<d [ua+1];

for the latter case, since ua is the minimum element in qa−1, d [ua]≤d [ua+1]. As a result,

d [ua]≤d [ua+1].

From the basis and induction, if 1≤a≤b≤τ , then d [ua]≤d [ub].2

Lemma 4.4 shows that the extracted vertex sequence is in the ascending order wrt

to the distance dimension which is d [u1]≤d [u2]≤. . .≤d [uτ ]. In other words, for any two

extracted vertices ua and ub, if d [ua]≤d [ub], it can be inferred that ua is extracted earlier

than ub, and 1≤a≤b≤τ .
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Algorithm 4.12 OPF(F, CU, OV, Ef )

Input: F is a fragment, CU is a real-closed boundary vertex set, OV is an open boundary

vertex set, Ef is the forbidden edge database.

Output: the optimal distances from the vertices in CU to those of OV

Precondition: F is an affected fragment, CU consists of all closed un-relaxed boundary

vertices in F, OV consists of all open boundary vertices in F.

Step A: Initialization

1: fE=Ef .get(F ){get the forbidden edge set for fragment F}
2: Initialize a local auxiliary data map for vertices in F

3: Initialize a min-priority queue q

4: for each vertex v∈CU do

5: d [v ]=CU.getDistance(v){get the optimal distance from s to v as the value of v}
6: q.enqueue(v, d [v ])

7: end for

8: s.relaxed=true

Step B: Iteration

1: while ¬q.empty() do

2: u=q.extractMin()

3: c[u]=true

4: for each outgoing edge e(u,v) of u do

5: if ¬fE.contains(e) then

6: if d [v ]>(d [u]+w(e)) then

7: p[v ]=u

8: d [v ]=d [u]+w(e)

9: q.enqueue(v, d [v ])

10: end if

11: end if

12: end for{relax edge e if it is not forbidden}
13: end while

(Continued next page)
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Step C: Finding Ancestor

1: for each vertex v∈OV do

2: if v.closed then

3: u=v.predecessor

4: while ¬CU.contains(u) do

5: u=p[u]

6: end while

7: OV.setAncestor(v, u)

8: OV.setDistance(v, d [v ])

9: else

10: OV.setAncestor(v, null)

11: OV.setDistance(v,+∞)

12: end if{find v ’s ancestor}
13: end for

Lemma 4.5. Given a set of vertices CU={x1, x2, . . . , xz} with value {d [x1], d [x2],

. . . ,d [xz]}, respectively, let u be the extracted vertex from priority queue q in the ith it-

eration of algorithm OPF step B, where i∈[1, τ ], then d [u]=min({d [xb]+OD(xb, u, F,

Ef ) | b∈[1, z ]}).
Proof Basis : when i=1, from step A, lines 4–7 and step B, line 2, u∈CU and d [u]=d [u]+OD(u,

u, F )=min({d [xb] | b∈[1, z ]})=min({d [xb]+OD(xb, u, F, Ef ) | b∈[1, z ]}).
Induction: when 1<i≤τ , if it is assumed that the induction hypothesis holds for l,

where 1≤l<i, it can be proved that in the ith iteration, u is extracted from q with

d [u]=min({d [xb]+OD(xb, u, F ) | b∈[1, z ]}). Let v be the predecessor of u, and v is

extracted from q in the lth iteration. In step B, lines 7–8, l<i and d [v ]≤d [u]. From the

assumption, d [v ]=min({d [xb] +OD(xb, v, F, Ef ) | b∈[1,τ ]}). Let x∈CU be the ancestor

of v such that d [v ]=d [x ]+OD(x, v, F, Ef ).

Suppose there exists vertex v ’, where edge e’(v ’, u) is not a forbidden edge in frag-

ment F such that d [v ’]+w(e’)<d [v ]+w(e)=d [u]. Because d [v ’]<d [u], v ’ should be ex-

tracted from q earlier than in the ith iteration, say in the l′th iteration (l’<i). When

l ’<l, v ’ is extracted from q earlier than v and in the l′th iteration, from step B, lines
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Figure 4.7: Correctness of the OPF algorithm

5–11, d [u]=d [v ’]+w(e’). Later in the lth iteration, because d [v ’]+w(e’)<d [v ]+w(e), d [u]

remains unchanged until the ith iteration. Consequently, d [u]=d [v ’]+w(e’), which contra-

dicts with our choice of u. When l ¡ l ’, v is extracted from q earlier than v ’ and in the

lth iteration. From step B, lines 5-11, d [u]=d [v ]+w(e). However in the l′th iteration, be-

cause d [v ’]+w(e’)<d [v ]+w(e), d [u] is updated with d [v ’]+w(e’), which is a contradiction

again. As a result, the supposition is incorrect. For any vertex v ’ with non-forbidden edge

e’(v ’, u) in F, d [v ]+w(e)≤d [v ’]+w(e’), which is d [x ]+OD(x, v, F )+w(e)≤d [x ’]+OD(x,

v ’)+w(e’)≤d [x ]+OD(x, v ’)+w(e’), where x ’ is the ancestor of v ’. Hence, for any vertex

v ’, OD(x, v, F )+w(e)≤OD(x, v ’)+w(e’) and OD(x, u, F )=OD(x, v, F )+w(e). Now

d [u]=d [x ]+OD(x, u, F, Ef )=min({d [xb]+OD(xb, u, F ) | b∈[1, z ]}) is obtained.

Based on the basis and induction, Lemma 4.5 is correct.2

4.3.2 Example of DiskOP

In this section, an example is examined to show how the DiskOP algorithm works. We

want to answer an optimal query from s to d in partitioned graph G, where F3 and F4

are two affected fragments. During the first nine iterations, DiskOP closes and does a

relaxation on v18, v19, v20, v23, v17, v21, v22, v15, and v16, respectively. At this time, the
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Table 4.1: DMs of affected fragments

partial OPT in SQ is T9, and the min-priority queue is Q9 which holds all the relaxed data

of the tree node in T9.

In the tenth iteration, DiskOP extracted v12 from Q9. Since the successor fragment F4

of v12 contains forbidden edges, v12 is the seed to trigger a PseudoOP process in Figure

4.8(a). The OPT computation in the query super graph continues by ignoring the forbidden

edge constraint, until the vertices of UR(v12, F4)={v13, v9, v7, v5, v8, v4} are added to the

tree. First, the PseudoOP process does a PseudoThrust on v12, and enqueues v9, v7, v5, v8,

and v4 into local queue psQ. The termination condition of the while loop in the PseudoOP

process is that all the vertices of UR(v12, F4) are extracted from Q or psQ. Since v12 is closed

and has an affected successor fragment, v12 is white. In the first iteration of PseudoOP

while loop, v11 is extracted from Q with affected successor fragment F3. Thus, v11 is white,

and the PseudoOP process conducts a PseudoThrust on it. v6 is inserted into psQ, and v7

in psQ is updated. In the remaining iterations of the while loop, v13, v14, v10, v9, v7, v5,

v8, v1, v3, v6, v0, v2, and v4 are extracted in order. v8 is extracted twice: the first time is

from Q and the second time is from psQ. As a result, it is closed. During this PseudoOP

process, v12, v11, v13, v10, and v8 are white, v9, v7, v5, v1, v6, v0, and v4 are grey, and v14, v3,

and v2 are black. It is easy to obtain CU (v12, F4, T 14
9 - T9)={v12, v13, v8}, because v12, v13,

and v8 are white and their successor fragment is F4. Since v10 and v11 are still un-relaxed,

the PseudoOP process recovers them in Q. Then the PseudoOP process computes an OPF
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Figure 4.9: OPFs of three PseudoOP processes

rooted at CU (v12, F4, T 14
9 - T9) in F4 of Figure 4.9(a) and co-relaxes CU (v12, F4, T 14

9 - T9)

so that v9, v7, v5, and v4 are inserted into Q. In summary, the PseudoOP process finishes

all the black vertices and vertices of CU (v12, F4, T 14
9 - T9), which are added to T9 to obtain

T10. In the previous example, we can see that the optimal distances of v16 and v12 from s

are equal. Here, v16 is closed in the ninth iteration of DiskOP. Probably DiskOP chooses

to close v12 earlier than v16 according to the implementation of the min-priority queues. In

this case, v16 is finished during the PseudoOP process triggered by v12, but the correctness

of DiskOP is unaffected. Table 4.1(a)–(b) list the DMs of F4 and F3, respectively. The

statuses of Q and psQ are in Table 4.2.

In the eleventh iteration of DiskOP, v11 is selected. Again, because its successor frag-

ment F3 is affected, v11 is the seed to trigger the PseudoOP process (Figure 4.8(b)). In

this process, UR(v11,F3)={v9, v10, v7, v6} and the PseudoOP process selects v10, v9, v7, v5,

v7, v1, v6 in sequence in its while loop. v7 is extracted twice: first from psQ then from Q.

Therefore, v7 is pseudo-closed and grey, v10, v9, v11 are white, and v7, v5, v1, v6 are grey.

Obviously, CU (v11, F3, T 7
10-T10) is {v10, v9, v11}. PseudoOP maintains Q by recovering

v7, and then computes an OPF rooted at CU (v11, F3, T 7
10-T10) and co-relaxes CU (v11, F3,

T 7
10- T10) by updating v7 and inserting v6 into Q. Finally, adding the finished vertices v10,

v9, and v11 into T10, we have T11. The status of Q and psQ are, in Table 4.3. provided.

In the next iteration of DiskOP, it chooses v7, triggering a PseudoOP process due to
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Table 4.2: Status of Q and psQ during the PseudoOP process triggered by v12
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Figure 4.10: Example of DiskOP algorithm (Part II)
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Table 4.3: Status of Q and psQ during the PseudoOP process triggered by v11

v7’s affected successor fragment F3 (Figure 4.10(a)). After the PseudoThrust on v7, v5 is

inserted into psQ. UR(v7, F4)={v4, v5} and the PseudoOP process selects v6, v5, v5, v1,

v0, and v4, in sequence, in its while loop. In this PseudoOP process, v6, v1, v0, and v4 are

black, v7 is white, and v5 is grey. CU (v7, F4) is {v7}. v5 is inserted back to Q, since it is

extracted twice: first from psQ and then from Q. Then an OPF rooted at CU (v7, F4) in

F4. Finally, v5 is updated in Q. During the remaining iterations of DiskOP, a PseudoOP

process is not called again. Figure 4.10(b) reflects an OPT rooted at s in query super

graph SQ, and the status of Q and psQ given in Table 4.4.

In this example, the DiskOP algorithm reads F3 once and F4 twice, and computes three

OPFs. To build T, the NOPT algorithm must compute five OPTs and read F4 three times,

and read F3 twice, whereas the NDM algorithm computes 5+7=12 SPs and reads F3 and
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Table 4.4: Status of Q and psQ during the PseudoOP process triggered by v7

F4 once. Obviously, the DiskOP performs much better than NOPT and NDM. Chapter 5

provides more experimental results to prove the efficiency of the DiskOP algorithm.

4.3.3 Correctness of the DiskOP Algorithm

In this section, we prove the correctness of the DiskOP algorithm. As discussed in the last

section, DiskOP calls a PseudoOP process when the successor fragment of a selected vertex

is affected. If it is assumed in the ith iteration that the PseudoOP process is triggered by

seed λi, the correctness of PseudoOP is proved according to the following preconditions:

a) Ti−1 holds all the finished vertices in SQ, Qi−1 contains their relaxed super edges data,

and λi.distance=SD(s, i, SQ);

b) Given 1≤x≤i -1, Tx is a partial SPT in Sx
Q;
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c) For any vertex v in SQ, if SD(s, v, SQ)<SD(s, λi, SQ), then v is a tree node of Ti−1.

During the while loop of PseudoOP, the extracted vertex v in each loop is from either Q

or psQ. Consequently, v.dist is denoted as the distance attribute of v when v is extracted,

if v is from Q and v.dist=v.distance and v.pred=v.predecessor. Otherwise, it is from psQ,

and v.dist=v.pseudoDist and v.pred=v.pseudoPredecessor.

Lemma 4.6. Let µj be the vertex extracted in the jth iteration in the PseudoOP process

triggered by seed λi. Letλi be µ0 and λi.distance be µ0.dist.Suppose 0≤j≤m, and m is

the number of the iterations in PseudoOP for any vertex u in Qj
i−1, µ0.dist≤u.distance; for

any vertex v in psQj, µj.dist≤v.pseudoDist.

Proof According to step B, line 2, µj is the vertex with the minimum distance attribute

of all the vertices in Qj−1
i−1 and psQj−1.

Basis : when j=0. Before the while loop begins, as per PseudoOP step A, line 3, a

PseudoThrust is performed on λi. psQ0 holds only the items that are pseudo-relaxed

by λi.Thus, for any vertex v in psQ0, µ0.dist=λi.distance≤v.pseudoDist. Since there is no

operation on Q in step A, Q0
i−1 is the status of Qi−1 after extracting λi is extracted. Because

λi is the minimum item in Qi−1, for any vertex u in Q0
i−1, µ0.dist=λi.distance≤u.distance.

Case A: When j=1. If µ1 is from psQ0, according to PseudoOP step B, lines 2–16, µ1 is

removed from psQ0. Since this is the first iteration of PseudoOP while loop, µ1 is pseudo-

closed with λi as its pseudoPredecessor, and µ1.closed is false. Therefore, PseudoOP

conducts a PseudoThrust on µ1 in step B, line 30. For any vertex v in psQ1, v.pseudoDist is

either improved by µ1.dist or remains the same as psQ0, and so λi.dist≤v.pseudoDist. Since

there is no operation on Q0
i−1, Q1

i−1=Q0
i−1, and for any vertex u in Q1

i−1, µ1.dist≤u.distance.

Case B: If µ1 is from Q0
i−1, according to PseudoOP step B, line 2, µ1 is removed

Q0
i−1. From step B, lines 8–14, since this is the first iteration, it is impossible that µ1 is

pseudoClosed. As a result, µ1.closed is true. Then if f1 is affected, from PseudoOP, step B,

line 34, does a PseudoThrust on µ1. As a result, for any item v in psQ1, v.pseudoDist either

is µ1.dist+SD(µ1, v, f1) or remains the same as psQ0. Consequently, µ1.dist≤v.pseudoDist.

Since Q1
i−1 is the status of Q0

i−1 after µ1 is removed, for any item u in Q1
i−1, we have u1.dist≤

u.distance. If f1 is unaffected, from PseudoOP, step B, line 32, do a MainThrust on µ1.
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For any vertex u in Q1
i−1, u.distance either is µ1.dist+SD(µ1, v, f1) or remains the same

as Q0
i−1, and so µ1.dist≤u.distance. In addition, for any vertex v in psQ1, since there is

no operation on psQ0, psQ1=psQ0, µ1.dist≤v.pseudoDist. Hence, the lemma holds when

j=0, or j=1 for all cases.

Induction: when 2≤j≤m, suppose the induction hypothesis holds for j -1. We wish to

show that for any item u in Qj
i−1, µj.dist≤u.distance. For any item v in psQj, µj.dist≤

v.pseudoDist. Case A) µj is from psQj−1. If µj has been closed during the previous (j -

1) iterations, from PseuoOP, step B, line 6, the PseudoOP process continues the next

iteration. Since Qj
i−1=Qj−1

i−1 and psQj is the status of psQj−1, after removing µj, µj.dist

is no greater than the value of any item in µj and psQj. Otherwise, µj is pseudo-closed,

conduct a PseudoThrust on µj in step B, line 34, for any vertex v in psQj, v.pseudoDist

is either improved by µj.dist or remains the same as psQj−1. Thus, µj.dist≤v.pseudoDist,

and for any vertex u in Qj
i−1, µj.dist≤u.distance, because Qj

i−1=Qj−1
i−1 . Case B) µj is from

Qj−1
i−1 . If µj has been pseudo-closed in the previous (j -1) iterations, as per step B, lines

9–12, continue the next iteration. In this case, Qj
i−1 is the status of Qj−1

i−1 after removing µj

and psQj=psQj−1. Obviously, µj.dist is no greater than the value of any item in Qj
i−1 and

psQj. Otherwise, µj is closed. If fj is affected, step B, line 34, performs a PseudoThrust

on µj. Hence, for any vertex v in psQj, v.pseudoDist either is µj.dist+SD(µj, v, fj) or

remains the same as psQj−1, µj.dist≤ v.pseudoDist. For any vertex u in Qj
i−1, because Qj

i−1

is the status of Qj−1
i−1 after removing µj, µj.dist≤u.distance. Otherwise, fj is unaffected.

Step B, line 30 does a MainThrust on µj. For any vertex u in Qj
i−1, u.distance either is

µj.dist+SD(µj, v, fj) or remains the same as in Qj−1
i−1 . Therefore, µj.dist≤u.distance. For

any vertex v in psQj, obviously µj.dist v.pseudoDist because psQj=psQj−1. From this

analysis, the induction hypothesis also holds for j.

Based on the basis and induction, Lemma 4.6 is correct 2.

According to Lemma 4.6, it can easily be inferred that λi.distance≤µ1.dist≤µ2.dist≤. . .≤
µm.dist. Consequently, let µx and µy be two extracted vertices in the same PseudoOP pro-

cess, and 1≤x, y≤m. If µx.dist<µy.dist, then x<y ; that is, µx is extracted earlier than µy

in the while loop of PseudoOP. Based on precondition a), and b), and Lemma 4.3, there

is property 1: for any vertex v∈Ti−1,SD(s, v, SQ)=SD(s, v, Qi−1
Q )=SD(s, v, Qi

Q).
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Theorem 4.1. λi.distance=SD(s, λi, SQ)=SD(s, λi, Si
Q).

Proof As per precondition a), λi.distance=SD(s, λi, SQ). Precondition c) shows that for

any vertex v /∈Ti−1, SD(s, v, SQ)≥SD(s, λi, SQ), and the predecessor of v must be a tree

node in Ti−1. Furthermore, the outgoing edges of any tree nodes of Ti−1 are not in the

reduced edge set of Si
Q. From property 1, it is inferred that SD(s, v, Si

Q)≥SD(s, λi, SQ).

According to DiskOP, step B, line 2, λi is the vertex with the minimum distance attribute

in Qi−1. Therefore, λi.distance=SD(s, λi, SQ)=SD(s, λi, Si
Q).2

Theorem 4.2. Given 1≤j≤m, for extracted vertex µj during the while loop of the Pseu-

doOP process in the ith iteration of DiskOP(1<i<n), µj.dist=SD(s, µj, Si
Q) and T j

i−1=Ti∪
µ0, µ1, . . . , µj}.
Proof From theorem 4.1, λi.distance=SD(s, λi, SQ)=SD(s, λi, Si

Q). PseudoOP, step A,

line 3, does a PseudoThrust on λi, T 0
i−1=Ti∪{ λi}, and for any vertex v in psQ0, v.pred=λj.

Basis : when j=1, µi is the minimum item in Q0
i−1 and psQ0. According to precondition

a) and the PseudoOP process, step A, line 3, the predecessor of µ1 is either λi or a tree

node of Ti−1. Let it be a vertex v with super edge e(v, µ1, F ) in Si
Q, and then µ1.dist=

SD(s, v, Qi
Q)+w(e), where w(e) is the weight of e in Si

Q. Suppose there exists vertex v ’

with super edge e’(v ’, µ1, F ’) in Si
Q such that SD(s, v ’, Si

Q)+w(e’)<SD(s, v, Si
Q)+w(e).

If v ’∈T 0
i−1, µ1.pred should be v ’ instead of v. This is due to the fact that the outgoing

super edges of any tree node in T 0
i−1 have been relaxed before µ1 is extracted. If v /∈T 0

i−1,

SD(s, v ’, Si
Q) ≥SD(s, i, SQ). Therefore, the assumption is wrong, and µ1.dist= SD(s, µ1,

Si
Q) and T 1

i−1=Ti∪{ µ0, µ1}.
Induction: when 1<j≤m, suppose the induction hypothesis holds for j -1, to show that

µj.dist=SD(s, µj, Si
Q). Let v be the predecessor of µj, when it is extracted in the jth

iteration. µj.dist=v.dist+w(e), where e is super edge e(v, µj, F ) in Si
Q. Assume there is a

vertex v ’ with super edge e’(v ’, µj, F ’) in Si
Q such that v ’.dist+w(e’) <v.dist+w(e). From

Lemma 4.6, v ’ is either extracted in the j′th iteration (j ’<j ), or it is a tree node of T 0
i−1. For

the former case, in the j′th iteration, update either µj.distance in Qj
i−1 or µj.pseudoDist in

psQj to be v ’.dist+w(e’) and remain until µj is extracted, which contradicts µj.dist. For

the latter case, when v ’∈ T 0
i−1, then either µj.distance in Q0

i−1 or µj.pseudoDist in psQ0 is
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v ’.dist+w(e’) and is unchanged until extracted, which is a contradiction again.Therefore,

for any vertex v ’ with super edge e’(v ’, µj, F ’) in Si
Q, µj.dist=v.dist+w(e)≤v ’.dist+w(e’).

From the hypothesis and property1, v.dist=SD(s, v, Si
Q). Therefore, µj.dist=SD(s, v,

Si
Q)+w(e)=SD(s, µj, Si

Q).

Based on the basis and induction, Theorem 4.2 is correct.2

During an specific PseudoOP process, local priority queue psQ and local database

psdaDB are initialized to hold the vertices that may be pseudo-closed, and their auxil-

iary data. For vertex v, there may be two auxiliary data: one is in global Q and daDB,

whereas the other is in local psQ and psdaDB. From the PseudoThrust lines 9–10, the

pseudo-auxiliary data of a vertex v is updated only when the data is neither pseudo-closed

nor closed, and both its distance and pseudo-distance are greater than the new distance.

In this way, we still keep and update the vertex’s auxiliary data from the MainThrust,

and easily determine if a vertex is closed or pseudo-closed by the queue which it is from.

The pseudo-closed vertices are still open, because their optimal distances have not been

found yet. Since all the data pseudo-relaxation is in psQ and psdaDB, when the process

PseudoOP ends, the data does not exist. When vertex v has been pseudo-closed and is

extracted again from Q later, step B, line 8, records it in set BQ and step C, lined 1–3

returns it to Q. In this way, we keep v in Q and its pseudo-closed status will not affect its

search for optimal distance.

Theorem 4.3. Given 1≤j≤m, let µj be an extracted vertex during the while loop of

PseudoOP in the ith iteration of DiskOP (1<i<n). If µj is either white or black, it is closed

and µj.distance=SD(s, µj, SiQ)=SD(s, psQj, SQ); otherwise µj is grey, µj.distance=SD(s,

µj, Si
Q)≤SD(s, µj, SQ).

Proof Let p be a tree path from s to µj in Tm
i−1. According to theorem 4.2, w(p)=SD(s,

µj, Si
Q). As per the definition of a black or white vertex, if µj is either white or black,

there is no edge e on p such that e∈Tm
i−1-Ti−1, and e lies in an affected fragment. As

a result, although e is in the reduced edge set of Si
Q, its weight is the same as that in

SQ. Hence, from Lemma 4.2 (a), SD(s, µj, Si
Q)= SD(s, µj, SQ) when µj is either white

or black, and is closed. If µj is grey, according to the definition of a grey vertex, there
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exists an edge e on p such that e∈Tm
i−1-Ti−1, and e lies in an affected fragment. As a result,

the weight of e is decreased. As per Lemma 4.2 (b), w(p)=SD(s, µj, Si
Q)≤SD(s, µj, SQ). 2

Theorem 4.4. The outgoing super edges of the vertices in set CU (λi, Fi, Tm
i−1-Ti−1)

are finished in the co-Relaxation step of the PseuoOP process triggered by λj.

Proof As per PseudoOP, step B, line 20, Fi is the successor fragment of any vertex x in

CU (i, Fi, Tm
i−1-Ti−1), and x is white. Hence, we need to relax only the outgoing super

edges of x inside Fi. In addition, it is unnecessary to relax any super edge e(x, v, Fi),

where v is a closed boundary vertex in Fi, because SD(s, v, SQ) is obtained. According

to Lemma 4.5, we can obtain ancestor a∈CU (i, Fi, Tm
i−1-Ti−1) in an OPF. The OPF is

rooted at CU (λj, Fi, Tm
i−1-Ti−1) inside Fi for each open boundary vertex y in Fi such that

SD(s, a, SQ)+OD(a, y, Fi)≤SD(s, x, SQ)+OD(x, y, Fi), where x∈CU (λj, Fi, Tm
i−1-Ti−1).

As a result, it is unnecessary to relax e(x, v, Fi), where x is not a. In other words, to

perform a relaxation on CU (λj, Fi, Tm
i−1-Ti−1), we only need to relax any super edge e(a,

y, Fi), where a is the ancestor of y in the OPF, a∈CU (λj, Fi, Tm
i−1-Ti−1) and y is an open

boundary vertex in Fi. The PseudoOP co-Relaxation step, the lines 1–2 computes the

OPF and lines 3–11 relaxes the previous super edges. Therefore, all the vertices in CU (λj,

Fi, Tm
i−1-Ti−1) are relaxed. From theorem 4.3, CU (λj, Fi, Tm

i−1-Ti−1) is a finished vertex

set.2

Theorem 4.5. Given 1≤j≤m, let µj be an extracted vertex during the while loop of

the PseudoOP process in the ith iteration of DiskOP(1<i<n). If µj is black, it is a finished

vertex.

Proof According to theorem 4.3 and the precondition a), at the end of the jth iteration,

during the while loop of the PseudoOP process, a closed vertex v is either a tree node

of Ti−1 or µj′ (0≤j ’≤j). Therefore, to conduct a relaxation on µj is to relax any super

edge e(µj, u, fj), where u is open. Because µj is black, fj is an unaffected fragment,

and w(e)=SD(µj, u, fj) can be read directly from the DM of fj. PseudoOP, step B, line

32, does a MainThrust on µj to relax its outgoing super edges. Consequently, the black

vertices are finished.2
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Theorem 4.6. After the PseudoOP process is triggered by λj, Ti=Ti−1 ∪CU (i, Fi, Tm
i−1-

Ti−1)∪ BLACK, where BLACK is the black vertex set obtained in the PseudoOP process.

Qi holds all the relaxed super edges information of all the tree vertices in Ti. For any vertex

v in SQ, if SD(s, v, SQ)<λi+1.distance, then v is a tree node of Ti.λi+1.distance=SD(s,

λi+1, SQ).

Proof The PseudoOP process triggered by λi finishes the black vertices and vertices of

CU (λi, Fi, Tm
i−1-Ti−1) which are added to Ti−1 to be Ti. Regarding the closed un-relaxed

vertices or the pseudo-closed vertices which are extracted from Q, PseudoOP, step B, lines

10, 36 and step C, lines 1–3, recovers the vertices for Q. Furthermore, since PseudoOP

does a MainThrust on the finished vertices in the ith iteration of DiskOP, Qi holds all the

relaxed super edges information of all the tree nodes in Ti. Assume there is a vertex v ’ in

SQ such that SD(s, v ’, SQ)<λi+1.distance and v ’/∈Ti. According to DiskOP, line 2, for any

vertex x in Qi, λi+1.distance≤x.distance. From v ’/∈Ti, v ’/∈Ti−1⊆Ti, as per precondition c)

and Lemma 4.6, SD(s, λi, SQ)≤SD(s, v ’, SQ)<λi+1.distance. Therefore, the predecessor

of v ’ is a tree node of Ti. Because Qi holds all the relaxed super edges information of all

the tree nodes in Ti, v ’ is in Qi, which contradicts the extraction of λi+1 in the (i + 1)st

iteration of DiskOP. Therefore, the assumption is wrong. For any vertex v in SQ, if SD(s,

v, SQ)<λi+1.distance, v is a tree node of Ti. From theorem 4.1, λi+1.distance=SD(s, λi+1,

SQ)=SD(s, λi+1, Si+1
Q ).2

Lemma 4.7. Let λi be the vertex extracted in the ith iteration of the while loop in

the DiskOP iteration step. Suppose 0≤i≤n, for any item u in Qi, λi.dist≤u.distance,

where λ0 is source vertex s.

Proof Basis : when i=0, step A, line 1 relaxes the outgoing super edges of s with OPTs

inside the source fragment. Therefore, at the end of step A, Q0 holds the boundary vertices

in S, and there exist paths from s to these boundary vertices in S. Hence, for any item u

in Q0, u.distance=OD(s, u, S )≥s.distance=0.

When i=1, λ1 is the minimum item in Q0. If F1 is an unaffected fragment, step B, line

15 conducts a MainThrust on λ1 in F1. For any item u in Q1, u remains the same as Q0,

u.distance≥λ1.distance, or u.distance= λ1.distance+SD(λ1, u, F1)≥λ1.distance during the

previous MainThrust. If F1 is an affected fragment, the PseudoOP process is triggered.
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According to Lemma 4.6, for any item u in Q1, u.distance≥λ1.distance. As a result, Lemma

4.7 holds when i=1.

Induction: when 1≤i≤n, suppose the induction hypothesis holds for i -1. The objec-

tive is to show that for any item u in Qi, λi.dist≤u.distance. λi is the minimum item

in Qi−1 according to step B, line 2. If Fi is an unaffected fragment, step B, line 15 per-

forms a MainThrust on λi in Fi. For any item u in Qi, u is either remains the same

as Qi. u.distance≥λi.distance, or u.distance=λi.distance+SD(λi, u, Fi)≥i.distance during

the previous MainThrust. If Fi is an affected fragment, a process PseudoOP is triggered.

According to Lemma 4.6, for any item u in Qi, u.distance≥λi.distance. Therefore, for any

item u in Qi, λi.dist≤u.distance.

Based on the basis and induction, Lemma 4.7 is correct2.

Corollary 4.1. Let u be a vertex finished in the i′th iteration, where i≤i’. Then,

λi.distance≤u.distance.

Proof Immediately from Lemma 4.6 and 4.7, it can be inferred that λi.distance u.distance.2

Theorem 4.7. Let λi be the vertex extracted in the ith iteration of the while loop in

the DiskOP iteration step. Suppose 1≤i≤n, λi.distance=SD(s, λi, Si
Q). If Fi is affected,

let x be a finished vertex during the PseudoOP process triggered in ith iteration, and

x.distance=SD(s, x, SQ)=SD(s, λi, Si
Q).

Proof Basis : when i=0, step A closes and conducts a relaxation on s and s.distance=SD(s,

s, SI)=0. When i=1, λi is the minimum item in Q0, which is λ1.distance=min({OD(s, u,

S )|u is a boundary vertex of S, if S==D, u can be d}). According to Corollary 4.1, there is

no other vertex v in SQ such that v.distance<λ1.distance. As a result, λ1.distance=SD(s,

λ1, SQ)=SD(s, λ1, S1
Q). If F1 is unaffected, according to step B, line 15, λ1 is the only

vertex finished in this iteration. Otherwise, because all the preconditions are satisfied,

from theorem 4.6, x.distance=SD(s, x, SQ)=SD(s, x, S1
Q). Therefore, the preconditions are

satisfied at the end of the first iteration.

Induction: when 1≤i≤n, suppose the induction hypothesis holds for i -1, The desire

is to show that λ1.distance=SD(s, λ1, SQ)=SD(s, λ1, Si
Q). If Fi is affected, let x be a

finished vertex the PseudoOP process triggered in the ith iteration, and x.distance= SD(s,
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λ1, SQ)=SD(s, λ1, Si
Q). All the preconditions are still valid at the end of the ith iteration.

Since λi is the vertex with the minimum distance attribute in Qi, and all the preconditions

are valid at the end of the (i− 1)st iteration, according to theorem 4.1, λi.distance=SD(s,

λi, SQ)=SD(s, λi, Si
Q). If Fi is unaffected, DiskOP, step B, line 15 does a MainThrust on

λi, which is finished in this iteration, and Ti=Ti−1∪{λi}. In this case, all the preconditions

are valid at the end of the ith iteration. If Fi is affected, the PseudoOP process is triggered

by λi in DiskOP, step B, line 17. Since the preconditions are valid at the end of the

(i−1)st iteration from theorem 4.6, x.distance=SD(s, x, SQ)=SD(s, x, Si
Q). Therefore, the

preconditions are satisfied at the end of the ith iteration.

Based on the basis and induction, theorem 4.7 is correct.2

4.3.4 Complexity Analysis

The complexity of the disk-based OP algorithm includes the CPU complexity and the

I/O complexity. The CPU complexity is principally from the update of the main memory

data structure, the OPF computations in the affected fragments, the direct relaxation in

the while loop of DiskOP, and the relaxation during the PseudoOP processes. The I/O

complexity consists of I/O of fragment database and DMDB. The sizes of the other disk-

based data structures such as distance array database and pivot fragment database are

trivial, compared with the previous databases. The size of the pivot fragment database

in our experiments is less than 7% of fragment database, which is revisited in Chapter 5.

We can ignore the pivot fragments by assuming that they are loaded in the main memory.

Since different buffer management schemes result different I/O performance, we assume

there is no buffer. Every access on a disk-based data structure leads to an I/O operation.

There are three steps in DiskOP: initialization, iteration, and termination, which are

analyzed separately. The initialization steps complete the two OPTs computations inside

the source and destination fragments, prunes a sketch graph, initializes the data structures,

and performs a relaxation on the source vertex in the query super graph. The iteration

step computes a skeleton path in the query graph. The termination step fills each super

edge of the skeleton path with the actual path and returns the complete OP. The sum of

the three steps is the complexity of DiskOP.
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Denote n and m as the average number of vertices and edges in a fragment, respectively.

Let b be the average number of boundary vertices in a fragment, s be the number of

boundary sets in the whole graph, and z be the average number of super edges of the

skeleton path. Assume that accessing a disk-based data structure once results in one B -

bytes I/O operation. Let B1, B2 be the average I/O bytes by reading one fragment and

one DM, respectively.

Since an OPT inside a fragment is actually the SPT in the modified fragment by deleting

the forbidden edges, the CPU complexity of the OPT computation is the same as that of

Dijkstra’s algorithm which is O(nlgn+m). According to the analysis in Section 4.3.1, the

CPU complexity of an OPF computation and that of an OPT are the same: O(nlgn+m).

In the following, the complexities of DiskOP’s initialization step, termination step, and

iteration step are analyzed respectively. The sum of the complexity is DiskOP’s complexity.

Complexity of Initialization and Termination Step

In the initialization step, lines 1–2 build two OPTs in the source and destination fragment,

respectively, whose CPU complexity is O(nlgn+m). Also, the two reading operations on

fragment database with I/O bytes is O(B1). Line 3 calls algorithm 4.5 to compute the

γ-approximation of an OP; line 4 calls algorithm 3.3 to prune the sketch graph. The

algorithm traverses the sketch graph with BFS, and computes the α-approximation for

each visited sketch node.

Algorithm 4.5 is a variant of Dijkstra’s algorithm on the sketch graph. Since both the

sketch graph and pivot fragment database are loaded into the main memory, to calculate

a γ-approximation does not lead to any I/O activity. The iteration step of algorithm 4.5

selects close boundary set bs and relax it. When a boundary set bs is closed with an affected

successor fragment F, step B, lines 15-20 compute an OPT inside the pivot fragment of

F to update the weights of incident sketch edges of bs in F. When F does not contain a

forbidden edge, the weights of the sketch edges inside F remain unchanged. Then, step B,

lines 21–27 relax the incident sketch edges of bs inside F. Therefore, we regard algorithm

4.5 as Dijsktra’s algorithm with a real-time edge weights re-computation. According to

the definition of a sketch graph, the number of vertices in the sketch graph is the number

of boundary sets in the entire graph. Let km be the number of sketch edges in the sketch
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graph and kT be the number of computed OPTs in the iteration step. Assume pn and pm

are the average number of vertices and edges in a pivot fragment respectively. Then, the

CPU complexity on the re-computation of the sketch edges’ weights is O(kT [pnlgpn+pm]).

As a result, the CPU complexity of algorithm 4.5 is O(kT [pnlgpn+pm]+s lgs+km).

Algorithm 3.3 is a BFS algorithm with some α-approximations. If it is assuming that

the boundary set DM is in the main memory, algorithm 3.3 has no I/O activities. The

CPU complexity of lines 1–5 and lines 22–26 is O(km). The α-approximation operation

(lines 10-11) takes O(1) time. Thus, the total time of the α-approximation operations are

O(s). In addition, the breadth first search in the while loop (lines 6–21) takes O(s+km)

time. Consequently, the CPU time of algorithm 3.3 is O(s+km).

The DiskOP initialization step, lines 5–6 initializes distance array database and global

priority queue Q. Each element in the distance array database holds the distance array

of a boundary set, and each distance array has a Fibonacci heap for the vertices in each

boundary set and attached attributes of the boundary vertices. Q is a U-Heap holding

the delegate vertices of all the boundary sets. Therefore, the CPU time for lines 5–6 is

O(b×s+s), and the I/O complexity is ignored. Lines 7–24 do a relaxation on the source

vertex which is trivial again, compared to the iteration step. Lines 7–14 take O(1) time.

Line 21 is an update operation on Q and executes O(b) times in the loop from lines 15

to 24. From the definition of the update operation on Q in Chapter 3, it consists of

one update operation on the U-Heap and one decreaseKey operation on the Fibonacci

heap. The U-Heap updates the value of a leaf vertex each time. In the worst case, all

the ancestors of the leaf vertex are updated. Consequently, the U-Heap takes O(lgs).

Since a decreaseKey operation takes O(1) amortized time [6], the CPU complexity of

lines 7–24 is O(blgs). Therefore, the total CPU complexity in the initialization step is

O(nlgn+m+b×s+b+kT [pnlgpn+pm]+s lgs+km)=O(nlgn+m+b×s+kT [pnlgpn+pm] +s lgs

+km), and the I/O bytes is O(B1).

In the termination step, DiskOP computes z OPTs. Therefore, its CPU complexity is

O(z×nlgn+z×m) and I/O bytes are O(z×B1).
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Complexity of Iteration Step

The kernel of DiskOP algorithm is the iteration step. A boundary vertex v is selected to

close during each iteration. Let F be the successor fragment of v. If F is affected, DiskOP

calls for a PseudoOP process in step B, line 17. Otherwise, F is unaffected. The DiskOP

does a relaxation on v with the DM of F. Therefore, we can divide the iteration step into

affected or unaffected successor fragments.

Unaffected Successor Fragments

When F is unaffected, line 2 does an extractMin operation on Q. Lines 3-11 set the status of

the extracted boundary vertex v, and dynamically prune the open boundary vertices. From

the definition of extractMin operation on Q in Chapter 3, one update operation on a U-

heap and one extractMin operation in a Fibonacci heap are included. Since the amortized

time of an extractMin operation in a Fibonacci heap is O(lgb)[6], line 2 takes O(lgs+lgb)

CPU time. Lines 3–7 and 12 take O(1) time obviously. Lines 8–11 take O(b) time to

finish the pruning of the open boundary vertices. Lines 13–16 relax the closed vertex v by

calling for a MainThrust process which is algorithm 3.5. A MainThrust process relaxes all

the adjacent super edges of v inside F with an update operation on Q. According to the

analysis in the last section, it takes O(blgs+b) CPU time. Therefore, the total CPU time

of one loop wrt the unaffected successor fragment is O(lgs+lgb+b+1+blgs+b)=O(blgs).

Let the total number of the loops wrt an unaffected successor fragment be bu. Hence, the

total CPU complexity is O(bu×blgs).

The main I/O activity is to read the DM of F into the MainThrust, line 1. Therefore,

the total I/O bytes are O(buB2).

Affected Successor Fragment

When F is affected, DiskOP still runs lines 2–12 to extract a boundary vertex and to dy-

namically prune the boundary vertices first. Then, the algorithm calls a PseudoOP process

in line 15. From the previous analysis, lines 2–12 take O(lgs+b) time.

There are global data structures and local data structures in DiskOP. Global structures

are valid throughout the whole algorithm, and are initialized in the initialization step. Local

data structures are created only during a PseudoOP process, consisting of a temporary U-
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Heap containing the delegate of the boundary sets involved in the pseudo-relaxation, a

Fibonacci heap for the vertices in each involved boundary set, and a binary heap for the

vertices inside F. As a result, we have to consider both the global and local data structures

in the PseudoOP process.

Algorithm 4.10 describes the PseudoOP process. Step A, lines 1–2 initialize the local

structures to be used. The worst case time regarding the running taken is the same as

that of the global data structure initialization which is O(bs). Step A, line 3 calls for

a PseudoThrust to do a pseudo-relaxation on a boundary vertex. The PseudoThrust,

described in algorithm 4.11, is similar to the MainThrust, but there are two differences.

One is that the data structures used in PseduoThrust are both global and local data

structures, whereas those in the MainThrust are only global. The other difference is that

before pseudo-relaxing super edge e(x, y, F ’), lines 9–10 confirm that y has not been either

closed or pseudo-closed yet, and the current distance or pseudo-distance of y is greater

than the pseudo distance obtained from x. Since it takes O(1) time to run lines 9–10,

the PseudoThrust CPU time complexity is the same as that of the MainThrust which is

O(blgs). Lines 4–8 take O(b) time. Consequently, the total CPU time of the iteration

step of the PseudoOP process is O(blgs), and there is no I/O activity.

Let ba be the number of PseudoOP processes called for during the execution of the

DiskOP algorithm. In other words, ba is the number of iterations wrt an affected successor

fragment, and (ba+bu) are the total number of iterations in the DiskOP iteration step.

Assume that y is the number of boundary vertices extracted in the while loop of the

PseudoOP process.

In the iteration step of the PseudoOP process, line 2 extracts a boundary vertex with

the minimum distance from a queue consisting of global and local queues, which takes

O(2lgs+2lgb)=O(lgs+lgb). Lines 3–22 determine whether to perform a relaxation or

pseudo-relaxation on the extracted vertex, and so on. Obviously, the running time of

lines 3–22 is O(1). Lines 23–29 are executed only when the extracted vertex is adjacent

to the destination vertex in the query super graph and take O(1) time. Since the CPU

complexity of the MainThrust and PseudoThrust is the same, lines 30–38 take O(blgs)

time. Hence, the total time of the PseudoOP iteration step is y×O(blgs+lgs+lgb)=O(y×
blgs). Since step B, lines 32 and 34 in the while loop lead to reading the DMs y times,
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I/O bytes is O(y× B2).

The worst case of step C is that we need to reinsert all the extracted boundary vertices

into the global queue. Then, the total running time is O(y×blgs) and there is no I/O

activity.

Step D, line 2 is the computation an OPF in a fragment. The CPU OPF’s complexity

is O(nlgn+m). Line 1 takes O(b) time, lines 3–11 take O(blgs) time and lines 12–14 take

O(b) time. Thus, the total running time of PseudoOP, step D is O(nlgn+m+blgs). There

is only the one reading fragment by line 2. The I/O bytes is O(B1).

As a result, the CPU complexity of PseudoOP is O(y×blgs+nlgn+m). Consequently,

that of the ba PseudoOP process is O(ba×nlgn+ba×m+ba×b×y lgs). The I/O complexity

of PseudoOP is O(y×B2+B1), and that of x the PseudoOP process is O(ba×y×B2+ba×B1).

The total worst case running time complexity of the iteration step in DiskOP is O(bu×b

×lgs+ba×nlgn+ba×m+ba×b×y lgs). The total I/O complexity of DiskOP iteration step

is O(bu×B2+ba×y×B2+ba×B1).

In conclusion, the CPU complexity of DiskOP is O(b×s+kT [pnlgpn+pm]+s lgs+km+

z×nlgn+z×m+ bu×b×lgs+ba×nlgn+ba×m+ba×b×y lgs), and the I/O complexity is O(bu

×B2+ba×y×B2+ba×B1+z×B1).



Chapter 5

Experiments

Chapter 3 and Chapter 4 describe several approaches or heuristics, designed to improve the

running time and I/O cost of a disk-based SP algorithm and a disk-based OP algorithm.

This chapter focuses on the experiments conducted on a real-world digital map. The testing

is conducted on our improved disk-based SP (DiskSPNN) algorithm and the disk-based

OP (DiskOP) algorithm. After DiskSPNN is compared with the DiskSP [31], DiskSPN [21]

and Dijkstra’s algorithm, the performances of DiskOP, NDMA and OPTA are presented.

The PC for testing is a Pentium IV 1.7GHz system with 1GB DDR, and hard drive

is an Ultra ATA/100 at 7,200 rpm. The operating system is Microsoft Windows 2000,

Server SP4. All the algorithms are developed with Java 1.4.1 with same data structures

and are optimized to the same degree. We set the Java Virtual Memory (JVM) at 128M

in order to have a uniform environment for all the test cases. Therefore, the main memory

is 128M. The digital map that is adopted is the Connecticut road system that is stored in

a TIGER/LINE file. We adopt the approach in [31] to convert the data file into a graph

consisting of 190,000 edges and 160,000 vertices whose disk file size is approximately 20MB.

The partitioning algorithm, proposed in [31], partitioned the graph into fragments. We

use a virtual hash table, a disk-based hash table introduced in [31], to hold the fragment

database and the DMDB. Some elements in the virtual hash table may not be in the main

memory. Let x be the total number of the elements in a virtual hash table and y be the

maximum number of the elements in the main memory. In this thesis, we define the cache

size of the virtual hash table as y/x×100%. When the virtual hash table tries to load
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an element from the disk and the number of elements in the main memory reaches the

maximum, the virtual hash table swaps an element from the main memory to the disk and

loads the new element from the disk into the main memory by the LRU strategy. Both

the fragment database and the DMDB are memory consuming in the SP and the OP test.

The cache size of the databases are critical to the outcome. We set the cache size as low

as possible to fit into 64M in order to assume that the proposed algorithms are scalable

for the large graphs, which can not be loaded into the main memory as a whole.

The queries for the SP testing are divided into three ranges: long, medium and short,

where the long-range queries are more than 66% of the longest possible shortest distance

in the graph, the short-range ones are less than 33%, and the medium-range ones are

between 33% and 66%. Each range query set for the SP testing has 100 queries. In the

OP testing, we are interested in the performance of the three disk-based OP algorithms,

not the different ranges of the queries. Therefore, the OP testing query set consists of 30

short-range, 30 medium-range, and 30 long-range queries. All the testing results in this

thesis are the average of the queries in the query set.

5.1 Performance of Disk-based SP Algorithms

The experimental results in [21] demonstrate that the fragment of 1000 vertices with the

cache size of 22% for the DMDB performs best for the Connecticut graph. It consists of

378 fragments and 347 boundary sets, where 139 fragments are connected to each other,

239 fragments are isolated, and the number of the vertices in isolated fragments is less than

10. In this section, the 1000-node partitioned graph and DMDB with cache size of 22%

are used.

In Chapter 3, we presented a new disk-based SP algorithm (DiskSPNN) which is based

on the algorithms proposed in [31] and [21]. Our contribution lies in the following, detailed

in Chapter 3:

• The DiskSPNN algorithm conducts the skeleton path computation in a query super

graph; DiskSP and DiskSPN compute a skeleton path in the merged graph that

consists of a source fragment, destination fragment, and super graph;
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• DiskSPNN relaxes the outgoing super edges of a closed boundary vertex inside its suc-

cessor fragment; DiskSP and DiskSPN relax all the outgoing super edges of a closed

boundary vertex, indicating that the relaxation involves two or more fragments;

• DiskSPNN prunes the sketch graph with BFS, and DiskSPN prunes the graph by

visiting each sketch node in the sketch graph; in addition, DiskSPNN prunes the

open boundary vertex during the skeleton path computation;

• DiskSPNN adopts a new data structure, named distance array instead of distance

vector used in DiskSP and DiskSPNN; the distance array is almost the same as the

distance vector except that the distance array uses an array to hold the boundary

vertices in a boundary set instead of a vector.

In this section, we first compare the overall performance of DiskSP, DiskSPN, DiskSPNN,

and Dijkstra’s algorithm. Then, we discuss the contribution made by each modification

in DiskSPNN individually. The programs for testing DiskSP and DiskSPN are the exact

same as the ones in [31] and [21], respectively. Dijkstra’s algorithm is a main memory

version of an SP algorithm. The algorithm loads the digital map into the main memory,

and then finds an SP. We assume that the digital map of Connecticut is loaded before exe-

cuting Dijktra’s algorithm. Figure 5.1 demonstrates the running time of different ranges of

queries. Disjktra’s algorithm is the worst and DiskSPNN is the best of the four algorithms.

Figure 5.2 describes the DMDB I/O bytes of the three disk-based SP algorithms. Figure

5.3 presents the average number of boundary vertices that each algorithm accesses during

the skeleton path computation phase.

For the short-range queries, the running time of DiskSPNN is only 17% of that of the

Dijkstra’s algorithm and 29%, and 53% of DiskSP and DiskSPN respectively. For the

medium-range, the percentage is 22%, 30%, and 59%, and for the long-range, the time is

29%, 33%, and 60% of Dijkstra’s algorithm. Obviously, DiskSPNN significantly reduces

the running time for all the queries, especially for the short and medium range queries.

The I/O performance is an important aspect of the evaluation of a disk-based algorithm.

According to the results of [31] and [21], most of the I/O activities are on a DMDB. The

DMDB I/O bytes of DiskSPNN on short and medium queries is only approximately 32%

and 63% of the DiskSP and DiskSPN, respectively, the I/O bytes of long queries is 47%
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Figure 5.1: Average running time per SP query of four SP algorithms
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Figure 5.2: Average DMDB I/O bytes per SP query of four SP algorithms
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Figure 5.3: Average closed boundary vertices per SP query of four SP algorithms

and 70% of DiskSP and DiskSPN. As a result, the shorter the query, the fewer the I/O

bytes, and the less the running time.

During the process to compute a skeleton path, the algorithms close a boundary node,

and relax its outgoing super edges during each iteration. Therefore, the number of bound-

ary vertices is the number of iterations of the algorithms. Intuitively, when the size of

the search space increases, the number of iterations to compute a query increases. Both

DiskSPN and DiskSPNN reduce the search space of the SP queries during the sketch graph

pruning phase. In addition, DiskSPNN dynamically prunes the open boundary vertices in

the skeleton path calculation phase. The average number of closed boundary vertices of

DiskSPN on short, medium, and long queries is 30%, 35%, and 49% of DiskSP respec-

tively. This implies that the search space of the former is less than half of the latter,

and the sketch graph pruning is more effective on shorter queries. The pruning of the

open boundary vertices further shrinks the search space of DiskSPN. The number of closed

boundary vertices of DiskSPNN on short, medium, and long queries is only 24%, 25% and

36% of DiskSP, respectively. The open boundary vertices pruning further reduces 6%, 9%,

and 13% search space and works better on longer queries. Consequently, the search space

of DiskSPNN is only one third of that of DiskSP. Since the number of loops is independent
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of the different implementation approaches, the DiskSPNN algorithm is superior to the

other two, especially for long queries.

During the sketch graph pruning phase, DiskSPNN prunes with BFS, whereas DiskSPN

prunes by visiting each sketch node in DiskSPN (as detailed in Chapter 3). The use of BFS

decreases the number of α-approximations. Let n1 be the number of sketch vertices that

DiskSPNN visits, and n be the number of the sketch vertices in the sketch graph. Then,

2n1 and 2n are the number of α-approximations computed by DiskSPNN and DiskSPN,

respectively. In our testing case, the number of α-approximations calculated by DiskSPN

is 6.1, 3.2, and 1.7 times that of DiskSPNN for the short, medium, and long-range queries,

respectively, as shown in Figure 5.4. Since the α-approximation computations are the most

time-consuming part of the sketch graph pruning and the cost of BFS is trivial, the sketch

graph pruning of DiskSPN is improved greatly in the DiskSPNN algorithm.
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Figure 5.4: Number of α-approximations with PA and PB

DiskSPNN improves four aspects described at the beginning of these section. In or-

der to determine the affect of each aspect, we investigate them separately. Since the last

approach changes only a distance vector into a distance array, the improvement is trivial.

We investigate it with the query super graph approach. The algorithm based on DiskSP,

incorporating the query super graph approach and the distance array data structure are
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Figure 5.5: Average running time per SP query of different approaches

denoted as QD. Continue to apply the successor fragment idea on QD, named QD+SF.

Let PA and PB be the pruning techniques adopted in DiskSPN and DiskSPNN, respec-

tively. Hence, QD+PA and QD+PB are the algorithms that apply the different pruning

techniques on QD. DiskSPNN is the combination of QD, SF, and PB. Figures 5.5, Figures

5.6 and Figures 5.7 give the comparison of these algorithms for the CPU time, and DMDB

I/O bytes on the number of closed boundary vertices.

In our testing graph, it is assumed that the number of vertices in a source fragment and

destination fragment are 2000, and the number of boundary vertices in the super graph is

3998. Therefore, there are 5998 vertices in the merged graph of DiskSP. However, the query

super graph contains only 3998+1+1 =4000 vertices. As known, DiskSP and DiskSPNN

compute a skeleton path in the merged graph and the query super graph respectively, and

then fill in the skeleton path to obtain the actual SP. In this way, the first approach improves

the performance of DiskSP significantly. QD improves the running time of DiskSP more

than 50% for the all different range queries. QD+SF further improve the running time

by approximately 4–6% compared with that of QD. The DMDB I/O bytes of QD+SF are

reduced by approximately about 2% of that of QD. In Figure 5.6 and Figure 5.7, we find

that the pruning techniques of the algorithms decrease the I/O bytes and search space,
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Figure 5.6: Average DMDB I/O bytes per SP query of different approaches
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Figure 5.7: Average closed boundary vertices per SP query of different approaches
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substantially. As a result, for the short, medium, and long range queries, the running time

of QD+PA decreases by 15%, 17% and 8% of that of the QD, respectively. QD+PB

improves the running time by 18%, 16%, and 9% for the short, medium-range queries and

long-rang queries wrt QD. Since the number of accessed boundary vertices of QD+PB

is at least 20% less than that of QD+PA, the search space of QD+PB should be 80%

of that of QD+PA, indicating that the pruning technique of DiskSPNN is better than

that of DiskSPN. Since only the pruning techniques can decrease the number of accessed

boundary vertices, DiskSP, QD, and SF+ QD have the same search space. Moreover, the

search space of QD+PA is the same as that of DiskSPN, and the search space of QD+PB

is the same as that of DiskSPNN. The DiskSPNN incorporates the successor fragment

idea into QD+PB, and the running time improves 19%, 17%, and 13% for the short,

medium-range queries, and long-rang queries wrt QD. According to these experimental

results, each approach improves the SP disk-based algorithm individually. Moreover, the

approaches work together so that DiskSPNN performs the best of all the algorithms.

Therefore, we can conclude that the overall performance of the DiskSPNN is much bet-

ter than that of the previous two disk-based algorithms and Dijkstra’s algorithm, also, the

four approaches proposed in Chapter 3 contribute to the improvement of our disk-based

SP algorithm, DiskSPNN.

5.2 Performance of Disk-Based OP Algorithms

Chapter 4 presents three algorithms to solve the OP problem in a very large graph. In this

section, we compare the running time, I/O costs of the fragment database and DMDB, and

the number of reading each of the two databases for the three disk-based OP algorithms.

Furthermore, the best parameters of DiskOP such as the fragment size of the partitioned

graph and the cache size of the two databases are investigated. Since the pruning tech-

nique in the DiskSPNN can also be applied to the OP problem. Chapter 4 introduces four

methods to materialize partial fragments to increase the process to calculate the upper

bound of an OP the from a source to a destination. From the performances of them, we

choose the best for the sketch graph and open boundary vertex pruning of the OP algo-
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rithms. Section 5.2.1 introduces the method for generating the forbidden edge sets in the

OP testing, Section 5.2.2 presents the experimental results of the different pivot fragment

materialization, Section 5.2.3 finds the optimal parameters to run DiskOP, and Section

5.2.4 compares the three disk-based OP algorithms.

5.2.1 Forbidden Edge Set

For any optimal route query, its OP does not pass through any edge of the forbidden edge

set. We generate two types of forbidden edge sets that correspond to the real-world route

queries regarding the 1000-node Connecticut graph:

• “Find an OP from A to B not via any tollway”. Generally, the express ways are

distributed evenly on the road traffic map. As a result, the edges representing tollway

consist of the forbidden edge set. There are six forbidden edge testing sets of this

type, including 0.01%, 0.1%, 0.5%, 1%, 5%, and 10% of the randomly distributed

edges in the graph. Although the 0.01% set covers 17 fragments and the 0.1% covers

103 fragments, the others involve the whole graph that consists of 139 fragments.

When more than 10% of the edges in the graph are forbidden, probably there is no

OP from a source to a destination;

• “Find an OP from A to B not via any traffic jam roads”. First, three different affected

fragment sets C1, C2, and C3 are generated. C1 consists of seven adjacent fragments

in the middle of the graph. Since, in real-life, traffic jammed roads usually expand

to their neighbourhood, CA(C, G) are defined as a fragment set in partitioned graph

G based on another fragment set C. Then, for any fragment F, if F is adjacent to

fragment F’∈C and F /∈C, then F∈CA. In other words, CA(C, G) consists of all the

fragments that are adjacent to a fragment in set C. Therefore, C2=C1∪CA(C1, G)

and C3=C2∪ CA(C2, G). There are twenty and forty-one fragments in C2 and C3,

respectively. Let C-x% be a set of edges randomly chosen from each fragment F in C,

where x% is the percentage of edges selected from F. In our test cases, x% is 0.1%,

5% or 20%. Finally nine forbidden edge sets C1-0.1%, C1-5%, C1-20%, C2-0.1%,

C2-5%, C2-20%, C3-0.1%, C3-5%, C3-20%.
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In the following sections, all the experiments are based on these 15 forbidden edge sets.

When the partition of the graph changes, for example, the testing graph is a 5000-node

Connecticut graph instead of a 1000-node graph, map the preceding edges to the new par-

tition. Therefore the forbidden edge sets are consistent in different testing situations.

5.2.2 Pivot Fragment Materialization

During the sketch graph pruning phase of an OP computation, some materialized partial

fragments, called pivot fragments, are used. The four methods to build a pivot fragment

are the Single Pivot Path(SPP), Double Pivot Path (DP), Single Branch Pivot Path (SBP)

and Double Branch Pivot Path (DBP). In this section, we compare the performance of the

four methods in a 1000-node Connecticut graph, and choose one to build a pivot fragment

database for testing the disk-based OP algorithms presented in this thesis. The idea is to

randomly choose one pivot for each boundary set, and materialize one or two paths for

every two pivots in the same fragment. In addition, we use the branch idea to reduce the

number of vertices in the pivot fragment (detailed in Chapter 4)

Figure 5.8 illustrates the sketch graph pruning results from the number of pruned

boundary vertices and the pruning time aspects. According to Chapter 4, we use pivot

fragments to calculate the γ-approximation of an OP query. since γ-approximation is

an upper bound of the optimal path’s weight, the tighter the bound is, the more the

boundary vertices in the sketch graph are pruned. When all of the fragments are affected,

we need to re-compute the weights of all the sketch edges with pivot fragments (detailed in

Chapter 4). In Figure 5.8 (a)–(b), there is another approach called the OPM, to calculate

the weights of the affected sketch edges by reading the entire affected fragment into the

main memory. Obviously, the γ-approximation of the OPM is the best case for the pivot

fragment materialization; however the I/O cost is too high. So, in practice, OPM is

never used. In Figure 5.8(a)–(b), the number of pruned boundary vertices decreases as

the percentage of forbidden edges (PFE ) increases, since the computed γ-approximation,

based on the materialized pivot fragments, is no longer close to the optimal distance.

When the forbidden edges are distribute in the entire graph and the PFE is greater than

2%, the pruning technique may not be effective. If the PFE closes to 10%, it is almost
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Figure 5.8: Performance of partial fragment materializations
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Materialization Name
 
 DP
 
 DBP
 
 SP
 
 SBP
 
 Fragment Database
 


File Size
 
 1.33M
 
 1.34M
 
 0.68M
 
 0.74M
 
 19.5M
 


 


Table 5.1: File size of pivot fragment materialization

impossible to prune the sketch graph. When the forbidden edges are concentrated on some

area of the graph, the pruning technique is effective. In Figure 5.8(a), more than 700

boundary vertices are pruned, even for the forbidden edge set C3-20%. Since there are

3,998 boundary vertices in the 1000-node Connecticut graph, 20% of the area is pruned.

Consequently, that the pruning technique is useless when the number of forbidden edges

is large, and are distributed evenly on the whole graph.

All the partial fragment approaches work well when the PFE is small, and the difference

in the pruned boundary sets among them are trivial. Since the PFE in the whole graph is

greater than 1% or the PFE inside a cluster of fragments is approximately 5%, the DBP

is the one close to the OPM, and obviously is better than the others. For example, the

DBP prunes more than 1000 boundary vertices than the other three approaches for the

forbidden edge set 5.0%.

Figure 5.8(c)–(d) indicate that the running time to prune a sketch graph. The time

of the SBP and SPP is about 30% less than that of DBP and DP. Therefore, the SBP

is recommended only when few edges are forbidden in the graph (e.g., 0.5%). Otherwise,

the DBP is recommended. Table 5.1 depicts the file sizes of the pivot fragment databases

that are materialized by the previous approaches. Among them, the size of the SPP is the

minimum, and that of the DP is the maximum, the DBP is only 6.5% of the size of the

fragment database. The size of the DBP is slightly less than that of DP.

Although the running time and file size of the DBP are worse than those of SBP and

SPP, respectively. DBP prunes many more boundary vertices than others do. For the opti-

mal route query problem, the more boundary vertices pruned, the fewer affected fragments

involved, and the less the DM re-computation is needed. By using the DBP, we spend

0.1s more than with the other approaches during the sketch graph pruning, and save at
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least ten times the running and I/O time during the skeleton path calculation. In the next

section, the experimental result indicates that the time to prune a sketch graph is less than

10% of the skeleton path computation. Hence, by considering the cost and benefit, DBP is

superior, when the number of forbidden edges is large. If only a few edges are forbidden,

the SBP is the best. In order to simply the test cases, we use the DBP pivot fragment

materialization in our disk-based OP algorithm.

5.2.3 Optimal Parameters of the DiskOP Algorithm

In the DiskOP algorithm , since both the fragment database and the DMDB are stored

in virtual hash tables, their cache sizes are critical to the outcomes. For a forbidden edge

set and a graph, the smaller the fragment size is, the lower the percentage of affected

fragments. However, the increase in the number of fragments can cause more CPU compu-

tations due to the increased number of PseudoOP processes. Therefore, the fragment size

of the partitioned graph is also very important to the performance of DiskOP. First we find

the optimal fragment size of the Connecticut graph. Then, we figure out the best cache

size for the fragment database and the DMDB, respectively. Since the three parameters

are variable, our approach is to choose two parameters to obtain the optimal value of the

other parameter.

Optimal Fragment Size

Since the main memory is large enough to load all the fragments and their DMs of the

Connecticut Graph simultaneously, we set the cache sizes of the virtual hash tables holding

the two databases, at 100%. Therefore, it is easy to find out the optimal fragment size

by ignoring the performance of I/O. After comparing the performance of DiskOP in the

partitioned graphs with the fragment sizes of 100-node, 1000-node, 5000-node, and 10000-

node (Figure 5.9), we choose the best one as the optimal fragment size of the Connecticut

graph. The numbers of fragments in the above graphs are in Table 5.2. Since there are

some isolated vertices in the Connecticut graph, the partition algorithm in [31] groups them
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in the isolated fragments which have no boundary vertices. In this thesis, we consider only

those connected fragments, and the number of fragments in a graph refers to the number

of connected fragments.

Fragment size of CT Graph
  
 # of Fragments
  
 # of Connected Fragments
  


100
-
node 
 
 1693
 
 1452
 


1000
-
node 
 
 378
 
 139
 


5000
-
node
 
 268
 
 29
 


10000
-
node
 
 254
 
 15
 


 


Table 5.2: Number of fragments in the Connecticut graphs with different fragment size

Figure 5.9(a)–(b) reveal the average OP query running time in the 100-node, 1000-node,

5000-node, and 10000-node Connecticut graphs. For the forbidden edge sets C2-0.1%, C3-

0.1%, 0.01%, 0.1%, and 0.5%, the 100-node graph is the best, whereas the 1000-node graph

is the best for all the others. In Chapter 4, we know that a boundary node is either closed

in DiskOP while loop or closed/pseudo-closed in the PseudoOP process called by DiskOP.

Thus, its adjacent super edges inside its successor fragment is relaxed/pseudo-relaxed. As

a result, the total times of closing/pseudoclosing the boundary vertices are the number of

accessed boundary vertices in DiskOP. Figure 5.9(c)–(d) relate that the number of accessed

boundary vertices in the 100-node graph is much greater than that in the other graphs

except for the forbidden edge sets C1-0.1%, C2-0.1%, C3-0.1%, 0.01%, 0.1%, and 0.5%.

According to Table 5.2, the number of fragments in the 100-node graph is far more

than the number in the other graphs. As a result, there are more boundary vertices in

the the 100-node graph than in the others. However, the percentage of affected fragments

(PAF ) the in 100-node is much lower than those of the other graphs (figure 5.9(e)–(f)) for

the forbidden edge sets C2-0.1%, C3-0.1%, 0.1% and 0.5%.When the PAF in the graph is

low, the number of PseduoOP processes should be reduced. As a result, the number of

accessed boundary vertices in the 100-node graph is close to that of the other graphs for

C2-0.1%, C3-0.1%, 0.1% and 0.5% forbidden edge sets as shown in Figure 5.9(c)–(d).
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Figure 5.9: Performance of DiskOP in partitioned graphs with different fragment sizes
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The most time consuming tasks of DiskOP are the relaxations on the boundary vertices

and the OPF computations during the PseudoOP processes. The first task involves access-

ing of boundary vertices previously discussed. Figure 5.9(g)–(h) exhibit the total running

time of OPF computations per OP query inside the 100-node, 1000-node, 5000-node, and

10000-node graphs. In spite of the fewer boundary vertices in a 5000-node graph and

10000-node graph than in a 1000-node graph, the DiskOP Algorithm spends much more

time on the OPFs computation in the two graphs than in the 1000-node graph. Conse-

quently, DiskOP performs much worse in the 5000-node graph and 10000-node graph than

in the 1000-node graph. The OPF time in the 100-node graph is less than that in the 1000-

node graph for all the forbidden edge sets. For the forbidden edge set C2-0.1%, C3-0.1%,

0.1% and 0.5%, the time on the relaxations of boundary vertices in both graphs are almost

the same. Therefore, the running time of an OP query in the 100-node graph is less than

that in the 1000-node graph. For the other forbidden edge sets, the relaxation time on the

boundary vertices in the 100-graph is much more than that in the 1000-graph. In addition,

the difference in the OPF time in the two graphs is not very large. Consequently, the OP

query runs faster in the 1000-node graph than in the 100-node graph.

From these experimental results and analysis, we can conclude that for C2-0.1%, C3-

0.1%, 0.1%, and 0.5% forbidden edge sets, DiskOP works best in the 100-node graph

and 1000-node graph. For C1-0.1%, C1-5.0%, C1-20.0%, C2-5.0%, C2-20.0%, C3-5.0%, C2-

20.0%, 0.01%, 1.0%, 5.0% and 10.0% forbidden edges sets, the 1000-node graph is the best

choice. Since the performance on the 1000-node graph is good for all the forbidden edges,

in order to simplify the testing in the following sections, we choose the fragment size, 1000,

as the optimal value. The remaining experiments are tested in the 1000-node Connecticut

graph.

Optimal Cache Size of the Fragment Database

To obtain the optimal cache size of the fragment database, we maximize the cache size of

the DMDB and execute the DiskOP algorithm in the 1000-node Connecticut graph with

fragment database cache sizes: 7%, 14%, 22%, 36%, 50%, and 72%.

Figure 5.10 displays the performance of DiskOP with different cache sizes of the frag-
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ment database regarding the running time aspect and fragment database I/O bytes. Ob-

viously, the performance of DiskOP improves with the increase of cache size. According to

Figure 5.10(c)–(d), after the cache size reaches 22%, the fragment database I/O bytes are

almost unchanged. Moreover, there is no obvious decrease tendency in the running time

of DiskOP, when the cache size is greater than 22%. Therefore, 22% is the optimal cache

size of the Connecticut 1000-node fragment database.

We find that DiskOP works well even when cache size is as small as 10%. The difference

in the running time and fragment database I/O bytes is trivial, if the forbidden edges in

the graph are sparse. Even when the percentage of forbidden edges is greater than 5%,

the maximum fragment I/O bytes are fewer than 30M. Thus, we can infer that algorithm

DiskOP is scalable in a very large graph.

Optimal Cache Size of DMDB

Similarly, the optimal cache size of the DMDB is found by maximizing the cache size of

the fragment database and executing the DiskOP algorithm in the 1000-node Connecticut

graph with the DMDB cache sizes 7%, 14%, 22%, 36%, 50%, and 72%. Figure 5.11 exhibits

the performance of DiskOP with different DM cache sizes from the running time and I/O

aspects.

The cache size of DMDB is critical to the performance of DiskOP according to the ex-

perimental results in Figure 5.12. The difference of the I/O DMDB bytes is approximately

700M for cache sizes 7% and 50%. When the cache size reaches 50%, the improvement

is trivial. Fortunately, the size of DMDB is far smaller than that of fragment database.

For example, the cache size of DMDB is only 11% of that of fragment database for the

1000-node Connecticut graph. Therefore, the optimal cache size of the DMDB in our test

is selected as 50% does not cause a main memory problem.
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Figure 5.10: Performance of DiskOP with different fragment database cache sizes
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Figure 5.11: Performance of DiskOP with different DMDB cache sizes
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5.2.4 Disk-Based OP Algorithms

In the previous sections, the optimal parameters are obtained for the obtained fragment

size, the cache size of the fragment database, and the cache size of the DMDB. In this

section, we focus on the comparison of the three algorithms proposed in Chapter 4. The

experimental results of DiskOP are with the three optimal parameters: fragment size 1000

nodes, fragment database cache size 22%, and DMDB cache size 50%. In order to show

that DiskOP is superior to the other two algorithms, the experimental results of both NDM

and NOPT are computed with fragment database cache size 100%, and DMDB cache size

100% in the 1000-node graph. Therefore, both of the databases in NDM and NOPT are

loaded into the main memory.

The comparison consists of five aspects: the average running time of optimal queries, the

average fragment database I/O bytes, the average DMDB I/O bytes, the average number

of the reading fragments RF (A), and the average number of the reading DMs RD(A) in

the skeleton path computation phase, where A is the name of the algorithm executed.

Let nl be the number of loops in the algorithms, nua be the number of the extracted

boundary vertices with an unaffected successor fragment and na be the number of the

extracted boundary vertices with affected successor fragment in the while loop. Then

RF (NOPT)=na, RD(NOPT)=nua and RF (NDM)=fa, RD(NDM)=nl , where nl=na+nua

and fa is the number of affected fragments in the while loop. Obviously, RF (NDM)<<

RF (NOPT). Since NDM re-computes the DMs for those affected fragments and puts it

in temporary database, RD(NDM) is the sum of na and nua. RF (DiskOP)≤ na because

DiskOP reads a fragment only when the extracted boundary vertex has an affected succes-

sor fragment and there exist open boundary vertices in the fragment. RD(DiskOP)=nua

+npseudo, where npseudo is the sum of the times reading DMDB during the PseudoOP pro-

cesses, when the boundary vertices with the affected successor fragments are extracted.

Therefore RD(DiskOP)>RD(NDM)>RF (NOPT). In the following paragraphs, we verify

the analysis by our experimental results.

Figure 5.12(a)–(b) depict the average number of reading fragments in DiskOP, NDM,

and NOPT algorithm. Whatever the type of a forbidden edge set, the number of reading

fragments in NOPT is much greater than that in the other two algorithms. Although, for

all forbidden edge sets, RF (NDM)<RF (DiskOP), the differences small, indicating that the
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Figure 5.12: Number of reading fragments and DMs for DiskOP, NDM, and NOPT
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DiskOP algorithm performances well on fragment database I/O. Figure 5.12(c)–(d) gives

the average number of reading distance matrices in the three algorithms. The experimental

data indicates RD(DiskOP)>>RD(NDM)>RD(NOPT). Fortunately, the size of DMDB

is only around 10% of that of fragment database. According to the test in Section 5.2.3,

when the DMDB cache size reaches 50%, the DiskOP works as well as loading the entire

database into the main memory.

As the size of the graph increases, the use of the optimal fragment database cache size

can cause trouble. For example, for the fragment database with size 200M, reading 50% of

the fragments into the main memory, simultaneously, consumes appriximately 200×50%×3

= 300M by assuming that the main memory for loading database is three times its disk file

size. Since many PCs cannot handle this, the only solution is to reduce the cache size of

fragment database. Because the size of DMDB is approximately 10% of the size of fragment

database, reading only 50% of the distance matrices into the main memory at the same

time consumes about 200×10%×50%×3 = 30M. Therefore, we can use the optimal value

of the DMDB cache size, but must adjust that of the fragment database cache size. As a

result, although the number of reading DMDB in DiskOP is large, DiskOP still performs

well in DMDB I/O. Figure 5.13(e)–(f) proves it. The worst DMDB I/O in our test cases

of DiskOP is less than 5M. Figure 5.13(c)–(d) portray that fragment database I/O bytes

of DiskOP are close to those of NDM and NOPT for all the forbidden edge sets, where

only 22% of the fragments in DiskOP are in the main memory, and all the fragments in

NDM and NOPT are in the main memory. Consequently, the theoretical analysis and

experiment results confirm that the I/O performance DiskOP is superior.

According to the algorithms’ description in Chapter 4, the RF (DiskOP) is the number

of OPFs computed in DiskOP, the RF (NOPT) is the number of OPTs calculated in NOPT,

and the RF (NDM) is the number of DMs re-computed in NDM. Let t be the time to build

an OPT. Since the time on an OPT computation is almost the same as that on the OPF, the

total time of the OPF computation in DiskOP is RF (DiskOP)×t, the total time of the OPT

computation in RF (NOPT)×t. Let b be the average number of boundary vertices inside a

fragment. Then, the total time of DM re-computation of NDM is b×RF (NDM)×t. As a

result, RF (DiskOP)×t<<b×RF (NDM)×t and RF (DiskOP)×t<<RF (NOPT)×t. Based

on the previous analysis on CPU cost as well as I/O cost, we can conclude the average
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Figure 5.13: Performances of DiskOP, NDM, and NOPT
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running time of DiskOP is much less than that of the other two algorithms. Figure 5.13(a)–

(b) provides the experimental results to prove it.

From the analysis and the experimental results in this section, it is evident that the

proposed DiskOP algorithm is superior to the both NDM and NOPT.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, several approaches to speed up the previous disk-based shortest path al-

gorithms, and a new disk-based optimal path algorithm have been presented. The new

disk-based SP algorithm (DiskSPNN) and our disk-based optimal path algorithm (DiskOP)

are based on the framework of the DiskSP algorithm and DiskSPN algorithm ([31],[21])

which are derived from Dijskstra’s algorithm. The essence of the disk-based algorithms is

to divide a large graph into a set of fragments, and pre-compute the distance matrices con-

taining the shortest distances between each pair of boundary vertices inside each fragment.

In order to prune the searching space, a boundary set distance matrix is also pre-computed

to hold the maximum and the minimum shortest distances between each pair of boundary

sets. When a route query is calculated, these pre-computed data are adopted to speed up

the whole process. There are several steps in a route query calculation process: sketch

graph pruning, finding a skeleton path, and filling out the skeleton path.

For the shortest path problem, we reduce the number of α-approximations significantly

with the breadth first search in the sketch graph pruning phase; then we compute a skeleton

path in a query super graph instead of a merged super graph. This avoids the unnecessary

relaxation of the super edges inside the successor fragment of a closed boundary vertex,

and dynamically prunes some open boundary vertices during the finding skeleton path

phase. The experimental results demonstrate that our SP algorithm, DiskSPNN, reduces

143
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the calculation time as well as the I/O bytes.

For the optimal route query problem, due to the forbidden edges, a β-approximation is

invalid for estimating the upper bound of the optimal distance. As a result, we materialize

a pivot fragment database to calculate the γ-approximation used in pruning the sketch

graph and open boundary vertices. With minor modifications, the techniques in DiskSP,

including the query super graph, successor fragment, and pruning the sketch graph and

open boundary vertices, are adapted to the optimal path problem. In addition, we present a

new approach, pseudo-relaxation and co-relaxation to balance the calculation time and I/O

activities. The sketch graph pruning phase of DiskOP is the same as that of DiskSPNN

except for the γ-approximation instead of the β-approximation. Both DiskSPNN and

DiskOP fill out the skeleton path by computing an actual shortest/optimal path for each

super edge of the skeleton path.

In the skeleton path computation phase, when closing a boundary vertex inside an

unaffected successor fragment, DiskOP works like DiskSPNN; however, if successor frag-

ment F of closed boundary vertex b contains forbidden edges, DiskOP first continues the

optimal skeleton path tree computation by ignoring the forbidden edge constraint until all

the boundary vertices in F are included in the tree. Then, the algorithm simultaneously

relaxes the closed but un-relaxed boundary vertices inside F by computing an optimal path

forest. Consequently, DiskOP finishes the relaxation of a set of boundary vertices with a

partial skeleton path tree computation, building one optimal path forest, and one fragment

reading. Although the computing and maintaining of the partial skeleton path trees leads

to the reading of distance matrices and some calculations, the benefits make it worthwhile

to do. In this way, DiskOP balances the calculation time and I/O activities. Since little

research has been done in the area of disk-based optimal path algorithms, we compare the

DiskOP algorithm with two brute-forces approaches. One approach re-computes the dis-

tance matrix of the affected fragments in real-time, and the other relaxes closed boundary

vertex b with affect fragment F by building an optimal path tree rooted b inside F.

The calculation time of the first approach is untolerable, but it minimizes the I/O

activities. Although the calculation time of the second approach is acceptable, its I/O

performance is unacceptable, when the graph is very large and most of the fragments

contain forbidden edges. The experimental results prove that DiskOP performs well for
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the calculation time and I/O activities under various forbidden edge distributions. Even

when DiskOP is run with restricted main memory resources and two brute-force approaches

are run in main memory, DiskOP is still superior. This indicates that the calculation time

of DiskOP is much less than that of the two approaches. Due to frequent skeleton path

trees computation in DiskOP, the I/O activities on the distance matrix database of DiskOP

are worse than that of the two approaches. Fortunately, the size of the distance matrix

database is far less than that of the fragment database. We can solve the problem by

increasing the cache size of the virtual hash table holding distance matrix database. The

experimental results also confirm that DiskOP works well with minimum memory (e.g.,

cache size 10% and 50% of fragment database and distance matrix database, respectively,

in the 1000-node Connecticut graph). Therefore, we can infer the scalability of our DiskOP

algorithm is good.

In summary, we improve the existing disk-based shortest path algorithms by various

techniques without new materialization. The DiskSPNN algorithm requires even less main

memory than the previous disk-based shortest path algorithms; the DiskOP algorithm

works efficiently, and is applicable to very large graphs.

6.2 Future Work

In this thesis, we have presented the algorithms to answer the shortest/optimal path queries

in very large spatial databases quite expediently. Our research on the optimal route query

problem focuses only on the forbidden edge constraint. However, in the real world, the

query constraints are more complex than just those about roads or areas.

By studying various query constraints, we find the forbidden edge constraint is the

most basic one. Many constraints can be reduced to the forbidden edge constraint such

as finding a simple optimal path from city A to B via C and D in order. Intuitively, an

optimal path consists of three optimal sub-paths. The first one is an optimal path from

A to C not via city B and D, the second sub-path is an optimal path from C to D, not

via city A, B and any edge on the first path; and the last sub-path is an optimal path

from D to B not via city A, C, and any edge on the first two sub-paths. Therefore, the
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previous constraints become the forbidden edge constraint. In the future, we will develop a

framework to answer optimal paths queries with various constraints in a very large graph.

Another practical problem is to process multiple optimal path queries in near-real time.

Some techniques are proposed in [21] for the multiple SP, but further work is required for

the optimal path queries (e.g., adapting the techniques in [21] to the optimal path problem).
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