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Abstract

Hedging a contingent claim with an asset which is not perfectly correlated with the underly-

ing asset results in an imperfect hedge. The residual risk from hedging with a correlated asset is

priced using an actuarial standard deviation principle in infinitesmal time, which gives rise to a

nonlinear partial differential equation (PDE). A fully implicit, monotone discretization method

is developed for solving the pricing PDE. This method is shown to converge to the viscosity

solution. Certain grid conditions are required to guarantee monotonicity. An algorithm is de-

rived which, given an initial grid, inserts a finite number of nodes in the grid to ensure that the

monotonicity condition is satisfied. At each timestep, the nonlinear discretized algebraic equa-

tions are solved using an iterative algorithm, which is shown to be globally convergent. Monte

Carlo hedging examples are given, which show the standard deviation of the profit and loss at

the expiry of the option.
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Chapter 1

Introduction

1.1 Motivation

A derivative security, simply called a derivative, is a financial security, whose characteristics and

value depend on the characteristics and value of other securities (often referred to as underlying

securities). Derivatives play a very important role in modern financial markets. Derivatives are

usually hedged by taking positions in the underlying assets. The standard Black-Sholes analysis

assumes that delta hedging eliminates all risk. However, underlying assets cannot be traded in

some situations. It follows that other assets, which are correlated with the underlying assets,

must be used to hedge the derivative.

As a motivation, consider the following situation. Segregated funds [39] are guarantees on

pension plan investment accounts, offered by Canadian insurance companies. In many cases, the

underlying asset is a mutual fund, managed by the insurance company offering the guarantee.

Since the insurance company cannot legally short its own funds, these guarantees are hedged

using index futures. The index, of course, will not be perfectly correlated with the underlying

1



2 Chapter 1. Introduction

mutual fund.

In this case, there is unhedgeable residual risk because of the imperfect correlation. As is

well known [19], it is possible to construct a best local hedge, in the sense that the residual risk

is orthogonal to the risk which is hedged. If an index is used to construct the hedge, and the

residual risk is not correlated with the market index, it could be argued that this residual risk

is firm specific, and can be diversified away. However, since it is not easy for insurance policy

holders to diversify their risk, insurance companies are mandated to have sufficient reserves to

guarantee solvency. As a result, the usual approach in the insurance industry is to build up a

reserve to provide for unhedgeable risk. We are then left with the problem of determining an

appropriate pricing mechanism for an option with unhedgeable residual risk.

One possible approach is based on utility maximization [24, 15]. However, it is not obvious

how to construct a utility function for an insurance company. As discussed in [8], expected utility

maximization approaches have had limited acceptance in practice.

1.2 Overview

In this thesis, we will follow along the lines suggested in [7], where the expected return of the

hedging portfolio is adjusted to reflect a risk premium due to the unhedgeable risk. More recently,

this idea has also been recognized as a common actuarial valuation principle [27, 37]. This

approach is also known as a safety loading, in the sense that insurance companies must charge

premia larger than the expected payoff of the hedging portfolio (in incomplete markets), so that

sufficient reserves are built up to ensure solvency. In [37], this valuation principle is translated

into a measure of preferences. This measure can then be used in an indifference argument to
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generate a financial premium principle.

We will use the modified standard deviation principle [25] in infinitesimal time to derive

a nonlinear PDE for the value of a contingent claim in the incomplete market case where the

underlying cannot be traded, but the the claim can be partially hedged using a correlated asset.

The best hedge is determined by local risk minimization [20, 35, 36]. We then use the actuarial

standard deviation valuation principle to account for the residual risk. This provides the hedger

with compensation for bearing the unhedgeable risk. The standard deviation principle is used

as opposed to the variance principle, since the standard deviation method gives a value which is

linear in terms of the number of units bought/sold [25]. Applying this principle in infinitesmal

time results in a method which is easily extended to American style contracts with complex path

dependent features, which are typical of pension portfolio guarantees offered by insurance firms.

In a financial context, this method can also be interpreted as specifying a drift rate which ensures

that the hedge portfolio has a desired Sharpe ratio.

The nonlinear PDE gives a different price depending on whether the hedger is long or short

the contingent claim. This is similar to the situation which arises in other nonlinear PDEs in

finance, such as uncertain volatility and transaction cost models [2, 38, 31]. The pricing equation

resulting from hedging with a correlated asset requires estimation of the objective measure drift

rates, which are difficult to ascertain. An uncertain drift rate model results in a nonlinear PDE

with the same form as the nonlinear PDE based on the actuarial standard deviation principle.

Hence, both the risk premium for bearing unhedgeable risk, and the risk associated with uncertain

parameter estimation, may be taken into account using the same pricing PDE.

Since the pricing PDE is nonlinear, questions of convergence to the financially relevant so-

lution arise. We develop a monotone, implicit scheme for discretization of the nonlinear pricing

PDE. The results in [3, 14] can then be used to guarantee that the discrete solution converges to

the viscosity solution. In order to ensure that the scheme is monotone, the grid must satisfy cer-
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tain conditions. Given an initial grid, a node insertion algorithm is developed which ensures that

the monotonicity conditions hold. We show that the insertion algorithm inserts a finite number

of nodes, and that the grid aspect ratio of the grid after node insertion is only slightly increased

compared to the grid aspect ratio of the original grid.

At each timestep, the implicit discretization leads to a nonlinear set of algebraic equations.

An iterative algorithm is described for solution of the algebraic equations. The iterative method

is designed so that existing PDE pricing software can be easily modified to solve the nonlinear

algebraic equations. We prove that this algorithm is globally convergent. Moreover, convergence

is quadratic in a sufficiently small neighborhood of the solution. We also prove that the discrete

scheme satisfies certain arbitrage inequalities.

Finally, we include some numerical examples demonstrating that convergence of the nonlin-

ear iteration at each timestep is rapid. We also include some Monte Carlo hedging simulations,

where the optimal hedge parameters are given from the solution of the pricing PDE. The hedging

simulation computations can then be used to determine the standard deviation, mean, VaR and

CVaR of the final profit and loss of the hedging portfolio at the expiry time of the contingent

claim.

1.3 Outline

The outline of this thesis is as follows. In Chapter 2 we introduce the financial model and formu-

late the pricing PDE. Boundary conditions are also studied carefully. In Chapter 3 we give one

method used to discretize the pricing PDE. In Chapter 4 we show that the numerical discretiza-

tions are stable, consistent and monotone, so that they are guaranteed to converge to the viscosity

solution. We also provide a iterative method for solution of the nonlinear discretized algebraic

equations derived in Chapter 3. In Chapter 5 we introduce a node insertion algorithm and study
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the grid aspect ratio after application of the algorithm. In Chapter 6 we give a number of nu-

merical examples which illustrate the performance and convergence of our iteration scheme. We

experiment with a minimum value in the asset grid (S0) and show that the solution is insensitive

to small positive S0. The node insertion algorithm is stressed by experimenting with a very poor

atypical initial grid. In Chapter 7 we experiment with Monte Carlo hedging simulations. Finally,

we provide some conclusions in Chapter 8.



Chapter 2

Pricing Model Formulation

In this chapter we use the modified standard deviation principle to formulate the pricing PDE.

We start with European options, and then extend the model to price American options as well.

2.1 The Nonlinear PDE

Let V (S, t) be the value of a contingent claim written on asset S which follows the stochastic

process

dS = µS dt +σS dZ , (2.1.1)

where dZ is the increment of a Wiener process, σ is volatility, and µ is the drift rate.

Suppose that we cannot trade in the underlying S, but only in the underlying H, with price

process

dH = µ′H dt +σ′H dW , (2.1.2)

where dW is the increment of a Wiener process. In the following we will use the usual Wiener

6
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process properties

E[dW 2] = dt ; E[dZ2] = dt ; E[dZ dW ] = ρ dt (2.1.3)

where ρ is the correlation between dW and dZ. Consider a case where we wish to hedge a short

position in the claim with value V = V (S, t). Construct the portfolio

Π = −V + xH +B , (2.1.4)

where x is the number of units of H held in the portfolio, and B is the risk free bond. We assume

that at time t, B = V − xH, so that Π(t) = 0. The change in the portfolio value is given by

dΠ = −
[

Vt +µSVS +
σ2S2

2
VSS

]

dt −σSVS dZ

+r(V − xH) dt + x(µ′H dt +σ′H dW )

= −
[

Vt +µSVS +
σ2S2

2
VSS +(xH −V )r− xµ′H

]

dt

−σSVS dZ + xσ′H dW . (2.1.5)

The variance of dΠ is given by

EP [(xσ′H dW −σSVS dZ)2] =
[

x2(σ′)2H2 +σ2S2V 2
S −2σSVSxσ′Hρ

]

dt (2.1.6)

where EP [·] is the expectation operator under the objective or P measure, and we have used

properties (2.1.3). Choosing x to minimize equation (2.1.6) gives

x =

(

σSρ
σ′H

)

VS . (2.1.7)

Substituting equation (2.1.7) into equation (2.1.5) gives

dΠ = −
[

Vt +µSVS +
σ2S2

2
VSS − rV +

(

rσSρ
σ′

)

VS

−
(

σSρµ′

σ′

)

VS

]

dt −σSVS dZ +σSVSρ dW . (2.1.8)
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Defining

r′ = µ− (µ′− r)
σρ
σ′ (2.1.9)

in equation (2.1.8) gives

dΠ = −
[

Vt +SVSr′− rV +
σ2S2

2
VSS

]

dt +σSVS(ρ dW −dZ) . (2.1.10)

Substituting equation (2.1.7) into equation (2.1.6) results in

var [dΠ] = (1−ρ2)σ2V 2
S S2 dt . (2.1.11)

Noting that

cov [ρ dW −dZ,dW ] = 0 (2.1.12)

we obtain

cov [dΠ,dW ] = 0 , (2.1.13)

so that the residual risk is orthogonal (in this sense) to the hedging instrument.

Define a new Brownian increment

dX =
1

√

1−ρ2
[ρdW −dZ] (2.1.14)

with the property

dX2 = dt . (2.1.15)

This allows us to write equation (2.1.10) as

dΠ = −
[

Vt +SVSr′− rV +
σ2S2

2
VSS

]

dt

+SVS

√

1−ρ2 σ dX . (2.1.16)
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We can also write equation (2.1.16) as

dΠ = (deterministic component) dt +SVS

√

1−ρ2 σ dX . (2.1.17)

Based on equation (2.1.17), a possible pricing approach is to require

EP[dΠ] = 0 . (2.1.18)

However, an insurance company which charged premia based only on equation (2.1.18) would

soon have solvency problems [18]. As discussed in [27], insurance companies typically charge a

premium for unhedgeable risk. We will use the actuarial standard deviation principle in infinites-

mal time. In our notation, this becomes

EP[dΠ] = λ
√

var[dΠ]

dt
dt (2.1.19)

where λ is the safety loading parameter. In order words, during each interval [t, t + dt], the

portfolio should earn a premium at a rate proportional to the instantaneous standard deviation.

Note that the premium is based on the instantaneous properties of the portfolio, which means

that this approach is trivially generalized to the path dependent case.

Alternatively, we can derive equation (2.1.19) using more typical financial reasoning. Recall

that Π(t) = 0, so that any gain in this portfolio must be due to risk. Let G(t,dt) be the expected

rate of gain of the portfolio, and R(t,dt) be the risk associated with this portfolio, as measured

by the square root of the variance per unit time

G(t,dt) =
EP[dΠ]

dt

R(t,dt) =

√

var[dΠ]

dt
. (2.1.20)

We now seek to impose the condition that the gain lies on the efficient frontier

G(t,dt) = λR(t,dt) (2.1.21)
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where λ is the safety loading parameter, or Sharpe ratio. We can write equation (2.1.21) in a

more familiar form if we note that

Π = Π′+B ; Π′ = −V + xH ; B = V − xH , (2.1.22)

so that

dΠ = dΠ′+ rB dt = dΠ′− rΠ′ dt . (2.1.23)

Combining equations (2.1.19) and (2.1.23) gives

EP[dΠ′]
dt

= rΠ′+λ
√

var[dΠ′]
dt

, (2.1.24)

or

EP[dΠ′
Π′ ]

dt
= r +λσe f f

σe f f =

√

var[dΠ′
Π′ ]

dt
, (2.1.25)

So, we require that the instantaneous systematic gain in the portfolio compensates for the ex-

pected risk. A similar idea was used in [1], in the context of a hedging strategy in the presence of

transaction costs. In [1], the hedging strategy was constrained so that in each small time interval,

the expected gains from the hedging portfolio were proportional to the standard deviation of the

gain.

From equation (2.1.11) we have that
√

var[dΠ]

dt
= σS|VS|

√

1−ρ2 . (2.1.26)

Combining equations (2.1.16, 2.1.19, 2.1.26) gives

Vt +SVSr′+S|VS|λσ
√

1−ρ2 +
σ2S2

2
VSS − rV = 0 , (2.1.27)
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or equivalently

Vt +SVS

[

r′+λσ
√

1−ρ2 sgn(VS)

]

+
σ2S2

2
VSS − rV = 0 . (2.1.28)

Note that the definition of Π in equation (2.1.4) assumed that the hedger was short the contingent

claim V . Consequently, equation (2.1.28) is valid for a short position in V . Repeating the above

arguments for a long position gives

Vt +SVS

[

r′−λσ
√

1−ρ2 sgn(VS)

]

+
σ2S2

2
VSS − rV = 0 . (2.1.29)

For future reference, note that the two cases are

Short Position: Vt +SVS

[

r′+λσ
√

1−ρ2 sgn(VS)

]

+
σ2S2

2
VSS − rV = 0

Long Position: Vt +SVS

[

r′−λσ
√

1−ρ2 sgn(VS)

]

+
σ2S2

2
VSS − rV = 0 . (2.1.30)

From equation (2.1.16) and (2.1.30) we have that

Short Position: dΠ = λσ
√

1−ρ2S|VS| dt +SVS

√

1−ρ2σ dX

Long Position: dΠ = λσ
√

1−ρ2S|VS| dt −SVS

√

1−ρ2σ dX . (2.1.31)

Note that the drift term r′ can be difficult to estimate since r′ is a function of the P measure

drift rates of S and H. In [2], an uncertain volatility model was proposed. This model assumed

that volatility was bounded within an upper and lower bound. Worst case pricing methods ensure

that the hedging portfolio has a nonnegative balance, regardless of the evolution of the uncertain

volatility. We can follow a similar approach here. Suppose we estimate bounds for r′, i.e.

r′ ∈ [r′min,r
′
max] (2.1.32)

then, we can use an uncertain drift rate model [38] to obtain worst case prices for the option.

Note that if |ρ| 6= 1, then the worst case pricing cannot ensure that the hedging portfolio has a
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nonnegative balance. Define

r∗ =
r′max + r′min

2

λ∗ = λ+
r′max − r′min

2σ
√

1−ρ2
(2.1.33)

so that equation (2.1.30) becomes (worst case prices)

Short Position: Vt +SVS

[

r∗ +λ∗σ
√

1−ρ2 sgn(VS)

]

+
σ2S2

2
VSS − rV = 0

Long Position: Vt +SVS

[

r∗−λ∗σ
√

1−ρ2 sgn(VS)

]

+
σ2S2

2
VSS − rV = 0 . (2.1.34)

Observe that even if λ = 0, a nonlinear PDE of the form (2.1.34) is obtained, due to the uncer-

tainty in r′.

Assuming λ ≥ 0, then equations (2.1.30) are equivalent to

Short Position: Vτ = max
q∈{−1,+1}

[

SVS

[

r′+q λσ
√

1−ρ2
]

+
σ2S2

2
VSS − rV

]

Long Position: Vτ = min
q∈{−1,+1}

[

SVS

[

(r′+q λσ
√

1−ρ2)

]

+
σ2S2

2
VSS − rV

]

,(2.1.35)

where we have defined τ = T − t, where T is the expiry time of the contingent claim. Note that

the optimal choice for q in equation (2.1.35) is

q =











+sgn(VS) if short

−sgn(VS) if long
. (2.1.36)

If we write

LV ≡Vτ −
{

SVS

[

r′ +q λσ
√

1−ρ2
]

+
σ2S2

2
VSS − rV

}

(2.1.37)

with the payoff denoted by V = V ∗, then the price of a contingent claim with an American early

exercise feature would be given by

min(LV,V −V ∗) = 0 . (2.1.38)
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We will focus on European options in this thesis, but much of the analysis can be extended to the

American case as well.

2.2 Boundary Conditions

At τ = 0, we set V (S,0) to the payoff. As S → 0, equation (2.1.35) reduces to

Vτ = −rV . (2.2.1)

In fact, in order to ensure certain properties of the discrete equations, we will impose condition

(2.2.1) at some finite value Smin > 0, and let Smin tend to zero as the mesh is refined. We will

demonstrate the effectiveness of approximation (2.2.1) through numerical tests.

As S → ∞, we make the common assumption that

VSS ' 0 ; S → ∞ (2.2.2)

which means that

V ' A(τ)S +B(τ) ; S → ∞. (2.2.3)

Assuming equation (2.2.3) holds, then substituting equation (2.2.3) into equation (2.1.35) gives

ordinary differential equations for A(τ),B(τ), with solution

V = A(0)S exp
[

(r′− r +q λσ
√

1−ρ2)τ
]

+B(0)e−rτ (2.2.4)

where q is given from equation (2.1.36) at τ = 0. The initial conditions for A(0),B(0) are given

from the option payoff.
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2.3 Relation to Previous Work

We can relate equation (2.1.5) to the work in [35] by noting that for λ = 0, dΠ is the incremental

profit of hedging. (In [35], the incremental cost is defined as −dΠ.) In a complete market dΠ = 0.

In general, in incomplete markets, it is not possible to construct self-financing portfolios which

perfectly replicate a contingent claim.

Consider the case where λ = 0. Let Π(t +dt−) = Π(t)+dΠ(t). In general, Π(t +dt−) will

not be zero, given that Π(t) = 0. In order to reset the portfolio back to zero, cash is added or

subtracted from the portfolio so that

Π(t +dt+) = Π(t +dt−)−dΠ(t) = 0 , (2.3.1)

hence this portfolio is not self-financing.

If λ = 0, then the approach used above is based on local risk minimization [35], i.e. we

choose the trading strategy to minimize the square of the incremental hedging profit/loss at each

hedging time. Note that if λ = 0, then from equation (2.1.31) we have that EP[dΠ] = 0, hence

this strategy is mean self-financing.

Given that the payoff of the option is used as an initial condition for equations (2.1.35) at

t = T , cash must be infused into the portfolio during the hedging strategy in order to ensure that

the payoff is met (the trading gains do not exactly balance the change in the option value during

each infinitesimal step). As noted in [11], using the hedging parameters (2.1.7) given from the

solution to equation (2.1.30), then we can define a self-financing portfolio related to the locally

risk minimizing portfolio, which in general will suffer from a shortfall at expiry. We will use this

approach in our hedging simulations reported in Chapter 7.

The local risk minimization approach can be contrasted with the mean variance hedging or

total risk minimization approach [36, 23]. In this strategy, a self-financing portfolio is constructed

which minimizes the expected value of the square of the difference between the hedging portfolio
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and the payoff at the expiry date. As discussed in [11], total risk minimization is a dynamic

stochastic programming problem which is difficult, in general, to solve. In this thesis, we will

consider local risk minimization only, since this strategy attempts to control the riskiness of the

hedging strategy at all times during the life of the contingent claim. This local risk minimization

also appears natural in a context where the nature of the short contingent claim may change

frequently, due to American style features [39].

We have combined the local risk minimization concept with an infinitesimal time modified

standard deviation principle [25, 37]. Consequently, the holder of the hedge portfolio is compen-

sated for the unhedgeable risk by receiving an expected return above the risk free rate. Note that

this return is a function of the unhedgeable risk, which depends on the current state of the hedging

portfolio. Hence, it seems appropriate to apply the standard deviation principle in infinitesimal

time, since the capital at risk in the hedging portfolio will change with time.

A similar combination of local risk minimization and a risk premium proportional to the

standard deviation of the hedging portfolio was applied to real estate derivatives in [29].

It is curious to note that if we had specified an actuarial variance principle,

EP[dΠ] = λV
[

var[dΠ]

dt

]

(2.3.2)

then we would obtain a nonlinear PDE identical to the PDE derived in [28], which was derived

using a utility maximization approach. (Note that the PDE in [28] is written for the case r = 0.)



Chapter 3

Discretization

In this chapter we give a brief overview of the discrete equations used in following chapters.

3.1 Summary of Discretization

For discretization purposes, PDEs (2.1.35) can be written as

Vτ = SVS

[

r′ +qλσ
√

1−ρ2
]

+
σ2S2

2
VSS − rV (3.1.1)

where the nonlinear term q is given from equation (2.1.36). Define a grid {S0,S1, ...,Sp}, and let

V n
i = V (Si,τn).

Equation (3.1.1) can be discretized using forward, backward or central differencing in the S

direction, coupled with a fully implicit timestepping to give

V n+1
i −V n

i = αn+1
i V n+1

i−1 +βn+1
i V n+1

i+1 − (αn+1
i +βn+1

i + r∆τ)V n+1
i , (3.1.2)

where αi,βi are defined in Appendix A. We can also write the discrete equations in a manner

16



3.1. Summary of Discretization 17

consistent with the local max/min control problem (2.1.35). Let

αn
i = α′

i−qn
i,centγ

′
i,cent −qn

i,backγ′i,back

βn
i = β′

i +qn
i,centγ

′
i,cent +qn

i, f orγ
′
i,for . (3.1.3)

where α′,β′,γ′,qn
i are defined in Appendix A. Note that qn

i = ±1 (see Appendix A).

In the following analysis, it will also be convenient to express discretization (3.1.2) in the

form

V n+1
i −V n

i = α′
iV

n+1
i−1 +β′

iV
n+1
i+1 − (α′

i +β′
i + r∆τ)V n+1

i

+κ γ′i,back|V n+1
i −V n+1

i−1 |+κ γ′i,for|V n+1
i+1 −V n+1

i |

+κ γ′i,cent|V n+1
i+1 −V n+1

i−1 | , (3.1.4)

where

κ =











+1 if short

−1 if long
. (3.1.5)

We approximate the infinite computational domain S∈ [0,∞] by the finite domain S∈ [Smin,Smax].

Denote the node corresponding to Si = Smax as Si = Simax.

Let the discrete Dirichlet condition (2.2.4) at S = Simax be given by

Dn+1
imax = A(0)Simax exp

[

(r′− r +q λσ
√

1−ρ2)τn+1
]

+B(0)exp
[

−rτn+1] , (3.1.6)

For further notational convenience, we can write equation (3.1.2) in matrix form. Let

V n+1 = [V n+1
0 ,V n+1

1 , . . . ,V n+1
imax ]

′

V n = [V n
0 ,V n

1 , . . . ,V n
imax]

′ (3.1.7)

and
[

M̂nV n]

i = −
[

(−αn
i −βn

i − r∆τ)V n
i +αn

i V n
i−1 +βn

i V n
i+1
]

; i < imax . (3.1.8)
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The first and last rows of M̂ are modified as needed to handle the boundary conditions. The

boundary condition at S = Smin (equation (2.2.1)) is enforced by setting αi = βi = 0 at i = 0. Let

Dn+1 = [0, . . . ,Dn+1
imax]

′, and let I∗ be the matrix which is identically zero, except for a one in the

diagonal of the last row. The boundary condition at i = imax is enforced by setting the last row of

M̂ to be identically zero. With a slight abuse of notation, we denote this last row as (M̂)imax ≡ 0.

In the following, it will be understood that equations of type (3.1.8) hold only for i < imax, with

(M̂)imax ≡ 0.

M̂n =























r∆τ 0

−αn
1 αn

1 +βn
1 + r∆τ −βn

1
. . .

−αn
imax−1 αn

imax−1 +βn
imax−1 + r∆τ −βn

imax−1

0 . . . . . . 0























(3.1.9)

The discrete equations (3.1.2) can then be written as

[

I +(1−θ)M̂n+1]V n+1 =
[

I −θM̂n]V n + I∗(Dn+1 −V n) (3.1.10)

where the term I∗(Dn+1 −V n) enforces the boundary condition at S = Simax, and we have gener-

alized the discretization (3.1.2) to the Crank Nicolson (θ = 1/2) or fully implicit (θ = 0) cases.

Note that the discrete equations (3.1.10) are nonlinear since M̂n+1 = M̂(V n+1).



Chapter 4

Convergence to the Viscosity Solution

In [31], examples were given whereby seemingly reasonable discretizations of nonlinear option

pricing PDEs were unstable or converged to the incorrect solution. It is important to ensure

that we can generate discretizations which are guaranteed to converge to the viscosity solution

[3, 14]. Equation (2.1.35) satisfies the Strong Comparison result [4, 5, 9]. Hence from [6, 3],

a numerical scheme converges to the viscosity solution if the the method is consistent, stable

(in the l∞ norm) and monotone. For the convenience of the reader, we include a brief intuitive

explanation of viscosity solutions in Appendix B.

4.1 Stability

We can ensure stability by requiring that discretization (3.1.2) is a positive coefficient method,

with αn
i ,β

n
i ≥ 0. This can be enforced by selecting a grid, and choosing forward, backward or

central differencing so that the following condition is satisfied:

19
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Condition 4.1.1 (Positive Coefficient Condition).

β′
i − γ′i,cent − γ′i,for ≥ 0 ; i = 0, ..., imax−1

α′
i − γ′i,cent − γ′i,back ≥ 0 ; i = 0, ..., imax−1 (4.1.1)

Note from the definitions of γ′i in equations (A.0.17-A.0.19) that at each node, only one of

γ′i,cent,γ′i,for,γ
′
i,back is nonzero, and that γ′i ≥ 0. Condition (4.1.1) is based on the worst case choice

of qn
i in equation (3.1.3), hence this condition is independent of the solution. In other words, a

grid is constructed, and central, forward or backward differencing is selected so that condition

(4.1.1) is always satisfied. We emphasize that the choice of difference scheme is fixed, and does

not depend on the solution. This is an important property [30] which will be used in later Chap-

ters. We will also give an algorithm in Section 5, which, given an arbitrary grid, can satisfy

condition (4.1.1) by insertion of a finite number of nodes.

Given condition (4.1.1), we then have the following stability result

Lemma 4.1.1 (Stability of discretization (3.1.2)). Provided that

• r ≥ 0,

• condition (4.1.1) is satisfied, and

• Dirichlet boundary conditions (2.2.1) and (2.2.3) are imposed,

then the fully implicit discretization (3.1.2) is unconditionally stable in the sense that

‖V n+1‖∞ ≤ max(‖V n‖∞,Dn+1
imax) (4.1.2)

independent of the timestep size.

Proof. If conditions (4.1.1) are satisfied and r ≥ 0, then it follows from equation (3.1.3) that

αn
i ,β

n
i in discretization (3.1.2) are nonnegative, independent of the solution. The result then

follows from a straightforward maximum analysis.
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4.2 Monotonicity

As discussed above, another important property of a discretization is monotonicity [3]. We write

equation (3.1.2-3.1.4) as

gi(V n+1
i ,V n+1

i−1 ,V n+1
i+1 ,V n

i ) = −(V n+1
i −V n

i )+αn+1
i V n+1

i−1 +βn+1
i V n+1

i+1 − (αn+1
i +βn+1

i + r∆τ)V n+1
i

= −(V n+1
i −V n

i )+α′
iV

n+1
i−1 +β′

iV
n+1
i+1 − (α′

i +β′
i + r∆τ)V n+1

i

+κ γ′i,back|V n+1
i −V n+1

i−1 |+κ γ′i,for|V n+1
i+1 −V n+1

i |+κ γ′i,cent|V n+1
i+1 −V n+1

i−1 |

= 0 , i = 0, . . . , imax−1 , (4.2.1)

where κ is defined in equation (3.1.5).

Definition 4.2.1 (Monotonicity). A discretization of the form (4.2.1) is monotone if the following

conditions hold

gi(V n+1
i ,V n+1

i−1 + ε1,V n+1
i+1 + ε2,V n

i + ε3) ≥ gi(V n+1
i ,V n+1

i−1 ,V n+1
i+1 ,V n

i ) ; ∀εi ≥ 0 (4.2.2)

gi(V n+1
i + ε4,V n+1

i−1 ,V n+1
i+1 ,V n

i ) < gi(V n+1
i ,V n+1

i−1 ,V n+1
i+1 ,V n

i ) ; ∀ε4 ≥ 0 .(4.2.3)

Observe that Definition (4.2.1) includes condition (4.2.3), whereas only condition (4.2.2)

is usually specified in the viscosity solution literature [3]. Condition (4.2.3) leads to a more

intuitively appealing interpretation, and is a consequence of condition (4.2.2) and consistency

[17].

Lemma 4.2.1 (Monotonicity). If condition (4.1.1) is satisfied, then discretization (4.2.1) is

monotone.

Proof. For i = imax, we have that V n+1
imax = Dn+1

imax, hence the result holds trivially at i = imax. For



22 Chapter 4. Convergence to the Viscosity Solution

i < imax, from equation (4.2.1) we have that, for ε ≥ 0, and noting that γ′i ≥ 0 (see Appendix A)

gi(V n+1
i ,V n+1

i−1 ,V n+1
i+1 + ε,V n

i )−g(V
n+1
i ,V n+1

i−1 ,V n+1
i+1 ,V n

i )

= β′
iε+κγ′i,cent

[

|V n+1
i+1 + ε−V n+1

i−1 |− |V n+1
i+1 −V n+1

i−1 |
]

+κγ′i,for
[

|V n+1
i+1 + ε−V n+1

i |− |V n+1
i+1 −V n+1

i |
]

≥ β′
iε− γ′i,centε− γ′i,forε

= ε(β′
i− γ′i,cent − γ′i,for)

≥ 0 (4.2.4)

which follows from condition (4.1.1). Similarly,

gi(V n+1
i ,V n+1

i−1 + ε,V n+1
i+1 ,V n

i )−g(V
n+1
i ,V n+1

i−1 ,V n+1
i+1 ,V n

i )

≥ ε(α′
i− γ′i,cent − γ′i,back)

≥ 0, (4.2.5)

and

gi(V n+1
i + ε,V n+1

i−1 ,V n+1
i+1 ,V n

i )−gi(V n+1
i ,V n+1

i−1 ,V n+1
i+1 ,V n

i )

≤−ε− ε(α′
i +β′

i + r∆τ)+ εγ′i,back + εγ′i,for

= −ε(1+ r∆τ)− ε(α′
i− γ′i,back)− ε(β′

i− γ′i,for)

≤ 0 . (4.2.6)

Finally, it is obvious from equation (4.2.1) that

gi(V n+1
i ,V n+1

i−1 ,V n+1
i+1 ,V n

i + ε)−gi(V n+1
i ,V n+1

i−1 ,V n+1
i+1 ,V n

i )

> 0 . (4.2.7)
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4.3 Consistency

The discrete scheme (3.1.10) is locally consistent with PDE (3.1.1) if the discrete operator ap-

plied to any C∞ function converges to the equation (3.1.1) as the mesh size and timestep vanishes.

Lemma 4.3.1 (Consistency). The discrete scheme (3.1.10) is locally consistent.

Proof. From the definitions of the discrete coefficients αi,βi in equation (3.1.2) and Appendix

A, a simple Taylor series verifies consistency.

4.4 Convergence

Let ∆τ = maxn τn+1 − τn, ∆S = maxi Si+1 −Si, then can now state our convergence result.

Theorem 4.4.1 (Convergence of the fully implicit discretization). Provided that

• r ≥ 0,

• the Dirichlet boundary conditions (2.2.1-2.2.3) are imposed, and condition (2.2.1) is im-

posed at Smin → 0 as ∆S → 0, and

• the positive coefficient condition (4.1.1) holds,

then the fully implicit discretization (3.1.2) converges unconditionally to the viscosity solution of

the nonlinear PDE (3.1.1) as ∆S,∆τ → 0.

Proof. Since PDE (3.1.1) satisfies the strong comparison principle, then from [3], we have that

a consistent, stable, monotone discretization converges to the viscosity solution of PDE (3.1.1).

Hence Theorem 4.4.1 follows directly from the results in [3] and Lemmas 4.1.1, 4.2.1 and 4.3.1.
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4.5 Solution of the Nonlinear Algebraic Equations

Although we have proven that the discretization converges to the viscosity solution, it is not at

this point clear that scheme (3.1.2) is practical, since we must solve a set of nonlinear, nons-

mooth algebraic equations at each timestep. The following iterative method is used to solve the

nonlinear discretized algebraic equations (3.1.10)

Iteration

Let (V n+1)0 = V n

Let V̂ k = (V n+1)k

For k = 0,1,2, . . . until convergence

Solve
[

I +(1−θ)M̂(V̂ k)
]

V̂ k+1

=
[

I −θM̂(V n)
]

V n + I∗(Dn+1 −V n)

If max
i

|V̂ k+1
i −V̂ k

i |
max(scale, |V̂ k+1

i |)
< tolerance then quit

EndFor

(4.5.1)

The scale factor in algorithm 4.5.1 is selected so that small option values are not determined with

impractical precision. For example, if the option is valued in dollars, then scale = 1 would be a

reasonable value for this parameter.

Some manipulation of algorithm (4.5.1) results in

[

I +(1−θ)M̂k)
]

(V̂ k+1 −V̂ k) = (1−θ)
[

M̂k−1 − M̂k
]

V̂ k , (4.5.2)
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where M̂k = M̂(V̂ k). A key property which can be used to establish convergence of algorithm

(4.5.1) concerns the sign of the right hand side of equation (4.5.2). We utilize a result obtained

in [30].

Lemma 4.5.1 (Single Signed Update). If M̂nV n is given by equation (3.1.8), with nonlinear

coefficients determined by a local control problem of form (3.1.3), and the choice of forward,

backward, or central differencing is independent of the solution (i.e. preselected at each node

independent of solution values), then

Short Position:
[

M̂k−1 − M̂k
]

V̂ k ≥ 0 (4.5.3)

Long Position:
[

M̂k−1 − M̂k
]

V̂ k ≤ 0 . (4.5.4)

Proof. For the convenience of the reader, we summarize the proof in [30]. Writing out
[

M̂k−1 − M̂k]V̂ k

in component form gives (i < imax)

[[

M̂k−1 − M̂k
]

V̂ k
]

i
=

(

αk
i V̂

k
i−1 +βk

i V̂
k
i+1 − (αk

i +βk
i + r∆τ)V̂ k

i

)

−
(

αk−1
i V̂ k

i−1 +βk−1
i V̂ k

i+1 − (αk−1
i +βk−1

i + r∆τ)V̂ k
i

)

. (4.5.5)

Consider a short position, so that, in terms of the local control problem (2.1.35), αk
i ,β

k
i are

selected so that

αk
i V̂

k
i−1 +βk

i V̂
k
i+1 − (αk

i +βk
i + r∆τ)V̂ k

i (4.5.6)

is maximized. Hence any other choice of coefficients, for example αk−1
i ,βk−1

i cannot exceed the

maximum produced by expression (4.5.6), thus

(

αk
i V̂

k
i−1 +βk

i V̂
k
i+1 − (αk

i +βk
i + r∆τ)V̂ k

i

)

−
(

αk−1
i V̂ k

i−1 +βk−1
i V̂ k

i+1 − (αk−1
i +βk−1

i + r∆τ)V̂ k
i

)

≥ 0 , (4.5.7)
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so that for a short position
[

M̂k−1 − M̂k
]

V̂ k ≥ 0. A similar argument for a long position verifies

(4.5.4).

It is also useful to note the following property of the matrix
[

I +(1−θ)M̂n+1].

Lemma 4.5.2 (M-matrix). If the positive coefficient condition (4.1.1) is satisfied, r ≥ 0, and

boundary conditions (2.2.1, 2.2.3) are imposed at S = Smin,Smax, then
[

I +(1−θ)M̂n+1] is an

M-matrix.

Proof. As in the proof of Lemma 4.1.1, note that condition (4.1.1) implies that αn
i ,β

n
i in equation

(3.1.8) are non-negative, hence
[

I +(1−θ)M̂n+1] has positive diagonals, non-positive offdiago-

nals, and is diagonally dominant, hence
[

I +(1−θ)M̂n+1] is an M-matrix.

Remark 4.5.1 (Properties of M-matrices). We remind the reader that an M-matrix Q has the

important property that Q−1 ≥ 0, and that diag(Q−1) > 0.

We can now state our main result concerning convergence of iteration (4.5.1).

Theorem 4.5.1 (Convergence of Iteration (4.5.1)). Provided that the conditions required for

Lemmas 4.5.1 and 4.5.2 are satisfied, then the nonlinear iteration (4.5.1) converges to the unique

solution to equation (3.1.10), for any initial iterate V̂ 0. Moreover the iterates converge monoton-

ically, and for V̂ k sufficiently close to the solution, convergence is quadratic.

Proof. Given Lemmas 4.5.1 and 4.5.2, the proof of this result is similar to the proof of conver-

gence given in [31]. We give a brief outline of the steps in this proof, and refer readers to [31]

for details. A straightforward maximum analysis of scheme (4.5.1) can be used to bound ‖V̂ k‖∞

independent of iteration k. Recall equation (4.5.2)

[

I +(1−θ)M̂k)
]

(V̂ k+1 −V̂ k) = (1−θ)
[

M̂k−1 − M̂k
]

V̂ k .
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From Lemma 4.5.1, we have that the right hand side of equation (4.5.2) is non-decreasing (non-

increasing) for short (long) positions. Noting that
[

I +(1−θ)M̂k)
]

is an M-matrix (from Lemma

4.5.2), and hence
[

I +(1−θ)M̂k)
]−1 ≥ 0, it is easily seen that the iterates form a bounded

non-decreasing (short) or non-increasing (long) sequence. In addition, if V̂ k+1 = V̂ k the resid-

ual is zero. Hence the iteration converges to a solution. It follows from the M-matrix prop-

erty of
[

I +(1−θ)M̂k)
]

that the solution is unique. The iteration (4.5.1) can be regarded as a

non-smooth Newton iteration. Since the non-smooth algebraic nonlinear equations (3.1.10) are

strongly semi-smooth [33], convergence is quadratic in a sufficiently small neighborhood of the

solution [32].

4.6 Arbitrage Inequality

It is interesting to verify that the discrete equations satisfy discrete arbitrage inequalities [12, 13],

independent of the choice of grid or timestep size. In other words, inequalities in option payoffs

translate to inequalities in option values. More precisely, if V n,W n are two solutions of the fully

implicit equations (4.2.1), then if V 0 > W 0, and V k
imax > W k

imax,(k = 0, ...,n), then V n > W n.

Let Dn+1
V = [0, . . . ,V n+1

imax ]
′, Dn+1

W = [0, . . . ,W n+1
imax ]

′, then we have the following result

Theorem 4.6.1 (Discrete Comparison Principle). The fully implicit discretization (3.1.10) sat-

isfies a discrete comparison principle, that is, if V n > W n, Dn+1
V > Dn+1

W , and V n+1,W n+1

satisfy equation (3.1.10), and the conditions for Lemmas 4.5.1 and 4.5.2 are satisfied, then

V n+1 > W n+1.

Proof. V,W satisfy

[

I + M̂(V n+1)
]

V n+1 = V n + I∗(Dn+1
V −V n)

[

I + M̂(W n+1)
]

W n+1 = W n + I∗(Dn+1
W −W n) . (4.6.1)
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Some manipulation of equation (4.6.1) gives

[

I + M̂(W n+1)
]

(V n+1 −W n+1) = (I − I∗)(V n −W n)+
[

M̂(W n+1)− M̂(V n+1)
]

V n+1

+I∗(Dn+1
V −Dn+1

W ) (4.6.2)
[

I + M̂(V n+1)
]

(V n+1 −W n+1) = (I − I∗)(V n −W n)−
[

M̂(V n+1)− M̂(W n+1)
]

W n+1

+I∗(Dn+1
V −Dn+1

W ) . (4.6.3)

Consider a short position. From Lemma 4.5.1 (relabeling V̂ k−1 = W n+1,V̂ k = V n+1) we have

that

[

M̂(W n+1)− M̂(V n+1)
]

V n+1 ≥ 0 .

If V n > W n, and Dn+1
V > Dn+1

W , then, from Lemma 4.5.2, and equation (4.6.2)

[

I + M̂(W n+1)
]−1

[ (I − I∗)(V n −W n)+ I∗(Dn+1
V −Dn+1

W )

+
(

M̂(W n+1)− M̂(V n+1)
)

V n+1] > 0 , (4.6.4)

hence V n+1 > W n+1. For a long position, a similar argument using Lemmas 4.5.1 and 4.5.2 and

equation (4.6.3) gives the same result.

Remark 4.6.1 (Use of Lemma 4.5.1). Note that a key property in the above proof is Lemma

4.5.1. This result follows quite generally if we ensure that we solve a discrete version of the con-

trol problem (2.1.35), i.e. we maximize or minimize the discrete equations for a finite mesh and

timesteps, not just in the limit of vanishing grid and timestep size. This illustrates the importance

of maximizing or minimizing the discrete equations directly.
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Positive Coefficient Grid Condition

In this chapter we develop an algorithm which ensures that grid condition (4.1.1) can be satisfied

by insertion of a finite number of nodes in any arbitrary initial grid.

5.1 Node Insertion Algorithm

Some algebra shows that condition (4.1.1) is satisfied by at least one of forward or backward

differencing at node i if

σ2Si +(Si+1 −Si−1)(|r′|−λσ
√

1−ρ2) ≥ 0 . (5.1.1)

Equation (5.1.1) is always satisfied if (|r′| −λσ
√

1−ρ2) ≥ 0. Consequently, we will examine

the case when (|r′|−λσ
√

1−ρ2) < 0. Suppose Si+1 −Si = ∆S,∀i, and Si = i∆S, then condition

(5.1.1) reduces to

σ2i+2(|r′|−λσ
√

1−ρ2) ≥ 0 . (5.1.2)

Clearly, for sufficiently large Si, condition (5.1.2) can be satisfied, since σ2 > 0.

29
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Equation (5.1.2) simplifies at i = 1 to

σ2 +2(|r′|−λσ
√

1−ρ2) ≥ 0 . (5.1.3)

Condition (5.1.2) may not be satisfied, no matter how small ∆S is chosen. From equation (5.1.3),

we can see that the problem arises since S0 = 0. Instead, suppose we choose Si = S0 + i∆S,S0 > 0.

In this case condition (5.1.2) becomes

σ2S0 +∆S(σ2i+2|r′|)−2∆Sλσ
√

1−ρ2 ≥ 0 , (5.1.4)

which can always be satisfied if ∆S is sufficiently small, and S0 > 0. More generally, suppose

h = max
i

(Si+1 −Si) (5.1.5)

then condition (5.1.1) is always satisfied if

h ≤ σ2S2
0

2||r′|−λσ
√

1−ρ2|
. (5.1.6)

Note that a grid constructed by enforcing condition (5.1.6) is not required in practice (as we shall

see below). Condition (5.1.6) simply ensures that given S0 > 0, a grid with a finite number of

nodes can always be constructed which ensures that the positive coefficient condition (4.1.1) is

satisfied.

In the following, we will develop an algorithm which, given an initial grid, with S0 > 0,

will insert a finite number of nodes to ensure that condition (4.1.1) is satisfied. For a given grid

with S0 > 0, we will apply the boundary condition (2.2.1) at S = S0. In order to carry out a

convergence study, finer grids can be constructed by inserting nodes between each two coarse

grid nodes, and reducing S0 by half. In this way, the effect of applying boundary condition (2.2.1)

at S0 is reduced at each grid refinement. In fact, for practical values of σ,r′, we expect that the

effect of this approximation at S = S0 is very small. This will be verified in some numerical

examples.

The node insertion algorithm is given below:
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Node Insertion Algorithm

If ((|r′|−λσ
√

1−ρ2) ≥ 0) Then

Return // Original grid satisfies condition

Endif

If ([S0 = 0] and [σ2S1 +min(S2,2S1)(|r′|−λσ
√

1−ρ2) < 0]) Then

Exit // Algorithm fails, need S0 > 0

Endif

i = 1

While (Si is not the largest node)

If (σ2Si +(Si+1 −Si−1)(|r′|−λσ
√

1−ρ2) < 0) Then

If (σ2Si +2(Si−Si−1)(|r′|−λσ
√

1−ρ2) < 0) Then

Insert node at (Si−1 +Si)/2

//New node labeled i

Else

Insert node at (Si +Si+1)/2

// New node labeled i+1

Endif

Else

Increment i

Endif

Endwhile

(5.1.7)
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If S0 6= 0, the algorithm (5.1.7) is guaranteed to produce a fine grid such that condition (5.1.1)

holds for all nodes. From equation (5.1.6), the total number of nodes inserted must be finite.

If S0 = 0 and σ2S1 +min(S2,2S1)(|r′|−λσ
√

1−ρ2) < 0, then a new grid satisfying condition

(5.1.1) does not exist. Consequently, in the case that σ2 +(|r′|−λσ
√

1−ρ2) < 0, we must have

S0 > 0 in order for algorithm (5.1.7) to succeed. In this case, we can set S0 to be a small number,

and apply boundary condition (2.2.1) at S0. We will verify that this does not cause any significant

error at asset values of interest through some numerical experiments that will be reported in

subsequent sections. Algorithm 5.1.7 has the desirable property that the grid aspect ratio does

not become too large after the node insertion is completed. More precisely, if the original grid

has the property that

p0 ≤
Si+1 −Si

Si −Si−1
≤ q0 ; i = 1, ...,n−1

q0 ≥ p0 > 0, (5.1.8)

the following result holds.

Theorem 5.1.1 (Grid Aspect Ratio after Application of Algorithm (5.1.7)). Given an initial

grid with n nodes and p0, q0 given by equation (5.1.8), then after application of algorithm (5.1.7)

with S0 > 0, the new grid (with m nodes, m ≥ n+1) satisfies

p ≤ Si+1 −Si

Si −Si−1
≤ q, where p = min(

1
3
, p0) and q = max(5,2q0)

1 ≤ i ≤ m−1. (5.1.9)

Proof. See Appendix C.

Note that algorithm (5.1.7) is based on testing only forward and backward differencing. How-

ever, in practice, we carry out the following steps
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• Given an initial grid, construct a new grid from algorithm (5.1.7).

• Each node i of the new grid is processed, and the discretization coefficients αi,βi are

constructed (equation(3.1.2)). First, central differencing is tested. If the positive coeffi-

cient condition (4.1.1) is satisfied, then we use central differencing at this node. If central

differencing does not result in a positive coefficient discretization, then one of forward

or backward differencing must satisfy this condition (from algorithm 5.1.7). Forward or

backward differencing is then used at this node.

Different nodes may use different discretization methods. In this way, central differencing is used

as much as possible. In practice, for normal market parameters, only a few nodes with forward

or backward differencing are required. Usually, these nodes are near S = 0, so that accuracy in

regions of interest is unaffected by low order discretization methods.
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PDE Examples

In this chapter we give a number of numerical examples which illustrate the performance and

convergence of our iteration scheme. We also examine both fully implicit and Crank-Nicolson

methods, and experiment with the minimum value in the asset grid (S0), when algorithm 5.1.7 is

applied. We show that the solution is insensitive to small positive S0.

6.1 Timestep Selection

Constant timesteps are usually quite inefficient, hence variable timesteps are desired. A simple

timestep selector, which is very effective, is discussed in [21]. Given an initial timestep ∆τn+1, a

new timestep ∆τn+2 is selected so that

∆τn+2 =



mini





dnorm
|V (Si,τn+∆τn+1)−V (Si,τn)|

max(D,|V (V (Si,τn+∆τn+1)|,|V(Si,τn)|)







∆τn+1, (6.1.1)

where dnorm is a target relative change (during the timestep) specified by the user. The scale D

is selected so that the timestep selector does not take an excessive number of timesteps in regions

where the value is small (for options valued in dollars, D = 1 is often used).

34
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6.2 Market Parameter Interpolation

Recall from equation (2.1.9) that the drift term in our PDE is,

r′ = µ− (µ′− r)
σρ
σ′ , (6.2.1)

hence,
µ− r′

σ
=

ρ(µ′− r)
σ′ . (6.2.2)

When |ρ| = 1, then the drift term r′ must equal the risk free interest rate r [15]. That is, r′ = r

when ρ =±1. Therefore, r, ρ, µ, σ, µ′ and σ′ cannot be determined independently. We arbitrarily

choose µ′ as the dependent variable. From equation (6.2.2), we see that if ρ = 1, and r′ = r, we

obtain

µ′ = r +(µ− r)
σ′

σ
, (6.2.3)

and if ρ = −1 (r′ = r), we obtain

µ′ = r− (µ− r)
σ′

σ
. (6.2.4)

This suggests that we could interpolate µ′ as

µ′ = r + f (ρ)(µ− r)
σ′

σ
, (6.2.5)

where f (ρ) has the properties that f (−1) = −1, f (1) = 1. In our numerical examples we choose

f (ρ) = ρ. (6.2.6)

although any other interpolant could be used which satisfies f (−1) = −1, f (1) = 1. In the

following numerical examples, we assume

µ′ = r +(µ− r)
σ′ρ
σ

. (6.2.7)

Substituting equation (6.2.5) into equation (6.2.1), gives

r′ = (1−ρ f (ρ))µ+ rρ f (ρ) . (6.2.8)
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Assuming equation (6.2.6) holds, then we obtain

r′ = (1−ρ2)µ+ρ2r . (6.2.9)

6.3 Fully Implicit and Crank-Nicolson Comparison

In this section, we will examine the convergence, as the grid and timesteps are refined, for fully

implicit and Crank-Nicolson timestepping. The data is given in Table 6.1. In this example, we

will assume a European straddle, with payoff

V (S,τ = 0) = max(K −S,0)+max(S−K,0) . (6.3.1)

Since the derivative (VS) of the payoff changes sign, then the PDE is truly nonlinear. The toler-

ance in algorithm 4.5.1 is set to 10−6.

Using data in Table 6.1, Table 6.2 shows the convergence results for fully implicit timestep-

ping. Table 6.3 shows the results obtained with Crank-Nicolson timestepping, where we have

used the modification suggested in [34]. We use variable timestepping as given in equation

(6.1.1). As expected, fully implicit timestepping gives first order convergence and Crank-Nicolson

method gives quadratic convergence. Recall from Theorem 4.4.1 that convergence to the viscos-

ity solution is only guaranteed for fully implicit timestepping. In this case, Crank-Nicolson also

converges to the viscosity solution. From algorithm 4.5.1, we can see the minimum number of

iterations per timestep is two. In Table 6.3, we see that the average number of nonlinear iterations

per timestep is only slightly larger than two, indicating that the nonlinear algebraic equations are

very easily solved.
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r 0.05

ρ 0.9

σ 0.2

µ 0.07

σ′ 0.3

µ′ = r +(µ− r)σ′ρ
σ 0.077

λ 0.2

r′ = µ− (µ′− r)σρ
σ′ 0.0538

Strike price 100

Payoff straddle

T 1 year

TABLE 6.1: Data used in the straddle option examples. This data gives |r ′|−λσ
√

1−ρ2 = 0.03636 > 0,

so no new node is inserted into the asset grid when algorithm (5.1.7) is applied.

Nodes dnorm Timesteps Nonlinear iterations Option value Change Ratio

51 0.1 37 81 17.02070

101 0.05 72 151 17.05760 0.03689

201 0.025 147 294 17.08743 0.02985 1.2365

401 0.0125 301 602 17.10857 0.02113 1.4120

801 0.00625 602 1204 17.11964 0.01108 1.9078

1601 0.003125 1169 2338 17.12508 0.00544 2.0349

TABLE 6.2: Convergence study with fully implicit timestepping, variable timesteps (equation (6.1.1)),

data in Table 6.1 used. No new nodes are inserted into the asset grid. Straddle payoff (6.3.1), short

position.
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Nodes dnorm Timesteps Nonlinear iterations Option value Change Ratio

51 0.1 37 80 17.10144

101 0.05 72 147 17.12367 0.02224

201 0.025 147 294 17.12899 0.00532 4.1826

401 0.0125 301 602 17.13021 0.00122 4.3654

801 0.00625 602 1204 17.13050 0.00030 4.1054

1601 0.003125 1169 2338 17.13058 0.00007 3.9906

TABLE 6.3: Convergence study with Crank-Nicolson timestepping, Rannacher smoothing [34], variable

timestepping, data in Table 6.1 used. No new nodes are inserted into the asset grid. Straddle payoff

(6.3.1), short position.

6.4 Positive S0 Tests

In Chapter 5, we argued that when σ2 + (|r′| − λσ
√

1−ρ2) < 0, we must have S0 > 0 (the

minimum value for the asset grid) in order for algorithm 5.1.7 to succeed. Table 6.4 shows data

which requires S0 > 0 to ensure that algorithm 5.1.7 completes successfully.

Table 6.5 shows the option prices, deltas and gammas under different S0 values, for various

asset price values. We see that, as the asset price gets smaller, the effect of positive S0 becomes

more pronounced (recall that the strike of this option is $100). However, for S = 30, the effect of

changing S0 from $2 to $0.1 is very small. The data in Table 6.4 was used for this test. Observe

that this data requires S0 > 0 for algorithm 5.1.7 to succeed.

Table 6.6 gives a convergence study using data in Table 6.4. As the asset grid size doubles

and S0 goes to zero, we obtain quadratic convergence as before. In order to have σ2 + (|r′| −
λσ
√

1−ρ2) < 0, we have assigned large values to σ,λ. This makes hedging with an imperfectly

correlated asset very risky, and the hedger is very risk averse. These parameter values make the

option prices extremely high as shown in Table 6.5 and 6.6. From the data in Table 6.5 and 6.6,
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r 0.03

ρ 0.5

σ 0.7

µ 0.04

σ′ 0.25

µ′ = r +(µ− r)σ′ρ
σ 0.0317857

λ 0.9

r′ = µ− (µ′− r)σρ
σ′ 0.0375

Strike price 100

Payoff Straddle

T 1 year

TABLE 6.4: Data used for positive S0 tests. This data gives σ2 +(|r′| − λσ
√

1−ρ2) = −0.0181 < 0,

In this case, S0 has to be positive, in order for algorithm (5.1.7) to succeed. When algorithm (5.1.7) is

applied, new nodes may be inserted into the asset grid.

we can conclude that small positive S0 has little effect on the solution.

6.5 Stress Test for the Node Insertion Algorithm

In Chapter 5, we have shown that when S0 > 0, algorithm (5.1.7) guarantees construction of a

new grid, which satisfies condition (5.1.1) and preserves the grid aspect ratio. If algorithm (5.1.7)

adds many nodes to typical initial grids, it is a poor insertion algorithm. Algorithm (5.1.7) has

the property that for most original grids, with normal market parameters, only a few (sometimes

zero) nodes are inserted. Usually, these nodes are near S = 0. However, bad cases do exist.

Before giving a bad case example, we analyze condition (5.1.1) to determine the conditions
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Asset Price S0 Option Price Delta Gamma

0.1 91.2063 -0.583641 0.000119

10 2 91.1604 -0.570818 -0.004019

5 90.4519 -0.449766 -0.028363

0.1 85.393 -0.57618 0.001791

20 2 85.3879 -0.575238 0.001591

5 85.2286 -0.553956 -0.001682

0.1 79.7849 -0.537174 0.006621

30 2 79.7839 -0.537029 0.006598

5 79.736 -0.531765 0.005933

TABLE 6.5: The effect of positive S0 on the solution, Crank-Nicolson method, variable timesteps, using

data in Table 6.4. Straddle payoff (6.3.1), short position. There are 401 nodes in the original grid, seven

new nodes are inserted for S0 = 0.1, and no new node is inserted for S0 = 2 and S0 = 5.

under which it is necessary to insert many nodes. A new insertion is required when condition

(5.1.1) fails, which means

σ2Si +(Si+1 −Si−1)(|r′|−λσ
√

1−ρ2) < 0 , (6.5.1)

hence,
Si

Si+1 −Si−1
< −|r′|−λσ

√

1−ρ2

σ2 . (6.5.2)

Therefore, Si should be small to cause node insertion. For sufficiently large Si, if the original

grid has a reasonable aspect ratio (the case in practice), Si
Si+1−Si−1

will be large, and thus equation

(6.5.2) will not be satisfied. Hence, most node insertions occur as S0 → 0.

Substituting equation (6.2.9) into equation (6.5.1), we obtain

σ2Si +(Si+1−Si−1)((1−ρ2)µ+ρ2r−λσ
√

1−ρ2) < 0 . (6.5.3)
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S0 Nodes dnorm Option value Change Ratio

(S = 100)

5 58 0.1 102.69536

2.5 106 0.05 102.83341 0.1381

1.25 206 0.025 102.86821 0.0348 3.9678

0.625 409 0.0125 102.87715 0.0089 3.8902

0.3125 817 0.00625 102.87939 0.0022 3.9922

0.15625 1633 0.003125 102.87996 0.0006 3.9541

0.078125 3265 0.0015625 102.88010 0.0001 4.0071

TABLE 6.6: A case where S0 has to be positive, in order for node insertion algorithm to succeed. Crank-

Nicolson timestepping, Rannacher smoothing [34], variable timesteps. Straddle payoff (6.3.1). The data

in Table 6.4 gives σ2 +(|r′|−λσ
√

1−ρ2) < 0, so that S0 has to be positive. When algorithm (5.1.7) is

applied, new nodes may be inserted into the asset grid. The sizes of the original asset grids are 51, 102,

204, 408, 816, 1632 and 3264 nodes.

Thus, to insert many nodes, we have to set σ2 +(1−ρ2)µ+ρ2r−λσ
√

1−ρ2 to a large neg-

ative value (the absolute value of it is large). As a result, we assign small values to ρ, µ and r,

and assign a large value to λ. Table 6.8 shows the node insertion results using data in Table 6.7.

We see that many nodes are inserted when S0 is small. However, as S0 increases, the number of

insertions decreases rapidly. We have already shown that small positive S0 has little effect on the

solution, so we can avoid problems by assigning S0 a reasonable (e.g. not too small). In order

to construct this bad case, we assign unreasonable values to market parameters as in Table 6.7.

Normal market parameters do not lead to a poor node insertion case. Finally, we can conclude

that algorithm (5.1.7) works very well in practice.
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r 0.005

ρ 0

σ 0.5

µ 0.01

σ′ 0.25

µ′ = r +(µ− r)σ′ρ
σ 0.005

λ 0.8

r′ = µ− (µ′− r)σρ
σ′ 0.01

TABLE 6.7: Data used for poor cases for node insertion algorithm (5.1.7)

S0 Old Grid New Insertions

Size (Smax = 5000) Grid Size Around S0

0.001 51 101 38

0.01 51 92 29

0.1 51 82 19

1 51 71 8

5 51 65 2

TABLE 6.8: Poor cases for node insertion algorithm (5.1.7). In the original grid, the first three nodes are

S0, 10 and 20. Grid is constructed assuming prices of interest are near S = 100.

6.6 Long and Short Positions

From equation (2.1.30), it is clear that the option price of a short position should always be higher

than the option price of a long position. Figure 6.1 illustrates this fact, for the straddle payoff

(6.3.1).
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FIGURE 6.1: The option price of a long position and a short position, straddle payoff, data in Table 6.1.
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Hedging Simulations

In this chapter we will use a Monte Carlo method to simulate the hedging process. We will

illustrate the results by showing histograms of the hedging portfolio (the profit and loss P&L) at

the expiry time. We also study the mean, VaR, CVaR and standard deviation of P&L. VaR, which

is know as Value at Risk, is the worst case loss with a given probability. CVaR is the mean of the

worst case losses.

7.1 Algorithm Description

We make a slight change from the description of the hedging portfolio as given in equation

(2.1.4). In the numerical examples, we will assume that the portfolio has initial value of zero,

but no cash is injected into the portfolio as time progresses.

As described in Chapter 2, consider the case where we wish to hedge a short position in the

claim with value V = V (S, t). Then, a portfolio P i at time ti = i∆t has three components:

• A short claim position worth V i;

• Long xi shares of asset H, where xi is the number of units of H held in the portfolio;

44
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• A risk-free bank account B i.

Hence,

P i = −V i + xiH i + B i. (7.1.1)

In contrast to the hedging portfolio Π in Chapter 2, we do not inject any cash into this portfolio

P in order to ensure that P = 0 after the initial time. In the case λ = 0, this portfolio is then self-

financing (on [0,T ), where T is option expiry time), but will in general not meet the obligations

of the contingent claim exactly at the option expiry. Note that PDE (2.1.30) does not contain

B (the risk free bank account), so that use of xi given by equation (2.1.7) minimizes the local

risk, regardless the amount in B. We have denoted the bank account in the portfolio P by B to

distinguish it from the bank account in equation (2.1.4). In this case, P will not necessarily be

zero after the initial time, since we will not inject cash into this portfolio.

As discussed in [26], for the case λ = 0, this strategy is self-financing on [0,T ), with a single

payment at time T . Moller [26] then points out that the disadvantage of this approach is that at

any time t < T , the value of the portfolio will not equal the conditional expected value of the

payoff. However, in our case with λ > 0, the value of the portfolio is increased by systematic

gains to compensate for the risk of the hedge, and therefore this simple strategy may in fact be

quite practical. In any case, we show the results of this strategy since it is easy to interpret the

resulting P&L diagrams. These diagrams will show the distribution of the future value of the

incremental profit/loss of the hedge portfolio.

Given the option price at t = 0, which is given from the solution of the PDEs (2.1.30), the

initial portfolio is given by

P 0 = −V 0 + x0H0 + B0 . (7.1.2)

We choose B0 = V 0 − x0H0.
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Let,

V i
S =

∂V
∂S

(Si, ti) (7.1.3)

According to equation (2.1.7), to minimize the local variance, we choose xi at time ti to be

xi =

(

σSiρ
σ′H i

)

V i
S, (7.1.4)

Let φH ,φS be random draws from a normal distribution with mean zero and unit variance. The

prices and correlation of S and H at time ti+1 are given by

Si+1 = Si exp
[

(µ−σ2/2) ∆t +σφS
√

∆t)
]

H i+1 = H i exp
[

(µ′− (σ′)2/2) ∆t +σ′φH
√

∆t)
]

EP(φS φH) = ρ, (7.1.5)

where EP [·] is the expectation operator. Initially, we solve equation (2.1.35) numerically back-

ward in time, from t = T to t = 0. At each timestep, the option prices and deltas are stored in data

tables. Then, asset paths are generated by Monte Carlo simulation. The hedging information is

recovered from the stored tables. The hedging algorithm for one Monte Carlo simulation is given

in algorithm (7.1.6).
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Hedging Algorithm

P 0 = 0

Interpolate V 0 and V 0
S from the stored tables

x0 =

(

σS0ρ
σ′H0

)

V 0
S

B0 = V 0 − x0H0

For each hedging time 0 < ti ≤ T, ti = i∆t

Calculate current asset price Si and H i from equation (7.1.5)

Interpolate V i
S from the stored tables

xi =

(

σSiρ
σ′H i

)

V i
S

Update the portfolio by buying xi − xi−1 shares

B i = er∆tB i−1 −H i(xi − xi−1)

Endfor

P (T ) = −V (T )+ x(T )H(T )+ B(T )

(7.1.6)

Recall that

Short Position: dΠ = λσ
√

1−ρ2S|VS| dt +SVS

√

1−ρ2σ dX

Long Position: dΠ = λσ
√

1−ρ2S|VS| dt −SVS

√

1−ρ2σ dX (7.1.7)

Considering only the short position, we have that

dΠ = λσ
√

1−ρ2S|VS| dt +SVS

√

1−ρ2σ dX . (7.1.8)

We will show histograms of P (T ), i.e. the future profit and loss. Since the cash shortfall is

only realized at the expiry time in the portfolio P , then the final value of P can be determined in
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terms of the solution V by considering the future value of dΠ at each instant, so that

P (T ) = λ
Z T

0
er(T−t)σ

√

1−ρ2S|VS| dt +

Z T

0
er(T−t)SVS

√

1−ρ2σ dX , (7.1.9)

which means that

EP[P (T )] = EP
[

λ
Z T

0
er(T−t)σ

√

1−ρ2S|VS| dt
]

, (7.1.10)

in the limit as the rebalancing interval tends to zero.

7.2 Hedging Parameters

Hedging simulations are carried out using the Monte Carlo parameters described in Table 7.1.

There are many parameters which affect the hedging results, but we are particularly interested in

λ and ρ. λ is known as the safety loading parameter, and could be determined on the basis of the

firm’s beta, or the underlying asset correlation with the firm’s existing investment portfolio [22].

When λ = 0, from equation (7.1.10), EP[P (T )] = 0. According to equation (2.1.21), in-

creasing λ implies a greater reward for bearing the unhedgeable risk, hence the mean P&L

(P&L = EP[P (T )]) should also increase (when |ρ| 6= 1). Table 7.2 shows the case in which

λ is fixed at zero and ρ increases. Since λ = 0, the mean of the P&L stays at zero (the mean

P&L is not exactly zero because of finite rebalancing, and Monte Carlo sampling error). As

ρ increases, standard deviation decreases, which causes VaR and CVaR to increase. Table 7.3

shows the case where λ increases and the other parameters are held constant. As λ increases (we

require greater reward), the mean, VaR and CVaR of P&L increase, while standard deviation is

nearly constant. Those results are also shown in Figure 7.1 (a), (c) and (d).

As stated in Chapter 2, ρ (0 ≤ |ρ| ≤ 1) is the correlation between dW and dZ. When |ρ|= 1,

hedging with asset H is a perfect hedge, and equation (2.1.30) reverts back to usual Black-

Scholes equation. In this case, the hedging simulation should be the same as the standard discrete
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Hedging interval 2 days

Number of Simulations 1,000,000

TABLE 7.1: Data used for Monte Carlo hedging simulations.

λ ρ Mean VaR (95%) CVaR (95%) Stndrd Dev. V (S = 100,τ = 0)

0 0.5 -0.0034 -23.9135 -34.7796 12.524 16.4795

0 0.7 0.0085 -19.1239 -27.6244 10.284 16.3238

0 0.9 -0.001 -11.0917 -15.7675 6.293 16.1306

TABLE 7.2: Hedging simulation results (P (T )) with λ = 0, using data in Table 6.1 and 7.1. Straddle,

short position.

λ Mean VaR (95%) CVaR (95%) Stndrd Dev. V (S = 100,τ = 0)

0.1 0.5081 -10.5158 -15.1710 6.3014 16.6233

0.3 1.6175 -9.1778 -13.6682 6.3155 17.6516

0.5 2.7685 -7.9180 -12.3103 6.3809 18.7388

TABLE 7.3: Hedging simulation results (P (T )) with λ varying, and the other parameters held constant.

Data in Table 6.1 and 7.1 is used. Straddle, short position.

delta hedging, and thus the mean of the P&L should be zero. Some results for the case |ρ| = 1

are given in Table 7.4. Note that the standard deviation is not identically zero in this case due to

the finite (two day) rebalancing interval.

Table 7.5 shows the results obtained when ρ is increased. When |ρ| increases, the hedging re-

sult becomes closer to the result given by standard delta hedging. The mean shifts closer to zero

(the mean decreases, since we take less risk), and the standard deviation of the P&L decreases.

These results are also shown in Figure 7.1 (b), (e) and (f).
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ρ λ Mean VaR (95%) CVaR (95%) Stndrd Dev. V (S = 100,τ = 0)

1 0.5 -0.001 -1.9365 -2.7062 1.1752 16.0237

-1 0.5 -0.001 -2.2683 -3.0510 1.3583 16.0237

TABLE 7.4: Hedging simulations with |ρ| = 1, using data in Table 6.1 and 7.1. Straddle, short position.

Note that the standard deviation of the P&L is nonzero due to the finite rebalancing interval (Table 7.1.)

ρ Mean VaR (95%) CVaR (95%) Stndrd Dev. V (S = 100,τ = 0)

0.7 1.8032 -17.0839 -25.4860 10.2861 18.0288

0.8 1.4828 -14.0163 -20.7803 8.6506 17.6383

0.9 1.0646 -9.8292 -14.3816 5.9792 17.1302

TABLE 7.5: Hedging simulations with variable ρ, other parameters held constant. Data in Table 6.1 and

7.1 is used. Straddle, short position.

7.3 Convergence of Monte Carlo Hedging

Table 7.6 shows the convergence of mean and variance of the portfolio at time T, as the number

of simulations becomes large, using data in Table 6.1 and Table 7.1. The mean and variance are

insensitive to the change of the number of simulations, when the number of simulations exceeds

100,000. Therefore, we set the number of simulations to 1,000,000 in the following numerical

tests.

As the hedging interval goes to zero and the number of simulations goes to infinity, the

variance of the portfolio at time T converges to a positive value due to the unhedgeable residual

risk. Table 7.7 shows a numerical example of the convergence of the standard deviation.
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# of Simulations Mean VaR (95%) CVaR (95%) Stndrd Dev.

5000 1.0995 -9.5732 -14.2440 6.2630

20000 1.0308 -9.8677 -14.4589 6.3284

80000 1.0725 -9.7672 -14.3726 6.2729

160000 1.0508 -9.8391 -14.4611 6.3254

640000 1.0493 -9.8383 -14.4437 6.3162

1000000 1.0499 -9.8403 -14.4212 6.3072

TABLE 7.6: Hedging simulation results (P (T )) with number of simulations varying, and the other pa-

rameters held constant. Data in Table 6.1 and 7.1 is used. Straddle, short position.

Hedging interval Mean VaR(95%) CVaR(95%) Standrd Dev.

(days)

8 1.0626 -10.2150 -14.7470 6.5583

4 1.0523 -9.9895 -14.5614 6.3981

2 1.0646 -9.8292 -14.3816 6.3049

1 1.0662 -9.8029 -14.3994 6.2815

TABLE 7.7: Convergence of standard deviation, as the hedging interval is decreased. Data in Table 6.1

is used. 1,000,000 simulations.

7.4 An American Example

The price of an American claim is given by equation (2.1.37). We can generalize the numerical

methods described in this work to the American case using the penalty method described in

[21, 16]. The proofs of convergence to the viscosity solution are easily extended to handle this

case. As a numerical example, consider an American contingent claim, using the data in Table
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6.1. Table 7.8 shows the prices for a long/short American/European straddle.

Option Type V (S = 100,τ = 0)

European Short 17.13

European Long 15.19

American Short 17.39

American Long 15.70

TABLE 7.8: Straddle example, data in Table 6.1. Results are correct to the number of digits shown.

7.5 Nonlinearity and Reinsurance

Suppose there are two firms, A and B, and a reinsurer C. A,B,C all price short positions using

the data in Table 6.1. In particular, A,B,C all have the same estimates for drift rates and safety

loading parameter.

Suppose A needs to hedge a short call, and B needs to hedge a short put. A and B can hedge

these positions, or purchase reinsurance from C. C would then have a short straddle position.

The prices of individually hedging a call, put and a straddle are given in Table 7.9, computed

using PDE (2.1.30), and data in Table 6.1. If A and B individually hedged their positions, their

total charge to an end customer would be 11.86 + 6.08 = 17.94. On the other hand, the total

charge to A and B if C hedged a straddle is 17.13. In this case, C can charge a lower fee for this

insurance than A and B can do by themselves. This result is due to the fact that the pricing PDE

is nonlinear. These effects become even more interesting if different firms have different market

prices of risk.
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Option Type (K = 100) V (S = 100,τ = 0)

European Short Call 11.86

European Short Put 6.08

European Short Straddle 17.13

TABLE 7.9: Call, put and straddle prices, data in Table 6.1. Results are correct to the number of digits

shown. Note that the payoff of the straddle is the sum of the call and put payoffs.
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(e) λ = 0.2, ρ = 0.7 (f) λ = 0.2, ρ = 0.9

FIGURE 7.1: Histograms of Monte Carlo hedging simulations of a short position for a straddle, using

data in Table 6.1 and 7.1. Note that the vertical scale for Figure (b) is different from the vertical scales in

the other figures. The vertical line in each figure represents the 95% VaR P&L.







Chapter 8

Conclusions

In this thesis, we have considered the situation where an insurance firm cannot hedge directly

with the underlying of a contingent claim.

At each infinitesmal time, the best local hedge is constructed. However, since the hedge is

not perfect, the insurance company requires an extra return to compensate for this residual risk.

The risk preferences of the insurance company enters into the valuation through a saftey loading

parameter, or local Sharpe ratio. For non-zero safety loading parameter, the PDE is nonlinear,

with a different price for long or short positions.

The methods used in this thesis are easily extended to American claims. We have included

an example of pricing an American option, but the details of the algorithm will be discussed in

future work.

An implicit discretization method is developed for the nonlinear pricing PDE. This scheme

is monotone, consistent and stable; hence convergence to the viscosity solution is guaranteed.

In order to ensure the discretization is monotone, a node insertion algorithm is derived which

guarantees monotonicity by insertion of a finite number of nodes in a given initial grid. An

iterative method for solution of the nonlinear discrete algebraic equations at each timestep is
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developed. We have proven that this iteration is globally convergent.

Monte Carlo hedging experiments are given which demonstrate the use of the hedging strat-

egy which follows from the numerical solution of the pricing PDE. These examples clearly show

that the unhedgeable risk is compensated by a reserve which is built up as time proceeds.

This approach to option pricing in the situation where the option seller hedges with an asset

imperfectly correlated with the underlying has the following advantages.

• The holder of the hedging portfolio is rewarded for the unhedgeable risk by specifying a

safety loading parameter, or Sharpe ratio. This is a familiar and easily explained parameter.

• The prices are linear in terms of the number of units bought/sold. This is in contrast to

many other approaches.

• Long/short prices are different. This is easily explained in terms of risk/reward for long/short

positions.

• The pricing PDE is nonlinear, and the market price of risk may be different for reinsurers

and primary insurers. This makes reinsurance a risk and cost-reducing strategy under some

circumstances.

• The nonlinear pricing PDE is easily solved using an implicit method. Existing PDE option

pricing software can be modified in straightforward fashion to price options using this

model, simply by adding an updating step to the American pricing iteration.

8.1 Future Work

There could be several extensions for future research:
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• It would be interesting to develop techniques which guarantee quadratic convergence of

nonlinear option pricing PDEs to the viscosity solution as the timestep and mesh spacing

are reduced, or to prove that quadratic convergence cannot always be guaranteed. However,

such a proof would be difficult to obtain.

• It would be desirable to prove convergence of iterative schemes without the use of M-

matrices. For both single factor options and two factor options, the M-matrix property

may not be preserved. Some advances in the basic theory of viscosity solutions would be

required.

• The model could be extended to include uncertain parameters, for example, uncertain

volatility.





Appendix A

Discrete Equation Coefficients

The detailed form of the discrete equation coefficients used in equation (3.1.3) are given here.

In the case of a central discretization

αn
i,cent = α′

i,cent − γi,cent qn
i,cent

βn
i,central = β′

i,cent + γi,cent qn
i,cent , (A.0.1)

where

qn
i,cent =











sgn(VS)
n
i,cent if short

−sgn(VS)
n
i,cent if long

. (A.0.2)

and

γi,cent =

(

Siλσ
√

1−ρ2

Si+1 −Si−1

)

∆τ

(VS)
n
i,cent =

V n
i+1 −V n

i−1

Si+1 −Si−1
(A.0.3)
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and

α′
i,cent =

[

σ2S2
i

(Si−Si−1)(Si+1 −Si−1)
− r′Si

Si+1 −Si−1

]

∆τ

β′
i,cent =

[

σ2S2
i

(Si+1−Si)(Si+1 −Si−1)
+

r′Si

Si+1 −Si−1

]

∆τ. (A.0.4)

Note that the above definitions ensure that we are solving a discrete version of the local control

problem (2.1.36).

In the case of forward differencing, we obtain

αn
i,for = α′

i,for

βn
i, f or = β′

i,for + γi,for qn
i,for (A.0.5)

where

qn
i,for =











sgn(VS)
n
i,for if short

−sgn(VS)
n
i,for if long

, (A.0.6)

and

γi,for =

(

Siλσ
√

1−ρ2

Si+1 −Si

)

∆τ

(VS)
n
i,for =

V n
i+1 −V n

i

Si+1 −Si
(A.0.7)

and

α′
i,for =

σ2S2
i

(Si −Si−1)(Si+1−Si−1)
∆τ

β′
i,for =

[

σ2S2
i

(Si+1 −Si)(Si+1−Si−1)
+

r′Si

Si+1 −Si

]

∆τ. (A.0.8)

Again, note that we have used definition (A.0.6), so that we solve a discrete version of the local

control problem (2.1.36).
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In the case of backward differencing we have

αn
i,back = α′

i,back − γi,back qn
i,back

βn
i,back = β′

i,back (A.0.9)

where

qn
i,back =











sgn(VS)
n
i,back if short

−sgn(VS)
n
i,back if long

, (A.0.10)

and

γi,back =

(

Siλσ
√

1−ρ2

Si−Si−1

)

∆τ

(VS)
n
i,back =

V n
i −V n

i−1

Si −Si−1
(A.0.11)

and

α′
i,back =

[

σ2S2
i

(Si−Si−1)(Si+1 −Si−1)
− r′Si

Si−Si−1

]

∆τ

β′
i,back =

[

σ2S2
i

(Si+1−Si)(Si+1 −Si−1)

]

∆τ. (A.0.12)

For future reference, it is convenient to define generic coefficients

αn
i =



























αn
i,cent if central differencing

αn
i,for if forward differencing

αn
i,back if backward differencing ,

(A.0.13)

βn
i =



























βn
i,cent if central differencing

βn
i,for if forward differencing

βn
i,back if backward differencing ,

(A.0.14)
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α′
i =



























α′
i,cent if central differencing

α′
i,for if forward differencing

α′
i,back if backward differencing ,

(A.0.15)

β′
i =



























β′
i,cent if central differencing

β′
i,for if forward differencing

β′
i,back if backward differencing .

(A.0.16)

We also define

γ′i,cent =











γi,cent if central differencing

0 otherwise ,

(A.0.17)

γ′i,for =











γi,for if forward differencing

0 otherwise ,

(A.0.18)

γ′i,back =











γi,back if backward differencing

0 otherwise .

(A.0.19)

Recalling equation (3.1.2)

V n+1
i −V n

i = αn+1
i V n+1

i−1 +βn+1
i V n+1

i+1 − (αn+1
i +βn+1

i + r∆τ)V n+1
i , (A.0.20)

we can write the generic coefficients αn
i ,β

n
i as

αn
i = α′

i− γ′i,centq
n
i,cent − γ′i,backqn

i,back

βn
i = β′

i + γ′i,centq
n
i,cent + γ′i,forq

n
i, f or . (A.0.21)



Appendix B

Viscosity Solution

In this appendix, we give a brief intuitive explanation of the ideas behind the definition of a

viscosity solution. For more details, we refer the reader to [14].

Consider a short position, so that we can write equation (2.1.35) as

g(V,VS,VSS,Vτ) = −Vτ + max
q∈{−1,+1}

[

SVS

[

r′+q λσ
√

1−ρ2
]

+
σ2S2

2
VSS − rV

]

= 0 . (B.0.1)

We assume that g(x,y,z,w) (x = V,y = VS,z = VSS,w = Vτ) satisfies the ellipticity condition

g(x,y,z+ ε,w)≥ g(x,y,z,w) ; ∀ε ≥ 0 , (B.0.2)

which is our case simply means that σ2 ≥ 0. Suppose for the moment that smooth solutions

to equation (B.0.1) exist, i.e. V ∈ C2,1, where C2,1 refers to a continuous function V = V (S,τ)

having continuous first and second derivatives in S, and continuous first derivatives in τ. Let φ be

a set of C2,1 test functions. Suppose φ−V ≥ 0, and that φ(S0,τ0) = V (S0,τ0) at the single point

(S0,τ0). Then, the single point (S0,τ0) is a global minimum of (φ−V ),

φ−V ≥ 0

min(φ−V ) = φ(S0,τ0)−V (S0,τ0) = 0 . (B.0.3)
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Consequently,

φτ = Vτ

φS = VS

φSS ≥ VSS . (B.0.4)

Hence, from equations (B.0.2, B.0.4), we have

g(V (S0,τ0),φS(S0,τ0),φSS(S0,τ0),φτ(S0,τ0)) = g(V (S0,τ0),VS(S0,τ0),φSS(S0,τ0),Vτ(§0,τ0))

≥ g(V (S0,τ0),VS(S0,τ0),VSS(S0,τ0),Vτ(S0,τ0))

= 0 , (B.0.5)

or, to summarize,

g(V (S0,τ0),φS(S0,τ0),φSS(S0,τ0),φτ(S0,τ0)) ≥ 0

φ−V ≥ 0

min(φ−V ) = φ(S0,τ0)−V (S0,τ0) = 0 . (B.0.6)

Now, suppose that χ is a C2,1 test function, with V −χ ≥ 0, and V (S0,τ0) = χ(S0,τ0) at the single

point (S0,τ0). Then, (S0,τ0) is the global minimum of V −χ,

V −χ ≥ 0

min(V −χ) = V (S0,τ0)−χ(S0,τ0)

= 0 . (B.0.7)

Repeating the above arguments we have

g(V (S0,τ0),χS(S0,τ0),χSS(S0,τ0),χτ(S0,τ0)) ≤ 0

V −χ ≥ 0

min(V −χ) = V (S0,τ0)−χ(S0,τ0) = 0 . (B.0.8)
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Now, suppose that V is continuous but not smooth. This means that we cannot define V as the

solution to g(V,VS,VSS,Vτ) = 0. However, we can still use conditions (B.0.6) and (B.0.8) to define

a viscosity solution to equation (B.0.1), since all derivatives are applied to smooth test functions.

Informally, a viscosity solution V to equation (B.0.1) is defined such that

• For any C2,1 test function φ, such that

φ−V ≥ 0 ; φ(S0,τ0) = V (S0,τ0) , (B.0.9)

(φ touches V at the single point (S0,τ0)), then

g(V (S0,τ0),φS(S0,τ0),φSS(S0,τ0),φτ(S0,τ0)) ≥ 0 . (B.0.10)

• As well, for any C2,1 test function χ such that

V −χ ≥ 0 ; V (S0,τ0) = χ(S0,τ0) , (B.0.11)

(χ touches V at the single point (S0,τ0)) then

g(V (S0,τ0),χS(S0,τ0),χSS(S0,τ0),χτ(S0,τ0)) ≤ 0 . (B.0.12)

This definition is illustrated in Figure B.1.
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FIGURE B.1: Illustration of viscosity solution definition. The upper and lower curves represent smooth

test functions. The differential operator (B.0.1) can be applied to these test functions with the results given

by equation (B.0.10) (upper curve), and equation (B.0.12) (lower curve). When a smooth test function χ

touches the viscosity solution from below at (S0,τ0), then g(V (S0,τ0),χS(S0,τ0),χSS(S0,τ0),χτ(S0,τ0)) ≤
0. When a smooth test function φ touches the viscosity solution from above at (S0.τ0), then

g(V (S0,τ0),φS(S0,τ0),φSS(S0,τ0),φτ(S0,τ0)) ≥ 0. Note that there may be some points where a smooth

test function can touch the viscosity solution only from above or below, but not both. The kink at S = 1 is

an example of such a point.



Appendix C

Grid Aspect Ratio Proof

In this appendix, we will prove Theorem (5.1.1). For convenience, we call nodes in the original

grid old nodes and call nodes added by our algorithm (5.1.7) new nodes. We assume there are n

nodes in the original grid and m(m ≥ n) nodes in the new grid. For i ≥ 0, let Si be the (i + 1)th

node in a grid. If

(|r′|−λσ
√

1−ρ2) ≥ 0, (C.0.1)

the new grid will be the same as the original one. Hence, the non-trivial case is when

(|r′|−λσ
√

1−ρ2) < 0. (C.0.2)

Let

K = − σ2

(|r′|−λσ
√

1−ρ2)
> 0, (C.0.3)

then in the new grid for 1 ≤ i ≤ m−1, we have

Si+1 −Si−1 ≤ K Si. (C.0.4)

Now, we prove Theorem (5.1.1).
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Proof. Suppose Theorem (5.1.1) is not true, then in the new grid ∃i,1 ≤ i ≤ m−1 such that

Si+1 −Si

Si −Si−1
= t, where t > q = max(5,2q0) or t < p = min(

1
3
, p0). (C.0.5)

Let

ai = Si −Si−1, (C.0.6)

then
ai

ai−1
= t. (C.0.7)

Now suppose
ai

ai−1
= t > q = max(5,2q0). (C.0.8)

We prove the following observations first.

aiai-1

Si-1 Si Si+1

FIGURE C.1: Condition (5.1.9) failed in a new grid.

Observation 1. Si−1 has to be a new node.

Proof. See Figure C.1. Suppose Si−1 is an old node, then

if Si is also an old node, we will have

ai

ai−1
≤ q0; (C.0.9)

if Si is a new node, we will have
ai

ai−1
≤ 1. (C.0.10)

Both cases contradict with equation (C.0.8). Observation 1 follows.
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Observation 2. When Si−1 is added into the grid, Si has already been in the grid.

Proof. See Figure C.1. Otherwise we will have equation (C.0.10)

By Observation 1 and Observation 2, we can know that Si−1 must be inserted in the middle of Si

and a node S j, where i > j, as Figure C.2 shows below.

aiai-1

Si-1 Si Si+1Sj

ai-1

FIGURE C.2: Si−1 is inserted at S j+Si
2 .

Observation 3. S j has to be a new node.

Proof. See Figure C.2. Suppose S j is an old node. Then,

if Si is also an old node, we will have

ai

ai−1
≤ 2q0; (C.0.11)

if Si is a new node, we will have
ai

ai−1
≤ 2. (C.0.12)

Both cases contradict with equation (C.0.8). Observation 3 follows.

Observation 4. When S j is added, Si have already been in the grid.

Proof. See Figure C.1. Otherwise we will have equation (C.0.12).
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By Observation 3 and 4, we can know that S j must be inserted in the middle of Si and a node

Sh,where h < j < i, as Figure C.3 shows below.

aiai-1

Si-1 Si Si+1Sj

ai-1

Sh

2ai-1

FIGURE C.3: S j is inserted at Sh+Si
2 .

Observation 5. 2S j ≥ Si

Proof. See Figure C.3. Note that

S j −Sh = Si−S j = 2ai−1 (C.0.13)

and

Sh ≥ 0, (C.0.14)

so,
S j

Si
=

Sh +2ai−1

Sh +4ai−1
≥ 2ai−1

4ai−1
=

1
2
, (C.0.15)

hence,

2S j ≥ Si. (C.0.16)

Observation 6. 6ai−1 < K Si
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Proof. See Figure C.1. Since Si−1, Si and Si+1 are three consecutive nodes in the new grid and

t > 5, we have

6ai−1 < (t +1)ai−1 = Si+1 −Si−1 ≤ K Si. (C.0.17)

We now show that ai
ai−1

> q is false.

Suppose it is true. By Observation 1, we know Si−1 is a new node.

Case 1: Si−1 is added because

S f −S j > K Si

Si−S j ≥
K Si

2
, (C.0.18)

where S f is the right neighbour of Si when Si−1 is added, as Figure C.4 shows below. Note that

S f ≥ Si+1.

aiai-1

Si-1 Si Si+1Sj

ai-1

Sh Sf

2ai-1

FIGURE C.4: Si−1 is added because condition (C.0.18) is true.

Then,

2ai−1 = Si −S j ≥
K Si

2
, (C.0.19)

so,

4ai−1 ≥ K Si, (C.0.20)
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which is a contradiction with Observation 6.

Case 2: Si−1 is added because

Si−Se > K S j

S j −Se <
K S j

2 , (C.0.21)

where Se is the left neighbour of S j when Si−1 is added, as Figure C.5 shows below.

Note that

aiai-1

Si-1 Si Si+1Sj

ai-1

Sh

2ai-1

Se Sf

FIGURE C.5: Si−1 is added because condition (C.0.21) is true.

Se ≥ Sh +ai−1. (C.0.22)

Since suppose otherwise, we have

Se = Sh, (C.0.23)

since there can be no node between Sh and S j when Si−1 is added. That gives

2ai−1 = S j −Sh = S j −Se <
K S j

2
, (C.0.24)

so,

ai−1 <
K S j

4
. (C.0.25)

But,

4ai−1 = Si −Sh > K S j, (C.0.26)



75

so,

ai−1 >
K S j

4
. (C.0.27)

We get a contradiction. Hence, equation (C.0.24) is true.

Then we have

3ai−1 ≥ Si −Se > K S j, (C.0.28)

so,

ai−1 >
K S j

3
. (C.0.29)

By observation 6 and equation (C.0.29), we can get

6ai−1 ≤ K Si, (C.0.30)

so,
6K S j

3
< K Si, (C.0.31)

hence,

2S j < Si, (C.0.32)

which is a contradiction with observation 5.

Hence, we get contradictions in both cases. Therefore,

ai

ai−1
≤ q = max(5,2q0). (C.0.33)

Now suppose
ai

ai−1
= t < p = min(

1
3
, p0). (C.0.34)

As before, Si+1 is a new node, and when it is inserted, Si has already been in the grid. Suppose

Si+1 is in the middle of Si and S j.
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ai-1

Si+1Si SjSi-1

ai ai

Sh

FIGURE C.6: Si+1 is added because condition (C.0.35) is true.

Since now ai−1 > ai, the only reason to add Si+1 is

Sh −Si > K S j

S j −Si ≥
K S j

2
, (C.0.35)

where Sh is the right neighbour of S j when Si+1 is added.

Hence,

2ai = S j −Si ≥
K S j

2
(C.0.36)

so,

ai ≥
K S j

4
. (C.0.37)

then,

K S j =
3+1

4
K S j <

(1
t +1)K S j

4
≤ (

1
t
+1)ai = Si+1 −Si−1 < K Si. (C.0.38)

so we get,

S j < Si (C.0.39)

which is certainly false. Hence,

t ≥ p = min(
1
3
, p0). (C.0.40)

The claim follows.



Bibliography

[1] C. Albanese and S. Tompaidis. Small transaction cost asymptotics and dynamic hedging.

Working paper, Imperial College, Department of Mathematics, to appear in the European

Journal of Operations Research, 2004.

[2] M. Avellaneda, A. Levy, and A. Parás. Pricing and hedging derivative securities in markets

with uncertain volatilities. Applied Mathematical Finance, 2:73–88, 1995.

[3] G. Barles. Convergence of numerical schemes for degenerate parabolic equations arising

in finance. In L. C. G. Rogers and D. Talay, editors, Numerical Methods in Finance, pages

1–21. Cambridge University Press, Cambridge, 1997.

[4] G. Barles and J. Burdeau. The Dirichlet problem for semilinear second-order degenerate

elliptic equations and applications to stochastic exit time control problems. Communication

in Partial Differential Equations, 20:129–178, 1995.

[5] G. Barles and E. Rouy. A strong comparison result for the Bellman equation arsising in

stochastic exit time control problems and applications. Communication in Partial Differen-

tial Equations, 23:1945–2033, 1998.

[6] G. Barles and P.E. Souganidis. Convergence of approximation schemes for fully nonlinear

equations. Asymptotic Analysis, 4:271–283, 1991.

77



78 BIBLIOGRAPHY

[7] J.P. Bouchaud, G. Iori, and D. Sornette. Real world options: Smile and residual risk. RISK,

9:61–65, March 1996.

[8] P. Carr, H. Geman, and D. Madan. Pricing and hedging in incomplete markets. Journal of

Financial Economics, 61:131–167, 2001.

[9] S. Chaumont. A strong comparison result for viscosity solutions to Hamilton-Jacobi-

Bellman equations with Dirichlet conditions on a non-smooth boundary. Working paper,

Institute Elie Cartan, Universite Nancy I, 2004.

[10] F.H. Clarke. Optimization and Nonsmooth Analysis. Wiley, New York, 1983.

[11] T.F. Coleman, Yuying Li, and M.C. Patron. Hedging gurantees in variable annuities. Work-

ing paper, Cornell Theory Center, 2004.

[12] R. Cont and P. Tankov. Financial Modelling with Jump Processes. Chapman & Hall,

London, 2004.

[13] R. Cont and E. Voltchkova. A finite difference scheme for option pricing in jump diffusion

and exponential levy models. Internal Report 513, CMAP, Ecole Polytechnique, 2003.

[14] M. G. Crandall, H. Ishii, and P. L. Lions. User’s guide to viscosity solutions of second order

partial differential equations. Bulletin of the American Mathematical Society, 27:1–67, July

1992.

[15] M.A.H. Davis. Optimal hedging with basis risk. Working Paper, Vienna University of

Technology, 2000.

[16] Y. d’Halluin, P. A. Forsyth, and G. Labahn. A Penalty method for American options with

jump diffusion processes. Numerische Mathematik, 97:321–352, 2004.



BIBLIOGRAPHY 79

[17] Y. d’Halluin, P.A. Forsyth, and G. Labahn. A semi-Lagrangian approach for American

Asian options under jump diffusion. SIAM Journal on Scientific Computing. to appear.

[18] P. Embrechts. Acturarial versus finanical pricing of insurance. Risk Finance, 1:4:17–26,

2000.

[19] H. Follmer and M. Schweitzer. Hedging by sequential regression. ASTIN Bulletin, 18:147–

160, 1988.

[20] H. Follmerr and M. Schweizer. Hedging derivative securities in incomplete markets: An

ε-arbitrage approach. Operations Research, 49:372–397, 2001.

[21] P. A. Forsyth and K. R. Vetzal. Quadratic convergence of a penalty method for valuing

American options. SIAM Journal on Scientific Computation, 23:2096–2123, 2002.

[22] K. Froot and J. Stein. Risk management, capital budgeting and capital structure for financial

institutions. Journal of Financial Economics, 47:55–82, 1998.

[23] D. Heath, E. Platen, and M. Schweizer. A comparison of two quadratic approaches to

hedging in incomplete markets. 11:385–413, 2001.

[24] V. Henderson. Valuation of claims on nontraded assets using utility maximization. Mathe-

matical Finance, 12:351–373, 2002.

[25] T. Moller. On valuation and risk management at the interface of insurance and finance.

Working paper, Laboratory of Actuarial Mathematics, University of Copenhagen, 2001.

[26] T. Moller. Risk minimizing strategies for unit linked life insurance contracts. ASTIN Bul-

letin, 28:17–47, 1998.



80 BIBLIOGRAPHY

[27] T. Moller. On transformations of actuarial valuation principles. Insurance: Mathematics

and Economics, 28:281–303, 2001.

[28] A. Oberman and T. Zariphopoulou. Pricing early exercise contracts in incomplete markets.

Computational Management Science, 1:75–107, 2003.

[29] M. Otaka and Y. Kawaguchi. Hedging and pricing of real estate securities. Quantitative

methods in Finance, Cairns, 2002.

[30] D. Pooley. Numerical methods for nonlinear equations in option pricing. PhD Thesis,

School of Computer Science, University of Waterloo, 2003.

[31] D.M. Pooley, P.A. Forsyth, and K.R. Vetzal. Numerical convergence properties of option

pricing PDEs with uncertain volatility. IMA Journal of Numerical Analysis, 23:241–267,

2003.

[32] L. Qi and J. Sun. A nonsmooth version of Newton’s method. Mathematical Programming,

58:353–367, 1993.

[33] L. Qi and G. Zhou. A smoothing Newton method for minimizing a sum of Euclidean norms.

SIAM Journal on Optimization, 11:389–410, 2000.

[34] R. Rannacher. Finite element solution of diffusion problems with irregular data. Nu-

merische Mathematik, 43:309–327, 1984.

[35] M. Schal. On quadratic cost criteria for option hedging. Mathematics of Operations Re-

search, 19:121–131, 1994.

[36] M. Schweitzer. Variance optimal hedging in discrete time. Mathematics of Operations

Research, 20:1–31, 1995.



BIBLIOGRAPHY 81

[37] M. Schweizer. From actuarial to financial valuation principles. Insurance: Mathematics

and Economics, 28:31–47, 2001.

[38] P. Wilmott. Derivatives: The Theory and Practice of Financial Engineering. John Wiley

& Sons Ltd., West Sussex, England, 1998.

[39] H. Windcliff, P. A. Forsyth, and K. R. Vetzal. Segregated funds: Shout options with matu-

rity extensions. Insurance, Mathematics & Economics, 29(1):1–21, 2001.


	Introduction
	Motivation
	Overview
	Outline

	Pricing Model Formulation
	The Nonlinear PDE
	Boundary Conditions
	Relation to Previous Work

	Discretization
	Summary of Discretization

	Convergence to the Viscosity Solution
	Stability
	Monotonicity
	Consistency
	Convergence
	Solution of the Nonlinear Algebraic Equations
	Arbitrage Inequality

	Positive Coefficient Grid Condition
	Node Insertion Algorithm

	PDE Examples
	Timestep Selection
	Market Parameter Interpolation
	Fully Implicit and Crank-Nicolson Comparison
	Positive S0 Tests
	Stress Test for the Node Insertion Algorithm
	Long and Short Positions

	Hedging Simulations
	Algorithm Description
	Hedging Parameters
	Convergence of Monte Carlo Hedging
	An American Example
	Nonlinearity and Reinsurance

	Conclusions
	Future Work

	Discrete Equation Coefficients
	Viscosity Solution
	Grid Aspect Ratio Proof
	Bibliography

