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Abstract

Many-body systems are well known throughout physics to be hard problems to exactly solve, but
much of this is folklore resulting from the lack of an analytic solution to these systems. This thesis
attempts to classify the complexity inherent in many of these systems, and give quantitative results
for why the problems are hard. In particular, we analyze the many-particle system corresponding
to a multi-particle quantum walk, showing that the time evolution of such systems on a polynomial
sized graph is universal for quantum computation, and thus determining how a particular state
evolves is as hard as an arbitrary quantum computation. We then analyze the ground energy
properties of related systems, showing that for bosons, bounding the ground energy of the same
Hamiltonian with a fixed number of particles is QMA-complete. Similar techniques provide a novel
proof that quantum walk is universal for quantum computing, and constructs a QMA-complete
problem that does not reference quantum mechanics.
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Chapter 1

Introduction

“The three-body problem is impossible.”
This statement is well known to any physicist, as it is perhaps the most simple classical dynamics

problem for which there is no closed form solution. There are some caveats, and special cases for
which a solution is known, but this lack of a general solution makes this a “hard” problem. However,
for short time-periods, we can use numerical methods to approximate the evolution of three-bodies,
and thus the question is how computationally hard is this problem. More generally, if one is working
with some particular physical model, how hard is it to compute various attributes about that model.

While such questions have not generally been asked in physics, classifying the computational
power of a problem in terms of the necessary resources in order to solve it is a foundational idea
in computer science. The entire field of computational complexity arose in the attempt to classify
these problems. This thesis will attempt to use tools from complexity theory, and apply them to
some particular physical models. Along the way, we will prove that some questions about physical
systems are unfeasible to solve in any reasonable time frame, and find some novel systems that can
be used as a universal quantum computer.

1.1 Hamiltonian Complexity

This idea for using complexity theoretic ideas in order to study physical models in not novel; in
1982, Barahona [7] showed that computing the ground state of an Ising spin glass in a nonuniform
magnetic field is a NP-hard problem. If we restrict ourselves to quantum problems, however,
things become more recent. In 1999, Alexei Kitaev [43] showed that the 5-local Hamiltonian
problem was QMA-complete, and thus gave a reason for the difficulty in computing the ground
energy of these problems. Various improvements have shown the QMA-completeness of similar
problems, with a reduced locality to 3-local[42], 2-local [41], and finally 2-local Hamiltonians with
interactions between qubits restricted to a two-dimensional lattice [51]. Other Hamiltonians with
various restrictions have also been shown to be QMA-complete, including Hamiltonians in one
dimension [2, 38], frustration-free Hamiltonians [14, 37], and stoquastic Hamiltonians (Hamiltonians
with no “sign problem”) [15, 16].

In most of these problems, the proof that a given system is QMA-complete is done by either
reducing the Local-Hamiltonian problem to the problem in question, or else encoding a “history”
state in the ground state of the model. In either case, the models need to have some way to encode
each problem instance. This is often done by having a sum of many different Hamiltonians, each
varying independently, but there are other ways to encode problem instances. Some have only a
finite-set of models with varying strengths [30], some have a consistent background Hamiltonian
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with location dependent terms [62].
In addition to these questions about the computational complexity of various Hamiltonian

problems, Hamiltonian complexity also investigates area laws, and entanglement structures. These
other areas of Hamiltonian complexity are not directly related to this thesis, and I will thus avoid
their discussion.

1.2 Quantum walk

With the discussion of various physical models, and how they encode complexity, we should briefly
describe the main model we will study in this thesis. In particular, most of this thesis is devoted to
studying multi-particle quantum walk, a generalization of quantum walk, which is itself a general-
ization of random walk. These models are all defined in terms of some underlying graph on which
particles move with a time-independent model.

In particular, we study the continuous-time model of quantum walk, in which time-evolution is
generated by a Hamiltonian equal to the adjacency matrix. The single-particle model of computa-
tion has been very successful, as quantum walk is an intuitive framework for developing quantum
algorithms. This framework has lead to examples of exponential speedups over classical compu-
tation [20], as well as optimal algorithms for element distinctness [5] and formula evaluation [32].
Additionally, it is known that this model is universal for quantum computing [18]. One can also cast
other quantum speedups, such as that for unstructured search, into the quantum walk formalism
[47], and show that the speedups still exist when the search has certain spatial restrictions [21].

Unfortunately, multi-particle quantum walk has not been as successful a theory as an algorithmic
tool. It has previously been considered as an algorithmic tool for solving graph isomorphism [36],
but has some known limitations [64]. Other previous work on multi-particle quantum walk has
focused on two-particle quantum walk [52, 54, 17, 56, 53, 44, 61] and multi-particle quantum walk
without interactions [52, 54, 17, 56, 53, 59]. One might be able to think of the various speedups for
element distinctness and other multi-existence search problems as a multi-particle quantum walk,
but most people simply think of them as search algorithms with subroutines.

If we focus on the case of multi-particle quantum walk without interactions, we can see that while
non-interacting bosonic quantum walks may be difficult to simulate classically [1], such systems
are probably not capable of performing universal quantum computation. For fermionic systems
the situation is even clearer: non-interacting fermions can be efficiently simulated on a classical
computer [66].

However, this lack of theoretical backing has not stopped experimentalists from studying multi-
particle walks. In particular, we have that the two-particle bosonic quantum walk experiments
[17, 56, 53, 61] have already occurred, although interactions with larger number of particles are
likely to be difficult to implement.

1.3 Layout of thesis

With all of this background in mind, we’d like to give a basic understanding of what this thesis is
going to entail. The underlying theme of this thesis is to understand the computational power of
quantum walk, and its multi-particle generalizations. Note that most of this thesis is based on the
papers [24], [23], [25], and [26]. While I am an author on all four papers, Andrew Childs and David
Gosset are co-authors on all four papers, while Daniel Nagaj and Mouktik Raha are co-authors on
[23]. Additionally, while the proof structures and overall themes are the same between the papers
and this thesis, I have extended several of the results from these papers, from improved error bounds
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over [24] to an extension of the results of [25] to more general interactions. Additionally, I also
give a general framework for [24] as opposed to restricting to two particular momenta, which shows
that the problem remains universal for any momenta that satisfy certain properties. In a related
manner, I also reprove the universality results of [18] for single-particle quantum walk using the
techniques of this thesis.

The first portion of this thesis, in Chapter 2, we will cover some basic terms related to compu-
tational complexity that a physicist reading this thesis might not be familiar with. Additionally,
some technical lemmas that might be of independent interest and do not fit elsewhere in this thesis
are placed here.

The first chapter with content related to quantum walk is Chapter 3, we will describe single-
particle scattering on graphs. In particular, we will give some simple motivation, and a broad
overview of the the model of graph scattering. This paper will include some review of previous
papers [18, 22] that I have not written, as well as some technical results from [24]. We then describe
some gadgets that can be utilized via graph scattering in Chapter 4, which will be used elsewhere
in the thesis. Additionally, I include some novel research on graph scattering that does not affect
the rest of the thesis in this chapter.

At this point, we will transition into understanding the computational power of time-evolving
according to single- and multi-particle quantum walks. In particular, Chapter 5 will include a novel
proof that quantum walk of a single particle on an exponentially sized graph for polynomial time
is universal quantum computing, using techniques slightly different than that of [18]. While this
proof has not been submitted as a paper in any journal, it makes use of many of the techniques of
[24]. In Chapter 7, we extend this result to show that a multi-particle quantum walk with almost
any finite-range interaction is universal for quantum computing, the main result of [24].

With the computational power of time evolved quantum walk, we will want to understand the
ground energy problem of the quantum walk. In particular, Chapter 8 shows that determining
whether the ground energy of a sparse, row-computable graph is above or below some threshold
is QMA-complete, which is work is found in an appendix of the paper [25]. As this corresponds
exactly to the ground energy problem of a single particle quantum walk on an exponentially large,
but specifiable, graph, this shows that the ground energy problem for single-particle quantum walk
is QMA-complete.

Chapter 9 then expands on this result, and shows that the ground energy problem for multi-
particle quantum walk on simple graphs is QMA-complete. While this result follows the proof
techniques of [24] and [26] for symmetric states with onsite (i.e., Bose-Hubbard) interactions, the
extension to arbitrary finite-range interactions without the restriction to symmetric states is novel
to this thesis. (Note that if the only interactions are onsite, we still require the restriction to
symmetric states for our universality result.)

Finally, Chapter 10 concludes with some discussion of these results.
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Chapter 2

Mathematical Preliminaries

Several topics in this thesis require a background that not all researchers will have experience in.
As this is a physics thesis, here I review some basic complexity theory definitions used throughout
this thesis. Additionally, several lemmas used in this manuscript might be of independent interest,
as their applicability is not restricted to the various models studied in this thesis.

2.1 Mathematical notation

Perhaps the most simple point that I would like to raise before the thesis begins in earnest is the
notation that I will use throughout the paper. Much of the paper uses notation not necessarily
standard in every area of physics or computer science, and I want to make sure that no confusion
occurs. I will assume that various notations that are common do not need to be described, such
at H describing a Hilbert space, or that I describes a the identity operator on a particular Hilbert
space.

The first such notation will be for the shorthand definition of sets of particular size. Namely,

[k] := {1, 2, · · · , k}. (2.1)

This is a set of size k, with the elements ordered and labeled by the integers from 1 to k. We will
often think of these as elements from Zk, with addition and multiplication defined over the integers
modulo k.

As we will also be working with graphs, we will want to note that the letter G usually denotes
a particular graph. V (G) then describes the vertex set of G, and E(G) describes the edge set of G.
Note that this thesis will always deal with undirected graphs, with at most a single edge between
vertices. As such, the adjacency matrix (denoted A(G)) will be a symmetric |V (G)| × |V (G)|
matrix, with entries given by

A(G)uv =

{
1 {u, v} ∈ E(G)

0 otherwise.
(2.2)

Note that all entries of these adjacency matrices are either zero or one; this restriction on graphs
forces them to be unweighted, so that all edges are treated equally. We might further restrict
ourselves to graphs without any self-loops (diagonal entries in A(G)), which are called simple
graphs.

Much of the work in this thesis, especially when describing the ground energy of a particular
Hamiltonian, deals only with positive semi-definite operators. If A is a positive semi-definite matrix,

4



then γ(A) will denote the smallest non-zero eigenvalue of A. Note that if A has a 0-eigenvalue,
then this corresponds to the energy gap between the ground state and the first excited state, but
if A does not have a 0-eigenvalue then this is simply the smallest eigenvalue of A.

In a related note, we will need to describe various operator norms used throughout this thesis.
Unless otherwise specified, for a given Hermitian operator A, we will denote ‖H‖ by the largest (in
absolute value) eigenvalue of H (this is often called the spectral or infinity norm). Additionally,
‖H‖α will denote the α-norm of H, which is defined as

‖H‖α :=
( ∑

i∈[N ]

|λi|α
)1/α

, (2.3)

where {λi}i∈[N ] are the eigenvalues of H.
Another notation to define is the restriction of an operator to a subspace. Let us assume that

A acts on a Hilbert space H, and that S is a subspace of H. We will then write the restriction of
A to the subspace S as A

∣∣
S . Note that this subspace might not be invariant under the action of A.

Often this paper will want to investigate systems with many particles, and we will want an
operator to only act nontrivially on one particle. If we have a Hilbert space Htotal = H⊗Nsingle that
consists of N copies of some single Hilbert space, and if we have an operator M that acts on Hsingle,
we can define an operator M (w) that acts nontrivially only on the w-th copy of Hsingle, namely

M (w) = I⊗w−1 ⊗M ⊗ IN−w. (2.4)

In this manner, only the w-th copy of Hsingle is effected.
In a similar manner, if we have many particles living in identical Hilbert spaces, we might need

to permute the particles for ease of notation or to define certain subspaces. Letting Htotal = H⊗Nsingle

consist of N copies of a single Hilbert space, and letting π ∈ SN be a permutation the N objects,
we define the permutation operator Vπ acting on the basis states of Htotal as

Vπ|x1, x2, · · · , xN 〉 = |xπ−1(1), xπ−1(2), · · · , xπ−1(N) 〉, (2.5)

and extend it linearly to the rest of the Hilbert space.

2.2 Complexity Theory

While this thesis is for the physics department, many of the results require some basic quantum
complexity theory. In particular, the computer science idea for classification of computational
problems in terms of the requisite resources gives a particularly nice interpretation of why certain
physical systems don’t equilibrate, and give a simple explanation on why certain systems do not
have a known closed form solution.

This is a simple introduction, with a focus designed to make the rest of this thesis comprehensible
to those without a background in complexity theory. For a more formal introduction to Complexity
Theory, I would recommend [63], with a more in depth review found in [6]. For a focus on complexity
as found in quantum information, I would recommend [67].

2.2.1 Languages and promise problems

The main foundation of computational complexity is in the classification of languages based on the
resources required to determine whether some given string is in a language. Unfortunately, this
requires the definition of many of these terms.
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In particular, what exactly is a string? Any person who has taken a basic programming class
knows that a string is simply a word, but the mathematical definition is slightly more complicated.
In particular, we first need to define an alphabet, and then define a string over a particular alphabet.

Definition 1 (Alphabet). An alphabet is a finite collection of symbols.

Usually, an arbitrary alphabet is denoted by Γ, while the binary alphabet is denoted by Σ =
{0, 1}. The chosen alphabet has no impact on a particular complexity result, as any finite alphabet
can be represented via the binary alphabet with overhead that is logarithmic in the size of the
original alphabet (essentially, just use a binary encoding of the new alphabet).

With this definition of an alphabet, a string is simply a finite sequence of elements from the
alphabet. In particular, we define Γn to be all length n sequences of elements from Γ, and then
define

Γ∗ =
∞⋃

n=0

Γn. (2.6)

With this, Γ∗ is the set of all strings over Γ.
Computational complexity then deals with understanding subsets of these strings. In particular,

let Πyes be a subset of Γ∗. The language problem related to Πyes is to determine whether a given
string x ∈ Γ∗ is contained within Πyes or not. This can be trivial, such as for the case of Πyes = Γ∗,
or it can be impossible, such as in the case of the famous Halting Problem.

Related to these language problems are promise problems, in which there are two subsets of Γ∗,
namely Πyes and Πno, such that Πyes∩Πno = ∅. We are then promised that the x ∈ Γ∗ that we need
to sort is contained either Πyes ∪Πno. This generally opens up some more interesting problems, as
without this restriction certain complexity classes do not make sense.

Most complexity classes related to quantum computing are classes of promise problems.

2.2.2 Turing machines

Up to this point, we have only discussed classifications of strings, and stated that we will want
to understand the various resources required to sort a given string into one of two different sets,
but we have not explained how these resources are defined. There are various ways to do this,
depending on the various computational model one is interested in, but to give the most intuition
we will need to define a Turing Machine. These machines are a mathematical construction that
allow for the explicit definition of algorithms.

At their most basic level, a Turing machine is simply a finite program along with a (countably)
infinite tape that allows the machine to store information. The input to the algorithm is initially
written on the tape, and the machine starts in some initial configuration. The machine can only
access it’s internal memory along with a single character at a time from the infinite tape, and the
program progresses by changing the internal state of the machine, changing one character on the
tape, and moving along the tape. While extremely limited, these machines have so far captured
our ideas of computation.

Formally, a Turing-machine is M is described by a tuple (Γ, Q, δ), where Γ is a finite set of
symbol’s that can be written on the infinite tape, Q is a set of possible internal states that M can
store as internal memory, and δ is a function Q × Γ → Q × Γ × {L, S,R} describing the required
action of the machine M . Included in Q are two special “halting” states generally labeled accept

and reject, such that the machine stops operating if it ever enters these two states, and the
machine either accepts or rejects the current string. Note that we always assume that the alphabet
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contains a special character that is not used for the input but denotes empty space along the
infinite tape after the input string.

During an actual computation, a Turing Machine always starts with its internal state in a
specified position, with the string used for input on the initial segment of the infinite tape and the
special character on every character after the input. Additionally, the pointer of the machine
is located at the beginning of the tape, so that the machine is able to start reading the input (if
needed). At each time step the machine then applies the transition function, updating its internal
state, the character located at the current position of the tape, along with the current position of
the tape until the machine reaches one of its halting states.

Note that there are several variations on these Turing Machines, such as those that have multiple
infinite tapes instead of just one, and one that can move to an arbitrary position along the tape.
These variations do not change the overall computational power of the model, just make it slightly
more efficient. This definition is perhaps the most simple, and will suffice for now.

One slight modification that will be useful for us are machines that compute a particular func-
tion. In particular, for a given function f : Γ∗ → Γ∗, we say that a Turing Machine M computes
the function f if for all inputs x, the machine eventually halts and after it halts the tape will have
f(x) on the output tape (and nothing else).

2.2.2.1 Resources

With an explicit definition of Turing Machines, we also want to have some way to quantify the
amount of resources used by a computation. Since each machine is expected to work on strings of
arbitrary length, we somehow need to quantify the resources in terms of the input to a given string.
So far, the important quantity in these resource problems has been the length of an input string x.
Basically, the number of characters has been the interesting aspect to measure, since any machine
will at least need to read the string.

With this n as the yardstick for any of our measurements, we then need to measure the length
of the actual computation. In general, there are two ways to measure this length: the number of
transitions that the computation used before it halted (as a measure of time), or else the number
of elements of the tape that the machine visited during its computation (as a measure of space).
It is important to realize that the exact value of these resources depend on the definitions used for
the machine, such as the alphabet size or the number of internal states. As such, we will generally
not be interested in the exact value for a given input, but will be more interested in the asymptotic
scaling of the resources.

These requisite resources will generally be something of the form O(f(n)) for some easily com-
putable function f such as a polynomial or an exponential in n. These various scalings will give
us a nice method of classifying the difficulty of computational problems. In general, we will say
that a specific Turing Machine M runs in time f(n) if for all inputs it halts in time t(x) and
t(x) ∈ O(f(n)).

2.2.2.2 Uniform circuit families

While Turing Machines are sufficient for classical computation, when we want to describe some
quantum complexity classes it will be useful to instead discuss quantum circuits. However, an
important aspect of Turing Machines is that they are defined independently of the size of the
input, while circuits need to have unique definitions for all different input sizes.

One might be tempted to simply define a computation via circuits by whether or not there
exists a circuit of a given length, but this ends up giving an unreasonable amount of power to the
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computational model. In particular, the algorithm can hide computation in the definition of the
circuit, as opposed to the actual running of the circuit itself.

To get around this, we will need to compute the circuit for the computation given the length.
Namely, we will have a Turing Machine take as input the string length in unary, and the machine
will output a description of the circuit. I won’t go into the details here, but the

Definition 2 (Uniform family of circuits). A collection {Cx : x ∈ S ⊆ Σ∗} of circuits is a
(polynomial-time) uniform family of circuits if there exists a deterministic Turing Machine M
such that

• M runs in polynomial time.

• For all x ∈ S, M outputs a description of Cx.

Note that this definition makes no reference to the type of circuit, although we will generally
assume that the circuit comes from some specific gate set.

2.2.3 Useful complexity classes

Once we have an understanding of what defines a relation, and how these are related, we can
attempt to classify those languages that require different resources in order to solve.

2.2.3.1 Classical complexity classes

Perhaps the most well known question in computational complexity is the P vs NP problem.
However, what exactly are these classes. At a most basic level, one can think of P as those
classification problems that have an efficient classical solution, while NP are those that can be
checked in an efficient manner.

Definition 3 (P). A promise problem A = (Ayes,Ano) is in the class P if there exists a polynomial-
time Turing Machine M such that

• If x ∈ Ayes, then M(x) accepts.

• If x ∈ Ano, then M(x) rejects.

Note that the Turing Machine M is required to halt on all inputs, and thus this is exactly what
we mean by a polynomial-computation. Some simple examples of languages in P are whether the
triple (a, b, c) satisfies ab = c, and whether a particular list of values is sorted.

Definition 4 (NP). A promise problem A = (Ayes,Ano) is in the class NPif there exists a
polynomial q and a polynomial-time Turing Machine M such that

• If x ∈ Ayes, then there exists a string y ∈ Σq(|x|) such that M(x, y) accepts.

• If x ∈ Ano, then for all strings y ∈ Σq(|x|), M(x, y) rejects.

Essentially, a language is in NP if a given string can be proven to be in the language. This
includes useful problems such as whether a given graph has a 3-coloring, whether an integer p has
at least k prime factors, and all problems in P.
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2.2.3.2 Bounded-Error Quantum Polynomial Time

With these classical problems now defined, we will want to understand what happens when we
include quantum mechanics. There is a way to define a quantum Turing machine, in an analog to
the classical case, but the current state of the art has instead gone toward using quantum circuits
instead.

Intuitively, the idea behind Bounded-Error Quantum Polynomial Time (BQP) consists of those
problems that can be solved by a quantum computer efficiently, and thus is the quantum version
of P. However, we need to somehow encode the circuit so that computation cannot be hidden in
the circuit definition. This is exactly the reason for our definition of uniform circuit families, as it
is impossible to hide additional computation in a time-bounded Turing machine, especially when
the quantum circuits themselves most likely have more computational power.

Definition 5 (BQP). A promise problem A = (Ayes,Ano) is in the class BQP if there exist a
uniform family of quantum circuits Q = {Qn : n ∈ N} such that

• If x ∈ Ayes, then AP(Q|x|, |x〉) ≥ 2
3 .

• If x ∈ Ano, then AP(Q|x|, |x〉) ≤ 1
3 .

Note that AP(Q, |ψ 〉) is the acceptance probability of a circuit Q, with input |ψ 〉, given by

AP(Q, |ψ 〉) = 〈ψ |Q†(|0〉〈0 | ⊗ I)Q|ψ 〉. (2.7)

From this, we have that the class BQP does not always output the correct answer, but it does
with a bounded probability.

If a problem is BQP-hard, then we say that it is universal for quantum computing.

2.2.3.3 Quantum Merlin-Arthur

In addition to the efficient quantum computations, we also have those computations that are
efficient to check with a quantum computer, QMA. This class is analogous to NP in that it
includes problems that are thought difficult for a quantum computer. Intuitively, these problems
are those for which an all powerful person gave you a “proof” state |ψ 〉, and you could run this
state through a quantum circuit and be convinced of some property.

Definition 6 (QMA). A promise problem A = (Ayes,Ano) is in the class QMA if there exists a
uniform family of quantum circuits Q = {Qn : n ∈ N} such that

• If x ∈ Ayes, then there exists a state |ψ 〉 ∈ Cp(|x|) such that Q|x|(|x〉, |ψ 〉) ≥ 2
3 .

• If x ∈ Ano, then for all states |ψ 〉 ∈ Cp(|x|), Q|x|(|x〉, |ψ 〉) ≤ 1
3 .

Note that these constants 2
3 and 1

3 can actually be replaced by 1− 2|x| and 2|x| if we would like.

2.2.3.4 Reductions and Complete Problems

While we are interested in these complexity classes, it is often difficult to work with the exact
definitions used. As an example, in the definition of NP, to show something for all of the class we
would somehow need to encode the entire computation of the Turing machine in our proof, which
is a very difficult endeavour. However, if we know of a particular problem such that every
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Essentially a reduction is a polynomial-time computable function from one computational prob-
lem to another. Because this reduction is easy to compute, if we can solve the second problem,
then we can also solve the first problem. More concretely, let A = (Ayes,Ano and B = (Byes,Bno)
be two promise problems. We say that there is a reduction from A to B if there is an efficient
function f such that for each a ∈ Ayes f(a) ∈ Byes and for each a ∈ Ano, f(a) ∈ Bno.

With these reductions in mind, a particular problem A is hard for a given complexity class C if
for every B ∈C, there is a reduction from B to A. In this way, we can think of A as being as hard
as any problem in C. A problem is C-complete if it is C-hard and contained in C.

2.3 Hamiltonian simulation

Several times in this thesis, we will need to show how to simulate the evolution of a sparse, row-
computable Hamiltonian on a given state |φ〉 using a quantum circuit. The state |φ〉 might be an
efficiently computable state, or it might be provided to us in a QMA-style procedure, but in either
case we are really only interested in understanding the dynamics of the simulation.

The problem of simulating Hamiltonian dynamics has been featured rather heavily in the lit-
erature, as it was the original motivation that Feynman gave for quantum computers [34, 35]. In
particular, Lloyd showed how to simulate sums of local operators [45], and this idea was generalized
by Aharanov and Ta-Shma to (efficiently computable) sparse Hamiltonians [3]. Since then, various
schemes have improved the requirements on time [8, 68, 9], as well as the dependence on the pre-
cision [10, 11] and various other avenues of research [18, 57], have managed to greatly improve our
ability to simulate quantum dynamics.

While Hamiltonians that are a sum of local operations are relatively easy to understand, d-
sparse Hamiltonians are relatively more complex. The reason that much of the literature has
focused on local Hamiltonians is that they are easy to specify, as we need only write down each
of the local Hamiltonians. In particular, these are succinct representations for Hamiltonians on an
exponential-sized Hilbert space, such that each non-zero term of the Hamiltonian corresponding
to a specific basis vector can be determined efficiently. Additionally, these local-Hamiltonians are
further restricted to only have non-zero transition amplitudes for states that satisfy some locality
conditions, but for the purposes of simulation the succinctness property is what we care about.

Namely, the fact that a local Hamiltonian is succinctly representable is all that is used in the
algorithms for simulating Hamiltonian dynamics. As such, if we can generalize these properties, we
can generalize the Hamiltonians that we can simulate. A row-computable, d-spare matrix is such a
generalization, in which each row of a given Hamiltonian has at most d non-zero entries, and there
exists some efficiently computable function fi(x) that outputs the value (and position) of the ith
nonzero entry of the xth row. Note that k-local Hamiltonians are d-sparse (for some d depending
on the local dimension and connectivity), and easily row-computable.

A recent simulation algorithms [12] uses several techniques, including quantum walk algorithms,
simulations of linear combinations of unitaries, and Bessel functions, to simulate a given Hamilto-
nian, but their main result is the following

Theorem 1 (Theorem 1 of [12]). A d-sparse Hamiltonian H acting on n qubits can be simulated
for time t within error ε with

O
(
τ

log(τ/ε)

log log(τ/ε)

)
(2.8)
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queries and

O
(
τ
[
n+ log5/2(τ/ε)

] log(τ/ε)

log log(τ/ε)

)
(2.9)

additional 2-qubit gates, where τ := d‖H‖t.

Note that the theorem was proved in the black box model, where the function f was provided
via black box. Assuming that f is superlinear in both n and log5/2(τ/ε), the time-complexity for
simulating such a Hamiltonian is simply the product of the complexity of f with (2.8). Note that
if f is efficient to compute, this is an efficient simulation of the Hamiltonian dynamics.

2.4 Various Mathematical Lemmas

In addition to these various mathematical definitions, it will also be useful to have a list of certain
mathematical lemmas that will be used several times in the thesis. These lemmas might also be of
independent interest.

2.4.1 Truncation Lemma

Perhaps the first such lemma we called the truncation lemma. The idea behind this lemma is to
approximate the evolution of a state under some particular Hamiltonian with another, where the
differences between the two Hamiltonians only occur far from the support of the given state. One
would expect that since the state must evolve “far” in order to reach the differences between the
two Hamiltonians, the evolution between the two will be close. This lemma makes this intuition
precise. This lemma was shown by Childs, Gosset, and Webb in [24].

Lemma 1 (Truncation Lemma). Let H be a Hamiltonian acting on a Hilbert space H and let
|Φ〉 ∈ H be a normalized state. Let K be a subspace of H, let P be the projector onto K, and let
H̃ = PHP be the Hamiltonian within this subspace. Suppose that, for some T > 0, W ∈ {H, H̃},
N0 ∈ N, and δ > 0, we have, for all 0 ≤ t ≤ T ,

e−iWt|Φ〉 = |γ(t)〉+ |ε(t)〉 with ‖|ε(t)〉‖ ≤ δ (2.10)

and

(1− P )Hr|γ(t)〉 = 0 for all r ∈ N satisfyingr < N0. (2.11)

Then, for all 0 ≤ t ≤ T ,

∥∥∥
(
e−iHt − e−iH̃t

)
|Φ〉
∥∥∥ ≤

(
4e‖H‖t
N0

+ 2

)(
δ + 2−N0(1 + δ)

)
. (2.12)

The basic idea as that |γ(t)〉 well approximates the evolution of |Φ〉 under one of H or H̃, and
thus also gives good approximation to the evolution according to the other Hamiltonian.

The proof of this lemma actually makes use of two different lemmas, one pertaining to the
difference in evolution according to the Hamiltonians when the support of a given state is far from
the differences, and one that bounds the accumulated error in a sequence of similar unitaries.

The first lemma assumes some locality condition on the Hamiltonian, and uses a Taylor series
to bound the error in approximating the evolution according to the truncation.
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Proposition 1. Let H be a Hamiltonian acting on a Hilbert space H, and let |Φ〉 ∈ H be a
normalized state. Let K be a subspace of H such that there exists an N0 ∈ N so that for all
|α〉 ∈ K⊥ and for all n ∈ N with n < N0, 〈α |Hn|Φ〉 = 0. Let P be the projector onto K and let
H̃ = PHP be the Hamiltonian within this subspace. Then

‖e−itH̃ |Φ〉 − e−itH |Φ〉‖ ≤ 2

(
e‖H‖t
N0

)N0

. (2.13)

Proof. Define |Φ(t)〉 and | Φ̃(t)〉 as

|Φ(t)〉 = e−itH |Φ〉 =
∞∑

k=0

(−it)k
k!

Hk|Φ〉 | Φ̃(t)〉 = e−itH̃ |Φ〉 =
∞∑

k=0

(−it)k
k!

H̃k|Φ〉. (2.14)

Note that by assumption, H̃k|Φ〉 = Hk|Φ〉 for all k < N0, and thus the first N0 terms in the two
above sums are equal. Looking at the difference between these two states, we have

‖|Φ(t)〉 − | Φ̃(t)〉‖ =

∥∥∥∥∥
∞∑

k=0

(−it)k
k!

(
Hk − H̃k

)
|Φ〉

∥∥∥∥∥ (2.15)

=

∥∥∥∥∥∥

N0−1∑

k=0

(−it)k
k!

(
Hk − H̃k

)
|Φ〉 −

∞∑

k=N0

(−it)k
k!

(
Hk − H̃k

)
|Φ〉

∥∥∥∥∥∥
(2.16)

≤
∞∑

k=N0

tk

k!

(
‖H‖k + ‖H̃‖k

)
(2.17)

≤ 2
∞∑

k=N0

tk

k!
‖H‖k (2.18)

where the last step uses the fact that ‖H̃‖ ≤ ‖P‖‖H‖‖P‖ = ‖H‖. Thus for any c ≥ 1, we have

‖|Φ(t)〉 − | Φ̃(t)〉‖ ≤ 2

cN0

∞∑

k=N0

(ct)k

k!
‖H‖k (2.19)

≤ 2

cN0
exp(ct‖H‖). (2.20)

We obtain the best bound by choosing c = N0/‖Ht‖, which gives

‖|Φ(t)〉 − | Φ̃(t)〉‖ ≤ 2

(
e‖H‖t
N0

)N0

(2.21)

as claimed. (If c < 1 then the bound is trivial.)

The second proof is related to the difference between two different products of unitaries.

Proposition 2. Let U1, . . . , Un and V1, . . . , Vn be unitary operators. Then for any |ψ 〉,
∥∥∥∥∥

(
1∏

i=n

Ui −
1∏

i=n

Vi

)
|ψ 〉
∥∥∥∥∥ ≤

n∑

j=1

∥∥∥∥∥(Uj − Vj)
1∏

i=j−1

Ui|ψ 〉
∥∥∥∥∥. (2.22)
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Proof. The proof is by induction on n. The case n = 1 is obvious. For the induction step, we have

∥∥∥∥∥

(
1∏

i=n

Ui −
1∏

i=n

Vi

)
|ψ 〉
∥∥∥∥∥ =

∥∥∥∥∥

(
1∏

i=n

Ui − Vn
1∏

i=n−1

Ui + Vn

1∏

i=n−1

Ui −
1∏

i=n

Vi

)
|ψ 〉
∥∥∥∥∥ (2.23)

≤
∥∥∥∥∥(Un − Vn)

1∏

i=n−1

Ui|ψ 〉
∥∥∥∥∥+

∥∥∥∥∥

(
1∏

i=n−1

Ui −
1∏

i=n−1

Vi

)
|ψ 〉
∥∥∥∥∥ (2.24)

≤
n∑

j=1

∥∥∥∥∥∥
(Uj − Vj)

1∏

i=j−1

Ui|ψ 〉

∥∥∥∥∥∥
(2.25)

where the last step uses the induction hypothesis.

Proof of Lemma 1. For M ∈ N write

‖(e−iHt − e−iH̃t)|Φ〉‖ =

∥∥∥∥
((

e−iH
t
M

)M
−
(
e−iH̃

t
M

)M)
|Φ〉

∥∥∥∥ (2.26)

≤
M∑

j=1

∥∥∥
(
e−iH

t
M − e−iH̃ t

M

)
e−iW (j−1) t

M |Φ〉
∥∥∥ (2.27)

≤
M∑

j=1

∥∥∥
(
e−iH

t
M − e−iH̃ t

M

)(
|γ( (j−1)t

M )〉+ |ε( (j−1)t
M )〉

)∥∥∥ (2.28)

≤ 2Mδ +
M∑

j=1

∥∥∥∥∥∥

(
e−iH

t
M − e−iH̃ t

M

) |γ( (j−1)t
M )〉∥∥∥|γ( (j−1)t
M )〉

∥∥∥

∥∥∥∥∥∥

∥∥∥|γ( (j−1)t
M )〉

∥∥∥ (2.29)

≤ 2Mδ + 2M

(
e‖H‖t
MN0

)N0

(1 + δ) (2.30)

where in the second line we have used Proposition 2 and in the last step we have used Proposition 1
and the fact that ‖|γ(t)〉‖ ≤ 1 + δ. Now, for some η > 1, choose

M =

⌈
ηe‖H‖t
N0

⌉
(2.31)

for 0 < t ≤ T to get

‖(e−iHt − e−iH̃t)|Φ〉‖ ≤ 2M
(
δ + η−N0(1 + δ)

)
(2.32)

≤ 2

(
ηe‖H‖t
N0

+ 1

)(
δ + η−N0(1 + δ)

)
. (2.33)

The choice η = 2 gives the stated conclusion.

Note that it would be slightly better to take a smaller value of η. However, this does not
significantly improve the final result; the above bound is simpler and sufficient for our purposes.
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2.4.2 Nullspace Projection Lemma

When we discuss the ground spaces and ground energies of various Hamiltonians, we will often want
to know what happens to the ground spaces and ground energies when two such Hamiltonians are
added together (such as adding penalties enforcing particular initial states). As such, the Nullspace
Projection Lemma exactly discusses how such systems add together. As far as I am aware this
lemma was initially used (implicitly) by Mizel, et al., [49]. We then used this in our proof of the
QMA-completeness for the Bose-Hubbard model [25]. We then found a similar lemma by Alicki,
et al. [4]. While the improvement is minor, we state and prove this better lemma:

Lemma 2 (Nullspace Projection Lemma). Let HA and HB be positive semi-definite matrices.
Suppose that the nullspace, S, of HA is nonempty, and that

γ
(
HB|S

)
≥ c > 0 and γ(HA) ≥ d > 0. (2.34)

Then,

γ(HA +HB) ≥ cd

d+ ‖HB‖
. (2.35)

Proof. Let |ψ〉 be a normalized state satisfying

〈ψ|HA +HB|ψ〉 = γ(HA +HB). (2.36)

Let ΠS be the projector onto the nullspace of HA. First suppose that ΠS |ψ〉 = 0, in which case

〈ψ|HA +HB|ψ〉 ≥ 〈ψ|HA|ψ〉 ≥ γ(HA) (2.37)

and the result follows. On the other hand, if ΠS |ψ〉 6= 0 then we can write

|ψ〉 = α|a〉+ β|a⊥〉 (2.38)

with |α|2 +|β|2 = 1, α 6= 0, and two normalized states |a〉 and |a⊥〉 such that |a〉 ∈ S and |a⊥〉 ∈ S⊥.
(If β = 0 then we may choose |a⊥〉 to be an arbitrary state in S⊥ but in the following we fix one
specific choice for concreteness.) Note that any state |φ〉 in the nullspace of HA + HB satisfies
HA|φ〉 = 0 and hence 〈φ|a⊥〉 = 0. Since 〈φ|ψ〉 = 0 and α 6= 0 we also see that 〈φ|a〉 = 0. Hence
any state

|f(q, r)〉 = q|a〉+ r|a⊥〉 (2.39)

is orthogonal to the nullspace of HA +HB, and

γ(HA +HB) = min
|q|2+|r|2=1

〈f(q, r)|HA +HB|f(q, r)〉. (2.40)

Within the subspace Q spanned by |a〉 and |a⊥ 〉, note that

HA|Q =

(
w v∗

v z

)
HB|Q =

(
0 0
0 y

)
(2.41)

where w = 〈a|HB|a〉, v = 〈a⊥|HB|a〉, y = 〈a⊥|HA|a⊥〉, and z = 〈a⊥|HB|a⊥〉, and that we are
interested in the smaller eigenvalue of

M = HA|Q +HB|Q =

(
w v∗

v y + z

)
. (2.42)
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Letting ε+ and ε− be the two eigenvalues of M with ε+ ≥ ε−, note that

ε+ = ‖M‖ ≤ ‖HA|Q‖+ ‖HB|Q‖ ≤ y + ‖HB|Q‖ ≤ y + ‖HB‖, (2.43)

where we have used the Cauchy interlacing theorem to note that ‖HB|Q‖ ≤ ‖HB‖. Additionally,
we have that

ε+ε− = det(M) = w(y + z)− |v|2 ≥ wy (2.44)

where we used the fact that HB|Q is positive-semidefinite. Putting this together, we have that

γ(HA +HB) = min
|q|2+|r|2=1

〈f(q, r)|HA +HB|f(q, r)〉 = ε− ≥
wy

y + ‖HB‖
. (2.45)

As the right hand side increased monotonically with both w and y, and as w ≥ γ(HB|S) ≥ c and
y ≥ γ(HA) ≥ d, we have

γ(HA +HB) ≥ cd

d+ ‖HB‖
(2.46)

as required.
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Chapter 3

Scattering on graphs

As scattering has found use as an analytic tool for several disparate areas in physics [58], one might
wonder at its usefulness in quantum information. High energy physics uses scattering to probe
atoms and molecules, but we would want to discretize the system for use in quantum information.
In this manner, we would replace the continuum by a discrete set of positions, and understand the
evolution in such a model.

With this discretization, we are analyzing a system propagating on an infinite graph, and thus
we can also think of this as the limit of a continuous time quantum walk to infinite graphs. We know
that quantum walks are useful algorithmic devices (e.g., [20, 5]), and one might wonder whether
these infinite systems can allow for intuitive algorithms. It turns out that this answer is yes, and the
original motivation for graph scattering was an algorithm using graph scattering to solve a problem
for decision trees [33], which eventually led to an algorithm solving boolean formulas faster than any
randomized classical computation [32]. This algorithm was easily understood using the intuition
from scattering, and thus graph scattering became a useful tool for understanding quantum walk
algorithms.

This chapter should serve as a broad introduction to graph scattering. In particular, the nota-
tions of scattering matrices, bound states, and wave-packets have all been used in previous works.
This chapter attempts to standardize notations, while also explaining how everything works. While
there is some original work in this chapter, we also utilize and state several of the results from
[32, 18, 27, 22] in which the author did not contribute.

3.1 Free particles in the continuum

Let us first take a look at one of the most simple quantum systems seen in any quantum mechanics
text (e.g., [39] or [60]): a free particle in one dimension. Without any potential or interactions, we
have that the time independent Schrödinger equation reads

∂2

∂x2
ψ(x) = −2m

~2
Eψ(x) = −k2ψ(x), (3.1)

which requires the (unnormalizable) solutions,

ψ(x) = A exp(−ikx) +B exp(ikx) (3.2)

for real k and for arbitrary constant A and B. These momentum states correspond to particles
travelling with momentum k along the real line, and they span the Hilbert space. Note that these
momentum states are not technically within the Hilbert space, since they are not normalizable.
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While these momentum states are useful for understanding the propagation of particles in the
quantum setting, if we want to understand more complicated behavior we need to change the
potential energy of the system. In particular, we will now include some finite-range potential V
that is non-zero only for |x| < d for some constant d, so that outside this range the eigenstates
remain unchanged. The only difference is that we will deal with a superposition of states for each
energy instead of the pure momentum states, forcing some relation between the A and B of equation
(3.2). Namely, the eigenstates of this system become

ψ(x) =





exp(−ikx) +R(k) exp(ikx) x ≤ −d
T (k) exp(−ikx) x ≥ d
φ(x, k) |x| ≤ d

(3.3)

for some functions R(k), T (k), and φ(x, k) that depends on the interaction V . As intuition, these
states can be seen as a particle with momentum k coming in from the left, hitting the potential,
and then scattering (which motivates the T and R labels).

In addition to these scattering states, it is also possible for bound states to exist. These are
normalizable states that have a constant fraction of their amplitude near the non-zero potential, so
that they do not affect scattering states that originate far from the interaction. They simply exist
as additional states in the Hilbert space.

3.1.1 Free particles on an infinite path

With the simple free-particle example in mind, let us now examine the discretized system. Namely,
instead of allowing arbitrary real positions, let us restrict attention to some regular 1-D lattice,
such as the natural numbers. Further, much as there is a natural linear ordering on the positions
in the continuum, and in order for a particle to move between a and b it must travel over all
positions between a and b, in the discretized system we only allow particles to move between
adjacent integers. Explicitly, the position basis for this discretized Hilbert space will be labeled by
n ∈ N, with transport only allowed between integers that differ by one.

If we then want to understand how this discretized system works, it will be useful to discretize
the entire Schrödinger equation. Along those lines, remember that the second derivative of a
function f at x can be written as

d2

dx2
f(x) = lim

h→0

f(x+ h)− 2f(x)− f(x− h)

h2
. (3.4)

Since we were originally working in the continuum, we could let h go to zero without any problems.
In our discretized world, however, there exists some smallest difference in x, namely 1. As such,
we have that in our discretized space, the operator corresponding to the second position derivative
can be written as

∆2 =

∞∑

x=−∞
|x〉
(
〈x− 1 | − 2〈x |+ 〈x+ 1 |

)
=

∞∑

x=−∞

(
|x〉〈x− 1 |+ |x〉〈x+ 1 |

)
− 2I. (3.5)

If we then rescale the energy levels, we have that the identity term in the right hand side of (3.5) can
be removed, so that ∆2 on this discretized one-dimensional system is proportional to the adjacency
matrix of an infinite path.

With this representation of the second derivative operator, we can see that when discretized,
the time-independent Schrödinger equation for a free particle becomes

∆2|ψ 〉 =
( ∞∑

x=−∞

(
|x+ 1〉〈x |+ |x− 1〉〈x |

)
− 2I

)
|ψ 〉 = E′ψ|ψ 〉. (3.6)
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If we rescale the energy term, and then break the vector equation into its components, we find that

〈x+ 1 |ψ 〉+ 〈x− 1 |ψ 〉 = Eψ〈x |ψ 〉 (3.7)

for all x ∈ Z. Taking motivation from the continuous case, we then make the ansatz that 〈x |ψ 〉 =
eikx for some k, and find

〈x+ 1 |ψ 〉+ 〈x− 1 |ψ 〉 = eikeikx + e−ikeikx = Eψe
ikx = Eψ〈x |ψ 〉 (3.8)

Eψ = eik + e−ik = 2 cos(k). (3.9)

If we then use the fact that Eψ must be real, and that the amplitudes should not diverge to infinity
as x→ ±∞, we find that the only possible values of k are between [−π, π). Hence, in analogy with
the continuous case, the eigenbasis of the Hamiltonian corresponds to momentum states, but where
the possible momenta only range over [−π, π). We represent this momentum state with momenta
k as | k̃ 〉. Note that similar to the continuum, these momentum states are not technically in the
relevant Hilbert space. This will not be problematic for our purposes, but it can lead to some
headaches

Additionally, we can discuss the “speed” of these eigenstates, which is given by the derivative
of the energy with respect to momentum. We con then see that

s =
∣∣∣dEk
dk

∣∣∣ = 2 sin(|k|), (3.10)

which is to be compared with s ∝ |k| for in the continuum case. While the discretization does
change the relationship between momentum, energy, and speed, if we restrict ourselves to small k
(so that the discretization is not noticeable), we recover the linear relationship. In this way, as the
distance between vertices grows smaller, we recover the continuum case.

One problem that is unique to our discretized system is that there are an uncountable number
of momentum states, while the position basis contains only a countable number of basis states. It
turns out that the resolution to this conundrum is that the two bases have different orthogonality
conditions: the position basis elements are Kronecker delta orthogonal, while the momentum basis
elements are Dirac δ-function orthogonal. Namely, if we quickly use some physicists math (instead
of technically correct), we can see that

〈 k̃ | p̃〉 =
∞∑

x=−∞
e−ikxeikp =

∞∑

x=−∞
ei(p−k)x = 2πδ(p− k), (3.11)

so that we can decompose the identity on this space as

I =
∞∑

x=−∞
|x〉〈x | = 1

2π

∫ π

−π
dk| k̃ 〉〈 k̃ |. (3.12)

3.2 Graph scattering

Essentially, at this point we have recovered many of the results of the continuous free particle, but
with a discretized position space. The main idea behind the discretization was the change in the
second derivative operator, and noting that it became proportional to the adjacency matrix of a
simple graph. This seems very similar to the case of continuous time quantum walks, in which the
Hamiltonian is explicitly taken to be the adjacency matrix of a (finite sized) graph.
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Figure 3.1: A simple example for graph scattering. A graph G̃ is attached to an infinite path.

As such, let us assume that the Hamiltonian of the entire system is proportional to the adjacency
matrix for these graph scattering problems. If we now want to add some finite potential to the
system, in an attempt to discretize the scattering formalism, we could add a potential function,
with explicit potential energies at various vertices of the infinite path. However, if we wish to
examine scattering only on unweighted graphs, we need to be a little more clever.

To solve this problem, we will connect graphs in such a way that far from our connections the
graphs will look identical to that of an infinite path, but near our changes the graph can differ
drastically from an infinite path. In particular, we will use an arbitrary (finite) graph as a base,
and connect semi-infinite (infinite in one direction) paths to this base graph.

With this construction, the eigenvalue equation must still be satisfied along the semi-infinite
paths, and thus the form of the eigenstates along the paths must still be of the form eikx for some k
and x. However, we can no longer assume that k is real, as the fact that the attached semi-infinite
paths are only infinite in one direction allow for an exponentially decaying amplitudes along the
paths. Additionally, we can have nontrivial correlations between the amplitudes among the different
paths, similar to the correlated reflection and transmission coefficients in the continuous case.

Note that the topic of graph scattering has appeared previously in the literature. Most of this
section is not original work, and should be taken as background material. In particular, these results
are taken from [32, 18, 27, 22]. I will also include some novel research pertaining to scattering with
Gaussian wavepackets, which can be found in Section 3.3.

3.2.1 Infinite path and a Graph

In the most simple example, let us attach a graph G̃ to an infinite path. In particular, we assume
that G̃ is attached to a single vertex of the infinite path, and that the graph is attached by adding
an edge from each vertex in S ⊂ V (G̃) to one specific vertex of the infinite path, which we label 0, as
seen in Figure 3.1. Calling this new graph G, the adjacency matrix of G, and thus the Hamiltonian
for this scattering problem, can be seen to be

A(G) = A(G̃) +
∑

v∈S⊂V (G̃)

|v 〉〈0 |+ |0〉〈v |+
∞∑

x=−∞
|x〉〈x+ 1 |+ |x+ 1〉〈x |. (3.13)

If we then want to inspect the eigenvectors of this Hamiltonian, we find that the eigenvalue
equation remains unchanged for non-zero vertices on the path. Hence, we can see that any eigenstate
of the Hamiltonian must take the form αeikx + βe−ikx for some k along the infinite paths.
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With this assumption, we can see that there are three distinct cases for the form of the eigen-
states. In particular, the eigenstate could have no amplitude along the infinite paths, being confined
to the finite graph Ĝ. It could also be a normalizable state not confined to the finite graph Ĝ, in
that the amplitude along the infinite paths decays exponentially. Finally, the eigenstate could be
an unnormalizable state, in which case we will call it a scattering state.

In the first case, where the state is confined to the graph G̃, we have the major restriction that
the state |ψ 〉 satisfies

〈x |ψ 〉 = 0 (3.14)

for all x ∈ N. Additionally, if |φ〉 is the restriction of |φ〉 to the finite graph G̃, we have that

A(G̃)|φ〉 = E|φ〉 (3.15)

so that |φ〉 is an eigenstate of the graph G̃, that also satisfies

∑

v∈S
〈v |φ〉 = 0. (3.16)

These restrictions together show that these completely bound states have an extremely restricted
form as eigenstates of A(G̃), but the infinite path does not really affect them. In particular, their
energies are not restricted by anything other than the graph itself, but we are guaranteed to have
at most |V (G̃)| of these confined bound states.

In the second case, we could have that the eigenstate is normalizable, but is not confined to the
graph G̃. In this case, we have that the amplitudes along the infinite paths must go to zero, but
they must still be a sum of exponentials. As such, we have that |ψ 〉 must be of the form

〈x |ψ 〉 = αzx (3.17)

for some z ∈ (−1, 1) \ {0} for all x ∈ N, so that the energy must be z + z−1 (the case for z = 0
forces α = 0, and we are in the first case). Additionally, we can see that if |φ〉 is the restriction of
|ψ 〉 to those vertices inside the graph A(G̃), they must satisfy

A(G̃) + α
∑

v∈S
|v 〉〈v |φ〉 = 2 cos(k)|φ〉, (3.18)

a modified version of the eigenvalue equation for the graph A(G̃).
Let us finally assume that the state is a scattering state. Note that the eigenvalue of the state

must be in the range [−2, 2], and that the form of the eigenstate along the paths must be scalar
multiples of eikx and e−ikx, for some k ∈ [−π, π]. Explicitly, the state must be of the form

〈x |ψ 〉 =

{
αeikx + βe−ikx x ≤ 0

γeikx + δe−ikx x ≥ 0
(3.19)

where the additional edges at x = 0 can change the coefficients of each eik. However, we do have
that α+ β = γ + δ, since the amplitude at 0 is single valued, and that the eigenvalue of this state
is given by 2 cos(k). Note that we have not yet determined the form of the eigenstate inside the
graph G̃, but if we define |φ〉 to be the restriction of |ψ 〉 to the finite graph G̃, then |φ〉 must
satisfy the equation

A(G)|φ〉+ (α+ β)
∑

v∈S
|v 〉〈v |φ〉 = 2 cos(k)|φ〉, (3.20)
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where the additional term arises from the fact that the vertices in S are connected to the vertex 0.
Finally, we have that

2 cos(k)〈0 |ψ 〉 = αe−ik + βeik + γeik + δe−ik +
∑

v∈S
〈v |φ〉, (3.21)

since the eigenvalue equation must be satisfied at 0.
In the first two cases, we have that the state is highly localized to the area surrounding the

graph G̃, and thus they do not have a large effect on wavefunctions that originate far from the
graph. However, the aptly named scattering states can be used to determine the time evolution of
these wave functions. In particular, if we look at the case where α = 1 and δ = 0, we can see that

〈x |ψ 〉 =

{
e−ikx + βeikx x ≤ 0

γe−ikx x ≥ 0
(3.22)

so that 1 + β = γ. Note that this is reminiscent of a scattering state, with reflection amplitude B
and transmission amplitude γ. We can then take as intuition that these scattering states represent
a wavepacket with momentum exactly k traveling towards the graph G, and then scattering with
these amplitudes. We will use this intuition for our definitions of scattering on more general graphs.

3.2.2 General graphs

Let us now turn our attention to scattering on more general graphs (and note that this section is
very similar to [22]). In particular, let Ĝ be any finite graph, with N +m vertices and an adjacency
matrix given by the block matrix

A(Ĝ) =

(
A B†

B D

)
, (3.23)

where A is an N ×N matrix, B is an m×N matrix, and D is an m×m matrix. When examining
graph scattering, we will be interested in the graph G given by the graph-join of Ĝ and N semi-
infinite paths, with an additional edge between each of the first N vertices of Ĝ and the first vertex
of one semi-infinite path. A schematic example can be seen in Figure 3.2.

We shall label the first N vertices of the graph terminal vertices, as they connect the semi-
infinite paths to the finite graph Ĝ, and we shall label them as (1, i), where i ∈ [N ]. Analogously,
we will refer to the vertices on the N semi-infinite paths as (x, i) for x ∈ N+ and i ∈ [N ], with the i
label referring to the particular semi-infinite path on which the vertex is labeled, while the label x
denotes the location along the path. We also refer to the remaining m vertices of Ĝ as the internal
vertices of Ĝ, and label them as w ∈ [m]. With this labeling of the vertices of G, the adjacency
matrix of G is then given by

A(G) = A(Ĝ) +

N∑

j=1

∞∑

x=1

(
|x, j 〉〈x+ 1, j |+ |x+ 1, j 〉〈x, j |

)
. (3.24)

At this point, we want to examine the possible eigenstates of the matrix A(G). It turns out
that there are 3 different kinds of eigenstates, corresponding to the different qualitative properties
of the eigenstate along the semi-infinite paths, exactly as in the case studied in Section 3.2.1.

While we will mostly be interested in the third such type, corresponding to scattering off of the
graph, the other two kinds remain important for a decomposition of the identity. In particular,
we will be guaranteed that these three kinds of eigenstates will form an orthogonal basis for the
Hilbert space, and thus we will be able to use this decomposition to guarantee particular behavior
of time evolved states.
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(1, 1)

(1, 2)

(1, N)

Ĝ

(2, 1)

(3, 1)

(4, 1)

(2, 2)
(3, 2)

(4, 2)

(2, N)
(3, N)

(4, N)

Figure 3.2: An infinite graph G obtained from a finite graph Ĝ by attaching n semi-infinite paths.
The open circles are terminals, vertices of Ĝ to which semi-infinite paths are attached. The internal
vertices of Ĝ are not shown.

3.2.2.1 Confined bound states

The easiest states to analyze are the confined bound states, which are eigenstates in which the only
nonzero amplitudes are on vertices inside the finite graph Ĝ. If any vertex on the semi-infinite paths
has nonzero amplitude for some eigenstate of the Hamiltonian, then the form of the Hamiltonian
forces all vertices on that path to have nonzero amplitude, and thus these confined bound states
are exactly those states that have finite support in the basis of vertex states.

To find these confined bound states, we restrict our Hilbert space to the space spanned by
the internal vertices of Ĝ. The states of interest then correspond to the eigenstates of D (the
induced adjacency matrix of A(G) when restricted to the internal vertices of Ĝ) with the additional
restriction that the state lies in the nullspace of B†, so that we can extend this state to the full
Hilbert space by simply assuming all other amplitudes are zero.

As we originally assumed that there are only m internal vertices of Ĝ, there are at most m such
confined bound states. Additionally, note that there are no restrictions on the eigenvalues of these
states, other than those that are inherited from any restrictions placed on it by D (such as the
energy being bounded by the maximum degree of D̂).

3.2.2.2 Unconfined bound states

The next possible type of eigenstates are those that are not confined to the finite graph Ĝ but are
still normalizable. Since these states still have amplitude along the semi-infinite paths, we know
that they must be of the form Aeikx, for some A and k. However, when k is not real (corresponding
to a decaying amplitude along the paths), we have that

2 cos(k) = 2 cos(kr + iki) = 2 cos(kr) cosh(ki)− i sin(kr) sinh(ki). (3.25)

Hence, if we assume that the state is normalizable, then ki 6= 0, and as the adjacency matrix is
Hermitian, we must have that the eigenvalue is real, forcing kr = πn for some n ∈ N. Note that
this then implies that eik = z, for some z ∈ (−1, 1) \ {0}.

As the eigenvalue equation for these states are guaranteed to be satisfied along the paths,
we need to construct the form of the eigenstates inside the graph Ĝ. We can then see that the
eigenvalue equation for these vertices is given by

[(
A B†

B D

)
+

(
z
0

)](
~α
~β

)
=
(
z +

1

z

)(~α
~β

)
(3.26)
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where ~α ∈ CN and ~β ∈ Cm. Note that the amplitudes for a vertex (x, i) is given by ~αiz
x−1. Note

that we are implicitly assuming that ~α 6= ~0, for in that case we are working with a confined bound
state.

Since these bound states tend to have most of their support on a finite number of vertices
(namely those vertices not contained on the long paths), one might guess that the total number of
bound states is finite. In fact, it can be shown that only a finite number of bound states exist, and
that this number is related to something called the winding number of the S-matrix, but the proof
is beyond the scope of this thesis. (See [22] for a more thorough explanation, using Levinson’s
theorem for graphs).

3.2.2.3 Scattering states

We finally reach the point of scattering states, or those unnormalizable eigenstates of the Hamilto-
nian. We first assume that these states are orthogonal to all bound states, and in particular that we
are orthogonal to all confined bound states, as this allows us to uniquely construct the scattering
states (without this assumption, if there existed a confined bound state at the appropriate energy,
then we could simply add any multiple of the confined bound state to get a different scattering
state).

Taking some intuition from the classical case, we will construct a set of states that correspond
to sending a particle in towards the graph Ĝ along one of the semi-infinite paths and understanding
how it scatters off of the graph. Namely, for each i ∈ [N ] we will assume that there exists a state
with amplitude along the i-th path of the form e−ikx +Si,i(k)eikx for k ∈ (−π, 0), and that the rest
of the paths have amplitudes given by Si,q(k)eikx. More concretely, we assume that the form of the
states is given on the infinite paths by

〈x, q |scj(k)〉 = δj,qe
−ikx + Sqje

ikx. (3.27)

We then need to see whether such an eigenstate exists. In this case, note that Sqj corresponds to
the transmitted amplitude along the q-th path if the particle was incident along the j-th path. In
the continuous case, S forms a unitary matrix, which essentially means that any incoming particle
must also leave, and be distinguishable from a particle incident from a different direction. This
intuition will also hold in the discrete case, but we will show this later.

If we continue to make the assumption that these states exist, we can also write the amplitudes
of the m internal vertices as a column vector, as ~ψi(k), in which ~ψi(k) is the projection of |scj(k)〉
onto the internal vertices of Ĝ. We can then collect these vectors into an m×N matrix, namely

Ψ(k) :=
(
~ψ1(k) ~ψ2(k) · · · ~ψN (k)

)
(3.28)

Noting that the amplitudes for |scj(k)〉 on the terminal vertices is given by e−ikδj,q +Sqj(k)eik,

we can then collect all of the eigenvalue equations for the vertices in Ĝ (both internal and terminal)
as

(
A B†

B D

)(
e−ikI + S(k)eik

Ψ(k)

)
+

(
e−2ikI + e2ikS(k)

0

)
= 2 cos(k)

(
e−ikI + S(k)eik

Ψ(k)

)
, (3.29)

where we have constructed the scattering matrix S(k) using the scattering amplitudes Sqj(k).
By examining the lower half of this matrix equation, we can see that

Ψ(z) =
1

2 cos(k)I−D
(
e−ikB + eikBS(z)

)
, (3.30)
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which gives the amplitudes of the internal vertices in terms of the scattering matrix. Note that we
have assumed that the matrix D does not have an eigenvalue equal to 2 cos(k), but this assumption
will not be critical, as the eventual matrix |Ψ〉(z) will be defined by analytic continuation.

Let us now examine the upper half of the matrix equation, to find

A
(
e−ikI + eikS(k)

)
+B†Ψ(k) +

(
e−2ikI + e2ikS(z)

)
= 2 cos(k)

(
e−ikI + eikS(k)

)
(3.31)

−
(
I− eik

(
A+B†

1

2 cos(k)−DB
))

S(k) = I− e−ik
(
A+B†

1

2 cos(k)−DB
)
. (3.32)

Hence, if we define

Q(k) = I− eik
(
A+B†

1

2 cos(k)−DB
)
, (3.33)

we find that
S(k) = −Q(k)−1Q(−k), (3.34)

if we assume that the matrix Q(k) can be inverted. Note that for all k ∈ (−π, 0), this might only
be impossible for k in which D has a 2 cos(k) eigenvalue, in which case we have already run into a
problem with the definition of Ψ(k).

Putting this all together, we then have that the states |scj(k)〉 exist for all k ∈ (−π, 0) for
which D does not have a 2 cos(k) eigenvalue. We will see in Section 3.2.2.5 that this restriction is
an artifact of our construction of S(k), and thus the scattering states will be well defined for all
k ∈ (−π, 0).

3.2.2.4 Half-bound states

As a limiting case for both the scattering states and the unconfined bound states, we have those
states with k = 0 or k = π (or equivalently with z = ±1). In either case, the two momenta
correspond to particles that don’t move, but the states themselves are not normalizable. They will
not play much of a role in this thesis, but I wanted to mention them for completeness.

3.2.2.5 Scattering states for all k

While the above construction is a useful definition of the scattering states for most k ∈ (−π, 0),
unfortunately there are specific values of k (namely those for which D has eigenvalue 2 cos(k)) in
which the above analysis doesn’t hold, due to the singularity of particular matrices. If we want to
show that these scattering states exist for all k ∈ (−π, 0), we need to somehow show that these
singularities are just a problem of the analysis and are not intrinsic barriers to existence. Note that
this construction closely follows that of [22].

Along these lines, let us extend our analysis to complex z, instead of only focusing on amplitudes
of the form eik. We will define the matrix

γ(z) :=

(
zA− I zB†

zB zD − (1 + z2)I

)
. (3.35)

This matrix is closely related to the eigenvalue equation for vertices of the graph Ĝ, but with eik

replaced with z.
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With this definition, it will be useful to note the following matrix equalities. In particular,
assuming that z is a complex number such that the following matrices are not singular, we have:
(
I zB†

0 zD − (1 + z2)I

)( −Q(z) 0
z

zD−(1+z2)IB I

)
=

(
−Q(z) + zB† 1

D−(z+z−1)
B zB†

zB zD − (1 + z2)I

)
(3.36)

= γ(z) (3.37)

Additionally, if we note that the inverse of a block diagonal matrix can be written as
(
X Y
Z W

)−1

=

( (
X − YW−1Z

)−1 −X−1Y
(
W − ZX−1Y

)−1

−W−1Z
(
X − YW−1Z

)−1 (
W − ZX−1Y

)−1

)
, (3.38)

we can then invert this equation for γ(z) as

γ(z)−1 =

(
−Q(z) 0
z

zD−(1+z2)IB I

)−1(
I zB†

0 zD − (1 + z2)I

)−1

(3.39)

=

(
−Q(z)−1 0
z

zD−(1+z2)IBQ(z)−1 I

)(
I −B† z

zD−(1+z2)I
0 1

zD−(1+z2)I

)
. (3.40)

Combining these two matrix equations, we can then find that

γ(z)−1γ(z−1) =

(
−Q(z)−1 0
z

zD−(1+z2)IBQ(z)−1 I

)(
I −B† z

zD−(1+z2)I
0 1

zD−(1+z2)I

)

×
(
I z−1B†

0 z−1D − (1 + z−2)I

)( −Q
(
z−1
)

0
z−1

z−1D−(1+z−2)IB I

)
(3.41)

=

(
−Q(z)−1 0
z

zD−(1+z2)IBQ(z)−1 I

)(
I 0
0 z−2I

)( −Q
(
z−1
)

0
z−1

z−1D−(1+z−2)IB I

)
(3.42)

=

(
−Q(z)−1 0
z

zD−(1+z2)IBQ(z)−1 z−2I

)(
−Q
(
z−1
)

0
z−1

z−1D−(1+z−2)IB I

)
(3.43)

=

(
Q(z)−1Q(z−1) 0

1
D−(z+z−1)IB

(
z−2I−Q(z)−1Q(z−1)

)
z−2I

)
(3.44)

= −
(

S(z) 0
z−1Ψ(s) −z−2I

)
, (3.45)

where we have extended the definition of S and Ψ to all complex z instead of just eik

With these matrix equations, we have a representation of the scattering matrix and the interior
amplitudes in terms of the matrix γ. If we then note that

γ(z)−1 =
1

det γ(z)
adj γ(z) (3.46)

where adj γ(z) is the adjugate matrix of γ(z) (which is defined as the operation satisfying the matrix
equality A adj(A) = det(A)I), then by (3.45) we can then see that the entries of γ(z), and thus the
entries of S(z) and Ψ(z), are rational functions of z.

With this fact, to show that the problems defining the states |scj(k)〉 are a result of our analysis
rather than intrinsic difficulties, we need only show that there are no poles in the matrix elements
for S(z) or Ψ(z) for z on the unit circle. We actually have that for all such z, there is an upper
bound on the norm of the scattering amplitudes, which might depend on the graph Ĝ.
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Lemma 3. Given Ĝ, there exists a constant λ ∈ R such that |〈v|scj(k)〉| < λ for all k ∈ [−π, π),

j ∈ {1, . . . , N}, and v ∈ Ĝ.

Proof. Note that

γ

(
1

z

)
=

1

z2
γ(z) +

(
1

z2
− 1

)
P̂ (3.47)

where

P̂ =

(
1 0
0 0

)
(3.48)

projects onto the N vertices of Ĝ attached to semi-infinite paths. Hence

− γ(z)−1γ

(
1

z

)
= − 1

z2
+

(
1− 1

z2

)
γ(z)−1P̂ . (3.49)

Let {|ψc〉 : c ∈ {1, . . . , nc}} be eigenstates of Ĥ satisfying P̂ |ψc〉 = 0, and let this set be an
orthonormal basis for the span of all such states. Then

(
1− 1

z2

)
γ(z)−1P̂ =

(
1− 1

z2

)
1−

nc∑

j=1

|ψc〉〈ψc|


 γ(z)−1


1−

nc∑

j=1

|ψc〉〈ψc|


 P̂ (3.50)

since each |ψc〉 is an eigenvector of γ(z) and P̂ |ψc〉 = 0. Reference [22] shows (in Part 2 of the proof
of Theorem 1) that

det

(
1

1− z2

)
M(z) 6= 0 for |z| = 1, (3.51)

where M(z) is the (N +m−nc)× (N +m−nc) matrix of γ(z) in the subspace of states orthogonal
to the span of {|ψc〉 : c ∈ {1, . . . , nc}}. Therefore

1

z
〈v|scj(k)〉 = −〈v|γ(z)−1γ

(
1

z

)
|j〉

= 〈v|
(

1− 1

z2

)
1−

nc∑

j=1

|ψc〉〈ψc|


 γ(z)−1


1−

nc∑

j=1

|ψc〉〈ψc|


 |j〉

has no poles on the unit circle, and the result follows.

As such, we have that the scattering states are well defined for all k ∈ (−π, 0).

3.2.3 Scattering matrix properties

While the use of the γ matrix gives an explicit construction of the form of the eigenstates on the
internal vertices, the alternate definition in terms o the Q matrix can be used to easily show several
properties of the scattering matrix. In particular, remember that

S(k) = −Q(z)−1Q(z−1), (3.52)

where z = eik, and the matrices Q(z) are given by

Q(z) = I− z
(
A+B†

1
1
z + z −DB

)
. (3.53)
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Note that Q(z) and Q(z−1) commute for all z ∈ C, as they can both be written as I+ zH(z+ z−1).
Using this expression for the scattering matrix, it is easy to see that S(k) is a unitary matrix,

as
S(k)† = −Q(z−1)†(Q(z)−1)† (3.54)

and that

Q(z)† = I† − z†
(
A† +B†

( 1
1
z + z −D

)†
(B†)†

)
= I− z†

(
A+B†

1
1
z†

+ z† −DB
)

= Q(z†) (3.55)

and thus

S(k)† = −Q(z−1)†(Q(z)−1)† = −Q(z)Q(z−1)−1 = Q(z−1)−1Q(z) = S(k)−1 (3.56)

where we used the fact that z = eik so that z† = z−1, and the fact that Q(z) and Q(z−1) commute.
Additionally, we can make use of the fact that S is derived from an unweighted graph to show

that the scattering matrices are symmetric. In particular, note that Q(z) is symmetric for all z,
since D is symmetric, symmetric matrices are closed under inversion, A is symmetric and B is a
0-1 matrix. As such, we have that

S(k)T = −
(
Q(z)−1Q(z−1)

)T
= −Q(z−1)T (Q(z)−1)T (3.57)

= −Q(z−1)Q(z)−1 = −Q(z)−1Q(z−1) = S(k) (3.58)

where we used the fact that Q(z) and Q(z−1) commute.
Putting this together, we have that S(k) is a symmetric, unitary matrix for all k.

3.2.4 Orthonormality of the scattering states

We now have some basic ideas behind the scattering behavior. In particular, we have that the scat-
tering states exist for all k, and that the scattering matrices are symmetric and unitary. However,
one of the most important behaviors we need is that the scattering states are orthonormal, and
that they form a basis for the Hilbert space corresponding to the graph.

We will first show that two scattering states are orthonormal.

Lemma 4. Let k, p ∈ (−π, 0), and let i, j ∈ [N ]. We then have that

〈sci(p) |scj(k)〉 =
1

2π
δi,jδ(p− k), (3.59)

where the two sides are equal as functionals against integration.

Proof. Let

Π1 =
∞∑

x=1

N∑

q=1

|x, q〉〈x, q| Π2 = I−
∞∑

x=2

N∑

q=1

|x, q〉〈x, q| Π3 =
N∑

q=1

|1, q〉〈1, q|. (3.60)
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First write

〈sci(p)|Π1|scj(k)〉 =

∞∑

x=1

N∑

q=1

(δiqe
ipx + S∗qi(p)e

−ipx)(δjqe
−ikx + Sqj(k)eikx)

=
1

2


δij +

N∑

q=1

S∗qi(p)Sqj(k)



( ∞∑

x=1

ei(p−k)x +

∞∑

x=1

e−i(p−k)x

)

+
1

2


δij −

N∑

q=1

S∗qi(p)Sqj(k)



( ∞∑

x=1

ei(p−k)x −
∞∑

x=1

e−i(p−k)x

)

+
1

2
(S∗ji(p) + Sij(k))

( ∞∑

x=1

e−i(p+k)x +
∞∑

x=1

ei(p+k)x

)

+
1

2
(S∗ji(p)− Sij(k))

( ∞∑

x=1

e−i(p+k)x −
∞∑

x=1

ei(p+k)x

)
.

We use the following identities for p, k ∈ (−π, 0):

∞∑

x=1

ei(p−k)x +

∞∑

x=1

e−i(p−k)x = 2πδ(p− k)− 1

∞∑

x=1

ei(p+k)x +
∞∑

x=1

e−i(p+k)x = −1

∞∑

x=1

ei(p−k)x −
∞∑

x=1

e−i(p−k)x = i cot

(
p− k

2

)

∞∑

x=1

ei(p+k)x −
∞∑

x=1

e−i(p+k)x = i cot

(
p+ k

2

)
.

These identities hold when both sides are integrated against a smooth function of p and k. Substi-
tuting, we get

〈sci(p)|Π1|scj(k)〉 = 2πδijδ(p− k) + δij

(
i

2
cot

(
p− k

2

)
− 1

2

)

+
N∑

q=1

S∗qi(p)Sqj(k)

(
− i

2
cot

(
p− k

2

)
− 1

2

)

+ S∗ji(p)
(
−1

2
− i

2
cot

(
p+ k

2

))

+ Sij(k)

(
−1

2
+
i

2
cot

(
p+ k

2

))
(3.61)

where we used unitarity of the S-matrix to simplify the first term. Now turning to Π2 we have

〈sci(p)|HΠ2|scj(k)〉 = 2 cos(p)〈sci(p)|Π2|scj(k)〉 (3.62)
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and

〈sci(p)|HΠ2|scj(k)〉 = 〈sci(p)|
(

2 cos(k)Π2|scj(k)〉+

N∑

q=1

(e−ikδqj + Sqj(k)eik)|2, q〉

−
N∑

q=1

(e−2ikδqj + Sqj(k)e2ik)|1, q〉
)
.

Using these two equations we get

(2 cos(p)− 2 cos(k))〈sci(p)|Π2|scj(k)〉 = δij(e
2ip−ik − e−2ik+ip) + S∗ji(p)(e

−2ip−ik − e−2ik−ip)

+ Sij(k)(e2ip+ik − e2ik+ip)

+

N∑

q=1

S∗qi(p)Sqj(k)(e−2ip+ik − e2ik−ip).

Noting that

〈sci(p)|Π3|scj(k)〉 =
N∑

q=1

(δiqe
ip + S∗qi(p)e

−ip)(δjqe−ik + Sqj(k)eik), (3.63)

we have

〈sci(p)|Π2 −Π3|scj(k)〉 = δij

(
e2ip−ik − e−2ik+ip

2 cos(p)− 2 cos(k)
− eip−ik

)

+ S∗ji(p)
(
e−2ip−ik − e−2ik−ip

2 cos(p)− 2 cos(k)
− e−ip−ik

)

+ Sij(k)

(
e2ip+ik − e2ik+ip

2 cos(p)− 2 cos(k)
− eip+ik

)

+
N∑

q=1

S∗qi(p)Sqj(k)

(
e−2ip+ik − e2ik−ip

2 cos(p)− 2 cos(k)
− e−ip+ik

)

= δij

(
1

2
− i

2
cot

(
p− k

2

))
+ S∗ji(p)

(
1

2
+
i

2
cot

(
p+ k

2

))

+ Sij(k)

(
1

2
− i

2
cot

(
p+ k

2

))

+
N∑

q=1

S∗qi(p)Sqj(k)

(
1

2
+
i

2
cot

(
p− k

2

))
. (3.64)

Adding equation (3.61) to equation (3.64) gives equation (3.59).

With the fact that the scattering states are orthogonal, it will also be useful to see that they
form an orthonormal basis for the Hilbert space. In particular, Childs and Gosset showed in [22]
that this holds. Assuming that the confined bound states were spanned by the orthonormal states
{|ψc 〉 : c ∈ [nc]} and that the orthogonal bound states are spanned by the orthonormal basis
{|φb 〉 : b ∈ [nb]}, they showed the following theorem:
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Theorem 2 (Theorem 1 of [22]). Let v and w be any two vertices of the graph G. Then

〈v |
[ ∫ 0

−π

dk

2π
|scj(k)〉〈scj(k) |+

nb∑

b=1

|φb 〉〈φb |+
nc∑

c=1

|ψc 〉〈ψc |
]
|w 〉 = δv,w. (3.65)

Most of our results will be in regards to the scattering states, but having this decomposition of
the identity will allow us to show better bounds. In particular, we will be able to guarantee that
certain states have almost no support on states other than scattering states.

3.3 Wavepacket scattering

Up until this point, we have taken as intuition that the scattering states correspond to an incoming
wave packet at some momentum, and then scatterings with a corresponding S-matrix. However,
this is somewhat weird, in that the scattering states are eigenstates of the Hamiltonian, and thus
do not change over time, while scattering states explicitly move.

In this section, we will show that our intuitive naming is useful. In particular, we will show that
preparing a wave packet centered at some momenta will scatter as the S-matrix of the corresponding
scattering state. Further, the shape of the wave packet will remain approximately the same.

In [24], Childs, Gosset, and Webb proved an error bound for the time-evolution of square wave
packets. These approximations were useful as the necessary mathematics involved in proving the
related bounds only involved unweighted sums of amplitudes that were identical to the eigenstates
of the corresponding Hamiltonians. In particular, they were able to prove the following bound:

Theorem 3 (Childs, Gosset, Webb[24]). Let Ĝ be an (N + m)-vertex graph. Let G be a graph
obtained from Ĝ by attaching semi-infinite paths to N of its vertices, and let S be the corresponding
S-matrix. Let k ∈ (−π, 0), M,L ∈ N, j ∈ {1, . . . , N}, and

|ψj(0)〉 =
1√
L

M+L∑

x=M+1

e−ikx|x, j〉. (3.66)

Let c0 be a constant independent of L. Then, for all 0 ≤ t ≤ c0L,
∥∥∥e−iA(G)t|ψj(0)〉 − |αj(t)〉

∥∥∥ = O(L−1/4) (3.67)

where

|αj(t)〉 =
1√
L
e−2it cos k

∞∑

x=1

N∑

q=1

(
δqje

−ikxR(x− b2t sin kc) + Sqj(k)eikxR(−x− b2t sin kc)
)
|x, q〉

(3.68)

with

R(l) =

{
1 if l ∈ {M + 1,M + 2, . . . ,M + L}
0 otherwise.

(3.69)

While these bounds were sufficient for the purposes of their paper, as they only required poly-
nomial versus exponential overhead, the bounds they proved where not the best possible. Their
use of square wave approximations was not optimal in terms of the resulting errors.
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As such, this section is devoted to proving a corresponding bound on the scattering behavior
of a Gaussian wave packet, instead of square wave packets. We prove near quadratically better
bounds than those of [24] in regards to the single-particle scattering, as the Gaussian wave packets
have nice dispersion properties, but unfortunately the proof becomes a little more complicated. In
particular, we prove the following lemma:

Theorem 4. Let Ĝ be an (N +m)-vertex graph, let G be the graph obtained from Ĝ by attaching
N semi-infinite paths to the first N of its vertices, and let S be the corresponding S-matrix. Let
|ψj(0)〉 be a cut-off Gaussian distribution with momentum k and standard deviation σ centered at
µ, with the cut-off at a distance L from the center. Namely, let

|ψj(0)〉 = γ

µ+L∑

x=µ−L
e−ikxe−(x−µ)2/2σ2 |x, j 〉, (3.70)

where γ is the normalization of |ψj(0)〉. Then let us define the state

|αj(t)〉 = γe−2it cos k

[
max{µ(t)+L,0}∑

x=max{µ(t)−L,1}
e−ikxe−(x−µ(t))2/2σ2 |x, j 〉

+

max{−µ(t)+L,0}∑

x=max{−µ(t)−L,1}

N∑

q=1

Sqj(k)eikxe−(x+µ(t))2/2σ2 |x, q 〉
]

(3.71)

where
µ(t) = µ− d2t sin(k)e. (3.72)

If σ = c1
L√

logL
for some constant c1 <

1√
2
, we then have that for 0 < t < c2L,

‖e−iA(G)t|ψj(0)〉 − |αj(t)〉‖ ∈ O
(√

logL

L

)
. (3.73)

Note that this bound is extremely similar to that of [24], albeit with a slightly more complicated
definition for the approximate state. However, when the wave packet is far from the graph Ĝ, the
form of the approximating state is simply a truncated Gaussian.

3.3.1 Jacobi Θ-function

Before we delve into the proof of the wavepacket scattering, it will be useful to define a kind of
discrete approximation to a Gaussian. In particular, let us define the function

hσL(φ) =
L∑

n=−L
eiφne−

n2

2σ2 . (3.74)

This is closely related to the amplitude of the original wavepacket in Theorem 4, and will be used
extensively in our proof.

Additionally, this function is closely related to the Jacobi theta function, for which we refer the
reader to Chapter 10 of [65] for a broad overview. This function, Θ(z, q) is defined for all complex
z and all q with positive imaginary part as

Θ(z, q) =

∞∑

n=−∞
eπin

2τe2πinz (3.75)
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and is related to our h as

hσ∞(φ) =
∞∑

n=−∞
eiφne−

n2

2σ2 = Θ

(
φ

2π
,

i

2πσ2

)
. (3.76)

The Jacobi theta function has several symmetries, such as the fact that Θ(z, q) = Θ(−z, q), and
one that is similar to the Fourier transform. In particular, using our language and Theorem 1.6
from Chapter 10 of [65], we have

hσ∞(φ) = Θ

(
φ

2π
,

i

2πσ2

)
=
√

2πσe−
σ2φ2

2 Θ
(
iφσ2, 2πiσ2

)
=
√

2πσe−
σ2φ2

2 h1/(2πσ)
∞

(
2πiφσ2

)
. (3.77)

This can be viewed as a discrete version of a Fourier transform, as the summand goes from a
Gaussian distribution with standard deviation σ to one that has standard deviation proportional
to σ−1 along with an exponential suppression term. Additionally, note that the argument to the h
function is now complex, but we will only use such terms when dealing with the full infinite sum.

Let us now give some bounds on the various norms of hσL, where some of our bounds where
found in [29]. These will assist us greatly in our proof of the theorem. Assuming that L > 0, and
that φ is real, we have that

∣∣hσ∞(φ)− hσL(φ)
∣∣ =

∣∣∣
∞∑

n=L+1

2 cos(nφ)e−
n2

2σ2

∣∣∣ (3.78)

≤ 2
∞∑

n=L+1

e−
n2

2σ2 (3.79)

≤ 2

∫ ∞

L
e−

x2

2σ2 dx (3.80)

= 2σ

∫ ∞

L/σ
e−

u2

2 du (3.81)

< 2σ

∫ ∞

L/σ

σu

L
e−

u2

2 du (3.82)

=
2σ2

L
e−

L2

2σ2 , (3.83)

while if L = 0 we instead have

∣∣hσ∞(φ)− 1
∣∣ =

∣∣∣
∞∑

n=1

2 cos(nφ)e−
n2

2σ2

∣∣∣ (3.84)

≤ 2e−
1

2σ2 +

∞∑

n=2

e−
n2

2σ2 (3.85)

≤ 2e−
1

2σ2 + 2

∫ ∞

1
e−

x2

2σ2 dx (3.86)

< 2e−
1

2σ2 + 2σ2e−
1

2σ2 (3.87)

= 2(1 + σ2)e−
1

2σ2 . (3.88)

In addition, if φ is complex, We will now try to bound the size of hσ∞(φ), for small (but real) σ
and imaginary φ (so as to use the discrete Fourier transform). In particular, if we assume that
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φ = φr + iφi and that 1 > σ2|φi|, we will have

∣∣hσ∞(φ)− 1
∣∣ =

∣∣∣∣
∞∑

n=1

2 cos(nφ)e−
n2

2σ2

∣∣∣∣∣ (3.89)

≤ 4e−
1

2σ2
+|φi| + 4e

σ2|φi|
2

2

∞∑

n=2

exp
[
− 1

2

(n
σ
− σ|φi|

)2]
(3.90)

< 4e−
1

2σ2
+|φi| + 4e

σ2|φi|
2

2

∫ ∞

1
exp

[
− 1

2

(x
σ
− σ|φi|

)2]
dx (3.91)

< 4e−
1

2σ2
+|φi| +

4σe
σ2|φi|

2

2

1
σ − σ|φi|

∫ ∞
1
σ
−σ|φi|

ue−
u2

2 du (3.92)

= 4e−
1

2σ2
+|φi| +

4σ
1
σ − σ|φi|

e−
1

2σ2
+|φi| (3.93)

= 4
[
1 +

σ2

1− σ2|φi|
]
e−

1
2σ2

+|φi|. (3.94)

We can then collect these bounds into a lemma, which we will reference several times in the
thesis.

Lemma 5. Let hσL(φ) be defined as above. For any real φ, and L > 0, we have that

∣∣hσ∞(φ)− hσL(φ)
∣∣ < 2σ2

L
e−

L2

2σ2 (3.95)

and

∣∣hσ∞(φ)− 1
∣∣ < 2(1 + σ2)e−

1
2σ2 . (3.96)

Additionally, for complex φ = φr + iφi with |φi|σ2 < 1, we have that

∣∣hσ∞(φ)− 1
∣∣ < 4

[
1 +

σ2

1− σ2|φi|

]
e−

1
2σ2

+|φi|. (3.97)

In most of the cases we will use, the value of the h function can be approximated by the
equivalent value if we use a Gaussian distribution over the continuum, plus some small error term
that is exponential in either the standard deviation σ or its inverse. As such, we will generally take
as intuition that these h functions are Gaussians, which will allow us to construct approximations
that are easier to work with.

In addition to this h function, when the particle is incident on the scattering gadget, we will
need to bound half of the sum involved in the h function, corresponding to the portion of the wave
packet that has support on the same vertices. In particular, let us define

V σ
v,L(φ) =

L∑

x=v

eiφxe−x
2/2σ2

, (3.98)

where v, L are integers larger than zero, and let us assume that φ ∈ (−π,−δ) ∪ (δ, π), for some
constant δ > 0. As the finite sums are often difficult to work with, we will try to approximate the
sum via an integral over the points of interest.
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Lemma 6. Let v, L, σ, and φ be as above, where we also assume that σ2φ > L + 1. There then
exists some constant χ such that

V σ
v,L(φ) < χ. (3.99)

Proof. We then have that

L∑

x=v

e−
x2

2σ2

∫ x+1

x
eiφydy =

i

φ

(
1− eiφ

)
V σ
v,L(φ), (3.100)

and thus

i

φ

(
1− eiφ

)
V σ
v,L(φ) =

∫ L+1

v
e−

x2

2σ2 eiφxdx+

L∑

x=v

∫ x+1

y=x
eiφy

(
e−

x2

2σ2 − e−
y2

2σ2
)
dy. (3.101)

While this doesn’t look much better in terms of the integrals, we have that

∫ L+1

v
e−

x2

2σ2 eiφxdx = e−
φ2σ2

2

∫ L+1

v
e

(
φσ√
2
− ix√

2σ

)2
dx (3.102)

= e−
φ2σ2

2

∫ L+1

0
e

(
φσ√
2
− ix√

2σ

)2
dx− e−φ

2σ2

2

∫ v

0
e

(
φσ√
2
− ix√

2σ

)2
dx. (3.103)

While this expansion isn’t particularly different, these integrals are almost exactly of the form of
the imaginary error function, erfi. In fact, as both integrals have the same real part in the exponent,
after a change of variables we have that

∫ L+1

v
e−

x2

2σ2 eiφxdx = ie−
φ2σ2

2

√
π

2
σ

[
erfi

(
φσ√

2
− iL+ 1√

2σ

)
− erfi

(
φσ√

2
− i v√

2σ

)]
. (3.104)

While erfi diverges for arguments with large real part, when multiplied by e−z
2

the resulting function
is called the Dawson function. The Dawson function has nice properties, and in fact converges to
zero like z−1 for large z. We then have that

∫ L+1

v
e−

x2

2σ2 eiφxdx = ie−
φ2σ2

2

√
π

2
σ

[
erfi

(
φσ√

2
− iL+ 1√

2σ

)
− erfi

(
φσ√

2
− i v√

2σ

)]
(3.105)

= iσ

√
π

2

[
e
−
(
φσ√
2
−iL+1√

2σ

)2
e−iφ(L+1)e−

(L+1)2

2σ2 erfi

(
φσ√

2
− iL+ 1√

2σ

)

− e−
(
φσ√
2
−i v√

2σ

)2
e−iφve−

v2

2σ2 erfi

(
φσ√

2
− i v√

2σ

)]
(3.106)

= iσ
√

2

[
e−iφ(L+1)e−

(L+1)2

2σ2 D

(
φσ√

2
− iL+ 1√

2σ

)

− e−iφve−
v2

2σ2D

(
φσ√

2
− i v√

2σ

)]
, (3.107)

where D(z) is the Dawson function, defined over the entire complex plane as

D(z) =

√
π

2
e−z

2
erfi(z). (3.108)
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Additionally, there exists a continued fractioned expansion of Dawson’s function, which when re-
stricted to the first value gives an approximation of

D(z) ≈ z

1 + 2z2
. (3.109)

Putting all of this together, we then have that

i

φ

(
1− eiφ

)
V σ
v,L(φ) =

L∑

x=v

∫ x+1

y=x
eiφx

(
e−

x2

2σ2 dx− e−
y2

2σ2
)

+ iσ
√

2

[
e−iφ(L+1)e−

(L+1)2

2σ2 D

(
φσ√

2
− iL+ 1√

2σ

)

− e−iφve−
v2

2σ2D

(
φσ√

2
− i v√

2σ

)]
. (3.110)

If we then take the absolute value of both sides, we find that

∣∣V σ
v,L(φ)

∣∣ ≤ |φ|
|1− eiφ|

[ L∑

x=v

∫ x+1

y=x

(
e−

x2

2σ2 − e−
y2

2σ2
)
dx+

√
2σe−

L2

2σ2

∣∣∣∣D
(
φσ√

2
− iL+ 1√

2σ

)∣∣∣∣

+
√

2σe−
v2

2σ2

∣∣∣∣D
(
φσ√

2
− i v√

2σ

)∣∣∣∣
]
. (3.111)

If we then attempt to bound the norm of each term on the right, we can find that

∫ x+1

x

(
e−

x2

2σ2 − e−
y2

2σ2
)
dy ≤

∫ 1

0
t max
y∈(x,x+1)

{
− e−

y2

2σ2
}
dt =





x+1
2σ2 e

− (x+1)2

2σ2 x+ 1 < σ

x
2σ2 e

− x2

2σ2 x > σ
1

2eσ 0 ≤ σ − x ≤ 1,

(3.112)

we can then bound the first term in the bound of V σ
v,L(φ) as (assuming first that v < σ)

L∑

x=v

∫ x+1

x

(
e−

x2

2σ2 − e−
y2

2σ2
)
dy ≤ 1

2eσ
+

L∑

x=v+1

x

2σ2
e−

x2

2σ2 (3.113)

≤ 1

eσ
+

∫ L

v+1

x

2σ2
e−

x2

2σ2 dx (3.114)

≤ 1

eσ
+
e−

(v+1)2

2σ2 − e−
L2

2σ2

2
, (3.115)

whereas if v > σ we can bound the first term as

L∑

x=v

∫ x+1

x

(
e−

x2

2σ2 − e−
y2

2σ2
)
dy ≤

L∑

x=v

x

2σ2
e−

x2

2σ2 (3.116)

≤ v

2σ2
e−

v2

2σ2 +

∫ L

v

x

2σ2
e−

x2

2σ2 dx (3.117)

≤ v

2σ2
e−

v2

2σ2 +
e−

v2

2σ2 − e−
L2

2σ2

2
. (3.118)

Combining these bounds, we then have that for any 0 < v < L, we have that

L∑

x=v

∫ x+1

x

(
e−

x2

2σ2 − e−
y2

2σ2
)
dy ≤ 1

eσ
+
e−

v2

2σ2

2
. (3.119)
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For the two terms involving the Dawson’s function, we will refer to a paper dealing explicitly
with Dawson’s function, namely [48]. In this paper, McCabe shows that

D(z)− z

1 + 2z2
=

4e−2z2z3

3
, (3.120)

and thus

∣∣D(x+ iy)
∣∣ ≤ 4e−2(x2−y2)(x2 + y2)3/2

3
+

√
x2 + y2

1 + 2x2 − 2y2
. (3.121)

For the two points of interest, we then have that

∣∣∣∣D
(
φσ√

2
− iL+ 1√

2σ

)∣∣∣∣ ≤
4e−φ

2σ2+(L+1)2/σ2

3

(
φ2σ2

2
+

(L+ 1)2

2σ2

)3/2

+

√
φ2σ2 + (L+1)2

σ2

2(1 + 2φ2σ2 − 2(L+ 1)2/σ2)
(3.122)

≤ 4

3
e−

φ2σ2

2 |φ|3σ3 +

√
2φ2σ2

2φ2σ2
, (3.123)

where we used the assumption that |φ| > δ, along with the fact that (L+ 1)/σ < φσ. Additionally,
we have that

∣∣∣∣D
(
φσ√

2
− iL+ 1√

2σ

)∣∣∣∣ ≤
4e−φ

2σ2+v2/σ2

3

(
φ2σ2

2
+

v2

2σ2

)3/2

+

√
φ2σ2 + v2

σ2

2(1 + 2φ2σ2 − 2v2/σ2)
(3.124)

≤ 4

3
e−

φ2σ2

2 |φ|3σ3 +

√
2φ2σ2

2φ2σ2
. (3.125)

If we now put all of these bounds together, and assume that σ is large enough that e−
φ2σ2

2 |φ|3σ4 <
1, we have

∣∣V σ
v,L(φ)

∣∣ ≤ |φ|
|1− eiφ|

[
L∑

x=v

∫ x+1

y=x

(
e−

x2

2σ2 − e−
y2

2σ2
)
dx+

√
2σe−

L2

2σ2

∣∣∣∣D
(
φσ√

2
− iL+ 1√

2σ

)∣∣∣∣

+
√

2σe−
v2

2σ2

∣∣∣∣D
(
φσ√

2
− i v√

2σ

)∣∣∣∣

]
(3.126)

≤ |φ|
|1− eiφ||

[
1

eσ
+
e−

v2

2σ2

2
+
√

2σ

(
4

3
e−

φ2σ2

2 |φ|3σ3 +

√
2φ2σ2

2φ2σ2

)(
e−

L2

2σ2 + e−
v2

2σ2

)]

(3.127)

≤ |φ|
|1− eiφ||

[
1

eσ
+

1

2
+ 2
√

2

(
4

3
+

1√
2|φ|

)]
. (3.128)

As σ > 1 and as |φ| > δ, we then have that |V σ
v,L(φ)| is bounded by a constant, as required.

Note that this proof most likely is not the most clean of proofs, but it will suffice for our
purposes.
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3.3.2 Propagated approximation bounds

Now that we have some grasp on the mathematics surrounding the definition of the |αj(t)〉 states,
it will be useful in our proof to show that these states are approximately normalized for all times t.

As such, let us simply calculate the inner product:

〈αj(t) |αj(t)〉 = γ2

[
µ(t)+L∑

x=max{µ(t)−L,1}
e−

(x−µ(t))2

σ2 +

−µ(t)+L∑

x=max{−µ(t)−L,1}
e−

(x+µ(t))2

σ2

N∑

q=1

Sqj(k)S∗qj(k)

+

min{µ(t)+L,−µ(t)+L}∑

x=1

e−
x2+µ(t)2

σ2

(
e2ikxSqj(k) + e−2ikxS∗qj(k)

)]
(3.129)

= γ2

[
L∑

x=−L
e−

x2

σ2 − δ|µ(t)|≤Le
−µ(t)

2

σ2 + 2e−
µ(t)2

σ2 <
[
Sqj(k)V

σ/
√

2
1,min{µ(t)+L,−µ(t)+L}(2k)

]]

(3.130)

= 1− γ2e−
µ(t)2

σ2

[
δ|µ(t)|≤L − 2<

[
Sqj(k)V

σ/
√

2
1,min{µ(t)+L,−µ(t)+L}(2k)

]]
. (3.131)

We used in the second equality that S(k) is a unitary matrix, and then combined the first and
second sums into one sum. Note that the second term in (3.131) is zero for µ(t) larger than L, and
thus for these times the state |αj(t)〉 is exactly normalized. Further, we have from Lemma 6 that
the last term in (3.131) is bounded in norm by a constant, and thus the norm of α is bonuded away
from 1 by some constant times γ2.

Additionally, it will be helpful to actually have bounds on γ−2. In particular, we have from
Lemma 5 that

γ−2 = h
σ/
√

2
L (0) < hσ/

√
2

∞ (0) =
√
πσh1/(πσ

√
2)

∞ (0) ≤ √πσ
[
1 + 2

(
1 +

1

2π2σ2

)
e−π

2σ2
]

(3.132)

works as an upper bound, while

γ−2 = h
σ/
√

2
L (0) = hσ/

√
2

∞ (0)−
(
h
σ/
√

2
L (0)− hσ/

√
2

∞ (0)
)
≥ √πσ − σ2

L
e−

L2

σ2 (3.133)

=
√
πσ
(

1− σ

L
√
π
e−

L2

σ2

)
(3.134)

can be used as a lower bound. However, these bounds are not particularly nice to use and thus we
will use the slightly weaker bounds of

γ−2 ≤ √πσ
[
1 + 3e−π

2σ2]
(3.135)

and

γ−2 ≥ √πσ
[
1− e−

L2

σ2
]
, (3.136)

where we assume that L > σ > 1.
From this, we have that the norm of |αj(t)〉 differs from 1 by O(σ−1) for all times t.
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3.3.3 Proof of Theorem 4

Now that we have the requisite bounds on the mathematical quantities used to define our approx-
imations, we can prove Theorem 4.

Proof. The main idea behind this proof will be to show that |ψj(0)〉 and |αj(t)〉 are both well
approximated by a Gaussian distribution over momentum states near k, and then show that the time
evolved Gaussian approximation of |ψj(0)〉 is well approximated by the Gaussian approximation
for |αj(t)〉.

In particular, let us examine the inner product between a scattering state |scj(k + φ)〉 and
|αj(t)〉. We can see that

〈scj(k + φ) |αj(t)〉

= γe−2it cos(k)

[
µ(t)+L∑

x=max{µ(t)−L,1}
e−

(x−µ(t))2

2σ2
(
eiφx + S∗jj(k + φ)e−i(2k+φ)x

)

+

−µ(t)+L∑

x=max{−µ(t)−L,1}
e−

(x+µ(t))2

2σ2

[
Sjj(k)ei(2k+φ)x + e−iφx

N∑

q=1

S∗qj(k + φ)Sqj(k)

]]
(3.137)

= γe−2it cos(k)

[
µ(t)+L∑

x=µ(t)−L
e−

(x−µ(t))2

2σ2 eiφx

+

−µ(t)+L∑

x=max{µ(t)−L,1}
e−iφxe−

(x+µ(t))2

2σ2

N∑

q=1

(
S∗qj(k + φ)− S∗qj(k)

)
Sqj(k)

+
[
δµ(t)≥0S

∗
jj(k + φ) + δµ(t)<0Sjj(k)

] µ(t)+L∑

x=−µ(t)−L
e−i(2k+φ)xe−

(x−µ(t))2

2σ2

+
(
Sjj(k)− S∗jj(k + φ)

)(
1− 2δµ(t)<0

)−|µ(t)|+L∑

x=1

e−
(x+|µ(t)|)2

2σ2 e−i(2k+φ)x

− δ|µ(t)|≤L
(

1 + S∗jj(k + φ)δµ(t)≥0 + Sjj(k)δµ(t)<0

)
e−

µ(t)2

2σ2

]
. (3.138)

Note that we gained this expression by collecting terms corresponding to the same Gaussian ex-
pressions, along with adding and subtracting some terms to make the sums more easily understood.
In fact, we can then restructure the above expression into the form:

〈scj(k + φ) |αj(t)〉

= γe−2it cos(k)

[
eiφµ(t)hσL(φ) + e−i(2k+φ)µ(t)hσL(2k + φ)

[
δµ(t)≥0S

∗
jj(k + φ) + δµ(t)<0Sjj(k)

]

+

−µ(t)+L∑

x=max{−µ(t)−L,1}
e−iφxe−

(x+µ(t))2

2σ2

N∑

q=1

(
S∗qj(k + φ)− S∗qj(k)

)
Sqj(k)

+
(
Sjj(k)− S∗jj(k + φ)

)(
1− 2δµ(t)<0

)
ei(2k+φ)|µ(t)|V σ

|µ(t)|+1,L(−2k − φ)

− δ|µ(t)|≤L
(

1 + S∗jj(k + φ)δµ(t)≥0 + Sjj(k)δµ(t)<0

)
e−

µ(t)2

2σ2

]
. (3.139)
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While this is a rather complicated expression, most of the amplitude is contained in the hσL(φ)

term, as the rest of the terms are relatively small. Using this, and noting that hσ∞(φ) ∝ e−σ
2φ2

2 for
constant σ, let us define

|wj(t)〉 = ηe−2it cos k

∫ δ

−δ

dφ

2π
eiφµ(t)e−

σ2φ2

2 |scj(k + φ)〉 (3.140)

where δ is a constant that we will define later, and where η is an approximate normalization factor
defined as

η−2 =

∫ ∞

−∞

dφ

2π
e−σ

2φ2 =
1

2
√
πσ

(3.141)

The state |wj(t)〉 will be our Gaussian approximation to the state |αj(t)〉.
Note that the states |wj(t)〉 are not exactly normalized, but that

〈wj(t) |wj(t)〉 = η2

∫ δ

−δ

dφ

2π
e−σ

2φ2 = η2

∫ ∞

−∞

dφ

2π
e−σ

2φ2 − 2η2

∫ ∞

δ

dφ

2π
e−σ

2φ2 (3.142)

= 1− 2σ√
π

∫ ∞

δ
dφe−σ

2φ2 . (3.143)

Hence, we have that

〈wj(t) |wj(t)〉 ≥ 1− 1

δσ
√
π
e−σ

2δ2 (3.144)

and

〈wj(t) |wj(t)〉 ≤ 1− 2σδ√
π(2σ2δ2 + 1)

e−σ
2δ2 . (3.145)

Now that understand the overlap of |αj(t)〉 with each scattering state, and also have our
approximations |wj(t)〉 defined, we will want to approximate the overlap between the two states.
Namely, we will want to understand:

〈wj(t) |αj(t)〉 = ηe2it cos k

∫ δ

−δ

dφ

2π
〈scj(k + φ) |αj(t)〉e−

σ2φ2

2 e−iφµ(t) (3.146)

= ηγ

∫ δ

−δ

dφ

2π
e−

σ2φ2

2 e−iφµ(t)

[
eiφµ(t)hσL(φ)

+ e−i(2k+φ)µ(t)hσL(2k + φ)
[
δµ(t)≥0S

∗
jj(k + φ) + δµ(t)<0Sjj(k)

]

+

−µ(t)+L∑

x=max{−µ(t)−L,1}
e−iφxe−

(x+µ(t))2

2σ2

N∑

q=1

(
S∗qj(k + φ)− S∗qj(k)

)
Sqj(k)

+
(
Sjj(k)− S∗jj(k + φ)

)(
1− 2δµ(t)<0

)
ei(2k+φ)|µ(t)|V σ

|µ(t)|+1,L(−2k − φ)

− δ|µ(t)|≤L
(

1 + S∗jj(k + φ)δµ(t)≥0 + Sjj(k)δµ(t)<0

)
e−

µ(t)2

2σ2

]
(3.147)

We will show that most of the overlap between |wj(t)〉 and |αj(t)〉 comes from the first term on
the right hand side of the above equation. To do so, we will approximate each of the hσL(θ) terms
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by the corresponding hσ∞(θ) terms, and bound the difference in norms. We will then also show that
the remaining integrals are bounded some small number.

As a first step forward in our proof, note that

∫ δ

−δ

dφ

2π
e−

σ2φ2

2 hσL(φ) =

∫ δ

−δ

dφ

2π
e−

σ2φ2

2 hσ∞(φ) +

∫ δ

−δ

dφ

2π
e−

σ2φ2

2
(
hσL(φ)− hσ∞(φ)

)
. (3.148)

If we can bound the first integral from above and below, and also show that the norm of the rest
of the terms are relatively small, we will have the first tool to prove our theorem. In particular, we
we can bound the first integral from above as

∫ δ

−δ

dφ

2π
e−

σ2φ2

2 hσ∞(φ) =
σ√
2π

∫ δ

−δ
dφe−σ

2φ2h1/(2πσ)
∞ (2πiσ2φ) (3.149)

≤ 2σ√
2π

∫ δ

0
dφe−σ

2φ2
[
1 + 2

(
1 +

1

4π2σ2

1

2π − φ
)
e−2πσ2(π−φ)

]
(3.150)

≤ 2σ√
2π

[
1 + 2

(
1 +

1

2πσ2

1

2π − δ
)
e−2πσ2(π−δ)

] ∫ δ

0
dφe−σ

2φ2 (3.151)

≤ 1√
2

[
1 + 3e−π

2σ2
]

(3.152)

where we assumed that δ < π
2 . If we also note that hσL(iφ) ≥ 1 for all L and all real φ, we have

∫ δ

−δ

dφ

2π
e−

σ2φ2

2 hσ∞(φ) =
σ√
2π

∫ δ

−δ
dφe−σ

2φ2h1/(2πσ)
∞ (2πiσ2φ) (3.153)

≥ σ√
2π

∫ δ

−δ
dφe−σ

2φ2 (3.154)

= σ
√

2πη−2〈wj(t) |wj(t)〉 (3.155)

≥ 1√
2

(
1− 1

δσ
√
π
e−σ

2δ2
)
. (3.156)

We can then use the bound of (3.95) from Lemma 5 to see that

∣∣∣
∫ δ

−δ

dφ

2π
e−

σ2φ2

2
(
hσL(φ)− hσ∞(φ)

)∣∣∣ ≤
∫ δ

−δ

dφ

2π
e−

σ2φ2

2

∣∣hσL(φ)− hσ∞(φ)
∣∣ (3.157)

≤
∫ δ

−δ

dφ

2π

2σ2

L
e−

L2

2σ2 e−
σ2φ2

2 (3.158)

≤ σ2

πL
e−

L2

2σ2

∫ ∞

−∞
dφe−

σ2φ2

2 (3.159)

=

√
2

π

σ

L
e−

L2

2σ2 . (3.160)

At this point, we then want to bound the norm of each individual term in (3.147). The next term
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in particular can be bounded in a similar manner to the first, where we approximate hL by h∞:
∣∣∣∣∣

∫ δ

−δ

dφ

2π
e−

σ2φ2

2 e−2i(k+φ)µ(t)hσL(2k + φ))
[
δµ(t)≥0S

∗
jj(k + φ) + δµ(t)<0Sjj(k)

]∣∣∣∣∣ (3.161)

≤
∫ δ

−δ

dφ

2π
e−

σ2φ2

2

∣∣hσL(2k + φ)
∣∣ (3.162)

≤
∫ δ

−δ

dφ

2π
e−

σ2φ2

2

∣∣hσ∞(2k + φ)
∣∣+

∫ δ

−δ

dφ

2π
e−

σ2φ2

2

∣∣hσL(2k + φ)− hσ∞(2k + φ)
∣∣. (3.163)

Note that the second term can be bounded exactly as in (3.160), while the first term can be bound
as
∫ δ

−δ

dφ

2π
e−

σ2φ2

2

∣∣hσ∞(2k + φ)
∣∣ (3.164)

=

∫ δ

−δ

dφ√
2π
σe−

σ2

2

(
(2k+φ)2+φ2

)
h1/(2πσ)
∞ (2πi(2k + φ)σ2) (3.165)

≤ σ√
2π

∫ δ

−δ
dφe−

σ2

2

(
(2k+φ)2+φ2

)(
1 + 2

[
1 +

1

2πσ2

1

2π − |2k + φ|
]
e−2πσ2(π−|2k+φ|)

)
(3.166)

where we used equation (3.97) from Lemma 5 in the third step. If 2|k|+δ < π, then h
1/(2πσ)
∞ (2k+φ)

can be bounded by 2 for σ > (π − 2|k| − δ)−1. We then have

∫ δ

−δ

dφ

2π

∣∣∣hσ∞(2k + φ)e−
σ2φ2

2

∣∣∣ ≤
√

2

π
σ

∫ δ

−δ
dφe−

σ2

2

(
(2k+φ)2+φ2

)
(3.167)

=

√
2

π
σ

∫ δ

−δ
dφe−σ

2k2−σ2(k+φ)2 (3.168)

≤
√

2

π
σe−σ

2k2
∫ ∞

−∞
dφe−σ

2φ2 (3.169)

=
√

2e−σ
2k2 . (3.170)

However, if we instead have that 2|k|+ δ > π, then we can instead bound equation (3.166) as
∫ δ

−δ

dφ

2π

∣∣∣hσ∞(2k + φ)e−
σ2φ2

2

∣∣∣

≤
√

2

π
σ

∫ δ

−δ
dφe−

σ2

2

(
(2k+φ)2+φ2

)(
1 + 2

[
1 +

1

2πσ2

1

2π − |2k + φ|

]
e−2πσ2(π−|2k+φ|)

)
(3.171)

≤ 4

√
2

π
σ

∫ δ

−δ
dφe−

σ2

2

(
(2k+φ)2+φ2

)
e2πσ2(2|k|+δ−π) (3.172)

= 4

√
2

π
σ

∫ δ

−δ
dφe2σ2

(
−k2+2π|k|−π2+πδ−kφ−φ2

2

)
(3.173)

= 4

√
2

π
σe2σ2[−(π−|k|)2+πδ]

∫ δ

−δ
dφe−σ

2(φ2+2kφ) (3.174)

≤ 4

√
2

π
σe2σ2[−(π−|k|)2+(π+|k|)δ]

∫ δ

−δ
dφe−σ

2φ2 (3.175)

≤ 4
√

2e−σ
2(π−|k|)2 (3.176)
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where we assumed that δ < (π−|k|)2
π+|k| . In either case, we have that

∫ δ

−δ

dφ

2π

∣∣∣hσ∞(2k + φ)e−
σ2φ2

2

∣∣∣ ≤ 4
√

2e−σ
2δ. (3.177)

For the third term in (3.147), we have

∣∣∣∣∣

∫ δ

−δ

dφ

2π
e−

σ2φ2

2 e−iφµ(t)

−µ(t)+L∑

x=max{−µ(t)−L,1}
eiφxe−

(x+µ(t))2

2σ2

N∑

q=1

(
S∗qj(k + φ)− S∗qj(k)

)
Sqj(k)

∣∣∣∣∣

≤
∫ δ

−δ

dφ

2π
e−

σ2φ2

2 N |φ|Γ
−µ(t)+L∑

x=max{−µ(t)−L,1
e−

(x+µ(t))2

2σ2 (3.178)

≤
∫ δ

−δ

dφ

2π
e−

σ2φ2

2 N |φ|Γhσ∞(0) (3.179)

≤ NΓhσ∞(0)

π

∫ ∞

0
φe−

σ2φ2

2 dφ (3.180)

≤ NΓhσ∞(0)

πσ2
(3.181)

≤ 3
√

2NΓ

σ
(3.182)

where we used (3.77) to relate the hσ∞(0), and then (3.96) from Lemma 5. Additionally, we used
the fact that S is a matrix of bounded rational functions, so that the Lipschitz constant

Γ = max
q,j∈[N ]

max
p∈[−π,π]

∣∣∣∣∣
d

dk′
Sqj(k

′)
∣∣∣
k′=p

∣∣∣∣∣ (3.183)

is well defined.
For the fourth and fifth terms in (3.147), we can use Lemma 6 and the fact that each of these

terms in the integrand are constant. In particular we have

∣∣∣∣∣

∫ δ

−δ

dφ

2π
e−

σ2φ2

2 e−iφµ(t)
(
Sjj(k)− S∗jj(k + φ)

)(
1− 2δµ(t)<0

)
ei(2k+φ)|µ(t)|V σ

|µ(t)|+1,L(−2k − φ)

− δ|µ(t)|≤L
(

1 + S∗jj(k + φ)δµ(t)≥0 + Sjj(k)δµ(t)<0

)
e−

µ(t)2

2σ2

∣∣∣∣∣ (3.184)

≤
∫ δ

−δ

dφ

2π
e−

σ2φ2

2

(
2
∣∣V σ
|µ(t)|+1,L(−2k − φ)

∣∣+ 2e−
−µ(t)2

2σ2

)
(3.185)

≤ χ+ 1

π

∫ ∞

−∞
e−

σ2φ2

2 dφ (3.186)

≤
√

2

π

χ+ 1

πσ
. (3.187)

With these bounds, we can then guarantee that |αj(t)〉 and |wj(t)〉 approximate each other

42



well. In particular, we have

‖|αj(t)〉 − |wj(t)〉‖2
= 〈αj(t) |αj(t)〉+ 〈wj(t) |wj(t)〉 − 2<

[
〈αj(t) |wj(t)〉

]
(3.188)

≤ 2 + γ2e−
µ(t)2

σ2 (1 + 2χ) +
2σδ√

π(2σ2δ2 + 1)
e−σ

2δ2 −
√

2ηγ

(
1− 1

δσ
√
π
e−σ

2δ2
)

+

√
8

π

ηγσ

L
e−

L2

2σ2 + 8
√

2ηγe−σ
2δ +

6
√

2NΓηγ

σ
+

√
8

π

(χ+ 1)ηγ

πσ
(3.189)

We can then use our bounds on γ from equations (3.135) and (3.136) to see that

‖|αj(t)〉 − |wj(t)〉‖2

≤ 2 +
1√
πσ

e−
µ(t)2

σ2
(
1 + 2χ

)(
1 + e−

L2

2σ2
)

+
10

δσ
e−σ

2δ2 − 2

(
1 +

3

2
e−π

2σ2

)(
1− 1

δσ
√
π
e−σ

2δ2
)

+

(
1 +

1

2
e−

L2

2σ2

)(
4σ

L
e−

L2

2σ2 + 16e−σ
2δ +

12NΓ

σ
+

4(χ+ 1)√
π3σ

)
(3.190)

≤ 1 + 2χ

σ
+

1

σ
+

8σ

L
e−

L2

2σ2 +
4

δ
√
πσ

+ 32e−σ
2δ +

24NΓ

σ
+

8(χ+ 1)

σ
(3.191)

≤ 10(χ+ 1) + 24NΓ + δ−1

σ
+

8σ

L
e−

L2

2σ2 + 32e−σ
2δ. (3.192)

Hence, we have a bound on the difference in norm between these two states that is independent of
the time at which we compare them.

At this point, we can now bound the error that arises when approximating |αj(t)〉 by a Gaussian
for any time t. However, we don’t yet know how well |αj(t)〉 approximates |ψj(t)〉. Note, however,
that |αj(0)〉 = |ψj(0)〉, and thus we already have an approximation to the initial state. We can
then time-evolve this approximation, and compare it to the Gaussian approximation for |αj(t)〉.

Along these lines, let us define

|vj(0)〉 = |wj(0)〉 = η

∫ δ

−δ

dφ

2π
eiφµe−

σ2φ2

2 |scj(k + φ)〉 (3.193)

and then define

|vj(t)〉 = e−iHt|vj(0)〉 = η

∫ δ

−δ

dφ

2π
eiφµ−2it cos(k+φ)e−

σ2φ2

2 |scj(k + φ)〉. (3.194)

We then want to compare this time evolved state with our approximation to |αj(t)〉. We can see

〈vj(t) |wj(t)〉 = η2

∫ δ

−δ

dφ

2π
e2it cos(k+φ)−2it cos(k)eiφµ−iφµ−iφd2t sin kee−σ

2φ2 (3.195)

= η2

∫ δ

−δ

dφ

2π
e−σ

2φ2 − η2

∫ δ

−δ

dφ

2π

(
1− e2it cos(k+φ)−2it cos(k)+iφd2t sin ke)e−σ2φ2 . (3.196)

The first term is simply the norm of both |vj(t)〉 and |wj(t)〉, while the third term can be bounded
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as ∣∣∣∣∣

∫ δ

−δ

dφ

2π

(
1− e2it cos(k+φ)−2it cos(k)+iφd2t sin ke)e−σ2φ2

∣∣∣∣∣ (3.197)

≤
∫ δ

−δ

dφ

2π

∣∣1− e2it cos(k+φ)−2it cos(k)+iφd2t sin ke∣∣e−σ2φ2 (3.198)

≤
∫ δ

−δ

dφ

2π

∣∣2t cos(k + φ)− 2t cos(k) + φd2t sin ke
∣∣e−σ2φ2 (3.199)

≤
∫ δ

−δ

dφ

2π

(
2t
∣∣ cos(k) cos(φ)− sin(k) sin(φ)− cos(k) + φ sin(k)

∣∣+ |φ|
)
e−σ

2φ2 (3.200)

≤
∫ δ

−δ

dφ

2π

(
t
∣∣ cos(k)φ2 + sin(k)|φ|3

∣∣+ |φ|
)
e−σ

2φ2 (3.201)

≤ 2

∫ δ

0

dφ

2π

(
2tφ2 + φ

)
e−σ

2φ2 (3.202)

≤ 1

2πσ2
+

t

2
√
πσ3

. (3.203)

Noting that the norm of 〈vj(t) |vj(t)〉 doesn’t change with time (and is in fact exactly normalized,
assuming that µ(t) > L), we have that

‖|vj(t)〉 − |wj(t)〉‖2 = 〈vj(t) |vj(t)〉+ 〈wj(t) |wj(t)〉 − 〈vj(t) |wj(t)〉 − 〈wj(t) |vj(t)〉 (3.204)

≤ 2η2

∫ δ

δ

dφ

2π
e−σ

2φ2 − 2η2

∫ δ

δ

dφ

2π
e−σ

2φ2 +
2η2

2πσ2
+

2η2t

2
√
πσ3

(3.205)

= 2

√
π

σ
+

2t

σ2
. (3.206)

Finally, we can combine these bounds, remembering that |ψj(0)〉 = |αj(0)〉. In particular, we
have that

‖|ψj(t)〉 − |αj(t)〉‖
≤ ‖|ψj 〉(t)− |vj(t)〉‖+ ‖|vj(t)〉 − |wj(t)〉‖+ ‖|wj(t)〉 − |αj(t)〉‖ (3.207)

≤ 2

[
10(χ+ 1) + 24NΓ + δ−1

σ
+

8σ

L
e−

L2

2σ2 + 32e−σ
2δ

]1/2

+

[
2
√
π

σ
+

2t

σ2

]1/2

. (3.208)

If we then assume that σ = c1L√
logL

for some constant c1 <
1√
2
, and that t < c2L for some constant

c2, we have that for L large enough

‖|ψj(t)〉 − |αj(t)〉‖

≤ 2

[
10(χ+ 1) + 24NΓ + δ−1

c1

√
logL

L
+

8c1√
logL

e
− logL

2c21 + 32e−Lδ
]1/2

+

[
2
√
π

c1

√
logL

L
+

2c2 logL

c2
1L

]1/2

. (3.209)

∈ O
(√

logL

L

)
(3.210)

and we have the requisite growth properties.
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3.4 Conclusions and extensions

At this point, we have a general understanding of graph scattering off of a single graph. The idea
of a wave-packet moving along an infinite path and scattering off of some given graph is intuitively
similar to that of other scattering events. We know how to calculate this scattering behavior for
a given graph at a particular momenta, and we have bounds on the error arising from such a
scattering event.

While our current result on the error bounds arising from scattering with finite wave-packets are
useful, improving the bounds on our scattering behavior, or showing that they cannot be improved
by more than a constant might be interesting result in of themselves. This scattering behavior is
foundational to the idea of computation via scattering, and thus improved bounds result in smaller
guaranteed errors.

Note that we will give further applications for this graph scattering later in the thesis.
Essentially, graph scattering seems to be a new subfield in the study of graphs, with several

areas of research opening up.
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Chapter 4

Scattering gadgets

At this point, we have from Chapter 3 the basic framework used or scattering on graphs. However,
everything from the chapter is a theoretical construction, where we are given a graph with a
particular scattering behavior; nothing was mentioned about finding such graphs. This chapter is
dedicated to this idea of finding graphs with particular scattering behavior, or showing that they
cannot exist. These special graphs will be called scattering gadgets.

4.1 Constructing graphs with particular scattering behavior

While we have shown that the scattering behavior of some given graph is easy to compute, finding
graphs with a given behavior is much more difficult. We don’t even know whether such an operation
is decidable, and thus finding an algorithm to construct a graph with a given S-matrix seems
unlikely. However, there are specific behaviors at particular momenta in which constructions are
known, and exhaustive searches of small sized graphs have yielded graphs with nice scattering
properties.

In particular, Andrew Childs found several gadgets in his paper proving the universality of
quantum walks [18]. After this result, Blumer, Underwood and Feder [13] performed an exhaustive
search over all graphs with at most 9 vertices, finding those graphs that implement an encoded
unitary at several momenta of interest. Childs, Gosset, and Webb then constructed several gadgets
in [24]. This section is mainly based on [23], a paper by Childs, Gosset, Nagaj, Raha, and Webb,
as it gives explicit constructions for gadgets with particular behavior.

4.1.1 R/T gadgets

Perhaps the most simple behavior, and the one that will for which we will have the easiest time
finding a solution, are two-terminal gadgets that either perfectly reflect at some particular momenta,
or perfectly transmit. These R/T gadgets can be thought of as a proof-of-principle for constructing
gadgets, but they also have uses of their own.

This problem is still rather complicated when we work with arbirtary graphs with two terminal
vertices, things become much simpler if we work with a graph attached to an infinite path via a
single vertex. In this case, we can determine exactly when the gadget will lead to perfect reflection,
and when it will lead to perfect transmission.

Along these lines, we will investigate the scattering behavior of graphs where Ĝ is of the form
found in Figure 4.1. While we still have that Ĝ is of the form described in Section 3.2.2, the graph
G with the semi-infinite paths is that of a infinite path, with the graph G0 attached to the vertex
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(1, 1) (1, 2)a(1, 1) (1, 2)

pnp1

p2 pn−1

G0

Figure 4.1: A type 1 R/T gadget. Vertices of G0 that are not part of the periphery P = {p1, . . . , pn}
are not shown.

a. As such, the graph that will be of more interest is the graph G0 consisting of those vertices
other than those along the infinite path. We will label those vertices pi ∈ V (G0) connected to the
vertex a as periphery vertices, and we will label the set of periphery vertices as P . In the special
case that |P | = 1, or that a single vertex of G0 is connected to a, we will call the gadget a type 2
R/T gadget (see Figure 4.2 for an example of a type 2 R/T gadget).

For a given R/T gadget Ĝ, those momenta for which perfect reflection occurs shall be collected in
the reflection set which shall be denotedR. Similarly, those momenta for which perfect transmission
occurs shall be collected in the transmission set which shall be label T . Note that these two sets
have empty intersection, and that there isn’t any nice relationship between them.

Let us now examine the scattering eigenstates for the graph Ĝ. For any scattering state |sc1(k)〉,
by examining the eigenvalue equation at vertices (1, 1) and (1, 2) we see that the amplitude at vertex
a satisfies

〈a|sc1(k)〉 = 1 +R(k) = T (k). (4.1)

Thus perfect reflection at momentum k occurs if and only if R(k) = −1 and 〈a|sc1(k)〉 = 0, while
perfect transmission occurs if and only if T (k) = 1 and 〈a|sc1(k)〉 = 1. Using this fact, we now
derive conditions on the graph G0 that determine when perfect transmission and reflection occur.

For any type 1 R/T gadget, we have necessary and sufficient conditions for momentum k to
be in the reflection set: G0 should have an eigenvector for which the sum of amplitudes on the
periphery is nonzero.

Lemma 7. Let Ĝ be a type 1 R/T gadget. A momentum k ∈ (−π, 0) is in the reflection set R if
and only if G0 has an eigenvector |χk 〉 with eigenvalue 2 cos(k) satisfying

n∑

i=1

〈pi |χk 〉 6= 0. (4.2)

Proof. Let us first suppose that Ĝ has perfect reflection at momentum k, i.e., R(k) = −1 and
〈a|sc1(k)〉 = 0. As 〈(1, 1)|sc1(k)〉 = e−ik− eik 6= 0 and 〈(1, 2)|sc1(k)〉 = 0, to satisfy the eigenvalue
equation at vertex a, we have

n∑

j=1

〈pj |sc1(k)〉 = eik − e−ik 6= 0. (4.3)
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Further, since G0 only connects to vertex a and the amplitude at this vertex is zero, the restriction
of |sc1(k)〉 to G0 must be an eigenvector of G0 with eigenvalue 2 cos(k). Hence the condition is
necessary for perfect reflection.

Next suppose that G0 has an eigenvector |χk 〉 with eigenvalue 2 cos(k) satisfying (4.2), with
the sum equal to some nonzero constant c. Define a scattering state |ψk 〉 on the Hilbert space of
the full graph G with amplitudes

〈v |ψk 〉 =
eik − e−ik

c
〈v |χk 〉 (4.4)

for all v ∈ V (G0), 〈a |ψk 〉 = 0, and

〈(x, j) |ψk 〉 =

{
e−ikx − eikx j = 1

0 j = 2
(4.5)

for all x ∈ Z+.
We claim that |ψk 〉 is an eigenvector of G with eigenvalue 2 cos(k). The state clearly satisfies

the eigenvalue equation on the semi-infinite paths since it is a linear combination of states with
momentum ±k. At vertices of G0, the state is proportional to an eigenvector of G0, and since the
state has no amplitude at a, the eigenvalue equation is also satisfied at these vertices. It remains
to see that the eigenvalue equation is satisfied at a, but this follows immediately by a simple
calculation.

Since |ψk 〉 has the form of a scattering state with perfect reflection, we see that R(k) = −1 and
T (k) = 0 as claimed.

In a similar manner, the following lemma gives a sufficient condition for a momentum k to be
in the transmission set (which is also necessary for type 2 gadgets). Let g0 denote the induced
subgraph on V (G0) \ P where P = {pi : i ∈ [n]} is the periphery.

Lemma 8. Let Ĝ be a type 1 R/T gadget and let k ∈ (−π, 0). Suppose |ξk 〉 is an eigenvector of
g0 with eigenvalue 2 cos k and with the additional property that, for all i ∈ [n],

∑

v∈V (g0):
(v,pi)∈E(G0)

〈v |ξk 〉 = c 6= 0 (4.6)

for some constant c that does not depend on i. Then k is in the transmission set T . If Ĝ is a type
2 R/T gadget, then this condition is also necessary.

Proof. If g0 has a suitable eigenvector |ξk 〉 satisfying (4.6), define a scattering state |ψk 〉 on the
full graph G, with amplitudes 〈a|ψk 〉 = 1,

〈v |ψk 〉 =

{
−1
c 〈v |ξk 〉 v ∈ V (g0)

0 v ∈ P
(4.7)

in the graph G0, and

〈(x, j)|ψk 〉 =

{
e−ikx j = 1

eikx j = 2
(4.8)

for x ∈ Z+. As in the proof of Lemma 7, the state |ψk 〉 is clearly satisfies the eigenvalue equation
(with eigenvalue 2 cos(k)) at vertices on the semi-infinite paths and vertices of g0. The factor of
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(1, 1) (1, 2)a

1

2

l1 − 1

l1

l1 + 1

l1 + l2 − 2

l1 + l2 − 1

Figure 4.2: An R/T gadget built from a path of length l1 + l2 − 2.

−1
c in (4.7) is chosen so that the eigenvalue condition is satisfied at vertices in P . It is easy to see

that the eigenvalue condition is also satisfied at a.
Since |ψk 〉 is a scattering eigenvector of G with eigenvalue 2 cos(k) and perfect transmission,

we have T (k) = 1.
Now suppose Ĝ is a type 2 R/T gadget, with P = {p}. Perfect transmission along with the

eigenvalue equation at vertex a implies

〈p |sc1(k)〉 = 0, (4.9)

so the restriction of |sc1(k)〉 to g0 must be an eigenvector (since p is the only vertex connected to
g0). The eigenvalue equation at p gives

〈a |sc1(k)〉+
∑

w : (w,p)∈E(G0)

〈w |sc1(k)〉 = 0 =⇒
∑

w : (w,p)∈E(G0)

〈w |sc1(k)〉 = −1. (4.10)

Hence the restriction of |sc1(k)〉 to V (g0) is an eigenvector of the induced subgraph, with the
additional property that the sum of the amplitudes at vertices connected to p is nonzero.

With these two lemmas, if we can guarantee the form of the eigenstates for the graph G0, we
can guarantee certain momenta to be in either the reflection or the transmission set.

4.1.1.1 Explicit constructions

While the two lemmas do give a nice abstract explanation for the construction of R/T gadgets, it
doesn’t provide us with a concrete example. As such, let us look at two simple graphs and examine
when they satisfy the conditions of the lemmas.

As a first example, suppose G0 is a finite path of length l1 + l2 − 2 connected to a at the l1th
vertex, as shown in Figure 4.2. As this is a type 2 R/T gadget, we can then determine the reflection
and transmission sets as a function of l1 and l2.

Using Lemma 7, we see that perfect reflection occurs at momentum k ∈ (−π, 0) if and only if
the path has an eigenvector with eigenvalue 2 cos(k) with non-zero amplitude on vertex l1. Recall
that the path of length L (where the length of a path is its number of edges) has eigenvectors |ψj〉
for j ∈ [L+ 1] given by

〈x|ψj〉 = sin

(
πjx

L+ 2

)
(4.11)
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(1, 1) (1, 2)a

1

2 r − 2

r − 1
r

Figure 4.3: An R/T gadget built from an r-cycle.

with eigenvalues λj = 2 cos(πj/(L+ 2)). Hence

Rpath =

{
− πj

l1 + l2
: j ∈ [l1 + l2 − 1] and

jl1
l1 + l2

6∈ Z
}
. (4.12)

To characterize the momenta at which perfect transmission occurs, consider the induced sub-
graph obtained by removing the l1th vertex from the path of length l1 + l2 − 2 (a path of length
l1−2 and a path of length l2−2). We can choose bases for the eigenspaces of this induced subgraph
so that each eigenvector has all of its support on one of the two paths, and has nonzero amplitude
on only one of the vertices l1 − 1 or l1 + 1. Thus Lemma 8 implies that Ĝ perfectly transmits for
all momenta in the set

Tpath =

{
−πj
l1

: j ∈ [l1 − 1]

}
∪
{
−πj
l2

: j ∈ [l2 − 1]

}
. (4.13)

As an explicit example, if we set l1 = l2 = 2, we get Tpath = {−π
2 } and Rpath = {−π

4 ,−3π
4 }.

Now let us suppose G0 is a cycle of length r. Labeling the vertices by x ∈ [r], where x = r is
the vertex attached to the path (as shown in Figure 4.3), the eigenvectors of the r-cycle are

〈x|φm〉 = e2πixm/r (4.14)

with eigenvalue 2 cos(2πm/r), where m ∈ [r]. For each momentum k = −2πm/r ∈ (−π, 0), there
is an eigenvector with nonzero amplitude on the vertex r (i.e., 〈r|φm〉 6= 0), so Lemma 7 implies
that perfect reflection occurs at each momentum in the set

Rcycle =

{
−πj
r

: j is even and j ∈ [r − 1]

}
. (4.15)

To see which momenta perfectly transmit, we use Lemma 8. Consider the induced subgraph
obtained by removing vertex r. This subgraph is a path of length r − 2 and has eigenvalues
2 cos(πm/r) for m ∈ [r − 1] as discussed in the previous section. Using the expression (4.11) for
the eigenvectors, we see that the sum of the amplitudes on the two ends is nonzero for odd values
of m. Perfect transmission occurs for each of the corresponding momenta:

Tcycle =

{
−πj
r

: j is odd and j ∈ [r − 1]

}
. (4.16)

For example, the 4-cycle (i.e., square) has Tcycle = {−π
4 ,−3π

4 } and Rcycle = {−π
2 }.
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Figure 4.4: (a) A type 2 R/T gadget, (i.e., a type 1 gadget with |P | = 1). (b) The R/T gadget
Ĝ↔ reversing the reflection and transmission sets of (a).

4.1.1.2 Reversing reflection and transmission sets

With these explicit examples of R/T gadgets, it will be useful to know how to interchange the
reflection and transmission set. Namely, if we have one gadget that transmits all momenta in T
and reflects all momenta in R, it will be useful to also have a gadget that reflects all momenta in
T and transmits all momenta in R. Basically, we will be able to use these two gadgets together to
construct gadgets with more interesting scattering behavior.

In particular, let Ĝ be a type 2 R/T gadget, as seen in Figure 4.4a, and assume that it has a
reflection setR and a transmission set T . We will construct a type 1 R/T gadget Ĝ↔ with reflection
set R′ ⊃ T and transmission set T ′ ⊃ R. The graph Ĝ↔ is depicted pictorially in Figure 4.4b.

Explicitly, the R/T gadget Ĝ↔ is obtained by taking two copies of the subgraph g0 from the
type 2 R/T gadget in Figure 4.4a, connecting both to a single additional vertex u, and connecting
one copy of g0 to the infinite path at a. More concretely, for each vertex wj ∈ V (g0), the graph

Ĝ↔ has two vertices w
(1)
j and w

(2)
j , and the graph Ĝ↔ inherits the edge set of g0. Additionally, for

each wj ∈ V (g0) connected to the periphery vertex p, we have that w
(i)
j is connected to u, and w

(1)
j

is connected to a.
With this definition, we now prove that the graph Ĝ↔ reverses the reflection and transmission

sets of Ĝ.

Lemma 9. Let Ĝ be a type 2 R/T gadget with transmission set T and reflection set R. The type
1 R/T gadget Ĝ↔ defined above has transmission set T ′ ⊇ R and reflection set R′ ⊇ T .

Proof. First consider a momentum k ∈ T . Using the condition derived in Lemma 8, we see that
g0 has an eigenvector |ξk 〉 with eigenvalue 2 cos(k) where the sum of the amplitudes on vertices
w1, . . . , wr is nonzero. Now consider the induced subgraph G↔0 of Figure 4.4b obtained by removing
vertices (1, 1), (1, 2), and a. This subgraph has an eigenvector |χ↔k 〉 with eigenvalue 2 cos(k) given
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by
〈v(i)|χ↔k 〉 = (−1)i〈v|ξk 〉 and 〈u|χ↔k 〉 = 0 (4.17)

for all vertices v ∈ V (g0) and for i ∈ {1, 2}. The fact that |χ↔k 〉 is an eigenvector follows from the
fact that |ξk 〉 is an eigenvector of g0. Additionally, we have that

r∑

j=1

〈w(1)
j |χ↔k 〉 = −

r∑

j=1

〈wj |ξk 〉 6= 0. (4.18)

Using Lemma 7, we see that perfect reflection occurs at momentum k, and thus T ⊆ R′.
Next suppose k ∈ R. Lemma 7 states that G0 has an eigenvector |χk〉 with eigenvalue 2 cos(k)

such that 〈p|χk 〉 6= 0. Now consider the induced subgraph g↔0 of Figure 4.4b obtained by removing

vertices (1, 1), (1, 2), a, and w
(1)
1 , . . . , w

(1)
r . This graph has an eigenvector |ξ↔k 〉 with eigenvalue

2 cos(k) defined by

〈v|ξ↔k 〉 =





〈v|χk 〉 for v ∈ V (g
(2)
0 )

〈p|χk 〉 v = u

0 otherwise.

(4.19)

To see that this is an eigenvector, observe that g↔0 is a disconnected graph and |χk 〉 is an eigenvector
of one of its components. Using this and Lemma 8 (since u is the only vertex adjacent to the
periphery of Ĝ↔ with non-zero amplitude), we see that k ∈ T ′, so R ⊆ T ′.

4.1.2 Momentum switches

To construct a momentum switch between a given pair of momenta, it will be worthwhile to first
construct two R/T gadgets between the momenta, with the two gadgets having swapped reflection
and transmission sets. We can then construct something like a railroad switch, by placing the two
gadgets immediately after a 3-claw (a four-vertex graph with three vertices connected to a central
vertex). With this design, the incident wavepacket will only see one of the two outgoing paths, and
the resulting S-matrix will be exactly what we want.

In particular, we can construct a momentum switch between the reflection and transmission sets
R and T of a type 2 R/T gadget. We attach the gadget and its reversal (defined in Section 4.1.1.2)
to the leaves of a claw, as shown in Figure 4.5. Specifically, given a type 2 R/T gadget Ĝ, the
corresponding momentum switch Ĝ≺ consists of a copy of G0, a copy of G↔0 , and a claw, with the
three leaves of the claw acting as the terminal vertices. Vertex p of G0 is connected to leaf 2 of the

claw, and vertices w
(1)
1 , . . . , w

(1)
r of G↔0 are each connected to leaf 3 of the claw.

Intuitively, the momentum switch acts the same as a railroad switch. For momenta in the
transmission set, the gadget perfectly transmits while its reversal perfectly reflects, so the claw is
effectively a path connecting terminals 1 and 2. For momenta in the reflection set, the roles of
transmission and reflection are reversed, so the claw is effectively a path connecting terminals 1
and 3.

We can now prove that this gadget acts as a momentum switch, by constructing the desired
scattering eigenstates.

Lemma 10. Let Ĝ be a type 2 R/T gadget with reflection set R and transmission set T . The
gadget Ĝ≺ described above is a momentum switch between the sets R and T .

Proof. We construct a scattering eigenstate for each momentum k ∈ T with perfect transmission
from path 1 to path 2, and similarly construct a scattering eigenstate for each momentum k′ ∈ R
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Figure 4.5: A momentum switch Ĝ≺ built from a type 2 R/T gadget and its reversal.

with perfect transmission from 1 to 3. These eigenstates show that S2,1(k) = 1 and S3,1(k′) = 1.
Since the S-matrix is symmetric and unitary, this gives the complete form of the S-matrix for all
momenta in R∪ T . In particular, this shows that Ĝ≺ is a momentum switch between R and T .

We first construct the scattering states for momenta k ∈ T . Lemma 8 shows that the graph g0

has a 2 cos(k)-eigenvector |ξk 〉 satisfying equation (4.6) with some nonzero constant c. We define a
state |µk 〉 on G≺ and we show that it is a scattering eigenstate with perfect transmission between
paths 1 and 2. The amplitudes of |µk 〉 on the semi-infinite paths and the claw are

〈(x, 1)|µk〉 = e−ikx 〈0|µk〉 = 1 〈(x, 2)|µk〉 = eikx 〈(x, 3)|µk〉 = 0. (4.20)

The rest of the graph consists of the three copies of the subgraph g0 and the vertices p and u↔.
The corresponding amplitudes are

〈v |µk 〉 =





−1
c 〈v |ξk 〉 v ∈ V (g

(1)
0 )

1
c 〈v |ξk 〉 v ∈ V (g

(2)
0 )

− eik

c 〈v |ξk 〉 v ∈ V (g
(3)
0 )

0 v = p or v = u↔.

(4.21)

We claim that |µk 〉 is an eigenstate of the Hamiltonian with eigenvalue 2 cos(k). As in previous
proofs, the state clearly satisfies the eigenvalue condition on the semi-infinite paths and at the
vertices of G0 and G↔0 , and the factors of 1

c in the above equation are chosen so that the state also
satisfies the eigenvalue condition at vertices p and u↔. Since |µk 〉 is a scattering state with perfect
transmission from path 1 to path 2, we see that S2,1(k) = 1.

We now construct an eigenstate |νk′ 〉 with perfect transmission from path 1 to path 3 for each
momentum k′ ∈ R. This state has the form

〈(x, 1)|νk′〉 = e−ik
′x 〈0|νk′〉 = 1 〈(x, 2)|νk′〉 = 0 〈(x, 3)|νk′〉 = eik

′x (4.22)
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Figure 4.6: A momentum switch between −π
3 and −2π

3 .

on the semi-infinite paths and the claw. Lemma 7 shows that G0 has a 2 cos(k′)-eigenstate |χk′ 〉
with 〈p |χk′ 〉 6= 0, which determines the form of |νk′ 〉 on the remaining vertices:

〈v |νk′ 〉 =





− 1
〈p |χk′ 〉〈v |χk′ 〉 v ∈ V (G0)

− eik
′

〈p |χk′ 〉〈v |χk′ 〉 v ∈ V (g
(2)
0 )

−eik′ v = u↔

0 otherwise.

(4.23)

As before, it is easy to check that this a momentum-k′ scattering state with perfect transmission
from path 1 to path 3, so S3,1(k′) = 1.

Thus the gadget from Figure 4.5 is a momentum switch between R and T .

4.1.2.1 Explicit example

Using this construction for momentum switches, we can obtain a momentum switch from any of
the examples discussed in Section 4.1.1.1. Explicitly, using the R/T gadget built from the 3-cycle,
we get a momentum switch between −π

3 and −2π
3 , as shown in Figure 4.6. More generally, using

an r-cycle, we obtain a switch between momenta of the form −πj
r with odd or even values of j.

As another example, using a path of length 4 connected at the center vertex, we obtain a switch
between −π

4 and −π
2 .

4.1.3 Encoded unitaries

While there is no known efficient method to find graphs that fixed scattering behavior, it is possible
to search over all small graphs in order to find gadgets with some particular scattering behavior.
This was the manner in which the gadgets for most known scattering results were found, such
as in Childs’ original universality proof for graph scattering [18] and Childs, Gosset, and Webb’s
universality result [24]. Additionally, Blumer, Underwood, and Feder have a paper [13] in which
they searched over all graphs with up to 9 vertices for scattering behavior at particular momentum.

Essentially, the main idea behind this method is a brute force search. Since we can easily
compute the scattering matrix for a particular graph at a particular momentum, if we want to find
a graph that has some prescribed scattering behavior, we simply assume that such a graph exists
and search for it over all graphs, starting with those having a small number of vertices. While
this exhaustive search is not guaranteed to find such a graph, a surprising number of systems can
be found with this structure. In particular, if we restrict ourselves to momenta that are simple
multiples of π, such as −π

2 or −π
4 , then most simple scattering behaviors can be found.

Of particular interest to us will be gadgets with four terminal vertices, such that the scattering
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matrix at some particular momenta takes the form

S(k) =

(
0 UT

U 0

)
. (4.24)

Namely, if we use a dual-rail encoding for a qubit, and think of one pair of semi-infinite paths as
the input rails and the other pair as the output rails, then after scattering this gadget will have
applied the unitary U to the encoded qubit.

While the general problem is difficult, we might be able to guide our search for specific uni-
taries. As a particular example, any one-qubit unitary with a zero-entry will allow us to work
with disconnected graphs, and focus on finding a two-terminal gadgets with perfect transmission
coefficients. If we find two such gadgets such that the ratio between their transmission coefficients
are the same as the ratio of the entries in the unitary, we can thus implement the unitary.

In the most trivial non-trivial example, we can use this idea to implement an X gate at all
momentum by using two length-two paths, where the input terminal for logical z connects to the
output terminal of logical 1 + z. For a slightly less trivial example, note that for any momentum
k we can always implement an encoded diag{1, eik} by using as our graph gadget Ĝ a path of
length 3. Both unitaries are essentially just a relabeling of the vertices, but they are still useful
computationally.

Later in this thesis we will describe a scheme for arbitrary quantum computation using scattering
theory as the basic computational tool. While the scheme makes no reference to a particular
momenta, it does require that there are a set of graph gadgets at the correct momenta implementing
a universal gate set. As such, we will want to show that the set of momenta satisfying this
assumption is non-empty.

4.1.3.1 Universal gate set for −π
2

Since the energy corresponding to momentum −π
2 is zero, the eigenvalue equations for this gadget

are slightly easier than average to manipulate. Additionally, this was the momentum used in [32]
in their algorithm for the AND-OR tree. (Note that this universal gate set was not used in [24], as
the authors did not know of it at the time: this universal gate set is new.)

Note that the the graph in Figure 4.7a and Figure 4.7b both implement a Hadamard gate for
a qubit encoded at momentum −π

2 , but that the graph in Figure 4.7b is planar. In particular,
Figure 4.7a has a scattering matrix of the form (4.24), with

U = −e
iπ
4√
2

(
1 1
1 −1

)
, (4.25)

while Figure 4.7b implements
If we then combine this unitary with the diag{e−iπ/2} gate that works for all unitaries, we then

have that we can implement all single-qubit Clifford gates. Thus in order to have a universal set of
single-qubit gates we simply need to find a single unitary not contained within the Clifford group.

As such an example, we can use the diagonal graph depicted in Figure 4.8. This is related to
the V -basis often used for fault-tolerant computations, where the implemented unitary is

U =

(
1 0
0 4−3i

5

)
. (4.26)
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1in

0in 0out

1out

a

1in

0in 0out

1out

b

Figure 4.7: Two gates that implement an encoded Hadamard at −π
4 . (a) A simple gate. (b) More

complicated but planar gate.

0in 0out

1in 1out

Figure 4.8: Graph implementing a non-Clifford gate at k = −π
2 .

4.1.3.2 Universal gate set for −π
4

Historically [18, 24], momentum −π
4 has been used to show universality results. I’m unsure why,

except that the graph gadgets that implement a universal gate set are rather simple at this momenta.
In particular, Childs found that the two gadgets in Figure 4.9 implement a universal gate set.

His original proof required some additional attributes on the graph gadgets, which is the reason for
the slightly more complicated T -gate, but this is sufficient for our purposes.

In particular, we have that the graph in Figure 4.9a has a scattering matrix of the form of
equation (4.24) at momentum k = −π

4 , with

U =

(
e−i

π
4 0

0 1

)
, (4.27)

while the gadget in Figure 4.9b also has a scattering matrix of the form (4.24) at momentum
k = −π

4 , where

U = − i√
2

(
1 −i
−i 1

)
. (4.28)

1in 1out

0in 0out

a

0in

1in

0out

1out

b

Figure 4.9: Encoded one-qubit gates at k = −π
4 . (a) A phase gate. (b) Basis-changing gate.
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1in 1out

0in 0out

Figure 4.10: A non-clifford gate used for universal computation at −π
3 and −2π

3 .

With these examples, we then have a universal gate set for single-qubit unitaries at −π
4 , which

will be sufficient for our eventual purposes.

4.1.3.3 Universal gate set at −π
3 and −2π

3

While the previous two momenta are relevant for historical reasons, we would also like to show a
universal gate set at other momentum. By looking forward in the thesis, where we will be interested
in two momenta moving along adjacent paths, it will be useful to have the two wave-functions move
at the same speed, and thus will be interesting to study k and −π − k for some k ∈ (−π, 0). A
natural choice would be then to understand −π

3 and −2π
3 , since they are nicely separated, and

further we have an explicit momentum switch between the two momenta. Note additionally that
previous to this thesis, an explicit universal gate set was not known between these two momenta.

Unfortunately, most gadgets in the Blumer, et. al., database for these two momenta are related
to e−iπ/3, whereas most Clifford gates are related to eiπ/4, and thus we unfortunately don’t know of
a set of gadgets implementing a Clifford+T-gate set. However, there are sufficient graphs in order
to have a universal set, but it is one note widely used.

In particular, note that the simple shifted diagonal gadget described in the beginning of this
section allows us to implement a diag{1, e2iπ/3} gate for both momenta of interest. In addition to
this single gadget, the graph in Figure 4.10 implements another gate, corresponding to a rotation
along a different axis on the Bloch sphere.

The graph in Figure 4.10 has an S-matrix with perfect transmission at both momenta of interest,
with the corresponding unitary given by

U(−π
3

) =
e5iπ/6

2

( √
3 eiπ/6

e−iπ/6
√

3

)
U(−2π

3
) =

e−5iπ/6

2

( √
3 e−iπ/6

eiπ/6
√

3

)
(4.29)

4.2 Sufficient and disallowed scattering behavior

While the previous constructions yield graphs with particular behavior which will be useful when
attempting to construct scattering algorithms, we will also want to understand some simple rela-
tions between graphs and their respective scattering matrices. In particular, understanding what
properties are necessary in order to have a given scattering matrix, and understanding the relation
between various the scattering matrices of various momenta will be useful in constructing additional
scattering graphs.
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4.2.1 Degree-3 graphs are sufficient

One of the most simple assumptions that could be made is that certain scattering behaviors require
high degree graphs. In particular, having many connections might allow for additional correlations
between outputs on larger graphs.

If we restrict our attention to a finite number of rational momenta, however, this does not turn
out to be the case. We can show that any graph can be replaced by a degree-three graph with
a identical scattering behavior at some fixed momenta. In particular, we will show that a single
vertex can be replaced by a finite path while still satisfying the eigenvalue equation at the fixed
momenta, where the length of the path is dependent on the fixed momenta.

As degree two graphs are the graph joins of cycles and paths, degree three graphs are the
smallest graphs to have nontrivial scattering behaviors. This lemma shows that, in a certain sense,
they are also all that are required. Note that this result has not been published anywhere, although
it has been known to the authors of [24] for some time.

Lemma 11. Let Ĝ be a finite graph, and let M be a finite set of rational multiples of π. If v ∈ V (G)
is a degree d vertex, there exists a graph H that extends G with the vertex v being replaced by a
degree-(dd2e+ 1) subgraph such that the scattering matrices at the momenta k ∈M are preserved.

Proof. The main idea behind this proof is to partition the vertices adjacent to v into two sets, and
then replace v by a finite path, with the two sets connected to opposites ends of the finite path.
By choosing the length of the path correctly, we can show that the amplitudes at either end of the
path are the same as the amplitude on v at each momenta in M , and thus the eigenvalue equation
remains satisfied without changing the scattering behavior.

In particular, let v be the degree d vertex in G, and let S = {w ∈ V (G) : w ∼ v} be the set
of vertices adjacent to v. Additionally, let us arbitrarily partition S into two sets, S1 and S2, such
that

∣∣|S1| − |S2|
∣∣ ≤ 1.

As each k ∈ M is a rational multiple of π, there exists some m ∈ N+ such that mk
2π ∈ N for all

k ∈ M . Let us then examine the graph H where v is replaced by a path of length m, and where
S1 is attached to one end of the path while S2 is attached to the other end. Explicitly:

V (H) =
(
V (G) \ {v}

)
∪ {(v, j) : j ∈ [m+ 1]} (4.30)

E(H) =
{
e ∈ E(G) : v /∈ e

}
∪
{
{(v, j), (v, j + 1)} : j ∈ [m]

}
∪{

{s, (v, 0)} : s ∈ S1

}
∪
{
{s, (v,m)} : s ∈ S2

}
. (4.31)

Now, for any k ∈ M , let |φ〉 be an eigenstate of A(G) with eigenvalue 2 cos(k). We will show
that there exists an eigenstate |ψ 〉 of A(H) with energy 2 cos(k) such that for any w ∈ V (G) \ {v},
〈w |φ〉 = 〈w |ψ 〉.

Concretely, for any vertex other than v, let us define |ψ 〉 in this manner, and note that by
assumption, |ψ 〉 satisfies the eigenvalue equation with energy 2 cos(k) for all vertices other than
those in S or those replacing v. Additionally, let

α =
∑

w∈S1

〈w |φ〉, β = 〈v |φ〉, and γ =
∑

w∈S2

〈w |φ〉. (4.32)

We will then defined the amplitude along the path replacing the vertex v as

〈(v, j) |ψ 〉 = β cos(kj) +
γ − β cos(k)

sin(k)
sin(kj). (4.33)
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Note that 〈(v, 0) |ψ 〉 = 〈(v,m) |ψ 〉 = β = 〈v |φ〉, and thus the eigenvalue equation is satisfied at all
vertices in S. As the eigenstates along a path with energy 2 cos(k) are scalar multiples of sin(kx)
and cos(kj), we can also see that the eigenvalue equation is necessarily satisfied for all (v, j) with
j 6= 0 and j 6= m.

If we then examine the eigenvalue equation at (v, 0), we can see that

∑

s∈S1

〈s |ψ 〉+ 〈(v, 1) |ψ 〉 = α+ β cos(k) +
γ − β cos(k)

sin(k)
sin(k) (4.34)

= α+ γ (4.35)

= 2 cos(k)β = 2 cos(k)〈(v, 0) |ψ 〉 (4.36)

where the third equality follows from the fact that |φ〉 satisfies the eigenvalue equation at v with
eigenvalue 2 cos(k), and thus we have that the eigenvalue equation for H is satisfied at (v, 0).

Let us finally examine the eigenvalue equation at (v,m), noting that

∑

s∈S2

〈s |ψ 〉+ 〈(v,m− 1) |ψ 〉 = γ + β cos(k(m− 1)) +
γ − β cos(k)

sin(k)
sin(k(m− 1)) (4.37)

= γ + β cos(k)−
(
γ − β cos(k)

)
(4.38)

= 2 cos(k)β = 2 cos(k)〈(v, 0) |ψ 〉 (4.39)

where the second equality follows from some trigonometric identities. We can then see that |ψ 〉
satisfies the eigenvalue equation at (v,m) with energy 2 cos(k).

Putting this together, we have that |ψ 〉 is an eigenvector of A(H) with energy 2 cos(k) such
that |ψ 〉 and |φ〉 are identical on those vertices contained in both G and H. As this result holds for
any energy 2 cos(k) eigenvector of A(G), and as the two graphs are identical along the semi-inifinite
paths, we have that the scattering states for these two graphs are identical, and thus the scattering
matrices are preserved under this degree reduction procedure.

By repeated use of this lemma, we can then reduce any graph used as a scattering gadget down
to a degree-3 graph without changing the scattering matrix at some fixed momentum.

4.2.2 Some behavior impossible

So far, all of our constructions have generally assumed that the scattering behavior that we want
does exist. Hence, if we simply search over large enough graphs, we will eventually find a graph
that implements our desired scattering behavior.

However, it turns out that in some cases this is not a valid assumption. In particular, there
exist pairs of momenta for which no R/T gadget can be constructed. The main idea is that for
specific momentum, there exists a basis for the scattering states in which all amplitudes are taken
from a field extension of the rationals. If two momenta are related by a Galois conjugation over
this field, then perfect reflection at one momenta implies perfect reflection at the second. Note that
this is a result in [23], but this extends those results to more general sets of momenta, as opposed
to focusing on a particular pair.

As an illuminating example, we will use those states with momenta k = −π
4 and p = −3π

4 . For

the two momenta, the corresponding energy is 2
√

2 or −2
√

2, and in this case the Galois conjugation
is simply replacing

√
2 by −

√
2.
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4.2.2.1 Basis vectors with entries in Q(sin(k), cos(k))

Recall the general setup shown in Figure 3.2: N semi-infinite paths are attached to a finite graph
Ĝ, resulting in an infinite graph G. Additionally, we have that the adjacency matrix for Ĝ can be
written in block diagonal form

A(Ĝ) =

(
A B†

B D

)
, (4.40)

where A is an N × N matrix, B is an m × N matrix, and D is an m ×m matrix. We have that
the N semi-infinite paths are attached, in order, to the first N vertices of Ĝ.

Let us now consider an eigenvector |τk 〉 of the adjacency matrix of G with eigenvalue 2 cos(k)
for k ∈ (−π, 0). We have from Theorem 2 that this eigenspace is spanned by incoming scattering
states with momentum k and confined bound states (which have zero amplitude on the semi-infinite
paths) . We can thus write the amplitudes of |τk 〉 on the semi-infinite paths as

〈(x, j) |τk 〉 = κj cos(k(x− 1)) + σj sin(k(x− 1)) (4.41)

for x ∈ Z+, j ∈ [N ], and κj , σj ∈ C, and the amplitudes on the internal vertices as

〈w |τk 〉 = ιw (4.42)

for ιw ∈ C, where w indexes the internal vertices. Since the state |τk 〉 satisfies the eigenvalue
equation on the semi-infinite paths, it remains to satisfy the conditions specified by the block
matrix equation

(
A B†

B D

)(
κ
ι

)
+ cos(k)

(
κ
0

)
+ sin(k)

(
σ
0

)
= 2 cos(k)

(
κ
ι

)
.

Hence, the nullspace of the matrix

M =



A− cos(k)I sin(k)I B†

0 0 0
B 0 D − 2 cos(k)I


 (4.43)

is in one-to-one correspondence with the 2 cos(k)-eigenspace of the infinite matrix (here the first
block corresponds to κ, the second to σ, and the third to ι). Further, M only has entries in
Q(cos(k), sin(k)), so its nullspace has a basis with amplitudes in Q(cos(k), sin(k)), as can be seen
using Gaussian elimination.

We can then use this, along with the form of the eigenstates along the semi-infinite paths, to
see that all of the amplitudes can be written as elements over the rationals extended by sin(nk) and
cos(nk) for all n ∈ N+. While this is not particularly useful in general, if k is a rational multiple
of π, this is a finite extension. Further, there exist special cases in which this field extension is a
quadratic extension, such that all of the amplitudes can be taken from Q[

√
d] for some d.

As a slight caveat noted above, the spectrum ofGmay include confined bound states (Theorem 2)
with eigenvalues at 2 cos(k). However, any such state is also in the nullspace of the matrix M , while
also satisfying the rational constraints that both κ and σ are zero. As such, these states can always
be written with amplitudes over the field Q[sin(k), cos(k)]. Thus forcing the scattering eigenstates
to be orthogonal to these confined bound states only involves constraints over the same field, and
we still have that the scattering eigenstates can be written with all of their amplitudes over the
field Q extended by sin(nk) and cos(nk).
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As an explicit example, let us examine the case where 2 cos(k) = ±
√

2 corresponding to k = −π
4

or k = −3π
4 . In these cases Q(cos(k), sin(k)) = Q(

√
2), and we may choose a basis for the nullspace

of M with amplitudes from Q(
√

2). Furthermore, cos(kx), sin(kx) ∈ Q(
√

2) for all x ∈ Z+, so with
such a choice of basis, each amplitude of |τk 〉 is also an element of Q(

√
2).

We can then use the fact that Q[
√

2] can be thought of as a two-dimensional vectorspace over
Q to see that any member of this extended rational basis can be written as

|τk 〉 = |uk 〉+
√

2|wk 〉, (4.44)

for rational vectors |uk 〉 and |wk 〉. Further, as H2|τk 〉 = 2|τk 〉, we can see that H|uk 〉 = ±2|wk 〉
and H|wk 〉 = ±|uk 〉, so

|τk 〉 = (H ±
√

2I)|wk 〉, (4.45)

where the ± depends on whether we are working with k = −π
4 or −3π

4 .
While this expression does not easily generalize to most pairs of momenta, we do have a similar

equation whenever the extended field is a quadratic extension, where 2 replaced with d.

4.2.2.2 Impossibility of R/T gadgets

With the above rational basis for scattering states, we will be able to transform an eigenstate at
one energy into an eigenstate at another energy via a Galois conjugation. However, the existence
of particular eigenstates will not immediately give us the results that we want.

Along these lines, we will use the following basic fact about two-terminal gadgets several times:

Fact 1. If a two-terminal gadget has a momentum-k scattering state |φ〉 with zero amplitude along
path 2, then the gadget perfectly reflects at momentum k.

Proof. Without loss of generality, we may assume that |φ〉 is orthogonal to all confined bound
states. If |φ〉 has zero amplitude along path 2, then there exist some µ, ν ∈ C such that

〈(x, 2) |φ〉 = µ〈(x, 2) |sc2(k)〉+ ν〈(x, 2) |sc1(k)〉 = µe−ikx + µReikx + νTeikx = 0 (4.46)

for all x ∈ Z+. Since this holds for all x, we have µ = µR+ νT = 0. Since µ and ν cannot both be
zero, we have T = 0.

For an R/T gadget, the scattering states (at some fixed momentum) that are orthogonal to the
confined bound states span a two-dimensional space. As shown in Section 4.2.2.1, we can expand
each scattering eigenstate over an extension to the field Q. Let us restrict our attention to the case
where this extension is quadratic, with discriminant d.

In particular, let us assume that the scattering state at k has energy
√
d (with d nonsquare) and

can be written in a basis with entries over Q(
√
d), where each basis vector takes the form (4.45).

This gives
|sc1(k)〉 = (H +

√
dI)(α|a〉+ β|b〉)

where α, β ∈ C, α 6= 0, and |a〉 and |b〉 are rational d-eigenvectors of H2.
If T (k) = 0, then for all x ≥ 0,

〈x, 2|sc1(k)〉 = 0 = 〈x, 2|(H +
√
dI)(α|a〉+ β|b〉). (4.47)

Dividing through by α and rearranging, we get that for all x ≥ 0,

β

α
(〈x, 2|H|b〉+

√
d〈x, 2|b〉) = −〈x, 2|H|a〉 −

√
d〈x, 2|a〉.
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If the left-hand side is not zero, then β/α ∈ Q(
√
d) since H, |a〉, and |b〉 are rational. If the

left-hand side is zero, then (H +
√
dI)|a〉 is an eigenstate at energy 2 cos(k) with no amplitude

along path 2, so β = 0 (using Fact 1), and again β/α ∈ Q(
√
d).

Now write β/α = r + s
√
d with r, s ∈ Q, and consider the rational d-eigenvector of H2

|c〉 := |a〉+ (r + sH)|b〉. (4.48)

Note that
α(H +

√
dI)|c〉 = α(H +

√
dI)|a〉+ α(rH + r

√
d+ sH2 + sH

√
d)|b〉. (4.49)

Since |b〉 is a d-eigenvector of H2 and β/α = r + s
√
d, this simplifies to

α(H +
√
dI)|c〉 = α(H +

√
dI)|a〉+ β(H +

√
dI)|b〉 = |sc1(k)〉, (4.50)

so |sc1(k)〉 can be written as α(H +
√
dI) times a rational d-eigenvector of H2.

Since 〈x, 2|sc1(k)〉 = 0 for all x ≥ 1 (and α 6= 0), we have

〈x, 2|(H +
√
dI)|c〉 = 〈x, 2|H|c〉+

√
d〈x, 2|c〉 = 0. (4.51)

As H is a rational matrix and |c〉 is a rational vector, the rational and irrational components must
both be zero, implying 〈x, 2|c〉 = 〈x, 2|H|c〉 = 0 for all x ≥ 1. Furthermore, since |sc1(k)〉 is a
scattering state with zero amplitude on path 2, it must have some nonzero amplitude on path 1
and thus there is some x0 ∈ Z+ for which 〈x0, 1|c〉 6= 0 or 〈x0, 1|H|c〉 6= 0.

Now consider the state obtained by replacing
√
d with −

√
d, or in other words after performing

a Galois conjugation:
|sc1(k)〉 := α(H −

√
dI)|c〉. (4.52)

This is a −
√
d-eigenvector of H, which can be confirmed using the fact that |c〉 is a d-eigenvector

of H2. As 〈x, 2|H|c〉 = 〈x, 2|c〉 = 0 for all x ≥ 1, 〈x, 2|sc1(k)〉 = 0 for all x ≥ 1. Furthermore the
amplitude at vertex (x0, 1) is nonzero, i.e., 〈x0, 1|sc1(k)〉 6= 0, and hence |sc1(k)〉 has a component
orthogonal to the space of confined bound states (which have zero amplitude on both semi-infinite
paths). Hence, there exists a scattering state with eigenvalue −

√
d with no amplitude on path 2.

By Fact 1, the gadget perfectly reflects at momentum p, where p = −π − k corresponds to this
energy. It follows that no perfect R/T gadget (and hence no perfect momentum switch) exists
between these momenta.

As particular cases, we can take k = −π
4 , where d = 2. In this case, we have that there does

not exist an R/T gadget splitting k and −3π
4 . Similarly, it is possible to show that k = −π

6 can be

written in a basis with entries over Q[
√

3], and thus there does not exist a R/T gadget between k
and −5π

6 .

4.3 Conclusions and extensions

At this point, we have a large number of graph gadgets that each implement different scattering
behavior. We have found several sets of gadgets that implement universal sets of single-qubit
gates at particular momentum, and we can construct momentum switches between many different
momenta.

Additionally, we have also shown that some scattering behavior cannot exist. While this means
that certain schemes cannot be simplified, this result is of independent theoretical interest. Further,
it also allows us to stop searching for graphs with these behaviors. It would be interesting to extend
our results on the impossibility, however, and give a large set of disallowed scattering behaviors.
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While these form a nice foundation, more research can always be done in these fields. Ideally,
giving an explicit algorithm that constructs a graph with a particular scattering behavior, or says
that such a graph doesn’t exist, would be of great interest. Even if such an algorithm took an
exponential amount of time, this would be a theoretical achievement since we don’t know whether
this problem is currently decidable. Less ambitiously, if we could construct such an algorithm for
a restricted set of graphs, such as that given for type 1 and type 2 R/T gadgets, but generalized to
multiple input and outputs, we would be very useful for computations involving graph scattering.
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Chapter 5

Universality of Quantum Walk

With all of these algorithmic uses (and thinking of the title to this thesis), we would then wonder
at the computational power of quantum walk. We already know that this model is contained in
BQP from Chapter 3, and thus can only be as powerful as a quantum computer, but we would also
like to give a lower bound on its power. Using the ideas of graph scattering, Childs [18] was able
to show that the model of continuous-time quantum walk is universal for quantum computation.
(Childs later showed that the discrete-time model was also universal by giving a method to simulate
a continuous-time quantum walk via a discrete-time quantum walk in [19], but this universality
was shown directly by Lovett, et al. soon after in [46].) In this chapter, we will again show the
universality of quantum walk, using the tools of Chapter 3 and Chapter 4.

In particular, we have from Chapter 4 several scattering gadgets whose scattering behavior can
be viewed as an encoded single qubit gate. Using our results on the scattering behavior of finite-
length wave-packets from Theorem 4 and our finite truncation of Hamiltonians from Lemma 1,
we will show how to implement single-qubit gates using finite graphs. We will then show how to
combine these single-qubit gates to have multiple scattering events to encode an entire computation.

This chapter can be thought of as a primer for Chapter 7, as many of the proof techniques and
ideas from this chapter will be used for the multi-particle case as well. However, there will be some
additional difficulties in Chapter 7, so having an intuitive understanding of the proof idea will be
helpful. Additionally, this is a novel use of our results on graphs scattering, which might lead to
some more uses for the techniques. Note that the encoding and global scheme for this chapter
is similar to that of Childs original universality result [18], using the proof techniques of Childs,
Gosset, and Webb’s universality result for multiple particles [24]. However, this particular proof is
new to this thesis.

The eventual goal of this chapter is to simulate a given circuit CX = UMUM−1 · · ·U1 acting on
some initial state |x〉, where each gate Ui comes from some universal gate set and the simulation
accepts the state with high probability if and only if the circuit accepts with high probability. We
will first show how to do this for single-qubit computations in Section 5.1. We will then extend
this technique to multi-qubit computations in Section 5.2.

5.1 Single qubit simulation

With our eventual goal of simulating an entire circuit via graph scattering, we will first need
to understand how to perform single-qubit computations. We will use many of the results of
Chapter 3 and gadgets from Chapter 4, and show that specific scattering behavior can be used as
a computational tool. This section will first encode the qubit, then show how to have a simulate
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k →

a

k →

b

Figure 5.1: A qubit is encoded using single-particle wave packets at momentum k. (a) An encoded
|0〉. (b) An encoded |1〉.

a single gate, and finally show how to simulate multiple single-qubit gates. These results will then
be generalized for multiple-qubits in Section 5.2, and will be used near identically in Chapter 7.

5.1.1 Single qubit encoding

In our endeavour to simulate a circuit, we will first need to encode the logical state of the circuit
into a state on some simple graph. Taking motivation from the literature, we will encode our logical
system in a dual-rail encoding on two long paths. In particular, a single qubit will correspond to
two infinite paths, with a single wave-packet at some specified momentum k traveling along one of
the two paths. If the particle is located on the first (top) path, then the encoded qubit is in the
logical state |0〉, while if the particle is on the second (bottom) path then the encoded qubit is in
the logical state |1〉. Schematically, this can be seen in Figure 5.1.

If we could use an infinite Hilbert space to encode our qubits, we could then actually use
the eigenstates of the two paths to correspond to the two logical states. However, since we will
eventually want to measure the encoded states, we will want to assume that the encodings have
a well-defined position in space to ensure that we need only measure a (relatively) small number
of vertices in order to determine the encoded logical state with high probability. To ensure this
localization in space (and to use some of our error bounds on the time evolution), we will assume
that the logical states are encoded using a truncated Gaussian wave-packet, with four attributes
that specify the state: the momentum k, the standard deviation σ, the center of mass µ, and the
cutoff range L (which will be closely related to σ). With these four values, and assuming that the
vertices of the two infinite paths are labeled as (x, z) for x ∈ Z and z ∈ F2, we will have that the
logical qubit for our system will be encoded into the states

|z 〉log = γ

µ+L∑

x=µ−L
eikxe−

(x−µ)2

2σ2 |x, z 〉. (5.1)

It is important to realize that none of these four values depend on the value of the encoded qubit; this
will allow us to interfere the wave-packets arising from different paths to the same computational
basis, as there will be no extraneous information about the logical state.

This encoding is specifically chosen so that we can use Theorem 4, and guarantee various at-
tributes about the time evolution of such systems.

5.1.2 One single-qubit unitary

With an actual encoding of a logical qubit, the next step will be to apply an encoded unitary to
the logical state. However, our current encoding is on two (disconnected) paths, and as such if we
want to apply any unitary that mixes amplitudes among the two basis states we somehow need to
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connect the two paths. (Unitaries diagonal in the computational basis will use the same formalism,
but they have additional constraints that might make them easier to apply.)

Note that Chapter 4 was all about connecting (semi-) infinite paths, where the amplitudes move
from one path to another. As hinted in the chapter, we can implement encoded unitaries in this
manner, if we restrict ourselves to specific momenta and specific scattering gadgets. Namely, we
will examine graphs Ĝ with four terminal vertices such that at the momentum k encoding the
qubits, the scattering matrices take the form

S(k) =

(
0 UT

U 0

)
, (5.2)

where U is a specific 2×2 unitary matrix. Note that if we label the four basis states as 0in, 1in, 0out,
and 1out (in order), we have that the scattering has perfect transfer from input to output vertices.
We will be able to use scattering gadgets of this form to apply the unitary U to the encoded qubit.
Note that there are several explicit examples of these gadgets in Section 4.1.3.

More explicitly, we will have four semi-infinite paths, and we will label the four paths by 0in,
1in, 0out, and 1out (where this labeling of the paths is the same as in equation (5.2)). (This graph
is similar to that of Figure 5.2, except with semi-infinite paths.) We assume that the wave-packet
encoding a qubit travels toward the graph Ĝ along the two paths 0in and 1in. Far from the graph
the evolution of this wavepacket is nearly identical to that of an infinite path, and thus our encoded
qubit is well defined. As the wavepacket scatters through the graph Ĝ, the state of the qubit is not
well defined, but after scattering, most of the amplitude is on the 0out and 1out paths, and is in the
form of an encoded qubit.

For specific µ, L, σ, and t, we then have from Theorem 4 that the outgoing wave-packet for
the two computational basis states is well approximated by the wave-packet corresponding to the
state U |z 〉. If we remember that the form of the wave-packet doesn’t depend on the value of the
initial encoded qubit, we can see that the evolution of the two basis states interfere, and thus for
any encoded state |φ〉, the outgoing wavepacket is well approximated by the encoded U |φ〉. This
is exactly what we were looking for.

5.1.3 Evolution on a finite graph

Unfortunately, a single unitary will not be sufficient for our purposes; while we could probably find
a four-terminal graph that computes whether a given circuit accepts or rejects its input, most of
the computation would be found in the construction of the underlying graph, as opposed to the
evolution itself. To ensure that the computational power arises from the time evolution of the
system, we will need to place multiple graphs as scattering obstacles for the computation. This
causes problems, though, in that we extensively utilize the semi-infinite paths in our analysis; we
somehow need to truncate the graph while maintaining our results about the time-evolution.

To do this, we will apply our truncation lemma (Lemma 1), as it was designed specifically
for this reason. Assuming that two Hamiltonians are identical on some set of basis states, and
assuming that the support of the initial state is far (in some specified sense) from the difference,
then the evolution of the state is the same for the two Hamiltonians, up to a small error term.
By using this lemma on the scattering graph with semi-infinite paths, we can then see that if the
paths are long enough (as compared to the location of the initial state), then the evolution of an
initial wave-packet is relatively unchanged by the removal of the far vertices. Basically, Lemma 1
will allow us to prove an analog of Theorem 4 for finite graphs.

More concretely, let H = A(G) be the Hamiltonian for a single particle scattering off of a finite
graph Ĝ with N paths. Let G(K) be the finite graph obtained from G by truncating each of the

66



Ĝ

(1,2)(2,2)(3,2)(K,2)

(1,1)(2,1)(3,1)(K,1) (1,3) (2,3) (3,3) (K,3)

(1,4) (2,4) (3,4) (K,4)

Figure 5.2: A graph G(K) used to perform a single-qubit gate on an encoded qubit.

paths to have a total length K (so that the endpoints of the paths are labeled (K, j) for j ∈ [N ]),
and choose H̃ = A(G(K)) (see Figure 5.2 in the special case for N = 4). Let the subspace K be
spanned by basis states corresponding to vertices in G(K). Choose a momentum k ∈ (−π, 0), a
position µ, and a cutoff length L, and let |Φ〉 = |ψj(0)〉 be the same initial state as in Theorem 4.
We will choose the evolution time T so that for 0 ≤ t ≤ T , the time-evolved state remains far from
the vertices labeled (K, j) (for each j ∈ {1, . . . , N}), and thus far from the effect of truncating the
paths. Note that this requires K > µ+L. More precisely, we will choose T = O(L) and K = O(L)
so that, for times 0 ≤ t ≤ T , the state |αj(t)〉 from Theorem 4 has no amplitude on vertices within
a distance N0 = Ω(L) from the endpoints of the paths. For such times t we have

(1− P )Hr|αj (t)〉 = 0 for all 0 ≤ r < N0, (5.3)

where P is the projector onto K. With these values, we can apply Lemma 1 where W = H = A(G),
|γ(t)〉 = |αj(t)〉, and the bound δ = O(

√
logL/L) from Theorem 4. The lemma then says that, for

times t such that 0 ≤ t ≤ T ,

∥∥∥∥
(
e−iA(G)t − e−iA(G(K))t

)
|ψj(0)〉

∥∥∥∥ = O
(√

logL

L

)
(5.4)

so, for 0 ≤ t ≤ T , when combined with Theorem 4, we can see

∥∥∥e−iA(G(K))t|ψj(0)〉 − |αj(t)〉
∥∥∥ = O

(√
logL

L

)
. (5.5)

In other words, for small enough evolution times, the conclusion of Theorem 4 still holds if we
replace the full Hamiltonian A(G) with the truncated Hamiltonian A(G(K)) (albeit with a larger
constant). Note that this analysis is rather informal, and is more to give an intuition for the more
exact analysis.

With the guaranteed bounds on the scattering behavior for finite graphs, we can give explicit
bounds on the time-evolution of encoded qubits. In particular, let us assume that Ĝ is a four-
terminal gadget used to implement a unitary U at momentum k, and let us assume that our initial
states are encoded as Gaussian wave-packets a distance µ from the graph, with a cutoff distance
L. We will give explicit values of K, along with µ and L, so that the scattering event will cause
the unitary U to be applied to the encoded qubits, along with bounds on the error term.

Explicitly, assuming that the four paths are labeled as in Figure 5.2, where 0in, 1in, 0out and
1out are labeled as 1, 2, 3, and 4, respectively, we have that our input logical basis states are

|z 〉log,in = γ

µ+L∑

x=µ−L
eikxe−

(x−µ)2

2σ2 |x, z + 1〉, (5.6)
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where we assume that σ = L
2
√

logL
, as in Theorem 4. Further, we can make us of the theorem,

noting that |z 〉log,in are of the form |αz+1(0)〉, to define output logical states as well:

|z 〉log,out = γe−2iT cos k
µ+L∑

x=µ−L
e−ikxe−

(x−µ)2

2σ2 |x, z + 3〉, (5.7)

where T = µ
sin |k| . Note that the momentum k for the output logical states implies that the particles

are moving away from the graph Ĝ. In addition to these logical basis states, we can define logical
superpositions for a state |ψ 〉 = α|0〉+ β|1〉 as

|ψ 〉log,in = α|0〉log,in + β|1〉log,in (5.8)

and

|Uψ 〉log,out =
(
αU00 + βU01

)
|0〉log,out +

(
αU10 + βU11

)
|1〉log,out. (5.9)

With these definitions, we will want to show that the input states evolve to the corresponding
output states, in a manner similar to Theorem 4. Working through the math, we then find:

Lemma 12. Let k ∈ (−π, 0), and let Ĝ be a four-terminal gate gadget, such that its scattering
matrix at momentum k is of the form (5.2). Letting the logical states |z 〉log,in and |z 〉log,out be
defined as in (5.6) and (5.7), where µ ≥ L, µ ∈ O(L), K ≥ 5µ

3 , and T = µ
sin |k| , we have that there

exists some constant ξ such that for all 0 ≤ t ≤ T
∥∥∥e−iA(G(K))t|φ(0)〉 − |φ(t)〉

∥∥∥ ≤ ξ
√

logL

L
, (5.10)

where

|φ(t)〉 = α|α1(t)〉+ β|α2(t)〉, (5.11)

and the |αj(t)〉 are as defined in Theorem 4. In particular, we have

∥∥∥e−iA(G(K))T |ψ 〉log,in − |Uψ 〉log,out
∥∥∥ ≤ ξ

√
logL

L
. (5.12)

Proof. Note that
∥∥∥e−iA(G(K))t|φ(0)〉 − |φ(t)〉

∥∥∥

≤ |α|
∥∥∥e−iA(G(K))t|α1(0)〉 − |α1(t)〉

∥∥∥+ |β|
∥∥∥e−iA(G(K))t|α2(0)〉 − |α2(t)〉

∥∥∥. (5.13)

We now have nearly have the form of the bound in Theorem 4, but where we use truncated paths.
We will use Lemma 1, with H = A(G), H̃ = A(G(K)), and N0 = K − µ − L ≥ µ

6 , and where

the error bound δ = χ
√

logL
L comes from Theorem 4. Assuming that L is taken large enough so

that δ < 1, the lemma then gives us that for all 0 ≤ t ≤ T ,

∥∥∥
(
e−iA(G)t − e−iA(G(K))t

)
|αj(0)〉

∥∥∥ ≤
(

4e‖A(G)‖t
N0

+ 2

)[
χ

√
logL

L
+ 2−N0

(
1− χ

√
logL

L

)]
.

(5.14)
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U

k →

αµ 2L µ− L K

U

k →

K µ− L 2L αµ

Figure 5.3: A single-qubit gate U acts on an encoded qubit. The wave packet starts on the paths
on the left-hand side of the figure, a distance αµ from the ends of the paths (for some constant α).
After time µ

sin |k| the logical gate has been applied and the wave packet has traveled a distance 2µ.

If we then note that ‖A(G)‖ is bounded by the maximum degree of the graph G which is given by
d (a constant), and our bounds on N0, we then have

∥∥∥
(
e−iA(G)t − e−iA(G(K))t

)
|αj(0)〉

∥∥∥ ≤
(

12ed

µ

µ

sin |k| + 2

)
(χ+ 1)

√
logL

L
≤ ζ
√

logL

L
, (5.15)

where ζ is a constant (but does depend on k and the graph Ĝ).
We can then combine these results, as
∥∥∥e−iA(G(K))t|αj(0)〉 − |αj(t)〉

∥∥∥

≤
∥∥∥
(
e−iA(G(K))t − e−iA(G)t

)
|αj(0)〉

∥∥∥+
∥∥∥e−iA(G)t|αj(0)〉 − |αj(t)〉

∥∥∥ ≤
(
χ+ ζ

)
√

logL

L
.

(5.16)

From this, we can then see that
∥∥∥e−iA(G(K))t|φ(0)〉 − |φ(t)〉

∥∥∥

≤ |α|
∥∥∥e−iA(G(K))t|α1(0)〉 − |α1(t)〉

∥∥∥+ |β|
∥∥∥e−iA(G(K))t|α2(0)〉 − |α2(t)〉

∥∥∥ (5.17)

≤
(
|α|+ |β|

)(
χ+ ζ

)
√

logL

L
, (5.18)

and by setting ξ =
√

2(χ+ ζ) we have the requisite bound (for large enough L).
If we then note that φ(0) = |ψ 〉log,in and φ(T ) = |Uψ 〉log,out, we also have the particular bound

we were looking for.

Essentially, Lemma 12 tells us that even when truncated to finite length paths, the scattering
events on our graphs apply an encoded unitary to the logical states. This is represented pictorially
in Figure 5.3.

5.1.4 Multi-gate computations

Now that we have a good approximation for the time evolution of a scattering event on a finite-sized
graph, we can expand our results to multiple scattering events. In particular, if we can guarantee
that the eventual graph corresponding to a given circuit locally looks like G(K) for each unitary
in the circuit, we will be able to use the results of Lemma 12 iteratively. Essentially, if the graph
is two semi-infinite paths with regularly spaced scattering obstacles, our previous results will still
apply.

Along these lines, let us assume that a single-qubit circuit C is composed of g unitaries, where
the ith unitary applied is given by Ui. Moreover, let us assume that at a momentum k, the graphs
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Ĝi have scattering matrices of the form (5.2) corresponding to the unitary Ui (i.e., at momentum
k, the graph Ĝi implements an encoded Ui). We can then construct a graph GC which we will use
to compute the circuit C using wave-packets at momentum k.

The graph GC is constructed by combining the Gi(K) into a single graph (where Gi(K) is
defined in Section 5.1.2) by associating the output paths of Gi(K) with the input paths of Gi+1(K).
Assuming that the vertices of Gi(K) are labeled as (u, i), this essentially means that most of
the vertices along the long paths have two labels, (x, 3, i) and (K + 1 − x, i + 1) or (x, 4, i) and
(K + 1− x, 2, i+ 1). Equivalently, the graph GC can be constructed by removing the input paths
(paths 1 and 2) for all the Gi(K) (except for G1(K)), shortening each of the terminal paths by
1 (except for Gg(K)), and then connect the end of the paths for Gi(K) to the input terminals of
Gi+1(K).

With this construction of GC , note that if we look only at the vertices supported within a
distance of K − 2 of G̃i, we actually have the graph Gi(K − 1). As such, we will be able to use
Lemma 1 and Lemma 12 to determine the evolution while a Gaussian wave-packet is located near
the graph Ĝi. If we assume that the initial wave-packet is located in the correct position near
Ĝi, we can iteratively apply this idea, where the “input” logical state for the (i + 1)th scattering
event is simply the “output” from the ith scattering event. As such, the logical state after the gth
scattering event will correspond to the logical state after the circuit C has been applied.

Concretely, let us choose some cutoff length L, set σ = L
2
√

logL
, chose µ = 2L, K = 2µ− 1 and

T = µ
sin |k| . With these choices, our initial logical state will be nearly identical to (5.6), but where

the basis states also have a label corresponding to fact that there are multiple long paths:

|z 〉log,in = γ

µ+L∑

x=µ−L
eikxe−

(x−µ)2

2σ2 |x, z + 1, 1〉. (5.19)

In a similar manner, the final state of the qubit will be defined as

|z 〉log,out = γe−2iTg cos k−2ik(g−1)µ
µ+L∑

x=µ−L
e−ikxe−

(x−µ)2

2σ2 |x, z + 3, g 〉, (5.20)

where the additional global phase arises from the change in bases between the various scattering
events. We will also need to define logical states at several times throughout the computation,
corresponding to the states after each applied unitary. We will thus define the logical state after
the jth scattering event (and before the (j + 1)th scattering event) as

|z 〉log,j = γe−2iT j cos k−2ikµ(j−1)
µ+L∑

x=µ−L
e−ikxe−

(x−µ)2

2σ2 |x, z + 3, j 〉 (5.21)

= γe−2iT j cos k−2ijkµ
µ+L∑

x=µ−L
eikxe−

(x−µ)2

2σ2 |x, z + 1, j + 1〉. (5.22)

Except for the additional (global) phase arising from the change of basis, these are exactly the
logical states necessary for Lemma 12.

We can now bound the error in approximating the time evolution of an initial state with the
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output state corresponding to the logical application of the circuit:

∥∥∥e−iA(GC)gT |ψ 〉log,in − |UCψ 〉log,out

∥∥∥

≤
g−1∑

j=0

∥∥∥e−iA(GC)T |UjUj−1 · · ·U1ψ 〉log,j − |Uj+1Uj · · ·U1ψ 〉log,j+1

∥∥∥ (5.23)

Note that each individual term is close to that in Lemma 12, but where the Hamiltonian is given by
A(GC) as opposed to A(G(K)). However, we can use Lemma 1, with H = A(GC), H̃ = G(K − 1),
N0 = µ

4 , and the error δ from Lemma 12, we have that for all logical states |φ〉,
∥∥∥e−iA(GC)T |φ〉log,j − |Uj+1φ〉log,j+1

∥∥∥

≤
(16e‖A(GC)‖T

µ
+ 2
)[
ξ

√
logL

L
+ 2−µ+L+2

(
1− χ

√
logL

L

)]
(5.24)

≤ κ
√

logL

L
, (5.25)

where κ depends on k and the maximum degree of GC (which we assume to be constant). We can
then see that

∥∥∥e−iA(GC)gT |ψ 〉log,in − |UCψ 〉log,out

∥∥∥

≤
g−1∑

j=0

∥∥∥e−iA(GC)T |UjUj−1 · · ·U1ψ 〉log,j − |Uj+1Uj · · ·U1ψ 〉log,j+1

∥∥∥ (5.26)

≤ gκ
√

logL

L
. (5.27)

As such, if we take L larger than g2κ2 log2(gκ) we find that the error can be made arbitrarily small,
and thus we were able to simulate the circuit C via scattering on a constant-degree graph with
O(g3 log2 g) vertices.

5.2 Multi-qubit computations

Now that we understand how to simulate a single-qubit circuit via scattering, we can try to apply
our results to multi-qubit circuits. The intuitive construction remains the same, but the requisite
number of vertices will become rather large. In particular, our construction will require an expo-
nential number of long paths, corresponding to the exponential size of the Hilbert space we want
to simulate.

To begin, let us give the encoding of n qubits in our scattering framework. As in Section 5.1.1,
we will encode the state as a wave-packet traveling along an infinite path, where the value of the
qubit is encoded in the path on which the particle is located. For a single qubit, this meant that
we had two infinite paths, corresponding to logical 0 and 1. For n qubits, however, this means that
we need 2n infinite paths, one path corresponding to each logical basis state.

We will still have four important quantities that are independent of the state of the qubit,
namely the momentum of the wave-packet k, the position of the center of the wave-packet µ (which
depends on t), the cutoff distance L, and the standard deviation of the approximating Gaussian σ.
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As such, if we label the 2n infinite paths by the strings z ∈ Fn2 , and the vertices as (x, s) for x ∈ Z
and z ∈ Fn2 , we have that the logical states are encoded in the wave-packets

|z〉log = γ

µ+L∑

x=µ−L
eikxe−

(x−µ)2

2σ2 |x, z〉. (5.28)

Note that we again use this encoded form so that we will be able to analyze the dynamics via
Theorem 4.

5.2.1 One multi-qubit unitary

Now that we have an encoding of our qubits, we will need to somehow apply encoded unitary gates.
We have already done most of the work in Section 5.1, and we just need to show how to use the
single-qubit results in our larger encoding, and how to perform multi-qubit entangling gates.

Our implementation of single-qubit unitaries for multi-qubit computations is to use many copies
of the single-qubit implementation. In particular, since a single qubit unitary U acting on qubit
w ∈ [n] can be written as

I2w−1 ⊗ U ⊗ I2n−w =
∑

x∈Fw−1
2 ,y∈Fn−w2

|x〉〈x | ⊗ U ⊗ |y 〉〈y |, (5.29)

we can apply the unitary U on the encoded w qubit by ensuring that the scattering occurs for each
computational basis state of the other qubits. This means that by placing 2n−1 copies of the graph
Ĝ as obstacles in the paths, one for each computational basis state of the qubits not used in the
unitary, the scattering behavior is exactly as expected. We will call the infinite graph corresponding
to the unitary U acting on n qubits GnU .

For multi-qubit entangling unitaries, the solution is even more simple; we simply relabel the
output paths. Noting that many multi-qubit gates, such as the controlled-NOT gate or the Toffoli
gate, simply permute the computational basis states, along with the fact that the particular path
a particle travels along corresponds to its logical state, by relabeling the paths, or equivalently by
permuting the paths, we apply an encoded entangling gate. Note that this method of applying a
multi-qubit gate is independent of the encoding momenta, and thus can be used for all momenta (so
that we don’t need to find additional graphs with scattering matrices at the encoding momentum).

Assuming that a given two-qubit unitary V occurs after some single-qubit unitary U , we con-
struct the graph GnV U implementing V U by taking a copy of GnU , and then permuting its output

paths. Note that this means that for a given copy of Ĝj , the logical states corresponding to the
input paths might be different from the logical states corresponding to the output paths. However,
since V is only a two-qubit permutation, the output paths can be efficiently determined for a given
copy of Ĝj . An example of such a graph can be seen in Figure 5.4, except with semi-infinite paths.

As in Section 5.1.3, we can then define GnV U (K) as the graph that that remains after truncating
each of the infinite paths of GnV U to length K.

With all of this, and assuming that the 2n+1 paths are labeled with the path corresponding to
zin for z ∈ Fn2 is labeled as z + 1 while the zout are labeled as z + 2n + 1, we have that our input
logical basis states are

|z〉log,in = γ

µ+L∑

x=µ−L
eikxe−

(x−µ)2

2σ2 |x, z + 1〉, (5.30)
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U0...0

U0···1

U1···1

K K

Figure 5.4: The intuitive idea for the graph simulating a single unitary. Each Ux for x ∈ Fn−1
2 is

the same, and note that the output paths are flipped if the last bit is 1.

where we assume that σ = L
2
√

logL
, as in Theorem 4. Note that this generalizes the single particle

case (5.6) to more input and output paths. We can then take inspiration from the single qubit
case, and define the output logical states as well:

|z〉log,out = γe−2iT cos k
µ+L∑

x=µ−L
e−ikxe−

(x−µ)2

2σ2 |x, z + 2n + 1〉, (5.31)

where T = µ
sin |k| . In addition to these logical basis states, for an arbitrary state |ψ 〉 =

∑
z∈FN2 αz|z〉

in CFn2

|ψ 〉log,in =
∑

z∈Fn2

αz|z〉log,in (5.32)

and

|Uψ 〉log,out =
∑

y,z∈FN2

Uz,yαy|z〉log,out, (5.33)

where U is thought of as a unitary on n qubits. With these definitions, we will want to show that
the input states evolve to the corresponding output states. This nearly follows from Lemma 12,
but we need to do some small work showing that the errors don’t grow like the number of paths.

Corollary 1. Let k ∈ (−π, 0), let Ĝ be a four-terminal gate gate, such that its scattering matrix
at momentum k is of the form (5.2) for a given unitary U , and let V be a permutation of the
underlying basis states. Letting the logical states |z〉log,in and |z〉log,out be as in (5.30) and (5.31),
where µ ≥ 2L and K ≥ 5µ

3 and T = µ
sin |k| , we have that there exists some constant ξ such that for

all 0 ≤ t ≤ T ,

∥∥∥e−iA(GnV U (K))t|φ(0)〉 − |φ(t)〉
∥∥∥ ≤ ξ

√
logL

L
, (5.34)

where

|φ(t)〉 =
∑

z∈Fn2

βz|αz+1(t)〉, (5.35)

and the |αj(t)〉 are as defined in Theorem 4. In particular, we have for any |ψ 〉 ∈ CFn2 ,

∥∥∥e−iA(GnV (K))T |ψ 〉log,in − |Uψ 〉log,out
∥∥∥ ≤ ξ

√
logL

L
. (5.36)
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Proof. Note that GnV U (K) is a disconnected graph, with 2n−1 components. As such, we have that
e−iA(GnV U (K)t decomposes into the product of 2n−1 commuting operators, all acting on disjoint
Hilbert spaces. Because of this, error cannot interfere between the various disconnected paths, and
thus the total error is bounded by the maximum error on any individual component.

In each component, however, we can use Lemma 12 to see that the first part of the corollary
holds, with the appropriate error (and with a constant equal to that of Lemma 12). Hence, the

total error is bounded by ξ
√

logL
L .

For the second part of the corollary, we can use Lemma 12 to see that the result holds on each
component of GnV U (K), and thus holds in general.

5.2.2 Multi-gate computations

At this point, we have most of the requirements to simulate a multi-qubit circuit. We know from
Section 5.2.1 how to apply a single encoded unitary on multiple qubits via scattering on a finite
graph, and we know from Section 5.1.4 how to apply multiple single-qubit gates. We need only to
combine these two results.

We will make use of the same block structure as in Section 5.1.4, where the graph corresponding
to a single unitary is shown in Figure 5.4. Additionally, we will assume that the circuit we want to
simulate only consists of a single-qubit gates followed by a two-qubit gate. This assumption isn’t
difficult to enforce, as these gates can simply consist of identity operations. The circuit that we
want to simulate is then given by

UC = VgUgVg−1Ug−1 · · ·V1U1, (5.37)

where each Vj is a two-qubit gate, and each U1 is a one-qubit gate.
As in Section 5.1.4, we will construct a graph for this circuit, GC , by examining the graphs

GnVjUj for each j ∈ [g], and then combining them by associating the output paths of GnVjUjj(K)

with the input paths of GnVj+1Uj+1
(K). Explicitly, the vertices along the output paths of GnVjUj (K)

labeled as (x, 2n + 1 + z, j) for z ∈ Fn2 are defined to be the same vertices on the input paths of
GnVj+1Uj+1

(K) labeled as (K + 1− x, z+ 1, j + 1). This can be seen pictorially in Figure 5.4 for one
of these blocks.

With this construction, we will use exactly the same idea as in the Section 5.1.4 to analyze the
time-evolution of a particular initial logical state, with the analysis proceeding accordingly. Using
Lemma 1 to focus on the vertices close to a the wavepacket (and in particular the nearest copy of
GnVjUj (K)) we can the use Corollary 1 to approximate the evolution.

Concretely, let us choose some cutoff length L, set σ = L
2
√

logL
, chose µ = 2L and K = 2µ − 1

and T = µ
sin |k| . With these choices, our initial logical state will be nearly identical to (5.6), but

where the labels for the basis states also have a label corresponding to fact that there are multiple
long paths:

|z〉log,in = γ

µ+L∑

x=µ−L
eikxe−

(x−µ)2

2σ2 |x, z + 1, 1〉. (5.38)

In a similar manner, the final state of the qubit will be defined as

|z〉log,out = γe−2iTg cos k−2i(g−1)µ
µ+L∑

x=µ−L
e−ikxe−

(x−µ)2

2σ2 |x, z + 2n + 1, g 〉, (5.39)
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Additionally, we will need to define logical states at several times throughout the computation,
corresponding to the states after each applied unitary. As such, we will define the logical state after
the jth scattering event (and before the (j + 1)th scattering event) as

|z〉log,j = γe−2iT j cos k−2ikµ(j−1)
µ+L∑

x=µ−L
e−ikxe−

(x−µ)2

2σ2 |x, z + 2n + 1, j 〉 (5.40)

= γe−2iT j cos k−2ijkµ
µ+L∑

x=µ−L
eikxe−

(x−µ)2

2σ2 |x, z + 1, j + 1〉, (5.41)

where as in the single-qubit case, the additional phase arises from the change of labeling of the
vertices.

From here, we can now bound the error in approximating the time evolution of |z〉log,in for a
time Tg by the output logical state corresponding to an application of the circuit, by breaking the
evolution into blocks of length T . Explicitly:

∥∥∥eiA(GC)gT |ψ 〉log,in − |UCψ 〉log,out

∥∥∥

≤
g−1∑

j=0

∥∥∥eiA(GC)T |UjUj−1 · · ·U1ψ 〉log,j − |Uj+1Uj · · ·U1ψ 〉log,j+1

∥∥∥ (5.42)

Note that each individual term is close to that in Corollary 1, but where the Hamiltonian is given by
A(GC) as opposed to A(GVjUj (K)). However, using Lemma 1 with H = A(GC), H̃ = GVjUj (K−1),
N0 = µ

4 , and the error δ from Corollary 1, we have that for all logical states |φ〉,
∥∥∥eiA(GC)T |φ〉log,j − |Uj+1φ〉log,j+1

∥∥∥

≤
(16e‖A(GC)‖T

µ
+ 2
)[
ξ

√
logL

L
+ 2−µ+L+2

(
1− χ

√
logL

L

)]
(5.43)

≤ κ
√

logL

L
, (5.44)

where κ is depends on k and the maximum degree of GC (which we assume to be constant). We
can then see that

∥∥∥eiA(GC)gT |ψ 〉log,in − |UCψ 〉log,out

∥∥∥

≤
g−1∑

j=0

∥∥∥eiA(GC)T |UjUj−1 · · ·U1ψ 〉log,j − |Uj+1Uj · · ·U1ψ 〉log,j+1

∥∥∥ (5.45)

≤ gκ
√

logL

L
, (5.46)

exactly as in Section 5.1.4 and our error bound does not explicitly depend on n. As such, if we take
L larger than g2κ2 log2(gκ) we find that the error can be made arbitrarily small, and thus we can
simulate a particular n-qubit g-gate circuit with constant error via graph scattering on a graph of
O(2ng3 log2 g) vertices for a time O(g3 log2 g).

Note that Child’s original universality result for quantum walk [18] required a time of O(g4) for
the evolution, and only succeeded with a probability of Ω(1/g4). However, his results also had a
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simpler initial state, and the error bounds of his construction might not be optimal. If we use some
of his results on constructing our initial state via momentum filtering (without explicitly going
through the calculations), we might expect that this is at least a factor of g improvement from the
time-evolution of the states.

5.3 Discussion and extensions

At this point, we have shown that single-particle graph scattering can be used to simulate an arbi-
trary quantum computation. In particular, we were able to use a dual-rail encoding, and simulate
each unitary from a universal gate set via scattering. By combining these scattering events (and
bounding the resulting error), we were able to simulate the computation. It is important to realize
that most of the technical results for this universality proof are contained in our understanding
of single-particle scattering from Chapter 3, along with a technical truncation lemma (Lemma 1),
and the portion of the proof in this chapter are simply applications of those results.

While this is a novel proof of the universality of quantum walk, both the result and the proof
strategy are not new. In particular, Childs gave a similar result using scattering theory [18], but
where his time evolution arose from the theory of stationary phases, while the proof strategy is
nearly identical to that of Childs, Gosset, and Webb in their proof of universality for multi-particle
quantum walk [24]. However, the point of this chapter was not to prove anything novel, but to give
an intuitive understanding for the proof strategy.

Additionally, the discussion in this chapter has essentially been plug-and-play for the momentum
k, assuming that a set of universal scattering gadgets are known for the momentum in question.
However, we have only found these gadgets for a small set of momenta, described in Section 4.1.3.
One might be able to extend this proof to work for all momenta, if we could find a set of gadgets
that work for all momenta. It might also be possible to show that this construction does not work
for some momentum, although I think that unlikely.

As a possible extension of this work, the permutation of the underlying paths corresponding
to a two-qubit unitary plays a key part in our encoded gates. However, these permutations are
intrinsically non-planar (assuming that there are more than three non-identity 2-qubit gates). One
might ask whether any planar graph could be used to encode a computation, or whether non-
planarity is required to capture the entire power of quantum walk. I would expect this non-planarity
to be required even to simulate a classical computation. In a similar manner, one might ask what
other properties of the underlying graph are needed to maintain the same computational power.
While this is not necessary for any physical reason (since the exponential size of the graph is
infeasible to construct in reality), there might be some relation between different graph properties
and their use as a computational tool.

Additionally, our current construction assumes no errors, and error-correction cannot trivially
be implemented in our scheme. We are unsure how error correction could be implemented us-
ing this construction, since both non-local measurements and measurements in the middle of the
computation seem rather difficult. Further, one of the inherent properties of quantum walk is the
lack of a time-dependent Hamiltonian; most current error correction methods seem contrary to the
spirit of quantum walk. As such, including some kind of error correction naturally in our graph
scattering (or quantum walk in general) would be of great help for this architecture to actually be
used as a vehicle for quantum computation. This would additionally help us in Chapter 7, as we
use similar methods to show the universality of multi-qubit quantum walk.
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Chapter 6

Multi-particle quantum walk

So far, we have only focused on the case of a single walker moving on a graph. These systems
exhibit all the hallmarks of quantum systems, with superpositions of states, entanglement, and the
like, but neccessity forces the corresponding graphs to be unphysical; as each vertex corresponds to
a computational basis state, in order to get nontrivial computational power we are forced to work
on graphs that are not practical to implement in the real world.

From a computational point of view, this does not matter. Chapter 5 showed that quantum walk
is universal for quantum computation, and thus we wouldn’t expect it to be easier to implement
than a universal quantum computer. However, several experimental implementations of quantum
walk have been carried out [31, 40, 55], where the encoding has been done in a non-scalable manner.

Continuing in this manner, experimentalists have also examined what happens when multiple
particles interact on the same graph. Explicitly, they have analyzed what happens when two bosons
walk on a graph [17, 56, 61], what happens when multiple bosons move along a long path, and
various other simple experiments.

While these experimental realizations of multi-particle quantum walk have flourished, the the-
oretical side has only seen some small development. In particular, there have been attempts to use
these MPQW as tools for analyzing graph properties, in the hope that they might be useful for the
graph isomorphism problem, but many of these avenues have been proven impossible. Additionally,
there are some continuous space analysis on the eigenstates of some interaction Hamiltonians, but
in most cases no closed form solution exists.

In this chapter, we will define our model of multi-particle quantum walk, and analyze the
dynamics of such a model on some simple systems. While this will not improve drastically our
previous knowledge this does give us a better understanding of simple interactions.

Note that this chapter takes results from Childs, Gosset, and Webb [24, 25], and improves some
of the results from those papers as well. We will mention explicitly where the results in this thesis
improve previous results.

6.1 Multi-particle quantum walk

In Chapter 3, we analyzed a single-particle quantum walk, and in particular we found that the
evolution proceeds with a Hamiltonian given by the adjacency matrix of the graph. If we want to
generalize this framework to multiple particles, we will want to ensure that each individual particle
in our framework evolves as in the single-particle case.

Namely, we had that the Hilbert space for the single-particle quantum walk on a graph G was
given by C|V (G)|, with the computational basis given by the states labeled by the vertices of the
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graph:

{
|v 〉 : v ∈ V (G)

}
. (6.1)

If we want to extend this to multiple particles, we shall take multiple copies of this Hilbert space. As
such, we will assume that Hilbert space for the N -particle quantum walk on a graph G is C|V (G)|N ,
with the computational basis given by

{
|v1, v2, · · · , vN 〉 : ∀i ∈ [N ], vi ∈ V (G)

}
. (6.2)

Note that for the moment we assume that the N particles are distinguishable.
Now that we have a Hilbert space for theN -particle quantum walk, we still need the Hamiltonian

to understand the time-evolution. As the Hamiltonian for a single particle is simply the adjacency
matrix of the graph G, we will take as our definition of the N -particle quantum walk (without
interaction) as a sum of Hamiltonians that each generate the correct single-particle evolution for a
given particle. Namely, we have that the N particle quantum walk with no interaction takes the
form

HN
mov =

∑

w∈[N ]

A(G)(w) (6.3)

where for a given single-particle operator B, we represent by B(w) the operator that acts on N
particles as B on the wth particle and I on the rest. With such a Hamiltonian, the evolution
operator decomposes into a product of commuting terms, where each term acts as the single particle
evolution for a different particle, exactly as we want.

While this definition of an N -particle quantum walk does nicely generalize that of a single-
particle quantum walk, it is not any more interesting than the original single-particle walk. In
particular, the eigenstates of (6.3) easily decompose into product states, where each of the individual
particles are in an eigenstate of A(G). Such a system is only as computationally powerful as that of a
single-particle system, since we can simulate the N -particle system via N single-particle evolutions.
To get around this, we will thus want to force some interaction between the particles. We will also
want to ensure that we capture the intuitive structure of particle interactions from the continuum,
so that our model makes sense as a quantum walk. Note that in the continuum, the interaction
strength only depends on the distance between the particles. This translation invariance can have
several different abstractions to a general graph (which could be thought of as something related
to the Bohm-Aharanov effect), but on a one dimensional lattice we would expect the interaction
to only depend on the distance between the particles, as measured by the shortest path between
vertices.

We will take this requirement on the infinite path and use it for all vertices. Further, we
will assume some finite range of interaction, so that particles with large physical separation don’t
interact. Namely, let us choose some dmax ∈ N to be the finite range of the interaction, and then
choose d+ 1 symmetric polynomials in two variables, Ud, for 0 ≤ d ≤ dmax. Additionally, assuming
that we know that there are a total of N particles, let n̂v for v ∈ V (G) be the operator that counts
the number of particles at vertex v, explicitly given by

n̂v =
∑

w∈[N ]

|v 〉〈v |(w). (6.4)

78



With these values, and if d(u, v) is the distance function on the graph G given by the length of the
shortest path between u and v, we can define the interaction

Hint =

dmax∑

d=0

∑

u,v∈V (G)
d(u,v)=d

Ud(n̂u, n̂v). (6.5)

Note that on the infinite path (and in fact on any lattice), this interaction has the form we require.
With such a chosen interaction, (i.e., with dmax and the Ud well defined), we can then define

the N -particle quantum walk on G with this interaction. Namely, we let

HN
G = HN

mov +HN
int =

∑

w∈[N ]

A(G)(w) +

dmax∑

d=0

∑

u,v∈V (G)
d(u,v)=d

Ud(n̂u, n̂v). (6.6)

Hamiltonians of this form will be the study of this thesis. Note that we call the component of (6.6)
corresponding to the sum of adjacency matrices (6.3) the movement term of the Hamiltonian, while
the part corresponding to the interaction (6.5) is called the interaction term.

Several times in the thesis, we will need to reference particular values that the interaction
Hamiltonian takes. As such, we will use as shorthand

Ua,bd = Ud(a, b). (6.7)

6.1.1 Indistinguishable particles

Note that in our definition of MPQW, we assume that the particles are all distinguishable, and
thus we can locate each of the N particles. In many cases of interest, though, we will actually not
have this ability, as the particles will be indistinguishable. One might then think that we would
need to change our definition in order to characterize these indistinguishable walks.

This turns out to not be the case, however, as Hamiltonian (6.6) is permutation invariant. In
other words, we have that for any permutation of the underlying particle particles (given by Vπ for
a given permutation π ∈ SN ),

VπH
N
G V

†
π = HN

G . (6.8)

Using this, we can then see that the Hamiltonian preserves the symmetric and anti-symmetric
subspaces, corresponding to either fermions or bosons.

As such, if we want to restrict our attention to bosonic multi-particle quantum walk, we simply
have that the relevant Hilbert space is

{
Sym

(
|v1, v2, · · · , vN 〉

)
: ∀i ∈ [N ], vi ∈ V (G)

}
, (6.9)

where

Sym
(
|φ〉
)

=
1

N !

∑

π∈Sn
Vπ|φ〉, (6.10)

but where the Hamiltonian for the walk is still given by (6.6). Similarly, we have that fermionic
MPQW, the Hilbert space is given by

{
Asym

(
|v1, v2, · · · , vN 〉

)
: ∀i ∈ [N ], vi ∈ V (G)

}
, (6.11)
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where

Sym
(
|φ〉
)

=
1

N !

∑

π∈Sn
sign(π)Vπ|φ〉, (6.12)

and we again use the same Hamiltonian.

6.1.2 Examples

While (6.6) is a well defined mathematical object for a given graph G, interaction range dmax,
symmetric polynomials Ud, and a number of particles, N , as of yet we haven’t given any well-
known models that fall into this class of interactions. However, the idea of translation invariant
interactions, in which the interaction does not depend on the particular location of a given particle,
is abundant in physics, and thus there are several well-know models that relate to our MPQW.

6.1.2.1 Bose-Hubbard model

The Bose-Hubbard model on a graph, where the particles are taken to be bosons, and there is a
given onsite interaction between the particles is probably the first interaction that falls into our
class of interactions. In particular, we have that in the second quantized basis, the Hamiltonian
for the Bose-Hubbard model on a graph G is usually given by

HBH
G = thop

∑

i,j∈V (G)

A(G)ija
†
iaj + Jint

∑

k∈V (G)

nk(nk − 1), (6.13)

where a†i creates a boson at vertex i, and ni = aia
†
i counts the number of particles at vertex i.

Note that this form of the Hamiltonian does not require knowledge of the number of particles, as
it works in the Fock space which allows for an arbitrary number of particles. Additionally, we have
that (6.13) preserves the number of particles, and thus decomposes into blocks for each particle
number.

While this form of (6.13) is not quite that of (6.6), if we assume that there are N particles,
we can rewrite the Hamiltonian in the first quantized basis (after restricting to the symmetric
subspace) as

HBH,N
G = thop

∑

w∈[N ]

∑

i,j∈V (G)

Ai,j
(
| i〉〈j |

)(w)
+ Jint

∑

v∈V (G)

n̂v
(
n̂v − 1

)
. (6.14)

This is simply a rescaling by thop of a Hamiltonian the form (6.6), where dmax = 0 and

U0(x, y) =
Jint

4thop
(x+ y)(x+ y − 2) (6.15)

6.1.2.2 Nearest-neighbor interactions

While the Bose-Hubbard model (and onsite-interactions in general) is a well studied model, no
onsite-interaction affects the anti-symmetric states at all. As such, if we want an interaction that
will change the structure of the entire Hilbert space, we will need to increase our dmax to at least
1, arriving at nearest neighbor interactions.

While there are many different interactions with dmax = 1, probably the most simple is given
by U0 = 0 and

U1(x, y) = γxy. (6.16)
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With this interaction, we then have that the corresponding MPQW Hamiltonian is given by

HNN,N
G =

∑

w∈[N ]

A(G)(w) + γ
∑

{u,v}∈E(G)

n̂un̂v (6.17)

6.1.3 Evolution on disconnected graphs

While a general result about the eigenstates of an N -particle quantum walk on a given graph G
might be difficult, we can reason about some properties of the eigenstates and time-evolved states
without needing to explicitly calculate the overall form of the eigenstates. In particular, if a given
graph on which the particles walk has some property, then so too might the time-evolved states.

Perhaps the most obvious such property is the connectivity of the graph itself. In particular,
our MPQW Hamiltonian (6.6) only allows particles to move between vertices that have a path
between them; if two vertices are not connected in G, then the corresponding off-diagonal element
of the time evolution unitary will always be zero.

We can use this to decompose the time-evolution unitary into a product of commuting unitaries,
each corresponding to a specific component of G. If each of the N particles in a state |φ〉 have
support only on one component of the graph G, then the evolution operator is simply a product
of nc-particle MPQW evolutions for each component Gc of G, where nc particles are on the c-th
component. Explicitly, we have the following lemma:

Lemma 13. Let G be a disconnected graph with M components, and let us examine the N -particle
MPQW on G. If |ψ 〉 is an N -particle state such that each particle j only has support on the Gcj th
component of G, then

e−iH
N
G t|φ〉 =

M∏

c=1

W †c
(
e−iH

nc
Gc
t
)(1,2,··· ,nc)

Wc|φ〉 (6.18)

where nc is the number of particles with support on Gc, and Wc is a permutation operator that takes
the particles with support on Gc to the first nc particles. In the special case where nc ≤ 1 for all c,
this then reduces to

e−iH
N
G t|φ〉 =

n∏

j=1

(
e
−iA(Gkj )t

)(j)
|φ〉. (6.19)

Proof. Let us assume an arbitrary ordering on the components of G, and let |φ〉 = |v1, v2, · · · , vN 〉
be any N -particle basis state on G, with nc particles on the c-th component of G, and where that
the first n1 vertices are in G1, then next n2 vertices are in G2, and continuing for all components
of G. Note that for all times t ∈ R, e−iA(G)t|vi 〉 only has support on the component of G to which

vi belongs, and thus e−iA(G)t|vi 〉 = e−iA(Gcj )t|vi 〉 (with the natural identification between basis
vectors in the smaller Hilbert space).

As the interaction term of (6.6) is diagonal in the computational basis, we have that for all

times t, e−iH
N
G t|φ〉 only has support on states

{
|w1, · · · , wN 〉 : ∀i ∈ [N ], wi ∈ V (Gci)

}
. (6.20)

Further, as the interaction in (6.6) is finite range (and vertices in different components have infinite
distance), this implies that only particles on the same component can interact, and the interaction
is restricted to H(Gc, nc) for each component.
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Combining these two results, we then have that, when restricted to states of the form |φ〉, we
have that the evolution according to HN

G is equal to that of

e−iH
N
G t|φ〉 =

M∏

c=1

(
e−iH

nc
Gc
t
)(mc+1,mc+2,··· ,mc+nc)|φ〉, (6.21)

where mc =
∑c−1

j=1 nc. If we then use the fact that HN
G commutes with all permutations of the

underlying particles, and that states of the form |φ〉 (and their permutations) span the relevant
space, we then have (6.18). If we restrict ourselves to the case where each particle is on a separate
component, the second equation follows immediately.

Note that if we combine this lemma with the truncation lemma (Lemma 1), we have that when
particles are separated from each other they almost evolve independently, as one might expect. We
will use this intuition several times in the remainder of the thesis.

6.2 Two-particle scattering on an infinite path

After choosing a given interaction, equation (6.6) provides us with a well defined MPQW Hamil-
tonian for N -particles. With this, we can explicitly evolve a given state, and hopefully use such
systems for algorithmic advantages. However, this requires an understanding of the eigenstates of
a multi-particle interacting system, for which we have few examples of analytic solutions. On the
other hand, we can analyze some highly symmetric systems, when we restrict ourselves to a small
number of particles. Our understanding of these small systems can then be leveraged to gain some
information about MPQW with many particles on some given graphs.

In particular, we already know from Chapter 3 the basic properties of a single particle moving on
a long path. One might expect that that next step would be to understand two particles interacting
on a similar scattering graph, but unfortunately even this is a little too complicated for this thesis.
However, we can analyze two particles interacting on an infinite path.

Namely, let us assume that the interaction Hamiltonian has been chosen, such that there is a
dmax and a set of d + 1 symmetric functions Ud. We can then write the Hamiltonian (6.6) in the
basis |x, y 〉, where x, y ∈ Z are the positions of the first and second particles, as

H2 = H1 ⊗ Iy + Ix ⊗H1 +
∑

x∈Z

dmax∑

d=0

Ud(n̂x, n̂x+d), (6.22)

where the single-particle Hamiltonian H1 is simply the adjacency matrix for the infinite path,
namely

H1 =
∑

x∈Z
|x+ 1〉〈x |+ |x〉〈x+ 1 |. (6.23)

Without the interaction term, the eigenstates for this Hamiltonian would simply by two inde-
pendent scattering eigenstates, with amplitudes of the form eik1x+ik2y. However, the interaction
causes there to be correlations between the two particles, and these correlations will be similar to
the single particle interactions scattering off of a graph with two attached semi-infinite paths.

While our given Hamiltonian (6.22) is simple to define, in order to understand dynamics we
will want to diagonalize it. Further, while the current basis does have a permutation invariance
between the two particles, it does not make use of the translation invariance of the interaction. To
make use of this symmetry, we will need to change to a different basis.
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In particular, let us look at the new basis |s; r 〉, where s = x + y and r = x − y, and where
the allowed values of (s, r) range over those values where s and r are either both even or both odd
(i.e., s+ r must be even). If we then expand (6.22) in this basis, we find

H(1) ⊗H(1) + I⊗
∑

r∈Z
V(|r|) |r 〉〈r |, (6.24)

where V (0) = U0(2, 2) and V (r) = Ur(1, 1) for r > 0.
Note that (6.24) looks to be much nicer to analyze than (6.22), as we nearly have a sepa-

rable decomposition of the Hamiltonian. We do have a decomposition such that the eigenstates
corresponding to s don’t rely on the current state of r, and we will see that once we chose a partic-
ular eigenstate for the s, the corresponding eigenvalue equation for r will look exactly as a scaled
single-particle scattering equation as in Chapter 3.

6.2.1 Eigenstates on the path

With the decomposition of (6.22) that nicely decouples the center of mass movement from the
relative movement of two particles (i.e., the physical meaning of r and s), we can determine the
eigenvalues and eigenvectors of the Hamiltonian.

Namely, let us make the ansatz that the eigenstates of (6.24) take the form

〈s; r |ψ 〉 = e−ip1s/2〈r |φp1 〉 (6.25)

where p1 ∈ (−π, π). With this assumption, we then have that the effective Hamiltonian for |φp1 〉
takes the form

2 cos
(p1

2

)
H(1)
r +

∑

r∈Z
V(|r|) |r 〉〈r |. (6.26)

Note that this is simply a rescaled single-particle scattering problem, as in Chapter 3, except where
the weights of the graph gadget need not be normalized, and with a slight relabeling of the semi-
infinite paths (i.e., the paths do not start from 1). We can then use the intuition from the chapter
to see that for each p2 ∈ (0, π) there is a scattering eigenstate of the form

〈r|ψ(p1; p2)〉 =





e−ip2r +R(p1, p2)eip2r if r ≤ −dmax

f(p1, p2, r) if |r| < dmax

T (p1, p2)e−ip2r if r ≥ dmax.

(6.27)

for p2 ∈ (0, π). Here the reflection and transmission coefficients R and T and the amplitudes of
the scattering state for |r| < dmax (described by the function f) depend on both momenta as well
as the interaction V. With R, T , and f chosen appropriately, the state |sc(p1; p2)〉 is an eigenstate
of H(2) with eigenvalue 4 cos(p1/2) cos(p2). While it is not possible to give an explicit closed-form
solution for all interactions, the form of (6.27) will be sufficient for most of our purposes.

Additionally, we can use the fact that V(|r|) is an even function of r to also define scattering
states for p2 ∈ (−π, 0) by

〈s; r|sc(p1; p2)〉 = 〈s;−r|sc(p1;−p2)〉. (6.28)

These other states are obtained by swapping x and y, corresponding to interchanging the two
particles.

While we will not need a complete basis for for this Hamiltonian, note that if there are any
bound states of (6.26), then there will be corresponding traveling states where the two particles
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move together. These are the well known dimer states, and while they are important to find a
basis for the entire Hilbert space they will play a role similar to the bound states of single-particle
scattering; only exponentially small amplitude of the states of interest will be on these states, and
thus we will neglect their study.

The construction of the symmetric and anti-symmetric scattering states follows as one would
expect. For p1 ∈ (−π, π) and p2 ∈ (0, π), we define

|sc(p1; p2)〉± =
1√
2

(
|sc(p1; p2)〉 ± |sc(p1;−p2)〉

)
. (6.29)

If we note that the unitarity of the underlying scattering matrix S and the fact that V (|r|) being
even in r forces R(p1, p2) = R(p1,−p2) and T (p1, p2) = T (p1,−p2) we can then see that the
combinations

|T (p1, p2)±R(p1, p2)| = 1. (6.30)

With this, we can then see that the symmeterized scattering states can be expanded as

〈s; r |sc(p1; p2)〉± =
1√
2
e−ip1s/2





e−ip2r ± eiθ±(p1,p2)eip2r if r ≤ −C
f(p1, p2, r)± f(p1,−p2,−r) if |r| < C

eiθ±(p1,p2)e−ip2r ± eip2r if r ≥ C,
(6.31)

where θ±(p1; p2) is a real function defined through

eiθ±(p1;p2) = T (p1; p2)±R(p1; p2). (6.32)

These eigenstates allow us to understand what happens when two particles with momenta
k1 ∈ (−π, 0) and k2 ∈ (0, π) move toward each other. Here p1 = −k1 − k2 and p2 = (k2 − k1)/2.
Similar to the scattering states of Chapter 3, we have that for |r| ≥ C the scattering state is
a sum of two terms, one corresponding to the two particles moving toward each other and one
corresponding to the two particles moving apart after scattering, but where the outgoing term has
a phase of T ±R relative to the incoming term (as depicted in Figure 6.1). This phase arises from
the interaction between the two particles.

In particular, we can transform (6.31) to the (x, y) basis as

〈x, y |sc(k1, k2)〉±

=
1√
2
ei(k1+k2)x+y

2





ei(k1−k1)x−y
2 ± eiθ±(k1,k2)ei(k2−k2)x−y

2 if x− y ≤ −C
f
(
− k1 − k2,

k2−k1
2 , x− y

)
± f(−k1 − k2,

k1−k2
2 , y − x) if |x− y| < C

eiθ±(k1,k2)ei(k1−k2)x−y
2 ± ei(k2−k1)x−y

2 if x− y ≥ C,
(6.33)

where we defined θ±(k1, k2) = θ±(−k1 − k2; (k2 − k1)/2).

6.2.2 Examples

While our understanding of two-particle scattering for arbitrary interactions is useful, as we know
that for almost any interaction the form of the eigenstates are scattering states, it will be useful to
instantiate our claims and have explicit examples for the functions θ±.
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← k1 k2 → × (T ±R) t >
D

2|sin k1|+2|sin k2|

D

k2 → ← k1
t =0

Figure 6.1: Scattering of two particles on an infinite path.

6.2.2.1 Bose-Hubbard model

If we consider the Bose-Hubbard model for two particles, we have V(|r|) = U2,2
0 δr,0. Here C = 0

and T = 1 +R. In this case the scattering state |sc(p1; p2)〉+ is

〈x, y|sc(p1; p2)〉+ =
1√
2
e−ip1(

x+y
2 )
(
eip2|x−y| + eiθ+(p1,p2)e−ip2|x−y|

)
. (6.34)

The first term describes the two particles moving toward each other and the second term describes
them moving away from each other. To solve for the applied phase eiθ+(p1,p2) we look at the
eigenvalue equation for |ψ(p1; p2)〉 at r = 0. This gives

R(p1, p2) = − U2,2
0

U2,2
0 − 4i cos(p1/2) sin(p2)

. (6.35)

So for the Bose-Hubbard model,

eiθ+(p1,p2) = T (p1, p2) +R(p1, p2) = −U
2,2
0 + 4i cos(p1/2) sin(p2)

U2,2
0 − 4i cos(p1/2) sin(p2)

=
2 (sin(k2)− sin(k1))− iU2,2

0

2 (sin(k2)− sin(k1)) + iU2,2
0

.

(6.36)

For example, if U2,2
0 = 2 +

√
2 then two particles with momenta k1 = −π/2 and k2 = π/4 acquire

a phase of e−iπ/2 = −i after scattering.

6.2.2.2 Nearest-neighbor interaction

For a multi-particle quantum walk with nearest-neighbor interactions, V(|r|) = U1,1
1 δ|r|,1 and C = 1.

In this case the eigenvalue equations for |ψ(p1; p2)〉 at r = −1, r = 1, and r = 0 are

4 cos
(p1

2

)
cos(p2)(eip2 +R(p1, p2)e−ip2) = U1,1

1 (eip2 +R(p1, p2)e−ip2) (6.37)

+ 2 cos
(p1

2

) (
e2ip2 +R(p1, p2)e−2ip2 + f(p1, p2, 0)

)

(6.38)

4 cos
(p1

2

)
cos(p2)T (p1, p2)e−ip2 = U1,1

1 T (p1, p2)e−ip2 (6.39)

+ 2 cos
(p1

2

) (
f(p1, p2, 0) + T (p1, p2)e−2ip2

)
(6.40)

2 cos(p2)f(p1, p2, 0) = T (p1, p2)e−ip2 + eip2 +R(p1, p2)e−ip2 , (6.41)

respectively.
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Solving these equations for R, T , and f(p1, p2, 0), we can construct the corresponding scattering
states for bosons, fermions, or distinguishable particles. Unlike the case of the Bose-Hubbard model,
we may not have 1 +R = T . For example, when U1,1

1 = −2−
√

2, p1 = π/4, and p2 = 3π/8, we get
R = 0 and T = i.

Additionally, in the special case of k1 = 2π
3 and k2 = −π

3 , we have that

R =
U1,1

1

U1,1
1 − i

√
3

T = 1−R =

√
3√

3 + iU1,1
1

, (6.42)

and thus θ+(k1, k2) = 0, while

eiθ−(k1,k2) = −U
1,1
1 + i

√
3

U1,1
1 − i

√
3
. (6.43)

In this way, we have that the symmetric subspace has no acquired phase, while the anti-symmetric
does acquire a phase.

6.2.3 Two-particle orthonormality

While the states |sc(p1; p2)〉 do not necessarily span the entire Hilbert space, they will span the
portion of the space that will be needed for this thesis. However, we will need that they satisfy
some orthogonality constraints, and in particular that they are (delta-function) orthonormal. As
such, we have that the states {|sc(p1; p2)〉 : p1 ∈ (−π, π), p2 ∈ (−π, 0) ∪ (0, π)} have the following
inner product:

〈sc(p′1; p′2)|sc(p1; p2)〉 = 〈sc(p′1; p′2)|
( ∑

r, s even

|r〉〈r| ⊗ |s〉〈s|
)
|sc(p1; p2)〉

+ 〈sc(p′1; p′2)|


 ∑

r, s odd

|r〉〈r| ⊗ |s〉〈s|


 |sc(p1; p2)〉 (6.44)

=
∑

s even

e−i(p1−p
′
1)s/2

∑

r even

〈ψ(p′1; p′2)|r〉〈r|ψ(p1; p2)〉

+
∑

s odd

e−i(p1−p
′
1)s/2

∑

r odd

〈ψ(p′1; p′2)|r〉〈r|ψ(p1; p2)〉 (6.45)

= 2πδ(p1 − p′1)
∞∑

r=−∞
〈ψ(p1; p′2)|r〉〈r|ψ(p1; p2)〉 (6.46)

= 4π2δ(p1 − p′1)δ(p2 − p′2) (6.47)

where in the last step we used the fact that 〈ψ(p1; p′2)|ψ(p1; p2)〉 = 2πδ(p2 − p′2), which can be
derived from Lemma 4.

6.3 Wave-packet scattering

Now that we have an understanding of the two-particle scattering eigenstates on an infinite path,
we will want to understand the time-evolution of wave-packets on the infinite path. In particular,
if we initially have a product state corresponding to two wave-packets traveling towards each other,
how does the time-evolved state look?
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We would expect that the two wave-packets would simply evolve forward in time, where the
center of the wave-packets each move with a speed 2 sin ki, possibly acquiring a phase if they move
past each other. It turns out that this is exactly what happens, but proving the fact is a little
complicated.

As this was a major component of [24], a bound for this scattering behavior was proven using
square wave-packets.

Theorem 5 (Childs, Gosset, W [24]). Let H(2) be a two-particle Hamiltonian of the form (6.6)
with interaction range at most d, i.e., V(|r|) = 0 for all |r| > d. Let θ±(p1; p2) be given by equation
(6.32). Define θ = θ±(π/4, 3π/8). Let L ∈ N, let M ∈ {d+ 1, d+ 2, . . .}, and define

|χz,k〉 =
1√
L

z−1∑

x=z−L
eikx|x〉 (6.48)

|ψ(0)〉 =
1√
2

(
|χ−M,−π

2
〉|χM+L+1,π

4
〉 ± |χM+L+1,π

4
〉|χ−M,−π

2
〉
)
. (6.49)

Let c0 be a constant independent of L. Then, for all 0 ≤ t ≤ c0L, we have

∥∥∥e−iH(2)t|ψ(0)〉 − |α(t)〉
∥∥∥ = O(L−1/4),

where
|α(t)〉 =

∑

x,y

axy(t)|x, y〉, (6.50)

axy(t) = ±ayx(t) for x 6= y, and, for x ≤ y,

axy(t) =
1√
2L
e−
√

2it
[
e−iπx/2eiπy/4F (x, y, t)± eiθeiπx/4e−iπy/2F (y, x, t)

]
(6.51)

where

F (u, v, t) =

{
1 if u− 2btc ∈ {−M − L, . . . ,−M − 1} and v + 2

⌊
t√
2

⌋
∈ {M + 1, . . . ,M + L}

0 otherwise.

(6.52)

Note that this was sufficient for their purposes, but the square wave-packets were most likely not
optimal in terms of the resulting error. In particular, one would expect something like a Gaussian
wave-packet to have better error bounds.

Along these lines, this section is focused on proving the following lemma discussing wave-packet
propagation using Gaussian wave-packets:

Theorem 6. Let H(2) be a two-particle Hamiltonian of the form (6.6) with interaction range at
most d. Let θ±(p1; p2) be given by equation (6.32) (with associated θ±(k1, k2)). Let k1 ∈ (−π, 0)
and let k2 ∈ (0, π), let L, µ, ν ∈ N with L > 0 and and let σ > 0. Let us then define the states

|α(t)〉± =
γ√
2
e−2it(cos k1+cos k2)

µ(t)+L∑

x=µ(t)−L

ν(t)+L∑

y=ν(t)−L
e−

(x−µ(t))2

2σ2
− (y−ν(t))2

2σ2 eik1x+ik2yαxy
(
|x, y 〉 ± |y, x〉

)
,

(6.53)
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where

µ(t) = µ− d2t sin k1e, ν(t) = ν − d2t sin k2e, αxy =





1 y − x > r

eiθ±(k1,k2) x− y > r

0 otherwise,

(6.54)

and

γ−2 =

L∑

x,y=−L
e−

1
σ2

(x2+y2) =
(
h
σ/
√

2
L (0)

)2
. (6.55)

Additionally, let us define the initial state

|ψ(0)〉± = |α(0)〉±. (6.56)

If σ = L
2
√

logL
, and if 0 ≤ t < cL for some constant c, then

‖e−iH2t|ψ(0)〉± − |α(t)〉‖± ≤ 4

√
c logL

L
. (6.57)

Note that we will use many of the tools used in the proof of Theorem 4, and in particular we
use the function hσL(φ) several times.

Proof. We will first want to show that our approximation to the time-evolved state is a nearly
normalized state. In particular, we have that

±〈α(t) |α(t)〉±

= γ2

[
µ(t)+L∑

x=µ(t)−L

ν(t)+L∑

y=ν(t)−L
e−

(x−µ(t))2

σ2
− (y−ν(t))2

σ2

±
min{µ(t),ν(t)}+L∑

x,y=max{µ(t),ν(t)}−L
e−

(x−µ(t))2+(x−ν(t))2+(y−µ(t))2+(y−ν(t))2

2σ2 ei(k1−k2)xei(k2−k1)yαxyα
∗
yx

−
min{µ(t),ν(t)}+L∑

x=max{µ(t),ν(t)}−L

min{x+d,µ(t)+L,ν(t)+L}∑

y=max{x−d,µ(t)−L,ν(t)−L}
e−

(x−µ(t))2

σ2
− (y−ν(t))2

σ2

]
. (6.58)

While this is a rather complicated expression when |µ(t)− ν(t)| ≤ 2L, for times outside this range
only the first term is nonzero, and is in fact exactly γ−2. Hence, for times when the two wave-
packets do not overlap, our approximation |α(t)〉± is exactly normalized. If we can show that
the latter two terms are small for all times t, we will then have that our approximation is almost
normalized, as we need.

Let us first inspect the second term in (6.58), corresponding to the cross terms between the two
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wave-packets. We can expand the sum as

min{µ(t),ν(t)}+L∑

x,y=max{µ(t),ν(t)}−L
e−

(x−µ(t))2+(x−ν(t))2+(y−µ(t))2+(y−ν(t))2

2σ2 ei(k1−k2)xei(k2−k1)yαxyα
∗
yx

= e−iθ±
min{µ(t),ν(t)}+L∑

x,y=max{µ(t),ν(t)}−L
y−x>d

e−
(x−µ(t))2+(x−ν(t))2+(y−µ(t))2+(y−ν(t))2

2σ2 ei(k1−k2)xei(k2−k1)y

+ eiθ±
min{µ(t),ν(t)}+L∑

x,y=max{µ(t),ν(t)}−L
x−y>d

e−
(x−µ(t))2+(x−ν(t))2+(y−µ(t))2+(y−ν(t))2

2σ2 ei(k1−k2)xei(k2−k1)y, (6.59)

and then inspect each of these two terms individually. We can then see

min{µ(t),ν(t)}+L∑

x,y=max{µ(t),ν(t)}−L
y−x>d

e−
(x−µ(t))2+(x−ν(t))2+(y−µ(t))2+(y−ν(t))2

2σ2 ei(k1−k2)xei(k2−k1)y

=

min{µ(t),ν(t)}+L∑

x=max{µ(t),ν(t)}−L
e−

(x−µ(t))2+(x−ν(t))2

2σ2 ei(k1−k2)x

min{µ(t),ν(t)}+L∑

y=x+d+1

e−
(y−µ(t))2+(y−ν(t))2

2σ2 ei(k2−k1)y

(6.60)

=

min{µ(t),ν(t)}+L∑

x=max{µ(t),ν(t)}−L
e−

(x−µ(t))2+(x−ν(t))2

2σ2 ei(k1−k2)xe−
(µ(t)−ν(t))2

4σ2

×
min{µ(t),ν(t)}+L∑

y=x+d+1

e−
(y−µ(t)+ν(t)2 )2

σ2 ei(k2−k1)y. (6.61)

Now, this second sum is simply a finite Gaussian approximation related to the h function from
Chapter 3, with an offset from the center. From this, we have

min{µ(t),ν(t)}+L∑

y=x+d+1

e−
(y−µ(t)+ν(t)2 )2

σ2 ei(k2−k1)y = ei(k2−k1)
µ(t)+ν(t)

2

min{µ(t),ν(t)}+L−µ(t)+ν(t)
2∑

y=x+d+1−µ(t)+ν(t)
2

e−
y2

σ2 ei(k2−k1)y.

(6.62)

Assuming that µ(t) + ν(t) is even, this is simply

ei(k1−k2)
µ(t)+ν(t)

2

min{µ(t),ν(t)}+L∑

y=x+d+1

e−
(y−µ(t)+ν(t)2 )2

σ2 ei(k2−k1)y

=





V
σ√
2

1,
µ(t)+ν(t)

2
−x−d−1

(k1 − k2) + 1 + V
σ√
2

1,L− |µ(t)−ν(t)|
2

(k2 − k1) µ(t) + ν(t) > 2(x+ d+ 1)

V
σ√
2

x+d+1− ν(t)+µ(t)
2

,L− |ν(t)−µ(t)|
2

(k2 − k1) otherwise.

(6.63)
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For both cases, we have that this is bounded by some constant value in norm by Lemma 6 from
Chapter 3. If µ(t) + ν(t) is odd, we can simply note that

b∑

y=a

e−
1
σ2

(y+ 1
2

)2eiφy = e−i
φ
2

b∑

y=a

e−
(2y+1)2

4σ2 ei
φ
2

(2y+1) (6.64)

= e−i
φ
2

[
2b+1∑

z=2a+1

e−
z2

4σ2 ei
φ
2
z −

b∑

z=a

e−
z2

σ2 eiφz

]
, (6.65)

where both of the sums can be bounded by constants in norm in a manner similar to (6.63). As
such, we have that for all times t,

∣∣∣∣∣

min{µ(t),ν(t)}+L∑

y=x+d+1

e−
(y−µ(t)+ν(t)2 )2

σ2 ei(k2−k1)y

∣∣∣∣∣ < κ (6.66)

for some constant κ that might depend on L, σ, and k2 − k1. We can then use this to bound the
norm of (6.61) as

∣∣∣∣∣

min{µ(t),ν(t)}+L∑

x,y=max{µ(t),ν(t)}−L
y−x>d

e−
(x−µ(t))2+(x−ν(t))2+(y−µ(t))2+(y−ν(t))2

2σ2 ei(k1−k2)xei(k2−k1)y

∣∣∣∣∣

≤ κe−
(µ(t)−ν(t))2

2σ2

min{µ(t),ν(t)}+L∑

x=max{µ(t),ν(t)}−L
e−
(
x−µ(t)+ν(t)2

)2
σ2 (6.67)

≤ κe−
(µ(t)−ν(t))2

2σ2 h
√

2σ
∞ (0) (6.68)

≤ 6
√
πσκe−

(µ(t)−ν(t))2

2σ2 , (6.69)

where the second inequality arose since we didn’t know whether µ(t) + ν(t) was even or odd, and
the third from our bounds on hσ∞(0). A similar argument gives the same bound for the sum with
x− y > d.

For the third term in (6.58), we again use a rather simple approximation. Namely, we have

min{µ(t),ν(t)}+L∑

x=max{µ(t),ν(t)}−L

min{x+d,µ(t)+L,ν(t)+L}∑

y=max{x−d,µ(t)−L,ν(t)−L}
e−

(x−µ(t))2

σ2
− (y−ν(t))2

σ2 < (2d+ 1)hσ/
√

2
∞ (0) (6.70)

< (2d+ 1)2
√
πσ, (6.71)

where we again used our bounds on hσ∞(0) from Lemma 5 from Chapter 3.
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Putting these bounds together, we then have that

∣∣∣±〈α(t) |α(t)〉± − 1
∣∣∣

≤ γ2

[∣∣∣∣∣

min{µ(t),ν(t)}+L∑

x,y=max{µ(t),ν(t)}−L
e−

(x−µ(t))2+(x−ν(t))2+(y−µ(t))2+(y−ν(t))2

2σ2 ei(k1−k2)xei(k2−k1)yαxyα
∗
yx

∣∣∣∣∣

+

∣∣∣∣∣

min{µ(t),ν(t)}+L∑

x=max{µ(t),ν(t)}−L

min{x+d,µ(t)+L,ν(t)+L}∑

y=max{x−d,µ(t)−L,ν(t)−L}
e−

(x−µ(t))2

σ2
− (y−ν(t))2

σ2

∣∣∣∣∣

]
(6.72)

≤ γ2

[
2

(
6
√
πσκe−

(µ(t)−ν(t))2

2σ2

)
+ 2(2d+ 1)

√
πσ

]
(6.73)

≤ 2
√
πσγ2

(
κ+ 2d+ 1

)
. (6.74)

Since γ2 ∝ σ−2, we then have that our normalization is then off by something bounded by O(σ−1),
which will be sufficient for our purposes.

With the above bounds on the normalization, we can now analyze our approximations to the
time-evolved states. We find that

±〈sc(p1; p2) |α(t)〉±

=
γe−2it(cos(k1)+cos(k2))

√
2

µ(t)+L∑

x=µ(t)−L

ν(t)+L∑

y=ν(t)−L
eik1xeik2ye−

(x−µ(t))2

2σ2 e−
(y−ν(t))2

2σ2 βx,y

×
(
±〈sc(p1; p2) |x, y 〉 ± ±〈sc(p1; p2) |y, x〉

)
(6.75)

= γe−2it(cos(k1)+cos(k2))

µ(t)+L∑

x=µ(t)−L

ν(t)+L∑

y=ν(t)−L
y>x+r

eik1xeik2ye−
(x−µ(t))2

2σ2 e−
(y−ν(t))2

2σ2

× ei
p1
2

(x+y)
(
eip2(x−y) ± e−iθ±(p1;p2)e−ip2(x−y)

)

+ γe−2it(cos(k1)+cos(k2))

µ(t)+L∑

x=µ(t)−L

ν(t)+L∑

y=ν(t)−L
y<x−r

eik1xeik2ye−
(x−µ(t))2

2σ2 e−
(y−ν(t))2

2σ2 eiθ±(k1,k2)

× ei
p1
2

(x+y)
(
e−iθ±(p1;p2)eip2(x−y) ± e−ip2(x−y)

)
. (6.76)

While this is a rather complicated expression, if we break the terms into smaller pieces, we find
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that

±〈sc(p1; p2) |α(t)〉±

= γe−2it(cos(k1)+cos(k2))

[
µ(t)+L∑

x=µ(t)−L

ν(t)+L∑

y=ν(t)−L
y>x+r

e−
(x−µ(t))2

2σ
− (y−ν(t))2

2σ2 ei
(
k1+k2

2
+
p1
2

)
(x+y)

×
(
ei
(
k1−k2

2
+p2
)

(x−y) ± e−iθ±(p1;p2)ei
(
k1−k2

2
−p2
)

(x−y)
)

+

µ(t)+L∑

x=µ(t)−L

ν(t)+L∑

y=ν(t)−L
y<x−r

e−
(x−µ(t))2

2σ
− (y−ν(t))2

2σ2 ei
(
k1+k2

2
+
p1
2

)
(x+y)

×
(
ei
(
θ±(k1,k2)−θ±(p1;p2)

)
ei
(
k1−k2

2
+p2
)

(x−y) ± eiθ±(k1,k2)ei(
k1−k2

2
−p2)(x−y)

)]
(6.77)

= γe−2it(cos(k1)+cos(k2))

[
µ(t)+L∑

x=µ(t)−L

ν(t)+L∑

y=ν(t)−L
e−

(x−µ(t))2

2σ2
− (y−ν(t))2

2σ2 ei(k1+
p1
2

+p2)xei(k2+
p1
2
−p2)y

+
(
ei(θ±(k1,k2)−θ±(p1;p2)) − 1

)

×
µ(t)+L∑

x=µ(t)−L

ν(t)+L∑

y=ν(t)−L
y>x+r

e−
(x−µ(t))2

2σ2
− (y−ν(t))2

2σ2 ei(k1+
p1
2

+p2)xei(k2+
p1
2
−p2)y

±
(
e−iθ±(p1;p2)δµ(t)≤ν(t) + eiθ±(k1,k2)δµ(t)>ν(t)

)

×
µ(t)+L∑

x=µ(t)−L

ν(t)+L∑

y=ν(t)−L
e−

(x−µ(t))2

2σ2
− (y−ν(t))2

2σ2 ei(k1+
p1
2
−p2)xei(k2+

p1
2

+p2)y

± δµ(t)≤ν(t)

(
eiθ±(k1,k2) − e−iθ±(p1;p2)

)

×
µ(t)+L∑

x=µ(t)−L

ν(t)+L∑

y=ν(t)−L
y<x−r

e−
(x−µ(t))2

2σ
− (y−ν(t))2

2σ2 ei(k1+
p1
2
−p2)xei(k2+

p1
2

+p2)y

± δµ(t)>ν(t)

(
e−iθ±(p1;p2) − eiθ±(k1,k2)

)

×
µ(t)+L∑

x=µ(t)−L

ν(t)+L∑

y=ν(t)−L
y>x+r

e−
(x−µ(t))2

2σ
− (y−ν(t))2

2σ2 ei(k1+
p1
2
−p2)xei(k2+

p1
2

+p2)y

−
µ(t)+L∑

x=µ(t)−L

ν(t)+L∑

y=ν(t)−L
|x−y|≤r

e−
(x−µ(t))2

2σ
− (y−ν(t))2

2σ2

(
ei(k1+

p1
2

+p2)xei(k2+
p1
2
−p2)y

±
(
e−iθ±(p1;p2)δµ(t)≤ν(t) + eiθ±(k1,k2)δµ(t)>ν(t)

)
ei(k1+

p1
2
−p2)xei(k2+

p1
2

+p2)y

)]
. (6.78)

While this expansion takes up much more room than before, it nicely organizes each of the terms
in the inner product. Depending on the value of p1 and p2, most of the norm in (6.78) is on
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either the first or the third terms, with the rest small corrections. In fact, the first of these terms is
proportional to hσL(k1 +p1/2+p2)hσL(k2 +p1/2−p2), while the second is similar but with p2 7→ −p2.

With a decent understanding of these inner products, we can now define a Gaussian approxi-
mation to our assumed approximation of the time-evolved states. In particular, since most of the
norm is contained on terms proportional to a product of hσL(θ), our approximated time-evolved
states will be centered about those p1 and p2 such that the θ ≈ 0. Explicitly, let us then define the
states

|w(t)〉 = ηe−2it(cos k1+cos k2)

∫ δ

−δ

∫ δ

−δ

dφ1dφ2

4π2
eiφ1
(
µ(t)+ν(t)

2

)
eiφ2(µ(t)−ν(t))

× e−
σ2φ21

4 e−σ
2φ22 |sc(p1 + φ1; p2 + φ2)〉± (6.79)

where

p1 = −k1 − k2 p2 =
k2 − k1

2
η−2 =

∫ ∞

−∞

∫ ∞

−∞

dφ1dφ2

4π2
e−σ

2
(
φ21
2

+2φ22

)
=

1

4πσ2
, (6.80)

and δ is a constant that we will define later. While the states |w(t)〉 are not exactly normalized,
we have that

〈w(t) |w(t)〉 = η2

∫ δ

−δ

∫ δ

−δ

dφ1dφ2

4π2
e−σ

2
(
φ21
2

+2φ22

)
= 1− η2

π2

∫ ∞

δ

∫ ∞

δ
dφ1dφ2e

−σ2
(
φ21
2

+2φ22

)
(6.81)

≥ 1− 1

πδ2σ2
e−

5σ2δ2

2 , (6.82)

and as the second term on the right hand side of (6.81) is non-negative, we have that 〈w(t) |w(t)〉 ≤
1.

We will now want to understand the relationship between the |α(t)〉 and |w(t)〉, as we did in
the proof of Theorem 4. We then have

〈w(t) |α(t)〉±

= ηe2it(cos k1+cos k2)

∫ δ

−δ

dφ1dφ2

4π2
e−iφ1

µ(t)+ν(t)
2 eiφ1(ν(t)−µ(t))e−

σ2φ21
4
−σ2φ22

±〈sc(p1 + φ1; p2 + φ2) |α(t)〉±. (6.83)

It will then be worthwhile to expand ±〈sc(p1 + φ2; p2 + φ2) |α(t)〉± as in (6.78), and bound the
norm for each term individually. By contracting terms and by a slight relabelling of the dummy
variable used for the sums, we then have the first term in the integrand for (6.83) is exactly

∫∫ δ

−δ

dφ1dφ2

4π2
e−

σ2φ21
2
−σ2φ22hσL

(φ1

2
+ φ2

)
hσL

(φ1

2
− φ2

)
(6.84)

=

∫∫ δ

−δ

dφ1dφ2

4π2
e−

σ2φ21
2
−σ2φ22

[
hσ∞
(φ1

2
+ φ2

)
hσ∞
(φ1

2
− φ2

)

+ hσ∞
(φ1

2
+ φ2

)[
hσL

(φ1

2
− φ2

)
− hσ∞

(φ1

2
− φ2

)]

+

[
hσL

(φ1

2
+ φ2

)
− hσ∞

(φ1

2
+ φ2

)]
hσL

(φ1

2
− φ2

)]
. (6.85)
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Again, there are several integrals, but most of the amplitude is contained on the first. For the first
term, we can actually show that the integral is at least

∫ δ

−δ

∫ δ

−δ

dφ1dφ2

4π2
e−

σ2φ21
4
−σ2φ22hσ∞

(φ1

2
− φ2

)
hσ∞
(φ1

2
+ φ2

)

=
σ2

2π

∫ δ

−δ

∫ δ

−δ
dφ1dφ2e

−σ
2φ21
2
−2σ2φ22h1/(2πσ)

∞
[
2πiσ2

(φ1

2
− φ2

)]
h1/(2πσ)
∞

[
2πiσ2

(φ1

2
+ φ2

)]

(6.86)

≥ σ2

2π

∫ δ

−δ

∫ δ

−δ
dφ1dφ2e

−σ
2φ21
2
−2σ2φ22 (6.87)

=
1

2
〈w(t) |w(t)〉 (6.88)

where we used the fact that hσ∞(iφ) ≥ 1 for real φ. Using the upper bounds on h from Lemma 5,
we also have that

∫ δ

−δ

∫ δ

−δ

dφ1dφ2

4π2
e−

σ2φ21
4
−σ2φ22hσ∞

(φ1

2
− φ2

)
hσ∞
(φ1

2
+ φ2

)

≤ σ2

2π

∫ δ

−δ

∫ δ

−δ
dφ1dφ2e

−σ
2φ21
2
−2σ2φ22

[
1 + 2

(
1 +

1

πσ2

1

4π − |φ1 − 2φ2|
)
e−2π2σ2+πσ2(φ1−2φ2)

]

×
[

1 + 2
(

1 +
1

πσ2

1

4π − |φ1 + 2φ2|
)
e−2π2σ2+πσ2(φ1+2φ2)

]
(6.89)

≤ 1

2

[
1 + 3e−π

2σ2
(

2π−3δ
)]2
〈w(t) |w(t)〉 (6.90)

where we assumed that 2π > 3δ, and that σ ≥ 1.
For the second and third terms of (6.85), note that for any real ϕ1, ϕ2, and for any L1, L2 >

σ ≥ 1, we have that

∣∣∣hσL1
(ϕ1)

(
hσL2

(ϕ2)− hσ∞(ϕ2)
)∣∣∣

≤
∣∣hσ∞(0)

∣∣2σ
2

L2
e−

L2
2

2σ2 (6.91)

≤ 2σ2

L
e−

L2

2σ2

[
1 + 2(1 + σ2)e−

1
2σ2

]
(6.92)

≤ 6σ4

L
e−

L2

2σ2 . (6.93)
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If we then use this bound for both of the integrands, we have

∣∣∣∣∣

∫ δ

−δ

∫ δ

−δ

dφ1dφ2

4π2
e−

σ2φ21
4 e−σ

2φ22

[
hσ∞
(φ1

2
+ φ2

)[
hσL

(φ1

2
− φ2

)
− hσ∞

(φ1

2
− φ2

)]

+

[
hσL

(φ1

2
+ φ2

)
− hσ∞

(φ1

2
+ φ2

)]
hσL

(φ1

2
− φ2

)]∣∣∣∣∣

≤ 2

∫ δ

−δ

∫ δ

−δ

dφ1dφ2

4π2
e−

σ2φ21
4 e−σ

2φ22
6σ4

L
e−

L2

2σ2 (6.94)

<
3σ4

π2L
e−

L2

2σ2

∫ ∞

−∞

∫ ∞

−∞
dφ1dφ2e

−σ
2φ21
4 e−σ

2φ22 (6.95)

=
6σ2

πL
e−

L2

2σ2 . (6.96)

From this, we then approximately know the norm of the first term in (6.83).
For the second term in (6.83), we will show that it can be bounded in norm, using the fact that

the angle θ±(p1, p2) is a bounded rational function of the momentum. From this, we know that it
is differentiable as a function of both φ1 and φ2 on some neighborhood U of (p1, p2). Let us assume
that δ is chosen so that [−δ, δ]× [−δ, δ] ⊂ U , and now let

Γ = max
[−δ,δ]×[−δ,δ]

∣∣∇eiθ±(p1+φ1,p2+φ2)
∣∣. (6.97)

We then have that
∣∣∣∣∣

∫∫ δ

−δ

dφ1dφ2

4π2
e−iφ1

µ(t)+ν(t)
2 eiφ1(ν(t)−µ(t))e−

σ2φ21
4
−σ2φ22

×
(
ei(θ±(k1,k2)−θ±(p1;p2)) − 1

) µ(t)+L∑

x=µ(t)−L

ν(t)+L∑

y=ν(t)−L
y>x+r

e−
(x−µ(t))2

2σ2
− (y−ν(t))2

2σ2 ei(k1+
p1
2

+p2)xei(k2+
p1
2
−p2)y

∣∣∣∣∣

<

∫∫ δ

−δ

dφ1dφ2

4π2
Γ
√
φ2

1 + φ2
2e
−σ

2φ21
4
−σ2φ22hσL(0)hσL(0) (6.98)

<
Γσ2

2π

∫∫ ∞

−∞
dφ1dφ2

√
φ2

1 + φ2
2e
−σ2

4
(φ21+φ22) (6.99)

= Γσ2

∫ ∞

0
r2e−

σ2

4
r2dr (6.100)

=
2
√
πΓ

σ
(6.101)

and we have a bound on the norm of the second term in (6.83).
The third term in (6.83) is bound in a manner very similar to the first term. In particular, can

rearrange the sums, so that the term is proportional to the product of two hσL(θ), where the θ is
bounded away from 0. If we take the absolute value, so as to get rid of the extraneous phases, we
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find that
∣∣∣∣∣

∫ δ

−δ

∫ δ

−δ

dφ1dφ2

4π2
e−

σ2φ21
4
−σ2φ22

(
e−iθ±(p1;p2)δµ(t)≤ν(t) + eiθ±(k1,k2)δµ(t)>ν(t)

)

ei(k1−k2−2φ2)µ(t)ei(k2−k1+2φ2)ν(t)hσL

(
k1 − k2 +

φ1

2
− φ2

)
hσL

(
k2 − k1 +

φ1

2
+ φ2

)∣∣∣∣∣

≤
∫∫ δ

−δ

dφ1dφ2

4π2
e−

σ2φ21
4
−σ2φ22

∣∣∣∣hσL
(
k1 − k2 +

φ1

2
− φ2

)
hσL

(
k2 − k1 +

φ1

2
+ φ2

)∣∣∣∣. (6.102)

If we then approximate the hL by hσ, as we did for the first term, we can use the exact same bound
for the difference, as there was no reliance on the arguments to the h functions, other than that
they were purely real. As such, we need only bound the above integral for infinite h’s.

∫∫ δ

−δ

dφ1dφ2

4π2
e−

σ2φ21
4
−σ2φ22

∣∣∣∣hσ∞
(
k1 − k2 +

φ1

2
− φ2

)
hσ∞
(
k2 − k1 +

φ1

2
+ φ2

)∣∣∣∣

≤ σ2

2π

∫∫ δ

−δ
e−σ

2
(
φ21
2

+φ22+
(
φ2+k1−k2

)2)

× h1/(2πσ)
∞

[
2πiσ2

(
k2 − k1 +

φ1

2
+ φ2

)]
h1/(2πσ)
∞

[
2πiσ2

(
k1 − k2 +

φ1

2
− φ2

)]
(6.103)

≤ σ2

2π

∫ δ

−δ

∫ δ

−δ
dφ1dφ2e

−σ
2φ21
2 e−σ

2(φ22+(2p2+φ2)2)

×
(
1 + 3e−2πσ2(π−|2p2+φ2−φ12 |)

)(
1 + 3e−2πσ2(π−|2p2+φ2+

φ1
2
|)) (6.104)

At this point, if π > |k1 − k2|, we can choose δ so that π > |k1 − k2|+ 2δ and thus

∫∫ δ

−δ

dφ1dφ2

4π2
e−

σ2φ21
4
−σ2φ22

∣∣∣∣hσ∞
(
k1 − k2 +

φ1

2
− φ2

)
hσ∞
(
k2 − k1 +

φ1

2
+ φ2

)∣∣∣∣

≤ 2σ2

π

∫ δ

−δ

∫ δ

−δ
dφ1dφ2e

−σ2φ21e−σ
2(φ22+(2p2+φ2)2) (6.105)

≤ 2σ√
π

∫ δ

−δ
dφ2e

−2σ2(p22+(p2+φ2)2) (6.106)

≤ 4
√

2e−2σ2p22 = 4
√

2e−
σ2

2
(k2−k1)2 . (6.107)

However, if π ≤ |k1 − k2|, we can instead bound the functions approximating h by their largest
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value, which is attained when 2φ2 ± φ1 = 3δ. In particular, we have

∫∫ δ

−δ

dφ1dφ2

4π2
e−

σ2φ21
4
−σ2φ22

∣∣∣∣hσ∞
(
k1 − k2 +

φ1

2
− φ2

)
hσ∞
(
k2 − k1 +

φ1

2
+ φ2

)∣∣∣∣

≤ 8σ2

π

∫ δ

−δ

∫ δ

−δ
dφ1dφ2e

−σ2φ21e−σ
2(φ22+(2p2+φ2)2)e4πσ2(2|p2|+ 3δ

2
−π) (6.108)

≤ 8σ√
π
e4πσ2(2|p2|+ 3

2
δ−π)−2σ2p22

∫ δ

−δ
dφ2e

−2σ2(p2+2p2φ2+φ22) (6.109)

≤ 16δ√
π
e−σ

2(4π2−8π|p2|+4σ2p22−6πδ+2δ2−4δ|p2|) (6.110)

≤ 16δ√
π
e−σ

2(4[π−|p2|]2−(4|p2|+6π)δ) (6.111)

≤ 16δ√
π
e−3σ2δ (6.112)

where we assume that δ < (π−|p2|)2
4|p2|+6π (and note that |p2| < π by assumption). We can then put these

two bounds together, if we assume that δ < |π−2|p2||
2 for 2|p2| < π or that δ < (π−|p2|)2

4|p2|+6π for 2|p2| ≥ π,
and thus

∫∫ δ

−δ

dφ1dφ2

4π2
e−

σ2φ21
4
−σ2φ22

∣∣∣∣hσ∞
(
k1 − k2 +

φ1

2
− φ2

)
hσ∞
(
k2 − k1 +

φ1

2
+ φ2

)∣∣∣∣

≤ 16√
π
e−2σ2δ. (6.113)

For the fourth term in (6.83), we will use Lemma 6 from Chapter 3, as this is nearly the same
system as used in that lemma. In particular, we have that

∣∣∣∣∣

µ(t)+L∑

x=µ(t)−L

ν(t)+L∑

y=ν(t)−L
y<x−r

e−
(x−µ(t))2

2σ
− (y−ν(t))2

2σ2 ei(k1+
p1
2
−p2)xei(k2+

p1
2

+p2)y

∣∣∣∣∣

≤
∣∣∣∣∣

µ(t)+L∑

x=ν(t)−L+r+1

e−
(x−µ(t))2

2σ2 ei(k1+
p1
2
−p2)xV σ

x−r−1−ν(t),L

(
k2 − k1 +

φ1

2
+ φ2

)
∣∣∣∣∣ (6.114)

≤ χhσ∞(0) ≤
√

8πχσ. (6.115)

As such, the corresponding integral can be bounded as
∣∣∣∣∣

∫ δ

−δ

∫ δ

−δ

dφ1dφ2

4π2
e−

σ2φ21
4
−σ2φ22e−i(

φ1
2

+φ2)µ(t)e−i(
φ1
2
−φ2)ν(t)δµ(t)≤ν(t)

(
eiθ±(k1,k2) − e−iθ±(p1;p2)

)

×
µ(t)+L∑

x=µ(t)−L

ν(t)+L∑

y=ν(t)−L
y<x−r

e−
(x−µ(t))2

2σ
− (y−ν(t))2

2σ2 ei(k1+
p1
2
−p2)xei(k2+

p1
2

+p2)y

∣∣∣∣∣

≤ 2

∫∫ δ

−δ

dφ1dφ2

4π2
e−

σ2φ21
4
−σ2φ22

√
8πχσ (6.116)

≤
√

8

π

χ

σ
. (6.117)
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We can use a near exact method to bound the fifth term in (6.83), except where we interchange
the place of x and y.

Finally, we can also bound the sixth term in (6.83) in a manner similar to the fourth term.
Basically, this term is a sum along the diagonal, and the second sum only includes a constant
number of terms. Hence, we will bound this by a constant, and have a result similar to the fourth.
Explicitly, we have that the sum can be bounded as

∣∣∣∣∣

µ(t)+L∑

x=µ(t)−L

ν(t)+L∑

y=ν(t)−L
|x−y|≤r

e−
(x−µ(t))2

2σ
− (y−ν(t))2

2σ2

(
ei(k1+

p1
2

+p2)xei(k2+
p1
2
−p2)y

±
(
e−iθ±(p1;p2)δµ(t)≤ν(t) + eiθ±(k1,k2)δµ(t)>ν(t)

)
ei(k1+

p1
2
−p2)xei(k2+

p1
2

+p2)y

)∣∣∣∣∣

≤
L∑

x=−L
e−

x2

2σ2

r∑

y=−r
2e−

y2

2σ2 (6.118)

≤ 2(2r + 1)hσ∞(0) ≤ 4(2r + 1)
√

2πσ. (6.119)

Hence, the integral can be bounded as

∣∣∣∣∣

∫∫ δ

−δ

dφ1dφ2

4π2
e−

σ2φ21
4
−σ2φ22e−i(

φ1
2

+φ2)µ(t)e−i(
φ1
2
−φ2)ν(t)

×
µ(t)+L∑

x=µ(t)−L

ν(t)+L∑

y=ν(t)−L
|x−y|≤r

e−
(x−µ(t))2

2σ
− (y−ν(t))2

2σ2

(
ei(k1+

p1
2

+p2)xei(k2+
p1
2
−p2)y

±
(
e−iθ±(p1;p2)δµ(t)≤ν(t) + eiθ±(k1,k2)δµ(t)>ν(t)

)
ei(k1+

p1
2
−p2)xei(k2+

p1
2

+p2)y

)∣∣∣∣∣ (6.120)

≤ (2r + 1)σ

√
2

π3

∫∫ δ

−δ
dφ1dφ2e

−σ
2φ21
4
−σ2φ22 (6.121)

≤ 2(2r + 1)

σ

√
2

π
. (6.122)

At this point, we can then bound the norm in distance between |w(t)〉 and |α(t)〉±. Explicitly,
we have

‖|α(t)〉± − |w(t)〉‖2
≤ ±〈α(t) |α(t)〉± + 〈w(t) |w(t)〉 − 〈w(t) |α(t)〉± − ±〈α(t) |w(t)〉 (6.123)

≤ 2 + 4
√
πσγ2(κ+ 2d+ 1)− 2ηγ

[(
1

2
− 7

2
e−π

2σ2(2π−3δ)

)(
1− 1

πδ2σ2
e−

5σ2δ2

2

)

− 6σ2

πL
e−

L2

2σ2 − 2
√
πΓ

σ
− 16√

π
e−2σ2δ − 2

√
8

π

χ

σ
+

2(2d+ 1)

σ

√
2

π

]
. (6.124)

By consolidating terms, using our bounds on 〈w(t) |w(t)〉, γ, and the definition of η, we then have
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the following bound:

‖|α(t)〉± − |w(t)〉‖2

≤ 2 +
κ+ 2d+ 1√

πσ

(
1 + 3e−π

2σ2
+
σ2

L
e−

L2

σ2

)

− 2
√
πσ√
πσ

(
1− 1

2

[
3e−π

2σ2
+
σ2

L
e−

L2

σ2

])(
1− 7e−π

2σ2(2π−3δ)
)

+
2
√
πσ√
πσ

(
1 +

1

2

[
3e−π

2σ2
+
σ2

L
e−

L2

σ2

])

×
[

6σ2

πL
e−

L2

2σ2 +

(
2
√
πΓ + 2

√
8

π
χ+ 2(2d+ 1)

√
2

π

)
1

σ
+

16√
π
e−2σ2δ

]
(6.125)

≤ 2κ+ 8πΓ + 16
√

2χ+ 24(2d+ 1)√
π

1

σ
+ 21e−2σ2δ +

9σ2

L
e−

L2

2σ2 . (6.126)

Note that in the last step we rounded some constants, and used the assumption that δ < π/2. We
then have our bounds on the difference between the assumed time-evolved states and our Gaussian
approximations.

At this point, we will want to actually bound something to do with the time-evolved state. In
particular, if we remember that |α(0)〉± = |ψ(0)〉±, and thus that |w(0)〉 is a good approximation
to the initial state, if we can analyze the dynamics of |w(0)〉 we will also have a good approximation
to the state |ψ(t)〉±. Along these lines, if we define the state

|v(t)〉 = e−iH
(2)t|w(0)〉 (6.127)

= η

∫∫ δ

−δ

dφ1dφ2

4π2
eiφ1
(
µ+ν
2

)
eiφ2(ν−µ)e−

σ2φ21
4 e−σ

2φ22

× e−4it cos
(
p1+φ1

2

)
cos(p2+φ2)|sc(p1 + φ1; p2 + φ2)〉± (6.128)

we will have that this state does not change its overlap with |ψ(t)〉 over time since they both change
by the same unitary. If we can show that |v(t)〉 and |w(t)〉 are close in norm, we will have our
bound on the time evolution of |ψ(t)〉. As expected, one can see

〈v(t) |w(t)〉

= η2

∫ δ

−δ

∫ δ

−δ

dφ1dφ2

4π2
eiφ1
(
µ(t)+ν(t)

2
−µ+ν

2

)
eiφ2(ν(t)−µ(t)−ν+µ)

× e−
σ2φ21

2 e−2σ2φ22e2it
(

2 cos
(
p1+φ1

2

)
cos(p2+φ2)−cos(k1)−cos(k2)

)
(6.129)

= 〈w(t) |w(t)〉 − η2

∫ δ

−δ

∫ δ

−δ

dφ1dφ2

4π2
e−

σ2φ21
2 e−2σ2φ22

×
[
1− eiφ1

(
µ(t)+ν(t)

2
−µ+ν

2

)
eiφ2(ν(t)−µ(t)−ν+µ)e2it

(
2 cos

(
p1+φ1

2

)
cos(p2+φ2)−cos(k1)−cos(k2)

)]
.

(6.130)
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We can then bound the value of the integrand, using the fact that |1− eiθ| ≤ |θ|:
∣∣∣∣1− e

iφ1
(
µ(t)+ν(t)

2
−µ+ν

2

)
eiφ2(ν(t)−µ(t)−ν+µ)e2it

(
2 cos

(
p1+φ1

2

)
cos(p2+φ2)−cos(k1)−cos(k2)

)∣∣∣∣

≤
∣∣∣∣−

φ1

2

[
d2t sin k1e+ d2t sin k2e

]
− φ2

[
d2t sin k2e − d2t sin k1e

]

+ 2t
[
2 cos

(p1 + φ1

2

)
cos(p2 + φ2)− cos(k1)− cos(k2)

]∣∣∣∣ (6.131)

≤ |φ1|+ 2|φ2|+ 2t

∣∣∣∣2 cos
(p1 + φ1

2

)
cos(p2 + φ2)− cos(k1)− cos(k2)

− φ1

2

[
sin k1 + sin k2

]
− φ2

[
sin k2 − sin k1

]∣∣∣∣ (6.132)

≤ |φ1|+ 2|φ2|+ 2t

∣∣∣∣ cos
(
− k2 +

φ1

2
+ φ2

)
+ cos

(
− k1 +

φ1

2
− φ2

)
− cos(k1)− cos(k2)

−
(φ1

2
+ φ2

)
sin k2 −

(φ1

2
− φ2

)
sin k1

∣∣∣∣ (6.133)

≤ |φ1|+ 2|φ2|+ 2t

∣∣∣∣ cos(k2)
[

cos
(φ1

2
+ φ2

)
− 1
]
− sin(k2)

[(φ1

2
+ φ2

)
− sin

(φ1

2
+ φ2

)]∣∣∣∣

+ 2t

∣∣∣∣ cos(k1)
[

cos
(φ1

2
− φ2

)
− 1
]
− sin(k1)

[φ1

2
− φ2 − sin

(φ1

2
− φ2

)]∣∣∣∣ (6.134)

≤ |φ1|+ 2|φ2|+ 2t
(φ1

2
+ φ2

)2
+ 2t

(φ1

2
− φ2

)2
(6.135)

≤ |φ1|+
t

2
φ2

1 + 2|φ2|+ 4tφ2
2. (6.136)

We can then use this in the bound, so that

∣∣∣∣∣

∫ δ

−δ

∫ δ

−δ

dφ1dφ2

4π2
e−

σ2φ21
2 e−2σ2φ22

[
1− eiφ1

(
µ(t)+ν(t)

2
−µ+ν

2

)
eiφ2(ν(t)−µ(t)−ν+µ)

× e2it
(

2 cos
(
p1+φ1

2

)
cos(p2+φ2)−cos(k1)−cos(k2)

)]∣∣∣∣∣

≤
∫ δ

−δ

∫ δ

−δ

dφ1dφ2

4π2
e−

σ2φ21
2 e−2σ2φ22

[
|φ1|+

t

2
φ2

1 + 2|φ2|+ 4tφ2
2

]
(6.137)

≤
∫ ∞

0

∫ ∞

0

dφ1dφ2

π2
e−

σ2φ21
2 e−2σ2φ22

[
φ1 +

t

2
φ2

1 + 2φ2 + 4tφ2
2

]
(6.138)

=
3t

8πσ4
+

√
2π

2π2σ3
. (6.139)

With this, we can then bound the difference between |v(t)〉 and |w(t)〉. In particular, we have

‖|v(t)〉 − |w(t)〉‖2 = 〈v(t) |v(t)〉+ 〈w(t) |w(t)〉 − 〈v(t) |w(t)〉 − 〈w(t) |v(t)〉 (6.140)

≤ 2〈w(t) |w(t)〉 − 2
[
〈w(t) |w(t)〉 − η2 3t

8πσ4
− η2

√
2π

2π2σ3

]
(6.141)

=
3t

σ2
+

4
√

2√
πσ

. (6.142)
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We now have the requisite bounds in order to prove the statement of the theorem, namely
bounding the norm of the difference between the time evolved initial state |ψ(t)〉± and our approx-
imation |α(t)〉±. In particular, if we once again note that |α(0)〉± = |ψ(0)〉±, and remember that

|v(t)〉 = e−iH
(2)t|w(0)〉, we have

‖|ψ(t)〉± − |α(t)〉±‖
≤ ‖|α(0)± 〉 − |w(0)〉‖+ ‖|α(t)〉± − |w(t)〉‖+ ‖|v(t)〉 − |w(t)〉‖ (6.143)

≤ 2

[
2κ+ 8πΓ + 16

√
2χ+ 24(2d+ 1)√
π

1

σ
+ 21e−2σ2δ +

9σ2

L
e−

L2

2σ2

]1/2

+
( 3t

σ2
+

4
√

2√
πσ

)1/2
.

(6.144)

If we chose σ = L

2
√

log(L)
, we then have that for L large enough and for 0 < t < cL,

‖|ψ(t)〉± − |α(t)〉±‖

≤ 4

[
κ+ 4πΓ + 8

√
2χ+ 12(2d+ 1)√
π + 1

]1/2 (logL)1/4

√
L

+
√

13c

√
logL

L
(6.145)

≤ 4

√
c logL

L
(6.146)

Note that the constant in our bound only arises from the term corresponding to our approximate
time evolution, as the other terms use a slightly smaller power of logL.

6.4 MPQW with positive-semidefinite interactions

Up to this point, we have studied MPQW with near-arbitrary finite-range interactions. In par-
ticular, while the exact phase θ±(k1, k2) from Section 6.2 depends on the particular interaction,
the overall framework for the scattering does not rely on the interaction. If we want to relate the
eigenvalues of a MPQW with N particles to that of the same walk with N + 1 particles, we will
need to have some additional restrictions on the interaction.

In particular, in order to easily relate the low-energy eigenvalues of the quantum walks, we will
restrict our attention to non-negative interactions. Namely, we want to restrict our attention to
interactions such that for all x, y ∈ N+, and all 0 ≤ d ≤ dmax,

0 ≤ Udmax(x, y) ≤ Udmax(x+ 1, y). (6.147)

With such a restriction, we then have that the interaction Hamiltonian is a positive-semidefinite
matrix that can only increase its energy when particles are added. We can then use several proper-
ties of positive-semidefinite matrices to relate the eigenvalues between MPQW on a graph G with
differing number of particles.

While the interaction term of the MPQW is now guaranteed to be positive-semidefinite, it is
possible that the movement term is negative. However, if we let µ(G) be the smallest eigenvalue of
A(G), and define the Hamiltonian

HU (G,N) = Hn
U ,G −Nµ(G). (6.148)

Since A(G)−µ(G)I ≥ 0 (by the definition of µ(G)), and since Hint ≥ 0, we then have that HU (G,N)
is positive-semidefinite.
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With a particular choice of interaction, we shall write

0 ≤ λ1
N (G) ≤ λ2

N (G) ≤ · · · ≤ λ|V (G)|N
N (G) (6.149)

for the eigenvalues of HU (G,N) and {|λjN (G)〉} for the associated eigenvectors.
Note that when λ1

N (G) = 0, the ground energy of the N -particle MPQW Hamiltonian HN
U ,G is

equal to N times the single-particle ground energy µ(G). In this case, we say that the N -particle
MPQW Hamiltonian is frustration free, as the ground state minimizes both the movement term
and the interaction term (this terminology arises from spin systems). With this idea, we can then
define N -particle frustration-free states:

Definition 7 (Frustration-free state). If |ψ 〉 ∈ C|V (G)|N satisfies HU (G,N)|ψ 〉 = 0, then we say
that |ψ 〉 is an N -particle frustration-free state for U on G.

These frustration-free states will be very useful to us in Chapter 9, as we can use them to
iteratively construct the ground states of larger and larger graphs.

6.4.1 Basic properties of H(G,N)

We now give some basic properties of HU (G,N). In particular we will want to understand how
the eigenvalues of the Hamiltonian change when we increase the number of particles, as well as
understand such a system when looking at many disconnected copies of graphs.

Lemma 14. For all N > 1, λ1
N+1(G) ≥ λ1

N (G).

Proof. Let n̂Ni be the number operator (6.4) defined in the N -particle space and let n̂N+1
i be the

corresponding operator in the (N + 1)-particle space. Noting that

n̂N+1
i = n̂Ni ⊗ I + |i〉〈i|(N+1) ≥ n̂Ni ⊗ I, (6.150)

we can use this, the fact that A(G) ≥ µ(G), and our assumptions on the interaction U , to see

HN+1
G − (N + 1)µ(G) =

∑

w∈[N+1]

(
A(G)− µ(G)I

)(w)
+

dmax∑

d=0

∑

u,v∈V (G)
d(u,v)=d

Ud(n̂N+1
v , n̂N+1

u ) (6.151)

≥
∑

w∈[N ]

(
A(G)− µ(G)I

)(w)
+

dmax∑

d=0

∑

u,v∈V (G)
d(u,v)=d

Ud(n̂Nv ⊗ I, n̂Nu ⊗ I) (6.152)

=
(
HN
G −Nµ(G)

)
⊗ I. (6.153)

Hence

λ1
N+1(G) = min

|ψ〉∈C|V (G)|N+1
: 〈ψ|ψ〉=1

〈ψ|HN+1
G − (N + 1)µ(G)|ψ〉 (6.154)

≥ min
|ψ〉∈C|V (G)|N+1

: 〈ψ|ψ〉=1

〈ψ|
(
HN
G −Nµ(G)

)
⊗ I|ψ〉 (6.155)

= λ1
N (G)
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Note that this theorem remains true if we restrict ourselves to the symmetric (or anti-symmetric)
subspaces, as the only part that would change is the minimization in (6.154). However, the in-
equality still holds true if we restrict ourselves to the symmetric (anti-symmetric) subspace for the
n+ 1-particle subspace and n-particle subspace.

Additionally, we will often encounter graphs G with more than one component and, in the cases
of interest, the smallest eigenvalue of the adjacency matrix for each component is the same. The
following Lemma shows that the eigenvalues of H(G,N) on such a graph can be written as sums
of eigenvalues for the components. Note that this lemma is similar in flavor to Lemma 13.

Lemma 15. Suppose G =
⋃k
i=1Gi with µ(G1) = µ(G2) = · · · = µ(Gk). The eigenvalues of

H(G,N) are ∑

i∈[k] : Ni 6=0

λyiNi(Gi) (6.156)

where N1, . . . , Nk ∈ {0, 1, 2, . . .} with
∑

iNi = N and yi ∈ [V (G)Ni ]. The corresponding eigenvectors
are (possibly including repeats)

Vπ

( ⊗

i∈[k] : Ni 6=0

|λyiNi(Gi)〉
)
, (6.157)

for each π ∈ Sn.

Proof. To prove this lemma, we will show that each state of the form (6.157) is an eigenvector of
H(G,N) with the corresponding eigenvalue, and that these states span the entire Hilbert space.

Let us first note that since H(G,N) is permutation invariant, we have that

H(G,N)Vπ

( ⊗

i∈[k] : Ni 6=0

|λyiNi(Gi)〉
)

= VπH(G,N)

( ⊗

i∈[k] : Ni 6=0

|λyiNi(Gi)〉
)
, (6.158)

and thus we need only determine whether

H(G,N)

( ⊗

i∈[k] : Ni 6=0

|λyiNi(Gi)〉
)

=
∑

i∈[k] : Ni 6=0

λyiNi(Gi)

( ⊗

i∈[k] : Ni 6=0

|λyiNi(Gi)〉
)
. (6.159)

However, note that the interaction Hamiltonian Hint is zero between different components, and
thus

H(G,N) =
∑

w∈[N ]

k∑

i=1

A(Gi)
(w) +

k∑

i=1

dmax∑

d=0

∑

u,v∈V (Gi)
d(u,v)=d

Ud(n̂u, n̂v)−Nµ(G) (6.160)

k∑

i=1

[ ∑

w∈[N ]

A(Gi)
(w) +

dmax∑

d=0

∑

u,v∈V (Gi)
d(u,v)=d

Ud(n̂u, n̂v)
]
−Nµ(G). (6.161)

Using this expansion of H(G,N), we then have that for each component Gi, only the eigenvector
supported on Gi is not annihilated by the sum:

[ ∑

w∈[N ]

A(Gi)
(w) +

dmax∑

d=0

∑

u,v∈V (Gi)
d(u,v)=d

Ud(n̂u, n̂v)
]( ⊗

i∈[k] : Ni 6=0

|λyiNi(Gi)〉
)

=
(
λyiNi(Gi) +Niµ(G)

) ⊗

i∈[k] : Ni 6=0

|λyiNi(Gi)〉. (6.162)
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If we then sum over each component, we have the requisite eigenvalue.
We now show that these states span the relevant Hilbert space. First of all, note that for two

states |φ〉 and |ψ 〉, if the number of particles in each component for the two states is not equal
(i.e., (N1, · · · , Nk) 6= (M1, · · · ,Mk)), then the states |φ〉 and |ψ 〉 are orthogonal, since they are
supported on orthogonal states. Additionally, if the number of particles is the same, but the two
permutations π and σ don’t satisfy the condition that π−1σ is contained in SN1 × SN2 × · · · × SNk
(i.e., it permutes the support of the particles), then |φ〉 and |ψ 〉 are still orthogonal. The only
time that the two states might overlap is when the permutation between the two states (σ−1π)
only permutes the particles within a given component. As such, we have that the space spanned
by the vectors (6.157) is at least dimension

∑

0≤N1,···Nk
N1+···+Nk=N

N !

N1!N2! · · ·Nk!
|V (G1)|N1 · · · |V (Gk)|Nk . (6.163)

However, this combinatoric problem can be simplified if we use the binomial theorem:

(A+B)C =
C∑

x=0

(
C

x

)
AxBC−x. (6.164)

Namely, we have

∑

0≤N1,···Nk
N1+···+Nk=N

N !

N1!N2! · · ·Nk!
|V (G1)|N1 · · · |V (Gk)|Nk

=
∑

0≤N1,···Nk−1
N1+···+Nk−1=N

N !

N1!N2! · · ·Nk−1!
|V (G1)|N1 · · · |V (Gk−2)|Nk−2

(
|V (Gk−1)|+ |V (Gk)|

)Nk−1

(6.165)

=
(
|V (G1)|+ · · · |V (Gk)|

)N
= |V (G)|N , (6.166)

which is the dimension of the entire Hilbert space. As such, we have that the vectors (6.157) span
the entire Hilbert space.

Note that this theorem remains true if we restrict ourselves to the symmetric or antisymmetric
subspaces, but note that the dimension of the relevant Hilbert spaces becomes much smaller.

6.5 Conclusions and extensions

It might be informative to think about other models for a MPQW. Namely, what happens if instead
of the movement term of the Hamiltonian being a sum of terms that only act nontrivially on a
single particle, it is a tensor product of the single-particle Hamiltonian. While I don’t expect this
to drastically change the eventual scattering form, especially as in the two-particle case our change
of variables does this for us, there might be some nontrivial interactions that occur independent of
an actual interaction Hamiltonian.
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Chapter 7

Universality of multi-particle
quantum walk

So far in this thesis, we have managed to show several basic results for single-particle scattering on
graphs in Chapter 3 and Chapter 4, which we then combined in Chapter 5 to show that quantum
walk is universal for quantum computing. We then proved many analogous results for multi-particle
quantum walk in Chapter 6, and we might then question whether this system is also universal. As
MPQW is a generalization of quantum walk, we have that this model is already universal for
quantum computing from, but this reduction requires the same exponential sized graph as in
Chapter 5. The interesting question for MPQW is then whether the model remains universal when
we restrict ourselves to polynomially sized graphs.

Without surprising anyone, this chapter is dedicated to proving this universality result. The
proof strategy is very similar to that of Chapter 5, in that we encode the computational state in a
traveling wave-packet, using the ideas of graph scattering in order to implement single-qubit gates.
The difference, however, for the multi-particle case is that we encode each qubit via a different
particle, thus allowing for much smaller graphs at the expense of more complicated multi-gate
behavior. In particular, we will implement two-qubit gates using gadgets from Chapter 4 to route
two particles toward each other, and then us our results on two-particle scattering from Theorem 6
to understand the resulting dynamics.

Note that the proof strategy used in this chapter is identical to that of Childs, Gosset, and
Webb’s [24]. In particular, the encoding of individual qubits using distinct particles, the simulation
of single-qubit gates via scattering, and the form of the two-qubit gates are all as in their paper.
The difference in results between this chapter and their paper arises from improved technical
theorems (namely Theorem 4 and Theorem 6), along with some additional scattering gadgets found
in Chapter 4.

The eventual goal of this chapter is to simulate a given circuit CX = UMUM−1 · · ·U1 acting on
some initial state |x〉, where each gate Ui comes from some universal gate set and the simulation
accepts the state with high probability if and only if the circuit accepts with high probability.
We will first show how to do this for a single gate single-qubit computations in Section 7.2, with
the extension to multiple gates exactly as in Section 5.1. We will then extend this technique to
multi-qubit computations in Section 7.4.

105



7.1 Qubit Encoding

As is Chapter 5, the first step for simulating a given quantum circuit will be to encode the Hilbert
space that we want to simulate. In Chapter 5, we were able to do this by having a number of
infinite paths equal to the dimension of the Hilbert space, where the encoded state corresponded
to the path on which the particle was located. While this construction works, the fact that the
number of paths grows exponentially in the number of encoded qubits makes this impractical for
constructing a physical system with a quantum walker.

However, for a bounded number of basis states this construction is simple and technically
feasible. The problem of exponential growth arises from the necessary growth of the Hilbert space
when having an unbounded number of qubits, since having a larger number of paths was the only
means of adding states to the scattering space. When we analyze the multi-particle quantum walk,
adding additional particles then becomes an avenue for increasing the size of the Hilbert space, and
we can avoid this exponential increase in the size of the graph.

As such, our encoding of a single-qubit will be identical to that of Chapter 5; with some specific
momenta chosen k, we encoded the value of the qubit in a dual-rail encoding. The value of the
encoded qubit will be |0〉 if the particle is located along the first (top) path, while the value of the
encoded qubit will be |1〉 if the particle is located along the second (bottom) path.

To expand our encoding to multiple qubits, we then add additional paths, but we also add
additional particles. Namely, for each additional qubit, we add two paths and a single particle with
some momentum ki. Again, for that qubit, the value of the encoded qubit is |0〉 if the particle is
located along the top path, wile the value of the qubit will be |1〉 if the particle moves along the
bottom path.

Note that each qubit has its own momentum: while we could require each particle to be encoded
at the same momentum, our eventual construction of a multi-qubit entangling gate requires at
least two different momenta. Because of this, we will label each qubits momentum ki, but we will
eventually have that most will be equal to some particular value. One problem that this will lead
to is a possible difference in speeds; given the fact that the momenta is explicitly related to the
speed of propagation for a given wave-packet, we will need to ensure that the wave-packets move
together through the graph.

With the general idea for the encodings out of the way, we will need to explicitly define our
states. In particular, for each qubit we want to simulate, let us assume that there are two infinite
paths, where the vertices are labeled as (x, z, i), for x ∈ Z, z ∈ F2 and i ∈ [n]. Note that the infinite
assumption is not necessary for our encoding, but it allows us to explicitly (and easily) write down
the eigenstates of the Hamiltonian.

Recall from Chapter 5 and Chapter 6 that for a given σ, cutoff length L, and momentum k,
that we used states of the form

|φL,σµ (k)〉 = γ

µ+L∑

µ−L
eikxe−

(x−µ)2

2σ2 |x〉 (7.1)

as our assumed wave-packets. We will use similar states for our encoded qubits, where σ and L
will depend on the overall length of the computation. Moreover, we will use the same L and σ for
all of the qubits.

In particular, we will have that a logically encoded basis state |z〉 for z ∈ Fn2 will be encoded
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in the state

|z〉log = γn
⊗

j∈[n]

µj+L∑

µj−L
eikjxe−

(x−µj)
2

2σ2 |x, zj , j 〉, (7.2)

with the rest of the Hilbert space defined in a linear manner. Note that each individual qubit has
its own momentum ki and position µi, and is supported on disjoint sets of vertices. Further, we
have that the j-th particle corresponds to the j-th qubit.

If we want to restrict our attention to indistinguishable particles, we can easily change our
definition of the logical states. In particular, we have that in the case of bosonic particles,

|z〉Sym
log =

γn√
n!

∑

π∈Sn
Vπ

[⊗

j∈[n]

µj+L∑

µj−L
eikjxe−

(x−µj)
2

2σ2 |x, zj , j 〉
]
, (7.3)

while in the case of fermionic particles,

|z〉Asym
log =

γn√
n!

∑

π∈Sn
(−1)sign(π)Vπ

[⊗

j∈[n]

µj+L∑

µj−L
eikjxe−

(x−µj)
2

2σ2 |x, zj , j 〉
]
. (7.4)

For the purposes of this chapter, we will usually not care about the symmetries of the particles,
as the only time we will use them is in the analysis of the two-particle gadget. Namely, the phase
acquired when two particles move past each other on a long path depends on the symmetries
between the particle, and thus the resulting two-qubit unitary will depend on the type of particles.
However, since this chapter is a general construction, the particular two-qubit gate applied does
not greatly affect our proof.

7.2 Single-qubit gate simulation

With our encoding of the relevant Hilbert space, the next step in our attempt to simulate a given
circuit will be to encode the simulation of a single-qubit gate. If we restrict ourselves to a single
qubit, this will be done exactly as in Section 5.1.2, as our encoded systems are exactly the same.
Namely, for a given qubit with momentum k, if we want to apply the unitary U , we will place a
graph Ĝ as an obstacle along the pair of infinite paths, where the scattering matrix at k of Ĝ takes
the form

S(k) =

(
0 UT

U 0

)
, (7.5)

and where we assume that the labeling of the four terminal vertices proceeds as 0in, 1in, 0out, and
1out, as in Figure 5.2.

When we add additional qubits, however, things differ from the single-particle case. In Chapter 5,
our simulation of a single-qubit unitary on n qubits required 2n−1 copies of the graph gadget Ĝ
in order to implement the logical gate, corresponding to the computational basis states of all the
qubits that the particular unitary does not effect. For our multi-particle encoding, only a single
copy of the graph is used, and it is placed as an obstacle on the pair of paths corresponding to the
qubit on which the gate is to be applied, while the rest of the qubits simply remain unimpeded.

Assuming that the graph G we use to simulate is of this form, and if the qubits are encoded as
in Section 7.1 with momenta traveling towards the gadget Ĝ, we can use Lemma 13 and Theorem 4
to see that the time-evolved state corresponds to the encoded logical state after the unitary U is
applied to the appropriate question (modulo some error and details about the encoded logical state
at different times).
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Figure 7.1: A finite graph applying a single-qubit unitary to the first qubit.

7.2.1 Finite graphs for single-qubit gates

While an understanding of the scattering behavior for infinite graphs is useful to give a broad
overview of the dynamics, we will eventually need to restrict ourselves to finite sized graphs. In
particular, we will restrict ourselves exactly as in the case for single-particle scattering in Chapter 5.
Moreover, we will actually be able to use Lemma 12, as our encoded logical states satisfy the
assumptions of Lemma 13. More exactly, we will be able to use Lemma 13 to evolve each particle
independently of the others using the approximations of Lemma 12, and see that the errors add
linearly.

Along these lines, let us assume that we want to apply a single-qubit gate U to qubit j, where
there exists a gadget Ĝ that implements this unitary at momentum kj . We then let H = A(G),

where G is the infinite graph corresponding to single-particle scattering off of Ĝ along with 2(n−1)
infinite paths. Let G( ~K) then be the finite graph obtained from G, where we truncate each semi-
infinite path attached to Ĝ to total length Kj , and we truncate the infinite paths so that there
are two length-(2K` + 2) paths for each ` ∈ [n] with ` 6= j. We have that the vertices on the long
paths are labeled by (`, z, x) for j 6= ` ∈ [n] z ∈ F2 and x ∈ Z with |x| ≤ K`, while the vertices on
the paths connected to Ĝ are labeled (j, x, i) for 1 ≤ x ≤ Kj , i ∈ [4] (as in Section 5.1.3). Let the
subspace K be spanned by basis states corresponding to vertices in G(K). Graphs of this form will
be used to simulate the application of U to qubit j.

We show that for specific µ`, σ, L, and ~K, initial logical states evolve to output logical states.
In particular, let us assume that the j-th particle is in the state

|z 〉log,in,j = γ

µj+L∑

x=µj−L
eikjxe−

(x−µj)
2

2σ2 |j, x, z 〉, (7.6)

while each of the other particles are in the state

|z 〉log,in,` = γ

−µ`+L∑

x=−µ`−L
e−ik`xe−

(x−µ`)
2

2σ2 |`, x, z + 1〉. (7.7)

Further, let us assume that each µ` = T sin |k`|, so that each particle travels a distance 2µ` in time
T . We then have that after a time T , we will want the output logical states to be given by

|z 〉log,out,j = γe−2iT cos(kj)

µj+L∑

x=µj−L
e−ikjxe−

(x−µj)
2

2σ2 |j, x, z + 3〉, (7.8)
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for the j-th particle, while each of the other particles are in the state

|z 〉log,out,` = γe−2iT cos(k`)
µ`+L∑

x=µ`−L
e−ik`xe−

(x−µ`)
2

2σ2 |`, x, z 〉. (7.9)

As in the case for single-particle universality, for a give state |φ〉 =
∑

x∈Fn2 αx|x〉, we define the
encoded state

|φ〉log,in =
∑

x∈Fn2

αx

n⊗

i=1

|xi 〉log,in,i (7.10)

and for a given unitary U ,

|Uφ〉log,out =
∑

x,y∈Fn2

Uxyαy

n⊗

i=1

|xi 〉log,in,i. (7.11)

With these definitions, we can give an analogous result to Lemma 12.

Lemma 16. Let kj ∈ (−π, 0) for all j ∈ [n], and let Ĝ be a four-terminal gate gadget, such that
its scattering matrix at momentum kj is of the form (7.5). Letting the logical states |z 〉log,in and
|z 〉log,out be defined as in (7.10) and (7.11), and let G(K) be defined as above, where each µ` ≥ L,
K` ≥ 5µ`

3 , and T = µ`
sin |k`| , we have that there exists some constant ξ such that for all 0 ≤ t ≤ T

and any interaction U ,

∥∥∥e−iHN
G t|φ(0)〉 − |φ(t)〉

∥∥∥ ≤ ξn
√

logL

L
, (7.12)

where

|φ(t)〉 =
∑

x∈Fn2

αx

n⊗

`=1

|αx`` (t)〉, (7.13)

the |αxjj (t)〉 are equal to |α1(t)〉 and |α2(t)〉 as defined in Theorem 4, and for the rest of the
particles we have

|αz` (t)〉 = γe−2it cos(k`)

µ`(t)+L∑

x=µ`(t)−L
e−ik`xe−

(x−µ`(t))
2

2σ2 |`, x, z 〉, (7.14)

with

µ`(t) = −µ` + 2t sin |k`|. (7.15)

In particular, we have

∥∥∥e−iHN
G T |ψ 〉log,in − |Uψ 〉log,out

∥∥∥ ≤ ξn
√

logL

L
. (7.16)

Proof. Note that the states |φ(t)〉 all have the particles supported on different components of G,
and thus by Lemma 13 we have that

e−iH
N
G t|φ(0)〉 =

n∏

`=1

(
e−iA(G`)t

)(`)|φ(0)〉, (7.17)
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where G` is the component on which the `-th particle is located. However, we have that each of
these unitaries commute, and

(
e−iA(G`)t

)(`)|φ(0)〉 =
∑

x∈Fn2

αx

n⊗

i=1

e−iδi,`A(G`)t|αxii (0)〉 (7.18)

=
∑

x∈Fn2

αx

[
n⊗

i=1

(
|αxii (δ`,it)〉+ δ`,i|εαx,`(t)〉

)]
, (7.19)

by Lemma 12, with ‖|εαx,`(t)〉‖ ≤ ξ
√

logL/L for some constant ξ. (We can use the theorem to

understand the scattering on the paths, with Ĝ the four-terminal gadget composed of two length-2
paths in the middle of the length 2Ki + 2 length paths.)

Combining these results, we then have that

e−iH
N
G t|φ(0)〉 =

∑

x∈Fn2

αx

[
n⊗

i=1

(
|αxii (t)〉+ |εαx,`(t)〉

)]
(7.20)

= |φ(t)〉+ |ε(t)〉, (7.21)

where ‖|ε(t)〉‖ ≤ nξ
√

logL/L.

Note that most of the analysis up until this point is essentially a rehashing of results from
Chapter 5, as we have kept the particles far apart.

7.3 Entangling gate

Now that we have encoded qubits and, at specific momenta, a universal set of single-qubit gates, we
need to construct some kind of entangling gate between our encoded qubits. In the single-particle
encoding, this gate was trivial, as a controlled-not gate (and in fact any permutation gate) simply
corresponded to a relabelling of the encoding paths. For our multi-particle encoding, however, the
entanglement procedure is rather more involved. Our gate will necessarily involve a two-particle
Hamiltonian, but we will arrange the graph (and the encoded states) in such a manner that the
two-particles will only ever interact on a (long) path. As such, we can use Theorem 6 to see that the
result of such scattering is simply an applied phase (at least when particles are indistinguishable).

Explicitly, our entangling gate will be a controlled-θ gate, for some θ that depends on the
interaction and the momenta used to encode the qubits. Further, our entangling gate will only exist
between qubits that are encoded with particles for which a momentum switch (see Section 4.1.2)
exists, which necessitates the use of at least two different momenta. The main idea behind the
gate is to place two momentum switches (represented schematically as Figure 7.2a) on the 1-paths
of the qubits as obstacles, where the two switches are connected by a long path for their third
terminals. If either particle is in the logical state 1, it will be routed along the long connecting
path between the two paths, and then routed along 1out for the opposite qubit. By arranging the
lengths of the various paths correctly, we can ensure that if at most a single encoded qubit is in the
logical 1 state, then the corresponding single-particle scattering events encode identity operations.
However, if both encoded qubits are logically 1, then the two particles move past each other along
the long connecting path, acquiring an additional phase that depends on their momenta and the
interaction. As such, the graph in Figure 7.2b applies an encoded Cθ gate (along two single-qubit
gates arising from the phase acquired during the momentum switches).
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a
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0med,in 0med,out

0c,in 0c,out

1c,in

1med,out

1c,out

b

Figure 7.2: (a) Momentum switch schematic. (b) Cθ gate.

Note that the graph and analysis described here only works for two particles. However, we will
use a lemma similar to Lemma 16 in order to analyze the related n-particle Hamiltonian.

7.3.0.1 Momentum switch

Remember from Section 4.1.2 that momentum switches are three-terminal scattering gadgets that
act like railroad switches, where at specific momenta the gadget has perfect transmission from
terminal 3 to terminal 1, while at other momenta there is perfect transmission from terminal 3 to
terminal 2. We will represent gadgets with this behavior schematically as in Figure 7.2a, where
one set of momenta follow the single line while the other specified set follows the double line.

For our purposes, we will assume that the momentum switch splits the two momenta used to
encode the different qubits k1 and k2. Explicitly, we will assume that the S-matrix for the given
momentum switch at k1 and k2 are given by

Sswitch(k1) =




0 0 T1

0 R1 0
T1 0 0


 Sswitch(k2) =



R2 0 0
0 0 T2

0 T2 0


 . (7.22)

In other words, we will assume that the momentum switch has perfect transmission between termi-
nals 1 and 3 at momentum k1, and perfect transmission between terminals 2 and 3 at momentum
k2, possibly with an additional phase. With this, we have that a particle with momentum k1 follows
the single line of the schematic representation of Figure 7.2a, while a particle with momentum k2

follows the double line.

7.3.1 Constructing the graph

We will now construct the entangling graph, where we will assume that we know the encoded initial
states. Note that this construction depends on the momenta of the encoded qubits in more than
just the form of the momentum switch; the fact that the timing of the wave-packets is important
forces us to change the length of the connecting paths depending on the initial momentum so that
they arrive on the infinite path at the same time, while the requirement that the particles only
interact along the path forces us to change the lengths depending on the size of the wave-packets.

The Cθ gate is implemented using the graph shown in Figure 7.3. In this section we specify the
logical input states, the logical output states, the distances X, Z, and W appearing in the figure,
and the total evolution time as functions of the momentum k1 and k2. With these choices, we show
that a Cθ gate is applied to the logical states at the end of the time evolution under the quantum
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(1,2) (2,2) (3,2) (W−1,2)

(W ,2)

(1,3) (2,3) (3,3) (X−1,3)

(X,3)

(2W+Z+2,2)(2W+Z,2)

(W+Z+3,2)

(2X+Z+2,3)(2X+Z,3)

(X+Z+3,3)

(1,5)

(2,5)

(Z,5)

(Z−1,5)

02,in

12,in

11,in

01,in

02,out

11,out

12,out

01,out

Figure 7.3: Graph G′ used to implement the Cθ gate. The integers Z, X, and W are specified in
equations (7.25), (7.26), and (7.27), respectively.

walk Hamiltonian (up to error terms that are Õ(L−1/2)). The results of this section pertain to the

two-particle Hamiltonian H
(2)
G′ for the graph G′ shown in Figure 7.3.

We first need to construct the assumed encoded initial states. Note that the important feature
about these encodings are the momenta ki and the cutoff distance L. While the distance from
the ends and the distance from the scattering widgets are important, they won’t affect the overall
qualitative action of the wave-packets. With the labelling scheme for the vertices as in Figure 7.3,
we can then assume that our initial logical states are

|0in〉1 = γ

µ1+L∑

x=µ1−L
eik1xe−

(x−µ1)
2

2σ2 |x, 1〉 |1in〉1 = γ

µ1+L∑

x=µ1−L
eik1xe−

(x−µ1)
2

2σ2 |x, 2〉 (7.23)

for the qubit with momentum k1 and

|0in〉2 = γ

µ2+L∑

x=µ2−L
eik2xe−

(x−µ2)
2

2σ2 |x, 4〉 |1in〉2 = γ

µ2+L∑

x=µ2−L
eik2xe−

(x−µ2)
2

2σ2 |x, 3〉 (7.24)

for the qubit with momentum k2. Additionally, let us assume that | sin k1| ≤ | sin k2|, so that the
wave-packet with momentum k1 travels no faster than the wave-packet with momentum k2 (this
assumption is without loss of generality as we can simply relabel k1 and k2).

Note that the two computational basis states for each qubit are centered at the same distance
from the ends, but that the distances are different for the two qubits. The reason for this is that
while the wave-packets for each individual qubit travel at the same speed, the fact that k1 6= k2

(which is implied by the existence of the momentum switch) allows the two wave-packets to travel
at differing speeds. This difference in the distance allows us to ensure that this difference in speed
is taken care of when we combine these gadgets.

With these initial logical states chosen, note that there are seven path lengths that we will need
to determine before we can analyze the propagation. Explicitly, there is the distance on path 2
corresponding to the initial distance the wave-packet with momentum k1 travels before hitting the
first momentum switch, the same for path 3 and the wave-packet with momentum k2, the distance
between the two momentum switches where the two-particles will interact, the lengths of the two
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output paths after the second momentum switches, and finally the two paths corresponding to
the logical states 0. Note that these final two path lengths (corresponding to the logical 0 states)
will be determined by the total distance traveled by the logical 1 states, and that we can assume
that the distances after the momentum switch are the same as the distances before the momentum
switches. As such, there are three distances that we care about.

Putting this together, we will need to chose the three distances Z, X, and W from Figure 7.3
to ensure that we can analyze the wave-packet propagation, while also ensuring that the output
approximated wave-packets are in agreeing positions. While these choices are somewhat arbitrary,
we will make the choice

Z = d
(
7 + α

)
Le (7.25)

X = d2L+D +M(k2)e (7.26)

W = d2L+M(k1)e (7.27)

where

α = 3
sin |k2| − sin |k1|
sin |k1|+ sin |k2|

(7.28)

D =

(
7 sin |k2|
sin |k1|

+
6 sin |k1|

sin |k1|+ sin |k2|
− 9

)
L (7.29)

M(ki) = 2t0 sin |ki| = µi. (7.30)

With these choices, a wave-packet moving with speed sin |k1| travels a distance Z+ 4L ≈ (11 +α)L
in approximately the same time that a wave-packet moving with speed k2 takes to travel a distance
Z + 2D + 2L ≈ (9 + α)L+ 2D, since

tCθ =
(11 + α)L

2 sin |k1|
≈ (9 + α)L+ 2D

2 sin |k2|
. (7.31)

Additionally, these distances are chosen so that at time t1 = (4 + α)L/2 sin |k1|, the two particles
are both located on the center path, with the wave-packet with momentum k1 a distance (1 + α)L
from the first momentum switch, the other a distance L from the second momentum switch, and
the two wave-packets a distance L apart, and so that at a time t2 = t1 + 6L/(sin |k1|+ sin |k2|), the
wave-packets have passed each other, but are now the same distance from the other momentum
switch. This is represented pictorially in Figure 7.4.

One point to notice is that the distances M(ki) = µi are chosen to be the distance traveled by
each particle over some time t0. As such, if at time −t0 the two particles were both centered along
the endpoints of the paths, they would . This isn’t particularly important, except to allow us to
nicely combine this result with other scattering events.

7.3.2 Time evolution analysis

With the graph G well defined for two momenta k1 and k2 and cut-off distance L, we now want
to actually analyze the dynamics of the system. We want to claim that the initial states evolve
into encoded logical output states, where the acquired phases correspond to an entangling gate.
In particular, we will want that the evolution of an encoded state on this graph corresponds to
some unitary diagonal in the computational basis, in which an additional phase is acquired for the
state |11〉. While in an ideal case, this will simply be a controlled-θ gate, in which the applied
unitary is the identity for the other three basis states, our graph will also have additional phases
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(a) k1 →

k2 →
M(k1) L L

M(k2) L L+D

(b)

k1 ↓

k2 ↑

(1 + α)L
2L
L

2L
L

(c)

k1 ↓

k2 ↑
1L

2L
L

2L
(1 + α)L

(d) k2 →

k1 →
L+D L M(k2)

L L M(k1)

Figure 7.4: This picture illustrates the scattering process for two wave-packets that are incident on
the input paths as shown in figure (a) at time t = 0. Figure (b) shows the location of the two wave-
packets after a time t1 and figure (c) shows the wave-packets after a time t2. After the particles
pass one another they acquire an overall phase of eiθ± . Figure (d) shows the final configuration of
the wave-packets after a total evolution time tCθ.

corresponding to a product of single-qubit unitaries, arising from the transmission coefficients of
the two momentum switches.

However, in order to apply an encoded unitary, we will need to have an encoding of the logical
output states. Letting tCθ be as defined in (7.31), we will have that the encoded output states for
each qubit will be

|0out〉1 = γe−2itCθ cos(k1)
ν1+L∑

x=ν1−L
eik1xe−

(x−ν1)
2

2σ2 |x, 1〉 (7.32)

|1out〉1 = γe−2itCθ cos(k1)
ν1+L∑

x=ν1−L
eik1xe−

(x−ν1)
2

2σ2 |x, 2〉 (7.33)

|0out〉2 = γe−2itCθ cos(k2)
ν2+L∑

x=ν2−L
eik2xe−

(x−ν2)
2

2σ2 |x, 4〉 (7.34)

|1out〉2 = γe−2itCθ cos(k2)
ν2+L∑

x=ν2−L
eik2xe−

(x−ν2)
2

2σ2 |x, 3〉 (7.35)

where ν1 = µ1 + d2tCθ sin |k1|e and ν2 = µ2 + d2tCθ sin |k2|e. Intuitively, these are simply the
expected positions of the wave-packets corresponding to the initial logical states after a time tCθ,
along with the phases acquired from their energies.

Additionally, note that the eigenstates of H2
G decompose into a symmetric and an antisymmetric

subspace. While it is intuitively more clean to work with distinguishable particles, the phases
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acquired during the evolution on G will depend on the symmetry of the underlying particles. As
such, let us define the eight states

|(z1z2)in/out 〉± =
1√
2

(
|(z1)in/out 〉1|(z2)in/out 〉2 ± |(z2)in/out 〉2|(z1)in/out 〉1

)
. (7.36)

Our analysis will be for these states.
If we note that the input states don’t particularly rely on the initial distance from the graph,

and that the output states similarly don’t rely on the distance from the end, we will be able to
easily combine the time evolution on these graphs with the time evolution on other graphs. Just
so long as the initial wave-packets start a distance proportional to L away from the ends, and
similarly end a distance proportional to L from the ends, we can us Lemma 1 in order to determine
the overall time evolution.

In particular, we have the following lemma:

Lemma 17. Let G′ be the graph given in Figure 7.3 with distances given by (7.25)–(7.27), and
where we assume that the initial and final states as defined in (7.23), (7.24), and (7.32)-(7.35)
only have support on vertices a distance at least L/3 from the ends of the truncated paths. If the
momentum switch has transmission coefficient T1 for momentum k1 and transmission coefficient T2

for momentum k2, and if the phase acquired for two particle scattering between momentum k1 and k2

is given by θ± for symmetric and antisymmetric states, then we have the following approximations
for the time-evolved states:

∥∥∥e−iH
(2)

G′ tII |00in〉± − |00out〉±
∥∥∥ ≤ χ

√
logL

L
(7.37)

∥∥∥e−iH
(2)

G′ tII |01in〉± − T 2
2 |01out〉±

∥∥∥ ≤ χ
√

logL

L
(7.38)

∥∥∥e−iH
(2)

G′ tII |10in〉± − T 2
1 |10out〉±

∥∥∥ ≤ χ
√

logL

L
(7.39)

∥∥∥e−iH
(2)

G′ tII |11in〉± − eiθ±T 2
1 T

2
2 |11out〉±

∥∥∥ ≤ χ
√

logL

L
. (7.40)

Proof. The first three bounds (7.37), (7.38), and (7.39) are similar to the proofs of Chapter 5,
since in each case the two particles are supported on disconnected subgraphs and thus we can
use Lemma 13. For each of the single-particle scattering events, we can use a strategy similar to
Lemma 12 to bound the error in our time-evolution for the unsymmetrized two-particle states. To
get the bound of (7.40), the proof strategy will be similar, but we will also need an application of
Theorem 6 during the times at which both particles are located on the long path.

Let us first understand the single-particle evolutions on the long paths. Note that tCθ ≤ cL for
some constant c, and thus according to Theorem 4, on an infinite path P we have that

∥∥∥∥γe−iP t
µ+L∑

µ−L
eikxe−

(x−µ)2
2σ |x〉 − γe−2it cos(k)

µ(t)+L∑

µ(t)−L
eikxe−

(x−µ(t))2

2σ2 |x〉
∥∥∥∥ ≤ ξ

√
logL

L
(7.41)

for some constant ξ and where µ(t) = µ+d2t sin(k)e. While Theorem 4 doesn’t exactly give us this,
if we apply the theorem to a graph gadget Ĝ that results in the final graph being a long path, and
assume that the initial location is far from the scattering event, the result follows after a relabeling
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of the basis states. If we then note that the corresponding approximation involving µ(t) on the
finite path always remains a distance at least L/3 away from the ends of the finite approximation,
Lemma 1 with H = A(P ), H̃ = A(G′), and N0 = L

3 , and the error bound of δ = ξ
√

logL/L gives
us

∥∥e−iA(G′)tCθ |0in 〉i − |0out 〉i
∥∥ ≤

(
8etCθ
N0

+ 2

)[
ξ

√
logL

L
+ 2−N0

(
1− ξ

√
logL

L

)]
(7.42)

≤ ζ
√

logL

L
(7.43)

for some constant χ that is independent of the momentum k. Hence, we have that this approxima-
tion holds for both long paths.

Now let us analyze the single-particle evolution on the subgraph that connects the two particles.
For both particles, we will define approximations to the time-evolved wave-packets that will equal
both the initial state and the corresponding final states. Namely, if we also label the vertices of the
path 5 (the one of length Z which are currently labeled (x, 5)) as (W+1+x, 2) and (X+Z−x+2, 3),
then we can define the states

|α1
1(t)〉 = γe−2it cos(k1)

µ(t)+L∑

x=µ(t)−L
eik1xe−

(x−µ(t))2

2σ2 |x, 2〉 (7.44)

|α1
2(t)〉 = γe−2it cos(k2)

ν(t)+L∑

x=ν(t)−L
eik2xe−

(x−ν(t))2

2σ2 |x, 3〉 (7.45)

where µ(t) = µ + d2t sin(k1)e and ν(t) = ν + d2t sin(k2)e. Note that these are (almost) the same
approximations as used for the long paths, where we assume that the momentum switches essentially
act as connections between the correct long paths.

With these approximations, we will then want to show that the time evolution of the initial
states approximately follow these output states, possibly with some additional phases. In particular,
note that there are three times (not including t = 0) that are important for our evolution,

t1 =
(4 + α)L

2 sin |k1|
(7.46)

t2 = t1 +
6L

sin |k1|+ sin |k2|
(7.47)

tCθ =
(11 + α)L

2 sin |k1|
. (7.48)

If we can show that the time-evolved approximation at one time is close to the approximation at
the next time for each of these times, we then have that our final approximation and the time-
evolved initial state are close as well. To do so, we will use the same procedure for combining our
time-evolution on graphs as was done in Chapter 5.

Namely, we can use Lemma 1 and Theorem 4 to analyze the evolution of these states. Note
that Theorem 4 gives us an approximation for the evolution of |α1

j (t)〉 via the momentum switch
on the infinite path, and two applications of Lemma 1 allows us to then analyze the evolution of
the state for times 0 ≤ t ≤ t1 (after a suitable relabeling of the vertices). In particular, we have
that

∥∥∥e−iH
(1)

G′ t1 |α1
j (0)〉 − Tj |α1

j (t1)〉
∥∥∥ ≤ ζ1

j

√
logL

L
, (7.49)
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where the dependence of the constant on j is only there in terms of the initial distance of the
wave-packet from the ends of the finite paths.

We can then use the same trick, namely two applications of Lemma 1 and a single application of
Theorem 4 to understand the evolution on the path of length Z between times t1 and t2. Literally
the same analysis as in the previous paragraph again gives us that

∥∥∥e−iH
(1)

G′ (t2−t1)|α1
j (t1)〉 − |α1

j (t2)〉
∥∥∥ ≤ ζ2

j

√
logL

L
(7.50)

where again the constant only depends on the distance between the support of the approximation
and the truncated ends, but in both cases is a constant.

Finally, a third application of this trick around the second momentum switch gives us

∥∥∥e−iH
(1)

G′ (tCθ−t2)|α1
j (t2)〉 − Tj |α1

j (tCθ)〉
∥∥∥ ≤ ζ3

j

√
logL

L
, (7.51)

where we again have used a necessary relabeling of the vertices.
Combining the three bounds (7.49)–(7.51), we then have that

∥∥∥e−iH
(1)

G′ (tCθ)|α1
j (0)〉 − T 2

j |α1
j (tCθ)〉

∥∥∥ ≤ (ζ1
j + ζ2

j + ζ3
j )

√
logL

L
, (7.52)

and thus we have approximations to the single-particle evolutions.
From this, if we use Lemma 13 along with these three bounds on the evolution for times tCθ,

we have bounds similar (7.37), (7.38), and (7.39) for the unsymmetrized states. However, since
the bounds (and approximations) don’t depend on the symmetrization of the underlying states, we
also have the symmetrized and antisymmetrized bounds as well.

Finally, we need to show the bound (7.40). Unfortunately, this bound is slightly more difficult to
prove, as we cannot naively use Lemma 13. However, a more nuanced application of Lemma 1 will
allow us to approximate the evolution of both particles on G′ by the evolution on a disconnected
graph for times less that t1 and larger than t2. We will then only need to work with the two-particle
interactions for times between t1 and t2, and here we will be able to use Lemma 1 to approximate
the analysis by that on an infinite path for both the symmetric and anti-symmetric states. Putting
everything together, we have a good approximations for all times 0 < t < tCθ, and thus we also
have a good approximation for the final state.

To do this, let us define the graph Gsep
1 to be the G′ with the vertex labeled (d(3+α+1/2)Le, 5)

removed and let Gsep
2 be G′ with the vertex labeled (d(3 + 1/2)Le, 5) removed. Note that both Gsep

i

have four components, whereas G′ had three, but importantly that the two particles only have
amplitude on separate components. As such, we can then use Lemma 13 and Lemma 1 as in the
case for any of the other logical computational basis states, at least for times in which the single-
particle wave-packets remain far from the removed graph. In particular, for all times 0 < t < t1,
the approximation arising from the corresponding two-particle evolution on disconnected graphs
(i.e., both the single-particle evolutions) remain a distance at least L/3 from the removed vertex.
Hence, using Lemma 13 and the same single-particle evolutions as above, we have that

∥∥∥e−iH
(2)

G′ t1 |11in 〉 − T1T2|α1
1(t1)〉|α2

1(t1)〉
∥∥∥ ≤ ξ3

√
logL

L
(7.53)

for some constant ξ3. In particular, we have that each of the individual single-particle evolutions an
the finite-sized graphs have errors bounded by ξ1 and ξ2 times

√
logL/L (as in the above examples),
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and thus the two-particle evolution on Gsep has an error bound with constant ξ1 + ξ2. Another
application of Lemma 1, using the fact that we are dealing with two-particles and thus the norm of

H
(2)
G′ is bounded, the approximations are far from the removed vertex, and our bound on the error

when evolving on Gsep, then gives the error as claimed.
At this point, our approximations to the time-evolved wave function are only supported on the

long path far from the ends of the path, and thus we can use two applications of Lemma 1 to look
at the time-evolution on an infinite path. This is exactly the reason for Theorem 6, and we can
thus use it’s bounds. It is at this point that we discover different evolutions for symmetric and
anti-symmetric particles, as the relevant phase acquired during the overlap is dependent on the
symmetry between the particles.

In particular, if P is the infinite path with vertices corresponding to the finite path of length
Z, we have that Theorem 6 gives us that

∥∥∥∥e−iH
2
P (t2−t1)

(
|φL,σd(2+α)Le(−k1)〉|φL,σd(7+α)Le(k2)〉 ± |φL,σd(7+α)Le(k2)〉|φL,σd(2+α)Le(−k1)〉

)

− eiθ±e−2i(t2−t2)(cos k1+cos k2)
(
|φL,σ4L (−k1)〉|φL,σ2L (k2)〉 ± |φL,σ2L (k2)〉|φL,σ4L (−k1)〉

)∥∥∥∥

≤ ξ4

√
L

L
, (7.54)

with an approximation for all intermediate times that has a similar bound. With two applications
of Lemma 1, along with a relabelling of vertices, we can see

∥∥∥e−iH
′(2)
G (t2−t1)|α1

1(t1), α1
2(t1)〉± − eiθ± |α1

1(t2), α1
2(t2)〉±

∥∥∥ ≤ ζ4

√
logL

L
. (7.55)

After the two particles have moved passed each other and we have reach time t2, we can use
the same trick to approximate the time evolution for t2 < t < tCθ as for the early times, except
on the graph Gsep

2 . We find that the error in our approximation for these times is bounded by the
same value as for the early times, as the analysis is nearly identical.

If we then put together these three bounds, we have:
∥∥∥e−iH

′(2)
G tCθ |11in 〉1,2± − eiθ±T 2

1 T
2
2 |11out 〉1,2±

∥∥∥ (7.56)

≤
∥∥∥e−iH

′(2)
G t1 |α1

1(0), α1
2(0)〉± − T1T2|α1

1(t1), α1
2(t1)〉±

∥∥∥

+
∥∥∥e−iH

′(2)
G (t2−t1)|α1

1(t1), α1
2(t1)〉± − eiθ± |α1

1(t2), α1
2(t2)〉±

∥∥∥

+
∥∥∥e−iH

′(2)
G (tCθ−t2)|α1

1(t2), α1
2(t2)〉± − T1T2|α1

1(tCθ), α
1
2(tCθ)〉±

∥∥∥ (7.57)

≤ ξ5

√
logL

L
(7.58)

and we have (7.40).
If we then take χ to be the maximum constant for our four bounds, we have proven the theorem.

At this point, we now understand how our assumed initial state propagates for single- and
two-particle states, and we have the necessary building blocks for our universality result.

Note that if θ+(k1, k2) = θ−(k1, k2), then our results from above hold for distinguishable particles
as well, since the applied unitary is then the same for all linear combinations of the two states.
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7.3.3 n-qubit evolution

With our analysis of Lemma 17, we can apply an encoded Cθ-gate between two qubits, assuming
the appropriate gadgets exist. However, we are actually interested in the n-particle evolution, and
before we turn our attention to combining several gates we need to extend our analysis to the case
of n-qubits.

This will actually be very similar to that of Lemma 16, in that we will assume that our encoded
initial state has each particle on separate components of a graph, except for the two particles on
the graph G that will be used to implement the encoded Cθ-gate. In particular, let G′ be the
infinite graph with 2(n−2) infinite paths, and the infinite version of Figure 7.3 (i.e., X = W =∞).
Assuming that we want to apply the encoded Cθ gate between qubits j1 and j2, and that we want
the wave packet for qubit ` to be centered a distance µ` from the first edge of the path, we then
let G( ~K) be the finite restriction of G. In particular, we have that for the two qubits we want to
interact, we have a copy of Figure 7.3 where (7.25)–(7.27) define the lengths, and for each qubit not
involved in the applied unitary, there are two paths of length 2µ`+d2tCθ sin |k`|e. We then have that
the labelling scheme for the vertices in the copy of Figure 7.3 are as in the previous section, while
the remaining vertices are labelled as (`, z, x) for ` ∈ [n] with ` 6= j1, j2, x ∈ [2µ` + d2tCθ sin |k`|e]
and z ∈ F2.

With this labelling scheme for the vertices, we have that our initial logical states for qubits not
affected by the unitary are given by

|z 〉log,in,` = γ

−µ`+L∑

x=−µ`−L
e−ik`xe−

(x−µ`)
2

2σ2 |`, x, z 〉, (7.59)

(exactly as in Lemma 16) with output encoded states given by

|z 〉log,out,` = γe−2iT cos(k`)
µ`+L∑

x=µ`−L
e−ik`xe−

(x−µ`)
2

2σ2 |`, x, z + 1〉. (7.60)

For the two qubits affected by the Cθ-gate, we have that the input encoded logical states are given
by (7.23) and (7.24), while the encoded logical output is given by (7.32)–(7.35). We then have that
the n-qubit state |φ〉 =

∑
x∈Fn2 αx|x〉 is represented by

|φ〉log,in =
∑

x∈Fn2

αx

n⊗

i=1

|xi 〉log,in,i (7.61)

and for a given unitary U ,

|Uφ〉log,out =
∑

x,y∈Fn2

Uxyαy

n⊗

i=1

|xi 〉log,in,i. (7.62)

Note that these logical encodings assume that the i-th particle is used to represent the i-th
qubit. The fact that these particles are distinguishable will make our theorem difficult, so we will
work with the states

|φ〉±log,in/out =
1√
2

(
|φlog,in/out 〉 ± V(j1j2)|φlog,in/out 〉

)
. (7.63)

Note that these states are symmetric (antisymmetric) between the two particles that interact, which
will be sufficient for our purposes. Further, since the Hamiltonian HN

G is permutation invariant,
we will have the same result for any Vπ|φ〉log,in/out.

We then have the following theorem on the evolution of a given logical state.
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Lemma 18. Let kj ∈ (−π, 0) for all j ∈ [n], and let us assume that there exists a momentum
switch between kj1 and kj2. Let the logical states |z 〉±log,in and |z 〉±log,out be defined as in (7.10) and

(7.11), and let G( ~K) be defined as above, where each µ` ≥ (1 +β)L. We then have that there exists
some constant ξ such that for all 0 ≤ t ≤ tCθ and any interaction U ,

∥∥∥e−iHN
G t|φ(0)〉± − |φ(t)〉±

∥∥∥ ≤ ξn
√

logL

L
, (7.64)

where

|φ(t)〉± =
∑

x∈Fn2

αxWπ

[
|βxj1xj2 (t)〉± ⊗

n⊗

`=1
`6=j1,j2

|αx`` (t)〉
]
, (7.65)

the |βxj1xj2 (t)〉 are the approximations used in Lemma 17 for the logical input xj1xj2, Wπ is the
permutation that takes the j1-st particle to the first location, the j2-nd particle to the second equation,
and orders the rest of the particles, and

|αz` (t)〉 = γe−2it cos(k`)

µ`(t)+L∑

x=µ`(t)−L
e−ik`xe−

(x−µ`(t))
2

2σ2 |`, x, z 〉, (7.66)

with

µ`(t) = µ` + 2t sin |k`|. (7.67)

In particular, we have

∥∥∥e−iHN
G T |ψ 〉±log,in − |Uψ 〉±log,out

∥∥∥ ≤ ξn
√

logL

L
. (7.68)

where U is a diagonal two-qubit unitary given by diag{1, T 2
2 , T

2
1 , T

2
1 T

2
2 e

iθ±}, where Tj is the trans-
mission coefficient for the momentum switch at momentum kj, and θ± is as in Lemma 17.

Proof. The proof of this theorem follows nearly identically to that of Lemma 16, in that we use
Lemma 13 to break the analysis into the components of the graph, and then use our results on each
component.

Using the fact that the states |φ(t)〉 all have the particles supported on different components
of G (except for j1 and j2), we have by Lemma 13 that

e−iH
N
G t|φ(0)〉± =

(
e−iH

′2
G t)
)(j1,j2)

n∏

`=1
`6=j1j2

(
e−iA(G`)t

)(`)|φ(0)〉, (7.69)

where G` is the component on which the `-th particle is located. However, we have that each of
these unitaries commute, and

(
e−iA(G`)t

)(`)|φ(0)〉 =
∑

x∈Fn2

αx

n⊗

i=1

e−iδi,`A(G`)t|αxii (0)〉 (7.70)

=
∑

x∈Fn2

αx

[
n⊗

i=1

(
|αxii (δ`,it)〉+ δ`,i|εαx,`(t)〉

)]
, (7.71)
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by Lemma 12, with ‖|εαx,`(t)〉‖ ≤ ξ
√

logL/L for some constant ξ.
Additionally, we have from Lemma 17 that

e−iH
2
G′ t|βxj1xj2 (0)〉 = |βxj1xj2 (t)〉+ |ξxj1 ,xj2 (t)〉, (7.72)

where ‖|ξxj1 ,xj2 (t)〉‖ ≤ ξ
√

logL/L
Combining these results, we then have that

e−iH
N
G t|φ(0)〉 =

∑

x∈Fn2

αx

[
n⊗

i=1

(
|αxii (t)〉+ |εαx,`(t)〉

)]
(7.73)

= |φ(t)〉+ |ε(t)〉, (7.74)

where ‖|ε(t)〉‖ ≤ nξ
√

logL/L.

From this, we then have the relevant bounds on the multi-qubit evolution.

7.4 Multi-gate simulation

At this point, we know how to encode n qubits into the MPQW of n-particles, we can simulate
a single-qubit unitary on one of the qubits, assuming an appropriate gadget exists, and we can
perform an entangling gate between two qubits, assuming the existence of a particular momentum
switch and nontrivial phase in the two-particle scattering. As such, if we can show how to combine
these results without a large increase in the error, we will have our universality result.

Note that there are several arbitrary choices in this construction, as a proof of universality
only requires the existence of a simulating graph; we expect that other choices would also provide
universal simulation. Additionally, our choice depends on the particular interaction Hamiltonian
used in the MPQW, as the phase of the entangling gate Cθ depends on the interaction between
the particles.

Along those lines, let us fix some interaction U between the particles, and let us assume that
‖Hn

int‖ ≤ γnν , for some constant γ and ν. We will show almost all such interactions can be used
for universal quantum computation.

We will assume that we want to simulate a circuit CX = UmUm1 · · ·U1, where each Ui is from
some finite gate set. After making our choices for our encoding, we will place some restrictions on
this gate set related to the existence of certain scattering gadgets and the phase θ± for two-particle
interactions arising from Hint.

7.4.1 Encoded qubits

The first step in our construction will be to choose how to encode our qubits. As in Section 7.1,
we will encode each qubit via a particle in a dual-rail encoding, where the logical states are given
by (7.2). At this point, however, we need only choose the values of ki for each qubit and the initial
location of the center of the particles, µi.

From our results in Section 7.3, our construction will require at least two different momenta in
order to simulate an entangling gate. We will make the choice to only use two momenta, k1 and
k2, where sin |k1| ≤ sin |k2| and where there exists a momentum switch between the two particles.
We also assume that for k1 and k2, there are scattering gadgets that implement a universal set of
single-qubit unitaries. Note that several such pairs of momentum are known from Chapter 4.

121



Additionally, for our most simple scheme, we will assume that the particles indistinguishable.
All of our results from this chapter will hold with this assumption, and in addition we will easily be
able to use Lemma 18. Assuming that θ+(k1, k2) 6= 0, we will assume that our particles are bosons,
but if θ+(k1, k2) = 0 we will assume the particles are fermions. If both θ±(k1, k2) = 0, note that
our entangling gate cannot be constructed at this pair of momenta.

With these choices, we will choose for the n-th qubit to have momentum k2, while the remaining
n−1 qubits will have momentum k1. With this choice, we will require that all two-qubit gates affect
the n-th qubit, and thus it will act as a mediator qubit. Further, we assume that each Gaussian
wave-packet has a cut-off length L, with standard deviation σ = L

2
√

logL
.

7.4.2 Constructing the simulating graph

At this point, we have chosen our logical states, and we now want to construct the graph for our
simulation. Note that the idea behind this is almost the same as in Chapter 5, in that we build
the simulating graph by concatenating scattering events. In particular, for each unitary Ui, we will
include a single-gate circuit of the form described in Section 7.2 or Section 7.3. We then combine
these graphs by removing the output paths from the graph Ui, and connecting the corresponding
trailing edges to the input paths of Ui+1. An example of such combinations is given in Figure 7.5.

More concretely, for single-qubit unitary Ui, we will include a graph of the form described in
Section 7.2 with the scattering event corresponding to the unitary Ui on the correct qubit. We will
assume that each Kj for j < n is equal to 4L− 1, and that

Kn =

⌈
4L

sin |k2|
sin |k1|

⌉
− 1. (7.75)

The reason for these choices is that we want a particle (with momentum k1) to travel from a
position centered at −2L to a position centered about 2L during each single-qubit gate, and Kn+1
is the corresponding distance a particle with momentum k2 travels. Further, we want that the this
centered position to be equidistant from the endpoints of the long paths and the corresponding
locations where the graph gadgets are attached. In this way, if we combine multiple scattering
events implement a single-qubit unitary to the same qubit, when the wave-packet is centered it is
a distance 2L− 1 from both gadgets.

Additionally, for each two-qubit unitary Ui, we will include a graph of the form described in
Section 7.3, with the choice of M(k1) = 2L− 1 and M(k2) = d2L sin |k2|/ sin |k1|e − 1. This choice
of M(ki) is done to facilitate the attachment between graphs at neighboring times.

To combing the graphs for the unitaries Ui, for each i < m, we remove the rightmost 2L − 1
vertices from each outgoing path from Ui, and remove the leftmost vertex from each input path for
Ui+1. For each qubit j ∈ [n] and each logical state z ∈ F2, we then add an additional edge from
the rightmost outgoing vertex from the modified graph for Ui on the path corresponding to logical
zj to the corresponding leftmost vertex of the modified graph of Ui+1.

We can think of this in another manner, in that instead of removing the vertices, we simply
identify the vertex (i, x, j, z) (where i identifies which unitary the vertex belongs to) with the vertex
(i + 1, x − 4L, j, z) if j 6= n (where we assume that the unitary Ui and Ui+1 are both single-qubit
unitaries that do not affect qubit j). We have a similar results for j = n, except that (i, x, n, z) is
identified with (i + 1, 1 − 2M(k2) + x, z). In the case where Ui is a two-qubit unitary, we have a
similar result.

Let the resulting graph be called GX .
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Graph for U1 Graph for U2

Figure 7.5: An example of concatenating two single-gate graphs. The particular gadgets are between
momenta k1 = −π

4 and k2 = −π
2 .

7.4.3 Evolution analysis

Now that we have our defined graph, we will want to show that the n-particle quantum walk on GX
simulates the circuit CX . We will do this by repeated application of the truncation lemma, so that
we can analyze the evolution of the state iteratively. In particular, if the particle is moving toward
the graph gadget for the i-th unitary (and is sufficiently far from the graph gadget implementing
the (i − 1)-st unitary), we can use the truncation lemma to approximate the analysis using our
results on the scattering behavior for the i-th graph (and only the i-th graph). After the particles
have proceeded with the appropriate scattering events and are leaving the i-th graph, we then
repeat the process. If we can show that each such gate implements a logical Ui on the encoded
space without leaving much error, we will have that the simulation is a success.

Along these lines, we will need to define encoded logical states for both input and output, as
well as the logical states between unitaries. If we let

tsingle =
2L

sin |k1|
, (7.76)

and remember the definition for tCθ in (7.48), we have that these are the two times required to
implement a single-qubit gate (tsingle) and to implement a two-qubit gate (tCθ). Additionally, let
us define m+ 1 times, where t0 = 0 and

ti+1 =

{
ti + tsingle Ui is a single-qubit gate

ti + tCθ U is a two-qubit gate.
(7.77)

In this manner, each time ti is after the i-th scattering event and before the i + 1-th scattering
event. We will also have that at these times, the wave-packets for each qubit should be centered
between scattering events.

Let us now define our logical input and output states for each qubit at time ti. The most simple
case is given at t = 0, as the input logical states are exactly the symmetrized states from (7.10)
if the first unitary is a single-qubit gate or the symmetrized states (7.61) if the first unitary is a
two-qubit unitary (additionally, let us label this basis by 1, since it correspond to the first logical
basis). Assuming that the initial state is the logical 0 state, we then have that at time t1, the state
is of the form

e
−iHN

GX
t1 |0〉log,in,1. (7.78)
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If we then use Lemma 1 for the vertices of the graph GX that arose from the graph implementing
U1, along with our approximation to the evolution according to G1 given by either Lemma 16 or
Lemma 18, we can see that for all times 0 ≤ t ≤ t1, the support of our approximation to evolution
according to the truncated Hamiltonian remains a distance L

2 from the removed vertices. Using
the error bounds from the appropriate lemma, we then have that

e
−iHN

GX
t1 |0〉log,in,1 = |U10〉log,out,1 + |ε〉 (7.79)

where

∥∥|ε〉
∥∥ ≤ ξn‖Hn

GX
‖
√

logL

L
, (7.80)

for some constant ξ.
Additionally, note that the output logical states for the first unitary have the exact form as

the input logical states to the second unitary (by construction), except for a global phase resulting
from a change of vertex labelling between the two graphs computing the unitaries and the acquired
phase from the energy. As such, we repeat the above process with the truncation lemma to evolve
|U10〉log,out,1 according to G2 for times t1 ≤ t ≤ t2, while only acquiring an additional error of
(7.80).

We can repeat this process for each unitary Ui, until we get that

∥∥∥∥e
−iHN

GX
t1 |0〉log,in,1 − eiφ|UmUm−1 · · ·U10〉log,out,m

∥∥∥∥ ≤ ξmn‖Hn
GX
‖
√

logL

L
, (7.81)

where φ is a global phase that doesn’t affect the logical state.
From this, if we then choose

L = Θ
(
m2n2‖Hn

GX
‖2 log(mn)

)
, (7.82)

we can make the error in the evolution constant. (Note that we used our bound on ‖H(GX)n‖ in
the logarithm.) From this, we then have that the total number of vertices of our graph will be
O(m3n3‖Hn

GX
‖2 log(mn)) and the total evolution time will be O(m3n2‖Hn

GX
‖2 log(mn)). In the

case of the Bose-Hubbard model and the most simple nearest-neighbor interactions, we have that
‖Hn

GX
‖ ≤ γn2, and these bounds become O(m3n7 log(mn)) and O(m3n6 log(mn)).

I would like to point out that this is a near quadratic improvement over the results of Childs,
Gosset, and Webb [24], where they were able to prove that the requisite number of vertices was
bounded by O(m5n5‖Hn

GX
‖4) with a required time of O(m5n4‖Hn

GX
‖4). This occurred by the novel

analysis using Gaussian states which decreased the size of L by an almost quadratic factor.

7.4.4 Universality

At this point, we have only shown how to simulate a circuit of a particular form. Namely, our
construction requires that each unitary U in the circuit comes from a gate set where

U ∈





Sk2 if U is a single-qubit gate and acts on qubit n

Sk1 if U is a single-qubit gate otherwise

Cθi,n otherwise,

(7.83)

and where Ski requires the existence of a particular scattering gadget and Cθi,j is a single gate.
However, if we assume that each Ski is a universal set of single-qubit gates, and if we assume that
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the phase acquired between k1 and k2 when they interact on a long path is απ, for some irrational
α, then we can approximate a CNOTi,n gate and a CNOTn,i gate. We can then use these CNOT
gates to implement swap gates, and thus we have approximate CNOTi,j gates between all pairs of
qubits. Combining this with the universal single-qubit gate set for all qubits, we then have that we
can approximate an arbitrary circuit with circuits of the form required for our construction.

Note that the acquired phase is a ration function of eik1 , eik2 , and the interaction strength,
and thus for almost all values of the interaction strength we have that the acquired phase is an
irrational multiple of π. From this, we have that MPQW with almost any interaction is universal
for quantum computing.

7.4.4.1 k1 = −π
4 and k2 = −π

2

Note from Section 4.1.3, we have a universal gate set for both k1 and k2. Further, we have from
Chapter 6 that for onsite interactions with strength U2,2

0 that the phase acquired between these
two momenta in the symmetric subspace is

2 (sin(k2)− sin(k1))− iU2,2
0

2 (sin(k2)− sin(k1)) + iU2,2
0

. (7.84)

In the special case of U2,2
0 = 2+

√
2, this results in a Cθ gate equal to diag{1, i,−1,−1}. Using some

additional single qubit gates from our gate set, we then have that we can implement the two-qubit
unitary diag{1, 1, 1, i}.

This gives an explicit example of a set of momenta that can be used in our construction for
universality.

7.4.4.2 k1 = −π
3 and k2 = −2π

3

We also have from Section 4.1.3 that k1 and k2 have (the same) universal gate set. Further, from
Chapter 6 we have that in the case of nearest-neighbor interactions with interaction strength U1,1

1 ,
the phase acquired between these two momenta in the antisymmetric subspace is

−U
1,1
1 + i

√
3

U1,1
1 − i

√
3
. (7.85)

And we thus have a universal set of gates at this pair of momenta.
We also have that this set of momenta travel at the same speed, which might be of interest to

an experimentalist.

7.5 Extensions

At this point, we have shown the universality of MPQW for almost all interactions. However,
some further considerations might be important if this is ever used experimentally. One of the
original motivations for this construction was to build a physically realizable graph instead of the
exponential graph used in the universality result for quantum walk, and we have succeeded, but
any further constraints we can place on the evolution are useful.
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1i+1,in 1i+1,out

0i,in 0i,out

0i+1,in

1i,in 1i,out

0i+1,out

Figure 7.6: The planar entangling gate between adjacent encoded qubits i and i + 1. This graph
implements the unitary Xi+1(Cθ)2

i,i+1Xi+1.

7.5.1 Planar graphs

Perhaps the most physically relevant constraint we could place on the graph is to make it planar.
If the graph GX were planar, an experimentalist could lay the graph on a 2D surface, and actually
have particles move on the graph.

Unfortunately, our current construction cannot be made planar, as we require each two-qubit
unitary to involve the n-th qubit, since it has the distinct momentum. However, we can get around
this by making every odd qubit have momentum k1 and every even qubit have momentum k2. We
then only interact adjacent qubits. Note that this is still not planar, as each two-qubit gate affects
the bottom path for each qubit, and after the interaction we cross the paths to ensure that the
particles remain in the correct locations.

To implement two-qubit gates in a planar manner, we use the graph shown in Figure 7.6. This
graph is obtained by concatenating two Cθ graphs and uncrossing paths to make the drawing
planar. We only use this gate between adjacent encoded qubits, one of which is a mediator qubit
and one of which is a computational qubit. Note that this graph involves two adjacent paths (path
1 of the top encoded qubit and path 0 of the bottom encoded qubit) as opposed to the two 1 paths
in the Cθ gate in Figure 7.2. The resulting logical gate is (Cθ)2 conjugated by an X gate on the
bottom qubit.

If we can then also guarantee that the scattering gadgets used to implement the universal gate
set and the momentum switch are are planar, then we have that the resulting construction leads
to a planar graph. Thankfully, we have that k1 = −π

4 and k2 = −π
2 both have planar single-

particle gadgets, and the momentum switch splitting them is planar as well. If we then look at the
symmetric subspace of the onsite interaction with strength 2 +

√
2, we have a planar construction

for universality.

7.5.2 Distinguishable particles

So far we have focused on the case of indistinguishable particles. However, we can also perform
universal quantum computation with distinguishable particles, provided the interaction has an
appropriate form.

For distinguishable particles we will use use the same encoding of qubits as before, except that
now each qubit is associated with a specific particle (e.g., computational qubit 1 is associated
with particle 1). We have from Lemma 16 that the single particle evolutions do not depend on
the symmetries of the particles, and thus we need only examine the implementation of the Cθ
gate to see how our construction must be modified. In this section we show that with a simple
nearest-neighbor interaction we can make our scheme work for distinguishable particles by carefully
choosing the strength of the interaction term in the Hamiltonian, but with no other modifications.
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When two indistinguishable particles of momenta k1 and k2 scatter on an infinite path, there
is no distinction between the final state where the particles reflect off of each other (exchanging
momenta) and where the particles transmit through one another. Thus, after scattering, the global
phase of the wave function is multiplied by a factor T ± R, the sum of the amplitude to transmit
and the amplitude to reflect (or the difference if the particles are fermions). For any interaction
potential, |T ± R| = 1, and in most cases the applied phase is nontrivial and can be used for
universal computation within our scheme.

In contrast, when two distinguishable particles of momenta k1 and k2 scatter on an infinite
path, there are two distinct outgoing states: one corresponding to the case where the two particles
reflect and one where the particles transmit. We circumvent this potential problem by choosing
the interaction strength so that the transmission probability for two-particle scattering at momenta
k1 and k1 is 1 (forcing R = 0), yet T 6= 1 (so that T is a nontrivial phase). With such a choice,
the graph implementing the Cθ gates preserves our encoding of qubits. In other words, if encoded
qubit 1 is associated with particle 1 before applying the gate, then it is still associated with particle
1 after applying the gate (and similarly for the second qubit involved in the gate). We can then
use the same graph as before to implement the controlled phase gate between encoded qubits.

Consider the nearest-neighbor Hamiltonian with U1(x, y) = U1xy. For two particles on an
infinite path, this is (6.24) with V(|r|) = Uδ|r|,1. The reflection coefficient R(k1, k2) for k1 = −π

4
and p2 = π

2 is

R
(
−π

4
,
π

2

)
=

−2U1,1
1

(√
2 + (

√
2− 1)U1,1

1

)

(
√

2− 2)(1 + i)(U1,1
1 )2 − 4U1,1

1 + 2i(
√

2 + 2)
.

Our goal is to choose U1,1
1 so that R = 0 and T is a nontrivial phase. The values of U1,1

1 that

set R = 0 are U1,1
1 = 0 or U1,1

1 = −2 −
√

2. The solution U1,1
1 = 0 corresponds to no interaction

and the trivial phase T = 1 which is not sufficient for universal computation within our scheme.
Choosing U1,1

1 = −2−
√

2 sets T = i which allows us to perform a CP gate.
We expect that other types of multi-particle quantum walk with distinguishable particles can

also be used for universal computation. However, unlike in the case of indistinguishable particles,
the interaction term may have to be tuned to satisfy the conditions R = 0 and T 6= 1 as was the
case here. For some interactions, it may not be possible to satisfy these two requirements. For
example, for a model where interactions only occur when particles occupy the same site (such as
in the Bose-Hubbard model) we have 1 +R = T for all momenta, so the transmission amplitude is
trivial whenever R = 0.

Note that it may be possible to implement an entangling two-qubit gate in other ways. For
example, some interactions may allow two-particle scattering with T = 0 and R = i, in which case
the graph shown in Figure 7.6 preserves the encoding of qubits and implements such a gate.

7.6 Conclusions and open problems

Using scattering theory for one and two-qubit interactions on a graph, we were able to encode n
qubits in the location of n-particles on a polynomial sized graph. We then used our bounds on the
scattering behavior for these small number of particles to understand the n-particle evolution.

Note that we have already improved known results in this construction, as our error bounds are
nearly a quadratic improvement. However, the resulting bounds are still rather large; if we could
improve these bounds in any manner, either by changing our construction or decreasing the error
from scattering events, this would be a nice result.
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Chapter 8

Ground energy of quantum walk

While time evolution according to a given Hamiltonian is probably the more obvious and physically
relevant question one could ask when talking about the computational power of a given system, one
could also ask about the difficulty in determining the ground energy of a given Hamiltonian. These
minimization problems are a natural quantum analog of classical constraint satisfaction problems,
and in a similar manner are often computationally intractable. For many classes of Hamiltonians
and suitable notions of approximation, these problems are QMA-complete

In this chapter we will analyze the ground energy problem for Quantum Walk Hamiltonians,
and show that this problem is QMA-complete. The proof strategy follows the usual structure
of QMA-completeness originally laid out by Kitaev [43], in that we encode the evolution of a
state under a circuit in the ground space of a quantum walk Hamiltonian. There are a few small
modifications to the usual circuit-to-Hamiltonian mapping to ensure that the resulting Hamiltonian
is a 0-1 matrix, but the main point of this chapter is to give an introduction to QMA-hardness
proofs, as well as providing a QMA-complete problem that might be more accessible to classical
computer scientists.

Additionally, we will use some of the circuit-to-graph mappings from this chapter in our QMA-
hardness proof for the MPQW Hamiltonian. By analyzing the single particle quantum walk in this
chapter, the results will more easily follow in the sequel.

Note that this result was shown in an appendix of Childs, Gosset, and Webb [25].

8.1 The ground-energy problem

We know that the single-particle quantum walk is governed by the adjacency matrix of the underly-
ing graph. In particular, the Hamiltonian is exactly equal to the adjacency matrix, and thus asking
questions about the ground energy of a single-particle quantum walk is simply asking a question
about the smallest eigenvalue of a particular adjacency matrix.

For an arbitrary adjacency matrix, we can efficiently and exactly compute the eigenvalues of
an n vertex graph in time polynomial in n. However, the Hilbert space on which the quantum
walk acts is necessarily exponential in size, and the corresponding algorithm for arbitrary graphs
then requires exponential time to even read the input. The important property of quantum walk
Hamiltonians is that they have efficiently computable matrix entries, and the corresponding energy
problem is about very specific types of matrices. Noting that the graph for a quantum walk has
bounded degree, and is usually efficiently specifiable, the corresponding Hamiltonian is a sparse,
row-computable, symmetric 0-1 matrix.

We then have the following problem statement:
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Problem 1 (d-sparse graph eigenvalue problem). Given a d-sparse, row-computable graph G on
D vertices, a constant a, and a precision parameter ε = N−1, where N is specified in unary, is
the smallest eigenvalue of A(G) below a or above a+ ε, with the guarantee that one of these cases
occur.

While this problem is inspired from quantum walks, it actually makes no reference to quan-
tum mechanics. This might be of interest to classical computer scientists, as it relates succinctly
specifiable instances of the adjacency matrix eigenvalue problem to the complexity class QMA.

8.1.1 Containment in QMA

The proof that this problem is in QMA follows the same pattern as most other Hamiltonian
problems. Using a sparse-Hamiltonian simulation algorithm (such as [8, 12]), we perform phase
estimation [28] on the provided state to approximate the energy.

In the case that the smallest eigenvalue of the system is below a, the prover can provide the
corresponding eigenvector encoded in a quantum state. The phase estimation algorithm will then
(with high probability) find this eigenvalue, and the system will accept. If the smallest eigenvalue
is above a + ε, then no matter what state the prover provides, the phase estimation algorithm
will project onto one of the eigenstates and determine the corresponding eigenvalue, which will
necessarily be above a+ ε.

Hence, the d-sparse graph eigenvalue problem is contained within QMA.

8.2 QMA-hardness

The main way that this works is that we will use the well known Kitaev circuit-to-Hamiltonian
mapping, with some small changes so that we the resulting Hamiltonian is proportional to the
adjacency matrix of a graph. Once we have the Hamiltonian of the correct form, we can then add
positive semi-definite terms that penalize particular states, and use the nullspace projection lemma
(Lemma 2) to bound the resulting eigenvalues.

8.2.1 Kitaev Hamiltonian

With the definition of the class QMA, the requirement is that for each input there exists some
quantum circuit and some particular input state that the circuit either accepts or rejects. When
attempting to prove that a particular Hamiltonian has the same computational power as the class
QMA, we need to construct a “circuit-to-Hamiltionian” map. The predominant such map is the
Feynmann-Kitaev circuit-to-Hamiltonian mapping.

In this mapping, we attempt to encode the computation into the ground space of the Hamilto-
nian, in a similar manner to how the proof that 3-SAT is NP-Hard encodes the entire computation
of a nondeterministic Turing Machine [63]. However, we run into a problem on how to insure that
neighboring time steps are only seperated by a single local unitary. In the classical case we can
write down the entire state of the system at each timestep, or else only write down the changes
that occur at each time step. In the first case we run into a problem in that information is copied
between time steps, which is impossible for a general state by the no-cloning theorem [43], while
the second case quickly becomes infeasible as the changes to the quantum state might effect many
basis states.

Kitaev worked around this problem by enlarging the Hilbert space on which the circuit acts, by
having both a clock and a state register. The computation of the system was then encoded as an
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entangled state between these two registers. In this way, by having a projection into those states
that evolve correctly for a particular time step, we can have a local check for the correctness of
evolution.

In particular, if a given circuit C acts on C2m and can be written as C = UTUT−1 · · ·U1, then
the Kitaev Hamiltonian HC acts on the Hilbert space C2m ⊗ CT+1, and can be written as

HC =

T−1∑

t=0

(
IC2m ⊗ | t〉 − Ut+1 ⊗ | t+ 1〉

)(
IC2m ⊗ 〈 t | − U †t+1 ⊗ 〈 t+ 1 |

)
=

T−1∑

t=0

Ht (8.1)

Note that each term Ht is a projector off those states of the form

|ψ 〉 ⊗ | t〉+ Ut+1|ψ 〉 ⊗ | t+ 1〉. (8.2)

Hence, we have that the ground state of HC corresponds to the history states:

|ψhist 〉 =
T∑

t=0

UtUt−1 · · ·U1|ψ 〉 ⊗ | t〉. (8.3)

These states encode the computation, as for a given initial state |ψ 〉, the projection onto the time
register gives the state of the computation at time t. Note that the energy gap for this Hamiltonian
is exactly 1− cos(π/T ), as the Hamiltonian is unitarily equivalent to a quantum walk on a line of
length T .

With this mapping corresponding to a particular circuit, we can then force the initial state to
have a particular form by adding in projectors tensored with a projection onto the | t = 0〉 state,
with a similar projection for the requisite form of the final state. Putting everything together we
then have a log-local Hamiltonian that will have a polynomial gap depending on whether the initial
circuit accepted or rejected.

One can then show that this Hamiltonian will have a low energy eigenvector if and only if the
corresponding circuit C has an accepting input.

8.2.2 Transformation to Adjacency Matrix

While the above prescription works well for the conversion to local-Hamiltonians in the general
case, in the situation we are interested in we want all of the non-zero matrix elements to be the
same value. As the matrix elements of HC are related to the matrix values of the unitaries involved
in the circuit C, we thus want to force the matrix values of C to all be of the same form.

To enforce this, we suppose C implements a unitary

UCx = UM . . . U2U1 (8.4)

where each Ui acts as
G = {H,HT, (HT )† , (H ⊗ I) CNOT} (8.5)

on some qubits, and the identity on the rest.
Note that this gate set is universal, as we can easily simulate the gate set {H,T,CNOT} with

gates from G since H2 = I and we can thus cancel the H terms before the interesting portion of
the gates. Further, each non-zero matrix element of these unitaries has norm 2−1/2, as we wanted.

However, when we look at one of the local terms in the Hamiltonian, we find that not all of the
matrix elements have the same norm. In particular, we find that

Ht =
(
IC2m ⊗ | t〉 − Ut+1 ⊗ | t+ 1〉

)(
IC2m ⊗ 〈 t | − U †t+1 ⊗ 〈 t+ 1 |

)
(8.6)

= IC2m ⊗
(
| t〉〈 t |+ | t+ 1〉〈 t+ 1 |

)
−
(
Ut+1 ⊗ | t+ 1〉〈 t |+ U †t+1 ⊗ | t〉〈 t+ 1 |

)
. (8.7)
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While each off-diagonal term is either zero or has norm 2−1/2 in (8.7), the diagonal terms have
norm 1. When each term is summed, we almost have that the sum of the diagonal terms are
proportional to the identity, but unfortunately the boundary terms (with t = 0 or t = T ) are only
involved in one unitary. However, this problem can be avoided by having circular time, in which we
both compute and uncompute the comptutation. With this, each timestep is involved in exactly
two local terms, and thus the diagonal term is proportional to the identity.

With this, it will be convenient to consider

U †CUC = W2M . . .W2W1 (8.8)

where

Wt =

{
Ut 1 ≤ t ≤M
U †2M+1−t M + 1 ≤ t ≤ 2M.

(8.9)

As in Section 8.2.1 we start with a version of the Feynman-Kitaev Hamiltonian (with a different

norm) [35, 43] acting on the Hilbert space Hcomp ⊗ Hclock where Hcomp =
(
C2
)⊗m

is an m-qubit
computational register and Hclock = C2M is a 2M -level register with periodic boundary conditions
(i.e., we let |2M + 1〉 = |1〉). However, we then subtract a term proportional to the identity, which
yields the Hamiltonian

HC = −
√

2
2M∑

t=1

(
W †t ⊗ |t〉〈t+ 1|+Wt ⊗ |t+ 1〉〈t|

)
. (8.10)

Note that

V †HCV = −
√

2
2M∑

t=1

(I⊗ |t〉〈t+ 1|+ I⊗ |t+ 1〉〈t|) (8.11)

where

V =
2M∑

t=1

( 1∏

j=t−1

Wj

)
⊗ |t〉〈t| (8.12)

and W0 = 1. Since V is unitary, the eigenvalues of Hx are the same as the eigenvalues of (8.11),
namely

− 2
√

2 cos

(
π`

M

)
(8.13)

for ` = 0, . . . , 2M − 1. The ground energy of (8.11) is −2
√

2 and its ground space is spanned by

|φ〉 1√
2M

2M∑

j=1

|t〉, |φ〉 ∈ Λ (8.14)

where Λ is any orthonormal basis for Hcomp. A basis for the ground space of Hx is therefore

V

(
|φ〉 1√

2M

2M∑

j=1

|t〉
)

=
1√
2M

2M∑

t=1

Wt−1Wt−2 . . .W1|φ〉|t〉 (8.15)

where |φ〉 ∈ Λ. The first excited energy of Hx is

η = −2
√

2 cos
( π
M

)
(8.16)
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and the gap between ground and first excited energies is lower bounded as

η + 2
√

2 ≥
√

2
π2

M2
(8.17)

(using the fact that 1− cos(x) ≤ x2

2 ).
The universal set G is chosen so that each gate has nonzero entries that are integer powers

of ω = ei
π
4 . Correspondingly, the nonzero standard basis matrix elements of HC are also integer

powers of ω = ei
π
4 . We consider the 8× 8 shift operator

S =

7∑

j=0

|j + 1 mod 8〉〈j| (8.18)

and note that ω is an eigenvalue of S with eigenvector

|ω〉 =
1√
8

7∑

j=0

ω−j |j〉. (8.19)

We modify HC as follows. For each operator −
√

2H, −
√

2HT , −
√

2(HT )†, or −
√

2 (H ⊗ I) CNOT
appearing in equation (8.10), define another operator that acts on C2⊗C8 or C4⊗C8 (as appropriate)
by replacing nonzero matrix elements with powers of the operator S:

ωk 7→ Sk. (8.20)

Matrix elements that are zero are mapped to the 8 × 8 all-zeroes matrix. Write B(W ) for the
operators obtained by making this replacement, e.g.,

−
√

2HT =

(
ω4 ω5

ω4 ω

)
7→ B(HT ) =

(
S4 S5

S4 S

)
. (8.21)

Adjoining an 8-level ancilla as a third register and making this replacement in equation (8.10) gives

Hprop =
2M∑

t=1

(
B(Wt)

†
13 ⊗ |t〉〈t+ 1|2 +B(Wt)13 ⊗ |t+ 1〉〈t|2

)
(8.22)

which is a symmetric 0-1 matrix (the subscripts indicate which registers the operators act on).
Note that Hprop commutes with S (acting on the 8-level ancilla) and therefore is block diagonal
with eight sectors. In the sector where S has eigenvalue ω, Hprop is identical to the Hamiltonian
HC that we started with (see equation (8.10)). There is also a sector (where S has eigenvalue ω∗)
where the Hamiltonian is the element-wise complex conjugate of HC . We will add a term to Hprop

that introduces an energy penalty for states in any of the other six sectors, ensuring that none of
these states lie in the ground space.

To see what kind of energy penalty is needed, we lower bound the eigenvalues of Hprop. Note
that for each W ∈ G, B(W ) contains at most 2 ones in each row or column. Looking at equation
(8.22) and using this fact, we see that each row and each column of Hprop contains at most four
ones (with the remaining entries all zero). Therefore ‖Hprop‖ ≤ 4, so every eigenvalue of Hprop is
at least −4.

The matrix Ax associated with the circuit Cx acts on the Hilbert space

Hcomp ⊗Hclock ⊗Hanc (8.23)
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where Hanc = C8 holds the 8-level ancilla. We define

Ax = Hprop +Hpenalty +Hinput +Houtput (8.24)

where
Hpenalty = I⊗ I⊗

(
S3 + S4 + S5

)
(8.25)

is the penalty ensuring that the ancilla register holds either |ω〉 or |ω∗〉 and the terms

Hinput =
n∑

j=ninput+1

|1〉〈1|j ⊗ |1〉〈1| ⊗ I (8.26)

Houtput = |0〉〈0|output ⊗ |M + 1〉〈M + 1| ⊗ I (8.27)

ensure that the ancilla qubits are initialized in the state |0〉 when t = 1 and that the output qubit
is in the state |1〉〈1| when the circuit Cx has been applied (i.e., at time t = M + 1). Observe that
Ax is a symmetric 0-1 matrix.

Now consider the ground space of the first two terms Hprop + Hpenalty in (8.24). Note that
[Hprop, Hpenalty] = 0, so these operators can be simultaneously diagonalized. Furthermore, Hpenalty

has smallest eigenvalue −1 −
√

2, with eigenspace spanned by |ω〉 and |ω∗〉. One can also easily
confirm that the first excited energy of Hpenalty is −1.

The ground space of Hprop +Hpenalty lives in the sector where Hpenalty has minimal eigenvalue
−1 −

√
2. To see this, note that within this sector Hprop has the same eigenvalues as Hx, and

therefore has lowest eigenvalue −2
√

2. The minimum eigenvalue e1 of Hprop + Hpenalty in this
sector is

e1 = −2
√

2 +
(
−1−

√
2
)

= −1− 3
√

2 = −5.24 . . . , (8.28)

whereas in any other sector Hpenalty has eigenvalue at least −1 and (using the fact that Hprop ≥ −4)
the minimum eigenvalue of Hprop+Hpenalty is at least −5. Thus, an orthonormal basis for the ground
space of Hprop +Hpenalty is furnished by the states

1√
2M

2M∑

t=1

Wt−1Wt−2 . . .W1|φ〉|t〉|ω〉 (8.29)

1√
2M

2M∑

t=1

(Wt−1Wt−2 . . .W1)∗|φ∗〉|t〉|ω∗〉 (8.30)

where |φ〉 ranges over the basis Λ for Hcomp and ∗ denotes (elementwise) complex conjugation.
At this point, we then have a symmetric 0-1 matrix whose ground-space is spanned by history

states. While we have not yet shown that determining the ground energy of this matrix is QMA-
hard, this graph is the result of our circuit-to-graph mapping.

8.2.3 Upper bound on the smallest eigenvalue for yes instances

Let us suppose that x is a yes instance for a QMA-complete problem; there then exists some
ninput-qubit state |ψinput〉 satisfying AP (Cx, |ψinput〉) ≥ 1− 1

2|x|
. Let

|wit〉 =
1√
2M

2M∑

t=1

Wt−1Wt−2 . . .W1

(
|ψinput〉|0〉⊗n−ninput

)
|t〉|ω〉 (8.31)

133



and note that this state is in the e1-energy ground space of Hprop +Hpenalty (since it has the form
(8.29)). One can also directly verify that |wit〉 has zero energy for Hinput. Thus

〈wit|Ax|wit〉 = e1 + 〈wit|Houtput|wit〉 (8.32)

= e1 +
1

2M
〈ψinput|〈0|⊗n−ninputU †Cx |0〉〈0|outputUCx |ψinput〉|0〉⊗n−ninput (8.33)

= e1 +
1

2M
(1−AP(Cx, |ψinput〉)) (8.34)

≤ e1 +
1

2M

1

2|x|
. (8.35)

8.2.4 Lower bound on the smallest eigenvalue for no instances

Now suppose x is a no instance. Then the verification circuit Cx has acceptance probability
AP (Cx, |ψ〉) ≤ 1

3 for all ninput-qubit input states |ψ〉.
We backtrack slightly to obtain bounds on the eigenvalue gaps of the Hamiltonians Hprop +

Hpenalty and Hprop +Hpenalty +Hinput. We begin by showing that the energy gap of Hprop +Hpenalty

is at least an inverse polynomial function of M . Subtracting a constant equal to the ground energy
times the identity matrix sets the smallest eigenvalue to zero, and the smallest nonzero eigenvalue
satisfies

γ(Hprop +Hpenalty − e1 · I) ≥ min

{√
2
π2

M2
,−5− e1

}
≥ 1

5M2
. (8.36)

since −5− e1 ≈ 0.24 . . . > 1
5 . The first inequality above follows from the fact that every eigenvalue

of Hprop in the range [e1,−5) is also an eigenvalue of Hx (as discussed above) and the bound (8.17)
on the energy gap of Hx.

Now use the Nullspace Projection Lemma (Lemma 2) with

HA = Hprop +Hpenalty − e1 · I HB = Hinput. (8.37)

Note that HA and HB are positive semidefinite. Let SA be the ground space of HA and consider
the restriction HB|SA . Here it is convenient to use the basis for SA given by (8.29) and (8.30) with
|φ〉 ranging over the computational basis states of n qubits. In this basis, HB|SA is diagonal with
all diagonal entries equal to 1

2M times an integer, so γ(HB|SA) ≥ 1
2M . We also have γ(HA) ≥ 1

5M2

from equation (8.36), and clearly ‖HB‖ ≤ n. Thus Lemma 2 gives

γ(Hprop +Hpenalty +Hinput − e1 · I) ≥
(

1
5M2

) (
1

2M

)

1
5M2 + 1

2M + n
≥ 1

10M3 (1 + n)
≥ 1

20M3n
. (8.38)

Now consider adding the final term Houtput. We use Lemma 2 again, now setting

HA = Hprop +Hpenalty +Hinput − e1 · I HB = Houtput. (8.39)

Let SA be the ground space of HA. Note that it is spanned by states of the form (8.29) and (8.30)
where |φ〉 = |ψ〉|0〉⊗n−ninput and |ψ〉 ranges over any orthonormal basis of the ninput-qubit input
register. The restriction HB|SA is block diagonal, with one block for states of the form

1√
2M

2M∑

t=1

Wt−1Wt−2 . . .W1

(
|ψ〉|0〉⊗n−ninput

)
|t〉|ω〉 (8.40)
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and another block for states of the form

1√
2M

2M∑

t=1

(Wt−1Wt−2 . . .W1)∗
(
|ψ〉∗|0〉⊗n−ninput

)
|t〉|ω∗〉. (8.41)

We now show that the minimum eigenvalue of HB|SA is nonzero, and we lower bound it. We
consider the two blocks separately. By linearity, every state in the first block can be written in the
form (8.40) for some state |ψ〉. Thus the minimum eigenvalue within this block is the minimum
expectation of Houtput in a state (8.40), where the minimum is taken over all ninput-qubit states
|ψ〉. This is equal to

min
|ψ〉

1

2M
(1−AP(Cx, |ψ〉)) ≥

1

3M
(8.42)

where we used the fact that AP (Cx, |ψ〉) ≤ 1
3 for all |ψ〉. Likewise, every state in the second block

can be written as (8.41) for some state |ψ〉, and the minimum eigenvalue within this block is

min
|ψ〉

1

2M
(1−AP(Cx, |ψ〉)∗) ≥

1

3M
(8.43)

(since AP(Cx, |ψ〉)∗ = AP(Cx, |ψ〉) ≤ 1
3). Thus we see that HB|SA has an empty nullspace, so its

smallest eigenvalue is equal to its smallest nonzero eigenvalue, namely

γ(HB|SA) ≥ 1

3M
. (8.44)

Now applying Lemma 2 using this bound, the fact that ‖HB‖ = 1, and the fact that γ(HA) ≥ 1
20M3n

(from equation (8.38)), we get

γ(Ax − e1 · I) ≥
1

60M4n
1

20M3n
+ 1

3M + 1
≥ 1

120M4n
. (8.45)

Since HB|SA has an empty nullspace, Ax− e1 · I has an empty nullspace, and this is a lower bound
on its smallest eigenvalue.

8.3 Extensions and Discussion

While this result is interesting in its own right — as it shows that finding the ground energy of
a sparse, row-computable matrix is QMA-complete — perhaps the most interesting feature is
that nothing particularly quantum is involved in the definition of the problem. In particular, the
only condition we have on the matrix is that it is sparse, and row-computable. This condition
might allow for a more natural understanding for more classically-minded computer scientists, as
a QMA-complete problem could be stated without having to delve into any quantum computing.

As an additional problem, since the circuit-to-Hamiltonian map creates a 7-regular, simple
graph, one might wonder if the removal of these conditions are necessary when the boundary terms
are added. This is obviously going to be necessary, as otherwise we would have that determining
the lowest eigenvalue of a Laplacian is QMA-complete, but it is a well known fact that the smallest
eigenvalue of a Laplacian is zero.

As a possible extension to this result, note that the graphs constructed in our proof of QMA-
hardness contain self-loops, as the terms penalizing the initial ancilla and output qubit are diagonal
in the computational basis. As graphs are usually defined without self-loops, it might be worthwhile
finding a construction that results in a simple graph. It should be possible to do this using two
copies of the constructed graph and apply a projector onto the anti-symmetric subspace between
the two, but unfortunately I did not have enough time to explicitly calculate this.
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Chapter 9

Ground energy of multi-particle
quantum walk

With our proof that the ground energy problem for a single-particle quantum walk is QMA-
complete, we will now investigate the related problem for MPQW. The similarities between the
two systems, as well as the well-known difficulty in analyzing many-body systems, gives good
intuition that this problem is hard, but the actual proof requires a lot of detail.

In particular, the QMA-hardness proof for quantum walk was relatively straightforward, as the
requisite circuit-to-Hamiltonian mapping is a simple extension to well-known techniques. Further,
we understand the dynamics of the Hamiltonians derived from a given circuit, leading to exact
solutions for the energies. With the MPQW, a full analysis of the dynamics is currently beyond
our knowledge, and our universality construction from Chapter 7 relied on a reduction to the cases
with at most two interacting particles. In order to show that finding the ground energy of a MPQW
is QMA-hard, our techniques will again heavily rely on the cases with a small number of particles.

Our proof of QMA-hardness will actually show that the the MPQW ground energy problem
is QMA-hard when restricted to instances where the ground state nearly minimizes both the
interaction and movement terms of the Hamiltonian. By restricting ourselves to these frustration-
free states, we will show that ground state is nearly contained within the span of single-particle
states that don’t overlap. With this restriction, we will still have correlations between many
particles, but we will be able to perform an analysis using only a bounded number of particles.

In particular, we will construct a basic graph g0 that only supports single-particle states in our
frustration-free subspace. We then connect these graphs to build more complicated entanglement
structure between particles, until we construct graphs for which the n-particle frustration-free
ground space contains an encoded subspace of history states, plus some unwanted states. We then
show how to transform a given graph to remove these unwanted states from the ground space,
without changing the energy gap greatly.

Our proof strategy, using repeated applications of the Nullspace Projection Lemma (Lemma 2),
is analogous to that of reference [41], where the so-called Projection Lemma was used similarly.
Our technique has the advantage of not requiring the terms we add to our Hamiltonian to have
“unphysical” problem-size dependent coefficients (it also has this advantage over the method of
perturbative gadgets [41]). This allows us to prove results about the “physically realistic” Bose-
Hubbard Hamiltonian. A similar technique based on Kitaev’s Geometric Lemma was used recently
in reference [37] (however, that method is slightly more computation intensive, requiring a lower
bound on γ(HB) as well as bounds on γ(HA) and γ(HB|S)).

Additionally, note that this chapter is essentially a combination of Childs, Gosset, and Webb’s
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[25] and [26]. In particular, the proof structure is identical to that of [25], with some modifications
to the proof that arose in [26]. However, the previous results only applied to onsite-interactions
corresponding to the Bose-Hubbard model with positive interactions. The proof in this chapter is
a generalization to arbitrary positive-semidefinite constant-range interactions.

9.1 MPQW Hamiltonian ground-energy problem

Before we begin constructing various graphs, and determining the eigenvalues of the MPQW on
these graphs, it will be useful to define the problem statement that we want to prove hard. Along
these lines, we will also need to determine the interactions for which our proof will hold.

Our proof strategy heavily relies on combining positive-semidefinite matrices, and analyzing
the resulting ground space and eigenvalue gaps. Additionally, we will often want to guarantee that
adding a particle to a given graph can only increase its energy. These are all the requirements we
discussed in Section 6.4 in Chapter 6.

Along these lines, let U be an interaction with maximum range dmax, satisfying the conditions
that for all 0 ≤ d ≤ dmax and all x, y ∈ N+,

0 ≤ Ud(x, y) ≤ Ud(x+ 1, y). (9.1)

We also want to guarantee that there exists two constants γ and ν such that ‖HN
U ,G‖ ≤ γNν , so

that the energy can only grow polynomially. With these interactions, we can now construct the
problem of interest.

Problem 2 (U-interaction MPQW Hamiltonian). Given as input a K-vertex graph G, a number
of particles N , a real number c, and a precision parameter ε = 1/T , where the positive integers N
and T are given in unary, and the graph G is given as its adjacency matrix (a K ×K symmetric
0-1 matrix), the U-interaction MPQW Hamiltonian problem is to determine whether the smallest
eigenvalue of HN

U ,G is at most c or is at least c+ ε, with a promise that one of these two cases hold.

Note that we can modify this problem statement to only include symmetric (or anti-symmetric)
states, and it will be called the U-interaction (anti-)symmetric MPQW Hamiltonian problem.

9.1.1 MPQW Hamiltonian is contained in QMA

The proof that the U-interaction MPQW Hamiltonian problem is contained in QMAis rather
straightforward, since we can simulate evolution by the Hamiltonian HN

U ,G, as was shown in
Chapter 6. In particular, we can use phase estimation in order to approximate the energy with
high probability.

More concretely, we are given an instance specified by G, N , c, and ε. We are also given an
input state |φ〉 of ninput qubits, where ninput = dlog2 |V (G)|Ne. Note that ninput = O(N log (K)),

where K = |V | is the number of vertices in the graph G. We embed C|V (G)|N into the space of
ninput qubits straightforwardly as the subspace spanned by the first |V (G)|N standard basis vectors
(with lexicographic ordering, say).

The first step of the verification procedure is to measure HN
U ,G in the state |φ′〉. The Hamiltonian

HN
U ,G is sparse and efficiently row-computable, with norm

∥∥HN
G

∥∥ ≤ γNν . (9.2)

We use phase estimation (see for example [28]) to estimate the energy of |φ〉, using sparse Hamil-
tonian simulation [3] to approximate evolution according to HN

U ,G. We choose the parameters of
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the phase estimation so that, with probability at least 2
3 , it produces an approximation E of the

energy with error at most ε
4 . This can be done in time poly(N,K, 1

ε ). If E ≤ c+ ε
2 then we accept;

otherwise we reject.
We now show that this verification procedure satisfies the completeness and soundness require-

ments of the complexity class QMA. For a yes instance, an eigenvector of HN
U ,G with eigenvalue

e ≤ c is accepted by this procedure as long as the energy E computed in the phase estimation step
has the desired precision. To see this, note that we measure |E − e| ≤ ε

4 , and hence E ≤ c + ε
4 ,

with probability at least 2
3 . For a no instance, the value E computed by the phase estimation step

satisfies E ≥ c + 3ε
4 with probability at least 2

3 , in which case the state is rejected. From this we
see that the probability of accepting a no instance is at most 1

3 .
Note that the problem remains in QMAwhen we restrict ourselves to the (anti-)symmetric

subspace. The verification procedure remains nearly the same, except that we measure a projector
onto the (anti-)symmetric subspace on |φ〉 before we perform phase estimation. In a yes case,
Merlin provides an (anti-)symmetric state, and this test always passes. In a no case, if this test
passes, we are then checking the energy of an (anti-)symmetric state, which fails the energy test
with high probability.

With all of this, we then have that the U-interaction MPQW Hamiltonian problem is contained
within QMA.

9.1.2 QMA-hard problem

While the U-interaction MPQW Hamiltonian problem is the natural problem relating to the ground
energy of a MPQW, we will prove that a restricted version of this problem is QMAhard. Namely,
if we restrict ourselves to those Hamiltonians that minimize both the interaction and movement
terms, we can more easily analyze the N -particle ground space.

As such, remember from Chapter 6 that for a given graph G, we define the positive-semidefinite
matrix HU (G,N) by

HU (G,N) =
N∑

w=1

(
A(G)− µ(G)

)(w)
+

dmax∑

d=0

∑

u,v∈V (G)
d(u,v)=d

Ud(n̂u, n̂v), (9.3)

and that λiN (G) is the i-th smallest eigenvalue of HU (G,N).

Problem 3 (Frustration-free U-interaction MPQW Hamiltonian). We are given as input a K-
vertex simple graph G, a number of particles N ≤ K, and a precision parameter ε = 1/T , where
the positive integers N and T ≥ 4K are given in unary, and the graph G is given as its adjacency
matrix (a K ×K symmetric 0-1 matrix). We are promised that either λ1

N (G) ≤ ε (a yes instance),
or else that λ1

N (G) ≥ 2ε (a no instance) and we are asked to decide which is the case.

Note that this is a special case of the U-interaction MPQW Hamiltonian, with c = Nµ(G) + ε.
As such, if we show that the Frustration-free U-interaction MPQW Hamiltonian problem is QMA-
hard, we will also show that the non-frustration-free problem is QMA-complete.

Additionally, the argument could be made that this actually is not a completely frustration free
Hamiltonian; exact frustration-freeness would require a ground energy that is exactly Nµ(A(G)).
However, if we could additionally guarantee that either the problem was exactly frustration free,
or was bounded by some constant, our argument should still hold. Allowing this little freedom in
the ground energy does not make the problem significantly harder, but still keeps the spirit of the
problem we are examining.
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9.2 Useful graph primitives

At this point, we will want to construct the graph for which our QMA-hardness result will hold.
As such, we will at this point restrict our attention to a particular interaction, U and omit the
corresponding subscripts. While the idea behind the construction of these graphs will not change
depending on the interaction, the exact graph we construct will depend on the largest distance for
which there is a non-zero interaction. We will want to construct a foundational graph that does
not have a two-particle ground state, and also we will want to ensure that any connections between
these building blocks in the larger graphs will only allow for particular interactions.

Let us then assume that the minimum distance that the interaction U has non-zero interactions
is dmin, while the maximum distance is dmax. Our graph will only depend on dmax, but it will be

useful to also know dmin. We will also assume that U (1,1)
dmin

> 0, so that there is some energy penalty
if two particles are at a distance dmin (assuming that dmin > 0 — otherwise we will assume that
U2

0 > 0).
Additionally, we will want the eventual graph to be a simple graph, so that there is always at

most a single edge between two vertices and no self-loops. Unfortunately, our proof strategy will
involve adding many positive semi-definite terms to the adjacency matrix, which correspond to
adding in edges and self-loops. As such, we will instead force every vertex in the graph to contain
a self-loop, so that by removing all of the self loops we only shift the energy levels by a constant
amount. Keep this in mind, as the eventual graph is defined.

With all of this said, however, this section only define some useful building blocks that will be
used in the final construction of the graph for a given circuit. All of these graphs will be constant
sized, and we will show a spanning set for their single-particle and two-particle ground states. By
construction, they will not have any three-particle frustration-free states.

9.2.1 Gate graphs

In this section we define a class of graphs (gate graphs) and a diagrammatic notation for them
(gate diagrams) that will allow us to more easily construct the graphs that will be used in our
proofs. Additionally, we will also discuss the MPQW Hamiltonian acting on these graphs, with a
particular emphasis on the low-energy states. We will eventually use this characterization of the
low energy states on these small graphs to analyze and give bounds on the low energy states of the
more complicated graphs corresponding to particular gate diagrams.

Every gate graph is constructed using a specific, finite-sized graph g0 as a building block that
only depends on the interaction range of the interaction Hamiltonian for the MPQW. This building
block is shown in Figure 9.1 (in the specific instance of for graphs with dmax <= 1 and discussed
in Section 9.2.1.1). These graphs are designed so that in the low energy sector of the MPQW
Hamiltonian, each copy of g0 can only contain a single particle at a time without incurring an
energy penalty, which will allow us to force the form of the ground state. Additionally, the single-
particle ground states of A(g0) correspond to the history-states of a simple computation, which we
will use to eventually construct graphs computing more interesting quantities.

9.2.1.1 The graph g0

The graph g0 shown in Figure 9.1 is constructed using the method of Chapter 8, with the single
qubit circuit corresponding to a sequence of H and HT gates. The intuition behind this graph
is to force the ground state to correspond to the history state of these simple computations, thus
allowing us to reference the computational value of the corresponding qubit in several disparate
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locations. We will eventually combine several of these g0 graphs using projectors, which will remove
certain states from the ground space depending on the value of the corresponding qubits.

As such, let k = 4 + 2bdmax
2 c, and then let us look at the single-qubit circuit C0 with k gates Uj ,

for j ∈ [k], where

U1 = HT U2 = (HT )† (9.4)

and the rest of the Uj = H. We will use the second, third, and fourth of these time steps as
computations in the eventual gadgets, while the remaining time steps act as padding to ensure that
the computational time steps used in the eventual graph occur at a distance at least dmax from
each other. As the circuit C0 implements an identity operation, we can easily concatenate several
of these circuits and examine the graph corresponding to the circuit using circular time, as in the
construction used in Chapter 8. For our purposes, we will want to use 8 copies of C0 in series, as
the eventual gadgets used in our proof have 8 possible locations for interactions with other copies
of g0.

In particular, we will have that the 0-1 Hamiltonian corresponding to the eventual adjacency
matrix of g0 acts on the Hilbert space H(g0) = C2 ⊗ C8k ⊗ C8. If we then remember that B(U) is
the operator that takes ω 7→ S, where ω = eiπ/4 and S is the shift operator acting on C8, we have
that the component of the Hamiltonian corresponding to the circuit is

Hprop = −
√

2
8k−1∑

t=0

B(Vt)13 ⊗ | t+ 1〉〈 t |+B(V †t )13 ⊗ | t〉〈 t+ 1 |, (9.5)

where the B(U)13 act on the Hilbert spaces C2⊗C8 while the clock acts on the C8k Hilbert space,
and where

Vt =





HT t = 0 mod 8

(HT )† t = 1 mod 8

H otherwise.

(9.6)

This term, along a penalty to the C8 Hilbert space given by

Hpen = IC2 ⊗ IC8k ⊗
(
S3 + S4 + S3

)
, (9.7)

which forces the third register into a particularly useful state, allows us to guarantee that the
ground state is a history state. Altogether, we then have that the adjacency matrix of g(0) is given
by

A(g0) = Hprop +Hpen, (9.8)

where each vertex is labeled by a computational basis state in the Hilbert space, namely (z, t, j)
with z ∈ F2, t ∈ [8k], and j ∈ [8]. The graph g0 in the special case that dmax = 0 is shown in
Figure 9.1.

We can then use the results of Chapter 8 to calculate the smallest eigenvalue of A(g0), the corre-
sponding eigenvectors, and the eigenvalue gap. In particular, we have that the smallest eigenvalue
is

e1 = −1− 3
√

2 = −5.24 . . . , , (9.9)
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t = 0
HT

t = 1

T †H

t = 2

H

t = 3

H

t = 4

Figure 9.1: The graph g0 for the case dmax ≤ 1. Vertices are arranged with each ray corresponding
to a specific time t proceeding clockwise, with the outer 8 vertices corresponding to logical 0 and
the inner 8 corresponding to logical 1, with the further breakdown into 8 vertices corresponding to
the ancillary register. The difference in color for some edges is an attempt to highlight those edges
corresponding to the penalty term (bottom of the figure) and the circuit (top left of the figure).
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corresponding to a four dimensional ground space spanned by the states

|ψz,0 〉 =
1√
8k

8k−1∑

t=0

(
VtVt−1 · · ·V1

)
|z 〉| t〉|ω 〉 =

1√
8k

4k−1∑

t′=0

|z 〉|2t′ 〉|ω 〉+ V2t′+1|z 〉|2t′ + 1〉|ω 〉

(9.10)

|ψz,1 〉 =
1√
8k

4k−1∑

t′=0

|z 〉|2t′ 〉|ω 〉+ V ∗2t′+1|z 〉|2t′ + 1〉|ω 〉, (9.11)

where

|ω 〉 =
1√
8

7∑

j=0

eiπj/4|j 〉 and |ω 〉 =
1√
8

7∑

j=0

e−iπj/4|j 〉. (9.12)

Additionally, we have that the energy gap is at least

λ2
1(g0) ≥

√
2 cos

( π
4k

)
≥ π
√

2

16k2
= ck, (9.13)

which is constant for all interactions with a given dmax.
Note that the amplitudes of |ψz,0〉 in the above basis contain the result of computing either

the identity, Hadamard, or HT gate acting on the “input” state |z〉, while the amplitudes |ψz,1 〉
corresponds to the result of the identity, Hadamard or HT gate acting on the “input” state.
Additionally, this information is repeated at least 8 times, once for each copy of C0.

With these bounds on the single particle eigenvalues and their corresponding eigenstates, we
can now show that the graph g0 has no two-particle frustration-free states. By Lemma 14, it follows
that g0 has no N -particle frustration-free states for N ≥ 2. While we would like this to be true
for all interactions, in the case of only onsite interactions (dmax = 0) no anti-symmetric state is
penalized and thus there is a 4-particle frustration-free state. However, we show that this is the
only case for which this is true, and further that if we restrict ourselves to the symmetric subspace,
we again have that there are no frustration-free two-particle states.

Lemma 19. If dmax > 0, then λ1
2(g0) > 0 for all states. If dmax = 0, then when restricted to

symmetric states, λ1
2(g0) > 0.

Proof. Suppose (for a contradiction) that |Q〉 ∈ H(g0)⊗2 is a nonzero vector in the nullspace of
H(g0, 2), so

H2
g0 |Q〉 =

(
A(g0)⊗ I + I⊗A(g0) +

∑

i,j∈g0
Ud(i,j)(n̂i, n̂j)

)
|Q〉 = 2e1|Q〉. (9.14)

This implies
A(g0)⊗ I|Q〉 = I⊗A(g0)|Q〉 = e1|Q〉 (9.15)

since A(g0) has smallest eigenvalue e1 and the interaction term is positive semidefinite. We can
therefore write

|Q〉 =
∑

z,a,x,y∈F2

Qza,xy|ψz,a〉|ψx,y〉 (9.16)

and
Ud(u,v)(n̂u, n̂v)|Q〉 = 0 (9.17)
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for all vertices u, v ∈ g0.

We then have by assumption that U (1,1)
dmax

> 0 if dmax > 0 or U2
0 > 0 if dmax = 0, and thus for all

vertices u, v of distance dmax,
〈u, v |Q〉 = 0. (9.18)

We will use this equation to show a contradiction, so that |Q〉 cannot exist.
Note that vertices of the form (x, T, j) and (z, T+t, k) are at least a distance t apart for all times

t < 4k, since edges only connect vertices with corresponding times that differ by at most 1. Further,
note that the portion of the Hamiltonian that connect adjacent times only arise from the terms
corresponding to the circuit. Since each unitary for k > t ≥ 2 corresponds to a Hadamard, and the
corresponding term in the Hamiltonian only connects vertices with the same j or j’s that differ by
4, we have that only vertices of the form (x, 2, j) and (z, 2 + t, j) or (x, 2, j) and (z, 2 + t, j+ 4) can
be a distance t apart; all other pairs of vertices with these two times must be at a distance of at
least t+ 1.

With all of this in mind, let us assume that dmax is an even integer greater than zero. We then
have that the vertices (0, 2, j) and (0, 1+dmax, j+4) are a distance dmax−1 apart. Further, we have
that (0, 1 + dmax, j + 4) is also connected to the vertices (0, 1 + dmax, j + 1) and (0, 1 + dmax, j − 1)
(from the penalty term of the Hamiltonian), and thus we have that the vertices u = (0, 2, j) and
v = (0, 1 + dmax, j + `) are a distance dmax apart for all j ∈ [8] and for ` = ±1. Using (9.18) with
these pairs of vertices we then have that

〈u, v |Q〉 =
∑

x,a,z,b∈F2

Qxa,zb〈0, 2, j |ψx,a 〉〈0, 1 + dmax, j + ` |ψzb 〉 (9.19)

=
1

64k

∑

x,a,z,b∈F2

Qxa,zb〈0 |x〉〈0 |H|z 〉ω(−1)aj+(−1)b(j+`) (9.20)

=
1

64
√

2k

(
(Q00,00 +Q00,10)ω2j+` + (Q00,01 +Q00,11)ω−`

+ (Q01,00 +Q01,10)ω` + (Q01,01 +Q01,11)ω−2j−`), (9.21)

and thus we have that Q0a,0b = −Q0a,1b for all a, b ∈ F2. Using the same reasoning with vertices
u = (0, 2, j) and v = (1, 1 + dmax, j + `) with ` = ±1 then gives us

〈u, v |Q〉 =
∑

x,a,z,b∈F2

Qxa,zb〈0, 2, j |ψx,a 〉〈1, dmax, j + ` |ψzb 〉 (9.22)

=
1

64k

∑

x,a,z,b∈F2

Qxa,zb〈0 |x〉〈1 |H|z 〉ω(−1)aj+(−1)b(j+`) (9.23)

=
1

64
√

2k

(
(Q00,00 −Q00,10)ω2j+` + (Q00,01 −Q00,11)ω−`

+ (Q01,00 −Q01,10)ω` + (Q01,01 −Q01,11)ω−2j−`), (9.24)

which combined with our previous results show that Q0a,zb = 0 for all a, b, z ∈ F2. Again using the
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same reasoning with u = (1, 2, j) and v = (1, 1 + dmax, j + `) for ` = 3 or ` = 5 gives us

〈u, v |Q〉 =
∑

x,a,z,b∈F2

Qxa,zb〈1, 2, j |ψx,a 〉〈1, 1 + dmax, j + ` |ψzb 〉 (9.25)

=
1

64k

∑

x,a,z,b∈F2

Qxa,zb〈1 |x〉〈1 |H|z 〉ω(−1)aj+(−1)b(j+`) (9.26)

=
1

64
√

2k

(
(Q10,00 −Q10,10ω

2j+` + (Q10,01 −Q10,11)ω−`

+ (Q11,00 −Q11,10)ω` + (Q11,01 −Q11,11)ω−2j−`), (9.27)

which forces Q1a,0b = Q1a,1b for all a, b ∈ F2. Finally, using this same technique for u = (1, 2, j)
and v = (0, 1 + dmax, j + `) with ` = ±1 gives us

〈u, v |Q〉 =
∑

x,a,z,b∈F2

Qxa,zb〈1, 2, j |ψx,a 〉〈0, 1 + dmax, j + ` |ψzb 〉 (9.28)

=
1

64k

∑

x,a,z,b∈F2

Qxa,zb〈1 |x〉〈0 |H|z 〉ω(−1)aj+(−1)b(j+`) (9.29)

=
1

64
√

2k

(
(Q10,00 +Q10,10ω

2j+` + (Q10,01 +Q10,11)ω−`

+ (Q11,00 +Q11,10)ω` + (Q11,01 +Q11,11)ω−2j−`), (9.30)

which combined with our previous results implies that Q1a,zb = 0 for all a, b, z ∈ F2. Putting this
together, we then have each Qxa,zb = 0, and thus |Q〉 does not exist; in other words, if dmax > 0 is
even, then the nullspace of H(g0, 2) is empty.

Now let us assume that dmax is a positive odd integer. For all such dmax, we can then use
equation (9.18) with vertices u = (y, 2, j) and v = (y, 1+dmax, j+ `) for y ∈ F2, j ∈ [8], and ` = ±1
to see

〈u, v |Q〉 =
∑

x,a,z,b∈F2

Qxa,zb〈y, 2, j |ψx,a 〉〈y, 1 + dmax, j + ` |ψzb 〉 (9.31)

=
1

64k

∑

x,a,z,b∈F2

Qxa,zb〈y |x〉〈y |z 〉ω(−1)aj+(−1)b(j+`) (9.32)

=
1

64k

(
Qy0,y0ω

2j+` +Qy0,y1ω
−` +Qy1,y0ω

` +Qy1,y1ω
−2j−`), (9.33)

to see that Qya,yb = 0 for all a, b, y ∈ F2. With this result, let us now examine vertices at times
that differ by dmax. Using equation (9.18) with u = (0, 2, j) and v = (0, 2 + dmax, j + 4) gives us

〈u, v |Q〉 =
∑

x,a,z,b∈F2

Qxa,zb〈0, 2, j |ψx,a 〉〈0, 2 + dmax, j + 4 |ψzb 〉 (9.34)

=
1

64k

∑

x,a,z,b∈F2

Qxa,zb〈0 |x〉〈0 |H|z 〉ω(−1)aj+(−1)b(j+4) (9.35)

= − 1

64k
√

2

(
(Q00,00 +Q00,10)ω2j + (Q01,01 +Q01,11)ω−2j

+ (Q01,00 +Q01,10 +Q00,01 +Q00,11)
)

(9.36)

= − 1

64k
√

2

(
Q00,10ω

2j +Q01,11ω
−2j + (Q01,10 +Q00,11)

)
(9.37)
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where in the last line we used the fact that Qza,zb = 0. A similar result with u = (0, 2, j) and
v = (1, 2 + dmax, j + 4) then gives us that Q0a,zb = 0. Finally, repeating this same procedure with
u = (1, 2, j) and v = (1, 2 + dmax, j) and with u = (1, 2, j) and v = (0, 2 + dmax, j + 4) gives us that
Q1a,zb = 0. Putting this all together, we have that each Qxa,zb = 0 and thus |Q〉 does not exist if
dmax is an odd integer.

Finally, let us assume that dmax = 0, and that the state |Q〉 is symmetric (so that Qxa,zb =
Qzb,xa). With these assumptions, let us examine equation (9.18) with u = v = (y, 0, j) for y ∈ F2

and j ∈ [8]:

〈u, v |Q〉 =
∑

x,a,z,b∈F2

Qxa,zb〈y, 0, j |ψx,a 〉〈y, 0, j |ψzb 〉 (9.38)

=
1

64k

∑

x,a,z,b∈F2

Qxa,zb〈y |x〉〈y |z 〉ω(−1)aj+(−1)bj (9.39)

=
1

64k

(
Qy0,y0ω

2j +Qy1,y1ω
−2j + 2Qy1,y0)

)
. (9.40)

Evaluating these equations together then gives us that Qxa,xb = 0 for all a, b, x ∈ F2. If we now use
equation (9.18) with u = v = (0, 3, j) for all j ∈ [8], we find that

〈u, v |Q〉 =
∑

x,a,z,b∈F2

Qxa,zb〈0, 3, j |ψx,a 〉〈0, 3, j |ψzb 〉 (9.41)

=
1

64k

∑

x,a,z,b∈F2

Qxa,zb〈0 |H|x〉〈0 |H|z 〉ω(−1)aj+(−1)bj (9.42)

=
1

128k

(
2Q00,10ω

2j + 2Q01,11ω
−2j + (2Q01,10 + 2Q00,11)

)
. (9.43)

and thus Q00,10 = Q01,11 = 0 and Q01,10 = −Q00,11. If we now use (9.18) with the only remaining
vertices leading to novel restrictions, namely u = v = (0, 1, 0), we find

〈u, v |Q〉 =
∑

x,a,z,b∈F2

Qxa,zb〈0, 1, j |ψx,a 〉〈0, 1, j |ψzb 〉 (9.44)

=
1

64k

(
2Q01,10〈0 |HT |0〉〈0 |HT |1〉+ 2Q00,11〈0 |HT |0〉〈0 |HT |1〉

)
(9.45)

=
1

64k

(
Q01,10ω +Q00,11ω

−1) (9.46)

=
Q01,10

64k
(ω − ω−1) (9.47)

must be zero, and thus each Qxa,zb = 0. Hence, if dmax = 0 no symmetric state |Q〉 is in the
nullspace of H(g0, 2).

Combining all of this together, we have that if dmax > 0, then the nullspace of H(g0, 2) is empty
and λ1

2(g0) > 0, while if dmax = 0 then no symmetric state is in the nullspace of H(g0, 2), and thus
when restricted to symmetric states, λ1

2(g0) > 0.

9.2.1.2 Diagram elements

We use several different graphs closely related to the graph g0, with some depicted in Figure 9.2. We
call these figures diagram elements, which are also the simplest examples of gate diagram, which we
will define shortly. The idea behind these graphs is to encode a single qubit computation, complete
with inputs and outputs.
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(0, 2)
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(1, 3k + 2)

(0, 4k + 3)
(0, 5k + 3)

(1, 6k + 3)
(1, 7k + 3)

H

a

(0, 2)

(1, 2k + 2)

(0, k + 2)

(1, 3k + 2)

(0, 4k + 1)
(0, 5k + 1)

(1, 6k + 1)
(1, 7k + 1)

HT

b

(0, 2)

(1, 2k + 2)

(0, k + 2)

(1, 3k + 2)

(0, 4k + 2)
(0, 5k + 2)

(1, 6k + 2)
(1, 7k + 2)

1

c

Figure 9.2: Diagram elements from which a gate diagram is constructed. Each diagram element is
a schematic representation of the graph g0 shown in Figure 9.1.

Each diagram element corresponds to two copies of the graph g0, along with self-loops and
edges between the two copies. The idea of these elements is to ensure that the ground state of the
diagram element is closely related to that of the g0 graph, but where almost all of the vertices of the
diagram element has a self-loop. The only vertices without such a self-loop are those corresponding
to input and outputs of the diagram element, which will have a self-loop added to them in the final
gate diagram.

Along these lines, each diagram element will be labeled by the unitary it computes, along with
four numbers between zero and two, corresponding to the number of inputs “nodes” and output
“nodes” for each logical state of the diagram. Each such node will correspond to 16 vertices of the
underlying graph representing one logical state and time of the two g0 graphs. These nodes are
placed so that the minimal distance between two vertices in separate nodes will be at least dmax.

Explicitly, each diagram element will be labeled by a unitary U ∈ {I, H,HT}, along with four
integers n0,in, n0,out, n1,in, and n1,out, each between 0 and 2. These numbers correspond to the
number of nodes for each particular input or output. We shall label such a diagram element a

U
(n0,in,n1,in)

(n0,out,n1,out)
element. The vertex set for the corresponding diagram element corresponds to two

copies of g0 (namely, 2× 8k×8× 2 vertices, labeled as (z, t, j, d) for z, d ∈ F2, t ∈ [8k], and j ∈ [8]).
For each node of the gate diagram, we will associate a time for which the underlying history

state has computed the correct unitary. Further, we will have these times each be a distance of
at least dmax apart, to ensure that each node is at least a distance dmax apart. Namely, for each
logical input and output, we will associate two times:

• 0-input: tin0,1 = 2 and tin0,2 = k + 2,

• 1-input: tin1,1 = 2k + 2 and tin1,2 = 3k + 2,

• 0-output: tout
0,1 = 4k + ` and tout

0,2 = 5k + `,

• 1-output: tout
1,1 = 4k + ` and tout

1,2 = 5k + `,

where ` is 1, 2, or 3, depending on whether the labeled unitary is HT , I, or H, respectively.

For a given diagram element U
(n0,in,n1,in)

(n0,out,n1,out)
, it will be useful to have defined the set of logical

states and corresponding times explicitly used as input and output in the diagram element. As
such, let T ⊂ F2 × [8k] be defined as

T =
⋃

z∈F2

{(z, tinz,j) : j ≤ nz,in} ∪ {(z, tout
z,j ) : j ≤ nz,out}, (9.48)
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and note that T contains those nodes (i.e., the sets of times and logical states) used as input and
output for the given gate diagram, and that |T | corresponds to the number of nodes in the diagram
element.

With T defined, the adjacency matrix for the corresponding diagram element U
(a,b)
(c,d) will be

A
(
G

(a,b),(c,d)
U

)
= A(g0)⊗ I2 +

∑

(z,t)/∈T,j∈[8]

|z, t, j 〉〈z, t, j | ⊗
∑

a,b∈F2

|a〉〈b | (9.49)

= A(g0)⊗ I2 + 2Π¬T ⊗ I8 ⊗ |+〉〈+ | (9.50)

In particular, the graph for G
(a,b),(c,d)
U will simply correspond to two copies of g0, along with a

projector onto the equal superposition between the two graphs for each vertex not used in a node
of the diagram.

Because of the very similar form between G
(a,b),(c,d)
U and g0, their ground spaces and ground

energies are closely related. As the second term in (9.50) is positive semi-definite, we have that

the ground energy of A(G
(a,b),(c,d)
U ) is at least that of A(g0). With more exact results, we have the

following lemma:

Lemma 20. Let G
(a,b),(c,d)
U be the graph corresponding to a diagram element. The ground space of

A(G
(a,b),(c,d)
U ) is

S = span{|ψz,a,−〉 : z, a ∈ F2}. (9.51)

Proof. Note that A(G
(a,b),(c,d)
U ) commutes with I2 ⊗ I8k ⊗ I8 ⊗ |+〉〈+ |, and thus there exists an

eigenbasis for the adjacency matrix in which each vector is of the form |φ〉|+〉 or |φ〉|−〉. For
states of this latter form, the second term in (9.50) vanishes, so |ψ,−〉 is in the ground space

of A(g
(a,b),(c,d)
U ) if and only if |ψ 〉 is in the ground space of A(g0), and thus we have that S is a

subspace of the nullspace.
Now let us examine |α,+〉 for any state |α〉. Since the second term of (9.50) is positive semi-

definite, we have that the ground energy of A(G
(a,b),(c,d)
U ) is at least e1. Hence, if |α,+〉 is in the

ground space, then 〈
α,+

∣∣A
(
G

(a,b),(c,d)
U

)∣∣α,+
〉

= e1 = 〈α |A(g0)|α〉 (9.52)

and thus
〈α |Π¬S ⊗ I8|α〉 = 0, (9.53)

with |α〉 in the ground space of A(g0).
However, note that for all diagram elements (and all dmax), (z, 0) is not in T . We then have

that
Π¬S ≥ I2 ⊗ |0〉〈0 | ⊗ I8. (9.54)

As this operator is strictly positive when restricted to the ground space of A(g0),

〈ψx,γ |I2 ⊗ |0〉〈0 | ⊗ I8|ψz,δ 〉 =
1

8k
δγ,δδx,z, (9.55)

we also have that Π¬S is strictly positive when restricted to the ground space of A(g0), and thus

|α,+〉 is not in the ground space of A(G
(a,b),(c,d)
U ).

Putting this together, we have that the ground space of A(G
(a,b),(c,d)
U ) is S, as claimed
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With this bound on the form of the ground space of A(G
(a,b),(c,d)
U ), we can then use our knowledge

of the two-particle interaction Hamiltonian on g0 to relate this to the two-particle interaction Hamil-

tonian on G
(a,b),(c,d)
U . Namely, we show that since there does not exist a two-particle frustration-free

state on g0, there also does not exists a two-particle frustration-free state on G
(a,b),(c,d)
U .

Lemma 21. If dmax > 0, then λ1
2(G

(a,b),(c,d)
U ) > 0 for all states. If dmax = 0, then when restricted

to symmetric states, λ1
2(G

(a,b),(c,d)
U ) > 0.

Proof. Note that using Lemma 20, the ground space of A(G
(a,b),(c,d)
U ) is in one-to-one correspondence

with the ground space of A(g0), by the transformation

|φx,a,−〉 ↔ |φx,a 〉. (9.56)

Namely, by attaching (or removing) a second register in the |−〉 state, corresponding to having

equal and opposite amplitudes between the two copies of g0 present in G
(a,b),(c,d)
U , we can transform

between these two single-particle ground spaces.
We will use this relation, along with the fact that λ1

2(g0) > 0 from Lemma 19, to show that

λ1
2(G

(a,b),(c,d)
U ) > 0 with the same assumptions.

Let us then look at any two-particle state that minimizes the movement term. In particular, it
takes the form

|φ〉 =
∑

α,β,x,z∈F2

Qx,zα,β|ψx,α,−〉|ψz,β ,−〉. (9.57)

Additionally, let us define the related two-particle state on g0 as

|φ〉 =
∑

α,β,x,z∈F2

Qx,zα,β|ψx,α 〉|ψz,β 〉. (9.58)

We can then see what the expectation of the interaction term of the Hamiltonian is under the
state |φ〉:

〈φ |Hint|φ〉 =
∑

u,v∈V (G
(a,b),(c,d)
U )

〈φ |Ud(u,v)(n̂u, n̂v)|φ〉 (9.59)

=
∑

u,v∈V (g0),d1,d2∈F2

〈φ |Ud((u,d1),(v,d2))(n̂(u,d1), n̂(v,d2))|φ〉 (9.60)

≥
∑

u,v∈V (g0),d1∈F2

〈φ |Ud(u,v)(n̂(u,d1), n̂(v,d1))|φ〉 (9.61)

where in the third line we only count the contributions to the interaction when both particles
are in the same copy of g0. As the interaction is positive-semidefinite, this can only decrease the
expectation.

Now, from the form of |φ〉, we have that for any two u, v ∈ V (g0) and either copy of g0,

〈φ |Ud(u,v)(n̂(u,d1), n̂(v,d1))|φ〉
=

∑

x1,x2,z1,z2∈F2
α1,α2,β1,β2∈F2

(Qx1,z1α1,β1
)∗Qx2,z2α2,β2

〈ψx1,α1 |〈ψz1,β1 |Ud(u,v)(n̂(u,d1), n̂(v,d1))|ψx2,α2 〉|ψz2,β2 〉 (9.62)

≥
∣∣〈d1 |−〉

∣∣4 ∑

x1,x2,z1,z2∈F2
α1,α2,β1,β2∈F2

(Qx1,z1α1,β1
)∗Qx2,z2α2,β2

〈ψx1,α1 |〈ψz1,β2 |Ud(u,v)(n̂u, n̂v)|ψx2,α2 〉|ψz2,β2 〉 (9.63)

=
1

4
〈φ |Ud(u,v)(n̂u, n̂v)|φ〉. (9.64)
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Figure 9.3: A gate diagram with two diagram elements labeled q = 1 (left) and q = 2 (right).

Hence, we have that

〈φ |Hint|φ〉 ≥
∑

u,v∈V (g0),d1∈F2

〈φ |Ud(u,v)(n̂(u,d1), n̂(v,d1))|φ〉 (9.65)

≥ 1

4

∑

u,v∈V (g0),d1∈F2

〈φ |Ud(u,v)(n̂u, n̂v)|φ〉 (9.66)

=
1

4

∑

d1∈F2

〈φ |Hint|φ〉 (9.67)

=
1

2
〈φ |Hint|φ〉. (9.68)

Using Lemma 19, we have that (9.68) is larger than zero for all states and interactions that satisfy
the conditions of Lemma 19, and thus 〈φ |Hint|φ〉 > 0. As such, there does not exist a two-particle

frustration-free state on the graph G
(a,b),(c,d)
U under the same assumptions as for g0.

9.2.1.3 Gate diagrams

While the diagram elements do have nice properties, we will eventually want to construct larger
graphs using the diagram elements as basic elements. Further, as the diagram elements themselves
are rather complicated graphs, it will be useful to have a diagrammatic construction for these
graphs: these shall be the gate diagrams.

The rules for constructing gate diagrams are simple. A gate diagram consists of some number
R ∈ {1, 2, . . .} of diagram elements, with self-loops attached to a subset S of the nodes and edges
connecting a set E of pairs of nodes. A node may have a single edge or a single self-loop attached
to it, but never more than one edge or self-loop and never both an edge and a self-loop. Each node
in a gate diagram has a label (q, z, t) where q ∈ [R] indicates the diagram element it belongs to.
An example is shown in Figure 9.3.

Sometimes it is convenient to draw the input nodes on the right-hand side of a diagram element;
e.g., in Figure 9.4 the node closest to the top left corner is labeled (q, z, t) = (3, 2, 4k + 3).

To every gate diagram we associate a gate graph G with vertex set

{(q, z, t, j, d) : q ∈ [R], z, d ∈ F2, t ∈ [8k], j ∈ [8]} (9.69)
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and adjacency matrix

A(G) =
∑

q∈[R]

|q 〉〈q | ⊗A(Gq) + hS + hE (9.70)

A(Gq) = A(G
(aq ,bq),(cq ,dq)
Uq

) (9.71)

hS =
∑

S
|q, z, t〉〈q, z, t| ⊗ I8 ⊗ I2 (9.72)

hE =
∑

E

(
|q, z, t〉+ |q′, z′, t′〉

) (
〈q, z, t|+ 〈q′, z′, t′|

)
⊗ I8 ⊗ I2. (9.73)

The sums in equations (9.72) and (9.73) run over the set of nodes with self-loops (q, z, t) ∈ S and
the set of pairs of nodes connected by edges {(q, z, t), (q′, z′, t′)} ∈ E , respectively. We see from the
above expression that each self-loop in the gate diagram corresponds to 16 self-loops in the graph
G, and an edge in the gate diagram corresponds to 16 edges and 32 self-loops in G. Note that
we can determine the type of each diagram element from the gate diagram, as the implemented
unitary and number of nodes is encoded in the diagram.

As a node in a gate graph never has more than one edge or self-loop attached to it, equations
(9.72) and (9.73) are sums of orthogonal Hermitian operators. Therefore

‖hS‖ = max
S
‖|q, z, t〉〈q, z, t| ⊗ Ij‖ = 1 if S 6= ∅ (9.74)

‖hE‖ = max
E

∥∥(|q, z, t〉+ |q′, z′, t′〉
) (
〈q, z, t|+ 〈q′, z′, t′|

)
⊗ Ij

∥∥ = 2 if E 6= ∅ (9.75)

for any gate graph. (Of course, this also shows that ‖hS′‖ = 1 and ‖hE ′‖ = 2 for any nonempty
subsets S ′ ⊆ S and E ′ ⊆ E .)

Consider the adjacency matrix A(G) of a gate graph G, and note (from equation (9.70) that its
smallest eigenvalue µ(G) satisfies

µ(G) ≥ e1 (9.76)

since hS and hE are positive semidefinite and A(G
(a,b),(c,d)
U ) has smallest eigenvalue e1. In the special

case where µ(G) = e1, we say G is an e1-gate graph.

Definition 8. An e1-gate graph is a gate graph G such that the smallest eigenvalue of its adjacency
matrix is e1 = −1− 3

√
2.

When G is an e1-gate graph, a single-particle ground state |Γ〉 of A(G) satisfies


∑

q∈[R]

|q 〉〈q | ⊗A(Gq)


 |Γ〉 = e1|Γ〉 (9.77)

hS |Γ〉 = 0 (9.78)

hE |Γ〉 = 0. (9.79)

Indeed, to show that a given gate graph G is an e1-gate graph, it suffices to find a state |Γ〉 satisfying
these conditions. Note that equation (9.77) implies that |Γ〉 can be written as a superposition of
the states

|ψqz,a〉 = |q〉|ψz,a〉, z, a ∈ F2, q ∈ [R] (9.80)

where |ψz,a〉 is given by equations (9.10) and (9.11) under the transform of (9.56). The coefficients
in the superposition are then constrained by equations (9.78) and (9.79).
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Figure 9.4: (a) The gate diagram for the move-together gadget. Note the four labeled nodes, α,
β, γ, and δ, which have no attached edges. (b) A schematic representation for a move-together
gadget, with the four labeled nodes corresponding to the four labeled nodes of (a).

9.2.2 Gadgets

Now that we have a formalism for our diagram elements, we will want to use it to construct actual
diagrams. In particular, we will use our formalism to construct graphs that will have two-particle
frustration-free states corresponding to the history state of a simple two-qubit unitary, and no
three-particle frustration-free state. We will eventually use these gadgets to construct a much
larger graph with a more interesting ground state, but we first need these building blocks.

We first design a gate graph where, in any two-particle frustration-free state, the locations of
the particles are synchronized that we call “move-together” gadgets. We then design gadgets for
two-qubit gates using four move-together gadgets, one for each two-qubit computational basis state.
Finally, we describe a small modification of a two-qubit gate gadget called the “boundary gadget.”

An important piece of these gadgets will be the inclusion of I(1,0)
(1,0) diagram elements to separate

the locations of particles. With these separations, we will only ever need to analyze the case when
particles occupy the same diagram element, as these identity elements ensure that for the states
that we care about, particles are always located at a distance more than dmax.

9.2.2.1 The move-together gadget

The gate diagram for the move-together gadget is shown in Figure 9.4. Using equation (9.70), we
write the adjacency matrix of the corresponding gate graph GW as

A(GW ) =

14∑

q=1

|q〉〈q| ⊗A(Gq) + hE (9.81)

where

Gq =





G
(2,2),(1,1)
H q ∈ {1, 2}

G
(1,1),(0,0)
I q ∈ {3, 4, 5, 6}

G
(1,0),(1,0)
I q > 6,

(9.82)

hE is given by (9.73), hS is given by (9.72), E is the set of edges in the gate diagram, and S is the
set of self-loops in the diagram.

We begin by solving for the single-particle ground states, i.e., the eigenvectors of (9.81) with
eigenvalue e1 = −1− 3

√
2. Note that we can solve for the states with a = 0 and a = 1 separately,
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since
〈ψjx,1|hE |ψiz,0〉 = 0 (9.83)

for all i, j ∈ [14] and x, z ∈ F2. We write a single-particle ground state as

14∑

i=1

(
τi|ψi0,a〉+ νi|ψi1,a〉

)
(9.84)

and solve for the coefficients τi and νi using equation (9.79). Enforcing (9.78) gives us that νi = 0
for all i > 6. Enforcing (9.79) gives sixteen equations, one for each edge in the gate diagram:

τ3 = −τ7 τ7 = −τ1
1√
2

(τ1 + ν1) = −τ11 τ11 = −τ6 (9.85)

ν3 = −τ9 τ9 = −τ2
1√
2

(τ2 + ν2) = −τ13 τ13 = −ν5 (9.86)

τ4 = −τ8 τ8 = −ν1
1√
2

(τ1 − ν1) = −τ12 τ12 = −τ5 (9.87)

ν3 = −τ10 τ10 = −ν2
1√
2

(τ2 − ν2) = −τ14 τ14 = −ν6. (9.88)

Similarly, enforcing (9.78) gives eight equations, namely that νq = 0 for q > 6. There are four
linearly independent solutions to this set of equations, given by

Solution 1: τ1 = τ3 = −τ7 = 1 τ5 = τ6 = −τ11 = −τ12 =
1√
2

all other coefficients 0 (9.89)

Solution 2: ν1 = τ4 = −τ8 = 1 −τ5 = τ6 = −τ11 = τ12 =
1√
2

all other coefficients 0 (9.90)

Solution 3: ν2 = ν4 = −τ10 = 1 ν5 = −ν6 = −τ13 = τ14 =
1√
2

all other coefficients 0 (9.91)

Solution 4: τ2 = ν3 = −τ9 = 1 ν5 = ν6 = −τ13 = −τ14 =
1√
2

all other coefficients 0. (9.92)

For each of these solutions, and for each a ∈ {0, 1}, we find a single-particle state with energy e1.
This result is summarized in the following Lemma.

Lemma 22. GW is an e1-gate graph. A basis for the eigenspace of A(GW ) with eigenvalue e1 is

|χ1,a 〉 =
1√
5

(
|ψ1

0,a 〉+ |ψ3
0,a 〉 − |ψ7

0,a 〉
)

+
1√
10

(
|ψ5

0,a 〉+ |ψ6
0,a 〉 − |ψ11

0,a 〉 − |ψ12
0,a 〉
)

(9.93)

|χ2,a〉 =
1√
5

(
|ψ1

1,a 〉+ |ψ4
0,a 〉 − |ψ8

0,a 〉
)

+
1√
10

(
− |ψ5

0,a 〉+ |ψ6
0,a 〉 − |ψ11

0,a 〉+ |ψ12
0,a 〉
)

(9.94)

|χ3,a〉 =
1√
5

(
|ψ2

1,a 〉+ |ψ4
1,a 〉 − |ψ10

0,a 〉
)

+
1√
10

(
|ψ5

1,a 〉 − |ψ6
1,a 〉 − |ψ13

0,a 〉+ |ψ14
0,a 〉
)

(9.95)

|χ4,a〉 =
1√
5

(
|ψ2

0,a 〉+ |ψ3
1,a 〉 − |ψ9

0,a 〉
)

+
1√
10

(
|ψ5

1,a 〉+ |ψ6
1,a 〉 − |ψ13

0,a 〉 − |ψ14
0,a 〉
)

(9.96)

where a ∈ F2.

In Figure 9.4 we have used a shorthand α, β, γ, δ to identify four nodes of the move-together
gadget; these are the nodes with labels (q, z, t) = (1, 0, 2), (1, 1, 3k + 2), (2, 1, 3k + 2), (2, 0, 2), re-
spectively. We view α and γ as “input” nodes and β and δ as “output” nodes for this gate diagram.
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It is natural to associate each single-particle state |χi,a〉 with one of these four nodes. We will also
associate the set of 16 vertices represented by the node with the corresponding node, e.g.,

Sα = {(1, 0, 2, j, d) : j ∈ [8], d ∈ F2} . (9.97)

Looking at equation (9.93) (and perhaps referring back to equation (9.10)) we see that |χ1,a〉 has
support on vertices in Sα but has no support on vertices in Sβ, Sγ , or Sδ. Looking at the picture
on the right-hand side of the equality sign in Figure 9.4, we think of |χ1,a〉 as localized at the node
α, with no support on the other three nodes. The states |χ2,a〉, |χ3,a〉, |χ4,a〉 are similarly localized
at nodes β, γ, δ. We view |χ1,a〉 and |χ3,a〉 as input states and |χ2,a〉 and |χ4,a〉 as output states for
the move-together gadget.

Now we turn our attention to the two-particle frustration-free states of the move-together gad-
get, i.e., the states |Φ〉 ∈ H(GW )⊗2 in the nullspace of H(GW , 2) (with the additional restriction
to symmetric states if dmax = 0). As λ1

2(GU ) > 0 for all U from Lemma 21, we have that any such
state must take the form

|Φ〉 =
∑

a,b∈{0,1}, I,J∈[4]

C(I,a),(J,b)|χI,a〉|χJ,b〉 (9.98)

where
〈ψqz,a|〈ψqx,b|Φ〉 = 0 (9.99)

for all z, a, x, b ∈ F2 and q ∈ [14], and where the coefficients are symmetric if dmax = 0, i.e.,

C(I,a),(J,b) = C(J,b),(I,a), . (9.100)

Note that these conditions are only necessary, and not sufficient, for the state to be frustration
free. These conditions do not take into account the fact that the addition of edges might cause
the distance of vertices to fall below dmax, and thus add an interaction term between two occupied
vertices.

However, in our construction of the GW gadget we placed the H
(1,1)
(1,0) elements specifically to

ensure that the two-particle states were separated by a distance of at least 2 + dmax. Since each
input/output node of a given diagram element is separated by a distance at least dmax, if we can
ensure that the state |Φ〉 has no support on adjacent diagram elements, in addition to the other
conditions in (9.99), then we can guarantee that |Φ〉 is frustration-free.

The move-together gadget is designed so that each solution |Φ〉 to these equations is a super-
position of a term where both particles are in input states and a term where both particles are in
output states, with the intuition that particles move from input nodes to output nodes together.
We now solve equations (9.98)–(9.99) and prove the following.

Lemma 23. A basis for the nullspace of H(GW , 2) is

|Φ±a,b〉 =
1

2

(
|χ1,a〉|χ3,b〉 ± |χ3,b 〉|χ1,a 〉+ |χ2,a〉|χ4,b〉 ± |χ4,b 〉|χ2,a 〉

)
, a, b ∈ F2 (9.101)

for dmax > 0, and if dmax = 0 a basis for the nullspace of H(GW , 2) when restricted to symmetric
states is |Φ+

a,b 〉 for a, b ∈ F2.
There are no N -particle frustration-free states on GW for N ≥ 3 for any dmax (with a restriction

to symmetric states for dmax = 0), i.e.,

λ1
N (GW ) > 0 for N ≥ 3. (9.102)
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Proof. The states |Φ±a,b〉 manifestly satisfy equations (9.98), and one can directly verify that they
also satisfy (9.99) (the nontrivial cases to check are for q = 5, q = 6, and q > 10). Additionally,
one can also directly verify that |Φ±a,b 〉 has no support on states for which the two particles are
located on adjacent diagram elements, and thus the state is in the ground space of the interaction
Hamiltonian.

To complete the proof that (9.101) is a basis for the nullspace of H(GW , 2), we will show that
any state satisfying the conditions (9.98) and (9.99) must be a linear combination of these four
states. Assuming that the state satisfies (9.98), applying equation (9.99) to the first 4 diagram
elements gives

〈ψ1
0,a|〈ψ1

0,b|Φ〉 =
1

5
C(1,a),(1,b) = 0 〈ψ1

1,a|〈ψ1
1,b|Φ〉 =

1

5
C(2,a),(2,b) = 0 (9.103)

〈ψ2
1,a|〈ψ2

1,b|Φ〉 =
1

5
C(3,a),(3,b) = 0 〈ψ2

0,a|〈ψ2
0,b|Φ〉 =

1

5
C(4,a),(4,b) = 0 (9.104)

〈ψ1
0,a|〈ψ1

1,b|Φ〉 =
1

5
C(1,a),(2,b) = 0 〈ψ2

0,a|〈ψ2
1,b|Φ〉 =

1

5
C(4,a),(3,b) = 0 (9.105)

〈ψ1
1,a|〈ψ1

0,b|Φ〉 =
1

5
C(2,a),(1,b) = 0 〈ψ2

1,a|〈ψ2
0,b|Φ〉 =

1

5
C(3,a),(4,b) = 0 (9.106)

〈ψ3
0,a|〈ψ3

1,b|Φ〉 =
1

5
C(1,a),(4,b) = 0 〈ψ4

0,a|〈ψ4
1,b|Φ〉 =

1

5
C(2,a),(3,b) = 0 (9.107)

〈ψ3
1,a|〈ψ3

0,b|Φ〉 =
1

5
C(4,a),(1,b) = 0 〈ψ4

1,a|〈ψ4
0,b|Φ〉 =

1

5
C(3,a),(2,b) = 0 (9.108)

for all a, b ∈ {0, 1}. Using the fact that all of these coefficients are zero, we can then see that

|Φ〉 =
∑

a,b∈F2

j∈[4]

C(j,a),(j+2,b)|χj,a〉|χj+2,b〉. (9.109)

Finally, applying equation (9.99) to diagram 6 gives

〈ψ6
0,a|〈ψ6

1,b|Φ〉 =
1

6
C(2,a),(4,b) −

1

6
C(1,a),(3,b) = 0 (9.110)

〈ψ6
1,a|〈ψ6

0,b|Φ〉 =
1

6
C(4,a),(2,b) −

1

6
C(3,a),(1,b) = 0. (9.111)

Hence
|Φ〉 =

∑

a,b∈F2

j∈[4]

C(j,a),(j+2,b)

(
|χj,a〉|χj+2,b〉+ |χj+1,a〉|χj+3,b〉

)
, (9.112)

which is a superposition of the states |Φ±a,b〉.
Note that the above analysis holds completely if we restrict ourselves to symmetric states, and

thus if dmax = 0, we end up with the same results except that we only care about the states |Φ+
a,b 〉,

as they span the symmetric nullspace.
Finally, we prove that there are no frustration-free ground states of the Bose-Hubbard model on

GW with more than two particles. By Lemma 14, it suffices to prove that there are no frustration-
free three-particle states.

Suppose (for a contradiction) that |Γ〉 ∈ H(GW )⊗3 is a normalized three-particle frustration-free
state. Write

|Γ〉 =
∑

D(i,a),(j,b),(k,c)|χi,a〉|χj,b〉|χk,c〉. (9.113)
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Note that each reduced density matrix of |Γ〉 on two of the three subsystems must have all of its
support on two-particle frustration-free states, i.e., on the states |Φa,b〉. Using this fact for the
subsystem consisting of the first two particles, we see in particular that

(i, j) /∈ {(1, 3), (3, 1), (2, 4), (4, 2)} =⇒ D(i,a),(j,b),(k,c) = 0 (9.114)

(since |Φa1,a2〉 only has support on vectors |χi,a〉|χj,b〉 with i, j ∈ {(1, 3), (3, 1), (2, 4), (4, 2)}).
Using this fact for subsystems consisting of particles 2, 3 and 1, 3, respectively, gives

(j, k) /∈ {(1, 3), (3, 1), (2, 4), (4, 2)} =⇒ D(i,a),(j,b),(k,c) = 0 (9.115)

(i, k) /∈ {(1, 3), (3, 1), (2, 4), (4, 2)} =⇒ D(i,a),(j,b),(k,c) = 0. (9.116)

Putting together equations (9.114), (9.115), and (9.116), we see that |Γ〉 = 0. This is a contradiction,
so no three-particle frustration-free states exist.

With this gadget allowing us to entangle the locations of particles, we will be able to create
a pseudo-history state, in which time is encoded in the location of particles. This is the large
workhorse of the construction, as it allows us to understand the multi-particle ground space by
understanding the simple two-particle ground states.

9.2.2.2 Two-qubit unitary gadget

We can now use the W -gadget as a building block to encode graphs with more interesting ground-
state behavior. In particular, we can use the W -gadget to force the two-particle state of a larger
gadget to have entangled locations. If we then place connections in a particular manner, we can use
these guarantees to force the ground state to encode a computation corresponding to a permutation
of the computational basis states (such as a controlled-not operation). In particular, we will be to
define a gate graph for each of the two-qubit unitaries

{CNOT12,CNOT21,CNOT12 (H ⊗ I) ,CNOT12 (HT ⊗ I)}. (9.117)

Here CNOT12 is the standard controlled-not gate with the second qubit as a target, whereas
CNOT21 has the first qubit as target.

We define the gate graphs by exhibiting their gate diagrams. For the three cases

U = CNOT12(Ũ ⊗ I) (9.118)

with Ũ ∈ {I, H,HT}, we associate U with the gate diagram shown in Figure 9.5a. In Figure 9.5b
we also indicate a shorthand used to represent this gate diagram. As one might expect, for the case
U = CNOT21, we use the same gate diagram as for U = CNOT12; however, we use the slightly
different shorthand shown in Figure 9.5c.

Roughly speaking, the two-qubit gate gadgets work as follows. There are four move-together
gadgets, one for each two-qubit basis state |00〉, |01〉, |10〉, |11〉. These enforce the constraint that
two particles must move through the graph together, while their connections to the four diagram
elements labeled 1, 2, 3, 4 ensure that most of the frustration-free two-particle states encode two-
qubit computations, while the connections between diagram elements 1, 2, 3, 4 and 5, 6, 7, 8 ensure
that the remaining frustration-free two-particle states are removed from the ground space. The 24

I(1,1)
(1,0) diagram elements are simply used to separate the locations of the particles when more than

one are located on the gadget, but can simply be thought of as a part of the connections between
the other gadgets.
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Figure 9.5: (a) Gadget for the two-qubit unitary U = CNOT12(Ũ ⊗ I) with Ũ ∈ {1, H,HT}. (b) A
schematic encoding for U = CNOT12(Ũ ⊗ I), where the eight labeled nodes correspond to the eight
labeled nodes of (a). (c) For the U = CNOT21 gate (first qubit is the target), we use the same gate
graph as in (b) with Ũ = 1, but with a different location for the eight labeled nodes.
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To describe the frustration-free states of the gate graph depicted in Figure 9.5, first recall the
definition of the states |χj,a〉 for j ∈ [4] from equations (9.93)–(9.96). For each of the move-together
gadgets xy ∈ {00, 01, 10, 11} in Figure 9.5b, write |χxyj,a〉 for the state |χj,a〉 with support (only) on
the gadget labeled xy. Additionally, write

Ua =

{
U if a = 0

U if a = 1
(9.119)

and similarly for Ũ . This notation will help us to define the ground states of the resulting Hamil-
tonian, as the encoded computation will change depending on α.

We now show that GU is an e1-gate graph and solves for its frustration-free states.

Lemma 24. Let U = CNOT12(Ũ ⊗ I) where Ũ ∈ {I, H,HT}. The corresponding gate graph GU is
defined by its gate diagram shown in Figure 9.5a. The adjacency matrix A(GU ) has ground energy
e1; a basis for the corresponding eigenspace is

|ρ1,U
z,a 〉 =

1√
15

(
|ψ1
z,a〉+ |ψ5+z

z,a 〉 − |ψ25+z
z,a 〉+

∑

x,y∈F2

Ũayz
(√

5|χyx1,a〉 − |ψ9+x+2y
0,a 〉

))
(9.120)

|ρ2,U
z,a 〉 =

1√
15

(
|ψ2
z,a〉+ |ψ6−z

z,a 〉 − |ψ29+z
z,a 〉+

∑

x∈F2

(√
5|χzx2,a〉 − |ψ17+2z+x

0,a 〉
))

(9.121)

|ρ3,U
z,a 〉 =

1√
15

(
|ψ3
z,a〉+ |ψ7

z,a〉 − |ψ27+z
z,a 〉+

∑

x∈F2

(√
5|χxz3,a〉 − |ψ17+2z+x

0,a 〉
))

(9.122)

|ρ4,U
z,a 〉 =

1√
15

(
|ψ4
z,a〉+ |ψ8

z,a〉 − |ψ31+z
z,a 〉+

∑

x∈F2

(√
5|χx(z⊕x)

4,a 〉 − |ψ21+2z+x
0,a 〉

))
(9.123)

where z, a ∈ F2.

Proof. As the gate graph GU is specified by its gate diagram, shown in Figure 9.5a, the adjacency
matrix of the gate graph GU is of the form in equation (9.70). There are 14 diagram elements for
each of the move-together gadgets, so there are 88 diagram elements in total. We will only need
to refer to those diagram elements labeled q ∈ [32] in Figure 9.5a (i.e., those not contained in the
move-together gadgets), as we will refer to Lemma 22 for those contained in the move-together
gadgets.

Write
A(GU ) = A(G′U ) + hE ′ (9.124)

where G′U is the gate graph obtained from GU by removing all 48 edges shown in Figure 9.5a (G′U
does include the edges within each of the move-together gadgets along with the selfloops of GU ).
Here hE ′ is given by equation (9.73) with E ′ the set of 48 edges shown in Figure 9.5a.

If we use the results of Lemma 22, we can see that one basis for the e1-energy ground space of
A(G′U ) is given by the 112 states

|ψqz,a〉, q ∈ [32], z, a ∈ F2 (9.125)

|χxyj,a〉, x, y, a ∈ F2, j ∈ [4], (9.126)

where we exclude |ψq1,a 〉 if q > 8 (as these states are removed via a self-loop). It will be convenient
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to work with the following slightly rotated basis for this space, however, given by:

|ψqz,a〉 q ∈ [8], z, a ∈ F2 (9.127)
∑

x∈F2

Ũaxz|ψj+2x
0,a 〉 a, z ∈ F2, j ∈ {9, 10} (9.128)

|ψq0,a 〉 a ∈ F2, 13 ≤ q ≤ 32 (9.129)
∑

x∈F2

Ũaxz|χxy1,a〉 y, z, a ∈ F2 (9.130)

|χxyj,a〉 x, y, a ∈ F2, j ∈ {2, 3, 4}. (9.131)

In this basis, the states supported on diagram elements connected to the output of the q = 1
diagram element are in a superposition corresponding to the correct output of the single-qubit
unitary Ũ .

We are interested in the intersection of the ground space of A(G′U ) with the nullspace of hE ′ , so
we compute the matrix elements of hE ′ in the above basis. The resulting 112× 112 matrix is block
diagonal with sixteen 7× 7 blocks. Each block is identical, with entries

1

8k




3 1 1 1 0 0 0
1 2 0 0 1√

5
0 0

1 0 2 0 0 1√
5

0

1 0 0 2 0 0 1
0 1√

5
0 0 1

5 0 0

0 0 1√
5

0 0 1
5 0

0 0 0 1 0 0 1




. (9.132)

The seven states involved in each block are given by (in order from left to right as in the matrix
above):

|ψ1
z,a〉,

∑

x∈F2

Ũaxz|ψ9+2x
0,a 〉,

∑

x∈F2

Ũaxz|ψ10+2x
0,a 〉, |ψ25+z

0,a 〉,
∑

x∈F2

Ũaxz|χx0
1,a〉,

∑

x∈F2

Ũaxz|χx1
1,a〉, |ψ5+z

z,a 〉 (9.133)

|ψ2
z,a〉, |ψ17+2z

0,a 〉, |ψ18+2z
0,a 〉, |ψ29+z

0,a 〉, |χz02,a〉, |χz12,a〉, |ψ6−z
z,a 〉 (9.134)

|ψ3
z,a〉, |ψ13+2z

0,a 〉, |ψ14+2z
0,a 〉, |ψ27+z

0,a 〉, |χ0z
3,a〉, |χ1z

3,a〉, |ψ7
z,a〉 (9.135)

|ψ4
z,a〉, |ψ21+2z

0,a 〉, |ψ22+2z
0,a 〉, |ψ31+z

0,a 〉, |χ0z
4,a〉, |χ1(z⊕1)

4,a 〉, |ψ8
z,a〉. (9.136)

The unique zero eigenvector of the matrix (9.132) is

1√
15

(
1 −1 −1 −1

√
5
√

5 1
)T
. (9.137)

Constructing this vector within each of the 16 blocks, we get the states described in the lemma.

With this understanding of the ground states of A(GU ), we can then give some meaning to
the nodes of the graph. In particular, we view the nodes labeled α, β, γ, δ in Figure 9.5 as “input”
nodes and those labeled ε, ζ, η, θ as “output nodes”. Each of the states |ρi,Uz,a〉 is associated with

one of the nodes, depending on the values of i ∈ [4] and z ∈ F2. For example, the states |ρ1,U
0,0 〉

and |ρ1,U
0,1 〉 are associated with input node α since they both have nonzero amplitude on vertices of

the gate graph that are associated with α (and zero amplitude on vertices associated with other
labeled nodes).
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With the single particle states found, we now turn our attention to the two-particle states. It
will turn out that the two particle eigenstates of the move-together gadget found in Lemma 23 will
play a critical part in our construction.

Lemma 25. A basis for the nullspace of H(GU , 2) is

|TU,±z1,a,z2,b
〉 =

1

2

(
|ρ1,U
z1,a〉|ρ

3,U
z2,b
〉 ± |ρ3,U

z2,b
〉|ρ1,U

z1,a〉+
1∑

x1,x2=0

U(a)x1x2,z1z2
(
|ρ2,U
x1,a〉|ρ

4,U
x2,b
〉 ± |ρ4,U

x2,b
〉|ρ2,U

x1,a〉
))

(9.138)
for z1, z2, a, b ∈ F2 when dmax > 0, and if dmax = 0 a basis for the nullspace of H(GU , 2) when
restricted to symmetric states is |TU,+z1,a,z2,b

〉 for z1, z2, a, b ∈ F2. For any N ≥ 3, there are no
N -particle frustration-free states on GU for any dmax > 0 and there are no N -particle symmetric
frustration-free states on GU when dmax = 0, i.e.,

λ1
N (GU ) > 0 for N ≥ 3. (9.139)

Proof. Let us first show that the states |TU,±z1,a,z2,b
〉 are contained within the nullspace of H(GU , 2).

We we can expand these states in terms of the |ψqz,a 〉 for q ∈ [32] and |χxyj,a 〉, and see that the state

|TU,±z1,a,z2,b
〉 has no support on pairs of adjacent diagram elements, unless possibly both particles

are contained in a single move-together gadget. In particular, whenever one particle is in state
|ψqz,a 〉 (and thus localized to the diagram element q), the other particle is located on a diagram
element separated from the first by at least one additional diagram element. The only difficult
case to check is when both particles are in move-together gadgets, but the structure of the states
|TU,±z1,a,z2,b

〉 is such that either the particles are in separate move-together gadgets (and thus on
states with support at a distance much larger than k), or the two particles are in a state within
the span of |Φ±a,b 〉 and thus by Lemma 23 are not penalized by the interaction term. Altogether,

we have that the states |TU,±z1,a,z2,b
〉 are contained in the nullspace of the interaction Hamiltonian,

and thus are frustration-free.
Now let us show that any state in the nullspace of H(GU , 2) are within the span of the states

|TU,±z1,a,z2,b
〉. Noting that all reduced states of a frustration-free state must also be frustration-free,

we can write any two-particle frustration-free state as

|Θ〉 =
∑

z,a,x,b∈{0,1}

∑

I,J∈[4]

B(z,a,I),(x,b,J)|ρI,Uz,a 〉|ρJ,Ux,b 〉, (9.140)

with the additional constraint that
〈ψqx,a|〈ψqz,b|Θ〉 = 0 (9.141)

for all x, z, a, b ∈ {0, 1} and q ∈ [88], and if dmax = 0 we will use the additional constraint that

B(z,a,I),(x,b,J) = B(x,b,J),(z,a,I). (9.142)

To enforce equation (9.141) we consider the diagram elements q ∈ [32] (as labeled in Figure 9.5a)
separately from the other 56 diagram elements (those inside the move-together gadgets).

Using equation (9.141) with q ∈ {1, 2, 3, 4, 7, 8} and x, z, a, b ∈ F2 gives

B(x,a,I),(z,b,I) = 0 I ∈ [4], x, z, a, b ∈ F2. (9.143)

Using q = 5, x = 0, and z = 1 in equation (9.141) gives

〈ψ5
0,a|〈ψ5

1,b|Θ〉 =
1

15
B(0,a,1),(1,b,2) = 0, (9.144)
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for a, b ∈ {0, 1}, while q = 6, x = 0, and z = 1 gives

〈ψ6
0,a|〈ψ6

1,b|Θ〉 =
1

15
B(0,a,2),(1,b,1) = 0. (9.145)

Note that we can use the same equations with x = 1 and z = 0 to see that B(1,a,2),(0,b,1) =
B(1,a,1),(0,b,2) = 0 as well. If we then apply equation (9.141) with q = 5 or q = 6 and other choices
for x and z, or for any or 9 ≤ q ≤ 32, we find that the equation does not lead to any additional
independent constraints on the state |Θ〉.

Now consider the constraint (9.141) for diagram elements inside the move-together gadgets in
Figure 9.5a. Let Πxy be the projector onto two-particle states where both particles are located at
vertices contained within the move-together gadget labeled xy ∈ {00, 01, 10, 11}. Using the results
of Lemma 23, we see that for diagram elements inside the move-together gadgets, (9.141) is satisfied
if and only if

Πxy|Θ〉 ∈ span
{
|χxy1,a〉|χxy3,b〉 ± |χ

xy
3,b〉|χ

xy
1,a〉+ |χxy2,a〉|χxy4,b〉 ± |χ

xy
4,b〉|χ

xy
2,a〉, a, b ∈ {0, 1}

}
. (9.146)

Since we already know

Πxy|Θ〉 ∈ span
{
|χxyi,a〉|χ

xy
j,b〉, i, j ∈ [4], a, b ∈ F2

}
, (9.147)

we get

〈χxyK,a|〈χ
xy
K,b|Θ〉 = 0 K ∈ [4] (9.148)

〈χxyK,a|〈χ
xy
L,b|Θ〉 = 0 |K − L| 6= 2 (9.149)

(
〈χxy1,a|〈χxy3,b| − 〈χ

xy
2,a|〈χxy4,b|

)
|Θ〉 = 0 (9.150)

(
〈χxy3,a|〈χxy1,b| − 〈χ

xy
4,a|〈χxy2,b|

)
|Θ〉 = 0 (9.151)

for all a, b ∈ {0, 1}. Note that (9.148) is automatically satisfied whenever (9.143) holds.
Applying equation (9.149) with (K,L) = (1, 2) and a, b, x, y ∈ F2, we get

〈χxy1,a|〈χxy2,b|Θ〉 =
1

3

∑

z∈F2

ŨaxzB(z,a,1),(x,b,2) =
1

3
ŨaxxB(x,a,1),(x,b,2) = 0. (9.152)

In the second equality we used the fact that B(z,a,1),(x,b,2) is zero whenever z 6= x (from equations

(9.142), (9.144), and (9.145)). Since Ũ ∈ {1, H,HT} we have Ũaxx 6= 0, and it follows that

B(x,a,1),(x,b,2) = 0 (9.153)

for all x, a, b ∈ F2, while the same argument for (K,L) = (2, 1) gives B(x,a,2),(x,b,1) = 0 for all
x, a, b ∈ F2.

Applying equation (9.149) with (K,L) = (1, 4) gives

〈χxy1,a|〈χxy4,b|Θ〉 =
1

3

∑

z∈F2

Ũ(a)xzB(z,a,1),(x⊕y,b,4) = 0 x, y, a, b ∈ F2. (9.154)

By taking appropriate combinations of these equations, we have

∑

x∈F2

Ũa,†wx〈χx(y⊕x)
1,a |〈χx(y⊕x)

4,b |Θ〉 =
1

3
B(w,a,1),(y,b,4) = 0 w, y, a, b ∈ F2, (9.155)
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while the same argument with (K,L) = (4, 1) gives B(x,a,4),(z,b,1) = 0 for x, z, a, b ∈ F2

Applying equation (9.149) with (K,L) ∈ {(2, 3), (3, 2), (3, 4), (4, 3)} gives

〈χxy2,a|〈χxy3,b|Θ〉 =
1

3
B(x,a,2),(y,b,3) = 0 〈χxy3,a|〈χxy2,b|Θ〉 =

1

3
B(x,a,3),(y,b,2) = 0 (9.156)

〈χxy3,a|〈χxy4,b|Θ〉 =
1

3
B(x,a,3),(x⊕y,b,4) = 0 〈χxy4,a|〈χxy3,b|Θ〉 =

1

3
B(x,a,4),(x⊕y,b,3) = 0 (9.157)

for all x, y, a, b ∈ F2.
Now putting together equations (9.143), (9.144), (9.145), (9.153), (9.155), (9.156), and (9.157),

we get
B(x,a,I),(z,b,J) = 0 for all x, z, a, b ∈ F2, where |I − J | 6= 2, (9.158)

and thus we have
|Θ〉 =

∑

z,c,w,d∈F2

j∈[4]

B(z,c,j),(w,d,j+2)|ρj,Uz,c 〉|ρj+2,U
w,d 〉. (9.159)

Now

〈χxy1,a|〈χxy3,b|ρ1,U
z,c 〉|ρ3,U

w,d〉 =
1

3
δa,cδb,dŨ(a)xzδy,w = 〈χxy3,b|〈χ

xy
1,a|ρ3,U

z,d 〉|ρ1,U
w,c 〉 (9.160)

〈χxy2,a|〈χxy4,b|ρ2,U
z,c 〉|ρ4,U

w,d〉 =
1

3
δa,cδb,dδx,zδy,w⊕x = 〈χxy4,a|〈χxy2,b|ρ4,U

z,c 〉|ρ2,U
w,d〉, (9.161)

so enforcing equation (9.150) gives
∑

z∈F2

ŨaxzB(z,a,1),(y,b,3) = B(x,a,2),(x⊕y,b,4), (9.162)

while enforcing equation (9.151) gives
∑

z∈F2

ŨaxzB(y,b,3),(z,a,1) = B(x⊕y,b,4),(x,a,2), (9.163)

for each x, y, a, b ∈ F2. In other words

B(z,c,2),(w,d,4) =
∑

x∈F2

Ũ czxB(x,c,1),(z⊕w,d,3) =
∑

x,y∈F2

U czw,xyB(x,c,1),(y,d,3), (9.164)

and
B(w,d,4),(z,c,2) =

∑

x,y∈F2

U czw,xyB(y,d,3),(x,c,1), (9.165)

where we used Ua = CNOT12(Ũa ⊗ 1). Plugging this into (9.159) gives

|Θ〉 =
∑

z,a,w,b∈F2

[
B(z,a,1),(w,b,3)|ρ1,U

z,a 〉|ρ3,U
w,b 〉+B(z,a,3),(w,b,1)|ρ3,U

z,a 〉|ρ1,U
w,b 〉

+
∑

x,y∈F2

Uazw,xyB(x,a,1),(y,b,3)|ρ2,U
z,a 〉|ρ4,U

w,b 〉+ U bwz,yxB(x,a,3),(y,b,1)|ρ4,U
z,a 〉|ρ2,U

w,b 〉
]

(9.166)

=
∑

z,a,w,b∈F2

[
B(z,a,1),(w,b,3)

(
|ρ1,U
z,a 〉|ρ3,U

w,b 〉+
∑

x,y∈F2

Uaxy,zw|ρ2,U
x,a 〉|ρ4,U

y,b 〉
)

+B(z,a,3),(w,b,1)

(
|ρ3,U
z,a 〉|ρ1,U

w,b 〉+
∑

x,y∈F2

U byx,wz|ρ4,U
x,a 〉|ρ2,U

y,b 〉
)]

(9.167)

=
∑

z,a,w,b∈F2

B(z,a,1),(w,b,3)

(
|TU,+z,a,w,b 〉+ |TU,−z,a,w,b 〉

)
−B(z,a,3),(w,b,1)

(
|TU,+w,b,z,a 〉 − |T

U,−
w,b,z,a 〉

)
(9.168)
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This is the general solution to equations (9.140)–(9.141), so the space of two-particle frustration-free
states for GU is spanned by the 32 orthonormal states (9.138).

Note that the above analysis only uses Lemma 23, and thus if dmax = 0 and we restrict ourselves
to the symmetric states, the entire computation follows. Further, we also have that only the states
|TU,+z,a,w,b 〉 are symmetric, and thus these states span the symmetric subspace.

Finally, we show that there are no three-particle frustration-free states (for any dmax). By
Lemma 14, this implies that there are no frustration-free states for more than two particles. Suppose
(to reach a contradiction) that |Γ〉 is a normalized three-particle frustration-free state. Write

|Γ〉 =
∑

E(x,a,q),(y,b,r),(z,c,s)|ρqx,a〉|ρry,b〉|ρsz,c〉 (9.169)

and note that each reduced density matrix of |Γ〉 on two of the three subsystems must have all of
its support on two-particle frustration-free states. As the two-particle ground space is supported
on states of the form

|ρrx,a 〉|ρqz,b 〉 (9.170)

for |r − q| = 2, we have that each two-particle reduced state must also exist in this subspace. We
then find that

{q, r} /∈ {{1, 3}, {2, 4}} =⇒ E(x,a,q),(y,b,r),(z,c,s) = 0 (9.171)

{q, s} /∈ {{1, 3}, {2, 4}} =⇒ E(x,a,q),(y,b,r),(z,c,s) = 0 (9.172)

{r, s} /∈ {{1, 3}, {2, 4}} =⇒ E(x,a,q),(y,b,r),(z,c,s) = 0 (9.173)

which together imply that |Γ〉 = 0 (a contradiction). Hence no three-particle frustration-free state
exists.

The two-particle state |TU,±z1,a,z2,b
〉 is a superposition of a term

1

2

(
|ρ1,U
z1,a〉|ρ

3,U
z2,b
〉 ± |ρ3,U

z2,b
〉|ρ1,U

z1,a 〉
)

(9.174)

with both particles located on vertices corresponding to input nodes and a term

1

2

( ∑

x1,x2∈{0,1}
Uax1x2,z1z2

(
|ρ2,U
x1,a〉|ρ

4,U
x2,b
〉 ± |ρ4,U

x2,b
〉|ρ2,U

x1,a 〉
))

(9.175)

with both particles on vertices corresponding to output nodes. The two-qubit gate Ua is applied as
the particles move from input nodes to output nodes. Note that we have essentially constructed a
graph such that the ground states correspond to the history states. Assuming that we can guarantee
that particles will have the correct locations, we will be able to combine these gadgets together to
construct a history state.

9.2.2.3 Boundary gadget

In addition to the gadgets that will allow us to implement two-qubit gates, it will be useful to also
have gadgets with similar ground states, but without the ability to move through the gadget. In
particular, we will need to have gadgets that act as boundaries on where the particles can move.
In practice, we will simply use a slightly modified version of the two-qubit gate gadget, but with
additional self loops placed so that the gadget only has single-particle self-loops.
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We will actually need two types of boundary gadgets, corresponding to whether or not we will
want to force the state of a particular qubit into the zero state, such as initializing ancilla or forcing
the output qubit to accept.

The most simple type of boundary gadget will be one without penalties. The gate diagram is
nearly the same as in Figure 9.5a (with Ũ = I) by adding self-loops to eight of the labeled vertices.
In particular, the adjacency matrix is given by

A(Gbnd) = A(GCNOT12) + hS (9.176)

hS =
∑

z∈F2

(
|1, z, 2kz + 2〉〈1, z, 2kz + 2| ⊗ I8 ⊗ I2 + |2, z, 4k + 2kz + 2〉〈2, z, 4k + 2kz + 2| ⊗ Ij

+ |3, z, 2kz + 2〉〈3, z, 2kz + 2| ⊗ Ij
)
. (9.177)

The second type of boundary gadget with penalties, is shown in Figure 9.6. Again the gate
diagram is obtained from Figure 9.5a by adding self-loops, but we also change the q = 8 element

from a I(1,1)
(0,0) element to a I(1,1)

(0,1) diagram element. In particular, we have that its adjacency matrix
is

A(Gbnd,pen) = A(Gbnd)− 2
∑

j∈[8]

|8, 1, 6k + 2, j,+〉〈8, 1, 6k + 2, j,+ | (9.178)

Note that A(Gbnd,pen) is still a positive semidefinite matrix, as the subtracted terms correspond to

changing the q = 8 element from a I(1,1)
(0,0) element to a I(1,1)

(1,1) element. This does not affect any of our
previous results on the single- or two- particle eigenstates, but will allow us to have an additional
node for that logical state.

For both types of boundary gadgets, the single-particle ground states (with energy e1) are
superpositions of the states |ρi,Uz,a〉 from Lemma 24 that are in the nullspace of hS . Note that

〈ρj,Ux,b |hS |ρi,Uz,a〉 = δa,bδx,z (δi,1δj,1 + δi,2δj,2 + δi,3δj,3)
1

15
· 1

8k
(9.179)

and thus we have that the only single-particle ground states are

|ρbnd
z,a 〉 = |ρ4,U

z,a 〉 (9.180)

with z, a ∈ F2. Additionally, there are no two- (or more) particle frustration-free states, because
no superposition of the states (9.138) lies in the subspace

span{|ρ4,U
z,a 〉|ρ4,U

x,b 〉 : z, a, x, b ∈ F2} (9.181)

of states with single-particle reduced density matrices in the ground space of A(Gbnd). We sum-
marize these results as follows.

Lemma 26. The smallest eigenvalue of A(Gbnd) and of A(Gbnd,pen) is e1, with corresponding
eigenvectors

|ρbndz,a 〉 =
1√
15

(
|ψ4
z,a〉+ |ψ8

z,a〉 − |ψ31+z
z,a 〉+

∑

x∈F2

(√
5|χx(z⊕x)

4,a 〉 − |ψ21+2z+x
0,a 〉

)
. (9.182)

For any N ≥ 2, there are no N -particle frustration-free states on Gbnd or Gbnd,pen for any dmax > 0
and there are no N -particle symmetric frustration-free states on Gbnd or Gbnd,pen when dmax = 0,
i.e.,

λ1
N (Gbnd) ≥ λ1

N (Gbnd,pen) > 0 for N ≥ 2. (9.183)
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Figure 9.6: The gate diagram for the boundary gadget is obtained from Figure 9.5a by setting
Ũ = 1 and adding 6 self-loops. Note that this is actually the boundary gadget with penalty, as we
include the node γ.
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9.3 The occupancy constraints lemma

While the graphs defined in Section 9.2 have many useful features, such as simple single- and two-
particle states and a constant energy gap, they do require that the particles are located in very
specific locations. In particular, in order for the two-particle gadgets to encode a computation we
require that two-particles have non-zero amplitude on the same gadget. While this is simple to
achieve if the number of particles is larger than the number of gadgets, the final gate graph that
we construct will have many more gate graphs than particles, which will result in the existence of
many unwanted states remaining in the n-particle ground space.

To get around this problem, we will need to ensure that certain two-particle states are removed
from the ground space. In particular, if we want to encode each logical qubit via a single particle,
we will want to ensure that only one particle corresponds to a specific qubit. If we encode time in a
spatial manner, this will require that two particles don’t correspond to the same qubit at different
times.

We will get around this problem via a lemma that we call the occupancy constraints lemma.
The basic idea is that it will take in a gate graph, and a set of two-particle states that we don’t
want to occur, and then construct a larger graph that has related n-particle ground states but
without the unwanted states.

9.3.1 Occupancy constraints

With the idea of excluding certain two-particle states from the ground space of a quantum walk on
a gate graph, we will somehow need to encode these constraints. To do so, let us assume that G
is a gate graph with R diagram elements (of some type). We will then define Gocc to be a graph
with R vertices, where the vertices of Gocc correspond to the diagram elements of G. The edge
set of Gocc is then defined to encode the occupancy constraints of G, namely there exists an edge
between two vertices of Gocc if and only if we want to exclude those states from the ground-space
of G where two particles are supported on the corresponding diagram elements of G. In this way,
we can easily encode our requisite occupancy constraints: simply add an edge in the graph Gocc.

With these occupancy constraints well defined, it will also be useful to define the frustration-free
ground space that also respects these constraints. In particular, remember that for a particular
gate graph G, we defined the N -particle frustration-free ground space of the gate graph without
edges between the diagram elements and without self-loops as

I(G,N) = span
{
|ψq1z1,a1 〉 · · · |ψqNzN ,aN 〉 : ∀i, j ∈ [N ], zi, ai ∈ F2, qi ∈ [R], i 6= j ⇒ qi 6= qj

}
. (9.184)

In particular, this subspace guarantees that each individual particle is in the ground state of a
diagram element, and further that no two particles are located on the same element. To also ensure
that the particles satisfy a particular pair of occupancy constraints, we can restrict this subspace
even farther. Concretely, if G is a gate graph, and if Gocc is a set of occupancy constraints for G,
then we can define

I(G,Gocc, N) := span
{
|ψq1z1,a1 〉 · · · |ψqNzN ,aN 〉 :

∀i, j ∈ [N ], zi, ai ∈ F2, qi ∈ [R], i 6= j ⇒ qi 6= qj and (i, j) /∈ E(Gocc)
}
.

(9.185)

This subspace explicitly excludes those states that violate the occupancy constraints of Gocc, and
thus will be useful for when we want to assume that the occupancy constraints are satisfied.
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Now that we have a subspace that satisfy our occupancy constraints, we will want to understand
how the eigenvalues change when we add in the various edges and self-loops of the original gate
graph. In particular, we will define

H(G,Gocc, N) = H(G,N)
∣∣
I(G,Gocc,N)

(9.186)

to be the MPQW Hamiltonian when restricted to the subspace that satisfies the occupancy con-
straints. We then define λ1

N (G,Gocc) for the smallest eigenvalue of this Hamiltonian. Note that if
the system is exactly frustration-free, λ1

N (G,Gocc) = 0.

9.3.2 Occupancy Constraints Lemma statement

Now that we can easily encode our occupancy constraints, we would like to have the technical results
that our transformation allows us to perform. Specifically, while our transform might raise certain
states out of the ground space, it might also drastically reduce the energy gap of the Hamiltonian
as well. As our eventual goal is to show that the MPQW-ground state problem is QMA-complete,
we need to bound this reduction in the gap.

With this in mind, we can state the explicit bounds for our lemma:

Lemma 27 (Occupancy Constraints Lemma). Let G be an e1-gate graph specified as a gate di-
agram with R ≥ 2 diagram elements. Let N ∈ [R], let Gocc specify a set of occupancy constraints on
G, and suppose the subspace I(G,Gocc, N) is nonempty. Then there exists an efficiently computable
e1-gate graph G� with at most 7R2 diagram elements such that

1. If λ1
N (G,Gocc) ≤ a then λ1

N (G�) ≤ a
R .

2. If λ1
N (G,Gocc) ≥ b with b ∈ [0, 1], then λ1

N (G�) ≥ γ�b
R9+ν , where γ� is a constant that depends

only on the interaction U , and ν is the bound on the largest degree of the interaction potential
polynomials.

In the next subsection we give the explicit transformation of the graph G to the graph G�.
While the actual transformation itself is not particularly complicated, in order to show how the
energy gap transforms we will need to define several intermediate graphs in which not all of the
edges are added. Thus our proof of the occupancy constraints lemma will also be rather iterative,
and will be done later in this section.

9.3.2.1 Definition of G�

We will now show how to construct G� from G and an occupancy constraints graph Gocc. To
ensure that the ground space has the appropriate form, the construction of G� differs slightly for
even and odd R is even or odd as a result of the edges in gate diagrams adding an additional sign
between connected diagram elements. The following description handles both cases.

In order to ease the definition of G�, let us first fix notation for the gate graph G and the
occupancy constraints graph Gocc. Write the adjacency matrix of G as (see equation (9.70))

A(G) =
R∑

q=1

|q〉〈q| ⊗A(gq) + hEG + hSG (9.187)

where hEG and hSG are determined (through equations (9.73) and (9.72)) by the sets EG and SG of
edges and self-loops in the gate diagram for G, and where gq is the 256k-vertex graph corresponding
to the diagram element labeled q.
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q
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d(q, q) is omitted if R is even

. . .. . .1

qin

Ũ

qout

1

d(q, 1)

1

d(q, 2)

1

d(q, R)

Figure 9.7: The first step in constructing the gate diagram of G� from that of G is to replace each
diagram element as shown. The four input nodes (black arrow) and four output nodes (grey arrow)
on the left-hand side are identified with nodes on the right-hand side as shown.

1. For each diagram element q ∈ [R] in the gate diagram for G, construct a gadget as shown in
Figure 9.7, with diagram elements labeled qin, qout and d(q, s) where s ∈ [R] and s 6= q if R is

even. In particular, if the diagram element labeled q is a U
(a,b)
(c,d) diagram element, then qin is

a I(a,b)(1,1) diagram element, qout is a U
(1,1)
(c,d) diagram element, and each d(q, s) is a I(2,2)

(2,2) diagram

element. Each node (q, z, t) in the gate diagram for G is mapped to a new node new(q, z, t)
as shown by the black and grey arrows, i.e.,

new(q, z, t) =

{
(qin, z, t) if (q, z, t) is an input node

(qout, z, t) if (q, z, t) is an output node.
(9.188)

Edges and self-loops in the gate diagram for G are replaced by edges and self-loops between
the corresponding nodes in the modified diagram.

2. For each edge {q1, q2} ∈ E(Gocc) in the occupancy constraints graph we add four I(1,1)
(0,0) diagram

elements. We refer to these diagram elements by labels eij(q1, q2) with i, j ∈ F2. For these
diagram elements the labeling function is symmetric, i.e., eij(q1, q2) = eji(q2, q1) whenever
{q1, q2} ∈ E(Gocc).

3. For each non-edge {q1, q2} /∈ E(Gocc) with q1, q2 ∈ [R] and q1 6= q2 we add 8 I(1,1)
(0,0) diagram

elements. We refer to these diagram elements as eij(q1, q2) and eij(q2, q1) with i, j ∈ F2; when
{q1, q2} /∈ E(Gocc) the labeling function is not symmetric, i.e., eij(q1, q2) 6= eji(q2, q1). If R is

odd we also add 4R I(1,1)
(0,0) diagram elements labeled eij(q, q) with i, j ∈ F2 and q ∈ [R].

4. Finally, we add edges and self-loops to the gate diagram as shown in Figure 9.8. This gives
the gate diagram for G�.

The set of diagram elements in the gate graph for G� is indexed by

L� = Qin ∪D ∪ Eedges ∪ Enon-edges ∪Qout (9.189)

where

Qin = {qin : q ∈ [R]} (9.190)

D = {d(q, s) : q, s ∈ [R] and q 6= s if R is even} (9.191)

Eedges = {eij(q, s) : q, s ∈ [R], i, j ∈ {0, 1}, {q, s} ∈ E(Gocc) and q < s}
Enon-edges = {eij(q, s) : q, s ∈ [R], i, j ∈ {0, 1}, {q, s} /∈ E(Gocc) and q 6= s if R is even}

Qout = {qout : q ∈ [R]} . (9.192)
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1

eij(q, s)to d(q, s)

to d(s, q)

a {q, s} ∈ E(Gocc), q < s

1

eij(q, s)to d(q, s)

b {q, s} /∈ E(Gocc)

to e00(q, s)

to e10(q, s)

to e01(q, s)

to e11(q, s)

1

d(q, s)

1

d(q, q̂)

1

d(q, s)

c

Figure 9.8: Edges and self-loops added in step 4 of the construction of the gate diagram of G�.
When {q, s} ∈ E(Gocc) with q < s, we add two outgoing edges to eij(q, s) as shown in (a). Note
that if q > s and {q, s} ∈ E(Gocc) then eij(q, s) = eji(s, q). When {q, s} /∈ E(Gocc) we add a
self-loop and a single outgoing edge from eij(q, s) as shown in (b). Each diagram element d(q, s)
has eight outgoing edges (four of which are added in step 4), as shown in (c).

The total number of diagram elements in G� is

|L�| = |Qin|+ |D|+ |Eedges|+ |Enon-edges|+ |Qout| (9.193)

=

{
R+R2 + 4|E(Gocc)|+ 4

(
R2 − 2|E(Gocc)|

)
+R R odd

R+R (R− 1) + 4|E(Gocc)|+ 4 (R(R− 1)− 2|E(Gocc)|) +R R even
(9.194)

=

{
5R2 + 2R− 4|E(Gocc)| R odd

5R2 − 3R− 4|E(Gocc)| R even.
(9.195)

In both cases this is upper bounded by 7R2 as claimed in the statement of the Lemma. Write

A(G�) =
∑

l∈L�

|l〉〈l| ⊗A(gl) + hS� + hE� (9.196)

where gl corresponds to the diagram element labeled l ∈ L�, S� and E� are the sets of self-loops
and edges in the gate diagram for G�.

We now focus on the input nodes of diagram elements inQin and the output nodes of the diagram
elements in Qout. These are the nodes indicated by the black and grey arrows in Figure 9.7. Write
E0 ⊂ E� and S0 ⊂ S� for the sets of edges and self-loops that are incident on these nodes in
the gate diagram for G�. Note that the sets E0 and S0 are in one-to-one correspondence with
(respectively) the sets EG and SG of edges and self-loops in the gate diagram for G (by definition).
The other edges and self-loops in G� do not depend on the sets of edges and self-loops in G, as
they are created in our effort to enforce the occupancy constraints. Writing

S4 = S� \ S0 E4 = E� \ E0, (9.197)

we have
hS� = hS0 + hS4 hE� = hE0 + hE4 . (9.198)

It will be useful to define several graphs that only depend on the occupancy constraints as a
stepping stone in order to understand λ1

N (G�). In particular, we will first examine the gate graph
that only has the self-loops added during the transformation from G to G�, namely the self-loops
on nodes in S4, as this graph has a particularly simple ground space, and we will label this graph
G♦. We will then analyze the graph that arises by adding the edges of E4 to G♦, and we will label
this graph by G4. With these foundational graphs understood (and in particular understanding
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Figure 9.9: An example (a) Gate diagram for a gate graph G and (b) Occupancy constraints graph
Gocc. In the text we describe how these two ingredients are mapped to a gate graph G�; the gate
diagram for G� is shown in Figure 9.10.

their N -particle frustration-free ground states), we will then easily understand the ground states
and ground energies of G� in term of the ground energies of G.

Along these lines, we will define the gate diagram for G♦ to be the diagram with all of the
elements labeled by L�, and only include the self-loops in S4. We then have that the adjacency
matrix for G♦ is

A(G♦) =
∑

`∈L�

|`〉〈` | ⊗A(g`) + hS4 . (9.199)

We can also define the gate diagram for G4 to be the same as for G♦, but including the edges
in E4. We can then define the adjacency matrix for G4 as

A(G4) =
∑

l∈L�

|l〉〈l| ⊗A(gl) + hS4 + hE4 . (9.200)

Note that G4 = G� whenever the gate diagram for G contains no edges or self-loops.
We provide an example of this construction in Figure 9.9 (which shows a gate graph and an

occupancy constraints graph) and Figure 9.10 (which describes the derived gate graphs G�, G4,
and G♦).

9.3.3 The gate graph G♦

With the various graphs well defined, let us now find the ground states of A(G♦). We know from
(9.199) that each component of G♦ is a diagram element gl, with self-loops on some of the nodes.
Using Lemma 20, we can then see that each component of G♦ has at most 4 orthonormal e1-energy
eigenstates, and that the minimum energy is e1.

More concretely, for each diagram element labeled by l ∈ L� in A(G♦), we can write g′l for the
graph with adjacency matrix

A(g′l) = A(gl) + |1, 2k〉〈1, 2k + 2| ⊗ I16 (9.201)

(i.e., gl with 16 self-loops added), and note that each component of G♦ is either gl or g′l.
We can then use Lemma 20 to see that A(g`) has four orthonormal e1-energy ground states for

each ` namely |ψz,a 〉 for z, a ∈ F2, as defined in (9.10), (9.11), using the transform of (9.56). As the
states with z = 0 are in the nullspace of |1, 2k 〉〈1, 2k | ⊗ I16, while the operator is strictly positive
for the states with z = 1, we can see that the ground space of A(g′l) is spanned by the states |ψ0,a 〉
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Figure 9.10: The gate diagram for G4 (only solid lines) and G� (including dotted lines) derived
from the example gate graph G and occupancy constraints graph Gocc from Figure 9.9. The gate
diagram for G♦ is obtained from that of G4 by removing all edges (but leaving the undotted
self-loops). 170



for a ∈ F2. If we now label the states by the l ∈ L�, (i.e., |ψlz,a〉 = |l〉|ψz,a〉, we can choose a basis

W for the e1-energy ground space of A(G♦) where each basis vector is supported on one of the
components:

W =
{
|ψl0,a〉 : a ∈ F2, l ∈ Enon-edges

}⋃{
|ψlz,a〉 : z, a ∈ F2, l ∈ L� \ Enon-edges

}
. (9.202)

The eigenvalue gap of A(G♦) is equal to that of either A(gl) or A(g′l) for some l. Since gl and
g′l are constant-sized 256k-vertex graphs, there exists a constant sized gap for each; let c♦ be the
minimum value of this gap for all possible diagram elements, both with and without the added
self-loops. We then have that

γ(A(G♦)− e1) ≥ c♦ (9.203)

The ground space of A(G♦) has dimension

|W| = 4
∣∣L�

∣∣− 2 |Enon-edges| (9.204)

=

{
4
(
5R2 + 2R− 4|E(Gocc)|

)
− 2

(
4R2 − 8|E(Gocc)|

)
R odd

4
(
5R2 − 3R− 4|E(Gocc)|

)
− 2 (4R(R− 1)− 8|E(Gocc)|) R even

(9.205)

=

{
12R2 + 8R R odd

12R2 − 4R R even.
(9.206)

We now consider the N -particle Hamiltonian H(G♦, N) and characterize its nullspace.

Lemma 28. If dmax > 0 and if |L�| ≥ N , then the nullspace of H(G♦, N) is

I♦ = span
{
|ψq1z1,a1 〉|ψq2z2,a2 〉 · · · |ψqNzN ,aN 〉 : |ψqizi,ai〉 ∈ W and ∀i, j ∈ [N ], i 6= j ⇒ qi 6= qj

}
(9.207)

where W is given in equation (9.202). If dmax = 0 and if |L�| ≥ N , then when restricted to
symmetric states, then nullspace of H(G♦, N) is given by

ISym
♦ = span{Sym(|Φ〉) : |Φ〉 ∈ I♦}. (9.208)

When dmax > 0 (and when restricted to symmetric states for dmax = 0), the smallest nonzero
eigenvalue satisfies

γ(H(G♦, N)) > γ♦, (9.209)

where γ♦ is a constant that depends only on the interaction U .

Proof. The main tool used in this proof is our characterization of the 2-particle ground states on
diagram elements from Lemma 21, namely that they don’t exist. Combined with our results for
interactions on disconnected graphs from Lemma 15, we essentially have the proof.

In particular, we have from Lemma 21 that in the N -particle ground space, no component of G♦

supports a two-particle frustration-free state (i.e., λ1
2(gl) > 0 for each l ∈ L�), while λ1

1(gl) = 0. If
we assume that L� ≥ N and dmax > 0, we then have from Lemma 15 that the N -particle nullspace
for G♦ is exactly I♦. If we restrict our attention to symmetric states, the same argument holds for
all dmax.

Additionally, we have from Lemma 15 that the smallest nonzero eigenvector of H(G♦, N) is
either the smallest eigenvalue of a single-particle excited state for some diagram element gl, or else
the smallest energy of a two-particle state on some diagram element gl (where we used the fact
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that adding the self-loops can only increase the energy of a state). As such, we can then bound the
eigenvalue gap for the N -particle sector on G♦ as

γ(H(G♦, N)) ≥ min
l∈L�
{min{λ1

2(gl), γ(H(gl, 1)))}} (9.210)

≥ min
U∈{I,H,HT}
0≤a,b,c,d≤2

min{λ1
2(G

(a,b),(c,d)
U ), γ(H(G

(a,b),(c,d)
U , 1)))} = γ♦. (9.211)

Note that γ♦ depends only on dmax (from the size of the graph g0) and on the 2-particle energy
(from the two-particle ground energy), and thus γ♦ is some constant that depends only on the
interaction.

At this point, we have a foundational graph with a constant eigenvalue gap, upon which we can
add edges and see how the eigenvalue gap changes.

9.3.4 Single particles on G4

With the graph G♦ defined and its ground-states defined and energy gaps bounded, we now want
to examine the graph with the edges that enforce the occupancy constraints. In particular, we now
want to examine G4.

We begin by solving for the ground space of the adjacency matrix A(G4). From equation
(9.200) we have

A(G4) = A(G♦) + hE4 . (9.212)

We already know that the e1-energy ground space of A(G♦) is spanned byW from equation (9.202).
Since hE4 ≥ 0 it follows that A(G4) ≥ e1. If we then want to find the e1-energy groundspace of
A(G4), we construct superpositions of vectors from W that are in the nullspace of hE4 . To this
end we consider the restriction

hE4
∣∣
span(W)

, (9.213)

and we will show that it is block diagonal in the basis W.
Recall from equation (9.73) that

hE4 =
∑

{(l,z,t),(l′,z′,t′)}∈E4

(
|l, z, t〉+ |l′, z′, t′〉

) (
〈l, z, t|+ 〈l′, z′, t′|

)
⊗ I16. (9.214)

The edges {(l, z, t), (l′, z′, t′)} ∈ E4 can be read off from Figure 9.7 and Figure 9.8, where we refer
back to Figure 9.2 for the labeling convention of nodes on a diagram element. The edges from
Figure 9.7 are

{
(qin, z, (5 + z)k + 2), (d(q, 1), z, (1 + z)k + 2)

}
, (9.215){

(d(q, i), z, (5 + z)k + 2), (d(q, i+ 1), z, (1 + z)k + 2)
}
, (9.216){

(d(q,R), z, (5 + z)k + 2), (qout, z, (1 + z)k + 2)
}
, (9.217)

with q ∈ [R], i ∈ [R− 1] and z ∈ F2, and where d(q, q) does not appear if R is even (i.e., d(q, q− 1)
is followed by d(q, q + 1)). The edges from Figure 9.8 take the form

{(d(q, s), z, k(3z + 4x) + 2) , (ezx(q, s), α(q, s), 2kα(q, s) + 2)} , (9.218)
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with q, s ∈ [R], q 6= s if R is even, z, x ∈ F2, and where

α(q, s) =

{
1 q > s and {q, s} ∈ E(Gocc)

0 otherwise.
(9.219)

The set E4 consists of all edges in equations (9.215)–(9.218).
It will turn out that (9.213) is block diagonal, with blocks W(z,a,q) ⊆ W of size

∣∣W(z,a,q)

∣∣ =

{
3R+ 2 R odd

3R− 1 R even
(9.220)

for each for each triple (z, a, q) with z, a ∈ F2 and q ∈ [R]. Using equation (9.206) we can confirm
that |W| = 4R

∣∣W(z,a,q)

∣∣, so this accounts for all basis vectors in W. The subset of basis vectors for
a given block is

W(z,a,q) =
{
|ψqinz,a〉, |ψqoutz,a 〉

}
∪
{
|ψd(q,s)
z,a 〉 : s ∈ [R], s 6= q if R even

}

∪
{
|ψezx(q,s)
α(q,s),a〉 : x ∈ {0, 1}, s ∈ [R], s 6= q if R even

}
. (9.221)

Using equation (9.214) and the description of E4 from using the edges of equations (9.215) –
(9.218), we can check by direct inspection that (9.213) only has nonzero matrix elements between
basis vectors in W from the same block. The graph G4 was designed to expand the states |ψz,a 〉
over many diagram elements, and block structure reflects this idea.

We can now compute the matrix elements between states from the same block. For example, if
R is odd there are edges {(qin, 0, 5k), (d(q, 1), 0, k + 2)} and {(qin, 1, 6k + 2), (d(q, 1), 1, 2k)} in E4.
Using the fact that |ψlz,a〉 = |l〉|ψz,a,−〉 where |ψz,a〉 is given by (9.10) and (9.11), we can then
compute the relevant matrix elements:

〈ψqinz,a |hE4 |ψd(q,1)
z,a 〉

= 〈ψqinz,a |
(∑

x∈F2

(
|qin, x, 5(k + x) + 2〉+ |d(q, 1), (1 + x)k + 2, 1〉

)

(
〈qin, x, (5 + x)k + 2|+ 〈d(q, 1), (1 + x)k + 2, 1|

)
⊗ I

)
|ψd(q,1)
z,a 〉 (9.222)

=
∑

x∈F2

〈ψz,a| (|x, (5 + x)k + 2〉〈x, (1 + x)k + 2| ⊗ I) |ψz,a〉 =
1

8k
. (9.223)

Continuing in this manner, we can compute the principal submatrix of (9.213) corresponding to the
set W(z,a,q). A diagrammatic representation of this matrix is shown in Figure 9.11a. In the figure
each vertex is associated with a state in the block and the weight on a given edge is the matrix
element between the two states associated with vertices joined by that edge. The diagonal matrix
elements are described by the weights on the self-loops. The matrix described by Figure 9.11a is
the same for each block.

For each triple (z, a, q) with z, a ∈ F2 and q ∈ [R], define

|φqz,a〉 =





1√
3R+2

[
|ψqinz,a〉+ |ψqoutz,a 〉+

∑
j∈[R](−1)j

(
|ψd(q,j)
z,a 〉 − |ψez0(q,j)

α(q,j),a〉 − |ψ
ez1(q,j)
α(q,j),a〉

) ]
R odd

1√
3R−1

[
|ψqinz,a〉+ |ψqoutz,a 〉+

∑
j<q(−1)j

(
|ψd(q,j)
z,a 〉 − |ψez0(q,j)

α(q,j),a〉 − |ψ
ez1(q,j)
α(q,j),a〉

)

−∑j<q(−1)j
(
|ψd(q,j)
z,a 〉 − |ψez0(q,j)

α(q,j),a〉 − |ψ
ez1(q,j)
α(q,j),a〉

) ]
R even.

(9.224)
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. . .

|ψez0(q,1)α(q,1),a〉|ψ
ez0(q,2)
α(q,2),a〉 |ψez0(q,R)

α(q,R),a〉

|ψqinz,a〉
|ψd(q,1)z,a 〉 |ψd(q,2)z,a 〉 |ψd(q,R)

z,a 〉
|ψqoutz,a 〉

|ψez1(q,1)α(q,1),a〉|ψ
ez1(q,2)
α(q,2),a〉 |ψez1(q,R)

α(q,R),a〉

1/8k
1/8k 1/8k

1/2k 1/2k 1/2k

1/8k

1/8k

1/8k

1/8k

1/8k

1/8k

1/8k

1/8k

1/8k

1/8k

1/8k

1/8k

1/8k
1/8k

a The matrix h4E |span(W) is block diagonal in the basisW, with a blockW(z,a,q) for each
z, a ∈ {0, 1} and q ∈ {1, . . . , R}. The states involved in a given block and the matrix
elements between them are depicted.

. . .

R (for R odd) or R− 1 (for R even)

b After multiplying some of the basis vectors by −1, the ma-
trix depicted in (a) is transformed into 1/8k times the Lapla-
cian matrix of this graph.

Figure 9.11
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The choice to omit d(q, q) for R even ensures that |ψqinz,a〉 and |ψqoutz,a 〉 have the same sign in these
ground states, similar to the original gate diagram this gate graph replaced. We now show that
these states span the ground space of A(G4).

Lemma 29. An orthonormal basis for the e1-energy ground space of A(G4) is given by the states

{
|φqz,a〉 : z, a ∈ {0, 1}, q ∈ [R]

}
(9.225)

defined by equation (9.224). The eigenvalue gap is bounded as

γ(A(G4)− e1) >
c4
R2

, (9.226)

where c4 is a constant that only depends on the interaction U .

Proof. The e1-energy ground space of A(G4) is equal to the nullspace of (9.213). Since this operator
is block diagonal in the basis W, we can solve for the eigenvectors in the nullspace of each block.
Thus, to prove the first part of the lemma, we will analyze the |W(z,a,q)|×|W(z,a,q)| matrix described
by Figure 9.11a and show that (9.224) is the unique vector in its nullspace.

We first rewrite the matrix in a slightly different basis obtained by multiplying some of the
basis vectors by a phase of −1. Specifically, we use the basis

{
|ψqinz,a〉,−|ψd(q,1)

z,a 〉, |ψez0(q,1)
α(q,1),a〉, |ψ

ez1(q,1)
α(q,1),a〉, |ψ

d(q,2)
z,a 〉,−|ψez0(q,2)

α(q,2),a〉,−|ψ
ez1(q,2)
α(q,2),a〉, . . . , |ψ

qout
z,a 〉

}
(9.227)

where the state associated with each vertex on one side of a bipartition of the graph is multiplied
by −1; these are the phases appearing in equation (9.224). Changing to this basis replaces the
weight 1

8k on each edge in Figure 9.11a by − 1
8k and does not change the weights on the self-loops.

The resulting matrix is 1
8kL0, where L0 is the Laplacian matrix of the graph shown in Figure 9.11b.

Now we use the fact that the Laplacian of any connected graph has smallest eigenvalue zero,
with a unique eigenvector equal to the all-ones vector. Hence for each block we get an eigenvector
in the nullspace of (9.213)) given by (9.224). Ranging over all z, a ∈ F2 and q ∈ [R] gives the
claimed basis for the e1-energy ground space of A(G4).

To prove the lower bound on the eigenvalue gap, we use the Nullspace Projection Lemma
(Lemma 2) with

HA = A(G♦)− e1 HB = hE4 (9.228)

and where S = span(W) is the nullspace of HA as shown in Section 9.3.3. Since the restriction of
HB to S is block diagonal in the basis W, the smallest nonzero eigenvalue of (9.213) is equal to
the smallest nonzero eigenvalue of one of its blocks. The matrix for each block is 1

8kL0. Thus we
can lower bound the smallest nonzero eigenvalue of HB|S using standard bounds on the smallest
nonzero eigenvalue of the Laplacian L of a graph G. In particular, Theorem 4.2 of reference [50]
shows that

γ(L) ≥ 4

|V (G)| diam(G)
≥ 4

|V (G)|2

(where diam(G) is the diameter of G). Since the size of the graph in Figure 9.11b is either 3R− 1
or 3R+ 2, we have

γ(HB|S) =
1

8k
γ(L0) ≥ 1

8k

4

(3R+ 2)2 ≥
1

32kR2

since R ≥ 2.
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Using this bound and the fact that γ(HA) > c♦ (from equation (9.203)) and ‖HB‖ = 2 (from
equation (9.75)) and plugging into Lemma 2 gives

γ(A(G4)− e1) ≥ c♦ · 1
32kR2

c♦ + 2
>

c♦
94kR2

=
c4
R2

. (9.229)

where we used the fact that c♦ ≤ 1, and we define c4 = c♦/(96k). As c♦ is a constant that only
depends on the interaction, so too is c4.

9.3.5 The Hamiltonian H(G4, N)

With the previous sections results about the graph G4, and in particular knowing its ground states
and eigenvalue gap, we can now analyze the multi-particle Hamiltonian. Namely, we can now
consider the N -particle Hamiltonian H(G4, N) and solve for its nullspace.

In preparation for understanding the N -particle states, it will be useful to note the following
fact about the subsets W(z,a,q) ⊂ W defined in equation (9.221).

Definition 9. We say W(z1,a1,q1) and W(z2,a2,q2) overlap in support if there exist two l1, l2 ∈ L�

such that |ψl1x1,b1〉 ∈ W(z1,a1,q1) and |ψl2x2,b2〉 ∈ W(z2,a2,q2) for some x1, x2, b1, b2 ∈ F2, and either
l1 = l2 or l1 and l2 are adjacent diagram elements.

Fact 2 (Key property of W(z,a,q)). Sets W(z1,a1,q1) and W(z2,a2,q2) overlap in support if and only if
q1 = q2 or {q1, q2} ∈ E(Gocc).

This fact can be confirmed by direct inspection of the sets W(z,a,q). If q1 = q2 = q the diagram
element l on which they overlap can be chosen to be l = qin; if q1 6= q2 and {q1, q2} ∈ E(Gocc) then
l = ez1z2(q1, q2) = ez2z1(q2, q1). Conversely, if {q1, q2} /∈ E(Gocc) with q1 6= q2, then the two blocks
don’t have support on the same diagram elements, and in fact the diagram elements supporting the
two blocks are separated by at least one additional diagram element (due to the pairwise definitions
for the connections between the gate diagrams corresponding to each diagram element of G). This
fact is the intuitive reason behind our construction of G�; we designed the graph G4 so that Fact 2
held.

We will show that the nullspace I4 of H(G4, N) is

I4 = span
{
|φq1z1,a1〉|φq2z2,a2〉 . . . |φqNzN ,aN 〉 : zi, ai ∈ F2, qi ∈ [R], qi 6= qj , and {qi, qj} /∈ E(Gocc)

}
,

(9.230)

for dmax > 0, and if dmax = 0 we will show that when restricted to symmetric states, the nullspace
of H(G4, N) is

ISym
4 =

{
Sym(|Φ〉) : |Φ〉 ∈ I4

}
. (9.231)

Note that I4 is very similar to I(G,Gocc, N) (from equation (9.185)) but with each single-particle
state |ψqz,a replaced by |φqz,a〉 (with the same similarity for the symmetric states). In particular, we
will construct a graph that enforces our occupancy constraints!

Lemma 30. The nullspace of H(G4, N) is I4 as defined in equation (9.230) for dmax > 0, or

when restricted to symmetric states the nullspace of H(G4, N) is ISym
4 . In either case, its smallest

nonzero eigenvalue is

γ(H(G4, N)) >
γ4
R7

, (9.232)

where γ4 is a constant that only depends on U .
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In addition to Fact 2, we use the following simple fact in the proof of the Lemma.

Fact 3. Let |p〉 = c|α0〉+
√

1− c2|α1〉 with 〈αi|αj〉 = δij and c ∈ [0, 1]. Then

|p〉〈p| = c2|α0〉〈α0|+M (9.233)

where ‖M‖ ≤ 1− 3
4c

4.

To prove this Fact, one can calculate ‖M‖ = 1
2(1−c2)+ 1

2

√
1 + 2c2 − 3c4 and use the inequality√

1 + x ≤ 1 + x
2 for x ≥ −1.

Proof of Lemma 30. Using equation (9.212) and the fact that the smallest eigenvalues of A(G♦)
and A(G4) are the same (equal to e1, from Section 9.3.3 and Lemma 29), we can break the MPQW-
Hamiltonian on G4 into three terms. Namely, we have

H(G4, N) = H(G♦, N) +
N∑

w=1

h
(w)

E4 +B, (9.234)

where B is the change in interaction terms resulting from vertices changing distance. It is important
to realize that B only adds terms to the Hamiltonian, as any vertices that were originally at a
distance less than dmax remain at the same distance when adding the edges in E4, and thus B is
positive semi-definite. Recall from Lemma 28 that the nullspace of H(G♦, N) is I♦ (or ISym

♦ if we
are restricting to symmetric states). We consider

N∑

w=1

h
(w)

E4

∣∣∣∣
I♦
. (9.235)

We show that its nullspace is equal to I4, and we lower bound its smallest nonzero eigenvalue.
Specifically, we prove

γ

(
N∑

w=1

h
(w)

E4

∣∣∣∣
I♦

)
>

12c4
(4R)6

. (9.236)

Additionally, we will show that B annihilates those states in I4, so that I4 is the nullspace of
H(G4, N) as claimed.

We will first prove equation (9.232) using this bound on the added movement terms (equation
(9.236)) and the fact that B annihilates I4. We apply the Nullspace Projection Lemma (Lemma 2)
with HA and HB given by the first and second terms in equation (9.234); in this case the nullspace
of HA is S = I♦ (from Lemma 28). Now applying Lemma 2 and using the bounds γ(HA) > γ♦
(from Lemma 28), ‖HB‖ ≤ N ‖hE4‖ = 2N ≤ 2R (from equation (9.75) and the fact that N ≤ R),
and the bound (9.236) on γ(HB|S), we find

γ(H(G4, N)−B) ≥
12c4γ♦
(4R)6

γ♦ + 2R
≥ 16γ♦c4

(4R)7
=
γ4
R7

. (9.237)

If we now use the fact that B annihilates all states in I4, we can use a variational argument to show
that the same bound holds for the entire MPQW Hamiltonian (i.e., adding B to the Hamiltonian
does not reduce the gap):

γ(H(G4, N)) ≥ γ4
R7

. (9.238)

With the final reductions for the proof completed, we must now establish that B annihilates all
terms in I4, the nullspace of (9.235) is I4, and prove the lower bound (9.236). Let us first show
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that each state in I4 has no energy penalty due to new interactions arising from the addition of
edges in the graph G4. By definition, note that the only vertices in G4 that have vertices at a
distance closer than dmax either belong to the same diagram element, belong to diagram elements
corresponding to {qin, qout, d(q, s)} for some q ∈ [R], or else belong to diagram elements labeled
{d(q, s), ez1,z2(q, s)} for some q, s ∈ [R], and z1, z2 ∈ F2. As such, if any state has energy penalties
resulting from the added edges (i.e., is not annihilated by the operator B,), then it must have at
least two particles located in two sets Wz1,a1,q1 and Wz2,a2,q2 that overlap in support. However,
each state |Φ〉 ∈ I4 is guaranteed by definition to not have any such overlap of support between
its several particles, and thus B|Φ〉 = 0 as required.

To analyze (9.235) we use the fact (established in Section 9.3.4) that (9.213) is block diagonal
with a blockW(z,a,q) ⊂ W for each triple (z, a, q) with z, a ∈ F2 and q ∈ [R], as the operator (9.235)
inherits a block structure from this fact. For any basis vector

|ψq1z1,a1〉|ψq2z2,a2〉 . . . |ψqNzN ,aN 〉 ∈ I♦, (9.239)

we define a set of occupation numbers that correspond to the number of particles in each block.
Namely, we will define

N =
{
N(x,b,r) : x, b ∈ {0, 1}, r ∈ [R]

}
(9.240)

where
N(x,b,r) = |{j : |ψqjzj ,aj 〉 ∈ W(x,b,r)}|. (9.241)

Observe that (9.235) conserves the set of occupation numbers (due to the inherited block structure)
and is therefore block diagonal with a block for each possible set N .

(Note that the same definition can be made for the symmetrized states, as we only care about
the number of particles in each block.)

For a given block corresponding to a set of occupation numbers N , we write I♦(N ) ⊂ I♦ for the
subspace spanned by basis vectors (9.239) in the block. We classify the blocks into three categories
depending on N .

Classification of the blocks of (9.235) according to N

Consider the following two conditions on a set N = {N(x,b,r) : x, b ∈ {0, 1}, r ∈ [R]} of occupa-
tion numbers:

(a) N(x,b,r) ∈ {0, 1} for all x, b ∈ {0, 1} and r ∈ [R]. If this holds, write (yi, ci, si) for
the nonzero occupation numbers (with some arbitrary ordering), i.e., N(yi,ci,si) = 1 for
i ∈ [N ].

(b) The sets W(yi,ci,si) and W(yj ,cj ,sj) do not overlap on a diagram element for all distinct
i, j ∈ [N ].

We say a block is of type 1 if N satisfies (a) and (b). We say it is of type 2 if N does not
satisfy (a). We say it is of type 3 if N satisfies (a) but does not satisfy (b).

Note that every block must be of type 1, 2, or 3. We will show that each block of type 1 contains
one state in the nullspace of (9.235) and, ranging over all blocks of this type, we will obtain a basis
for I4. We will also show that the smallest nonzero eigenvalue within a block of type 1 is at least
γ♦
R2 . We will then show that blocks of type 2 and 3 do not contain any states in the nullspace

of (9.235) and that the smallest eigenvalue within any block of type 2 or 3 is greater than
12c4
(4R)6

.
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Hence, the nullspace of (9.235) is I4 and its smallest nonzero eigenvalue is lower bounded as in
equation (9.236).

Type 1

Let us first investigate those blocks of type 1. Note (from Definition 9) that requirement (b) implies
q 6= r whenever

|ψqx,b〉 ∈ W(yi,ci,si) and |ψrz,a〉 ∈ W(yj ,cj ,sj) (9.242)

for distinct i, j ∈ [N ]. Hence, we can remove the requirement that qi 6= qj :

I♦(N ) = span{|ψq1z1,a1〉|ψq2z2,a2〉 . . . |ψqNzN ,aN 〉 : qi 6= qj and ∃π ∈ SN , |ψqjzj ,aj 〉 ∈ W(yπ(j),cπ(j),sπ(j))}
(9.243)

= span{|ψq1z1,a1〉|ψq2z2,a2〉 . . . |ψqNzN ,aN 〉 : ∃π ∈ SN , |ψ
qj
zj ,aj 〉 ∈ W(yπ(j),cπ(j),sπ(j))}. (9.244)

From this we see that

dim(I♦(N )) = (N !)

N∏

j=1

∣∣∣W(yj ,cj ,sj)

∣∣∣ =

{
(N !) (3R+ 2)N R odd

(N !) (3R− 1)N R even.
(9.245)

We now solve for all the eigenstates of (9.235) within the block. (Note that if we restrict to the
symmetric subspace, the symmetrization condition simply reduces the size of these subspaces by
a factor of N !, as the only symmetric state in this subspace is given by the uniform superposition
over all these states.)

As we need only understand the eigenvectors of each individual block, it will be useful to
remember Lemma 29 as we have already determined all of the single-particle eigenstates. It will
convenient to write an orthonormal basis of eigenvectors of the |W(z,a,q)|×|W(z,a,q)|matrix described
by Figure 9.11a as

|φqz,a(u)〉, u ∈ [|W(z,a,q)|] (9.246)

and their ordered eigenvalues as

θ1 ≤ θ2 ≤ . . . ≤ θ|W(z,a,q)|. (9.247)

From the proof of Lemma 29, the eigenvector with smallest eigenvalue θ1 = 0 is |φqz,a〉 = |φqz,a(1)〉
and θ2 ≥ c♦

R2 . For any u1, u2, . . . , uN ∈ [|W(z,a,q)|], the state

|φs1y1,c1(u1)〉|φs2y2,c2(u2)〉 . . . |φsNyN ,cN (uN )〉 (9.248)

is an eigenvector of (9.235) with eigenvalue
∑N

j=1 θuj . Furthermore, states corresponding to differ-
ent choices of u1, . . . , uN are orthogonal, and ranging over all dim(I♦(N )) choices we get every
eigenvector in the block. The smallest eigenvalue within the block is Nθ1 = 0 and there are N !
vectors in the nullspace, given by

|Φπ
N 〉 := |φsπ(1)yπ(1),cπ(1)〉|φ

sπ(2)
yπ(2),cπ(2)〉 . . . |φ

sπ(N)
yπ(N),cπ(N)

〉, (9.249)

where π ∈ SN , and where |φqz,a〉 = |φqz,a(1)〉. The smallest nonzero eigenvalue of (9.235) within the
block is (N − 1)θ1 + θ2 = θ2 ≥ c♦

R2 , as expected. If we restrict ourselves to the symmetric states,
this nullspace becomes 1-dimensional, but we still have the same bounds on the eigenvalue gap.

With the knowledge that each state of the form (9.249) minimizes the energy of (9.235), we
will now show that the collection of all such states span the space I4. As the second requirement
on type 1 blocks requires that the sets W(yi,ci,si) no not pairwise overlap, we can use Fact 2 to see
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that this is equivalent to the sets satisfying si 6= sj and {si, sj} /∈ E(Gocc) for distinct i, j ∈ [N ] (as
well as arbitrary yi and ci). Hence the set of states (9.249) obtained from of all blocks of type 1 is

{
|ΦN 〉 : N is a type 1 block

}

=
{
|φs1y1,c1〉|φs2y2,c2〉 . . . |φsNyN ,cN 〉 :

∀i, j ∈ [N ], yi, ci ∈ F2, si ∈ [R], i 6= j ⇒ si 6= sj and {si, sj} /∈ E(Gocc)
}

(9.250)

which by definition spans I4. Again, if we restrict ourselves to the symmetric subspace, we also

have that these states also span ISym
4 .

Type 2

Now let N be of type 2. We then have that there exist x, b ∈ F2 and r ∈ [R] such that N(x,b,r) ≥ 2.
We will show there are no eigenvectors in the nullspace of (9.235) within a block of this type and
we lower bound the smallest eigenvalue within the block. Specifically, we show

min
|κ〉∈I♦(N )

〈κ|
N∑

w=1

h
(w)

E4 |κ〉 >
12c4
(4R)6

. (9.251)

First note that all |κ〉 ∈ I♦ satisfy (A(G♦) − e1)(w)|κ〉 = 0 for each w ∈ [N ], which can be seen
using the definition of I♦ and the fact that W spans the nullspace of A(G♦) − e1. We can then
add these terms to equation (9.212), so that

min
|κ〉∈I♦(N )

〈κ|
N∑

w=1

h
(w)

E4 |κ〉 = min
|κ〉∈I♦(N )

〈κ|
N∑

w=1

(
A(G4)− e1

)(w)
|κ〉. (9.252)

If we then examine only the ground space of this operator, we can see that

N∑

w=1

(
A(G4)− e1

)(w)
≥ γ

(
N∑

w=1

(
A(G4)− e1

)(w)
)
·
(

1−Π4
)

= γ(A(G4)− e1) ·
(

1−Π4
)
>
c4
R2

(
1−Π4

)
, (9.253)

where Π4 is the projector onto the nullspace of
∑N

w=1

(
A(G4)− e1

)(w)
, and where in the last step

we used Lemma 29. Plugging equation (9.253) into equation (9.252) gives

min
|κ〉∈I♦(N )

〈κ|
N∑

w=1

h
(w)

E4 |κ〉 >
c4
R2

(
1− max

|κ〉∈I♦(N )
〈κ|Π4|κ〉

)
. (9.254)

Using Lemma 29 we can write Π4 explicitly as

Π4 =
∑

(~z,~a,~q)∈Q
P(~z,~a,~q) (9.255)

where

P(~z,~a,~q) = |φq1z1,a1〉〈φq1z1,a1 | ⊗ |φq2z2,a2〉〈φq2z2,a2 | ⊗ · · · ⊗ |φqNzN ,aN 〉〈φ
qN
zN ,aN

| (9.256)

Q = {(z1, . . . zN , a1, . . . , aN , q1, . . . , qN ) : zi, ai ∈ F2 and qi ∈ [R]} . (9.257)
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Essentially, each particle is projected onto the ground state of a block, where the blocks are labeled
by the elements of Q and there are no correlations between the particles. For each (~z,~a, ~q) ∈ Q we
also define a space

S(~z,~a,~q) = span(W(z1,a1,q1))⊗ span(W(z2,a2,q2))⊗ · · · ⊗ span(W(zN ,aN ,qN )). (9.258)

Note that P(~z,~a,~q) has all of its support in S(~z,~a,~q), and that

S(~z,~a,~q) ⊥ S(~z′,~a′,~q′) for distinct (~z,~a, ~q), (~z′,~a′, ~q′) ∈ Q. (9.259)

Therefore P(~z,~a,~q)P(~z′,~a′,~q′) = 0 for distinct (~z,~a, ~q), (~z′,~a′, ~q′) ∈ Q. (Below we use similar reasoning
to obtain a less obvious result.) Note that P(~z,~a,~q) is orthogonal to I♦(N ) unless

|{j : (zj , aj , qj) = (w, u, v)}| = N(w,u,v) for all w, u ∈ {0, 1}, v ∈ [R]. (9.260)

We restrict our attention to the projectors that are not orthogonal to I♦(N ). Letting Q(N ) ⊂ Q
be the set of (~z,~a, ~q) satisfying equation (9.260), we have

〈κ|
∑

(~z,~a,~q)∈Q
P(~z,~a,~q)|κ〉 = 〈κ|

∑

(~z,~a,~q)∈Q(N )

P(~z,~a,~q)|κ〉 for all |κ〉 ∈ I♦(N ). (9.261)

Since N(x,b,r) ≥ 2, note that in each term P(~z,~a,~q) with (~z,~a, ~q) ∈ Q(N ), the operator

|φrx,b〉〈φrx,b| ⊗ |φrx,b〉〈φrx,b| (9.262)

appears between two of the N registers (tensored with rank-1 projectors on the other N − 2
registers). Using equation (9.224) we may expand |φrx,b〉 as a sum of states fromW(x,b,r). This gives

|φrx,b〉|φrx,b〉 = c0|ψrinx,b〉|ψ
rin
x,b〉+

(
1− c2

0

) 1
2 |Φr

x,b〉 (9.263)

where c0 is either 1
3R+2 (if R is odd) or 1

3R−1 (if R is even), and where |ψrinx,b〉|ψ
rin
x,b〉 is orthogonal to

|Φr
x,b〉. Note that each of the states |φrx,b〉|φrx,b〉, |ψrinx,b〉|ψ

rin
x,b〉, and |Φr

x,b〉 lie in the space

span(W(x,b,r))⊗ span(W(x,b,r)). (9.264)

Now applying Fact 3 gives

|φrx,b〉〈φrx,b| ⊗ |φrx,b〉〈φrx,b| = c2
0|ψrinx,b〉〈ψ

rin
x,b| ⊗ |ψ

rin
x,b〉〈ψ

rin
x,b|+M r

x,b (9.265)

where M r
x,b is a Hermitian operator with all of its support on the space (9.264) and

∥∥M r
x,b

∥∥ ≤ 1− 3

4
c4

0 ≤ 1− 3

4

(
1

3R+ 2

)4

≤ 1− 3

4

1

(4R)4
(9.266)

since R ≥ 2. For each (~z,~a, ~q) ∈ Q(N ) we define PM(~z,~a,~q) to be the operator obtained from P(~z,~a,~q)

by replacing
|φrx,b〉〈φrx,b| ⊗ |φrx,b〉〈φrx,b| 7→M r

x,b (9.267)

on two of the registers (if N(x,b,r) > 2 there is more than one way to do this; we fix one choice for

each (~z,~a, ~q) ∈ Q(N )). Note that PM(~z,~a,~q) has all of its support in the space S(~z,~a,~q). Using (9.259)
gives

PM(~z,~a,~q)PM(~z′,~a′,~q′) = 0 for distinct (~z,~a, ~q), (~z′,~a′, ~q′) ∈ Q(N ). (9.268)
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Using equation (9.265) and the fact that

〈κ|
(
|ψrinx,b〉〈ψ

rin
x,b|(w1)

)(
|ψrinx,b〉〈ψ

rin
x,b|(w2)

)
|κ〉 = 0 for all |κ〉 ∈ I♦(N ) and distinct w1, w2 ∈ [N ]

(9.269)
(which can be seen from the definition of I♦), we have

〈κ|P(~z,~a,~q)|κ〉 = 〈κ|PM(~z,~a,~q)|κ〉 for all |κ〉 ∈ I♦(N ). (9.270)

Hence, letting

Π4N =
∑

(~z,~a,~q)∈Q(N )

PM(~z,~a,~q), (9.271)

we have 〈κ|Π4|κ〉 = 〈κ|Π4N |κ〉 for all |κ〉 ∈ I♦(N ). To obtain a bound on the norm of Π4N , we use
the fact that the norm of a sum of pairwise orthogonal Hermitian operators is upper bounded by
the maximum norm of an operator in the sum, so

∥∥Π4N
∥∥ =

∥∥∥∥∥
∑

(~z,~a,~q)∈Q(N )

PM(~z,~a,~q)

∥∥∥∥∥ = max
(~z,~a,~q)∈Q(N )

∥∥PM(~z,~a,~q)
∥∥ =

∥∥M r
x,b

∥∥ ≤ 1− 3

4

1

(4R)4 . (9.272)

Putting this together, we then have that

max
|κ〉∈I♦(N )

〈κ |Π4|κ〉 = max
|κ〉∈I♦(N )

〈κ |Π4N |κ〉 ≤ ‖Π
4
N ‖ ≤ 1− 3

4(4R)4
. (9.273)

If we then use (9.254), we have that

min
|κ〉∈I♦(N )

〈κ|
N∑

w=1

h
(w)

E4 |κ〉 >
c4
R2

(
1− max

|κ〉∈I♦(N )
〈κ|Π4|κ〉

)
≥ 12c4

(4R)6
. (9.274)

Type 3

Let us finally examine the case where N is of type 3 then N(x,b,r) ∈ {0, 1} for all x, b ∈ F2 and
r ∈ [R], and

N(y,c,s) = N(t,d,u) = 1 (9.275)

for some (y, c, s) 6= (t, d, u) with either u = s or {u, s} ∈ E(Gocc) (using property (b) and Fact 2).
We show there are no eigenvectors in the nullspace of (9.235) within a block of this type and we
lower bound the smallest eigenvalue within the block. We establish the same bound (9.251) as for
blocks of Type 2.

The proof is very similar to that given above for blocks of Type 2. In fact, the first part of
proof is identical, from equation (9.252) up to and including equation (9.261). That is to say, as in
the previous case we have

〈κ|
∑

(~z,~a,~q)∈Q
P(~z,~a,~q)|κ〉 = 〈κ|

∑

(~z,~a,~q)∈Q(N )

P(~z,~a,~q)|κ〉 for all |κ〉 ∈ I♦(N ). (9.276)

In this case, since N(y,c,s) = N(t,d,u) = 1, in each term P(~z,~a,~q) with (~z,~a, ~q) ∈ Q(N ), the operator

|φsy,c〉〈φsy,c| ⊗ |φut,d〉〈φut,d| (9.277)

appears between two of theN registers (tensored with rank 1 projectors on the otherN−2 registers).
Using equation (9.224) we may expand |φsy,c〉 and |φut,d〉 as superpositions (with amplitudes ± 1√

3R+2
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if R is odd or ± 1√
3R−1

if R is even) of the basis states from W(y,c,s) and W(t,d,u) respectively. Since

W(y,c,s) and W(t,d,u) overlap on some diagram element, there exists l ∈ L� such that |ψlx1,b1〉 ∈
W(y,c,s) and |ψlx2,b2〉 ∈ W(t,d,u) for some x1, x2, b1, b2 ∈ {0, 1}. Hence

|φsy,c〉|φut,d〉 = c0

(
±|ψlx1,b1〉|ψlx2,b2〉

)
+
(
1− c2

0

) 1
2 |Φs,u

y,c,t,d〉 (9.278)

where c0 is either 1
3R+2 (if R is odd) or 1

3R−1 (if R is even). Now applying Fact 3 we get

|φsy,c〉〈φsy,c| ⊗ |φut,d〉〈φut,d| = c2
0|ψlx1,b1〉〈ψlx1,b1 | ⊗ |ψlx2,b2〉〈ψlx2,b2 |+M s,u

y,c,t,d (9.279)

where ‖M s,u
y,c,t,d‖ ≤ 1 − 3

4

(
1

4R

)4
. For each (~z,~a, ~q) ∈ Q(N ) we define PM(~z,~a,~q) to be the operator

obtained from P(~z,~a,~q) by replacing

|φsy,c〉〈φsy,c| ⊗ |φut,d〉〈φut,d| 7→M s,u
y,c,t,d (9.280)

on two of the registers and we let Π4N be given by (9.271). Then, as in the previous case, 〈κ|Π4|κ〉 =

〈κ|Π4N |κ〉 for all |κ〉 ∈ I♦(N ) and using the same reasoning as before, we get the bound (9.272) on

‖Π4N ‖. Using these two facts we get the same bound on the smallest eigenvalue within a block of
type 3 as the bound we obtained for blocks of type 2:

min
|κ〉∈I♦(N )

〈κ|
N∑

w=1

h
(w)

E4 |κ〉 >
c4
R2

(
1− max

|κ〉∈I♦(N )
〈κ|Π4|κ〉

)
≥ 12c4

(4R)6
.

9.3.6 The gate graph G�

With all of the intermediate graphs characterized, we now consider the gate graph G� and prove
Lemma 27. We first show that G� is an e1-gate graph. From equations (9.196), (9.198), and (9.200)
we have

A(G�) = A(G4) + hE0 + hS0 . (9.281)

Lemma 29 characterizes the e1-energy ground space of G4 and gives an orthonormal basis for it.
To solve for the e1-energy ground space of A(G�), we solve for superpositions of the ground states
of A(G4), {|φqz,a〉}, in the nullspace of hE0 + hS0 .

Recall the definition of the sets E0 and S0, as these are the edges and self-loops that are inherited
from the graph G. From Section 9.3.2.1, each node (q, z, t) in the gate diagram for G is associated
with a node new(q, z, t) in the gate diagram for G� as described by (9.188). This mapping is
depicted in Figure 9.7 by the black and grey arrows. Applying this mapping to each pair of nodes
in the edge set EG and each node in the self-loop set SG of the gate diagram for G, we get the sets
E0 and S0. Hence, using equations (9.72) and (9.73),

hS0 =
∑

(q,z,t)∈SG
|new(q, z, t)〉〈new(q, z, t)| ⊗ I (9.282)

hE0 =
∑

{(q,z,t),(q′,z′,t′)}∈EG

(
|new(q, z, t)〉+ |new(q′, z′, t′)〉

) (
〈new(q, z, t)|+ 〈new(q′, z′, t′)|

)
⊗ I.

(9.283)
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Using equation (9.224), we see that for all nodes (q, z, t) in the gate diagram for G and for all
j ∈ [8], x, b, d ∈ F2, and r ∈ [R],

〈new(q, z, t), j, d|φrx,b〉 =
√
c0

{
〈qin, z, t, j, d|ψrinx,b〉 if (q, z, t) is an input node

〈qout, z, t, j, d|ψroutx,b 〉 if (q, z, t) is an output node

=
√
c0δr,q〈z, t, j, d|ψx,b〉 (9.284)

where c0 is 1
3R+2 if R is odd or 1

3R−1 if R is even, and where |ψx,b〉 is defined by equations (9.10)
and (9.11). The matrix element on the left-hand side of this equation is evaluated in the Hilbert

space C|V (G�)| where each basis vector corresponds to a vertex of the graph G�; these vertices are
labeled (l, z, t, j, d) with l ∈ L�, z, d ∈ F2, t ∈ [8k], and j ∈ [8]. However, from (9.284) we see that

〈new(q, z, t), j, d|φrx,b〉︸ ︷︷ ︸
in Z1(G�)

=
√
c0 〈q, z, t, j, d|ψrx,b〉︸ ︷︷ ︸

in Z1(G)

(9.285)

where the right-hand side is evaluated in the Hilbert space C|V (G)|.
Putting together equations (9.282), (9.283), and (9.285) gives

〈φqz,a|hE0 + hS0 |φrx,b〉 = 〈ψqz,a|hEG + hSG |ψrx,b〉 ·
{

1
3R+2 R odd

1
3R−1 R even

(9.286)

for all z, a, x, b ∈ F2 and q, r ∈ [R].
We use equation (9.286) to relate the e1-energy ground states of A(G) to those of A(G�). Since

G is an e1-gate graph, there is a state

|Γ〉 =
∑

z,a,q

αz,a,q|ψqz,a〉 ∈ C|V (G)| (9.287)

that satisfies A(G)|Γ〉 = e1|Γ〉 and hence hEG |Γ〉 = hSG |Γ〉 = 0. Letting

|Γ′〉 =
∑

z,a,q

αz,a,q|φqz,a〉 ∈ C|V (G�)| (9.288)

and using equation (9.286), we see that 〈Γ′|hE0 + hS0 |Γ′〉 = 0 and therefore 〈Γ′|A(G�)|Γ′〉 = e1.

Hence G� is an e1-gate graph. Moreover, the linear mapping from C|V (G)| to C|V (G�)| defined by

|ψqz,a〉 7→ |φqz,a〉 (9.289)

maps each e1-energy eigenstate of A(G) to an e1-energy eigenstate of A(G�).
Now consider the N -particle Hamiltonian H(G�, N). Using equation (9.281) and the fact that

both A(G�) and A(G4) have smallest eigenvalue e1, we have

H(G�, N) = H(G4, N) +

N∑

w=1

(hE0 + hS0)(w)

∣∣∣∣
ZN (G�)

+ C ′, (9.290)

where C corresponds to the added interactions resulting from the additional edges. Recall from
Lemma 29 that the nullspace of the first term is I4. The N -fold tensor product of the mapping
(9.289) acts on basis vectors of I(G,Gocc, N) as

|ψq1z1,a1〉|ψq2z2,a2〉 . . . |ψqNzN ,aN 〉 7→ |φ
q1
z1,a1〉|φq2z2,a2〉 . . . |φqNzN ,aN 〉, (9.291)
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where zi, ai ∈ F2, qi 6= qj , and {qi, qj} /∈ E(Gocc). Clearly this defines an invertible linear map
between the two spaces I(G,Gocc, N) and I4. Let |Θ〉 ∈ I(G,Gocc, N) and write |Θ′〉 ∈ I4 for its
image under the map (9.291). Then

〈Θ′|H(G�, N)− C ′|Θ′〉 = 〈Θ′|
N∑

w=1

(hE0 + hS0)(w) |Θ′〉 (9.292)

= 〈Θ|
N∑

w=1

(hEG + hSG)(w) |Θ〉 ·
{

1
3R+2 R odd

1
3R−1 R even

(9.293)

where in the first equality we used the fact that |Θ′〉 is in the nullspace I4 of H(G4, N) and in
the second equality we used equation (9.286) and the fact that 〈φqz,a|φrx,b〉 = 〈ψqz,a|ψrx,b〉.

We now want to understand how C ′ changes the ground space along with the eigenvalue gap.
While the added edges will add energy to those states on G� if and only if they add energy to the
corresponding state on G that also satisfy the occupancy constraints, the fact that the states on
G� are much more spread out means that the added energy can be drastically less. In particular,
an arbitrary state on G might have N -particle interactions which under our transformation would
require a factor of (3R)−N to the energy. However, the fact that each state in I4 and each state in
I(G,Gocc, N) satisfy the occupancy constraints implies that at most a single particle ever occupies
a single diagram element (and thus C ′ = 0 if dmax = 0). Using this, we have that when restricted
to those states in I4, each term in C ′ affects at most two particles, and the requisite change to the
energy penalty will only be (3R)−2.

As such, let u′ and v′ be two vertices of G� that can now interact but were separated by
a distance more than dmax in G4. We can see that each such vertex is contained within some
diagram element qin or qout. Further, each pair (u′, v′) of vertices in G� for which interactions are
added has a corresponding pair of vertices (u, v) in G for which the interactions were also added,
derived by simply dropping the in/out from the label for the diagram element. Similarly, for any two
vertices (u, v) in G for which the added edges cause an interaction, there exist two vertices (u′, v′)
in G� that also have an interaction, which can be found by adding in the in/out to the diagram
element labels for u and v, depending where the edge that connects the two diagram elements is
located (i.e., whether it connects to the input or output of the element). Since this is a bijection
between pairs of vertices (but not individual vertices), we will have that the added interactions will
be proportional between those states in I4 and I(G,Gocc, N). We will let V � ⊂ V (G�)× V (G�)
be those vertices in G� that are now at a distance less than or equal to dmax that were farther
apart than dmax in G4, and let V ⊂ V (G)× V (G) be the corresponding pairs of vertices in G.

Explicitly, note that for any pair of vertices (u′, v′) ∈ V � that are now a distance d, and any
state |Θ′ 〉 ∈ I(G4, N),

〈Θ′ |Ud(n̂u′ , n̂v′)|Θ′ 〉 = U
(1,1)
d

∑

w1 6=w2∈[N ]

〈Θ′ |
(
|u′ 〉〈u′ |(w1) ⊗ |v′ 〉〈v′ |(w2)

)
|Θ′ 〉 (9.294)

= U
(1,1)
d

∑

w1 6=w2∈[N ]

〈Θ |
(
|u〉〈u |(w1) ⊗ |v 〉〈v |(w2)

)
|Θ〉

{
1

(3R+2)2
R odd

1
(3R−1)2

R even

(9.295)

= 〈Θ |Ud(n̂u, n̂v)|Θ〉
{

1
(3R+2)2

R odd
1

(3R−1)2
R even.

(9.296)

This uses a relation almost identical to (9.284), which can be derived in an identical manner.
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With this identity in mind, we have that

〈Θ′ |C ′|Θ′ 〉 =
∑

(u′,v′)∈V�

〈Θ′ |Ud(u′,v′)(n̂u′ , n̂v′)|Θ′ 〉 (9.297)

=
∑

(u,v)∈V
〈Θ |Ud(u,v)(n̂u, n̂v)|Θ〉

{
1

(3R+2)2
R odd

1
(3R−1)2

R even.
(9.298)

= 〈Θ |C|Θ〉
{

1
(3R+2)2

R odd
1

(3R−1)2
R even

(9.299)

We now complete the proof of Lemma 27 using equation (9.293) and (9.299).

Case 1: λN (G,Gocc) ≤ a
In this case there exists a state |Θ〉 ∈ I(G,Gocc, N) satisfying

〈Θ|
N∑

w=1

(hEG + hSG)(w) + C|Θ〉 = aadj + aint ≤ a, (9.300)

From equation (9.293) we see that the state |Θ′〉 ∈ I4 satisfies 〈Θ′|Θ′〉 ≤ aadj
3R−1 , and from (9.299)

that it also satisfies 〈Θ′ |C ′|Θ′ 〉 ≤ aint
(3R−1)2

.

Putting this together, (along with the fact that |Θ′ 〉 ∈ I4 and thus is in the nullspace of
H(G4, N)),

〈Θ′ |H(G�, N)|Θ′ 〉 ≤ aadj

3R− 1
+

aint

(3R− 1)2
<
aadj

R
+
aint

R
=
a

R
. (9.301)

Case 2: λN (G,Gocc) ≥ b
In this case

λN (G,Gocc) = min
|Θ〉∈I(G,Gocc,N)

〈Θ|H(G,Gocc, N)|Θ〉 (9.302)

= min
|Θ〉∈I(G,Gocc,N)

〈Θ|
N∑

w=1

(hEG + hSG)(w) |Θ〉+ 〈Θ |C|Θ〉 (9.303)

= badj + bint ≥ b. (9.304)

Now applying equation (9.293) and (9.299) gives

min
|Θ′〉∈I4

〈Θ′|H(G�, N)|Θ′〉 = min
|Θ′〉∈I4

〈Θ′|
N∑

w=1

(hE0 + hS0)(w) |Θ′〉+ 〈Θ′ |C ′|Θ′ 〉 (9.305)

=
badj

3R+ 2
+

bint

(3R+ 2)2
(9.306)

≥ 1

(3R+ 2)2
b, (9.307)

This establishes that the nullspace of H(G�, N) is empty, i.e., λ1
N (G�) > 0, so λ1

N (G�) =
γ(H(G�, N)). We lower bound λ1

N (G�) using the Nullspace Projection Lemma (Lemma 2) with

HA = H(G4, N) HB =
N∑

w=1

(hE0 + hS0)(w)

∣∣∣∣
ZN (G�)

+ C ′ (9.308)
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and where the nullspace of HA is S = I4. We apply Lemma 2 and use the bounds γ(HA) >
γ4
R7

(from Lemma 30), γ(HB|S) ≥ b
(3R+2)2

(from equation (9.307)), and

‖HB‖ ≤ N ‖hE0 + hS0‖+ ‖Hint‖ ≤ 3N + dUNν ≤ dURνU (9.309)

(using equations (9.75) and (9.74), the bounds on Hint, and the fact that N ≤ R) to find

λ1
N (G�) = γ(H(G�, N)) (9.310)

≥ γ4b
(3R+ 2)2R7

1
γ4
R7 + dURνU

(9.311)

>
γ�b

R9+ν
(9.312)

where γ� depends only on the interaction U , and we have our requisite bound.

9.4 Constructing the graph for a given circuit

In order to prove that bounding the ground energy of a MPQW on some graph GX is as hard as
bounding the maximal acceptance probability of a circuit CX , we will need to somehow relate the
ground energy of GX to the maximal acceptance probability for the circuit CX .

With the graphs defined in Section 9.2 and the ability to ensure that certain states are excluded
from the ground space via the occupancy constraints lemma Section 9.3.1, we will be able to do
this. In particular, we will show how to transform a circuit with a given form into a graph, such
that the n-particle ground-energy will correspond to whether the circuit has an accepting state
when certain states are excluded from the ground space.

The main idea will be to use the graph primitives of Section 9.2 to replace each gate from CX
with a particular gadget. By using a single particle for each qubit, and forcing each unitary to affect
the first qubit, we will be able to use the location of the first particle to encode the current “time”
of the occupation. Using our two-particle graph gadgets, we can then ensure that the particles
move together through the entire computation (assuming that they start in the correct positions).

This construction is somewhat complicated, but we will define the graph GX and the neces-
sary occupancy constraints in this section. We will then prove the bound relating the acceptance
probability of the circuit to the smallest eigenvalue (with the occupancy constraints) in Section 9.5.

9.4.1 Verification circuits

We take the verification circuit CX that we want to simulate to be from the following universal
circuit family. We will assume that CX acts on n ≥ 4 qubits and has M total gates

UCX = UMUM−1 . . . U1, (9.313)

where each gate Uj is a two-qubit gate acting nontrivially on the qubit labeled 1 and another qubit
s(j) ∈ {2, . . . , n}, and is chosen from the set

{CNOT1s(j),CNOTs(j)1,CNOT1s(j) (H ⊗ I) ,CNOT1s(j) (HT ⊗ I)}. (9.314)

Additionally, we will assume that no two consecutive gates (Uj and Uj+1) act between the same
two qubits, i.e.,

s(j) 6= s(j + 1) j ∈ [M − 1], (9.315)
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and we assume that each qubit be involved in at least one gate.
We will think of the input state to the circuit being given to us on the qubits labeled 1, . . . , nin,

while the remaining n−nin qubits are each initialized to |0〉 and are used as ancilla. We will assume
that the output of the circuit is contained in the state of the second qubit, as the first mediates all
of the other interactions.

Note that the acceptance probability for the circuit acting on input state |ψin〉 ∈ (C2)⊗nin is
the probability that a final measurement of the output qubit in the computational basis gives the
value 1:

AP (CX , |ψin〉) =
∥∥∥|1〉〈1|(2)UCX |ψin〉|0〉⊗n−nin

∥∥∥
2
, (9.316)

and thus we will eventually want to ensure that the final state of qubit 2 to be 1.
We will now establish that circuits of this form are universal. We show that any quantum circuit

(with n ≥ 4 qubits) expressed using the universal gate set

{CNOT, H,HT} (9.317)

can be efficiently rewritten in the prescribed form without increasing the number of qubits and
with at most a constant factor increase in the number of gates.

First we map a circuit from the gate set (9.317) to the gate set (9.314) (without necessarily
satisfying condition (9.315)). A SWAP gate between qubits 1 and k can be performed using the
identity

SWAP1k = CNOT1kCNOTk1CNOT1k. (9.318)

To perform a CNOTik gate between two qubits i, k (neither of which is qubit 1), we swap qubits 1
and i, apply CNOT1k, and then swap back. Similarly, we can apply a single-qubit gate U ∈ {H,HT}
to some qubit k 6= 1 using the sequence of gates

SWAP1kCNOT12 (CNOT12U ⊗ I) SWAP1k. (9.319)

Applying these replacement rules, we obtain a circuit over the gate set (9.314). However, the
resulting circuit will not in general satisfy equation (9.315). To enforce this condition, we insert a
sequence of four gates equal to the identity, namely

I = CNOT1aCNOT1bCNOT1aCNOT1b, (9.320)

between any two consecutive gates Uj and Uj+1 with s(j) = s(j + 1), where a 6= b 6= s(j). For
example,

CNOT15CNOT51 −→ CNOT15CNOT12CNOT13CNOT12CNOT13CNOT51. (9.321)

Thus we map any circuit over the gate set (9.317) into the prescribed form. Note that n ≥ 4 is
needed to ensure that any quantum circuit can be efficiently rewritten so that s(j) 6= s(j + 1).
There do exist circuits with n = 3 for which our construction works, such as the example shown in
Figure 9.12.
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9.4.2 Gate graph for a given circuit

For any n-qubit, M -gate verification circuit CX of the form described in Section 9.4.1, we associate
a gate graph GX . The gate diagram for GX is built using the gadgets described in Section 9.2;
specifically, we use M two-qubit gadgets and 2(n − 1) boundary gadgets. Since each two-qubit
gadget and each boundary gadget contains 88 diagram elements, the total number of diagram
elements in GX is R = 88(M + 2n− 2).

We now present the construction of the gate diagram for GX . We also describe some gate graphs
obtained as intermediate steps that are used in our analysis in Section 9.5. The reader may find
this description easier to follow by looking ahead to Figure 9.12, which illustrates this construction
for a specific 3-qubit circuit.

1. Draw a grid with columns labeled j = 0, 1, . . . ,M + 1 and rows labeled i = 1, . . . , n (this
grid is only used to help describe the diagram).

2. Place gadgets in the grid to mimic the quantum circuit. For each j = 1, . . . ,M ,
place a gadget for the two-qubit gate Uj between rows 1 and s(j) in the jth column. Place
boundary gadgets in rows 2, · · · , nin of column 0 and in rows 3, · · · , n of column M+1. Place
boundary gadgets with penalties in rows nin + 1, · · · , n of column 0 and in row 2 of column
M + 1 (where this boundary gadget is upside down, so that we can penalize the 0 state).
Write G1 for the gate graph associated with the resulting diagram.

3. Connect the nodes within each row. First add edges connecting the nodes in rows
i = 2, . . . , n; call the resulting gate graph G2. Then add edges connecting the nodes in row
1; call the resulting gate graph G3.

4. Add self-loops to the boundary gadgets. In this step we add self-loops to enforce
initialization of ancillas (at the beginning) and the proper output of the circuit (at the end).
For each boundary gadget with penalties in column 0, add a self-loop to the unused node,
giving the gate diagram for G4. Finally, add a self-loop to the boundary gadget with penalty
in row 2 and column M + 1, giving the gate diagram for GX .

Figure 9.12 illustrates the step-by-step construction of GX using a simple 3-qubit circuit with
four gates

CNOT12 (CNOT13HT ⊗ I) CNOT21CNOT13. (9.322)

In this example, two of the qubits are input qubits (so nin = 2), while the third qubit is an ancilla
initialized to |0〉. Following the convention described in Section 9.4.1, we take qubit 2 to be the
output qubit. (In this example the circuit is not meant to compute anything interesting; its only
purpose is to illustrate our method of constructing a gate graph).

We made some choices in designing this circuit-to-gate graph mapping that may seem arbitrary
(e.g., we chose to place boundary gadgets in each row except the first). This is done in an attempt
to balance between simplicity of description and ease of analysis, but we expect that other choices
could be made to work.

9.4.2.1 Notation for GX

We now introduce some notation that allows us to easily refer to a subset L of the diagram elements
in the gate diagram for GX , which will be useful for stating our occupancy constraints.
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Figure 9.12: Step-by-step construction of the gate diagram for GX for the three-qubit example
circuit described in the text. (a) The gate diagram for G1. (b) Add edges in all rows except the
first to obtain the gate diagram for G2. (c) Add edges in the first row to obtain the gate diagram for
G3. (d) Add self-loops to the boundary gadgets to obtain the gate diagram for GX (the diagram for
G4 in this case differs from (d) by removing the self-loop in column 5; this diagram is not shown).
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Recall from Section 9.2 that each two-qubit gate gadget and each boundary gadget is composed
of 88 diagram elements. This can be seen by looking at Figure 9.5a and noting (from Figure 9.4)
that each move-together gadget comprises 14 diagram elements.

For each of the two-qubit gate gadgets in the gate diagram for GX , we focus our attention on
the four diagram elements labeled 1–4 in Figure 9.5a. In total there are 4M such diagram elements
in the gate diagram for GX : in each column j ∈ {1, . . . ,M} there are two in row 1 and two in
row s(j). When Uj ∈ {CNOT1s(j),CNOT1s(j) (H ⊗ I) ,CNOT1s(j) (HT ⊗ I)} the diagram elements
labeled 1, 2 are in row 1 and those labeled 3, 4 are in row s(j); when Uj = CNOTs(j)1 those labeled
1, 2 are in row s(j) and those labeled 3, 4 are in row 1. We denote these diagram elements by triples
(i, j, d). Here i and j indicate (respectively) the row and column of the grid in which the diagram
element is found, and d indicates whether it is the leftmost (d = 0) or rightmost (d = 1) diagram
element in this row and column. We define

Lgates = {(i, j, d) : i ∈ {1, s(j)}, j ∈ [M ], d ∈ {0, 1}} (9.323)

to be the set of all such diagram elements.
For example, in Figure 9.12 the first gate is

U1 = CNOT13, (9.324)

so the gadget from Figure 9.5a (with Ũ = 1) appears between rows 1 and 3 in the first column. The
diagram elements labeled 1, 2, 3, 4 from Figure 9.5a are denoted by (1, 1, 0), (1, 1, 1), (3, 1, 0), (3, 1, 1),
respectively. The second gate in Figure 9.12 is U2 = CNOT21, so the gadget from Figure 9.5a
(with Ũ = 1) appears between rows 2 and 1; in this case the diagram elements labeled 1, 2, 3, 4 in
Figure 9.5a are denoted by (2, 2, 0), (2, 2, 1), (1, 2, 0), (1, 2, 1), respectively.

We also define notation for the boundary gadgets both with and without penalty in GX . For
each boundary gadget, we focus on a single diagram element, labeled 4 in Figure 9.6. For the left
hand-side and right-hand side boundary gadgets, respectively, we denote these diagram elements
as

Lin = {(i, 0, 1) : i ∈ {2, . . . , n}} (9.325)

Lout = {(i,M + 1, 0) : i ∈ {2, . . . , n}} . (9.326)

Definition 10. Let L be the set of diagram elements

L = Lin ∪ Lgates ∪ Lout (9.327)

where Lin, Lgates, and Lout are given by equations (9.325), (9.323), and (9.326), respectively.

Finally, it is convenient to define a function F that describes horizontal movement within the
rows of the gate diagram for GX . The function F takes as input a two-qubit gate j ∈ [M ], a qubit
i ∈ {2, . . . , n}, and a single bit and outputs a diagram element from the set L. If the bit is 0 then
F outputs the diagram element in row i that appears in a column 0 ≤ k < j with k maximal (i.e.,
the closest diagram element in row i to the left of column j):

F (i, j, 0) =

{
(i, k, 1) where 1 ≤ k < j is the largest k such that s(k) = i, if it exists

(i, 0, 1) otherwise.
(9.328)

On the other hand, if the bit is 1, then F outputs the diagram element in row i that appears in a
column j < k ≤ M + 1 with k minimal (i.e., the closest diagram element in row i to the right of
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column j).

F (i, j, 1) =

{
(i, k, 0) where j < k ≤M is the smallest k such that s(k) = j, if it exists

(i,M + 1, 0) otherwise.

(9.329)

9.4.2.2 Occupancy constraints graph

With our explicitly defined graph GX , we can now define an occupancy constraints graph Goc
X so

that the allowed multi-particle ground space on GX encode the computation of CX .
We will want to encode quantum data in the locations of n particles in the graph GX , where

each particle encodes one qubit and is located in one row of the graph GX . Since all two-qubit
gates in CX involve the first qubit, the location of the particle in the first row determines how
far along the computation has proceeded. We design the occupancy constraints graph to ensure
that low-energy states of H(GX , G

oc
X , n) have exactly one particle in each row (since there are n

particles and n rows), and so that the particles in rows 2, . . . , n are not too far behind or ahead of
the particle in the first row. To avoid confusion, we emphasize that not all states in the subspace
I(GX , G

oc
X , n) have the desired properties—for example, there are states in this subspace with more

than one particle in a given row. However, we will be able to use the Occupancy Constraints Lemma
(Lemma 27) to construct a graph G�

X with the correct ground space.
We now define Goc

X , which is a simple graph with a vertex for each diagram element in GX .
Each edge in Goc

X places a constraint on the locations of particles in GX . The graph Goc
X only has

edges between diagram elements in the set L from Definition 10; we define the edge set E(Goc
X ) by

specifying pairs of diagram elements L1, L2 ∈ L. We also indicate (in bold) the reason for choosing
the constraints, which will become clearer in Section 9.5.

1. No two particles in the same row. For each i ∈ [n] we add constraints between diagram
elements (i, j, c) ∈ L and (i, k, d) ∈ L in row i but in different columns, i.e.,

{(i, j, c) , (i, k, d)} ∈ E(Goc
X ) whenever j 6= k. (9.330)

2. Synchronization with the particle in the first row. For each j ∈ [M ] we add constraints
between row 1 and row s(j):

{(1, j, c), (s(j), k, d)} ∈ E(Goc
X ) whenever k 6= j and (s(j), k, d) 6= F (s(j), j, c). (9.331)

For each j ∈ [M ] we also add constraints between row 1 and rows i ∈ [n] \ {1, s(j)}:
{(1, j, c), (i, k, d)} ∈ E(Goc

X ) whenever (i, k, d) /∈ {F (i, j, 0), F (i, j, 1)}. (9.332)

9.5 Eigenspace bounds for H(GX , G
oc
X , n)

With our graph GX defined for a given circuit CX , we will now want to relate the smallest eigenvalue
of H(GX , G

oc
X , n) to the maximum acceptance probability of CX . To do this, we will investigate a

sequence of Hamiltonians on graphs related to GX (as defined in Section 9.4), namely G1, G2, G3

and G4. Each of these Hamiltonians will have a particular ground space and eigenvalue gap that
is independent of the acceptance probability of CX , as they do not include the term in GX that
penalizes the non-accepting states.

Once we have a thorough understanding of the ground space of H(G4, G
oc
X , n) and the related

eigenvalue gap, we will be able to relate the maximum acceptance probability of CX to the smallest
eigenvalue of H(GX , G

oc
X , n). In particular, we will prove the following theorem:
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Theorem 7. If there exists a state |ψwit 〉 with AP(CX , |ψwit 〉) ≥ 1− 1
2|X|

, then

λ1
n(GX , G

oc
X ) ≤ 1

2|X|
. (9.333)

Similarly, if AP(CX , |φ〉) ≤ 1
3 for all states |φ〉, then

λ1
n(GX , G

oc
X ) ≥ K

n4M4
, (9.334)

where K ∈ (0, 1] is a constant that depends only on the interaction.

Note that K is related to the eigenvalue gaps for the single-, two-, and three-particle Hamiltoni-
ans on the graph gadgets of Section 9.2.2, and this is why it depends on the particular interaction.

9.5.1 Single-particle ground-states

We begin by discussing the graphs
G1, G2, G3, G4, GX (9.335)

(as defined in Section 9.4.2; see Figure 9.12) in more detail and deriving some properties of their
adjacency matrices.

The graph G1 has a component for each of the two-qubit gates j ∈ [M ], for each of the boundary
gadgets i = 2, . . . , n in column 0, and for each of the boundary gadgets i = 2, . . . , n in column M+1.
In other words

G1 =



nin⋃

i=2

Gbnd ∪
nin⋃

i=nin+1

Gbnd,pen




︸ ︷︷ ︸
left boundary

∪




M⋃

j=1

GUj




︸ ︷︷ ︸
two-qubit gates

∪
(
Gbnd,pen ∪

n⋃

i=3

Gbnd

)

︸ ︷︷ ︸
right boundary

. (9.336)

We use our knowledge of the adjacency matrices of the components Gbnd, Gbnd,pen, and GUj to
understand the ground space of A(G1). Recall (from Section 9.2.2) that the smallest eigenvalue of
A(GUj ) is

e1 = −1− 3
√

2 (9.337)

(with degeneracy 16) which is also the smallest eigenvalue of A(Gbnd) and A(Gbnd,pen) (both with
degeneracy 4). For each diagram element L ∈ L and pair of bits z, a ∈ {0, 1} there is an eigenstate
|ρLz,a〉 of A(G1) with this minimal eigenvalue e1 that has support on the diagram element L (these
are the state defined in Lemma 24 and Lemma 26). In total we get sixteen eigenstates

|ρ(1,j,0)
z,a 〉, |ρ(1,j,1)

z,a 〉, |ρ(s(j),j,0)
z,a 〉, |ρ(s(j),j,1)

z,a 〉, z, a ∈ {0, 1} (9.338)

for each two-qubit gate j ∈ [M ], four eigenstates

|ρ(i,0,1)
z,a 〉, z, a ∈ {0, 1} (9.339)

for each boundary gadget i ∈ {2, . . . , n} in column 0, and four eigenstates

|ρ(i,M+1,0)
z,a 〉, z, a ∈ {0, 1} (9.340)

for each boundary gadget i ∈ {2, . . . , n} in column M + 1. The set

{
|ρLz,a〉 : z, a ∈ {0, 1}, L ∈ L

}
(9.341)
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is an orthonormal basis for the ground space of A(G1).
We write the adjacency matrices of G2, G3, G4, and GX as

A(G2) = A(G1) + h1 A(G4) = A(G3) +
n∑

i=nin+1

hin,i (9.342)

A(G3) = A(G2) + h2 A(GX) = A(G4) + hout. (9.343)

From step 3 of the construction of the gate diagram in Section 9.4.2, we see that h1 and h2 are
both sums of terms of the form

(
|q, z, t〉+ |q′, z, t′〉

) (
〈q, z, t|+ 〈q′, z, t′|

)
⊗ I, (9.344)

where h1 contains a term for each edge in rows 2, . . . , n and h2 contains a term for each of the
2(M − 1) edges in the first row. The operators

hin,i = |(i, 0, 1), 1, 6k + 2〉〈(i, 0, 1), 1, 6k + 2| ⊗ I (9.345)

hout = |(2,M + 1, 0), 1, 6k + 2〉〈(2,M + 1, 0), 1, 6k + 2| ⊗ I (9.346)

correspond to the self-loops added in the gate diagram in step 4 of Section 9.4.2.
We prove that G1, G2, G3, G4, and GX are e1-gate graphs.

Lemma 31. The smallest eigenvalues of G1, G2, G3, G4 and GX are

µ(G1) = µ(G2) = µ(G3) = µ(G4) = µ(GX) = e1. (9.347)

Proof. We showed in the above discussion that µ(G1) = e1. The adjacency matrices of G2, G3,
G4, and GX are obtained from that of G1 by adding positive semidefinite terms to the adjacency
matrix. It therefore suffices to exhibit a groundstate |%〉 of A(G1) with

h1|%〉 = h2|%〉 = hin,i|%〉 = hout|%〉 = 0 (9.348)

(for each i ∈ {nin + 1, . . . , n}). There are many states |%〉 satisfying these conditions; one example
is

|%〉 = |ρ(1,1,0)
0,0 〉 (9.349)

which is supported on vertices where h1, h2, hin,i, and hout have no support.

9.5.2 Multi-particle Hamiltonian

We now outline the sequence of Hamiltonians considered in the following Sections and describe
the relationships between them. As a first step, in Section 9.5.3 we exhibit a basis Bn for the
nullspace of H(G1, n) and we prove that its smallest nonzero eigenvalue is lower bounded by a
positive constant. We then discuss the restriction

H(G1, G
oc
X , n) = H(G1, n)

∣∣
I(G1,Goc

X ,n)
(9.350)

in Section 9.5.4, where we prove that a subset Blegal ⊂ Bn is a basis for the nullspace of (9.350),
and that its smallest nonzero eigenvalue is also lower bounded by a positive constant.
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For the remainder of the proof we use the Nullspace Projection Lemma (Lemma 2) four times,
using the decompositions

H(G2, G
oc
X , n) = H(G1, G

oc
X , n) +H1

∣∣
I(G2,Goc

X ,n)
(9.351)

H(G3, G
oc
X , n) = H(G2, G

oc
X , n) +H2

∣∣
I(G3,Goc

X ,n)
(9.352)

H(G4, G
oc
X , n) = H(G3, G

oc
X , n) +

n∑

i=nin+1

Hin,i

∣∣
I(G4,Goc

X ,n)
(9.353)

H(GX , G
oc
X , n) = H(G4, G

oc
X , n) +Hout

∣∣
I(GX ,G

oc
X ,n)

(9.354)

where

H1 =
n∑

w=1

h
(w)
1 Hin,i =

n∑

w=1

h
(w)
in,i H2 =

n∑

w=1

h
(w)
2 Hout =

n∑

w=1

h
(w)
out

are all positive semidefinite, with h1, h2, hin,i, hout as defined in Section 9.5.1. Note that in writing
equations (9.351), (9.352), (9.353), and (9.354), we have used the fact (from Lemma 31) that the
adjacency matrices of the graphs we consider all have the same smallest eigenvalue e1. Also note
that

I (Gi, G
oc
X , n) = I (GX , G

oc
X , n) (9.355)

for i ∈ [4] since the gate diagrams for each of the graphs G1, G2, G3, G4 and GX have the same set
of diagram elements.

Note that it looks like we forgot to include terms corresponding to the interactions resulting
from the additional edges added going from G1 to G2 and from G2 to G3. However, these terms
only occur between vertices in diagram elements that have been connected by the added edges, and
all such pairs of diagram elements are connected in the occupancy constraints graph Goc

X . As such,
for all states |Φ〉 ∈ I(GX , G

oc
X , n), these additional terms are zero, and we can exclude them from

our analysis.
Let Sk be the nullspace of H(Gk, G

oc
X , n) for k = 1, 2, 3, 4. Since these positive semidefinite

Hamiltonians are related by adding positive semidefinite terms, their nullspaces satisfy

S4 ⊆ S3 ⊆ S2 ⊆ S1 ⊆ I (GX , G
oc
X , n) . (9.356)

We solve for S1 = span(Blegal) in Section 9.5.4 and we characterize the spaces S2, S3, and S4 in
Section 9.5.6 in the course of applying our strategy.

For example, to use the Nullspace Projection Lemma to lower bound the smallest nonzero
eigenvalue of H(G2, G

oc
X , n), we consider the restriction

(
H1

∣∣
I(G2,Goc

X ,n)

)∣∣∣
S1

= H1

∣∣
S1
. (9.357)

We also solve for S2, which is equal to the nullspace of (9.357). To obtain the corresponding lower
bounds on the smallest nonzero eigenvalues of H(Gk, G

oc
X , n) for k = 2, 3, 4 and H(GX , G

oc
X , n), we

consider restrictions

H2

∣∣
S2
,

n∑

i=nin+1

Hin,i

∣∣
S3
, and Hout

∣∣
S4
. (9.358)

Analyzing these restrictions involves extensive computation of matrix elements, which is the point
of this section. We first define a useful subspace and basis for these interactions, which is related to
the allowed positions of the particles, but then we explicitly calculate these matrix elements. Once
we have the matrix elements, we can then find the ground states for each of the Hamiltonians, and
use the Nullspace Projection Lemma (Lemma 2) to calculate the various eigenvalue gaps.
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9.5.3 Configurations

In this Section we use Lemma 15 to solve for the nullspace ofH(G1, n), i.e., the n-particle frustration-
free states on G1. Lemma 15 describes how frustration-free states for G1 are built out of frustration-
free states for its components.

To see how this works, consider the example from Figure 9.12a. In this example, with n = 3,
we construct a basis for the nullspace of H(G1, 3) by considering two types of eigenstates. First,
there are frustration-free states

|ρL1
z1,a1〉|ρL2

z2,a2〉|ρL3
z3,a3〉 (9.359)

where Lk = (ik, jk, dk) ∈ L belong to different components of G1. That is to say, jw 6= jt unless
jw = jt ∈ {0, 5}, in which case iw 6= it (in this case the particles are located either at the left or
right boundary, in different rows of G1). There are also frustration-free states where two of the
three particles are located in the same two-qubit gadget J ∈ [M ] and one of the particles is located
in a diagram element L1 from a different component of the graph. These states have the form

|T Jz1,a1,z2,a2〉|ρL1
z3,a3〉 (9.360)

where

|T Jz1,a1,z2,a2〉 =
1√
2
|ρ(1,J,0)
z1,a1 〉|ρ(s(J),J,0)

z2,a2 〉+
1√
2

∑

x1,x2∈{0,1}
UJ(a1)x1x2,z1z2 |ρ(1,J,1)

x1,a1 〉|ρ(s(J),J,1)
x2,a2 〉 (9.361)

and L1 = (i, j, k) ∈ L satisfies j 6= J (where we assume that the first particle is located in the
first row). Each of the states (9.359) and (9.360) is specified by 6 “data” bits z1, z2, z3, a1, a2, a3 ∈
{0, 1} and a “configuration” indicating where each of the particles are located in the graph. The
configuration is specified either by three diagram elements L1, L2, L3 ∈ L from different components
of G1 or by a two-qubit gate J ∈ [M ] with two integers a 6= b ∈ [3] along with a diagram element
Lc ∈ L from a different component of the graph. (Note that these configurations include the
locations of each particle, but if we are looking at dmax = 0 and the symmetrized states we only
need to know the three diagram elements and not include the ordering of them as well.)

We now define the notion of a configuration for general n. Informally, we can think of an
n-particle configuration as a way of placing n particles in the graph G1 subject to the following
restrictions. We first place each of the n particles in a component of the graph, with the restriction
that no boundary gadget may contain more than one particle and no two-qubit gadget may contain
more than two particles. For each particle on its own in a component (i.e., in a component with
no other particles), we assign one of the diagram elements L ∈ L associated to that component.
We therefore specify a configuration by a set of two-qubit gadgets J1, . . . , JY that contain two
particles, along with a set of diagram elements Lk ∈ L that give the locations of the remaining
n− 2Y particles, along with the permutation π ∈ Sn that tells us where each particle gets placed.
We choose to order the Js and the Ls so that each configuration is specified by a unique tuple
(J1, . . . , JY , L1, . . . , Ln−2Y , π). For concreteness, we use the lexicographic order on diagram ele-
ments in the set L: LA = (iA, jA, dA) and LB = (iB, jB, dB) satisfy LA < LB iff either iA < iB, or
iA = iB and jA < jB, or (iA, jA) = (iB, jB) and dA < dB. We also have that the two particles in
each Ji are given by (π(2i− 1), π(2i)), while the particle on Li is given by π(2Y + i).

Definition 11 (Configuration). An n-particle configuration on the gate graph G1 is a tuple

(J1, . . . , JY , L1, . . . , Ln−2Y , π) (9.362)
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Figure 9.13: Diagrammatic depictions of configurations for the example where G1 is the gate
graph from Figure 9.12a. The Figures show the locations of each of the three particles in the gate
graph. The number in the figure indicates a single-particle state corresponding to that particle
and the two numbers within an ellipse corresponds to a two-particle state, with the top parti-
cle corresponding to the first particle. (a) ((1, 1, 1), (2, 2, 0), (3, 3, 0), 123). (b) (2, (3, 1, 1), 312).
(c) ((1, 1, 1), (2, 0, 1), (3, 3, 0), 213). (d) (3, (2, 0, 1), 231). (e) ((1, 3, 0), (2, 2, 1), (2, 4, 0), 123). (f)
((1, 1, 1), (2, 2, 0), (3, 5, 0), 321).
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with Y ∈ {0, . . . ,
⌊
n
2

⌋
}, ordered integers

1 ≤ J1 < J2 < · · · < JY ≤M, (9.363)

lexicographically ordered diagram elements

L1 < L2 < · · · < Ln−2Y , Lk = (ik, jk, dk) ∈ L, (9.364)

and a permutation

π ∈ Sn. (9.365)

We further require that each Lk is from a different component of G1, i.e.,

jw = jt =⇒ jw ∈ {0,M + 1} and iw 6= it, (9.366)

and we require that ju 6= Jv for all u ∈ [n− 2Y ] and v ∈ [Y ].

In Figure 9.13 we give some examples of configurations (for the example from Figure 9.12a with
n = 3) and we introduce a diagrammatic notation for them.

For any configuration and n-bit strings ~z and ~a, there is a state in the nullspace of H(G1, n),
given by

Vπ|T J1z1,a1,z2,a2〉 . . . |T JYz2Y−1,a2Y−1,z2Y ,a2Y
〉|ρL1

z2Y+1,a2Y+1
〉 . . . |ρLn−2Y

zn,an 〉, (9.367)

where Vπ permutes the particles according to the permutation π, so that they are in the location
given by the configuration. The ordering in the definition of a configuration ensures that each
distinct choice of configuration and n-bit strings ~z,~a gives a different state.

Definition 12. Let Bn be the set of all states of the form (9.367), where (J1, . . . , JY , L1, . . . , Ln−2Y , π)
is a configuration and ~z,~a ∈ {0, 1}n if dmax > 0, and let Bn be the corresponding symmetric sub-
space if dmax = 0.

Note that from this point on, the proofs assume that dmax > 0, and in particular that each
of the particles are distinguishable and have a fixed location. The proofs all rely on the various
lemmas corresponding to the multi-particle ground states of the gadgets from Section 9.2.2, which
form most dmax does not require the symmetric subspace. However, it will turn out that all of
our results are independent of the particular π ∈ Sn used in the configuration, and thus the same
results hold if we originally assumed that the states in Bn consisted of the uniform superposition
of configuration states that only differ in the permutation. As these states span the symmetric
subspace of Bn (due to the occupancy constraints), everything works the same for interactions with
dmax = 0.

Lemma 32. The set Bn is an orthonormal basis for the nullspace of H(G1, n). Furthermore,

γ(H(G1, n)) ≥ K0 (9.368)

where K0 ∈ (0, 1] is a constant that only depends on the interaction.

Proof. Each component of G1 is either a two-qubit gadget or a boundary gadget (see equation
(9.336)). The single-particle states of A(G1) with energy e1 are the states |ρLz,a〉 for L ∈ L and
z, a ∈ {0, 1}, as discussed in Section 9.5.1. Each of these states has support on only one component
of G1. In addition, G1 has two two-particle frustration-free states for each two-qubit gadget J ∈
[M ] and bits z, a, x, b, namely |T Jz,a,x,b〉 for each particle acting as the control. Furthermore, no
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component of G1 has any three- (or more) particle frustration-free states. Using these facts and
applying Lemma 15, we see that Bn spans the nullspace of H(G1, n).

Lemma 15 also expresses each eigenvalue of H(G1, n) as a sum of eigenvalues for its components.
We use this fact to obtain the desired lower bound on the smallest nonzero eigenvalue. Our analysis
proceeds on a case-by-case basis, depending on the occupation numbers for each component of G1

(the values N1, . . . , Nk in Lemma 15).
First consider any set of occupation numbers where some two-qubit gate gadget J ∈ [M ] contains

3 or more particles. By Lemma 14 and Lemma 15, any such eigenvalue is at least λ1
3(GUJ ), which

is a positive constant by Lemma 24. Next consider a case where some boundary gadget contains
more than one particle. The corresponding eigenvalues are similarly lower bounded by λ1

2(Gbnd),
which is also a positive constant by Lemma 26. Finally, consider a set of occupation numbers where
each two-qubit gadget contains at most two particles and each boundary gadget contains at most
one particle. The smallest eigenvalue with such a set of occupation numbers is zero. The smallest
nonzero eigenvalue is either

γ(H(GUJ , 1)), γ(H(GUJ , 2)) for some J ∈ [M ], or γ(H(Gbnd, 1)). (9.369)

However, these quantities are at least some positive constant since H(GUJ , 1), H(GUJ , 2), and
H(Gbnd, 1) are nonzero constant-sized positive semidefinite matrices.

Now combining the lower bounds discussed above and using the fact that, for each J ∈ [M ], the
two-qubit gate UJ is chosen from a fixed finite gate set (given in (9.314)), we see that γ(H(G1, n))
is lower bounded by the positive constant

min{λ1
3(GU ), λ1

2(Gbnd,pen), γ(H(GU , 1)), γ(H(GU , 2)), γ(H(Gbnd,pen, 1)) : U ∈ (9.314)}. (9.370)

The condition K0 ≤ 1 can be ensured by setting K0 to be the minimum of 1 and (9.370).

Note that the constant K0 can in principle be computed using (9.370): each quantity on the
right-hand side can be evaluated by diagonalizing a specific finite-dimensional matrix.

9.5.3.1 Legal configurations

In this section we define a subset of the n-particle configurations that we call legal configurations,
and we prove that the subset of the basis vectors in Bn that have legal configurations spans the
nullspace of H(G1, G

oc
X , n).

We begin by specifying the set of legal configurations. Every legal configuration

(J1, . . . , JY , L1, . . . , Ln−2Y , π) (9.371)

has Y ∈ {0, 1}. The legal configurations with Y = 0 are

((1, j, d1), F (2, j, d2), F (3, j, d3), . . . , F (n, j, dn), π) (9.372)

where j ∈ [M ] and where ~d = (d1, . . . , dn) satisfies di ∈ {0, 1} and d1 = ds(j). (Recall that the
function F , defined in equations (9.328) and (9.329), describes horizontal movement of particles.)
The legal configurations with Y = 1 are

(j, F (2, j, d2), . . . , F (s(j)− 1, j, ds(j)−1), F (s(j) + 1, j, ds(j)+1), . . . , F (n, j, dn), π) (9.373)

where j ∈ {1, . . . ,M} and di ∈ {0, 1} for i ∈ [n] \ {1, s(j)}. Although the values d1 and ds(j) are
not used in equation (9.373), we choose to set them to

d1 = ds(j) = 2 (9.374)
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for any legal configuration with Y = 1. In this way we identify the set of legal configurations with
the set of triples j, ~d, π with j ∈ [M ],

~d = (d1, d2, d3, . . . , dn) (9.375)

and π ∈ Sn, satisfying

d1 = ds(j) ∈ {0, 1, 2} and di ∈ {0, 1} for i /∈ {1, s(j)}. (9.376)

The legal configuration is given by equation (9.372) if d1 = ds(j) ∈ {0, 1} and equation (9.373) if
d1 = ds(j) = 2. Note that the permutation does not effect whether a given configuration is legal or
not; this makes sense as whether a given configuration violates the occupancy constraints does not
depend on the particular location of each particle, only on the locations of all particles.

The examples in Figures 9.13a, (b), and (c) show legal configurations whereas the examples in
Figures 9.13d, (e), and (f) are illegal. The legal examples correspond to j = 1, ~d = (1, 1, 1), π = 123;
j = 2, ~d = (2, 2, 0), π = 312; and j = 1, ~d = (1, 0, 1), π = 213, respectively. We now explain why
the other examples are illegal. Looking at (9.373), we see that the configuration (3, (2, 0, 1), 231)
depicted in Figure 9.13d is illegal since F (2, 3, 0) = (2, 2, 1) 6= (2, 0, 1) and F (2, 3, 1) = (2, 4, 0) 6=
(2, 0, 1). The configuration in Figure 9.13e is illegal since there are two particles in the same
row. Looking at equation (9.372), we see that the configuration ((1, 1, 1), (2, 2, 0), (3, 5, 0), 321) in
Figure 9.13f is illegal since (3, 5, 0) /∈ {F (3, 1, 0), F (3, 1, 1)} = {(3, 0, 1), (3, 3, 0)}.

With this intuition behind legal and illegal configurations, it will be useful to have some condi-
tions for a particular configuration to be illegal. As such, we will us the following lemma.

Lemma 33. For any illegal configuration

(J1, . . . , JY , L1, . . . , Ln−2Y , π) (9.377)

there exist diagram elements {Q1, Q2} ∈ E(Gocc
X ) satisfying at least one of the following conditions:

(i) Q1 = (1, Jk, 0) and Q2 = (1, Jl, 0) for some k, l ∈ [Y ].

(ii) Y ∈ {0, 1}, Q1 = Ls, and Q2 = Lt for some s, t ∈ [n− 2Y ].

(iii) Y = 1 and Q1 = (i, J1, d) and Q2 = Lt for some i ∈ {1, s(J1)}, t ∈ [n− 2] and d ∈ {0, 1}.

Proof. We prove the contrapositive: we suppose the configuration (9.377) violates each of the
conditions (i), (ii), and (iii) for all {Q1, Q2} ∈ E(Gocc

X ) and show it is a legal configuration.
From part (1) of the definition of the occupancy constraints graph in Section 9.4.2.2, we see

that
{(1, j, 0), (1, k, 0)} ∈ E(Gocc

X ) (9.378)

for all j, k ∈ [M ] with j 6= k. If the configuration (9.377) has Y ≥ 2, then we may choose
Q1 = (1, J1, 0) and Q2 = (1, J2, 0) so that {Q1, Q2} ∈ E(Gocc

X ) and condition (i) is satisfied (note
J1 6= J2 follows from the definition of a configuration). Since by assumption, (9.377) violates
condition (i) for all {Q1, Q2} ∈ E(Gocc

X ), this implies that Y ∈ {0, 1}. We consider the cases Y = 0
and Y = 1 separately.

First suppose Y = 0, so (9.377) is equal to

(L1, . . . , Ln, π). (9.379)

Since (ii) is violated, {Ls, Lt} /∈ E(Gocc
X ) for all s, t ∈ [n]. Using part (1) of the definition of Gocc

X

and the definition of a configuration, this implies that each diagram element is in a different row,
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i.e., Li = (i, ji, ci) for each i ∈ [n]. From part (2) of the definition of Gocc
X , we see in particular that

{L1, Lt} /∈ E(Gocc
X ) for each t ∈ {2, . . . , n} implies

Ls(j1) = (s(j1), j1, c1) and Li = F (i, j1, di) (9.380)

for i ∈ [n] \ {1, s(j1)} and bits d2, . . . , dn ∈ {0, 1}, i.e., the configuration is legal.
Now suppose Y = 1, so (9.377) is

(J1, L1, . . . , Ln−2, π). (9.381)

Since (ii) is violated, each Li for i ∈ [n− 2] is from a different row. Since (iii) is violated, none of
these diagram elements are in rows 1 or s(J1). Now applying part (2) of the definition of Gocc

X , we
see that the configuration is legal:

(J1, L1, . . . , Ln−2, π) (9.382)

= (J1, F (2, J1, d2), . . . , F (s(J1)− 1, J1, ds(J1)−1), F (s(J1) + 1, J1, ds(J1)+1), . . . , F (n, J1, dn), π)

(9.383)

where di ∈ {0, 1} for i ∈ [n] \ {1, s(J1)}.

9.5.4 Legal configuration basis

With our legal and illegal configurations defined, we will want to translate this back into an un-
derstanding of the ground space for the relevant graphs, by identifying the subset of basis vectors
Blegal ⊂ Bn that have legal configurations. We write each such basis vector as

|j, ~d, ~z,~a, π〉 =





Vπ

(
|ρ(1,j,d1)
z1,a1 〉

n⊗

i=2

|ρF (i,j,di)
zi,ai 〉

)
d1 = ds(j) ∈ {0, 1}

Vπ

(
|T jz1,a1,zs(j),as(j)〉

n⊗

i=2
i 6=s(j)

|ρF (i,j,di)
zi,ai 〉

)
d1 = ds(j) = 2

(9.384)

where j, ~d, π specifies the legal configuration and ~z,~a ∈ {0, 1}n. (Note that the bits in ~z and ~a
are ordered slightly differently than in equation (9.367); here the labeling reflects the indices of
the encoded qubits). Additionally, we have that Vπ places the particular particles into the correct
locations.

Definition 13. Let

Blegal =
{
|j, ~d, ~z,~a, π〉 : j ∈ [M ], d1 = ds(j) ∈ {0, 1, 2}, di ∈ {0, 1} for i /∈ {1, s(j)},

~z,~a ∈ {0, 1}n, π ∈ Sn
}

(9.385)

and Billegal = Bn \ Billegal.

The basis Bn = Blegal ∪ Billegal is convenient when considering the restriction to the subspace
I(G1, G

oc
X , n). Letting Π0 be the projector onto I(G1, G

oc
X , n), the following Lemma shows that the

restriction
Π0

∣∣
span(Bn)

(9.386)

is diagonal in the basis Bn. The Lemma also bounds the diagonal entries for the illegal states.
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Lemma 34. Let Π0 be the projector onto I(G1, G
oc
X , n). For any |j, ~d, ~z,~a, π〉 ∈ Blegal, we have

Π0|j, ~d, ~z,~a, π〉 = |j, ~d, ~z,~a, π〉. (9.387)

Furthermore, for any two distinct basis vectors |φ〉, |ψ〉 ∈ Billegal, we have

〈φ|Π0|φ〉 ≤
899

900
(9.388)

〈φ|Π0|ψ〉 = 0. (9.389)

Proof. We begin with equation (9.387). Recall from (9.185) that

I(G1, G
occ
X , n) = span{|ψq1z1,a1〉|ψq2z2,a2〉 . . . |ψqnzn,an〉 : zi, ai ∈ F2, qi 6= qj , and {qi, qj} /∈ E(Gocc

X )}
(9.390)

which can alternatively be characterized as the subspace of

I(G1, n) = span{|ψq1z1,a1〉|ψq2z2,a2〉 . . . |ψqnzn,an〉 : zi, ai ∈ F2, qi 6= qj} (9.391)

consisting of zero eigenvectors of each of the operators

Vπ|ψqs,t〉〈ψqs,t| ⊗ |ψru,v〉〈ψru,v| ⊗ I⊗n−2V †π , {q, r} ∈ E(Gocc
X ), s, t, u, v ∈ F2, π ∈ Sn. (9.392)

Now using equation (9.384) and the fact that

〈ψL̃x,b|ρLz,a〉 =
1√
15
δL̃,Lδx,zδa,b =

1√
15
〈ρL̃x,b|ρLz,a〉 (9.393)

for all x, z, a, b ∈ F2 and L̃, L ∈ L (from Lemma 24 and Lemma 26), we get

〈j, ~d, ~z,~a, π|Vσ
(
|ψqs,t〉〈ψqs,t| ⊗ |ψru,v〉〈ψru,v| ⊗ I⊗n−2

)
V †σ |j, ~d, ~z,~a, π〉 (9.394)

=
1

225
〈j, ~d, ~z,~a, σ−1π|

(
|ρqs,t〉〈ρqs,t| ⊗ |ρru,v〉〈ρru,v| ⊗ I⊗n−2

)
|j, ~d, ~z,~a, σ−1π〉 (9.395)

= 0 if {q, r} ∈ E(Gocc
X ). (9.396)

In the last line we used equations (9.361) and (9.384) and the definition of the occupancy constraints
graph Gocc

X from Section 9.4.2.2. Hence each legal state |j, ~d, ~z,~a, π〉 ∈ I(G1, n) is a zero eigenvector

of each of the operators (9.392), so |j, ~d, ~z,~a, π〉 ∈ I(G1, G
occ
X , n). This gives equation (9.387).

Now we prove equation (9.388). For each illegal configuration we associate two diagram elements
Q1 and Q2 with (Q1, Q2) ∈ E(Gocc

X ) as in Lemma 33 (if there is more than one such pair we fix a
specific choice). Likewise for each basis vector |φ〉 ∈ Billegal we associate the two diagram elements
Q1 and Q2 corresponding to its (illegal) configuration. Let Pφ be the projector onto the space

span{VπV(1,q1)(2,q2)|ψQ1
z1,a1〉|ψQ2

z2,a2〉|ψq3z3,a3〉 . . . |ψqnzn,an〉 : zi, ai ∈ {0, 1}, qi /∈ {Q1, Q2}} (9.397)

where (exactly) one particle is located at Q1 and (exactly) one particle is located at Q2, where π ∈
Sn is the permutation in the state |φ〉, and where the unitary V(1,q1)(2,q2) permutes the underlying
particles, so that the two states supported in diagram element Q1 and Q2 get moved to the same
particle as in the vector |φ〉. We show that

〈φ|Pφ|φ〉 ≥
1

900
. (9.398)
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Note that Π0Pφ = 0 since Π0 projects onto a subspace for which no two (or more) particles are
simultaneously located at Q1 and Q2. Therefore

〈φ|Π0|φ〉+ 〈φ|Pφ|φ〉 ≤ 1, (9.399)

and applying (9.398) gives (9.387). Equation (9.398) can be shown by considering cases (i), (ii),
and (iii) from Lemma 33. It is convenient to define

ΠQ1 =
∑

x,y∈{0,1}
|ψQ1
x,y〉〈ψQ1

x,y| ΠQ2 =
∑

x,y∈{0,1}
|ψQ2
x,y〉〈ψQ2

x,y|. (9.400)

In case (i) we have Q1 = (1, Jk, 0) and Q2 = (1, Jl, 0) for some k, l ∈ [Y ]. Here we consider the
case k = 1, l = 2 without loss of generality. Then

Pφ|φ〉 = PφVπ
(
(|T J1z1,a1,z2,a2〉|T J2z3,a3,z4,a4〉 . . . |T JYz2Y−1,a2Y−1,z2Y ,a2Y

〉|ρL1
z2Y+1,a2Y+1

〉 . . . |ρLn−2Y
zn,an 〉)

)

(9.401)

= Vπ
(
(ΠQ1 ⊗ I)|T J1z1,a1,z2,a2〉(ΠQ2 ⊗ I)|T J2z3,a3,z4,a4〉 . . . |T JYz2Y−1,a2Y−1,z2Y ,a2Y

〉
⊗ |ρL1

z2Y+1,a2Y+1
〉 . . . |ρLn−2Y

zn,an 〉
)

(9.402)

for some configuration and some ~z,~a. From this, we then have that

〈φ|Pφ|φ〉 = 〈T J1z1,a1,z2,a2 | (ΠQ1 ⊗ I) |T J1z1,a1,z2,a2〉 · 〈T J2z3,a3,z4,a4 | (ΠQ2 ⊗ I) |T J2z3,a3,z4,a4〉 (9.403)

=

(
1

2
〈ρ(1,J1,0)
z1,a1 |〈ρ(s(J1),J1,0)

z2,a2 |ΠQ1 ⊗ I|ρ(1,J1,0)
z1,a1 〉|ρ(s(J1),J1,0)

z2,a2 〉
)2

(9.404)

=

(
1

30

)2

=
1

900
. (9.405)

where in the second line we used the fact that both terms in the product are equal and in the third
line we used equation (9.393).

In case (ii) we have Y ∈ {0, 1} and Q1 = Ls, Q2 = Lt for some s, t ∈ [n − 2Y ]. By a similar
argument as in (9.402),

〈φ|Pφ|φ〉 = 〈ρLszsas |ΠQ1 |ρLszs,as〉 · 〈ρLtztat |ΠQ2 |ρLtzt,at〉 =
1

15
· 1

15
=

1

225
. (9.406)

In case (iii) we have Y = 1, Q1 = (i, J1, d), and Q2 = Lt for some i ∈ {1, s(J1)}, t ∈ [n − 2],
and d ∈ {0, 1}. If i = 1 then, again by a similar reasoning as in (9.402),

〈φ|Pφ|φ〉 = 〈T J1z1,a1,z2,a2 |ΠQ1 ⊗ I|T J1z1,a1,z2,a2〉 · 〈ρLtz2Y+ta2Y+t
|ΠQ2 |ρLtz2Y+ta2Y+t

〉 (9.407)

=
1

30
· 1

15
=

1

450
. (9.408)

If i = s(J1) then ΠQ1 ⊗ I should be replaced with I⊗ΠQ1 in (9.407) but the lower bound in (9.408)
is the same.

From equations (9.405), (9.406), and (9.408), we see that equation (9.398) holds in cases (i),
(ii), and (iii), respectively, thereby establishing (9.388).

Finally, we prove equation (9.389), showing that Π0|span(Bn) is diagonal in the basis Bn. Let

|φ〉 = Vπ(|T J1z1,a1,z2,a2〉 . . . |T
JY
z2Y−1,a2Y −1,z2Y ,a2Y

〉|ρL1
z2Y+1,a2Y+1

〉 . . . |ρLn−2Y
zn,an 〉) (9.409)

|ψ〉 = Vσ(|T J̃1x1,b1,x2,b2〉 . . . |T
J̃K
x2K−1,b2K−1,x2K ,b2K

〉|ρL̃1
x2K+1,b2K+1

〉 . . . |ρL̃n−2K

xn,bn
〉) (9.410)
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be distinct vectors from Bn (note it is possible that K = 0 or Y = 0 or both).
Note that Π0Vσ = VσΠ0, since a configuration’s legality does not depend on which particles

occupy a given location. As such, we have that

〈ψ |Π0|φ〉 = 〈ψ |VσΠ0V
†
σVπΠ0V

†
π |φ〉. (9.411)

Note that the particles in V †π |φ〉 and V †σ |ψ 〉 all follow the lexicographic ordering of the underlying
configuration, and thus the support of the particles has the same ordering. If π 6= σ, then we have
that V †σVπ 6= I and the operation changes the order of the particles away from the lexicographic
ordering. Hence, if π 6= σ, we have that

|ψ 〉Π0|φ〉 = 0 (9.412)

as expected.
Now let us assume that π = σ = (), and expand each of the |T 〉 states using equation (9.361),

which we can also write as

|T Jz,a,y,b〉 =
1√
2

1∑

c=0

UJ(a)c|ρ(1,J,c)
z,a 〉|ρ(s(J),J,c)

y,b 〉 (9.413)

where we use the shorthand

UJ(a)|ρ(1,J,1)
z,a 〉|ρ(s(J),J,1)

y,b 〉 =
∑

x1,x2∈F2

UJ(a)x1x2,zy|ρ(1,J,1)
x1,a 〉|ρ

(s(J),J,1)
x2,b

〉. (9.414)

For the state |φ〉, this gives the expansion

|φ〉 =

(
1√
2

)Y ∑

c1,...,cY ∈F2

|O(J1,...,JY ,L1,...,Ln−2Y ),(c1,...,cY )
~z,~a 〉 (9.415)

where

|O(J1,...,JY ,L1,...,Ln−2Y ),(c1,...,cY )
~z,~a 〉

=

(
Y⊗

i=1

UJi(a2i−1)ci |ρ(1,Ji,ci)
z2i−1,a2i−1

〉|ρ(s(Ji),Ji,ci)
z2i,a2i 〉

)
|ρL1
z2Y+1,a2Y+1

〉 . . . |ρLn−2Y
zn,an 〉. (9.416)

Define the projector

P 1
L =

∑

z,a∈F2

∑

L∈L
|ψLz,a〉〈ψLz,a| (9.417)

which has support only on diagram elements contained in L, and let P 0
L = I − P 1

L. Note that for
each L ∈ L and z, a ∈ {0, 1}, we can write

|ρLz,a〉 = P 1
L|ρLz,a〉+ P 0

L|ρLz,a〉 (9.418)

where (from equation (9.393))

P 1
L|ρLz,a〉 =

1√
15
|ψLz,a〉. (9.419)

Since the states |ρLz,a〉 are orthonormal, and similarly for the states |ψLz,a〉, we get

〈ρL̃x,b|PαL |ρLz,a〉 =

{
1
15δz,xδa,bδL,L̃ α = 1
14
15δz,xδa,bδL,L̃ α = 0.

(9.420)
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Inserting n copies of the identity P 1
L + P 0

L = 1 gives

|φ〉 =

(
1√
2

)Y ∑

c1,...,cY ∈F2

∑

α1,...,αn∈F2

Pα1
L ⊗ · · · ⊗ PαnL |O

(J1,...,JY ,L1,...,Ln−2Y ),(c1,...,cY )
~z,~a 〉 (9.421)

Likewise for |ψ〉 we get

|ψ〉 =

(
1√
2

)K ∑

e1,...,eK∈F2

∑

β1,...,βn∈F2

(P β1L ⊗ · · · ⊗ P
βn
L |O

(J̃1,...,J̃K ,L̃1,...,L̃n−2K),(e1,...,eK)

~x,~b
〉. (9.422)

Using equations (9.393), (9.416), and (9.414), we see that the states

|O(J1,...,JY ,L1,...,Ln−2Y ),(c1,...,cY )
~z,~a 〉 and |O(J̃1,...,J̃K ,L̃1,...,L̃n−2K),(e1,...,eK)

~x,~b
〉 (9.423)

are orthogonal for any choice of bit strings c1, . . . , cY and e1, . . . , eK , since |φ〉 6= |ψ〉 implies that

((J1, . . . , JY , L1, . . . , Ln−2Y ), ~z,~a, π) 6= ((J̃1, . . . , J̃K , L̃1, . . . , L̃n−2K), ~x,~b, σ), (9.424)

and we assume π = σ. Using equation (9.420), we have

〈O(J̃1,...,J̃K ,L̃1,...,L̃n−2K),(e1,...,eK)

~x,~b
|Pα1
L ⊗ · · · ⊗ PαnL |O

(J1,...,JY ,L1,...,Ln−2Y ),(c1,...,cY )
~z,~a 〉

=

(
1

15

)∑n
i=1 αi

(
14

15

)n−∑n
i=1 αi

〈O(J̃1,...,J̃K ,L̃1,...,L̃n−2K),(e1,...,eK)

~x,~b
|O(J1,...,JY ,L1,...,Ln−2Y ),(c1,...,cY )

~z,~a 〉,
(9.425)

so the states
Pα1
L ⊗ · · · ⊗ PαnL |O

(J1,...,JY ,L1,...,Ln−2Y ),(c1,...,cY )
~z,~a 〉 (9.426)

and
P β1L ⊗ · · · ⊗ P

βn
L |O

(J̃1,...,J̃K ,L̃1,...,L̃n−2K),(e1,...,eK)

~x,~b
〉 (9.427)

are orthogonal for each choice of bit strings α1, . . . , αn, β1, . . . , βn, c1, . . . , cY , and e1, . . . , eK .
To complete the proof, we show that

Π0|φ〉 (9.428)

is a superposition of a subset of the states in the sum (9.421) and hence is orthogonal to |ψ〉. To
see this, first note that |φ〉 ∈ I(G1, n) since it is in the nullspace of H(G1, n) (by Lemma 32) and
G1 is an e1-gate graph (by Lemma 31). Now comparing I(G1, n) and I(G1, G

occ
X , n), we see that

Π0|Γ〉 = Πocc
0 |Γ〉 for all |Γ〉 ∈ I(G1, n) (9.429)

where Πocc
0 projects onto the space

span{|ψq1z1,a1〉|ψq2z2,a2〉 . . . |ψqnzn,an〉 : zi, ai ∈ F2, qi ∈ [R], {qi, qj} /∈ E(Gocc
X )}. (9.430)

In particular, Π0|φ〉 = Πocc
0 |φ〉. We claim that this quantity is a superposition of a subset of the

states in the sum (9.421).
The diagram elements q1, . . . , qn appearing in (9.430) range over the set of all R diagram el-

ements in the gate graph G1; however, recall that E(Gocc
X ) only contains edges between diagram
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elements in the subset L of these diagram elements. Since the PαL either project onto this set of
diagram elements or onto the complement, each state

Pα1
L ⊗ · · · ⊗ PαnL |O

(J1,...,JY ,L1,...,Ln−2Y ),(c1,...,cY )
~z,~a 〉 (9.431)

is an eigenvector of Πocc
0 . Hence Π0|φ〉 is a superposition of the terms in (9.421) that are +1

eigenvectors of Πocc
0 (as the 0 eigenvectors are annihilated). It follows that 〈ψ|Π0|φ〉 = 0 since we

established above that each such term is orthogonal to |ψ〉.

With this characterization of the legal projections, we can characterize the nullspace ofH(G1, G
oc
X , n)

and bound its smallest nonzero eigenvalue.

Lemma 35. The nullspace S1 of H(G1, G
oc
X , n) is spanned by the orthonormal basis Blegal. Its

smallest nonzero eigenvalue is

γ(H(G1, G
oc
X , n)) ≥ K0

900
(9.432)

where K0 ∈ (0, 1] is the absolute constant from Lemma 32.

Proof. Recall that
H(G1, G

oc
X , n) = H(G1, n)|I(G1,Goc

X ,n). (9.433)

Its nullspace is the space of states |κ〉 satisfying

Π0|κ〉 = |κ〉 and H(G1, n)|κ〉 = 0 (9.434)

(recall that Π0 is the projector onto I(G1, G
oc
X , n), the states satisfying the occupancy constraints).

Since Bn is a basis for the nullspace of H(G1, n), to solve for the nullspace of H(G1, G
oc
X , n) we

consider the restriction (9.386) and solve for the eigenspace with eigenvalue 1. This calculation is
simple because (9.386) is diagonal in the basis Bn, according to Lemma 34. We see immediately
from the Lemma that Blegal spans the nullspace of H(G1, G

oc
X , n); we now show that Lemma 34 also

implies the lower bound (9.432). Note that

γ(H(G1, G
oc
X , n)) = γ(Π0H(G1, n)Π0). (9.435)

Let Πlegal and Πillegal project onto the spaces spanned by Blegal and Billegal respectively, so Πlegal +
Πillegal projects onto the nullspace of H(G1, n). The operator inequality

H(G1, n) ≥ γ(H(G1, n)) · (1−Πlegal −Πillegal) (9.436)

implies
Π0H(G1, n)Π0 ≥ γ(H(G1, n)) ·Π0(1−Πlegal −Πillegal)Π0. (9.437)

Since the operators on both sides of this inequality are positive semidefinite and have the same
nullspace, their smallest nonzero eigenvalues are bounded as

γ(Π0H(G1, n)Π0) ≥ γ(H(G1, n)) · γ(Π0(1−Πlegal −Πillegal)Π0). (9.438)

Hence

γ(H(G1, G
oc
X , n)) = γ(Π0H(G1, n)Π0) ≥ K0 · γ(Π0(1−Πlegal −Πillegal)Π0) (9.439)

where we used Lemma 32. From equations (9.388) and (9.389) we see that

Π0|g〉 = |g〉 and Πillegal|f〉 = |f〉 =⇒ 〈f |g〉〈g|f〉 ≤ 899

900
. (9.440)
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The nullspace of
Π0 (1−Πlegal −Πillegal) Π0 (9.441)

is spanned by
Blegal ∪ {|τ〉 : Π0|τ〉 = 0} . (9.442)

To see this, note that (9.441) commutes with Π0, and the space of +1 eigenvectors of Π0 that are
annihilated by (9.441) is spanned by Blegal (by Lemma 34). Any eigenvector |g1〉 corresponding to
the smallest nonzero eigenvalue of this operator therefore satisfies Π0|g1〉 = |g1〉 and Πlegal|g1〉 = 0,
so

γ(Π0(1−Πlegal −Πillegal)Π0) = 1− 〈g1|Πillegal|g1〉 ≥
1

900
(9.443)

using equation (9.440). Plugging this into equation (9.439) gives the lower bound (9.432).

This is then the expected bound for our most simple graphs.

9.5.5 Legal configuration matrix elements

Now that we have a decent understanding of the legal configurations, it will be useful to start
understanding how the added edges change the ground space. In particular, we will now consider

H1|S1 , H2|S1 , Hin,i|S1 , Hout|S1 (9.444)

where these operators are defined in Section 9.5.2 and

S1 = span(Blegal) (9.445)

is the nullspace of H(G1, G
oc
X , n).

We specify the operators (9.444) by their matrix elements in an orthonormal basis for S1.
Although the basis Blegal was convenient in Section 9.5.3.1, here we use a different basis in which
the matrix elements of H1 and H2 are simpler. We define

|j, ~d, In(~z),~a, π〉 =
∑

~x∈{0,1}n

(
〈~x|Ūj,d1(a1)|~z〉

)
|j, ~d, ~x,~a, π〉 (9.446)

where

Ūj,d1(a1) =

{
Uj−1(a1)Uj−2(a1) . . . U1(a1) if d1 ∈ {0, 2}
Uj(a1)Uj−1(a1) . . . U1(a1) if d1 = 1.

(9.447)

In each of these states the quantum data (represented by the ~x register on the right-hand side)
encodes the computation in which the unitary Ūj,d1(a1) is applied to the initial n-qubit state |~z〉
(the notation In(~z) indicates that ~z is the input). The vector ~a is only relevant insofar as its first
bit a1 determines whether or not each two-qubit unitary is complex conjugated; the other bits of ~a
go along for the ride (and this is why we want each unitary to interact with the first qubit). Letting
~z,~a ∈ {0, 1}n , j ∈ [M ], and

~d = (d1, . . . , dn) with d1 = ds(j) ∈ {0, 1, 2} and di ∈ {0, 1}, i /∈ {1, s(j)}, (9.448)

we see that the states (9.446) form an orthonormal basis for S1.
Note that from this point, we will not make a special point to include the
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9.5.5.1 Matrix elements of H1

Roughly speaking, the nonzero off-diagonal matrix elements of the operator H1 in the basis (9.446)
occur between states |j, ~d, In(~z),~a, π〉 and |j,~c, In(~z),~a, π〉 where the legal configurations j, ~d and
j,~c are related by horizontal motion of a particle in one of the rows i ∈ {2, . . . , n}.

Matrix elements of H1

〈k,~c, In(~x),~b, σ|H1|j, ~d, In(~z),~a, π〉

=
δπ,σδk,jδ~a,~bδ~z,~x

240
·





n− 1 ~c = ~d
n∏

r=1
r 6=i

δdr,cr di 6= ci for some i ∈ [n] \ {1, s(j)}

1√
2

n∏

r=2
r 6=s(j)

δdr,cr (c1, d1) ∈ {(2, 0), (0, 2), (1, 2), (2, 1)}

0 otherwise.

(9.449)

We begin by computing the matrix elements of

H1 =
n∑

w=1

h
(w)
1 (9.450)

in the basis Blegal; then we use them to compute the matrix elements of H1 in the basis (9.446).
Note that since H1 is symmetric under permutations of the n registers,

H1|j, ~d, ~z,~a, π〉 =





Vπ

(
H1|ρ(1,j,d1)

z1,a1 〉
n⊗
i=2
|ρF (i,j,di)
zi,ai 〉

)
d1 = ds(j) ∈ {0, 1}

Vπ

(
H1|T jz1,a1,zs(j),as(j)〉

n⊗
i=2
i 6=s(j)

|ρF (i,j,di)
zi,ai 〉

)
d1 = ds(j) = 2,

(9.451)

and since H1 does not interchange the particle locations,

〈k,~c, ~x,~b, σ |H1|j, ~d, ~z,~a, π〉 = δπ,σ〈k,~c, ~x,~b, () |H1|j, ~d, ~z,~a, ()〉. (9.452)

Additionally, recall that

|T jz1,a1,zs(j),as(j)〉 =
1√
2
|ρ(1,j,0)
z1,a1 〉|ρ(s(j),j,0)

zs(j),as(j)
〉+

1√
2

∑

x1,x2∈{0,1}
Uj(a1)x1x2,z1zs(j) |ρ(1,j,1)

x1,a1 〉|ρ(s(j),j,1)
x2,as(j)

〉.

(9.453)
To compute 〈k,~c, ~x,~b, ()|H1|j, ~d, ~z,~a, ()〉, we first evaluate the matrix elements of h1 between single-
particle states of the form

|ρ(1,j,d)
z,a 〉, |ρ(s(j),j,d)

z,a 〉, |ρF (i,j,d)
z,a 〉 (9.454)

(for j ∈ [M ], i ∈ {2, . . . , n}, z, a ∈ F2, and d ∈ {0, 1}) that appear in equation (9.451). To evaluate
these matrix elements, we use the fact that h1 is of the form (9.73), where E is the set of edges in
rows 2, . . . , n that are added to the gate diagram in step 3 of Section 9.4.2.
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We have

〈ρF (i,j,0)
x,b |h1|ρF (i,j,0)

z,a 〉 =
1

15
〈ψF (i,j,0)

x,b |h1|ψF (i,j,0)
z,a 〉 =

1

240
δx,zδa,b (9.455)

〈ρF (i,j,1)
x,b |h1|ρF (i,j,1)

z,a 〉 =
1

240
δx,zδa,b (9.456)

for all i ∈ {2, . . . , n}, j ∈ [M ], and x, z, a, b ∈ F2. Similarly,

〈ρF (i,j,0)
x,b |h1|ρF (i,j,1)

z,a 〉 = 〈ρF (i,j,1)
x,b |h1|ρF (i,j,0)

z,a 〉 =
1

240
δx,zδa,b (9.457)

for all i ∈ [n] \ {1, s(j)}, j ∈ [M ], and z, x, a, b ∈ F2. Furthermore,

h1|ρ(1,j,d)
z,a 〉 = 0 (9.458)

for all j ∈ [M ], z, a ∈ F2, and d ∈ {0, 1}, and

〈ρF (s(j),j,c)
x,b |h1|ρ(s(j),j,d)

z,a 〉 =
1

240
δx,zδa,bδc,d (9.459)

〈ρ(s(j),j,c)
x,b |h1|ρ(s(j),j,d)

z,a 〉 =
1

240
δx,zδa,bδc,d (9.460)

for all j ∈ [M ], z, x, a, b ∈ F2, and c, d ∈ {0, 1}.
Using equations (9.455), (9.456), (9.458), and (9.460), we compute the diagonal matrix elements

of H1:

〈j, ~d, ~z,~a, ()|H1|j, ~d, ~z,~a, ()〉

=





∑n
i=2〈ρ

F (i,j,di)
zi,ai |h1|ρF (i,j,di)

zi,ai 〉 d1 ∈ {0, 1}
〈T jz1,a1,zs(j),as(j) |I⊗ h1|T jz1,a1,zs(j),as(j)〉+

n∑
i=2
i 6=s(j)

〈ρF (i,j,di)
zi,ai |h1|ρF (i,j,di)

zi,ai 〉 d1 = 2. (9.461)

=
n− 1

240
(9.462)

where in the last line we used equation (9.453) and the fact that Uj(a1) is unitary. We use equations
(9.457) and (9.459) to compute the nonzero off-diagonal matrix elements of H1 between states in
Blegal. We get

〈k,~c, ~x,~b, π|H1|j, ~d, ~z,~a, σ〉

=
δπ,σδj,kδ~a,~b

240
·





δ~x,~z(n− 1) ~c = ~d

δ~x,~z
n∏
r=1
r 6=i

δcr,dr ci 6= di for some i ∈ [n] \ {1, s(j)}

1√
2
δ~x,~z

n∏
r=2
r 6=s(j)

δcr,dr (c1, d1) ∈ {(2, 0), (0, 2)}

1√
2
Uj(a1)∗z1zs(j),x1xs(j)

n∏
r=2
r 6=s(j)

δcr,drδxr,zr (c1, d1) = (2, 1)

1√
2
Uj(a1)x1xs(j),z1zs(j)

n∏
r=2
r 6=s(j)

δcr,drδxr,zr (c1, d1) = (1, 2)

0 otherwise.

(9.463)
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For the second case we used equation (9.457), for the third case we used equation (9.459) to get

〈T jx1,b1,xs(j),bs(j) |I⊗ h1|ρ(1,j,0)
z1,a1 〉|ρF (s(j),j,0)

zs(j)as(j)
〉 = δx1,z1δb1,a1δxs(j),zs(j)δbs(j),as(j)

1

240
√

2
, (9.464)

and for the fourth and fifth cases we used equation (9.459) to get

〈T jx1,b1,xs(j),bs(j) |I⊗ h1|ρ(1,j,1)
z1,a1 〉|ρF (s(j),j,1)

zs(j)as(j)
〉 = δb1,a1δbs(j),as(j)

1

240
√

2
Uj(a1)∗z1zs(j),x1xs(j) . (9.465)

In the remaining case, (c1, d1) ∈ {(1, 0), (0, 1)} and the matrix element is 0.
We now compute the matrix elements of H1 in the basis (9.446). We have

〈j,~c, In(~x),~a, σ|H1|j, ~d, In(~z),~a, π〉
=

∑

~x′,~z′∈{0,1}n
〈j,~c, ~x′,~a, σ|H1|j, ~d, ~z′,~a, π〉〈~x|Ūj,d1(a1)†|~x′〉〈~z′|Ūj,d1(a1)|~z〉. (9.466)

Using this with (9.463) gives

〈k,~c, In(~x),~b, σ|H1|j, ~d, In(~z),~a, π〉

=
δπ,σδj,kδ~a,~bδ~x,~z

240
·





n− 1 ~c = ~d
n∏
r=1
r 6=i

δcr,dr ci 6= di for some i ∈ [n] \ {1, s(j)}

1√
2

n∏
r=2
r 6=s(j)

δcr,dr (c1, d1) ∈ {(2, 0), (0, 2), (2, 1), (1, 2)}

0 otherwise

(9.467)

as claimed in equation (9.449). Note that in the basis Blegal, H1 has nonzero matrix elements
between states with different values of ~z; the basis (9.446) is convenient because H1 only connects
basis states with the same value of ~z.

From this expression we see that H1|S1 is block diagonal in the basis (9.446), with a block for
each ~z,~a ∈ Fn2 , π ∈ Sn, and j ∈ [M ]. Moreover, the submatrix for each block is the same.

9.5.5.2 Matrix elements of H2

Next, we present the matrix elements of H2.

Matrix elements of H2

〈k,~c, In(~x),~b, π|H2|j, ~d, In(~z),~a, σ〉
=
[
fdiag(~d, j)δj,kδ~a,~bδ~z,~xδ~c,~d +

(
foff-diag(~c, ~d, j) · δk,j−1 + foff-diag(~d,~c, k) · δk−1,j

)
δ
~a,~b
δ~z,~x

]
δπ,σ

(9.468)

where

fdiag(~d, j) =





0 d1 = 0 and j = 1, or d1 = 1 and j = M
1

480 d1 = 2 and j ∈ {1,M}
1

240 otherwise

(9.469)
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and

foff-diag(~c, ~d, j) =




n∏

r=2
r/∈{s(j−1),s(j)}

δdr,cr


 ·





1
240
√

2
(c1, cs(j), d1, ds(j−1)) ∈ {(2, 0, 0, 0), (1, 1, 2, 1)}

1
240 (c1, cs(j), d1, ds(j−1)) = (1, 0, 0, 1)
1

480 (c1, cs(j), d1, ds(j−1)) = (2, 1, 2, 0)

0 otherwise.

(9.470)

Recall that

H2 =
n∑

w=1

h
(w)
2 (9.471)

and note, just as in (9.451), that because H2 is permutation invariant,

H2|j, ~d, ~z,~a, π〉 =





Vπ

(
H2|ρ(1,j,d1)

z1,a1 〉
n⊗
i=2
|ρF (i,j,di)
zi,ai 〉

)
d1 = ds(j) ∈ {0, 1}

Vπ

(
H2|T jz1,a1,zs(j),as(j)〉

n⊗
i=2
i 6=s(j)

|ρF (i,j,di)
zi,ai 〉

)
d1 = ds(j) = 2,

(9.472)

and thus, H2 is block diagonal for each π ∈ Sn, and is equal in each block. Also recall that h2 is of
the form (9.73), where E is the set of edges in row 1 that are added in step 3 of Section 9.4.2.

To compute 〈k,~c, ~x,~b, ()|H2|j, ~d, ~z,~a, ()〉 we first evaluate the matrix elements of h2 between the
relevant single-particle states |ρLz,a〉 with L ∈ L and z, a ∈ F2. The only such matrix elements that
are nonzero are

〈ρ(1,j,0)
x,b |h2|ρ(1,j,0)

z,a 〉 =

{
0 j = 1

1
240δz,xδa,b j ∈ {2, . . . ,M}

(9.473)

〈ρ(1,j,1)
x,b |h2|ρ(1,j,1)

z,a 〉 =

{
1

240δz,xδa,b j ∈ {1, . . . ,M − 1}
0 j = M

(9.474)

for z, a, x, b ∈ F2 and

〈ρ(1,j−1,1)
x,b |h2|ρ(1,j,0)

z,a 〉 = 〈ρ(1,j,0)
z,a |h2|ρ(1,j−1,1)

x,b 〉 =
1

240
δz,xδa,b (9.475)

for j ∈ {2, . . . ,M} and z, x, a, b ∈ F2.
Using equations (9.472) and (9.474), we compute the diagonal matrix elements of H2 in the

basis Blegal:

〈j, ~d, ~z,~a, ()|H2|j, ~d, ~z,~a, ()〉 =





0 d1 = 0 and j = 1, or d1 = 1 and j = M
1

480 d1 = 2 and j ∈ {1,M}
1

240 otherwise.

(9.476)

Using equations (9.472) and (9.475), we compute the nonzero off-diagonal matrix elements, which
are all of the form

〈j − 1,~c, ~x,~a, ()|H2|j, ~d, ~z,~a, ()〉 =
(
〈j, ~d, ~z,~a, ()|H2|j − 1,~c, ~x,~a, ()〉

)∗
(9.477)
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for j ∈ {2, . . . ,M}, ~x, ~z,~a ∈ Fn2 , and

~d = (d1, . . . , dn) with d1 = ds(j) ∈ {0, 1, 2} and di ∈ {0, 1} for all i /∈ {1, s(j)}. (9.478)

We get

〈j − 1,~c, ~x,~a, ()|H2|j, ~d, ~z,~a, ()〉

=
n∏

r=2
r/∈{s(j),s(j−1)}

δdr,cr





1
240δ~x,~z (c1, cs(j), d1, ds(j−1)) = (1, 0, 0, 1)
Uj−1(a1)∗z1zs(j−1),x1xs(j−1)

240
√

2

n∏
r=2

r 6=s(j−1)

δxr,zr (c1, cs(j), d1, ds(j−1)) = (2, 0, 0, 0)

Uj−1(a1)∗z1zs(j−1),x1xs(j−1)

480

n∏
r=2

r 6=s(j−1)

δxr,zr (c1, cs(j), d1, ds(j−1)) = (2, 1, 2, 0)

1
240
√

2
δ~x,~z (c1, cs(j), d1, ds(j−1)) = (1, 1, 2, 1).

(9.479)

Now we compute the diagonal matrix elements of H2 in the basis (9.446) using equations (9.466)
and (9.476):

〈j, ~d, In(~z),~a, π|H2|j, ~d, In(~z),~a, σ〉 = δπ,σ ·





0 d1 = 0 and j = 1, or d1 = 1 and j = M
1

480 d1 = 2 and j ∈ {1,M}
1

240 otherwise.

(9.480)

The nonzero off-diagonal matrix elements are (using equations (9.466) and (9.479))

〈j − 1,~c, In(~x), ~b, π|H2|j, ~d, In(~z),~a, σ〉 = 〈j, ~d, In(~z),~a, σ|H2|j − 1,~c, In(~x),~b, π〉

= δπ,σδ~x,~zδ~a,~b




n∏

r=2
r/∈{s(j),s(j−1)}

δdr,cr


 ·





1
64 (c1, cs(j), d1, ds(j−1)) = (1, 0, 0, 1)

1
64
√

2
(c1, cs(j), d1, ds(j−1)) = (2, 0, 0, 0)

1
128 (c1, cs(j), d1, ds(j−1)) = (2, 1, 2, 0)

1
64
√

2
(c1, cs(j), d1, ds(j−1)) = (1, 1, 2, 1).

(9.481)

Combining equations (9.480) and (9.481) gives the result claimed in equations (9.468), (9.469), and
(9.470).

This shows that H2|S1 is block diagonal in the basis (9.446), with a block for each ~z,~a ∈ Fn2
and π ∈ Sn. Also note that (in contrast with H1) H2 connects states with different values of j.

9.5.5.3 Matrix elements of Hin,i

We next present the matrix elements of Hin,i (for i ∈ {nin + 1, . . . , n})

Matrix elements of Hin,i

For each ancilla qubit i ∈ {nin + 1, . . . , n}, define jmin,i = min {j ∈ [M ] : s(j) = i} to be the
index of the first gate in the circuit that involves this qubit (recall from Section 9.4.1 that we
consider circuits where each ancilla qubit is involved in at least one gate). The operator Hin,i
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is diagonal in the basis (9.446), with entries

〈j, ~d, In(~z),~a, π|Hin,i|j, ~d, In(~z),~a, π〉 =

{
1

240 j ≤ jmin,i, zi = 1, and di = 0

0 otherwise.
(9.482)

We now consider

Hin,i =

n∑

w=1

h
(w)
in,i (9.483)

where i is from the set of indices of the ancilla qubits, i.e., i ∈ {nin + 1, . . . , n}. Using equation
(9.346) we get

〈ρL2
x,b|hin,i|ρL1

z,a〉 =
1

15
〈ψL2

x,b|hin,i|ψL1
z,a〉 =

1

240
δx,1δz,1δa,bδL1,(i,0,1)δL2,(i,0,1) (9.484)

for L1, L2 ∈ L and a, b, x, z ∈ F2. If we also use the fact that Hin commutes with all permutations
of the particles, we have that Hin,i is diagonal in the basis Blegal with entries

〈j, ~d, ~z,~a, π|Hin,i|j, ~d, ~z,~a, π〉 =

{
1

240 di = 0, zi = 1, and F (i, j, 0) = (i, 0, 1)

0 otherwise.
(9.485)

Note that F (i, j, 0) = (i, 0, 1) if and only if none of the gates U1, U2, . . . , Uj−1 acts on the ith qubit,
i.e.,

j ≤ jmin,i (9.486)

where

jmin,i = min{j ∈ [M ] : s(j) = i}. (9.487)

Now using this fact and equations (9.466) and (9.485), we get the following expression for the
nonzero matrix elements of Hin,i in the basis (9.446):

〈j, ~d, In(~x),~a, π|Hin,i|j, ~d, In(~z),~a, π〉 (9.488)

=
∑

~w,~y∈{0,1}n
〈~x|Ū †j,d1(a1)|~w〉〈~y|Ūj,d1(a1)|~z〉〈j, ~d, ~w,~a, π|Hin,i|j, ~d, ~y,~a, π〉 (9.489)

=





∑
~y∈{0,1}n

〈~x|Ū †j,d1(a1)|~y〉〈~y|Ūj,d1(a1)|~z〉 1
240δyi,1 j ≤ jmin,i and di = 0

0 otherwise
(9.490)

=

{
〈~x|Ū †j,d1(a1)|1〉〈1|iŪj,d1(a1)|~z〉 1

240 j ≤ jmin,i and di = 0

0 otherwise
(9.491)

=





〈~x|U †1(a1) . . . U †j−1(a1)|1〉〈1|iUj−1(a1) . . . U1(a1)|~z〉 1
240

(j < jmin,i, di = 0, and d1 ∈ {0, 2})
or (j = jmin,i and di = 0)

〈~x|U †1(a1) . . . U †j (a1)|1〉〈1|iUj(a1) . . . U1(a1)|~z〉 1
240 j < jmin,i, di = 0, and d1 = 1

0 otherwise.

(9.492)
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In the last line we use the fact that d1 = di when j = jmin,i (since s(jmin,i) = i). Since
[UJ(a1), |1〉〈1|i] = 0 for J < jmin,i, we have

〈j, ~d, In(~x),~a, π|Hin,i|j, ~d, In(~z),~a, π〉 =

{
1

240〈~x| (|1〉〈1|i) |~z〉 j ≤ jmin,i and di = 0

0 otherwise
(9.493)

=

{
1

240δ~x,~zδxi,1 j ≤ jmin,i and di = 0

0 otherwise
(9.494)

(with all other matrix elements equal to zero), which confirms the result stated in equation (9.482).

9.5.5.4 Matrix elements of Hout

We finally present the matrix elements for Hout:

Matrix elements of Hout

Let jmax = max{j ∈ [M ] : s(j) = 2} be the index of the last gate Ujmax in the circuit that acts
between qubits 1 and 2 (the output qubit). Then

〈k,~c, In(~x),~b, σ|Hout|j, ~d, In(~z),~a, π〉

= δπ,σδj,kδ~c,~dδ~a,~b

{
〈~x|U †CX (a1)|0〉〈0|2UCX (a1)|~z〉 1

240 j ≥ jmax and d2 = 1

0 otherwise.
(9.495)

Finally, consider

Hout =
n∑

w=1

h
(w)
out (9.496)

where (from equation (9.346))

〈ρL2
x,b|hout|ρL1

z,a〉 =
1

240
δa,bδx,0δz,0δL1,(2,M+1,0)δL2,(2,M+1,0) (9.497)

for L1, L2 ∈ L and z, a, x, b ∈ F2. From this and the fact that Hout commutes with all permutations
of the underlying particles, we see that Hout is diagonal in the basis Blegal, with entries

〈j, ~d, ~z,~a, π|Hout|j, ~d, ~z,~a, π〉 =

{
1

240 d2 = 1, F (2, j, 1) = (2,M + 1, 0) and z2 = 0

0 otherwise.
(9.498)

Note that F (2, j, 1) = (2,M + 1, 0) if and only if j ≥ jmax, where

jmax = max{j ∈ [M ] : s(j) = 2}. (9.499)
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Using this fact we compute the nonzero matrix elements of Hout in the basis (9.446):

〈j, ~d, In(~x),~a, π|Hout|j, ~d, In(~z),~aπ〉
=

∑

~w,~y∈{0,1}n
〈~x|Ū †j,d1(a1)|~w〉〈~y|Ūj,d1(a1)|~z〉〈j, ~d, ~w,~a, π|Hout|j, ~d, ~y,~a, π〉 (9.500)

=

{
〈~x|Ū †j,d1(a1)|0〉〈0|2Ūj,d1(a1)|~z〉 1

240 j ≥ jmax and d2 = 1

0 otherwise
(9.501)

=





〈~x|U †1(a1) . . . U †j (a1)|0〉〈0|2Uj(a1) . . . U1(a1)|~z〉 1
240 j ≥ jmax and d1 = d2 = 1

〈~x|U †1(a1) . . . U †j−1(a1)|0〉〈0|2Uj−1(a1) . . . U1(a1)|~z〉 1
240 j > jmax, d2 = 1, and d1 ∈ {0, 2}

0 otherwise

(9.502)

=

{
〈~x|U †1(a1) . . . U †M (a1)|0〉〈0|2UM (a1) . . . U1(a1)|~z〉 1

240 j ≥ jmax and d2 = 1

0 otherwise
(9.503)

=

{
〈~x|U †CX (a1)|0〉〈0|2UCX (a1)|~z〉 1

240 j ≥ jmax and d2 = 1

0 otherwise.
(9.504)

In going from the second to the third equality we use the fact that j = jmax implies d1 = d2 (since
s(jmax) = 2). In the next-to-last line we use the fact that [UJ(a1), |0〉〈0|2] = 0 for J > jmax. This
confirms the result stated in equation (9.495).

9.5.6 Frustration-Free states

Now that we have a thorough understanding of the various matrix elements between legal configu-
rations, it will be useful to actually compute the eigenvalue gaps for these different Hamiltonians.
We will do so by looking at hypercubes, and connecting them in a particular manner. Since most
of the non-zero matrix elements are from some small set of values, our problem reduces to these
graph problems, which then become tractable.

This section actually proves the various bounds on the different ground spaces, and we proceed
by finding the ground space of H(Gi, G

oc
x , n) iteratively, and bounding the eigenvalue gap for each

Gi.

9.5.6.1 Ground space of H(G2, G
oc
X , n)

We first want to bound the n particle ground space on G2, so let us define the (n− 2)-dimensional
hypercubes

Djk =
{

(d1, . . . , dn) : d1 = ds(j) = k, di ∈ {0, 1} for i ∈ [n] \ {1, s(j)}
}

(9.505)

for j ∈ {1, . . . ,M} and k ∈ {0, 1, 2}, and the superpositions

|Cubek(j, ~z,~a, π)〉 =
1√

2n−2

∑

~d∈Djk

(−1)
∑n
i=1 di |j, ~d, In(~z),~a, π〉 (9.506)

for k ∈ {0, 1, 2}, j ∈ [M ], ~z,~a ∈ Fn2 and π ∈ Sn. For each j ∈ [M ], ~z,~a ∈ Fn2 and π ∈ Sn, let

|C(j, ~z,~a, π)〉 =
1

2
|Cube0(j, ~z,~a, π)〉+

1

2
|Cube1(j, ~z,~a, π)〉 − 1√

2
|Cube2(j, ~z,~a, π)〉. (9.507)

We prove
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Lemma 36. The Hamiltonian H(G2, G
oc
X , n) has nullspace S2 spanned by the states

|C(j, ~z,~a, π)〉 (9.508)

for j ∈ [M ], ~z,~a ∈ Fn2 and π ∈ Sn. Its smallest nonzero eigenvalue is

γ(H(G2, G
oc
X , n)) ≥ K0

35000n
(9.509)

where K0 ∈ (0, 1] is the absolute constant from Lemma 32.

Proof. Recall from the previous section that H1|S1 is block diagonal in the basis (9.446), with a
block for each j ∈ [M ], ~z,~a ∈ Fn2 , and π ∈ Sn. That is to say, 〈k,~c, In(~x),~b, σ|H1|j, ~d, In(~z),~a, π〉 is

zero unless ~a = ~b, k = j, ~z = ~x, and π = σ. Equation (9.449) gives the nonzero matrix elements
within a given block, which we use to compute the frustration-free ground states of H1|S1 .

Looking at equation (9.449), we see that the matrix for each block can be written as a sum of n
commuting matrices: n−1

240 times the identity matrix (case 1 in equation (9.449)), n− 2 terms that

each flip a single bit i /∈ {1, s(j)} of ~d (case 2), and a term that changes the value of the “special”
components d1 = ds(j) ∈ {0, 1, 2} (case 3). Thus

〈j,~c, In(~z),~a, π|H1|j, ~d, In(~z),~a, π〉

= 〈j,~c, In(~z),~a, π|
[

1

240
(n− 1) +

1

240

∑

i∈[n]\{1,s(j)}
Hflip,i +

1

240
Hspecial,j

]
|j, ~d, In(~z),~a, π〉

(9.510)

where

〈j,~c, In(~z),~a, π|Hflip,i|j, ~d, In(~z),~a, π〉 = δci,di⊕1

∏

r∈[n]\{i}
δcr,dr (9.511)

and

〈j,~c, In(~z),~a, π|Hspecial,j |j, ~d, In(~z),~a, π〉 =





1√
2

(c1, d1) ∈ {(2, 0), (0, 2), (1, 2), (2, 1)}
and dr = cr for r ∈ [n] \ {1, s(j)}

0 otherwise.

(9.512)

Note that these n matrices are mutually commuting, each eigenvalue of Hflip,i is ±1, and each
eigenvalue of Hspecial,j is equal to one of the eigenvalues of the matrix

1√
2




0 0 1
0 0 1
1 1 0


 , (9.513)

which are {−1, 0, 1}. Thus we see that the eigenvalues of H1|S1 within a given block for some
j ∈ [M ]

1

240

(
n− 1 +

∑

i/∈{1,s(j)}
yi + w

)
(9.514)

where yi ∈ ±1 for each i ∈ [n] \ {1, s(j)} and w ∈ {−1, 0, 1}. In particular, the smallest eigenvalue
within the block is zero (corresponding to yi = w = −1).
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The corresponding eigenspace is spanned by the simultaneous −1 eigenvectors of each Hflip,i for
i ∈ [n] \ {1, s(j)} and Hspecial,j . The space of simultaneous −1 eigenvectors of Hflip,i for i ∈ [n] \
{1, s(j)} within the block is spanned by {|Cube0(j, ~z,~a, π)〉, |Cube1(j, ~z,~a, π)〉, |Cube2(j, ~z,~a, π)〉}.
The state |C(j, ~z,~a, π)〉 is the unique superposition of these states that is a −1 eigenvector of
Hspecial,j . Hence, for each block we obtain a unique state |C(j, ~z,~a, π)〉 in the space S2. Ranging
over all blocks j ∈ [M ], ~z,~a ∈ Fn2 , and π ∈ Sn, we get the basis described in the Lemma.

The smallest nonzero eigenvalue within each block is 1
240 (corresponding to yi = −1 and w = 0

in equation (9.514)), so

γ(H1|S1) =
1

240
. (9.515)

To get the stated lower bound, we use Lemma 2 with H(G2, G
oc
X , n) = HA +HB where

HA = H(G1, G
oc
X , n) HB = H1|I(G2,Goc

X ,n) (9.516)

(as in equation (9.351)), along with the bounds

γ(HA) ≥ K0

900
γ(HB|S1) = γ(H1|S1) =

1

240
‖HB‖ ≤ ‖H1‖ ≤ n ‖h1‖ = 2n (9.517)

from Lemma 35, equations (9.357) and (9.515), and the fact that ‖h1‖ = 2 from (9.75). This gives

γ(H(G2, G
oc
X , n)) ≥ K0

240K0 + 2n · 240 · 900
≥ K0

500000n
(9.518)

where we used the facts that K0 ≤ 1 and n ≥ 1.

9.5.6.2 Ground states of H(G3, G
oc
X , n)

Now that we have the ground states of H(G2, G
oc
X , n), along with the corresponding eigenvalue gap,

we will want to investigate G3. As the states |C(j, ~z,~a, π)〉 can be viewed as a kind of analog to
the states |ψ 〉| t〉 + Ut+1|ψ 〉| t + 1〉, we will want to show that the ground states of H(G2, G

oc
X , n)

are similar to the history states.
In particular, for each ~z,~a ∈ Fn2 and each π ∈ Sn define the uniform superposition

|H(~z,~a, π)〉 =
1√
M

M∑

j=1

|C (j, ~z,~a, π)〉. (9.519)

that encodes (somewhat elaborately) the history of the computation that consists of applying either
UCX or U∗CX to the state |~z〉. The first bit of ~a determines whether the circuit CX or its complex
conjugate is applied.

Lemma 37. The Hamiltonian H(G3, G
oc
X , n) has nullspace S3 spanned by the states

|H(~z,~a, π)〉 (9.520)

for ~z,~a ∈ Fn2 . Its smallest nonzero eigenvalue is

γ(H(G3, G
oc
X , n)) ≥ K0

108n2M2
(9.521)

where K0 ∈ (0, 1] is the absolute constant from Lemma 32.
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Proof. Recall that
H(G3, G

oc
X , n) = H(G2, G

oc
X , n) +H2|I(G3,Goc

X ,n) (9.522)

with both terms on the right-hand side positive semidefinite (as there are no additional interactions
when restricted to I(G3, G

oc
X , n)). To solve for the nullspace of H(G3, G

oc
X , n), it suffices to restrict

our attention to the space

S2 = span{|C(j, ~z,~a, π)〉 : j ∈ [M ], ~z,~a ∈ Fn2 , π ∈ Sn} (9.523)

of states in the nullspace of H(G2, G
oc
X , n). We begin by computing the matrix elements of H2 in

the basis for S2 given above. We use equations (9.468) and (9.507) to compute the diagonal matrix
elements:

〈C (j, ~z,~a, π) |H2|C (j, ~z,~a, π)〉

=
1

4
〈Cube0(j, ~z,~a, π)|H2|Cube0(j, ~z,~a, π)〉+

1

4
〈Cube1(j, ~z,~a, π)〉|H2|Cube1(j, ~z,~a, π)〉

+
1

2
〈Cube2(j, ~z,~a, π)|H2|Cube2(j, ~z,~a, π)〉 (9.524)

=





0 + 1
960 + 1

960 j = 1
1

960 + 1
960 + 1

480 j ∈ {2, . . . ,M − 1}
1

960 + 0 + 1
960 j = M

(9.525)

=

{
1

480 j ∈ {1,M}
1

240 j ∈ {2, . . . ,M − 1}.
(9.526)

In the second line we used equation (9.469). Looking at equation (9.468), we see that the only
nonzero off-diagonal matrix elements of H2 in this basis are of the form

〈C(j − 1, ~z,~a, π)|H2|C(j, ~z,~a, π)〉 =
(
〈C(j, ~z,~a, π)|H2|C(j − 1, ~z,~a, π)〉

)∗
(9.527)

for j ∈ {2, . . . ,M}, ~z,~a ∈ Fn2 , and π ∈ Sn. To compute these matrix elements we first use equation
(9.470) to evaluate

〈Cubew(j − 1, ~z,~a, π)|H2|Cubev(j, ~z,~a, π)〉 (9.528)

for v, w ∈ {0, 1, 2}, j ∈ {2, . . . ,M} and π ∈ Sn. For example, using the second case of equation
(9.470), we get

〈Cube1 (j − 1, ~z,~a, π)|H2|Cube0 (j, ~z,~a, π)〉

=
1

2n−2

∑

~d∈Dj0

∑

~c∈Dj−1
1

(−1)
∑
i∈[n](ci+di)〈j − 1,~c, In(~z),~a, π|H2|j, ~d, In(~z),~a, π〉 (9.529)

=
1

2n−2

∑

~d∈Dj0:ds(j−1)=1

(−1) · 1

240
= − 1

480
. (9.530)

To go from the first to the second line we used the fact that, for each ~d ∈ Dj0 with ds(j−1) = 1, there

is one ~c ∈ Dj−1
1 for which 〈j − 1,~c, In(~z),~a, π|H2|j, ~d, In(~z),~a, π〉 = 1

240 (with all other such matrix
elements equal to zero). This ~c satisfies c1 = cs(j−1) = 1 and cs(j) = 0, with all other bits equal to

those of ~d, so
(−1)

∑n
i=1(ci+di) = (−1)c1+cs(j)+cs(j−1)+d1+ds(j)+ds(j−1) = −1 (9.531)

218



for each nonzero term in the sum.
We perform a similar calculation using cases 1, 3, and 4 in equation (9.470) to obtain

〈Cubew(j − 1, ~z,~a, π)|H2|Cubev(j, ~z,~a, π)〉 =





− 1
480 (w, v) = (1, 0)
1

480
√

2
(w, v) ∈ {(2, 0), (1, 2)}

− 1
960 (w, v) = (2, 2)

0 otherwise.

(9.532)

Hence

〈C (j − 1, ~z,~a, π) |H2|C (j, ~z,~a, π) =
1

4
〈Cube1 (j − 1, ~z,~a, π)|H2|Cube0 (j, ~z,~a, π)〉

− 1

2
√

2
〈Cube2 (j − 1, ~z,~a, π)|H2|Cube0 (j, ~z,~a, π)〉

+
1

2
〈Cube2 (j − 1, ~z,~a, π)|H2|Cube2 (j, ~z,~a, π)〉

− 1

2
√

2
〈Cube1 (j − 1, ~z,~a, π)|H2|Cube2 (j, ~z,~a, π)〉 (9.533)

= − 1

480
. (9.534)

Combining this with equation (9.526), we see that H2|S2 is block diagonal in the basis (9.523), with
a block for each pair of n-bit strings ~z,~a ∈ Fn2 and each π ∈ Sn. Each of the 22nn! blocks is equal
to the M ×M matrix

1

480




1 −1 0 0 · · · 0
−1 2 −1 0 · · · 0

0 −1 2 −1
. . .

...

0 0 −1
. . .

. . . 0
...

...
. . .

. . . 2 −1
0 0 · · · 0 −1 1




. (9.535)

This matrix is just 1
128 times the Laplacian of a path of length M , whose spectrum is well known. In

particular, it has a unique eigenvector with eigenvalue zero (the all-ones vector) and its eigenvalue
gap is 2(1 − cos( πM )) ≥ 4

M2 . Thus for each of the 22nn! blocks there is an eigenvector of H2|S2

with eigenvalue 0, equal to the uniform superposition |H(~z,~a, π)〉 over the M states in the block.
Furthermore, the smallest nonzero eigenvalue within each block is at least 1

120M2 . Hence

γ(H2|S2) ≥ 1

120M2
. (9.536)

To get the stated lower bound on γ(H(G3, G
oc
X , n)), we apply Lemma 2 with

HA = H(G2, G
oc
X , n) HB = H2|I(G3,Goc

X ,n) (9.537)

and

γ(HA) ≥ K0

500000n
γ(HB|S2) = γ(H2|S2) ≥ 1

120M2
‖HB‖ ≤ ‖H2‖ ≤ n‖h2‖ = 2n (9.538)

from Lemma 36, equation (9.536), and the fact that ‖h2‖ = 2 from (9.75). This gives

γ(H(G3, G
oc
X , n)) ≥ K0

120M2K0 + 2n(500000n)(120M2)
(9.539)

≥ K0

120M2n2(500001)
≥ K0

108M2n2
.
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At this point, we essentially have that the ground space of H(G3, G
oc
X , n) corresponds to the

history states of the usual circuit-to-Hamiltonian mappings.

9.5.6.3 The ground space of H(G4, G
oc
X , n)

With our “history” states spanning the ground space of H(G3, G
oc
X , n), we will want to impose the

initial boundary conditions so that the ancilla of the history states are guaranteed to be in the
states |0〉. This corresponds to the state G4, and we thus prove the following lemma about the
ground states on this graph:

Lemma 38. The nullspace S4 of H(G4, G
oc
X , n) is spanned by the states

|H (~z,~a, π)〉 where ~z = z1z2 . . . znin 00 . . . 0︸ ︷︷ ︸
n−nin

(9.540)

for ~a ∈ Fn2 and z1, . . . , znin ∈ F2. Its smallest nonzero eigenvalue satisfies

γ(H(G4, G
oc
X , n)) ≥ K0

1011M3n3
(9.541)

where K0 ∈ (0, 1] is the absolute constant from Lemma 32.

Proof. Using equation (9.482), we find

〈C(k, ~x,~b, σ)|Hin,i|C(j, ~z,~a, π)〉 = δπ,σδk,jδ~x,~zδ~a,~b

(
1

4
〈Cube0(j, ~z,~a, π)|Hin,i|Cube0(j, ~z,~a, π)〉

+
1

4
〈Cube1(j, ~z,~a, π)|Hin,i|Cube1(j, ~z,~a, π)〉

+
1

2
〈Cube2(j, ~z,~a, π)|Hin,i|Cube2(j, ~z,~a, π)〉

)
(9.542)

=
δπ,σδk,jδ~x,~zδ~a,~bδzi,1

240





1
4 · 1

2 + 1
4 · 1

2 + 1
2 · 1

2 j < jmin,i

1
4 + 0 + 0 j = jmin,i

0 + 0 + 0 j > jmin,i

(9.543)

for each i ∈ {nin + 1, . . . , n}. Hence

〈H(~x,~b, σ)|
n∑

i=nin+1

Hin,i|H(~z,~a, π)〉 =
1

M
δπ,σδ~x,~zδ~a,~b

n∑

i=nin+1

1

240

(
jmin,i − 1

2
+

1

4

)
δzi,1. (9.544)

Therefore
n∑

i=nin+1

Hin,i

∣∣
S3

(9.545)

is diagonal in the basis {|H(~z,~a, π)〉 : ~z,~a ∈ Fn2 , π ∈ Sn}. The zero eigenvectors are given by
equation (9.540), and the smallest nonzero eigenvalue is

γ




n∑

i=nin+1

Hin,i

∣∣
S3


 ≥ 1

960M
(9.546)
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since jmin,i ≥ 1. To get the stated lower bound we now apply Lemma 2 with

HA = H(G3, G
oc
X , n) HB =

n∑

i=nin+1

Hin,i

∣∣
I(G4,Goc

X ,n)
(9.547)

and

γ(HA) ≥ K0

108M2n2
γ(HB|S3) ≥ 1

960M
‖HB‖ ≤ n

∥∥∥∥∥∥

n∑

i=nin+1

hin,i

∥∥∥∥∥∥
= n (9.548)

where we used Lemma 37, equation (9.546), and the fact that
∥∥∑n

i=nin+1 hin,i

∥∥ = 1 (from equation
(9.74). This gives

γ (H(G4, G
oc
X , n)) ≥ K0

960MK0 + n(960M)(108n2M2)
(9.549)

≥ K0

1011M3n3
.

9.5.7 Proof of Theorem 7

At this point, we have our “history” states corresponding to the circuit CX , we are guaranteed that
the ancilla are initialize to the correct value, and all we need to do is penalize those states that the
circuit does not accept.

In particular, we can now prove Theorem 7. Using equation (9.495) we get

〈C(k, ~x,~b, σ)|Hout|C(j, ~z,~a, π)〉

= δπ,σδk,jδ~a,~b

(
1

4
〈Cube0(j, ~x,~a, π)|Hout|Cube0(j, ~z,~a, π)〉

+
1

4
〈Cube1(j, ~x,~a, π)|Hout|Cube1(j, ~z,~a, π)〉 (9.550)

+
1

2
〈Cube2(j, ~x,~a, π)|Hout|Cube2(j, ~z,~a, π)〉

)
(9.551)

=
δπ,σδk,jδ~a,~b

240
〈~x|U †CX (a1) (|0〉〈0|2)UCX (a1)|~z〉





1
4 · 1

2 + 1
4 · 1

2 + 1
2 · 1

2 j > jmax

0 + 1
4 + 0 j = jmax

0 + 0 + 0 j < jmax

(9.552)

and thus

〈H(~x,~b, σ)|Hout|H(~z,~a, π)〉 =
δπ,σδ~a,~b
480M

(M − jmax + 1
2)〈~x|U †C(a1) (|0〉〈0|2)UC(a1)|~z〉. (9.553)

For any nin-qubit state |φ〉, define

|Ĥ(φ,~a, π)〉 =
∑

~z∈{0,1}n

(
〈~z|φ〉|0〉⊗n−nin

)
|H(~z,~a, π)〉. (9.554)

Note (from Lemma 38) that |Ĥ(φ,~a, π)〉 is in the nullspace of H(G4, G
occ
X , n).
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9.5.7.1 Accepting circuit

Let us suppose there exists an nin-qubit state |ψwit〉 such that AP(CX , |ψwit〉) ≥ 1− 1
2|X|

, i.e.,

〈ψwit|〈0|n−ninU †CX |0〉〈0|2UCX |ψwit〉|0〉n−nin ≤ 1

2|X|
. (9.555)

Then (letting ~0 denote the all-zeros vector)

〈Ĥ(ψwit,~0, π)|H(GX , G
occ
X , n)|Ĥ(ψwit,~0, π)〉

= 〈Ĥ(ψwit,~0, π)|H(G4, G
occ
X , n) +Hout|Ĥ(ψwit,~0, π)〉 (9.556)

= 〈Ĥ(ψwit,~0, π)|Hout|Ĥ(ψwit,~0, π)〉 (9.557)

=
1

480M
(M − jmax + 1

2)〈ψwit|〈0|n−ninU †CX |0〉〈0|2UCX |ψwit〉|0〉n−nin (9.558)

≤ 1

2|X|
(9.559)

(using equations (9.553) and (9.554) to go from the second to the third line, and equation (9.555)
in the last line). Hence λ1

n(GX , G
occ
X ) ≤ 1

2|X|
, establishing equation (9.333).

9.5.7.2 Rejecting circuit

Now suppose AP(CX , |φ〉) ≤ 1
3 for all normalized nin-qubit states |φ〉, i.e.,

〈φ|〈0|n−ninU †CX |0〉〈0|2UCX |φ〉|0〉
n−nin ≥ 2

3
for all normalized |φ〉 ∈ (C2)⊗nin . (9.560)

Complex-conjugating this equation gives

〈φ|∗〈0|n−ninU †∗CX |0〉〈0|2U
∗
CX |φ〉

∗|0〉n−nin ≥ 2

3
for all normalized |φ〉 ∈ (C2)⊗nin , (9.561)

or equivalently (replacing |φ〉 with its complex conjugate),

〈φ|〈0|n−ninU †∗CX |0〉〈0|2U
∗
CX |φ〉|0〉

n−nin ≥ 2

3
for all normalized |φ〉 ∈ (C2)⊗nin . (9.562)

Recall that S4 is the nullspace of H(G4, G
occ
X , n) and consider the restriction

Hout

∣∣
S4
. (9.563)

We now show that the smallest eigenvalue of (9.563) is strictly positive. This implies that the
nullspace of H(GX , G

occ
X , n) is empty, which can be seen from (9.354) since both terms in this

equation are positive semidefinite and S4 is the nullspace of the first term. We then use Lemma 2
to lower bound the smallest eigenvalue λ1

n(GX , G
occ
X ) of H(GX , G

occ
X , n).

By Lemma 38, the states

|Ĥ(~z,~a, π)〉 = |H(z1z2 . . . znin 00 . . . 0︸ ︷︷ ︸
n−nin

,~a, π)〉, ~a ∈ Fn2 , ~z ∈ Fnin
2 (9.564)

are a basis for S4 and in this basis Hout is block diagonal with a block for each ~a ∈ Fn2 and π ∈ Sn,
as can be seen using equation (9.553). From equation (9.554) we can see that any normalized state
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that lives in the block corresponding to some fixed ~a ∈ Fn2 and π ∈ Sn can be written as |Ĥ(φ,~a, π)〉
for some normalized nin-qubit state |φ〉. The smallest eigenvalue of Hout|S4 is therefore

〈Ĥ(θ, ~α, π)|Hout|Ĥ(θ, ~α, π)〉 (9.565)

for some normalized nin-qubit state |θ〉, some ~α ∈ Fn2 and some π ∈ Sn. Now

〈Ĥ(θ, ~α, π)|Hout|Ĥ(θ, ~α, π)〉 =
1

480M
(M − jmax + 1

2)〈θ|〈0|n−ninU †CX (α1)|0〉〈0|2UCX (α1)|θ〉|0〉n−nin

(9.566)

≥ 1

960M
· 2

3
(9.567)

using equation (9.560) if α1 = 0 and equation (9.562) if α1 = 1. Since (9.567) is a lower bound on
the smallest eigenvalue within each block, the nullspace of Hout|S4 is empty and

γ(Hout|S4) ≥ 1

1440M
. (9.568)

As noted above, the fact that this matrix has strictly positive eigenvalues implies that so does
H(GX , G

occ
X , n), i.e.,

λ1
n (GX , G

occ
X ) = γ(H(GX , G

occ
X , n)). (9.569)

To lower bound this quantity we apply Lemma 2 with

HA = H(G4, G
occ
X , n) HB = Hout

∣∣
I(GX ,G

occ
X ,n)

(9.570)

and we use the bound (9.568) as well as

γ(HA) ≥ K0

1011n3M3
(9.571)

(from Lemma 38) and ‖HB‖ ≤ ‖Hout‖ ≤ n ‖hout‖ = n (using equation (9.346)). Applying the
Lemma gives

λ1
n (GX , G

occ
X ) = γ(H(GX , G

occ
X , n)) (9.572)

≥ K0

1440MK0 + n(1011n3M3)(1440M)
(9.573)

≥ K0

2× 1014n4M4
. (9.574)

Now choosing K (the constant in the statement of Theorem 7) to be equal to K0
2×1014

(recall K0 ∈
(0, 1] is the absolute constant from Lemma 32) proves equation (9.334). This completes the proof
of Theorem 7.

9.6 Proof of QMA-hardness

At this point, we do not yet have a proof of QMA-hardness of the Frustration-free U-interaction
Hamiltonian, but we have the tools necessary for the proof. We have from Theorem 7 that for
each circuit CX of the form specified by Section 9.4.1, there exists a graph GX such that the corre-
sponding N -particle ground energy is related to the acceptance probability when certain occupancy
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constraints are satisfied, and we have from Lemma 27 a transformation on graphs with occupancy
constraints to graphs such that the N -particle ground state G� is polynomially related to that of
the original graph with occupancy constraints. Combining these two results nearly gives us our
QMA-hardness result.

Along these lines, let X be an instance of a problem in QMA, with length-M verification circuit
CX . Note that we can assume that this verification circuit is of the form specified by Section 9.4.1, as
well as assuming the circuit has exponentially small error. Let GX and Gocc

X be the gate-graph and
occupancy constraints built out of the circuit CX as described in Section 9.4. Note that the graph
GX has 88(M+2n−2) diagram elements. We then have from Theorem 7 that if X is a yes instance,
we have that λ1

n(GX , G
occ
X ) ≤ 2−|X|, while if X is a no instance, then λ1

n(GX , G
occ
X ) ≥ K/(n4M4).

If we now use Lemma 27 on the graph GX with occupancy constraints Gocc, we construct a
graph G�

X with at most 70000(M + 2n)2 diagram elements. Further, if X is a yes instance, then
we have λ1

n(G�
X) ≤ 2−|X|, while if X is a no instance, we have that

λ1
n(G�

X) ≥ γ�K
n4M4

(
88(M + 2n)

)9+ν . (9.575)

While this bound is very small, it is only polynomial which will suffice for our purposes.
Additionally, note that G�

X has self-loops on every vertex, by construction. Let us then define

the graph G
�
X = G�

X − I. Note that

H(G
�
X , N) = H(G�

X , N)−NI, (9.576)

and thus the two Hamiltonians only differ by a constant energy shift (which does depend on the

number of particles). As such, we have that λ1
N (G

�
X) = λ1

N (G�
X). Further, we have that G

�
X is a

simple graph, which we will use to show the QMA-hardness of the Frustration-free U-interaction
MPQW.

In particular, let us define the precision parameter

ε =
γ�K

4n4M4
(
88(M + 2n)

)9+ν , (9.577)

and let us investigate the Frustration-free U-interaction MPQW instance given by ε, N , and G
�
X .

Note that ε−1 is clearly at least 4 times |V (G
�
X)|. If X is a yes instance, we are guaranteed that

λ1
N (G

�
X) ≤ 1

2|X|
≤ ε (9.578)

for large enough |X|, and thus the corresponding instance of the Frustration-free U-interaction is
also a yes instance. If X is a no instance, we have that

λ1
N (G

�
X) ≥ γ�K

n4M4
(
88(M + 2n)

)9+ν ≥ 2ε (9.579)

and the corresponding instance of the Frustration-free U-interaction is also a no instance. Hence,
we have that Frustration-free U-interaction is QMA-hard.
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9.7 Discussion and open problems

At this point, we have shown that the MPQW ground energy problem for any increasing and
non-negative interaction is QMA-complete. The method is rather complicated, using using a
frustration-free guarantee to create a ground space with a particular form, and then transforming
it once again in order to remove some unwanted ground states.

While this result is helpful in that it gives a bound on the ability to compute ground states of
interacting particles, our requirements on the interaction leave open the possibility that this ground
state is computable for more complicated interactions. This seems unlikely, but these additional
interactions will require a novel method in order to prove their complexity.

Additionally, it might be of interest to see whether we can further restrict the graph. We were
already able to make the graph simple, as the construction in [25] required self-loops while this
construction does not. In particular, we almost have that the graphs are 8-regular, as the only
vertices of the graph that don’t have 8 edges are those to which we explicitly add a self-loop. If we
could determine a method to remove these unwanted single-particle states from the ground space
without explicitly using self-loops, we would then have this regular restriction on the graphs.

One very large thing to remove is our restriction on the particle number. Right now, our
problem statement requires us to know the number of particles interacting on the graph, whereas
the MPQW is defined for all number of vertices. While the Hamiltonian does preserve particle
number, it might be that adding or removing a single particle decreases the energy. Further, one
of the key attributes of this interaction Hamiltonian is the fact that all of the movement terms
are identical (namely, 1). Our assumption on the number of particles can be thought of as a large
penalty for any other particle number, thus removing this identically powered interaction.
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Chapter 10

Conclusions

This thesis has been mostly about studying interactions of many particles on some well defined
graphs. Starting with a single-particle evolving on an infinite path, we were able to construct an
entire theory of graph scattering, including some bounds on the evolution of finite wave-packets. By
searching over many graphs, we were able to find gadgets for several important scattering behaviors.

We then used our results on the single-particle scattering on simple graphs to show that this
model is universal for quantum computing. This novel proof heavily uses the results on the behavior
of finite wave-packet scattering, along with a result on the evolution of a truncated Hamiltonian
far from the pruning.

With the single-particle case analyzed, we then expanded to multiple particles. In particular,
we defined a multi-particle interacting system on a given graph, and analyzed the special case when
two finite length wave-packets move past each other on a long path. Using this result, along with
our result on single-particle scattering, we were able to simulate a quantum computer with our
MPQW. Additionally, the proof in this thesis is an improvement over previously know results on
MPQW.

After analyzing the dynamics, we turned our attention to the ground energy of these problems.
Using basic techniques from Hamiltonian complexity, we gave a QMA-completeness result for the
ground energy problem related to the single-particle quantum walk that makes no reference to
quantum mechanics.

Finally, we studied the ground energy problem of MPQW. By restricting ourselves to only
examine those problems for which the ground state nearly minimize both the movement and in-
teraction terms of the Hamiltonian, we were able to guarantee the form of the ground space for
a particular type of graph. By combining these features in a special manner, and assuming that
particular unwanted states were not in the ground space, we were able to prove that the resulting
ground energy was closely related to a simulated quantum circuit. We were then able to provide a
construction transforming these special graphs with removed states into a larger graphs that was
guaranteed to have these unwanted states outside the ground space. Hence, the resulting ground
energy of the MPQW was closely related to that of the circuit’s acceptance.
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