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Abstract 

A detailed understanding of lithiation/delithiation dynamics of battery active materials is crucial both 

for optimizing the existing technologies and for developing new materials. Among all, LiFePO4 

(LFP) has been subject to intensive fundamental research due to its intriguing phase-transformation 

dynamics which, unexpectedly, yields an outstanding rate capability and a long cycle life for 

electrodes made of this insertion material. In this thesis mathematical models are used as cheap and 

simple tools to investigate the electrochemical performance of LFP electrodes.  

The thesis begins with the investigation of the solid-state transport (bulk effects) and 

electronic conductivity (surface effects) of LFP by means of variable solid-state diffusivity (VSSD) 

and resistive-reactant (RR) models, respectively. Both models are effectively validated against 

experimental galvanostatic discharge data over a wide range of applied currents. However, a very 

small solid-state diffusion coefficient (~10ିଵଽ	mଶ	sିଵ) is required for both models to fit the 

experimental data. VSSD model features a particle-size distribution (PSD) which is estimated via 

model-experiment comparison. The fitted PSD, which is a geometric property and essentially 

invariable, requires to be different at different rates for the model to match experimental data; it is 

shifted towards smaller particles in order to accurately predict the electrode performance during 

galvanostatic discharge at higher applied currents. A contact-resistance distribution (CRD) replaces 

the PSD in the RR model. The fitted CRD turns out to be extremely broad spanning from 

~1 to ~10ଶ	Ω	mଶ. 

Next, following recent observations of ultra fast lithiation/delithiation of LFP, a simple 

mesoscopic model is developed which, in contrast to the first part of this research, completely 

disregards solid-state diffusion limitations. Instead, the model accounts for the inherent 

inhomogeneity of physico-chemical properties and bi-stable nature of phase-change insertion 

materials such as LFP with no consideration of any geometric detail of the active material. The entire 

active material domain is discretized into meso-scale units featuring basic thermodynamic (non-

monotonic equilibrium potential as a function of composition) and kinetic (insertion/de-insertion 

resistance) properties. With only these two factors incorporated, the model is able to simultaneously 

explain a number of unique features associated with lithium iron phosphate electrochemical 

performance including the quasi-static potential hysteresis, high rate capability, cycle-path 

dependence, mismatch in electrode polarization during GITT when compared with continuous 
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cycling at the same current, bell-shaped current response in PITT and the most recently observed 

memory effect. Detailed analysis of the electrode dynamics suggests that a necessary condition for the 

memory effect to appear in an LFP electrode is the existence of a non-zero residual capacity at the 

onset of memory-release charging which may originate either from a non-zero initial SOC or from an 

imbalanced writing cycle. A memory effect should therefore not be observed in an electrode that has 

been preconditioned at extremely low currents (i.e., zero initial SOC) and has undergone an extremely 

slow memory-writing cycle (i.e., approaching a balanced cycle).  

In the next step, the mesoscopic model developed at the unit level is incorporated into 

porous-electrode theory and validated by comparing the simulation results with experimental data 

from continuous and intermittent galvanostatic discharge of a commercial LiFePOସ electrode at 

various operating conditions. A bimodal lognormal resistance distribution is assumed to account for 

disparity of insertion dynamics among elementary units. 

Good agreement between the model and experimental data confirms the fidelity of the model. 

Investigation of three different GITT experiments suggests that the slow evolution of electrode 

polarization during each current pulse and the subsequent relaxation period is contributed by the 

inter-unit rather than intra-unit Li transport in LiFePOସ electrodes. As such, GITT experiments once 

formulated for the determination of diffusion coefficient of inserted species in solid-solution systems 

may also be used to estimate the single-unit equilibrium potential (i.e., thermodynamic properties) as 

well as the dynamic properties (e.g., resistance distribution) of phase-change insertion materials. 

Further analysis of the GITT experiments suggest that, depending on the overall depth-of-discharge 

of the electrode and the incremental depth-of-discharge of each GITT pulse, the solid-solution 

capacity available in the Li-rich end-member may be able to accommodate Li insertion entirely 

without the need for active (closed-circuit) phase transformation. Instead, redistribution of Li among 

units during relaxation equilibrates the solid-solution composition by transforming a few Li-poor 

units to Li-rich ones.  

Despite rigorous research in the literature, this thesis presents the first attempt to 

quantitatively explain the above-mentioned irregularities simultaneously using a single unifying 

model and pinpoint the dominant contributing factors under various operating conditions.  

A realistic account of porous-electrode effects in the experimental validation of the 

mesoscopic model requires accurate estimation of the electrolyte transport properties. In addition to 
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the modeling of phase-change electrodes, this thesis work presents a novel four-electrode-cell method 

to determine transport properties and the thermodynamic factor of concentrated binary electrolytes. 

The cell consists of two reference electrodes (i.e., potential sensors) in addition to the working and 

counter electrodes. The sensors measure the closed-circuit as well as open-circuit potential in 

response to an input current across the working and counter electrodes. The new method requires the 

application of only a single galvanostatic polarization pulse and appropriate concentration-cell 

experiments.  

By fitting a suitable model to the data obtained from these experiments, the three independent 

transport properties of a concentrated binary electrolyte, namely, ionic conductivity, diffusion 

coefficient and transference number as well as the thermodynamic factor can be determined. In 

particular, the measurement of the closed-circuit potential using this cell provides a simpler and 

essentially more accurate means to estimate the transference number than the conventional semi-

infinite diffusion method. 
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Chapter 1 

Introduction 

Transportation is responsible for 19% of worldwide energy consumption [1] which mainly comes 

from fossil fuels (about 60% of total oil consumption in OECD countries). Ever-growing population, 

modernization of the society and economic growth especially in developing countries could lead to a 

two to three fold increase in global energy consumption compared to current levels [2]. The continual 

depletion of fossil-fuel resources and possible environmental problems associated with their use has 

driven decision makers to seek sustainable alternatives. Based on assumptions regarding future 

technological progress, several optimistic scenarios have been proposed such as the ACT and BLUE 

Map according to which energy consumption can be reduced to 67% of current levels. Based on the 

BLUE Map scenario, the use of conventional internal combustion vehicles (ICV) will constitute only 

about 10% of the light-duty vehicle (LDV) market, while electric (EV) and hybrid electric vehicles 

(HEV) will contribute more than 50% of total LDV sales by 2050, not to mention possible 

electrification of buses and medium-duty trucks (Figure  1-1).  

Apart from widespread development of renewable energy generation plants/farms, this 

revolutionary vision requires the extensive use of on-board electrochemical energy storage systems 

(i.e., batteries and supercapacitors). Due to their higher cell voltage, longer lifetime and superior 

energy and power density (2 to 3 times those of conventional rechargeable batteries) [3], lithium-ion 

batteries (LIB) are being counted on to play a key role in this strategic roadmap. 

The successful development of Li-ion batteries suitable for this role necessitates tremendous 

fundamental research in material design and engineering efforts for cell optimization. Many factors 

such as electrode composition, electrode thickness and particle size are important for cell design. 

However, it is impractical and expensive to optimize cell design purely by experimental means. When 

coupled with experimental measurements, mathematical modeling is a valuable step in the design 

process and can help identify the role of each parameter and lead to various possible designs for a 

given cell chemistry. Moreover, rigorous investigation of battery degradation and battery life 

prediction is made simpler by using the mathematical models and comparing simulation results with 

experimental data. 
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Figure  1-1. Annual light-duty vehicle sales by technology type according to BLUE Map 

scenario. Adopted from IEA’s 2011 Technology Roadmap report on electric and plug-in and 

hybrid electric vehicles, Ref. [4]. 

1.1 Li-Ion Battery Technology 

A battery is a transducer that converts chemical energy into electrical energy and vice versa [5]. 

Lithium-ion batteries are categorized as secondary batteries (rechargeable batteries); they can be 

reused many times in contrast with the primary batteries that are used once and discarded. A lithium-

ion battery consists of two composite electrodes coated on metallic current collectors (i.e., copper for 

the positive electrode and aluminum for the negative electrode) and separated by an ion-conducting 

and electron-insulating electrolytic medium. The electrolyte conducts lithium ions from the positive 

electrode (cathode) to the negative electrode (anode) during charge and from the anode to the cathode 

during discharge. The electrons, on the other hand, flow through an external path to close the circuit 

and deliver electric work to a load during discharge or gain energy from a power supplier during 

charge. The electrolyte can be a solid ceramic, a polymer, or a non-aqueous liquid soaked in a porous 

separator. Composite electrodes are composed of an electrochemically active material (AM), 

conductive filler, polymeric binder and electrolyte-filled pores. 
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The operation of a rechargeable lithium-ion battery is based on the “intercalation” concept 

where the active material reversibly accepts/donates lithium ions with no alteration of its 

crystallographic structure. Graphite, LiCoOଶ, LiFePOସ are among intercalation compounds used in 

LIBs. The negative electrode contains a low-potential active material (e.g., graphite) whereas a high-

potential active material (e.g., LiFePOସ) is used in the cathode. The following reactions occur at the 

surface of the anode and cathode active materials in a cell undergoing discharge: 

 

Li௫C଺ → C଺ ൅ Liାݔ ൅ ,eିݔ anode delithiation 

FePOସ ൅ Liାݔ ൅ eିݔ → Li௫FePOସ, cathode lithiation 

---------------------------------------------------------------  

Li௫C଺൅FePOସ → C଺൅Li௫FePOସ, cell discharge 

(5-1)

where 0 ൏ ݔ ൏ 1. During cell discharge, lithium ions tend to leave the anode active material and, 

after traveling through the electrolyte, intercalate into the cathode particles. In other words, one 

electrode active material (LiFePOସ) is electrochemically reduced at the expense of the other (graphite) 

being oxidized releasing stored energy. This process involves 2 charge-transfer reactions and various 

mass transport processes (e.g., diffusion inside the solid particles) that impose limitations on the 

deliverable power; the larger the C-rate (the rate of 1C is the theoretical amount of current a battery 

delivers when fully discharged in one hour), the higher are the transport losses and the lower is the 

power received from the cell. Figure  1-2 shows a schematic of fundamental processes that occur in a 

lithium-ion battery.  

Despite intensive research on high capacity anode materials such as silicon and Li-alloys, 

graphite is still the most common negative electrode material in today's Li-ion batteries due to its 

abundance, low cost and satisfactory electrochemical performance (372	mAh	gିଵ of theoretical 

capacity). Layered lithium cobalt oxide (LiCoOଶ), on the other hand, was the first cathode material 

introduced into commercial Li-ion batteries manufactured by Sony Corporation in 1991 [3]. The 

limited electrochemical and thermal stability and cost of this compound (i.e., depletable cobalt) in 

addition to the requirements of long calendar and cycle life targeted for EV/HEV battery packs have 

motivated investigations into new cathode chemistries for large-scale LIBs [6]. Lithium iron 

phosphate has recently emerged as a suitable alternative to other high-potential positive electrode 

active materials due its longevity, low cost and compatibility with the environment.  
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Figure  1-2. Schematic of a lithium-ion battery with the anode and cathode intercalation active 

materials [7]. 

1.2 Motivation 

Physics-based mathematical models are valuable tools for the design and optimization of Li-ion 

batteries given that the underlying physico-chemical phenomena are well understood and physical 

properties are known. More specifically, they allow optimization of design parameters such as 

electrode thickness, porosity, particle size, electrode formulation, chemical composition, 

manufacturing process and mechanical cell design (e.g., pouch, cylindrical, prismatic, etc.) for a 

specific application. They also help the end-user to assess electrochemical performance of the cells 

and their life cycle and to design proper thermal management systems for the final large-scale battery 

packs on-board EVs/HEVs. 
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In conjunction with in-situ and ex-situ experimental observations (electrochemical and non-

electrochemical), physics-based continuum modeling can help to fathom physico-chemical processes 

occurring during electrode charge/discharge, which are not well understood, and disentangle the 

obscured complexities. As such, experimental observations and theoretical analysis combined can 

yield a detailed description of the electrode behavior.  

Among all Li insertion materials, LiFePOସ has recently emerged as a suitable positive 

electrode material due to its durability, low cost and minimal environmental impact [6, 8]. 

Lithiation/delithiation of LFP occurs through a biphasic mechanism between Li-rich LiଵିϵᇲFePOସ and 

Li-poor Li஫FePOସ end-members [6, 9] which have the same crystal structure (Pnma space group) but 

differ in their Li content and lattice parameter [6]. Its unexpectedly outstanding performance and 

irregular electrochemical behavior have made LFP a perfect model to study oddities associated with 

the lithiation/delithiation of phase-change insertion materials. Aside from the flat equilibrium 

potential, LFP electrodes exhibit other unusual qualities, namely: (i) outstanding rate capability [10], 

(ii) development of positive intensities between the X-ray diffraction (XRD) peaks of the end-

members during high-rate cycling [11, 12], (iii) cycle-path dependence [13], (iv) quasi-static potential 

hysteresis [14], (v) non-monotonic current response to potential steps [15], (vi) polarization mismatch 

between the electrode responses to intermittent and continuous galvanostatic operations [16, 17] and 

(vii) memory effect. Despite rigorous research in the literature, a single unifying model that can 

predict all of the above-mentioned irregularities and pinpoint the dominant contributing factors is still 

lacking.  

Electrode charge/discharge dynamics is influenced not only by kinetic and transport 

processes at the particle level but also by diffusion and ionic migration processes in the electrolyte 

and electronic percolation in the solid matrix at the electrode level. Therefore, accurate analysis of the 

electrode performance requires the electrode-level parameters to be known. The power of batteries is 

strongly dependent upon the electrolyte transport properties. Thus, it is not surprising that the search 

for ever more effective battery electrolytes has received a great deal of attention in recent years [18-

30]. The conventional methods for the estimation of the transport properties of an electrolyte are 

time-consuming, inaccurate, rare and have been limited to a few of the most commonly used 

electrolytes [31-44]. Faster progress in developing new batteries will be possible if the techniques to 

measure these properties can be made as fast and accurate as possible. 
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1.3 Objectives 

Multi-scale physics-based battery models are required both for cell design and development by the 

manufacturer and for performance analysis and battery management systems by the consumer (e.g., 

car manufacturers). An inadequate model at the particle and electrode scales can yield misleading 

implications and inaccurate predictions which, overall, increase the cost of the energy storage system. 

It has been particularly challenging to model phase-transforming insertion electrodes. 

The objective of this thesis consists in two parts: 

  To develop a mathematical model for LiFePOସ as a model phase-change insertion 

material that is able to describe the electrode charge/discharge dynamics under various 

operating conditions. The model should be able to shed light on the internal dynamics of 

phase-transforming insertion electrodes, explain unique phenomena observed in LiFePOସ that 

have been enumerated in section  1.2 and accurately predict the experimental charge/discharge 

data.  

 To develop a fast and reliable method to estimate transport and thermodynamic 

properties of concentrated battery electrolytes. The characterization method involves a 

physics-based mathematical model that is compared with experimental data with transport 

properties as fitting parameters. 

The proposed electrode model and the estimated physical properties are at the very core of 

electrochemical and thermal models at the cell, module and pack scales which are extensively used by 

engineers for performance analysis, thermal management and degradation studies or as a part of 

vehicle powertrain simulators under various operating conditions. 

1.4 Thesis Outline 

This thesis will continue in  Chapter 2 with a brief review of experimental observations of LiFePOସ 

lithiation/delithiation dynamics reported in the literature. Various approaches for mathematical 

modeling of this phase-change insertion compound are also discussed. Two bulk-transport-limited 

and surface-transport-limited models are developed and compared in  Chapter 3 to investigate the 

applicability of conventional models to the simulation of LiFePOସ electrodes. Following the 

shortcomings of these models, a simple mesoscopic model is proposed in  Chapter 4 that simulates 

phase transformation and is able to explain peculiar behavior of LFP electrode including quasi-static 
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potential hysteresis and memory effect during electrochemical operation. Further analysis of LiFePOସ 

lithiation/delithiation dynamics is presented in  Chapter 5; the mesoscopic phase-transformation model 

is embedded into the well-established porous-electrode theory in this chapter. The resulting model is 

validated by comparing it with experimental data from continuous and intermittent galvanostatic 

discharge of a commercial LFP electrode, given the transport and thermodynamic properties of the 

electrolyte estimated in  Chapter 6. 

 Chapter 6 presents a novel four-electrode electrochemical-cell method for the estimation of 

transport and thermodynamic properties of concentrated binary electrolytes. The cell design is 

thoroughly discussed and a general mathematical model for the property estimation is elaborated in 

this chapter. The proposed methodology is applied to two commercially available battery electrolytes 

one of which is used in the Li/LFP half-cell setup used to acquire experimental data for the 

mesoscopic model validation in  Chapter 5. The final chapter presents thesis conclusions and provides 

recommendations for future work. 
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Chapter 2 

Background and Literature Review 

2.1 LiFePO4 Electrode 

First reported by Padhi et al. [6, 8], LiFePOସ is now a serious rival to other well-established high-

voltage insertion compounds for use in high power Li-ion batteries. Special packing of POସ polyanion 

tetrahedra and FeO଺ octahedra making up the phospho-olivine structure gives unique properties to 

this material. LFP exhibits remarkable thermal stability [45] as well as reasonable air and humidity 

stability [46] that makes it easy to process and handle. Additionally, the Feଷା/Feଶା redox potential is 

well located in the stability window of most commercially available liquid and polymer electrolytes 

resulting in high electrochemical stability and a potentially long battery life [47]. The abundance of 

Fe makes this non-toxic iron-based cathode material relatively cheap and environmentally benign. 

The main drawback of this electrode material, however, is its low intrinsic electronic 

conductivity (~10ି଻	S	mିଵ) [48-51]. The application of a carbon coating onto the particles is a 

widely accepted method to overcome their low electronic conductivity [49, 50]. Another approach of 

doping LFP with supervalent cations (e.g., Nbହା and Zrସା) is claimed to dramatically improve the 

electronic conductivity (~ 8 orders of magnitude increase compared to the pristine LFP sample) [52], 

although some researchers have questioned the doping effects and have attributed the conductivity 

enhancement to the formation of secondary conductive phases that provide electrical conduits over 

the surface of the particles in the same way as a carbon coating operates [48, 51, 53]. For many years, 

Li diffusion inside LFP particles (i.e., estimated diffusion coefficient of ~10ିଵ଻ െ 10ିଶ଴	mଶ	sିଵ) 

was believed to be another main factor that limits the performance of bulk LFP for which the 

reduction of the particle size to nano-scale was considered as the best strategy to minimize the 

diffusion length and thus speed up diffusion within its structure [54, 55]. 

2.1.1 Thermodynamics and Experimental Observations 

Lithium insertion/deinsertion into/from LFP is a two-phase process. This process is characterized by a 

flat equilibrium potential curve, i.e., an equilibrium potential independent of degree of lithiation over 

a wide range of Li concentration, which, according to Gibbs' phase rule, is the signature of a biphasic 

system (Figure  2-1). This is in line with crystallographic studies where the diffraction peaks 

corresponding to one phase lose intensity in favor of growing peaks of the second phase at different 
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states of charge (SOC) [6, 56]. However, the measured lattice parameters differ slightly from those of 

stoichiometric FePOସ and LiFePOସ end-members suggesting that the two phases in equilibrium are in 

fact lithium-poor Li஫FePOସ and Li-rich LiଵିϵᇲFePOସ solid solutions (ϵ	and	ϵᇱ ≪ 1), leading to two 

narrow solid-solution regions at the onset and the end of the electrode potential profile [56, 57]. The 

two phases are isostructural and belong to the same Pnma space group with slightly different unit-cell 

parameters [58]. 
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Figure  2-1. Equilibrium potential of an LFP electrode estimated by averaging low rate (C/100) 

galvanostatic charge and discharge data [59]. 

Although a great deal of research has been focused on room temperature characterization of 

the system, thermodynamics of phase mixing/separation at different temperatures must be 

determined. Delacourt et al. [60, 61] and Dodd et al. [58, 62] separately compiled phase diagrams for 

Li୷FePOସ (0	≤y ൑ 1) based on X-ray diffraction analysis of LFP powder at different temperatures 

and Li content, shown in Figure  2-2. The solid-solution ranges expand as temperature increases. At 

elevated temperatures (i.e., greater than ~	350Ԩ and less than ~	500Ԩ), the two triphylite 

(Li஫FePOସ) and heterosite (Liଵି஫ᇲFePOସ) phases transform to a single solid-solution phase which can 

transform back to the two-phase arrangement as temperature is reduced. However, it has been shown 
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that, under certain conditions, LFP solid solution can recast into a metastable intermediate phase 

(Li଴.଺ସFePOସ, eutectoid composition) upon cooling to room temperature [60, 61]. The appearance of 

the eutectoid point renders LFP phase diagram to be significantly different from typical binary 

immiscible systems (i.e., dome-shaped temperature-composition curve). LFP decomposes to non-

olivine compounds at temperatures greater than ~	500Ԩ [61]. First-principles calculations by Zhou et 

al. [63] have confirmed the experimental phase diagram and attribute the eutectoid behavior to the 

electronic rather than ionic configuration entropy. The increased entropy at high temperatures 

accounts for the shrinkage of the miscibility gap between the two phases and the formation a stable 

solid-solution phase prior to chemical decomposition.  
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Figure  2-2. Experimental phase diagram of LFP by Dodd et al. [58] (red circles) and Delacourt 

et al. [61] (purple diamonds). H stands or heterosite, T for triphylite and SS for solid solution. 

Horizontal lines indicate the eutectoid transition temperature. The figure is adopted from Ref. 

[64]. 

In addition to the effect of temperature, particle size has been found to dramatically influence 

the solubility limits of the two phases in an LFP particle. Gibot et al. [65] demonstrated that, by 

reducing the particle size to 40 nm, room-temperature galvanostatic charge/discharge of an LFP 

electrode exhibits a sloping potential curve even at very low rates (C/40) while the lattice parameter 

variations follow Vegard’s law (i.e., signature of solid-solution systems). Similar observations were 

reported in Ref. [66] suggesting that there exists a critical particle size below which the miscibility 
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gap completely disappears. This size-effect is explained by the excess surface, interface and coherent 

stress-strain energy penalties destabilizing the coexistence of the two phases inside a single LFP 

particle.  

High-resolution electron microscopy study of micron-sized LFP particles by Chen et al. [67] 

and Laffont et al. [68] confirmed the theoretical calculations [69, 70] that Li diffusion in the bulk 

occurs strongly anisotropically along the b-axis in the Pnma space group. Their observations suggest 

that the Li insertion/de-insertion occurs at the phase boundary parallel to the bc plane progressing in 

the direction of a-axis. In a separate research Chen et al. [71] reported a contradictory observation 

where the phase boundary lie on the ac plane perpendicular to the 1-D diffusion channels in solid-

solution samples cooled to room temperature. A similar observation was recently reported using an 

in-situ atomic-scale transmission electron microscopy (TEM) of LFP in a micro-electrochemical cell 

[72].  

The advent of high resolution phase mapping tools has lead to more accurate characterization 

of the charge/discharge dynamics of LFP electrodes [11, 12, 73-82]. Maier et al. [77] tracked the 

phase boundary propagation in a large millimeter-scale LFP single crystal during chemical 

delithiation and observed the formation of a large amount of microstructural defects such as pores and 

cracks. Cabana et al. [78] used soft X-ray ptychographic microscopy (with a spatial resolution of ~ 5 

nm) and X-ray absorption spectroscopy to investigate the chemical and morphological evolution of 

micron, submicron and nano LFP particles upon chemical delithiation. They observed a complex 

spatial distribution of the new phase inside larger micron and submicron particles which correlates 

well with the distribution of microstructural defects (cracks and pores) [78], in line with the 

observation of Maier et al. [77] and others [79, 80]. Cabana et al. [78] also reported biphasic nano 

particles with very few cracks indicating that the smaller particles could withstand coherency stresses 

and remain mechanically stable during lithiation/delithiation [78]. 

Unlike chemical delithiation studies, in-situ [11, 12, 81, 82], and ex-situ [74-76] phase 

mapping of electrochemically delithiated LFP electrodes made of nano particles have ubiquitously 

reported a discrete pattern for the lithiation/delithiation of particles in the electrodes. The two phases 

appear to be distributed between one group of particles containing the Li-poor phase and another 

group containing the Li-rich phase in contrast to the coexistence of both phases within chemically 

delithiated LFP single particles (be it coherent or incoherent). These observations are interpreted as 

being caused by the suppression of intra-particle phase boundary formation and propagation; instead, 
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they suggest that inter-particle exchange of Liା ions and electrons (i.e., via the electrolyte and 

conductive matrix, respectively) takes place in the electrode and is less energetically expensive than 

intra-particle boundary formation and propagation [14, 83].  

The above observations outline three major lithiation/delithiation mechanisms: i) intra-

particle phase transformation causing mechanical damages (incoherent) [77-80], ii) intra-particle 

phase transformation with no mechanical damages (coherent) [78] and iii) inter-particle phase 

transformation in an ensemble of electronically and ionically connected particles which are present 

either in a Li-rich or Li-poor single solid-solution phase [11, 12, 74-76, 81, 82]. The dominant 

mechanism is determined by factors such as particle size and shape [78, 84], quality of conductive 

coating (both ionic and electronic), synthesis route, structural defects, electrode formulation and 

microstructure, temperature, applied potential/current [11, 12], and even the conditioning cycles or 

cycling history [77].  

2.1.2 Mathematical Modeling 

Conventional continuum models describe FP-LFP phase transformation by juxtaposing the two 

phases within the bulk throughout the charge/discharge process [15, 16, 57, 85-100]; the formed 

phase boundary, either sharp or diffuse, travels across the material at a rate closely proportional to the 

charge/discharge rate of the electrode.  

A group of these models depicts the electrochemically-driven phase transition using statistical 

nucleation and growth formulations such as the Kolmogorov-Johnson-Mehl-Avrami (KJMA) model 

[15, 98, 99]. A second group including the reformulated phase-field models for open systems relies 

on the spontaneous spinodal decomposition mechanism and automatically tracks the phase boundary 

by minimizing the Cahn-Hilliard free energy functional [85, 86, 90, 91, 93-97]. Core-shell-type 

models constitute the third group of models and locate a well-defined interface between the two 

phases. Some models of that group attribute the phase-change kinetics to interface mobility [57, 87-

89, 92, 101]. Since the two phases differ in composition, diffusion processes transporting species to 

the reacting interface can be limiting depending on the kinetics of the phase change. Finally, the 

fourth group of models describes LFP insertion as a strongly non-ideal solid-solution process in 

which the phase boundary itself is shaped on the basis of variable solid-state lithium diffusivity that 

goes through a minimum in the intermediate Li composition range [16, 100, 102].  



 

 13 

Based on an analogy with the inflation/deflation of a system of interconnected rubber 

balloons [103, 104], Dreyer and co-workers developed a so-called “many-particle” model where 

particles in a porous electrode are allowed to randomly exchange Li+ ions and electrons through the 

electrolyte and the conductive matrix, respectively [14, 83]. Dreyer’s many-particle model, however, 

does not rely on any specific mechanism for mass transfer/phase transition within individual particles 

and only concludes the thermodynamics of the porous electrode.  

2.2 Transport Property measurement of Concentrated Binary Electrolytes 

Different electrode systems including insertion- and conversion-type as well as sulfur and air 

electrodes have been developed in recent years and are able to store various charge carriers such as 

Li+, Na+, Mg2+, Zn2+, etc. In order for a battery to be effective, high potential (i.e., cathode) and low 

potential (i.e., anode) electrodes must be combined and separated by an electrolyte that enables ionic 

transport between the two electrodes. An ideal electrolyte should be chemically stable with respect to 

the anode and cathode potentials to guarantee long battery life. As a result, the operating battery 

voltage is constrained by the stability window of the electrolyte. Therefore, any improvement in the 

electrolyte chemistry (and additives) that leads to a more stable electrode/electrolyte interface will 

improve the energy and power density of a given anode/cathode pair [18]. At the same time, the 

power is also dependent upon the electrolyte transport properties. In addition to conventional 

rechargeable batteries, redox flow systems in which an anolyte and a catholyte are responsible for 

both charge storage and transport, are experiencing a rapid growth for large-scale stationary 

applications [105, 106]. Thus, it is not surprising that the search for ever more effective battery 

electrolytes has received a great deal of attention in recent years [18-30]. Since the effectiveness of 

these electrolytes depends strongly on their transport properties, faster progress in developing new 

and useful batteries will be possible if the techniques to measure these properties can be made as 

straightforward and accurate as possible. 

In most cases, the electrolyte is a concentrated solution of one salt dissolved in one or more 

solvents [18]. According to the Stefan-Maxwell equation, full characterization of a multi-component 

concentrated solution requires estimation of ܰሺܰ െ 1ሻ/2	parameters where ܰ is the number of 

independent species in the solution [107]. Despite a well-developed theory for concentrated solutions, 

direct estimation of its parameters is often impracticable for multi-component systems with more than 

three species and limited, in practice, to binary electrolytes (i.e., ܰ ൌ 3) [107]. In a binary electrolyte 

where the solution of a binary salt in a single solvent produces three species (i.e., one cation, one 
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anion and one solvent), three independent properties need to be known. These Stefan-Maxwell 

parameters which are all concentration- and temperature-dependent are related to measurable 

properties, i.e., ionic conductivity of the solution, diffusion coefficient of the solute and cation (or 

anion) transference number [107], which are required for numerical simulation of electrochemical 

systems such as Li-ion batteries [100, 108-111]. 

 Ionic conductivity is the most frequently measured property, usually using standard AC 

impedance methods. However, estimation of the other two parameters is rare and has been limited to 

a few of the most commonly used electrolytes [31-44].  

Restricted diffusion theory, as extended to concentrated solutions by Newman and Chapman 

[112], is a powerful means for estimating the salt diffusion coefficient at a given concentration. 

Restricted diffusion experiments track the temporal decay of an already established concentration 

gradient in a cell either electrochemically (i.e., via electric potential difference between two reversible 

electrodes [113]) or non-electrochemically (i.e., via changes of the local refractive index of the 

solution [112], using UV/vis. absorption [38] or via local conductometry [114]). 

The thermodynamic factor reflects solution non-ideality and must be estimated in addition to 

the three transport properties. Standard concentration-cell experiments are most commonly employed 

for this purpose which, although reliable, enable only the product of the thermodynamic factor and 

anion transference number to be determined [107].  

Various techniques to estimate the transference number are available: Hittorf [115], moving 

boundary [116] and emf [117] methods directly estimate the transference number of concentrated 

solutions. However, each of these methods has drawbacks due to experimental complexities [112, 

117]. Alternatively, the semi-infinite diffusion method has become a common practice by researchers 

since its development and first application to a solid polymer electrolyte by Ma et al. [31] in 1995 and 

further validation for liquid electrolytes by Hafezi et al. [118] in 2000. In this method, a symmetric 

two-electrode cell is first polarized by applying current for a short enough time that the concentration 

boundary layer developed at the electrode surfaces does not reach the center of the cell so that semi-

infinite diffusion conditions can be assumed. The open-circuit voltage (OCV) of the cell immediately 

after the current is interrupted is related to the solute concentration build-up (or depletion) adjacent to 

the electrodes. Voltage measurements are conducted at numerous combinations of applied pulse 

current and duration while maintaining the semi-infinite diffusion assumption. A least-square fit of a 

plot of cell voltage versus current ൈ timeଵ/ଶ is required to obtain the transference number at a given 
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bulk concentration. Moreover, since double-layer discharging/charging dominates the response of 

each electrode at the very onset of the open-circuit step immediately after the current is interrupted, 

errors in the transference number obtained using this method can result if no accounting for this effect 

is made [31, 32, 36, 37, 39, 40, 43, 44, 118, 119]. 

Measurements from the semi-infinite diffusion analysis must be combined with those from 

the restricted diffusion and concentration-cell experiments, which are carried out using two separate 

setups. As a result, a large amount of experimentation conducted in three different cells is required to 

estimate a complete set of transport properties at a given concentration [31]. Since conventional 

methods assume that the transport properties do not change across the cell, the experimental 

conditions and the cell design must be strictly controlled to assure that only a small concentration 

gradient exists across the cell. However, this assumption is made only to ensure that an analytical 

solution to the mass transport equations exists. If the charge and mass balance equations are solved 

numerically, the parameters can be allowed to depend on concentration (and hence spatial location) 

[32, 36, 39, 40, 43, 44], which loosens the constraints on operating conditions and cell design. 

A steady-state current (potentiostatic polarization) method which accounts for solution non-

ideality can also be used to estimate the transference number of ions in concentrated solutions [120-

122]. However, similar to the semi-infinite diffusion method, it requires prior knowledge of the solute 

diffusion coefficient and thermodynamic factor. Recently, nuclear magnetic resonance (NMR) 

spectroscopy has been used to carry out in-situ space- and time- resolved imaging of species 

concentrations which could then be used to estimate the solute diffusion coefficient and transference 

number [41, 42] once coupled with a mathematical model. However, MRI-based techniques require 

elaborate and expensive instrumentation, which is not usually available in regular electrochemistry 

labs. 
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Chapter 3 

Simulation of a Commercial LiFePO4 Electrode Accounting for Bulk 

and Surface Effects: A Comparative Analysis 

The following chapter is based on previously published work by M. Farkhondeh, M. Safari, M. 

Pritzker, M. Fowler, T. Han, J. Wang and C. Delacourt in J. Electrochem. Soc. entitled: 

“Full-Range Simulation of a Commercial LiFePO4 Electrode Accounting for Bulk and Surface 

Effects: A Comparative Analysis” 

This thesis author’s specific contribution to this paper was to develop the model, conduct simulations, 

prepare all the graphics and results, prepare the manuscript and reviewer edits with direction from the 

project advisors who were co-authors. All authors reviewed the manuscript.  

Reproduced from Ref. [100] with permission of the Electrochemical Society. 

3.1 Introduction 

The growing interest in LFP for use in high energy/power Li-ion batteries necessitates in-depth 

studies of its electrochemical performance using mathematical models. A suitable model can enhance 

our understanding of the governing physico-chemical phenomena and help better decipher/quantify 

electrode limitations eventually leading to an improved electrode design. At the same time, this model 

should be simple enough to serve as a handy tool for use in thermal and aging studies and prediction 

of full-sized commercial batteries lifetime.  

LFP lithiation dynamics was first modeled by Srinivasan and Newman [57] based on the 

core-shell concept that describes Li insertion in a spherical LFP particle through a shrinking core of 

lithium-poor LiϵFePOସ phase surrounded by a shell of lithium-rich Liଵିϵ′FePOସ phase (ϵ	ܽ݊݀	ϵ′ ≪ 1) 

advancing toward the center. Fick’s first law with a constant diffusion coefficient is used to describe 

Li transport through the Li-rich shell and a lithium mass balance at the interface accounts for phase 

boundary movement. However, since the model is not able to account for the initial solid-solution 

domain, it is used to simulate the discharge process only from the moment the second phase begins to 

exist.  

The shrinking-core model for LFP was later extended by other researchers [87, 88] to include 

phase-transformation kinetics which can be rate-limiting alone or in combination with lithium 
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diffusion. Phase transformation is driven by the departure of both interfacial concentrations from their 

corresponding equilibrium values, the excess free energy of interface and the energy of elastic/plastic 

deformation at the interface. Although enlightening, these considerations introduce a number of new 

parameters that must be estimated and lead to a model that is more sophisticated but is still based on a 

non-realistic physical picture of the mechanism of Li insertion. Moreover, porous-electrode effects 

are ignored in these models which introduce errors, particularly when analyzing discharge at high 

rates (20C).  

More recently, Dargaville and Farrell [89] developed a multi-scale continuum model for an 

LFP electrode featuring an intermediate secondary-particle or agglomerate scale (i.e., additional to the 

primary particle and electrode scales) which had not been previously included. The original core-shell 

model of Srinivasan of Newman [57] is implemented to describe the lithiation dynamics at the 

smallest scale and porous-electrode theory of Newman [123] is used to describe the phenomena 

operating at both the agglomerate and electrode scales. However, the introduction of this new 

intermediate scale doubles the number of model parameters which are not easily determined by direct 

or indirect measurements.  

All of these aforementioned core-shell models have been applied to describe the electrode 

performance under galvanostatic discharge mode only. Difficulties arise if a multi-pulse cycling 

operation is to be simulated where tracking of the movement of the two-phase boundary requires a 

great deal of numerical computation. 

As an alternative to the classical Stefan moving-boundary problem, Han et al. [90] applied 

phase-field theory based on the Cahn-Hilliard formulation as an approach to describe lithiation 

dynamics of two-phase intercalation materials. Singh et al. [91] showed that in the so-called surface-

reaction-limited regime, a Cahn-Hilliard-based phase-field model is able to predict the wave-like 

propagation of the phase-transformation front in the direction perpendicular to that of lithium 

diffusion (i.e., the b-axis in Pnma space group), in line with some experimental observations [67, 68, 

124]. 

The poor electronic conductivity of LFP and the effect of non-uniform carbon coatings were 

addressed in the so-called resistive-reactant (RR) model initially proposed by Thomas [92]. 

According to this model, a distributed ohmic drop at the particle surface was incorporated into the 

core-shell model of Srinivasan and Newman. The model was able to capture the sloping behavior 

observed in experimental 5C galvanostatic discharge curves commonly attributed to porous-electrode 
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effects across the cell in regular porous-electrode models. Thorat et al. [102, 125] included a set of 

two inter-particle contact resistances in their model to fit the experimental data. Using the same 

concept, Safari and Delacourt [59] developed a simple multi-particle RR model consisting of a four-

bin contact-resistance distribution that was refined by fitting low-rate galvanostatic charge/discharge 

data. This approach yielded promising results and was able to simulate the cycle-path dependence of 

the electrode experimentally observed for LFP. However, this model does not include porous-

electrode effects and is not valid under large current operation.  

In 2009, Thorat [125] proposed a solid-solution model for LFP with a concentration-

dependent solid-state diffusion coefficient referred to as phase-change diffusivity. The aim was to 

include the FePO4/LiFePO4 phase transformation in the model without having to track the 

displacement of the two-phase front. However, the author concluded that the phase-change diffusivity 

overpredicted the solid-phase mass-transfer resistance and so ultimately resorted to Fickian diffusion 

with a constant solid-state diffusivity to simulate battery performance. Recently, Farkhondeh and 

Delacourt [16] developed the variable solid-state diffusivity (VSSD) model based on the approach 

proposed by Thorat [102, 125] to simulate galvanostatic charge and discharge processes of 3 

commercial LFP electrodes with different designs (e.g., particle size and active material loading). A 

similar approach has been applied to other insertion materials (e.g., graphite, LiCoO2, LiFeSO4F) in 

the past [126-131]. The variable diffusivity was derived from the corresponding equilibrium potential 

of each electrode. Porous-electrode effects were ignored. Promising results were obtained for all the 

samples although experimental validation was limited to low C-rates only (1C or less). On the basis 

of a comparison of the model parameters for the three samples, the authors concluded that resistive-

reactant effects also contribute to the performance of LFP electrodes composed of nanoparticles [16, 

59].  

Among the lithiation/delithiation models proposed for LFP in the literature, the VSSD and 

RR models appear to be the simplest, yet remain physically significant. Bulk transport limitations are 

assumed to exist and lumped into a concentration-dependent diffusion coefficient in the VSSD model 

and surface effects are represented by a set of contact resistances in the RR model, avoiding explicit 

inclusion of the microstructural details of LFP which is still a matter of debate among researchers. 

The objective of this chapter is to perform a comparative analysis of these two models to clarify 

ambiguities associated with the dynamics of Li insertion into LFP particles and identify/decipher rate 

limitations of a specific LFP electrode. Special attention is paid to expand the two models in order to 
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comply with high C-rate conditions which involve a larger number of adjustable parameters and 

require improved methods for parameter estimation. Both the comparison of the two models and the 

juxtaposition of the low-rate and high-rate simulations help highlight the effect of the low electronic 

conductivity of LFP and the presumed sluggish lithium transport within LFP on its performance as an 

electrode.  

3.2 Model Development 

To simulate the electrochemical performance of an LFP electrode, the variable solid-state diffusivity 

[16] and resistive-reactant models [59] are implemented to describe the lithiation/delithiation 

dynamics at the particle level. These two specific models are chosen to investigate both intra-particle 

transport limitations (i.e., bulk effects using the VSSD model) and electronic losses (i.e., surface 

effects using the RR model) of LFP in a comparative manner. Moreover, these models are relatively 

easy to implement and simple to interpret [57, 87-91].  

The half-cell assembly is made of a porous LFP electrode as the working electrode, elemental 

lithium as the counter/reference electrode and a porous separator soaked with an electrolyte 

positioned between the two. In order to make high-rate charge/discharge simulations possible, the two 

models are separately incorporated into Newman's porous-electrode theory [108, 123] to describe 

electrode-level transport phenomena, as done by Doyle et al. [108] in developing their pseudo-2-

dimensional (P2D) battery model. Both the VSSD and RR models are applied to a small coin cell for 

which a 1-D analysis at the electrode level (i.e., along the cell thickness) suffices. Concentrated-

solution theory describes the transport of ions in the electrolyte [107]. Charging/discharging of the 

double-layer capacitance is not significant in the case of long galvanostatic charges/discharges and so 

is neglected in the current model. The concept of porous-electrode theory, concentrated-solution 

theory, assumptions and complete derivations are thoroughly discussed elsewhere [107, 123, 132] and 

so are not described in detail here for conciseness. In a two-electrode half-cell configuration where a 

lithium foil serves simultaneously as the counter electrode and reference electrode, it is necessary to 

correct for the surface overpotential especially at large current density. For this purpose, Butler-

Volmer equation is used to relate the rate of the lithium deposition/stripping reaction to the counter 

electrode surface overpotential [16, 59]. The governing equations and corresponding boundary 

conditions used in both the VSSD and RR models of the Li/LFP half-cell are listed in Table  3-1. The 

VSSD and RR models presented here are extensions of previous versions since they account for 

porous-electrode effects and are valid for both low and high C-rates (see Refs. [59] and [16]). They 
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will be used to carry out simulations under both low-rate and high-rate conditions (hereafter referred 

to as “full-range”) that are compared to experimental galvanostatic discharge data in “Results and 

Discussion”.  

3.2.1 Variable Solid-State Diffusivity Model 

As mentioned before, the VSSD model focuses on the effect of slow lithium transport in the bulk of 

LFP without including a detailed micro-scale intercalation mechanism. The active material is 

envisaged to be a non-ideal binary solution of empty sites (S) and Li-intercalated sites (LiS) and the 

driving force for diffusion of a species is the gradient of its chemical potential [16]. In this model, the 

LFP electrode is assumed to be made up of a few groups of spherical particles with different sizes to 

account for possible effects of the distribution of particle sizes of active material (PSD). 

At constant temperature, pressure and volume, the flux density of LiS ( ୐ܰ୧ୗ,௞) according to 

concentrated-solution theory is written as [16, 107]  
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where ܿ୫ୟ୶ is the maximum (saturation) concentration of LiS equal to the lithium concentration in 

fully lithiated LFP, LiSD  is the binary diffusion coefficient, ݕ௞ሺݎ,  ሻ is the mole fraction of LiS in theݐ

kth particle group and r is the radial distance from the particle center. ߙ୐୧ୗ,௞ is called the 

thermodynamic factor and is evaluated as follows from the equilibrium potential of the electrode [16, 

129]: 
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ܷ௞ is the equilibrium potential of the ݇th particle group that depends on the LiS concentration and is 

determined experimentally, ܨ is the Faraday constant, ܴ is the gas constant and ܶ is temperature. 

The Butler-Volmer equation is used to describe the charge-transfer reaction kinetics on the 

surface of each particle group:  
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݅୬,௞ represents the current density normal to the active surface of the kth particle group and is positive 

for electrode delithiation (charge) and negative for electrode lithiation (discharge). ߚ୐୊୔ is the charge-

transfer coefficient (same for all particle groups), ݅௞
଴ is the exchange current density and ߟ௞ is the 

surface overpotential for the kth particle group. The exchange current density corresponding to the kth 

particle group ݅௞
଴ is given by the following expression: 

   ,1 LFPLFPLFP
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1
,smax

10
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with ݇୐୊୔
଴  being a rate constant (same for all particle groups), ܿ the salt concentration in the 

electrolyte adjacent to the particle surface and ݕୱ,௞ the mole fraction of LiS at the surface of the kth 

particle group. This treatment is valid for an ideal electrode and electrolyte. The effect of non-

idealities can be included by replacing concentrations with the corresponding activities. The complete 

derivation of such a thermodynamically-consistent kinetic equation is found in Ref. [129]. In the 

current model, however, the exchange current density is taken to depend only on the electrolyte 

concentration as follows: 

 .LFP1
max

0
LFP

0  ccFki  (3-5)

The exchange current density will be constant during charge/discharge at low rates where the spatial 

variation of electrolyte concentration is negligible [16]. Assuming perfect electronic connection 

between active-material particles and the adjacent conductive matrix, the surface overpotential is 

written as 

 ,,s21 kk U  (3-6)

where Φଵ is the potential of the solid phase, Φଶ is the liquid-phase potential and ୱܷ,௞	is the 

equilibrium potential at the surface of particles in the kth group and depends on the LiS concentration. 

A detailed derivation of model equations for the VSSD model can be found in Ref. [16]. 

3.2.2 Resistive-Reactant Model 

The undesirable insulating property of LFP is in practice partially overcome by applying a carbon 

coating to the particle surface. The conductivity improvement has been shown to depend not only on 

the amount of carbon applied but also on the quality of the coating (e.g., chemical nature and 

uniformity) and on the distribution of conductive filler particles (e.g., acetylene black) surrounding 

the active material [59, 92, 133, 134]. The RR model developed here highlights the non-uniform 
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distribution of the conductive filler around LFP particles. For this purpose, we adopt the multi-

particle RR model of Safari et al. [59] in which the contact resistance between an active particle and 

the conductive matrix impedes Li insertion/de-insertion at the particle surface. The active material 

particles are considered to be spherical with a uniform size (i.e., no particle size distribution is 

considered in contrast to the VSSD model) but with varying electronic connectivities to the 

conductive matrix. The surface overpotential used in the kinetic equation (i.e., Butler-Volmer, Eq.  (3-

3)) is modified to account for this difference in electronic connectivity: 

 ,,s2,1 kkk U  (3-7)

where Φଵ,௞ is the solid-phase potential at the surface of an LFP particle in particle group k which 

differs from the potential Φଵ of the surrounding cathode conductive matrix. In this model, particle 

groups are distinguished on the basis of the inter-particle contact resistance ܴୡ,௞. The difference 

between Φଵ and Φଵ,௞ corresponds to the ohmic polarization between the conductive matrix and the 

active particle induced by the contact resistance [59, 92, 125], i.e., 

 .,n,c1,1 kkk iR  (3-8)

Contrary to the VSSD model, the resistive-reactant model assumes that an ideal solid solution 

governs the bulk behavior of the material. As a result, the solid-state thermodynamic factor ߙ୐୧ୗ,௞ is 

set to 1 and Fick's law with a constant diffusion coefficient is applied to describe the diffusion of LiS 

species inside LFP particles: 

 .maxLiS,LiS r

y
cN k

k 


 D  (3-9)

The reader is referred to Ref. [59] for a detailed description of the multi-particle resistive-reactant 

model. 

 

Table  3-1. Summary of governing equations and corresponding boundary conditions used for 

Li/LFP half-cell simulations. 
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Variable solid-state diffusivity model  Resistive-reactant model 

 krrt
y Nrc k

,LiS
21

max 2 



     krrt

y Nrc k

,LiS
21

max 2 



   



 

 23 






 

 F

i

Rrkrk
k

k

NN ,n

,p
,LiS0,LiS  and 0    :B.C.

 

 




 

 F

i

Rrkrk
k

k

NN ,n

,p
,LiS0,LiS  and 0    :B.C.

 

r
y

kk
kcN 

 maxLiSLiS,,LiS D   r
y

k
kcN 

 maxLiS,LiS D  

 
k

k

y
U

kkRT
F

k yy 
 1,LiS   

     kRT
F

kRT
F

k ii   LFPLFP expexp 10
,n

   

     kRT
F

kRT
F

k ii   LFPLFP expexp 10
,n

    kkkk UiR ,s,n,c21   

kk U ,s21     

Governing equations for electrode-level phenomena 

Cathode equations  Boundary conditions 

 kk ia ,n2i   0 and at  continuity
catsep

,2sep 
 llxxlx i   

tk
k

k R
a 

,c

3
    

  cc
f

F
tRT ln1 ln

ln)1(2
2cateff,2

0

 
 i    

 catcateff,     

 kk ia ,n1i   I
llxxlxx 

 catsepsep
,1,1  and 0 ii  

1eff1  i    

 )1( cateff     

 
 








kkF
t

F
t

t
c

ia

cD

,n
)1(

cateff,catcat

00
2i


  0 and at  continuity

catsep
sep 

 llx
clx  

1-
catcateff,
DD     

 Dc
fcD ln

ln
c 1

0

T


     

Separator equations  Boundary conditions 

02  i   sep02 at   continuity  and  0 lx
x




 

  cc
f

F
tRT ln1 ln

ln)1(2
2sepeff,2

0

 
 i    

 sepsepeff,     



 

 24 

  F
t

t
c cD

0
2

sepeff,sepsep



  i   sep

)1(

0sep at   continuity  and 
sepeff,

0

lxc FD
tI

x
 




 

1-
sepsepeff,
DD     

 Dc
fcD ln

ln
c 1

0

T


     

Li foil counter electrode 

     )(exp)(exp 2Li2Li
1

1

ini

0
Li

LiLi

Li









 



RT
F

RT
F

c

c
iI 



 

Equilibrium potential functions 

C/50 charge: 
))1(12.25exp(10637.2))1(22.25exp(10374.2

))1(002.81exp(668.0)1(108.8451.3
49.3948.39

18.13

kk

kkk

yy

yyU








 

   

C/50 discharge:
)262.25exp(104410.8)361.25exp(10644.7

)16.81exp(509.010027.2428.3
31.3830.38

01.12

kk

kkk

yy

yyU







 

  

3.2.3 Solution Procedure 

The system of the time-dependent governing equations for both models (Table  3-1) is numerically 

solved by means of the finite-element-based COMSOL Multiphysics simulation package. The 

dimensionless electrode and separator thicknesses are each discretized into 10 equal elements. The 

mesh in the interior of an LFP particle in the radial direction consists of 20 elements that shrink in 

size as its surface is approached with the smallest element being 0.2 times the largest one. The solver 

is supervised in MATLAB using COMSOL LiveLinkTM for MATLAB.  

3.3 Results and Discussion 

The models are used to analyze experimental galvanostatic discharge data over a wide range of rates 

from C/25 to 5C (defined as full range) obtained from a previous study of a commercial LFP 

electrode (see Ref. [16]; high-rate data were not reported nor analyzed in this previous study). Aside 

from a hysteresis in potential between low-rate charge and discharge, the models predict virtually 

identical responses during charging and discharging and therefore only simulations of the discharge 

mode are presented in this analysis. 
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The LFP electrode was cycled between 2.5 V (lower cut-off potential) and 4.1 V (upper cut-

off potential) versus lithium in a CR2032-type coin-cell setup (ܣ୥ୣ୭୫ ൌ 1.202	cmଶ) at 25˚C. 

Whatman GF/D borosilicate glass fiber was soaked in a solution containing 1M LiPF6 in EC/DMC 

(1:1 wt) to form the electrolytic medium between the electrodes in the coin cell. No measurement of 

the true in-situ thickness of the separator during cell operation is available and so its dry, 

uncompressed thickness taken from the product specification sheet is used in the simulations. 

Reasonable values are assumed for the electrode and separator porosities. The thorough description of 

the procedure for sample preparation and experiments can be found in an earlier reference [16]. 

Reasonably low-rate galvanostatic charge and discharge profiles are commonly averaged to yield a 

single set of equilibrium potentials as a function of lithium content in the active material. In the case 

of LFP, a zero-current hysteresis exists between charge and discharge potentials [14, 16, 135] that is 

not accounted for in most continuum models in the literature. As in Ref. [16], C/50 charge and 

discharge curves are used separately to determine the equilibrium potentials during charging and 

discharging and so the need to predict the thermodynamic hysteresis is avoided. The origin of this 

potential hysteresis has not been firmly identified and its inclusion is beyond the scope of this 

research. The empirical expressions relating the equilibrium potential to the lithium concentration ݕ௞ 

obtained in this way during charging and discharging are listed at the bottom of Table  3-1.  

The parameter values for both particle-level and electrode-level properties are listed in Table 

 3-2. Values marked as “taken from literature” are extracted from Ref. [16] except for the cation 

transference number, the separator thickness and the effective electrode conductivity that are found in 

Refs. [136], [137] and [138], respectively. Since only small discrepancies exist among the reported 

estimates of the cation transference number [37], it is fairly reasonable to take a constant value for 

this parameter from the literature. The initial conditions are a uniform Li concentration in all particle 

groups in the fully charged state and ܿ୧୬୧ ൌ 1000	mol	mିଷ. 

Table  3-2. List of parameters used in both VSSD and RR models at 25°C.  

Parameter  Symbol  VSSD model  RR model 

Electrode thickness ( m )  catl   l80   l80  

Separator thickness ( m )  sepl   
l675   

l675  

Electrode porosity  cat   a5.0   a5.0  
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Separator porosity  sep   a6.0   a6.0  

Median active-particle diameter (nm)  50d   
l72   

l72  

Total active-material volume fraction  t   l351.0   l351.0  

Maximum solid-phase lithium concentration 

(mol	mିଷ) 
 maxc   

a806,22   
a806,22  

Solid-state binary diffusion coefficient (mଶsିଵ)  LiSD   -19l105   
-19f107  

Solid-state thermodynamic factor  k,LiS   Figure  3-1al  
a0.1  

Cathode equilibrium potential (V vs. Li)  kU   Table  3-1l  Table  3-1l 

Particle radius (nm)  kRp,   Table  3-3f  
l36  

Contact resistance (Ω	mଶ)  kRc,   NA  Figure  3-10f 

Active particle volume fraction  k   Table  3-3f  Figure  3-10f 

Cathode charge-transfer coefficient  LFP   a5.0   a5.0  

Li foil charge-transfer coefficient  
Li   a5.0   a5.0  

Reaction rate constant 

(mol	݉ିଶ	ିݏଵ	ሺ݈݉݋	݉ିଷሻିଵ.ହ) 
 

 

0
LFPk  

 
-13f105.2   

 
-13f105.2   

Effective Li foil exchange current density referred to 

1 M 

electrolyte concentration (A mିଶ) 
 

 

0
Lii  

 

l19  

 

l19  

Initial salt concentration in the solution (mol mିଷ)  inic   l1000   l1000  

Bulk diffusion coefficient of the electrolyte (mଶsିଵ)  D   -10f102.5    -10f102.5   

Li  transference number  0
t   l363.0   l363.0  

Bulk ionic conductivity of the electrolyte (S mିଵ)     f3.1   f3.1  

Effective electronic conductivity of the cathode 

(S	mିଵ) 
 eff   

l75.6   
l75.6  

Bruggeman exponent    a5.1   a5.1  

l: Taken from literature; a: Assumed; f: Fitted to the experimental data 
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3.3.1 Variable Solid-State Diffusivity Model 

The thermodynamic factor ߙ୐୧ୗ,௞ used in the VSSD model is determined using a procedure reported 

previously [16] that involves averaging the values calculated from Eq.  (3-2) for equilibrium potentials 

corresponding to C/50 charge and C/50 discharge experimental data, as shown in Figure  3-1a. If the 

binary solution of LiS and S were ideal, the equilibrium potential would be Nernstian and the 

thermodynamic factor equal to 1. As shown in Figure  3-1b, the magnitude of the resulting Fickian 

diffusion coefficient ܦ୐୧ୗ,௞ (ܦ୐୧ୗ,௞ ൌ 	ࣞ୐୧ୗߙ୐୧ୗ,௞) deviates significantly from the ideal situation, 

especially in the intermediate stoichiometry range where ߙ୐୧ୗ,௞ ≪ 1, but also in the regions at low 

and high ݕ௞ bounded by the two peaks where ߙ୐୧ୗ,௞ >1. These two peaks roughly coincide with the 

solid-solution composition ranges (i.e., y ൏ ϵ and y ൐ 1 െ ϵᇱ). On the basis of the non-ideal binary 

solution assumption, steep changes of the thermodynamic factor with stoichiometry can be interpreted 

as being due to i) repulsive interactions between inserted lithium ions at y ൏ ϵ and y ൐ 1 െ ϵᇱ where 

LFP behaves as a solid solution [56, 57] and ii) the dominance of strong attractive forces between the 

guest cations over the miscibility gap ϵ ൏ y ൏ 1 െ ϵᇱ. 

The parameters discussed so far have been determined either experimentally or assumed. The 

reaction rate constant ݇୐୊୔
଴  and particle-size distribution at the particle scale, electrolyte diffusivity ܦ 

and ionic conductivity ߢ at the electrode scale are treated as adjustable parameters estimated by 

manually fitting the computed galvanostatic curves to the experimental data. The solid-state binary 

diffusivity LiSD  was treated as an adjustable parameter in Ref. [16] obtained by fitting the model to 

experimental data corresponding to low-rate conditions. For the sake of consistency of the analysis, 

the best-fit value ( -19
LiS 105D  m2 s−1) obtained in that study is used here for the full-range 

galvanostatic discharge simulations. 

Three distinct features that generally appear in galvanostatic potential-capacity curves (see 

Figure  3-2 as an example) help reduce uncertainties in parameter estimation: i) kinetic overpotential 

distinguishable at early stages of low-rate discharge, ii) gradual variation of electrode potential at 

intermediate states of discharge signifying potential loss in addition to kinetic overpotential and iii) 

sharp rise in potential loss close to the lower/upper cutoff potentials at the end-of-discharge/charge 

(end-of-discharge capacities) [57]. 
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Figure  3-1. (a) Solid-state thermodynamic factor k,LiS  derived from the experimental 

equilibrium potential and (b) Fickian diffusion coefficients of Li species within an LFP particle 

used in the VSSD (blue solid line) and RR (red dashed line) models. 
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To fit the model over the full range of experimental data, the conditions are divided into low-

discharge-rate (up to 1C) and high-discharge-rate (from 1C to 5C) domains. Given that electrode-

level potential losses are smallest at low applied currents [16, 59, 75, 139, 140], the reaction rate 

constant ݇୐୊୔
଴  can be estimated by fitting the experimental electrode potential at the onset of the 

potential plateau in the potential-capacity curves (i.e., the first characteristic feature) simultaneously 

for discharge rates from C/25 up to 1C, while ܦ and ߢ are kept at arbitrary values since they have no 

significant impact on the model predictions under these conditions. ܦ and ߢ can then be adjusted to 

capture the augmented potential losses that occur at higher rates from 1C to 5C. For simplicity, 

transport properties of the electrolyte are assumed to be independent of concentration and the 

electrolyte thermodynamic factor is set to 1. The model parameter values are compiled in Table  3-2.  

The second characteristic feature of the potential-capacity curves (sloping potential) is 

commonly attributed to the displacement of the lithiation front along the electrode thickness from the 

least resistant (i.e., minimum electrode-level loss) position at the onset to the most resistant (i.e., 

maximum electrode-level loss) one at the end of discharge. Finally, end-capacities (i.e., the third 

characteristic feature) are usually ascribed to mass-transport limitations inside the active material. 

The Butler-Volmer equation used to describe the insertion of Li+ into regular active materials 

typically includes both the electrolyte concentration and the surface concentration of the intercalated 

lithium LiS (Eqs.  (3-3) and  (3-4)). However, incorporation of the latter concentration in the kinetic 

equation turns out to under-predict the electrode potential at the very beginning of the LFP lithiation 

process (not shown here). Therefore, the LFP lithiation kinetics is taken to be independent of the 

solid-phase surface concentration in this study (Eqs.  (3-3) and  (3-5)) [16]. 

Although the electrolyte transport properties are within the range reported in the literature 

[37-39, 102], they are not most accurately refined due to the model assumptions and require 

independent ex-situ measurements for best results. The fitted values, however, are satisfactory for the 

purposes of this study. The sensitivity of the model to the electrolyte transport properties and 

electronic conductivity of the electrode has been investigated by varying one parameter at a time 

while holding the others at their values in Table  3-2. The resulting potential versus capacity curves 

are plotted in Figure  3-2. Over the range considered, the electrode-level parameter values have no 

significant effect in the case of the low-rate (C/2) discharge curve unlike the case of the 5C curves, 

implying that porous-electrode effects are minimal in agreement with the literature [16, 59, 75, 139, 

140] and that the value of the reaction rate constant obtained from low-rate simulations is a reliable 
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estimate. Although porous-electrode effects are included in the simulations, the best-refined rate 

constant of 5.1312-13 )m mol( sm mol 102.5   is in a good agreement with those obtained for 3 

different LFP electrodes in our previous study ( -14106.75  to 5.1312-13 )m mol( sm mol 102.38  ) 

[16]. The approach of dividing the operating conditions into low-rate and high-rate regimes helps to 

unravel the origin of the potential losses (i.e., kinetics of charge-transfer reaction at the particle-level 

versus electrode-level limitations) and enables the simulation of accurate galvanostatic discharges at 

rates ranging from as low as C/25 up to 5C (i.e., ratio of 125). 
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Figure  3-2. VSSD model sensitivity to (a) ࡰ,	(b)  , (c) ࢚ା૙  and (d) ࣌܎܎܍ at discharge rates of C/2 

and 5C and 25°C. Model parameters are given in Table  3-2 and Table  3-3 except for those 

varied (see legend).  

The impact of the particle-size distribution on the overall electrode performance can be 

analyzed using the VSSD model. Although various methods were examined in Ref. [16] to discretize 
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the actual PSD from SEM image analysis into 4 bins, the results were unsatisfactory. Ultimately three 

particle bins were adjusted in order for the simulations to match the low-rate charge/discharge data 

(i.e., 1C or less). The d50 size obtained from the actual PSD was taken as a fixed particle size (i.e., not 

adjustable) while the other 2 particle sizes and corresponding volume fractions were treated as 

adjustable parameters. This set of particle bins was used in the present analysis for the full-range 

simulations, but was found to under-predict the end-of-discharge capacities at rates higher than 1C. 

However, by including a fourth particle size (44 nm) in this PSD and re-adjusting the volume 

fractions, the model was successfully fitted to the experimental discharge data at all rates from C/25 

up to 5C, as shown in Figure  3-3a. 

The refined particle sizes and the corresponding volume- and number-based fractions are 

listed in Table  3-3. It is worth mentioning that this fitted PSD lies within the range of the actual 

particle sizes obtained from SEM micrographs [16]. Nonetheless, the transformation of volume-based 

fractions to number-based fractions reveals the sensitivity of the model to the number-based PSD. For 

instance, the presence of 5 large particles in a total number of 10,000 can significantly influence the 

outcome of a simulation. Thus, particle number-based techniques such as SEM image analysis may 

not give reliable estimates of the real size distribution of active particles in a composite electrode 

although they are widely used to determine d50. 

Table  3-3. Particle-size distribution obtained by fitting the VSSD model to experimental 

isothermal (T = 25°C) galvanostatic discharge curves at different C-rates ranging from 

C/25 to 5C. 

Particle group  Size, (nm) 2 .p kR   Volume fraction, k  Number fraction  

1  44  0.36 0.7802 

2  72  0.42 0.2077 

3  124  0.12 0.0116 

4  338  0.10 0.0005 
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Figure  3-3. (a) Comparison of experimental (symbols) and VSSD model-fitted (solid lines) 

galvanostatic discharge data at 25°C. (b) Components contributing to the overall potential drop 

at 5C; the constant-diffusivity ( 0.1,LiS k ) simulations are scaled slightly to the experimental 

end-of-discharge capacity (i.e., from ca. 120 mAh g−1 to 128 mAh g−1) for better demonstration. 

Model parameters are listed in Table  3-2 and Table  3-3. 
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The 4-bin PSD obtained by fitting to the full range of C-rates is compared with the 3-bin PSD 

fitted to the low-rate charge/discharge data [16] in Figure  3-4. A shift in particle-size distribution is 

evident in Figure  3-4b with 44 nm rather than 72 nm constituting the largest number-based fraction in 

the 4-bin PSD. The actual electrode performs better than predicted by the 3-bin-based model at high 

applied currents and so a smaller particle is needed in addition to those in the 3-bin PSD previously 

fitted on the basis of low-rate data [16]. The variation of the fitted values for the PSD at different 

applied currents is unexpected since particle size is a geometric parameter and should remain 

invariable. Such an apparent dependence of the fitted particle size on C-rate may arise from the fact 

that phenomena such as the LFP lithiation mechanism being potential (or C-rate) dependent are not 

considered in the model. Based on a phase-field model, Tang et al. [97] suggested the existence of a 

critical particle size below which LFP lithiation may change from a crystalline-to-crystalline pathway 

(i.e., conventional picture) to various crystalline-to-amorphous pathways depending on the energy 

barriers of the competing transformation routes. In a recent phase-field study, Bai and co-workers 

[94] proposed that phase change in a single LFP crystal is suppressed in favor of a facile single-phase 

lithiation mechanism under an augmented applied current. No firm experimental evidence has yet 

been reported in the literature. Using a simple single-particle model, Delacourt et al. [141] were able 

to simulate the onset of charge/discharge data of an LFP electrode with particle size as a unique 

adjustable parameter which decreases when the applied current increases. They interpreted the 

apparent rate dependence of particle size by invoking the mosaic model, originally proposed by 

Andersson et al. [142] to explain the capacity loss of LFP electrode in the first few cycles. 

The role that the concentration-dependent solid-state diffusion coefficient and the porous-

electrode effects have on the potential losses of an LFP electrode undergoing 5C discharge is 

examined by breaking down the potential-capacity curve into different components in Figure  3-3b. 

Several observations can be made concerning this breakdown: i) the potential loss is considerably 

under-predicted when a constant diffusion coefficient is used and no porous-electrode effects are 

included, ii) the electrode potential drops visibly by taking into account the porous-electrode effects 

and iii) inclusion of the experimentally-obtained thermodynamic factor ߙ୐୧ୗ,௞ in the model to account 

for variable solid-state diffusivity (i.e., ܦ୐୧ୗ,௞ ൌ ࣞ୐୧ୗߙ୐୧ୗ,௞) significantly improves the model so that 

it closely matches the experimental data over the entire curve. In the VSSD model, the depressed 

values of the thermodynamic factor in the intermediate composition range can be interpreted as being 

due to the strong attractive forces between intercalated ions inside LFP which decrease their mobility 

in the miscibility-gap range. In fact, the abrupt change in diffusion coefficient from ∼ 10ିଵ଼ m2 s−1 at 
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y ൏ ϵ and y ൐ 1 െ ϵᇱ to ∼ 10ିଶ଴	m2 s−1 at ϵ ൏ y ൏ 1 െ ϵᇱ may be related to a shift from a narrow 

diffusion-limited regime (i.e., the solid-solution end-members at low and high y) to a regime where 

phase-transformation kinetics is most likely limiting (i.e., the two-phase region in the mid-

stoichiometry range). Therefore, in addition to single-phase diffusion, the VSSD implicitly accounts 

for effects related to the phase transformation. With this in mind, the potential loss captured by the 

VSSD model (case III in Figure  3-3b) can be attributed to sluggish phase-change kinetics within LFP 

particles.  
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Figure  3-4. (a) Volume-based and (b) number-based PSDs obtained by fitting the VSSD model 

to the experimental galvanostatic data. The blue series in both figures are the values refined for 

low rate charge/discharge data (up to 1C) [16], while the red series are the values obtained 

through analysis of the full-range data (see Figure  3-3).  
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Figure  3-5. Comparison of rate capability plots obtained from experiments (circles), multi-

particle constant-diffusivity model (PSD + CSSD, dashed line) and the VSSD model 

(PSD+VSSD, solid line). The end-of-discharge capacities are normalized with respect to the 

electrode end-capacity at C/25. PSD: particle-size distribution (Table  3-3), CSSD: constant 

solid-state diffusivity  107 19
LiS

D m2 s−1 and VSSD: variable solid-state diffusivity (Figure 

 3-1b).  

In Figure  3-5, the experimental (symbols) and simulated (black solid line) rate-capability 

based on the full VSSD model are compared against results obtained from a modified version of the 

model (red dashed line) which involves the same distribution of particle sizes, but sets the solid-state 

diffusion coefficient to a single constant value (i.e., ߙ୐୧ୗ,௞ ൌ 1.0 and ܦ୐୧ୗ,௞ ൌ 7 ൈ 10ିଵଽ	m2 s−1). All 

the other parameters are the same in both versions of the model. Both simulations are found to be in 

good agreement with the experimental data, suggesting that the PSD is important in determining the 

rate capability of the electrode while the non-unity thermodynamic factor derived from the 

experimental equilibrium potential has a much smaller impact on the end-of-discharge capacities.  

Radial lithium concentration profiles within the particles in each of the four size groups 

obtained during discharge at 5C are displayed in Figure  3-6. In each case, the particle is located at the 

separator/cathode interface. The profiles for each of the four sizes clearly show that the 

thermodynamically-consistent formulation in the VSSD model of LFP as a concentrated binary 

solution leads naturally to the two-phase core-shell scheme that has been envisioned for this material 
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[87, 88] without having to explicitly assume ad hoc that such a core-shell structure forms. The steep 

concentration profile between high-concentration (y ൐ 0.9) and low-concentration (y ൏ 0.15) bounds 

resembles the interface between Li-rich and Li-poor phases that initially forms close to the particle 

surface and subsequently moves inward as discharge proceeds. The surface concentration rises 

quickly to a large value (y ≃ 0.9) and remains almost constant until the end of discharge which is 

consistent with the assumption made in this analysis that the exchange current density is independent 

of the intercalant concentration at the particle surface (Eq.  (3-5)). 
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Figure  3-6. Concentration profiles of intercalated lithium within the four particle groups 

simulated by the VSSD model over the course of discharge at a rate of 5C. The corresponding 

potential-capacity curve is plotted in Figure  3-3. Particle surface is at r =1, center at r = 0. 

Active material utilization in each particle group is calculated by integrating the 

concentration profiles with respect to the particle radius and the electrode thickness. Plots showing 

the variation in utilization of each particle group with overall electrode utilization are presented in 

Figure  3-7. As expected, the particle utilization at any given electrode utilization increases as particle 

size decreases. Also, the utilization of the smallest particle is greater than that of the electrode at all 

C-rates whereas the opposite trend is observed for 124 and 338 nm particles. The utilization of 72 nm 

particles, however, almost perfectly matches the electrode utilization over the entire capacity range 

(Figure  3-7b). It is not a coincidence that the d50 obtained from SEM image analysis is 72 nm and 

constitutes the largest active-material volume fraction. Needless to say, the particle utilization would 
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be equal to the normalized electrode capacity if the size of the LFP particles were assumed to be 

uniform rather than follow a PSD, as considered in this model. 
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Figure  3-7. Simulated utilization of the four particle groups according to the VSSD model: (a) 

44, (b) 72, (c) 124 and (d) 338 nm. Electrode and particle utilization are the ratios of coulombs 

transferred in an electrode and particle, respectively, at different stages of discharge to the 

estimated electrode capacity at C/50. The diagonal red dashed line represents the case where 

only 1 particle size rather than a PSD is considered in the model; the black dotted lines 

highlight the lithiation rates of each particle towards the end of C/2 discharge. 

As evident in Figure  3-7, utilization of the smallest 3 particles reaches close to 1 at the end of 

C/10 discharge, while the largest particle uses more than 80% of its available capacity at this 

discharge rate. The 338 nm particle is almost fully lithiated at the end of C/25 discharge (i.e., the 

lowest current density, not shown here) indicating that the estimates for its size and volume fraction 

are likely reasonable. The largest two particles (Figure  3-7c and d) experience an increase in the 

partial current density (related to the rate of change of particle utilization versus the electrode 

utilization) while the other two (Figure  3-7a and b) approach their fully lithiated state at a decreased 

rate. This is illustrated by the tangent lines (dotted) to the curves for C/2 discharge. Overall, the 
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partial current density increases for 44 nm particles as the applied current increases while the opposite 

trend occurs for 124 and 338 nm particles, clearly demonstrating that the end-of-discharge capacities 

at different C-rates depend on several particle sizes.  

3.3.2 Resistive-Reactant Model 

In addition to the quantity of the conductive agent, the quality of carbon coating and the distribution 

of conductive filler around the LFP particles were shown to influence the electrode performance [92]. 

As done in the case of the VSSD model in the previous section, the RR model is explored to 

investigate performance limitations possibly brought about by the poor electronic conductivity of 

LFP. Similar to the VSSD simulations, high-rate galvanostatic discharges are of special interest since 

resistive-reactant effects, if significant, are obviously accentuated at high current.  

Contrary to the situation of the VSSD model, LFP is assumed to be an ideal binary solution 

of the intercalant species and empty sites in this model. Consequently, the solid-state thermodynamic 

factor ߙ୐୧ୗ,௞ is set to 1 and the solid-state Fickian diffusion coefficient is a constant. The effect of 

particle-size distribution is ignored and all particles are assumed to have the same size as the d50 

obtained from SEM image analysis. The connection between the active material and the conductive 

matrix is defined in terms of a set of inter-particle contact resistances that are fitted to the data. 

According to Eqs.  (3-3),  (3-7) and  (3-8), the contact resistances appear in the kinetic expression and 

modify the surface overpotential of the electrochemical reaction. The best-connected LFP particle 

experiences the largest reaction driving force and, therefore, is lithiated faster than others; the particle 

with the poorest connection is lithiated most slowly. 

To make a fair comparison between the RR and VSSD models, electrode-level parameters 

and the rate constant are considered to be identical in both models (refer to Table  3-2). The RR model 

is fitted to the full-range constant-current discharge curves by adjusting i) the solid-state diffusion 

coefficient (assumed to be constant), ii) the resistances of the 4 groups of particles in contact with the 

conductive matrix and iii) the volume fractions of the particle groups. A comparison of the 

experimental and model-fitted curves for discharge rates ranging from C/25 to 5C is presented in 

Figure  3-8a. Apart from electrolyte limitations that are equally well accounted for in both models, the 

RR model can capture the “slanted behavior” of the experimental galvanostatic data at intermediate 

potentials, i.e., the variation of the electrode potential with the state of discharge, which increases 

with current density. According to the VSSD model, this particle-level contribution to the overall 
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potential loss is attributed to bulk limitations in terms of a concentration-dependent diffusion 

coefficient that accounts for diffusive and phase-change losses inside the LFP particles (Figure  3-3b). 
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Figure  3-8. (a) Comparison of experimental (symbols) and RR model-fitted (solid lines) 

galvanostatic discharge curves. (b) Comparison of experimental (symbols) and fitted 

galvanostatic discharge curves according to the RR (solid lines) and VSSD (dashed lines) 

models. Model parameters are provided in Table  3-2 and Figure  3-10. 
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In addition to capturing the slanted behavior of the experimental potential-capacity profiles, 

the fitting of the contact-resistance distribution (CRD) allows the model to match the end-of-

discharge capacities of the electrode especially at high C-rates. The simulated electrode rate 

capabilities with and without contact resistances are compared with the experimental data in Figure 

 3-9. The effect of using a CRD and different values of LiSD  were assessed. The results show that the 

fit depends on both the use of a CRD and the best fitting value of LiSD . The contact-resistance 

distribution impedes lithiation at the surface of the LFP particles until it eventually controls the end-

of-discharge capacities (black solid line).  
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Figure  3-9. Comparison of rate capability curves obtained from experiments (circles) and 4 

modifications of the RR model: i) no CRD included and 1219
LiS s m 107 D (red solid line), 

ii) CRD included and 1219
LiS s m 107 D (i.e., standard RR model, black solid line), iii) no 

CRD included and 1219
LiS s m 102 D (red dashed line) and iv) CRD included and 

1219
LiS s m 102 D  (i.e., standard RR model, black dashed line). End-of-discharge 

capacities are normalized with respect to the capacity measured at C/25. Inset: Mismatch 

between the end-of-discharge capacities obtained experimentally and from the RR model at low 

C-rates. Model parameters are found in Table  3-2 and Figure  3-10. 
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As evident in Figure  3-10, a severely skewed distribution of resistances containing one that is 

considerably larger than the others (i.e., ܴୡ,ସ ൌ 100	Ω	mଶ ≫ ܴୡ,ଵ, ܴୡ,ଶ	, and ܴୡ,ଷ) is obtained from 

the best fit of the RR model to the experimental data. However, the use of this CRD leads to some 

discrepancy of the fit of the model to the measured capacities at very low C-rates (i.e., C/25 and C/10) 

(see inset in Figure  3-9). From the results, the rate capability of the LFP electrode appears to be more 

sensitive to the diffusion coefficient than to the contact resistances (compare the simulation results 

with LiSD ൌ 7 ൈ 10ିଵଽ	m2 s−1 to those using LiSD ൌ 2 ൈ 10ିଵଽ	m2 s−1 in Figure  3-9), implying that 

lithium transport within the particles (i.e., diffusion coefficient and particle size) remains the major 

factor determining the end-of-discharge process even for electrodes that are composed of nano-sized 

LFP particles. It should be emphasized that the CRD in the RR model developed here accounts 

simultaneously for both the slanted behavior of discharge curves and the end-of-discharge capacities, 

in contrast to the VSSD model in which ߙ୐୧ୗ,௞ is responsible for the SOC-dependent potential loss 

and the PSD for the end-of-discharge capacities. 

In the final stage, the RR model is augmented by incorporating a distribution of particle sizes 

identical to that obtained for the VSSD simulations (Table  3-3). The modified resistive-reactant 

model (MRR) contains 4 groups of particles with different sizes each connected to the conductive 

matrix through a set of 3 contact resistances resulting in a 12-particle model. Each particle group in 

the PSD is assumed to have the same 3-bin CRD so that the model is fitted for only 5 additional 

parameters (i.e., 3 resistances and 2 volume fractions in the CRD). The entire set of PSD and CRD is 

presented in Table  3-4. The diffusion coefficient, reaction rate constant and electrode-level 

parameters are identical to those used for the RR simulations (refer to Table  3-2). As shown in Figure 

 3-11a, the introduction of the PSD into the original RR model improves the quality of the fits, 

particularly toward the end of discharge. Moreover, the deviation between the fitted and experimental 

end-of-discharge capacities at C/25 and C/10 is eliminated in this modified version of the RR model 

(Figure  3-11b). The new set of contact resistances is well distributed within a narrow range estimated 

to be less than 3	Ω	mଶ, (Table  3-4), which is 2 orders of magnitude smaller than the largest resistance 

obtained in the original RR model (i.e., ܴୡ,ସ ൌ 100	Ω	mଶ) indicating that a large Rc,4 is responsible 

for low-rate end-of-discharge limitations and embeds possible effects of solid-state diffusion. 



 

 42 

#1

#2

#3 #4

Li+ e

#1

#2

#3

#4

(b)

0 20 40 60 80 100
0

10

20

30

40

50

60

Contact resistance (  m2 )

A
ct

iv
e 

pa
rt

ic
le

 v
ol

um
e 

fr
ac

ti
on

 (
%

)

#1

#2

#3 #4

Li+ e

#1

#2

#3

#4

0 1.3 6 100
0

10

20

30

40

50

60

Contact resistance ( m2)

A
ct

iv
e 

pa
rt

ic
le

 v
ol

um
e 

fr
ac

ti
on

 (
%

)

particle 
#1

particle #2

particle 
#3 particle 

#4

35 %

52 %

8 %
5 %

(a)

(b)

 

Figure  3-10. Contact-resistance distributions in terms of volume fraction that yields the fit of 

the RR model to the experimental curves presented in Figure  3-8a. Inset in (b) depicts the four 

particle groups (circles) with different electronic connectivities to the solid matrix. 
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Table  3-4. Particle-size and contact-resistance distributions included in the MRR model. 

m and n are indices for the particle bins in the PSD and CRD, respectively. nm,  is the 

volume fraction of the th)( nm   particle group referred to total active material volume 

and 
n

nmm ,  and 
m

nmn , . 

   n 1 2 3 

   )m ( 2
.c nR  0 1.3 3 

   n  0.35 0.40 0.25 

m (nm) 2 .p mR  
m   nm ,  

1 44 0.36  0.126 0.144 0.09 

2 72 0.42  0.147 0.168 0.105 

3 124 0.12  0.042 0.048 0.030 

4 338 0.10  0.035 0.040 0.025 

 

In the VSSD model, the thermodynamic factor is obtained directly from the experimental 

equilibrium potential and so is not an adjustable parameter. Moreover, it contains information 

regarding complex phenomena occurring in the bulk of active material which partially explains the 

slanted behavior of the potential-capacity curves. Based on a simple size scaling, such a bulk-related 

potential loss is expected to be greater in larger LFP particles. In addition, under certain conditions, 

equilibrium thermodynamics of the system is influenced by the particle size [143]. The miscibility 

gap between the two coexisting phases has been shown to become smaller when the particle size 

decreases causing the phase-transformation hindrance to diminish and be limited within a narrower 

composition range [66, 144, 145]. Previous studies suggest that the electrode open-circuit potential 

deviates from a flat plateau at intermediate stoichiometries if the electrode contains particles with 

sizes below a critical value (e.g., 40 nm) that has been correlated to the existence of a single 

homogeneous phase (rather than being biphasic) over the entire stoichiometry range [65]. Aside from 

the modification of the miscibility gap, particle size has been suggested to inversely affect the redox 

potential plateau of LFP, i.e., the smaller the particle, the larger the equilibrium potential, although 

the effect is small (ca. 10 mV) [66, 146, 147]. A distribution of particle sizes will then lead to a 
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distribution of equilibrium potentials which in turn will cause the LFP electrode to exhibit a sloping 

open-circuit potential at intermediate stoichiometry [146, 147]. Although not explicitly included in 

the model, these effects will modify the calculated thermodynamic factor (i.e., proportional to the 

gradient of the electrode open-circuit potential with respect to the overall stoichiometry) and lead to a 

smaller potential loss induced by Li transport within LFP particles. 
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Figure  3-11. (a) Comparison of experimental (symbols), RR model-fitted (dashed lines) and 

modified RR model-fitted galvanostatic discharge curves. (b) Comparison of rate capability 

curves obtained from experiments (circles), fitted RR model (dashed line) and fitted modified-

RR model (solid line). 
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On the other hand, some straightforward reasoning concerning the morphology of composite 

LFP electrodes may give hints about possible correlations between the active material particle size 

and the resistive-reactant effect. The ratio of the specific surface area of the active material to that of 

the conductive filler is much larger for an electrode made up of small active-material particles, 

provided that the surface area of the conductive additive per unit volume of electrode as well as the 

volume fraction of active-material do not vary from one electrode design to another and that the 

particle size is the only design parameter. Specifically, fewer contact points per unit active area of the 

electrode lead to a larger average contact resistance; hence, an electrode comprised of nanosize LFP 

particles (e.g., d50 = 72 nm in this study) is more likely to exhibit a resistive-reactant behavior than 

one with larger active particles having the same intrinsic properties. 

Despite the comprehensiveness of the MRR model, the discrete nature of the CRD requires 

the incorporation of at least 3 contact resistances per particle size which introduces additional 

unknown parameters into the model (i.e., need to refine 5 more parameters compared to the VSSD 

model). This model is laborious in implementation and expensive in computation.  

3.4 Conclusion 

Two distinct models, the variable solid-state diffusivity model and the resistive-reactant model, are 

analyzed for a LiFePO4-based electrode to study the two critical features of this compound: 

presumably slow solid-state Li transport and poor electronic conductivity, respectively. The models 

were separately applied to fit the experimental galvanostatic discharge data obtained from a 

commercial LFP electrode. These two models were experimentally validated over a full range of 

currents ranging from C/25 to 5C.  

To obtain reasonable estimates of the adjustable parameters, operating conditions were 

divided into low discharge rate (up to 1C) and high discharge rate (from 1C to 5C) domains; low-rate 

simulations are highly sensitive to particle-level parameters but minimally influenced by the 

electrode-level properties constituting a useful guideline for parameter estimation. Particle-level 

parameters other than the PSD and CRD were estimated according to the low-rate data whereas 

electrode-level properties were refined to capture high-rate potential profiles. The particle-size 

distribution in the VSSD model and contact-resistance distribution in the RR model were obtained by 

fitting to the full range of currents. The same set of electrode-scale properties were used in both 

VSSD and RR models. Also, the reaction rate constant is taken to be identical in the two models. In 
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addition, an almost equal number of adjustable parameters were refined for the two models, i.e., 10 

parameters for the VSSD model (if LiSD  is also counted) and 11 parameters for the RR model. 

Full-range simulations confirmed the effectiveness of the variable solid-state diffusivity as it 

significantly accounted for the electrode potential loss over the entire SOC range and captured the 

characteristic shape of the experimental discharge profiles. The concentration-dependent diffusion 

coefficient generates a SOC-dependent potential drop in addition to porous-electrode effects. It can be 

regarded as a lumped parameter that accounts for 1-D atomic diffusion, grain-boundary diffusion 

[57], inter-particle ionic transport [146], phase transformation and other effects that may exist in a 

real LFP electrode. It simplifies the description of the bulk of active material while yielding useful 

information in terms of overall electrode performance from a practical point of view. The particle-size 

distribution, on the other hand, turns out to play a pivotal role in predicting the rate capability of an 

LFP electrode whereas the thermodynamic factor appeared to have very little effect on the 

galvanostatic end-of-discharge capacities.  

In the resistive-reactant model, a set of contact resistances is responsible simultaneously for 

capturing both the slanted behavior of the potential-capacity curves (i.e., additional to porous-

electrode effects) and the end-of-discharge capacities at different C-rates. The model can explain the 

SOC-dependent part of the electrode potential loss attributed to bulk limitations in the VSSD model. 

The best fitted CRD, however, over-predicted the capacities at very low C-rates. Further 

improvement of this model required the incorporation of a particle-size distribution in the RR model.  

From a comparison of the RR, modified RR and VSSD models, it appears that the VSSD 

model is a simpler yet physically descriptive model for use as a reliable platform for practical 

situations. Such situations include performance analysis, thermal studies and lifetime prediction of 

LFP-based commercial batteries. To the best of our knowledge, no clear experimental evidence of 

changes to LFP electrode properties upon aging has been reported in the literature. Nevertheless, if 

this question is of interest, both models can be used to precisely analyze an LFP electrode at different 

stages of aging (e.g., increase of contact resistances over time in the RR model and modifications of 

the PSD in the VSSD model). 

Based on the comparative study and the assumptions made, it is concluded that both the 

resistive-reactant effect and bulk-related rate limitations exist in an LFP electrode and can 

significantly affect its power capability. Portions of the total electrode potential loss are ascribed to 
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solid-state Li transport limitations in the VSSD model and to contact resistances at the particle surface 

in the RR model. Resistive-reactant losses (or bulk-related limitations) are artificially contained 

within the common model parameters in the VSSD (or RR) model. The two may be combined to 

yield a comprehensive mixed-control model. With the knowledge that bulk transport, resistive-

reactant effects and porous-electrode effects constitute the total potential loss of an electrode, accurate 

ex-situ measurement of electrode-level transport properties will help quantify the extent of the bulk 

and surface effects on a specific LFP electrode. 
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Chapter 4 

Mesoscopic Modeling of Li Insertion in Phase-Separating Electrode 

Materials: Application to Lithium Iron Phosphate 

The following chapter is based on previously published work by M. Farkhondeh, M. Pritzker, M. 

Fowler, M. Safari, and C. Delacourt in Phys.Chem. Chem. Phys. entitled: 

“Mesoscopic Modeling of Li Insertion in Phase-Separating Electrode Materials: Application to 

Lithium Iron Phosphate” 

This thesis author’s specific contribution to this paper was to develop the model, conduct simulations, 

prepare all the graphics and results, prepare the manuscript and reviewer edits with direction from the 

project advisors who were co-authors. All authors reviewed the manuscript. 

Reproduced from Ref. [109] with permission from the PCCP Owner Societies. 

4.1 Introduction 

As described in section  2.1, LFP phase transformation is characterized by an equilibrium potential 

that does not vary with the electrode SOC. Most conventional continuum models describe this phase 

transformation by juxtaposing the two phases within the bulk throughout the charge/discharge 

process[15, 16, 57, 85-100]; these models include the Kolmogorov-Johnson-Mehl-Avrami model [15, 

98, 99], reformulated phase-field models for open systems [85, 86, 90, 91, 93-97], core-shell-type 

models [57, 87-89, 92, 101] and non-ideal solid-solution models (developed and presented in  Chapter 

3) [16, 100, 102]. 

In contrast to the idea of the two end-members coexisting in the same particle, recent phase 

mapping experiments on electrochemically lithiated/delithiated LFP electrodes have shown that the 

total Li content of the electrode is distributed between two distinct groups of particles that are either 

Li-rich or Li-poor [73-76]. Dreyer’s many-particle model predicts this behavior by allowing particles 

in a porous electrode to randomly exchange Li+ ions and electrons through the electrolyte and the 

conductive matrix, respectively [14, 83]. The state of the electrode evolves from a given initial 

condition quasi-statically (i.e., at a very low rate) whereby the configurational entropy accounts for 

the stochastic exchange of matter among LFP particles. The model is also able to predict the flat 

equilibrium potential at the mid-stoichiometry range and the quasi-static hysteresis between the 
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electrode potential on charge and on discharge. In general, whether the actual particles undergo rapid 

domino-cascade-like filling/extraction of b channels or a non-equilibrium solid-solution 

lithiation/delithiation pathway during charge and discharge depends on the particle geometry (i.e., 

size and shape), synthesis route, temperature and applied potential/current [148]. Dreyer’s many-

particle model, however, does not rely on any specific mechanism for mass transfer/phase transition 

within individual particles and only investigates the evolution of the LFP electrode from a fully 

charged (discharged) state to a fully discharged (charged) state merely by incorporating 

thermodynamic considerations. Only a few continuum models in the literature consider many-particle 

interactions and attribute the “discrete filling” of LFP nanoparticles to porous-electrode limitations 

[149, 150] or the architecture of nanoparticulate electrodes [151]. 

Aside from the flat equilibrium potential, LFP electrodes exhibit other unique features, 

namely: (i) outstanding rate capability [10], (ii) development of positive intensities between the X-ray 

diffraction peaks of the end-members during high-rate cycling [11, 12], (iii) cycle-path dependence 

[13], (iv) quasi-static potential hysteresis [14], (v) non-monotonic current response to potential steps 

[15] and (vi) mismatch of electrode potential between continuous and intermittent galvanostatic 

operation modes [16, 17]. The first feature has been attributed to a potential- or current-dependent 

alteration of the insertion mechanism from a biphasic to a stable single-phase solid-solution pathway 

in some phase-field simulations [85, 94] and has been addressed by introducing multiple particle bins 

in the core-shell [57], resistive-reactant [59] and variable diffusivity [100] models (as described in 

 Chapter 3). The second feature has been justified through a rate-dependent phase-transition pathway 

described in Refs. [85, 94]. The third feature has been accommodated in the core-shell model by the 

appearance of multiple onion-like layers of Li-rich and Li-poor end members within a single particle 

whenever charge/discharge cycles are incomplete [13]. In the resistive-reactant model of Ref. [59], 

this effect has been related to the existence of multiple particle bins with different electronic 

connectivities to the conductive matrix. The fourth feature has been explained in terms of the inter-

particle communication of species in the many-particle model [14], while the fifth has been attributed 

to the nucleation and growth mechanism in KJMA-based models [15, 98]. 

In addition to these known features of LFP electrodes, Sasaki and co-workers [17] have 

recently reported the existence of a so-called “memory effect” for this biphasic Li insertion material. 

An anomalous increase in the electrode polarization is observed when the full galvanostatic 

charge/discharge of the LFP electrode is preceded by a partial charge/discharge cycle. They attributed 
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this effect as well as the galvanostatic pulse polarization mismatch, to many-particle effects and 

hindrance associated with nucleation or spinodal decomposition within the particles. 

Despite rigorous research in the literature, a single practical model that can predict all of the 

above-mentioned irregularities and pinpoint the dominant contributing factors is still lacking. This 

chapter presents a simple mesoscopic model that is able to simultaneously explain the memory effect 

and other unique phenomena observed in phase-transforming battery materials that have just been 

enumerated.  

4.2 Model Development 

The model disregards the geometric details associated with choosing between inter- and intra-

particle phase-change mechanisms by defining “elementary lithiating/delithiating units” which are 

large enough to contain a substantial number of reaction sites and for the continuity to hold (in 

contrast to atomic-scale models), but small enough at the scale of the bulk so that no intra-unit phase 

transition occurs (Figure  4-1). These mesoscopic units constitute the total active material loading of 

the electrode and may be interpreted as single Li channels lying along the b-axis, crystallites within a 

polycrystalline particle or even nanoparticles in a nanoparticulate porous electrode. An elementary 

unit is the smallest entity that can exchange species with its counterparts through the surrounding 

electronic and ionic conduits and its length scale may be defined according to the type of LFP 

particles making up the electrode. Such mesoscopic units resemble bi-stable elements in Preisach 

magnetization models or other homogenized energy models developed earlier for smart materials 

[152]. The term “unit” is used throughout this manuscript for notional convenience. 

The mathematical setting presented is deliberately kept simple and includes only the 

constituents necessary for demonstrating many-particle effects and avoids the description of 

phenomena that are already known in a porous battery electrode. Thus, the following main 

assumptions are made: i) chemical potential of Li in each unit is a non-monotonic function of 

composition, ii) units are lithiated/delithiated homogeneously, i.e., mass transfer limitations are not 

included, iii) possible mechanical effects are ignored, iv) a distribution of resistances exists among 

the units and v) porous-electrode effects are ignored. 

In the simplest approximation, the dependence of the single-unit equilibrium potential ܷ௞ on 

its composition ݕ௞ can be derived from the regular solution model for a binary system containing 

occupied and vacant Li sites (one-parameter Margules activity-coefficient model): 
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where subscript k ∈	 {1, 2,…, N} denotes a specific bin containing elementary units with similar 

properties, ܷ଴ is the standard equilibrium potential, R is the universal gas constant, T is the 

temperature and F is the Faraday constant. The second term on the right side of Eq.  (4-1) is associated 

with the enthalpy of mixing of the inserted Li atoms and Li vacancies in the solution which can be 

zero (g = 0 in an ideal solution), negative (g < 0, repulsion of like neighbors) or positive (g > 0, 

attraction of like neighbors). The significant attraction of like neighbors (i.e., g > 4) causes single-

phase instability over the intermediate composition range and eventually leads to a non-monotonic 

dependence of the equilibrium potential on the lithium concentration. In brief, the interaction 

coefficient determines the extent to which the inserted Li atoms and vacancies are miscible. A similar 

thermodynamic model was employed in the many-particle model developed in Refs. [14, 83]. 

 

Figure  4-1. Schematic diagram of the mesoscopic model proposed for a phase-change battery 

electrode. Bi-stable elementary units depicted in the top left above constitute the electrode 

ensemble shown on the top right.  
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The overpotential experienced by lithiating/delithiating units is assumed to arise from an 

ohmic hindrance R
k
 (in  mol) that impedes the insertion/de-insertion reaction and is specific to each 

bin: 

 ,kkk iRU   (4-2)

where Φ is the electrode potential and i
k
 is the partial current per mole of active material in bin k and 

is negative when the bin is being lithiated. It should be emphasized that, according to assumption (v) 

above, all units are connected to an isopotential source/sink of electrons (conductive matrix) and Li 

ions (electrolyte). This is a reasonable assumption if the porous electrode is sufficiently thin and 

dilute in terms of active material loading. Assuming a uniform Li concentration within a unit, the 

partial currents contributed by this unit is related to the change of the Li concentration in the bin 

through a simple material balance expression: 

 .k
k

y
i F

t


 


 (4-3)

The assumption of a uniform concentration within each unit is not too unrealistic; recent experiments 

on electrochemical [10, 153] and non-electrochemical (gas phase) [154] delithiation of LFP have 

revealed that Li transport within LFP particles is very fast, with a Fickian diffusion coefficient of ~ 

10-13 to 10-15 m2 s-1 that agrees well with earlier theoretical calculations (~ 10-12 m2 s-1) [69, 155] but at 

odds with solid-state diffusion-limited models such as those analyzed earlier in  Chapter 3. 

The total current density ܫ applied to the electrode is related to the partial molar currents ݅௞ 

entering/leaving the parallel bins as follows: 

 



N

k
kkt ilcI

1
catmax ,  (4-4)

where ݈cat is the electrode thickness, 
t
 is the total active material volume fraction in the electrode, k  

is the fraction of active material in bin k and c
max

 is the maximum lithium concentration in the active 

material (assumed constant since volume changes associated with lithiation/delithiation are ignored). 

No assumption concerning the unit geometry is made in the model. No transport limitation inside the 

units is considered and the model only accounts for the ohmic limitations of active material. The 

resistance varies from R
min

 for units in bin 1 all the way to R
max

 for units in bin N, according to the 
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following expression    minminmax 1
1

1
RkRR

N
Rk 


 , and volume fractions of the bins of 

units are assumed to follow a Gaussian distribution: 
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where S is the standard deviation and R is the mean resistance, i.e.,  min max / 2R R R  . This 

resistance distribution represents a statistically non-uniform physico-chemical property within the 

LFP electrode. In an electrode where LFP particles are large enough so that they contain a number of 

units, the distribution reflects that inner units are surrounded by units only whereas outer ones are 

partially surrounded by electrolyte. In an LFP electrode where units feature LFP nanoparticles, the 

distribution is in line with earlier resistive-reactant models [59, 92] which rely on the poor electronic 

conductivity of LFP. 

4.3 Results and Discussion 

The model parameters used in this study are listed in Table  4-1. The values of ݈cat, t
 and c

max
 

correspond to a sample LFP electrode with a total capacity of 2.05 mAh and geometric area of 1.2 

cm2 studied earlier in  Chapter 3. The interaction coefficient g is fitted so that the predictions of the 

model presented here match the experimental data in Ref. [14] under quasi-static conditions. ܷ଴, തܴ 

and S are estimated so that the simulations match the experimental charge/discharge curves at C/2 

reported by Sasaki et al. [17]. 

Table  4-1. Parameters used in the model. 

Parameter Symbol Value 

Number of elementary-unit bins N 100a 

Minimum resistance (mol) R
min 6.08ൈ10-5f 

Maximum resistance (mol) R
max

  6.08ൈ10-3f 

Standard deviation (mol) S 1.28ൈ10-3f 
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Standard equilibrium potential (V vs. Li) ܷ଴ 3.427f 

Interaction coefficient in the Margules activity-coefficient model g 6f 

Electrode thickness (m) ݈cat 80ൈ10-6 [100] 

Total active-material volume fraction 
t
  0.351 [100] 

Maximum solid-phase Li concentration ( 3m mol  ) c
max

 22,806a 

a: assumed; f: fitted.   

Whereas the original many-particle model was limited to quasi-static operation [14, 83], the 

present model is used for both low- and high-rate conditions, while disregarding transport limitations 

at the unit and electrode scales for the sake of simplicity. As shown in Figure  4-2a, the model is able 

to predict the wide potential plateau that is typically observed during both charge and discharge 

potential-composition curves of two-phase battery materials. In the case shown, a very low rate 

(C/1000) is considered to galvanostatically charge and discharge an LFP electrode. Points labeled 

from 1 to 7 correspond to the results obtained over a time sequence during the C/1000 discharge. 

Also, the simulated curves exhibit hysteresis whereby the plateaus appear at different potentials 

during charging and discharging without resorting to any consideration of coherency strain energy 

[135], in agreement with experimental observations and simulation results from a previous many-

particle model [14]. The single-unit equilibrium potential is also included in Figure  4-2a for 

comparison. Figure  4-2b shows the dynamics of quasi-static electrode lithiation. The bin utilization is 

color-coded from deep blue for fully-delithiated to dark red for fully-lithiated states. Based on the 

model, units accommodate either the Li-poor phase or Li-rich phase at any given time and only a few 

bins (e.g., only 1 or 2) have intermediate concentration (i.e., energetically unstable) corresponding to 

the narrow boundary between the two regions. In other words, units are segregated into two groups, 

one being Li-rich and the other being Li-poor and the lithiation process occurs in a “unit-by-unit” 

sequence. The narrow boundary indicates that lithiation proceeds as a distinct reaction front 

propagating among units during the electrode discharge. The numbered lines correspond to the 

numbered points on the discharge curve in Figure  4-2a. The reaction front is expanded in Figure  4-2c 

in terms of the Li content of each bin at the indicated times. At the start of discharge, units are filled 

together at the same rate (C/1000) while maintaining an identical Li concentration (i.e., solid-solution 

domain) until a point is reached where even a small change of Li concentration in one unit moves it 

into the unstable region. This, in turn, triggers the fast traverse of the unit content across the mid-
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composition range, which is not energetically favorable (i.e., adequate driving force Φ - U
k
(y

k
)), to 

the Li-rich branch of the single-unit equilibrium potential. The process starts from the least resistive 

unit and ends with the most resistive one. Since all units are electronically and ionically connected, 

they experience the same electric potential Φ throughout the lithiation process. In the case of quasi-

static operation, this potential remains almost identical to the single-unit equilibrium potential of the 

lower spinodal node (i.e., U
k
 where 0




k

k

y

U
) until the last unit leaves the spinodal node and crosses 

the unstable region. The fluctuations in the electrode potential observed along both the discharge and 

charge plateaus in the simulated potential-utilization curves are artifacts of the model since they are 

caused by the sequential filling of the bins. They are expected to smooth out and eventually vanish if 

the resistance is distributed across a larger number of bins (i.e., continuum limit). 

With an increase in the applied current, Φ deviates significantly from the spinodal node 

potential and enough driving force is now provided for all units to participate in charge transfer to an 

extent that is governed by their resistances. Consequently, the lithiation mechanism moves from a 

purely sequential unit-by-unit mechanism to a mixed sequential-parallel regime at high-rate 

charge/discharge. This change in the lithiation mechanism with applied current is demonstrated in 

Figure  4-3b and Figure  4-3c where a much wider range of bin utilizations between Li-rich and Li-

poor states is observed than is found in the quasi-static condition in Figure  4-2b. Along with the 

presumed fast Li transport inside the units, this effect can explain the outstanding rate capability (end-

capacity as a function of applied current) of LFP electrodes. This is in line with the apparent 

dependence of particle size or rate constant on applied current in the single-particle analyses of Refs. 

[141] and [59] where lower apparent particle radius or greater rate constant is required, respectively, 

at high current for model simulations to agree with experiments. It is also in agreement with the 

analysis of  Chapter 3 where the PSD appears to be rate-dependent, i.e., the fitted PSD is shifted 

towards smaller particles in order to accurately predict the electrode performance during galvanostatic 

discharge at higher currents. The increase in the population of simultaneously lithiating bins at high 

rates agrees qualitatively with the change of the insertion mechanism from a two-phase to a solid-

solution pathway that was inferred from the development of positive intensities between the 

LiଵିϵᇲFePOସ and LiϵFePOସ reflections during operando XRD analysis of electrodes under rapid 

charge/discharge cycles [11, 12]. Units with lower resistance carry higher partial currents until they 

become fully lithiated (left branch of the curves at given snapshots in Figure  4-3c) after which their 
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partial currents drop toward zero. Since the total current would have to be accommodated by the 

remaining more resistive units, this would cause them to become more polarized and the cell potential 

to drop leading to the downward slope in the discharge curve at intermediate electrode utilization. 
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Figure  4-2. (a) Voltage profile of the many-unit electrode undergoing slow galvanostatic 

charge/discharge (C/1000, quasi-static) compared with the single-unit equilibrium potential. (b) 

Bin utilization versus electrode utilization during C/1000 discharge. Numbers 1 to 7 correspond 

to the blue points indicated in (a). (c) Lithium content of each bin at different times during 

C/1000 discharge. 

Intuitively, a purely parallel lithiation mechanism would be ideal and lead to the most 

efficient electrode operation. Such a condition would occur if the physico-chemical properties of the 

units as well as their ionic/electronic environment were perfectly uniform throughout the electrode. 

However, this is seldom the case in an actual many-unit ensemble and the limitations associated with 

sequential lithiation described above are unavoidable. In the model presented here, the intra-unit 
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limitations are intentionally disregarded and the ohmic resistance distribution determines the sloping 

behavior and end-capacity of the potential-capacity curves. It implies that any improvement of the 

resistance distribution (i.e., broadness and mean value) that shifts the lithiation mechanism toward 

parallel dynamics will enhance the electrochemical performance of the LFP electrode. A similar 

statement can be made for other distributed properties in an actual electrode such as unit size, single-

unit equilibrium potential and/or ionic/electronic resistances across the electrode.  
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Figure  4-3. (a) Galvanostatic discharge curves at different C-rates. (b) Bin utilization versus 

electrode utilization during discharge at 5C. (c) Li content of units in each bin at different times 

during discharge at 5C. 

 

The memory effect in Li-ion batteries is defined as an abnormal potential overshoot observed 

in the charge-discharge cycle immediately following a partial charge-discharge cycle [17]. The 
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mesoscopic model presented here is used to predict the results obtained from a set of virtual 

experiments that mimic the actual experiments described in Ref. [17]. This experiment consists of a 

sequence of 3 stages: memory-writing, memory-release and regular cycles. The initial condition is set 

to y
1
 = y

2
 = … = y

N
 = 0.975 (i.e., SOC = 2.5%) in the units so that the electrode is, in practice, fully 

discharged at the outset. Starting from this state, the electrode is first charged (at C/4, C/2 or 1C) to a 

certain state-of-charge (30%, 50% or 70%) whereupon it is allowed to rest for 1 hour. This is 

followed by a discharge step that brings the electrode back to the initial SOC (memory-writing cycle). 

After another rest period (1 minute, 10 minutes, or 1 hour), the electrode is fully charged (SOC = 

100%) and then allowed to rest for 1 hour before being discharged to the initial SOC (memory-release 

cycle). The third cycle is a repetition of the second one as a control to confirm the observations 

(regular cycle). As shown in Figure  4-4a-c (compare with Figure 2 of Ref. [17]) the potential bump 

appearing during the memory-release cycle (red line) coincides with and tracks the depth of the 

memory-writing cycle (blue line), i.e., the electrode potential remembers the depth of the previous 

shallow cycle. Also, fully charging of the electrode erases the memory effect and the bump is no 

longer observed during the subsequent charge-discharge cycles (regular cycle, black line). The effects 

of the release cycle rate, rest time between the writing and release cycles and the repetition of 

multiple memory-writing cycles are presented in Figure  4-4d-f, respectively. The results show that the 

potential anomaly is amplified by increasing the applied current during the release cycle, which stems 

from the resistive nature of the units assumed in the model. For a writing cycle of 50% charge-50% 

discharge, the relaxation time inversely affects the memory effect, i.e., the potential bump diminishes 

and ultimately disappears as the relaxation time is increased. In addition, the memory effect is 

enhanced by repeating the same memory-writing cycle a number of times (Figure  4-4f).  

The impact of the depth-of-discharge of the memory-writing cycle is shown in Figure  4-5a-c. 

The memory effect becomes more pronounced as the depth of discharge decreases and the writing 

cycle becomes more imbalanced. Moreover, the potential overshoot does not disappear after a long 

relaxation step succeeding the 50% charge-40% discharge cycle (Figure  4-5d), which contrasts with 

the balanced memory-writing cycle described earlier (Figure  4-4e). The simulation results for all of 

the above-mentioned operations agree qualitatively with the reported experimental results [17] in 

spite of the simplicity of the model, implying that the incorporation of the non-monotonic single-unit 

potential and the resistance distribution in the many-unit effects is responsible for these observed 

phenomena. 
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Figure  4-4. Memory effect upon (a) 30%, (b) 50% and (c) 70% partial charge-discharge 

memory-writing cycles, as indicated by the red arrow. Effects of (d) memory-release rate, (e) 

rest time between the memory-writing and memory-release cycles and (f) number of successive 

memory-writing cycles on the extent of the memory potential bump. The rate for both memory-

writing and memory-release cycles is C/2 with 10 minutes of relaxation time between the 

writing and release cycles, unless otherwise stated. The memory-writing cycle is 50% deep 

unless otherwise stated. 

In order to gain further insight into the above observations, unit utilizations are plotted in 

Figure  4-6 at the outset and end of the steps constituting the memory-writing cycle for the selected 

experiments. Theoretically, a fully-discharged electrode would consist of elementary units with Li 

concentration equal to 1; in practice, however, this is not the case and the end-capacity deviates from 

the theoretical value as the applied current increases (e.g., C/2, the experimental condition used by 

Sasaki et al. [17]). Therefore, the initial concentration of Li in the units is set to be below 1 and within 

the Li-rich solid-solution region according to the single-unit equilibrium function. This also 

guarantees zero inter-unit exchange of species and initial stability of the electrode. Although not 
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included here, simulations with zero initial state-of-charge did not generate any memory effect for a 

perfectly balanced memory-writing cycle. At the same time, the results in Figure  4-5 show that the 

memory effect becomes more pronounced as the memory-writing cycle becomes more imbalanced. 

Taken together, these findings indicate that a necessary condition for the memory effect to appear in 

an LFP electrode is the existence of a non-zero residual capacity at the onset of memory-release 

charging which may originate either from a non-zero initial SOC or from an imbalanced writing 

cycle. A memory effect should therefore not be observed in an electrode that has been preconditioned 

at extremely low currents (i.e., zero initial SOC) and has undergone an extremely slow memory-

writing cycle (i.e., approaching a balanced cycle). 
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Figure  4-5. Memory effect during a charge following memory-writing cycles with 50% depth of 

charge and (a) 50%, (b) 45% and (c) 40% depths of discharge. (d) Effect of long relaxation time 

(24 h) after shallow (blue) and deep (black) memory-writing discharges. The rate during both 

memory-writing and memory-release cycles is C/2 with 10 minutes of ret time between the 

writing and release cycles, unless otherwise stated. 
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In order to gain further insight into the above observations, unit utilizations are plotted in 

Figure  4-6 at the outset and end of the steps constituting the memory-writing cycle for the selected 

experiments. Theoretically, a fully-discharged electrode would consist of elementary units with Li 

concentration equal to 1; in practice, however, this is not the case and the end-capacity deviates from 

the theoretical value as the applied current increases (e.g., C/2, the experimental condition used by 

Sasaki et al. [17]). Therefore, the initial concentration of Li in the units is set to be below 1 and within 

the Li-rich solid-solution region according to the single-unit equilibrium function. This also 

guarantees zero inter-unit exchange of species and initial stability of the electrode. Although not 

included here, simulations with zero initial state-of-charge did not generate any memory effect for a 

perfectly balanced memory-writing cycle. At the same time, the results in Figure  4-5 show that the 

memory effect becomes more pronounced as the memory-writing cycle becomes more imbalanced. 

Taken together, these findings indicate that a necessary condition for the memory effect to appear in 

an LFP electrode is the existence of a non-zero residual capacity at the onset of memory-release 

charging which may originate either from a non-zero initial SOC or from an imbalanced writing 

cycle. A memory effect should therefore not be observed in an electrode that has been preconditioned 

at extremely low currents (i.e., zero initial SOC) and has undergone an extremely slow memory-

writing cycle (i.e., approaching a balanced cycle). 

The uniform Li content initially set for all units evolves during the memory-writing charge 

according to the resistivity of the units until the electrode reaches its assigned depth of charge (stage 

labeled A in Figure  4-6a-f). The next rest period leads to a redistribution of Li among the units which 

may or may not reach their most stable state depending on the relaxation time (stage B). The 

subsequent discharge transforms both stable delithiated (least-limiting trail) and the partially-

delithiated (thermodynamically unstable) units to the Li-rich phase generating an unusual utilization 

profile even when the electrode reaches the same initial SOC (stage C). The initial residual capacity 

(i.e., Li deficiency Δy
k
 = 0.025, k = 1, 2, … , N) is redistributed and localized as a depression in the 

profile over a certain fraction of units (bins 26 to 39, Stage C in Figure  4-6a-c) while other units are 

fully lithiated. Needless to say, a larger residual capacity leads to a wider and deeper depression in the 

bin utilization curves as shown in Figure  4-6e-f. Finally, the rest period preceding the memory-release 

cycle enables the units to relax to a more stable condition by exchanging their Li content with each 

other (stage D). The localized residual capacity at the outset of the memory-release cycle (i.e., stage 

D) is responsible for the occurrence of the memory effect. The memory effect is boosted by enlarging 

the accumulated residual capacity (Figure  4-5a-c) or diminished by easing the utilization non-
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uniformity. Figure  4-6a-c show the distributions of bin utilization after 3 different rest periods (1 min, 

10 min and 1 h, respectively) between the writing and release cycles corresponding to the results 

shown in Figure  4-4e. The utilization depression clearly diminishes by increasing the relaxation time 

from 1 min to 1 h in agreement with the disappearance of the memory potential-bump in Figure  4-4e.  
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Figure  4-6. Utilization of elementary-unit bins at the outset and end of relaxations during the 

memory-writing cycle for the following 6 different sequences: (a) 50% charge, 1 h rest, 50% 

discharge, 1 min rest, (b) 50% charge, 1 h rest, 50% discharge, 10 min rest, (c) 50% charge,1 h 

rest, 50% discharge, 1 h rest, (d) 5 cycles of 50% charge, 1 h rest, 50% discharge, 10 min rest, 

(e) 50% charge, 1 h rest, 40% discharge, 10 min rest and (f) 50% charge, 1 h rest, 40% 

discharge, 24 h rest. 
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If the applied current is set to zero and Eq.  (4-2) is substituted into Eq.  (4-4), the following 

expression for the relaxing potential is obtained: 

 ,
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keq RR are the resistance of each bin and the equivalent 

resistance of the electrode, respectively. Based on this expression, one concludes that, given a long 

enough rest period, the electrode potential Φ approaches a common single-unit equilibrium potential 

)( kyU  for all units which may or may not correspond to a common unit utilization. For an overall 

electrode utilization located within the sloping branches of the electrode potential profile, a common 

equilibrium potential is realized only when all units share an identical Li concentration (stage D in 

Figure  4-6c). However, if the electrode utilization is within the biphasic region, an adequate rest time 

causes the elementary units to segregate into two groups with an identical equilibrium potential but 

different Li concentrations, i.e., Li-rich and Li-poor phases. Our simulations show that the 

equilibrium potential of the electrode ensemble is bounded within the quasi-static potential hysteresis 

but is not unique for a given utilization depending on the history of the electrode. Accordingly, the 

exact concentrations of Li in the two phases vary slightly. On account of a non-uniform resistance, 

the previous history of the electrode dictates the configuration of the two phases among the units. For 

instance, less resistive units constitute the Li-poor phase and more resistive ones make up the Li-rich 

phase during a partial charge. On the other hand, after an imbalanced memory-writing cycle, the bin 

utilization depression grows into a gap where bins with intermediate resistivity exhibit little 

utilization (i.e., Li-poor phase) during the relaxation (stage D in Figure  4-6f). This explains why the 

memory effect is not removed in Figure  4-5d even after a long relaxation period. Moreover, the 

modification of the memory effect with repetition of the same memory-writing cycle (Figure  4-4f) 

originates from the utilization anomaly being reduced to the narrow range shown in Figure  4-6d. 

In order to highlight the influence of the charge/discharge history on the electrode 

performance, a simple path-dependence simulation is performed in accordance with the previous 

experiments described in Ref. [59]. Starting from a fully discharged state, the electrode is charged for 



 

 64 

12.5 hours at a current density corresponding to C/25 to raise its SOC to 50%. This is followed by a 

2-hour rest period after which the electrode is charged (or discharged) at 1C to 4 V (2.8 V). The same 

procedure is repeated in the opposite direction starting from a fully charged state; the electrode is 

discharged to 50% SOC over 12.5 hours at C/25 and then rested for 2 hours after which 1C discharge 

(or charge) current is applied until a voltage 2.8 V (4 V) is attained. Both the electrode potential and 

capacity differ depending on the path taken to reach the end of the charge (or discharge). The 

simulation results presented in Figure  4-7 agree well with the trends observed experimentally and can 

be explained through the same reasoning discussed above for the memory effect simulations [13, 59].  

3.2

3.4

3.6

3.8

4

P
ot

en
tia

l v
s.

 L
i (

V
)

C/25 chargere
st

1C charge

1C charge

restC/25 discharge

(a)

0 0.2 0.4 0.6 0.8 1
2.8

3

3.2

3.4

3.6

3.8

Electrode utilization

P
ot

en
tia

l v
s.

 L
i (

V
)

1C dischargere
st

C/25 discharge

1C discharge

C/25 charge

re
st

(b)

P
ot

en
tia

l v
s.

 L
i /

 V
P

ot
en

tia
l v

s.
 L

i /
 V

 

Figure  4-7. Path dependence during (a) fully charging of electrode at 1C after being brought to 

50% SOC at C/25 via different paths (charging from 0% SOC (dashed line) and discharging 

from 100% SOC (solid line)) and 2-h rests and (b) discharge obtained by mirroring the 

operating conditions in (a). 
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An alternating sequence of constant-current and open-circuit steps constitutes the 

galvanostatic intermittent titration technique [156], which is a useful method regularly employed by 

battery researchers to estimate the chemical diffusion coefficient of guest species in insertion 

materials. One distinct feature of an LFP electrode, as suggested by Sasaki et al. [17], is the 

polarization overshoot of the applied GITT pulses compared to a continuous galvanostatic potential 

profile at the same current. In other words, the intermittent relaxations during the GITT pulses modify 

the system so as to impede the electrode response toward the subsequent pulse current. The 

simulations of approximate solid-solution models such as those developed in  Chapter 3 have not been 

able to show this feature. Conventional bulk phase-change models may describe it by minimizing the 

two-phase interface and coherency strain energies during the rest period and re-triggering the 

nucleation and growth process during the subsequent current pulse. The many-unit approach, on the 

other hand, effectively captures the GITT polarization overshoot (Figure  4-8a) by allowing unstable 

activated units to reach their most energetically favorable configuration during intermittent rest 

periods, i.e., either Li-rich or Li-poor phase. Considering a GITT discharge process for instance, the 

absence of unstable partially-lithiated units in a relaxed partially discharged electrode (i.e., as 

opposed to an electrode at the same SOC under a continuous discharge operation) leads to a smaller 

number of available units (with high resistance) having to sustain the following pulse at the same 

current. Since this makes it more difficult for charge transfer to occur, the electrode reaches 

successively higher overpotentials during the subsequent pulses towards the end of the discharge. 

The potentiostatic intermittent titration technique (PITT) is another electroanalytical method 

widely used for determining transport as well as thermodynamic properties of electrochemical 

materials [157]. A “staircase” voltage profile with a certain successive decrement (increment) 

between the upper (lower) and lower (upper) cut-off potentials is applied and the current decay with 

time is recorded for each potential step. Each individual titration is terminated when the absolute 

current reaches a preset minimum value. This technique is of interest for investigating phase-change 

materials since it helps reveal possible phase-transformation mechanisms from the observed transient 

current (e.g., KJMA analysis). More specifically, the bell-shaped current response of an LFP 

electrode over intermediate SOCs is commonly interpreted to arise from the nucleation and growth of 

the second phase [15, 98, 99, 148] in contrast with the Cottrell-type current response which is 

indicative of a diffusion-limited insertion process. However, as shown in Figure  4-8b, the proposed 

model is able to predict the appearance of a current hump in the chronoamperogram although it does 

not include the nucleation and growth of a second phase. Thus, an alternative explanation for the 



 

 66 

current hump that emerges from our model is the non-equilibrium lithiation of single units and 

statistical distributions of physical properties that limit the charge transfer rate in a phase-change 

porous electrode rather than commonly accepted phase-change mechanisms such as nucleation and 

growth. 
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Figure  4-8. (a) GITT charge and discharge (solid line) simulated by applying C/2 pulses for 16 

min followed by 2 h rest. The continuous galvanostatic charge and discharge curves at C/2 

(dashed lines) are included for comparison. (b) PITT discharge simulated by applying the 

staircase potential profile with a 10 mV decrement from 3.8 to 3.0 V versus Li reference 

electrode. Each titration is terminated when the absolute current reaches C/50. 
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The analyses presented in this chapter help explain the experimental observations [73-76, 81, 

158] of the collective lithiation of discrete units in a porous LFP electrode. The model presented here 

has been evaluated under various operating modes including continuous/intermittent partial/full 

galvanostatic and potentiostatic cycles. Overall, the results suggest that interactions among many 

interconnected insertion units (e.g., LiFePO4) play a dominant role in the electrochemical 

performance of the phase-change electrode and should form the framework for a prospective 

comprehensive model. It is important to emphasize that the analysis in this chapter has been intended 

for demonstration purposes only. Complications at both unit (e.g., charge-transfer kinetics and solid-

phase electronic/ionic transport within and at the surrounding of each unit) and electrode (e.g., 

porous-electrode effects) scales are acknowledged and should be included in such a comprehensive 

model for more quantitative simulations. 

4.4 Conclusion 

In this chapter, we have presented a simple mathematical model for the dynamics of phase-

transforming porous electrodes applied to LiFePO4. The model features a non-equilibrium solid-

solution pathway for Li insertion/de-insertion into and a Gaussian distribution of resistances among 

channels/crystallites/nanoparticles constituting total active material loading in a porous electrode. It 

assumes rapid (but energetically expensive) transport of species inside each individual unit and an 

inherent distribution of physico-chemical properties of the material in an ensemble of many 

electronically and ionically wired units. With only these two factors involved, our model can 

simultaneously explain a number of unusual qualities associated with lithium iron phosphate 

electrochemical performance including the quasi-static potential hysteresis, high rate capability, 

cycle-path dependence, larger electrode polarization in GITT compared with that observed during a 

continuous cycling at the same current, bell-shaped current response in PITT and the most recently 

observed memory effect. The simplicity of the model, however, does not rule out the known 

complications at the unit and electrode levels but rather magnifies the significance of unit-to-unit 

interactions even at high currents and under combined operating modes which has been typically 

ignored in mathematical treatments of phase-change porous electrodes so far. 
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Chapter 5 

Mesoscopic Modeling of LiFePO4 Electrodes: Experimental 

Validation Under Continuous and Intermittent Operation Modes 

The following chapter is based on the work to be submitted by M. Farkhondeh, M. Pritzker, M. 

Fowler and C. Delacourt, entitled: 

“Mesoscopic Modeling of LiFePO4 Electrodes: Experimental Validation under Continuous and 

Intermittent Operation Modes” 

This thesis author’s specific contribution to this paper was to design and conduct experiments, 

develop the model, conduct simulations, prepare all the graphics and results, prepare the manuscript 

with direction from the project advisors who were co-authors. All authors reviewed the manuscript. 

5.1 Introduction 

It has been discussed in the previous chapters that core-shell-type [57, 101] and non-ideal solid-

solution [16, 100] models could be used to describe the juxtaposition of the two phases in a single 

particle observed during chemical lithiation/delithiation. However, in most cases they fail to provide 

an accurate physical picture of the process (i.e., filling of b channels in the Pnma space group of 

olivine crystal structure and the many-particle effects) [67, 68, 124]. Moreover, although frequently 

used in the literature to simulate the electrochemical performance of LFP electrodes, these models are 

either impractical or unable to predict the electrode performance beyond continuous galvanostatic 

operating conditions.  

Inspired by Dreyer’s many-particle model [14, 83], we have developed a simple mesoscopic 

model in  Chapter 4 that disregards the choice of inter- versus intra-particle phase-transformation 

mechanisms. In addition to the potential plateau, quasi-static hysteresis, high rate capability and rate-

dependent lithiation/delithiation dynamics of LFP electrodes, the model was able to qualitatively 

predict other peculiar behavior of LFP electrodes including cycle-path dependence [13, 59], mismatch 

of electrode polarization in GITT compared with continuous cycling at the same rate [16, 17], bell-

shaped current response in PITT [15] and the memory effect [17].  
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In this chapter, the mesoscopic model developed in  Chapter 4 is embedded into porous-

electrode theory and is validated by comparing the simulation results to experimental discharge data 

under various continuous/intermittent operating conditions.  

5.2 Experimental 

The LFP electrode used in this study was fabricated from a commercial lithium-ion pouch cell (20 Ah 

nominal capacity) patterned for plug-in hybrid electric (PHEV) and electric (EV) vehicle applications. 

The pouch cell was first discharged at C/10 down to 2.0 V and held at that voltage until the current 

decayed to C/50.  

The discharged cell was then dismantled in an argon-filled glove box (<1 ppm H2O, <1 ppm 

O2) and the double-side coated cathode sheets were recovered. In order to perform electrochemical 

experiments, the coating on one side of the electrode sheet was removed by gently rubbing it with a 

cotton-based wipe soaked in 1-methyl-2-pyrrolidone (NMP). The resulting one-side electrode sheet 

was subsequently rinsed with anhydrous dimethyl carbonate (DMC) in order to remove any 

remainder of the electrolyte salt in the porous electrode. Circular disks of LFP electrodes were then 

punched inside the glove box using a 10.5 mm diameter puncher. 

Coin cells (CR2032) were assembled using the punched LFP electrodes as the working 

electrode, 12.7 mm lithium metal discs as the reference/counter electrode and Celgard 2500 

polypropylene membrane as the separator between the working and reference/counter electrodes. A 1 

mol	Lିଵ solution of LiPF6 in ethylene carbonate (EC) and dimethyl carbonate (1:1 vol.) was used as 

the electrolyte and added to the electrode and separator prior to sealing the cells. The assembled coin 

cells then underwent a series of continuous and intermittent galvanostatic charge/discharge 

experiments using a multi-channel potentiostat/galvanostat (VSP, Bio-Logic, France). The cells were 

maintained at 25°C in a temperature chamber (Cincinnati Sub-Zero MCB-1.2, USA) throughout the 

cycling experiments. Prior to the main experiments, the cells were first conditioned at 25°C using the 

following procedure. They were first charged at C/2 (1C rate is equivalent to 1.38 mA	cmିଶ of 

applied current) up to 4.2 V followed by a constant-voltage step until the current response decayed to 

C/50. After a resting period of 2 hours, the electrode was discharged at the same rate down to 2.5 V 

followed by another constant-voltage step at 2.5 V until the discharge current reached the same cut-

off value of C/50. This conditioning procedure was repeated so that a total of 5 of these charge-

discharge cycles between 2.5 V and 4.2 V were conducted prior to the main experiments. 
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Rate-capability tests were carried out according to the following charge and discharge 

sequence: i) galvanostatic charge at a specified C-rate until the electrode potential reached the upper 

cut-off value, ii) charge at constant voltage until the current reached C/50, iii) 2-hour relaxation 

period, iv) discharge at the same rate as that in step i) until the electrode potential reached the lower 

cut-off potential, v) discharge at constant-voltage until the current reached C/50, and vi) 2-hour 

relaxation period. 

The galvanostatic intermittent titration technique was applied to the LFP electrode starting 

from a fully charged state. The GITT waveforms for each of these experiments consisted of a 2-min 

(or 6-min) galvanostatic discharge pulse at 1C followed by 2-hour (or 15-min) relaxation period 

applied repeatedly to the electrode until the lower cut-off potential was reached. Depending on the 

durations of the discharge pulse and the subsequent relaxation period, three different conditions were 

applied to an electrode. These three GITT experiments are referred to as “2min P-2h R”, “2min P-

15min R” and “6min P-2h R” throughout this chapter for brevity (“P” stands for current pulse and 

“R” stands for relaxation period). 

The electrode thickness was measured using a P-6 Stylus Profiler (KLA-Tencor, USA). A 

four-probe setup (C4S 67/1, Cascade Microtech Inc., USA) and a precision multi-meter (Keithley 

2440 5A, Tektronix, USA) were used to measure the effective electronic conductivity of the LFP 

electrodes delaminated from the aluminum substrate. Conductivity measurements of a 2-layer 

aluminum/porous electrode medium are prone to large error due to the significant difference between 

the conductivity of aluminum and the porous composite electrode and due to the presence of a non-

zero contact resistance between these layers. Consequently, the aluminum current collector was de-

bonded from the porous-electrode layer prior to the conductivity measurements by immersing the 

aluminum/electrode samples in a 1 mol	Lି ଵ aqueous solution of NaOH for a short period of time (1 to 

3 minutes). The delaminated electrode was then rinsed with deionized water to remove the remainder 

of the solute and any the reaction products before being dried on a glass slide at room temperature. 

The conductivity measurements were conducted at 5 different currents within the range of 0.1 mA to 

1 mA each replicated 4 times.  

5.3 Model Development 

In order to simulate the performance of an actual LFP electrode, the previously proposed mesoscopic 

model is used to describe the many-unit interactions in the electrode. Model parameters including the 
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equilibrium potential and resistance distribution are different from those used in  Chapter 4 as detailed 

later in this section. The model is embedded into porous-electrode theory to give a more realistic 

account of the electrode performance under various operating conditions.  

The model assumes that the elementary lithiating/delithiating units exist in a non-equilibrium 

condition which, despite the biphasic nature of the material at equilibrium, accommodate a single 

solid-solution phase throughout the lithiation/delithiation process. As such, the model assumes that 

the chemical potential of Li in each unit is a non-monotonic function of composition. The elementary 

units in the model are meso-scale domains which are large enough to contain substantial number of 

reaction sites (i.e., vacancies and inserted species), but small enough so that no intra-unit phase 

separation occurs. 

The proposed mesoscopic model is supported by the experimental observation of collective 

lithiation/delithiation of nano particles in an LFP electrode [11, 12, 74-76, 81, 82]; in this situation, 

LFP nano particles can be considered as the elementary units. Our mesoscopic physical representation 

is also in line with high-resolution transmission-electron-microscopy observations of chemically 

delithiated LFP particles where a large amount of microstructural defects partition the pristine 

particles (i.e., if not nano sized) into small meso-scale domains [77-80]. Maier et al. [77] hypothesized 

that mechanical damages associated with many electrochemical lithiation/delithiation cycles 

continually change the pristine microstructure by forming smaller, more mechanically stable active 

domains until an optimum microstructure is reached. In this case, the mechanically stable domains 

constitute a collection of interconnected elementary units as described above. In other words, the 

active material microstructure evolves to the most energetically favorable state, although never in 

perfect equilibrium, whereby the co-existence of Li-rich and Li-poor phases in each individual meso-

scale domain is completely suppressed [77, 159, 160].  

The model presented here assumes a mechanically stable, well-evolved microstructure. The 

evolution of electrode microstructure under cycling is beyond the scope of this thesis work and 

deserves separate comprehensive analysis. 

A distribution of reaction resistance is assumed to exist among the LFP. This assumption is 

justified on the basis of the extremely low electronic conductivity (10ି଻	S	mିଵ) that requires the 

application of conductive coatings onto the active particles, as well as the one-dimensional (i.e., 

ሾ0	1	0ሿ direction) ionic conductivity of the material. 
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The model ignores solid-state diffusion inside LFP units following recent observations of 

ultrafast chemical [154] and electrochemical [10, 153] delithiation/lithiation of LFP units which 

counter the common belief that intra-particle mass transport is a limiting factor for Li insertion/de-

insertion into/from the units. With this view, the geometrical description of LFP units becomes 

irrelevant as far as the diffusion length is concerned. 

The change of the dimensionless Li concentration ݕ௞ in the ݇th elementary unit with time is 

related to the partial current ݅௞ (in A	molିଵ) of that unit according to: 

 ݅௞ ൌ െܨ
௞ݕ݀
ݐ݀

 (5-1)

where ܨ is the Faraday constant and ݐ is time. Ohm’s law describes the local potential loss associated 

with the insertion/de-insertion of Li into/from each unit: 

௞ߟ  ൌ ܴ௞݅௞ (5-2)

where ߟ௞ is the insertion/de-insertion reaction overpotential and relates to the electric potential of 

electrode Φଵ and electrolyte Φଶ according to: 

௞ߟ  ൌ Φଵ െ Φଶ െ ܷ௞ (5-3)

where ܷ௞ is the equilibrium potential of elementary unit ݇ and is a non-monotonic function of ݕ௞. In 

the simplest approximation, the regular solution model (one-parameter Margules model) may be used 

to describe the thermodynamic state of each unit [109]. However, this model turns out to be too 

simple to capture the actual single-unit thermodynamic behavior of elementary units, which is key for 

a realistic simulation of the charge/discharge dynamics of an LFP electrode. Alternatively, a modified 

two-parameter Margules model is assumed here, which gives a more sophisticated thermodynamic 

description of LFP units by permitting an asymmetric dependence of the excess free energy of the 

binary solution (i.e., solution of the inserted species and empty sites) on composition: 

 

ܷ௞ ൌ ܷ଴ ൅
ܴܶ
ܨ
ln ൬

1 െ ௞ݕ
௞ݕ

൰

൅
ܴܶ
ܨ
൬ܣଵሺ2ݕ௞ െ 1ሻ

൅ ଶܣ ൬3ݕ௞ െ
3
2
௞ݕ
ଶ െ 1൰ ൅ ௞ݕሺ2ܤ െ 1ሻ஼൰ 

(5-4)
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ܷ଴ is the standard equilibrium potential ܴ is the gas constant, ܶ is temperature and ܣଵ and ܣଶ are the 

Margules parameters. The last term in Eq.  (5-4) is inspired by the Redlich-Kister expansion [131] and 

is included in the model to capture non-idealities of the Li-poor and Li-rich solid-solution end-

members (i.e., when ݕ௞ → 0 or ݕ௞ → 1). It assures a well-defined equilibrium potential of LFP within 

the potential window of ~ 2 V to ~ 4.5V vs. Li reference electrode. Setting ܣଶ ൌ 0 and ܤ ൌ 0 gives 

the regular solution model (i.e., one-parameter Margules). 

The elementary unit resistances are assumed to be described by a bimodal distribution 

composed of a mixture of two log-normal functions: 

௞ߝ  ൌ
݂ ଵܲሺܴ௞ሻ ൅ ሺ1 െ ݂ሻ ଶܲሺܴ௞ሻ

∑ ൫݂ ଵܲሺܴ௞ሻ ൅ ሺ1 െ ݂ሻ ଶܲሺܴ௞ሻ൯ே
௞ୀଵ

 (5-5)

where ߝ௞ is the volume fraction of elementary unit ݇ with respect to the total active material volume 

fraction (∑ ௞௞ߝ ൌ 1). ௠ܲሺܴ௞ሻ is the probability density function of ܴ௞ (ܴ௞ ൐ 0): 

 ௠ܲሺܴ௞ሻ ൌ
1

ܴ௞ߪ௠√2ߨ
exp ቆെ

lnܴ௞ െ ௠ߤ
௠ଶߪ2

ቇ (5-6)

and ݂ is the mixing parameter. ߤ௠ and ߪ௠ are the mean and standard deviation of the associated 

normal distribution (i.e., ln ܴ௞). Subscript ݉ indicates the individual log-normal distributions. As will 

be discussed in section  5.4.3, we obtained better results when the elementary unit resistances were 

described in terms of a bimodal distribution than a unimodal distribution.  

The governing equations at the electrode level and the associated boundary conditions are 

adapted from the well-developed porous-electrode theory [123] and summarized in Table  5-1. Note 

that electrolyte transport equations are derived from Stefan-Maxwell equations [107]. The solvent 

velocity is chosen as the reference and set to zero (i.e., no convection) for the sake of simplicity. 

The system of the governing equations (Table  5-1) is numerically solved by means of the 

finite-element-based COMSOL Multiphysics simulation package. The dimensionless cathode and 

separator thickness are each discretized into 50 and 10 equal intervals, respectively. The total active 

material loading is discretized into 40 elementary-unit bins. For the GITT simulations, 100 unit bins 

are considered. The solver is supervised in MATLAB using COMSOL LiveLinkTM for MATLAB.  
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Table  5-1. Summary of the governing equations and the corresponding boundary conditions 

used for Li/LFP half-cell simulations.  

Governing equations at the unit level 

݅௞ ൌ െܨ
௞ݕ݀
ݐ݀

 

௞ߟ ൌ ܴ௞݅௞ 
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ܴܶ
ܨ
ln ൬

1 െ ௞ݕ
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൰ ൅
ܴܶ
ܨ
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2
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௞ୀଵ
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ܴ௞ߪ௠√2ߨ
exp ൬െ
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௠ଶߪ2
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Governing equations at electrode level 

Cathode equations  Boundary conditions 
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Separator equations  Boundary conditions 
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Φଶ|௫ୀ଴ ൌ 0 and continuity	at	ݔ ൌ ݈ୱୣ୮ 
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iଶ ൌ െୣߢ୤୤,ୱୣ୮ ቆ׏Φଶ െ
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Li foil counter electrode 
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5.4 Results and Discussion 

The model is used to analyze experimental data obtained during various continuous and 

intermittent galvanostatic discharges of a commercial LFP electrode. The model parameters listed in 

Table  5-2 have been measured, fitted, assumed or taken from the literature. The electrode capacity is 

estimated to be ~1.22 mAh by averaging the electrode capacity at the end of constant-current-

constant-voltage charges at different rates from C/50 to 3C. Given the geometric area and thickness of 

the electrode, LFP density and assuming a nominal capacity of ~170 mAh g-1, the total volume 

fraction of LFP is estimated to be ~ 0.39. Assuming ~10 vol.% of the electrode is filled with binder 

and conductive material in the LFP electrode [161], the porosity of the LFP electrode is then 

calculated to be ~ 0.51. The rate constant for the electrochemical reaction at the surface of the Li foil 

has been measured using Li/Li symmetric cells as reported in a previous study [162]. The transport 

and thermodynamic properties of the electrolyte including ionic conductivity, chemical diffusion 

coefficient, transference number and thermodynamic factor are taken from a separate study, presented 

in  Chapter 6, where a novel four-electrode electrochemical cell [163] was used for the measurements 

[164]. The generalized Bruggeman formula corrects the bulk properties for tortuosity. The 

Bruggeman coefficient and exponent of the cathode are taken from Ref. [165] and those of the 

separator are set to values regularly used in the literature (i.e., ߦୱୣ୮ ൌ 1 and ߛୱୣ୮ ൌ 1.5).  

The effective electronic conductivity of the cathode is measured using the four-probe method 

(probe spacing of ~1.5	mm) to be 19.6 േ 1.1	S	mିଵ which indicates the existence of highly 
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conductive conduits across the electrode at the millimeter-scale but does not convey any information 

about the homogeneity of the percolation network at the scale of elementary units (meso-scale). Such 

a large effective conductivity would not cause significant ohmic loss during electrode operation if the 

percolation network were homogenous, as assumed in porous-electrode theory [100]. The resistance 

distribution in the proposed model accounts for the inhomogeneity of the percolation network at the 

meso-scale as discussed in section  5.4.2.  

Table  5-2. List of model parameters used for simulations.  

Parameter  Symbol   Value 

Cathode thickness (ߤm)  ݈cat   60୫ 

Separator thickness (ߤm)  ݈sep   25 [166] 

Cathode porosity  ߝcat   0. 51ୡ 

Separator porosity  ߝsep   0.55 [166] 

Total active-material volume fraction  ߝt   0.39ୡ 

Maximum solid-phase lithium concentration (mol mିଷ)  ܿmax   22806ୟ 

Li foil charge-transfer coefficient  ߚ୐୧   0.5a 

Standard equilibrium potential (V vs. Li)  ܷ଴   3.423m 

First Margules parameter   ܣଵ   1.15f 

Second Margules parameter  ܣଶ    2.2f 

Coefficient of the high order term in Eq.  (5-4)  40   ܤf 

Power of the high-order term in Eq.  (5-4)  51   ܥf 

Mean of ln ܴ௞ for ݉ ൌ  ଵ   െ6.54ߤ  1

Standard deviation of ln ܴ௞ for ݉ ൌ  ଵ   1.87ߪ  1

Mean of ln ܴ௞ for ݉ ൌ  ଶ   െ2.24ߤ  2

Standard deviation of ln ܴ௞ for ݉ ൌ  ଶ   1.31ߪ  2

Mixing parameter for resistance distribution  ݂   0.8f 

Li foil reaction rate constant (molఉై౟	mଶ	sିଵ)  ݇୐୧
଴    7 ൈ 10ି଺ [162] 

Initial electrolyte concentration (mol	mିଷ)  ܿini   1000ୟ 

Bulk chemical diffusion coefficient of electrolyte (mଶ sିଵ)  2.67   ܦ ൈ 10ିଵ଴ [164] 

Li  transference number  0
t    0.425 [164] 

Bulk ionic conductivity of electrolyte (S	mିଵ)  [164] 1.19   ߢ 
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Thermodynamic factor of electrolyte  [164] 2.32   ߙ 

Effective electronic conductivity of cathode (S mିଵ)  ߪeff   19.6୫ 

Bruggeman exponent of cathode  ߛcat   1.53 [165] 

Bruggeman coefficient of cathode  ߦcat   0.55 [165] 

Bruggeman exponent of separator  ߛsep   1.5ୟ 

Bruggeman coefficient of separator  ߦsep   1ୟ 

a: assumed; c: calculated; f: fitted to the experimental data; m: measured. 

The single-unit equilibrium potential (SEQ) and the resistance distribution (RD) are fitted by 

comparing the model with the experimental discharge data to be presented in the next sections. As 

will be shown, the resulting model parameters give satisfactory fits to all seven sets of continuous 

galvanostatic discharge and three sets of GITT potential-capacity and potential-time curves.  

5.4.1 Single-Unit Equilibrium Potential 

The single-unit equilibrium potential is a key model parameter which determines how each 

elementary unit interacts with others during electrode operation and especially during relaxation. It is 

a non-monotonic function of composition based on the assumption that an elementary unit is a single 

bi-stable phase. Despite its critical role, measurement of the SEQ has remained an unsolved problem 

to date. The SEQ determines the overall electrode potential during quasi-static operation (i.e., 

extremely low charge/discharge rates) where a thermodynamic potential hysteresis occurs but cannot 

be fully characterized by the quasi-static potential profile alone. Moreover, various factors, including 

particle size and shape (i.e., surface, interface and stress-strain energies), synthesis method, level of 

impurities and defects can influence the SEQ. These factors may lead to a non-uniform 

thermodynamic behavior among units making ܷ௞ even more intractable. 

The regular solution model (or one-parameter Margules model) is usually assumed by 

researchers to represent the thermodynamic behavior of an elementary unit in an inter-connected 

many-unit ensemble. Featuring a single interaction parameter, the model assumes that the dissolved 

species (i.e., either Li atoms or vacancies) undergo symmetric pairwise interactions at all 

compositions so that the system excess free energy exhibits a symmetric dependence on composition. 

The two-parameter Margules model presents an extension to the regular solution model that can 

account for possible asymmetry in the composition dependence of the excess free energy of the 

solution [131]. It will be shown later that the choice of an asymmetric equilibrium potential leads to a 

better fit of the model to GITT data. 
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Despite its relative complexity, the two-parameter Margules model does not give a good 

match to the low-concentration and high-concentration branches of the quasi-static electrode 

potential. Therefore, a high-order Redlich-Kister-like term is added to the two-parameter Margules 

model which expands the upper and lower bounds of the equilibrium potential as the Li stoichiometry 

in LFP approaches zero and unity, respectively. As such, the single-unit equilibrium potential is well-

defined within the potential window of LFP implied by the overall electrode potential. The resulting 

equation (Eq.  (5-4)) is represented in Figure  5-1 for different values of the interaction parameters 

yielding a symmetric (red) or an asymmetric (gray) equilibrium potential curve. The interaction 

parameters ܣଵ and ܣଶ as well as the standard equilibrium potential ܷ଴ were obtained by comparing 

the prediction of the model with the experimental quasi-static galvanostatic charge/discharge and 

GITT data (as discussed later). The asymmetric equilibrium potential used in this study is consistent 

with the asymmetric solid-solution ranges estimated by Kobayashi et al. [167] using GITT (12 min 

pulses at C/20 followed by 24 h rest) and show a greater Li solubility on the Li-rich branch. 
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Figure  5-1. Comparison of single-unit equilibrium potential as a function of composition 

obtained using Eq.  (5-4) with the experimental quasi-static electrode potential measured at a 

current of C/200. The asymmetric SEQ (black curve) is used for the simulations. 

The parameters of the high-order term (i.e., B and C) are adjusted tentatively so as to increase 

the upper potential bound to ~ 4.5 V as ݕ௞ → 0 and decrease the lower bound to ~ 2 V as ݕ௞ → 1, but 

not alter the shape of the curve in the mid-stoichiometry range. 
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It should be emphasized that the potential does not level off to a perfectly flat plateau at 

intermediate stoichiometries in the experimental quasi-static curve (green) in Figure  5-1. It may 

actually stem from non-uniformities in the thermodynamic properties among the units (e.g., due to 

their size and shape) which end up affecting the numerical values of the model parameters such as ܣଵ, 

 ଶ and ܷ଴. These effects, however, do not significantly affect the analysis presented here and areܣ

ignored for simplicity. 

5.4.2 Elementary-Unit Resistance Distribution 

LFP is an electronic insulator and can conduct Li ions in the ሾ0	1	0ሿ direction only. Consequently, it 

is commonly coated with carbon to improve the supply of electrons to the surface of the active 

material [50]. Non-carbonaceous iron-rich secondary phases (e.g., iron phosphide and iron 

phosphocarbide) formed in-situ by carbothermal synthesis of LFP also have been found to serve as 

efficient electronic conduits residing at the grain boundaries at the nano scale [51]. At the same time, 

in-situ formation of fast ion-conducting phases on the surface of crystallites was shown to 

dramatically improve the electrochemical performance of LFP. For example, this electrode could 

achieve 80% of its theoretical capacity at an applied current as high as 50C [10]. This improvement in 

electrode performance is explained by an increase in Li diffusion across the crystallite surface 

towards the ሺ0	1	0ሻ facet where the Li can be inserted. Moreover, it may be more realistic to consider 

the effect of the unit size in terms of the characteristic distance for surface diffusion rather than bulk 

diffusion in contrast with the common belief that bulk Li diffusion is limiting. Unit size also affects 

polarization associated with the charge-transfer reaction kinetics at the surface of active material. The 

solid/electrolyte interphase (SEI) layer on the surface of the active material may also affect (increase) 

resistance at the surface of LFP units. As a result, both ionic and electronic limitations of LFP at the 

unit level could be diminished by the presence of nano-scale auxiliary phases distributed onto 

lithiating/delithiating LFP units and by reducing the unit size itself. 

At the electrode level, on the other hand, it is very difficult to achieve a homogeneous 

dispersion of conductive filler across the electrode [168]; the resulting non-uniform electronic 

percolation network has been shown to significantly degrade the rate performance of the electrode 

[161]. This could occur regardless of a possibly large effective conductivity of the composite 

electrode which is a macroscopic property that cannot reflect these non-homogeneities. The same is 

true for the electrolyte-filled network of pores which is responsible for the supply of Li to the surface 

of LFP [169, 170]. Porous-electrode theory is required to describe the essential features of solid-phase 
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and electrolyte-phase transport limitations. It is based on the superposition of the two phases and 

volume-averaging of the model quantities (i.e., physical properties and field variables). As a result, 

the theory is not able to resolve microstructural non-uniformities.  
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Figure  5-2. Bimodal resistance distribution used in the model. 

An explicit accounting of non-uniformities of all of the physico-chemical properties as well 

as electronic/ionic environment of elementary LFP units, as described above, requires accurate 

knowledge of the electrode microstructure at high chemical and spatial resolution, which is difficult 

to obtain and is usually unavailable. Instead, the resistance distribution used in this model is meant to 

account for these effects, which greatly simplifies the model and reduces computation cost. The 

connection between lithiating/delithiating units in the electrode and their electronic/ionic environment 

can span from perfectly wired to completely detached. As such, the resistance of each unit may be 

very small (i.e., perfectly wired) or extremely large (i.e., completely isolated); it lumps effective 

resistances of different natures, which justifies the assumption of an extremely broad or even a 

bimodal log-normal resistance distribution.  
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5.4.3 Continuous Galvanostatic Discharge 

The RD parameters have been obtained by comparing the experimental and model-computed data for 

the continuous galvanostatic discharge at C/10 and 2C. The fitted RD is plotted in Figure  5-2. Once 

this RD is obtained, its robustness has been assessed by using it to compute galvanostatic discharge 

curves at other applied currents from C/50 to 3C without any further adjustment of the parameters and 

then compare it to the corresponding experimental data. As shown in Figure  5-3, the agreement 

between the model predictions and measured data is very good over this wide range of currents. The 

effectiveness of the resistance distribution is evident in two ways: it allows the model to match the 

slanted behavior of the potential-capacity curves at intermediate potentials (Figure  5-3a) and predict 

the electrode utilization at the end of discharge at the various rates (Figure  5-3b). 

It should be noted that the fitted bimodal RD may not be the only distribution that could work 

since other combinations of the distribution parameters could equally likely enable the model to 

satisfactorily fit the experimental data. Inclusion of more experimental data when fitting the model 

(i.e., more than C/10 and 2C) could not eliminate the extra degrees of freedom. This problem may not 

exist if a unimodal distribution with only two adjustable parameters could be used. Indeed, we tested 

a unimodal lognormal distribution but found that it could not satisfactorily fit the experimental data, 

i.e., although the slanted behavior at the mid-stoichiometry range could be fitted, it failed to capture 

the end-of-discharge capacities. Simulation results were made worse when the resistance was 

assumed to be purely due to charge-transfer reaction and its distribution was taken to correlate with a 

lognormal unit-size distribution (not shown here). In summary, the problem is over-constrained in the 

case of a unimodal lognormal distribution, but under-constrained in the case of a bimodal lognormal 

distribution. This could mean that either the model is too simple (e.g., neglecting microstructure) or a 

certain distribution other than lognormal can accurately represent the lumped resistances and fit the 

experimental data. Investigation of these two scenarios is beyond the scope of this work but is an 

important step to obtain a more accurate model.  

Limitations at the end of discharge are usually attributed to solid-state diffusion. Previous 

model-experiment analysis of a commercial LFP electrode in  Chapter 3 considered diffusion to be the 

determining factor at the end of discharge [100]; it yielded estimates for diffusivity on the order of 

10ିଵଽ	mଶ	sିଵ. However, recent observations of fast chemical delithiation of sub-micron LFP 

particles suggest that solid-state diffusivities should be in the range of ~	10ିଵଷ to 10ିଵହ	mଶ	sିଵ 

[154] which are orders of magnitude greater than the earlier estimates and are in better harmony with 
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earlier first-principles calculations (~	10ିଵଶ	mଶ	sିଵ) [69, 155]. Ultrafast charge/discharge of 

optimized LFP electrodes also has confirmed fast Li mobility in the bulk of LFP [10, 153].  

In order to assess a diffusion-limited scenario, the mesoscopic model was further elaborated 

to account for the intra-unit diffusion along with a unimodal lognormal RD. It turns out again that a 

very small diffusion coefficient in the order of 10ିଵଽ	mଶsିଵ (assuming spherical units with 80 nm 

radius) is required in order for solid-state transport limitations to become significant (simulation 

results not shown). Under this condition, solid-state diffusion limitations heavily suppress the unit-

unit interactions induced by the non-monotonic SEQ which is at odds with experimental evidence of 

sequential or mixed sequential-parallel lithiation/delithiation of elementary units reported in the 

recent literature [11, 12, 74-76, 81, 82]. Accordingly, we decided to ignore intra-unit mass transport 

and apply the model presented in section  5.3 that includes a resistance distribution only. Further 

discussion of a diffusion-controlled scenario will be presented in a future work.  
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Figure  5-3. (a) Comparison of experimental galvanostatic discharge curves (markers) with the 

corresponding model-fitted curves (solid lines) at rates from C/50 to 3C. (b) Comparison of 

experimental and model-fitted end-of-discharge capacities at different C-rates. Model 

parameters are listed in Table  5-2.  

The electrode polarization during discharge at 3C is broken down into its constituents and 

compared with the simulated quasi-static discharge (C/200, no RD included) in Figure  5-4. Based on 

the curve obtained by the model assuming zero resistances for the units (i.e., porous-electrode effects 
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only), it is evident that electrolyte transport limitations contribute significantly to the overall 

polarization of the electrode but does not limit the capacity at the end of discharge even at 3C. 

Inclusion of a unimodal RD (i.e., ݂ ൌ 1) in the model increases the potential loss but still overpredicts 

the end-of-discharge capacity. Only when a bimodal distribution is used to describe the unit resistance 

(i.e., with mixing parameter ݂ ൌ 0.8) is the model able to closely fit all of the experimental data 

including the end-capacity (black solid curve, also see Figure  5-3). It is clear from this analysis that 

the use of a bimodal distribution is required to capture the end-of-discharge capacities of the LFP 

electrode studied here. Of course, the model is yet to be validated by analyzing performance of other 

LFP electrodes with different formulations. 
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Figure  5-4. Contribution of different limiting phenomena to the overall potential drop at 3C 

compared with the simulated quasi-static electrode discharge profile at C/200 (RD not 

included). Model parameters are listed in Table  5-2. 

The electrode dynamics during low-rate (C/10) and high-rate (3C) discharge are depicted in 

Figure  5-5 and Figure  5-6, respectively, in terms of a 3-dimensional plot relating the dimensionless Li 

concentration in the elementary units to the unit resistance and position within the electrode at three 

different depths of discharge (10%, 20% and 50%). The resistances are represented by intervals or 

bins in order from the least resistive (~10ି଻	Ω	mol) to the most resistive (~10ିଵ	Ω	mol) one; color is 

coded from deep blue for fully delithiated to dark red for fully lithiated states. To gain a better 
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resolution in the results, simulations have been conducted by discretizing the electrode length into 50 

segments. 

As shown in  Chapter 4, discharge can proceed with one unit being completely lithiated before 

the next unit reacts (i.e., unit-by-unit) or with more than one unit simultaneously undergoing lithiation 

(i.e., mixed sequential-parallel mechanism) depending on the applied current and depth of discharge. 

At the beginning of discharge, all units at a given location in the electrode lithiate simultaneously 

until they reach a stoichiometry corresponding to the lower spinodal limit of the SEQ where further 

insertion of Li pushes a small number of units (i.e., depending on their resistances) into the spinodal 

region. These “activated” units are in an unstable state and experience increasingly large driving 

forces (i.e., large ߟ௞ due the non-monotonic shape of ܷ௞) which rapidly moves them to a stable state 

on the Li-rich branch of the SEQ. Since all units are electronically and ionically connected, they 

experience the same electric potential both in the solid Φଵ and liquid Φଶ phases at any position across 

the electrode. 

As shown in Figure  5-5 and discussed previously in  Chapter 4, elementary units mostly 

accommodate two states of lithiation at C/10; they are either in the Li-rich or Li-poor phase and only 

a few are active and undergoing lithiation at any instance during electrode discharge. The active units 

form a lithiation front that starts with units experiencing the smallest overpotential and propagates 

towards units with progressively larger overpotentials. The lithiation front separates Li-rich units 

from Li-poor ones resembling a diffuse boundary between the two phases. The width of the diffuse 

boundary is determined by the number of active units. Lithiation begins with the least resistive units 

located close to the separator (diagonal contour curves in Figure  5-5a) and continues to become more 

dispersed across the electrode (Figure  5-5b) until it finally spreads almost uniformly throughout the 

electrode but still confined to certain elementary units according their resistances (contour curves 

nearly perpendicular to the “elementary-unit bin” axis in Figure  5-5c). In other words, the lithiation 

front fades out at the electrode level when the variation of resistances among elementary units at any 

location within the electrode is greater than the variation of their ionic/electronic environment across 

the electrode.  
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Figure  5-5. The relation between degree of lithiation, location within electrode and unit 

resistance at (a) 10%, (b) 20% and (c) 50% depths of discharge during C/10 discharge 

computed according to model.  
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Figure  5-6. The relation between degree of lithiation, location within electrode and unit 

resistance at (a) 10%, (b) 20% and (c) 50% depths of discharge during 3C discharge computed 

according to model.  

The variation of Φଵ and Φଶ across the electrode thickness is caused by electronic and ionic 

transport losses in the solid and liquid phases, respectively. However, the large effective electronic 
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conductivity measured for the electrode assures a uniform Φଵ and leaves the electrolyte transport 

alone responsible for non-homogeneous lithiation across the electrode, at least during the first half of 

the process. According to conventional views, lithiation non-uniformities across the electrode are 

expected to be negligible at low rates as a result of negligible porous-electrode effects [139]. The 

counter results shown in Figure  5-5, however, rely on the very foundation of the model: lithiation 

proceeds unit by unit at low rates and follows a sequence determined by the variation in polarization 

among units, even though minuscule. As such, depending on the electrode design (i.e., unit-level 

versus electrode-level losses), porous-electrode effects may not be ignored for the simulation of LFP 

and other similar phase-change electrodes at low rates. 

Since lithiation proceeds towards more resistive units, the polarization to lithiate a given 

number of units would be expected to grow as discharge continues. On the other hand, an increase in 

the electrode polarization provides enough driving force to activate additional units which 

counterbalances the excess polarization. As a result, the diffuse interface between Li-rich and Li-poor 

phases becomes wider as discharge advances (i.e., increase in the dispersion of contour curves in 

Figure  5-5a-c) indicating a larger number of active units are simultaneously becoming involved in the 

lithiation process.  

The model also predicts segregation of elementary units into three groups of Li-poor, 

lithiating (active) and Li-rich units at relatively high rates as shown for example in Figure  5-6 for the 

electrode discharged at 3C. Nonetheless, the number of active units increases as the applied current 

increases which is reflected in a wider phase interface as well as a more uniform electrode-scale 

lithiation at different depths of discharge in Figure  5-6a-c compared to the same stages during C/10 

discharge in Figure  5-5a-c. An increase in the applied current raises the overpotential of the active 

units which, in turn, increases the overall electrode polarization and, consequently, drives more units 

to participate in the lithiation process to an extent that is determined by their resistances. It explains 

the small variation in electrode potential at intermediate electrode utilization which becomes more 

accentuated as the applied current increases (Figure  5-3a).  

This change in electrode dynamics whereby lithiation proceeds in a unit-by-unit sequence at 

low C-rates but by a mixed sequential-parallel order at high rates is the outcome of the interplay 

between the non-equilibrium single-phase lithiation of elementary units (i.e., non-monotonic SEQ, 

Figure  5-1) and the non-uniform resistance distribution among the units as obtained by fitting to the 

experimental data (Figure  5-2). The former has less influence at higher rates since the potential gap 



 

 88 

between the upper and lower spinodal points (i.e., the driving force for unit-by-unit transformation) 

becomes negligible compared to the overall electrode polarization.  

This dependence of lithiation mechanism on current is in agreement with observations from 

in-situ [11, 12, 81, 82] and ex-situ [74-76] phase mapping experiments where the population of 

particles with intermediate compositions (i.e., active particles) was observed to be directly 

proportional to the applied current. The improvement of lithiation dynamics at high currents and the 

non-equilibrium single-phase lithiation of each unit explain the excellent rate capability (end capacity 

as a function of applied current) of LFP electrodes. It is also consistent with the apparent dependence 

of particle size on applied current in Ref. [141] and in the diffusion-limited modeling study of 

 Chapter 3 where a shift in the particle-size distribution toward smaller sizes (i.e., a shorter diffusion 

time) was required for the model to fit experimental end-capacities at higher rates. 

5.4.4 Intermittent Galvanostatic Discharge 

The galvanostatic intermittent titration technique is a common method to obtain dynamic and 

thermodynamic properties of insertion battery materials [156, 171]. More specifically, GITT can be 

used to estimate the chemical diffusion coefficient as a function of the concentration of inserted 

species in the host material by tracing the transient electrode potential during current pulses applied at 

various DoDs. It is, therefore, worth examining the electrode dynamics during GITT experiments 

using the proposed model where intra-unit diffusion limitations are completely ignored. 

Three sets of experimental GITT data obtained from the same electrode were compared with 

the simulations conducted using the same set of parameters (including the SEQ and the bimodal RD) 

obtained previously by fitting the model to continuous galvanostatic discharge data at C/10 and 2C.  

Figure  5-7 shows a comparison of the experimental and simulated responses to GITT 

experiments conducted according to the following waveforms: i) 2 min 1C pulses followed by 2 h 

relaxation periods (2min P-2h R, Figure  5-7a-b), ii) 2 min 1C pulses followed by 15 min relaxation 

periods (2min P-15min R, Figure  5-7c-d) and iii) 6 min 1C pulses followed by 2 h relaxation periods 

(6min P-2h R, Figure  5-7e-f). A fairly good match between the model and experiment is observed for 

all operating conditions during both the current pulse and relaxation periods. The model captures the 

characteristic shape of electrode response to the input current waveform. In the three cases, the 

amplitude of the potential response increases from pulse to pulse and a longer time is required for the 

electrode to relax when the current is switched off as the overall depth-of-discharge increases. 
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However, the model is not as accurate in capturing the instantaneous potential changes when current 

is initially switched on and the subsequent gradual potential evolution when current is flowing, 

although the agreement is very good over the majority of the relaxation steps (see insets in Figure 

 5-7). In the case of the 2min P-2h R experiment, the model slightly over-predicts the end-of-discharge 

capacity which coincides with the under-prediction of electrode potential during the last few (5 or 6) 

pulses (Figure  5-7a). Nonetheless, the characteristic shape of the potential response of the electrode to 

GITT pulses both under current and during relaxation is reproduced by the proposed model without 

including solid-state diffusion that has been commonly held responsible for the gradual evolution of 

electrode potential [171].  

The instantaneous electrode polarization measured experimentally is nearly constant for all 

pulses throughout the 3 GITT experiments with a value of 14.1 േ 1.5	mV. The computed 

instantaneous polarizations are also nearly constant for all current pulses although they (39 േ

1.5	mV) are higher than the experimental value. Note that effects of electrochemical double-layer are 

significant at short times but are not accounted for in the model for the sake of simplicity. It turns out 

that the instantaneous polarizations depend not only on the resistance distribution but also on the 

SEQ; our simulations show that a thermodynamic model without a high-order term (i.e., the term 

௞ݕሺ2ܤ െ 1ሻ஼ omitted in Eq.  (5-4)) yields an instantaneous polarization that is not constant but varies 

with the DoD. With a constant instantaneous polarization throughout the experiment, the change in 

the gradual portion of the potential response from pulse to pulse can be attributed mostly to the fact 

that the electrode is becoming more completely discharged and available elementary units are 

becoming more resistive. Based on our model, this gradual evolution over the course of the pulse and 

relaxation periods is attributed to the collective dynamics of inter-unit transport which involves the 

resistance distribution as well as the equilibrium potential. Due to this dependence, the use of 

transient methods such as GITT should prove useful for estimating the non-monotonic SEQ which is 

crucial for modeling and quantitative assessment of LFP electrodes. For example, Figure  5-8 shows 

the effect of the SEQ on the computed electrode response to the 2 min pulse – 2 h relaxation GITT 

waveform. The two cases depicted correspond to the two non-monotonic SEQs shown in Figure  5-1 

obtained from the modified Margules model (Eq.  (5-4)) for an asymmetric dependence on lithium 

stoichiometry (i.e., ܣଵ ൌ 1.15, ଶܣ ൌ 2.2, as used in all simulations throughout this chapter) and a  
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Figure  5-7. Comparison of experimental and simulated responses to the following GITT 

waveforms: (a), (b) 2 min pulse – 2 h relaxation; (c), (d) 2 min pulse – 15 min relaxation; and 

(e), (f) 6 min pulse – 2 h relaxation. In all cases, 1C current pulses are applied. 

symmetric dependence (i.e., ܣଵ ൌ 2.98, ଶܣ ൌ 0, as an example of a modified regular solution). This 

comparison indicates that the slight asymmetry assumed in the SEQ evidently removes the anomaly 
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in the simulated GITT potential-capacity profile as compared to the experimental data. Accurate 

analysis of the SEQ is beyond the scope of this thesis and warrants further in-depth research. 
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Figure  5-8. Comparison of simulated responses to a GITT 2min pulse - 2h relaxation waveform 

obtained using the symmetric (red) and asymmetric (gray) SEQ shown in Figure  5-1.  

 

The GITT method is also frequently used by researchers to obtain the equilibrium potential of 

intercalation/insertion electrodes as a function of composition by recording the open-circuit potentials 

(OCP) at the end of each relaxation step [156, 171]. The measured OCPs of the electrode obtained 

during the three GITT experiments are compared with the corresponding simulated values and the 

simulated quasi-static (C/200) charge/discharge curves in Figure  5-9. The good agreement between 

the simulated and experimental OCPs further validates the proposed model. The SEQ is the main 

determining factor at low rates and under open-circuit conditions; the quasi-static potential hysteresis 

defines the bounds for the OCPs measured during GITT experiments having long relaxation times 

[109]. It can be seen in Figure  5-9a and c that, for the most part, a long enough relaxation step of 2 h 

ensures that the final OCPs fall well within the range of upper and lower quasi-static potentials, while 

the final OCPs obtained when only 15min relaxation is allowed end up much closer to the lower 

quasi-static potential bound (Figure  5-9b). It should be noted that the last few measured and simulated 

OCPs fall below this lower bound in all GITT experiments, indicating that inter-unit transport 
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limitations are still significant and longer relaxation periods are required for the electrode ensemble to 

reach equilibrium, according to our model. 
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Figure  5-9. Comparison of the variation of experimental and simulated OCPs of the electrode 

with DoD obtained from the GITT waveforms: (a) 2 min pulse – 2 h relaxation, (b) 2 min pulse 

– 5 min relaxation and (c) 6 min pulse – 2 h relaxation. In all cases current pulses of 1C are 

applied. Resistances are set to zero in the quasi-static simulations.  

The responses to the 2min P-2h R GITT waveform (originally shown in Figure  5-7a) and to 

the continuous galvanostatic discharge at 1C (originally shown in Figure  5-3a) are compared for both 

the experimental and simulated data in Figure  5-10a and b, respectively. It has been reported 

previously that the polarization of LFP electrodes during GITT pulses at certain current amplitude 

overshoots that of a continuous galvanostatic charge/discharge at the same current [16, 17, 109]. 

However, on the basis of the experimental results shown in Figure  5-10a, such a trend does not appear 

to be a general characteristic of LFP electrodes. The electrode potential during GITT closely matches 

(only slightly overshoots) the continuous discharge curve over the first ~70% of electrode utilization, 

but undershoots the response to the continuous discharge thereafter to the extent that it yields a 

greater end-of-discharge capacity (~88%) compared to that continuous discharge (~80%). Although 

not shown here, the capacity gain becomes smaller as the relaxation steps become shorter (i.e., ~84% 

in the case of 2min P-15min R GITT, Figure  5-7c and d) or the pulse duration becomes longer (i.e., 

~84% in the case of 6min P-15min R GITT, Figure  5-7e and f). A similar trend is observed with the 

simulations. This variation in the performance of different LFP samples is attributed to both 

thermodynamic properties of the active material (e.g., unit size, level of defects and impurities) and 

dynamic properties of the electrode as a whole (e.g., electrode formulation and manufacturing, the 
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presence of secondary conductive phases). Based on conventional solid-state diffusion-limited 

models, one would attribute the larger capacity at the end of the GITT experiment than that of the 

continuous discharge to the reduction in the Li concentration gradient within the LFP units due to the 

intermittent relaxation steps. This would have the effect of delaying intra-particle diffusion limitations 

which dominate the electrode performance at high utilization. Using our model, however, we link the 

larger capacity at the end of GITT discharge to inter-unit phase separation resulting from the bi-stable 

nature of LFP and the non-uniform distribution of resistance among elementary units.  
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Figure  5-10. Comparison of responses of LFP electrode to 2 min pulse – 2 h relaxation GITT 

waveform and to continuous discharge obtained from (a) experiments and (b) simulations. In 

all cases, a current of 1C is applied. 

In order to more closely follow the dynamics of electrode lithiation during GITT, the 

variation in utilizations are plotted depending on unit resistance and position across the electrode 

before and after the 2 h relaxation of 2nd and 4th pulses in Figure  5-11. Figure  5-12 presents 

utilizations as a function of unit resistance before and after the 2 h relaxation period of pulses 8, 12, 

16, 20, 24 and 28. As evident in Figure  5-11, a diffuse interface exists between the Li-rich and Li-

poor domains immediately after the current is interrupted, but becomes sharper by the end of the 

subsequent relaxation period (note that the width of the interface indicates the number of active 

units). This implies that the flow of current during the first few pulses converts some elementary units 

from Li-poor to Li-rich, whereas the subsequent relaxation step provides enough time for the unstable 

transforming units to settle into either the Li-rich or Li-poor phase depending on which is more 
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quickly accessible. The results in Figure  5-11 also show that the phase transformation across the 

electrode is non-uniform due to transport limitations within the electrolyte, as discussed before.  

In contrast to the first few pulses, the separation between Li-rich and Li-poor becomes very 

sharp once pulses 8 through 20 are reached (Figure  5-12a-d) both before and after the relaxation 

steps. However, the transition becomes less sharp once again by the time that pulses 24 and 28 are 

applied (Figure  5-12e-f, note that the unit utilization over electrode-scale is nearly uniform and so not 

included in this figure). This behavior suggests that other pathways for the intermittent lithiation of 

the LFP electrode may exist depending on the overall DoD and under the specific operating 

conditions considered.  

Despite the fact that each current pulse lithiates the electrode to the same extent throughout 

the experiment, the diffuse interface between Li-rich and Li-poor domains remains relatively narrow 

at the end of intermediate pulses 12 and 16 (Figure  5-12c-d) implying that the phase transformation 

does not occur during the pulse period. Instead, stable Li-rich units (i.e., Liଵି஫ᇲ	FePOସ, ϵᇱ ൎ 0.1) 

accommodate the entire incoming Li flux. 

Each pulse begins with filling the solid-solution capacity available in the least-resistive Li-

rich units. Since the incremental depth-of-discharge during each current pulse is smaller (~3.3% of 

total electrode capacity) than the available capacity in the Li-rich solid-solution end-member, 

electrode lithiation proceeds entirely via a stable solid-solution pathway during the closed-circuit 

portion of  the intermediate pulses followed by a redistribution of Li between the Li-rich and Li-poor 

units during the subsequent open-circuit periods. The latter phenomenon is rather general and 

manifested in displacement of the phase boundary in Figure  5-12a-f during the relaxation periods.  

The available Li-rich solid-solution capacity at any overall depth-of-discharge is calculated 

according to ϵᇱܺ where ܺ is the fraction of Li-rich phase and is related to the number of applied 

pulses ௣ܰ, the incremental depth-of-discharge ΔDoD and solid-solution compositions ϵ	and	ϵᇱ 

according to ܺ ൌ
ே೛ൈ୼ୈ୭ୈି	ϵ

ଵିϵିϵᇲ
 (the overall DoD is equal to ௣ܰ ൈ ΔDoD). It is assumed that the solid-

solution compositions are uniform among units, invariable with time and equal to their equilibrium 

values (i.e., ϵ and 1 െ ϵᇱ for Li-poor and Li-rich, respectively). The stable solid-solution lithiation 

pathway takes over the biphasic lithiation mechanism when the cumulated solid-solution capacity 

becomes in excess of the incremental depth-of-discharge (i.e., ϵᇱܺ ൐ ΔDoD). Taking ϵ ≅ ϵᇱ ≅ 0.1 

and ΔDoD ≅ 0.033, electrode lithiation proceeds purely via the stable solid-solution path beyond the 
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11th pulse (i.e,, ௣ܰ ൐ 11) as a rough estimate. According to the model, a pure solid-solution 

mechanism is unbearable by the electrode for ϵᇱ ൏ ΔDoD which is incidentally the case for the 6min 

P-2h R GITT experiment.  
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Figure  5-11. Variation of extent of lithiation in the LFP electrode depending on unit resistance 

and location before (a) and after (b) 2nd pulse relaxation and before (c) and after (d) 4th pulse 

relaxation of the 2min P – 2h R GITT waveform. Deep red denotes Li-rich and deep blue 

indicates Li-poor units.  

The applied current is distributed among the already transformed Li-rich units in the stable 

solid-solution lithiation regime which is in clear contrast with the biphasic lithiation mechanism 

where the transforming units sustain most of the applied current. 

During the last few pulses (e.g., 24th and 28th pulses, Figure  5-12e-f), however, the electrode 

experiences incomplete relaxation due to the progressively more sluggish inter-unit transport (i.e., due 

to higher resistances of the remaining units) towards the end of discharge, as mentioned before.  
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A transition lithiation stage may be regarded as mediating the above two pathways (e.g., 8th 

and 12th pulses shown Figure  5-12a-b) where the Li concentration in a number of Li-poor units also 

increases to and slightly above the lower spinodal composition during the current pulse in addition to 

Li uptake by the Li-rich units. These so-activated units are either converted completely to a stable Li-

rich state or recoil to a stable Li-poor state during the relaxation period. 

In summary, discharge of the LFP electrode during 2min P-2h R GITT occurs in three 

different stages:  

i) closed-circuit biphasic lithiation and open-circuit phase transformation operative at the 

first few pulses (Figure  5-11), 

ii) closed-circuit stable solid-solution lithiation (Li-poor and Li-rich) and open-circuit phase 

transformation in the middle pulses (Figure  5-12a-b), 

iii) closed-circuit stable solid-solution lithiation (Li-rich) and open-circuit transformation in 

the later pulses (Figure  5-12c-f). 

These different regimes manifest themselves in the potential-capacity curves shown in Figure 

 5-7 where the concavity of the potential response during pulses changes from upward at the beginning 

to downward at the end of GITT. The behavior at the beginning reflects the electrode potential 

determined mostly by units residing on the Li-poor branch of the SEQ (majority of LFP units are Li-

poor at the first half of GITT) which is concave upward (Figure  5-1), while that at the end indicates 

the electrode potential controlled by units on the Li-rich branch of the SEQ (majority of LFP units are 

Li-rich at the second half of GITT) which is concave downward. Similar trend is observed in both 

experimental data and simulation results. 

The lithiation mechanism during intermittent discharge appears to differ markedly from that 

during continuous discharge and depends on the overall depth-of-discharge of the electrode, GITT 

waveform (i.e., pulse step amplitude and duration as well as relaxation time) and, of course, the 

physico-chemical properties of LFP (i.e., RD and SEQ).  
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Figure  5-12. Variation of computed dimensionless lithium concentration with Elementary-unit 

resistance before (blue) and after (red) the relaxation following current pulse (a) 8, (b) 12, (c) 

16, (d) 20, (e) 24 and (f) 28 of the 2min P – 2h R GITT waveform. The distribution of 

concentration with location is almost uniform and not shown. 
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5.5 Conclusion 

In this study, the mesoscopic model previously developed in  Chapter 4 for phase-change insertion 

electrodes was incorporated into porous-electrode theory and validated by comparing the simulation 

results with experimental data obtained during continuous and intermittent galvanostatic discharge of 

a commercial LiFePOସ electrode at various operating conditions. The model features elementary 

mesoscopic units that undergo non-equilibrium Li insertion/extraction and extremely fast solid-state 

diffusion. An asymmetric solid-solution model describes the equilibrium potential of individual 

elementary units as a non-monotonic function of composition. A bimodal lognormal resistance 

distribution is assumed to account for disparity of insertion dynamics among elementary units. 

The simulation results agree well with experimental data obtained from continuous discharge 

experiments over the range from low (C/50) to high (3C) applied currents. Both the loss in potential 

at intermittent utilization and end-of-discharge capacity are captured by the model. 

GITT simulations under three different operating conditions compared well with 

experimental data confirming the fidelity of the proposed model. According to this model, the slow 

evolution of electrode polarization during each current pulse and the subsequent relaxation period in 

the GITT experiment are governed by the inter-unit rather than intra-unit Li transport in LiFePOସ 

electrodes. The many-unit effects appear at relatively large time scales depending on the depth of 

discharge and should not be confused with solid-state diffusion. As such, GITT experiments that are 

typically used to determine diffusion coefficient of inserted species in solid-solution systems, may 

also be used to estimate the thermodynamic properties (i.e., single-unit equilibrium potential) as well 

as the dynamic properties (e.g., resistance distribution) of phase-change materials. 

Further analysis of the GITT experiments suggests that the electrode discharge dynamics 

strongly depends on the operating conditions. The active phase-change lithiation mechanism during 

continuous discharge process is replaced by a stable solid-solution pathway during the closed-circuit 

portion of the GITT pulses and a passive phase transformation during subsequent open-circuit periods 

in a GITT experiment with small enough incremental DoD. Depending on the overall depth-of-

discharge of the electrode and the incremental depth-of-discharge during each GITT pulse, the solid-

solution capacity available in the Li-rich end-member may be able to accommodate the incoming Li 

entirely without the need to activate additional units. Instead, the redistribution of Li among units 

during relaxation equilibrates the solid-solution composition by transforming a few Li-poor units to 

Li-rich ones. 
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Chapter 6 

Determination of the Transport Properties of Concentrated Binary 

Electrolytes Using a Four-Electrode Electrochemical Cell 

The following chapter is a follow-up to the work previously published by M. Farkhondeh, M. 

Pritzker, M. Fowler and C. Delacourt in J. Electrochem. Comm. [163] entitled: 

“Transport Property Measurement of Binary Electrolytes Using a Four-Electrode 

Electrochemical Cell” 

and a separate manuscript to be submitted by the same authors entitled: 

 “Determination of the Transport Properties of Concentrated Binary Electrolytes Using a Four-

Electrode Electrochemical Cell” 

This thesis author’s specific contribution to this paper was to design the electrochemical cell, design 

and conduct experiments, develop the model, conduct simulations and parameter estimation, prepare 

all the graphics and results, prepare the manuscript and reviewer edits with direction from the project 

advisors who were co-authors. All authors reviewed the manuscript. 

6.1 Introduction 

Further improvement of the power capability of advanced batteries requires optimization of their 

dynamic behavior including electrolyte mass transport among other things. Despite their rigor, state-

of-the-art methods that estimate electrolyte transport properties are arduous, time-consuming and 

prone to error [31, 118].  

Battery electrolytes are, in most cases, concentrated solutions containing at least one salt 

dissolved in one or more solvent [18] commonly assumed to be a binary electrolyte. Three 

independent properties (ionic conductivity, salt diffusion coefficient and cation transference number) 

must be determined as functions of concentration and temperature to fully characterize a concentrated 

binary electrolyte [107]. 

Measurement of the ionic conductivity is simple and usually conducted by means of a 

standard AC impedance method. On the other hand, measurement of the salt diffusion coefficient and 

cation transference number is very difficult and so has been limited to the most commonly used 

electrolytes [31-44]. As described in section  2.2, the restricted diffusion [112] and semi-infinite 



 

 100 

diffusion methods are most commonly used to estimate the salt diffusion coefficient and cation (or 

anion) transference number. Because the solution is non-ideal, thermodynamic measurements usually 

conducted in concentration cells are required to accurately determine the transport properties [107]. 

The thermodynamic factor can be determined once the transference number is known [31, 118]. Thus, 

three separate sets of measurements obtained from the semi-infinite diffusion, restricted diffusion and 

concentration-cell experiments must be combined in order to obtain the salt diffusivity, transference 

number and thermodynamic factor at a given concentration.  

Restricted diffusion and semi-infinite diffusion experiments are commonly carried out in 

symmetric two-electrode cells wherein the electrodes are located at the two ends confining the 

electrolyte. Current is applied to the electrodes for a certain period of time and voltage is recorded 

across the same electrode pair either immediately after the circuit is opened (semi-infinite diffusion) 

or while the concentration profile is relaxing (restricted diffusion). However, due to the complicated, 

not well-understood kinetics of the charge-transfer reaction at the surface of the electrodes, it is not 

possible to accurately relate the evolution of the closed-circuit cell voltage to the variations of the 

electrolyte concentration and potential across the cell. As a result, the two-electrode characterization 

methods fall short in retrieving useful closed-circuit data that might otherwise be used as a rich source 

of information regarding the dynamics of mass transport in the solution. 

In this chapter, we present a novel electrochemical method that simultaneously estimates the 

transport properties of concentrated binary electrolytes. The method uses a four-electrode 

electrochemical cell and, unlike conventional methods, is able to make use of the data obtained from 

both the closed-circuit and open-circuit operation modes. Variations in the electric potential of the 

electrolyte are recorded across two reference electrodes (i.e., potential sensors) while a rectangular 

current pulse is applied to the working and counter electrodes. A thorough description of this cell 

design and new method is provided. A general mathematical model is presented which is applicable 

to a variety of electrolyte systems such as Li-, Na-, Zn- and Mg-based electrolytes. The model 

features a bipolar effect at the surface of the reference electrodes and takes into account charge-

transfer induced (faradaic) convection in a 2-D axi-symmetric geometry. The methodology is further 

discussed by characterizing transport properties of 2 Li-based non-aqueous electrolytes and compared 

with conventional electrochemical routines for transport property estimation. Finally, a sensitivity 

analysis of the kinetic and design parameters is conducted. 
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6.2 Electrochemical Cell Design 

The experimental setup involves a cylindrical electrochemical cell consisting of counter and working 

electrodes located at the two ends and two annular potential sensors (PS) placed midway between the 

counter (CE) and working (WE) electrodes. The cell is made cylindrical to reduce the dimensionality 

of the computational domain from 3-D to 2-D axi-symmetric. Figure  6-1 shows an exploded view of 

the cell. The cell consists of a 7-layer stack of rings—stainless steel connector, electrically wired 

PTFE spacer, PS,1, PTFE spacer, PS,2, electrically wired PTFE spacer and stainless steel connector. 

The potential sensors are wired to the stainless steel rings surrounding the WE and CE current 

collectors through the electrically wired PS-CE and PS-WE spacers. The hollow space within the ring 

stack is filled with a separator made from Whatman borosilicate glass microfiber filter (GF) grade D 

(7 layers). The separator helps to confine the solution within the working volume of the cell and to 

minimize convection that may otherwise happen due to external forces (e.g., vibrations) [39]. The 

inner diameter of each PS annulus is identical to the inner diameter of the PTFE spacers and the 

diameter of the WE and CE disks and of the separator. The spaces between PS,1 and WE and 

between PS,2 and CE are chosen to be identical and controlled by means of the electrically wired 

PTFE spacers [39]. 
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Figure  6-1. Exploded view of the four-electrode electrochemical cell. 
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Disks of 12.98 mm diameter are punched out of a 200 μm thick Li metal foil as the CE/WE. 

The PS annuli are prepared from the same Li foil. The thickness of the Li rings is measured to be 

191	μm after the experiment is conducted. All of the non-metallic cell parts (i.e., spacers as well as 

the top, intermediate and bottom plates) are made of PTFE. In order that it can be used outside of the 

glove box, the cell is made air-tight by means of two EPDM rubber O-rings positioned in the top and 

bottom plates and held together using 6 bolts and nuts passing through the cell body.  

6.3 Methodology 

The proposed electrolyte characterization method consists of operating the cell galvanostatically by 

applying a rectangular current waveform to the WE and CE while the resulting variations in the 

electric potential of the electrolyte are recorded across the two potential sensors. The sensors are 

isolated from the WE and CE and are connected to an external circuit dedicated to potential 

measurement. No net current flows through the sensors except for the negligible current from the 

potentiometer. As such, the four-electrode cell provides direct access to the closed-circuit as well as 

open-circuit voltage in a manner not distorted by the main and side reaction kinetics or double-layer 

effects at the working and counter electrodes. 
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Figure  6-2. The potential difference between the two sensors (upper plot) in response a 

rectangular current waveform applied to the WE and CE (lower plot). 



 

 103 

Figure  6-2 schematically reflects the voltage response of the four-electrode cell to a current 

waveform. Transport properties are estimated all at once by fitting a mathematical model to the 

potential difference between the two sensors during (closed-circuit) and after (open-circuit) the 

galvanostatic polarization. As shown in section  6.6, the recorded data exhibit unique features each of 

which can be unambiguously attributed to one of the three independent transport properties: i) 

instantaneous change of voltage at the outset and end of closed-circuit period is contributed solely by 

ionic migration (i.e., ionic conductivity of the electrolyte), ii) exponential decay of open-circuit data 

with time is controlled by diffusion (i.e., chemical diffusion coefficient) and iii) transient portion of 

closed-circuit data is attributed to both migration and diffusion (i.e., transference number).  

6.4 Experimental 

The cell is assembled entirely in an argon-filled glove box (<1 ppm H2O, <1 ppm O2). The outer cell 

compartments (top, intermediate and bottom plates, O-rings and bolts and nuts) are washed with 

acetone and rinsed with dimethyl carbonate (DMC). The inner parts are stored in DMC for 30 min to 

make sure any salt deposit is removed. All cell parts are stored under vacuum in the ante-chamber of 

the glove box overnight prior to the cell assembly to minimize any chance of contamination.  

The separator is placed in the cell and gradually soaked with the electrolyte before the cell is 

tightened. Care is taken to avoid gas bubbles trapping in the GF pores. Prior to its use in the glove 

box, the GF is stored under vacuum for 24 hours at 90°C to assure that the level of moisture 

contamination and other adsorbed species is minimized. Borosilicate glass has a density of 2.500 g 

cm-3 measured using a He pycnometer (AccuPyc 1330, Micromeritics Instrument Corp., USA). The 

porosity (i.e., the presumed volume fraction of electrolyte) of the separator is calculated to be ~ 0.92, 

given the volume of the cell and the weight and density of the separator. 

Two electrolyte solutions, a commercial 1 mol L-1 solution of LiPF6 in a 1:1 vol. mixture of 

ethylene carbonate (EC) and diethyl carbonate (DEC) (Sigma Aldrich) and a 1 mol L-1 solution of 

LiPF6 in 1:1 vol. mixture of EC and DMC (Sigma Aldrich), are chosen as model systems for this 

study. These two systems differ only in the solvents (i.e., DEC vs. DMC) but are expected to have 

significantly different transport properties. 

The cell is operated galvanostatically inside a temperature chamber (Cincinnati Sub-Zero 

MCB-1.2, USA) at 25°C using a multi-channel potentiostat/galvanostat (VSP, Bio-Logic, France). 

Rectangular waveforms with the following steps are applied to the cell: i) constant current in the 
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positive direction (i.e., anodic at WE and cathodic at CE) for 8 hours, ii) a rest period (zero current) of 

16 hours, iii) constant current in the negative direction (i.e., opposite to step i) for 8 hours and iv) rest 

period for 16 hours.  

The cell is oriented vertically with the WE positioned at the bottom. Only the response to the 

first half of the waveform is measured during the experiments. In this configuration, the electrolyte at 

the bottom reaches a higher solute concentration than at the top during the first half of the waveform 

since the oxidation reaction tends to concentrate the solution while the reduction reaction tends to 

dilute it. In this way, buoyancy effects are minimized. The current amplitudes applied to the WE and 

CE during the on-periods of the waveform described above range from 0.15 mA (~0.113 mA cm-2) to 

0.375 mA (~0.282 mA cm-2). These currents are large enough to generate sufficient concentration 

polarization (i.e., appreciable signal-to-noise ratio), while at the same time small enough not to cause 

excessively long relaxation times and violate the model assumptions (e.g., isothermal operation). The 

resolution of potential measurement is set to 5 μV at a full scale range (FSR) of 0.2 V. The 

measurement accuracy is 0.1% FSR [172], i.e., േ	0.2	mV. Prior to the application of the waveform 

above, the cell is conditioned by applying the same waveform twice. The conditioning is required to 

form a stable solid electrolyte interphase as well as to improve the uniformity of charge-transfer 

reaction at the surface of the WE and CE. Harsh conditions are avoided to minimize irreversible loss 

of solute and solvent due to SEI growth. 

6.5 Theory 

6.5.1 Governing Equations 

The mathematical model developed in this section describes species transport in a binary electrolyte 

according to concentrated-solution theory. The model is made general enough so that it can be 

applied to a variety of electrolyte systems for which a similar four-electrode cell setup can be used. 

To have an accurate insight on the cell design, the model features bipolar effects [173] occurring at 

the surface of the reference electrodes which perturbs the concentration and electric potential of the 

electrolyte locally where the sensors are located. As such, the model is developed for the actual 2-D 

axi-symmetric geometry. The model also takes into account faradaic convection. It will be shown in 

section  6.6 that the bipolar effects are negligible in the proposed cell design and under operating 

conditions relevant to electrolyte characterization which simplifies the model significantly and 

reduces the dimensionality of the computational domain to 1-D.  
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In a binary electrolyte, salt A dissociates into its ionic constituents M௜
௭೔  with charge numbers 

 ௜ in the salt molecule. In the case of a binaryߥ in accordance with the stoichiometric coefficients	௜ݖ

electrolyte [107]: 

 A ⇌ ାMାߥ
௭ା ൅ Mିିߥ

௭ି (6-1)

where ݅ ൌ ൅	for the cation and ݅ ൌ െ	for the anion. Thus, a binary electrolyte contains three 

species—cation, anion and solvent (݅ ൌ 0). Conservation of mass for each species ݅ in the electrolyte 

in the absence of homogeneous chemical reaction leads to: 

ߝ 
߲ܿ௜
ݐ߲

ൌ െ׏ ⋅ ௜ (6-2)ۼ

where ߝ is the separator porosity (the electrolyte is contained within a porous separator), ݐ is time, ܿ௜ 

is the molar concentration referred to the pore volume and ۼ௜ is the superficial molar flux density of 

species ݅ in the solution referred to cross-section area of solid matrix and pore space [107]. 

It is more convenient to re-cast these conservation equations in terms of the ionic current 

density, mass-average velocity and solute concentration which are all measurable quantities. 

Faraday’s law can be applied to relate the fluxes of the species present to the current density flowing 

through the electrolyte: 

 
ܑ ൌ ௜ۼ௜ݖ෍ܨ

௜

 (6-3)

where ܑ is the ionic current density, ܨ is the Faraday constant. Multiplying both sides of Eq.  (6-2) by 

 ௜ and summing over all species leads to the charge conservation equationݖܨ

׏  ∙ ܑ ൌ 0  (6-4)

given the Guggenheim electroneutrality condition ∑ ௜ܿ௜௜ݖ ൌ 0 [174]. Eq.  (6-4) is the conservation law 

of a measurable quantity and is simple enough to replace one of the mass balance equations in Eq.  (6-

2).  

Multiplying both sides of Eq.  (6-2) by the molar weight ܯ௜ of species ݅ and summing over all 

species yields: 

ߝ 
ߩ߲
ݐ߲

ൌ െ׏ ∙ ሺܞߩሻ  (6-5)



 

 106 

where ߩ ൌ ∑ ௜ܿ௜௜ܯ  is the density of the solution (in g	m‐3) and ܞ is the superficial mass-average 

velocity referred to the area of both solid matrix and pore and is defined as:  

ܞ  ൌ
1
ߩ
෍ܯ௜ۼ௜
௜

 (6-6)

Eq.  (6-5) replaces another species mass conservation equation in Eq.  (6-2). 

In a concentrated solution, constitutive expressions for species flux densities are obtained 

from the Stefan-Maxwell equations which express a local equilibrium between the transport driving 

force and the friction forces exerted on one species by the others [107]: 

 
ܿ௜ߤ׏௜
ܴܶ

ൌ෍
ܿ௜ ௝ܿ

ܿ୘ߝఊࣞ௜௝
ሺܞ௝ െ ௜ሻܞ

ே

௝ୀଵ

 (6-7)

Where ߤ௜ is the electrochemical potential of species ݅, ܴ is the universal gas constant, ܶ is 

temperature, ܿ୘ ൌ ∑ ܿ௜௜  is the total concentration of the solution, ܞ௜ is the superficial velocity of 

species ݅ referred to the cross-sectional area (i.e., ۼ௜ ൌ ܿ௜v௜) and ࣞ௜௝ is the diffusion coefficient 

related to interactions between species ݅ and ݆. The coefficient ߝఊ corrects the Stefan-Maxwell 

diffusion coefficients for both porosity and tortuosity where ߛ is the Bruggeman exponent [175]. 

Flux density expressions in terms of the thermodynamic driving force are obtained by 

inverting the Stefan-Maxwell expressions. To this end, a reference frame is required to which the 

diffusion velocities can be unambiguously referred [107, 176]. In other words, the number of 

independent velocity difference terms becomes one less than the number of species in the solution, in 

line with the Gibbs-Duhem requirement for the electrochemical potential. The volume-average 

velocity, molar-average velocity, solvent velocity or any other arbitrarily defined velocity can replace 

the mass-average velocity as a frame of reference for diffusion; any one is preferred over the others 

providing it is convenient in a given situation [107, 176]. According to De Groot [176], the 

arbitrariness of the reference velocity is implied by Prigogine’s theorem stating that, under the 

condition of mechanical equilibrium and irrespective of external forces, the entropy production rate 

associated with diffusion is the same regardless of the choice of reference velocity. It can be safely 

assumed that the state of mechanical equilibrium is realized very quickly and long before chemical 

equilibrium is reached in an enclosed rigid vessel (e.g., a diffusion cell) containing a liquid [176]. 

Such a mechanical equilibrium requires that the acceleration term (i.e., substantial time derivative 
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 of the mass-average velocity) in the conservation of momentum vanishes and the viscous ݐܦ/ܞܦ

dissipation term is negligible. As such, in the absence of external forces (e.g., gravity or other body 

forces), the pressure drop across the cell becomes negligible and greatly simplifies the Stefan-

Maxwell flux expressions and the Gibbs-Duhem relation. 

In the majority of pseudo-two-dimensional battery models [108], the solvent is chosen as the 

frame of reference and its velocity is set to zero which simplifies the model since it allows convection 

to be neglected [177]. Although the solvent velocity is chosen as the reference to simplify the flux 

expressions, it is not set to zero in order to improve accuracy. Instead, an expression is derived to 

relate the solvent velocity to the other field variables and thermodynamic properties. 

After some algebraic manipulation of Eq.  (6-7), the cation and anion flux densities can be 

related to the solvent velocity to yield [107] :  

ାۼ  ൌ െ
ఊࣞܿ୘ߝାߥ
଴ܴܿܶߥ

௘ߤ׏ܿ ൅
ା଴ݐܑ

ܨାݖ
൅ ܿାܞ଴ (6-8)

and 

ିۼ  ൌ െ
ఊࣞܿ୘ߝିߥ
଴ܴܿܶߥ

௘ߤ׏ܿ ൅
ܑሺ1 െ ା଴ሻݐ

ܨିݖ
൅ ଴ (6-9)ܞିܿ

where  

௘ߤ  ൌ ାߤାߥ ൅ ିߤିߥ ൌ ௘ఏߤ ൅ ܴܶߥ lnሺܿ േ݂ሻ  (6-10)

is the chemical potential of the neutral combination of ions in the solution with the concentration 

ܿ ൌ ܿା/ߥା ൌ  ௘ఏ is the chemical potential of the neutral species at a secondary referenceߤ and ିߥ/ିܿ

state. The mean molar activity coefficient േ݂ is defined by: 

 േ݂ ൌ ൫ ା݂
ఔశ݂ିఔష൯

ଵ/ఔ
 (6-11)

In this expression, ௜݂ is the molar activity coefficient and ߥ ൌ ାߥ ൅  is the total number of moles of ିߥ

ions produced by the dissolution of one mole of salt. The diffusion coefficient of the electrolyte ࣞ 

based on a thermodynamic driving force and the cation transference number ݐା଴  with respect to the 

solvent velocity are measureable properties and related to the Stefan-Maxwell diffusion coefficients 

ࣞ௜௝ as follows [107]: 
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 ࣞ ൌ
ࣞ଴ାࣞ଴ିሺݖା െ ሻିݖ

ାࣞ଴ାݖ െ ଴ିࣞିݖ
 (6-12)

and 

ା଴ݐ  ൌ
ାࣞ଴ାݖ

ାࣞ଴ାݖ െ ଴ିࣞିݖ
 (6-13)

To obtain an estimate for the solvent concentration ܿ଴ in the above equations, one needs an 

equation of state for the total solution concentration ܿ୘ in terms of the pressure, temperature and 

solute concentration. At constant temperature and pressure, ܿ୘ is related to the partial molar volumes 

തܸ௜ of the dissolved species and solvent according to the summability relation [178]: 

 
1
ܿ୘
ൌ෍ݕ௜ തܸ௜

௜

 (6-14)

where ݕ௜ is the mole fraction of species ݅ in the solution. Multiplying Eq.  (6-14) by ܿ୘ gives: 

 ෍ܿ௜ തܸ௜
௜

ൌ 1  (6-15)

The partial molar volume തܸ௘ of the electrolyte can be defined as [107]: 

 തܸ௘ ൌ ାߥ തܸା ൅ ିߥ തܸି  (6-16)

and used in Eq.  (6-15) to give: 

 ܿ଴ ൌ
1
തܸ଴
ሺ1 െ ܿ തܸ௘ሻ  (6-17)

തܸ௘ and തܸ଴ are measurable quantities and can be estimated through measurement of the solution density 

 :at various electrolyte concentrations at constant pressure and temperature [107] ߩ

 തܸ௘ ൌ
௘ܯ െ

ߩ݀
݀ܿ

ߩ െ ܿ
ߩ݀
݀ܿ

 (6-18)

and 

 
തܸ଴ ൌ

଴ܯ

ߩ െ ܿ
ߩ݀
݀ܿ

 (6-19)

Substitution of Eq.  (6-8) into Eq.  (6-2) and incorporation of Eq.  (6-4) give: 
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ߝ 
߲ܿ
ݐ߲

ൌ ׏ ∙ ቆ
ఊࣞܿ୘ߝ
଴ܴܿܶߥ

௘ቇߤ׏ܿ െ
ܑ ∙ ା଴ݐ׏

ܨାݖାߥ
െ ׏ ∙ ሺܿܞ଴ሻ (6-20)

This equation replaces the third conservation equation in Eq  (6-2). Now constitutive expressions for ܑ 

and ܞ଴ must be derived. 

Eq.  (6-9) is incorporated into an expression for the ionic current density, which flows via ion 

migration (i.e., motion of charged species under an electric field) in addition to diffusion. To this end, 

a proper definition for the electric potential in the liquid phase must be provided. Such a definition 

must capture the effect of varying composition and is, therefore, different from the electrostatic 

potential defined strictly for media of uniform chemical composition [107]. The potential of a 

reference electrode that is reversible with respect to an ion in the solution perfectly suits situations 

where significant concentration gradients exist [107]. The gradient of such an electric potential is 

obtained in reference to the following general electrode reaction: 

Mିିݏ 
௭ష ൅ ାMାݏ

௭శ ൅ ଴M଴ݏ
௭బ ⇌ ݊eି (6-21)

by imposing the condition of equilibrium on an imaginary reference electrode and differentiating the 

resulting equation with respect to spatial variables: 

Φ׏  ൌ െ
1
ܨ݊

෍ݏ୧
୧

௜ (6-22)ߤ׏

Φ is the electric potential of the solution so defined, ݊ is the number of electrons involved in the 

electrode reaction and ݏ௜ is the stoichiometric coefficient of species ݅ in the reaction (where ݏ௜ ൏ 0 for 

a product generated in the oxidation direction). By combining Eqs.  (6-7) ,  (6-8),  (6-9), the Gibbs-

Duhem relation, electroneutrality condition and reaction charge balance ሺݏାݖା ൅ ିݖିݏ ൌ െ݊), one 

obtains an expression for the ionic current density [107]: 

 ܑ ൌ െߝఊ׏ߢΦ െ
ߢఊߝ
ܨ

ቆ
ାݏ
ାߥ݊

൅
ା଴ݐ

ାߥାݖ
െ
଴ܿݏ
݊ܿ଴

ቇ ௘ (6-23)ߤ׏

where ߢ is the ionic conductivity of the solution: 

ߢ  ൌ െ
ܿ୘ݖାܨିݖଶ

ܴܶ
ቆ
1

ࣞାି
൅
ܿ଴ሺ1 െ ା଴ሻݐ

ܿାࣞ଴ି
ቇ
ିଵ

 (6-24)

Again, ߝఊ in Eq.  (6-23) is the correction coefficient for the ionic conductivity that accounts for 

porosity and tortuosity of the medium.  
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The constitutive equation for ܞ଴ is obtained as follows. The gradient of the chemical potential 

is related to the concentration gradient in the above equations according to: 

 
1
ܴܶߥ

௘ߤ׏ܿ ൌ (6-25) ܿ׏ߙ

where ߙ ൌ ሺ1 ൅ ݀ln േ݂/݀ ln ܿሻ is the thermodynamic factor on a molar basis at constant pressure and 

temperature. The thermodynamic factor reflects the deviation of the solution from ideal behavior. As 

such, thermodynamic measurements are required for accurate characterization of concentrated 

solutions. A combination of the thermodynamic factor and cation transference number is retrieved 

from the “concentration polarization” data measured by way of concentration-cell experiments. After 

substituting Eq.  (6-25) into Eq.  (6-23) and applying the condition of zero current in a standard 

concentration-cell experiment (i.e., ܑ ൌ ૙ in Eq.  (6-23)), one obtains an expression for the 

concentration polarization ߁ሺܿሻ: 

߁  ൌ
݀Φ
݀lnܿ

|ܑୀ૙ ൌ െ
ܴܶߥ
ܨ

ቆ
ାݏ
ାߥ݊

൅
ା଴ݐ

ାߥାݖ
െ
଴ܿݏ
݊ܿ଴

ቇ(6-26) ߙ

The flux expressions given by Eqs.  (6-8) and  (6-9) are written in terms of the solvent 

velocity, whereas the continuity equation given by Eq.  (6-5) is based on the mass-average velocity. 

Substitution of Eqs.  (6-8),  (6-9) and ۼ଴ ൌ ܿ଴ܞ଴ into the definition of the mass-average velocity Eq. 

 (6-6) yields an expression relating ܞ଴ to ܞ: 

଴ܞ  ൌ ܞ ൅
1
ߩ
൭ቆ
ఊࣞܿ୘ߝ
଴ܴܿܶߥ

௘ܯቇ	௘ߤ׏ܿ െ
ܑ

ܨାݖାߥ
ቀߥାܯାݐା଴ െ ሺ1ିܯିߥ െ ା଴ሻቁ൱ (6-27)ݐ

At this point, the system of equations consists of four unknown scalar variables (ܿ, Φ and the 

two components ܞ௥ and ܞ௭ of the velocity vector), but only three independent equations, i.e., Eqs.  (6-

4),  (6-5) and  (6-20). Therefore, in order to close the system of equations for the 2-D geometry of the 

cell, the momentum transport equation must be implemented [177]. Inclusion of the momentum 

balance equations for the radial and axial directions (two additional independent equations) 

introduces a fifth scalar variable, pressure ݌. In this way, the number of unknowns matches the 

number of independent equations and the system of equations is closed. This is seemingly at odds 

with our prior assumption of constant pressure throughout the cell. Although pressure is calculated 

using the model, its variation is so small (ܱሺ10ିଷ	Paሻ) that its inclusion in the Stefan-Maxwell 

equations, equation of state and the Gibbs-Duhem relation does not provide meaningful improvement 
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to the estimates of the transport parameters. Therefore, these equations are taken to follow the 

assumption of constant pressure to avoid unnecessary intricacy.  

It should be noted that in a 1-D system where the use of the equation of motion is not required (i.e., 

one-dimensional velocity vector), the volume-average velocity is usually preferred over the mass-

average velocity as it leads to a simpler continuity equation often with an analytic solution. The case 

of a 1-D model based on the volume-average velocity is described elsewhere [31, 107, 112].  

As described in section  6.2, a porous separator is used to confine the electrolyte inside the 

working volume of the cell. Darcy’s law [179] provides a constitutive relation for the mass-average 

velocity across a porous medium in terms of the pressure gradient: 

ܞ  ൌ െ
Κ
ߤ
݌׏  (6-28)

where Κ denotes the permeability of the porous medium (assumed isotropic) and ߤ is the dynamic 

viscosity of the solution. Note that gravity effects are ignored in this equation. For the cell described 

in this study, the flow is not caused by a pressure difference but rather by the electrochemical reaction 

at the working and counter electrodes. ݌׏ can therefore be regarded as a charge-transfer-induced (or 

“faradaic”) pressure gradient. Consider that free convection due to local density variations (buoyancy 

effect) and electro-osmotic effect across the porous silicate separator are neglected in order to further 

simplify the model. 

6.5.2 Boundary Conditions 

The boundary conditions are derived in accordance with the charge transfer reaction Eq.  (6-21) 

occurring at the WE, CE and PS, assuming identical electrode chemistries, as well as the symmetry at 

the centerline of the cell. Of course, the charge-transfer reactions differ if WE, CE and PS are of 

different chemical natures (e.g., intercalation electrodes). The molar flux of species ݅ at the 

WE/electrolyte interface at ݖ ൌ 0 and the CE/electrolyte at ݖ ൌ  is related to the current density ܮ

generated by the reaction assuming negligible charging of electric double layer: 

௜ۼ  ∙ ොܢ ൌ െ
௜ݏ
ܨ݊

ܑ ∙ ො (6-29)ܢ

where ܢො is the axial unit vector in the cylindrical coordinates. If species i is the only reacting species, 

then ۼ௝ஷ௜ vanishes at the boundary for all other species. It should be noted that boundary 

displacement due to electrochemical reactions at the WE and CE (e.g., in the case of metallic 
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electrodes) and the associated convection are very small under the operating conditions relevant to 

electrolyte characterization experiments and are thus ignored in this derivation. In cases where the 

boundary displacement is significant, the associated mathematical complication could be avoided by 

referring the species velocities to either the WE or CE surface rather than to a stationary frame of 

reference. However, this approach is valid only for a two-electrode cell configuration and breaks 

down for a multi-electrode configuration where the cell dimensions change upon boundary 

displacement. Moreover, under the assumption of constant partial molar volumes തܸ௘ and തܸ଴, which 

has been shown to be valid for a wide range of liquid solutions [107, 176], changes of the total 

volume due to concentration gradient development/relaxation become zero. As a result, the height of 

the electrolytic solution remains fixed and identical to the cell length and the associated convective 

effects vanish.  

The current density is controlled externally by a potentiostat/galvanostat at ݖ ൌ  :ܮ

ୟ୮୮ܫ  ൌ െ2ߨන ݎ݀ݎେ୉ܫ
ோౙ౛ౢౢ

଴
 (6-30)

where ܫୟ୮୮ is the applied current, positive when the WE electrode at ݖ ൌ 0 undergoes an oxidation 

reaction while the CE at ݖ ൌ CEܫ ,.experiences a reduction reaction (i.e ܮ ൏ 0). ܴୡୣ୪୪ is the radius of 

the cell and ܫେ୉ is the current density due to the charge-transfer reaction rate at the CE according to 

the Butler-Volmer equation: 

 

େ୉ܫ ൌ େ୉݇ߝܨ݊
଴ ܿଵିఉిుሺ1

െ ܿେ୉ሻଵିఉిుܿେ୉
ఉిు ൥exp ൭

ሺ1 െ ܨେ୉ሻ݊ߚ
ܴܶ

ሺΦେ୉ െ ܷେ୉ െ Φሻ൱

െ exp൭െ
ܨେ୉݊ߚ
ܴܶ

ሺΦେ୉ െ ܷେ୉ െ Φሻ൱൩ 

(6-31)

where ݇େ୉
଴  is the reaction rate constant, ߚେ୉ is the charge-transfer coefficient, ܷେ୉ is the equilibrium 

potential of CE and ܿେ୉ is the concentration of the reacting species in the counter electrode (e.g., an 

intercalation/insertion electrode). If the counter electrode is a pure metal and no intercalation reaction 

occurs, then ܿେ୉ is irrelevant. ܷେ୉ is zero if the counter electrode is identical to the imaginary 

reference electrode used to define the solution potential. Φେ୉ is the electric potential of the counter 

electrode and is obtained using Eq.  (6-31). Eq.  (6-31) also represents the current density of the 

charge-transfer reaction at the working electrode (in this case, the subscript WE is used instead of 
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CE). Charge is conserved and the integral boundary condition at ݖ ൌ  guarantees that the total ܮ

current entering/leaving the working electrode at ݖ ൌ 0 is equal to ܫୟ୮୮ as well. As the second 

boundary condition, it is convenient to set the working electrode potential to zero, i.e., Φ୛୉ ൌ 0, and 

to calculate the solution potential adjacent to the WE from the Butler-Volmer equation. It is justified 

by the fact that the electric potential of the electrode should remain uniform due to its high electronic 

conductivity. Multiplying Eq.  (6-29) by ܯ௜ and adding over all species and dividing by ߩ yields the 

boundary condition for velocity at ݖ ൌ  :ܮ

ܞ  ∙ ොܢ ൌ െ
∑ ௜௜ܯ௜ݏ

ܨ݊ߩ
ܑ ∙ ො (6-32)ܢ

The pressure at ݖ ൌ 0 is arbitrarily set to zero as the second boundary condition for the 

equation of momentum conservation. From axial symmetry, the radial components of the species flux 

densities, mass-averaged velocity and the current density are zero at the centerline of the cell: 

 

௜ۼ ∙ ොܚ ൌ 0 ݐܽ ݎ ൌ 0 

ܞ ∙ ොܚ ൌ ݎ	ݐܽ	0 ൌ 0 

ܑ ∙ ොܚ ൌ 0 ݐܽ ݎ ൌ 0 

(6-33)

where ܚො is the radial unit vector. 

6.5.3 Potential Sensors 

As described in the previous subsection, the potential difference between two infinitesimal reversible 

electrodes can describe the electrical state of the solution. Since a real reference electrode has a finite 

length, some ambiguities regarding the spatial resolution of the measured solution potential may exist.  

Since each potential sensor is not connected to a sink/source of current, the overall charge transferred 

across the entire sensor/electrolyte interface is zero. In the case of a metallic (i.e., good electronic 

conductor) electrode, a “bipolar effect” takes place whereby anodic and cathodic reactions occur 

simultaneously at different locations over its surface depending on the electrolyte potential profile 

[173]. Each potential sensor is assumed to have a uniform electric potential due to its high 

conductivity. The charge-transfer reaction that occurs locally at the sensor/electrolyte interface can 

also be described by the Butler-Volmer equation: 
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୔ୗ,௟ܫ ൌ ୔ୗ݇ߝܨ݊
଴ ܿଵିఉౌ౏ሺ1

െ ܿ୔ୗሻଵିఉౌ౏ܿ୔ୗ
ఉౌ౏ 	൥exp ൭

ሺ1 െ ܨ୔ୗሻ݊ߚ
ܴܶ

൫Φ୔ୗ,௟ െ ܷ୔ୗ െ Φ൯൱

െ exp൭െ
ܨ୔ୗ݊ߚ
ܴܶ

൫Φ୔ୗ,௟ െ ܷ୔ୗ െ Φ൯൱൩ 

(6-34)

where ܫ୔ୗ,௟ is the charge transfer rate per unit area of the potential sensor ݈, ݇୔ୗ
଴  is the kinetic rate 

constant, ߚ୔ୗ is the charge transfer coefficient and Φ୔ୗ,௟ is the potential of the electrode. Note that the 

PS are chosen to be chemically and geometrically identical. ܷ୔ୗ is the electrode equilibrium potential 

versus the imaginary reference electrode used to define the solution potential and is zero if the 

solution potential is defined based on the same electrodes as actually used as the potential sensors. 

ܿ୔ୗ is the concentration of the reacting species in the potential sensor (e.g., an intercalation electrode) 

and is irrelevant in Eq.  (6-34) if a pure metal is used as the potential sensor.  

The condition of zero net charge transfer at the electrode/electrolyte interface requires the 

following constraint to hold: 

 න ୔ୗ,௟݀ܵܫ
஺ౌ౏

ൌ 0 (6-35)

where ܣ୔ୗ is the area of the sensor/electrolyte interface over which the charge-transfer reaction 

occurs. For an annular electrode, ݀ܵ ൌ  An immediate implication of this constraint is that .ݖୡୣ୪୪ܴ݀ߨ2

the local charge-transfer reaction must change direction from cathodic to anodic at some locus ୣݖ୯,௟ 

connecting the cathodic and the anodic poles of the potential sensor. At this location, the polarization 

is zero (i.e., Φ୔ୗ,௟ െ Φ ൌ 0 given ܷ୔ୗ ൌ 0) and the electrode potential becomes equal to the electric 

potential of the adjacent solution. Since the electrode is conductive, its electric potential Φ୔ୗ,௟ is 

spatially uniform and is equal to the solution potential at ୣݖ୯,௟. As a result, the potential difference 

Φ୔ୗ,ଶ െ Φ୔ୗ,ଵ	unambiguously measures the difference in the solution potential at certain positions in 

the cell, i.e., at ݖ ൌ ݖ ୯,ଶ andୣݖ ൌ ݎ ୯,ଵ atୣݖ ൌ ܴୡୣ୪୪.  

 Φ୔ୗ,௟ and the corresponding equilibrium locus between the anodic and cathodic poles of each 

PS is found by solving Eq.  (6-35) based on ܫ୔ୗ.௟ being determined by equating Eq.  (6-34) to the radial 

component of the ionic current density at the surface of PS,1. Current density is zero over inert 

interfaces in the cell. Thus the boundary condition for Eq.  (6-4) at ݎ ൌ ܴୡୣ୪୪ reads: 
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 ܑ ∙ ොܚ ൌ ቐ
െܫ୔ୗ,ଵ, ݖ ∈ ሾߣ, ߣ ൅ ߜ ሿ
െܫ୔ୗ,ଶ, ݖ ∈ ሾܮ െ ሺߣ ൅ ,ሻߜ ܮ െ ߣ ሿ

0, otherwise
 (6-36)

where ߣ is the spacing between the PS and WE/CE and ߜ is the thickness of the PS. The negative sign 

signifies that ܑ. ୔ୗ,௟ܫ ,.ො is positive on the cathodic pole where reduction occurs (i.eܚ ൏ 0) and is 

negative on the anodic pole where oxidation occurs (i.e., ܫ୔ୗ,௟ ൐ 0). Boundary conditions similar to 

Eq.  (6-29) and Eq.  (6-32) hold for ۼ௜ and ܞ, respectively, at ݎ ൌ ܴୡୣ୪୪: 

௜ۼ  ∙ ොܚ ൌ െ
௜ݏ
ܨ݊

ܑ ∙ ො (6-37)ܚ

 

ܞ  ∙ ොܚ ൌ െ
∑ ௜௜ܯ௜ݏ

ܨ݊ߩ
ܑ ∙ ො (6-38)ܚ

Because of the bipolar effect, the potential sensors locally perturb the concentration and 

potential of the electrolyte which, in turn, affects the measured potential difference. The simple case 

of a solution exposed to a constant electric field with zero local perturbation is discussed in  Appendix 

A. 

Figure  6-3 shows the schematics of the computation domain with the governing equations 

and the associated boundary conditions listed.  

The solute concentration is the only variable for which an initial value must be known to 

obtain a unique transient solution to the problem. Accordingly, the concentration is set to the nominal 

concentration of the as-received electrolyte, ignoring effects due to side reactions during the cell 

conditioning and temperature. 
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Figure  6-3. Schematic view of the computation domain and the list of governing equations and 

boundary conditions. The lengths are not to scale in drawing.    

6.5.4 Solution Method 

The coupled system of partial differential equations consisting of Eqs.  (6-4),  (6-5),  (6-17),  (6-20),  (6-

23),  (6-25),  (6-27) and  (6-28) and the corresponding boundary conditions is numerically solved using 

the finite-element-based COMSOL Multiphysics simulation package. The 2-D axi-symmetric 

solution domain is discretized into unstructured triangular meshes controlled by specified 

distributions on the domain boundaries. The boundaries along the dimensionless cell radius are 

discretized into 20 elements distributed according to an arithmetic sequence with the smallest element 

adjacent to the cell wall being half the largest one at the symmetry axis ݎ ൌ 0. The domain boundary 

along the cell wall consists of five segments: two potential sensors and three inert walls. Along each 

potential sensor the boundary is uniformly divided into 40 elements. Such a high mesh density is used 

to assure accuracy as FEM is not a conservative numerical method in nature. The two shorter inert 

boundaries corresponding to the WE/CE-PS spacers are discretized into 10 elements shrinking 
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towards the outer edges of the PS with a largest to smallest ratio of 0.05 whereas the larger inert 

boundary corresponding to the spacer between the two PS is divided into 40 elements symmetrically 

distributed with a size ratio of 0.05 and the largest one located in the middle. Time stepping is 

performed using an adaptive backward difference scheme with a maximum order of 5. The resulting 

linear algebraic equations are solved in each time step using the multifrontal massively parallel sparse 

direct solver (MUMPS) algorithm embedded in COMSOL Multiphysics. 

6.6 Results and Discussion 

In order to demonstrate the effectiveness of the proposed cell design and the method for estimating 

the transport properties, it is applied to two non-aqueous electrolytic solutions—a 1 molar solution of 

LiPF6 in a EC/DEC (1:1 vol.) mixed solvent and a 1 molar solution of the same salt in a EC/DMC 

(1:1 vol.) mixed solvent, as described in ‘Experimental’ and the results shown in Figure  6-4. General 

model parameters used for the simulations are listed in Table  6-1. The same set of thermodynamic 

data as reported in the literature for 1M LiPF6 in 1:1 wt. EC/DEC is used to characterize both 

electrolytes (due to lack of thermodynamic data for the EC/DMC system) [43]. It is a reasonable 

assumption as the literature reports show that the thermodynamic factor values does not vary 

significantly for electrolytes of the same solute (i.e., LiPF6) but different solvents (see figure 10 of 

Ref. [180]). The estimated transport properties for the two electrolytes are summarized in Table  6-2 

and Table  6-3. The method used to obtain these values is discussed in detail in the following section. 

The estimated transport parameters compare favorably with those recently reported in the literature 

for the similar system of 1M LiPF6 in 1:1 wt. EC/DEC (ߢ ൌ 0.79	S	mିଵ, ࣞ ൌ 1.377	mଶ	sିଵ and 

ା଴ݐ ൌ 0.162 at ܿ ൌ 1	mol	Lି ଵ with faradaic convection included) [43].  

Table  6-1. Model parameter used for the simulations at 25˚C .  

Parameter  Symbol  Value 

Cell length (m)  4.747  ܮ ൈ 10ିଷ୫ 

Cell radius (m)  ܴୡୣ୪୪  6.49 ൈ 10ିଷ୫ 

Porosity  0.92  ߝୡ 

Bruggeman exponent  [39] 3.44  ߛ  
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Working electrode/potential sensor spacing (m)  7.56  ߣ ൈ 10ିସ୫ 

Potential sensor width (m)  1.91  ߜ ൈ 10ିସ୫ 

Number of species in the solution  ܰ  3ୟ 

Temperature (K)  ܶ  298.15୫ 

Number of cations in one molecule of salt  ߥା  1ୟ 

Number of anions in one molecule of salt  1  ିߥୟ 

Cation charge number  ݖା  1ୟ 

Anion charge number  ିݖ  െ1ୟ 

Stoichiometric coefficient of cation in reversible 

electrode reaction 
 

 ା  െ1ୟݏ

Stoichiometric coefficient of anion in reversible 

electrode reaction 
 

 ିݏ
 

0ୟ 

Stoichiometric coefficient of solvent in reversible 

electrode reaction 
 

 ଴  0ୟݏ

Number of electron in charge-transfer reaction  ݊  1ୟ 

Charge-transfer rate constant, ݍ ൌ WE,	CE,	PS 

(molఉ೜	mଵିଷఉ೜	sିଵ) 
 

݇௤଴ 
 

7 ൈ 10ି଺ [162] 

Charge transfer coefficient, ݍ ൌ WE,	CE,	PS   ߚ௤  0.5ୟ 

Potential sensor equilibrium potential vs. reference 

electrode used to define electrolyte potential, 

ݍ ൌ WE,	CE,	PS (V)  

 

ܷ௤ 

 

0ୟ 

Molecular weight of Li൅ (g	molିଵ)  ܯା  6.94ୟ 

Molecular weight of PF଺
ା (g	molିଵ)  144.96  ିܯୟ 

Molecular weight of EC/DEC solvent (g molିଵ)  ܯ଴  100.9ୟ 

Partial molar volume of LiPF଺ in EC/DEC 

(m3	mol-1)  
 

തܸ௘  
 

56.8 ൈ	10ି଺ [43] 

Partial molar volume of EC/DEC solvent  
തܸ଴  90.8 ൈ 	10ି଺ [43] 
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(m3	mol-1) 

Dynamic viscosity of 1 M LiPF଺ in EC/DEC (Pa.s)  4.6  ߤ ൈ 10ିଷ [43] 

Permeability of separator (m2)  Κ  3.96 ൈ 10ିଵଶୡ 

Concentration polarization at ܿ ൌ 1000 mol mିଷ 

(V) 
 

 ߁
 

0.0702 [43] 

m: measured;   c: calculated;   a: assumed;  

6.6.1 Parameter Estimation 

The proposed parameter estimation method relies on numerically solving the mathematical model 

presented in the previous section and comparing the simulation results to the experimental data (i.e., 

|Φ୔ୗ,ଶ െ Φ୔ୗ,ଵ|) obtained in the four-electrode cell in response to a single rectangular pulse wave. 

Three transport properties, namely, ߢ, ࣞ and ݐା଴ , are estimated for a concentrated binary electrolyte at 

any given concentration. Transport properties are estimated at the nominal concentration of the as-

received electrolyte, i.e., at ܿ ൌ 1	mol	Lି ଵ, and are assumed to remain constant throughout the 

experiment for simplicity.  

In previous methods, distinctive features in the electrode responses from various experiments 

are collected: i) intersection of the high-frequency data with the real-axis of a Nyquist plot in an AC 

impedance measurement to estimate the ionic conductivity, ii) decay in the OCV of a symmetric cell 

with time in the restricted diffusion experiment to determine the chemical diffusion coefficient [112] 

and iii) OCV measurement immediately after current interruption as a function of ݐܫ௜
ଵ/ଶ (ݐ௜: 

interruption time) in a semi-infinite diffusion experiment to measure the transference number [31, 

118].  

Prior to be fitted by the model, both closed-circuit and open-circuit voltages across the 

potential sensors are assessed carefully for features that uniquely manifest the effect of each of the 

unknown parameters. It is to assure unique parameter estimates. Analogous to the semi-infinite 

diffusion method, the closed-circuit voltage (CCV) responses to three different applied currents are 

plotted as a function of ݐଵ/ଶ in Figure  6-4b and e. The closed-circuit response demonstrates two 

distinct stages: i) the onset of the process where |Φ୔ୗ,ଶ െ Φ୔ୗ,ଵ| remains constant followed by ii) an 

increase in the potential difference that gradually levels near the end of the closed-circuit operation. It 
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should be noted that the attainment of steady-state is not necessary for the analysis according to our 

proposed method. 

0 4 8 12 16 20 24
0

0.005

0.01

0.015

0.02

0.025

t / h

| 
P

S
,2

- 
P

S
,1

| /
 V

 

 

50 100 150

0.005

0.01

0.015

0.02

t1/2 / s1/2

| 
P

S
,2

- 
P

S
,1

| /
 V

 

 

8 12 16 20 24
10

-5

10
-4

10
-3

10
-2

t / h

| 
P

S
,2

- 
P

S
,1

| /
 V

 

 

I = 0.113 mA cm -2

I = 0.151 mA cm -2 

I = 0.188 mA cm -2

(c)

(b)

(a)

0 4 8 12 16 20 24
0

0.005

0.01

0.015

0.02

0.025

0.03

t / h

| 
P

S
,2

- 
P

S
,1

| /
 V

 

 

0 50 100 150
0

0.005

0.01

0.015

0.02

0.025

0.03

t1/2 / s1/2

| 
P

S
,2

- 
P

S
,1

| /
 V

 

 

8 12 16 20 24
10

-5

10
-4

10
-3

10
-2

t / h

| 
P

S
,2

- 
P

S
,1

| /
 V
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EC/DEC 1:1 vol. 
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EC/DMC 1:1 vol. 
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Open circuit Open circuit 

 

Figure  6-4. Potential versus (a, d) ࢚ and (b, e) ࢚૚/૛ during closed-circuit portion of galvanostatic 

pulse; (c, f) semi-logarithmic plot of potential versus ࢚ during open-circuit portion of a 

galvanostatic pulse. The markers indicate experimental data and the lines are data computed 

using the model. Plots in (a) to (c) correspond to 1 M LiPF6 in EC/DEC and plots in (d) to (f) to 

1 M LiPF6 in EC/DMC. 
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In Figure  6-4c and f, the potential decay during the open-circuit portion of the galvanostatic 

pulse is plotted on a semi-logarithmic scale versus time. The experimental measurements take the 

form of a straight line in both electrolytes over the whole relaxation period. 

The constant-voltage stage at the onset of CCV (Figure  6-4b and e) corresponds to a short 

time delay required for the concentration gradients generated at the working and counter electrodes to 

reach the potential sensors. In other words, the PS do not sense potential differences due to 

concentration variations in the cell so that the recorded voltage is determined principally by ion 

migration. After this period, the closed-circuit potential begins to increase as a result of the 

concentration gradient slowly propagating across the sensors and toward the center of the cell. The 

measured potential during this stage is affected by both migration and diffusion which cannot be 

directly separated. The exponential decay of the potential during the response to the open-circuit 

portion of the pulse is attributed solely to diffusion [112]. 
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Figure  6-5. Semi-logarithmic plot of experimental potential differences for the LiPF6/EC/DEC 

system obtained during the closed-circuit and open-circuit before (crosses) and after (circles) 

correction for the observed non-zero offset. 

It is worthwhile to note that the linearity of data in the semi-logarithmic graph (i.e., 

characteristic of diffusive decay) is recovered by removing a non-zero offset from both the closed-

circuit and open-circuit data (Figure  6-5). The voltage offset is an instrumental artifact which distorts 
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experimental data. The magnitude and sign of the voltage offset vary for each cycle and so each set of 

experimental data is corrected by the corresponding offset (e.g., -1.55 mV for cell polarization at 

ୟ୮୮ܫ ൌ 0.15	mA, -0.2 mV at ܫୟ୮୮ ൌ 0.2	mA and -2.2 mV at ܫୟ୮୮ ൌ 0.25	mA in the LiPF6/EC/DEC 

system).  

Parameter estimation is conducted in three steps. In the first step, the ionic conductivity is 

estimated by manually adjusting it so that the model fits the experimental data during the initial 

constant-voltage stage of the closed-circuit response which is affected only by ionic migration. In the 

second stage, the chemical diffusion coefficient (on molar scale) 

ܦ  ൌ
ܿ୘
ܿ଴
ࣞߙ  (6-39)

is estimated from the open-circuit data by fitting the model to the slope of the straight line in the 

semi-logarithmic plot of voltage versus time (Figure  6-4c and f) in agreement with the restricted-

diffusion method. The term ߙ in Eq.  (6-39) is related to the as-received concentration-cell data 

according to Eq.  (6-26): 

 α ൌ
ܨ

2ܴܶሺ1 െ ାݐ
଴ሻ
(6-40) ߁

With the ionic conductivity ߢ and chemical diffusion coefficient ܦ already estimated in steps 

1 and 2 and the concentration polarization ߁ available from the concentration-cell experiment, the 

transference number ݐା଴  is determined in the last step by fitting the model to the transient portion of 

the closed-circuit data which is affected by the three transport properties. In the case of a non-zero 

solvent velocity where convective transport is also operative, the chemical diffusion coefficient and 

transference number may have to be finely tuned simultaneously at the end of the fitting process. 

Finally, the thermodynamic factor ߙ and thermodynamic diffusion coefficient ࣞ are calculated using 

Eqs.  (6-39) and  (6-40), respectively. It should be noted that solution density measurements (i.e., the 

partial molar volumes) are necessary for calculating the thermodynamic diffusion coefficient. If 

values of the partial molar volumes are unavailable, as in the case of the LiPF6/EC/DMC system, the 

method directly reports the chemical diffusion coefficient, which is sufficient for most battery 

modeling applications. Moreover, it is not possible to account for faradaic convection if the partial 

molar volumes are not known. Figure  6-6 summarizes the parameter estimation scheme proposed in 

this research. 
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Figure  6-6. Flowchart of the methodology proposed in this study for the estimation of transport 

and thermodynamic properties of concentrated binary electrolytes. 

The fitting process is carried out manually according to the above guidelines only for one 

galvanostatic pulse experiment (0.151	mA	cmିଶ and 0.226	mA	cmିଶ for LiPF6/EC/DEC and 

LiPF6/EC/DMC, respectively) and the resulting parameter estimates are used to simulate the response 

of the cell at other applied currents to test the robustness of the method. The fitting procedure 
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described above is demonstrated by performing a sensitivity analysis on the transport properties of the 

LiPF6/EC/DEC system as shown in Figure  6-7. The ionic conductivity shifts the CCV upward or 

downward (Figure  6-7a), chemical diffusion coefficient (i.e., ࣞ with constant ݐା଴) affects the slope of 

semi-logarithmic OCV (Figure  6-7b) and the transference number modifies the transient portion of 

CCV while ܦ (i.e., according to Eqs.  (6-39) and  (6-40)) is constant (Figure  6-7c and d). 

Table  6-2. Transport properties estimated for a 1 M solution of LiPF6 in EC/DEC (1:1 vol.) at 

૛૞°C. Concentration polarization data used here are taken from Ref [43] for a 1 M solution of 

LiPF6 in EC/DEC (1:1 wt.). 

Parameter  Symbol  ܞ଴ ് ૙  ܞ଴ ൌ ૙ 

Ionic conductivity (S	mିଵ)  0.95  0.95  ߢ 

Diffusion coefficient based on a 

thermodynamic driving force (mଶ	sିଵ) 
 ࣞ  1.24 ൈ 10ିଵ଴  1.10 ൈ 10ିଵ଴ 

Chemical diffusion coefficient (mଶ	sିଵ)  2.6  ܦ ൈ 10ିଵ଴  2.45 ൈ 10ିଵ଴ 

Transference number with reference to solvent 

velocity 
 ା଴  0.223  0.267ݐ 

Thermodynamic factor  1.864  1.758  ߙ 

 

The model-predicted results compare very well with the experimental data at all applied 

currents for both electrolytes (Figure  6-4). Discrepancies between the simulation results and 

experimental data can be attributed to errors associated with the model assumptions, numerical 

solution or the experiment itself. The first type of error occurs when the model assumptions and the 

operating conditions are not in a perfect agreement (e.g., transport properties independent of 

concentration); the second can arise when the numerical solution is mesh or time-step dependent; The 

third source of error can be related to the accuracy of the potentiostat/galvanostat used to measure the 

potential (i.e., 0.1% of FSR equivalent to േ0.2	mV), non-uniformity or localized nature of the charge-

transfer reaction at the WE and CE surfaces and the measurement of cell dimensions, porosity and 

tortuosity. The use of a precision multimeter, modification of the WE and CE (e.g., using 

intercalation electrodes in place of metallic ones) and accurate measurement of cell dimensions and 

tortuosity, among others, are expected to minimize possible errors in parameter estimates. Estimation 

errors are best quantified when an appropriate numerical scheme is used for the fitting procedure. 
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Table  6-3. Transport and thermodynamic properties of 1 M LiPF6 in EC/DMC (1:1 vol.) at 

૛૞°C. Concentration polarization data used here are taken from Ref. [43] for a 1 M solution of 

LiPF6 in EC/DEC (1:1 wt.). 

Parameter  Symbol   ܞ଴ ൌ ૙ 

Ionic conductivity (S	mିଵ)  1.19   ߢ 

Chemical diffusion coefficient (mଶ sିଵ)  2.66   ܦ ൈ 10ିଵ଴ 

Transference number with reference to solvent 

velocity 
 ା଴   0.425ݐ 

Thermodynamic factor  2.32   ߙ 

 

Experimental errors and those associated with model assumptions also exist with the 

conventional parameter estimation methods. Combination of information from piecewise experiments 

each conducted under strict operating conditions to meet the model assumptions (which are difficult 

to realize in practice) and accompanied by an exceedingly simplified though analytically solvable 

model, increases the chance for large systematic errors to land in the parameter estimates. These 

systematic errors are further discussed later. Therefore, significant discrepancies exist among the 

transport property values reported in the literature for similar electrolytes [31-44].  

The uniqueness of the fitted transport properties obtained using the proposed method can be 

further justified by resorting to discussions on the semi-infinite diffusion method. It will be shown 

that the closed-circuit portion of the galvanostatic pulse experiment replaces the semi-infinite 

diffusion experiments by producing a set of data orthogonal to those obtained from the open-circuit 

portion of the same experiment and those from the concentration-cell experiment. 

The semi-infinite diffusion analysis involves the analytical solution of a simplified 

conservation of mass equation during galvanostatic polarizations at different combinations of pulse 

current and duration. It also requires linearization of the modified ohm’s law in the absence of current 

in order to relate the voltage to the concentration at the two ends of a cell. As such, the cell voltage 

(i.e., Φ୛୉ െ Φେ୉ in a two-electrode cell) measured immediately after the current interruption is 

reflective of the difference between the bulk concentration and that adjacent to the WE surface [31, 

118]. Indeed, the closed-circuit voltage measured in the four-electrode cell is nothing but the 
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superposition of ohmic and concentration polarizations. Therefore, the CCV curve contains the same 

information as that generated by the semi-infinite diffusion experiment. Hence, CCV data can be used 

to estimate the transference number in the same way that semi-infinite diffusion data (i.e., potential 

differences versus ݐܫ௜
ଵ/ଶ where ݐ௜ is the interruption time) are used, given that the ionic conductivity is 

known. 
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 = 0.95 S m-1

 = 0.76 S m-1

D = 1.5410-10 m2 s-1

D = 1.2410-10 m2 s-1
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Figure  6-7. Sensitivity analysis of the model to (a) bulk ionic conductivity of the solution, (b) 

diffusion coefficient with respect to thermodynamic driving force, (c) and (d) transference 

number. (c) and (d) share the same legends that are shown in (d). Model parameters are given 

in Table  6-1 and Table  6-2 except those varied (see legend). 

The actual voltage measured immediately after the current interruption in the semi-infinite 

diffusion method is prone to error due to double-layer relaxation and other effects at the 

electrode/electrolyte interface. Therefore, it is necessary to extrapolate experimental data recorded at 

ݐ ൐ ݐ ௜ toݐ ൌ ߬ ”௜ (i.e., linear with respect to the so-called “reduced timeݐ ൌ ݐ√ሺ/ݐ√ െ ඥݐ௜ሻ where ݐ௜ 
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is the interruption time) to obtain a voltage value at the interruption time suitable for transference 

number estimation [118]. This linear extrapolation is allowed providing that the system perfectly 

satisfies the semi-infinite condition and that the concentration polarization ߁ is constant (i.e., valid for 

sufficiently small concentration differences) [119]. The same assumptions underlie the linearity of 

potential versus ݐܫ௜
ଵ/ଶ as ݐܫ௜

ଵ/ଶ approaches zero. The slope of the potential-ݐܫ௜
ଵ/ଶ curve is at the heart 

of the semi-infinite diffusion method and any error in obtaining its value (i.e., whether it is generated 

at the voltage measurement step, extrapolation step or the linear regression step) will propagate into 

the final estimates of the transference number, diffusion coefficient (thermodynamic and chemical) 

and thermodynamic factor. The semi-infinite diffusion method is therefore limited to narrow 

experimental conditions of small ݐܫ௜
ଵ/ଶ to comply with the underlying semi-infinite condition and 

constant ߁. However, these conditions are difficult to meet in practice since large potential signals are 

required for the measurements not to be distorted by noise. 

The new four-electrode method being proposed bypasses the need for semi-infinite diffusion 

experiments and the complications associated with parameter estimation described above by directly 

analyzing the closed-circuit data. In fact, a plot of the open-circuit potential after current interruption 

versus ݐܫ௜
ଵ/ଶ is not required to estimate the transference number. Instead, it is obtained by fitting the 

model to the closed-circuit voltage-time data. Measurement of CCV data at the potential sensors 

essentially obviates the need for any extrapolation required in the conventional semi-infinite diffusion 

method. Furthermore, continuous measurement of CCV data in the proposed method provides as 

many reliable data points as the potentiostat/galvanostat can record. The abundance of the reliable 

CCV data points as compared to the data points used in the conventional semi-infinite diffusion 

method (i.e., only a few) significantly reduces the error associated with curve fitting. Moreover, 

relaxation of the core assumptions of the semi-infinite diffusion experiment and numerical solution of 

the transport model make possible the analysis of data at larger ݐ.  

The condition of small ݐܫ௜
ଵ/ଶ in the conventional semi-infinite diffusion method is not only 

required to satisfy the semi-infinite diffusion condition but also to comply with the assumption that 

the variations of transport properties and thermodynamic factor with concentration are insignificant 

(i.e., constant solution properties at their bulk values). The same assumption is considered in the 

restricted diffusion method which is valid at sufficiently large times after the current interruption 

when the concentration profile levels off. The chemical diffusion coefficient so estimated corresponds 



 

 128 

accurately to the bulk concentration and is so-called “differential” chemical diffusion coefficient 

[112]. 

In the case of our four-electrode method, the assumption of constant properties is not 

required. Numerical solution of the complete transport model permits concentration-dependent 

transport properties to be estimated if electrolyte samples at different concentrations are prepared and 

separately examined in the four-electrode cell. Such a comprehensive analysis is beyond the scope of 

this thesis and will be presented in a future publication. As such, the assumption of constant 

properties made here is merely for the sake of simplicity. 

6.6.2 Convection 

Faradaic convection (i.e., convective transport of species induced by charge-transfer reactions at the 

working and counter electrodes) is accounted for in the model by solving for the mass-average 

velocity. However, the diffusion of species is referred to the solvent velocity when inverting the 

force-explicit Stefan-Maxwell equations Eq.  (6-7) into flux expressions Eqs.  (6-8) and  (6-9). This 

formulation resembles that used in most electrochemical battery models to describe the potential 

losses associated with species transport in the electrolyte [108]. Nonetheless, in almost all of these 

battery models, the solvent velocity is set to zero and faradaic convection is neglected to simplify the 

model. Despite their accuracy, the transport and thermodynamic properties determined with 

convection included are not compatible with an electrochemical battery model where convective mass 

transport is ignored. 

Figure  6-8 shows simulated voltage responses to a galvanostatic pulse assuming the solvent 

velocity is zero (dashed lines) or allowed to be non-zero (dashed-dotted lines) using the same set of 

transport properties estimated for the LiPF6/EC/DEC system for the case of v૙	്	0 (Table  6-2). 

Exclusion of the convective terms from the flux expressions causes an overestimation of the rate of 

relaxation of the concentration profile, i.e., leads to a steeper decay of voltage with time in Figure 

 6-8b. A decrease in ࣞ by ~ 11.1% and increase in ݐା଴  by ~ 19.7% are required for the simulations 

conducted with v૙	ൌ	0	 to coincide with those obtained with v૙	്	0. Thus, neglect of faradaic 

convection leads to an overestimate of ࣞ and an underestimate of ݐା଴ . Such a significant discrepancy 

suggests that faradaic convection may not be negligible in electrolytic solutions regularly used in Li-

ion batteries. Therefore, when using the parameter values given in Table  6-3, it is important that the 

electrochemical model in which these parameters are to be used be consistent with the model from 
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which they were obtained in the first place. The foundation of the conventional restricted and semi-

infinite diffusion methods is critically discussed and revisited to include convection effects in Refs. 

[119] and [177].  
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Figure  6-8. Simulation results for LiPF6/EC/DEC at ܘܘ܉ࡵ ൌ ૙. ૛	ۯܕ excluding (dashed lines) or 

including (dashed-dotted lines) faradaic convection. (a) Potential difference between the two PS 

versus ࢚૚/૛ and (b) semi-logarithmic plot of potential difference versus time. The set of 

transport properties is estimated based on the model with ܞ૙ ് ૙ (Table  6-2). 

The system is assumed to exist in a state of mechanical equilibrium where only external 

forces can cause a pressure gradient in the solution. Neglecting the effect of gravity, the only body 

force is related to the resistive interaction between the liquid solution and the solid matrix in the 

porous separator. This resistive force is manifested in the permeability that appears in the Darcy’s law 

implemented in the model [179]. The momentum equation is used here solely to close the system of 

equations in our 2-D model. It involves the calculation of pressure gradient which is commonly 

assumed not to affect mass transport even in concentrated solutions [107, 176]. However, it is of 
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value to estimate the extent of pressure variations within the cell during the galvanostatic polarization 

experiments conducted in this research. To this end, the permeability of the separator is determined 

using the modified Gebart relation, an empirical equation that has been shown to be accurate for 

highly porous binder-free fibrous media [181]: 

 
Κ
ंଶ ൌ 0.491ቌඨ

1 െ 0.0743
1 െ ߝ

െ 1ቍ

ଶ.ଷଵ

 (5-1)

where Κ is the permeability of the medium (assumed isotropic) and ं is the fiber radius. The validity 

of using a scalar value for the permeability instead of a tensor for isotropic fibrous porous media was 

demonstrated in Ref. [181]. The fiber radius is estimated to be ~ 1	ߤm from a SEM micrograph of 

Whatman filter grade GF/C [182] (GF/C is less permeable than GF/D). With this value of ं and the 

known porosity of the separator (Table  6-1), the permeability of the separator is calculated from the 

modified Gebart relation to be 3.96 ൈ 10ିଵଶ	mଶ. The maximum pressure difference along the cell 

filled with the LiPF6/EC/DEC solution at the applied current of ܫୟ୮୮ ൌ 0.2	mA is ~ 4.4 ൈ 10ିଷ	Pa 

(calculated from the simulation results) which is very small as expected and is unlikely to have a 

significant impact on the thermodynamics of the solution. 

6.6.3 Bipolar Effect 

A bipolar effect can take place when a local charge-transfer reactions occur on an isolated conductive 

object (i.e., not connected to a power supply) with a finite length in contact with an electrolytic 

solution that is exposed to an electric field. The potential sensors in the four-electrode cell act as 

“bipolar electrodes” on which reduction and oxidation reactions occur simultaneously at their 

cathodic and anodic poles, respectively, in such a way that the net faradaic current over the surface of 

the electrode is zero. The production and consumption of the reacting species perturb the 

concentration profile in vicinity of the sensors which may introduce a systematic error in the 

parameter estimation if not included in the model. Due to the small current applied, the bipolar effect 

is expected to be very small in the four-electrode cell; however its impact on the recorded potentials 

must be carefully investigated to gain insight about the cell design prior to considering possible 

simplifications. 
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Figure  6-9. (a) Electric potential profile along the centerline (dashed lines) and at the wall (solid 

lines) of the cell as a function of dimensionless axial distance ࡸ/ࢠ from the WE and (b) 

dimensionless concentration ܑܖܑࢉ/ࢉ profile at the center (dashed lines) and at the wall of the cell 

at ࡵapp ൌ ૙. ૛	mA for the LiPF6/EC/DEC system. Insets: enlarged views of the regions of the 

curves within the red boxes; dotted lines are simulation results when 

܁۾࢑
૙ ൌ ૠ ൈ ૚૙ି૞	ܔܗܕ૙.૞	ିܕ૙.૞	ିܛ૚, i.e., ten times larger than its value used for the other two sets 

of simulations.  

Figure  6-9 shows the simulated potential and Li concentration profiles in the axial direction 

along the centerline (dashed lines) and at the cell wall (solid lines) at different times. During the early 

stages of galvanostatic polarization (ݐ ൌ 100	s), semi-infinite diffusion conditions prevail and the Li 

concentration is uniform along the length of the cell except for the edges adjacent to the WE and CE. 

At the other end of the process, near-linear concentration potential profiles are attained as the system 

reaches steady-state (i.e., at ݐ ൌ 27900	s). The profiles along the cell wall perfectly match those at 

the centerline except for two narrow regions coinciding with the potential sensors. It can be seen in 
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the insets that the concentration and potential profiles adjacent to the sensors deviate from those at the 

center of the cell (i.e., away from electrodes) negatively on the left side (cathodic pole) and positively 

on the right side (anodic pole) of the electrode. The bipolar effect reduces the gradient of the solution 

electric potential across the electrode, i.e., smaller local field amplitude, and hence is self-damping. 

The potential measured by the sensor ݈ and the equilibrium locus ୣݖ୯,௟ coincides with the inflection 

point of the concentration and potential profiles (i.e., ߲ଶܿ/߲ݖଶ 	ൌ 0 and ߲ଶΦ/߲ݖଶ 	ൌ 	0, respectively) 

alongside the sensor where local reaction rate is zero, i.e., ܑ ∙ ොܚ ൌ 0 at ݎ ൌ ܴୡୣ୪୪ and ݖ ൌ   .୯,௟ୣݖ
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Figure  6-10. Model sensitivity to (a) reaction rate constant and (b) charge-transfer coefficient 

for ࡵapp ൌ ૙. ૛	ۯܕ applied to the LiPF6/EC/DEC system. Model parameters are given in Table 

 6-1 and Table  6-2 except for those varied (see legends). 

It is shown in Figure  6-9 that the bipolar electrochemical reactions at the potential sensors 

have negligible impact on the concentration and potential profiles for the two systems examined in 

this chapter. However, depending on the kinetic parameters (i.e., ݇୔ୗ
଴  and ߚ୔ୗ) of the potential sensors 

and geometric design of the cell (i.e., sensor width ߜ and cell radius ܴୡୣ୪୪) the bipolar effect may 

influence the potential difference between the two PS. Sensitivity of the model to these parameters is 
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investigated by varying one parameter at a time while keeping the other parameters constant, as 

shown in Figure  6-10 and Figure  6-11.  
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Figure  6-11. Effects of (a) cell radius and (b) potential sensor width on the potential difference 

between the two sensors for ࡵapp ൌ ૙. ૛	ۯܕ applied to the LiPF6/EC/DEC system. Model 

parameters are given in Table  6-1 and Table  6-2 except for those varied (see legends). 

As shown in Figure  6-10a, although the rate constant is varied by an order of magnitude, no 

visible change is seen in the simulated potential difference between the potential sensors. Although 

the bipolar effect is more pronounced for an electrode with a faster kinetics (dotted lines in Figure 

 6-9), it is insufficient to alter the measured voltage. Moreover, the equilibrium locus ୣݖ୯,௟ is 

independent of the reaction rate constant according to Eq.  (A-4) if local perturbations are ignored. 

Simulations also remained unchanged when the charge-transfer coefficient is varied. It is shown in 

 Appendix A that the variation of ߚ୔ୗ does not lead to a significant displacement of the equilibrium 

locus even under a constant electric field four times as large as that at the centerline of the cell at 

ݐ ൌ 8	h. It implies that no alteration of the simulated voltages occurs upon changing the charge-
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transfer coefficient. The same argument is valid if local perturbations of the electrolyte concentration 

profile are taken into account as they reduce the electric field locally. Further discussion on the effect 

of the charge-transfer coefficient is presented in  Appendix A. In brief, the four-electrode 

measurements of the two electrolyte systems studied are insensitive to charge-transfer kinetics at the 

sensors. 

The design parameters ܴୡୣ୪୪ and ߜ are examined by increasing or reducing them by a factor of 4 

relative to their values in the actual experimental setup. The results shown in Figure  6-11a and b 

again indicate that these changes have no significant effect on the voltage response. Altogether, under 

the operating condition of interest to electrolyte characterization studies (i.e., small applied current), 

local perturbations are not strong enough to cause the reaction kinetics to affect the measurements in 

a four-electrode cell with the design parameter values examined here. 
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Figure  6-12. Comparison between the potential differences between the PS obtained using the 2-

D (dashed line) and the 1-D models accounting for (triangles) and ignoring (circles) convective 

transport in the 1-D model (ࡵapp ൌ ૙. ૛	ۯܕ applied to the LiPF6/EC/DEC system). 

Figure  6-12 shows a comparison between the simulations of the 2-D model and a 1-D version 

of the same model (i.e., bipolar effect is not accounted for) with convection included (triangles) and 

excluded but compensated for by using the corresponding values of ࣞ and ݐା଴  in Table  6-2 (circles). It 

turns out that the results of the two models overlap almost perfectly under the operating conditions 
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and for the cell design of this study. Therefore, we conclude that the 2-D model presented here can be 

reduced to a 1-D model without an important loss of accuracy. A 1-D model is computationally less 

expensive and easier to implement than the 2-D model and can be more easily coupled with an 

appropriate optimization routine as a numerical fitting tool if a comprehensive analysis is to be 

performed at different concentrations and temperatures where manual fitting becomes cumbersome. 

The positions of the PS determine the magnitude of the potential difference between them 

and the time when the effect of the concentration gradient begins to appear at the onset of the closed-

circuit (Figure  6-13a) and when the open-circuit potential decay becomes a straight line on a semi-

logarithmic plot (Figure  6-13b); the farther the PS are from each other (assuming constant spacing 

between the WE and CE), the larger the potential difference and so the more sensitive to the transport 

properties with the same cell length and under the same operating conditions.  

A cell with a larger spacing between the PS provides as much useful data at a given applied 

current as one with a smaller spacing but operating at a larger current. However, the applied current is 

subject to more stringent constraints in this analysis in order to maintain the underlying assumptions 

including negligible heat of reaction at the electrodes and heat of mixing in the bulk (especially 

important at low-temperature measurements), negligible free convection due to temperature non-

uniformity and negligible displacement of the WE/solution and CE/solution interface due to electro-

plating/stripping. Moreover, a larger applied current during the closed-circuit portion of the pulse 

leads to a longer relaxation time when the current is switched off, making the system more 

susceptible to external vibrations. On the other hand, if the sensors are moved too close to the CE and 

WE, the constant voltage region at the onset of the closed-circuit phase shrinks and makes 

deciphering of ionic migration slightly more difficult although not impossible. The ionic conductivity 

could be sought by analyzing its contribution over the entire the CCV data. Nonetheless, the non-zero 

electrode width and technical barriers in the cell assembly itself limit the minimum spacing between 

the WE/CE surface and the potential measurement spot in the PS, i.e., ୣݖ୯,௟. It should be noted that no 

theoretical constraint on the location of the PS exists since the model is solved numerically [112]. 

Altogether, the cell arrangement used in this research (i.e., cell length, sensor spacing and sensor 

width) and the operating condition (i.e., the applied current waveform) proved to be a reasonable 

trade-off between the quality of data and practical considerations of the method. 
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Figure  6-13. Simulated potential difference between the two PS in a cell with different spacing 

between WE/CE and the PS (ࡵapp ൌ ૙. ૛	ۯܕ applied to the LiPF6/EC/DEC system). Model 

parameters are given in Table  6-1 and Table  6-2 except for those varied (see legend). 

6.7 Conclusion 

In this chapter, the four-electrode-cell method for the characterization of concentrated binary 

electrolytes has been demonstrated and compared with the conventional electrochemical methods. 

The cornerstone principle of the method is the use of two reference electrodes (i.e., potential sensors) 

in an electrochemical cell in addition to the working and counter electrodes. Variations in the electric 

potential of the electrolyte are recorded across the two sensors while a rectangular current pulse is 

applied to the working and counter electrodes. As such, the four-electrode cell provides direct access 

to the closed-circuit as well as open-circuit voltage in a manner not distorted by the main and side 

reactions or double-layer effects at the working and counter electrodes. The recorded data exhibit 

unique features each of which can be unambiguously attributed to one of the three independent 

transport properties: i) constant voltage at the onset is contributed solely by ionic migration (i.e., ionic 
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conductivity of the electrolyte), ii) exponential decay of open-circuit data with time is controlled by 

diffusion (i.e., chemical diffusion coefficient) and iii) transient portion of closed-circuit data is 

attributed to both migration and diffusion (i.e., transference number). 

A general 2-D axi-symmetric model based on concentrated-solution theory that takes into 

account the bipolar effect at the sensors located at the cell wall was developed. A single galvanostatic 

polarization pulse in combination with concentration-cell experiments was shown to be sufficient to 

uniquely estimate the transport properties and thermodynamic factor. The model was compared with 

experimental data via a manual parameter search routine in accordance with the orthogonal features 

of the data.  

To investigate the effect of faradaic convection, the model was used to estimate transport 

properties with and without the convective term included in the flux expressions. The thermodynamic 

diffusion coefficient ࣞ and the transference number ݐା଴  were estimated to markedly differ (i.e., by 

11.2% and 19.7%, respectively) depending on whether or not the convection is included. Therefore, 

the inclusion of this effect is warranted when using these parameter estimates in an end-use 

electrochemical model to ensure that its assumptions are compatible with those of the parameter 

estimation method. Although neglected in the mass transport model, the pressure drop along the cell 

length was calculated according to the Darcy’s law to be of the order of 10ିଷ	Pa, which is small 

enough for the isobaric assumption to hold. 

Sensitivity analysis of the reaction kinetics at the sensing electrodes and the geometric 

parameters of the cell suggest that the bipolar effect is not strong enough to interfere with the 

potential measurements under the operating conditions relevant to the electrolyte characterization 

experiments. It is further confirmed by comparing simulation results from a 1-D model with those 

obtained from the original 2-D model. The 1-D model is computationally inexpensive and can be 

coupled with an optimization routine to estimate concentration-dependent transport properties if 

experimental data at different concentrations are available.  

The proposed technique benefits considerably from the ready measurement of closed-circuit 

data for estimation of the transference number. The abundance and direct acquisition of data points as 

compared with the conventional semi-infinite method promises a high level of accuracy and 

reliability of the estimated transference number.  
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The measurement of diffusion coefficient closely follows the restricted diffusion experiment. 

Nonetheless, the three transport properties are obtained simultaneously for the same sample and in the 

same electrochemical cell under less strict operating conditions. These factors eliminate uncertainties 

associated with combining data obtained from separate experiments, as done in the conventional 

methods. 

The method was demonstrated by applying it to two Li-based liquid binary electrolytes but it 

is equally applicable to any other binary electrolytes dissolved in aqueous, non-aqueous or polymeric 

solvents. 
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Chapter 7 

Conclusions and Recommendations 

7.1 Conclusions and Contributions 

In this thesis mathematical models are used as cheap and simple tools to investigate the 

electrochemical performance of LFP electrodes. The mesoscopic model developed in this work 

appears to overcome the shortcomings of conventional solid-solution-type or core-shell models and 

represents a major step towards a simple yet accurate mathematical description of phase-change 

electrodes. Analysis of electrode dynamics under various operating conditions provides new insights 

into complexities associated with the unit-to-unit interactions in a many-unit electrode ensemble and 

provides quantitative explanation for the peculiar behavior of the electrode. 

In Chapter 3, Two distinct models, the variable solid-state diffusivity model and the resistive-

reactant model, are used to study solid-state Li transport (bulk limitations) and electronic conductivity 

(surface limitations), respectively. The models are separately applied to fit the experimental 

galvanostatic discharge data obtained from a commercial LFP electrode. The particle-size distribution 

in the VSSD model and contact-resistance distribution in the RR model are obtained by fitting to a 

wide range of currents.  

Full-range simulations confirm the effectiveness of the VSSD model as it accurately predicts 

the electrode potential loss over the entire SOC range. The concentration-dependent diffusion 

coefficient can be regarded as a lumped parameter that accounts for various phenomena including 

phase transformation in a real LFP electrode. However, a very small solid-state diffusion coefficient 

(~	10ିଵଽ	mଶ	sିଵ) is required to fit the model to the experimental discharge data, which is 

contradictory to first principles calculations and recent experimental observations of fast 

lithiation/delithiation of this material. The particle-size distribution, on the other hand, turns out to 

play a pivotal role in the VSSD model; however, it appears to be rate-dependent, that is, the fitted 

PSD is shifted towards smaller particles in order to accurately predict the electrode performance 

during galvanostatic discharge at higher applied currents. In the resistive-reactant model, a set of 

contact resistances is responsible simultaneously for capturing both the slanted behavior of the 

potential-capacity curves (i.e., additional to porous-electrode effects) and the end-of-discharge 

capacities at different C-rates (i.e., in addition to diffusion limitations in the ݀ହ଴ particle). The model 

can explain the SOC-dependent part of the electrode potential loss attributed to bulk limitations in the 
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VSSD model. The best fitted CRD, despite being extremely broad (~	1	to	~	10ଶ	Ω	mଶ), over-predicts 

the capacities at very low C-rates. 

From a comparison of the RR and VSSD models, it appears that VSSD is a simpler model for 

use as a reliable semi-empirical platform for practical situations including performance analysis, 

thermal studies, and lifetime prediction of LFP-based commercial batteries. 

In Chapter 4, a simple mathematical model for the dynamics of phase-transforming porous 

electrodes is presented and applied to LiFePO4. In contrast to the first part of this research, the new 

model completely disregards solid-state diffusion limitations but, instead, features a non-equilibrium 

solid-solution pathway (i.e., non-monotonic equilibrium potential predicted by the regular solution 

model) for Li insertion/de-insertion into and a Gaussian distribution of resistances among many 

electronically and ionically wired meso-scale insertion domains constituting the porous electrode. The 

entire active material domain is discretized into elementary units representing these meso-scale 

domains with no consideration of any geometric detail. With only these two factors involved, the 

model can simultaneously explain a number of unusual qualities associated with lithium iron 

phosphate electrochemical performance including the quasi-static potential hysteresis, high rate 

capability, cycle-path dependence, mismatch of electrode polarization during GITT and during a 

continuous cycling at the same current, bell-shaped current response in PITT and the most recently 

observed memory effect. 

Detailed analysis of the electrode dynamics suggests that a necessary condition for the 

memory effect to appear in an LFP electrode is the existence of a non-zero residual capacity at the 

onset of memory-release step which may originate either from a non-zero initial SOC or from an 

imbalanced writing cycle. A memory effect should not, therefore, be observed in an electrode that has 

been preconditioned at extremely low currents (i.e., zero initial SOC) and has undergone an extremely 

slow memory-writing cycle (i.e., approaching a balanced cycle). 

In Chapter 5, the mesoscopic model developed before is incorporated into porous-electrode 

theory and validated by comparing the simulation results with experimental data obtained during 

continuous and intermittent galvanostatic discharge of a commercial LiFePOସ electrode at various 

operating conditions. An asymmetric solid-solution model describes the thermodynamic state of 

individual elementary units as a non-monotonic equilibrium potential function of composition. A 

bimodal lognormal resistance distribution is assumed to account for disparity of insertion dynamics 

among elementary units. 
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Simulation results compare well with experimental data obtained from continuous (i.e., both 

low and high applied currents) and intermittent discharge experiments. According to the model, the 

many-unit effects appear at relatively large time scales depending on the depth of discharge and 

should not be confused with solid-state diffusion process. It is suggested that, proper GITT 

experiments may be used to estimate the non-equilibrium thermodynamic properties (i.e., single-unit 

equilibrium potential) of phase-change active materials of which no actual measurement has been 

reported to date. 

Further analysis of the GITT experiments suggest that, depending on the overall depth-of-

discharge of the electrode and the incremental depth-of-discharge (charge) of each GITT pulse, the 

solid-solution capacity available in the Li-rich (Li-poor) end-member may be able to accommodate 

entering (leaving) Li species entirely without the need for active (closed-circuit) phase 

transformation. Instead, redistribution of Li among units during relaxation equilibrates the solid-

solution composition by transforming a few Li-poor (Li-rich) units to Li-rich (Li-poor) ones. 

A realistic account of porous-electrode effects in the experimental validation of the 

mesoscopic LFP model requires accurate estimation of the transport properties of the electrolyte. In 

the last chapter, the development and evaluation of a novel four-electrode-cell method to determine 

the transport properties of concentrated binary electrolytes is presented and compared in detail with 

conventional semi-infinite and restricted diffusion methods. The cell consists of two reference 

electrodes in addition to the working and counter electrodes. The sensors measure the closed-circuit 

as well as open-circuit potential in response to an input current across the working and counter 

electrodes. An important advantage of this new method is that it requires only the application of a 

single galvanostatic polarization pulse and appropriate concentration-cell experiments. By fitting a 

suitable model to the data obtained from these experiments, the three independent transport properties 

of a concentrated binary electrolyte, namely, ionic conductivity ߢ, thermodynamic diffusion 

coefficient ࣞ and transference number ݐା଴  can be determined. In particular, the measurement of the 

closed-circuit potential using this cell provides a simpler and essentially more accurate means to 

estimate the transference number than the conventional semi-infinite diffusion method. 

A comprehensive 2-D axi-symmetric model based on concentrated-solution theory is 

developed to account for faradaic convection as well as the bipolar effect at the surface of the 

potential sensors. Sensitivity analysis of the kinetic properties of the potential sensors and the 

geometric parameters of the cell suggests that the bipolar effect has negligible impact on the potential 
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measurements under operating conditions relevant to these experiments. Consequently, a simpler 1-D 

model can be used in place of the 2-D model to estimate the transport properties without any loss in 

accuracy.  

7.2 Recommendations 

This thesis provides new insight into the modeling of phase-change active materials which are of 

special interest for use in high power Li-ion batteries. There are a number of recommendations that 

could be considered for future research. 

7.2.1 Mesoscopic Modeling of LiFePO4 

The simplicity of the mesoscopic model developed in the research work does not rule out known 

complications at the unit and electrode levels which can significantly influence the unit-to-unit 

interactions.  

Electrode level – At the electrode level, porous-electrode theory is used in this thesis to take 

into account the variation of ionic and electronic environment of insertion units across the electrode 

from separator to current collector. It is based on superposition of the two solid and liquid phases and 

volume-averaging of the model quantities (i.e., physical properties and field variables). As a result, 

the theory is not able to resolve microstructural non-uniformities (e.g., variation of active material 

loading, dispersion of conductive fillers and electrolyte-filled pores) whereas the inter-unit transport 

strongly depends on these inhomogeneities. An alternative approach would be to solve the charge and 

mass transport equations across reconstructed 3-D electrode microstructure (e.g., using X-ray 

computed tomography) in place of porous-electrode theory. Such a practice would also examine the 

validity of porous-electrode theory for phase-change electrodes where the effect of very large local 

reaction rates at the surface of active units may cause electrolyte depletion/accumulation and break 

down the averaging assumptions.  

Unit level – A computed tomography of an LFP electrode could also be used to resolve the 

microstructure at the unit level i.e., where the auxiliary conducting phases connect units together, if 

the imaging resolution approaches to a few nanometers. However such high resolution imaging would 

be sophisticated and too costly for regular use. Instead, one could resort to finding a distribution that 

can faithfully represent the lumped resistances and fit the experimental data. 
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Experimental measurements – Experimental data used in this research were obtained using a 

two-electrode electrochemical setup. Use of a three-electrode configuration will help remove artifacts 

associated with the charge-transfer reactions at the metallic Li counter electrode which are not 

symmetric in nature during electrode charging (i.e., electro-plating) and discharging (i.e., electro-

stripping). 

The above improvements may also help explain the asymmetry in the electrode performance 

between charging and discharging both at low and high rates which is not explained in this thesis. 

Parameter search – In this thesis work, the model is fitted to experimental data by manually 

adjusting parameters of the proposed resistance distribution and single-unit solid-solution model. As 

such, parameter search is limited to the cases where simple thermodynamic models and resistance 

distributions are assumed. The former yields the single-unit equilibrium potential, a critical property 

of phase-change insertion materials for which no estimation method has been suggested to date. More 

sophisticated thermodynamic models may be characterized by means of a numerical optimization 

procedure that fits the dynamic mesoscopic model to a large set of experimental data. 

7.2.2 Four-Electrode-Cell Electrolyte Characterization 

Cell design – In this research a cylindrical geometry is used to set up the four-electrode cell 

with annular potential sensors which simplify the computation domain by means of axial symmetry. 

However, it has been shown that potential sensors do not significantly influence the estimated 

transport and thermodynamic properties and a 1-D mathematical model can be used to back out these 

properties regardless of cell geometry (e.g., cylindrical or rectangular). A second prototype could, 

thus, be designed without regard to this dimensionality constraint while minimizing other sources of 

errors including the accurate length measurement or elimination of the porous separator.  

Characterization – In this thesis the performance of the four-electrode-cell method is 

assessed by characterizing two different commercially available electrolytes at a given concentration. 

As a future work, concentration- and temperature-dependent transport properties could be estimated if 

electrolyte samples at different concentrations are prepared and separately examined in the four-

electrode cell at different temperature. 
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Appendix A 

Dependence of Potential Sensor Equilibrium Locus on Electrode 

Kinetic Properties 

Assume that a known constant electric field is applied to the electrolyte along the ݖ-direction and the 

resulting potential profile is not disturbed by the potential sensor, i.e., electric potential varies linearly 

along the potential sensor. Using Eqs.  (6-34) and  (6-35), one can obtain an analytical expression for 

the equilibrium locus ୣݖ୯,௟ that separates the cathodic and anodic poles of the potential sensor [183]. 

Let ܷ୔ୗ ൌ 0 and the overpotential at the surface ߟ୔ୗ,௟ሺݖሻ ൌ Φ୔ୗ,௟ሺݖሻ െ Φሺzሻ be linear in ݖ: 

ሻݖ୔ୗ,௟ሺߟ  ൌ ୯,௟൯ୣݖ୔ୗ,௟൫ߟ ൅
୔ୗ,௟ߟ݀
ݖ݀

൫ݖ െ ୯,௟൯ (A-1)ୣݖ

where ߟ୔ୗ,௟൫ୣݖ୯,௟൯ ൌ 0. Moreover, assuming a uni-potential metallic electrode (i.e., ݀Φ୔ୗ,௟/݀ݖ ൌ 0), 

the overpotential becomes: 

ሻݖ୔ୗ,௟ሺߟ  ൌ െ
݀Φ
ݖ݀

|௭౛౧,೗൫ݖ െ ୯,௟൯ୣݖ ൌ ݖ൫ܧ െ ୯,௟൯ (A-2)ୣݖ

where ܧ ൌ െ݀Φ/݀ݖ is the electric field uniform across the electrode width. On the other hand: 

 න ݖ୔ୗ,௟݀ܫ
௕

௔
ൌ න ݖ୔ୗ,௟݀ܫ

௭౛౧,೗

௔
൅ න ݖ୔ୗ,௟݀ܫ

௕

௭౛౧,೗

ൌ 0 (A-3)

where ܽ ൌ ܾ and ߣ ൌ ߣ ൅ ݈ for ߜ ൌ 1 and ܽ ൌ ܮ െ ሺߣ ൅ ܾ ሻ andߜ ൌ ܮ െ ݈ for ߣ ൌ 2. By making use 

of Eqs.  (A-2) and  (6-34) and carrying out some manipulation, the integrals of Eq.  (A-3) can be 

evaluated to yield an expression for ୣݖ୯,௟. In the case of ୣݖ୯.ଵ it simplifies to: 

୯,ଵୣݖ  ൌ ߣ ൅
1
2
ߜ െ

ܴܶ
ܧܨ݊

ln൮
୔ୗߚ

1 െ ୔ୗߚ

sinh ൬െ
ሺ1 െ ܨ୔ୗሻ݊ߚ

2ܴܶ ൰ܧߜ

sinh ൬െ
ܨ୔ୗ݊ߚ
2ܴܶ ൰ܧߜ

൲ (A-4)  

Under the condition of no local perturbation, the equilibrium locus is independent of the 

reaction rate constant ݇୔ୗ
଴ . Moreover, one expects ୣݖ୯,௟ to fall exactly at the middle of the electrode 

for a perfectly symmetric anodic/cathodic reaction, i.e., for ߚ୐୧ ൌ 1/2, regardless of the electric field 

intensity. It is nonetheless interesting to note that, under the operating condition of relevance to 
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transport property measurement experiments, the amplitude of the electric field is small enough to 

allow linear approximation of the hyperbolic sine term on the right side of Eq.  (A-4), i.e.: 

 

sinh ቆെ
ሺ1 െ ܨ୔ୗሻ݊ߚ

2ܴܶ
ቇܧߜ ൌ െ

ሺ1 െ ܨ୔ୗሻ݊ߚ
2ܴܶ

 ܧߜ

and 

sinh ൬െ
ܨ୔ୗ݊ߚ
2ܴܶ

൰ܧߜ ൌ െ
ܨ୔ୗ݊ߚ
2ܴܶ

 ܧߜ

 

(A-5)  

Substitution of Eq.  (A-5) into Eq.  (A-4) causes the third term on the right side to vanish and shows 

that the equilibrium locus is unaffected by changing ߚ୔ୗ. In line with the above linear approximation, 

a plot of the percent difference in ୣݖ୯,ଵ according to Eq.  (A-4) in Figure A-1 demonstrates less than 

0.5% variation in ୣݖ୯,ଵ of an electrode regardless of the value of ߚ୔ୗ when exposed to an electric field 

as high as ܧ ൌ 6.16	V	mିଵ. Such an electric field is equivalent to the potential gradient along the 

centerline of the cell containing 1 M LiPF6 in EC/DEC and operating at ܫୟ୮୮ ൌ 0.2	mA at ݐ ൌ 8	h 

(i.e., maximum potential gradient during the galvanostatic polarization experiment). 
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Figure A-1. Variation of the equilibrium locus of PS,1 as a function of charge-transfer 

coefficient exposed to electric fields with different amplitudes assuming no local perturbation 

(i.e., Eq.  (A-4)). 


