FACES OF MATCHING POLYHEDRA

by

William R. Pulleyblank

A Thesis
Submitted in Partial Fulfilment
of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

at the
UNIVERSITY OF WATERLOO

Waterloo, Ontario

Faculty of Mathematics
Department of Combinatorics and Optimization

March, 1973

The University of Waterloo requires the signature
of all persons using this thesis. Please sign
below, and give address and date.

5T T 2t 205 B rasster Aue ki,

@ WILLIAM R, PULLEYBLANK
- 1973,

I hereby declare that I am the sole author of this report.

I authorize the University of Waterloo to lend it to other
institutions or individuals for the purpose of scholarly

research.

" Signature

To

Janet

Abstract

Let ' G = (V, E, ¢) be a finite loopless graph, let
b = (bi: i € V) be a vector of positive integers. A
feasible gatching is a vector x = (xj: j g E) of nonnegative
integers such that for each node i of G, the sum of the
xj over the edges j o¢f G dincident with 1 is no
greater than bi. The matching polyhedron P(G, b) is the
convex hull of the set of feasible matchings.

In Chapter 3 we describe a.version of Edmonds' blossom
algorithm which solves the problem of maximizing ¢ = x
over P(G, b) where ¢ =,(cj: j € E) 4is an arbitrary real
vector. Thié algorithm proves a theorem of Edmonds which
gives a set of linear inequalities sufficient to define
P(G, b).

In Chapter 4 we prescribe the unigue subset of these
inequalities which are necessary to define P(G, b), that
is, we characterize the facets of P(G, b). We also
characterize the vertices of P(G, b), thus describing the
structure possessed by the members of the minimal set X
of feasible matchings of G such that for any real vector
c = (cj: j £ E), ¢ * x 1is maximized over P(G, b) by a
member of X.

In Chapter 5 we present a generalization of the blossonm
algorithm which solves the problem: maximize ¢ * x over

(c.: j & E}.

a face F of P(G, b) for any real vector ¢
In other words, we find a feasible ﬁatching x of G which
satisfies the constraints obtained by replacing an arbitrary

subset of the inequalities which define P(G, b) by

equations and which maximizes ¢ + x subject to this
restriction. We also describe an application of this
algorithm to matching problems having a hierarchy of objective
functions, so called "multi-optimization” problems. |

In Chapter 6 we show how the blosson algorithm can be
combined with relatively simple initialization algorithms
to givé an algorithm which solves the following postoptimality
problem. Given that we know a matching xO e P(G, b) which
maximizes ¢ * x over P(G, b), we wish to utilize xo to
find a feasible matching x' € P(G, b') which maximizes
¢ * x over P(G, b'), where b' = (bi: ie V) is a
vector of positive integers and ¢ = (cj: j € E) 1is an
arbitrary real vector.

In Chapter 7 we describe a computer implementation of

the blossom algorithm described herein.

ACKNOWLEDGEMENTS

It is difficult to express my enormous debt. of gratitude
to Professdr Jack Edmonds who encouraged me to come to
Waterloo, introduced me to the subjects discussed in this
thesis and provided help, inspiration and encouragement in
quantities that tended to grow exponentially with the size
of the thesis. Many of the factors which made the University
of Waterloo an ideal place to do graduate work are directly
attributable to him, I value very highly all aspects of our
association,

I alsec wish to extend my appreciation to Professor
Ellis L. Johnson for the time he spent with me discussing
matching theory and computer implementations of algorithms of
the sort described herein.

Financial support was provided by the National Research
Council of Canada and my wife Janet, who also contributed
unlimited moral support.

I wish to thank Mrs. Wendy Johnson fdr the extremely
fast and uncannily accurate typing of the thesis and to
Mrs. Elaine Fitzgerald who assisted with the final stages of
the typing.

This work was done while on an educational leave of

absence from I.B.M. Canada Ltd.

ABSTRACT

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

CHAPTER 1.

CHAPTER 2.

CHAPTER 3.

Introduction and Foundations

1.1 Introduction

1.2 Set Theory and General Notation
1.3 Graph Théory

1.4 Linear Algebra

1,5 Linear Programming

1.6 Integer Programning and Good
Algorithms

Basic Polyhedral Theory
2.1 Polyhedra and their Faces

2.2 Dimension and a First Facet
Characterization

2.3 Second Facet Characterization

2.4 Vertices of Polyhedra

The Matching Problem and the Blossom
Algorithm

3.1 The Matching Problem
3.2 Nested Families of Sets

3.3 Blossoms, Shrinking and Shrinkable
Families

3.4 The Matching Polyhedron

3.5 Linear Programming Formulation
3.6 Alternating Forests

3.7 Hungarian Forests

3.8 The Blossom Algorithm

3.9 Efficiency of the Blossom Algorithm

Page

2.13

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

3,10 Min-Max Theorems and Discreteness
of the Dual Solution

Facets and Vertices of Matching Polyhedra

4.1 Dimension of P(G, b) and
Nonnegatively Facets

4.2 Degree Constraint Facets
4.3 Blossom Facets
4.4 b-critical Graphs

4.5 Vertices of Matching Polyhedra

Optimizing over Faces of P(G, b)
5.1 The Faces of P(G, b)

5.2 A Precanditioning Algorithm
5.3 Pseudo Hungarian Forests

5.4 The Face Optimization Algorithm
(Phase II)

5.5 The "Big-M" Method

5.6 Multi-Optimization in Matching Problems

A Post-Optimality Problem
6.1 Obtaining a Starting Solution
6.2 The Post-Optimality Algorithm

6.3 Obtaining a Nested Family

A Computer Implementation of the Blossom
Algorithm

7.1 Storage of the Graph

7.2 Tree Handling

7.3 Blossoms, Shrinking and Pseudonodes

7.4 Parameters Passed and Returned

APPENDIX

REFERENCES

7.

7.

5

6

The Main Procedure

Experimental Results

- Chapter 1

Introduction and Foundations

1.1, Introduction

Let G = (V, E, ¥) be a finite loopless graph, where
V is the set of nodes of G, E 1is the set of edges of G
and ¢ is the incidence function of G which maps E into
the set of all two element subsets of V. For egch ie ¥V,
let bi' be a positive integer. A feasible matching is a
vector x = (kj: j € E) of nonnegative integers such that
for each node i of G, the sum of the xj over the edges
j of G incident with 1 is no greater than bi' The
matching polyhedron P(G, b) is the bounded polyhedron containing
all feasible matchings of G and all of whose vertices are
feasible matchings of G. (In other words, P(G,) 1is the
convex hull of thg set of feasible matchings.) In this
thesis we examine several different aspects of the faces of
P(G, b).

The later sections of Chapter 1 consist of a summary
of the basic fesul;s from various fields of mathematics which
are assumed to be known, we also introduce all our basic
notation and terminology.

In Chapter 2 we develop the general polyhedral theory
used in later chapters. This topic is developed from the
point of view of studying systéms of linear inequalities.
The facets of a polyhedron are the faces of the polyhedron
which have dimension one less than the dimension of the
polyhedron itself. In characterizing the facets of matching

polyhedrxa in Chapter 4 we make extensive use of (2.2.15),

which states that a proper face F of a polyhedron P of
dimension d is a facet of P if and only if F contains
d + 1 affineiy independent elements, In Theorems {(2.3.25),
(2.3.30), (2.3.31); (2.3.32) and (2.3.34) we discuss the
connection between the facets of a polyhedron and a minimal
set of inequalities necessary to define the polyhedron.

We show in (2.3.32) that 4if P 4is a polyhedron of full
dimension, then the facets of P determine, up to
multiplication by a positive constant, the minimal subset of
inequalities needed to define ©P. Since matching polyhedra
are of full dimension, this is the case in which we are
interested.

We discuss the vertices of polyhedra in the last
section of Chapter 2 and prove three fundamental results.
First (Theorem 2.4.1)), the vertices of a polyhedron P are
precisely those elements v € P for which there is some
linear objective function ¢ such that v 1is the unique
member of. P maximizing ¢ + x over P. Second (Theorem
(2.4.5)), if P is a bounded polyhedron then for any linear
objective function ¢, there is a vertex v of P which
maximizes ¢ « x over P. Third (Theorem (2.4.10)), any
noneﬁpty bounded polyhedron is equal to the convex hull of
its vertices,

Chapter 2 is largely expository, however the point of
view taken in this chapter is somewhat different f;om standard
references on polyhedra (Griinbaum [Gl], Rockafellar [R1l] and
Stoer,Witzgéll [S1]) and tends to emphasize the relationship

between polyhedra and linear programming.

~In Chapter 3 we describe a wversion of the so called
blossom algorithm (Edmonds [E1], [E2], [E3], [E4]). This
algorithm finds a matching xo € P(G, b) which maximizes
¢ * x over P(G, b). In fact the algofithm described
solves a somewhat more general problem, it maximizes ¢ -+ x
over a face F of P(G, b) obtained by requiring the sum
of the xj on the edgés j incident with node i to be
exactly equal to bi for all nodes 1 Dbelonging to some
subset W of V.

For any node i € V we let &(i) denote the set of
edges of & incident with i. For any S V we let v(S)
denote the set of edges of G having both ends in §. For
any J ¢ E we let x(J) denote I x, and for any W < V

jey J -
we let b(W) denote .Zwbi. The feasible matchings of G
ie

are the integer solutions of the linear. system
(1.1.1) xj 2z 0 for all j & E,
(1.1.2) =x(8§(i)) = bi for all i e V.

Clearly if we let P be the polyhedron defined by (1.1.1)

and (1.1.2) then P 2 P(G, b). In fact, if G dis bipartite

or if bi is even for all i € V them P = P(G, b). However
in general there are vertices of P which are not vertices

of P(G; b) and thus have fractional components. Consequently
there are generally some linear objective functions which

when maximized over P, attain their maximum for a member x

of P having fractional components. It can be seen that if

X 1is a noninteger yertex of P then every component of X

1.4

is either integer or half integer valued and the edges J
for which Xj are half integer valued form the edge sets
of node disjeint odd polygons.

The blossom algorithm proves a theorem of Edmonds, that

P(G, b) =_{(xj efR. ¢ j & E): x satisfies (1.1.1) and

(1.1.2) and

(1.1.3) ={(y(s8)) = qg for all § & @}

where Q = {8 ¢ V: b(S) is odd, [S] 2 3} and q5 = 1/2(b(S)-1)

for all S e Q. It is not difficult to see that every

feasible matching of G satisfies the constraints (1.1.3);

it is more difficult to see that this set of constraints is

sufficient to define P(G, b), that is, that all vertices of

thé polyhedron defined by (1.1.1)-(1.1.3) are integex valued.
The blossom algorithm makes use of the weak duality

theorem of linear progrémming and the principle of complementary -

slackness to prove the optimality of the matching which it

finds. TFor any linear objective function ¢ it produces

an integer solution x to the linear program: maximize

c * X subjecf to X satisfyiné (1.1.1)-(2.1.3). 1It also

produces a soclution yo to the dual linear program and

shows that xO and yo satisfy the complementary slackness

conditions for optimality. Thus, where d is the objective

function of the dual linear program, c ° xo = d - yol By

the weak duality_theorem of linear programming, any solution_

0

x of (31.1.1)-(1.1.3) must satisfy ¢ = x £d = ¥y, therefore

o
X is an optimal solution to the linear program: maximize

1.5

¢ * x subject to (1.1.1)-(1.1.3). Since every feasible
matching x of G satisfies (1.1.1)-(1.1.3) it follows
that xo is the optimal matching we require.

From this it easily follows that P(G, b) is the
solution set of (1.1.1)-(1.1.3), for if v dis any vertex
of the polybhedron defined by (1.1.1)-(1.1.3) then there is
‘somé linear objective-function maximized over that polvhedron
only by v; But we have seen that every linear objective
function is maximized by an integer solution of (1.1.1)-(1.1.3),
hence all the vertices of this polyhedron aré feasible
matchinés.

The set of inequalities (1.1.3) is generally far
larger than is necessary to define P(G, b); as was mentioned
if G is bipartite then none of them are necessary. In
view of the structure of the vertices of P, the solution
set of (1.1.1) and (1'lf2>’ it has been surmised that all of
the constraints (1.1.3) which are really necessary are those
for which § 1is the node set of an odd polygon. Unfortunately,
these are generally not enough; if we just add these
inequalities to our linear system (1.1.1)-(1.1.2) then we
usually introduce new fractional vertices having a more
complex structure than those possessed by P. In Chapter 4
of this thesis, by considering the structure of G and the
value of -b, we prescribe the minimal subset of the
inequalities (1.1.3) which must be added tol(l.l.l)-and (1.1.2)
to obtain P(G, b).

Since .P(G, b) dis of full dimension there is a direct

correspondence between the facets of P(G, b) and the

1.6

inequalities necessary to define P(G, b), namely

{x ¢ P(G, b): ax = o} 1is a facet of ©P(G, b)Y if and only
if the inequality ax £ a (or a positive multiple of

ax < o) is ‘necessary to define P(G, b). Thus in Chapter
4 when we characterize the facets of P(G, b) we are in
fact prescribing which of the inequalities (1.1.1)~(1.1.3)

are necessary to define P(G, b). We prove

Theorem (4.1.2). For every j e E, {(xj: i g E)

P(G, b): xj = 0} 4is a facet of P(G, b).

In other words all the constraints (l.i.l) are essential for
defining P(G, b).

However, some of the constraints (1l.1.2) are not
necessary.. For any i € V we let N{(i) be the set of
nodes of G adjacent to i. If v, w are nodes of G such
that N(v) = {w}, N(w) = {v} and b =1 then we call the

W v

connected component of G spanned by {v, w} a balanced

edge.

Theorem (4.2.1). For any i e V, {(xj: j £ E} ¢

P(G, b): x(8(i)) = bi} is a facet of P(G, b) 4if and only if

i 1d1s a node of a balanced edge

b{N(i)) > bi and if Db(N(i)) = bi + 1 then y(N(i)) = ¢.

A salient feature of the blossom algorithm is the "shrinking"
process applied to certain subgraphs of G, effectively
reducing the size of the problem under consideration., It is

implicit in the blossom algorithm that the set Q idin (1.1.3)

1.7

can be replaced by the set QO = {8 c V: G[8] 1is shrinkable}
where G[S] is the subgraph of G induced by S, that is

G[s] (s, v(8), wly(S)). We prove that all we need add

is a connectivity condition te the condition of shrinkability

and we have the essential inequalities of the sort {(1.1.3).

Theorem (4.3.46). For any § c V__such that G[S]

is shrinkable, {x e P(G, b): x(y(8)) = qs} is a facet of

P(G, b) if and only if G[S] contains no cutnode v for

which b = 1.
v

The necessity of our conditions of both Theorem (4.2.1)
and Theorem (4.3.46) is proved by constructing |E| affinely
independent feasible matchings of G which belong to the

facet of P{(G, b). We define a near perfect matching of

G deficient at v &€ V to be a matching x of G which
satisfies

x(8(1i))

bi for a1l i e V - {v},

It
o
|
=

x(8§(v))

A feasible matching x of G will satisfy =x(y(S)) = dg

if and only if x, the restriction of x to y(S), is a
near perfect matching of G[S8]. Thus when constructing
feasible matchings of G which satisfy x(y(S)) = 4g> Our
first step is to be able to construct a large number of near

perfect matchings of G[S].

We say Ehat‘ G is b-critical if for every node v of
G there is 4 near perfect matching of & which is deficient

at wv. These |Vl near perfect matchings can be seen to be

1.8

linearly independent, but we usually require a much larger
set of linearly independent near perfect matchings. However
we show that if a graph G is b-ecritical and contains no
cutnode v for which bv = l. then G has as
many linearly independent near perfect matchings as it has
edges. This we prove by showing (Theorem (4.4.2)) that a
graph G is b-critical if and only if € is shrinkable.
We also prove that these conditions are equivalent to G
being connected, b(V) being odd and the empty set being the
only subset of V which violates Tutte's condition (3.10.34)
for the existence of a perfect matching.

Thus we obtain two more facet characterization theorems

(4.4.15), (4.4.17)-, . In particular we have the following.

Theorem. For any S < V_ such that b(8) is odd

m
1}

and |s| =23, T {x e P(G, b): x(¥(S)) qs} is a facet

of P(G, b) 1if and only if

G[S] is b-critical and contains no cutnode v sSuch

that b =1
v

F 1is a facet of the sort described in Theocrem (4.2.1).

As a result of this thgorem we can see very easily
that if C, is bipartite then none of the inequalities (1.1.3)
need be added to define P(G, b), for let 5 be any subset
of V -such that b(S) is odd. and |[S| 2 3. Then there
must be a part T of G[S] for which b(T) < 1/2 b(S).

Obviously we cannot construct a near perfect matching of

1.9

G[Ss] deficient at a node v Dbelonging to T and consequently
G[S] cannot be b-critical.

There is a close relationship between polyhedron theory
and min-max theorems; whenever we know a set of linear
inequalities sufficient to define a polyhedron, linear
programming duality immediately provides us with a min-max
theorem and we have already discussed how we use a min~max
theorem proved by the blossom algorithm to establish the
matching polyhedron., We discuss the min-max theorem proved
by the blossom algorithm in Section 3.10 and show how it
implies theorems of Berge [B2] and Tutte [T1], [T2], [T3].

When we know the facets of a pelyhedron, we are able
to obtain a "best possible" min-max theorem. In Theorems
(4.4.20) we describe such a theorem. We also show how the
min-max theorems prﬁved by the blossom algorithm can be
combined with our characterization of.b—critical graphs to
obtain strengthenings of Tutte's theorems, in particular,
we derive the following theorem concerning the existence
of perfect l-matchings (matchings =x which satisfy

x(8(i)) = 1 for all i & V).

Theorem (4.4.22)- G = (V, E, ¥) has a perfect

l-matching if and only if for every X < V_ such that

G[V -~ %] consists of l-critical components, the number of

components of GI{V - X] is no greater than |X!|.

In Theorem (4.5.3) we characterize the vertices of

P(G, b) and show that every matching produced by the blossom

1.10

algorithm is a vertex of P(G, b). Since the vertex set of
P(G, b) 1is the smallest subset X of P(G, b) such that
for any linear function ¢, ¢ * X is maximized over P(G, b)
by a member of X, this shows that the blossom algorithm
makes use of as small a subset of P(G, b) as possible when
solving matching problems. As we saw in Chapter 2, every
member of a bounded polyhedron can be expressed as a convex
combination of its vertices, in (4.5.21) we describe an
algorithm which will express any feasible matching of G
which is not a vertex of P(G, b) as a convex combination
of two other members of P(G, b). We also describe how this
algorithm can be used to express any x e P(G, b) as a
convex combination of a subset of the vertices of P(G, b).
In Chapter 5 we consider the problem of maximizing
¢ * X over any face F of P(G, b) where e = (cj: i g E)
is an arbitrary real vector., That is, we are given sets
JcE, WcV and N c @ and we wish to maximize c¢ * x

over all x = (xj: j € E) € P{(G, b) which satisfy

(1.1.4) xj = 0 for all j e J,

(1.1.5) =x=(86(1i)) bi for all i e W,

(L.1.6) =x(y{(8)) qg for all § & N.

For any J ¢ E, WV and N ¢ Q we let F(J, W, N) =
{(xj:j € E) ¢ P(G, b): x satisfies (1.1.4)-(1.1.6)}. The
"algorithm prqposed to solve this problem consists of two
parts., The first part described in Section 5.2 is a

preconditioning process which finds sets J' ¢ E, W' ¢ V

1.11
and N' ¢ Q@ such that F(J, W, N) = F(J', W', N') and
N' has the property that for amy S, T e N' such that
$nT=#=¢, either 8 ¢ T or T c S. (We call such a family
of sets a nested family of sets.) The second part of the
algorithm described in Section 5.4, can then be used to
solve the equivalent problem. The algorithm is a generalization
of the blossom algorifhm of Chapter 3 and an upper bound on
the amount of work performed by this algorithm in solving a
problem maximize ¢ * x° over F(J', W', N') < P(G, b} is
of the same order as the amount.of work performed by the
blossom algorithm in solving ¢ « x over P(G, b).

In Section 5.5 we describe how this problem of
maximizing ¢ * x over a face F of P(G, b) can be reduced
to the problem of.maximizing a new objective function e’
over P(G, b). This so called "Big-M" method is attractive
theoretically, but in practice the number of significant
digits in the components of <¢' tends to increase rather
rapidly and so this method does have limitations as a practical
method.
Iin Section 5.6 we discuss multi-optimization matching

problems, matching problems in which we have a sequence
Cqs CoseresCyp of objective functions and wish to solve the

following problem. Let XO = P{(G, t) and for each

ie {1, 2,...,k} let

= i . -
X, = {x ¢ X; ;3 ¢"x is maximized over X, 13-

—— .
We wish to find a matching x ¢ Xk. We show how the face

optimization algorithm of this chapter can be used to solve

1.12

this sort of problem and various generalizations of this
problem,

In Chaper 6 we discuss a post optimality problem.

‘We assume that we know a matching xo ¢ P(G, b) which
maximizes lc «+ x over P(G, b) and we wish to find a
matching x* s_P(G, B') which maximizes ¢ * x over

P(G, b') where ©b' = (b;: i £ V) 1is a vectoxr of positive
integers. Since the parameters G and c¢ of our original
problem are uﬁchanged in the new problem, we would hope that
we could make use of xo so as to be able to solve the new
problem more quickly than by simply reapplying the blossom
algorithm.

In this chapter we describe a relatively simple
initialization procedure which can be combined with the
blossom algorithm when we know xo and an optimal dual
solution yo to the original problem, so that an upper bound
on the amount of work performed in finding x* depends
upon the value of [b - b'| din essentially the same way as
the upper bound cn the amount of work performed by the
blossom algorithm depended on the value of b.

Finally, in Chapter 7, we discuss a computer implementation
of the blossom algorithm and describe some experimental

results.

1,13

1.2 Set Theory and General Notation

1"n—n

We use the symbol to indicate a definition and

reserve the symbol for denoting the equality of two
objects.
If X and Y are sets we denote the union and

intersection of X and Y by X uY and X n ¥ respectively.

We let X - Y denote the set theoretic difference, that is

X - Y

{x ¢ X: x ¢ Y}.

We denote the empty set by ¢. Expressions involving U,

n, - should be evaluated from left to right, thus
XuY¥YniZ-v

should be taken to be

((X vu¥Y)n2zZ) -vV.

If R 1is a set of sets, we will let

U(R) = u X
XeR
and
n{R) = n X.
XeR

We let]X| denote the cardinality of X.

We let %{ denote the set of real numbers. For any

X S‘ﬁL we let

max X = max X
$ xeX
]
and
min X = min x.

xeX

1.14

SO
Where X = (xi: i € I) 4is an indexed set of members of IR ,
we let
ZX = z xi .
iel

For any X € ﬁR , [x] denotes the largest integer no

greater than =x, [x] 4is sometimes called the floor of x

or the integer part of x.

We use X ¢ Y to denote "X is a subset of Y" and we’
use X c¢ Y to denote "X is a proper subset of Y'(thus

X = 7Y) .
If Y 1is a function mapping a set X into a set Y,

then for any S ¢ X we let ¢|S denote the restriction of

Y to S. That is p = ¢IS is the function mapping 5

into Y defined by

¥(s) = ¢(s) for all s & S.

We always use the words maximal and minimal in the sense
of set inclusion. Thus if R 1is a family of sets we say
that X 4is a maximal member of R if there is no Y ¢ R
such that Y 2 X. §Similarly X is a minimal member of R

if there is no Y € R such that Y X.

1n

We denote the cartesian product of two sets X and Y

by X x Y. Thus

X x Y = {(x, y): x e X, vy g Y}.

1.3 Graph Theory.

Standard references on graph theory are Berge [B3],
Busacker and Saaty [B5)] and Harary [H2]. For our purpose a

graph G is an ordered triple (V, E, ¢) where V and E

sl

are finite sets and ¢ 1s a function mapping E into the
set of two element subsets of V. The members of V are
called nodes, the members of 'E are called edges, and

is ealled the incidence function. We say that j & E meets

veV or j and v are incident if v e 9(j}. We say
that v, w € V are adjacent if there is j & E such that
v(i) = {v, w}. 1If {v, w} = ¢{(j) then v and w are
c%lled the ends of j. If H 1is any graph we let V(H),
E(H) and wH denote the node set, edge set and incidence

function of H respectively.

(1.3.1) A track 1t din G = (V, E, %) from Vv

to Vo is a sequence

Vor J1 Vs Jgs Vosesesj s v, for some =n 2 0
such that

v, €V for i« {o, 1,...,n},

ji ¢ E for i e¢ {1, 2,...,n},

w(ji) = {vi_l, vi} for i e {1, 2,...,n}.

We call =n the length of <+, we say that <t 1is odd or

even according as the length of 1 is even or odd. We let

E(t) denote {ji: i e {1, 2,...,n}} and V(1) denote

{vi: ie {0, 1,...,n}}. For anyi.ji e E(t) we call j; ean

even edge of T if i is even and.an .odd edge of 1 if 1 is odd.

Edges occurring more than once in T may Be both even and odd.
A track T induces an ordering on the nodes in V(f)

and édgea in E(t). Thus for any P < V(r) we say that v

is the first node in V(1) n P if s = min{i € {0,1,2,...,n}:

v, € P} and v = Vg We define last node and first and

1.16

- last edge analogously.

{(1.3.2) A path is a‘track 7 of length =n for
which |V(#)| = n + 1. 1In other words, no node occurs
more than once.

A path w 1is said to be maximal with a given property
if no other path having that property has 1 as a
subsequence. (Obviously there is no such thing as a maximal
track.)

A graph G = (V, E, ¢) 4dis said to be connected if for
every {v, w} € V there is a path (track) w in G
joining v to w,.

A graph H is said to be a subgraph of & = (V, E, ¥)
if V(H) ¢V, E() € E and ¢, = $|E(H). In this case we
say that G contains H. A maximal connected subgraph of
G is called a component of G.

The distance between nodes v and w belonging to the
same component of G is defined to be the length of the
shortest path joining v and w.

Let G = (V, E,) be any graph. For any S ¢ V we

let GG(S) denote the coboundary of §, that is
(1.3.3) §.(8) = {j e E: s n w(i)] = 1}.

When S consists of a single element v, then we abbreviate
GG({V}) by 6G(v). For any v € V we call |6G(v)| the
valence of wv. For.any § g V we let YG (8) denote..the set of

edges of G ’having'both ends in S, thus

(1.3.4) v (8) = {3 € E: ¥(j) ¢ S}.

1.17

We abbreviate SG and Yo by 8 and y respectively.

(1.3.5) Let S ¢ V. We let G[S] denote the
graph (8, ¥(8), wfy(s)). We call G{S] the subgraph of

G dinduced by S.

(1.3.6) A polygon is a connected graph P such
that IGP(v)[= 2 for all v g V(P). 1If |E(P)[is even

then we say that P idis an even polygon, otherwise we call

P an odd polygon.

(1.3.6a) Let P be a polygon and let w e V(P).
Let Tt be a track in P from w to w such that V(1) =
V(P), E(v) = E(P) and the length of <t is as small as

possible with this property. We call 1 a track from w

to w induced by P. Intuitively, T 4is the track obtained

by travelling once around the polygon P, startimng at w.

(L.3.7) A graph G = (V, E, ¢¥) dis bipartite if

V can be partitioned into Vi 1] V2 and E = G(Vl) = S(Vz).

Any § ¢ V such that § (8) = E'and v(8) = ¢ is called a part of G.

(1.3.8) Theorem. (K8nig [K1} p. 170) G is

bipartite if and only if G contains no odd polygon,

(1.3.9) A cutnode v of G = (V, E, ¢) is a
node v € V such that G[V - {v}] has more components than

G. G is nonseparable if G is connected and has no cutnode.

A block is a maximal nonseparable subgraph of G. It is easily

seen that

(1.3.10) every polygon of G 1is a subgraph of a

1,18
block of ,G’
that is, no polygon can have edges from different blocks.
An iéthmus of G 1is an edge j & E such that

(V, E - {j}, v|E - {j}) has more components than G.

(1.3.11) A forest is a graph which contains no
polygons, a tree is a connected forest. A tree T is said
to be trivial if |V(T)| < 1. The following results are

well known.

(1.3.12) Theorem. Every nontrivial tree has at

least two nodes of valence 1.

(1.3.13) Theorem. If T is a tree then

lE¢TY] = Jv(m | - 1.

1.4 Linear Algebra.

Let J be a finite set. We let 4&_3 = {(xj:j e J):
%y € ﬂ{ for all j € J}. We let 0 denote the vector which

is zero in every component,

(1.4.1) A set X c{ J is said to be linearly

independent if whenver L . x = 0 for some (ux £ ﬂ{: x g X)
xeX

we have ax = 0 for all =x e X. Otherwise X 1is linearly

dependent.

(1L.4.2) Let X Enﬂ{J. A basis of X is a maximal
linearly independent subset of X. The following result is

well known.

1.18

(1.4.3) Theorem. (Birkhoff & MacLane [Bq],_Ch. 7,

§4)., All bases of X c ﬂ{_J have the same cardinality

called the rank of X, and the rank of X is no greater

than IJ .

(1.4.4) If =x, vy e RI we let x - y or Xy

denote {x. - .t g J}.
] yJ I

(1.4.5) The null space of X ¢ TR\J is defined

I .
to be {y ¢ ﬂ(_: y » x = 0 for all =x & X}. We define the
nullity of X to be the rank of the null space of X. The

following is a basic result,

(1.4.6) Theorem. (Birkhoff & MacLane [B4], Ch.

VI1II, Theorem 11). For any X ¢ ﬂ{J, the rank of X plus

the nullity of X equals |J/|.

(1.4.7)Y 1If x, ¥ a‘ﬂ{J, we say x £y if

x., $ yj for all j ¢ J. We say x <y 1if =x, <y, for

(1.4.8) Let I, J be finite sets. 1If A <RT™
is the matrix (aij ef: 4 € I, j € J) then for any S ¢ I
we let Ag denote (aij: ie 8, je J). Similarly if
b = (bi: ie I) s’ﬁ{l, we denote (bi: i e 8) by bS' If S
is a single element v we abbreviate A{v} by Av. If
X = (xj: j e J) ¢ ﬂ{J we define the product Ax to be the
vector y = (yi: ie I) € ﬁ{? where y; = Ai + x for all

“ie 1.

We define the transpose of A, denoted by AT to be the

1.20
Jx1T
. I . ' -
matrix (aji. j e J, i e I)e R where aji aij for

all 1i¢ I, 5 e J.

(1.4.9) By the rank of A and nullity of A

(written rank (A}, nuliity(A)) we mean the rank and nullity

respectively of {Ai: i e I} as defined in (1.4.3) and (1.4.5).

We call {Ai: i € I} the rows of A; and {(aij: ie I):

j € J} the columns of A.

1.5 Linear Programming

Let I, J be finite sets, let H ¢ I and let K ¢ J.
Let A s’ﬁ{IxJ, b e Y and ¢ ¢ ﬁ{J. A (primal) linear

programming problem dis

{(1.5.1) maximize ¢ * X

for = € ﬁ{J satisfying
(1.5.2) =x, =2 0,

(1.5.3) g unrestricted in sign,
(1.5.4) AHx < bH’

(1.5.5) A X = b

The dual linear program {(Dantzig [D1l] p. 126) is the

linear program
(1.5.6) minimize b *+ ¥y
T . .
for vy e 1L satisfying

(1.5.7) > 0,

n

1.21

. (1.5.8) Yi-g unrestricted in sign,
(1.5.9) AL y 2 ¢
; K -OUR?
(1.5.10) AT vy = ¢
J-K J-K

Texts on linear p;ogramming generally show how a problem
of the form (1.5.13~-(1.5.5) or (1.5.6)-(1.5.10) can be
reduced to a problem in which K =J and H = ¢ or H = I.
(e.g. Dantzig [D1] p. 85-89). The following theorems are
then usually proved for problems in these canonical forms.
These results can be easily extended to apply to linear
programs in the forms (1.5.1)-(1.5.5) or (1.5.6)-(1.5.10).

A vector. x € ﬁ{J satisfying (1.5.2)-(1.5.5) is called

a feasible solution to the primal problem. A vector ¥y € ﬁil

which satisfies (1.5.7)-(1.5.10) is ¢called a feasible dual
solution.
A feasible primal solution xo which maximizes ¢ * X

for all feasible primal solutions is called an optimal primal

solution; an optimal dual solution is defined analagously.

The following is a fundamental theorem of linear

programming (See Dantzig [D1l] p. 120 Thecrem 1).

(1.5.11) Theorem. For anv linear programming

problem exactly one of the following situations occurs.

i) There exists no feasible solution.

ii) For any a € ﬂ{ there.is a feasible solution

X such that ¢ * x > a.

iii) There is an optimal feasible solution.

1.22

The following theorems give the relationship between
the values of ¢ = x and b * y for primal and dual

feasible solutions.

(1.5.12) Weak L.P. Duality Theorem (Dantzig [D1]

p. 130)

If x is a feasible primal solution and y is a

feasible dual solution then ¢ * x < b - ¥y,

(1.5.13) Corollary. If for any o ¢ there is a

feasible dual solution y such that b * v < o then there

is no feasible primal solution.

(1.5.14) Strong L.P. Duality Theorem (Dantzig [D1l]
p. 129 Theorem 1, p. 134, Theorems 2, 3).

If there is a feasible primal solution and an upper bound

cC + X over for all feasible primal solutions x then there

is an optimal primal solution xo and an optimal dual

solution yo and ¢ xo =b - yo.

(1.5.15) Corollary (Farkas' Lemma) (Dantzig [D1]

p. 137, Theorem 6.)

Let A E’R.IXJ, b € ﬂkl. There exists =x ¢ ﬁ(J such

o L
that x 2 0 and Ax = b if and only if there is no v e R

such that Aiy =0 and b - v > 0.

The following theorem is used extensively in later
chapters. It is the tool used to prove optimality of the

solutions produced by the matching algorithms.

1.23

e (1.5.16) Complementary Slackness Theorem

(Dantzig [D1] p. 135,136).

A femsible solution xo to (1.5.2)-(1.5.5) and a

feasible solution yo to (1.5.7)-(1.5.10) are optimal if

and only if

0
(1.5.17) E? > 0 implies A§ y_ = e, for all
i € K,
0 . . 0
(1.5.18) ¥z 0 implies A.x = b, for all
ie

Proof. For any feasible solution x to (1.5.2)-(1.5.5)
and any feasible solution y to (1.5.7)-(1.5.10) we define

(1.5.19) f£(x,y) = x + (Aly - ¢) +y + (b - Ax)

i

T
XK(AKy - cK) + yH(bH - AHX)

T
(1.5.20) z x.(Ajy - e¢.) + L yi(bi-Aix)

jex ieH

by (1.5.5) and (1.5.10). By (1.5.2), (1.5.4), (1.5.7) and
(1.5.9) every term in (1.5.20) is the producﬁ of nonnegative

factors so
- (1.5.21) £(x, y) = 0.

Moreover,

(1.5.22) f(x, y) = 0 if and only if one factor

in each term of (1.5.20) is zero.
Simplifying (1.5.19) gives

(1.5.23) f(x, y) = b « y = ¢ « X.

(Note that (1.5.21) and (1.5.23) together prove (1.5.12)).

1.24

If xO and yo satisfy (1.5.17) and (1.5.18) then

by (1.5.22) £(x°, y°) = 0. Therefore, by (1.5.21) and
(1.5.23) xo and yo are optimal solutions.
If xo and yo are optimal solutions then by (1.5.13)

(Strong L.P. Duality) Db - yo = g xo so by (1.5.23),

f(xo, yo).= 0. Therefore by (1.5.22), xo and yo must
satisfy (1.5.17) and (1.5.18).0

Notice that the sufficiency of (L.5.17) and (1.5.18)
were easily proved, however we required the strong duality
theorem of linear programming to prove their necessity. 1In
the applications we make use of complementary slackness in
proving optimality of the matchings producea by the blossom
algorithm and the face optimization algorithm, all we redquire
is the sufficiency of (1.5.17) and (1.5.18) for the algorithm

0 0

in fact produces solutions x and vy satisfying (1.5.17)

and (1.5.18).

1.6 Integer Programming and Good Algorithms.

When studying algorithms it is ofgen desirable to be
able to establish an upper bound on the amount of work
performed by the algorithm as a function of the size of the
problem. An elementary step of an algorithm is any step
performed bf the algorithm which does not depend on the size
of th; problem,‘for example adding two numbers , comparing two
nunbers, seeing whether an edge of a graph meets a node of
a graph. Tﬁus an algorithm will, in solving a problem,

perform a certain number of elementary steps. If there is

1.25
some constant K such that the number of these elementary
steps which can be performed in solving a problem P whose
size i1s measured by the parameters Tis LgoeeesX is no
greater than K - f(rl, rz,...,rn) where f 1is some
function of Tys Ygseee,T then we say that an upper bound
on the amount of work performed by the algorithm is of the
order f(rl, rz,...,rnj.

In this thesis, when discussing bounds on algorithms,
we make a "fixed-word" assumption, namely that the time
requiréd to perform arithmetic operatiocns (addition,
subtraction, division by two) on two numbers is independent
of the number of digits in the numbers. This is the way in
which.most large computers operate, the number of significant
digits to be considered becomes a constraint as to whetherx
or not a problem is solvable rather than a factor in the
time taken to solve the problem.
Following the terminology of Edmonds [El] we call
an algorithm '"good" if there is an upper bound on the amount
of work performed by the algorithm that is-of the order
p(rl, rz,...,rn) where p(rl, rz,...,rn) is a polynqmial
funection of ry, Ty, «rvy T
Considér the problem (1.5.1)-(1.5.5) with the added

restriction
(1.6.1) X, is integer valued for all j e J.

Such a problem is called an integer programming problem.

Although it does not have a polynomial bound, the famous
Simplex Algorithm of Dantzig, does provide a practical

method of solving reasonably large linear programming problems.

CHAPTER 2

Basic Polyhedral Theory

In this chapter we define polyhedra and develop some
6f their basic properties which are used in later chapters.
In particular we prove two theorems characterizing the
facets of a pelyhedron which are used extensively in
Chapter 4.

This treatment of the subject, suggested by J. Edmonds,
is most similar to that of Stoer, Witzgall [81l]. Other
standard references are Grinbaum [Gl] and Roekafellar [R1].
The advantage of our approach for present purposes is that
it tends to .emphasize the relationship between polyhedral
theory and liﬁear programming .and it is in fact this
relationship which prompts our interest in special classes

of polyhedra.

2.1 Polyhedra and their Faces

Let I and J be finite sets, let
A = (aij: ieI, 3 eJd)e 1R IXJ 2nd let b = (bi: ie I)e ﬂ{]i
We call the set of linear inequalities Ax < b. a linear

system and define a polyhedron to be the solution set of

any linear system, We define the polyhedron
= (v J
P(A, b) = {x ¢ R “: Ax < b}.

We take A, b, I and J to be defined as above throughout
the rest of this chapter.
If_theré is 1 &€ I such that Ai = 0 then either

bi < 0 4in which case P(A, b) = ¢ or else bi 2 0 and

P(A; b) = P(AI—{i}’ bI—{i})' Therefore we will henceforth
assume that Ai # 0 for all 1 e I (that is, the matrix
A has no zero rows).

If K is a finite set, A' ¢ RS ana b' ¢ RE
then

{x ¢ ﬁ{J: Ax £ b, A'x = b'}

o
It

is the same set as

{x ¢ ﬁkJ: Ax £ b, A'x £ b'", (-A'")x € ~b'},

=]
1

Since Q is a polyhedron, we have

(2.1.1) any P < ﬂ{J which is the solution set
of a finite system of linear inequalities and linear

equations is a polyhedron.

For any I' ¢ I we define

(2.1.2) £(I') = {x e P(A, b): A_,x = b_,}.

I 1!
By (2.1.1) f£(I') 1is a polyhedron and is called a face of
P(A, b). The fact that the faces of P(A, b) depend on
the polyhedron, not the linear system Ax £ b is shown in
(2.1.5). The empty set is also taken to be a face of every

polyhedron.

It is clear that

(2.1.3) every face of a face of a polyhedron P

is itself a face of P,

also,

(2.1.4) the intersection of any collection of

faces of a polyhedron P dis itself a face of P; if
Ik c I for k e K we have n f(Ik) = f(u Ik) .
keK kek

There is associated with every linear system Ax < b

a unique maximal set I0 ¢ I for which P(A, D) = f(IO)

{since for any t & I, either there exists xt e P(A, b)
t . . 0 t
such that Atx < b in which case t ¢ I or no such x

t
exists and t € IO). We call I0 the ecuality set of

Ax < b, We say that Il is the equality set of a face F

of P(4, b) if Il is the maximal subset of I such
that F = £(I).

It is easily seen that there are many different sets of
linear imnequalities which defiﬁe the same polyhedron. However
‘the faces of the polyhedron depend only upon the polyhedron
itself and not upon the choice of inequglities. This we
now prove by shcewing that a nonempty subset F of a
polyhedron P dis a face of P if and only if there is some
linear function ¢ which is maximized over P by precisely

the members of F.

(2.1.5) Theorem. F < P(A, b) is a nonempty face

of P(A, b) 1if and only if

(2.1.6) there is ¢ e'ﬂ{J and a & ® such that

cx = o for all x € F and ex < o for all =x £ P(A, D)-F.

Proof. TFirst we prove the necessity of (2.1.6), let

F be a nonempty face of P(A, b), let I0 be the equality

set of F. Then for each =x € P(A, b) - F there is some
t(x) € IO such that
2.1, .
(2.1.7) At(x)x bt(x)
If IO = ¢ we take cj = 0 for all 4§ & J, otherwise
take ¢, = E{a,.,: 1 ¢ IO) for all j e J.
N ij _
For any x ¢ F,
Z(e,x,+ j € J) = E(a,.x,: 1 ¢ IO, j e J)y =2Z(b,: i ¢ IO)
J 3 11 1] L

since I0

is the equality set of F. TFor any x € P(A,b)-F
we have
. _ . 0 .
E(cjxj. je J) = E(aijxj. ie I-{t(x)}, § & J) + E(at(x)j
y . 0
< Z(Di: ieI’) by (2.2.7).

Thus if we take o =

satisfy (2.1.6}.

We now prove the sufficiency.

subset of P, let c

linear program

for

has an upper bound.

duality theorem (1.5.

0, 0
vy (y :

Z(bi: ie IO), ¢ and ¢ so defined

Let F be a nonempty

and o be as in (2.1.6). Then the

maximize ¢ * x

Ax < b

So by the strong linear programming

14) there is an optimal solution

i € I) to the dual linear program

minimize b -+ y

y
A7 = ¢

2.4

X.:5ed
JJ)

Fl

2.5

By complementary slacknzss (1.5.16) a solution x to
Ax € b maximizes c¢x 1if and only if Aix = bi for all
i € I such that yg 2 0 . Thus F = £{({1i e I: vy, ® o

and the proof is complete.[]

' We obtain the following result by combining (2.1.6)

and (1.5.10).

(2.1.8) Theorem. Let ¢ € ﬂ{J. If there is o £

such that ¢ * x £ ¢ for all x belonging to a nonempty

polyhedron P(A, b) then there is a face F of P(A, b)

such that xo maximizes ¢ * x for x & P(A, b) if and

only if xo e F.

Proof. Since P(A, b) # ¢ and since c¢ + x £ o for

all x e P(A, b) it follows from (1.5.11) that there is

xo e P(A, b) such that ¢ - xo = max{c ¢ x: x € P(A, b)}.

Let ¥ = {x € P(A, B): ¢ * X = ¢ xo}. By (2.1.5) F
is a face of P(A, b).[D

Let IO be the equality set of Ax £ b. We call

x £ P(A, b) an interior point of P(A, b) if

(2.1.9) Proposition. Every nonempty polyhedron

has an interior point.

Proof. Suppose IO is the equality set of Ax £ b

and P(A, b) = ¢. If 19 = 1 then any x € P(A, b) 1is

e 1 _ . . . 0
trivially an interior point. Otherwise for each t e I - I

there must be xt e P(A, b) such that

2.6

t
A X =D
IO I0
(2.1.10) Ax" < b
Tt t t
t
A x £ b
It It
t 0 . \
shere I = I - I - {t} for otherwise t would be in the

equality set of P(A, b). Let

X = I(xt: tel 0[.

1% /)1 - 1

ft follows immediately from (2.1.10) that

350 X is an interior point of P(A, b) as required.f}

2.2 Dimension and a First Facet Characterization

Let Ax < b have equality set IO. If P(A, b) = ¢
rhen we define the dimension of P(A, b) to be -1

}therwise we define the dimension of P(A, b) to be

|3] - rank (a)
I

le show in (2.2.14) that dimension depends only on the
solvhedron not on the linear system which defines the polyhedron.
ie denote the dimension of a polyhedron P by dimkP). It

follows from (1.4.9) and (1.4.3) that if P = ¢ , dim(P) = O.

Clearly every polyhedron P 1is a face of itself

2.7

called an impropexr face. All other faces including the

empty face, are called proper faces.
pty

If dim(P(A, b)) = |J|, that is if P(A, b) = ¢

and rank(A O) = 0 where I0 is the equality set of Ax < b,
I
then we say that P(A, b) is of full dimension.

First we show that the dimension of every proper face

of a polyhedron P is less than dim(P).’

(2.2.1)' Proposition. Let F be a proper face of

P(A, b). Then dim{(F) < dim(P(A, b)) - 1.

Proof. Since P(A, b) has a proper face, P(A, b)
is nonempty. If F = ¢ then the result is trivial. Assume
F = ¢ , let IO be the equality set of Ax < b, let I'
be the equality set of F. Then IO c I' and

rank (A 0) < rank(A). Suppose
1 1’

(2.2.2) rank (A O) = rank(A) .
. I I T
Then a row basié of A 0 is a row basis of A hence for
I 1'
any t g I1I' - IO, At is a linear combination of rows of
A 0 If bi is not equal to the same linear combination of
T _
the components of b 0 then F = ¢, contradictory to our
I -

assumption. Otherwise, for any x ¢ ﬁiJ satisfying

A we also have Atx = b s0 t € IO, contradictory

o* = P t

I I
to the choice of t. Hence (2.2.2) must be false,

0

rank (A 0) + 1 5 rank{A)

I I

and the result now follows from the definition of dimension.(]

2.8

Let '{xk: k € K} «© ﬂ{J. We say that <5 ke K are

affinely independent if for any (ak e R: k e K) such that

k)
E(akx i k ¢ K)

]
<

and

(e k e K) =0

k:

we have ak = 0 for all Lk e K. If xk: k e K are not

affinely independent then we say that they are affinely
dependent.
Let {xk: k ¢ K} < ﬁLJE We say that x € RY ig an

affine combination of {xk: k € K} 4if there exist % € (s

for k € K such that

X = E(akxk: k & K)
and

Z(a k ¢ K) = 1

k:

The following is an immediate consequence of these definitions

(2.2.3) Proposition. The vectors xk € ﬂKJ': k € K

are affinely independent if and only if no 1 for h g K

s DRI R IR AR AT

is an affine combination of {xk: k e K - {h}}.

The fdllowing proposition relates affine independence

to linear independence.

{2.2.4) Proposition. The vectors xk € ﬁ{J: k e K

are affinely independent if and only if for any h e K, the

vectors x- - xh: k ¢ K~{h} are linearly independent.

2.9

Proof. Suppose xk: k ¢ K are affinely independent,
let h &€ K and let K' = K - {h}. Let (aklaﬂ{: k g K')
be such that

h

E(ak(xk - x): ke K'Y =20

Then

It
[

—Z(ak: k K')xh + (o xk: k £ K")
k
and

-Z(ak:k e K') + Z(ak: ke XK') =0

. k . -
so since x°: k ¢ K are affinely independent we must have

o = 0 for all % ¢ B and the vectors xk - xh: k € X - {h}

are linearly independent.
Conversely, suppose that for h g K the vectors
xk - xh: k e K' = K ~ {h} are linearly independent. Let

(o) € R : k € K) be such that

k.

It
o

{(2.2.5) E(akx k & K)

0.

(2.2.6) E(ak: k £ K)

Then by (2.2.6) o, = —Z(ak: k e K') so (2.2.5) implies

h

_i(akxh: k eK') + Z(akxk: k e K') = 0 or

E(ak(xk - xh): k g K') = 0, Since (xk - xh): k £ K' are
linearly independent we have oy = 0 for all %k e K'. Hence,
by (2.2.6), ap = 0 and so xk: k ¢ K are affinely

independent and the proof 1is complete.{l

Note that affine independence is implied by linear

independence and affine dependence implies linear dependence.

2,10

J

For V E'ﬁ{ we define the affine rank of V to be

the cardinality of a largest affinely independent subset of

V. In view of (2.2.4) and (1.4.3),

(2.2.7) the affine rank of V < ﬂ{J is no

greater than |[J] + 1.

We now prove a theorem which relates the affine rank
of a2 polyhedron to its dimension and thus shows that the
dimension of a polyhedron is determined irrespective of the

linear system.

(2.2.8) Lemma. If dim{P{(A, b)) = k then

P(A, b) contains k + 1 affinely independent elements.

Proof. If k = -1 then P(A, b) = ¢ . and the result
is trivial. Otherwise k 2 0 and P(A, b) # ¢. Let I0
be the equality set of Ax < b. By (2.19) P(A, b) has an

interior point X which satisfies

(2.2.9) A x =51 s

(2.2.10) A .x <b .

If k=0 then {x} is the set of affinely independent
elements we require. Suppose k 2 1, Since dim(P(A, b))

rank (A 0) = |J|'— k. Therefore by (1.4.6) -~ nullity(A 0) =

I 1
Hence there are &k 1linearly independent vectors -

.Yl, YZ,--Z,yk-E “{J such that

k,

k.

2,11

(2.2.11) A gy =0 for i e {1, 2,...,k}.

Let t e {1, 2,...,k}. 1In view of (2.2.10) there is

€. > 0 such that

I-1 I-1
. t t
since A O(X + €.) = A 0¥ + et(A oY)
I-1 I-1 I-1I
t t
Then A O(X + €. } = A o *+ etA oY
I I I
= b
IO

by (2.2.9) and (2.2.11)., Thus the vectors x, x + elyl,

x + ezyz,-..,x + ekyk all belong to P(A, b). Moreover,

since yl, yz,...,yk are linearly independent and since

e > 0 for all t & {1, 2 k}, € yl. € y2 € yk are
t] LU | 3 1 H 2 seer g

linearly independent. Hence by (2.2.4) X, X + elyl,...,x + ekyk

are affinely independent and the proof is complete.l]

(2.2.12) Lemma. If P(A, b) contains k + 1

affinely independent members then dim(P(A, b)) 2 k.

Proof. If k £ 0 the result is trivial, assume
k 2 1, Let xO, xl,...,xk be affinely independent members
of P(A, b). Then if I0 is the equality set of Ax £ b

we have

(2.2.13) A

By (2.2.4) the vectors xl - X , X = X s.e.,X = X

2.12

are linearly independent. HMHoreover by (2.2.13)

-
o
o~
o]
I
-]
o
i
e
"
1
o
"

for i e {1, 2,...,k}. Hence . nullity(A 0) > k and so

I
rank (A) < |3} - k. Thus dim(F) = |J| - rank(a o) 2 k.0
1 I

We can now combine these two lemmas to obtain the

following theoremn.

(2.2.14) Theorem. The dimension of ©P(A, b) is

one less than the affine rank of P(A, b).

We showed (2.1.5) that the faces of a polyhedron P
are independent of the choice of inequalities used to
represent P. A consequence of (2.2.14) is that the dimension
of a polyhedron is also independent of the choice of inequalities
since the affine rank does not depend on the set of inequalities
used to define the pdlyhedron.

If F idis a face of P(A, b) and dim{(¥F) = dim(P(A,b))-1
then F 1is called a facet of P{A, b). -

In Chapter 4 we make extensive use of the following

corollary of (2.2.14).

(2.2.15) Corollary. If F _ is a proper face of

a polvhedron P of dimension d themn F is a facet of

P if and only if F contains d affinely independent

elements.

2.13

Proocf. The result is a combination of (2.2.,1) and

(2.2.14).0

2.3 Second Facet Characterization

We prove in this section that the facets of a polyhedron
P are precisely the maximal proper faces of P. We also
show that the facets of P correspond in a certain sense
to & minimal collection of inequalifies required to define
P. We then discuss the specialization of this theorem to
the case in which P is of full dimension as this is the
situation which we study in chapter 4.

(2.3.1) Theorem. Let P = P(A, b) be nonempty

and let IO be the equality set of Ax < b. Let TI°' I - IO.

in

b Then P # P' if and only if

Let P' = P(A - .4, by ;o).

I'wu IO contains the equality set of a2 nonempty proper

face of P.

Proof. Clearly P c P', suppose there is some y € P' -~ P,

Then for some nonempty K < I' we have

(2.3.2) A

and

(2.3.3) A,y > b, .

By (2.1.9) P has an interior point w, that is, w satisfies

(2.3.4) A

(2.3.5) A w =b .

2.14

Therefore we can choose A ¢ TR satisfying O < A <1
such that if we let 2z = Aw + (1 - A)y then for some

nonempty T < K

(2.3.86) Apz = bT R
(2.3.7) A z < b s
I—IO-T I—IOHT
(2.3.8) A .z £ b .
IO I0

(Take A = max{(Aiy - bi)/(Ai(y - w)): i & K} and let T
be the set of i &€ K which attain this maximum).
By (2.3.6) - (2.3.8) =z £ P so
(2.3.9) A z =5bD
0 0
By (2.3.6) and (2.3.9) =z e f(I u T) and by (2.3.7), I u T
is the equality set of this face. This proves the necessity

: 0
of our condition., since 2 v < 190k c I v TI'.

Conversely, suppose that I0 u I' contains the equality
set of a nonempty proper face F of P. Let K be the

equality set of F. ©Note that I0 c K c IO u I'. By (2.1.9)

F. has an interior point 1y, that is, y satisfies

(2.3.10) A

(2.3.11) Ap_g¥ < b oo

Similarly P has an interior point w, that is an element

Ww satisfying

(2.3.12) A w=>b .,

2.15
(2.3.13) A w < b

For any € > 0 let =z(e¢} = (1 + €)y ~ ew. Then

{(2.3.14) A dz(e) = b for any & e TR by

(2.3.10) and (2.3.12).

(2.3.15) A 0z(e)

|
o
=

m
~
=

o

]

1
hod

by (2.3.11) and (2.3.13).

A z(e) = A v + e * A O(y - W)
I-K i-X K-1I

e RTOEIT T

so in view of (2.3.11) if we choose e > 0 sufficiently small

we will have

(2.3.16) Ap_,z(e) = b

I-K
Since K > 10, by (2.3.15) z(e¢) ¢ P. Since I - K< I - I',
by (2.3.14) and (2.3.16) z(e) e P' = P(A;_ 14, by _s4).

That is P # P and the proof is complete.{]

We are now in a position to prove the following theorem
equating the facets of a polyhedron to its maximal proper

faces,

(2.3.17) Theorem. F # ¢ is a facet of P(A, b)

if and only if F is 2 maximal proper face of P(A, b).

Proof. Suppose F # ¢ 1is a maximal proper face of

2.16

P(A, b). Then by (2.2.1)

(2.3.18) dim(F) < dim(P(A, b)) - 1.
Let I0 be the equality set of Ax ¥ b, let I' be the
equality set of F. Let i e I' =~ 1% and let K = ' -1%-{1}.
If K I0 (= I' - {i}) contained the equality set

of a proper face F' of P(A, b) then F < F' contradicting

the maximality of ¥. Thus by (2.3.1),

P(A, B) = P(AL_,» bo_ o)
o | . . .
and T is the equality set of AI—KX < bI~K . The equality
. . 0 . .
set of F in P(AI_K, bI—K) is IY u {i} so since
rank (A 0) £ rank(A O) + 1 we have
T u{itl I

(2.3.19) dim(F) = dim(P(A, b)) - 1.

Combining (2.3.18) and (2.3.19) we see that F 1is a facet
of P(A, b).
Conversely, suppose that F # ¢ 1is a facet of P(A, D).

Then
(2.3.20) dim(F) = dim(P(A, b)) - 1.

Suppose that there is a face F' of P(A, b) such that

F < F' < P(A, b). By (2.2.1)
(2.3.21) dim(F') < dim(B(A, b)) - 1.

By (2.1.3) F 'is a face of F' and since we assume F < F',

F is a proper face of F'., Thus by (2.2.1),

(2.3.22) dim(F) < dim(F') - 1.

Combining (2.3.21) and (2.3.22) we have
dim(F) =< dim(P(A, D)) - 2
a contradiction to (2.3.20) which proves the theorem.[]

It should be noted that the hypothesis F # ¢ dis indeed

necessary in (2.3.17) as is shown by the following example.

= {132}. =
Lgt P = {(xl, x2) £ ﬂ{' Poxy b ox, = 1}. Then
dim(P?) =1 and ¢ 1is the only proper face of P. But
dim{¢) = ~1 so ¢ 1is not a facet of P. This algo illustrates

that there do exist polyhedra having no facets.

(2.3.23) Corollary. Let P be a polyhedron, let

[» N
t

dim(P)}. Let F # ¢ be a face of P of dimension

k < d. Then there are faces Fk+l’ Fk+2""’Fd—l of P

such that

dim(Fj) = 3 for 3 e {k+1, k+2,...,d=1}

Proof. We prove by induction on d - k. If d - k =1
then there is nothing to prove. Suppose the result is true
when d - k < t 2 2 and assume d = k + t. Let Fd_l be a

maximal proper face of P containing F, that is

F c Fd-l c P.
Then Fd—l # ¢ so0 by (2.3.17) dim(Fd) =d - 1. Since
(d - 1) - k < t there are by our induction hypothesis faces
Fk+1’ Fk+2";"Fd—2 qf Fd—l such that
F c Fk+1 Cianc Fd—2 < Fd—l

2,18

and dim(Fj) = j for jed{k + 1, ¥k + 2,...,d - 2}. By
(2.1.3) Fj is a face of P for j e {k +1, k + 2,...,d -~ 2}
so the result follows.[

Given the polyhedron P(A, b) we may wish to find a
set I* © I such that P(A ., b) = P(A, b) and I* is

minimal with this property. The next theorem characterizes

such sets. First we observe the following fact.

F o, s:.,F be the

(2.3.24) Proposition. Let F_, F
1 2 k

facets of P(A, b)), let IO be the equality set of 4x < b

and let I- be the equality set of F. for i e {1, 2,...,k}.

Then 1" n 19 = IO for all distinect 4, j e {1, 2,...,k}.

Proof. Let i, j be distinct members of {1, 2,...,k}
i 3 0] \
and let K = I n IY. Then I c K. Since Fi z Fj and
since both are maximal proper faces (by (2.3.17)) there are
x. e F, - F, and x, € F, - F,. Then x,, x. € £f(K) so
i i 3j i j i i j
Fy # £(K) = F,. But £(K) 2 F° u F' so simce F and F

are maximal, f(X) = P(A, b) so K = IO, completing the proof.[]

(2.3.25) Theorem. Let Fi: i £ K be the facets

of a nonempty polyhedron P(A, b), let I0 be the equality

set of Ax < b and let I be the equality set of Ft
_ *
for i ¢ K. Let I ¢ I, Then P(A, b) = P(A %2 D %) if
I I

and only if

(2.3.26) rank (A 0 *) = rank(A

)
I'nL 19

2.19

% i 0 |
(2.3.27) (I n I) -1 = ¢ for all i £ K.

%
Proof. Suppose I satisfies (2.3.26) and (2.3.27).

Then the rows of A , are a basis of the rows of A ..
%17 r°

0 *
Hence for any t e I¥Y - I

, A, must be a linear combination

of rows of A 0 *

and bt must be the same linear
I nI

combination of the rows of b 0 _* or we would have
I nIl

P(A, bB) = ¢. Thus if x ETRJ satisfies A x = b
0 _* 0 _*%
I nT 1 nX

then it also satisfies A _x = b . Hence

(2.3.28) P(A 4, b ,) = P(A , ,, b) -
I I I vl I ul

*
By (2.3.27), (¥ - I) u I0 cannot contain the equality set

of a facet of P(A, b) so by (2.3.17) and (2.3.1)

(2.3.29) P(A b ,) = P(A, b).

*5
IOUI IOUI

Combining (2.3.28) and (2.3.29) proves the sufficiency of

(2.3.26) and (2.3.27).

*
If 1 does not satisfy (2.3.26) then dim(P(A ,, b ,)) =2

I 1
dim(P(A, b)) + 1 so by (2.2.14), P(A ,, b ,) = P(A, b).
I 1

* % ,
If I does not satisfy (2.3.27) then (I - I) u IO contains

the equality set of a proper face of P(A, bB) so by (2.3.1),

0 %2 P o &)

I'vl °~ Tul

P(A, b) # P(A Since P(A, b) ¢

P(A 0 _#° b 0 %) € P(A ., b) the result now follows.[]
I vl I vl I I

If P(A, b) 1is a polyhedron of full dimension and I0

is the equality set of Ax £ b then rank(A 0) = 0 so since

I

we assume A has no zero rows, IO = ¢. If I' is the

equality set of a facet of P(A, b) then rank(A ') = 1

I
so 1f we define for each i g I

p(i) = {t ¢ I: At = aAi, bt = abt for some

o e s, a > 0}

then we can easily see that all equality sets of facets are
sets of this kind. Moreover for any i e I, for any t e p(i)
we have f£({t}) = £({p(i)}). <Thus (2.3.25) specializes to

the following.

(2.3.30) Theorem. Let P(A, b) be a polyhedrou of

full dimension. Then for any K < I, P(A, b) = P(AK, bK) if

and only if K n p(di) # ¢ for each i ¢ I such that £({1i})

is a facet of P(A, b).

(2.3.31).Corollary. Let P(A, b) be of full

dimension. Then K c I is a minimal set such that

) if and only if for each i e K, £({i})

P(A, b) = P(AK, by

is a distinct facet of P(A, b).

We also have the following result.

(2.3.32) Theorem. Let P(A, b) be of full dimension,

let K ¢ I be such that {f(i): i € K} is the set of facets

' 1
of P(A, b). Suppose P(A', b') > P(A, b) where A" e ﬂiI XJ,

. ,
b' e T and TI' dis a finite set, Then P(A, bB) = P(A', b'")

if and only if

(2.3.33) for each i ¢ K there are ¢t e I' and

some real o > 0 such that Al = o Aj and b’ = aby,

2,21

- 1
Proof. Agsume I' n I = ¢, define A e’WV(I uI) x J

ITul -

and b e R by A b, b

n
-
ol

I1e

= b'o

i
b
h=g|

I‘I
P(A', B') and

I
Suppose P(A, b) = P(A', b'). Then P(A, b)

{£(i): i ¢ K} 1is the set of facets of P(A, b). Hence by

(2.3.30) (taking A, b for- A, b and I' for K) we
see that (2.3.33) must hold.
Conversely, suppose (2.3.33) holds. By (2.3.30),

P(A, b) = P(AK, b,). Since P(A', b') 2 P(A, D) = P(AK, bK),

K
(2.3.33) clearly implies P(A', b')

il

P(AK, bK) = P(A, b)

and the proof is complete.[d

(é.3.32) shows that the facets of a full dimensional
polyhedron P(A, b) determine up to a positive multiple the
minimal set of inequalities of which the polyhedron is the
solution set. That is, any set of inequalities defining
P(A, b) must contain a positive multiple of Aix £ bi for
each i such that f£({i}) is a facet of P(A, b). (2.3.31)
shows that thélconver;e also holds, if Ax < b 1is a minimal
set of inequalities defining a full dimensional polyhedren
P, then f({i}) is a facet of P for each i e I.

This is one of the reasons for our interest in the facets
of matching polyhedra. These polyhedra (see section 3.4)
can be defined for a graph G by a set of inequalities
which generally is far from being minimal., By characterizing
the facets of matching polyhedra we afe characterizing the
minimal sets of inequalities necessary and sufficient to
determiﬁe these.polyhedra.

It may happen (as is the case with matching polyhedra)

that aij =0 or -1 for all 1 eI and j & J. Then we

have
p(di) = {t & I: Ai = At and bi = bt]

and we can simplify (2.3.30) as follows.

(2.3.34) Theorem. Let P(A, b) ©be of full

;dimensidn , suppose aij e {0, 1} fox all i e T, j € J.

Then for any K < I, P(A, b) = P(AK, b.) if and only if for

K-
each 1 e I such that f({i}) is a facet of P(A, b) there

is t e XK such that A. = A and b, = b .
1 t 1 =

2.4 Vertices of Polvyhedra.

In this section we prove results about vertices of
polvhedra which indicate their importance to linear programming.
We also show that bounded polyhedra are convex combinations
of their vertices.

We say that X € P is a vertex of the polyhedron P if

{i} is a face of P and dim({x}) = O.

~

(2.4.1) Theorem. x is a vertex of P(A, b) if

~

and only if there 1s some ¢ € ﬂ{J' such that =x is the

unigue member of P maximizing e¢x for x & P.

Proof. Any two distinct members of ﬁKJ_ are easily seen
to be affinely independent so F < P(A, b) 1is a face of
P(A, b) of dimension 0 if and only if F is a face of
P(A, b) and |F[= 1, By (2.1.5) F 1is a nonempty face of
P(A, b) if and only if there is c ¢ R’ such that ecx dis
maximized over P(A, b) by precisely the members-of F.

The result follows from these two facts.[]

2,23

We say that a polyhedron P ¢ ﬂ{J is bounded if there
exist £, u € ﬂ{J such that ¢ £ x £ u for all x e P.
A bounded polyhedfon is commonly called a EolztoEe(See

“Grunbaum [GLl]).

(2.4.2) Theorem. Let P(4, b) be a nonempty

bounded polyhedron. Then P(A, b)Y has a vertex.

Proof. Let I' be the equality set of a nonempty face
F of P(A, b) of minimum dimension. If dim(F) = 0 then
F consists of a vertex and we are finished. Otherwise if
dim(F) > 0 then there are by (2.1.8) an interior point X

of F and by (2.2.8) an element y & F - {x}. For any

€ € ﬂ{ let z(e) x + € (y - x). Then A 'z(e) = b ,

I I
for all € ¢ R . If AI_I,(y - x) £ 0 then z(e)eP(A,b)

for all e € such that € = 0 which contradicts P(A, b)

being bounded. Therefore there is i g I - I' such that

* bi - Aix

- = 1 [———— 1 e, 1
Ai(y x) > 0. Let A mln{Ai(Y”X) iel I and

Ai(y - x) » 0}. Then z(A*) e ¥ and there is i ¢ I - L'
such that Aiz(l*) = b,. Since x ¢ F ~ F(I' v {i}),
£(I' v {4i}) is a proper face of F, since z(A*) e f(x" uv {i}l),
F(I' u {i}) = ¢. By (2.2.1) dim(£(I' v {i})) < dim(F) =~ 1
and by (2.1.3) €£(I' v {i}) 4is a face of P(A, b)
contradicting our choice of F. Hence dim(F) = 0 and
F consists of a vertex of P(A, b).0
Since any face of a bounded polyhedron is itself a

bounded polyhedron, we have the following corollarxry.

(2.4.3) Coroliary. Every nonempty face of a bounded

polyhedron contains a vertex.

2.24

Observe that by (2.1.53) if ¢ € ﬂ\J is such that ex
has an ﬁpéer bound for =x & P(A, b), then this upper bound
is achieved by precisely,the members of some nonempty face
of P{A, b).

By combining this, (2.4.3), and the fact that for any

c € % J, ¢c * x has an upper bound over a bounded polyhedron

we obtain the following.

(2.4.5) Theorem. Let P be a nonempty bounded

polyhedron.. - Then for any c\S’ﬁP; there is a vertexA v of

‘P- which maximizes c * X over P.

Let K be a finite set, let {xk: k € K} ¢ ﬁ{J. We
say that =x 1s a convex combination of {xk: k ¢ K} if

there is (Ak: k £ K) ¢ ﬂ{K such that

(2.4.06) -Ak 2 0 for a2all k e K,

(2.4.7) (A, : k e K) = 1,

k:

(2.4.8) x = E(Akxk: k & K).

J
A set X ¢ is convex if every convex combination of

every finite subset of X belongs to X,

(2.4.9) Proposition. Polyhedra are convex.

Proof. Let P(A, b) be a polyhedron. If P(A, b) = ¢
then the result is trivial. If P(A, b) = ¢ 1let
X = {xk: k ¢ K} be a finite subset of P(A, b) and'let x

be a convex combination of X. Then there .is (kk: k & K) STKK

satisfying (2.4.6)-(2.4.8). Hence

2,25

z (A A xki k ¢ K)

Ax

< Z(A.: k € K)b by (2.4.6)

k:

i

b by (2.4.7)

so x € P(A, b) and (2.4.9) follows.[]

If VvV c ﬁ{J then the cdnvex hull of V is defined to

be the set of all x ¢ ﬂ{J which are convex combimations

of finite subsets of V.

(2.4.10) Theorem. If P(A, b) is a nonempty

bounded polyhedron then P(A, b) is egqual to the cenvex

hull of its set of vertices.

Proof. Let V = {vy k ¢ K} be the set of vertices of

K’
P(A, b). Let H(V) denote the convex hull of V. Tt
follows from (2.4.9) that H(V) < P(A, b).

Let X e P(A, b). Then X e H(V) if and only if there

exists A = (lk: k € K) ¢ ﬁ{K satisfying (2.4.6), (2.4.7) and

x = I(A k e K).

kVk*
Suppose no such A exists. Then by Farkas' Lemma (1.5.15)

there are y ¢ ﬁ(J and yo € ﬁ{ such that

(2.4.11) y - Ve t vy S 0 for k e K
(2.4.12) y « % + yg > O.

Since P(A, b) is bounded , by (2.4.5)

2.26

there is o £ [N such that o = max{y *« x:x e P(A, b)} and

there is h & K such that y - v, = o, By (2.4.11) o < Yo

»i

gso since e P(A, B), v * X € a < ~Yy contradictory to

(2.4.12). This completes the proof.[l

The number of vertices of a polyhedron is generally much
larger than the dimension of the polyhedron. The following
theorem due to Carathéodory {[Cl] shows that if x ©belongs to

=~ J . . ;
the convex hull of S ¢ ﬁ{ then if 1 is the affine rank
of S, x can be expressed as a convex combination of at most

r members of S,

(2.4.13) Carathéordory's Theorem. Let r .be the

affine rank of S ¢ ﬁ{J, let x be a member of the convex

A

hull of S. Then there is Y < S such that |Y] r and x

is a convex combination of the members of Y.

Proof. See Stoer Witzgall [S1] p. 35.

We combine (2.4.12) with (2.4.10) and (2.2.14) to obtain

(2.4.14) Theorem. Let P be a bounded polyhedron of

dimension d > 0. Then any x & P can be expressed as a convex

combination of a set of at most d + 1 vertices of P.

Chapter 3

The Matching Problem and the Blossom Algorithm

In this chapter we describe the matching problem
considered here and give a new version of the so-called blossom
algorithm for solving this problem. This algorithm, which
" is used extensively in later chapters, is actually a combination
of several other versions of the blossom algorithm; The
relationship of this version to other available versions is

discussed later, when sufficient terminology has been developed.

3.1 The Matching Problem.

< =
Let V and E be finite sets, let V- u V be a

_partition of V. Let ¢ = (cj: j & B) Dbe an arbitrary real
vector, let b = (bi: i € V) be a vector of positive integers.
Let A = (aij: i eV, j € E) be a matrix of zeros and ones

which satisfies

{(3.1.1) z(a, i e V) =2 for all j € E.

1]

Then the matching problem under consideration is the following

problem.
Find,if one exists,a vector x = [xj: j g E) ¢ ﬂ{ E

such that xj is a nonnegative integer for all j € E,

IA

I(a,.x.: j €& E) bi for all 1 e V7,

E(a,.x,: j £ E) bi for all i e V .

and which maximizes ¢ * x subject to these conditions.

3.2

If no such vector exists then we wish to exhibit a structure
which will prove that no such vector exists.

The matching problem is, therefore, a special case of
the integer programming problem (see section 1.6), the
principal restriction being (3.1.1). However whereas all
known algorithms for solving general integer programming
problems have bounds which are exponential in the size of the
input, the blossom algorithm is a method for solviﬁg matching
problems whose bound is a polynomial function of the size of
the input. The description of the algorithm is facilitated
by interpreting the problem graphically in the following manner.

Let G be the graph (V, E, ¢) where ¢ is defined by
p(j) = {i v: a;4 = 1} for all j € E.

In view of (3.1.1), |¥(j)] = 2 for all j e E. Thus G is
a graph without loops having edge set E and node set V.

Then the matching problem is

(3.1.2) maximize ¢ * X
where
{3.1.3) xj =20
for all j e E
(3.1.4) xj integer valued
(3.1.5) x(8(i)) < b, for all 4 e Vv

bi for all 1 e V

(3.1.6) x(§(1))

(See (1.3.3), (1.3.4) for the definitions of y, 6). That

is, we wish to assign a nonnegative integer xj to each edge

3.3

j of G so that the constraints (3.1.5) and (3.1.6) are

satisfied and so that ¢ + X is maximized.

Throughout the remainder of this chapter G = (V, E, @)
is a graph, b = (bi: i £ V) 1is a vector of posgitive integers
called degree counstraints, ¢ = (cj: i &€ E) is an arbitrary

< =
real vector and V™ u V is a partition of V.
The purpose of this chapter is to describe an algoxithm,

called the blossom algorithm, for solving the problem

(3.1.2)-(3.1.6).

It is a version of Edmonds' blossom algorithm. In [El]
and [E3] are versions of the algorithm which solve the problem
of maximizing =x(E) subject to x satisfying (3.1.3)-(3.1.5)
taking bi =1 for all i ¢ V and V = P
Another wversion [E2] sclves the more general
problem (3.1.2)-(3.1.5) where bi £ 1 for all i e V and

V=

]

$.
‘The description of the blossom algorithm in this chapter
is based upon a version of the algorithm [E4]
which solves the problem (3.1.2)-(3.1.6) taking V. = V and
allowing-thé bi to be arbitrary positive integers.

This algorithm has been generalized (Johnson [J1],
Edmonds, Johnson [E5] and [ES]) in other directions from

those considered in this thesis. In addition a computer

implementation of a generalized algorithm is available (Edmonds,

LI

Johnson, Lockhart [E71).
E . .
We call any x e 1R satisfying (3.1.3) and (3.1.4) a
matching. 'If x also satisfies (3.1.53) and (3.1.6) then 'x

is called a feasible b-matching or simply a feasible matching.

3.4

If x is a matching such that x(8§(i)) = bi for all

i e S cV then we say that =x 1s a perfect matching of §;

[

t+h

]
I

V then we may simply call x a perfect matching of

G. For any matching =x and any node i we define the

deficiency of x at i to be bi - x{(8(4)). If x has a

positive deficiency at i then we say that x 1is deficient

at di. If x is deficient at i then sometimes we call i

a deficient node relative to x. Thus x is a perfect.

matching . of S gV 1if S8 contains no deficient mnodes
relative to x. In Chapter 4 we will study extensively
matchings having a deficiency of 1 at some node of G and.

having a deficiency . of 0 every other node, the so-called

near perfect matchings.

“If bi = 1 for all i € V then if =x 1is a feasible
natching, M = {j € E: xj = 1} 1is a set of edges of G meeting
each node of G at most once ‘and each.node of V exactly

once, This special case has received a great deal of attention
and often is the starting point for studies of matching theory
(e.g. Berge [B2], Edmonds [El], [E2], [E3], Tutte [T2]).

We call this problem the l-matching problem and call such a

vectar x a feasible l-matching. Several of our theorems of

chapter 4 are particularly interesting for the case of

lematchings.

(3.1.7) Proposition. Let x be a matching of G

which satisfies

(3.1.8) =x(8(i)) = bi for all i e V.

R e i

3.5

Then for any S ¢ V__such that b(S) is odd,

b(s) ~ 1

(3.1.9) x(y(8)) = 5

Proof. By (3.1.8) Z(x(6(i)): i € 8) £ b(8) and since

Z(x(6(i)): 1 e 8) = 2x(y(S)) + x(8(8)) it follows that

2x(y(8)) < b(s) - x(8(8)) < b(S8)

Since x(y(8)) 1is dinteger valued and b(5) is odd it follows
that
2x(y(8)) £ b(s) - 1

and (3.1.9) is immediate.[]

The sets 8§ < V for which b(S) 4dis odd play an

important role in matching theory where G is not bipartite.

For any such set S5 we define

(3.1.10) q = (b(8) - 1)/2 .

The following are two basic results concerning graphs
of particularly simple structure. Notice that in both
(3.1.11) and (3.1.16) we neither postulate d nor require

X to be integer valued or nomnnegative.

(3.1.11) Proposition. For any tree T, for any

d = (di: i e V(T)) = ﬂ{V(T), for any v £ V(T) there is a

unique x ¢ ﬂ{E(T) such that

(3.1.12) x(8,(i)) = d; for all & e V(T) - {v}.

Proof. We prove by induction on |V(T)I. If

IV(T)[= 1 or 2 the result is trivial. Assume the result

true for trees having fewer thamn k nodes, for k =2 3 and
assume IV(T)| = k. By (1.3.12) T has a node t of valence

1 different from v, let {j} = GT(t). Clearly
-(3.1.13) X(GT(t)) = dt if and only if xj = d

Let T' be the tree obtained from T by deleting j and t,

let w be the end of j in T'. Define d' by

d for i e V(T') ~ {w}

i
d!
+ d -d, if i=w .
w t
Since [V(T')| < k, by our induction hypothesis

1
(3.1.14) there is a unique x' ¢ ﬁ{E(T) such

that x'(ﬁT,(i)) di for all i € V(T'}) - {v1}.

=2

Define =x = (xh: e E(T)) by

' for h e E(T') = E(T) - {3},
(3.1.15) x, = '

By {3.1.13)—(3.1.15), x is the unique member of_'ﬁiE(T)

satisfying (3.1.12).0

(3.1.165 Proposition. Let B be a conﬂected graph

containing no even polvegon and one odd polygon P. Then for

any d = (di: i e V(B)) ¢ 4{V(B) there is a unique x € ﬂ{E(B)

such that

(3.1.17) x(8(i)) = di for all i e V(B).

Proof. Let j & E(P), let B' be the graph obtained from

3.7

2

B by removing. j. Then B' 1is a tree and so is bipartite,
let wu, v be the ends of j, let Vl be the part see
(1.3i7Y0f B <containing {u, v}, let V be the other part.

Let d' = (d;: i e V(B)) be defined by

di for 1i e V(B) - {u, w}

di - 1/2(d(Vl) - d(Vz)) for i e {u, w}.
Then
{3.1.18) d'(Vl) = d'(Vz).

T
By (3.1.11) there is a unique x' efﬂ{E(B) such that
x'(GB,(i)) = di for all i e V(B) - {u}. By (3.1.18) we
have x'(SB,(u)) = d& g0 if we define x € ﬁ{E(B) by

xﬂ for h e E(B') = E(B)Y - {jl,

l/2(d(V1) - d(Vz)) for h = j

then =x satisfies (3.1.17) as re@uired.

Conversely, suppose <X ¢ ﬂ{F<B) satisfies (3.1.17).
B' is bipartite so we have i(éB,(Vl)) = E(GB,(VZ)). Therefore
we must have Ej = l/2(d(Vl) - d(Vz)). Therefore E]E(B')
satisfies :'E_(aB.(i)) = d} for all i e V(B) - {u} so

EIE(B') = x" by (3.1.11). Therefore x = x proving the

uniqueness of x.[]

The following six sections (3.2-3.7) are used to develop
the general‘framework required to describe the blossom
algorithm. The algorithm itself is presented in Section 3.8

and in Section 3.9 we compute a bound on the amount of work

requried by the algorithm to solve a problem.

3.2 Nested Families of Sets.

Let R be a set of distinet nonempty subsets of V.

We say that R is a nested family if for any distinct S,

T e R such that S n T # ¢ we have S c T or T c 8. An
important feature of nested families (of which we make use
in establishing upper bounds on the amount of work required
by various algorithms) is that they are small compared to

the total number of subsets of V.

(3.2.1) Theorem. If R 1s a nested family of

subsets of a nonempty set V then |R] < 2]v]| - 1.

Proof. We prove by inductiom on |V|. If |V| =1
then the result is obvious. Suppose the result is true
when |V] < k¥ for some k 2 2 and suppose |v] = k. Let
R be a nested family of subsets of V for which |R| is as
large as possible. Since S ¢V for all S5 e R we must
have V s_R‘ or R v {V} would be a larger nested family.

We must also have
(3.2.2) {x} € R for every x g V,

for if there is x € V such that {x} ¢ R, them R u {x}
is easilf séen to be a larger nested family.

Let Vi, V,,...,V, be the maximal members of R - {V}.
Since LV| 2 2, since the members of R are distinct and

by (3.2.2),

3.9

(3.2.3) t = 2.

For each i s'{l, 2, .., let R(V.,) = {S & R: 8 < Vi}.

i
.t t
Then R = U R(Vi) v {V} and V = u V, . By our induction
i=1 i=1 t
hypothesis IR(Vi)I < 2|Vi| -1 for i e {1, 2,...,t}.
t
Since u R(Vi) v {V} partitions R,
i=1
T
[R| = = |R(V.)] + 1
. i
i=1
t
<2z v, | ~t+1
. i
i=1
< 2|v] -1
) t
by (3.2.3) and since u Vi partitions V. The theorem now
i=1

follows by induction.(]
If we prohibit singletons from our nested family then

we have the following bound.

(3.2.4) Theorem. Let R be a nested family of

subsets of V containing no singletons. Then |R| < |V} - 1,

Proof. Let R' be the family R v u {v}. R' is

veV
easily seen to be a nested family, by (3.2.1) |R'| < 2[V| - 1.
Since |R'| = |R| + |V| it follows that |R| =< |V] - 1.0

If R 1is a nested family of subsets of V then for each

S e R we let

(3.2.5) RS = {T ¢ R: T is a maximal proper subset

of S8 belonging to R}

3.10

and

(3.2.6) VS = {v e 8: v é U(RS)} .

We let

(3.2.7) n(s) = |R_ | + |V

s sl

Thus n(S) is the number of maximal "things" which are

¢ombined to form 8.

(3.2.8) Theorem. Let R be a nested family of

subsets of V for which n(S8) =2z 3 for all S £ R. Then

IRl < (Jv] - 1)/2.

Proof. Let S & R. If]VS[> 2, then let S§' ©be any

two menbers of V 1f IVSI £ 1 then since n(S) =z 3,

g
SI > 2, In this case let S' Dbe the union of any two
members of RS'
Moreover R' is a nested family containing no singletons SO
|IR'] < |v] - 1 by (3.2.4). Therefore |[R]| < 1/2(|Vv| - 1)

and the proof is complete.f]

3.3 Blossoms, Shrinking and Shrinkable Families

One feature of the blossom algorithm is the way it
"shrinks" certain subgraphs of a graph to effectively reduce
the size of the problem., In this section we define shrinking
and describe the sorts of subgraphs which will be shrunk. We
also prove some fundamenfal results.concerning shrinkable
graphs. The definitions and results of this section are also

used in Chapter 4 where we show the close relationship between

Let R' = R U {S': S € R}. Then |R'| = 2|R].

shrinkable graphs and facets of the matching polyhedron.

The basic structure used in defining shrinkable graphs
is the blossom (the christening feature of the blossom algorithm)
which is defined as follows.

A blossom is a connected graph B containing.no even
polygons, exactly one odd polygon P and for which the
degree constraints satisfy the following conditions. Let

v € V(P). By (3.1.16) there is a unique x ¢ ﬁKJ such that

(3.3.1) x(§,(1)) = b, for all i e V(B) - {v}

|
=2
1

(3.3.2) X(6B(V)) 1.

In order that B be a blossom we require

(3.3.3) xj be a2 nonnegative integer for all

j & E(B),

I\

(3.3.4) xj 1 for all j e E(B) - E(P)

(3.3.5) xj 2z 1 for each j € E(P) such that

j is the first edge in the even length path imn P from a

node 1 & V(P) - {v} teo .wv.

The choice of v 1is in fact arbitrary, we will show in
(3.3.22) that if (3.3.1)-(3.3.5) hold for some v e V(P)
then they also hold for: any other choice of v e V(P).

In order that (3.3.1)-(3.3.3) hold we require
(3.3.6) b(V(B)) is odd for any blossom B.

Since we obtain a tree if we delete any j & E(P) from B,

we have using (1.3.13) that

3.12

(3.3.7) |v(B)| = |E(B)| for any blossom B.

The graph cobtained from B by deleting all edges of P 1is
a forest, each v e V(P) belongs to a unique (possibly

trivial)} tree Tv of the forest. These trees are called the

petals of the blosson, 'I‘v is the petal rooted at wv. The

edges belonging to E(B) - E(P) are called the petal edges

of the blossom.

(3.3.8) If v ¢ V(B) -has valence 1, or has

‘valence 2 and belongs to V(P) then V 4is called 'a terminal

node of B, ‘ : T T,
//
deficient node //1§>

odd
polygon

terminal ’ \-——% . \ ‘ /
nodes
‘ —
Edge jirsuen that’ Xj =

1
Edge Jj such that xj =0

Figure 3.1 Sample Blossom

(3.3.9) Proposition. Let B be a blossom, let

i e V(B) be.such that bi = 1. Then i is a terminal node.

3.13

Proof. If i € V(P) then by (3.3.1)-(3.3.5) we must
have b, 21 + |65¢i) n E(T,)|. Hence b, =1 implies
E(Ti) = ¢ and so i is a terminal node. If i e V(B) - V(P)
then by (3.3.4) b, =2 o) so IsB(i)| =1 and i is
a terminal node.[

(3.3.10) Proposition. If bi = 1 for every
i &€ V(B) then B is a-blossom if and only if B dis an
odd polygon.

Proof. PFirst suppose that B 1is a blossom. By (3.3.9)
every node of B 4is a terminal node, if any petal Tv
contained an edge then v could not be a terminal node, a
contradiction. Hence all petals are single nodes and B is
én odd polygon.

If B is an odd polygon let v & V(B) and let T Dbe
a shortest odd length track in B from v to v. If we
define xj = 0 for every odd e&ge of T and xj = 1 for

every even edge of +t then x

so B is a blossom.[]
Jf B is a graph such that
B c¢an have no perfect matching.

{3.3.11) We define a

(abbreviated by matching)

np

such that, for some v & V(B)

x(GB(i)) bi

b
v

1.

XCGB(V))

satisfies (3.3.1)-(3.3.5)

b(V(B)) is odd then clearly

near perfect matching

to be a matching x of B

for all i e V(B) - {v},

3.14

(3.3.12) Proposition. Let B be a blossom

containiné the odd polygon P. Then for any i ¢ V(B) there

is a np matching x' of B deficient at i. Moreover if

£ & V(P) them x' satisfies (3.3.4), (3.3.5) (with x'

substituted for x).

Proof. The prdof of this proposition actually
consists of an algorithm for obtaining such a matching,
starting with a np matching x deficient at v e V(P)
satisfying (3.3.1)-(3.3.5).

If 4 = v then x is the matching we require and we
are finished. Otherwise let 1t be the shortest track from

1

v to i having even length. Now define x by

x. +1 if j dis an odd edge of T,
(3.3.13) xi = x, -1 if j 1is an even edge of T,

x, if § e E(B) - E(1).

Clearly x' is dinteger valued, x'(GB(s)) = bS for all

s & V(B) - {i} and x'(GB(i)) = bi - 1. Moreover if

i € E(P) is an even edge of 1 then j is the first edge

in an even length path in P from some w & V(P) - {v} to
v. so by (3.3.5) xj 2z 1 and x% > 0. If j e E(B) - E(P)
is an even edge of 1 then by (3.3.4) x5 2 1 so xi =z 0.

For any j € E(B) which is not an even edge of 71 we have

x' 2 x, 20 so x' 20 and hence is a np matching deficient

Now suppose i e V(P) - {v}. First observe that each

j & E{(P) 1is the first edge in exactly two paths from nodes

3.15

cf P to i and since P is an odd polygon, both these
paths have the same parity. If j & E(P) n E(t) then j
is the first edge in an even path to i if and only if j
is an odd edge-ofl T so by (3.3.13) x% = 1. If
j € E{P) - E(T) .is the first edge in an even path to 1
then it is easily seen that 3j is the first edge in-an
even path to v so by (3.3.5) xg = ¥, > 1.

Since i € V(P) dmplies E(T) < E(P), (3.3.13) and
(3.3.4) ensure that xi = xj 2 1 for all j € E(B) - E(P)
and the proof is complete.[

"We now define shrinking. Let G = (V, E,) be a graph

let S < V. We say that G =(V, E, §) 4is the graph obtained

from G by shrinking § if

V=V-35u {s},

E=E - y(S)

_ W) if j e E - 6(S)
v(j)=

Wi) = S u {S} if § e 6(S).

In other words, G is the graph obtained from G by contracting
all edges of & which have both ends in S and calling the
resulting node "S", We denote G by G x S8 and call S a

pseudonode of G (with respect to G). We define the degree

constraint b

S 1 for any pseudonode S. We also define

V. - su {s} if s cV ,

<1
(1]

(3.3.14) .
vV -5 if s ¢ v

<1
A
it
<
[
]|

3.16

Let R be a nested family of subsets of V (see

Section 3.2), For any § € R we define
(3.3.15) R[s] = {T € R: T <« S}.

If {Sl, SZ""’Sk} is the set of maximal members of R

then we let ¢ x R denote

(3.3.153)_ (...((G % Sl) x 'sz) X.va) X SK.

It is easily seen that the ordering of the sets Sl’ 82,...,8k

has no effect on G x R.

We say that G = (V, E, ¢) is shrinkable if there is a

possible empty mested family R of subsets of V such that

(3.3.16) for every S e R, G[S] x R[S] 1is

spanned by a blossom BS’
(3.3.17) b(V(G x R)) =1
It is eésy to see that

(3.3.18) V g R 1is eguivalent to (3.3.17) if R # ¢.

We call R a shrinking family of G. ©Note that in particular

any graph spanned by a blossom is shrinkable. For any S c V

we say that S8 1is shrinkable if G[S] is shrinkable.

If R = ¢ 1is a shrinking family of G = (V, E, ¥) then
[v] =1, |E|] = ¢ and b(V) = 1. We call such a graph

degenerate, all other shrinkable graphs are called nondegenerate,

(3;3.19) Proposition. If G = (V, E; Y) dis

shrinkable, then B(V) is odd.

3.17

Proof. Let R be a shrinking family of G, we prove
by induction on |R|]. If |R| = 0 then G 4is degenerate
and the result is trivial. Suppose {3.3.19) holds when
G has a shrinking family of fewer than k sets for some
k 21 and assume |R| = k. By (3.3.16) there is a blossom
BV spanning & x R[V] and by (3.3.6),

(3.3.1%a) b(V(Bv)) is odd.
Let S be any maximal member of R{V] and hence a
pseudonode of G x R[V]. Then R[S] u {S} is a shrinking
family of G[S] and since |R[S] v {s}]| < |R| we have by

induction
(3.3.19b) b(8) 1is odd.
If W 1is the set of pseudonedes of G x R[V] then
b(V) = b(V(G x R[V])) + Z({b(S): S & W} - 1)

so since V(G x R[V]) = V(Bv) we have by (3.3.1%a) and

{3.3.19b) that b(V) 4is odd as asserted.[]

If R 1is a shrinking family of G then for any S € R,
R[S] v {8} is a shrinking family of G[S]. Hence we have

the following corollary of (3.3.19).

(3.3.20) Corollary. If R _is a shrinking family

for G then b(5) is odd for all S & R.

(3f3.21) Proposition. Let G = (V, E, y) be

shrinkable and let R be a shrinking family of G. Then

for any v & V there is a np matching x of G deficient

3.18

at v and which satisfies

(3.3.22) =x!vy(8) is a np matching of G{S] for

all S £ R.

Proof. We prove by induction on |R|. 1If [R] = 0
then G is degenerate and the result is trivial. Assume
the result true for graphs having a shrinking family
consisting of fewer tﬁan "k sets for k 2 1 and suppose
[R] = k. Let v be any node of G. Everylmaximal S ¢ R[V]
is a pseudonode of the blossom BV which spans G x R[V].

Let p = v if v ¢ V(BV), let p =S if v € § for some

pseudonode 8§ of B By (3.3.12) there is a np matching

v
X of Bv deficient at p. For every péeudonode T ¢ V(BV)
there is at most one node of T dincident with some j ¢ E(Bv)
for which ;j = 1 since bT = 1. If such a2 node W(T)
exists, let xT be a np matching of G[T] deficient at

w(T) satisfying

(3.3.23) Ele(Z) is a np matching of G[Z]

for every Z & R[T],

which exists by our induction hypothesis. If no such w{T)
exists, then v £ T and we let- ET be a np matching of

G[T] deficient at v which satisfies (3.3.23). ©Now define

x by
;j for j e E(BV)
xj = 0 for j & E(G x R[V]) - E(BV)
- T .
X for j e y(T), for T & R{V].

3.19

x. 1is easily seen to be a np matching of G deficient at
v and satisfying (3.3.22), thereby completing the proof.[]
We close this section by noting the following basic

property of matchings.

(3.3.24) Proposition. A matchinmg x ds a np

matching of G = (V, E, y) if and only if x(E) = qv(=l/2(b(V)—1))

and x(8(i))

IA

bi for all i & V.

Proof. For any matching x of G,

_2x(E) = b (V) E(bi - x(6{(i)): i e V).

Thus any np matching x of G satisfies =x(E) = 1/2(b(V)-1)"
(and trivially =x(68(i)) = bi for all 1 £ V). Conversely

and x(8(i)) = b

any matching x which satisfies x(E) = dy 5

for all i & V must satisfy x(&6(i)) = bi .for all i e V-{v}
and x(Gtv))=.bv—l for some v € V. Thus x 1is a np

matching of G and the result follows.[]

3.4. The'Matching Polyhedron.

The matching polyhedron P(G, b) is defined to be the bounded

pelyhedron in ﬁ{E containing all matchings x of

G = (V, E, ¥) which satisfy
(3.4.1) x(8(4)) = bi for all i e V

and for which every vertex is such a matching. (Equivalently,
?(G, b) is the convex hull of the set of matchings of G
which satisfy (3.4.1).)

Let Q = {S ¢ V: |s| 23 and b(S) 1is odd}. Edmonds [E3]

3.20

has shown that P{(G, b) = {x ¢ ﬁ{E
(3.4.2) xj 2 0 for all j £ E,

(3.4.3) =x=(8(i))

IA

bi for all i e V

(3.4.4) x(v(8))

A

qg for all s ¢ Q}

The proof is a consequence of a blossom algorithm similar
to the version we are developing here in the following way.
‘The algorithm shows that.for any c¢ € ﬂ{E, c + x 1is
maximized over all =x (not necessarily integer valued)
satisfying (3.4.2)-(3.4.4) by a matching of G which satisfies
(3.4.1). It is implicit in the algorithm that Q can be
replaced in (3.4.4) by a subset of itself which is generally
much smaller than Q.

0

Let Q ={S = V: |S|] 23 and S is a shrinkable subset

of V}. (By (3.3.19) b(S) is odd for each S e Q).

(3.4.5) Theorem.

P(G, b) = P = {x ¢ {RE:

(3.4.6) =x, 2 0 for all j € E,

=]
(3.4.7) =x(86(i)) = bi for all i e V
(3.4.85 x{y(8)) = 9g for every S e QO}.

Proof. It is easily seen that any matching x of G
which satisfies (3.4.1) belongs to P, for it satisfies (3.4.6),
(3.4.7) by definition and it satisfies (3.4.8) by (3.1.7)
and (3.3.19).

We will show by means of the blossom algorithm that for

3.21

any ¢ € ﬂKE, there is a matching xo of G satisfying
(3.4.1) which maximizes e¢x over x & P. By (2.4.1) for
each vertex v of P there is a vector ¢ ¢ ﬁ{E such that
¢x 1is maximized over X € P only by v. Hence all vertices
of P are matchings satisfying (3.4.1)}.

(We saw in (2.4.10) that every bounded polyhedron is the
cénvex hull of its set of vertices. Since P contains all
matchings of G satisfying (3.4.1) and since all wvertices
of P are such matchings it follows that P is the convex

hull of the matchings of G which satisfy (3.4.1).}0

When we require matchings satisfying

(3.4.9) =x(8(i)) = bi for i eV <V

then we are in fact considering a face F of P(G, b). Thus
the blossom algorithm presented in this.chapter will find
(if one exists) a matching xo e F ¢ P(G, b) maximizing
c - xo over F where F is a face of P{G, b) obtained by
requiring (3.4.9) hold. (If V = ¢ then F = P(G, b)). In

chapter 53 we study the more general problem of maximizing

¢+x over any face F of P(G, b).

3.5 Linear Programming Formulation

The following linear program is equivalent tec the problem
of maximizing c¢x for x g Frc P where F is the face of

P (defined in (3.4.5)) obtained by requiring (3.4.9) hold.
(3.5.1) HMaximize c + x

over X eﬁR_E which satisfy

3.22

[\
o

S (3.5.2) x for all j e E,

(3.5.3) =x(6(i))

A

bi for all i eV =V -V ,

(3.5.4) =x(8(i))

b, for all i eV,

(3.5.5) =(y(8))

1A

qg for all S ¢ Q.

For any j € E let Qo(j) = {§ ¢ QO: j g v(S)}. The

dual linear program is

. . . . 0
(3.5.6) minimize Z(biyi. ie V) + E(qsys. 5 £ Q)

0
over y € ﬂ{VUQ which satisfy
(3.5.7) Vg % 0 for all § ¢ Q- ,

(3.5.8) y; 20 for all i eV

Y
n

(3.5.9) y(u(i)) + y2uMN for all j e E.

By complementary slackness (1.5.16) xo gsatisfying
(3.5.2)-(3.5.5) and y° satisfying (3.5.7)-(3.5.9) are

optimal if and only if

(3.5.10) xg > 0 implies yO(v(i)) + y°@°()) = c,

for any -j £ E,

(3.5.11) yg > 0 dimplies xo(é(i)) = bi for all
ie VT,

(3.5.12) yg > 0 implies x°(y(S)) = qg for all
5 ¢ QO. | .

The blossom algorithm will actually find a feasible

3.23

matching x and a dual solution y satisfying (3.5.7)}-(3.5.9)
such that x and y satisfy (3.5.10)-(3.5.12) or else

will show that no feasible matching exists in a manner
described in section 3.7.

We call y a dwal solution to the matching problem

(3.1.2)-(3.1.6) if y satisfies (3.5.7)-(3.5.9) and an
optimal dual solution if y minimizes E(biyi: i g V)

+ Z(qsysz S & QO) over all dual solutions.

3.6 Altermating Forests

During the course of the blossom algorithm we construct
forests.having special properties with respect to a matching,
Let T be a tree contained in G = (V, E, ¢), let r & V(T)
be designated as the root of T. There is a unique path
1(i) ir T from r to each i & V(T). We call i an even
node or an odd node of T according as the length of 7(i)
is even or odd. In particular, r 1is an even node of T.

‘We call j e E(T) even or odd according as j is the last

edge of a path w(i) in T to an even or odd node of T
(or equivalently, according as j is an even edge or odd
edge of any path @(i) din T from r to some node

i e V(T) - {r} such that j e E(n(i))).

Let x be a matching of G. We call T amn alternmating

tree with respect to x (see Figure 3.2) if
(3.6.1) =x(8(r)) < br’

(3.6.2) =x(8(i)) = b, for all i & V(T) - {r},

Figure 3.2

Alternating tree

edge j--such that

edge j such that

portion of T above

even nodes O

odd nodes

X, =
3

1
x, =20
J

&

NaVaVaVaWaV

(3.6.3) 1if xj >0 and ${(j) n V(T) = ¢ then

j £ E(T)s
(3.6.4) xj > 0 for every even edge j of T.

If we are considering l-matchings then (3.6.1)-(3.6.4)
imply'that every even edge j of T has xj = 1 and every
odd edge 3 has xj = 0.

- the Fhat for any - 1 Vv, {i} . is the node set of an

alfernatihg tree if x(@ (i)) = 0.. We call a nonempty

Eg}lecéion'of alternating trees an alternating forest.

Let j be an edge of a tree T with root r. If we
delete j from T then the resulting graph will consist
of two trees, one of which, T', will not contain 1. We call

T' the portion of T above i.

Let i be any node of T. If i = r then we say that

T is the portion of T above i. Otherwise let k be the

first edge of the path in T from 1 to r and let T' be
the portion of T above k. We say that T' 1is the portion

of T above i.

(3.6.5) Proposition. Let T be an alternating

tree with respect to the matching =x. Let r be the root

of T, let I be the set of odd nodes of T and let W be

the set of even nodes of T. Then

b(W) = (b= x(8(r))) = b(I)
Proof. By (3.6.1) and (3.6.2)

(3.6.6). b(W) = Z(x(8(i)): i e W) + br - x{(8(r)).

LD

Since no edge of T can join two even nodes and by (3.6.3),
(3.6.7) I(x(8(i)): i € W) = =(8(¥) n E(T)).
By (3.6.2)
(3.6.8) Db(I) = Z(x(8(i)): i e 1).
Since no edge of T can join two odd nodes and by (3.6.3),
(3.6.9) IZ(x(8(i)): i £ I) = %(8(1I) n E(T)).
But for any j e E(T), j £ 8§(I) and j e &8(W) so
(3.6.310) &(I) n E(T) = 8§(W) n E(T).
By (3.6.10), (3.6.9) and (3.6.7) we have
T(x(6(i)): i € W) = Z(x(8(di)): i e I).
Hence (3.6.6) and (3.6.8) combine to give the result.[]

(3.6.11) Corollary. Let F be an alternating

forest with respect to the matching x, let K be the set

of roots of the trees of F. Let W and I be the sets of

even nodes and odd nodes of F respectively.

Then

b(W) - Z(br - x(8(x)): r € K) = b(1).

Note that (3.6.1) implies therefore the following.

(3.6.12) Corollary. If W and I are the sets

of even and odd nodes of an altermating forest F then

b(w) > b(I)-

.26

3.7. Hungarian Forests.

Let G = (V, E,) be the graph obtained from
G = (V, E, ¥) by shrinking a (possibly empty) family R

of disjoint shrinkable subsets of V. We define

(3.7.1) ¥ (V" a V) v {sSeR: S c vV}

Let F be an alternating forest contained in G with respect

to a matching x of G which satisfies
(3.7.2) x(8_(i)) = b, for all i e V.
G

We call F Hungarian in G with respect to x if
(3.7.3) no edge of G joins two even nodes of F,

(3.7.4) no edge of G joins an even node of F

to a node not in F ,

(3.7.5) every odd node of F 1is a node of G,

that is, not a pseudonode of G,

(3.7.6) if v €& V is an even node of F then

(3.7.7) for any i e V , if x(§_(i)) < b,
G

then i is the root of a tree in °F. -

Let x be any matching of G which satisfies
o (3.7.8) x(86(i)) = bi for all. ie V.

We define

.27

(3.7.9) d(G6, Vv ; x)

E(b, - x(8(i)): i ¢ VoY,

If M is the set of all matchings of G which satisfy

(3.7.8) then we let

min{d(G, V ; x): x e M}.

(3.7.10) D(G, V)

Thus d(G, V ; x) 1is a measure of the amount by which x
fails to be a feasible matching of G and D(G, V=) measures

how closely we can come to obtaining a feasible matching of

G. Clearly

(3.7.11) G has a feasible matching if and only

if D(G, V) = 0.

Later in this section we show the connection between
Hungarian forests and the value of D(G, V=). We also show
in (3.7.36) that knowledge of a Hungarian forest of G enables
us to characterize those matchings x of G for which
d(6, V7 ; x) = D(G, V).

First we prove the following basic result which also
indicates the importance of shrinkable sets in the blossom

algorithm,

(3.7.12) Proposition. Let R be a family of

disjoint shrinkable subsets of V and let G = (V, E, ¥) be

the graph obtained from G = (V, E, ¢} by shrinking the members

of R. Let V be defined as in (3.7.1). Then any matching

X of G satisfying (3.7.2) can be extended to a matching

X of G safisfying (3.7.8) such that

(3.7.13) d(G, Vv ; x) = d(G, V.; x).

.28

Proof. For each S & R we define a node i(s) as
follows. If there is some j € & {(S) such that ﬁj = 1
G
then det {i(S)} = ¥(j) n S. Otherwise if S - V_ = ¢,

let i(S) be any member of S - V . Otherwise let i(8)
be any node of S. By (3.3.21) there is a np matching
xS of G[S] deficient at i(S8) for every S & R. We

define =x by

§j for j e E,
x. =
4 S
xj for j & y(S8) for all S ¢ R.

X 1is easily seen to satisfy (3.7.8).

For any v &€ V - R we have § (v) = &§(v) so
' G

(3.7.14) b_ - x(8(v)) = b_ - x(8§ (v)) for all
v ‘ v a

Let S eV nR. Then § c V so

4

~—~

o
I

x(8(i)): i € 8)

E(bi - x(§(i)): ie s - {i(s)}) + bi(S)— x(8(i(s)))

S , -
- X (GG{S](l(S)))) - XCSE(S))

0+ (bi(S)

1 - x(6_(8)).
g 7

Therefore

(3.7.15) (b, - x(6(i)): i € S n V") = b_~X(5 (S))
1 S a

for all S € V- n R.

Let S e R~V . If i(S) € V - V_ - then

Z(b, - x(§(i)): 1 ¢ § n V) = 0.

If 41i(8) ¢ V™ then there is j e §{(i(8)) n 8(8) such that

gj = 1. Therefore
£(b, = x(8(i)): i e § n V)
= b = %58, (1(8))) - %
= bisy — * Bgpg 28D *j
=1-1=0.
Hence

(3.7.16) Z(b, ~ x(8(i)): i € S n V) = 0 for all

S eR~-V
Combining (3.7.14)-(3.7.16) gives (3.7.13).0

(3.7.17) Theorem. Let G = (V, E, §), 6 = (V, E,)

ft

R, V- and V be as in (3.7.12). Let F be a Hungarian

forest in G with respect to a matching x. Let KX < V be

the set of roots of trees of F. Then

(3.7.18) D(G, V1) = 2(b. - x(8_(i)): 1 e K).
G

Proof. By (3.7.6) and (3.7.7)

d(6, V3 x) = (b, -~ x(5_(4)): 1 e K). By (3.7.12) x can
G
be extended to a matching xo of G for which

d{G, V=; x) = d(G, ﬁ=; xo) so

(3.7.19) D(G, V) < I(b, - x(6_(i)): 1 e K).
- G

Now consider the linear program

.30

(3.7.20) maximize 2x(y(V)) + x(§(V))
E . .
over X € f&_ satlsfylng

x =2 0,

1A

(3.7.21) “x(6(i))
Cx(y(8))

bi for all 1 & V,

qg for all S ¢ QO.

A

By (3.1.7) any matching x of € satisfying (3.7.8) is
a feasible solution to this linear program .

The dual linear program is

(3.7.22) minimize Z(biyi: i e V) + E(qSyS: S ¢ Qo)

@ vug?
for vy e R satisfying

(3.7.23) Y5 2 0 for all 1 e V u QO,

v -

(3.7.28) v + vQ2)) 2 |v() a v

for all j € E.

We define a wvectoer yo as follows. Let I and W be
the sets of odd and even nodes of F respectively.

2 if ieIaV

1 if i e I - V or if

(3.7.25) y.= _

i eV - V(F) - u(R n V(F)),

0 if i e V - V - I

2--4f 8 £ R n W

]

(3.7.26) vy .
' 0 if s eq’ - (R nW.

Now we show that

(3.7.27) yD is dual feasible.

If neither end of j dis in F or is contained in a pseudonode
of F then
0 . . o=
y (W(3)) = |[v(3) nv]

so (3.7.24) is satisfied.

(3.7.28) If exactiy one end of j 41is in F or
is contained in a pseudonode of F then by (3.7.4) j must

meet an odd node of F so

s) = v VT o+
and (3.7.24) is satisfied.

- If j e y(S}) for some pseudonode S of F . then

y2%G) = 2 = |y o v

since by (3.7.6) and (3.7.1), S < V . Hence (3.7.24) is
satisfied,.
If |y(j) a Il = |9(j) n W| = 1 then since by (3.7.6)

and (3.7.1) ¥(j) - I ¢ V. it follows that
yOw = uy o vy,
Thus‘(3{7.24) is satisfied.
(3.7.29) if |¥(3) n I| = 2 then

yo(w(j)) = [9(3) n V| + 2 so (3.7.24) is satisfied.

By (3.7.3) this exhausts all cases, S0 since yo'z 0 we

have proved (3.7.27).

Now we evaluate the dual objective function for Yo

.32

| 0. .) 0
(3.7.30) E(biyi. ie V) + Z(qsys. S Q)

= bV = V(F) - u (R n V(F))) + b(I - V)

C+ 26(T n V) 4+ 25(qg: S € R n W),
By (3.6.5),
(3.7.31) b(I = V) + 2b(I n V)
= b(W) + b(I n V) - (b, - E(aa(i)): i € K).
By (3.1.10)
(3.7.32) 2I(qg: S e R n W) = 2(b($): S e RnW - b(RaW.

Substituting (3.7.31) and (3.7.32) into (3.7.30) and

simplifying we obtain
(b yoz i e V) + Z(q.¥y.: S € QD)
i‘i $78°
= b(V) - Z(b, - x(8_(i)): i e K).
i -
G
It therefore follows from the weak L.P. duality theorem
(1.5.12) that
(3.7.33) 2x(y(V)) + x(§(V)) <
b(V) —.I(b, - XK@ _(i)): i € K)
‘ G

for any feasible solution x to the primal linear program
(3.7.21). Since every matching of G which satisfies (3.7.8)

is such a feasible solution, and since

(3.7.34) I(b, - x(8(i)): i ¢ V) =

B(V) — (2x(y(V)) + x@B (V7))

it follows that

(3.7.35) D(G, V) = 5(b, - X(6_(1)): i & K).
: G

Combining (3.7.19) and (3.7.35) proves the theorem.l
By using the complementary slackness principle of linear
programming we obtain the following characterization of

matchings x which minimize d(G, V=; x).

(3.7.36) ZTheorem. Let G = (V, E, $), G =(V, E, y),

R, V and V be as in (3.7.12). Then for any matching x

of G satisfying (3.7.8) we have D(G, V) = d(e, v ; x)

if and oﬁly if the following conditions are satisfied.

(3.7.37) x(y(8)) qg_ for all S e R n V(F).

(3.7.38) x(8(i))

]

bi for every 0dd node i of

F_ and for every i e V - V(F) - u(R n V(F)).

(3.7.39) If I and W are the sets of odd and

even nodes of F.- respectively, then xj = 0 foxr all

j e U 8(1) - &_(W).
TTTielT G T

Proof. 1In the proof of (3.7.17) we displayed a matching
xo satisfying (3.7.8) and a dual solution yo such that

2x0(y(V=)) + xo(d(vz)) = Z(biyi: ie V) + Z(qsy 5 ¢ QO).

gt
Thus yo is an optimal solution to the dual linear program
(3.7.22)-(3.7.24) so every optimal solution x to the

primal Jinear program (3.7.20), (3.7.21) must satisfy tﬂe
cémplementary slackness conditions (see (1.5.16)) with respect

to yo.._

.34

Thus by (3.7.25) we must have (3.7.38); by (3.7.26)
we require (3.7.37); by (3.7.28) and (3.7.29) we require
(3.7.39). Since by (3.7.34) ; maximizes
2x(y(V=)) + x(G(V=)) for =x satisfying (3.7.21) if and
only if X minimizes d(G, V=; x) for x -satisfying (3.7.21)
and since we have exhibited a matching xo for which
d(G, VvV ; xo) = D(G, V) the result now follows.[]

If we are considering a matching problem in which
v o= ¢ then by (3.7.1) and (3.7.6) there could be no even
nodes in a Hungarian forest F in a graph G obtaiped from
G = (V, E, ¥) by shrinking some disjoint shrinkable subsets
qf V. But since every Hungarian forest contains at least
one tree rooted at an even node, this means that no Hungarian
forest can exist. In other words, Hungarian forests are
structures which can arise only when dealing with matching
. problems iﬁ which Vv = ¢
The following corollary of (3.7.17) is a necessary

condition for a graph G to have a feasible matching.

(3.7.40) Corollary. If G has a feasible matching

then no graph G obtained from G by shrinking a ccllection

of disjoint shrinkable subsets of V can contain a Hungarian

forest.
Proof. If G contains a Hungarian forest ¥F with respect
toe a matching x then if K is the set of roots of trees

of F, we have

Z(b, - x(8 (i)): 1 ¢ K) > O.
1 G

.35

Therefore by (3.7.17), D(G, V') > 0. Therefore by (3.7.11)
G has no feasible matching.[]

In fact; the converse of this corellary is true and
ﬁill be proved by the blossom algorithm for it will always
terminate with either an optimum feasible matching or else

with a Hungarian forest.

3.8 The Blossom Algorithm

In this section we describe the blossom algorithm which
solves the problem (3.1.2)-(3.1.6). This algorithm is also
used in later chapters when we consider more general problems.
In Section 3.9 we derive a bound.on the amount of work
Perférmed By'the blossom algorithm in-solving a matching

probleﬁ.

At each stage of the algorithm we have the following

things.
(3.8.1) a matching =x = (xj: j e E),

(3.8.2) a dual solution vy = (yi:.i e Vu QO) which

satisfies (3.5.7)-(3.5.9).

Let G = (V, E=, w|E=) be the spanning subgraph of G

whose edge set comnsists of all those j & E satisfying

(3.8.3) y(uv()) + y%G)n = ;-

G is called the equality subgraph. The complementary

slackness condition (3.5.10) is satisfied by x and 1y, that

is

.36

(3.8.4)Y x, > 0
3
We alsoc have a nested

{(3.8.5) for each

is spanned by a blossom B

definition of € [8] % R[S

Moreover

(3.8.6) x|E(H(S)
deficient at some i{(S5) b
B{(S) and

(3.8.7)

x, = 0
|

As a.result of (3.3.24) a
(3.8.8) =x(y(s))

The dual solution y has

(3.8.9) Yg 0
Thus x and y satisfy t
(3.5.12).
Let C = (V, E, §) be

x satisfies

(3.8.10) x(§(i))

(Note that for any 1 e v,

We define subsets V

only if i e E
subfamily R of Q such that

S £ R, H(S) G [S] x R[S]

(s).
1)

(See (3.3.15), (3.3.15a)for the

) is a np matching of H(S)

elonging to the odd polygoen of

for all j e E(H(S)) - E(B(3)).

simple inductien shows

It

qg for all S & R.

the property that

0

for S e Q only if S € R.

he complementary slackness condition

the graph G x R. The matching

-4 bi for all ie V.

§(iy = §_(i).)

G

and VS of V by

.37

(V_ n V) u {SeV: s eV},

M

=it
]

(3.8.11)

1A

<l
I
<l
!
<l

(3.8.12)

The matching x also has the following property. Let
G+(x) = (V, E+(x), @|E+(x)) be the spanning subgraph of G
whose edges are all those edges of G such that x. > 0.
Thus E+(x) = {j ¢ E: x, > 0}. Let H be any component of

3
G+(x). Then

(3.8.13) H contains no even polygon;
(3.8.14) H contains at most one odd polygon;

{3.8.15) if H contains an odd polygon then

x(6(i)) = bi for all i ¢ V(H);

(3.8.16) 4if H contains no polygons then H

has at most one node i for which =x(8§(i)) < bi'
We also have an alternating forest F contained in G.

(3.8.17) ©Each i e V such that =x(5(i)) < b, is

the root of a tree in F.

0 1
F is partitioned into two subforests F and F ., F0

consists of all those trees in F such that the root T

belongs to V and . = 0 if r e V or v; = 0 for some

iegr 1if 1 € R. Fl consists of all other trees of F.
It will be seen in the description of the algorithﬁ that as
long as there are nodes in Fl, we do not have the optimum

1
feasible matching we seek and as soon as V(F) = ¢, we

implicitly have an optimal solution.

In order that =x and y be the optimal solutions we
seek, all we need is that they satisfy (3.5.3), (3.5.4) and

(3.5.11) for as we showed in (3.1.7), this together with

the fact that x dis a matching-will ensure (3.5.5) is satisfied.

We will show in the algorithm that if =x and y satisfy the
‘following analogues of (3.5.3), (3.5.4) and (3.5.11) then

the required =x can be obtained in a straightforward fashion,.
(3.8.18) =x(6(i)) = bi for all i e V-,
(3.8.19) =x(8(i)) = b, for all ie ¥,

(3.8.20) y, > 0 for any i eV n v implies

x(8(i)) = by,

(3.8.21) Ys > 0 for all i e 8§ n VS for any

-
S e Rn V" implies x{(8(i)) = bi.

We now define a measure of the amount by which (3.8.18)-

(3.8.21) are violated. Let

(3.8.22) A(G; x, y) = E(bi - x(8(i)): i € V or

(i e V- n V and vy > 0) or (i ¢ ﬁs n R and Yy > 0 for

<
all v e in V7)),
It follows from the definition of F1 that

(3.8.23) A(G; x, y) = E(bi - %x(6(i)): i is the root

of a tree of Fl).

Clearly -A(G; %, y) 2 0 for any x satisfying (3.8.10)
and A(G; x, y) = 0 4if and only if =x and y satisfy

(3.8.18)-(3.8.21). 1In general, one "c}gle" of the blossom

-39

1

algorithm will dinvolve finding a new x and y and

.
-

possibly a new graph G' such that A(G'; x', yv') < A(G; x, y)

it

(3.8.24) 1Initially we may take Xj 0 for all

c = 1/2 max{cj: j € E} for i e V , vy = max{0, c}

[
™
e

<
H

<
for i e V' and R = ¢. Then it is easily seen that all

our conditions are satisfied. F will be the spanning forest

of G in which every tree consists of a single node.

We now describe the algorithm itself.

Step 1l: Scan E to find an edge j joining an even

node v of Fl to something other than an odd node of

1
1
F . If no such edge exists go to Step 8. Otherwise go to

Step 2.

i

Step 2: Let {v,} = ¥(j) - {v).

If v

2 belongs to a component of G+(x) which is not

contained in F then go to Step 3.

If Vo is an even node of a tree in F which is different
from the tree containing vy then go to Step 4.
If vy and v, belong to the same tree of F then go

to Step 5.

If v, is an odd node of a component of FO then go to

Step 7.
This exhausts all possibilities for V.

Step 3: Grow Forest F. Let K be the component of

G+(x) containing v,. If K contains a polygon then go to
Step 3c.

Step 3a (see Figure 3.3): If K contains no polygon,

Figure 3.3

“node not in forest

even node

odd node

edge j for which szl IAVACL WA VAV

edge j for which ijO

Forest Growth

Figure 3.4 Addition

of Polygon to Forest

®,
@

41

that is, if K 1is a tree then we grow the alternating tree

T containing v by attaching v, and K to vy by

1

means of the edge j. Since j becomes an odd edge of the
new forest F' thereby obtained and by (3.8.17) it is easily

seen that (3.6.1)-(3.6.4) are satisfied for TF'.
Step 3b: Replace F by F' and go to Step 1.

Step 3c (see Figure 3.4): K contains an odd polygon P.

Let v, be a2 node of P which is an odd distance from v2

in K and for which this distance is as short as possible.
in P which is no

Let w be a node of P adjacent to w

2 1

closer to v in P then w Let k be the edge of P

2 1°

joining Wy and w,. Let K' be the tree obtained from
K by removing the edge k. Add K' +to the forest by using
j as described in Step 3a, thereby obtaining a larger forest
F'. Edge k now joins two even nodes of some tree in F'.

Replace Vis Voo j and F by Wis W k and F' respectively

and go to ‘Step 5.

Step 4: Augmentation {Two trees) (see Figure 3.5).

Step 4a: Calculation of o. Let r, be the root of the

tree '1'1 of F1 containing vy and let r, be the root

of the tree T2 of ¥ containing Voo Let o = min{xk}

where k dis an even edge of the path T in T1 from T,

to v, or let oy £ » if no such edge exists. Let P and

be analogously defined for .Tz, v, and r,. By (3.6.4),

1 2

= 1. .Let o = min{dl, P br-~ x(G(rl)), br - x(G(rz))}.

42

Step 4b: Augumentation. Define x' by

X, - o if k 1is an even edge of m, o or T,

x, + 0 if k 1is an odd edge of My 0T T,

-

or if k = j

x, for all k ¢ E - (E(ﬂl) u E(ﬂz) v {ih).

Now x' is a matching satisfying (3.8.4), (3.8.6)-(3.8.8),
and (3.8.10) and A(G; x', v) srA(a; ¥, ¥y) — 1 since

brl - x'(ﬁ(rl)) g br2 - X(S(rl)) - 1.

Step 4c. Computation of new F. We obtain a new

alternating forest in the following way. If x‘(&(rl)) = br

1
then we remove T1 from F. Similarly if x'(6(r2)) = br
2
then we remocve Tz from F. If k 4is an even edge of Ty
or w, for which xé = 0 then we remove k and the portion

of the tree above it from F. By our choice of o, at least
one of these things must occur. Thus at most one of vy

and v, can be in the new forest F'. If neither are in F'
then replace x by x', F by 'F' and go to Step 1. If one,
say vy, belongs to F then perform Step 3a to add the
component K of G+(x') containing v, to F" wusing the
edge j, let TF" be the forest thereby obtained. Replace x

by x', F by F" and return to Step 1.

Step 5: Augmentation (One tree) (see Figure 3.6)

Step 5a: Calculation of ¢ and Blossom Test. Let r

be the root of the tree T of Fl containing v,y and v

be the path in T from 1 ¢to v and let T, be

Let T 1

1

<43

Figure 3.5 Two Tree Augmentation

" edge j for which ijZOOOODOOOOOOQ

Figure 3.6 One Tree Augmentation

the path in T from =r to v,. Let m_ be the common
position of Ty and Toe T 'is the path in T from r
to some node p. (Of course, p may equal r in which
case T is an empty sequenée). Then E(wl) U E(wz)]

{3} - E(ﬂs) are the edges of an odd polygon P containing

p. (|E(P)| is odd because j joins two even nodes of T.)

H1

Let o min{x,: k¥ is an even edge of ﬂs}, or let

0 k

00 = » 1if no such edge exists. Let

o, = min{x,: k dis an even edge of m, and k ¢ E(m _)}. or
let g; = e if no such edge exists. Let 0, be defined
analogously for Ty By (3.6.4), Ugs Oqs 0, 2 1. Let

o = min{[1/2 oy], 0y,0,,[1/2(b_-x(8(x))]}

(where for any a € ﬁ% » [a] 1is the largest integer no
greater than o). If o 2 1 then go to Step 5b where we
augment. Otherwise go to Step 6 where we shrink a portion of

G.

Step 5b: Augmentation. Define x' as follows.

X, = 20 1if k 1is an even edge of LT

k
Xp + 20 1f k is an odd edge of LI
xé - xk - g 1f k 1is an even edge of Ty ©°T T,
not belonging to Moo
x to if k=3 er if k 1is an odd edge
of m, or m, mnot belonging to Ty
X, for all k ¢ E - (E(ﬂl) u E(ﬂz) v {51).

' dis a matching

We can see by our choice of ¢ that x
satisfying (3.8.4), (3.8.6)-(3.8.8), (3.8.10) and

A(é; x', y) 5 A(G; X, ¥ - 2 since br - x'(é(r))sbr—x(ﬁ(r))—Z

and bi - x"(8(1)) = bi - x{6(i)) for all. i eV -~ {r}.

Step 5c: Computation of new F. Each component H of

6T (x') will satisfy (3.8.13), (3.8.14) and (3.8.16) but nced
not satisfy (3.8.15). That is there may be a component of
G+(x') containing both a deficient node and an odd polygon,
We now analyze the various possibilities.

If x'(8§(r)) = br then let F' be the forest obtained
from F by removing -T. Since x'(8(i)) = bi for all
i € V(T), each component H of G+(x') satisfies (3.8.15).
F' 4is an alternating forest. Replace x and F by x'
and 'F' respectively and go to Step 1.

If x'"(8(r)) < br but there are & ¢ E(ﬂs) such that
x! = 0, let k vbe the first such edge in T . Let T' be
the portion of T above k. Remove T' and k from F
thereby obtaining a new alternating forest F'. Since
2T (8(i)) = bi for all i ¢ V(T'), each component H of
G+(x'} satisfies (3.8.15). Replace x and F by x and
F' and go to Step 1.

IfF x'(8(r)) < br’ xé > 0 for all & ¢ E(ﬁs) but xi =
for some edge k of P, thén we remove all such edges k
from F thereby obtaining a forest F'. If one end of s
say vy, is in F' then the other end v, cannot be in F',
adjoin the component H of G+(x') containing v, to F'!
by means of j, tﬁereby obtaining a new alternating forest
F". Each component H df G+(x') satisfies (3.8.15).
Replace x and F by. x' and F" -and go to Step 1.

Finally, if x'(6(xr)) < br and .xi >0 for'alll
£ e E(ﬂl) U E(ﬂz) U'{j} then by our choice of o there is

an even edge k of m, for which X, = 1 or x'"{(8(x)) =

b - 1. Replace =x by x

- and go to Step 6. Note that

this is the one case in which there is a component H of

G+(x') violating (3.8.15). This is handled in Step 6.

Step 6: Shrinking Step (see Figure 3.7).. We now identify

a blossom in G. T 4is the tree of Fl containing vy and

v T is the path in T from its roet r to the nearest node

23
p - of P, the odd polygon formed by adding 3j to T. Let
w be the first even node of m, such that the path '

T from w to p contains no even edge k for which X, = 1.

(Thus X, 2 2 for every even edge of w'.) The blossom B

consists of P, the subgraph of T induced by «' and any

component H of G+ such that V(H) n V(r") = ¢ or

V(H) n V(P) # ¢- except for the even edge of T incident with

w -if ii éﬁiété. Let S5 be the set of all those nodes of

G which either belong to V(B) or are contained in pseudonodes of 3.
We see that x(§,(1)) = b, for all i e V(B) - {w} and

x(ﬁB(w)) = bW -~ 1. Thus XIE(B) is a np matching of

G{V(B)] deficient at w. If w ¢ V(P) then we modify our

matching so that it will be deficient at a node of P, as

this simplifies later discussions. Define x' by

x, + 1 for every odd edge of =«

X, - 1 for every even edge of «'

k

If p is an even node of F then let 1i(S8) = p. If p is
an odd node, let 1i(S5) be an even node of P adjacent to

P. Where & 4is the edge of B joining 1(S) and p let

edge j for which Xj

Figure 3.7 Shrinking Step

FPigure 3.8 Pseudo Forest Growth

For all other edges k of G let x Now replace

k k’
x by x'.
x|E(B) satisfies (3.3.1)~(3.3.5) taking v = i(S).
Let B(S) = B. Now if we let R' = R u {S} we see that R'

so defined satisfies (3.8.5)-(3.8.7).

Let G' = 6 x R'., Let F' be the forest in G' with
node set equal to V(F) n V(G') v {S} and edge set equal to
E(F) n E(G'). Then F' is an alternating forest im G'

and
(3.8.25) S is an even node of F'.

Let 6'Y(x) be defined for G' in the same way that
G+(x) was defined for @G. It is easily seen that every
component H of G't(x) satisfies (3.8.13)-(3.8.16)
since the only component of G+(x) which could have wviolated
these conditions was the one containing the polygon P and
it has been shrunk away. .

Note also that A(G'; x, y) < A(G; x, y). Replace G,

R and F by G', R' and TF' respectively and go to Step 1.

Step 7. Grow forest Fl (Pseudo forest growth). (see

Figure 3.8.)

"Edge § joins an even node vy of a tree Tl in F1

to an odd node v, of a tree TO in FO. Let 1t and r,

be the roots of TO and Tl respectively. Let T be the

- portion of TO above v We adjoin T and the component

9
ooy - -
H of G (x) containing X, to vy
T
j thereby obtaining a larger tree Tl_. (H 1is a subgraph of

0 by (3.6.3).)

by means of the edge

.49

T
If T, ¢ V(T1 } then replace Tl by T in F

) -
thereby obtaining a larger forest F ., Remove T, H and

any edge of _To incident with a node of T or H from

L)
TO, thereby obtaining a smaller tree T0 and a smaller

1] T
forest FO . Replace FO, Fl by F0 s Fl and go to Step 1.

] .
If T, a.V(Tl) then remcove T0 from FO, et T denote

1
Tl and perform the following step.

Step 7a. (Pseudo Augmentation). Let w be the path

in T £from T, to o Observe that both T, and ry
are even nodes of T. Let o, = min{xj: i 41is an even edge
of mn}. Let o = min{o,, b - x(6{r,))}. Then o = 1.
1 r, 1

Let x' be defined by

X — O if k 1is an even edge of w

xé = x, + 0 if k dis an odd edge of =
x, if k ¢ E(m).
i - ' = - - > i

Since brl x (S(rl)) brl X(S(rl)) ¢ and o =z 1 it

follows from (3.8.23) that A(a;-k',‘y) < A(G; x, yv) - 1.

If x'(G(rl)) = 'br then remove T from Fl thereby
1
. 1 .
obtaining a new forest Fl . Reroot T at Ty and add T
)
FO .

to FO thereby obtaining a new forest It is easily

checked that T rooted at = satisfies (3.6.1)-(3.6.4)

0

with respect to x'.

If x'(ﬁ(rl)) < br then by our choice of ¢ we must
1

have xi = 0 for some ewen edge {4 of 7; let k be the

first such edge of 'm, Let T be the portion of T above k.

Remove T and k from T thereby obtaining a new forest

' —
Fl + Reroot T at ro and add it to FO thereby obtaining

.50

) —_
a new forest F0 . Again it is easily checked that T
rooted at r, satisfies (3.6.1)-(3.6.4) relative to x'.
* 1 1
Replace x, FO and F1 by x', FO and Fl

respectiéely and go to Step 1.

Step 8: Termination Test. We now decide whether or not

we are ready to go to-the finai stage of the algorithm., If
v(F') = ¢ then by (3.8.23) A(E; x, y) = 0 and

we go to Step 11, the termination step. Otherwise we go to
" Step 9 where we will attempt to make a change in the dual

variables which will emnable further progress.

Step 9: Dual Variable Change.

Step 9a: Calculation of ¢. Let E; = {j ¢ E: onmne

member of ¥(j) is an even node of Fl and the other member

of ®(3) 1is not a node of Fl}. If E; = ¢ then let
€ Z w, otherwise let
€, = nin{y(${j)) + v(R(j)) -'cj: j e El}, where

R(j) = {8 € R: j ¢ Y(S)}.

Let E2 = {j € E: both members of U(j) are even nodes
of Fl}- If E2 = ¢ then let €, = o, ptherwise let
€y = 1/2 min{y (¥ (3)) + vy(R(j)) - cj: j e E2}.
. - l
Let P = {S ¢ Rt S is an odd node of F }. If P = ¢
then let €q £ =, otherwise let
€3 = 1/2 mln{ys: S & P},
. . < 1 s
Let Y = {i e V': i dis an even node of F or i e S8 ¢ R

.51

and S 1is an even node of Fl}. If Y = ¢ then let €, = =

otherwise let

€, = mln{yi: ie Y.

Let ¢ = min{el, €y5 €35 64}- If ¢ = « then go to Step
10 where we show that there exists no feasible matching. If
€ = 0 then no dual variable change is necessary so go to
Step Yc. Otherwise go to Step 9b where the dual variables are

changed,

Step 9b: Change of Dual Variables. Define a new dual

solution y' as follows. Let
Y + € 1if 1 &€ V idis an odd node of Fl or
belongs to an odd pseudonode of Fl,
) = '
Vi T : e . 1
Y, © € if i € V 1is an even node of F or
1
belongs to an even pseudonode of F 7,
. 1 1
Yy if 4 e V-~ V(F") - u(R n V(F7)).
. . , 1
Yg + 2¢ if S .e R 1s an even node of F~,
v = : . s 1
Yg E Yg - 2¢ 1if S € R is an odd node of F~,
vg if s eQ° - (R vEh).
Because of our choice of e, y' is a feasible dual

solution, that is, it satisfies (3.5.7)-(3.5.9). y' also

satisfies (3.8.%9). Moreover

(3.8.26) y' (N + v' Q%)) = v (i) + y€Qi))

for all j e E(GT) u E(F) u u y(5).
SeR

Let G _ be the spanning subgraph of G whose edges are all

those j € E such that y'(¢(j)) + y'(Qo(j)) = cj. Let

R, F is now an alternating forest in G'. By

Gy
1
(7]
X

T _
(3.8.26)for each S8 ¢ R, H(S) = ¢ [S] x R[S] and B(S) is
a blossom spanning H(S) (where H(S) and B(S) are as

defined in (3.8.5)).

iy gran T v N oy ey <

Step 9c¢: If € € {61;;'2T‘ then ‘there is an edge

j e E(G") - E(E)‘ of the sort we sought. in Step 1. Replace

- = - t

y; G and G by y', G' and G respectively and go to

Step 1 and from there as directed.

Step 9d. If ¢ = €, then let I be the set of nodes
i ¢ V5 such that yi = 0 and i dis either an éven node of
F or is contained in an even pseudonode of Fl. Since
€ = €,, I # ¢. For each i € I let (i) i 1if 1 e V(Fl),

let r(i) S 4if 1 € S € R n V(Fl).

For each i € I such that r({(i) 1is the root of a tree

'1‘i in Fl, remove Ti from F:L and add it to FO. If

any such i exists then we have‘by (3.8.23) that

A(G; x, v') < A(G; x, y) - 1; replace vy, G and @ by v',

T

G' and G respectively and go to Step 1.

If there is no i ¢ I such that r(i) is the root of a

tree in Fl, then choose any iO e I, let ry = r(i), et T
be the tree of F1 containing Ty and let Ty be the root
. — - -— L

of T. Replace vy, G, G by y', G', G respectively and

go to Step 7a.

Step 9e. If € = ¢ 3 then we must expand an odd pseudonode

S of Fl for which yé = 0. Since bs = 1, by (3.6.2) there

.53

is an edge j e GFl(S) such that xj = 1. Let H(S) and

B(S) be as defined in (3.8.5). Let v be the node of

B(S) incident with j. By (3.8.6) we can apply the procedure

described in the proof of (3.3.12) to x[E(B(S)) and

thereby obtain a np matching x of B(S) deficient at v.
Let R' = R - {S8}. Since S is a maximal member of

R, (3.8.5) is satisfied by R'. Let G" = G _ x R'. B(S5)

t

is a subgraph of G". Define x by

Ek if k & E(B(S)),

-

Xy if k € E - E(B(S)).

)

X is easily seen to satisfy

x'(8(i)) = b, for all i e V(G").

Moreover A(G"; x', y') = A(G; x, y). Replace j, G, G ,
and R by y', G', G and R' respectively and go to

Step 9f where we determine a new forest F.

Step 9f: If j dis an odd edge of F then since by
(3.8.4) we have x, > 0 for any even edge of F énd since
k 8

bS = 1 it follows that 3§ is the only edgg of F dincident
with S. Let F' be the subgraph of G obtained by
replacing the pseudonode S in F with the component K

of G+‘§'), containing v. Go to Step 9g.

If j is an even edge of F then let & be the unique
odd edge of F dincident with S. Since § is an.odd node
of F and bg = 1 these are the only two edges of F
incident with S. Let w be the node of B(S) met by 2

and let 7 be a track in B(S) from v to w having even

3

3.040

length and for which this length is as small as possible.
Let G(w) = (V(u), E(n), EIE(H)). Let F' be the subgraph
of G obtained by replacing the pseudonode S in F with
G(m) and any component of G+(x') which contains a node

of m.

Step 9g. If - F' contains no polygon then it is easily

seen that F' is an alternating forest in G; replace X

and F by x' and F' respectively and go to Step 1.

If F' «contains a polygon P, then P is the odd

polygon of the blossom B(S). Let vy be a node of P

which is an odd distance from w in B(S) and for which

this distance is as small as possible. Let v, be a node

of P adjacent to vy in P and not belonging to the

path in P joining w and v Let j' ©be the edge of

l‘
P joining A and v,. Remove j' from F', let F" be
the forest thereby obtained. Now j' Jjoins two even nodes

1

of F". Replace F and 3j by F" and j respectively

and go to Step 5. At this point F fails to be an alternating
forest because j violates (3.6.3) and the component H of
G+(x) containing v may not s;tisfy (3.8.15). However

1

these situations are automatically corrected in Steps 5 and

6.

Step 10: Hungarian Forest. Since € = » we observe the
following. €, = ® 1is equivalent to F1 satisfying (3.7.4).
€) = © is equivalent to (3.7.3) for Fl. e3 = « dis5 equivalent
to (3.7.5) for Fl and € = is equivalent to (3.7.6) for

Fl. Therefore Fl is a Hungarian forest so by (3.7.40),

G has no feasible matching. By (3.7.17) and (3.8.23),

D(G, V) = A(G; =, y). If desired, perform Step 12 so as

to "correct" the matching x for edges j e y(S) for

S € R so that the resulting matching x' will satisfy
x'(8(1)) = b, for all i eV and d(6, V; x') = D(G, V).

We do not bother performing Step 12 in the applications

we make of this algorithm in later chapters,

(3.8.27) Finally note that if Fl is a Hungarian
forest, then for any e & ﬂ% such that € 2 0 we have that
y' as defined in Step 9b is a feasible dual solution also

satisfying (3.8.26).

Step 11: Termination with Optimal Solution. Apply

Step 12 to "correct"™ the matching x and then stop, the
resulting matching x 1is the optimal feasible matching we

seek and y is an optimum dual solution. Since Step 12

1A

ensured that A(G; x, y) = 0 land x{(8(i)) bi for all

i eV it follows that (3.5.3) and (3.5.4) and x and y
satisfy (3.5.11). Since x is a matching satisfying (3.5.3)
and (3.5.4), we also have (3.5.2) and (3.5.5) satisfied.

By (3.8.8) and (3.8.9) we know that (3.5.12) is satisfied.

By (3.8.2) y satisfies (3.5.7)-(3.5.9). Therefore x is

the optimal matching we require and y is an optimal dual

solution.

Step 12: Pseudonode Matching Correction. Let D = ¢.

D 1is the set of members of R for which the matching has

been corrected.

VSteE 12a: If R =D then return to Step 10 or 11 from

whence we come.

« 20

Step_12b: Let S be a maximal member of R -~ D and
let D' = D u {S}. Let G' =G x (R - D'). Then B(S)
(as defined in (3.8.5)) is a blossom contained in G'. If

x(8(S)) = 0 then go to Step 1l2d.

Step 12c: Let j e 86(S) ©be such that xj = 1, let v
be the node of B(S) met by j inm G'. Apply the procedure
described in the proof of (3.3.12) to obtain a np matching

~

x of B(S) deficient at v. Let x' be defined by

xy for k‘e E - E(B(S)),
(3.8.28)x£5 :

ik for k & E(B(S)).

Then we have

(3.8.29) x'"(8§(1))

1A

bi for all i e V(6'"),

(3.8.30) =x"(y(T)) for all T ¢ R,

A
(3.8.31) A(G'; x', y) = A(G: =, y).

Replace x, D and 6 by =x', D' and G' respectively.

Return to Step l2a.

<
Step 12d. Let v e § n V- be such that Y, = 0 if
such a node exists, otherwise go to Step 1l2e. Let r = ¥

if v e V(B(S)), let r =T if v € T € R n V(B(8)). As
in Step 12c¢ we appiy the procedure described in the proof
of (3.3.12) to obtain a np matching x of B(S) deficient
at . Lét x! ﬁe defined as in (3.8.28). Again (3.8.29).

and (3.8.30) are immediate and since the only new deficiency

we created was at r and since Yy = .0, (3.8.31) is satisfied.

Replace x, D and G by =x', D' and G' respectively.

Return to step 1l2a.

Step 12e: (This step can only be performed if we

terminated in Step 10.) In:-this case § ¢ ¥~ since S must
have been an even node or contained in an even pseudonode of
the Hungarian forest Fl. Therefore the term corresponding
to 8 contributes 1 to A(G; ¥, y). Let v ©be the node
of B(S) at which x|E(B(S)). is deficient. If we let
x' = x then (3.8.29) and (3.8.30) are satisfied and since

'

the term corresponding to v contributes 1 to A(G'; x', ¥)

we have (3.8.31) satisfied. Go to Step 1l2a.

3.9 Efficiency of the Blossom Algorithm.

In this section we derive an ufper bound on the amount
of work done by the blossom algorithm in solving a matching
problem. We make a fixed word-assumption, that the amount
of work required to perform arithmetic {(addition, subtraction,
division by two) on any numbers encountered in the algorithm
is independent of the number of significant digits. Since

this is the way in which most large scale computers operate

(for reasonably sized numbers) this is a realistic assumption.

(3.9.1) Theorem. An upper bound on the amount of

work required by the blossom algorithm to solve a matching

problem is of the order

sce; %%, v - vl - |E]

where x and yo are the starting matching and dual 'solution.

Proof. TFirst we establish an upper bound on the amount
of work that can be done by the algorithm without decreasing
A(G; x, y). Steps 4, 5, 7a and 9d all decrease A(G; x, y)

by at least one.

In Steps 3 and 7 we grow the forest Fl. Since IV(Fl)I
decreases only after performing one of Steps 4, 5, 7a or 94,
it follows that Steps 3 and 7 can be performed at most |v]
times without a decrease in A(a; X, ¥).

In Step 6 we shrink. By (3.8.5) n(8) z 3 for every
S € R (where n(S) is as defined in (3.2.7)). Thus by
(3.2.8) we must have [R] < l/2(lV[- 1) at any point din
the algorithm. By (3.8.25) any new § added to R becomes
an even node of Fl. We only expand odd nodes of Fl (in
Step 9&).;Thus _Step 6 can be performed at most 1/2(|V| - 1)
times without a decrease in A4(G; X, ¥).

In Steps 9%9e-9g we expand an odd pseudonode of Fl. This
pseudonode must have been in Fl following the previous
augmentation since any pseudonode formed since is an even
node of .Fl. Hence Steps 9e-9g can be performed at most
1/2(]V| - 1) times without making a change in AG; X, V).

Steps 10, 11, 12 are performed only once in the course
of the algorithm. A bound on the amount of work required
by these steps is of the order |V} - |E|.

Steps 1, 2, 8, 9a, 9b, 9c are performed at most once
for each performance of steps 3, 4, 5, 6, 7, 10, 11, 12. A
bound on the amount of wo;k p;rformed‘by eaéh of these can

be seen to be of the order IE[. The only ones of these steps

for which this bound is not obvious are 9a, 9b. However if

« 37

we preserve the value of y(3(j)) + y(Qo(j)) - cj for each
j e E at all times, then it can be seen that this bound
is.satisfied for these steps.

Finally a bound on the amount of work required for each
o£ étep;‘é, 5, 7a or 9d is of the order [E].

Thus a bound on the amount of work that can be done

without decreasing A(G; x, y) by at least one is of the

order [E| - |V| and the theorem follows.[]

(3.9.2) Corollary. If we start with the matching described

in (3.8.24) then an upper bound on the amount of work done

in solving a matching problem is of the order

b(v) - |v]| « |E| .

Proof. This follows from the fact that if x and vy

are as defined in (3.8.24) then A(G; x, y) £ b(V).[

3.10 Min-Max Theorems and Discreteness of the Dual Solution

Whenever we know 'a set of' linear inequalities sufficient
to define a polyhedron P, linear programming duality gives us
.a min~max theorem concerhing any subset 6f P that cohtains

the vertices. Conversely, -we used the blossom algorithm to

prove:the following min-max theorem which established Theorem (3.4.5).

(3.10.1) Theorem. Let G = (V, E, ¥) be a graph,

let b = (bi: i £ V) be a vector of positive integers and

let ¢

(cj: j € E) be an arbitrary real vector., Then the

3 i
maximum value of ¢ + x for any matching x of € which

satisfies

(3.10.2) x(8§(i)) = bi for all 1 e V

is equal to the minimum value of

. 0
(3.10.3) z<bili' ie V) + Z(qsys. S e Q)

for real (yi: i e V) and ALXS: S € QO) satisfying

(3.10.4) Y >0 for all i g Vv,

(3.10.5) y. >0 for all § ¢ Q°

(3.10.6) vy () + vy) > c, for all j e E.

If the objective function ¢ satisfies certain discreteness
properties, then we are able to require certain discreteness

properties of the dual variables.

{(3.10.7) Theoren. If cj is integer valued for

all 3§ € E then there is an optimal feasible solution ¥y

to the problem of minimizing (3.10.3) subject to (3.10.4)-

{3.10.6) which satisfies

{3.10.8) ¥y is congruent with 0 (mod 1/2) for

(3.10.9) Yg is congruent with 0 (mod 1) for all

Proof. The problem of minimizing (3.10.3) subject to
(3.10.4)-(3.10.6) is the dual linear program to the matching

problem maximize e¢x for x & P(G, b). We will show that

(3.10.10) 4if the starting dual solution used by

the blossom algorithm is integer valued, then at any point

in the sclution of this matching problem the dual solution
y will satisfy (3.10), (3.10.9). This we prove by showing

that at any point of the algorithm.

(3.10.11) the values of v for 1 € V belonging
to Fl or contained in a pseudonode of F1 will be congruent

modulo 1.

If the initial dual solution is integer valued, (3.10.8),
(3.10.9) and (3.10.11) are obviously satisfied. Now
observe that at no point of the algorithm do we add a new
tree to Fl., Moreover at any time we grow a tree in Fl, all
new edges j must belong to the equality subgraph so since
cj is integer valued for all such j, (3.10.8) and (3.10.9)
ensure that (3.10.11) will continue to hold.

lWhen computing € so as to make a change of dual variables,

(3.10.8), (3.10.9) and (3.10.11) ensure that any of €15 €

€35 €, which are finite will be congruent with O(mod 1/2).
Since V = $, we cannot obtain a Hungarian forest se ¢

' as

is finite and congruent with O(mod 1/2). Hence ¥
defined in Step 9b also satisfies (3.10.8), (3.10.9) and

(3.10.11). Thus (3.10.10) is proved and the theorem follows.[]

L

The following is obtained by combining (3.10.1) and (3.10.7).

(3.10.12) Theorem. If ¢ is integer valued, then

the maximum value of ¢x for any matching x of G

satisfying (3.10.2) is equal to the minimum of (3.10.3)

subject to (3.10.4)-(3,10.6) and an optimal y can be chosen

so as to satisfy (3.10.8), (3.10.9).

.62

In the case that ¢ 1is further restricted to being

0, 1 wvalued, we can obtain the following result.

(3.10.13) Theorem. If cj e {0, 1} for all
j £ E then there is an optimﬁl feasible solution yo to

the problem of minimizing (3.10.3) subject to (3.10.4)~(3.10.6)

which satisfies

(3.10.14) Y2 Yo € {0, 1} for all i e V, for all

Proof. Let G = (V, E, ¢) be a graph for which (3.10.13)
fails for some b and such that |V v E| is minimum.
Clearly |V] =z 3, and we must have cj =1 for all 3 e E
since the graph obtained by deleting any edge Lk for which

¢ = 0 would still wviolate (3.10.13).

Suppose G has a perfect matching xo. Then the maximum
value of ¢ * x over matchings x of 6 satisfying (3.10.2)

is equal to 1/2b(V). Choose v € V and define b' by

b, for i e V - {v},
b! = *
1 b, +1 for i =v.

Then the maximum of e * X over matchings x of G satisfying
(3.10.2) dis still 1/2b(V). Suppose that yo is an optimal
dual solution relative to b' whiech satisfies

(3.10.14). Then EZ(blyg: 1 € V) + I(agyg: S € Q) =

1/2b(V). |

Hepce yo is an optimum dual solution relative to b but

yO satisfies (3.10.14), a contradiction. Hence no optimum

3.64

solution relative to b' can satisfy (3.10.14) and since G

can have no perfect b' ~matching, we assume

(3.10.15) b is chosen so that G has no perfect

b-matching .

0

Let vy be an optimum solution relative to b satisfying
(3.10.8), (3.10.9). Clearly we have yg e {0, 1/2, 1}
for all 1 e V and yg e {0, 1} for all 8 ¢ QO . Let

W= {ieV: yg = 1/2}. 1If W = ¢ then yo satisfies (3.10.1%)

and we are finished. If W = V then Z{biyg: i eV} +
0.
s¥s?
contradictory to (3.10.15). Thus we have

z{q S ¢ QO} 2 1/2b(V) implying G has a perfect matching,

(3.10.16) ¢ # W < V.

(3.10.17) For any j & §(W) we must have either

yo = 1 where {v} = 9(j) - W or j € y(8) for some § ¢ Q0

v
such that yg = 1.

Otherwise we could have yo(w(j)) + yO(QO(j)) = 1/2
contradictory to (3.10.6).
By our minimality assumption for & and (3.10.16) there
is an optimal_solution. yl satisfying (3.10.14) to the problem
minimize IZ(b,y.: 1L &€ W) + Z(q.¥.: S € QO)
i“i- 578 W
subjeét to . Ty, 20 for all i e W
g 2 0 for all 8 ¢ Qg
. 0, . ' .
yW@)) + y(Qu(3d)) 2 1 for all j e E(G[W])

{5 ¢ Qg: i e y(8)}

where Qg = {s e QO: S ¢ W} and Qg(j)

for

then

all j e J. If we define y by

d
w
10

y? for i e V - W,
i
1 .
v for i e W;
0 0 0
.yS for 8 £ Q° - QW’
1 0

Yg for S e QW

* %
y satisfies (3.10.14) and by (3.10.17), ¥y is a

feasible solution to the problem of minimizing (3.10.3) subject

to (3.10.4)-(3.10.6). Since

and

. 0
T(b,yi: i e W) 4 Z(qsyéz s e Q)
0. . 0 0,
s I(byy,: i e W) + Z(qsys: S e Q)

since yO was optimal it follows that

*
y

is optimal,.

This contradicts the choice of G and completes the proof.[]

Combining (3.10.13) and (3.10.1), we obtain the following.

(3.10.18)

maximum value of

Theorem: If c¢. e {0,

1}

then the

J

cx for any matching x

of

G satisfying

(3.1

0.2) is equal

to the minimum of (3.10.3) subject to

(3.1

0.4)-(3.10.6)

and a2 minimum vy can be chosen so as to

sati

mann

be a vector of positive integers.

of

sfy (3.10.14),

Theorem (3.10.

er. Let G =

(3.20.19)

GV - X]1l.

18)can be specialized in the following

(V, E, ¥) be a graph and let b = (bi: i e V)

C(X) = {8V - X: G[S]

For any X < V we define

is a component

.65

We partition C(X) as follows.

1

(3.10.20) ¢,(X) ={s & C(X): [s]

1},

m

7(3.10.21) ¢ (X) = {s.e c(x): |s]

v

1 and b(sS)

(3.10.22) CZ(X)

{s e C(X): |s| >1 and b(S)

(3.10.23) Theorem. Max{x(E): x is a matching of

is odd}
is evenl.

G

satisfying (3.10.2)} = 1/2(b(V) + min{b(X) = lc,x)] -

b(lKCO(X))): X V). Moreover

5

, . B
- ‘(3.10.233) there ids a2 set X <« V which minimize

b (X) "“lcl(X)l - b(u (C.(X))) over X cV and satisfies
‘ \ 0

* : %
EZ(X) = ¢ and Cl(X) £ Q

Proof. Let =x be any matching of G which satisfies
(3.10.2)., TLet X < V. Then for any § ¢ Cl(X) we have

x(y(8)) = 1/2(b(8s) - 1) (by (3.1.7)). Therefore

(3.10.24) b(u(Cl(X))) - |cl(x)[> 25f{x(y(8)):
S cl(x)}.

Let J = 86(X) n (S(U(CO(X) U Cl(X))). Then we have

(3.10.25) b(X) + b(u(C,(X))) 2 2x(y(X U u(cz(x))))
+ %x(J). .

We also have
(3.10.26) . b(X) = x(J).
Summing (3.10.24)-(3.10.26) we obtain

[b(X) + b(U(C (X))} + b(u(C,(X)))] + b(X) - [c (X)] = 2x(E)
or

B(V) = b(U(C (X)) - [C (X)| + B(X) 2 2x(E)

Therefore

(3.10.27) max{x(E): x is a matching of &
satisfying (3.10.2)} s 1/2b(V) + 1/2min{b(X) ~- |Cl(X)[-

b(u(CO(X))): X < V}.

We now show that equality holds."

By (3.10.13) there is a y satisfying (3.10.14) which
minimizes (3.10.3) subject to (3.10.4)~(3.10.6) taking
cj =1 for all j e E. Let yo be such a solution for
which the cardinality of Z = {8 ¢ QO: yg =1} 1is as small

as possible. Suppose S, T € Z are such that $ n T # ¢.

If b(S n T) 2 2 then if we define y' by

yg if 4 e V- (S u T
P =
Yy < 0
i + 1/2 4if i e s u T
yg if R ¢ QO - {s, T}
L
Yp =
0 if R e {s, T}
it is easily seen that y' is a feasible solution to

(3.10.4)~(3.10.6) for which (3.10.3) attains a smaller value
than for yo, a contradiction to our choice of yo. If
b(S n T) = 1, and hence [S n T| = 1, then S u T ¢ Q0 and

t

if we define y by

Y = yi for all 1 ¢ V¥V
. o
Yr if ReQ - {8, T, S u T}

.67

then vy' is a feasible solution to (3.10.4)-(3.10.6)

satisfying (3.10.14) for which the valuve of (3.10.3) is no

greater than that obtained for yO. But |{R ¢ QO: y! = 1}| <

R

[Z|, contradictory to our choice of yo. Hence

(3.10.28) the members of Z are pairwise disjoint.

Suppose yg =1 for some v £ § ¢ Z. Then if we define

T

y by

yg+l/2 if ievV -~ {v}

o
nl

1
0 _ . .
Yy < 1 if i =V
. 0
Yr if Re Q - {8}
T =
Yr = : .

vy 1is a feasible solution to (3.10.4)—(3.10.6) which causes
(3.10.3) to assume a smaller value than for’ yo, a

contradiction. Hence

(3.10.29) yg = 0 for all i e 8§ ¢ Z.

Let X = {i e V: yg = 1}. Because of (3.10.29), in

order for yo to be feasible we require

§(S)

1n

§(X) for every S e Z,

§(1i)

In

§(X) for every 1 e V - u(Z)

such that yg = 0., Hence CO(X) = ({1} e V - V(2): yg = 0},

=+ (3.30.30) Cl(X)

I
2

Il
-

(3.10.31) Cz(X)

.68

Hence

0. . 0. 0
(3.10.32) Z(biyi. iev) + Z(qsys. S e Q)

it

b(X) + £(1/2(b(8) - 1) :5 ¢ Cl(X)) + l/2b(U(C2(X)))-

1/2b(X) + l/2b(U(Cl(X))) + 1/72b(u(C,(X))) +

1/2b(X) - 1/2]c1(X)|

1/2b(V) +.1/2b(X) - |01(X)| = b(u(C,(X)))).

Since by (3.10.18) and our choice of yo,

max{x(E): ¥ 4s a matching of G satisfying (3.10.2)}

0, . 0,
= Z(biyi. ie V) + Z(qSyS. S e Q)

it follows from (3.10.30) that equality holds in (3.10.27).

since Z < Q°, (3.10.30) and (3.10.31) imply (3.10.23a)

completing the proof.[-
Theorem (3.10.23) (excluding (3.10.23a))reduces to a

‘theorem pf Berge [B2] when it is further specialized to l-matchings.
G has a perfect matching if and only if max{x(E): x

is a matchiné of G satisfying (3.10.2)} = 1/2b(V). Therefore,

by (3.10.23), G has a perfect matching if and only if
min{b(X) - [C (X)| - b(u(Cy(X))): X sVl =0 .
Thus we obtain the fundamental theorem of Tutte.

has

]
~
<l
td
=
e

(3.10.33) Theorem (Tutte [T3]). G

a perfect matching if and only if for each X ¢ V,

(3.10.34) b(X) 2 |C(x)| + b (U (Cy(X))).

In the case of l-matchings this reduces to the well

known theoren

(3.10.35) Thqorem (Tutte [T1]). G = (V, E, %)

has a perfect l-matching if and only if for any X < V_ the

number of components of G[V - X] having an odd number of

nodes is no greater than]X|.

The importance of (3.10.23a) to these theorems is

discussed in Section 4.4 (see Theorems (4.4.21) and (4.4.22)).

.70

Chapter 4‘

Facets and Vertices of Matching Polyhedra

Throughout this chapter we consider a graph G = (V, E,)
- and we take b = (bi: i e V) to be a vector of positive
integers, Since isolated necdes, that is nodes v for which
§(v) = ¢, are of little interest in matching theory we

assume G has no isoclated nodes. In section 3.4 we defined
the matching polyhedron P{(G, b) and proved the theorem

of Edmonds that

P(G, b) = {x ¢ ﬂ{E:
: (4.0.1) xj 2 0 for all j € E,
(4.0.2) =x(8(i)) = bi for all i e V,

(4.0.3) x(y(8)) s qg for all s e Q°},

where QO

Hi

{s < V: G[S] is shrinkable}, and g = @/2(b{sS)-1)
for any set 8 such that b(S) is odd. We now characterize
the facets and vertices of P(G, b) relating them to the
structure of G and the value of b. In particular, for

any G and b we prescribe a unique minimal subset of the
inequalities (4.0.1)-(4.0.3) of which P(G, b) is the solution
set.

The material presented in this chapter does rely to an
extent upon the material of Chapter 3. Sections 3.3 and 3.4
ére used in characterizing the facets of P(G, b), some of
the material of Sections 3.6 and 3.7 is used in showing the
-equivalence of shrinkable graphs and b-critical graphs.

The proof of the vertex characterization is related to the

4,2

algorithm itself; in proving the theorem we also show that
every matching obtained by the blossom algorithm is a

vertex of P(G, b). However we give én additional proof

of this portion of the vertex characterization which is
deﬁeloped from basic properties of graph theory and polyhedra

theory.

4.1, DBimension of P(G, b) and Nonnegativity Facets

In order to characterize the facets of P(G, b), we

first determine its dimension.

(4.1.1) Proposition. P(G, b) is of full dimension.

Proof. Since P(G, b) < ﬂ{E it follows that
dim(P(G, b)) < |E|. We show that dim(P(G, b)) = |E| by
exhibiting]E] + 1 affinely independent matchings belonging

to P{(G, b). The result will then follow from (2.2.12).
3

For each j € E we define a matching x by
. 0 4if k = j,
xJ =
k
1 4if k = j.
Since bi 21 for all i e V, we have . xJ (8(i)) = bi for

all i e VvV, for all 3§ € E. Let-_d' be the zero vector in
TR E. Thgn {xj: i e E}u {0} < P(G, b). The set of vectors
{xj: je Elu {0} is easily seen to be affinely independent
and the result follows.[

Let a ejR,E, a el . We say that the linear inequality

ax < o gives a facet of P(G, b). if {x e P(G, b): ax = a}

is a facet of P(G, b). In characterizing which of the

4,3

inequalities (4.0.1)-(4.0.3) give facets of P{(G, B) we use
mainl& the technique of showing that ax < o gives a facet
of P(G, b) Dby displaying]EI a%finely independent members
x of P(G, b) .Which satisfy ax = o« and then appealing

to (4.1.1) and (2.2.15).

(4.1.2) Theorem. For every j € E, Xj = 0 pives a

facet of P(G, b).

Proof. For any j £ E let Pj be the solution set of

(4.0.2), (4.0.3) and
x, 2 0 for all k € E - {j}.

We define xJ by

0 for k = j,

-1 for k = j.

Then for each j £ E, xJ ¢ pd - P(G, b). Therefore by

(2.3.30), xj = 0 gives a facet of P(G, b).[

The techniques used in this proof, showing that an
inequality gives a facet by showing that if it is omitted we
obtain a larger polyhedron, could possibly be used in proving
the other facet characterizations of this chapter (theorems
-(4.2.1) and (4.3.49)). However we find it easier to show
that ax £ o gives a facet of P(G, b) by exhibiting [E[

affinely independent members of P(G, b). Theorem (4.1.2)

is also easily proved by exhibiting |E| affinely independent
matchings of G, each such x satisfying xj = 0. (Take
k

the matchings 0, x: k ¢ E —.{j} defined in the proof

}

4.4

of (4.1.1).)

We call {x ¢ P(G, b): xj = 0} a nonnegativity facet

of P(G,b) for any j eZE.

4.2 Degree Constraint Facets.

In this section we characterize which of the inequalities

x{6(i)) = bi for 1 ¢ V are facets of P(G, bB). For each

i eV we let N(i) be the set of nodes of G adjacent to
i. Let v and w be nodes of G such that N(v) = {w},
N(w) = {v} and b = b . Then {v, w} 1is the node set of

a component H of G containing at least one edge. We

call H a balanced edge.

(4.2.1) Theorem. For any i g V, x(G(i))Sbi gives

a facet of P(G, b) if and only if

(4.2,2) i 1is a node of a balanced edge

or
(4.2.3) b)) » bi and if b(N(i)) = bi + 1

then v (N({i}) = 4.

Proof. We first show the necessity of (4.2.2) and
(4.2.3). Let i be a node violating (4.2.2) and (4.2.3).
We will show that there are inequalities (4.0.1)-(4.0.3)

which imply
(4.2.4) x(§(i)) s bi

and which are distinct from (4.2.4). Thus we can remove

‘all copies of (4.2.4) from (4.0.1)-(4.0.3) without changing

the solution set and the result follows from (2.3.30) and (4.

4.5

Suppose b(N(i})) = bi' Summing the inequalities (4.0.2)
for v e N(i) we obtain

x{ u §(v)) £ BN
veN(i)

and since §(i) ¢ U §(v), it follows that (4.0.1) implies
veN(i) -

x(8(i)) =< B(N(i)) = bi.

Moreover if there were v g N(i) such that =x(8§(v)) = bv
and (4.2.4) were the same inequality then &(v) = 8§(i) and
bv = bi so since we do not allow isolated nodes we would
have i and v being the nodes of a balanced edge, contradictory
to i wviolating (4.2.2). Hence (4.2.4) is not a facet of
P(G, b).

Suppose b(N(i)) = bi + 1 and there is some j e yv(N(i)).
Let v e $(j) and for each u € N(i) 1let k(u) be an edge
of G such that ¢Y(k(u)) = {i, u}. Tet J = {k(u): u e N(i)}
and let the graph B be defined to be (N(i) v {i}, J v {j},
¥|J u {j}). We show that B 4is a blossom. Clearly B 1is

connected, has no even polygons and exactly one odd polygon.

Moreover if we define a matching x of B by

X1 (u) = b, for all ue N(i) - {v},
xk(v) = bv—l
X = 0

k|
we see that X is a matching of B satisfying (3.3.1)-(3.3.5)
so that B is a blossom. Hence G[N(i) v {i}] is shrinkable
so N(i) v {i} e Qo. The inequality (4.0.3) for N(i) u {i}

is

b(N(i)) + b(i) - 1 _
2 B

(4.2.5) =x(y(N(i) v {i})) =

so since §(i) < y(N(i) u {i}) - {j} , we see that (4.2.5)
and (4.0.1) imply (4.2.4), Moreover (4.2.5) is different
from (4.2.4). Hence (4.2.4) is not a facet of P(G, b).
Now we prove the sufficiency of (4.2.2) or (4.2.3).
Suppose that i dis a node of a balanced edge H. For each

h e (1) we define a matching xh by

b if k = h,

n i
Xy =

0 if k ¢ E - {n}.
Let j g 8(i). For each h € E - 8(i) we define a matching
xh by

1 if %k = h,

h _ .
X, = bl if k = j,

0 if %k ¢ E - {h, jI}.

Clearly the set {xh: h € E} 4is linearly independent and
xh(d(i)) = bi for all h & E. Since {x e P(G, b):
x(6(i)) = bi} is a proper face of P(G, b) it follows from
(2.2.15) that (4.2.4) gives a facet of P(G, b).

NQW suppose (4.2.3) is satisfied for i & V. Let K
be a2 minimal subset of N(i) for which b(K) > bi. For

each v & N(i) let j(v) ©be an edge joining i and v,

let EK

{j(v): v ¢ K}. For every j ¢ Ey, let
{v(id} = ¢$(3) n K. Let b =(Ej: j e EK) be defined by

b, = b_,,
h v(i)

dk

for all j e EK' For each Lk ¢ EK we define

k, .

4.6

4.7

0 if 4§ e E, - {k}
- K
d. =
b(K) - b, if j = k.
Then 0 < dk < b for all k EK by our choice of K.
-k _ = k . k .
For each k ¢ EK’ Jet x = b - d . Since {d7: k e EK} is

linearly independent, (2.2.4) implies {Ek: k € EK} is
affinely independent. Each vector x can be extended to
a matching xk of G by letting x? £ 0 for all j & E - EK'

Then

(4.2.6) {x": k ¢ EK} is affinely independent.

Moreover,

(4.2.7) x5(8(v))

IA

bv for all v ¢ V - {i},

(4.2.8) x5(8(1))

= b,
i
k
so x € P(G, b) for each k = EK'
For each j & 8§(i) - EK we define & matching x4 as
follows., Let {v} = ¢(j) - {i}. If v & K then let k ¢ EK

k 3

be chosen such that xj(v) > 0 and let x be defined by

xt if 2 ¢ B - {j, j(v)}
xi = 0 if & = j(v)
k . s
xj(v) if &= 3.

1f v ¢ K let k be any member of EK and let h e &(i)
h|

be such that xi > 0. Let x be defined by

4.8

x, if % ¢ E - {3, h},
i _ k .
x, = xh -1 d4if & = h,

In either case, % is easily -seen to satisfy (4.2.7) and

(4.2.8) for every j e 8(i) - K. Since for each j e §(i) - EK

xJ is the unique matching x so far defined for which

: xj z 0, (4.2.6) implies

(4.2.9) {x3: 3 e s(i)} is affinely independent.

Finally, for each j € E - 6(i) we define a matching

%7 as follows.

xq = 1

3

xi =0 for he B - (8(i) u {i})

xill is defined for h.e 6(i) to be sufficiently

large that (4.2.7), (4.2.8) are satisfied. This is possible

for if DB(N(i)) = bi + 1 then by (4.2.3) at most one end

of j dis in N(i). Therefore defining xg = 1 restricts
x? to taking on a value one less than b for at most
k v(k)

one edge k € 8(i). Hence %3 can be defined as assexrted.

If B{(N(i)) = bi + 2 then it is easily seen that after '

J

k for k g §(di)

defining x§'= 1l -we can still assign values x
as required.
For any j ¢ E - §(i), xJ is the only matching x

defined for which xj # 0. This together with (4.2.9) implies

that {xl: j € E} 4is affinely independent. Thus we have

4.9

defined !E] affinely independent members of P(G, b)

each of which satisfies (4.2.8). Moreover F = {x € P(G, b):
x(8(i)) = bi}. is a proper face of ©P(G, b) since

0 ¢ P(G, b) -~ F. Therefore by (2.2.15) it follows that

(4.2.4) gives a facet of P(G, b) completing the proof.[

We call {x e P(G, b): x(8(i)) = bi} a nonnegativity facet

for each i e V satisfying (4.2.2) or (4.2.3).
In the case of l-matchings, (4.2.1) specializes to the

following

A

(4.2.10) Theorem. x{(&§(i)) bi gives a facet of

P(G, 1) dif and only if

(4.2,11) 4 dis a node of a balanced edge

(4.2.22) |N(Gi)] > 1 and if |N(i)| = 2 then

y(N(i)) = ¢.

4,3. Blossom Facets.

In this section we give a first characterization
of the inequalities x(y{(S)) < dg for S ¢ Qo which are facets
0of P(G, b). In fact for each 8§ ¢ Q0 we give the dimension
of

Fy = {x £ P(G, b): x(y(8)) = qs}.

These results are obtained by studying shrinkable graphs (as
defined in Section 3.3).
In Section 4.4 we give two characterizations of shrinkable

graphs and hence two more characterizations of the facets of

4.10

this sort.
Recall that a =np matching (near perfect) matching of
¢ deficient at v & V is a matching x of G which

satisfies

[l
o
!
=

x{(6(v))

x(8(1))

bi for all i e V - {v}.

The following lemma is useful when proving the independence

of matchings.

(4.3.1) Lemma. Let X be a set of np matchings

of G and let xo g X. If there exist J(xo) < E_and

d(xo) e R sﬁch that xO(J(xO)) < d(xo). but X(J(XO))= d(xo)

for all x g X - {xo} then xo is not a linear combination

of X - {x9}.

Proof. Suppose that there are a e for x & X' = X—{xo}

such that

(4.3.2) xo = Z(axx: x £ X').

By (3.3.24), x(E) = 1/2(b(V) - 1) for all x € X. Therefore
by (4.3.2)

xO(E) = E(axx(E): x & X")

and hence
(4.3.3) E(ux: x £ X') = 1.
' 0 . - 0 , .0
Therefore E(axx(J(x ¥): x e X') = Z(uxd(x J: x g X') = d(x)

_by (4.3.3). Hence (4.3.2) implies that xO(J(xo)) = d(xo),

a contradiction which proves the lemma.[]

(4.3.4) We call v € V a strong cut node of

G = (V, E, ¢) relative to b if v 1is a cutnode of G

(see (1.3.9)) and bv = 1. A weak block of G relative

to b 1is a maximal connected subgraph H of G such that

v

of one or more blocks of G joined by cutnodes v for

which bv > 1. Notice that

(4.3.5) the edge sets of the weak blocks of G

partition the edges of G.

(4.3.6) We let B(G) denote the number of weak

blocks of G.

In the case of l-matchings, strong cutnodes and weak blocks

are simply cutnodes and blocks respectively.

(4.3.7) Proposition. G is shrinkable if and

only if G is connected and every weak block of G is

shrinkable.

Proof. First suppose that G -is connected and each
weak block of G 1is shrinkable. We prove that G is

shrinkable by induction on g(G). If B8(G) = 1 then the

4,11

b > 1 for any cutnode v of H. Thus a weak block consists

result is trivial. Suppose RB(G) > 1 and assume the result

is true for graphs having fewer than B(G) weak blocks.

Let D be a weak block of G, let R be a shrinking family

D
for D. Each weak block of G' = 6 x V(D) 1is isomorphic

to a weak block of € and so is shrinkable. Moreover G'

is connected. Since G is connected, B(G') = B(G) - 1

4.12

so by our induction hypothesis G' is shrinkable; let R’
be a shrinking family of G'. PFor each S & R' we define

a set z(8) ¢ V as follows.

s if V(D) ¢ s,

n

z(s) _
S - {V(D)} u V(D) 4if V(D) e S

Let R = {7(8): S e R"} v RD. Then R is easily seen to
be a shrinking family of< G. The sufficiency now follows
by induction.

Conversely, suppose that G is shrinkable. Let R be
2 shrinking family of G. Trivially G 1is connected. We
prove that every weak block of 6 is shrinkable by induction
on]RI. If IRI = 0, then G consists of a single node v
and the result is trivial. Suppose that]RI = 1 and that
the result is true for graphs having shrinking families of
fewer than |R| sets, Let 8 be a minimal member of R.
By (3.3.16) G[S] is spanned By a blossom B., By (3.3.9)

only terminal nodes of B can be strong cutnodes so B is

a subgraph of some weak block D of G. Let &' = G x S.

For any T € R - {8} define ¢(T) T if S n T = ¢, define
L(T) = T - S u {8} if S < T and let R"'" = {z(T): T € R - {S}}.
R' 4is a shrinking family of €' and |R'| = |R| - 1 so

by our induction hypothesis every weak block of G' is
shrinkable. Hence every weak block 0of - G different from D

.is shrinkable. Moreover every weak block of D x § is
shrinkable so as we have already seen, D x S§ 1is shrinkable.

Lef Rﬁ be a shrinking family of D x S and for any T € Ré
let 6(T) =T 4f S § T, let ®©(T) =T - {5} u s 4if S e T.

4.13

Then {8} u B (T): T ¢ Rﬁ} is a shrinking family of D

and the proof now follows by induction.[

(4.3.8) Proposition. If Z is the set of weak

blocks of a connected graph G = (V, E, %) then

(4.3.9) b(V) - 1 = Z(b(V(D)) - 1: D & Z).

Proof. We prove by induction on |Z|. If |Z| = 1 the
result is trivial. Suppose [Z] >1 and (4.3.9) holds for
all graphs having fewer than IZI weak blocks. If every
weak block of G <contained two or more strong cutnodes then
it is easily seen that G would contain a polygon having
edges in more than one block, contrary to (1.3.10). Let B
be a weak block of G containing exactly omne strong cutnode
v. Let G' = G[V -(V(B) - {v})]. Then G' 1is connected
and Z - {B} ‘is the set of weak blocks of G'. Therefore
by induction

BV(G')) = 1 = £(b(V(D)) = 1: D ¢ Z - {B}).

Since b(V) = b(V(G')) + b(V(B) - {v}) = b(V(G')) + b(V(B)) - 1,

(4.3.9) holds and the result follows by induction.[

(4.3.10) Proposition. Let G = (V, E, %) be a

shrinkable graph and suppose x & P(G, b) satisfies

x(E) = 1/2(b(V) - 1). Then for any weak block D of @,

x(E(D)) = 1/2(b(V(D)) - 1). (Note that =x need not be

integer valued.)

Proof. Let Z be the set of weak blocks of G. By

(4.3.7) each D € Z 1is shrinkable so since x e P(G, b),

4,14

X satisfies
(4.3.11) =x(E(D)) < 1/2(b(V(D)) - 1) for all D e Z.
Therefore, summing for all D €& Z we obtain

(4.3.12) =x(u E(D)Y) 5 1/2 % (b(V(D)) - 1).
DeZ De?Z

By (4.3.5) E = u E(D) so using (4.3.8) we obtain
DeZ

(4.3.13) x(E) < 1/2(b(V) - 1),

But by hypothesis equality holds in (4.3.13) so equality

must hold in (4.3.12) and (4.3.11) which proves the result.[]

(4.3.14) Corollary. If x is a np matching of

a shrinkable graph' G then for any weak block D of G,

x|E(D) dis a np matching of D.

Proof. The result follows from combining (4.3.10) and

(3.3.24).0

Now we prove a main result used in characterizing the

facets of P(G, b) given by conmstraints (4.0.3).

(4.3.15) Theorem. If G = (V, E,) 1is shrinkable

then 6 has JE| - (B(G) - 1) linearly independent np

matchings.

Proof. Let R be a shrinking family of G; we prove. by
induetion on |R|. 1If [Rl = 0 then & 1is degenerate,
,EI = 0, B8(G) = 1 and the result is Erivial. Suppose |R[z 1
and the theorem holds for graphs having a shrinking family

consisting of fewer than |R| sets.

4,15

Let B be a blossom spanning G x R[V] which exists

by (3.3.16). We partition V(B) into V O v where

1 2.
Vl = V(B) n V and V2 = V(B nR. That is, Vl is the
set of real nodes of B and V2 is the set of pseudonodes
of B.

Let C = E(G x R[V]) - E(B) and let G' be the graph

. obtained from G by deleting a2ll the edges in €. Then R

is a shrinking family of G' so by (3.3.21) for each v ¢ Vl
-V

there is a np matching x of G6' deficient at v and

which satisfies

(4.3.16) X' (v(S))

n

1/2(b(s) - 1) for all &S ¢ R.

v

For each v ¢ Vl we define a np matching x of G
deficient at v by
—g for j e E'
(4.3.17) x§ z
0 for j & C.
Let Xl = {x': v e Vl}. Since by (4.3.16) each x € X 1is

a np matching of G[S] for each &5 e V it follows from

2!
(4.3.,14) that

‘

(4.3.18) x]E(D) is a np matching of D for
every weak block D of G[S] for every 5 ¢ V2, for every

X € Xl.

For each §S ¢ V2 there are by induction

n(s) = |[y(s)| - (B(6[S]) - 1) 1linearly independent np

matchings {ﬁs’l, ES’Z,...,ES’n(S)} of G[S] since R[S] u {s}

4.16

is a shrinking family of G[S] and]R[S] u {S}] <

IR - {v}] < |R]. By (4.3.14),

(4.3.19) Es’llE(D) is a np matching of D for

every weak block D of G[S] for every i e {1, 2,...,n(8)}.

We extend each to a np matching of G as follows.

~

Let xS be the =np matching of G deficient at S which

exists by (3.3.12). For each T ¢ v, - {8} let 3j(T) be the edge
of § (T) n E(B) » such that §$j(T) =1, let {v(T)} =
$(3(T)) n T and let ET’S be a np matching of G[T]

deficient at v (T). By (4.3.14),

(4.3.20) ET’SIE(D) is a np matching of . D for

every weak block D of .G[T].

Now we define x°°7% for all i e {1, 2,...,n(S)} by

xj for 3j & v(8),
S,i_ %> for j e E(B)
(4'%ﬂ21) xj’ = 73 !

E?’S for j e y(T), for T e V, - {s}.
Let X, = {xs’i: ie {1, 2,...,n(8)}, s ¢ V2}. By (4.3.19)

and (4.3.20),

(4.3.22) x]E(D) is a np matching of D. for
every weak block D of G[T] for every T ¢ V2 for every

X £ X2ﬂ

4,17
Now we show

(4.3.23) Xl U X2 is linearly independent.

e R

Suppose that @ € R v e Vl and aS,i

ie {1, 2,...,n(8)}, 8 ¢ V, are such that
v
{(4.3.24) Z(avx T v g Vl)

S,i. .
+ I(ag % Y146 {1, 2,...,0(8)}, S ¢ v,) = 0.

If we let x' = xle(B) for each v ¢ Vl we have

NVI =~ NS. —
E(avx 1V oe Vl) + E(asx :t S ¢ V2) = 0

where
ag = Z(as,i: ie {1, 2,...,n(8)}) for &S ¢ VZ'
For each v e V(B), x' is a np matching of B deficient

at v so if we let J(;V)

§(v) n E(B) and d(gv) = b

for all v e V(B) then by (4.3.1), x': v ¢ V(B)} is linearly

independent so
(4.3.25) a, = 0 for all v g V

(4.3.26) &

1]
o
h
o}
=
fo
[
=
2]
]
L

Now let 8§ ¢ V,s let Vv, = Vv, - {S}. By (4.3.21), (4.3.24)

and (4.3.25) we have
E(as,ix

: - -S,T
+ Z(aTx

so by (4.3.26),

4,18

Z(as iQS’i: ie {1, 2,...,n(8)}) = 0.

But the matchings '{Qs’l: ie {1, 2,...,n(8)}} axe by

hypothesis linearly independent so

(4.3.27) g o = 0 for all i e {1, 2,...,n(8)}.

This together with (4.3.25) proves (4.3.23).

Let k e C. We define a np matching xk as follows.

Let v and w be the nodes of B met by k, let x' be

the np matching of 3B deficient at v. There must be some

edge £ € E(B) n 8(w) such that ;Z = 1, we define a np

~

matching 2k of G x R[V] by

§; for j e E(B) - {2},

(4.3.28) :2;‘

1

0 for j e (C - {k}) v {2},

1 if j = k.

Let T ¢ Vz. if %k(G(T)) = 0 we let §T be any np

matching of G[T]. If there is & e 6§(T) such that ﬁz = 1

then let {v} = ¥(&) n T and let T be a np matching of

GIT] deficient at v. Now define xk by

;? for i e E(6 x R[V]),
(4.3.29) x =
i? for j £ ¥(T) for T e VZ.
Let. X, = {xk: k € C}. Every x ¢ X3 is a np matching of

G and for any S ¢ Vz, x[y(S) is a np matching of G[S].

Therefore by (4.3.14),

{(4.3.30) x[E(D) is a np matching of every

weak block D of G[S] for every S g V for every x e X

2
Moreover, by (4.3.17), (4.3.21), (4.3.28) and (4.3.29) for
each k e C, xk is the unique member of Xl] X2 u X3 such
that X, 0, so by (4.3.23),

(4.3.31) Xl u X2 U X3 is linearly independent.

Now let D be a weak block of G[S] such that D is

not a weak block of G for some 8 ¢ Vz. First observe

that since bs = 1 by (3.3.9) S8 must be a terminal node

of B and consequently |5B(S)] £ 2. As before we let

G!

{(V, E - C, ¢|E - C). We distinguish two main cases.

Case 1. D is not a weak block of G'.

Case la. An edge h of &_(8) is incident with a

B
node w e V(D) for which bw 2 2. (See Figure 4.1).

Since bW 2 2, w 1s not a strong cutnode of G[S8] and so
every edge of G[S] dincident with w dis an edge of D. Let
xs be a np matching of 8§ deficient at w. Since bW = 2

there is some £ £ E(D) n 8{(w) such that xi = 1. Let

{t}

p(h) - {8} and let u be the node of V(B) - {S} met

by h., If u e Vl, then u = t, if u ¢ V2 then t ¢ u.

Let =x be the np matching of B deficient at u.

(4.3.32) For each T ¢ V2 - {u} let j(T) be

the unique edge j of 6B(T) such that ;j = 1 and let

xT be a. np matching of G[T] deficient at v{(T), where

{v(T)}

(]

y(3(T)) n T.

3"

4,19

4,20

FIGURE 4.1

, .) |
weak blocks S) “““““ “(?

FIGURE 4.2

4,21

If u eV, then
(4.3.33) let x° be a mnp matching of Gfu]
deficient at ¢t.
We now define a np matching XD of G by
s .
xj for j & y(S) - {&},
S . :
xl -1 4if 3 = %,
0 for j e C
D _ o~ .
X, = x., for 3 & E(B) - {h},
J J
X, + 1 if j = h
T .
% for j e y(T) for T e V, - {s}.

It can be

block A

Case

edge of

B.

seen that

(4.3.34)

of G[T]

(4.3.35)

lb. b

xDIE(A) is a np matching of each weak

for T ¢ V2 unless A = D and

<P (E(D))

C B(V(D)) - 3
- 2

1 for every node i e V(D) met by an

=i

there must be distinct

k ¢ GB(S)
w
G[8]
node of

strong cu

D

respectively
must contain an edge

there is a unique

tnode of

(see Figure 4.2)

in any such

GIS]

Then by our case 1 hypothesis

v, W € S incident with edges h,

and every path inG[S] from v to

of D. Since D is a weak block of

node p € V(D) which is the first

path., If p #2 v then p 1is a

and hence is not a cutnode of D.

4,22

If p = v then bP = 1 by our Case 1b hypothesis so p
cannot be a cutnode of D. Thus there is a component H

of G[S - {p}} such that V(D) - {p} < V(H). Let

H = G{V(H) v {p}l, let K = G[s - V(H)]. (K may consist of
just the single node p.) Then V(H) U V(K) = § and

V(H) n V(K) = {p}. Clearly the weak blocks of G[S] are the
weak blocks of H and K so by (4.3.7), H and K are

shrinkable. Moreover, v e V(K), w ¢ V(H) and P 7 W.
)5

Let x be a np maféhing of H deficient at w. Since
P # w, there is some & e E(D) n - §(p) such that xg = 1,
Let xK be a np matching of K deficient at v. Let

{t} = ¢(k) - 8, let u be the node of V(B) - {8} met by

k. Let X be the np matching of B deficient at u.

Since IGB(S)[2 and since § 1is a terminal node of B,
S must belong to the odd polygon of B. Therefore h is

the first edge in a path of length two from a node in the

polygon to wu. Therefore by (3.3.12) and (3.3.5) ;h = 1
and ;k = 0. For each T ¢ V2 - {u} define xT as in
(4.3.32) and if u € V2 then define x° as in (4.3.33).

Now define x° by

x? for j e E(H) - {1}

0 for 3 e {2} v C,
x? for j e E(RK)

3 X for j e E(B) - {k}
1 for j =k

X for j e y(T) for T e V - {s}.

2

D, .
It carn now be seen that x is a np matching of G

satisfying (4.3.34) and (4.3.35).

Case 2. D__is a weak block of G'. (See Figure 4.3).

Let W be the set of nodes of S incident with edges of B.
There must be a node p & V(D) which is the first node of

D in any path in G[S] from a node in W to a node in D,
otherwise D would not be a weak block of G@G'. p is a
strong cutnode of G[S] wunless W = {p}. Since D is not

a weak block of G, there is some edge e £ C n 6(8) such
that where {q} = y(e) n S, there is a path in G[S] from

9@ to a node of B which does not contain p. Let H be
the component of G[S - {p}) which contains q, let

H G[S - V(H)]. (If W = {p} then

It
1

G[V(H) u {p}], let K
K' may simply consist of p.) Let u be the node of

V(B) - {8} met by e and let = be the np matching of B

deficient at wu. Let xH be a np matching of H deficient

at q. There must be & e E(D) n 8(p) such that xH = 1,

L
Let xK be a np matching of K deficient at the node
h

T ¢ V2 - {u} define xT as in (4.3.32). If u ¢ V2 then

let {t}

w ¢ W met by an edge h e E(B) for which =%, = 1. TFor each

p(e) - S and define =x" as in (4.3.33). ©Now

define xD as follows.
x? for j € E(H) - {2},
0 for j e {2} uc - {e},
x? for j e E(K),
3 ;j for j e E(B),
1 for j = e,

»
]

x§ for j e y(T) for T ¢ V2 - {s}.

4.24

FIGURE 4.3

4,25

It can be seen that xD is a np matching of G satisfying

(4.3.34) and (4£.3.35).
Let 2Z be the set of all weak blocks of G[S] for all

S ¢ and tet Z' = {D ¢ Z: D 1is not a weak block of ‘G.}

V)
Let X4 E'{xD: D e Z'}. Then xD satisfies (4.3.34) and

(4.3.35) for every xD e X4. Therefore by lemma (4.3.1),

(4.3.18), (4.3.22), (4.3.30) we have that

Xl u X2 u X3 U X4 is linearly independent.

Now we evaluate]Xl u X, uXgu X4|.

(4.3.36) [X, u X, u X4 U X, |

1 2
= |v | + 2C|y(S)| - B(GISI) + 1: S e V,) +
le] + |z2*]
= v | + vy + 2(]v(8)]: 8 e V) +
lc]l - dz] - 1z'D
Since V, u V, = V(B) and [v(B)| = [E(B)| (by (3.3.7))
and since U y(S) v E(B) u C is a partiticn of E,
SeVv
2
(4.3.37) |E] = [v] + [V | + 2(]v(8)]: 5 € V,) +/c].
Since the weak blocks of G are the members of Z - Z'

together with the weak block containing E(B), we have
(4.;.38) lz] - |z'] = g(G) - 1.
Thus (4.3.36)-(4.3.38) coabine to giye
|xl U X, U X3 U x4[= |E| -~ (B(G) - 1)

and the theorem now follows by dinduction.[]

4.26

We now are able to give the dimemnsion of all faces of

P(G, b) obtained by making one of the inequalities (4.0.3)

an equation,

(4.3.39) Theorem. Let F = {x € P(G, b): x(y(8)) =

for some s € QO.. Thén dim(F) = IE]~ B(G[S]).
Proof. First we show
(4.3.40) dim(F) s |E| - B(GISI).

Let Z be the set of weak blocks of G[8]. Since 8 ¢ QO,
G[S] 4is shrinkable so by (4.3.7) each D € Z is shrinkable.

Let W = {V(D): D e z}. Then W < Q°. By (4.3.10), any

x € P(G, b) that satisfies x(v(S)) g will also satisfy

(4.3.41) =(y(T)) = for all T e W.

dp

The inequalities (4.0.1)-(4.0.3) can be represented by
Ax £ d where A sﬂ{(EUVUQO)xE and d = ﬂ{(EUVUQO) are
appropriately defined. By (4.3.41), if I is the equality
set of F (see section 2.1) them W ¢ I. By (4.3.5) the
rows of Aw are linearly independent, so rank(AI) b [WI
and hence dim(F) < |E| - |Z| which proves (4.3.30).

We now show
(4.3.42) dim(F) = [E| - B(G[S])

by displaying -IELHT:B(G[S]).+ 1 linearly independent members

x of P(G, b) which satisfy

(4.3.43) =(v(8)) = qq4-

q

S

}

4.27

By (4.3.15) G[S] has a set X, of |y(5)| - B(G[S])+1

linearly independent np matchings. We extend each

X = il to a matching x of G by letting

§j for 3§ e-v(8)

{(4.3.44) x,
J 0 for j e E - v(8).

Let Xl be the set of matchings thereby obtained, each

X € Xl satisfies (4.3.43).

Let k e §(S), let {v} = ¢(k) n 8. Let X be a np

matching of G[S8] deficient at v and let xk be defined by

x for § & v(8)
(4.3.45) x., = 1 for j =k

0 for j € E - (y(8) u {k}).

For any k € y(V - 8) let =X be any np matching of G[S]

and let xk be defined ag in (4.3.45). Let

X2 = {x : ke E~- v(S5)}. Each xk € X2 satisfies (4.3.43)

and since by (4.3.44) and (4.3.45) xk is the unique member

x of Xl U X2 for which *y z 0,

Xl U X2 is linearly independent

Since ‘le U X2| = |E| - B(G[S])) + 1, (4.3.42) now follows.

Combining (4.3.40) and (4.3.42) proves the theorem.[

Theorem (4.3.39) specializes to the following.

(4.3.46) Theorem. x(y(8)) < dg for 8§ ¢ QO gives

. a facet of P(G, b) 4if and only if G[S] contains no strong

cutnode.

We -call such facets blossom facets of P(G, b). Notice

that since nonnegativity facets of P(G, b) all contain

. n B . . .
the point 0 e and since neither degree constraint
facets nor blossom facets contain 0, nonnegativity facets
are different from blossom facets and degree constraint
facets. For any 1 & V and any S ¢ QO, 6(i) dis the edge
set of a tree and vy{(8) contains the edge set of a polygon.
Therefore the eguations x(&§(i)) = b2 and x(y(8)) = 4g

are distinct. Thus no degree constraint facet of P(G, b)

is a blossom facet of P(G, b). Consequently

(4.3.47) the facets of P(G, b) are partitioned
into nonnegativity facets, degree constraint facets and

blossom facets.

Finally, by making use of (4.3.46) and (4.2.1) we obtain

the following.

(4.3.48) Theorem. For any § © V_ _such that b(8)

is odd, ={(y(S)) = dg gives a facet of P(G, b) if and only

(4.3.49) |s| > 3, GI[s] is shrinkable and contains

no strong cutnode,

(4.3.50) there is i £ 8 such that §(i) = v(8),

= g, and i satisfies (4.2.2) or (4.2.3).

Proof. Let F = {x e P(G, b): x(y(8)) = qs]. If F
is a nonnegativity facet of P(G, b) then qg = 0 and so

b(S) = 1 and hence |S| = 1. Therefore since G has no

4.29

loops, y{(S) = ¢. Thus every member of P(G, b) satisfies
x{v{(8)) =.qS so F 1is not a proper faée of P{(G, b)), a
contradiction. Therefore F is not a nonnegativity facet
of P(G, b).

Consequently F is a facet of P(G, b) if and only if
F 1is a degree constraint facet of P(G, b) or a blossom
facet of P(G, b). By (4.2.1) F is a degree constraint
facet of P(G, b) if and only if (4.3.50) holds, by (4.3.46)
F 1is a blossom facet of P(G, b) 4if and only if (4.3.49)

holds. The theorem follows.[]

In the case of l-matchings, (4.3.48) can be specialized

as follows.

(4.3.51) Theorem. For any S < V such that

Is| = 3, x(y(8)) < 1/2(}s} - 1) gives a facet of P(G, 1)

if and only if

(4.3.52) G[S] is shrinkable and nonseparable.

(4.3.53) |s| = 3 and then is i € § such that

6(i) = y(S8) and i satisfies (4.2.11) or (4.2.12).

4.4, b-critical Graphs

In this section we give two characterizations of shrinkable
graphs and in doing so we give two more characterizations of
the blossom facets of P(G, b); We also shbw that the blossom
algorithm can be applied to a graph G = (V, E, ¥} Ifor
which b(V) is odd so as to determine whether or not _G is

shrinkable.

4.30

We say that G = (V, E, %) 1is b-critical if there is
a mnp matching x' of G deficient at v for each v e V.
This of course implies that b(V) is odd. In the case of

l-matchings we have G is l-critical if for any v e V,

G[V - {v}] has a perfect l-matching

If G 1is b-critical, and hence has a np matching, then
b(G, V) = 1. (See (3.7.9), (3.7.10) for the definition of
D(G, V).)

We saw in (3.10.33) (Tutte's Theorem) that € has a

perfect b-matching if and only if for every X c Vv
(4.4.1) b(X) z [c; (X + b(u(Cy(X)))

where CO(X), Cl(X) are as defined in (3.10.20), (3.10.21).

The inequality (4.4.1) is commonly called Tutte's condition.

If b(V) is odd then clearly if we take X = ¢, we will violate
Tutte's condition. However our next theorem shows that if
G is b-eritical if and only if G is connected and X = ¢
is the only subset of V which viclates Tutte's condition.
It also shows that G is b-critical if and only if G is

shrinkable.

(4.4.2) Theorem.. Let G = (V, E,) be a graph,

let b = (bi: i € V) be a vector of positive integers. The

following conditions are equivalent.

(4.4.3) G _is shrinkable;

- (4.4.4) G __is b-critical:

(4.4.5) ¢ 1is connectéd, b(V) is odd and every

4,31

nonempty X c V__ _satisfies (4.4.1) (Tutte's condition).

Proof. (4.4.3) implies (4.4.4). This is simply (3.3.21).

(4.4.4) implies (4.4.5). If G 1is b-critical then

b(V) is odd. Suppose that H and K are distinct components
of G. Then each must by bfcritical so b(V(H)) and b{V(K))
are odd. Let x be a np matching of G deficient at

v € V(H)., Then x|E(K) is a perfect matching of K and so

b(V(K)) is even, a contradiction. Therefore G is connected.

Let X be any nonempty subset of V and let v € X.
Let x be a np matching of G deficient at v. For any

ie Cy(X) we have
(4.4.6) x(8(1)) = b,.
For any § e C;(X) we have
(4.4.7) =(8(S)) = 1

since b(S) is odd and x(8§(i)) = b, for all i e S. Since

x(§(i)) = bi for all i £ X we have
(4.4.8) =x(8(X)) = b(X).
Since U §(i) u U §(8) partitions a subset of
{i}eCO(X) SECl(X)

8§(X), we have

(4.4.9) 2(x(8(i)): {i} e Cu(X)) + Z(x(y(8)): S e € (X))=

x(8(X)).

Combining (4.4.6)-(4.4.9) gives

4,32

E(b,: {1} e Cyu(X)) +]cl(x)[< b(X)

so X satisfies (4.4.1).

(4.4.5) implies (4.4.3). Suppose that ©b(V) 1is odd,

G 1is connected and G 1is not shrinkable, If we abply the
matching algorithm to G and attempt to find a perfect
matching, the algorithm must terminate with a Hungarian forest
F with respect to a matching x in a graph G obtained

from 6 Dby shrinking a set of disjoint shrinkable subsets

of G. Since G 1is connected and nonshrinkable, F must

have a nonempty set X of odd nodes, by (3.7.5) each of these

is a node of G. Let WO be the set of even nodes of F
which are nodes of G, let Wl be the set of even pseudonodes
of F. By (3.7.3), (3.7.4), WO c CO(X). By (3.7.3),
(3.7.4) and (3.3.19), Wl < Cl(X). Since bS =1 for every
5 ¢ W, we have b(W;) < |c,(X)]. Byr(.?a.6.12),

b(X) < B(Wy) + b(W,)

1A

b(u(C (X)) + [C (X)|

so X wviolates (4.4.1). Since X # ¢, the result follows. O
If we omit the connectivity condition from (4.4.5) then
it no longer implies (4.4.3) or (4.4.4) for general b. If
G is the graph represented in Figure 4.4 then D(V(G)) = 11
and every nonempty X < V satisfies (4.4.1) but G does

not have a nﬁ matching and so is not b-critical.

4.33

FIGURE 4.4

3
9 The number beside
O each node is the
degree constraint
of the node.
3 3
However if b, = 1 for all i ¢ V and if |V]| 1is

L

odd and if every nonempty X ¢ V satisfies (4.4.1) then G

is connected, for suppose G is not connected. Then G

must héve aﬁ odd number k of components H for which

[¥v(H)| 4is odd. If k = 1 then G must also have a component

K for which [V(K)] is even. Let v e V(K) and let

X = {v}. Then b(X) = IXI = 1 but 6{V - X] has at least

two components with an odd number of nodes so (4.4.1) fails

for X. If k 2 3 then let X = {v} for any node v of

G. Then G[V - X] has at least two components with an odd

number of nodes but b(X) = 1, again contradicting (4.4.1).
Thus Wheﬁ considering l-matchings we obtain the folloﬁing

specialization of (4.4.2).

> - {4.4.10) Theorem. Let G = (V, E,) be a graph,

let every node of G have a degree constraint of 1. Then

the following are eguivalent.

4,34

(4.4.11) G is shrinkable

(4.4.12) G is l-critical

(4.4.13) |v] is o0dd and for every nonempty

X ¢V, the number of components H of G[V - X] for which

|[V(H)| is odd is no greater than [|X].

The blossom algorithm of chapter 3 provides an efficient
method for determining whether or ﬁot a graph G satisfies
the equivalent conditions (4.4.3)-(4.4.5). For if we apply
the algorithm to a graph G = (V, E, ¥) for which ©b(V) 1is
odd then, as noted in the proof of (4.4.2), it will either
find a shrinking family of G or else will terminate with
a Hungarian forest F and a node i € V which is not an
even nbde of F or contained in an even pseudonode Qf F.

By (3.7.38) in theorem (3.7.36) G «can 'have no np matching
deficient at i so G 1is mot b-critical and violates
(4.4.3)~-(4.4.5).

Finally notice that if b(Vj is odd, then for any X ¢ V,
b(X) and |Cl(X)| + b(U(CO(X))) must always have opposite
parity so we can never have equality in (4.4.1).- Thus if

desired we could replace (4.4.1) with
(4.4.14) b(X) > | (X)]| + bCU(Cy(X)))

in (4.4.5).
Now we can apply (4.4.2) to (4.3.46) and obtain the

following two characterizations of the blossom facets of P(G, b).

(4.4.15) Theorem. For any set S such that b(S)

is odd, =x{y(§)) = g gives a blossom facet of P(G, b)

if and only if

(4.4.16) |s] = 3, ¢[S] 4is b-~critical and has no

cutnode v for which bv = 1.

(4.4.17) Theorem. For any set S such that " b(8)

is odd, x(y(8)) = gives a blossom facet of P(G, b) if

g
and only 1if

(4.4.18) b(S) is odd, Is| = 3, G[S] is connected

and has no cutnode v for which b\ir = 1 and for every

nonempty X ¢ §,

b(X) = b(u(C (X u (V - §)))) + lcl(x u (Vv - s

We are now able to combine theorems (4.1.2), (4.2.1)

and (4.3.46) to obtain the following.

(4.4.19) Theorem. The following is the minimal

subset of the inequalities (3.4.2)-(3.4.4) which is sufficient

to define P(G, b).

2 0 for all 4 e E

X,
-3
x{(8(i)) = bi for all i € V satisfying (4.2.2)

or (4.2.3)

0
x(y(8)) = g for all 8§ £ Q which satisfy the

equivalent conditions (4.3.49), (4.4.16) or (&4.4.18).

As we discussed in section 3.10, we can now use linearx
programming duality to obtain a "best-possible" min-max

theorem. Let W < V contain exactly one node of each balanced

4.36

*

edge of G. Let V = {i e V: i satisfies (4.2.3)} v W,

*

Q
conditions (4.3.49), (4.4.16) or (4.4.18)}.

{8 € Q: S satisfies the equivalent

(4.4.20) Theorem. Let G = (V, E, §) be a graph,

let b = (bi: i € V) be a vector of positive integers and

let ¢

Il

(cj: j e E)Y be an arbitrary real vector. Then the

maximum value of ¢ -+ x for-any matching x of G which

satisfies

x(8(i)) = bi for all i e V

is equal to the minimum value of

: . * *
E(bixi: i eV) + Z(qSXS: S £ Q)

where

%
0 for all i e VvV ,

[\

Z;

*
Yg 2 0 for all S e Q ,

y(w*(j)) + Y(Q*(j)) > c, for all j € E.

(¢}

GG

vG) 0 v, 0%y = {5 e Q¥: i e v(s)}

for all 3j € E.)

This theorem is best possible in the sense that if
either V* or Q* were replaced by a smaller set then the
min-max rélationship of (4.4.20) would not hold for all c sﬂ{E.
By combining (3.10.23) and (4.4.2) we can obtain the

following strengthenings of Tutte's theorems (3.10.33) and

{3.10.35).

(4.4.21) Theorem. G = (V, E, ») has a perfect

4,37

matching if and only if for every X ¢ V_ such that

€,(X) = 9,

G[8] is b-critical for every S ¢ Cl(X)

we have

b(X) 2 cl(x) + b(U(CO(X)))-

Proof. If G has a perfect matching then by (3.10.23),

for any X © V we have

1/2b(V) + 1/2(b(X) =~ |C1(X)| - bu(C (X)) = 1/2b(V)
so b(X) =z |Cl(X)] + b(u(Cy(x))).
Suppose G has no perfect matching. Then

1/2b(V) + 1/2 min{b(X) -]Cl(X)] = b(u(Cy(X)))} < 1/2b(V) by
(3.10.23). By {(3.10.23a) we can choose a set X* which
minimizes b(X) - ICl(X)[- b(U(CO(X))) and which satisfies

k. o - * %
C,{(X') = ¢ and C,(X) € Q. Then b(X) < |cl(x)|+

* %
b(U(CO(X 7)) and since Cl(X) < QO = {8 < V: IS] > 3 and
S 1is a shrinkable subset of {V} dit follows from (4.4.2)

that G[S] 4is b~ecritical for all 8 ¢ Cl(X*).D

If H 4is a component of G such that |V(H)|] =1 and

b, = 1 where {v} = V() then H is l-eritical. Therefore

(4.4,21) becomes in the case of l-matchings.

(4.4.22). Theorem. G = (V, E, ¥) has a perfect

l-matching if and only if for every X < ¥V such that G[V - X]

consists of l~critical components, the number of components

of G[V-X] ‘is no greater than |X]|.

%

4.38

We close this section by observing the relationship
between b-critical graphs and graphs having large numbers
of linearly independent "best possible™ matchings. For any
graph G = (V, E, ¢) and vector b = (bi: ie V) of
positive integers such ;hat' b(V) is odd, the largest number

of linearly independent np matchings of G that we could

hope to find is IE], since each such matching is a vector
in TR_ . If E =¢ then G trivially has IE| = 0 linearly
independent np matchings. We show in theorem (4.4.23)

that if E # &, then G Thas [EI linearly independent np
matchings if and only.if G 1is one of three sorts of graphs.
Let K be a connected graph for which there is some
v £ V(K) such that 6K(v) = E{(K) and let b = (bi: i e V(K))
be a vector of positive integers such that b, = b(V(K) - {vih)-1.

We call K a b-star.

(4.4.23) Theorem. If E # ¢ then G = (V, E, ¥)

has IEI linearly independent near perfect b-matchings if

and only if

(4.4.24) G 1is b-critical and has no strong cutnode

(4.4.25) €6 d1is a b-star

(4.4.26) G has two components, one being a balanced

edge (as defined in 4.2) the other consisting of a single

node v for which bv = 1,

4.39

Proof. If ©b(V) is even then G cannot have a
np matching nor can G satisfy any of (4.4.24)-(4.4.26).
Hence we assume b(V) is odd. Then G Thas]El linearly
independent np matchings 1f and only if =x(E) < 1/2(b{(V) -~ 1)
gives a facet of P(G, b). By (4.3.48) this is true if and
only if one of (4.3.49) or (4.3.50) holds. 1In view of (4.4.2),
(4.3.49) is equivalent to (4.4.24)., Moreover (4.3.50)
is easily seen to be equivalent to one of (4.4.25) or (4.4.26)

holding, completing the proof.[

In the case of l-matchings, (4.4.21) specializes as

follows.

(4.4.27) Theorem. If E # ¢ then G hasr |E[

linearly independent near perfect l-matchings if and only

if

(4.46.28) 6 is l-critical and nonseparable

(4.4.29) v

3.

4,5 Vertices of Matching Polyhedra.

In this section we characterize the matchings of G
which are_vertices of P(G, b). For the case of 1 matchings
this problem is rather simply solved; every matching x
bélonging to P(G, 1) is a vertex of P(G, 1). For if we

define ¢ = (cj:lj e E) by

1 if x

Ly e O

4,40

then xo is clearly the unique member of P(G, 1) which
maximizes ¢ * x for x £ P(G, b). Therefore by (2.4.1)
xo is a vertex of P(G, b).

However in the general b-matching case, the problem
becomes less trivial. In fact we show that the vertices of
P(G, b) are precisely the matchings produced by the blossom
algorithm of chapter 3. Thus the set of matchings produced
by the blossom algorithm.is as small as possible, by (2.4.5)
for any c sﬁR,E, ¢ * X 1is maximized over P(G, b) by a
vertex (and perhaps some other members of P(G, b)); by
(2.4,1) every vertex.of P(G, b) 1is the unique member x

of P(G, b) maximizing c¢x for some c e R E

(4.5.1) For any graph G = (V, E, y) and any
“x-e RE we let G+(x) be the spanning subgraph of G whose
edges are those edges of G for which xj > 0. Thus

¢t x)y = (v, £, viEhH

where gt = {j ¢ E: Xj > 0}.

Let H amnd K be subgraphs of a component of G. Let

v e V. We say that nw is a path in G from v to H 1if

T 1is a path in G from v to some w e V(H) and V(H) n

V(w) = {v}. We say that 7 is a path in G from H to K

if 1w 4dis a path from some v € V(H) to K and V(H) n
V(r) = {v}. By the distance in G from H (or v) to K
we mean the length of the shortest path in 6 from. H (or
v) to K. Clearly no edge of H or K could be in‘a path

from H to K.

4.41

FIGURE 4.5 Sample Vertex of P(G,b).

deficiency 1 A

Edge ji.'such that X, > 0 = NN

Edge j such that xj=1

Node at™whichmatchirmg deficient ®

4,42

(4.5.3) Theoren. (See Figure 4.5) xo g P(G, b)

is a vertex of P(G, b) if and only if each component H

of G+(x0) satisfies the following:

(4.5.4) H contains no even polygon;

(4.5.5) H contains at most one node at which xo

is deficient;

(4.5.6) 4if H contains more than one odd polygon

then there is am isthmus j of H for which xg = 1 in

any path in H joining any two of these polygons:

(4.5.7) 4if H contains a node v at which XO

is deficient and some odd polygons then either v has

deficiency 1 or else for any odd polygon P contained in H

there is an isthmus Jj(P) of H for which x? = 1 in

j (P}

any path in H from v to P.

Proof. We first prove the necessity of (4.5.4)~-(4.5.7)
by showing that every matching produced by the blossom
algorithm satisfies the conditions of the theorem. This
will prove the necessify fof by (2.4.1) for -any vertex X
cf P(G, b) there is some co e'ﬂkE such thét xo is the
unique memberlof P(G, b) which maxinizes co + x for
x e P(G, b). If we use the blossom algorithm to maximize
cox for x £ P(G, bB), xo must be the matching obtained.
Since we are maximizing Qver P(G, b), VS= V and V = $.

Therefore the blossom algorithm must.terminate in step 11.

If x, R and G = (V, E,) are defined as at the start

n

of step 11, and x xIE then by (3.8.13)-(3.8.16), each

4.43

compenent H of §+(§) satisfies (4.5.4)-(4.5.7). We
show that the operationsof Step 12 preserve this property.

It is easily seen that

(4.5.8) if B is a blossom and x 1is a np
matching of B then each'component H of B+(x) satisfies

(4.5.4)-(4.5.7).

Suppose x, R and G = (V, E, ¢) are such that each

component H of §+(§) satisfy (4.5.4)-(4.5.7) where

X x]ﬁ. Suppose we perform a cycle of Step 12. This will

involve executing Step 12c¢ or Step 12d since V ='¢. Let
S, B(S) and G; be as defined in'Step 12b.
Suppose we perform Step 12c.i Then there is a unique
j € 8(8) for which Ej = 1 and Ek = 0 for all
k e 6(5) - {j}. We let v be the node of B(S) met by
j and x is the np matching of B(S) deficient at v.
Then j is an isthmus for which §j = 1 joining the component
H of B(S)+(;) containing v to the compoment K of

+(§) containing j. If x' is defined as in step 12c, x'

2]

will not be deficient at any node 1 ¢ V(B(S)) so using (4.5.8)
we see that each component of G'+(x'[E') satisfies (4.5.4)-
(4.5.7).

" Suppose we perform Step 12d. Then Ej = 0 for all

~

i € 8(8). 1In Step 12d we defined x to be a np matching
of B(S) deficient at r e B(S). Then where x' 1is as
defined in.Step 12d, the components of G'+(x') are precisely

the components of B(S)+(§) together with the components of

€7(X). Therefore by (4.5.8) it follows that (4.5.4)—(4.5.7)

A

are satisfied.

Thus step 12 preserves properties (4.5.4)-(4.5.7)
for each component H of E(x), suppose G and x are the
last such graph and matching defined in step 12. Then G
is a spanning subgraph of the original graph € and xj = 0
for all j € E(G) - E(G). Therefore each component H of
G+(x) satisfies (3.5.4)-(3.5.7) and the necessity of our
conditions is proved.

In (4.5.21) we describe a procedure which expresses any
matching x e P(G, b) for which a2 component H of G+(x)
violates (4.5.4)-(4.5.7) as a convex combination of matchings
xl, x2 € P(G, b) - {x}. This then provides an alternative,
more direct proof of the necessity of (4.5.4)-(4.5.7).

Now we prove the sufficiency. Suppose‘ X e P(G, b)Y is
a matching such that every component H of G+(;) satisfies

{(4.5.4)-(4.5.7). We will show that there are J < E, WcV

and R ¢ QO such that x E'W\E satisfies

{4.5.9) xj = 0 for all j e J

It

(4.5.20) =x(8(i)) bi for all 41 e W

Il

{(4.5.11) =x(vy(8)) g for all S e R

if and only if x = X, for them it will follow that {X} is

a single element face of P(G, b), that is, Lf“is“a—yertex.

Let J = {j € E: ;'Zj = 0}, let W = {i e V: %(8(1)) = b }.
We now show that it is possible to define R so that =x will
be the uﬁiqué member of 1R E satisfying (4.5.9)-(4.5.11).

We prove by induction on the number of polygons in G+(§).

If G+(§) is a forest and thus contains no polygons, let

4.45

R = @. By (4.5.5) each tree T imn G+(;) has at most one
node 1 mnot belonging to W. Therefore by (3.1.11) x is
the unique member of N E satisfying (4.5.9) and (4.5.10).

Suppose the result true for graphs G and matchings
x such that §+(§) contains fewer polygons than G+(§),
and suppose G+(§) is not a forest. iet H be any component
of G+(§) which contains a polygon. If H has a node r
at which X is deficient then we designate r as the root
of H, if H has no such node then designate any polygon
C contained in H as the root.

If H 4is rooted at a polygon C and if C is the
only polygoen c;ntained in H themn by (3.1.16), if x is
any member of ﬁ{E satisfying (4.5.9) and (4.5.10) then
x|E(H) = X|E(H). 1If we let G' = G[V - V(H)] and let
X' = ;IE(G) then by our induction hypothesis there is a set
R.S {8 ¢ QO: S ¢ V- V(H)} such that g; is the unique
solution to

x, = 0 for all j g J n E(G'),

x(8(1i))

bi for all i € W n V(G'),

x(y(8))

i

dg for all S ¢ R.

Therefore ; is the unique solution to (4.5.9)-(4.5.11)
taking R so defined and the result follows by induction.
Assume that H either contains at least two polygons
or else contains a polygon and a node at which X is deficient.
Suppose that no path in H from a ﬁolygon of H toAthe root
of H contaiﬁé an isthmus j of H for which ;j = 1., 1If

T

H contains distinct polygoms P and P then there must

4.46

be a path in H from P to ©P' —containing no isthmus j
of H for which ;j = 1, contradictory to (4.5.6). Hence
H contains a unique polygon P and by (4.5.7) the root

r of H must be a node at which =x has a deficiency of 1.

Thus

(4.5.12) H 1is a blossom, gIE(H) is a np matching

of H deficient at r.

On the other hand, let P be a polygon of H for which
every path in H from P to the root r of H contains
an isthmus j of H for which Ej = 1, and for which the
distance in H from r to P 4is as great as possible. Let
T be a path in H from P to -r. T may contain edges
of other polygoms but by (4.5.6) there is an isthmus 3§ of
H for which ;j = 1 in 7 ©before any edge belonging to
a polygon of H. Let k be the first i;thmus of H din
for which ik = 1. Let v be the end of k furthest from
the root of H. If we delete k from H we obtain two

components, one of whiech, B, contains P and vwv. It is

easily verified that

(4.5.13) B 4is a blossom, §|E(B) is a np matching

of B deficient at wv.

If (4.5.12) applies, let B = H and v = r. Now

whichever case applies, if x E’R_E satisfies (4.5.9),

(4.5.14) x(8(1)) = b, for 1 e V(B) - {v},

and

(4.5.15) x(Y(V(B))) = dy(gy

4.47

Then. since x(y(V(B))) = 1/22(x(8(i)): 1 e V(B)) and

gy = L/2(p(V(B)) - 1) it is easily seen that x(8(v)) = b_-1.

v
Therefore by (3.1.16)

(4.5.16) =x|y(V(B)) = x|y{(V(B)).

Let G' = (V', E', ') be the graph obtained from G
by shrinking V(B). Let x' = ;|E'. Clearly each component
H of G T(x') satisfies (4.5.4)-(4.5.7) and € F(x')
contains one fewer polygon than G+(§). Therefore by our
induction hypothesis there is a set R' of shrinkable subsets

1
of G' such that x STR.E satisfies

(4.5.17) X, = 0 for j e J an E',
(4.5.18) =x(8gr(1)=b, for 1 e W

(4.5.19) x(yG,(S)) = qo for all s e R’

if and only if x = x', where if B = H then W' = W n V',
. - ' =
if B 2 H then W' = Wn V' u {V(B)} (and bV(B) = 1),
Now notice that if x ¢ ﬂ(E satisfies x(8(i)) = bi for

all i e V(B) and (4.5.15) then

x(8(V(B))) =1 = bV(B)

Thus for any x e 1R_E which satisfies (4.5.9), (4.5.10) and
(4.5.15), x|E'" satisfies (4.5.17) and (4.5.18).

For any S & R' such that V(B) ¢ S, let
z(s) = (8 - {V(B)}) u V(B). Then t(8) ¢ Q0 (since § was a
shrinkable subset of G'). Moreover (4.5.15) and

x{y{z(8))) = U (s) imply x(v,,(8)) = qg-

4,48

Let R = {S e R': V(B) ¢ 8}. Let R = {V(B)} u (R - R") u
{z(s): S ¢ R'"}. Then if x ¢ MF cacisfies (4.5.9)=(4.5.11)
then x]E‘ satisfies (4.5,17)~(4.5.19) so xIE' = %IE'.
Moreover x satisfies (4.5.14) and (4.5.15) (and (4.5.9))
so (4.5.16) holds. Therefore x ¢ 4RF satisfies (4.5.9)-
(4.5.11) taking R as defined above if and only if x = X

and the theorem now follows by induction.[]

As a result of this theorem and theorem (2.4.14) we have

the following result.

(4.5.20) Theorem. Let =x ¢ P(G, b). There is a

set X ¢ P(G, b) such that for each x ¢ X every component

~

H of G'(x) satisfies (4.5.4)=(4.5.7), |x] < |E] and =

is a convex combination of the members of X.

We next describe a procedure which will express any
matching xo e P(G, b) which is not a vertex of P(G, b) as

a convex combination of two different matchings which are

simpler in a certain sense,
(4.5.21) Matching Simplification Algorithm.

Step 1. If G+(x0) contains no even polygon then go to
Step 2. Otherwise let P be an even polygon, let v e V(P)
and let t be a track from v to v dnduced by P. Let

J be the set of even edges of 1. Let

h
11

= min{xg: j e J}

Q
1t

= mih{x?: j € E(P) - J}.

Then A, o are positive integers. Define =z ¢ W&E by

4,49
1 if j e J
z, = -1 if § € E(P) - J

0 if j ¢ E - E(P).

Then
0 A 0 o 0
{(4.5.22) x gy (x~ + oz) + o (x~ - Az).
Therefore xo is a convex combination of different matchings

0
x + oz and xO ~ Az , both of which are members of P(G, b).

Moreover,
4.5.23) |2t (x® + 02))| < JEGCT O],
4.5.24) |Eetx® - 22| < |EeT).

Exit from the algorithm.

Step 2. If no component of G+(x0)' has more than one
node at which xo is deficient; then go to Step 3. Otherwise
let H be such a component and let v, w € V(H) be nodes
at which xo is deficient. Let 1w be a path in H from

v to w, let J be the set of odd edges of 1w. Let

Al = min{x?: j e J}
y . 0 o .
o' = mln{bv - x (S(v)})} u {xj: j € E(w) - JID).
If 7 is of even length let ¢ = o' and let

A= minfa', b - %% (s)3,
if 7 dis of odd length, let A = A' and let

¢ = min{o’, bw - ko(ﬁ(w))}.

4.50

Then both XA and o are positive integers. Define z & W

by
1 if j e J
zj = -1 if j e E{(m) -~ J
0 if j € E - E(n).
Then (4.5.22) holds and xo is a convex combination of
xo + oz and xO - Az which by our choice of ¢ and X are
matchings belonging to P(G, b) - {xo}. Moreover, either

(4.5.23) holds or

(4.5.25) xo + oz 1is deficient at fewer nodes
of G then xo.

Similarly, either (4.5.24) holds or
(4.5.26) xo - Xz 1is deficient at fewer nodes of

G than xq.

Exit ffom the algorithm.

Step 3. If every path in G+(x0) which joins two odd

polygons in G+(x0) contains an isthmus j for which x? = 1

then go to Step 4. Otherwise, notice that since we bypassed

Step 1, every édge of G+(x0) which is not an isthmus of

+, 0

~G+(x0) belongs to an odd polygon of G (x). Therefore we

can choose odd polygons Pl and P2 contained in G+(x0)

and a path from v e V(Pl) to w ¢ V(Pz) such that

each edge .j . of 1© is an isthmus of G+kx0) for which

x? > 2, Let T
] 1

let 14 be a track from w to w induced by P,. If 7

be a track from v to v induced by Pl’

4,51

is of odd length then let J be the set of odd edges of Ty

and T together with the set of even edges of m. If

2

is of even length, let J be the set of odd edges of T

together with the set of even edges of 7 and Tye Let

e
HI

min({x?: i e J - E(m)} v {[%x?]:j e Jn E(m)D)

Q
1]

min({xg: i e E(Tl) u E(Tz) - J} u {[%xgy i e E(m) - J}).-
Then X and o© are positive integers. Define 2z € WKE by

1 if 4§ € J - E(m)

-1 if j € E(Tl) u E(Tz) - J
z, = 2 if j & J n E(w)
-2 if j e E(mw) -~ J
0 if j € E - E(w) v E(Tl) U E(Tz)).
Then (4.5.21) holds; xo is a convex combination of matchings
xo + oz, xo - xz e P(G, b) - {xo}. For any x € P(G, b) let

I(x) = {j € E: j is an isthmus of G+(x) and xj = 1}.
Then we have either (4.5.23), (4.5.25) or
0 0
(4.5.27) I(x 4+ ga) » I(x")
and either (4.5.24), (4.5.26) or
0]

(4.5.28) 1(x" - 2z) > 1(x").

Exit from the algorithm.

1f every component

Step 4.

both an odd polygon and a node v

deficiency of at least two has a member of

path from v to an odd polygon of

vertex of P(G, b). Otherwise let
+., 0 .

component H of G (x) at which

at least two, let @7 be a path in

w of an odd polygon P <contained

j & E(r) 1is an isthmus for which

track from w to w dinduced by

length then let J

with the even edges of <1, if

be the set of odd edges of 1w and

A =
o =
0, .,
{xj: i e E{(t) - Jb).
Then o, A are positive integers,
1 1if jF ¢
-1 4if j e
zZ, E 2 4if i =
3 J
-2 1if j e
0 if j =
e o

Then (4.5.21) hoids; X
0 0
X x

+ oz, - Az & P(G, b) —-{xo}.

H

a

X

i

0
X,
3

P.

is of even length,

be the set of odd edges of

4.5

of G+(x0) containing

t which xo has a

I(xo) in every

H, then stop, x is a

be
0

v a node of a

has a deficiency of

H from v to a node

n H such that every

= 2. Let T be a

If w1 4if of odd

T together

let J

T Let

min({x?: j e Jn E(t)} U{E%xg]: j e Jan E(m)},

min({[l/zcbv - xo(s(v)))]} u{[%x?]: j e E(m) - J} u

Define z ¢ MR E by

J n E(T)

E(T)

J

J n E(n)

E(r) - J

E

(E(7w) u E(1)).

is a convex combination of matchings

We have either (4.5.23),

4.53
(4.5.25), (4.5.27) or

(4.5.29) there is i e V such that the deficiency

of xo at 1 is at least two and the deficiency of xo + oz

at i dis one.
Similarly, we have (4.5.24), (4.5.26), (4.5.28) or

0
(4.5.30) there is i € V at which x has

deficiency at least two and at which xo ~ Az has a deficiency

of cne.

This ends the algorithm.[d

This algorithm has several uses. First it reproves the
necessity of (4.5.4)-(4.5.7) in theorem (4.5.3), for it shows
" that if x° violates anyone of (4.5.4)-(4.5.7) then it is a

convex combination of two different matchings belonging teo

PG, b). If x = Ax + (1 -~ A)x> for A &R satisfying

0 £ X £ 1 then for any ¢ ¢ ﬁ{E , C * X = X c * xl + (1-X)c - x2

; 1 2
so either ¢ + X or ¢ * X must be at least as large as

c - xo. Therefore by (2.4.1) xo cannot be a vertex of

P(G, b).
Second, we can uge this algorithm for the following

problem. Let ¢ ¢ ﬂKE and a matching xo g P(G, b) be given.

*
We wish to find a vertex x of P(G, b) such that

®
c *x =z2ze xo. Apply the following procedure. Let x 2 xo.

Step A. Apply (4.5.21) to =x. If it terminates with
the information that x 1is a vertex of P(G, b) then let

*
¥ = x and stop. Otherwise it provides matchings

4,54

xl, x2 e P(G, b) - {x} such that x is a convex combination
of xl and x2. At least one of ¢ xl and ¢ - xz must
be no less than ¢ + x3; replace x with that xl or x2

and returm to step A.

This describes the procedure, we now show why it is
finite. Notice that in the course of this procedure if at
some point we perform step i of (4.5.21)-then at no later
point do we perform step k of (4.5.21) for k < i. By
(4.5.23) and (4.5.24), each application of step 1 decreases
[E(G+(x))|. By (4.5.23)-(4.5.26) each application of step 2
decreases [E(G+(x))] or [{i e V: x(8(i)) < bi}l. By
(4.5.23)-(4.5.28) each application of step 3 decreases
Bt (x)) - T(x)|. Finally, by (4.5.23)-(4.5.30) each
application of step 4 decreases [E(G+(x)) - I(x)]| or
.]{i e Vi bi - x(6(i)) = 2}|. Therefore steps 1 through 4 can
be applied at most |E(G+(x0))] + [{i g V: x{(8(1)) < bi}l
times. Thus we will find x after at most]E(G+(x0))] +
i e ve x9¢8¢a)) < b, }| applications of (4.5.21).

A third problem to which (4.5.21) applies is that of
respresenting any matching XO e P(G, b) as a convex
combinatioﬁ of the members of a set X of vertices of ©P(G, b).
Let X = {xo}, let o = 1.

0
X

Step A. Suppose we have-a finite set X of matchings

contained in P(G, b) and (ax: x € X).¢ TR such that
(4.5.22) 0 = o for all =x e X,

{4.5.23) E(ax: x € X) =1,

4055

(4.5.24) x° = (o X: x ¢ X).

If every member of X 1is a vertex of P(G, b) then stop,

X 1is the set we require. Otherwise, suppose x £ X 1is

not a vertex of P(G, b). Apply (4.5.21) to X, thereby

obtaining matchings xl, x% € P(G, b) - {x} and positive
i U, € . for which u. + u, = 1 such that x = u xl +
1* "2 1 2 1
uzxz. For each i e {1, 2}, if x* ¢ X then let
1 = .
4] i = o . + ui o_ 3
x X X

o i =]Jiﬁ_
X X
- 1 2
For every x g X - {x, x7, x°} let
a' = oa_.
x x

Let X' X {xl, xz} - {x}. Then if we replace X by X'

and a_ by a;,'(4.5.22)—(4.5.24) still hold: return to
step A. .

This describes the procedure; an argumant similar to
that given by the preceding procedure proves that it is finite.

Unfortunately however the size of X tends to increase

exponentially with the size of |E(G+(x0))| + |{i g V: xo(ﬁ(i)) <

* ‘
bi}l' By (4.5.20) there is a set X of vertices of P(G, b)
: *
such that xo is a convex combination of the members of X
*
and [X | = |E|; it seems unlikely that the procedure described

. - %
here will find such an X .

Chapter 5

Optimizing over Faces of P(G, b)

Throughout this chapter G = (V, E, ¢¥) 1is a graph and

[

(bi: i g V) is a vector of positive integers. We let

c (cj: j € E) be an arbitrary real vector. 1In Chapter 3
we described the blossom algorithm which solved the problem
of maximizing ¢ « x for x & P(G, b). In this chapter we
present am algorithm called the face optimization algorithm
which solves the problem of maximizing ¢ ¢« x for =x Dbelonging
to any face of P(G, b). This algorithm actuélly has two
parts., The first part is a preconditioning process which
is used to obtain an equivalent problem with a simplerx
structure. The second part, which uses a modification of the
blossom algorifhm as a subroutine, solves this simpler problem.
We also describe how in principle the problem of optimizing
over a face can be reduced to an ordinary matching problem.
Finally we show how a certain type of so called "multi-optimization"
problems can be sclved by solving a sequence of face
optimization problems. |
In -Chapter 3 (Theorem(3.4.5))we proved the theorem of
BEdmonds, that P{(G, b) is the solution set of the linear

inequalities (3.4.6)-(3.4.8). 1In view of this and (3.1.7),

P(G, b) = {x e‘RE:
(5.0.1) xj 2 0 for all j & E,

(5.0.2) =x(8(i)) = bi for all i ¢ V,

(5l0.3) x(y(8)) $.qg for all 8 ¢ Q'}

Q" = {S ¢ V: b(S)

where .

for all S € Q',

is odd} and Qg = 1/2(b(s) - 1)

The difference between this set of inequalities and that

~prescribed in theorem (3.4.5) is that in (5.0.3) we have a

"blossom inequality" for every § ¢ V

such that b(8) 1is

odd and in (3.4.8) we only had such inequalities for shrinkable

sets.

far froﬁ minimal (see (4.4.19)).

In general then the set of inequalities (5.0.3) is

However By using these’

redundant inequalities we are able to obtain a relatively

simple description of the faces of

preconditioning process.

to be the set of all

P(G, bP) by means of a

N € Q'. Then we define the face

x & P(G, b)

5.1. The Faces of P(G, b).

Let W eV, J cE and
‘P(J, W, N) of .P(G, b)
satisfying

(5.1.1). xj =0
(5.1.2) x(é(i))

(5.1.3) =(y(8))

In general there are many different chéices of

and N
here to find J, W and N

0f sets (see Section 3.2).

§ .
the basis of an efficient preconditioning

presented with sets

J' € E, W c V and

"which give the same face of

J < &,

N! SQ'

for all j e J

for all 1 ¢ W,

g for all S e N,

J, W

P(G, b). It is useful

such that N is a nested family

The following propositions form

algorithm which when

WecV and N ¢ Q' find sets

such that N' is a nested family

3]

and F(J, W, N) = F{J', W', N").
Throughout the remainder of this chapter we assume

Je<E, WegV, Ncq'.

(5.1.4) Proposition. Let §, T ¢ N be such that

b{(S n T) is odd. Let K = y(S u T) - (y{(S8) v y{T)). Then

F(J, W, N) = F(J VK, W, N~ {8, T}u {SnT, SuT}.
. E
Proof. First observe that for anvy x e’ﬁ{ s .

(5.1.5) =x(vy(8 n T)) + x(y{(S u T)? = x(y(sS)) +

x(v(T)) + x(K).

If x & F(J, W, N) then =x(y(8)) = dg and x(y(T)) = Qg -
Since b(S n T) 1is odd, b(S U T) 1is also odd and so since

x g P(G, b), x(vy(S u T)) and x{y¥(8 n T))

< .
= dgyr S QgqT

Thus by (5.1.5),

qg F 4 ="x(y (8 0 T)) + x(¥(S v T)) - x(K)

(5.1.6) = 0

9gnr T 9yt ~

1/2(b(S n T) -1 + b(S u T) - 1)

1

1/2(b(8) - 1) + 1/2(b(T) - 1)

1

dg + aqp

Therefore equality must hold in (5.1.6) and so

X(Y(S n T)) anT 3

M

x(y(8 U T)) = qg n>s

x(K) =0

and x e F(J U K, W, N - {8, T} u {SuT, 5nT}.

5.

Gonversely, if x € F(J u K, W, N - {S, T} v {S u T, S n T})

then by (5.1.5)

x(Y(8)) + x(¥(1)) = ag ¢ + ag g ~ O
= qS + qT

so since x € P(G, b) implies x(v(S)) < and x{y(T)) < 4o

ig
we have x £ F(J, W, N).O

(5.1.7) Proposition. Let S, T ¢ N be such that

b(S n T) is even. Let L = 8(8S n T) n &6(S u T). Then

F(F, W, N) = F(Ju L, Wu (§nT), N-{S, 7} v {§ - T, T - s1).

Proof. First observe that for any x e ﬁ{E,

(5.1.8) x(v(S)) + x(y(T)) = x(y(S - T)) + x(y(T - S))

+ E(x(8{i)): i € S n T) - x{L).

Since b(S n T) Vis even, both b{(S - T) ana b(T - S) must
be odd. Suppose x e F(J, W, N). Then =x(y(S)) = qg and
x{y{T)) = Qpe Since x € P(G, b) it follows that

x(y(S = T)) < qg_g, x(y(T - 8)) < dp_g» Z(x(8(i)): i € § n T) <

b(S n T) and =x(L) 2 0. These facts together with (5.1.8) imply

(5.1.9) < + d4p_ g+ D(S 0 T) -0

dg-7

qS+qT'

Therefore eqﬁality must hold in (5.1.9), that is

x{y(S - T)) = dg_ps x(y(T - 8)) = dp.g» x(8(i)) = bi. for all

. gg + dp = X(vy(S -~ T)) + x(y(T - $)) + z(x(6(i)): iesSnT) - x{(L)

i e SnT and x{(L) = 0. Therefore

(5.1.10) x e F(J u L, Wu (SnT), N-{S, T} u

{§ -T, T - 8}).

Conversely, if =x satisfies (5.1.10) then (5.1.8) gives

x(vy(S)) + x(y(T))

dg_rp + dp.g + b{(S n T)

= dg *ap

so since x ¢ P(G, b) implies x(y(8)) = g and x(y(T)) = I

we have x(y(8)) = g and x{(y(T)) = Therefore

Qe
x ¢ F(J, W, N).O

The operations indicated by these two propositions will
provide the core of our preconditioning algorithm. Now we
show that by repeatedly applying these operations to an
arbitrary family of sets we will eventually obtain a nested
family of sets.

The following results apply to any set N of subsets
of a set V, that is the value of b(8) for S8 e N is of
no significance. However our use of them will be restricted
to sets N ¢ Q'.

Let 8§ and T be sets. We say that S cuts T or §

and T cut each other if

S nT % ¢,

S ¢T and T ¢ Si

(5.1.11) Proposition. Let H, S and T be subsets

of V and suppose § cuts . T.

(5.1.12) If H cuts S AT or S u T then K

cuts S§ or H cuts T;

cuts S and T;

cuts S or T;

cuts S§ and T,

Moreover S n T i H so

Moreover H ¢ S n T so

then H cuts S or T.

cuts S U T then Hn (S UT) # ¢ so

(5.1.23) If H ecuts S nT and S u T then H
(5.1.14) 1f H cuts S - T or T - 8§ then H
(5.1.15) 1f H cuts S - T and T -~ S then H
Proof. If H cuts S n T then Hon (S nT) # ¢ so
(5.1.16) HnS 2 ¢ and H AN T = ¢.
(5.1.17) s ¢ H and T ¢ H.
(5.1.18) H ¢S or H{¢T.
Combining (5.1.16)-(5.1.18) proves that if H cuts S n T
If H cuts S u T then H ¢ S u T so
(5.1.19) H ¢ S and H ¢ T.
Thus (5.1.16), (5.1.17) and (5.1.19) prove (5.1.13). If H
(5.1.20) HnS=4¢ or HnT=.g.
and

Moreover, suppose H n T = ¢. Then.H n (S n T) = ¢

sipce S n T # ¢ (because § cuts T),
(5.1.21) s ¢ H.

Thus if H n T = ¢ , combining (5.1.19)-(5.1.21) proves that
H cuts S and similavrly if H n § = ¢ we can see that H
cuts T. Thus (5.1.12} is proved.

Suppose that H cuts S8 - T. Then

(5.1.22) Hons$S=#¢, S ¢H, BT,

If H i 8 then we have immediately that H cuts 8. If

H

n

S then since H é S ~ T we must have H n T = ¢. It

T

tn

H then we would have T < S, contradictory to the fact
that S cuts T. Therefore T é H and so H cuts T.

If H cuts T - 8§ then
(5.1.23) HnT=#¢, T¢H and H ¢ S

and a similar argument shows that H cuts S or T and
(5.1.14) follows.

Finally, if H cuts both § - T and T - § then by
combining (5.1.22) and (5.1.23) we see that H cuts both
8§ and T, proving (5.1.15).0

Let N be an arbitrary set of subsets of V. Let
K(N) = {{8, T} € N: S cﬁts T}. Let k(N) = IK(N)l. Observe

that k(N) = 0 41if and only if N is a nested family of sets,

(5.1.24) Proposition. Let N be a set of subsets

of V for which k(N) > 0. Let {S, T} ¢ K(N). Let

N' =N~ {8, T} u {§ nT, S u T}.

N" = N - {s, T} uv {s§ - T, T - S}.

Then k(N') < (N} - 1 and k{(N") < k(N) - 1.

Proof. By using the correspondences suggested by
(5.1.12)-(5.1.153) it is easy to exhibit one to one functions
from K(N') dinto K(N) - {8, T} and from EK{(N") into
K(N) - {s, T}, since {S u T, S n T} ¢ K(N') and

{$ - T, T ~ S} ¢ K(N"). The result now follows.[

It should be observed that k(N') and k(N") need not
equal k(N) - 1, generally they will be much smaller.

The following theorem now follows directly.

(5.1.25) Theorem. Let F(J, W, N) be a face of

P(G, b). There are J', W' and N' such that J ¢ J' < E,

WecW <V and N' is a2 nested family of members of Q'

such that F(J, W, N) = F(J', W', N").

Proof. Let Jo, WO, NO be such that J ¢ JO < E,
' 0

Wec WO c v, F(JO, WO, NO) = F(J, W, N) and k(N) is as

small as possible. If k(NO) = 0 then N0 is a nested

family and we are finished. Otherwise, let {8, T} ¢ K(NO).
If b(S n T) is odd then 1let Nl = NO - {s, T} v {8SuT, SnT},

%y (y(S U T) - (y(8) u vy(T))). Then by (5.1.4),

[[¢]

let J
rat, w,) = F(J, W, N) and by (5.1.24) Kk(NY) < K(N'),

a contradiction. If b(S n T) is even then let

Nl E-NO - {s, P} v {8 - T, T - 8}, 1let 'Jl £ JO v (8(8S n T) n

§¢s uT)), let W' = %% u (s n T). Then by (5.1.7),

rat, wh, ¥1) = F(J, W, N) and by (5.1.24) k(n') < k),

a contradiction.l

5.2 A Preconditioning Algoxithm.

In this section we present an algorithm which when

presented with sets J ¢ E, W eV and N

* : * *
J ©E, W €V and N ¢ Q' such that N is a nested

Q' will find

* 1N

* % *
family and F(J, W, N) = F(J , W , N). It is based upon
the proof of (5.1.23) but manipulates the data in such a way
that in a sense the algorithm is as efficient as could be

heped for. It relies on the following proposition.

(5.2.1) Proposition. Let N be a set of subsets

of V, let 8§ be a minimal member of N and let T be a

member of N which cuts 8. Then for any H e N, if H

does not cut S then H does not cut S n T or S - T.

Proof. ‘Since B does not cut S and § 1is a minimal
member ' of N either H n 8§ = ¢ or H 2> S8S. If Hn S = ¢
then H n (S nT) = Hon (S -T) =¢ so0o H does not cut
SnT or S-T. If H>S then H2(SnT) and H D (S - T)

so again H does not cut S n T or S - T.[

Suppose there is S € N such that |§] = 1. Let {v} = 8.
E ; .
If bv = 1 then every x ¢ ﬂk satisfies

(5.2.2) x(y{v})) = 1/2(b_ - 1),

if bv > 1 then no x € ﬂ{E satisfies (5.2.2) and
F(J, W, N) = ¢. Thus when we detect a singleton {v} during
the preconditioning algorithm we will either ignore it if

b= 1 or else stop with the information that F(J, W, N)Y = ¢

(5.2.3) Preconditioﬁing-Algorithm.

we will

In

Initially we have sets J ¢ E, W < V, N
%

* %
terminate with sets J <¢ E, W < V and N

n

*

Q'
Q' such that
% *
N is a nested family and F(J, W, N) = F(J , W

*
> M)

unless F{(J, W, W)

¢ din which case we terminate with that

information.
Step 0. Let J =J, W =W, R= & and R = N.

Step 1. 1If R=¢ then go to Step 5. Otherwise scan
R to find a minimal member S. If |S| = 1 then go to

Step 4, otherwise go to ‘Step 2.

Step 2. Test each T g R - {8} in turn, if T does
not cut S then do nothing. If T cuts § then go to Step
2a or 2b according as b(S n T) is odd or even. When all

members of R - {S} have been tested, go to Step 3.

Step 2a. Replace J with J u (y(S§ u T) - (¥(8) u v(T)))
and replace R with R - {8, T} v {S u T, S n T}. Replace
S and T with S n T and S u T respectively. If |S| =1
then go to Step 4, otherwise return to Step 2 and resume
testing members of R ~ {8, T} which have not been previously

tested in this execution of Step 2.

Step 2b. Replace W with W u (8 n T), J with
Ju (8¢S nT) né(SuT)) and R with R - {S, T} u {8-T, T-S}.
Replace S and T with $§ - T and T - S respectiﬁely.
If]SI = 1 then éo to ‘Step 4, otherwise return to Step 2

and resumé testing untested members of R - {S, TI.

Step 3. Now the current S cuts no member of R - {s}.

Replace R +with R - {S} and if § ¢'R then replace R with

.10

R u {8}. Go to Step 1.

S. If b =>1

1]

Step 4. S 1is a singleton, let {v}

v
then stop, F(J, W, RUR) = ¢. If bv = 1 then replace
R with R - {S} and go to step 1.
% - * - *
Step 5. Let J = J, W =W and N = R and terminate

the algorithm.

In view of (5.1.4) and (5.1.7), at every point in the
algorithm F(J, W, N) = F(J, W, R u R). Since the size of
R is reduced by one each time we perform Step 3 and since we
either terminate or reduce the size of R by one in Step 4,
the algorithm terminates after a finite number of steps. N*
is a nested family of sets for the following reason: at each
stage of the algorithm R is a nested family and no member
of R cuts a member of R. This can be seen as follows.
Initially R = ¢ and it is trivially true. It follows from
»(5.1.11) that each application of Step 22 or Step 2b maintains
this property. Step 3 simply involves transferring a member
from R to R so this property is preserved. Step 4 either
terminates or else deletes a member from R so this property
is maintainéd.

The importance of Proposition (5.2.1) is that after
completing Step 2a or 2b we can resume our scan of R -~ {S}
froﬁ where we were, we do not need to retest the members of
"R - {8} which have already been tested.

We now determine an upper bound on the amount of work
done by the algorithm in solving a problem. We perform Steps

1 and 3 or 4 |N| times, once for each member of N. We

perform Step 2 |R| - 1 times, when scanning in Step 1 we

consider |R| sets. Since |[R[< || an upper bound on
the amount of work dome in solving a problem is of the order
IN]Z » £(V, E) where £(V, E) 4is a measure of the
efficiency of the set handling routines which perform the
manipulations of Steps 1, 2a and 2b and_so will generélly
depend upon fV] and IEI but not INI.

The order of this bound seems as good as can be expecfed
for Fhe following reason.‘ There are (Iﬁl) pairs of sets
in N and the members of each such pair have to be tested
to see whether or not they cut each other, since the relation
"ecut" is nomntransitive. Thus we would expect that our
bound on an algorithm te reblace N with a nested family
N* would be of the order |N|2 - £'(V, E) where £f'(V, E)
is some measure of our set handling efficiency.

% ® 3
We now have sets J , W and N such that

I % %
F(J, W, N) = F(J , W, N) and N is a nested family, or

else know that F{(J, W, N) $. The original set N may

have been very large,‘if bi is odd for all i e V then
v x ,
2 « However N is relatively small; by (3.2.3),

fv] - 1.

=
A

In the following sections we show how to maximize ¢ -« x
for x e F(J, W, ¥) where N is a nested subset of Q' which
contains no singlétons. This then can be combined with the
preconditioning algorithm of this section to provide an
efficient algorithﬁ for solving the problem of coptimizing over

" an arEitraryrface of P(G, b).

5.3 Pseudo Hungarian Forests

Let G = (V, E, ¥) be a graph, let V e V and let x

be a matching of G which satisfies

(5.3.1) =x(86(i)) < bi for all i e V,

In {(3.7.9) we defined d(G, V ;:x), a measure of the amount
by which x fails to be a feasible matching. Let
¥ £ Q= {5 cV: b(S) is odd and |S]| = 3} and let x be

a matching of G which satisfies (5.3.1) and
(5.3.2) x{(y(s)) = g for all S g N.

We define

(5.3.3) (e, V=, N; x) = d(G, V'3 x) -

I(b, - x(6(i)): 1 & V),
If =x satisfies (5.3.1) but violates (5.3.2) then we define
d(G, V , N; x) = .

Let X ©be the set of all matchings of G which satisfy

(5.3.1). We define

(5.3.4) D(G, V , N)

min{d(G, V , N; x): x € X}.

Clearly D(G, V=, N) < =« if and only if G has a matching
x satisfying (5.3.1) and (5.3.2) and D(G, V=, N) = 0 if
and only if G has a matching x satisfying (5.3.1), (5.3.2)

and
(5.3.5) =x(8(i)) = b, for all i e V.

Finally, observe that

.13

(5.3.6) d{(G, V, N; x) = 1 if and only if x 1is

a np matching of G which satisfies (5.3.2) and comnsequently

(5.3.7) D(@, V, N) = 1 if and only if G has

a mnp matching x* which satisfies (5.3.2).

We say that a nested family N of members of Q is a

shrinkable family if G[S] x N[S] 4is shrinkable for all

S € Q. (Recall N[S] = {T € N: T < S§}).

Throughout much of the remainder of this section we
will be assuming that N 1is a shrinkable family of members
of Q. This is because the algorithm presented in the
following section reﬁlaces the sets J, W, N where N is
a nested family of members of Q' with sets J', W', N'
where N' 1is a shrinkable family of subsets of V aﬁd such
that

F(J, W, N) = F(J', W', N").

Let N be a shrinkable family of subsets of V. We
saw in (3.7.12) that any mateching x of € = (V, E, y) =

¢ x N which satisfied X(§_(1)) < b, for all 1 e ¥ could
be extended to a matching x of G which satisfied (5.3.1)

d(G, V ; x) where

and for which d(G, V ; x)

(V- n V) u {maximal S € N: 8§ < V }.

(5.3.8) V

It is easy to see that x can be constructed so as to

satisfy (5.3.2). Thus we have

(5.3.9) Proposition. Let G = (V, E, ¥). be a

graph and let N be a shrinkable family of subsets of V.

.14

Ler G = (V, E, §) = G x N, let V c V and let V_ be

(]}

defined as in (5.3.8). Then any matching x of which

satisfies

x(8 (1)) £ b, for all i e V
G 1

can be extended to a matching x of & which satisfies

{5.3.1) and (5.3.2). Moreover

d(G, V , N; x) = d{(G, V ; x).

What is of special interest to us here however, is that
when we have constraints (5.3.2), we have the following

complementary result.

(5.3.10) Proposition. Let G = (V, E, y) be a

graph and let N be a shrinkable family of subsets of V.

Let G = (V, E, W) = @ x N, let V_ c V and let v be

defined as in (5.3.8). Then for any matching x of G which

satisfies (5.3.1) and (5.3.2), x = XIE is a matching of G

satisfying

(5.3.11) - x(§ (1)) s b,__for all i e v,
G

(5.3.12) d(G, V_, N3 x) > d(8, V ;.%)

Proof. Suppose x 1is a matching of G which satisfies
(5.3.1) and (5.3.2). Then since x(y(S)) = dg for all

S € N, it follows from (5.3.1) that

x(8(8)) £ 1 = by for all § e N.

This combined with (5.3.1) proves (5.3.11).

By (5.3.1) and (5.3.2), for any pseudonode 5§ € V on N,

.15

x|T(S) is'a np matching of G[S] deficient at some node

v{(8) € S. Therefore

(5.3.13) Z(bi - x(8¢(i)): i € 8) - x{8(v(s)))

= by(s)

(5.3.14) = b, - x(8§ (8)).
S ¢

Therefore

d(6, V7, N3 x) = I(b, - x(8(i)) i & V)

= E(b, - x(8§(I)): 1 e V - u(i))

+ (b, - x(8(i)): i e S n V., $ £ N)

where N is the set of maximal members of N.

Therefore by (5.3.13)
(5.3.15) d(G, V , N; x) = I(b, - x(8(i): i ¢ Vo -u(R))

+ I(b, -~ x(8(v(S))): S & N, v(S) € V).

(s)

For any S ¢ N, S € V only if 8§ ¢ V. and hence only if

v(S) & V . Therefore by (5.3.14) and (5.3.15)
dce, v-, N; x) = Z(b, - x(8(i)): i ¢ Vo - u(E))
+ Z(b -

g = X(5_(8)): 8 e Nn¥
G

and (5.3.12) is proved. Notice that we have strict inmequality

in (5.3.12) if and only if for some S & N, we héve_ 5 ¢ VE, and

x(38(5))

1t

0 and x(8(i)) = b; ~ 1 for some i e 5 0 v .0

Combining (5.3.9) and (5.3.10) we have

{(5.3.16) Theorem. If G, G, V B \ij and N are

as in (5.3.10) then

Proposition (5.3.10) states a major difference between
finding matchings satisfying (5.3.1) and (5.3.2) and simply
finding matchings satisfyving (5.3.1). 1In this latter case
it is not true that every such matching of G is a matching
of G satisfying (5.3.11). Thué in the simpler problem,
shrinking was never permanent, in Step 9e of the blossom
algorithm we allowed for the possibility of expanding odd
pseudonodes of Hungarian forests. However we shall see that
when treating the problem of this chapter, shrinking can be
permanent whenever we have a constraint x(y(S8)) = dg for
a set S which we shrink.

Let G = (V, E, ¢) be a graph, let R be a shrinkable
family of subsets of V and let N ¢ R. Let ¢ = (V, E, ¥)
G x R and let F be an alternating forest contained in

G with respect to a matching x of € which satisfies

X(8 (1)) < b, for all i e V.
G + '

Let V be a subset of V and let

(5.3.17) Vo= (V a¥)ui{SeRn¥V: S cV }.

We say that F is a pseudo Hungarijan forest over N with

respect to x if F satisfies (3.7.2)-(3.7.4), (3.7.6),

(3.7.7) and .

(5.3.18) every odd node of F is either a node

Ls

of G or a member of N.

Thus the difference between a Hungarian forest and a pseudo
Hungarian forest is that we allow odd nodes in pseudo
Hungarian forests to be pseudonodes, a situation which was
not permitted for Hungarian forests. We will see that when
we require x(y(8)) = qg for all 8§ & N, then pseudo‘
Huﬁgarian forests play a role analagous to that played by

Hungarian forests when we make no such requirement.

(5.3.19) Theorem, Let G = (V, E, ¢) be a graph,

‘let V_c V__and let V__ be as defined in (5.3.17). Let

R be a shrinkable family of subsets of V and let N < R,

Let G = (V, E,) = G x R and let F be a pseudo Hungarian

forest over N contained in € with respect to a matching

X of G. Let K V be the set of roots of trees of F.

in

Then D(G, V , N)

z(bi - X(8(i)): i & K).

I

Proof. Let G' = (V', E', ¢") G x N, let

(V" n V') u {SeNnV':ScV} By(53.16),

<}
it

= T _
(5.3.19a) D(G, V , N) = D(G', V 7).
Let R = {S e R: S ¢ T for any T e N}. That is, R

is the set of members of R which are not contained in

pseudonodes of G'. For each § ¢ R we define

(5.3.20) V'(S) = (S nvV')u {TeNnV': Tc Sk

Thus V'(S) is at the set of nodes of V! which‘correspond

in the natural way to 8. Let

(5.3.21) R' = {v'(s): S ¢ R}.

1)

It is easily seen that R' is a shrinkable family of
subsets of V' and that G' x R' 4is isomorphic with G.
Moreover E(F) dis the edge set of a Hungarién forest F'

in G' x R' with respect to x'. Therefore it follows from

(3.7.17) that
(5.3.22) D(Gc*, V') = Z(b, - x(8(i)): i e K')

where K' dis the set of roots of trees of F'. But
Z(b, - x(8(i)): i ¢ K') = Z(b,; - x(6(i)): i & K) so (5.3.19a)

and (5.3.22) combine to prove the theorem.[]

This theorem is used in the algorithm to justify
terminating when no feasible solution exists. We make use
of the following analogue of Theorem (3.7.36) to justify
replacing a constraint x(y(S)) = g for some S £ Q' with

a set of constraints

x(8(4)) = bi for 1 ¢ W(S8) c V
xj =0 for 3 e J(S) < E
x(y(T)) = qp for T e N(S) c Qo.

(5.3.23) Theoxrem. Let G = (V, E,) be a graph,

let P be a subset of V, let R be a shrinkable family of

subsets of P ‘and let N ¢ R. Suppose D(G[P], P, N) = 1.

Let G = (V, E, ¥) = ¢[P] x R, let F be a pseudo Hungarian

forest over N contained in E, let I and Z be the sets

of odd and even nodes of F respectively. Then a matching

x of G satisfying (5.3.1) and (5.3.2) satisfies

(5.3.24) =x(y(P)) = q,

.19

if and only if

(5.3.25) 2, =0 for all 4 e { u 8(i) u 8(P)) -

ieT
u §(i),
ieZ
(5.3.26) =x(8(i)) = b, for all ie P - (Z u u(Z n R))
(5.3.27) =x(v(S)) = g, for all S e Z n R.
Proof. Let G' = (Vv', E', ¢') = G[P] x N. By (5.3.16),

(5.3.28) D(G', V') = D(G[P], P, N) = 1.
Now suppose x satisfies (5.3.1) and (5.3.2). We show

(5.3.29) d(c[P], P, N; x) =1 4if and only if

a(e', v'; x|E") = 1.

Suppose d{(G[P], P, N; x) = 1. Then by (5.3.10)

d(c', v', x|E') 1, by (5.3.28) therefore we have

A

(e, v', x|E") 1.
Conversely, suppose d(G', V', x|E') = 1. Let N’ be

the set of maximal members of N. rThen
x(y(P)) = x(E') + E(x(s): 5 e N").

Since d(G', V', x|E') =1, x(E") = 1/2(b(V') - 1). Therefore,

using this and (5.3.2)

x(y(P)) 1/2(b(V') - 1) + 1/22(5(3) - 1: 8§ e N")

1/2¢(b(V' - N') + b(V' n N") - 1

n

+ 2(b(S) - 1: S & N')).

But bv =1 for all v £ V' n N' so we have

1/2(b(V' = N'") + |N'| - 1 + z(b(8) - 1: § & N'))

x{y(P))

1/2(b(P) - 1)

and so d(G[P], P, N; x) = 1. Thus (5.3.29) is established

Now let R

t

{s ¢ R: S ¢ T for any T e N}. For each

S e R let V'(S) be defined as in (5.3.20) and let

R' = {V'(S): S ¢ R}. Then R' 1is easily seen to be a
shrinkable family of subsets of V' and G' x R' is disomorphic
with G. Moreover, E(F) 1is the edge set of a Hungarian

forest F' in G6' x R', Therefore by (3.7.35)

d(c', v', x|E') = 1 if and only if

(5.3.30) x(YG,(S)) qS' for every S e R' n V(F'),

fl

(5.3.31) X(SG,(i)) bi for every odd node 1

of F' and for every i e V' - V(F') - u(R'" n V(F')),
(5.3.32) x. =0 for all j e u & ,(i) -
J ., vt G
. iel
v &.,(i).
igZ! G
In view of (5.3.1) and (5.3.2) it is easily seen that

(5.3.30) and (5.3.27) are equivalent and that (5.3.31) is

equivalent to (5.3.26) and

x. =0 for all 3§ e 8(8) - u &6(i).
J ie?Z

It is easily seen that (5.3.32) is equivalent to
x, = 0 for all j e wu 8(i) - v &(i).
3 iel ieZ

The theorem now follows from these facts and (5.3.29).0

.21

5.4 The Face Optimization Algorithm (Phase II)

We are given a graph G = (V, E, ¥} and a vector
b = (bi: i € V) of positive integers. Let ¢ be an
arbitrary real vectory let J be a subset of E, let W be
2 subset of V and let N be a nested family of members
of Q. We wish to solve the problem: maximizé c * X ovetr
x belonging to the face F(J, W, N) of ©P(G, b).

By (3.4.5) and (3.1.7) the linear program we wish to
solvé is

maximize ¢ * X

over X € ﬂ{? which satisfy
(5.4.1) x‘j = 0 for all j e J

(5.4.1a) xj 20 for all j ¢ E - J

(5.4.2) =x(8(i)) = bi for all i e V - W
(5.4.3) =x(68(i)) ='bi for all 1 e W,
(5.4.4) x(y(8)) = dg for all S & Q - N,

(5.4.5) x(y(8))

9g for all S & N.

The dual linear program is

minimize Z(biyi: ie V) + Z(qsys: $ e Q)

for y ¢ ﬂ{VUQ which satisfy
(5.4.6) Vg 20 for all S e Q - N,

(5.4.7) Yg unrestricted in sign for S & N,

.22

(5.4.8) Y4 2 0 for all i ¢V - W,
(5.4.9) Ys unrestricted in sign for 1 e W
(5.4.10) v (@i)) + y(Q(i)> 2-cj for all j € E - J

where Q(j) = {8 e Q: j ¢ v(8)} for any j ¢ E.

The important difference between this dual linear program
and the linear program (3.5.6)-(3.5.9) is (5.4.7), for this
will enable us to let the dual variables of some pseudonodes
take on_negative values, and consequentiy the§ can be kept
shrunk throughout the course of the algorithm.

Tﬁe complementary slackness conditions for optimality
of a solution x to (5.4.1)-(5.4.5) and a solution y to

(5.4.6)~(5.4.10) are

]

(5.4.11) xj > 0 only i y(p(3)) + vy(Q(3)) = ¢,

J
for all j € E - J,

Il
o

(5.4.12) vy 0 only if =x(6(i)) for

isV-W,

{5.4.13) Vg > 0 only if =x(y(S)) for

]
fa
v

S & Q - N.

The general approach of our algorithm is to process
each member ‘S of N din turm, finding sets J(S) ¢ E,
W(S) ¢ V and a shrinkable family N(S) ¢ QO such that we

can replace the constraint
x(8(8)) = qg

with the constraints

LD

x(&8{(i)) = bi for all 41 = W(s),

xj = 0 for all j e J(S8),

x(y{T)) = for all T £ N(S).

A

Then we carry on, applying the algorithm to this modified
problem.
Eventually we find sets J c E, W < V and a shrinkable

family N such that
F(J uJ, WuW, N) = F(J, W, N)

and we find an optimal solution x* to the problem of
maximizing ¢ - x over F(J u J, Wu W, N). We also_obtain
an optimal duwual solution y* to this problem. Thus x
satisfies (5.4.1)-(5.4.5), y* satisfies (5.4.6)-(5.4.10) and

% * .
X and vy satisfy (5.4.11)-(5.4.13) where we replace J,

W and N with J u J, Wu W and N respectively.
At each stage of the algorithm we have a set M < N of

processed members of «N. This set has the property
(5.4.14) 4if S € M, T ¢ N and T c 8 then T e M.

{In other words, we always chose a minimal” member of N - M
for processing).

Initially, we let M = ¢,

For each 8 ¢ M we have sets J(S8) © E, W(S) ¢ 3 and
N(S) ¢ QO{S] v {8} which have the properties déscribed in

u J(S), W= u W(S) and
SeM SeM

(5.4.24)-(5.4.26). We let J

Nz u N(S).. Then
SeM

.24

(5.4.15) F(J, W, M) = F(J v J, Wu W, N).

Initially, of couise, J=W=0N= o.
We have a dual wvariable Y defined for every i & u(M).
These are the only nodes for which a dual variable is defined
0

at present. For every S5 e Q we have defined a dual

variable Vgr This dual solution satisfies

(5.4.16) y(p(i)) - v(Q°()) = c, for all

e U y(8) - (JuJ).
SeM

I

Let E- = {je uy(s) - (Fud): y@ei)) + vy = cj}.

SeM

Let G be the graph (V,‘E=, w|E=).
We have defined a shrinkable family R of subsets of
V such that

(5.4.17) N < R,

(5.4.18) for any S € R there is a set T & M

such that s «T.

The sets S € R have been constructed in applications of
the blossom algorithm in earlier executions of Step 2 of the

algorithm to be described. The members of R satisfy

(5.4.19) for each S & R, H(S) = G [S] x R[S]

is spanned by a blossom B(S).
The dual sclution y has the properties

(5.4.20) yg = 0 for all S e Q° - &,

.25

(5.4.21) yg 2

We have a matching

0 for all S & R - N.

x of G defined such that

(5.4.22) x, = 0 for all j ¢ E - E ,
(5.4.23) x|E(B(S)) 4dis a np matching of B(S)
and x, = 0 for all j e E(H(S)) - E(B(S)) for all S & R.
Finally, for each S ¢ M we let R<S> = {T & R:
T ¢ 8}. With each S € M we have associated a pseudo
Hungarian tree F(S) over N[S] = {T € N: T < S} contained
in the subgraph Gg of G[S] x R <8> obtained by deleting
the members of J v u J(T). Moreover where I(S) and
TeN[S]
Z(S) are the sets of odd and even nodes of -‘F(S) respectively,
we have
(5.4.24) J(S) = {3 € E: (j € 6(8) u 5 € v 8, (1))
ieI(s) s
iezZ(s) °S
(5.4.25) W(S) =S - z(S) - u(Z(S) n RS>),
(5.4.26) N(S) = {T ¢ Q°: T & z(S) n RS> }.
Now we describe the algorithm.
Step 1. If M = N then go to gStep 5. Otherwise choose
a minimal set S € N - M which we will now process. First
we define dual variables yi for i e § and yé for
T ¢ Q0<S> = {T ¢ QO: T ¢ S} so that
. 0,.
(5.4.27) y'"(W({)) + y'(Q(E)) 2 ¥

joe y(s) - (3 v J)

for all.

.26

vy () + vy’ G

(5.4.28) y' (b3 + v' @°GN

for all j e u y(T) - (J u J),
TeR[S]
This is easy to do unless there are edges j € y(8) - (J u J)

incident with nodes belonging to two distinct maximal members
of R[S} and such that y(y{(j)) < cj. Tn this case let ¥

be the set of all such edges and let:

g = l/2max{cj - y(P(i)): j & Y}.

(Note that by (5.4.14) S ¢ T for any T € M so by (5.4.18)
and since N is a nested family, a maximal member of R[S]
is a maximal member of R and hence y(¥(j)) + y(QO(j)) =
y(P (i)Y + v(R(j)) by (5.4.20). But R(j) = ¢ for all
ieY sowehave y(u(i)) =y +y@%G3)).)
Let T be any maximal member of R[S] such that
Y n 6(T) # ¢. By (5.4.14) and (5.4.18) T dis a maximal
member of R. By (5.4.16) 3 ¢ vy (P) fbr any P & M. Thus
j € 8(D) for some D e M such that T & N(D). There is
a Hungarian tree F(D) defined, by (5.4.24) and the definition

of J, T must be an even pseudonode of F{(D).

Define y' as follows.

v; + o for all i e D n (Z(D) u v(Z(D) n R))

(5.4.29) 'Yi - o for all i e D n (I(D) u u(I(D) n R))

3]
b
[

Yy for all i £ D = V{(F(D)) = u(V(F(D)) n R).

Yp + 20 for every P £ I(D) n R

(5.4.30) y% Yp - 20 for every - P & Z(D) n R

. yp for all P e Q0~ D - V(F(D)).

.27

Notice that the only nodes for which the dual wvariables
are decreased are odd nodes of F(D) and nodes contained
in odd pseudonodes of F(D). By (5.4.24) any edge j meeting

such a node and which is not a member of J U J must also

meet a node whose dual variable increased by o. Thus y'.

will satisfy our feasibility criteria. Moreover for any

j e y(®) - (J u J) we have

y) + v QPG = vy + %G

so (5.4.22) will still be satisfied when E is defined

relative to y'.

1

We define y in this manner for all D € M which

contain a maximal member T of R[S] such that Y n 8(T) % ¢.

Thus we have

y'(P(3)) = y({j)) + 20 for all j g ¥

since each j € Y joins even nodes or nodes contained in

even pseudonodes of pseudo Hungarian forests. We let

i =y, for all i & u{(R[S]) which have not yet had yi

defined and we let yi be defined for i & 8 - u(R[S])

y

sufficiently large that (5.4.27) will hold. We let yé = Yo
for all T ¢ Q0'<S>> which have not yet had a dual variable
yé defined.

Notice that (5.4.29) and (5.4.30) may have caused yi
to become negative for some 1 & 8 and caused y; to
become negative for some P ¢ QO[S]. However any such i

and P belong to W and N respectively and are not

required to have nomnnegative duval variables.

« L0

Step 2. Apply the blossom algorithm with the restrictions
(5.4.31) and (5.4.32) to the graph G(S) = (5, y(S8) -
(J v J), miy(S) - (J uJ)) to attempt to find a soclutiocn .
to the problem

maximize E(cjxj: j g yv(8) - (J v J))

vhere
xj is a4 nonnegative integer for all j & y(S) - (3 u J),
x(8§{(i)) = bi for all i e 8.
We start with the initial solution x|y(s) - (JuJ), y'!
and the nested famiiy of sets R[S5]. These are easily seen

to satisfy our requirements for a starting set of values
for the blossom algorithm except for the fact that there may
be members T of N[S] < R[S] for which Yo <.0. This

problem is handled by the restrictions

(5.4.31) we do not consider members of N when
computing the wvalue of '63 in Step 9a of the blossom

algorithm;

(5.4.32) we do not allow the blossom algorithm teo

expand members of N in Step 9Ye.

Since S8 € N < Q, b(S) 1is odd and the algorithm must
terminate in "gtep 10 with a nmew matching x of G(S), a new
dual solution y, a new nested family R and a pseudo
Hungarian forest F(S) over N[S8] . contained in the subgraph
G, of 6G[s] x R <5> obtained by deleting all members of

Ju J.

.29

Step 3. Let K ©be the set of roots of trees of F(S),

let

M.

4=z, - E(cé (1)): i€ K).

S
If d =1 then go to step 4. Otherwvise d = 2 so by
(5.3.19), D(G(S), 8, N[S]) = 2. Therefore
F(JuvuJ, W, Nuv {S}) = ¢ so by (5.4.15) we have F(J, W, N)=¢

and we terminate the algorithm with this information.

Step 4.(d = 1) F(S) consists of a single tree

rooted at a node r(S) ¢ V(GS) and x(8, (r(s))) = br(S)-l'

Cs

Let
J(S8) = {j ¢ E: (j ¢ 6(S) or j is incident with an
odd node of F(S8)) and (j 4is not incident with an even

node of F(3S)},

W(s) = {i e s: i 1is not an even node of F(S) or

contained in an even pseudonode of TF(S)},

N(S) = {T ¢ QO: T 1is an even pseudonode of F(S)}.

By Theorem (5.3.23)
F(J uJ, Wu (Wns), §Foudist)=FFuvduJI(s), Wuwis),

N u N(S)).

Then we replace M with M u {S} and J, W and N with
J v J(S), W u W(S) and N v N(S) respectively and (5.4.15)
is still satisfied.

~

We define x by

if j e y(S8) - (3 u J)

H]
L
L

xj if j e E - (y(8) - (J v J),

.30

~

We define y by

if i e S,

>
o

y, if 1ie u(M) - s

) yp if T e Q)

Yo

n

if T e Q - QO[M].

Replace R with R - R[S] u R and x and y with x and

~

¥ and return to Step 1.

Step 5. We have now processed all the members of. N

‘and we are going to apply the blossom algorithm to the graph

G' obtained from G by deleting the edges in J u J.
T

First we define dual variables Yi for the nodes i ¢ V

and y% for all T ¢ QO so that

for all

v
0

(5.4.33) y' @G + v %G

jeE-(JuJ)

I

(5.4.34) y'(0(3)) + v' Q%)) = vy) + vy

for all j € u y(T) - (J v J)
TeR

(5.4.35) y£ 2 0 for all i e V - W.
Let Y be the set of all edges 3 e y(S8) - (J u- J) such

that y(p(j)) < cj and the ends of 3j are two maximal members

of R. Let

Q
[{H]

1/2mak{cj - y(¥(id)): § e YI.

Let

Q
1
=]
4]
"
-~
H
(o]
=
m
<3
|
=
W]
o
D,
d
Fal
o
-

Let

Now for any D & N which contains a maximal member T of
R such that Y n §(T) # ¢ or contain a node i e T - W

such that y, < 0 we define y; and vy as in (5.4.29)

'
P

and (5.4.30). By (5.4.25) any i € T ~ W is an even node
of F(D) or is contained in an even pseudonode of F(D),
so we add o to the dual variable of such a node. In Step
1l we discussed the effect that this dual change had on the
feasibility of the constraints y(p(j)) + y(QO(j)) > cj,
the same remarks apply here.

We let yi =y, for all i & U(R) which have not yet
had -yi defined and we let yi be defined for i e V-U(R)
sufficiently large that (5.4.33) and (5.4.35) will hold.
We let y% 2 yq for any T e QO which have not yet had a
dual variable y% defined.

Now we apply the blossom algorithm to G', fhe graph

obtained from G by deleting the edges in J u J, taking

v W U W and again applying the restrictions (5.4.31) and

It

(5.4.32). We take y', x and R as starting sclutions.

The blossom algorithm may terminate in Step 10 with a
pseudo Hungarian forest F over N. If this is the case,
then by (5.3.19) D(G', W u W, N) 2 1 and consequently
F(J uJ, WuW, N) = ¢. Thus by (5.4.15) F(J, W, M) = ¢
and consequently there exists no solution to our problem;
we terminate the élgorithmlwith this information.

Otherwise the blossom algorithﬁ terminates in Step 11
with a matching X ‘and a dual solution y*. We define a

*
matching x of G by

.32

%
The matching x is the solution we seek. Because of our

: *
restriction (5.4.32) we must have x (y(S)) = dg for all

- %
S ¢ N. By the operation of the blossom algorithm x (6(i))=bi

- * %
for all 1 € Wu W. By our definition of x s xj = 0 for
- * - - %
all j e Jwv J. Thus x ¢ F(Ju J, Wu W, N); x is optimal

*
for the following reason. The matching x and dual

*
solution ¥y can be seen to satisfy the conditions (5.4.1)-

(5.4.13), substituting J uJ for J, Wu W for W and

N for N. Therefore X maximizes ¢ * x over

F(J uJ, Wu W, §N). By (5.4.15), F(J, W, N) = ¥(JuJ, WuW,N)
so x* maximizes ¢ * x over F(J, W, N). If an optimal
dual solution y to the.original problem is required, then
perform the following step, Step 6. Otherwise terminate the

algorithm.

* *
Step 6. Our optimal solutions x and y satisfy

the complementary slackness conditions, however in general
y* will not sétisfy the conditions (5.4.6)-(5.4.8) and
(5.4.10). That is there may be edges j € J - J such that
y*(w(j)) + y*(QO(j)) < cj, there may be nodes i ¢ W - W

such that yi < 0 and there may be sets S & N - N such
that Yg < 0. We now describe how to obtain a vector 'y
which will satisfy the complementary slackness conditions
(5.4.11)~(5.4.13) relative to x* and which will satisfy
(5.4.6)-(5.4.10).

Initially, let M = N. M is the set of unprocessed

numbers of N. We define a vector § £ ﬁ(VUQ by

.33

y: for all i e V,

“d
It

% 0
Vg for all S ¢ Q,

]
[45]
{]

0 for all s e Q - QO.
At each stage we have

(5.4.36) y(v(i)) + y(Q(3)) 2 ¢. for alil

k|
j e BE-J3- u J(8)
SeM
(5.4.37) y. 20 for all 41 e V - W — U W(S)
1L

SeM
(5.4.38) §Tzo for all T & Q — N - u N(S).

SeM

Step ba: If M = ¢ then stop, by (5.4.36)-(5.4.,38)

y must satisfy (5.4.6)-(5.4.10). Otherwise choose a

maximal member S of M. Let

oy = max{0} v {e, - y(¥(i)) - y(QG)): I & I(8) - I,
G, = max{0} v {-y.: 1 ¢ W(S) - W},
1
oq = 1/2 max{0} vu {—§T: T e N(S) - N}.
Let o = max{cl, Ty 03}. If o =2 0 then replace M with

M - {S}, we still have (5.4.36)-(5.4.38) satisfied, return to

“Step ba. _ | —
Otherwisé; let F(S) be the pseudo Hungarian forest as

.defined in the algorithm, let J(S) and Z(S) be the sets

of odd and even nodes of F(S) respectively. We define a

dual solution y' by

Y; if 1 &g (V - 8) or if i ©belongs to Z(S)

or is contained in a pseudonode of Z(S),

§i + 20 1if 1 Dbelongs to I(S) or is contained

i in a pseudonode belonging to I(S),
§i + 0 4if 1 € S and i is not a node of F(S)
or contained in a pseudonode of F(S8).
vy, 1if T e Q - V(F(5)) - {s},
§T - 20 if T =8 or if T is an odd pseudonode
Yo Z
T of F(S),

Yp ¥ 200 if T 1is an even pseudonode of F(S).

ata

Now if there is any edge j & §(S8) such that x; > 0 then
jeE=-(JulJ) so j must meet an even node of TF(S) or

a node contained in an even pseudonode of F(S). If there

is any node i e 6(S) such that x*(ﬁ(i)) < bi then

i eV- (WuW) so i must be an even node of F(S) or be
contained in an even pseudonode of F(S). For any edge

i€ y(S) such that y'(4(3)) + y'(Q(I)) > YW () + ¥,
one end of j must be an odd node of F{(S) or a noder
contained in an odd pseudonode of F(S5) and the other end

of j must not be an even node of F(S5) or contained in an
even pseﬁdonode of F(S). Therefore j & J(8) and consequently

* *
xj = 0. Thus it can be seen that x and y satisfy the

complementary slackness conditions (5.4.11)-(5.4.13).

Finally, note that yi-z §i for all 1 & V and

yp 2 ¥, for all T e Q- {8} - I(8). S belongs to N and

.35

if T e Q@ n I(S) then T must be a member of N(P) for

some P < 8. Thus T ¢ U N(5). Therefore we replace
SeN~M

y with y' and M with ¥ - {S} and (5.4.36)-(5.4.38)
are seen to be satisfied. Go to Steﬁ 6a.

This completes the description of the algorithm. We
now show that the amount of work performed by the algorithm
has an upper bound of the order b(V) + |[v| + |E|, the sanme
as the blossom algorithm,

For any set S € N we let N*(S) be the set of maximal
members of N[S]. It is easily seen that an upper bound
on the amount of work donme in each execution of step 1 is of
the order |V]| - |E|. In Step 2 we apply the blossom
algorithm to G(S). From (5.4.23) it can be deduced that
x]y(T) is a np matching of G[T] for each T & N*(S).
Therefore A(G(S), x|y(S) - (J v J), ¥) < b(S) -

E(b(T) - 1: T & N (S)), where A(G(S), x|y(5) - (T u 3),)
is as defined in (3.8.22). ‘Therefore by (3.9.1) an upper

bound on the amount of work performed by this execution of
the blossom algorithm is of the order (b(S) - I(b(T) - 1:
T e N(8))) » S| - v(S)| < (b(S) - Z(b(T): T e N'(S)) 4

IN*(S)I « {v] - |E|]. The amount of work performed in each
execution of .Steps 3 and 4 has an upper bound of the order

|[v] + |E]. Thus

(5.4.39) for each § £ N, the amount of work
performed in processing S8 has an upper bound of the order
' % * ‘
b(S) - Z(b(T): T e N (S)) + [N (S)| .+ |v] - |E].
In ‘Step 5 we apply the blossom algorithm to the graph

%
G'. Where N is the set of maximal members of N, it can

.30

be seen that an upper bound on the amount of work performed
in Step 5 is of the order (b(V) - I(b(T): T ¢ N*) +.]N*‘) .
lv] « |E|]. 1If we add this to the sum of the bounds (5.4.39)
all S8 & N, we see that an upper bound on the amount of

work performed in Steps 1 to 5 of this algorithm is of the

order (b(V) + |N|) - |V] -« |E

It is easily seen that an upper bound on the amount of
work performed in Step 6 (if this step is performed) is of

the order " |N| - (|V| + |E|). Thus

(5.4.40) An upper bound on the amount of work
performed by the face optimization algorithm is of the orderxr

(b(Vv) + N[y - |v| + |E].

However N is a nested family of sets which contains no
singletons so by (3.2.4), |N| < |V| - 1. Thus since bv =1

for all v € V, we can obtain the following from (5.4.40).

(5.4.41) Theorem. An upper bound on the amount

of work performed by the face optimization algorithm (phase

IT1) in solving a problem is of the order b(V) - |v| « |E|."

We saw in Section 5.2 that an upper bound on the amount
of work performed in the first phase of the face optimization
algorithm, the preconditioning algorithm, was of the ordér
.|N|2f(V, E) where N was the original, not necessarily
nested, family of members of Q and f(V, E) was a boﬁnd
on how efficiently we could perform the set manipulations of
the algorithh. In practice, 1f |N|, is reasonably small,

the amount of work performed in the preconditioning phase

for

53.37

will be small compared to the amount of work performed in

the second phase. However since |N| could be as large as
|v]-1 . i X . .

2 s there could arise situations im which the

preconditioning phase was the more time consuming phase of

the algorithm.

5.5. The "Big~M" Method.

In this section we describe how the problem of
maximizing ¢ * x over a face F(J, W, N) of P(G, b)
can be solved by a straightforward application of the
blossom algorithm. Recall that tﬁe blossom algorithm described
in Chapter 3 solved the problem of maximizing ¢ + x over
a face F(¢, W, ¢) of P(G, b). We could use it to
maximize over a face F(J, W, ¢) of P(G, b) by applying
it to the graph G' = (V, E - J, w]E - J) and if an optimal
matching x' was found, we obtain our solution x* by
defining

x, for j & E - 7J,
(5.5.1) x; =

0 for j e J.

1

We construct a new objective function c¢' = (c&: j e BE - J)

T f

with the property that if x maximizes c¢' ¢ x over the
face F(¢, W, ¢) of P(G', b) and if F(J, W, N) # ¢ then
x* defined in'(5.5;1) maximizes ¢ * x over the face

F(J, W, N) of P(G, b).

For every x ¢ F(¢, ¢, N) ¢ P(G, b)

E(x(y($)): S ¢ N)-= Z(qq: S ¢ N) = q(N).

.38

For any matching x ¢ P(G, b) - F(¢, ¢, N)
L(x(y(S)): S ¢ N) s q(N) - 1.
Therefore if we define
fj = [{S e N: j ¢ Y(S)}l for all j € E

then

(5.5.2) £ <« x = q(N) if x e F(¢, ¢, N),

(5.5.3) £ +« x £ q(N¥) ~ 1 if x 4is a matching
belonging to P(G, b) - F(¢, ¢, N).

Let A"

max ({0} v {cj: j € E}) and let

Ay, = min({0} v {cj: j & E}). Then for any x e ﬂ{E
A(E) € ¢+ x < ATx(E).
If x ¢ ?(G, b) then =x(§(i)) = bi for all i € V so
x(E) = 1/2b(V).
Since A 2 0, A, = 0 we have therefore
(5.5.4) 1/2b(V)A, < ¢ » x < 1/2b(V)A~.
Let
(5.5.5) =20 - 41,
For each j & E define
(5.5.6) e} =M . £, ey

Then for any x e F{(¢, ¢, N) by (5.5.2) and (5.5.6)

3 Y

et v+ x =M+ qg(N) + ¢ * x
(5.5.7)

v

M o+ q(N) + 1/2b(V)r, by (5.5.4).

For any matching x € P(G, b) - F(é, ¢, N) by (5.5.3) and

(5.5.6)

c' «+ x =M ¢ (gq(N) - 1) + ¢ - x

IA
=

(5.5.8) an - AW GF - e + 2ILT

by (5.5.4) and (5.5.5)

M o+ q(N) + 1/2b(V)x, - 1.

Thus (5.5.7) and (5.5.8) show that any member =x of

F(¢, ¢, N) makes <¢' « x take on a value at least one

larger than does any matching =x belonging to P(G, b) -

F(¢, ¢, N). Moreover, (5.5.7) shows that for any members

xl and x2 of F(¢, ¢, N), c' = xl - c' - x2 = c - xl - ¢ - x2
so that the relative values of the matchings x ¢ F(¢, ¢, N)

with respect to c'

are the same as their relative values
with respect to c.

Now we use the blossom algorithm to solve the problem of
maximizing (c'|E - J) * x over X belonging to the face
F(é, W, ¢) of P(G', b) where &' = (V, E - J, ¢|E - J).
If the algorithm terminates with a Hungarian forest then the
face F(¢, W, ¢) of P(G", b) 1is empty, and so the face
F(J! W, N) of P(G, b) is empty.

1f the algorithm terminates with an optimum matching x'
then let x* be defined as ip (5.5.1). 1If

boox® <M . q(N) 4 1/2b(V)A, - 1 then x & F(é, ¢, N);

' « x take on a

since any x £ F(¢, ¢, N} would make ¢
larger value. F(¢, ¢, N) = ¢ and hence F(J, W, N) = ¢.

However if c¢' « x 2= M +« q(N) + 1/2b(V)ar, then

*

T . x over

% %
x €& F(J, W, N) and so x must maximize ¢
F(J, W, N). Moreover the value of the solution is easily

computed, by (5.5.7)
c *x =c¢' v x ~-M-* g(N).

Thus this procedure reduces the face optimization problem
to a matching problem which can be handled by the blossom
algorithm, Since (Theorem (5.9.2)) the bound on the amount
of work performed by the blossom algorithm is independent of
the edge costs, the bound on this procedure is the same as
that of applying the blossom algorithm to simply maximize
¢ * x over P(G, b)., The only drawback with this approach
is that 1f b(V), A* and ~q(N) are large then a computer
implementation might experience some difficulty in storing

all the significant digits in the numbers ci

and in the
dual variables. The algorithm of Sections 5.2 and 5.4 does o

not have this difficulty.

5.6. Multi-Optimization in Matching Problems

In this section we describe how the principle of
complementary slackness can be used with the algorithms of
this chapter to solve matching problems in which we have
specified not just one, but several ijeqtive functions to
be maximized according to some levels of priorities. .For

example, we may be given a subset J of the edges of

¢ = (V, E,) and a vector c € ﬁ{E and wish te find a
matching X FP(G, b) for which i(J) is maximal over
P(G, b)) and for which ¢ - § is maximal over the members
of P(G, b) which maximize x(J).

The method described is based on Thecrem (2.1.8) which
shows that if ¢ +« X has a maximum value 2z over a peolyhedron
P then {x & P: ¢ » x = 2z} dis a face of ©P. A matching

poelyhedron P(G, b) 1s a bounded polyhedron (for every

j e E, O

A

X s.min{bi: i e $(j)}, for all x e P(G, b?) and
consequently for any ¢ e‘ﬁ@ , ¢x has an upper bound over
P(G, b). Therefore for any i‘c € ?QZ, cx 1is maximized over
P(G, b) by precisely the members of some face of P{(G, b).

Now we describe the first sort of multi-optimization

problem considered. We are given a graph 6 = (V, E, ¥), a
vector b = (bi: i € V) of positive integers and a sequence
cl, c2,...,ck of members of ﬁ{?. Let X, = P(G, b) and

for each 1i e {1, 2,..;,k} we let

. i . .
X, = {x e X. : ¢ +'x is maximized over X. .}
i i-1 i-1

The multi-optimization problem is to find a matching x ¢ Xk'

(5.6.1) Multi-Optimization Algorithm.

Hl

Step 0: Let i = 0, let JO = WO = N0 [?hen
).

trivially we have XO = P{(G, b) = F(JO, WO, NO

Step 1: We assume we know sets Ji's E, Wi c V and

N; £ Q such that X, =TF(J,, W, N,). We now use the face

- . i+1
optimization algorithm to find a solution x to the

i

problem

A2

A i+1
maximize ¢ * X

cver Xi = F(Ji, Wi’ Ni).

If i =k - 1 then xk is the required solution to the
multi-optimization problem, stop the algorithm. Otherwise

go to Step 2,

Step 2. Let y1+1 be the dual solution supplied by
the face optimization algorithnm. By the complementary

slackness conditions (5.4.11)-(5.4.13) % e F(J;, W, N)

maximizes ¢ * x over F(Ji’ W, Ni) if and only if

(5.6.2) ﬁj = 0 for all 3j € E such that

Y egn + y ey > éj;

(5.6.3) =x(&6(v))

U

bv for all v & V such that

i+l > 03

(5.6.4) x(y(S)) = g for all S e Q such that
y§+1 s o,
Thus X, = {% ¢ X.: x satisfies (5.6.2)~(5.6.4)} and so

i+l i

we define

Jipp 5 T4 0 {5 e E: yi+l(w(j)) + yi+1(Q(j)) > cj} ,
W, S W, 0 dveV: y‘i_’_+l > 0} ,
Ni+l = Ni U S € Q: yg+l > 0} .
Now
Xivn = FUq400 Wigne Nygg)

Replace 1 with i + 1 and return to Step 1.

I

This completes the description of the algorithm. It
is EIEar that solving this multi-optimization algorithm will
involve k applications of the face optimization algorithm.
Generally the graph considered in each successive application
of the face optimization algorithm in Step 1 will have fewer
edges than the one handled in the previous cycle, since
growth of the sets Ji is equivalent to deleting edges of
the graph. Thus we would expect the multi-optimization
algorithm to perform somewhat better, certainly no worse,
than solving k face optimization problems for the original
graph.

The following problem is a variant of this multi-optimization

*
problem. We wish to find, if one exists, an element x

of P(G, b) such that c¢° + x is maximized over P(G, b)
*

by x for all 1 e {1, 2,...,k}. This we do by finding

for each i ¢ {1, 2,...,k} the face F. of P(G, b)

.. . . . i
containing all those x which maximize ¢~ + x over P(G, b)

and then we find a matching x = Fi if this set is not

% k
n
empty.)
For each i e {1, 2,...,k} we use the blossom algorithm
to find an optimal primal solution and an optimal dual
solution yo to the problem of maximizing ci * X over

P{(G, b). We let

ap 5 05 e 2y A +y%@an > ey,
W, = {v ¢ V: yo > 0},

5 v

N, = {S ¢ Q: y° > 0}.

i s

By complementary slackness {Theorem(1l.5.16))applied to the

linear programs (3.5.1)-(3.5.5) and (3.5.6)-(3.5.9) (taking

V 2 ¢ and ¢ = ¢°) x e P(G, b) maximizes c~ + x over

P(G, b) 4if and only if x ¢ F(Ji, Wi, Ni). By (2.1.4) we

have
Kk .
n F(J,, W,., N,) = F(J, W, N)
. i i
i=1
where
k
J = u Ji R
i=1
k
W= v Wi ’
i=1
k
N = uN., .
i=1 *

Thus we can now use the face optimizing algorithm to
find a matching x* e F(J, W, N) if such a matching exists.
(Take cj =0 for all j € E as an objective function to
be maximized). The algorithm will either terminate with the
information that F(J, W, N) = ¢ or with the matching x"
which we require.

This process involves k applications of the blosson
algorithm and one application of the face optimizing algorithm,
The face optimizing algorithm is applied to a problem of a
particularly simple type, one in which cj = 0 for all j € E.
This means thatrif the dual variables are defined initially
to be zero, then they will never‘be changed in the course of
the algorithm.

*
If we find a solution x then clearly we could have

r

found it by using the first algorithm described in this section.

.45

However if we simply apply the first algorithm when presented
with a problem of this sort we will not know if the matching
xk produced by this algorithm maximizes ci « %X -over
P(G, b) for i e {2, 3,...,k} unless we check it for all
such 1. This checking procedure involves k - 1 applications
of the_blossom algorithm. Thus altogether we would have to
solve k face optimizing problems and k - 1 ordinary
matching pfoblems so the advantage of the second method of
solution is apparent.

We can combine these two methods in an obvious fashion
to solve multi-optimization problems of the folloﬁing sort.

-

Let Cl, Cz,...-,Ck be a sequence of finite nonempty subsets

i

of fR®, 1et X, = P(G, b) and for each i {1, 2,...,k} let

X,
i

Mt

{x & Xi— :t ¢ » x 1is maximized over X

1 P Ti-1

for all ¢ € Ci}'

* . ;
We wish to find a matching x ¢ Xk if such a matching exists.

If such a matching exists, we have to solve 1 +
face optimization problems to find it. However if X, = ¢
then it may well happen that Xi = ¢ for some i < k and
so we would discover this without solving so many problems.

A first approach which might Be considered for solving
multi-optimization problems is a generalization of the

"Big-M" method of the previous section. This would involve

selecting positive constants Ml >> M2 >>"'>>‘Mk and
k i '
letting c%'E b Micj for all j € E. Then it is easily

i=1

*
seen that a selution x to the problem of maximizing c¢' -

over P(G, b) is a solution to the first multi~optimization
problem discussed. However, although this method is fine

in theory, in practice‘if k 1is reasonably large then the
huge number of significant digits which would have to be
handled for the c5 makes this method infeasible.

The methods described in this section could be applied
to othér classes of multi-optimization problems besides
matching problems provided a face optimizing algorithm were
known which provided an optimal dual solution. However, for
linear programs in which the number of constraints is of a
manageable size there are more direct methods (for example,
a generalization of the two phase method of obtaining a.
starting basic feasible solution; see Dantzig [D1l] Chapter

5 section 2 for a discussion of the two phase method.)

Chapter 6

A Post-Optimality Problem

In this chapter we discuss one aspect of post—optimality
for matching problems, modification of the degree constraints.
Assume that we are given a graph G = (V, E, ¢), a vector b
of positive dintegral degrée constraints and an arbitrary vector
c € ﬂKE. We suppose that we have applied the blosscomn

algorithm of Chapter 3 to the.@atching problem
(6.0.1) maximize ¢ =+ x
over Xx € @LE which satisfy
(6.0.2) xj is a nonnegative integer for all j E.E,

(6.0.3) =x(8(i)) = b; for all ieV <V,

A

(6.0.4) x(§(1)) = b, for all ievV =V -V,

and XO and yo are the optimal matching and dual solution
thereby obtained. Now we wish to solve (6.0.1)-(6.0.4) again,
replacing b with a new vector b' of degree constraints.

We could simply reapply the blossom_algorithm taking xj = 0
for all j & E as an initial matching. If we do this, the
upper bound on the amount of work required (see (3.9.2)) is

of the order

b'(v) - |v] + |E

In this chapter we describe a method of solving this problem
which utilizes the solutions xo and yo which we already
know. We show that an upper bound omn the amount of work

required by this method is of the order

(z(|b, - bil: iev) + jvly - [v] - |E].

Thus it is clear that if the values of lbi - bi] are small
relative to the values of bi for i £ V then our new

method has a somewhat better bound than a direct application

of the blossom algorithm.

6.1 Obtaining a Starting Solution

Throughout this chapter we let G = (V, E, y) be a
graph, we let b = (bi: i € V) be a vector of positive integers,
we let ¢ = (cj: j € E) be an arbitrary real vector and let
y be a feasible dual solution of (6.0.1)-(6.0.4) (see Section
3.7). Let R be a shrinkable family of subsets of € and
let G = G x R, In (3.8.22) we defined A(a; X, yv) for’
any matching x of G which satisfied =x(6(v)) = bv for
all v £ V(G). 1In the case R = $ we have

A(G; x, y) = Z(bi ~ x{8(4i)): i ¢ vV or

(i e Vs and Y > 0))
where X 1is a matching satisfying
(6.1.1) =x(8(i)) = bi for all i e V

and y is any feasible dual solution. The value of A(G; x, y)
measures, in a sense, how close x and y are to being
optimal feasible solutions to the matching problem.

Now suppose that y is'any feasible dual solution and
x 1is any métching of G, that is x need not satisfy (6.1.1).

We define

A(G,b; x, y) = Z(|bi - x(8(¢i))|: 4 e V7 or

(i ¢ Vs and Yy > 0))

+ E(mak{o, x(8(i)) - bi}: ie VS and y; = 0).

{In Chapter 3 the vector b was constant so we did not
introduce it as a parameter of A(G; x, y). Here however

we consider more than one vector of degree constraints so we
include b as a parameter of A{(G, b; x, ¥v). Throughout
this chapter the set V. is constant, so we do not include
it as a parameter of A({G, b; x, y) although of course it

does affect this value.)

Notice that

(6,1.la) if x satisfies (6.1.1) then

A(G, by x, v) = A(G; x, ¥).

(6.1.2) Proposition. For any matching x of G

there exists a matching x' of G such that

(6.1.3) x; 2 0 only if xj # 0 for all j € E,

(6.1.4) A(G, b; x', y) < A(G, b; %, ¥)

(6.1.5} =x'(8(i)) = bi for all 1 e V.

Proof. Our proof consists of an algorithm for constructing

the matching x'.

s i . J é . At
Step 0. Let di . 0 for all i = V Let i

each stage of the algorithm we have a nonnegative integer

xé defined for all j & J € E such that

(6.1.6) x"(8(i) n J) = di < bi for all i e V.,

Step-1. If J = E then x' 1is the matching we require,

stop the algorithm. Otherwise choose j € E - J, let

p(3). Let

Hr

{u, v}

»
]

' =2 min{b_ -4 , b -d , x }.
u u v, v j

Replace du and dv with du + x! and dv + x5 respectively,
add j to J and return to Step 1.

This describes the algorithm, we now discuss why it
works. Clearly our actions in Step 1 preserve (6.1.6).
Properties (6.1.3) and (6.1.5) are immediate consequences of
our definition of xi and (6.1.6). For any J < E as

constructed in the algorithm we define a matching xJ by

x, if j € E - J

J _ , 3
Xj =
x! dif j e J.
3 J
J

We show that A(G, b; x , yv) £ A(G, by x, v) for all such
J. Since xC = x' this will prove (6.1.4).
Initially J3 = ¢ and the result is trivial. Suppose

it holds for some J < E and let j be as chosen in Step 1.

Iif x& = X, then x° = xJU{j} and the result is trivial.
Otherwise there is u & %(j) such that xi = bu - du and

'xa < bv - dV where {v} = ¢(j) - {u}. Therefore, by (6.1.6)
'xé 4+ x'"(8(u) n J) = b# and x& + x'(6(u) n J) = bv. The term
in A4(G, by xJ, y) corresponding to u contributes xj ~ xg

more to this sum than the corresponding term contributes to

A(G, b; XJU{J}) ¥}. However the term in A(G, b xJ, v)

A

corresponding to v contributes at most xj - x& more to

this sum than the corresponding term contributes to

A(G, by xJU{J}, vy}. Since all other terms contribute the

same amount to both sums, A(G, b; xJU{J}, y) < A(G, by xJ, y) <
A{G, b; x, y) by our hypothesis and the result follows.[

Observe that the amount of work performed by this

algorithm is of the order]E .

As in Chapter 4, for any graph G = (V, E, %) and any o

matching x we define the graph
+ +
¢T(x) = (v, ET(x), ¥|ET(x))

where

E+(x) = {j ¢ B: x. > 0}.

In Section 4.5 we described the structure possessed by the
vertices of P(G, b) and hence of the matchings produced

by the blossom algorithm. We next show how from any matching
x € P(G, b) we can obtain a matching x' of P(G, b} which
will have several of the same characeristics as vertices of
P(G, b) and such that A(G, b} x', y) £ 4(6, b; %, y). In
the uses that we make of this procedure, the matchings x
with which we start will be such that x' will be a special

)

type of vertex of P(G, b), a vertex x for which any

component of G+(x‘) contains at most one polygon.

(6.1.7) Theorem. For-any matching x of G

satisfying (6.1.1) there is a matching x' of G satisfying

(6.1.3)-(6.1.5) and for which each component H of G+(X')

satisfies

(6.1.8) H_ contains at most one node at which

X is deficient,

(6.1.9) if H contains an odd polygon and a node

v__at which x' is deficient them either x' has a deficiency

of 1 at v or else there is a set J € E such that x% = 1

for all j € J and any path in H from v to an odd

polygon of H contains a member of J.

Proof. Again, our proof describes an algorithm for
actually comstructing x'. The operations of the algorithm
are similar to Steps 2 and 4 of the Matching Simplification

Algorithm (4.5.21).

Initially, let x' = x.

Step 1. If each node of ¢ at which x is deficient
belongs to a distinct component of G+(x“) then (6.1.8)
holds for all compomnents H of G+(x') and we go to Step 2.
Otherwise let v and w be nodes belonging to a component

H of G+(x') such that x' 4is deficient at both v and

il
o

. _ <
(6.1.10) if Ve = 0 and v & V then Y

(If our original choice of v and w violated (6.1.10) we
simply interchange v and w). Let 7 be a path in H

from v to w. Let

o, = min{x}: j 1is an even edge of w}.

Since j € E+(x') for all 3 ¢ E(ﬁ), oy > 1. Let

mih{ol,'bv -~ x'(8(v))} if m 1is of even length,
mih{cl, bv - x'"(8(v)), bW - x"(8(w))} 4if 1w is
of odd length.

Defnjie x by

x; + 0 if j is an odd edge of T,

J
xg = xi ~ o +f j 1dis an even edge of w,
x& if i € E - E(w).
Replace x' with x" and return to Step 1.

! is the

Step 2. If (6.1.9) is satisfied then stop, x
desired solution. Otherwise let v be a node in a component
H of G+(x') such that =x' has a deficiency of at least 2
at v and let 7% be a path from v to an odd polygon P
in H such that xg z 2 for ali j e E(mv). Let
{w} = V(P) n V(w), let 1T be a track from w to w dinduced
by P. Let

= min{x%: j is an even edge of T},

Q
n

min{x%: j 1is an even edge of T} if m has even

length,

min{x!: j 1is an odd edge of <t} 41if « has odd
J length,

Let-

o = minll(b, - x' (8(v)))], 30,1, 0,7,

Then o 2 1. Now define =x" as follows.

~ 20 1f j 1is an even edge of T,

Lde =

+ 2¢ 1if j 1s an odd edge of T,

Lo =

x; + o 1if j 1is an even edge of T and
[E(ﬁ)l' is odd

[

or if j is an odd edge of 1 and

'E(ﬂ)] is even,
xfl =
j x% - o if j 1is an even edge of 1 and
|E(r)| is even,

or if j 1is an odd edge of <t and
|E(n)| is odd,

x! d1if j € E -~ (E(m) u E(T)).

] "

Replace x by x and return to.step 2,

| 'This describes the algorithm, we now show why it works.
Each time we perform Step 1 we either decrease the number

of deficient nodes or introduce a new edge j for which

xg = 0 (or both). Each time we perform Step 2 we decrease
the deficiency of a node (by at least 2). Since neither Step
.l nor Step 2 introduce new deficient nodes and since in

both Step 1 and Step 2, xg # 0 only if xé # 0, the algorithm
ﬁill terminate and (6.1.3) and (6.1.5) are easily seen to

be satisfied. By virtue of the fact that we terminated;
every component H of G+(x') must satisfy (6.1.8) and
(6.1.9) for the final x',.

In order to see that (6.1.4) is satisfied by our final

x}, observe that Ibi -~ x'(6(i))]| is increased by an
application of Step 1 or 2 in exactly one case, namely in

Step 1 when 1 = w and ’E(H)I is odd. However in this case

we decrease |bv - x'(é(v))] by an ideéntical amount. The

only'time the term in A(G, b; x', y) corresponding to ¥
-contributes nothing to A(G, b; X', y) is when v € Vs

and Y, = 0. But in this case, by (6.1.10), w ¢ vS and

y =0 so the term corresponding to w contributes nothing
to 4(G, b; x', y). Hence in every case A(G, b; x", y) <

A(G, b; x', y) following an application of Step 1 or Step 2

and the proof is complete.[]

6.2 The Post~optimality Aléorithm.

We describe in this section what could be considered a
two phase approach to the post optimality problem. The
first phase will involve modifying an existing matching xo
and corresponding dual solution yo to obtain a matching' X
and duval sélgtion y which are acceptable as dinput to the
blossom algorithm with thernew degree constraints b'. Then
the second phase will consist of a straightforward application
of the blossom algorithm.

The two phase structure of this algorithm makes it
particularly attractive for computer implementation, for
given that we have a computer code of the blossom algorithm,
we need only write new code for the first phase; no reprogramming
of the blossom algorithm is required. |

Let b = (bi: i e V) and b' = (bi: i e V) be two real
vectors indexed by V. We measure the difference of b' and
b by

[1o - b'[] = 2(b, = BY|: 1 e V).

This is commonly called the l-norm of the vector (b - b'")

{Isaacson and Kellar [Il}, p. 4).

Suppose that we have used thé blossom algorithm te
solve the matching problem (6.0.1)-(6.0.4) and that xo is
the optimal feasible soclution found, yo is the optimal dual
solution (see Section 3.7) and R is the nested family of
sets which we had when we reached Step 11 of the blossom
algorithm. (The knowledge of R is not essential, given an
x0 and yo as above, we can construct a nested family R'

of members of QO which will suffice. This we discuss

in Section 6.3).

Phase 1. Initializaticn.

- 1
Step 1: Define vectors xl and ¥y as follows. Let

J = u §(8). Let
SeR

(6.2.1) =x

el
[

For any i & V let R(i} = {S £ R: i € S8}. Let

1
(6.2.2) y3

y. + 1/2E(yg: S & R(i)}) for all i e V,

o

(6.2.3) yé 0 for all S & Q .

Go- to Step 2.

Notice that

. 1 .
(6.2.3a) each component H of G+(x } can contain
A +,. 1
at most one polygon, for by (3.8.14) each component of G x R (x7)
contained at most one odd ‘polygon and for every S £ R, each

component of (G[S] x-R[S])+ (xl) is a subgraph of a blossom

and so contains at most one polygon and x§
j e 8(8) for all S € R.
We now show that yl has the followi
1, .. 1,.0, .
(6.2.4) y (¥(3)) + y7(Q (3)) =
for all j e J,
1 . 1,.0,.
(6.2.5) y (W(3)) + y (Q (j)) =
for all j ¢ E - J.

Let j £ E and let R(j) = {S & R: j
(3.8.9), yg =0 for all S £ Q - R, so
0,.0,. 0 .
(6.2.6) y (@ (1)) = vy (R(3)).

If we let {u, v} = 9(j) then we have

(6.2.7) R(j) =

R(u) n R(v) for
. 0 0
and hence, since Vg 2 0 for all S = Q,
0 X 0
(6.2.8) y (R(j)) = 1/2(y (R(uw))
for all j & E.
If j € E~ J, then R(u) = R(v) and (6.2
0 \ 0
(6.2.9) y (R(j)) = 1/2(y (R(u))
for 2all j e E - J.

Combining (6.2.6) with (6.2.8) and (6.2.9)

(6.2.10) youin + vy %)) =

yg + 1/2y°@®R(v)) for j e J,

= 0 for all

ng two properties.

PG + v @GN
PGy + v0@%Gn

e vy(8)}. By

all j € E

+ O R

«.7) implies

+ yOR(V)))

we obtain

O+ 17250 (RCu)) +

.11

(6.2.11) y) + y°@%(3)) = y0 + 1/25%rew)) +

yg +1/2y%(R(v)) for j e E - 3

which combined with (6.2.2) and (6.2.3) prove (6.2.4) and
(6.2.5) as required.
Since yo was a feasible dual solutiom, (6.2.4) and

(6.2.5) immediately imply.that
(6.2.12) y' 1is dual feasible.

Since xo and yo satisfied the complementary slackness

condition (3.5.10) we have by (6.2.1) and (6.2.5) that x1
and yl also satisfy (3.5.10). We have (3.5.12) trivially

satisfied because of (6.2.3).

Step 2. Now apply the algorithm described in the proof
of Theorem (6.1.2) replacing b with b' so that the new

matching xz thereby obtained will satisfy
(6.2.13) x(8(i)) < b! for all i ¢ V.

Go to 'Step 3.
By (6.1.3), x2 will satisfy (3.5.10) and (3.5.12) with

respect to yl. Moreover by (6.1.4)

(6.2.14) A(G, b'; x2, yl) £ A(G, b'; xl, yl)-

Since xO and yo- are optimal solutions to (6.0.1)-(6.0.4),

0

we must have A4A(G, b; x , yo) = 0. We partition R into

RO u Rl where

R® = (s ¢ r: x%¢s(5)) = 0}

1]
il

1

R {8 ¢ R: xo(é(s)) 1}

.12

For each S £ RO there is a node i(S8) £ § such that

xo(é(i(S))) = bi(S) - 1, but for all i e & - {1i(8)} we must
have xO(G(i)) = bi.. Since A(G, b; xo, yo) = 0, we must

. < o _) 1 0
have 4i(S8) e V and yi(S) =.0. Since by (6.2.2) vy > Vi

only if 1 & S e R, it follows that

(6.2.15) A(G, b; =, y°) = |R
For each 8§ € Rl there is a unique edge j(8) & 8(S) such

that x?

5 (8) = 1. Therefore by (6.2.1),

1 1 0 1
AGG, by xT, y5) < A(G, b3 xU, yi) + 2|RT]

which together with (6.2.15) implies

(6.2.16) A(G, b; x, y) < 2|Rr]|.

It is easily seen that
' : 1 '
(6.2.17) A(G, b'; x, y7) £ A(G, b; x7, v) + llb—b ||

so by (6.2.14), (6.2.16) and (6.2.17),

(6.2.18) 4G, b'; x2, y5) < [|b - b*]| + 2|R].

Step 3. Apply the algorithm we described in the proof

of (6.1.7) to the matching x2 with respect to the vector

b', let x3 be the matching tﬁereby obtained. Go to step 4.
Since X; # 0 only if x? # 0 for all j € E and by
(6.2.5), x3‘ and yl satisfy (3.5.10). Moreover, by (6.1.7)

ACG, b'; x°, y') < a(e, b'; x>, y') which with (6.2.18)

implies

(6.2.19) A(G, b'; %2, y3) < |[b - b'|] + 2|R].

Let B be any component of G+(x3) which contains a
" node belonging to some S € R. As before, we let
R[S] = {T € R: T « S}. By (6.2.1), x; = 0 for all j ¢

u 6(T) v'8(8). Therefore by (6.1.2) and (6.1.7),
TeR[S5]

x% = x7 = 0 for all j e U §(T) u 8(S). Therefore H
] J TeR[S] :

is a subgraph of G[S] x R[S]. Since the edges j & E(G[S]
R[8] for which x? # 0 are a subset of the edges of a

blossom, by (6.1.2) and (6.1.7) H is a subgraph of a

blossom and so
* (6.2,20) H contains no even polygons and
(6.2.21) H contains at most one odd polygon.

If H contains no node of any 8 £ R, then H is a
subgraph of G x R so (6.2.20) and (6.2.21) follow from
(3.8.13) and (3.8.14).

Any component ﬁ of G+(x3) satisfies (6.1.8) so
x3 and y are almost in a form appropriate fqr using as
starting solutions to the blossom algorithm. However we may
still have some components of G+(x3) containing both a

deficient node and an odd polygon. These are dealt with as

follows.

*

Step 4. Let R' = ¢. For each component H of G+(x3)

contaiﬁing both an odd polygon P and a deficient node v

we do the following. Let v be the path in H from v to

P. 1If there is no j € E{(w) for which x? = 1 then we must

L4

have b; - x3(6(v)) = 1 by (6.1.9) and we let B = H

mn

and =T v. Otherwise let k‘ be the last such edge of .

If we delete k from H we are left with two'subgraphs,

-one of which, B, does not contain v. Let {r} = 9(k) n V(B).
In either case it is now easily seen using (6.2.3a)

that B 1is a blossom and x3|E(B) is a np matching of

B deficient at r. Moreover

(6.2.22) H x V(B) will contain a unique deficient

node and no odd polygons.

Add V(B) to R'.

When this process has been completed for all components
containing a deficient node and an odd polygon, go to Step 5
where we perform the second bhase.

It can now be easily checked that the matching x3, the
dual solution yl and the nested family of (pairwise disjoint)

sets R' are suitable input for the blossom algorithm.

Moreover by (6.2.19) and (6.2.1la) we have
' 3 1 ' :
(6.2.23) 4A(G; x~, y7) < ||b - b'|| + 2|R]

where A(G; x3, yl) is evaluated with respect to b'.

Phase 2. Execution

Step 5. Apply the blossom algorithm to G, with respect
to the new vector b' of degree constraints, starting with
the matching x3, the dual solution .yl and the nested
family R' of shrinkable subsets of V., The optimum solution
x* theteby obtained is an answer to the problem, the dual.

*
solution vy is an optimum dual solution. This completes the

degeription of the algorithm.

An upper bound on the amount of work performed in step
1 is of the order [E[+ IVI, an upper bound on the amount
of work done in Step 2 is, as we have already seen, of the
order |E|. In Step 3 we applied the algorithm described
in the proof of (6.1.7). Each performance of Step 1 of this
algorithm either decreased the number of deficient nodes
or introduced a new edge j such that xi = 0. Thus this
step can be perfofmed at most |V| + |E| times and an upper
bound on the amount of work done in this step is of the order
|[E] + |v|. Since each component of G+(x2) contains at most

one odd polygon, it is easily seen that the second step of

this algorithm can be performed at most once for each component

and so an upper bound on the amount of work performed in this
step is of the order |V[2. Step 4 of the post optimality
algorithm has an upper bound of the order [V]z.

The bound on the amount of work performed in Phase 2 is

a straightforward consequence of {(3.9.1) where we saw that

this bound was of the order
A (G; x, y) - |E| « |V]
where x and y are the starting solutions. By (6.2.23)

therefore, an upper bound on the amount work performed in

step 5 is of the order
(6.2.24) (||b - v} .+ 2|R]) « |v]| « |E]

and since the order of the bound of all previous steps of
the algorithm is less than (6.2.24), it follows that a bound

on the amount of work performed by the algorithm is of the

order (6.2.24). By (3.2.8) |R| = 1/2(|v] - 1) so the
total amount of work performed by this algorithm has a
bound of the order ([|b - b'||{ + [V|) « |v] - |E]|.

In Step 1 of this algorithm we eliminated having to

consider R by letting x; £ 0 for all j e u 6(8) and

SeR

defining the dual solution .yl so that yé = 0 for all

S € R. It was this operation that introduced the term 2|R|
in the factor ([]b - b'}| + 2|R|) of (6.2.24). An algorithm
was developed which was basically a synthesis of the two
phases of the algorithm.here proposed and which attempted

to make as much use of R as possible. However it was
abandoned in favour of the algorithm here described for two
reasons.A In the first place, although the second algorithm
was more efficient in certain cases, the theoretical bounds
on the amount of work performed by the two algorithms were
identical, namely (6.2.24), . In the second place the advantage
of the second algorithm was that in certain cases it was

able to avoid settiung x? = 0 for some edges j E'SzRﬁ(S).
However practical experience (see Chapter 7) indicated that
the size of]R] is normally very small compared to [V]

or]E] (in graphs of 100 nodes and 500 edges, we generally

had]R] < 10). Thus since xo(u 6(8) <]Rl where xo is
SeR

the initial solution used by the algorithm, the gain is small
when compared with the high degree of complexity of the second

algoxrithm.

6.3 Obtaining a Nested Family.

Assume we know an optimal solution xo to (6.0.1)-(6.0.4)

.17

and an optimal dual solution yo as produced by the blossom

algorithm. Thus

(6.3.1) XO is a vertex of P(G, b)

(6.3.2) R' = {8 ¢ QO: yg > 0} is a nested family

of subsets of V such that for each S € R', G [S] x R'[S]
is shrinkable. (G= is the equality subgraph relative to y

as discussed in Section 3.8, thus G

i

(V, E, v|E)
where

EX = {f e E: yO(u(5)) + v° %)) = cybe)

The nested family R' will in general not be suitable
as input to the post optimality algorithms of this chapter,

for there may be sets S ¢ R' such that, where

G = G[S] x R'[S], there is a component H of é+(xo) containing

more than one odd polygon or containing both an odd polygon
and a node at which xo is deficient. Similarly if we let
G = G x R', there may be components H of §+(x0) having
these properties.

In this section, we describe a method for finding a

nested family R of members of QO having the properties
(6.3.3) R' < R,

(6.3.4) xoly(S) is a np matching of G[S] for

all S & R,

(6.3.5) where G G[S] x R[S] for all S e R,

i

every component H of G (xo) satisfies (3.8.13)-(3.8.6)

(6.3.6) where G = G x R, every component H

of §+(x0) satisfies (3.8.13)-(3.8.16).

This family R together with xo and yo will be

suitable as input for the post-optimality algorithm of

this chapter.

Step 0. Initialization. Let D = ¢, let R Z ¢. At

every stage of this algorithm R u R' will be a nested family
of members of QO and D < R is the set of "processed"

members of R'.

Step 1. If D = R' then go to step 6. Otherwise, choose

a minimal S € R' - D. Let G = G [S] x R[S].
. =+, 0 .
Step 2. If there is a component H of G (x) which

contains an odd polygon P and a node v at which xo is

deficient and is such that any path 7 din H from P to
’ 0

v cantains an isthmus j of H for which xj = 1 then go

to step 2a, otherwise go to step 3.

Step 2a. Let P be chosen so that a path 7 in H
from P to v 1is maximal over all paths in H from odd
polygons to v. Let j Dbe the first isthmus of‘ H din 7
such that x? = 1 and let w be the end of j furthes§ in
H from v. Let B be the subgraph of H disconne;ted from
v dif j 1is removed from H. B 1is easily seen to be a

blossomn, XQIE(B) is a mnp matching of B deficient at w.

(6.3.7) Let W = {i € V: i € V(B) or i e T e V(B)

.19

for some T ¢ R}, Let R = R u {W}, replace R with R,

replace G with G=[S] ¥ R[S].

Go to Step 2.

Step 3. If no component of §+(x0) contains both an
odd polygon and a node at which xo is deficient, then go
to Step 4. Otherwise let B be such a component containing
a node v at which .xo is deficient. By (6.3.1), conditions
(4.5.6) and (4.5.7) of Theorenm (4.5.3) and the condition of
" Step 2 of this'algorithm, %0 has a deficiency of 1 at v
and B contains a unique odd polygon P. It is easily seen
that B is a blossom and xOIE(B)' is a np matching of
B deficient at v. Perform the operations (6.3,7) and

‘return to.Step 3.

Step 4. Now no component of §+(x0) contains both an
odd polygon and a node at which xo is deficient. If no
component contains more than one odd polygon then go to Step

5. Otherwise let P1 and P2 be odd polygons belonging to

a component H of §+(x0) such that a path 7 in H from
P1 to P2 is maximal over all paths joining odd polygons
in H. By (4.5.6) there is an isthmus j of H for which
x? = 1 occu;ring in 7 before any edge which belongs to a

polygon of H, let k be the first such isthmus in w. Let
B be the subgraph of H disconnected from P2 by removing
k., It is easily seen that B is a blossom in H and that

xOIE(B) is a np matching of B. Perform the operations

(6.3.7) and return to Step 4.

Step 5. Now every component H of §+(x0) satisfies

(3.8.13)~(3.8.16). Replace R with R u {8} and replace

D by D wu {S}. Go to Step 1.

Step 6. Now we have handled every S & R'. Let

E_ G x R.. All we need do is ensure that every component H

of §+(x0) satisfies (3.8.13)-(3.8.16). Thus we apply
"Steps 2, 3, 4 of this algorithm to G (replacing S with
V). The resulting nested family R is the nested family

required for the post optimality algorithms.

.21

Chapter 7

A Computer Tmplementation of the Blossom Algorithm

In this chapter we discuss a2 computer implementation.
of the blossﬁm algorithm we described in Chapter 3. The
program was written in PL/1; the reader is assumed to have
some knowledge of this programming language. (See [I2] for
the language specifications). The design of the program
was influenced somewhat by BLOSSOM I (Edmonds, Johnson,
Lockhart [E7]1), a FORTRAN implementation of a generalization
of the blossom algorithm. A special acknowledgement is due
to Professor Ellis L. Johmnson, who has contributed to both
the design and the details of this computer code.

In the nexé three sections we describe the data
structure used and discuss the way the program handles such
problems as manipulating trees and blossoms and shrinking
subgraphs. Following this we discuss the code itself and
in the last section of thé chapter we discuss storage
requirements and experimentai results obtained concerning
the algorithm. The program itself is listed in the Appendix.

Thréughout the chapter, we refer to statements in the
program by means of the PL/l1 statement numbers. T and F
are bit strings of lenggh one having the values '1l'B
and '0'B _respéctiveiy and are used as logical constants

having the values "true" or "false".

7.1. Storage of the Graph.

NEDGE and NNODE are b&nary full words that held the

number of edges and nodes respectively of the graph G. They

7.2
do not change throughout the execution of the program, in
particular they do not reflect the shrinking of subsets of
nodes or the creation of pseudonodes. The edge set of the
graph is the set of integers 1, 2,...,NEDGE; the node set
of the graph is a set of NNODE pointer wvariables which
point to the strxuctures holding the information about the
nodes..

The graph is representedlby an array of edges. EDGES
(Statement 4) is an array of NEDGE structures which contain
the following information for each edge J.

C(J) 1is a single precision floating point variable
which holds the current '"reduced cost". That is, it holds
the value ¢y - vy(p{J)) - y(QO(J)) where ey is the cost
assigned to edge J and y is the current dual solution.
Determining the equality subgraph and computing the-bound
for a dual variable change are facilitated by having this
value storgd. Initially C€{J) should simply be the cost
of the edge J; the program (Statements 333 to 346) subtracts
the value of fhe initial dual solution while initializing.

X(J) 1is a bin;ry halfword that holds the current
value of the matching for the edge J.

STATUS (J) is a set of 16 one bit.switqhes avéilable
for recording the status of edge J. Only four are used
by the algorithm, they are:

EQ(J) = T or F according as J does or does not

belong to the current equality subgraph;

SHRNK (J) = T or F according as J has or has not
been shrunk in forming a pseudonode; .

’

7.3
FRST(J) = T oxr F according as J does or does not

beleong to the alternating forest or to some component of

et (x);

ZER(J) allows the edge J to be omitted from consideration
during execution of the program. Any edge J for which

ZER(J)

T will be completely ignored, any edge J for
which ZER(J) = F will be processed normally. This feature
is intended to facilitate processing of subgraphs of the

graph G.

ENDS(J, %) and ORIGENDS(J, %) are arrays consisting
of two pointers. ORIGENDS holds pointers representing the
nodes of G with which J is incident and does not change
throughout the execution of the algorithm. ENDS reflects
any pseudonodes that have been formed. Thus, where ‘R 1is
the nested family of sets described in Chapter 3, if
J e E(G x R) then ENDS holds pointers to the nodes of G x R
with which J dis dincident. If .J ¢ E(G xkR) then the
pointers in ENDS point to the pseudonode corresponding to
the miﬁimal member of R which centains P(J).

The variables for the real nodes of the graph are stored
in an array NODELST (Statement 3); However they are
referred to by means of the based structure NODE (Statement
*6). Handling the nodes in ﬁhis way simplifies the treatment
of pseudonodes while at the same time allows the algorithm
to be as economical with storage as possible,

For each node P, real or pseud;, we have the following

values,

7.4

P ~> DEF is a binary halfword holding the deficiency
of the current matching at the node P, that is, it holds
the valﬁe bP - x{(§(P)) where bP is the degree constraint
of P and x 1is the current matching. If P 1is contained
in a pseudonode, this value may be too large or too small
by 1 however this situation is corrected when we expand the

pseudonecde or correct the matching within it.

P -> STATUS 1is a set of 16 one bit switches which reflect

the status of node P. Nine of these are actually used.

P -> REAL = T or F according as P 1is a real node

or a pseudonode,

P -> CONSTEQ = T if the degree constraint for node 7T
is an equation, P -> CONSTEQ"= F if the degree constraint
for node P is an inequality. Thus P -> CONSTEQ = T ot

= <
F according as P e V ocr V.

P -> DEFIC T or F according as P does or does

not belong to the altermating forest.

P -> 0DD =T if P 4is an odd node of the alternating

forest, otherwise P -> QDD = F,

P -> YRTO = T if P Dbelongs to the alternating forest
<

and the tree containing P 1is rooted at a real node 1 ¢ V
for which y; < 0 or at a pseudonode containing a node

<
i e V- for which vy, = 0.

P -> BLOS = T 4if the components of G+(x) containing

P contains an odd polygon, otherwise it is false,

P -> DCHNG, P -> INPATH and P -> EXPANDED are all

used by the algorithm and will be discussed.later.

7.5

P -> ¥ 1is a single precision floating point wvariable
used to hold the current dual variable of the node P. If
P 1is a pseudonode, then it holds the dual variable of the

subset of the nodes of G which form the pseudonode.

P ~> TREE, P -> EDGEDN and P -> STACKUP are used for
representation of the trees and blossoms of the algorithm

and their use is described in the next two sections.

7.2. Tree Handling.

The manipulation of trees and forests is an important
part of the blossom algorithm. There are three properties
which we wish our data structure which represents trees to
satisfy. First it should provide an easy means of finding
the path in the tree from any node of the tree to the root,
second it should provide a reasonable means of examining all
the nodes and edges of a tree and third it should make
coﬁvenient such operafions as rerooting trees, growing trees
and removing portions of trees. The structure used is the
"triply linked tree"™ developed by Johnson [J2]. A description of -
this structure also appears in Knuth [K3], p. 352.

We are actually storing a planar representation of the
tree. We think of a tree being rooted "at the bottom" and
consisting of various "levels" of nodes according to their
distance from the root (see Figure 7.1).

For any node P of the tree other than the root,

P ;> DN . is the node adjacent with- P 4in the level
immediately below P, P ~> EDGEDN is the

edge of the tree joining P and P -> EDGEDN., If P 1is

the root of a tree then P => DN = NULL and P -> EDGEDN = 0.

7.6

P ~-> UP is the leftmost. node adjacent with P
in the tree belonging to the level of the tree immediately
above the level containing P, if such a node exists.

Otherwise P -> UP = NULL.

P -> RT is the first node Q to the right of

P in the level of the tree containing P which satisfies

P ~> DN = Q -> DN. If no such node Q exists, then

P ->» RT NULL. Observe that if P is the root of a tree

then P =~> RT = NULL.

fo

EDGEDN | DN

NULL POINTER:¢

Figure 7.1 Triply Linked Tree-

7.7

We now describe some of the procedures used by the

program in manipulating trees.

ADDON(Ql, Q2, J) (Statements 195-202) uses the edge J

which joins mnodes Q1 and Q2 .to attach a tree rooted at
Q2 to the tree containing Ql. It alsc sets FRST(J) = T

to indicate that J 1is now an edge of the forest.

. REMOVE(Pl) (Statements 158-~175) does the following. P1

is a node belonging to some tree, REMOVE removes Pl and
the portion of the subtree above Pl from the tree, thereby
creating a new tree footed at Pl. If Pl 1is already a
root, it simply returms having done nothing. Otherwise it
finds the other pointers equal . to Pl and modifies then
appropriately. It sets Pl -> DN = NULL and sets

FRST(P1 -> EDGEDN) = F, indicaﬁing this edge is no longex

part of the forest.

REROOT(P1l) (Statements 176 -194) rerocots the tree containing

Pl at ©Pl. This it does by travelling down the path in the
tree from Pl to the root, successively removing the portion
of the tree above each node in the path and adding that

portion to the portion previcusly removed.

UPSCAN(Pl, UPCALL, SUBRUB, DNCALL, SUBRDN) (Statements

203- 234y is a routine which scans through all the nodes of
the tree containing Pl which are above Pl. These nodeé
are scanned according to the following rule: TUPSCAN always
tries to move up the tree; if it cannot do this, it tries ﬁo

go to the right and then continue moving up; if it cannot

7.8

do this it goes down and then tries to go to the right. For
example, it would encounter the nodes of the tree of

Figure 7.1 in the following order: 1, 2, 5, 8, 5, 2, 3, 4,
6, 7, 4, 1. UPCALL and DNCALL are one bit strings, if
UPCALL.= T then the first time each node is encountered,
UPCALL c¢alls the procedure SUBRUP passing it a pointer

to the node. If DNCALL = T then the last time each node
is encountered the procedure SUBRDN is called and passed
as a pa;ameter a pointer pointing to the node.

Thus depending on the procedures SUBRUP and SUBRDN,
TUPSCAN can perform a great many functions. The procedures
described in Statements 235-324 are all used ﬁy means of
UPSCAN. We describe the purpose of these procedures in
Section 7.5 when describing the main procedure.

The final procedure we discuss in this section is
more than just a tree manipulating subroutine. It performs
augmentations and at the same time (optionlly) helps construct
the new alternating forest.

AUGMENT (P1,R1,DELTAX,DESTROY,0DDB) (Statements 40-59)

alternately subtracts and add DELTAX to the value of

X{Ql -> EDGEDN) for each node Ql # Rl in the path from

Pl to Rl in the tree containing these nodes. The pointers
Ql -> DN are used to trace down the path. If bDDB (BIT(1))
equals F then the procedure starts with a subtraction,

if T then it stérts with an addition.

If DESTROY (BIT{(l)) = T then everytime an edge becomes

7.9

zero,'the portion of the tree above that edge is removed and
broken into nonzero components. This is done by using UPSCAN,
passing it the procedure NONDEFIX which is called the last
time each node is encountered. Tf DESTROY = F then none

of this is done.

NONDEFIX(Pl) (Statements 250-258) updates the indicators

for the node P1. If there is an edge J down from P1
in the tree such that X(J) = 0 then Pl is removed from

the tree.

7.3. Blossoms, Shrinking and Pseudonodes,

One of the central problems encountered in implementing
the blossom algorithm is the problem of shrinking. It has
even been suggested (Balinski B[1] p. 232) that the amount
of storage required to handle this process would make
computer implementation of the blossom algorithm impractical.
As was shown by BLOSSOM I and as is shown again by the
program of this chapter, such is not the case. An upper
bound on the amount of storage required to hold all the
information necessaiy for whgtever amount of shrinking is
done by the algorithm is only slightly greater than half
the amount of storage used to store the information required
for the real nodes; ig practise we generally require
considerably less.

A blossom consists of a special type of altermnating
tree together with an edge j which forms an odd polygon;

this is how it is stored. There is one node R din a

7.10

blossom at which the current matehing restricted to the
edges of the blosscom is deficient, the tree is rooted at
this node. Since R 1is the root of a tree, we normally
have R -> EDGEDN = 0, When representing a2 blossom we
let R -> EDGEDN = J. Thus storing a blossom is no more
difficult than storing a tree.
(Components of G+(X) containing an odd polygon are
also stored in this fashion, the only difference being
that the root of these components is not deficient.
P -> BLOS=T for every node P din such a2 component,)
Now‘we describe the way in which the nested family
.of shrinkable sets is represented. For each member P
of the nested family we have allocated (in Statements
508-516) a structure P -» PSEUDO. The first Séven words
of P —-> PSEUDO are used in the same wa§ as the seven words
of NODE are used. {(The maximal members of the noted family
are the current pseudo nodes.) However there is #n addition
S
an eighth word -> - ROOT which is the root of the blossom
associated ﬁith P, that is, the node at which the matching
restricted to the edges of the blossom is deficient.
For any real node Pl, Pl -> STACKUP is a pointer
to the structure associated with the minimal member of the
nested family containing P1 if such a set exists, étherwise
Pl -> STACKUP = NULL. 7For any member P of the nested
family,hP —>- STACKUP 'is a pointer to the structure associated

with the minimal member of the family properly containing P,

7.11
if such a set exists, otherwise P -> STACKUP = NULL.

{See Figure 7.2).

Figure 7.2 Nested Family Representation

}member of nested family

/77N
\

e

pseudonode representing D
member of nested family

T STACKUP pointer

¢ NULL pointer /

"Frequently we wish to know the maximal member of the

nested family containing a node P, that is, the current
pseudonode containing P.

SURF(P) (Statements 13-25) returns the value of the
pointer corresponding t& the maximal member of the nested

family containing P, if such a set exists. If no such set

7.12

exists it simply returns P. In Statements 17-22 it searches
up the chain of STACKUP pointers starting with P -> STACKUP
until a null pointer is found. It uses PNEST to count the
number of members of the nested family which contain P,
This value is not used by the algorithm itself, but the
maximum "depth of nesting"” is stored in RUNSTAT(3) to
provide one indication of the amount of work done by the
algorithm.

We now describe the operations performed by the program
in shrinking a blossom (Statements 506-558). Figure 3.7
may help to clarify this process. J is an edge joining
nodes Pl and P2 which are both even nodes (or in some cases
odd nodes) of the same alternating tree. R3 is the first
common node of the paths in the tree from Pl and P2 to
the root of the tree. R2 is the last node belonging to
the blossom in the path in the tree from R3 to the root of
"the tree. (These nodes have been determined earlier in
the program.) We call the path from R3 to R2 the stem of
the blossom. The blossom consists of the polygon plus
the stem plus any components of G+(X) containing a node-
of the polygon or stem.

In Statements 508-516 we allocate the pseudonode P
for the blossom and initialize most of its variables. 1In
Statements 519-534 we "mark" the polygon and the stem of
the blossom by letting P3_— > INPATH = T. This is to make

it possible to identify all the nodes of the blossom. Then

7.13
in Statement 537 we call UPSCAN, passing it the routines

UPBLOSS and DNBLOSS. These routines (Statements 2%6-329)
do two things. UPBLOSS set P1 -»> STACKUE = P for every
node of the blossom. DNBLOSS removes any portions of the
tree above the blossom and adjoins them to P. These
routines rely on the order in which UPSCAN scans the nodes.
SHRNKNG i1s a omne bit switch which is T or F according -as
the next node to be scanned can or cannot be expected to
be part of the blossom. Thus whenever UPBL(0SS detects a
node Pl not in the polygon or stem for which X(Pl->EDGEDN)=0,
PX is set equal to Pl and SHRNKNG is set equal to F. From
then on nothing is done to successive nodes until DNBLOSS is
passed the node PX. Then the subtree rooted at PX is removed
from the blossom and adjoined to P, SHRNKNG is set T and
the process continues,
If SHRNKNG=T then when UPBLOSS is passed a node of
the polygon.or-stem or a node Pl for which X(P1 -> EDGEDN) # O
it sets P1 —> STACKUP = P, indicating that this node is
part of the blossom.
When UPSCAN has completed its scan the program removes
the blossom from the tree and replaces it with the pseudonode P,
together with any portions of the tree that DNBLOSS may
have adjoined to P (Statements 538-543). Finally, R2 —-> EDGEDN
is set-equal to J and the blossem 1is represented completely.
Now all that remains to be done is to update ENDS to
reflect the new pseudonode. This is done in Statements

545-556, At. the same time SHRNK(J1l) is set equal to T

7.14

for any edge such that ENDS(J1,1) and ENDS(J1,2) are nodes

of the blossom.

7.4. Parameters Passed and Returned.

In this section we describe the parameters passed
and returned when using this code. It should be pointed
out that this program is designed to be used by other programs
as a subroutine and consequently there is no provision
for card input or printer output {except for the trace
feature). Thus unlike BLOSSOM 1 this program requires a
suitable driver program to prepare its data and output

its results if we simply want to scolve matching problems,

Parameters Passed.

*NEDGE (BINARY FIXED (16)) holds the numter of edges
of the graph.

*NNODE (BINARY FIXED (16)) holds the number of nodes
of the graph.

#NODELST is an array of NNODE structures having the
format described in NQDE (Statement 6). Each structure is
seven words long and holds the following information. Let
I ¢ {1,2, ..., NNODE} and let P = ADDR(NODELST(I)).

-~ P -» DEF(BINARY FIXED (15)) holds the degree
constraint of the node P.

-~ P ->- CONSTEQ(BIT(l)) should be T or F according
as the cohstraint at node P 1is an equation or an inequality.

- P -> "REAL, P -> DEFIC (BIT(l)) should be set

equal to T initially.

7.15

- P -> DCHNG, YRTO, INPATH, EXPANDED, ODD and BLOS
(BIT(1)) should initially all be set equal to F.

- P —-> Y (DECIMAL FLOAT (SHORT)) holds the initial
dual variable of- the node. This dual solution must be
feasiblé. If P - Y is set equal to half the absolute
value of the largest edge cost for every node P then this
starting dual solufion is feasible.

- P = TREE.UP,RT,DN and STACKUP(POINTER) should

all be set equal to NULL.

- P -> EDGEDN (BIN FIXED(16) should be initially zero.
*EDGES is an array of NEDGE structures, each six full
words long holding the following information. Let J & {1,2,...

NEDGE}.

- ¢{J) (DECIMAL FLOAT (SHORT)) is the cost of edge J
(not the "reduced cost; this is computed by the algorithm).

- X{(J) (BINARY FIXED(15)) should be set to =zero.

_ ZER(J), EQ(J), SHRNK(J) and FRST(J) should all be
initially set to F. |

- ENDS(J,*), ORIGENDS(J,*) (POINTER)should be the nodes
of the graph with which J is incident.

* RUNSTAT (Statement 5) is an array of 10 binary
halfwords. The only entry used for dinput is RUNSTAT(10).
A trace of the execution of the program is or is not printed
out according as RUNSTAT(10) = 1 or 0. This trace, if obtained,
prints a message concerning each edge used by the algorithm
together with the values of the matching and the dual solution

any time they are changed.

7.16
The main use of RUNSTAT is to return statistics
concerning the problem solved to the prbgram which invoked

BLOSSOM.
These input specifications were based upon the assumption

that we were using the zero matching as a starting solution.

Parameters Returned.

The parameters are returned in the following state.
Let P be any node, real or pseudo,

-~ P -> DEF is the deficiency of the current matching
X at the node P.

- P -> STATUS is set to reflect the status of P
at termination.

.- P -> TREE, EDGEDN holds the tree and blossom
structure of the final solution.

- P ~> STACKUP points to the pseudonocde representing
the minimal member of the nested family containing P, if
such a set exists, otherwise it is null.

~ P -*» ¥ is the final dual variable of the node P if
P dis real, or the final dual variable of the corresponding
member of the nested family 1f P 1is a péeudo node.

Notice that the invoking program is returned both the
optimal dual solution and the final nested family. (This
was desired in Chapter 6.)

Let J be any edge of the.graph.

- €(J) is the final reduced cost of the edge J.

-~ X(J) is the maximum matching, that is, the answer

to the problem.

7.17
- STATUS(J) reflects the status of edge J at

termination.

— ENDS(J,*),0RIGENDS(J,*) are both as they were
originally, the nodes of the graph met by J.

*RﬁNSTAT (BINARY FIXED (15)) (Statement 5) is an
arrvay of ten indicators showing the amount of work done in
solving the problem. The values returned are as follows:

~ RUNSTAT(1l) is the number of dual variable changes;

- RUNSTAT(2) is the number of times a blossocm was
shrunk;

- RUNSTAT(3) is the deepest nest of pseudonodes formed
{or equivalently, the longest chain of STACKUP pointers);

- RUNSTAT(4) is the number of times pseudonodes were
expanded (in Step %9e of the blossom algorithm);

- RUNSTAT(5) is the number of times the forest was
grown without making an augmentation (Steps 3a and 7 of
the blossom algorithm);

- RUNSTAT(6) is the number of two tree augmentations
(Step 4 of the blossom algorithm);

- RUNSIAT(?) is the number of one tree augmentations
(Step 5b of the blossom algorithm);

~ RUNSTAT(8) is the number of times a component of
G+(X) containing an odd polygon was added to the forest
(Step 3¢ of the blossom algorithm);

~ RUNSTAT(9) is the number of so called "pseudo
augmentations", augmentations which move a deficiency to
a nodei of V- for which y; = 0 (Step 7a of the blossom

algorithm);

7.138

~ RUNSTAT(10) is returned with the value zero or one
according as the matching returned is or is not feasible,
if RUNSTAT(10) = 1 when returned then the algorithm

terminated with a Hungarian forest.

7.5. The Main Procedure.

Now we describe the main procedure itself. The code
follows fairly closely the description of the blossom
algorithm given in Section 3.8.

Statements 325-349 are for initialization, reduced
cdsts are computed and EQ(J) is set for each edge J
reflecting whether or not the edge belongs to the equality
subgraph. A procedure FN(J) (Statements 26-39) is used in
computing reduced costs. It calculates the sum of the dual
variables of the ends of J and of all members of the nested
family which contéin both ends of J.

Statements 350-634 constitute the "edge processing"
loop of the program, JCNT is used to cycle through the edges.
Anytime we finish considering an edge, whether or not we
have been able to make use of it, we go to ENDA (Statement 633)
where JCNT is set equal to 1 + MOD(JCNT,NEDGE).

Whenever we are able to use the edge JCNT (to augment,
grow the forest or shrink), LASTJ is set equal to JCNT.
If JCNT ever “cataéhes up” with LASTJ then we have made a
complete cycle through the -edges without having been able
to do anything so we go to Statement 636 and attempt to

change the dual variables.

7.19
étatements 3506-372 test each edge JCNT to see if it

belongs to the equality subgraph, has not been shrunk, is
not in the forest and meets an even node Pl of the alternating
forest Fl. If JCNT violates any of these criteria we go
to ENDA. 1If the other end P2 of JCNT is an odd node of F'
then it is of no use to us and we go to ENDA, if P2 is an
odd node of F0 then we go to ODDGROW (Statement 581)}.
Otherwise we set J=JCNT and go to POLYSTEP(Statement 566),
GROWSTEP(Statement 559) or DXCALC(Statement 382) depending
on the status of P2.

DXCALC: (Statement 382) J joins even nodes Pl and P2
of the forest F, in Statements 382-400 we determine whether
they belong to the same or to different trees. At the
same time we compute D1 and D2, bounds on the amount of
augmentation that can be made. INPATH is used to mark the
nodes in the paths from Pl and P2 to the roots of their
respective trees. If Pl and P2 belong to different trees
then R1 and R2 are the roots of the two trees., If P1l
and P2 belong to the same tree then Rl is the rdot of the
tree and R2Z is the first common node of the two paths.

If Pl and P2 belong to different trees, then we go to
TWOTREE (Statement 401) where we perform the augmentation
described in Step 4b of the blossom algorithm compute the
new forest and go to ENDA.

If PL and P2 belong to the same tree then we go to

ONETREE (Statement 427). There we determine whether or not

-an augmentation is possible. If not we go to DEFBLOSS

7.20

(étatement 506) where we shrink. If we can make an augmen-
tation we do sao, update the tree and then update the
forest. At this point we may have to shrink, if so we go.
to DEFBLOSS where we do so. We may have created a comébnent
of G+(Xj containing an odd polygon and no deficient node.
If so (Statements 497-505) we find the root R2, store the
polygon forming edge J as R2 -> EDGEDN and call UPSCAN
passing it the procedure BLOSSIND. BLOSSIND (Statements
259-264) simply sets the node STATUS indicators correctly.

We have already discussed the shrinking procedure in
Section 7.3.

GROWSTEP: (Statements 559-565) J joins an even mnode
Pl of the forest to a node P2 not in the forest. We simply
grow the forest. ADDFIX (Statements 235-244) sets the
STATUS indicators fer the nodes added to the forest. (This
corresponds to Step 3b of the blossom algorithm.)

POLYSTEP: (Statements 566-580) J joins an even node
Pl of the forest to a node P2 of a component of G+(X)
which contains an odd polygon. First we find tﬁe root of this
component and hence the polygon forming edge J1. Then we
a&d this component (minus J1) to the forest just as in
GROWSTEP. Then we replace J with J1, Pl and P2 with the
ends of J1 and go to DXCALC(Statement 382). (This corresponds
to Step 3¢ of the blossom algorithm.)

ODDGROW: (Statements 381-632). Edge J meets an evén
node P1 quFl and an odd node P2 of FO. Statements 585-597
add a suitable portion of the tree containing P2 to the

tree containing Pl. SETYRTO is a procedure used by UPSCAN

to set P -> YRTO = YROOTO for all nodes scanned. Thus
we first set YROOTO correctly. (This corresponds to Step 7
of the blossom algorithm.)
We may now have a tree in the forest containing two
deficieét nodes Pl and P2. If this is the case, we make
a so called "pseudo augmentation" to remedy this (Statements
589-632). These steps also update the forest. (This ©portion
of the code corresponds to Step 7a of the blossom algorithm.)
This completes the description of the main edge
processing loop. If we make a complete cycle through
the edges without being able to make use of any edge then
we go to DUALCHNGE(Statement 636) where we attempt to change
the dual variables. FAIL is a one bit switch which is used
to indicate whether or not we have an optimal feasible
matching., Initially FAIL=F, if we discover a node in a
tree of Fl then FATL is set equal to T.
In Statements 637-665 we vompute EPS2, a bound imposed
by the nodes on the amount of éual change that can be made,

(EPS2 equals the minimum of €, €4.of Step %92 of the blossom

3
algorithm.)

If FAIL=F, thus the current matching is feasible, we
go to CORRECTION(Stafement 925) where we correct the matching
in the pseudo nodes. If EP52=6 then we need make no dual
variable change; we go to NODEBND(Statement 786) where
we either reroot a tree or expand an odd pseudonode of the

forest.

Otherwiée {Statements 670-705) Welcompute EPS1l, the

7.22

bound on the amount of dual change determined by the dual
constraints corresponding to the edges. (ESPl equals the

minimum of e of Step 9a of the blossom algorithm.)

1’ €2
Then we let EPS = MIN{(EPS1l, EPS2). If EPS = 1010 (infindity
for our purposes) then the forest is Hungarian, no feasible
matching exists, we go to CORRECTION and terminate. Other-
wise {(Statements 706-780) we make a change of dual vardiables
and update the reduced costs‘accordingly. (For any pseudo
node P, P -—> DCHNG is used to ensure that we only change
its dual variable once.) If the bound on the dual change
was imposed by a constraiﬁt corresponding to an edge JX then
we can now immediately make use of the edge; we set JCNT
equal JX and return to the start of the edge processing
loop. (Statement 350).

If the bound on the dual change was imposed by a
constraint corresponding to a real node PX of the forest,
then we now-have PX —-> Y = 0. 1If PX is the root of
the tree, we simply reset YRTO for the nodes of ghe tree,
_Otherwise we go to AUG(Statement 599) and make a pseudo
augmentation. This process corresponds roughly to Step 9d
of the blossom algorithm, although in the computer code
we do not insist that all trees of F1 rooted at nodes i € VS.
for which y, = 0 be moved to fo, we simply handle one each
time.

If the bound on the dual change was imposed by a
constraint corresponding to a pseudonode PX, then PX -> Y = 0

and PX is an odd pseudonode of the forest that has to be

7.23

expanded. -This we do in Statements 797-924.

The first thing done is to call EXPAND, a procedure
(Statements 60-145) that first updates ENDS so as to no
longer reflect the existence of pseudonode P and then -
"corrects" the matching within the blossom corresponding
to P so that it is compatible with the matching of the graph
containing P. This procedurs also forms the nuecleus of
the final matching correction step (corresponding to Step 12
of the blossom algorithm). Notice that for any calls to
AUGMENT in EXPAND we have DESTROY = F, thus the blossom
does not have its structure destroyed.

EXPAND set JIN equal to the edge. J of the graph
incident with P for whiech X(J) = 1 and sets BROOT equal
to the node of the blossom met by JIN. If P -> EDGEDN = JIN
then we have the easier case, JIN is the unique edge of the
forest meeting P. This case is handled in Statements 803-842,
Otherwise two edges of the forest meet P, this case is
handled in Statements 843-924.

" ADDBLOS,DEFFIX(Statements 265-295) are routines called
by UPSCAN to "unshrink" a blossom and update the status
indicators. Theilr operation is similar to that of UPBLOSS,
DNBLOSS. 1Initially SHRNKNG(BIT(l)) = T. For each node Pl
that ADDBLQOS is passed, it sets Pl -> STACKUP = NULL,
thereby removing the reference to the pseudonode. Then
it proceeds,. setting the status of each node to indicate
that it belongs to the forest, until it finds a node Pl

which would have becone an even node of the forest for which

X(Pl EDGEDN) = 0. When this happens PX is set egual
to Pl and SHRNKNG is set equal to F. From then on the
status of each nodé encountered is set to indicate that
the node does not belong to the forest. DEFFIX breaks the
blossom up at edges J for which X(J) = 0. When DEFFIX is
passed the node PX it sets SHRNKNG = T and the process
continues;

The final part of the program is the step (Statements
925f945) wvhere we correct.the matching in the pseudo nodes
prior to terminating. TFor each pseudonode P, P —> EXPANDED
is used to ensure that we do mot try to correct the matching:
for the pseudonode more than once.

This completes the description of the program.

7.6. Experimental Results

This program was compiled under version 5.2B of the
08/360 PL/1 F level compiler, OPT=1 and was tested on a
large number of contrived graphs. Then a series of tests
on "random graphs" was rum to obtain the experimental results
described here.

The random graph generator accepted as input the number
of nodes and edges desired in the graph together with a
range for the degree constraints and a range for the edge
costs (integers were used for edge costs in these tests).

It generated the graph by successively joining each node
of the graph to some other node until sufficient edges
had been created. Thus the test g;aphs had multiple .edges

"but no loops. The random graph generator also accepted

e PR R TR e T e e T TR B AT T p e e

7.25

a parameter specifying the desired proﬁability of a node
belonging to v,

An option of the random graph generator was to create
a file containing the information about each graph in a
form suitable as input to BLOSSOM I, the earlier Fortran
implementation of the matching algorithm. This enabled
comparative tests to be run between the two programs.

The driver program then invoked BLOSSOM to solve the
matching problem. TFollowing this a test was made of the
matching and dual solution returned by BLOSSOM to ensure that
they were feasible soclutions satisfying the complementary
slackness conditions for optimality.

The results of these tests are listed in Table 7.1
They were run on an LBM/360 model 75 at the University of
Waterleo. Thirty two graphs were run on both BLOSSOM I and
the code described here, two random graphs were generated
with each set of specifications. He.required the degree

constraint be satisfied with equality at each node. In addition,

six "large" graphs were run on the code of this chapter.,

One of the most striking observations is that even
though the value of the edge costs do not enter into our
theoretical bound, the number of different edge costs
" drastically affects the run time of the code. The reason
for this seems to be that the more different e&ge costs we
have, the more dual varizble changes that.have to be done
to obtain an optimal solution, and dual variable changes

are practically (although not theoretically) time consuming.

7.26

A second observatieon is that the number of pseudos
formed during the course of execution of the code tends to
be relatively small. The entries in the table give the total
number formed during the execution of the code, the number
present.at termination ié often considerably smaller.

The BLOSSOM program of this chapter does run faster than
BLOSSOM I (The ratio of its execution time to that of
BLOSSOM I seems to decrease as the number of edges of the
graph increases). This is not surprising, however, for
BLOSSOM I treats directly a more general form of the matching
problem than is ;reated by the code of this chépter. These
more general problems can be reduced to problems solvable -
with the code of this chapter;however this involves
significantly, though algebraically, increasing the number of
edges and nodes.

The BLOSSOM procedure itself requires 33K bytes of
storage. Storage of the graph requires 28 x v + 24 x e + 32 x p
bytes of storage, where v is the number of nodes, e is the
number of edges and p is the maximum number of pseudonodes
present at any one time in thé execution. The various PL/1l library
routines required to run BLOSSOM add to these storage
estimates however, When run with the random graph generator
and driver, the [100 node-1000 edge] graphs required 148K
bytes of storage, the [1000 node-4000 edge] graphs required
238K Dbytes of storage.

Since the computer code uses fixed word arithmetiec, it
may not be able to solve a problem if the number of significant

digits of some of the values used becomes too large.

The degree constraints gnd values of the matching are
integers stored as binary half“éords and so can be no larger
than 32767. The value X(J) for any edge J can never be
larger than the smaller degree constraint of its ends, so as
long as the degree constraints range from 1 to 32767 we will
have no difficulty handling these values.

The edge costs and dual variables are stored as hexadecimal
(base 16) floating point numbers having six significant
hexadecimal digits. Any edge costs stored by the computer are
"rational numbers. If we multiply all edge costs by a positive
constant we do not affect the solution set of the problem.

Hence we can assume that the edge costs have been multiplied

by a large enough number so that they are all integer. As was
shown in the proof of (3.10.7) if our starting dual variables
are integer valued then all dual variables computed during

the execution of the algorithm will be integer or half integer
valued. 1If the degree constraint of every node is an inequality
(that is, V = ¢ and V£'= Vj‘ then all dual variables are
nonnegative and so no dual variable needs to be larger than

the largest edge cost. Thus if the edge costs are integers

from the range - 1,048,576 to 1,048,576 then the dual wvariables
will be integers and half integers from the same range.

These numbers are rep?esented exactly by six hexadecimal digits

50 we can be sure that the computer code will solve such

problems.

In the case that V # .4 ', and consequently some dual
variables are allowed to become negative, we may in fact require
dual variables considerably larger than the largest edge cost.

Consequently the establishment of a bound on the magnitude of

Tt e L

the dual variables is more complicated. For an analysis of a
situation of this sort, see Edmonds, Johmson, Lockhart [E7].

If higher precision were required for some problem it
would be a straightforward matter to replace all binary half
words with full words and all floating point numbers with
double precision floating point numbers. Then degree constraints
could range from 1 to 2,147,483,648 and if the edge costs

15 15

were integers from the range -4 x 10 toe 4 x 10 we could

guarantee a correct solution.

TABLE 7.1. TESTS OF BLOSSOM PROGRAM
No. of No. of Range of Range of Elapsed Blossom I No. of No. of Dual
Nodes Edges b, c, Time Elapsed Shrinkings Variable
L J Time Change
30 150 1 1-1000 4.9, 6.9 sec. 6.5, 9.2 sec. . 28,39
30 150 1 1-5 0.5, 0.7 1.1, 1.3 , 2,3
30 . 500 1-7 1-500 22.6,19.0 29.4,25.6 , 39,33
30 500 1-77 1-500 25.5,24.0 32.0,32.1 s 44,41
50 200 1-10 1-10 3.7, 4.6 5.5, 6.2 4,3 10,15
50 500 1-10 1-10 5.8, 5.8 12.0,11.2 5,5 6,7
50 200 1-100 1-10 3.2, 5.7 4.8, 7.4 0,5 10,18
50 200 1-10 1-9999 23.8,16.7 29.4,19.5 11,6 96,66
100 300 1-2 i-10 10.6, 8.1 24.4,23.7 27,19 16,16
100 1000 i=-2 1~-10 20.3, 8.8 54.7,15.9 26, 6 9,5
100 300 50-150 1-10 9.7,11.5 13.4,16.7 3,13 16,19
100 300 1-2 1-9999 50.5,45.5 62.3,53.8 11, 7 138,124
300 1500 1 1-10 38.1,21.6 65.9,39.8 11, 6 13,7
300 1500 7-77 1-10 44 ,0,51.3 102.6,112.4 15,13 18,12
300 1500 2 1-100 135.1,125.%6 182.4,172.9 0,0 68,70
300 1500 100 1—10 20.5,18.4 36.8,31.9 0,0 8,7
*#% 500 5000 1-10 137.0,123.4 31,28 5,6
%% 500 5000 1 1-10 84.2,177.4 36,61 3,5
#1000 4000 1-2 1-10 143.5,184.8 11,33 14,14

*#% Run with all nodes i ¢

Vs .
* Run with half nedes in V

APPENDIX o

F%THE BLOSSOM ALGORITHM: MAIN PROCEDURE, 16~03-73 x/

STMT LEVEL NEST

2 1
3 1
q 1
5 1
6 1

FATHE BLOSSOM ALGORITHHM: HMATH PROCFDURF, 16=03-73 */
BLOSSOM: PROCINFDGE,MNDRE,NODELST,ENGES,RUNSTAT) ;

FRAAXERARERARAKRAR AR AAKRAR KA ARKARARAAARRKARARAARRAAK A AR RAKAKR
KXAAA XA AR KKK VARTARLE DECLARATIONS AAKAKAAAKXARKKKAKRKNA K
KA KA XA KRR A A IRARARA AR AR N AR AR KRR KRR AR R A AKARKRKAKRARRRA AR RAR/

DCL (NFDGE,mMMONRE) BIM FIXED(I&):
DCL § NORELST(x /xNHODEX/), /% ACTUAL STORAGE FOR NODF VARS %/
2 FILL(7) RIMN FIXED(16):
DCL 1 EDGES(* /«NEDGE=x/),
2 C FLOAT,
2 X BIN FIXED(15),
2 STATUS,
3 FILL BIT(12),
(3 ZER,
3 EQ,
3 SHRHK,
3 FRST) BIT(1),
{2 ENDS{2).,
2 ORIGFMDS(2)) PTR;
DCL RUNSTAT(10) BIM FIXFD (1S):
I RUMSTAT(1)=H0,.0F DUAL CHANGES,
RUNSTAT(2)=M0, OF SHRIMNKIMNGS,
RUNSTAT(3Z)=DFEPEST NEST 0OF PSEUDONGDES FORMED,
RUNSTAT(4)=ND. OF EXPANSINNS,
RUNSTAT(S5)=NMND, OF TIMES FOREST GROWN,
RUNSTAT(&)=NO, OF TWD TRFF AUGMENTATIONS,
RUMSTAT(7)=MO, OF ONE TREE AUGMFNTATIONS,
RUNSTAT(R)=NAO, OF TTMES POLYGON aADDER TN THE FOREST,
RUMNSTAT(9)=NO, OF PSEURD AUGMERTATIONS,
RUNSTAT(10)= 0 IF MATCHIMG IS FEASIBLE,
1 TF MATCHING IS MOT FFASIBLE,
RUNSTAT(10) IS PASSED WITH VALUE 0 IF NO TRACE IS DESIRED.,
WITH VALUE 1 JIF A TRACE IS REQUIRED, &/
OCL t HODE BASED(P),
2 BASICS,
3 DEF RIN FIXERC1IS),
3 STATUS,
4 FILL BITC 7},
(4 REAL.
DCHNG,
YRTO,
INPATH,
EXPANDED,
CONSTEQ,
onn,
DEF1C,
BLOSIRIT(1),
3 Y FLOAT,

E_ N R - - -]

STHMT LEVEL NEST

1t

12

13

14
1S

16
17
13
19
20
21
22
24
25

/*THE BLOSSOM ALGORITHMN: MAIN PROCEQURE, 16-=03~73 */

-

DVEAVIL VISR VI P TR P T [AtH T

— .

3 TREE,
(4 UP,
4 RT,
4 DMNY PTR,
2 EPGEDM RIN FIXED(16),
3 STACKUP PTR;
DCL 1 PSEUGN BASEDC(P),
2 BASTCS(7) BIN FIXED (16},
2 ROGT PTR;
DCL((EPS,FPS1/EPS2,2) FLOAT, JX BIN FIXED(16)) STATIC:
DCL SHIRF ENTRY RETURMS(PTR):
pDCL ((P,P1,P2,P3,R1,R2,R3,PX,BROCT,01,02,Q3)PTR,
(I,J,J1,42,K,JCHT,LASTJ,JIN,JON) BIN FIXED(16),
DELTAX BIN FIXED(15),
(D1,02,03) RIN FIXED(1S)ISTATIC:
DCL (T IMIT ('1'B), F TNIT ('a'B))} STATIC BIT (1},
(ODDB , POLYBIT,SHRNKMG,YROOTQ, TRACE,FROMEX, NOCHECK,FATL)
STATIC BIT(1);
FMT: FORMAT(SKIP,A,F(6),A); /# USED FOR TRACING #/

LSRRI R ER KK AREETRAAKRRKR A AR KRR KRR AARKRAKKARKRA KRN RAARARA SRR RAARRRARAK

kAhkkrkkitkxx GENERAL PURPUSE SURBROHTINES AkxkArxrxahkkhakdi
****i***************‘k****kitR*********t*****tsiﬁ***********/

SURF: PRDC {P) RETUHRNS(PTR);

/* PROCEDURE TO FIND HIGHEST LEVEL PSEUDO MODE CONTAINING P,

/% PHEST IS USED TO COUMY STACK DEPTH, %/
DCL (P,P1 STATICY PTR:
DCL PNEST BIH FIXED(1S) STATIC:

PHEST=0;

P1=p;

DO WHILE (P1->STACKUP -=NULL):
P1=P1->STACKUP;
PNEST=PNEST+1 3
END;

IF PNFST > RUNSTAT(3) THEN RUNSTAT(3)=PMEST;

RETURN(PL);

END SURF:

*/

STHMT LEVEL NEST

26

27

28

30
31
33
34
5
34
37
38
3i9

40

54
55
56
57
58
59

/*THE BLOSSOM ALGORTTHM:; MAIN PROCEDURE, 16-03~73 */

1

PWMNMNNN NN NN n

[y

MNNNNNONN NN

NNV

-

(3% BV LTI Sl S Y

— e 0

FN:PROC(EDGE) ;
/* TiIIS PROCEDURE EVALUATES THE SUM OF THE DUAL VARTABLES
OH EACH FND OF aN EDGE AND ON ODD SETS COMTAINING
THE ENRGE . */
DCL ¢Pi1,P2) STATIC PTR, EDGE BIH FIXED{16), SUM STATIC FLGAT:

PI=IRTGENDS (EDGE,1)
P2=ORIGENDSIFEDGE,2)
SUM=P{->Y + P2=->Y:
IF ~SHRHK(EDGF) THEN GO TO END:
P1=ENDS(EUGE.1);

DO WHILE (Pi==z=NULL):
SUM=SUM+P{~>Ys
PtaPl->STACKUP;

END:

ENDIRETURM(SUM) »

END FN;

L]
r
*
12

AUGMENT:PROC(P1,R1,DELTAX,DESTROY,ODDB) ¢

/% THIS PROCEDURE AUGMENTS ALONG THE PATH FROM P{ TO THE RNOOT R{
BY AMOUNT DELTAX, TF DESTROY = T THEN THE TRFE GETS HROKEN
UP AT ENGES J FOR WHICH THE NEW X(¢J) = 0, IF DESTROY = F
THEN THIS DOFS HOT HAPPEM, MWE START AUGMENTING WITH AN
ADDITION OR A SUBTRACTION DEPENDING O WHETHER OND = T OR F.%x/

DCL (P1,R1Y PTR,DFLTAX BIN FTIXED(LS), (DESTROY,O0DD8) BIT(1),
(01,72} STATIC PTR;

Qi=P1;
DO WHILE (R1~=R1):
Q1->INPATH=F;
J1=Q1-> EDGEDN;
Ne=01=>NN:
IF ODDH THEN X(J1)=X{J1)+DELTAX;
ELSE DO
X(JUI=X(J1)~-DFLTAX?
IF DESTROY THFN
IF X(J1)=0 THEN CaALL UPSCANC(CQL,F,NONDEFIYX,T,NOMDEFIX):
/7% THIS REMOVES EVFRYTHING ABOVE AND SPLITS TREE
INTO ITS POSITIVE COMPONENTS, =%/
END:
Q1=823
aDDB=-nNHDB;
END;
R1=>INPATH=F:
END AUGHENT;

/*THE BLOSSOM ALGORTITHM: MAIM PROCEDURE, 146-03=73 */

STHMT LEVEL MEST

60 1 EXPAND:PROC (P):
/% THTS PROCEDURE EXPANDS A PSEUDUNODE,
SPECIFICALLY IT
1) CORRFCTS EOGE ENDS S0 THAT THEY NO LONGER RFFLECT
EXISTFNCE OF PSEUDONONE
2) AUGMENT S50 THAT MATCHING CORRFCY BUT STACKUP STILL
ACKNOWNLEDGES PSEUDQMNODE =/

61 2 DCL P PTR, DESTROY BITC1),(CP1,P2) PTR, (I,J) RIN FIXENDCi6), IN RIT(1)}
STATIC:
62 2 DESTROY=F
/* CORRECT ENGE ENDS */
63 2 JIN=Qp /% JUST IN CASE THERE IS NO ENGE IN WITH X(J) =1, x/
64 2 DO J=1 TO NERGFE;
65 2 i IN=F; s&% INDICATES PARTITY OF NO, OF EDGE ENDS IN P, %/
66 2 1 IF ENDS(J,1)-=P THEN GO YO PRTEST:
68 2 1 IN=T;
69 2 1 SHRNK (J)=F;
70 2 1 . PI=ORTGENDS(Jr1);
71 2 1 LPPi: IF Pl ~> STACKUP=P THEN DO:
73 2 2 ENDS (J,12=Pi; GO TO P2TEST:
75 2 2 END; :
76 2 1 P1=Pl => STACKUP: GO TO LPPi;
78 2 1 .P2TEST: IF EMnS (J,2) ~=P THEN 6O TO LPEND;
B0 2 1 TNz~ INg
81 2 i P2z0RIGENDS (J,2):
82 2 1 LPP2: IF P2 -> STACKUP=P THEMN DO;
84 2 2 ENDS (J,2)=P2;
85 2 2 GO TO LPEND: END: '
87 2 1 P2=P2->STACKUP; GO IO LPP2:
89 2 1 LPEMD: IF IN THEN .
90 2 1 IF XfJ)=) THEN /% THIS 1S THE EOGE INTO THE RLOSSOM3/
91 2 1 JinzJ:
g2 2 1 EMND:
93 2 IF JIM=0 THEN DD; /xCHECK FNR <= NODE WITH Y=z=0 */
95 2 -t DN I = 1 TO NNODE:
96 2 2 P{=ADDR(NODELST(1));
97 2 2 IF P1->COUNSTER THEM GO TO EKDSCH:
9 2 2 IF P1=>Y == 0 THE# GO TO ENDSCH;
/% OTHERWISE WE SEE 1F P1 IS CONTAINED IN P, =%/
101 2 2 BRNDT=P1;
102 2 2 B0 WHILE(BROOT=>STACKUP == RULL);
103 2 3 IF P=HROOT->STACKUP THEM GO TO LAR7:
/* BROOT IS A SUITAHLE MNOBFE FOR RECEIVING A PEFICIEMCYx/

105 2 3 BROOT=BROOT=->STACKUP; -
106 2 3 END:
107 2 2 ENDSCHSFND:

) /% P CONTAINS NO <= NODE WITH Y=0, SO CURRENT MATCHING O,K,x/
108 2 1 RETURN; '

STHMT LEVEL MEST

[TR,
TAZWMNODOD

]
i
1
1
i
i
1

117
119
120

124
125
126
127
129

130
131
132
133
134
135
136
137
138
140
141
142
143
145

146
147
148
149

150
151
152
153
154
155
156
157

/*THE BLOSSOM ALGORITHM: MAIHN PROCEDURE. 16=03~73 */

NNV NN NIY N NN NNV

AV RS RS R

PRI TS N e

e b A pen St

-

LART R =P~>RNDT;
IF BREDOT=R{ THEN RETURN; /x CURRENT MATCHING IS5 CORRECT
R1-~>DFF=03
BRODT=>DEF=]:
P1=BROOT:
GO TO AGHMNT: /& MATCHING CORRECTION SET UP x/
END; ’
/% OME END OF JIN HAS STACKUP=P, THE OTHER DOES NOT, LET
Pi BE THAT NODE =/
P1=EMDS (JI¥,1); IF Pl=> STACKUP=P THEN
P2=sENDS (JIM,2):
ELSE DO; Pp=Pi: P{=ENDS (JIM,2); END;
Jx MOW P11 IS THE SURPLUS NODE a7
BROOT=P1; /% VARIARLES RETURNED TO BLOSSOM x/
R1=P=>RO0T
R1=>DFF=0; /% WE WILL CLEAR UP THIS DEFICIFNCY %/
IF P1 = Rl THEM RETURN:
AGMNT 3
DELTAX=1; |
ODDR=F: /% START WITH SURTRACTION =%
CALL AUENENT (P1,R1,DELTAX,DESTROY,0DDR)Y; :
IF-0DDR THEM /x WE WENT CORRECT DIR'H AROUMD POLYGON =2/
RETURN:
J=R1->EDGEDN;
PI=ENDS (J,1) ¢
PR=FENDS (J,2):
ODDB=F; /% HORMAL CASE #/
IF P{~>GDD THEN ODDB=T: /% ARNORMAL CASE 2/
CALL AUGMEMT (P1,R1,DELTAX,DESTROY, (0DDR)Y);
CALL AUGHEMT (P2,R1,DELTAX,DESTROY, (QDDR));
XCJY=XL{JI+NELTAX;
IF ODDB THEN X{J)=X(J)=2*DELTAX; /* CORRECT A BAD GUESS &/
END;

XOUT:PROC; /% PRINTS CURRENT SOLUTION =*/
PUT EDIT('%BLOSS - CURRENT MATCHING 3')(SKIP,A):
PUT EDIT(X)(SKIP,20 F(5));
EMD XOUT:

YOUT:PROC: /% PRINTS CURRENT RUAL NODE VARS =/
PUT EDIT('xBLGSS = CURRENT NODE DUAL VARIABLES $')(SKIP,A):
PUT SKIP;
PO 1Y = 1 TO NNODE:
P=ADDR(NODELST(IY)):
PUT EDIT(P=>Y}(F(10,2)):
END3
END YRUT:

x/

/*THE BLOSS0M ALGORITHM: MATN PROCEDURE, {6=03=73 a7

STMT LEVEL MEST

/*****k*ﬁt****ti***i****ktk*******tt*k*t*ak*x**t**kkﬁ**i#tﬁ*h*****
*hkikkrkrax GENERAL TREE HANDLING ROUTINES x4XAAXAXkxxXkAXkAKRANRRK
*****ttk****tt*x**kika*tu\txtxk*****t**kt*t****a**g*,*********xkta/

158 1 REMOVE: PROC (P1):
/% SUBROUTINE TO REMOVE P{ FROM THE TREE CONTATHING 1T, 7/

159 2 OCL (P1,(P2,P3) STATIC) PTR;
160 2 P2=Pi~->Nh:
161 2_ TF P2=tULL THEN G0N TO RPET /2 FOR P} IS THE ROOT OF ITS TREE */;
163 2 P3=P2->UP;
164 2 IF P3zP1 THEN GO TO EASY;
166 2 DO WHILE (P3->RT ==P1l);
167 2 1 P3=P3a>RT}
168 2 1 END:
/*x NOW WE HAVE FOUND P{ =/
169 2 P3=>RT=P{=>RT;
170 2 GO 10 RET;
174 2 EASY:P2=>lIP=P1~>RT;
172 2 RET: P1->RT=HULL;
173 2 P1->DN=NULL;
174 2 FRST(P1~>EDGEDN)=F¢
175 2 END REMOVE:
176 1 REROOT: PROC (P1):
/* SUBROUTINF WHICH REROQOTS THE TREE CONTAINING Py AT P1, */
177 2 ncL ((P2,P3,PX) PYR,(J,J3) BIN FIXER(16)) STATIC, P! PIR;
178 2 P2zP1->0ON; .
179 2 IF P2=%NULL THEN RETURN /% FOR P1 1S ALREADY A ROOT, */;
181 2 J=Pt=>EDGEDN?
182 2 Px=FP{s
183 2 CALL RFMOVE (P1);
184 2 LP: P3=P2->DN;
185 2 J3zP2->EDGEDN;
186 2 CALL REMOVE (P2):
187 2 CALL ADDOM (PX,P2,J):
188 2 IF P3=MULL THEN RETURN /% FOR P2 WAS THE ROOT, %/
190 2 PX=P2;
191 2 P2=P3:
192 2 J=J3;
193 2 GO TO LP:
194 2 END RERDOT:

STHMT LEVEL NEST

195

196

197
198
129
200
201
202

203

204

205
207
208
209
21
213
a1a
215
216
218
220
221
222
223
225
227
228
229
2390
231
e3i3
234

/%THE BLOSSOM ALGORITHM: MAIN PROCEDURE, 14-03=73 %/

1

NN S

NN NMNN N DN LN NS AN DN DN

— — b

——

ADDONZPROC(Q1L,02,J):
/% ADDOM ATTACHES THE TREE RNOTED AT G2 TO NODE 01 BY MEANS
OF EDGE J, 17 REQUIRFS THAT 82 RE THE ROOT OF A TREE, A/
DCL (n1,02) PTR, J BIN FIXFD(16);

N2=>RT=Ni~>YP:
AZ2=>NHz=RY
N2=>ENGEDH=]T:
Ji->UpP=Q2;
FRET(J)=T;

END ADDOM:

I HAE KA R KA R KRR KRR AR AN AR A K AR AR KA KR KRR AR AR R AR R A kAR R AR A XX AR
AhAXkEXEAKAKAKKK THE UPSCAN ROUTIMES AA*XAXARX*AXAAAKRAXAAAXNERAX
KRR AR R R KRR A AR KL AR R KRR AR AR AR AR AR AR KR AR AR AR AR AR AARKARRRRARAA KRS

UPSCAN&PRUC(Pl:UPCALL:SUBRUP:DNCALL,SUBRDN):

/% UPSCAN GOES THROUGH ALL THE NODES ABOYE P1 IN THE TREE
CONTATHMING P1 AND IF UPCALL=T THFN CALLS SUBRUP FOR
EACH NODE IN THE TREE AS IT REACHES IT COMING uP,
IF DNCaLL = T THEN SUBRDL IS CALLED FOR EACH MODE AS
IT IS ENCOUMNTERED COMING DOWH, &/

OCL (P1,(Q1,A2) STATIC) PTR,(UPCALL,DNCALL) BIT(1),
(SUBRUR, SUBRNDN) ENTRY;

IF UPCALL THEN CALL SYBRUP(P1):
fi=P1:
MVUP:N2=01~->UP;
IF Q2-=NULL THEN DO:
CALLUP: IF UPCALL THEN CALL SUBRUP{R2):
N Bi=02:
6N TD MYUP;
END:
EMDTST: IF Q1=P1 THEN NO;
IF DHNCALL THEN CALL SUBRDN(Q1):
RETURN;
END;
N2=01->RT;
IF Q2%=tULL THEN DO:
TF DNCALL THEN CALL SUBRDH(Q1);
60 TO cALLUP:
END}
02=011
0i=Q1=>DN;
IF DNCALL THEN CALL SUBRDM(G2);
GO TO EMDTST:
END UPSCAN:

/*THE BLOSSOM ALGORITHM: MAIN PROCEDURE, 16=03~73 x/

STMT LEVEL NEST

235 1 ADDFIX: PROC (Q1):
/%4 THIS PROCEDURE SETS ODD,DEFIC AS APPROPRIATE FOR THE NODE
N1, IT DEPENDS ON Q1->TREE,DN, 2/

236 2 ncL (1,02 STATIC) PTR;
237 2 Q1=>AL0S,01~->TNPATH=F;
238 2 Ng=01=>DN;
239 2 Rl=>DEFTIC=R2~>DEFTC;
240 2 Ul-?YRTO = Q2=>YRTO;
201 P TF -G1=->DEFIC THEN Q1->0D0=f}
243 pd ELSE 01=>0ND=-02->000;
244 2 END ADDFIX:
245 i POLYFIX: PROC(P1):
/% PRNOC CALLED BY UPSCAN TO

13 SET P{=->STACKUP = NULL':

2) SET P1->IMPATH = F, x/
246 2 DCL P1 PTR;
247 2 P1->STACKUP=HULL
248 2 Pl=>IMPATH=F;
249 2 END POLYFIX:
250 1 NONDEFIX: PRODC (P1):

/* THIS IS & PROCEDURE DESIGHMED TO BE CALLED BY UPSCAN WHICH CORRECTS
THE STATUS INDICATORS AND SPLITS A TREE WITH NON=DEFICIENT ROOT
INTO POSITIVE COHMPONENTS =/
251 2 bCL P1 PTR;
252 2 P1 ~> DEFIC, P1 => QDD = F}
253 2 P{ > ALODS = F:
254 4 P => YRTO = F3
/% INDICATORS NNA CORRECT =x/

255 2 IF P1 => DN==MULL /» I,E, IT EXISTS =%/
256 2 THEM ' IF X(P1=->EDGEDM)=0 /x I.,E, WFE HAYE PLACE FOR

DETACHING */
257 2 THEN CALL REMOVE(P1);
258 e ENE NONDEFIX:

ZATHE BLOSSO0M ALGURITHM: MAIN PROCEDURE. 16-03~73 x/

STMT LEVEL MEST

259 1 BLOSSINPDIPROC (P1):
/x PROCFDURE TO IMDICATE THAT Pi IS A NONE IN A NON=DFFTICTENT
BLOSSOM, AND THE EDGE HOWMN IS IN A& SIMILAR STATE =%/

260 2 nCL Pt PTR;

261 2 FRST (P1 =-> EDGEDNI=T;

262 2 P{ =-> 00D, Pt => DEFIC, P1«>INPATH = F;
263 2 P1 => #iL0S=T;

264 2 END;:

265 1« ADDBLOS:PROC(PYL);

/% PROCEDURE CALLED WHEN EXPANDED BLOSSOM HAS BEFHN ADDED
TO A DEFIC TREE, IT SETS ODD UMTIL A ZERD £YEN FDGE
IS FOUND, WHEN IT SETS THINGS UP FOR DEFFIX TO SPLIT
THINGS INTO NONZERO COMPOHENTS, NOCHECK IS USED TO AVAaID
TRYING TO SET DEFIC AND 00D FOR THE ROOT WHEM UPSCAN IS
STARTED AT THE ROQT OF A TREE, &/

266 2 DCL(Pi{,P2 STATIC)PIR; -
/* PX AND SHRHUKNG ARE USED AS EXT, VARS, 2/

267 2 P1=>STACKUP=NULL;
268 4 P1->BLAS,Pt~>TNPATH=F;
269 2 I¥ NOCHECK THEN D9:
271 2 1 NOCHECK=F; RETURN; END;
274 2 IF SSHRNKNG THEM GO TO LABI;
276 2 P2=P1~>DN;
217 2 IF P2->00D THEN
278 P4 IF X{P1->EDGEDN}=0 THEK DO; /% RETACH %/
280 2 1 SHINKMG=F ;PX=P1s "
282 2 H LABLIP1=->DEFIC,P1=>0DD = F3
28% 2 1 RETURN;
284 2 1 FHD:
285 2 P1=>DEFIC=P2~>DEFIC:
284 2 Pi=>00D2-P2a>00D3 -
287 2 RETURN:
288 2 DEFFIX$ENTRY(PL);
289 2 IF ~SHRNKMHG THEM /2POSSIBLE DETACHMENT =/
290 2 IF X(PI=->EDGEDN)=0 THENW CALL REMOVE(PL):
292 2 IF P1=PX THEN SHRNKNG=T:
294 2 RETURN
- 299 2 END ADDRLOS:

FxTHE BLOSSOM ALGORTITHM: MAIN PROCFDURE, 16m03=73 4/

STHT LEVEL NEST

296 | UPBLOSS:PROC (P1):
7% UPRLOSS AND DEALNSS QO MOST OF THE WORK REQUIRED TO
SHKRINK A BLOSSAM, WE USE PX (PTR) AKD SHRHKEMG (BIT(1)) AS
DEFTMER TN BLOSSNM, ¥E ASSHME THAT 82 IS IHF RDOT OF THE
BLOSSOM ARD P IS THE PSEUDOMNODE BEING CREATED, &/

297 2 DCL P PTR:
298 2 IF = SHRMKNG THEN RETURM;
300 2 IF P1=R2 THEN GO T0 HFIX:
302 2 IF 5 P1 => IHPATH THEN
303 2 IF X(P1 ~> EDGEDN)=0 THEM DO;
305 2 1 SHRMKNG=F: /% STOP SHRINKING #/
306 2 1 PX=P1 /% SAVE NODE FOR DNBLOSS*/:
307 2 1 RETURN;
308 2 {) END;
309 2 BFIX: P11 -> STACKUP=P;
310 2 RETURN:
311 2 DNBLOSSSEMTRY (P1):
312 2 Ple>INPATH=F; /% TURN OFF PATH INDICATOR =2/
313 2 IF P15=PX THEW /% NO SHIPPING TO BE CONE, 50 %/
314 2 RETURN 3
315 2 KsP1l ~> EDGEDNM;
316 2 CALL REMOVE (P1):
317 2 CALL ADDOM (P,P1.,K):
318 2 SHRNKMG=T; /x RESUME SHRINKING &/
319 2 RETURN;
320 2 END;
321 1 SETYRTO: PROC(P1):
/% PROCEDURE CALLED BY UPSCAN TO SET Ple>YRTQ EQUAL TO
THE GLOBAL VARIABLE YRODTG, */
322 Z DCL PI1 PTRy
323 2 P1 -> YRTO=YROOTO;

324 2 END SETYRTO;

/XTHE BLOSSOM ALGORITHM: MAIN PROCEDURE, 16=-03=73 */

STMT LEVEL NEST

SRR K AKRRKRARFRAAREERKRARR AR RARNKAAR KA A AR KRR AR RNARAKR KKK AN AN K
kA kkkaktws IMITIALIZATION Ak stxkhXAXARAXAFATkRARARARK
KR A KR AR KR ARKR N RN AR KA RRAR AN AR AR RARKRAKKAXAREARAXKRKRAR AR &S

325 1 IF RUMSTATC(10)=1 THEN TRACE=T; ELSE TRACE=F:
328 1 IF TRACE THEN DO
330 1 1 CALL X0OUT; CALL YOUT; END: :
/x GFENMERATE THE INITIAL EQUALITY SUBGRAPH, x/
333 1 1F TRACE THEM 00:
335 1 1 PUT EDITC'#BLOSS - EDGES IN EQUALITY SUBGRAPH: ') (SKIP,A);
336 1 1 PUT SKIP; END;
338 1 D0 J=g TO MEDGE:
339 1 | C(J) = C(JY =~ FN(J); /* CALCULATE RFOUCED COST =x/
340 1 i IF C{J) = 0 THEM EQ(J)=T; ELSE EQ(J) = F3;
393 1 i IF TRACE 7THEN IF EQ(J) THEN PUT EDIT(JI(F(53);
YT i 1 END:
/% END OF EGQUALITY SURGRAPH GENERATION =%/
397 i RUNSTAT=0;
348 1 NOCHECK,FROMEX = Fg
349 1 JCHT,LASTJ=1:
350 1 As
/******t****ki*k**t******k***********i********************t*
kkxkkikkxkrakx FIRST LEVEL EDGE ANALYSIS EAkRXKRARAARRAARR XA
tk**#*tt*i*ﬁk***x***k****:\'*******'k*****1#*****%****#*/
351 1 IF SEQCJCMT) THEN GO YO EMDAy
352 1 IF ZER(JENMT) THEN GD TO FEdDA:
354 i IF SHRNK(JCMTY THEH GO0 T0O ENDA:
356 1 IF FRST(JCNT) THEN GO TO ENDA:
/* - '
OTHERWISE WE HAVE AN ERGE WHICH IS IN THE EQUALITY SuB-
GRAPH WHICH CAN TAKE OHN A NOMZERO VALUE AMD S0 FAR HAS
NOT BFEN SHRUNK AND IS NOT IN THE FOREST,%/
7%
WE NOW AMALYZE THE ENGE., 1IN ORDFR FOR IT TO RE USEFUL
ONE END MUST HBE AN EVEN NORE OF A DEFICIENT TREE IH THE
FNREST FOR WHICH THF ROOT IS8 NOT A <= NODE MWITH Y=0, */
358 i P{=ENDS(JCNT,13: P2=ENDS(JCNT,2);
260 1 If P1->DEFIC THEN
361 i IF ~P{=>YRT0 THEN
362 1 - 1F ~P1->0pD THEN GO TO DFFOUT:
364 1 IF -P2=>DEFIC THEN GO TO ENDA;
366 1 IF PR«>0NnD THEN GO YO EMDA}
368 i IF P2->YRTp THEN GO T0 EMDA:
370 1 pP3=Pp: P2:=Py; P1=P3; /% IMTERCHANGE POINTERS FOR P2 DEF, QUT ND &/f
373 1 DEFOUT: #*% IF THE DOTHER END OF THE EDGE IS aN ODD NODE OF

THE FOREST THEM THE EDGE IS OF NO USE TO US, , .
UNLESS IT IS IN A TREE WHOSE ROOT IS <= WITH Y = 0, */
IF P2.>00D THEN
374 1 IF ~P2~>YRT0 THEM GO TO ENDA;
376 1 ELSE GO TO ODDGROW;

STHY LEVEL NEST

377
378
380

382

383
384
385
386
388
389
390

391
392
393
394
i96
398
399

400

/*THE BLOS30M ALGARITHM: MAIN PROCEDURE, 16~03=73 *x/

1
i
1

[Y o

[N)

i

— . s e

JyLASTI=JCNT; /% FOR WE ARE AUOUT TO ACCOMPLISH SOMETHINGH/
IF P2->BL0OS THEMN GO TO PCLYSTEP:
TF —P2-5DEFIC THEN GO TO GROWSTEP:
/% UTHERMISE ENRGECJ)Y JOINS ThO EVEN NODFS OF THE FOREST x/
/x FIRST WE SEE IF THEY ARE IN TREES WITH DISTINCT ROOTS,
IF S0 WE cam SIMPLY AUGMENT, OTHERWISE WE MAY HAVE TO
SHRINK, AT THF SAME TIME WE COMPUTE HOW MUCH THE VALUES
OK THE PATH CAN BE CHANGED.*/

A AR E R A A AARKERA AR RARRARARKRR AKX ARAI AN ARARAARR AR KKK LKAk K
hkhhhkkkhkhkhkk SECOND LEVEL EDGE ANALYSIS kA*AkAAXAkkkkakak
KA A A A AR AR A KKK KR IAA I AR KA ARAXRAARAKRXARKRKARRKARRARANKAK AR AR/
DXCALC: Pl,D2,03=232767;
/* NOw FIND PATH FROM P{ TO THE ROOT=x/
Ri=P1l:
Ri=>INPATH=T; -
N0 WHILE (Ri=>NN == NULL);
IF -R{=>0DD THEN Dl = MIN(DL,X(R1->ERGEDN))};
Ri=R1->DN;
Ri~>INPATH=T;
END:
f* SIMILARLY, FIND PATH FROM P2 TO ITS ROOT RP2: 1IF A
POLYGON IS FNRMED, R2 WILL BE THE ROOT OF THE POLYGOMN, =#/
R2=P2; .
DO WHILE("R2=>1HPATH);
R2=>TNPATH=T:
IF R2~>DN=HLULL THEM sx WE ARE AT THE ROOT %/ GO TO TWOTREE:
IF ~R2-3>00D THEN N2=MIN{DR2,X%X(R2~>EDGEDNY):
RZ=R2=~>0DN;
END;
/% WE MUST HAVE A COMMON ROOT TO THE THO TREES SO WE =/
GO TO OHETREE:

J*THE BLOSSOM ALGORITHM: MAIN PROCEDURE, 16=-03-73 */

STMT LEVEL NEST

FRE AR EEIA AR AR AR AT A KRR A A AR AR AR KRR AN AX AR AR AR AR A A A AR AL AR KR

AAKAKKARK KX Tul TREF AUGSFUTATION AXAKKAKEARKARKERAARAARRA
ERKAA KRR AAKARA KL AR R AR KRR KRR AR AR A KARR AR A ARARARRA AR ARRRARAKRAARR S
401 1 THOTREE:

/% 1F WE MADE IT Yo HERE, R1 AND R2 ARE DIFFERENT SO WE
AUGMEMT BY AMOUNT =/
RUMSTAT (6)=RUNSTAT(p)+1:

102 1 DELTAX=MININY,D2,R1=->DEF ,R2~>DEF);
703 1 CALL AUGHMENT(PL,R1,DELTAX,T,(F)}:
404 1 CALL AUGMEMT(P2,R24DELTAX,T,(F)):
1405 1 X(JI=XC(JI+DFLTAX:
496 1 R1~>DEF=R1=>DEF = DELTAX:
uo7 1 R2=>DEF=RP2~>NEF = DELTAX:
a0s 1 IFf TRACE THEN DO;
410 1 1 PUT EpTT('2BL0OSS ~ EDGE ',J,' USED FOR 2 TREE AUGHMENTATION')
(R(FMT));
411 i 1 CALL XQuT: END;
/*x NOW CORRECT STATUS INDICATORS IN THE TREEx/
413 i IF R1=->DEF = @ THEN CALL {IPSCANC(RI,F,NONDEFIX,T,NONDFFTX);
415 1 IF R2=>DEF = 0 THEN CALL UPSCAN(RZ,F,NONDEFIX,T,NONDEFIX):
Jx FINALLY IMCORPORATE J INTO THE FOREST x/
417 i JADD: TF Pil=>DEFIC THEN /x P2 CANNGT BE IN A RBEFICIENT TREE, ADD
418 1 ON TO P12/DU:P3=P2:P2=P1:P1=F3;FHD;
123 1 CALL REROOT(P1};CALL ADDONM(P2,P1,J);
425 b CALL UPSCAM (P1,T,ADDFIX,F):;
426 1 GO TO ENDAy
IEAEANKR KRR KRR A AR KA KA R AR AR KRN AR R AR KA RARARR A AR AARAKKARAKRARARA
kkkrikakkaxx SINGLE TREE AUGMENTATICON AAAAREAKRAAAKARKAXRR
******‘k*k***t***‘k**k***********************A***k**********k!
427 1 ONETREF: /% FIND BOTTLENMECK IM STEM OF BLOSSOM %/
R3I=R2:
428 1 00 WHILE (R2=>DN-=NULL):
429 1 1 IF =2->0D0 THEN DO;
031 1 2 IF X(R2=>ENGEDNY = t THEN /a1 WE HAYE FOUND THE
432 1 2 START 0OF A BLOSSOM, S§0x/ GO TO DEFBLOSS;
833 i 2 NI=MIN(NI, X(R2~->EDGEDN)) ;
434 1 2 END;
43S 1 i R2=R2->DN}
8436 1 i END ¢

/% AT THIS POTINT, AM AUGHFNTATION IS POSSIfLE, SINCE MO EVEN
EDGE IN THE STFM HAS X=1, UMLESS Rl«>DFF = { &/
437 i IF R1=->DEF = 1 THEN GO TQ DEFHLOSS;
. /% OTHERAISE 17§ AUGMENTATION TIME,*/
439

i RUNSTAT(T)=RUNSTAT(7)+1;
B4 1 DELTAX=MIN(D],D2,FLOOR(RL=->DEF/2),FLOOR(D3I/2));
441 i ODDR=F; /&% MORMAL CASE a/
a42 1 IF P1->000D THEM DO; /%x ABMORMAL CASE x/
440 1 1 ODOB=T; DELTAX=MIN(DELTAX,X(J)); END;

STMT LEVEL NEST

847
448
qa9
450
452
453
4s4
435
57
558
459
460
462
463
465

166
467

468
470

472
473%
475
476
477
q78
479
181

485
na7
188
489
490
191
492
493
4914
495
496
998
S00
501
Soe
503
Son
505

/*THE BLOSSOM ALGORITHM: MAIN PROCEDURE, 16~03~73 */

P e kel b A s et e b bk e e

— -

bt bk ek ek gk b pma s

e sk j bl bt ek bk bk ek b e ek 8 B

(S T e

Lol AN AV AV IS R T I

s s ek ek ek

CALL AUGMENT(PI,R3,DELTAX,T,(ONDBY):
CALL AUGMENT(PZ,R3,DELTAX,T,(GDDRB));
XGII=X{JI+DFLTAX:
IF ODBDB THEN X(J) = X(J) -2*DELTAX; /% CORRECT A BAD GUESS x/
POLYRIT=F;
IF P1=>DEFIC THEN
IF P2->DFFIC THEN
IF Y(J)>0 THEN POLYBIT=T:;/% WE HAVE A NONZEROQ POLYGON %/
NDELTAX=DELTAX+DELTAX: /&% STEH GETS DOURLE AUGHMENTATIOMN &/
R1=>DEF=R1~>DEF = DELTAX:
OGDB=F;
IF R3I->0DD THEN ODDB=T:
CALL AUGMENT(R3,RI1,DELTAX,T,(QDDB));
IF TRACE THEM DD:
PUT ERIT('4BIOSS = ENGE ',J,"' USED FOR 1 TREE AUGHENTATION?)
(R{FMT)Y);
CALL XDUT:
END
/% DISASSEMBLE THE TREE IF ROOT NO LONGER DEFICIENT, */
1IF Ri«>DEF = 0 THEN CALL LPSCANCRI F,HNONDEFIX, T,NONDEFIX),
ELSE IF FROMEX THEH DO0: /% WE HAVE EXPANDED PSEUDY ODD NODE
AN MUST ENSURE THAT TREE IS CORRERT, =%/
NOCHECK=T; /% IGNORE ROOT, SET F BY ADDBLOS, x/
PX=HULL; SHRNKNMNG=T; /% GLOBALS FUR ADDBLOS-DEFFIX &/
CALL UPSCAMNC(RI1,T,ADDBLOS,T,BEFFLIX);
END:
FROMEX=F 3 '
IF =POLYBIT THEN /% INCORPORATE J INTO THE FOREST i/
IF X(J)>n THEH &0 TO JADD:
ELSE DOy FRST(JY=F; GO TGO EMDA; END
F* OTHERWISE WE HAVE A POLYGON WITH MOMNZERO EDGES x/
IF R3 =->» DEFIC THEN DO
R2=R3:
0Q HWHILE (R2~>DM==NULL)y
IF =Rz ~> 0ODND THEN
IF X(R2=>EDGEDN)=1
THEN GO TO0 DEFHLOSS;
Re=R2~>DN;
EMND
GO TO DEFBLOSS; /4 RONOT OF TREE ROOT OF BLOSSOM =/
END:
ELSE DO; R2=R3:
LB1: IF Rz->BH = NULL THFM GO TO LB2;
R2=R2->DN:
60 TO LB1:
LB2: R2=-> FDGEDN=J:
CALL UPSCAN (R2,T,BLOSSIND,F)Y:/% SHOW A NONZERD COMPOMENT %/
GO TO ENDA: ' /% CONTAINING AN OBD POLYGOM =/
END;

/*THE BLOSSOM ALGORTTHM: MAIN PROCEDURE, 16~03~73 *x/

STMT LEVEL NEST

FRAE KKK TR R ARE AR ARAREENARKRRARAAKAARAARKAAAKN K AKX ARARANRA AR &R

AEXKXN kX PSEUDO MODE CREATION xAaxkAkAkA AR XEAAXAAKAREALX
******A**?*ktn***A**k*t*t*****ﬁ*****x*******i*****k*****ii/
506 1 DEFRALOSS: /* HERF P1 AND P2 ARE THE Tw0O ENDS 0F THE

EDGE J WHICH FORMS & BLOSS0M, 12 IS THE ROOTF OF THE STE#H
AND R3 IS THE ROOT OF THE POLYGON, ALL YWE REED DO IS
SHRINK IT %/

RUMSTAT(2)=RUMNSTAT(2)+1;

5067 i FROMEX=zFs s« IM CASE IT WAS SFT T BY PSFUDO EXPANSION x/
S08 1 ALLOCATE PSEUDD; /% CREATE A PSEUDO NODE 2/
509 1 DEF=1:
Si0 13 REAL,INPATH,ODD,BLOS,EXPANDED=F;
S5t1 I CONSTEGQ,DEFIC=T;
512 1 Y=0EO;
Z13 i STACKUP=MULL ;
s14 1 ROOT=R2:
515 1 UP,RT,DN=NULL?:
516 1 YRTO=R2=~>YRTO;) .
517 1 IF TRACE THEN PUT EDIT('#5L0SS ~ EDGE *,J,' FORMS PSEUDONODE',
UNSPECC(P)) (SKIP, A, F(6),AF(10))
/% INDICATE NODES IN PATHS FROM P2, P1 10 R2 &/
Si9 1 P3=P1;
s20 1 DO WHILE (P3-=R2):
S21 i i P3 ~> INPATH = T; P3=P3->hM; EMND;
s24 1 R2«>INPATH=T:
525 i P3=P2:
526 1 N0 WHILE (AP3<>INPATH}:
527 1 1 P3 => IMPATH = T; P3=P3.>DN; END;
/% TURN OFF INPATH IN UNUSED PART OF STEM =/
530 1 P3=R2->DN;
531 1 DN WHILE(PI~=NULL):
532 1 1 P3~>INPATH=F: P3=P3I=>DN; END;
535 1 SHRMKMG=T: /%2 WE ARE SHRINKING */
536 1 PX=NU{L: /% PREP, FOR CALL OF UPSCAN x/
537 1 CALL UPSCAN (R2,7,UPBLDSS,T,DNBLOSS):
538 1 K=zhz2=>FDGEDMN; P3=R2~>DH;
549 1 CALL REMAOVE (R2):
541 1 IF P3 == MNULL THEN CALL ADDON (P3,P,K);
543 1 TLSF P->CDGERN = 0 '
544 | R2=>EDGEDN=J; /% THIS IS THE EDGE THAT FORMED THE BLOSSOM;
NOW FIX ALL EDGES S0 THAT ENDS IS CORRFCT +/
545 1 DO Ji1=1 TO REDGE:
546 1 1 IF SHRNK(J1)} THEN GO TO FHDC;
548 1 1 PISENDS(J1,1); PP=ENDS (J1,2):
550 1 { IF Pi->STACKUP=MULL THEN /% NO CHANGE =/
551 1 1 GD TO ENDXB:
552 1 1 SHRNK (Ji)=T3;
553 1 i ENDS(J3,1)=F;
554 1 1 ENDXB: IF P2->STACKUP-=NULL THEN

STMT LEVEL NEST

555
556
557

558

559

560

562
563
564
565

566
567

569
570
571
572
573
574

575
576
577
578
579
580

/*THE BLOSSOM ALGDRITHM: HAIN PROCEDURE, 16=03-73 *x/

1
1
1

- .

ek ke B e .

i ek ph ek gun pun

1
1
1

ENDS(J1,2)=P;

ELSE SHRHNK(Jt)Y=F:
EXDC: END:
/% NOW SHRINKING IS COMPLETE =/
G0 TO ENDA:

/t**********t***********x******k*t*****)**%:***************
kkkakdhkxkxANORMAL FOREST GROWTH 2xAX X AXAAxAxAAAkadthk ki *x
KAKXXRAKXE KX AR R XA R AAARKR AKX AKRA R KA AR KA RA AR RE AR R AR XA ARA KA KRRAAAAKS
GROWSTEP: /% WE GROW TREE BY USING J TO App A NONDEFICIENT

TREE %/

RUNSTAT(S)=RUNSTAT(S)+1;

IF TRACE THEN PUT EDIT(**BLOSS -~ EDGE ',J,' USED TO GROW FOREST?)
(R(FMT));

CALL RERDOT(P2):

CALL ADDON{PL,P2,J}):

CALL UPSCAN (P2,T,ADDFIX.F):

GD TOD ENDA R

FRAkkkhkhkkkERrhkkbrxhARkXXxhkxxkA AKX KAKXKRAERKAKAAXRAARA KA AR AR A K KAKER
kxxkkkkaxkxx ADJUNCTIOM OF POLYGON TO THE FUREST siaaraxkaz
Akkhkkkkk ki ******i*********)***:***tt**xt**k***a******t***/
POLYSTEP: /> FIND ROOT OF COMPONENT %/

RUNSTAT(8)=RUNSTAT(8)+1;
IF TRACE THEN PUT EDIT('#BLOSS -~ EDGE 1,J,! USED TD ADD NONZERO PO

LYGON TO THE FOREST')(RI(FMTI):

P3=P2: .
00 WHILE (P3->DM-=NULL)Y;
P3=P3->DH;
. END; .
J1=P3->EDGEDN; /*J)1 IS THE EQGE WHICH FORMED THE POLYGON x/
CALL REROQT (P2):
/* RERGOT THE COMPONENT AND ADD IT TO TREE %/
CALL aphod (Pyi,P2,J);
CALL UPSCAN (P2,T,ADDFIX,F);
PI=ENDS(JL, 1)
P2=ENDS(JL,2);
J=Ji;
GG TO DXCALC:

/*THE BLOSSOH ALGORITHM: HAIN PROCEDURE, 15-=03«73 A/

STHT LFVEL NESTY

S AAAARAER R AR KA AR AN KRR AR R AANNKRARA KA RKRARANKRKREL AR AKX AR XAKRAR
xkkxrkkkaxt PSEUND FORFST GRUOWTH AAXk*AXA AKX AR KA XA XA A A hARKNX
AEAAKAKARKIRNNAARRRAKNAAKARRKANRI KA AARRENAARNAKRARARRAKRKA RN R A/

581 1 OPDGRONS 72 AM EDGE J HAS REFH FOUND JOINING PL IN F1 TO P2 IN FOx/
] RUMSTAT{SI=RUNSTAT(5)+1;
582 i JyLASTS = JCNT:

583 i IF TRACE THEN PUT EDIT(!'*3L0SS - EDGE *,J,' USED FOR PSEUDO FOREST
GROWTH') (R(FMT)); .
/% FIMD FIRST MODE IN PATH FROM P2 TO [TS ROOT HAVING A ZERO
DOWN ERGE, OR IFf NO SUCH EDGE EXISTS, THEN WE FIND THE
ROOT OF THE TRFEE CONTAINING P2, */

585 1 Ri{=P21+
586 1 DO WHILE(R{=>DN =z NULL): .
587 H 1 IF X(R1~>ENGEDN)=0 THEN GO TO ROOTADD?
589 i 1 R1=R1->DN3
590 1 1 END
' /* Ri IS THE ROOT, ALL EDGES IN PATH HAVE X>0, »/
591 1 ROOTADD:
A3I=R1=->DN;

592 1 CALL REMOVE(R1Y:
593% 1 CALL RERODT(P2):
59q 1 CALL ADDGH(P1,P2,J); /% TREES NOW COM3OLIDATED %/
595 1 YROOTQ = F3;
596 1 CALL UPSCAN(P2,T,SETYRTQ,F);
597 1 IF 3 == MULL THEN /&% wE HAD A ZERQ FDGE /G0 TO ENDA:

/% NOi AUGMENT SO AS TO GFT DEFICIFNCY TO THE ROOT %/

/% Ny WILL HE THE LLAST NOUDE FNR WHICH THE 0OwN EDGE BFCOMES 0 &f
599 1 AlUG: DI=32767:
600 1 RUNSTAT(9}=RUNSTAT(9)+1;
608 1 R2=R1: _
402 1 DO WHILE (R2=>NM ~= NULL);
603 1 1 IF ~R2->0DN THEN DO
605 1 2 J{=R2->EDGEDN;
606 1 2 IF X(¢(J1) <= DI THEW DO:
608 1 3 DI=X{J1);
609 1 3 Qi=R2;
610 t 3 EMD;
611 1 2 EHD:
biz i 1 R2=R2~->DN3;
613 1 1 END:
614 1 RELTAX=MTH(Dt,R2->DEF);

/x NOW WE ANGMENT x/
615 1 CALL AUGMEMT(R1,R2,DFELTAX,F,(F));
416 1 R2~>DEF = R2->DEF =~ DELTAX;
617 1 Ri=->PEF=R1->DEF + DELTAX; /% WE INCREASE DEF AT THIS NODE, %/
618 1 IF TRACE THEM DO
620 1 1 PUT EDIT('*RBLOSS ~ PSEUDD AUGMFNTATIOM J(SKIP,A);
621 1 I CaLL XOUT:
622 i 1 END;

/*THE BLUSSDM ALGORITHM: MAIN PROCENDURE, 16-03-73 */

STHMT LEVEL NEST

623 1 IF D1 > DELTAX THEN /% NO FpGE I8 PATH BFCAME ZFRO =*/
624 1 GO TO TADD;
/% LLSE FVERYTHING ABQOVE Q1 GETS REMOVED AMD RERONTED AT Ri &/

625 1 CALL RFMOVE (Q1);

626 i YRODTg=F¢

627 1 CALL UPSCAN(RZ, T,SETYRTO,F):

628 1 If R2~>DEF=0 THEN

629 1 CALL UPSCAH(RB,F-HONDEFIX,TrHONDEFIX): /% AL30 SETS YTRO=F */

630 1 TADD: CALL RERDOT(RL);

631 1 YROOT) = T.

632 T CALL UPSCANCRL,T,SETYRTO,F):
[*k**‘k***i‘k-k***t********At****#******‘k'ﬁ;*********ik****#**i*
kxxkxxkxk END OF MAIN PROCESSING LUOP AAXAKAK KRR R INEAKR KK
k#*tk*k*t************ﬁ**it****************************/

633 1 ENDASJCNT=1 + HMODCJICHT,MEDGE):

&34 1 IF JCHNT-=LASTS THEN /& CONTINUE PROCESSING %/ GO TO As

: /% HHENEVER AN ERGE IS MADF USE OF IN THF HMALN LOOP, LASTJ
Is SET EQUAL TO THE INDEX OF THE EDGE, IF JCMT EVER 'CATCHES
UPY WITH LASTJ THEN WE HAVE MADE A COMPLETE CYCLE THROUGH THE
ECGES WITHQUT FIMDING ANY EDGES WHICH WE CAN USE S0 WE PROCEFD
T0 ATIEMPT A CHAMGE OF DUAL VARIABLES, =/

/*THE BLOSSOM ALGORITHM: MAIN PROCEDURE, 16-03~73 *x/

STMT LFVEL NEST

/***********t*************!tt******k*************k***t****
Ahkkkxkakik DUALL VARTABLE CHAMGE WOUTINE AAAxtxA&Akakstask
*************k*********tt****t**i***t******ﬁ**A***t**#***/
636 H DUALCHNGE :
Fx MNOw EXAMINE NODES, IF MD SURFACE NODE IS IN A DFFIC TREF
THFN WE ARE DONE, FAIL IS SET TRUE IF WE DISCOVER THAT
THIS IS MNOT THE CASE. =%/
) FAIL=F3
637 1 EPS1,EPS2=1E10:/xRIDICULDUSLY LARGE VALUESK/
/****k‘k****k*i****#*****k********tt******i*!'k*i**i********
dakxrkadxkx NETERMINATION OF NODE BOUNR A% xArkrkhkrsradih
KERRKKR KRR R R R AR KA KRR KR A KA AR AR R AR AR AR R AR A AR AR ARAR KA AR ARA)

638 1 PX=NULL;
639 1 LF: DO I = § TOo NNODE:
640 i 1 PI=ADDR(NODELST(I));
641 1 1 P22SURF(P1): /% HIGHEST LEVEL PSEUDONDDE COMTAINING £y x/
642 1 1 IF-PZ=>0EFIC THEX GO TO ENDF;
644 1 1 IF P2->YRTO THEY GO TO ENDF:
/% ELSE WE HAVE NOGT YET GOT A FEASIBLE MATCHING, %/

646 i 1 FAIL=T; - ,
647 1 1 IF ~P2=->000 THEN
648 1 1 IF ~P1~>CONSTER THEN
649 1 1 IF Pl=>Y < FEP52 THEN IV
651 1 2 PX=Pi:
652 1 2 EPSZ2=P1~>Y:
653 1 2 ENDy
654 i 1 IF P2w»REAL THEN /% MOT IN A PSEUDO NODE %/ G0 TQ ENDF ¢
. fx OTHERWISF CHECK THE PSEUDND NODE %/ *
656 1 i P2->DCHNG=F /7 MO DUAL CHANGE MADE YET ON THIS NODE #/
657 i H IF=P2=->0DD THEWN GO T EMDF:
659 i i 2=P2=>Y / 2En:
660 1 | IF Z<EPS2 THFN DO;
662 i 2 PX=pP2y
663 1 2 EPS2=7;
664 1 2 . EMD;
665 1 1 ENDF 3 END LF;
[:7.7.3 i IF ~FATL THEN /% HWE ARE FINISHED %/ GO TO CORRECTION:

i IF EPS2= 0 THEN GO TO WODEG'D;/+ KD NEED 10 CHECK EDGES,

608
: HE ALREADY HAVE QUR BOUMND, x/

STHY LEVEL NEST

670
671
672
671
676
678
679
681
683
584
686
687
689
691
692

691
695
697
698
699

701
703
7904
705

706
707
709
710

712
114

© 715

716
717
719
721
723
724
125

Z*THE BLOSSOM ALGORITHM: HMAIN PROCEDURE, 16~03~73 x/

PO Y —— et —gan b s s L e e el R e

e ol o

. g e ek ek A s s % Mt ek e

P bk b byt

[,

™ NDJ == e b g

/*******************t*****kﬂ***t****k*‘k*******************
kikxkkxakkx DETERMINATION OF EFDGE BOWND AkkdxxhkkhktAkkikik
KhRKkKXREIEZ A A AR xhhhkhhhkkhhkhkixx *1****************k******/

/& NDW CHECK EDGES FOR A BOUND ON EPS &/
JX=z0;

LD: DO J=1 TO HEDGE;

IF EQ(J)Y THEN GO TO ENDD; /% IGNORE EDGES IN EQ SUBGRAPH &/

IF SHRMK(J) THEN GO TO ENDD:

IF ZER(J)Y THEN GO TO EMDD:

Pi=ENDS(J,1)¢

IF =P1->»DEFIC THEN GO T TRYZ2;

IF P1->YRTO0 THEN GO TO TRY2:

PR=EMDS{(J,2)

IF -P{-~->0DD THEN GO TO TESTP2:
TRYZ2:PI=ENDS{J,2); ’

IF =P{=->DEFIC THEN GO TO ENDD:

IF P1->YRTO THEN GO TO ENDD;

P2=ENDS(J,1):

IF Pl->00n THEN GO TO ENDD:
J* AT THIS POINY Pi IS AN EVEN NODE OF A DFFIC TREE, A5 LONG
AS P2 IS NQY AM 0ODD MODE WE HAVE FOUND AN EDGE OF INTEREST */
TESTP2:IF pe2~>0DD THEN

IF ~P2->YRTO THEMN GO TO ENDD;
I==- C{J);
IF P2->DEF1C THEN
IF AP2->YRTO THEN Z=7/2E0:
/* ELSE J HAS JUST OME EnND IN THE FOREST*/

IF Z>=gPS1 THEN GO 10 ENDD;

Jx=J;

FP31=7:

ENDD: END Lpg

SRER AR KRR KA AR AR KR K AR R I R R A AR AR R AR KA AR AR ARRAARK AR KRR R A ARAR
kkkkkkkrkx MAKE ACTUAL CHANGE IN DUAL VARS, *titxRaiiihk
CNE AR IR LA AR KL AR T AR R KRR AT R A A AR AR A RAER AR AR Ak Ak hAAS

EPS=MIN(EPS1,EPS2);

IF EPS=1E19 THEN s+ FOREST IS HUNGARIAN %/ DO
RUNSTAT(10)=1;
GO TO CORRECTION; END

/% HERE HWE G ON A CHANGE OF DUAL VARIAEBLESx/

IF TRACE THEN PUT EDIT('*RLOSS « DUAL VARIABLE CHANGE! J(SKIP;A}.

LG : PO T=1 TO MNODE;

Pi=ARDR(MODFLST(I});
P2=5URF (P1};
IF =P2->DEFIC THEN GO TO EMDLG:
IF P2«>YRTo THEN GO TO ENDLG: ‘ .
IF P2->00DD THEN DO; _ .
Pl=>Y=Pi1=>Y + EPS}
IF “P2=>REAL THEM :
IF “P2=>DCHNG/*P2w«>Y HAS NOT YET BEEN CHANGED x/ THEN D

/*xTHE BLOSSOM ALGHRITHM: MAIN PROCEDURE, 15-03-73 */

STMT LEVEL NEST

727 t 3 P2e>Y=P2=>Y=2E0 x EP§:
728 1 3 P2=>NCHNG=T;
729 1 3 TE TRACE THEN PUT EDRITC! PSEUDO ', UNSPEC(P2),
' ODUAL VAR.'rP2->Y}(SKIP;MFUO):A:F(10;1));
731 1 3 END;
732 1 2 END3
733 1 1 ELSE /% P2 IS AN EVEN NODE *x/ DOj
734 1 2 Pi=>YzPl=>Y ~ EP5;
735 1 2 IF ~PP->PFAL THEW
736 1 2 IF ~P2=->DCHUNG THEN DOy
738 1. 3 P2=3Y=P2=>Y +2En % EPS:
739 1 3 P2=>DCHNG= T;
740 1 3 IF TRACE THEN PUT EBIT(! PSEUDD ',UNSPEC(P2),
' DUAL VﬂR.',P2—>Y)(SKIPpA,F(IO):A,Filo,1});
nz 1 3 END; :
743 1 FJ END
Tun 1 1 ENDLG: END LG:
745 1 RUNSTAT(1)=RUNSTAT(1)+1;
746 1 IF TRACE THEN CALL YOUT;
748 1 IF TRACE THEM PUT EDIT('4RLOSS « EDGES IN EQUALTTY SUBGRAPH')
(SKIP,A):
/% NOW CALCULATE NEW REDUCED COSTS #/
750 1 DO J=1 TO NEDGE:;
751 1 i IF SHRNK(J) THEN GO TO H56;
753 i 1 TF FRST(J) THEN GN Tp MSG3s
755 1 1 IF ZER(J) THEN GO TO EMDX 2
57 1 1 PI=EKPRSCI, 1) P22ENDS(J,2):
759 1 1 IF P1->DEFIC THEN
760 1 1 IF ~P1w>YRTO THEN DO}
762 1 2 IF P1->00D THEM C(J)=C(J)-EPS}
764 1 2 ELSE C(J)=C(J)+EPS;
765 1 2 EMDy
766 -1 1 IF P2->DEFIC THEN
767 1 1 IF SP2->YRTO THEM DO;
769] 2 IF P2=>0DD THEN C(J) = C(J) = EPS:
771 1 2 ELSE €{J)=C(J) + gPs;
72 1 2 . END:
773 H 1 M8G: 1F CC(J)=0 THEN DO
175 1 2 EQLIY=T;
176 1 2 IF TRACE THEM PUT EDIT(JI(F(5));
778 1 e END:
179 1 1 ELSE FO(J)=F;
780 1 1 FMNDX:END;
781 1 IF EPS1 = EPS THEN DO;JCNT LASTI=JY;
784 1 1 GO TO A; /# RETURN TO MAIN LOOP AND ACCOMPLISH SOME -
THING, &/
785 1 1 ENDg

/%xTHE BLOSSOM ALGORITHM: MAIN PROCEDURE, 16-03%-73 x/

STMT LEVEL HEST

TRER I I AR A I RE KA AEANR R AR RAKA KK R AR R AR R KK AR RN EARRAARAAKAKAKKK
Rikxkkhkrisd REROOT A TREE S0 ROUGT HAS Y=0 Akkkikxhkkidkixx
Kk A kAR R R A KR ARRARNA A AT RR KA AR R KARKRKARXRA XA RARA AR KKAK AN ARRRS

786 i NODEBND: _
187 1 IF ~Px => REAL THEN GO 10 P3REUDCEX:
/% OTHERWISE PX IS A REAL <= EVEN NODE =/
788 i IF TRACE THEN PUT EDIT('xBLOSS =« RERDOT A TREE')(SKIP,AY;
190 1 R1=SURF(PX);
791 1 JCONT,LAST =1
792 1 IF Ri1-»>DM-=NULL THEN GO TO AUG:; /% FOR R1 1S WOT A ROOT,
OTHERWISE ®1 IS A ROOQT, */
794 1 YROOTO = T
195 1 CALL UPSCAM (R1,T,SETYRTO,F):
1946 1 GO TO A
/i*****tt*t******i*i******!:-.t***********:\«k*********‘k**i*****
kxikkxkkkkix PSEUDD NODE EXPANSION ROUTINE aixxhkiidsxhkikk
REKKKK AKX KEXK k*;\—********‘k‘kt*tt****************:***i**tt***/
197 i PSEUDODEX:
P=PX;
798 i RUNSTAT(U) =RUNSTAT(4) +1;
799 1 IF TRACE THEM PUT EDIT('2BLOSS - EXPAND PSEUDONODE ',,UNSPEC(P})
(SKIP,A,F(L0));
&0l 1 CALL EXPAMD{P); /% EXPAND THE PSEUDONODE =/
/% R1 IS5 THE ROOT OF THE BLOSSOH,
JIM IS THE ENGE FOR WHICH X(JIN)==z=0,
BROOT IS THE FDRGE OF JIW I THE GLOSSOM, */
8p2 1 J=R1«>EDGEDM: /% BLOSSOM FORMING EDGE */
/t***#****x*****t*t*******k***********************!1*******
kkktxkxx CASE 11 1 EDGE INTO PSEUDU MODRE kxkkkkitaxkikk
AR KA AR E AR R LR AR AR AR AR A AR AR AR AR A KK AR A A AE AR AR A AR KR ARAK /]
803 1 EX1: IF P=>FEDGENMN = JIN THEMN DO: /% EASY CASE, ONE EDGE INTO P %/
805 1 1 CALL REROOT(BROOT);
806 1 1 Pl=Pa>DN:
8o7 1 1 CALL REMOVE (P}):
808 1 1 cAaLL ADpDON (P1,BRO0T,JINY;
809 1 H PYX=MULL s SHRMKNG=T; /% GLOBAL VARS FOR ADDBLOS, DEFFIX */
811 1 1 CALL UPSCAN(BROOTY,T,ADDBLOS,T,DEFFIX) ¢
812 1 1 FREE P->PSEUND:
813 1 i JIST: s+ CAN WE TREAT J IN A NORMAL FASHION? %/
JCNT, 1 ASTJI=J;
814 1 t IF X{J3¥=0 THEN GO TO A;
816 1 1 P1=ENDS(J, 13 P2=END3(JI,2);
818 1 1 1F P1-»DEFIC THEH i
819 1 1 1IF P2~>DEFIC THEN /% BOTH ENDS IN DEFI1C TRFE %/
820 1 1 GO TO DXCALC:
821 1 1 ELSE /% P2 HNOT DEFIC *7 GO TO GROWSTEPR;

/* ELSE P} IS NOT IN A DEFICIENTY TREE */

STHMT LEVEL MNEST

822
824
ae?
gen

829
8390
B33
B33
B34
835

837

839
840
aai
842

843
844
a4s
846

848

849
850

851
as52
853
854
855
857
859
860
861
862

863
865
866
869

e s e gk b

/*THE BLOSSOM ALGORITHM: MAIN PROCEDURE, {6«03=73 */

[T S

e - e

—

- .

- ph peh ek ek ks s A

P Y

st R VY MU -

e

ek ke ek

IF P2=>DFFIC THEN DOy /% SWITCH POINTERS &/
P3Iz=P2;P2=P1;PL=P3;
G0 TO GROWSTEP:
END:
/% QTHERWISE MEITHER IS5 IN A DFFICIENT TREE, ARE THEY
IN DIFFERENMT NOHNZERQ COMPONENTS? &/
P3=PL:
DO WHILE(PI~>DN-=NULL);
P3=pP3->DN; END;
R31=P2;
DO WHILE (R3=>DN == NULL);
R3=R3=>DHN; EMD;
IF 83~=P3 THEM /&% DTIFFERENT CMPNTS %/ GO TO GROWSTEPR:
/% ELSE WE INDICATE A HNONDEFIC BLOSSOM =&/
RI-SENGENDN=]:
CALL UPSCANC(R3,T,BLOSSIND,F):
GO T ENDA:
END; 2% OF EASY CASE &/

/*****‘k******* EAKIRAEEALEXARKEA KRR A XX AXKAXE AR KA R A AAX AR KA K|k X
kxkkxka*x CASE 2¢ 2 FDGES INTO PSEUND NODE *AXAXAXE*AAKN
AXEAKKAKRAAAXAAARKAA AT AR AR R AR AR AR AAKARAARAR SR AR KA KA AAAA KRR AALS

/* HNO¥W HARDER CASE ! WE HAVE A DOWN EDGE AND AN UP EDGE A/
JDN=P=>FDGEDN:

AI=Pw>Dhy .

QI=FNRS(JRON, 1) /% FIND ENRGE OF JDON IN THE BLOSSOM &/

IF B3 = Gf THEN Q{=ENDS(JDN,?):

Z* Q1 IS TO BE THE NEW ROOT OF THE RLOSSOM %/

CALL RERDOT(N1);

/% REMOVE TOP PART OF TREE »/

N2=Pw->1iP:

CALL REMOVE(R2):

/% APD BLOSSOM TO THE TREE %/

CALL REMOVE(P):

FREE P=->PSEUDOD:

CALL ADDNN {03,Q1,JDN);

CALL UPSCAM(NI,T,ADDFIX,F);:/* LAREL NORES ODD AND EVEN =/
IF RRODT«>0DD THEMN DO; /% THINGS WORK QUT EASILY =/

SIMPFIN: PX=NULL: SHRNKNG=T; /xGLOBAL VARS FOR ADDBLOS-DEFFIX, 7/ ~

CALL UPSCANC(RL,T,ARDBLOS, T,DEFFIX):
CALL ADDOW(RROOT,02,J1I%): /% ADD THE TOP OF THE TREE =/
GO TO JTST; s* CONTINUE A5 IN EFASY CASE, %/
END:
/% QTHERWISE WE MAY HAVE A POLYGON IN THE PATH, OR HE MHAY
JUST MEED J IN THE PATH, FIRST LABREL NODES IN POLYGON =/
PL=EMDS(J,1)3 P2=ENDS(J,2):
DO WHILE (P1-=0Q3);
P1->INPATH=T; Pi=P1->DN: END;:
DO HWHILEC(»PR2->IHPATH);

/ATHE BLOSSOM ALGORITHM: MAIN PRUCEDURE, 16=03-73 */

STMT LEVEL NEST

870 1 1 PP=>INPATH= T;P2=P2->0N; END;
B73 1 R1z=P2; /% RODT OF THE POLYGOMN %/
Zx TURN IMPATH OFF 1IN STEM =x/
874 1 0O WHILE (P2->DN-=z=03);
875 1 1 Pe=P2->DM; P2->INPATH=F; END;

/% NOk P=>I4PATH = T IFF P [S IN THE POLYGON x/

/% IF BROOT IS LABELLED EVEN, AND THE PATH FROM BROOT
TO @1 COMTAINS AT MAST ONE POLYGON NODE THEN POLYGOHN

I5 I8 PATH, OTHERWISE NOT, %/

878 1 P1=GROOT;

879 1, R0 WHILE("P{~>INPATH);

880 1 1 PizPla>Dng

88% 1 1 IF P1=01 THEN /% AT MOST OME PGON NODE IN PATH &/

882 1 1 G TO POLYCASE;

883 i 1 ENB:

8814 1 P2=P1~>DH;

885 1 IF aP2->INPATH THEN GO TO POLYCASE:
/% OTHERWISE ALL WE MAVE TO DO 1S REMQVE Pi->EDGEDN
FROM POLYGON AND REPLACE IT WITH J AND WE CAM TREAT AS
SIMPLE CASE %/

887 i P2ZEMDS(J, 1)}

a88a 1 P3=P2: /% SEE IF P2 IS END WE WANT FOR ADDON %/

889 1 DO WHILE(P3I~>INPATH);

890 1 1 IF P3=P{ THEN /% CORRECT, S0 %/ 00;

892 1 2 R3I=ENDS(J,2);

893 i 2 GO FO FIN{i:»

894 1 2 FND;

89g i 1 P3=P3~>0N;

896 1 1 END;
/% OTHERWISE WE HAD IT BACKWARDS #/

897 1 R3=ENDS(J,1):

898 1 P2=ENNS(J,2):

499 1 FINI:J1=P1=>EDGEDN;

900 1 CALL REMOVE(P1):

901 1 CALL RERODT(P2);

902 1 CALL ApDOH (R3,P2,J):

903 1 J=J1g

904 1 GO TO SIMPFIN; .

905 1 POLYCASE: /%« HERE WE HAVE A POLYGON IN PATH, LABEL PATH FROM
BROOT TO POLYGOM OR STEM CORRECTLY,

FIRST MARY NODES IN STEM, =7

_ DO WHILE(R1S=03);

906 1 1 Ri=>INPATH=T; RI=R1->DN; END;

909 1 IF BROOT=>INPATH THEN /% MO FIXING NECESSARY 2/ GO T0 HINDUP;

911 1 P1=RRO0T;

952 1 DO WHILE (-Pi=>TNPATH):

913 1 1 P2zP1; P1=Pi->NN; END;

216 1 P1=>0DD=P 1 ~>0DD;

917 1 CALL UPSCAN(P2,T,ADDFIX,F):

STMT LEVEL HEST

218
919
920

922
223
924

925

927
929
930
931
933
934
936
937
938
qu0
741
942
943
q4n
4S

/*THE BLOSSOM ALGCRITHM: MAIN PROCEDURE, 16-03-73 */

1
1
t

—

[y

P et A Gkt bt A S bk bt R b e A e b

e aad A I I L

P1->00N="P{~>0DD
WINDUP: CALL ADDON (BROGT,Q2,JINY:
PI=EHNDS(J,1): P2=ENRS(J.2);

/% SET UP FOR RETURN T0O ¥ALIH LOOP, =/
CALL UPSCAN(QL,T,POLYFIX,F);
FROMEX=T;

GN TO DXCALC;

SRR AR Ik Ik R A AR A A AR ERRARR AR AR R RN A A KA A RR A AKARNAZKANKARKAK AR
kkxkakkk FINAL CORRECTION OF MATCHING IN PSEUROS Axxkakxk
KA A KAREAARKARAI AR K KA KAKAEARKARRRAAAKKAAAARRAAAAARARN KRR EAARN KL/ -

CORRFCTIDN: IF TRACE THEN PUT EDIT('#BLOSS - CORRECT MATCHING IN PSEUDO

HOGDES*)Y(SKIP,A)

IF TRACE THEN CALL XOUT;
DO I=1 TO MNHODE;
~ PI=ADDR(MODELST(I));
EXPi: IF Pi=>STACKUP=NULL THEN GO TO EXPEND;
PP22P1=->S5TACKUP;
IF P2~> EXPANDED THEN GO TQ EXPEND;
P3=P2->GTACKUP;
DO WHILE((P3-=NULL)&(~ P3->EXPANDED});
pa=P3;: PIzP3~>STACKUP;
END;
CALL EXPAND (P2); /x EXPAMD AND KEEP THE RBLOSSOM =&/
P2->EXPANDED=T; :
G0 TO EXPI;
EXPENDT EnD:

FHND RLOSSOM:

SRR KA R AL R AR KA A R I AR AR KR A KRR AR R AR A A AR AR AR AR AR AR AR AR AL AR KRR A AR ARERARSE /S

JTARARKKRAREAKRAKLRKR END OF BLOSSOM ALGORITHM AAAKARKARKR AR KA A AKKE S

SRR RR AR AR R AR A A AR AR R E R AR A KRR AR A AR AR AR R A AR KRR ARA AR KA RKRARKRARAARAR TR AR KRR/

[B1]

[B2]

[B3]

[B4]

[B5]

[c1]

[D1]

[E1l]

[E2]

[E3]

References

M.L. Balinski, K. Spielberg, "Methods for Integer
Programming: Algebraic, Combinatorial, and
Enumerative", in Progress in Operations Research
Vol. IXII, J. Aronofsky (ed.), Wiley, New York,
N.Y. 195-292 (1969).

C. Berge, "Sur le couplage maximum d'un graph'", C.R.

Acad. Sci. Paris 247, 285-259 (1958).

C. Berge, The Theory of Graphs and Its Applications,
Methuen, London, England (1962).

G. Birkhoff, S. MacLean, A Survey of Modernm Algebra,
Third ed., Macmillan, New York, N.Y. (1965).

R.G. Busacker, T.L. Saaty, Finite Graphs and Networks,
McGraw-Hill, New York, N.Y¥. (1965).

C. Carathéodory, "Uber den Variabilit#tsbereich der
Koeffizienten von Potenzreihen, die gegebene Werte

nicht annehment™, Math. Ann. 64, 95-115 (1907).

G. B. Dantzig, Linear Programming and Extensions,

Princeton University Press, Princeton, N.J. (1963).

J. Edmonds, "Paths, Trees and Flowers", Canadian J.

Math. 17, 449-467 (1965).

J. Edmonds, "Maximum Matching and a Polyhedron with
0, 1-vertices", J. Res. Nat. Bur. of Standards

698 (Math. and Math. Phys) No. 1, 125-130 (1965).

J. Edmonds, "An Introduction to Matching" Notes on

lectures given at Ann Arbor, Michigan (1967)

[E4] J. Edmonds, "Optimum Matchings", in manuscript. .
P

[E5] J. Edmonds, E.L. Johnson, "Matching: A Well-Solved
Class of Integer Linear Programs", preprint:

summary appears in Combinatorial Structures and

their Applications, Gordon and Breach, New York,
N.Y. 85-92 (1970).

[E6] J. Edmonds, E.L, Johnson, "Matching, Euler Tours and

the Chinese Postman", I.B.M. Research Report

RC 3783 (1972), to appear in Math. Programming.

[E?] J. Edmonds, E.L. Johnson, S. Lockhart, "Blossom TI:
‘ A Computer Code for the Matching Problem'", to appear.

[G1l] B. Griinbaum, Convex Polytopes, Interscience, London,

England (1967).

[H1] G. Hadley, Linear Programming, Addison-Wesley, Reading,
Mass. (1962).

[H2] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass.
(1969).

[I1] E. Isaacson, H. Keller, Analysis of Numerical Methods,
John Wiley and Sons, New York, N.Y. (1966).

[I2] I.B.M. Systems 1360 Operating System, PL/1(F) Language
Reference Manual, C28-8201 (1970)

[J1] E.L. Johnsan, "Programming in Networks and Graphs'",
Univ. of Calif., Berkely Research Report ORC 65-1
(1965).

[Jé] E.L. Johnson, "Networks and Basic Solutions'", Operations

" Rgsearch 14, 619-623 (1966).

[K1] V. Klee, C. Witzgall, "Facets and Vertices of Transportation
Polytopes'", Boeing Scientific Rsch. Lab. Doc.

D1-82-0662, {(1967).

[K2] ©D. K8nig, Theorie der endlichen und unendlichen Graphen,

Acad. Verl. M.B.H., Ledipzig (1936). Reprint,
Chelsea Publishing Company, New York, N.Y. (1950).

[E3] D. E. Knuth, The Art of Computer Programming, Vol. 1,

Fundamental Algorithms, Addison~Wesley, Reading,
Mass. (1968).

[R1] R.T. Rockafellar, Convex Analysis, Princteon University

Press, Princeton, N.J. (1969).

[sl] J. Stoer, C. Witzgall, Convexity and Optimization_in

Finite Dimensions I, Springer-Verlag, Berlin,

Heidelberg (1970).

[Tl] W.T. Tutte, "The Factorization of Linear Graphs", J.
London Math. Socc. 22, 107-11% (1947).

[T2} W.T. Tutte, '"The Factors 0f Graphs", Canadian J. Math.
4, 314-328 (1952).

[T3] W.T. Tutte, "A Short Proof of the Factor Theorem for
Finite Graphs", Canadian J. Math. 6, 347-352
(1954).

