
FACES OF MATCHING POLYHEDRA

by

William R, Pulleyblank

A Thesis

Submitted in Partial Fulfilment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

at the

UNIVERSITY OF WATERLOO

Waterloo, Ontario

Faculty of Mathematics

Department of Combinatorics and Optimization

March, 1973

The University of Waterloo requires the signature

of all persons using this thesis. Please sign

below, and give address and date.

© WILLIAM R. PULLEYBLANK

· 1973.

I hereby declare that I am the sole author of this report.

I authorize the University of Waterloo to lend it to other

institutions or individuals for the purpose of scholarly

research.

Signature

To

Janet

Abstract

Let G = (V, E, ~) be a finite loopless graph, let

b=(bi:ie:V) be a vector of positive integers. A

feasible matching is a vector X = (x.: j e: E)
J

of nonnegative

integers such that for each node i of G, the sum of the

over the edges j of G incident with i is no

greater than bi. The matching polyhedron P(G, b) is the

convex hull of the set of feasible matchings.

In Chapter 3 we describe a version of Edmonds' blossom

algorithm which solves the problem of maximizing C • X

over P (G, b) where c =. (c.: j e: E)
J

is an arbitrary real

vector. This algorithm proves a theorem of Edmonds which

gives a set of linear inequalities sufficient to define

P(G, b).

In Chapter 4 we prescribe the unique subset of these

inequalities which are necessary to define P(G, b), that

is, we characterize the facets of P(G, b). We also

characterize the vertices of P(G, b), thus describing the

structure possessed by the members of the minimal set X

of feasible matchings of G such that for any real vector

c = (c.: j e: E), c • x is maximized over P(G, b)
J

member of X.

by a

In Chapter 5 we present a generalization of the blossom

algorithm which solves the problem: maximize c • x over

a face F of P(G, b) for any real vector c = (c.: j e: E).
J

In other words, we find a feasible matching x of G which

satisfies the constraints obtained by replacing an arbitrary

subset of the inequalities which define P(G, b) by

equations and which maximizes c • x subject to this

restriction. We also describe an application of this

algorithm to matching problems having a hierarchy of objective

functions, so called ''multi-optimization'' problems.

In Chapter 6 we show how the blossom algorithm can be

combined with relatively simple initialization algorithms

to give an algorithm which solves the following postoptimality

problem. Given that we know a matching 0
x £ P(G, b)

maximizes c · x over P(G, b), we wish to utilize 0
X

which

to

find a £easible matching x' £ P(G, b') which maximizes

c • x over P(G, b'), where b' = (b!: i £ V)
]_

vector of positive integers and

arbitrary real vector.

c=(c.:j£E)
J

is a

is an

In Chapter 7 we describe a computer implementation of

the blossom algorithm described herein.

ACKNOWLEDGEMENTS

It is difficult to express my enormous debt of gratitude

to Professor Jack Edmonds who encouraged me to come to

Waterloo, introduced me to the subjects discussed in this

thesis and provided help, inspiration and encouragement in

quantities that tended to grow exponentially with the size

of the thesis. Many of the factors which made the University

of Waterloo an ideal place to do graduate work are directly

attributable to him. I value very highly all aspects of our

association.

I also wish to extend my appreciation to Professor

Ellis L. Johnson for the time he spent with me discussing

matching theory and computer implementations of algorithms of

the sort described herein.

Financial support was provided by the National Research

Council of Canada and my wife Janet, who also contributed

unlimited moral support.

I wish to thank Mrs. Wendy Johnson for the extremely

fast and uncannily accurate typing of the thesis and to

Mrs. Elaine Fitzgerald who assisted with the final stages of

the typing.

This work was done while on an educational leave of

absence from I.B.M. Canada Ltd.

TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

CHAPTER 1.

CHAPTER 2.

CHAPTER 3.

Introduction and Foundations

1.1 Introduction

1.2 Set Theory and General Notation

1.3 Graph Theory

1.4 Linear Algebra

1.5 Linear Programming

1.6 Integer Programming and Good
Algorithms

Basic Polyhedral Theory

2.1 Polyhedra and their Faces

2.2 Dimension and a First Facet
Characterization

2.3 Second Facet Characterization

2.4 Vertices of Polyhedra

The Matching Problem and the Blossom
Algorithm

3.1 The Matching Problem

3.2 Nested Families of Sets

3.3 Blossoms, Shrinking and Shrinkable
Families

3.4 The Matching Polyhedron

3.5 Linear Programming Formulation

3.6 Alternating Forests

3.7 Hungarian Forests

3.8 The Blossom Algorithm

3.9 Efficiency of the Blossom Algorithm

1.1

1.1

1.13

1.14

1.18

1. 20

1.24

2.1

2.1

2.6

2.13

2.22

3.1

3.1

3.8

3.10

3.19

3.21

3.23

3.27

3.36

3.58

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

3.10 Min-Max Theorems and Discreteness
of the Dual Solution

Facets and Vertices of Matching Polyhedra

4.1 Dimension of P(G, b) and
Nonnegatively Facets

4.2 Degree Constraint Facets

4.3 Blossom Facets

4.4 b-critical Graphs

4.5 Vertices of Matching Polyhedra

Optimizing over Faces of P(G, b)

5.1 The Faces of P(G, b)

3.60

4,1

4.2

4.4

4.9

4.29

4.39

5.1

5. 2

5.2 A Preconditioning Algorithm 5.9

5.3 Pseudo Hungarian Forests 5.12

5.4 The Face Optimization Algorithm 5.22
(Phase II)

5.5 The "Big-M" Method 5.38

5.6 Multi-Optimization in Matching Problems 5,41

A Post-Optimality Problem

6.1 Obtaining a Starting Solution

6.2 The Post-Optimality Algorithm

6.3 Obtaining a Nested Family

A Computer Implementation of the Blossom
Algorithm

7.1 Storage of the Graph

7,2 Tree Handling

7.3 Blossoms, Shrinking and Pseudonodes

7,4 Paramete~s Passed and Returned

6.1

6.2

6.9

6.17

7 • 1

7 • 1

7.5

7 • 9

7.14

APPENDIX

REFERENCES

7.5 The Main Procedure

7.6 Experimental Results

7.18

7.24

Chapter 1

Introduction and Foundations

1.1. Introduction

Let G = (V, E, ,Ji) be a finite loopless graph, where

V is the set of nodes of G, E is the set of edges of G

and ,Ji is the incidence function of G which maps E into

the set of all two element subsets of v. For each i e: V,

let b. be a positive
1

integer. A feasible matching is a

vector x = (x.: j e: E)
J

of nonnegative integers such that

for each node i of G, the sum of the over the edges

j of G incident with i is no greater than bi. The

matching polyhedron P(G, b) is the bounded polyhedron containing

all feasible matchings of G and all of whose vertices are

feasible matchings of G. (In other words, P(G, b) is the

convex hull of the set of feasible matchings.) In this

thesis we examine several different aspects of the faces of

P(G, b).

The later sections of Chapter 1 consist of a summary

of the basic results from various fields of mathematics which

are assumed to be known, we also introduce all our basic

notation and terminology.

In Chapter 2 we develop the general polyhedral theory

used in later chapters. This topic is developed from the

point of view of studying systems of linear inequalities.

The facets of a polyhedron are the faces of the polyhedron

which have dimension one less than the dimension of the

polyhedron itself. In characterizing the facets of matching

polyhedra in Chapter 4 we make extensive use of (2.2.15),

1.2

which states that a proper face F of a polyhedron P of

dimension d is a facet of P if and only if F contains

d + 1 affinely independent elements. In Theorems (2.3.25),

(2.3.30), (2.3.31), (2.3.32) and (2,3.34) we discuss the

connection between the facets of a polyhedron and a minimal

set of inequalities necessary to define the polyhedron.

We show in (2.3.32) that if P is a polyhedron of full

dimension, then the facets of P determine, up to

multiplication by a positive constant, the minimal subset of

inequalities needed to define P, Since matching polyhedra

are of full dimension, this is the case in which we are

interested.

We discuss the vertices of polyhedra in the last

section of Chapter 2 and prove three fundamental results.

First (Theorem 2.4.1)), the vertices of a polyhedron P are

precisely those elements v £ P for which there is some

linear objective function c such that v is the unique

member of P maximizing c · x over P. Second (Theorem

(2.4.5)), if P is a bounded polyhedron then for any linear

objective function c, there is a vertex v of P which

maximizes c · x over P. Third (Theorem (2,4.10)), any

nonempty bounded polyhedron is equal to the convex hull of

its vertices.

Chapter 2 is largely expository, however the point of

view taken in this chapter is somewhat different from standard

references on polyhedra (Grlinbaum [Gl], Rockafellar [Rl] and

Stoer,Witzgall [Sl]) and tends to emphasize the relationship

between polyhedra and linear programming.

L •.:,

In Chapter 3 we describe a version of the so called

blossom algorithm (Edmonds [El], [E2], [E3], [E4]). This

algorithm finds a matching 0
x E P(G, b) which maximizes

c • x over P(G, b). In fact the algo~ithm described

solves a somewhat more general problem, it maximizes c • x

over a face F of P(G, b) obtained by requiring the sum

of the x. on the edges j incident with node i to be
J

exactly equal to b. for
]_

all nodes i belonging to some

subset w of v.

For any node i EV we let o(i) denote the set of

edges of G incident with i. For any Sc V we let y(S)

denote the set of edges of G having both ends in S. For

any Jc E we let x(J) denote Ex.
j EJ J

and for any W c V

we let b(W) denote E b ..
iEW 1

The feasible matchings of G

are the integer solutions of the linear. system

(1.1.1)

(1.1.2)

x. 2' 0 for all j E E,
J

x(o(i)) ,;; b.
]_

for all i EV.

Clearly if we let P be the polyhedron defined by (1.1.1)

and (1.1.2) then P => P(G, b). In fact, if G is bipartite

or if b. is even for all i EV then P = P(G, b). However
]_

in general there are vertices of P which are not vertices

of P(G, b) and thus have fractional components. Consequently

there are generally some linear objective functions which

when maximized over P, attain thei~ maximum for a member x

of P having fractional components. It can be seen that if

x is a noninteger vertex of P then every component of x •

1.4

is either integer or half integer valued and the edges j

for which are half integer valued form the edge sets

of node disjoint odd polygons.

The blossom algorithm proves a theorem of Edmonds, that

P (G, b)

(1.1.2) and

j £ E): x satisfies (1.1.1) and

(1.1.3) x(y(S)) $ q 8 for all s £ Q}

where Q - {S = V: b(S) is odd, Isl ;, 3} and q
8

= l/2(b(S)-l)

for all S £ Q. It is not difficult to see that every

feasible matching of G satisfies the constraints (1.1.3);

it is more difficult to see that this set of constraints is

sufficient to define P(G, b), that is, that all vertices of

the polyhedron defined by (1.1.1)-(1.1.3) are integer valued.

The blossom algorithm makes use of· the weak duality

theorem of linear programming and the principle of complementary

slackness to prove the optimality of the matching which it

finds. For any linear objective function c it produces

0
an integer solution x to the linear program: maximize

c • x subject to

produces a solution

shows that
0

X and

X satisfying (1.1.1)-(1.1.3). It also

0 y to the dual linear program and

0 y satisfy the complementary slackness

conditions for optimality. Thus, where d is the objective

function of the dual linear program, c • x
0 ~ d

0 • y By

the weak duality theorem of linear programming, any solution

X of (1.1,1)-(1.1.3) must satisfy c•x;S;;d•
0 y , therefore

x 0 is an optimal solution to the linear program: maximize

c • x subject to (1.1.1)-(1.1.3). Since every feasible

matching x of G satisfies (1.1.1)-(1.1.3) it follows

that 0
X is the optimal matching we require.

From this it easily follows that P(G, b) is the

solution set of (1.1.1)-(1.1.3), for if v is any vertex

of the polyhedron defined by (1.1.1)-(1.1.3) then there is

1.5

some linear objective function maximize1 over that polyhedron

only by v. But we have seen that every linear objective

function is maximized by an integer solution of (1.1.1)-(1.1.3),

hence all the vertices of this polyhedron are feasible

matchings.

The set of inequalities (1.1.3) is generally far

larger than is necessary to define P(G, b); as was mentioned

if G is bipartite then none of them are necessary. In

view of the structure of the vertices of P, the solution

set of (1.1.1) and (1.1.2), it has been surmised that all of

the constraints (1.1.3) which are really necessary are those

for which S is the node set of an odd polygon. Unfortunately,

these are generally not enough; if we just add these

inequalities to our linear system (1.1.1)-(1.1.2) then we

usually introduce new fractional vertices having a more

complex structure than those possessed by P. In Chapter 4

of this thesis, by considering the structure of G and the

value of b, we prescribe the minimal subset of the

inequalities (1.1.3) which must be added to (1.1.1)· and (1.1.2)

to obtain P(G, b).

Since P(G, b) is of full dimension there is a direct

correspondence between the facets of P(G, b) and the

inequalities necessary to define P(G, b), namely

{x E P(G, b): ax= a} is a facet of P(G, b) if and only

if the inequality ax$ a (or a positive multiple of

ax$ a) is ·necessary to define P(G, b). Thus in Chapter

4 when we characterize the facets of P(G, b) we are in

fact prescribing which of the inequalities (1.1.1)-(1.1.3)

are necessary to define P(G, b). We prove

1.6

Theorem (4.1.2). =.F...:o:.:r=-.::e..:.v...:e:.:r'-'yL--__,Jjc.......E=-.::Ec,,'--{'--'"(.::.x • ..:=c......1,_·::::Ec......:E~)'-.:::.E
J

P(G, b): x. = 0} is a facet of P(G, b),
J

In other words all the constraints (1.1.1) are essential for

defining P(G, b),

However, some of the constraints (1.1.2) are not

necessary. For any i EV we let N(i) be the set of

nodes of G adjacent to i. If v, w are nodes of G such

that N(v) = {w}, N(w) = {v} and b = b then we call the
W V

connected component of G spanned by {v, w} a balanced

edge.

Theorem (4.2.1). .=F...:o:.:r=-.:::ac.:.n:..Yc.......--=ic......:E=-V-'--'-,--'{~("x::. • : j E E) E
J

P(G, b): x(o(i)) = bi} is a facet of P(G, b) if and only if

i is a node of a balanced edge

or

b (N (i)) > b i-...::a:.::n:..:d:......::i:.:f:..___.::b:...:(,_,N:...:(,_,i:..,)c,):..__=--=.b i + 1 then y(N(i)) = ~.

A salient feature of the blossom algorithm is the "shrinking"

process applied to certain subgraphs of G, effectively

reducing the size of the problem under consideration. It is

implicit in tl,e blossom algorithm that the set Q in (1.1.3)

1. 7

can be replaced by the set QO ~ {S ~ V: G[S] is shrinkable}

where G[S] is the subgraph of G induced by S, that is

G[S] - (S, y(S), ~ly(S)). We prove that all we need add

is a connectivity condition to the condition of shrinkability

and we have the essential inequalities of the sort (1.1.3),

Theorem (4.3.46). For any Sc V such that G[S]

_i_s~s_h~r_i_n_k_a_·_o_l_e-,~~{_x~E~P~(_G_,~b~)_:~x~<~r~<~S~)~)~~q~s} is a facet of

P(G, b) if and only if G[S) contains no cutnode v for

which b 1,
v--

The necessity of our conditions of both Theorem (4,2.1)

and Theorem (4.3,46) is proved by constructing affinely

independent feasible matchings of G which belong to the

facet of P(G, b). We define a near perfect matching of

G deficient at v EV to be a matching x of G which

satisfies

x(o(i)) bi for al 1. i E V - { v},

x(o(v)) = b - 1.
V

A feasible matching x of G will satisfy x(y(S)) = q 8

if and only if x, the restriction of x to y(S), is a

near perfect matching of G[S). Thus when constructing

feasible matchings of G which satisfy x(y(S)) = q 8 , our

first step is to be able to construct a large number of near

perfect matchings of G[S],

We say that_ G is b-critical if for every node v of

G there is i near perfect matching of G which is deficient

at v. These Iv I near perfect matchings can be seen to be

1.8

linearly independent, but we usually require a much larger

set of linearly independent near perfect matchings. However

we show that if a graph G is b-critical and contains no

cutnode v for which b = 1 then G has as
V

many linearly independent near perfect matchings as it has

edges, This we prove by showing (Theorem (4.4.2)) that a

graph G is b-critical if and only if G is shrinkable.

We also prove that these conditions are equivalent to G

being connected, b(V) being odd and the empty set being the

only subset of V which violates Tutte's condition (3.10.34)

for the existence of a perfect matching.

Thus we obtain two more facet characterization theorems

(4.4.15), (4.4.17)-. In particular we have the following,

Theorem. For any s C V such that b (s) is odd

and Is I ;,,, 3 ' F - {x E P(G, b) : x(y(S)) = gs} is a facet

of P(G, b) if and only if

G[S] is b-critical and contains no cutnode V such

that b = 1
V

or

F is a facet of the sort described in Theorem (4.2.1).

As a result of this theorem we can see very easily

that if G is bipartite then none of the inequalities (1.1.3)

need be added to define P(G, b), for let S be any subset

of V -such that b(S) is odd. and Is I ;,,, 3. Then there

must be a part T of G[S] for which b(T) < 1/2 b(S).

Obviously we cannot construct a near perfect matching of

G[S] deficient at a node v belonging to

G[S] cannot be b-critical.

1.9

T and consequently

There is a close relationship between polyhedron theory

and min-max theorems; whenever we know a set of linear

inequalities sufficient to define a polyhedron, linear

programming duality immediately provides us with a min-max

theorem and we have already discussed how we use a min-max

theorem proved by the blossom algorithm to establish the

matching polyhedron. We discuss the min-max theorem proved

by the blossom algorithm in Section 3,10 and show how it

implies theorems of Berge [B2] and Tutte [Tl], [T2], [T3]

When we know the facets of a polyhedron, we are able

to obtain a ''best possible'' min-max theorem. In Theorems

(4.4.20) we describe such a theorem. We also show how the

min-max theorems proved by the blossom algorithm can be

combined with our characterization of b-critical graphs to

obtain strengthenings of Tutte's theorems, in particular,

we derive the following theorem concerning the existence

of perfect 1-matchings (matchings x which satisfy

x(o(i)) = l for all i e: V).

Theorem (4.4.22) G = (V' E, ,j,) has a perfect

1-matching if and only if for every X C V such that

G[V - X] consists of 1-critical components, the number of

comEonents of G[V - X] is no greater than Ix 1.

In Theorem (4.5.3) we characterize the vertices of

P (G, b) and show that every matching produced by the blossom

1.10

algorithm is a vertex of P(G, b). Since the vertex set of

P(G, b) is the smallest subset X of P(G, b) such that

for any .linear function c, c x is maximized over P(G, b)

by a member of X, this shows that the blossom algorithm

makes use of as small a subset of P(G, b) as possible when

solving ma~ching problems. As we saw in Chapter 2, every

member of a bounded polyhedron can be expressed as a convex

combination of its vertices, in (4.5.21) we describe an

algorithm which will express any feasible matching of G

which is not a vertex of P(G, b) as a convex combination

of two other members of P(G, b). We also describe how this

algorithm can be used to express any x E P(G, b) as a

convex combination of a subset of the vertices of P(G, b).

In Chapter 5 we consider the problem of maximizing

c • x over any face F of P(G, b) where c = (c.: j s E)
J

is an arbitrary real vector. That is, we are given sets

J 5 E, W c V and N c Q and we wish to maximize c • x

over all x = (x.: j EE) s P(G, b) which satisfy
J

(1.1.4) X = 0 j
for all j s J,

(1.1.5) x(o(i)) = bi for all is W,

(1.1.6) x(y(S)) = qs for all S s N.

For any J 5 E, W ~ V and N 5 Q we let F(J, W, N) -

{(x.:j EE) s P(G, b): x satisfies (1.1.4)-(1.1.6)}. The
J

algorithm proposed to solve this problem consists of two

parts. The first part described in Section 5.2 is a

preconditioning process which finds sits J' 5 E, W' c V

1.11

and N' ~ Q such that F(J, W, N) = F(J', W', N') and

N' has the property that for any s, T E N' such that

Sn T ~ ~. either Sc T or Tc S. (We call such a family

of sets a nested family of sets.) The second part of the

algorithm described in Section 5.4, can then be used to

solve the equivalent problem. The algorithm is a generalization

of the blossom algorithm of Chapter 3 and an upper bound on

the amount of work performed by this algorithm in solving a

problem maximize c • x over F(J', W', N') ~ P(G, b) is

of the same order as the amount of work performed by the

blossom algorithm in solving c • x over P(G, b),

In Section 5.5 we describe how this problem of

maximizing c • x over a face F of P(G, b) can be reduced

to the problem of maximizing a new objective function c'

over P(G, b). This so called "Big-M" method is attractive

theoretically, but in practice the number of significant

digits in the components of c' tends to increase rather

rapidly and so this method does have limitations as a practical

method.

In Section 5.6 we discuss multi-optimization matching

problems, matching problems in which we have a sequence

c
1

, c
2

, ... ,ck of objective functions and wish to solve the

following problem. Let x
0

= P(G, b) and for each

i E {1, 2, .. ,,k} let

i
C X is maximized over X. l}.

We wish to find a matching * X E ~'

].-

We show how the face

optimization algorithm of this chapter can be used to solve

this sort of problem and various generalizations of this

problem.

In Chaper 6 we discuss a post optimality problem.

We assume that we know a matching
0

X £ p (G, b) which

maximizes c x over P(G, b) and we wish to find a

* matching x £ P(G, b') which maximizes c • x over

P(G, b') where b' = (b'.: i £ V)
l.

is a vector of positive

1.12

integers. Since the parameters G and c of our original

problem are unchanged in the new problem, we would hope that

we could make use of 0
X so as to be able to solve the new

problem more quickly than by simply reapplying the blossom

algorithm.

In this chapter we describe a relatively simple

initialization procedure which can be combined with the

blossom algorithm when we know x 0 and an optimal dual

solution 0 y to the original problem, so that an upper bound

* on the amount of work performed in finding x depends

upon the value of I b - b • I in essentially the same way as

the upper bound on the amount of work performed by the

blossom algorithm depended on the value of b.

Finally, in Chapter 7, we discuss a computer implementation

of the blossom algorithm and describe some experimental

results.

1.2 Set Theory and General Notation

We use the symbol

reserve the symbol

objects.

II= II

11 = 11 to indicate a definition and

for denoting the equality of two

1.13

If X and Y are sets we denote the union and

intersection of X and Y by Xu Y and X n Y respectively.

We let X - Y d~note the set theoretic difference, that is

X - Y - {x EX: x ~ Y}.

We denote the empty set by ~. Expressions involving

n, - should be evaluated from left to right, thus

X u Y n Z - V

should be taken to be

((Xu Y) n Z) - V.

If R is a set of sets, we will let

and

We let JxJ

u(R) = u X
XER

n(R) _ n X.
XER

denote the cardinality of X.

u '

We let 'IR_ denote the set of real numbers. For any

X c 'IK_ we let

and

max X -

t
max x
XEX

min X - minx.
XEX

1.14

Where X i £ I) is an indexed set of members of 'fR.

we let

For any x £ 'j\\ , [x] denotes the largest integer no

greater than x. [x] is sometimes called the floor of x

or the integer part of x.

We use X c Y to denote "X is a subset of Y" and we

use X c Y to denote "X is a proper subset of Y "(thus

X ;,, Y)

If iJ, is a function ma-pping a set X into a set Y,

then for any s C X we let w/s denote the restriction of

iJ, to s. That is iJ, ~ w/s is the function mapping S

into Y defined by

ij;(s) - ij,(s) for all s £ s.

We always use the words maximal and minimal in the sense

of set inclusion. Thus if R is a family of sets we say

that X is a maximal member of R if there is no Y £ R

such that Y ~ X. Similarly X is a minimal member of R

if there is no Y £ R such that Y c X.

We denote the cartesian product of two sets X and Y

by XX Y. Thus

Xx Y - {(x, y): x £ X, y £ Y}.

1.3 Graph Theory.

Standard references on graph theory are Berge [B3],

Busacker and Saaty [B5] and Harary [H2]. For our purpose a

graph G is an ordered triple (V, E, ij,) where V and E

/

.a. • .I..J

are finite sets and ~ is a function mapping E into the

set of two element subsets of V. The members of V are

called nodes, the members of E are called edges, and ~

is called the incidence function. We say that j £ E meets

V £ V or j and V

that v, w £ V are

are incident if V

adjacent if there is

£

j

~ (j) .

£ E

We say

such that

~ (j) = {v, w}. If { V' w} ~ (j) then V and w are

called the ends of j. If H is any graph we let V(H),

E(H) and ~H denote the node set, edge set and incidence

function of H respectively.

(1.3.1) A track T

to v is a sequence n-

such that

£ V for i £

in

V
n

{0,

G = (V E, ~) from

for some n ;,: 0

l, ... ,n},

ji £ E for i £ {l, 2, ... ,n},

{v.
1

, v.} for
1- 1

i £ {l, 2, ••• ,n}.

We call n the length of T, we say that T is odd or

even according as the length of T is even or odd. We let

E(T) denote {j .: i £ {l, 2, .•. ,n}}
1

and V(,) denote

{vi: i £ {O, l, ... ,n}}. For any.'. j. £ E(T)
1

we call j i an

~ edge of T if i is ·even and. an .odd edge of T if i is odd.

Edges occurring more t-han once in T may be both even and odd,

A track T induces an ordering on the nodes in V(T)
/

and edgas in E(,). Thus for any P = V(T) we say that v

is the first node in V(,) n P if s = mi~{i £ {0,1,2, ..• ,n}:

and v = vs' We define last node and first and

1.16

last edge analogously.

(1.3.2) A path is a track rr of length n for

which Jv(rr) I = n + 1. In other words, no node occurs

more than once.

A path rr is said to be maximal with a given property

if no other path having that property has rr as a

subsequence.

track.)

(Obviously there is no such thing as a maximal

A graph G = (V, E, w) is said to be connected if for

every {v, w} e V there is a path (track) rr in G

joining v to w.

A graph H is said to be a subgraph of G = (V, E, w)

if V(H) 5 V, E(H) 5 E and WH = w!E(H). In this case we

say that G contains H. A maximal connected subgraph of

G is called a component of G.

The distance between nodes v and w belonging to the

same component of G is defined to be the length of the

shortest path joining v and w.

Let G (V, E, w) be any graph. For any Sc V we

let oG(S) denote the coboundary of S, that is

(1.3.3) oG(s) = {j e E: Is n w(j) J = 1}.

When s consists of a single element v, then we abbreviate

oG ({v}) by oG (v). For any V E V we call loG(v) I the

valence of v. For. any s S V we let Ye (S) denote. the set

edges of G having both ends in s, thus

(1.3.4) Yc<s) _ {j E E: w(j) c sL

of

r 1.17

We abbreviate oG and YG by 0 and y respectively.

(1.3.5) Let s C v. We let G [S] denote the -
graph (s, y (s) , ij,h(S)). We call G [S] the subgraph of

G induced by s.

(1.3.6) A polygon is a connected graph p such

that lop(v)/ = 2 for all v E V(P). If IE (P) I is even

then we say that P is an even polygon, otherwise we call

P an odd polygon.

(1.3.6a) Let P be a polygon and let w E V(P).

Let T be a track in P from w to w such that V(T) =

V(P), E(T) E(P) and the length of T is as small as

possible with this property. We call T a track from w

to w induced by P. Intuitively, T is the track obtained

by travelling once around the polygon P, starting at w.

(1.3.7) A graph G = (V, E, ijJ) is bipartite if

V can be partitioned into v1 u vz and E = o(V
1

) =

Any s s v such that o (S) = E·and y (S) = cj, is called a

(1. 3, 8) Theorem. (Konig [Kl] p. 170) G is

bipartite if and only if G contains no odd polygon.

o (V
2

) ,

~

(1.3.9) A cutnode v of G = (V, E, ij,) is a

node v EV such that G[V - {v}] has more components than

of

G. G is nonseparable if G is 'connected and has no cutnode.

A block is a maximal nonseparable subgraph of G.

seen that

It is easily

(1.3.10) every polygon of G is a subgraph of a

G.

block of G,

that is, no polygon can have edges from different blocks.

An isthmus of G is an edge j e: E such that

(V, E - {j}, ~IE - {j}) has more components than G.

(1,3.11) A forest is a graph which contains no

polygons, a tree is a connected forest. A tree T is said

to be trivial if

well known.

lv(T)I,;; 1.

(1.3.12) Theorem.

least two nodes of valence 1.

(1.3.13) Theorem.

IE(T) I = IV(T) I - 1.

1.4 Linear Algebra.

Let J be a finite set.

The following results are

Every nontrivial tree has at

If T is a tree then

We let 1R._ J - {(x.:j
J

E: J) :

1.18

x. E: '\R for all j E: J}. We let 0 denote the vector which
J

is zero in every component.

(1.4.1) A set X = '\R_J is said to be linearly

independent if whenver): a X = 0
X xe:X

we have a = 0 for all x e: X.
X

dependent.

for some (a E: ~ : X E: X)
X

Otherwise X is linearly

(1.4.2) Let X = ,\R_J. A basis of X is a maximal

linearly independent subset of X,

well known.

The following result is

1.19

(1.4.3) Theorem. (Birkhoff & MacLane [B4), Ch. 7,

§4). All bases of X = 'fR._ J have the same cardinality

called the rank of X, and the rank of X is no greater

than

(1.4.4) If x, y E 'iR. J we 1 et X • y or xy

denote •y.:jEJ}.
J

(1.4.5) The null space of X = '(R J is defined

to be {y E 'fR_J: y x = 0 for all x EX}. We define the

nullity of X to be the rank of the null space of x .. The

following is a basic result.

(1.4.6) Theorem. (Birkhoff & MacLane [B4), Ch.

VIII, Theorem 11). For any X c 'iR.J, the rank of X plus

the nullity of X equals

(1.4.7) If x, y e1K_J, we say X $ y if

x. $ yj for all j E J, We
J

say X < y if X. < yj for
J

all j E J.

(1.4.8) Let I, J be finite sets. If A c'fR. IxJ

is the matrix (a .. E 1R: i E I, j E J) then for any S c I
l.J

we let AS

b = (b. : i
l.

denote (aij: i ES,

E I) E 1R. I, we denote

j E J) , Similarly

is a single element v we abbreviate A{v} by A •
V

if

If

If

x = (x.: j E J) E 1R.J. we define the product Ax to be the
J

vector y = (yi: i EI) E '11_I where yi =Ai• x for all

i e: I.

s

We define the transpose of A, denoted by AT to be the

1.20

matrix (a'..: j E.J, i c I) c 'lR.JxI where a'..= a ..
Jl. Jl. l.J

for

all i C I, j C J.

(1.4.9) By the rank of A and nullity of A

(written rank(A), nullity(A)) we mean the rank and nullity

respectively of {Ai: i c I} as defined in (1.4.3) and (1.4.5).

We call {Ai: i c I} the rows of A; and {(aij: i c I):

j E J} the columns of A.

1.5 Linear Programming

Let I, J be finite sets, let H c I and let K 5 J.

Let A c '\R IxJ, b c '\R. I and

programming problem is

J
C C '\R_ •

(1.5.1) maximize c • x

for x E 'iR_3
satisfying

(1.5.2) XK;;, 0,

A (primal) linear

(1.5.3) xJ-K unrestricted in sign,

The dual linear program (Dantzig [Dl] p. 126) is the

linear program

(1.5.6) minimize b • y

for E -<f> 1
. Y ·11'-. satisfying

1.21

(1.5.8) Yr-H unrestricted in sign,

(1.5.9) AT
K y ;,, CK'

(1.5.10) T
AJ-K y = CJ-K .

Texts on linear programming generally show how a problem

of the form (1.5.1)-(1.5.5) or (1.5.6)-(1.5.10) can be

reduced to a problem in which K = J and H = ~ or H = I.

(e.g. Dantzig [Dl] p. 85-89). The following theorems are

then usually proved for problems in these canonical forms.

These results can be easily extended to apply to linear

programs in the forms (1.5.1)-(1.5.5) or (1.5.6)-(1.5.10).

A vector J
X £ 1K_ satisfying (1.5.2)-(1.5.5) is called

a feasible solution to the primal problem. A v·ector y £ 'fR. 1

which satisfies (1.5.7)-(1.5.10) is called a feasible dual

solution.

A feasible primal solution 0
X which maximizes C • X

for all feasible primal solutions is called an optimal primal

solution; an optimal dual solution is defined analagouqly.

The following is a fundamental theorem of linear

programming (See Dantzig [Dl] p. 120 Theorem 1).

(1. 5 .11) Theorem. For any linear programming

problem exactly one of the following situations occurs.

i) There exists no feasible solution.

ii) For any a£ 1R_ there.is a feasible solution

x such that c • x > a.

iii) There is an optimal feasible solution.

The following theorems give the relationship between

the values of c • x and b · y for primal and dual

feasible solutions.

1.22

(1.5.12) Weak L.P. Duality Theorem (Dantzig [Dl]

p. 130)

If x is a feasible primal solution and y is a

feasible dual solution then c • x s b • y.

(1.5.13) Corollary. If for any CL s 'iR. there is a

feasible dual solution y such that b • y s CL then there

is no feasible primal solution.

(1.5.14) Strong L.P. Duality Theorem (Dantzig [Dl]

p. 129 Theorem 1, p. 134, Theorems 2, 3).

If there is a feasible primal solution and an upper bound

c • x over for all feasible primal solutions x then there

is an optimal primal solution 0
X and an optimal dual

solution yo and 0 b •. 0
C • X = y

(1.5.15) Corollary (Farkas' Lemma) (Dantzig [Dl]

p. 137, Theorem 6.)

Let A E ,iR_ IxJ b s 1R_ I. There exists x s '1K. J such

that x > 0 and Ax= b if and only if there is no y s'lK.I

such that ATy < 0 and b · y > 0.

The following theorem is used extensively in later

chapters. It is the tool used to prove optimality of the

solutions produced by the matching algorithms.

~ (1.5.16) Complementary Slackness Theorem

(Dantzig [Dl] p. 135,136).

Afea;;ible solution x 0 to (1.5.2)-(1.5.5) and a

0 feasible solution y to (1.5.7)-(1.5.10) are optimal if

and only if

. (1.5.17)
0 0 implies AT 0

all x. > y = C • for
-J j J

j E K,

(1.5.18)
0 0 implies A.x 0 b . for all .Y.i > =

J. J.

i E H.

1.23

Proof. For any feasible solution x to (1,5.2)-(1.5.5)

and any feasible solution y to (1.5.7)-(1.5.10) we define

(1.5.19) f(x,y) - x • (ATy - c) + y • (b - Ax)

T
cK) + yH(bH AHx) = xK(AKy - -

(1.5.20) E T
cj) E yi(bi-Aix) = X. (A. y - +

jEK J J iEH

by (1.5.5) and (1.5.10). By (1.5.2), (1.5.4), (1.5.7) and

(1.5.9) every term in (1.5.20) is the product of nonnegative

factors so

· (1.5.21) f(x, y) ~ 0.

Moreoyer,

(1.5.22) f(x, y) = 0 if and only if one factor

in each term of (1.5.20) is zero.

Simplifying (1.5.19) gives

(1,5,23) f(X, y) = b • y - C • X,

(Note that (1.5.21) and (1:5.23) together prove (1.5.12)).

1.24

If 0 and 0 satisfy (1.5.17) and (1.5.18) then X y

by (1.5.22) f(x 0 yo) o. Therefore, by (1.5.21) and
' =

(1.5.23) 0 and 0 optimal solutions. X y are

If 0 and 0 optimal solutions then by (1.5.13) X y are

(Strong L.P. Duality) b 0 0 . y = C . X

0 0
f(x, y) = O. Therefore by (1.5.22),

satisfy (1.5.17) and (1.5.18).D

so

0
X

by

and

(1.5.23),

0
y must

Notice that the sufficiency of (1.5.17) and (1.5.18)

were easily proved, however we required the strong duality

theorem of linear programming to prove their necessity. In

the applications we make use of complementary slackness in

proving optimality of the matchings produced by the blossom

algorithm and the face optimization algorithm, all we require

is the sufficiency of (1.5.17) and (1.5.18) for the algorithm

in fact produces solutions 0
X and 0

y satisfying (1.5.17)

and (1.5.18).

1.6 Integer Programming and Good Algorithms.

When studying algorithms it is often desirable to be

able to establish an upper bound on the amount of work

performed by the algorithm as a function of the size of the

problem. An elementary step of an algorithm is any step

performed by the algorithm which does not depend on the size

of the problem, for example adding two.numbers, comparing two

numbers, seeing whether an edge of a graph meets a node of

a graph. Thus an algorithm will, in solving a problem,

perform a certain number of elementary steps. If there is

1.25

some constant K such that the number of these elementary

steps which can be performed in solving a problem P whose

size .is measured by the parameters is no

where f is some

function of r 1 , r 2 , •.. ,rn then we say that an upper bound

on the amount of work performed by the algorithm is of the

In this thesis, when discussing bounds on algorithms,

we make a "fixed-word" assumption, namely that the time

required to perform arithmetic operations (addition,

subtraction, division by two) on two numbers is independent

of the number of digits in the numbers. This is the way in

which most large computers operate, the number of significant

digits to be considered becomes a constraint as to whether

or not a problem is solvable rather than a factor in the

time taken to solve the problem.

Following the terminology of Edmonds [El) we call

an algorithm "good" if there is an upper bound on the amount

o'f work performed by the algorithm that is of the order

function of r 1 , r 2 , ... ' r • n

is a polynomial

Consider the problem (1.5,1)-(1.S.S) with the added

restriction

(1.6.1) is integer v~lued for all j E J, x.
J

Such~ problem is called an integer programming problem.

Although it does not have a polynomial bound, the famous

Simplex Algorithm of Dantzig, does provide a practical

method of solving reasonably large linear programming problems.

I
: j

I I

I
I
I

CHAPTER 2

Basic Polyhedral Theory

In this chapter we define polyhedra and develop some

of their basic properties which are used in later chapters.

In particular we prove two theorems characterizing the

facets of a polyhedron which are used extensively in

Chapter 4.

This treatment of the subject, suggested by J. Edmonds,

is most similar to that of Stoer, Witzgall [Sl]. Other

standard references are Grunbaum [Gl] and Rockafellar [Rl].

The advantage of our approach for present purposes is that

it tends to emphasize the relationship between polyhedral

theory and linear programming.and it is in fact this

relationship which prompts our interest in special classes

of polyhedra.

2.1 Polyhedra and their Faces

Let I and J be finite sets, let

A = (a ij : i E I, j E J) €
1R IxJ and let

We call the set of linear inequalities Ax s b. a linear

system and define a polyhedron to be the solution set of

any linear system, We define the polyhedron

P (A, b) = { x E 1R J : Ax S b } •

We take A, b, I and J

the rest of this chapter.

to be defined as above throughout

If there is i e I such that Ai= 0 then either

in which case P(A, b) = ~ or else b. 2' 0
].

and

P(A, b) = P(AI-{i}' bI-{i}). Therefore we will henceforth

assume that A. • 0 for all i e: I (that is, the matrix
J.

A has no zero rows).

If K · f · · t t A' c <il KxJ and b' c 'fD K is a ini e se , ~ '"- ~ <\"-

then

P - {x e: 1R. J: Ax S b, A' x = b'}

is the same set as

Q - {x e: 1R. 3
: Ax s b, A'x ,; b', (-A')x,; -b'}.

Since Q is a polyhedron, we have

(2.1.1) any P '.: 1R3
which is the solution set

of a finite system of linear inequalities and linear

equations is a polyhedron.

For any I' s I we define

(2.1.2)

By (2.1.1) f(I') is a polyhedron and is call;d a face of

P(A, b). The fact that the faces of P(A, b) depend on

the polyhedron, not the linear system Ax s b is shown in

(2.1.5). The empty set is also taken to be a face of every

polyhedron.

It is clear that

(2.1.3) every face of a face of a polyhedron

is itself a face of P,

also,

p

,11,

ii
I' ,,
i;

,!

I
I'

I

(2.1. 4) the intersection of any collection of

faces of a polyhedron P is itself a face of P•
'

if

for k E K we have

There is associated with every linear system Ax s b

a unique maximal set IO c I for which P(A, b) = f(IO)

(since for any t E I, either there exists t P(A, b) X E

such that Atx
t

bt in which f IO such < case t or no

exists and t E IO) . We call IO the eouality set of

Ax s b. We say that Il is the eguality set of a face

of P(A, b) if Il is the maximal subset of I such

that F = f(I 1).

2.3

t
X

F

It is easily seen that there are many different sets of

linear inequalities which define the same polyhedron. However

the faces of the polyhedron depend only upon the polyhedron

itself and not upon the choice of inequalities. This we

now prove by showing that a nonempty subset F of a

polyhedron P is a face of P if and only if there is some

linear function c which is maximized over P by precisely

the members of F.

(2.1.5) Theorem.

of P(A, b) if and only if

F C p (A' b) is a nonempty face

(2.1. 6) there is c s '1R. J and a s 'IR such that

ex= a for all x e F and ex < a for all XE P(A, b)-F.

Proof. First we prove the necessity of (2.1.6), let

F be a nonempty face of P(A, b), let IO be the equality

i

I
i
!
I
'

I
! ,'

2.4

set of F. Then for each x s P(A, b) - F there is some

t(x) s IO such that

(2.1.7)

If IO = <I> we take C • - 0 for all j E J, otherwise
J

take C . - E(a .. : i
.J 1J

E IO) for all j E J.

For any X E F,

E(c.x.: j E J) = E(a .. x.:
J J 1J J

i E j E J)

since IO is the equality set of F. For

we have

E(c.x.: J) E(a .. x.: 0
j E = i E I -{t(x)}, j

J J 1J J

< l:(b.: i E IO) by (2.1.7).
1

Thus if we take

satisfy (2.1.6).

a - l: (b . :
1

0
i EI), a and

E (b . :
1

any

E J)

X E P(A,b)-F

+ l: (at (x)jxj :j sJ)

C so defined

We now prove the sufficiency. Let F be a nonempty

subset of P, iet c and a be as in (2.1.6). Then the

linear program

maximize c · x

for

Ax ,; b

has an upper bound. So by the strong linear programming

duality theorem (1.5.14) there is an optimal solution

0 0 y (y : i E I) to the dual linear program

minimize b • y

By complementary slackness (1.5.16) a solution x to

Ax s b maximizes ex if and only if Aix = bi for all

i EI such that

and the proof is complete.D

Thus F = f({i EI: y. ~ 0})
].

We obtain the following result by combining (2.1.6)

and (1. 5.10).

(2.1. 8) Theorem. Let If there is

such that c • x < a for all x belonging to a nonempty

polyhedron P(A, b) then there is a face F of P(A, b)

such that
0

X maximizes C • X for X E P (A, b) if and

only if
0

X E F.

Proof. Since P(A, b) ~ ~ and since c • x $ a for

all X E p (A, b) it follows from (1.5.11) that there

0 P(A, b) X E such that C X
0 max{c = . x: X E P(A,

Let F {x p (A, b) :
0 (2.1.5) F - E C X = C . X } • By

is a face of P (A, b).D

Let IO be the equality set of Ax s b.

x E P(A, b) an interior point of P(A, b) if

A 0x < b O
I-I I-I

We call

is

b)}.

(2.1.9) Proposition. Every nonempty polyhedron

has an interior point.

Proof. Suppose is the equality set of Ax$ b

and P(A, b) ~ ~. If IO = I then any X E P(A, b) is

trivially an interior point. Otherwise for each t E I -
there must be t P(A, b) such that X 8

2.5

IO

(2 .1. J.O)

= b 0
I

< b
t

b t
I

where It= I - IO - {t} for otherwise t would be in the

equality set of P(A, b). Let

It follows immediately from (2,1.10) that

= b 0
I

A 0x < b O
I-I I-I

so x is an interior point of P(A, b) as required.0

2.2 Dimension and a First Facet Characterization

Let have equality set Io. If P(A, b)

then we define the dimension of P(A, b) to be -1

Otherwise we define the dimension of P(A, b) to be

IJI - rank (A 0)
I

We show in (2.2.14) that dimension depends only on the

2.6

polyhedron not on the linear system which defines the polyhedron.

We denote the dimension of a polyhedron P by d~m(P). It

follows from (1.4.9) and (1.4.3) that if P ~ ~ , dim(P) ~ 0.

Clearly every polyhedron P is a face of itself

r
I

I
I

2.7

called an improper.face. All other faces including the

empty face, are called proper faces.

If dim(P(A, b)) = jJj, that is if P(A, b) >' cj,

and rank(A
0

) = 0 where IO is the equality set of Ax s
I

then we say that P(A, b) is of full dimension.

First we show that the dimension of every proper face

of a polyhedron P is less than dim(P).

(2.2.1) Proposition. Let F be a proper face of

P(A, b). Then dim(F) < dim(P(A, b)) - 1.

Proof. Since P(A, b) has a proper face, P(A, b)

is nonempty. If F = cj,

F ;>! cj,
'

let IO be the

be the equality set of

rank(A 0) s rank(A) .
.I I'

(2.2.2)

then the result is trivial.

equality set

F. Then IO

Suppose

rank(A 0) =
I

of Ax s

C I' and

rank(A)
I'

b, let

Assume

I I

Then a row basis of A O is a row basis of A hence for
I I I

any t E I' - Io
' is a linear combination of rows of

A 0·
I

If bi is not equal to the same linear combination of

the components of b 0
I

assumption. Otherwise,

then F = cj,, contradictory to our

for any J
X E iR

b'

A x = b O we also have
IO I

satisfying

0 t EI , contradictory

to the choice of t. Hence (2.2.2) must be false,

rank(A
0

) + 1 s rank{A)
I I'

and the result now follows from the definition of dimension.D

2.8

Let
. k
{x : k ,: K} c are

k
X : k £ K We say that

affinely independent if for any (ak ,: 1R.: k ,: K) such that

and

we have CL = 0
k

for all k,: K. If k
X : k £ K are not

affinely independent then we say that they are affinely

dependent.

Let {xk: k ,: K} = 'iR. J. We say that x £ '\R J is an

affine combination of {xk: k,: K} if there exist "'k,: 1R.

for k £ K such that

and

E (ak: k £ K) = 1

The following is an immediate consequence of these definitions

(2.2.3) Proposition. The vectors xk e: 1R.J k £ K

are affinely independent if and only i£ no h
X

is an affine combination of {xk: k,: K - {h}}.

for h £ K

The following proposition relates affine independence

to linear independence.

(2.2.4) Proposition. The vectors xk ,: '1R J: k £ K

are affinely independent if and only if for any h,: K, the

vectors xk ~ xh: k,: K~{h} are linearly independent.

Proof. Suppose
k

X k £ K are affinely independent,

let h £ K and let K' = K - {h}. Let

be such that

k h
E(ak(x - x): k e: K') 0

Then

and

so since
k x k £ K are affinely independent we must have

for all k £ K and the vectors

are linearly independent.

k
X

Conversely, suppose that for h £ K the vectors

xk - xh: k e: K' = K - {h} are linearly independent. Let

(ak £ 1R-: k £ K) be such that

(2.2.5)

(2.2.6)

Then by (2.2.6) ah= -E(ak: k £ K') so (2.2.5) implies

E(ak(x
k h k K') 0. - X) : £ = (x k h k K' Since X) : £ are

2.9

linearly i_ndep end en t we have ak = 0 for all k E: K' • Hence,

by (2.2.6), ah = 0 and so X
k k : E: K are affinely

independent and the proof is complete.D

Note that affine independence is implied by linear

independence and affine dependence implies linear dependence.

I

, I

I

For V c ·/,0 J
- 1K, we define the affine rank of V to be

the cardinality of a largest affinely independent subset of

V. In view of (2.2.4) and (1.4.3),

(2.2.7) the affine rank of V c 1R J is no

greater than JJ I + i.

We now prove a theorem which relates the affine rank

of a polyhedron to its dimension and thus shows that the

dimension of a polyhedron is determined irrespective of the

linear system,

(2.2.8) Lemma. If dim(P(A, b)) = k then

P(A, b) contains k + 1 affinely independent elements.

Proof. If k = -1 then P(A, b) = q, and the result

is trivial. Otherwise

be the equality set of

interior point X which

(2. 2. 9)

(2.2.10)

k ;;: 0 and

Ax ,;; b. By

satisfies

= b 0
I

P(A, b) " q, • Let IO

(2.19) P(A, b) has

If k = 0 then {x} is the set of affinely independent

an

2.10

elements we require. Suppose k ;;: 1. Since dim(P(A, b)) = k,

rank(A 0) = JJJ - k.
I

Therefore by (1.4.6) nullity(A 0) = k.
I

Hence there are k linearly independent vectors

l 2 . k~,tl)J
. y ' y ' ... 'y C. \"- such that

I!'
l 1

, I
i
!,

I
I

(2.2.11)
i

A oY
I

0 for i E {l, 2, ,k},

Let t £ {l, 2, .•. ,k}.

et> 0 such that

In view of (2.2.10) there is

since

Then

t
A 0 (x + ety) ~ b 0
I-I I-I

A
0

x +
I-I

t
A 0 (x + Ety) =

I

t
e A oY

t I

= b 0
I

by (2,2.9) and (2.2.11), Thus the vectors

2 k x + e
2

y , ... ,x + Eky all belong to P(A, b). Moreover,

1 2 k since y, y , •.. ,y are linearly independent and since

2.11

Et> 0 for all t £ {1, 2, ... ,k}, are

linearly independent, Hence by (2.2.4) 1 k
X 1 X + Ely 1 ,, , 1 X + Eky

are affinely independent and the proof is complete.D

(2.2.12) Lemma. If P(A, b) contains k + 1

affinely independent members then dim(P(A, b)) > k.

Proof.

k ;,, 1. Let

of P(A, b),

we have

If k ~ 0 the result is trivial, assume

0 1 k x , x , ..• ,x be affinely independent members

Then if IO is the equality set of Ax~ b

(2.2.13) = b 0
I

for i E {O, 1, .. ·.,k}.

By (2.2.4) the vectors
1 0 2 0 k 0

X - X , X - X ,•••,X - X

are linearly independent. Moreover by (2.2.13)

i
A

0
(x

I

0
- A X

IO

Hence nullity(A 0) ~ k and so
I

for i £ {1, 2, •.• ,k}.

rank(A
0

) 5 IJI - k.
I

Thus dim(F) = !JI - rank(A
0

) ~ k.D
I

We can now combine these two lemmas to obtain the

following theorem.

(2.2.14) Theorem. The dimension of P(A, b)

one less than the affine rank of P(A, b).

We showed (2.1.5) that the faces of a polyhedron P

are independent of the choice of inequalities used to

is

2.12

represent P. A consequence of (2.2.14) is that the dimension

of a polyhedron is also independent of the chojce of inequalities

since the affine rank does not depend on the set of inequalities

used to define the polyhedron.

If F is a face of P(A, b) and dim(F) = dim(P(A,b))-1

then F is called a facet of P(A, b).

In Chapter 4 we make extensive use of the following

corollary of (2.2.14).

(2.2.15) Corollary. If F is a proper face of

a polyhedron · P of dimension d then F is a facet of

P if and only if F contains d affinely independent

elements.

2.13

Proof. The result is a combination of (2.2.1) and

(2.2.14).D

2.3 Second Facet Characterization

We prove in this section that the facets of a polyhedron

P are precisely the maximal proper faces of P, We also

show that the facets of P correspond in a certain sense

to a minimal collection of inequalities required to define

P, We then discuss the specialization of this theorem to

the case in which P is of full dimension as this is the

situation which we study in chapter 4.

(2.3.1) Theorem. Let p = P(A, b) be nonempty

and let IO be the equality set of Ax < b. Let I I s I

Let P' - P(AI-I'~I-1..LL· Then p ,< P' if and only if

I I u IO contains the equality set of a nonempty proper

face of P.

- Io.

Proof, Clearly Pc P', suppose there is some y £ P' - P.

Then for some nonempty Kc I' we have

and

(2.3.3)

By (2.1.9) P has an interior point w, that is, w satisfies

(2.3.4)

(2.3.5)

A 0• < b O ,
I-I I-I

A O w
I

= b 0
I

. i

i

I

2.14

Therefore we can choose A E 'lR. satisfying O < 1' < 1

such that if we let z =AW+ (1 - 1')y then for some

nonempty Tc K

(2.3.6)

(2.3.7)

(2.3.8)

A O z < b O ,
I-I -T I-I -T

,;; b 0
I

(Take A= max{(A.y - b.)/(A.(y - w)): i EK}
].].].

and let T

be the set of i EK which attain this maximum).

By (2.3.6) - (2.3.8)

(2. 3. 9)

By (2.3.6) and (2.3.9) Z E

Z E P SO

= b 0
I

f(IO u T) 0 and by (2.3.7), I u T

is the equality set of this face. This proves the necessity

of our condition since IO u T C IO u K C IO u I I •

' -

Conversely, suppose that IO u I I contains the equality

set of a nonempty proper face F of p. Let K be the

equality set of F. Note that IO C K C IO u I' . By (2.1.9) -
F has an interior point y, that is, y satisfies

(2.3.10)

(2.3.11)

Similarly P has an intterior point. w, that is an element

w satisfying

(2. 3.12) A
0

w
I

= b 0
I

' I·
I

(2.3.13) A
0

w < b
1-1 1-1°

For any E > 0 let z(E) - (1 + E)y - EW. Then

(2.3.14)

(2.3.10) and (2.3.12).

A 0 z(E)=b 0 forany Ee'JRby
I I

(2.3.15) A
0
z(€) =

K-1
bK-10 + e(A 0Y - A Ow)

K-1 K-1

> b O for any e > 0
K-1

by (2.3.11) and (2.3.13).

A z(e) = A y + E •

I-K 1-K
A

0
(y-w)

K-1

2.15

so in view of (2.3.11) if we choose E > 0 sufficiently small

we will have

(2.3.16)

Since K J 1°, by (2.3.15) Z(€) ~ P. Since I - Kc I - I',

by (2.3.14) and (2.3.16) z(E) E P' = P(A 1_ 1 ,, b 1_ 1 ,).

That is P ~ P and the proof is complete.D

We are now in a position to prove the following theorem

equating the facets of a polyhedron to its maximal proper

faces.

(2.3.17) Theorem. F ~ ~ is a facet of P(A, b)

if and only if F is a maximal proper face of P(A, b).

Proof. Suppose F ~ ~ is a maximal proper face of

2.16

P(A, b). Then by (2.2.1)

(2.3.18) dim(F) 5 dim(P(A, b)) - 1.

Let IO be the equality set of Ax ?;; b, let I I be the

equality set of F. Let i E I' - IO and let K - I'-IO-{i},

If K u IO (= I I - {i}) contained the equality set

of a proper face F' of P(A, b) then F c F' contradicting

the maximality of F, Thus by (2.3.1),

and IO is the equality set of AI-Kx 5 bI-K The equality

set of F in P(AI-K' bI-K) is IO u {i} so since

rank(A
I 0 u{i}

) 5 rank(A 0) + 1 we have
I

(2.3.19) dim(F) ~ dim(P(A, b)) - 1.

Combining (2.3.18) and (2.3.19) we see that F is a facet

of P(A, b).

Conversely, suppose that F ~ $ is a facet of P(A, b).

Then

(2.3.20) dim(F) = dim(P(A, b)) - 1.

Suppose that there is a face F' of P(A, b) such that

F c F' c P(A, b). By (2.2.1)

(2.3.21) dim(F') 5 dim(P(A, b)) - 1.

By (2.1.3) F is a face of F' and since we assume F c F',

F is a proper face of F'. Thus by (2.2.1),

I
. I

I

2.17

(2. 3. 22) dim(F) $ dim(F') - 1.

Combining (2.3.21) and (2.3.22.) we have

dim(F) $ dim(P(A, b)) - 2

a contradiction to (2.3.20) which proves the theorem.O

It should be noted that the hypothesis F ~ ~ is indeed

necessary in (2.3.17) as is shown by the following example.

Let p - {(xl, x2) e:'iR{l,2}:
xl + x2 = 1}. Then

dim(P) = 1 and ~ is the only proper face of P. But

dim (~) = -1 so ~ is not a facet of P. This also illustrates

that there do exist polyhedra having no facets.

(2.3.23) Corollary. Let P be a polyhedron, let

d - dim(P). Let F ~ p be a face of P of dimension

k < d. Then there are faces Fk+l' Fk+ 2 , ... ,Fd-l of P

such that

Proof. We prove by induction on d - k. If d - k = 1

then there is nothing to prove. Suppose the result is true

when d - k < t 2 2 and assume d = k + t. Let Fd-l be a

maximal proper face of P containing F, that is

F c Fd-1 c P.

Then Fd-l ~ ~ so by (2.3.17) dim(Fd) = d - 1. Since

~ (d - 1) - k < t there are by our induction hypothesis faces

I
" !,

ii
,j'

'I
I,
'i

,i

I I,

and dim(F.) = j
J

for je{k+l,k+2, ... ,d

2.18

2}. By

(2.1.3) F. is a face of P for j e {k + 1, k + 2, ... ,d - 2}
J

so the result follows.D

Given the polyhedron P(A, b) we may wish to find a

* set I c I such that P(A *' b *) P (A, b) * and I is
I I

minimal with this property. The next theorem characterizes

such sets. First we observe the following fact.

(2.3.24) Proposition. =L~e~t~-F~1............l 2 '-'-'-'-' X k be the

facets of P(A, b) ' let IO be the eguality set of Ax < b

and let Ii be the equality set of F. for i £ { 1' 2, ..• ,k}.
l.

Then Ii n Ij = IO for. all distinct i' j £ { 1' 2, .•• ,k}.

Proof. Let i, j be distinct members of { 1' 2, ... ,k}

and let K = Ii n Ij . Then IO C K. Since F. "' F. and
l. J

since both are maximal proper faces (by (2.3.17)) there are

x. £
l.

F. - F. and x. £ F. - F .. Then xi, x. £ f (K) so
l. J J J l. J

F. "' f(K) "' F .• But f(K)
l. J

::, Fi u Fj so since Fi and Fj

are maximal, f (K) = P(A, b) so K = IO completing the proof.0 '

(2.3.25) Theorem. Let Fi: i e K be the facets

of a nonempty polyhedron P(A, b), let IO be the equality

set of Ax ,;; b and

* for i £ K. Let I

and only if

(2. 3. 26)

and

let Ii be the equality set of

£ I. Then P(A, b) = P(A *~

rank(A O *) =
I nI.

rank(A ol
I

I

Fi

*) if
I

2.19

(2.3.27)

* Proof. Suppose I satisfies (2.3.26) and (2.3.27).

Then the rows of A O *
I nI

are a basis of the rows of A 0 .
I

Hence for any t e IO - I: At must be a linear combination

of rows of A O * and bt must be the same linear
I nI

combination of the rows of b O * or we would have
I nI

P(A, b) = cj,. Thus if x e'IR_J satisfies A O *x = b O *
I nI I nI

then it also satisfies A
0

x = b
0

. Hence
I I

(2.3.28) P(A *' b *)
I I

P(A O *' b O *).
I uI I uI

By (2.3.27), (I - I*) u IO cannot contain the equality set

of a facet of P(A, b) so by (2.3.17) and (2.3.1)

(2.3.29) P(A O *' b O *) = P(A, b).
I uI I uI

Combining (2.3.28) and (2.3.29) proves the sufficiency of

(2.3.26) and (2.3.27).

* If I does not satisfy (2.3.26) then dim(P(A *' b *)) ~
I I

dim(P(A, b)) + 1 so by (2.2.14), P(A *' b *);,, P(A, b).
I I

If I* does not satisfy (2.3.27) then (I - I*) u IO contains

the equality set of a proper face of P(A, b) so by (2.3.1),

P(A, b) ;o P(A O *' b O *). Since P(A, b) c
I uI I uI

P(A O *' b O *) c P(A *' b *) the result now follows.O
I UI I UI I I

If P(A, b) is a polyhedron of full dimension and IO

is the equality set of Ax s b then rank(A
0

) = 0 so since
I

I '

we assume A has no zero rows,. IO = ~ . If I ' is the

equality set of a facet of P(A, b) then rank(A
I'

) = 1

so if we define for each i E I

p (i) - { t E I: At

a E , a > 0}

then we can easily see that all equality sets of facets are

sets of this kind. Moreover for any i EI, for any t E p(i)

we have f({t}) = f({p(i)}). Thus (2.3.25) specializes to

the following.

(2.3.30) Theorem. Let P(A, b) be a polyhedron of

full dimension. Then for any Kc I, P(A, b) P(AK~___E_K) if

and only if Kn p(i) ~ ~ for each i EI such that f({i})

is a facet of P(A, b).

(2.3.31)-Corollary. Let P(A, b) be of full

dimension. Then Kc I is a minimal set such that =====ccc..-....c..ccc==--_c..c

P(A, b) = P(AK..L..E.K) if and only if for each i EK, f({i})

is a distinct facet of P(A, b).

We also have the following result.

(2.3.32) Theorem. Let P(A, b) be of full dimension,

let Kc I be such that {f(i): i EK} is the set of facets

P(A, b). p (A' , b I) P(A, A'
I I XJ of Suopose ::, b) where E 1('

b' E 'ft', I I
and I' is a finite set. Then P(A b) = p (A' ' b I)

if and only if

(2.3.33) for each i EK there are t EI' and

some r·eal a > 0 such that A' = a t • A
i and b I = ab·]. .

2. 21

I' define e: 1R., (I' ul) X J
Proof. Assume n I = q, ' A

I'ul A' bl, b I • and b e: 'lR. by AI = A, AI I - ' bl - b, -

Suppose P(A, b) = P(A', b 1
), Then P(A, b) = P(A', b') and

{f(i): i e: K} is the set of facets of P(A, b), Hence by

(2. 3. 30) (taking A, b for A, b and I' for K) we

see that (2.3.33) must hold.

Conversely, suppose (2.3.33) holds. By (2.3.30),

Since P(A', b') = P(A, b) = P(AK' bK),

(2.3.33) clearly implies P(A', b') = P(AK, bK) = P(A, b)

and the proof is complete.O

(2.3.32) shows that the facets of a full dimensional

polyhedron P(A, b) determine up to a positive multiple the

minimal set of inequalities of which the polyhedron is the

solution set, That is, any set of inequalities defining

P(A, b) must contain a positive multiple of Aix ~ bi for

each i such that f({i}) is a facet of P(A, b), (2.3.31)

shows that the converse also holds, if Ax~ b is a minimal

set of inequalities defining a full dimensional polyhedron

P, then f ({i}) is a facet of P for each i e: I.

This is one of the reasons for our interest in the facets

of matching polyhedra. These polyhedra (see section 3.4)

can be defined for a graph G by a set of inequalities

which generally is far from being minimal. By characterizing

the facets of matching polyhedra we are characterizing the

minimal sets of inequalities necessary and suffi~ient to

determine these polyhedra.

It may happen (as is the case with matching polyhedra)

that = 0 or -1 for all i e: I and j e: J. Then we

11
I' ,,

!

1,
I''
I

I,
:1

1:

'I
!
I:

11

!'

have

and we can simplify (2.3.30) as follows.

(2.3.34) Theorem. Let P(A, b) be of full

··dimensi·on
'

suppose a ..
1J

E { 0, 1} for all i E I' j E J.

Then for anz K C I, p (A, b) = P(AK~K) if and only if for

each i EI such that f({i}) is a facet of P(A, b) there

_i_s __ t_E_K __ s_u_c_h __ t_h_a_t __ Ai~=~At __ a_n_d_~bi~=~bt~

2,4 Vertices of Polzhedra.

In this section we prove results about vertices of

polyhedra which indicate their importance to linear programming.

We also show that bounded polyhedra are convex combinations

of their vertices.

A

We say that X E p is a vertex of the polyhedron p if
A

{x} is a face of p and dim({x}) = o.

(2.4.1) Theorem. x is a vertex of P(A, b) if

and only if there is some C E 1R J such that X is the

unique member of P maximizing ex for x E P.

Proof. Any two distinct members of '1R.. J are easily

to be affinely independent so F C - P(A, b) is a face of

P(A, b) of dimension 0 if and only if F is a face of

P(A, b) and IF I = 1. By (2.1.5) F is a nonempty face

P(A, b)
. J

if and only if there is C E '\R. such that ex

maximized over P(A, b) by precisely the members·,of F.

The result follows from these two facts.O

seen

of

is

2.23

h lhd P=
-mJ We say tat a po ye ron 1~ is bounded if there

exist 2, u ,: '\R.J such that -~ ,; x ,; u for all x ,: P,

A bounded polyhedron is commonly called a polytope(see

Grunbaum [Gl)) ..

(2.4.2)

bounded polyhedron.

Theorem. Let P(A, b) be a nonempty

Then P(A, b) has a vertex.

Proof, Let I' be the equality set of a nonempty face

F of P(A, b) of minimum dimension. If dim(F) = 0 then

F consists of a vertex and we are finished, Otherwise if

dim(F) > 0 then there are by (2,1.8) an interior point x

of F and by (2.2.8) an element y,: F - {x}. For any

€ 8 1R. let z (€) - X + € (y X) ' Then A z (€) = b I

I' I

for all € 8 '1R . If AI-I'(y - x) ,; 0 then z(E)e:P(A,.b)

for all € e: '!K such that € 2: 0 which contradicts P(A, b)

being bounded. Therefore there is i 8 I - I' such that

*
b. - A.x

Ai(y x)
. {].]. I I - > o. Let).. = min A. (y-x) : i 8 I - and

].

Ai(y - x) > 0}. * Then z()..) ,: F and there is i,: I - I'

such that * A.z()..) = b.,
].].

Since

f(I' u {i}) is a proper face of

x,: F - F(I' U {i}),

* F, since z()..) ,: f(I' u {i})'

f(I' u {i}) >' q,,

and by (2, 1. 3)

By (2.2.1) dim(f(I' u {i})) ,; dim(F) - 1

f(I' u {i}) is a face of P(A, b)

contradicting our choice of F, Hence dim(F) = 0 and

F consists of a vertex of. P(A, b),D

Since any face of a bounded polyhedron is itself a

bounded polyhedron, we have the following corollary,

(2.4.3) Corollary. Every nonempty face of a bounded

polyhedron contains a vertex.

'"I l
::,

Observe that by (2.1.5) if C E '\R J is such that ex

has an upper bound for x E P(A, b), then this upper bound

is achieved by precisely,the members of some nonempty face

of P{A, b).

By combining this, (2.4.3), and the fact that for any

2.24

c E wt_J, c • x has an upper bound over a bounded polyhedron

we obtain the following.

(2.4.5) Theorem. Let P be a nonempty bounded

polyhedron·.
J .

c E 1R. ; there is a vertex V of Then for any

P· which maximizes c • x over P.

Let K be a finite set, let {xk: k e K} !: 'fR..J. We

say that x is a convex combination of k
{x : k EK} if

there is K (Ak: k E K) E 1R._ such that

(2.4.6) ~k 2 0 for all k e K,

(2.4.7)

(2.4.8)

A set X!:"l' J. 'f b' t' f -1~ is convex 1 every convex com 1na ion o

every finite subset of X belongs to X,

(2.4.9) Proposition. Polyhedra are convex.

Proof. Let P(A, b) be a polyhedron. If P (A, b) = <j,

then the result is trivial. If P(A, b) ~ <j, let

X = {xk: k EK} baa finite subset of P(A, b) and.'let x

be a convex combination of X. Then there .is .Pk: k E K) E 1K K

satisfying (2.4.6)-(2.4.8). Hence

I

i
I:

Ax k
X k e: K)

$ l:(Ak: k e: K)b by (2.4.6)

b by (2.4,7)

so x e: P(A, b) and (2.4.9) follows.D

2.25

If V c '\R. J then the convex hull of V is defined to

be the set of all J
x £ 1R. which are convex combinations

of finite subsets of V.

(2.4.10) Theorem. If P(A, b) is a nonempty

bounded polyhedron then P(A, b) is equal to the convex

hull of its set of vertices.

Proof. Let V = {vk: k e: K} be the set of vertices of

P(A, b). Let H(V) denote the convex hull of V. It

follows from (2.4,9) that H(V) c P(A, .b),

Let x e: P(A, b). Then x e: H(V) if and only if there

exists (' k ~ K) ~ 1R_ K "k: ~ ~ satisfying (2.4.6), (2.4,7) and

Suppose no such ;\ exists. Then by Farkas' Lemma (1.5.15)

there are ·J
y E: 'R

(2.4.11)

and

y

(2.4.12) y

yo e: 'fR. such that

$ 0 for

X +Yo> 0.

Since P(A, b) is bounded, by (2.4.5)

k e: K

there is o: E 1K. such that o: = max{y • x: x E P(A, b)} and

there is

so since

(2.4.12).

h E K such that

XEP(A,b),y•

y ' V
h

= Ct •

This completes the proof.D

By (2.4.11) 0: ,;;

contradictory to

2.26

The number of vertices of a polyhedron is generally much

larger than the dimension of the polyhedron. The following

theorem due to Caratheodory [Cl] shows that if x belongs to

the convex hull of S c 1i(J then if r is the affine rank

of S, x can be expressed as a convex combination of at most

r members of S.

(2.4.13) Caratheordory's Theorem. Let r . . be the

.::a:..:f:.cf=-=i-"n"e"'-"r.::a:..:nc:.k"----'o"f"'--'S" c 11(J , 1 e t X be a member of the convex

hull of s. Th en th e r e i s Y c .::Sc__s=-=u.::c:..:h=--.::t "'h"'a"t'--'-J ...:Y_,J'-<"-"'r __ a=n.::d'--'x"'

is a convex combination of the members of Y.

Proof. See Stoer Witzgall [Sl] p. 35-

We combine (2.4.12) with (2.4.10) and (2.2.14) to obtain

(2.4.14) Theorem. Let P be a bounded polyhedron of

dimension d > 0. Then any x E P can be expressed as a convex

combination of a set of at most d + 1 vertices of P.

I

I
I

,I

I

i

j'

'' ' I
I

Chapter 3

The Matching Problem and the Blossom Algorithm

In this chapter we describe the matching problem

considered here and give a new version of the so-called blossom

algorithm for solving this problem. This algorithm, which

is used extensively in later chapters, is actually a combination

of several other versions of the blossom algorithm. The

relationship of this version to other available versions is

discussed later, when sufficient terminology has been developed.

3.1 The Matching Problem.

Let V and E be finite sets, let Vs u v= be a

_partition of

vector, let

V. Let c=(c.:j
J

e: E) be an arbitrary real

i e: V) be a vector of positive integers.

Let A= (a .. : i e: V, j e: E)
1J

be a matrix of zeros and ones

which satisfies

(3.1.1) l:(a .. : i e: V) = 2
1J

for all j e: E.

Then the matching problem under consideration is the following

problem.

Find,if one exists,a vector x = .(x.: j e: E) e: '\K. E
J

such that x.
J

is a nonnegative integer for all j e: E,

L (a .. X.
1J J

for all J. E

l:(a .. x.: j e: E) = bi for all i e: V •
1J J

and wl1ich maximizes c • x subject to these conditions.

ii

i
11

[,

l;i
I

Iii
ill ,,,

11' I:
I

til I'
"

I
\I

ii
I
I

I '

3.2

If no such vector exists then we wish to exhibit a structure

which will prove that no such vector exists.

The matching problem is, therefore, a special case of

the integer programming problem (see section 1.6), the

principal restriction being (3.1.1). However whereas all

known algorithms for solving general integer programming

problems have bounds which are exponential in the size of the

input, the blossom algorithm is a method for solving matching

problems whose bound is a polynomial function of the size of

the input. The description of the algorithm is facilitated

by interpreting the problem graphically in the following manner.

Let G be the graph (V, E, w) where w is defined by

W{j)={iEV: a .. = l} for all
l.J

In view of (3.1.1), lw(j) I = 2 for all j EE.

j E E,

Thus G is

a graph without loops having edge set E and node set V.

Then the matching problem is

(3.1.2) maximize c • x

where

{3.1.3) x. ;,: 0
J

} fo·r all j E ·E

x. integer valued
J

(3.1.4)

x(o(i)) ,; b. for all i E v,;
l.

(3.1.5)

= x(o(i)) = b. for all i E V
l.

(3.1.6)

(See (1.3.3), (1.3.4) for the definitions of y, o). That

is, we wish to assign a nonnegative integer xj to each edge

II
i':
I'

3.3

j of G so that the constraints (3.1.5) and (3.1.6) are

satisfied and so that c • x is maximized.

Throughout the remainder of this chapter G = (V, E, •)

is a graph, b = (b. : i £ V)
l . is a vector of positive integers

called degree constraints, c = (c.: j
J

EE) is an arbitrary

real vector and Vs u v= is a partition of V.

The purpose of this chapter is to describe an algorithm,

called the blossom algorithm, for solving the problem

(3.1.2)-(3.1.6).

It is a version of Edmonds' blossom algorithm. In [El)

and [E3] are versions of the algorithm which solve the problem

of maximizing x(E) subject to x satisfying (3.1.3)-(3.1.5)

taking b. = 1
l

for all i E V = and V = cj, •

Another version [E2] solves the more general

problem (3.1.2)-(3.1.5) where bi= 1 for all i EV and

v= - c/>.

'The description of the blossom algorithm in this chapter

is based upon a version of the algorithm [E4)

= which solves the problem (3.1.2)-(3.1.6) taking V - V and

allowing the bi to be arbitrary positive integers.

This algorithm has been generalized (Johnson [Jl],

Edmonds, Johnson [ES] and [E6]) in other directions from

those considered in this thesis. In addition a computer

implementation of a generalized algorithm is available (Edmonds,

Johnson, Lockhart [E7]).

We _call any x E'IK_E satisfying (3.1.3) and (3.1.4) a

matching. If x also satisfies (3.1.5) and (3.1.6) then x

is called a feasible b-matching or simply a feasible matching.

,,

I

11

'

3.4

If x is a matching such that x(o(i)) = b.
l.

for all

i e: Sc V then we say that x is a perfect matching of s • ,

if S V then we may simply call x a perfect matching of

G. For any matching x and any node i we define the

deficiency of x at i to be bi - x(o(i)), If x has a

positive deficiency at i then we say that x is deficient

at i. If x is deficient at i then sometimes we call i

a deficient node relative to x. Tnus x is a perfect.

matching. of· S S; V if S contains no deficient nodes

relative to x. In Chapter 4 we will study extensively

matchings having a deficiency of 1 at some node of G and.

having a deficiency.of O every other node, the so-called

near perfect matchings.

If b, = 1 for all i e: V then if X is a feasible
l.

matching, M = {j e: E: x. =
J

l} is a set of edges of G meeting

each node of G at most once
= 'a·nd each.-node of V exactly

once. This special case has received a great deal of attention

and often is the starting point for studies of matching theory

(e.g. Berge [B2], Edmonds [El], [E2], [E3], Tutte [T2]).

We call this. problem the !-matching problem and call such a

vector x a feasible !-matching. Several of our theorems of

chapter 4 are particularly interesting for the case of

1-matchings.

(3.1.7) Proposition. Let x be a matching of G

which satisfies

(3.1.8) x(o(i)) ~ bi for all i e: V.

I'
'

!I

Ii
I

Jhen for any Sc V such that b(S) is odd,

(3.1.9) x(y(S)) ,,b(S)-1
2

3.5

Proof. By (3.1.8) E(x(o(i)): i £ S) :, b(S) and since

E(x(o(i)): i £ S) = 2x(y(S)) + x(o(S)) it follows that

2x(y(S)) :, b(S) - x(o(S)) :, b(S) .

Since x(y(S)) is integer valued and b(S) is odd it follows

that

2x(y(S)) :, b(S) - 1

and (3.1.9) is immediate.D

The sets Sc V for which b(S) is odd play an

important role in matching theory where G is not bipartite.

For any such set S we define

(3.1.10) qS - (b(S) - 1)/2 •

The following are two basic results concerning graphs

of particularly simple structure. Notice that in both

(3.1.11) and (3.1.16) we neither postulate d nor require

x to be integer valued or nonnegative.

(3.1.11) Proposition. For any tree T, for any

d = (d.: i £ V(T))
l.

,o E (T) unique x E 'It'\.

(3.1.12)

£ '1K. V(T), for any v £ V(T) there is a

such that

x(_o T (i)) = d i.--=fcc.occr::.._;a::.l::.l=---=i-=£c_:V_;(s..:T:..,)c._-_· .,_{ v-'--"-} .

Proof. We prove by induction on IV(T) I• If

IV(T)I = l or 2 the result is trivial. Assume the result

111
1,

I
I'

ii

I'

I

3.6

true for trees having fewer than k nodes, for k ~ 3 and

assume IV(T) I = k. By (1.3.12) T has a node t of valence

1 different from v, let {j} = oT(t). Clearly

· (3.1.13) x(oT(t)) = dt if and only if xj = dt.

Let T' be the tree obtained from T by deleting j and t,

let w be the end of j in T'. Define d' by

d'
i

d. for i e: V(T') - {w}
l.

d
w

dt if i = w

Since IV(T')I < k, by our induction hypothesis

that

(3.1.14) there is a unique x' e: 1K.E(T') such

x' (oT' (i)) = d'
i

for all i e: V(T') - {v}.

Define x = (xh: he: E(T)) by

(3.1.15) xh -

x' for he: E(T') = E(T) - {j},
h

dt for h = j.

By (3.1.13)-(3.1.15),

satisfying (3.1.12).D

X
JO E(T) is the unique member of •11,

(3.l.16j Proposition. Let B be a connected graph

containing no even polygon and one odd polygon P. Then for

any d = (d.: i e: V(B)) e: 1R_V(B)
l.

there is a unique

such that

x(o(i)) = d. for all i e: V(B).
l.

£> E(B)
X e: 'I"-

Proof. Let j e: E(P), let B' be the graph obtained from

I I

3.7

B by removing; j. Then B' is a tree and so is bipartite,

let u, v be the ends of j, let v
1

be the part see

(lc~;7)of B containing ·{u, v}, let v
2

be the other part.

Let d' = (d'.: i £ V(B)) be defined by
]_

di for i £ V(B) - {u, w}

d '. -
]_

Then

By (3.1.11) there is a unique E (B')
x' £ /iR such that

x' (oB, (i)) = di for all i £ V(B) - {u}. By (3.1.18) we

have x'(o (u)) = d' B' u so if we define x £ tR.._E(B) by

x~ for h £ E(B') = E(B) - {j},

then x satisfies (3.1.17) as required.

- ,oE(B) Conversely, suppose x £ I"-.. satisfies (3.1.17).

B' is bipartite so we have x(oB 1 (V
1

)) = x(oB 1 (V
2
)). Therefore

we must have xj = l/2(d(V1) - d(V 2)). Therefore xjE(B')

satisfies x(oB 1 (i)) = di for all i £ V(B) - {u} so

xjE(B') = x' by (3.1.11). Therefore x = x proving the

uniqueness of x.D

The following six sections (3.2-3.7) are used to develop

the general framework required to describe the blossom

algorithm. The algorithm itself is presented in Section 3.8

and in Section 3.9 we compute a bound on the amount of work

requried by the algorithm to solve a problem.

3.2 Nested Families of Sets.

Let R be a set of distinct nonempty subsets of V.

We say ihat R is a nested family if for any distinct S,

TE R such that Sn T ~ ~ we have Sc T or Tc S. An

important feature of nested families (of which we make use

in establishing upper bounds on the amount of work required

by various algorithms) is that they are small compared to

the total number of subsets of V.

(3,2.1) Theorem. If R is a nested family of

subsets of a nonempty set V then IRI 5 2IVI - 1.

Proof. We prove by induction on IV I . If Iv I = i

then the result is obvious. Suppose the result is true

when Iv I < k for some k " 2 and suppose Iv I = k. Let

R be a nested family of subsets of V for which IRI is

large as possible. Since s C V for all s E R we must

have VER or Ru {V} would be a larger nested family,

We must also have

(3.2.2) {x} E R for every x Ev,

for if there is x EV such that {x} f R, then R u {x}

is easily seen to be a larger nested family.

as

Let v
1

, v
2

, ••• ,Vt be the maximal members of R - {V}.

Since ~vi ;, 2, since the members of R are distinct and

by (3.2.2),

I
I
I
l
i
I
I

3.9

(3.2.3) t :?: 2.

For each i £ { 1' 2, ... ,t} let R(V.) = {S £ R: s C V.}.
]. -].

t t
Then R = 0 R (V.) u {V} and V = u v. By our induction

i=l]. i=l
].

hypothesis /R(V.)/,;; 2/v./ - 1 for i e {l, 2, ... ,t}.
].].

Since
t
u R (V.)

i=l].
u {V} partitions R,

t

IR/ = l: /R(V.)/
i=l].

+ 1

t
s: 2 i: /v./ - t + 1

i=l].

,;; 2 / V / - 1

t
~y (3.2.3) and since u V. partitions V.

i=l].
The theorem now

follows by induction.D

If we prohibit singletons from our nested family then

we have the following bound,

(3.2.4) Theorem. Let R be a nested family of

subsets of V containing no singletons. Then /RI < /v/ - 1.

Proof, Let R' be the family Ru u {v}. R' is
V£V

easily seen to be a nested family, by (3.2.1) /R'/,;; 2/v[- 1.

Since /R' / = /R/ + /v/ it follows that /R/ ,;; /v/ - 1.0

If R is a nested family of subsets of V then for each

S £ R we let

(3.2.5) R
8

= {T £ R: Tis a maximal proper subset

of S belonging to R}

3.10

and

(3.2.6) vs= {v ES: v ~ u(Rs)}

We let

Thus n(S) is the number of maximal ''things'' which are

combined to form s.

(3.2.8) Theorem. Let R be a nested family of

subsets of V for which n(S) > 3 for all SER. Then

IRJ,; clvl - 1)/2.

Proof. Let s E R. If lvsl ;, 2. then let s I be any

two members of vs. If lvsl ,;; 1 then since n (S) ;, 3.

jRSI ;, 2. In this case let SI be the union of any two

members of RS. Let R' = R u {SI ! s E R}. Then IR' I = 21 RI.

Moreover R' is a nested family containing no singletons so

IR'l,;jvl-1 by(3.2.4). Therefore IRI ,;; 1/2(lvl - 1)

and the proof is complete.O

3.3 Blossoms, Shrinking and Shrinkable Families

One feature of the blossom algorithm is the way it

''shrinks'' certain subgraphs of a graph to effectively reduce

the size of the problem. In this section we define shrinking

and describe the sorts of subgraphs which will be shrunk. We

also prove some fundamental results concerning shrinkable

graphs. The definitions and results of this section are also

used in Chapter 4 where we show the close relationship between

i,

i
I,

I
!,
i

I
1,

i
I,
' I

!
I

II

ii
I

II

,I

:1
I.

I
I
!

I
II

ii

II

I
!
i
ii ,,
I
,[

,,
I
1,

ii I,,

1
I
' d

11:

,,

1:

:1
Ii ,,
i ,.,

,J • ..a..&.

shrinkable graphs and facets of the matching polyhedron.

The basic structure used in defining shrinkable graphs

is the blossom (the christening feature of the blossom algorithm)

which is defined as follows.

A blossom is a connected graph B containing no even

polygons, exactly one odd polygon P and for which the

degree constraints satisfy the following conditions. Let

VE V(P). By (3.1.16) ther.e is a unique x E '\\\- J such that

(3.3.1) b. for all
].

(3.3.2) x(oB(v)) = bv - 1.

i E V(B) - {v}

In order that B be a blossom we require

(3.3.3) X. be a nonnegative integer for all
J

j E E (B),

(3.3.4) x.
J

;,; 1 for all j E E(B) - E(P)

(3.3.5) x. ;,; 1 for
J

each j E E(P) such that

j is the first edge in the even length path in p from

node i E V(P) - {vJ to . V •

a

The choice of v is in fact arbitrary, we will show i~

(3.3.12) that if (3.3.1)-(3.3.5) hold for some v E V(P)

then they also hold for any other choice of v E V(P).

In order that (3.3.1)-(3.3.3) hold we require

(3.3.6) b(V(B)) is odd for any blossom B.

Since we obtain a tree if we delete any j E E(P) from B,

we have using (1.3.13) that

3.12

(3.3.7) IV(B) I = IE(B) I for any blossom B.

The graph obtained from B by deleting all edges of P is

a forest, each v E V(P) belongs to a unique (possibly

trivial) tree T
V

of the forest, These trees are called the

petals of the blossom, T is the petal rooted at v.
V

The

edges belonging to E(B) - E(P) are called the petal edges

of the blossom.

(3.3.8) If v E V(B) -has valence 1, or has

·valence 2 and belongs to V(P) then V is call~d ·a terminal

node of B.

\ of
terminal ~ __

nodes -------7

deficient node

odd
polygon

(
I

/

19
If

-

- ----. ----- . / \

-'----~
'-- petals

Edge

Edge

~-/

j.::·sucir that·

j such that

Figure 3.1 Sample Blossom

(3.3.9) Proposition. Let B be a blossom, let

\
\

i E V(B) be such that bi= 1. Then i is a terminal node.

I
I:

3.13

Proof, If is V(P) then by (3.3.1)-(3.3.5) we must

E (T.) ~ and so i is a terminal node. If is V(B) - V(P)
].

so / o B (i) I = 1 and i is

a terminal node.D

(3,3,10) Proposition. If b. = 1 for every
].

i B V(B) then B is a blossom if and only if B is an

odd polygon.

Proof, First suppose that B is a blossom.

every node of B is a terminal node, if any petal

By (3.3,9)

T
V

contained an edge then v could not be a terminal node, a

contradiction, Hence all petals are single nodes and B is

an odd polygon,

If B is an odd polygon let vs V(B) and let T be

a shortest odd length track in B from v to v. If we

define x. = 0 for
J

every odd edge of T and x. = 1 for
J

every even edge of T then X satisfies (3,3.1)-(3,3.5)

so B is a blossom.D

If B is a graph such that b(V(B)) is odd then clearly

B can have no perfect matching.

(3.3,11) We define a near perfect matching

(abbreviated by np matching)

such that, for some vs V(B)

b.
].

for all

b - 1.
V

to be a matching x of B

is V(B) - {v},

3.14

(3.3.12) Proposition. Let B be a blossom

containing the odd polygon P. Then for any is V(B) there

is a np matchina x' of B deficient at i. Moreover if

i E V(P) then x' satisfies (3.3.4), (3.3.5) (with x'

substituted for x).

Proof. The proof of this proposition actually

consists of an algorithm for obtaining such a matching,

starting with a np matching x deficient at v E V(P)

satisfying (3.3.1)-(3.3.5),

If i = v then x is the matching we require and we

are finished. Otherwise let T be the shortest track from

v to i having even length. Now define x' by

x. + 1 if j is an odd edge of T ' J

(3.3,13) x' x. - 1 if j is an even edge of T'
J J

x. if j
J

E E(B) - E (T),

Clearly x' is integer valued, x'(oB(s)) = b 8 for all

s E V(B) - {i} and x' (oB (i)) = b . - 1. Moreover if
].

j E E(P) is an even edge of T then j is the first edge

in an even length path in p from some w E V(P) - {v} to

V so by (3.3.5) x. ;;, 1 and
J

x'. ;;, 0. If j E E(B) - E(P)
J

is an even edge of T then by (3.3.4) x. ;;, 1 so X '. ;;, 0.
J J

For any j E E(B) which is not an even edge of T we have

x'. ;;, x. ;;, 0 so x' ;;, 0 and hence is a np matching deficient
J J

at i.

Now suppose is V(P) -·{v}. First observe that each

j E E(P) is the first edge in exactly two paths from nodes

II
I

I
'i

of P to i and since P is an odd polygon, both these

paths have the same parity. If j £ E(P) n E(T) then j

is the first edge in an even path to i if and only if

x' 2: 1. If is an odd edge -0f T so by (3.3.13)
j

j £ E(P) - E(T) is the first edge in an even path to i

then it is easily seen that j

even path to v so by (3.3.5)

Since i £ V(P) implies

is the first edge in-an

x'=x.~l.
j J

E(T) = E(P), (3.3.13) and

j

(3.3.4) ensure that X
1 = X 2: 1
j j

for all j £ E(B) - E(P)

and the proof is complete.D

3.15

·We now define shrinking. Let G = (V, E, •) be a graph

let Sc V. We say that ~ =(V, E, i)
from G by shrinking S if

V=V-Su{S},

E=E-y(S)

is the graph obtained

i (j)=
• (j) if j £ E - o (S)

.(j) ~Su {S} if j £ o(S).

In other words, G is the graph obtained from G by contracting

all edges of G which have both erids in s and calling the

resulting node "s". We denote G by G X s and call s a

pseudonode of G (with respect to G). We define the degree

constraint bs - 1 for any pseudonode s. We also define

= {S} =
V - s u if s C V

(3.3.14) -= V -
=

'.f
= V - s if s V

-< v- - V

I

1.

Let R be a nested family of subsets of V (see

Section 3.2) .. For any S £ R we define

(3.3.15) R[S) - {T £ R: T c S}.

If {s1 , s
2

, ••. ,Sk} is the set of maximal members of R

then we let G x R denote

(3.3.lSa)

3.16

Ic is easily seen that the ordering of the sets s
1

, s
2

, ... ,Sk

has no effect on G x R.

We say that G = (V, E, ~) is shrinkable if there is a

possible empty nested family R of subsets of V such that

(3.3.16) for every S £ R, G[S) x R[S) is

spanned by a blossom B
5

,

(3.3.17) b(V(G x R)) = 1 .

It is easy to see that

(3.3.18) V £ R is equivalent to (3.3.17) if R ~ q,.

We call R a shrinking family of G. Note that in particular

any graph spanned by a blossom is shrinkable, For any Sc: V

we say that s is shrinkable if G[S) is shrinkable.

If R = cj> is a shrinking family of G = (V' E, ~) then

Iv I = 1 ' IE I = cj> and b(V) = 1. We call such a graph

degenerate, all other shrinkable graphs are called nondegenerate.

(3~3.19) Proposition. If G = (V E, ~)· is

shrinkable, then b(V) is odd.

Proof. Let R be a shrinking family of G, we prove

by induction on !RI. If !RI= 0 then G is degenerate

and the result is trivial. Suppose (3.3.19) holds when

G has a shrinking family of fewer than k sets for some

3.17

k ~ 1 and assume !RI = k. By (3.3.16) there is a blossom

BV spanning G x R[V] and by (3.3.6),

(3.3.19a) b(V(BV)) is odd.

Let S be any maximal member of R[V] and hence a

pseudonode of G x R[V]. Then R[S] u {S} is a shrinking

family of G[S] and since !R[S] u {S} I < !RI we have by

induction

(3.3.19b) b(S) is odd.

If W is the set of pseudonodes of G x R[V] then

b(V) = b(V(G x R[V])) + E({b(S): S £ W} - 1)

so since V(G x R[V]) = V(BV) we have by (3.3.19a) and

(3.3.19b) that b{V) is odd as asserted.O

If R is a shrinking family of G then for any S £ R,

R[S] u {S} is a shrinking family of G[S]. Hence we have

the following corollary of (3.3.19).

(3.3.20) Corollary. If R is a shrinking family

for G then b(S) is odd for all S £ R.

(3.3.21) Proposition. Let G = (V, E, ~) be

shrinkable and let R be a shrinking family of G. Then

for any v £ V there is a np matching x of G deficient

at v and which satisfies

(3.3.22) x!y(S) is a np matching of G[S] for

all SER.

Proof. We prove by induction on If IRI = 0

then G is degenerate and the result is trivial. Assume

the result true for graphs having a shrinking family

consisting of fewer than k sets for k ~ 1 and suppose

3.18

!RI = k. Let v be any node of G. Every maximal SE R[V]

is a pseudonode of the blossom BV which spans G x R[V].

Let p = v if v E V(BV)' let p = S if v ES for some

pseudonode S of BV. By (3.3.12) there is a np matching

x of BV deficient at p. For every pseudonode TE V(BV)

there is at most one node of T incident with some j E E(BV)

for which

exists, let

x. = 1
J

-T
X

w(T) satisfying

since

be a np

-T, (3.3.23) X y(Z)

for every Z E R[T],

If such a node w(T)

matching of G(T] deficient at

is a np matching of G[Z]

which exists by our induction hypothesis. If no such w(T)

exists, then V E T and we let- -T
X be a np matching of

G[T] deficient at v which satisfies (3.3.23). Now define

X by

x. for j E E(BV)
J

x. = 0 for j E E(G X R[V]) - E(BV) J

-T
for j X E y(T), for T E R [V] .

3.19

xj is easily seen to be a np matching of G deficient at

v and satisfying (3.3.22), thereby completing the proof.D

We close this section by noting the following basic

property of matchings.

(3.3.24) Proposition. A matching x is a np

matching of G = (V, E, $) if and only if x(E) = qv(=l/2(b(V)-l))

and x(o(i)) ~ bi for all i EV.

Proof. For any matching x of G,

2x(E) = b(V) - ~(b. x(o(i)): i EV).
].

Thus any np matching x of G satisfies x(E) = l/Z(b(V)-1)

(and trivially x(o(i)) ~ b,
].

for all i EV). Conversely

any matching x which satisfies x(E) = qv and x(o(i)) ~ bi

for all i EV must satisfy x(a(i)) =; b.
].

for all i e: v-{v}

and x(o(v))=. b -1 for some v EV. Thus x is a np
V

matching of G and the result follows.D

3.4. The Matching Polyhedron.

The matching polyhedron P(G, b) is defined to be the bounded

"° E polyhedron in "Ir\. containing all matchings

G = (V, E, $) which satisfy

X

(3.4.1) x(o(i)) ~ bi for all i EV

and for which every vertex is such a matching.

of

(Equivalently,

P(G, b) is the convex hull of the set of matchings of G

which satisfy (3.4.1).)

Let Q = {S s. V: Isl 2: 3 and b(S) is odd}. Edmonds [E3]

I
I'
I
I

i
i
I

11

I,
I

I
Ii
I
I
' i

I·
I

ti

[I

ii

Ill
I',

11

'i
i

ii
I
11

I

I·
i

I

11
I!

has shown that P(G, b) = {x E ·'\RE:

(3.4.2) x. 2: 0 for all j £ E,
J

(3.4.3) x(o(i)) $ bi for all is V

(3.4.4) x(y(S)) s q
8

for all SEQ} .

3.20

The proof is a consequence of a blossom algorithm similar

to the version we are developing here in the following way.

The algorithm shows that for any C E X is

maximized over all x (not necessarily integer valued)

satisfying (3.4.2)-(3.4.4) by a matching of G which satisfies

(3.4.1). It is implicit in the algorithm that Q can be

replaced in (3.4.4) by a subset of itself which is generally

much smaller than Q.

Let QO = {s c V: IS I 2: 3 and S is a shrinkable subset

of V}. (By (3.3.19) b(S) is odd for each SEQ).

(3.4.5) Theorem.

(3.4.6)

(3.4.7)

(3.4.8)

P (G, b) = P = { x E tfK_ E:

for all j E E,

x(o(i)) < b _ _,f~o~r=-~a~l~l'-~i::._~E_:.V "'-''-'-'-='--'----"--'-i

x(y(S)) < g
8

for every 0 SEQ}.

Proof. It is easily seen that any matching x of G

which satisfies (3.4.1) belongs to P, for it satisfies (3.4.6),

(3.4.7) by definition and it satisfies (3.4.8) by (3.1.7)

and (3. 3.19).

We will show by means of the blossom algorithm that for

I

I

3.21

any c E •1R.E, there is a matching 0
X of

(3.4.1) which maximizes ex over x E P.

G satisfying

By (2 •. 4.1) for

each vertex V of p there is a vector C E such that

ex is maximized over x E P only by v. Hence all vertices

of P are matchings satisfying (3.4.1).

(We saw in (2.4.10) that every bounded polyhedron is the

convex hull of its set of vertices. Since P contains all

matchings of G satisfying (3.4.1) and since all vertices

of P are such matchings it follows that P is the convex

hull of the matchings of G which satisfy (3.4.1).)D

When we require matchings satisfying

= (3.4.9) x(o(i)) bi for i EV c V

then we are in fact considering a face F of P(G, b).

the blossom algorithm presented in this chapter will find

Thus

(if one exists) a matching 0
X E F C p (G' b) maximizing

0 c • x over F where F is a face of P(G, b) obtained by

requiring (3.4.9) hold. (If = then F = P(G, b)). V = </>

chapter 5 we study the more general problem of maximizing

e•x over any face F of P(G, b).

3.5 Linear Programming Formulation

In

The following linear program is equivalent to the problem

of maximizing ex for x E F~c P where F is the face of

P (defined in (3.4.5)) obtained by requiring (3.4.9) hold.

(3~5.1) Maximize c • x

over X E which satisfy

I'
I

3.22

(3.5.2) x. 2' 0 for all j C E,
J

< = (3.5.3) x(o(i)) ,; b. for all i C v- = V - V
' 1.

(3.5.4) = x(o(i)) = b. for all i C V
' 1.

(3.5.5) x(y(S)) ,; qs for all s C Qo.

For any j c E let QO(j) { S C Q O: j C y (S) } . The

dual linear program is

(3.5.6) minimize E(biy~:

over
0

Y
~ ,r;il VuQ ~ ·11"\.. which satisfy

(3.5.7) y 8 2' 0 for all

(3.5.8)
,;

i c V

(3.5.9) y(~(j)) + y(Qo(j)) "c.
J

for all j c E.

By complementary slackness (1.5.16) 0 satisfying X

(3.5.2)-(3.5.5) and 0 satisfying (3.5.7)-(3.5.9) y are

optimal if and only if

(3.5.10) 0
0 implies yo(~(j)) + yo(Qo(j)) x. > C •

J J
for any j C E,

(3.5.11) 0
0 implies x 0 (c'i(i)) b. for all Yi > =

1.

<
i C v- •

(3.5.12) 0
0 implies 0

Ys > X (y(S)) = qs for all

s C Qo.

The blossom algorithm will actually find a feasible

3.23

matching x and a dual solution y satisfying (3.5.7)-(3.5.9)

such that x and y satisfy (3.5.10)-(3.5.12) or else

will show that no feasible matching exists in a manner

described in section 3.7.

We call y a dual solution to the matching problem

(3.1.2)-(3.1.6) if y satisfies (3.5.7)-(3.5.9) and an

optimal dual solution if y minimizes E(b.y.: i EV)
1 1

0 + E(q 8 y 8 : S E Q) over all dual solutions.

3.6 Alternating Forests

During the co~rse of the blossom algorithm we construct

forests having special properties with respect to a matching.

Let T be a tree contained in G = (V, E, ~), let r £ V(T)

be designated as the root of T. There is a unique path

n(i) in T from r to each i E V(T). We call i an even

node or an odd node of T according as the length of n(i)

is even or odd. In particular, r is an even node of T.

We call j E E(T) ~ or odd according as j is the last

edge of a path n(i) in T to an even or odd node of T
•

(or equivalently, according as j is an even edge or odd

edge of any path n(i) in T from r to some node

i E V(T) - {r} such that j E E(n(i))).

Let x be a matching of G. We call T an alternating

tree with respect to x (see Figure 3.2) if

(3.6.1) x(.S(r)) < b,
r

(3.6.2) x(o(i)) = bi for all i E V(T) - {r},

i

:t

i
I
t

0

/

T

j

r

Figure 3,2 Alternating tree

edge j 0 ·such that

even nodes 0

odd nodes @

X, ;, 1
J

edge j such that x. ;, 0
J

r

T above

(3.6.3)

j e: E(T),

(3.6.4)

if x. > O and ~(j) n V(T) ~ $ then
J

x. > 0 for every even edge j
J

of T.

If we are considering 1-matchings then (3.6.1)-(3.6.4)

imply that every even edge j of T has x. = 1 and every
J

odd edge j has x. = 0.
J

Note that for any· i £ V, {i} .is the node set of an

alternilting tree if x(cS (i)) = 0 •. We call·.a nonempty

collection· of alternating trees an alternating forest.

Let j be an edge of a tree T with root r. If we

delete j from T then the resulting graph will consist

of two trees, one of which, T', will not contain r. We call

T' the portion of T ,a.b ove j .

Let i be any node

T is the portion of T

first edge of the path in

of T. If

above i.

T from

i = r then we say that

Otherwise let k be the

i to r and let T' be

the portion of T above k. We say that T'

of T above i.

is the portion

(3.6.5) Proposition. Let T

tree with respect to the matching x.

of T, let I be the set of odd nodes

the set of even nodes of T. Then

b(W) - (b -r
x(o(r)))

Proof. By (3.6.1) and (3.6.2)

(3.6.6) b(W) = l:(x(o(i)): i

be an alternating

Let r be the root

of T and let w be

= b (I)

e: W) + b - x(o(r)).
r

I·'
l

i
I

!

Since no edge of T can join two even nodes and by (3.6.3),

(3.6.7) E(x(o(i)): i E W) = x(o(W) n E(T)).

By (3.6.2)

(3.6.8) b(I) = E(x(o(i)): i EI).

Since no edge of T can join two odd nodes and by (3.6.3),

(3.6.9) E(x(o(i)): i EI) = x(o(I) n E(T)).

But for any j E E(T), j E o(I) and j E o(W) so

(3.6.10) o(I) n E(T) o(W) n E(T).

By (3.6.10), (3.6.9) and (3.6.7) we have

E(x(o(i)): i E W) = E(x(o(i)): i EI).

Hence (3.6.6) and (3.6.8) combine to give the result.D

(3.6.11) Corollary. Let F be an alternating

forest with respect to the matching x, let K be the set

of roots of the trees of F. Let W and I be the sets of

even nodes and odd nodes of F respectively.

Then

b(W) - E(b - x(o(r)): r EK)= b(I).
r

Note that (3.~.1) implies therefore the following.

(3'.6.12) Corollary. If W and I are the sets

of even and odd nodes of an alternating forest F then

b(W) > b(I)

3.26

3.7. Hungarian Forests.

Let G = (i, i, i) be the graph obtained from

G = (V, E, ~) by shrinking a (possibly empty) family R

of disjoint shrinkable subsets of V. We define

Let F be an alternating forest contained in G with respect

to a matching x of G which satisfies

(3.7,2) x(o_(i)) S bi for all i EV.
G

We call F Hungarian in G with respect to x if

(3.7.3) no edge of G joins two even nodes of F,

(3.7.4) no edge of G joins an even node of F

to a node not in F,

(3.7.5) every odd node of F is a node of G,

that is, not a pseudonode of G,

(3.7.6) if V E V is an even node of F then
-=

V E V
'

(3.7.7) -=
xca (i)) b. for any i E V if <

G
l.

then i is the root of a tree in ·F.

Let x be any matching of G which satisfies

>Y (3,7.8) x(o(i)) s bi for all i e v.

We define

3.27

i;
I

i
I'

I
i I

I

I
I

(3.7.9) d(G, v-; x) = E(b. - x(o(i)): i e v=).
1

If M is the set of all matchings of G which satisfy

(3.7.8) then we let

(3.7.10) D(G, V-) - min{d(G, v-; x): X BM},

Thus d(G, V-; x) is a measure of the amount by which X

fails to be a feasible matching of G and D(G, v=) measures

how closely we can come to obtaining a feasible matching of

G. Clearly

(3.7.11) G has a feasible matching if and only

if D(G, v=) = O.

Later in this section we show the connection between

Hungarian forests and the value of D(G, V-). We also show

in (3.7.36) that knowledge of a Hungarian forest of G enables

us to characterize those matchings x of G for which

First we prove the following basic result which also

indicates the importance of shrinkable sets in the blossom

algorithm.

(3.7.12) Proposition. Let R be a family of

disjoint shrinkable subsets of V and let G - (V, E, ~) be

the graph obtained from G = (V, E, w) by shrinking the members

of R. Let v= be defined as in (3.7.1). Then any matching

x of G satisfying (3.7.2) can be extended to a matching

x of G satisfying (3.7.8) such that

(3.7.13) d(G, v=; x) = d(G, V~; x).

3.28

I
, I

Proof. For each SER we define a node i(S) as

follows. If there is some j E o_(S)
G

such that x. = 1
J

then let {i(S)} ~ f(j) n S. = Otherwise if S - V ~ ~.

let i(S) be any member of S - v=. Otherwise let i(S)

be any node of S. By (3.3.21) there is a np matching

x
8

of G[S] deficient at i(S) for every S e: R. We

define x by

x. for j e: E,
J

X. -
J s x. for j e: y (s) for all s e: R.

J

X is easily seen to satisfy (3.7.8).

For any V E V - R we have 0 (v) = o (v) so
G

(3.7.14) b -
V

x(o(v)) = b - x<o (V)) for all
V

G
V e: V - R.

-= = Let s e: V n R. Then s C V so

l:(bi x(o(i)): i e: S)

3.29

= l:(bi - x(o(i)): i e: s - {i(S)}) + bi(S)- x(o(i(S)))

= 0 + (bi(S) - x
5

(oG[S](i(S)))) - x(o_(S))
G

= 1 - x(o_(S)).

Therefore

(3.7.15)

for all -Se: j= n R.

Let S E R - V=. If

G

l:(bi - x(o(i)): i

i(S) e: V - V =

= e:SnV)

t\J.en

=

E(b. - x(o(i)): i Es n v=) = o.
l.

If i(S) E V then there is j E o(i(S)) n o(S) such that

x. = 1. Therefore
J

E(b. - x(o(i)): i Es n V-)
l.

= 1 - 1 = o.

Hence

- X
j

(3.7.16) E(b. - x(o(i)): i ES n V-) = 0 for all
l.

S E R - V=.

Combining (3.7.14)-(3.7.16) gives (3.7.13).0

(3.7.17) Theorem. Let G = (V, E, ~), G = (V, E, ~)

= R, V and v= be as in (3.7.12). Let F be a Hungarian

forest in G with respect to a matching x. Let Kc V be

the set of roots of trees of F. Then

(3.7.18) D(G, V-) E(b. - i(o_(i)): i EK).
i G

Proof. By (3.7.6) and (3.7.7)

= E(b. - i(o (i)):
l. -G

be extended to a matching 0
X

so

i EK). By (3.7.12)

of G for which

X

(3.7.19) D(G, v=) ~ E(b - i(o_(i)): i EK).
i G

Now consider the linear program

can

3.30

(3.7.20) maximize 2x(y(V-)) + x(o(V=))

over XE iR_E satisfying

X ;,, 0,

(3.7.21) .. x(o(i)) ,; b. for all i E V,
].

x(y(S)) ,; qs for all s E Qo.

By (3.1.7) any matching x of G satisfying (3.7.8) is

a feasible solution to this linear program.

The dual linear program is

(3.7.22) minimize

0
for y E 'IK._ VuQ satisfying

(3.7.23) y. ;,, 0
].

E(b,y.:
].].

for all i E
0

V u Q ,

(3.7.24) y(w(j)) + y(Qo(j))"' lwU) n v=I

for all j E E.

We define a vector 0
y as follows. Let I and W be

the sets of odd and even nodes of F respectively.

= 2 if i EI n V

=
o_ 1 if i E I V or if

(3.7.25) y -i- = V(F) u(R V (F)), i E V - n

=
0 if i E V V I· •

' 0
(3.7.26) Ys -

2-·if SER n W

o if s s Qo - (Rn w).

Now we show that

3.31

(3.7.27) yo is dual feasible.

If neither end of j is in F or is contained in a pseudonode

of F then

so (3.7.24) is satisfied.

(3.7.28) If exactly one end of j is in F or

is contained in a pseudonode of F then by (3.7.4) j must

meet an odd node of F so

and (3.7.24) is satisfied.

If j E y(S) for some pseudonode S of F then

since by (3.7.6) and (3.7.1), Sc v=. Hence (3.7.24) is

satisfied.

If /¢(j) n I/= /¢(j) n w/ = 1 then since by (3.7.6)

and (3.7.1) ~(j) - I c v= it follows that

Thus (3.7.24) is satisfied.

(3.7.29) if /¢(j) n I/= 2 then

so (3.7.24) is satisfied.

By (3.7.3) this exhausts all cases, so since

have proved (3.7.27).

0 y :2: 0 we

Now we evaluate the dual objective function for 0
y •

3.32

(3.7.30)

= b(V= - V(F) - u (Rn V(F))) + b(I - v=)

By (3.6.5),

(3.7.31) = b(I - v-) + 2b(I n V)

= b(W) + b(I n v=) - I(b.
]_

x(o_(i)): i e: K).
G

By (3.1.10)

(3.7.32) 2I(qs: Se: Rn W) = I(b(S): Se: Rn W) - b(R n W).

Substituting (3.7.31) and (3.7.32) into (3.7.30) and

simplifying we obtain

= b(V=) - I(b. - x(o_(i)): i e: K).
i G

It therefore follows from the weak L.P. duality theorem

(1.5.12) that

b(V-) -.E(bi - x(o_(i)): i e: K)
G

for any feasible solution x to the primal linear program

(3.7.21). Since every matching of G which satisfies (3.7.8)

is such a feasible solution, and since

(3.7.34) r(b. - x(o(i)): i e: v=) =
]_ .

I
ii ,1

I

'

I I

: l

it follows that

(3.7.35) E (b.
1

x(o_(i)): i
G

E K) •

Combining (3,7,19) and (3,7.35) proves the theorem,D

By using the complementary slackness principle of linear

programming we obtain the following characterization of

= matchings x which minimize d(G, V ; x).

(3.7.36) Theorem. Let G = cv, E, ~) G = (V E ij,) '

= and -=
(3.7.12). Then matchin!l R, V V be as in for an:t: X

of G satisf:t:in!l (3.7.8) we have D (G, V =) d(G, = x) = V ;

if and onl:t: if the following conditions are satisfied.

(3.7.37) x(y(S)) = qs for all s E R n V (F) •

(3.7.38) x(o(i)) = bi for every odd node i of

F and for i = V(F) u(R V (F)). every E V - - n

(3,7,39) If I and W are the sets of odd and

..:e:...:vc..;e::.;n::...._::cn.::o-=d:..:e:..:s::_;o::...:.f _.::F_· _· ·_:r::..e=s .r:P-=e:..:c:..:t:..:i::..v:...e=l.L:t:_,_,__;t:..:h::._e=.n==-~x j = 0 for all

j E U O (i)
--iEI

o_(W).
G

Proof. In the proof of (3.7.17) we displayed a matching

0 and a dual solution y such that
0

x satisfying (3.7.8)

2x
0

(y(V=)) + x 0 (o(v=)) = E(biyi: i e V) + E(q
8

y
8

: s e Q0).

Thus 0 y is an optimal solution to the dual linear program

(3.7.22)-(3.7,24) so every optimal solution x to the

primal linear program (3.7.20), (3.7.21) must satisfy the

complementary slackness conditions (see (1,5.16)) with respect

to 0 y •

3.34

ii

I
1!.

I

Thus by (3,7.25) we must have (3.7.38); by (3.7.26)

we require (3.7.37); by (3.7 .• 28) and (3.7.29) we require

(3.7.39). Since by (3.7.34) x maximizes

2x(y(V-)) + x(o(V-)) for x satisfying (3.7.21) if and

A = only if x minimizes d(G, V ; x) for x · satisfying (3.7.21)

and since we have exhibited a matching 0
X for which

= 0 d(G, V; x) = D(G, V-) the result now follows.D

If we are considering a matching problem in which

=
V = <j, then by (3.7.1) and (3.7.6) there could be no even

nodes in a Hungarian forest F in a graph G obtained from

G = (V, E, ~) by shrinking some disjoint shrinkable subsets

of V. But since every Hungarian forest contains at least

one tree rooted at an even node, this means that no Hungarian

forest can exist. In other words, Hungarian forests are

structuzes which can arise only when dealing with matching

= problems in which V ~ .p.

The following corollary of (3.7.17) is a necessary

condition for a graph G to have a feasible matching,

(3.7.40) Corollary. If G has a feasible matching

then no graph G obtained from G by shrinking a ccllection

of disjoint shrinkable subsets of V can contain a Hungarian

forest.

Proof. If G contains a Hungarian forest F with respect

to a matching x

of F, we have

then if

I:(b.
].

K is the set of roots of trees

x(o_(i)): i 8 K) > 0.
G

3.35
!I

I
if
I
I

!
I'
i
I

'

,"
I

i'

Therefore by (3.7.17), D(G, v·) > 0. Therefore by (3.7.11)

G has no feasible matching.O

In fact, the converse of this corollary is true and

will be proved by the blossom algorithm for it will always

terminate with either an optimum feasible matching or else

with a Hungarian forest.

3.8 The Blossom Algorithm

In this section we describe the blossom algorithm which

solves the problem (3.1.2)-(3.1.6). This algorithm is also

used in later chapters when we consider more general problems.

In Section 3.9 Ve derive• bound.on the amount of work

performed by the blossom algorithm in-solving a matching

problem.

At each stage of the algorithm we have the following

things.

(3.8.1)

(3.8.2)

a matching X = (x.: j E: E),
J.

a dual solution y = (y.: i e Vu QO)
J.

satisfies (3.5.7)-(3.5.9).

= Let G = (V' be the spanning subgraph of

whose edge set consists of all those j E: E satisfying

(3. 8. 3) y(~(j)) + y(Qo(j)) = C • •
J

= G is called the equality subgraph. The complementary

which

G

slackness condition (3.5.10) is satisfied by x and y, that

is

3.36

ii
'' i:

I

I,
i:

I

j:

!

I'
I

(3.8.4) x. > 0 only if j £ E=.
J

We also have a nested subfamily R of Q such that

(3.8.5) for each S £ R, H(S) = G-[S] x R[S]

is spanned by a blossom B(S).

definition of G-[S] x R[S].)

(See (3.3.15), (3.3.15a)for the

3.37

,,

' Moreover '1

(3.8.6) x/E(H(S)) is a np matching of H(S)

deficient at some i(S) belonging to the odd polygon of

B(S) and

(3.8.7) 0 for all j £ E(H(S)) - E(B(S)).

As a.result of (3.3.24) a simple induction shows

(3.8.8) x(y(S)) = q
8

for all S £ R.

The dual solution y has the property that

(3.8.9) y > 0 for s s £ Qo only if s £ R.

Thus x and y satisfy the complementary slackness condition

(3.5.12).

Let G (V, E, ;j;) = The matching be the graph G x R.

x satisfies

(3.8.10) x(o(i)) ,, b.
l.

for all i £ v.

(Note that for any i £ V, o(i) = 0 (i) .)
G

' -= -<
We define subsets V and v- of V by

. I

I

(3.8.11) - (V = n V) u · { s £ V: s

(3.8.12)
-< v- - V

The matching x also has the following property. Let

G+(x) = (V, E+(x), ~IE+(x)) be the spanning subgraph of G

whose edges are all those edges of G such that x. > 0.
J

Thus E+(x) = {j £ E: x. > 0}. Let H be any component
J

+ G (x). Then

(3.8.13) H contains no even polygon;

(3.8.14) H contains at most one odd polygon;

(3.8.15) if H contains an odd polygon then

x(o(i)) = bi for all i e V(H);

(3.8.16) if H contains no polygons then H

has at most one node i for which x(o(i)) < bi.

of

We also have an alternating forest F contained in G.

(3.8.17) Each i £ V such that x(o(i)) < bi is

the root of a tree in F.

F is partitioned into two subforests FO and
1

F •

consists of all those trees in F such that the root r

belongs
-,;

and 0 if V 0 for to V Yr = r £ or Yi = some

i £ r if r £ R. Fl consists of all other trees of F.

It will be seen in the description of the algorithm that as

long as there are nodes in Fl
'

we do not have the optimum

feasible matching we seek and as soon as V(F 1) = q, ' we

implicitly have an optimal solution.

r
In order that x and y be the optimal solutions we

seek, all we need is that they satisfy (3.5.3), (3.5.4) and

(3.5.11) for as we showed in (3.1.7), this together with

the fact that x is a matching·will ensure (3.5.5) is satisfied.

We will show in the algorithm that if x and y satisfy the

·following analogues of (3.5.3), (3.5.4) and (3.5.11) then

the required x can be obtained in a straightforward fashion.

(3.8.18)

(3.8.19)

(3.8.20)

x(o(i)) = bi,

(3.8.21)

s E: R n
-< v- implies

x(o(i)),;; b.
1.

x(o(i)) = b.
1.

Yi > 0 for

Yi > 0 for

x(o(i)) =

for all i e v~,

for all i E: v=

any i E: V n
-< v- implies

all i E: s n v,;; for any

b ..
1.

We now define a measure of the amount by which (3.8.18)­

(3.8.21) are violated. Let

(3.8.22) li(G; x, i e v= or y) = E(b. - x(o(i)):
1.

-,;;
(i e V n V for and or

all vein

It follows from the definition of F
1

that

(3.8.23) li (G; x, y) = E (bi - x(o(i)): i is the root

of a tree of Fl)•

Clearly . li (G; x, y) ;;, 0 for any X satisfying (3.8.10)

and li CG; x, y) = 0 if and only if X and y satisfy

(3.8.18)-(3.8.21). In general, one "cycle" of the blossom

3.39

!J!

I

i

3.40

algorithm will involve finding a new x' and y' and

possibly a new graph G' such that li(G'; x', y') ~ li(G; x, y) - 1.

(3.8.24) Initially we may take x. - 0 for all
J

- 1/2 max{c.: = c} j € E, Yi - C - j € E} for i € V
'

y. - max{O,
J 1

<
for i E: v- and R - <P • Then it is easily seen that all

our conditions are satisfied. F will be the spanning forest

of G in which every tree consists of a single node.

We now describe the algorithm itself.

SteE 1 : Scan E to find an edge j joining an even

node vl of Fl to something other than an odd node of

Fl. If no such edge exists go to Step 8. Otherwise go to

Step 2.

SteE 2:

If belongs to a component of which is not

contained in F then go to Step 3.

If v2 is an even node of a tree in F which is different

from the tree containing v 1 then go to Step 4.

If vl

to Step 5.

If

Step 7.

and belong to the same tree of

is an odd node of a component of

This exhausts all possibilities for v
2

.

F then go

then go to

SteE 3: Grow Forest F. Let K be the component of

containing v
2

. If K contains a polygon then go to

Step 3c.

Step 3a (see Figure 3.3): If K contains no polygon,

·node

edge j for

edge j for

Figure 3.3 Forest Growth

~ (\,
(V~

V

j

not in forest 0
even node 0
odd node @

which x.;el f'\./V"\../\../
J

which x,;eO
J

Figure 3,4 Addition of Polygon to Forest

3.41

that is, if K is a tree then we grow the alternating tree

T containing v 1 by attaching v
2 and K to by

means of the edge j. Since j becomes an odd edge of the

new forest F' thereby obtained and by (3.8.17) it is easily

seen that (3.6.1)-(3.6.4) are satisfied for F'.

Step 3b: Replace F by F' and go to Step 1.

Step 3c (see Figure 3.4): K contains an odd polygon P.

Let be a node of P which is an odd distance from v 2

in K and for which this distance is as short as possible.

Let w2 be a node of p adjacent to wl in p which is no

closer to v2 in p then wl. Let k be the edge of p

joining wl and w2. Let K' be the·tree obtained from

K by removing the edge k. Add K' to the forest by using

j as described in Step 3a, thereby obtaining a larger forest

.F'. Edge k now joins two even nodes of some tree in F'.

Replace v 1 , v 2 , j

and go to ~tep S.

and F by w
1

, w
2

, k and F' respectively

Step 4: Augmentation (Two trees) (see Figure 3. 5) •

Step 4a: Calculation of a. Let r2 be the root of the

tree Tl of Fl containing vl and let r2 be the root

of the tree T2 of F containing v2. Let 01 - min{xk}

where k is an even edge of the path from

to or let = co if no such edge exists. Let

~ 2 be analogously defined for T
2

, v 2 and r
2

• By (3.6.4),

Let

By (3.6.1), o;,, 1.

3.42
I' ,,
'I
!

i i

I i
'

I.
1,

I'
I,
Ii
I
I i

,,

1!1

,,
I,

Ii
I ,,

11

I

i'\
I ii
,:.,

'I I

I
!i I

ii:

'II I
11,

I

'I
!,

Step 4b: Augumentation. Define x' by

xk - a if k is an even edge of 1f 1 or 1f 2

xk + a if k is an odd edge of 1f 1 or
1f 2 '

x' -k if k j or =

xk for all k E E - (E(11
1

) u E(11 2) u { j }) •

Now x' is a matching satisfying (3,8.4), (3.8.6)-(3.8.8),

and (3.8.10) and ll (G; x'
'

y) ,,, ll(G; x, y) - 1 since

Step 4c. Computation of new F. We obtain a new

alternating forest in the follo;'ing way. If x'(o(rl))

then we remove Tl from F. Similarly if x'(o(r2)) =

then we remove T2 from F. If k is an even edge of

= b
rl

b
r2

1f 1

or 1f 2 for which x' = 0 then we remove k and the portion
k

of the tree above it from F, By our choice of a, at least

one of these things must occur. Thus at most one of vl

and v2 can be in the new forest F' • If neither are in FI

then replace X by x'
'

F by F' and go to Step 1. If one,

say v
1

, belongs to F then perform Step 3a to add the

component K of G+(x') containing v 2 to F'' using the

edge j, let F'' be the forest thereby obtained. Replace x

by x', F by F" and return to ·step 1.

Step 5: Augmentation (One tree) (see Figure 3.6)

Step Sa: Calculation of a and Blossom Test. Let r

be the root of the tree T of Fl containing vl and Vz,

Let 1f 1 be the path in T from r to vl and let 1f 2 be

3.43

, 'i

1·.·.•1i
'I
i,
I,:;
!. L
I
i

i ,,
I
II
\,

I
11

I.
I ,,

;1

I

I

T

r

Figure 3,5 Two Tree Augmentation

edge j for which x. ;ez (X)()oO:X)()OOO
J

Figure 3.6 One Tree Augmentation

I
ii
'

I' ,,

l
I
"

the path in T from r to v2. Let 1T be the common
s

position of 1T 1 and 1T 2 • 1T
s

is the path in T from r

to some node p. (Of course, p may equal r in which

case 11 is an empty sequence).
s

{j} - E(11) are the edges of an odd polygon P containing s

p. (jE(P)j is odd because j joins two even nodes of T.)

Let cro - min{xk: k is an even edge of 1T s } , or let

er 0 - "' if no such edge exists. Let

er 1 - min{xk: k is an even edge of 1T 1 and k t E(11)}. or
s

let er 1 - "' if no such edge exists. Let er 2 be defined

analogously for 11
2

. By (3.6.4), cr 0 , cr 1 , cr 2 ;,: 1. Let

cr - min{[l/2 cr 0 J, cr
1

,cr
2
,[l/2(br-x(o(r))]}

(where for any et £ '\K , [et] is the largest integer no

great~r than et). If er;,: 1 then go to Step Sb where we

augment. Otherwise go to Step 6 where we shrink a portion of

G.

Step Sb: Augmentation. Define x' as follows.

xk - 2 er if k is an even edge of 1T s,

xk + 2cr if k is an odd ed-ge of 1T s,

X ' k - xk - er if k is an even edge of 1T 1 or 1T 2
not belonging to 1T s ,

xk + er if k = j or if k is an odd edge

.J.'tJ

of

for all

not belonging to 11 ,
s

We can see b~ our choice of er that x' is a matching

satisfying (3.8.4), (3.8.6)-(3.8.8), (3.8.10) and

ti CG; x' , y) ,; ti(G; x, y) - 2 since b - x'(o(r))sb -x(o(r))-2
r r

,,
i'

I

. '

i
I

r
and b. - x'(o(i)) = b. - x(o(i))

i i
for all i EV - {r}.

Step 5c: Computation of new F. Each component H of

G+(x') will satisfy (3.8.13), (3.8.14) and (3.8.16) but need

not satisfy (3.8.15). That is there may be a component of

G+(x') containing both a deficient node and an odd polygon.

We now analyze the various possibilities.

If x'(o(r)) = b then let F' be the forest obtained r

from F by removing T. Since x'(o(i)) = bi for all

i E V(T), each .component H of G+(x') satisfies (3.8.15).

F' is an alternating forest. Replace x and F by x'

and F' respectively and go to Step 1.

If x'(o(r)) < b but there are R. E E(TI)
r s such that

x' = 0, let
R. k be the first such edge in TI • s

Let T'

the portion of T above k. Remove T' and k from F

thereby obtaining a new alternating forest F'. Since

x'(o(i)) = b. for all i E V(T'), each component H of
i

be

G+(x') satisfies (3.8.15). Replace x and F by x' and

F' and go to Step 1.

If x'(o(r)) < b x' > 0 for all R. E E (TI) but x' = r' R. s k

for some edge k of P, then we remove all such edges k

from F thereby obtaining a forest F' • If one end of j '

say vl, is in F' then the other end v2 cannot be in Fr '

adjoin the component H of G+(x') containing v2 to F'

by means of j, thereby obtaining a new alternating forest

F" . Each component H of G+(x') satisfies (3.8.15).

Replace x and F by x' and F'' · and go to Step 1.

Finally, if x'(o(r)) < b
r and X 1 > 0

R.
for·all

R. E E(TI1) u E(TI 2) u· {j} then by our choice of o there is

0

3.46

j • 4 / ,.,'

an even edge k of TI for which x' = 1 or x'(o(r)) = s k

b - 1. Replace X by x' r and go to Step 6. Note that

this is the one case in which there is a component H of

G+ (x') violating (3.8.15). This is handled in Step 6 •

Step 6: Shrinking Step (see Figure 3.7). We now identify

a blossom in G. T is the tree of F1 containing v
1

and

TI
s

is the path in T from its root r to the nearest node

p of P, the odd polygon formed by adding j to T. Let

w be the first even node of TI such that the path TI 1 in
s

T from w to p contains no even edge k for which xk = 1.

(Thus xk ~ 2 for every even edge of TI'.) The blossom B

consists of P, the subgraph of T induced by TI'

component H of G+ such that V(H) n V(TI') • l

and any

or

V(H) n V(P) ••·except for ~h~ _,ven edge of T incident with

w if it exists. Let S be the set of all those nodes of

G which either belong to V(B) or are contained in pseudonodes

We see that x(oB(i)) = b. for
].

all i e: V(B) - {w} and

x(oB(w)) = b 1. Thus w xlE(B) is a np matching of

G[V(B)] deficient at w. If w ~ V(P) then we modify our

matching so that it will be deficient at a node of P, as

this simplifies later discussions. Define x' by

xk + 1 for every odd edge of TI I

x' k -
xk - 1 for every even edge of TI I•

If p is an even node of F then let i(S) - P• If p is

an odd node, let i(S) be an even node of p adjacent to

p. Where R, is the edge of B joining i (S) and p let

x' - X .Q, - 1.
R,

of B.

edge j

for which X. <C 2
J

Figure 3.7 Shrinking Step

Figure 3.8 Pseudo Forest Growth

3.48

"\.../'v-Q

; i

I

I

r

f

r

I
t

I

For all other edges k of G

X by X
1

•

let X I X k - k. Now replace

x!E(B) satisfies (3.3.1)-(3.3.5) taking v = i(S).

Let B(S) = B. Now if we let R' =Ru {S} we see that R'

so defined satisfies (3.8.5)-(3.8.7).

Let G' = G= x R'. Let F' be the forest in G' with

node set equal to V(F) n V(G') u {S} and edge set equal to

E(F)nE(G'). Then F' is an alternating forest in G'

and

(3.8.25) S is an even node of F'.

Let G'+(x) be defined for G' in the same way that

G+(x) was defined for G. It is easily seen that every

component H of G'+(x) satisfies (3.8.13)-(3.8.16)

since the only component of G+(x) which could have violated

these conditions was the one containing the polygon P and

it has been shrunk away.

Note also that ~(G'; x, y) ~ ~(G; x, y). Replace G,

R and F by G', R' and F' respectively and go to Step 1.

Step 7. Grow forest F1 (Pseudo forest growth). (see

Figure 3.8.)

Edge j joins an even node vl of a tree Tl in Fl

to an odd node V2 of a tree TO in Fo. Let ro and rl

be the roots of TO and Tl respectively. Let T be the

portion of TO above We adjoin T and the component

H of G+(x) · containing to

thereby obtaining a larger tree

by (3.6.3).)

v 1 by means of the edge

1 I
T (H is a subgraph of

3.49 ii'
'!

I

I

I. ,.
!

I

I

If then replace

thereby obtaining a larger forest 1'
F

by
1 I

T in F

Remove T, H and

any edge of TO incident with a node of T or H from

To, thereby·obtaining

0 I
forest F Replace

a smaller

FO , Fl

tree T

by
0 I

F ,

0 I
and smaller a

F
1 I

and go to Step 1.

If

1'

then remove TO from FO , let T denote

T and perform the following step.

Step 7a. (Pseudo Augmentation). Let rr be the path

in T from to Observe that both and

are even nodes of T. o 1 = min{xj: j

Let o = min{o
1

, b - x(o(r
1
))},

rl

Let

of rr}.

is an even edge

Then o ;e 1.

Let x' be defined by

xk - 0 if k is an even edge of rr

x' k - xk + 0 if k is an odd edge of rr

xk if k i E(rr),

Since b - x' (o (rl)) = b - x(o(rl)) - 0 and 0 ;e 1 it
rl rl

follows from (3.8.23) that ti (G; - 1 X , y) ,; ti (G; x, y) - 1.

If x' (o (rl)) = b then remove T from Fl thereby
rl

obtaining forest
1 I

a new F Reroot T at ro and add

FO thereby obtaining forest O'
It is easily to a new F

checked that T rooted at satisfies (3.6.1)-(3.6.4)

with respect to x'.

If then by our choice of

have X
1 = 0 R,

for some e~en edge of rr; let

0 we must

k be the

T

first such edge of rr. Let T be the portion of T above k.

Remove T and k from T thereby obtaining a new forest

1 1 0 F Reroot T at r
0

and _add it to F thereby obtaining

3.50

r •

f
I
r::
I

a new forest O' F Again it. is easily checked that T

rooted at satisfies (3.6.1}-(3.6.4) relative to XI •

Replace X, F
0 and by

C

respectively and go to Step 1.

Q I
XI, F and

1 I
F

Step 8: Termination Test. We now decide whether or not

we are ready to go to the final stage of the algorithm. If

V(F 1) = • then by (3.8~23) t(~; x, y) = 0 and

we go to Step 11, the termination step. Otherwise we go to

Step 9 where we will attempt to make a change in the dual

variables which will enable further progress.

Step 9: Dual Variable Change.

Step 9a: Calculation of E. Let = { j e E: one

member of ii,(j) is an even node of and the other member

of ii,(j) is not a node of F 1 }. If E1 = • then let

El= 00 , otherwise let.

·El= min{y(ij,(j)) + y(R(j)) - cj: j £ E1 },

R(j) - {S e R: j e y(S)}.

where

Let E = {j £ E~ both members of ii,(j) 2 - are even nodes

If E2 = • then let € 2 = 00 , otherwise let

€2 - 1/2 min{y(ij, (j)) + y(R(j)) - C • : j £ E2}.
J

Let p - {S £ R: s is an odd node of
1

F }. If p •
then let €3 - 00' otherwise let

€3 = 1/2 min{ys: s £ p}.

{i
<

Let y - E v-: i is an even node of Fl or i £ s £

3.51

R

' ' I

(,'

ii
!j

ii

I'
1'

ii
I'
l
1'
I

I
I

I
,i

I:
I
I'

ii

I

'

and S is an even node of F1 }. If Y = $ then let E
4

- 00

otherwise let

If E.= 00 then go to Step

10 where we show that there exists no feasible matching. If

E = 0 then no dual variable change is necessary so go to

Step 9c.

changed.

Otherwise go to Step 9b where the dual variables are

Step 9b:

solution y'

y ~ -
l.

Change of Dual Variables.

as follows. Let

Yi + E if i E V is

.belongs to an

Yi - E if i E V is

belongs to an

Yi if i E V - V (F 1)

Define a new dual

an odd node of Fl or

odd pseudonode of Fl ,

an even node of Fl or

even pseudonode of Fl ,

- u(R n V(F 1)).

Ys + 2E if s ,E R is an even node of Fl ,

y' -s Ys

Ys

- 2'E

if s

if s E

E Qo -

Because of our choice of E, y'

R is an odd node of Fl

(R n V(F 1)).

is a feasible dual

solution, that is, it satisfies (3.5.7)-(3.5.9). y' also

satisfies (3.8.9). Moreover

(3.8.26) y'(l/i(j)) + y'(Qo(j)) = y(l/J(j)) + y(Q(j))

for all j E ~(G+) u E(F) u u y(S).
SER

'

3.52

·,1·

ii
:1

!I

I

l1,·1,
I

l!
·'·,

fl1 ,q

i'! 11,

:i:, ,,
i!,i
11·. ,,
I',·
Ii ,,
i,',

'-Let G - be the spanning subgraph of G whose edges are all

those j E E

- '-G' = G - X R.

such that y'(i/J(j)) + y'(QO(j)) =

F is now an alternating forest

'-

Let

in GI. By

(3.8.26)for each SER,

a blossom spanning H(S)

defined in (3.8.5)).

H(S) = G -[SJ x R[S] and B(S) is

(where H (S) and B(S) are as

. .. ~ . ..,. . ~ .. ' , .. .

. ·,--·:··.·

Step 9c: If E E {El,' <c 2 f· the"u there is an edge

j E E(G') - E(G) of the sort we sought in Step 1. Replace

y, G and = G by· y I ' GI and '-G - respectively and go to

Step 1 and from there as directed.

Step 9d. If then let I be the set of nodes

i EV$ such that y'. = O and i is either an even node of
l.

F1 or is contained in an even pseudonode of F
1

. Since

E = E4, I~$. For each i EI let r(i) - i if i E V(F
1
),

let r(i) - s if i Es ER n V(F
1
).

For each i EI such that r(i) is the root of a tree

in remove from and add it to If

any such i exists then we have by (3.8.23) that

LI (G; y I) LI (G;
= y I> x, $ x, y) - 1. replace y •· G and G by

'
G' '= and G respectively and go to Step 1.

If there is no i EI such that r(i) is the root of a

tree in Fl then choose any io E I' let ro - r (i) , let T
'

be the tree of Fl containing ro and let rl be the root

= G' '=
of. T. Replace Y, G, G by y I ' '

G respectively and

go to 'Step 7a.

Step 9e. If E = E 3 then we must expand an odd pseudonode

S of F1 for which y; = 0. Since bs = 1, by (3.6.2) there

r
!

I
is an

B(S)

B(S)

edge j E o 1 (S)
F

be as defined in

such that

(3.8.5).

xj = 1. Let H(S)

Let v be the node of

and

incident with j. By (3.8.6) we can apply the procedure

described in the proof of (3.3.12) to x/E(B(S)) and

thereby obtain a np matching X of B(S) deficient at v.

Let R' - R - {S}. Since s is a maximal member of

R, (3.8.5) is satisfied by R' . Let G" '= - G X R' • B(S)

is a subgraph of G II • Define x' by

if k E E(B(S)),
X ' k -

if k EE - E(B(S)).

x' is easily seen to satisfy

x'(o(i)) s bi for all i E V(G'').

Moreover 11 (G"; x' , y') = 11cc·; x, y) • Replace

and y'' G''
'-G - respectively and go to R by R' and

Step 9f where we determine a new forest F.

Stee 9f: If j is an odd edge of F then since by

(3.8.4) we have xk > 0 for any even edge of F and since

bs = 1 it follows that j is the only edge of F incident

with s. Let F' be the subgraph of G obtained by

replacing the pseudono'de s in F with the component K

of G+{?'') containing v . Go to Step 9g.
. ""'

If j is an even edge of F then let t be the unique

odd edge of F incident with s. Since s is an odd node

of F and bs = 1 these are the only two edges of F

incident with s. Let w be the node of B(S) met by t

and let 7f be a track in B(S) from V to w having even

I'

I
,; I

!

r

length and for which this length is as small as possible.

Let G < 7r) - (V(1r)' E(1r)' ~IE(1r)). i.et F' be the subgraph

of G obtained by replacing the pseudonode s in F with

G < 7r) and any component of G+(x') which contains a node

of 7r •

Step 9g.

seen that F'

and F by x'

If F' contains no polygon then it is easily

is an alternating forest in G; replace x

and F' respectively and go to Step 1.

If F' contains a polygon P, then P is the odd

polygon of the blossom B(S). Let be a node of p

which is an odd distance from w in B(S) and for which

this distance is as small as possible. Let be a node

of P adjacent to v 1 in P and not belonging to the

path in P joining w and Let j I be the edge of

P joining v
1 and Remove j 1 from F', let F" be

the forest thereby obtained. Now j 1 joins two even nodes

of F". Replace F and j by F'' and j' respectively

and go to Bt~p 5. At this point F fails to be an alternating

forest because j violates (3.6.3) and the component H of

G+(x) containing v 1 may not satisfy (3.8,15), However

these situations are automatically corrected in Steps 5 and

6.

Step 10: Hungarian Forest. Since € = 00 we observe the

following, El= 00 is equivalent to F1 satisfying (3.7.4).

e 2 = 00 is equivalent to (3,7.3) for F1 • € = oo is equivalent
3

to (3.7.5) for F
1

and e 4 = 00 is equivalent to (3.7.6) for

F
1

. Therefore F
1

is a Hungarian forest so by (3.7.40),

G has no feasible matching. By (3.7.17) and (3.8.23),

3,55

r
!
~
' r
' I

I
l

D(G, V-) = ~(G; x, y). If desired, perform Step 12 so as

to ''correct'' the matching x for edges j E y(S) for

SER so that the resulting matching x' will satisfy

x'(o(i)),; b. for all i EV and d(G, v-; x') = D(G, V-).
l.

We do not bother performing Step 12 in the applications

we make of this algorithm in later chapters.

(3.8.27) Finally note that if F
1

is a Hungarian

forest, then for any E E 'ff\ such that E ;>; 0 we have that

y' as defined in Step 9b is a feasible dual solution also

satisfying (3.8.26).

Step 11: Termination with Optimal Solution. Apply

~ep 12 to "correct'' the matching x and then stop, the

resulting matching x is the optimal feasible matching we

seek and y is an optimum dual solution. Since Step 12

ensured that ~(G; x, y) = 0 and x(o(i)) ,; b. for all
l.

i EV it follows that (3.5.3) and (3.5,4) and x and y

satisfy (3.5.11). Since x is a matching satisfying (3.5.3)

and (3.5.4), we also have (3.5.2) and (3.5.5) satisfied.

By (3.8.8) and (3.8.9) we know that (3.5.12) is satisfied.

By (3.8.2) y satisfies (~.5.7)-(3.5.9); Therefore x is

the optimal matching we require and y is an optimal dual

solution.

Step 12: Pseudonode Matching Correctio~. Let D = ~.
D is the set of members of R for which the matching has

been correcte.d.

Step 12a:

whence we come.

If R = D then return to Step 10 or 11 from

SteE 12b: Let s be a maximal member of R - D and

D' { s}. G' = (R D') • B(S) let - D u Let - G X - Then

(as defined in (3.8.5)) is a blossom contained in G' . If

x(o(S)) = 0 then go to Step 12d.

SteE 12c: Let j E o (S) be such that x. = 1, let V
J

be the node of B(S) met by j in G' . Apply the procedure

described in the proof of (3.3.12) to obtain a np matching

.
X of B (S) deficient at v. Let x' be defined by

for k EE - E(B(S)),

for kEE(B(S)).

Then we have

(3.8.29) x'(o(i)) $ bi for all i E V(G'),

(3.8.30) x'(y(T)) = qT for all TE R,

(3.8.31) /i(G'; x'
'

y) = t;(G; x, y).

Replace x, D and G by x', D' and G' respectively.

Return to Step 12a.

SteE 12d. Let v ES n V$ be such that y = 0 if
V

such a node exists, otherwise go to Step 12e. Let r = v

if VE V(B(S)), let r = T if VETER n V(B(S)). As

in Step 12c we apply the procedure described in the proof

of (3.3.12) to obtain a np matching x of B(S) deficient

at r. Let x' be defined as in (3.8.28). Again (3.8.29)

and (3.8.30) are immediate and since the only new deficiency

we created was at r and since y = .0, (3.8.31) is satisfied.
V

1j

/'

Replace x, D and G by x', D'

Return to step 12a.

and G' respectively.

Step 12e: (This step can only be performed if we

terminated in Step 10.) In·this case s Ev= since S must

have been an even node or contained in an even pseudonode of

the Hungarian forest F1 . Therefore the term corresponding

to S contributes 1 to t1(G; x, - y). Let v be the node

of B(S) at which x!E(B(S)) is deficient. If we let

x' = x then (3.8.29) and (3.8.30) are satisfied and since

the term corresponding to v contributes 1 to ll(G'; x', y)

we have (3.8.31) satisfied. Go to Step 12a.

3.9 Efficiency of the Blossom Algorithm.

In this section we derive an upper bound on the amount

of work done by the blossom algorithm in solving a matching

problem. We make a fixed word assumption, that the amount

of work required to perform arithmetic (addition, subtraction,

division by two) on any numbers encountered in the algorithm

is independent of the number ·of significant digits. Since

this is the way in which most large scale computers operate

(for reasonably sized numbers) this is a realistic assumption.

(3.9.1) Theorem. An upper bound on the amount of

work required by the blossom algorithm to solve a matching

problem is of the order

LI (G;
0

X ,
0 y) .•

where 0
X and are the starting matching ~nd dual ·solution,

I

I ,,
/

' '

!/

!i ,,

' I

:i

I

I

I
'

11

I
I
I

11

l

Proof. First we establish an upper bound on the amount

of work that can be done by the algorithm without decreasing

A(G; x, y). Steps 4, 5, 7a and 9d all decrease A(G; x, y)

by at least one.

In -Steps 3 and 7 we grow the forest F1 . Since

decreases only after performing one of Steps 4, 5, 7a or 9d,

it follows that Steps 3 and 7 can be performed at most lvl

-
times without a decrease in A(G; x, y).

In Step 6 we shrink. By (3.8.5) n(S) 2: 3 for every

S £ R (where n(S)

(3.2.8) we must have

is as defined in (3.2.7)). Thus by

IRI ,;; 1/2(IV I - 1) at any point in

the algorithm.

an even node of

By (3.8.25) any new S added to

1 F . We only expand odd nodes of

R becomes

Step 9e), Thus Step 6 can be performed at most l/2(IVI - 1)

times without a decrease in A(G; x, y).

In Steps 9e-9g we expand an odd pseudonode of F
1

. This

pseudonode must have been in F1 following the previous

augmentation since any pseudonode formed since is an even

node of F1 . Hence Steps 9e-9g can be performed at most

1/2(Jvl - 1) times without making a change in A(G; x, y).

Steps 10, 11, 12 are performed only once in the course

of the algorithm. A bound on the amount of work required

by these steps is of the order Iv I

Steps 1, 2, 8, 9a, 9b, 9c are performed at most once

for each performance of steps 3, 4, 5, 6, 7, 10, 11, 12, A

bound on the amount of work performed by each of these can

be seen to be of the order The only ones of these steps

for which this bound is not obvious are 9a, 9b. However if

''I ' '

we preserve the value of y(~(j)) + y(QO(j)) - cj for each

j EE at all times, then it can be seen that this bound

is satisfied for these steps.

Finally a bound on the amount of work required for each

of Steps 4, 5, 7a or 9d is of the order IE I .
Thus a bound on the amount of work that can be done

without decreasing ll(G; x, y) by at least one is of the

order /v I and the theorem follows.O

(3.9.2) Corollary. If we start with the matching described

in (3.8.24) then an upper bound on the amount of work done

in solving a matching problem is of the order

b(V) lvl

Proof. This follows from the fact that if x and y

are as defined in (3.8.24) then ll(G; x, y) ~ b(V).O

3.10 Min-Max Theorems and Discreteness of the Dual Solution

Whenever we know ·a set of· linear inequalities sufficient

to define a polyhedron -p; linear ·pr·ogramming duality· gives us

.a min~max theorem concerning any subset 6f P that c~htains

the vert·ices •· Conversely, -we used __ the_ blossom algorithm to

.l. 0 U

prove,the following min-max theorem which established Theorem (3.4.S).

(3.10.1) Theorem. Let G = (V, E, w) be a graph,

let b = (bi: i E V) be a vector of positive integers and

C = (C • :
J

let j E E) be an arbitrary real vector. Then the

' maximum value of c • x for any matching x of G which

satisfies

,I
jl1
;;

r

(3.10.2) x(o(i)) ~ bi for all i EV

is equal to the minimum value of

(3.10.3) E(b.y.:
--1.-1.

i E
0

V) + E(qsys: s E Q)

for real (yi~:-"i'-E'-V-'-'-)~~a~n~dc._____,_(~ys: s E q0
) satisfying

(3.10.4) .Y.i
;, 0 for all i E V,

(3.10.5) .Y.s
;, 0 for all s E Qo

(3.10.6) y(,P(j)) + y(Qo(j)) ;, C • for all
J

j E E.

If the objective function c satisfies certain discreteness

properties, then we are able to require certain discreteness

properties of the dual variables.

all

(3.10.7) Theo~em. If c.
J

is integer valued for

j E E then there is an optimal feasible solution
0

y

to the problem of minimizing (3.10.3) subject to (3.10.4)­

(3.10.6) which satisfies

(3.10.8) .Y.i is congruent with O (mod 1/2) for

all i EV,

(3.10.9) .Y.s is congruent with O (mod 1) for all

Proof. The problem of minimizing (3.10.3) subject to

(3.10.4)-(3.10.6) is the dual linear program to the matching

problem maximize ex for x E P(G, b). We will show that

(3.10.10) if the starting dual solution used by

the blossom algorithm is integer valued, then at any point

j • b .L

I:
!

: I',

I i

in the solution of this matching problem the dual solution

y will satisfy (3.10), (3.10.9). This we prove by showing

that at any point of the algorithm.

(3.10.11) the values of for i e: V belonging

to or contained in a pseudonode of F
1

will be congruent

modulo 1.

If the initial dual solution is integer valued,

(3.10.9) and (3.10.11) are obviously satisfied. Now

(3.10.8),

observe that at no point of the algorithm do we add a new

tree to Moreover at any time we grow a tree in F1 , all

new edges j must belong to the equality subgraph so since

c. is integer valued for all such j, (3.10.8) and (3.10.9)
J

ensure that (3.10.11) will continue to hold.

When computing E so as to make a change of dual variables,

(3.10.8), (3.10.9) and (3.10.11) ensure that any of E
1

, E
2

,

E3 , E4 which are finite will be congruent with O(mod 1/2).

= Since V = <j, , we cannot obtain a Hungarian forest so

is finite and congruent with O(mod 1/2). Hence y' as

defined in Step 9b also satisfies (3.10.8), (3.10.9) and

E

(3.10.11). Thus (3.10.10) is proved and the theorem follows.D

The following is obtained by combining (3.10.1) and (3.10.7).

(3.10.12) Theorem. If c is integer valued, then

the maximum value of ex for any matching x of G

satisfying (3.10.2) is equal to the minimum of (3.10.3)

subject to (3.10.4)-(3.10.6) and an optimal y can be chosen

so as to satisfy (3.10.8), (3.10.9),

I
1,i

i[

!.i·I !

I

r

[

In the case that c is further restricted to being

O, 1 valued, we can obtain the following result.

(3.10.13) Theorem. If c. s {O, 1} for all
J

j EE then there is an optimal feasible solution 0
y to

the problem of minimizing (3.10.3) subject to (3.10.4)-(3.10.6)

which satisfies

(3.10.14) Zi..!.-2s e {O, l} for all i e V, for all

0 S E Q ,

Proof. Let G = (V, E, ~) be a graph for which (3.10.13)

fails for some b and such that Iv u El is minimum.

Clearly lvl ~ 3, and we must have C, = 1
J

for all j e E

since the graph obtained by deleting any edge k for which

ck= 0 would still violate (3.10.13).

0
X • Suppose G has a perfect matching Then the maximum

value of c • x over matchings x of G satisfying (3,10.2)

is equal to 1/2b(V). Choose v EV and define b' by

ieV-{v},
b' =

i for i v.

Then the maximum of c • x over matchings x of G satisfying

(3.10.2) is still 1/2b(V). Suppose that 0
y is an optimal

dual solution relative to b' which satisfies

(3.10.14). Then E(biy~: i £ V) + E(qSy~: S £ QO) =

1/2b(V).

Hence 0
y is an optimum dual solution relative to b but

0
y satisfies (3.10.14), a contradiction. Hence no optimum

:;,b_j
11

solution relative to b' can satisfy (3.10.14) and since G

can have no perfect b' -matching, we assume

(3.10.15) b is chosen so that G has no perfect

b-matching .

Let 0
y be an optimum solution relative to b satisfying

(3.10.8), (3.10.9). Clearly we have 0
yi e: {0, 1/2, l}

for all i e: V and 0
Ys e: {O, l} 0 for all Se: Q . Let

W = {i E V: y? = 1/2}. If W = c/> then
l.

and we are finished. If W = V then

yo satisfies (3.10.14)

E{b.y?: i EV}+
l. l.

0 0
E{q 8y8: Se: Q};;, l/2b(V) implying G has a perfect matching,

contradictory to (3.10.15). Thus we have

(3.10.16) c/> ~WC V.

(3.10.17) For any j e: o(W) we must have either

y~ = 1 where {v} = ~(j) - W or j e: y(S) for some Se: QO

such that 0
y s = 1.

Otherwise we could have yo(~(j)) + yo(QO(j)) = 1/2

contradictory to (3.10.6).

By our minimality assumption for G and (3.10.16) there

is an optimal .solution

minimize

subject to

1 y

Yi

Ys

"
"

y(~(j))

where Qo
w - {S E: Qo: s C W}

+

satisfying (3.10.14) to the problem

s E:

0 for all i E: w

0 for a:{.l s 0
E: Qw

y(Qg(j)) " 1 for all j E: E(G[W])

and Qg(j) {S
0 j y (s)} - E: Qw: E:

3. 6!, l

I

! I

i

I'
i1
I

I
'

I
!'
i

ii

I'

* for all j 8 J. If we define y by

0 for i V w, Yi 8 -
* Yi -

1
Yi for i 8 W·

'

0 for s Qo 0
Ys 8 - Qw,

* Ys -
1 Qo

Ys for s 8 w

* * then y satisfies (3.10.14) and by (3.10.17), y is a

feasible solution to the problem of minimizing (3.10.3) subject

to (3.10.4)-(3.10.6). Since

and since 0 y was optimal it follows that * y is optimal.

This contradicts the choice of G and completes the proof.O

Combining (3.10.13) and (3.10.1), we obtain the following.

(3.10.18) Theorem: If cj E {O, l} then the

maximum value of ex for any matching x of G satisfying

(3.10.2) is equal to the minimum of (3.10.3) subject to

(3.10.4)-(3.10.6) and a minimum y can be chosen so as to

satisfy (3.10.14).

Theorem (3.10.lS)can be specialized in the following

manner. Let G = (V, E, ~) be a graph and let b = (bi: i EV)

be a vector of positive integers. For any X c V we define

(3.10.19) C(X) s· {s c V - X: G[S] is a component

of G[V - X]}.

3.65

We partition C(X) as follows.

(3.10.20) c
0

(X) - {S E: C (X): Is I = 1} ,

(3.10.21) c
1

(X) - {s E: C (X): Is I > 1 and b (s) is

(3.10.22) c
2

(X) - {s E: C (X): Is I > 1 and b (s) is

(3.10.23) Theorem. Max{x(E): X is a matching of

satisfyi·ng (3.10.2)} = l/2(b(V) + min{b(X) -" Jc, (X) J -
~

b (u(C O (X))) : X c ..:..V.,_) ..:..• _.::.:Mc::o.:::.r...::e...::o....cv...::e--"-r

* (3.10.23a) there is a set X ~ V which minimizes

b(X) -, Jc
1

(X) I - b(u (C
0

(X))) over X s: V and satisfies

* * 0
~2 (X) = <I! and c 1 (X) s _Q_.

Proof. Let X be any matching of G which satisfies

(3.10.2). Let X C v. Then for any - S £ c
1

(X) we have

x(y(S)),; l/2(b(S) - 1) (by (3.1.7)). Therefore

(3.10.24) b(u(Cl(X))) - Jcl(X)J 2 2L{X(y(S)):

S,: c
1

(X)}.

Let J - o(X) n (o(u(C
0

(X) u c
1

(X))). Then we have

(3.10.25) b(X) + b(u(C2(X))) 2 2x(y(X u u(C2(X))))

+ x(J).

We also have

(3.10.26) b(X) 2 x(J).

Summing (3.10.24)-(3.10.26) we obtain

[b(X) + b(u(c
1

(X))) + b(u(c
2
{x)))] + b(X) - Jc

1
(x) J 2 2x(E)

or

b(V) - b(u(Co(X))) - Jcl(X)J + b(X) 2 2x(E)

3.66

odd}

even}.

G

1i

i

!

i
I
I
I
I

Therefore

(3.10.27) max{x(E): x is a matching of G

satisfying (3.10.2)} s; 1/2b(V) + 1/2min{b(X) - ic
1

(X)i -

b(u(Co(X))): X ~ V}.

We now show that equality holds.·

By (3.10.13) there is a y satisfying (3.10.14) which

minimizes (3.10.3) subject to (3.10.4)-(3.10.6) taking

c. = 1 for all j £ E. Let yo be such a solution for
J

which the cardinality of 0 0
Z - {S £ Q : Ys = 1} is as small

as possible. Suppose S, T £ Z are such that Sn T ~ ~­

If b(S n T) ~ 2 then if we define y' by

y '. -
l.

0 if i V (S T) Yi £ - u

0 + 1/2 if i s T Yi £ u

0 if R Qo {S, T} YR £ -
y' R -

0 if R £ { s. T}

it is easily seen that y' is a feasible solution to

(3.10.4)-(3.10.6) for which (3.10.3) attains a smaller value

than for 0
contradiction choice of 0 If y • a to our y

b(S n T) = 1, and hence Is n Tj = 1. then s u T £ Qo and

if we define y' by

y'. - Yi · for
l.

all i £ V

YR if R £ Qo - { s. T, s u T}

y' - 1 if R = s u T R

0 if R £ {S, T}

3. 6 7 1,:

I
I I

Ii

I'

i

" .,

I

I'
I

1,: ,,
i!
I

11

1,

I

t.

i
!,

then y' is a feasible solution. to (3.10.4)-(3,10.6)

satisfying (3.10.14) for which the value of (3.10.3) is no

greater than that obtained for 0
y But I { R E Q O: y i = 1} I <

0 jzj, contradictory to our choice of y • Hence

(3.10.28) the members of Z are pairwise disjoint.

Suppose for some v ESE Z. Then if we define

y' by

0 + 1/2 if i V {v} Yi E -
y! -

J. 0
Yi = 1 if i = V

if Re: QO - {S}
y' R -

if R = S

y is a feasible solution to (3.10.4)-(3.10.6) which causes

(3.10.3) to assume a smaller value than for

contradiction. Hence

0
Y ' a

(3.10.29) 0 Yi= 0 for all i e Se z.

Let X = {i EV: y? = l}. Because of (3.10.29), in
J.

order for 0 y to be feasible we require

o(S) c o(X) for every s e z,

o(i) 5 o(X) for every i EV - u(Z)

such that y~ = O. Hence c0 (X) {{i} E: V - V(Z): y~ = O},

(3.10.30) c1 (X) Z

(3.10.31) c2 (X) = ~.

3.68 r
I,
1,:

Hence

(3.10.32)

= b(X) + l:(l/2(b(S) - 1): SE c
1

(X)) + l/2b(u(C
2

(X)))

= l/2b(X) + l/2b(u(Ci (X))) + l/2b(u(C
2

(X))) +

l/2b(x) - 1/2lc1 (x) I

l/2b(V) +-l/2b(X) - lc 1 (x) I - b(u(c 0 (x)))).

Since by (3.10.18) and our choice of 0
y '

max{x(E): x is a matching of G satisfying (3.10.2)}

0 0 = l:(biyi: i EV)+ l:(qsys: s E Q)

it follows from (3.10.30) that equality holds in (3.10.27).

Since Z c Qo, (3.10.30) and (3.10.31) imply (3.10.23a)

completing the proof.D

Theorem (3.10.23) (excluding (3.10.23a))reduces to a

3.69

theorem of Berge [B2] when it is further specialized to !-matchings.

G has a perfect matching if and only if max{x(E): x

is a matching of G satisfying (3.10.2)} = l/2b(V). Therefore,

by (3.10.23), G has a perfect matching if and only if

min{b(X) - lc1 (X) I - b(u(c
0

(X))): x c V} = o

Thus we obtain the fundamental theorem of Tutte.

(3.10.33) Theorem (Tutte [T3]). G = (V, E, •) has

a perfect matching if and only if for each X c !,

(3.10.34) b(X) ~ lc1 (x) I + b(u(c 0 (X))).

I

l-1 [i

r

r

I
'

In the case of 1-matchings this reduces to the well

known theorem

(3.10.35) Theorem (Tutte [Tl]). G = (V, E, ~)

has a perfect 1-matching if and only if for any X c V the

number of components of G[V - X] having an odd number of

nodes is no greater than IX I .

The importance of (3.10.23a) to these theorems is

discussed in Section 4.4 (see Theorems (4,4.21) and (4,4,22)).

3.70

I.,

I

J
I·

I

I

;

Chapter 4

Facets and Vertices of Matching Polyhedra

Throughout this chapter we consider a graph G = (V, E, ~)

and we take b = (b.: i £ V)
].

to be a vector of positive

integers. Since isolated nodes, that is nodes v for which

o(v) = ~. are of little interest in matching theory we

assume G has no isolated nodes. In section 3.4 we defined

the matching polyhedron P(G, b) and proved the theorem

of Edmonds that

P(G, b) E = {x £ 1R. :

(4.0.1) x. ~ 0 for all j £ E,
J

(4.0.2) x(o(i)) ~ bi for all i e V,

(4.0.3) x(y(S)) ~ q
5

for all 0 s £ Q },

where QO = {S ~ V: G[S] is shrinkable}, and qS = (l/2)(b(S)-l)

for any set S such that b(S) is odd. We now characterize

the facets and vertices of P(G, b) relating them to the

structure of G and the value of b. In particular, for

any G and b we prescribe a unique minimal subset of the

inequalities (4.0.1)-(4.0.3) of which P(G, b) is the solution

set.

The material presented in this chapter does rely to an

extent upon the material of Chapter 3. Sections 3.3 and 3.4

are used in characterizing the facets of P(G, b), some of

the material of Sections 3.6 and 3.7· is used in showing the

equivalence of shrinkable graphs and b-critical graphs.

The proof of the vertex characterization is related to the

,, I

algorithm itself; in proving the theorem we also show that

every matching obtained by the blossom algorithm is a

vertex of P(G, b). However we give an additional proof

4.2

of this portion of the vertex characterization which is

developed from basic properties of graph theory and polyhedra

theory.

4.1. Dimension of P(G, b) and Nonnegativity Facets

In order to characterize the facets of P(G, b), we

first determine its dimension.

(4.1.1) Proposition. P(G, b) is of full dimension.

Proof, Since P(G, b) 5 'fK.E it follows that

dim(P(G, b)) :<; IEI, We show that dim(P(G, b)) = IEI by

exhibiting

to P(G, b).

IEI + 1 affinely independent matchings belonging

The result will then follow from (2.2.12).

For each j e: E we define a matching xj by

Since b. 2c 1 for all
l.

all i e: V, for all j

'\R E • Then { xj : j e:

{xj : j e: E}u {0} is

e:

0 if k "' j ,

1 if k = j.

i e: V, we have .

E. Let 0 be

xj (8(i)) ,,; b, for
l.

the zero vector in

E}u {O} C P(G, b). The set of vectors

easily seen to be affinely independent

and the result follows.D

[Let a e: 1R. E, ex e: 1R . We say that the linear inequality
I

~ ax :<; ex gives a facet of P(G, b). if {x e: P(G, b): ax = ex}
,·
t is a facet of P(G, b). In characterizing which of the

t

~-

I

I

.i

:1

!I

I'
I.

iii ,,

' ,,
I.I
'.:1

[-.
I

4.3

inequalities (4.0.1)-(4.0.3) give facets of P(G, b) we use

mainly the technique of showing that ax s a gives a facet

of P(G, b) by displaying affinely independent members

x of P(G, b) which satisfy ax= a and then appealing

to (4.1.1) and (2.2.15).

(4.1.2) Theorem.

facet of P(G, b).

For every j £ E, x. > 0 =-..ccc.........::C.-'-CC-"-<.-_,,._----=----='-'---==-J gives a

Proof. For any j £ E let Pj

(4.0.2), (4.0.3) and

be the solution set of

xk ~ 0 for all k £ E - {j}.

We define xj by

0 for k >' j,

-1 for k = j.

Then for each j £ E, xj £ Pj - P(G, b). Therefore by

(2.3.30), xj ~ 0 gives a facet of P(G, b).D

The techniques used in this proof, showing that an

inequality gives a facet by showing that if it is omitted we

obtain a larger polyhedron, could possibly be used in proving

the other facet characterizations of this chapter (theorems

(4.2.1) and (4.3.49)). However we find it easier to show

that ax s a gives a facet of P(G, b) by exhibiting IEJ
affinely independent members of P(G, b).

is also easily proved by exhibiting

G, each such x satisfying

Theorem (4.1,2)

affinely independent

X. = 0. (Take
J

matchings of

the matchings 0 , xk: k £ E - · {j} defined in the proof

'

II

!I
Ii
:!

of (4.1.1).)

We call · {x E P(G, b): x. = 0} a nonnegativity facet
J

of P(G,b) for any j E~E.

4.2 Degree Constraint Facets.

4.4

In this section we characterize which of the inequalities

x(5(i)) s bi for i EV are facets of P(G, b). For each

i EV we let N(i) be the set of nodes of G adjacent to

i. Let v and w be nodes of G such that N(v) = {w},

N(w) = {v} and b = b . Then {v, w} is the node set of W V

a component H of G containing at least one edge. We

call H a balanced edge.

(4.2.1) Theorem. For any i EV, x(o (i))sbi gives

a facet of P(G, b) if and only if

(4.2.2) i is a node of a balanced edge

or

(4.2.3)

then y(N(i)) = p.

b (N (i)) > b . __ a_n-'d---"i-'f--'b-'(~N-'(~i__,.)__,.)_=_b . + 1
i i--

Proof. We first show the necessity of (4.2.2) and

(4.2.3). Let i be a node violating (4.2.2) and (4.2.3).

We will show that there are inequalities (4.0.1)-(4.0.3)

which imply

(4.2.4) x(5(i)) s b.
i

and which are distinct from (4.2.4). Thus we can remove

all copies of (4.2.4) from (4.0.1)-(4.0.3) without changing

the solution set and the result follows from (2.3.30) and (4.1.1).

4.5

Suppose b(N(i,)) ,; b ..
1.

Summing the inequalities (4.0.2)

for v £ N(i) we obtain

x(u o(v)) ,; b(N(i))
VEN(i)

and since o(i) c u o(v), it follows that (4.0.1) implies
VEN(i)

x(o (i)) ,; b (N(i)) ,; bi,

Moreover if there were v £ N(i) such that x(o(v)) ,; b
V

and (4.2.4) were the same inequality then o(v) = o(i) and

b = b. so since we do not allow isolated nodes we would
V 1.

have i and v being %he nodes of a balanced edge, contradictory

to i violating (4,2.2). Hence (4.2.4) is not a facet of

P(G, b),

Suppose b(N(i)) =bi+ 1 and there is some j £ y(N(i)).

Let v £ w(j) and for each u £ N(i) let k(u) be an edge

of G such that w(k(u)) = {i, u}. Let J - {k(u): u £ N(i)}

and let the graph B be defined to be (N(i) u {i}, Ju {j},

w!J u {j}). We show that B is a blossom. Clearly B is

connected, has no even polygons and exactly one odd polygon.

Moreover if we define a matching x of B by

x.
J

- b u

- b v-1

- 0

for all u £ N(i) - {v},

we see that x is ·a matching of B satisfying (3.3.1)-(3.3.5)

so that B is a blossom. Hence G[N(i) u·{i}] is shrinkable

so N(l.·) {'} Qo u 1. £ • The inequality (4.0.3) for N(i) u {i}

is

I
I
'

I
I
t:

" I

I
11

/,

i

l

(4.2.5) x(y(N(i) u·{i})) s b(N(i)); b(i) - 1 = b
1

so since 8(1) ~ y(N(i) u {i}) -·{j} , we see that (4.2.5)

and (4.0.1) imply (4.2.4). Moreover (4.2.5) is different

from (4.2.4). Hence (4.2.4) is not a facet of P(G, b).

Now we prove the sufficiency of (4.2.2) or (4.2.3).

Suppose that i is a node of a balanced edge H. For each

h E 8(i) we define a matching h
X by

bi if k = h,

0 if k EE - {h}.

Let j E 8 (i). For each h E E

h

8(1) we define a matching

X by

1 if k = h,

h
b. if k j , xk - =

].

0 if k E E - {h, j,} .

Clearly the set {xh: h EE} is linearly independent and

xh(8(i)) = b. for all h EE. Since {x E P(G, b):
].

x(8(i)) = b.} is a proper face of P(G, b) it follows from
].

(2.2.15) that (4.2.4) gives a facet of P(G, b).

Now suppose (4.2.3) is satisfied for i EV. Let K

be a minimal subset of N(i) for which b (K) > b .•
].

For

each v E N(i) let j(v) be an edge joining i and v,

let EK - {j(v): v EK}. For every j EEK' let

{v(j)} = 1/i(j) n K. Let b =(bj: j EEK) be defined by
..

k EEK we define b. - b
V (j) for all j E EK. For each

J

dk k
EK) = (d. : j E by

J

4.6
''.I

I
'

I

:l

l

l

4.7

d~
0 if j E EK - {k}

-
J

b (K) - b. if j = k.
l.

Then 0 < dk ,, b for all k E EK by our choice of K,

For each k EK, let -k
b dk. Since {dk: k EK} is £ X - - £

linearly independent, (2.2.4) implies -k k EK} {x : £ is

affinely independent. Each vector
-k
X can be extended to

a matching

Then

k
X Of G by letting k

X. - 0
J

for all j EE - EK,

(4.2.6)

Moreover,

(4.2.7)

(4.2.8)

k P(G, b) so X £

For each j £

follows. Let {v}

k
{x : ks EK} is affinely independent.

k
X (o(v)) !>

for each

o(i) - EK

- 1j, (j) -

k

b
V

b.
l.

E

we

{i}.

for all VEV-{i},

EK.

define a matching xj as

If V E K then let k £

be chosen such that k
xj (v) > 0 and let be defined by

if

0 if

R, s E - { j , j (v) }

i=j(v)

k
xj (v) if R, = j.

If v ~ K let k be any member of EK and let h E o(i)

k
be such that xh > 0. be defined by

EK

t

4.8

k
if 9, E { j , h}, X 9, E -

xj k
1 if 9, h, - xh - = 9,

1 if 9, = j .

In either case, xj is easily-seen to satisfy (4.2.7) and

(4.2.8) for every j E o(i) - K. Since for each j e o(i) - EK

xj is the unique matching x so far defined for which

x. -' 0, (4.2.6) implies
J

(4.2.9) {xj: j E o(i)} is affinely independent.

Finally, for each j EE - o(i) we define a matching

xj as follows.

xj - 0 for h E E - (o (i) u { j })
h

xi is defined for h E o(i) to be sufficiently

large that (4.2.7), (4.2.8) are satisfied. This is possible

for if b(N(i)) = b.
].

+ 1 then by (4.2.3) at most one end

j is in N(i). Therefore defining restricts

to taking on a value one less than for at most

one edge k E o (i). Hence xj can be defined as asserted.

If b(N(i)) ;, b. + 2
].

then it is easily seen that after

defining x~ = 1 we can still assign values xj for
J k

as required.

For ahy j EE - o(i), xj is the only matching x

k E o(i)

defined for which This together with (4.2.9) implies

that {xj: j EE} is affinely independent. Thus we have

I

I

11

I

f

r
I
' ' i
r.
I

t

4.9

defined IE! affinely independent members of P(G, b)

each of which satisfies (4.2 .. 8). Moreover F = {x E P(G, b):

x(o(i)) = b.} is a proper face of P(G, b)
1

since

0 E P (G, b) - F, Therefore by (2.2.15) it follows that

(4.2.4) gives a facet of P(G, b) completing the proof.D

We call {x E P(G, b): x(o(i)) = b.} a nonnegativity facet
1

for each i EV satisfying (4.2.2) or (4.2.3).

In the case of !-matchings, (4.2.1) specializes to the

following

P(G, 1)

or

(4.2.10) Theorem. x(o(i)) < b. gives a facet of
1

if and only if

(4,2.11) i is a node of a balanced edge

(4.2.12)

y(N(i)) = <f,,

jN(i) j > 1 and if l·N(i) I = 2 then

4,3, Blossom Facets.

In this section we give a first characterization

of the inequalities x(y(S)) ~ q
8

for SE QO which are facets

of P(G, b). In fact for each SE QO we give the dimension

of

Fs = {x E P(G, b): x(y(S)) = qs}.

These results are obtained by studying shrinkable graphs (as

defined in Section 3,3).

In Section 4.4 we give two characterizations of shrinkable

graphs and hence two more characterizations of the facets of

r 4.10

this sort.

Recall that a np matching (near perfect) matching of

G deficient at v EV is a matching x of G which

satisfies

x(o(v)) = b - 1.
V

x(o(i)) = bi for all i EV - {v}.

The following lemma is useful when proving the independence

of matchings.

(4.3.1)

of G and let

d(x 0) E 'iK_ such

for all

of 0 X - {x }.

Lemma. Let X

0 x. If there X E

that xo(J(xo)) <

then 0
X

be a set of TIE matchings

exist J(xo) C: E and -
d(x 0) but

0 x(J(x))= d(x 0)

is not a linear combination

Proof.

such that

Suppose that there are Cl E 'R for X E X' - X-{x 0 }
X

(4.3.2) XO= E(Cl x: x EX').
X

By (3.3.24), x(E) = 1/2(b(V) - 1) for all x EX. Therefore

by (4.3.2)

xO(E) =

and hence

E(a x(E): XE X')
X

(4.3.3) E(Cl : XE X') = 1.
X

Therefore

by (4.3.3).

E(Cl x(J(xO)): XE X') =
X

· 0 0 E(Cl d(x): XE X') = d(x)
X

Hence (4.3.2) implies th~t
0 0 0 x (J(x)) = d(x),

a contradiction which proves the lemrna.O

r

I
'

t
I

t
!
t

4.11

(4.3.4) We call v e V a strong cut node of

G = (V, E, f) relative to b if v is a cutnode of G

(see (1.3.9)) A weak block of G relative and b = 1.
V

to b is a maximal connected subgraph H of G such that

b > 1 for any cutnode v of H. Thus a weak block consists
V

of one or more blocks of G joined by cutnodes v for

which b > 1. Notice that
V

(4.3.5) the edge sets of the weak blocks of G

partition the edges of G.

(4.3.6) We let S(G) denote the number of weak

blocks of G.

In the case of I-matchings, strong cutnodes and weak blocks

are simply cutnodes and blocks respectively.

(4.3.7) Proposition. G is shrinkable if and

only if G is connected and every weak block of G is

shrinkable.

Proof. First suppose that G is connected and each

weak block of G is shrinkable. We prove that G is

shrinkable by induction on S(G). If S(G) = 1 then the

result is trivial. Suppose S(G) > 1 and assume the result

is true for graphs having fewer than S(G) weak blocks.

Let D be a weak block of G, let RD be a shrinking family

for D. Each weak block of G' = G x V(D) is' isomorphic

to a weak block of G and so is shrinkable. Moreover G'

is connected. Since G is connected, S(G') = S(G) - 1

so by our induction hypothesis G' is shrinkable; let R'

be a shrinking family of G'. For each SER' we define

a set sCS) c V as follows.

sC s) -
S if V(D) • S,

S - {V(D)} u V(D) if V (D) E S

Let R 5 {s(S): SER'} u RD,

be a shrinking family of G.

by induction.

Then R is easily seen to

The sufficiency now follows

Conversely, suppose that G is shrinkable. Let R be

4.12

a shrinking family of G, Trivially G is connected. We

prove that every weak block of G is shrinkable by induction

on IR I . If JRJ = O, then G consists of a single node v

and the result is trivial. Suppose that JRJ ~ 1 and that

the result is true for graphs having shrinking families of

fewer than JRJ sets, Let S be a minimal member of R,

By (3.3.16) G[S] is spanned by a blossom B, By (3.3.9)

only terminal nodes of B can be strong cutnodes so B is

a subgraph of some weak block D of G. Let G' - G X s.

For any T E R - {S} define s(T) - T if s n T =
<I> '

define

z; (T) - T - s u . { s} if s C T and let R' = { s(T): T E R - {S}},

R' is a shrinking family of G' and JR' J = JR J - 1 so

by our induction hypothesis every weak block of G' is

shrinkable, Hence every weak block of G different from D

is shrinkable. Moreover every weak block of D x S is

shrinkable so as we have already seen, D x S is shrinkable.

Let Ri be a shrinking family of D X s and for any TE R'
0

let B(T) 5 T if S. T, let ~(T) 5 T -·{s} US if SET.

r
r

l
f
'

Then {S} u ~ (T): TE a;} is a shrinking family of D

and the proof now follows by induction.D

(4.3.8) Proposition. If Z is the set of weak

blocks of a connected graph G = (V, E, ~) then

(4.3.9) b(V) - l = E(b(V(D)) - 1: DEZ),

Proof. We prove by induct.ion on I Z j. If I z I = 1

4.13

the

result is trivial. Suppose jzj > 1 and (4,3.9) holds for

all graphs having fewer than I Z I weak blocks. If every

weak block of G contained two or more strong cutnodes then

it is easily seen that G would contain a polygon having

edges in more than one block, contrary to (1,3.10), Let B

be a weak block of G containing exactly one strong cutnode

v. Let G' = G[V -(V(B) - {v})J. Then G' is connected

and Z - {B} is the set of weak blocks of G'. Therefore

by induction

b(V(G')) - 1 = E(b(V(D)) - 1: DEZ - {B}),

Since b(V) = b(V(G')) + b(V(B) - {v}) = b(V(G')) + b(V(B)) - 1,

(4,3.9) holds and the res~lt foll6ws by induction.D

(4.3.10) Proposition. Let G = (V, E, t/!) be a

shrinkable graph and suppose x E P(G, b) satisfies

x(E) = l/2(b(V) - 1). Then for any weak block D of G,

x(E(D)) = l/2(b(V(D)) - 1). (Note that x need not be

integer valued,)

Proof. Let Z be the set of weak blocks of G, By

(4.3.7) each DEZ is shrinkable so since x E P(G, b),

I
II'

I
I
!
I

I

4.14

x satisfies

(4.3.11) x(E(D)) $ 1/2(b(V(D)) - 1) for all D £ Z,

Therefore, summing for all D £ Z we obtain

(4.3,12) x(u E(D)) $ 1/2 E (b(V(D)) - 1),
De:Z

By (4,3.5) E = u E(D) so using (4,3.8) we obtain
De:Z

(4.3.13) x(E) $ l/2(b(V) - 1).

But by hypothesis equality holds in (4,3.13) so equality

must hold in (4.3.12) and (4,3.11) which proves the result.O

(4.3.14) Corollary. If x is a np matching of

a shrinkable graph G then for any weak block D of G,

x!E(D) is a np matching of D.

Proof. The result follows from combining (4,3,10) and

(3.3.24).0

Now we prove a main result used in characterizing the

facets of P(G, b) given by constraints (4.0.3).

(4.3.15) Theorem. If G = (V, E, w) is shrinkable

then G has !El - (S(G) - 1) linearly independent np

matchings,

Proof. Let R be a shrinking family of G; we prove by

induction on !RJ. If !RI= 0 then G is degenerate,

JE! = 0, S(G) = 1 and the result is trivial. Suppose !RJ ~ 1

and the theorem holds for graphs having a shrinking family

consisting of fewer than JR! sets,

I

4.15

Let B be a blossom spanning G x R[V] which exists

by (3.3.16). We partition V (B) into v1 u v2 where

v1 - V(B) n V and v2 - V(B) n R That is, vl is the

set of real nodes of B and v2 is the set of pseudonodes

of B.

Let C - E(G X R[V]) - E(B) and let G' be the graph

obtained from G by deleting all the edges in C. Then R

is a shrinking family of G' so by (3.3.21) for each v E v 1

there is a np matching

which satisfies

-v
X of G' deficient at V and

(4.3.16) xv(y(S)) = l/2(b(S) - 1) for all SER.

For each V E vl we define matching
V of G a np X

deficient at V by

-v for j E' x. E
V J

(4.3.17) x. -
J

0 for j E C.

Let

a

V
Xl = { X : V E

np matching of

Since by (4.3.16) each x EX is

for each SE v 2 , it follows from

(4.3.14) that

(4.3.18) xjE(D) is a np matching of D for

every weak block D of G[S] for every SE v 2 , for every

For each SE v
2

there are by induction

n(S) E Jy(S)J - (a(G[S]) - 1) linearly independent np

matchings {-S,l -S,2 -S,n(S)}
X ,x , ... ,X of G[S] since R[S] u · {S}

r 4.16

is a shrinking family of G[S] and IR [s l u { s} I ,;

IR - {V} I < IR I . By (4.3.14),

(4.3.19) XS,iiE(D) is a np . matching of D for

every weak block D of G[S] for every i E {l, 2, ... ,n(S)}.

We extend each to a np matching of G as follows.

Let -s
X be the np matching of G deficient at s which

exists by (3.3.12). For each TE V2 - {S} let j(T) be the edge

of .5 .(T) n E(B) " such that -s
x,j(T) = 1, let {v(T)} =

1/i(j(T)) n T and let -TS
x' be a np matching of G [T]

deficient at v(T). By (4.3.14),

(4.3.20) xT• 8 jE(D) is a np matching of D for

every weak block D of G[T].

Now we define S,i
X for all i E {l, 2, •.. ,n(S)}

-s i x' for jsy(S),
j

for

by

(4.3.21)
-s S,:i_x.

X • = J
J

j E E'(B) ,

0 for j s C,

xT,S for j s y(T), for Ts v
2

- {S}.
j

Let
s .

x 2 = { x 'l.: i E { 1, 2, •.. , n (S) } , S E V
2

} . By (4.3.19)

and (4.3.20),

(4.3.22) xjE(D) is a np matching of D. for

every weak block D of G[T] for every Ts v
2

for every

4.17

Now we show

(4.3.23) x1 u x2 is linearly independent.

Suppose that av E '1R. : v E v
1

and as . s 1R.
, J.

i E {l, 2, ..• ,n(S)}, S s v
2

are such that

(4.3.24)

s i + E(aS,ix' : i E {l, 2, ... ,n(S)}, SE V
2

) = O.

If we let iv - xv/E(B) for each v E v
1

we have

where

For each

-
as - E(as . :

,1.

v E V(B), -v
X

i E {1, 2, ... ,n(S)}) for

is a np matching of B

at v so if we let J(iv) _ o(v) n E(B)

deficient

for all VE V(B) -v then by (4.3.1), {x : v E V(B)} is linearly

independent so

(4.3.25) av= 0 for all v E v
1

,

(4.3.26) as= O for all s s v
2

.

Now let s s v2 , let v; _ v2 - {S}. By (4.3.21), (4.3.24)

and (4.3.25) we have

so by (4.3.26),

-s i .
E(as .x ' : is {1, 2, .•• ,n(S)})

, l.

I
f.

!
f

t

4.18

(-S,i i·
i: as .x : ,].

E {1, 2,., .,n(S)}) = 0.

. -s i .
But the matchings {x' : i E {1, 2, ... ,n(S)}} are by

hypothesis linearly independent so

(4.3.27) for all i E {1, 2, ... ,n(S)},

This together with (4.3.25) proves (4.3.23),

Let k EC. We define a np matching

B met by

k
X as follows.

Let v and w be the nodes of k, let be

the np matching of B deficient at v. There must be some

edge 9., £ E(B) n o(w) such that -v
xJ/, = 1, we define a np

matching ·k
X Of G x R[V] by

(4.3.28)
'k
x. -

J

Let T £ v2. If

matching of G [T] . If

then let {v} - 1/J (t) n

G[T] deficient at

(4.3.29)

v.

k
X. -

J

-v for j E(B) { J/,}, x. E -
J

0 for j £ (C - {k}) u {t},

1 if j = k.

~k(o(T)) 0 let -T be = we X any

there is o(T) such that •k t £ xt

T and let -T be matching X a np

Now define k by X

for j £ E(G x R[V]),

xJ for j E y(T) for TE V
2

,

np

= 1

of

k
Let. x3 = {x: k EC}. Every x E x

3
is a np matching of

G and for any SE v2 , xjy(S) is a np matching of G[S],

Therefore by (4.3.14),

r
'

f

I
l
t­

r

I

(4.3.30) xlE(D) is a np matching of every

weak block D of G[S] for every s £ v2 for every x s x
3

.

Moreover, by (4.3.17), (4.3.2l), (4.3.28) and (4.3.29) for

each k e: C, k
X is the unique member of such

that xk ~ 0, so by (4.3.23),

(4.3.31) x1 u x 2 u x 3 is linearly independent.

Now let D be a weak block of G[S] such that D is

not a weak block of G for some Se: v
2

• First observe

that since bs = 1 by (3.3.9) S must be a terminal node

of B and consequently I "B (S) I ,; 2. As before we let

G' - (V, E C, wlE - C). We distinguish two main cases.

Case 1. D is not a weak block of G'.

Case la. An edge h of oB(S) is incident with a

node w £ V(D) for which b > 2 • (See Figure 4. 1) .
w

Since b ;, 2' w is not w a strong cutnode of G[S] and so

every edge of G[S] incident

s
x be a np matching of S

there is some £ e: E(D) n o(w)

{t} - w(h) - {S} and let u

with w is an edge of D.

deficient at w. Since b
w

such that Let

be the node of V(B) {S}

by h. If u e: v1 , then u = t, if u e: v
2

then t e: u.

Let x be the np matching of B deficient at u.

(4.3.32) For each Te: v
2

- {u} let j(T) be

the unique edge j of oB(T)

T x be a, np matching of G[T]

{v(T)} - w(j(T)) n T.

such that X = 1
j

and let

deficient at v(T); where

Let

;, 2

met

4.19

r
i
l

r

r
' ,,
!

FIGURE 4.1

s
weak blocks

I

FIGURE 4.2

I \
I \

b :2:2
w

/

'·µ.

/
/

/
/

t,u

/
/

/

/
/

/

/
/

/

I

I
I

B

!)
/

I B
I

4.20

If u E Vz then

(4.3.33) let

deficient at t.

u
X be a np matching of

We now define a np matching D
X of G by

s for j y (s) {i}, x. E -
J

s
1 if j i, xi - =

0 for j E C

D for j E(B) { h} ' x. - x. E -
J J

xh + 1 if j = h

T for j y(T) for T v2 x. E E
J

It can be seen that

t,, 21

G[u]

- { s } .

(4.3.34) x
0

jE(A) is a np matching of each weak

block A of G [T] for T E v2 unless A = D and

(4.3,35) xD(E(D)) b(V(D)) - 3 = 2

Case lb. ~i~=--'l=----=f~o~r=---~e~v~e~rc..,_Y_:cn~o~d~e~~i=-~E--'V-(~D'-'-)~~m~e~t=-~b~y'--a~n

edge of B. (see Figure 4. 2) Then by our case 1 hypothesis

there must be distinct v, w ES incident with edges h,

k E oB (S) respectively and every path in G[S] from v to

w must contain an edge of D. Since D is a weak block of

G[S] there is a unique node p EV(~) which is the first

node of D in any such path. If p ~ v then p is a

strong cutnode of G[S] and hence is not a cutnode of D.

I
1'

\!

I!

If p = V then b = 1 by our Case lb hypothesis so p p

cannot be a cutnode of D. Thus there is a component H

of G[S - {p}] such that V(D) · {p} = V(H). Let

4.22

H = G[V(H) u {p}], let K = G[S - V(H)]. (K may consist of

just the single node p.) Then V(H) u V (K) = s and

V(H) n V (K) = {p}. Clearly the weak blocks of G[S] are

weak blocks of H and K so by (4.3.7), H and K are

shrinkable. Moreover, V E V (K), w E V(H) and p ,, w.

Let H
be matching of H deficient Since X a np at w.

there is !l E (D) n Ii (p) such that H 1 . p ,, w, some E
X !l =

K Let x be a np

{t} = ~(k) - S, let

matching of K deficient at v. Let

u be the node of V(B) - {S} met by

the

k. Let x be the np matching of B deficient at u.

Since /oB(S)/ = 2 and since S is a terminal node of B,

S must belon~ to the odd polygon of B. Therefore h is

the first edge in a path of length two from a node in the

polygon to u. Therefore by (3.3.12) and (3.3.5) xh = 1

and 0. For each T v2 {u} define T
in xk = E - X as

(4.3.32) and if v2 then define u
in (4.3.33). u E X as

Now define D
by X

H for j E(H) { !l} x. E -
J

0 for j E { !l} u C,

K for j E(K) x. E
D J

x. -
J x. for j E E(B) - {k}

J

1 for j = k

xI for j E y(T) for TE v
2

-· {s}.

i
Ii
'II

I
' i

'
I. ,.
l

4.23

It can now be seen that D
x is a np matching of G

satisfying (4.3.34) and (4.3.35).

Case 2. D is a weak block of G'. (See Figure 4.3).

Let W be the set of nodes of S incident with edges of B.

There must be a node p E V(D) which is the first node of

D in any path in G[S] from a node in W to a node in D,

otherwise D would not be a weak block of G'. p is a

strong cutnode of G[S] unless w = { p}. Since D is not

a weak block of G, there is some edge e E C n o (S) such

that where {q} - \f! (e) n s, there is a path in G[S] from

q to a node of B which does not contain p. Let H be

the component of G[S - { p} l which contains q, let

H - G[V(H) u { p} l , let K - G[S - V(H)J. (If w = {p} then

K may simply consist of p.) Let u be the node of

V(B) - {S} met by e and let X be the np matching of B

deficient at u. Let H
be X a np matching of H deficient

There be 2 E(D) 0 (p) such that H
1. at q. must E n xi =

Let K be X a np matching of K deficient at the node

w E w met by an edge h E E(B) for which xh = 1. For each

T v2 {u} define T
in (4.3.32). If v2 then E X as u E

let {t} \f! (e) s and define u
in (4.3.33). Now - - X as

define D
follows. X as

H
for j E(H) {2}, x. E -

J

0 for j E {£} u C - {e},

K
for j E (K), x. E

D J
x. - for j E(B), J X; E

J

1 for j = e,

1'
for j y(T) for T v2 { s}. x. E E -

J

r
4.24

FIGURE 4.3

I

I B

/
/

/

/
/

4.25

It can be seen that
D

X is a np matching of G satisfying

(4.3.34) and (4.3.35).

Let z be the set of all weak blocks of G[S] for all

s £ v2 and let Z I = {D E z: D is not a weak block of G. }

Let X4 {x
D

D Z I } • Then D satisfies (4.3.34) and - : E X

(4.3.35) for every Therefore by lemma (4.3.1),

(4.3.18), (4.3.22), (4.3.30) we have that

x
1

u x
2

u x
3

u x
4

is linearly independent.

(4.3.36)

= lv
1

1 + E(ly(s)I - S(G[SJ) + 1: s 2 v 2) +

IC I + I z I I

= lv1 1 + lv 2 1 + r(h(s)I: s 2 v 2) +

lcl - <lzl - lz'll

Since V
1

u V
2

= V (B) and IV (B) I = IE (B) I · (by (3. 3. 7))

and since u y(S) u E(B) u C is a partition of E,
S2V

2

(4.3.37)

Since the weak blocks of G are the members of Z - Z'

together with the weak block containing E(B), we have

(4.3.38) lzl - lz' I S(G) - 1.

Thus (4.3.36)-(4.3.38) co~bine to give

and the theorem now follows by induction.D

r

r.
!

!.
i

!
!

f

r
!
t
f

r

l

We now are able to give the dimension of all faces of

P(G, b) obtained by making one of the inequalities (4.0.3)

an equation.

4.26

(4,3.39) Theorem. Let F = {x E P(G, b): x(y(S)) = qs}

for some

Let z

0
s e: Q • Then dim(F) = jEJ-

Proof. First we show

S(G [S)) •

(4.3.40) dim(F) ,; JEJ - S(G[S)),

be the set of weak blocks of G [S) • Since s E Qo,

G[S) is shrinkable so by (4.3.7) each D E z is shrinkable,

Let w - {V (D): D E Z}. Then w C - Qo. By (4.3,10), any

X E P(G, b) that satisfies x(y(S)) = qs will also satisfy

(4,3.41) x(y(T)) = qT for all TEW.

The inequalities (4.0.1)-(4.0.3) can be represented by

Ax,; d where and d
<f) (EuVuQ 0)

E II'\.. are

appropriately defined. By (4.3.41), if I is the equality

set of F (see section 2.1) then W c I. By (4.3.5) the

rows of AW are linearly independent, so rank(A 1) ~ JwJ

and hence dim(F) ,; JEI - lzJ which proves (4.3.30),

We now show

(4,3,42) dim(F) ~ JEI - S(G[S))

by displaying !El - S(G[S]) + 1 linearly independent members ._,

x of P(G, b) which satisfy

(4.3.43) x(y(S)) = qs·

4.27

By (4 • 3 • 15) G [S] has a set x1 of ly(S) I - S(G[S])+l

linearly independent
• A

x z x1 to a matching

(4.3.44) X.
J

np

X

matchings. We extend each

of G by letting

x. for j e y(S)
J

0 for j e E - y(S).

Let x1 be the set of matchings thereby obtained, each

x e x1 satisfies (4.3.43).

Let k e o(S), let {v} = ~(k) n s. Let x be a np

matching of G[S] deficient at v and let xk be defined by

x. for j e
J

(4.3.45) k
1 for j x. - =

J

0 for j e

k e y(V - S) let X be any For any

and let X
k be defined as in (4.3.45).

Each k
X

and since by (4.3.44) and (4.3.45)

x of x1 u x2 for which xk ~ O,

y(S)

k

E (y (S) u { k}) .

np matching of G[S]

Let

satisfies (4.3.43)

is the unique member

x1 u x2 is linearly independent

Since Jx1 u x2 1 = !El - S(G[S]) + 1, (4.3.42) now follows.

Combining (4.3.40) and (4.3.42) proves the theorem.O

Theorem (4.3.39) specializes to the following.

(4.3.46) Theorem. x(y(S)) ~ 9
8

for Se QO gives

a facet of P(G, b) if and only if G[S] contains no strong

cutnode.

We call such facets blossom facets of P(G, b). Notice

that since nonnegativity facets of P(G, b) all contain

h ' 0 £®\· E d h t e point \\'\.. an since neit er degree constraint

facets nor blossom facets contain 0, nonnegativity facets

are different from blossom facets and degree constraint

facets. For any i £ V and any S £ Qo, o(i) is the edge

set of a tree and y(S) contains the edge set of a polygon.

Therefore the equations x(o(i)) = b
2

and x(y(S)) = q
8

are distinct. Thus no degree constraint facet of P(G, b)

is a blossom facet of P(G, b). Consequently

(4.3.47) the facets of P(G, b) are partitioned

into nonnegativity facets, degree constraint facets and

blossom facets.

Finally, by making use of (4.3.46) and (4.2.1) we obtain

the following.

(4.3.48) Theorem. For any Sc V such that b(S)

is odd, x(y(S)) s q
8

gives a facet of P(G, b) if and only

if

(4.3.49)

no strong cutnode,

or

(4.3.50)

Isl > 3, G[sl is shrinkable and contains

there is i £ S such that o(i) = y(S),

_£i-=---..9.s and i satisfies (4.2.2) or (4.2.3).

Proof. Let F = {x £ P(G, b): x(y(S)) = q
8
}. If F

is a nonnegativity facet of

b(S} = 1 and hence Is I = 1.

P(G, b) then q = 0 s and so

Therefore since G has no

4.28

r 4.29

loops, y(S) = ¢. Thus every member of P(G, b) satisfies

x(y(S)) = qs so F is not a proper face of P(G, b), a

contradiction. Therefore F is not a nonnegativity facet

of P(G, b).

Consequently F is a facet of P(G, b) if and only if

F is a degree constraint facet of P(G, b) or a blossom

facet of P(G, b). By (4.2.1) F is a degree constraint

facet of P(G, b) if and only if (4.3.50) holds, by (4.3.46)

F is a blossom facet of P(G, b)

holds. The theorem follows.D

if and only if (4.3.49)

In the case of 1-matchings, (4. 3. 48) can be specialized

as follows.

(4. 3.51) Theorem. For any Sc V such that

Isl > 3, x(y(S)) < l/2(lsl - 1) gives a facet of P(G, 1)

if and only if

(4 • 3 • 5 2) .:::Gc,[,_:S::...,_l _ _:i:..:s:........:::S..::h:.:r:..:i:.:n=k.:::a:.:b:..:l:._e=-.:::ac:.n:..:d:.......n=o-"n:..:s:.:e::.p=ac.::rc:a:.:b:..l=e •

(4.3.53) Isl = 3 and then is i ES such that

8(i) = y(S) and i satisfies (4.2.11) or (4.2.12).

4.4. b-critical Graphs

In this section we give two characterizations of shrinkable

graphs and in doing so we give two more characterizations of

the blossom facets of P(G, b). We also show that the blossom

algorithm can be applied to a graph G = (V, E, •) for

which b(V) is odd so as to determine whether or not G is

shrinkable.

4.30

We say that G = (V, E, ~) is b-critical if there is

a np matching V
X of G deficient at V for each VE V.

This of course implies that b(V) is odd. In the case of

1-matchings we have G is 1-critical if for any vs V,

G[V - {v}) has a perfect 1-matching

If G is b-critical, and hence has a np matching, then

D(G, V)

D(G, V).)

1. (See (3.7.9), (3.7.10) for the definition of

-
We saw in (3.10.33) (Tutte's Theorem) that G has a

perfect b-matching if and only if for every X c V

(4.4.1) b(X);,, /cl(X)/ + b(u(Co(X)))

where c 0 (X), c 1 (X) are as defined in (3.10.20), (3.10.21).

The inequality (4.4.1) is commonly called Tutte's condition.

If b(V) is odd then clearly if we take X =$,we will violate

Tutte's condition. However our next theorem shows that if

G is b-critical if and only if G is connected and X = $

is the only subset of V which violates Tutte's condition.

It also shows that G is b-critical if and only if G is

shrinkable.

(4.4.2) Theor.em. Let G = (V, E, ~) be a graph,

let b = (b.: i EV) be a vector bf positive integers.
l.

following conditions are equivalent.

(4.4.3) G is shrinkable;

(4.4.4) G is b-critical;

The

(4 •. 4.5) G is connected, b(V) is odd and every

4.31

nonempty X c V satisfies (4.4.1) (Tutte's condition).

Proof. (4.4.3) implies (4.4.4). This is simply (3.3.21).

(4.4.4) implies (4.4.5). If G is b-critical then

b(V) is odd. Suppose that H and K are distinct components

of G. Then each must by b-critical so b(V(H)) and b(V(K))

are odd. Let X be a np matching of G deficient at

V E V (H), Then xlE(K) is a perfect matching of K and so

b(V(K)) is even, a contradiction. Therefore G is connected.

Let X be any nonempty subset of V and let v EX.

Let x be a np matching of G deficient at v. For any

i E c
0

(x) we have

(4.4.6) x(o(i)) b .•
l.

For any SE c1 (X) we have

(4,4,7) x(o(S)) ~ 1

since b(S) is odd and x(o(i)) = b. for all i ES.
l.

x(o(i)) $ bi for all i EX we have

(4.4.8) x(o(X)) $ b(X).

Since

Since u o(i) u u o(S) parti.tions a subset of
{i}EC

0
(X) SEC 1 (X)

o(X), we have

(4.4,9) E(x(o(i)): {i} E C0 (X)) + E(x(y(S)): SE C1 (X))$

x(o(X)).

Combining (4.4.6)-(4,4,9) gives

r

l r
r
l
[

4.32

so X satisfies (4.4,1).

(4.4.5) implies (4.4.3), Suppose that b(V) is odd,

G is connected and G is not shrinkable. If we apply the

matching algorithm to G and attempt to find a perfect

matching, the algorithm must terminate with a Hungarian forest

F with respect to a matching x in a graph G obtained

from G by shrinking a set of disjoint shrinkable subsets

of G. Since G is connected and nonshrinkable, F must

have a nonempty set X of odd nodes, by (3.7.5) each of these

is a node of G. Let w
0

be the set of even nodes of F

which are nodes of G, let w1 be the set of even pseudonodes

of F. By (3.7.3), (3.7.4), W0 = c0 (X). By (3.7,3),

(3.7.4) and (3.3.19), w1 = c1 (X).

s e w1 we have b(W1) :,; lc1 (X) I,
Since bs = 1

By (3.6.12),

b(X) < b(W
0

) + b(W1)

:,; b(u(c
0
(x))) + lc

1
(x)I

for every

so X violates (4.4.1). Since X ~ ~. the result follows. D

If we omit the connectivity condition from (4,4.5) then

it no longer implies (4.4,3) or (4.4.4) for general b. If

G is the graph represented in Figure 4.4 then b(V(G)) = 11

and every nonempty X c V satisfies (4.4.1) but G does

not have a np matching and so is not b-critical.

,, ,,
'

!\

r
I FIGURE 4.4

3

3

However if b = 1
i

2

0

3

for all i EV

The number beside

each node is the

degree constraint

of the node.

and if Iv I is

odd and if every nonempty X c V satisfies (4.4.l) then G

is connected, for suppose G is not connected. Then G

must have an odd number k of components H for which

4.33

jV(H) I is odd. If k = 1 then G must also have a component

K for which tv<K) I is even. Let v E V(K) and let

X - {v}. Then b(X) = jxj = 1 but G[V X] has at least

two components with an odd number of nodes so (4 .4 .1) fails

for x. If k " 3 then let X - {v} for any node V of

G. Then G[V - X] has at least two components with an odd

number of nodes but b (X) = 1, again contradicting (4.4.1).

Thus when considering 1-matchings we obtain the following

specialization of (4.4.2).

(4.4.10) Theorem. Let G = (V, E, ~) be a graph,

let every node of G have a degree c6nstraint of 1. Then

the following are equivalent.

I
' ,,
I

'

4.34

(4 .. 4.11) G is shrinkable

(4.4.12) G is 1-critical

(4,4.13) Iv I is odd and for every nonempty

X c: V, the number of com:eonents H of G[V - X] for which

IV {H) I is odd is no greater than IX I .

The blossom algorithm of chapter 3 provides an efficient

method for determining whether or not a graph G satisfies

the equivalent conditions (4.4.3)-(4.4.5), For if we apply

the algorithm to a graph G = (V, E, w) for which b(V) is

odd then, as noted in the proof of (4,4,2), it will either

find a shrinking family of G or else will terminate with

a Hungarian forest F and a node i e V which is not an

even node of F or contained in an even pseudonode of F,

By (3.7,38) in theorem (3.7,36) G can·have no np matching

deficient at i so G is not b-critical and violates

(4.4.3)-(4.4.5).

Finally notice that if b(V) is odd, then for any X c: V,

b (X) and lc
1

(X)I + b(u(c
0

(X))) must always have opposite

' : parity so we can never have equality in (4,4.1), Thus if
r-.

' I
[
' !

desired we could replace (4.4.1) with

(4.4.14) b(X) > lc1 (x)I + b(u(c 0 (x)))

in (4,4.5).

Now we can apply (4.4.2) to (4.3,46) and obtain the

following two characterizations of the blossom facets of

(4,4.15) Theorem. For any set S such that

P(G, b).

b (s)

r
' f
i
I
[:

' I

l

is odd, x(y(S)) s qs gives a blossom facet of P(G, b)

if and only if

(4,4.16) Isl ;e 3, G[S) is b-critical and has no

cutnode v for which b = 1.
v--

4.35

(4.4.17) Theorem. For any set S such that b(S)

is odd, x(y(S)) s 9s gives a blossom facet of P(G, b) if

and only if

(4.4,18) b(S) is odd, Isl > 3, G[S) is connected

and has no cutnode v for which b = 1 and for every
V

nonempty X 5 .£....

b(X) > b(u(c
0

(x u (v - s)))) + lc
1

(x u (V - s))I

We are now able to combine theorems (4.1.2), (4.2.1)

and (4.3,46) to obtain the following.

(4,4.19) Theorem. The following is the minimal

subset of the inequalities (3.4.2)-(3,4.4) which is sufficient

to define P(G, b).

or (4.2.3)

x. > 0 for all j EE
-J

x(o(i)) s bi for all i EV satisfying (4.2.2)

x(y(S)) s qs for all SE QO which satisfy the

equivalent conditions (4.3.49), (4.4.16) or (4.4.18).

As we discussed in section 3.10, we can now use linear

programming duality to obtain a "best-possible" min-max

theorem. Let WE V contain exactly one node of each balanced

r 4.36

edge of G. Let * V - {i £ V: i satisfies (4.2 . .3)} u w,
* Q - {S £ Q: s satisfies the equivalent

conditions (4.3.49), (4.4.16) or (4.4.18)}.

(4.4.20) Theorem. Let G = (V' E, tj,) be a graph,

let. b (bi: i £ V) be a vector of positive integers and

let C = (C j : j £ E) be an arbitrary real vector. Then the

maximum value of c · x for any matching x of G which

satisfies

x(o(i)) $ b. for all i £ V
l.

is equal to the minimum value of

where

E (b . V. :
--i-"'-i

for all j £ E.)

* * i e v) + E(g
8
y

8
: s e Q)

* Yi> 0 for all i £ V,

* Ys > 0 for all S £ Q ,

* * .,_y_,('"",P__,(,..,j-"-)-"-)--'+----"'y-'('-'Q'------'(,__j'-')'--')c.......:>::.......::.c j f o r a 11 j £ E.

* * * * (1/i (j) - tj, (j) n V Q (j) - { S £ Q j £ y (S)}

This theorem is best possible in the sense that if

* * either V or Q were replaced by a smaller set then the

min-max relationship of (4.4.20) would not hold for all c e'IR.E.

By combining (3.10.23) and (4.4.2) we can obtain the

following strengthenings of Tutte's theorems (3.10.33) and

(3.1.0.35).

(4.4.21) Theorem. G = (V, E, tj,) has a perfect

4.37

matching if and only if for every X c V such that

G[S] is b-critical for every S £ c
1

(X)

we have

Proof. If G has a perfect matching then by (3.10.23),

for any X c V we have

l/2b(V) + l/2(b(X) - lc1 (x)I - b(u(c
0

(x))) ;e l/2b(V)

so b(X) ;e lc 1 (x)I + b(u(c
0
(x))).

Suppose G has no perfect matching. Then

l/2b(V) + 1/2 min{b(X) - lc1 (X)I - b(u(c
0

(x)))} < l/2b(V) by

(3.10.23). By (3.10.23a) we can choose a set * X which

minimizes b(X) - lc 1 (x)/ - b(u(c
0

(X))) and which satisfies

* 0 * * c 2 (X) = q, and c1 (X) :: Q • Then b (X) < I c
1

(X) I +

b(u(c0 (x*))) and since c
1

(x*):: QO = {s c V: Js/ > 3 and

S is a shrinkable subset of {V} it follows from (4,4,2)

* that G[S] is b-critical for all S £ c
1

(X).0

If H is a component of G such that /V(H)/ = 1 and

b = 1 where {v} = V(H) then H is 1-critical. Therefore
V

(4,4.21) becomes in the case of 1-matchings.

(4,4.22). Theorem. G = (V, E, 1/1) has a perfect

1-matching if and only if for every X c V such that G[V - X]

consists of 1-critical components, the number of components

of G [V-X] is no greater than IX I.

r

'

l

We close this section by observing the relationship

between b-critical graphs and graphs having large numbers

of linearly independent ''best possible'' matchings. For any

b = (b.: i EV) of
].

4. 38

graph G = (V, E, ~) and vector

positive integers such that b(V) is odd, the largest number

of linearly independent np matchings of G that we could

hope to find is /E/, since each such matching is a vector

If E = $ then G trivially has [E/ = 0 linearly

independent np matchings. We show in theorem (4.4.23)

that if E ~ $, then G has linearly independent np

matchings if and only if G is one of three sorts of graphs.

Let K be a connected graph for which there is some

v E V(K) such that oK(v) = E(K) and let

be a vector of positive integers such that

We call K ab-star.

b = (b. : i E V (K))
].

b = b(V(K) - {v})-1.
V

(4.4.23) Theorem. If E ~ $ then G = (V, E, ~)

has linearly independent near perfect b-matchings if

and only if

(4,4.24) G is b-critical and has no strong cutnode

or

(4.4.25) G is ab-star

or

(4.4.26) G has two components, one being a balanced

edge (as defined in 4.2) the other cons;sting of a single

node v for which b = 1. -------------v--

I . '

r
I

4.39

Proof. If b (V) is even then G cannot have a

np matching nor can G satisfy any of (4.4.24)-(4.4.26).

Hence we assume b(V) is odd. Then G has linearly

independent np matchings if and only if x(E) s 1/2(b(V) - 1)

gives a facet of P(G, b). By (4.3.48) this is true if and

only if one of (4.3.49) or (4.3.50) holds. In view of (4.4.2),

(4.3.49) is equivalent to (4.4.24). Moreover (4.3.50)

is easily seen to be equivalent to one of (4.4.25) or (4.4.26)

holding, completing the proof.O

In the case of I-matchings, (4.4.21) specializes as

follows.

(4.4.27) Theorem. If E ~ ~ then G has

linearly independent near perfect 1-matchings if and only

if

(4.4.28) G is I-critical and nonseparable

or

(4.4.29) IV I = 3.

4.5 Vertices of Matching Polyhedra.

In this section we characterize the matchings of G

which are vertices of P(G, b). For the case of 1 matchings

this problem is rather simply solved; every matching

belonging to P(G, 1) is a vertex of P(G, 1) . For

define C = (C • :
J

j e: E) by

1 if 0 1 x. =
C •

J -
J -1 if x9 = 0

J

0
X

if we

I

11

'

r
I
'

C

[

f
[

then 0
X

maximizes

is clearly the unique member of P(G, I) which

C • X for XE P(G, b). Therefore by (2.4.1)

0
x is a vertex of P(G, b).

However in the general b-matching case, the problem

4.40

becomes less trivial. In fact we show that the vertices of

P(G, b) are precisely the matchings produced by the blossom

algorithm of chapter 3.

by the blossom algorithm

for any ' X

Thus the set of matchings produced

is as small as possible, by (2,4.5)

is maximized over P(G, b) by a

vertex (and perhaps some other members of P(G, b)); by

(2.4,1) every vertex of P(G, b) is the unique member x

of P(G, b) maximizing ex for some c E"lt\.E,

(4.5.1) For any graph G = (V, E, ~) and any

x·e '(RE we let G+(x) be the spanning subgraph of G whose

edges are those edges of G for which Thus

where E+ = {j E E: X. > O}.
J

Let H and K be subgraphs of a component of G, Let

v EV. We say that IT is a path in G from v to H if

IT is a path in G from V to some w E V (H) and V(H) n

V (IT) = { V}' We say that IT is a path in G from H to K

if IT is a path from some V E V(H) to K and V(H) n

V (IT) = {v}, By the distance in G from H (or v) to K

we mean the length of the shortest path in G from H (or

v) to K. Clearly no edge of H or K could be in a path

from H to K.

4.41

FIGURE 4.5 Sample Vertex of P(G,b) ..

deficiency 1

Edge j •. -such.that x. > 0 . -~
J

Edge j such that x.=l
J

Node at'···which.;-matchiorng deficient ®

(4,5.3) Theorem. (See Figure 4.5) xO E P(G, b)

is a vertex of P(G, b) if and only if each component H

satisfies the following:

(4.5.4)

(4.5.5)

is deficient;

H

H

contains no even polygon;

0 contains at most one node at which x

4.42

(4.5.6) if H contains more than one odd polygon

0 then there is an isthmus j of H for which x = 1 ==::.._=:..;:;_:c..::_;;:..::..._:::.::::....---=.c:c..::.===--"'----=-=---'=--=-==-===-=j in

any path in H joining any two of these polygons;

(4.5.7) if H contains a node v at which 0
X

is deficient and some odd polygons then either v has

deficiency 1 or else for any odd polygon P contained in H

~t~h~e~rc...::e.......:i~s=-=a~n__:i~s"--=-t~h~m~u~s=-_.,j~(~P'-'-)-~o~f=---"H'--~f::..::o~r-'w~h::..:::i~c~h=--x~~(P)-=-=1-~i~·n::::_

any path in H from v to P.

Proof. We first prove the necessity of (4.5.4)-(4.5,7)

by showing that every matching produced by the blossom

algorithm satisfies the conditions of the theorem. This

will prove the necessity for by (2.4.1) for any vertex 0
X

of P(G, b) there is some co E '\R. E such that 0
X is the

unique member of P(G, b) which maximizes 0
C x for

x E P(G, b), If we use the blossom algorithm to maximize

0
C X for 0

x E P(G, b), x must be the matching obtained.

= Since we are maximizing over
,;;

P(G, b), V = V and V = cj,'

Therefore the blossom algorithm must.terminate in step 11,

If x, R and G = (V, E, ~) are defined as at the start

of.step 11, and x = xjE then by (3.8,13)-(3.8.16), each

4.43

H f G-+(-x) component o satisfies (4.5.4)-(4.5.7). We

show that the operationsof Step 12 preserve this property.

It is easily seen that

(4.5.8) if B is a blossom and x is a np

matching of B then each component H of B+(x)

(4.5.4)-(4.5.7).

satisfies

Suppose x, R and G = (V, E, ~) are such that each

H f G-+(x-) component o satisfy (4.5.4)-(4.5.7) where

x = x/iL Suppose we perform a cycle of step 12. This will

involve executing Step 12c or·Step 12d = since V = <j, • Let

s, B (S) and G•
'

be as defined in ·step 12b.

Suppose we perform Step 12c. Then there is a unique

-j E o(S) for which X, =
J

1 and xk = 0 for all

k E o(S) - { j } • We let V be the node of B(S) met by

j and x is the np matching of B(S) deficient at v.

Then

H of

j is an isthmus for which

B(S)+(;) containing v

x = 1 joining the component j

to the component K of

G+(x) containing j. If x' is defined as in step 12c, x'

will not be deficient at any node i E V(B(S)) so using (4.5.8)

we see that each component of G'+(x' /E')

(4.5.7).

Suppose we perform Step 12d. Then

satisfies (4.5.4)-

X = 0
j

for all

j E o(S). In ~tep 12d we defined x to be a np matching

of B(S) deficient at r E. B(S). Then where x' is as

defined in.Step 12d, the components of c'+(x') are precisely

the components of B(S)+(~) together with the components of

G+(x). Therefore by (4.5.8) it follows that (4.5.4)-(4.5.7)

I,'

i

' I
I

4.44

are satisfied.

Thus step 12 preserves properties (4.5.4)-(4.5.7)

for each component H of G(x), suppose G and x are the

last such graph and matching defined in step 12. Then G

is a spanning subgraph of the original graph G and x. = 0
J

for all j E E(G) - E(G). Therefore each component H of

G+(x) satisfies (3.5.4)-(3.5.7) and the necessity of our

conditions is proved.

In (4.5.21) we describe a procedure which expresses any

matching x E P(G, b) for which a component H of G+(x)

violates (4.5.4)-(4.5.7) as a convex combination of matchings

x1, x 2
E P(G, b) - {x}. This then provides an alternative,

more direct proof of the necessity of (4.5.4)-(4.5.7).

Now we prove the sufficiency. Suppose i E P(G, b) is

a matching such that every component H of G+(i) satisfies

(4.5.4)-(4.5.7). We will show that there are Jc E, W ~ V

and R c QO such that x E 'RE satisfies

(4.5.9) xj = 0 for all j E J

(4.5.10) x(o(i)) =

(4.5.11) x(y(S)) =

b.
1

for all

for all

i E W

S E R

if and only if x = x, for then it will follow that {i}. is

a single element face of P(G, b), that is, ·x:-··±s"" a- vertex.

Let J = { j E E: xj = 0}, let W = {i E V: ;;'.(o(i)) = b . } •
1

We now show that it is possible to define R so ~hat x will

be the u~ique member of '\R. E satisfying (4.5.9)-(4.5.11).

b d b . G+ (x-) . We prove yin uction on the num er of polygons in

is a forest and thus contains no polygons, let

4.45

R = ~. By (4.5.5) each tree T in G+(i) has at most one

node i not belonging to W. Therefore by (3.1.11) x is

the unique member of 1R. E satisfying (4.5.9) and (4.5.10),

Suppose the result true for graphs G and matchings

X such that G+(x) contains fewer polygons than + -G (x) ,

and suppose G+ (x) is not a forest. Let H be any component

of G+ (x) which contains a polygon. If H has a node r

at which x is deficient then we designate r as the root

of H, if H has no such node then designate any polygon

C contained in H as the root.

If H is rooted at a polygon C and if C is the

only polygon contained in H then by (3.1.16), if x is

b "° E any mem er of '"- satisfying (4.~.9) and (4.5.10) then

xjE(H) = xjE(H). If we let G' = G[V - V(H)] and let

x' = ijE(G)

R:: {SE QO:

then by our induction hypothesis there is a set

solution to

Sc V - V(H)} such that i• is the unique

x = 0 for all j E J n E(G'),
j

x(ll(i)) bi for all i E W n V(G'),

x(y(S)) for all SER,

Therefore ~ is the unique solution to (4.5.9)-(4,5.11)

taking R so defined and the result follows by induction.

Assume that H either contains at least two polygons

or else contains a polygon and a node at which x is deficient.

Suppose that no path in H from a po~ygon of H to the root

of H contains an isthmus j of H for which

H contains distinct polygons P and P'

xj = 1,

then there must

If

I.

i
I

I

I
I,
I
'

l

be a path in H from P to P' containing no isthmus j

of H for which xj = 1, contradictory to (4.5.6). Hence

H contains a unique polygon P and by (4,5.7) the root

r of H must be a node at which x has a deficiency of 1.

Thus

4.46

(4.5.12) H is a blossom, xJE(H)

of H deficient at r.

is a np matching

On the other hand, let P be a polygon of H for which

every path in H from P to the root r of H contains

an isthmus j of H for which x. = 1, and for which the
J

distance in H from r to P is as great as possible. Let

TI be a path in H from P to r. TI may contain edges

of other polygons but by (4.5.6) there is an isthmus j of

H for which X, = 1
J

in TI before any edge belonging to

a polygon of H. Let k be the first isthmus of H in TI

for which x:k = 1. Let V be the end of k furthest from

the root of H. If we delete k from H we obtain

components, one of which, B, contains P and v.

easily verified that

two

It is

(4.5.13) B is a blossom, xjE(B)

of B deficient at v.

is a np matching

If (4.5.12) applies, let B = H and v - r. Now

whichever case applies, if x E 1R. E satisfies (4.5.9),

and

(4.5.14) x(o(i)) = b.
].

for

(4.5.15) x(y(V(B))) = qV(B)

i E V(B) - {v},

i

;1
II

,]

11

I

r
r
'

4.47

Then- since x(y(V(B))) = l/2E(x(o(i)): i s V(B)) and

qV(B) = l/2(b(V(B)) - 1)

Therefore by (3.1.16)

it is easily seen that x(o(v)) =

(4.5.16) xjy(V(B)) xh<v<B)).

Let G' = (V', E', •') be the graph obtained from G

by shrinking V(B). Let x 1 = xjE', Clearly each component

H of G
1

+(x 1
) satisfies (4.5.4)-(4.5.7) and G

1

+(x 1)

contains one fewer polygon than + -G (x) • Therefore by our

b -1.
V

induction hypothesis there is a set R' of shrinkable subsets

of G' such that

(4.5.17)

(4.5.18)

(4.5.19)

if and only if X =

if B "' H then W'

E'
X E '1i_ satisfies

X, = 0 for j E J
J

x(oG I (i)= b. for
1

x(yG 1 (S)) = qs for

x' , where if B = H

- w n v• u {V(B)}

n E'
'

i E w•

all

then

(and

Now notice that if X E
I\(E satisfies

all i E V(B) and (4.5.15) then

x(o(V(B))) = 1 = bV(B) .

s E R'

w• - w n VI '

bV(B) - 1) .

x(o(i)) b. for
1

Thus for any X S 1R. E which satisfies (4.5.9), (4.5.10) and

(4.5.15), xjE' satisfies (4.5.17) and (4.5.18).

For any S s R' such that V(B) s S, let

C(S) = (S -- {V(B)}) u V(B). Then c(S) s QO (since S was a

shrinkable subset of G 1
). Moreover (4.5.15) and

x{y(C(S))) = qc(S) imply x(yG 1 (S)) = q 5 .

I,
1,1

:I

4.48

Let R ={SER': V(B) ES}, Let R = {V(B)} u (R - R') u

{~(S): SER'}, Then if x E ··[R_E satisfies (4.5.9)-(4.5.11)

then xjE' satisfies (4.5,17)-(4,5.19) so xjE' = xjE'.

Moreover x satisfies (4.5.14) and (4.5.15) (and (4.5,9))

so (4.5.16) holds. Therefore x E 1K.E satisfies (4.5.9)-

(4.5.11) taking R as defined above if and only if x = x

and the theorem now follows by induction.D

As a result of this theorem and theorem (2.4.14) we have

the following result.

(4.5.20) Theorem. Let x E P(G, b). There is a

s e t X s ~P_(~G~, --'b'-')'----'s-'u'-c'-h"---"t-"h~a'-t'---"'f-"o-'r'---e=a...cc...ch'----=x'---'E:......;Xc.c...'---'e'-v'-e=r.,_y--'c'-o'-m=p-'o-'n'-e'-n~t

H of G+(x) satisfies (4.5.4)-(4.5.7), jxj ~ jEj and x

is a convex combination of the members of X.

We next describe a procedure which will express any

matching x
0

E P(G, b) which is no~ a vertex of P(G, b)

a convex combination of two different matchings which are

simpler in a certain sense.

(4.5.21) Matching Simplification Algorithm.

as

Step 1. contains no even polygon then go to

Step 2. Otherwise let P be an even polygon, let v E V(P)

and let T be a track from v to v induced by P. Let

J be the set of even edges of T, Let

;>. - . { 0 min x.:
J

j E J}

er . { 0 j E(P) J}. - min x. : E -
J

Then >., er are positive'integers. Define z E '\R.E by

r

t
[

!

~
I
r
~·

Then

z.
J

(4.5.22)

1 if j e: J

-1 if j £ E(P) - J

0 if j £ E - E(P).

0
X

A O o 0
A+o (x +oz)+ A+o (x - Az).

4.49

0
X is a convex combination of different matchings Therefore

0
X + OZ and 0

x - AZ , both of which are members of P(G, b).

Moreover,

(4.5.23)

(4.5.24)

Exit from the algorithm.

SteE 2. If no component of G+(xO)" has more than one

node at which 0
is deficient, X then go to Step 3. Otherwise

let H be such a component and let v, w £ V(H) be nodes

which 0 at X is deficient. Let 11 be a path in H from

V to w, let J be the set of odd edges of 11 • Let

'' . { 0 . J} A - min x. : J £
J

0 0
0 ' - min { b X (o (V)) } U { X • : j £ E (11) - J}) •

V J

If 11 is of even length let 0 - 0 ' and let

min{A', 0 A - b X (o(w))}, w

if 11 is of odd length, let A - A ' and let

min{o',
'0 '

0 - b - x (o{w))}. w

,11
:1,

ii
',

1!1

111

IJil

'I i
lj
:11 ,,,

:i
'

!j ii
1'1
I'. ,\

il1
1

;11

ii

II:

II:
I

i

I:
!

1,

I

I
II
1!

11

II

I

[
r
I
!
I
!

4.50

Then both and CJ are positive integers. Define Z E '\K. E

by

1 if j E J

z .
J

-1 if j E E (,r) - J

0 if j E E - E(rr).

Then (4.5.22) holds and 0
X is a convex combination of

0 + and 0 AZ X CJZ X - which by our choice of a and A

matchings belonging to P(G, b) - {x 0 }. Moreover, either

(4.5.23) holds or

of G

(4.5.25)

0 then X •

0
X + CJZ is deficient at fewer nodes

Similarly, either (4.5.24) holds or

are

G than

(4.5.26) x
0

- AZ is deficient at fewer nodes of

0
X •

Exit from the algorithm.

Step 3. If every path in G+(xO) which joins two odd

polygons in G+(xO) contains an isthmus for which 0
X = 1

j
j

then go to Step 4. Otherwise, notice that since we bypassed

can

and

,each

every edge of

belongs to an

choose odd polygons

a path Tr from V

edge .j of Tr is

G+(xO) which is not an isthmus of

Therefore we

pl and p2 contained in G+(x 0)

E V (Pl) to w E V(P
2

) such that

an isthmus of G+(xO) for which

x~;, 2.
J

Let Tl be a track from v to v induced by P
1

,

let Tz be a track from w to w induced by P 2 . If ,r

('
'

4.51

is of odd length then let J be the set of odd edges of Tl

and T
2

together with the set of even edges of TI. If TI

is of even length, let J be the set of odd edges of Tl

together with the set of even edges of TI and T2 . Let

A
. . 0

- min({x.: j £
J

0 - min({x~:
J

j £

Then A and 0 are

J - E(TI)} u {(1-.01,· 2xj J

E(T 1) u E(T 2) - J}

positive integers.

1 if j £ J - E (TI)

2 if j £ J n E(TI)

-2 if j £ E (TI) - J

u

£ J n E (TI)})

{ lfx~ J: j £ E (TI) -

Define z e '\R. E by

J}) •

Then (4.5.21) holds;
0

X is a convex combination of matchings

oz,
0 0 x - AZ£ P(G, b) - {x }. For any X £ P(G, b) let

I(x) - {j £ E: j is an isthmus of G+(x) and x. = l}.
J

Then we have either (4.5.23), (4.5.25) or

(4.5.27)
0 0 I(x + oz) ~ I(x)

and either (4.5.24), (4.5.26) or

(4.5.28)
0 0

I(x - AZ) ~ I(x).

Exit from the algorithm.

Step 4. If every component H of G+(xO)

both an odd polygon and a node V at which 0
X

containing

has a

deficiency of at least two has a member of I(xO) in every

path from to odd polygon of H, then stop, 0 is V an X a

vertex of P(G, b) • Otherwise let V be a node of a

component H of G+(x 0) at which 0 has deficiency of X a

at least two, let 'IT be a path in H from V to a node

w of an odd polygon p contained in H such that every

j E (11) is isthmus for which 0 ;,, 2 • Let be £ an x. T a
J

track from w to w induced by p. If 'IT if of odd

length then let J be the set of odd edges of 'IT together

with the even edges of T, if 'IT is of even length, let J

be the set of odd edges of 'IT and T • Let

" - min({xf: j £ J n E(,)} u {[}xJJ: j £ J n E(11)},

a= min({[l/2(bv - x
0

(o(v)))]} u{[}xf]: j £ E(11) - J} u

o·
{x.: j £ E(,) - J}).

J

Then a, " are positive integers. Define z £ '\R. E by

1 if j £ J n E(,)

-1 if j £ E(,) - J

z . - 2 if j £ J n E (11)
J

-2 if j £ E (11) - J

0 if j £ E (E(11) u E(,)),

' .

4.52

Then (4.5.21) holds; 0
x is a convex combination of matchings

0 0
X + O'Z, X

. 0
1-z £ P(G, b) - {x }. We have either (4.5,23),

I
I

r 4.53

(4.5.25), (4.5.27) or

(4.5.29) there is i EV such that the deficiency

of
0

X at i is at least two and the deficiency of

at i is one.

Similarly, we have (4.5.24), (4.5.26), (4.5.28) or

(4.5.30) there is i E V
0

X has

0
x + crz

deficiency at least two and at which

of one.

at which

0
X - AZ has a deficiency

This ends the algorithm,D

This algorithm has several uses. First it reproves the

necessity of (4.5.4)-(4.5.7) in theorem (4.5.3), for it shows

that if 0 x violates anyone of (4.5.4)-(4.5.7) then it is a

co·nvex combination of two different matchings belonging to

P(G, b). If x = >.x1 + (1 - >.)x 2 for A E 'iR. satisfying

0 s >. s 1 then for any c E '\R.E, c • x =Ac • x 1 + (1->.)c

so either 1
C • X C

2 x must be at least as large as or

0
C • X •

0 x cannot be a vertex of Therefore by (2.4.1)

P(G, b).

Second, we can use this algorithm for the following

2
X

problem. Let
E 0 c E 1R. and a matching x E P(G, b) be given.

* We wish to find a vertex x

*
of P(G, b) such that

0
C • X ~ C

0
• X • Apply the following procedure. Let X - X •

Step A. Apply (4.5.21) to x. If ~t terminates with

the information that x is a vertex of P(G, b) then let

* x = x and stop. Otherwise it provides matchings

I
I

11

I

ii
!

r 4.54

1 2 P(G, b) {x} such that is combination X X E: - X a convex
'

of 1 and 2 At least of 1 and 2 must X X . one C . X C . X

be less than replace with that 1 2 no C . x· X X or X '
and return to step A.

This describes the procedure, we now show why it is

finite. Notice that in the course of this procedure if at

some point we perform step i of (4.5.21) then at no later

point do we perform step k of (4.5.21) for k < i. By

(4.5.23) and (4.5.24), each application of step 1 decreases

IE(G+(x))I. By (4.5.23)-(4.5.26) each application of step 2

decreases IE (G+ (x)) I or l{i e v: x(o(i)) < b.}I. By
1

(4.5.23)-(4.5.28) each application of step 3 decreases

IE(G+(x)) - I(x)I. Finally, by (4.5.23)-(4,5.30) each

application of step 4 decreases IE(G+(x)) - I(x)I or

l{i £ V: b. - x(o(i)) ~ 2}1. Therefore steps 1 through 4 can . 1

be applied at most IE(G+(xo))I + J{i £ V: x(o(i)) < b.}J
1

times. Thus we will find x* after at most JE(G+(xO)) J +

J{i £ V: x 0 (o(i)) < b.}I applications of (4.5.21).
1

A third problem to which (4.5.21) applies is that of

respresenting any matching x 0
E: P(G, b) as a convex

combination of the members of a set X of vertices of P(G, b).

Let a 0
X

= 1.

Step A. Suppose we have a finite set X of matchings

contained in P(G, b) and (a : x £ X). E: 1R such that
X

(4.5.22)

(4.5.23)

0 s a for all x E: X,
X

E(a : x E: X) = 1,
X

'I''
i'

I

,::,

i.!

I.
Ii

I ii

[
t
' f

(4.5.24) XO= ~(a X: XE X).
X

If every member of X is a vertex of P(G, b)

X is the set we require. Otherwise, suppose

then stop,

x EX is

not a vertex of P(G, b). Apply (4.5.21) to x, thereby

obtaining matchings 1 2 P(G, X
'

X E

µ1' µ2 E '\R.. for which µ1 + µ2 = 1

2 For each i { 1' 2}, if i
µ2x . E X

a,
i

X

if :i i 'f X then let

a'
X

For every X E X - {x,

- a i + µi a
X X

i - µ.a
]. -

X

1 x2} let X
'

a' - a. •
X X

b) - {;;:} and positive

such that
1 + X = µlx

E X then let

4.55

Let X' -= X u {x
1 , x

2 } - {-x}. Th 'f 1 X b X' en i we rep ace y

and ax by a~,· (4.5.22)-(4.5.24)

step A.

still hold; return to

This describes the procedure; an argument similar to

that given by the preceding procedure proves that it is finite.

Unfortunately however the size of X tends to increase

exponentially with the size of

b . } I . * By (4.5.20) there is a se.t X of vertices of P (G' b)
].

0 * such that X is a convex combination of the members of X

and Jx* I :s; IE I ; it seems unlikely t.hat the procedure described

* here will find such an X .

\II
I

!

II
I

I
I,

!

r
Chapter 5

Optimizing over Faces of P(G, b)

Throughout this chapter G = (V, E' ,J,) is a graph and

b = (bi: i E V) is a vector of positive integers. We let

C = (C. :
J

j E E) be an arbitrary real vector. In Chapter 3

we described the blossom algorithm which solved the problem

of maximizing c • x for x E P(G, b). In this chapter we

present an algorithm called the face optimization algorithm

which solves the problem of maximizing c • x for x belonging

to any face of P(G, b). This algorithm actually has two

parts. The first part is a preconditioning process which

is used to obtain an equivalent problem with a simpler

structure. The second part, which uses a modification of the

blossom algorithm as a subroutine, solves this simpler problem.

We also describe how in principle the problem of optimizing

over a face can be reduced to an ordinary matching problem.

Finally we show how a certain type of so called "multi-optimization"

problems can be solved by solving a sequence of face

·optimization problems.

In -Chapter 3 (Theorem(3.4.5))we proved the theorem of

Edmonds, that P(G, b) is the solution set of the linear

inequalities (3,4.6)-(3.4.8). In view of this and (3.1,7),

(5.0.1)

P(G, b) = {x E 1fZ E:

x. ;;, 0 for all j E E,
J

(5.0.2) x(o(i)) s bi for all i EV,

(5.0.3) x(y(S)) s_q
8

for all SEQ'}

;_1,_1

'1• l '.

:11

'1 I,
'I :,,

11

11

r
t
t

I
f

I

l
I r
I
!

t
I
I

r
t ,.
l
'

i
' '

r
i

where Q' ={S5:V: b(S)

for all SEQ'.

is odd} and q 8 _ 1/2(b(S) - 1)

The difference between this set of inequalities and that

prescribed in theorem (3~4.5) is that in (5.0.3) we have a

"blossom inequality" for every SE V such that b(S) is

odd and in (3.4.8) we only had such inequalities for shrinkable

sets. In general then the set of inequalities (5.0.3) is

far from minimal (see (4.4.19)). However by using these·

redundant ·i·nequalities we are able to obtain a relatively

simple description of the faces of P(G, b) by means of a

preconditioning process.

5.1. The Faces of P(G b).

Let W:: V, Jc E and NE Q'. Then we define the face

·F(J, W, N) .of P(G, b) to be the set of all x E P(G, b)

satisfying

(5.1.1) x = 0 for all J0 E J j

(5.1.2) x(o(i)) = bi for all i E W,

(5.1.3) x(y(S)) = q
8

for all SEN.

In general there are many different choices of J, W

and N which give the same face of P(G, b). It is useful

here to find J, W and N such that N is a nested family

of sets (see -Section 3.2). The following propositions form
i .

the basis of _an efficient preconditioning algorithm which when

presented with sets

J' EE, W' EV and

J:: E, WE ·v and

NI E ·q' such that

NC Q' find sets

N I is a nested family"

5. 2

!_·1 I

I
I

i,

I

1:

'I ,.

I

I

r

and -F(J, W, N) = F(J', W', N').

Throughout the remainder of this chapter we assume

JC E, w s V, NC Q'.

(5.1.4) Proposition. Let S, TEN be such that

b(S n T) is odd. Let K = y(S u T) - (y(S) u y(T)). Then

F (J, W, N) = F (J u K, W, N - { S, T} u { S n T, S u T}) •

Proof. First observe that for any x E {tZ E,

(5.1.5) x(y(S n T)) + x(y(S u T)) = x(y(S)) +

x(y(T)) + x(K).

If X E F (J' W, N) then x(y(S)) = qs and x(y(T)) = qT.

Since b(S n T) is odd, b(S u T) is also odd and so since

X e: P(G, b), x(y(S u T)) s qSUT and x(y(S n T)) s qSnT"

Thus by (5.1.5),

qs + qT =·x(y(S n T)) + x(y(S u T)) - X (K)

(5 .l. 6) ,; qSnT + qSUT - O

= l/2(b(S n T) - l + b(S u T) - 1)

= l/2(b(S) - 1) + l/2(b(T) - 1)

Therefore equality must hold in (~.1.6) and so

x(y(S n T)) = qSnT,

x(y(S u T)) = qSuT'

x(K) = 0

and XE F(J u K, W, N - {s, T} u {Su T, s n T}).

5.3 11
,,

ii

l,I .,
Ii

I
II

,i

I
I

r
Conversely, if x £ F(J u K, W, N - {S, T} u {Su T, Sn T})

then by (5.1.5)

x(y(S)) + x(y(T)) = qsur + qsnr - O

so since x £ P(G, b) implies x(y(S)) s q
8

and x(y(T)) s qr,

we have x £ F(J, W, N).D

(5.1.7) Proposition. Let s ' T £ N be such that

b(S n T) is even. Let L - o (S n T) n o(S u T). Then

F(J, w, N) = F(J u L, w u (S n T) , N - { s ' T} u {S - T' T - s}) .

Proof. First observe that for a·ny X £ iK. E'

(5.1.8) x(y(S)) + x(y(T)) = x(y(S - T)) + x(y(T - S))

+ E(x(o(i)): i £ s n T) - x(L).

Since b(S n T) is even, both b(S - T) and b(T - S) must

be odd. Suppose x £ F(J, W, N). Then x(y(S)) = qs and

x(y{T)) = qT. Since x £ P(G, b) it follows that

x(y(S - T)) s qS-T' x(y(T - S)) S qT-S' E(x(o(i)): i £Sn T) s

b(S n T) and x(L) 2 0. These facts together with (5.1.8) imply

5.4

qs +qr= x(y(S - T)) + x(y(T - S)) + E(x(o(i)): i£SnT) - x(L)

(5.1.9) s qS-T + qT-S + b(S n T) - 0

Therefore equality must hold in (5.1.9), that is

x(y(S - T)) = qS-T' x(y(T - S)) = qT-S' x(o(i)) = bi for all

;[
I

I
i

I
I

I I

!·,
I

!

I.

!
I

!. ,,
. I

i 8 S n T and x(L) = 0. Therefore

(5.1.10) x E F(J u L, Wu (Sn T), N -{s, T} u

{S - T, T - S}).

Conversely, if x satisfies (5.1.10) then (5.1.8) gives

x(y(S)) + x(y(T)) = qS-T + qT-S + b(S n T)

so since x 8 P(G, b) implies x(y(S)) 5 q
5

and x(y(T)) 5

we have x(y(S)) = q 5 and x(y(T)) = qT.

X8F(J,W,N).D

Therefore

The operations indicated by these two propositions will

provide the core of our preconditioning algorithm. Now we

show that by repeatedly applying these operations to an

arbitrary family of sets we will eventually obtain a nested

family of sets.

The following results apply to any set N of subsets

of a set V, that is the value of b(S) for S 8 N is of

no significance. However our use of them will be restricted

to sets N !a Q'.

Let S and T be sets. We say that S cuts T or S

and T cut each other if

SnT;<<j,,

s i T and Tis;

(5.1.11) Proposition. Let H, S and T be subsets

of V and suppose S cuts. T.

(5.1.12) If H cuts Sn~ or Su T then H

5.5

I
I. ,.

I

I
I
I

II

I

r
cuts s or H cuts T•

'

(5.1.13) If H cuts s n T and s u T then H

cuts s and T•
'

(5.1.14) If H cuts s - T or T - s then H

cuts s or T. ,

(5.1.15) If H cuts s - T and T - s then H

cuts s and T.

Proof, If H cuts Sn T then H n (Sn T) • $ so

(5.1.16) H n ·S • • and H n T •••
Moreover s n T .{: H so

(5.1.17) S .$ H and TI H.

Moreover H I s n T so

(5.1.18) H § s or H f T.

Combining (5.1.16)-(5.1.18) proves that if H cuts s n T

then H cuts s or T.

If H cuts s u T then H ! s u T so

(5.1.19) H .$ s and H i T.

Thus (5.1.16), (5.1.17) and (5.1.19) prove (5.1.13). If H

cuts s u T then H n (S u T) • • so

(5.1.20) H n S • • or H n l • •·

Moreover, suppose H n T = •· Then H n (Sn T) = • and

5. 6 Ii'
I I
'' Ii
;11

ii
I

I
i
' i

I

Ii
I,

r
since S n T " <j> (because S cuts T),

(5.1.21) S f H.

Thus if H n T = 4> , combining (5.1.19)-(5.1.21) proves that

H cuts S and similarly if H n S = <j> we can see that H

cuts T. Thus (5.1.12) is proved.

Suppose that H cuts S - T. Then

(5.1.22) H n S "</>, Si H, Hf T.

If H f s then we have immediately that H cuts s . If

H C s then since H .'.f s - T we must have H n T " 4> • If

T :;; H then we would have T C - s, contradictory to the fact

that s cuts T. Therefore T f H and so H cuts T.

If H cuts T - S then

(5.1.23) H n T" </>, T f H and Hf S

and a similar argument shows that H cuts S or T and

(5.1.14) follows.

Finally, if H cuts both S - T and T - S then by

combining (5.1.22) and (5.1.23) we see that H cuts both

S and T, proving (5.1.15).D

Let N be an arbitrary set of subsets of V. Let

K(N) = {{S, T} EN: S cuts T}. Let k(N)=IK(N)j. Observe

that k(N) = 0 if and only if N is a nested family of sets.

(5.1.24) ProBosition .. Let N be a set of subsets

of V for which k(N) > O. Let . {S; T} E K(N). Let

N' = N -·{s, T} u·{s n T, s u T}.

5. 7

I',
'

I

r

~-

i

l

N'' = N - {S, T} u {S - T, T - S}.

Then k(N') 5 k(N) - 1 and k(N") 5 k(N) - 1.

Proof. By using the correspondences suggested by

(5.1.12)-(5.1.15) it is easy to exhibit one to one functions

from K(N') into K(N) - {S, T} and from K(N") into

K(N) - {S, T}, since {Su T, Sn T} t K(N') and

{S - T, T - S} t K(N''). The result now follows.D

It should be observed that k(N') and k(N'') need not

equal k(N) - 1, generally they will be much smaller.

The following theorem now follows directly.

(5.1.25) Theorem. Let F(J, w, N) be a face of

P(G, b) . There are J'
'

W' and N' such that J 5: J' C !,

w C W' C V and N' is a nested family of members of Q' - - - -
such that F (J' w, N) ·= F (J' , W' , NI) .

Proof. Let Jo, wo, NO be such that J C Jo s E,

w C WO C - V, F(Jo, WO , NO) = F(J, w, N) and k(l,o) is as

small as possible. If k(NO) = 0 then NO is a nested

family and we are finished. Otherwise, let { s ' T} £ K(NO).

If b(S n T) is odd then let N1 = NO - {s, T} u {SuT, SnT},

let Jl _ JO u (y(S u T) - (y(S) u y(T))). Then by (5.1.4),

F(J1 , W, N1) = F(J, W, N) and by (5.1.24) k(N1) < k(NO),

a contradiction. If b(S n T) is even then let

Nl = NO { s, T} {S T s} , let
- 1 Jo (o (S T) - u T, J - u n n

o(S u T)), let w1 - WO u (S n T). Then by (5.1.7),

F(Jl, wl· , Nl) = F(J, w, N) and by (5.1.24) k(N1) < k(No),

a contradiction.D

5.8

5,2 A Preconditioning Algorithm.

In this section we present an algorithm which when

presented with sets J :; E, w: c V and N c Q' will find

* * * J :: E, W c V and N :: Q' such that N* is a nested

* * * family and F(J, W, N) = F(J, W, N), It is based upon

the proof of (5.1.23) but manipulates the data in such a way

that in a sense the algorithm is as efficient as could be

hoped for. It relies on the following proposition.

(5.2.1) Proposition. Let N be a set of subsets

of V, let S be a minimal member of N and let T be a

member of N which cuts S, Then for any HEN, if H

does not cut S then H does not cut Sn T or S - T.

Proof. Since H does not cut s and s is a minimal

member· of N either H n s = <j, or H :, s . If

then H n (S n T) = H n (S T) = cj, so H does

s n T or s - T, If H :, s then H 2 (S n T)

so again H does not cut s n T or s - T.O

Suppose Cher!" is s E N such that Is I = 1.

If b = 1 then every X E '\R_ E satisfies
V

(5.2.2) x(y{v})) = l/2(b - 1),
V

H n s = cj,

not cut

and H ,,

Let {v}

if bv > 1 then no x E 'IRE. satisfies (5. 2, 2) and

(S

-

F(J, W, N) = cj,. Thus when we detect a singleton {v} during

the preconditioning algorithm we will either ignore it if

-

s .

b = 1 · or else stop with the information that F(J, W, N) = cj,
V

if b · > 1.
V

5,9

T)

(5.2.3) Preconditioning -Algorithm,

Initially we have sets J C E, w C V, N C Q' ' we will - -
* * * terminate with sets J C E, w :: V and N C Q' such that -

* * * * N is a nested family and F (J' W, N) = F(J
'

w
'

N)

unless F(J, W, N) = • in which case we terminate with that

information.

Step o. Let J - J' w - W, R - • and R = 'N .

Step 1. If R = • then go to Step 5 . Otherwise scan

R to find a minimal member s. If Is I = 1 then go to

seep 4' otherwise go to ·seep 2 .

Step 2. Test each T 8 R - {S} in turn, if T does

not cut S then do nothing. If T cuts S then go to Step

2a or 2b according as b(S n T) is odd or even. When all

members of R - {S} have been tested, go to Step 3.

Step 2a. Replace J with Ju (y(S u T) - (y(S) u y(T)))

and replace R with R - {S, T} u {Su T, Sn T}. Replace

S and T with Sn T and Su T respectively. If Isl = 1

then go to-~tep 4, otherwise return to step 2 and resume

testing members of R - {S, T} which have not been previously

tested in this execution of Step 2.

Step 2b. Replace W with Wu (Sn T); J with

5.10

Ju (6(S n T) n 6(S u T)) and R with. R - {S, T} u {S-T, T-S}.

Replace S and T with S - T and T - S respectively.

If JsJ = 1 then go to ~tep 4, otherwise return to Step 2

and resume testing untested members of R -·{s, T}.

Step 3.- Now the current S cuts no member of R - {S}.

Replace R ~ith R - {S} and if St· R then repla~e R with

i/
I ,,

I
!
I
~.

I
' ' t
I

l

Ru {S}. Go to Step 1.

s is a Bingleton, let {v} - S, If b > 1
V

Step 4,

then stop, F(J, W, Ru R) = <p, If b
V

1 then replace

R with R - {S} and go to step 1.

Step 5,

the algorithm.

* * * Let J - J, W - W and N - R and terminate

In view of (5.1.4) and (5.1.7), at every point in the

algorithm F(J, W, N) = F(J, W, Ru R). Since the size of

R is reduced by one each time we perform Step 3 and since we

either terminate or reduce the size of R by one in Step 4,

* the algorithm terminates after a finite number of steps. N

is a nested family of sets for the following reason: at each

stage of the algorithm R is a nested family and no member

of R cuts a member of R, This can be seen as follows.

Initially R = <p and it is trivially true. It follows from

(5.1.11) that each application of ,Step 2a or Step 2b maintains

this property. Step 3 simply involves transferring a member

1rom R to R so this property is preserved, Step 4 either

terminates or else deletes a member from R so this property

is maintained.

The importance of Proposition (5.2.1) is that after

completing Step 2a or 2b we can resume our scan of R - {S}

from where we were, we do not need to retest the members of

R - {S} which have already been tested.

We now determine an upper bound on the amount of work

done by the algorithm in solving a problem. We perform Steps

1 and 3. or 4

perform Step 2

times, once for each member of N, We

lal - 1 times, when scanning in Step 1 we

5.11

r
consider jiij sets. Since an upper bound on

the amount of work done in solving a problem is of the order

jNj 2 • f(V, E) where f(V, E) is a measure of the

efficiency of the set handling routines which perform the

manipulations of Steps 1, 2a and 2b and so will gener~lly

depend upon Iv I and but not

The order of this bound seems as good as can be expected

for the following reason. There are pairs of sets

in N and the members of each such pair have to be tested

to see whether or not they cut each other, since the relation

''cut'' is nontransitive. Thus we would expect that our

bound dn an algorithm to replace N with a nested family

* N would be of the order INl 2
• f'(V, E) where f' (V, E)

is some measµre of our set· handling efficiency.

* * * We now have sets J ' w and N such that

*· * * * F(J, w, N) = F(J
'

w N) and N is a nested family, or

else know that F(J, W, N) = ~. The original set N may

have been very large, if bi is odd f~r all i EV then

* lq' I = zlvl-1.

IN*/,;; /vi - 1.

However N is relatively small; by (3.2.3),

In the following sections we show how to maximize c • x

for XE F(J, W, N) where N is a nested subset of Q' which

contains no singletons. This then can be combined with the

preconditioning algorithm of this section to provide an

efficient algorithm for solving the probl.em of optimizing over

an arbitrary face of P(G, b).

5.3 Pseudo Hungarian Forests

Let G = (V, E, TjJ) = be a graph, let V c V and let x

'
5.12 ,i

i'

r
be a matching of G which satisfies

(5.3.1) x(o(i)) $ bi for all i e v.

= In (3.7.9) we defined d(G, V; x), a measure of the amount

by which x fails to be a feasible matching. Let

N ~ Q ={Sc V: b(S) is odd and /s/ ~ 3} and let x be

a matching of G which satisfies (5.3.1) and

(5.3.2) x(y(S)) = q 5 for all s EN.

We define

(5.3.3) d(G, v= N; x) _ d(G, v=; x)

E(b. - x(o(i)): i Ev-).
].

If x satisfies (5.3.1) but violates (5.3.2) then we define

d(G, V-, N; x) - "'·

Let X be the set of all matchings of G which satisfy

(5.3.1). We define

(5.3.4) D(G, V-, N) - min{d(G, V-, N; x): x EX}.

Clearly D(G, v=, N) <"' if and only if G has a matching

= x satisfying (5.3.1) and (5.3.2) and D(G, V, N) = 0 if

and only if G has a matching x satisfying (5.3.1), (5.3.2)

and

(5.3.5) x(o(i)) = bi for all i Ev-.

Finally, observe that

5.13
/'

i ',

r

(5.3.6) d(G, V, N; x) = 1 if and only if x is

a np matching of G which satisfies (5.3.2) and consequently

(5.3.7) D(G, V, N) = 1 if and only if G has

a np matching x which satisfies (S.3.2).

We say that a nested family N of members of Q is a

shrinkable family if G[S] x N[S] is shrinkable for all

s e: Q. (Recall N[S] - {Te: N: Tc S}).

Throughout much of the remainder of this section we

will be assuming that N is a shrinkable family of members

of Q. This is because the algorithm presented in the

following section replaces the sets J, W, N where N is

a nested family of members of Q' with sets J', W', N'

where N' is a shrinkable family of subsets of V and such

that

F(J, W, N) = F(J', W', N').

Let N be a shrinkable family of subsets of V. We

saw in (3.7.12) that any matching X of G = (v, E, ~) -

G X N which satisfied x < ,s (i))' ,;; b, for all i e: V could
G 1

be extended to a matching X of G which satisfied (S.3.1)

and for which d(G, v=; x) = d(G, v=; x) where

(S.3.8) = _ (V n V) u {maximal

It is easy to see that x can be constructed so as to

satisfy (S.3.2). Thus we have

(5.3.9) Proposition. Let G = (V, E •) be a

graph and let N be a shrinkable family of subsets of V.

5.14

ii

I
I

ii
1,
!

II
I

I, ,,
,,

~L~e~t~~G~=-~<~v~, _E~·-~~' ~) _=_G __ x_N_,.___l_e_t __ v_= C _v __ a_n __ d_l_e_t __ v_-_-__ b--'-e

defined as in (5.3.8). Then any matching x of G which

satisfies

x(o_(i)) s bi for all i £ V
G

can be extended to a matching x of G which satisfies

(5.3.1) and (5.3.2). Moreover

= d (G, V N; x) = d(G, v=; x).

What is of special interest to us here however, is that

when we have constraints (5.3.2), we have the following

complementary result,

(5.3,10) Proposition. Let G = (V, E, 1/J) be a

graph and let N be a shrinkable family of subsets of V.

Let G = (V E ~) = G X N, let v= CV and let v= be
==-.CC...-~'-'-''-=-''--'---''----'-'--''-=.CC...-'-- -'--=-=-~=---'----"-=-
defined as in (5,3.8). Then for any matching x of G which

satisfies (5,3.1) and (5.3.2),· x - xii is a matching of G

satisfying

(5.3.11) x(o (i)) s bi for all i £ V,
G

(5.3,12) d(G, v-, N; x);, d(G, v=;.x)

Proof. Suppose x is a matching of G which satisfies

(5.3:1) and (5.i.2), Then since x(y(S)) = q 8 for all

S £ N, it follows from (5.3.1) that

x(o(~)) s 1 = b 8 for all s £ N.

This combined with (5.3.1) proves (5.3.11).

By (5.3,1) and (5,3.2)., for any pseudonode S £ V n N,

5.15

xly(S) is a np matching of G[S] deficient at some node

v(S) E S. Therefore

(5.3.13) E(bi - x(o(i)): i c S) = bv(S) - x(o(v(S)))

(5.3.14) = b
8

- x(o_(S)),
G

Therefore

d (G, N; x) = E(b. - x(o(i))·: i E V-)
].

= E(b. - x(o(i)): i £ V
].

= u (N) >

+ E(b. - x(o(i)): i es n v=, s c N)
].

where N is the set of maximal members of N.

Therefore by (5.3.13)

(5.3,15) d(G, v-, N; x) = E(b. - x(o(i):
].

= i e V -u(N))

+ E(bv(S) - x(o(v(S))): SEN, v(S) £ V-).

= For any SEN, S £ v= only if Sc V and hence only if

v(S) EV-. Therefore by (5,3,14) and (5.3.15)

d (G,
= x) E (bi x(o(i)): = u(N)) V

' N; ;;,, - i E V -

E(b 8 x(o (s)) : -=
+ - s £ N n V

G

<l(G,
-=

= V ; x)

and (5.3.12) is proved. Notice that we have strict inequality

in (5,3.12) if and only if for some SEN, we have_ Sf v=, and

x(o(S)) = 0 and x(o(i)) = bi - 1 for some i c Sn v-.O

Combining (5,3.9) and (5,3.10) we have

11
'I

i

!1
1,
Ir

ij
''

r
= (5.3.16)

as in (5.3.10) then

Theorem. If G, G, V and N are

D(G, V = N) = D(G

Proposition (5.3.10) states a major difference between

finding matchings satisfying (5.3.1) and (5,3,2) and simply

finding matchings satisfying (5.3.1). In this latter case

it is not true that every such matching of G is a matching

of G satisfying (5.3.11). Thus in the simpler problem,

shrinking was never permanent, in Step 9e of the blossom

algorithm we allowed for the possibility of expanding odd

pseudonodes of Hungarian forests. However we shall see that

when treating the problem of this chapter, shrinking can be

permanent whenever we have a constraint x(y(S)) = q 8 for

a set S which we shrink.

Let G = (V, E, ,j,) be a graph, let R be a shrinkable

family of subsets of V and let N C R, Let G = (v, E,

G X R and let F be an alternating forest contained in

G with respect to a matching X of G which satisfies

x(o_(i)) $ bi for all i € v.
G

= Let V be a subset of V and let

(5.3.17) v= - (v= n V) u {S € Rn V: S c v=}.

We say that F is a pseudo Hungarian forest over N with

respect to x if F satisfies (3.7.2).-(3.7.4), (3.7.6),

(3.7.7) and

(5.3.18) every odd node of F is either a node

~)

:,.1.1

-

II
i:
i
I

iii

1,:

jl

i'

i
I
f:
I

I
I
I

I

I
' '

of G or a member of N.

Thus the difference between a Hungarian forest and a pseudo

Hungarian forest is that we allow odd nodes in pseudo

Hungarian forests to be pseudonodes, a situation which was

not permitted for Hungarian forests. We will see that when

we require x(y(S)) = q
8

for all SEN, then pseudo

Hungarian forests play a role analagous to that played by

Hungarian forests when we make no such requirement,

(5,3.19) Theorem, Let G = (V, E, $) be a graph,

= -=
be as defined in (5.3.17). let V c V and let V Let

R be a shrinkable family of subsets of V and let N ~ R.

Let G = (V, E, ~) = G x R and let F be a pseudo Hungarian

forest over N contained in G with respect to a matching

x of G. Let Kc V be the set of roots of trees of F.

= Then D(G, V N) = E(b. - x(o(i)): i e K); .::..:==---='--'-::.,.---'-'--=---=--.,"'-J.

Proof. Let G' = (V'' E', w') = G X N, let

v' = = (V- n v') u { s E N n v' : s c v=} . By (5.3,16),

= D (GI'
I -

(5.3.19a) D(G, V
'

N) = V -).

Let R - {S E R: s f T for any T E N}. That is, R

is the set of members of R which are not contained in

pseudonodes of GI • For each s E R we define

(5,3.20) V'(S) - (Sn V') u {TEN n V': Tc s}.

Thus V' (S) is at the set of nodes of V' which correspond

in the natural way to S. Let

(5.3.21) R' - {V'(S): SER}.

It is easily seen that R' is a shrinkable family of

subsets of V' and that G' x R' is isomorphic with G.

Moreover E(F) is the edge set of a Hungarian forest F'

in G' x R' with respect to x'. Therefore it follows from

(3.7.17) that

(5.3.22) D(G', V'=) = E(b. - i(6(i)): i EK')
l.

where K' is the set of roots of trees of F'. But

E(b. - i(6(i)): i EK')= E(b. - i(6(i)): i EK)
l. l. so (5.3.19a)

and (5.3.22) combine to prove the theorem.D

This theorem is used in the algorithm to justify

terminating when no feasible solution exists. We make use

of the following analogue of Theorem (3.7.36) to justify

replacing a constraint

a set of constraints

x(6(i))

x. = 0
J

x(y(T))

x(y(S)) = q
8

= b. for i
l.

for j E J(S)

= qT for T

'for some SEQ' with

E W(S) C V -
C E -

E N(S) C Qo. -

(5.3.23) Theorem. Let G = (V, E, ~) be a graph,

let P be a subset of V, let R be a shrinkable family of

subsets of P and let N s R. Suppose D(G[P], P, N) = 1.
----'-'-----'---'-~'----'---'---

Let G = (i, E, i) ~ G[P] x R, let F bi a pseudo Hungarian

forest over N contained in G, let I and Z be the sets

of odd and even nodes of F respectively. Then a matching

x of G satisfying (5.3.1) and (5.3.2) satisfies

(5.3.24) x(y(P)) = 9p-

5.19

if and only if

u o(i),
iEZ

(5.3.25) ~j~---'Q'--~f~o~r=-~a~l~l~~j___:E:__,_(U o(i) U o(p)) -
iEl

5.20

(5.3.26) x(o(i)) = bi for all i E p - (Z u u(Z n R))

(5.3.27) x(y(S)) 9s for all SE Zn R.

Proof. Let G' = (V', E', t/1 1
) - G[P) x N. By (5.3.16),

(5.3.28) D(G', V') D(G[P], P, N) = 1.

Now suppose x satisfies (5.3.1) and (5.3.2). We show

(5.3.29) d(G[P), P, N; x) = 1 if and only if

d(G', V'; x[E') = 1.

Suppose d(G[P), P, N; x) = 1. Then by (5.3.10)

d(G', V', x[E') s 1, by (5.3.28) thereiore we have

d(G', V', x[E') = 1.

Conversely, suppose d(G', V', x[E') = 1. Let N' be

the set of maximal members of N. Then

x(y(P)) = x(E') + E~x(S): S 8 N').

Since d(G', V', xJE')

using this and (5.3.2)

1, x(E') = l/2(b(V') - 1). Therefore,

x(y(P)) = l/2(b(V') - 1) + l/2E(b(S) - 1: SEN')

= l/2(b(V' - N') + b(V' n N') - 1

+ E(b(S) - 1: S 8 N')).

But b = 1 for all v 8 V' n N' so we have
V

r
' r

x(y(P)) = l/2(b(V' N') + IN' I - 1 + L(b(S) - 1: S EN'))

= l/2(b(P) - 1)

and so d(G[P), P, N; x) = 1, Thus (5.3.29) is establishe0

Now let R - {SER: Si T for any TEN}. For each

SER let V'(S) be defined as in (5.3.20) and let

5.21

R' = {V'(S): SER}. Then R' is easily seen to be a

shrinkable family of subsets of V' and G' x R' is isomorphic

with G. Moreover, E(F) is the edge set of a Hungarian

forest F' in G' x R'. Therefore by (3.7.36)

d(G', V', xlE') = 1 if and only if

(5.3.30) x(yG 1 (S)) q
8

for every Se R' n V(F'),

(5,3,31) x(oG 1 (i)) = bi for every odd node

of F' and for every i e V' - V(F') - u(R' n V(F')),

(5.3.32)

u 0G 1 (i).
ieZ'

x. = O for all j e u oG 1 (i)
J i el 1

i

In view of (5,3,1) and (5.3.2) it is easily seen that

(5,3.30) and (5.3.27) are equivalent and that (5.3,31) is

equivalent to (5.3.26) and

x. = 0 for all j e o(S) - u o(i).
J ieZ

It is easily seen that (5.3,32) is equivalent to

x = 0 for all
j

j e u o(i)
iel

u o(i).
ieZ

The theorem now follows from these facts and (5.3.29).D

[!

5.4 The Face Optimization Algorithm (Phase II)

We are given a graph G = (V, E, ~) and a vector

b - (b.: i EV) of positive integers. Let c be an
].

arbitrary real vectory let J be a subset of E, let W be

a subset of V and let N be a nested-family of members

of Q. We wish to solve the problem: maximize c • x over

x belonging to the face F(J, W, N) of P(G, b),

By (3.4.5) and (3.1.7) the linear progra~ we wish to

solve is

maximize c • x

Over X E 421 E
11 , which satisfy

(5.4.1) x. = 0
J

for all j E J

(5.4.la) X.
J " 0 for all j E E - J

(5.4.2) x(o(i)) ,;; b. for all i E V - w
].

(5.4.3) x(o(i)) = b.
].

for all i E w,

(5.4.4) x(y(S)) ,;; q
8

for all SEQ - N,

(5.4.5) x(y(S)) = q
8

for all SEN.

The dual linear program is

minimize E(biyi: i EV)+ E(q 8 y
8

: SEQ)

for y E 'iR_VuQ which satisfy

(5.4.6) " 0 for all SEQ - N,

(5.4.7) y 8 unrestricted in sign for SEN,

5.22

(S.4.8) y, ;, 0 for all i e: V - W,
]_

(S.4.9) Yi unrestricted in sign for i £ w

(S.4.10) y(lj,(j)) + y(Q(j)) ;, C, for
J

all j £ E - J

where Q (j) - {S £ Q: j £ y (s) } for any j £ E.

The important difference between this dual linear program

and the linear program (3.S.6)-(3.5.9) is (S.4.7), for this

will enable us to let the dual variables of some pseudonodes

take on negative values, and consequentiy they can be kept

shrunk throughout the course of the algorithm.

The complementary slackness conditions for optimality

of a solution x to (S.4.1)-(5.4.5) and a solution y to

(S.4.6)-(5.4.10) are

(5.4.11) xj > 0 only if y(lj,(j)) + y(Q(j)) cj

for all j £ E - J,

(S.4.12)

i e: V - W,

y. > 0
]_

only if x(a(i)) = b.
]_

for

(S.4.13) y
8

> O only if x(y(S)) = q 8 for

S £ Q - N.

The general approach of our algorithm is to process

each member S of N in turn, finding sets J(S) SE,

W(S) EV and a shrinkable family N(S) c QO such that we

can replace the constraint

x(a(S)) = q 8

with the constraints

r

i
I
I.

x(8(i)) = b. for all i E W(S),
l.

x = 0 for all j E J(S),
j

x(y(T)) = qr for all TE N(S).

Then we carry on, applying the algorithm to this modified

problem.

Eventually we find sets Jc E, W c V and a shrinkable

family N such that

F(J u J, w u w, N) = F(J, W, N)

* and we find an optimal solution x to the problem of

maximizing c • x over F(J u J, Wu W, N). We also obtain

* * an optimal dual solution y to this problem. Thus x

* satisfies (5.4.1)-(5.4.5), y satisfies (5.4.6)-(5.4.10) and

* * x and y satisfy (5.4.11)-(5.4.13) where we replace J,

W and N with Ju J, Wu W and N respectively.

At each stage of the algorithm we have a set Mc N of

processed members of N. This set has the property

(5.4.14) if s EM, TEN and TC s then TE M.

(In other words, we always chose a minimarmember of N - M

for processing).

Initially, we let M = ~.
For each SE M we have sets J(S) s E, W(S) = S and

N(S) 5 QO[S) u {S} which have the properties descr1bed in

(5.4.24)-(5.4.26).

N - u N·(S).. Then
SEM

We let J - u J(S), W =
SEM

u W(S)
SEM

and

5.24

,,

'I
'I
!\

'

r ;
(5.4.15) F(J, W, M) = F(J u J, Wu W, i).

Initially, of course, J = W = N = ~.

We have a dual variable defined for every i e: u (M) •

These are the only nodes for which a dual variable is defined

at present. For every Se: QO we have defined a dual

variable y s. This dual solution satisfies

(5.4.16) y(i/J(j)) - y(Qo(j)) "c.
J

for all

j e: u y(S) - (Ju J).
Se:M

= Let E - {j e: u y(S)
Se:M

= Let G be the graph

We have defined a shrinkable family R of subsets of

V such that

(5.4.17) N C - R,

{5.4.18) for any s e: R there .is a set T e: M

such that s C T,

The sets Se: R have been constructed in applications of

the blossom algorithm in earlier executions of Step 2 of the

algorithm to be described. The members of R satisfy

(5.4.19) for each Se: R, H(S) - G=[s] x R[S]

is spanned by a blossom B(S),

The dual solution y has the properties

(5.4.20) = 0 for all

5.25

(5.4.21) y8 � 0 for all S e: R - N.

We have a matching x of G defined such that

(5.4.22) x. = 0 for all j e: E - E-,
J

(5.4.23) xjE(B(S)) is a np matching of B(S)

and x. = 0 for all j e: E(H(S))
J

E(B(S)) for all S e: R,

Finally, for each S e: M we let R<s> ={T e: R:

T c S}. With each S e: M we have associated a pseudo

Hungarian tree F(S) over N[S] ={T e: N: T c S} contained

in the subgraph G
8

of G[S] x R <s> obtained by deleting

the members of J u u J(T). Moreover where I(S) and
Tdi[S]

5.26

Z(S) are the sets of odd and even nodes of ·F(S) respectively,

we have

(5.4.24)

u o

ie:Z(S) GS
(i)}'

(5.4.25)

(5.4.26)

J(S)

W(S)

N (S)

= {j e: E:

= s - Z(S)

0 = {T e: Q :

Now we describe the algorithm.

(j e: o (S)

- u(Z(S)

T e: Z(S)

u j e: u o

ie:I(S) GS

n R <s>),

n R <s> } .

(i))

Step 1. If M = N then go to step 5. Otherwise choose

a minimal set S e: N - M which we will now process. First

we define dual variables y ! for
].

i e: S and

T e: Qo <s> - {T e: Q o : T C S} so that

(5.4.27)

j e: y(S) - (Ju J)

� c.

y' T for

for all.

(5.4.28) y'(,p(j)) + y'(Qo(j)) = y(,p(j)) + y(Qo(j))

for al 1 j £ u y (T) - (J u J),
TER[S]

This is easy to do unless there are edges j £ y(S) - (Ju J)

incident with nodes belonging to two distinct maximal members

of R[S) and such that y(,P(j)) < c ..
J

In this case let y

be the set of all such edges and let

o = l/2max{c.
J

y(,P(j)): j € y}.

(Note that by (5.4.14) Sf T for any T £ M so by (5.4.18)

and since N is a nested family, a maximal member of R[S]

is a maximal member of R and hence y(,P(j)) + y(QO(~)) =

y(,P(j)) + y(R(j)) by (5.4.20). But R(j) = ~ for all

j £ Y so we have y(,P(j)) = y(,P(j)) + y(QO(j)).)

Let T be any maximal member of R[S] such that

Y n o(T) ~ ~. By (5.4.14) and (5.4.18) T is a maximal

member of R. By (5.4.16) j ~ y(P) for any P £ M. Thus

j € o(D) for some D £ M such that T £ N(D). There is

a Hungarian tree F(D) defined, by (5.4.24) and the definition

of J, T must be an even pseudonode of F(D).

Define y' as follows.

yi + o for all i ED n (Z(D) u u(Z(D) n R))

(5.4.29) y'. -
].

yi - o for all i € D n (I(D) u u(I(D) n R))

5.27

for all i £ D - V(F(D)) - u(V(F(D)) n R).

Yp + 2o for every p € I(D) n R

(5.4.30) y' - Yp - 2o for every p € Z(D) n R p

Yp for all p € Qo D - V(F(D)).

Notice that the only nodes for which the dual variables

are decreased are odd nodes of F(D) and nodes contained

in odd pseudonodes of F(D). By (S.4.24) any edge j meeting

such a node and which is not a member of Ju J must also

meet a node whose dual variable increased by cr. Thus y'

will satisfy our feasibility criteria. Moreover for any

j E y(D) - (Ju J) we have

y'(t/J(j)) + y'(Qo{j)) = y(t/J(j)) + y(Qo{j))

so (S.4.22) will still be satisfied when E = is defined

relative to y',

We define y' in this manner for all DEM which

contain a maximal member T of R[S]

Thus we have

such that Y n o(T) ~ ~.

y'{tj,{j)) = y{tjJ{j)) + 2cr for all j E Y

since each j E Y joins even nodes or nodes contained in

even pseudonodes of pseudo Hungarian forests. We let

y! - Yi for all i E u(R[S]) which have not yet had y '.
].].

defined and we let y! be defined for i E s u {R[S])
].

sufficiently large that (S.4.27) will hold. We let y'
T - YT

for all TE QO <s> which have not yet had a dual variable

Yi defined.

Notice that (S.4.29) and (S,4.30) may have caused

to become negative for some i ES and caused y'
p

to

become negative for some PE QO[S]. However any such i

and P belong to W and N respectively and are not

required to have nonnegative dual variables.

y !
].

r
t
L
l ,.

!
I
I

I
f
t
I
f e

Step 2. Apply the blossom algorithm with the restrictions

(S.4.31) and (S.4.32) to the graph G(S) = (S, y(S) -

(Ju J), ~ly(S) - (Ju J)) to attempt to find a solution

to the problem

where

x. is
J

We start

and the

maximize l:(c.x.: j E y(S) - (Ju J))
J J

a nonnegative integer for all j E y(S)

x(o(i)) = b . for all i E s .
l.

with the initial solution X jy(S) - (J

nested family of sets R [S) . These are

(J u J) '

u J), y'

easily seen

to satisfy our requirements for a starting set of values

for the blossom algorithm except for the fact that there may

be members T of N[S) = R[S) for which yT < O. This

problem is handled by the restrictions

(S.4.31) we do not consider members of N when

computing the value of & 3 in Step 9a of .the blossom

algorithm;

(5.4.32) we do not allow the blossom algorithm to

expand members of N in Step 9e.

Since SEN= Q, b(S) is odd and the algorithm must

terminate in step 10 with a new matching x of G(S), a new

dual solution y, a new nested family R and a pseudo

Hungarian forest F(S) over N[S) contained in the subgraph

GS of G[S) x ii.<s> obtained by deleting all members of

Ju J.

5.29

St~. Let K be the set of roots of trees of F(S),

let

d = l: (b . - x (6 G (i)) : i · s K) •
1. s

If d = 1 then go to Step 4. Otherwise d ~ 2 so by

(5.3.19), D(G(S), S, N[S]) ~ 2. Therefore

F(J u J, W, Nu {S}) = ~ so by (5.4.15) we have F(J, W, N)=~

and we terminate the algorithm with this information.

Step 4.(d = 1) F(S) consists of a single tree

rooted at a node r(S) s V(GS)

Let

and x(oG (r(S))) = br(S)-1.
s

J(S) = {j E E: (j E 6 (S) or j is incident with an

odd node of F(S)) and (j is not incident with an even

node of F(S)},

W(S) = {i ES: i is not an even node of F(S) or

contained in an even pseudonode of F(S)},

N(S) ={TE QO: T is an even pseudonode of F(S)}.

By Theorem (5.3.23)

F(J u J, Wu (W n S), Nu {S})

Nu N(S)).

F(J u Ju J(S), Wu W(S),

Then we replace M with Mu {S} and J, W and N with

Ju J(S), Wu W(S) and Nu N(S) respectively and (5.4.15)

is still satisfied.

We define x by

x. if j E y (s) - (J u J)
x. J -

J
X. if j E E - (y (S) - (J u J).

J

5.30

We define y by

Yi if i. e: s,

Yi if i e: u(M) - s

YT if T e: QO[M]

YT if T e: Qo - QO[M].

A Replace R with R - R[S] u R and x and

y and return to Step 1.

y with x and

Step 5. We have now processed all the members of N

and we are going to apply the blossom algorithm to the graph

G' obtained from G by deleting the edges in Ju J.

First we define dual variables y! for the nodes i e: V
1

and y'
T

for all

(5.4.33)

j e: E - (J u J)

so that

y'(l/i(j)) + y'(Qo(j)) ~ c.
J

for all

(5.4.34) y'(l/i(j)) + y'(Qo(j)) = y(I/J(j)) + y(Qo(j))

for all j e: u y (T) - (J u J)

Let y

that

of R.

Let

Let

Te:R

(5.4.35)

be the set

y(I/J(j)) < C •
J

Let

y! ~ 0 for all i e: V - W.
1

of all edges j e: y (s) - (J

and the ends of j are two

01 - 1/2max{c. - y(l/i(j)): j e: y}.
J

u J) such

maximal members

d2 - max{-y.: i e: V - w and Yi < O}.
1

Now for any D € N which contains a maximal member T of

R such that y n o(T) ., cj, or contain a node i € T - w

such that Yi < 0 we define y'. and y' as in (5.4.29)
1 p

and (5.4.30). By (5.4.25) any i € T - w is an even node

of F(D) or is contained in an even pseudonode of F(D),

so we add o to the dual variable of such a node. In Step

1 we discussed the effect that this dual change had on the

feasibility of the constraints

the same remarks apply here.

We let for all

y(,p(j)) + y(Qo(j));, c.,
J

i E u(R) which have not yet

had y'. defined and we let y'. be defined for i E V-u(R)
1 1

sufficiently large that (5.4.33) and (5.4.35) will hold.

We let Yi= Yr for any TE QO which have not yet had a

dual variable Yi defined.

Now we apply the blossom algorithm to G', the graph

obtained from G by deleting the edges in Ju J, taking

= V =Wu W and again applying the restrictions (5.4,31) and

(5.4.32). We take y', x and R as starting solutions.

The blossom algorithm may terminate in Step 10 with a

pseudo Hungarian forest F over N. If this is the case,

then by (5.3.19) D(G', Wu W, N) 2' 1 and consequently

F(J u J, w u w, N) = cj,. Thus by (5.4.15) F(J, W, M) = cj,

and consequently there exists no solution to our problem;

we terminate the algorithm with this information.

Otherwise the blossom algorithm terminates in Step 11

* with a matching x and a dual solution y . We define a

* matching x of G by

5.32

r

t r
[
I
r

t
I

I·

I

*
X, for j e: E (J u J)

J X, -
J

0 for j e: J u J.

The matching X * is the solution we seek. Because of our

* restriction (5.4.32) we must have X (y(S)) = qs for all

* s e: N. By the operation of the blossom algorithm X (o(i))=b.
1

* * for all i e: w u w. By definition of = 0 for our X
' X.

J

* * all j e: J u J. Thus X e: F(J u J, w u W, N) ; X is optimal

for the following reason. * The matching x and dual

* solution y can be seen to satisfy the conditions (5.4.1)-

(5.4.13), substituting Ju J for J, Wu W for W and

N for N. * Therefore x maximizes c • x over

F(J u J, w u W, N). By (5.4.15), F(J, w, N) = F(JuJ, WuW,N)

* so x maximizes c • x over F(J, W, N), If an optimal

dual solution y to the original problem is required, then

perform the following step, Step 6.

algorithm.

Otherwise terminate the

* * Step 6. Our optimal solutions x and y satisfy

the complementary slackness conditions, however in general

* y will not satisfy the conditions (5.4.6)-(5.4.8) and

(5,4.10). That is there may be edges j e: J - J such that

c., there may be nodes
J

i e: w w

such that yi < 0 and there may be sets Se: N - N such

that Ys < 0. We now describe how to obtain a vector y

which will satisfy the complementary slackness conditions

(5.4.11)-(5.4.13) relative to

(5.4.6)~(5.4.10).

* X and which will satisfy

Initially, let M = N. M is the set of unprocessed

numbers of N. We define a vector -- ,QVUQ
y e: II\. by

5.33

t-

I
!
'" I
[
t
~

Yi - * Yi for all i E V,

* Qo, Ys for all s E

Ys -
Qo. 0 for all s E Q -

At each stage we have

je:E-J

(5.4.36) y(iJ,{j)) + y{Q(j)) ~ cj for all

u J{S)
Se:M

(5.4.37) ~ 0 for all

(5.4.38) ~ 0 for all

i e V - W -

T e Q - N -

u W {S)
Se:M

u N(S).
Se:M

Step 6a: If M = ~ then stop, by {5.4.36)-(5.4.38)

y must satisfy (5.4.6)-(5.4.10). Otherwise choose a

maximal member S of M. Let

- max { 0} u { c .
J

y(,J,{j)) y(Q{j)): j e: J(S) - J},

o 2 - max{O} u {-yi: i e W(S) W},

o 3 - 1/2 max{O} u {-yT: Te N(S) - N}.

Let o - max{o1 , o 2 , o3 }. If o = 0 then replace M with

M - {S}, we still have (5.4.36)-(5.4.38) satisfied, return to

- Step 6a.

Otherwise, let F(S) be the pseudo Hungarian forest as

defined in the algorithm, let J(S) and Z(S) be the sets

of odd and even nodes of F(S) respectively. We define a

dua1 solution y' by

:,.:;4

--,

r
Yi if i e: (V - S) or if i belongs ·to Z(S)

or is contained in a pseudonode of Z(S),

Yi + 2o if i belongs to I(S) or is contained

y'. - in 1. a pseudonode belonging to I (S) ,

Yi + (J if i e: s and i is not a node of F(S)

or contained in a pseudonode of F (S) .

YT if T e: Q - V(F(S)) - { s},

YT - 2o if T = s or if T is an odd pseudonode

y'
T - of F (S) ,

YT + 2 (J if T is an even pseudonode of F (S) .

Now if there is any edge j e: o(S) such that * x. > 0 then
J

j e: E - (J u J) so j must meet an even node of F (S) or

a node contained in an even pseudonode of F (S) . If there

is any node i e: o (S) such * that X (o(i)) < b. then
1.

i e: V - (W u w) so i must be an even node of F(S) or be

contained in an even pseudonode of F (S). For any edge

j e: y(S) such that y'(lf,(j)) + y'(Q(j)) > y(lf,(j)) + y(Q(j)),

one end of j must be an odd node of F(S) or a node

contained in an odd pseudonode of F(S) and the other end

of j must not be an even node of F (S) or contained in an

even pseudonode of F(S). Therefore j e: J(S) and consequently

* * X = 0 j • Thus it can be seen that X and y satisfy the

complementary slackness conditions (S.4.11)-(5.4.13).

y' ;,,
T

Finally, note that y'. ;,, y
1 i

for all

for all Te: Q -·{s} - I(S). s

i e: V and

belongs to N and

5.35

r r

[
r
~

if Te: Q n I(S) then T must be a member of N(P) for

some P c S, Thus Ti u N(S). Therefore we replace
Se:N-M

y with y' and M with M - {S} and (5.4.36)-(5,4,38)

are seen to be satisfied, Go to Step 6a.

This completes the description of the algorithm. We

now show that the amount of work performed by the algorithm

has an upper bound of the order b(V)

as the blossom algorithm.

!El, the same

* For any set Se: N we let N (S) be the set of maximal

members of N[S), It is easily seen that an upper bound

on the amount of work done in each execution of step l is of

the order

algorithm to G(S).

In Step 2 we apply the blossom

From (S.4.23) it can be deduced that

xjy(T) is a np matching of G[T] * for each Te: N (S).

Therefore ~(G(S), xly(S) - (Ju J), y) $ b(S)

* E(b(T) - 1: Te: N (S)), where ~(G(S), x!y(S) - (Ju J), y)
is as defined in (3,8.22), Therefore by (3,9.1) an upper

bound on the amount of work performed by this execution of

the blossom algorithm is of the order (b(S) - E(b(T) - 1:

* T e: N (S))) * h<s) I $ (b(S) - E(b(T): T e: N (s)) .+

IN*(s)J • JvJ The amount of work performed in each

execution of Steps 3 and 4 has an upper bound of the order

jvJ + JE I, Thus

(5.4.39) for each Se: N, the amount of work

performed in processing S has an upper bound of the order

* * b(s) - E(b(T): Te: N (s)) + JN (s)I •• Jvl IEI,

GI •

In ·step 5 we apply the blossom algorithm to the graph

* Where N is the set of maximal members of N, it can

:, • .j 0

be seen that an upper bound on the amount of work performed

in .Step 5 is of the order (b (V) * * - l:(b(T): T £ N) + IN I)
Jvl IE 1- If we add this to the sum of the bounds (5.4.39)

all s £ N, we see that an upper bound on the amount of

work performed in Steps 1 to 5 of this algorithm is of the

order (b(V) + INI) Iv I IE I .
It is easily seen that an upper bound on the amount of

work performed in Step 6 (if this step is performed) is of

the order INI (jvJ + JEj). Thus

(5.4.40) An upper bound on the amount of work

performed by the face optimization algorithm is of the order

(b (V) + IN I) Iv I

However N is a nested family of sets which contains no

singletons so by (3.2.4), JNI ,; Jvl - 1. Thus since b ~ 1
V

for all v £ V, we can obtain the following from (S.4.40).

(5.4.41) Theorem. An upper bound on the amount

of work performed by the face optimization algorithm (phase

II) in solving a problem is of the order b(V) Jv I

We saw in Section 5.2 that an upper bound on the amount

of work performed in the first phase of the face optimization

algorithm, the preconditioning algorithm, was of the order

jNj 2f(V, E) where N was the original, not necessarily

nested, family of memb~rs of Q and f(V, E) was a bound

on how efficiently we could perform the set manipulations of

the algorithm. In practice, if is reasonably small,

the amount of work performed in the preconditioning ~base

5.37

for

will be small compared to the amount of work performed in

the second phase. However since could be as large as

2lvl-1 , there could arise situations in which the

preconditioning phase was the more time consuming phase of

the algorithm.

5.5. The "Big-M" Method.

In this section we describe how the problem of

maximizing c • x over a face F(J, W, N) of P(G, b)

can be solved by a straightforward application of the

blossom algorithm. Recall that the blossom algorithm described

in Chapter 3 solved the problem of maximizing C . X over

a face F (</>' W, <I>) of P(G, b). We could use it to

maximize over a face F(J, w, <I>) of P(G, b) by applying

it to the graph G' - (V' E - J, 1/J IE - J) and if an optimal

* matching x' was found, we obtain

defining

our solution x by

* (5.5.1) xj -
x'

j
for j e: E - J,

0 for j e: J.

We construct a new objective function

with the property that if x' maximizes c'

c' = (c!: j £ E - J)
J

x' over the

face F(<I>, W, <I>) of P(G', b) and if F(J, W, N) ~ <I> then

* x defined in (5.5.1) maximizes c • x over the face

F(J, W, N) of P(G, b).

For. eve_ry x £ F(<j,, </>, N). c P(G, b)

l:(x(y(S)): s £ N)-= _l:(qs: s £ N) - q(N).

5.38

r

For any matching x E P (G, b) - F (q,, q," N)

E(x(y(S)): SEN) 5 q(N) - 1.

Therefore if we define

then

f. = /{s EN: j E y(S)}/ for all j
J

E E

(5.5.2) f • x ~ q(N) if x E F(q,, q,, N),

(5.5.3) f • x ~ q(N) - 1 if x is a matching

belonging to P(G, b) - F(q,, q,, N).

Let >..* - max({O} u {c.: j EE}) and let
J

>..* - min({O} u {c.: j EE}). Then for any x E
J

* 5). x(E).

/;/) E
If\

If x E P(G, b) then x(o(i)) 5 b. for all i EV so
1

x(E) 5 1/2b (V).

" Since >.. ~ 0, " ~ 0 we have therefore

(5.5.4) 1/2b(V)>..*

Let

For each j EE define

* 5 c • x 5 1/2b(V)). .

Then for any x E F(q,, q,, N) by (5.5.2) and (5.5.6)

i
I
I

'

c' • X = M q(N) + C • X

(5.5.7)

~ M • q(N) + l/2b(V)A* by (5.5.4).

For any matching x E P(G, b) - F($, $, N) by (5.5.3) and

(5.5.6)

CI . X ,;; M (q (N) - 1) + C . X

~.4U

(5.5.8)
,;; M . q (N) - (b(V)(A* - A*)+l) + b(V)A*

2 2

by (5.5.4) and (5.5.5)

= M . q (N) + l/2b(V)A* - 1.

Thus (5.5.7) and (5.5.8) show that any member x of

F($, $, N) makes c' • x take on a value at least one

larger than does any matching x belonging to P(G, b) -

F($, $,

x 1 and

N) •

2
X

Moreover, (5.5.7)

of F($, $, N), c'

shows that for any members

• x 1 - c'
2 1

• X = C • X - C

so that the relative values of the matchings x E F($, $, N)

with respect to c'

with respect to c.

are the same as their relative values

Now we use the blossom algorithm to solve the problem of

maximizing (c' IE - J) • x over x belonging to the face

F($, W, $) of P(G', b) where G' = (V, E - J, tJJIE - J).

If the algorithm terminates with a Hungarian forest then the

f F("' W "') of P(G', b) ace "', , "' is empty, and so the face

F(J, W, N) of P(G, b) is empty.

If the algorithm terminates with an optimum matching x'

* then let x

* X ,;; M CI

be defined as in (5.5 .. 1). If

q(N) + l/2b(V)A* - 1 * then X I' F($, $, N);

2
X

r

since any x £ F(<j,, </>, N) would make c' • x take on a

larger value.

However if

* x s F(J, W, N)

F(<j,, <j,, N) = <j, and hence F(J, W, N) = <j,.

C' * • X ~ .M q(N) + l/2b(V)A*

* and so x must maximize c'

then

* x over

F(J, W, N). Moreover the value of the solution is easily

computed, by (5.5.7)

* C • X = C 1 * x - M • q(N).

Thus this procedure reduces the face optimization problem

to a matching problem which can be handled by the blossom

algorithm. Since (Theorem (5.9.2)) the bound on the amount

of work performed by the blossom algorithm is independent of

the edge costs, the bound on this procedure is the same as

that of applying the blossom algorithm to simply maximize

c • x over P(G, b). The only drawback with this approach

is that if b(V), A* and q(N) are large then a computer

implementation might experience some difficulty in storing

all the significant digits in the numbers

dual variables. The algorithm of Sections

not have this difficulty.

c'. and in the
J

5.2 and 5.4 does

5.6. Multi-Optimization in Matching Problems

In this section we describe how the principle of

complementary slackness can be used with the algorithms of

this chapter to solve matching problems in which we have

specified not just one, but several objective functions to

be maximized according to some levels of priorities. For

example, we may be given a subset J of the edges of

5.41

G = (V, E, tj,)

matching x E

and a vector c E

P(G, b) for which

'[ZE and wish to find a

i(J) is maximal over

P(G, b) and for which c • x is maximal over the members

of P(G, b) which maximize x(J).

The method described is based on Theorem (2.1.8) which

shows that if c

P then {x E P: c

x has a maximum value z over a polyhedron

x = z} is a face of P. A matching

polyhedron P(G, b) is a bounded polyhedron (for every

j EE, 0 $ x. $ min{b.: i E tj,(j)}, for all x E P(G, b)) and
J 1.

consequently for any c E ~; ex has an upper bound over

P(G, b). Therefore for any c E 'R_E, ex is maximized over

P(G, b) by precisely the members of some face of P(G, b).

Now we describe the first sort of multi-optimization

problem considered. We are given a graph G = (V, E, tj,), a

vector b = (b.: i EV) of positive integers and a sequence
1.

l z k f b f 1iJE. L X P(G b) d c, c , .•• ,c o mem ers o ll~ et O = , an

for each i E {l, 2, ... ,k} we let

-{XEX.
1

:
1.-

i
C •. X is maximized over X. l}

1.-

* The multi-optimization problem is to find a matching x E Xk.

(5.6.1) Multi-Optimization Algorithm.

Step O: Let i = O, let J 0 = w0 = N0 = ~. Then

trivially we have x
0

= P(G, b) = F(J 0 , w0 , N0).

St 1 We assume we know sets J. c E W c V and ep : 1. - ' i -

Ni 5 Q such that Xi= F(Ji, Wi, Ni). We now use the face

optimization algorithm to find a solution

problem

i+l
X to the

5.42 ,II
1.•,!
!.,,

i,I

I
I,

' '

r
I

I

over

If i = k - 1

maximize i+l
C ' X

X. = F (J. , W. , N.).
l 1 1 1

then k
X is the required solution to the

multi-optimization problem, stop the algorithm. Otherwise

go to Step 2.

Step 2. Let i+l
y be the dual solution supplied by

the face optimization algorithm. By the complementary

slackness conditions (5.4.11)-(5,4.13) x E F(J., W., N
1
.)

].].

maximizes c • x over F(J., W., N.) if and only if
].].].

(5.6.2) xj

Yi+1<w<j)) + Yi+1<Q(j))

0 for all

> C • j ,

j E E such that

(5.6.3) i(o(v)) = b for all v EV such that
V

i+l
Yv > O;

(5.6.4) x(y(S)) = qs for all SEQ such that

i+l
Ys > 0.

Thus xi+l = {x E X.:
].

X satisfies (5.6.2)-(5.6.4)} and so

we define

Ji+l - J. u {j E E: Yi+1<w<j)) + yi+l(Q(j)) > c.}].
J

wi+l W. {v V: i+l O} - u E yv >
].

Ni+l N. s Q:
i+l O} - u E Ys >

].

Now

Replace i with i + 1 and return to Step 1.

l
l
t

I
r
!
!

This completes the description of the algorithm. It

is clear that solving this multi-optimization algorithm will

involve k applications of the face optimization algorithm.

Generally the graph considered in each successive application

of the face optimization algorithm in step 1 will have fewer

edges than the one handled in the previous cycle, since

growth of the sets Ji is equivalent to deleting edges of

the graph. Thus we would expect the multi-optimization

algorithm to perform somewhat better, certainly no worse,

than solving k face optimization problems for the original

graph.

5.44

The following problem is a variant of this multi-optimization

problem. We wish to find, if one exists, an * element X

of P(G, b) such that i
is maximized P(G, b) C . X over

* by X for all i E { 1' 2, ... ,k}. This

for each i E { 1, 2, ..• ,k} the face F.
l.

containing all those x which maximize

and then we find a matching

empty.

* X
k

E n F.
i=l l.

we do by finding

of p (G' b)

i
c • x over P(G, b)

if this set is not

For each i E {l, 2, ... ,k} we use the blossom algorithm

to find an optimal primal solution and an optimal dual

solution

P(G, b).

J.
l.

W.
l.

N.
l.

-

-

-

0
y

We

{j

{v

{S

over i
C • X to the problem of maximizing

let

e: E: yo(ip(j)) + yo(Q(j)) i
> C • } '

J

V: 0 e: Yv > O},

Q:
0 e: Ys > 0}.

By complementary slackness (Theorem(l.5.16))applied to the

linear programs (3.5.1)-(3.5.5) and (3.5.6)-(3.5.9) (taking

= - i) C = C over
i

C • X
V - <j> and xe:P(G,b) maximizes

P(G, b) if and only if x e: F(Ji' Wi, Ni). By (2.1.4) we

have

where

k
n F(J., wi, Ni)= F(J, w, N)

i=l 1

k
J - u J.

i=l 1

k
w - u w.

i=l 1

.k
N - u N.

i=l 1

Thus we can now use the face optimizing algorithm to

* find a matching x e: F(J, W, N) if such a matching exists.

(Take c. = 0
J

for all j e: E as an objective function to

be maximized). The algorithm will either terminate with the

information that F(J, W, N) = <j> or with the matching

which we require.

* X

This process involves k applications of the blossom

algorithm and one application of the face optimizing algorithm.

The face optimizing algorithm is applied to a problem of a

particularly simple type, one in which c. = 0 for all j e: E.
J

This means that if the dual variables are defined initially

to be zero, then they will never be changed in the course of

the algo·rithm.

If we find a solution * X then clearly we could have
.,

found it by using the first algorithm described in this section.

5.45

r

However if we simply apply the first algorithm when presented

with a problem of this sort we will not know if the matching

k x produced by this algorithm maximizes
i

c · x over

P (G, b) for i e {2, 3, ... ,k} unless we check it for all

such i. This checking procedure involves k - 1 applications

of the blossom algorithm. Thus altogether we would have to

solve k face optimizing problems and k - 1 ordinary

matching problems so the advantage of the second method of

solution is apparent.

We can combine these two methods in an obvious fashion

to solve multi-optimization problems of the following sort.

Let c
1

, c
2

, ... ,Ck be a sequence of finite nonempty subsets

Of r,;)E, let X P(G b) 11\... O - '
and for each i {l, 2, ... ,k}

X. - {x e X. 1 : c • x is maximized over X. 1 l. 1.-].-

for all ceC.}.
1

let

* We wish to find a matching x e Xk if such a matching exists.
k

If such a matching exists, we have· to solve 1 + E le. I
i=l 1

face optimization problems to find it.

then it may well happen that X. = <I>
1

However if Xk

for some i < k and

so we would discover this without solving so many problems.

A first approach which might be considered for solving

multi-optimization problems is a generalization of the

"Big-M" method of the previous section. This would involve

selecting positive constants M1 >> M2 >> ••• >> Mk and

letting C '.
J

k i
E M.c.

i=l 1
J

for all j e E. Then it is easily

Ii

I
!

I

* seen that a solution x to the problem of maximizing C I

over P(G, b) is a solution to the first multi-optimization

problem discussed. However, although this method is fine

in theory, in practice if k is reasonably large then the

huge number of significant digits which would have to be

handled for the C I
j makes this method infeasible.

The methods described in this section could be applied

to other classes of multi-optimization problems besides

matching problems provided a face optimizing algorithm were

known which provided an optimal dual solution. However, for

linear programs in which the number of constraints is of a

manageable size there are more direct methods (for example,

a generalization of the two phase method of obtaining a,

starting basic feasible solution; see Dantzig [Dl] Chapter

5 Section 2 for a discussion of the two phase method.)

5.47

X

I
!
[

I

Chapter 6

A Post-Optimality Problem

In this chapter we discuss one aspect of post-optimality

for matching problems, modification of the degree constraints.

Assume that we are given a graph G = (V, E, ~), a vector b

of positive integral degree constraints and an arbitrary vector

c £ 11\E. We suppose that we have applied the blossom

algorithm of Chapter 3 to the matching problem

(6,0.1) maximize c • x

over X £ '(R_ E which satisfy

(6.0.2) X,
J

is a nonnegative integer for all j £ E,

(6.0.3) x(o(i)) = = b, for all i £ V C V,
1.

(6.0.4) x(o(i)) v" = ,, b. for all i £ - V - V
' 1.

and 0 and 0 the optimal matching and dual solution X y are

thereby obtained. Now we wish to solve (6.0.1)-(6.0.4) again,

replacing b with a new vector b' of degree constraints.

We could sim~ly reapply the blossom algorithm taking X, = Q
J

for all j £ E as an initial matching. If we do this, the

upper bound on the amount of work required (see (3.9.2)) is

of the order

b I (V) Iv I

In this chapter we describe a method of solving this problem

which utilizes the solutions 0
X and 0 y which we already

know. We show that an upp~r bound on the amount of work

required by this method is of the order

(E(lb. - b'.I: i £ V) + Iv!)
1 1 Iv I IE I .

Thus it is clear that if the values of lbi - b~I are small

re·lative to the values of b'
i

for i £ V then our new

method bas a somewhat better bound than a direct application

of the blossom algorithm.

6.1 Obtaining a Starting Solution

Throughout this chapter we let G = (V, E, ~) be a

6. 2

graph, we let b = (bi: i £ V) be a vector of positive integers,

we let C = (C. :
J

j £ E) be an arbitrary real vector and let

y be a feasible dual solution of (6.0.1)-(6.0.4) (see Section

3.7). Let R be a shrinkable family of subsets of G and

let G = G x R. In (3.8.22) we defined ~(G; x, y)

any matching X of G which satisfied x(o(v)) ,;;

all V £ V (G), In the case R = q, we have

~(G; x, y) = E(b.
1

- x(o(i)): i £
=

V or

(i £ v,, and Yi > 0))

where X is a matching satisfying

(6,1.1) x(o(i)) ,;; bi for all i £ V

b
V

for

and y is any feasible dual solution. The value of ~(G; x, y)

measures, in a sense, how close x and y are to being

optimal feasible solutions to the matching problem.

Now suppose that y is any feasible dual solution and

x is any matching of G, that is x need not satisfy (6.1.1),

We define

ll(G,b; x, y) - E(jb. - x(o(i))I:
l.

= i E V or

(i E Vs and yi > 0))

+ E(max{O, x(o(i)) - bi}: i E Vs and y. = 0).
l.

(In Chapter 3 the vector b was constant so we did not

introduce it as a parameter of ll(G; x, y). Here however

we consider more than one vector of degree constraints so we

include b as a parameter of ll(G, b; x, y). Throughout

= this chapter the set V is constant, so we do not include

it as a parameter of ll(G, b; x, y) although of course it

does affect this value.)

Notice that

(6.1.la) if x satisfies (6.1.1) then

ll(G, b; x, y) = ll(G; x, y).

(6.1.2) Proposition. For any matching x of G

there exists a matching x' of G such that

(6.1.3) x' >' 0 only if x. >' 0 for all j E E,
j J

(6.1.4) ll(G, b; X ',y)s'(G b·x y) - - '--' , , ,

(6.1.5) x' (o(i)) s bi for all i E V.

6.3

Proof. Our proof consists of an algorithm for constructing

the matching x'.

Step o. Let d. - 0 for all i E v. Let ! - cj, • At
l.

each stage of· the algorithm we have a nonnegative integer

x'. defined for all j E J. C E such that
J

'.I
l·i
i

(6.1.6) x'(o(i)nJ)= d .
].

for all i EV.

Step· 1. If J = E then x' is the matching we require,

stop the algorithm.

{u, v} = ij,(j). Let

Otherwise choose j EE - J, let

x'. - min{b - d b
J u u' v.

d, x.}.
V J

Replace

add j

d
u

and d with d + x'
V U j

and dv + x'.
J

respectively,

to J and return to step 1.

This describes the algorithm, we now discuss why it

works. Clearly our actions in Step 1 preserve (6.1.6).

Properties (6.1.3) and (6.1.S) are immediate consequences of

our definition of x'
j

and (6.1.6). For any J C E as

constructed in the algorithm we define a matching J
X by

x. if j E E - J
J J

x. -
J x! if j E J.

J

We show that ll(G, b;
J

X ' y) $ ll(G, b; x, y) for all such

J. Since E
X = x' this will prove (6.1.4).

Initially J = ~ and the result is trivial. Suppose

it holds for some Jc E and let j be as chosen in Step 1.

If then x 3 = xJu{j} and the result is trivial.

Otherwise there is u E ij,(j) such that x' = b - d and
j u u

·x! $ b - d where {v} = 1/i(j) -·{u}. Therefore, by (6.1.6)
J V V

x' + x' (o (u) n J) = b and x '. + x' (o (u) n J) $ b .
j U J V

The term

in J
ll(G, b; x, y) corresponding to u contributes X - X f

j j

more to this sum than the corresponding term contributes to

Ju{j}) ll(G,b;x ,y. However the term in J
ll(G, b; X , y)

6. t,

corresponding to v contributes at most more to

this sum than the corresponding term contributes to

(G b Ju{j})
t:,' ;x ,y. Since all other terms contribute the

same Ju{j} < J amount to both sums, 6(G, b; x , y) _ t:,(G, b; x , y) ~

6(G, b; x, y) by our hypothesis and the result follows.O

Observe that the amount of work performed by this

algorithm is of the order

As in Chapter 4, for any graph G = (V, E, ip)

matching x we define the graph

and any

where

E E: X. > O},
J

In Section 4,5 we described the structure possessed by the

vertices of P(G, b) and hence of the matchings produced

by the blossom algorithm. We next show 'how from any matching

X E P (G, b) we can obtain a matching x' of P(G, b) which

will have several of the same characeristics as vertices of

P (G, b) and such that 6(G, b; x', y) ~ 6(G, b; x, y). In

the uses that we make of this procedure, the matchings x

with which we start will be such that x'

type of vertex of P(G, b), a vertex x'

will be a special

for which any

component of G+(x') contains at most one polygon.

(6,1.7) Theorem. For any matching x of G

satisfying (6.1.1) there is a matching x' of G satisfying

(6.1.3)-(6.1.5) and for which each component H of G+(x')

satisfies

6.5

r 6. 6

(6.1.8) H contains at most one node at which

x' is deficient,

(6.1.9) if H contains an odd polygon and a node

V at which x' is deficient then either x' has a deficiency

of 1 at V or else there is a set J C E such that x'. 1 - J--

for all j € J and any path in H from V to an odd

polygon of H contains a member of J.

Proof. Again, our proof describes an algorithm for

actually constructing x'. The operations of the algorithm

are similar to Steps 2 and 4 of the Matching Simplification

Algorithm (4.5.21).

Initially, let x' - x.

Step 1. If each node of G at which x' is deficient

b 1 d . . f G+(x'') e ongs to a 1st1nct component o then (6.1.8)

holds for all components H of G+(x') and we go to Step 2.

Otherwise let v and w be nodes belonging to a component

w and

and w €

such that x'

(6.1.10)

v"'.
if = 0

is deficient at both v and

and V € V,!, then = 0

(If our original choice of v and w violated (6.1.10) we

simply interchange v and w).

from v to w. Let

Let ~ be a path in H

- min{x'.
J

j is an even edge of ~}.

Since

0 -

+ j £ E (x') for all j £ E(1r), o
1

;e 1. Let

mi~{o 1 , "bv - x 1 (5(v))} if 1r is of even length,

X
1

(5 (W)) } i"f 7f i S

of odd length.

Defnie x" by

x! + 0 if j
J

is an odd edge of 7f ,

x'.' - x'. - 0 J.f j is an even edge of 7f I J J

x! if j £ E - E(1r).
J

Rep1ace x' with XII and return to Step 1.

Stee 2. If (6.1.9) is satisfied then stop, x' is the

desired solution. Otherwise let V be a node in a component

H of G+(x') such that x' has a deficiency of at least 2

at V and let 7f be a path from V to an odd polygon p

in H such that x'. ;e
J

2 for all j £ E(1r). Let

{w} - V(P) n V ("IT) ' let T be a track from w to w induced

by P. Let

01 - min{x'.: j is an even edge of 7f } ' J

min{x'.: j is an even edge of T} if 7f has even
J length,

02 -

min{x!: j is an odd edge of T} if 7f has odd
J length,

Let

Then o ;e 1. Now define x'' as follows.

6. 7

I ,.

I',

j

!I
11·

!"
i:
11

1.

'

l
I
I
t
!

X !
J

2cr if j is an even edge of rr,

x~ + 2cr if j is an odd edge of
Tf ' J

x! + " if j is an even edge of T and
J

/E(rr)/ is odd

or if j is an odd edge of T and

I E(rr) / is even,

XI.I - x' if j is edge of and J - " an even T
J

/E(rr)I is even,

or if j is an odd edge of T and

/ E(rr) I is odd,

x'. if
J

j £ E - (E(rr) u E(T)),

Replace x' by x" and return to step 2.

This describes the algorithm, we now show why it works.

Each time we perform Step 1 we either decrease the number

of deficient nodes or introduce a new edge j for which

x'! = 0 (or both).
J

Each time we perform Step 2 we decrease

the deficiency of a node (by at least 2). Since neither Step

1 nor Step 2 introduce new deficient nodes and since in

both Step 1 and Step 2, x~ • 0 only if x! • 0, the algorithm
J J

will terminate and (6.1.3) and (6.1.5) are easily seen to

be satisfied. By virtue of the fact that we terminated;

every component H of G+(x') must satisfy (6.1.8) and

(6.1.9) for the final x'.

In order to see that (6.1.4) is satisfied by our final

x', observe that /b. - x'(o(i))/
1

is increased by an

application of Step 1 or 2 in exactly one case, namely in

Step 1 when i = w and /E(rr) / is odd. However in this case

we decrease lbv - x'(o(v)) I by an id•ntical amount. The

6.8

I

on1y time the term in 6(G, b; x', y)

contributes nothing to 6(G, b; x'
'

y)

corresponding to v

is when V 8 v-5.

and yv = 0. But in this case, by (6.1.10), w E V-5. and

= 0 so the term corresponding to w contributes nothing

to 6(G, b; x'
'

y). Hence in every case 6(G b• x"
' ' ' y) $.

6(G, b; x'
'

y) following an application of step 1 or step 2

and the proof is complete,0

6.2 The Post-optimality Algorithm.

We describe in this section what could be considered a

two phase approach to the post optimality problem. The

0
first phase will involve modifying an existing matching x

and corresponding dual solution 0 y to obtain a matching

and dual solution y which are acceptable as input to the

X

blossom algorithm with the new degree constraints b'. Then

the second phase will consist of a straightforward application

of the blossom algorithm.

The two phase structure of this algorithm makes it

particularly attractive for computer implementation, for

given that we have a computer code of the blossom algorithm,

6. 9

we need only write new code for the first phase; no reprogramming

of the blossom algorithm is required.

Let b = (b.:
1

i 8 V) and b' = (b'.: i EV)
1

be two real

vectors indexed by v. We measure the difference of b' and

b by

Jib - b'JI _ i:(Jbi - b~J: i 8 V).

This is commonly called the 1-norm of the vector

(Isaacson and Kellar [Il], p. 4).

(b - b')

I
ii
'i
I

r
'

Suppose that we have used the blossom algorithm to

solve the matching problem (6.0.l)-(6.0.4) and that
0

X

6.10

is

the optimal feasible solution found, yo is the optimal dual

solution (see Section 3.7) and R is the nested .family of

sets which we had when we reached Step 11 of the blossom

algorithm. (The knowledge of R is not essential, given an

0 0 x and y as above, we can construct a nested family R'

of members of QO which will suffice.

in Section 6.3).

This we discuss

Phase 1. Initialization~

Step 1: Define vectors

J - u o(S). Let
S£R

(6.2.1) 1
x. -

J

0

0 x.
J

1
X

if

if

and

j £

j £

1
y

J,

E

as follows.

- J.

For any i £ V let R(i) = {S £ R: i £ S}. Let

(6.2.2)
1 . 0 0

Yi - yi + l/2L(ys: S £ R(i)) for all

(6.2.3) 1 0
Ys - 0 for all S £ Q.

Go· to ,Step 2.

Notice that

Let

i £ V,

(6.2.3a) each component H of G+(x
1

) can contain

at most one polygon, for by (3,8.14) each component of G x R+(x
1

)

contained at.most one odd·polygon and for every S £ R, each

component of is a subgraph of a blossom

r

and so contains at most one polygon and

j £ o(S) for all S £ R.

1
x.

J
0 for all

We now show that 1
y has the following two properties.

for all j £ J,

for all j £ E - J.

Let j £ E and let R(j) = {S £ R: j £ y(S)}. By

0 (3.8.9), y 8 = 0 for all S £ Q - R, so

If we let {u, v} = •(j) then we have

(6.2.7) R(j) = R(u) n R(v) for all j £ E

and hence, since 0 ;, 0 for all s Qo, Ys £

(6.2.8) yO(R(j)) $ l/2(yO(R(u)) 0 + y (R(v)))

for all j £ E.

If j £ E - J, then R(u) = R(v) and (6.2.7) implies

(6.2.9) yo(R(j)) = 1/2(yo(R(u)) + yo(R(V)))

for all j £ E - J.

Combining (6.2.6) with (6.2.8) and (6.2.9) we obtain

(6.2.10) yo(•(j)) + yo(Qo(j)) ,; y~ + 1/2y 0 (R(u)) +

YO+ l/2yO(R(v)) for j £ J,
V

6.11

r
'

f

l
I
l
[

I
f

(6.2.11) yo(~(j)) + yo(Qo(j)) = y~ + 1/2y 0 (R(u)) +

y~ + l/2yo(R(v)) for j EE - J

which combined with (6.2.2) and (6.2.3) prove (6.2.4) and

(6.2.5) as required.

Since 0
y was a feasible dual solution, (6.2.4) and

(6.2.5) immediately imply that

(6.2.12) y' is dual feasible.

Since 0
X and 0 y satisfied the complementary slackness

condition (3.5.10) we have by (6.2.1) and (6.2.5) that 1
X

and 1 y also satisfy (3.5.10). We have (3.5.12) trivially

satisfied because of (6.2.3).

Step 2. Now apply the algorithm described in the proof

of Theorem (6.1.2) replacing b with b' so that the new

matching 2
X thereby obtained will satisfy

(6.2.13) x
2

(o(i)) ~ b' for all i EV.
i

Go to ·step 3.

2
By (6.1.3), x will satisfy (3.5.10) and (3.5.12) with

respect to 1 y . Moreover by (6.1.4)

Since X

we must

RO u Rl

(6.2.14) 2 1 1 1 ~(G, b'; X, y) ~ ~(G, b'; x, y).

0
and

have

where

0 y are

~(G, b; X

optimal

0 yo) • =

solutions to (6.0.1)-(6.0.4),

0. We partition R into

Ro - {SER: x 0 (o(S)) = O}

R
1

- {SER: x 0 (o(S)) = l} .

6.12

For each SE RO there is a node i(S) s S such that

x 0 (a(i(S))) = bi (S) - 1' but for all i E s - {i (S)} we must

have x 0 (a(i)) b .. Since I'. (G' b. 0 yo) 0' = X = we must
]. ' '

have i (S) v,;, and 0 =.O. Since by (6.2.2) 1 0 E yi(S) Yi > Yi

only if is S s R, it follows that

(6.2.15) 0
X ' l'.(G, b;

For each SE R1 there is a unique edge j(S) s o(S) such

that 0
xj(S)=l. Therefore by (6.2.1),

1'.(G, b; x 1 0
X '

which together with (6.2.15) implies

1 1 I (6.2.16) 1'.(G, b; x, y),;, 2 Rj.

It is easily seen that

(6.2.17) 1
X ' t.(G,.b'; Yl) _< ' (b ,.. G' ;

so by (6.2.14), (6.2.16) and (6.2.17),

1
X '

(6.2.18) 1'.(G, b'; x
2

, y
1

) ,;, I lb - b' 11 + 2jRj •

Step 3. Apply the algorithm we described in the proof

of (6.1.7) to the matching 2
X with respect to the vector

b I > let 3
X be the matching thereby obtained. Go to step 4.

Since x~ ~ 0 only if
J

for all j i E and by

3 1
(6.2.5), x and y satisfy (3.5.10). Moreover, by (6.1.7)

X 3 ,· yl) 2 1 l'.(G, b'; ,;, l'.(G, b'; x ;y) which with (6.2.18)

implies

6.13

r
(6.2.19) i\(G, b'; 3

X , y
1

) ,;; 11 b - b I 11 + 21 RI .

Let H be any component of G+(x 3) which contains a

node belonging to some S £ R. As before, we let

R[S] = {T £ R: T c S}. 1 By (6.2.1), x. = 0 for all j £
J

u o (T)
TER[S]

2 3
xj xj = 0

u·o(s).

for all

Therefore by (6.1.2) and (6.1.7),

j £ u o(T) u o(S). Therefore
TER[S]

H

is a subgraph of G[S] x R[S]. Since the edges j £ E(G[S] x

0 R[S] for which xj ., 0 are a subset of the edges of a

(6.1.7) H is a subgraph of a blossom, by (6.1.2) and

blossom and so

(6.2.20) H contains no even polygons and

(6.2.21) H contains at most one odd polygon.

If H contains no node of any S £ R, then H is a

subgraph of G x R so (6.2.20) and (6.2.21) follow from

(3.8.13) and (3.8.14).

Any component H of G+(x 3) satisfies (6.1.8) so

3
X

1
y are almost in a form appropriate for using as

starting solutions to the blossom algorithm. However we may

still have some components of G+(x 3) containing both a

deficient node and an odd polygon.

follows.

These are dealt with as

Step 4. Let R' = •· For. each component H of G+(x 3)

containing both an odd polygon P and a deficient node v

we do the following.

P. If there is no

Let TI be the path in H from v to

j £ E(n) for which x~ = 1
J

then we must

6.14
I
'!
11

'

'I

have b'
V

3
- x (o(v)) = 1 by {6.1.9) and we let B = H

and r = v. Otherwise let k be the last such edge of �-

If we delete k from H we are left with two subgraphs,

one of which, B, does not contain v. Let {r} = ¢(k) n V(B).

In either case it is now easily seen using (6.2.3a)

that B is a blossom and x 3 1E(B)

B deficient at r. Moreover

is a np matching of

(6.2.22) H x V(B) will contain a unique deficient

node and no odd polygons.

Add V(B) to R'.

When this process has been completed for all components

coniaining a deficient node and an odd polygon, go to Step 5

where we perform the second phase.

It can now be easily checked that the matching 3
X , the

dual solution 1
y and the nested family of (pairwise disjoint)

sets R' are suitable input for the blossom al gorithm.

Moreover by (6.2.19) and (6.2.la) we have

(6.2.23)

h (3 y
l) w ere /J,, G; x , is evaluated with respect to b'.

Phase 2. Execution

Step 5. Apply the blossom algorithm to G, with respect

to the new vector b' of degree constraints, starting with

the matching
3 the dual solution 1 and the nestedX ' y

family R' of shrinkable subsets of v. The optimum solution

*

the'reby X obtained is an answer to the problem, the dual.

solution y is an optimum .dual solution. This completes the

6.15

description of the algorithm.

An upper bound on the amount of work performed in step

1 is of the order /E/ + /v/, an upper bound on the amount

of work done in Step 2 is, as we have already seen, of the

order In Step 3 we applied the algorithm described

in the proof of (6.1.7), Each performance of Step 1 of this

algorithm either decreased the number of deficient nodes

or introduced a new edge j

step can be performed at most

such that x'. = 0. Thus this
J

/v/ + /E/ times and an upper

bound on the amount of work done in this step is of the order

IE I . IV I, Since each component of G+(x 2) contains at most

one odd polygon, it is easily seen that the second step of

this- algorithm can be performed at most once for each component

and so an upper bound on the amount of work performed in this

step is of the order Step 4 of the post optimality

algorithm has an upper bound of the order

The bound on the amount of work performed in Phase 2 is

a straightforward consequence of (3.9.1) where we saw that

this bound was of the order

i,(G; x, y) /vi

where x and y are the starting solutions. By (6.2.23)

therefore, an upper bound on the amount work performed in

step 5 is of the order

(6.2.24) (//b - b'// + 2/R/) IV I • IE I

and since the order of the bound of all previous steps of

the algorithm is less than (6.2.24), it follows that a bound

on the amount of work performed by the algorithm is of the

6.16

order (6.2.24). By (3.2.8) jRJ :;; l/2(JvJ - 1) so the

total amount of work performed by this algorithm has a

bound of the order <Jib - b'JI + JvJ) Jv I IE I .
In Step 1 of this algorithm we eliminated having to

consider R by letting 1
x. - 0

J
for all j E U Ii (S) and

defining the dual solution 1 y so that

SER
1

Ys = 0 for all

S c: R. It was this operation that introduced the term 2JRJ

in the factor (J Jb - b' J J + 2JRJ) of (6.2.24). An algorithm

was developed which was basically a synthesis of the two

phases of the algorithm here proposed and which attempted

to make as much use of R as possible. However it was

abandoned in favour of the algorithm here described for two

reasons. In the first place, although the second algorithm

was more efficient in certain cases, the theoretical bounds

on the amount of work performed by the two algorithms were

identical, namely (6.2.24). In the second place the advantage

of the second algorithm was that in certain cases it was

able to avoid setting 1
X = 0

j
for some edges j E U li(S).

SeR
However practical experience (see chapter 7) indicated that

the size of JRJ is normally very small compared to Jv I
or jEJ

jRj

(in graphs of 100 nodes and 500 edges, we generally

< 10) •
0

X is had Thus since x 0 (u li(S) :;; JRJ where
SER

the initial solution used by the algorithm, the gain is small

when compared with the high degree of complexity of the second

algorithm.

6.3 Obtaining a Nested Family.

Assume we know an optimal solution 0
X to (6.0.1)-(6.0.4)

6.17

and an optimal dual solution
0

y as produced by the blossom

algorithm. Thus

(6.3.1) 0 x is a vertex of P(G, b)

(6.3.2) R' {S Qo: 0 O} is nested family - s Ys > a

of subsets of V such that for each s s R'
'

G-[S] X

= is shrinkable. (G is the equality subgraph relative

as discussed in Section 3.8, thus G= = (V, E=, ~,E=)

where

C.}.)
J

RI [s]

to y

The nested family R' will in general not be suitable

as input to the post optimality algorithms of this chapter,

for there may be sets S s R' such that, where

0

6.18

G = G[S] x R' [SJ, there is a component H of G+(xO) containing

more than one odd polygon or containing both an odd polygon

and a node at which 0
X is deficient. Similarly if we let

G = G x R', there may be components H of G+(xO)

these properties.

having

In this section, we describe a method for finding a

nested family R of members of QO having the properties

(6.3.3) RI C R,

(6.3.4)
0

x h (S) is a np matching of G[S] for

all S s R,

(6.3.5) where GS - G[S] x R[S] for all S s R,

t H Of G-s+<~o) eYery componen "" satisfies (3.8.13)-(3.8.6)

(6.3.6) where G = G x R, every component H

satisfies (3.8.13)-(3.8.16).

This family R together with 0
X and 0

y will be

suitable as input for the post-optimality algorithm of

this chapter.

Step 0. Initialization. Let D = ¢, let R = ¢. At

every stage of this algorithm Ru R' will be a nested family

of members of QO and D c R is the set of "processed"

members of R'.

Step 1. If D = R' then go to step 6. Otherwise, choose

a minimal S s R' - D. Let G = G = [S] x R [SJ .

Step 2. If there is a component H of G+(xO) which

· dd 1 P d d h" h x 0 1·s contains an o po ygon an a no e v at w 1c

deficient and is such that any path TI in H from P to

V contains an isthmus j of H for which 0
X. = 1

J
then go

to step 2a, otherwise go to step 3.

Step 2a. Let P be chosen so that a path TI in H

from P to v is maximal over all paths in H from odd

polygons to v. Let j be the first isthmus of H in TI

such that x 0
= 1 and let w be the end of j

j
furthest in

H from v. Let B be the subgraph of H disconnected from

V if j is removed from H. B is easily seen to be a

blossom, x 0
1E(B) is a np matching of B deficient at w.

(6.3.7) Let W - {is V: is V(B) or is Ts V(B)

6.19

for some TE .R}. Let R ~Ru {W}, replace R with R,

replace G with G-[S] ~ R[S].

Go to Step 2.

Step 3. If no component of G+(xO) contains both an

odd polygon and a node at which 0
X is deficient, then go

to Step 4. Otherwise let B be such a component containing

a node v at which x
0

is deficient. By (6.3.1), conditions

(4.5.6) and (4.5.7) of Theorem (4.5.3) and the condition of

Step 2 of this algorithm, 0
X has a deficiency of 1 at V

and B contains a unique odd polygon P. It is easily seen

that B is a blossom and x 0 /E(B) is a np matching of

B deficient at v. Perform the operations (6.3.7) and

return to Step 3.

Step 4. Now no component of G+(xO) contains both an

odd polygon and a node at which 0
X is deficient. If no

component contains more than one odd polygon then go to Step

5. Otherwise let

a component H of

P 2 be odd polygons belonging to

such that a path 11 in H from

pl to p2 is maximal over all paths joining odd polygons

in H. By (4.5.6) there is an isthmus j of H for which
0

1 occurring in before edge which belongs to a
X. = 11 any J

polygon of H, let k be the first such isthmus in 11 • Let

B be the subgraph of H disconnected from P
2

by removing

k. It is easily seen that B is a blossom in H and that

x
0

/E(B) is a np matching of B.

(6, 3. 7) and re turn to Step 4.

Perform the operations

6.20

Step 5. Now every component H satisfies

(3.8.13)-(3.8.16). Replace R with Ru {S} and replace

D by D u {S}. Go to Step 1.

Step 6. Now we have handled every 8 8 R 1 , Let

G G x R. All we need do is ensure that every component H

of G+(xo) satisfies (3.8.13)-(3.8.16). Thus we apply

· Steps 2, 3, 4 of this algorithm to G (replacing S with

V). The resulting nested family R is the nested family

required for the post optimality algorithms.

11

1

6. 21
1

:I'
''

[i

\1

I

Chapter 7

A Computer Implementation of the Blossom Algorithm

In this chapter we discuss a computer implementation

of the blossom algorithm we described in Chapter 3. The

program was written in PL/1; the reader is assumed to have

some knowledge of this programming language. (See [12] for

the language specifications). The design of the program

was influenced somewhat by BLOSSOM I (Edmonds, Johnson,

Lockhart [E7]), a FORTRAN implementation of a generalization

of the blossom algorithm. A special acknowledgement is due

to Professor Ellis L. Johnson, who has contributed to both

the design and the details of this computer code.

In the next three sections we describe the data

structure used and discuss the way the program handles such

problems as manipulating trees and blossoms and shrinking

subgraphs. Following this we discuss the code itself and

in the last section of the chapter we discuss storage

requirements and experimental results obtained concerning

the algorithm. The program itself is listed in the Appendix.

Throughout the chapter, we refer to statements in the

program by means of the PL/1 statement numbers. T and F

are bit strings of length one having the values 'l'B

and 'O'B respdctively and are used as logical constants

having ·the values ''true 11 or 11 false 11
•

7,1. Storage of the Graph.

NEDGE and NNODE are b'inary full words that hold the

number of edges and nodes respectively of the graph G. They

i
I.

7.2

do not change throughout the execution of the program, in

particular they do not reflect the shrinking of subsets of

nodes or the creation of pseudonodes. The edge set of the

graph is the set of integers 1, 2, ... ,NEDGE; the node set

of the graph is a set of NNODE pointer variables which

point to the structures holding the information about the

nodes.

The graph is represented by an array of edges. EDGES

(Statement 4) is an array of NEDGE structures which contain

the following information for each edge J.·

C(J) is a single precision floating point variable

which holds the current "reduced cost". That is, it holds

the value C -
J

y(~(J)) - y(Qo(J)) where is the cost

assigned to edge J and y is the current dual solution.

Determining the equality subgraph and computing the bound

for a dual variable change are facilitated by having this

value stored. Initially C(J) should simply be the cost

of the edge J; the program (Statements 333 to 346) subtracts

the value of the initial dual solution while initializing.

X(J) is a binary halfword that holds the current

value of the matching for the edge J.

STATUS(J) is a set of 16 one bit switches available

for recording the status of edge J.

by the algorithm, they are:

Only four are used

EQ(J) = T or F according as J does or does not

belong to the current equality subgraph;

SHRNK (J) = T or F according as J has or has not

been shrunk in forming a pseudonode;

l

I

7.3

FRST(J) = T or F according as J does or does not

belong to the alternating forest or to some component of

ZER(J) allows the edge J to be omitted from consideration

during execution of the program. Any edge J for which

ZER(J) = T will be completely ignored, any edge J for

which ZER(J) = F will be processed normally. This feature

is intended to facilitate processing of subgraphs of the

graph G.

ENDS (J ,- *) and ORIGENDS (J, *) are arrays consisting

of two pointers. ORIGENDS holds pointers representing the

nodes of G with which J is incident and does not change

throughout the execution of the algorithm. ENDS reflects

any pseudonodes that have been formed. Thus, where R is

the nested family of sets described in Chapter 3, if

J £ E(G x R) then ENDS holds pointers to the nodes of G x R

with which J is incident. If J f E(G x R) then the

pointers in ENDS point to the pseudonode corresponding to

the minimal member of R which contains ~(J).

The variables for the real nodes of the graph are stored

in an array NODELST (Statement 3). However they are

referred to by means of the based structure NODE (Statement

6) • Handling the nodes in this way simplifies the treatment

of pseudonodes while at the same time allows the algorithm

to be as economical with storage as possible,

For each node P, real or pseudo, we have the following

values.

P -> DEF is a binary halfword holding the deficiency

of the current matching at the node P, that is, it holds

7.4

the value bp - x(o(P)) where bp is the degree constraint

of P and x is the current matching. If P is contained

in a pseudonode, this value may be too large or too small

by 1 however this situation is corrected when we expand the

pseudonode or correct the matching within it.

P -> STATUS is a set of 16 one bit switches which reflect

the status of node P. Nine of these are actually used.

P ->REAL= T or F according as P is a real node

or a pseudonode.

P -> CONSTEQ = T if the degree constraint for node P

is an equation, P -> CONSTEQ-= F

for node P is an inequality.

if the degree constraint

Thus P -> CONSTEQ = T or

= F according as P E V or

P -> DEFIC = T or F according as P does or does

not belong to the alternating forest.

P ->ODD= T if P is an odd node of the alternating

forest, otherwise P ->ODD= F.

P -> YRTO = T if P belongs to the alternating forest

and the tree containing P is rooted at a real node i EV~

for which y. = O or at a pseudonode containing a node
i

i EV~ for which yi = O.

"f h f G+(x) P -> BLOS = T i t e components o containing

P contains an odd polygon, otherwise it is false.

P -> DCHNG, P -> INPATH and P -> EXPANDED

used by the algorithm and will be discussed.later.

are all

r
.. 1.1

r

'ii ' '

I!
, I

'II

Ii
Ii

I I:
I ,
,1

/!

I
!/
I'

I
I

p -> Y is a single precision floating point variable

used to hold the current dual variable of the node P. If

P is a pseudonode, then it holds the dual variable of the

subset of the nodes of G which form the pseudonode.

7.5

P -> TREE, P -> EDGEDN and P -> STACKUP are used for

representation of the trees and blossoms of the algorithm

and their use is described in the next two sections.

7.2. Tree Handling.

The manipulation of trees and forests is an important

part of the blossom algorithm. There are three properties

which we wish our data structure which represents trees to

satisfy, First it should provide an easy means of finding

the path in the tree from any node of the tree to the root,

second it should provide a reasonable means of examining all

the nodes and edges of a tree and third it should make

convenient such operations as rerooting trees, growing trees

and removing portions of trees. The structure used is ~he

''triply linked tree'' developed by Johnson [J2]. A description of
this structure also appears in Knuth [K3], p. 352.

We are actually storing a planar representation of the

tree. We think of a tree being rooted "at the bottom" and

consisting of various "levels" of nodes according to their

distance from the root (see Figure 7.1).

For any node P of the tree other than the root,

p -> DN . is the node adjacent with- P ~n the level

immediately below P, P -> EDGEDN is the

edge of the tree joining P and P -> EDGEDN. If P is

the root of a tree then P -> DN • NULL and P -> EDGEDN • 0.

P -> UP is the leftmost node adjacent with P

in the tree belonging to the level of the tree immediately

above the level containing P, if such a node exists.

Otherwise P ->UP= NULL.

P -> RT is the first node Q to the right of

P in the level of the tree containing P which satisfies

P -> DN = Q -> DN. If no such node Q exists, then

P ->RT= NULL. Observe that if P is the root of a tree

then P ->RT= NULL.

~
EDGJiD~

8 NULL POINTER:¢

Figure 7.1 Triply Linked Tree

7.6

We now describe some of the procedures used by the

program in manipulating trees.

7.7

ADDON(Ql, Q2, J) (Statements 195 -202) uses the edge J

which joins nodes Ql and Q2 .to attach a tree rooted at

Q2 to the tree containing Ql. It also sets FRST(J) = T

to indicate that J is now an edge of the forest.

REMOVE(Pl)(Statements 158-175) does the following. Pl

is a node belonging to some tree, REMOVE removes Pl and

the portion of the subtree above Pl from the tree, thereby

creating a new tree rooted at Pl. If Pl is already a

root, it simply returns having done nothing. Otherwise it

finds the other pointers equal to Pl and modifies them

appropriately. It sets Pl-> DN = NULL and sets

FRST(Pl -> EDGEDN) = F, indicating this edge is no longer

part of the forest.

REROOT(Pl) (Statements 176 -194) reroots the tree containing

Pl at Pl. This it does by travelling down the path in the

tree from Pl to the root, successively removing the portion

of the tree above each node in the path and adding that

portion to the portion previously removed.

UPSCAN(Pl, UPCALL, SUBRUB, DNCALL, SUBRDN) (Statements

203- 234) is a routine which scans through all the nodes of

the tree containing Pl which are above Pl. These nodes

are scanned according to the following rule: UPSCAN always

tries to move up the tree; if it cannot do this, it tries to

go to the right and then continue moving up; if it cannot

7.8

do this it goes down and then tries to go to the right. For

example, it would encounter the nodes of the tree of

Figure 7.1 in the following order: 1, 2, 5, 8, 5, 2, 3, 4,

6, 7, 4, 1. UPCALL and DNCALL are one bit strings, if

UPCALL = T then the first time each node is encountered,

UPCALL calls the procedure SUBRUP passing it a pointer

to the node. If DNCALL = T then the last time each node

is encountered the procedure SUBRDN is called and passed

as a parameter a pointer pointing to the node.

Thus depending on the procedures SUBRUP and SUBRDN,

UPSCAN can perform a great many functions. The procedures

described in Statements 235-324 are all used by means of

UPSCAN, We describe the purpose of these procedures in

Section 7.5 when describing the main procedure.

The final procedure we discuss in this section is

more than just a tree manipulating subroutine. It performs

augmentations and at the same time (optionlly) hetps construct

the new alternating forest.

AUGMENT(Pl,Rl,DELTAX,DESTROY,ODDB) (Statements 40-59)

alternately subtracts and add DELTAX to the value of

X(Ql -> EDGEDN) for each node Ql ~ Rl in the path from

Pl to Rl in the tree containing these nodes.

Ql -> DN are used to trace down the path.

The pointers

If ODDB (BIT(l))

equals F then the procedure starts with a subtraction,

if T then it starts with an addition.

If DESTROY (BIT(l)) = T then everytime an edge becomes

7.9

zero, the portion of the tree above that edge is removed and

broken into nonzero components. This is done by using UPSCAN,

passing it the procedure NONDEFIX which is called the last

time each node is encountered. If DESTROY= F then none

of this is done.

NONDEFIX(Pl) (Statements 250-258) updates the indicators

for the node Pl. If there is an edge J down from Pl

in the tree such that X(J) = 0 then Pl is removed from

the tree.

7 • 3 . Blossoms, Shrinking and Pseudonodes,

One of the central problems encountered in implementing

the blossom algorithm is the problem of shrinking. It has

even been suggested (Balinski B[l] p. 232) that the amount

of storage required to handle this process would make

computer implementation of the blossom algorithm impractical.

As was shown by BLOSSOM land as is shown again by the

program of this chapter, such is not the case. An upper

bound on the amount of storage required to hold all the

information necessary for whatever amount of shrinking is

done by the algorithm is only slightly greater than half

the amount of storage used to store the information required

for the real nodes; in practise we generally require

considerably less.

A blossom consists of a special type of alternating

tree together with an edge J which forms an odd polygon;

this is how it is stored. There is one node R in a

blossom at which the current matching restricted to the

edges of the blossom is deficient, the tree is rooted at

this node. Since R is the root of a tree, we normally

have R -> EDGEDN = 0, When representing a blossom we

let R -> EDGEDN = J. Thus storing a blossom is no more

difficult than storing a tree.

(Components of G+(X) containing an odd polygon are

also stored in this fashion, the only difference being

that the root of these components is not deficient.

P -> BLOS=T for every node P in such a component.)

Now we describe the way in which the nested family

of shrinkable sets is represented. For each member P

of the nested family we have allocated (in Statements

508-516) a structure P -> PSEUDO. The first ~even words

of P -> PSEUDO are used in the same way as the seven words

of NODE are used. (The maximal members of the noted family

7.10

are the current pseudo nodes.) However there is in addition

an eighth word -> ROOT which is the root of the blossom

associated with P, that is, the node at which the matching

restricted to the edges of the blossom is deficient.

For any real node Pl, Pl -> STACKUP is a pointer

to the structure associated with the minimal member of the

nested family containing Pl if such a set exists, otherwise

Pl -> STACKUP = NULL. For any member P of the nested

family, P -> STACKUP is a pointer to the structure associated

with the minimal member of the family properly containing P,

if such a set exists, otherwise P -> STACKUP = NULL.

(See Figure 7.2).

Figure 7.2 Nested Family Representation

(

\

-- \
)

/

member of nested family

D pseudonode representing
member of nested family

t STACKUP pointer

</> NULL pointer

Frequently we wish to know the maximal member of the

nested family containing a node P, that is, the current

pseudonode containing P,

SURF(P) (Statements 13-25) returns the value of the

pointer corresponding to the maximal member of the nested

family containing P, if such a set exists. If no such set

7 .11

7.12

exists it simply returns P. In Statements 17-22 it searches

up the chain of STACKUP pointers starting with P -> STACKUP

until a null pointer is found. It uses PNEST to count the

number of members of the nested family which contain P.

This value is not used by the algorithm itself, but the

maximum "depth of nesting" is stored in RUNSTAT(3) to

provide one indication of the amount of work done by the

algorithm.

We now describe the operations performed by the program

in shrinking a blossom (Statements 506-558), Figure 3.7

may help to clarify this process. J is an edge joining

nodes Pl and P2 which are both even nodes (or in some cases

odd nodes) of the same alternating tree. R3 is the first

common node of the paths in the tree from Pl and P2 to

the root of the tree. R2 is the last node belonging to

the bloisom in the path in the tree from R3 to the root of

the tree. (These nodes have been determined earlier in

the program.) We call the path from R3 to R2 the stem of

the blossom. The blossom consists of the polygon plus

the stem plus any components of G+(X) containing a node

of the polygon or stem.

In Statements 508-516 we allocate the pseudonode P

for the blossom and initialize most of its variables. In

Statements 519-534 we "mark" the polygon and the stem of

the blossom by letting P3 - > INPATH = T. This is to make

it possible to identify all the nodes of the blossom. Then

1,

i
i.
I

l
l

in Statement 537 we ·call UPSCAN, passing it the routines

UPBLOSS and DNBLOSS. These routines (Statements 296-329)

do two things. UPBLOSS set Pl -> STACKUP = P for every

node of the blossom. DNBLOSS removes any portions of the

tree above the blossom and adjoins them to P, These

routines rely on the order in which UPSCAN scans the nodes.

SHRNKNG is a one bit switch which is Tor F according as

the next node to be scanned can or cannot be expected to

be part of the blossom. Thus whenever UPBLOSS detects a

7.13

node Pl not in the polygon or stem for which X(Pl->EDGEDN)=O,

PX is set equal to Pl and SHRNKNG is set equal to F. From

then on nothing is done to successive nodes until DNBLOSS is

passed the node PX. Then the subtree rooted at PX is removed

from the blossom and adjoined to P, SHRNKNG is set T and

the process continues.

If SHRNKNG=T then when UPBLOSS is passed a node of

the polygon or stem or a node Pl for which X(Pl -> EDGEDN) # 0

it sets Pl -> STACKUP = P, indicating that this node is

part of the blossom.

When UPSCAN has completed its scan the program removes

the blossom from the tree and replaces it with the pseudonode P,

together with any portions of the tree that DNBLOSS may

have adjoined to P (Statements 538-543). Finally, R2 -> EDGEDN

is set equal to J and the blossom is represented completely.

Now all that remains to be done is t~ update ENDS to

reflect the new pseudonode. This is done in Statements

545-556. At the same time SHRNK(Jl) is set equal to T

I,

/. .,
I
I
I

r ,.

f-

i

for any edge such that ENDS(Jl,l) and ENDS(Jl,2) are nodes

of the blossom.

7.4. Parameters Passed and Returned.

In this section we describe the parameters passed

and returned when using this code. It should be pointed

7 .14

out that this program is designed to be used by other programs

as a subroutine and consequently there is no provision

for card input or printer output (except for the trace

feature). Thus unlike BLOSSOM 1 this program requires a

suitable driver program t-0 prepare its data and output

its results if we simply want to solve matching problems.

Parameters Passed.

*NEDGE (BINARY FIXED (16)) holds the number of edges

of the graph.

*NNODE (BINARY FIXED (16)) holds the number of nodes

of the graph.

*NODELST is an array of NNODE structures having the

format described in NODE (Statement 6). Each structure is

seven words long and holds the following information. Let

IE {1,2, ... , NNODE} and let P = ADDR(NODELST(I)).

- P -~ DEF(BINARY FIXED (15)) holds the degree

constraint of the node P.

- P -> CONSTEQ(BIT(l)) should be Tor F according

as the constraint at node P is an equation or an inequality.

- P ->·. REAL, P -'?' DEFIC (BIT(l)) should be set

equal to T initially.

- P -> DCHNG, YRTO, INPATH, EXPANDED, ODD and BLOS

(BIT(l)) should initially all be set equal to F.

- P -> Y (DECIMAL FLOAT (SHORT)) holds the initial

dual variable of. the node, This dual solution must be

feasible. If P -> Y is set equal to half the absolute

value of the largest edge cost for every node P then this

starting dual solution is feasible,

- P -> TREE.UP,RT,DN and STACKUP(POINTER) should

all be set equal to NULL.

7.15

- P -> EDGEDN (BIN FIXED(l6) should be initially zero.

*EDGES is an array of NEDGE structures, each six full

words long holding the following information. Let J E {1,2, •.. ,

NEDGE},

- C(J) (DECIMAL FLOAT (SHORT)) is the cost of edge J

(not the ''reduced cbst; this is computed by the algorithm).

- X(J) (BINARY FIXED(l5)) should be set to zero.

- ZER(J), EQ(J), SHRNK(J) and FRST(J) should all be

initially set to F,

- ENDS(J,*), ORIGENDS(J,*) (POINTER)should be the nodes

of the graph with which J is incident.

* RUNSTAT (Statement 5) is an array of 10 binary

halfwords. The only entry used for input is RUNSTAT(lO).

A trace of the execution of the program is or is not printed

out according as RUNSTAT(lO) = 1 or O. This trace, if obtained,

prints a message concerning each edge used by the algorithm

together with the values of the matching and the dual solution

any time they are changed.

i).
:1
i'I
'I ,,

l

7.16

The main use of RUNSTAT is to return statistics

concerning the problem solved to the program which invoked

BLOSSOM.

These input specifications were based upon the assumption

that we·were using the zero matching as a starting solution.

Parameters Returned.

The parameters are returned in the following state,

Let P be any node, real or pseudo.

- P -> DEF is the deficiency of the current matching

X at the node P.

- P -> STATUS is set to reflect the status of P

at termination.

- P -> TREE, EDGEDN holds the tree and blossom

structure of the final solution.

- P -> STACKUP points to the pseudonode representing

the minimal member of the nested family containing P, if

such a set exists, otherwise it is null.

- P -> Y is the final dual variable of the node P if

P is real, or the final dual variable of the corresponding

member of the nested family if P is a pseudo node.

Notice that the invoking program is returned both the

optimal dual solution and the final nested family.

was desired in Chapter 6.)

Let J be any edge of the graph.

(This

C(J) is the final reduced cost of the edge J,

- X(J) is the maximum matching, that is, the answer

to the problem.

I

I
' t
I

I
I
I

I
1
I
I
i

I

I
I

I

r
'

L·
' i
!

- STATUS(J) reflects the status of edge J at

termination.

- ENDS(J,*),ORIGENDS(J,*) are both as they were

originally, the nodes of the graph met by J.

*RUNSTAT (BINARY FIXED (15)) (Statement 5) is an

array of ten indicators showing the amount of work done in

solving the problem. The values returned are as follows:

RUNSTAT(l) is the number of dual variable changes;

RUNSTAT(2) is the number of times a blossom was

shrunk;

- RUNSTAT(3) is the deepest nest of pseudonodes formed

(or equivalently, the longest chain of STACKUP pointers);

- RUNSTAT(4) is the number of times pseudonodes were

expanded (in Step 9e of the blossom algorithm);

- RUNSTAT(S) is the number of times the forest was

grown without making an augmentation (Steps 3a and 7 of

the blossom algorithm);

- RUNSTAT(6) is the number of two tree augmentations

(Step 4 of the blossom algorithm);

- RUNSTAT(7) is the number of one tree augmentations

(Step Sb of the blossom algorithm);

- RUNSTAT(B) is the number of times a component of

G+(X) containing an odd polygon was added to the forest

(Step 3c:of the blossom algorithm);

- RUNSTAT(9) is the number of so called "pseudo

augmentations", augmentations which move a deficiency to

<
a node i of v- for which y. = 0 (Step 7a of the blossom

].

algorithm);

7,17

- RUNSTAT(lO) is returned with the value zero or one

according as the matching returned is or is not feasible,

if RUNSTAT(lO) = 1 when returned then the algorithm

terminated with a Hungarian forest.

7. 5. The Main Procedure.

Now we describe the main procedure itself. The code

follows fairly closely the description of the blossom

algorithm given in Section 3.8.

7.18

Statements 325-349 are for initialization, reduced

costs are computed and EQ(J) is set for each edge J

reflecting whether or not the edge belongs to the equality

subgraph. A procedure FN(J) (Statements 26-39) is used in

computing reduced costs. It calculates the sum of the dual

variables of the ends of J and of all members of the nested

family which contain both ends of J.

Statements 350-634 constitute the "edge processing"

loop of the program. JCNT is used to cycle through the edges.

Anytime we finish considering an edge, whether or not we

have been able to make use of it, we go to ENDA (Statement 633)

where JCNT is set equal to 1 + MOD(JCNT,NEDGE).

Whenever we are able to use the edge JCNT (to augment,

grow the forest or shrink), LASTJ is set equal to JCNT.

If JCNT ever ''cataches up'' with LASTJ then we have made a

complete cycle through the -edges without having been able

to do anything so we go to Statement 636 and attempt to

change the dual variables.

Statements 350-372 test each edge JCNT to see if it

belongs to the equality subgraph, has not been shrunk, is

7.19

not in the forest and meets an even node Pl of the alternating

forest F
1

If JCNT violates any of these criteria we go

to ENDA. If the other end P2 of JCNT is an odd node of Fl

then it is of no use to us and we go to ENDA, if P2 is an

0 odd node of F then we go to ODDGROW (Statement 581).

Otherwise we set J=JCNT and go to POLYSTEP(Statement 566),

GROWSTEP(Statement 559) or DXCALC(Statement 382) depending

on the status of P2.

DXCALC:(Statement 382) J joins even nodes Pl and P2

of the forest F, in Statements 382-400 we determine whether

they belong to the same or to different trees. At the

same time we compute Dl and DZ, bounds on the amount of

augmentation that can be made. INPATH is used to mark the

nodes in the paths from Pl and P2 to the roots of their

respective trees. If Pl and P2 belong to different trees

then Rl and R2 are the roots of the two trees. If Pl

and P2 belong to the same tree then Rl is the root of the

tree and R2 is the first common node of the two paths.

If Pl and P2 belong to different trees, then we go to

TWOTREE (Statement 401) where we perform the augmentation

described in Step 4b of the blossom a+gorithm compute the

new forest and go to ENDA.

If Pl and P2 belong to the same tree then we go to

ONETREE (Statement 427). There we determine whether or

an augmentation is possible. If not we go to DEFBLOSS

7.20

(Statement 506) where we shrink. If we can make an augmen-

tation we do so, update the tree and then update the

forest. At this point we may have to shrink, if so we g-0

to DEFBLOSS where we do so. We may have created a component

of G+(X) containing an odd polygon and no deficient node.

If so (Statements 497-505) we find the root R2, store the

polygon forming edge J as R2 -> EDGEDN and call UPSCAN

passing it the procedure BLOSSIND. BLOSSIND (Statements

259-264) simply sets the node STATUS indicators correctly.

We have already discussed the shrinking procedure in

Section 7.3.

GROWSTEP:(Statements 559-565) J joins an even node

Pl of the forest to a node P2 not in the forest. We simply

grow the forest. ADDFIX (Statements 235-244) sets the

STATUS indicators for the nodes added to the for~st.

corresponds to Step 3b of the blossom algorithm.)

(This

POLYSTEP:(Statements 566-580) J joins an even node

+ Pl of the forest to a node P2 of a component of G (X)

which contains an odd polygon. First we find the root of this

component and hence the polygon forming edge Jl. Then we

add this component (minus Jl) to the forest just as in

GROWSTEP. Then we replace J with Jl, Pl and P2 with the

ends of Jl and go to DXCALC(Statement 382).

to Step 3c of the blossom algorithm.)

(This corresponds

ODDGROW:(Statements 581-632).

1 node Pl of-F and an odd node P2 of

J meets an even

Statements 585-597

add a suitable portion of the tree containing P2 to the

tree containing Pl. SETYRTO is a procedure used by UPSCAN

to set P -> YRTO = YROOTO for all nodes scanned. Thus

we first set YROOTO correctly.

of the blossom algorithm.)

(This corresponds to Step 7

We may now have a tree in the forest containing two

deficient nodes Pl and P2. If this is the case, we make

7.21

a so called "pseudo augmentation'' to remedy this (Statements

599-632). These steps also update the forest. (This portion

of the code corresponds to Step 7a of the blossom algorithm.)

This completes the description of the main edge

processing loop. If we make a complete cycle through

the edges without being able to make use of any edge then

we go to DUALCHNGE(Statement 636) where we attempt to change

the dual variables. FAIL is a one bit switch which is used

to indicate whether or not we have an optimal feasible

matching. Initially FAIL=F, if we discover a node in a

tree of F1 then FAIL is set equal to T.

In Statements 637-665 we compute EPS2, a bound imposed

by the nodes on the amount of dual change that can be made.

(EPS2 equals the minimum of E
3

, E4 .of Step 9a of the blossom

algorithm.)

If FAIL=F, thus the current matching is feasible, we

go to CORRECTION(Statement 925) where we correct the matching

in the pseudo nodes. If EPS2=0 then we need make no dual

variable change; we go to NODEBND(Statement 786) where

we either reroot a tree or expand an odd pseudonode of the

forest.

Otherwise (Statements 6707705) we compute EPSl, the

bound on the amount of dual change determined by the dual

constraints corresponding to the edges. (ESPl equals the

minimum of o
1

, •
2

of Step 9a of the blossom algorithm.)

Then we let EPS = MIN(EPSl, EPS2). If EPS = lOlO (infinity

for our.purposes) then the forest is Hungarian, no feasible

matching exists, we go to CORRECTION and terminate. Other-

7. 22

wise (Statements 706-780) we make a change of dual variables

and update the reduced costs accordingly. (For any pseudo

node P, P -> DCHNG is used to ensure that we only change

its dual variable once.) If the bound on the dual change

was imposed by a constraint corresponding to an edge JX then

we can now immediately make use of the edge; we set JCNT

equal JX and return to the start of the edge processing

loop. (Statement 350).

If the bound on the dual change was imposed by a

constraint corresponding to a real node PX of the forest,

then we now ,have PX -> Y = 0. If PX is the root of

the tree, we simply reset YRTO for the nodes of the tree.

Otherwise we go to AUG(Statement 599) and make a pseudo

augmentation. This process corresponds roughly to Step 9d

of the blossom algorithm, although in the computer code

we do not insist that all trees of F1 rooted at nodes i e ,f
0 for which y. = 0 be moved to F , we simply handle one each

1

time.

If the bound on the dual change was imposed by a

constraint corresponding to a pseudonode PX, then PX -> Y = 0

and PX is an odd pseudonode of the forest that has to be

expanded. This we do in Statements 797-924.

The first thing done is to call EXPAND, a procedure

(Statements 60-145) that first updates ENDS so as to no

longer reflect the existence of pseudonode P and then•

''corrects'' the matching within the blossom corresponding

7.23

to P so that it is compatible with the matching of the graph

containing P. This procedure also forms the nucleus of

the final matching correction step (corresponding to Step 12

of the blossom algorithm). Notice that for any calls to

AUGMENT in EXPAND we have DESTROY= F, thus the blossom

does not have its structure destroyed.

EXPAND set JIN equal to the edge J of the graph

incident with P for which X(J) = 1 and sets BROOT equal

to the node of the blossom met by JIN. If p -> EDGEDN = JIN

then we have the easier case, JIN is the unique edge of the

forest meeting P. This case is handled in Statements 803-842.

Otherwise two edges of the forest meet P, this case is

handled in Statements 843-924.

ADDBLOS,DEFFIX(Statements 265-295) are routines called

by UPSCAN to ''unshrink'' a blossom and update the status

indicators. Their operation is similar to that of UPBLOSS,

DNBLOSS. Initially SHRNKNG(BIT(l)) = T. For each node Pl

that ADDBLOS is passed, it sets Pl -> STACKUP = NULL,

thereby removing the reference to the pseudonode. Then

it proceeds, setting the status of each node to indicate

that it belongs to the forest, until it finds a node Pl

which w6uld have become an even node of the forest for which

X(Pl EDGEDN) = 0. When this happens PX is set equal

to Pl and SHRNKNG is set equal to F. From then on the

status of each node encountered is set to indicate that

%he node does not belong to the forest. DEFFIX breaks th~

blossom.up at edges J for which X(J) = 0. When DEFFIX is

passed the node PX it sets SHRNKNG = T and the process

continues.

The final part of the program is the step (Statements

925-945) where we correct.the matching in the pseudo nodes

7. 24

prior to terminating. For each pseudo node P, P -> EXPANDED

is used to ensure that we do not try to correct the matching

for the pseudonode more than once.

This completes the description of the program.

7.6. Experimental Results

This program was compiled under version 5.2B of the

OS/360 PL/1 F level compiler, OPT=! and was tested on a

large number of contrived graphs. Then a series of tests

on ''random graphs'' was run to obtain the experimental results

described here.

The random graph generator accepted as input the number

of nodes and edges desired in the graph together with a

range for the degree constraints and a range for the edge

costs (integers were used for edge costs in these tests).

It generated the graph by successively joining each node

of the graph to some other node until sufficient edges

had been_ created. Thus the test graphs had multiple.edges

·but no loops. The random graph generator also accepted

I

a parameter specifying the desired probability of a node

belonging to v-:
An option of the random graph generator was to create

a file containing the information about each graph in a

form suitable as input to BLOSSOM I, the earlier Fortran

implementation of the matching algorithm. This enabled

comparative tests to be run between the two programs.

The driver program then invoked BLOSSOM to solve the

matching problem. Following this a test was made of the

7.25

matching and dual solution returned by BLOSSOM to ensure that

they were feasible solutions satisfying the complementary

slackness conditions for optimality.

The results of these tests are listed in Table 7.1

They were run on an IBM/360 model 75 at the University of

Waterloo. Thirty two graphs were run on both BLOSSOM I and

the code described here, two random graphs were generated

with each set of specifications. .W,L .. required the degree

constraint be satisfied with equality at each node, In addit:i."on,

six "large" r h h d gaps were run on t e co e of this chapter.

One of the most striking observations is that even

though the value of the edge costs do not enter into our

theoretical bound, the number of different edge costs

drastically affects the run time of the code. The reason

for this seems to be that the more different edge costs we

have, the more dual varieble changes that have to be done

to obtain an ~ptimal solution~ and dual variable changes

are practically (although not theoretically) time consuming.

'i I

I

!
I 1

! 11
I, '
I I
I
,II
Ii
I,
;, I I,,
11

'1
I I
\ I
I '

,! '·' ·, I'
I! I;
'1.) I'
' ' I I I,',

',I I
11' Ii

i \,
i ' ii
111

Ii
I',
I'
I

A second observation is that the number of pseudos

formed during the course of execution of the code tends to

7.26

be relatively small. The entries in the table give the total

number formed during the execution of the code, the number

present at termination is often considerably smal~er.

The BLOSSOM program of this chapter does run faster than

BLOSSOM I (The ratio of its execution time to th3t of

BLOSSOM I seems to decrease as the number of edges of the

graph increases). This is not surprising, however, for

BLOSSOM I treats directly a more general form of the matching

problem than is treated by the code of this chapter. These

more·general problems can be reduced to problems solvable

with the code of this chapter;however this involves

significantly, though algebraically, increasing the number of

edges and nodes.

The BLOSSOM procedure itself requires 33K bytes of

storage. Storage of the graph .re.quires 28 x v + 24 x e + 32 x p

bytes of storage, where vis the number of nodes, e is the

number of edges and pis the maximum number of pseudonodes

present at any one time in the execution, The various PL/1 library

routines required to run BLOSSOM add to these storage

estimates however, When run with the random graph generator

and driver, the [100 node-1000 edge] graphs required 148K

bytes of storage, the [1000 node-4000 edge] graphs required

238K bytes of storage.

Since the computer code uses fixed word arithmetic, it

may not be able to solve a problem if the number of significant

digits of some of the values used becomes too large.

The degree constraints and values of the matching are

integers stored as binary half words and so can be no larger

than 32767. The value X(J) for any edge J can never be

larger than the smaller degree constraint of its ends, so as

long as the degree constraints range from 1 to 32767 we will

have no difficulty handling these values.

The edge costs and dual variables are stored as hexadecimal

(base 16) floating point numbers having six significant

hexadecimal digits.

rational numbers.

Any edge costs stored by the computer are

If we multiply all edge costs by a positive

constant we do not affect the solution set of the problem.

Hence we can assume that the edge costs have been multiplied

by a large enough number so that they are all integer. As was

shown in the proof of (3.10.7) if our starting dual variables

are integer valued then all dual variables computed during

the execution of the algorithm will be integer or half integer

valued. If the degree constraint of every node is an inequality

= (that is, V V;;, = V) then all dual variables are and = q,

nonnegative and so no dual variable needs to be larger than

the largest edge cost. Thus if the edge costs are integers

from the range - 1,048,576 to 1,048,576 then the dual variables

will be integers and half integers from the same range.

These numbers are represented exactly by six hexadecimal digits

so we can be sure that the computer code will solve such

problems.

= In the case that V • .q, ·, and consequently some dual

variables are.allowed to become negative, we may in fact require

dual variables considerably larger than the largest edge cost.

Consequently the establishment of a bo;nd on the magnitude of

7.27 I
,''
'

I i

,,

ii
.:1 '

]!
I I
I

11

I
11
iii
ii'

!1-
11 i
I,

\ I,,

Ii
I

I'
,1
i'·
i I
ii
i
I
Ii
I

I
I·

'I
II,

ii
I ,I
I,'

iu I

the dual variables is more complicated. For an analysis of a

situation of this sort, see Edmonds, Johnson, Lockhart [E7].

If higher precision were required for some problem it

would be a straightforward matter to replace all binary half

words with full words and all floating point numbers with

double precision floating point numbers. Then degree constraints

could range from 1 to 2,147,483,648 and if the edge costs

were integers from the range -4 x 10
15

to 4 x 10
15

we could

guarantee a correct solution.

I,·.
·

·I ,

11

!'

I :1i
IT
iii

:,:,1
! 'l·

I .

*
*

TABLE 7.1. TESTS OF BLOSSOM PROGRAM

No. of
Nodes

30

30

30

30

so
so
50

50

100

100

100

100

3.00

300

300

300

• 500

• 500

•1000

No. of
Edges

150

150

500

500

200

500

200

200

300

1000

300

300

1500

1500

1500

1500

5000

5000

4000

Range of
bi

1

1

1-7

1-77

1-10

1-10

1-100

1-10

1-2

1-2

50-150

1-2

1

7-77

2

100

7

1

1-2

. < ** Run with all nodes i Ev:;.
* Run with half nodes in V-.

Range of
cj

1-1000

1-5

1-500

1-500

1-10

1-10

1-10

1-9999

1-10

1-10

1-10

1-9999

1-10

1-10

1-100

1-10

1-10

1-10

1-10

Elapsed
Time

4 . 9 , 6.9 sec.

0.5, 0.7

22.6,19.0

25.5,24.0

3 . 7 , 4.6

5.8, 5.8

3. 2, 5. 7

23.8,16.7

10.6, 8.1

2 0. 3, 8.8

9.7,11.5

50.5,45.5

38.1,21.6

44.0,51.3

135.1,125.6

20.5,18.4

137.0,123.4

84.2,177.4

143.5,184.8

Blossom I
Elapsed

Time

6. 5, 9.2 sec.

1.1, 1. 3

29.4,25.6

32.0,32.1

5.5, 6. 2

12.0,11.2

4.8, 7 . 4

29.4,19.5

24.4,23.7

54.7,15.9

13.4,16.7

62.3,53.8

65.9,39.8

102.6,112.4

182.4,172.9

36.8,31.9

No. of No. of Dual
Shrinkings Variable

Change

1,5 I 28,39

o,o 2,3

2,3 39,33

6 , 5 44,41

4,3 10,15

5 , 5 6, 7

0,5 10,18

11,6 96,66

27,19 16,16

26, 6 9,5

8,13 16,19

11, 7 138,124

11, 6 13,7

15,13 18,12

0,0 68,70

0,0 8, 7

31,28 5,6

36,61 3,5

11,33 14,14

APPENDIX

/•THE BLOSSOH ALGORITHM: MAIN PROCEDURE. 16-01-73 •I

STMT LEVEL NEST

2
3

Q

5

b

1

I

l•THf llLOSSOM ALGORIT11•1: MAltJ PllOCF[)URF, 16-03-73 •I

BLOSS0t1: PROC(NFDGE,NNODE,NODELST,FDGES,RUNSTAT);

'**
************* VAHIAALE DECLARATIONS ******************
**'

DCL (NFOGE,NHOOf) R!N F!XEO(l6J:
DCL I NODfLST(• /oNNODE•tJ, /0 ACTUAL STORAGE FOR NODF VARS o/

2 FILL(7) RIN FJXED(!b):
DCL EDGES(• /oNEDGE•/1,

2CFlOAT,
2 X BIN FIXEO(!SI,
2 STATUS,

3 FILL B1T1t2l,
13 ZER,

3 EO,
3 SHfHIK,
3 FRST) AITC!l,

(2 ENDS(2),
2 ORIGFNOS(?)) PTR:

DCL RUNSTAT(IO) BIN F!XfD (15);
/o RUNSIAT(!)•llO,OF DUAL CHANGES,

RlJ~STATC2)=NO. OF S~lPl~KINGS,
RUNSTAT(3)•DFEPEST NEST OF PSEUOONGOES FORMED,
RUNSTIT(Q):NO, OF EXPANSIONS,
RUNSTATC5):NO. Of TIMES FOREST GROWN,
RUIISTAT(b)=NO, OF mo Tlfff AUGf!ENTATJONS,
Rl.l~ST~T(7):NO. OF ONE lREE AUG~FNTATIONS,
RUNSTAT(B):NO, OF TTeES POLYGON AOOED TO THE FOREST,
RUtlSTAT(Q):NO. OF PSEUDO AUGMEt:TATIOr1S,
RUNSTAT(\O)• 0 IF MATCHING IS FEAS!RLE,

I TF MATCHING JS NOT FFASIRLE.
RUNSTAT(JO) JS PASSED WITH VALUE O IF NO TRACE rs DESIRED,

WITH VALUE I IF A TRACE IS REQUIRED, •I
DCL NODE HASED(PJ,

2 BASICS,
3 DEF OJN FJXED(!Sl,
3 STATUS,

Q FILL BIT(71,
(Q REAL,

Q OCHIIG,
4 YR TO,
ll 11'!PATH 1

4 EXPA'IDED,
Q CONSTEQ,
ll ODO,
Q DEF!C,
11 BLOS)fi!T(I),

3 Y FLOAT,

I' I!

I

I.

Ii
I
I

Ii
"' I
I[,
I
''
I !I

·. !

I

Ir

I

/•THE OLOSSOM ALGORITHM: MAIN PROCEDURE. !b-03-73 •I

STMT LfVEL NEST

7

8
9

10

II

12

13

14
15

lb
17
18
19
20
21
22
211
25

1
I
1

I

1

2
2

2
2
2
2
2
2
2
2
2

1
1
I

3 THEE,
(tj UP,

4 RT,
4 l>N) PTH,

3 EnGEllN RJN FIXEDC!bl,
3 STACKUP PTH;

DCL ! PSEUDO RASED(P),
2 HASJCSC71 AIN FIXED (lb),
2 HOOT PTR;

DCL(CEPS,FPS!,EPS2,ZI FLOAT, JX R!N FIXfD(lb)I STATIC:
DCL SIJIIF ENTRY RETUR'JS(PTR):
DCL ((P,P1,P2,P3,Rt,R2,R3,PX,RROOT,Q1,02,Q3)PTP,

CI,J,Jt,J2,K,JCNT,LASTJ,JIN,JON) BIN FIXEO(lb),
D[LTAX BIN FIXEDC!SI,
CD1,D2,D3I RI• FIXED(15)JSTATIC:

DCL (T !NIT ('!'HJ, F !NIT ('O'B)) STATIC BIT (!),
(0DDB , POL YB IT, SHRl~K~IG I YROOTO, TRACE, FROME X, NOC HECK I F A IL)

STATIC ll!TCIJ:
FHT: FORHAT(SKJP,A,FCb),A): I• USED FOR TRICING •I

'***~***********
***********- GFNEr-?AL PURPOSE SURROIJTJNES .,,_****************
**************************A********************************/

SURF: PROC (P) RETUR~S(PTR):
I• PROCEDURE TO FINO HIGHEST LEVEL PSEUDO NODE CONTAINING P. •I
,. POEST rs USED TO COIJNT STACK DEPTH •• ,
DCL CP,Pt STATIC) PTR:
DCL PNfST AJN FIXEO(!S) STATIC:

PNEST:O:
Pl=P1
DO WHJLE CP!->STACKUP ~=NULL):

Pt=Pl->STACKUP1
PNfST=PNEST+! l
ENDJ

IF PNrST > RUNSTAT(3) THEN RIINSTAT(3)=P•Esr:
RETURN(Pl):

END SURF:

·:"'I :I
' ·.'I

;

I

11

J
I

I

,,

if
, I

I
I

I

/*THE OLOSSDM ALGDHITHH: MAIN PROCEDURE, 16•03•73 */

STHT LEVEL NEST

26

27

28
29
30
31
33
34
35
36
37
36
39

40

41

42
43
411
45
46
47
49
50
51
52

511
55
56
57
56
59

2

2
2
2
2
2
2
2
2
2
2
2

2

2
2
2
2
2
2
2
2
2
2

2
2
2
2
2
2

t
I
I
t
I
2
2
2

2
I
I
1

fN:PROC(EOGE);
/• TIIIS PROCEDURE EVALUATES Tllf SUM OF THE DUAL VARIABLES

Of,J EACH nm OF A-~J EDGE A~1D ON 01)0 SfTS CotHAINJNG
THE EOG[.*/

DCL (P!,P2) STATIC PTR, EDGE HIN FIXED(l6), SUM STATIC FLOAT;

P!=DNTGE~DS(EDGE,!l:
P2=0HIG[NDS(rDGE,2);
SUM:PJ•>Y + P2->Y:
IF •SHANK(EDGFl THEN GO TO END;
Pl=ENOS(EOGE,t);
DO WHILE CP!•=NULLl:

SUM=SIJM+Pl•>Y:
P!=Pl->STACKUP:
END;

ENO:RETURNCSUH);
ENO FN;

AUGMENT:PROC(P!,R!,DELTAX,DESTROY,OODB);
/o THIS PROCEDURE AI/GNFNTS hLONG THE PATH FROM P! TO THE ROOT Rt

BY AMOUNT OELTAX. IF DESTROY• T THEN THE TREE GETS BROKEN
UP Al EDGES J FOR WHICH THE NEN X(J) • O, IF DESTROY= F
THEN Ti<IS DOES NOT HAPPEN. WE START AUGMENTING •ITH AN
ADDITION OR A SLJHTRACTION OEPENDING OtJ WHETHER ono =TOR F.*I

DCL (Pt,Rl) PTR,DfLTAX BIN FTXED(!Sl,(DESTROY,ODOH) RJT(ll,
(Ot,02) STATIC PTR;

Ol•PI:
DO WHILE (Ot••R!l:

Ol•>INPATH•F;
J!•OI-> EDGEON;
02=CH->DN:
IF ODDH THEN X(Jt)•X(Jl)+DELTAX;
ELSE OO:

X(Jll•X(Jll•DFLTAX:
IF DESTROY THF'I

IF X(Jl)•O TH[N CALL UPSCAN(O!,F,NONDEFIX,T,NONDEFIX);
I* THIS REMOVES EVFRYTH!NG ABOVE AND SPLITS TREE

INTO ITS POSITIVE COMPONENTS, •I
ENO;

01=02:
0000=:.;or;oa;

ENO;
Rt•>INPATH=F:

ENO AUGi-1£NT:

1·
'

:''
I,

/*THE ALOSSOM Al.GOil!TIIM: SAl'J PROCEO!IRE. !6•03•73 •I

STHT LEVEL NEST

60

61

62

63
64
65
66
68
69
70
71
73
75
76
78
80
81
82
M
85
87
89
90
91
92
93
95
96
97
99

101
102
103

105
106
107

108

2

2

2
2
2 I
2 I
2 I
2 I
2 I
2 I
2 2
2 2
2 I
2 I
2 I
2 I
2 I
2 2
2 2
2 I
?. I
2 I
2 I
2 I
2
2 · I
2 2
2 2
2 2

2 2
2 2
2 3

2 3
2 3
2 2

2

EXPANO:PIHJC (P):
/o THIS PAOCEOURF EXPANDS A PSEUOONODE,
SPEC!f!CALLY IT

!) CORNFCTS EDGE ENOS SD THAT THEY NO LONGEN NFFLECT
EX!STFNCE OF PSEIJ[)ONODE

2) AIJGMf~T SO THAT MATCll!NG CORAFCT RUT STACKUP STILL
ACKNOWLEDGES PSEU00N0Df •I

DCL P PTA, DESTROY BIT(!J,CCPl,P2) PTR, CI,J) AIN FIXED(161, IN BIT(!))
STATIC:

DESTROY:f:
I• CORRECT EDGE E~DS •t
JIN:O:t• JUST I~ CASE THERE IS NO EDGE IN WITH X(J) •I. o/
00 J: I TO NEDGE:

IN:f; I* INDICATES PARITY OF NO. Of EDGE ENOS IN P, •t
IF ENDS(J,ll~=P THEN GO TO P2!ESTJ
IN=T:
SIIRNK(J):F;
PJ=OR!GENDS(J,J);

LPPI: If Pl •> STACKUP:P THEN DO;
ENDS (J,IJ:PI; GO TO P2TEST;
END:

P!•PI •> STICKUP; GD TO LPPI;
. P2TEST: IF ENns (J,2) ~.p THEN GO TO LPEND;

JN="'IN:
P2•0R!GE~DS (J,21:

LPP2: If P2 •> STACKUP:P THEN DO;
EtJOS (J,2)=P?.;
GO TO LPEND; ENO:

P2•P2->STACKUP; GO TO LPP2;
LPEND: IF IN THEN

IF X!JJ:J THEN I* THIS IS THE EDGE INTO THF ALOSSOIH/
JIN=J;

flJO;
IF J!N:O THEN DO: /•CHECK FDR c: NOOE WITH Y•O o/

on I= I TO NNODE:
Pl•ADDR(NO~ELST(l));
IF Pl·>CONSTEU THEN GO TO EKDSClt;
If P!•>Y ~= 0 THEIi GO TO ENDSCll;

/o OTHERWISE WE SEE IF Pl IS CONTAINED IN P, •I
Frnnor=Pt;
no WHILE(BROOT->STACKUP ~= NULL):

IF P:AROOT->STACKUP THEN GO TO LAB7r
,. BROOT rs I SUITAHLE NODE FOR RECEIVING I DEFICIENCY•/

BAOOT•DROOT->STACKUP;
END:

ENDSCH: HID;
I• p CONTAINS NO<= NOOE WITH Y=O, so CURRENT MATCHING o.K.o/
RETURN:

I'

ii '
I i

·.,:. I 'I

I ·,
I

.1

, I

. ;I

;' 1'

I

/•THE ALDSSDH ALGDRITI<,:: MAIN PROCEDURE. 16-03-73 •I

STHT LFVEL NEST

109
11 0
112
113
I 111
115
116

117
119
120

1211
125
126
127
129

130
131
132
133
13~
135
136
137
138
IQO
1111
IQ2
1113
1115

IQ6
1117
1118
1Q9

150
151
152
153
1511
155
156
157

2
2
2
2
2
2
2

2
2
2

2
2
2
2
2

2
2
2
2
2
2
2
2
2
2
2
2
2
2

I
2
2
2

I
2
2
2
2
2
2
2

!
I
I
I
I
I
I

I
I
I

LAR7:Rt=P->R0DT;
IF ARaOT=NI THEN RETURNJ I• CURRENT HATCHING IS CORRECT a/
R 1->DFF=O:
BROOT->IJEF:l;
P!=BROOT:
GO TO AGHNT; I• MATCHING CORRECTION SET UP a/
ENO;

I* ON[ENO OF ,JIN HAS STACKUP=P, THE OTHER ODES NOT. LET
Pl HE THAT NOOE •I
P\:ENDS (JIN,!); If Pl-> STACKUP=P THEN
P2=ENDS CJIN,2);
ELSE DO: Pz:P\; P!=ENDS (JH,,2); END;
/o NOW Pl IS THE SURPLUS NODE •I
BROOT:PI: !• VARIAALES RETURNED TO BLOSSOM o/
R!=P->NOOT:
R!->OF.F=O; I• WE WILL CLEAR UP THIS DEFIC!fNCY •I
IF Pl : RI THEN RETURN;

AGMNT:
DELTAX=I:
OOOA=F: I• START WITH SUBTRACTION•!
CALL AUGHtMT (P!,R!,DELTAX,DESTROY,ODOAJ;

IF;0DD8 THEN /o NE WENT CORRECT OIR'N AROUND POLYGON o/
PETIJRN:

J=Rl->EDGEDN;
Pt=Ft,os CJ,1J,
P2=ENos (.J,?l,

0DOB=F: I• tJORHAL CASE o/
IF Pt->0DD THE~ 0DD8=T: /o AnNORHAL CASE o/
CALL AIJGHENT CP!,N!,DELTAX,DfSTROY,(ODDA));
CALL AUGHtNT (P2,Rl,OELTAX,DESTROY,(0DDHJJ;
X(J)=X(JJ+nELTAX:
IF DOOR THEN X(JJ=X(Jl-2•DELTAX: /o CORRECT A BAO GIIESS o/
ENO;

XOUT:PROC; /o PRINTS CURRENT SOLUTION*/
PUT fO!TC'oBLOSS - CllRRENT MATCHING :•)(SKIP,A):
PUT ED!TCX)(SK!P,20 F(S)l;
EHD XOUT;

YOUT:PROC; I• PRI~TS CURRENT DUAL NODE VARS o/
PUT EOIT('•HLOSS - CURRENT NODE DUAL VAR!AALES :')(SK!P,A):
PUT SKIP;
00 IY = I TO NNODEJ

P=ADDR(NODELST(IYJ);
PUT EDIT(P->Y)(F(I0,2));
ENO;

END YOUT;

/*THE BLOSSO•� ALGORITHM! HATN PR0CED1lRE. lt.•03-73 */

SHIT LFVEL flfST

158 1

159 2

160 2
1 h I 2
163 2·
1 bl! 2
166 2
11.,7 2 1

166 2 1

169 2
170 2
171 2
172 2
173 2
1 H 2
175 2

176 l

177 2

178 2
17q 2
161 2
162 2
163 2
16'1 2
165 2

186 2
187 2
188 2
190 2
191 2
192 2
193 2
1911 2

/***
*******�** GENERAL TREE HAN�LI�G ROUTI�ES ******�****�k***�*****
***************A***/

Rf�ovr: PROC (Pt):
I* S11f\ROlJTINE TO i:iEHOVE P1 FROM THE TREE CONTAl11{MG IT, */
DCL {Pt,(P2,P3) STATTC) PTR;

P2=P!->DN:
TF P?:�ULL THEN GO TO PET/* FOR Pl IS THE ROOT OF ITS TREE */;
P3::P2->UP:
IF P3::P1 THEN GO TO EASY;
DO hHILE (P3->RT �=Pi);

P3=P3->RT:
END:

I* NOW WE HAVE FOUND Pt *I
P3->RT=P1->RT;
GO TO RET:

EASY:P2->UP=Pl->RT;
RET: Pt->RT=NULL;

Pt->DN::MULL:
FRST(P!->EOGEON)=F;

END RE�OVE:

RF.ROOT: PROC (Pt):
I* SUBROUTINf WHICH REROOTS THE TREE CO�TAINI�G P\ AT Pt. *I
DCL {[P2,P3,PX) PTR,CJ,J3) BIN FIXED{lb)) STATIC, Pt PTR:

P2=Pt->ON;
IF P2:�ULL THEN RETURN I* FOR Pl IS ALREADY A ROOT. *I:
J=P t ->El)GEON:
Px::Pt:
CALL RF�OVE (Pl);

LP: P3=P2->l)N;
J3=P2->EDGEDN:
CALL R[�OVE (P?):
CALL AnDON {PX,P2,JJ:
IF P3:HULL THEN RETURN I* FOR P2 WAS THE ROOT, *I:
PX=P2:
P2=P3:
J::.T3:
GO TO LP:

END REROOT:
Ii'/.:)!I
'· .

/;! I· ',··1
- 1'1·

/•THE BLOSSOM ALGORITHM: HAIN PROCEDURE, tb-03-73 o/

snn LEVEL NEST

195

1%

1 '17
198
199
200
201
202

203

20~

205
207
206
209
211
213
21'1
215
216
216
220
221
222
223
225
227
228
229
230
23!
233

.23~

1

2

2
2
2
2
2
2

1

2

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

1
1
1
1

1
1
1

1
I
1

ADOON:PROC(Ql,02,Jl:
/o ADDON ATTACHES THE TREE ROOTED AT Q2 TO NOOE Q\ BY MEANS

OF EDGE J, IT REOUIRFS THAT Q2 RE THE ROOT OF A lRfE, A/
DCL (Ot,02) PTH, J DIN F!XFD(!6);

r3?.•>RT=Q1 .. >UP:
112->l)N:!11;
02->EOGE[lN=J:
01->UP:::02;
FRST(J) =T:

END AODOM:

!**
*************** THE UPSCAN ROUTINES *************************
*****************~**'

UPSCAN:PROC(P1,UPCALL,SUBRUP,DNCALL,SUBHONl:

I* UPSCAU GOES TH~OllGH ALL THE NODFS ABOVE Pt JN THE TREE
CDNTAJN!NG Pt AND IF UPCJLL=f TllfN CALLS SllBRUP FDR
EICH NOOE IN THE TREE AS IT ~FICHES IT COMING UP.
IF DNCALL = T THEN SUARD~ IS CALLEO FOR EACH NODE AS
TT IS ENCOUNTERED COMING DOWN, A/

DCL (P\,(Qt,021 STATIC l PTR,IUPCALL,DHCALL) BIT(!l,
(SUllRIIP,SlJGRllN) ENTRY;

IF IIPCALL THEN CALL SUBRUP(Pll:
At=Pt:

MVllP:fl2=0t->UP;
IF Q?:;=NULL THEN OD:

CALLLJP: IF UPCALL THEN CALL SUBPIIP(Q2):
Dl=f.>2:
GO TO ,:vuP1
ENO:

ENDTST: IF At=Pt THEN DO:
IF DNCALL THEN CALL SUDRDN(Dtl:
RETURN;
ENO;

D2=Q!->RT:
IF 02:;=rlllLL THEN DO:

IF DNCALL THEN CALL SUHRDN(Dt);
GO TO CALLUP:
END;

02:01,
<lt =QI ->ON;
IF DNCALL THEN CALL SUBRON(Q2):
GO 10 ENDTST;

ENO UPSCAN:

111,

il1

i1l1

11,

'i,
ii
iii !'
I

;J: 1:

111 i''
,II I

:11: ... 1:
1, i

Iii I

1
11 I

11 ·1 .·.I •

::1··. ,, .I

111 !

11,.i I

:.11

1

.,,1:. i
I]/,
I ''1,''
1)11.·1.,"

111 1 '

1111 :!,''
1111,,

11 I,'•'
11 '•.·,

Iii,
11

1

I

Iii.·
11 '

,,

ri
I r'I
11'

I i
' \
I

I
Ii ,I
l,1,1

1
:

,. I

'I

i'
1,

I,

J

STMT

235

236

237
238
239
240
241
243
244

245

246

247
248
249

250

251

252
253
254

255
256

257
258

/*TIIE BLOSSOM ALGORITHM: MAIN PROCEDU!lc, !6•03-73 •I

LEVEL NEST

2

2
2
2
2
2
2
2

2

2
2
2

1

2

2
2
2

2
2

2
2

ADDFIX: PROC (Qt):
I• THIS PROCEDURE SETS ODD,DEFIC AS APPROPRIATE FOR THE NODE

01, IT DEPENDS ON Qt->THEE,DN. •I
DCL co1,a2 STATIC) PTH;

01->BLOS,Qt->lNPATH=F;
D2•D!->DN;
C!->DEF!C•D2->DEFIC:
01->YRTO = O?->YRTO;
IF ~O!•>DEFIC THEN Qt->DOD•F:
ELSE ut->ODD=~Q2->0DD;

END ADUFIX:

PDLYFIX: PROC(P!):
I* PRDC CALLED BY UPSCAN TO

11 SET P!->STACKUP = NULL:
2) SET P!->!NPATH • F,

DCL Pl PTR:

P!->STACKUP•NULL;
P1->IMPATH=F;

ENO POLYF!X;

NONDEFIX: PROC (Pt):

.,

,. THIS rs A PROCEDURE DESIGNED TO BE CALLFD OY UPSCAN WHICH CORRECTS
THE STATUS INDICATORS ANO SPLITS A TREE WITH NO~-DEFICIENT ROOT
INTO POS!T!Vf COMPONENTS •I

DCL Pl PTR1

Pl-> DEFIC, Pl ->ODD= F;
Pt -> RLOS = F;
Pl -> YRTO • F:

I• INDICATORS NO~ CORRECT •I
IF Pl -> DN;•NULL I• I.E. IT EXISTS •I

THEN. IF X(P!->EDGEDN)aO I• I,E, WE HAVE PLACf FOR
OETACliHJG •I

THEN CALL REHOVE(P!);
END NON DEF IX:

1 •.'
, 'I'

I •

I I

I

l,;1.,

I

I,
I

I]'

ii

STHT

25g

260

26!
262
263
2bli

265

266

267
268
26g
271
274
276
277
278
280
282
283
2811
285
286
287

266
26g
290
zn
29ft
2g5

/OfHE BLOSSOM ALGORITHM: MAIN PROCEDURE. 16-03•73 o/

LE VF.L NEST

2

2
2
2
2

1 •

2

2
2
2
2 1
2
2
2
2
2
2
2
2
2
2
2

2
2
2
2
2
2

BLOSSJ~n:PROC (Pt):
I* PROCFDIJRE TO INDICATE THAT Pt IS A MODE IN A NON-DFFTCIENT

BLOSSOM, AND Tt~E EDGE OOWN IS IN A SIMILAR ST~T~ *I
DCL PJ PTR:

END;

FRST (Pl -> EDGF.DN):T;
Pt -> ODD, P1 •> DEFIC, Pl->INPATH = F;
Pt -> IJLOS:T:

ADD8LOS:PROC(P!J:
I• PROCEDURE CALLED NHF.N EXPANDED BLOSSOM HAS REfN ADDED
TO A DEFIC TREE. IT SETS ODD UNTIL I ZERO EVEN FDGF.
rs FOUND, WHEN IT SETS Tf!INGS UP FOR DEFFIX TO SPLIT
Tti!NGS INTO NONZERO COMPONENTS. NOCHECK rs USED TO AVOID
TRYING TO SEf DEFIC AND ODD FOR THE ROOT WHEN UPSCAN IS
STARTED AT THE ROOT OF A TREE. •I
UCLCP!,P2 STATIC)PTR:
I• PX AND SHRNKNG ARE USED AS EXT. VARS, •I

Pt->STACKUP:NULL:
P1->8L0S,Pt->TNPATH:F;
IF NOCHECK THEN DO:

NOCHECK:F; RETURN: END:
IF ~SHRNKNG THEN GD TO LAB!:
P2=Pl->DU;
IF P2->00D THEN

IF X(Pt->EDGEDNJ:O THEN DO; /* DETACH •I
SHPNKNG:F:PX=Pt: ·

LAA1:Pt->OEFIC,Pt->00D: F:
RETURN;
FW);

P!->OEFIC=P2->Dtf!C:
Pt->OOD=~P2->00D: ·
RETURN:

DEFFIX:FNTRY(P!J:
IF :;s,mtJKNG THEN t•POSSJ8LF. DETACHMENT .,

IF X(Pt->ED~EDN):Q THEN CALL REMOVE(PIJ:
IF Pt:PX THEN SHRNKNG:T:
RETURN:

EfJD AOOllLOS;

/oTHE BLOSSOM AlGORTTHN: HAIN PROCFDURE. tb-03-73 *I

STMT LEVEL NEST

297 2

298 2
300 2
302 2
303 2
305 2 1
30b 2 I
307 2 I
308 2 I
309 2
310 2

311 2
312 2
313 2
3111 2
315 2
316 2
317 2
318 2
319 2
320 2

321 I

322 2

323 2
3211 2

UPBLOSS:PROC (Pt):
,. llPnLOSS AND Ot:Rl nss DO ~OST OF THE c<Of!K RflllJIREO TO

SIIN!NK A RLOS&QH. •E USE Pl (PTRl ANO S~R•K•G (GIT(!)) AS
OEfl"l~f) JN BLOSSOM. i,:1: ASSIIME THAT !~2 IS TkF IWOT (IF THE
BLOSSOM AND P IS T11E PSEl'00N0Dt Bflf,G CRUTED, >/

DCL Pt PTR:

TF ~ SHRNKNG TliEN RETIJR~I;
IF P!:N2 THEN GO TO BFII;
IF~ Pl -> It!PATH lHEN

IF X(Pl -> EDGEO•J=O THEN 00;
SHRNKNG:f: /A STOP ~t!RIN~ING *I
PX:Pt I* SAVE NODE FOR O~BLOSS•/:
RETURN;
END:

BFIXi Pl -> STACKUP=P:
RETURN:

DNBLOSS:ENTRY (Pl);
Pl->!NPATH:F: /o TURN OFF PATH INDICATOR •I
IF P!~=PX THEN I• NO SNIPPING TO BE DONE, SO o/
RETURN;
K:Pt -> EDGEO~J:
CALL REMOVE (Pt):
CALL ADOO~J CP,Pl,K):
SliR~K~lG=T; I* RESUME SHRINKING *I
RETURN:
ENO;

SETYRTO: PROC(P!):
/o PROCEDURE CALLED HY UPSCAN TO SET Pl->YRTO EQUAL TO

Tl'E GLOBAL VARIABLE YROOTO. •I
OCL Pl PTA:

Pl-> YRTO:YROOTO;
END SETYRTO:

, r I

I

!
i I
i:,

, I

I

i

'l,1

'I'

I

I,

I
'

I!

,I

111'1
I

'I'
''[i ! '·

' ,,
II''
1,

/•THE BLOSSOM ALGORITHM: MAIN PROCEDURE, lb-03-73 •I

STHT LEVEL NEST

325
328
330 1

333 I
335 I I
336 I I
338 I
339 1 1
3QO 1 1
3q3 1 1
3Q6 I I

3q7 1
3Q8 I
3q9 I
350 I

351 I
352 I
3511 1
356 I

358 I
360 1
361 I
362 I
3611 I
366 I
368 I
370 I
373 1

374 1
376 1

'**
*********** I~!TIALIZAT[ON *****************************
**'

IF RUNSTAT(IOl=I THEN TNACE=T: ELSE TRACE=F:
IF TRACE TH[N DO:

CALL XOUT; CALL YOUT; END;
I• GEl!ERATE THE INITIAL E(lllALITY SUOGRAPH, •I
IF TRACE T1•E•l 00;

PUT EDJTl'•BLOSS • EDGES IN EQUALITY SUBGNAPH:')(SKIP,Al;
PUT SKIP; ENI);

00 J=I TO NEOGE;
C(Jl = C(Jl - FN(Jl: /o CALCULATE RFOUCED COST o/
IF C(J) = 0 THEN EO(Jl=T: ELSE [O(Jl = F;
IF TRACE THEN IF EO(Jl THEN PUT fDIT(J)(F(Sll:
END;

I• ENO OF EQUALITY SURGRAPH GENERATION *I
RUNSTAT=O:
NOCHECK,FR0~1EX: F:
JCNT,LASTJ=I:

A:
'***
************* FIRST LEVEL EDGE ANALYSIS *****************
A**********I

IF ~EQ(JCNT) THE~ GO TO ENDA:
IF ZfR(JCNT) THEN GO TO FNOA:
IF SHRNK(JCNT) THEN GO TO ENDA:
IF FRST(JCNT) THEN GO TO ENDA; ,.

,.
OTHERWISE WE HAVE AN EDGE WHICH IS IN THF EOllAL!TY SUB­
GRAPII WHICH CAN TAKE ON A NONZERO VALUE ANO sn FAR HAS
NOT BFfN Sl!RUNK ANO JS NOT IN THE FORFST,o/

WE NOW ANALYZE THE EOGE. IN ORDfR FOR IT TO HE USEFUL
ONE ENO MUST HE AN EVEN NODE OF A DEFICIENT TREE IN THE
FOREST FOR WHICH THF ROOT IS NOT. <= NODE WITH r=o, .,

Pl=ENDS(JCNT,ll; P2:ENDS(JCNT,2J:
IF P!->DEFIC THEN

IF ~P1->YRTO THEN
TF ;p1->0DD THEN GO TU OFFOUT;

IF ~P2->DEF IC THEN GO TO ENDA:
IF P2->0DD THEN GO TO fNOA;
IF P2->YRTo THEN GO TO ENDA:
P3=P2: P2=PI: P1=P3: /o I•TERCHANGE POINTERS FOR PZ DEF. OUT ND.•/

DEFOUT: t• IF THE OTHER END OF THE EDGE IS AN ODD tWOE OF
THE FOREST THEN THE EDGE IS OF NO USE TO US,
UNLESS IT JS IN A TREE WHOSE ROOT IS<= WITHY= 0, •I

IF P2->0DD THfN
IF ~P2->YRTO THEN GO TO ENDA;
ELSE GO TO ODDGROW;

'[
,,

i !

I ,

,,
'1,f
I

11

I!'

I,'
I

!•PIE BLOSSOM ALGORI"THM: MAIN PROCEDURE. 16-03-73 •I

STHT LEVEL NEST

377
378
380

382

383
3811
385
386
388
389
390

391
392
393
3911
396
398
399

qoo

I
1
1
I
I
1
1

1
1
I
I
1
I
I

I
I
I
I

I
I
I
I
I

J,LASTJ:JCNT: I* FOR WE IAE ABOUT TO ICCO•PLISH SOMETHING•/
IF P2->BL0S THEN GO TO POLYSTEP:
TF ~P2->~1:.FIC TllES GO TO Gf<OWSTEP:

/o OTHER•ISE EDGE(JJ JOINS ThO EVEN N0DfS OF THE FOREST o/
/o FIRST HE SEE IF T><EY ARE IN TREES WITfl DISTINCT ROOTS,

JF $0 WE CAN SIMPLY AllG~ENT, OT•lERWTSE W~ ~AY HAVE TO
SHRINK. AT Tiff SAME ll'!E WE COMPUTE HOW f<IJCH THE VALUES
ON THE PATH CAN OE CHANGED.•/

!***
************ SECOND LEVEL EDGE ANALYSIS *****************
***'

OXCALC: Ol,D2,D3•3?767:
I• NOW FIND PATH FROM Pl TO THE ROOT•/
Rl•PI:
Rt->ll{PATH=T:
DO WHILE (R!->DN ~= NULL):

IF ~Rt->DOD THEN DI• MIN(D!,X(Rl->EOGEDNJJ1
R1=R1->0N;
RJ->INPATH•T:
END;

I• SIMILARLY, FIND PATH FROM P2 TO ITS ROOT R2: IF A
POLYGON IS FORMED, N2 NILL BE THE ROOT OF THE POLYGON. •I

R2•P?:
DO WH1LE(:,R2->I11PATH);

R2->INPATH•T:
IF R2->DN•NULL THEN I• NE ARE AT THE ROOT o/ GO TO TWOTREE:
IF ~R2->00D THEN 02~MIN(D2 1 XCR2->EDGEDN)):
R2=R2->0~~;
END:

I* NE •UST HAVE A COH~ON ROOT TO THE TWO TREES SO ~E o/
GO TO OHETREE:

f i

'!

,, I
I,,,

1: I

t•lHE AI.OSSOM ALGOH!THH: MAIN PROCEllllRE. 16•03•73 •I

STHT LEVEL NEST

401

IJQ2 1
1103 I
4011 I
405 I
1!06 1
1107 I
408 I
410 I

411 1 1

413 1
415 1

417 I
418 I
423 1
425 I
426 1

427 1

428 I
429 1 1
431 I 2
432 I 2
433 1 2
4311 I 2
435 I I
436 1 1

437 1

439 1
440 I
441 I
4<12 I
444 I

f*****k**A
*********** T~O TP~E AiJG~f/JTATJflh *********~************
***'

T~CITPEE~ .
I• IF Wt HAOE IT TO HERE, RI MID P?. ARE D!FF£RfNT SO Wf

/d/GMEi..Jl f1Y A1-IOUNT *I
RVMSTAH6)=RUl•STAT(o)+l:
OELTAX:MIN(Dt,n2,Rl->D[F,R2->DEF):
C/\LL AlJGMf'-!T(P1,~l ,OF.l.TAX,T, CF));
CALL AUGMENT(P2,R2,DELTAX,T,(FJ):
X(JJ=X(Jl+DfLTAX:
R!->DEF=-1->DEF • DELTAX;
R2->DEF=R?.->DF.F • DELTAX;
IF TRACE THEN DO:

PUT EDTT(••BLOSS - EDGE 1 ,J,' USED FOR 2 TREE AllGMENTATID~'l
(R(FMT)):

CALL XOUT: END;
I• NOW CORRECT STATUS INOICATORS IN THE TREE•/

JF Rt->DEF = 0 THEN CALL IIPSCAfJ(Ri,F,~ONDEFIX,T,NONOFFTX);
IF R?.->DEF • 0 THF.N CALL UPSCAN(R2,F,OO•DFF!X,T,NO~DEF!X):

/* FINALLY JHCORPORATE J INTO THE FOREST 0/
JADD: JF Pl->DEFTC THEN/• P2 CANNOl BE TN A OEFIC!ENT TREE, ADD

ON TO P!o/DO:P3=P2:P2=Pl:P!=P3;FND:
CALL RFRDDT(P!):CALL ADDO•CP2,P!,J);
CALL UPSCAN (P!,T,AODFIX,F);
GO TO ENDA;

'***
************ SJ~GLE TREE AUGMENTATION *******************
***'
ONETREE: I• F[!lD BOTTLENECK IN STEM OF BLOSSOM *I

R3•R?.:
DO WHILE (R2->DN•=NULL);

IF •A2->0DD THEN DO:
IF X(R2->EDGEDNJ = I THEN t• WE HAVE FOUND THE
START OF A BLOSSOM, SOo/ GO TO DEFBLOSS;
D3=Hl~(D3,X(R2->EDGEON));
END;

R2=R2->0NJ
ENO:

,. AT THIS POINT, AN AUGNFNTATION rs POSSTOLE, SINCE NO EVEN
EDGE JN THE STFM HAS X=!, UNLESS R!->DEF = 1,•/
IF R!->DEF = I THE• GO TO DEFHLOSS:
/o DTHfPAJSE ITS AUG•ENTATIDN TIME.•/
RUNSTAT(7)=RUNSTAT(7)+1:
DELTAX•HlN(D1,D2,FLOOR(R1->DEF/2J,FL00R(D3/2));
ODDB=F: I• CORMAL CASE •I
IF Pl->DDD THEN DD: I• ABNORMAL CASE o/

OODB=T: DELIAX=MIN(OELTAX,X(Jll: ENO;

' ,,
I ·:

f .,:

I I
I

I
I
'I

I I
I

I 1

,I
.1

:1

l'i

,,,,1
:1!1'

If

i ;'
'1'' I,

I

'1
111,

11

I,,

I

L:
I
I

'ii

t•THE BLOS50M ALGORITHM: MAIN PROCEDURE, lb-03•73 •I

STMT LEVEL NEST

4117
448
449
1150
1152
1153
4511
455
1157
1158
459
4b0
462
463
465

468
470

472
473
1175
'176
477
478
479
1181

485
1187
1188
1189
490
/191
1192
1193
4911
495
496
498
500
501
502
503
5011
505

1
1
1
1
1
1
1
I
1
I
I
I
I
I
I

I
I

I
I
I
I
I
1
I
I

I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I

I
I
I
I

I
I
2
2
2
2
2
1
I

I
I
I
I
I
I
I

CALL AUGMENT(P1,R3,DELTAX,T,C0DDHJJ:
CALL AUGMENT(P?,RJ,DELTAX,T,(DDDBJJ:
X(J):X(JJ+OFLTAX:
IF ODOR TflFN X(JJ = X(JJ -2•DELTAX; I• CORRECT A 8AD GUESS o/
POLrnIT=F:
IF Pl->DfFIC THEN

IF P2->DFFIC THEN
IF X(JJ>O THEN POLYO[T=T:/* WE HIVE A NONZERO POLYGON *I ·

OfLTAX=DELTAXtDELTAX: I• STEH GETS DOURLE AUGMENTATION o/
Rl->DEF=Rl->DEF - OELTAX;
ODDA=F;
IF R3->0DD THEN 0DDB=T:
CALL AUGHEIIT(R3,R!,DELTAX,T,(0DD8J):
IF TRACE THFN DD:

PUT EDIT(••BLOSS - EDGE ',J,' USED FOR I TREE AUGMENTATION')
(R(f'-lTJJ:

CALL XOUT:
ENO:

I* DISASSEl·18LE TIIE TREE IF ROOT ND LONGER DEFICIENT. •I
If Rt•>OEF: 0 TH[N CALL UPSCAN(Rt,F,NONDEFJX,T,NONOEF{X):
ELSE IF FNOHEX THEN 00; I• ~E HAVE EXPANDED PSEUDO 000 NOOE

AND HUST ENSURE THAT THEE IS CORRECT, •I
NOCHECK=l; I* IGNORE ROOT, SET F BY AOOBLOS. *I
PX=MULL; SHRNKNG:T: /* GLORAL3 FOR ADDBLOS-l>EFFIX *I
CALL UPSCAN(Rl,T,AODBLOS,T,OEFFIXJ;
END;

FROMEX::f;
IF ~POLYBIT TIIFN /* INCORPORATE J HlTO Tllf FOREST •I

IF X(JJ>O THEIi GD TO JAOD;
ELSE DO: FHST(JJ:F; GO TO ENDA: END:

I• OTHERWISE WE HAVE A POLYGON WITH NONZERO EDGES •I
IF R3 -> DEFIC THEN DO:

R2=R3;
00 WHILE (R2->DN~=NULL);

If ~R2 -> ODO THEN
IF X(R2->EDGEDNJ:I

R2=R2->DN;
END:

THfN GO TD OEFHLOSS:

GO TO OEFBLOSS: /o ROOT OF TRfE ROOT OF BLOSSOM*/
END;

ELSE DO: R2=R3;
LB!: IF RZ->DN = NULL THEN GO TO LB2;

R2=H2->DN;
GO TD LB!:

LB2: R2->·fDGEDN:J;
CALL llPSCAN (R2,T,8L0SSIND,fl:/• SHOJ, A NONZERO COHPO'fENT o/
GO TO ENDA: I* CONTAINING AN ODO POLYGON•/
END;

l,i ''
,i

!

,; II
\ ·r

l:1

'.['' I
ii

1

1.11·:

F

I
' .i'
I('
,w'

' ,(
:/'
)

', I'

'l'I
l!l,i

li1

,

I

,{ ,,
1i'

Ir., ,' i

' ' 'I:' If
'!i

II,
,'',

,I

I

,,,

/

/•THE DLOSSOH ALGD~!THM: MAIN PROCEDURE, 16•03•73 .,
STMT LEVEL NEST

50&

507 I
508 \
509 \
510 I'
511 I
512 I
513 \
514 I
515 I
Sib 1
517 1

519 I
520 I
521 I
5211 I
525 I
526 1
527 I

530 I
531 I
532 I
535 I
536 I
537 I
536 1
5110 I
5111 1
5113 I
5411 I

'545 I
5116 I I
546 I I
550 1 I
551 I I
552 1 I
553 I 1
5511 I I

'***•
******•* PSElJOO MOOE CREATION**************************
***********k*****£**'

OEFRLOSSi I• HERF Pl IND P2 ARE THE TNO ENDS OF THE
F~GE J WHICH roN•S A BLOSSOM, R2 IS THE ROOI OF THE STEM
p;n R3 JS THE ROOT OF TIIE POLYGON, ALL >IE NEED 00 JS
SHRINK IT •I
RU•STAT(2)•RUNSTAT(2)+t:
FRO•EX•F: /* IN CASE IT SAS SFT T BY PSFUD0 EXPANSION *I
ALLOCATE PSEUDO: I* CREATE A PStUDO NOOE •I

DEF• I:
REAL,INPAT~l,ODD,BLOS,EXPANOED=F;
CONSTEO,DEFIC•T:
Y•OEO:
STACKUP•NULL:
ROOT•R2:
UP,RT,ON=NULL;
YRTO•R2•>YRTO:

IF TRACE THEN PUT EDIT1 1 •~LOSS • EDGE ',J,' FORMS PSEUDONOOE',
UNSPECCPJ)CSKIP,A,FC6),A,FC!O));

I• INDICATE NODES IN PATHS FROM P2, Pl TO R2 *I
P3=P1:
00 WHILE (P3~=R2):

P3 -> JNPATH: T; P3=P3->DN; ENO;
R2•>HJPATH=T;
P3•P2:
DO WHILE (~P3•>INPATHJ:

P3 •> !NPAIH • T; P3=P3->0N: END;
I* TURN OFF JNPATH IN UNUSED PART OF STEM*/
P3•R2•>DN:
DO •HILECP3~=NULLJ:

P3->INPATH=F; P1=P3->DN; ENO;
StlRtlKNG=T; /* WE ARE SHRINKING *I
PX•NULL: I• PREP, FOR CALL OF UPSCAN •I
CALL UPSCAN CR2,T,UPRLOSS,T,DNBLOSS):
K•R2->fDGEDN: P3•R2•>DN:
CALL REMOVE (R2);
IF P3 ~= ~lJLL THEN CALL ADDON (P3,P,K);

fLSE P•>[OCEDN • O: .
A2•>EDGEDN=J: I• THIS IS THE EDGE THAT FORMED THE BLOSSOM;

MOW FIX ALL EDGES SO THAT ENOS IS CORRFCT •I
DO JI•\ TO kEDGE:

IF SHRNK(JI) THEN GD TO FNDC:
Pl•ENOS(Jl,11: P2•ENOS (J!,2);
IF Pl->STACKUP•NULL THEN/* NO CHANGE •I

GO TO EMOXA;
SHRNK(Jl)•T:
ENDS(JJ,l)•P:

ENDXBi IF P2•>STACKUP~=NULL THEN

!! ',

I

I'

r I

I ,,

I

I

!•THE BLOSSOM ALGORITHM: HAIN PROCEDURE. !6-03•73 •I

STMT LEVEL NEST

'i55
556
557

558

559

560

562
563
5611
565

566

567

569
570
571
572
573
5711

575
576
577
578
579
580

I
I
I
I

I

I

I
I
I
I
I
I

I
I
I
I
I
I

I
1
1

I
I

ENOS(Jt,2J=P;
ELSE SHRNKCJ!l=F;

E~DC: mo:
I* NOW SHRINKING IS COMPLETE*/
GO TO ft,OA;

'**
************NORMAL FOREST GROWTH*************************
**'
GROHSTEP: I• WE GROW TREE HY USING J TO ADD A NONDEF!CJENT

TRff. • I
RUNSTAT(5):AUNSTIT(5)+1;
IF TRACE THEN PUT EDJT('•BLOSS - EDGE 1 ,J, 1 .USED TO GROW FOREST')

(R(FMTJ);
CALL RER00T(P2J;
CALL AOD0N(P!,P2,JJ;
CALL UPSCAN CP2,T,AD0FIX,F);
GO TO Et!OA;

'*************t**
************ AOJU~CT!Otl OF POLYGON TO THE FOREST*********
**'
POLYSTfP: I* FINO ROOT OF COMPONENT *I

RUNS1AT(8):RUN5TATC8)+1:
IF TRACE THEN PUT EDITC 1 •BL0SS - EDGE •,J,' USED TO 100 NONZERO PO

LYGQN TD THE FOREST'J(R(FMT)J;
P3•P2:
00 WHILE (P3->DN•:NULLJ;

P3::P3->DtJ:
E~JD;

J!•P3->EDGEDN: /•JI JS THE EDGE WHICH FORMED THE POLYGON •I
CALL REROOT (P2l;

I• R[RODT THE COMPONENT AND ADD IT TO TREE *I
CALL ADDO• (P!,P2,JJ:
CALL UPSCAN CP2,T,ADDFIX,F);
PI •ENDS CJ 1, 1 l;
P2•Et<nSCJI ,2) J
J•JI;
GO TO DXCALC;

/*THE HLOSSOM ALGORITHM: HAIH PROCEDURE. 16-03•73 •I

STMT LFVEL NEST

581

582
583

585
586
587
589
590

591

592
593
59Q
595
5%
597

599
600
601
602
603
605
606
608
609
610
611
612
613
61q

615
616
617
618
620
621
622

1
I

I
1
I
1
I

I
1
I
1
1
1

1
1
1
1
I
1
1
I
I
1
I
1
1
I

1
I
l
I
1
I
1

I
I
1

1
2
2
3
3
3
2
1
1

I
I
1

l***A.
****"'***** PSE::1/f}f.l FORFST GRO:~TH *A****.;.;1,;**A*A******;.t.*'*****
**/

0DDGHU•: t• A:I tDGF. J HAS REEN FOU•D JOINING Pl IN Fl TD P2 IN FD•/
RU•STIT(5)•RIJNSTAT(5)+1;
J,LAST.J = JCNT:
IF TRACE Tl~E~ PUT EDIT(1 *BL0SS • EDGE ',J, 1 USED FOR PSEUDO FOREST

GROl.;Jll') (R(P'T)J;
I* FirlD FIRST NOOF. IN PATIi FROM P2 TO !TS ROOT HAVING A ZERO

oo•• EDGE, OR IF •o SUCH EDGE EXISTS, THEN WE FINO THF.
ROOT OF THE TRF.E CONTAINING PZ. •I

R1•P2:
DO WHJLECRt->DN ~= NULL):

IF X(Rl->EDGEDNJ•O THEN GO TO ROOTADDI
Rl•Rl->DN;
ENO:

I* Rt IS THE ROOT, ALL EDGES JN P·ATH HAVE X>O, •I
ROOTADD:

Q3:Rt->DN;
CALL RE~OVF.(RIJ:
CALL RFROOT(P2J;
CALL A0DGN(P!,P2,J); I• TREES NON CONSOLIDATED•!
YROOTO = F:
CALL UPSCA•(P2,T,SETYRTO,Fl;
IF G3 ~= MULL TfiEN /* hE HAD A ZERO FDGE */GO TO ENDA;
I• NOH ALIGHENT SO AS TO GF.T OEFICIF•CY TO TllE ROOT •I
I* QI WILL BE THE LAST NODE FOR hHICH THE DO•N EDGE BF.COMES O •I

AUG: 0!=3?767:
RUNSTAT(9)=RUNSTAT(9)+1;
R2•RI:
00 NHJLE (R?•>DN ;. NULL);

IF ~R2->0Dr. THEN DO:
Jt=R2->EDGEDN;
IF X(J!) <= DI THEN DO;

Dl•X(JI);

Et-ID;
R2•R2->DN;
ENO:

Q1=R2:
EMO:

DELTAX•MlN(Dl,R2->0EF);
I* NOW WE AIIGMF.~JT *I

CALL AIIGHE~H(Rt,R2,DF.LTAX,F, (F)):
R2->DEF • R2->DEF - OELIAX;
RJ->DEF=R!->DEF t DELIAX; I• WE INCREASE DEF AT THIS NODE. •I
IF TRACE THE~ DO;

PI/T EDJT('•ALOSS - PSEUDO AlJGMENTAT!DN')(SKIP,AJ;
CALL XOUT;
END:

I

t•THE BLOSSOM ALG<JRJTHM: MAIN PROCEDURE. 16-03-73 •I

STHT LEVEL NEST

623 I
62q I

625 I
626 I
627 I
628 I
629 I
630 I
63! I
632 r

633 I
63q I

IF DI > DElTIX Tll[N I* NO fOGE IN PITH HFCIME ZFRO */
GO TO TIDD;

/o ELSE FVERYT!l!NG IOQVE Ql GETS REMOVED lkD REROOTED AT Rl o/
CALL AFHOVE (Qt);
YROOTO=F;
CALL trPSCAN(R2,T,S[TYl{TO,F);
TF R2->DEF=O TtiE~
CALL !!PSCAN(R2,F,NONOEFIX,T,~ONDEFTX); I* ALSO SETS YTRO:F *I

TIDD: CALL AENOOT(R!I;
YROOTO = T:
CALL UPSCIN(R!,T,SETYRTO,FJ;

'**
********* END or MAIIJ PROCESSING LUOP ******************
**'

ENOAiJcNT=t t MOD(JcNT,NEDGE);
IF JCNT~=LISTJ THEN!• CONT!NtrE PROCESSING •I GO TO A; '* WHENEVER AN EDGE rs l!ADf USE OF IN TtiE MAIN LOOP, LASTJ
IS SET EQUAL TO THE INDEX OF THE EDGE. IF JCNT EVER 'CATCHES
UP' WITH LASTJ THEN HE HAVE MADE A COMPLFTE CYCLE Tl<ROUGH THE
EDGES WITHOUT FJ!IOING ANY EDGES W!IJCH WE CAN USE SO WE PROCEFD
TO ATTEMPT A CHANGE OF DUil VANIIBLES. •/

:',I

I
I,

, I

i:
',I I

'I
, I

\'
11

/•THE 8LOSSOH ALGORITHM: HAIN PROCEDURE, 16-03-73 .,
STMT LFVFL NEST

636

637

638 I
639 I
640 I 1
6QI I I
6112 I I
644 I I

646 I 1
647 I I
648 1 I
6Q9 I I
651 1 2
652 I 2
653 I 2
65Q I I

656 I 1
657 1 I
659 I I
660 1 I
662 I 2
663 I 2
6611 I 2
665 I I
666 I
668 I

'***~***********
*********** OUAL VARTAALE CHANGE ROUTINE****************
***/

OUALCHNGF.:
I• NON EXAMINE NODES, IF 110 SURFACE NODE IS IN A DfFIC TREE

TIJrN WE ARE DONE, FAIL IS SET TRllE IF >IE DISCOVER THAT
THIS IS tiOT TtlE CASE, •I

FAIL=F:
EPS!,EPS2=\EIO:/•A!DTCUL0USLY LARGE VALUES•/

'***
********** nETERMINATIO~ OF NODE AOUNn ****************
***'

PX=/JLIL t.;
LF: 00 I= I TO NNODE:

P\=ADDR(NODELST(Ill:
P2=SURF(Pt):I• HIGHEST LEVEL PSEUOONODE CONTAINING Pl o/
IF~P2->DEFIC THEN GO TO ENDF:
IF P2->YRTO THEN GO TO ENDF:
/o ELSE WE HAVE NOT YET GOT A FEASIBLE MATCHING, •I
FAIL=T:

IF ~P2->00D T~f.N
JF ~P!->CONSlF.D THEN

IF Pl->Y < EPS2 THEN DO:
PX::;Pt:
EPS2=Pl->Y:
END:

IF P2->REAL THE• I• NOT IN A PSEUDO NOOE •I GO TO ENDF:
/o DTHEANISE CHECK THE PSEUDO NODE •I
P2->DCHNG=F:/* NO DUAL CHANGE HADE YET ON THIS NOOE *I
IF~P2->1l0D Tl~EN G(l TO E~Df;

ENDF: ENO LF:

Z=P?.->Y I 2En:
IF Z<EPS2 THfN no,

PX=P2:
EPS2=Z;
mo,

IF ;FAIL THEN I• NE ARE FINISHED •t GO TO CORRECTION:
IF EPS2= 0 THEN GO TO NODED'lD:f• ~O IJEED TO CHECK EDGES,

NE ALREADY HAVE OUR BOUND, •I

,i
l.!i

J
i!'i·
,If

:f

1

1,1

I
'

I
r
1,il

'I'' l'I ,!"1

u
'

,1,1
1.·I,

Iii

I

'

!1i

)1:,

I

ll'
1,,,,1

I
i,,
\i
111

I
i
ii'

I: ",,

11,

'ii

iii.'
'

iii
',I
I,

1,l

· 1,1
'lj
,·',,II

/•THE BLOSSOM ALGORITHM: MAIN PROCEDllRE, !6-03-73 .,
STHT LE"VEL NEST

670 I
6 71 I
672 I I
6711 I I
676 I I
678 I I
679 I I
681 l I
683 l I
6811 I 1
686 I 1
687 l I
689 I 1
691 I I
692 I I

6911 I I
695 1 1
697 I I
698 I I
699 I 1

701 I I
703 I 1
70Q I I
705 I I

706 I
707 I
709 1
710 I

712 I
71 II I
715 I I
716 I I
717 I I
719 I I
721 I I
723 I 2
1211 I 2
725 I 2

'***
******-,."*** DETERMJNAT!mJ Of fDGE BOUliD ****************
******************************* *************************'

I* NO• CflECK EDGES FOR I ROUND ON EPS o/
JX=O:

LO: OD J:J TO NEDGE:
IF EO(Jl THE"N GO TO ENDO: I* IGNORE EDGES IN EG SUBGRAPH o/
IF SHRNK(J) TIIEN GO TO ENDO:
IF ZER(Jl THEN GO TO ENDO:
Pt=EfiOS(J,tJ:
IF •P1->DE"FIC THEN GO TO TRY2;
IF P!->YRTO THEN GO TO TRY2:
P?.=ENOS(J,2 J:

·1F •PJ->0DO THEN GO TO TESTP2:
TRY2:Pl=fNOS(J,2l:

IF •P\•>DEFIC TIIEN GO TO ENDO:
IF Pl->YRTO THEN GD TO ENDO;
P2=E"IOS CJ, 1 J:
IF Pl->000 T>IE~ GO TO ENDO:

I• AT THIS POINT Pl 19 AN EVE"N NOOE" OF A DEFIC TREE, AS LONG
AS P2 JS NOT I~ DOD NODE NE HAVE FOUND AN EDGE OF !~TEREST •I
TESTP2:JF P2•>0DD TJJEN

IF •P2•>YRTO TIJEN GO TO ENDO;
Z=· C(Jl:
IF P2->DEFJC THEN

IF ~P2->YRTO THEN Z=ll?EO:
/> ELSE J HAS JUST ONE END IN THE FOREST•/

IF Z>:EPSI THEN GO 10 ENDO:
JX=J:
FPS1=7:

ENDO: ESD Lo:
'***

********** MAKE ACTUAL CHANGE IN DUAL VARS. ************
***'

EPS:MINCEPS!,EPS?.);
IF EPS=lElo THEN,. FOREST rs HUNGARIAN., DO:

RUhSTAT(\Ol=l:
GO TO CORRECTION; ENO;

I• HERE WE GD ON A CHANGE OF DUAL VARIABLES•/
IF lRACE THEN PUT EDIT('*ALDSS • DUAL VARIABLE CHANGE')(SKIP,A);

LG no I=t TO NNODE:
Pl=ADDR(NOnfLST(IJJ;
P2=SURF(P!J;
IF ~P2->0EF!C THEN GO TO ENOLG;
If P?->YRTo TIJEN GO TO ENDLG1·
IF P2•>000 THEN DO:

Pt->Y:Pl•>Y + EP$1
IF •P2->REAL THEN

IF ~P2->DCHNG/•P2->Y HAS NOT YET REEN CHANGED., THEN on;

/oTHE BLOSSOM ALGORITHM: HAIN PROCEDIIRE, 16-03-73 o/

STMT L[VEL NEST

727
728
729

731
732
733
1v,
735
736
738
739
740

1112
743 1,,,,
HS
746
748

750
751
753
755
757
759
760
762
76Q
765
766
767
769
771
772
773
775
776
778
779
780
781
7811

785

1
1
1

1
1
1
1
1
l
1,
1
1

1
1
1
1
1
1

1
1
1
l
1
l
1
1
1
1
1
l
1
1
1
1
1
l
1
l
1
1
l

1

3
3
3

3
2
1
2
2
2
3
3
3

3
2
1

1
1
1
1
1
1
2
2
2
1
1
2
2
2
l
2
2
2
1
l

I

1

ELSE

P2->Y=P2->Y-2EO • EPS:
P?->r>CHl·lG:T;

TF Tl?ACE r11n~ PUT EDIT(' PSEUDO •,IJNSPEC(P2),
' DLIAL VAR. 1 ,P2->Y)(SKIP,A,F(10),A,F(10,1));

E:" r-: {) ;
END:
/o P2 JS AN EVEN NOD[*I DO:
Pt->Y:PJ->Y - EPS;
IF -iP?->RFAL THEN

IF :,P2->DCHNG THEN DO;
P2->Y=P2->Y +2EO * EPS;
P2->0CH~·JG: T;

IF TRACF. THEN PUT EDIT(' PSEUDO ',UNSPEC(P2),
'DUAL VhR. 1 ,P2->Y)CSKIP,A,F(10),A,F(10,1));
END;

Et~D;
ENOLG: END LG:

Rl/NSTAT(l)=RUNSTAT(l)+l:
IF TRACE THEN CALL YOUT;
IF TRACF. TJ1EN PUT ED!T('*RLOSS • EOGF.S IN EQUALITY SURGRAPH')

(SKJP,A);
I• NOW CALCULATE NEW REDUCED COSTS •I
00 J=l TO NEOGE;

IF SHRNK(J) THEN GO TO MSG;
JF FRST(J) THEM GQ To MSG:
IF ZER(J) THEN GO TO ENOX;
Pl=ENnscJ,1): P2=ENDS(J,2);
IF Pl->DEFIC THEN

IF aPJ•>YRTO THEN 00;
IF Pl•>ODD THEN C(J)=CCJ)-EPS;
ELSE C(J)=C(J)+EPS;
END;

IF P2->DEFIC THEN

MSG: IF

IF ~P2->YRTO THEN 00;
IF P2->00D THEN C(J) = C(J) - EPS;
ELS[C(J)=CCJ) + EPS;
Er.JO:

C(J):O THEN DO:
EQ(,Jl:T;
IF TRACE THEN PUT F.DIT(J)(F(5l);
END:

El.SE fQ(J):f;
rnox:END;
IF EPS! = EPS THEN DO;JCNT,LASTJ:JX;

GO TO A; /~ AETURN JO MAIN LOOP AND ACCOMPLISH SOrE •
THING. *I

F.ND;

I'''
:"'[
I:,

1 j

i

/•THE BLOSSOM Al GORITHM: MAIN PROCEDI.IRf, 16-03-73 •I

STHT L[VEL NEST

7Bb
787

788
790
7q1
792

7911
795
79b

7q7

798
7qq

801

802

603
BOS
Bob
807
606
0oq
61\
812
813

BIii
Bib
816
6\q
820
821

I
I

I
I
I
I

I
I
I

I

I
I

I

I

I
I
I
I
I
I
I
I
I

I
I
1
I
I
I

1
I
l
l
I
l
I
I

l
I
I
I
I
I

'**
*********** RFROOT A TREE SO ROIIT HAS Y=O *********~*****
**'

tlUO[BND:
IF .:;pX •> REAL THEN GO TO PSEIJOOEX:
I• OTHERWISE PX IS A REAL<• EVEN NODE •I
IF TRACE THEN PUT ED!TC'•HLOSS • RERDOT A TREE'J(SKIP,AJ:
Rl•SIIRF(l'XJ:
JCNT,LASTJ=t:
IF R!•>DN~:NULL THEN GO TO AUG: I• FOR RI JS NOT A ROOT,
OfHEP\HSE RI JS A ROOT, •I
YROOTO • T:
CALL UPSCAN (Rl,T,SETYRTO,FJ;
GO TO A~

!**
*********** PSEUDO NODE EXPANSION ROIJTINE ***************
**'

PSEUDOEX:
P=PX:
RUNSTAT(QJ•RUNSTAT(Q)tt;
IF TRACE THEN PUT ED!T('•BLOSS • EXPAND PSEUDONODE 1 ,UNSPEC(PJ)

(SKIP,A,FllOJJ:
CALL EXPAMn(PJ; t• EXPAND THE PSEUOONODE o/
I• RI JS THE ROOT OF THE HLOSSOM,

JIN IS THE EDGE FOR WlllCH X(J!Nl~•O,
IH?f1(1T IS THE r()GE OF JJN JtJ TPE Al.OSSOM• *I

J•Rl->EDGEot1: I• BLOSSOH FORHING EDGE *I

'**
******** CASE 1: t EDGE tNTO Pstuoo NODE ***********A**
~******************************&*~**************~***'

EX!: IF P•>EDGEnN = JIN THEN DO: ,. EASY CASE, ONE EnGE INTO p .,
CALL RFROOT(BROOT):
P 1 =P->DfJ;
CALL REMOVE (PJ:
CALL AODON IP!,BROOT,JINJ:
PX:~ULL:SHRNKNG=T: /o GLOBAL VARS FOR ADDBLOS, DEFFIX o/
CALL IJPSCAN(HROOT,T,AODBLOS,T,DEFF!XJ;
FREE P->PSEUDO;

JTST: I• CAN WE TREAT JIN A NOR~AL FASHION? •I
JCIH,1.AST.l=J:
IF X(JJ•O THEN GO TO A;
P\:ENOS(J,11: P2•ENDS(J,2)l
IF Pt->nEFIC THEN

JF P2•>DEFIC THEN /* BOTH ENDS IN DEFIC TRFE •I
GO TO DXCALC:

ELSE /o P2 NOT DEFIC •I GO TO GRD•STEP;
/* ELSE P! IS NOT IN A DEFICIENT TREE •I

/•THE OL0SS0H ALGORITHM: MAIN PROCEDURE. 16-03-73 •I

STIH LEVEL NEST

822
8211
8?7
828

829
830
631
833
8311
835
837

M3
8411
845
846

848

849
850

851
852
853
8511
855
857
859
860
861
862

863
865
866
869

I
I
I
I
I
1
I

I
I
I
I

I
I
I
I

1

I
I
I
I
I
I
I
I
I
I

1
I
l
1

I
2
2
?.

1
1
2
1
I
2
1

I
I
I
I

I
I
I
I
I

IF P2->DF.Fir TIIF.N DO: I• SWITCH POINTERS •I
P3•P2;P?.•P!:Pl•P3:
GO TO GIWl·IS Tf.P:
EW);

I• OTHERWISE NEITHER JS JN A DFFICIENT TREE, ARE THEY
IN DIFFERENT NONZERO COMPONENTS? •I
P3•P I :
DO WHILE(P3->DN•aNULLJ:

P3=P3->DN; END;
R3=P2;
DO NIIII.E (R3->DN •• NULL);

R3=R3->D~: END;
IF R3••P3 THEN I• DIFFERENT C~PNTS *I GO TD GROWSTEP;

I• ELSE WE INDICATE A NONDfFIC BLOSSOM o/
R3->fDGEDN•J:
CALL UPSCAN(R3,T,8LOSSIND,Fl:
GO TO ENDA:

END: I• OF EASY CASE o/

'**
******** (ASE 2: 2 EDGES INTO PSEUDO NODE *************
***~**'

I• NON HARDER CASE : WE HAVE A QOWN EDGE ANO AN UP EDGE •I
JDN•P->F.DGEON;
Q~:P->DN:
Q\:[NQS(JON,1); I• FI~O EDGE OF JON JN THE BLOSSOM •I
IF 03 a Q\ THE• Llt•ENDS(JDN,?.):
I• QI IS TD BE THE NEW ROOT OF THE RLOSSOM •I
CAI.L REROOT(QIJ:
I• RE~OVE TOP PART OF TREE •I
02•P->UP:
CALL Rfr0VE(A2):
/o ADO BLOSSOM TO THE TREE •I
CALL RF.SOVE(PJ:
FHfE P->PSEUDO:
CALL ADDON (03,Al,JON):
CALL UPSCAN(Al,T,ADOFIX,FJ:/• LAAEL NODES ODD AND EVEN o/
IF !RODT•>OOD THEN DO: /0 THINGS WORK OUT EASILY •I

SIMPFJN: PX•NULL: SHRNKNG•T: /•GLOBAL VARS FDR ADDBLOS-OEFFIX, •I
CALL UPSCAN(Q!,T,ADDRLOS,T,DEFFIX):
CALI ADDON(RROOT,D?.,JIH): I• ADD THE TOP OF THE TREE o/
GO TO JTST: /* CONTINUE AS IN EASY CASE. •I
ENO;

/o OTHERWISE WE MAY HAVE A POLYGON IN THE PATH, OR WE MAY
JUST NEED JIN THE PITH. FIRST LABEL NODES IN POLYGON •I
P!•ENDSCJ,I): P2=ENDS(J,2):
DO WHILE (Pl••D31:

Pt->INPATHaT: Pt•P!->DN: END;
DO WHIL.EC~P2->INPAT~l);

i

I
I

/*THE BLOSSOM ALGORITHM: MAIN PROCEDURE. 16-03-73 *I

STMT LEVEL NEST

870
873

6711
875

878
879
880
881
882
883
8811
885

887
888
889
890
892
893
8911
895
89b

897
898
899
900
901
902
903
9011
905

906
909
9\1
912
913
916
917

I
I
I
I
I
1
I
I

1
1
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I

I
I
1

. I
I
I
I

I
I
I
I

I
2
2
2
I
I

1

I

P?->I~PATH: 1:P2=P2->DN; END;
RI•P2: /o POOT OF T>IE POLYGON o/
I* TllPN !~!PATH C1FF If~ STEM *I
DO •HILl (P2->0N•:Q3);

P?:P2->Pt!: P2->I•IPATH:F: END;
I• IIOH P->l•PATH: T !FF P !S IN THE POLYGON •I
/o IF llROOT IS URELLED EVEN, AND THE PATH FROM 8ROOT
TO QI CONTftIIIS AT H8ST ONE POLYGO~ NODE TIIEN POLYGON
IS HI PATIi, OTHERWISE NOT. *I
Pl•BROOT;
DO •HILEC•Pl->INPATHJ;

P1:P1->llN;
IF Pl=DI THEN I• AT MOST ONE PGON NODE IN PATH*/

GO TO POLYCASE;
END:

P2=Pt->DN;
IF ~P2->INPATH THEN GO TO PDLYCASE;
I• OTHERWISE ALL WE HAVE TO DO IS RE•OVE P!->EDGEDN
FROM POLYGON AND REPLACE IT WITH J AND WE CAN TREAT AS
SIMPLE CASE •I
P2•Et.iDS (J, I);
P3•P2: I* SEE IF P2 IS END NE WANT FOR ADDON *I
DO NHILE(P3->INPATH);

IF P3=PI THEN I• CORRECT, SO •I DO;
R3•ENDS(J,2):
GO TO FJN!;
nm:

P3•P3->DN:
END:

I• OTHER•ISE ~E HAD IT BACKWARDS •I
R3•EHDS CJ, t J:
P2•ENOS(J,2):

FIN1:J1=P1->EDGED~I;
CALL REHOVE(P\l:
CALL REN00T(P2):
CALL IDDON (R3,P2,J):
J•JI:
GO TO SIMPFIN:

POLYCASE: I* HERE NE HIVE I POLYGON IN PATH, LAHEL PATH FROM
BRODT TO POLYGON OR STEM CORRECTLY,

FIRST MARK NODES Itl STEM. *I
DO WHJLE(Rl~•D3):

R!->INPATH•T: RI=Rl->DN: END:
IF BROOT->INPATH THEN I* NO FIXING NECESSARY •I GO TO WJNOUP;
Pl•BROOT:
DO KH!LE (~Pl->!NPITH):

P2•P!: Pt•Pl->ON; END;
P1->0DD=1Pt->OOD;
CALL UPSCAN(P2,T,IODFIX,F):

I;

!!

!•THE BLOSSn~ ALGDNITHH: HAIN PROCEDURE. 16-03-73 o/

STMT LEVEL tlEST

918
919
920

922
923
9211

925

927
929
930
931
933
9311
936
937
938
940
9111
942
q43
9lM
9115

I
I
I

I
1
1
I
I
I
I
1
I
I
I
1
I
I
I

I
1
I
I
I
I
2
2
I
1
I
1

P1->0DD=~Pt->ODD;
h!Nf)t1P: C,\LL A!'H)OtJ o,rwor,r.i2,JIN);

P!=EllDS(J,1): P2=E~DS1J,2J;
/* SET UP FDA RfTURN TO MAIN LOOP. •I

CALL UPSCAN(O!,T,POLYF!X,F);
FROl-1 EX=T;
GO TO OXCALC:

'***
11:*****klr; FINAL CORRECTION OF MATCHING IN PSEl100S "'***•**-*
AAkk******k/

cORRFCT!()N: lF rnAc'E THE~ PUT EOITC'•BLOSS - CORRECT MATCHING IN PSEl)OO
NODES')(SKJP,A):

IF TRACE THEN CALL XOUT;
DO I•! TO NNODE;

Pl•ADDR(HO~FLST(I));
EXP!: IF P!->STACKIIP•NULL THEN GO TO EXPEND;

P?=P1->ST/\CK\JP;
IF P2-> EXPANDED THEN GO TO EXPEND;
P3•P2->SHCKIJP:
DO NHJLE(CP3~•NULL)&(• P3•>EXPANDED));

P2=P3; P3•P3->STACKUP;
END;

CALL EXPAND (P2); I• EXPAND AND KfEP
P2~>EXP~NDED=T;
r,o TO EXPI;

EXPEN~: Erm:
F.ND HLOSSOM:

THE RLOSSoa .,

'***~*******'
/****************** ENO OF BL.OSSOM ALGO~ITII~ *****11;1i•-...1c******,-,***I
'***' I, I

II
11

References

[Bl] M.L. Balinski, K. Spielberg, ''Methods for Integer

Programming: Algebraic, Combinatorial, and

Enumerative", in Progress in Operations Research

Vol. III, J. Aronofsky (ed.), Wiley, New York,

N. Y. 195-292 (1969).

[B2] C. Berge, "Sur le couplage maximum d'un graph'', C.R.

Acad. Sci. Paris 247, 285-259 (1958).

[B3] C. Berge, The Theory of Graphs and Its Applications,

Methuen, London, England (1962).

[B4] G. Birkhoff, S. MacLean, A Survey of Modern Algebra,

Third ed., Macmillan, New York, N.Y. (1965).

[BS] R.G. Busacker, T.L. Saaty, Finite Graphs and Networks,

McGraw-Hill, New York, N.Y. (1965).

(Cl] C. Carath€odory, ''Uber den VariabilitKtsbereich der

Koeffizienten van Potenzreihen, die gegebene Werte

niche annehment'', Math. Ann. 64, 95-115 (1907).

(Dl] G. B. Dantzig, Linear Programming and Extensions,

Princeton University Press, Princeton, N.J. (1963).

[El] J. Edmonds, "Pa.tbs, Trees and Flowers", Canadian J.

Math. 1 7 , 4 4 9-4 6 7 (19 6 5) .

[E2] J. Edmonds, ''Maximum Matching and a Polyhedron with

O, 1-vertices'', J. Res. Nat. Bur. of Standards

69B (Math. and Math. Phys) No. 1, 125-130 (1965).

[E3] J. Edmonds, ''An Introduction to Matching'' Notes on

lectures given at Ann Arbor, Michigan (1967)

[E4] J. Edmonds, "Optimum Matchings", in manuscript.

[E5] J. Edmonds, E.L. Johnson, ''Matching: A Well-Solved

Class of Integer Linear Programs'', preprint:

summary appears in Combinatorial Structures and

their Applications, Gordon and Breach, New York,

N. Y. 8 9-9 2 (19 7 0) .

[E6] J. Edmonds, E.L. Johnson, ''Matching, Euler Tours and

the Chinese Postman'', I.B.M. Research Report

RC 3783 (1972), to appear in Math. Programming.

[E7] J. Edmonds, E.L. Johnson, S. Lockhart, ''Blossom I:

A Computer Code for the Matching Problem'', to appear.

[Gl] B. Grlinbaum, Convex Polytopes, Interscience, London,

England (1967).

[Hl] G. Hadley, Linear Programming, Addison-Wesley, Reading,

Mass. (1962).

[HZ] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass.

(1969).

[Ill E. Isaacson, H. Keller, Analysis of Numerical Methods,

John Wiley and Sons, New York, N.Y. (1966).

[I2] I.B.M. Systems 1360 Operating System, PL/l(F) Language

Reference Manual, C28-8201 (1970)

[Jl] E. L. Johnson, "Programming in Networks and Graphs",

Univ. of Calif., Berkely Research Report ORC 65-1

(1965).

[J2] E. L. Johnson, "Networks and Basic Solutions", Operations
R&,sear.ch 14, 619-623 (1966).

[Kl] V. Klee, C. Witzgall, "Facets and Vertices of Transportation
Polytopes'', Boeing Scient~fic Rsch. Lab. Doc.
Dl-82-0662, (1967).

111

,I,

11 ·

! :

I

'i

I

I

I

[K2] D. Konig, Theorie der endlichen und unendlichen Graphen,

Acad. Verl. M.B.H., Leipzig (1936). Reprint,

Chelsea Publishing Company, New York, N.Y, (1950).

[K3] D. E. Knuth, The Art of Computer Programming, Vol. 1,

Fundamental Algorithms, Addison-Wesley, Reading,

Mass. (1968).

[Rl] R.T. Rockafellar, Convex Analysis, Princteon University

Press, Princeton, N.J. (1969).

[Sl] J. Stoer, C. Witzgall, Convexity and Optimization in

Finite Dimensions I, Springer-Verlag, Berlin,

Heidelberg (1970).

[Tl] W.T. Tutte, ''The Factorization of Linear Graphs'', J.

London Math. Soc. 22, 107-111 (1947).

[T2] W.T. Tutte, "The Factors bf Graphs", Canadian J. Math.

4, 314-328 (1952).

[T3] W.T. Tutte, ''A Short Proof of the Factor Theorem for

Finite Graphs", Canadian J. Math. 6, 347-352

(1954).

i

