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Abstract 

Let G = (V, E, ~) be a finite loopless graph, let 

b=(bi:ie:V) be a vector of positive integers. A 

feasible matching is a vector X = (x.: j e: E) 
J 

of nonnegative 

integers such that for each node i of G, the sum of the 

over the edges j of G incident with i is no 

greater than bi. The matching polyhedron P(G, b) is the 

convex hull of the set of feasible matchings. 

In Chapter 3 we describe a version of Edmonds' blossom 

algorithm which solves the problem of maximizing C • X 

over P (G, b) where c =. (c.: j e: E) 
J 

is an arbitrary real 

vector. This algorithm proves a theorem of Edmonds which 

gives a set of linear inequalities sufficient to define 

P(G, b). 

In Chapter 4 we prescribe the unique subset of these 

inequalities which are necessary to define P(G, b), that 

is, we characterize the facets of P(G, b). We also 

characterize the vertices of P(G, b), thus describing the 

structure possessed by the members of the minimal set X 

of feasible matchings of G such that for any real vector 

c = (c.: j e: E), c • x is maximized over P(G, b) 
J 

member of X. 

by a 

In Chapter 5 we present a generalization of the blossom 

algorithm which solves the problem: maximize c • x over 

a face F of P(G, b) for any real vector c = (c.: j e: E). 
J 

In other words, we find a feasible matching x of G which 

satisfies the constraints obtained by replacing an arbitrary 

subset of the inequalities which define P(G, b) by 



equations and which maximizes c • x subject to this 

restriction. We also describe an application of this 

algorithm to matching problems having a hierarchy of objective 

functions, so called ''multi-optimization'' problems. 

In Chapter 6 we show how the blossom algorithm can be 

combined with relatively simple initialization algorithms 

to give an algorithm which solves the following postoptimality 

problem. Given that we know a matching 0 
x £ P(G, b) 

maximizes c · x over P(G, b), we wish to utilize 0 
X 

which 

to 

find a £easible matching x' £ P(G, b') which maximizes 

c • x over P(G, b'), where b' = (b!: i £ V) 
]_ 

vector of positive integers and 

arbitrary real vector. 

c=(c.:j£E) 
J 

is a 

is an 

In Chapter 7 we describe a computer implementation of 

the blossom algorithm described herein. 
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Chapter 1 

Introduction and Foundations 

1.1. Introduction 

Let G = (V, E, ,Ji) be a finite loopless graph, where 

V is the set of nodes of G, E is the set of edges of G 

and ,Ji is the incidence function of G which maps E into 

the set of all two element subsets of v. For each i e: V, 

let b. be a positive 
1 

integer. A feasible matching is a 

vector x = (x.: j e: E) 
J 

of nonnegative integers such that 

for each node i of G, the sum of the over the edges 

j of G incident with i is no greater than bi. The 

matching polyhedron P(G, b) is the bounded polyhedron containing 

all feasible matchings of G and all of whose vertices are 

feasible matchings of G. (In other words, P(G, b) is the 

convex hull of the set of feasible matchings.) In this 

thesis we examine several different aspects of the faces of 

P(G, b). 

The later sections of Chapter 1 consist of a summary 

of the basic results from various fields of mathematics which 

are assumed to be known, we also introduce all our basic 

notation and terminology. 

In Chapter 2 we develop the general polyhedral theory 

used in later chapters. This topic is developed from the 

point of view of studying systems of linear inequalities. 

The facets of a polyhedron are the faces of the polyhedron 

which have dimension one less than the dimension of the 

polyhedron itself. In characterizing the facets of matching 

polyhedra in Chapter 4 we make extensive use of (2.2.15), 
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which states that a proper face F of a polyhedron P of 

dimension d is a facet of P if and only if F contains 

d + 1 affinely independent elements. In Theorems (2.3.25), 

(2.3.30), (2.3.31), (2.3.32) and (2,3.34) we discuss the 

connection between the facets of a polyhedron and a minimal 

set of inequalities necessary to define the polyhedron. 

We show in (2.3.32) that if P is a polyhedron of full 

dimension, then the facets of P determine, up to 

multiplication by a positive constant, the minimal subset of 

inequalities needed to define P, Since matching polyhedra 

are of full dimension, this is the case in which we are 

interested. 

We discuss the vertices of polyhedra in the last 

section of Chapter 2 and prove three fundamental results. 

First (Theorem 2.4.1)), the vertices of a polyhedron P are 

precisely those elements v £ P for which there is some 

linear objective function c such that v is the unique 

member of P maximizing c · x over P. Second (Theorem 

(2.4.5)), if P is a bounded polyhedron then for any linear 

objective function c, there is a vertex v of P which 

maximizes c · x over P. Third (Theorem (2,4.10)), any 

nonempty bounded polyhedron is equal to the convex hull of 

its vertices. 

Chapter 2 is largely expository, however the point of 

view taken in this chapter is somewhat different from standard 

references on polyhedra (Grlinbaum [Gl], Rockafellar [Rl] and 

Stoer,Witzgall [Sl]) and tends to emphasize the relationship 

between polyhedra and linear programming. 
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In Chapter 3 we describe a version of the so called 

blossom algorithm (Edmonds [El], [E2], [E3], [E4]). This 

algorithm finds a matching 0 
x E P(G, b) which maximizes 

c • x over P(G, b). In fact the algo~ithm described 

solves a somewhat more general problem, it maximizes c • x 

over a face F of P(G, b) obtained by requiring the sum 

of the x. on the edges j incident with node i to be 
J 

exactly equal to b. for 
]_ 

all nodes i belonging to some 

subset w of v. 

For any node i EV we let o(i) denote the set of 

edges of G incident with i. For any Sc V we let y(S) 

denote the set of edges of G having both ends in S. For 

any Jc E we let x(J) denote Ex. 
j EJ J 

and for any W c V 

we let b(W) denote E b .. 
iEW 1 

The feasible matchings of G 

are the integer solutions of the linear. system 

(1.1.1) 

(1.1.2) 

x. 2' 0 for all j E E, 
J 

x(o(i)) ,;; b. 
]_ 

for all i EV. 

Clearly if we let P be the polyhedron defined by (1.1.1) 

and (1.1.2) then P => P(G, b). In fact, if G is bipartite 

or if b. is even for all i EV then P = P(G, b). However 
]_ 

in general there are vertices of P which are not vertices 

of P(G, b) and thus have fractional components. Consequently 

there are generally some linear objective functions which 

when maximized over P, attain thei~ maximum for a member x 

of P having fractional components. It can be seen that if 

x is a noninteger vertex of P then every component of x • 
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is either integer or half integer valued and the edges j 

for which are half integer valued form the edge sets 

of node disjoint odd polygons. 

The blossom algorithm proves a theorem of Edmonds, that 

P (G, b) 

(1.1.2) and 

j £ E): x satisfies (1.1.1) and 

(1.1.3) x(y(S)) $ q 8 for all s £ Q} 

where Q - {S = V: b(S) is odd, Isl ;, 3} and q
8 

= l/2(b(S)-l) 

for all S £ Q. It is not difficult to see that every 

feasible matching of G satisfies the constraints (1.1.3); 

it is more difficult to see that this set of constraints is 

sufficient to define P(G, b), that is, that all vertices of 

the polyhedron defined by (1.1.1)-(1.1.3) are integer valued. 

The blossom algorithm makes use of· the weak duality 

theorem of linear programming and the principle of complementary 

slackness to prove the optimality of the matching which it 

finds. For any linear objective function c it produces 

0 
an integer solution x to the linear program: maximize 

c • x subject to 

produces a solution 

shows that 
0 

X and 

X satisfying (1.1.1)-(1.1.3). It also 

0 y to the dual linear program and 

0 y satisfy the complementary slackness 

conditions for optimality. Thus, where d is the objective 

function of the dual linear program, c • x
0 ~ d 

0 • y By 

the weak duality theorem of linear programming, any solution 

X of (1.1,1)-(1.1.3) must satisfy c•x;S;;d• 
0 y , therefore 

x 0 is an optimal solution to the linear program: maximize 



c • x subject to (1.1.1)-(1.1.3). Since every feasible 

matching x of G satisfies (1.1.1)-(1.1.3) it follows 

that 0 
X is the optimal matching we require. 

From this it easily follows that P(G, b) is the 

solution set of (1.1.1)-(1.1.3), for if v is any vertex 

of the polyhedron defined by (1.1.1)-(1.1.3) then there is 

1.5 

some linear objective function maximize1 over that polyhedron 

only by v. But we have seen that every linear objective 

function is maximized by an integer solution of (1.1.1)-(1.1.3), 

hence all the vertices of this polyhedron are feasible 

matchings. 

The set of inequalities (1.1.3) is generally far 

larger than is necessary to define P(G, b); as was mentioned 

if G is bipartite then none of them are necessary. In 

view of the structure of the vertices of P, the solution 

set of (1.1.1) and (1.1.2), it has been surmised that all of 

the constraints (1.1.3) which are really necessary are those 

for which S is the node set of an odd polygon. Unfortunately, 

these are generally not enough; if we just add these 

inequalities to our linear system (1.1.1)-(1.1.2) then we 

usually introduce new fractional vertices having a more 

complex structure than those possessed by P. In Chapter 4 

of this thesis, by considering the structure of G and the 

value of b, we prescribe the minimal subset of the 

inequalities (1.1.3) which must be added to (1.1.1)· and (1.1.2) 

to obtain P(G, b). 

Since P(G, b) is of full dimension there is a direct 

correspondence between the facets of P(G, b) and the 



inequalities necessary to define P(G, b), namely 

{x E P(G, b): ax= a} is a facet of P(G, b) if and only 

if the inequality ax$ a (or a positive multiple of 

ax$ a) is ·necessary to define P(G, b). Thus in Chapter 

4 when we characterize the facets of P(G, b) we are in 

fact prescribing which of the inequalities (1.1.1)-(1.1.3) 

are necessary to define P(G, b). We prove 

1.6 

Theorem (4.1.2). =.F...:o:.:r=-.::e..:.v...:e:.:r'-'yL--__,Jjc.......E=-.::Ec,,'--{'--'"(.::.x • ..:=c......1,_· .....::::Ec......:E~)'-.:::.E 
J 

P(G, b): x. = 0} is a facet of P(G, b), 
J 

In other words all the constraints (1.1.1) are essential for 

defining P(G, b), 

However, some of the constraints (1.1.2) are not 

necessary. For any i EV we let N(i) be the set of 

nodes of G adjacent to i. If v, w are nodes of G such 

that N(v) = {w}, N(w) = {v} and b = b then we call the 
W V 

connected component of G spanned by {v, w} a balanced 

edge. 

Theorem (4.2.1). .=F...:o:.:r=-.:::ac.:.n:..Yc.......--=ic......:E=-V-'--'-,--'{~("x::. • : j E E ) E 
J 

P(G, b): x(o(i)) = bi} is a facet of P(G, b) if and only if 

i is a node of a balanced edge 

or 

b ( N ( i ) ) > b i-...::a:.::n:..:d:......::i:.:f:..___.::b:...:(,_,N:...:(,_,i:..,)c,):..__=--=.b i + 1 then y(N(i)) = ~. 

A salient feature of the blossom algorithm is the "shrinking" 

process applied to certain subgraphs of G, effectively 

reducing the size of the problem under consideration. It is 

implicit in tl,e blossom algorithm that the set Q in (1.1.3) 
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can be replaced by the set QO ~ {S ~ V: G[S] is shrinkable} 

where G[S] is the subgraph of G induced by S, that is 

G[S] - (S, y(S), ~ly(S)). We prove that all we need add 

is a connectivity condition to the condition of shrinkability 

and we have the essential inequalities of the sort (1.1.3), 

Theorem (4.3.46). For any Sc V such that G[S] 

_i_s~s_h~r_i_n_k_a_·_o_l_e-,~~{_x~E~P~(_G_,~b~)_:~x~<~r~<~S~)~)~~q~s} is a facet of 

P(G, b) if and only if G[S) contains no cutnode v for 

which b 1, 
v--

The necessity of our conditions of both Theorem (4,2.1) 

and Theorem (4.3,46) is proved by constructing affinely 

independent feasible matchings of G which belong to the 

facet of P(G, b). We define a near perfect matching of 

G deficient at v EV to be a matching x of G which 

satisfies 

x(o(i)) bi for al 1. i E V - { v}, 

x(o(v)) = b - 1. 
V 

A feasible matching x of G will satisfy x(y(S)) = q 8 

if and only if x, the restriction of x to y(S), is a 

near perfect matching of G[S). Thus when constructing 

feasible matchings of G which satisfy x(y(S)) = q 8 , our 

first step is to be able to construct a large number of near 

perfect matchings of G[S], 

We say that_ G is b-critical if for every node v of 

G there is i near perfect matching of G which is deficient 

at v. These Iv I near perfect matchings can be seen to be 
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linearly independent, but we usually require a much larger 

set of linearly independent near perfect matchings. However 

we show that if a graph G is b-critical and contains no 

cutnode v for which b = 1 then G has as 
V 

many linearly independent near perfect matchings as it has 

edges, This we prove by showing (Theorem (4.4.2)) that a 

graph G is b-critical if and only if G is shrinkable. 

We also prove that these conditions are equivalent to G 

being connected, b(V) being odd and the empty set being the 

only subset of V which violates Tutte's condition (3.10.34) 

for the existence of a perfect matching. 

Thus we obtain two more facet characterization theorems 

(4.4.15), (4.4.17)-. In particular we have the following, 

Theorem. For any s C V such that b ( s) is odd 

and Is I ;,,, 3 ' F - {x E P(G, b) : x(y(S)) = gs} is a facet 

of P(G, b) if and only if 

G[S] is b-critical and contains no cutnode V such 

that b = 1 
V 

or 

F is a facet of the sort described in Theorem (4.2.1). 

As a result of this theorem we can see very easily 

that if G is bipartite then none of the inequalities (1.1.3) 

need be added to define P(G, b), for let S be any subset 

of V -such that b(S) is odd. and Is I ;,,, 3. Then there 

must be a part T of G[S] for which b(T) < 1/2 b(S). 

Obviously we cannot construct a near perfect matching of 



G[S] deficient at a node v belonging to 

G[S] cannot be b-critical. 

1.9 

T and consequently 

There is a close relationship between polyhedron theory 

and min-max theorems; whenever we know a set of linear 

inequalities sufficient to define a polyhedron, linear 

programming duality immediately provides us with a min-max 

theorem and we have already discussed how we use a min-max 

theorem proved by the blossom algorithm to establish the 

matching polyhedron. We discuss the min-max theorem proved 

by the blossom algorithm in Section 3,10 and show how it 

implies theorems of Berge [B2] and Tutte [Tl], [T2], [T3] 

When we know the facets of a polyhedron, we are able 

to obtain a ''best possible'' min-max theorem. In Theorems 

(4.4.20) we describe such a theorem. We also show how the 

min-max theorems proved by the blossom algorithm can be 

combined with our characterization of b-critical graphs to 

obtain strengthenings of Tutte's theorems, in particular, 

we derive the following theorem concerning the existence 

of perfect 1-matchings (matchings x which satisfy 

x(o(i)) = l for all i e: V). 

Theorem (4.4.22) G = (V' E, ,j,) has a perfect 

1-matching if and only if for every X C V such that 

G[V - X] consists of 1-critical components, the number of 

comEonents of G[V - X] is no greater than Ix 1. 

In Theorem (4.5.3) we characterize the vertices of 

P (G, b) and show that every matching produced by the blossom 
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algorithm is a vertex of P(G, b). Since the vertex set of 

P(G, b) is the smallest subset X of P(G, b) such that 

for any .linear function c, c x is maximized over P(G, b) 

by a member of X, this shows that the blossom algorithm 

makes use of as small a subset of P(G, b) as possible when 

solving ma~ching problems. As we saw in Chapter 2, every 

member of a bounded polyhedron can be expressed as a convex 

combination of its vertices, in (4.5.21) we describe an 

algorithm which will express any feasible matching of G 

which is not a vertex of P(G, b) as a convex combination 

of two other members of P(G, b). We also describe how this 

algorithm can be used to express any x E P(G, b) as a 

convex combination of a subset of the vertices of P(G, b). 

In Chapter 5 we consider the problem of maximizing 

c • x over any face F of P(G, b) where c = (c.: j s E) 
J 

is an arbitrary real vector. That is, we are given sets 

J 5 E, W c V and N c Q and we wish to maximize c • x 

over all x = (x.: j EE) s P(G, b) which satisfy 
J 

(1.1.4) X = 0 j 
for all j s J, 

(1.1.5) x(o(i)) = bi for all is W, 

(1.1.6) x(y(S)) = qs for all S s N. 

For any J 5 E, W ~ V and N 5 Q we let F(J, W, N) -

{(x.:j EE) s P(G, b): x satisfies (1.1.4)-(1.1.6)}. The 
J 

algorithm proposed to solve this problem consists of two 

parts. The first part described in Section 5.2 is a 

preconditioning process which finds sits J' 5 E, W' c V 
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and N' ~ Q such that F(J, W, N) = F(J', W', N') and 

N' has the property that for any s, T E N' such that 

Sn T ~ ~. either Sc T or Tc S. (We call such a family 

of sets a nested family of sets.) The second part of the 

algorithm described in Section 5.4, can then be used to 

solve the equivalent problem. The algorithm is a generalization 

of the blossom algorithm of Chapter 3 and an upper bound on 

the amount of work performed by this algorithm in solving a 

problem maximize c • x over F(J', W', N') ~ P(G, b) is 

of the same order as the amount of work performed by the 

blossom algorithm in solving c • x over P(G, b), 

In Section 5.5 we describe how this problem of 

maximizing c • x over a face F of P(G, b) can be reduced 

to the problem of maximizing a new objective function c' 

over P(G, b). This so called "Big-M" method is attractive 

theoretically, but in practice the number of significant 

digits in the components of c' tends to increase rather 

rapidly and so this method does have limitations as a practical 

method. 

In Section 5.6 we discuss multi-optimization matching 

problems, matching problems in which we have a sequence 

c
1

, c
2

, ... ,ck of objective functions and wish to solve the 

following problem. Let x
0 

= P(G, b) and for each 

i E {1, 2, .. ,,k} let 

i 
C X is maximized over X. l}. 

We wish to find a matching * X E ~' 

].-

We show how the face 

optimization algorithm of this chapter can be used to solve 



this sort of problem and various generalizations of this 

problem. 

In Chaper 6 we discuss a post optimality problem. 

We assume that we know a matching 
0 

X £ p (G, b) which 

maximizes c x over P(G, b) and we wish to find a 

* matching x £ P(G, b') which maximizes c • x over 

P(G, b') where b' = (b'.: i £ V) 
l. 

is a vector of positive 

1.12 

integers. Since the parameters G and c of our original 

problem are unchanged in the new problem, we would hope that 

we could make use of 0 
X so as to be able to solve the new 

problem more quickly than by simply reapplying the blossom 

algorithm. 

In this chapter we describe a relatively simple 

initialization procedure which can be combined with the 

blossom algorithm when we know x 0 and an optimal dual 

solution 0 y to the original problem, so that an upper bound 

* on the amount of work performed in finding x depends 

upon the value of I b - b • I in essentially the same way as 

the upper bound on the amount of work performed by the 

blossom algorithm depended on the value of b. 

Finally, in Chapter 7, we discuss a computer implementation 

of the blossom algorithm and describe some experimental 

results. 



1.2 Set Theory and General Notation 

We use the symbol 

reserve the symbol 

objects. 

II= II 

11 = 11 to indicate a definition and 

for denoting the equality of two 

1.13 

If X and Y are sets we denote the union and 

intersection of X and Y by Xu Y and X n Y respectively. 

We let X - Y d~note the set theoretic difference, that is 

X - Y - {x EX: x ~ Y}. 

We denote the empty set by ~. Expressions involving 

n, - should be evaluated from left to right, thus 

X u Y n Z - V 

should be taken to be 

((Xu Y) n Z) - V. 

If R is a set of sets, we will let 

and 

We let JxJ 

u(R) = u X 
XER 

n(R) _ n X. 
XER 

denote the cardinality of X. 

u ' 

We let 'IR_ denote the set of real numbers. For any 

X c 'IK_ we let 

and 

max X -

t 
max x 
XEX 

min X - minx. 
XEX 
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Where X i £ I) is an indexed set of members of 'fR. 

we let 

For any x £ 'j\\ , [x] denotes the largest integer no 

greater than x. [x] is sometimes called the floor of x 

or the integer part of x. 

We use X c Y to denote "X is a subset of Y" and we 

use X c Y to denote "X is a proper subset of Y "(thus 

X ;,, Y) 

If iJ, is a function ma-pping a set X into a set Y, 

then for any s C X we let w/s denote the restriction of 

iJ, to s. That is iJ, ~ w/s is the function mapping S 

into Y defined by 

ij;(s) - ij,(s) for all s £ s. 

We always use the words maximal and minimal in the sense 

of set inclusion. Thus if R is a family of sets we say 

that X is a maximal member of R if there is no Y £ R 

such that Y ~ X. Similarly X is a minimal member of R 

if there is no Y £ R such that Y c X. 

We denote the cartesian product of two sets X and Y 

by XX Y. Thus 

Xx Y - {(x, y): x £ X, y £ Y}. 

1.3 Graph Theory. 

Standard references on graph theory are Berge [B3], 

Busacker and Saaty [B5] and Harary [H2]. For our purpose a 

graph G is an ordered triple (V, E, ij,) where V and E 

/ 
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are finite sets and ~ is a function mapping E into the 

set of two element subsets of V. The members of V are 

called nodes, the members of E are called edges, and ~ 

is called the incidence function. We say that j £ E meets 

V £ V or j and V 

that v, w £ V are 

are incident if V 

adjacent if there is 

£ 

j 

~ (j) . 

£ E 

We say 

such that 

~ (j) = {v, w}. If { V' w} ~ (j) then V and w are 

called the ends of j. If H is any graph we let V(H), 

E(H) and ~H denote the node set, edge set and incidence 

function of H respectively. 

(1.3.1) A track T 

to v is a sequence n-

such that 

£ V for i £ 

in 

V 
n 

{0, 

G = (V E, ~) from 

for some n ;,: 0 

l, ... ,n}, 

ji £ E for i £ {l, 2, ... ,n}, 

{v. 
1

, v.} for 
1- 1 

i £ {l, 2, ••• ,n}. 

We call n the length of T, we say that T is odd or 

even according as the length of T is even or odd. We let 

E(T) denote {j .: i £ {l, 2, .•. ,n}} 
1 

and V(,) denote 

{vi: i £ {O, l, ... ,n}}. For any.'. j. £ E(T) 
1 

we call j i an 

~ edge of T if i is ·even and. an .odd edge of T if i is odd. 

Edges occurring more t-han once in T may be both even and odd, 

A track T induces an ordering on the nodes in V(T) 
/ 

and edgas in E(,). Thus for any P = V(T) we say that v 

is the first node in V(,) n P if s = mi~{i £ {0,1,2, ..• ,n}: 

and v = vs' We define last node and first and 
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last edge analogously. 

(1.3.2) A path is a track rr of length n for 

which Jv(rr) I = n + 1. In other words, no node occurs 

more than once. 

A path rr is said to be maximal with a given property 

if no other path having that property has rr as a 

subsequence. 

track.) 

(Obviously there is no such thing as a maximal 

A graph G = (V, E, w) is said to be connected if for 

every {v, w} e V there is a path (track) rr in G 

joining v to w. 

A graph H is said to be a subgraph of G = (V, E, w) 

if V(H) 5 V, E(H) 5 E and WH = w!E(H). In this case we 

say that G contains H. A maximal connected subgraph of 

G is called a component of G. 

The distance between nodes v and w belonging to the 

same component of G is defined to be the length of the 

shortest path joining v and w. 

Let G (V, E, w) be any graph. For any Sc V we 

let oG(S) denote the coboundary of S, that is 

(1.3.3) oG(s) = {j e E: Is n w(j) J = 1}. 

When s consists of a single element v, then we abbreviate 

oG ({v}) by oG (v). For any V E V we call loG(v) I the 

valence of v. For. any s S V we let Ye (S) denote. the set 

edges of G having both ends in s, thus 

(1.3.4) Yc<s) _ {j E E: w(j) c sL 

of 
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We abbreviate oG and YG by 0 and y respectively. 

(1.3.5) Let s C v. We let G [ S] denote the -
graph ( s, y ( s) , ij,h(S)). We call G [ S] the subgraph of 

G induced by s. 

(1.3.6) A polygon is a connected graph p such 

that lop(v)/ = 2 for all v E V(P). If IE (P) I is even 

then we say that P is an even polygon, otherwise we call 

P an odd polygon. 

(1.3.6a) Let P be a polygon and let w E V(P). 

Let T be a track in P from w to w such that V(T) = 

V(P), E(T) E(P) and the length of T is as small as 

possible with this property. We call T a track from w 

to w induced by P. Intuitively, T is the track obtained 

by travelling once around the polygon P, starting at w. 

(1.3.7) A graph G = (V, E, ijJ) is bipartite if 

V can be partitioned into v1 u vz and E = o(V
1

) = 

Any s s v such that o (S) = E·and y (S) = cj, is called a 

(1. 3, 8) Theorem. (Konig [Kl] p. 170) G is 

bipartite if and only if G contains no odd polygon. 

o (V 
2

) , 

~ 

(1.3.9) A cutnode v of G = (V, E, ij,) is a 

node v EV such that G[V - {v}] has more components than 

of 

G. G is nonseparable if G is 'connected and has no cutnode. 

A block is a maximal nonseparable subgraph of G. 

seen that 

It is easily 

(1.3.10) every polygon of G is a subgraph of a 

G. 



block of G, 

that is, no polygon can have edges from different blocks. 

An isthmus of G is an edge j e: E such that 

(V, E - {j}, ~IE - {j}) has more components than G. 

(1,3.11) A forest is a graph which contains no 

polygons, a tree is a connected forest. A tree T is said 

to be trivial if 

well known. 

lv(T)I,;; 1. 

(1.3.12) Theorem. 

least two nodes of valence 1. 

(1.3.13) Theorem. 

IE(T) I = IV(T) I - 1. 

1.4 Linear Algebra. 

Let J be a finite set. 

The following results are 

Every nontrivial tree has at 

If T is a tree then 

We let 1R._ J - {(x.:j 
J 

E: J) : 
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x. E: '\R for all j E: J}. We let 0 denote the vector which 
J 

is zero in every component. 

(1.4.1) A set X = '\R_J is said to be linearly 

independent if whenver ): a X = 0 
X xe:X 

we have a = 0 for all x e: X. 
X 

dependent. 

for some (a E: ~ : X E: X) 
X 

Otherwise X is linearly 

(1.4.2) Let X = ,\R_J. A basis of X is a maximal 

linearly independent subset of X, 

well known. 

The following result is 
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(1.4.3) Theorem. (Birkhoff & MacLane [B4), Ch. 7, 

§4). All bases of X = 'fR._ J have the same cardinality 

called the rank of X, and the rank of X is no greater 

than 

(1.4.4) If x, y E 'iR. J we 1 et X • y or xy 

denote •y.:jEJ}. 
J 

(1.4.5) The null space of X = '(R J is defined 

to be {y E 'fR_J: y x = 0 for all x EX}. We define the 

nullity of X to be the rank of the null space of x .. The 

following is a basic result. 

(1.4.6) Theorem. (Birkhoff & MacLane [B4), Ch. 

VIII, Theorem 11). For any X c 'iR.J, the rank of X plus 

the nullity of X equals 

(1.4.7) If x, y e1K_J, we say X $ y if 

x. $ yj for all j E J, We 
J 

say X < y if X. < yj for 
J 

all j E J. 

(1.4.8) Let I, J be finite sets. If A c'fR. IxJ 

is the matrix (a .. E 1R: i E I, j E J) then for any S c I 
l.J 

we let AS 

b = (b. : i 
l. 

denote (aij: i ES, 

E I) E 1R. I, we denote 

j E J) , Similarly 

is a single element v we abbreviate A{v} by A • 
V 

if 

If 

If 

x = (x.: j E J) E 1R.J. we define the product Ax to be the 
J 

vector y = (yi: i EI) E '11\_I where yi =Ai• x for all 

i e: I. 

s 

We define the transpose of A, denoted by AT to be the 
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matrix (a'..: j E.J, i c I) c 'lR.JxI where a'..= a .. 
Jl. Jl. l.J 

for 

all i C I, j C J. 

(1.4.9) By the rank of A and nullity of A 

(written rank(A), nullity(A)) we mean the rank and nullity 

respectively of {Ai: i c I} as defined in (1.4.3) and (1.4.5). 

We call {Ai: i c I} the rows of A; and {(aij: i c I): 

j E J} the columns of A. 

1.5 Linear Programming 

Let I, J be finite sets, let H c I and let K 5 J. 

Let A c '\R IxJ, b c '\R. I and 

programming problem is 

J 
C C '\R_ • 

(1.5.1) maximize c • x 

for x E 'iR_3 
satisfying 

(1.5.2) XK;;, 0, 

A (primal) linear 

(1.5.3) xJ-K unrestricted in sign, 

The dual linear program (Dantzig [Dl] p. 126) is the 

linear program 

(1.5.6) minimize b • y 

for E -<f> 1 
. Y ·11'-. satisfying 
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(1.5.8) Yr-H unrestricted in sign, 

(1.5.9) AT 
K y ;,, CK' 

(1.5.10) T 
AJ-K y = CJ-K . 

Texts on linear programming generally show how a problem 

of the form (1.5.1)-(1.5.5) or (1.5.6)-(1.5.10) can be 

reduced to a problem in which K = J and H = ~ or H = I. 

(e.g. Dantzig [Dl] p. 85-89). The following theorems are 

then usually proved for problems in these canonical forms. 

These results can be easily extended to apply to linear 

programs in the forms (1.5.1)-(1.5.5) or (1.5.6)-(1.5.10). 

A vector J 
X £ 1K_ satisfying (1.5.2)-(1.5.5) is called 

a feasible solution to the primal problem. A v·ector y £ 'fR. 1 

which satisfies (1.5.7)-(1.5.10) is called a feasible dual 

solution. 

A feasible primal solution 0 
X which maximizes C • X 

for all feasible primal solutions is called an optimal primal 

solution; an optimal dual solution is defined analagouqly. 

The following is a fundamental theorem of linear 

programming (See Dantzig [Dl] p. 120 Theorem 1). 

(1. 5 .11) Theorem. For any linear programming 

problem exactly one of the following situations occurs. 

i) There exists no feasible solution. 

ii) For any a£ 1R_ there.is a feasible solution 

x such that c • x > a. 

iii) There is an optimal feasible solution. 



The following theorems give the relationship between 

the values of c • x and b · y for primal and dual 

feasible solutions. 
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(1.5.12) Weak L.P. Duality Theorem (Dantzig [Dl] 

p. 130) 

If x is a feasible primal solution and y is a 

feasible dual solution then c • x s b • y. 

(1.5.13) Corollary. If for any CL s 'iR. there is a 

feasible dual solution y such that b • y s CL then there 

is no feasible primal solution. 

(1.5.14) Strong L.P. Duality Theorem (Dantzig [Dl] 

p. 129 Theorem 1, p. 134, Theorems 2, 3). 

If there is a feasible primal solution and an upper bound 

c • x over for all feasible primal solutions x then there 

is an optimal primal solution 0 
X and an optimal dual 

solution yo and 0 b •. 0 
C • X = y 

(1.5.15) Corollary (Farkas' Lemma) (Dantzig [Dl] 

p. 137, Theorem 6.) 

Let A E ,iR_ IxJ b s 1R_ I. There exists x s '1K. J such 

that x > 0 and Ax= b if and only if there is no y s'lK.I 

such that ATy < 0 and b · y > 0. 

The following theorem is used extensively in later 

chapters. It is the tool used to prove optimality of the 

solutions produced by the matching algorithms. 



~ (1.5.16) Complementary Slackness Theorem 

(Dantzig [Dl] p. 135,136). 

Afea;;ible solution x 0 to (1.5.2)-(1.5.5) and a 

0 feasible solution y to (1.5.7)-(1.5.10) are optimal if 

and only if 

. (1.5.17) 
0 0 implies AT 0 

all x. > y = C • for 
-J j J 

j E K, 

(1.5.18) 
0 0 implies A.x 0 b . for all .Y.i > = 

J. J. 

i E H. 
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Proof. For any feasible solution x to (1,5.2)-(1.5.5) 

and any feasible solution y to (1.5.7)-(1.5.10) we define 

(1.5.19) f(x,y) - x • (ATy - c) + y • (b - Ax) 

T 
cK) + yH(bH AHx) = xK(AKy - -

(1.5.20) E T 
cj) E yi(bi-Aix) = X. (A. y - + 

jEK J J iEH 

by (1.5.5) and (1.5.10). By (1.5.2), (1.5.4), (1.5.7) and 

(1.5.9) every term in (1.5.20) is the product of nonnegative 

factors so 

· (1.5.21) f(x, y) ~ 0. 

Moreoyer, 

(1.5.22) f(x, y) = 0 if and only if one factor 

in each term of (1.5.20) is zero. 

Simplifying (1.5.19) gives 

(1,5,23) f(X, y) = b • y - C • X, 

(Note that (1.5.21) and (1:5.23) together prove (1.5.12)). 
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If 0 and 0 satisfy (1.5.17) and (1.5.18) then X y 

by (1.5.22) f(x 0 yo) o. Therefore, by (1.5.21) and 
' = 

(1.5.23) 0 and 0 optimal solutions. X y are 

If 0 and 0 optimal solutions then by (1.5.13) X y are 

(Strong L.P. Duality) b 0 0 . y = C . X 

0 0 
f(x, y) = O. Therefore by (1.5.22), 

satisfy (1.5.17) and (1.5.18).D 

so 

0 
X 

by 

and 

(1.5.23), 

0 
y must 

Notice that the sufficiency of (1.5.17) and (1.5.18) 

were easily proved, however we required the strong duality 

theorem of linear programming to prove their necessity. In 

the applications we make use of complementary slackness in 

proving optimality of the matchings produced by the blossom 

algorithm and the face optimization algorithm, all we require 

is the sufficiency of (1.5.17) and (1.5.18) for the algorithm 

in fact produces solutions 0 
X and 0 

y satisfying (1.5.17) 

and (1.5.18). 

1.6 Integer Programming and Good Algorithms. 

When studying algorithms it is often desirable to be 

able to establish an upper bound on the amount of work 

performed by the algorithm as a function of the size of the 

problem. An elementary step of an algorithm is any step 

performed by the algorithm which does not depend on the size 

of the problem, for example adding two.numbers, comparing two 

numbers, seeing whether an edge of a graph meets a node of 

a graph. Thus an algorithm will, in solving a problem, 

perform a certain number of elementary steps. If there is 
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some constant K such that the number of these elementary 

steps which can be performed in solving a problem P whose 

size .is measured by the parameters is no 

where f is some 

function of r 1 , r 2 , •.. ,rn then we say that an upper bound 

on the amount of work performed by the algorithm is of the 

In this thesis, when discussing bounds on algorithms, 

we make a "fixed-word" assumption, namely that the time 

required to perform arithmetic operations (addition, 

subtraction, division by two) on two numbers is independent 

of the number of digits in the numbers. This is the way in 

which most large computers operate, the number of significant 

digits to be considered becomes a constraint as to whether 

or not a problem is solvable rather than a factor in the 

time taken to solve the problem. 

Following the terminology of Edmonds [El) we call 

an algorithm "good" if there is an upper bound on the amount 

o'f work performed by the algorithm that is of the order 

function of r 1 , r 2 , ... ' r • n 

is a polynomial 

Consider the problem (1.5,1)-(1.S.S) with the added 

restriction 

(1.6.1) is integer v~lued for all j E J, x. 
J 

Such~ problem is called an integer programming problem. 

Although it does not have a polynomial bound, the famous 

Simplex Algorithm of Dantzig, does provide a practical 

method of solving reasonably large linear programming problems. 

I 
: j 

I I 

I 
I 
I 



CHAPTER 2 

Basic Polyhedral Theory 

In this chapter we define polyhedra and develop some 

of their basic properties which are used in later chapters. 

In particular we prove two theorems characterizing the 

facets of a polyhedron which are used extensively in 

Chapter 4. 

This treatment of the subject, suggested by J. Edmonds, 

is most similar to that of Stoer, Witzgall [Sl]. Other 

standard references are Grunbaum [Gl] and Rockafellar [Rl]. 

The advantage of our approach for present purposes is that 

it tends to emphasize the relationship between polyhedral 

theory and linear programming.and it is in fact this 

relationship which prompts our interest in special classes 

of polyhedra. 

2.1 Polyhedra and their Faces 

Let I and J be finite sets, let 

A = ( a ij : i E I, j E J) € 
1R IxJ and let 

We call the set of linear inequalities Ax s b. a linear 

system and define a polyhedron to be the solution set of 

any linear system, We define the polyhedron 

P (A, b) = { x E 1R J : Ax S b } • 

We take A, b, I and J 

the rest of this chapter. 

to be defined as above throughout 

If there is i e I such that Ai= 0 then either 

in which case P(A, b) = ~ or else b. 2' 0 
]. 

and 



P(A, b) = P(AI-{i}' bI-{i}). Therefore we will henceforth 

assume that A. • 0 for all i e: I (that is, the matrix 
J. 

A has no zero rows). 

If K · f · · t t A' c <il KxJ and b' c 'fD K is a ini e se , ~ '"- ~ <\"-

then 

P - {x e: 1R. J: Ax S b, A' x = b'} 

is the same set as 

Q - {x e: 1R. 3
: Ax s b, A'x ,; b', (-A')x,; -b'}. 

Since Q is a polyhedron, we have 

(2.1.1) any P '.: 1R3 
which is the solution set 

of a finite system of linear inequalities and linear 

equations is a polyhedron. 

For any I' s I we define 

(2.1.2) 

By (2.1.1) f(I') is a polyhedron and is call;d a face of 

P(A, b). The fact that the faces of P(A, b) depend on 

the polyhedron, not the linear system Ax s b is shown in 

(2.1.5). The empty set is also taken to be a face of every 

polyhedron. 

It is clear that 

(2.1.3) every face of a face of a polyhedron 

is itself a face of P, 

also, 

p 

,11, 

ii 
I' ,, 
i; 

,! 

I 
I' 

I 



(2.1. 4) the intersection of any collection of 

faces of a polyhedron P is itself a face of P• 
' 

if 

for k E K we have 

There is associated with every linear system Ax s b 

a unique maximal set IO c I for which P(A, b) = f(IO) 

(since for any t E I, either there exists t P(A, b) X E 

such that Atx 
t 

bt in which f IO such < case t or no 

exists and t E IO) . We call IO the eouality set of 

Ax s b. We say that Il is the eguality set of a face 

of P(A, b) if Il is the maximal subset of I such 

that F = f(I 1 ). 

2.3 

t 
X 

F 

It is easily seen that there are many different sets of 

linear inequalities which define the same polyhedron. However 

the faces of the polyhedron depend only upon the polyhedron 

itself and not upon the choice of inequalities. This we 

now prove by showing that a nonempty subset F of a 

polyhedron P is a face of P if and only if there is some 

linear function c which is maximized over P by precisely 

the members of F. 

(2.1.5) Theorem. 

of P(A, b) if and only if 

F C p (A' b) is a nonempty face 

(2.1. 6) there is c s '1R. J and a s 'IR such that 

ex= a for all x e F and ex < a for all XE P(A, b)-F. 

Proof. First we prove the necessity of (2.1.6), let 

F be a nonempty face of P(A, b), let IO be the equality 

i 

I 
i 
! 
I 
' 

I 
! ,' 
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set of F. Then for each x s P(A, b) - F there is some 

t(x) s IO such that 

(2.1.7) 

If IO = <I> we take C • - 0 for all j E J, otherwise 
J 

take C . - E(a .. : i 
.J 1J 

E IO) for all j E J. 

For any X E F, 

E(c.x.: j E J) = E(a .. x.: 
J J 1J J 

i E j E J) 

since IO is the equality set of F. For 

we have 

E(c.x.: J) E(a .. x.: 0 
j E = i E I -{t(x)}, j 

J J 1J J 

< l:(b.: i E IO) by (2.1.7). 
1 

Thus if we take 

satisfy (2.1.6). 

a - l: (b . : 
1 

0 
i EI), a and 

E (b . : 
1 

any 

E J) 

X E P(A,b)-F 

+ l: (at (x)jxj :j sJ) 

C so defined 

We now prove the sufficiency. Let F be a nonempty 

subset of P, iet c and a be as in (2.1.6). Then the 

linear program 

maximize c · x 

for 

Ax ,; b 

has an upper bound. So by the strong linear programming 

duality theorem (1.5.14) there is an optimal solution 

0 0 y (y : i E I) to the dual linear program 

minimize b • y 



By complementary slackness (1.5.16) a solution x to 

Ax s b maximizes ex if and only if Aix = bi for all 

i EI such that 

and the proof is complete.D 

Thus F = f({i EI: y. ~ 0}) 
]. 

We obtain the following result by combining (2.1.6) 

and (1. 5.10). 

(2.1. 8) Theorem. Let If there is 

such that c • x < a for all x belonging to a nonempty 

polyhedron P(A, b) then there is a face F of P(A, b) 

such that 
0 

X maximizes C • X for X E P (A, b) if and 

only if 
0 

X E F. 

Proof. Since P(A, b) ~ ~ and since c • x $ a for 

all X E p (A, b) it follows from (1.5.11) that there 

0 P(A, b) X E such that C X 
0 max{c = . x: X E P(A, 

Let F {x p (A, b) : 
0 (2.1.5) F - E C X = C . X } • By 

is a face of P (A, b).D 

Let IO be the equality set of Ax s b. 

x E P(A, b) an interior point of P(A, b) if 

A 0x < b O 
I-I I-I 

We call 

is 

b)}. 

(2.1.9) Proposition. Every nonempty polyhedron 

has an interior point. 

Proof. Suppose is the equality set of Ax$ b 

and P(A, b) ~ ~. If IO = I then any X E P(A, b) is 

trivially an interior point. Otherwise for each t E I -
there must be t P(A, b) such that X 8 

2.5 

IO 



(2 .1. J.O) 

= b 0 
I 

< b 
t 

b t 
I 

where It= I - IO - {t} for otherwise t would be in the 

equality set of P(A, b). Let 

It follows immediately from (2,1.10) that 

= b 0 
I 

A 0x < b O 
I-I I-I 

so x is an interior point of P(A, b) as required.0 

2.2 Dimension and a First Facet Characterization 

Let have equality set Io. If P(A, b) 

then we define the dimension of P(A, b) to be -1 

Otherwise we define the dimension of P(A, b) to be 

IJI - rank (A 0 ) 
I 

We show in (2.2.14) that dimension depends only on the 

2.6 

polyhedron not on the linear system which defines the polyhedron. 

We denote the dimension of a polyhedron P by d~m(P). It 

follows from (1.4.9) and (1.4.3) that if P ~ ~ , dim(P) ~ 0. 

Clearly every polyhedron P is a face of itself 

r 
I 

I 
I 
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called an improper.face. All other faces including the 

empty face, are called proper faces. 

If dim(P(A, b)) = jJj, that is if P(A, b) >' cj, 

and rank(A 
0

) = 0 where IO is the equality set of Ax s 
I 

then we say that P(A, b) is of full dimension. 

First we show that the dimension of every proper face 

of a polyhedron P is less than dim(P). 

(2.2.1) Proposition. Let F be a proper face of 

P(A, b). Then dim(F) < dim(P(A, b)) - 1. 

Proof. Since P(A, b) has a proper face, P(A, b) 

is nonempty. If F = cj, 

F ;>! cj, 
' 

let IO be the 

be the equality set of 

rank(A 0 ) s rank(A ) . 
.I I' 

(2.2.2) 

then the result is trivial. 

equality set 

F. Then IO 

Suppose 

rank(A 0 ) = 
I 

of Ax s 

C I' and 

rank(A ) 
I' 

b, let 

Assume 

I I 

Then a row basis of A O is a row basis of A hence for 
I I I 

any t E I' - Io 
' is a linear combination of rows of 

A 0· 
I 

If bi is not equal to the same linear combination of 

the components of b 0 
I 

assumption. Otherwise, 

then F = cj,, contradictory to our 

for any J 
X E iR 

b' 

A x = b O we also have 
IO I 

satisfying 

0 t EI , contradictory 

to the choice of t. Hence (2.2.2) must be false, 

rank(A 
0

) + 1 s rank{A ) 
I I' 

and the result now follows from the definition of dimension.D 
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Let 
. k 
{x : k ,: K} c are 

k 
X : k £ K We say that 

affinely independent if for any (ak ,: 1R.: k ,: K) such that 

and 

we have CL = 0 
k 

for all k,: K. If k 
X : k £ K are not 

affinely independent then we say that they are affinely 

dependent. 

Let {xk: k ,: K} = 'iR. J. We say that x £ '\R J is an 

affine combination of {xk: k,: K} if there exist "'k,: 1R. 

for k £ K such that 

and 

E ( ak: k £ K) = 1 

The following is an immediate consequence of these definitions 

(2.2.3) Proposition. The vectors xk e: 1R.J k £ K 

are affinely independent if and only i£ no h 
X 

is an affine combination of {xk: k,: K - {h}}. 

for h £ K 

The following proposition relates affine independence 

to linear independence. 

(2.2.4) Proposition. The vectors xk ,: '1R J: k £ K 

are affinely independent if and only if for any h,: K, the 

vectors xk ~ xh: k,: K~{h} are linearly independent. 



Proof. Suppose 
k 

X k £ K are affinely independent, 

let h £ K and let K' = K - {h}. Let 

be such that 

k h 
E(ak(x - x ): k e: K') 0 

Then 

and 

so since 
k x k £ K are affinely independent we must have 

for all k £ K and the vectors 

are linearly independent. 

k 
X 

Conversely, suppose that for h £ K the vectors 

xk - xh: k e: K' = K - {h} are linearly independent. Let 

(ak £ 1R-: k £ K) be such that 

(2.2.5) 

(2.2.6) 

Then by (2.2.6) ah= -E(ak: k £ K') so (2.2.5) implies 

E(ak(x 
k h k K') 0. - X ) : £ = (x k h k K' Since X ) : £ are 

2.9 

linearly i_ndep end en t we have ak = 0 for all k E: K' • Hence, 

by (2.2.6), ah = 0 and so X 
k k : E: K are affinely 

independent and the proof is complete.D 

Note that affine independence is implied by linear 

independence and affine dependence implies linear dependence. 

I 

, I 

I 



For V c ·/,0 J 
- 1K, we define the affine rank of V to be 

the cardinality of a largest affinely independent subset of 

V. In view of (2.2.4) and (1.4.3), 

(2.2.7) the affine rank of V c 1R J is no 

greater than JJ I + i. 

We now prove a theorem which relates the affine rank 

of a polyhedron to its dimension and thus shows that the 

dimension of a polyhedron is determined irrespective of the 

linear system, 

(2.2.8) Lemma. If dim(P(A, b)) = k then 

P(A, b) contains k + 1 affinely independent elements. 

Proof. If k = -1 then P(A, b) = q, and the result 

is trivial. Otherwise 

be the equality set of 

interior point X which 

(2. 2. 9) 

(2.2.10) 

k ;;: 0 and 

Ax ,;; b. By 

satisfies 

= b 0 
I 

P(A, b) " q, • Let IO 

(2.19) P(A, b) has 

If k = 0 then {x} is the set of affinely independent 

an 

2.10 

elements we require. Suppose k ;;: 1. Since dim(P(A, b)) = k, 

rank(A 0 ) = JJJ - k. 
I 

Therefore by (1.4.6) nullity(A 0 ) = k. 
I 

Hence there are k linearly independent vectors 

l 2 . k~,tl)J 
. y ' y ' ... 'y C. \"- such that 

I!' 
l 1 

, I 
i 
!, 

I 
I 



(2.2.11) 
i 

A oY 
I 

0 for i E {l, 2, .... ,k}, 

Let t £ {l, 2, .•. ,k}. 

et> 0 such that 

In view of (2.2.10) there is 

since 

Then 

t 
A 0 (x + ety) ~ b 0 
I-I I-I 

A 
0

x + 
I-I 

t 
A 0 (x + Ety) = 

I 

t 
e A oY 

t I 

= b 0 
I 

by (2,2.9) and (2.2.11), Thus the vectors 

2 k x + e
2

y , ... ,x + Eky all belong to P(A, b). Moreover, 

1 2 k since y, y , •.. ,y are linearly independent and since 
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Et> 0 for all t £ {1, 2, ... ,k}, are 

linearly independent, Hence by (2.2.4) 1 k 
X 1 X + Ely 1 ,, , 1 X + Eky 

are affinely independent and the proof is complete.D 

(2.2.12) Lemma. If P(A, b) contains k + 1 

affinely independent members then dim(P(A, b)) > k. 

Proof. 

k ;,, 1. Let 

of P(A, b), 

we have 

If k ~ 0 the result is trivial, assume 

0 1 k x , x , ..• ,x be affinely independent members 

Then if IO is the equality set of Ax~ b 

(2.2.13) = b 0 
I 

for i E {O, 1, .. ·.,k}. 

By (2.2.4) the vectors 
1 0 2 0 k 0 

X - X , X - X ,•••,X - X 



are linearly independent. Moreover by (2.2.13) 

i 
A 

0
(x 

I 

0 
- A X 

IO 

Hence nullity(A 0 ) ~ k and so 
I 

for i £ {1, 2, •.• ,k}. 

rank(A 
0

) 5 IJI - k. 
I 

Thus dim(F) = !JI - rank(A 
0

) ~ k.D 
I 

We can now combine these two lemmas to obtain the 

following theorem. 

(2.2.14) Theorem. The dimension of P(A, b) 

one less than the affine rank of P(A, b). 

We showed (2.1.5) that the faces of a polyhedron P 

are independent of the choice of inequalities used to 

is 
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represent P. A consequence of (2.2.14) is that the dimension 

of a polyhedron is also independent of the chojce of inequalities 

since the affine rank does not depend on the set of inequalities 

used to define the polyhedron. 

If F is a face of P(A, b) and dim(F) = dim(P(A,b))-1 

then F is called a facet of P(A, b). 

In Chapter 4 we make extensive use of the following 

corollary of (2.2.14). 

(2.2.15) Corollary. If F is a proper face of 

a polyhedron · P of dimension d then F is a facet of 

P if and only if F contains d affinely independent 

elements. 
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Proof. The result is a combination of (2.2.1) and 

(2.2.14).D 

2.3 Second Facet Characterization 

We prove in this section that the facets of a polyhedron 

P are precisely the maximal proper faces of P, We also 

show that the facets of P correspond in a certain sense 

to a minimal collection of inequalities required to define 

P, We then discuss the specialization of this theorem to 

the case in which P is of full dimension as this is the 

situation which we study in chapter 4. 

(2.3.1) Theorem. Let p = P(A, b) be nonempty 

and let IO be the equality set of Ax < b. Let I I s I 

Let P' - P(AI-I'~I-1..LL· Then p ,< P' if and only if 

I I u IO contains the equality set of a nonempty proper 

face of P. 

- Io. 

Proof, Clearly Pc P', suppose there is some y £ P' - P. 

Then for some nonempty Kc I' we have 

and 

(2.3.3) 

By (2.1.9) P has an interior point w, that is, w satisfies 

(2.3.4) 

(2.3.5) 

A 0• < b O , 
I-I I-I 

A O w 
I 

= b 0 
I 

. i 

i 

I 
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Therefore we can choose A E 'lR. satisfying O < 1' < 1 

such that if we let z =AW+ (1 - 1')y then for some 

nonempty Tc K 

(2.3.6) 

(2.3.7) 

(2.3.8) 

A O z < b O , 
I-I -T I-I -T 

,;; b 0 
I 

(Take A= max{(A.y - b.)/(A.(y - w)): i EK} 
]. ]. ]. 

and let T 

be the set of i EK which attain this maximum). 

By (2.3.6) - (2.3.8) 

(2. 3. 9) 

By (2.3.6) and (2.3.9) Z E 

Z E P SO 

= b 0 
I 

f(IO u T) 0 and by (2.3.7), I u T 

is the equality set of this face. This proves the necessity 

of our condition since IO u T C IO u K C IO u I I • 

' -

Conversely, suppose that IO u I I contains the equality 

set of a nonempty proper face F of p. Let K be the 

equality set of F. Note that IO C K C IO u I' . By (2.1.9) -
F has an interior point y, that is, y satisfies 

(2.3.10) 

(2.3.11) 

Similarly P has an intterior point. w, that is an element 

w satisfying 

(2. 3.12) A 
0

w 
I 

= b 0 
I 

' I· 
I 



(2.3.13) A 
0

w < b 
1-1 1-1° 

For any E > 0 let z(E) - (1 + E)y - EW. Then 

(2.3.14) 

(2.3.10) and (2.3.12). 

A 0 z(E)=b 0 forany Ee'JRby 
I I 

(2.3.15) A 
0
z(€) = 

K-1 
bK-10 + e(A 0Y - A Ow) 

K-1 K-1 

> b O for any e > 0 
K-1 

by (2.3.11) and (2.3.13). 

A z(e) = A y + E • 

I-K 1-K 
A 

0
(y-w) 

K-1 

2.15 

so in view of (2.3.11) if we choose E > 0 sufficiently small 

we will have 

(2.3.16) 

Since K J 1°, by (2.3.15) Z(€) ~ P. Since I - Kc I - I', 

by (2.3.14) and (2.3.16) z(E) E P' = P(A 1_ 1 ,, b 1_ 1 ,). 

That is P ~ P and the proof is complete.D 

We are now in a position to prove the following theorem 

equating the facets of a polyhedron to its maximal proper 

faces. 

(2.3.17) Theorem. F ~ ~ is a facet of P(A, b) 

if and only if F is a maximal proper face of P(A, b). 

Proof. Suppose F ~ ~ is a maximal proper face of 
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P(A, b). Then by (2.2.1) 

(2.3.18) dim(F) 5 dim(P(A, b)) - 1. 

Let IO be the equality set of Ax ?;; b, let I I be the 

equality set of F. Let i E I' - IO and let K - I'-IO-{i}, 

If K u IO (= I I - {i}) contained the equality set 

of a proper face F' of P(A, b) then F c F' contradicting 

the maximality of F, Thus by (2.3.1), 

and IO is the equality set of AI-Kx 5 bI-K The equality 

set of F in P(AI-K' bI-K) is IO u {i} so since 

rank(A 
I 0 u{i} 

) 5 rank(A 0 ) + 1 we have 
I 

(2.3.19) dim(F) ~ dim(P(A, b)) - 1. 

Combining (2.3.18) and (2.3.19) we see that F is a facet 

of P(A, b). 

Conversely, suppose that F ~ $ is a facet of P(A, b). 

Then 

(2.3.20) dim(F) = dim(P(A, b)) - 1. 

Suppose that there is a face F' of P(A, b) such that 

F c F' c P(A, b). By (2.2.1) 

(2.3.21) dim(F') 5 dim(P(A, b)) - 1. 

By (2.1.3) F is a face of F' and since we assume F c F', 

F is a proper face of F'. Thus by (2.2.1), 

I 
. I 

I 
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(2. 3. 22) dim(F) $ dim(F') - 1. 

Combining (2.3.21) and (2.3.22.) we have 

dim(F) $ dim(P(A, b)) - 2 

a contradiction to (2.3.20) which proves the theorem.O 

It should be noted that the hypothesis F ~ ~ is indeed 

necessary in (2.3.17) as is shown by the following example. 

Let p - {(xl, x2) e:'iR{l,2}: 
xl + x2 = 1}. Then 

dim(P) = 1 and ~ is the only proper face of P. But 

dim ( ~) = -1 so ~ is not a facet of P. This also illustrates 

that there do exist polyhedra having no facets. 

(2.3.23) Corollary. Let P be a polyhedron, let 

d - dim(P). Let F ~ p be a face of P of dimension 

k < d. Then there are faces Fk+l' Fk+ 2 , ... ,Fd-l of P 

such that 

Proof. We prove by induction on d - k. If d - k = 1 

then there is nothing to prove. Suppose the result is true 

when d - k < t 2 2 and assume d = k + t. Let Fd-l be a 

maximal proper face of P containing F, that is 

F c Fd-1 c P. 

Then Fd-l ~ ~ so by (2.3.17) dim(Fd) = d - 1. Since 

~ (d - 1) - k < t there are by our induction hypothesis faces 

I 
" !, 

ii 
,j' 

'I 
I, 
'i 

,i 

I I, 



and dim(F.) = j 
J 

for je{k+l,k+2, ... ,d 
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2}. By 

(2.1.3) F. is a face of P for j e {k + 1, k + 2, ... ,d - 2} 
J 

so the result follows.D 

Given the polyhedron P(A, b) we may wish to find a 

* set I c I such that P(A *' b *) P (A, b) * and I is 
I I 

minimal with this property. The next theorem characterizes 

such sets. First we observe the following fact. 

(2.3.24) Proposition. =L~e~t~-F~1............l 2 '-'-'-'-' X k be the 

facets of P(A, b) ' let IO be the eguality set of Ax < b 

and let Ii be the equality set of F. for i £ { 1' 2, ..• ,k}. 
l. 

Then Ii n Ij = IO for. all distinct i' j £ { 1' 2, .•• ,k}. 

Proof. Let i, j be distinct members of { 1' 2, ... ,k} 

and let K = Ii n Ij . Then IO C K. Since F. "' F. and 
l. J 

since both are maximal proper faces (by (2.3.17)) there are 

x. £ 
l. 

F. - F. and x. £ F. - F .. Then xi, x. £ f (K) so 
l. J J J l. J 

F. "' f(K) "' F .• But f(K) 
l. J 

::, Fi u Fj so since Fi and Fj 

are maximal, f (K) = P(A, b) so K = IO completing the proof.0 ' 

(2.3.25) Theorem. Let Fi: i e K be the facets 

of a nonempty polyhedron P(A, b), let IO be the equality 

set of Ax ,;; b and 

* for i £ K. Let I 

and only if 

(2. 3. 26) 

and 

let Ii be the equality set of 

£ I. Then P(A, b) = P(A *~ 

rank(A O *) = 
I nI. 

rank(A ol 
I 

I 

Fi 

*) if 
I 
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(2.3.27) 

* Proof. Suppose I satisfies (2.3.26) and (2.3.27). 

Then the rows of A O * 
I nI 

are a basis of the rows of A 0 . 
I 

Hence for any t e IO - I: At must be a linear combination 

of rows of A O * and bt must be the same linear 
I nI 

combination of the rows of b O * or we would have 
I nI 

P(A, b) = cj,. Thus if x e'IR_J satisfies A O *x = b O * 
I nI I nI 

then it also satisfies A 
0

x = b 
0

. Hence 
I I 

(2.3.28) P(A *' b *) 
I I 

P(A O *' b O *). 
I uI I uI 

By (2.3.27), (I - I*) u IO cannot contain the equality set 

of a facet of P(A, b) so by (2.3.17) and (2.3.1) 

(2.3.29) P(A O *' b O *) = P(A, b). 
I uI I uI 

Combining (2.3.28) and (2.3.29) proves the sufficiency of 

(2.3.26) and (2.3.27). 

* If I does not satisfy (2.3.26) then dim(P(A *' b *)) ~ 
I I 

dim(P(A, b)) + 1 so by (2.2.14), P(A *' b *);,, P(A, b). 
I I 

If I* does not satisfy (2.3.27) then (I - I*) u IO contains 

the equality set of a proper face of P(A, b) so by (2.3.1), 

P(A, b) ;o P(A O *' b O *). Since P(A, b) c 
I uI I uI 

P(A O *' b O *) c P(A *' b *) the result now follows.O 
I UI I UI I I 

If P(A, b) is a polyhedron of full dimension and IO 

is the equality set of Ax s b then rank(A 
0

) = 0 so since 
I 

I ' 



we assume A has no zero rows,. IO = ~ . If I ' is the 

equality set of a facet of P(A, b) then rank(A 
I' 

) = 1 

so if we define for each i E I 

p ( i) - { t E I: At 

a E , a > 0} 

then we can easily see that all equality sets of facets are 

sets of this kind. Moreover for any i EI, for any t E p(i) 

we have f({t}) = f({p(i)}). Thus (2.3.25) specializes to 

the following. 

(2.3.30) Theorem. Let P(A, b) be a polyhedron of 

full dimension. Then for any Kc I, P(A, b) P(AK~___E_K) if 

and only if Kn p(i) ~ ~ for each i EI such that f({i}) 

is a facet of P(A, b). 

(2.3.31)-Corollary. Let P(A, b) be of full 

dimension. Then Kc I is a minimal set such that =====ccc..-....c..ccc==--_c..c 

P(A, b) = P(AK..L..E.K) if and only if for each i EK, f({i}) 

is a distinct facet of P(A, b). 

We also have the following result. 

(2.3.32) Theorem. Let P(A, b) be of full dimension, 

let Kc I be such that {f(i): i EK} is the set of facets 

P(A, b). p (A' , b I) P(A, A' 
I I XJ of Suopose ::, b) where E 1( ' 

b' E 'ft', I I 
and I' is a finite set. Then P(A b) = p (A' ' b I ) 

if and only if 

(2.3.33) for each i EK there are t EI' and 

some r·eal a > 0 such that A' = a t • A 
i and b I = ab· ]. . 
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I' define e: 1R., (I' ul) X J 
Proof. Assume n I = q, ' A 

I'ul A' bl, b I • and b e: 'lR. by AI = A, AI I - ' bl - b, -

Suppose P(A, b) = P(A', b 1
), Then P(A, b) = P(A', b') and 

{f(i): i e: K} is the set of facets of P(A, b), Hence by 

(2. 3. 30) (taking A, b for A, b and I' for K) we 

see that (2.3.33) must hold. 

Conversely, suppose (2.3.33) holds. By (2.3.30), 

Since P(A', b') = P(A, b) = P(AK' bK), 

(2.3.33) clearly implies P(A', b') = P(AK, bK) = P(A, b) 

and the proof is complete.O 

(2.3.32) shows that the facets of a full dimensional 

polyhedron P(A, b) determine up to a positive multiple the 

minimal set of inequalities of which the polyhedron is the 

solution set, That is, any set of inequalities defining 

P(A, b) must contain a positive multiple of Aix ~ bi for 

each i such that f({i}) is a facet of P(A, b), (2.3.31) 

shows that the converse also holds, if Ax~ b is a minimal 

set of inequalities defining a full dimensional polyhedron 

P, then f ({i}) is a facet of P for each i e: I. 

This is one of the reasons for our interest in the facets 

of matching polyhedra. These polyhedra (see section 3.4) 

can be defined for a graph G by a set of inequalities 

which generally is far from being minimal. By characterizing 

the facets of matching polyhedra we are characterizing the 

minimal sets of inequalities necessary and suffi~ient to 

determine these polyhedra. 

It may happen (as is the case with matching polyhedra) 

that = 0 or -1 for all i e: I and j e: J. Then we 

11 
I' ,, 

! 

1, 
I'' 
I 

I, 
:1 

1: 

'I 
! 
I: 

11 

!' 



have 

and we can simplify (2.3.30) as follows. 

(2.3.34) Theorem. Let P(A, b) be of full 

··dimensi·on 
' 

suppose a .. 
1J 

E { 0, 1} for all i E I' j E J. 

Then for anz K C I, p (A, b) = P(AK~K) if and only if for 

each i EI such that f({i}) is a facet of P(A, b) there 

_i_s __ t_E_K __ s_u_c_h __ t_h_a_t __ Ai~=~At __ a_n_d_~bi~=~bt~ 

2,4 Vertices of Polzhedra. 

In this section we prove results about vertices of 

polyhedra which indicate their importance to linear programming. 

We also show that bounded polyhedra are convex combinations 

of their vertices. 

A 

We say that X E p is a vertex of the polyhedron p if 
A 

{x} is a face of p and dim({x}) = o. 

(2.4.1) Theorem. x is a vertex of P(A, b) if 

and only if there is some C E 1R J such that X is the 

unique member of P maximizing ex for x E P. 

Proof. Any two distinct members of '1R.. J are easily 

to be affinely independent so F C - P(A, b) is a face of 

P(A, b) of dimension 0 if and only if F is a face of 

P(A, b) and IF I = 1. By (2.1.5) F is a nonempty face 

P(A, b) 
. J 

if and only if there is C E '\R. such that ex 

maximized over P(A, b) by precisely the members·,of F. 

The result follows from these two facts.O 

seen 

of 

is 
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h lhd P=
-mJ We say tat a po ye ron 1~ is bounded if there 

exist 2, u ,: '\R.J such that -~ ,; x ,; u for all x ,: P, 

A bounded polyhedron is commonly called a polytope(see 

Grunbaum [Gl) ) .. 

(2.4.2) 

bounded polyhedron. 

Theorem. Let P(A, b) be a nonempty 

Then P(A, b) has a vertex. 

Proof, Let I' be the equality set of a nonempty face 

F of P(A, b) of minimum dimension. If dim(F) = 0 then 

F consists of a vertex and we are finished, Otherwise if 

dim(F) > 0 then there are by (2,1.8) an interior point x 

of F and by (2.2.8) an element y,: F - {x}. For any 

€ 8 1R. let z ( €) - X + € (y X) ' Then A z ( €) = b I 

I' I 

for all € 8 '1R . If AI-I'(y - x) ,; 0 then z(E)e:P(A,.b) 

for all € e: '!K such that € 2: 0 which contradicts P(A, b) 

being bounded. Therefore there is i 8 I - I' such that 

* 
b. - A.x 

Ai(y x) 
. { ]. ]. I I - > o. Let ).. = min A. (y-x) : i 8 I - and 

]. 

Ai(y - x) > 0}. * Then z()..) ,: F and there is i,: I - I' 

such that * A.z().. ) = b., 
]. ]. 

Since 

f(I' u {i}) is a proper face of 

x,: F - F(I' U {i}), 

* F, since z()..) ,: f(I' u {i})' 

f(I' u {i}) >' q,, 

and by ( 2, 1. 3) 

By (2.2.1) dim(f(I' u {i})) ,; dim(F) - 1 

f(I' u {i}) is a face of P(A, b) 

contradicting our choice of F, Hence dim(F) = 0 and 

F consists of a vertex of. P(A, b),D 

Since any face of a bounded polyhedron is itself a 

bounded polyhedron, we have the following corollary, 

(2.4.3) Corollary. Every nonempty face of a bounded 

polyhedron contains a vertex. 

'"I l 
::, 



Observe that by (2.1.5) if C E '\R J is such that ex 

has an upper bound for x E P(A, b), then this upper bound 

is achieved by precisely,the members of some nonempty face 

of P{A, b). 

By combining this, (2.4.3), and the fact that for any 
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c E wt_J, c • x has an upper bound over a bounded polyhedron 

we obtain the following. 

(2.4.5) Theorem. Let P be a nonempty bounded 

polyhedron·. 
J . 

c E 1R. ; there is a vertex V of Then for any 

P· which maximizes c • x over P. 

Let K be a finite set, let {xk: k e K} !: 'fR..J. We 

say that x is a convex combination of k 
{x : k EK} if 

there is K (Ak: k E K) E 1R._ such that 

(2.4.6) ~k 2 0 for all k e K, 

(2.4.7) 

(2.4.8) 

A set X!:"l' J. 'f b' t' f -1~ is convex 1 every convex com 1na ion o 

every finite subset of X belongs to X, 

(2.4.9) Proposition. Polyhedra are convex. 

Proof. Let P(A, b) be a polyhedron. If P (A, b) = <j, 

then the result is trivial. If P(A, b) ~ <j, let 

X = {xk: k EK} baa finite subset of P(A, b) and.'let x 

be a convex combination of X. Then there .is .Pk: k E K) E 1K K 

satisfying (2.4.6)-(2.4.8). Hence 

I 

i 
I: 



Ax k 
X k e: K) 

$ l:(Ak: k e: K)b by (2.4.6) 

b by (2.4,7) 

so x e: P(A, b) and (2.4.9) follows.D 

2.25 

If V c '\R. J then the convex hull of V is defined to 

be the set of all J 
x £ 1R. which are convex combinations 

of finite subsets of V. 

(2.4.10) Theorem. If P(A, b) is a nonempty 

bounded polyhedron then P(A, b) is equal to the convex 

hull of its set of vertices. 

Proof. Let V = {vk: k e: K} be the set of vertices of 

P(A, b). Let H(V) denote the convex hull of V. It 

follows from (2.4,9) that H(V) c P(A, .b), 

Let x e: P(A, b). Then x e: H(V) if and only if there 

exists ( ' k ~ K) ~ 1R_ K "k: ~ ~ satisfying (2.4.6), (2.4,7) and 

Suppose no such ;\ exists. Then by Farkas' Lemma (1.5.15) 

there are ·J 
y E: 'R 

(2.4.11) 

and 

y 

(2.4.12) y 

yo e: 'fR. such that 

$ 0 for 

X +Yo> 0. 

Since P(A, b) is bounded, by (2.4.5) 

k e: K 



there is o: E 1K. such that o: = max{y • x: x E P(A, b)} and 

there is 

so since 

(2.4.12). 

h E K such that 

XEP(A,b),y• 

y ' V 
h 

= Ct • 

This completes the proof.D 

By (2.4.11) 0: ,;; 

contradictory to 

2.26 

The number of vertices of a polyhedron is generally much 

larger than the dimension of the polyhedron. The following 

theorem due to Caratheodory [Cl] shows that if x belongs to 

the convex hull of S c 1i( J then if r is the affine rank 

of S, x can be expressed as a convex combination of at most 

r members of S. 

(2.4.13) Caratheordory's Theorem. Let r . . be the 

.::a:..:f:.cf=-=i-"n"e"'-"r.::a:..:nc:.k"----'o"f"'--'S" c 11( J , 1 e t X be a member of the convex 

hull of s. Th en th e r e i s Y c .::Sc__s=-=u.::c:..:h=--.::t "'h"'a"t'--'-J ...:Y_,J'-<"-"'r __ a=n.::d'--'x"' 

is a convex combination of the members of Y. 

Proof. See Stoer Witzgall [Sl] p. 35-

We combine (2.4.12) with (2.4.10) and (2.2.14) to obtain 

(2.4.14) Theorem. Let P be a bounded polyhedron of 

dimension d > 0. Then any x E P can be expressed as a convex 

combination of a set of at most d + 1 vertices of P. 

I 
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I 
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Chapter 3 

The Matching Problem and the Blossom Algorithm 

In this chapter we describe the matching problem 

considered here and give a new version of the so-called blossom 

algorithm for solving this problem. This algorithm, which 

is used extensively in later chapters, is actually a combination 

of several other versions of the blossom algorithm. The 

relationship of this version to other available versions is 

discussed later, when sufficient terminology has been developed. 

3.1 The Matching Problem. 

Let V and E be finite sets, let Vs u v= be a 

_partition of 

vector, let 

V. Let c=(c.:j 
J 

e: E) be an arbitrary real 

i e: V) be a vector of positive integers. 

Let A= (a .. : i e: V, j e: E) 
1J 

be a matrix of zeros and ones 

which satisfies 

(3.1.1) l:(a .. : i e: V) = 2 
1J 

for all j e: E. 

Then the matching problem under consideration is the following 

problem. 

Find,if one exists,a vector x = .(x.: j e: E) e: '\K. E 
J 

such that x. 
J 

is a nonnegative integer for all j e: E, 

L (a .. X. 
1J J 

for all J. E 

l:(a .. x.: j e: E) = bi for all i e: V • 
1J J 

and wl1ich maximizes c • x subject to these conditions. 

ii 
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If no such vector exists then we wish to exhibit a structure 

which will prove that no such vector exists. 

The matching problem is, therefore, a special case of 

the integer programming problem (see section 1.6), the 

principal restriction being (3.1.1). However whereas all 

known algorithms for solving general integer programming 

problems have bounds which are exponential in the size of the 

input, the blossom algorithm is a method for solving matching 

problems whose bound is a polynomial function of the size of 

the input. The description of the algorithm is facilitated 

by interpreting the problem graphically in the following manner. 

Let G be the graph (V, E, w) where w is defined by 

W{j)={iEV: a .. = l} for all 
l.J 

In view of (3.1.1), lw(j) I = 2 for all j EE. 

j E E, 

Thus G is 

a graph without loops having edge set E and node set V. 

Then the matching problem is 

(3.1.2) maximize c • x 

where 

{3.1.3) x. ;,: 0 
J 

} fo·r all j E ·E 

x. integer valued 
J 

(3.1.4) 

x(o(i)) ,; b. for all i E v,; 
l. 

(3.1.5) 

= x(o(i)) = b. for all i E V 
l. 

(3.1.6) 

(See (1.3.3), (1.3.4) for the definitions of y, o). That 

is, we wish to assign a nonnegative integer xj to each edge 

II 
i': 
I' 
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j of G so that the constraints (3.1.5) and (3.1.6) are 

satisfied and so that c • x is maximized. 

Throughout the remainder of this chapter G = (V, E, •) 

is a graph, b = (b. : i £ V) 
l . is a vector of positive integers 

called degree constraints, c = (c.: j 
J 

EE) is an arbitrary 

real vector and Vs u v= is a partition of V. 

The purpose of this chapter is to describe an algorithm, 

called the blossom algorithm, for solving the problem 

(3.1.2)-(3.1.6). 

It is a version of Edmonds' blossom algorithm. In [El) 

and [E3] are versions of the algorithm which solve the problem 

of maximizing x(E) subject to x satisfying (3.1.3)-(3.1.5) 

taking b. = 1 
l 

for all i E V = and V = cj, • 

Another version [E2] solves the more general 

problem (3.1.2)-(3.1.5) where bi= 1 for all i EV and 

v= - c/>. 

'The description of the blossom algorithm in this chapter 

is based upon a version of the algorithm [E4) 

= which solves the problem (3.1.2)-(3.1.6) taking V - V and 

allowing the bi to be arbitrary positive integers. 

This algorithm has been generalized (Johnson [Jl], 

Edmonds, Johnson [ES] and [E6]) in other directions from 

those considered in this thesis. In addition a computer 

implementation of a generalized algorithm is available (Edmonds, 

Johnson, Lockhart [E7]). 

We _call any x E'IK_E satisfying (3.1.3) and (3.1.4) a 

matching. If x also satisfies (3.1.5) and (3.1.6) then x 

is called a feasible b-matching or simply a feasible matching. 

,, 

I 

11 
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If x is a matching such that x(o(i)) = b. 
l. 

for all 

i e: Sc V then we say that x is a perfect matching of s • , 

if S V then we may simply call x a perfect matching of 

G. For any matching x and any node i we define the 

deficiency of x at i to be bi - x(o(i)), If x has a 

positive deficiency at i then we say that x is deficient 

at i. If x is deficient at i then sometimes we call i 

a deficient node relative to x. Tnus x is a perfect. 

matching. of· S S; V if S contains no deficient nodes 

relative to x. In Chapter 4 we will study extensively 

matchings having a deficiency of 1 at some node of G and. 

having a deficiency.of O every other node, the so-called 

near perfect matchings. 

If b, = 1 for all i e: V then if X is a feasible 
l. 

matching, M = {j e: E: x. = 
J 

l} is a set of edges of G meeting 

each node of G at most once 
= 'a·nd each.-node of V exactly 

once. This special case has received a great deal of attention 

and often is the starting point for studies of matching theory 

(e.g. Berge [B2], Edmonds [El], [E2], [E3], Tutte [T2]). 

We call this. problem the !-matching problem and call such a 

vector x a feasible !-matching. Several of our theorems of 

chapter 4 are particularly interesting for the case of 

1-matchings. 

(3.1.7) Proposition. Let x be a matching of G 

which satisfies 

(3.1.8) x(o(i)) ~ bi for all i e: V. 

I' 
' 

!I 
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Jhen for any Sc V such that b(S) is odd, 

(3.1.9) x(y(S)) ,,b(S)-1 
2 

3.5 

Proof. By (3.1.8) E(x(o(i)): i £ S) :, b(S) and since 

E(x(o(i)): i £ S) = 2x(y(S)) + x(o(S)) it follows that 

2x(y(S)) :, b(S) - x(o(S)) :, b(S) . 

Since x(y(S)) is integer valued and b(S) is odd it follows 

that 

2x(y(S)) :, b(S) - 1 

and (3.1.9) is immediate.D 

The sets Sc V for which b(S) is odd play an 

important role in matching theory where G is not bipartite. 

For any such set S we define 

(3.1.10) qS - (b(S) - 1)/2 • 

The following are two basic results concerning graphs 

of particularly simple structure. Notice that in both 

(3.1.11) and (3.1.16) we neither postulate d nor require 

x to be integer valued or nonnegative. 

(3.1.11) Proposition. For any tree T, for any 

d = (d.: i £ V(T)) 
l. 

,o E (T) unique x E 'It'\. 

(3.1.12) 

£ '1K. V(T), for any v £ V(T) there is a 

such that 

_x_(_o T ( i )) = d i.--=fcc.occr::.._;a::.l::.l=---=i-=£c_:V_;(s..:T:..,)c._-_· .,_{ v-'--"-} . 

Proof. We prove by induction on IV(T) I• If 

IV(T)I = l or 2 the result is trivial. Assume the result 

111 
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true for trees having fewer than k nodes, for k ~ 3 and 

assume IV(T) I = k. By (1.3.12) T has a node t of valence 

1 different from v, let {j} = oT(t). Clearly 

· (3.1.13) x(oT(t)) = dt if and only if xj = dt. 

Let T' be the tree obtained from T by deleting j and t, 

let w be the end of j in T'. Define d' by 

d' 
i 

d. for i e: V(T') - {w} 
l. 

d 
w 

dt if i = w 

Since IV(T')I < k, by our induction hypothesis 

that 

(3.1.14) there is a unique x' e: 1K.E(T') such 

x' (oT' (i)) = d' 
i 

for all i e: V(T') - {v}. 

Define x = (xh: he: E(T)) by 

(3.1.15) xh -

x' for he: E(T') = E(T) - {j}, 
h 

dt for h = j. 

By (3.1.13)-(3.1.15), 

satisfying (3.1.12).D 

X 
JO E(T) is the unique member of •11, 

(3.l.16j Proposition. Let B be a connected graph 

containing no even polygon and one odd polygon P. Then for 

any d = (d.: i e: V(B)) e: 1R_V(B) 
l. 

there is a unique 

such that 

x(o(i)) = d. for all i e: V(B). 
l. 

£> E(B) 
X e: 'I"-

Proof. Let j e: E(P), let B' be the graph obtained from 

I I 



3.7 

B by removing; j. Then B' is a tree and so is bipartite, 

let u, v be the ends of j, let v
1 

be the part see 

(lc~;7)of B containing ·{u, v}, let v
2 

be the other part. 

Let d' = (d'.: i £ V(B)) be defined by 
]_ 

di for i £ V(B) - {u, w} 

d '. -
]_ 

Then 

By (3.1.11) there is a unique E (B') 
x' £ /iR such that 

x' (oB, (i)) = di for all i £ V(B) - {u}. By (3.1.18) we 

have x'(o (u)) = d' B' u so if we define x £ tR.._E(B) by 

x~ for h £ E(B') = E(B) - {j}, 

then x satisfies (3.1.17) as required. 

- ,oE(B) Conversely, suppose x £ I"-.. satisfies (3.1.17). 

B' is bipartite so we have x(oB 1 (V
1

)) = x(oB 1 (V
2
)). Therefore 

we must have xj = l/2(d(V1 ) - d(V 2 )). Therefore xjE(B') 

satisfies x(oB 1 (i)) = di for all i £ V(B) - {u} so 

xjE(B') = x' by (3.1.11). Therefore x = x proving the 

uniqueness of x.D 

The following six sections (3.2-3.7) are used to develop 

the general framework required to describe the blossom 

algorithm. The algorithm itself is presented in Section 3.8 

and in Section 3.9 we compute a bound on the amount of work 



requried by the algorithm to solve a problem. 

3.2 Nested Families of Sets. 

Let R be a set of distinct nonempty subsets of V. 

We say ihat R is a nested family if for any distinct S, 

TE R such that Sn T ~ ~ we have Sc T or Tc S. An 

important feature of nested families (of which we make use 

in establishing upper bounds on the amount of work required 

by various algorithms) is that they are small compared to 

the total number of subsets of V. 

(3,2.1) Theorem. If R is a nested family of 

subsets of a nonempty set V then IRI 5 2IVI - 1. 

Proof. We prove by induction on IV I . If Iv I = i 

then the result is obvious. Suppose the result is true 

when Iv I < k for some k " 2 and suppose Iv I = k. Let 

R be a nested family of subsets of V for which IRI is 

large as possible. Since s C V for all s E R we must 

have VER or Ru {V} would be a larger nested family, 

We must also have 

(3.2.2) {x} E R for every x Ev, 

for if there is x EV such that {x} f R, then R u {x} 

is easily seen to be a larger nested family. 

as 

Let v
1

, v
2

, ••• ,Vt be the maximal members of R - {V}. 

Since ~vi ;, 2, since the members of R are distinct and 

by (3.2.2), 

I 
I 
I 
l 
i 
I 
I 
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(3.2.3) t :?: 2. 

For each i £ { 1' 2, ... ,t} let R(V.) = {S £ R: s C V.}. 
]. - ]. 

t t 
Then R = 0 R (V.) u {V} and V = u v. By our induction 

i=l ]. i=l 
]. 

hypothesis /R(V.)/,;; 2/v./ - 1 for i e {l, 2, ... ,t}. 
]. ]. 

Since 
t 
u R (V.) 

i=l ]. 
u {V} partitions R, 

t 

IR/ = l: /R(V.)/ 
i=l ]. 

+ 1 

t 
s: 2 i: /v./ - t + 1 

i=l ]. 

,;; 2 / V / - 1 

t 
~y (3.2.3) and since u V. partitions V. 

i=l]. 
The theorem now 

follows by induction.D 

If we prohibit singletons from our nested family then 

we have the following bound, 

(3.2.4) Theorem. Let R be a nested family of 

subsets of V containing no singletons. Then /RI < /v/ - 1. 

Proof, Let R' be the family Ru u {v}. R' is 
V£V 

easily seen to be a nested family, by (3.2.1) /R'/,;; 2/v[ - 1. 

Since /R' / = /R/ + /v/ it follows that /R/ ,;; /v/ - 1.0 

If R is a nested family of subsets of V then for each 

S £ R we let 

(3.2.5) R
8 

= {T £ R: Tis a maximal proper subset 

of S belonging to R} 
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and 

(3.2.6) vs= {v ES: v ~ u(Rs)} 

We let 

Thus n(S) is the number of maximal ''things'' which are 

combined to form s. 

(3.2.8) Theorem. Let R be a nested family of 

subsets of V for which n(S) > 3 for all SER. Then 

IRJ,; clvl - 1)/2. 

Proof. Let s E R. If lvsl ;, 2. then let s I be any 

two members of vs. If lvsl ,;; 1 then since n (S) ;, 3. 

jRSI ;, 2. In this case let SI be the union of any two 

members of RS. Let R' = R u {SI ! s E R}. Then IR' I = 21 RI. 

Moreover R' is a nested family containing no singletons so 

IR'l,;jvl-1 by(3.2.4). Therefore IRI ,;; 1/2(lvl - 1) 

and the proof is complete.O 

3.3 Blossoms, Shrinking and Shrinkable Families 

One feature of the blossom algorithm is the way it 

''shrinks'' certain subgraphs of a graph to effectively reduce 

the size of the problem. In this section we define shrinking 

and describe the sorts of subgraphs which will be shrunk. We 

also prove some fundamental results concerning shrinkable 

graphs. The definitions and results of this section are also 

used in Chapter 4 where we show the close relationship between 

i, 
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shrinkable graphs and facets of the matching polyhedron. 

The basic structure used in defining shrinkable graphs 

is the blossom (the christening feature of the blossom algorithm) 

which is defined as follows. 

A blossom is a connected graph B containing no even 

polygons, exactly one odd polygon P and for which the 

degree constraints satisfy the following conditions. Let 

VE V(P). By (3.1.16) ther.e is a unique x E '\\\- J such that 

(3.3.1) b. for all 
]. 

(3.3.2) x(oB(v)) = bv - 1. 

i E V(B) - {v} 

In order that B be a blossom we require 

(3.3.3) X. be a nonnegative integer for all 
J 

j E E (B), 

(3.3.4) x. 
J 

;,; 1 for all j E E(B) - E(P) 

(3.3.5) x. ;,; 1 for 
J 

each j E E(P) such that 

j is the first edge in the even length path in p from 

node i E V(P) - {vJ to . V • 

a 

The choice of v is in fact arbitrary, we will show i~ 

(3.3.12) that if (3.3.1)-(3.3.5) hold for some v E V(P) 

then they also hold for any other choice of v E V(P). 

In order that (3.3.1)-(3.3.3) hold we require 

(3.3.6) b(V(B)) is odd for any blossom B. 

Since we obtain a tree if we delete any j E E(P) from B, 

we have using (1.3.13) that 
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(3.3.7) IV(B) I = IE(B) I for any blossom B. 

The graph obtained from B by deleting all edges of P is 

a forest, each v E V(P) belongs to a unique (possibly 

trivial) tree T 
V 

of the forest, These trees are called the 

petals of the blossom, T is the petal rooted at v. 
V 

The 

edges belonging to E(B) - E(P) are called the petal edges 

of the blossom. 

(3.3.8) If v E V(B) -has valence 1, or has 

·valence 2 and belongs to V(P) then V is call~d ·a terminal 

node of B. 

\ of 
terminal ~ __ 

nodes -------7 

deficient node 

odd 
polygon 

( 
I 

/ 

19 
If 

-

- ----. ----- . / \ 

-'----~ 
'-- petals 

Edge 

Edge 

~-/ 

j.::·sucir that· 

j such that 

Figure 3.1 Sample Blossom 

(3.3.9) Proposition. Let B be a blossom, let 

\ 
\ 

i E V(B) be such that bi= 1. Then i is a terminal node. 

I 
I: 
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Proof, If is V(P) then by (3.3.1)-(3.3.5) we must 

E (T.) ~ and so i is a terminal node. If is V(B) - V(P) 
]. 

so / o B ( i) I = 1 and i is 

a terminal node.D 

(3,3,10) Proposition. If b. = 1 for every 
]. 

i B V(B) then B is a blossom if and only if B is an 

odd polygon. 

Proof, First suppose that B is a blossom. 

every node of B is a terminal node, if any petal 

By (3.3,9) 

T 
V 

contained an edge then v could not be a terminal node, a 

contradiction, Hence all petals are single nodes and B is 

an odd polygon, 

If B is an odd polygon let vs V(B) and let T be 

a shortest odd length track in B from v to v. If we 

define x. = 0 for 
J 

every odd edge of T and x. = 1 for 
J 

every even edge of T then X satisfies (3,3.1)-(3,3.5) 

so B is a blossom.D 

If B is a graph such that b(V(B)) is odd then clearly 

B can have no perfect matching. 

(3.3,11) We define a near perfect matching 

(abbreviated by np matching) 

such that, for some vs V(B) 

b. 
]. 

for all 

b - 1. 
V 

to be a matching x of B 

is V(B) - {v}, 
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(3.3.12) Proposition. Let B be a blossom 

containing the odd polygon P. Then for any is V(B) there 

is a np matchina x' of B deficient at i. Moreover if 

i E V(P) then x' satisfies (3.3.4), (3.3.5) (with x' 

substituted for x). 

Proof. The proof of this proposition actually 

consists of an algorithm for obtaining such a matching, 

starting with a np matching x deficient at v E V(P) 

satisfying (3.3.1)-(3.3.5), 

If i = v then x is the matching we require and we 

are finished. Otherwise let T be the shortest track from 

v to i having even length. Now define x' by 

x. + 1 if j is an odd edge of T ' J 

(3.3,13) x' x. - 1 if j is an even edge of T' 
J J 

x. if j 
J 

E E(B) - E ( T), 

Clearly x' is integer valued, x'(oB(s)) = b 8 for all 

s E V(B) - {i} and x' (oB (i)) = b . - 1. Moreover if 
]. 

j E E(P) is an even edge of T then j is the first edge 

in an even length path in p from some w E V(P) - {v} to 

V so by (3.3.5) x. ;;, 1 and 
J 

x'. ;;, 0. If j E E(B) - E(P) 
J 

is an even edge of T then by (3.3.4) x. ;;, 1 so X '. ;;, 0. 
J J 

For any j E E(B) which is not an even edge of T we have 

x'. ;;, x. ;;, 0 so x' ;;, 0 and hence is a np matching deficient 
J J 

at i. 

Now suppose is V(P) -·{v}. First observe that each 

j E E(P) is the first edge in exactly two paths from nodes 

II 
I 

I 
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of P to i and since P is an odd polygon, both these 

paths have the same parity. If j £ E(P) n E(T) then j 

is the first edge in an even path to i if and only if 

x' 2: 1. If is an odd edge -0f T so by (3.3.13) 
j 

j £ E(P) - E(T) is the first edge in an even path to i 

then it is easily seen that j 

even path to v so by (3.3.5) 

Since i £ V(P) implies 

is the first edge in-an 

x'=x.~l. 
j J 

E(T) = E(P), (3.3.13) and 

j 

(3.3.4) ensure that X
1 = X 2: 1 
j j 

for all j £ E(B) - E(P) 

and the proof is complete.D 

3.15 

·We now define shrinking. Let G = (V, E, •) be a graph 

let Sc V. We say that ~ =(V, E, i) 
from G by shrinking S if 

V=V-Su{S}, 

E=E-y(S) 

is the graph obtained 

i (j )= 
• (j) if j £ E - o ( S) 

.(j) ~Su {S} if j £ o(S). 

In other words, G is the graph obtained from G by contracting 

all edges of G which have both erids in s and calling the 

resulting node "s". We denote G by G X s and call s a 

pseudonode of G (with respect to G). We define the degree 

constraint bs - 1 for any pseudonode s. We also define 

= {S} = 
V - s u if s C V 

(3.3.14) -= V -
= 

'.f 
= V - s if s V 

-< v- - V 

I 

1. 



Let R be a nested family of subsets of V (see 

Section 3.2) .. For any S £ R we define 

(3.3.15) R[S) - {T £ R: T c S}. 

If {s1 , s
2

, ••. ,Sk} is the set of maximal members of R 

then we let G x R denote 

(3.3.lSa) 

3.16 

Ic is easily seen that the ordering of the sets s
1

, s
2

, ... ,Sk 

has no effect on G x R. 

We say that G = (V, E, ~) is shrinkable if there is a 

possible empty nested family R of subsets of V such that 

(3.3.16) for every S £ R, G[S) x R[S) is 

spanned by a blossom B
5

, 

(3.3.17) b(V(G x R)) = 1 . 

It is easy to see that 

(3.3.18) V £ R is equivalent to (3.3.17) if R ~ q,. 

We call R a shrinking family of G. Note that in particular 

any graph spanned by a blossom is shrinkable, For any Sc: V 

we say that s is shrinkable if G[S) is shrinkable. 

If R = cj> is a shrinking family of G = (V' E, ~) then 

Iv I = 1 ' IE I = cj> and b(V) = 1. We call such a graph 

degenerate, all other shrinkable graphs are called nondegenerate. 

(3~3.19) Proposition. If G = (V E, ~)· is 

shrinkable, then b(V) is odd. 



Proof. Let R be a shrinking family of G, we prove 

by induction on !RI. If !RI= 0 then G is degenerate 

and the result is trivial. Suppose (3.3.19) holds when 

G has a shrinking family of fewer than k sets for some 

3.17 

k ~ 1 and assume !RI = k. By (3.3.16) there is a blossom 

BV spanning G x R[V] and by (3.3.6), 

(3.3.19a) b(V(BV)) is odd. 

Let S be any maximal member of R[V] and hence a 

pseudonode of G x R[V]. Then R[S] u {S} is a shrinking 

family of G[S] and since !R[S] u {S} I < !RI we have by 

induction 

(3.3.19b) b(S) is odd. 

If W is the set of pseudonodes of G x R[V] then 

b(V) = b(V(G x R[V])) + E({b(S): S £ W} - 1) 

so since V(G x R[V]) = V(BV) we have by (3.3.19a) and 

(3.3.19b) that b{V) is odd as asserted.O 

If R is a shrinking family of G then for any S £ R, 

R[S] u {S} is a shrinking family of G[S]. Hence we have 

the following corollary of (3.3.19). 

(3.3.20) Corollary. If R is a shrinking family 

for G then b(S) is odd for all S £ R. 

(3.3.21) Proposition. Let G = (V, E, ~) be 

shrinkable and let R be a shrinking family of G. Then 

for any v £ V there is a np matching x of G deficient 



at v and which satisfies 

(3.3.22) x!y(S) is a np matching of G[S] for 

all SER. 

Proof. We prove by induction on If IRI = 0 

then G is degenerate and the result is trivial. Assume 

the result true for graphs having a shrinking family 

consisting of fewer than k sets for k ~ 1 and suppose 

3.18 

!RI = k. Let v be any node of G. Every maximal SE R[V] 

is a pseudonode of the blossom BV which spans G x R[V]. 

Let p = v if v E V(BV)' let p = S if v ES for some 

pseudonode S of BV. By (3.3.12) there is a np matching 

x of BV deficient at p. For every pseudonode TE V(BV) 

there is at most one node of T incident with some j E E(BV) 

for which 

exists, let 

x. = 1 
J 

-T 
X 

w(T) satisfying 

since 

be a np 

-T, (3.3.23) X y(Z) 

for every Z E R[T], 

If such a node w(T) 

matching of G(T] deficient at 

is a np matching of G[Z] 

which exists by our induction hypothesis. If no such w(T) 

exists, then V E T and we let- -T 
X be a np matching of 

G[T] deficient at v which satisfies (3.3.23). Now define 

X by 

x. for j E E(BV) 
J 

x. = 0 for j E E(G X R[V]) - E(BV) J 

-T 
for j X E y(T), for T E R [ V] . 
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xj is easily seen to be a np matching of G deficient at 

v and satisfying (3.3.22), thereby completing the proof.D 

We close this section by noting the following basic 

property of matchings. 

(3.3.24) Proposition. A matching x is a np 

matching of G = (V, E, $) if and only if x(E) = qv(=l/2(b(V)-l)) 

and x(o(i)) ~ bi for all i EV. 

Proof. For any matching x of G, 

2x(E) = b(V) - ~(b. x(o(i)): i EV). 
]. 

Thus any np matching x of G satisfies x(E) = l/Z(b(V)-1) 

(and trivially x(o(i)) ~ b, 
]. 

for all i EV). Conversely 

any matching x which satisfies x(E) = qv and x(o(i)) ~ bi 

for all i EV must satisfy x(a(i)) =; b. 
]. 

for all i e: v-{v} 

and x(o(v))=. b -1 for some v EV. Thus x is a np 
V 

matching of G and the result follows.D 

3.4. The Matching Polyhedron. 

The matching polyhedron P(G, b) is defined to be the bounded 

"° E polyhedron in "Ir\. containing all matchings 

G = (V, E, $) which satisfy 

X 

(3.4.1) x(o(i)) ~ bi for all i EV 

and for which every vertex is such a matching. 

of 

(Equivalently, 

P(G, b) is the convex hull of the set of matchings of G 

which satisfy (3.4.1).) 

Let Q = {S s. V: Isl 2: 3 and b(S) is odd}. Edmonds [E3] 

I 
I' 
I 
I 

i 
i 
I 

11 

I, 
I 

I 
Ii 
I 
I 
' i 

I· 
I 

ti 

[I 

ii 

Ill 
I', 

11 

'i 
i 

ii 
I 
11 

I 

I· 
i 

I 

11 
I! 



has shown that P(G, b) = {x E ·'\RE: 

(3.4.2) x. 2: 0 for all j £ E, 
J 

(3.4.3) x(o(i)) $ bi for all is V 

(3.4.4) x(y(S)) s q
8 

for all SEQ} . 
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The proof is a consequence of a blossom algorithm similar 

to the version we are developing here in the following way. 

The algorithm shows that for any C E X is 

maximized over all x (not necessarily integer valued) 

satisfying (3.4.2)-(3.4.4) by a matching of G which satisfies 

(3.4.1). It is implicit in the algorithm that Q can be 

replaced in (3.4.4) by a subset of itself which is generally 

much smaller than Q. 

Let QO = {s c V: IS I 2: 3 and S is a shrinkable subset 

of V}. (By (3.3.19) b(S) is odd for each SEQ). 

(3.4.5) Theorem. 

(3.4.6) 

(3.4.7) 

(3.4.8) 

P (G, b) = P = { x E tfK_ E: 

for all j E E, 

x(o(i)) < b _ _,f~o~r=-~a~l~l'-~i::._~E_:.V "'-''-'-'-='--'----"--'-i 

x(y(S)) < g
8 

for every 0 SEQ}. 

Proof. It is easily seen that any matching x of G 

which satisfies (3.4.1) belongs to P, for it satisfies (3.4.6), 

(3.4.7) by definition and it satisfies (3.4.8) by (3.1.7) 

and (3. 3.19). 

We will show by means of the blossom algorithm that for 

I 

I 
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any c E •1R.E, there is a matching 0 
X of 

(3.4.1) which maximizes ex over x E P. 

G satisfying 

By (2 •. 4.1) for 

each vertex V of p there is a vector C E such that 

ex is maximized over x E P only by v. Hence all vertices 

of P are matchings satisfying (3.4.1). 

(We saw in (2.4.10) that every bounded polyhedron is the 

convex hull of its set of vertices. Since P contains all 

matchings of G satisfying (3.4.1) and since all vertices 

of P are such matchings it follows that P is the convex 

hull of the matchings of G which satisfy (3.4.1).)D 

When we require matchings satisfying 

= (3.4.9) x(o(i)) bi for i EV c V 

then we are in fact considering a face F of P(G, b). 

the blossom algorithm presented in this chapter will find 

Thus 

(if one exists) a matching 0 
X E F C p (G' b) maximizing 

0 c • x over F where F is a face of P(G, b) obtained by 

requiring (3.4.9) hold. (If = then F = P(G, b)). V = </> 

chapter 5 we study the more general problem of maximizing 

e•x over any face F of P(G, b). 

3.5 Linear Programming Formulation 

In 

The following linear program is equivalent to the problem 

of maximizing ex for x E F~c P where F is the face of 

P (defined in (3.4.5)) obtained by requiring (3.4.9) hold. 

(3~5.1) Maximize c • x 

over X E which satisfy 

I' 
I 
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(3.5.2) x. 2' 0 for all j C E, 
J 

< = (3.5.3) x(o(i)) ,; b. for all i C v- = V - V 
' 1. 

(3.5.4) = x(o(i)) = b. for all i C V 
' 1. 

(3.5.5) x(y(S)) ,; qs for all s C Qo. 

For any j c E let QO(j) { S C Q O: j C y ( S) } . The 

dual linear program is 

(3.5.6) minimize E(biy~: 

over 
0 

Y 
~ ,r;il VuQ ~ ·11"\.. which satisfy 

(3.5.7) y 8 2' 0 for all 

(3.5.8) 
,; 

i c V 

(3.5.9) y(~(j)) + y(Qo(j)) "c. 
J 

for all j c E. 

By complementary slackness (1.5.16) 0 satisfying X 

(3.5.2)-(3.5.5) and 0 satisfying (3.5.7)-(3.5.9) y are 

optimal if and only if 

(3.5.10) 0 
0 implies yo(~(j)) + yo(Qo(j)) x. > C • 

J J 
for any j C E, 

(3.5.11) 0 
0 implies x 0 (c'i(i)) b. for all Yi > = 

1. 

< 
i C v- • 

(3.5.12) 0 
0 implies 0 

Ys > X (y(S)) = qs for all 

s C Qo. 

The blossom algorithm will actually find a feasible 



3.23 

matching x and a dual solution y satisfying (3.5.7)-(3.5.9) 

such that x and y satisfy (3.5.10)-(3.5.12) or else 

will show that no feasible matching exists in a manner 

described in section 3.7. 

We call y a dual solution to the matching problem 

(3.1.2)-(3.1.6) if y satisfies (3.5.7)-(3.5.9) and an 

optimal dual solution if y minimizes E(b.y.: i EV) 
1 1 

0 + E(q 8 y 8 : S E Q ) over all dual solutions. 

3.6 Alternating Forests 

During the co~rse of the blossom algorithm we construct 

forests having special properties with respect to a matching. 

Let T be a tree contained in G = (V, E, ~), let r £ V(T) 

be designated as the root of T. There is a unique path 

n(i) in T from r to each i E V(T). We call i an even 

node or an odd node of T according as the length of n(i) 

is even or odd. In particular, r is an even node of T. 

We call j E E(T) ~ or odd according as j is the last 

edge of a path n(i) in T to an even or odd node of T 
• 

(or equivalently, according as j is an even edge or odd 

edge of any path n(i) in T from r to some node 

i E V(T) - {r} such that j E E(n(i))). 

Let x be a matching of G. We call T an alternating 

tree with respect to x (see Figure 3.2) if 

(3.6.1) x(.S(r)) < b, 
r 

(3.6.2) x(o(i)) = bi for all i E V(T) - {r}, 

i 

:t 

i 
I 
t 
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Figure 3,2 Alternating tree 

edge j 0 ·such that 

even nodes 0 

odd nodes @ 

X, ;, 1 
J 

edge j such that x. ;, 0 
J 

r 

T above 



(3.6.3) 

j e: E(T), 

(3.6.4) 

if x. > O and ~(j) n V(T) ~ $ then 
J 

x. > 0 for every even edge j 
J 

of T. 

If we are considering 1-matchings then (3.6.1)-(3.6.4) 

imply that every even edge j of T has x. = 1 and every 
J 

odd edge j has x. = 0. 
J 

Note that for any· i £ V, {i} .is the node set of an 

alternilting tree if x(cS (i)) = 0 •. We call·.a nonempty 

collection· of alternating trees an alternating forest. 

Let j be an edge of a tree T with root r. If we 

delete j from T then the resulting graph will consist 

of two trees, one of which, T', will not contain r. We call 

T' the portion of T ,a.b ove j . 

Let i be any node 

T is the portion of T 

first edge of the path in 

of T. If 

above i. 

T from 

i = r then we say that 

Otherwise let k be the 

i to r and let T' be 

the portion of T above k. We say that T' 

of T above i. 

is the portion 

(3.6.5) Proposition. Let T 

tree with respect to the matching x. 

of T, let I be the set of odd nodes 

the set of even nodes of T. Then 

b(W) - (b -r 
x(o(r))) 

Proof. By (3.6.1) and (3.6.2) 

(3.6.6) b(W) = l:(x(o(i)): i 

be an alternating 

Let r be the root 

of T and let w be 

= b (I) 

e: W) + b - x(o(r)). 
r 

I·' 
l 

i 
I 

! 



Since no edge of T can join two even nodes and by (3.6.3), 

(3.6.7) E(x(o(i)): i E W) = x(o(W) n E(T)). 

By (3.6.2) 

(3.6.8) b(I) = E(x(o(i)): i EI). 

Since no edge of T can join two odd nodes and by (3.6.3), 

(3.6.9) E(x(o(i)): i EI) = x(o(I) n E(T)). 

But for any j E E(T), j E o(I) and j E o(W) so 

(3.6.10) o(I) n E(T) o(W) n E(T). 

By (3.6.10), (3.6.9) and (3.6.7) we have 

E(x(o(i)): i E W) = E(x(o(i)): i EI). 

Hence (3.6.6) and (3.6.8) combine to give the result.D 

(3.6.11) Corollary. Let F be an alternating 

forest with respect to the matching x, let K be the set 

of roots of the trees of F. Let W and I be the sets of 

even nodes and odd nodes of F respectively. 

Then 

b(W) - E(b - x(o(r)): r EK)= b(I). 
r 

Note that (3.~.1) implies therefore the following. 

(3'.6.12) Corollary. If W and I are the sets 

of even and odd nodes of an alternating forest F then 

b(W) > b(I) 
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3.7. Hungarian Forests. 

Let G = (i, i, i) be the graph obtained from 

G = (V, E, ~) by shrinking a (possibly empty) family R 

of disjoint shrinkable subsets of V. We define 

Let F be an alternating forest contained in G with respect 

to a matching x of G which satisfies 

(3.7,2) x(o_(i)) S bi for all i EV. 
G 

We call F Hungarian in G with respect to x if 

(3.7.3) no edge of G joins two even nodes of F, 

(3.7.4) no edge of G joins an even node of F 

to a node not in F, 

(3.7.5) every odd node of F is a node of G, 

that is, not a pseudonode of G, 

(3.7.6) if V E V is an even node of F then 
-= 

V E V 
' 

(3.7.7) -= 
xca (i)) b. for any i E V if < 

G 
l. 

then i is the root of a tree in ·F. 

Let x be any matching of G which satisfies 

>Y (3,7.8) x(o(i)) s bi for all i e v. 

We define 
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i; 
I 

i 
I' 

I 
i I 

I 

I 
I 



(3.7.9) d(G, v-; x) = E(b. - x(o(i)): i e v=). 
1 

If M is the set of all matchings of G which satisfy 

(3.7.8) then we let 

(3.7.10) D(G, V-) - min{d(G, v-; x): X BM}, 

Thus d(G, V-; x) is a measure of the amount by which X 

fails to be a feasible matching of G and D(G, v=) measures 

how closely we can come to obtaining a feasible matching of 

G. Clearly 

(3.7.11) G has a feasible matching if and only 

if D(G, v=) = O. 

Later in this section we show the connection between 

Hungarian forests and the value of D(G, V-). We also show 

in (3.7.36) that knowledge of a Hungarian forest of G enables 

us to characterize those matchings x of G for which 

First we prove the following basic result which also 

indicates the importance of shrinkable sets in the blossom 

algorithm. 

(3.7.12) Proposition. Let R be a family of 

disjoint shrinkable subsets of V and let G - (V, E, ~) be 

the graph obtained from G = (V, E, w) by shrinking the members 

of R. Let v= be defined as in (3.7.1). Then any matching 

x of G satisfying (3.7.2) can be extended to a matching 

x of G satisfying (3.7.8) such that 

(3.7.13) d(G, v=; x) = d(G, V~; x). 
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Proof. For each SER we define a node i(S) as 

follows. If there is some j E o_(S) 
G 

such that x. = 1 
J 

then let {i(S)} ~ f(j) n S. = Otherwise if S - V ~ ~. 

let i(S) be any member of S - v=. Otherwise let i(S) 

be any node of S. By (3.3.21) there is a np matching 

x
8 

of G[S] deficient at i(S) for every S e: R. We 

define x by 

x. for j e: E, 
J 

X. -
J s x. for j e: y ( s) for all s e: R. 

J 

X is easily seen to satisfy (3.7.8). 

For any V E V - R we have 0 (v) = o (v) so 
G 

(3.7.14) b -
V 

x(o(v)) = b - x<o ( V) ) for all 
V 

G 
V e: V - R. 

-= = Let s e: V n R. Then s C V so 

l:(bi x(o(i)): i e: S) 

3.29 

= l:(bi - x(o(i)): i e: s - {i(S)}) + bi(S)- x(o(i(S))) 

= 0 + (bi(S) - x
5

(oG[S](i(S)))) - x(o_(S)) 
G 

= 1 - x(o_(S)). 

Therefore 

(3.7.15) 

for all -Se: j= n R. 

Let S E R - V=. If 

G 

l:(bi - x(o(i)): i 

i(S) e: V - V = 

= e:SnV) 

t\J.en 



= 

E(b. - x(o(i)): i Es n v=) = o. 
l. 

If i(S) E V then there is j E o(i(S)) n o(S) such that 

x. = 1. Therefore 
J 

E(b. - x(o(i)): i Es n V-) 
l. 

= 1 - 1 = o. 

Hence 

- X 
j 

(3.7.16) E(b. - x(o(i)): i ES n V-) = 0 for all 
l. 

S E R - V=. 

Combining (3.7.14)-(3.7.16) gives (3.7.13).0 

(3.7.17) Theorem. Let G = (V, E, ~), G = (V, E, ~) 

= R, V and v= be as in (3.7.12). Let F be a Hungarian 

forest in G with respect to a matching x. Let Kc V be 

the set of roots of trees of F. Then 

(3.7.18) D(G, V-) E(b. - i(o_(i)): i EK). 
i G 

Proof. By (3.7.6) and (3.7.7) 

= E(b. - i(o (i)): 
l. -G 

be extended to a matching 0 
X 

so 

i EK). By (3.7.12) 

of G for which 

X 

(3.7.19) D(G, v=) ~ E(b - i(o_(i)): i EK). 
i G 

Now consider the linear program 

can 
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(3.7.20) maximize 2x(y(V-)) + x(o(V=)) 

over XE iR_E satisfying 

X ;,, 0, 

(3.7.21) .. x(o(i)) ,; b. for all i E V, 
]. 

x(y(S)) ,; qs for all s E Qo. 

By (3.1.7) any matching x of G satisfying (3.7.8) is 

a feasible solution to this linear program. 

The dual linear program is 

(3.7.22) minimize 

0 
for y E 'IK._ VuQ satisfying 

(3.7.23) y. ;,, 0 
]. 

E(b,y.: 
]. ]. 

for all i E 
0 

V u Q , 

(3.7.24) y(w(j)) + y(Qo(j))"' lwU) n v=I 

for all j E E. 

We define a vector 0 
y as follows. Let I and W be 

the sets of odd and even nodes of F respectively. 

= 2 if i EI n V 

= 
o_ 1 if i E I V or if 

(3.7.25) y -i- = V(F) u(R V (F)), i E V - n 

= 
0 if i E V V I· • 

' 0 
(3.7.26) Ys -

2-·if SER n W 

o if s s Qo - (Rn w). 

Now we show that 
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(3.7.27) yo is dual feasible. 

If neither end of j is in F or is contained in a pseudonode 

of F then 

so (3.7.24) is satisfied. 

(3.7.28) If exactly one end of j is in F or 

is contained in a pseudonode of F then by (3.7.4) j must 

meet an odd node of F so 

and (3.7.24) is satisfied. 

If j E y(S) for some pseudonode S of F then 

since by (3.7.6) and (3.7.1), Sc v=. Hence (3.7.24) is 

satisfied. 

If /¢(j) n I/= /¢(j) n w/ = 1 then since by (3.7.6) 

and (3.7.1) ~(j) - I c v= it follows that 

Thus (3.7.24) is satisfied. 

(3.7.29) if /¢(j) n I/= 2 then 

so (3.7.24) is satisfied. 

By (3.7.3) this exhausts all cases, so since 

have proved (3.7.27). 

0 y :2: 0 we 

Now we evaluate the dual objective function for 0 
y • 
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(3.7.30) 

= b(V= - V(F) - u (Rn V(F))) + b(I - v=) 

By (3.6.5), 

(3.7.31) = b(I - v-) + 2b(I n V) 

= b(W) + b(I n v=) - I(b. 
]_ 

x(o_(i)): i e: K). 
G 

By (3.1.10) 

(3.7.32) 2I(qs: Se: Rn W) = I(b(S): Se: Rn W) - b(R n W). 

Substituting (3.7.31) and (3.7.32) into (3.7.30) and 

simplifying we obtain 

= b(V=) - I(b. - x(o_(i)): i e: K). 
i G 

It therefore follows from the weak L.P. duality theorem 

(1.5.12) that 

b(V-) -.E(bi - x(o_(i)): i e: K) 
G 

for any feasible solution x to the primal linear program 

(3.7.21). Since every matching of G which satisfies (3.7.8) 

is such a feasible solution, and since 

(3.7.34) r(b. - x(o(i)): i e: v=) = 
]_ . 

I
ii ,1 

I 

' 

I I 

: l 



it follows that 

(3.7.35) E (b. 
1 

x(o_(i)): i 
G 

E K) • 

Combining (3,7,19) and (3,7.35) proves the theorem,D 

By using the complementary slackness principle of linear 

programming we obtain the following characterization of 

= matchings x which minimize d(G, V ; x). 

(3.7.36) Theorem. Let G = cv, E, ~) G = (V E ij, ) ' 

= and -= 
(3.7.12). Then matchin!l R, V V be as in for an:t: X 

of G satisf:t:in!l (3.7.8) we have D (G, V = ) d(G, = x) = V ; 

if and onl:t: if the following conditions are satisfied. 

(3.7.37) x(y(S)) = qs for all s E R n V (F) • 

(3.7.38) x(o(i)) = bi for every odd node i of 

F and for i = V(F) u(R V (F)). every E V - - n 

(3,7,39) If I and W are the sets of odd and 

..:e:...:vc..;e::.;n::...._::cn.::o-=d:..:e:..:s::_;o::...:.f _.::F_· _· ·_:r::..e=s .r:P-=e:..:c:..:t:..:i::..v:...e=l.L:t:_,_,__;t:..:h::._e=.n==-~x j = 0 for all 

j E U O (i) 
--iEI 

o_(W). 
G 

Proof. In the proof of (3.7.17) we displayed a matching 

0 and a dual solution y such that 
0 

x satisfying (3.7.8) 

2x
0

(y(V=)) + x 0 (o(v=)) = E(biyi: i e V) + E(q
8

y
8

: s e Q0 ). 

Thus 0 y is an optimal solution to the dual linear program 

(3.7.22)-(3.7,24) so every optimal solution x to the 

primal linear program (3.7.20), (3.7.21) must satisfy the 

complementary slackness conditions (see (1,5.16)) with respect 

to 0 y • 
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Thus by (3,7.25) we must have (3.7.38); by (3.7.26) 

we require (3.7.37); by (3.7 .• 28) and (3.7.29) we require 

(3.7.39). Since by (3.7.34) x maximizes 

2x(y(V-)) + x(o(V-)) for x satisfying (3.7.21) if and 

A = only if x minimizes d(G, V ; x) for x · satisfying (3.7.21) 

and since we have exhibited a matching 0 
X for which 

= 0 d(G, V; x) = D(G, V-) the result now follows.D 

If we are considering a matching problem in which 

= 
V = <j, then by (3.7.1) and (3.7.6) there could be no even 

nodes in a Hungarian forest F in a graph G obtained from 

G = (V, E, ~) by shrinking some disjoint shrinkable subsets 

of V. But since every Hungarian forest contains at least 

one tree rooted at an even node, this means that no Hungarian 

forest can exist. In other words, Hungarian forests are 

structuzes which can arise only when dealing with matching 

= problems in which V ~ .p. 

The following corollary of (3.7.17) is a necessary 

condition for a graph G to have a feasible matching, 

(3.7.40) Corollary. If G has a feasible matching 

then no graph G obtained from G by shrinking a ccllection 

of disjoint shrinkable subsets of V can contain a Hungarian 

forest. 

Proof. If G contains a Hungarian forest F with respect 

to a matching x 

of F, we have 

then if 

I:(b. 
]. 

K is the set of roots of trees 

x(o_(i)): i 8 K) > 0. 
G 
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Therefore by (3.7.17), D(G, v·) > 0. Therefore by (3.7.11) 

G has no feasible matching.O 

In fact, the converse of this corollary is true and 

will be proved by the blossom algorithm for it will always 

terminate with either an optimum feasible matching or else 

with a Hungarian forest. 

3.8 The Blossom Algorithm 

In this section we describe the blossom algorithm which 

solves the problem (3.1.2)-(3.1.6). This algorithm is also 

used in later chapters when we consider more general problems. 

In Section 3.9 Ve derive• bound.on the amount of work 

performed by the blossom algorithm in-solving a matching 

problem. 

At each stage of the algorithm we have the following 

things. 

(3.8.1) 

(3.8.2) 

a matching X = (x.: j E: E), 
J. 

a dual solution y = (y.: i e Vu QO) 
J. 

satisfies (3.5.7)-(3.5.9). 

= Let G = (V' be the spanning subgraph of 

whose edge set consists of all those j E: E satisfying 

(3. 8. 3) y(~(j)) + y(Qo(j)) = C • • 
J 

= G is called the equality subgraph. The complementary 

which 

G 

slackness condition (3.5.10) is satisfied by x and y, that 

is 
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(3.8.4) x. > 0 only if j £ E=. 
J 

We also have a nested subfamily R of Q such that 

(3.8.5) for each S £ R, H(S) = G-[S] x R[S] 

is spanned by a blossom B(S). 

definition of G-[S] x R[S].) 

(See (3.3.15), (3.3.15a)for the 

3.37 

,, 

' Moreover '1 

(3.8.6) x/E(H(S)) is a np matching of H(S) 

deficient at some i(S) belonging to the odd polygon of 

B(S) and 

(3.8.7) 0 for all j £ E(H(S)) - E(B(S)). 

As a.result of (3.3.24) a simple induction shows 

(3.8.8) x(y(S)) = q
8 

for all S £ R. 

The dual solution y has the property that 

(3.8.9) y > 0 for s s £ Qo only if s £ R. 

Thus x and y satisfy the complementary slackness condition 

(3.5.12). 

Let G (V, E, ;j;) = The matching be the graph G x R. 

x satisfies 

(3.8.10) x(o(i)) ,, b. 
l. 

for all i £ v. 

(Note that for any i £ V, o(i) = 0 ( i) . ) 
G 

' -= -< 
We define subsets V and v- of V by 

. I 

I 



(3.8.11) - (V = n V) u · { s £ V: s 

(3.8.12) 
-< v- - V 

The matching x also has the following property. Let 

G+(x) = (V, E+(x), ~IE+(x)) be the spanning subgraph of G 

whose edges are all those edges of G such that x. > 0. 
J 

Thus E+(x) = {j £ E: x. > 0}. Let H be any component 
J 

+ G (x). Then 

(3.8.13) H contains no even polygon; 

(3.8.14) H contains at most one odd polygon; 

(3.8.15) if H contains an odd polygon then 

x(o(i)) = bi for all i e V(H); 

(3.8.16) if H contains no polygons then H 

has at most one node i for which x(o(i)) < bi. 

of 

We also have an alternating forest F contained in G. 

(3.8.17) Each i £ V such that x(o(i)) < bi is 

the root of a tree in F. 

F is partitioned into two subforests FO and 
1 

F • 

consists of all those trees in F such that the root r 

belongs 
-,; 

and 0 if V 0 for to V Yr = r £ or Yi = some 

i £ r if r £ R. Fl consists of all other trees of F. 

It will be seen in the description of the algorithm that as 

long as there are nodes in Fl 
' 

we do not have the optimum 

feasible matching we seek and as soon as V(F 1 ) = q, ' we 

implicitly have an optimal solution. 



r 
In order that x and y be the optimal solutions we 

seek, all we need is that they satisfy (3.5.3), (3.5.4) and 

(3.5.11) for as we showed in (3.1.7), this together with 

the fact that x is a matching·will ensure (3.5.5) is satisfied. 

We will show in the algorithm that if x and y satisfy the 

·following analogues of (3.5.3), (3.5.4) and (3.5.11) then 

the required x can be obtained in a straightforward fashion. 

(3.8.18) 

(3.8.19) 

(3.8.20) 

x(o(i)) = bi, 

(3.8.21) 

s E: R n 
-< v- implies 

x(o(i)),;; b. 
1. 

x(o(i)) = b. 
1. 

Yi > 0 for 

Yi > 0 for 

x(o(i)) = 

for all i e v~, 

for all i E: v= 

any i E: V n 
-< v- implies 

all i E: s n v,;; for any 

b .. 
1. 

We now define a measure of the amount by which (3.8.18)

(3.8.21) are violated. Let 

(3.8.22) li(G; x, i e v= or y) = E(b. - x(o(i)): 
1. 

-,;; 
(i e V n V for and or 

all vein 

It follows from the definition of F
1 

that 

(3.8.23) li (G; x, y) = E (bi - x(o(i)): i is the root 

of a tree of Fl)• 

Clearly . li (G; x, y) ;;, 0 for any X satisfying (3.8.10) 

and li CG; x, y) = 0 if and only if X and y satisfy 

(3.8.18)-(3.8.21). In general, one "cycle" of the blossom 
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3.40 

algorithm will involve finding a new x' and y' and 

possibly a new graph G' such that li(G'; x', y') ~ li(G; x, y) - 1. 

(3.8.24) Initially we may take x. - 0 for all 
J 

- 1/2 max{c.: = c} j € E, Yi - C - j € E} for i € V 
' 

y. - max{O, 
J 1 

< 
for i E: v- and R - <P • Then it is easily seen that all 

our conditions are satisfied. F will be the spanning forest 

of G in which every tree consists of a single node. 

We now describe the algorithm itself. 

SteE 1 : Scan E to find an edge j joining an even 

node vl of Fl to something other than an odd node of 

Fl. If no such edge exists go to Step 8. Otherwise go to 

Step 2. 

SteE 2: 

If belongs to a component of which is not 

contained in F then go to Step 3. 

If v2 is an even node of a tree in F which is different 

from the tree containing v 1 then go to Step 4. 

If vl 

to Step 5. 

If 

Step 7. 

and belong to the same tree of 

is an odd node of a component of 

This exhausts all possibilities for v
2

. 

F then go 

then go to 

SteE 3: Grow Forest F. Let K be the component of 

containing v
2

. If K contains a polygon then go to 

Step 3c. 

Step 3a (see Figure 3.3): If K contains no polygon, 



·node 

edge j for 

edge j for 

Figure 3.3 Forest Growth 

~ (\, 
(V~ 

V 

j 

not in forest 0 
even node 0 
odd node @ 

which x.;el f'\./V"\../\../ 
J 

which x,;eO 
J 

Figure 3,4 Addition of Polygon to Forest 
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that is, if K is a tree then we grow the alternating tree 

T containing v 1 by attaching v
2 and K to by 

means of the edge j. Since j becomes an odd edge of the 

new forest F' thereby obtained and by (3.8.17) it is easily 

seen that (3.6.1)-(3.6.4) are satisfied for F'. 

Step 3b: Replace F by F' and go to Step 1. 

Step 3c (see Figure 3.4): K contains an odd polygon P. 

Let be a node of P which is an odd distance from v 2 

in K and for which this distance is as short as possible. 

Let w2 be a node of p adjacent to wl in p which is no 

closer to v2 in p then wl. Let k be the edge of p 

joining wl and w2. Let K' be the·tree obtained from 

K by removing the edge k. Add K' to the forest by using 

j as described in Step 3a, thereby obtaining a larger forest 

.F'. Edge k now joins two even nodes of some tree in F'. 

Replace v 1 , v 2 , j 

and go to ~tep S. 

and F by w
1

, w
2

, k and F' respectively 

Step 4: Augmentation (Two trees) (see Figure 3. 5) • 

Step 4a: Calculation of a. Let r2 be the root of the 

tree Tl of Fl containing vl and let r2 be the root 

of the tree T2 of F containing v2. Let 01 - min{xk} 

where k is an even edge of the path from 

to or let = co if no such edge exists. Let 

~ 2 be analogously defined for T
2

, v 2 and r
2

• By (3.6.4), 

Let 

By (3.6.1), o;,, 1. 
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Step 4b: Augumentation. Define x' by 

xk - a if k is an even edge of 1f 1 or 1f 2 

xk + a if k is an odd edge of 1f 1 or 
1f 2 ' 

x' -k if k j or = 

xk for all k E E - (E(11
1

) u E(11 2 ) u { j } ) • 

Now x' is a matching satisfying (3,8.4), (3.8.6)-(3.8.8), 

and (3.8.10) and ll (G; x' 
' 

y) ,,, ll(G; x, y) - 1 since 

Step 4c. Computation of new F. We obtain a new 

alternating forest in the follo;'ing way. If x'(o(rl)) 

then we remove Tl from F. Similarly if x'(o(r2)) = 

then we remove T2 from F. If k is an even edge of 

= b 
rl 

b 
r2 

1f 1 

or 1f 2 for which x' = 0 then we remove k and the portion 
k 

of the tree above it from F, By our choice of a, at least 

one of these things must occur. Thus at most one of vl 

and v2 can be in the new forest F' • If neither are in FI 

then replace X by x' 
' 

F by F' and go to Step 1. If one, 

say v
1

, belongs to F then perform Step 3a to add the 

component K of G+(x') containing v 2 to F'' using the 

edge j, let F'' be the forest thereby obtained. Replace x 

by x', F by F" and return to ·step 1. 

Step 5: Augmentation (One tree) (see Figure 3.6) 

Step Sa: Calculation of a and Blossom Test. Let r 

be the root of the tree T of Fl containing vl and Vz, 

Let 1f 1 be the path in T from r to vl and let 1f 2 be 
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Figure 3,5 Two Tree Augmentation 
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I 
ii 
' 

I' ,, 

l 
I 
" 



the path in T from r to v2. Let 1T be the common 
s 

position of 1T 1 and 1T 2 • 1T 
s 

is the path in T from r 

to some node p. (Of course, p may equal r in which 

case 11 is an empty sequence). 
s 

{j} - E(11) are the edges of an odd polygon P containing s 

p. (jE(P)j is odd because j joins two even nodes of T.) 

Let cro - min{xk: k is an even edge of 1T s } , or let 

er 0 - "' if no such edge exists. Let 

er 1 - min{xk: k is an even edge of 1T 1 and k t E(11 )}. or 
s 

let er 1 - "' if no such edge exists. Let er 2 be defined 

analogously for 11
2

. By (3.6.4), cr 0 , cr 1 , cr 2 ;,: 1. Let 

cr - min{[l/2 cr 0 J, cr
1

,cr
2
,[l/2(br-x(o(r))]} 

(where for any et £ '\K , [et] is the largest integer no 

great~r than et). If er;,: 1 then go to Step Sb where we 

augment. Otherwise go to Step 6 where we shrink a portion of 

G. 

Step Sb: Augmentation. Define x' as follows. 

xk - 2 er if k is an even edge of 1T s, 

xk + 2cr if k is an odd ed-ge of 1T s, 

X ' k - xk - er if k is an even edge of 1T 1 or 1T 2 
not belonging to 1T s , 

xk + er if k = j or if k is an odd edge 

.J.'tJ 

of 

for all 

not belonging to 11 , 
s 

We can see b~ our choice of er that x' is a matching 

satisfying (3.8.4), (3.8.6)-(3.8.8), (3.8.10) and 

ti CG; x' , y) ,; ti(G; x, y) - 2 since b - x'(o(r))sb -x(o(r))-2 
r r 

,, 
i' 

I 

. ' 
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r 
and b. - x'(o(i)) = b. - x(o(i)) 

i i 
for all i EV - {r}. 

Step 5c: Computation of new F. Each component H of 

G+(x') will satisfy (3.8.13), (3.8.14) and (3.8.16) but need 

not satisfy (3.8.15). That is there may be a component of 

G+(x') containing both a deficient node and an odd polygon. 

We now analyze the various possibilities. 

If x'(o(r)) = b then let F' be the forest obtained r 

from F by removing T. Since x'(o(i)) = bi for all 

i E V(T), each .component H of G+(x') satisfies (3.8.15). 

F' is an alternating forest. Replace x and F by x' 

and F' respectively and go to Step 1. 

If x'(o(r)) < b but there are R. E E(TI) 
r s such that 

x' = 0, let 
R. k be the first such edge in TI • s 

Let T' 

the portion of T above k. Remove T' and k from F 

thereby obtaining a new alternating forest F'. Since 

x'(o(i)) = b. for all i E V(T'), each component H of 
i 

be 

G+(x') satisfies (3.8.15). Replace x and F by x' and 

F' and go to Step 1. 

If x'(o(r)) < b x' > 0 for all R. E E ( TI ) but x' = r' R. s k 

for some edge k of P, then we remove all such edges k 

from F thereby obtaining a forest F' • If one end of j ' 

say vl, is in F' then the other end v2 cannot be in Fr ' 

adjoin the component H of G+(x') containing v2 to F' 

by means of j, thereby obtaining a new alternating forest 

F" . Each component H of G+(x') satisfies (3.8.15). 

Replace x and F by x' and F'' · and go to Step 1. 

Finally, if x'(o(r)) < b 
r and X 1 > 0 

R. 
for·all 

R. E E(TI1 ) u E(TI 2 ) u· {j} then by our choice of o there is 

0 
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an even edge k of TI for which x' = 1 or x'(o(r)) = s k 

b - 1. Replace X by x' r and go to Step 6. Note that 

this is the one case in which there is a component H of 

G+ (x') violating (3.8.15). This is handled in Step 6 • 

Step 6: Shrinking Step (see Figure 3.7). We now identify 

a blossom in G. T is the tree of F1 containing v
1 

and 

TI 
s 

is the path in T from its root r to the nearest node 

p of P, the odd polygon formed by adding j to T. Let 

w be the first even node of TI such that the path TI 1 in 
s 

T from w to p contains no even edge k for which xk = 1. 

(Thus xk ~ 2 for every even edge of TI'.) The blossom B 

consists of P, the subgraph of T induced by TI' 

component H of G+ such that V(H) n V(TI') • l 

and any 

or 

V(H) n V(P) ••·except for ~h~ _,ven edge of T incident with 

w if it exists. Let S be the set of all those nodes of 

G which either belong to V(B) or are contained in pseudonodes 

We see that x(oB(i)) = b. for 
]. 

all i e: V(B) - {w} and 

x(oB(w)) = b 1. Thus w xlE(B) is a np matching of 

G[V(B)] deficient at w. If w ~ V(P) then we modify our 

matching so that it will be deficient at a node of P, as 

this simplifies later discussions. Define x' by 

xk + 1 for every odd edge of TI I 

x' k -
xk - 1 for every even edge of TI I• 

If p is an even node of F then let i(S) - P• If p is 

an odd node, let i(S) be an even node of p adjacent to 

p. Where R, is the edge of B joining i ( S) and p let 

x' - X .Q, - 1. 
R, 

of B. 



edge j 

------

for which X. <C 2 
J 

Figure 3.7 Shrinking Step 

Figure 3.8 Pseudo Forest Growth 
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For all other edges k of G 

X by X 
1 

• 

let X I X k - k. Now replace 

x!E(B) satisfies (3.3.1)-(3.3.5) taking v = i(S). 

Let B(S) = B. Now if we let R' =Ru {S} we see that R' 

so defined satisfies (3.8.5)-(3.8.7). 

Let G' = G= x R'. Let F' be the forest in G' with 

node set equal to V(F) n V(G') u {S} and edge set equal to 

E(F)nE(G'). Then F' is an alternating forest in G' 

and 

(3.8.25) S is an even node of F'. 

Let G'+(x) be defined for G' in the same way that 

G+(x) was defined for G. It is easily seen that every 

component H of G'+(x) satisfies (3.8.13)-(3.8.16) 

since the only component of G+(x) which could have violated 

these conditions was the one containing the polygon P and 

it has been shrunk away. 

Note also that ~(G'; x, y) ~ ~(G; x, y). Replace G, 

R and F by G', R' and F' respectively and go to Step 1. 

Step 7. Grow forest F1 (Pseudo forest growth). (see 

Figure 3.8.) 

Edge j joins an even node vl of a tree Tl in Fl 

to an odd node V2 of a tree TO in Fo. Let ro and rl 

be the roots of TO and Tl respectively. Let T be the 

portion of TO above We adjoin T and the component 

H of G+(x) · containing to 

thereby obtaining a larger tree 

by (3.6.3).) 

v 1 by means of the edge 

1 I 
T (H is a subgraph of 
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If then replace 

thereby obtaining a larger forest 1' 
F 

by 
1 I 

T in F 

Remove T, H and 

any edge of TO incident with a node of T or H from 

To, thereby·obtaining 

0 I 
forest F Replace 

a smaller 

FO , Fl 

tree T 

by 
0 I 

F , 

0 I 
and smaller a 

F 
1 I 

and go to Step 1. 

If 

1' 

then remove TO from FO , let T denote 

T and perform the following step. 

Step 7a. (Pseudo Augmentation). Let rr be the path 

in T from to Observe that both and 

are even nodes of T. o 1 = min{xj: j 

Let o = min{o
1

, b - x(o(r
1
))}, 

rl 

Let 

of rr}. 

is an even edge 

Then o ;e 1. 

Let x' be defined by 

xk - 0 if k is an even edge of rr 

x' k - xk + 0 if k is an odd edge of rr 

xk if k i E(rr), 

Since b - x' (o (rl)) = b - x(o(rl)) - 0 and 0 ;e 1 it 
rl rl 

follows from (3.8.23) that ti (G; - 1 X , y) ,; ti (G; x, y) - 1. 

If x' (o (rl)) = b then remove T from Fl thereby 
rl 

obtaining forest 
1 I 

a new F Reroot T at ro and add 

FO thereby obtaining forest O' 
It is easily to a new F 

checked that T rooted at satisfies (3.6.1)-(3.6.4) 

with respect to x'. 

If then by our choice of 

have X 
1 = 0 R, 

for some e~en edge of rr; let 

0 we must 

k be the 

T 

first such edge of rr. Let T be the portion of T above k. 

Remove T and k from T thereby obtaining a new forest 

1 1 0 F Reroot T at r
0 

and _add it to F thereby obtaining 
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r • 

f 
I 
r:: 
I 

a new forest O' F Again it. is easily checked that T 

rooted at satisfies (3.6.1}-(3.6.4) relative to XI • 

Replace X, F 
0 and by 

C 

respectively and go to Step 1. 

Q I 
XI, F and 

1 I 
F 

Step 8: Termination Test. We now decide whether or not 

we are ready to go to the final stage of the algorithm. If 

V(F 1 ) = • then by (3.8~23) t(~; x, y) = 0 and 

we go to Step 11, the termination step. Otherwise we go to 

Step 9 where we will attempt to make a change in the dual 

variables which will enable further progress. 

Step 9: Dual Variable Change. 

Step 9a: Calculation of E. Let = { j e E: one 

member of ii,(j) is an even node of and the other member 

of ii,(j) is not a node of F 1 }. If E1 = • then let 

El= 00 , otherwise let. 

·El= min{y(ij,(j)) + y(R(j)) - cj: j £ E1 }, 

R(j) - {S e R: j e y(S)}. 

where 

Let E = {j £ E~ both members of ii,(j) 2 - are even nodes 

If E2 = • then let € 2 = 00 , otherwise let 

€2 - 1/2 min{y(ij, (j)) + y(R(j)) - C • : j £ E2}. 
J 

Let p - {S £ R: s is an odd node of 
1 

F }. If p • 
then let €3 - 00' otherwise let 

€3 = 1/2 min{ys: s £ p}. 

{i 
< 

Let y - E v-: i is an even node of Fl or i £ s £ 
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and S is an even node of F1 }. If Y = $ then let E
4 

- 00 

otherwise let 

If E.= 00 then go to Step 

10 where we show that there exists no feasible matching. If 

E = 0 then no dual variable change is necessary so go to 

Step 9c. 

changed. 

Otherwise go to Step 9b where the dual variables are 

Step 9b: 

solution y' 

y ~ -
l. 

Change of Dual Variables. 

as follows. Let 

Yi + E if i E V is 

.belongs to an 

Yi - E if i E V is 

belongs to an 

Yi if i E V - V (F 1 ) 

Define a new dual 

an odd node of Fl or 

odd pseudonode of Fl , 

an even node of Fl or 

even pseudonode of Fl , 

- u(R n V(F 1 )). 

Ys + 2E if s ,E R is an even node of Fl , 

y' -s Ys 

Ys 

- 2'E 

if s 

if s E 

E Qo -

Because of our choice of E, y' 

R is an odd node of Fl 

(R n V(F 1 )). 

is a feasible dual 

solution, that is, it satisfies (3.5.7)-(3.5.9). y' also 

satisfies (3.8.9). Moreover 

(3.8.26) y'(l/i(j)) + y'(Qo(j)) = y(l/J(j)) + y(Q(j)) 

for all j E ~(G+) u E(F) u u y(S). 
SER 

' 
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'-Let G - be the spanning subgraph of G whose edges are all 

those j E E 

- '-G' = G - X R. 

such that y'(i/J(j)) + y'(QO(j)) = 

F is now an alternating forest 

'-

Let 

in GI. By 

(3.8.26)for each SER, 

a blossom spanning H(S) 

defined in (3.8.5)). 

H(S) = G -[SJ x R[S] and B(S) is 

(where H ( S) and B(S) are as 

. .. ~ . ..,. . ~ .. ' .. . ........ , .. . 

. ·,--·:··.· 

Step 9c: If E E {El,' <c 2 f· the"u there is an edge 

j E E(G') - E(G) of the sort we sought in Step 1. Replace 

y, G and = G by· y I ' GI and '-G - respectively and go to 

Step 1 and from there as directed. 

Step 9d. If then let I be the set of nodes 

i EV$ such that y'. = O and i is either an even node of 
l. 

F1 or is contained in an even pseudonode of F
1

. Since 

E = E4, I~$. For each i EI let r(i) - i if i E V(F
1
), 

let r(i) - s if i Es ER n V(F
1
). 

For each i EI such that r(i) is the root of a tree 

in remove from and add it to If 

any such i exists then we have by (3.8.23) that 

LI (G; y I) LI (G; 
= y I> x, $ x, y) - 1. replace y •· G and G by 

' 
G' '= and G respectively and go to Step 1. 

If there is no i EI such that r(i) is the root of a 

tree in Fl then choose any io E I' let ro - r ( i) , let T 
' 

be the tree of Fl containing ro and let rl be the root 

= G' '= 
of. T. Replace Y, G, G by y I ' ' 

G respectively and 

go to 'Step 7a. 

Step 9e. If E = E 3 then we must expand an odd pseudonode 

S of F1 for which y; = 0. Since bs = 1, by (3.6.2) there 



r 
! 

I 
is an 

B(S) 

B(S) 

edge j E o 1 (S) 
F 

be as defined in 

such that 

(3.8.5). 

xj = 1. Let H(S) 

Let v be the node of 

and 

incident with j. By (3.8.6) we can apply the procedure 

described in the proof of (3.3.12) to x/E(B(S)) and 

thereby obtain a np matching X of B(S) deficient at v. 

Let R' - R - {S}. Since s is a maximal member of 

R, (3.8.5) is satisfied by R' . Let G" '= - G X R' • B(S) 

is a subgraph of G II • Define x' by 

if k E E(B(S)), 
X ' k -

if k EE - E(B(S)). 

x' is easily seen to satisfy 

x'(o(i)) s bi for all i E V(G''). 

Moreover 11 (G"; x' , y' ) = 11cc·; x, y) • Replace 

and y'' G'' 
'-G - respectively and go to R by R' and 

Step 9f where we determine a new forest F. 

Stee 9f: If j is an odd edge of F then since by 

(3.8.4) we have xk > 0 for any even edge of F and since 

bs = 1 it follows that j is the only edge of F incident 

with s. Let F' be the subgraph of G obtained by 

replacing the pseudono'de s in F with the component K 

of G+{?'') containing v . Go to Step 9g. 
. ""' 

If j is an even edge of F then let t be the unique 

odd edge of F incident with s. Since s is an odd node 

of F and bs = 1 these are the only two edges of F 

incident with s. Let w be the node of B(S) met by t 

and let 7f be a track in B(S) from V to w having even 

I' 

I 
,; I 

! 
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length and for which this length is as small as possible. 

Let G < 7r) - (V(1r)' E(1r)' ~IE(1r)). i.et F' be the subgraph 

of G obtained by replacing the pseudonode s in F with 

G < 7r) and any component of G+(x') which contains a node 

of 7r • 

Step 9g. 

seen that F' 

and F by x' 

If F' contains no polygon then it is easily 

is an alternating forest in G; replace x 

and F' respectively and go to Step 1. 

If F' contains a polygon P, then P is the odd 

polygon of the blossom B(S). Let be a node of p 

which is an odd distance from w in B(S) and for which 

this distance is as small as possible. Let be a node 

of P adjacent to v 1 in P and not belonging to the 

path in P joining w and Let j I be the edge of 

P joining v
1 and Remove j 1 from F', let F" be 

the forest thereby obtained. Now j 1 joins two even nodes 

of F". Replace F and j by F'' and j' respectively 

and go to Bt~p 5. At this point F fails to be an alternating 

forest because j violates (3.6.3) and the component H of 

G+(x) containing v 1 may not satisfy (3.8,15), However 

these situations are automatically corrected in Steps 5 and 

6. 

Step 10: Hungarian Forest. Since € = 00 we observe the 

following, El= 00 is equivalent to F1 satisfying (3.7.4). 

e 2 = 00 is equivalent to (3,7.3) for F1 • € = oo is equivalent 
3 

to (3.7.5) for F
1 

and e 4 = 00 is equivalent to (3.7.6) for 

F
1

. Therefore F
1 

is a Hungarian forest so by (3.7.40), 

G has no feasible matching. By (3.7.17) and (3.8.23), 

3,55 
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D(G, V-) = ~(G; x, y). If desired, perform Step 12 so as 

to ''correct'' the matching x for edges j E y(S) for 

SER so that the resulting matching x' will satisfy 

x'(o(i)),; b. for all i EV and d(G, v-; x') = D(G, V-). 
l. 

We do not bother performing Step 12 in the applications 

we make of this algorithm in later chapters. 

(3.8.27) Finally note that if F
1 

is a Hungarian 

forest, then for any E E 'ff\ such that E ;>; 0 we have that 

y' as defined in Step 9b is a feasible dual solution also 

satisfying (3.8.26). 

Step 11: Termination with Optimal Solution. Apply 

~ep 12 to "correct'' the matching x and then stop, the 

resulting matching x is the optimal feasible matching we 

seek and y is an optimum dual solution. Since Step 12 

ensured that ~(G; x, y) = 0 and x(o(i)) ,; b. for all 
l. 

i EV it follows that (3.5.3) and (3.5,4) and x and y 

satisfy (3.5.11). Since x is a matching satisfying (3.5.3) 

and (3.5.4), we also have (3.5.2) and (3.5.5) satisfied. 

By (3.8.8) and (3.8.9) we know that (3.5.12) is satisfied. 

By (3.8.2) y satisfies (~.5.7)-(3.5.9); Therefore x is 

the optimal matching we require and y is an optimal dual 

solution. 

Step 12: Pseudonode Matching Correctio~. Let D = ~. 
D is the set of members of R for which the matching has 

been correcte.d. 

Step 12a: 

whence we come. 

If R = D then return to Step 10 or 11 from 



SteE 12b: Let s be a maximal member of R - D and 

D' { s}. G' = (R D') • B(S) let - D u Let - G X - Then 

(as defined in (3.8.5)) is a blossom contained in G' . If 

x(o(S)) = 0 then go to Step 12d. 

SteE 12c: Let j E o ( S) be such that x. = 1, let V 
J 

be the node of B(S) met by j in G' . Apply the procedure 

described in the proof of (3.3.12) to obtain a np matching 

. 
X of B (S) deficient at v. Let x' be defined by 

for k EE - E(B(S)), 

for kEE(B(S)). 

Then we have 

(3.8.29) x'(o(i)) $ bi for all i E V(G'), 

(3.8.30) x'(y(T)) = qT for all TE R, 

(3.8.31) /i(G'; x' 
' 

y) = t;(G; x, y). 

Replace x, D and G by x', D' and G' respectively. 

Return to Step 12a. 

SteE 12d. Let v ES n V$ be such that y = 0 if 
V 

such a node exists, otherwise go to Step 12e. Let r = v 

if VE V(B(S)), let r = T if VETER n V(B(S)). As 

in Step 12c we apply the procedure described in the proof 

of (3.3.12) to obtain a np matching x of B(S) deficient 

at r. Let x' be defined as in (3.8.28). Again (3.8.29) 

and (3.8.30) are immediate and since the only new deficiency 

we created was at r and since y = .0, (3.8.31) is satisfied. 
V 

1j 



/' 

Replace x, D and G by x', D' 

Return to step 12a. 

and G' respectively. 

Step 12e: (This step can only be performed if we 

terminated in Step 10.) In·this case s Ev= since S must 

have been an even node or contained in an even pseudonode of 

the Hungarian forest F1 . Therefore the term corresponding 

to S contributes 1 to t1(G; x, - y). Let v be the node 

of B(S) at which x!E(B(S)) is deficient. If we let 

x' = x then (3.8.29) and (3.8.30) are satisfied and since 

the term corresponding to v contributes 1 to ll(G'; x', y) 

we have (3.8.31) satisfied. Go to Step 12a. 

3.9 Efficiency of the Blossom Algorithm. 

In this section we derive an upper bound on the amount 

of work done by the blossom algorithm in solving a matching 

problem. We make a fixed word assumption, that the amount 

of work required to perform arithmetic (addition, subtraction, 

division by two) on any numbers encountered in the algorithm 

is independent of the number ·of significant digits. Since 

this is the way in which most large scale computers operate 

(for reasonably sized numbers) this is a realistic assumption. 

(3.9.1) Theorem. An upper bound on the amount of 

work required by the blossom algorithm to solve a matching 

problem is of the order 

LI ( G; 
0 

X , 
0 y ) .• 

where 0 
X and are the starting matching ~nd dual ·solution, 

I 

I ,, 
/ 

' ' 

!/ 

!i ,, 

' I 

:i 

I 

I 

I 
' 

11 

I 
I 
I 
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Proof. First we establish an upper bound on the amount 

of work that can be done by the algorithm without decreasing 

A(G; x, y). Steps 4, 5, 7a and 9d all decrease A(G; x, y) 

by at least one. 

In -Steps 3 and 7 we grow the forest F1 . Since 

decreases only after performing one of Steps 4, 5, 7a or 9d, 

it follows that Steps 3 and 7 can be performed at most lvl 

-
times without a decrease in A(G; x, y). 

In Step 6 we shrink. By (3.8.5) n(S) 2: 3 for every 

S £ R (where n(S) 

(3.2.8) we must have 

is as defined in (3.2.7)). Thus by 

IRI ,;; 1/2( IV I - 1) at any point in 

the algorithm. 

an even node of 

By (3.8.25) any new S added to 

1 F . We only expand odd nodes of 

R becomes 

Step 9e), Thus Step 6 can be performed at most l/2(IVI - 1) 

times without a decrease in A(G; x, y). 

In Steps 9e-9g we expand an odd pseudonode of F
1

. This 

pseudonode must have been in F1 following the previous 

augmentation since any pseudonode formed since is an even 

node of F1 . Hence Steps 9e-9g can be performed at most 

1/2(Jvl - 1) times without making a change in A(G; x, y). 

Steps 10, 11, 12 are performed only once in the course 

of the algorithm. A bound on the amount of work required 

by these steps is of the order Iv I 

Steps 1, 2, 8, 9a, 9b, 9c are performed at most once 

for each performance of steps 3, 4, 5, 6, 7, 10, 11, 12, A 

bound on the amount of work performed by each of these can 

be seen to be of the order The only ones of these steps 

for which this bound is not obvious are 9a, 9b. However if 

''I ' ' 



we preserve the value of y(~(j)) + y(QO(j)) - cj for each 

j EE at all times, then it can be seen that this bound 

is satisfied for these steps. 

Finally a bound on the amount of work required for each 

of Steps 4, 5, 7a or 9d is of the order IE I . 
Thus a bound on the amount of work that can be done 

without decreasing ll(G; x, y) by at least one is of the 

order /v I and the theorem follows.O 

(3.9.2) Corollary. If we start with the matching described 

in (3.8.24) then an upper bound on the amount of work done 

in solving a matching problem is of the order 

b(V) lvl 

Proof. This follows from the fact that if x and y 

are as defined in (3.8.24) then ll(G; x, y) ~ b(V).O 

3.10 Min-Max Theorems and Discreteness of the Dual Solution 

Whenever we know ·a set of· linear inequalities sufficient 

to define a polyhedron -p; linear ·pr·ogramming duality· gives us 

.a min~max theorem concerning any subset 6f P that c~htains 

the vert·ices •· Conversely, -we used __ the_ blossom algorithm to 

.l. 0 U 

prove,the following min-max theorem which established Theorem (3.4.S). 

(3.10.1) Theorem. Let G = (V, E, w) be a graph, 

let b = (bi: i E V) be a vector of positive integers and 

C = ( C • : 
J 

let j E E) be an arbitrary real vector. Then the 

' maximum value of c • x for any matching x of G which 

satisfies 

,I 
jl1 
;; 
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(3.10.2) x(o(i)) ~ bi for all i EV 

is equal to the minimum value of 

(3.10.3) E(b.y.: 
--1.-1. 

i E 
0 

V) + E(qsys: s E Q) 

for real (yi~:-"i'-E'-V-'-'-)~~a~n~dc._____,_(~ys: s E q0
) satisfying 

(3.10.4) .Y.i 
;, 0 for all i E V, 

(3.10.5) .Y.s 
;, 0 for all s E Qo 

(3.10.6) y(,P(j)) + y(Qo(j)) ;, C • for all 
J 

j E E. 

If the objective function c satisfies certain discreteness 

properties, then we are able to require certain discreteness 

properties of the dual variables. 

all 

(3.10.7) Theo~em. If c. 
J 

is integer valued for 

j E E then there is an optimal feasible solution 
0 

y 

to the problem of minimizing (3.10.3) subject to (3.10.4)

(3.10.6) which satisfies 

(3.10.8) .Y.i is congruent with O (mod 1/2) for 

all i EV, 

(3.10.9) .Y.s is congruent with O (mod 1) for all 

Proof. The problem of minimizing (3.10.3) subject to 

(3.10.4)-(3.10.6) is the dual linear program to the matching 

problem maximize ex for x E P(G, b). We will show that 

(3.10.10) if the starting dual solution used by 

the blossom algorithm is integer valued, then at any point 

j • b .L 

I: 
! 

: I', 

I i 



in the solution of this matching problem the dual solution 

y will satisfy (3.10), (3.10.9). This we prove by showing 

that at any point of the algorithm. 

(3.10.11) the values of for i e: V belonging 

to or contained in a pseudonode of F
1 

will be congruent 

modulo 1. 

If the initial dual solution is integer valued, 

(3.10.9) and (3.10.11) are obviously satisfied. Now 

(3.10.8), 

observe that at no point of the algorithm do we add a new 

tree to Moreover at any time we grow a tree in F1 , all 

new edges j must belong to the equality subgraph so since 

c. is integer valued for all such j, (3.10.8) and (3.10.9) 
J 

ensure that (3.10.11) will continue to hold. 

When computing E so as to make a change of dual variables, 

(3.10.8), (3.10.9) and (3.10.11) ensure that any of E
1

, E
2

, 

E3 , E4 which are finite will be congruent with O(mod 1/2). 

= Since V = <j, , we cannot obtain a Hungarian forest so 

is finite and congruent with O(mod 1/2). Hence y' as 

defined in Step 9b also satisfies (3.10.8), (3.10.9) and 

E 

(3.10.11). Thus (3.10.10) is proved and the theorem follows.D 

The following is obtained by combining (3.10.1) and (3.10.7). 

(3.10.12) Theorem. If c is integer valued, then 

the maximum value of ex for any matching x of G 

satisfying (3.10.2) is equal to the minimum of (3.10.3) 

subject to (3.10.4)-(3.10.6) and an optimal y can be chosen 

so as to satisfy (3.10.8), (3.10.9), 

I 
1,i 

i[ 

!.i·I ! 

I 
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In the case that c is further restricted to being 

O, 1 valued, we can obtain the following result. 

(3.10.13) Theorem. If c. s {O, 1} for all 
J 

j EE then there is an optimal feasible solution 0 
y to 

the problem of minimizing (3.10.3) subject to (3.10.4)-(3.10.6) 

which satisfies 

(3.10.14) Zi..!.-2s e {O, l} for all i e V, for all 

0 S E Q , 

Proof. Let G = (V, E, ~) be a graph for which (3.10.13) 

fails for some b and such that Iv u El is minimum. 

Clearly lvl ~ 3, and we must have C, = 1 
J 

for all j e E 

since the graph obtained by deleting any edge k for which 

ck= 0 would still violate (3.10.13). 

0 
X • Suppose G has a perfect matching Then the maximum 

value of c • x over matchings x of G satisfying (3,10.2) 

is equal to 1/2b(V). Choose v EV and define b' by 

ieV-{v}, 
b' = 

i for i v. 

Then the maximum of c • x over matchings x of G satisfying 

(3.10.2) is still 1/2b(V). Suppose that 0 
y is an optimal 

dual solution relative to b' which satisfies 

(3.10.14). Then E(biy~: i £ V) + E(qSy~: S £ QO) = 

1/2b(V). 

Hence 0 
y is an optimum dual solution relative to b but 

0 
y satisfies (3.10.14), a contradiction. Hence no optimum 

:;,b_j 
11 



solution relative to b' can satisfy (3.10.14) and since G 

can have no perfect b' -matching, we assume 

(3.10.15) b is chosen so that G has no perfect 

b-matching . 

Let 0 
y be an optimum solution relative to b satisfying 

(3.10.8), (3.10.9). Clearly we have 0 
yi e: {0, 1/2, l} 

for all i e: V and 0 
Ys e: {O, l} 0 for all Se: Q . Let 

W = {i E V: y? = 1/2}. If W = c/> then 
l. 

and we are finished. If W = V then 

yo satisfies (3.10.14) 

E{b.y?: i EV}+ 
l. l. 

0 0 
E{q 8y8: Se: Q};;, l/2b(V) implying G has a perfect matching, 

contradictory to (3.10.15). Thus we have 

(3.10.16) c/> ~WC V. 

(3.10.17) For any j e: o(W) we must have either 

y~ = 1 where {v} = ~(j) - W or j e: y(S) for some Se: QO 

such that 0 
y s = 1. 

Otherwise we could have yo(~(j)) + yo(QO(j)) = 1/2 

contradictory to (3.10.6). 

By our minimality assumption for G and (3.10.16) there 

is an optimal .solution 

minimize 

subject to 

1 y 

Yi 

Ys 

" 
" 

y(~(j)) 

where Qo 
w - {S E: Qo: s C W} 

+ 

satisfying (3.10.14) to the problem 

s E: 

0 for all i E: w 

0 for a:{.l s 0 
E: Qw 

y(Qg(j)) " 1 for all j E: E(G[W]) 

and Qg(j) {S 
0 j y ( s)} - E: Qw: E: 

3. 6!, l 

I 

! I 

i 

I' 
i1 
I 

I 
' 

I 
!' 
i 

ii 

I' 



* for all j 8 J. If we define y by 

0 for i V w, Yi 8 -
* Yi -

1 
Yi for i 8 W· 

' 

0 for s Qo 0 
Ys 8 - Qw, 

* Ys -
1 Qo 

Ys for s 8 w 

* * then y satisfies (3.10.14) and by (3.10.17), y is a 

feasible solution to the problem of minimizing (3.10.3) subject 

to (3.10.4)-(3.10.6). Since 

and since 0 y was optimal it follows that * y is optimal. 

This contradicts the choice of G and completes the proof.O 

Combining (3.10.13) and (3.10.1), we obtain the following. 

(3.10.18) Theorem: If cj E {O, l} then the 

maximum value of ex for any matching x of G satisfying 

(3.10.2) is equal to the minimum of (3.10.3) subject to 

(3.10.4)-(3.10.6) and a minimum y can be chosen so as to 

satisfy (3.10.14). 

Theorem (3.10.lS)can be specialized in the following 

manner. Let G = (V, E, ~) be a graph and let b = (bi: i EV) 

be a vector of positive integers. For any X c V we define 

(3.10.19) C(X) s· {s c V - X: G[S] is a component 

of G[V - X]}. 
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We partition C(X) as follows. 

(3.10.20) c
0

(X) - {S E: C (X): Is I = 1} , 

(3.10.21) c
1

(X) - {s E: C (X): Is I > 1 and b ( s) is 

(3.10.22) c
2

(X) - {s E: C (X): Is I > 1 and b ( s) is 

(3.10.23) Theorem. Max{x(E): X is a matching of 

satisfyi·ng (3.10.2)} = l/2(b(V) + min{b(X) -" Jc, (X) J -
~ 

b ( u( C O ( X ) ) ) : X c ..:..V.,_) ..:..• _.::.:Mc::o.:::.r...::e...::o....cv...::e--"-r 

* (3.10.23a) there is a set X ~ V which minimizes 

b(X) -, Jc
1 

(X) I - b( u (C
0

(X))) over X s: V and satisfies 

* * 0 
~2 (X ) = <I! and c 1 (X ) s _Q_. 

Proof. Let X be any matching of G which satisfies 

(3.10.2). Let X C v. Then for any - S £ c
1

(X) we have 

x(y(S)),; l/2(b(S) - 1) (by (3.1.7)). Therefore 

(3.10.24) b(u(Cl(X))) - Jcl(X)J 2 2L{X(y(S)): 

S,: c
1

(X)}. 

Let J - o(X) n (o(u(C
0

(X) u c
1

(X))). Then we have 

(3.10.25) b(X) + b(u(C2(X))) 2 2x(y(X u u(C2(X)))) 

+ x(J). 

We also have 

(3.10.26) b(X) 2 x(J). 

Summing (3.10.24)-(3.10.26) we obtain 

[b(X) + b(u(c
1

(X))) + b(u(c
2
{x)))] + b(X) - Jc

1
(x) J 2 2x(E) 

or 

b(V) - b(u(Co(X))) - Jcl(X)J + b(X) 2 2x(E) 

3.66 
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Therefore 

(3.10.27) max{x(E): x is a matching of G 

satisfying (3.10.2)} s; 1/2b(V) + 1/2min{b(X) - ic
1

(X)i -

b(u(Co(X))): X ~ V}. 

We now show that equality holds.· 

By (3.10.13) there is a y satisfying (3.10.14) which 

minimizes (3.10.3) subject to (3.10.4)-(3.10.6) taking 

c. = 1 for all j £ E. Let yo be such a solution for 
J 

which the cardinality of 0 0 
Z - {S £ Q : Ys = 1} is as small 

as possible. Suppose S, T £ Z are such that Sn T ~ ~

If b(S n T) ~ 2 then if we define y' by 

y '. -
l. 

0 if i V (S T) Yi £ - u 

0 + 1/2 if i s T Yi £ u 

0 if R Qo {S, T} YR £ -
y' R -

0 if R £ { s. T} 

it is easily seen that y' is a feasible solution to 

(3.10.4)-(3.10.6) for which (3.10.3) attains a smaller value 

than for 0 
contradiction choice of 0 If y • a to our y 

b(S n T) = 1, and hence Is n Tj = 1. then s u T £ Qo and 

if we define y' by 

y'. - Yi · for 
l. 

all i £ V 

YR if R £ Qo - { s. T, s u T} 

y' - 1 if R = s u T R 

0 if R £ {S, T} 

3. 6 7 1,: 
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then y' is a feasible solution. to (3.10.4)-(3,10.6) 

satisfying (3.10.14) for which the value of (3.10.3) is no 

greater than that obtained for 0 
y But I { R E Q O: y i = 1} I < 

0 jzj, contradictory to our choice of y • Hence 

(3.10.28) the members of Z are pairwise disjoint. 

Suppose for some v ESE Z. Then if we define 

y' by 

0 + 1/2 if i V {v} Yi E -
y! -

J. 0 
Yi = 1 if i = V 

if Re: QO - {S} 
y' R -

if R = S 

y is a feasible solution to (3.10.4)-(3.10.6) which causes 

(3.10.3) to assume a smaller value than for 

contradiction. Hence 

0 
Y ' a 

(3.10.29) 0 Yi= 0 for all i e Se z. 

Let X = {i EV: y? = l}. Because of (3.10.29), in 
J. 

order for 0 y to be feasible we require 

o(S) c o(X) for every s e z, 

o(i) 5 o(X) for every i EV - u(Z) 

such that y~ = O. Hence c0 (X) {{i} E: V - V(Z): y~ = O}, 

(3.10.30) c1 (X) Z 

(3.10.31) c2 (X) = ~. 

3.68 r 
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Hence 

(3.10.32) 

= b(X) + l:(l/2(b(S) - 1): SE c
1

(X)) + l/2b(u(C
2

(X))) 

= l/2b(X) + l/2b(u(Ci (X))) + l/2b(u(C
2

(X))) + 

l/2b(x) - 1/2lc1 (x) I 

l/2b(V) +-l/2b(X) - lc 1 (x) I - b(u(c 0 (x)))). 

Since by (3.10.18) and our choice of 0 
y ' 

max{x(E): x is a matching of G satisfying (3.10.2)} 

0 0 = l:(biyi: i EV)+ l:(qsys: s E Q) 

it follows from (3.10.30) that equality holds in (3.10.27). 

Since Z c Qo, (3.10.30) and (3.10.31) imply (3.10.23a) 

completing the proof.D 

Theorem (3.10.23) (excluding (3.10.23a))reduces to a 

3.69 

theorem of Berge [B2] when it is further specialized to !-matchings. 

G has a perfect matching if and only if max{x(E): x 

is a matching of G satisfying (3.10.2)} = l/2b(V). Therefore, 

by (3.10.23), G has a perfect matching if and only if 

min{b(X) - lc1 (X) I - b(u(c
0

(X))): x c V} = o 

Thus we obtain the fundamental theorem of Tutte. 

(3.10.33) Theorem (Tutte [T3]). G = (V, E, •) has 

a perfect matching if and only if for each X c !, 

(3.10.34) b(X) ~ lc1 (x) I + b(u(c 0 (X))). 

I 

l-1 [i 
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In the case of 1-matchings this reduces to the well 

known theorem 

(3.10.35) Theorem (Tutte [Tl]). G = (V, E, ~) 

has a perfect 1-matching if and only if for any X c V the 

number of components of G[V - X] having an odd number of 

nodes is no greater than IX I . 

The importance of (3.10.23a) to these theorems is 

discussed in Section 4.4 (see Theorems (4,4.21) and (4,4,22)). 
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Chapter 4 

Facets and Vertices of Matching Polyhedra 

Throughout this chapter we consider a graph G = (V, E, ~) 

and we take b = (b.: i £ V) 
]. 

to be a vector of positive 

integers. Since isolated nodes, that is nodes v for which 

o(v) = ~. are of little interest in matching theory we 

assume G has no isolated nodes. In section 3.4 we defined 

the matching polyhedron P(G, b) and proved the theorem 

of Edmonds that 

P(G, b) E = {x £ 1R. : 

(4.0.1) x. ~ 0 for all j £ E, 
J 

(4.0.2) x(o(i)) ~ bi for all i e V, 

(4.0.3) x(y(S)) ~ q
5 

for all 0 s £ Q }, 

where QO = {S ~ V: G[S] is shrinkable}, and qS = (l/2)(b(S)-l) 

for any set S such that b(S) is odd. We now characterize 

the facets and vertices of P(G, b) relating them to the 

structure of G and the value of b. In particular, for 

any G and b we prescribe a unique minimal subset of the 

inequalities (4.0.1)-(4.0.3) of which P(G, b) is the solution 

set. 

The material presented in this chapter does rely to an 

extent upon the material of Chapter 3. Sections 3.3 and 3.4 

are used in characterizing the facets of P(G, b), some of 

the material of Sections 3.6 and 3.7· is used in showing the 

equivalence of shrinkable graphs and b-critical graphs. 

The proof of the vertex characterization is related to the 

,, I 



algorithm itself; in proving the theorem we also show that 

every matching obtained by the blossom algorithm is a 

vertex of P(G, b). However we give an additional proof 

4.2 

of this portion of the vertex characterization which is 

developed from basic properties of graph theory and polyhedra 

theory. 

4.1. Dimension of P(G, b) and Nonnegativity Facets 

In order to characterize the facets of P(G, b), we 

first determine its dimension. 

(4.1.1) Proposition. P(G, b) is of full dimension. 

Proof, Since P(G, b) 5 'fK.E it follows that 

dim(P(G, b)) :<; IEI, We show that dim(P(G, b)) = IEI by 

exhibiting 

to P(G, b). 

IEI + 1 affinely independent matchings belonging 

The result will then follow from (2.2.12). 

For each j e: E we define a matching xj by 

Since b. 2c 1 for all 
l. 

all i e: V, for all j 

'\R E • Then { xj : j e: 

{xj : j e: E}u {0} is 

e: 

0 if k "' j , 

1 if k = j. 

i e: V, we have . 

E. Let 0 be 

xj (8(i)) ,,; b, for 
l. 

the zero vector in 

E}u {O} C P(G, b). The set of vectors 

easily seen to be affinely independent 

and the result follows.D 

[ Let a e: 1R. E, ex e: 1R . We say that the linear inequality 
I 

~ ax :<; ex gives a facet of P(G, b). if {x e: P(G, b): ax = ex} 
,· 
t is a facet of P(G, b). In characterizing which of the 

t 

~-

I 

I 

.i 

:1 

!I 

I' 
I. 

iii ,, 

' ,, 
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inequalities (4.0.1)-(4.0.3) give facets of P(G, b) we use 

mainly the technique of showing that ax s a gives a facet 

of P(G, b) by displaying affinely independent members 

x of P(G, b) which satisfy ax= a and then appealing 

to (4.1.1) and (2.2.15). 

(4.1.2) Theorem. 

facet of P(G, b). 

For every j £ E, x. > 0 =-..ccc.........::C.-'-CC-"-<.-_,,._----=----='-'---==-J gives a 

Proof. For any j £ E let Pj 

(4.0.2), (4.0.3) and 

be the solution set of 

xk ~ 0 for all k £ E - {j}. 

We define xj by 

0 for k >' j, 

-1 for k = j. 

Then for each j £ E, xj £ Pj - P(G, b). Therefore by 

(2.3.30), xj ~ 0 gives a facet of P(G, b).D 

The techniques used in this proof, showing that an 

inequality gives a facet by showing that if it is omitted we 

obtain a larger polyhedron, could possibly be used in proving 

the other facet characterizations of this chapter (theorems 

(4.2.1) and (4.3.49)). However we find it easier to show 

that ax s a gives a facet of P(G, b) by exhibiting IEJ 
affinely independent members of P(G, b). 

is also easily proved by exhibiting 

G, each such x satisfying 

Theorem (4.1,2) 

affinely independent 

X. = 0. (Take 
J 

matchings of 

the matchings 0 , xk: k £ E - · {j} defined in the proof 

' 

II 

!I 
Ii 
:! 



of (4.1.1).) 

We call · {x E P(G, b): x. = 0} a nonnegativity facet 
J 

of P(G,b) for any j E~E. 

4.2 Degree Constraint Facets. 

4.4 

In this section we characterize which of the inequalities 

x(5(i)) s bi for i EV are facets of P(G, b). For each 

i EV we let N(i) be the set of nodes of G adjacent to 

i. Let v and w be nodes of G such that N(v) = {w}, 

N(w) = {v} and b = b . Then {v, w} is the node set of W V 

a component H of G containing at least one edge. We 

call H a balanced edge. 

(4.2.1) Theorem. For any i EV, x(o (i))sbi gives 

a facet of P(G, b) if and only if 

(4.2.2) i is a node of a balanced edge 

or 

(4.2.3) 

then y(N(i)) = p. 

b ( N ( i) ) > b . __ a_n-'d---"i-'f--'b-'(~N-'(~i__,.)__,.)_=_b . + 1 
i i--

Proof. We first show the necessity of (4.2.2) and 

(4.2.3). Let i be a node violating (4.2.2) and (4.2.3). 

We will show that there are inequalities (4.0.1)-(4.0.3) 

which imply 

(4.2.4) x(5(i)) s b. 
i 

and which are distinct from (4.2.4). Thus we can remove 

all copies of (4.2.4) from (4.0.1)-(4.0.3) without changing 

the solution set and the result follows from (2.3.30) and (4.1.1). 



4.5 

Suppose b(N(i,)) ,; b .. 
1. 

Summing the inequalities (4.0.2) 

for v £ N(i) we obtain 

x( u o(v)) ,; b(N(i)) 
VEN(i) 

and since o(i) c u o(v), it follows that (4.0.1) implies 
VEN(i) 

x(o (i)) ,; b (N(i)) ,; bi, 

Moreover if there were v £ N(i) such that x(o(v)) ,; b 
V 

and (4.2.4) were the same inequality then o(v) = o(i) and 

b = b. so since we do not allow isolated nodes we would 
V 1. 

have i and v being %he nodes of a balanced edge, contradictory 

to i violating (4,2.2). Hence (4.2.4) is not a facet of 

P(G, b), 

Suppose b(N(i)) =bi+ 1 and there is some j £ y(N(i)). 

Let v £ w(j) and for each u £ N(i) let k(u) be an edge 

of G such that w(k(u)) = {i, u}. Let J - {k(u): u £ N(i)} 

and let the graph B be defined to be (N(i) u {i}, Ju {j}, 

w!J u {j}). We show that B is a blossom. Clearly B is 

connected, has no even polygons and exactly one odd polygon. 

Moreover if we define a matching x of B by 

x. 
J 

- b u 

- b v-1 

- 0 

for all u £ N(i) - {v}, 

we see that x is ·a matching of B satisfying (3.3.1)-(3.3.5) 

so that B is a blossom. Hence G[N(i) u·{i}] is shrinkable 

so N(l.·) {'} Qo u 1. £ • The inequality (4.0.3) for N(i) u {i} 

is 

I 
I 
' 

I 
I 
t: 

" I 

I 
11 
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l 

(4.2.5) x(y(N(i) u·{i})) s b(N(i)); b(i) - 1 = b
1 

so since 8(1) ~ y(N(i) u {i}) -·{j} , we see that (4.2.5) 

and (4.0.1) imply (4.2.4). Moreover (4.2.5) is different 

from (4.2.4). Hence (4.2.4) is not a facet of P(G, b). 

Now we prove the sufficiency of (4.2.2) or (4.2.3). 

Suppose that i is a node of a balanced edge H. For each 

h E 8(i) we define a matching h 
X by 

bi if k = h, 

0 if k EE - {h}. 

Let j E 8 (i). For each h E E 

h 

8(1) we define a matching 

X by 

1 if k = h, 

h 
b. if k j , xk - = 

]. 

0 if k E E - {h, j,} . 

Clearly the set {xh: h EE} is linearly independent and 

xh(8(i)) = b. for all h EE. Since {x E P(G, b): 
]. 

x(8(i)) = b.} is a proper face of P(G, b) it follows from 
]. 

(2.2.15) that (4.2.4) gives a facet of P(G, b). 

Now suppose (4.2.3) is satisfied for i EV. Let K 

be a minimal subset of N(i) for which b (K) > b .• 
]. 

For 

each v E N(i) let j(v) be an edge joining i and v, 

let EK - {j(v): v EK}. For every j EEK' let 

{v(j)} = 1/i(j) n K. Let b =(bj: j EEK) be defined by 
.. 

k EEK we define b. - b 
V (j) for all j E EK. For each 

J 

dk k 
EK) = (d. : j E by 

J 

4.6 
''.I 

I 
' 

I 
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d~ 
0 if j E EK - {k} 

-
J 

b (K) - b. if j = k. 
l. 

Then 0 < dk ,, b for all k E EK by our choice of K, 

For each k EK, let -k 
b dk. Since {dk: k EK} is £ X - - £ 

linearly independent, (2.2.4) implies -k k EK} {x : £ is 

affinely independent. Each vector 
-k 
X can be extended to 

a matching 

Then 

k 
X Of G by letting k 

X. - 0 
J 

for all j EE - EK, 

(4.2.6) 

Moreover, 

(4.2.7) 

(4.2.8) 

k P(G, b) so X £ 

For each j £ 

follows. Let {v} 

k 
{x : ks EK} is affinely independent. 

k 
X (o(v)) !> 

for each 

o(i) - EK 

- 1j, (j) -

k 

b 
V 

b. 
l. 

E 

we 

{i}. 

for all VEV-{i}, 

EK. 

define a matching xj as 

If V E K then let k £ 

be chosen such that k 
xj (v) > 0 and let be defined by 

if 

0 if 

R, s E - { j , j (v) } 

i=j(v) 

k 
xj (v) if R, = j. 

If v ~ K let k be any member of EK and let h E o(i) 

k 
be such that xh > 0. be defined by 

EK 



t 

4.8 

k 
if 9, E { j , h}, X 9, E -

xj k 
1 if 9, h, - xh - = 9, 

1 if 9, = j . 

In either case, xj is easily-seen to satisfy (4.2.7) and 

(4.2.8) for every j E o(i) - K. Since for each j e o(i) - EK 

xj is the unique matching x so far defined for which 

x. -' 0, (4.2.6) implies 
J 

(4.2.9) {xj: j E o(i)} is affinely independent. 

Finally, for each j EE - o(i) we define a matching 

xj as follows. 

xj - 0 for h E E - ( o ( i) u { j } ) 
h 

xi is defined for h E o(i) to be sufficiently 

large that (4.2.7), (4.2.8) are satisfied. This is possible 

for if b(N(i)) = b. 
]. 

+ 1 then by (4.2.3) at most one end 

j is in N(i). Therefore defining restricts 

to taking on a value one less than for at most 

one edge k E o (i). Hence xj can be defined as asserted. 

If b(N(i)) ;, b. + 2 
]. 

then it is easily seen that after 

defining x~ = 1 we can still assign values xj for 
J k 

as required. 

For ahy j EE - o(i), xj is the only matching x 

k E o(i) 

defined for which This together with (4.2.9) implies 

that {xj: j EE} is affinely independent. Thus we have 

I 

I 

11 

I 
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defined IE! affinely independent members of P(G, b) 

each of which satisfies (4.2 .. 8). Moreover F = {x E P(G, b): 

x(o(i)) = b.} is a proper face of P(G, b) 
1 

since 

0 E P (G, b) - F, Therefore by (2.2.15) it follows that 

(4.2.4) gives a facet of P(G, b) completing the proof.D 

We call {x E P(G, b): x(o(i)) = b.} a nonnegativity facet 
1 

for each i EV satisfying (4.2.2) or (4.2.3). 

In the case of !-matchings, (4.2.1) specializes to the 

following 

P(G, 1) 

or 

(4.2.10) Theorem. x(o(i)) < b. gives a facet of 
1 

if and only if 

(4,2.11) i is a node of a balanced edge 

(4.2.12) 

y(N(i)) = <f,, 

jN(i) j > 1 and if l·N(i) I = 2 then 

4,3, Blossom Facets. 

In this section we give a first characterization 

of the inequalities x(y(S)) ~ q
8 

for SE QO which are facets 

of P(G, b). In fact for each SE QO we give the dimension 

of 

Fs = {x E P(G, b): x(y(S)) = qs}. 

These results are obtained by studying shrinkable graphs (as 

defined in Section 3,3). 

In Section 4.4 we give two characterizations of shrinkable 

graphs and hence two more characterizations of the facets of 
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this sort. 

Recall that a np matching (near perfect) matching of 

G deficient at v EV is a matching x of G which 

satisfies 

x(o(v)) = b - 1. 
V 

x(o(i)) = bi for all i EV - {v}. 

The following lemma is useful when proving the independence 

of matchings. 

(4.3.1) 

of G and let 

d(x 0 ) E 'iK_ such 

for all 

of 0 X - {x }. 

Lemma. Let X 

0 x. If there X E 

that xo(J(xo)) < 

then 0 
X 

be a set of TIE matchings 

exist J(xo) C: E and -
d(x 0 ) but 

0 x(J(x ))= d(x 0 ) 

is not a linear combination 

Proof. 

such that 

Suppose that there are Cl E 'R for X E X' - X-{x 0 } 
X 

(4.3.2) XO= E(Cl x: x EX'). 
X 

By (3.3.24), x(E) = 1/2(b(V) - 1) for all x EX. Therefore 

by (4.3.2) 

xO(E) = 

and hence 

E(a x(E): XE X') 
X 

(4.3.3) E(Cl : XE X') = 1. 
X 

Therefore 

by (4.3.3). 

E(Cl x(J(xO)): XE X') = 
X 

· 0 0 E(Cl d(x ): XE X') = d(x) 
X 

Hence (4.3.2) implies th~t 
0 0 0 x (J(x )) = d(x ), 

a contradiction which proves the lemrna.O 



r 
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(4.3.4) We call v e V a strong cut node of 

G = (V, E, f) relative to b if v is a cutnode of G 

(see (1.3.9)) A weak block of G relative and b = 1. 
V 

to b is a maximal connected subgraph H of G such that 

b > 1 for any cutnode v of H. Thus a weak block consists 
V 

of one or more blocks of G joined by cutnodes v for 

which b > 1. Notice that 
V 

(4.3.5) the edge sets of the weak blocks of G 

partition the edges of G. 

(4.3.6) We let S(G) denote the number of weak 

blocks of G. 

In the case of I-matchings, strong cutnodes and weak blocks 

are simply cutnodes and blocks respectively. 

(4.3.7) Proposition. G is shrinkable if and 

only if G is connected and every weak block of G is 

shrinkable. 

Proof. First suppose that G is connected and each 

weak block of G is shrinkable. We prove that G is 

shrinkable by induction on S(G). If S(G) = 1 then the 

result is trivial. Suppose S(G) > 1 and assume the result 

is true for graphs having fewer than S(G) weak blocks. 

Let D be a weak block of G, let RD be a shrinking family 

for D. Each weak block of G' = G x V(D) is' isomorphic 

to a weak block of G and so is shrinkable. Moreover G' 

is connected. Since G is connected, S(G') = S(G) - 1 



so by our induction hypothesis G' is shrinkable; let R' 

be a shrinking family of G'. For each SER' we define 

a set sCS) c V as follows. 

sC s) -
S if V(D) • S, 

S - {V(D)} u V(D) if V (D) E S 

Let R 5 {s(S): SER'} u RD, 

be a shrinking family of G. 

by induction. 

Then R is easily seen to 

The sufficiency now follows 

Conversely, suppose that G is shrinkable. Let R be 

4.12 

a shrinking family of G, Trivially G is connected. We 

prove that every weak block of G is shrinkable by induction 

on IR I . If JRJ = O, then G consists of a single node v 

and the result is trivial. Suppose that JRJ ~ 1 and that 

the result is true for graphs having shrinking families of 

fewer than JRJ sets, Let S be a minimal member of R, 

By (3.3.16) G[S] is spanned by a blossom B, By (3.3.9) 

only terminal nodes of B can be strong cutnodes so B is 

a subgraph of some weak block D of G. Let G' - G X s. 

For any T E R - {S} define s(T) - T if s n T = 
<I> ' 

define 

z; ( T) - T - s u . { s} if s C T and let R' = { s(T): T E R - {S}}, 

R' is a shrinking family of G' and JR' J = JR J - 1 so 

by our induction hypothesis every weak block of G' is 

shrinkable, Hence every weak block of G different from D 

is shrinkable. Moreover every weak block of D x S is 

shrinkable so as we have already seen, D x S is shrinkable. 

Let Ri be a shrinking family of D X s and for any TE R' 
0 

let B(T) 5 T if S. T, let ~(T) 5 T -·{s} US if SET. 
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Then {S} u ~ (T): TE a;} is a shrinking family of D 

and the proof now follows by induction.D 

(4.3.8) Proposition. If Z is the set of weak 

blocks of a connected graph G = (V, E, ~) then 

(4.3.9) b(V) - l = E(b(V(D)) - 1: DEZ), 

Proof. We prove by induct.ion on I Z j. If I z I = 1 

4.13 

the 

result is trivial. Suppose jzj > 1 and (4,3.9) holds for 

all graphs having fewer than I Z I weak blocks. If every 

weak block of G contained two or more strong cutnodes then 

it is easily seen that G would contain a polygon having 

edges in more than one block, contrary to (1,3.10), Let B 

be a weak block of G containing exactly one strong cutnode 

v. Let G' = G[V -(V(B) - {v})J. Then G' is connected 

and Z - {B} is the set of weak blocks of G'. Therefore 

by induction 

b(V(G')) - 1 = E(b(V(D)) - 1: DEZ - {B}), 

Since b(V) = b(V(G')) + b(V(B) - {v}) = b(V(G')) + b(V(B)) - 1, 

(4,3.9) holds and the res~lt foll6ws by induction.D 

(4.3.10) Proposition. Let G = (V, E, t/!) be a 

shrinkable graph and suppose x E P(G, b) satisfies 

x(E) = l/2(b(V) - 1). Then for any weak block D of G, 

x(E(D)) = l/2(b(V(D)) - 1). (Note that x need not be 

integer valued,) 

Proof. Let Z be the set of weak blocks of G, By 

(4.3.7) each DEZ is shrinkable so since x E P(G, b), 

I 
II' 

I 
I 
! 
I 

I 
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x satisfies 

(4.3.11) x(E(D)) $ 1/2(b(V(D)) - 1) for all D £ Z, 

Therefore, summing for all D £ Z we obtain 

(4.3,12) x( u E(D)) $ 1/2 E (b(V(D)) - 1), 
De:Z 

By (4,3.5) E = u E(D) so using (4,3.8) we obtain 
De:Z 

(4.3.13) x(E) $ l/2(b(V) - 1). 

But by hypothesis equality holds in (4,3.13) so equality 

must hold in (4.3.12) and (4,3.11) which proves the result.O 

(4.3.14) Corollary. If x is a np matching of 

a shrinkable graph G then for any weak block D of G, 

x!E(D) is a np matching of D. 

Proof. The result follows from combining (4,3,10) and 

(3.3.24).0 

Now we prove a main result used in characterizing the 

facets of P(G, b) given by constraints (4.0.3). 

(4.3.15) Theorem. If G = (V, E, w) is shrinkable 

then G has !El - (S(G) - 1) linearly independent np 

matchings, 

Proof. Let R be a shrinking family of G; we prove by 

induction on !RJ. If !RI= 0 then G is degenerate, 

JE! = 0, S(G) = 1 and the result is trivial. Suppose !RJ ~ 1 

and the theorem holds for graphs having a shrinking family 

consisting of fewer than JR! sets, 

I 
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Let B be a blossom spanning G x R[V] which exists 

by (3.3.16). We partition V (B) into v1 u v2 where 

v1 - V(B) n V and v2 - V(B) n R That is, vl is the 

set of real nodes of B and v2 is the set of pseudonodes 

of B. 

Let C - E(G X R[V]) - E(B) and let G' be the graph 

obtained from G by deleting all the edges in C. Then R 

is a shrinking family of G' so by (3.3.21) for each v E v 1 

there is a np matching 

which satisfies 

-v 
X of G' deficient at V and 

(4.3.16) xv(y(S)) = l/2(b(S) - 1) for all SER. 

For each V E vl we define matching 
V of G a np X 

deficient at V by 

-v for j E' x. E 
V J 

(4.3.17) x. -
J 

0 for j E C. 

Let 

a 

V 
Xl = { X : V E 

np matching of 

Since by (4.3.16) each x EX is 

for each SE v 2 , it follows from 

(4.3.14) that 

(4.3.18) xjE(D) is a np matching of D for 

every weak block D of G[S] for every SE v 2 , for every 

For each SE v
2 

there are by induction 

n(S) E Jy(S)J - (a(G[S]) - 1) linearly independent np 

matchings {-S,l -S,2 -S,n(S)} 
X ,x , ... ,X of G[S] since R[S] u · {S} 



r 4.16 

is a shrinking family of G[S] and IR [ s l u { s} I ,; 

IR - {V} I < IR I . By (4.3.14), 

(4.3.19) XS,iiE(D) is a np . matching of D for 

every weak block D of G[S] for every i E {l, 2, ... ,n(S)}. 

We extend each to a np matching of G as follows. 

Let -s 
X be the np matching of G deficient at s which 

exists by (3.3.12). For each TE V2 - {S} let j(T) be the edge 

of .5 .(T) n E(B) " such that -s 
x,j(T) = 1, let {v(T)} = 

1/i(j(T)) n T and let -TS 
x' be a np matching of G [ T] 

deficient at v(T). By (4.3.14), 

(4.3.20) xT• 8 jE(D) is a np matching of D for 

every weak block D of G[T]. 

Now we define S,i 
X for all i E {l, 2, •.. ,n(S)} 

-s i x' for jsy(S), 
j 

for 

by 

(4.3.21) 
-s S,:i_x. 

X • = J 
J 

j E E'( B) , 

0 for j s C, 

xT,S for j s y(T), for Ts v
2 

- {S}. 
j 

Let 
s . 

x 2 = { x 'l.: i E { 1, 2, •.. , n ( S) } , S E V 
2

} . By (4.3.19) 

and (4.3.20), 

(4.3.22) xjE(D) is a np matching of D. for 

every weak block D of G[T] for every Ts v
2 

for every 
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Now we show 

(4.3.23) x1 u x2 is linearly independent. 

Suppose that av E '1R. : v E v
1 

and as . s 1R. 
, J. 

i E {l, 2, ..• ,n(S)}, S s v
2 

are such that 

(4.3.24) 

s i + E(aS,ix' : i E {l, 2, ... ,n(S)}, SE V
2

) = O. 

If we let iv - xv/E(B) for each v E v
1 

we have 

where 

For each 

-
as - E(as . : 

,1. 

v E V(B), -v 
X 

i E {1, 2, ... ,n(S)}) for 

is a np matching of B 

at v so if we let J(iv) _ o(v) n E(B) 

deficient 

for all VE V(B) -v then by (4.3.1), {x : v E V(B)} is linearly 

independent so 

(4.3.25) av= 0 for all v E v
1

, 

(4.3.26) as= O for all s s v
2

. 

Now let s s v2 , let v; _ v2 - {S}. By (4.3.21), (4.3.24) 

and (4.3.25) we have 

so by (4.3.26), 

-s i . 
E(as .x ' : is {1, 2, .•• ,n(S)}) 

, l. 
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( -S,i i· 
i: as .x : , ]. 

E {1, 2,., .,n(S)}) = 0. 

. -s i . 
But the matchings {x' : i E {1, 2, ... ,n(S)}} are by 

hypothesis linearly independent so 

(4.3.27) for all i E {1, 2, ... ,n(S)}, 

This together with (4.3.25) proves (4.3.23), 

Let k EC. We define a np matching 

B met by 

k 
X as follows. 

Let v and w be the nodes of k, let be 

the np matching of B deficient at v. There must be some 

edge 9., £ E(B) n o(w) such that -v 
xJ/, = 1, we define a np 

matching ·k 
X Of G x R[V] by 

(4.3.28) 
'k 
x. -

J 

Let T £ v2. If 

matching of G [ T] . If 

then let {v} - 1/J ( t) n 

G[T] deficient at 

(4.3.29) 

v. 

k 
X. -

J 

-v for j E(B) { J/,}, x. E -
J 

0 for j £ (C - {k}) u {t}, 

1 if j = k. 

~k(o(T)) 0 let -T be = we X any 

there is o(T) such that •k t £ xt 

T and let -T be matching X a np 

Now define k by X 

for j £ E(G x R[V]), 

xJ for j E y(T) for TE V
2

, 

np 

= 1 

of 

k 
Let. x3 = {x: k EC}. Every x E x

3 
is a np matching of 

G and for any SE v2 , xjy(S) is a np matching of G[S], 

Therefore by (4.3.14), 
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(4.3.30) xlE(D) is a np matching of every 

weak block D of G[S] for every s £ v2 for every x s x
3

. 

Moreover, by (4.3.17), (4.3.2l), (4.3.28) and (4.3.29) for 

each k e: C, k 
X is the unique member of such 

that xk ~ 0, so by (4.3.23), 

(4.3.31) x1 u x 2 u x 3 is linearly independent. 

Now let D be a weak block of G[S] such that D is 

not a weak block of G for some Se: v
2

• First observe 

that since bs = 1 by (3.3.9) S must be a terminal node 

of B and consequently I "B (S) I ,; 2. As before we let 

G' - (V, E C, wlE - C). We distinguish two main cases. 

Case 1. D is not a weak block of G'. 

Case la. An edge h of oB(S) is incident with a 

node w £ V(D) for which b > 2 • (See Figure 4. 1) . 
w 

Since b ;, 2' w is not w a strong cutnode of G[S] and so 

every edge of G[S] incident 

s 
x be a np matching of S 

there is some £ e: E(D) n o(w) 

{t} - w(h) - {S} and let u 

with w is an edge of D. 

deficient at w. Since b 
w 

such that Let 

be the node of V(B) {S} 

by h. If u e: v1 , then u = t, if u e: v
2 

then t e: u. 

Let x be the np matching of B deficient at u. 

(4.3.32) For each Te: v
2 

- {u} let j(T) be 

the unique edge j of oB(T) 

T x be a, np matching of G[T] 

{v(T)} - w(j(T)) n T. 

such that X = 1 
j 

and let 

deficient at v(T); where 

Let 

;, 2 

met 

4.19 
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If u E Vz then 

(4.3.33) let 

deficient at t. 

u 
X be a np matching of 

We now define a np matching D 
X of G by 

s for j y ( s) {i}, x. E -
J 

s 
1 if j i, xi - = 

0 for j E C 

D for j E(B) { h} ' x. - x. E -
J J 

xh + 1 if j = h 

T for j y(T) for T v2 x. E E 
J 

It can be seen that 

t,, 21 

G[u] 

- { s } . 

(4.3.34) x
0

jE(A) is a np matching of each weak 

block A of G [ T] for T E v2 unless A = D and 

(4.3,35) xD(E(D)) b(V(D)) - 3 = 2 

Case lb. ~i~=--'l=----=f~o~r=---~e~v~e~rc..,_Y_:cn~o~d~e~~i=-~E--'V-(~D'-'-)~~m~e~t=-~b~y'--a~n 

edge of B. (see Figure 4. 2) Then by our case 1 hypothesis 

there must be distinct v, w ES incident with edges h, 

k E oB (S) respectively and every path in G[S] from v to 

w must contain an edge of D. Since D is a weak block of 

G[S] there is a unique node p EV(~) which is the first 

node of D in any such path. If p ~ v then p is a 

strong cutnode of G[S] and hence is not a cutnode of D. 

I 
1' 

\! 

I! 



If p = V then b = 1 by our Case lb hypothesis so p p 

cannot be a cutnode of D. Thus there is a component H 

of G[S - {p}] such that V(D) · {p} = V(H). Let 

4.22 

H = G[V(H) u {p}], let K = G[S - V(H)]. (K may consist of 

just the single node p. ) Then V(H) u V (K) = s and 

V(H) n V (K) = {p}. Clearly the weak blocks of G[S] are 

weak blocks of H and K so by (4.3.7), H and K are 

shrinkable. Moreover, V E V (K), w E V(H) and p ,, w. 

Let H 
be matching of H deficient Since X a np at w. 

there is !l E (D) n Ii (p) such that H 1 . p ,, w, some E 
X !l = 

K Let x be a np 

{t} = ~(k) - S, let 

matching of K deficient at v. Let 

u be the node of V(B) - {S} met by 

the 

k. Let x be the np matching of B deficient at u. 

Since /oB(S)/ = 2 and since S is a terminal node of B, 

S must belon~ to the odd polygon of B. Therefore h is 

the first edge in a path of length two from a node in the 

polygon to u. Therefore by (3.3.12) and (3.3.5) xh = 1 

and 0. For each T v2 {u} define T 
in xk = E - X as 

(4.3.32) and if v2 then define u 
in (4.3.33). u E X as 

Now define D 
by X 

H for j E(H) { !l} x. E -
J 

0 for j E { !l} u C, 

K for j E(K) x. E 
D J 

x. -
J x. for j E E(B) - {k} 

J 

1 for j = k 

xI for j E y(T) for TE v
2 

-· {s}. 

i 
Ii 
'II 

I 
' i 

' 
I. ,. 
l 
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It can now be seen that D 
x is a np matching of G 

satisfying (4.3.34) and (4.3.35). 

Case 2. D is a weak block of G'. (See Figure 4.3). 

Let W be the set of nodes of S incident with edges of B. 

There must be a node p E V(D) which is the first node of 

D in any path in G[S] from a node in W to a node in D, 

otherwise D would not be a weak block of G'. p is a 

strong cutnode of G[S] unless w = { p}. Since D is not 

a weak block of G, there is some edge e E C n o ( S) such 

that where {q} - \f! ( e) n s, there is a path in G[S] from 

q to a node of B which does not contain p. Let H be 

the component of G[S - { p} l which contains q, let 

H - G[V(H) u { p} l , let K - G[S - V(H)J. (If w = {p} then 

K may simply consist of p. ) Let u be the node of 

V(B) - {S} met by e and let X be the np matching of B 

deficient at u. Let H 
be X a np matching of H deficient 

There be 2 E(D) 0 (p) such that H 
1. at q. must E n xi = 

Let K be X a np matching of K deficient at the node 

w E w met by an edge h E E(B) for which xh = 1. For each 

T v2 {u} define T 
in (4.3.32). If v2 then E X as u E 

let {t} \f! (e) s and define u 
in (4.3.33). Now - - X as 

define D 
follows. X as 

H 
for j E(H) {2}, x. E -

J 

0 for j E {£} u C - {e}, 

K 
for j E (K), x. E 

D J 
x. - for j E(B), J X; E 

J 

1 for j = e, 

1' 
for j y(T) for T v2 { s}. x. E E -

J 
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It can be seen that 
D 

X is a np matching of G satisfying 

(4.3.34) and (4.3.35). 

Let z be the set of all weak blocks of G[S] for all 

s £ v2 and let Z I = {D E z: D is not a weak block of G. } 

Let X4 {x 
D 

D Z I } • Then D satisfies (4.3.34) and - : E X 

(4.3.35) for every Therefore by lemma (4.3.1), 

(4.3.18), (4.3.22), (4.3.30) we have that 

x
1 

u x
2 

u x
3 

u x
4 

is linearly independent. 

(4.3.36) 

= lv
1

1 + E(ly(s)I - S(G[SJ) + 1: s 2 v 2 ) + 

IC I + I z I I 

= lv1 1 + lv 2 1 + r(h(s)I: s 2 v 2 ) + 

lcl - <lzl - lz'll 

Since V 
1 

u V 
2 

= V (B) and IV (B) I = IE (B) I · (by (3. 3. 7)) 

and since u y(S) u E(B) u C is a partition of E, 
S2V

2 

(4.3.37) 

Since the weak blocks of G are the members of Z - Z' 

together with the weak block containing E(B), we have 

(4.3.38) lzl - lz' I S(G) - 1. 

Thus (4.3.36)-(4.3.38) co~bine to give 

and the theorem now follows by induction.D 
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We now are able to give the dimension of all faces of 

P(G, b) obtained by making one of the inequalities (4.0.3) 

an equation. 

4.26 

(4,3.39) Theorem. Let F = {x E P(G, b): x(y(S)) = qs} 

for some 

Let z 

0 
s e: Q • Then dim(F) = jEJ-

Proof. First we show 

S( G [ S) ) • 

(4.3.40) dim(F) ,; JEJ - S(G[S)), 

be the set of weak blocks of G [ S) • Since s E Qo, 

G[S) is shrinkable so by (4.3.7) each D E z is shrinkable, 

Let w - {V (D): D E Z}. Then w C - Qo. By (4.3,10), any 

X E P(G, b) that satisfies x(y(S)) = qs will also satisfy 

(4,3.41) x(y(T)) = qT for all TEW. 

The inequalities (4.0.1)-(4.0.3) can be represented by 

Ax,; d where and d 
<f) (EuVuQ 0 ) 

E II'\.. are 

appropriately defined. By (4.3.41), if I is the equality 

set of F (see section 2.1) then W c I. By (4.3.5) the 

rows of AW are linearly independent, so rank(A 1 ) ~ JwJ 

and hence dim(F) ,; JEI - lzJ which proves (4.3.30), 

We now show 

(4,3,42) dim(F) ~ JEI - S(G[S)) 

by displaying !El - S(G[S]) + 1 linearly independent members ._, 

x of P(G, b) which satisfy 

(4.3.43) x(y(S)) = qs· 
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By ( 4 • 3 • 15) G [ S] has a set x1 of ly(S) I - S(G[S])+l 

linearly independent 
• A 

x z x1 to a matching 

(4.3.44) X. 
J 

np 

X 

matchings. We extend each 

of G by letting 

x. for j e y(S) 
J 

0 for j e E - y(S). 

Let x1 be the set of matchings thereby obtained, each 

x e x1 satisfies (4.3.43). 

Let k e o(S), let {v} = ~(k) n s. Let x be a np 

matching of G[S] deficient at v and let xk be defined by 

x. for j e 
J 

(4.3.45) k 
1 for j x. - = 

J 

0 for j e 

k e y(V - S) let X be any For any 

and let X 
k be defined as in (4.3.45). 

Each k 
X 

and since by (4.3.44) and (4.3.45) 

x of x1 u x2 for which xk ~ O, 

y(S) 

k 

E (y ( S) u { k}) . 

np matching of G[S] 

Let 

satisfies (4.3.43) 

is the unique member 

x1 u x2 is linearly independent 

Since Jx1 u x2 1 = !El - S(G[S]) + 1, (4.3.42) now follows. 

Combining (4.3.40) and (4.3.42) proves the theorem.O 

Theorem (4.3.39) specializes to the following. 

(4.3.46) Theorem. x(y(S)) ~ 9
8 

for Se QO gives 

a facet of P(G, b) if and only if G[S] contains no strong 

cutnode. 



We call such facets blossom facets of P(G, b). Notice 

that since nonnegativity facets of P(G, b) all contain 

h ' 0 £®\· E d h t e point \\'\.. an since neit er degree constraint 

facets nor blossom facets contain 0, nonnegativity facets 

are different from blossom facets and degree constraint 

facets. For any i £ V and any S £ Qo, o(i) is the edge 

set of a tree and y(S) contains the edge set of a polygon. 

Therefore the equations x(o(i)) = b
2 

and x(y(S)) = q
8 

are distinct. Thus no degree constraint facet of P(G, b) 

is a blossom facet of P(G, b). Consequently 

(4.3.47) the facets of P(G, b) are partitioned 

into nonnegativity facets, degree constraint facets and 

blossom facets. 

Finally, by making use of (4.3.46) and (4.2.1) we obtain 

the following. 

(4.3.48) Theorem. For any Sc V such that b(S) 

is odd, x(y(S)) s q
8 

gives a facet of P(G, b) if and only 

if 

(4.3.49) 

no strong cutnode, 

or 

(4.3.50) 

Isl > 3, G[sl is shrinkable and contains 

there is i £ S such that o(i) = y(S), 

_£i-=---..9.s and i satisfies (4.2.2) or (4.2.3). 

Proof. Let F = {x £ P(G, b): x(y(S)) = q
8
}. If F 

is a nonnegativity facet of 

b(S} = 1 and hence Is I = 1. 

P(G, b) then q = 0 s and so 

Therefore since G has no 

4.28 
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loops, y(S) = ¢. Thus every member of P(G, b) satisfies 

x(y(S)) = qs so F is not a proper face of P(G, b), a 

contradiction. Therefore F is not a nonnegativity facet 

of P(G, b). 

Consequently F is a facet of P(G, b) if and only if 

F is a degree constraint facet of P(G, b) or a blossom 

facet of P(G, b). By (4.2.1) F is a degree constraint 

facet of P(G, b) if and only if (4.3.50) holds, by (4.3.46) 

F is a blossom facet of P(G, b) 

holds. The theorem follows.D 

if and only if (4.3.49) 

In the case of 1-matchings, (4. 3. 48) can be specialized 

as follows. 

(4. 3.51) Theorem. For any Sc V such that 

Isl > 3, x(y(S)) < l/2(lsl - 1) gives a facet of P(G, 1) 

if and only if 

( 4 • 3 • 5 2 ) .:::Gc,[,_:S::...,_l _ _:i:..:s:........:::S..::h:.:r:..:i:.:n=k.:::a:.:b:..:l:._e=-.:::ac:.n:..:d:.......n=o-"n:..:s:.:e::.p=ac.::rc:a:.:b:..l=e • 

(4.3.53) Isl = 3 and then is i ES such that 

8(i) = y(S) and i satisfies (4.2.11) or (4.2.12). 

4.4. b-critical Graphs 

In this section we give two characterizations of shrinkable 

graphs and in doing so we give two more characterizations of 

the blossom facets of P(G, b). We also show that the blossom 

algorithm can be applied to a graph G = (V, E, •) for 

which b(V) is odd so as to determine whether or not G is 

shrinkable. 
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We say that G = (V, E, ~) is b-critical if there is 

a np matching V 
X of G deficient at V for each VE V. 

This of course implies that b(V) is odd. In the case of 

1-matchings we have G is 1-critical if for any vs V, 

G[V - {v}) has a perfect 1-matching 

If G is b-critical, and hence has a np matching, then 

D(G, V) 

D(G, V).) 

1. (See (3.7.9), (3.7.10) for the definition of 

-
We saw in (3.10.33) (Tutte's Theorem) that G has a 

perfect b-matching if and only if for every X c V 

(4.4.1) b(X);,, /cl(X)/ + b(u(Co(X))) 

where c 0 (X), c 1 (X) are as defined in (3.10.20), (3.10.21). 

The inequality (4.4.1) is commonly called Tutte's condition. 

If b(V) is odd then clearly if we take X =$,we will violate 

Tutte's condition. However our next theorem shows that if 

G is b-critical if and only if G is connected and X = $ 

is the only subset of V which violates Tutte's condition. 

It also shows that G is b-critical if and only if G is 

shrinkable. 

(4.4.2) Theor.em. Let G = (V, E, ~) be a graph, 

let b = (b.: i EV) be a vector bf positive integers. 
l. 

following conditions are equivalent. 

(4.4.3) G is shrinkable; 

(4.4.4) G is b-critical; 

The 

(4 •. 4.5) G is connected, b(V) is odd and every 
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nonempty X c V satisfies (4.4.1) (Tutte's condition). 

Proof. (4.4.3) implies (4.4.4). This is simply (3.3.21). 

(4.4.4) implies (4.4.5). If G is b-critical then 

b(V) is odd. Suppose that H and K are distinct components 

of G. Then each must by b-critical so b(V(H)) and b(V(K)) 

are odd. Let X be a np matching of G deficient at 

V E V (H), Then xlE(K) is a perfect matching of K and so 

b(V(K)) is even, a contradiction. Therefore G is connected. 

Let X be any nonempty subset of V and let v EX. 

Let x be a np matching of G deficient at v. For any 

i E c
0

(x) we have 

(4.4.6) x(o(i)) b .• 
l. 

For any SE c1 (X) we have 

(4,4,7) x(o(S)) ~ 1 

since b(S) is odd and x(o(i)) = b. for all i ES. 
l. 

x(o(i)) $ bi for all i EX we have 

(4.4.8) x(o(X)) $ b(X). 

Since 

Since u o(i) u u o(S) parti.tions a subset of 
{i}EC

0
(X) SEC 1 (X) 

o(X), we have 

(4.4,9) E(x(o(i)): {i} E C0 (X)) + E(x(y(S)): SE C1 (X))$ 

x(o(X)). 

Combining (4.4.6)-(4,4,9) gives 
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so X satisfies (4.4,1). 

(4.4.5) implies (4.4.3), Suppose that b(V) is odd, 

G is connected and G is not shrinkable. If we apply the 

matching algorithm to G and attempt to find a perfect 

matching, the algorithm must terminate with a Hungarian forest 

F with respect to a matching x in a graph G obtained 

from G by shrinking a set of disjoint shrinkable subsets 

of G. Since G is connected and nonshrinkable, F must 

have a nonempty set X of odd nodes, by (3.7.5) each of these 

is a node of G. Let w
0 

be the set of even nodes of F 

which are nodes of G, let w1 be the set of even pseudonodes 

of F. By (3.7.3), (3.7.4), W0 = c0 (X). By (3.7,3), 

(3.7.4) and (3.3.19), w1 = c1 (X). 

s e w1 we have b(W1 ) :,; lc1 (X) I, 
Since bs = 1 

By (3.6.12), 

b(X) < b(W
0

) + b(W1 ) 

:,; b(u(c
0
(x))) + lc

1
(x)I 

for every 

so X violates (4.4.1). Since X ~ ~. the result follows. D 

If we omit the connectivity condition from (4,4.5) then 

it no longer implies (4.4,3) or (4.4.4) for general b. If 

G is the graph represented in Figure 4.4 then b(V(G)) = 11 

and every nonempty X c V satisfies (4.4.1) but G does 

not have a np matching and so is not b-critical. 

,, ,, 
' 

!\ 
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3 

3 

However if b = 1 
i 

2 

0 

3 

for all i EV 

The number beside 

each node is the 

degree constraint 

of the node. 

and if Iv I is 

odd and if every nonempty X c V satisfies (4.4.l) then G 

is connected, for suppose G is not connected. Then G 

must have an odd number k of components H for which 
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jV(H) I is odd. If k = 1 then G must also have a component 

K for which tv<K) I is even. Let v E V(K) and let 

X - {v}. Then b(X) = jxj = 1 but G[V X] has at least 

two components with an odd number of nodes so (4 .4 .1) fails 

for x. If k " 3 then let X - {v} for any node V of 

G. Then G[V - X] has at least two components with an odd 

number of nodes but b (X) = 1, again contradicting (4.4.1). 

Thus when considering 1-matchings we obtain the following 

specialization of (4.4.2). 

(4.4.10) Theorem. Let G = (V, E, ~) be a graph, 

let every node of G have a degree c6nstraint of 1. Then 

the following are equivalent. 

I 
' ,, 
I 
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(4 .. 4.11) G is shrinkable 

(4.4.12) G is 1-critical 

(4,4.13) Iv I is odd and for every nonempty 

X c: V, the number of com:eonents H of G[V - X] for which 

IV {H) I is odd is no greater than IX I . 

The blossom algorithm of chapter 3 provides an efficient 

method for determining whether or not a graph G satisfies 

the equivalent conditions (4.4.3)-(4.4.5), For if we apply 

the algorithm to a graph G = (V, E, w) for which b(V) is 

odd then, as noted in the proof of (4,4,2), it will either 

find a shrinking family of G or else will terminate with 

a Hungarian forest F and a node i e V which is not an 

even node of F or contained in an even pseudonode of F, 

By (3.7,38) in theorem (3.7,36) G can·have no np matching 

deficient at i so G is not b-critical and violates 

(4.4.3)-(4.4.5). 

Finally notice that if b(V) is odd, then for any X c: V, 

b (X) and lc
1

(X)I + b(u(c
0

(X))) must always have opposite 

' : parity so we can never have equality in (4,4.1), Thus if 
r-. 

' I 
[ 
' ! 

desired we could replace (4.4.1) with 

(4.4.14) b(X) > lc1 (x)I + b(u(c 0 (x))) 

in (4,4.5). 

Now we can apply (4.4.2) to (4.3,46) and obtain the 

following two characterizations of the blossom facets of 

(4,4.15) Theorem. For any set S such that 

P(G, b). 

b ( s) 
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l 

is odd, x(y(S)) s qs gives a blossom facet of P(G, b) 

if and only if 

(4,4.16) Isl ;e 3, G[S) is b-critical and has no 

cutnode v for which b = 1. 
v--
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(4.4.17) Theorem. For any set S such that b(S) 

is odd, x(y(S)) s 9s gives a blossom facet of P(G, b) if 

and only if 

(4.4,18) b(S) is odd, Isl > 3, G[S) is connected 

and has no cutnode v for which b = 1 and for every 
V 

nonempty X 5 .£.... 

b(X) > b(u(c
0

(x u (v - s)))) + lc
1

(x u (V - s))I 

We are now able to combine theorems (4.1.2), (4.2.1) 

and (4.3,46) to obtain the following. 

(4,4.19) Theorem. The following is the minimal 

subset of the inequalities (3.4.2)-(3,4.4) which is sufficient 

to define P(G, b). 

or (4.2.3) 

x. > 0 for all j EE 
-J 

x(o(i)) s bi for all i EV satisfying (4.2.2) 

x(y(S)) s qs for all SE QO which satisfy the 

equivalent conditions (4.3.49), (4.4.16) or (4.4.18). 

As we discussed in section 3.10, we can now use linear 

programming duality to obtain a "best-possible" min-max 

theorem. Let WE V contain exactly one node of each balanced 
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edge of G. Let * V - {i £ V: i satisfies (4.2 . .3)} u w, 
* Q - {S £ Q: s satisfies the equivalent 

conditions (4.3.49), (4.4.16) or (4.4.18)}. 

(4.4.20) Theorem. Let G = (V' E, tj, ) be a graph, 

let. b (bi: i £ V) be a vector of positive integers and 

let C = ( C j : j £ E) be an arbitrary real vector. Then the 

maximum value of c · x for any matching x of G which 

satisfies 

x(o(i)) $ b. for all i £ V 
l. 

is equal to the minimum value of 

where 

E (b . V. : 
--i-"'-i 

for all j £ E.) 

* * i e v) + E(g
8
y

8
: s e Q) 

* Yi> 0 for all i £ V, 

* Ys > 0 for all S £ Q , 

* * .,_y_,('"",P__,(,..,j-"-)-"-)--'+----"'y-'('-'Q'------'(,__j'-')'--')c.......:>::.......::.c j f o r a 11 j £ E. 

* * * * (1/i ( j) - tj, (j) n V Q ( j) - { S £ Q j £ y ( S)} 

This theorem is best possible in the sense that if 

* * either V or Q were replaced by a smaller set then the 

min-max relationship of (4.4.20) would not hold for all c e'IR.E. 

By combining (3.10.23) and (4.4.2) we can obtain the 

following strengthenings of Tutte's theorems (3.10.33) and 

(3.1.0.35). 

(4.4.21) Theorem. G = (V, E, tj,) has a perfect 
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matching if and only if for every X c V such that 

G[S] is b-critical for every S £ c
1 

(X) 

we have 

Proof. If G has a perfect matching then by (3.10.23), 

for any X c V we have 

l/2b(V) + l/2(b(X) - lc1 (x)I - b(u(c
0

(x))) ;e l/2b(V) 

so b(X) ;e lc 1 (x)I + b(u(c
0
(x))). 

Suppose G has no perfect matching. Then 

l/2b(V) + 1/2 min{b(X) - lc1 (X)I - b(u(c
0

(x)))} < l/2b(V) by 

(3.10.23). By (3.10.23a) we can choose a set * X which 

minimizes b(X) - lc 1 (x)/ - b(u(c
0

(X))) and which satisfies 

* 0 * * c 2 (X ) = q, and c1 (X) :: Q • Then b (X ) < I c
1 

(X ) I + 

b(u(c0 (x*))) and since c
1

(x*):: QO = {s c V: Js/ > 3 and 

S is a shrinkable subset of {V} it follows from (4,4,2) 

* that G[S] is b-critical for all S £ c
1

(X ).0 

If H is a component of G such that /V(H)/ = 1 and 

b = 1 where {v} = V(H) then H is 1-critical. Therefore 
V 

(4,4.21) becomes in the case of 1-matchings. 

(4,4.22). Theorem. G = (V, E, 1/1) has a perfect 

1-matching if and only if for every X c V such that G[V - X] 

consists of 1-critical components, the number of components 

of G [V-X] is no greater than IX I. 
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We close this section by observing the relationship 

between b-critical graphs and graphs having large numbers 

of linearly independent ''best possible'' matchings. For any 

b = (b.: i EV) of 
]. 
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graph G = (V, E, ~) and vector 

positive integers such that b(V) is odd, the largest number 

of linearly independent np matchings of G that we could 

hope to find is /E/, since each such matching is a vector 

If E = $ then G trivially has [E/ = 0 linearly 

independent np matchings. We show in theorem (4.4.23) 

that if E ~ $, then G has linearly independent np 

matchings if and only if G is one of three sorts of graphs. 

Let K be a connected graph for which there is some 

v E V(K) such that oK(v) = E(K) and let 

be a vector of positive integers such that 

We call K ab-star. 

b = (b. : i E V (K)) 
]. 

b = b(V(K) - {v})-1. 
V 

(4.4.23) Theorem. If E ~ $ then G = (V, E, ~) 

has linearly independent near perfect b-matchings if 

and only if 

(4,4.24) G is b-critical and has no strong cutnode 

or 

(4.4.25) G is ab-star 

or 

(4.4.26) G has two components, one being a balanced 

edge (as defined in 4.2) the other cons;sting of a single 

node v for which b = 1. -------------v--

I . ' 
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Proof. If b (V) is even then G cannot have a 

np matching nor can G satisfy any of (4.4.24)-(4.4.26). 

Hence we assume b(V) is odd. Then G has linearly 

independent np matchings if and only if x(E) s 1/2(b(V) - 1) 

gives a facet of P(G, b). By (4.3.48) this is true if and 

only if one of (4.3.49) or (4.3.50) holds. In view of (4.4.2), 

(4.3.49) is equivalent to (4.4.24). Moreover (4.3.50) 

is easily seen to be equivalent to one of (4.4.25) or (4.4.26) 

holding, completing the proof.O 

In the case of I-matchings, (4.4.21) specializes as 

follows. 

(4.4.27) Theorem. If E ~ ~ then G has 

linearly independent near perfect 1-matchings if and only 

if 

(4.4.28) G is I-critical and nonseparable 

or 

(4.4.29) IV I = 3. 

4.5 Vertices of Matching Polyhedra. 

In this section we characterize the matchings of G 

which are vertices of P(G, b). For the case of 1 matchings 

this problem is rather simply solved; every matching 

belonging to P(G, 1) is a vertex of P(G, 1) . For 

define C = ( C • : 
J 

j e: E) by 

1 if 0 1 x. = 
C • 

J -
J -1 if x9 = 0 

J 

0 
X 

if we 

I 

11 

' 
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[ 

f 
[ 

then 0 
X 

maximizes 

is clearly the unique member of P(G, I) which 

C • X for XE P(G, b). Therefore by (2.4.1) 

0 
x is a vertex of P(G, b). 

However in the general b-matching case, the problem 
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becomes less trivial. In fact we show that the vertices of 

P(G, b) are precisely the matchings produced by the blossom 

algorithm of chapter 3. 

by the blossom algorithm 

for any ' X 

Thus the set of matchings produced 

is as small as possible, by (2,4.5) 

is maximized over P(G, b) by a 

vertex (and perhaps some other members of P(G, b)); by 

(2.4,1) every vertex of P(G, b) is the unique member x 

of P(G, b) maximizing ex for some c E"lt\.E, 

(4.5.1) For any graph G = (V, E, ~) and any 

x·e '(RE we let G+(x) be the spanning subgraph of G whose 

edges are those edges of G for which Thus 

where E+ = {j E E: X. > O}. 
J 

Let H and K be subgraphs of a component of G, Let 

v EV. We say that IT is a path in G from v to H if 

IT is a path in G from V to some w E V (H) and V(H) n 

V (IT) = { V}' We say that IT is a path in G from H to K 

if IT is a path from some V E V(H) to K and V(H) n 

V (IT) = {v}, By the distance in G from H (or v) to K 

we mean the length of the shortest path in G from H (or 

v) to K. Clearly no edge of H or K could be in a path 

from H to K. 
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FIGURE 4.5 Sample Vertex of P(G,b) .. 

deficiency 1 

Edge j •. -such.that x. > 0 . -~ 
J 

Edge j such that x.=l 
J 

Node at'···which.;-matchiorng deficient ® 



(4,5.3) Theorem. (See Figure 4.5) xO E P(G, b) 

is a vertex of P(G, b) if and only if each component H 

satisfies the following: 

(4.5.4) 

(4.5.5) 

is deficient; 

H 

H 

contains no even polygon; 

0 contains at most one node at which x 
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(4.5.6) if H contains more than one odd polygon 

0 then there is an isthmus j of H for which x = 1 ==::.._=:..;:;_:c..::_;;:..::..._:::.::::....---=.c:c..::.===--"'----=-=---'=--=-==-===-=j in 

any path in H joining any two of these polygons; 

(4.5.7) if H contains a node v at which 0 
X 

is deficient and some odd polygons then either v has 

deficiency 1 or else for any odd polygon P contained in H 

~t~h~e~rc...::e.......:i~s=-=a~n__:i~s"--=-t~h~m~u~s=-_.,j~(~P'-'-)-~o~f=---"H'--~f::..::o~r-'w~h::..:::i~c~h=--x~~(P)-=-=1-~i~·n::::_ 

any path in H from v to P. 

Proof. We first prove the necessity of (4.5.4)-(4.5,7) 

by showing that every matching produced by the blossom 

algorithm satisfies the conditions of the theorem. This 

will prove the necessity for by (2.4.1) for any vertex 0 
X 

of P(G, b) there is some co E '\R. E such that 0 
X is the 

unique member of P(G, b) which maximizes 0 
C x for 

x E P(G, b), If we use the blossom algorithm to maximize 

0 
C X for 0 

x E P(G, b), x must be the matching obtained. 

= Since we are maximizing over 
,;; 

P(G, b), V = V and V = cj,' 

Therefore the blossom algorithm must.terminate in step 11, 

If x, R and G = (V, E, ~) are defined as at the start 

of.step 11, and x = xjE then by (3.8,13)-(3.8.16), each 
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H f G-+(-x) component o satisfies (4.5.4)-(4.5.7). We 

show that the operationsof Step 12 preserve this property. 

It is easily seen that 

(4.5.8) if B is a blossom and x is a np 

matching of B then each component H of B+(x) 

(4.5.4)-(4.5.7). 

satisfies 

Suppose x, R and G = (V, E, ~) are such that each 

H f G-+(x-) component o satisfy (4.5.4)-(4.5.7) where 

x = x/iL Suppose we perform a cycle of step 12. This will 

involve executing Step 12c or·Step 12d = since V = <j, • Let 

s, B (S) and G• 
' 

be as defined in ·step 12b. 

Suppose we perform Step 12c. Then there is a unique 

-j E o(S) for which X, = 
J 

1 and xk = 0 for all 

k E o(S) - { j } • We let V be the node of B(S) met by 

j and x is the np matching of B(S) deficient at v. 

Then 

H of 

j is an isthmus for which 

B(S)+(;) containing v 

x = 1 joining the component j 

to the component K of 

G+(x) containing j. If x' is defined as in step 12c, x' 

will not be deficient at any node i E V(B(S)) so using (4.5.8) 

we see that each component of G'+(x' /E') 

(4.5.7). 

Suppose we perform Step 12d. Then 

satisfies (4.5.4)-

X = 0 
j 

for all 

j E o(S). In ~tep 12d we defined x to be a np matching 

of B(S) deficient at r E. B(S). Then where x' is as 

defined in.Step 12d, the components of c'+(x') are precisely 

the components of B(S)+(~) together with the components of 

G+(x). Therefore by (4.5.8) it follows that (4.5.4)-(4.5.7) 

I,' 
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are satisfied. 

Thus step 12 preserves properties (4.5.4)-(4.5.7) 

for each component H of G(x), suppose G and x are the 

last such graph and matching defined in step 12. Then G 

is a spanning subgraph of the original graph G and x. = 0 
J 

for all j E E(G) - E(G). Therefore each component H of 

G+(x) satisfies (3.5.4)-(3.5.7) and the necessity of our 

conditions is proved. 

In (4.5.21) we describe a procedure which expresses any 

matching x E P(G, b) for which a component H of G+(x) 

violates (4.5.4)-(4.5.7) as a convex combination of matchings 

x1, x 2 
E P(G, b) - {x}. This then provides an alternative, 

more direct proof of the necessity of (4.5.4)-(4.5.7). 

Now we prove the sufficiency. Suppose i E P(G, b) is 

a matching such that every component H of G+(i) satisfies 

(4.5.4)-(4.5.7). We will show that there are Jc E, W ~ V 

and R c QO such that x E 'RE satisfies 

(4.5.9) xj = 0 for all j E J 

(4.5.10) x(o(i)) = 

(4.5.11) x(y(S)) = 

b. 
1 

for all 

for all 

i E W 

S E R 

if and only if x = x, for then it will follow that {i}. is 

a single element face of P(G, b), that is, ·x:-··±s"" a- vertex. 

Let J = { j E E: xj = 0}, let W = {i E V: ;;'.(o(i)) = b . } • 
1 

We now show that it is possible to define R so ~hat x will 

be the u~ique member of '\R. E satisfying (4.5.9)-(4.5.11). 

b d b . G+ (x-) . We prove yin uction on the num er of polygons in 

is a forest and thus contains no polygons, let 
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R = ~. By (4.5.5) each tree T in G+(i) has at most one 

node i not belonging to W. Therefore by (3.1.11) x is 

the unique member of 1R. E satisfying (4.5.9) and (4.5.10), 

Suppose the result true for graphs G and matchings 

X such that G+(x) contains fewer polygons than + -G (x) , 

and suppose G+ (x) is not a forest. Let H be any component 

of G+ (x) which contains a polygon. If H has a node r 

at which x is deficient then we designate r as the root 

of H, if H has no such node then designate any polygon 

C contained in H as the root. 

If H is rooted at a polygon C and if C is the 

only polygon contained in H then by (3.1.16), if x is 

b "° E any mem er of '"- satisfying (4.~.9) and (4.5.10) then 

xjE(H) = xjE(H). If we let G' = G[V - V(H)] and let 

x' = ijE(G) 

R:: {SE QO: 

then by our induction hypothesis there is a set 

solution to 

Sc V - V(H)} such that i• is the unique 

x = 0 for all j E J n E(G'), 
j 

x(ll(i)) bi for all i E W n V(G'), 

x(y(S)) for all SER, 

Therefore ~ is the unique solution to (4.5.9)-(4,5.11) 

taking R so defined and the result follows by induction. 

Assume that H either contains at least two polygons 

or else contains a polygon and a node at which x is deficient. 

Suppose that no path in H from a po~ygon of H to the root 

of H contains an isthmus j of H for which 

H contains distinct polygons P and P' 

xj = 1, 

then there must 

If 

I. 

i 
I 

I 

I 
I, 
I 
' 
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be a path in H from P to P' containing no isthmus j 

of H for which xj = 1, contradictory to (4.5.6). Hence 

H contains a unique polygon P and by (4,5.7) the root 

r of H must be a node at which x has a deficiency of 1. 

Thus 
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(4.5.12) H is a blossom, xJE(H) 

of H deficient at r. 

is a np matching 

On the other hand, let P be a polygon of H for which 

every path in H from P to the root r of H contains 

an isthmus j of H for which x. = 1, and for which the 
J 

distance in H from r to P is as great as possible. Let 

TI be a path in H from P to r. TI may contain edges 

of other polygons but by (4.5.6) there is an isthmus j of 

H for which X, = 1 
J 

in TI before any edge belonging to 

a polygon of H. Let k be the first isthmus of H in TI 

for which x:k = 1. Let V be the end of k furthest from 

the root of H. If we delete k from H we obtain 

components, one of which, B, contains P and v. 

easily verified that 

two 

It is 

(4.5.13) B is a blossom, xjE(B) 

of B deficient at v. 

is a np matching 

If (4.5.12) applies, let B = H and v - r. Now 

whichever case applies, if x E 1R. E satisfies (4.5.9), 

and 

(4.5.14) x(o(i)) = b. 
]. 

for 

(4.5.15) x(y(V(B))) = qV(B) 

i E V(B) - {v}, 

i 

;1 
II 

,] 

11 

I 
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Then- since x(y(V(B))) = l/2E(x(o(i)): i s V(B)) and 

qV(B) = l/2(b(V(B)) - 1) 

Therefore by (3.1.16) 

it is easily seen that x(o(v)) = 

(4.5.16) xjy(V(B)) xh<v<B)). 

Let G' = (V', E', •') be the graph obtained from G 

by shrinking V(B). Let x 1 = xjE', Clearly each component 

H of G
1

+(x 1
) satisfies (4.5.4)-(4.5.7) and G

1

+(x 1 ) 

contains one fewer polygon than + -G (x) • Therefore by our 

b -1. 
V 

induction hypothesis there is a set R' of shrinkable subsets 

of G' such that 

(4.5.17) 

(4.5.18) 

(4.5.19) 

if and only if X = 

if B "' H then W' 

E' 
X E '1i\_ satisfies 

X, = 0 for j E J 
J 

x(oG I (i)= b. for 
1 

x(yG 1 (S)) = qs for 

x' , where if B = H 

- w n v• u {V(B)} 

n E' 
' 

i E w• 

all 

then 

(and 

Now notice that if X E 
I\( E satisfies 

all i E V(B) and (4.5.15) then 

x(o(V(B))) = 1 = bV(B) . 

s E R' 

w• - w n VI ' 

bV(B) - 1) . 

x(o(i)) b. for 
1 

Thus for any X S 1R. E which satisfies (4.5.9), (4.5.10) and 

(4.5.15), xjE' satisfies (4.5.17) and (4.5.18). 

For any S s R' such that V(B) s S, let 

C(S) = (S -- {V(B)}) u V(B). Then c(S) s QO (since S was a 

shrinkable subset of G 1
). Moreover (4.5.15) and 

x{y(C(S))) = qc(S) imply x(yG 1 (S)) = q 5 . 

I, 
1,1 

:I 
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Let R ={SER': V(B) ES}, Let R = {V(B)} u (R - R') u 

{~(S): SER'}, Then if x E ··[R_E satisfies (4.5.9)-(4.5.11) 

then xjE' satisfies (4.5,17)-(4,5.19) so xjE' = xjE'. 

Moreover x satisfies (4.5.14) and (4.5.15) (and (4.5,9)) 

so (4.5.16) holds. Therefore x E 1K.E satisfies (4.5.9)-

(4.5.11) taking R as defined above if and only if x = x 

and the theorem now follows by induction.D 

As a result of this theorem and theorem (2.4.14) we have 

the following result. 

(4.5.20) Theorem. Let x E P(G, b). There is a 

s e t X s ~P_(~G~, --'b'-')'----'s-'u'-c'-h"---"t-"h~a'-t'---"'f-"o-'r'---e=a...cc...ch'----=x'---'E:......;Xc.c...'---'e'-v'-e=r.,_y--'c'-o'-m=p-'o-'n'-e'-n~t 

H of G+(x) satisfies (4.5.4)-(4.5.7), jxj ~ jEj and x 

is a convex combination of the members of X. 

We next describe a procedure which will express any 

matching x
0 

E P(G, b) which is no~ a vertex of P(G, b) 

a convex combination of two different matchings which are 

simpler in a certain sense. 

(4.5.21) Matching Simplification Algorithm. 

as 

Step 1. contains no even polygon then go to 

Step 2. Otherwise let P be an even polygon, let v E V(P) 

and let T be a track from v to v induced by P. Let 

J be the set of even edges of T, Let 

;>. - . { 0 min x.: 
J 

j E J} 

er . { 0 j E(P) J}. - min x. : E -
J 

Then >., er are positive'integers. Define z E '\R.E by 



r 

t 
[ 

! 

~ 
I 
r 
~· 

Then 

z. 
J 

(4.5.22) 

1 if j e: J 

-1 if j £ E(P) - J 

0 if j £ E - E(P). 

0 
X 

A O o 0 
A+o (x +oz)+ A+o (x - Az). 
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0 
X is a convex combination of different matchings Therefore 

0 
X + OZ and 0 

x - AZ , both of which are members of P(G, b). 

Moreover, 

(4.5.23) 

(4.5.24) 

Exit from the algorithm. 

SteE 2. If no component of G+(xO)" has more than one 

node at which 0 
is deficient, X then go to Step 3. Otherwise 

let H be such a component and let v, w £ V(H) be nodes 

which 0 at X is deficient. Let 11 be a path in H from 

V to w, let J be the set of odd edges of 11 • Let 

'' . { 0 . J} A - min x. : J £ 
J 

0 0 
0 ' - min { b X ( o ( V) ) } U { X • : j £ E ( 11) - J}) • 

V J 

If 11 is of even length let 0 - 0 ' and let 

min{A', 0 A - b X (o(w))}, w 

if 11 is of odd length, let A - A ' and let 

min{o', 
'0 ' 

0 - b - x (o{w))}. w 
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Then both and CJ are positive integers. Define Z E '\K. E 

by 

1 if j E J 

z . 
J 

-1 if j E E (,r) - J 

0 if j E E - E(rr). 

Then (4.5.22) holds and 0 
X is a convex combination of 

0 + and 0 AZ X CJZ X - which by our choice of a and A 

matchings belonging to P(G, b) - {x 0 }. Moreover, either 

(4.5.23) holds or 

of G 

(4.5.25) 

0 then X • 

0 
X + CJZ is deficient at fewer nodes 

Similarly, either (4.5.24) holds or 

are 

G than 

(4.5.26) x
0 

- AZ is deficient at fewer nodes of 

0 
X • 

Exit from the algorithm. 

Step 3. If every path in G+(xO) which joins two odd 

polygons in G+(xO) contains an isthmus for which 0 
X = 1 

j 
j 

then go to Step 4. Otherwise, notice that since we bypassed 

can 

and 

,each 

every edge of 

belongs to an 

choose odd polygons 

a path Tr from V 

edge .j of Tr is 

G+(xO) which is not an isthmus of 

Therefore we 

pl and p2 contained in G+(x 0 ) 

E V (Pl) to w E V(P
2

) such that 

an isthmus of G+(xO) for which 

x~;, 2. 
J 

Let Tl be a track from v to v induced by P
1

, 

let Tz be a track from w to w induced by P 2 . If ,r 

(' 
' 
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is of odd length then let J be the set of odd edges of Tl 

and T
2 

together with the set of even edges of TI. If TI 

is of even length, let J be the set of odd edges of Tl 

together with the set of even edges of TI and T2 . Let 

A 
. . 0 

- min({x.: j £ 
J 

0 - min({x~: 
J 

j £ 

Then A and 0 are 

J - E(TI)} u {(1-.01,· 2xj J 

E(T 1 ) u E(T 2 ) - J} 

positive integers. 

1 if j £ J - E (TI) 

2 if j £ J n E(TI) 

-2 if j £ E (TI) - J 

u 

£ J n E (TI)}) 

{ lfx~ J: j £ E (TI) -

Define z e '\R. E by 

J}) • 

Then (4.5.21) holds; 
0 

X is a convex combination of matchings 

oz, 
0 0 x - AZ£ P(G, b) - {x }. For any X £ P(G, b) let 

I(x) - {j £ E: j is an isthmus of G+(x) and x. = l}. 
J 

Then we have either (4.5.23), (4.5.25) or 

(4.5.27) 
0 0 I(x + oz) ~ I(x) 

and either (4.5.24), (4.5.26) or 

(4.5.28) 
0 0 

I(x - AZ) ~ I(x ). 

Exit from the algorithm. 



Step 4. If every component H of G+(xO) 

both an odd polygon and a node V at which 0 
X 

containing 

has a 

deficiency of at least two has a member of I(xO) in every 

path from to odd polygon of H, then stop, 0 is V an X a 

vertex of P(G, b) • Otherwise let V be a node of a 

component H of G+(x 0 ) at which 0 has deficiency of X a 

at least two, let 'IT be a path in H from V to a node 

w of an odd polygon p contained in H such that every 

j E ( 11) is isthmus for which 0 ;,, 2 • Let be £ an x. T a 
J 

track from w to w induced by p. If 'IT if of odd 

length then let J be the set of odd edges of 'IT together 

with the even edges of T, if 'IT is of even length, let J 

be the set of odd edges of 'IT and T • Let 

" - min({xf: j £ J n E(,)} u {[}xJJ: j £ J n E(11)}, 

a= min({[l/2(bv - x
0

(o(v)))]} u{[ }xf ]: j £ E(11) - J} u 

o· 
{x.: j £ E(,) - J}). 

J 

Then a, " are positive integers. Define z £ '\R. E by 

1 if j £ J n E(,) 

-1 if j £ E(,) - J 

z . - 2 if j £ J n E ( 11) 
J 

-2 if j £ E ( 11) - J 

0 if j £ E (E(11) u E(,)), 

' . 
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Then (4.5.21) holds; 0 
x is a convex combination of matchings 

0 0 
X + O'Z, X 

. 0 
1-z £ P(G, b) - {x }. We have either (4.5,23), 

I 
I 
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(4.5.25), (4.5.27) or 

(4.5.29) there is i EV such that the deficiency 

of 
0 

X at i is at least two and the deficiency of 

at i is one. 

Similarly, we have (4.5.24), (4.5.26), (4.5.28) or 

(4.5.30) there is i E V 
0 

X has 

0 
x + crz 

deficiency at least two and at which 

of one. 

at which 

0 
X - AZ has a deficiency 

This ends the algorithm,D 

This algorithm has several uses. First it reproves the 

necessity of (4.5.4)-(4.5.7) in theorem (4.5.3), for it shows 

that if 0 x violates anyone of (4.5.4)-(4.5.7) then it is a 

co·nvex combination of two different matchings belonging to 

P(G, b). If x = >.x1 + (1 - >.)x 2 for A E 'iR. satisfying 

0 s >. s 1 then for any c E '\R.E, c • x =Ac • x 1 + (1->.)c 

so either 1 
C • X C 

2 x must be at least as large as or 

0 
C • X • 

0 x cannot be a vertex of Therefore by (2.4.1) 

P(G, b). 

Second, we can use this algorithm for the following 

2 
X 

problem. Let 
E 0 c E 1R. and a matching x E P(G, b) be given. 

* We wish to find a vertex x 

* 
of P(G, b) such that 

0 
C • X ~ C 

0 
• X • Apply the following procedure. Let X - X • 

Step A. Apply (4.5.21) to x. If ~t terminates with 

the information that x is a vertex of P(G, b) then let 

* x = x and stop. Otherwise it provides matchings 

I 
I 

11 

I 

ii 
! 
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1 2 P(G, b) {x} such that is combination X X E: - X a convex 
' 

of 1 and 2 At least of 1 and 2 must X X . one C . X C . X 

be less than replace with that 1 2 no C . x· X X or X ' 
and return to step A. 

This describes the procedure, we now show why it is 

finite. Notice that in the course of this procedure if at 

some point we perform step i of (4.5.21) then at no later 

point do we perform step k of (4.5.21) for k < i. By 

(4.5.23) and (4.5.24), each application of step 1 decreases 

IE(G+(x))I. By (4.5.23)-(4.5.26) each application of step 2 

decreases IE (G+ (x)) I or l{i e v: x(o(i)) < b.}I. By 
1 

(4.5.23)-(4.5.28) each application of step 3 decreases 

IE(G+(x)) - I(x)I. Finally, by (4.5.23)-(4,5.30) each 

application of step 4 decreases IE(G+(x)) - I(x)I or 

l{i £ V: b. - x(o(i)) ~ 2}1. Therefore steps 1 through 4 can . 1 

be applied at most IE(G+(xo))I + J{i £ V: x(o(i)) < b.}J 
1 

times. Thus we will find x* after at most JE(G+(xO)) J + 

J{i £ V: x 0 (o(i)) < b.}I applications of (4.5.21). 
1 

A third problem to which (4.5.21) applies is that of 

respresenting any matching x 0 
E: P(G, b) as a convex 

combination of the members of a set X of vertices of P(G, b). 

Let a 0 
X 

= 1. 

Step A. Suppose we have a finite set X of matchings 

contained in P(G, b) and (a : x £ X). E: 1R such that 
X 

(4.5.22) 

(4.5.23) 

0 s a for all x E: X, 
X 

E(a : x E: X) = 1, 
X 

'I'' 
i' 

I 

,::, 

i.! 

I. 
Ii 

I ii 
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(4.5.24) XO= ~(a X: XE X). 
X 

If every member of X is a vertex of P(G, b) 

X is the set we require. Otherwise, suppose 

then stop, 

x EX is 

not a vertex of P(G, b). Apply (4.5.21) to x, thereby 

obtaining matchings 1 2 P(G, X 
' 

X E 

µ1' µ2 E '\R.. for which µ1 + µ2 = 1 

2 For each i { 1' 2}, if i 
µ2x . E X 

a, 
i 

X 

if :i i 'f X then let 

a' 
X 

For every X E X - {x, 

- a i + µi a 
X X 

i - µ.a 
]. -

X 

1 x2} let X 
' 

a' - a. • 
X X 

b) - {;;:} and positive 

such that 
1 + X = µlx 

E X then let 

4.55 

Let X' -= X u {x
1 , x

2 } - {-x}. Th 'f 1 X b X' en i we rep ace y 

and ax by a~,· (4.5.22)-(4.5.24) 

step A. 

still hold; return to 

This describes the procedure; an argument similar to 

that given by the preceding procedure proves that it is finite. 

Unfortunately however the size of X tends to increase 

exponentially with the size of 

b . } I . * By (4.5.20) there is a se.t X of vertices of P (G' b) 
]. 

0 * such that X is a convex combination of the members of X 

and Jx* I :s; IE I ; it seems unlikely t.hat the procedure described 

* here will find such an X . 

\II 
I 
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Chapter 5 

Optimizing over Faces of P(G, b) 

Throughout this chapter G = (V, E' ,J,) is a graph and 

b = (bi: i E V) is a vector of positive integers. We let 

C = ( C. : 
J 

j E E) be an arbitrary real vector. In Chapter 3 

we described the blossom algorithm which solved the problem 

of maximizing c • x for x E P(G, b). In this chapter we 

present an algorithm called the face optimization algorithm 

which solves the problem of maximizing c • x for x belonging 

to any face of P(G, b). This algorithm actually has two 

parts. The first part is a preconditioning process which 

is used to obtain an equivalent problem with a simpler 

structure. The second part, which uses a modification of the 

blossom algorithm as a subroutine, solves this simpler problem. 

We also describe how in principle the problem of optimizing 

over a face can be reduced to an ordinary matching problem. 

Finally we show how a certain type of so called "multi-optimization" 

problems can be solved by solving a sequence of face 

·optimization problems. 

In -Chapter 3 (Theorem(3.4.5))we proved the theorem of 

Edmonds, that P(G, b) is the solution set of the linear 

inequalities (3,4.6)-(3.4.8). In view of this and (3.1,7), 

(5.0.1) 

P(G, b) = {x E 1fZ E: 

x. ;;, 0 for all j E E, 
J 

(5.0.2) x(o(i)) s bi for all i EV, 

(5.0.3) x(y(S)) s_q
8 

for all SEQ'} 

;_1,_1 

'1• l '. 

:11 

'1 I, 
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11 

11 
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where Q' ={S5:V: b(S) 

for all SEQ'. 

is odd} and q 8 _ 1/2(b(S) - 1) 

The difference between this set of inequalities and that 

prescribed in theorem (3~4.5) is that in (5.0.3) we have a 

"blossom inequality" for every SE V such that b(S) is 

odd and in (3.4.8) we only had such inequalities for shrinkable 

sets. In general then the set of inequalities (5.0.3) is 

far from minimal (see (4.4.19)). However by using these· 

redundant ·i·nequalities we are able to obtain a relatively 

simple description of the faces of P(G, b) by means of a 

preconditioning process. 

5.1. The Faces of P(G b). 

Let W:: V, Jc E and NE Q'. Then we define the face 

·F(J, W, N) .of P(G, b) to be the set of all x E P(G, b) 

satisfying 

(5.1.1) x = 0 for all J0 E J j 

(5.1.2) x(o(i)) = bi for all i E W, 

(5.1.3) x(y(S)) = q
8 

for all SEN. 

In general there are many different choices of J, W 

and N which give the same face of P(G, b). It is useful 

here to find J, W and N such that N is a nested family 

of sets (see -Section 3.2). The following propositions form 
i . 

the basis of _an efficient preconditioning algorithm which when 

presented with sets 

J' EE, W' EV and 

J:: E, WE ·v and 

NI E ·q' such that 

NC Q' find sets 

N I is a nested family" 

5. 2 

!_·1 I 
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and -F(J, W, N) = F(J', W', N'). 

Throughout the remainder of this chapter we assume 

JC E, w s V, NC Q'. 

(5.1.4) Proposition. Let S, TEN be such that 

b(S n T) is odd. Let K = y(S u T) - (y(S) u y(T)). Then 

F (J, W, N) = F (J u K, W, N - { S, T} u { S n T, S u T}) • 

Proof. First observe that for any x E {tZ E, 

(5.1.5) x(y(S n T)) + x(y(S u T)) = x(y(S)) + 

x(y(T)) + x(K). 

If X E F (J' W, N) then x(y(S)) = qs and x(y(T)) = qT. 

Since b(S n T) is odd, b(S u T) is also odd and so since 

X e: P(G, b), x(y(S u T)) s qSUT and x(y(S n T)) s qSnT" 

Thus by (5.1.5), 

qs + qT =·x(y(S n T)) + x(y(S u T)) - X (K) 

( 5 .l. 6 ) ,; qSnT + qSUT - O 

= l/2(b(S n T) - l + b(S u T) - 1) 

= l/2(b(S) - 1) + l/2(b(T) - 1) 

Therefore equality must hold in (~.1.6) and so 

x(y(S n T)) = qSnT, 

x(y(S u T)) = qSuT' 

x(K) = 0 

and XE F(J u K, W, N - {s, T} u {Su T, s n T}). 

5.3 11 
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r 
Conversely, if x £ F(J u K, W, N - {S, T} u {Su T, Sn T}) 

then by (5.1.5) 

x(y(S)) + x(y(T)) = qsur + qsnr - O 

so since x £ P(G, b) implies x(y(S)) s q
8 

and x(y(T)) s qr, 

we have x £ F(J, W, N).D 

(5.1.7) Proposition. Let s ' T £ N be such that 

b(S n T) is even. Let L - o (S n T) n o(S u T). Then 

F(J, w, N) = F(J u L, w u (S n T) , N - { s ' T} u {S - T' T - s}) . 

Proof. First observe that for a·ny X £ iK. E' 

(5.1.8) x(y(S)) + x(y(T)) = x(y(S - T)) + x(y(T - S)) 

+ E(x(o(i)): i £ s n T) - x(L). 

Since b(S n T) is even, both b(S - T) and b(T - S) must 

be odd. Suppose x £ F(J, W, N). Then x(y(S)) = qs and 

x(y{T)) = qT. Since x £ P(G, b) it follows that 

x(y(S - T)) s qS-T' x(y(T - S)) S qT-S' E(x(o(i)): i £Sn T) s 

b(S n T) and x(L) 2 0. These facts together with (5.1.8) imply 

5.4 

qs +qr= x(y(S - T)) + x(y(T - S)) + E(x(o(i)): i£SnT) - x(L) 

(5.1.9) s qS-T + qT-S + b(S n T) - 0 

Therefore equality must hold in (5.1.9), that is 

x(y(S - T)) = qS-T' x(y(T - S)) = qT-S' x(o(i)) = bi for all 

;[ 
I 

I 
i 

I 
I 

I I 

!·, 
I 

! 

I. 

! 
I 

!. ,, 
. I 



i 8 S n T and x(L) = 0. Therefore 

(5.1.10) x E F(J u L, Wu (Sn T), N -{s, T} u 

{S - T, T - S}). 

Conversely, if x satisfies (5.1.10) then (5.1.8) gives 

x(y(S)) + x(y(T)) = qS-T + qT-S + b(S n T) 

so since x 8 P(G, b) implies x(y(S)) 5 q
5 

and x(y(T)) 5 

we have x(y(S)) = q 5 and x(y(T)) = qT. 

X8F(J,W,N).D 

Therefore 

The operations indicated by these two propositions will 

provide the core of our preconditioning algorithm. Now we 

show that by repeatedly applying these operations to an 

arbitrary family of sets we will eventually obtain a nested 

family of sets. 

The following results apply to any set N of subsets 

of a set V, that is the value of b(S) for S 8 N is of 

no significance. However our use of them will be restricted 

to sets N !a Q'. 

Let S and T be sets. We say that S cuts T or S 

and T cut each other if 

SnT;<<j,, 

s i T and Tis; 

(5.1.11) Proposition. Let H, S and T be subsets 

of V and suppose S cuts. T. 

(5.1.12) If H cuts Sn~ or Su T then H 

5.5 

I 
I. ,. 
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I 
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cuts s or H cuts T• 

' 

(5.1.13) If H cuts s n T and s u T then H 

cuts s and T• 
' 

(5.1.14) If H cuts s - T or T - s then H 

cuts s or T. , 

(5.1.15) If H cuts s - T and T - s then H 

cuts s and T. 

Proof, If H cuts Sn T then H n (Sn T) • $ so 

(5.1.16) H n ·S • • and H n T ••• 
Moreover s n T .{: H so 

(5.1.17) S .$ H and TI H. 

Moreover H I s n T so 

(5.1.18) H § s or H f T. 

Combining (5.1.16)-(5.1.18) proves that if H cuts s n T 

then H cuts s or T. 

If H cuts s u T then H ! s u T so 

(5.1.19) H .$ s and H i T. 

Thus (5.1.16), (5.1.17) and (5.1.19) prove (5.1.13). If H 

cuts s u T then H n (S u T) • • so 

(5.1.20) H n S • • or H n l • •· 

Moreover, suppose H n T = •· Then H n (Sn T) = • and 

5. 6 Ii' 
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r 
since S n T " <j> (because S cuts T), 

(5.1.21) S f H. 

Thus if H n T = 4> , combining (5.1.19)-(5.1.21) proves that 

H cuts S and similarly if H n S = <j> we can see that H 

cuts T. Thus (5.1.12) is proved. 

Suppose that H cuts S - T. Then 

(5.1.22) H n S "</>, Si H, Hf T. 

If H f s then we have immediately that H cuts s . If 

H C s then since H .'.f s - T we must have H n T " 4> • If 

T :;; H then we would have T C - s, contradictory to the fact 

that s cuts T. Therefore T f H and so H cuts T. 

If H cuts T - S then 

(5.1.23) H n T" </>, T f H and Hf S 

and a similar argument shows that H cuts S or T and 

(5.1.14) follows. 

Finally, if H cuts both S - T and T - S then by 

combining (5.1.22) and (5.1.23) we see that H cuts both 

S and T, proving (5.1.15).D 

Let N be an arbitrary set of subsets of V. Let 

K(N) = {{S, T} EN: S cuts T}. Let k(N)=IK(N)j. Observe 

that k(N) = 0 if and only if N is a nested family of sets. 

(5.1.24) ProBosition .. Let N be a set of subsets 

of V for which k(N) > O. Let . {S; T} E K(N). Let 

N' = N -·{s, T} u·{s n T, s u T}. 

5. 7 
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l 

N'' = N - {S, T} u {S - T, T - S}. 

Then k(N') 5 k(N) - 1 and k(N") 5 k(N) - 1. 

Proof. By using the correspondences suggested by 

(5.1.12)-(5.1.15) it is easy to exhibit one to one functions 

from K(N') into K(N) - {S, T} and from K(N") into 

K(N) - {S, T}, since {Su T, Sn T} t K(N') and 

{S - T, T - S} t K(N''). The result now follows.D 

It should be observed that k(N') and k(N'') need not 

equal k(N) - 1, generally they will be much smaller. 

The following theorem now follows directly. 

(5.1.25) Theorem. Let F(J, w, N) be a face of 

P(G, b) . There are J' 
' 

W' and N' such that J 5: J' C !, 

w C W' C V and N' is a nested family of members of Q' - - - -
such that F (J' w, N) ·= F ( J' , W' , NI) . 

Proof. Let Jo, wo, NO be such that J C Jo s E, 

w C WO C - V, F(Jo, WO , NO) = F(J, w, N) and k(l,o) is as 

small as possible. If k(NO) = 0 then NO is a nested 

family and we are finished. Otherwise, let { s ' T} £ K(NO). 

If b(S n T) is odd then let N1 = NO - {s, T} u {SuT, SnT}, 

let Jl _ JO u (y(S u T) - (y(S) u y(T))). Then by (5.1.4), 

F(J1 , W, N1 ) = F(J, W, N) and by (5.1.24) k(N1 ) < k(NO), 

a contradiction. If b(S n T) is even then let 

Nl = NO { s, T} {S T s} , let 
- 1 Jo ( o ( S T) - u T, J - u n n 

o(S u T)), let w1 - WO u (S n T). Then by (5.1.7), 

F(Jl, wl· , Nl) = F(J, w, N) and by (5.1.24) k(N1 ) < k(No), 

a contradiction.D 
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5,2 A Preconditioning Algorithm. 

In this section we present an algorithm which when 

presented with sets J :; E, w: c V and N c Q' will find 

* * * J :: E, W c V and N :: Q' such that N* is a nested 

* * * family and F(J, W, N) = F(J, W, N ), It is based upon 

the proof of (5.1.23) but manipulates the data in such a way 

that in a sense the algorithm is as efficient as could be 

hoped for. It relies on the following proposition. 

(5.2.1) Proposition. Let N be a set of subsets 

of V, let S be a minimal member of N and let T be a 

member of N which cuts S, Then for any HEN, if H 

does not cut S then H does not cut Sn T or S - T. 

Proof. Since H does not cut s and s is a minimal 

member· of N either H n s = <j, or H :, s . If 

then H n (S n T) = H n (S T) = cj, so H does 

s n T or s - T, If H :, s then H 2 (S n T) 

so again H does not cut s n T or s - T.O 

Suppose Cher!" is s E N such that Is I = 1. 

If b = 1 then every X E '\R_ E satisfies 
V 

(5.2.2) x(y{v})) = l/2(b - 1), 
V 

H n s = cj, 

not cut 

and H ,, 

Let {v} 

if bv > 1 then no x E 'IRE. satisfies (5. 2, 2) and 

(S 

-

F(J, W, N) = cj,. Thus when we detect a singleton {v} during 

the preconditioning algorithm we will either ignore it if 

-

s . 

b = 1 · or else stop with the information that F(J, W, N) = cj, 
V 

if b · > 1. 
V 

5,9 
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(5.2.3) Preconditioning -Algorithm, 

Initially we have sets J C E, w C V, N C Q' ' we will - -
* * * terminate with sets J C E, w :: V and N C Q' such that -

* * * * N is a nested family and F (J' W, N) = F(J 
' 

w 
' 

N ) 

unless F(J, W, N) = • in which case we terminate with that 

information. 

Step o. Let J - J' w - W, R - • and R = 'N . 

Step 1. If R = • then go to Step 5 . Otherwise scan 

R to find a minimal member s. If Is I = 1 then go to 

seep 4' otherwise go to ·seep 2 . 

Step 2. Test each T 8 R - {S} in turn, if T does 

not cut S then do nothing. If T cuts S then go to Step 

2a or 2b according as b(S n T) is odd or even. When all 

members of R - {S} have been tested, go to Step 3. 

Step 2a. Replace J with Ju (y(S u T) - (y(S) u y(T))) 

and replace R with R - {S, T} u {Su T, Sn T}. Replace 

S and T with Sn T and Su T respectively. If Isl = 1 

then go to-~tep 4, otherwise return to step 2 and resume 

testing members of R - {S, T} which have not been previously 

tested in this execution of Step 2. 

Step 2b. Replace W with Wu (Sn T); J with 

5.10 

Ju (6(S n T) n 6(S u T)) and R with. R - {S, T} u {S-T, T-S}. 

Replace S and T with S - T and T - S respectively. 

If JsJ = 1 then go to ~tep 4, otherwise return to Step 2 

and resume testing untested members of R -·{s, T}. 

Step 3.- Now the current S cuts no member of R - {S}. 

Replace R ~ith R - {S} and if St· R then repla~e R with 

i/ 
I ,, 
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l 

Ru {S}. Go to Step 1. 

s is a Bingleton, let {v} - S, If b > 1 
V 

Step 4, 

then stop, F(J, W, Ru R) = <p, If b 
V 

1 then replace 

R with R - {S} and go to step 1. 

Step 5, 

the algorithm. 

* * * Let J - J, W - W and N - R and terminate 

In view of (5.1.4) and (5.1.7), at every point in the 

algorithm F(J, W, N) = F(J, W, Ru R). Since the size of 

R is reduced by one each time we perform Step 3 and since we 

either terminate or reduce the size of R by one in Step 4, 

* the algorithm terminates after a finite number of steps. N 

is a nested family of sets for the following reason: at each 

stage of the algorithm R is a nested family and no member 

of R cuts a member of R, This can be seen as follows. 

Initially R = <p and it is trivially true. It follows from 

(5.1.11) that each application of ,Step 2a or Step 2b maintains 

this property. Step 3 simply involves transferring a member 

1rom R to R so this property is preserved, Step 4 either 

terminates or else deletes a member from R so this property 

is maintained. 

The importance of Proposition (5.2.1) is that after 

completing Step 2a or 2b we can resume our scan of R - {S} 

from where we were, we do not need to retest the members of 

R - {S} which have already been tested. 

We now determine an upper bound on the amount of work 

done by the algorithm in solving a problem. We perform Steps 

1 and 3. or 4 

perform Step 2 

times, once for each member of N, We 

lal - 1 times, when scanning in Step 1 we 

5.11 
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consider jiij sets. Since an upper bound on 

the amount of work done in solving a problem is of the order 

jNj 2 • f(V, E) where f(V, E) is a measure of the 

efficiency of the set handling routines which perform the 

manipulations of Steps 1, 2a and 2b and so will gener~lly 

depend upon Iv I and but not 

The order of this bound seems as good as can be expected 

for the following reason. There are pairs of sets 

in N and the members of each such pair have to be tested 

to see whether or not they cut each other, since the relation 

''cut'' is nontransitive. Thus we would expect that our 

bound dn an algorithm to replace N with a nested family 

* N would be of the order INl 2 
• f'(V, E) where f' (V, E) 

is some measµre of our set· handling efficiency. 

* * * We now have sets J ' w and N such that 

*· * * * F(J, w, N) = F(J 
' 

w N ) and N is a nested family, or 

else know that F(J, W, N) = ~. The original set N may 

have been very large, if bi is odd f~r all i EV then 

* lq' I = zlvl-1. 

IN*/,;; /vi - 1. 

However N is relatively small; by (3.2.3), 

In the following sections we show how to maximize c • x 

for XE F(J, W, N) where N is a nested subset of Q' which 

contains no singletons. This then can be combined with the 

preconditioning algorithm of this section to provide an 

efficient algorithm for solving the probl.em of optimizing over 

an arbitrary face of P(G, b). 

5.3 Pseudo Hungarian Forests 

Let G = (V, E, TjJ) = be a graph, let V c V and let x 

' 
5.12 ,i 
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be a matching of G which satisfies 

(5.3.1) x(o(i)) $ bi for all i e v. 

= In (3.7.9) we defined d(G, V; x), a measure of the amount 

by which x fails to be a feasible matching. Let 

N ~ Q ={Sc V: b(S) is odd and /s/ ~ 3} and let x be 

a matching of G which satisfies (5.3.1) and 

(5.3.2) x(y(S)) = q 5 for all s EN. 

We define 

(5.3.3) d(G, v= N; x) _ d(G, v=; x) 

E(b. - x(o(i)): i Ev-). 
]. 

If x satisfies (5.3.1) but violates (5.3.2) then we define 

d(G, V-, N; x) - "'· 

Let X be the set of all matchings of G which satisfy 

(5.3.1). We define 

(5.3.4) D(G, V-, N) - min{d(G, V-, N; x): x EX}. 

Clearly D(G, v=, N) <"' if and only if G has a matching 

= x satisfying (5.3.1) and (5.3.2) and D(G, V, N) = 0 if 

and only if G has a matching x satisfying (5.3.1), (5.3.2) 

and 

(5.3.5) x(o(i)) = bi for all i Ev-. 

Finally, observe that 

5.13 
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(5.3.6) d(G, V, N; x) = 1 if and only if x is 

a np matching of G which satisfies (5.3.2) and consequently 

(5.3.7) D(G, V, N) = 1 if and only if G has 

a np matching x which satisfies (S.3.2). 

We say that a nested family N of members of Q is a 

shrinkable family if G[S] x N[S] is shrinkable for all 

s e: Q. (Recall N[S] - {Te: N: Tc S}). 

Throughout much of the remainder of this section we 

will be assuming that N is a shrinkable family of members 

of Q. This is because the algorithm presented in the 

following section replaces the sets J, W, N where N is 

a nested family of members of Q' with sets J', W', N' 

where N' is a shrinkable family of subsets of V and such 

that 

F(J, W, N) = F(J', W', N'). 

Let N be a shrinkable family of subsets of V. We 

saw in (3.7.12) that any matching X of G = (v, E, ~) -

G X N which satisfied x < ,s (i))' ,;; b, for all i e: V could 
G 1 

be extended to a matching X of G which satisfied (S.3.1) 

and for which d(G, v=; x) = d(G, v=; x) where 

(S.3.8) = _ (V n V) u {maximal 

It is easy to see that x can be constructed so as to 

satisfy (S.3.2). Thus we have 

(5.3.9) Proposition. Let G = (V, E •) be a 

graph and let N be a shrinkable family of subsets of V. 

5.14 
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~L~e~t~~G~=-~<~v~, _E~·-~~' ~) _=_G __ x_N_,.___l_e_t __ v_= C _v __ a_n __ d_l_e_t __ v_-_-__ b--'-e 

defined as in (5.3.8). Then any matching x of G which 

satisfies 

x(o_(i)) s bi for all i £ V 
G 

can be extended to a matching x of G which satisfies 

(5.3.1) and (5.3.2). Moreover 

= d (G, V N; x) = d(G, v=; x). 

What is of special interest to us here however, is that 

when we have constraints (5.3.2), we have the following 

complementary result, 

(5.3,10) Proposition. Let G = (V, E, 1/J) be a 

graph and let N be a shrinkable family of subsets of V. 

Let G = (V E ~) = G X N, let v= CV and let v= be 
==-.CC...-~'-'-''-=-''--'---''----'-'--''-=.CC...-'-- -'--=-=-~=---'----"-=-
defined as in (5,3.8). Then for any matching x of G which 

satisfies (5,3.1) and (5.3.2),· x - xii is a matching of G 

satisfying 

(5.3.11) x(o (i)) s bi for all i £ V, 
G 

(5.3,12) d(G, v-, N; x);, d(G, v=;.x) 

Proof. Suppose x is a matching of G which satisfies 

(5.3:1) and (5.i.2), Then since x(y(S)) = q 8 for all 

S £ N, it follows from (5.3.1) that 

x(o(~)) s 1 = b 8 for all s £ N. 

This combined with (5.3.1) proves (5.3.11). 

By (5.3,1) and (5,3.2)., for any pseudonode S £ V n N, 

5.15 



xly(S) is a np matching of G[S] deficient at some node 

v(S) E S. Therefore 

(5.3.13) E(bi - x(o(i)): i c S) = bv(S) - x(o(v(S))) 

(5.3.14) = b
8 

- x(o_(S)), 
G 

Therefore 

d (G, N; x) = E(b. - x(o(i))·: i E V-) 
]. 

= E(b. - x(o(i)): i £ V 
]. 

= u (N) > 

+ E(b. - x(o(i)): i es n v=, s c N) 
]. 

where N is the set of maximal members of N. 

Therefore by (5.3.13) 

(5.3,15) d(G, v-, N; x) = E(b. - x(o(i): 
]. 

= i e V -u(N)) 

+ E(bv(S) - x(o(v(S))): SEN, v(S) £ V-). 

= For any SEN, S £ v= only if Sc V and hence only if 

v(S) EV-. Therefore by (5,3,14) and (5.3.15) 

d (G, 
= x) E (bi x(o(i)): = u(N)) V 

' N; ;;,, - i E V -

E(b 8 x(o ( s)) : -= 
+ - s £ N n V 

G 

<l(G, 
-= 

= V ; x) 

and (5.3.12) is proved. Notice that we have strict inequality 

in (5,3.12) if and only if for some SEN, we have_ Sf v=, and 

x(o(S)) = 0 and x(o(i)) = bi - 1 for some i c Sn v-.O 

Combining (5,3.9) and (5,3.10) we have 

11 
'I 
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= (5.3.16) 

as in (5.3.10) then 

Theorem. If G, G, V and N are 

D(G, V = N) = D(G 

Proposition (5.3.10) states a major difference between 

finding matchings satisfying (5.3.1) and (5,3,2) and simply 

finding matchings satisfying (5.3.1). In this latter case 

it is not true that every such matching of G is a matching 

of G satisfying (5.3.11). Thus in the simpler problem, 

shrinking was never permanent, in Step 9e of the blossom 

algorithm we allowed for the possibility of expanding odd 

pseudonodes of Hungarian forests. However we shall see that 

when treating the problem of this chapter, shrinking can be 

permanent whenever we have a constraint x(y(S)) = q 8 for 

a set S which we shrink. 

Let G = (V, E, ,j,) be a graph, let R be a shrinkable 

family of subsets of V and let N C R, Let G = (v, E, 

G X R and let F be an alternating forest contained in 

G with respect to a matching X of G which satisfies 

x(o_(i)) $ bi for all i € v. 
G 

= Let V be a subset of V and let 

(5.3.17) v= - (v= n V) u {S € Rn V: S c v=}. 

We say that F is a pseudo Hungarian forest over N with 

respect to x if F satisfies (3.7.2).-(3.7.4), (3.7.6), 

(3.7.7) and 

(5.3.18) every odd node of F is either a node 

~) 
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of G or a member of N. 

Thus the difference between a Hungarian forest and a pseudo 

Hungarian forest is that we allow odd nodes in pseudo 

Hungarian forests to be pseudonodes, a situation which was 

not permitted for Hungarian forests. We will see that when 

we require x(y(S)) = q
8 

for all SEN, then pseudo 

Hungarian forests play a role analagous to that played by 

Hungarian forests when we make no such requirement, 

(5,3.19) Theorem, Let G = (V, E, $) be a graph, 

= -= 
be as defined in (5.3.17). let V c V and let V Let 

R be a shrinkable family of subsets of V and let N ~ R. 

Let G = (V, E, ~) = G x R and let F be a pseudo Hungarian 

forest over N contained in G with respect to a matching 

x of G. Let Kc V be the set of roots of trees of F. 

= Then D(G, V N) = E(b. - x(o(i)): i e K); .::..:==---='--'-::.,.---'-'--=---=--.,"'-J. 

Proof. Let G' = (V'' E', w') = G X N, let 

v' = = (V- n v') u { s E N n v' : s c v=} . By (5.3,16), 

= D (GI' 
I -

(5.3.19a) D(G, V 
' 

N) = V -). 

Let R - {S E R: s f T for any T E N}. That is, R 

is the set of members of R which are not contained in 

pseudonodes of GI • For each s E R we define 

(5,3.20) V'(S) - (Sn V') u {TEN n V': Tc s}. 

Thus V' (S) is at the set of nodes of V' which correspond 

in the natural way to S. Let 

(5.3.21) R' - {V'(S): SER}. 



It is easily seen that R' is a shrinkable family of 

subsets of V' and that G' x R' is isomorphic with G. 

Moreover E(F) is the edge set of a Hungarian forest F' 

in G' x R' with respect to x'. Therefore it follows from 

(3.7.17) that 

(5.3.22) D(G', V'=) = E(b. - i(6(i)): i EK') 
l. 

where K' is the set of roots of trees of F'. But 

E(b. - i(6(i)): i EK')= E(b. - i(6(i)): i EK) 
l. l. so (5.3.19a) 

and (5.3.22) combine to prove the theorem.D 

This theorem is used in the algorithm to justify 

terminating when no feasible solution exists. We make use 

of the following analogue of Theorem (3.7.36) to justify 

replacing a constraint 

a set of constraints 

x(6(i)) 

x. = 0 
J 

x(y(T)) 

x(y(S)) = q
8 

= b. for i 
l. 

for j E J(S) 

= qT for T 

'for some SEQ' with 

E W(S) C V -
C E -

E N(S) C Qo. -

(5.3.23) Theorem. Let G = (V, E, ~) be a graph, 

let P be a subset of V, let R be a shrinkable family of 

subsets of P and let N s R. Suppose D(G[P], P, N) = 1. 
----'-'-----'---'-~'----'---'---

Let G = (i, E, i) ~ G[P] x R, let F bi a pseudo Hungarian 

forest over N contained in G, let I and Z be the sets 

of odd and even nodes of F respectively. Then a matching 

x of G satisfying (5.3.1) and (5.3.2) satisfies 

(5.3.24) x(y(P)) = 9p-

5.19 



if and only if 

u o(i), 
iEZ 

(5.3.25) ~j~---'Q'--~f~o~r=-~a~l~l~~j___:E:__,_( U o(i) U o(p)) -
iEl 

5.20 

(5.3.26) x(o(i)) = bi for all i E p - (Z u u(Z n R)) 

(5.3.27) x(y(S)) 9s for all SE Zn R. 

Proof. Let G' = (V', E', t/1 1
) - G[P) x N. By (5.3.16), 

(5.3.28) D(G', V') D(G[P], P, N) = 1. 

Now suppose x satisfies (5.3.1) and (5.3.2). We show 

(5.3.29) d(G[P), P, N; x) = 1 if and only if 

d(G', V'; x[E') = 1. 

Suppose d(G[P), P, N; x) = 1. Then by (5.3.10) 

d(G', V', x[E') s 1, by (5.3.28) thereiore we have 

d(G', V', x[E') = 1. 

Conversely, suppose d(G', V', x[E') = 1. Let N' be 

the set of maximal members of N. Then 

x(y(P)) = x(E') + E~x(S): S 8 N'). 

Since d(G', V', xJE') 

using this and (5.3.2) 

1, x(E') = l/2(b(V') - 1). Therefore, 

x(y(P)) = l/2(b(V') - 1) + l/2E(b(S) - 1: SEN') 

= l/2(b(V' - N') + b(V' n N') - 1 

+ E(b(S) - 1: S 8 N')). 

But b = 1 for all v 8 V' n N' so we have 
V 
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x(y(P)) = l/2(b(V' N') + IN' I - 1 + L(b(S) - 1: S EN')) 

= l/2(b(P) - 1) 

and so d(G[P), P, N; x) = 1, Thus (5.3.29) is establishe0 

Now let R - {SER: Si T for any TEN}. For each 

SER let V'(S) be defined as in (5.3.20) and let 

5.21 

R' = {V'(S): SER}. Then R' is easily seen to be a 

shrinkable family of subsets of V' and G' x R' is isomorphic 

with G. Moreover, E(F) is the edge set of a Hungarian 

forest F' in G' x R'. Therefore by (3.7.36) 

d(G', V', xlE') = 1 if and only if 

(5.3.30) x(yG 1 (S)) q
8 

for every Se R' n V(F'), 

(5,3,31) x(oG 1 (i)) = bi for every odd node 

of F' and for every i e V' - V(F') - u(R' n V(F')), 

(5.3.32) 

u 0G 1 (i). 
ieZ' 

x. = O for all j e u oG 1 (i) 
J i el 1 

i 

In view of (5,3,1) and (5.3.2) it is easily seen that 

(5,3.30) and (5.3.27) are equivalent and that (5.3,31) is 

equivalent to (5.3.26) and 

x. = 0 for all j e o(S) - u o(i). 
J ieZ 

It is easily seen that (5.3,32) is equivalent to 

x = 0 for all 
j 

j e u o(i) 
iel 

u o(i). 
ieZ 

The theorem now follows from these facts and (5.3.29).D 
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5.4 The Face Optimization Algorithm (Phase II) 

We are given a graph G = (V, E, ~) and a vector 

b - (b.: i EV) of positive integers. Let c be an 
]. 

arbitrary real vectory let J be a subset of E, let W be 

a subset of V and let N be a nested-family of members 

of Q. We wish to solve the problem: maximize c • x over 

x belonging to the face F(J, W, N) of P(G, b), 

By (3.4.5) and (3.1.7) the linear progra~ we wish to 

solve is 

maximize c • x 

Over X E 421 E 
11 , which satisfy 

(5.4.1) x. = 0 
J 

for all j E J 

(5.4.la) X. 
J " 0 for all j E E - J 

(5.4.2) x(o(i)) ,;; b. for all i E V - w 
]. 

(5.4.3) x(o(i)) = b. 
]. 

for all i E w, 

(5.4.4) x(y(S)) ,;; q
8 

for all SEQ - N, 

(5.4.5) x(y(S)) = q
8 

for all SEN. 

The dual linear program is 

minimize E(biyi: i EV)+ E(q 8 y
8

: SEQ) 

for y E 'iR_VuQ which satisfy 

(5.4.6) " 0 for all SEQ - N, 

(5.4.7) y 8 unrestricted in sign for SEN, 

5.22 



(S.4.8) y, ;, 0 for all i e: V - W, 
]_ 

(S.4.9) Yi unrestricted in sign for i £ w 

(S.4.10) y(lj,(j)) + y(Q(j)) ;, C, for 
J 

all j £ E - J 

where Q (j) - {S £ Q: j £ y ( s) } for any j £ E. 

The important difference between this dual linear program 

and the linear program (3.S.6)-(3.5.9) is (S.4.7), for this 

will enable us to let the dual variables of some pseudonodes 

take on negative values, and consequentiy they can be kept 

shrunk throughout the course of the algorithm. 

The complementary slackness conditions for optimality 

of a solution x to (S.4.1)-(5.4.5) and a solution y to 

(S.4.6)-(5.4.10) are 

(5.4.11) xj > 0 only if y(lj,(j)) + y(Q(j)) cj 

for all j £ E - J, 

(S.4.12) 

i e: V - W, 

y. > 0 
]_ 

only if x(a(i)) = b. 
]_ 

for 

(S.4.13) y
8 

> O only if x(y(S)) = q 8 for 

S £ Q - N. 

The general approach of our algorithm is to process 

each member S of N in turn, finding sets J(S) SE, 

W(S) EV and a shrinkable family N(S) c QO such that we 

can replace the constraint 

x(a(S)) = q 8 

with the constraints 
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x(8(i)) = b. for all i E W(S), 
l. 

x = 0 for all j E J(S), 
j 

x(y(T)) = qr for all TE N(S). 

Then we carry on, applying the algorithm to this modified 

problem. 

Eventually we find sets Jc E, W c V and a shrinkable 

family N such that 

F(J u J, w u w, N) = F(J, W, N) 

* and we find an optimal solution x to the problem of 

maximizing c • x over F(J u J, Wu W, N). We also obtain 

* * an optimal dual solution y to this problem. Thus x 

* satisfies (5.4.1)-(5.4.5), y satisfies (5.4.6)-(5.4.10) and 

* * x and y satisfy (5.4.11)-(5.4.13) where we replace J, 

W and N with Ju J, Wu W and N respectively. 

At each stage of the algorithm we have a set Mc N of 

processed members of N. This set has the property 

(5.4.14) if s EM, TEN and TC s then TE M. 

(In other words, we always chose a minimarmember of N - M 

for processing). 

Initially, we let M = ~. 
For each SE M we have sets J(S) s E, W(S) = S and 

N(S) 5 QO[S) u {S} which have the properties descr1bed in 

(5.4.24)-(5.4.26). 

N - u N·(S).. Then 
SEM 

We let J - u J(S), W = 
SEM 

u W(S) 
SEM 

and 
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(5.4.15) F(J, W, M) = F(J u J, Wu W, i). 

Initially, of course, J = W = N = ~. 

We have a dual variable defined for every i e: u (M) • 

These are the only nodes for which a dual variable is defined 

at present. For every Se: QO we have defined a dual 

variable y s. This dual solution satisfies 

(5.4.16) y(i/J(j)) - y(Qo(j)) "c. 
J 

for all 

j e: u y(S) - (Ju J). 
Se:M 

= Let E - {j e: u y(S) 
Se:M 

= Let G be the graph 

We have defined a shrinkable family R of subsets of 

V such that 

(5.4.17) N C - R, 

{5.4.18) for any s e: R there .is a set T e: M 

such that s C T, 

The sets Se: R have been constructed in applications of 

the blossom algorithm in earlier executions of Step 2 of the 

algorithm to be described. The members of R satisfy 

(5.4.19) for each Se: R, H(S) - G=[s] x R[S] 

is spanned by a blossom B(S), 

The dual solution y has the properties 

(5.4.20) = 0 for all 
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(5.4.21) y8 � 0 for all S e:  R - N.

We have a matching x of G defined such that 

(5.4.22) x. = 0 for all j e: E - E-, 
J

(5.4.23) xjE(B(S)) is a np matching of B(S) 

and x. = 0 for all j e: E(H(S)) 
J 

E(B(S)) for all S e:  R, 

Finally, for each S e:  M we let R<s> ={T e: R: 

T c  S}. With each S e:  M we have associated a pseudo 

Hungarian tree F(S) over N[S] ={T e: N: T c  S} contained 

in the subgraph G
8 

of G[S] x R <s> obtained by deleting 

the members of J u  u J(T). Moreover where I(S) and 
Tdi[S] 
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Z(S) are the sets of odd and even nodes of ·F(S) respectively, 

we have 

(5.4.24) 

u o 

ie:Z(S) GS 
(i)}'

(5.4.25) 

(5.4.26) 

J(S) 

W( S) 

N ( S) 

= {j e: E: 

= s - Z(S) 

0 = {T e: Q :

Now we describe the algorithm. 

(j e: o (S)

- u(Z(S)

T e:  Z(S) 

u j e: u o 

ie:I(S) GS 

n R <s>), 

n R <s> } . 

(i)) 

Step 1. If M = N then go to step 5. Otherwise choose 

a minimal set S e:  N - M which we will now process. First 

we define dual variables y ! for 
]. 

i e: S and 

T e: Qo <s> - {T e: Q o : T C S} so that 

(5.4.27) 

j e: y(S) - (Ju J) 

� c. 

y' T for

for all. 



(5.4.28) y'(,p(j)) + y'(Qo(j)) = y(,p(j)) + y(Qo(j)) 

for al 1 j £ u y ( T) - (J u J ), 
TER[S] 

This is easy to do unless there are edges j £ y(S) - (Ju J) 

incident with nodes belonging to two distinct maximal members 

of R[S) and such that y(,P(j)) < c .. 
J 

In this case let y 

be the set of all such edges and let 

o = l/2max{c. 
J 

y(,P(j)): j € y}. 

(Note that by (5.4.14) Sf T for any T £ M so by (5.4.18) 

and since N is a nested family, a maximal member of R[S] 

is a maximal member of R and hence y(,P(j)) + y(QO(~)) = 

y(,P(j)) + y(R(j)) by (5.4.20). But R(j) = ~ for all 

j £ Y so we have y(,P(j)) = y(,P(j)) + y(QO(j)).) 

Let T be any maximal member of R[S] such that 

Y n o(T) ~ ~. By (5.4.14) and (5.4.18) T is a maximal 

member of R. By (5.4.16) j ~ y(P) for any P £ M. Thus 

j € o(D) for some D £ M such that T £ N(D). There is 

a Hungarian tree F(D) defined, by (5.4.24) and the definition 

of J, T must be an even pseudonode of F(D). 

Define y' as follows. 

yi + o for all i ED n (Z(D) u u(Z(D) n R)) 

(5.4.29) y'. -
]. 

yi - o for all i € D n (I(D) u u(I(D) n R)) 

5.27 

for all i £ D - V(F(D)) - u(V(F(D)) n R). 

Yp + 2o for every p € I(D) n R 

(5.4.30) y' - Yp - 2o for every p € Z(D) n R p 

Yp for all p € Qo D - V(F(D)). 



Notice that the only nodes for which the dual variables 

are decreased are odd nodes of F(D) and nodes contained 

in odd pseudonodes of F(D). By (S.4.24) any edge j meeting 

such a node and which is not a member of Ju J must also 

meet a node whose dual variable increased by cr. Thus y' 

will satisfy our feasibility criteria. Moreover for any 

j E y(D) - (Ju J) we have 

y'(t/J(j)) + y'(Qo{j)) = y(t/J(j)) + y(Qo{j)) 

so (S.4.22) will still be satisfied when E = is defined 

relative to y', 

We define y' in this manner for all DEM which 

contain a maximal member T of R[S] 

Thus we have 

such that Y n o(T) ~ ~. 

y'{tj,{j)) = y{tjJ{j)) + 2cr for all j E Y 

since each j E Y joins even nodes or nodes contained in 

even pseudonodes of pseudo Hungarian forests. We let 

y! - Yi for all i E u(R[S]) which have not yet had y '. 
]. ]. 

defined and we let y! be defined for i E s u {R[S]) 
]. 

sufficiently large that (S.4.27) will hold. We let y' 
T - YT 

for all TE QO <s> which have not yet had a dual variable 

Yi defined. 

Notice that (S.4.29) and (S,4.30) may have caused 

to become negative for some i ES and caused y' 
p 

to 

become negative for some PE QO[S]. However any such i 

and P belong to W and N respectively and are not 

required to have nonnegative dual variables. 

y ! 
]. 
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Step 2. Apply the blossom algorithm with the restrictions 

(S.4.31) and (S.4.32) to the graph G(S) = (S, y(S) -

(Ju J), ~ly(S) - (Ju J)) to attempt to find a solution 

to the problem 

where 

x. is 
J 

We start 

and the 

maximize l:(c.x.: j E y(S) - (Ju J)) 
J J 

a nonnegative integer for all j E y(S) 

x(o(i)) = b . for all i E s . 
l. 

with the initial solution X jy(S) - (J 

nested family of sets R [ S) . These are 

(J u J) ' 

u J), y' 

easily seen 

to satisfy our requirements for a starting set of values 

for the blossom algorithm except for the fact that there may 

be members T of N[S) = R[S) for which yT < O. This 

problem is handled by the restrictions 

(S.4.31) we do not consider members of N when 

computing the value of & 3 in Step 9a of .the blossom 

algorithm; 

(5.4.32) we do not allow the blossom algorithm to 

expand members of N in Step 9e. 

Since SEN= Q, b(S) is odd and the algorithm must 

terminate in step 10 with a new matching x of G(S), a new 

dual solution y, a new nested family R and a pseudo 

Hungarian forest F(S) over N[S) contained in the subgraph 

GS of G[S) x ii.<s> obtained by deleting all members of 

Ju J. 
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St~. Let K be the set of roots of trees of F(S), 

let 

d = l: ( b . - x ( 6 G ( i) ) : i · s K) • 
1. s 

If d = 1 then go to Step 4. Otherwise d ~ 2 so by 

(5.3.19), D(G(S), S, N[S]) ~ 2. Therefore 

F(J u J, W, Nu {S}) = ~ so by (5.4.15) we have F(J, W, N)=~ 

and we terminate the algorithm with this information. 

Step 4.(d = 1) F(S) consists of a single tree 

rooted at a node r(S) s V(GS) 

Let 

and x(oG (r(S))) = br(S)-1. 
s 

J(S) = {j E E: (j E 6 (S) or j is incident with an 

odd node of F(S)) and (j is not incident with an even 

node of F(S)}, 

W(S) = {i ES: i is not an even node of F(S) or 

contained in an even pseudonode of F(S)}, 

N(S) ={TE QO: T is an even pseudonode of F(S)}. 

By Theorem (5.3.23) 

F(J u J, Wu (W n S), Nu {S}) 

Nu N(S)). 

F(J u Ju J(S), Wu W(S), 

Then we replace M with Mu {S} and J, W and N with 

Ju J(S), Wu W(S) and Nu N(S) respectively and (5.4.15) 

is still satisfied. 

We define x by 

x. if j E y ( s) - (J u J) 
x. J -

J 
X. if j E E - (y (S) - (J u J). 

J 
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We define y by 

Yi if i. e: s, 

Yi if i e: u(M) - s 

YT if T e: QO[M] 

YT if T e: Qo - QO[M]. 

A Replace R with R - R[S] u R and x and 

y and return to Step 1. 

y with x and 

Step 5. We have now processed all the members of N 

and we are going to apply the blossom algorithm to the graph 

G' obtained from G by deleting the edges in Ju J. 

First we define dual variables y! for the nodes i e: V 
1 

and y' 
T 

for all 

(5.4.33) 

j e: E - (J u J) 

so that 

y'(l/i(j)) + y'(Qo(j)) ~ c. 
J 

for all 

(5.4.34) y'(l/i(j)) + y'(Qo(j)) = y(I/J(j)) + y(Qo(j)) 

for all j e: u y (T) - (J u J) 

Let y 

that 

of R. 

Let 

Let 

Te:R 

(5.4.35) 

be the set 

y(I/J(j)) < C • 
J 

Let 

y! ~ 0 for all i e: V - W. 
1 

of all edges j e: y ( s) - (J 

and the ends of j are two 

01 - 1/2max{c. - y(l/i(j)): j e: y}. 
J 

u J) such 

maximal members 

d2 - max{-y.: i e: V - w and Yi < O}. 
1 



Now for any D € N which contains a maximal member T of 

R such that y n o(T) ., cj, or contain a node i € T - w 

such that Yi < 0 we define y'. and y' as in (5.4.29) 
1 p 

and (5.4.30). By (5.4.25) any i € T - w is an even node 

of F(D) or is contained in an even pseudonode of F(D), 

so we add o to the dual variable of such a node. In Step 

1 we discussed the effect that this dual change had on the 

feasibility of the constraints 

the same remarks apply here. 

We let for all 

y(,p(j)) + y(Qo(j));, c., 
J 

i E u(R) which have not yet 

had y'. defined and we let y'. be defined for i E V-u(R) 
1 1 

sufficiently large that (5.4.33) and (5.4.35) will hold. 

We let Yi= Yr for any TE QO which have not yet had a 

dual variable Yi defined. 

Now we apply the blossom algorithm to G', the graph 

obtained from G by deleting the edges in Ju J, taking 

= V =Wu W and again applying the restrictions (5.4,31) and 

(5.4.32). We take y', x and R as starting solutions. 

The blossom algorithm may terminate in Step 10 with a 

pseudo Hungarian forest F over N. If this is the case, 

then by (5.3.19) D(G', Wu W, N) 2' 1 and consequently 

F(J u J, w u w, N) = cj,. Thus by (5.4.15) F(J, W, M) = cj, 

and consequently there exists no solution to our problem; 

we terminate the algorithm with this information. 

Otherwise the blossom algorithm terminates in Step 11 

* with a matching x and a dual solution y . We define a 

* matching x of G by 
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X, for j e: E (J u J) 

J X, -
J 

0 for j e: J u J. 

The matching X * is the solution we seek. Because of our 

* restriction (5.4.32) we must have X (y(S)) = qs for all 

* s e: N. By the operation of the blossom algorithm X (o(i))=b. 
1 

* * for all i e: w u w. By definition of = 0 for our X 
' X. 

J 

* * all j e: J u J. Thus X e: F(J u J, w u W, N) ; X is optimal 

for the following reason. * The matching x and dual 

* solution y can be seen to satisfy the conditions (5.4.1)-

(5.4.13), substituting Ju J for J, Wu W for W and 

N for N. * Therefore x maximizes c • x over 

F(J u J, w u W, N). By (5.4.15), F(J, w, N) = F(JuJ, WuW,N) 

* so x maximizes c • x over F(J, W, N), If an optimal 

dual solution y to the original problem is required, then 

perform the following step, Step 6. 

algorithm. 

Otherwise terminate the 

* * Step 6. Our optimal solutions x and y satisfy 

the complementary slackness conditions, however in general 

* y will not satisfy the conditions (5.4.6)-(5.4.8) and 

(5,4.10). That is there may be edges j e: J - J such that 

c., there may be nodes 
J 

i e: w w 

such that yi < 0 and there may be sets Se: N - N such 

that Ys < 0. We now describe how to obtain a vector y 

which will satisfy the complementary slackness conditions 

(5.4.11)-(5.4.13) relative to 

(5.4.6)~(5.4.10). 

* X and which will satisfy 

Initially, let M = N. M is the set of unprocessed 

numbers of N. We define a vector -- ,QVUQ 
y e: II\. by 
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Yi - * Yi for all i E V, 

* Qo, Ys for all s E 

Ys -
Qo. 0 for all s E Q -

At each stage we have 

je:E-J 

(5.4.36) y(iJ,{j)) + y{Q(j)) ~ cj for all 

u J{S) 
Se:M 

(5.4.37) ~ 0 for all 

(5.4.38) ~ 0 for all 

i e V - W -

T e Q - N -

u W {S) 
Se:M 

u N(S). 
Se:M 

Step 6a: If M = ~ then stop, by {5.4.36)-(5.4.38) 

y must satisfy (5.4.6)-(5.4.10). Otherwise choose a 

maximal member S of M. Let 

- max { 0} u { c . 
J 

y(,J,{j)) y(Q{j)): j e: J(S) - J}, 

o 2 - max{O} u {-yi: i e W(S) W}, 

o 3 - 1/2 max{O} u {-yT: Te N(S) - N}. 

Let o - max{o1 , o 2 , o3 }. If o = 0 then replace M with 

M - {S}, we still have (5.4.36)-(5.4.38) satisfied, return to 

- Step 6a. 

Otherwise, let F(S) be the pseudo Hungarian forest as 

defined in the algorithm, let J(S) and Z(S) be the sets 

of odd and even nodes of F(S) respectively. We define a 

dua1 solution y' by 

:,.:;4 
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Yi if i e: (V - S) or if i belongs ·to Z(S) 

or is contained in a pseudonode of Z(S), 

Yi + 2o if i belongs to I(S) or is contained 

y'. - in 1. a pseudonode belonging to I ( S) , 

Yi + (J if i e: s and i is not a node of F(S) 

or contained in a pseudonode of F ( S) . 

YT if T e: Q - V(F(S)) - { s}, 

YT - 2o if T = s or if T is an odd pseudonode 

y' 
T - of F ( S) , 

YT + 2 (J if T is an even pseudonode of F ( S) . 

Now if there is any edge j e: o(S) such that * x. > 0 then 
J 

j e: E - (J u J) so j must meet an even node of F ( S) or 

a node contained in an even pseudonode of F ( S) . If there 

is any node i e: o ( S) such * that X (o(i)) < b. then 
1. 

i e: V - (W u w) so i must be an even node of F(S) or be 

contained in an even pseudonode of F ( S). For any edge 

j e: y(S) such that y'(lf,(j)) + y'(Q(j)) > y(lf,(j)) + y(Q(j)), 

one end of j must be an odd node of F(S) or a node 

contained in an odd pseudonode of F(S) and the other end 

of j must not be an even node of F ( S) or contained in an 

even pseudonode of F(S). Therefore j e: J(S) and consequently 

* * X = 0 j • Thus it can be seen that X and y satisfy the 

complementary slackness conditions (S.4.11)-(5.4.13). 

y' ;,, 
T 

Finally, note that y'. ;,, y 
1 i 

for all 

for all Te: Q -·{s} - I(S). s 

i e: V and 

belongs to N and 

5.35 



r r 

[ 
r 
~ 

if Te: Q n I(S) then T must be a member of N(P) for 

some P c S, Thus Ti u N(S). Therefore we replace 
Se:N-M 

y with y' and M with M - {S} and (5.4.36)-(5,4,38) 

are seen to be satisfied, Go to Step 6a. 

This completes the description of the algorithm. We 

now show that the amount of work performed by the algorithm 

has an upper bound of the order b(V) 

as the blossom algorithm. 

!El, the same 

* For any set Se: N we let N (S) be the set of maximal 

members of N[S), It is easily seen that an upper bound 

on the amount of work done in each execution of step l is of 

the order 

algorithm to G(S). 

In Step 2 we apply the blossom 

From (S.4.23) it can be deduced that 

xjy(T) is a np matching of G[T] * for each Te: N (S). 

Therefore ~(G(S), xly(S) - (Ju J), y) $ b(S) 

* E(b(T) - 1: Te: N (S)), where ~(G(S), x!y(S) - (Ju J), y) 
is as defined in (3,8.22), Therefore by (3,9.1) an upper 

bound on the amount of work performed by this execution of 

the blossom algorithm is of the order (b(S) - E(b(T) - 1: 

* T e: N (S))) * h<s) I $ (b(S) - E(b(T): T e: N (s)) .+ 

IN*(s)J • JvJ The amount of work performed in each 

execution of Steps 3 and 4 has an upper bound of the order 

jvJ + JE I, Thus 

(5.4.39) for each Se: N, the amount of work 

performed in processing S has an upper bound of the order 

* * b(s) - E(b(T): Te: N (s)) + JN (s)I •• Jvl IEI, 

GI • 

In ·step 5 we apply the blossom algorithm to the graph 

* Where N is the set of maximal members of N, it can 

:, • .j 0 



be seen that an upper bound on the amount of work performed 

in .Step 5 is of the order (b (V) * * - l:(b(T): T £ N ) + IN I) 
Jvl IE 1- If we add this to the sum of the bounds (5.4.39) 

all s £ N, we see that an upper bound on the amount of 

work performed in Steps 1 to 5 of this algorithm is of the 

order (b(V) + INI) Iv I IE I . 
It is easily seen that an upper bound on the amount of 

work performed in Step 6 (if this step is performed) is of 

the order INI (jvJ + JEj). Thus 

(5.4.40) An upper bound on the amount of work 

performed by the face optimization algorithm is of the order 

(b (V) + IN I) Iv I 

However N is a nested family of sets which contains no 

singletons so by (3.2.4), JNI ,; Jvl - 1. Thus since b ~ 1 
V 

for all v £ V, we can obtain the following from (S.4.40). 

(5.4.41) Theorem. An upper bound on the amount 

of work performed by the face optimization algorithm (phase 

II) in solving a problem is of the order b(V) Jv I 

We saw in Section 5.2 that an upper bound on the amount 

of work performed in the first phase of the face optimization 

algorithm, the preconditioning algorithm, was of the order 

jNj 2f(V, E) where N was the original, not necessarily 

nested, family of memb~rs of Q and f(V, E) was a bound 

on how efficiently we could perform the set manipulations of 

the algorithm. In practice, if is reasonably small, 

the amount of work performed in the preconditioning ~base 
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will be small compared to the amount of work performed in 

the second phase. However since could be as large as 

2lvl-1 , there could arise situations in which the 

preconditioning phase was the more time consuming phase of 

the algorithm. 

5.5. The "Big-M" Method. 

In this section we describe how the problem of 

maximizing c • x over a face F(J, W, N) of P(G, b) 

can be solved by a straightforward application of the 

blossom algorithm. Recall that the blossom algorithm described 

in Chapter 3 solved the problem of maximizing C . X over 

a face F (</>' W, <I>) of P(G, b). We could use it to 

maximize over a face F(J, w, <I>) of P(G, b) by applying 

it to the graph G' - (V' E - J, 1/J IE - J) and if an optimal 

* matching x' was found, we obtain 

defining 

our solution x by 

* (5.5.1) xj -
x' 

j 
for j e: E - J, 

0 for j e: J. 

We construct a new objective function 

with the property that if x' maximizes c' 

c' = (c!: j £ E - J) 
J 

x' over the 

face F(<I>, W, <I>) of P(G', b) and if F(J, W, N) ~ <I> then 

* x defined in (5.5.1) maximizes c • x over the face 

F(J, W, N) of P(G, b). 

For. eve_ry x £ F(<j,, </>, N). c P(G, b) 

l:(x(y(S)): s £ N)-= _l:(qs: s £ N) - q(N). 
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For any matching x E P (G, b) - F (q,, q," N) 

E(x(y(S)): SEN) 5 q(N) - 1. 

Therefore if we define 

then 

f. = /{s EN: j E y(S)}/ for all j 
J 

E E 

(5.5.2) f • x ~ q(N) if x E F(q,, q,, N), 

(5.5.3) f • x ~ q(N) - 1 if x is a matching 

belonging to P(G, b) - F(q,, q,, N). 

Let >..* - max({O} u {c.: j EE}) and let 
J 

>..* - min({O} u {c.: j EE}). Then for any x E 
J 

* 5). x(E). 

/;/) E 
If\ 

If x E P(G, b) then x(o(i)) 5 b. for all i EV so 
1 

x(E) 5 1/2b (V). 

*" Since >.. ~ 0, "* ~ 0 we have therefore 

(5.5.4) 1/2b(V)>..* 

Let 

For each j EE define 

* 5 c • x 5 1/2b(V)). . 

Then for any x E F(q,, q,, N) by (5.5.2) and (5.5.6) 

i 
I 
I 
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c' • X = M q(N) + C • X 

(5.5.7) 

~ M • q(N) + l/2b(V)A* by (5.5.4). 

For any matching x E P(G, b) - F($, $, N) by (5.5.3) and 

(5.5.6) 

CI . X ,;; M ( q (N) - 1) + C . X 

~.4U 

(5.5.8) 
,;; M . q (N) - (b(V)(A* - A*)+l) + b(V)A* 

2 2 

by (5.5.4) and (5.5.5) 

= M . q (N) + l/2b(V)A* - 1. 

Thus (5.5.7) and (5.5.8) show that any member x of 

F($, $, N) makes c' • x take on a value at least one 

larger than does any matching x belonging to P(G, b) -

F($, $, 

x 1 and 

N) • 

2 
X 

Moreover, (5.5.7) 

of F($, $, N), c' 

shows that for any members 

• x 1 - c' 
2 1 

• X = C • X - C 

so that the relative values of the matchings x E F($, $, N) 

with respect to c' 

with respect to c. 

are the same as their relative values 

Now we use the blossom algorithm to solve the problem of 

maximizing (c' IE - J) • x over x belonging to the face 

F($, W, $) of P(G', b) where G' = (V, E - J, tJJIE - J). 

If the algorithm terminates with a Hungarian forest then the 

f F( "' W "') of P(G', b) ace "', , "' is empty, and so the face 

F(J, W, N) of P(G, b) is empty. 

If the algorithm terminates with an optimum matching x' 

* then let x 

* X ,;; M CI 

be defined as in (5.5 .. 1). If 

q(N) + l/2b(V)A* - 1 * then X I' F($, $, N); 

2 
X 
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since any x £ F(<j,, </>, N) would make c' • x take on a 

larger value. 

However if 

* x s F(J, W, N) 

F(<j,, <j,, N) = <j, and hence F(J, W, N) = <j,. 

C' * • X ~ .M q(N) + l/2b(V)A* 

* and so x must maximize c' 

then 

* x over 

F(J, W, N). Moreover the value of the solution is easily 

computed, by (5.5.7) 

* C • X = C 1 * x - M • q(N). 

Thus this procedure reduces the face optimization problem 

to a matching problem which can be handled by the blossom 

algorithm. Since (Theorem (5.9.2)) the bound on the amount 

of work performed by the blossom algorithm is independent of 

the edge costs, the bound on this procedure is the same as 

that of applying the blossom algorithm to simply maximize 

c • x over P(G, b). The only drawback with this approach 

is that if b(V), A* and q(N) are large then a computer 

implementation might experience some difficulty in storing 

all the significant digits in the numbers 

dual variables. The algorithm of Sections 

not have this difficulty. 

c'. and in the 
J 

5.2 and 5.4 does 

5.6. Multi-Optimization in Matching Problems 

In this section we describe how the principle of 

complementary slackness can be used with the algorithms of 

this chapter to solve matching problems in which we have 

specified not just one, but several objective functions to 

be maximized according to some levels of priorities. For 

example, we may be given a subset J of the edges of 

5.41 



G = (V, E, tj,) 

matching x E 

and a vector c E 

P(G, b) for which 

'[ZE and wish to find a 

i(J) is maximal over 

P(G, b) and for which c • x is maximal over the members 

of P(G, b) which maximize x(J). 

The method described is based on Theorem (2.1.8) which 

shows that if c 

P then {x E P: c 

x has a maximum value z over a polyhedron 

x = z} is a face of P. A matching 

polyhedron P(G, b) is a bounded polyhedron (for every 

j EE, 0 $ x. $ min{b.: i E tj,(j)}, for all x E P(G, b)) and 
J 1. 

consequently for any c E ~; ex has an upper bound over 

P(G, b). Therefore for any c E 'R_E, ex is maximized over 

P(G, b) by precisely the members of some face of P(G, b). 

Now we describe the first sort of multi-optimization 

problem considered. We are given a graph G = (V, E, tj,), a 

vector b = (b.: i EV) of positive integers and a sequence 
1. 

l z k f b f 1iJE. L X P(G b) d c, c , .•• ,c o mem ers o ll~ et O = , an 

for each i E {l, 2, ... ,k} we let 

-{XEX.
1

: 
1.-

i 
C •. X is maximized over X. l} 

1.-

* The multi-optimization problem is to find a matching x E Xk. 

(5.6.1) Multi-Optimization Algorithm. 

Step O: Let i = O, let J 0 = w0 = N0 = ~. Then 

trivially we have x
0 

= P(G, b) = F(J 0 , w0 , N0 ). 

St 1 We assume we know sets J. c E W c V and ep : 1. - ' i -

Ni 5 Q such that Xi= F(Ji, Wi, Ni). We now use the face 

optimization algorithm to find a solution 

problem 

i+l 
X to the 

5.42 ,II 
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I 

over 

If i = k - 1 

maximize i+l 
C ' X 

X. = F (J. , W. , N.). 
l 1 1 1 

then k 
X is the required solution to the 

multi-optimization problem, stop the algorithm. Otherwise 

go to Step 2. 

Step 2. Let i+l 
y be the dual solution supplied by 

the face optimization algorithm. By the complementary 

slackness conditions (5.4.11)-(5,4.13) x E F(J., W., N
1
.) 

]. ]. 

maximizes c • x over F(J., W., N.) if and only if 
]. ]. ]. 

(5.6.2) xj 

Yi+1<w<j)) + Yi+1<Q(j)) 

0 for all 

> C • j , 

j E E such that 

(5.6.3) i(o(v)) = b for all v EV such that 
V 

i+l 
Yv > O; 

(5.6.4) x(y(S)) = qs for all SEQ such that 

i+l 
Ys > 0. 

Thus xi+l = {x E X.: 
]. 

X satisfies (5.6.2)-(5.6.4)} and so 

we define 

Ji+l - J. u {j E E: Yi+1<w<j)) + yi+l(Q(j)) > c.} ]. 
J 

wi+l W. {v V: i+l O} - u E yv > 
]. 

Ni+l N. s Q: 
i+l O} - u E Ys > 

]. 

Now 

Replace i with i + 1 and return to Step 1. 



l 
l 
t 

I 
r 
! 
! 

This completes the description of the algorithm. It 

is clear that solving this multi-optimization algorithm will 

involve k applications of the face optimization algorithm. 

Generally the graph considered in each successive application 

of the face optimization algorithm in step 1 will have fewer 

edges than the one handled in the previous cycle, since 

growth of the sets Ji is equivalent to deleting edges of 

the graph. Thus we would expect the multi-optimization 

algorithm to perform somewhat better, certainly no worse, 

than solving k face optimization problems for the original 

graph. 

5.44 

The following problem is a variant of this multi-optimization 

problem. We wish to find, if one exists, an * element X 

of P(G, b) such that i 
is maximized P(G, b) C . X over 

* by X for all i E { 1' 2, ... ,k}. This 

for each i E { 1, 2, ..• ,k} the face F. 
l. 

containing all those x which maximize 

and then we find a matching 

empty. 

* X 
k 

E n F. 
i=l l. 

we do by finding 

of p (G' b) 

i 
c • x over P(G, b) 

if this set is not 

For each i E {l, 2, ... ,k} we use the blossom algorithm 

to find an optimal primal solution and an optimal dual 

solution 

P(G, b). 

J. 
l. 

W. 
l. 

N. 
l. 

-

-

-

0 
y 

We 

{j 

{v 

{S 

over i 
C • X to the problem of maximizing 

let 

e: E: yo(ip(j)) + yo(Q(j)) i 
> C • } ' 

J 

V: 0 e: Yv > O}, 

Q: 
0 e: Ys > 0}. 



By complementary slackness (Theorem(l.5.16))applied to the 

linear programs (3.5.1)-(3.5.5) and (3.5.6)-(3.5.9) (taking 

= - i) C = C over 
i 

C • X 
V - <j> and xe:P(G,b) maximizes 

P(G, b) if and only if x e: F(Ji' Wi, Ni). By (2.1.4) we 

have 

where 

k 
n F(J., wi, Ni)= F(J, w, N) 

i=l 1 

k 
J - u J. 

i=l 1 

k 
w - u w. 

i=l 1 

.k 
N - u N. 

i=l 1 

Thus we can now use the face optimizing algorithm to 

* find a matching x e: F(J, W, N) if such a matching exists. 

(Take c. = 0 
J 

for all j e: E as an objective function to 

be maximized). The algorithm will either terminate with the 

information that F(J, W, N) = <j> or with the matching 

which we require. 

* X 

This process involves k applications of the blossom 

algorithm and one application of the face optimizing algorithm. 

The face optimizing algorithm is applied to a problem of a 

particularly simple type, one in which c. = 0 for all j e: E. 
J 

This means that if the dual variables are defined initially 

to be zero, then they will never be changed in the course of 

the algo·rithm. 

If we find a solution * X then clearly we could have 
., 

found it by using the first algorithm described in this section. 
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However if we simply apply the first algorithm when presented 

with a problem of this sort we will not know if the matching 

k x produced by this algorithm maximizes 
i 

c · x over 

P (G, b) for i e {2, 3, ... ,k} unless we check it for all 

such i. This checking procedure involves k - 1 applications 

of the blossom algorithm. Thus altogether we would have to 

solve k face optimizing problems and k - 1 ordinary 

matching problems so the advantage of the second method of 

solution is apparent. 

We can combine these two methods in an obvious fashion 

to solve multi-optimization problems of the following sort. 

Let c
1

, c
2

, ... ,Ck be a sequence of finite nonempty subsets 

Of r,;)E, let X P(G b) 11\... O - ' 
and for each i {l, 2, ... ,k} 

X. - {x e X. 1 : c • x is maximized over X. 1 l. 1.- ].-

for all ceC.}. 
1 

let 

* We wish to find a matching x e Xk if such a matching exists. 
k 

If such a matching exists, we have· to solve 1 + E le. I 
i=l 1 

face optimization problems to find it. 

then it may well happen that X. = <I> 
1 

However if Xk 

for some i < k and 

so we would discover this without solving so many problems. 

A first approach which might be considered for solving 

multi-optimization problems is a generalization of the 

"Big-M" method of the previous section. This would involve 

selecting positive constants M1 >> M2 >> ••• >> Mk and 

letting C '. 
J 

k i 
E M.c. 

i=l 1 
J 

for all j e E. Then it is easily 

Ii 

I 
! 

I 



* seen that a solution x to the problem of maximizing C I 

over P(G, b) is a solution to the first multi-optimization 

problem discussed. However, although this method is fine 

in theory, in practice if k is reasonably large then the 

huge number of significant digits which would have to be 

handled for the C I 
j makes this method infeasible. 

The methods described in this section could be applied 

to other classes of multi-optimization problems besides 

matching problems provided a face optimizing algorithm were 

known which provided an optimal dual solution. However, for 

linear programs in which the number of constraints is of a 

manageable size there are more direct methods (for example, 

a generalization of the two phase method of obtaining a, 

starting basic feasible solution; see Dantzig [Dl] Chapter 

5 Section 2 for a discussion of the two phase method.) 
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Chapter 6 

A Post-Optimality Problem 

In this chapter we discuss one aspect of post-optimality 

for matching problems, modification of the degree constraints. 

Assume that we are given a graph G = (V, E, ~), a vector b 

of positive integral degree constraints and an arbitrary vector 

c £ 11\E. We suppose that we have applied the blossom 

algorithm of Chapter 3 to the matching problem 

(6,0.1) maximize c • x 

over X £ '(R_ E which satisfy 

(6.0.2) X, 
J 

is a nonnegative integer for all j £ E, 

(6.0.3) x(o(i)) = = b, for all i £ V C V, 
1. 

(6.0.4) x(o(i)) v" = ,, b. for all i £ - V - V 
' 1. 

and 0 and 0 the optimal matching and dual solution X y are 

thereby obtained. Now we wish to solve (6.0.1)-(6.0.4) again, 

replacing b with a new vector b' of degree constraints. 

We could sim~ly reapply the blossom algorithm taking X, = Q 
J 

for all j £ E as an initial matching. If we do this, the 

upper bound on the amount of work required (see (3.9.2)) is 

of the order 

b I (V) Iv I 

In this chapter we describe a method of solving this problem 

which utilizes the solutions 0 
X and 0 y which we already 

know. We show that an upp~r bound on the amount of work 

required by this method is of the order 



(E(lb. - b'.I: i £ V) + Iv!) 
1 1 Iv I IE I . 

Thus it is clear that if the values of lbi - b~I are small 

re·lative to the values of b' 
i 

for i £ V then our new 

method bas a somewhat better bound than a direct application 

of the blossom algorithm. 

6.1 Obtaining a Starting Solution 

Throughout this chapter we let G = (V, E, ~) be a 

6. 2 

graph, we let b = (bi: i £ V) be a vector of positive integers, 

we let C = ( C. : 
J 

j £ E) be an arbitrary real vector and let 

y be a feasible dual solution of (6.0.1)-(6.0.4) (see Section 

3.7). Let R be a shrinkable family of subsets of G and 

let G = G x R. In (3.8.22) we defined ~(G; x, y) 

any matching X of G which satisfied x(o(v)) ,;; 

all V £ V (G), In the case R = q, we have 

~(G; x, y) = E(b. 
1 

- x(o(i)): i £ 
= 

V or 

(i £ v,, and Yi > 0) ) 

where X is a matching satisfying 

(6,1.1) x(o(i)) ,;; bi for all i £ V 

b 
V 

for 

and y is any feasible dual solution. The value of ~(G; x, y) 

measures, in a sense, how close x and y are to being 

optimal feasible solutions to the matching problem. 

Now suppose that y is any feasible dual solution and 

x is any matching of G, that is x need not satisfy (6.1.1), 

We define 



ll(G,b; x, y) - E(jb. - x(o(i))I: 
l. 

= i E V or 

(i E Vs and yi > 0)) 

+ E(max{O, x(o(i)) - bi}: i E Vs and y. = 0). 
l. 

(In Chapter 3 the vector b was constant so we did not 

introduce it as a parameter of ll(G; x, y). Here however 

we consider more than one vector of degree constraints so we 

include b as a parameter of ll(G, b; x, y). Throughout 

= this chapter the set V is constant, so we do not include 

it as a parameter of ll(G, b; x, y) although of course it 

does affect this value.) 

Notice that 

(6.1.la) if x satisfies (6.1.1) then 

ll(G, b; x, y) = ll(G; x, y). 

(6.1.2) Proposition. For any matching x of G 

there exists a matching x' of G such that 

(6.1.3) x' >' 0 only if x. >' 0 for all j E E, 
j J 

(6.1.4) ll(G, b; X ',y)s'(G b·x y) - - '--' , , , 

(6.1.5) x' (o(i)) s bi for all i E V. 

6.3 

Proof. Our proof consists of an algorithm for constructing 

the matching x'. 

Step o. Let d. - 0 for all i E v. Let ! - cj, • At 
l. 

each stage of· the algorithm we have a nonnegative integer 

x'. defined for all j E J. C E such that 
J 

'.I 
l·i 
i 



(6.1.6) x'(o(i)nJ)= d . 
]. 

for all i EV. 

Step· 1. If J = E then x' is the matching we require, 

stop the algorithm. 

{u, v} = ij,(j). Let 

Otherwise choose j EE - J, let 

x'. - min{b - d b 
J u u' v. 

d, x.}. 
V J 

Replace 

add j 

d 
u 

and d with d + x' 
V U j 

and dv + x'. 
J 

respectively, 

to J and return to step 1. 

This describes the algorithm, we now discuss why it 

works. Clearly our actions in Step 1 preserve (6.1.6). 

Properties (6.1.3) and (6.1.S) are immediate consequences of 

our definition of x' 
j 

and (6.1.6). For any J C E as 

constructed in the algorithm we define a matching J 
X by 

x. if j E E - J 
J J 

x. -
J x! if j E J. 

J 

We show that ll(G, b; 
J 

X ' y) $ ll(G, b; x, y) for all such 

J. Since E 
X = x' this will prove (6.1.4). 

Initially J = ~ and the result is trivial. Suppose 

it holds for some Jc E and let j be as chosen in Step 1. 

If then x 3 = xJu{j} and the result is trivial. 

Otherwise there is u E ij,(j) such that x' = b - d and 
j u u 

·x! $ b - d where {v} = 1/i(j) -·{u}. Therefore, by (6.1.6) 
J V V 

x' + x' ( o ( u) n J) = b and x '. + x' ( o ( u) n J) $ b . 
j U J V 

The term 

in J 
ll(G, b; x, y) corresponding to u contributes X - X f 

j j 

more to this sum than the corresponding term contributes to 

Ju{j} ) ll(G,b;x ,y. However the term in J 
ll(G, b; X , y) 

6. t, 



corresponding to v contributes at most more to 

this sum than the corresponding term contributes to 

(G b Ju{j} ) 
t:,' ;x ,y. Since all other terms contribute the 

same Ju{j} < J amount to both sums, 6(G, b; x , y) _ t:,(G, b; x , y) ~ 

6(G, b; x, y) by our hypothesis and the result follows.O 

Observe that the amount of work performed by this 

algorithm is of the order 

As in Chapter 4, for any graph G = (V, E, ip) 

matching x we define the graph 

and any 

where 

E E: X. > O}, 
J 

In Section 4,5 we described the structure possessed by the 

vertices of P(G, b) and hence of the matchings produced 

by the blossom algorithm. We next show 'how from any matching 

X E P (G, b) we can obtain a matching x' of P(G, b) which 

will have several of the same characeristics as vertices of 

P (G, b) and such that 6(G, b; x', y) ~ 6(G, b; x, y). In 

the uses that we make of this procedure, the matchings x 

with which we start will be such that x' 

type of vertex of P(G, b), a vertex x' 

will be a special 

for which any 

component of G+(x') contains at most one polygon. 

(6,1.7) Theorem. For any matching x of G 

satisfying (6.1.1) there is a matching x' of G satisfying 

(6.1.3)-(6.1.5) and for which each component H of G+(x') 

satisfies 

6.5 
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(6.1.8) H contains at most one node at which 

x' is deficient, 

(6.1.9) if H contains an odd polygon and a node 

V at which x' is deficient then either x' has a deficiency 

of 1 at V or else there is a set J C E such that x'. 1 - J--

for all j € J and any path in H from V to an odd 

polygon of H contains a member of J. 

Proof. Again, our proof describes an algorithm for 

actually constructing x'. The operations of the algorithm 

are similar to Steps 2 and 4 of the Matching Simplification 

Algorithm (4.5.21). 

Initially, let x' - x. 

Step 1. If each node of G at which x' is deficient 

b 1 d . . f G+(x'') e ongs to a 1st1nct component o then (6.1.8) 

holds for all components H of G+(x') and we go to Step 2. 

Otherwise let v and w be nodes belonging to a component 

w and 

and w € 

such that x' 

(6.1.10) 

v"'. 
if = 0 

is deficient at both v and 

and V € V,!, then = 0 

(If our original choice of v and w violated (6.1.10) we 

simply interchange v and w). 

from v to w. Let 

Let ~ be a path in H 

- min{x'. 
J 

j is an even edge of ~}. 



Since 

0 -

+ j £ E (x') for all j £ E(1r), o
1 

;e 1. Let 

mi~{o 1 , "bv - x 1 (5(v))} if 1r is of even length, 

X 
1 

( 5 ( W) ) } i"f 7f i S 

of odd length. 

Defnie x" by 

x! + 0 if j 
J 

is an odd edge of 7f , 

x'.' - x'. - 0 J.f j is an even edge of 7f I J J 

x! if j £ E - E(1r). 
J 

Rep1ace x' with XII and return to Step 1. 

Stee 2. If (6.1.9) is satisfied then stop, x' is the 

desired solution. Otherwise let V be a node in a component 

H of G+(x') such that x' has a deficiency of at least 2 

at V and let 7f be a path from V to an odd polygon p 

in H such that x'. ;e 
J 

2 for all j £ E(1r). Let 

{w} - V(P) n V ("IT) ' let T be a track from w to w induced 

by P. Let 

01 - min{x'.: j is an even edge of 7f } ' J 

min{x'.: j is an even edge of T} if 7f has even 
J length, 

02 -

min{x!: j is an odd edge of T} if 7f has odd 
J length, 

Let 

Then o ;e 1. Now define x'' as follows. 

6. 7 
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I', 

j 

!I 
11· 

!" 
i: 
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X ! 
J 

2cr if j is an even edge of rr, 

x~ + 2cr if j is an odd edge of 
Tf ' J 

x! + " if j is an even edge of T and 
J 

/E(rr)/ is odd 

or if j is an odd edge of T and 

I E(rr) / is even, 

XI.I - x' if j is edge of and J - " an even T 
J 

/E(rr)I is even, 

or if j is an odd edge of T and 

/ E(rr) I is odd, 

x'. if 
J 

j £ E - (E(rr) u E(T)), 

Replace x' by x" and return to step 2. 

This describes the algorithm, we now show why it works. 

Each time we perform Step 1 we either decrease the number 

of deficient nodes or introduce a new edge j for which 

x'! = 0 (or both). 
J 

Each time we perform Step 2 we decrease 

the deficiency of a node (by at least 2). Since neither Step 

1 nor Step 2 introduce new deficient nodes and since in 

both Step 1 and Step 2, x~ • 0 only if x! • 0, the algorithm 
J J 

will terminate and (6.1.3) and (6.1.5) are easily seen to 

be satisfied. By virtue of the fact that we terminated; 

every component H of G+(x') must satisfy (6.1.8) and 

(6.1.9) for the final x'. 

In order to see that (6.1.4) is satisfied by our final 

x', observe that /b. - x'(o(i))/ 
1 

is increased by an 

application of Step 1 or 2 in exactly one case, namely in 

Step 1 when i = w and /E(rr) / is odd. However in this case 

we decrease lbv - x'(o(v)) I by an id•ntical amount. The 

6.8 



I 

on1y time the term in 6(G, b; x', y) 

contributes nothing to 6(G, b; x' 
' 

y) 

corresponding to v 

is when V 8 v-5. 

and yv = 0. But in this case, by (6.1.10), w E V-5. and 

= 0 so the term corresponding to w contributes nothing 

to 6(G, b; x' 
' 

y). Hence in every case 6(G b• x" 
' ' ' y) $. 

6(G, b; x' 
' 

y) following an application of step 1 or step 2 

and the proof is complete,0 

6.2 The Post-optimality Algorithm. 

We describe in this section what could be considered a 

two phase approach to the post optimality problem. The 

0 
first phase will involve modifying an existing matching x 

and corresponding dual solution 0 y to obtain a matching 

and dual solution y which are acceptable as input to the 

X 

blossom algorithm with the new degree constraints b'. Then 

the second phase will consist of a straightforward application 

of the blossom algorithm. 

The two phase structure of this algorithm makes it 

particularly attractive for computer implementation, for 

given that we have a computer code of the blossom algorithm, 

6. 9 

we need only write new code for the first phase; no reprogramming 

of the blossom algorithm is required. 

Let b = (b.: 
1 

i 8 V) and b' = (b'.: i EV) 
1 

be two real 

vectors indexed by v. We measure the difference of b' and 

b by 

Jib - b'JI _ i:(Jbi - b~J: i 8 V). 

This is commonly called the 1-norm of the vector 

(Isaacson and Kellar [Il], p. 4). 

(b - b' ) 

I 
ii 
'i 
I 
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Suppose that we have used the blossom algorithm to 

solve the matching problem (6.0.l)-(6.0.4) and that 
0 

X 

6.10 

is 

the optimal feasible solution found, yo is the optimal dual 

solution (see Section 3.7) and R is the nested .family of 

sets which we had when we reached Step 11 of the blossom 

algorithm. (The knowledge of R is not essential, given an 

0 0 x and y as above, we can construct a nested family R' 

of members of QO which will suffice. 

in Section 6.3). 

This we discuss 

Phase 1. Initialization~ 

Step 1: Define vectors 

J - u o(S). Let 
S£R 

(6.2.1) 1 
x. -

J 

0 

0 x. 
J 

1 
X 

if 

if 

and 

j £ 

j £ 

1 
y 

J, 

E 

as follows. 

- J. 

For any i £ V let R(i) = {S £ R: i £ S}. Let 

(6.2.2) 
1 . 0 0 

Yi - yi + l/2L(ys: S £ R(i)) for all 

(6.2.3) 1 0 
Ys - 0 for all S £ Q. 

Go· to ,Step 2. 

Notice that 

Let 

i £ V, 

(6.2.3a) each component H of G+(x
1

) can contain 

at most one polygon, for by (3,8.14) each component of G x R+(x
1

) 

contained at.most one odd·polygon and for every S £ R, each 

component of is a subgraph of a blossom 



r 

and so contains at most one polygon and 

j £ o(S) for all S £ R. 

1 
x. 

J 
0 for all 

We now show that 1 
y has the following two properties. 

for all j £ J, 

for all j £ E - J. 

Let j £ E and let R(j) = {S £ R: j £ y(S)}. By 

0 (3.8.9), y 8 = 0 for all S £ Q - R, so 

If we let {u, v} = •(j) then we have 

(6.2.7) R(j) = R(u) n R(v) for all j £ E 

and hence, since 0 ;, 0 for all s Qo, Ys £ 

(6.2.8) yO(R(j)) $ l/2(yO(R(u)) 0 + y (R(v))) 

for all j £ E. 

If j £ E - J, then R(u) = R(v) and (6.2.7) implies 

(6.2.9) yo(R(j)) = 1/2(yo(R(u)) + yo(R(V))) 

for all j £ E - J. 

Combining (6.2.6) with (6.2.8) and (6.2.9) we obtain 

(6.2.10) yo(•(j)) + yo(Qo(j)) ,; y~ + 1/2y 0 (R(u)) + 

YO+ l/2yO(R(v)) for j £ J, 
V 

6.11 
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(6.2.11) yo(~(j)) + yo(Qo(j)) = y~ + 1/2y 0 (R(u)) + 

y~ + l/2yo(R(v)) for j EE - J 

which combined with (6.2.2) and (6.2.3) prove (6.2.4) and 

(6.2.5) as required. 

Since 0 
y was a feasible dual solution, (6.2.4) and 

(6.2.5) immediately imply that 

(6.2.12) y' is dual feasible. 

Since 0 
X and 0 y satisfied the complementary slackness 

condition (3.5.10) we have by (6.2.1) and (6.2.5) that 1 
X 

and 1 y also satisfy (3.5.10). We have (3.5.12) trivially 

satisfied because of (6.2.3). 

Step 2. Now apply the algorithm described in the proof 

of Theorem (6.1.2) replacing b with b' so that the new 

matching 2 
X thereby obtained will satisfy 

(6.2.13) x
2

(o(i)) ~ b' for all i EV. 
i 

Go to ·step 3. 

2 
By (6.1.3), x will satisfy (3.5.10) and (3.5.12) with 

respect to 1 y . Moreover by (6.1.4) 

Since X 

we must 

RO u Rl 

(6.2.14) 2 1 1 1 ~(G, b'; X, y) ~ ~(G, b'; x, y ). 

0 
and 

have 

where 

0 y are 

~(G, b; X 

optimal 

0 yo) • = 

solutions to (6.0.1)-(6.0.4), 

0. We partition R into 

Ro - {SER: x 0 (o(S)) = O} 

R
1 

- {SER: x 0 (o(S)) = l} . 

6.12 



For each SE RO there is a node i(S) s S such that 

x 0 (a(i(S))) = bi (S) - 1' but for all i E s - {i (S)} we must 

have x 0 (a(i)) b .. Since I'. ( G' b. 0 yo) 0' = X = we must 
]. ' ' 

have i ( S) v,;, and 0 =.O. Since by (6.2.2) 1 0 E yi(S) Yi > Yi 

only if is S s R, it follows that 

(6.2.15) 0 
X ' l'.(G, b; 

For each SE R1 there is a unique edge j(S) s o(S) such 

that 0 
xj(S)=l. Therefore by (6.2.1), 

1'.(G, b; x 1 0 
X ' 

which together with (6.2.15) implies 

1 1 I (6.2.16) 1'.(G, b; x, y),;, 2 Rj. 

It is easily seen that 

(6.2.17) 1 
X ' t.(G,.b'; Yl) _< ' ( b ,.. G' ; 

so by (6.2.14), (6.2.16) and (6.2.17), 

1 
X ' 

(6.2.18) 1'.(G, b'; x
2

, y
1

) ,;, I lb - b' 11 + 2jRj • 

Step 3. Apply the algorithm we described in the proof 

of (6.1.7) to the matching 2 
X with respect to the vector 

b I > let 3 
X be the matching thereby obtained. Go to step 4. 

Since x~ ~ 0 only if 
J 

for all j i E and by 

3 1 
(6.2.5), x and y satisfy (3.5.10). Moreover, by (6.1.7) 

X 3 ,· yl) 2 1 l'.(G, b'; ,;, l'.(G, b'; x ;y) which with (6.2.18) 

implies 

6.13 



r 
(6.2.19) i\(G, b'; 3 

X , y
1

) ,;; 11 b - b I 11 + 21 RI . 

Let H be any component of G+(x 3 ) which contains a 

node belonging to some S £ R. As before, we let 

R[S] = {T £ R: T c S}. 1 By (6.2.1), x. = 0 for all j £ 
J 

u o (T) 
TER[S] 

2 3 
xj xj = 0 

u·o(s). 

for all 

Therefore by (6.1.2) and (6.1.7), 

j £ u o(T) u o(S). Therefore 
TER[S] 

H 

is a subgraph of G[S] x R[S]. Since the edges j £ E(G[S] x 

0 R[S] for which xj ., 0 are a subset of the edges of a 

(6.1.7) H is a subgraph of a blossom, by (6.1.2) and 

blossom and so 

(6.2.20) H contains no even polygons and 

(6.2.21) H contains at most one odd polygon. 

If H contains no node of any S £ R, then H is a 

subgraph of G x R so (6.2.20) and (6.2.21) follow from 

(3.8.13) and (3.8.14). 

Any component H of G+(x 3 ) satisfies (6.1.8) so 

3 
X 

1 
y are almost in a form appropriate for using as 

starting solutions to the blossom algorithm. However we may 

still have some components of G+(x 3 ) containing both a 

deficient node and an odd polygon. 

follows. 

These are dealt with as 

Step 4. Let R' = •· For. each component H of G+(x 3 ) 

containing both an odd polygon P and a deficient node v 

we do the following. 

P. If there is no 

Let TI be the path in H from v to 

j £ E(n) for which x~ = 1 
J 

then we must 

6.14 
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have b' 
V 

3 
- x (o(v)) = 1 by {6.1.9) and we let B = H

and r = v. Otherwise let k be the last such edge of �-

If we delete k from H we are left with two subgraphs, 

one of which, B, does not contain v. Let {r} = ¢(k) n V(B). 

In either case it is now easily seen using (6.2.3a) 

that B is a blossom and x 3 1E(B) 

B deficient at r. Moreover 

is a np matching of 

(6.2.22) H x V(B) will contain a unique deficient 

node and no odd polygons. 

Add V(B) to R'. 

When this process has been completed for all components 

coniaining a deficient node and an odd polygon, go to Step 5

where we perform the second phase. 

It can now be easily checked that the matching 3 
X , the 

dual solution 1 
y and the nested family of (pairwise disjoint)

sets R' are suitable input for the blossom al gorithm. 

Moreover by (6.2.19) and (6.2.la) we have 

(6.2.23) 

h ( 3 y
l ) w ere /J,, G; x , is evaluated with respect to b'. 

Phase 2. Execution 

Step 5. Apply the blossom algorithm to G, with respect 

to the new vector b' of degree constraints, starting with 

the matching 
3 the dual solution 1 and the nestedX ' y 

family R' of shrinkable subsets of v. The optimum solution

* 

the'reby X obtained is an answer to the problem, the dual. 

solution y is an optimum .dual solution. This completes the 
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description of the algorithm. 

An upper bound on the amount of work performed in step 

1 is of the order /E/ + /v/, an upper bound on the amount 

of work done in Step 2 is, as we have already seen, of the 

order In Step 3 we applied the algorithm described 

in the proof of (6.1.7), Each performance of Step 1 of this 

algorithm either decreased the number of deficient nodes 

or introduced a new edge j 

step can be performed at most 

such that x'. = 0. Thus this 
J 

/v/ + /E/ times and an upper 

bound on the amount of work done in this step is of the order 

IE I . IV I, Since each component of G+(x 2 ) contains at most 

one odd polygon, it is easily seen that the second step of 

this- algorithm can be performed at most once for each component 

and so an upper bound on the amount of work performed in this 

step is of the order Step 4 of the post optimality 

algorithm has an upper bound of the order 

The bound on the amount of work performed in Phase 2 is 

a straightforward consequence of (3.9.1) where we saw that 

this bound was of the order 

i,(G; x, y) /vi 

where x and y are the starting solutions. By (6.2.23) 

therefore, an upper bound on the amount work performed in 

step 5 is of the order 

(6.2.24) (//b - b'// + 2/R/) IV I • IE I 

and since the order of the bound of all previous steps of 

the algorithm is less than (6.2.24), it follows that a bound 

on the amount of work performed by the algorithm is of the 
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order (6.2.24). By (3.2.8) jRJ :;; l/2(JvJ - 1) so the 

total amount of work performed by this algorithm has a 

bound of the order <Jib - b'JI + JvJ) Jv I IE I . 
In Step 1 of this algorithm we eliminated having to 

consider R by letting 1 
x. - 0 

J 
for all j E U Ii (S) and 

defining the dual solution 1 y so that 

SER 
1 

Ys = 0 for all 

S c: R. It was this operation that introduced the term 2JRJ 

in the factor (J Jb - b' J J + 2JRJ) of (6.2.24). An algorithm 

was developed which was basically a synthesis of the two 

phases of the algorithm here proposed and which attempted 

to make as much use of R as possible. However it was 

abandoned in favour of the algorithm here described for two 

reasons. In the first place, although the second algorithm 

was more efficient in certain cases, the theoretical bounds 

on the amount of work performed by the two algorithms were 

identical, namely (6.2.24). In the second place the advantage 

of the second algorithm was that in certain cases it was 

able to avoid setting 1 
X = 0 

j 
for some edges j E U li(S). 

SeR 
However practical experience (see chapter 7) indicated that 

the size of JRJ is normally very small compared to Jv I 
or jEJ 

jRj 

(in graphs of 100 nodes and 500 edges, we generally 

< 10) • 
0 

X is had Thus since x 0 ( u li(S) :;; JRJ where 
SER 

the initial solution used by the algorithm, the gain is small 

when compared with the high degree of complexity of the second 

algorithm. 

6.3 Obtaining a Nested Family. 

Assume we know an optimal solution 0 
X to (6.0.1)-(6.0.4) 
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and an optimal dual solution 
0 

y as produced by the blossom 

algorithm. Thus 

(6.3.1) 0 x is a vertex of P(G, b) 

(6.3.2) R' {S Qo: 0 O} is nested family - s Ys > a 

of subsets of V such that for each s s R' 
' 

G-[S] X 

= is shrinkable. (G is the equality subgraph relative 

as discussed in Section 3.8, thus G= = (V, E=, ~,E=) 

where 

C.}.) 
J 

RI [ s] 

to y 

The nested family R' will in general not be suitable 

as input to the post optimality algorithms of this chapter, 

for there may be sets S s R' such that, where 

0 

6.18 

G = G[S] x R' [SJ, there is a component H of G+(xO) containing 

more than one odd polygon or containing both an odd polygon 

and a node at which 0 
X is deficient. Similarly if we let 

G = G x R', there may be components H of G+(xO) 

these properties. 

having 

In this section, we describe a method for finding a 

nested family R of members of QO having the properties 

(6.3.3) RI C R, 

(6.3.4) 
0 

x h (S) is a np matching of G[S] for 

all S s R, 

(6.3.5) where GS - G[S] x R[S] for all S s R, 

t H Of G-s+<~o) eYery componen "" satisfies (3.8.13)-(3.8.6) 



(6.3.6) where G = G x R, every component H 

satisfies (3.8.13)-(3.8.16). 

This family R together with 0 
X and 0 

y will be 

suitable as input for the post-optimality algorithm of 

this chapter. 

Step 0. Initialization. Let D = ¢, let R = ¢. At 

every stage of this algorithm Ru R' will be a nested family 

of members of QO and D c R is the set of "processed" 

members of R'. 

Step 1. If D = R' then go to step 6. Otherwise, choose 

a minimal S s R' - D. Let G = G = [ S] x R [SJ . 

Step 2. If there is a component H of G+(xO) which 

· dd 1 P d d h" h x 0 1·s contains an o po ygon an a no e v at w 1c 

deficient and is such that any path TI in H from P to 

V contains an isthmus j of H for which 0 
X. = 1 

J 
then go 

to step 2a, otherwise go to step 3. 

Step 2a. Let P be chosen so that a path TI in H 

from P to v is maximal over all paths in H from odd 

polygons to v. Let j be the first isthmus of H in TI 

such that x 0 
= 1 and let w be the end of j 

j 
furthest in 

H from v. Let B be the subgraph of H disconnected from 

V if j is removed from H. B is easily seen to be a 

blossom, x 0
1E(B) is a np matching of B deficient at w. 

(6.3.7) Let W - {is V: is V(B) or is Ts V(B) 
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for some TE .R}. Let R ~Ru {W}, replace R with R, 

replace G with G-[S] ~ R[S]. 

Go to Step 2. 

Step 3. If no component of G+(xO) contains both an 

odd polygon and a node at which 0 
X is deficient, then go 

to Step 4. Otherwise let B be such a component containing 

a node v at which x
0 

is deficient. By (6.3.1), conditions 

(4.5.6) and (4.5.7) of Theorem (4.5.3) and the condition of 

Step 2 of this algorithm, 0 
X has a deficiency of 1 at V 

and B contains a unique odd polygon P. It is easily seen 

that B is a blossom and x 0 /E(B) is a np matching of 

B deficient at v. Perform the operations (6.3.7) and 

return to Step 3. 

Step 4. Now no component of G+(xO) contains both an 

odd polygon and a node at which 0 
X is deficient. If no 

component contains more than one odd polygon then go to Step 

5. Otherwise let 

a component H of 

P 2 be odd polygons belonging to 

such that a path 11 in H from 

pl to p2 is maximal over all paths joining odd polygons 

in H. By (4.5.6) there is an isthmus j of H for which 
0 

1 occurring in before edge which belongs to a 
X. = 11 any J 

polygon of H, let k be the first such isthmus in 11 • Let 

B be the subgraph of H disconnected from P
2 

by removing 

k. It is easily seen that B is a blossom in H and that 

x
0

/E(B) is a np matching of B. 

( 6, 3. 7) and re turn to Step 4. 

Perform the operations 
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Step 5. Now every component H satisfies 

(3.8.13)-(3.8.16). Replace R with Ru {S} and replace 

D by D u {S}. Go to Step 1. 

Step 6. Now we have handled every 8 8 R 1 , Let 

G G x R. All we need do is ensure that every component H 

of G+(xo) satisfies (3.8.13)-(3.8.16). Thus we apply 

· Steps 2, 3, 4 of this algorithm to G (replacing S with 

V). The resulting nested family R is the nested family 

required for the post optimality algorithms. 

11
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Chapter 7 

A Computer Implementation of the Blossom Algorithm 

In this chapter we discuss a computer implementation 

of the blossom algorithm we described in Chapter 3. The 

program was written in PL/1; the reader is assumed to have 

some knowledge of this programming language. (See [12] for 

the language specifications). The design of the program 

was influenced somewhat by BLOSSOM I (Edmonds, Johnson, 

Lockhart [E7]), a FORTRAN implementation of a generalization 

of the blossom algorithm. A special acknowledgement is due 

to Professor Ellis L. Johnson, who has contributed to both 

the design and the details of this computer code. 

In the next three sections we describe the data 

structure used and discuss the way the program handles such 

problems as manipulating trees and blossoms and shrinking 

subgraphs. Following this we discuss the code itself and 

in the last section of the chapter we discuss storage 

requirements and experimental results obtained concerning 

the algorithm. The program itself is listed in the Appendix. 

Throughout the chapter, we refer to statements in the 

program by means of the PL/1 statement numbers. T and F 

are bit strings of length one having the values 'l'B 

and 'O'B respdctively and are used as logical constants 

having ·the values ''true 11 or 11 false 11
• 

7,1. Storage of the Graph. 

NEDGE and NNODE are b'inary full words that hold the 

number of edges and nodes respectively of the graph G. They 

i 
I. 



7.2 

do not change throughout the execution of the program, in 

particular they do not reflect the shrinking of subsets of 

nodes or the creation of pseudonodes. The edge set of the 

graph is the set of integers 1, 2, ... ,NEDGE; the node set 

of the graph is a set of NNODE pointer variables which 

point to the structures holding the information about the 

nodes. 

The graph is represented by an array of edges. EDGES 

(Statement 4) is an array of NEDGE structures which contain 

the following information for each edge J.· 

C(J) is a single precision floating point variable 

which holds the current "reduced cost". That is, it holds 

the value C -
J 

y(~(J)) - y(Qo(J)) where is the cost 

assigned to edge J and y is the current dual solution. 

Determining the equality subgraph and computing the bound 

for a dual variable change are facilitated by having this 

value stored. Initially C(J) should simply be the cost 

of the edge J; the program (Statements 333 to 346) subtracts 

the value of the initial dual solution while initializing. 

X(J) is a binary halfword that holds the current 

value of the matching for the edge J. 

STATUS(J) is a set of 16 one bit switches available 

for recording the status of edge J. 

by the algorithm, they are: 

Only four are used 

EQ(J) = T or F according as J does or does not 

belong to the current equality subgraph; 

SHRNK (J) = T or F according as J has or has not 

been shrunk in forming a pseudonode; 
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FRST(J) = T or F according as J does or does not 

belong to the alternating forest or to some component of 

ZER(J) allows the edge J to be omitted from consideration 

during execution of the program. Any edge J for which 

ZER(J) = T will be completely ignored, any edge J for 

which ZER(J) = F will be processed normally. This feature 

is intended to facilitate processing of subgraphs of the 

graph G. 

ENDS (J ,- *) and ORIGENDS (J, *) are arrays consisting 

of two pointers. ORIGENDS holds pointers representing the 

nodes of G with which J is incident and does not change 

throughout the execution of the algorithm. ENDS reflects 

any pseudonodes that have been formed. Thus, where R is 

the nested family of sets described in Chapter 3, if 

J £ E(G x R) then ENDS holds pointers to the nodes of G x R 

with which J is incident. If J f E(G x R) then the 

pointers in ENDS point to the pseudonode corresponding to 

the minimal member of R which contains ~(J). 

The variables for the real nodes of the graph are stored 

in an array NODELST (Statement 3). However they are 

referred to by means of the based structure NODE (Statement 

6) • Handling the nodes in this way simplifies the treatment 

of pseudonodes while at the same time allows the algorithm 

to be as economical with storage as possible, 

For each node P, real or pseudo, we have the following 

values. 



P -> DEF is a binary halfword holding the deficiency 

of the current matching at the node P, that is, it holds 

7.4 

the value bp - x(o(P)) where bp is the degree constraint 

of P and x is the current matching. If P is contained 

in a pseudonode, this value may be too large or too small 

by 1 however this situation is corrected when we expand the 

pseudonode or correct the matching within it. 

P -> STATUS is a set of 16 one bit switches which reflect 

the status of node P. Nine of these are actually used. 

P ->REAL= T or F according as P is a real node 

or a pseudonode. 

P -> CONSTEQ = T if the degree constraint for node P 

is an equation, P -> CONSTEQ-= F 

for node P is an inequality. 

if the degree constraint 

Thus P -> CONSTEQ = T or 

= F according as P E V or 

P -> DEFIC = T or F according as P does or does 

not belong to the alternating forest. 

P ->ODD= T if P is an odd node of the alternating 

forest, otherwise P ->ODD= F. 

P -> YRTO = T if P belongs to the alternating forest 

and the tree containing P is rooted at a real node i EV~ 

for which y. = O or at a pseudonode containing a node 
i 

i EV~ for which yi = O. 

"f h f G+(x) P -> BLOS = T i t e components o containing 

P contains an odd polygon, otherwise it is false. 

P -> DCHNG, P -> INPATH and P -> EXPANDED 

used by the algorithm and will be discussed.later. 

are all 
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p -> Y is a single precision floating point variable 

used to hold the current dual variable of the node P. If 

P is a pseudonode, then it holds the dual variable of the 

subset of the nodes of G which form the pseudonode. 

7.5 

P -> TREE, P -> EDGEDN and P -> STACKUP are used for 

representation of the trees and blossoms of the algorithm 

and their use is described in the next two sections. 

7.2. Tree Handling. 

The manipulation of trees and forests is an important 

part of the blossom algorithm. There are three properties 

which we wish our data structure which represents trees to 

satisfy, First it should provide an easy means of finding 

the path in the tree from any node of the tree to the root, 

second it should provide a reasonable means of examining all 

the nodes and edges of a tree and third it should make 

convenient such operations as rerooting trees, growing trees 

and removing portions of trees. The structure used is ~he 

''triply linked tree'' developed by Johnson [J2]. A description of 
this structure also appears in Knuth [K3], p. 352. 

We are actually storing a planar representation of the 

tree. We think of a tree being rooted "at the bottom" and 

consisting of various "levels" of nodes according to their 

distance from the root (see Figure 7.1). 

For any node P of the tree other than the root, 

p -> DN . is the node adjacent with- P ~n the level 

immediately below P, P -> EDGEDN is the 

edge of the tree joining P and P -> EDGEDN. If P is 

the root of a tree then P -> DN • NULL and P -> EDGEDN • 0. 



P -> UP is the leftmost node adjacent with P 

in the tree belonging to the level of the tree immediately 

above the level containing P, if such a node exists. 

Otherwise P ->UP= NULL. 

P -> RT is the first node Q to the right of 

P in the level of the tree containing P which satisfies 

P -> DN = Q -> DN. If no such node Q exists, then 

P ->RT= NULL. Observe that if P is the root of a tree 

then P ->RT= NULL. 

~ 
EDGJiD~ 

8 NULL POINTER:¢ 

Figure 7.1 Triply Linked Tree 
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We now describe some of the procedures used by the 

program in manipulating trees. 

7.7 

ADDON(Ql, Q2, J) (Statements 195 -202) uses the edge J 

which joins nodes Ql and Q2 .to attach a tree rooted at 

Q2 to the tree containing Ql. It also sets FRST(J) = T 

to indicate that J is now an edge of the forest. 

REMOVE(Pl)(Statements 158-175) does the following. Pl 

is a node belonging to some tree, REMOVE removes Pl and 

the portion of the subtree above Pl from the tree, thereby 

creating a new tree rooted at Pl. If Pl is already a 

root, it simply returns having done nothing. Otherwise it 

finds the other pointers equal to Pl and modifies them 

appropriately. It sets Pl-> DN = NULL and sets 

FRST(Pl -> EDGEDN) = F, indicating this edge is no longer 

part of the forest. 

REROOT(Pl) (Statements 176 -194) reroots the tree containing 

Pl at Pl. This it does by travelling down the path in the 

tree from Pl to the root, successively removing the portion 

of the tree above each node in the path and adding that 

portion to the portion previously removed. 

UPSCAN(Pl, UPCALL, SUBRUB, DNCALL, SUBRDN) (Statements 

203- 234) is a routine which scans through all the nodes of 

the tree containing Pl which are above Pl. These nodes 

are scanned according to the following rule: UPSCAN always 

tries to move up the tree; if it cannot do this, it tries to 

go to the right and then continue moving up; if it cannot 
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do this it goes down and then tries to go to the right. For 

example, it would encounter the nodes of the tree of 

Figure 7.1 in the following order: 1, 2, 5, 8, 5, 2, 3, 4, 

6, 7, 4, 1. UPCALL and DNCALL are one bit strings, if 

UPCALL = T then the first time each node is encountered, 

UPCALL calls the procedure SUBRUP passing it a pointer 

to the node. If DNCALL = T then the last time each node 

is encountered the procedure SUBRDN is called and passed 

as a parameter a pointer pointing to the node. 

Thus depending on the procedures SUBRUP and SUBRDN, 

UPSCAN can perform a great many functions. The procedures 

described in Statements 235-324 are all used by means of 

UPSCAN, We describe the purpose of these procedures in 

Section 7.5 when describing the main procedure. 

The final procedure we discuss in this section is 

more than just a tree manipulating subroutine. It performs 

augmentations and at the same time (optionlly) hetps construct 

the new alternating forest. 

AUGMENT(Pl,Rl,DELTAX,DESTROY,ODDB) (Statements 40-59) 

alternately subtracts and add DELTAX to the value of 

X(Ql -> EDGEDN) for each node Ql ~ Rl in the path from 

Pl to Rl in the tree containing these nodes. 

Ql -> DN are used to trace down the path. 

The pointers 

If ODDB (BIT(l)) 

equals F then the procedure starts with a subtraction, 

if T then it starts with an addition. 

If DESTROY (BIT(l)) = T then everytime an edge becomes 
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zero, the portion of the tree above that edge is removed and 

broken into nonzero components. This is done by using UPSCAN, 

passing it the procedure NONDEFIX which is called the last 

time each node is encountered. If DESTROY= F then none 

of this is done. 

NONDEFIX(Pl) (Statements 250-258) updates the indicators 

for the node Pl. If there is an edge J down from Pl 

in the tree such that X(J) = 0 then Pl is removed from 

the tree. 

7 • 3 . Blossoms, Shrinking and Pseudonodes, 

One of the central problems encountered in implementing 

the blossom algorithm is the problem of shrinking. It has 

even been suggested (Balinski B[l] p. 232) that the amount 

of storage required to handle this process would make 

computer implementation of the blossom algorithm impractical. 

As was shown by BLOSSOM land as is shown again by the 

program of this chapter, such is not the case. An upper 

bound on the amount of storage required to hold all the 

information necessary for whatever amount of shrinking is 

done by the algorithm is only slightly greater than half 

the amount of storage used to store the information required 

for the real nodes; in practise we generally require 

considerably less. 

A blossom consists of a special type of alternating 

tree together with an edge J which forms an odd polygon; 

this is how it is stored. There is one node R in a 



blossom at which the current matching restricted to the 

edges of the blossom is deficient, the tree is rooted at 

this node. Since R is the root of a tree, we normally 

have R -> EDGEDN = 0, When representing a blossom we 

let R -> EDGEDN = J. Thus storing a blossom is no more 

difficult than storing a tree. 

(Components of G+(X) containing an odd polygon are 

also stored in this fashion, the only difference being 

that the root of these components is not deficient. 

P -> BLOS=T for every node P in such a component.) 

Now we describe the way in which the nested family 

of shrinkable sets is represented. For each member P 

of the nested family we have allocated (in Statements 

508-516) a structure P -> PSEUDO. The first ~even words 

of P -> PSEUDO are used in the same way as the seven words 

of NODE are used. (The maximal members of the noted family 
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are the current pseudo nodes.) However there is in addition 

an eighth word -> ROOT which is the root of the blossom 

associated with P, that is, the node at which the matching 

restricted to the edges of the blossom is deficient. 

For any real node Pl, Pl -> STACKUP is a pointer 

to the structure associated with the minimal member of the 

nested family containing Pl if such a set exists, otherwise 

Pl -> STACKUP = NULL. For any member P of the nested 

family, P -> STACKUP is a pointer to the structure associated 

with the minimal member of the family properly containing P, 



if such a set exists, otherwise P -> STACKUP = NULL. 

(See Figure 7.2). 

Figure 7.2 Nested Family Representation 

( 

\ 

-- \ 
) 

/ 

member of nested family 

D pseudonode representing 
member of nested family 

t STACKUP pointer 

</> NULL pointer 

Frequently we wish to know the maximal member of the 

nested family containing a node P, that is, the current 

pseudonode containing P, 

SURF(P) (Statements 13-25) returns the value of the 

pointer corresponding to the maximal member of the nested 

family containing P, if such a set exists. If no such set 

7 .11 
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exists it simply returns P. In Statements 17-22 it searches 

up the chain of STACKUP pointers starting with P -> STACKUP 

until a null pointer is found. It uses PNEST to count the 

number of members of the nested family which contain P. 

This value is not used by the algorithm itself, but the 

maximum "depth of nesting" is stored in RUNSTAT(3) to 

provide one indication of the amount of work done by the 

algorithm. 

We now describe the operations performed by the program 

in shrinking a blossom (Statements 506-558), Figure 3.7 

may help to clarify this process. J is an edge joining 

nodes Pl and P2 which are both even nodes (or in some cases 

odd nodes) of the same alternating tree. R3 is the first 

common node of the paths in the tree from Pl and P2 to 

the root of the tree. R2 is the last node belonging to 

the bloisom in the path in the tree from R3 to the root of 

the tree. (These nodes have been determined earlier in 

the program.) We call the path from R3 to R2 the stem of 

the blossom. The blossom consists of the polygon plus 

the stem plus any components of G+(X) containing a node 

of the polygon or stem. 

In Statements 508-516 we allocate the pseudonode P 

for the blossom and initialize most of its variables. In 

Statements 519-534 we "mark" the polygon and the stem of 

the blossom by letting P3 - > INPATH = T. This is to make 

it possible to identify all the nodes of the blossom. Then 

1, 

i 
i. 
I 
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in Statement 537 we ·call UPSCAN, passing it the routines 

UPBLOSS and DNBLOSS. These routines (Statements 296-329) 

do two things. UPBLOSS set Pl -> STACKUP = P for every 

node of the blossom. DNBLOSS removes any portions of the 

tree above the blossom and adjoins them to P, These 

routines rely on the order in which UPSCAN scans the nodes. 

SHRNKNG is a one bit switch which is Tor F according as 

the next node to be scanned can or cannot be expected to 

be part of the blossom. Thus whenever UPBLOSS detects a 
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node Pl not in the polygon or stem for which X(Pl->EDGEDN)=O, 

PX is set equal to Pl and SHRNKNG is set equal to F. From 

then on nothing is done to successive nodes until DNBLOSS is 

passed the node PX. Then the subtree rooted at PX is removed 

from the blossom and adjoined to P, SHRNKNG is set T and 

the process continues. 

If SHRNKNG=T then when UPBLOSS is passed a node of 

the polygon or stem or a node Pl for which X(Pl -> EDGEDN) # 0 

it sets Pl -> STACKUP = P, indicating that this node is 

part of the blossom. 

When UPSCAN has completed its scan the program removes 

the blossom from the tree and replaces it with the pseudonode P, 

together with any portions of the tree that DNBLOSS may 

have adjoined to P (Statements 538-543). Finally, R2 -> EDGEDN 

is set equal to J and the blossom is represented completely. 

Now all that remains to be done is t~ update ENDS to 

reflect the new pseudonode. This is done in Statements 

545-556. At the same time SHRNK(Jl) is set equal to T 

I, 
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for any edge such that ENDS(Jl,l) and ENDS(Jl,2) are nodes 

of the blossom. 

7.4. Parameters Passed and Returned. 

In this section we describe the parameters passed 

and returned when using this code. It should be pointed 
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out that this program is designed to be used by other programs 

as a subroutine and consequently there is no provision 

for card input or printer output (except for the trace 

feature). Thus unlike BLOSSOM 1 this program requires a 

suitable driver program t-0 prepare its data and output 

its results if we simply want to solve matching problems. 

Parameters Passed. 

*NEDGE (BINARY FIXED (16)) holds the number of edges 

of the graph. 

*NNODE (BINARY FIXED (16)) holds the number of nodes 

of the graph. 

*NODELST is an array of NNODE structures having the 

format described in NODE (Statement 6). Each structure is 

seven words long and holds the following information. Let 

IE {1,2, ... , NNODE} and let P = ADDR(NODELST(I)). 

- P -~ DEF(BINARY FIXED (15)) holds the degree 

constraint of the node P. 

- P -> CONSTEQ(BIT(l)) should be Tor F according 

as the constraint at node P is an equation or an inequality. 

- P ->·. REAL, P -'?' DEFIC (BIT(l)) should be set 

equal to T initially. 



- P -> DCHNG, YRTO, INPATH, EXPANDED, ODD and BLOS 

(BIT(l)) should initially all be set equal to F. 

- P -> Y (DECIMAL FLOAT (SHORT)) holds the initial 

dual variable of. the node, This dual solution must be 

feasible. If P -> Y is set equal to half the absolute 

value of the largest edge cost for every node P then this 

starting dual solution is feasible, 

- P -> TREE.UP,RT,DN and STACKUP(POINTER) should 

all be set equal to NULL. 
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- P -> EDGEDN (BIN FIXED(l6) should be initially zero. 

*EDGES is an array of NEDGE structures, each six full 

words long holding the following information. Let J E {1,2, •.. , 

NEDGE}, 

- C(J) (DECIMAL FLOAT (SHORT)) is the cost of edge J 

(not the ''reduced cbst; this is computed by the algorithm). 

- X(J) (BINARY FIXED(l5)) should be set to zero. 

- ZER(J), EQ(J), SHRNK(J) and FRST(J) should all be 

initially set to F, 

- ENDS(J,*), ORIGENDS(J,*) (POINTER)should be the nodes 

of the graph with which J is incident. 

* RUNSTAT (Statement 5) is an array of 10 binary 

halfwords. The only entry used for input is RUNSTAT(lO). 

A trace of the execution of the program is or is not printed 

out according as RUNSTAT(lO) = 1 or O. This trace, if obtained, 

prints a message concerning each edge used by the algorithm 

together with the values of the matching and the dual solution 

any time they are changed. 

i). 
:1 
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The main use of RUNSTAT is to return statistics 

concerning the problem solved to the program which invoked 

BLOSSOM. 

These input specifications were based upon the assumption 

that we·were using the zero matching as a starting solution. 

Parameters Returned. 

The parameters are returned in the following state, 

Let P be any node, real or pseudo. 

- P -> DEF is the deficiency of the current matching 

X at the node P. 

- P -> STATUS is set to reflect the status of P 

at termination. 

- P -> TREE, EDGEDN holds the tree and blossom 

structure of the final solution. 

- P -> STACKUP points to the pseudonode representing 

the minimal member of the nested family containing P, if 

such a set exists, otherwise it is null. 

- P -> Y is the final dual variable of the node P if 

P is real, or the final dual variable of the corresponding 

member of the nested family if P is a pseudo node. 

Notice that the invoking program is returned both the 

optimal dual solution and the final nested family. 

was desired in Chapter 6.) 

Let J be any edge of the graph. 

(This 

C(J) is the final reduced cost of the edge J, 

- X(J) is the maximum matching, that is, the answer 

to the problem. 

I 
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- STATUS(J) reflects the status of edge J at 

termination. 

- ENDS(J,*),ORIGENDS(J,*) are both as they were 

originally, the nodes of the graph met by J. 

*RUNSTAT (BINARY FIXED (15)) (Statement 5) is an 

array of ten indicators showing the amount of work done in 

solving the problem. The values returned are as follows: 

RUNSTAT(l) is the number of dual variable changes; 

RUNSTAT(2) is the number of times a blossom was 

shrunk; 

- RUNSTAT(3) is the deepest nest of pseudonodes formed 

(or equivalently, the longest chain of STACKUP pointers); 

- RUNSTAT(4) is the number of times pseudonodes were 

expanded (in Step 9e of the blossom algorithm); 

- RUNSTAT(S) is the number of times the forest was 

grown without making an augmentation (Steps 3a and 7 of 

the blossom algorithm); 

- RUNSTAT(6) is the number of two tree augmentations 

(Step 4 of the blossom algorithm); 

- RUNSTAT(7) is the number of one tree augmentations 

(Step Sb of the blossom algorithm); 

- RUNSTAT(B) is the number of times a component of 

G+(X) containing an odd polygon was added to the forest 

(Step 3c:of the blossom algorithm); 

- RUNSTAT(9) is the number of so called "pseudo 

augmentations", augmentations which move a deficiency to 

< 
a node i of v- for which y. = 0 (Step 7a of the blossom 

]. 

algorithm); 
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- RUNSTAT(lO) is returned with the value zero or one 

according as the matching returned is or is not feasible, 

if RUNSTAT(lO) = 1 when returned then the algorithm 

terminated with a Hungarian forest. 

7. 5. The Main Procedure. 

Now we describe the main procedure itself. The code 

follows fairly closely the description of the blossom 

algorithm given in Section 3.8. 
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Statements 325-349 are for initialization, reduced 

costs are computed and EQ(J) is set for each edge J 

reflecting whether or not the edge belongs to the equality 

subgraph. A procedure FN(J) (Statements 26-39) is used in 

computing reduced costs. It calculates the sum of the dual 

variables of the ends of J and of all members of the nested 

family which contain both ends of J. 

Statements 350-634 constitute the "edge processing" 

loop of the program. JCNT is used to cycle through the edges. 

Anytime we finish considering an edge, whether or not we 

have been able to make use of it, we go to ENDA (Statement 633) 

where JCNT is set equal to 1 + MOD(JCNT,NEDGE). 

Whenever we are able to use the edge JCNT (to augment, 

grow the forest or shrink), LASTJ is set equal to JCNT. 

If JCNT ever ''cataches up'' with LASTJ then we have made a 

complete cycle through the -edges without having been able 

to do anything so we go to Statement 636 and attempt to 

change the dual variables. 



Statements 350-372 test each edge JCNT to see if it 

belongs to the equality subgraph, has not been shrunk, is 
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not in the forest and meets an even node Pl of the alternating 

forest F
1 

If JCNT violates any of these criteria we go 

to ENDA. If the other end P2 of JCNT is an odd node of Fl 

then it is of no use to us and we go to ENDA, if P2 is an 

0 odd node of F then we go to ODDGROW (Statement 581). 

Otherwise we set J=JCNT and go to POLYSTEP(Statement 566), 

GROWSTEP(Statement 559) or DXCALC(Statement 382) depending 

on the status of P2. 

DXCALC:(Statement 382) J joins even nodes Pl and P2 

of the forest F, in Statements 382-400 we determine whether 

they belong to the same or to different trees. At the 

same time we compute Dl and DZ, bounds on the amount of 

augmentation that can be made. INPATH is used to mark the 

nodes in the paths from Pl and P2 to the roots of their 

respective trees. If Pl and P2 belong to different trees 

then Rl and R2 are the roots of the two trees. If Pl 

and P2 belong to the same tree then Rl is the root of the 

tree and R2 is the first common node of the two paths. 

If Pl and P2 belong to different trees, then we go to 

TWOTREE (Statement 401) where we perform the augmentation 

described in Step 4b of the blossom a+gorithm compute the 

new forest and go to ENDA. 

If Pl and P2 belong to the same tree then we go to 

ONETREE (Statement 427). There we determine whether or 

an augmentation is possible. If not we go to DEFBLOSS 
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(Statement 506) where we shrink. If we can make an augmen-

tation we do so, update the tree and then update the 

forest. At this point we may have to shrink, if so we g-0 

to DEFBLOSS where we do so. We may have created a component 

of G+(X) containing an odd polygon and no deficient node. 

If so (Statements 497-505) we find the root R2, store the 

polygon forming edge J as R2 -> EDGEDN and call UPSCAN 

passing it the procedure BLOSSIND. BLOSSIND (Statements 

259-264) simply sets the node STATUS indicators correctly. 

We have already discussed the shrinking procedure in 

Section 7.3. 

GROWSTEP:(Statements 559-565) J joins an even node 

Pl of the forest to a node P2 not in the forest. We simply 

grow the forest. ADDFIX (Statements 235-244) sets the 

STATUS indicators for the nodes added to the for~st. 

corresponds to Step 3b of the blossom algorithm.) 

(This 

POLYSTEP:(Statements 566-580) J joins an even node 

+ Pl of the forest to a node P2 of a component of G (X) 

which contains an odd polygon. First we find the root of this 

component and hence the polygon forming edge Jl. Then we 

add this component (minus Jl) to the forest just as in 

GROWSTEP. Then we replace J with Jl, Pl and P2 with the 

ends of Jl and go to DXCALC(Statement 382). 

to Step 3c of the blossom algorithm.) 

(This corresponds 

ODDGROW:(Statements 581-632). 

1 node Pl of-F and an odd node P2 of 

J meets an even 

Statements 585-597 

add a suitable portion of the tree containing P2 to the 

tree containing Pl. SETYRTO is a procedure used by UPSCAN 



to set P -> YRTO = YROOTO for all nodes scanned. Thus 

we first set YROOTO correctly. 

of the blossom algorithm.) 

(This corresponds to Step 7 

We may now have a tree in the forest containing two 

deficient nodes Pl and P2. If this is the case, we make 
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a so called "pseudo augmentation'' to remedy this (Statements 

599-632). These steps also update the forest. (This portion 

of the code corresponds to Step 7a of the blossom algorithm.) 

This completes the description of the main edge 

processing loop. If we make a complete cycle through 

the edges without being able to make use of any edge then 

we go to DUALCHNGE(Statement 636) where we attempt to change 

the dual variables. FAIL is a one bit switch which is used 

to indicate whether or not we have an optimal feasible 

matching. Initially FAIL=F, if we discover a node in a 

tree of F1 then FAIL is set equal to T. 

In Statements 637-665 we compute EPS2, a bound imposed 

by the nodes on the amount of dual change that can be made. 

(EPS2 equals the minimum of E
3

, E4 .of Step 9a of the blossom 

algorithm.) 

If FAIL=F, thus the current matching is feasible, we 

go to CORRECTION(Statement 925) where we correct the matching 

in the pseudo nodes. If EPS2=0 then we need make no dual 

variable change; we go to NODEBND(Statement 786) where 

we either reroot a tree or expand an odd pseudonode of the 

forest. 

Otherwise (Statements 6707705) we compute EPSl, the 



bound on the amount of dual change determined by the dual 

constraints corresponding to the edges. (ESPl equals the 

minimum of o
1

, •
2 

of Step 9a of the blossom algorithm.) 

Then we let EPS = MIN(EPSl, EPS2). If EPS = lOlO (infinity 

for our.purposes) then the forest is Hungarian, no feasible 

matching exists, we go to CORRECTION and terminate. Other-
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wise (Statements 706-780) we make a change of dual variables 

and update the reduced costs accordingly. (For any pseudo 

node P, P -> DCHNG is used to ensure that we only change 

its dual variable once.) If the bound on the dual change 

was imposed by a constraint corresponding to an edge JX then 

we can now immediately make use of the edge; we set JCNT 

equal JX and return to the start of the edge processing 

loop. (Statement 350). 

If the bound on the dual change was imposed by a 

constraint corresponding to a real node PX of the forest, 

then we now ,have PX -> Y = 0. If PX is the root of 

the tree, we simply reset YRTO for the nodes of the tree. 

Otherwise we go to AUG(Statement 599) and make a pseudo 

augmentation. This process corresponds roughly to Step 9d 

of the blossom algorithm, although in the computer code 

we do not insist that all trees of F1 rooted at nodes i e ,f 
0 for which y. = 0 be moved to F , we simply handle one each 

1 

time. 

If the bound on the dual change was imposed by a 

constraint corresponding to a pseudonode PX, then PX -> Y = 0 

and PX is an odd pseudonode of the forest that has to be 



expanded. This we do in Statements 797-924. 

The first thing done is to call EXPAND, a procedure 

(Statements 60-145) that first updates ENDS so as to no 

longer reflect the existence of pseudonode P and then• 

''corrects'' the matching within the blossom corresponding 
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to P so that it is compatible with the matching of the graph 

containing P. This procedure also forms the nucleus of 

the final matching correction step (corresponding to Step 12 

of the blossom algorithm). Notice that for any calls to 

AUGMENT in EXPAND we have DESTROY= F, thus the blossom 

does not have its structure destroyed. 

EXPAND set JIN equal to the edge J of the graph 

incident with P for which X(J) = 1 and sets BROOT equal 

to the node of the blossom met by JIN. If p -> EDGEDN = JIN 

then we have the easier case, JIN is the unique edge of the 

forest meeting P. This case is handled in Statements 803-842. 

Otherwise two edges of the forest meet P, this case is 

handled in Statements 843-924. 

ADDBLOS,DEFFIX(Statements 265-295) are routines called 

by UPSCAN to ''unshrink'' a blossom and update the status 

indicators. Their operation is similar to that of UPBLOSS, 

DNBLOSS. Initially SHRNKNG(BIT(l)) = T. For each node Pl 

that ADDBLOS is passed, it sets Pl -> STACKUP = NULL, 

thereby removing the reference to the pseudonode. Then 

it proceeds, setting the status of each node to indicate 

that it belongs to the forest, until it finds a node Pl 

which w6uld have become an even node of the forest for which 



X(Pl EDGEDN) = 0. When this happens PX is set equal 

to Pl and SHRNKNG is set equal to F. From then on the 

status of each node encountered is set to indicate that 

%he node does not belong to the forest. DEFFIX breaks th~ 

blossom.up at edges J for which X(J) = 0. When DEFFIX is 

passed the node PX it sets SHRNKNG = T and the process 

continues. 

The final part of the program is the step (Statements 

925-945) where we correct.the matching in the pseudo nodes 
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prior to terminating. For each pseudo node P, P -> EXPANDED 

is used to ensure that we do not try to correct the matching 

for the pseudonode more than once. 

This completes the description of the program. 

7.6. Experimental Results 

This program was compiled under version 5.2B of the 

OS/360 PL/1 F level compiler, OPT=! and was tested on a 

large number of contrived graphs. Then a series of tests 

on ''random graphs'' was run to obtain the experimental results 

described here. 

The random graph generator accepted as input the number 

of nodes and edges desired in the graph together with a 

range for the degree constraints and a range for the edge 

costs (integers were used for edge costs in these tests). 

It generated the graph by successively joining each node 

of the graph to some other node until sufficient edges 

had been_ created. Thus the test graphs had multiple.edges 

·but no loops. The random graph generator also accepted 
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a parameter specifying the desired probability of a node 

belonging to v-: 
An option of the random graph generator was to create 

a file containing the information about each graph in a 

form suitable as input to BLOSSOM I, the earlier Fortran 

implementation of the matching algorithm. This enabled 

comparative tests to be run between the two programs. 

The driver program then invoked BLOSSOM to solve the 

matching problem. Following this a test was made of the 
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matching and dual solution returned by BLOSSOM to ensure that 

they were feasible solutions satisfying the complementary 

slackness conditions for optimality. 

The results of these tests are listed in Table 7.1 

They were run on an IBM/360 model 75 at the University of 

Waterloo. Thirty two graphs were run on both BLOSSOM I and 

the code described here, two random graphs were generated 

with each set of specifications. .W,L .. required the degree 

constraint be satisfied with equality at each node, In addit:i."on, 

six "large" r h h d gaps were run on t e co e of this chapter. 

One of the most striking observations is that even 

though the value of the edge costs do not enter into our 

theoretical bound, the number of different edge costs 

drastically affects the run time of the code. The reason 

for this seems to be that the more different edge costs we 

have, the more dual varieble changes that have to be done 

to obtain an ~ptimal solution~ and dual variable changes 

are practically (although not theoretically) time consuming. 
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A second observation is that the number of pseudos 

formed during the course of execution of the code tends to 
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be relatively small. The entries in the table give the total 

number formed during the execution of the code, the number 

present at termination is often considerably smal~er. 

The BLOSSOM program of this chapter does run faster than 

BLOSSOM I (The ratio of its execution time to th3t of 

BLOSSOM I seems to decrease as the number of edges of the 

graph increases). This is not surprising, however, for 

BLOSSOM I treats directly a more general form of the matching 

problem than is treated by the code of this chapter. These 

more·general problems can be reduced to problems solvable 

with the code of this chapter;however this involves 

significantly, though algebraically, increasing the number of 

edges and nodes. 

The BLOSSOM procedure itself requires 33K bytes of 

storage. Storage of the graph .re.quires 28 x v + 24 x e + 32 x p 

bytes of storage, where vis the number of nodes, e is the 

number of edges and pis the maximum number of pseudonodes 

present at any one time in the execution, The various PL/1 library 

routines required to run BLOSSOM add to these storage 

estimates however, When run with the random graph generator 

and driver, the [100 node-1000 edge] graphs required 148K 

bytes of storage, the [1000 node-4000 edge] graphs required 

238K bytes of storage. 

Since the computer code uses fixed word arithmetic, it 

may not be able to solve a problem if the number of significant 

digits of some of the values used becomes too large. 



The degree constraints and values of the matching are 

integers stored as binary half words and so can be no larger 

than 32767. The value X(J) for any edge J can never be 

larger than the smaller degree constraint of its ends, so as 

long as the degree constraints range from 1 to 32767 we will 

have no difficulty handling these values. 

The edge costs and dual variables are stored as hexadecimal 

(base 16) floating point numbers having six significant 

hexadecimal digits. 

rational numbers. 

Any edge costs stored by the computer are 

If we multiply all edge costs by a positive 

constant we do not affect the solution set of the problem. 

Hence we can assume that the edge costs have been multiplied 

by a large enough number so that they are all integer. As was 

shown in the proof of (3.10.7) if our starting dual variables 

are integer valued then all dual variables computed during 

the execution of the algorithm will be integer or half integer 

valued. If the degree constraint of every node is an inequality 

= (that is, V V;;, = V) then all dual variables are and = q, 

nonnegative and so no dual variable needs to be larger than 

the largest edge cost. Thus if the edge costs are integers 

from the range - 1,048,576 to 1,048,576 then the dual variables 

will be integers and half integers from the same range. 

These numbers are represented exactly by six hexadecimal digits 

so we can be sure that the computer code will solve such 

problems. 

= In the case that V • .q, ·, and consequently some dual 

variables are.allowed to become negative, we may in fact require 

dual variables considerably larger than the largest edge cost. 

Consequently the establishment of a bo;nd on the magnitude of 

7.27 I
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the dual variables is more complicated. For an analysis of a 

situation of this sort, see Edmonds, Johnson, Lockhart [E7]. 

If higher precision were required for some problem it 

would be a straightforward matter to replace all binary half 

words with full words and all floating point numbers with 

double precision floating point numbers. Then degree constraints 

could range from 1 to 2,147,483,648 and if the edge costs 

were integers from the range -4 x 10
15 

to 4 x 10
15 

we could 

guarantee a correct solution. 
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* 
* 

TABLE 7.1. TESTS OF BLOSSOM PROGRAM 

No. of 
Nodes 

30 

30 

30 

30 

so 
so 
50 

50 

100 

100 

100 

100 

3.00 

300 

300 

300 

• 500 

• 500 

•1000 

No. of 
Edges 

150 

150 

500 

500 

200 

500 

200 

200 

300 

1000 

300 

300 

1500 

1500 

1500 

1500 

5000 

5000 

4000 

Range of 
bi 

1 

1 

1-7 

1-77 

1-10 

1-10 

1-100 

1-10 

1-2 

1-2 

50-150 

1-2 

1 

7-77 

2 

100 

7 

1 

1-2 

. < ** Run with all nodes i Ev:;. 
* Run with half nodes in V-. 

Range of 
cj 

1-1000 

1-5 

1-500 

1-500 

1-10 

1-10 

1-10 

1-9999 

1-10 

1-10 

1-10 

1-9999 

1-10 

1-10 

1-100 

1-10 

1-10 

1-10 

1-10 

Elapsed 
Time 

4 . 9 , 6.9 sec. 

0.5, 0.7 

22.6,19.0 

25.5,24.0 

3 . 7 , 4.6 

5.8, 5.8 

3. 2, 5. 7 

23.8,16.7 

10.6, 8.1 

2 0. 3, 8.8 

9.7,11.5 

50.5,45.5 

38.1,21.6 

44.0,51.3 

135.1,125.6 

20.5,18.4 

137.0,123.4 

84.2,177.4 

143.5,184.8 

Blossom I 
Elapsed 

Time 

6. 5, 9.2 sec. 

1.1, 1. 3 

29.4,25.6 

32.0,32.1 

5.5, 6. 2 

12.0,11.2 

4.8, 7 . 4 

29.4,19.5 

24.4,23.7 

54.7,15.9 

13.4,16.7 

62.3,53.8 

65.9,39.8 

102.6,112.4 

182.4,172.9 

36.8,31.9 

No. of No. of Dual 
Shrinkings Variable 

Change 

1,5 I 28,39 

o,o 2,3 

2,3 39,33 

6 , 5 44,41 

4,3 10,15 

5 , 5 6, 7 

0,5 10,18 

11,6 96,66 

27,19 16,16 

26, 6 9,5 

8,13 16,19 

11, 7 138,124 

11, 6 13,7 

15,13 18,12 

0,0 68,70 

0,0 8, 7 

31,28 5,6 

36,61 3,5 

11,33 14,14 



APPENDIX 

/•THE BLOSSOH ALGORITHM: MAIN PROCEDURE. 16-01-73 •I 

STMT LEVEL NEST 

2 
3 

Q 

5 

b 

1 

I 

l•THf llLOSSOM ALGORIT11•1: MAltJ PllOCF[)URF, 16-03-73 •I 

BLOSS0t1: PROC(NFDGE,NNODE,NODELST,FDGES,RUNSTAT); 

'********************************************************** 
************* VAHIAALE DECLARATIONS ****************** 
**********************************************************' 

DCL (NFOGE,NHOOf) R!N F!XEO(l6J: 
DCL I NODfLST(• /oNNODE•tJ, /0 ACTUAL STORAGE FOR NODF VARS o/ 

2 FILL(7) RIN FJXED(!b): 
DCL EDGES(• /oNEDGE•/1, 

2CFlOAT, 
2 X BIN FIXEO(!SI, 
2 STATUS, 

3 FILL B1T1t2l, 
13 ZER, 

3 EO, 
3 SHfHIK, 
3 FRST) AITC!l, 

(2 ENDS(2), 
2 ORIGFNOS(?)) PTR: 

DCL RUNSTAT(IO) BIN F!XfD (15); 
/o RUNSIAT(!)•llO,OF DUAL CHANGES, 

RlJ~STATC2)=NO. OF S~lPl~KINGS, 
RUNSTAT(3)•DFEPEST NEST OF PSEUOONGOES FORMED, 
RUNSTIT(Q):NO, OF EXPANSIONS, 
RUNSTATC5):NO. Of TIMES FOREST GROWN, 
RUIISTAT(b)=NO, OF mo Tlfff AUGf!ENTATJONS, 
Rl.l~ST~T(7):NO. OF ONE lREE AUG~FNTATIONS, 
RUNSTAT(B):NO, OF TTeES POLYGON AOOED TO THE FOREST, 
RUtlSTAT(Q):NO. OF PSEUDO AUGMEt:TATIOr1S, 
RUNSTAT(\O)• 0 IF MATCHING IS FEAS!RLE, 

I TF MATCHING JS NOT FFASIRLE. 
RUNSTAT(JO) JS PASSED WITH VALUE O IF NO TRACE rs DESIRED, 

WITH VALUE I IF A TRACE IS REQUIRED, •I 
DCL NODE HASED(PJ, 

2 BASICS, 
3 DEF OJN FJXED(!Sl, 
3 STATUS, 

Q FILL BIT( 71, 
(Q REAL, 

Q OCHIIG, 
4 YR TO, 
ll 11'!PATH 1 

4 EXPA'IDED, 
Q CONSTEQ, 
ll ODO, 
Q DEF!C, 
11 BLOS)fi!T(I), 

3 Y FLOAT, 

I' I! 

I 

I. 

Ii 
I 
I 

Ii 
"' I 
I[, 
I 
'' 
I !I 

·. ! 

I 

Ir 

I 



/•THE OLOSSOM ALGORITHM: MAIN PROCEDURE. !b-03-73 •I 

STMT LfVEL NEST 

7 

8 
9 

10 

II 

12 

13 

14 
15 

lb 
17 
18 
19 
20 
21 
22 
211 
25 

1 
I 
1 

I 

1 

2 
2 

2 
2 
2 
2 
2 
2 
2 
2 
2 

1 
1 
I 

3 THEE, 
( tj UP, 

4 RT, 
4 l>N) PTH, 

3 EnGEllN RJN FIXEDC!bl, 
3 STACKUP PTH; 

DCL ! PSEUDO RASED(P), 
2 HASJCSC71 AIN FIXED (lb), 
2 HOOT PTR; 

DCL(CEPS,FPS!,EPS2,ZI FLOAT, JX R!N FIXfD(lb)I STATIC: 
DCL SIJIIF ENTRY RETUR'JS(PTR): 
DCL ((P,P1,P2,P3,Rt,R2,R3,PX,RROOT,Q1,02,Q3)PTP, 

CI,J,Jt,J2,K,JCNT,LASTJ,JIN,JON) BIN FIXEO(lb), 
D[LTAX BIN FIXEDC!SI, 
CD1,D2,D3I RI• FIXED(15)JSTATIC: 

DCL (T !NIT ('!'HJ, F !NIT ('O'B)) STATIC BIT (!), 
( 0DDB , POL YB IT, SHRl~K~IG I YROOTO, TRACE, FROME X, NOC HECK I F A IL) 

STATIC ll!TCIJ: 
FHT: FORHAT(SKJP,A,FCb),A): I• USED FOR TRICING •I 

'***********************************************~*********** 
***********- GFNEr-?AL PURPOSE SURROIJTJNES .,,_**************** 
**************************A********************************/ 

SURF: PROC (P) RETUR~S(PTR): 
I• PROCEDURE TO FINO HIGHEST LEVEL PSEUDO NODE CONTAINING P. •I 
,. POEST rs USED TO COIJNT STACK DEPTH •• , 
DCL CP,Pt STATIC) PTR: 
DCL PNfST AJN FIXEO(!S) STATIC: 

PNEST:O: 
Pl=P1 
DO WHJLE CP!->STACKUP ~=NULL): 

Pt=Pl->STACKUP1 
PNfST=PNEST+! l 
ENDJ 

IF PNrST > RUNSTAT(3) THEN RIINSTAT(3)=P•Esr: 
RETURN(Pl): 

END SURF: 

·:"'I :I 
' ·.'I 

; 

I 

11 

J 
I 

I

,, 

if 
, I 

I 
I 

I 



/*THE OLOSSDM ALGDHITHH: MAIN PROCEDURE, 16•03•73 */ 

STHT LEVEL NEST 

26 

27 

28 
29 
30 
31 
33 
34 
35 
36 
37 
36 
39 

40 

41 

42 
43 
411 
45 
46 
47 
49 
50 
51 
52 

511 
55 
56 
57 
56 
59 

2 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

2 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 

t 
I 
I 
t 
I 
2 
2 
2 

2 
I 
I 
1 

fN:PROC(EOGE); 
/• TIIIS PROCEDURE EVALUATES Tllf SUM OF THE DUAL VARIABLES 

Of,J EACH nm OF A-~J EDGE A~1D ON 01)0 SfTS CotHAINJNG 
THE EOG[.*/ 

DCL (P!,P2) STATIC PTR, EDGE HIN FIXED(l6), SUM STATIC FLOAT; 

P!=DNTGE~DS(EDGE,!l: 
P2=0HIG[NDS(rDGE,2); 
SUM:PJ•>Y + P2->Y: 
IF •SHANK(EDGFl THEN GO TO END; 
Pl=ENOS(EOGE,t); 
DO WHILE CP!•=NULLl: 

SUM=SIJM+Pl•>Y: 
P!=Pl->STACKUP: 
END; 

ENO:RETURNCSUH); 
ENO FN; 

AUGMENT:PROC(P!,R!,DELTAX,DESTROY,OODB); 
/o THIS PROCEDURE AI/GNFNTS hLONG THE PATH FROM P! TO THE ROOT Rt 

BY AMOUNT OELTAX. IF DESTROY• T THEN THE TREE GETS BROKEN 
UP Al EDGES J FOR WHICH THE NEN X(J) • O, IF DESTROY= F 
THEN Ti<IS DOES NOT HAPPEN. WE START AUGMENTING •ITH AN 
ADDITION OR A SLJHTRACTION OEPENDING OtJ WHETHER ono =TOR F.*I 

DCL (Pt,Rl) PTR,DfLTAX BIN FTXED(!Sl,(DESTROY,ODOH) RJT(ll, 
(Ot,02) STATIC PTR; 

Ol•PI: 
DO WHILE (Ot••R!l: 

Ol•>INPATH•F; 
J!•OI-> EDGEON; 
02=CH->DN: 
IF ODDH THEN X(Jt)•X(Jl)+DELTAX; 
ELSE OO: 

X(Jll•X(Jll•DFLTAX: 
IF DESTROY THF'I 

IF X(Jl)•O TH[N CALL UPSCAN(O!,F,NONDEFIX,T,NONDEFIX); 
I* THIS REMOVES EVFRYTH!NG ABOVE AND SPLITS TREE 

INTO ITS POSITIVE COMPONENTS, •I 
ENO; 

01=02: 
0000=:.;or;oa; 

ENO; 
Rt•>INPATH=F: 

ENO AUGi-1£NT: 

1· 
' 

:'' 
I, 



/*THE ALOSSOM Al.GOil!TIIM: SAl'J PROCEO!IRE. !6•03•73 •I 

STHT LEVEL NEST 

60 

61 

62 

63 
64 
65 
66 
68 
69 
70 
71 
73 
75 
76 
78 
80 
81 
82 
M 
85 
87 
89 
90 
91 
92 
93 
95 
96 
97 
99 

101 
102 
103 

105 
106 
107 

108 

2 

2 

2 
2 
2 I 
2 I 
2 I 
2 I 
2 I 
2 I 
2 2 
2 2 
2 I 
2 I 
2 I 
2 I 
2 I 
2 2 
2 2 
2 I 
?. I 
2 I 
2 I 
2 I 
2 
2 · I 
2 2 
2 2 
2 2 

2 2 
2 2 
2 3 

2 3 
2 3 
2 2 

2 

EXPANO:PIHJC (P): 
/o THIS PAOCEOURF EXPANDS A PSEUOONODE, 
SPEC!f!CALLY IT 

!) CORNFCTS EDGE ENOS SD THAT THEY NO LONGEN NFFLECT 
EX!STFNCE OF PSEIJ[)ONODE 

2) AIJGMf~T SO THAT MATCll!NG CORAFCT RUT STACKUP STILL 
ACKNOWLEDGES PSEU00N0Df •I 

DCL P PTA, DESTROY BIT(!J,CCPl,P2) PTR, CI,J) AIN FIXED(161, IN BIT(!)) 
STATIC: 

DESTROY:f: 
I• CORRECT EDGE E~DS •t 
JIN:O:t• JUST I~ CASE THERE IS NO EDGE IN WITH X(J) •I. o/ 
00 J: I TO NEDGE: 

IN:f; I* INDICATES PARITY OF NO. Of EDGE ENOS IN P, •t 
IF ENDS(J,ll~=P THEN GO TO P2!ESTJ 
IN=T: 
SIIRNK(J):F; 
PJ=OR!GENDS(J,J); 

LPPI: If Pl •> STACKUP:P THEN DO; 
ENDS (J,IJ:PI; GO TO P2TEST; 
END: 

P!•PI •> STICKUP; GD TO LPPI; 
. P2TEST: IF ENns (J,2) ~.p THEN GO TO LPEND; 

JN="'IN: 
P2•0R!GE~DS (J,21: 

LPP2: If P2 •> STACKUP:P THEN DO; 
EtJOS (J,2)=P?.; 
GO TO LPEND; ENO: 

P2•P2->STACKUP; GO TO LPP2; 
LPEND: IF IN THEN 

IF X!JJ:J THEN I* THIS IS THE EDGE INTO THF ALOSSOIH/ 
JIN=J; 

flJO; 
IF J!N:O THEN DO: /•CHECK FDR c: NOOE WITH Y•O o/ 

on I= I TO NNODE: 
Pl•ADDR(NO~ELST(l)); 
IF Pl·>CONSTEU THEN GO TO EKDSClt; 
If P!•>Y ~= 0 THEIi GO TO ENDSCll; 

/o OTHERWISE WE SEE IF Pl IS CONTAINED IN P, •I 
Frnnor=Pt; 
no WHILE(BROOT->STACKUP ~= NULL): 

IF P:AROOT->STACKUP THEN GO TO LAB7r 
,. BROOT rs I SUITAHLE NODE FOR RECEIVING I DEFICIENCY•/ 

BAOOT•DROOT->STACKUP; 
END: 

ENDSCH: HID; 
I• p CONTAINS NO<= NOOE WITH Y=O, so CURRENT MATCHING o.K.o/ 
RETURN: 

I' 

ii ' 
I i 

·.,:. I 'I 

I ·, 
I 

.1 

, I 

. ;I 

;' 1' 

I 



/•THE ALDSSDH ALGDRITI<,:: MAIN PROCEDURE. 16-03-73 •I 

STHT LFVEL NEST 

109 
11 0 
112 
113 
I 111 
115 
116 

117 
119 
120 

1211 
125 
126 
127 
129 

130 
131 
132 
133 
13~ 
135 
136 
137 
138 
IQO 
1111 
IQ2 
1113 
1115 

IQ6 
1117 
1118 
1Q9 

150 
151 
152 
153 
1511 
155 
156 
157 

2 
2 
2 
2 
2 
2 
2 

2 
2 
2 

2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

I 
2 
2 
2 

I 
2 
2 
2 
2 
2 
2 
2 

! 
I 
I 
I 
I 
I 
I 

I 
I 
I 

LAR7:Rt=P->R0DT; 
IF ARaOT=NI THEN RETURNJ I• CURRENT HATCHING IS CORRECT a/ 
R 1->DFF=O: 
BROOT->IJEF:l; 
P!=BROOT: 
GO TO AGHNT; I• MATCHING CORRECTION SET UP a/ 
ENO; 

I* ON[ ENO OF ,JIN HAS STACKUP=P, THE OTHER ODES NOT. LET 
Pl HE THAT NOOE •I 
P\:ENDS (JIN,!); If Pl-> STACKUP=P THEN 
P2=ENDS CJIN,2); 
ELSE DO: Pz:P\; P!=ENDS (JH,,2); END; 
/o NOW Pl IS THE SURPLUS NODE •I 
BROOT:PI: !• VARIAALES RETURNED TO BLOSSOM o/ 
R!=P->NOOT: 
R!->OF.F=O; I• WE WILL CLEAR UP THIS DEFIC!fNCY •I 
IF Pl : RI THEN RETURN; 

AGMNT: 
DELTAX=I: 
OOOA=F: I• START WITH SUBTRACTION•! 
CALL AUGHtMT (P!,R!,DELTAX,DESTROY,ODOAJ; 

IF;0DD8 THEN /o NE WENT CORRECT OIR'N AROUND POLYGON o/ 
PETIJRN: 

J=Rl->EDGEDN; 
Pt=Ft,os CJ,1J, 
P2=ENos (.J,?l, 

0DOB=F: I• tJORHAL CASE o/ 
IF Pt->0DD THE~ 0DD8=T: /o AnNORHAL CASE o/ 
CALL AIJGHENT CP!,N!,DELTAX,DfSTROY,(ODDA)); 
CALL AUGHtNT (P2,Rl,OELTAX,DESTROY,(0DDHJJ; 
X(J)=X(JJ+nELTAX: 
IF DOOR THEN X(JJ=X(Jl-2•DELTAX: /o CORRECT A BAO GIIESS o/ 
ENO; 

XOUT:PROC; /o PRINTS CURRENT SOLUTION*/ 
PUT fO!TC'oBLOSS - CllRRENT MATCHING :•)(SKIP,A): 
PUT ED!TCX)(SK!P,20 F(S)l; 
EHD XOUT; 

YOUT:PROC; I• PRI~TS CURRENT DUAL NODE VARS o/ 
PUT EOIT('•HLOSS - CURRENT NODE DUAL VAR!AALES :')(SK!P,A): 
PUT SKIP; 
00 IY = I TO NNODEJ 

P=ADDR(NODELST(IYJ); 
PUT EDIT(P->Y)(F(I0,2)); 
ENO; 

END YOUT; 



/*THE BLOSSO•� ALGORITHM! HATN PR0CED1lRE. lt.•03-73 */ 

SHIT LFVEL flfST 

158 1 

159 2 

160 2 
1 h I 2 
163 2· 
1 bl! 2
166 2 
11.,7 2 1 

166 2 1 

169 2 
170 2 
171 2 
172 2 
173 2 
1 H 2 
175 2 

176 l 

177 2

178 2 
17q 2 
161 2 
162 2 
163 2 
16'1 2 
165 2 

186 2 
187 2 
188 2 
190 2 
191 2 
192 2
193 2 
1911 2

/***************************************************************** 
*******�** GENERAL TREE HAN�LI�G ROUTI�ES ******�****�k***�***** 
***************A*************************************************/ 

Rf�ovr: PROC (Pt): 
I* S11f\ROlJTINE TO i:iEHOVE P1 FROM THE TREE CONTAl11{MG IT, */ 
DCL {Pt,(P2,P3) STATTC) PTR; 

P2=P!->DN: 
TF P?:�ULL THEN GO TO PET/* FOR Pl IS THE ROOT OF ITS TREE */; 
P3::P2->UP: 
IF P3::P1 THEN GO TO EASY; 
DO hHILE (P3->RT �=Pi); 

P3=P3->RT: 
END: 

I* NOW WE HAVE FOUND Pt *I 
P3->RT=P1->RT; 
GO TO RET: 

EASY:P2->UP=Pl->RT; 
RET: Pt->RT=NULL; 

Pt->DN::MULL: 
FRST(P!->EOGEON)=F; 

END RE�OVE: 

RF.ROOT: PROC (Pt): 
I* SUBROUTINf WHICH REROOTS THE TREE CO�TAINI�G P\ AT Pt. *I 
DCL {[P2,P3,PX) PTR,CJ,J3) BIN FIXED{lb)) STATIC, Pt PTR: 

P2=Pt->ON; 
IF P2:�ULL THEN RETURN I* FOR Pl IS ALREADY A ROOT. *I: 
J=P t ->El)GEON: 
Px::Pt: 
CALL RF�OVE (Pl); 

LP: P3=P2->l)N; 
J3=P2->EDGEDN: 
CALL R[�OVE (P?): 
CALL AnDON {PX,P2,JJ: 
IF P3:HULL THEN RETURN I* FOR P2 WAS THE ROOT, *I: 
PX=P2: 
P2=P3: 
J::.T3: 
GO TO LP: 

END REROOT: 
Ii'/.:)!I 
'· . 

/;! I· ',··1
- 1'1· 



/•THE BLOSSOM ALGORITHM: HAIN PROCEDURE, tb-03-73 o/ 

snn LEVEL NEST 

195 

1% 

1 '17 
198 
199 
200 
201 
202 

203 

20~ 

205 
207 
206 
209 
211 
213 
21'1 
215 
216 
216 
220 
221 
222 
223 
225 
227 
228 
229 
230 
23! 
233 

.23~ 

1 

2 

2 
2 
2 
2 
2 
2 

1 

2 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

1 
1 
1 
1 

1 
1 
1 

1 
I 
1 

ADOON:PROC(Ql,02,Jl: 
/o ADDON ATTACHES THE TREE ROOTED AT Q2 TO NOOE Q\ BY MEANS 

OF EDGE J, IT REOUIRFS THAT Q2 RE THE ROOT OF A lRfE, A/ 
DCL (Ot,02) PTH, J DIN F!XFD(!6); 

r3?.•>RT=Q1 .. >UP: 
112->l)N:!11; 
02->EOGE[lN=J: 
01->UP:::02; 
FRST(J) =T: 

END AODOM: 

!**************************************************************** 
*************** THE UPSCAN ROUTINES ************************* 
*****************~**********************************************' 

UPSCAN:PROC(P1,UPCALL,SUBRUP,DNCALL,SUBHONl: 

I* UPSCAU GOES TH~OllGH ALL THE NODFS ABOVE Pt JN THE TREE 
CDNTAJN!NG Pt AND IF UPCJLL=f TllfN CALLS SllBRUP FDR 
EICH NOOE IN THE TREE AS IT ~FICHES IT COMING UP. 
IF DNCALL = T THEN SUARD~ IS CALLEO FOR EACH NODE AS 
TT IS ENCOUNTERED COMING DOWN, A/ 

DCL (P\,(Qt,021 STATIC l PTR,IUPCALL,DHCALL) BIT(!l, 
(SUllRIIP,SlJGRllN) ENTRY; 

IF IIPCALL THEN CALL SUBRUP(Pll: 
At=Pt: 

MVllP:fl2=0t->UP; 
IF Q?:;=NULL THEN OD: 

CALLLJP: IF UPCALL THEN CALL SUBPIIP(Q2): 
Dl=f.>2: 
GO TO ,:vuP1 
ENO: 

ENDTST: IF At=Pt THEN DO: 
IF DNCALL THEN CALL SUDRDN(Dtl: 
RETURN; 
ENO; 

D2=Q!->RT: 
IF 02:;=rlllLL THEN DO: 

IF DNCALL THEN CALL SUHRDN(Dt); 
GO TO CALLUP: 
END; 

02:01, 
<lt =QI ->ON; 
IF DNCALL THEN CALL SUBRON(Q2): 
GO 10 ENDTST; 

ENO UPSCAN: 

111, 

il1 

i1l1 

11, 

'i, 
ii 
iii !' 
I 

;J: 1: 

111 i'' 
,II I 

:11: ... 1: 
1, i 

Iii I 

1
11 I 

11 ·1 .·.I • 

::1··. ,, .I 

111 ! 

11,.i I 

:.11

1

.,,1:. i 
I]/, 
I ''1,'' 
1)11.·1.," 

111 1 ' 

1111 :!,'' 
1111,, 

11 I,'•' 
11 '•.·, 

Iii, 
11 

1 

I 

Iii.· 
11 ' 

,, 

ri 
I r'I 
11' 

I i 
' \ 
I 

I 
Ii ,I 
l,1,1

1
: 

,. I 

'I 

i' 
1, 

I, 

J 



STMT 

235 

236 

237 
238 
239 
240 
241 
243 
244 

245 

246 

247 
248 
249 

250 

251 

252 
253 
254 

255 
256 

257 
258 

/*TIIE BLOSSOM ALGORITHM: MAIN PROCEDU!lc, !6•03-73 •I 

LEVEL NEST 

2 

2 
2 
2 
2 
2 
2 
2 

2 

2 
2 
2 

1 

2 

2 
2 
2 

2 
2 

2 
2 

ADDFIX: PROC (Qt): 
I• THIS PROCEDURE SETS ODD,DEFIC AS APPROPRIATE FOR THE NODE 

01, IT DEPENDS ON Qt->THEE,DN. •I 
DCL co1,a2 STATIC) PTH; 

01->BLOS,Qt->lNPATH=F; 
D2•D!->DN; 
C!->DEF!C•D2->DEFIC: 
01->YRTO = O?->YRTO; 
IF ~O!•>DEFIC THEN Qt->DOD•F: 
ELSE ut->ODD=~Q2->0DD; 

END ADUFIX: 

PDLYFIX: PROC(P!): 
I* PRDC CALLED BY UPSCAN TO 

11 SET P!->STACKUP = NULL: 
2) SET P!->!NPATH • F, 

DCL Pl PTR: 

P!->STACKUP•NULL; 
P1->IMPATH=F; 

ENO POLYF!X; 

NONDEFIX: PROC (Pt): 

., 

,. THIS rs A PROCEDURE DESIGNED TO BE CALLFD OY UPSCAN WHICH CORRECTS 
THE STATUS INDICATORS ANO SPLITS A TREE WITH NO~-DEFICIENT ROOT 
INTO POS!T!Vf COMPONENTS •I 

DCL Pl PTR1 

Pl-> DEFIC, Pl ->ODD= F; 
Pt -> RLOS = F; 
Pl -> YRTO • F: 

I• INDICATORS NO~ CORRECT •I 
IF Pl -> DN;•NULL I• I.E. IT EXISTS •I 

THEN. IF X(P!->EDGEDN)aO I• I,E, WE HAVE PLACf FOR 
OETACliHJG •I 

THEN CALL REHOVE(P!); 
END NON DEF IX: 

1 •.' 
, 'I' 

I • 

I I 

I 

l,;1., 

I 

I, 
I 

I]' 

ii 



STHT 

25g 

260 

26! 
262 
263 
2bli 

265 

266 

267 
268 
26g 
271 
274 
276 
277 
278 
280 
282 
283 
2811 
285 
286 
287 

266 
26g 
290 
zn 
29ft 
2g5 

/OfHE BLOSSOM ALGORITHM: MAIN PROCEDURE. 16-03•73 o/ 

LE VF.L NEST 

2 

2 
2 
2 
2 

1 • 

2 

2 
2 
2 
2 1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 

BLOSSJ~n:PROC (Pt): 
I* PROCFDIJRE TO INDICATE THAT Pt IS A MODE IN A NON-DFFTCIENT 

BLOSSOM, AND Tt~E EDGE OOWN IS IN A SIMILAR ST~T~ *I 
DCL PJ PTR: 

END; 

FRST (Pl -> EDGF.DN):T; 
Pt -> ODD, P1 •> DEFIC, Pl->INPATH = F; 
Pt -> IJLOS:T: 

ADD8LOS:PROC(P!J: 
I• PROCEDURE CALLED NHF.N EXPANDED BLOSSOM HAS REfN ADDED 
TO A DEFIC TREE. IT SETS ODD UNTIL I ZERO EVEN FDGF. 
rs FOUND, WHEN IT SETS Tf!INGS UP FOR DEFFIX TO SPLIT 
Tti!NGS INTO NONZERO COMPONENTS. NOCHECK rs USED TO AVOID 
TRYING TO SEf DEFIC AND ODD FOR THE ROOT WHEN UPSCAN IS 
STARTED AT THE ROOT OF A TREE. •I 
UCLCP!,P2 STATIC)PTR: 
I• PX AND SHRNKNG ARE USED AS EXT. VARS, •I 

Pt->STACKUP:NULL: 
P1->8L0S,Pt->TNPATH:F; 
IF NOCHECK THEN DO: 

NOCHECK:F; RETURN: END: 
IF ~SHRNKNG THEN GD TO LAB!: 
P2=Pl->DU; 
IF P2->00D THEN 

IF X(Pt->EDGEDNJ:O THEN DO; /* DETACH •I 
SHPNKNG:F:PX=Pt: · 

LAA1:Pt->OEFIC,Pt->00D: F: 
RETURN; 
FW); 

P!->OEFIC=P2->Dtf!C: 
Pt->OOD=~P2->00D: · 
RETURN: 

DEFFIX:FNTRY(P!J: 
IF :;s,mtJKNG THEN t•POSSJ8LF. DETACHMENT ., 

IF X(Pt->ED~EDN):Q THEN CALL REMOVE(PIJ: 
IF Pt:PX THEN SHRNKNG:T: 
RETURN: 

EfJD AOOllLOS; 



/oTHE BLOSSOM AlGORTTHN: HAIN PROCFDURE. tb-03-73 *I 

STMT LEVEL NEST 

297 2 

298 2 
300 2 
302 2 
303 2 
305 2 1 
30b 2 I 
307 2 I 
308 2 I 
309 2 
310 2 

311 2 
312 2 
313 2 
3111 2 
315 2 
316 2 
317 2 
318 2 
319 2 
320 2 

321 I 

322 2 

323 2 
3211 2 

UPBLOSS:PROC (Pt): 
,. llPnLOSS AND Ot:Rl nss DO ~OST OF THE c<Of!K RflllJIREO TO 

SIIN!NK A RLOS&QH. •E USE Pl (PTRl ANO S~R•K•G (GIT(!)) AS 
OEfl"l~f) JN BLOSSOM. i,:1: ASSIIME THAT !~2 IS TkF IWOT (IF THE 
BLOSSOM AND P IS T11E PSEl'00N0Dt Bflf,G CRUTED, >/ 

DCL Pt PTR: 

TF ~ SHRNKNG TliEN RETIJR~I; 
IF P!:N2 THEN GO TO BFII; 
IF~ Pl -> It!PATH lHEN 

IF X(Pl -> EDGEO•J=O THEN 00; 
SHRNKNG:f: /A STOP ~t!RIN~ING *I 
PX:Pt I* SAVE NODE FOR O~BLOSS•/: 
RETURN; 
END: 

BFIXi Pl -> STACKUP=P: 
RETURN: 

DNBLOSS:ENTRY (Pl); 
Pl->!NPATH:F: /o TURN OFF PATH INDICATOR •I 
IF P!~=PX THEN I• NO SNIPPING TO BE DONE, SO o/ 
RETURN; 
K:Pt -> EDGEO~J: 
CALL REMOVE (Pt): 
CALL ADOO~J CP,Pl,K): 
SliR~K~lG=T; I* RESUME SHRINKING *I 
RETURN: 
ENO; 

SETYRTO: PROC(P!): 
/o PROCEDURE CALLED HY UPSCAN TO SET Pl->YRTO EQUAL TO 

Tl'E GLOBAL VARIABLE YROOTO. •I 
OCL Pl PTA: 

Pl-> YRTO:YROOTO; 
END SETYRTO: 

, r I 

I 

! 
i I 
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I 
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/•THE BLOSSOM ALGORITHM: MAIN PROCEDURE, lb-03-73 •I 

STHT LEVEL NEST 

325 
328 
330 1 

333 I 
335 I I 
336 I I 
338 I 
339 1 1 
3QO 1 1 
3q3 1 1 
3Q6 I I 

3q7 1 
3Q8 I 
3q9 I 
350 I 

351 I 
352 I 
3511 1 
356 I 

358 I 
360 1 
361 I 
362 I 
3611 I 
366 I 
368 I 
370 I 
373 1 

374 1 
376 1 

'********************************************************** 
*********** I~!TIALIZAT[ON ***************************** 
**********************************************************' 

IF RUNSTAT(IOl=I THEN TNACE=T: ELSE TRACE=F: 
IF TRACE TH[N DO: 

CALL XOUT; CALL YOUT; END; 
I• GEl!ERATE THE INITIAL E(lllALITY SUOGRAPH, •I 
IF TRACE T1•E•l 00; 

PUT EDJTl'•BLOSS • EDGES IN EQUALITY SUBGNAPH:')(SKIP,Al; 
PUT SKIP; ENI); 

00 J=I TO NEOGE; 
C(Jl = C(Jl - FN(Jl: /o CALCULATE RFOUCED COST o/ 
IF C(J) = 0 THEN EO(Jl=T: ELSE [O(Jl = F; 
IF TRACE THEN IF EO(Jl THEN PUT fDIT(J)(F(Sll: 
END; 

I• ENO OF EQUALITY SURGRAPH GENERATION *I 
RUNSTAT=O: 
NOCHECK,FR0~1EX: F: 
JCNT,LASTJ=I: 

A: 
'*********************************************************** 
************* FIRST LEVEL EDGE ANALYSIS ***************** 
**********************************************A************I 

IF ~EQ(JCNT) THE~ GO TO ENDA: 
IF ZfR(JCNT) THEN GO TO FNOA: 
IF SHRNK(JCNT) THEN GO TO ENDA: 
IF FRST(JCNT) THEN GO TO ENDA; ,. 

,. 
OTHERWISE WE HAVE AN EDGE WHICH IS IN THF EOllAL!TY SUB
GRAPII WHICH CAN TAKE ON A NONZERO VALUE ANO sn FAR HAS 
NOT BFfN Sl!RUNK ANO JS NOT IN THE FORFST,o/ 

WE NOW ANALYZE THE EOGE. IN ORDfR FOR IT TO HE USEFUL 
ONE ENO MUST HE AN EVEN NODE OF A DEFICIENT TREE IN THE 
FOREST FOR WHICH THF ROOT IS NOT. <= NODE WITH r=o, ., 

Pl=ENDS(JCNT,ll; P2:ENDS(JCNT,2J: 
IF P!->DEFIC THEN 

IF ~P1->YRTO THEN 
TF ;p1->0DD THEN GO TU OFFOUT; 

IF ~P2->DEF IC THEN GO TO ENDA: 
IF P2->0DD THEN GO TO fNOA; 
IF P2->YRTo THEN GO TO ENDA: 
P3=P2: P2=PI: P1=P3: /o I•TERCHANGE POINTERS FOR PZ DEF. OUT ND.•/ 

DEFOUT: t• IF THE OTHER END OF THE EDGE IS AN ODD tWOE OF 
THE FOREST THEN THE EDGE IS OF NO USE TO US, 
UNLESS IT JS IN A TREE WHOSE ROOT IS<= WITHY= 0, •I 

IF P2->0DD THfN 
IF ~P2->YRTO THEN GO TO ENDA; 
ELSE GO TO ODDGROW; 

'[ 
,, 

i ! 

I , 

,, 
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I 



!•PIE BLOSSOM ALGORI"THM: MAIN PROCEDURE. 16-03-73 •I 

STHT LEVEL NEST 

377 
378 
380 

382 

383 
3811 
385 
386 
388 
389 
390 

391 
392 
393 
3911 
396 
398 
399 

qoo 

I 
1 
1 
I 
I 
1 
1 

1 
1 
I 
I 
1 
I 
I 

I 
I 
I 
I 

I 
I 
I 
I 
I 

J,LASTJ:JCNT: I* FOR WE IAE ABOUT TO ICCO•PLISH SOMETHING•/ 
IF P2->BL0S THEN GO TO POLYSTEP: 
TF ~P2->~1:.FIC TllES GO TO Gf<OWSTEP: 

/o OTHER•ISE EDGE(JJ JOINS ThO EVEN N0DfS OF THE FOREST o/ 
/o FIRST HE SEE IF T><EY ARE IN TREES WITfl DISTINCT ROOTS, 

JF $0 WE CAN SIMPLY AllG~ENT, OT•lERWTSE W~ ~AY HAVE TO 
SHRINK. AT Tiff SAME ll'!E WE COMPUTE HOW f<IJCH THE VALUES 
ON THE PATH CAN OE CHANGED.•/ 

!*********************************************************** 
************ SECOND LEVEL EDGE ANALYSIS ***************** 
***********************************************************' 

OXCALC: Ol,D2,D3•3?767: 
I• NOW FIND PATH FROM Pl TO THE ROOT•/ 
Rl•PI: 
Rt->ll{PATH=T: 
DO WHILE (R!->DN ~= NULL): 

IF ~Rt->DOD THEN DI• MIN(D!,X(Rl->EOGEDNJJ1 
R1=R1->0N; 
RJ->INPATH•T: 
END; 

I• SIMILARLY, FIND PATH FROM P2 TO ITS ROOT R2: IF A 
POLYGON IS FORMED, N2 NILL BE THE ROOT OF THE POLYGON. •I 

R2•P?: 
DO WH1LE(:,R2->I11PATH); 

R2->INPATH•T: 
IF R2->DN•NULL THEN I• NE ARE AT THE ROOT o/ GO TO TWOTREE: 
IF ~R2->00D THEN 02~MIN(D2 1 XCR2->EDGEDN)): 
R2=R2->0~~; 
END: 

I* NE •UST HAVE A COH~ON ROOT TO THE TWO TREES SO ~E o/ 
GO TO OHETREE: 

f i 

'! 

,, I 
I,,, 

1: I 



t•lHE AI.OSSOM ALGOH!THH: MAIN PROCEllllRE. 16•03•73 •I 

STHT LEVEL NEST 

401 

IJQ2 1 
1103 I 
4011 I 
405 I 
1!06 1 
1107 I 
408 I 
410 I 

411 1 1 

413 1 
415 1 

417 I 
418 I 
423 1 
425 I 
426 1 

427 1 

428 I 
429 1 1 
431 I 2 
432 I 2 
433 1 2 
4311 I 2 
435 I I 
436 1 1 

437 1 

439 1 
440 I 
441 I 
4<12 I 
444 I 

f*****k****************************************************A 
*********** T~O TP~E AiJG~f/JTATJflh *********~************ 
***********************************************************' 

T~CITPEE~ . 
I• IF Wt HAOE IT TO HERE, RI MID P?. ARE D!FF£RfNT SO Wf 

/d/GMEi..Jl f1Y A1-IOUNT *I 
RVMSTAH6)=RUl•STAT(o)+l: 
OELTAX:MIN(Dt,n2,Rl->D[F,R2->DEF): 
C/\LL AlJGMf'-!T(P1,~l ,OF.l.TAX,T, CF)); 
CALL AUGMENT(P2,R2,DELTAX,T,(FJ): 
X(JJ=X(Jl+DfLTAX: 
R!->DEF=-1->DEF • DELTAX; 
R2->DEF=R?.->DF.F • DELTAX; 
IF TRACE THEN DO: 

PUT EDTT(••BLOSS - EDGE 1 ,J,' USED FOR 2 TREE AllGMENTATID~'l 
(R(FMT)): 

CALL XOUT: END; 
I• NOW CORRECT STATUS INOICATORS IN THE TREE•/ 

JF Rt->DEF = 0 THEN CALL IIPSCAfJ(Ri,F,~ONDEFIX,T,NONOFFTX); 
IF R?.->DEF • 0 THF.N CALL UPSCAN(R2,F,OO•DFF!X,T,NO~DEF!X): 

/* FINALLY JHCORPORATE J INTO THE FOREST 0/ 
JADD: JF Pl->DEFTC THEN/• P2 CANNOl BE TN A OEFIC!ENT TREE, ADD 

ON TO P!o/DO:P3=P2:P2=Pl:P!=P3;FND: 
CALL RFRDDT(P!):CALL ADDO•CP2,P!,J); 
CALL UPSCAN (P!,T,AODFIX,F); 
GO TO ENDA; 

'*********************************************************** 
************ SJ~GLE TREE AUGMENTATION ******************* 
***********************************************************' 
ONETREE: I• F[!lD BOTTLENECK IN STEM OF BLOSSOM *I 

R3•R?.: 
DO WHILE (R2->DN•=NULL); 

IF •A2->0DD THEN DO: 
IF X(R2->EDGEDNJ = I THEN t• WE HAVE FOUND THE 
START OF A BLOSSOM, SOo/ GO TO DEFBLOSS; 
D3=Hl~(D3,X(R2->EDGEON)); 
END; 

R2=R2->0NJ 
ENO: 

,. AT THIS POINT, AN AUGNFNTATION rs POSSTOLE, SINCE NO EVEN 
EDGE JN THE STFM HAS X=!, UNLESS R!->DEF = 1,•/ 
IF R!->DEF = I THE• GO TO DEFHLOSS: 
/o DTHfPAJSE ITS AUG•ENTATIDN TIME.•/ 
RUNSTAT(7)=RUNSTAT(7)+1: 
DELTAX•HlN(D1,D2,FLOOR(R1->DEF/2J,FL00R(D3/2)); 
ODDB=F: I• CORMAL CASE •I 
IF Pl->DDD THEN DD: I• ABNORMAL CASE o/ 

OODB=T: DELIAX=MIN(OELTAX,X(Jll: ENO; 
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t•THE BLOS50M ALGORITHM: MAIN PROCEDURE, lb-03•73 •I 

STMT LEVEL NEST 

4117 
448 
449 
1150 
1152 
1153 
4511 
455 
1157 
1158 
459 
4b0 
462 
463 
465 

468 
470 

472 
473 
1175 
'176 
477 
478 
479 
1181 

485 
1187 
1188 
1189 
490 
/191 
1192 
1193 
4911 
495 
496 
498 
500 
501 
502 
503 
5011 
505 

1 
1 
1 
1 
1 
1 
1 
I 
1 
I 
I 
I 
I 
I 
I 

I 
I 

I 
I 
I 
I 
I 
1 
I 
I 

I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 

I 
I 
I 
I 

I 
I 
2 
2 
2 
2 
2 
1 
I 

I 
I 
I 
I 
I 
I 
I 

CALL AUGMENT(P1,R3,DELTAX,T,C0DDHJJ: 
CALL AUGMENT(P?,RJ,DELTAX,T,(DDDBJJ: 
X(J):X(JJ+OFLTAX: 
IF ODOR TflFN X(JJ = X(JJ -2•DELTAX; I• CORRECT A 8AD GUESS o/ 
POLrnIT=F: 
IF Pl->DfFIC THEN 

IF P2->DFFIC THEN 
IF X(JJ>O THEN POLYO[T=T:/* WE HIVE A NONZERO POLYGON *I · 

OfLTAX=DELTAXtDELTAX: I• STEH GETS DOURLE AUGMENTATION o/ 
Rl->DEF=Rl->DEF - OELTAX; 
ODDA=F; 
IF R3->0DD THEN 0DDB=T: 
CALL AUGHEIIT(R3,R!,DELTAX,T,(0DD8J): 
IF TRACE THFN DD: 

PUT EDIT(••BLOSS - EDGE ',J,' USED FOR I TREE AUGMENTATION') 
(R(f'-lTJJ: 

CALL XOUT: 
ENO: 

I* DISASSEl·18LE TIIE TREE IF ROOT ND LONGER DEFICIENT. •I 
If Rt•>OEF: 0 TH[N CALL UPSCAN(Rt,F,NONDEFJX,T,NONOEF{X): 
ELSE IF FNOHEX THEN 00; I• ~E HAVE EXPANDED PSEUDO 000 NOOE 

AND HUST ENSURE THAT THEE IS CORRECT, •I 
NOCHECK=l; I* IGNORE ROOT, SET F BY AOOBLOS. *I 
PX=MULL; SHRNKNG:T: /* GLORAL3 FOR ADDBLOS-l>EFFIX *I 
CALL UPSCAN(Rl,T,AODBLOS,T,OEFFIXJ; 
END; 

FROMEX::f; 
IF ~POLYBIT TIIFN /* INCORPORATE J HlTO Tllf FOREST •I 

IF X(JJ>O THEIi GD TO JAOD; 
ELSE DO: FHST(JJ:F; GO TO ENDA: END: 

I• OTHERWISE WE HAVE A POLYGON WITH NONZERO EDGES •I 
IF R3 -> DEFIC THEN DO: 

R2=R3; 
00 WHILE (R2->DN~=NULL); 

If ~R2 -> ODO THEN 
IF X(R2->EDGEDNJ:I 

R2=R2->DN; 
END: 

THfN GO TD OEFHLOSS: 

GO TO OEFBLOSS: /o ROOT OF TRfE ROOT OF BLOSSOM*/ 
END; 

ELSE DO: R2=R3; 
LB!: IF RZ->DN = NULL THEN GO TO LB2; 

R2=H2->DN; 
GO TD LB!: 

LB2: R2->·fDGEDN:J; 
CALL llPSCAN (R2,T,8L0SSIND,fl:/• SHOJ, A NONZERO COHPO'fENT o/ 
GO TO ENDA: I* CONTAINING AN ODO POLYGON•/ 
END; 
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/•THE DLOSSOH ALGD~!THM: MAIN PROCEDURE, 16•03•73 ., 
STMT LEVEL NEST 

50& 

507 I 
508 \ 
509 \ 
510 I' 
511 I 
512 I 
513 \ 
514 I 
515 I 
Sib 1 
517 1 

519 I 
520 I 
521 I 
5211 I 
525 I 
526 1 
527 I 

530 I 
531 I 
532 I 
535 I 
536 I 
537 I 
536 1 
5110 I 
5111 1 
5113 I 
5411 I 

'545 I 
5116 I I 
546 I I 
550 1 I 
551 I I 
552 1 I 
553 I 1 
5511 I I 

'*********************************************************• 
******•* PSElJOO MOOE CREATION************************** 
***********k*****£****************************************' 

OEFRLOSSi I• HERF Pl IND P2 ARE THE TNO ENDS OF THE 
F~GE J WHICH roN•S A BLOSSOM, R2 IS THE ROOI OF THE STEM 
p;n R3 JS THE ROOT OF TIIE POLYGON, ALL >IE NEED 00 JS 
SHRINK IT •I 
RU•STAT(2)•RUNSTAT(2)+t: 
FRO•EX•F: /* IN CASE IT SAS SFT T BY PSFUD0 EXPANSION *I 
ALLOCATE PSEUDO: I* CREATE A PStUDO NOOE •I 

DEF• I: 
REAL,INPAT~l,ODD,BLOS,EXPANOED=F; 
CONSTEO,DEFIC•T: 
Y•OEO: 
STACKUP•NULL: 
ROOT•R2: 
UP,RT,ON=NULL; 
YRTO•R2•>YRTO: 

IF TRACE THEN PUT EDIT1 1 •~LOSS • EDGE ',J,' FORMS PSEUDONOOE', 
UNSPECCPJ)CSKIP,A,FC6),A,FC!O)); 

I• INDICATE NODES IN PATHS FROM P2, Pl TO R2 *I 
P3=P1: 
00 WHILE (P3~=R2): 

P3 -> JNPATH: T; P3=P3->DN; ENO; 
R2•>HJPATH=T; 
P3•P2: 
DO WHILE (~P3•>INPATHJ: 

P3 •> !NPAIH • T; P3=P3->0N: END; 
I* TURN OFF JNPATH IN UNUSED PART OF STEM*/ 
P3•R2•>DN: 
DO •HILECP3~=NULLJ: 

P3->INPATH=F; P1=P3->DN; ENO; 
StlRtlKNG=T; /* WE ARE SHRINKING *I 
PX•NULL: I• PREP, FOR CALL OF UPSCAN •I 
CALL UPSCAN CR2,T,UPRLOSS,T,DNBLOSS): 
K•R2->fDGEDN: P3•R2•>DN: 
CALL REMOVE (R2); 
IF P3 ~= ~lJLL THEN CALL ADDON (P3,P,K); 

fLSE P•>[OCEDN • O: . 
A2•>EDGEDN=J: I• THIS IS THE EDGE THAT FORMED THE BLOSSOM; 

MOW FIX ALL EDGES SO THAT ENOS IS CORRFCT •I 
DO JI•\ TO kEDGE: 

IF SHRNK(JI) THEN GD TO FNDC: 
Pl•ENOS(Jl,11: P2•ENOS (J!,2); 
IF Pl->STACKUP•NULL THEN/* NO CHANGE •I 

GO TO EMOXA; 
SHRNK(Jl)•T: 
ENDS(JJ,l)•P: 

ENDXBi IF P2•>STACKUP~=NULL THEN 
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!•THE BLOSSOM ALGORITHM: HAIN PROCEDURE. !6-03•73 •I 

STMT LEVEL NEST 

'i55 
556 
557 

558 

559 

560 

562 
563 
5611 
565 

566 

567 

569 
570 
571 
572 
573 
5711 

575 
576 
577 
578 
579 
580 

I 
I 
I 
I 

I 

I 

I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

I 
1 
1 

I 
I 

ENOS(Jt,2J=P; 
ELSE SHRNKCJ!l=F; 

E~DC: mo: 
I* NOW SHRINKING IS COMPLETE*/ 
GO TO ft,OA; 

'********************************************************** 
************NORMAL FOREST GROWTH************************* 
**********************************************************' 
GROHSTEP: I• WE GROW TREE HY USING J TO ADD A NONDEF!CJENT 

TRff. • I 
RUNSTAT(5):AUNSTIT(5)+1; 
IF TRACE THEN PUT EDJT('•BLOSS - EDGE 1 ,J, 1 .USED TO GROW FOREST') 

(R(FMTJ); 
CALL RER00T(P2J; 
CALL AOD0N(P!,P2,JJ; 
CALL UPSCAN CP2,T,AD0FIX,F); 
GO TO Et!OA; 

'*************t******************************************** 
************ AOJU~CT!Otl OF POLYGON TO THE FOREST********* 
**********************************************************' 
POLYSTfP: I* FINO ROOT OF COMPONENT *I 

RUNS1AT(8):RUN5TATC8)+1: 
IF TRACE THEN PUT EDITC 1 •BL0SS - EDGE •,J,' USED TO 100 NONZERO PO 

LYGQN TD THE FOREST'J(R(FMT)J; 
P3•P2: 
00 WHILE (P3->DN•:NULLJ; 

P3::P3->DtJ: 
E~JD; 

J!•P3->EDGEDN: /•JI JS THE EDGE WHICH FORMED THE POLYGON •I 
CALL REROOT (P2l; 

I• R[RODT THE COMPONENT AND ADD IT TO TREE *I 
CALL ADDO• (P!,P2,JJ: 
CALL UPSCAN CP2,T,ADDFIX,F); 
PI •ENDS CJ 1, 1 l; 
P2•Et<nSCJI ,2) J 
J•JI; 
GO TO DXCALC; 



/*THE HLOSSOM ALGORITHM: HAIH PROCEDURE. 16-03•73 •I 

STMT LFVEL NEST 

581 

582 
583 

585 
586 
587 
589 
590 

591 

592 
593 
59Q 
595 
5% 
597 

599 
600 
601 
602 
603 
605 
606 
608 
609 
610 
611 
612 
613 
61q 

615 
616 
617 
618 
620 
621 
622 

1 
I 

I 
1 
I 
1 
I 

I 
1 
I 
1 
1 
1 

1 
1 
1 
1 
I 
1 
1 
I 
I 
1 
I 
1 
1 
I 

1 
I 
l 
I 
1 
I 
1 

I 
I 
1 

1 
2 
2 
3 
3 
3 
2 
1 
1 

I 
I 
1 

l*********************************************************A. 
****"'***** PSE::1/f}f.l FORFST GRO:~TH *A****.;.;1,;**A*A******;.t.*'***** 
**********************************************************/ 

0DDGHU•: t• A:I tDGF. J HAS REEN FOU•D JOINING Pl IN Fl TD P2 IN FD•/ 
RU•STIT(5)•RIJNSTAT(5)+1; 
J,LAST.J = JCNT: 
IF TRACE Tl~E~ PUT EDIT( 1 *BL0SS • EDGE ',J, 1 USED FOR PSEUDO FOREST 

GROl.;Jll') (R(P'T)J; 
I* FirlD FIRST NOOF. IN PATIi FROM P2 TO !TS ROOT HAVING A ZERO 

oo•• EDGE, OR IF •o SUCH EDGE EXISTS, THEN WE FINO THF. 
ROOT OF THE TRF.E CONTAINING PZ. •I 

R1•P2: 
DO WHJLECRt->DN ~= NULL): 

IF X(Rl->EDGEDNJ•O THEN GO TO ROOTADDI 
Rl•Rl->DN; 
ENO: 

I* Rt IS THE ROOT, ALL EDGES JN P·ATH HAVE X>O, •I 
ROOTADD: 

Q3:Rt->DN; 
CALL RE~OVF.(RIJ: 
CALL RFROOT(P2J; 
CALL A0DGN(P!,P2,J); I• TREES NON CONSOLIDATED•! 
YROOTO = F: 
CALL UPSCA•(P2,T,SETYRTO,Fl; 
IF G3 ~= MULL TfiEN /* hE HAD A ZERO FDGE */GO TO ENDA; 
I• NOH ALIGHENT SO AS TO GF.T OEFICIF•CY TO TllE ROOT •I 
I* QI WILL BE THE LAST NODE FOR hHICH THE DO•N EDGE BF.COMES O •I 

AUG: 0!=3?767: 
RUNSTAT(9)=RUNSTAT(9)+1; 
R2•RI: 
00 NHJLE (R?•>DN ;. NULL); 

IF ~R2->0Dr. THEN DO: 
Jt=R2->EDGEDN; 
IF X(J!) <= DI THEN DO; 

Dl•X(JI); 

Et-ID; 
R2•R2->DN; 
ENO: 

Q1=R2: 
EMO: 

DELTAX•MlN(Dl,R2->0EF); 
I* NOW WE AIIGMF.~JT *I 

CALL AIIGHE~H(Rt,R2,DF.LTAX,F, (F)): 
R2->DEF • R2->DEF - OELIAX; 
RJ->DEF=R!->DEF t DELIAX; I• WE INCREASE DEF AT THIS NODE. •I 
IF TRACE THE~ DO; 

PI/T EDJT('•ALOSS - PSEUDO AlJGMENTAT!DN')(SKIP,AJ; 
CALL XOUT; 
END: 

I 



t•THE BLOSSOM ALG<JRJTHM: MAIN PROCEDURE. 16-03-73 •I 

STHT LEVEL NEST 

623 I 
62q I 

625 I 
626 I 
627 I 
628 I 
629 I 
630 I 
63! I 
632 r 

633 I 
63q I 

IF DI > DElTIX Tll[N I* NO fOGE IN PITH HFCIME ZFRO */ 
GO TO TIDD; 

/o ELSE FVERYT!l!NG IOQVE Ql GETS REMOVED lkD REROOTED AT Rl o/ 
CALL AFHOVE (Qt); 
YROOTO=F; 
CALL trPSCAN(R2,T,S[TYl{TO,F); 
TF R2->DEF=O TtiE~ 
CALL !!PSCAN(R2,F,NONOEFIX,T,~ONDEFTX); I* ALSO SETS YTRO:F *I 

TIDD: CALL AENOOT(R!I; 
YROOTO = T: 
CALL UPSCIN(R!,T,SETYRTO,FJ; 

'********************************************************** 
********* END or MAIIJ PROCESSING LUOP ****************** 
**********************************************************' 

ENOAiJcNT=t t MOD(JcNT,NEDGE); 
IF JCNT~=LISTJ THEN!• CONT!NtrE PROCESSING •I GO TO A; '* WHENEVER AN EDGE rs l!ADf USE OF IN TtiE MAIN LOOP, LASTJ 
IS SET EQUAL TO THE INDEX OF THE EDGE. IF JCNT EVER 'CATCHES 
UP' WITH LASTJ THEN HE HAVE MADE A COMPLFTE CYCLE Tl<ROUGH THE 
EDGES WITHOUT FJ!IOING ANY EDGES W!IJCH WE CAN USE SO WE PROCEFD 
TO ATTEMPT A CHANGE OF DUil VANIIBLES. •/ 

:',I 

I 
I, 

, I 

i: 
',I I 

'I 
, I 

\' 
11 



/•THE 8LOSSOH ALGORITHM: HAIN PROCEDURE, 16-03-73 ., 
STMT LFVFL NEST 

636 

637 

638 I 
639 I 
640 I 1 
6QI I I 
6112 I I 
644 I I 

646 I 1 
647 I I 
648 1 I 
6Q9 I I 
651 1 2 
652 I 2 
653 I 2 
65Q I I 

656 I 1 
657 1 I 
659 I I 
660 1 I 
662 I 2 
663 I 2 
6611 I 2 
665 I I 
666 I 
668 I 

'*********************************************~*********** 
*********** OUAL VARTAALE CHANGE ROUTINE**************** 
*********************************************************/ 

OUALCHNGF.: 
I• NON EXAMINE NODES, IF 110 SURFACE NODE IS IN A DfFIC TREE 

TIJrN WE ARE DONE, FAIL IS SET TRllE IF >IE DISCOVER THAT 
THIS IS tiOT TtlE CASE, •I 

FAIL=F: 
EPS!,EPS2=\EIO:/•A!DTCUL0USLY LARGE VALUES•/ 

'********************************************************* 
********** nETERMINATIO~ OF NODE AOUNn **************** 
*********************************************************' 

PX=/JLIL t.; 
LF: 00 I= I TO NNODE: 

P\=ADDR(NODELST(Ill: 
P2=SURF(Pt):I• HIGHEST LEVEL PSEUOONODE CONTAINING Pl o/ 
IF~P2->DEFIC THEN GO TO ENDF: 
IF P2->YRTO THEN GO TO ENDF: 
/o ELSE WE HAVE NOT YET GOT A FEASIBLE MATCHING, •I 
FAIL=T: 

IF ~P2->00D T~f.N 
JF ~P!->CONSlF.D THEN 

IF Pl->Y < EPS2 THEN DO: 
PX::;Pt: 
EPS2=Pl->Y: 
END: 

IF P2->REAL THE• I• NOT IN A PSEUDO NOOE •I GO TO ENDF: 
/o DTHEANISE CHECK THE PSEUDO NODE •I 
P2->DCHNG=F:/* NO DUAL CHANGE HADE YET ON THIS NOOE *I 
IF~P2->1l0D Tl~EN G(l TO E~Df; 

ENDF: ENO LF: 

Z=P?.->Y I 2En: 
IF Z<EPS2 THfN no, 

PX=P2: 
EPS2=Z; 
mo, 

IF ;FAIL THEN I• NE ARE FINISHED •t GO TO CORRECTION: 
IF EPS2= 0 THEN GO TO NODED'lD:f• ~O IJEED TO CHECK EDGES, 

NE ALREADY HAVE OUR BOUND, •I 

,i 
l.!i 

J 
i!'i· 
,If 

:f 

1

1,1 

I
' 

I
r 
1,il 

'I'' l'I ,!"1 

u 
' 

,1,1 
1.·I, 

Iii 

I

' 

!1i 

)1:, 

I

ll' 
1,,,,1 

I
i,, 
\i 
111 

I
i 
ii' 

I: ",, 

11, 

'ii 

iii.' 
' 

iii 
',I 
I, 

1,l 

· 1,1 
'lj 
,·',,II 



/•THE BLOSSOM ALGORITHM: MAIN PROCEDllRE, !6-03-73 ., 
STHT LE"VEL NEST 

670 I 
6 71 I 
672 I I 
6711 I I 
676 I I 
678 I I 
679 I I 
681 l I 
683 l I 
6811 I 1 
686 I 1 
687 l I 
689 I 1 
691 I I 
692 I I 

6911 I I 
695 1 1 
697 I I 
698 I I 
699 I 1 

701 I I 
703 I 1 
70Q I I 
705 I I 

706 I 
707 I 
709 1 
710 I 

712 I 
71 II I 
715 I I 
716 I I 
717 I I 
719 I I 
721 I I 
723 I 2 
1211 I 2 
725 I 2 

'********************************************************* 
******-,."*** DETERMJNAT!mJ Of fDGE BOUliD **************** 
******************************* *************************' 

I* NO• CflECK EDGES FOR I ROUND ON EPS o/ 
JX=O: 

LO: OD J:J TO NEDGE: 
IF EO(Jl THE"N GO TO ENDO: I* IGNORE EDGES IN EG SUBGRAPH o/ 
IF SHRNK(J) TIIEN GO TO ENDO: 
IF ZER(Jl THEN GO TO ENDO: 
Pt=EfiOS(J,tJ: 
IF •P1->DE"FIC THEN GO TO TRY2; 
IF P!->YRTO THEN GO TO TRY2: 
P?.=ENOS(J,2 J: 

·1F •PJ->0DO THEN GO TO TESTP2: 
TRY2:Pl=fNOS(J,2l: 

IF •P\•>DEFIC TIIEN GO TO ENDO: 
IF Pl->YRTO THEN GD TO ENDO; 
P2=E"IOS CJ, 1 J: 
IF Pl->000 T>IE~ GO TO ENDO: 

I• AT THIS POINT Pl 19 AN EVE"N NOOE" OF A DEFIC TREE, AS LONG 
AS P2 JS NOT I~ DOD NODE NE HAVE FOUND AN EDGE OF !~TEREST •I 
TESTP2:JF P2•>0DD TJJEN 

IF •P2•>YRTO TIJEN GO TO ENDO; 
Z=· C(Jl: 
IF P2->DEFJC THEN 

IF ~P2->YRTO THEN Z=ll?EO: 
/> ELSE J HAS JUST ONE END IN THE FOREST•/ 

IF Z>:EPSI THEN GO 10 ENDO: 
JX=J: 
FPS1=7: 

ENDO: ESD Lo: 
'********************************************************* 

********** MAKE ACTUAL CHANGE IN DUAL VARS. ************ 
*********************************************************' 

EPS:MINCEPS!,EPS?.); 
IF EPS=lElo THEN,. FOREST rs HUNGARIAN., DO: 

RUhSTAT(\Ol=l: 
GO TO CORRECTION; ENO; 

I• HERE WE GD ON A CHANGE OF DUAL VARIABLES•/ 
IF lRACE THEN PUT EDIT('*ALDSS • DUAL VARIABLE CHANGE')(SKIP,A); 

LG no I=t TO NNODE: 
Pl=ADDR(NOnfLST(IJJ; 
P2=SURF(P!J; 
IF ~P2->0EF!C THEN GO TO ENOLG; 
If P?->YRTo TIJEN GO TO ENDLG1· 
IF P2•>000 THEN DO: 

Pt->Y:Pl•>Y + EP$1 
IF •P2->REAL THEN 

IF ~P2->DCHNG/•P2->Y HAS NOT YET REEN CHANGED., THEN on; 



/oTHE BLOSSOM ALGORITHM: HAIN PROCEDIIRE, 16-03-73 o/ 

STMT L[VEL NEST 

727 
728 
729 

731 
732 
733 
1v, 
735 
736 
738 
739 
740 

1112 
743 1,,,, 
HS 
746 
748 

750 
751 
753 
755 
757 
759 
760 
762 
76Q 
765 
766 
767 
769 
771 
772 
773 
775 
776 
778 
779 
780 
781 
7811 

785 

1 
1 
1 

1 
1 
1 
1 
1 
l 
1, 
1 
1 

1 
1 
1 
1 
1 
1 

1 
1 
1 
l 
1 
l 
1 
1 
1 
1 
1 
l 
1 
1 
1 
1 
1 
l 
1 
l 
1 
1 
l 

1 

3 
3 
3 

3 
2 
1 
2 
2 
2 
3 
3 
3 

3 
2 
1 

1 
1 
1 
1 
1 
1 
2 
2 
2 
1 
1 
2 
2 
2 
l 
2 
2 
2 
1 
l 

I 

1 

ELSE 

P2->Y=P2->Y-2EO • EPS: 
P?->r>CHl·lG:T; 

TF Tl?ACE r11n~ PUT EDIT(' PSEUDO •,IJNSPEC(P2), 
' DLIAL VAR. 1 ,P2->Y)(SKIP,A,F(10),A,F(10,1)); 

E:" r-: {) ; 
END: 
/o P2 JS AN EVEN NOD[ *I DO: 
Pt->Y:PJ->Y - EPS; 
IF -iP?->RFAL THEN 

IF :,P2->DCHNG THEN DO; 
P2->Y=P2->Y +2EO * EPS; 
P2->0CH~·JG: T; 

IF TRACF. THEN PUT EDIT(' PSEUDO ',UNSPEC(P2), 
'DUAL VhR. 1 ,P2->Y)CSKIP,A,F(10),A,F(10,1)); 
END; 

Et~D; 
ENOLG: END LG: 

Rl/NSTAT(l)=RUNSTAT(l)+l: 
IF TRACE THEN CALL YOUT; 
IF TRACF. TJ1EN PUT ED!T('*RLOSS • EOGF.S IN EQUALITY SURGRAPH') 

(SKJP,A); 
I• NOW CALCULATE NEW REDUCED COSTS •I 
00 J=l TO NEOGE; 

IF SHRNK(J) THEN GO TO MSG; 
JF FRST(J) THEM GQ To MSG: 
IF ZER(J) THEN GO TO ENOX; 
Pl=ENnscJ,1): P2=ENDS(J,2); 
IF Pl->DEFIC THEN 

IF aPJ•>YRTO THEN 00; 
IF Pl•>ODD THEN C(J)=CCJ)-EPS; 
ELSE C(J)=C(J)+EPS; 
END; 

IF P2->DEFIC THEN 

MSG: IF 

IF ~P2->YRTO THEN 00; 
IF P2->00D THEN C(J) = C(J) - EPS; 
ELS[ C(J)=CCJ) + EPS; 
Er.JO: 

C(J):O THEN DO: 
EQ(,Jl:T; 
IF TRACE THEN PUT F.DIT(J)(F(5l); 
END: 

El.SE fQ(J):f; 
rnox:END; 
IF EPS! = EPS THEN DO;JCNT,LASTJ:JX; 

GO TO A; /~ AETURN JO MAIN LOOP AND ACCOMPLISH SOrE • 
THING. *I 

F.ND; 

I''' 
:"'[ 
I:, 

1 j 

i 



/•THE BLOSSOM Al GORITHM: MAIN PROCEDI.IRf, 16-03-73 •I 

STHT L[VEL NEST 

7Bb 
787 

788 
790 
7q1 
792 

7911 
795 
79b 

7q7 

798 
7qq 

801 

802 

603 
BOS 
Bob 
807 
606 
0oq 
61\ 
812 
813 

BIii 
Bib 
816 
6\q 
820 
821 

I 
I 

I 
I 
I 
I 

I 
I 
I 

I 

I 
I 

I 

I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
1 
I 
I 
I 

1 
I 
l 
l 
I 
l 
I 
I 

l 
I 
I 
I 
I 
I 

'********************************************************** 
*********** RFROOT A TREE SO ROIIT HAS Y=O *********~***** 
**********************************************************' 

tlUO[BND: 
IF .:;pX •> REAL THEN GO TO PSEIJOOEX: 
I• OTHERWISE PX IS A REAL<• EVEN NODE •I 
IF TRACE THEN PUT ED!TC'•HLOSS • RERDOT A TREE'J(SKIP,AJ: 
Rl•SIIRF(l'XJ: 
JCNT,LASTJ=t: 
IF R!•>DN~:NULL THEN GO TO AUG: I• FOR RI JS NOT A ROOT, 
OfHEP\HSE RI JS A ROOT, •I 
YROOTO • T: 
CALL UPSCAN (Rl,T,SETYRTO,FJ; 
GO TO A~ 

!********************************************************** 
*********** PSEUDO NODE EXPANSION ROIJTINE *************** 
**********************************************************' 

PSEUDOEX: 
P=PX: 
RUNSTAT(QJ•RUNSTAT(Q)tt; 
IF TRACE THEN PUT ED!T('•BLOSS • EXPAND PSEUDONODE 1 ,UNSPEC(PJ) 

(SKIP,A,FllOJJ: 
CALL EXPAMn(PJ; t• EXPAND THE PSEUOONODE o/ 
I• RI JS THE ROOT OF THE HLOSSOM, 

JIN IS THE EDGE FOR WlllCH X(J!Nl~•O, 
IH?f1(1T IS THE r()GE OF JJN JtJ TPE Al.OSSOM• *I 

J•Rl->EDGEot1: I• BLOSSOH FORHING EDGE *I 

'********************************************************** 
******** CASE 1: t EDGE tNTO Pstuoo NODE ***********A** 
***~*********************************&*~**************~***' 

EX!: IF P•>EDGEnN = JIN THEN DO: ,. EASY CASE, ONE EnGE INTO p ., 
CALL RFROOT(BROOT): 
P 1 =P->DfJ; 
CALL REMOVE (PJ: 
CALL AODON IP!,BROOT,JINJ: 
PX:~ULL:SHRNKNG=T: /o GLOBAL VARS FOR ADDBLOS, DEFFIX o/ 
CALL IJPSCAN(HROOT,T,AODBLOS,T,DEFF!XJ; 
FREE P->PSEUDO; 

JTST: I• CAN WE TREAT JIN A NOR~AL FASHION? •I 
JCIH,1.AST.l=J: 
IF X(JJ•O THEN GO TO A; 
P\:ENOS(J,11: P2•ENDS(J,2)l 
IF Pt->nEFIC THEN 

JF P2•>DEFIC THEN /* BOTH ENDS IN DEFIC TRFE •I 
GO TO DXCALC: 

ELSE /o P2 NOT DEFIC •I GO TO GRD•STEP; 
/* ELSE P! IS NOT IN A DEFICIENT TREE •I 



/•THE OL0SS0H ALGORITHM: MAIN PROCEDURE. 16-03-73 •I 

STIH LEVEL NEST 

822 
8211 
8?7 
828 

829 
830 
631 
833 
8311 
835 
837 

M3 
8411 
845 
846 

848 

849 
850 

851 
852 
853 
8511 
855 
857 
859 
860 
861 
862 

863 
865 
866 
869 

I 
I 
I 
I 
I 
1 
I 

I 
I 
I 
I 

I 
I 
I 
I 

1 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

1 
I 
l 
1 

I 
2 
2 
?. 

1 
1 
2 
1 
I 
2 
1 

I 
I 
I 
I 

I 
I 
I 
I 
I 

IF P2->DF.Fir TIIF.N DO: I• SWITCH POINTERS •I 
P3•P2;P?.•P!:Pl•P3: 
GO TO GIWl·IS Tf.P: 
EW); 

I• OTHERWISE NEITHER JS JN A DFFICIENT TREE, ARE THEY 
IN DIFFERENT NONZERO COMPONENTS? •I 
P3•P I : 
DO WHILE(P3->DN•aNULLJ: 

P3=P3->DN; END; 
R3=P2; 
DO NIIII.E (R3->DN •• NULL); 

R3=R3->D~: END; 
IF R3••P3 THEN I• DIFFERENT C~PNTS *I GO TD GROWSTEP; 

I• ELSE WE INDICATE A NONDfFIC BLOSSOM o/ 
R3->fDGEDN•J: 
CALL UPSCAN(R3,T,8LOSSIND,Fl: 
GO TO ENDA: 

END: I• OF EASY CASE o/ 

'********************************************************** 
******** (ASE 2: 2 EDGES INTO PSEUDO NODE ************* 
*******************************************************~**' 

I• NON HARDER CASE : WE HAVE A QOWN EDGE ANO AN UP EDGE •I 
JDN•P->F.DGEON; 
Q~:P->DN: 
Q\:[NQS(JON,1); I• FI~O EDGE OF JON JN THE BLOSSOM •I 
IF 03 a Q\ THE• Llt•ENDS(JDN,?.): 
I• QI IS TD BE THE NEW ROOT OF THE RLOSSOM •I 
CAI.L REROOT(QIJ: 
I• RE~OVE TOP PART OF TREE •I 
02•P->UP: 
CALL Rfr0VE(A2): 
/o ADO BLOSSOM TO THE TREE •I 
CALL RF.SOVE(PJ: 
FHfE P->PSEUDO: 
CALL ADDON (03,Al,JON): 
CALL UPSCAN(Al,T,ADOFIX,FJ:/• LAAEL NODES ODD AND EVEN o/ 
IF !RODT•>OOD THEN DO: /0 THINGS WORK OUT EASILY •I 

SIMPFJN: PX•NULL: SHRNKNG•T: /•GLOBAL VARS FDR ADDBLOS-OEFFIX, •I 
CALL UPSCAN(Q!,T,ADDRLOS,T,DEFFIX): 
CALI ADDON(RROOT,D?.,JIH): I• ADD THE TOP OF THE TREE o/ 
GO TO JTST: /* CONTINUE AS IN EASY CASE. •I 
ENO; 

/o OTHERWISE WE MAY HAVE A POLYGON IN THE PATH, OR WE MAY 
JUST NEED JIN THE PITH. FIRST LABEL NODES IN POLYGON •I 
P!•ENDSCJ,I): P2=ENDS(J,2): 
DO WHILE (Pl••D31: 

Pt->INPATHaT: Pt•P!->DN: END; 
DO WHIL.EC~P2->INPAT~l); 

i 

I 
I 



/*THE BLOSSOM ALGORITHM: MAIN PROCEDURE. 16-03-73 *I 

STMT LEVEL NEST 

870 
873 

6711 
875 

878 
879 
880 
881 
882 
883 
8811 
885 

887 
888 
889 
890 
892 
893 
8911 
895 
89b 

897 
898 
899 
900 
901 
902 
903 
9011 
905 

906 
909 
9\1 
912 
913 
916 
917 

I 
I 
I 
I 
I 
1 
I 
I 

1 
1 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
1 

. I 
I 
I 
I 

I 
I 
I 
I 

I 
2 
2 
2 
I 
I 

1 

I 

P?->I~PATH: 1:P2=P2->DN; END; 
RI•P2: /o POOT OF T>IE POLYGON o/ 
I* TllPN !~!PATH C1FF If~ STEM *I 
DO •HILl (P2->0N•:Q3); 

P?:P2->Pt!: P2->I•IPATH:F: END; 
I• IIOH P->l•PATH: T !FF P !S IN THE POLYGON •I 
/o IF llROOT IS URELLED EVEN, AND THE PATH FROM 8ROOT 
TO QI CONTftIIIS AT H8ST ONE POLYGO~ NODE TIIEN POLYGON 
IS HI PATIi, OTHERWISE NOT. *I 
Pl•BROOT; 
DO •HILEC•Pl->INPATHJ; 

P1:P1->llN; 
IF Pl=DI THEN I• AT MOST ONE PGON NODE IN PATH*/ 

GO TO POLYCASE; 
END: 

P2=Pt->DN; 
IF ~P2->INPATH THEN GO TO PDLYCASE; 
I• OTHERWISE ALL WE HAVE TO DO IS RE•OVE P!->EDGEDN 
FROM POLYGON AND REPLACE IT WITH J AND WE CAN TREAT AS 
SIMPLE CASE •I 
P2•Et.iDS (J, I); 
P3•P2: I* SEE IF P2 IS END NE WANT FOR ADDON *I 
DO NHILE(P3->INPATH); 

IF P3=PI THEN I• CORRECT, SO •I DO; 
R3•ENDS(J,2): 
GO TO FJN!; 
nm: 

P3•P3->DN: 
END: 

I• OTHER•ISE ~E HAD IT BACKWARDS •I 
R3•EHDS CJ, t J: 
P2•ENOS(J,2): 

FIN1:J1=P1->EDGED~I; 
CALL REHOVE(P\l: 
CALL REN00T(P2): 
CALL IDDON (R3,P2,J): 
J•JI: 
GO TO SIMPFIN: 

POLYCASE: I* HERE NE HIVE I POLYGON IN PATH, LAHEL PATH FROM 
BRODT TO POLYGON OR STEM CORRECTLY, 

FIRST MARK NODES Itl STEM. *I 
DO WHJLE(Rl~•D3): 

R!->INPATH•T: RI=Rl->DN: END: 
IF BROOT->INPATH THEN I* NO FIXING NECESSARY •I GO TO WJNOUP; 
Pl•BROOT: 
DO KH!LE (~Pl->!NPITH): 

P2•P!: Pt•Pl->ON; END; 
P1->0DD=1Pt->OOD; 
CALL UPSCAN(P2,T,IODFIX,F): 

I; 

!! 



!•THE BLOSSn~ ALGDNITHH: HAIN PROCEDURE. 16-03-73 o/ 

STMT LEVEL tlEST 

918 
919 
920 

922 
923 
9211 

925 

927 
929 
930 
931 
933 
9311 
936 
937 
938 
940 
9111 
942 
q43 
9lM 
9115 

I 
I 
I 

I 
1 
1 
I 
I 
I 
I 
1 
I 
I 
I 
1 
I 
I 
I 

I 
1 
I 
I 
I 
I 
2 
2 
I 
1 
I 
1 

P1->0DD=~Pt->ODD; 
h!Nf)t1P: C,\LL A!'H)OtJ o,rwor,r.i2,JIN); 

P!=EllDS(J,1): P2=E~DS1J,2J; 
/* SET UP FDA RfTURN TO MAIN LOOP. •I 

CALL UPSCAN(O!,T,POLYF!X,F); 
FROl-1 EX=T; 
GO TO OXCALC: 

'*********************************************************** 
11:*****klr; FINAL CORRECTION OF MATCHING IN PSEl100S "'***•**-* 
**********************************************AAkk********k/ 

cORRFCT!()N: lF rnAc'E THE~ PUT EOITC'•BLOSS - CORRECT MATCHING IN PSEl)OO 
NODES')(SKJP,A): 

IF TRACE THEN CALL XOUT; 
DO I•! TO NNODE; 

Pl•ADDR(HO~FLST(I)); 
EXP!: IF P!->STACKIIP•NULL THEN GO TO EXPEND; 

P?=P1->ST/\CK\JP; 
IF P2-> EXPANDED THEN GO TO EXPEND; 
P3•P2->SHCKIJP: 
DO NHJLE(CP3~•NULL)&(• P3•>EXPANDED)); 

P2=P3; P3•P3->STACKUP; 
END; 

CALL EXPAND (P2); I• EXPAND AND KfEP 
P2~>EXP~NDED=T; 
r,o TO EXPI; 

EXPEN~: Erm: 
F.ND HLOSSOM: 

THE RLOSSoa ., 

'*************************************************************~*******' 
/****************** ENO OF BL.OSSOM ALGO~ITII~ *****11;1i•-...1c******,-,***I 
'*********************************************************************' I, I 

II 
11 
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