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ABSTRACT 

Automorphisms of graphs, ·hype�graphs and d�graphs 

are invest�gated. 

The invariance of the chromatic polynomial in the 

rotor effect is disproved. New invariance results are 

obtained. 

It is shown that given any integer k > 2 , 

almost every finite group acts as the regular full 

automorphism group of some k-uniform hypergraph. 

Permutation groups that can be represented as 

automorphism groups of digraphs are characterized. 
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INTRODUC'TION 

The main concern of this thesis is 

automorphisms of a class of incidence structures 

covered by the cone ,.pt of general graphs and of 

their sub-structures. General graphs are defined 

so as to include graphs and hypergraphs, as well 

as digraphs, without rP.striction on the cardinality 

of the vertex set or the multiplicity of the 

edges. We try to introduce. the least possible 

amount of new definitions and use a standard 

terminology, as far as such can be extracted 

from the abundant literature appearing on both 

sides of the Atlantic and as far as it is 

compatible with the specific purposes of this 

work. Chapter O provides some basic concepts 

and definitions. 

Asymmetry is one of the most recurrent 

ideas in the investigation of symmetries. Indeed, 

the rotationally symmetric rotors must be 

reflectionally asymmetric if they are to produce 

a non-trivial graph transformation leaving 

invariant certain functions. Securing the 

existence of appropriate asymmetric independent 

1 



sets, we disprove the inv,:riance in the rotor 

effect of the second highest coefficient of the 

chromatic polynomial. The rotor effect occupies 

the first chapter of this thesis, containing 

also special results on planar rotors and 

extensions of some J·. nown invariance results. 

The second chapter deals with _symmetries 

of a general graph which are realizable when 

it is embedded into another general graph. 

The third chapter is based on our 

collaboration with Professor Singhi of the 

Tata Institute of Fundamental Research. It 

is devoted to representations of regular 

permutation groups by uniform hypergraphs. 

The main result here is that given any integer k 

larger than 2, all but a finite number of 

finite groups act as the regular full 

automorphism group of some k-uniform 

hypergraph. Again, it presents less difficulty 

to secure that all translations induce a symmetry 

than to ensure that no non-trivial symmetry has 

a fixed point. The analogy with the construction 

of non-trivial rotors inspired the particular 

representation of regular cyclic permutation 

2 

groups by 3-uniform hypergraphs given in section 3, 



contrasting the fact that these groups have 

been the earliest examples of groups having 

no graphical regular representation. 

3 

Last, but not least, in the fourth chapter 

permutation groups that can be represented as 

automorphism groups of digraphs are characterized. 

The case of abelian permutation groups is examined 

extensively, and the complete equivalence of 

the problem of finding a digraph with a given 

abelian_group and the problem of the validity 

of a generalized Chinese remainder theorem for 

the family of stabilizer subg;roups is established. 

Some classes of permutation groups naturally 

arising in algebra are also examined. 

The axiom of choice [HS ,J1] will be 

assumed. As a consequence of Zermelo's theorem 

[Z1J, all transfinite cardinal numbers will 

be alephs. 



CHAPTER 0 

BASIC CONCEPTS AND DEFINITIONS 

0.1. The elements of a set are thought 

of as occurring without any particular order 

and without repetitions. Thus for any two oLjects 

x and y, distinct or not, {x,y} ={y,x}_and if 

x-·= y .also {x,y}_= {x} = {y}: We denote by 

(x,y) an ordered pair, by (x,y,z) an ordered 

triplet. These objects are thought of as essentially 

different from sets. In particular for every set V, 

the set P(V) of all subsets of Vis disjoint 

from the set of all ordered pairs of elements of v. 

This disjointness will be needed to make an 

unambiguous distinction between oriented darts 

and unoriented lines of a general ·graph,·to:be 

defined later. · 

Given a sets and a set V, the Cartesian 

product sxv is defined by 

sxv=~{ (x,t) I XES, tEV} 

Let F be a subset of sxv such that for every 

tEV there is exactly one x.-:3 with (x,t)EF 

Then Fis called a family of elements of S 

4 



indexed.by V. We also write x=xt if (x,t)EF and 

F=(xtltEV· .F is said to be a finite family 

if the set {xt JtEV} is finite, even if Vis 

an infinite indexing set. 

0.2. A functio~, or mapping, from a set V 

to a sets can be defined as an ordered pair (F,S), 

whereF is a family of elements of S indexed by v. 

Injectivity, surjectivity and bijectivity are 

defined in the usual way. 

For any ordinal numbers a and$ the set 

of ordinal numbers y such that a~y and y~$ is 

denoted by [a,$]. We write [o,$] \ {S}=W($). 

Thus, 4l denoting the first transfinite ordinal 

number, W(w)=N, the set of natural numbers. A 

cardinal number is an ordinal number a such 

that there exists no bijective mapping from 

W(a) to any W($),$<a. The axiom of choice being 

assumed, for every set S there is a unique cardinal 

number k such that there exists a bijective 

mapping from S to W(k). k is. then called the 

cardinality, or size, of S and'we write JsJ=k. 

The cardinality of a finite set Sis the number 

of elements of S. 

The set of integers will be denoted oy z. 

5 



0.3. A permutation of a set Vis a 

bijective function from V to itself. The set of 

6 

all permutations of Vis denoted by Sv The product 

UT of two permutations u and T is defined by 

for every XEV. 

UT (x) = u (T (x)) , 

Then S h: a group under this 
V 

binary operation, called the symmetric group on V. 

(We shall always denote a group and the set of 

its elements by the same symbol.) Any subgroup 

of the symmetric group on Vis a permutation 

group on V. 

0.4. If G is a permutation group on a 

set V and u is a subset of V such that u(U)~U 

for every uEG, then U is a constituent of G.' 

It is then easy to see that u(U)=U for every 

UEG. In this case, for a permutation UEG 

we can define the restriction u I U of u·. to ·u to 

be the permutation of U given by 

uJU(x)=.u(x), 

for every xeU. We also write 

I 



Gju = {criu I crEG} 

G j lJ is a permutation giVaup on U and the 

restriction mapping r: G ...+>-:GI U de{ined by 

r (cr) = a l::u, 

7 

for every crEG, is a surjective group homomorphism 

f~om G to Glu •. If r is injective, the U is called 

a faithful constituent and the groups G and G i Ui"are 

isomorphic, G" G I U [W6 J. 

0, 5. A permutation group G on a set V 

is called transitive if its only constituents 

are V and the empty set ¢. R>r arbitrary 'G, 

a non empty constituent u such that GI I u is transitive is 

called an orbit of G. (In the case when G is 

cyclic, i.e. generated by a permutation cr of V, 

G = (cr) ;" an orbit U of G is also called an orbit 

of a·:) Every element XE V belongs to exactly 

one orbit, called the orbit o1 x. 

R:>r XE V, the stabilizer G x of x in G 

is the subgroup of G defined by 



If G is transitive and the stabilizer of some 

element x·E V is trivial, then G is said to be 

regular:. In this case all the stabilizers 

G , XEV, are trivial. 
X 

O. 6. A general graph G is an ordered 

triplet ( V, E, 1/J) , where V= V(G) and E=E (G) are 

sets, called tpe set of vertices and the set of 

edges, respectively, and ,P=,P~ is a function from 
" . 2 

E to (P ( V) \ {¢}) u v·. called the incidence function. 

If A is an edge and 1/J (A) EP ( V) , then A is called . 
2 

a line, if 1/1 (A) E V ,- then A is called a dart. 

If A is a dart and ,P(A)=(x,y), then A is said 

8 

· to be a dart from x toy, or a dart with tail x 

and head y. A loop is a line A such that I 1/1 (A) I =l. 

A link is a line A such that liJJ(A) I =2. G is 

called strict if 1/J is injective. We deviate from 

the general practice in defining G to be simple if 

2 
E c (P(V)\ {¢}} uV 

and if 1/1 is the identity function. Thus a simple 

general graph is always strict. 

Given an arbitrary G, we define the underlying 

simple general graph s(G)=(V,E,~) by 



V V (G) 

E - {ij,(A) I AEE(G) } I 

-
ij, being the identity function. Generally, to 

define a simple general graph it will suffice 

to define its vertices and edges. 

G is a finite general graph iE both sets V(G) 

and E(G) are finite. 

9 

A hypergraph is a general graph having no darts, 

a digraph is a general graph having no lines. A graph 

is a hypergraph with I ij,(A) I~ 2 for every line A. Given a 

non-zero cardinal number k , a hypergraph is called 

k-uniform if lij,(A) I - k for every line A. 

0.7. A subsystem of a general graph G -(V,E,ij,) 

is a general graph H - (V
1

, E
1 

, lj, 1 ) such that 

V
1 

c V, E
1 

s E and ij, 1 is the restriction of lj, 

to E1 • His called an induced subsystem of G if 

for every edge A of G 

ij,(A) E P (V
1

) u V~ ~ A E E
1 
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We also write in th'.s case H = G [ V1 J and H is 

said to be, the subsystem induced by V1 • A subsystem 

H of G is a spanning subsystem if V(H) = V(G) 

A subsystem of a hypergraph, a graph, or a 

digraph is called a sub-hypergraph , a subgraph , 

a sub-digraph , respectively. Induced and spa;1ning 

sub-hypergraphs, subgraphs and sub-digraphs are 

defined accordingly. 

A vertex x of G and an edge A are incident if 

A f E (G [ V(G) \ {x} ] ) • 

The degree d(x) is the cardinality of the set of 

edges incident with x. d+ (x) , respectively d - (x), 

denotes the cardinality of the set of darts having x 

as tail, respectively as head. The neighbourhood 

NG(x) = N(x) of x is the set of vertices y F x 

incident with an edge that is incident with x. The 

elements .of N(x) are the neighbours of x. The 

neighbourhood NG(S) = N(S) of a subset S ~ V(G) is 

defined by 

N(S) = ( U N(x)) \ S 
xeS 



,.. 

For every XEV(G), NG+(x) = N+(x) den·~to.s 

tl,c set of those vertices y for which there is 

a dart from x toy. Dually, 

NG (x) = N - (x) = { yEV(G) I X E N + (y) } 

For every s s. V(G) let 

N + (S) = N+ ·. (S) = u N+ ( x) 
G XES 

N - (S) = N - (S) = u N (x) 
G XES 

11 

If Sis a subset of E(G) , then the subsystem H 

spanned by S has edge set E(H) = S and vertex set 

V(H)= { xEV(G) I xis incident with some AES }. 

Whenever this does not lead to confusion, to 

designate a "subsystem induced by a vertex x" , or 

a "subsystem spanned by a singleton {A} , AE E(G)" , 

we shall simply speak of the "vertex x" or the 

"edge A" • 

A subset S s V(G) is independent if E(G [SJ )=/if. 



r 
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A fam:!.ly (Gil ieI of general graphs is compatible 

if for every pair of indices i, j e I and every 

'VG. (A) 'VG, (A) 
]. J 

The union 

G =U G.-.,_ 
iEI 

can th,;,.n be defined as the general graph satisfying 

( i) V(G) = u V(Gi) iEI 
, 

(ii) E(G)= u E (Gi) ieI 
, 

(iii) every Gi , i E I, is a suJ:.system of G. 

0.8. A partition of a set J is a subset TI 

of P(J) such that 

(i) the elements of TI are pairwise disjoint, 

(ii) LJ B = J 
BE TI 

(iii) ff q TI 

The elements of TI are called the blocks 

partition; For x, y E J we write 

of the 



X mod 7T . 

if x and y belong to the same block of ir • 

A component of a hypergraph His a non-empty 

subset C of V(H) such that for every line A of H 

either ~H (A)£ C or ~H (A) n C = ~. C is 

called a connected component if the only component 

of H [CJ is c. The set ir of connected components 

13 

is a partition of V(H) and we shall write c(H)= I ir 1-
His connected if c (H) $ 1 . 

Let G be a graph. A polygon is a finite sub

graph P of G such that 

(i) I V(P) I = I E(P) I > 0 

(ii) no proper subgraph of P has property (i) 

A circuit is the edge set of some polygon. 

If G is a strict graph, then for every 

x, y E V(G) , there is at most one line incident 

with both x and y. If there is such a line A, then 

we write 

A=< x, y > = < y, X > 



If we have vertices V l. I ... I vk I k " 3 I such 

that V l. is adjacent to vi+1. for every 

l. ,!; i,!; k-1. and vk is adjacent to V l. I then 

denotes the polygon of G with edge set 

If a: graph G has a polygon of length at least 

3, then the girth of G is the minimum length of 

such a polygon. Otherwise we say that the girth 

of G is "'. 

A path in a graph G is defined as a connected 

subgraph with two vertices of degree 1, all other 

vertices having degree 2. A path has to be finite. 

0.9. An automorphism of a general graph G is 

a permutation cr of V(G) such that for every s c V 

I{ AeE(G) I ,P(A)= S} i=I{ AeE(G) / ,P(A)= cr(S) } I 

and for every x, ye V 

14 
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i{AEE(G) J ,p(A)= (x, y) }!= J {AEE(G) J ,p(A)=(cr(x) ,cr(y)}} I 

The set of all automorphisms of G is denoted by 

Aut G. This is a permutation group on V(G), called 

the automorphism group of G. 



CHAt'TER 1 

ON THE ROTO~ EFFECT 

1. .0. All hypergraphs considered in this 

chapter will be finite. 

1.1. Let H be a hypergraph and let J be a subset 

of V(H). Let TI be a partition of J. We define a 

hypergraph H(TI) =(V,E,,p) 

by 

and 

V = {{x} 

E =E (H) 

XEV(H) \J}u TI 

,p (A) = { M E V I M n 1/J H (A) .;, '(a } 

for every line A E E. 

' 

H(TI) is thought of as obtained from H by identifi

cation of TI- congruent vertices. 

Let R be a non-null hypergraph, 0 an auto

morphism of R (thought of as a rotation), Jan orbit 

16 
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0f. 0, v a distinguished vertex in J. Then 

R :; (R, 0 , J, v) is called a rotc.:.,r. J is called the 

principal orbit and I J I the order of the rotor R • 

Clearly, if this order is k, then J consists of v, 

k-1. 0 (v) , •.• , 0 (v). The automorphism 0k is not 

necessarily the identity, the order of 0 can be a 

proper multiple of the order of the rotor. 

~ample. If R is the strict graph depicted in 

Figure 1, having for vertex set V (R)= [ O, 13 J , then 

a rotor R=(R,0, J, v) can be defined by 

0 = (0,1,2) (3,4,5) (6, 10, 8,9,7,11) (12,13) 

J = {0,1,2} I 

V 0 

The order of the rotor R is 3, while the order of the 

automorphism 0 of the graph R is 6. 

The border is defined as the ordered pair 

(R [JJ, 0 I J). In the example of the rotor given 

above, R [JJ is the edgeless graph with 3 vertices 

0,1,2 and 0 I J is the cyclic permutation (0,1,2). 

To the rotor (R, 0, J, v) we associate a 

mapping ~: J~J , called reflection, given by 

17 
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I 

i -: q, (e (v)) =e (v) , 

for every Os i < I J I• q, is an involution. 

Let ,r be a partition of the principal orbit, called 

a border-partition. We also have the reflected border-partition 

q,,r defined by 

q>7f = { q, ( B) I BE 7f } • 

We shall be ·interested in common properties of R(,r) 

and R (c/>ir ) • 

0 

12 

2 

Figure 1 
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1.2.l. Let H be~ hypergraph. Given a positive 

integer A , a proper A -coloring of H is a function 

f: V(H)~[ l, A ] such that 

for every line A of H. The number of proper A -

colorings of His denoted by P(H,:.). 

1.2.2. For Has above and AE E (H), we defina 

a hypergraph H; = (V' , E' , op') by 

and 

' for every B E E • 

V 1 =V(H), 

E 1 
:..:_ E ( H) \ { A } , 

19 

Also we define a hypergraph H11 A =(V", E
11

, lj,
11

) by 

II 
V = { {x} \ x EV (H) \ l/tJ(A)} u {\/ti (A) } 

E
11 

=E( H) \ { A } , 

and 

fl II I lj,(B)={MEV 

II 
for every B E E • 



r 

• HA can be thought of as obtained from H by 

deleting the line A and H
11
A as obtained from H by 

contracting A to a single vertex. 

20 

As in the case of graphs, for any positive integer 

A the set of proper A-colorings of His a subset of 

the set of proper A-colorings of H
1
A. Also, a proper 

' . 
A-coloring f of H A is not a proper A-.coloring of H if 

and only if 

But it is not difficult to verify that there is a 

bijective correspondence between proper A-colorings f 

' of HA satisfying this equality and proper A-colorings 

of H"A· Consequently the familiar recursio.n formula 

I II 
P(H,A)- P(H Ar A) - P(H A,A) 

holds also for hypergraphs. 

It follows that P(H,A) is a polynomial in A 

with integer coefficients, having degree IVI unless 

l~H(A) I - 1 for some line A of H, in which case 

P(H, A) is identically zero. P(H, l) is called the 

chromatic polynomial of H. It was introduced for 

graphs by George D. Birkhoff·[B 7] , for hypergraphs 



r 
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by C.Benzaken [B 4] as a polynomial whose co0f-:':icients 

count the number of unlabelled colorings, and in

dependently by V.Chvatal [C 6] in the form presented 

above. 

1.2.31. PROPOSITION. Let Rand S be two sub

hypergraphs of a hypergraph H suchthat 

E (R) u E (:,) = E (H) , 

E (R) n E (S) I 

V(R) u V(S) V(H) 

Let J=V(R) n V(S). For a spanning sub-hypergraph T 

of S, let rrT_ be the partition of J each block of 

which is the intersection of J with some connected 

component of T. Then 

I 

the summation ranging over all spanning sub-hypergraphs 

T of S. 

Proof: By induction on JE(S) I . 

The expansion clearly holds if IE (S) I O, because 

in this case the only spanning sub-hypergraph of s is s, 

(-l)O = 1 , H consists of R and c(S) - rrs I = 



22 

V(S) ~jJjisolated vertLces, and P(R( Tis) ,A)= P(R,A) 

If jE(S) I ~ 1, assume that the expansion is valid 

for lesser: values of jE(S) I and let AE E(S). Since the 

expansion is valid for P (H 1 A' A) and P (H"A, A ) , it 

follows from the recursion formula 

- ' " P(H,A)= P(H A,A) - P(H A,A) 

that it holds also for P(H,A) • 

A similar expansion in the special case of 

chromatic polynomials of planar maps appears in the 

paper ... of George D. Birkhoff and D.C. Lewis [B 8] 

Also H.Crapo [C 4] reports an analagous expansion 

for the more general coboundary polynomial of graphs. 

Our expansion was motivated by the conjectured 

invariance of the chromatic polynomial in the rotor 

effect, to be treated in the sequel, and was obtained 

independently. 

A particular case of proposition 1.2.31 gives 

the following 



t 
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1. 2. 32. PROPOSITION. Let R and S be spa,m::..ng sub

hypergraphs of a hypergraph H, E(R)uE(S)= E(H), 

E (R) nE (S) = fi!. For every partition ,r of V (H) and every 

non-negative integer i let t,ri denote the number 

of spanning sub-hypergraphs T of Shaving i lines 

and such that "T ="·Then 

P ( H 1 )<) = l: l: (-1) i t,r i . P ( R ( ,r) , A) 
i;,o ,r ' 

the double summation varying over all non-negative 

integers i and all partitions ,r of V(H) . 

Proof. For every spanning sub-hypergraph T 

of S , c (T) = I nT I • 

1.2.33. COROLLARY. Let H be a hypergraph and 

let ski be the number of spanning sub-hypergraphs of 

H having k ·OJnnected components and i lines. Then 

the coefficient of Akin P(H,A) is 

i: (-1) i 
i;,o 

Proof. In proposition 1.2.32 set S= Hand let 

R be the spanning sub-hypergraph of H with E(R) = fi!. 

Then for every partition ,r of V(H) 



P (R(,r) ,A) , 

and the result follows. 

In the case of planar maps the above corollary 

is due to George D. Birkhoff [B 7] and in the case of 

graphs to H.Whitney [W SJ. 

1.2.4. Let S be o. graph. Let Ai,•••, Am be an 

enumeration of the elements of E(S). A set C::: E(S) is 

.called a broken circuit if there is an integer i, 

i,; i ,; m , such that 

(i) Cu {Ai} is a circuit, 

(ii) for every Aj E: C, j ;e i . 

In particular all circuits are broken circuits, 

including loops and digons. 

24 

We have the following generalization of Whitney's 

interpretation of the coefficients of the chromatic 

polynomial [W SJ : 

1.2.41. PROPOSITION. Let Rand S be two sub

graphs of a.graph G such that 

E(R) uE(S)= E(G) , 



r 
V 
i 

l 
r 
' 
~ 
! 

E(R)n E(S)= 0 I 

V(R).u V(S)= V(G) 

Let J = V (R) n V ( S) . For a spann i.ng subgraph T of S, 

let 1rT be the partition of J each block of which is the 

intersection of J with sorre connected corrponent of T. TheL 

IV(Tll -c(T) 
P(G, A) = E (-1) 

'l' 

C (T) - I 1fT 
A P(R(irT),A) I 

the surrunation ranging over all spanning subgraphs 

T of S containing no broken circuit. 

Proof: As in Whitney's original theorem, we 

assume fi1:st that S has no loops or multiple _links. 

Considering the sum 

P(G,>.)= 
IE (T) I 

E ( -1) 
T 

C (T) - I irT 
A 

given by proposition 1.2.31 it can be verified, as in 

[W 5] , that the contributions of those terms 

IE (T) I c(T) -J 1fT 

(-1) A 

25 



that correspond to a spanning subgraph T of S coi,- · 

taining a broken circuit cancel. Also, if T contains 

no broken circuit, then T contains no circuit and 

IE (T) I =IV(T) I - C (T) • 

In case S has multiple links, the expansion of 

the proposition is still true. Indeed, ·if the links 

between two distinct vertices x and y of Sare 

26 

Aj 1 , ••• ,Ajk, j 1 < ••• < jk, then every { Aji} ,1 < i ~k, 

is a broken circuit because { Aji , Aji} is a circuit 

and j 1 < j 1 . Hence in the summation of the proposition 

we sum only over spanning subgraphs T of S that contain 

among the links joining two vertices x and y at most 

the first one (in the fixed enumeration A1 , ••• , Am). 

The expansion is therefa:e reduced to the case wheres 

has no multiple links. 

Also, if S has a loop Aj, P(G,A) is identically 

zero and so is the sum 

. l: (-1) JV(T) I -c (T) 

which is now taken over the empty set because every 

spanning subgraph of S contains the broken circuit~, 

{Aj} being a circuit in itself. 



By taking S= G and V(R) =V(G), E(R) =¢ , 

as in Corollary 1.2.33. , we obtain the original 

result of Whitney [W 5] saying that for 

the.coefficient of 

every 

'k . 
I A in positive integer k 

P(G,>-) is (-1) IV(G) I - k ·times the number of 

spanning subgraphs of G having k connected compo

nents and containing no broken circuits. As noticed 
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by G.G. Haggar [H 9] , this yields a much simplified 

proof of some of G.H.J. Meredith's results on the 

highest coefficients of the chromatic polynomial [M2] : 

1.2.42. COROLLARY (Meredith [M 2]). Let G be a 

strict loopless graph with n vertices, m edges, 

finite girth g and p circuits of length g. Let 

Then 

·and 

P(G,>-) 

C n-k 

C n-g+i 

( 

n (-l) n-k ,_k i: Ck 
k=J. 

m ) for k=O, ... , g-2 k 



1.3. ILvariance results on the chromatic 

polynomial. 

1.3.l. Let R =(R, e,J, v) be a rotor. We say 

that the chromatic polynomial is partition-invariant 

with respect to R if for every border-partition rr 

P(R (rr) ,>.) P (R(trr) ,A ) 

Let t be a non-negative integer. The lowest t 

coefficients of the chromatic polynomial are 

partition-invariant with respect to R if for every 

border-partition rr and every integer k, 0 ,,; k ,,; t - . l, 

the coefficient of ;,.k is the same in P(R(rr) ,A) 

and in P(R(trr) ,A) 

1.3.2. Let R=(R, e,J, v) be a rotor. Let S be 

a hypergraph such that 

V(S) n V (R) =r;t 

E (S) n E (R) =r;t 

Let w: J~V(S) be an injective mapping called the 

attachment function. Then ( R, S, w) is called a 

notor. The hypergraph Sis called the stator. 

28 
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The reflected motor ( R , S , w <I> ) is the: r,10-tor 

·defined to have the same rotor and stator as (R, S, w), 

but a different attachment function w <j> given by 

w q, (x) = w ( <I> (x) ) 

for every x E J • 

For a motor ( R, S, w) , R =(R,e, J, v) , we 

define the hypergraph M( R, s, w) = (V, E,w) by 

V V(R) u[ V(S) \ w(J)] , 

E =E (R) u E(S) ' 

W (A)= WR (A) 

for every A E E (R) and 

w (A) = [w s (A)\ w (J) J u { X E J I w (x) E ws (A)} 

for every A EE(S) • 

M (.(?, S, w) is thought of as obtained from Rand S 

by identifying vertices that correspond under the 

attachment function. 



r 

i 

[ 
I 
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1.3.3. Let T be a spanning sub~hypergraph of S. 

We define a sub-hypergraph T of M(R , S, w) and a sub

hypergraph T of M( R,S, W$) by 

V(T)= V(T)= J u[V(S)\ w(J)]= J u[V(S)\ W$ (J)J, 

E(T)= E(T)= E(T) • 

~lthough T and T have the same vertices and the same 

lines., in general they do not have the same incidence 

function because Tis a sub-hypergraph of M(R,S, w) 

while T is a sub-hypergraph of M (R ,s, w$ ) ·.) 

The above definitions apply in particular for 

T= S. Then Rand Sare sub-hypergraphs of M(R,S,w), 

E (R)u E(S)= E(M ( R,S,w)) , 

E(R)n E(S)= ~ , 

V(R)u V(S)= V(M(R,S,w)) , 
.• 

V(R)n V (S) = J 

Also Rand Sare sub-hypergraphs of the hypergraph 

M(R,S,w $) obtained from the reflected motor, 



r 
I 

i 

E (R)u E (S)= E (M ( R, S, w $) ) 

E (R) n E (S)= ~ , 

V (R)u V(S)= V(M( R ,S,w$)) , 

V(R)n V(S)= J . 

These observations can be con-pared with the hYfOtheses of 

proposition 1.2.31. 

We also note that the mapping T-'t T 

(resp. T----;;.T ) establishes a bijection between. 

spanning sub-hypergraphs of Sand spanning sub

hypergraphs of S (resp. spanning sub-hypergraphs 

of s) . 

1.3.4. With respect to a rotor R=(R,0 ,J, v) 

the chromatic polynomial is said to be motor

invariant if for every motor (R,S,w) and the ref

lected motor (R,S,w$) we have 

P(M(R,S,w) •A) P(M(R,S,w$) ,A) .• 

Let 9, be a non-negative integer. The lowest i coeffi

cients of the chromatic polynomial are motor invariant 

with respect to R if for every motor (R,S,w) and every 

integer k, 0 e;;k,; i - 1 :,the coefficient of Ak is the 
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same in P(M(R,S,w) ,A) and in P(M(R,S,W<;>) ,Al 

W.T. Tutte has shown [T 2] that if the 

chromatic polynomial is partition-invariant with 

respect to a given rotor R, then it is motor

invariant with respect to R. (In fact proposition 
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4.1. of [T ?.] contains a more general result about the 

dichromate.; The argument is valid also for the 

chromatic polynomial of hypergraphs. We prove the 

following: 

1.3.5. PROPOSITION. Let R be a rotor. 

(i) For every non-negative integer i, the lowest 

i coefficients of the chromatic polynomial 

are motor-invariant with respect to R if and 

only if they are partition-invariant. 

(ii) The chromatic polynomial is motor-invariant 

with respect to R if and only if it is 

partition-invariant. 

Proof: The "if" part of (ii). is contained in 

proposition 4.1. of [T 2] . Also the proof of the 

"if" part of (i) is essentially the argument used 

by Tutte to prove proposition 4.1. [T 2] • For the 



r 

I 
f 
f: 

sake of completeness' we show how both the "ii" and 

the "only if" parts of (i) can be deduced from pro

position 1.2.31 and how (ii) can be viewed as a 

consequence of (i). 

For any polynomial P(A) let ck P(A) denote the 

coefficient of Ak in P (A ) • If k is negative, then 
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Assume that the lowest i coefficients of the 

chromatic polynomial are partition-invariant with 

respect to R = (R,0, J, v) . Then for every O ,5; k:,:; i - 1 

and every border-partition rr 

ck P(R(rr) ,A) Ck P(R(<j>rr) ,A) 

Let (R,S,w) be a motor. Let us write 

M=.M(R,S,w) I 

<j>M = M (RI s I w </>) 

By proposition 1.2.31 and the observations made in 

1.3.3. we have 



r 
I 

I 
! 

l: (-1) JE. (T) I , C (T)- I 11=T I P ( $M, A) = T " P ( R ( 11T) , A) , 

where the surrunations range over all spanning sub

hypergraphs T of s. But 

and 

E(T)= E(T)= E(T) 

c(T)= c(T)= c(T) 

, 

~or every spanning sub-hypergraph T of S. We shall 

also write pT= 111~ I = l11T I for every such T. 

Hence 
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IE (T) I ck P(M,>.)= ~(-1) ck-c(T)+p(T) ' P(R(11T) ,A) 

and 

We observe now that 



for every spanning sub-hypergraph T of S. 

Al,;o 

k - c (T) + p (T) ,; k ,; fl - 1 · , 

and by the partition-invariance of the lowest fl 

coefficients 

'k-ctr) +p(T) P(R('ITT) ,>.) = 'k-ctr) + p(T) P(R('IT~ ,>.) , 

:inplying that 

'1c P(M,>.) = '1c P(~ M,>.) • 

This proves the motor-invariance of the lowest fl 

coefficients. 
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Conversely, assume that the lowest fl coefficients 

of the chromatic polynomial are motor-invariant with 

respect to R=(R,e,J, v). Suppose they are not par

tition-invariant. We show that this leads to a 

contradiction. In the lattice of partitions of the 

principal orbit J choose a minimal element 'IT 0 for 

which there is some k, 0 ,;k,; fl - 1, such that 



(Recall that in the lattice of partitions n
1

~ n2 

if and only if each block of n 1 is contained in 

some block ofn2 .[s 3].) To fonnamotor (R,S,w), 

we define a stator s and an attachment functi-·.n 

was follows. Let V(S) be a set disjoint from 

36 

V(R) and w a bijection w: J--':,,'{(S), For each non-singleton 

block B of n0 let LB be a line of S with ~8 (LB)= B. 

Again, let 

M=M( R,S,w) 

q,M =M( R ,S,wq,) 

Since the functions wand wcf, are surjective onto 

V(S), proposition 1.2.31 gives 

p (M, ;\) 

and 

P(q,M,;>.) 

J (-1) !E(T~ P(R(nT) ,;>.) 

E (-1) !E(T)[ P(R("T), ;>.) 
T 

I 

the summations ranging over all spanning sub-

hypergraphs T of s. As before, n- = cf> n- for T T 

every T. We have ns= n0 , but for every T f S, 



[ 
I 
' 

in the lattice of partitions of J. Thus, by the 

minimality assumpt:i,.on on 1r 0 , 

for every T f s. Also 

ck (M,>.)- (-1) jE(S) I ckP (R(1r 0 ) ,>.) + 

+ L (-l)jE(T)lc P(R(1r-),>.) 
TfS k T . 

, 

and 

by motor-invariance, contradicting 

37 
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Finally, consider the following four statements, 

where invariance is always understood with respect 

to R: 

(A) The chromatic polynomial is motor-invariant, 

(B) The chromatic polynomial is partition-invariant, 

(C) For every 2;,0 , the lowest 2 coefficients of 

the chromatic polynomial are motor-invariant. 

(D) For every £;>:0, the lowest i coefficients are 

partition-invariant. 

From part (i) of the proposition, proven above, 

it follows that (C) and (D) are equivalent. On the 

other hand, (A) is clearly equivalent to (C) and, 

similarly, (B) is equivalent to (D). Consequently 

(A) and (B) an equivalent. But this is exactly 

part (ii) of the proposition, the proof of which is 

now complete. 

In view of proposition 1.3.5., instead of saying 

that the chromatic polynomial is partition-invariant 

or motor-invariant with respect to a rotor R, we can 

say simply that it is invariant with respect to R. 
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l. 3. 6, Let 1T be ·..,_ !?o"."der-parti tion of a rotor· 

R=(R,e,J, v). Given a power ei of e, iEZ, we 

define the border-partition ei1T by 

ei1T = {ei(B) EE 1T} 

1T is said to be bilaterally syrmetric if <j,11 = ei11 for 

some power 0i of e .( <j,11 denotes the reflected 

border-partition.) 

Stated originally for graphs, the following 

results of Tutte [T 2] are clearly true also for 

hypergraphs: 

1. 3, 61. If.11 is a bilaterally symmetric border

partition, then R(11) and R(q,11) are isomorphic. 

1.3.62. Every border-partition of a rotor of 

order at most 5 is bilaterally symmetric. 

1.3.63. With respect to rotors of order at most 

5, the chromatic polynomial is invariant. 

This last result, immediate consequence of the 

preceeding.1.3.61 and, 1.3.62, yields a systematic 



method of consti:uct5 ng non-isomorphic hypergrap:-.s -

having the same chromatic polynomial, non-trivial 

examples of which are not abundant (see George D. 

Birkhoff and D.C. Lewis [B 8] , R.A. Bari [B 3] 

and L.A. Lee [L 2]) • 

E~aillJ;!le. Let R be the simple hypergraph w:.th 

vertex-set V(R)= [0,12] and whose lines are 

{0,3,1-} 

{ 0,11,12 } 

{0,6,9} 

I 

I 

, 

{1,4,2},{2,5,!)} 

{ 1, 9,12 } , { 2,10,12} 

{l, 7,10 }, { 2, 8,11} 
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, 

A geometric representation of R is given in Figure 2. 

0 

1 
2 

Figure 2 



Consider the permut~tior. 

e=(O, 1, 2) (3,4,5) (6, 7, 8) (9, 10, 11) 

of V(R). Clearly eis an automorphism of R. Let 

J={O, 1, 2} and v= 0. Then R =(R,e,J, v) is a 

rotor of order 3. Let the stator S be the sim?le 

hypergraph given by 

V(S)= [13, 18] 
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E(S)={{l3, 14, 15} , {14, 16, 17} , {16, 18, 13}}• 

Define the attachment function w J -~V(S) by 

w (0) 13 I w(i)= 15 I w(2) = 17 

According to 1.3.63 the hypergraphs M(R,S,w) and 

M(R,S,w~) have the same chromatic polynomial. A 

geometric representation of M(R,S,w) and M(R,S,w~) 

is given in Figure 3. There is no difficulty in 

verifying that these two hypergraphs are not 

isomorphic. 
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I 

I 8 

0 ( I 3) 

0 ( I 3) 

I 6 

Figure 3 
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I 8 

M(R, S , w) 

M(R ,S ,w<j, ) 



43 

l.3.7. Rotors of order 6 bounded by a hexagon: a 

simplified proof of a result of Lee. 

Let R be a graph and R =(R,0,J,v) a rotor of 

order 6 such that vis adjecent to 0(v). For the 

purposes of this subsection, we call a border

partition rr of R admissible if for every integer i 

1.3.71. PROPOSITION. Every admissible border

partition is bilaterally symmetric. 

Proof. Let us write, for every integer i, 
• 

vi= 0 1 (v). Then 

1 
V , } . 

Consider the following 12 admissible border -

partitions: 



' ' I 

1T , 
t 

6 
V }}, 

I 4 2 6 3 5 
{{ V, V }, {v, V }, (v, V }}, 

I 3 5 2 4 6 
{{ V , V , V }, {v }, {v }, { V }}, 

1T 8 

1T 9 

{{·vi}, {v2}, {vs}, {v4}, {vs}, {v6}}, 

. I 5 2 4 3 6 
{{ V, V }, {v, V }, {v} , { V }} 

It is easily seen that for every admissible border

partition 11 there is some integer i, and exactly 

one index k, 1~ k~ 12, such that 

On the other hand, if p is a bilaterally 
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symmetric border-partition, then so is ei(p) for every 

integer i. But it can be verified without difficulty 

that the border-partitions 11 1 , ••• ,11 1 2 are 
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bilaterally symrnetri-~. The result follows. 

l. 3. 72. PROPOSITION (Lee [L 2 ] ) • Let 

R = (R, e ,,T, v) be a rotor of order 6., wl1=re R is a 

graph such that vis adjacent to e(v). Then the 

chromatic polynomial is invariant with respect to R. 

Proof. We prove partition-invariance. LetTI be a 

border-partition of R. If Tiis not admissible, then 

R(TI) has a loop and so does R(tTI). In this case 

P(R(TI), A) P(R(<j,TI) ,A) 0 

If TI is admissible, then TI is bilaterally symmetric 

by proposition 1.3.71 and R(TI) is isomorphic to 

R(<j,TI) by 1.3.61. We have a fortiori the identity 

P(R(TI) ,;\)= P(R(<j,TI).,A) 

1.3.8. More on rotors of order 6. 

Let R=(R,e,J,v) be a rotor of order 6, where 

R is a graph such that v is adjacent to·02 (v) • 

Throughout this subsection we call a border-partition 

TI admissible if for every integer. i 



' , i i+2 
01 (v ;f e (v) mod " 

As in subsection 1.3.7 , we have the following: 

1.3.81. PROPOSITION. Every admissible border

partition is bilaterally symmetric. 

Proof. Again, let vi- ei(v) for every intEger 

i. Consider the following 10 admissible border

partitions: 

"1 {{Vl, v2}, {vs, v4}, {vs, v6}}, 

'1T2 {{vl, v2}, {vs, v6}, {v4, vs }}, 

,rs {{v 1 , v 4}, {v2 , vs}, {vs, v 6 }}, 

,r4 {{v1 , v 4}, {v2 , v 3 }, {vs}, {v6 }}, 

'1T s 

'1T 6 

{{vl, v2}, {vs, v4}, {vs}, {v6}} 

{{vl, v2}, {v4, vs}, {vs}, {v6}} 

{{vl, v4}, {v2, vs}, {vs}, {v6}} 

I 

I 

I 

{{vl, v2}, {vs}, {v4}, {vs}, {v6}} , 

{{v1, v 4 }, {v2 }, {vs}, {vs}, {v 6 }} , 

These border-partitions are bilaterally symmetric. 

Also every admissible border- partition of R is of 

the form ei (,rk), iEZ , 1~ k~ 10 (k unique). 

The result follows as in the proof of proposition 

1.3.71. 
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1.3.82. PROPOSITION. Let R =(R,G,J,v) be a 

rotor of order 6, where R L: a graph such that v is 

adjacent to G2 (v). Then the chromatic polynomial 

is invariant with respect to R. 

Proof. Similar to that of proposition 1.3.72. 

1.3.83. Example. Let R be the strict graph with 

vertex set V(R)= [O, 17] displayed in Figure 4. 

0 

Figure 4 
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Let 

e =(O,l,2,3,4,5) (6,7,8,9,10,ll) (12,13,14,15,16,17), 

J =[ 0, 5 J , V =0 

Then (R,e,J,v} is a rotor satisfying the hypotheses 

of proposition 1.3.82. 



1.4. Invariance and non-invariance of the 

second highest coefficient. 

49 

1.4.1. Let G be a graph. The link number EG is 

defined as the number of links of the underlying 

simple graph, 

E:G =l{{x,y}lx,ye:V(G) , x 'f y and 

xis adjacent to v }I 

Since the chromatic polynomial of a graph (indeed, 

of any hypergraph) is identical with that of the 

underlying simple graph (simple hypergraph), it is 

an immediate consequence of corollary 1.2.42 , that 

for any loopless graph G the coefficient of 

AIV(G) I - 1 in P(G,A) is - EG . 

1.4.2. Consider a rotor R=(R,e,J,v), R_being 

a graph. Clearly for every border-partition TI 

the graphs R(TI) and R($TI) have the same number of 

vertices. We say that the second highest coefficient 

of the chromatic polynomial is partition-invariant 

with respect to R if for every border-partition TI 

the coefficient of 

!V(R(TI)) I -1 
A 

!V(R($TI)) I -1 
A 

is the same in P(R(ir) ,A) and in P(R($TI) ,A) . 



r 
The chief result of this section will pre ·.ri-:le 

an answer to the following question: With respect 

to a rotor (R,El,J,v), when is it possible to 

conclude the partition-invariance of the second 

highest coefficient of the chromatic polynomial by 

looking at only the border (R [JJ , El IJ) ? In 

this respect it should be noted that if Bis a 

non-null graph with k vertices vi, ... ,vk such 

that the cyclic permutation 

a =(vi, ••• , Vk) 

is an automorphism of B, then (B,o) is always the 

border of some rotor R. E.g. one, rather trivial, 

rotor with border (B,o) is R=(B,o,V(B), Vil· In 

view of this, it is convenient to call the ordered 

pair (B,o) a border (of order k), even without 

reference to any particular rotor. 

1.4.3. For every positive integer k we 

denote by Zk the cyclic group of integers modulo 

k. Formally, the elements of Zk are usually 

defined as sets of the form { Jq + p J q E Z } , 

where p EZ is fixed. We write p ={kq+pj q E Z } 
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-and p is said to be a representative of p 

Vertices of a border (B,cr) of order k will 

be indexed by integers modulo k rather than by 

integers, in such a way that V(B)= {vi [ ie Zk} and 

for every i eZk. A 3-element subset {vr, Vs, Vt} 

51 

of V(B) will then be called a scalene 3-set provided 

that the differences r-s, s-t and t-r are all distinct 

elements of Zk, 

I { r-s, s-t, t-r } I =3 

We note that this definition does not depend on 

the order of the vertices vr, Vs, Vt· A subset S 

of V (B) , I S I =n, is called periodic if there is an 

index i e Zk and a positive integer 

S = {Vi+qp- I qe [O, n-i] } . 

.k 
p <-- n such that 

The integer pis called a period of S. For r, s e Zk 

we define 



r 
' 

I 

...:, 
k (r, s)= min { d e z Id ?: 0 and 

s = r+ d } 

and 

..-!>7 _.:;· 

k (r, s)= min (k (r, s); k (s, r) ) • 

1. 4. 4. Let 11 be a border-partition of a rotor 

(R, e,J,v) , R being a graph. Then 

and 

e:R(11)=e: R [V(R) \ JJ + e: R [J] (11) + 

+ E 
Ae11 

I NR (A) n (V(R)\ J) I 

e: R(q>1T) = e: R [V(R) \ J] + e:R [JJ (q>1T) + 

+ E JNR (q,(A))n (V(R)\ J)J 
AE11 

Although .generally the reflection q, is not the 

restriction to J of any automorphism of R, 

it is clear that q,e Aut R [JJ and therefore the 

graphs R [ JJ ( 11) and R '[ J J (q,11 ) are isomorphic. 

Consequently R (11) and R (q,11) have the same link 

number if and only if 
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i: I NR (A) n (V (R) \ J) i = i: I NR ( ip (A)) n (V (R) \ J) I 
Aor Arn 

This will always be the case if every block A of rr 

is periodic. 

1.4.5. PROPOSITION. Let (B,cr) be a border of 

order k, where Bis a loopless graph, 

V (E) = {vi Ii E Zk} , and cr (vi)= v i+i for every 
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i EZk. The following two conditions are equivalent: 

(i). Whatever the rotor R=(R,0,J,v) , R being a graph, 

having border (B,cr) = (R [JJ , eJJ) may be, 

the second highest coefficient of the chromatic 

polynomial is partition-invariant with respect 

to R. 

(ii) (B,cr) has no independent scalene 3-set. 

Proof. Assume (ii) and let rr be a border

partition of a rotor (R,0,J,v) , R being a graph, 

R [JJ= B, 0 I J = cr. If some block A of rr is not 

independent, then ip(A) is not independent and, 

both R(rr) and R(iprr) having loops, 
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t 

l 

P(R(11) ,>.) P(R(q,11) ,>.)= 0 

Assume therefore that every block of 11 is in-
.. 

dependent. According to 1.4.1. and 1.4.4. it will 

suffice to show that every block A of 11is periodic. 

This is obvious if A i:, a singleton. Let IAI :c:2. 

Let p be the smallest positive integer such that 

A has a periodic subset having period p. Let B be 

a periodic subset of A having period p and con

taining the largest possible number of elements, 

say IBI= n, 

B= {v· J.+ qp I qE [O, n - l] } • 

Since every 2- subset of A is periodic, n:c: 2. If 

A =B , then A is periodic. If A 'f=B , let vj E A\ B. 

We claim that n =2 and 

k (j, i) = k (j, i + (n - 1) p) • 

Indeed, if we had n> 2 or 

k (j, . i) > k (j, i + (n - 1) p ) 

then 
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I 
I 

f 

I 
i 
I 

{ vi+(n - 2) p 

would be a scalene 3-subset of A, which 

contradicts (ii) because A is independent. If 

we had n >: 2 or 

k (j, i) < k (j, i + (n. - 1) p) 

then 

would be a scalene 3-subset of A, contradicting 

again the assumption (ii). If follows now that 

- (k - p ) j = i + p + 2 

and 

A = B u{vj } { vi+ - ' p 

is a periodic set with period 

Condition (i) is proved. 

k - p 
2 

V, 
J vi 

Conversely, assume that (ii) · is false. Let 

{ vr' vs' vt} be an independent scalene 3-set 
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of the border (B,a). In order to prove the falsity 

of (i), we shall construct an R= (R,0,J, v) having 

border (B,a) , and such that the second highest 

coefficient of the chromatic polynomial is not 

partition-invariant with respect to R. Let I be 

a k - set disjoint from V (B) , 1= { x . I i € zk } • 
J. 

The graph R is defined by the following condi

tic-:1s: · 

a.) V (R) = V (B)u I , 

b.) R [V (B) ] = B , 

C •) I is independent 

d.) NR (xi) = { V r +i 
, vs+ i 

, Vt+ i } , for 

every iEZk , 

e.) There are no multiple lines between a vertex 

VE V(B) and a vertex x EI • 

The automorphism 0 of R is defined by 

0 I V (B) = a 

and 

for every i E %. • Let also 

and 
J = V (B) 

V v_ 
0 
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li'o see that the second highest coefficient of the 

chromatic polynomial is not partition-invariant with 

respect to R=(R,0,J,v) , consider the partition TI 

of J for which 

C } 

is "l. block and all other blocks are singletons. Note 

that for every vie J 

Hence if we could prove that 

then it would follow that 

=f E I NR ( ~ (A) ) n I [ • 
AE TI . 

and, by 1.4.4. , R(TI) and R(~TI) would have different 

link numbers. Further since R is looplessby assump

tion and every block of TI, and consequently of ~TI 

is independent, both R(TI) · and R(~·TI) are loopless. 
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It would then follow from 1.4.1. that the res

pective coefficients of AIV(R{n)) I -1 

=A IV(R(d>n)) I -l in P(R{n) ,A) and in P(R(o/TI) ,A) 

are different. Thi~ would complete the proof. Let 

s = {r, s, t } We have 

NR(C)nl 

so that 

=l{p - q Ip, qE s} I 

On the other hand, 

so that 
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INR(o/{C))nil=l{ieZkl{r+i, s+i, t+i}n{-r,-s,-t} f ~}I= 

= I { -p-q I p , q E s } I 

=l{P +q IP , q ,:S}I 
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We have to distinguish two cases. 

Case 1. For every p, q Es, such that p 1 q, 

we have p - q 1 q - p • Then ii;. is easy to see 

that 

{r-s, s-t, t-r} n {r-t, t-s, s-r} !21 

and 

JNR(C)n IJ=i{ p-q I p,q E S}J 7. 

But 

J{ p+g lp,q ES} I ~ 6, 

so that in this case 

Case 2. For some p, qE S, p f q, we have 

p-q = q-p. There is no loss of generality in 

assuming that 

r - s s - r 

i.e. 

2 (r ;_ s) 0 
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Then 

{r-s, s-t, t-r} n {r-t, t-s, s-r} {r-s} 

because otherwise we would have 

s - t t - s 

or 

t - r r - t ' 

i.e. besides 

2(r - s) 0 

also 

2 (s - t) 0 

or 

2(t - r) 0 

But, in view of the assumption that {vr,vs,vt} 

is a scalene 3-set, this contradicts the fact 

that the equation 

2x 0 
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has at most one non-zero solution in Zk. It follows 

that 



r 
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i{p-ql,1,qES}I 6 

Also, since r + r ~ s+s , 

I { p+q I p ,q ES } I ,; 5 , 

so that 

The proof of proposition 1.4.5. is now compl~te. 

1.4.6. Clearly a border of order at most 5 cannot 

have a scalene 3-set, in compliance with Tutte's 

invariance result for such borders [T 2] . This 

result is best. pos:sible. ,,y; 

1.4.61. PROPOSITION. Let k be any integer~ 6. 

There exists a border (B,cr) of order k, B being a 

loopless graph, which has an independent scalene 

3-set. 

and 

Proof. Let 

V(B)= {vi 

E (B) = r;t 

V, -
J.+J. 

I 
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for every iEZk. Then 

is an independent scalene·3-set. 

In view of proposition 1.4.5 we obtain the 

fallowing: 
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1.4.62. COROLLARY (See [F 2]). Let k be any 

integer~ 6. There exists a rotor R of order k such 

that the second highest coefficient of the chromatic 

polynomial is not partition-invariant with respect to R. 

In particular, following the proofs of.proposi

tions 1.4.5 and 1.4.61, rotors of arbitrary high 

order k ~ 6 can be constructed with respect to 

which the chromatic polynomial is not invariant. 

This contrasts with the invariance of the number of 

spanning trees, proved by R.L.Brooks, C.A.B. Smith, 

A.H.Stone, W.T.Tutte [B 13] and Tutte [T 4] . 

As an exarrple, take k= 7. Constructing the rotor 

R = (R,0,J,v) as in the proofs of propositions 

1.4.5 and 1.4 .61, R is the Levi graph of the 

Fane geometry pictured in Figure 5. 



Figure 5 

By choosing an appropriate stator, we obtain graphs 

having the same number of spanning trees but having 

different chromatic polynomials. Such a pair of 

graphs is displayed in Figure 6. 
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Figure 6 
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1.5. rlanarity of the rotor: the link number 

l. 5 .1. Let 1f be a border-partition of a rotor 

(R, e,J,v>, R being a graph. Then 

e:R(7r) = e: R [V(R)\ JJ+ e: R [J] (7r) + 

XEV(R)\J 

and 

e:R(q,7r)= e: R [V(R)\JJ + e: R [J] (cf,7r) + 

XEV (R) \J-

By an argument similar to that of 1.4.4 the graphs 

R(7r) and R(cj>7r) have the same link number if and 

only if 

> 
XEV(R)\J 

L J{Arn I NR(x)n cp (A) 'f ff } I • 
XEV(R)\J 
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1.5.2. PROPOSITIA~, Let the rotor (R,0,J,v) and 11 

be as above. Suppose that for every orbit .I of 0 , 

I i- J, there is a permutation ,j, of I such that 

for every x E I. Then R ( 11) and R ( $ 11) have the same 

link number. 

Proof. For every orbit I of 0, I i- J, let ,~s 

denote by ,j,I the corresponding permutation of I. 

Define a permutation a of V(R) \J by the condition that 

a (x) = ~ (x) 

if XE I. Then clearly 

$ (NR (x) nJ) NR(cr(x))nJ 

for every x E V(R)\J. 

Since $ is a permutation of J, 

for every x E V(R)\J and AE11 
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Consequently 

> 
XEV(R)\J 

> 
XEV(R)\J 

> • 

XEV(R)\J 

Now the proposition follows from 1.5.1. 

1.5.3. Let P be a polygon of a graph G. An 

equivalence relation is defined on E(G)\E(P) 

by the condition that for every A, A 1
E E(G)\E(P), 

A~ A 1 

if and only if there is a path in G whose terminal 

lines are A and A' and which is internally vertex

disjoint from P. A bridge of Pin G is a subgraph B 

of G spanned by any of the equivalence classes of 
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the relation - The vertices in V(B)n V(P), called 

vertices of attachment of B, partition Pinto segments. 

Two distinct bridges Bi and B2 of Pare said to 

overlap if the vertices of attachment of Bi are not 

confined to a single segment of B2. (This definition 

is symmetric in Bi and B2.) Two subgraphs Hi and H2 

of G not contained in P are said to be separated by 

p if there is some subgraph Hof G containing P, p 

having two overlapping bridges Bi and B2 in H such 

that Hi is a subgraph of Bi for i= 1,2. Planar 

graphs are characterized by the property that no 

polygon separates every two of three subgraphs Hi, 

H2 , H3 • Also in any embedding of a planar graph G 

in the plane, two subgraphs separated by a polygon P 

lie in different residual domains of P. (See [B 11], 

[K 4] , [T 3] • ) 

1.5.4. PROPOSITION. Let R= (R,e,J,v) be a 

rotor of order k, R being a planar graph. Assume 

that the order of 0 is k. Then for every border

partition ,r of R , R(,r) and R(q,,r) have the same link 

number. 
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Proof. Clearly it is enough to p,ove the 

proposition for strict R. 

69 

We use proposition 1.5.2. We show that for every 

orbi~ I of 0, I 7 J, there is a permutation~ of I 

such that 

~ (NR (x) nJ) 

for every x EI. For every iEZ and yEV (R) , let 

yi = J (y): 

Let therefore I be an orbit of 0, I 7 J. Let 

1 =III . If vis not adjacent to any vertex in I, 

let~ be the identity permutation of I. If 

I NR (v) n I I = 1 , 

then let x be the unique vertex of I adjacent to v. 

We have 

NR (x)n J= { Vil liEZ }· • 

Every vertex in. I is of the form xj for some j E z • 
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CJ.early 

We defin,:, 

X 
-j 

for every jEZ 

If v is adjacent to more than 1 vertex of 

I, then let d be an integer such that for some 

XE I, X and 

d {x, x} c NR (v) 
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Assume that among all possible d we have chosen 

one such that the orbit of ed containing v has 

maximum cardinality. Let m be the cardinality of 

the orbit of ed containing x. Obviously m;;, 2. 

For every i E Z 

i i P(x, V, X
i+d i+d 

, V , ... , 

is a polygon of length 2 m, denoted in the sequel 

by P(vi). Throughout this proof polygons of the 

form P(vi) will be called µ - polygons 
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We have to distL.guish several cases, a 

diagram of which is displayed in Figure 7. 

Case 1. d and k are not coprime,gcd (d,k)i 1. 

This means that J breaks up into several orbits 

under the action of ed. 

Case 1.1. NR(x)nJ intersects several orbits 

of 0d. Since v=a v0 E NR(x), this means that 

there is a r v E NR(x) such that r f 0 mod gcd(d,k). 

Applying 0-r it is easily seen that there is so.me 

xs ENR(v)nI such that s$ 0 mod gcd(d,k). 

Case 1.1.1. We can find r ands as above 

such that r $s mod gcd(d,k). This means that the 

µ - polygons P(vr) and P(vs) are vertex-disjoint 

not only from P(v) but also from each other. 

'd 
Moreover, every vJ EV(P(v))nI is adjacent to 

xjd+s EV(P(vs)) and every xjdE V(P(v))nI is 

. jd+r r adJacent to v E V(P(v )) • It follows that P(vr) 

and P (vs)_ are separated by P (v); Since all 

µ - polygons are similar under s.o.me appropriate 

power of e, for everyµ- polygon P the:e are two 

µ - polygons P 1 and P 2 that are separated by P. 
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In an embedding of R in the plane, let theµ -polygon 

P be chosen in such a way that noµ- polygon P
1 

vertex-disjoint from Plies in the interior (bounded 

residual domain) of P; Then both P1 and P 2 have to 

lie in the exterior of P,·contradicting the fact 

that they are separated by P. 

Case 1.1.2. For every r and s as in Case 

1.1., r = s mod gcd(d,k). In particular r and s 

are unique modulo gcd(d,k). By symmetry under 

powers of e, it is seen that for every i EZ, 

NR(xi)nJ is contained in 2 orbits of ed and 

that.the·.sarre holds for NR(vi)nI, 
. r . 
l.EZ. But X l.S 

. r r-s 2r adJacent to v, v and v , and therefore 

either 2r= r mod gcd(d,k) or 2r= r - s 

mod gcd(d,k). The first congruence, equivalent 

to r= O mod gcd(d,k), is false by the 

definition of r, so that 2r = r - s = 0 mod gcd (d ,k) . 

Case 1.1.2,1. i < k. In this case vr+md f vr 

and P(vr) separates the vertex vr+md from P(v) 

r+md But this is impossible because v is adjacent 

to XE V (P (v)) 
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Case 1.1.2.2. i =k. 

Case 1.1.2.2.1. m =2. Then 2d 
X = XI and 

2s 2s = d If 2s = d then 2s d X - X or X X ,· X X I -

mod k and 2s d Clearly the orbit of es 
V V . 

containing v has more elements than the orbit 

of ed containing v. Since also 
s {.x,x } £ ~ (v), 

th i.s contradicts the choice of d. ·Jn the other 

· 2s hand, if x = x, then 2s _ 0 mod k. But also 

2d = 0 mod k because x 2d x. Since s $ 0 mod k 

and d $ 0 mod k, we must haves= d mod k, which 

is again impossible. 

Case 1.1.2.2.2. m ~ 3. It is not difficult 

to see that the only possible vertex in V(P(v))n 

that can be adjacent to X 
r is V 

-d Therefore 

v 2r must equal -d 2r d mod k and V , - -
v2(r+d) = vd. Since {x, r+d }£ ~ ( v) , thiS I X 

again, leads to a contradiction with the defini

tion of d. 

Case 1. 2. NR (x) n J is contained in one 

orbit of ea.The existence of~ can be shown by 

essentially the same argument as the ohe used in 

the following Case 2. 
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1 

Case 2. (d' k) 1. Then rn 

Case 2.1. x 2d x. Then I= { x, x 1
} and 

every vertex of I is adjacent to every vertex of 

J. Let~ be the identity permutation of I. 

2 

/, 
3 

~ 

1 5 

1 _,2 

1 

'\ 
2 

2 

2 

I 

'\ 2 

I 
2 

Tree o:15. cases 

? 

Figure 7 
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X
2d Case 2.2. f x. 

Case 2.2.1. k 1. 

Case 2.2.1.1. There is an integer r, rj; -2d, r$ -d, 

r $ 0. and r $d mod k, such that vr is adjacent 

to x. Then any two of the three lines 

<;' x, d 
<XI > I < 

.. 2d r+2d 
, V > 

are separated by the polygon P(v). This case is 

.impossible. 

Case 2.2.1.2. v-2d and vd are both adjacent 

to x. Then any two of the three lines 

< x, > I < 
d 

X , 
2d 

V > I < x2d , V > 

are separated by P(v). This is again impossible. 

Case 2.2.1.3. NR(x)nJ 

Then 

NR(xi)nJ= i {v , 

for every i € z. Let 

,i, (xi)= 

{v, 

i-d 
V 

-i 
X 

-d 
V 

I 
vi+d } 



r , 

Case 2.2.1.4. 
-d -2d 

NR ( x) n J= { V, V ' V } •. 

Then 

for every i E Z. Let 

Then 

2d-i 
X 

Case 2.2'.l.5. ~(x)n J 

i i-d } 
{V , V 

for every i E Z . Let 

Case 2.2.2. 

d-i 
X 

2 < k • 

{ V
-d } v, 

Case 2. 2. 2 .1 ji jt -d I ~(x)nJ={v ,v j E Z}. 

Then 

for every i E Z. Let 
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Let 

d-i 
X 

Case 2 • 2 • 2 . 2 . ~ ( x) nJ f { vj R. , vj R.-d jj E Z} • 

We can assume that vr EV(P(v)). Also 

r+R. 
V E NR (x) n J , 

and P (v) separates vr+R. from each of the lines 

r+d 
, V > 

But P(v) also separates these lines from each 

other,contradicting the planarity of R. 

All cases have been exhausted and the proof 

of proposition 1.5.4 is finished. 
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1.6. Planarity~£ the rotor: the girth. 

1.6.1. Throughout this section R =(R,e,J,v) 

will be a rotor of order k ~ 3, R being a strict 

loopless connected planar gr~ph. Assume that the 

automorphism e has also order k. Moreover, assume 

that R is embedded in the plane so as to real~ze 

a planar map M, the boundary of the outer face 

being .the polygon 

k-1. 
B= P(v,e(v), ••• , e (v)) 

78 

and the automorphism e being induced by some 

map-automorphism cr of M preserving incidence 

between vertices, lines and faces, and preserving 

the natural counterclockwise cyclic order of edges 

around any vertex as well as around any face. There 

is no loss of generality in assuming that the 

sequence 

v, e (v) k-1. 
, • • • , e . (v) 

is a counter-clockwise description of the boundary 

polygon B. Then it is clear that the outer face must 

be fixed by cr . Also the polygon B has no chords, 

or equivalently: 
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1.6.11. PROPOSITION.Bis an induced subgraph 

of R. 

Proof. Indeed, suppose that A is a line joining 

two non-consecutive vertices of B. Then A and cr (A) 

are separated by B, contradicting the assumption 

that both are drawn in the interior of B. 
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1.6.2. If xis a vertex of R, let d(B,x) be the 

minimum length of a path between x and a vertex of B. 

1.6.21. PROPOSITION. None of the orbits of e has 

cardinality less thank and greater than 1.e has at 

most 1 fixed vertex. 

Proof. We first prove that if e has a fixed 

vertex x, then the cardinality of every orbit I not 

containing xis k. Then we complete the proof of 

the proposition by showing that if e has an orbit 

of cardinality less thank, thene has a fixed vertex. 

Let x be a fixed vertex ofe such that d(B,x) 

is smallest possible. Let I be an orbit of e, 

x {I. Choose a vertex y € I. Let' P be a path of 

length d(B, x) between x and a vertex ei(v) of B. 

For every j E z, 



r 

P . oj-i (P) 
., 

is path of length d(B,x) from x to ej (v). It 

follows from the minimality of d(B,x) that any 

two of the paths 

p 1. , • • . , pk 

hasTe only the vertex x in common. Consequently 

if y lies on one of the Pj's, j= 1., ..• , k, 

JIJ =J{ei (yl I i= 1., .•• , k} I k 

then 

If this is not the case, then there is some j 

such that y lies in the interior of the polygon 

formed by P., P. and the line < ej (v), ej+1. (v) > 
J J+l. 

Again 

k 0 (y) , • • • , 0 (y) 

must be all distinct and JII k. 

Assume now that 0 has no fixed vertex but has 

orbits of cardinality less thank. Let x be a 

vertex such that 

X 
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for some integer O<t< k, and assume that d(B,x) 

smallest possible. Since t ..ii vides k and k ;e 3, 

we must have 

t + 1 < k 

is 

Also l< t because otr.8rwise x would be a fixed 

vertex of 0. Let P be a path of length d(B,x) 

between x and a vertex ei(v) of B. As before, let 

P.= oj-i (P) 
J 

for every j EZ. The subgraph union of P0 and P 1 

must have a common vertex y with the union of 

P1 and Pt+i, because otherwise they would be 

separated by the polygon P. It is easy to see that 

for some integer O < n :,; t +i . Since t +i < k , 

d (B, y) < d (B, x) 

contradicts the minimality of d(B, x). 
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1.6.3. Let n be a positive integer, n < k. If 

n there is a path P joining v to 0 (v) such that 

(i) p is internally disjoint from B, and 

(ii) no fixed vertex of 0 lies on P, 

then let p (n) be the minimum length of such 

path P. If no such path exists between v and 

then we write p(n) = "' 

1. 6. 31. PROPOSITION. Let O < n < k. Then 

p(n)="' or p(n) > min (n,k-n) 

a 

en (v) , 
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Proof. Assume that the proposition is false. Among 

those n E [l, k - l] , d(n) i"', that maximize 

the value of 

min (n, k - n) p (n) I 

choose one for which min (n, k - n) is smallest 

possible. Since B is chordless, 

2,;n,;k-2 

We can also assume without loss of generality that 

n ,;k/2. For this fixed n let the vertices of a 

shortest path P, internally disjoint from B, 



joining v to en(v) be, in consecutive order, 

v = x 0 , Xi , • . . , xp (n) 

SinG!c? l' and cr(P} are not .:reparated by B, they must 

nave an internal vertex in common. Let i be the 

smallest integer with xiE V(cr(P)) , say 

x. = 0 (x.) 
]. J 

By assumption no fixed vertex of 0 lies on P and 

tberefore i f j 

lf 
I n+J. 

i < j, then the path p joining v to 0 (v) 

consisting of 

P[{ Xo, ... 1 Xi}] 

and 

a (P) [ { e (xj) , • . • , e (x P (n) ) } J 

is internally disjoint from Band has length at 

roost p(n} - 1. Consequently 

p (n+i) < p (n) • 

Also 
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min (n+i, k - (n+i))~ min (n, k - n) - i 

If 

min (n+i, k - (n+i)) ~ min (n, k - n) 

then 

min (n+i, k - (n+i)) - p (n+i) >. min (n, k-n) -p (n) , 

contradicting the choice of n. If. 

min (n+i, .k - (n+i)) min (n, k - n) - i , 

which happens only if k is even and n= k/2, then 

still 

min (n+i, k - (n+i)) - p (n+i) ~ min (n ,k-n) -p (n) , 

(in fact equality must hold) , so that the minimality 

of 

min (n, k - n) 

in contradicted. 

If i >j, then the subgraph of R consisting of 

a ( P) [ { e ( x0 ) , • • • , e ( xj ) } J 

and 

P [ { xi ' · · · ' xd (n) } J 



must contain a path p' joining e(v) to en(v) and 

internally disjoint from B. Since the length of 

l?' is less than p (n) , so is the length of cr_.1. (p') • 

But cr-1.(P 1 )is a path joining v to en-1.(v) and 

internally disjoint from B. This means that 

p(n - 1.) < p(n) • 

Since n ~ k/2, we also have 

min (n-1., k-(n-1.)) min (n ,k-n) - 1. 

which implies 
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min (n-1., k-(n-1.)) - p(n-1.) ~ min (n,k-n) - p(n) 

(in fact equality must hold), and contradicts the 

minimality of 

min (n , k - n) • 

The proof of proposition 1.6.31 is finished. 

1.6.4. Let n be a border-partition of R 

Since 

E (R ( n) ) = E (R) I 



for every subgraph M of R (,,) , E (M) c E (R) • The 

subgraph of R spanned by E(M) is then called the 

subgraph of R corresponding to M. Also for every 

subgraph N of R, E(N)~E(R(TI)), and the subgraph 

of R(TI) spanned by E(N) is called the subgraph 

of R(TI) corresponding to N. 

Let C be a polygon of R(TI). A maximal segment 

of C is a subgraph P of C such that 

(i) Pis a path of length at least 2, 
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(ii) b,oth terminal vertices of P belong to V(B(TI)), 

(iii) Pis internally disjoint from B(TI). 

1.6.41. PROPOSITION. Let TI be a border

partition of Rand let the positive integer g be 

the girth of R(TI). LetC.'be a polygon of R(TI) having 

length g. Then exactly one of the following three 

conditions holds: 

1. IV (C) n V (B (TI) ) I s l , 

2. C is a subgraph of B(TI) 

3. Chas exactly 1 maximal segment. 

Proof. Suppose that Chas two distinct maximal 

segments Mi and M2 . Let N
1 

and N2 be the corres

ponding subgraphs of R. By proposition 1.6.21 , e 
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has at most one fixed vertex, _and therefore one of 

Ni and N2 , say Ni , does no~ contain any fixed 

vertex of 0. Let P be a shortest path in B between 

the two terminal vertices of the path Ni. By 

prop0sition 1.6.31, the length of Pis less than the 

length of Ni. Replacing in C, Mi by the subgraph 

of R(11) corresponding-to P, we obtain a subgraph 

that may.not be a polygon, but that will necessarily 

contain a polygon c' such that 

(i) M2 is a subgraph of c' , 

(ii) the length of c' is smaller than that of C. 

If follows from (i) that the length of c' is at 

least 3. But than (ii) contradicts the assumption 

that the length of C is the girth g of R(11) 

1.6.5. PROPOSITION. For every border-partition 

11 of R , R(11) and R(<j,11) have the same girth. 

Proof. We have only to prove that the girth of 

R(11) is not less than the girth of R (<j,11). Then, by 

applying the argument again to.the border-partition 

<j,11 , we would obtain the desired result. 

Let the positive integer g be the girth of R(11) 

and let C be a polygon of R(11) having length g. 



We shall find a polygon c' of R (~TI) having the 

same length. 

If 

V{C)n V(B(TI)) I 

then C is a polygon of R($TI) and we let c' C. 

If 

then the subgraphs of R corresponding to C is 

either a polygon or a path. If it is a polygon, 

then the subgraph of R(~TI) corresponding to S is 

aJsoapolygon c'. If it is a path P with terminal 

vertices ei (v) and ej {v) , then 

ei {v) - ej (v) mod TI 

and 

e-i (v) = e -j (v) nod $ TI I 

so that the subgraph of R(~TI) corresponding to 

a-i-j {P) is a polygon c', having still the same 

length as C. 

If C is a subgraph of B(TI) then, since B(TI) 

and B($TI) are isomorphic, B($TI) must also have a 

polygon c' of the same length as C. 
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According to pro~,osi t.ion 1. 6. 41, there remains 

only the case where Chas exactly one maximal 

segment M. Let the corresponding subgraph of 

R be the path ~with terminal vertices 0i(v) and 

ej (v). Also there is a path in B (,r) , subgraph of C, 

joining the vertex of R(,r) containing ei(v) to 

the vertex containing ej(v). (Recall that the 

vertices of .R (,r) are sets of vertices of R.) 

Consequently there is a path Pin B(~,r) joining 

-i 
the vertex containing 0 (v) to the vertex 

containing 0-j. (v) • But P, together with the path 

in R(~,r) corresponding to cr-i-j(N), forns a polygon 

c' having the same length g as C. 

The proof of proposition 1.6.5. is finished. 
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1.7. Planarity of the stator 

1.7.1. Let R be a graph and R =(R,G;J,v) a 

rotor of order k such that vis aujacent to e(v). 

Let ( R,S,w) be a motor. In 1.3.3. the subgraph S 

of M( R,S,w) was defined by 

V(S) = J u[ V(S) \ w(J) J I 

E (S) = E (S) 

(R,S,w) is called a planar motor if 

(i) the subgraph Q of M(R,S,w) consisting of S 

and the polygon 

k-1 . 
P = P(v, e(v) , •.• , e (v)) 

is planar 

(ii) P do not have overlapping bridges in Q. 

The chromatic polynomial is said to be 

planar motor invariant with respect to R if 

for every planar motor (R,S,w) 

P(M(R ,S ,w) ,;>..) = P(M(R ,S,wq,),).) 
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Let i be a non-negative integer. The low~~.!:....1c_ 

co~fficients of the chromatic polynomial are 

planar motor invariant with respect to R if for 

every planar motor (R,S,w) and every integer j, 

0 sj st- l , the coefficient of Aj is the same 

in P(M(R,S,w) ,A) and in P(M(R,S,w~),A). 

1.7.2. Let the rotor R =(R,0,"IJ,v) be as above. 

A border-partition ,r of R is called planar if 

there are no four integers i
1

, i 2 , i 3 , i 4 with 

( i) 0 $. < 
11 i2 < i3 < i4 <k , 

(ii) ei (v) = ei3 (v) mod Tr , 

(iii) ei2 (v) = ei4 (v) mod Tr I 

(iv) eii (v) ~ ei2 (v) mod Tr . 

The chromatic polynomial is said to be planar 

partition-invariant with respect to Rif for every 

planar border-partition rr 

P(R(,r) ,A)- P(R(~,r) ,A) 

Let t be a non-negative integer. The lowest i 

coefficients of the chromatic polynomial are planar 

partition invariant with respect to R if for every 

planar border-partition ,rand every 
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integer j , O,;; j,;; 9.. - 1, the coefficient of >.' is the 

same in P (R (11) ,>.) and in P (R (<f,11) ,>.). 

1.7.3. PROPOSITION. Let the rotor R =(R,0,J,v) 

be as above. 

(i) For every non-negative integer 9.. the lowest 9.. 

coefficients of the chromatic polynomial are 

planar motor invariant with respect to R if 

and only if they are planar partition 

invariant. 

(ii)The chromatic polynomial is planar motor 

invariant with respect to R if and only if it 

is planar partition invariant. 

Proof. An.alogous to that of proposition 1. 3. 5. 

To prove the "if" part of (i), we observe that 

if (R,S,w) is a planar motor, then so is (R,S,<f, w) 

and for every spanning subgraph T of S, the 

border partitions 11'.'r and 11T are planar. Therefore 

planar partition invariance of the lowest 9.. 

coefficients implies planar motor invariance as in 

the proof of proposition 1.3.5. Also a slight 

modification of the argument used in proving 

proposition 1.3.5. shows the validity of the "only 

if" part of (i). Given the border partition 11 0 , 
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this time planar, we have to construct a plar.:-:r 

mo~~r (R,S,w) such that w is surjective onto V(S) 

and 

110 
I 

but for every proper spanning subgraph T of S, 

11f < 110 

This can be done as follows. Define, as in the 

general case of hypergraphs, w to be a bijection 

w:V(R)---'?V(S), where V(S) is any set disjoint 

from V(R). For each block B of 11 0 , 

B ={ ei1. (v) I • • • (v) } , 

it < k ' 

let a connected component of s induce a path with 

consecutive vertices 

, ... , w (eit (v)) 

93 

Clearly the stator S satisfies all the requirements, 

and the remaining part of the argument used for 

general hypergraphs is valid also in this case.-



i 

l 

Finally, (ii) follows from (i) exactly as. in 

the-. proof of proposition 1. 3. 5. 

1.7.4. In view of the above proposition, we 

call the chromatic polynomial simply planar 

invariant with respect to R , if it is planar 

motor invariant or equivalently, planar partition 

invariant. 

1.7.5. Planar rotors of order 7 bounded by 

a heptagon. 

Let R = (R, e ,J , v) be a rotor of order 7 , where 

Risa graph in which vis adjacent to e(v). As 

in 1.3.7, we call a border partition TI admissible 

if for every integer i 

mod TI 

We have then the following: 

1.7.51. PROPOSITION. Every admissible planar 

border partition of R is bilaterally symmetric. 

Proof. Let vi ei(v) for every integer i. 

Consider the following 6. admissible planar 

border partitions: 
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"l - { { vi , v3 , v 6} , { v2 } , { v 4 } , { vs } ' { v 7 } } 

1f2 

1[ 3 

1[ 4 

{{ vi 

{ { vi 

{ { vi 

3 6 2 4 S 7 
} ,{ V } , {v } , { V. , V } , {v , V } } 

7} r v~ 6 
V , t i •V } } , 
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I 

1[ s { { vi } , { v 2 } , { v 4 } , { vs } , { v7 } , { v 3 v6 } } , 

l 2 ·3 4 S 7 
{ { V } , { V } , { V } , { V } , { V } ,{ v 6 } , { V } } 

These border partitions are bilaterally symmetric. 

Also every admissible planar border partition of R 

is of the form 0i (1rkl , i E z , ls ks 6 (k unique) • 

As in proposition 1.3.71, the result follows. 

1.7.52. Remark. Not every admissible border 

partition of R is bilaterally symmetric. A counter

example is the partition 

1[ 

1.7.53. PROPOSITION. LetR =(R,0,J,v) be a 

rotor of order 7, where Risa graph such that v 

is adjacent to 0(v). Then the chromatic polynomial 

is planar invariant with respect to R. 

Proof. Analogous to that of proposition 1.3.72. 
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1.7.54. Example. L~t R be the strict graph with 

vertex set V(R) = [O, 13] depicted in Figure 8. 

0 

2 
5 

· Figure 8 



Let 

El (0,2,3,4,5,6) (7 ,8 ,9 ,10 ,11,12 ,13) I 

J - [0,6] I V - 0 • 

Then R =(R,0,,J,v) is a rotor satisfying the 

hypotheses of proposition 1.7.53. We note that R 

is not a planar graph. Figure 9 displays a pa:'. r of 

non-isomorphic graphs,obtained from R , having 

the same chromatic polynomial. 

Figure 9 
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CHAP'l'EH. 2 

AlJrOMORPHISMS OF SUBSYSTEMS 

2 .1. This section deals 'ri'i th the automorphism 

group of a general graph G and that of a subsystem H 

induced by a constituent of Aut G. 

Given n groups Ai,··· ,An , n~3, and n-1 group 

homomorphisms 

the sequence 

represented diagrammatically; as 

h n-i 
A ~A 
n-i n I 

is called an exact sequence (see [ L l]) if for every 

lsisn-2 
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Let a diagram D r~p~esent groups 

A
1

, ••• , An , B
1 

, ••• , Bn and group homomorphisms 

Suppose that for every pair of sequences h· 11 
, ... , 

hik and h, 
J'.L 

I ... I h· 
Jm 

such that 

(i) for every l,;; t,;; k -1,Bit= A· it+i I 

(ii) for every l,;; t,;; m-.1,Bjt= A· Jt+i 

(iii) A, = A· I Bik = B· 
J.1 Ji Jm 

the compositions hik .•. hi
1 

and hjm •.• hj
1 

are equal. 

Then the diagram Dis said to be commutative. 

We denote the trivial group ~ by 0. 

Let G be a general graph and let Ube a cons

tituent of Aut G. Let 

Fix (G, G [ U ]) = 11 (Aut G) x 
XE U 

be the subgroup of those automorphisms of G that fix 

every vertex of the subsystem G[UJ induced by u. 
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Let r: Aut G~Aut G[Uj be the restriction homo-

morphism, 

r ( cr) a I u 

for every a E Aut G. 

2.1.1. PROPOSITICN. The sequence 

r 
0 ---'t Fix (G, G[U] ) -?Aut G --;>Aut G[U] I 

where the .unlabelled arrows stand for the canonical 

group homomorphisms, is exact. 

Proof. Follows without difficulty from the 

definitions. 

The main proposition of this section is the 

following: 

2.1.2. PROPOSITION. Given a general graph Hand 

an exact sequence of group homomorphisms 

I 

there exists a general graph G such that 
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l 

(i) His a subsystem of G induced by a constituent 

of Aut G , 

(ii) for some group isomorphisms 

h: Fix (G, H)-\}A and k: Aut G--=,B, 

the diagram 

is commutative. 

Proof. Deferred to 2.1.4. 
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2.1.3. PROPOSITION. Given a general graph Hand 

a subgroup B of Aut H, there exists a general graph 

G such that (i) His a subsystem of G induced by a 

faithful constituent of Aut G, 

(ii) Aut G Jv(H)= B . 

Proof. Let a be the cardinality of V(H). a is 

the first ordinal number with J W(a)J=J V(H) J. We can 

in fact assume that 

' . ' 

V(H) W(a) 



r 
Assume also that a~ 2. 

For each (IE B let v CJ be a new element not beL:.mging 

to "J (H) I 

T 

We write 

For every (CJ,S) EB x V(H) let G(cr,S) be a strict 

digraph such that 

(i) the vertices of G(cr,S) are in one-to-one corres

pondence with [O, cr-1 (S)+ 2] I 

V(G(cr ,S)) { w J O :Sy,;: cr 1 (S ) + 2 } , 
y 

I wcr_ 1 . (S) +2 s , 
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(ii) there is a dart from w tow, 
Y· u 

if and only if y < o• 

Moreover, assume that for every I cr , CJ EB and 
I . 

S , S E V (H) 

V(G( cr,S)) n (VBu V(H) )= { V 0 , S } 

and 
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I I 
V(G(o, S))nV(G(o ,S ))=.VBu V(H) 

if o f a' or S f S' • Let also 

I I · 
E (G ( a ,S)) n E (G ( o , S )) = ~ 

if o f a' or S f S ' , and 

E(G(o,S))n E(H)= ~ 

for every a and S . 

We define G by 

G= G (a ,S) 
OE B 

0 s S < ex 

Obviously His an induced subsystem of G. We 

have 

V (H) = { x E V ( G) I N+ (x) ~ { x } 

N+ (x)i N+ (y)} 

Also 
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VB ={xE V(G): d- (x) O } 

Consequently V(H) and VB are constituents of Aut G. 

For a 8€ Aut G let us write 8H= 8IV(H). Let i be 

the identity element of the group B. Let 

v = 8 (v.) 
'[ l. 

For every S € V(H), 8(V(G(i,S))F V(G(T, 8(S))) . 

Consequently G(i,S) is isomorphic to G(T ,8(S)), so 

that 

T-J. (8 (S)) + 2 , 

, 

i.e. 

'[ ( s) ., 

implying that 

Thus 

Aut G jV(H) £ B. 



Further, for every , , cr E B and S EV (H) there is a 

(unique) isomorphism between the digraphs G(cr ,I>) and 

G(,cr ,,($)). It can be then verified that for every 

, EB there exists an automorphism e, of G such that 

e, (S) ' (S) 

for every SE V(H) and 

for every v0 E VB. Clearly 

e, I v C Hl , • 

This proves the equality 

Aut GI V(H) B 

To prove that V(H) is a faithful constituent 

of Aut G, we have to show that 

holds only if 8 e'. 
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Since for T , ae B and Si V (I:) the digraph isomorphism 

between G(a,S) and G(Ta,T(S)) is unique, it suffices 

to show that for every El e Aut G, if 

then 

for every 

T E. B I 

El (val = vTa 

va E VB. Let indeed 

For every Se V(H) I 

El (V(G(a ,S)) )= V(G(,r ,T ($))) 

so that 

-J. 
(S) + 2 

-J. 
($)+ 2 a " T . 

It follows that 

-J. -J. 
a " T I 

i.e. 

" T a I 

I 

proving our claim. The proof of the· proposition is 

complete. 
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Remark. In'the above construction no verte,:. 

of G has degree O . 

2.1.4. Proof of proposition 2.1.2. 
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Im g is a subgroup B0 of Aut H. According to 

proposition 2.1.3. we can construct a general graph 

G0 with no vertices of degree Osuch that 

(i) H is a subsystem of G
0 

induced by a faithful 

constituent of Aut G0 , 

(ii) Aut G0 1 V(H) =B0 • 

/ 
To continue the construction, we assume that Bis 

disjoint from V(G0 ), We define a general graph Hi by 

V(Hi) = V(G0 ) u B , 

and the requirement that G0 be a subsystem of Hi. Since 

·v(G0 )={xEV(Hi) I d(x) i= 0} 

V(G0 ) and Bare constituents of Aut H1 , and so is 

V(H). 



-For every a E B0 , let a be the unique 

automorphism of G0 whose restriction to V(H) is a 

For every ct E B , define an automorphism -r ct of H1 by 

ct s . 

for every SE B and 

for every v E V(G0 ) • Clearly 

/ 
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is a subgroup of Aut H
1

• Let G be a general graph such 

that 

(i) H
1 

is a subsystem of G induced by a faithful 

constituent of Aut G, 

His· an induced subsystem of G and V(H) is a 

constituent of Aut G. Let i denote the identity 

element of the group B. Since Bis a constituent of 

Aut G, we can define k by 

k (a) a (i) 



for every oE Aut G. Clearly for every OE Fix (G, H) , 

g k (o) is the identity auto1uorphism of H, i.e. 

k (o) E Ker g Im f 

On the other hand, since f is injective, f-
1

(y) 

is well defined for eve,.y y € Im f. Let 

h (o) f-i (k(o)) 

for every OE_ Fix (G, H) . There is no difficulty in 

verifying that G, k, h satisfy the requirements of 

proposition 2.1.2. 

Remark. If His finite. then so is G. 
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2.2. k- uniform hypergraphs. 

2.2.1. For every integer k~ 2 define a 

simple k - uniform hypergraph Ak by 

V(Ak) = [l, 2k +2] I 

E(Ak)= {[i, i+k-1] ll~ i~ k+2 } 

110 

u { c i, i+k-2 J u { 2k+2} I i= 3, k+2} . 

A2 is pictured in Figure 10. 

6 

5 4 3 2 1 

Figure 10 

A hypergraph His called a k-arrow from x toy, where 

x, y E V(H) ,if its vertices can be labelled 

vi, ••. , v 2k+ 2 in such a way that 



(i) v
1 

= x and v 2k+i = Y , 

(ii) the mapping i ~ vi (i=i 

an isomorphism from Ak to H. 

• • • t 2k+2) iS 

2. 2 .11. LEMMA. The automorphism group of any 

k-arrow is trivial. 

Proof. We show that Aut Ak is trivial for any 

k ~ 2. First we observe that Ak has exactly two 

vertices of degree one, namely 1 and 2k+l. It has 

also two vertices of degree two, namely 2 and 2k+2. 

But 1 is the only vertex of degree one that has a 

neighbour of degree two. Also 2 is the only vertex 

111 

of degree two that has a neighbour of degree one. 

Consequently every automorphism of Ak leaves fixed 

each of the vertices 1, 2, 2k+l and 2k+2 . Suppose 

Aut Ak is not trivial, and let i be the smallest 

integer, i E [l, 2k+2J , which is not fixed by every 

automorphism of Ak. Clearly 3 sis 2k. Both [l, i-1] 

and [i, 2k+l] are constituents of Aut Ak. If 

is k+l, then i and 2k+l are the only vertices of 

degree one in the sub-hypergraph. of Ak induced by 

[i , 2k+l] , and since 2k+l is fixed by every 

automorphism of Ak, so is i. Since this contradicts 

the choice of i, i > k+ 1. Then i has degree one 

in the sub-hypergraph of Ak induced by 



• 
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[l, i-1] u {i} [l, i] I 

while any other vertex j E[i, 2k+l] has degree zero 

in the sub-hypergraph induced by 

[l, i-1] u {j} 

It follows that i has to be fixed by every auto

morphism ol Ak, a contradiction proving the lemma. 

2.2.2. For every k ~ 2 and every positive 

integer n define a k-uniform simple hypergraph 

V(Ck ) = [l, n J , 
I n. 

E(Ck ) = {[i, i+k-1] I lsisn-k+l} • , n 

c2 , 5 is pictured in Figure 11: 

5 4 3 ·2 

Figure 11 
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Let H be a hypergraph, x e V(H). H is called <'. 

k-0hain of length n with endpoint x if there is an 

isomorphism f: H ----7 Ck such that f (x) = 1. , n+i 

2.2.21. LEMMA. Let H beak-chain of length at 

least 2k-2 with endpoint x. Then the stabilizer 

(Aut Hlx is trivial. 

Proof. We show that if n~ 2k-2 , then 
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(Aut ~ ,n+i) i is· trivial. Since the only vertices of degree 

one of Ck are 1 and n+i, every automorphism , n+i 

in (Aut ck, n+ili fixes also n+i. Suppose 

(Aut ~ ,n+i i is nd:trivial and let i be the smallest 

integer, i e[l, n+l] which is not fixed by every 

automorphism in (Aut Ck >i· Both [1, i-i] and , n+i 

[i, n+i] are constituents of (Aut C ) k , n+i i · 

Distinguishing the cases i ~ k - 1 and i> k - 1, 

contradictions are obtained as in the proof of 

Lenuna 2.2.11. 

2.2.3. PROPOSITION. Let k be any integer~ 2. 

Given a k-uniform hypergraph Hand an exact 

sequence of group homomorphisms 

f 
0 -~) A ---;:> B g) Aut H I 
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there exists a k-uniform hypergraph G such that 

(i) His a sub-hypergraph of G induced by a 

constituent of Aut G , 
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(ii) for some group isomorphisms h: Fix (G,H) --"A 

and k: Aut G "--7B, the diagram 

0 ---A f B 

rh T~Aut H 

0 ---';> Fix (G ,H) 4 Aut G / 

is commutative. 

Proof. Following the proof of proposition 2.l.2y 

we construct a general graph G0 such that 

(i) the hypergraph His a subsystem of G0 induced 

by a constituent of Aut G0 , 

(ii) there are is.omorphisms h 0 and k 0 making the 

diagram 
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conunutative, 

(iii) every dart is incident with exactly 2 vertices, 

and no two distinct darts are incident with 

the same 2 vertices, 

(iv) every edge in E(G0 )\ E(H) is a dart 

We now construct a k-uniform hypergraph G such _ 

that 

(i) V(G0 ) ~ V(G) I 

(ii) V (G0 ) is a faithful constituent of Aut G, 

(iii) Aut G IV(G0 ) = Aut G0 , 

(iv) G [V(H)] '._'."' G0 [V(H)] = H. 

For each dart of G0 with tail x and heady, let 

A(x,y) beak-arrow from x toy. For each ZE V(G0 ), 

and each i E [2k-2, 3k] let C(z, i) beak-chain of 

length i with endpoint z. Assume that 

V x,y V(A(x,y))nV(G0 ) {x, y } , 

V z, i V{C(z, i))nV(Go)= ·{z} I 

\-,/ I I y x,y, X , y V(A(x,y)) nV(A(x' ,y') )cV(G0 ) 

if x f x' or y f y' 



if 

V z I i, 

z 
_, 
T ' z 

' . ' z I ]. 

or 

\/x,y,z,i 

Suppose also that 

V(C(z, i))n V(C(z', i'))~V(G0 ) 

i i' , 

V(A(x, y)) n V(C (z, i)) ~ V(G0 ) 

\-/ X, y E(A(x, y))n E(G0 ) (1 , 

V z, i E (C (z, i)) n E (G0 ) (1 I 

\I ' ' E (A (x, y) ) n E (A ( x 1 
, y') )= (1 X, y, X , y 

if X f x' f ' or y y , 

V z, i, ' i' E (C (z, i) ) nE (C (z ' i'))= (1 z , , 

if z f ' ·i f ' I z or J. I 

\/x,y,Z,i E(A(x, y))nE(C(z, i))= (1 

Let 

LJ A(x, y)u LJ C(z, i) 
x,y z,i 

We have 

V(G0 )= { x E V(G) J d(x)" k+2 } 
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Hence V(G0 ) is a constituent of Aut G. That it is a 

faithful constituent, follows from lemmas 2.2.11 and 

2.2.21. Also every automorphism of G0 extends to an 

automorphism of G, so.that 

Aut GI V(G0 ) = Aut G0 

Finally, it is clear that His an L1duced sub

hypergraph of G. 

Define k: Aut G ~ B by 

k(o)= k 0 (ol V(Goll 

for every oE Aut G, and define h :Fix (G ,H) --'? A by 

h (o) = h 0 (o I V(G0 )) 

for every OE Fix (G, H). Then G, h, k satisfy all the 

requirements of the proposition. 

As a particular instance, the following result 

corresponds to proposition 2.1.3. in the case of 

k-uniform hypergraphs, k ~ 2: 
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2.2.4. PROPOSITION. Let k be any integer ~ 2. 

Given a k-uniform hypergrapn Hand a subgroup B of 

Aut H, there exists a k-uniform hypergraph G such that 

(i) His a sub-hypergraph of G induced by a faithful 

constituent of Aut G, 

(ii) Aut G JV(H)= B 

Proof, In proposition 2.2.3, let A be the 

trivial group, A =O, and let f and g be the 

canonical embeddings. 

For finite H the case k= 2 of proposition 

2.2.4 was proved by I.Z.Bouwer [B 12] and L.Babai [B lJ. 

Our results were obtained independently. 

2.2.5. Some classical theorems follow from the 

previous results. They are included in the following 

corollary , which, for the case of finite groups , was 

first proved by P. Hell and J .• Nesetril [ H 4 , H 5 J 

2.2.51. COROLLARY. Given an integer k ~ 2 and 

a group B, there exists a k-uniform hypergraph G 

whose automorphism group is isomorphic to B. 

Proof. Define first a k-uniform hypergraph H by 

V(H) B E (H) 



Clearly 

Define t~e injection f: B----""; Aut H by 

f (a) (fl) a fl 

for every a I fl E B. Let A be the trivial group, 

Applying proposition 2.2.3 to the exact sequence 

f 
0 -"'-7 A --:7 B )Aut H, 

we obtain the desired k-uniform hypergraph G. 

" 
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A= 0. 

The case k= 2, B finite, is the well-known theorem 

of R.Frucht [F 4] . It has been generalized to 

infinite groups by Frucht himself [F SJ and 

G. Sabidussi [S l] 



2.3.}-{ -uniform hypergraphs. 
a 

2.3.1. For every ordinal number a define a 

simple 'rta-uniform hypergraph Aa by 

I 

E (A ) = -' [ ll , Wa ] I O S ll < Wa } • 

A hypergraph His called an ~ 0 -arrow from x toy, 

where x, y E V(H), if there is an isomorphism 

f: H~Aa such that f(x) = 0 and f(y)= "'a 

2.3.11. LEMMA. The automorphism group of any 

}{ a- arrow is trivial. 
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Proof. We show that Aut Aa is trivial for any 

ordinal number a • We prove by transfinite induction 

on ll , 0 s ll s "'a , that [ 0 , ll J is a constituent 

of Aut Aa Indeed, let ll be such that [O ,y] is a 

constituent of Aut A for every y <ii.Then 

W(ll)= u [O, y] 
y < ll 

is a constituent of Aut Aa and so is 



But a is the only vertex of degree less than 2 in 

the sub-hypergraph of A" induced by [ a , w "J 

Therefore a is fixed by every automorphism of A" 

and 

co, aJ = w(a> u { a l 

is a constituent of Aut A" . The Lemma follows. 
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2.3.2. PROPOSITION." being any ordinal number, 

propositiorn2.2.3 and 2.2.4 hold also for~"-uniform 

hypergraphs . 

. Proof. Let indeed H be an )'{"-uniform hypergraph 

and 

Q~~~A~-f~4B~~g'--~Aut H 

an exact sequence. We find a general graph G0 and 

group homomorphisms h 0 , k 0 exactly as described in 

the proof of proposition 2.2.3. It can also be 

assumed that every vertex of G0 is incident with 

some dart Again we construct an Ket-uniform 

hypergraph G such that 

( i) V(Go) ~V(G) I 

(ii) V(G0 ) is a faithful constituent of Aut G, 

(iii) Aut G V(G0 ) = Aut Go 



(iv) G [Y(H)] = G0 [V(H)] = H. 

The construction of G will of course be different. 

For each dart of G0 with tail x and head y, let 

A(x, y) be an~a-arrow from x toy. Assume that 

V x, y V(A(x, y)) n V(G0 )= {x, y } I 

V x, y E (A (x, y)) n E(G0 )= ~ 

and 

V I I V(A(x,y) )nV(A(x' ,y') )~V(G0 ) x,y,x ,y 

\/ I ,y' E (A ( x , y) ) n E (A ( x ' , y ' )) = ~ x,y,x 

if X f x' or y r y' 

Let 

G = H u u A(x, y) 
x,y 

V(G0 ) is a constituent of Aut G because 

V(G)\V(Go)= {xEV(G) I l<d(x) <)'{a and 

( V L, L' E E (G) incident with x, 
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I 

either ,p (L) .=:,p·(L') or ,p (L ') c ,p (L)) } 



Lemma 2. 3.11 implies that it is a faithful c.-.ns

t:'.tuent. The remaining parts of the proofs of 

propositions 2.2.3 and 2.2.4 apply mutatis 

mutandis. 

Corresponding to Corollary 2.2.51 we have 

the generalization of Frucht's theorem [F 4] to 

uniform hypergraph with infinite lines: 
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2.3.21. COROLLARY. Given any ordinal number a 

and a group B, there exists an \--<a-uniform hypergraph 

G whose automorphism group is isomorphic to B. 
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2.4. Symmetry blocks in general graphs. 

2.4.1. A symmetry block in a general graph G 

is a subset us V(G) such that for every automorphism 

a of G, a (U) s U or a (U) fl. U = f1 • Actually, if U 

is a symmetry block then a(U) c U is impossible, 

because this would imply 

u C a- 1 .(U) I 

despite the fact that 
-1 

a E Aut G. Every constituent 

of Aut G is trivially a symmetry block. 

For a symmetry block U of G, let 

N(G,G [U]) = {a E Aut GI a(U) = U} 

If G is the graph pictured in Figure 12, V(G)=[l,9], 

then U= [1 ,3] is a symmetry block and K(G ,G [UJ ) !::'. z 2 . 

3 2 

1 

5 
4 7 9 

8 

Figure 12 
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N(G,G [U]) is the li;rc::;<:st subgroup of Aut G of which 

U is a constituent. Let also 

Fix (G, G [U] )= { cr€ Aut G 1\1 x € U cr(x)=}, 

a definition compatible with the on:e given in section 

2.1 for constituents . Fix (G, G [UJ ) is a .,ormal 

subgroup of N(G, G [UJ) . 

2.4.2 PROPOSITION. Let C be a group, Ba subgroup 

of C and A a normal subgroup of B. There exists a 

general graph G and an induced subsystem H of G _,si:rch 

that 

(i) V(H) is a symmetry block of G, 

(ii) for some isomorphisms g, h, k the diagram 

Fix (G ,H) -) N (G ,H) __ ..,.> Aut G 

is commutative (unlabelled arrows standing for the 

canonical mappings). 

Proof. First we define a general graph H0 • Let 

C/A ={y Al YE C } 
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be the set of left cosets of A in C, and assu_me that 

C 0 C/A =~.Let 

V:(H0 )= C u C/A, 

E(H0 )= ~ 

For each o EC define , 0 E Aut H0 by 

• 0 (yJ = oY 

for every yE C and 

for every y A EC/A. Then 

T {,5 I OE C} 

is a subgroup of Aut H0 . Let G be a general graph 

such that 

(i) H
0 

is a subsystem of G induced by a faithful 

constituent of Aut G, 

(ii) Aut GI V(H0 ) = T. 

Let 

U={$ Al$ EB} c V(H0 ) 



r 

127 

be the set of ( left) cosets of A in B. Define . 

H= G [UJ • 

i denoting the identity element of C, define 

k (er) = er (i) 

for every crE Aut G, and let h and·g be the restric

tions of k to N (G, H) and Fix (G, H) , respectively. 

The general graphs G, Hand the group isomorphisms 

g, h, k satisfy the requirements of the proposition. 

Remark. It is clear from the previous sections 

that in the above proposition "general graph" can be. 

replaced by "k-uniform hypergraph" or "Na-uniform 

hypergraph", for ahy integer k" 2 or any ordinal 

number ct • 
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CHAPTER 3 

REGULAR REPRESENTATIO~ 

OF FINITE GROUPS BY HYPERGRAPHS 

3.0. All hypergraphs considered in this chapter 

will be finite and simple. 

3.1.1. A general problem is the characterization 

of all the permutation groups that are automorphism 

groups of some k-uniform hypergraph. Fork= 2, the 

problem was raised by Frucht [F 4] . Examples given 

by Frucht [F 4] and I.N. Kagno [K l] have shown that 

the solution might be difficult: although every 

group is isomorphic to the automorphism group of some 

hypergraph, not every permutation group is the auto

morphism group of a hypergraph. The simplest counter 

example is a regular permutation group of order 3. 

Fork= 2, the case of regular.permutation 

groups has been extensively studied. If A is a 

regular abelian permutation group, then A is the 

automorphism group of some graph if and only if A is 

isomorphic to for some n f 2, 3, 4 (C.Y.Chao 

[C 4] , W.Imrich [I 1, I 2] , M.H. McAndrew [Ml], 

G. Sabidussi [S2J). The problem is more complicated 
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for non-abelian groups. Using the theorem of W. Feit 

and J .G. Thompson [F l] on tlle .solvability of groups 

of odd order, L.A. Nowitz and M.E. Watkins have shown 

that if A is a regular, non-abelian permutation 

group of order coprime to 6, then it is the auto

morphism group of some graph [N 3] Imrich extended 

this result to the case of ·IAI odd and sufficiently 

large [13, 14] Miscellaneous other classes of 

groups have also been examined by Watkins [Wl, W2, 

W3, W7] • 

3.1.2. Let A be an arbitrary group. A left 

translation in A is a permutation TE SA such 

that 

T (X) 
-J. 

X 

is the same for every XEA. Left translations form 

a subgroup LA of SA For every y E A, the mapping 

Tyl A '7A given by 

for every XE, A, is a left translation. The mapping 
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is an ison,:.>rphism :i:rom A to LA , a fact well known as 

Cayley's theorem [C 2] Every regular permutation 

group B can be viewed as the group of le.ft translations 

LA in some abstract group A, isomorphic to B. In view 

of this, we shall say that a group A has a regular 

representation by a k-uniform hypergraph, if 

LA= Aut H 

for some k-uniform hypergraph H. 



3.2. Determination of regular cyclic auto

morphism groups of 3-uniform hypergraphs. 

3.2.0. In this section we us~ integer symbols 

to denote the elements of Zn they represent. 
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3.2.1. Among the cyclic groups Zn only Z1 and 

Z2 have a regular representation by a graph and indeed 

they both have a regular representation by a k-uniform 

hypergraph for every k ~ 2: the edgeless hypergraphs 

on vertex set Z1 or Z2 are trivially k-uniform for 

every k. 

3.2.2. If a group B of order n has a regular 

representation by a k-uniform hypergraph H, k ~ n, 

then it must also have a regular representation by 

an (n-k) - uniform hypergraph H. Indeed, H can be 

defined on the vertex set V(H)- V(H)- B by 

E (H) {B\ A I A € E (H) } 

It follows without difficulty that the groups Z3, 

z4 and Z5 do not have a regular representation by 

any 3-uniform hypergraph. 



3. 2. 3. To prove that a group B has a reg , .• lar 

re:i:,:;:esentation by a uniform hypergraph H, the 

general argument consists of two steps. We first 

define the hypergraph H with vert~x set V(H)= B 

usually in such a way that the relation 

LB c Aut H 

becomes obvious. Then, since LB is transitive on B, 

in order to prove the equality 

it suffices to show that the stabilizer in Aut H 
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of the identity element e of B, (Aut Hle , is trivial. 

3.2.4. Let n ~ 9 . Define a 3-uniform hypergraph 

Hon the vertex set V(H)=.Zn by 

E(H)= {{ i, i+1., i+3} I iEZn}. 

Clearly every left translation of Zn is an automor -

phism of H. We show that the stabilizer (Aut H) 0 . of 

0 EZn is trivial. The neighbourhood of 0 
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N(O)= { -:;, -2, -1, l, 2,,3 } 

is a constituent of (Aut H) 0 and 

(Aut H)o\ N(O) C Aut (H [N(O)]) 

But the only line of H [N(O)J is 

{ -2, -1, l } , 

which must then be a constituent of (Aut H) 0 • On the 

other hand, define a graph G by 

V(G) = {-3, -2, -1, O, l, 2, 3}, 

E(G) ={{x, y } Ix f y and 3 A E E(H) 

such that { x, y} ~ A} 

It is clear that 

(Aut H) 0 \ V(G) c Aut G 

If n= 9 ,· then G is the graph displayed in Figure 13. 

For n > 9 it is depicted in Figure 14. 
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-2=7 2 

Figure 13 

0 
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Figure 14 
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In any case 

4 ' 

so t~at {-1, l} is a constituent of (Aut H) 0 • Also 

[ NG(-1) n NG(l.)J\ { -2, -1, 0, 1}={2} , 

must be a constituent of (Aut H) 0 • Suppose an auto

morphism crE (Aut H) 0 exchanges -1 and 1. Then 

cr({-1,0,2}) {l, 0, 2} 

would be a line of H, which is impossible. Therefore 

a (1)= 1 for every crE(Aut H) 0 , i.e. 

(Aut H) 0 £ (Aut H)i 

By repeated application of the above argument we 

obtain 

(Aut Hlo £ (Aut Hli c (Aut H)2 £ ... £(Aut H)n-iS 

£(Aut H) 0 

implying that (Aut H) 0 is trivial. Consequently 

Aut H = Lz 
n 
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and Zn has a regular representation by a 3-uniforrn 

hypergraph for every n ~ 9. 

3.2.5. Let n E[6, 8] . Define a 3-uniform 

hype:.:graph H by 

V(H)= Zn, 

E(H)={{i, i+:i., i+3}! iE Znlu({{i,i+1., i+2} I L,Zn}. 

Every left translation of Zn is obviously an automorphism 

of H. Consider the graph G given by 

V(G) V(H) I 

E(G)= {{x, y} Ix f y and x lies together 

with y on 3 different 

lines of H} 

We necessarily have 

Aut H c Aut G 

and hence 

(Aut H) 0 c (Aut G) 0 

The stabilizer (Aut G) 0 consists of, besides the iden

tity automorphism, the reflection <j,: Zn~ Zn 

given by 

<j, ( i) - i 



for every i E Zn. But 

ij>({ 0, 1, 3}) { E(H) t 

so that 

,P { (Aut H) o 

and (l'.ut H) 0 can· contai1. only the identity permuta

tion. This proves that each of z 6 , z 7 and· z8 

have a regular representation by a 3-uniform hyper

graph. 

We summarize the preceeding results in the 

following proposition: 
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3.2.6. PROPOSITION The cyclic group Zn has a 

regular representation by a 3-uniform hypergraph if and 

only if n r 3, 4, s. 

3.2.7. Consider the group Z7. Let H be a 

3-uniform hypergraph such that V(H)= Z7 and 

Aut H = Lz 
7 

H must have a line L- {h, j, k} such that 

{-h,-j,-k} 



is not a line, because otherwise (Aut H) 0 would con

tain the non-trivial reflection i 4 -i • It is then 

easy to see that 

{i,i+J.}CL 

for some i E z7 • In fact we can ass,:me that 

0, 1 € L 
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The third vertex of L must be 3 or 5. In both cases the 

spanning sub-hypergraph F of H given by 

E (F) = { { i+h , i+j , i+k} I i e Z7 } . 

is a projective plane that must be isomorphic to the 

Fano geometry. 
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3. 3. Groups of. c.xponent > 2 • 

3.3.J.. Let B be any group. A set D of elements 

of Bis calleq sum free if 

{ x y I x, y ED} n D= i 

This is equivalent to the condition 

-1 J 
X y ~- D , 
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for any x, y ED. Clearly D cannot contain the identity 

element e of B. A sum free set Dis called a o- set 

if the following additional conditions are fulfilled: 

-1 -1 
(i) for every x ED, x ED only if x = x , 

(ii) D has two distinct elements a and b such that 

a 2 a/ e , 

It is clear that the elements a and b of condition (ii) 

must also satisfy 

a 2 a/ b , b 2 a/ a , ab f e. 

For every x E B , let (xJ denote the subgroup of 

B generated by x. 
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3.3.2. An eleme.,t,ir~· abelian 2-group B (a group 

of exponent 2, i.e. such that x 2 = e for every x EB) 

cannot have a o -set. 

3.3.3. PROPOSITION. Let~ finite group B of 

exponent > 2 have order at least 18. Then B has two 

distinct elements a and b such that 

4 a2 l e, =f ,b 
' =f e , a , ab =f e 

Proof. Assume that the proposition is false for 

some group B of exponent > 2, I BI ;,: 18. Let a be an 

element of B having largest possible order. Then 

x2 =f a 

for every x ~ (a), because otherwise we would have 

(x) ::, (a) , 

contradicting the choice of a. Indeed we must have 

e 

for every x ~ (a), because otherwise letting 

b = X 



the pair a, b would satisfy the requirements of the 

proposition. This shows also that 

(x a) 2 e 

for every x cl (a) i.e. 

Further, if we had 

-]. 
xax= a 

-J. 
x a = a x 

I ca> I ;;, 1 , 

then setting 

b = a 3 

, 

the pair a,b would satisfy the requirements of the 

proposition. Therefore 

I cal I ,, 6 

and, in view of I BJ ;;, 18, we can choose x ,y E B\ Ca) 

such that the product 

Then 

X a X 

X y 'f (a) 

-]. 
a X X 

-]. 
a 
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and 

so that 

But also, since 

and hence· 

-1 -1 
y a y a ).1 a 

. 
X a X =y a y 

X y a= a X y 

X y { (a) I 

X y a 
-1 

a X y 

-1 axy=a xy , 

a 
-1 

a I 

contradicting the choice of a. 
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3.3.4. PROPOSITION. Let d be an integer~ 2 

and Ba finite group. If 

I 

then B has a generating o-set of size at least d. 

Proof. According to proposition 3.3.3, B has 

a o-set {a, b} containing two elements. 

Let D be a maximum size o-set of B, 

JDI = n I 



and assume that the sum 

n 

iE largest possible. In order to prove that. D 

generates B, we shall show that the set 

n 

D= U xy, I x,y € D } 

i-i 

is the entire group B. For otherwise let z be 

any element of B\ D. If 

' 
then 

D u { z } 

is a o-set, a contradiction with the maximality 

of D. On. the other hand, if 

then 

Z
2 = X € D i . 

I 
D = (D \ {xi} ) u { z } 
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is a o-set of maximum size n = ID I .But (z)::, (Xi) , 



so that 

(x) > E 

X ED 

(x) 

contrad~cting the maximality of the latter sum. 

There remainsto prove that D contains at least 

d elements. This again will be a consequence of 

the equality 

D B , 

Suppose that 

\DI= n < d 

We shall obtain a contradiction. If we had 

for every Xi ED, then 

2 2 3 2 
< d (3 d + 3 d) + 3 d = 3 d + 6 d , 

a contradiction with the initial assumption on 

the order of B. Therefore 
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for some xi€ D. Keeping this subscript i fixed, 

oLserve that for each xj ED, the equation 

has at most two solutions z e (xi) Consequently 

there are at most 2n elements in (xi) the square 

of which belongs to D. On the other hand, we have 

the inequality 

I {x-1. Y, x Y-1., x y I x, y e D } I ,; 3 n 2 , 

so that it is possible to find an element 

-1. -1. } ze(xi)\{x y,xy ,xylx,yeD 

such that 

z D I D I 

Then 

D u { z } 

is a o-set strictly larger than D, which con

tradicts the choice of D. 



3.3.5. A hypergraph His called bipartite if 

V(H) can be partitioned into two independent sets. 

A v,rtex x of a connected graph G is a 

cut vertex if 

G [ V(G) \ { x}] 

is not connected. 

3.3.6. Let k and n be integers, k ~ 2 , 

n ~ 2k+3. Let G be the k-uniform hypergraph k,n 

defined by 

V(Gk )= [ 1,n J ,n 

E(Gk )={[ i, i+k-1] I 1,; i,; n - k 1} ,n 

u {[i, i+k-2 Ju {n - 1} J i= 2, k+l} 
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u { s u {n} Is c [1, n - lJ ,Is I= k-1} 

The graph G2 is pictured in Figure 15 . 
, 1.0 

A hypergraph G is called a (k, n) - arc if it 

is isomorphic to Gk ,n 
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that 
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Io 

7 6 5 4 3 2 I 

I 

Figure 15 

3.3.61. LEMMA. For every x E V(Gk,n) , x f n, 

we have 

d (x) < d (n) · 

Proof. It is clear from the definition of Gk ,n 

d (n) = 
n-1 

( k-J. ) 

Also every x E [l, n-1] lies together with n in some line 

exactly 
n-2 
k- 2 ) times, and lies in at most k+l 

lines not containing n , so that 



d (x) 
n-2 

,; k+l + ( k-2 ) 

Using the inequalities 

k + 1 < 

we get 

( 2k+ 1 
k-1 

( n-2 ) 
,; k-1 
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d(x) <_ k+l +( n-2 )< ( n-2 )+( n-2 )=( n-1 )- d(•) 
k-2 k-1 k-2 k-1 - ... 

3.3.62. The vertex of largest degree of any 

(k,n) - arc G is called the distinguished vertex of G. 

3.3.63. LEMMA. The automorphism group of Gk ,n 

is trivial. 

Proof. Obviously 

V ( Gk ,nl \ { n } = [ 1 , n - 1 J 

is a constituent of Aut Gk • By an argument similar ,n 

to the proof of Lemma 2.2.11 it can.be shown that 

Aut G [[ 1, n - 1 JJ k,n 

is trivial, and consequently so is Aut Gk ,n 



3.3.64. LEMMA. Gk is not bipartite if ,n 

Proof. Suppose that 

where Vi and v
2 

are independent sets. Assuming that 

n E Vi , we must have 

IVi n [l, n-2JI ~ k - 2 

But also for every 

i E Vin [l,(n - 2) - kJ 

we must have 

Vi n [ i+i , i+k J f '/ , 

because otherwise [i+i, i+k] would be a line of 

Gk,n contained in v 2 . For similar reasons, 

vi n [l, kJ 

It follows that 

149 
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n-2 = i[l, n-2] Is (k-l)+!Vin [l, n-2 J I·~,;; 

,;; (k - 1) + (k - 2)k 2 k - k - 1 , 

a contradiction. 

3.3.65. LEMMA. If n ~ 2 k + 6 , then 

2 d (x) < d (n) 

for every X E V (Gk ) I ,n X 7 n • 

Proof. We have already seen in the proof of 

Lemma 3.3.61 that 

d (x) ,;; k+l + ( ~=~) 
Consequently 

2 d (x) 
n-2 n-2 

,;; 2k+2 + 2 ( k-:- 2 ) ,;; n-4 + 2 ( k- 2 ) . 

But the assumption n ~ 2k + 6 implies also that 

n - 3 + ( n-2 
k-2 

n-2 
,;; ( k-1 
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and 

2 d (x) < 
n-2 n-2 n-1 
k-1 )+( k-2 )= ( k-1 = d (n) • 

3. 3. 7. PROPOSITION .. Let k ;:ie. any integer ;, 3. 

Let a finite group B have a generating a-set D 

containing at least k 2 + 4 elements. Then B has a 

regular representation by a k-uniform hypergraph H. 

Proof.I. Let n be the cardinality of D. Let G 

be a (k - 1, n) - arc with vertex set 

V(G) D I 

and assume that the distinguished vertex of G is an 

element a of D having order larger than 2. 

Let H be defined by 

V(H)= B , 

E (H) = { { t , t x1 , • • • , t xk-i } I 

{x]_, .•• , xk-i} EE(G), t EB}. 

Obviously every left translation of Bis an auto

morphism of H. We have to prove that the stabilizer 



(Aut Hle is trivial. 

Clearly ~(el is a constituent of (Aut Hle 

Define a (k - ll - uniform hypergraph G1 by 

V(G1 l = ~-(el , 

Then 

(Aut Hl e 

II. Let 

E0 = E (Gl , 

x 2 = e } , 
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X.2 "" } T e • 

It follows from the axioms of a o-set that E0 , E1 

and E2 are pairwise disjoint. Moreover, for every 

Ao E E0 and A2 E E2 
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We claim that 

The inclusion 

is readily verified. On the other hand, let 

By definition 

{ t , tx , . • . , txk } 
l. -J. 

for some t e B and 

If e; t , then A e E0 • Otherwise e is one of 

the txi , i = i, ... ,k-i , and there is no 10 ss of 

generality. in assuming that e =· tx
1 

• In this case 



III. Let us denote 

D 
-J. .-J. 

{ X X € D } I 

-i I F { X y X , y € D. } 

From the axioms of a o-set it is clear that 

F n D = µ' I 

It follows from part II. that 

and also that 

Gi [ D ] = G 

Let K be the connected component of GJ. that 

contains the distinguished vertex a of G. Since, 

according to Lemma 3.3.64, G = Gi [DJ is not 

bipartite, it follows that 
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Gl. [ K ] 

is not bipartite. For every other connected component 

K' f K of Gi , i.f there is any , we have 

I 
K n D = i 

But 
-]. I 

D n K 

being disjoint from D, is independent in Gi, and 

so is F n K' . Hence 

is bipartite and K is a constituent of Aut Gi and 

also of (Aut H)e We have 

Aut Gi I K c Aut Gi [ K J 

and consequently 

(Aut Hle I K c Aut Gi[ K J 
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It will follow from the subsequent parts IV-VI, 

that the vertex a of K is f~xed by every automorphism 

of G1 [KJ For every x EK, we shall write 

d(x) = dG
1 

[KJ (x) , 

N(x) = l\JGi [KJ (x) 

IV. It follows from part II that every 

x ED\ D-1 is incident in G1 only with lines of 

G. In view of Lemma 3.3.61 , 

d (x) < d (a) 

for every XE D\ D 

-i 
If X E D n D 

I X 7 a • 

, then 

is a bijection from the set of lines of G incident 

with x to the set 

{ A E E (Gil \ E (G) I X E A } . 

Consequently, in view of Lemma 3.3.65, we have 



for every 

d(x) - · ·2 d.; (x) < d(a) 

-1 
x € D n D 

For every x E K n (D-
1 

\ D) 

N(x) c F , 

so that N(Y:) is independent in G1 , while 

N(a) = D \ {a } 

is not independent in G1 • 
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If x E K n F , then we have to examine separately 

the cases k =3 and k~ 4. 

V. Let k= 3. Since G1 [K] is a simple loopless 

graph, we have 

d(x) = IN(x) I 

for every x EK. Also, since x E F, 

N (x) C 

If N(x) s. -1 
D \ D, then N(x}. is independent in G

1 

while N(a) is not. 



If 

N(x) · c D t 

then every element of N(x) has order 2, so that 

IN(x) I s IDI - 2 < n - 1 t 

d(x) < d(a) 

If 

N(x) .i D and N(x) f D- 1
\ D 

then, since no vertex in Dis adjacent in G1 to a 

-J. vertex in D \ D , xis a cut vertex of 

G
1 

[ N (x) u { x } ] • 

On the contrary, a is not a cut vertex of 

G 
1 

[ N (a) u { a } ]= G 
1 

[ D ] = G 

VI. Let kc: 4 • 

If 
I N ( x) n ( D u D - 1

) I ;,: 2 t 

then lets be any subset of N(x) such that 
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IS k-2, 

Clearly 

On the contrary , for every subset S of N (a) con ta in ing 

k - 2 elements , 

S u { a} " E ( G1 ) 

If 

I N(x) n (D u D-
1

) I 1 I 

then ever.y line of GJ. incident with X is incident 

with the unique element y of N (x) n (Du D-i) • But 

is easy to find two lines of GI and hence of G1 , 

the intersection of which contains only a and no 

other vertex. 

VII. The different properties of a and of the 

other vertices x f a of G
1

[ K J, discussed in 

the preceeding parts IV-VI, show that every auto

morphism of G1 [K] must fix a. Consequently 
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it 



D N (~) u {a}= N'Gi (a). u {a} 

is a constituent of Aut Gi [K] , hence of Aut Gi, 

and finally of (Aut H)e . Therefore 

(Aut H)eJ D c Aut Gi [DJ Aut G. 

But, according to Lemma 3.3.63, Aut G is trivial. 

Consequently 

(Aut H) e I D 

is trivial. 

VIII. Since D generates B , every x E B can 

be written as a product of elements of D. Let t(x) 
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be the m.inimum number of factors in such an expression 

of x. We have, e.g. 

t (x) 0 

if and only if x = e , and 

t (x) 1 · 

if and only if x E D . 



We prove by induction on i(x) that eve~-y 

o E (Aut Hle fixes x. This is true by definition 

if t(e) = 0 

triviality of 

For t(x) = 1 this is exactly the 

(Aut Hle D I 

proved in VII. 

If the claim is false, let x EB such that 

0 (X) -f X 

for some 

0 E (Aut H)e I 

and assume that t (x) g is smallest possible. 

Then 

with 
E D 

for 1 ~ i ~ g. Now 

-J. 
t (x y g ) t(x) - 1 
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and hence , by the induc~ion hypothesis , 

a (x -i ) 
Yg 

-J. 
X Yg 

Consider the automorphism T of H given by 

T ( Z) z 

for every z EB. We have 

-J. 
T a T € (Aut H) e ' 

and consequently 

T <Ygl ' 

0 (X) X 
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3.4. Groups of exponent 2. 

3.4.l. We recall that if every non-identity 

element of a group B has order 2, then Bis neces-

sarily isomorphic to some , Al though the 

term elementary abelian 2-group is often used and 

might be more inforn,ative to designate such groups, 

in the sequel we shall consistently call them groups 

of exponent 2. 

The notation will be kept multip,licative. 

3.4.2. LEMMA. For every integer n ;;, 6 there 

exists a graph Gn having n vertices, each of 

them of degree at least 2, and such that Aut Gn is 

trivial. 

Proof. Let 

V(Gn) = [l, n] , 

E(Gn)={{ i, i+1.}j iE [ 1, n - l] } u 

u{{l,n},{1,h-1} ,{l,n-2}} 

The graph G6 is pictured in Figure 16. 
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5 6 

1 

3 2 

Figure 16 

Remark. Every graph having less than 6 and at 

least 2 vertices has non-trivial automorphism group. 

3.4.3. PROPOSITIO~. Every finite group B of 

exponent 2 and having order at least 2
6 

has a 

regular representation by a 3-uniform hypergraph H. 

Proof. Let D be a minimal set of generators 

for B. (Dis a basis of B if this is viewed as a 

vector space over the two-element field.) Certainly 



According to Lemma 3.4.2, there is a graph G such 

that 

(i) V(G) = D , 

(ii) Aut G is trivial , 

(iii) every vertex of G has degree at least 2. 

Let H be defined by 

V(H) = B , 

E (H)= { {t, tx, ty} I {x,y} EE (G) ,t E B } 

Every left translation of Bis an automorphism 

of H. We shall prove that (Aut Ille is trivial 

Clearly Ni,(e) is a constituent of (Aut Hle. 

Define a graph G1 by 

V(G1 ) = ~ (e) 

E(G
1
)= {{x, y} I { e, x, y} E E(H) } 

Defining again 

F= {x y I x, y ED} ' 
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we have 

Also 

V ( Gl.) C D u ;_· ' 

NG (x y)= { x, y} 
l. 

DnF=9' 

for every x y E F n V(G
1

) , and 

Clearly 

. G
1 

[DJ = G • 

dG (x) = 2 dG (x) ~ 4 
l. 

for every x E D , while 

for every 

dG (x) = 2 
l. 

x E F n V ( G ) consequently D is a constituent 
l. 

of Aut G
1 

and hence of (Aut Hle , so that 

(Aut Hle ID c Aut G1 [DJ= Aut G. 
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But Aut G is trivial, so that every crE (Aut Hle fixes 

every element of D. To prove th.at every crE (Aut Hle 

fixes every x EB, i.e. that (Aut Hle is trivial, we 



apply mutatis mutandis the argument of part VIII 

in the proof of proposition 3.3.7. 

3. 1.4. PROPOSITION. Let k be any integer ;;c 4 
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and Ba finite group of exponent 2. If IBJ ;;c 4k+2, 

then B has a regular representation by a, k-uniform 

hypergraph. 

Proof. I. Let 

and let 

{ x1. , ... , xn } 

be a minimal set of generators for B. Let· 

D = { rr x. I I c [l, n] 
. I 1. 1. E 

Dis a sum free set and 

, I I J odd } • 

Let G be a (k - 1, 2n-1.) - arc (see 3.3.6) 

with 

V(G) D 

As before, let H be defined by 
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V(H) R 

t E B } 

Let G
1 

be the (k-1) - uniform hypergraph defined 

by 

To prove that (Aut Hle is trivial, it will 

suffice to show, as in the proof of propositions 

3.3.7 and 3.4.3, that every (Aut Hle fixes every 

XE D 

II. Let 

Since Dis a sum free set, 

E (G) n E 1 = /J 

An argument similar to that of part II in the proof 

of proposition 3.3.7 can show 
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that 

E (G1 ) = E (G) u E1 

Also de:'.'ining again 

F {x y I x, y E D } 

we see that 

D n F = P' 

and 

G1 [DJ = G 

Let a ED be the distinguished vertex of the 

n-1 . 
(k-1, 2 ) - arc G. 

III. For every x ED, the correspondence 

is a bijection from 

{ A E E (G) I X E A } 

to 

{A E EJ. I XE A} 

It follows from Lemma 3.3.61 that for every x ED, 

X 7' a I 



IV. Setting 

N1 = D\ { a } , 

N2 = {ax X E D } , 

we have 

NG (a) = 
l. 

N1 u N2 , 

Ni n N2 = 9' 

Moreover, for every subset S of N1 or of N2 

containing k - 2 elements, 

On the contrary, assume that for a vertex 
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(x) is the union of two disjoint sets 

such that for every subset S of M1 or of M2 

containing k - 2 elements 



Since we can see without cifficult:y that 

D c NG
1 

(x) , 

it is clear that one of the sets M1 or M2 , say 

M1 , has to contain at least k - 2 elements of D. 

Let 

s s. 

We should have 

M n D , 
l. . 

k - 2 

which, in view of k - 2 ~ 2 , is impossible. 

V. It follows from III and IV that every 

cr E Aut G1 fixes the distinguished vertex a. 

Therefore NG
1 

(a) is a constituent of Aut G1 

But it is easy to see that 

as defined in IV, is the only partition TI of 

Nc;
1

(a) into two blocks such thqt for each block C 
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of TI and every subset S of C containing k - 2 elerrents 



S u ia} E E (G
1

) • 

Also N2 is independent in G
1

, while N1 is not. 

Consequently 

D N
1 

u { a} 

172 

is a constituent of Aut G
1 

and hence of (Aut H)e . 

B11t 

Aut G
1 

[DJ Aut G 

is trivial, implying that every cr.:(Aut H)e fixes 

every x ED. 

The proof is finished. 

The following proposition summarizes the results 

of sections 3 and 4 : 

3.4.5 PROPOSITION .. There exists a polynomial p(x) 

with the property that for every integer k ~ 3 , 

every group of order at least p(k) has a regular rep

resentation by a k-uniform hypergraph. 



Proof. Let 

a polynomial of degree 6. The result follows from 

propositions 3.3.4. 3.3.7, 3.4.3, 3.4.4 and the 

inequalities 

p(3) > 2 6 

and 

p (k) > 4k + 2 

for every k ~ 4. 
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Remark. Recently F. Hoffman has shown [H 7] 

that the theorem of Feit and Thompson on the solva

bility of groups of odd order, together with a result 

contained in [F 3] , implies that every finite 

group of odd order n ~ s7 has a regular represen

tation by a 3-uniform hypergraph. 



CHAPTER 4 

SYMMETRIES OF DIGRAPHS 

4.1.1. Let P be a class of general graphs 

having the same vertex set V and such that every 

spanning subsystem of a member of Palso belongs 

to P. Assume also that if G and G
1 

are two general 

graphs with 

V(G) V(G I) V , 

having the same underlying simple general graph 

s(G) s(G
1

) 

and if G belongs to P, then G1 also belongs to P. 

We say that Pis a distinguished class if either 

(i) Vis finite and the union of every finite 

compatible family of members of P belongs to P , 

or 

(ii) Vis infinite and the union of every compatible 

family of members of P belongs to P. 
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Given any set v, the following classes uf g8neral 

graphs with vertex set V are examples of distinguished 

classes~ 

general graphs, 

digraphs, 

k-uniform hypergraphs (k being any fixed 

cardinal number) I 

hypergraphs in which every line is incident 

with an infinite number of vertices, 

hypergraphs, 

graphs . 

Given any non-empty set V, the following classes 

of general graphs with vertex -set V are not distinguished; 

strict digraphs , 

acyclic digraphs , 

connected hypergraphs 

4.1.2. Galois connections. 

Let A and B be two sets and let R s A x B ·. For 

every X c A , let 
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x8 = {b € B I \/ a € X (a, b) € R } • 

For every Y c B , let 

y'<? = {a€ A I \;/ b € Y (a, b) € R } • 

Let 

C(A) X € P (A) } 

The mappings X --;, XA and Y ___,,yV are often 

said to form a Galois connection between the 

lattices P(A) and P(B) . According to Theorem 19, 

chapter V of [B 9] , C(A) is closed under inter

section. 

Let now V .be any set and B any set of general 

graphs with vertex set V. Let A= Sv , the set 

of all permutations of V. Let 

R { (CJ, G) € Ax B I CJ € Aut G } • 

Every element of C(A) is a subgroup of Sv of the 

form 

Aut Gi I 

where (GiliEI is a family of elements of B , 



and conversely, every subgroup of SV of this form 

belongs to C(A) • 

· We shall need the following Lemma. 

4.1.31. LEMMA. Let ii< ••. < ik and 

J. < < J. be two increasing sequences of i • • • h 

positive integers. If 

k 

I 

then k h and 

Proof. First, we must have ii --, j i , because 

if, say 

< j 
i 

then 3 does not divide 

k 3it 
l: 

t=i 3ii 

I 

k 
~it - ii l: 

t =i 
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while h 

3 I E 
t l. 

By induction on tit.is then easily proved that 

, 

yielding the desired result . 

. · 4 .1. 32. PROPOSITION. Let P be a distinguished 

class of general graphs with given vertex set V, 

Consider the set B of simple general graphs with 

vertex set V that are members of P. B has at most 

2 
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elements and for every subgroup Hof SV the following 

two conditions are equivalent: 

(i) H = Aut G for some member G of P , 

(ii) H n Aut Gi for some family (Gil iEI of elements 
iEI 

of B. 

Proof. The bound 



follows from the ob~e~vation that the right hand 

side of the inequality is the cardinal number 

of all simple general graphs with vertex set V. 

Of coun,e 

if Vis infinite. 

(i) ~ (ii). Let 

H = Aut G 

179. 

for some member G of the class P. For every cardinal 

number k let Gk be the simple general graph defined 

by 

k } . 

Since Pis a distinguished class, 

for every cardinal number k. It is also clear that 

there is some cardinal number n with the property 

that for every k ~ n 



We have 

H = n Aut Gi 
i~n 

(ii) '-> (i) Let 

for some family (G.). I of elements of B. We have 
J. J.e 

to distinguish two cases. 

Case 1. The family (G.). I is finite. We 
J. l.€ 

can assume that I is a finite set and 

I = [ l, n] 

for some positive integer n. For every i E [l, n] 

let Ki be a general graph such that 

I 

for every A E E (Ki) 

180 



Moreover, assume th;i_t if i, j E [l, n] , i f j. , 

then 

The family 

is compatible. The union 

G = 
n 
u 

i=l. 

is a member of the distinguished class P. Using 

Lemma 4.1.31., there is no difficulty in verifying 

that 

Aut G = H. 
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Case 2. The family (G1·). I is infinite. Then I 
. l.E 

must be infinite. Let 

P(I) ~ a 

and let 

f: P(I) ~ W(wal 

be a bijection. 



For every 

A E (P (V) u v2) \ { /6 } 

let 

Let GA be the general graph such that 

(ii) E (s (GA)) 

( iii) J ,p ~1 
(A) 

A 

{ A } , 

I =Nf(g(A)) 

M::lreover , assurre that if 

A, C E (P(V) u v2) \ {/6} 

and A f C , then 
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The family (GA) AE (P(V)u v2 ) \ {/6}. is compatible and 

the ··union 

G = u 
A 

is a member of the distinguished class P. Using 

the bijectivity off, it can be shown that 

Aut G H. 
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4.1.33. COROLLARY. Let P be a distinguished class 

of general graphs with vertex set V. The set of sub

groups of Sv that are automorphism groups of some 

member of P is cl,.osed under intersection. 
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4~2.1. Given a sei: V, the class of digraphs with 

vertex set Vis a distinguished class. The set of 

permutation groups on V that are automorphism 

groups of some digraph is closed under intersection. 

This is not true for strict digraphs. It can 

indeed be seen that the group of left translations 

of the Klein group ~2 x z 2 is not the auto-

morphism ~roup of any strict digraph, while it is 

the automorphism group of a digraph isomorphic to 

the one represented in Zigure 17 and hence it is the 

intersection of automorphism groups of simple digraphs. 

Figure 17 
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4. 2. 2. Let V be any set , B a permutation group 

on V and cr E SV • We say :.hat cr implies B , 

.a=$ B 

if every orbit of the permutation cr is contained in 

some orbit of the gr~up B. In the lattice of parti

tionsof V, this means that the partition into orbits 

of cr is less than or equal to the partition into 

orbits of B. If partiti0ns are viewed as equivalence 

relations, then clearly the above defined implication 

is to be taken in the ordinary sense of implication 

between relations. 

Equivalently, cr ·._:.) B means that 

cr (C) C 

for every orbit, and hence for every constituent, c 

of B. 

Every element of B implies B , but the converse 

·is generally false. Indeed, every transitive per

mutation group on Vis implied.by any permutation 

of v. 
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4.2.3. For every permutation group Bon V, 

the following statement (S1 is trivially true for 

every a E B • 

(S) For every x EV there is some e EB 

such that e a ~ Bx • 

Indeed, we can take 

e 
-J. 

a 

for every x E V , where e denotes the identity 

element of B. 

We shall call B closed if the statement (S) 

does not hold for any 

a E sv \ B. 

Obviously the full symmetric group SV is closed. 

It is easy to see that the trivial subgroup { e } 

of SV is closed. We also have the following. 

4 ·; 2. 4. PROPOSITION. The intersection of any 

family of closed permutation groups on Vis closed. 
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Proof. Let (B.) . ·I be a family of closed sub
l. l. E 

groups of SV. Let 

B - n 
i EI 

Let cre Sv. Assume that for every x e V there 

is some 

such that 

8 cr --::'\ 
X =t 

For every i e I, every ax belongs to Bi. Also 

every orbit of Bx is contained in some orbit of 

(Bi)x. Consequently 

and by assumption 

for every i eI , i.e. 

cr <: B • 
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4.2.5. PROPOSITION. Let V be any set and Ba 

permutation group on v. The following two conditions 

are equivalent: 

(i) Bis the automorphism group of some digraph, 

(ii) Bis a closed permutation group. 

Proof. (i) ~ (ii) If B is the automorphism 

group of some digraph, then according to proposition 

4.1.32, there exists a Zamily (D.). I of simple 
J. J.€ 

digraphs such that 

B = n Aut Di 
iEI 

Therefore, in view of proposition 4.2.4, it will 

suffice to show that the automorphism group Aut D 

of any simple digraph D with.vertex set Vis closed. 

Let cr E Sv and assume that for every x EV 

there is some ex E Aut D with 

ax a 1 (Aut D)x 

Clearly { x } is an orbit of the stabilizer (Aut D) x . 
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we must have 

X , 

ex o (W (x) )= 1:t (xl , 

ex o (V\W(x)) = V\W(x) 

for any x E V. We are now able to show that cr is an 

automorphism of D. 

Let 

· (x, y) E E(D) 

Then 

and 

ex a (yl E :r,;+ (xl , 

i.e. 

( X , e X C1 (y) ) E E ( D) • 

Applying the automorphism 
-1 

ex of D, we get 

, e cr(y))E E(D) • 
X 

· But 

a (x) , 
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so that 

( 0 (x) 1 a (y)l E E (D) 

Similarly, if 

(x, y) E v 2 
\ E (D) 

i.e. 

y E V \ Ni° (x) I 

we can prove that 

(o(x),o(y)l ,IE(D) 

It follows that 

o E Aut D , 

and Aut Dis closed. 

(ii) ~· (i) Assume that B is closed. According 

to Corollary 4.1.33 it will suffice to show that 

B = n 
iEI 

for some family (Di)iEI of simple digraphs. 

For every stabilizer Bx let O(Bxl denote the set 



of orbits of Bx. Let 

I 

, 
Let i EI. Then 

for some X € V, 

digraph Di by 

Clearly 

- u {x} " O(Bx) 
XEV 

i (x' C) 

C € 0 (Bx) • Define the 

u { e ( x) } x e ( c) 
0EB 

B S n Aut Di 
iEI 
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simple 

To prove that equality holds, it is enough to show 

that for every 

CJ € Aut Di X € V I 

there is some ex€ B with 
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Since B is closed, -i 11e result will. follow. 

Let cr be as above. For XEV, the orbit of B 

containing xis 

{ y EV I (y, y) E E(D(x, {x} )) } 

Since 

cr E Aut D (x, {x} ) 

for every x EV, we must have . 

For every x EV there is some ex EB with 

ex _(_cr (x)) - x • · 

If now C is an orbit of the stabilizer B , 
X. 

then 

C { yEV I (x, y) E E (D (x ,C) ) } 

Consequently C is a constituent of the stabilizer 

(Aut D(x, C) lx 
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and since ex a belongs to this stabilizer,.· 

ex a (Cl c • 

It follows that ex a implies Bx , as claimed. The 

proof is finished. 

Remark. The u.nderlying princ.:.ple of the above 

proof is a generalization of the Cayley color 

graph construction [C 3, O 3] • Analogous methods 

were used also by B. Jo.nsson in the description of 

automorphism groups of universal algebras [J 2] 
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4. 3 .1. PROPOSI'.:. ION. A permutation group B. having 

at least one trivial stabilizer B is the auto-y . 

morphism group of some digraph. 

Proof. According to pro~osition 4.2.5. we have 

to show that Bis closed. Let cr E SV and assume that 

for every x EV there is some ex EB with 

Let x = y. Then e cr implies the trivial permutax 

tion group on V, hence excr must be the identity 

permutation and 

-J. 

cr e E B • 
X 

4.3.11. COROLLARY. Every regular permutation 

group is the automorphism group of some digraph. 

4.3.12. According to proposition 4.1.32 and 

corollary 4.3.11, every regular permutation group 

Bis of the form 

B = n Aut Di , 
i € I 
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where the Di are strict digraphs. Clearly it can be 

required that 

if i f j If we then think of the different Di 

as represented in the. same diagram, the darts of 

each Di being distinguished from the other darts 

by the assignment of some "color i", then we have 

essentially a redundant Cayley color graph [C 3,0 3]. 

4.3.13. COROLLARY. If at least one stabilizer 

By of a permutation group Bis trivial, then every 

subgroup of Bis the automorphism group of some 

digraph. 

Proof. For any subgroup A of B, Ay is trivial 

and proposition 4.3.1 applies to A as it does to B 

itself. 

4.3.2 .. Galois groups. 

Let an algebraic extension. E of a field F have 

a primitive element y [ L l] . Let G(E IF) be the 

group of automorphisms of E over F. Every element of 

Eis a polynomial expression in y, with coefficients 



in F. Consequently 

G(E I F)y 

is trivial and according to Corollary 4.3.13 every 

subgroup of G(E IF) is the automorphism group of 

some digraph. 

4.3.3. Linear groups. 

Let F be a field and n a non-zero cardinal 

number. Consider an n-dimensional vector space 
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V over F. Let GL (n, F) be the group of its invertible linear 

transformations (i.e. vector space automorphisms). We 

shall determine when GL (n, F) is the automorphism 

group of some digraph. 

Case 1. n = 1. Then the stabilizer 

GL(l, F)x 

of any non-zero element x of Vis trivial and 

by proposition 4.3.1 GL(l, F) is the automorphism 

group of some digraph. 

Case 2. n > 1 and IFJ 1 2. Then the 

stabilizer GL(n, F)x of any x EV has singleton 

orbits of the form 



{ A X } I 

A€ F , and also one non-singleton orbit 

V \{AX ·r ~ € F} 

Choose a field element 

a € F\ { 0 , 1 } , 

a non-zero vector v EV, and define a permutation 

cr € Sy as follows: 

cr ( A v) a AV 

for every A E F and 

cr (x) x 

. if 

X ~ {AV I A€ F} 

We claim that for every y EV there is some 

eye GL (n, F) such that· 
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ey a o/ GL(n, Fly 

Indeed, if 

y = A V 

for some A E F \ {O} , then let ey be given by 

l 
z 

a 

for every z EV. Otherwise let Sy be the identity 

transformation. 

However, it is clear that 

a 1 GL (n , F) 

Consequently GL(n, F) is not closed and according 

to proposition 4.2.5 it is not the automorphism 

group of any digraph. 

Case 3. n = 2 and IFI= 2 . Since any per

mutation of V fixing the zero vector is a linear 

transformation, it is easy to see that GL(2, F) 

is the automorphism group of some digraph. 



Case 4. n > 2 and IF I= 2. For every Xe V, 

the 3 orbits of GL{n, Flx are 

{O} I { X } , V\ { 0 , X } 
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If o is a permutation of V fixing the zero vector 

and x EV, then we can find some ex EGL {n, F) such 

that 

ex a----:) GL{n, Flx 

Indeed., ex can be any linear transformation such 

that 

ex {o {x)) x • 

On the other hand, it is possible to find a 

permutation o of V fixing the zero vector that is 

not a linear transtonnation. Let 

be three linearly independent vectors. Leto be the 

permutation of V having the unique non-trivial cycle 



Clearly 

crc(SV) 0 \ GL(n,F), 

so that GL(n, F) is not closed and according to 

proposition 4.2.5 it is not the automorphism 

grcup of any digraph. 
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4. 4. Digraphs ,,i ':-h abelian group. 

4.4.0. The notation is kept multiplicative except 

in the qroup Z of integers. 

4.4.l. If Si and s2 ·are subgroups of an abelian 

group A, then let 

Clearly s iS2 is the intersection of all subgroups 

of A that contain simultaneously s i and S2 . 
If A = z and 

Si =(mil , S2 =(m2) , 
then 

Given any subgroup S of A, we say that two 

elements x and y of A are congruent modulo S , 

X - y mod s. , 

if 

-i s X y E 

If A= z and 

s = (m) , 



then congruence modulo Sis just thP. usual concept 

of congruence modulo the integer m generating S. 

4.4.2. Let (S'k)k EK be a family of subgroups 

of an abelian group A. Clearly, for every family 

(xk)kEK of elements of A, the condition 

(i) :l X E A k E K X - mod 

implies 

(ii) V-k I h € K mod 

We say that the Chinese remainder theorem holds 

for the family (Sk)kEK if, for every family 

(xk)kEK of elements of A condition (i) is 

equivalent to (ii). 

It is well known that the Chinese remainder 

theorem holds for every finite family of subgroups 

of z (see e.g. [O 2] ) • 

If (Sk)kEK and (Sh)hEH are two families of 

subgroups of an abelian group such that 
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then the Chinese remainder theorem holds for 

4.4.3. Let A be an abelian permutation group 

o.n a set V and let Or A) denote the set of orbits 

of A. For every yeA and every orbit i E .O(A) 

define the permutation (y , i) of V by 

( y , i) (x) Y (x) 

if x e. i , and 

(y 1 i) (x) X 

if x Ji. We observe that for every ie O(A) 

y --7 (y , i) 

is homomorphism from A to SV 
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For every orbit i e O(A) and any two elements 

x, y E i , · the stabilizers Ax and Ay are conjugate in 

A, and hence they are identical. Let Ai denote the 



common stabilizer of all the elements of i. The 

will I:-·~ called the family 

of stabilizers of A. 

4.4.4. Let TI be a partition of a set V. Let 

(yi )iETI be a family of permutations of V such 

that for 0.very block i of TI we have Yi (i) =i. 

We define the permutation y of V by 

Y (x) Yi (x) 

if X € i. 

For every element y of an abelian permutation 

group A we have 

y II (y , i) 
· ieO (A) 
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4. 4. 5. PROPOSITION .• Let A be an abelian per

mutation group on a set V. For every permutation o 

of V the following three conditions are equivalent: 

e o \ A 
X -1 X ' 
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(iii) there is a family (ei)iEO(A) of elements 

of A indexed by O(A), such that 

o TI ( 0 i , i) 
{ E O (A) 

and 

mod A. A. 
J. J 

for every i, j E O(A) 

Proof. The equivalence of (ii and (ii) is 

trivial. 

(ii) 7 (iii). Assume (ii). For every iE O(A), 

implies a fortiori that 

o (x) 

for every x E i. Consequently we -have 

(J TI ( 8. , i) 
iE O(A) J. 

Also 



implies that 

for every jE O (A) . Bu:: 

Let us abbreviate 

for every i, j EO(A). Let x be any element of the 

orbit j. From 

it follows that there exists a 

E A. 
J. 

with 
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But 

f3ij (x) ("ij , j) (x) 

(" . . , j) ( x) 
l.J ''i:i (x) 

and consequently 

-i 

f>i· J' ~ •• l.J 
(x) X , 

i.e. 

mod A. 
J 

Hence 

The latter congruence clearly holds for every 

i, je o (A) , proving condition ( iii) . 

(iii) · > (ii) . Assume (iii) . We shall prove 

that 

for every ieO(A). Let i be fixed. We have to show 

that for every xeV 
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-]. 
ei er (x) a (x) 

for some SE Ai. Let j be the orbit of A that con

tains x. Since 

holds, there are some 

and 

€ 

such that 

Then 

, 

and we can take 

a = aij 

This completes the proof. 
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4.4.6. PROPOSIT!.'.)N, Let (ei) iEO(A) be a 

family of clements of an abelian pennutation group A il,..iexed 

by O(A). We have 

II ( 8 . , i) E l~ 
iEO(A) 1 

if and only if there is some 0€ A such that 

then 

Proof. If 

IT ( e . , i) € A , 
iEO (A) 

1 

V iEO(A) IT (e., i) - ei mod Ai 
iEO (A) l. 

On the other hand, if e E A is a solution of the 

congruence system 

then we must have 



( 8 I .;_) < e i , il . 

for every iEO(A) , and 

rr (e.,i) e 
i.:O (A) 2 

4.4.7. PROPOSITION. An abelian permutation 

grriup is the automorphism group of some digraph if 

and only if the Chinese remainder theorem holds 

for the family of stabilizers. 

Proof. Propositions 4.2.4, 4.4.5, 4.4.6. 
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4.5. On the Ch~H~se remainder theorem. 

4. 5 .1.. For any abelian group A, let· L (A) 

denote the lattice of subgroups of A. P. Camion 

c.s. Levy and H.B. Mann have proved [Cl] 
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, 

that the Chinese remainder theorem holds for a given 

finite family (S.) . I of subgroups of A if the, S1.. 1. 1.E 

generate a distributive sublattice of L(A). In 

particular the Chinese remainder theorem holds 

for every two subgroups of A. Here we prove the 

following: 

4. 5. 21. PROPOSITION .• Let L
0 

be a sublattice 

of the lattice L(A) of all subgroups of an abelian 

group A. The following two conditions are equivalent: 

(i) L
0 

is a distributive lattice , 

(ii) the Chinese remainder theorem holds for 

every finite family of subgroups belonging 

Proof. (i) implies (ii) according to the 

mentioned result of Camion , Levy and Mann [C l]. 

(ii) =;1" (i) We shall in fact show that if 

C 



and 

are subgroups of A such that 

m 
( fl R.) 
j=J. J 

f ('\ (S.R.)., 
. . J. J 
J., J 

then the Chinese remainder theorem fails to hold 

for the family 

, . . . , R ) 
m 

Indeed, · 

is strictly contained inn ( Si Rjl • 
i,j 

Let 

t (Si RJ.) \ ( () S.) 
i J. 

( ('\ R.) 
. J 
J 

Then, O denoting the identity element of A, the 

congruence system 
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C 



X - 0 

X - 0 

X - t 

X - t 

mod Sn 

mod R 
l. 

doP.s not have any solution x e A. 
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4.5.22. COROLLARY. The Chinese remainder theorem 

holds for every finite family of subgroups of an 

abelian group A if and only if every finitely gene

rated subgroup of A is cyclic. 

Proof. Indeed, Ore has proved [O l] that the 

lattice L(A) is distributive if and only if every 

finitely generated subgroup of A is cyclic. 

4.5.23. In view of the above corollary, it can n 

be said that the classical Chinese remainder theorem 

is due to the fact that every subgroup of Z , the 

group of integers, is cyclic. In the next subsection 

we shall consider the Chinese remainder theorem 

for infinite families of subgroups of z. 
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4.5.31. The Ch~n2sc remainder theorem trivially 

holds for a given family (Si)iEI of subgrours of an 

abelian group A if one of the Si is the trivial 

subgroup. 

4.5.32. PROPOSITION. Let (S.). I be an infinite 
l. l. E 

family of subgroups 0f the group z of integers. ~he 

Chinese remainder theorem holds for the family 

(Si)iEI only if one of the Si is trivial. 

Proof. The notation in this proof will be 

additive and the congruences will be written modulo 

integers rather than modulo subgroups. 

Suppose that none of the Si is trivial. We 

can assume that all the Si are distinct and that 

I is the set of positive integers. Let 

S. (mil 
]. 

for every i EI and assume that 

We shall define a sequence 

',.t 



of integers and a surjective function 

f : I~Z , 

such that for every ., j EI, 

n. mod gcd (m., m.) 
J J. J 

, 

but for every i EI, no element 

X E f ( [ 1, i] ) 

is a solution of the system 

X - ni mod mi 

' J 

X - ni mod mi 

This will clearly prove that the Chinese remainder 

theorem fails to hold for the family (Si) i E I • 
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We define ni and f(i) by induction on i. Let n 1 

be any integer not divisible by m1 , 
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I 

and let 

f ( 1) 0 • 

Suppose that nJ. , ... , ni and f(l) , ... , f(i) 

have already been defined. There exists an integer 

k > i such that 

1cm 

j<k 

Take the smallest possible k. Let x be any solution 

of the system 

X - nJ. mod mi 

,) 

X - ni mod mi 

For every 

j € [i+l I k ] \ {k} 

define 

nj = X I f(j) = f (i) 

Define f(k) to be an element of 



Z\f([l,i]) 

having minimal absolute value. We claim that there 

is an integer p not divisible by mk such that 

for every j E [ 1 , k-1 J. Then we define 

nk = f(k) + p. 

The inductive step will then be accomplished and 

the proof finished. 

In order to prove our clai~, we have to find 

a solution p to the system 
V 

\/ j E [ 1, k-1 J p = nj-f(k) 
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This is possible because for every jJ., j
2 

E [l,k-1] 

and hence 
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njl. - f(k) _ nj
2 

- f(k) mod gcd(gcd(mjl., mk ) , 

If p
0 

is a particular solution not divisible by mk, 

ther. let 

If 

then let 

P = Po 

~ Po , 

. Pi = p 0 + 1cm ( gcd (mj , mk)) , 
j<k 

which is another particular solution. But 

and since 

1cm (gcd (mj , mk ) ) 
j<k 

1cm 
j<k 

1cm 
j<k 

I 
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we have 

~ { 1cm (gcr: (mj , mK)) 
j<k 

and 

~ .r Pi 

Let 

P Pi 

The proof is now complete. 

Remark. Although the infinite congruence system 

i 1 , 2 , ••• 

does not have a solution x, every finite subsystem 

of it has a solution. 



4.6. Consequences for the representability of 

abelian permutation groups by digraphs. 

4.6.1. PROPOSITION. Every abelian permutation 

group with at most two orbits is the automorphism 

group of some digraph. 

Proof. As noticed in 4.5.1, the Chinese 

remainder theorem holds for any two subgroups of 

an abelian group. 

4.6.2. PROPOSITION. For every abelian group B 

the following three conditions are equivalent: 

~ 

( i) L (B) is a distributive lattice , 

(ii) every permutation group A abstractly iso

morphic to Band having only a finite number 

of orbits is the automorphism group of a 

digraph, 

(iii) every permutation group A abstractly iso

morphic to Band having exactly 3 orbits 

is the automorphism group of a digraph. 

Proof. The implications ( i) - 9 ( ii) and 

(ii) ~(iii) are clear. 
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To prove that (iii)· 1Ci), suppose that 

L(B) is not distributive. We can find three subgroups 

Si , s2 , S3 of B such that 

Moreover, it can be seen without difficulty that 

Si, s
2

, s 3 can be found s11bject to the additional 

requirement that the intersection 

be the trivial subgroup of B. For every x EB, and 
) 

i = 1, 2, 3, let 

X Si={ X y I y E Si} 

and let 

{ X Si I X E B } 

be the quotient group by Si . Let 

For every. b EB, define a permutation 'b of V by 
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(bx) Si 

for every x SiE V. Let 

A { Tb I b E B } • 

The permutation group A has 3 orbits 

and 

'--1 
is an isomorphism from B to A under which the sub-

groups Si , S2, S3 correspond to the stabilizers of 

A. Since according to the proof of proposition 

4.5.21 the Chinese remainder theorem does not hold 

for Si, s 2 , s 3 , it also fails to hold for the family 

of stabilizers of A. Hence A is not the automorphism 

group of any digraph and (iii} fails. 

4.6.3. PROPOSITION. A cyclic permutation 

group A is the automorphism group of some digraph if 

and only if A is of finite order or has an infinite 

orbit. 
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Proof. If A is of finite order, then every family 

of subgroups of A is finite. It follows from propo

sition 4.4.7 and corollary 4.5.22 that A is the auto

morphisrr. group of some digraph. 

If A is infinite and has an infinite orbit I, 

then the stabilizer of any element of I is trivial. 

According to proposition 4.4.7 and the observation 

made in 4.5.31, A is the automorphism group of some 

digraph. (This could also be inferred directly 

from corollary 4.3.13.) 

If A is infinite but has no infinite1orbit, then 

none of the stabilizers is trivial and the family 

of stabilizers is infinite. According to propositions 

4.4.7 and 4.5.32, A is not the automorphism group of 

any digraph. 

Example. Let V be the set of integers strictly 

larger than 2 and define a permutation o of Vas 

follows: · 

0 {k) k + 1 

if k is not a power of 2, 



cr (k) 

if k is a power of 2.· 

k 
-2-
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+ 1 

Let A be the subgroup of SV generated by cr • A has 

infinite order and its orbits are the sets 

[ 2n + 1 , 2n+l J . , 

n 1, 2 , ..• According to proposition 4.5.32 

A is not the automorphism group of any digraph. 
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