by

Stephane Foldes

A thesis
presented to the University of Waterloo
in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Combinatorics and Optimization

Waterloo, Ontario, 1977
(C) Stephane Foldes 1977

I hereby declare that I am the sole authoi of this thesis.

I authorise the University of Waterloo to lend this thesis to other institutions or individuals for the purpose of scholarly research.

$$
\int \pi d d e
$$

I further authorize the University of Waterloo to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

1. Tcles

The University of Waterloo requires the sigriatures of all persons using or photocopying this thesis. Please sign below, and give address and date.

Let the time and effort invested in this work be dedicated to the memory of my grandfathers, Bota Sandor and Foldes Mor.

ABSTRACT

Automorphisms of graphs, hypergraphs and digraphs are investigated.

The invariance of the chromatic polynomial in the rotor effect is disproved. New invariance results are obtained.

It is shown that given any integer $k>2$, almost every finite group acts as the regular full automorphism group of some k-uniform hypergraph.

Permutation groups that can be represented as automorphism groups of digraphs are characterized.

I would like to thank my supervisor, Professor W.T. Tutte, for his constant help throughout this work. It was he who introduced me to the rotor problem, which appears to me as a source of intuitive ideas and methods. In matters of publications and lectures I found the advice of my supervisor of great value. At a more material and human level, I am indebted to Professor Tutte for his intervention at a moment when the instability of my financial situation threatened the continuation of this research.

TABLE OF CONTENTS

page
Intro.Juction 1
Chapter 0 - Basic concepts and definitions 4
Chapter 1 - On the rotor effect 16
Chapter 2 - Automorphisms of subsystems 98
Chapter 3 - Regular representation of finite groups by hypergraphs 128
Chapter 4 - Symmetries of digraphs 174
Bibliography 225

INTRODUCTION

The main concern of this thesis is automorphisms of a class of incidence structures covered by the concrpt of general graphs and of their sub-structures. General graphs are defined so as to include graphs and hypergraphs, as well as digraphs, without restriction on the cardinality of the vertex set or the multiplicity of the edges. We try to introduce the least possible amount of new definitions and use a standard terminology, as far as such can be extracted from the abundant literature appearing on both sides of the Atlantic and as far as it is compatible with the specific purposes of this work. Chapter 0 provides some basic concepts and definitions.

Asymmetry is one of the most recurrent ideas in the investigation of symmetries. Indeed, the rotationally symmetric rotors must be reflectionally asymmetric if they are to produce a non-trivial graph transformation leaving invariant certain functions. Securing the existence of appropriate asymmetric independent
sets, we disprove the inveriance in the rotor effect of the second highest coefficient of the chromatic polynomial. The rotor effect occupies the first chapter of this thesis, containing also special results on planar rotors and extensions of some known invariance results. The second chapter deals with symmetries of a general graph which are realizable when it is embedded into another general graph. The third chapter is based on our collaboration with Professor Singhi of the Tata Institute of Fundamental Research. It is devoted to representations of regular permutation groups by uniform hypergraphs. The main result here is that given any integer k larger than 2 , all but a finite number of finite groups act as the regular full automorphism group of some k-uniform hypergraph. Again, it presents less difficulty to secure that all translations induce a symmetry than to ensure that no non-trivial symmetry has a fixed point. The analogy with the construction of non-trivial rotors inspired the particular representation of regular cyclic permutation groups by 3-uniform hypergraphs given in section 3,
contrasting the fact that these groups have been the earliest examples of groups having no graphical regular representation. Last, but not least, in the fourth chapter permutation groups that can be representea as automorphism groups of digraphs are characterized. The case of abelian permutation groups is examined extensively, and the complete equivalence of the problem of finding a digraph with a given abelian group and the problem of the validity of a generalized Chinese remainder theorem for the family of stabilizer subgroups is established. Some classes of permutation groups naturally arising in algebra are also examined.

The axiom of choice [H8 ,J1] will be assumed. As a consequence of Zermelo's theorem [Z1], all transfinite cardinal numbers will be alephs.

CHÁPTER 0
 BASIC CONCEPTS AND DEFINITIONS

0.1. The elements of a set are thought of as occurining without any particular order and without repetitions. Thus for any two oljects x and $y, d i s t i n c t$ or not; $\{x, y\}=\{y, x\}$. and if $\mathrm{x}:=\mathrm{y}$ also $\{\mathrm{x}, \mathrm{y}\}=\{\mathrm{x}\}=\{\mathrm{y}\}:$ we denote by (x, y) an ordered pair, by (x, y, z) an ordered triplet. These objects are thought of as essentially different from sets. In particular for every set V, the set $P(V)$ of all subsets of V is disjoint from the set of all ordered pairs of elements of v. This disjointness will be needed to make an unambiguous distinction between oriented darts and unoriented lines of a general graph, to be defined later.

Given a set S and a set V, the cartesian product $S \times V$ is defined by

$$
S \times V=\because\{(x, t) \mid x \in S, t \in V\}
$$

Let F be a subset of $S \times V$ such that for every $t \in V$ there is exactly one $x \in S$ wịth $(x, t) \in F$. Then F is called a family of elements of S
indexed by V. We also write $x=x_{t}$ if ($\left.x, t\right) \in F$ and $F=\left(x_{t}\right)_{t \in V} . F$ is said to be a finite family if the set $\left\{\dot{x}_{t} \mid t \in V\right\}$ is finite, even if V is an infinite indexing set.
0.2. A function, or mapping, from a set V to a set S can be defined as an ordered pair (F, S), where F is a family of elements of S indexed by V. Injectivity, surjectivity and bijectivity are defined in the usual way.

For any ordinal numbers α and β the set of ordinal numbers γ such that $\alpha \leq \gamma$ and $\gamma \leq \beta$ is denoted by $[\alpha, \beta]$. We write $[0, \beta] \backslash\{\beta\}=W(\beta)$. Thus, ψ denoting the first transfinite ordinal number, $W(\omega)=N$, the set of natural numbers. A cardinal number is an ordinal number α such that there exists no bijective mapping from $W(\alpha)$ to any $W(\beta), \beta<\alpha$. The axiom of choice being assumed, for every set S there is a unique cardinal number k such that there exists a bijective mapping from S to $W(k)$. k is then called the cardinality, or size, of S and we write $|S|=k$. The cardinality of a finite set S is the number of elements of S . The set of integers will be denoted by Z.
0.3. A permutation of a set V is a bijective function from V to itself. The set of all permutations of V is denoted by S_{v}. The product $\sigma \tau$ of two permutations σ and τ is defined by

$$
\sigma \tau(x)=\sigma(\tau(x)),
$$

for every $x \in V$. Then S_{v} is a group under this binary operation, called the symmetric group on V. (We shall always denote a group and the set of its elements by the same symbol.) Any subgroup of the symmetric group on V is a permutation group on V.
0.4. If G is a permutation group on a set V and U is a subset of V such that $a(U) \subseteq U$ for every $\sigma \in G$, then U is a constituent of G. It is then easy to see that $\sigma(\mathrm{U})=\mathrm{U}$ for every $\sigma \epsilon G$. In this case, for a permutation $\sigma \in G$ we can define the restriction $\sigma \mid U$ of $\sigma .$. to U to be the permutation of U given by

$$
\sigma \mid U(x)=\sigma(x)
$$

for every $x \in U$. We also write

$$
\mathrm{G} \mid \mathrm{U} \doteq\{\sigma|\mathrm{U}| \sigma \in \mathrm{G}\}
$$

G|U̇ is a permutation gmoup on U and the restriction mapping $r: G \rightarrow \cdots G \mid U$ defined by

$$
r(\sigma)=\sigma \mid=\|,
$$

for every $\sigma \in G$, is a surjective group homomorphism finom G to $G \mid U$. If r is injective, the U is called a faithful constituent and the groups G and $G \mid$ Uiare isomorphic, $G \approx G \mid U$ [W6].
0.5. A permutation group G on a set V is called transitive if its only constituents are V and the empty set \varnothing. For arbitrary G, a non empty constituent U such that $G \mid U$ is transitive is called an orbit of G. (In the case when G is cyclic, i.e. generated by a permutation σ of V, $G \neq(\sigma) ;$ an orbit U of G is also called an orbit of $\sigma:$) Every element $x \in V$ belongs to exactly one orbịt, called the orbit of x. For $x \in V$, the stabilizer G of x in G is the subgroup of G defined by

$$
G_{X}=\{\sigma \in G \mid \sigma(x)=x\}
$$

If G is transitive and the stabilizer of some element $x \in V$ is trivial, then G is said to be regular. In this case all the stabilizers $G_{x}, x \in V$, are trivial.
0.6. A general graph G is an ordered triplet (V, E, ψ), where $V=V(G)$ and $E=E(G)$ are sets, called the set of vertices and the set of edges, respectively, and $\psi=\psi_{G}$ is a function from E to $(P(V) \backslash\{\varnothing\}) \cup V^{2}$.. called the incidence function. If A is an edge and $\psi(A) \in P(V)$, then A is called a line, if $\psi(A) \epsilon V^{2}$; then A is called a dart. If A is a dart and $\dot{\psi}(A)=(x, y)$, then A is said to be a dart from x to y , or a dart with tail x and head y. A loop is a line A such that $|\psi(A)|=1$. A link is a line A such that $|\psi(A)|=2$. G is called strict if ψ is injective. We deviate from the general practice in defining G to be simple if

$$
\mathrm{E} \subseteq(P(\mathrm{v}) \backslash\{\phi\}) \cup \mathrm{v}^{2}
$$

and if ψ is the identity function. Thus a simple general graph is always strict.

Given an arbitrary G, we define the underlying simple general graph $s(G)=(\overline{\mathrm{V}}, \overline{\mathrm{E}}, \bar{\psi})$ by

$$
\begin{aligned}
\dot{\bar{V}} & =V(G) \\
\bar{E} & =\{\psi(A) \mid A \in E(G)\}
\end{aligned}
$$

$\bar{\psi}$ being the identity function. Generally, to define a simple general graph it will suffice to define its vertices and edges.

G is a finite general graph is both sets $V(G)$ and $\mathrm{E}(\mathrm{G})$ are finite.

A hypergraph is a general graph having no darts, a digraph is a general graph having no lines. A graph is a hypergraph with $|\psi(A)| \leq 2$ for every line A. Given a non-zero cardinal number k, a hypergraph is called k-uniform if $|\psi(A)|=k$ for every line A.
0.7. A subsystem of a general graph $G=(V, E, \psi)$
is a general graph $H=\left(V_{1}, E_{1}, \psi_{1}\right)$ such that $V_{1} \subseteq V_{1} E_{1} \subseteq E$ and $\psi 1$ is the restriction of ψ to $\mathrm{E}_{1} . \mathrm{H}$ is called an induced subsystem of G if for every edge A of G

$$
\psi(A) \in P\left(V_{1}\right) \cup V_{1}^{2} \Rightarrow A \in E_{1}
$$

We also write in this case $H=G\left[V_{1}\right]$ and H is said to be the subsystem induced by V_{I}. A subsystem H of G is a spanning subsystem if $V(H)=V(G)$.

A subsystem of a hypergraph, a graph, or a digraph is called a sub-hypergraph , a subgraph , a sub-digraph , respectively. Induced and spanning sub-hypergraphs, subgraphs and sub-digraphs are defined accordingiy.
A vertex x of G and an edge A are incident if

$$
A \notin E(G[V(G) \backslash\{x\}])
$$

The degree $d(x)$ is the cardinality of the set of edges incident with $x . d^{+}(x)$, respectively $d^{-}(x)$, denotes the cardinality of the set of darts having x as tail, respectively as head. The neighbourhood $N_{G}(x)=N(x)$ of x is the set of vertices $y \neq x$ incident with an edge that is incident with x. The elements of $N(x)$ are the neighbours of x. The neighbourhood $N_{G}(S)=N(S)$ of a subset $S \subseteq V(G)$ i.s de fined by

$$
N(S)=\left(\bigcup_{x \in S} N(x)\right) \backslash S
$$

For every $x \in V(G), N_{G}{ }^{+}(x)=N^{+}(x)$ denotes the set of those vertices y for which there is a dart from x to y. Dually,

$$
N_{G}^{-}(x)=N^{-}(x)=\left\{y \in V(G) \mid x \in N^{+}(y)\right\}
$$

For every $S \subseteq V(G)$ let

$$
\begin{aligned}
& N_{G}^{+}(S)=N^{+}(S)=\bigcup_{X \in S} N^{+}(x) \\
& N_{G}^{-}(S)=N^{-}(S)=\bigcup_{X \in S} N^{-}(x)
\end{aligned}
$$

If S is a subset of $E(G)$, then the subsystem H spanned by S has edge set $E(H)=S$ and vertex set

$$
V(H)=\{x \in V(G) \mid x \text { is incident with some } A \in S\}
$$

Whenever this does not lead to confusion, to designate a "subsystem induced by a vertex x" or a "subsystem spanned by a singleton $\{A\}, A \in E(G) "$, we shall simply speak of the "vertex x " or the "edge A " .

A subset $S \subseteq V(G)$ is independent if $E(G[S])=\varnothing$.

A family $\left(G_{i}\right){ }_{i \in I}$ of general graphs is compatible if for every pair of indices i, $j \in I$ and every $A \in E\left(G_{i}\right) \cap E\left(G_{j}\right)$,

$$
\psi_{G_{i}} \quad(A)=\psi_{G_{j}} \quad(A)
$$

The union

$$
G=\bigcup_{i \in I} G_{i}
$$

can then be defined as the general graph satisfying
(i) $V(G)=\bigcup_{i \in I} V\left(G_{i}\right)$,
(ii) $E(G)=\bigcup_{i \in I} E\left(G_{i}\right)$,
(iii) every $G_{i}, i \epsilon I$, is a suksystem of G.
0.8. A partition of a set J is a subset π of $P(J)$ such that
(i) the elements of π are pairwise disjoint,
(ii) $\bigcup_{B \in \pi} B=J$,
(iii) $\varnothing \notin \pi \quad$ •

The elements of π are called the blocks of the partition. For $x, y \in J$ we write

$$
\mathrm{X} \quad \because \quad \underline{m} \quad \bmod \quad \pi
$$

if x and y belong to the same block of π.

A component of a hypergraph H is a non-empty subset C of $V(H)$ such that for every line A of H either $\psi_{H}(A) \subseteq C$ or $\psi_{H}(A) \cap C=\varnothing$. C is called a connected component if the only component of H [C] is C. The set π of connected components is a partition of $V(H)$ and we shall write $c(H)=|\pi|$. H is connected if $\mathrm{c}(\mathrm{H}) \leq 1$.

Let G be a graph. A polygon is a finite subgraph P of G such that !
(i) $|V(P)|=|E(P)|>0$
(ii) no proper subgraph of P has property (i).

A circuit is the edge set of some polygon.

If G is a strict graph, then for every
$\mathrm{X}, \mathrm{Y} \in \mathrm{V}(\mathrm{G})$, there is at most one line incident with both x and y. If there is such a line A, then we write

$$
A=\langle x, Y\rangle=\langle y, x\rangle
$$

If we have vertices $v_{1}, \ldots, v_{k}, k \geq 3$, such that v_{1} is adjacent to v_{i+1} for every
$1 \leq i \leq k-1$ and v_{k} is adjacent to v_{1}, then

$$
P\left(v_{1}, \ldots, v_{k}\right)
$$

denotes the polygon of G with edge set

$$
\left\{<v_{i}, v_{i+1}>\mid 1 \leq i \leq k-1\right\} \cup\left\{<v_{k}, v_{1}>\right\}
$$

If a graph G has a polygon of length at least 3 , then the girth of G is the minimum length of such a polygon. Otherwise we say that the girth of G is ∞.

A path in a graph G is defined as a connected subgraph with two vertices of degree 1 , all other vertices having degree 2. A path has to be finite.
0.9. An automorphism of a general graph G is a permutation σ of $V(G)$ such that for every $S \subseteq V$

$$
|\{A \in E(G) \mid \psi(A)=S\} \quad|=|\{A \in E(G) \mid \psi(A)=\sigma(S)\}|
$$

and for every $x, y \in V$
$|\{A \in E(G) \mid \psi(A)=(x, y)\}|=|\{A \in E(G) \mid \psi(A)=(\sigma(x), \sigma(y))\}|$.

The set of all automorphisms of G is denoted by Aut G. This is a permutation group on $V(G)$, called the automorphism group of G.

CHAPTER I

ON THE FOTOR EFFECT

1. O. All hypergraphs considered in this chapter will be finite.
1.1. Let H be a nypergraph and let J be a subset of $V(H)$. Let π be a partition of J. We define a hypergraph $H(\pi)=(V, E, \psi)$
by

$$
\begin{aligned}
& V=\{\{x\} \mid x \in V(H) \backslash J\} \cup \pi \\
& E=E(H),
\end{aligned}
$$

and

$$
\psi(A)=\left\{M \in V \mid M \cap \psi_{H}(A) \dot{\neq \varnothing}\right\}
$$

for every line $A \in E$.
$\mathrm{H}(\pi)$ is thought of as obtained from H by identification of $\pi-$ congruent vertices.

Let R be a non-null hypergraph, θ an automorphism of R (thought of as a rotation), J an orbit

مf. θ, v a distinguished vertex in J. Then
$R=(\mathrm{R}, \Theta, \mathrm{J}, \mathrm{v})$ is called a rotur. J is called the principal orbit and $|J|$ the order of the rotor R. Clearly, if this order is k, then J consists of v, θ (v),..., θ^{k-1} (v). The automorphism θ^{k} is not necessarily the identity, the order of θ can be a proper multiple of the order of the rotor.

Example. If R is the strict graph depicted in Figure 1 , having for vertex set $V(R)=[0,13]$, then a rotor $R=(R, \theta, J, v)$ can be defined by

$$
\begin{aligned}
& \theta=(0,1,2)(3,4,5)(6,10,8,9,7,11)(12,13) \\
& J=\{0,1,2\} \\
& v=0
\end{aligned}
$$

The order of the rotor R is 3 , while the order of the automorphism θ of the graph R is 6.

The border is defined as the ordered pair ($\mathrm{R}[J], \theta \mid \mathrm{J}$). In the example of the rotor given above, R [J] is the edgeless graph with 3 vertices $0,1,2$ and $\theta \mid J$ is the cyclic permutation $(0,1,2)$.

To the rotor $(\mathrm{R}, \theta, \mathrm{J}, \mathrm{v})$ we associate a mapping $\phi: J \rightarrow J$, called reflection, given by

$$
\phi\left(\theta^{i}(v)\right)=\theta^{-i}(v)
$$

```
for every 0 < i < | J |. \phi is an involution.
```

Iet π be a partition of the principal orbit, called a border-partition. We also have the reflected border-partition $\phi \pi$ defined by

$$
\phi \pi=\{\phi(B) \mid B \in \pi\}
$$

We shall be interested in common properties of $R(\pi)$ and $\mathrm{R}(\phi \pi$) .

1.2.1. Let H be a hypergraph. Given a positıve integer. λ, a proper λ-coloring of H is a function $f: V(H) \longrightarrow[1, \lambda]$ such that

$$
\left|£\left(\psi_{H}(A)\right)\right|>i
$$

for every line A of H. The number of proper λ colorings of H is denoted by $P(H, \lambda)$.
1.2.2. For H as above and $A \in E$ (H), we define a hypergraph $H_{A}^{\prime}=\left(V^{\prime}, E^{\prime}, \psi^{\prime}\right)$ by

$$
\begin{aligned}
& =\quad V^{\prime}=V(H), \\
& E^{\prime}=E(H) \backslash\{A\},
\end{aligned}
$$

and

$$
\psi^{\prime}(B)=\psi_{H}(B)
$$

for every $B \in E^{\prime}$.

Also we define a hypergraph $H_{A}^{\prime \prime}=\left(V^{\prime \prime}, E^{\prime \prime}, \psi^{\prime \prime}\right)$ by

$$
\begin{aligned}
& V^{\prime \prime}=\left\{\{x\} \mid x \in V(H) \backslash \psi_{H}(A)\right\} \cup\left\{\psi_{H}(A)\right\} \\
& E^{\prime \prime}=E(H) \backslash\{A\}
\end{aligned}
$$

and

$$
\psi^{\prime \prime}(B)=\left\{M \in V^{\prime \prime} \mid M \cap \psi_{H}(B) \neq \varnothing\right\}
$$

for every $B \in E^{\prime \prime}$.
H^{\prime} A can be thought of as obtained from H by deleting the line A and $H_{A}^{\prime \prime}$ as obtained from H by contracting A to a single vertex.

As in the case of graphs, for any positive integer λ the set of proper λ-colorings of H is a subset of the set of proper λ-colorings of H^{\prime} A. Also, a proper λ-coloring f of $H^{\prime} A$ is not a proper λ-coloring of H if and only if

$$
\left|f\left(\psi_{H}(A)\right) \quad\right|=1
$$

But it is not difficult to verify that there is a bijective correspondence between proper λ-colorings f of H^{\prime} A satisfying this equality and proper λ-colorings of $H^{\prime \prime}$. Consequently the familiar recursian formula

$$
P(H, \lambda)=P\left(H_{A}^{\prime}, \lambda\right)-P\left(H_{A}^{\prime \prime}, \lambda\right)
$$

holds also for hypergraphs.

It follows that $P(H, \lambda)$ is a polynomial in λ with integer coefficients, having degree $|V|$ unless $\left|\psi_{\mathrm{H}}(\mathrm{A})\right|=1$ for some line A of H , in which case $P(H, \lambda)$ is identically zero. $P(H, \lambda)$ is called the chromatic polynomial of H. It was introduced for graphs by George D. Birkhoff [B 7] , for hypergraphs
by
C. Benzaken [B 4] as a polynomial whose coefficients count the number of unlabelled colorings, and independently by V.Chvatal [C 6] in the form presented above.
1.2.31. PROPOSITION. Let R and S be two subhypergraphs of a hypergraph H suchthat

$$
\begin{aligned}
& E(R) \cup E(S)=E(H) \\
& E(R) \cap E(S)=\varnothing \\
& V(R) \cup V(S)=V(H)
\end{aligned}
$$

Let $J=V(R) \cap V(S)$. For a spanning sub-hypergraph T of S, let $\pi_{\dot{q}}$ be the partition of J each block of which is the intersection of J with some connected component of T. Then

$$
P(H, \lambda)={\underset{T}{\sum}}^{(-1)}|E(T)|_{\lambda} c(T)-\left|\pi_{T}\right| P P\left(R\left(\pi_{T}\right), \lambda\right)
$$

the summation ranging over all spanning sub-hypergraphs T of S.

Proof: By induction on $|E(S)|$.

The expansion clearly holds if $|E(S)|=0$, because in this case the only spanning sub-hypergraph of S is S, $(-1) O=1, H$ consists of R and $c(S)-\left|\pi_{S}\right|=$
$|V(S)||J|$ isolated vertices, and $P\left(R\left(\pi_{S}\right), \lambda\right)=P(R, \lambda)$

If $|E(S)| \geq 1$, assume that the expansion is valid for lesser values of $|E(S)|$ and let $A \in E(S)$. Since the expansion is valid for $P\left(H_{A}^{\prime}, \lambda\right)$ and $P\left(H_{A}^{\prime \prime}, \lambda\right)$, it follows from the recursion formula

$$
P(H, \lambda)=P\left(H_{A}^{\prime}, \lambda\right)-P\left(H_{A^{\prime}}^{\prime \prime} \lambda\right)
$$

that it holds also for $P(H, \lambda)$.

A similar expansion in the special case of chromatic polynomials of planar maps appears in the paper. of George D. Birkhoff and D.C. Lewis [B 8]. Also H.Crapo [C 4] reports an analagous expansion for the more general coboundary polynomial of graphs. Our expansion was motivated by the conjectured invariance of the chromatic polynomial in the rotor effect, to be treated in the sequel, and was obtained independently.

A particular case of proposition 1.2 .31 gives the following
1.2.32. PROPOSITION. Let R and S be spanning subhypergraphs of a hypergraph $H, E(R) \cup E(S)=E(H)$, $E(R) n E(S)=\varnothing$. For every partition π of $V(H)$ and every non-negative integer i let $t_{\pi i}$ denote the number of spanning sub-hypergraphs T of S having i lines and such that $\pi_{T}=\pi$. Then

$$
P(H, \lambda)=\sum_{i \geq 0} \sum_{\pi}(-1)^{i} \dot{t}_{\pi i} \cdot P(R(\pi), \lambda)
$$

the double summation varying over all non-negative integers i and all partitions π of $V(H)$.

Proof. For every spanning sub-hypergraph T of $S, \quad C(T)=\left|\pi_{T}\right|$.
1.2.33. COROLLARY. Let H be a hypergraph and let $s_{k i}$ be the number of spanning sub-hypergraphs of H having k connected components and i lines. Then the coefficient of λ^{k} in $P(H, \lambda)$ is

$$
\sum_{i \geq 0}(-1)^{i} \quad s_{k i}
$$

Proof. In proposition 1.2 .32 set $S=H$ and let R be the spanning sub-hypergraph of H with $E(R)=\varnothing$. Then for every partition π of $V(H)$

$$
P(R(\pi), \lambda)=\lambda^{|\pi|},
$$

and the result follows.

In the case of planar maps the above corollary is due to George D. Birkhoff [B 7] and in the case of graphs to H.Whitney [W 5].
1.2.4. Let S be a graph. Let A_{1}, \ldots, A_{m} be an enumeration of the elements of $E(S)$. A set $C_{\subseteq} \subseteq(S)$ is called a broken circuit if there is an integer i, I $\leq i \leq m$, such that
(i) $C \cup\left\{A_{i}\right\}$ is a circuit,
(ii) for every $A_{j} \in: C, j \geq i$.

In particular all circuits are broken circuits, including loops and digons.

We have the following generalization of Whitney's interpretation of the coefficients of the chromatic polynomial [W 5] :
1.2.41. PROPOSITION. Let R and S be two subgraphs of a graph G such that

$$
E(R) \cup E(S)=E(G)
$$

$$
\begin{aligned}
& E(R) \cap E(S)=\varnothing \\
& V(R), u \quad V(S)=V(G)
\end{aligned}
$$

Let $J=V(R) \cap V(S)$. For a spanning subgraph T of S, let π_{r} be the partition of J each block of which is the intersection of J with some connected component of T. Thel.

$$
P(G, \lambda)=\sum_{T}(-1)^{|V(T)|-c(T)} \lambda^{c(T)-\left|\grave{\pi}_{T}\right|} P\left(R\left(\pi_{T}\right), \lambda\right),
$$

the summation ranging over all spanning subgraphs T of S containing no broken circuit.

Proof: As in Whitney's original theorem, we assume filst that S has no loops or multiple links. Considering the sum

$$
P(G, \lambda)=\sum_{T}(-1)^{|E(T)|} \lambda_{\lambda}^{C(T)-\left|\dot{\pi}_{T}\right|_{P\left(R\left(\pi_{T}\right), \lambda\right)}, ~}
$$

given by proposition 1.2 .31 it can be verified, as in [W 5] , that the contributions of those terms

$$
|E(T)|_{\lambda} c(T)-\left.1 \pi_{T}\right|_{P\left(R\left(\pi_{T}\right), \lambda\right)}
$$

that correspond to a spanning subgraph T of S coltaining a broken circuit cancel. Also, if T contains no broken circuit, then T contains no circuit and

$$
|E(T)|=|V(T)|-c(T)
$$

In case S has multiple links, the expansion of the proposition is still true. Indeed, if the links between two distinct vertices x and y of s are $A_{j ı}, \ldots, A_{j k}, j_{1}<\ldots<j_{k}$, then every $\left\{A_{j \ell}\right\}, 1<\ell \leq k$, is a broken circuit because $\left\{A_{j 1}, A_{j \ell}\right\}$ is a circuit and $j_{l}<j_{\ell}$. Hence in the summation of the proposition we sum only over spanning subgraphs T of S that contain among the links joining two vertices x and y at most the first one (in the fixed enumeration A_{1}, \ldots, A_{m}). The expansion is therefore reduced to the case where S has no multiple links.

$$
\text { Also, if } S \text { has a loop } A_{j}, P(G, \lambda) \text { is identically }
$$

zero and so is the sum

$$
\Sigma(-1)|V(T)|-c(T) \quad \lambda^{c(T)}-\left|\pi_{T}\right| P\left(R\left(\pi_{T}\right), \lambda\right)
$$

which is now taken over the empty set because every spanning subgraph of S contains the broken circuit \varnothing, $\left\{A_{j}\right\}$ being a circuit in itself.

By taking $S=G$ and $V(R)=V(G), E(R)=\varnothing$, as in Corollary 1.2.33., we obtain the original result of Whitney [W 5] saying that for every positive integer k the coefficient of,λ^{k} in $P(G, \lambda)$ is $(-1)|V(G)|-k$ times the number of spanning subgraphs of G having k connected components and containing no broken circuits. As noticed by £.G. Hoggar [H 9], this yields a much simplified proof of some of G.H.J. Meredith's results on the highest coefficients of the chromatic polynomial [M2] :
1.2.42. COROLLARY (Meredith [M 2]). Let G be a strict loopless graph with n vertices, m edges, finite girth g and p circuits of length g. Let

$$
P(G, \lambda)=\sum_{k=1}^{n} \quad(-1)^{n-k} \quad c_{k} \lambda^{k}
$$

Then

$$
c_{n-k}=\binom{m}{k} \quad \text { for } \quad k=0, \ldots, g-2
$$

and

$$
c_{n-g+1}=\left(m_{g-1}\right)-p
$$

1.3. Irvariance results on the chromatic polynomial.
1.3.1. Let $R=(R, \theta, J, v)$ be a rotor. We say that the chromatic polynomial is partition-invariant with respect to R if for every border-partition π

$$
P(R(\pi), \lambda)=P(R(\phi \pi), \lambda)
$$

Let ℓ be a non-negative integer. The lowest ℓ coefficients of the chromatic polynomial are partition-invariant with respect to R if for every border-partition π and every integer $k, 0 \leq k \leq \ell-$ l, the coefficient of λ^{k} is the same in $P(R(\pi), \lambda)$ and in $P(R(\phi \pi), \lambda)$.
1.3.2. Let $R=(R, \theta, J, v)$ be a rotor. Let S be a hypergraph such that

$$
\begin{aligned}
& V(S) \cap V(R)=\varnothing \\
& E(S) \cap E(R)=\varnothing
\end{aligned}
$$

Let $w: J \rightarrow V(S)$ be an injective mapping called the attachment function. Then (R, S, w) is called a motor. The hypergraph S is called the stator.

The reflected motor ($R, S, w \phi$) is the notor defined to have the same rotor and stator as ($R, \mathrm{~S}, \mathrm{w}$), but a different attachment function $w \phi$ given by

$$
w \phi(x)=w(\phi(x))
$$

for every $x \in J$.

For a motor $(R, S, w), R=(\mathrm{R}, \theta, \mathrm{J}, \mathrm{v})$, we define the hypergraph $M(R, S, w)=(V, E, \psi)$ by

$$
\begin{aligned}
& V=V(R) \cup[V(S) \backslash w(J)] \\
& E=E(R) \cup E(S)
\end{aligned}
$$

$$
\psi(A)=\psi_{R}(A)
$$

for every $A \in E(R)$ and

$$
\psi(A)=\left[\psi_{S}(A) \backslash w(J)\right] \cup\left\{x \in J \mid w(x)_{\in} \psi_{S}(A)\right\}
$$

for every $A \in E(S)$.

M ($R, \mathrm{~S}, \mathrm{w}$) is thought of as obtained from R and S by identifying vertices that correspond under the attachment function.
1.3.3. Let T be a spanning sub-hypergraph of S. We define a sub-hypergraph i of $M(R, S, w)$ and a subhypergraph $\overline{\bar{T}}$ of $M(R, S, w \phi)$ by

$$
\begin{aligned}
& V(\bar{T})=V(\overline{\bar{T}})=J u[V(S) \backslash w(J)]=J u[V(S) \backslash w \phi(J)], \\
& E(\overline{\bar{T}})=E(\overline{\bar{T}})=E(T) .
\end{aligned}
$$

Although \bar{T} and $\overline{\bar{T}}$ have the same vertices and the same lines, in general they do not have the same incidence function because \bar{T} is a sub-hypergraph of $M(R, S, w)$ while $\overline{\bar{T}}$ is a sub-hypergraph of $M(R, S, w \phi):$)

The above definitions apply in particular for $\mathrm{T}=\mathrm{S}$. Then R and $\overline{\mathrm{S}}$ are sub-hypergraphs of $\mathrm{M}(R, \mathrm{~S}, \mathrm{w})$,

$$
\begin{aligned}
& \mathrm{E}(\mathrm{R}) \cup \mathrm{U}(\overline{\mathrm{~S}})=\mathrm{E}(\mathrm{M}(R, \mathrm{~S}, \mathrm{w})) \\
& \mathrm{E}(\mathrm{R}) \cap \mathrm{E}(\overline{\mathrm{~S}})=\varnothing \\
& \mathrm{V}(\mathrm{R}) \cup \mathrm{U}(\overline{\mathrm{~S}})=\mathrm{V}(\mathrm{M}(R, \mathrm{~S}, \mathrm{~W})) \\
& \mathrm{V}(\mathrm{R}) \cap \mathrm{V}(\overline{\mathrm{~S}})=\mathrm{J}
\end{aligned}
$$

Also R and $\overline{\bar{S}}$ are sub-hypergraphs of the hypergraph $\mathrm{M}\left(R_{1} \mathrm{~S}, \mathrm{w} \phi\right)$ obtained from the reflected motor,

$$
\begin{aligned}
& E(R) \cup E(\overline{\bar{S}})=E(M(R, S, w \phi)) \\
& E(R) \cap E(\overline{\bar{S}})=\varnothing \\
& V(R) \cup V(\overline{\bar{S}})=V(M(R, S, w \phi)), \\
& V(R) \cap V(\overline{\bar{S}})=J .
\end{aligned}
$$

These observations can be compared with the hypotheses of proposition 1.2.3l.

We also note that the mapping $T \longrightarrow \bar{T}$ (resp. $T \longrightarrow \overline{\bar{T}}$) establishes a bijection between. spanning sub-hypergraphs of S and spanning subhypergraphs of $\overline{\mathrm{S}}$ (resp. spanning sub-hypergraphs of $\overline{\bar{S}}$).
1.3.4. With respect to a rotor $R=(R, \theta, J, v)$ the chromatic polynomial is said to be motorinvariant if for every motor ($R, \mathrm{~S}, \mathrm{~W}$) and the reflected motor ($R, \mathrm{~S}, \mathrm{w} \phi$) we have

$$
\mathrm{P}(\mathrm{M}(R, \mathrm{~S}, \mathrm{~W}), \lambda)=\mathrm{P}(\mathrm{M}(R, \mathrm{~S}, \mathrm{w} \phi), \lambda)
$$

Let ℓ be a non-negative integer. The lowest ℓ coefficients of the chromatic polynomial are motor invariant with respect to R if for every motor ($R, \mathrm{~S}, \mathrm{w}$) and every integer $k, 0 \leq k \leq \ell-1$: ,the coefficient of λ^{k} is the
same in $\mathrm{P}(\mathrm{M}(R, \mathrm{~S}, \mathrm{v}), \lambda)$ and in $\mathrm{P}(\mathrm{M}(R, \mathrm{~S}, \mathrm{w} \phi), \lambda)$.
W.T. Tutte has shown [T 2] that if the chromatic polynomial is partition-invariant with respect to a given rotor R, then it is motorinvariant with respect to R. (In fact proposition 4.1. of [T ?] contains a more general result about the dichromate.: The argument is valid also for the chromatic polynomial of hypergraphs. We prove the following:
1.3.5. PROPOSITION. Let R be a rotor.
(i) For every non-negative integer. ℓ, the lowest \& coefficients of the chromatic polynomial are motor-invariant with respect to R if and only if they are partition-invariant.
(ii) The chromatic polynomial is motor-invariant with respect to R if and only if it is partition-invariant.

Proof: The "if" part of (ii). is contained in proposition 4.1. of [T 2]. Also the proof of the "if" part of (i) is essentially the argument used by Tutte to prove proposition 4.l. [T 2] . For the
sake of completeness we show how both the "if" arid the "only if" parts of (i) can be deduced from proposition l.2.31 and how (ii) can be viewed as a consequence of (i).

For any polynomial $P(\lambda)$ let $c_{k} P(\lambda)$ denote the coefficient of λ^{k} in $P(\lambda)$. If k is negative, then $\mathrm{c}_{\mathrm{k}} \mathrm{P}(\lambda)=0$.

Assume that the lowest ℓ coefficients of the chromatic polynomial are partition-invariant with respect to $R=(R, \theta, J, v)$. Then for every $0 \leq k \leq \ell-1$ and every border-partition π

$$
\mathrm{c}_{\mathrm{k}} \mathrm{P}(\mathrm{R}(\pi), \lambda)=\mathrm{c}_{\mathrm{k}} \mathrm{P}(\mathrm{R}(\phi \pi), \lambda)
$$

Let (R, S, w) be a motor. Let us write

$$
\begin{aligned}
\mathrm{M} & =\mathrm{M}(R, \mathrm{~S}, \mathrm{~W}) \\
\phi \mathrm{M} & =\mathrm{M}(R, \mathrm{~S}, \mathrm{w} \phi)
\end{aligned}
$$

By proposition 1.2.31 and the observations made in 1.3.3. we have

$$
\begin{aligned}
& P(M, \lambda)=\sum_{T}^{\sum}(-1)|E(\bar{T})| \lambda^{C(\bar{T})-|\pi \bar{T}|} P(R(\pi \bar{T}), \lambda), \\
& P(\phi M, \lambda)=\sum_{T}^{\sum}(-1)|E(\overline{\bar{T}})| \lambda_{\lambda}^{C(\bar{T})-|\pi \overline{\bar{T}}| P(R(\pi \overline{\bar{T}}), \lambda),}
\end{aligned}
$$

where the summations range over all spanning subhypergraphs T of S. But

$$
\begin{aligned}
& E(\bar{T})=E(\overline{\bar{T}})=E(T) \\
& C(\bar{T})=c(\overline{\bar{T}})=c(T)
\end{aligned}
$$

and

$$
\left|\pi_{\overline{\mathrm{T}}}\right|=\left|\pi_{\overline{\bar{T}}}\right|
$$

for every spanning sub-hypergraph T of S. We shall also write $P_{T}=\left|\pi_{T}\right|=\left|\pi_{\bar{T}}\right|$ for every such T. Hence

$$
c_{k} P(M, \lambda)={\underset{T}{\Sigma}(-1)|E(T)| C_{k-C(T)+P(T)} \mid P(R(\pi \bar{T}), \lambda), ~}
$$

and

$$
c_{k} P(\phi M, \lambda)=\sum_{T}(-1)^{|E(T)|} c_{k-c(T)+P(T)} P\left(R\left(\pi \frac{1}{T}\right), \lambda\right)
$$

We observe now that

$$
\pi_{\bar{T}}=\phi \pi \bar{T}
$$

for every spanning sub-hypergraph T of S.
Also

$$
k-c(T)+p(T) \leq k \leq \ell-l,
$$

and by the partition-invariance of the lowest ℓ coefficients

$$
c_{k-c(T)}+p(T) P\left(R\left(\pi_{\bar{T}}\right), \lambda\right)=c_{k-c(T)}+p(T) P\left(R\left(\pi_{\mathrm{T}}\right), \lambda\right),
$$

implying that

$$
c_{k} P(M, \lambda)=c_{k} P(\phi M, \lambda)
$$

This proves the motor-invariance of the lowest ℓ coefficients.

Conversely, assume that the lowest $\&$ coefficients of the chromatic polynomial are motor-invariant with respect to $R=(R, \theta, J, v)$. Suppose they are not par-tition-invariant. We show that this leads to a contradiction. In the lattice of partitions of the principal orbit J choose a minimal element π_{0} for which there is some $k, 0 \leq k \leq \ell-1$, such that

$$
c_{k} P\left(R\left(\pi_{0}\right), \lambda\right) \neq c_{k} P\left(R\left(\phi \pi_{0}\right), \lambda\right)
$$

(Recall that in the lattice of partitions $\pi_{1} \leq \pi_{2}$ if and only if each block of π_{1} is contained in
 we define a stator S and an attachment functien w as follows. Let $V(S)$ be a set disjoint from $V(R)$ and w a bijection $w: J \rightarrow V(S)$. For each non-singleton block B of π_{0} let L_{B} be a line of S with $\psi_{S}\left(L_{B}\right)=B$. Again, let

$$
\begin{aligned}
\mathrm{M} & =\mathrm{M}(R, \mathrm{~S}, \mathrm{~W}) \\
\phi \mathrm{M} & =\mathrm{M}(R, \mathrm{~S}, \mathrm{w} \phi)
\end{aligned}
$$

Since the functions w and $w \phi$ are surjective onto $V(S)$, proposition 1.2 .31 gives

$$
P(M, \lambda)=\sum_{T}(-1)|E(T)| P(R(\pi \bar{T}), \lambda)
$$

and

$$
P(\phi M, \lambda)=\sum_{T}^{\sum}(-1)|E(T)| P(R(\pi \overline{\bar{T}}), \lambda)
$$

the summations ranging over all spanning subhypergraphs T of S. As before, $\pi \overline{\bar{T}}=\phi \pi \bar{T}$ for every T. We have $\pi_{\vec{S}}=\pi_{O}$, but for every $T \neq S$,

$$
\pi_{\bar{T}}<\pi_{0}
$$

in the lattice of partitions of J. Thus, by the minimality assumption on π_{0},

$$
c_{k} P\left(R\left(\pi-\frac{T}{T}\right), \lambda\right)=c_{k} P(R(\pi \underset{T}{T}), \lambda)
$$

for every $\mathfrak{T} \neq \mathrm{S}$. Also

$$
\begin{aligned}
c_{k}(M, \lambda) & =(-1)|E(S)| C_{k} P\left(R\left(\pi_{0}\right), \lambda\right)+ \\
& \sum_{T \neq S}(-1)|E(T)|_{C_{k}} P(R(\pi \bar{T}), \lambda), \\
C_{k}(\phi M, \lambda)= & (-1)|E(S)| c_{c_{k}} P\left(R\left(\phi \pi_{0}\right), \lambda\right)+ \\
& +\sum_{T \neq S}^{\sum(-1)}|E(T)|_{C_{k}} P(R(\pi \bar{T}), \lambda),
\end{aligned}
$$

and

$$
c_{k} P(M, \lambda)=c_{k} P(\phi M, \lambda)
$$

by motor-invariance, contradicting

$$
c_{k} P\left(R\left(\pi_{0}\right), \lambda\right) \neq c_{k} P\left(R\left(\phi \pi_{0}\right), \lambda\right)
$$

Finally, consider the following four statements, where invariance is always understood with respect to R :
(A) The chromatic polynomial is motor-invariant,
(B) The chromatic polynomial is partition-invariant,
(C) For every $\ell \geq 0$, the lowest ℓ coefficients of the chromatic polynomial are motor-invariant.
(D) For every $\ell \geq 0$, the lowest ℓ coefficients are partition-invariant.

From part (i) of the proposition, proven above, it follows that (C) and (D) are equivalent. On the other hand, (A) is clearly equivalent to (C) and, similarly, (B) is equivalent to (D). Consequently (A) and (B) an equivalent. But this is exactly part (ii) of the proposition, the proof of which is now complete.

In view of proposition 1.3.5., instead of saying that the chromatic polynomial is partition-invariant or motor-invariant with respect to a rotor R, we can say simply that it is invariant with respect to R.

1.3.6. Let π be is border-partition of a rotor $R=(R, \theta, J, v)$. Given a power θ^{i} of θ, $i \in Z$, we define the border-partition $\theta^{i} \pi$ by

$$
\theta^{\boldsymbol{i}} \pi=\left\{\theta^{\mathbf{i}}(\mathrm{B}) \mid \boldsymbol{B} \in \pi\right\}
$$

π is said to be bilaterally symmetric if $\phi \pi=\theta^{i} \pi$ for some power θ^{i} of θ. ($\phi \pi$ denoter the reflected border-partition.)

Stated originally for graphs, the following results of Tutte [T 2] are clearly true also for hypergraphs:
1.3.61.If. is a bilaterally symmetric borderpartition, then $R(\pi)$ and $R(\phi \pi)$ are isomorphic.
1.3.62. Every border-partition of a rotor of order at most 5 is bilaterally symmetric.
1.3.63. With respect to rotors of order at most 5, the chromatic polynomial is invariant.

This last result, immediate consequence of the preceeding.1.3.61 and, 1.3.62, yields a systematic
method of constructing non-isomorphic hypergrap.s having the same chromatic polynomial, non-trivial examples of which are not abundant (see George D. Birkhoff and D.C. Lewis [B 8] , R.A. Bari [B 3] and L.A. Lee [L2]).

Example. Let R be the simple hypergraph wi.th vertex-set $V(R)=[0,12]$ and whose 1 ines are

$$
\begin{array}{llll}
\{0,3,1\} \\
\{0,11,12\} & \{1,4,2\},\{2,5,0\}, \\
\{0,6,9\} & \{1,9,12\},\{2,10,12\}, \\
\{1,7,10\},\{2,8,11\} .
\end{array}
$$

A geometric representation of R is given in Figure 2.

Figure " 2

Consider the permutintion

$$
\theta=(0,1,2)(3,4,5)(6,7,8)(9,10,11)
$$

of $V(R)$. Clearly θ is an automorphism of R. Let $J=\{0,1,2\}$ and $v=0$. Then $R=(R, \theta, J, v)$ is a rotor of order 3. Let the stator S be the simple hypergraph given by

$$
\begin{aligned}
& V(S)=[13,18], \\
& E(S)=\{\{13,14,15\},\{14,16,17\},\{16,18,13\}\}
\end{aligned}
$$

Define the attachment function $w: J \rightarrow V(S)$ by

$$
\mathrm{w}(0)=13 \quad, \quad \mathrm{w}(\mathrm{~L})=15 \quad, \quad \mathrm{w}(2)=17
$$

According to 1.3 .63 the hypergraphs $\mathrm{M}(R, \mathrm{~S}, \mathrm{w})$ and $\mathrm{M}(R, \mathrm{~S}, \mathrm{w} \phi)$ have the same chromatic polynomial. A geometric representation of $M(R, S, w)$ and $M(R, S, w \phi)$ is given in Figure 3. There is no difficulty in verifying that these two hypergraphs are not isomorphic.

Figure 3
1.3.7. Rotors of order 6 bounded by a hexagon: a simplified proof of a result of Lee.

Let R be a graph and $R=(R, \theta, J, v)$ a rotor of order 6 such that v is adjecent to $\theta(v)$. For the purposes of this subsection, we call a borderpartition π of R admissible if for every integer i

$$
\theta^{i}(v) \neq \theta^{i+1}(v) \bmod \pi
$$

1.3.71. PROPOSITION. Every admissible borderpartition is bilaterally symmetric.

Proof. Let us write, for every integer i, $v^{i}=\theta^{\frac{1}{1}}(v)$. Then

$$
J=\left\{\mathrm{v}^{2}, \mathrm{v}^{2}, \mathrm{v}_{r}^{3} \mathrm{v}_{1}^{4} \mathrm{v}_{1}^{5} \mathrm{v}_{1}^{6}\right\} .
$$

Consider the following 12 admissible border partitions:

$$
\begin{aligned}
& \pi_{1}=\left\{\left\{v^{1}, v^{3}, v^{5}:,\left\{v^{2}, v^{4}, v^{6}\right\}\right\},\right. \\
& \pi_{2}=\left\{\left\{v^{1}, v^{3}, v^{5}\right\},\left\{v^{2}, v^{4}\right\},\left\{v^{6}\right\}\right\}, \\
& \pi_{3}=\left\{\left\{v^{1}, v^{4}\right\},\left\{v^{2}, v^{5}\right\},\left\{v^{3}, v^{6}\right\}\right\}, \\
& \pi_{4}=\left\{\left\{v^{1}, v^{4}\right\},\left\{v^{2}, v^{6}\right\},\left\{v^{3}, v^{5}\right\}\right\}, \\
& \pi_{5}=\left\{\left\{v^{1}, v^{3}, v^{5}\right\},\left\{v^{2}\right\},\left\{v^{4}\right\},\left\{v^{6}\right\}\right\}, \\
& \pi_{6}=\left\{\left\{v^{1}, v^{3}\right\},\left\{v^{2}, v^{4}\right\},\left\{v^{5}\right\},\left\{v^{6}\right\}\right\}, \\
& \pi_{7}=\left\{\left\{v^{1}, v^{4}\right\},\left\{v^{2}, v^{5}\right\},\left\{v^{3}\right\},\left\{v^{6}\right\}\right\}, \\
& \pi_{8}=\left\{\left\{v^{1}, v^{4}\right\},\left\{v^{2}, v^{6}\right\},\left\{v^{3}\right\},\left\{v^{5}\right\}\right\}, \\
& \pi_{9}=\left\{\left\{v^{1}, v^{3}\right\},\left\{v^{2}\right\},\left\{v^{4}\right\},\left\{v^{5}\right\},\left\{v^{6}\right\}\right\}, \\
& \pi_{10}=\left\{\left\{v^{1}, v^{4}\right\},\left\{v^{2}\right\},\left\{v^{3}\right\},\left\{v^{5}\right\},\left\{v^{6}\right\}\right\}, \\
& \pi_{11}=\left\{\left\{\cdot v^{1}\right\},\left\{v^{2}\right\},\left\{v^{3}\right\},\left\{v^{4}\right\},\left\{v^{5}\right\},\left\{v^{6}\right\}\right\}, \\
& \pi_{i 2}=\left\{\left\{v^{1}, v^{5}\right\},\left\{v^{2}, v^{4}\right\},\left\{v^{3}\right\},\left\{v^{6}\right\}\right\} \text {. } \\
& \text { It is easily seen that for every admissible border- } \\
& \text { partition } \pi \text { there is some integer } i, \text { and exactly } \\
& \text { one index } k, \text { ls } k \leq l 2, \text { such that }
\end{aligned}
$$

$$
\pi=\theta^{i}\left(\pi_{k}\right)
$$

On the other hand, if ρ is a bilaterally symmetric border-partition, then so is $\theta^{i}(\rho)$ for every integer i. But it can be verified without difficulty that the border-partitions $\pi_{1}, \ldots, \pi_{1} 2$ are
bilaterally symmetri:. The result follows.
1.3.72. PROPOSITION (Lee [L 2]). Let $R=(R, \theta, \mathrm{~T}, \mathrm{~V})$ be a rotor of order 6 , where R is a graph such that v is adjacent to $\theta(v)$. Then the chromatic polynomial is invariant with respect to R.

Proof. We prove partition-invariance. Letm be a border-partition of R. If π is not admissible, then $R(\pi)$ has a loop and so does $R(\phi \pi)$. In this case

$$
P(R(\pi), \lambda)=P(R(\phi \pi), \lambda)=0
$$

If π is admissible, then π is bilaterally symmetric by proposition 1.3.71 and $R(\pi)$ is isomorphic to $R(\phi \pi)$ by 1.3.61. We have a fortiori the identity

$$
P(R(\pi), \lambda)=P(R(\phi \pi), \lambda) \quad .
$$

1.3.8. More on rotors of order 6.

Let $R=(\mathrm{R}, \theta, J, \mathrm{v})$ be a rotor of order 6, where R is a graph such that v is adjacent to $\theta^{2}(v)$. Throughout. this subsection we call a border-partition π admissible if for every integer. i

$$
\theta^{i}(v) \text { 南 } \theta^{i+2}(v) \bmod \pi
$$

As in subsection 3.3.7, we have the following:
1.3.81. PROPOSITION. Every admissible borderpartition is bilaterally symmetric.

Proof. Again, let $\mathrm{v}^{\mathrm{i}}=\theta^{i}(\mathrm{v})$ for every integer i. Consider the following 10 admissible borderpartitions:

$$
\begin{aligned}
& \pi_{1}=\left\{\left\{v^{1}, v^{2}\right\},\left\{v^{3}, v^{4}\right\},\left\{v^{5}, v^{6}\right\}\right\}, \\
& \pi_{2}=\left\{\left\{v^{1}, v^{2}\right\},\left\{v^{3}, v^{6}\right\},\left\{v^{4}, v^{5}\right\}\right\}, \\
& \pi_{3}=\left\{\left\{v^{1}, v^{4}\right\},\left\{v^{2}, v^{5}\right\},\left\{v^{3}, v^{6}\right\}\right\}, \\
& \pi_{4}=\left\{\left\{v^{1}, v^{4}\right\},\left\{v^{2}, v^{3}\right\},\left\{v^{5}\right\},\left\{v^{6}\right\}\right\}, \\
& \pi_{5}=\left\{\left\{v^{1}, v^{2}\right\},\left\{v^{3}, v^{4}\right\},\left\{v^{5}\right\},\left\{v^{6}\right\}\right\}, \\
& \pi_{6}=\left\{\left\{v^{1}, v^{2}\right\},\left\{v^{4}, v^{5}\right\},\left\{v^{3}\right\},\left\{v^{6}\right\}\right\}, \\
& \pi_{7}=\left\{\left\{v^{1}, v^{4}\right\},\left\{v^{2}, v^{5}\right\},\left\{v^{3}\right\},\left\{v^{6}\right\}\right\}, \\
& \pi_{8}=\left\{\left\{v^{1}, v^{2}\right\},\left\{v^{3}\right\},\left\{v^{4}\right\},\left\{v^{5}\right\},\left\{v^{6}\right\}\right\}, \\
& \pi_{9}=\left\{\left\{v^{1}, v^{4}\right\},\left\{v^{2}\right\},\left\{v^{3}\right\},\left\{v^{5}\right\},\left\{v^{6}\right\}\right\}, \\
& \pi_{10}=\left\{\left\{v^{1}\right\},\left\{v^{2}\right\},\left\{v^{3}\right\},\left\{v^{4}\right\},\left\{v^{5}\right\},\left\{v^{6}\right\}\right\} .
\end{aligned}
$$

These border-partitions are bilaterally symmetric. Also every admissible border- partition of R is of the form $\theta^{i}\left(\pi_{k}\right), i \in Z, l \leq k \leq l 0$ (k unique). The result follows as in the proof of proposition 1.3.71.
1.3.82. PROPOSITION. Let $R=(R, \theta, J, V)$ be a rotor of order 6 , where R is a graph such that v is adjacent to $\theta^{2}(v)$. Then the chromatic polynomial is invariant with respect to R.

Proof. Similar to that of proposition 1.3.72.
1.3.83. Example. Jet R be the strict graph with vertex set $V(R)=[0,17]$ displayed in Figure 4.

Figure 4

Let

$$
\begin{aligned}
& \theta=(0,1,2,3,4,5)(6,7,8,9,10,11)(12,13,14,15,16,17), \\
& J=[0,5], \quad v=0 .
\end{aligned}
$$

Then (R, θ, J, v) is a rotor satisfying the hypotheses of proposition l.3.82.
1.4. Invariance and non-invariance of the second highest coefficient.
1.4.1. Let G be a graph. The link number εG is defined as the number of links of the underlying simple graph,

$$
\varepsilon G=\mid\{\{x, y\} \mid x, y \in V(G), x \neq y \text { and }
$$

$$
\mathrm{x} \text { is adjacent to } \mathrm{y}\}
$$

Since the chromatic polynomial of a graph (indeed, of any hypergraph) is identical with that of the underlying simple graph (simple hypergraph), it is an immediate consequence of corollary 1.2.42, that for any loopless graph G the coefficient of ${ }_{\lambda}|V(G)|-1$ in $P(G, \lambda)$ is $-\varepsilon G$.
1.4.2. Consider a rotor $R=(R, \theta, \mathcal{J}, \mathrm{~V}), \mathrm{R}$ being a graph. Clearly for every border-partition π the graphs $R(\pi)$ and $R(\phi \pi)$ have the same number of vertices. We say that the second highest coefficient of the chromatic polynomial is partition-invariant with respect to R if for every border-partition π the coefficient of

$$
\lambda^{|V(R(\pi))|-1}=\lambda^{|V(R(\phi \pi))|-1}
$$

is the same in $P(R(\pi), \lambda)$ and in $P(R(\phi \pi), \lambda)$.

The chief result of this section will provide an answer to the following question: With respect to a rotor ($\mathrm{R}, \boldsymbol{\theta}, \mathrm{J}, \mathrm{v}$) , when is it possible to conclude the partition-invariance of the second highest coefficient of the chromatic polynomial by looking at only the border ($\mathrm{R}[\mathrm{J}], \theta \mid J$) ? In this respect it should be noted that if B is a non-null graph with k vertices v_{1}, \ldots, v_{k} such that the cyclic permutation

$$
\sigma=\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}\right)
$$

is an automorphism of B, then (B, σ) is always the border of some rotor R. E.g. one, rather trivial, rotor with border (B, σ) is $R=\left(B, \sigma, V(B), V_{1}\right)$. In view of this, it is convenient to call the ordered pair (B, σ) a border (of order k), even without reference to any particular rotor.
1.4.3. For every positive integer k we denote by z_{k} the cyclic group of integers modulo k. Formally, the elements of z_{k} are usually defined as sets of the form $\{k q+p \mid q \in \mathbb{Z}\}$, where $p \in Z$ is fixed. We write $\bar{p}=\{k q+p \mid q \in Z\}$,
and p is said to be a representative of \bar{p}.

Vertices of a border (B, σ) of order k will be indexed by integers modulo k rather than by integers, in such a way that $V(B)=\left\{v_{i} \mid i \in z_{k}\right\}$ and

$$
\sigma\left(v_{i}\right)=v_{i+\bar{z}}
$$

for every $i \in Z_{k}$. A 3-element subset $\left\{v_{r}, v_{s}, v_{t}\right\}$ of $V(B)$ will then be called a scalene 3-set provided that the differences $r-s, s-t$ and $t-r$ are all distinct elements of z_{k},

$$
|\{r-s, s-t, t-r\}|=3 .
$$

We note that this definition does not depend on the order of the vertices v_{r}, v_{s}, v_{t}. A subset S of $\mathrm{V}(\mathrm{B}),|\mathrm{S}|=\mathrm{n}$, is called periodic if there is an index $i \in Z_{k}$ and a positive integer $p \leq \frac{k}{n}$ such that

$$
s=\left\{v_{i+} \overline{q p} \quad \mid q \in[0, n-p]\right\}
$$

The integer p is called a period of S. For $r, s \in Z_{k}$ we define

$$
\vec{k}(r, s)=\min \{d \in Z \mid d \geq 0 \text { and }
$$

$$
s=r+\bar{d}\}
$$

and

$$
k(x, s)=\min \vec{k}(r, s), \vec{k}(s, r)) .
$$

1.4.4. Let π be a border-partition of a rotor $(R, 0, J, V), R$ being a graph. Then

$$
\begin{aligned}
\varepsilon R(\pi)= & \varepsilon R[V(R) \backslash J]+\varepsilon R[J](\pi)+ \\
& +\sum_{A \in \pi}^{\sum}\left|N_{R}(A) \cap(V(R) \backslash J)\right|
\end{aligned}
$$

and

$$
\begin{aligned}
\varepsilon R(\phi \pi) & =\varepsilon R[V(R) \backslash J]+\varepsilon R[J](\phi \pi)+ \\
& +\underset{A \in \pi}{\varepsilon}\left|N_{R}(\phi(A)) \cap(V(R) \backslash J)\right|
\end{aligned}
$$

Although generally the reflection ϕ is not the restriction to J of any automorphism of R, it is clear that $\phi \in$ fut $R[J]$ and therefore the graphs $R[J](\pi)$ and $R^{\prime}[J](\phi \pi)$ are isomorphic. Consequently $R(\pi)$ and $R(\phi \pi)$ have the same link number if and only if
$\sum_{A \in \pi}\left|N_{R}(A) \cap(V(R) \backslash J)\right|=\underset{A \in \pi}{\sum}\left|N_{R}(\phi(A)) \cap(V(R) \backslash J)\right|$

This will always be the case if every block A of π is periodic.
1.4.5. PROPOSITION. Let (B, σ) be a border of order k, where B is a loopless graph, $\mathrm{V}(\mathrm{B})=\left\{\mathrm{v}_{\mathrm{i}} \mid \mathrm{i} \in Z_{\mathrm{k}}\right\}$, and $\sigma\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{v}_{\mathrm{i}+\overline{\mathrm{I}}}$ for every i ϵZ_{k}. The following two conditions are equivalent:
(i). Whatever the rotor $R=(R, \theta, J, v), R$ being a graph, having border $(B, \sigma)=(R[J], 0 \mid J)$ may be, the second highest coefficient of the chromatic polynomial is partition-invariant with respect to R.
(ii) (B, σ) has no independent scalene 3-set.

Proof. Assume (ii) and let π be a borderpartition of a rotor ($\mathrm{R}, \theta, \mathrm{J}, \mathrm{v}$) , R being a graph, $R[J]=B ; \theta \mid J=\sigma$. If some block A of π is not independent, then $\phi(A)$ is not independent and, both $R(\pi)$ and $R(\phi \pi)$ having loops,

$$
P(R(\pi), \lambda)=P(R(\phi \pi), \lambda)=0
$$

Assume therefore that every block of π is independent. According to 1.4.1. and 1.4.4. it will suffice to show that every block A of π is periodic. This is obvious if A in a singleton. Let $|A| \geq 2$. Let p be the smallest positive integer such that A has a periodic subset having period p. Let B be a periodic subset of A having period p and containing the largest possible number of elements, say $|B|=n$,

$$
B=\left\{v_{i_{+}} \overline{q p} \mid q \in[0, n-l]\right\} .
$$

Since every 2- subset of A is periodic, $n \geq 2$. If $A=B$, then A is periodic. If $A \neq B$, let $v_{j} \in A \backslash B$. We claim that $n=2$ and

$$
k(j, i)=k(j, i+(\overline{n-1)} p)
$$

Indeed, if we had $n>2$ or

$$
k(j, i)>k(j, i+(n-1) p)
$$

then

$$
\left\{v _ { i + (} \left(\overline{n-2) p}, v_{i+}\left(\overline{n-1) p}, v_{j}\right\}\right.\right.
$$

would be a scalene 3 -subset of A, which contradicts (ii) because A is independent. If we had $n>2$ or

$$
k(j, i)<k(j, i+(\overline{n-1}) p)
$$

then

$$
\left\{v_{j}, \quad v_{i}, \quad v_{i+} \bar{p}\right\}
$$

would be a scalene 3 -subset of A, contradicting again the assumption (ii). If follows now that

$$
j=i+\bar{p}+\overline{\left(\frac{k-p}{2}\right)}
$$

and

$$
A=B \cup\left\{v_{j}\right\}=\left\{v_{i+} \bar{p}, v_{j}, v_{i}\right\}
$$

is a periodic set with period $\frac{k-p}{2}$ Condition (i) is proved.

Conversely, assume that (ii) is false. Let $\left\{v_{r}, v_{s}, v_{t}\right\}$ be an independent scalene 3 -set
of the border (B, σ). In order to prove the falsity of (i), we shall construct an $R=(R, \theta, J, v)$ having border (B, σ), and such that the second highest coefficient of the chromatic polynomial is not partition-invariant with respect to R. Let I be $a k$-set disjoint from $V(B), I=\left\{x_{j} \mid i \in Z_{k}\right\}$. The graph R is defined by the foilowing conditicms:
a.) $V(R)=V(B) \cup I$,
b.) $R[V(B)]=B$,
c.) I is independent ,
d.) $N_{R}\left(x_{i}\right)=\left\{v_{r+i}, v_{s+i}, v_{t+i}\right\}$, for every $i \in Z_{k} \quad$,
e.) There are no multiple lines between a vertex $\mathrm{v} \in \mathrm{V}(\mathrm{B})$ and a vertex $\mathrm{x} \in \mathrm{I}$.

The automorphism θ of R is defined by

$$
\theta \mid V(B)=\sigma
$$

and

$$
\theta\left(x_{i}\right)=x_{i}+\overline{2}
$$

for every $i \in Z_{k}$. Let also

$$
J=V(B)
$$

and

$$
v=v_{\sigma}
$$

To see that the second highest coefficient of the chromatic polynomial is not partition-invariant with respect to $R=(R, \theta, J, v)$, consider the partition π of J for which

$$
\mathrm{c}=\left\{\mathrm{v}_{\mathrm{r}}, \mathrm{v}_{\mathrm{s}}, \mathrm{v}_{\mathrm{t}}\right\}
$$

is a block and all other blocks are singletons. Note that for every $v_{i} \in J$

$$
\left|N_{R}\left(v_{i}\right) \cap I\right|=\left|N_{R}\left(\phi\left(v_{i}\right)\right) \cap I\right|
$$

Hence if we could prove that

$$
\left|N_{R}(C) \cap I\right| \neq \mid N_{R}(\phi(C) \cap I \mid,
$$

then it would follow that

$$
\sum_{A \in \pi}^{\sum}\left|N_{R}(A) \cap I\right| \neq \sum_{A \in \pi}\left|N_{R}(\phi(A)) n I\right| .
$$

and, by 1.4.4., $R(\pi)$ and $R(\phi \pi)$ would have different link numbers. Further since R is loopless by assumption and every block of π, and consequently of $\phi \pi$, is independent, both $R(\pi)$ and $R(\phi \pi)$ are loopless.

It would then follow from 1.4.1. that the respective coefficients of $\lambda^{\mid V!R(\pi)) \mid-1}=$

$$
=\lambda|V(R(\phi \pi))|-1 \text { in } P(R(\pi), \lambda) \text { and in } P(R(\phi \pi), \lambda)
$$

are different. This would complete the proof. Let
$s=\{r, s, t\}$. We have

$$
N_{R}(C) \dot{n} I=\left\{x_{i} \in I \mid\left\{v_{r+i}, v_{s+i}, v_{t+i}\right\} n\left\{v_{r}, v_{s}, v_{t}\right\} \neq \varnothing\right\},
$$

so that

$$
\begin{aligned}
\left|N_{R}(C) \cap I\right| & =\left|\left\{i \in Z_{k} \mid\{r+i, s+i, t+i\} \cap\{r, s, t\} \neq \varnothing\right\}\right|= \\
& =|\{p-q \mid p, q \in s\}| .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \begin{aligned}
& N_{R}(\phi(C)) \cap I=\left\{x_{i} \in I \mid\left\{v_{r+i}, v_{S+i}, v_{t+i}\right\} \cap\left\{v_{-r}, v_{-s}, v_{-t}\right\} \neq \varnothing\right\}, \\
& \text { so that } \\
&\left|N_{R}(\phi(C)) \cap I\right|=\left|\left\{i \in Z_{k} \mid\{r+i, s+i, t+i\} \cap\{-r,-s,-t\} \neq \varnothing\right\}\right|= \\
&=|\{-p-q \mid p, q \in S\}| \\
&=|\{p+q \mid p, q \in S\}|
\end{aligned}
\end{aligned}
$$

We have to distinguish two cases.

Case 1. For every $p, q \in S$, such that $p \neq q$, we have $p-q \neq q-p$. Then $i+$ is easy to see that

$$
\{r-s, s-t, t-r\} \cap\{r-t, t-s, s-r\}=\varnothing
$$

and

$$
\left|N_{R}(C) \cap I\right|=|\{p-q \mid p, q \in S\}|=7
$$

But

$$
|\{p+q \mid p, q \in S\}| \leq 6
$$

so that in this case

$$
\left|N_{R}(C) \cap I\right| \quad \neq\left|N_{R}(\phi(C)) \cap I\right|
$$

Case 2. For some $p, q \in S, p \neq q$, we have $p-q=q-p$. There is no loss of generality in assuming that

$$
r-s=s-r
$$

i.e.

$$
2(r-s)=\overline{0}
$$

Then

$$
\{r-s, s-t, t-r\} \cap\{r-t, t-s, s-r\}=\{r-s\}
$$

because otherwise we would have

$$
s-t=t-s
$$

or

$$
t-r=r-t
$$

i.e. besides

$$
2(r-s)=\overline{0}
$$

also

$$
2(s-t)=\overline{0}
$$

or

$$
2(t-r)=\overline{0}
$$

But, in view of the assumption that $\left\{\mathrm{v}_{\mathrm{r}}, \mathrm{v}_{\mathbf{s}}, \mathrm{v}_{\mathrm{t}}\right\}$ is a scalene 3-set, this contradicts the fact that the equation

$$
2 \mathrm{x}=\overline{0}
$$

has at most one non-zero solution in Z_{k}. It follows that

$$
|\{p-q \mid \Omega, \exists \in S\}|=6
$$

Also, since $r+r=s+s$,

$$
|\{p+q \mid p, q \in S\}| \leq 5
$$

so that

$$
\left|N_{R}(C) \cap I\right| \neq\left|N_{R}(\phi(C)) \cap I\right|
$$

The proof of proposition 1.4.5. is now complete.
1.4.6. Clearly a border of order at most 5 cannot have a scalene 3-set, in compliance with Tutte's invariance result for such borders [T 2]. This result is best possible.... . .
1.4.61. PROPOSITION. Let k be any integer ≥ 6. There exists a border (B, σ) of order k, B being a loopless graph, which has an independent scalene 3-set.

Proof. Let

$$
\begin{aligned}
& V(B)=\left\{\begin{array}{l|ll}
v_{i} & \text { i } \in Z_{k}
\end{array}\right\} \\
& E(B)=\varnothing
\end{aligned}
$$

and

$$
\sigma\left(v_{i}\right)=v_{i+1}
$$

for every $i \in Z_{k}$. Then

$$
\left\{v_{\bar{i}}, v_{\overline{3}}, v_{\bar{K}}\right\}
$$

is an independent scalene 3 -set.

In view of proposition 1.4 .5 we obtain the foilowing:
1.4.62. COROLLARY (See [F 2]). Let k be any integer ≥ 6. There exists a rotor R of order k such that the second highest coefficient of the chromatic polynomial is not partition-invariant with respect to R.

In particular, following the proofs of propositions 1.4.5 and 1.4.61, rotors of arbitrary high order $k \geq 6$ can be constructed with respect to which the chromatic polynomial is not invariant. This contrasts with the invariance of the number of spanning trees, proved by R.L.Brooks, C.A.B. Smith, A. H. Stone, W.T.Tutte [B13] and Tutte [T 4].

As an example, take $k=7$. Constructing the rotor $R=(R, \theta, J, v)$ as in the proofs of propositions 1.4.5 and 1.4.61, R is the Levi graph of the Fano geometry pictured in Figure 5.

Figure 5

By choosing an appropriate stator, we obtain graphs having the same number of spanning trees but having different chromatic polynomials. Such a pair of graphs is displayed in Figure 6.

Figure 6
1.5. Planarity of the rotor: the link number
1.5.1. Let π be a border-partition of a rotor ($\mathrm{R}, 0, \mathrm{~J}, \mathrm{v}:, \mathrm{R}$ being a graph. Then

$$
\varepsilon R(\pi)=\varepsilon R[V(R) \backslash J]+\varepsilon R[J](\pi)+
$$

and

$$
\varepsilon R(\phi \pi)=\varepsilon R[V(R) \backslash J]+\varepsilon R[J](\phi \pi)+
$$

By an argument similar to that of 1.4.4 the graphs $R(\pi)$ and $R(\phi \pi)$ have the same link number if and only if

1.5.2. PROPOSITI iN, Let the rotor (R, θ, J, v) and π be as above. Suppose that for every orbit I of θ, I $\neq \mathrm{J}$, there is a permutation ψ of I such that

$$
\phi\left(N_{R}(x) \cap J\right)=N_{R}(\psi(x)) \cap J
$$

for every $x \in I$. Then $R(\pi)$ and $R(\phi \pi)$ have the same link number.

Proof. For every orbit I of $\theta, I \neq J$, let us denote by ψ_{I} the corresponding permutation of I. Define a permutation σ of $V(R) \backslash J$ by the condition that

$$
\sigma(x)=\psi_{I} \quad(x)
$$

if $x \in I$. Then clearly

$$
\phi\left(N_{R}(x) \cap J\right)=N_{R}(\sigma(x)) \cap J .
$$

for every $x \in V(R) \backslash J$.

Since ϕ is a permutation of J, for every $x \in V(R) \backslash J$ and $A \in \pi$

$$
\begin{aligned}
& \phi\left(N_{R}(x) \cap A\right)=\phi \cdot\left(N_{R}(x) \cap J \cap A\right)= \\
& \quad=N_{R}(\sigma(x)) \cap J \cap \phi(A)=N_{R}(\sigma(x)) \cap \phi(A)
\end{aligned}
$$

Consequently

$=\sum_{x \in V(R) \backslash J}\left|\left\{A \in \pi| | N_{R}\left(\sigma^{-1}(x)\right) \cap A \neq \varnothing\right\}\right|=$
$=\sum_{x \in V(R) \backslash J}\left|\left\{A \in \pi \mid N_{R}(x) \cap \phi(A) \neq \varnothing\right\}\right|$

Now the proposition follows from l.5.1.
1.5.3. Let P be a polygon of a graph G. An equivalence relation \sim is defined on $E(G) \backslash E(P)$ by the condition that for every $A, A^{\prime} \in E(G) \backslash E(P)$,

$$
A \sim A^{\prime}
$$

if and only if there is a path in G whose terminal lines are A and A^{\prime} and which is internally vertexdisjoint from P. A bridge of P in G is a subgraph B of G spanned by any of the equivalence classes of
the relation \sim. The vertices in $V(B) \cap V(P)$, called vertices of attachment of B, partition P into segments. Two distinct bridges B_{2} and B_{2} of P are said to overlap if the vertices of attachment of B_{1} are not confined to a single segment of B_{2}. (This definition is symmetric in B_{1} and B_{2}.) Two subgraphs H_{2} and H_{2} of G not contained in P are said tc be separated by P if there is some subgraph H of G containing P, P having two overlapping bridges B_{1} and B_{2} in H such that H_{i} is a subgraph of B_{i} for $i=1,2$. Planar graphs are characterized by the property that no polygon separates every two of three subgraphs H_{1}, $\mathrm{H}_{2}, \mathrm{H}_{3}$. Also in any embedding of a planar graph G in the plane, two subgraphs separated by a polygon P lie in different residual domains of P. (See [B 11], $\left.\left[\begin{array}{ll}\mathrm{K} & 4\end{array}\right],\left[\begin{array}{ll}T & 3\end{array}\right].\right)$
1.5.4. PROPOSITION. Let $R=(R, \theta, J, v)$ be a rotor of order k, R being a planar graph. Assume that the order of θ is k. Then for every borderpartition π of $R, R(\pi)$ and $R(\dot{\phi} \pi)$ have the same link number.

Proof. Clearly it is enough to prove the proposition for strict R.

We use proposition 1.5.2. We show that for every orbic I of $\theta, I \neq J$, there is a permutation ψ of I such that

$$
!\left(N_{R}(x) \cap J\right)=N_{R}(\psi(x)) \cap J
$$

for every $x \in I$. For every $i \in Z$ and $y \in V(R)$, let $y^{i}=\theta^{i}(y)$.

Let therefore I be an orbit of θ, I $\neq J$. Let $\ell=|I|$. If v is not adjacent to any vertex in I, let ψ be the identity permutation of I. If

$$
\left|N_{R}(v) \cap I\right|=1,
$$

then let x be the unique vertex of I adjacent to v. We have

$$
N_{R}(x) \cap J=\left\{v^{i \ell} \mid i \in Z\right\}
$$

Every vertex in. I is of the form x^{j} for some $j \in Z$.

Clearly

$$
N_{R}\left(x^{j}\right) \cap J=\left\{v^{j+i \ell} \mid i \in Z\right\}
$$

We define

$$
\psi\left(x^{j}\right)=x^{-j}
$$

for every $j \in Z$

If v is adjacent to more than 1 vertex of I, then let d be an integer such that for some $x \in I, \quad x^{d} \neq x$ and

$$
\left\{x, x^{d}\right\} \subseteq N_{R}(v)
$$

Assume that among all possible d we have chosen one such that the orbit of θ^{d} containing v has maximum cardinality. Let m be the cardinality of the orbit of θ^{d} containing x. Obviously $m \geq 2$. For every i $\in Z$

$$
P\left(x^{i}, v^{i}, x^{i+d}, v^{i+d}, \ldots, x^{i+(m-1) d}, v^{i+(m-1) d}\right)
$$

is a polygon of length 2 m , denoted in the sequel by $P\left(v^{i}\right)$. Throughout this proof polygons of the form $P\left(v^{i}\right)$ will be called μ-polygons.

We have to disti.:guish several cases, a diagram of which is displayed in Figure 7.

Case 1. d and k are not coprime, gcd $(d, k) \neq 1$. This means that J breaks up into several orbits under the action of θ^{d}.

Case 1.1. $N_{R}(x) \cap J$ intersects several orbits of θ^{d}. Since $v=v^{0} \in N_{R}(x)$, this means that there is a $\mathrm{v}^{\mathrm{r}} \in \mathrm{N}_{\mathrm{R}}(\mathrm{x})$ such that r 丰 $0 \bmod \operatorname{gcd}(\mathrm{~d}, \mathrm{k})$. Applying θ^{-r} it is easily seen that there is some $x^{s} \in N_{R}(v) n I$ such that $s \equiv 0 \bmod \operatorname{gcd}(d, k)$.

Case 1.1.1. We can find r and s as above such that $r \neq s \bmod \operatorname{gcd}(d, k)$. This means that the μ - polygons $P\left(v^{r}\right)$ and $P\left(v^{s}\right)$ are vertex-disjoint not only from $P(v)$ but also from each other. Moreover, every $v^{j d} \epsilon \mathrm{~V}(\mathrm{P}(\mathrm{v})) \cap \mathrm{I}$ is adjacent to $x^{j d+s} \epsilon V\left(P\left(v^{s}\right)\right)$ and every $\mathrm{x}^{j d} \epsilon V(P(v)) \cap I$ is adjacent to $\mathrm{v}^{j d+r} \epsilon \mathrm{~V}\left(\mathrm{P}\left(\mathrm{v}^{\mathrm{r}}\right)\right)$. It follows that $\mathrm{P}\left(\mathrm{v}^{\mathrm{r}}\right)$ and $P\left(v^{\mathbf{s}}\right)$. are separated by $P(v)$. Since all μ - polygons are similar under some appropriate power of θ, for every μ - polygon P there are two μ - polygons P_{1} and P_{2} that are separated by P.

In an embedding of R in the plane, let the μ-polygon P be chosen in such a way that no μ - polygon P^{\prime} vertex-disjoint from P lies in the interior (bounded residual domain) of P : Then both P_{1} and P_{2} have to lie in the exterior of P, contradicting the fact that they are separated by P.

Case 1.1.2. For every r and s as in Case 1.1., $x \equiv s \bmod \operatorname{gcd}(d, k)$. In particular r and s are unique modulo gcd (d, k). By symmetry under powers of θ, it is seen that for every $i \in Z$, $N_{R}\left(x^{i}\right) \cap J$ is contained in 2 orbits of θ^{d} and that the same holds for $N_{R}\left(v^{i}\right) \cap I$, $i \in Z$. But x^{r} is adjacent to $\mathrm{v}^{r}, \mathrm{v}^{\mathrm{r}-\mathrm{s}}$ and $\mathrm{v}^{2 r}$, and therefore either $2 r \equiv r \bmod \operatorname{gcd}(d, k)$ or $2 r \equiv r-s$ $\bmod \operatorname{gcd}(d, k)$. The first congruence, equivalent to $r \equiv 0 \bmod \operatorname{gcd}(d, k)$, is false by the definition of r, so that $2 r \equiv r-s \equiv 0 \bmod \operatorname{gcd}(d, k)$.

Case 1.1.2.1. $\ell<k$. In this case $\mathrm{v}^{\mathrm{r}+\mathrm{md}} \neq \mathrm{v}^{\mathrm{r}}$ and $P\left(v^{r}\right)$ separates the vertex $v^{r+m d}$ from $P(v)$. But this is impossible because $v^{r+m d}$ is adjacent to $\mathrm{x} \in \mathrm{V}(\mathrm{P}(\mathrm{v}))$.

Case 1.1.2.2. $\quad \ell=\mathrm{k}$.

Case 1.1.2.2.1. $m=2$. Then $x^{2 d}=x$, and $x^{2 s}=x$ or $x^{2 s}=x^{d}$. If $x^{2 s}=x^{d}$, then $2 s \equiv d$ $\bmod k$ and $v^{2 s}=v^{d}$. Clearly the orbit of θ^{s} containing v has more elements than the orbit of θ^{d} containing v. Since also $\left\{. x, x^{s}\right\} \subseteq N_{R}(v)$, this contradicts the choice of d. On the other hand, if $x^{2 s}=x$, then $2 s \equiv 0 \bmod k$. But also $2 d \equiv 0 \bmod k$ because $x^{2 d}=x$. Since $s \neq 0 \bmod k$ and $d \neq 0 \bmod k$, we must have $s \equiv d \bmod k$, which is again impossible.

Case 1.1.2.2.2. $m \geq 3$. It is not difficult to see that the only possible vertex in $V(P(v)) \cap J$ that can be adjacent to x^{r} is $\mathrm{v}^{-\mathrm{d}}$. Therefore $\mathrm{v}^{2 r}$ must equal $\mathrm{v}^{-\mathrm{d}}, 2 \mathrm{r} \equiv-\mathrm{d} \bmod \mathrm{k}$ and $v^{2(r+d)}=v^{d}$. Since $\left\{x, x^{r+d}\right\} \subseteq N_{R}(v)$, this, again, leads to a contradiction with the definition of d.

Case 1.2. $N_{R}(x) \cap J$ is contained in one orbit of θ^{d}. The existence of ψ can be shown by essentially the same argument as the one used in the following Case 2 .

Case 2. $(\alpha, k)=1$. Then $m=\ell$.

Case 2.1. $x^{2 d}=x$. Then $I=\left\{x, x^{1}\right\}$ and every vertex of I is adjacent to every vertex of J. Let ψ be the identity permutation of I.

Figure 7

Case 2.2. $\mathrm{x}^{2 \mathrm{~d}} \mathrm{~F}^{\mathrm{F}} \mathrm{x}$.

Case 2.2.l. $k=\ell$.

Case 2.2.1.1. There is an integer r, r 丰 $-2 d$, r 丰 $-d$, $r \neq 0$. and $r \neq \bmod k$, such that v^{r} is adjacent to x. Then any two of the three lines

$$
\left\langle\mathrm{x}, \mathrm{v}^{\mathrm{r}}\right\rangle,\left\langle\mathrm{x}^{\mathrm{d}}, \mathrm{v}^{\mathrm{r}+\mathrm{d}}\right\rangle,\left\langle\because^{2 \mathrm{~d}}, \mathrm{v}^{\mathrm{r}+2 \mathrm{~d}}\right\rangle
$$

are separated by the polygon $P(v)$. This case is impossible.

Case 2.2.1.2. $\mathrm{v}^{-2 \mathrm{~d}}$ and v^{d} are both adjacent to x. Then any two of the three lines

$$
\left\langle x, v^{d}\right\rangle,\left\langle x^{d}, v^{2 d}\right\rangle,\left\langle x^{2 d}, v\right\rangle
$$

are separated by $P(v)$. This is again impossible.

Case 2.2.1.3. $N_{R}(x) \cap J=\left\{v, v^{-d}, v^{d}\right\} \quad$.

Then

$$
N_{R}\left(x^{i}\right) n J=\left\{v^{i}, v^{i-d}, v^{i+d}\right\}
$$

for every i \in Z. Let

$$
\psi\left(x^{i}\right)=x^{-i}
$$

Case 2.2.1.4. $\quad N_{R}(x) \cap J=\left\{v, v^{-d}, v^{-2 d}\right\}$.

Then

$$
N_{R}\left(x^{i}\right) \cap J=\left\{v^{i}, v^{i-d}, v^{i-2 d}\right\}
$$

for every $i \in Z$. Let

$$
\psi\left(x^{i}\right)=x^{2 d-i}
$$

Case 2.2.1.5. $N_{R}(x) \cap J=\left\{v, v^{-d}\right\}$

Then

$$
N_{R}\left(x^{i}\right) \cap J=\left\{v^{i}, v^{i-d}\right\}
$$

for every i \in Z. Let

$$
\psi\left(x^{i}\right)=x^{d-i} .
$$

Case 2.2.2. \& < k .
Case 2.2.2.1 $N_{R}(x) \cap J=\left\{v^{j \ell}, v^{j \ell-\mathrm{d}} \mid j \in Z\right\}$.

Then

$$
N_{R}\left(x^{i}\right) \cap J\left\{v^{i+j \ell}, v^{i+j \ell-d} \mid j \in z\right\}
$$

for every $i \in$ 2. Let

$$
\psi\left(x^{i}\right)=x^{d-i}
$$

Case 2.2.2.2. $N_{R}(x) n J \neq\left\{v^{j \ell}, v^{j \ell-d} \mid j \in Z\right\}$.

Let

$$
\mathrm{v}^{\mathrm{r} \epsilon} \mathrm{~N}_{\mathrm{R}}(\mathrm{x}) \cap \mathrm{J} \backslash\left\{\mathrm{v}^{j \ell}, \mathrm{v}^{j \ell-\mathrm{d}} \mid \mathrm{j} \in \mathrm{Z}\right\} .
$$

We can assume that $\mathrm{v}^{\mathrm{r}} \in \mathrm{V}(\mathrm{P}(\mathrm{v}))$. Also

$$
v^{r+\ell} \epsilon N_{R}(x) \cap J
$$

and $P(v)$ separates $v^{r+\ell}$ from each of the lines

$$
\left.<\mathrm{x}, \mathrm{v}^{\mathrm{r}}\right\rangle,<\mathrm{x}^{\mathrm{d}}, \mathrm{v}^{\mathrm{r}+\mathrm{d}}>.
$$

But $P(v)$ also separates these lines from each other, contradicting the planarity of R.

All cases have been exhausted and the proof of proposition 1.5.4 is finished.
1.6. Planarity $c \bar{i}$ the rotor: the girth.
1.6.1. Throughout this section $R=(R, \theta, J, v)$ will be a rotor of order $k \geq 3, R$ being a strict loopless connected planar graph. Assume that the automorphism θ has also order k. Moreover, assume that R is embedded in the plane so as to realize a planar map M, the boundary of the outer face being the polygon

$$
B=P\left(v, \theta(v), \ldots, \theta^{k-1}(v)\right)
$$

and the automorphism 0 being induced by some map-automorphism σ of M preserving incidence between vertices, lines and faces, and preserving the natural counterclockwise cyclic order of edges around any vertex as well as around any face. There is no loss of generality in assuming that the sequence

$$
\begin{equation*}
v, \theta(v), \ldots, \theta^{k-1} \tag{v}
\end{equation*}
$$

is a counter-clockwise description of the boundary polygon B. Then it is clear that the outer face must be fixed by σ. Also the polygon B has no chords, or equivalently:
1.6.11. PROPOSITION. B is an induced subgraph of R.

Proof. Indeed, suppose that A is a line joining two non-consecutive vertices of B. Then A and σ (A) are separated by B, contradicting the assumption that both are drawn in the interior of B.
1.6.2. If x is a vertex of R, let $d(B, x)$ be the minimum length of a path between x and a vertex of B.
1.6.21. PROPOSITION. None of the orbits of θ has cardinality less than k and greater than 1.0 has at most 1 fixed vertex.

Proof. We first prove that if θ has a fixed vertex x, then the cardinality of every orbit I not containing x is k . Then we complete the proof of the proposition by showing that if θ has an orbit of cardinality less than k, then θ has a fixed vertex.

Let x be a fixed vertex ofe such that $d(B, x)$ is smallest possible. Let I be an orbit of θ, $x \notin I$. Choose a vertex $y \in I$. Let P be a path of length $d(B, x)$ between x and a vertex $\theta^{i}(v)$ of B. For every $j \in Z$,

$$
\begin{equation*}
P_{j}=\sigma^{j-i} \tag{P}
\end{equation*}
$$

is path of length $d(B, x)$ from x to $\theta^{j}(v)$. It follows from the minimality of $d(B, x)$ that any two of the paths

$$
P_{1}, \ldots, P_{k}
$$

have only the vertex x in common. Vonsequently if y lies on one of the $P_{j}{ }^{\prime} s, j=1, \ldots, k$, then

$$
|I|=\left|\left\{\theta^{i}(y) \mid i=1, \ldots, k\right\}\right|=k
$$

If this is not the case, then there is some j such that y lies in the interior of the polygon formed by P_{j}, P_{j+1} and the line $\left\langle\theta^{j}(v), \theta^{j+1}(v)\right\rangle$. Again

$$
\theta(y), \ldots, \theta^{k}(y)
$$

must be all distinct and $|I|=k$.

Assume now that θ has no fixed vertex but has orbits of cardinality less than k. Let x be a vertex such that

$$
\theta^{\ell}(x)=x
$$

for some integer $0<\ell<k$, and assume that $d(B, x)$ is smallest possible. Since ℓ iivides k and $k \geq 3$, we must have

$$
\ell+l<k
$$

Also $1<\ell$ because otherwise x would be a fixed vertex of θ. Let P be a path of length $d(B, x)$ between x and a vertex $\theta^{i}(v)$ of B. As before, let

$$
\begin{equation*}
P_{j}=\sigma^{j-i} \tag{P}
\end{equation*}
$$

for every $j \in Z$. The subgraph union of P_{o} and P_{ℓ} must have a common vertex y with the union of P_{1} and $P_{\ell+1}$, because otherwise they would be separated by the polygon P. It is easy to see that

$$
\theta^{n} \quad(y)=y
$$

for some integer $0<n \leq \ell+1$. Since $\ell+1<k$,

$$
d(B, y)<d(B, x)
$$

contradicts the minimality of $d(B, x)$.
1.6.3. Let n be a positive integer, $n<k$. If there is a path P joining v to $\theta^{n}(v)$ such that (i) P is internally disjoint from B, and (ii) no fixed vertex of θ lies on P, then let $p(n)$ be the minimum length of such a path P. If no such path exists between v and $\theta^{n}(v)$, then we write $p(n)=\infty \quad$.
1.6.31. PROPOSITION. Let $0<n<k$. Then
$p(n)=\infty$ or $p(n)>\min (n, k-n)$.

Proof. Assume that the proposition is false. Among those $n \in[1, k-1], d(n) \neq \infty$, that maximize the value of

$$
\min (n, k-n)-p(n)
$$

choose one for which $\min (n, k-n)$ is smallest possible. Since B is chordless,

$$
2 \leq n \leq k-2
$$

We can also assume without loss of generality that $n \leq k / 2$. For this fixed n let the vertices of a shortest path P, internally disjoint from B,
joining v to $\theta^{n}(v)$ be, in consecutive order,

$$
v=x_{0}, x_{1}, \ldots, x_{p(n)}=\theta^{n}(v)
$$

Since P and $\sigma(P)$ are not $:$ separated by B, they must have an internal vertex in common. Let i be the smallest integer with $x_{i} \in V(\sigma(P))$, say

$$
x_{i}=0\left(x_{j}\right)
$$

By assumption no fixed vertex of θ lies on P and therefore if j.

If $i<j$, then the path P^{\prime} joining v to $\theta^{n+1}(v)$ consisting of

$$
P\left[\left\{x_{0}, \ldots, x_{i}\right\}\right]
$$

and

$$
\sigma(P)\left[\left\{\theta\left(x_{j}\right), \cdots, \theta\left(x_{p(n)}\right)\right\}\right]
$$

is internally disjoint from B and has length at most $\mathrm{p}(\mathrm{n})$ - 1. Consequently

$$
\mathrm{p}(\mathrm{n}+\mathrm{I})<\mathrm{p}(\mathrm{n}) .
$$

Also

```
min (n+1, k - (n+1))\geqmin (n,k - n) - l
```

If

```
min (n+1,k-(n+1)) \geq min (n,k-n) ,
```

then

$$
\min (n+1, k-(n+1))-p(n+1)>\min (n, k-n)-p(n)
$$

contradicting the choice of n. If.

$$
\min (n+1, k-(n+1))=\min (n, k-n)-1,
$$

which happens only if k is even and $n=k / 2$, then still

$$
\min (n+1, k-(n+1))-p(n+1) \geq \min (n, k-n)-p(n),
$$

(in fact equality must hold), so that the minimality of

$$
\min (n, k-n)
$$

in contradicted.

If $i>j$, then the subgraph of R consisting of

$$
\sigma(P)\left[\left\{\theta\left(x_{0}\right), \ldots, \theta\left(x_{j}\right)\right\}\right]
$$

and

$$
P\left[\left\{x_{i}, \cdots, x_{d(n)}\right\}\right]
$$

must contain a path P^{\prime} joining $\theta(v)$ to $\theta^{n}(v)$ and internally disjoint from B. Since the length of P^{\prime} is less than $p(n)$, so is the length of $\sigma^{-1}\left(P^{\prime}\right)$. But $\sigma^{-1}\left(P^{\prime}\right)$ is a path joining v to $\theta^{n-1}(v)$ and internally disjoint from B. This means that

$$
p(n-1)<p(n)
$$

Since $\mathrm{n} \leq \mathrm{k} / 2$, we also have

$$
\min (n-1, k-(n-1))=\min (n, k-n)-1,
$$

which implies

$$
\min (n-1, k-(n-1))-p(n-1) \geq \min (n, k-n)-p(n)
$$

(in fact equality must hold), and contradicts the minimality of

$$
\min (n, k-n)
$$

The proof of proposition 1.6.31 is finished.
1.6.4. Let π be a border-partition of R.

Since

$$
E \quad(R(\pi))=E \quad(R)
$$

for every subgraph M of $R(\pi), E(M) \subseteq E(R)$. The subgraph of R spanned by $E(M)$ is then called the subgraph of R corresponding to M. Also for every subgraph N of $R, E(N) \subseteq E(R(\pi))$, and the subgraph of $R(\pi)$ spanned by $E(N)$ is called the subgraph of $R(\pi)$ corresponding to N.

Let C be a polygon of $R(\pi)$. A maximal segment of C is a subgraph P of C such that
(i) P is a path of length at least 2,
(ii) both terminal vertices of P belong to $V(B(\pi))$,
(iii) P is internally disjoint from $B(\pi)$.
1.6.41. PROPOSITION. Let π. be a borderpartition of R and let the positive integer g be the girth of $R(\pi)$. Let Clbe a polygon of $R(\pi)$ having length g. Then exactly one of the following three conditions holds:

1. $|V(C) \cap V(B(\pi))| \leq 1$,
2. C is a subgraph of $B(\pi)$,
3. C has exactly 1 maximal segment.

Proof. Suppose that C has two distinct maximal segments M_{i} and M_{2}. Let N_{1} and N_{2} be the corresponding subgraphs of R. By proposition l.6.21, θ
has at most one fixed vertex, and therefore one of N_{1} and N_{2}, say N_{1}, does not contain any fixed vertex of θ. Let P be a shortest path in B between the two terminal vertices of the path N_{1}. By propusition 1.6.31, the length of P is less than the length of N_{1}. Replacing in C, M_{1} by the subgraph of $R(\pi)$ corresponding to P, we obtain a subgraph that may.not be a polygon, but that will necessarily contain a polygon C ' such that
(i) M_{2} is a subgraph of C^{\prime},
(ii) the length of C^{\prime} is smaller than that of C. If follows from (i) that the length of C ' is at least 3. But than (ii) contradicts the assumption that the length of C is the girth g of $R(\pi)$.
1.6.5. PROPOSITION. For every border-partition π of $R, R(\pi)$ and $R(\phi \pi)$ have the same girth.

Proof. We have only to prove that the girth of $R(\pi)$ is not less than the girth of $R(\phi \pi)$. Then, by applying the argument again to the border-partition $\phi \pi$, we would obtain the desired result.

Let the positive integer g be the girth of $R(\pi)$ and let C be a polygon of $R(\pi)$ having length g.

We shall find a polygon C^{\prime} of $R(\phi \pi)$ having the same length.

If

$$
V(C) \cap V(B(\pi))=\varnothing,
$$

then C is a polygon of $R(\phi \pi)$ and we let $C^{\prime}=C$. If

$$
|V(C) \cap V(B(\pi))|=1
$$

then the subgraph S of R corresponding to C is either a polygon or a path. If it is a polygon, then the subgraph of $R(\phi \pi)$ corresponding to S is also apolygon C^{\prime}. If it is a path P with terminal vertices $\theta^{i}(v)$ and $\theta^{j}(v)$, then

$$
\theta^{i}(v) \equiv \theta^{j}(v) \quad \bmod \pi
$$

and

$$
\theta^{-i}(v) \equiv \theta^{-j}(v) \quad \bmod \quad \phi \pi
$$

so that the subgraph of $R(\phi \pi)$ corresponding to $\sigma^{-i-j}(P)$ is a polygon C^{\prime}, having still the same length as C.

If C is a subgraph of $B(\pi)$ then, since $B(\pi)$ and $B(\phi \pi)$ are isomorphic, $B(\phi \pi)$ must also have a polygon C^{\prime} of the same length as C.

According to prowsition 1.6.41,there remains only the case where C has exactly one maximal segment M. Let the corresponding subgraph of R be the path N with terminal vertices $\theta^{i}(v)$ and $\theta^{j}(v)$. Also there is a path in $B(\pi)$, subgraph of C, joining the vertex of $R(\pi)$ containing $\theta^{i}(v)$ to the vertex containing $\Theta^{j}(v)$. (Recall that the vertices of $R(\pi)$ are sets of vertices of R.) Consequently there is a path P in $B(\phi \pi)$ joining the vertex containing $\Theta^{-i}(v)$ to the vertex containing $\Theta^{-j}(v)$. But P, together with the path in $R(\phi \pi)$ corresponding to $\sigma^{-i-j}(N)$, forms a polygon C ' having the same length g as C.

The proof of proposition 1.6.5. is finished.
1.7. Planarity of the stator
1.7.1. Let R be a graph and $R=(R, \theta, J, v)$ a rotor of order k such that v is aüjacent to $\theta(v)$. Let (R, S, W) be a motor. In 1.3.3. the subgraph \bar{S} of $M(R, S, w)$ was defined by

$$
\begin{aligned}
& \mathrm{V}(\overline{\mathrm{~S}})=\mathrm{J} u[\mathrm{~V}(\mathrm{~S}) \backslash \mathrm{w}(\mathrm{~J})] \\
& \mathrm{E}(\overline{\mathrm{~S}})=\mathrm{E}(\mathrm{~S})
\end{aligned}
$$

$(R, \mathrm{~S}, \mathrm{~W})$ is called a planar motor if
(i) the subgraph Q of $M(R, S, w)$ consisting of \bar{S} and the polygon

$$
P=P\left(v, \theta(v), \ldots, \theta^{k-1}(v)\right)
$$

is planar
(ii) P do not have overlapping bridges in Q.

The chromatic polynomial is said to be planar motor invariant with respect to R if for every planar motor ($R, \mathrm{~S}, \mathrm{w}$)

$$
\mathrm{P}(\mathrm{M}(R, \mathrm{~S}, \mathrm{~W}), \lambda)=\mathrm{P}\left(\mathrm{M}(R, \mathrm{~S}, \mathrm{~W} \phi)_{f}, \lambda\right)
$$

Let $\&$ be a non-negative integer. The lowest ℓ Coffficients of the chromatic polynomial are planar motor invariant with respect to R if for every planar motor ($R, \mathrm{~S}, \mathrm{w}$) and every integer j, $0 \leq j \leq \ell-1$, the coefficient of $\lambda^{\mathbf{j}}$ is the same in $\mathrm{P}(\mathrm{M}(R, \mathrm{~S}, \mathrm{w}) ., \lambda)$ and in $\mathrm{P}(\mathrm{M}(R, \mathrm{~S}, \mathrm{~W} \phi), \lambda)$.
1.7.2. Let the rotor $R=(R, \theta ; V, v)$ be as above. A border-partition π of R is called planar if there are no four integers $i_{1}, i_{2}, i_{3}, i_{4}$ with
(i) $0 \leq i_{1}<i_{2}<i_{3}<i_{4}<k$
(ii) $\theta^{i}(v) \equiv \theta^{i_{3}}(v) \bmod \pi$, (iii) $\theta^{i} 2$ (v) $\equiv \theta^{i 4}$ (v) $\bmod \pi$, (iv) $\theta^{i_{1}}$ (v) $\ddagger \theta^{i_{2}}$ (v) $\bmod \pi$.

The chromatic polynomial is said to be planar partition-invariant with respect to R if for every planar border-partition π

$$
P(R(\pi), \lambda)=P(R(\phi \pi), \lambda) .
$$

Let ℓ be a non-negative integer. The lowest ℓ coefficients of the chromatic polynomial are planar partition invariant with respect to R if for every planar border-partition π and every
integer $j, 0 \leq j \leq \ell-1$, the coefficient of λ^{j} is the sanie in $P(R(\pi), \lambda)$ and in $P(R(\phi \pi), \lambda)$.
1.7.3. PROPOSITION. Let the rotor $R=(R, \theta, \mathcal{J}, v)$ be as above.
(i) For every non-negative integer ℓ the lowest ℓ coefficients of the chromatic polynomial are planar motor invariant with respect to R if and only if they are planar partition invariant.
(ii) The chromatic polynomial is planar motor invariant with respect to R if and only if it is planar partition invariant.

Proof. Analogous to that of proposition 1.3.5.

To prove the "if" part of (i), we observe that if ($R, \mathrm{~S}, \mathrm{w}$) is a planar motor, then so is ($R, \mathrm{~S}, \phi \mathrm{w}$) and for every spanning subgraph T of S, the border partitions $\pi \bar{T}$ and $\pi \bar{T}$ are planar. Therefore planar partition invariance of the lowest ℓ coefficients implies planar motor invariance as in the proof of proposition l.3.5. Also a slight modification of the argument used in proving proposition l.3.5. shows the validity of the "only if" part of (i). Given the border partition π_{0},
this time planar, we have to construct a plarar mot or ($R, \mathrm{~S}, \mathrm{w}$) such that w is surjective onto $\mathrm{V}(\mathrm{S})$ and

$$
\pi \bar{S}=\pi 0,
$$

but for every proper spanning subgraph T of S,

$$
\pi \bar{T}<\pi_{0}
$$

This can be done as follows. Define, as in the general case of hypergraphs, w to be a bijection $\mathrm{w}: \mathrm{V}(\mathrm{R}) \longrightarrow \mathrm{V}(\mathrm{S})$, where $\mathrm{V}(\mathrm{S})$ is any set disjoint from $V(R)$. For each block B of π_{0},

$$
\begin{aligned}
& B=\left\{\theta^{i_{1}}(v), \ldots, \theta^{i_{t}}(v)\right\} \\
& 0 \leq i_{1}<\ldots<i_{t}<k
\end{aligned}
$$

let a connected component of s induce a path with consecutive vertices

$$
w\left(\theta^{i_{1}}(v)\right), \ldots, w\left(\theta^{i_{t}}(v)\right)
$$

Clearly the stator S satisfies all the requirements, and the remaining part of the argument used for general hypergraphs is valid also in this case.

Finally, (ii) follows from (i) exactly as in the proof of proposition 1.3.5.
1.7.4. In view of the above proposition, we call the chromatic polynomial simply planar invariant with respect to R, if it is planar motor invariant or equivalently, planar partition invariant.
1.7.5. Planar rotors of order 7 bounded by a heptagon.

Let $R=(R, \theta J, v)$ be a rotor of order 7 , where R is a graph in which v is adjacent to $\theta(v)$. As in 1.3.7, we call a border partition π admissible if for every integer i

$$
\theta^{i}(v) \quad \equiv \theta^{i+1}(v) \quad \bmod \pi
$$

We have then the following:
1.7.51. PROPOSITION. Every admissible planar border partition of R is bilaterally symmetric.

Proof. Let $\mathrm{v}^{\mathrm{i}}=\Theta^{i}(\mathrm{v})$ for every integer i. Consider the following 6. admissible planar border partitions:

$$
\begin{aligned}
& \pi_{1}=\left\{\left\{v^{1}, v^{3}, v^{6}\right\},\left\{v^{2}\right\},\left\{v^{4}\right\},\left\{v^{5}\right\},\left\{v^{7}\right\}\right\}, \\
& \pi 2=\left\{\left\{v^{1}\right\},\left\{v^{3}\right\},\left\{v^{6}\right\},\left\{v^{2}, v^{4}\right\},\left\{v^{5}, v^{7}\right\}\right\}, \\
& \pi 3=\left\{\left\{v^{1}\right\},\left\{v^{3}\right\},\left\{v^{4}\right\},\left\{v^{5}\right\},\left\{v^{6}\right\},\left\{v^{2}, v^{7}\right\}\right\}, \\
& \pi 4=\left\{\left\{v^{1}\right\},\left\{v^{4}\right\},\left\{v^{5}\right\},\left\{v^{2}, v^{7}\right\},\left\{v^{3} ; v^{6}\right\}\right\}, \\
& \pi 5=\left\{\left\{v^{1}\right\},\left\{v^{2}\right\},\left\{v^{4}\right\},\left\{\mathrm{v}^{5}\right\},\left\{v^{7}\right\},\left\{v^{3}, v^{6}\right\}\right\}, \\
& \pi_{5}=\left\{\left\{v^{1}\right\},\left\{v^{2}\right\},\left\{v^{3}\right\},\left\{v^{4}\right\},\left\{v^{5}\right\},\left\{v^{6}\right\},\left\{v^{7}\right\}\right\},
\end{aligned}
$$

These border partitions are bilaterally symmetric. Also every admissible planar border partition of R is of the form $\theta^{i}\left(\pi_{k}\right)$, $i \in Z, 1 \leq k \leq 6$ (k unique). As in proposition 1.3 .71 , the result follows.
1.7.52. Remark. Not every admissible border partition of R is bilaterally symmetric. A counterexample is the partition

$$
\pi=\left\{\left\{v^{1}, v^{3}, v^{6}\right\},\left\{v^{5}, v^{7}\right\},\left\{v^{2}\right\},\left\{v^{4}\right\}\right\}
$$

1.7.53. PROPOSITION. Let $R=(R, \theta, v)$ be a rotor of order 7 , where R is a graph such that v is adjacent to $\theta(v)$. Then the chromatic polynomial is planar invariant with respect to R.
1.7.54. Example. Let R be the strict graph with vertex set $V(R)=[0,13]$ depicted in Figure 8.

Figure 8

Let

$$
\begin{aligned}
& 0=(0,2,3,4,5,6) \quad(7,8,9,10,11,12,13), \\
& J=[0,6] \quad, \quad v=0 .
\end{aligned}
$$

Then $R=(R, \theta, J, v)$ is a rotor satisfying the hypotheses of proposition 1.7.53. We note that R is not a planar graph. Figure 9 displays a pasir of non-isomorphic graphs,obtained from R, having the same chromatic polynomial.

CHAF'J'EK 2

AUTOMORPHISMS OF SUBSYSTEMS

2.1. This section deals with the automorphism group of a general graph G and that of a subsystem H induced by a constituent of Auth G.

$$
\text { Given } n \text { groups } A_{1}, \ldots, A_{n}, n \geq 3 \text {, and } n-l \text { group }
$$

homomorphisms

$$
h_{1}: A_{1} \rightarrow A_{2}, \cdots, h_{n-1}: A_{n-1} \longrightarrow A_{n},
$$

the sequence

$$
h_{1}, \cdots, h_{n-1},
$$

represented diagrammatically: as

$$
A_{1} \xrightarrow{h_{1}} A_{2} \quad \cdots \quad A_{n-1} \xrightarrow{h_{n-1}} A_{n}
$$

is called an exact sequence (see [L 1]) if for every $1 \leq i \leq n-2$

$$
\operatorname{Im} h_{i}=\operatorname{Ker} h_{i+1}
$$

Let a diagram D represent groups
$A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{n}$ and group homomorphisms

$$
h_{1}: A_{1} \longrightarrow B_{1}, \cdots, h_{n}: A_{n} \rightarrow B_{n}
$$

Suppose that for every pair of sequences $h_{i_{1}}, \ldots$, $h_{i_{k}}$ and $h_{j_{i}}, \cdots, h_{j_{m}}$ such that
(i) for every $1 \leq t \leq k-1, B_{i_{t}}=A_{i_{t+1}}$
(ii) for every $1 \leq t \leq m-1, B_{j_{t}}=A_{j t+1}$
(iii) $A_{i_{1}}=A_{j_{1}}, \quad B_{i_{k}}=B_{j_{m}}$,
the compositions $h_{i_{k}} \ldots h_{i_{1}}$ and $h_{j_{m}} \ldots h_{j_{\mathcal{l}}}$ are equal.
Then the diagram D is said to be commutative.

We denote the trivial group Z_{I} by 0 .

Let G be a general graph and let U be a constituent of Aut G. Let

$$
\operatorname{Fix}(G, G[U])=\bigcap_{x \in U}(\text { Aut } G)_{x}
$$

be the subgroup of those automorphisms of G that fix every vertex of the subsystem G[U] induced by U.

Let $r: A u t G \rightarrow A u t$ G[U'j be the restriction homomorphism,

$$
\mathbf{r}(\sigma)=\sigma \mid \mathrm{U}
$$

for every $\sigma \in$ Aut G.
2.1.1. PROPOSITICN. The sequence
$\mathrm{O} \rightarrow$ Fix $(\mathrm{G}, \mathrm{G}[\mathrm{U}]) \rightarrow$ Aut $\mathrm{G} \xrightarrow{r}$ Aut $\mathrm{G}[\mathrm{U}]$,
where the unlabelled arrows stand for the canonical group homomorphisms, is exact.

Proof. Follows without difficulty from the definitions.

The main proposition of this section is the following:
2.1.2. PROPOSITION. Given a general graph H and an exact sequence of group homomorphisms

$$
\mathrm{O} \rightarrow \mathrm{~A} \xrightarrow{\mathrm{f}} \mathrm{~B} \xrightarrow{\mathrm{~g}} \text { Aut } \mathrm{H} \text {. }
$$

there exists a general graph G such that
(i) H is a subsystem of G induced by a constituent of Aut G ,
(ii) for some group isomorphisms $h: F i x(G, H) \longrightarrow A$ and $k: A u t G \rightarrow B$, the diagram

is commutative.

Proof. Deferred to 2.1.4.
2.1.3. PROPOSITION. Given a general graph H and a subgroup B of Aut H, there exists a general graph G such that (i) H is a subsystem of G induced by a faithful constituent of Aut G,
(ii) Aut $G \mid V(H)=B$.

Proof. Let α be the cardinality of $V(H) . \alpha$ is the first ordinal number with $|W(\alpha)|=|V(H)|$. We can in fact assume that

$$
V(H)=W(\alpha)
$$

i:

Assume also that $\alpha \geq 2$.
For each $\sigma \in B$ let v_{σ} be a new element not belinging to $\sigma(H)$,

$$
\mathbf{v}_{\sigma}=\mathbf{v}_{\tau} \Rightarrow \sigma=\tau
$$

We write

$$
\mathrm{v}_{\mathrm{B}}=\left\{\mathrm{v}_{\sigma} \mid \sigma \in \mathrm{B}\right\}
$$

For every $(\sigma, \beta) \in B \times V(H)$ let $G(\sigma, \beta)$ be a strict digraph such that
(i) the vertices of $G(\sigma, \beta)$ are in one-to-one correspondence with $\left[0, \sigma^{-1}(\beta)+2\right]$,

$$
\begin{aligned}
& \mathrm{V}(\mathrm{G}(\sigma, \beta))=\left\{\mathrm{w}_{\gamma} \mid 0 \leq \gamma \leq \sigma^{-1}(\beta)+2\right\}, \\
& \mathrm{w}_{\mathrm{O}}=\mathrm{v}_{\sigma} \quad, \quad \mathrm{w}_{\sigma^{-1}}(\beta)+2=\beta,
\end{aligned}
$$

(ii) there is a dart from w_{γ} to w_{δ} if and only if $\gamma<\delta$.

Moreover, assume that for every $\sigma, \sigma^{\prime} \epsilon B$ and $\beta, \beta^{\prime} \epsilon V(H)$

$$
V(G(\sigma, \beta)) \cap\left(V_{B} \cup V(H)\right)=\left\{V_{\sigma}, \beta\right\}
$$

and

$$
V(G(\sigma, \beta)) \cap V\left(G\left(\sigma^{\prime}, \beta^{\prime}\right)\right) \subseteq V_{B} \cup V(H)
$$

if $\quad \sigma \neq \sigma^{\prime}$ or $\beta \neq \beta^{\prime}$. Let also

$$
E(G(\sigma, \beta)) \cap E\left(G\left(\sigma^{\prime}, \beta^{\prime}\right)\right)=\varnothing
$$

if $\sigma \neq \sigma^{\prime}$ or $\beta \neq \beta^{\prime}$, and

$$
E(G(\sigma, \beta)) \cap E(H)=\varnothing
$$

for every σ and β.

We define G by

$$
\begin{gathered}
G=H \cup \bigcup_{\sigma \in B} G(\sigma, \beta) \\
0 \leq \beta<\alpha
\end{gathered}
$$

Obviously H is an induced subsystem of G. We have

$$
\begin{aligned}
V(H)=\{x \in V(G) \mid & N^{+}(x) \subseteq\{x\} \quad \text { or } \exists y \in N^{-}(x) \text { with } \\
& \left.N^{+}(x) \nsubseteq N^{+}(y)\right\}
\end{aligned}
$$

Also

$$
V_{B}=\left\{x \in V(G): d^{-}(x)=0\right\}
$$

Consequently $\mathrm{V}(\mathrm{H})$ and V_{B} are constituents of Aut G .

$$
\text { For a } \theta \epsilon \text { Aut } G \text { let us write } \theta_{\mathrm{H}}=\theta \mid V(\mathrm{H}) \text {. Let } i \text { be }
$$ the identity element of the group B. Let

$$
v_{\boldsymbol{\tau}}=\theta\left(v_{\mathbf{i}}\right) .
$$

For every $\beta \in \mathrm{V}(\mathrm{H}), \theta(\mathrm{V}(\mathrm{G}(\mathrm{i}, \beta))=\mathrm{V}(\mathrm{G}(\tau, \theta(\beta)))$. Consequently $G(i, \beta)$ is isomorphic to $G(\tau, 0(\beta))$, so that

$$
\begin{aligned}
& \tau^{-1}(\theta(\beta))+2=i^{-1}(\beta)+2 \\
& \tau^{-1}\left(\theta_{H}(\beta)\right)=\beta,
\end{aligned}
$$

i.e.

$$
\theta_{\mathrm{H}}(\beta)=\tau(\beta)
$$

implying that

$$
\theta_{\mathrm{H}}=\tau \in \mathrm{B} .
$$

Thus

$$
\text { Aut } G \mid V(H) \subseteq B .
$$

Further, for every $\tau, \sigma \in B$ and $\beta \in V(H)$ there is a (unique) isomorphism between the digraphs $G(\alpha, \beta)$ and $G(\tau \sigma, \tau(\beta))$. It can be then verified that for every $\tau \in B$ there exists an automorphism θ_{τ} of G such that

$$
\theta_{\tau}(\beta)=\tau
$$

for every $\beta \in V(H)$ and

$$
\theta_{\tau} \cdot\left(v_{\sigma}\right)=v_{\tau \sigma}
$$

for every $\quad v_{\sigma} \in V_{B}$. Clearly

$$
\theta_{\tau} \mid V(H)=\tau .
$$

This proves the equality

$$
\text { Aut } G \mid V(H)=B \text {. }
$$

To prove that $V(H)$ is a faithful constituent of Aut G, we have to show that

$$
\theta_{\mathrm{H}}=\theta_{\mathrm{H}}^{\prime} .
$$

holds only if $\theta=\theta^{\prime}$.

Since for $\tau, \sigma \in B$ and $\beta \in \bigvee(\mathrm{I})$ the digraph isomorphism between $G(\sigma, \beta)$ and $G(\tau \sigma, \tau(\beta))$ is unique, it suffices to show that for every $\theta \in$ Aut G, if

$$
\theta_{\mathrm{H}}=\tau \epsilon \mathrm{B}
$$

then

$$
\theta\left(v_{\sigma}\right)=v_{\tau \sigma}
$$

for every $\quad v_{\sigma} \in V_{B}$. Let indeed

$$
\theta\left(v_{\sigma}\right)=v_{\pi} .
$$

For every $\beta \in \mathrm{V}(\mathrm{H})$,

$$
\theta(V(G(\sigma, \beta)))=V(G(\pi, \tau(\beta))),
$$

so that

$$
\sigma^{-1}(\beta)+2=\pi^{-1} \tau(\beta)+2 \text {. }
$$

It follows that

$$
\sigma^{-1}=\pi^{-1} \tau
$$

i.e.

$$
\pi=\tau \sigma
$$

proving our claim. The proof of the proposition is complete.

Remark. In'the above construction no verter: of G has degree 0 .
2.1.4. Proof of proposition 2.1.2.

Im g is a subgroup B_{O} of Aut H. According to proposition 2.1.3. we can construct a general graph G_{O} with no vertices of degree 0 such that
(i) H is a subsystem of G_{O} induced by a faithful constituent of Aut G_{O},
(ii) Aut $\mathrm{G}_{\mathrm{O}} \mid \mathrm{V}(\mathrm{H})=\mathrm{B}_{\mathrm{O}}$.

To continue the construction, we assume that B is disjoint from $V\left(G_{O}\right)$, We define a general graph H_{1} by

$$
\begin{aligned}
& V\left(H_{1}\right)=V\left(G_{O}\right) \cup B \\
& E\left(H_{1}\right)=E\left(G_{O}\right)
\end{aligned}
$$

and the requirement that G_{O} be a subsystem of H_{1}. Since

$$
\mathrm{V}\left(\mathrm{G}_{\mathrm{O}}\right)=\left\{\mathrm{x} \in \mathrm{~V}\left(\mathrm{H}_{\mathrm{I}}\right) \mid \mathrm{d}(\mathrm{x}) \neq 0\right\}
$$

$V\left(G_{O}\right)$ and B are constituents of Aut H_{1}, and so is V (H) .

For every $\sigma \in \dot{B}_{o}$, let $\bar{\sigma}$ be the unique automorphism of G_{O} whose restriction to $V(H)$ is σ. For every $\alpha \in B$, define an automorphism τ_{α} of H_{1} by

$$
\tau_{\alpha}(\beta)=\alpha \beta .
$$

for every $\beta \in B$ and

$$
\begin{equation*}
\tau_{\alpha}(v)=\overline{g(\alpha)} \tag{v}
\end{equation*}
$$

for every $v \in V\left(G_{O}\right)$. Clearly

$$
B_{1}=\left\{\tau_{\alpha} \mid \alpha \in B\right\}
$$

is a subgroup of Aut H_{1}. Let G be a general graph such that
(i) H_{I} is a subsystem of G induced by a faithful constituent of Aut G,
(ii) Aut G $\mid V\left(\mathrm{H}_{\mathrm{I}}\right)=\mathrm{B}_{1}$.
H is an induced subsystem of G and $V(H)$ is a constituent of Aut G. Let i denote the identity element of the group B. Since B is a constituent of Aut G, we can define k by

$$
\begin{equation*}
\mathrm{k}(\sigma)=\sigma \tag{i}
\end{equation*}
$$

for every $\sigma \in$ Aut G. Clearly for every $\sigma \in \operatorname{Fix}(G, H)$, $\mathrm{g} \mathrm{k}(\sigma)$ is the identity autonorphism of H , i.e.

$$
k(\sigma) \quad \in \operatorname{Ker} g=\operatorname{Im} f
$$

On the other hand, since f is injective, $f^{-1}(\gamma)$ is well defined for eves:y $\gamma \in \operatorname{Im} f$. Let

$$
h(\sigma)=f^{-1}(k(\sigma))
$$

for every $\sigma \epsilon$ Fix (G, H). There is no difficulty in verifying that G, k, h satisfy the requirements of proposition 2.1.2.

Remark. If H is finite. then so is G .
2.2. k- uniform hypergraphs.
2.2.1. For every integer $k \geq 2$ define a simple k - uniform hypergraph A_{k} by

$$
\begin{aligned}
V\left(A_{k}\right)= & {[1,2 k+2], } \\
E\left(A_{k}\right)= & \{[i, i+k-1] \mid 1 \leq i \leq k+2\} \\
& \cup\{[i, i+k-2] \cup\{2 k+2\} \mid i=3, k+2\} .
\end{aligned}
$$

A_{2} is pictured in Figure 10.

Figure 10

A hypergraph H is called a k-arrow from x to y, where $x, y \in V(H)$, if its vertices can be labelled
$\mathrm{v}_{1}, \ldots, \mathrm{v}_{2 \mathrm{k}+2}$ in such a way that
(i) $v_{1}=x$ and $v_{2 k+1}=y$,
(ii) the mapping $i \rightarrow v_{i}(i=1, \ldots, 2 k+2)$ is an isomorphism from A_{k} to H.
2.2.11. LEMMA. The automorphism group of any k-arrow is trivial.

Proof. We show that Aut A_{k} is trivial for any $k \geq 2$. First we observe that A_{k} has exactly two vertices of degree one, namely 1 and $2 k+1$. It has also two vertices of degree two, namely 2 and $2 k+2$. But l is the only vertex of degree one that has a neighbour of degree two. Also 2 is the only vertex of degree two that has a neighbour of degree one. Consequently every automorphism of A_{k} leaves fixed each of the vertices $1,2,2 k+l$ and $2 k+2$. Suppose Aut A_{k} is not trivial, and let i be the smallest integer, $i \in[1,2 k+2]$, which is not fixed by every automorphism of A_{k}. Clearly $3 \leq i \leq 2 k$. Both [l, i-l] and $[i, 2 k+1]$ are constituents of Aut A_{k}. If $i \leqslant k+1$, then i and $2 k+1$ are the only vertices of degree one in the sub-hypergraph of A_{k} induced by [$\mathrm{i}, 2 \mathrm{k}+\mathrm{l}$] , and since $2 \mathrm{k}+\mathrm{l}$ is fixed by every automorphism of A_{k}, so is i. Since this contradicts the choice of $i, i>k+1$. Then i has degree one in the sub-hypergraph of A_{k} induced by

$$
[1, i-1] \cup\{i\}=[1, i]
$$

while any other vertex $j \in[i, 2 k+1]$ has degree zero in the sub-hypergraph induced by

$$
[1, i-1] \cup\{j\}
$$

It follows that i has to be fixed by every automorphism oi A_{k}, a contradiction proving the lemma.
2.2.2. For every $k \geq 2$ and every positive integer n define a k-uniform simple hypergraph $\mathrm{C}_{\mathrm{k}, \mathrm{n}}$ by

$$
\begin{aligned}
& V\left(C_{k}, n\right)=[1, n] \\
& E\left(C_{k}, n\right)=\{[i, i+k-1] \mid l \leq i \leq n-k+1\}
\end{aligned}
$$

$C_{2,5}$ is pictured in Figure 11 .

Figure 11

Let H be a hypergraph, $X \in V(H)$. H is called . k-rhain of length n with endpoint x if there is an isomorphism $f: H \rightarrow C_{k, n+1}$ such that $f(x)=1$.
2.2.21. LEMMA. Let H be a k-chain of length at least $2 \mathrm{k}-2$ with endpoint x . Then the stabilizer (Aut H) x is trivial.

Proof. We show that if $n \geq 2 k-2$, then
(Aut $C_{k, n+1}$) is trivial. Since the only vertices of degree one of $C_{k}, n+1$ are l and $n+1$, every automorphism in (Aut $\left.C_{k}, n_{1}\right)_{1}$ fixes also $n+1$. Suppose (Aut $\left.C_{k, n+1}\right)_{1}$ is notrivial and let i be the smallest integer, $i \in[1, n+1]$ which is not fixed by every automorphism in (Aut $\left.C_{k, n+1}\right)_{1}$. Both $[1, i-1]$ and [i, $n+1]$ are constituents of (Aut $\left.C_{k, n+1}\right)_{2}$. Distinguishing the cases $i \leq k-1$ and $i>k-1$, contradictions are obtained as in the proof of Lemma 2.2.11.
2.2.3. PROPOSITION. Let k be any integer ≥ 2. Given a k-uniform hypergraph H and an exact sequence of group homomorphisms

$$
0 \longrightarrow \mathrm{~A} \xrightarrow{\mathrm{f}} \mathrm{~B} \xrightarrow{\mathrm{~g}} \text { Aut } \mathrm{H}
$$

there exists a k-uniform hypergraph G such that
(i) H is a sub-hypergraph of G induced by a constituent of Aut G ,
(ii) for some group isomorphisms h: Fix (G, H) $\rightarrow \mathrm{A}$ and $k:$ Aut $G \longrightarrow B$, the diagram

is commutative.

Proof. Following the proof of proposition 2.1.2., we construct a general graph G_{O} such that
(i) the hypergraph H is a subsystem of G_{O} induced by a constituent of Aut G_{O},
(ii) there are isomorphisms h_{o} and k_{o} making the diagram

commutative,
(iii) every dart is incident with exactly 2 vertices, and no two distinct darts are incident with the same 2 vertices,
(iv) every edge in $E\left(G_{O}\right) \backslash E(H)$ is a dart.

We now construct a k-uniform hypergraph G such : that
(i) $\quad V\left(G_{O}\right) \subseteq V(G)$,
(ii) $V\left(G_{O}\right)$ is a faithful constituent of Auth G,
(iii) Auth $G \mid V\left(G_{O}\right)=$ Nut G_{O},
(iv) $\quad G[V(H)]=G_{O}[V(H)]=H$.

For each dart of G_{O} with tail x and head y, let $A(x, y)$ be a k-arrow from x to y. For each $z \in V\left(G_{O}\right)$, and each $i \in[2 k-2,3 k]$ let $C(z, i)$ be a k-chain of length i with endpoint z. Assume that

$$
\begin{aligned}
& \forall x, y \quad V(A(x, y)) \cap V\left(G_{O}\right)=\{x, y\}, \\
& \forall z, i \quad V(C(z, i)) \cap V\left(G_{O}\right)=\{z\} \\
& \forall x, y, x^{\prime}, y^{\prime} V(A(x, y)) \cap V\left(A\left(x^{\prime}, y^{\prime}\right)\right) \subseteq V\left(G_{O}\right) \\
& \text { if } x \neq x^{\prime} \text { or } y \not \mathcal{F}^{\prime},
\end{aligned}
$$

$$
\forall z, i, z^{\prime}, i^{\prime} \quad V(C(z, i)) \cap V\left(C\left(z^{\prime}, i^{\prime}\right)\right) \subseteq V\left(G_{0}\right)
$$

if $z \not \mathcal{F}^{\prime} z^{\prime}$ or $i \neq i^{\prime}$,

$$
\forall x, y, z, i \quad V(A(x, y)) \cap V(C(z, i)) \subseteq V\left(G_{0}\right)
$$

Suppose also that

$$
\begin{aligned}
& \forall x, y \quad E(A(x, y)) \cap E\left(G_{0}\right)=\varnothing, \\
& \forall z, i \quad E(C(z, i)) \cap E\left(G_{0}\right)=\varnothing, \\
& \forall x, y, x^{\prime}, y^{\prime} \quad E(A(x, y)) \cap E\left(A\left(x^{\prime}, y^{\prime}\right)\right)=\varnothing \\
& \text { if } x \neq x^{\prime} \text { or } y \neq y^{\prime}, \\
& \forall z, i, z^{\prime}, i^{\prime} E(C(z, i)) \cap E\left(C\left(z^{\prime}, i^{\prime}\right)\right)=\varnothing \\
& \text { if } z \neq z^{\prime} \text { or } i \neq i^{\prime}, \\
& \forall x, y, z, i \quad E(A(x, y)) \cap E(C(z, i))=\varnothing .
\end{aligned}
$$

Let

$$
G=H \cup \bigcup_{x, y} A(x, y) \cup \bigcup_{z, i} C(z, i)
$$

We have

$$
V\left(G_{O}\right)=\{x \in V(G) \mid d(x) \geq k+2\} .
$$

Hence $V\left(G_{O}\right)$ is a constituent of Aut G. That it is a faithful constituent, follows from lemmas 2.2.11 and 2.2.21. Also every automorphism of G_{O} extends to an automorphism of G, so that

$$
\text { Aut } G \mid V\left(\mathrm{G}_{\mathrm{O}}\right)=\text { Aut } \mathrm{G}_{\mathrm{O}}
$$

Finally, it is clear that H is an iaduced subhypergraph of G.

Define $k:$ Aut $G \longrightarrow B$ by

$$
k(\sigma)=k_{O}\left(\sigma \mid V\left(G_{O}\right)\right)
$$

for every $\sigma \in$ Aut G, and define $h: F i x(G, H) \longrightarrow A$ by

$$
h(\sigma)=h_{O}\left(\sigma \mid V\left(G_{O}\right)\right)
$$

for every $\sigma \in \operatorname{Fix}(G, H)$. Then G, h, k satisfy all the requirements of the proposition.

As a particular instance, the following result corresponds to proposition 2.1.3. in the case of k-uniform hypergraphs, $k \geq 2$:
2.2.4. PROPOSITION. Let k be any integer ≥ 2. Given a k-uniform hypergraph H and a subgroup B of Aut H, there exists a k-uniform hypergraph G such that (i) H is a sub-hypergraph of G induced by a faithful constituent of Aut G,
(ii) Aut $G \mid V(H)=B$.

Proof. In proposition 2.2.3, let A be the trivial group, $A=0$, and let f and g be the canonical embeddings.

For finite H the case $k=2$ of proposition 2.2.4 was proved by I.Z.Bouwer [B 12] and L.Babai [B 1]. Our results were obtained independently.
2.2.5. Some classical theorems follow from the previous results. They are included in the following corollary, which, for the case of finite groups, was first proved by P.Hell and J. .Nesetril [H 4, H 5] .
2.2.51. COROLLARY. Given an integer $k \geq 2$ and a group B, there exists a k-uniform hypergraph G whose automorphism group is isomorphic to B.

Proof. Define first a k-uniform hypergraph H by

$$
V(H)=B \quad, \quad E(H)=\varnothing
$$

Clearly

$$
\text { Aut } H=S_{B}
$$

Define the injection $f: B \longrightarrow$ Aut H by

$$
f(\alpha) \quad(\beta)=\alpha \beta
$$

for every $\alpha, \beta \in B$. Let A be the trivial group, $A=0$. Applying proposition 2.2.3 to the exact sequence

$$
0 \longrightarrow \mathrm{~A} \longrightarrow \mathrm{~B} \xrightarrow{\mathrm{E}} \text { Aut } \mathrm{H},
$$

we obtain the desired k-uniform hypergraph G.

The case $k=2$, B finite, is the well-known theorem of R.Frucht [F 4]. It has been generalized to infinite groups by Frucht himself [F 5] and G. Sabidussi [s l] •
2.3. $\bigwedge_{\alpha}^{\prime}$-uniform hypergraphs.
2.3.1. For every ordinal number α define a simple \boldsymbol{N}_{α}-uniform hypergraph A_{α} by

$$
\begin{aligned}
& V\left(\mathbb{A}_{\alpha}\right)=\left[0, \omega_{\alpha}\right], \\
& E(\mathbb{A})=\left\{\left[\beta, \omega_{\alpha}\right] \mid 0 \leq \beta<\omega_{\alpha}\right\} .
\end{aligned}
$$

A hypergraph H is called an \bigcup_{α}-arrow from x to y, where $x, y \in V(H)$, if there is an isomorphism $f: H \rightarrow A_{\alpha}$. such that $f(x)=0$ and $f(y)=\omega_{\alpha}$.
2.3.11. LEMMA. The automorphism group of any $\aleph_{\alpha^{-}}$arrow is trivial.

Proof. We show that Aut A_{α} is trivial for any ordinal number α. We prove by transfinite induction on $\beta, 0 \leq \beta \leq \omega_{\alpha}$, that $[0, \beta]$ is a constituent of Aut A_{α}. Indeed, let β be such that $[0, \gamma]$ is a constituent of Aut A for every $\gamma<\beta$. Then

$$
W(\beta)=\bigcup_{\gamma<\beta}[0, \gamma]
$$

is a constituent of Aut A_{α} and so is

$$
\left[0, \omega_{\alpha}\right] \backslash W(\beta)=\left[\beta, \omega_{\alpha}\right] .
$$

But β is the only vertex of degree less than 2 in the sub-hypergraph of A_{α} induced by $\left[\beta, \omega_{\alpha}\right]$. Therefore β is fixed by every automorphism of A_{α} and

$$
[0, \beta]=W(\beta) \cup\{\beta\}
$$

is a constituent of Aut A_{α}. The Lemma follows.
2.3.2. PROPOSITION. a being any ordinal number, propositions 2.2.3 and 2.2.4 hold also for \mathcal{K}_{α}-uniform hypergraphs.

Proof. Let indeed H be an \aleph_{α}-uniform hypergraph and

$$
0 \longrightarrow A \xrightarrow{\mathrm{f}} \mathrm{~B} \xrightarrow{\mathrm{~g}} \text { Aut } \mathrm{H}
$$

an exact sequence. We find a general graph G_{0} and group homomorphisms h_{0}, k_{o} exactly as described in the proof of proposition 2.2.3. It can also be assumed that every vertex of G_{O} is incident with some dart. Again we construct an λ_{α}-uniform hypergraph G such that
(i) $V\left(G_{0}\right) \subseteq V(G)$,
(ii) $V\left(G_{O}\right)$ is a faithful constituent of Aut G,
(iii) Aut $G \mid V\left(G_{O}\right)=$ Aut G_{o},
(iv) $G[V(H)]=G_{O}[V(H)]=H$.

The construction of G will of course be different. For each dart of G_{O} with tail x and head y, let $A(x, y)$ be an K_{α}-arrow from x to y. Assume that

$$
\begin{aligned}
& \forall x, y \quad V(A(x, y)) \cap V\left(G_{0}\right)=\{x, y\} \\
& \forall \quad x, y \quad E(A(x, y)) \cap E\left(G_{0}\right)=\varnothing
\end{aligned}
$$

and

$$
\begin{aligned}
& \forall x, y, x^{\prime}, y^{\prime} \quad V(A(x, y)) \cap V\left(A\left(x^{\prime}, y^{\prime}\right)\right) \subseteq V\left(G_{O}\right), \\
& \forall x, y, x^{\prime}, y^{\prime} \quad E(A(x, y)) \cap E\left(A\left(x^{\prime}, y^{\prime}\right)\right)=\varnothing
\end{aligned}
$$

if $x \neq x^{\prime}$ or $y \neq y^{\prime}$.

Let

$$
G=H \cup \bigcup_{x, y} A(x, y)
$$

$V\left(G_{O}\right)$ is a constituent of fut G because
$V(G) \backslash V\left(G_{0}\right)=\left\{x \in V(G) \mid 1<d(x)<Y_{\alpha}\right.$ and ($\forall \mathrm{L}, \mathrm{L}^{\prime} \in \mathrm{E}(\mathrm{G})$ incident with x , either $\psi(L) \subseteq \psi\left(L^{\prime}\right)$ or $\left.\left.\psi\left(L^{\prime}\right) \subset \psi(L)\right)\right\}$.

Lemma 2.3.11 implies that it is a faithful crinstituent. The remaining parts of the proofs of propositions 2.2.3 and 2.2.4 apply mutatis mutandis.

Corresponding to Corollary 2.2 .51 we have the generalization of Frucht's theorem [F 4] to uniform hypergraph with infinite lines:
2.3.21. COROLIARY. Given any ordinal number α and a group B, there exists an \mathcal{K}_{α}-uniform hypergraph G whose automorphism group is isomorphic to B.
2.4. Symmetry blocks in general graphs.
2.4.1. A symmetry block in a general graph G is a subset $U \subseteq V(G)$ such that for every automorphism σ of $G, \sigma(U) \subseteq U$ or $\sigma(U) \cap U=\varnothing$. Actually, if U is a symmetry block then $\sigma(U) \subset U$ is impossible, because this would imply

$$
\sigma^{-1} \sigma(U)=U \subset \sigma^{-1}(U)
$$

despite the fact that $\sigma^{-1} \epsilon$ Aut G. Every constituent of Aut G is trivially a symmetry block.

For a symmetry block U of G, let

$$
N(G, G[U])=\{\sigma \in \text { Aut } G \mid \sigma(U)=U\} .
$$

If G is the graph pictured in Figure $12, V(G)=[1,9]$, then $U=[1,3]$ is a symmetry block and $\mathbb{N}(G, G[U]) \approx z_{2}$.

Figure 12
$N(G, G[U])$ is the lärest subgroup of Aut G of which U is a constituent. Let also

$$
\operatorname{Fix}(G, G[U])=\{\sigma \in \text { Aut } G \mid \forall x \in U \cdot \sigma(x)=x\},
$$

a definition compatible with the on:e given in section 2.1 for constituents . Fix (G, G[U]) is a iormal subgroup of $N(G, G[U])$.
2.4.2 PROPOSITION. Let C be a group, B a subgroup of C and A a normal subgroup of B. There exists a general graph G and an induced subsystem H of G süch that
(i) $V(H)$ is a symmetry block of G,
(ii) for some isomorphisms g, h, k the diagram

is commutative (unlabelled arrows standing for the canonical mappings).

Proof. First we define a general graph H_{O}. Let

$$
C / A=\{\gamma A \mid \gamma \in C \quad\}
$$

be the set of left cosets of A in C, and assume that $C \cap C / A=\varnothing$. Let

$$
\begin{aligned}
& V:\left(H_{O}\right)=C u \quad C / A, \\
& E\left(H_{O}^{\prime}\right)=\varnothing
\end{aligned}
$$

For each $\delta \in C$ define $\tau_{\delta} \epsilon$ Aut H_{O} by

$$
\tau_{\delta}(\gamma)=\delta Y
$$

for every $\gamma \in C$ and

$$
\tau_{\delta}(\gamma A)=\delta \gamma A
$$

for every $\gamma A \in C / A$. Then

$$
T=\left\{\tau_{\delta} \mid \delta \in \mathrm{C}\right\}
$$

is a subgroup of Aut H_{O}. Let G be a general graph such that
(i) H_{0} is a subsystem of G induced by a faithful constituent of Aut G,
(ii) Aut $G \mid V\left(H_{O}\right)=T$.

Let

$$
U=\{B A \mid B \in B\} \subset V\left(H_{0}\right)
$$

be the set of (left) cosets of A in B. Define.

$$
\mathrm{H}=\mathrm{G}[\mathrm{U}] .
$$

i denoting the identity element of C, define

$$
k(\sigma)=\sigma(i)
$$

for every $\sigma \in$ Aut G, and let h and g be the restrictions of k to $N(G, H)$ and $\operatorname{Fix}(G, H)$, respectively. The general graphs G, H and the group isomorphisms g, h, k satisfy the requirements of the proposition.

Remark. It is clear from the previous sections that in the above proposition "general graph" can be replaced by "k-uniform hypergraph" or " \mathcal{N}_{α}-uniform hypergraph" for any integer $k \geq 2$ or any ordinal number α.

CHAPTER 3

REGULAR REPRESENTATIO N
OF FINITE GROUPS BY HYPERGRAPHS
3.0. All hypergraphs considered in this chapter will be finite and simple.
3.1.1. A general problem is the characterization of all the permutation groups that are automorphism groups of some k-uniform hypergraph. For $k=2$, the problem was raised by Frucht [F 4]. Examples given by Frucht [F 4] and I.N. Kagno [K l] have shown that the solution might be difficult: although every group is isomorphic to the automorphism group of some hypergraph, not every permutation group is the automorphism group of a hypergraph. The simplest counter example is a regular permutation group of order 3.

For $k=2$, the case of regular permutation groups has been extensively studied. If A is a regular abelian permutation group, then A is the automorphism group of some graph if and only if A is isomorphic to Z_{2}^{n} for some $n \neq 2,3,4$ (C.Y.Chao [C 4] , W.Imrich [I 1, I 2] , M. H. McAndrew [M 1], G. Sabidussi [S2]). The problem is more complicated
for non-abelian groups. Using the theorem of W. Feit and J.G. Thompson [F 1] on the solvability of groups of odd order, L.A. Nowitz and M.E. Watkins have shown that if A is a regular, non-abelian permutation group of order coprime to 6 , then it is the automorphism group of some graph [N3]. Imrich extended this result to the case of $|A|$ odd and sufficiently large $[13,14]$. Miscellaneous other classes of groups have also been examined by Watkins [W1, W2, W3, W7] •
3.1.2. Let A be an arbitrary group. A left translation in A is a permutation $\tau \in S_{A}$ such that

$$
\tau(x) \quad x^{-1}
$$

is the same for every $x \in A$. Left translations form a subgroup L_{A} of S_{A}. For every $y \in A$, the mapping ${ }^{\tau} y: A \rightarrow A$ given by

$$
{ }^{\tau} \mathrm{y}(\mathrm{x})=\mathrm{yx}
$$

for every $x \in A$, is a left translation. The mapping

$$
y \rightarrow \tau_{y}
$$

is an isonvrphism firom A to L_{A}, a fact well known as Cayley's theorem [C 2] . Every regular permutation group B can be viewed as the group of left translations L_{A} in some abstract group A, isomorphic to B. In view of this, we shall say that a group A has a regular representation by a k-uniform hypergraph, if

$$
L_{A}=\text { Aut } H
$$

for some k-uniform hypergraph H.
3.2. Determination of regular cyclic auto morphism groups of 3 -uniform hypergraphs.
3.2.0. In this section we use integer symbols to denote the elements of Z_{n} they represent.
3.2.1. Among the cyclic groups Z_{n} only Z_{1} and Z_{2} have a regular representation by a graph and indeed they both have a regular representation by a k-uniform hypergraph for every $k \geq 2$: the edgeless hypergraphs on vertex set Z_{1} or Z_{2} are trivially k-uniform for every k.
3.2.2. If a group B of order n has a regular representation by a k-uniform hypergraph $H, k \leq n$, then it must also have a regular representation by an ($n-k$) - uniform hypergraph \bar{H}. Indeed, $\overline{\mathrm{H}}$ can be defined on the vertex set $V(\bar{H})=V(H)=B$ by

$$
E(\bar{H})=\{B \backslash A \mid A \in E(H)\}
$$

It follows without difficulty that the groups 23, Z_{4} and Z_{5} do not have a regular representation by any 3-uniform hypergraph.
3.2.3. To prove that a group B has a regalar repaesentation by a uniform hypergraph H, the general argument consists of two steps. We first define the hypergraph H with vertex set $V(H)=B$ usually in such a way that the relation

$$
\mathrm{L}_{\mathrm{B}} \subseteq \text { Aut } \mathrm{H}
$$

becomes obvious. Then, since L_{B} is transitive on B, in order to prove the equality

$$
\mathrm{I}_{\mathrm{B}}=\mathrm{Aut} \mathrm{H}
$$

it suffices to show that the stabilizer in Aut H of the identity element e of $B,(A u t H) e$, is trivial.
3.2.4. Let $n \geq 9$. Define a 3-uniform hypergraph H on the vertex set $V(H)=. Z_{n}$ by

$$
E(H)=\left\{\{i, i+1, i+3\} \mid i \in Z_{n}\right\}
$$

Clearly every left translation of Z_{n} is an automor phism of H. We show that the stabilizer (Aut H) of $0 \in Z_{n}$ is trivial. The neighbourhood of 0

$$
N(0)=\{-3,-2,-1,1,2,3\}
$$

is a constituent of (Aut H) O and
(Aut H) ol N(0) c inut (H [N(0)]).

But the only line of $H[N(0)]$ is

$$
\{-2,-1,1\}
$$

which must then be a constituent of (Aut H) o. On the other hand, define a graph G by

$$
\begin{aligned}
& \mathrm{V}(\mathrm{G})=\{-3,-2,-1,0,1,2,3\}, \\
& \mathrm{E}(\mathrm{G})=\{\{\mathrm{x}, \mathrm{y}\} \mid \mathrm{x} \neq \mathrm{y} \text { and } \exists \mathrm{A} \in \mathrm{E}(\mathrm{H}) \\
& \mathrm{such} \text { that }\{\mathrm{x}, \mathrm{Y}\} \subseteq A\} .
\end{aligned}
$$

It is clear that
(Aut H) $\circ \mid \mathrm{V}(\mathrm{G}) \subseteq$ Aut G.

If $n=9$, then G is the graph displayed in Figure 13. For $n>9$ it is depicted in Figure 14.

Figure 13

Figure

In any case

$$
d_{G}(-2)=4, \quad d_{G}(-1)=5, \quad d_{G}(1)=5,
$$

so that $\{-1,1\}$ is a constituent of (Auth H) ${ }_{0}$. Also

$$
\left[N_{G}(-1) \cap N_{G}(2)\right] \backslash\{-2,-1,0,1\}=\{2\}
$$

must be a constituent of (Auth H) o. Suppose an automorphism $\sigma \in$ (Auth $H)_{o}$ exchanges -1 and 1. Then

$$
\sigma(\{-1,0,2\})=\{1,0,2\}
$$

would be a line of H, which is impossible. Therefore $\sigma(1)=1$ for every $\sigma \in(\text { fut } H)_{o}$, ie.

$$
(A u t H)_{\circ} \subseteq(A u t H)_{1}
$$

By repeated application of the above argument we obtain

$$
\begin{aligned}
& \left(\text { Auth H) } O _ { 0 } \subseteq \left(\text { Alt H) } { } _ { 2 } \subseteq \left(\text { Alt H) } 2 \subseteq \cdots \text { (Alt H) } n_{n-1} \subseteq\right.\right.\right. \\
& \text { c (Au H) o, }
\end{aligned}
$$

implying that (Auth H) o is trivial. Consequently

$$
\text { Fut } \mathrm{H}=\mathrm{L}_{Z_{\mathrm{n}}}
$$

and Z_{n} has a regular representation by a 3-uniform hypergraph for every $n \geq 9$.
3.2.5. Let $n \in[6,8]$. Define a 3-uniform
hype: graph H by

$$
\begin{aligned}
& V(H)=Z_{n}, \\
& E(H)=\left\{\{i, i+i, i+3\} \mid i \in Z_{n}\right\} u\left\{\{i, i+1, i+2\} \mid i \leq Z_{n}\right\} .
\end{aligned}
$$

Every left translation of Z_{n} is obviously an automorphism of H. Consider the graph G given by

$$
\begin{aligned}
& \mathrm{V}(\mathrm{G})= \mathrm{V}(\mathrm{H}) \quad \\
& \mathrm{E}(\mathrm{G})=\{\{\mathrm{X}, \mathrm{y}\} \quad \mid \mathrm{x} \neq \mathrm{y} \text { and } \mathrm{x} \text { lies together } \\
& \text { with } \mathrm{y} \text { on } 3 \text { different } \\
&\text { lines of } \mathrm{H}\}
\end{aligned}
$$

We necessarily have

$$
\text { Aus } H \subseteq \text { Fut } G
$$

and hence

$$
(\text { Alt } H)_{O} \subseteq(A u t G)_{0}
$$

The stabilizer (fut G) o consists of, besides the idemtity automorphism, the reflection $\phi: z_{n} \rightarrow z_{n}$ given by

$$
\phi(i)=-i
$$

for every i $\in Z_{n}$. But

$$
\phi(\{0,1,3\}) \notin E(H),
$$

so that

$$
\phi \notin(\text { Aut } H)_{O}
$$

and (Aut H) o can contai: only the identity permutation. This proves that each of Z_{6}, Z_{7} and Z_{8} have a regular representation by a 3-uniform hypergraph.

We summarize the preceeding results in the following proposition:
3.2.6. PROPOSITION The cyclic group Z_{n} has a regular representation by a 3-uniform hypergraph if and only if $n \neq 3,4,5$.
3.2.7. Consider the group 27 . Let H be a 3-uniform hypergraph such that $V(H)=27$ and

$$
\text { Aut } \mathrm{H}=\mathrm{L}_{Z_{7}}
$$

H must have a line $\mathrm{L}=\{\mathrm{h}, \mathrm{j}, \mathrm{k}\}$ such that

$$
\{-h,-j,-k\}
$$

is not a line, because otherwise (Alt H) o would contain the non-trivial reflection $i \rightarrow-i$. It is then easy to see that

$$
\{i, i+n\} \subset L
$$

for some $i \in Z_{7}$. In fact we can assume that

$$
0,1 \in \mathrm{~L}
$$

The third vertex of L must be 3 or 5 . In both cases the spanning sub-hypergraph F of H given by

$$
E(F)=\left\{\{i+h, i+j, i+k\} \mid i \in z_{7}\right\}
$$

is a projective plane that must be isomorphic to the Fino geometry.
3.3. Groups of. exponent >2.
3.3.1. Let B be any group. A set D of elements of B is called sum free if

$$
\{x y \mid x, y \in D\} \cap D=\not \subset
$$

This is equivalent to the condition

$$
x^{-1} y \quad \& \quad D
$$

for any $x, y \in D$. Clearly D cannot contain the identity element e of B. A sum free set D is called a $\delta-$ set if the following additional conditions are fulfilled:
(i) for every $x \in D, x^{-1} \in D$ only if $x^{-1}=x$,
(ii) D has two distinct elements a and b such that

$$
a^{2} \neq e, b^{2} \neq e
$$

It is clear that the elements a and b of condition (ii) must also satisfy

$$
a^{2} \neq b, b^{2} \neq a, a b \neq e
$$

For every $x \in B$, let (x) denote the subgroup of B generated by x.
3.3.2. An elementary abelian 2-group B (a group of exponent 2 , i.e. such that $x^{2}=e$ for every $x \in B$ j cannot have a δ-set.
3.3.3. PROPOSITION. Let \exists finite group B of exponent >2 have order at least 18. Then B has two distinct elements a and b such that
$a^{2} \neq e, a^{2} \neq b, b^{2} \neq e, b^{2} \neq a \quad, \quad a b \neq e$

Proof. Assume that the proposition is false for some group B of exponent $>2,|B| \geq 18$. Let a be an element of B having largest possible order. Then

$$
x^{2} \neq a
$$

for every $x \notin(a)$, because otherwise we would have

$$
(x) \quad(a)
$$

contradicting the choice of a. Indeed we must have

$$
x^{2}=e
$$

for every $x \notin(a)$, because otherwise letting

$$
b=x
$$

the pair a, b would satisfy tine requirements of the proposition. This shows also that

$$
(x a)^{2}=e
$$

for every $x \notin(a), i . e$.

$$
\begin{aligned}
& x a y=a^{-1} \\
& x a=a^{-1} x
\end{aligned}
$$

Further, if we had

$$
|(a)| \geq 7
$$

then setting

$$
b=a^{3}
$$

the pair a, b would satisfy the requirements of the proposition. Therefore

$$
|(a)| \leq 6
$$

and, in view of $|B| \geq 18$, we can choose $x, y \in B \backslash$ (a)
such that the product

$$
x y \notin(a)
$$

Then

$$
x a x=a^{-1} x x=a^{-1}
$$

and

$$
y \text { a } y=a^{-1} y y=a^{-1}
$$

so that

$$
\begin{aligned}
& x a \ddot{x}=y a y \\
& x y a=a x y
\end{aligned}
$$

But also, since x y $\ddagger(a)$,

$$
x y a=a^{-1} x y
$$

and hence

$$
\begin{aligned}
& a \times y=a^{-1} \times y \\
& a=a^{-1}
\end{aligned}
$$

contradicting the choice of a
3.3.4. PROPOSITION. Let d be an integer ≥ 2 and B a finite group. If

$$
|B| \geq 3 d^{3}+6 d^{2}
$$

then B has a generating δ-set of size at least d.

Proof. According to proposition 3.3.3, B has a δ-set $\{a, b\}$ containing two elements.

Let D be a maximum size δ-set of B, $|D|=n$,

$$
D=\cdot\left\{x_{1}, \ldots, x_{n}\right\}
$$

and assume that the sum

$$
\sum_{i=1}^{n}\left|\left(x_{i}\right)\right|
$$

is largest possible. In order to prove that. D generates B, we shall show that the set

$$
\bar{D}=\bigcup_{i=1}^{n}\left(x_{i}\right) \cup\left\{x^{-1} y, x y^{-1}, x y, \mid x, y \in D\right\}
$$

is the entire group B. For otherwise let z be any element of $B \backslash \bar{D}$. If

$$
z^{2} \ddagger \quad D
$$

then

$$
D \cup\{z\}
$$

is a δ-set, a contradiction with the maximality of D. On. the other hand, if

$$
z^{2}=x_{i} \in D
$$

then

$$
D^{\prime}=\left(D \backslash\left\{x_{i}\right\}\right) \cup\{z\}
$$

is a δ-set of maximum size $n=|D|$.But $(z) \supset\left(X_{i}\right)$,
so that

$$
\sum_{x \in D^{\prime}}|(x)|>\sum_{x \in D}|(x)|
$$

contradicting the maximality of the latter sum.

There remains to prove that D contains at least d elements. This again will be a consequence of the equality

$$
\overline{\mathrm{D}}=\mathrm{B}
$$

Suppose that

$$
|D|=n<d .
$$

We shall obtain a contradiction. If we had

$$
\left|\left(x_{i}\right)\right| \leq 3 d^{2}+3 d
$$

for every $x_{i} \in D$, then

$$
\begin{aligned}
& |B|=|\stackrel{D}{D}| \leq n\left(3 d^{2}+3 d\right)+3 n^{2} \\
& |B|<d\left(3 d^{2}+3 d\right)+3 d^{2}=3 d^{3}+6 d^{2},
\end{aligned}
$$

a contradiction with the initial assumption on the order of B. Therefore

$$
\left|\left(x_{i}\right)\right|>3 d^{2}+3 d
$$

for some $x_{i} \in D$. Keeping this subscript i fixed, observe that for each $x_{j} \in D$, the equation

$$
z^{2}=x_{j}
$$

has at most two solutions $z \in\left(x_{i}\right)$. Consequently there are at most $2 n$ elements in $\left(x_{i}\right)$ the square of which belongs to D. On the other hand, we have the inequality

$$
\left|\left\{x^{-1} y, x y^{-1}, x y \mid x, y \in D\right\}\right| \leq 3 n^{2}
$$

so that it is possible to find an element

$$
z \in\left(x_{i}\right) \backslash\left\{x^{-1} y, x y^{-1}, x y \mid x, y \in D\right\}
$$

such that

$$
\mathrm{z} \ddagger \mathrm{D}, \mathrm{z}^{-\mathrm{I}} \ddagger \mathrm{D}, \quad \mathrm{z}^{2} \notin \mathrm{D} .
$$

Then

$$
D \cup\{z\}
$$

is a δ-set strictly larger than D, which contradicts the choice of D.
3.3.5. A hypergraph H is called bipartite if $\mathrm{V}(\mathrm{H})$ can be partitioned into two independent sets.

A vartex x of a connected graph G is a cut vertex if

$$
G[V(G) \backslash\{x \in]
$$

is not connected.
3.3.6. Let k and n be integers, $k \geq 2$; $n \geq 2 k+3$. Let $G_{k, n}$ be the k-uniform hypergraph defined by

$$
\begin{aligned}
V\left(G_{k, n}\right)= & {[1, n] } \\
E\left(G_{k, n}\right)= & \{[i, i+k-1] \mid l \leq i \leq n-k-1\} \\
& \quad u \quad\{[i, i+k-2] u\{n-1\} \mid i=2, k+1\} \\
& u \quad\{S u\{n\} \quad|S \subseteq[1, n-1],|S|=k-1\}
\end{aligned}
$$

The graph $G_{2,10}$ is pictured in Figure 15 .

A hypergraph G is called a (k, n) - arc if it is isomorphic to $\mathrm{G}_{\mathrm{k}, \mathrm{n}}$.

Figure 15
3.3.61. LEMMA. For every $x \in \dot{V}\left(G_{k, n}\right), x \neq n$, we have

$$
d(x)<d(n)
$$

Proof. It is clear from the definition of $G_{k, n}$ that

$$
d(n)=\binom{n-1}{k-1}
$$

Also every $x \in[1, n-1]$ lies together with n in some line exactly $\binom{n-2}{k-2}$ times, and lies in at most $k+1$ lines not containing n, so that

$$
d(x) \leq k+1+\binom{n-2}{k-2}
$$

Using the inequalities

$$
k+1<\binom{2 k+1}{k-1} \leq\binom{ n-2}{k-1}
$$

we get

$$
\alpha(x) \leq k+1+\binom{n-2}{k-2}<\binom{n-2}{k-1}+\binom{n-2}{k-2}=\binom{n-1}{k-1}=d(\Omega)
$$

3.3.62. The vertex of largest degree of any $(k, n)-\operatorname{arc} G$ is called the distinguished vertex of G.
3.3.63. LEMMA. The automorphism group of $G_{k, n}$ is trivial.

Proof. Obviously

$$
V\left(G_{k, n}\right) \backslash\{n\}=[1, n-1]
$$

is a constituent of fut $G_{k, n}$. By an argument similar to the proof of Lemma 2.2.11 it can be shown that

Fut $G_{k, n}[[1, n-1]]$
is trivial, and consequently so is fut $\mathrm{G}_{\mathrm{k}, \mathrm{n}}$.
3.3.64. LEMMA. $G_{k, n}$ is not bipartite if $n \geq k 2-k+2$.

Proof. Suppose that

$$
V\left(G_{k, n}\right)=[1, n]=V_{1} \cup V_{2}
$$

where V_{1} and V_{2} are independent sets. Assuming that $\mathrm{n} \in \mathrm{V}_{1}$, we must have

$$
\left|V_{1} \cap[1, n-2]\right| \leq k-2
$$

But also for every

$$
i \in V_{1} \cap[1,(n-2)-k]
$$

we must have

$$
V_{1} \cap[i+1, i+k] \neq \phi
$$

because otherwise $[i+1, i+k]$ would be a line of $G_{k, n}$ contained in V_{2}. For similar reasons,

$$
V_{1} \cap[1, k] \quad \neq \varnothing
$$

It follows that

$$
\begin{aligned}
n-2= & |[1, n-2]| \leq(k-1)+\left|V_{2} \cap[1, n-2]\right| \cdot k \leq \\
& \leq(k-1)+(k-2) k=k^{2}-k-1,
\end{aligned}
$$

a contradiction.
3.3.65. LEMMA. If $n \geq 2 \mathrm{k}+6$, then

$$
2 d(x)<d(n)
$$

for every $x \in V\left(G_{k, n}\right), x \neq n$.

Proof. We have already seen in the proof of Lemma 3.3.61 that

$$
d(x) \leq k+1+\binom{n-2}{k-2}
$$

Consequently

$$
2 d(x) \leq 2 k+2+2\binom{n-2}{k-2} \leq n-4+2\binom{n-2}{k-2}
$$

But the assumption $n \geq 2 k+6$ implies also that

$$
n-3+\binom{n-2}{k-2} \leq\binom{ n-2}{k-1}
$$

and

$$
2 d(x)<\binom{n-2}{k-1}+\binom{n-2}{k-2}=\binom{n-1}{k-1}=d(n) .
$$

3.3.7. PROPOSITION. Let k we any integer ≥ 3. Let a finite group B have a generating $\delta-$ set D containing at least $k^{2}+4$ elements. Then B has a regular representation by a k-uniform hypergraph H.

Proof.I. Let n be the cardinality of D. Let G be a $(k-1, n)-$ arc with vertex set

$$
\mathrm{V}(\mathrm{G})=\mathrm{D}
$$

and assume that the distinguished vertex of G is an element a of D having order larger than 2 .

Let H be defined by

$$
V(H)=B
$$

$$
E(H)=\left\{\left\{t, t x_{1}, \cdots, t x_{k-1}\right\} \mid\right.
$$

$$
\left.\left\{x_{1}, \ldots, x_{k-1}\right\} \in E(G), t \in B\right\}
$$

Obviously every left translation of B is an automorphism of H. We have to prove that the stabilizer
(Auth H)e is trivial.

Clearly $N_{H}(e)$ is a constituent of (Auth Hie. Define a (k - l) - uniform hypergraph G_{1} by

$$
\begin{aligned}
& V\left(G_{1}\right)=N_{H}(e) \\
& E\left(G_{1}\right)=\left\{\left\{x_{1}, \ldots, x_{k-1}\right\} \mid\left\{e, x_{1}, \ldots, x_{k-1}\right\} \in E(H)\right\} .
\end{aligned}
$$

Then
(Alt H) e | $\mathrm{N}_{\mathrm{H}}(\mathrm{e}) \subseteq$ Ait $\mathrm{G}_{\mathbf{1}}$
II. Let

$$
\begin{array}{r}
E_{0}=E(G), \\
E_{1}=\left\{\left\{x, x y_{1}, \ldots, x y_{k-2}\right\} \mid\left\{x, y_{1}, \ldots, y_{k-2}\right\} \in E(G),\right. \\
\left.x^{2}=e\right\}, \\
E_{2}=\left\{\left\{x^{-1}, x^{-1} y_{1}, \ldots, x^{-1} y_{k-2} \mid\left\{x, y_{1}, \ldots, y_{k-2}\right\} \in E(G)\right.\right. \\
\left.x^{2} \neq e\right\} .
\end{array}
$$

It follows from the axioms of a. δ-set that E_{O}, E_{2} and E_{2} are pairwise disjoint. Moreover, for every $A_{0} \in E_{o}$ and $A_{2} \in E_{2}$,

$$
A_{0} \cap A_{2}=\varnothing
$$

We claim that

$$
E\left(G_{1}\right)=E_{O} \cup E_{1} \cup E_{2}
$$

The inclusion

$$
E_{O} \cup E_{1} \cup E_{2} \subseteq E\left(G_{1}\right)
$$

is readily verified. On the other hand, let

$$
\dot{A}=\left\{z_{1}, \ldots, z_{k-1}\right\} \in E\left(G_{1}\right)
$$

By definition

$$
\left\{e, z_{1}, \ldots, z_{k-1}\right\}=\left\{t, t x_{1}, \ldots, t x_{k-1}\right\}
$$

for some $t \in B$ and

$$
\left\{x_{1}, \cdots, x_{k-1}\right\} \in E(G)
$$

If $e=t$, then $A \in E_{o}$. Otherwise e is one of the $t x_{i}, i=ュ, \ldots, k-1$, and there is no 10 ss of generality in assuming that $e=t x_{1}$. In this case

$$
\begin{aligned}
& \left\{e, z_{1}, \ldots, z_{k-1}\right\}=\left\{x_{1}^{-1}, e, x_{1}^{-1} x_{2}, \ldots, x_{1}^{-1} x_{k-1}\right\}, \\
& A=\left\{x_{1}^{-1}, x_{1}^{-1} x_{2}, \ldots, x_{1}^{-1} x_{k-1}\right\} \in E_{1} \cup E_{2}
\end{aligned}
$$

III. Let us denote

$$
\begin{aligned}
& D^{-1}=\left\{\dot{x}^{-1} \mid x \in D\right\} \\
& F=\left\{x^{-1} y \mid x, y \in D\right\}
\end{aligned}
$$

From the axioms of a δ-set it is clear that

$$
F \cap D=\varnothing \quad, \quad F \cap D^{-1}=\varnothing \quad .
$$

It follows from part II. that

$$
V\left(G_{1}\right) \subseteq D \cup D^{-1} \cup F
$$

and also that

$$
\mathrm{G}_{\mathrm{I}}[\mathrm{D}]=\mathrm{G}
$$

Let K be the connected component of G_{I} that contains the distinguished vertex a of G. Since, according to Lemma 3.3.64, $G=G_{1}[D]$ is not bipartite, it follows that

$$
G_{1} \quad[K]
$$

is not bipartite. For every other connected component $K^{\prime} \neq K$ of G_{1}, if there is any, we have

$$
\begin{aligned}
& K^{\prime} \cap D=\varnothing \\
& K^{\prime}=\left(D^{-1} \cap K^{\prime}\right) \cup\left(F \cap K^{\prime}\right)
\end{aligned}
$$

But

$$
D^{-1} \cap K^{\prime}
$$

being disjoint from D, is independent in G_{1}, and so is $F \cap K^{\prime}$. Hence

$$
G_{1} \quad\left[K^{\prime}\right]
$$

is bipartite and K is a constituent of Mut G_{1} and also of (Alt Hoe. We have

$$
\text { Aut } G_{1} \mid K \subseteq \text { Nut } G_{1}[K]
$$

and consequently

$$
\text { (Aus H) e } \mid \mathrm{K} \subseteq \text { Ant } G_{1}[K]
$$

It will follow from the subsequent parts IV-VI, that the vertex a of K is fixed by every automorphism of $G_{1}[K]$. For every $x \in K$, we shall write

$$
\begin{aligned}
& d(x)=d_{G_{1}[K]}(x) \\
& N(x)=N_{G_{2}}[K](x)
\end{aligned}
$$

IV. It follows from part II that every
$x \in D \backslash D^{-1}$ is incident in G_{1} only with lines of G. In view of Lemma 3.3.61,

$$
d(x)<d(a)
$$

for every $x \in D \backslash \bar{D} \quad, \quad x \neq a$.

If $x \in D \cap D^{-1}$, then

$$
\left\{x, y_{1}, \ldots, y_{k-2}\right\} \rightarrow\left\{x, x y_{1}, \ldots, x y_{k-2}\right\}
$$

is a bijection from the set of lines of G incident with x to the set

$$
\left\{A \in E\left(G_{1}\right) \backslash E(G) \mid x \in A\right\}
$$

Consequently, in view of Lemma 3.3.65, we have

$$
d(x)=2 d_{G}(x)<d(a)
$$

for every $x \in D \cap D^{-1}$.

For every $x \in K \cap\left(D^{-1} \backslash D\right)$

$$
N(x) \subseteq F
$$

so that $N(x)$ is independent in G_{1}, while

$$
\dot{N}(a)=D \backslash\{a\}
$$

is not independent in G_{I}.

If $x \in K \cap F$, then we have to examine separately the cases $k=3$ and $k \geq 4$.
V. Let $k=3$. Since $G_{1}[K]$ is a simple loopless graph, we have

$$
d(x)=|N(x)|
$$

for every $x \in K$. Also, since $x \in F$.
$N(x)$ ㄷ $D \cup D^{-1}$
If $N(x) \subseteq D^{-1} \backslash D$, then $N(x)$. is independent in G_{1}
while $N(a)$ is not.

If

$$
N(x) \quad \subseteq \quad D
$$

then every element of $\mathrm{N}(\mathrm{x})$ has order 2 , so that

$$
\begin{aligned}
& |N(x)| \leq|D|-2<n-1 \\
& d(x)<d(a) .
\end{aligned}
$$

If

$$
N(x) \notin D \text { and } N(x) \notin D^{-1} \backslash D
$$

then, since no vertex in D is adjacent in G_{1} to a vertex in $D^{-1} \backslash D, x$ is a cut vertex of

$$
G_{1}[N(x) \cup\{x\}]
$$

On the contrary, a is not a cut vertex of

$$
G_{1}[N(a) \cup\{a\}]=G_{1}[D]=G
$$

VI. Let $k \geq 4$.

If

$$
\left|N(x) \cap\left(D \cup D^{-1}\right)\right| \geq 2,
$$

then let S be any subset of $N(x)$ such that

$$
\begin{aligned}
& \mid S \quad=k-2 \\
& \left|\operatorname{Sn}\left(D \cup D^{-1}\right)\right| \geq 2
\end{aligned}
$$

Clearly

$$
S \cup\{x\} \notin E\left(G_{1}\right)
$$

On the contrary, for every subset S of $\mathrm{N}(\mathrm{a})$ containing k-2 elements,

$$
S \cup\{a\} \in E\left(G_{1}\right)
$$

If

$$
\left|N(x) \cap\left(D \cup D^{-1}\right)\right|=1
$$

then every line of $G_{\mathcal{I}}$ incident with x is incident with the unique element y of $N(x) \cap\left(D \cup D^{-1}\right.$). But it is easy to find two lines of G, and hence of G_{1}, the intersection of which contains only a and no other vertex.
VII. The different properties of a and of the other vertices $x \neq a$ of $G_{\perp}[K]$, discussed in the preceeding parts IV-VI, show that every automorphism of $G_{1}[K]$ must fix a. Consequently

$$
D=N(=) \cup\{a\}=N_{G_{1}}(a) \cdot u\{a\}
$$

is a constituent of Aut $G_{1}[K]$, hence of Aut G_{1}, and finally of (Aut H)e. Therefore

$$
\left(\text { Aut H) } e \mid D \subseteq A u t G_{\perp}[D]=\text { Aut } G\right.
$$

But, according to Lemma 3.3.63, Aut G is trivial. Consequently
(Aut H) e | D
is trivial.
VIII. Since D generates B, every $x \in B$ can be written as a product of elements of D. Let $\ell(x)$ be the minimum number of factors in such an expression of x. We have, e.g.

$$
\ell(x)=0
$$

if and only if $x=e, ~ a n d$

$$
\ell(x)=1
$$

if and only if $x \in D$.

We prove by induction on $\ell(x)$ that eve. y $\sigma \in($ Alt $H) e$ fixes x. This is true by definition if $\ell(e)=0$. For $\ell(x)=1$ this is exactly the triviality of
(Auth H) el D ,
proved in VII.

If the claim is false, let $x \in B$ such that

$$
\sigma(x) \neq x
$$

for some

$$
\sigma \in(\text { Auth } H)_{e}
$$

and assume that $\quad \ell(x)=g$ is smallest possible. Then

$$
x=y_{1} \cdots y_{g}
$$

with

$$
Y_{i} \in \quad D
$$

for $l \leq i \leq g$. Now

$$
\ell\left(x \mathrm{y}_{\mathrm{g}}^{-1}\right)=\ell(\mathrm{x})-1
$$

and hence, by the induction hypothesis,

$$
\sigma\left(x y_{g}^{-1}\right)=x y_{g}^{-1}
$$

Consider the automorphism τ of H given by

$$
\tau(z)=x_{y_{g}^{-1}}^{-1} z
$$

for every $z \in B$. We have

$$
\tau^{-1} \sigma \tau \in(\text { Aus } H)_{e}
$$

and consequently

$$
\begin{gathered}
\tau^{-1} \sigma \tau\left(y_{g}\right)=y_{g} \\
\sigma \tau\left(y_{g}\right)=\tau\left(y_{g}\right) \\
\sigma(x)=x
\end{gathered}
$$

3.4. Groups of exponent 2.
3.4.1. We recall that if every non-identity element of a group B has order 2 , then B is necessarily isomorphic to some z_{2}^{n}, Although the term elementary abelian 2-group is often used and might be more informative to designate such groups, in the sequel we shall consistently call them groups of exponent 2.

The notation will be kept multiplicative.
3.4.2. LEMMA. For every integer $n \geq 6$ there exists a graph G_{n} having n vertices, each of them of degree at least 2 , and such that Aut G_{n} is trivial.

$$
\begin{aligned}
& \text { Proof. Let } \\
& V\left(G_{n}\right)=[1, n], \\
& E\left(G_{n}\right)=\{\{i, i+1\} \mid i \in[1, n-1]\} u \\
& \\
& \quad u\{\{1, n\},\{1, n-1\},\{1, n-2\}\}
\end{aligned}
$$

The graph G_{6} is.pictured in Figure 16.

Figure 16

Remark. Every graph having less than 6 and at least 2 vertices has non-trivial automorphism group.
3.4.3. PROPOSITION . Every finite group B of exponent 2 and having order at least 2^{6} has a regular representation by a 3 -uniform hypergraph H.

Proof. Let D be a minimal set of generators for B. (D is a basis of B if this is viewed as a vector space over the two-element field.) Certainly

$$
|D|=\log _{2}|B| \geq 6
$$

According to Lemma 3.4.2, there is a graph G such that
(i) $V(G)=D$,
(ii) Aut G is trivial ,
(iii) every vertex of G has degree at least 2 .

Let H be defined by
$V(H)=B \quad$,
$E(H)=\{\{t, t x, t y\} \mid\{x, y\} \in E(G), t \in B\}$.

Every left translation of B is an automorphism of H. We shall prove that (Auth HIe is trivial .

Clearly $N_{H}(e)$ is a constituent of (Auth H) e. Define a graph G_{1} by

$$
\begin{aligned}
& V\left(G_{1}\right)=N_{H}(e) \\
& E\left(G_{1}\right)=\{\{x, y\} \mid\{e, x, y\} \in E(H)\}
\end{aligned}
$$

Defining again

$$
F=\left\{\begin{array}{l|l}
x & y \\
x, y \in D
\end{array}\right\}
$$

we have

$$
V\left(G_{1}\right) \subseteq D \cup i, \quad D \cap F=\varnothing
$$

Also

$$
N_{G_{I}}(x y)=\{x, y\}
$$

for every $x y \in F \cap V\left(G_{1}\right)$, and

$$
G_{1}[D]=G
$$

Clearly

$$
d_{G_{I}}(x)=2 d_{G}(x) \geq 4
$$

for every $x \in D$, while

$$
\mathrm{d}_{\mathrm{G}_{\mathrm{I}}}(\mathrm{x})=2
$$

for every $x \in F \cap V\left(G_{1}\right)$ consequently D is a constituent of Jut G_{1} and hence of (Auth H) e, so that
(Mut H) e | D \subseteq fut $\mathrm{G}_{\mathrm{I}}[\mathrm{D}]=$ Auth G.

But fut G is trivial, so that every $\sigma \in$ (Auth H) e fixes every element of D. To prove that every $\sigma \in$ (Aus Hoe fixes every $x \in B$, i.e. that (Auth H)e is trivial, we
apply mutatis mutandis the argument of part VIII in the proof of proposition 3.3.7.
3. 2.4 . PROPOSITION. Let k be any integer ≥ 4 and B a finite group of exponent 2. If $|B| \geq 4 k+2$, then B has a regular representation by a, k-uniform hypergraph.

Proof. I. Let

$$
|B|=2^{n}
$$

and let

$$
\left\{x_{1}, \ldots, x_{n}\right\}
$$

be a minimal set of generators for B. Let.

$$
D=\left\{\min _{i \in I} x_{i}|I \subseteq[1, n],|I| \text { odd }\}\right.
$$

D is a sum free set and

$$
|D|=2^{n-1} \geq 2 k+1
$$

Let G be $a\left(k-1,2^{n-1}\right)-\operatorname{arc}($ see 3.3 .6$)$
with

$$
V(G)=D \quad .
$$

As before, let H be defined by

$$
\begin{gathered}
V(H) \therefore B ; \\
E(H)=\left\{\left\{t, t x_{1}, \ldots, t x_{k-1}\right\} \mid\left\{x_{1}, \ldots, x_{k-1}\right\} \in E(G)\right. \\
t \in B\}
\end{gathered}
$$

Let G_{1} be the ($k-1$) - uniform hypergraph defined by

$$
V\left(G_{1}\right)=N_{H}(e)
$$

$$
E\left(G_{1}\right)=\left\{\left\{x_{1}, \ldots, x_{k-1}\right\} \mid\left\{e, x_{1}, \ldots, x_{k-1}\right\} \in E(H)\right.
$$

To prove that (Aut H)e is trivial, it will suffice to show, as in the proof of propositions 3.3.7 and 3.4.3, that every (Aut H) e fixes every $\mathrm{x} \in \mathrm{D}$.
II. Let

$$
\mathrm{E}_{1}=\left\{\left\{x, x y_{1} \quad \cdots, \mathrm{xy}_{\mathrm{k}-2}\right\} \mid\left\{x_{1} \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{k}-2}\right\} \in \mathrm{E}(\mathrm{G})\right\}
$$

Since D is a sum free set,

$$
E(G) \cap E_{1}=\varnothing
$$

An argument similar to that of part II in the proof of proposition 3.3.7 can show
that

$$
E\left(G_{1}\right)=E(G) \cup E_{1} .
$$

Also defining again

$$
F=\{x y \quad \mid x, y \in D\}
$$

we see that

$$
V\left(G_{1}\right)=D \cup F, \quad D \cap F=\emptyset
$$

and

$$
\mathrm{G}_{1} \quad[\mathrm{D}]=\mathrm{G} .
$$

Let $a \in D$ be the distinguished vertex of the $\left(k-1,2^{n-1}\right)-\operatorname{arc} G$.
III. For every $x \in D$, the correspondence

$$
\left\{x, y_{1}, \ldots, y_{k-2}\right\} \rightarrow\left\{x, x y_{1}, \ldots, x y_{k-2}\right\}
$$

is a bijection from

$$
\{A \in E(G) \quad \mid \quad x \in A\}
$$

to

$$
\left\{A \in E_{1} \mid \quad x \in A\right\}
$$

It follows from Lemma 3.3.61 that for every $x \in D$, $x \neq a$,

$$
d_{G_{I}}(x)=2 d_{G}(x)<2 d_{G}(a)=d_{G_{1}}(a)
$$

IV. Setting

$$
\begin{aligned}
& N_{2}=D \backslash\{a\} \\
& N_{2}=\{a x \mid x \in D\}
\end{aligned}
$$

we have

$$
\begin{aligned}
& N_{G_{1}}(a)=N_{1} \cup \quad N_{2} \\
& N_{1} \cap \quad N_{2}=\varnothing
\end{aligned}
$$

Moreover, for every subset S of N_{2} or of N_{2} containing k - 2 elements,

$$
S \cup\{a\} \in E\left(G_{1}\right)
$$

On the contrary, assume that for a vertex $x \in F, \mathbb{K}_{G_{1}}(x)$ is the union of two disjoint sets

$$
N_{G_{1}}(x)=M_{1} \cup M_{2}
$$

such that for every subset S of M_{1} or of M_{2} containing k - 2 elements

$$
S u\{x\} \in E\left(G_{1}\right)
$$

Since we can see without difficulty that

$$
\mathrm{D} \subseteq \mathrm{~N}_{\mathrm{G}_{1}}(x)
$$

it is clear that one of the sets M_{1} or M_{2}, say M_{1}, has to contain at least $k-2$ elements of D. Let

$$
S \subseteq M_{1} \cap D,|S|=k-2
$$

We should have

$$
S \cup\{x\} \in E\left(G_{1}\right)
$$

which, in view of $k-2 \geq 2$, is impossible.
V. It follows from III and IV that every $\sigma \in$ Aut G_{1} fixes the distinguished vertex a. Therefore $\mathrm{N}_{\mathrm{G}_{1}}(\mathrm{a})$ is a constituent of Aut G_{1}. But it is easy to see that

$$
\Pi=\left\{N_{3}, N_{2}\right\}
$$

as defined in IV, is the only partition $I I$ of $\mathrm{N}_{\mathrm{G}_{1}}(\mathrm{a})$ into two blocks such that for each block C of Π and every subset S of C containing $k-2$ elements

$$
S \text { Uia\} } \in E\left(G_{1}\right)
$$

Also N_{2} is independent in G_{1}, while N_{1} is not. Consequently

$$
D=N_{1} \quad \dot{u}\{a\}
$$

is a constituent of Aut G_{1} and hence of (Aut H)e. But

$$
\text { Aut } G_{1}[D]=\text { Aut } G
$$

is trivial, implying that every $\sigma \in($ Aut $H)$ e fixes every $x \in D$.

The proof is finished.

The following proposition summarizes the results of sections 3 and 4 :
3.4.5 PROPOSITION. There exists a polynomial $p(x)$ with the property that for every integer $k \geq 3$, every group of order at least $p(k)$ has a regular representation by a k-uniform hypergraph.

Proof. Let

$$
p(x)=3\left(x^{2}+4\right)^{3}+6\left(x^{2}+4\right)^{2},
$$

a polynomial of degree 6. The result follows from propositions $3.3 .4,3.3 .7,3.4 .3,3.4 .4$ and the inequalities

$$
p(3)>2^{6}
$$

and

$$
p(k)>4 k+2
$$

for every $k \geq 4$.
Remark. Recently F. Hoffman has shown [H 7]
that the theorem of Feit and Thompson on the solvability of groups of odd order, together with a result contained in [F 3] , implies that every finite group of odd order $n \geq 5^{7}$ has a regular representation by a 3-uniform hypergraph.

CHAPTER 4

SYMMETRIES OF DIGRAPHS

4.1.1. Let P be a class of general graphs having the same vertex set V and such that every spanning subsystem of a member of P also belongs to P. Assume also that if G and G are two general graphs with

$$
V(G)=V\left(G^{\prime}\right)=V,
$$

having the same underlying simple general graph

$$
s(G)=s\left(G^{\prime}\right)
$$

and if G belongs to P, then G^{\prime} also belongs to P. We say that P is a distinguished class if either
(i) V is finite and the union of every finite compatible family of members of P belongs to P,
or
(ii) V is infinite and the union of every compatible family of members of P belongs to P .

Given any set V, the following classes uf general graphs with vertex set V are examples of distinguished classes:
general graphs,
digraphs,
k-uniform hypergraphs (k being any fixed cardinal number) ,
hypergraphs in which every line is incident with an infinite number of vertices,
hypergraphs,
graphs .

Given any non-empty set V, the following classes of general graphs. with vertex-set V are not distinguished:
strict digraphs ,
acyclic digraphs,
connected hypergraphs .
4.1.2. Galois connections.

Let A and B be two sets and let $R \subseteq A \times B$. For every X ㄷ A, let

$$
X^{\Delta}=\{b \in B \mid \forall a \in X \quad(a, b) \in R\} .
$$

For every Y \subseteq B , let

$$
Y^{\nabla}=\{a \in A \mid \forall b \in Y \quad(a, b) \in R\} .
$$

Let

$$
C(A)=\left\{\left(X^{\Delta}\right)^{\nabla} \mid x \in P(A)\right\}
$$

The mappings $X \longrightarrow X^{\Delta}$ and $Y \longrightarrow Y^{\nabla}$ are often said to form a Galois connection between the lattices $P(A)$ and $P(B)$. According to Theorem 19, chapter V of [B 9] , C(A) is closed under intersection.

Let now V be any set and B any set of general graphs with vertex set V. Let $A=S_{V}$, the set of all permutations of v. Let

$$
\mathrm{R}=\{(\sigma, G) \in \mathbb{A} \times \mathrm{B} \mid \sigma \in \text { But } \mathrm{G}\} .
$$

Every element of $C(A)$ is a subgroup of S_{V} of the form

$$
\bigcap_{i \in I} A u t G_{i}
$$

where $\left(G_{j}\right)_{i \in I}$ is a family of elements of B,
and conversely, every subgroup of S_{V} of this form belongs to $C(A)$.

We shall need the following Lemma.
4.1.31. LEMMA. Let $i_{1}<\ldots<i_{k}$ and
$j_{1}<\ldots<j_{h}$ be two increasing sequences of positive integers. If

$$
\sum_{t=1}^{k} 3^{i_{t}}=\sum_{t=1}^{h} 3^{j t}
$$

then $\mathrm{k}=\mathrm{h}$ and

$$
i_{1}=j_{1}, \ldots, i_{k}=j_{k}
$$

Proof. First, we must have $i_{1} \overline{\bar{\gamma}} j_{1}$, because if, say

$$
i_{1}<j_{1},
$$

then 3 does not divide

$$
\sum_{t=1}^{k} \frac{3^{i_{t}}}{3^{i_{1}}}=\sum_{t=1}^{k} \quad 3^{i_{t}}-i_{1}
$$

while

$$
3 \left\lvert\, \sum_{t=1}^{h} \frac{3^{j_{t}}}{3^{i_{1}}}\right.
$$

By induction on t it is then easily proved that

$$
i_{t}=j_{t}
$$

yielding the desired result.
4.1.32. PROPOSITION. Let p be a distinguished class of general graphs with given vertex set V_{4} Consider the set B of simple general graphs with vertex set V that are members of P. B has at most

$$
2^{|v|}+|v|^{2}-1
$$

elements and for every subgroup H of S_{V} the following two conditions are equivalent:
(i) $H=$ Aut G for some member G of P.,
(ii) $H=\prod_{i \in I}$ Aut G_{i} for some family $\left(G_{i}\right)_{i \in I}$ of elements of \dot{B}.

Proof. The bound

$$
|B| \leq 2^{2|V|+|V|^{2}-1}
$$

follows from the objervation that the right hand side of the inequality is the cardinal number of all simple general graphs with vertex set V. Of cours:e

$$
2^{2|v|}+|v|^{2}-1=2^{|v|}
$$

if V is infinite.
(i) \Rightarrow (ii). Let

$$
\mathrm{H}=\text { Aut } \mathrm{G}
$$

for some member G of the class P. For every cardinal number k let G_{k} be the simple general graph defined by

$$
\begin{aligned}
& V\left(G_{k}\right)=V \\
& E\left(G_{k}\right)=\left\{\psi_{G}(A)\left|A \in E(G),\left|\psi_{G}^{-1}\left(\psi_{G}(A)\right)\right|=k\right\}\right.
\end{aligned}
$$

Since P is a distinguished class,

$$
\mathrm{G}_{\mathrm{k}} \quad \epsilon \quad \mathrm{~B}
$$

for every cardinal number k. It is also clear that there is some cardinal number n with the property that for every $k \geq n$

$$
E\left(G_{k}\right)=\varnothing
$$

We have

$$
\begin{aligned}
H & =n_{i \leqslant n}^{n} \text { Aus } G_{i} \\
(i i) \Rightarrow(i) & \text { Let } \\
H & =\underset{i \in I}{n} \text { Aus } G_{i}
\end{aligned}
$$

for some family $\left(G_{i}\right)$ ie of elements of B. We have to distinguish two cases.

Case 1. The family $\left(G_{j}\right){ }_{i \in I}$ is finite. We can assume that I is a finite set and

$$
I=[1, n]
$$

for some positive integer n. For every i $\epsilon[1, n]$ let K_{i} be a general graph such that
(i) $s\left(K_{i}\right)=s\left(G_{i}\right)$,
(ii) $\left|\psi_{K_{i}}^{-j}\left(\psi_{K_{i}}(A)\right)\right|=3^{i}$ for every $A \in E\left(K_{i}\right) \quad$.

Moreover, assume that if $i, j \in[1, n]$, $i \neq j$, then

$$
E\left(K_{i}\right) \cap E\left(K_{j}\right)=\varnothing
$$

The family

$$
\left(K_{i}\right)_{1 \leq i \leq n}
$$

is compatible. The union

$$
G=\sum_{i=1}^{n} K_{i}
$$

is a member of the distinguished class P. Using Lemma 4.1.31., there is no difficulty in verifying that

$$
\text { Aut } G=H \text {. }
$$

Case 2. The family $\left(G_{i}\right)_{i \in I}$ is infinite. Then I must be infinite. Let

$$
|P(I)|=\mathcal{N}_{\alpha}
$$

and let

$$
f: \quad P(I) \rightarrow W\left(\omega_{\alpha}\right)
$$

be a bijection.

For every

$$
A \in\left(P(V) \cup v^{2}\right) \backslash\{\varnothing\}
$$

let

$$
g(A)=\left\{i \in I \mid A \in E\left(G_{i}\right)\right\}
$$

Let G_{A} be the general graph such that
(i) $\quad V\left(G_{A}\right)=V$,
(ii) $E\left(s\left(G_{A}\right)\right)=\{A\}$,
(iii) $\left|\psi_{G_{A}}^{-1}(A)\right|=\int_{f(g(A))}^{f}$.

Moreover, assume that if

$$
\mathrm{A}, \mathrm{C} \in\left(P(\mathrm{~V}) \cup \mathrm{V}^{2}\right) \backslash\{\varnothing\}
$$

and $A \neq C$, then

$$
E\left(G_{A}\right) \cap E\left(G_{C}\right)=\varnothing
$$

The family $\left(\mathrm{G}_{\mathrm{A}}\right)_{\mathrm{A} \in\left(P(\mathrm{~V}) \cup \mathrm{V}^{2}\right)} \backslash\{\varnothing\}$ is compatible and the union

$$
G=\bigcup_{A} G_{A}
$$

is a member of the distinguished class P. Using the bijectivity of f, it can be shown that

$$
\text { Put } G=H \text {. }
$$

4.1.33. COROLLARY. Let p be a distinguished class of general graphs with vertex set V. The set of subgroups of S_{V} that are automorphism groups of some member of P is closed under intersection.
4.2.1. Given a ser V, the class of digraphs with vertex set V is a distinguished class. The set of permutation groups on V that are automorphism groups of some digraph is closed under intersection. This is not true for strict digraphs. It can indeed be seen that the group of left translations of the Klein group $\ddot{i}_{2} \times Z_{2}$ is not the automorphism rroup of any strict digraph, while it is the automorphism group of a digraph isomorphic to the one represented in rigure 17 and hence it is the intersection of automorphism groups of simple digraphs.

Figure 17
4.2.2. Let V be any set, B a permutation group on V and $\sigma \in S_{V}$. We say that σ implies B,

$$
0 \Longrightarrow B \quad,
$$

if every orbit of the permutation σ is contained in some orbit of the group B. In the lattice of partitions of V, this means that the partition into orbits of σ is less than or equal to the partition into orbits of B. If partitions are viewed as equivalence relations, then clearly the above defined implication is to be taken in the ordinary sense of implication between relations.

$$
\begin{gathered}
\text { Equivalently, } \sigma \Rightarrow \mathrm{B} \text { means that } \\
\sigma(\mathrm{C})=\mathrm{C}
\end{gathered}
$$

for every orbit, and hence for every constituent, C of B.

Every element of B implies B, but the converse is generally false. Indeed, every transitive permutation group on V is implied by any permutation of V.
4.2.3. For every permutation group B on V, the following statement (S) is trivially true for every $\quad \sigma \in \mathrm{B}$:
(S) For every $\mathrm{x} \in \mathrm{V}$ there is some $\theta \in \mathrm{B}$ such that $\theta \sigma \Rightarrow B_{x}$.

Indeed, we can take

$$
\theta=\sigma^{-1}
$$

for every $x \in V$, where e denotes the identity element of B.

We shall call B closed if the statement (S) does not hold for any

$$
\sigma \in S_{V} \backslash B
$$

Obviously the full symmetric group S_{V} is closed. It is easy to see that the trivial subgroup \{ e \} of S_{V} is closed. We also have the following.

4:2.4. PROPOSITION. The intersection of any family of closed permutation groups on V is closed.

Proof. Let $\left(B_{i}\right)_{i \in I}$ be a family of closed subgroups of S_{V}. Let

$$
B=n_{i \in I}^{n} \quad B_{i}
$$

Let $\quad \sigma \in S_{V}$. Assume that for every $x \in V$ there is some

$$
\theta_{\mathrm{x}} \in \mathrm{~B}
$$

such that

$$
{ }^{\theta}{ }_{x} \sigma \nRightarrow B_{x}
$$

For every $i \in I$, every θ_{x} belongs to B_{i}. Also every orbit of B_{x} is contained in some orbit of $\left(B_{i}\right)_{x}$. Consequently

$$
\theta_{\mathrm{x}}{ }^{\sigma} \Rightarrow\left(\mathrm{B}_{\mathrm{i}}\right)_{\mathrm{x}}
$$

and by assumption

$$
\sigma \in B_{i}
$$

for every i ϵI, i.e.

$$
\sigma \in \mathrm{B} .
$$

4.2.5. PROPOSITION. Let V be any set and B a permutation group on V. The following two conditions are equivalent:
(i) B is the automorphism group of some digraph, (ii) B is a closed permutation group.

Proof. (i) \Rightarrow (ii) If B is the automorpnism group of some digraph, then according to proposition 4.1.32, there exists a Eamily (D_{i}) ${ }_{i \in I}$ of simple digraphs such that

$$
B=\bigcap_{i \in I}^{n} \text { Aut } D_{i}
$$

Therefore, in view of proposition 4.2 .4 , it will suffice to show that the automorphism group Aut D of any simple digraph D with vertex set V is closed.

Let $\sigma \in S_{V}$ and assume that for every $x \in V$ there is some $\theta_{x} \in$ Aut D with

$$
\theta_{\mathrm{x}}{ }^{\sigma} \Rightarrow\left(\text { Aut } \mathrm{D}_{\mathrm{x}}\right.
$$

Clearly $\{x\}$ is an orbit of the stabilizer (Aut D) x.

We must have

$$
\begin{aligned}
& \theta_{x} \sigma(x)=x \\
& \theta_{x} \sigma\left(N^{+}(x)\right)=1^{+}(x) \\
& \theta_{x} \sigma\left(V \backslash N^{+}(x)\right)=V \backslash N^{+}(x)
\end{aligned}
$$

for any $x \in V$. We are now able to show that σ is an automorphism of D.

Let

$$
(x, y) \in E(D)
$$

Then

$$
\mathrm{Y} \in \mathrm{~N}^{+}(\mathrm{x})
$$

and

$$
{ }^{\theta} x^{\sigma}(\mathrm{y}) \in \mathrm{N}^{+}(\mathrm{x})
$$

ie.

$$
\left(x, \theta_{x} \sigma(y)\right) \in E \text { (D) }
$$

Applying the automorphism θ_{x}^{-1} of D, we get

$$
\left(\theta_{x}^{-1}(x), \theta_{x}^{-1} \theta_{x} \sigma(y)\right) \in E(D)
$$

But

$$
\theta_{x}^{-1}(x)=\theta_{x}^{-1} \theta_{x} \quad \sigma(x)=\sigma(x)
$$

so that

$$
(\sigma(x), \sigma(y)) \in E(D)
$$

Similarly, if

$$
(x, y) \in \mathrm{V}^{2} \backslash E(\mathrm{D})
$$

i.e.

$$
y \in V \backslash N^{+}(x)
$$

we can prove that

$$
(\sigma(x), \sigma(y)) \notin E(D)
$$

It follows that

$$
\sigma \in \text { Aut } D
$$

and Fut D is closed.
(ii) \Rightarrow (i) Assume that B is closed. According to Corollary 4.1.33 it will suffice to show that

$$
B=\sum_{i \in I}^{n} \quad \text { Aut } \quad D_{i}
$$

for some family $\left(D_{i}\right)_{i \in I}$ of simple digraphs.

For every stabilizer B_{x} let $O\left(B_{X}\right)$ denote the set
of orbits of B_{x}. Let

$$
I=u_{X \in V}\{x\} \quad x O\left(B_{X}\right)
$$

Let i ' ϵ I. Then

$$
i=(x, C)
$$

for some $x \in V, C \in O\left(B_{X}\right)$. Define the simple digraph D_{i} by

$$
\begin{aligned}
& V\left(D_{i}\right)=V \\
& E\left(D_{i}\right)=\underbrace{u}_{\theta \in B}\{\theta \quad(x)\} \quad x \cdot \theta \quad(C)
\end{aligned}
$$

Clearly

$$
B \subseteq \underset{i \in I}{n} \text { fut } D_{i}
$$

To prove that equality holds, it is enough to show that for every

$$
\sigma \in{\underset{i \in I}{n}}^{n} \text { Alt } D_{i}, \quad x \in V,
$$

there is some $\quad \theta_{x} \in B$ with

$$
\theta_{x}{ }^{\sigma} \Rightarrow \mathrm{B}_{\mathrm{x}}
$$

Since B is closed, the result will follow.

Let σ be as above. For $x \in V$, the orbit of B containing x is

$$
\{y \in V \mid(y, y) \in E(D(x,\{x\}))\}
$$

Since

$$
\left.\sigma \in \text { Mut } D_{(x,\{x\}}\right)
$$

for every $x \in V$, we must have

$$
\sigma \Rightarrow \mathrm{B}
$$

For every $x \in V$ there is some $\theta_{X} \in B$ with

$$
{ }^{\theta} x(\sigma(x))=x .
$$

If now C is an orbit of the stabilizer B_{X},

$$
C \in \quad O\left(B_{x}\right)
$$

then

$$
c=\{y \in V \mid(x, y) \in E(D(x, C))\}
$$

Consequently C is a constituent of the stabilizer
(Mut $\left.{ }^{D}(x, C)\right)_{x}$,
and since $\theta_{\mathrm{x}}{ }^{\sigma}$ belongs to this stabilizer,

$$
\theta_{x} \sigma(C)=C
$$

It follows that ${ }^{\theta}{ }_{x}$ ${ }^{\sigma}$ implies B_{x}, as claimed. The proof is finished.

Remark. The underlying principle of the above proof is a generalization of the Cayley color graph construction [C 3, O 3]. Analogous methods were used also by B. Jonsson in the description of automorphism groups of universal algebras [J 2].
4.3.1. PROPOSI'ION. A permutation group B having at least one trivial stabilizer B_{y} is the automorphism group of some digraph.

Proof. According to proposition 4.2.5. we have to show that B is closed. Let $\sigma \in S_{V}$ and assume that for every $x \in V$ there is some $\theta_{x} \in B$ with

$$
\theta_{x}{ }^{\sigma} \Rightarrow B_{x}
$$

Let $x=y \cdot T h e n \theta_{x} \sigma$ implies the trivial permutation group on V, hence $\theta_{x}{ }^{\sigma}$. must be the identity permutation and

$$
\sigma=\theta_{\mathrm{x}}^{-1} \epsilon \mathrm{~B}
$$

4.3.11. COROLLARY. Every regular permutation group is the automorphism group of some digraph.
4.3.12. According to proposition 4.1.32 and corollary 4.3.11, every regular permutation group B is of the form

$$
B=\sum_{i \in I}^{n} \quad \text { Aut } D_{i}
$$

where the D_{i} are strict digraphs. Clearly it can be required that

$$
E\left(D_{i}\right) \cap E\left(D_{j}\right)=\varnothing
$$

if i. $\neq j$. If we then think of the different D_{i} as represented in the same diagram, the darts of each D_{i} being distinguished from the other darts by the assignment of some "color i ", then we have essentially a redundant Cayley color graph $\left[\begin{array}{c}C \\ 3,0\end{array}\right]$.
4.3.13. COROLLARY. If at least one stabilizer B_{y} of a permutation group B is trivial, then every subgroup of B is the automorphism group of some digraph.

Proof. For any subgroup A of B, A_{y} is trivial and proposition 4.3.1 applies to A as it does to B itself.
4.3.2. Galois groups.

Let an algebraic extension. E of a field F have a primitive element $y[L$ l]. Let $G(E \mid F)$ be the group of automorphisms of E over F. Every element of E is a polynomial expression in y, with coefficients
in F. Consequently

$$
G(E \mid F)_{Y}
$$

is trivial and according to Corollary 4.3.13 every subgroup of $G(E \mid F)$ is the automorphism group of some digraph.
4.3.3. Linear groups.

Let F be a field and n a non-zero cardinal number. Consider an n-dimensional vector space V over F . Let $\mathrm{GL}(\mathrm{n}, \mathrm{F})$ be the group of its invertible linear transformations (i.e. vector space automorphisms). We shall determine when $G L(n, F)$ is the automorphism group of some digraph.

Case 1. $n=1$. Then the stabilizer

$$
\mathrm{GL}(1, F)_{\mathrm{X}}
$$

of any non-zero element x of V is trivial and by proposition 4.3.1 $\mathrm{GL}(1, F)$ is the automorphism group of some digraph.

Case 2. $n>1$ and $|F| \neq$ 2. Then the stabilizer $G L(n, F)_{x}$ of any $x \in V$ has singleton orbits of the form

$$
\{\wedge x\},
$$

$\lambda \epsilon \mathrm{F}$, and also one non-singleton orbit

$$
\mathrm{V} \backslash\{\lambda \mathrm{x} \mid \lambda \in \mathrm{F}\}
$$

Choose a field element

$$
\alpha \in F \backslash\{0,1\}
$$

a non-zero vector $v \in V$, and define a permutation $\sigma \in S_{V}$ as follows:

$$
\sigma(\lambda v)=\alpha \lambda v
$$

for every $\lambda \in F$ and

$$
\sigma(x)=x
$$

if

$$
\mathbf{x} \notin\{\lambda \mathrm{v} \mid \lambda \in \mathrm{F}\}
$$

We claim that for every $y \in V$ there is some $\theta_{Y} \in G L(n, F)$ such that

$$
{ }^{\theta} \mathrm{Y} \quad \sigma \Longrightarrow \mathrm{GL}(\mathrm{n}, \mathrm{~F})_{\mathrm{Y}}
$$

Indeed, if

$$
y=\lambda v
$$

for some $\lambda \in F \backslash\{0\}$, then let θ_{y} be given by

$$
\theta_{y}(z)=\frac{1}{\alpha} z
$$

for every $z \in V$. Otherwise let θ_{y} be the identity transformation.

However, it is clear that

$$
\sigma \notin G L(n, F)
$$

Consequently $G L(n, F)$ is not closed and according to proposition 4.2 .5 it is not the automorphism group of any digraph.

Case 3. $n=2$ and $|F|=2$. Since any permutation of V fixing the zero vector is a linear transformation, it is easy to see that $G L(2, F)$ is the automorphism group of some digraph.

Case 4. $n>2$ and $|F|=2$. For every $X \in Y$, the 3 orbits of $G L(n, F) x$ are
$\{0\},\{x\}, V \backslash\{0, x\} \quad$.

If σ is a permutation of V fixing the zero vector and $x \in V$, then we can find some $\theta_{x} \in G L(n, F)$ such that

$$
\theta_{x} \sigma \Longrightarrow \mathrm{GL}(\mathrm{n}, \mathrm{~F})_{\mathrm{x}}
$$

Indeed., ${ }^{\theta} \mathrm{x}$ can be any linear transformation such that

$$
\theta_{x} \quad(\sigma(x))=x .
$$

On the other hand, it is possible to find a permutation σ of V fixing the zero vector that is not a linear transformation. Let

$$
v_{1}, v_{2}, v_{3}
$$

be three linearly independent vectors. Let σ be the permutation of V having the unique non-trivial cycle

$$
\left(v_{2}+v_{2}, v_{2}+v_{3}, v_{3}+v_{1}\right)
$$

Clearly

$$
\sigma \in\left(\mathrm{S}_{\mathrm{V}}\right)_{0} \backslash \mathrm{GL}(\mathrm{n}, \mathrm{~F})
$$

so that $G L(n, F)$ is not closed and according to proposition 4.2 .5 it is not the automorphism group of any digraph.
4.4. Digraphs with abelian group.
4.4.0. The notation is kept multiplicative except in the group Z of integers.
4.4.1. If S_{1} and S_{2} are subgroups of an abelian group A, then let

$$
S_{1} S_{2}=\left\{x y \mid x \in S_{1}, y \in S_{2}\right\}
$$

Clearly $S_{1} S_{2}$ is the intersection of all subgroups of A that contain simultaneously S_{1} and S_{2}. If $A=Z$ and then

$$
S_{1}=\left(m_{1}\right) \quad, \quad S_{2}=\left(m_{2}\right)
$$

$$
s_{1} s_{2}=\left(\operatorname{gcd}\left(m_{1}, m_{2}\right)\right)
$$

Given any subgroup S of A, we say that two elements x and y of A are congruent modulo S,

$$
\mathrm{x} \equiv \mathrm{y} \bmod \mathrm{~s}
$$

if

$$
x y^{-1} \in \quad S
$$

If $A=Z$ and

$$
S=(m)
$$

then congruence modulo S is just the usual concept of congruence modulo the integer m generating S.
4.4.2. Let $\left(S_{k}\right)_{k \in K}$ be a family of subgroups of an abelian group A. Clearly, for every family $\left(x_{k}\right)_{k \in K}$ of elements of A, the condition
(i) $\exists \mathrm{x} \in \mathrm{A} \quad \forall \mathrm{k} \in \mathrm{K} \quad \mathrm{x} \equiv \mathrm{x}_{\mathrm{k}} \quad \bmod \mathrm{s}_{\mathrm{k}}$
implies
(ii) $\forall k, h \in \pi \quad x_{k} \equiv x_{h} \quad \bmod \quad s_{k} S_{h}$.

We say that the Chinese remainder theorem holds for the family $\left(S_{k}\right)_{k \in K}$ if, for every family $\left(x_{k}\right)_{k \in K}$ of elements of A condition (i) is equivalent to (ii).

It is well known that the Chinese remainder theorem holds for every finite family of subgroups of Z (see e.g. [0 2]).

If $\left(S_{k}\right)_{k \in K}$ and $\left(S_{h}\right)_{h \in H}$ are two families of subgroups of an abelian group such that

$$
\left\{s_{k} \mid k \in K\right\}=\left\{s_{h} \mid h \in H\right\}
$$

then the Chinese remainder theorem holds for $\left(S_{k}\right)_{k \in K}$ if and only if it holds for $\left(S_{k}\right) h \in H$
4.4.3. Let A be an abelian permutation group on a set V and let $O(A)$ denote the set of orbits of A. For every $\gamma \in A$ and every orbit $i \in . O(A)$ define the permutation (γ, i) of V by

$$
(\gamma, i) \quad(x)=\gamma(x)
$$

if $x \in i$, and

$$
(\gamma, i) \quad(x)=x
$$

if $x \notin i$. We observe that for every i $\in(A)$

$$
\gamma \rightarrow(\gamma ; i)
$$

is homomorphism from A to S_{V} •

For every orbit i $\epsilon O(A)$ and any two elements $x, y \in i$, the stabilizers A_{x} and A_{y} are conjugate in A, and hence they are identical. Let A_{i} denote the
common stabilizer of ail the elements of i. The family (A_{i}) $\quad(A)$ will ki z called the family of stabilizers of A.
4.4.4. Let π be a partition of a set V. Let $\left(\gamma_{i}\right)_{i \in \pi}$ be a family of permutations of V such that for every block i of π we have $\gamma_{i}(i)=i$. We define the permutation $\gamma=\prod_{i \in \pi} \gamma_{i} \quad$ of V by

$$
\gamma(x)=\gamma_{i}(x)
$$

if $x \in i$.

For every element γ of an abelian permutation group A we have

$$
\gamma=\prod_{i \in O(A)}^{(\gamma, i)}
$$

4.4.5. PROPOSITION. Let A be an abelian permutation group on a set V. For every permutation σ of V the following three conditions are equivalent:
(i) $\forall x \dot{\epsilon} \vee \exists \theta_{x} \in A \quad \theta_{x}{ }^{\sigma} \Rightarrow A_{x}$,
(ii) $\forall i \in O(A) \exists \theta_{i} \in A \quad \theta_{i}{ }^{-1} \sigma \Rightarrow A_{i} \quad$,
(iii) there is a family $\left(\theta_{i}\right)_{i \in O(A)}$ of elements of A indexed by $O(A)$, such that

$$
\sigma=\prod_{i^{\prime \prime} \in O(A)}^{\Pi}\left(\theta_{i}, i\right)
$$

and

$$
\begin{array}{r}
\theta_{i} \equiv \theta_{j} \bmod A_{i} A_{j} \\
\text { for every } i, j \in O(A) \quad .
\end{array}
$$

Proof. The equivalence of (i) and (ii) is trivial.
$(i i) \Longrightarrow$ (iii). Assume (ii). For every $i \in O(A)$,

$$
\theta_{i}^{-1} \quad \sigma \Longrightarrow A_{i}
$$

implies a fortiori that

$$
\sigma(x)=\theta_{i}(x)
$$

for every $x \in i$. Consequently we have

$$
\sigma=\prod_{i \in O(A)}^{\Pi}\left(\dot{\theta}_{i}, i\right)
$$

Also

$$
\theta_{i}^{-1} \underset{j \in O(A)}{\Pi}\left(\theta_{j}, j\right) \Longrightarrow A_{i}
$$

implies that

$$
\left(\theta_{i}^{-1} ; j\right)\left(\theta_{j}, j\right) \Longrightarrow A_{i}
$$

for every $j \in O(A)$. $B u:$

$$
\left(\theta_{i}^{-1}, j\right)\left(\theta_{j}, j\right)=\left(\theta_{i}^{-1} \theta_{j}, j\right)
$$

Let us abbreviate

$$
\theta_{i}^{-1} \quad \theta_{j}=\alpha_{i j}
$$

for every $i, j \in O(A)$. Let x be any element of the orbit j. From

$$
\left(\alpha_{i j}, j\right) \Longrightarrow A_{i}
$$

it follows that there exists a

$$
\beta_{i j} \quad \epsilon \quad A_{i}
$$

with

$$
\beta_{i j}(x)=\left(\alpha_{i j}, j\right)(x)
$$

But

$$
\left(\alpha_{i j}, j\right)(x) \quad={ }_{i j}(x)
$$

and consequently

$$
\beta_{i j}^{-j} \quad \alpha_{i j} \quad(x)=x
$$

i.e.

$$
\alpha_{i j} \equiv \beta_{i j} \quad \bmod A_{j}
$$

Hence

$$
\theta_{i} \equiv \theta_{j} \quad \bmod A_{i} A_{j}
$$

The latter congruence clearly holds for every i, $j \in O(A)$, proving condition (iii).
(iii) \Longrightarrow (ii). Assume (iii). We shall prove that

$$
\theta_{i}^{-1} \sigma \Longrightarrow A_{i}
$$

for every $i \in O(A)$. Let i be fixed. We have to show that for every $x \in V$

$$
\theta_{i}^{-1} \sigma(x)=\beta(x)
$$

for some $\beta \in A_{i}$. Let j be the orbit of A that conthins x. Since

$$
\theta_{i} \equiv \theta_{j} \quad \bmod \cdot A_{i} A_{j}
$$

holds, there are some

$$
\beta_{i j} \in A_{i}
$$

and

$$
r_{i j} \in A_{j}
$$

such that

$$
\theta_{i}^{-1} \theta_{j}=\beta_{i j} \quad \gamma_{i j}
$$

Then

$$
\begin{aligned}
& \theta_{i}^{-1} \sigma(x)=\theta_{i}^{-1} \theta_{j}(x)= \\
= & \beta_{i j} \gamma_{i j}(x)=\beta_{i j}(x)
\end{aligned}
$$

and we can take

$$
\beta=\beta_{i j}
$$

This completes the proof.
4.4.6. PROPOSITTYN , Let $\left(\theta_{i}\right){ }_{i \in O(A)}$ be a
family of clements of an abelian permutation group A islilexed by $O(A)$. We have

$$
{\underset{i \in O(A)}{\pi}\left(\theta_{i}, i\right) \in I .}^{n}
$$

if and only if there is some $\theta \in \mathrm{A}$ such that

$$
\forall i \in O(A) \quad \theta \equiv \theta_{i} \quad \bmod A_{i}
$$

Proof. If

$$
\prod_{i \in O(A)}\left(\theta_{i}, i\right) \in A
$$

then

$$
\forall i \in O(A) \underset{i \in O(A)}{\pi}\left(\theta_{i}, i\right) \equiv \theta_{i} \quad \bmod A_{i}
$$

On the other hand, if $\theta \in \mathrm{A}$ is a solution of the congruence system

$$
\forall i \in O(A) \quad \theta \equiv \theta_{i} \quad \bmod A_{i},
$$

then we must have

$$
(\theta, i)=\left(\theta_{i}, i\right) .
$$

for every $i \in O(A)$, and

$$
{\underset{i \in O(A)}{\Pi}\left(\theta_{i}, i\right)=\theta}^{i}
$$

4.4.7. PROPOSITION . An abelian permutation group is the automorphism group of some digraph if and only if the Chinese remainder theorem holds for the family of stabilizers.

Proof. Propositions 4.2.4, 4.4.5, 4.4.6.
4.5. On the Chinese remainder theorem.
4.5.1. For any abelian group A, let $L(A)$ denote the lattice of subgroups of A. P. Camion, C.S. Levy and H.B. Mann have proved [Cl$\left[\begin{array}{ll}C & 1\end{array}\right]$ that the Chinese remainder theorem holds for a given finite family $\left(S_{i}\right)$ i \mathcal{I} of subgroups of A if the S_{i} generate a distributive sublattice of $L(A)$. In particular the Chinese remainder theorem holds for every two subgroups of A. Here we prove the following:
4.5.21. PROPOSITION. Let L_{o} be a sublattice of the lattice $L(A)$ of all subgroups of an abelian group A. The following two conditions are equivalent:
(i) L_{o} is a distributive lattice,
(ii) the Chinese remainder theorem holds. for every finite family of subgroups belonging to L_{O}.

Proof. (i) implies (ii) according to the mentioned result of Camion , Levy and Mann [C 1].
$(i i) \Longrightarrow$ (i) We shall in fact show that if

$$
s_{1}, \cdots, s_{n}
$$

and

$$
\mathrm{R}_{1}, \cdots, \mathrm{R}_{\mathrm{m}}
$$

are subgroups of A such that

$$
\left.\left(\bigcap_{i=1}^{n} S_{i}\right)\left(\bigcap_{j=1}^{m} R_{j}\right) \neq i\right)_{i, j}\left(S_{i} R_{j}\right)
$$

then the Chinese remainder theorem fails to hold for the family

$$
\left(S_{1}, \cdots, S_{n}, R_{1}, \cdots, R_{m}\right)
$$

Indeed,

$$
\left(\bigcap_{i=1}^{n} S_{i}\right)(\overbrace{j=1}^{m} R_{j})
$$

is strictly contained in $\bigcap_{i, j}\left(S_{i} R_{j}\right)$. Let

$$
t \in \bigcap_{i, j}\left(S_{i} R_{j}\right) \backslash\left(\bigcap_{i} S_{i}\right) \quad\left(\bigcap_{j} R_{j}\right)
$$

Then, 0 denoting the identity element of A, the congruence system

does not have any solution $x \in A$.
4.5.22. COROLLARY. The Chinese remainder theorem holds for every finite family of subgroups of an abelian group A if and only if every finitely generated subgroup of A is cyclic.

Proof. Indeed, Ore has proved [0 1] that the lattice $L(A)$ is distributive if and only if every finitely generated subgroup of A is cyclic.
4.5.23. In view of the above corollary, it can be said that the classical Chinese remainder theorem is due to the fact that every subgroup of Z, the group of integers, is cyclic. In the next subsection we shall consider the chinese remainder theorem for infinite families of subgroups of Z.
4.5.31. The Chinesc remainder theorem trivially holds for a given family $\left(S_{i}\right){ }_{i \in I}$ of subgroups of an abelian group A if one of the S_{i} is the trivial subgrour.
4.5.32. PROPOSITION. Let $\left(S_{i}\right){ }_{i \in I}$ be an infinite family of subgroups of the group Z of integers. The Chinese remainder theorem holds for the family $\left(S_{i}\right)_{i \in I}$ only if one of the S_{i} is trivial.

Proof. The notation in this proof will be additive and the congruences will be written modulo integers rather than modulo subgroups.

Suppose that none of the S_{i} is trivial. We can assume that all the S_{i} are distinct and that I is the set of positive integers. Let

$$
\mathrm{s}_{\mathrm{i}}=\left(\mathrm{m}_{\mathrm{j}}\right)
$$

for every $i \in I$ and assume that

$$
0<m_{1}<m_{2}<\ldots<m_{i}<m_{i+1}<\ldots
$$

We shall define a sequence

$$
\mathrm{n}_{1}, \mathrm{n}_{2}, \cdots, \mathrm{n}_{\mathrm{i}}, \cdots
$$

of integers and a surjective function

$$
\mathbf{f}: \quad \mathrm{I} \rightarrow \mathrm{Z}
$$

such that for every $\therefore, j \in I$,

$$
n_{i} \equiv n_{j} \bmod \operatorname{gcd}\left(m_{i}, m_{j}\right)
$$

but for every $i \in I$, no element

$$
x \in f([1, i])
$$

is a solution of the system

$$
\begin{array}{rlrl}
\mathrm{x} & \equiv \mathrm{n}_{1} \quad \bmod m_{1} \\
& \cdot & \\
\mathrm{x} & \equiv n_{i} \quad \bmod \quad m_{i}
\end{array}
$$

This will clearly prove that the chinese remainder theorem fails to hold for the family $\left(S_{i}\right)_{i \in I}$.

We define n_{i} and $f(i)$ by induction on i. Let n_{1} be any integer not divisible by m_{1},

$$
m_{1} ; n_{1}
$$

and let

$$
f(1)=0 .
$$

Suppose that n_{1}, \cdots, n_{i} and $f(1), \cdots, f(i)$
have already been defined. There exists an integer $\mathrm{k}>\mathrm{i}$ such that

$$
m_{k} \quad \not \quad \underset{j<m}{ } \quad m_{j}
$$

Take the smallest possible k. Let $\overrightarrow{\mathrm{x}}$ be any solution of the system

For every

$$
j \in[i+1, k]+\{k\}
$$

define

$$
n_{j}=\bar{x}, f(j)=f(i)
$$

Define $f(k)$ to be an element of

$$
z \backslash f([1, i])
$$

having minimal absolute value. We claim that there is an integer p not divisible by m_{k} such that

$$
f(k)+p \equiv n_{j} \bmod \operatorname{gcd}\left(m_{j}, m_{k}\right)
$$

for every $j \in[1, k-1]$. Then we define

$$
n_{k}=f(k)+p
$$

The inductive step will then be accomplished and the proof finished.

In order to prove our claim, we have to find a solution p to the system

$$
\forall j \in[1, k-1] \quad p \equiv n_{j}-f(k) \quad \bmod \quad \operatorname{gcd}\left(m_{j}, m_{k}\right)
$$

This is possible because for every $j_{1}, j_{2} \in[1, k-1]$

$$
n_{j_{1}} \equiv n_{j_{2}} \quad \bmod \operatorname{gcd}\left(m_{j_{1}}, m_{j_{2}}\right)
$$

and hence

$$
\begin{array}{r}
n_{j_{1}}-f(k) \equiv n_{j_{2}}-f(k) \quad \bmod \operatorname{gcd}\left(g c d\left(m_{j_{1}}, m_{k}\right),\right. \\
\left.g c d\left(m_{j_{2}}, m_{k}\right)\right)
\end{array}
$$

If p_{o} is a particular solution not divisible by m_{k}, then let

$$
\mathrm{p}=\mathrm{p}_{\mathrm{O}}
$$

If

$$
m_{k} \mid p_{0}
$$

then let

$$
p_{1}=p_{0}+\underset{j<k}{\operatorname{lcm}}\left(\operatorname{gcd}\left(m_{j}, m_{k}\right)\right)
$$

which is another particular solution. But

$$
\begin{aligned}
& \underset{j<k}{l<m}\left(\operatorname{gcd} \quad\left(m_{j}, m_{k}\right)\right)= \\
& \operatorname{gcd}\left(m_{k}, \underset{j<k}{l c m} \quad m_{j}\right)
\end{aligned}
$$

and since

$$
m_{k} \quad \Varangle \underset{\substack{l<k}}{\operatorname{lcm}} \quad m_{j},
$$

we have

$$
m_{k} \nmid \underset{j<k}{\operatorname{lcm}}\left(\operatorname{gcr} \quad\left(m_{j}, m_{k}\right)\right)
$$

and

$$
m_{k} \quad \neq \quad p_{1}
$$

Let

$$
\mathrm{p}=\mathrm{p}_{1}
$$

The proof is now complete.

Remark. Although the infinite congruence system

$$
x \equiv n_{i} \quad \bmod m_{i} \quad i=1,2, \ldots
$$

does not have a solution x, every finite subsystem of it has a solution.
4.6. Consequences for the representability of abelian permutation groups by digraphs.
4.6.1. PROPOSITION . Every abelian permutation group with at most two orbits is the automorphism group of some digraph.

Proof. As noticed in 4.5.1, the Chinese remainder theorem holds for any two subgroups of an abelian group.
4.6.2. PROPOSITION. For every abelian group B the following three conditions are equivalent:
(i) L(B) is a distributive lattice,
(ii) every permutation group A abstractly isomorphic to B and having only a finite number of orbits is the automorphism group of a digraph,
(iii) every permutation group A abstractly isomorphic to B and having exactly 3 orbits is the automorphism group of a digraph.

Proof. The implications (i) \Rightarrow (ii) and (ii) \Rightarrow (iii) are clear.

To prove that $(i i i) \Rightarrow$ (i), suppose that $L(B)$ is not distributive. We can find three subgroups S_{1}, S_{2}, S_{3} of B such that

$$
s_{1}\left(S_{2} \cap s_{3}\right) \quad \neq S_{1} S_{2} \cap \quad S_{1} S_{3}
$$

Moreover, it can be seen without difficulty that S_{1}, S_{2}, S_{3} can be found subject to the additional requirement that the intersection

$$
s_{2} \cap s_{2} \cap s_{3}
$$

be the trivial subgroup of B. For every $x \in B$, and $i=1,2,3$, let

$$
x S_{i}=\left\{x y \quad \mid y \in S_{i}\right\}
$$

and let

$$
B / S_{i}=\left\{x S_{i} \mid x \in B\right\}
$$

be the quotient group by S_{i}. Let

$$
V=B / S_{1} \cup B / S_{2} \cup B / S_{3}
$$

For every $b \in B$, define a permutation ${ }^{\tau} b$ of V by

$$
\tau_{b}\left(x S_{i}\right)=\left(b_{x}\right) \quad S_{i}
$$

for every $x S_{i} \in V$. Let

$$
A=\left\{\tau_{b} \mid b \in B\right\}
$$

The permutation group A has 3 orbits

$$
\mathrm{B} / \mathrm{S}_{1}, \mathrm{~B} / \mathrm{S}_{2}, \mathrm{~B} / \mathrm{S}_{3}
$$

and

$$
b \longrightarrow \tau_{b}
$$

is an isomorphism from B to A under which the subgroups S_{1}, S_{2}, S_{3} correspond to the stabilizers of A. Since according to the proof of proposition 4.5.21 the Chinese remainder theorem does not hold for S_{1}, S_{2}, S_{3}, it also fails to hold for the family of stabilizers of A. Hence A is not the automorphism group of any digraph and (iii) fails.
4.6.3. PROPOSITION. A cyclic permutation group A is the automorphism group of some digraph if and only if A is of finite order or has an infinite orbit.

Proof. If A is of finite order, then every family of subgroups of A is finite. It follows from proposition 4.4.7 and corollary 4.5 .22 that A is the automorphism group of some digraph.

If A is infinite and has an infinite orbit I, then the stabilizer of any element of I is trivial. According to proposition 4.4 .7 and the observation made in 4.5.31, A is the automorphism group of some digraph. (This could also be inferred directly from corollary 4.3.13.)

If A is infinite but has no infinite orbit, then none of the stabilizers is trivial and the family of stabilizers is infinite. According to propositions 4.4.7 and 4.5.32, A is not the automorphism group of any digraph.

Example. Let V be the set of integers strictly larger than 2 and define a permutation σ of V as follows:

$$
\sigma(k)=k+1
$$

if k is not a power of 2 ,

$$
\sigma(k)=\frac{k}{2}+1
$$

if k is a power of 2 . - s

Let A be the subgroup of S_{V} generated by σ. A has infinite order and its orbits are the sets

$$
\left[\quad 2^{n}+1,2^{n+1}\right]
$$

$\mathrm{n}=1,2, \ldots$ According to proposition 4.5.32
A is not the automorphism group of any digraph.

BIBLIOGRAPHY

B 1. L. Babai, Representation of permutation groups by graphs, Colloquia Math. Soc. Janos Bolyai 4, Hungary 1969, 55-80.

B 2. H.Bachmann, Transfinite Zahlen, SpringerVeriag 1967

B 3. R.A. Bari, Chromatically equivalent graphs, Lecture Notes in Math. 406, Springer-Verlag 1974, 188-200

B 4. C. Benzaken, Contribution des structures algebriques ordonnees a la theorie des reseaux, Thesis, Universite de Grenoble 1968

B 5. N.L. Biggs, Finite groups of automorphisms, Cambridge University Press 1971

B 6. N.L.Biggs, Algebraic graph theory, Cambridge University Press 1974

B 7. G.D. Birkhoff, A determinant formula for the number of ways of coloring a map, Ann. Math. II, 14 (1912), 42-46

B 8. G.D. Birkhoff and D.C. Lewis, Chromatic polynomials, Trans. AMS 60 (1946), 355-451

B 9. G.Birkhoff, Lattice theory, AMS Colloquium Publ. Providence 1967

B 10. C. Berge, Graphes et hypergraphes, Dunod, Paris 1970

B ll. A.J. Bondy and U.S.R. Murty, Graph theory with applications, Macmillan 1976

B 12. I.Z. Bouwer, Section graphs for finite permutation groups, J. Comb. Theory 6(1969), 373-86

B 13. R.L. Brooks, C.A.B. Smith, A.H. Stone and W.T. Tutte, The dissection of rectangles into squares, Duke Math. J. 7(1940), 312-40

C 1. P.Camion, C.S. Levy and H.B. Mann, Linear equations over a commutative ring, J. of Algebra 18 (1971), 432-46

C 2. AsCayley, on the theory of groups, as depending on the symbolic equation $\theta^{n}=1$, Philos. Mag. 7 (1854); 40-47

C 3. A. Cayley, The theory of groups, Proc. London Math.Soc. 9 (1878), 126-33

C 4. C.Y. Chao, On a theorem of Sabidussi, Proc. AMS 15 (1964), 291-92

C 5. H. Crapo, Chromatic polynomials for a join of graphs, Colloquia Math. Soc. Janos Bolyai 4, Hungary 1969, 239-45

C 6. V.Cnvatal, Hypergraphs and Ramseyian t'reorems, Thesis, University of Waterlco 1970

D 1. J.K. Doyle, Graphical Frobenius representations of abstract groups, Notices AMS 23 (1976), A-40

F 1. W.Feit and J.G. Thompsom, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029

F 2. S. Földes, The rotor effect can alter the chromatic polynomial, to appear in J. Comb. Theory B

F 3. S. Földes and N.M. Singhi, Regular representation of abelian groups by 3-uniform hypergraphs, to appear in Ars Combinatoria

F 4. R. Frucht, Herstellung von Graphen mit vorgegebener abstrakter Gruppe, Compositio Math. 6 (1939), 239-50

F 5. R. Frucht, Sobre la construccion de sistemas parcialmente ordenados con grupo de automorfismos dado, Revista Union Math. Argentina 13 (1948), 12-18

H 1. M.Hall, The theory of groups, Macmillan 1959
H ?. F.Harary, Graph theory, Addison - Wesley 1969
H 3. F. Harary and E. Palmer, The groups of the small digraphs, J. Indian Stat. Assoc. 4 (1966) , 155-69

H 4. P. Hell and J. Nesetril, k-societies with given semigroup, Proc. Conf. Comb. Str. and Appl., Calgary 1969

H 5. P. Hell and J. Nesetril, Graphs and k-societies, Canad. Math. Bull. 13 (1970) , 375-81

H 6. R.L. Hemminger, On the group of a directed graph, Canad. J. Math. 18 (1966) , 211-20

H 7. F. Hoffman, Note on δ - sets in finite groups, written communication

H 8. H. Höft and P. Howard, A graph theoretic equivalent to the axiom of choice, Z. Math. Logik und Grundlagen Math. 19 (1973), 191

H 9. S.G. Hoggar, Chromatic polynomials and broken cycles, J. Comb. Theory B 19 (1975) , 77-86

I 1. W. Imrich, Graphen mit transitiver Automorphismengruppe, Monatsh. Math. 73 (1969), 341-47

I 2. W. Imrich, Graphs with transitive abelian automorphism group, Colloquia Math. Soc. Janos Bolyai 4, Hungary 1969, 651-56

I 3. W. Imrich, On graphical regular repres•ntations of groups, Colloquia Math. Soc. Janos Bolyai 10 , Hungary 1973, 905-25

I 4. W. Imrich, On graphs with regular groups, J. Comb. Theory B 19 (1975), 174-80

J 1. T. Jech, The axiom of choice, North-Holland 1973

J 2. B. Jonsson, Topics in universal algebra, Lecture Notes in Math. 250, Springer-Verlag 1972

K 1. I. N. Kagno, Linear graphs of degree ≤ 6 and their groups, Amer. J. Math. 68 (1946), 505-20

K 2. D. König, Theorie der endlichen und unendiichen Graphen, Leipzig 1936

K 3. J.L. Krivine, Theorie axiomatique des ensembles, P.U.F. Paris 1969

K 4. C. Kuratowski, Sur le probleme des courbes gauches en topologie, Fund. Math. 15 (1930), 271-83

L 1. S. Lang, Algebra, Addison-Wesley 1965
L 2. L.A.Lee, On chromatically equivalent graphs, Thesis, George Washington University 1975

M 1. M.H. McAndrew, On graphs with transitive automorphism groups, Notices AMS 12 (1965), 575

M 2. G.H.J. Meredith, Coefficients of chromatic polynomials, J.Comb. Theory B 13 (1972), 14-17

N 1. C.St.J.A. Nash-Williams, Infinite graphsA survey, J. Comb. Theory 3 (1967), 286-301

N 2. L.A. Nowitz, On the non-existence of graphs with transitive generalized dicyclic groups, J. Comb. Theory 4 (1968), 49-51

N 3. L.A. Nowitz and M.E. Watkins, Graphical regular representations of non-abelian groups, I.and II. , Canad. J. Math. 24 (1972)., 993-1008 and 1009-1018

O 1. O. Ore, Structures and group theory II., Duke Math. J. 4 (1938), 247-69
o 2. O. Ore, Number theory and its history, McGraw Hill 1948

O 3. O. Ore, Graph theory, AMS Colloquium Pub?., Providence 1962

R 1. R.C. Read, An introduction to chromatic polynomials, J. Comb. Theory 4 (1968), 52-71

S 1. G. Sabidussi, Graphs with given infinita group, Monatsh. Math. 64 (1960), 64-67

S 2. G. Sabidussi, Vertex-transitive graphs, Monatsh. Math. 68 (1964), 426-38

S 3. A. Speiser, Die Theorie der Gruppen von endlicher Ordnung, Dover Publications, N.Y. 1945

S 4. A.P. Street, Sum-free sets, Lecture Notes in Math. 292, Springer-Verlag 1972, 123-271

S 5. G. Szasz, Einführung in die Verbandstheorie, Budapest 1962

T l. W.T. Tutte, Connectivity in graphs, Toronto 1966

T 2. W. 宀. Tutte, Codichromatic graphs, J. Comb. Theory B 16 (1975), 168-76

T 3. W.T. Tutte, The separation of vertices by circuits, Discrete Math. 12 (1975), 173-84

T 4. W. T. Tutte, The rotor effect with generalized $\boldsymbol{d} \boldsymbol{T}$ electrical flows, Ars Combinatoria 1 (1976) , 3-31

W 1. M.E. Watkins, on the action of non-abelian groups on graphs, J. Comb. Theory B 11 (1971) , 95-104

W 2. M.E. Watkins, On graphical regular representations of $C_{n} \times Q$, Lecture Notes in Math. 303, Springer-Verlag. 1972, 305-11

W 3. M.E. Watkins, Graphical regular representations of alternating,symmetric, and miscellaneous small groups, Aequationes Math. 11 (1975) , 40-50

W 4. M.E. Watkins, Graphical regular representations of free products of groups, J. Comb. Theory B 21 (1976) , 47-56

W 5. H. Whitney, A logical expansion in mathematics, Bull. AMS 38 (1932) , 572-79

W 6. H. Wielandt, Finite permutation groups, Academic Press 1964

Z 1. E. Zermelo, Beweiss dasz jede Menge wohlgeardnet werden kann, Math. Ann. 59 (1904), 514-16

