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Abstract 

Engineered drinking water reservoirs are designed to facilitate particle settling for reduction of turbidity 

prior to conveyance to a drinking water treatment plant (DWTP).  Fine cohesive sediment particles can 

carry significant loads of adsorbed phosphorus (P) that can desorb into the water column and intensify the 

growth of cyanobacteria (CB), causing problematic and potentially toxic CB blooms.  In light of these 

reservoir sediment dynamics, strategies for mitigating rapid CB proliferation through sequestration of P 

were investigated. 

A series of bench scale experiments were conducted to examine the impact of managing dissolved and 

sediment-associated P for controlling CB growth.  The first phase of testing involved batch experiments 

with fine reservoir sediments to determine their P release characteristics and the amount of dissolved P 

potentially available for CB uptake.  The utility of sequestering this soluble reactive P (SRP) with a 

common metal salt coagulant, ferric chloride (FeCl3), was also investigated.  These adsorption / 

desorption experiments showed that a dose as low as 25 mg/L was effective in precluding SRP desorption 

from the sediment over a relatively wide range of solution SRP concentrations.  These results were 

critical to provide an understanding of the SRP-sediment dynamics after treatment with FeCl3.  

The second phase of testing involved confirmation of the importance of sediment-associated SRP on the 

growth of a commonly found CB, Microcystis aeruginosa and evaluation of the utility of FeCl3 

coagulation for limiting M. aeruginosa growth through sequestration of SRP.  Standard methods for 

culturing / growing M. aeruginosa were adapted for a series of experiments, at near bloom cell counts, in 

the presence and absence of sediment to demonstrate the potential utility of SRP sequestration with a 

common coagulant used during drinking water treatment to inhibit CB growth.  While the lab-scale 

experiments could not, and were not expected to exactly mimic reservoir behavior, they were conducted 

to demonstrate proof-of-concept.  They were successful in doing so because M. aeruginosa growth was 

inhibited with adequate FeCl3 application.  Significantly lower FeCl3 doses were effective when the high 

levels of sediment (analogous to previously deposited sediment) were removed from the system. 

The results of this study have several implications for controlling the proliferation of CB through nutrient 

sequestration.  SRP can be sequestered very effectively at doses of FeCl3 typical of DWTP operations.  

Growth of M. aeruginosa can even be inhibited by sequestering P when CB cell counts are elevated to 

levels consistent with those that may be expected at bloom conditions; as would be expected, relatively 

higher FeCl3 doses are then required.  Further experimental work to determine the optimal dose of FeCl3 

at different sediment loads and lower M. aeruginosa starting cell populations should be considered.  
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Chapter 1 Introduction 

1.1 Background 

There is a growing concern within Canada and throughout the world about the aesthetics and 

potential health hazards associated with cyanobacteria (CB), in both natural water bodies and 

engineered reservoirs used for recreation and as a source of drinking water.  CB blooms can have 

significant economic (Howgate, 2004), ecological, and public health impacts (Paerl et al., 2001; 

St. Amand, 2013).  In recreational waters, CB growth is often-ignored as a safety hazard until 

blooms form and impact recreational activities (Health Canada, 2012).  CB blooms can cause fish 

kills and damage aquaculture operations by depleting oxygen in the water column.  In addition, 

they can clog water treatment intakes and treatment processes such as granular media filters and 

membranes (Paerl & Ustach, 1982). 

From a drinking water treatability perspective, some CB produce compounds that cause taste and 

odour (T&O) concerns (Jüttner & Watson, 2007) while other compounds are irritants 

(Mankiewicz et al., 2003; Metcalf & Codd, 2004; Lopez et al., 2008).  More importantly, they 

can produce cyanotoxins, which are toxic to humans and other animals, including livestock and 

pets (Hitzfeld et al., 2000; O’Neil et al., 2012; Metcalf & Codd, 2004; Breu et al., 2008; Stewart 

et al., 2008).  Conventional drinking water treatment processes are not always effective in 

removing these compounds to acceptable levels (Jüttner & Watson, 2007; Hoeger et al., 2005) 

and as such, some CB toxins pose a serious health concern in treated drinking water.  

The global occurrence of toxic CB blooms is increasing (Haider et al., 2003; Loza et al., 2014; 

Thornton et al., 1996), and climate change is expected to further exacerbate this problem  (Moore 

et al., 2008; Wagner & Adrian, 2009).  The potential risks that toxic CB blooms pose to drinking 

water security were underscored in the summer of 2014 (Figure 1), when the City of Toledo 

issued a “Do Not Drink” advisory after unsafe levels of the CB toxin microcystin was found in 

treated water of drinking water plants (US EPA, 2014; Hazen & Sawyer, 2015).  The advisory 

spanned three counties in Ohio and one in Michigan, leaving more than 400,000 people without 

drinking water (Michigan News, 2014).  The advisory was necessary; however, because contact 

with most CB can cause skin irritation and rashes. Most importantly, microcystin can cause 

nausea, vomiting, liver damage, cancer, and even death if ingested.  Microcystin has been known 

to kill small animals and livestock that drink contaminated water (Stewart et al., 2008; Health 
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Canada, 2012; Srivastava et al., 2015).  Thus, an understanding of CB blooms and strategies for 

mitigating or preventing them is critical to global drinking water security. 

 

Figure 1: The [cyanobacteria]-clogged waters of Lake Erie as seen from Maumee Bay State Park 
near Toledo, Ohio. Credit: Joshua Lott for The New York Times (2014) 

The control and management of CB in surface water and treatment of cyanotoxins in drinking 

water supplies is critical to drinking water security.  Treatment strategies for removing CB and 

eliminating their toxins from drinking water are costly and not always adequate because they may 

compromise the health of lake or reservoir ecosystems (Lopez et al., 2008; Health Canada, 2012; 

Antoniou et al., 2014), lyse the CB cells that would have otherwise contained the cyanotoxins 

(Thornton et al., 1996; Lopez et al., 2008; Ho et al., 2012), or exceed treatment process capacity 

(Kingston et al., 2012; US EPA, 2012a; Antoniou et al., 2014).  Thus, the mitigation of CB 

blooms is better accomplished through preventive rather than remedial measures.  Notably, the 

occurrence, timing, intensity, and duration of CB blooms varies from year to year because of 

nutrient availability, air and water temperatures, availability of sunlight, water flow conditions, 

and wind velocity (WHO, 1999; Paerl et al., 2001; Hoogenboezem et al., 2004; Newcombe et al., 

2015).  The natural variability of these factors precludes accurate prediction of CB blooms. 



 3 

Nutrient availability is a critical factor contributing to the occurrence of CB blooms (Metcalf & 

Codd, 2004; Magrann et al., 2012).  Thus, taking steps to reduce or prevent nutrient availability in 

drinking water supplies can reduce CB bloom occurrence and/or intensity, thereby reducing 

associated threats to drinking water security. 

Phosphorus (P) has been identified as a critical nutrient for cellular growth and metabolism 

(Raven et al., 1986; CCME, 2004; Ashley et al., 2011).  It is also the limiting nutrient in most 

fresh water systems (Schindler, 1977; Loomer & Cooke, 2011; Barlow-Busch et al., 2006).  

When total phosphorus concentrations are near or exceed the threshold for eutrophication 

(generalized as ~30 µg P/L), it can cause CB blooms (CCME, 2004; Health Canada, 2012; 

Dodds, 2003).  In waters where P is below this threshold, nutrients are in demand; and generally a 

healthy balance between algae and CB populations exists, where no particular taxa dominates to 

the extent that they form a bloom. 

Sediment governs the source, transport, fate, and mobility of P in aquatic systems (Stone & 

English, 1993; Stone & Droppo, 1994; Engstrom, 2005; Davies‐Colley & Smith, 2001).  The 

bioavailability of P is influenced by sediment characteristics (e.g., particle size, geochemistry) 

and environmental conditions (e.g., redox, temperature, competitor ions, pH) (Lijklema, 1980; 

Forstner, 1987; Boers, 1991; Davies‐Colley & Smith, 2001; Klotz, 2014).  In particular, fine 

sediment fractions (less than ~63 µm in size) can influence dissolved P concentrations in the 

water column via adsorption/desorption reactions (Stone & English, 1993; Stone & Droppo, 

1994; Auer et al., 1998; Busman et al., 1997).  In locations where municipally and/or 

agriculturally impacted river water is stored in reservoirs, the presence of fine sediment and the 

associated release of P into the water column has been shown to promote the growth of algae and 

CB (DePinto et al., 1981; Reynolds & Davies, 2001; Bowes et al., 2003; Munawar & Fitzpatrick, 

2012). 

Chemically induced precipitation of P can be an effective, but expensive management practice for 

preventing algal and CB blooms in lakes.  This practice has been most commonly utilized to 

manage water quality for aesthetic and recreational purposes (Scherfig et al., 1973; Auer et al., 

1998; Sherwood & Qualls, 2001; Zamyadi et al., 2013).  Notably, drinking water suppliers are 

often precluded from being able to practice pre-emptive management of algae and CB blooms 

because of jurisdictional limitations associated with their source waters.  Accordingly, they 

typically rely on engineered mitigation measures such as aeration, mechanical mixing, reservoir 

drawdown, surface skimming, ultrasound, algaecides, hypolimnetic oxygenation, 
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coagulation/flocculation/clarification, and artificial wetlands (Beutel, 1994; Shantz et al., 2004; 

Engstrom, 2005; Antoniou et al., 2014).  Engineered reservoirs are often constructed for raw 

water storage and equalization of water quality influent to drinking water treatment plants.  

Surprisingly, chemical precipitation of P is not typically practiced in engineered drinking water 

reservoirs for the pre-emptive management of algae and CB; no studies detailing this approach 

are currently available in the academic literature. 

1.2 Research Objectives 

The overall goal of this research was to investigate P sequestration by chemical precipitation for 

control of CB growth in engineered drinking water reservoirs.  Specifically, the utility of source 

water coagulation with a commonly utilized metal salt coagulant, ferric chloride (FeCl3), for 

managing dissolved and sediment-associated P and CB growth was investigated at laboratory-

scale.  

Specific research objectives were to: 

1) evaluate the potential for P release from fine reservoir sediments to the water column in 

various locations (cells) within a drinking water reservoir; 

2) investigate the utility of FeCl3 for sequestering soluble reactive P (SRP) in the water 

column to limit its availability for CB proliferation; 

3) demonstrate the importance of sediment-associated P inputs for enabling the growth of 

CB such as Microcystis aeruginosa in municipally and agriculturally impacted reservoir 

water; and, 

4) demonstrate the utility of FeCl3 coagulation for limiting the growth of CB such as 

M. aeruginosa in municipally and agriculturally impacted reservoir water. 

1.3 Research Approach - Overview 

To address the aforementioned objectives, two types of proof-of-concept experiments were 

conducted at bench-scale.  Phase 1 consisted of P adsorption/desorption (i.e., sorption) 

experiments to address Objectives #1 and #2.  Phase 2 consisted of experiments using 

M. aeruginosa cultures to address Objectives #3 and #4.  
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1.3.1 Phase 1 – Sorption Studies 

Sorption studies consisted of a set of controlled experiments in which the dissolved P content of 

reservoir water was measured and the P release capacity of the sediment (i.e., P 

adsorption/desorption to/from the water column) was evaluated at various aqueous P 

concentrations (Objective #1).  The sediment-water system was then amended with various 

concentrations of FeCl3 to evaluate its utility in preventing P desorption from Reservoir sediment 

(Objective #2). 

1.3.2 Phase 2 – M. aeruginosa Growth Studies 

Experiments were first conducted to demonstrate that M. aeruginosa could be grown in reservoir 

water.  Then M. aeruginosa cell growth was evaluated in reservoir water with and without the 

presence of sediment to demonstrate the importance of sediment-associated P inputs for enabling 

its growth (Objective #3).  Finally, M. aeruginosa cell growth was evaluated in the presence and 

absence of FeCl3 to demonstrate the potential utility of FeCl3 addition to engineered drinking 

water supply reservoirs to limit CB growth (Objective #4). 

1.4 Thesis Organization 

Chapter 2 consists of a literature review on causes of CB blooms and the data gaps on 

bioavailable nutrients, justification for studies and chemicals used.  Chapter 3 details the 

experimental procedures, materials and methods used, as well as the approach for analysis of the 

data.  Chapter 4 contains experimental results and preliminary discussion.  Chapter 5 contains the 

conclusions drawn from these studies.  Chapter 6 contains the implications this work has on the 

applicability of using a coagulant in a biological system to sequester P and recommendations for 

future investigations to further understand the role of coagulants in engineered reservoir systems, 

as well as new arguments and potential data gaps. 
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Chapter 2 Literature Review 

This chapter of the thesis is a review of literature that focuses on: 1) the forms, transport and 

availability and implications of P in the environment; 2) increasing CB bloom occurrence, 

consequences and challenges to water treatment; 3) ecosystem management to mitigate the key 

factors that contribute to blooms; and 4) coagulants as sequestering agents for P.  Research gaps 

in the literature are highlighted and the importance of the proposed research for the drinking 

water industry is discussed. 

2.1 Phosphorus and Sediment in Natural Systems 

2.1.1 Phosphorus 

Phosphorus is present in a wide variety of chemical forms in natural waters that include both 

dissolved and particulate forms (APHA, 2012; Maher & Woo, 1998) and the majority of 

dissolved P in surface water is in the dissolved bioavailable form orthophosphate (APHA, 2012; 

Raven et al., 1986; CCME, 2004; US EPA, 2012b).  Phosphorus is operationally defined as 

dissolved and particulate forms (APHA, 2012; US EPA, 2012b).  The following section focuses 

on phosphate in natural waters because it is the most ecologically relevant and bioavailable form 

of P (DePinto et al., 1981; Busman et al., 1997; Barak, 1999; Reynolds & Davies, 2001; Wang et 

al., 2011). 

2.1.1.1 Molecular Forms of Phosphate 

In natural waters, phosphate can occur in both organic and inorganic forms.  Both forms can be 

dissolved or bound to particulate matter in the water.  Organic phosphates are associated with 

both living and dead/dying cellular material, including detritus, feces and decaying algae as a part 

of proteins, lipids, metabolic waste, etc. (Raven et al., 1986).  The phosphate molecule in its most 

basic form is orthophosphate (PO4
3−), but depending upon pH, it can also exist as H2PO4

− or 

HPO4
2− (Raven et al., 1986).  Orthophosphate is also referred to as dissolved or soluble reactive P 

(SRP).  Complex inorganic forms with several phosphate groups are called polyphosphates, or 

condensed phosphates (APHA, 2012; US EPA, 2012b) while other inorganic phosphate forms are 

associated with oxyhydroxide surfaces of particle surfaces or within the geochemical matrix of 

sediment (e.g. apatite and clay) (Carlson & Simpson, 1996; Engstrom, 2005; Ashley et al., 2011). 
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2.1.1.2 Phosphorus Forms Defined by Technique 

Phosphate is operationally defined on the basis of size as P in water passing through a 0.45 µm 

filter.  This fraction is called soluble or dissolved, while that retained on the filter are called 

insoluble, suspended, or particulate (APHA, 2012).  The soluble fraction includes orthophosphate 

forms as well as P bound to colloidal materials <0.45 µm.  Phosphate can also be defined by 

chemical reactivity.  Phosphates that can be analyzed colorimetrically without being hydrolyzed 

or digested in advance of analysis are called “reactive phosphorus” (APHA, 2012; US EPA, 

2012b).  Total P (TP) includes all dissolved and particulate P forms in water (APHA, 2012). 

Particulate P forms can be sequentially extracted using fractionation techniques (Stone & English, 

1993; Engstrom, 2005).  These techniques sequentially extract the following P forms: (1) loosely 

sorbed (NH4Cl extraction); (2) reductant soluble reactive P (NaHCO3*Na2S2O4 extraction); (3) 

reactive P sorbed to metal oxides (NaOH extraction); (4) P bound to carbonates, apatite-P, and P 

released by the dissolution of oxides (HCl extraction); and (5) non-reactive organic P extractable 

in hot (85°C) NaOH (Stone & English, 1993).  Fractions 1, 2 and 3 comprise the non-apatite 

inorganic P fraction (NAIP), which is predominantly bound to metal oxy-hydroxide surfaces and 

is the most bioavailable particulate P form because it can readily desorb from sediment into the 

water column.  The HCL extractable form is the apatite inorganic P form (AIP) and is a calcium-

phosphate mineral apatite that is related to natural weathering of geological materials (Stone & 

Droppo, 1994).  This particulate P fraction is relatively stable and is not readily dissolved in 

water.  Organic P extractable in hot (85°C) NaOH is referred to as organic P (OP) (Engstrom, 

2005). 

The physical and geochemical properties of sediment (including the various P forms that 

comprise it) can influence the source, transport, fate and mobility of P in aquatic and terrestrial 

systems (Stone & English, 1993; Stone & Droppo, 1994; Bowes et al., 2003; Weiner & 

Matthews, 2003).  It is commonly recognized that the surface area of sediment increases with 

decreasing grain size (Droppo & Ongley, 1992; Wood & Armitage, 1997; MWH, 2012; Yang et 

al., 2013).  Adsorptive properties of sediment are governed by factors such as specific surface 

area, porosity and the geochemical composition of sediment (MWH, 2012) and the concentration 

of sediment-associated nutrients and contaminants is inversely proportional to the grain size 

(Forstner, 1987; Stone & English, 1993; Klotz, 2014).  Other environmental factors such as the 

ambient concentration of P in the water column, competitor ions, temperature, redox conditions 

and pH influence the form and mobility of P in the environment (Stone & English, 1993).  Stone 
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& English (1993) reported that NAIP and OP fractions in sediment from two Lake Erie tributaries 

were inversely proportional to grain size while the AIP fraction decreased with decreasing grain 

size.  They also demonstrated that most of the sediment transported to the Great Lakes was <63 

µm, and suggested that fractions <8 µm represent a large source of potentially bioavailable P; this 

mechanism of P release is important as a P source for biotic uptake.  Sediment <63 µm deposited 

in aquatic systems is termed surficial fine grain laminae (SFGL) and is an important source of P 

in river systems because of its large surface area (Stone & Droppo, 1994).  Davies-Colley & 

Smith (2001) reported that suspended sediments in aquatic systems transport adsorbed pollutants 

such as toxic chemicals and trace elements, some of which might be beneficial for CB growth.  

Auer et al. (1998) investigated the bioavailability of sediment-bound P and found that soluble P 

was 4 to 7 times more bioavailable than particulate P.  Reynolds & Davies (2001) suggested that 

P available for CB growth is not confined to an “analytically determined” soluble fraction, but 

rather to TP.  In summary, it has been extensively demonstrated that both sediment composition 

(particle size and geochemical composition) and environmental conditions (pH, redox, 

temperature, competitor ions) are critical factors influencing the transport, fate and form of P in 

aquatic systems. 

2.1.2 Importance of Sediment Transport and P Mobilization 

Point-source and non-point source discharges of pollutants from predominantly industrial and 

urban sources can severely impact receiving water quality (Mainstone & Parr, 2002; Weiner & 

Matthews, 2003; Hood, 2012; GRCA, 2014).  These pollutants are often sediment-associated; 

thus, sediment is the primary vector for these contaminants and nutrients such as P (Binkley & 

Brown, 1993; Biggs, 2000; Shantz et al., 2004; Emelko et al., 2015).  Both natural and 

anthropogenic disturbances on the landscape can degrade water quality through point source 

releases (Table 1) such as wastewater outfalls (Feuillade & Dorioz, 1992; Mainstone & Parr, 

2002; Withers & Jarvie, 2008), or indirect non-point source releases (Table 2) such as urban or 

agricultural run-off (Reynolds & Davies, 2001; Seeboonruang, 2012).  Over the past century, land 

disturbances such as these have altered hydrological processes and increased erosion rates thereby 

accelerating the rate of eutrophication of aquatic systems (O’Neil et al., 2012).  This has been 

exacerbated with the advent of mechanized farming practices and over-fertilization (WHO, 1999; 

Dunn et al., 2010; Metcalf & Codd, 2004) and to a large extent, urban development.  Figure 2 

demonstrates the relative contribution of sediment from different land uses.  Notably, increased 

levels of solids and nutrients—especially P, which is limiting in freshwater systems (Schindler, 

1977; Mainstone & Parr, 2002; Barlow-Busch et al., 2006; O’Neil et al., 2012)—lead to 
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conditions that favour primary productivity and CB proliferation (Schindler, 1977; Jarvie et al., 

2002; Dodds, 2003; Dunne et al., 2005; Bowes et al., 2007; Silins et al., 2009a; Silins et al., 

2009b; Ashley et al., 2011; Silins et al., 2014; Emelko et al., 2015).  Moreover, these impacts are 

exacerbated because of changing climate (Schindler, 2001; Moore et al., 2008; Silins et al., 

2009b; Wagner & Adrian, 2009; Silins et al., 2014; Emelko et al., 2015). 

Table 1: Point source disturbances on aquatic systems 

Point Source Pressures on Aquatic 
Systems 

Influenced parameters 

Municipal wastewater 

Increased nutrients 
Increased dissolved organic carbon 
Other pollutants 
Warmer water temperature 

Industrial wastewater 

Increased nutrients 
Increased dissolved organic carbon 
Other pollutants 
Warmer water temperature 

Urban storm water management (SWM) 
facilities 

Increased sediment 
Increased nutrients 
Increased dissolved organic carbon 
Other pollutants 

Table 2: Non-point source disturbances on aquatic systems 

Indirect Pressures on Aquatic Systems Influenced parameters 

Agricultural practices 

Increased sediment 
Increased nutrients 
Increased dissolved organic carbon 
Other pollutants 

Urban development 
Increased sediment 
Increased nutrients 
Other pollutants 

Forest fires 

Increased sediment 
Increased nutrients 
Increased dissolved organic carbon 
Other pollutants 
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Figure 2: Erosion rates for land-based activities 

Munawar & Fitzpatrick (2012) discussed non-point sources of pollution and their contributing 

role in eutrophication and CB blooms; notably, they suggested a target of 30 µg/L of TP 

(Schindler, 1974) for reducing eutrophication in the Bay of Quinte and other freshwater systems.  

This target has been retained as part of the International Joint Commission bi-national regulatory 

agreement between Canada and the United States (Lopez et al., 2008; IJC, 2013).  Despite 

reductions of 130 kg/d (over six years) of external point source P loading into the Bay of Quinte, 

this waterbody is still eutrophic because non-point sources were not addressed (Munawar & 

Fitzpatrick, 2012).  Moreover, internal loading of P from lake bottom sediment remains 

significant (Christie, 1968; WHO, 1999; Havens, 2008; Munawar & Fitzpatrick, 2012). 

Sediment transport and fate are governed by several processes that are physical, biological, and 

chemical.  Figure 3 provides an overview of these processes. 

• Physical processes include hydrodynamics, bioturbation, and sediment porosity. Algae and 

CB can lower the water velocity in their immediate area and reduce advective transport of 

nutrients away from sediment.  Molecular diffusion along a concentration gradient and 

advection, or bulk movement, toward the sediment surface is affected by water flow (Dodds, 

2003).  Adsorption/desorption of P can occur from sediment, aquatic plants and organic 

US EPA 2007 
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matter. Bottom sediments become resuspended from wind / wave action, and from 

bioturbation from carp and ducks (Shantz et al., 2004). 

 

• Biological processes include microbial action such as filtering and deposition of sediment by 

algae and CB; direct ingestion, incorporation, and eventual decay, sedimentation, and 

mineralization of P (Auer et al., 1998).  Dodds (2003) explains that P uptake rates in algae 

and CB are influenced by population density, the need for nutrients, and their ability to come 

into contact and incorporate P.  In other words, biomass, activity, and advective transport all 

vary within and between differing algae/CB populations, and this might explain why the 

observed P-uptake rates are often lower than expected. 

 

• Chemical processes include pH and dissolved oxygen (DO).  CB can change both the pH and 

the DO of the water during photosynthesis.  Photosynthesis generates DO and removes CO2 

from the water making the water more acidic (Lijklema, 1980).  In acidic sediments, the 

availability of excess protons (H+) results in more positively charged sediment particles that 

can potentially adsorb more negatively charged phosphate.  Adsorption of P to metals such as 

Fe3+ (as cationic FeOH species) is higher in acidic environments (Boers, 1991).  Anaerobic 

conditions in lake sediment and pore water reduce iron-phosphorus complexes, causing 

disassociation of metal-phosphorus complexes that result in the release P from the sediment 

(Lijklema, 1980). 
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Figure 3: Conceptual overview of factors affecting sediment fate and transport dynamics. Source: 
Stone & Droppo (1994) 

2.1.3 P Sorption Kinetics 

In aquatic systems, sediment can influence P mobility through adsorption and desorption 

processes (Froelich, 1988; Dunne et al., 2005).  Adsorption isotherms describe the relationship 

between equilibrium concentrations of adsorbed and dissolved P at a given temperature 

(Figure 4).  Adsorption isotherms are unique to different combinations of sediment type and 

water quality.  Sediment has the potential to adsorb soluble reactive P until an equilibrium has 

been established with the ambient P concentration or until all sorption sites are occupied (i.e., 
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maximum sorption capacity, Smax).  When the initial solution P (S0) is low, P is desorbed from the 

sediment into solution (Figure 4).  Adsorption only occurs when sediment P levels are higher than 

the ambient P levels.  The equilibrium P concentration (EPC0) is a measure of the potential of 

sediments to adsorb or release SRP depending on the ambient aqueous SRP concentration of 

aquatic systems (House & Denison, 1998; 2000).  The EPC0 is determined experimentally by 

plotting the measured mass of P sorbed per mass of sediment versus the initial concentration of 

SRP prior to contact with the sediment (Taylor & Kunishi, 1971; Froelich, 1988).  Batch 

equilibrium experiments are used to determine the EPC0 of various sediment types and to 

estimate the desorption potential of SRP from suspended sediment to the water column (House et 

al., 1995).  Determining the EPC0 of sediment is fundamental to understanding the kinetic control 

of P by sediment.  By determining the EPC0, the behaviour of the sediment in response to future 

P-loads can be estimated (i.e. is the sediment a source of P or a sink?).  If dissolved P 

concentration entering the system exceeds the EPC0, sediment will adsorb P. 

 

Figure 4: Sediment adsorption / desorption isotherm showing the equilibrium concentration 
(EPC0). Source: Dunne et al. (2005) 

2.2 Cyanobacteria and Algal Blooms: Occurrence and Challenges to Water 
Treatment 

Due to their presence in the water column and blue-green colouring, CB are often confused with 

green algae (Brock & Madigan, 1991; Health Canada, 2012).  In contrast to photosynthetic CB, 

“green algae” are simply an assemblage of small aquatic photosynthetic plants (Wehr & Sheath, 

2003).  In addition to developing several adaptations to nutrient limitation, CB have evolved 

Smax 

Slope = k 

EPC0 

S0 desorbed under ambient conditions 



 14 

several other strategies to survive and reproduce in many aquatic environments.  They have been 

found to persist in a wide variety of habitats and water depths (WHO, 1999; St. Amand, 2013), 

and survive in different niches with alternate light levels (Haider et al., 2003; Mankiewicz et al., 

2003) and food sources (Paerl et al., 2001; Metcalf & Codd, 2004) through buoyancy regulation 

(Hallegraeff, 1992; Haider et al., 2003).  CB are equipped with an akinete, a thick walled 

structure containing food reserves, which provides them with resistance to desiccation and 

enables their persistence in ephemeral streams or in lower water levels (WHO, 1999; Metcalf & 

Codd, 2004). 

CB are always present in aquatic environments; however, in a healthy aquatic ecosystem, several 

factors regulate their abundance.  Paerl et al. (2001) note that there is a fine balance between 

adequate irradiance and nutrient supply that determines the rate of production of phytoplankton 

biomass (primary production).  Additional factors such as temperature, algal physiology, and 

competition can contribute to primary production (St. Amand, 2013). 

In Canada and other temperate countries, CB blooms are observed in late summer and early fall 

when the dominant phytoplankton species shifts to CB (WHO, 1999; Mankiewicz et al., 2003).  

As the season progresses, nutrient availability becomes limited for many types of algae for two 

main reasons: nutrients are consumed near the water surface by phytoplankton, and nutrients 

associated with detritus and debris begin to settle out of the water column and become 

inaccessible at the surface; and CB are capable of adjusting their position in the water column to 

access nutrients at depth (Breu et al., 2008).  Microcystis is a species more adapted to shorter days 

than other CB and this might be a key reason it is commonly found in late summer/early fall in 

NorthAmerica (CDWQ, 2002). 

Not all CB blooms are easily recognized and some even go undetected.  Some blooms are 

planktonic and are clearly observable at the water surface (Paerl & Ustach, 1982; Watson et al., 

1997; Wehr & Sheath, 2003).  They can quickly become dense surface scums when the wind 

blows the bloom together and concentrates the CB (WHO, 1999; CDWQ, 2002; Metcalf & Codd, 

2014).  However, some blooms exist as large, diffuse masses of planktonic CB below the water’s 

surface (Watson et al., 2008; Hazen & Sawyer, 2015), or as benthic mats (Newcombe, 2009; 

Metcalf & Codd, 2014).  In streams, highly visible, dense algae are often observed on rock 

substrates; however, the majority of these algae growths are green filamentous algae, 

Cladophora, or diatoms (Mason, 1988; St. Amand, 2013) and are not considered “CB blooms”. 
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In addition to visual observation, CB blooms have been characterized in many different ways. For 

example, the following parameters have been used: 

• chlorophyll-A (APHA, 2012; Queensland Government, 2008; Ohio EPA, 2013); and/or 

phycocyanin (a pigment specific to cyanobacteria only) (OECD, 2002; Wehr & Sheath, 

2003; Kasinak et al., 2015) 

• mass per volume (OECD, 2002; Moreno et al., 2011; Davis et al., 2015; Gerloff et al., 

2015) 

• biovolume (dimension/L) (Munawar et al., 1991; WHO, 1999; Queensland Government, 

2008; Wood et al., 2008; Zamyadi et al., 2012b; Ohio EPA, 2013) 

• growth rate / population doubling time (Paerl et al., 2001; Newcombe, 2009) 

• cell counts (Hitzfeld et al., 2000; Svrcek & Smith, 2004; Wood et al., 2008) 

An individual Microcystis cell can contain 0.2 picograms MC toxin and a Planktothrix cell can 

contain double that amount of MC per cell (WHO, 1999).  Guidelines, or alert levels, are often 

developed based on cell counts as a more reliable indicator of bloom formation (or potential 

bloom formation) rather than visual observation because cell counts can provide an approximate 

worst case scenario of the toxicity of the water (assuming every species counted was toxic) 

(Hoogenboezem et al., 2004; Ahn et al., 2007).  Estimates of MC content when cell counts are 

known for Microcystis or Planktothrix are presented in Table 3. 

Table 3: Estimates of Microcystin in a sample based on cell count (WHO, 1999) 

Cells/mL MC (µg/L) low (Microcystis) 
assuming 0.2 pg MC/cell 

MC (µg/L) high (Planktothrix) 
assuming 0.4 pg MC/cell 

20,000 4 8 
100,000 20 40 
1,000,000 200 400 
10,000,000 2,000 4,000 
100,000,000 20,000 40,000 

Accordingly, the WHO (1999) has provided guidance for assessing health risk associated with 

CB blooms by enumerating the number of CB cells per ml water.  These include Low Probability 

of adverse health effect (<20,000 cells/mL); a Moderate Risk Level (20,000-100,000 cells/mL); 

and High and Very High Risk Levels (107 to 108 cells/mL) that are often associated with scums. 

The WHO does not define a specific CB concentration to indicate a CB bloom. 
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Alert levels for recreational waters vary depending on waterbody and location, and are generally 

determined based on the previous history of the water.  For example, if species identification and 

toxin analysis has been conducted in the past in a particular waterbody, a general understanding 

of the potential toxicity might be known if the taxa (species assemblage) are consistent 

throughout the years.  The following alert levels vary widely based on country, and use a far more 

cautionary approach, due to previously established toxicity at certain cell counts: 

• S. Korea - Caution Alert Level <500 cells/mL; a Warning Alert Level is <5000 

cells/mL; an Outbreak Alert Level is 106 cells/mL (Srivastava et al., 2015) 

• International guidance - Low Alert Level is 500-2000 cells/mL; Medium Alert Level is 

2000-6500 cells/mL; High Alert Level is >6500 cells/mL for an individual species or 

combined CB (Newcombe, 2009) 

• Australia - Alert Level 1 <2000 cells/mL; Alert Level 2 is 106 cells/mL (Bartram et al., 

1999; as cited in Ahn et al., 2007) 

Canada has yet to develop alert levels based on local or national studies.  Canadian researchers 

suggest that a CB density above of 2.5 ×	106 cells/mL can constitute a bloom (Svrcek & Smith, 

2004), but this does not specifically apply to any particular Canadian body of water.  In Germany, 

a CB density greater than 106 cells/mL defines a CB bloom (Hitzfeld et al., 2000).  Mason (1988) 

describes a bloom as “an aggregation of phytoplankton sufficiently dense to be readily visible”. 

The International Joint Commission’s Health Professionals Advisory Board (IJC, 2013) for the 

Great Lakes defines blooms as “high concentrations of algal cells that give the water a ‘pea soup’ 

appearance” 

There is no formally recognised definition for a bloom (Hallegraeff, 1993; Smayda, 1997; Algae-

L Forum, 2013).  Many researchers avoid defining a bloom solely based on cell counts due to the 

variety of criteria involved.  The definition of a bloom is subjective because it can vary spatially, 

temporally, and between species.  The application of the term “bloom” also needs to take into 

account whether a) the species are macro- or micro- species; b) the condition is persistent or 

transient; c) there is a disruption in the chemistry, biology and ecology of the water; and d) 

whether the biomass in a surface scum will be averaged over the euphotic zone.  It has been 

suggested that the proliferation of CB beyond a known baseline, might be more appropriate 

(Algae-L Forum, 2013). 
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Growth rates can be used as an indicator of an impending bloom (Paerl et al., 2001).  For 

example, Newcombe (2009) reported growth rates of 0.1 to 0.4 per day, indicating that  the CB 

populations can double in just under a week to less than 2 days, respectively. Although 

Microcystis is considered one of the slower growing phytoplankton species, they can rapidly 

multiply and pose significant health risks, challenge drinking water treatment, and cause 

problems at optimal growth conditions (Breu et al., 2008). 

Blooms alter water quality in many ways that may affect drinking water treatment plant 

processes.  Specifically, increases in turbidity from nutrients and CB biomass can reduce the 

efficiency of coagulation and flocculation processes and increase the chemical oxidant demand 

required for disinfection, which also can increase the potential for DBP formation (Aktas et al., 

2012; MWH, 2012; Antoniou et al., 2014).  CB can clog filters and shorten run times (MWH, 

2012), which can lead to turbidity breakthrough, potentially resulting in the release of algae and 

CB, pathogens and other particulate matter (Pirbazari et al., 1993; APHA, 2012; WHO, 1999; Ho 

et al., 2006; Drikas et al., 2009; Zamyadi et al., 2012a).  Cyanotoxins such as microcystin (MC) 

can also be released from CB cells during treatment (Jüttner & Watson, 2007; Westrick, 2008).  

CB blooms are often the primary cause of taste and odour compounds that are not easily removed 

by conventional water treatment processes (Jung et al., 2004; Skjevrak et al., 2004; Jüttner & 

Watson, 2007; Ho et al., 2012a). 

Not all species within a CB genus are capable of producing cyanotoxins, and depending on 

environmental factors, toxins may or may not be actively produced (Hitzfeld et al., 2000; Watson 

et al., 2008).  However, high cell counts likely increase the potential for toxin production.  While 

planktonic CB are most often implicated in toxic bloom formation (WHO, 1999; Graham et al., 

2008), information regarding toxic benthic blooms is lacking. For most species of CB, 

cyanotoxins are retained within healthy cells (WHO, 1999).  When cells die and/or rupture (lyse), 

the toxin is released into the water (WHO, 1999; Mankiewicz et al., 2003).  Cyanotoxins include 

potent hepatotoxins (affecting the liver) and neurotoxins (impacting the central nervous system), 

while others simply irritate the skin (dermatotoxins) (Hitzfeld et al., 2000; Haider et al., 2003). 

Microcystin is the most significant CB toxin of concern globally is because of its toxicity and 

frequency of occurrence (CDWQ, 2002; Hoeger et al., 2002).  Microcystis is one of the most 

prevalent genus of CB associated with blooms (Hitzfeld et al., 2000; CDWQ, 2002; Svrcek & 

Smith, 2004) and several species within this genus are capable of producing microcystin (WHO, 



 18 

1999; Hitzfeld et al., 2000; Hoeger et al., 2005).  A summary of the genera responsible for 

cyanotoxin production and associated health effects is presented in Table 4. 

Table 4: Toxin Classification and Effects 

Biochemical 
Group Toxin Class Toxin Affected 

Organ Effects Genera 

Cyclic peptides Hepatotoxin 
Microcystin 

Liver 

Nausea, 
vomiting, 
bleeding in 
the liver, 
cancer, death 

Anabaena, Anabaenopsis, 
Aphanizomenon, 
Aphanocapsa, Chrococcus, 
Hapalosiphon, Lymnothrix, 
Microcystis, Nostoc, 
Oscillatoria / Planktothrix, 
Pseudoanabaena, Romeria, 
Synechococcus, Synechocystis, 
Woronchinia 

Nodularin Nodularia spumgena 

Alkaloids 

Neurotoxin 

Anatoxin 
(several 
variants with 
differing 
toxicity) Nerve axons 

and 
synapses 

Staggering, 
muscle 
twitching, 
respiratory 
distress 

Anabaena, Aphanizomenon, 
Cylindrospermopsis, Lyngbya 
Oscillatoria / Planktothrix, 
Pseudoanabaena, 
Raphidiopsis 

Saxitoxin: 
paralytic 
shellfish 
poison (PSP) 

Anabaena, Aphanizomenon, 
Cylindrospermopsis, Lyngbya, 
Oscillatoria / Planktothrix 

Neosaxitoxin 
Anabaena, Aphanizomenon, 
Lyngbya, Cylindrospermopsis 

Cytotoxin Cylindro-
spermopsin 

Liver and 
kidneys Bleeding 

Anabaena, Aphanizomenon, 
Cylindrospermopsis, Lyngbya, 
Umezakia, Raphidiopsis 

Dermatotoxin 

Aplysia-toxin 

Skin, GI 
tract 

Swimmer's 
ear, dermal 
lesions, 
possible 
tumour 
promoter 

Lyngbya, Oscillatoria / 
Planktothrix, Schizothrix 

Lyngbia-toxin 
Lyngbia, Oscillatoria / 
Planktothrix, Phormidium 

Lypopoly-
saccharides 
(LPS) 

 Endotoxin 
Skin, 
respiratory 
tract1 

Irritants and 
allergies 

All cyanobacteria 

Non-protein 
amino acid Neurotoxin 

BMAA 
β -N-methyl-
amino-L-
alanine 

Motor 
neurons 

Gulf War 
Syndrome, 
ALS, 
Alzheimer’s 

Most cyanobacteria 

Adapted from: Ellis & Korth, 1993; Anderson et al., 2002; Haider et al., 2003; Bláha et al., 2004; 
Hoogenboezem et al., 2004; Anderson et al., 2007; Newcombe, 2009; Oregon Public Health 
Department, 2012; US EPA, 2012a; Ohio EPA, 2013; Hazen & Sawyer, 2015.  

                                                        
1 Respiratory tract: if potentially aerosolized by cool mist humidifiers (Anderson et al, 2002; 
2007) 
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Although there are at least 80 variants of microcystin (Graham et al., 2008; Lopez et al., 2008; 

Szlag et al., 2015), the most studied form is microcystin-LR (MC-LR) because it is the most 

frequently occurring and the most toxic (Hitzfeld et al., 2000; Metcalf & Codd, 2004; Graham et 

al., 2008; Newcombe, 2009; Kingston et al., 2012).  The following outlines the regulatory 

guidelines for cyanotoxins that pose significant human health risk: 

• The Technical Support Document for Ontario Drinking Water Standards, Objectives and 

Guidelines (2006) in support of the Ontario Drinking-Water Quality Standards Regulation O. 

Reg 169/03 sets the Maximum Allowable Concentration (MAC) for MC-LR limit in drinking 

water at 1.5 µg/L. 

• The Canadian Drinking Water Quality (CDWQ) Guidelines allows for a MAC of MC-LR in 

drinking water of 1.5 µg/L.  Health Canada has recently circulated a new microcystin 

guideline (public comment period ended April 2016) and this version states that the guideline 

is for total microcystins (to include all of the microcystin congeners that might be present).  

This new guideline also suggests that authorities should inform the public during a 

cyanobacterial bloom, or when microcystins are detected in finished water, that an alternate 

suitable source of drinking water (such as bottled water) should be used to reconstitute infant 

formula. 

• The United States have no established guidelines for cyanotoxins at this point in time; 

however, both CB and their cyanotoxins have been added to the US EPA Contaminant 

Candidate List (CCL4 - draft) with microcystins, cylindrospermopsin and anatoxin-a given 

the highest priority. 

o As of June 2015, the EPA has issued a 10-Day Drinking Water Health Advisory for 

the cyanotoxins MC-LR and cylindrospermopsin. 

o For infants and children younger than six (6) years old, they recommend levels at or 

below 0.3 µg/L for MC-LR and 0.7 µg/L for cylindrospermopsin. 

o For adults and children over age 6, they recommend levels at or below 1.6 µg/L for 

MC-LR and 3.0 µg/L for cylindrospermopsin. 

• The World Health Organization (WHO, 1999) established a provisional guideline for MC-LR 

in drinking water of 1.0 µg/L. 

o Countries including Germany, Poland, Czech Republic, France, Spain, and New 

Zealand have adopted the WHO Guidelines for microcystin. 
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• Australia has adopted a guideline for MC-LR in drinking water of 1.3 µg/L.  Furthermore, it 

is currently considering a 3.0 µg/L limit for anatoxin-a and saxitoxin, and a range of 1-15 

µg/L for cylindrospermopsin. 

• Brazil has adopted the WHO Guideline for microcystin and guidelines, similar to Australia, 

of 3.0 µg/L for saxitoxin, and 15 µg/L for cylindrospermopsin. 

• Many countries are also considering setting guidelines for anatoxin-a, saxitoxin, and 

cylindrospermopsin, once more knowledge is gained. 

Several policies and practices have been established to minimize the occurrence of CB blooms.  

Some directly target reductions in nutrient discharges, while others include restoration and 

enhancement of wetlands and riparian buffer zones (Binkley & Brown, 1993; MOEE, 1993) 

through restorative planting with native species (Mainstone & Parr, 2002; US EPA, 2007) that are 

capable of stabilizing the soils and metabolizing excess nutrients (Biggs, 2000; Mainstone & Parr, 

2002).  Decreasing of bioavailable P in freshwaters remains a primary strategy for preventing CB 

blooms because P is a limiting nutrient in most freshwaters (Mason, 1988; Mainstone & Parr, 

2002; CCME, 2004; Ashley et al., 2011), including the Grand River (Barlow-Busch et al., 2006).  

P reduction in watersheds typically is approached on three (3) levels (Mason, 1988; Wehr & 

Sheath, 2003): 

• Increase P output from a system either by selective discharge of hypolimnetic water, or 

overall flushing with oligotrophic source (this is not frequently recommended since it only 

transfers the problem downstream); 

• Decrease external P loading via diversion and advanced WWTP upgrades, retention basins, 

wetlands, and other watershed management techniques; and 

• Supress internal P loading via P-binding (coagulation), sealing lake bottoms, dredging 

(removal), biotic harvesting (of nutrient rich macrophytes, algae or fish), or aeration (aerobic 

sediment absorbs more P). 

2.2.1 Phosphorus as a Key Nutrient for CB Growth 

Nitrogen (N) and P are considered essential nutrients for algae and CB (Redfield, 1958; Christie, 

1968; Scherfig et al., 1973).  N and P levels in pristine fresh waters are generally low enough to 

limit CB growth.  However, elevated levels can result in excessive CB growth (Schindler, 1977; 

Mason, 1988; Moss, 1989).  Although N levels play an important role in the potential for toxicity 
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(Davis et al., 2015), CB growth and bloom development is more closely associated with P loads 

in freshwater systems (Paerl et al., 2001; Reynolds & Davies, 2001). 

2.2.1.1 Phosphorus Availability 

P is a key component in membranes, tissues, and proteins such as amino acids and nucleic acids 

(DNA, RNA) used in cell division; it is also used to make ADP and ATP, the compounds 

responsible for energy transfer and storage (Breu et al., 2008).  Ultimately phosphorus drives 

reactions within living cells and is vital for metabolism (Raven et al., 1986; CCME, 2004; Ashley 

et al., 2011).  Although P is abundant in the environment, bioavailable forms of P are not (Barak, 

1999; Reynolds & Davies, 2001), and therefore P is considered the first nutrient to limit 

biological activity in freshwater systems (APHA, 2012; Mason, 1988; CCME, 2004; Ashley et 

al., 2011).  The term “bioavailable P” is subjective and there is a lack of agreement on which 

sources of P are the most biologically available to CB (Reynolds & Davies, 2001). 

Bioavailable P, or algal available P, has been frequently described using an operational definition, 

which is generally synonymous with ortho-P, or soluble reactive P (SRP) (Reynolds & Davies, 

2001; Mainstone & Parr, 2002).  Often, the terms ortho-P (H2PO4−,	 HPO4
2−, PO4

3−) and 

dissolved P are interchanged, and referred to as directly available for biological uptake in 

plankton, algae, CB, and bacteria (DePinto et al., 1981; Auer et al., 1998; Busman et al., 1997).  

However, caution must be exercised when using the simpler term “dissolved” because there are 

many forms of dissolved P (i.e., low molecular weight OP) that would fall into this category.  

Thus, it has also been suggested that operational definitions are insufficient (Pierzynski, 2000), 

because P availability depends on numerous factors, such as the ability of CB to cleave P from 

otherwise inaccessible forms, or environmental factors that increase P solubility. 

When dissolved-P sources are limited, CB have the capability to cleave phosphate from organic 

molecules via the phosphatase enzyme (Feuillade & Dorioz, 1992; Reynolds & Davies, 2001; 

Wehr & Sheath, 2003; Tan et al., 2012).  The resulting elevated levels of phosphatase enzyme in 

the water can then be analytically measured and used as an indicator P-availability (Wehr & 

Sheath, 2003). 

Notably, Reynolds & Davies (2001) discussed the conditional availability of sediment-

regenerated-P.  They noted that ortho-P (SRP) and/or OP liberated from sediment can either 

remain in solution as readily available P, or rapidly adsorb to metal oxides (NH2Cl-P) and 
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hydroxides (NaOH-rP), and clay; they also can become “conditionally available” when 

conditions, such as pH or redox potential change (Forstner, 1987; Reynolds & Davies, 2001).  

They also suggest that CB utilize TP found in biomass (biomass-P, or BP), although it is unclear 

whether they were referring to internally stored or external sources of biomass. 

Similarly, Auer et al. (1998) described total dissolved P (TDP) as the sum of SRP and dissolved 

organic-P (DOP), and found that TDP was most bioavailable to phytoplankton in their study, 

contributing 95-97% of the P used by algae.  Both forms of dissolved P were accessible due to 

enzymatic cleavage of organic component of the P.  They suggest that molecular differences such 

as high molecular weight or colloidal OP might be responsible for reduced availability in the 

other forms of P.  Only a fraction of the particulate P was considered available, and particulate P 

became more soluble during dry-weather events, specifically the fraction associated with iron or 

aluminum.  Auer et al. (1998) described four types of particulate P: phytoplankton-P (PhyP), 

zooplankton-P (ZP), “available” non-living particulate-P (ANLPP), and “unavailable” non-living 

particulate-P (UNLPP). This investigation underscored the importance of site-specific P-fraction 

bioavailability when setting nutrient targets.  Breu et al. (2008) similarly commented that ortho-P, 

some phosphorylated sugars and phosphonates and P that can be transformed by physical 

(adsorption/desorption) or chemical (dissolution) or biological (enzymes) are all directly available 

for uptake. 

Due to the multitude of P sources and their varying bioavailability, TP often is used for 

investigating and estimating bioavailable P.  TP has been used as a surrogate for predicting 

biomass because most P is particle-associated, rather than in dissolved form (WHO, 1999; 

Reynolds & Davies, 2001; Smith et al., 2011; Bladon et al., 2014).  Notably, there is little or no 

correlation between TP and algal biomass (DePinto et al., 1981; Watson et al., 1997; Auer et al., 

1998; Hood, 2012; Chen & Taylor, 2011) in many cases; thus, SRP or a combination of water and 

sediment SRP are sometimes used as predictors of biomass.  Several forms of P and their 

potential bioavailability are summarized in Table 5. 
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Table 5: Major forms P in solution and bioavailability 

Specific Nutrient Availability in the Environment Reference 

dissolved PO4
3− ortho-P most bioavailable 

Auer et al (1998) 
Mainstone & Parr (2002) 
Reynolds & Davies (2001) 
Wehr & Sheath (2003) 

organic-bound PO4
3− enzymatic cleavage makes P 

available 

Auer et al (1998) 
Busman et al. (1997) 
Reynolds & Davies (2001) 
Wehr & Sheath (2003) 

particulate-bound PO4
3− 

conditionally available depending 
on physical/chemical processes 
that release P 

DePinto et al. (1981) 
House (2003) 
Mainstone & Parr (2002) 

2.2.1.2 Nitrogen Availability 

Nitrogen (N) is also an essential component of proteins, amino acids, nucleic acids and urea 

(Raven et al., 1986; APHA, 2012).  It also plays a role in the formation of the cyanotoxin, 

microcystin (Stucken et al., 2014; Davis et al., 2015).  Aquatic N occurs in various organic and 

inorganic forms.  Organic N forms include amino acids, sugars, humics (Raven et al., 1986; 

Brock & Madigan, 1991; Breu et al., 2008; Worsfold et al., 2008).  Dissolved inorganic N (DIN) 

forms include ammonium (NH4
+), ammonia (NH3), nitrite (NO2

-), nitrate (NO3
-), and dissolved 

gas, N2 (Larsdotter, 2006; Breu et al., 2008; Worsfold et al., 2008).  Although N2 is easily lost to 

the atmosphere, it readily diffuses into the surface layers of water where specialized bacteria, 

including some species of CB, are capable of “fixing” the N2 and converting it into a bioavailable 

form of N, such as NO2
-, or NH3, which is subsequently converted into NO3

- (Raven et al., 1986; 

WHO, 1999; Paerl et al., 2001; Wehr & Sheath, 2003; Svrcek & Smith, 2004).  A bacterial 

preference for certain types of N has been suggested; however, it is more commonly believed that 

large fractions DIN are potentially bioavailable due to their low molecular weight (APHA, 2012; 

Larsdotter, 2006; Stucken et al., 2014).  Figure 5 provides an overview of operationally defined N 

and P forms in freshwater systems. 
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Figure 5: Schematic of typical P and N components of a water sample. Source: Worsfold et al. 
(2008) 

N-fixers, which are typically filamentous species in Nostocales group such as Anabaena and 

Aphanizomenon, are able to dominate under low N conditions (WHO, 1999; Higgins et al., 2003; 

Davis et al., 2015).  Once the N-fixers become established, their presence enables other CB to 

join the assemblage and begin to dominate in the water column (APHA, 2012; WHO, 1999; Paerl 

et al., 2001).  The idea of N-scavenging has also been reported in the literature, and non N-fixers 

such as Planktothrix and Microcystis were found to dominate low N environments (Davis et al., 

2015). 

2.2.1.3 Nitrogen to Phosphorous (N:P) Ratio 

The Redfield Ratio of 16N:1P represents the general requirement for all aquatic organisms 

(Redfield, 1934; Moss, 1989; Kim et al., 2007).  A lower ratio (<16N:1P) from N depleted or P-

enriched waters, is considered favourable for CB growth by allowing N-fixers, or N-scavenging 

CB to dominate (APHA, 2012; WHO, 1999; Paerl et al., 2001; Davis et al., 2015).  If the N:P 

ratio exceeds 16:1, P is considered limiting to algal/CB growth (Mason, 1988).  The ratio of 

nitrogen and P has been widely reported as critical for development of CB blooms in the aquatic 

environment.  While some researchers argue that the ratio is critical to bloom formation, others 
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contend that overall nutrient concentration is more important (Svrcek & Smith, 2004; Wagner & 

Adrian, 2009).  Bowes et al. (2007) suggested that at elevated nutrient levels, the ratio becomes 

unimportant, because no nutrient is limited.  Guildford (2006) reported reservoir CB 

concentrations that were strongly correlated with TP levels and negatively correlated to TN:TP 

ratios (i.e. at decreasing ratios of <16N:1P, CB began to thrive).  Havens (2008) found that TP 

was a better predictor of CB dominance than TN:TP ratios.  Overall, all of these investigations 

underscore the critical importance of sediment-associated nutrient availability for CB 

proliferation; thus, they also reflect the opportunity to minimize CB bloom occurrence and risk to 

drinking water treatment by locally controlling nutrient availability in engineered reservoirs. 

2.2.2 Adaptation of CB to Low P Concentrations 

Given the low, or variable availability of P in some natural systems (Moss, 1989), CB have 

adapted and can take up and readily store P for future metabolic needs (Reynolds & Davies, 

2001; Newcombe, 2009).  Specifically, several CB have the ability to store excess P as 

polyphosphates (Thompson et al., 1994; Vahtera et al., 2007; Breu et al., 2008; Havens, 2008).  

This internal storage allows growth at low external P concentrations and allows CB to 

outcompete other phytoplankton when P levels are low (Reynolds & Davies, 2001; Mankiewicz 

et al., 2003).  The ability to take up excessive P and store for future consumption is termed 

“luxury uptake” (Paerl et al., 2001; Tan et al., 2012).  Notably, CB can store enough P for 2 to 4 

cell divisions, equivalent to a 4 to 32 fold increase in biomass (WHO, 1999; Newcombe, 2009); 

as many as 20 cell divisions (Weiner & Matthews, 2003).  Larsdotter (2006) summarized this 

capacity as follows: 

• When external P levels were at 0.1 mg P/L, microalgae stored P at internal P stores of ~1 

mg P/g dry weight; 

• When external P levels were at 5.0 mg P/L, microalgae stored P at internal P stores of 

~100 mg P/g dry weight; and 

• On average, algae cells contain ~13 mg P /g dry weight. 

In addition to P storage, CB have developed other physical and metabolic strategies to overcome 

P-limitation.  CB cells adapt by changing from bright blue-green to yellow (chlorosis) and by 

reducing photosynthesis rates (Larsdotter, 2006; Tan et al., 2012).  They also reduce the size of 

their cells in addition to reducing growth rates (Breu et al., 2008).  Physiological changes include 

making P-uptake systems more efficient by producing more alkaline phosphatase enzyme, 
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making more uptake proteins and increasing their P uptake rate.  Internal cellular processes can 

limit, or become independent of extracellular P levels by using alternate metabolic pathways 

(Breu et al., 2008; Wang et al., 2011).  These diverse and numerous adaptions of CB to low levels 

of nutrient availability underscore potential challenges associated with bloom control; however, 

they also signify opportunities for management because it is also commonly recognized that CB 

proliferations is more likely when optimal levels of nutrients are present (Higgins et al., 2003; 

Wehr & Sheath, 2003; Li et al., 2009).  Thus, reductions in nutrient levels should not be expected 

to eliminate all CB, but rather to help prevent rapid proliferation and blooms. 

Water quality guidelines for preventing nuisance algae proliferation typically target TP levels of 

30 µg/L or less (CCME, 2004); however, it has also been suggested that TP concentrations as low 

as 10 µg/L may be required to prevent blooms (WHO, 1999).  Notably, extremely low SRP 

concentration can support CB growth in some cases.  For example, Reynolds & Davies (2001) 

found that CB maintained a fast growth rate when external SRP was at 3 µg/L.  Thus, while 

reducing nutrient availability can significantly reduce the probability of CB bloom occurrence, it 

is not guaranteed. 

2.2.3 Other Water Quality Parameters Impacting CB Growth 

Beyond nutrients, a number of additional water quality parameters are important to CB growth.  

These include: micronutrients, carbon, dissolved oxygen, salinity and alkalinity/pH.  Although 

required in small amounts, micronutrients such as Iron (Fe) and other trace elements are critical 

for cellular growth and metabolism.  Fe is required for photosynthesis, respiration, N-fixation, 

and NO3 utilization (Paerl & Ustach, 1982; Hyenstrand et al., 2000; Paerl et al., 2001; Li et al., 

2009) and can sometimes be in short supply (Reynolds & Davies, 2001; Breu et al., 2008).  Other 

trace elements are typically not limiting (Cu, Mo, Mn, Zn, Co) and aid in N-uptake and N-

fixation, as well as photosynthesis and carbon fixation (Paerl et al., 2001; CDWQ, 2002). 

Carbon, in the form of dissolved inorganic carbon (CO2, HCO3
-, CO3

2-) and dissolved organic 

carbon (DOC) is typically unlimited in aquatic environments due to the ongoing diffusion of CO2 

into water and prevalence of naturally occurring organic matter (Paerl & Ustach, 1982; WHO, 

1999; Paerl et al., 2001).  Dissolved inorganic carbon (DIC) limitation and high pH may provide 

competitive advantages to CB. 
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Dissolved Oxygen (DO) is generated during photosynthesis but can be drastically reduced at 

night, or during overcast days, when respiration occurs.  Respiration requires oxygen to convert 

chemical energy (captured during photosynthesis) into compounds required for cellular growth 

(Raven et al., 1986).  As CB concentration/density increases, the water in and around the 

sediment becomes more anoxic, which in turn releases ammonia and ortho-P, stimulating internal 

nutrient loading and furthering the eutrophication process (Beutel, 1994). 

CB require energy-intensive uptake mechanisms with specialized transport enzymes to transport 

P against the osmotic gradient because P is present at lower levels in the surrounding water as 

compared to the CB cell (Moss, 1989).  At aerobic (higher DO) conditions, uptake of P from 

water occurs rapidly, but in low oxygen, or anoxic conditions CB use stored P (Larsdotter, 2006).  

The following model presented by Moss (1989) of Monod kinetics describe this uptake 

efficiency: 

𝜇 =
𝜇!"#𝑆
𝐾! + 𝑆

 
Equation 1 

where: 

µ is the uptake rate 

µmax is when enzymes are saturated to full capacity 

S is the concentration of enzyme-substrate (in this case the nutrient P); and 

KS is half-saturation constant (P concentration at which half of the enzymes are fully 

saturated) 

The tolerance for conductivity and salinity varies among CB species (Paerl et al., 2001) and 

alkalinity and pH are known to impact their growth.  Specifically, CB prefer slightly basic water 

(CDWQ, 2002; Moore et al., 2008) but can tolerate a broad pH range (Wehr & Sheath, 2003).  A 

decrease in pH can promote P release from sediment thus contributing to the growth of CB 

(Dodds, 2003). 

2.3 Coagulants as Sequestering Agents for P 

2.3.1 Coagulation 

Many problematic sediment-associated contaminants such as heavy metals and P are present in 

the water column of aquatic systems.  While not of health significance prior to treatment, 
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contaminants such as P, can result in conditions (i.e., CB blooms) that challenge drinking water 

treatment. Due to their very small size, the colloids and nano-particles that carry these 

contaminants require chemical coagulation prior to removal by clarification, which is typically 

achieved using gravitational settling processes (Duan & Gregory, 2003; MWH, 2012) and 

occasionally in upflow configurations such as dissolved air flotation (MWH, 2012; Newcombe et 

al., 2015).  Coagulants are typically charged molecules (multivalent metal-salts, 

polymers/polyelectrolytes) that hydrolyze in water to form cationic species that are attracted to 

these negatively charged particles (MWH, 2012; Wyatt et al., 2012). 

2.3.2 Ferric Coagulants 

Ferric chloride (FeCl3) is a metal coagulant commonly used to destabilize negatively charged 

particles, which predominate in natural waters because of the presence of NOM (MWH, 2012).  It 

is also used as a flocculent because it is capable of binding to itself as well as forming precipitates 

with other contaminants (WHO, 1999; Duan & Gregory, 2003; Fritz, 2006; MWH, 2012).  FeCl3 

can reduce the concentration of soluble P in both drinking and wastewaters (Bowes et al., 2007). 

FeCl3 is a robust coagulant because it effectively removes NOM and colour, works in high and 

low turbidity and is effective over a wide pH range and at cooler temperatures (Duan & Gregory, 

2003; Engstrom, 2005; Gonzalez-Torres et al., 2014).  In contrast, aluminum sulfate is sparingly 

soluble in pH neutral or alkaline conditions (WHO, 1999).  Additionally, compared to alum-based 

flocs, FeCl3 flocs are denser and stronger, often resulting in a faster settling rate (Duan & 

Gregory, 2003; Engstrom, 2005; Gonzalez-Torres et al., 2014). 

Notably, well-operated FeCl3 coagulation does not lyse CB cells or result in the release of 

cyanotoxins (Chow et al., 1998).  As well, the optimal pH range for particle and organic removal 

using FeCl3 is from 5 to 8 (Lijklema, 1980; Duan & Gregory, 2003; Caravelli et al., 2010; MWH, 

2012; Newcombe et al., 2015); thus, it can be readily utilized for the treatment of most natural 

waters. 

2.3.3  Performance of Ferric Coagulants for P Removal 

Typical doses of FeCl3 range from 5 to 150 mg/L depending on raw water quality and turbidity 

(MWH, 2012).  Gonzales-Torrez (2014) used 0.01 to 1.0 mM Fe3
+ (equivalent to 2.7 to 270.3 

mg/L of FeCl3-6H2O, or 1.6 to 162.2 mg/L FeCl3) and Chow et al. (1998) used 15 to 30 mg/L 

FeCl3 for coagulating particles and CB rather than for P-binding; and van der Veen et al. (1987) 
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used a FeCl3 dose of 7 mg/L to sequester P in their research.  Accordingly, FeCl3 dosing must be 

evaluated and optimized for achieving specific treatment targets such as shifting the EPC0 of 

sediment to preclude P desorption in engineered source water reservoirs. 

2.3.4 Use of Ferric Coagulants for CB Growth Mitigation 

The concept of using iron-based coagulants to sequester P in water bodies to reduce algae and CB 

growth is not new.  The use of FeCl3 to mitigate algal blooms by fixing P in several lakes in 

Amsterdam was studied by van der Veen et al. (1987).  They reported a large improvement in 

overall water quality and were able to substantially reduce the P burden in several lakes, some by 

over 90%, and reported heavy metal and toxic substance removal as additional benefits.  Mason 

(1988) summarized the work of several others and said that while the removal of inorganic P was 

effective using alum in small ponds and lakes, there was no removal of dissolved OP.  However, 

Mason (1988) also noted that the floc formed on the sediment acted as a blanket to supress P-

release from the sediment. 

FeCl3 readily dissolves in water and the Fe3+ ion forms a relatively strong bond with phosphate 

(PO4
3) to form a relatively insoluble, less-bioavailable precipitate (Snoeyink & Jenkins, 1980; 

Engstrom, 2005; Bowes et al., 2007).  The action of phosphate binding with Fe3+ minerals in 

sediment is slightly different compared to water, as the solubility of the P-complexes are 

governed by pH and redox potential (Moshiri, 1993), hydrodynamics and grain size, as well as 

the concentration of Fe3+ and P (i.e., sorption potential) and other competing ions (Froelich, 

1988).  Froelich (1988) described two phases of adsorption/desorption as the initial rapid step 

(taking minutes to hours) and the secondary step where the adsorbed P diffuses into the interior of 

the sediment particle over a period of days to months. 

Related to redox potential, sustained P-retention in the sediment is strongly governed by oxygen 

levels.  Cook et al (1993, in Engstrom, 2005) found that long-term P-retention in the sediment 

was only achieved when the hypolimnion was aerated.  In anoxic conditions, redox dissolution of 

Fe-P complexes in subsurface sediments results in diffusion of P towards the sediment surface 

and into solution.  Redox potentials below +250 mV (Moshiri, 1993) or below +120 mV 

(Sherwood & Qualls, 2001) are reportedly the thresholds for releasing P.  Anoxic conditions are 

not expected to predominate in engineered drinking water reservoirs with relatively short 

hydraulic detention times because water is typically oxygenated during pumping. 
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Surprisingly, chemical precipitation of P is not typically practiced in engineered drinking water 

reservoirs for the pre-emptive management of algae and CB; no studies detailing this approach 

are currently available in the academic literature.  To our knowledge, the effectiveness of using 

FeCl3 for P-sequestration at bench-scale or in engineered drinking water reservoirs to prevent 

and/or inhibit CB blooms has not been previously reported.  

  



 31 

Chapter 3 Materials and Methods 

To investigate P sequestration by chemical precipitation, bench-scale tests using source water and 

sediment were performed with FeCl3 as the coagulant.  This study focused on managing dissolved 

and sediment-associated P as a way to control M. aeruginosa growth for potential application in 

engineered drinking water reservoirs.  The first phase of this study elucidated the importance of 

source water and more importantly sediment as a source (sink) for potentially bioavailable P.  The 

second phase of this work consisted of using M. aeruginosa cultures to evaluate the effectiveness 

the P-sequestration in the presence and absence of sediment. 

3.1 Water and Sediment Sources 

The Regional Municipality of Waterloo (RMOW) provides drinking water to over ½ million 

people.  The Hidden Valley Reservoir (HVR) is one of the drinking water reservoirs in Kitchener, 

Ontario (Figure 6).  The reservoir is a linear-flow reservoir that is fed from the municipally and 

agriculturally impacted Grand River and supplies the Mannheim Water Treatment Plant (WTP) 

with a capacity of 72 million litres per day (MLD).  The HVR is a large, in-line, reservoir 

structure with 148 million litres (ML) storage in four compartments (or cells).  After being 

pumped into the reservoir from a low-lift pump station adjacent to the Grand River, the water 

flows in an under-over path in the reservoir, prior to being conveyed by the high-lift pump station 

to the Mannheim WTP.  The water retention time (WRT) in the reservoir is approximately 2 days 

from inflow to outflow.  During this time, some sediment settles in the reservoir cells. 

3.1.1 Sediment Grain Size Characterization 

Fine sediment is the primary vector of P transport in aquatic systems (Forstner, 1987; Wood & 

Armitage, 1997; Kaiserli et al., 2002; House, 2003).  There is a gradient in particle size 

distribution of deposited sediment in the HVR cells; with the coarser fractions settling in Cell 1, 

and the finest sediments deposited in Cell 4 (Figure 7).  Deposited sediment was periodically 

collected from three locations (south, middle, north) within each of the four HVR cells using a 

Ponar sediment sampler between May 2013 and September 2014.  All sediment was stored at 4ºC 

and freeze-dried before testing to eliminate moisture content and minimize errors in weighing. 

The sediment grain size distribution was analyzed on June 17, 2014 using a Mastersizer 2000 

(ACT Labs, Ancaster ON; Ver. 5.54, Malvern Instruments Ltd., Malvern UK).  The results within 
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each cell were then averaged into a single value, and are presented in Table 12 in the Results 

section.  (Appendix B contains detailed grain size distribution results).  The sediment used for 

sorption and CB testing in this thesis was collected from Cell 3 during September 2014, 

immediately prior to conducting the batch experiments. 

 

Figure 6: Hidden Valley Reservoir (HVR) location in Kitchener adjacent to the Grand River 

 

Figure 7: Hidden Valley Reservoir (HVR) configuration and sediment deposition schematic 
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3.1.2 Water Sources 

Water from the high lift tap was used for all experiments.  It was collected at various times during 

the year (Table 6) and filtered within a few hours of collection using 0.45 µm Whatman® 47 mm 

GF/F AH-934 filter and stored at 4ºC. 

Table 6: Hidden Valley Reservoir water collection dates 

Collection 
tap 

Collection 
Date Test Test start date 

High lift 
tap 

14 Dec 2014 Fe[5][25][50][100] isotherm 16 Dec 2014 

26 Feb 2015 
Fe[5][25][50][100] isotherm (no sediment) 26 Feb 2015 
M. aeruginosa screening test (and BG1150 
medium) 12 Mar 2015 

27 May2015 
Fe[10][15][20] isotherm 27 May 2015 
M. aeruginosa growth test Fe[100][200] (no 
sediment) 20 July 2015* 

19 June 2015 
M. aeruginosa growth test Fe[200][300][400] 6 Aug 2015 
Fe[200][300][400] isotherm 1 Oct 2015 

* Water collected 27 May 2015 was acclimated on bench for two months (350 mL water: 3.5 g 
sediment). Sediment was filtered/removed on 6 July 2015 and supernatant used in M. aeruginosa 
Fe[100][200] ‘no sed test’ on 20 July 2015. 

3.2 P Sorption Experiments 

A series of adsorption/desorption experiments were conducted using various water types 

(ultrapure water, HVR water, or CB growth medium) to determine the potential of sediment to 

release P into the water column in HVR (Cell 3) sediment.  Ideally these experiments would have 

been conducted using sediment from Cell 4 (i.e., finest sediment); however, sediment from Cell 4 

had been removed just prior to experimentation as a part of routine maintenance at the HVR.  

Media preparation consisted of weighing 0.25 g of freeze-dried sediment into 50 mL centrifuge 

tubes in triplicate.  The freeze-dried sediment was coned and quartered to minimize the variability 

in grain size.  Depending on the specific experiment, various concentrations of P (0, 25, 50, 100, 

and 200 µg P/L; 25 mL per centrifuge tube) were added to ultrapure water, HVR water, or CB 

growth medium (BG11).  pH was measured with a calibrated Orion 250A pH meter (±0.02) 

(Standard Method 4500-H+; APHA 1988) (Thermo Fischer Scientific, Waltham, MA) following 

(prior to dosing with FeCl3). 

During the experiments that involved coagulant addition, FeCl3 was directly added into each tube 

at the appropriate dose.  A FeCl3 stock solution (5000 µg/L) was prepared to minimize the 
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required volume added to each tube.  A ratio of 0.25 g sediment: 25 mL water was maintained.  

Initial sorption experiments were conducted using doses of 0, 5, 25, 50, and 100 mg/L FeCl3 to be 

generally consistent with doses used in WTP’s.  After FeCl3 addition, the tubes were capped and 

rapidly shaken for 30 seconds then placed horizontally on a shaker table (Eberbach 6000) at low 

speed (approx. 50 rpm) and agitated for 18 hours, to reach equilibrium (Figure F1; Appendix F).  

Each sample was then filtered through a Whatman™ 0.45 µm Puradisk nylon syringe filter and 

stored at 4ºC in acid-washed, triple-rinsed scintillation vials prior to SRP analysis. 

In a subset of some experiments, FeCl3 was added to additional tubes, in triplicate, after the 

solution had reached equilibrium (i.e., after 18 hrs of agitation).  After the FeCl3 addition, these 

tubes were rapidly shaken for 30 seconds then allowed to settle for 2-3 minutes prior to filtering 

and storage. 

3.3 Microcystis Culturing 

The cyanobacteria Microcystis aeruginosa was chosen as the study species for the following 

reasons: 

1. Microcystis is one of the most prevalent genus of CB (CDWQ 2002; Hitzfeld et al. 2000; 

Svrcek & Smith 2004) 

2. Microcystis species have previously been identified in the HVR during 2013 (M. botrys) and 

2014 (M. botrys, M. flos-aquae, M. novacekii); and M. aeruginosa specifically was identified 

in other reservoirs in the Grand River Watershed (RMOW unpublished data). 

3. Microcystis is considered a strong competitor for organic-bound P and is capable of storing 

enough P for 2 to 4 cell divisions, the equivalent to a 4 to 32 increase in biomass (WHO, 

1999).  This taxon could provide insight into a potential delay in response to P sequestration. 

4. Microcystis cells are buoyant and will disperse throughout the water column to access all 

dissolved P.  This characteristic facilitates pipetting near the surface without drawing 

sediment into the pipette. 

5. The species is available at the Canadian Phycological Culture Centre (CPCC) at the 

University of Waterloo. 

M. aeruginosa was grown in BG11 growth medium (Table 7) with pH adjusted to 7.5 prior to 

autoclaving.  The culture was maintained in controlled conditions in an environmental growth 

chamber (Percival chamber, VWR) at temperatures 21ºC ± 2ºC with a 12hr light/12hr dark cycle 
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to help keep the cells in the log phase of growth.  The light intensity and wavelength was 

maintained at 4.98–8.30 µEin/m2/sec using cool-white fluorescent lights.  The location of glass 

culture flasks in the growth cabinet was routinely randomized. 

Table 7:  Composition of BG11 liquid growth medium 

Component Stock conc. 
(g/L) 

mL/L Final conc. 
(g/L) 

Element Final element 
conc. (mg/L) 

NaNO3* 150 10 1.500 N 247.337 

K2HPO4 30 1 0.030 P 
PO4

3− 
5.335 
16.357 

MgSO47H2O 75 1 0.075 Mg 7.394 
CaCl22H2O 36 1 0.036 Ca 9.815 
Citric Acid combined with 
Ferric Ammonium Citrate 

6 
6 1 0.012 Fe 

N 
1.279 
0.321 

Na2EDTA2H2O 1 1 0.001 EDTA 0.785 

Na2CO3 20 1 0.020 Na 
CO3 

4.338 
11.323 

*not added when growing nitrogen fixing species 

Culture flasks were acid washed then triple rinsed with DI water followed by a triple rinse with 

ultrapure water, covered with a foam plug and bio-shield, and then sterilized by autoclaving at 

121°C for 15 minutes.  After use, all dishware was soaked in a 10% aqueous bleach bath for at 

least 24 hours to destroy any potential toxins. 

To generate or refresh cultures and maintain the maximum standing crop, M. aeruginosa was 

transferred using a 1:3 ratio (40 mL culture transferred into 120 mL BG11 medium) because this 

genus is better maintained in a more dense population of ~2 to 5 x106 cells/mL (pers. comm., 

Heather Roshon–CPCC, 2014).  The average growth rate for M. aeruginosa cultures was 

calculated as the change in cell numbers over a specific time interval (see Equation 4).  At 

optimal conditions (i.e. fresh growth medium at ~5000 µgP/L), M. aeruginosa’s optimal growth 

rate was ~0.1/day (Figure 8); and this growth rate was within ranges reported by Newcombe 

(2009).  Henderson et al. (2008) reported maximum M. aeruginosa concentrations in culture 

flasks (i.e., in the stationary growth phase) at 1.3×107 ± 3×105 cells/mL (log equivalent of 7.10 to 

7.12 cells/mL) which are in agreement with the culture concentrations shown in Figure 8. 

Although the original cultures were not axenic, all culture stocks were prepared in a Class II A2 

Biological Safety Cabinet (Microzone; Canada) to minimize contamination.  Cell enumeration 

was also conducted in a sterile environment by gently swirling the culture flask, transferring a 1-2 
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mL aliquot into a sterile 5 mL centrifuge vial, thoroughly mixing and then transferring a 10 µL 

subsample to a haemocytometer (Bright-Line, with Neubauer rulings (Hausser Scientific; PA).  

Counts were conducted using a Zeiss Axioskop 2 Plus Compound Microscope with bright field 

illumination (Zeiss, Oberkochen, Germany).  Replicate counts obtained using a haemocytometer 

are considered correct if within 20-30% of each other (OECD, 2002; Environment Canada, 2007).  

To minimize error, samples were diluted to obtain approximately 100-250 cells per counting 

chamber and preserved with 1% Lugol’s iodine to immobilize the cells.  The volume of the 

counting chamber was 0.1 µL.  The number of cells per millilitre was calculated by using the 

average of a minimum of three separate counts.  The final result was expressed as number of cells 

per mL. 

 

Figure 8: Growth curve of M. aeruginosa culture grown in BG11 medium with ~5000 µg/L P 

The BG11 growth medium contains 5335 µg P/L (Table 7).  To limit M. aeruginosa exposure to 

such high and environmentally atypical concentrations of P before nutrient sequestration studies, 

a modified BG11 growth medium containing 53 µg P/L was used.  The modified growth media is 

hereafter referred to as BG1150. 

M. aeruginosa was transferred to the BG1150 by a washing technique adapted from OECD (2007) 

and US EPA (1980).  Briefly, 40 mL of a stock M. aeruginosa culture was centrifuged at 5000 

rpm for 5 minutes and the supernatant decanted.  The pellet was re-suspended in approx. 40 mL 

of BG1150, centrifuged and the supernatant decanted.  This step was repeated twice, and then the 

pellet was re-suspended in 40 mL of BG1150, transferred to a sterile 250 mL flask and topped up 

with an additional 120 mL BG1150, for a total volume of 160 mL.  Typically, new cultures had an 

adjustment period of roughly 17 days before they recovered buoyancy, due to the effects of the 

centrifugation process. 
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3.4 Microcystis Growth Trends after P Sequestration 

All glassware and plastics were acid washed then triple rinsed with distilled water followed by a 

triple rinse with ultrapure water and allowed to dry for at least 12 hours at room temperature prior 

to use.  Sediment was added to flasks that were then covered with a foam plug and a piece of bio-

shield and autoclaved at 121°C for 15 minutes.  Experimental water (BG1150 or Reservoir water) 

was also autoclaved prior to testing.  After use, all dishware was soaked in a 10% aqueous bleach 

bath for at least 24 hours to destroy any potential microcystin toxin.  Ultrapure water was used in 

preparation of all reagents.  Stock solutions were stored in the dark at 4°C when not in use. 

3.4.1 Microcystis Growth Screening Tests 

A preliminary experiment was conducted to determine a) the duration (in days) before a 

population of M. aeruginosa began to naturally senesce in source waters compared to growth 

medium, b) the minimum volume of media required for optimal surface-air exchange in relation 

to flask size, c) the contribution of sediment as a nutrient source, and d) the feasibility of 

withdrawing small volumes for daily counting without disturbing the sediment.  The experiment 

was carried out using Reservoir water (as a natural water source) and BG1150 growth medium 

with P levels similar to those measured in Reservoir water as a control (i.e., approx. 50 µg P/L).  

SRP levels recorded in the HVR from 2011 to 2015 varied from approx. 3 to 84 µg/L (RMOW 

unpublished data); and SRP levels in reaches of the Grand River near Kitchener and the intake to 

the HVR varied from 5-75 µg/L over a period from 2003 to 2008 (RMOW unpublished data; 

Loomer & Cooke, 2011). 

Two different liquid-to-volume ratios were investigated to ensure that optimal growing conditions 

(surface-air exchange) were utilized during the experiments.  The experiment was conducted 

using 50 mL and 250 mL flasks with 25 mL of media and 50 mL of media, respectively.  

Sediment was added to a second set of flasks (0.25g sediment per 25 mL media) (Figure F4; 

Appendix F).  The flasks containing 25 mL and 50 mL of media were each inoculated with 1 or 2 

mL of M. aeruginosa stock culture, respectively.  The stock was previously sub-cultured in 

BG1150 medium for at least three weeks.  Eight experimental test units were used.  Test vessels 

were randomly placed in a growth cabinet (Percival; Iowa).  Table 8 provides a summary of the 

experimental conditions, hereafter referred to as the “Microcystis Growth Screening Tests”. 
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Literature on optimal CB inoculum concentration is limited and tends to focus more on green 

algae and select CB species that have different growth characteristics than Microcystis.  The US 

EPA (1980) recommends an initial cell density of 104 for Selenastrum (a solitary, fast growing 

green algae), while Environment Canada (2007) suggests 10,000 ± 1000 cells/mL (9-11×103) for 

the freshwater green algae, Pseudokirchneriella.  The OECD (2002) recommends an initial cell 

density of 104 for Anabaena (a filamentous, colonial CB) and 5×104-105 for Synechococcus 

(solitary, rod-shaped CB).  Because M. aeruginosa thrives in dense populations (pers. comm., 

Heather Roshon–CPCC, 2014), inoculum concentrations recommended for other CB species were 

expected to be too low for use during the present investigation.  Coagulation/flocculation and 

trace nutrient studies, using M. aeruginosa specifically, reported use of higher initial 

concentrations ranging from 105 to 106 (Chow et al., 1998; Henderson et al., 2008; Gonzalez-

Torres et al., 2014; Dang et al., 2012). 

Table 8: Experimental set-up for Microcystis growth screening tests comparing media type and 
surface to volume ratios with and without sediment 

Media Type Flask Size 
(mL) 

Media volume 
(mL) 

Volume: Flask 
ratio 

Sediment 
(g) 

Inoculum 
(mL) 

Hidden Valley Water 

50 25 1:2 0.25 1 
250 50 1:5 0.50 2 
50 25 1:2 None 1 
250 50 1:5 None 2 

BG1150 Growth media 

50 25 1:2 0.25 1 
250 50 1:5 0.50 2 
50 25 1:2 None 1 
250 50 1:5 None 2 

Table 9 provides a summary of typical CB cell counts entering the HVR from the Low-lift tap in 

2013 and 2014 (RMOW, unpublished data); and as evidenced, the total CB density in a sample 

was ~5×105 cell/mL, and the density of a single dominant species was 3-4×105 cells/mL under 

non-bloom conditions.  Note that Microcystis was never a dominant species. 

Table 9: Typical CB cell counts at the Hidden Valley Reservoir from the Low-lift tap 

Date Total CB density 
(cells/mL) 

Dominant species in sample Density of dominant 
species (cells/mL) 

23 Oct 2013 4.28×105 unidentified CB 4.28×105 

28 July 2014 3.46×105 
Planktolyngbia 3.43×105 
unidentified CB 2.14	×103 
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Table 10 provides a summary of average initial inoculum doses (in cells/mL) used in all tests in 

this thesis; notably, they are consistent with the average CB concentration typical of those in the 

Grand River.  Arguably, using a slightly higher density inoculum for the slower growing 

Microcystis avoids a long lag-stage when cell density is low (<104) and avoids a potential 

population crash (because Microcystis prefer not to be diluted too heavily) while allowing for 

growth in the controls without depleting the nutrients  (pers. comm., Heather Roshon–CPCC, 

2014). 

Table 10: Initial M. aeruginosa concentrations in inocula used in this investigation 

Experiment Initial Conc. 
(cells/mL) Notes 

Growth Screening Tests 3.59×106 Cells large and healthy. 
Fe [5][25] 4.23×106 Variable sizes. 
Fe [50][100] 1.43×106 All pale, variable sizes 
Fe [100][200] no sediment 2.15×106 All pale, variable sizes 
Fe [200][300][400] 1.24×106 Healthy, large. Slight lag until Day 4. 

3.4.2 P Sequestration Experiments 

To evaluate FeCl3 addition to Reservoir water for achieving P-sequestration and limiting M. 

aeruginosa growth, a series of experiments was conducted using Reservoir water, Cell 3 

sediment, and several FeCl3 doses.  Freeze-dried sediment (0.25 g) was added to 50 mL flasks in 

triplicate; the flasks were then autoclaved at 121°C for 15 minutes.  25 mL aliquots of autoclaved 

Reservoir water were added to each flask (by weight).  Using the procedure detailed in Section 

3.5, existing/background SRP concentrations of the Reservoir water were measured prior to each 

test.  SRP was also measured periodically in control test units prepared and handled in exactly the 

same manner as the triplicate samples used for counting. 

Additional experiments were conducted using FeCl3 added to flasks containing only Reservoir 

water–and no sediment–to rule out the effects of sediment on M. aeruginosa growth.  Prior to 

testing, a large batch of reservoir water and sediment were acclimated on the bench for two 

months using the following ratio of 350 mL water: 3.5 g sediment.  Sediment was then removed 

by filtering through a 0.45 µm Whatman® 47 mm GF/F membrane filter.  The filtrate was 

autoclaved at 121°C for 15 minutes.  25 mL aliquots of this ‘acclimated’ Reservoir water were 

added to each 50 mL flask (by weight) in triplicate.  Methods similar to those described 

immediately above were used for the FeCl3 amendments and M. aeruginosa counting. 
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pH was measured on a few samples with a calibrated Orion 250A pH meter to confirm that the 

Reservoir water was within optimal pH range for FeCl3 amendment and at an acceptable level for 

CB growth (<8.5 to ensure availability of CO2; APHA, 2012). 

A FeCl3 stock solution (5000 µg/L) was prepared to minimize the coagulant volume added to 

each experimental flask and to maintain the ratio of 0.25 g sediment: 25 mL water.  After the 

FeCl3 additions, the flasks were covered with a foam stopper, rapidly swirled for 30 seconds, and 

then allowed to settle for 18 hours on the bench top at ambient temperature (approx. 25°C).  All 

flasks were then inoculated with M. aeruginosa cells using the inoculum concentrations detailed 

in Table 10. 

The cells were added gently down the inside wall of each flask and left to acclimate on the bench 

top for approximately 2 hours.  Cell counts were conducted on inoculation day (Day 0) to confirm 

the calculated initial cell concentration.  Observations of cell health, fluorescence (pigment 

brightness) and cell size were noted; other observations such as sediment re-suspension and 

appearance of precipitate were recorded throughout the test period. 

3.5 Assessment and Characterization of tests: P Sorption Experiments and 
Microcystis Growth after P Sequestration 

Following the sorption experiments, the concentration of P adsorbed to the sediment was 

calculated using the following equation: 

𝑞 =
𝐶! − 𝐶! ×𝑉

𝑀
 

Equation 2 

where: 
q is mass of P sorbed per mass of sediment (mg/g); 

C0 is initial concentration of P in solution (mg/L); 

CE is concentration of P in solution after equilibrium (mg/L); and 

V is the volume of P aliquot (L), and M is mass of sediment (g). 

Assessments of CB growth were based on guidance for freshwater algae (OECD, 1984; OECD, 

2002; Environment Canada, 2007; APHA, 2012).  Two different parameters were used to 

determine inhibition of growth: growth rate (cell counts), and dry weight (expressed as mg/L), 

because biomass indicators often respond differently to nutrient-limiting condition (APHA, 

2012).  CB cell enumeration was conducted after 0, 24, 48 hours, as well as other times, 
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depending on the specific test being conducted.  Tests were considered valid if the Control 

Coefficient of Variation was ≤ 20% on Day 0 (Environment Canada, 2007).  Appendix C 

contains detailed CB cell enumeration and test accuracy data. 

Cell counts, expressed as logarithmic cell numbers/L, were used to determine % inhibition 

(relative to controls) and average growth rate.  The % inhibition was calculated using the 

following equation: 

𝐼 =
𝑅! − 𝑅
𝑅!

 
Equation 3 

where: 

I is the % inhibition of growth for each treatment; and 

Rc and R are the mean log cell count (of 3 replicates) of the control, and of each 

treatment, respectively. 

The average specific growth rate was calculated using the following equation: 

𝜇 = !" (!!⁄!!)
!!!!!  Equation 4 

where: 

X1 is the initial raw cell count (cells/mL) and X2 is cell count at test end; and 

t is the time interval in days. 

To characterize the variability in CB cell size in a test, dry mass measurements of M. aeruginosa 

were performed at the end of each test.  Glass microfiber (1.2 µm pore size, 47-mm-diameter, 

Whatman GF/C) filters used for biomass collection were pre-weighed and dried overnight (95-

105ºC) then allowed to come to room temperature in a vacuum desiccator before reweighing.  

Equal volumes of test media containing M. aeruginosa (15 mL) were filtered through 

Whatman™ 1.2 µm GF/C glass microfiber filters and then through WhatmanTM 0.45 µm Puradisk 

nylon filters (General Electric, Fairfield, CT) and stored at 4ºC in scintillation vials prior to SRP 

analysis. (Figure F5; Appendix F). 

Filter selection for biomass quantification was based on pore size and material to best retain 

M. aeruginosa cells while allowing the liquid and any fine-grained suspended particles to pass 

through.  Complications can occur when positively charged filters react with negatively charged 
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bacteria surfaces (zeta potentials) (WHO, 1999; Henderson et al., 2008; Aktas et al., 2012; Cheng 

et al., 2015). 

Microcystis species are typically 3 to 4 µm in size, but can range from 2.4 to 6.7 µm (Henderson 

et al., 2008; Gonzalez-Torres et al., 2014) or even as large as 9.4 µm (Komárek & Komárková, 

2002).  Particle size distribution results (Table 12 in Results Section 4.1.7; detailed results in 

Table B.1 Appendix B) indicate that for Cell 3 sediment, 1.73% of the grains are <1 µm and 

would likely pass through the filter pores if drawn into a pipette during the M. aeruginosa 

biomass collection at the test-end.  3.61% of the grains are <2 µm and a portion of these could 

become trapped on the filter paper.  However, these larger grains were less likely to be disturbed 

and probably remained at the bottom of the test unit and were not likely drawn into a pipette 

when collecting liquid at the surface.  Regardless, care was taken to minimize the amount of 

sediment drawn into pipettes at all times. 

Membrane selection for CB cell enumerations has been extensively discussed. The US EPA 

(1980) recommended that a 0.60 µm BD Millipore® membrane filters be used for filtering algae 

suspensions.  Jarvie et al. (2002) stated that the most common filter to use for SRP analysis is 

0.45 µm cellulose-nitrate-acetate.  Carlson & Simpson (1996) indicated that using glass-fibre 

allows more particulate material to pass through filters, resulting in more particulate matter in the 

soluble fraction, including small algae and bacteria. They state cellulose (Millipore) filters (0.45 

µm) are the standard for P testing due to their exclusion properties, despite these membranes 

often containing colloidal P.  They note that others use Nucleopore instead of membrane or glass 

fibre filters that allow for excellent size separation, and these do not contain P.  Not only is pore 

size important for retaining the algae, it is also an important consideration with respect to 

dissolved P analysis.  For instance, Carlson & Simpson (1996) found that using a 0.45 µm filter 

resulted in 30 µg/L SRP while using a smaller 0.1 µm filter resulted in 15-20 µg/L SRP for the 

same sample. 

3.6 Soluble Reactive Phosphorus (SRP) Analysis 

All samples were collected in acid washed, triple DI and ultrapure rinsed bottles.  They were 

filtered through Whatman™ 0.45 µm Puradisk nylon membrane syringe filters (General Electric, 

Fairfield, CT) and stored at 4ºC until SRP analysis (Standard Method 4500 P A).  SRP 

concentrations were measured colorimetrically using a Technicon Auto-analyzer II (Technicon 

Instruments Corp., Tarrytown, NY) linked to a computer running NAPTM analysis software, using 
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the stannous chloride–ammonium molybdate procedure (Environment Canada 1979).  The 

method detection limit is 1 µg P/L (Stone & Droppo 1994).  Ultrapure water was used to dilute 

samples containing >200 µg P/L and for sample blanks/washes.  SRP concentrations were 

reported as PO4
3-. 

The ultrapure water was collected at 18.2 ohms (Ω) resistivity (also referred to as Type 1 water) 

and was used in preparation of all reagents.  All chemicals, including the Phosphorus Standard 

(KH2PO4) and Ferric Chloride Hexahydrate (FeCl3-6H20), were of high purity (at least analytical 

grade).  All glassware used in storing, testing and SRP analysis were acid washed and triple 

rinsed in both Type 2 water followed by a triple rinse in Type 1 water (ultrapure water).  Stock 

solutions were stored in the dark at 4°C when not in use. 

Prior to SRP analysis, several samples were yellowish in color; and this interfered with SRP 

analysis.  One likely explanation for the discolouration of the effluent was due to the pigments 

chlorophyll-A and phycocyanin.  These pigments are quite small (nm to angstrom range) (Fisher 

et al., 1980; Raven et al., 1986; MWH, 2012) and will pass through the 0.45 µm filters if they 

become extracellular (either due to senescing cyanobacteria or cell damage).  Notably, 

Chlorophyll is rapidly degraded by sunlight (Newcombe, 2009; Robertson, 2012); consequently, 

the test samples were exposed to UV light to degrade these pigments prior to SRP analysis.  Prior 

to implementing this type of modification to SRP analysis, several P standards (10, 25, 50, 100, 

200 µg/L) were prepared and exposed to UV light for 1 hour; minimal P degradation was 

observed (i.e., mean measured values were 10, 25, 50, 102, and 203 µg/L, respectively).  Thus, 

the all water samples were exposed to UV light for 1 hour prior to SRP analysis. 

Detailed SRP data are presented in Appendix D 

3.6.1 Other nutrient analysis  

Nitrogen and iron content was measured in the final M. aeruginosa test.  Samples were stored at 

4ºC until analysis approx. 6 hours after collection and pH was not adjusted.  All samples were 

measured using the portable HACH DR 1900 portable spectrophotometer (Hach; Loveland, CO).  

Nitrogen (as NO3
− N) was analyzed using the Cadmium Reduction Method (Method 8171; Hach; 

Loveland, CO), adapted from Standard Methods (Method 3500-Al B; APHA, 2012).  The method 

detection limit was 0.2 mg/L NO3
− N.  Nitrogen results are presented in Appendix A. 
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3.7  Quality Control 

Five P standards (0, 25, 50, 100, 200 µg P/L) were used to generate a standard calibration curve.  

Samples were analyzed only when the coefficient of determination (R2) for calibration was >0.99.  

To measure analytical precision during SRP analysis, seven replicates of the lowest P-standard 

(25 µg P/L) were analyzed randomly on several occasions and the relative standard deviation was 

<3%.  This process was also used for random select samples and the relative standard deviation 

was <5%.  Two reagent blanks were inserted after every three samples and after every set of 

standards.  These data are presented in Appendix E. 

For quality control purposes and method validation (i.e., to assess inter-lab variability between 

the RMOW and UW Labs), water from the Reservoir (Cell 4) was collected on 14 Oct 2015, split, 

and analyzed.  The RMOW Lab uses Inductively Coupled Plasma (ICP) Spectrometry and a 

method modified from Standard Method 3120B (APHA, 2012) with an uncertainty relative to the 

concentration.  At the reporting limit of 0.020 mg/L the uncertainty is ± 0.006 (RMOW lab: 

personal comm H. Vanderloo 2013). 

3.8 Statistical Analysis 

To determine if the application point of FeCl3 can significantly affect the SRP levels, a statistical 

comparison of final SRP levels with application of FeCl3 prior and after 18 hours of agitation was 

conducted.  The hypothesis testing (one-tailed t-test) was used to quantitatively compare the final 

SRP values of the samples with FeCl3 application prior to 18 hours of agitation—to the samples 

with application of FeCl3 after equilibrium (18 hours of agitation).  

The p value for this comparison was calculated and compared to a significance level of 5% as a 

common indication of significant effects.  Three different hypothesis tests were conducted.  The 

first and second, evaluated the significance of application point at individual FeCl3 treatments 

(concentrations of 25 and 100 mg/L, respectively), while the third was  a comparison of pooled 

treatments (FeCl3 = 25 and 100 mg/L). 
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Chapter 4 Results and Discussion 

4.1 Sorption Experiments 

4.1.1 P Sorption in Sediment and Ultrapure Water 

The P sorption characteristics of reservoir sediment (from Cell 3) equilibrated by agitation in 

ultrapure water for 18 hours are shown in Figure 9 (raw data are provided in Appendix D).  The 

equilibrium phosphorus concentration (EPC0) in this system is 104 µg P/L (note only a linear 

trend line could be fit to the data); thus, the sediment has the potential to desorb P into the water 

column at lower ambient SRP concentrations.  When the overlying water contains no SRP, the 

maximum amount of P desorbed from the sediment is 25 µg P/g sediment in this system.  The 

sorption characteristics (EPC0) of sediments originating in riverine and lacustrine systems have 

been extensively reported and are known to range between approximately 25 and 100 µg P/L 

(Dunne et al., 2005; Jarvie et al., 2005; Emelko et al., 2015); differences in these values are 

related to differences in sediment composition and environmental conditions.  The EPC0 observed 

herein is consistent with previously reported values, especially those for agriculturally and 

municipally impacted watersheds. 

 

Figure 9: P sorption dynamics in ultrapure water and reservoir sediment from Cell 3. Note all 
replicates are plotted (n = 3) 
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4.1.2 P Sorption in Sediment and Reservoir Water 

The P sorption characteristics of Reservoir sediment (from Cell 3) equilibrated by agitation in 

Reservoir water for 18 hours are shown in Figure 10 (raw data are provided in Appendix B).  In 

this figure, the EPC0 is 82 µg P/L, which is comparable to data presented in Figure 9.  The 

significance of this more realistic assessment of P sorption by Reservoir sediment is that it is 

possible to approximate the mass of P potentially released from the sediment when SRP 

concentration in the water column is known.  For example, an ambient SRP concentration of ~32 

µg P/L was measured in the Reservoir; this corresponds to a P release of ~5 µg P/g sediment.  

Thus, sediment in the Reservoir can act as a significant source of P for biotic uptake. 

 

Figure 10: P sorption dynamics in Reservoir water and sediment from Cell 3. Note all replicates 
are plotted (n = 3) 

4.1.3 P Sorption in Sediment and Reservoir Water with FeCl3 Addition Prior to 
Agitation (Prior to Equilibrium) 

To evaluate P sequestration from the water column using FeCl3, the P sorption characteristics of 

Reservoir sediment (from Cell 3) in Reservoir water amended with FeCl3 and then equilibrated by 

agitation for 18 hours are shown in Figure 11 (raw data are provided in Appendix B).  These 
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background SRP concentrations of ~32, ~24, and ~61 µg P/L (Figure 11a, b, and c, respectively).  

FeCl3 addition decreased the EPC0 in all cases, regardless of initial SRP concentration.  The 

largest shifts in EPC0 were observed at the highest FeCl3 doses, as would be expected (Sherwood 

& Qualls, 2001; Duan & Gregory, 2003; Caravelli et al., 2010).  For example, the EPC0 shifted 

from 82 µg P/L to 33 µg P/L when FeCl3 was added at a dose of 25 mg/L.  Notably, the results 

were reproducible and generally yielded low standard deviation (Appendix D). 

Sorption test 1 was conducted to identify the lowest FeCl3 concentration that was likely to 

chemically precipitate enough SRP such that P desorption from the Reservoir sediment was 

precluded; as demonstrated in Figure 11a, that lowest dose of FeCl3 was between 5 and 25 mg/L.  

Sorption test 2 was conducted to more specifically identify that lowest dose (Figure 11b).  This 

analysis demonstrated that FeCl3 doses of 10, 15, and 20 mg/L yielded similar expectations for P 

adsorption/desorption from the Reservoir sediment.  Based on the data from Figure 11a and b, a 

FeCl3 dose of 25 mg/L was estimated as the lowest possible dose for ensuring P sequestration in 

the HVR system.  Sorption test 3 was conducted to evaluate potential performance benefits 

associated with use of high FeCl3 doses.  No differences in EPC0 were observed at FeCl3 greater 

than 200 mg/L (Figure 11c). 
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Figure 11: Impact of FeCl3 on P sorption dynamics in Reservoir water and sediment from Cell 3. 
Note all replicates are plotted (n = 3): (a) Sorption test 1 - identification of the lowest FeCl3 
concentration likely to chemically precipitate enough SRP from the water column to preclude P 
desorption from the Reservoir sediment; (b) Sorption test 2 - detailed assessment of the lower 
FeCl3 concentration likely to preclude desorption; (c) Sorption test 3 - evaluation of potential 
performance benefits associated with higher FeCl3 doses 
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4.1.4 Comparison of FeCl3 Amendments Before and After 18 hours of Agitation 

To evaluate the impact of the addition point of FeCl3 during the experimental protocol, additional 

experiments were conducted to evaluate P sequestration from the water column using FeCl3.  In 

these experiments, Reservoir sediment (from Cell 3) was equilibrated in Reservoir water by 

agitation for 18 hours and then FeCl3 was added.  This experiment variation provided minimal 

contact time with the sediment-water matrix to emulate a rapid mix operation.  FeCl3 doses of 25 

and 100 mg/L were added to Reservoir water with no (0 µg P/L) and 50 µg P/L addition (and 

adjusted for background Reservoir water SRP levels) and evaluated in triplicate, for a total of 12 

test units.  After the FeCl3 additions, the test units were rapidly shaken for 2 minutes then allowed 

to settle for an additional 15 minutes.  In Figure 12, the EPC0 results obtained using this protocol 

are contrasted with those previously reported for the system with 18 hours of contact (Figure 11a) 

with the coagulant.  (Raw data are provided in Appendix D).  Notably, this comparison 

demonstrates significantly more P sequestration (p <0.05) when FeCl3 is applied after sediment 

equilibration in the water matrix (i.e., 18 hrs of agitation on a shaker table), regardless of applied 

FeCl3 dose. 

• p = 0.011 when comparing all SRP values when FeCl3 is applied before equilibrium 

to all SRP values when FeCl3 is applied after equilibrium 

• p = 0.001 when comparing only FeCl3 = 25 mg/L treatments (i.e., FeCl3 = 25 mg/L is 

applied before equilibrium to the final SRP values after equilibrium 

• p = 0.004 when comparing FeCl3 = 100 mg/L treatments (i.e., FeCl3 = 100 mg/L is 

applied before equilibrium to the final SRP values after equilibrium 

This result is consistent with the literature, which recommends provision of adequate time for 

sediment-water matrix equilibration when evaluating P adsorption/desorption characteristics 

(Froelich, 1988; Reynolds & Davies, 2001; Kochevar, 2006; MWH, 2012). 
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Figure 12: Comparison of impact point of FeCl3 amendments: FeCl3 is added to Reservoir water 
and sediment before and after equilibrium (18 hrs agitation). Note all replicates are plotted 
(n = 3). p values are shown for significant difference in final SRP levels within each FeCl3 
treatment; and for significant difference in final SRP levels when treatments are combined 

4.1.5 P Precipitation in Reservoir Water with FeCl3 Addition in the Absence of 
Sediment 

To decouple the reactivity of FeCl3 with dissolved P species and sediment, FeCl3 also was added 

to P-amended Reservoir water in absence of sediment.  The methods previously described in 

Section 4.1.3 were used, including application of the same FeCl3 doses prior to 18 hours of 

agitation. This approach was designed to be generally representative of in-line FeCl3 addition to 

Reservoir water immediately after removal of accumulated sediment from the Reservoir.  The 

initial and final SRP concentrations obtained during the experiment are presented in Figure 13, 

which indicates a background SRP concentration of 29.85 µg P/L.  These data clearly 

demonstrate that doses of at least 25 mg/L of FeCl3 were required to achieve substantial 

reductions in SRP (i.e., SRP was reduced to between 22 and 10 µg P/L); notably, increasing the 

dose FeCl3 of beyond 25 or 50 mg/L only had a small, incremental impact on SRP, regardless of 

initial SRP concentration.  The average initial and final P of tests conducted with and without 

sediment are provided in Appendix D. 
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Figure 13: Impact of lower doses of FeCl3 on reservoir water in the absence of sediment. Note all 
replicates are plotted (n = 3) 

The initial/background SRP concentrations during the experiments were similar because the 

Reservoir water samples were collected during the same season.  SRP removal during these 

experiments (i.e., SRP removal via sequestration with ferric hydroxide species compared to SRP 

removal using both sequestration and sediment adsorption) is summarized in Table 11, which 

indicates when the greatest amount of SRP removal was achieved.  Three observations were 

made based on these data: 

1. P removal efficacy ([P] removed: [FeCl3] dosed) declined with increases in FeCl3 dose 

above	25 mg/L, even at low initial SRP concentrations (Figure 13) 

2. In general, less P was removed from the water column when sediment was present 

(because when sediment is present, the FeCl3 has to react with it as well as the SRP), and 

3. In absence of sediment, SRP could not entirely be removed from the system; it could only 

be decreased to a minimum concentration (~15 µg/L), regardless of FeCl3 dose.  This 

likely reflects the equilibrium of the P removal mechanism (sorption of P to iron 

hydroxide complex and/or precipitation). 
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Table 11: Comparison of final SRP levels when FeCl3 is added to reservoir water and sediment 
vs. reservoir water without sediment 

Avg.1 

Initial P 

(µg/L) 

FeCl3 (mg/L) Avg.1 

Initial P 

(µg/L) 

FeCl3 (mg/L) 

0 5 25 50 100 0 5 25 50 100 

Avg. Final P (µg/L) with sediment Avg. Final P (µg/L) with no sediment 

322 81 70 14 23 6 302 32 15 12 12 10 

59 77 77 17 21 7 55 53 25 13 11 10 

85 83 77 20 19 8 80 76 37 16 11 11 

137 86 81 21 18 11 131 122 69 16 12 10 

240 99 88 27 21 14 232 222 137 22 14 10 
1 Average of replicates (n = 3) 
2 Background Reservoir water levels 

4.1.6 Year-to-year Trends: Reservoir Sediment collected in 2013 and 2014 

Sediment collected and analyzed in 2013 was compared to sediment collected in 2014 in an 

attempt to characterize annual differences between P sorption characteristics (Figure 14).  

Maximum P desorption from sediment was ~10 µg P/g sediment in 2013, whereas it was ~25 µg 

P/g sediment in 2014.  The final SRP concentrations were similar at initial SRP concentrations 

≥25 µg/L.  These data indicated that the sediment EPC0 was 108 µg P/L in 2013 and 104 µg P/L 

in 2014.  This behaviour is an important consideration for water treatment operators interested in 

knowing if FeCl3 application in the reservoir would require re-assessment likely on an annual 

basis. 
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Figure 14: P sorption dynamics in Reservoir water and sediment collected from Cell 3 in 2013 
and 2014. Note all replicates are plotted (n = 9 in 2013; n = 3 in 2014) 

4.1.7 Sediment Grain Size and Geochemistry in Reservoir Cells 

Three sediment samples were collected in each of the four cells in May 2013; as well, samples 

were collected from Cell 1 in the summer and fall.  The grain size distributions and geochemical 

composition of sediment collected in the Reservoir Cells (1, 2, 3 and 4) were analyzed to 

determine if sediment (on a per gram basis) has a different P carrying capacity depending on 

location (reservoir Cell) within the Reservoir (Table B1; Appendix B).  The P 

adsorption/desorption characteristics of the sediment within each cell were also evaluated in 

ultrapure water (Figure 15).  These data demonstrate that the potential for P release progressively 

increased within the Reservoir as water flowed from Cell 1 to 4.  While the P sorption 

characteristics of sediment in Cells 1 and 2 were somewhat similar (EPC0 of 47 and 35 µg P/g 

sediment, respectively), the EPC0 was considerably higher in Cell 3 (108 µg P/g sediment) and 

Cell 4 (407 µg P/g sediment). 
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Figure 15: P sorption dynamics in ultrapure water and sediment collected from 4 different 
Reservoir compartments in May 2013. Note treatment means are plotted (n = 9) ±1 SD 

The grain size characteristics (d10, d50, d90, and specific surface area) of deposited sediment in 

each of the Reservoir cells are summarized in Table 12.  These data indicate that the size fractions 

of the deposited sediment in the Reservoir cells were generally similar in that they were fine 

grained and predominantly <100 µm in size.  Thus, grain size characteristics alone could not 

adequately explain why the P release potential of deposited sediment within the Reservoir 

progressively increased from Cell 1 to 4 (Figure 15). 

Table 12: Average particle size distribution from Reservoir cell 

 Percentage of grains at or below a 
specific diameter (µm) = Dx 

Specific 
surface 

area 
Reservoir 
Cell 10% 50% 80% 90% m2/g 

Cell 1 5.03 24.81 65.31 122.56 0.622 
Cell 2 4.73 21.14 52.32 92.82 0.670 
Cell 3 5.14 23.12 53.96 87.71 0.624 
Cell 4 5.16 25.74 63.52 111.42 0.603 
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The major element composition and mineralogy of the deposited sediment in each of the 

Reservoir cells are summarized in Table 13, Table 14, and Table 15.  In general, these data 

indicate that the sediment in Cell 3 and Cell 4 had similar levels of iron (Fe2O3), manganese 

(MnO), and aluminum (Al2O3) that were higher than those in the sediment from Cells 1 and 2 

(Table 13; Table 15).  Additionally, the sediment from Cell 4 had substantially higher amounts of 

chlorite relative to the sediment from the other Reservoir cells (Table 14).  Chlorites are known to 

contain Fe, Mn, and Al in their lattice (Brittanica, 2016).  Notably, these elements form P-sorbing 

metal oxy-hydroxides on sediment surfaces (Froelich, 1988; Reynolds & Davies, 2001; Sherwood 

& Qualls, 2001; Withers & Jarvie, 2008; Worsfold et al., 2008).  While not incontrovertible, these 

data suggest that preferential settling of fine sediments containing metal oxy-hydroxides resulted 

in the progressively increasing P release potential of deposited sediment within the Reservoir, 

from Cell 1 to 4 (Figure 15). 

Table 13: Mean major element concentration (%) ± SD (n=3) 

Cell 1 Summer 1 Fall 2 3 4 
Elements Avg % ±SD Avg % ±SD Avg % ±SD Avg % ±SD Avg % ±SD 
SiO2 40.7 0.5 41.7 0.1 37.6 0.1 38.7 0.3 40.4 0.2 
Al2O3 8.9 0.1 9.1 0.1 8.8 0.0 9.5 0.1 10.1 0.1 
Fe2O3(T) 4.40 0.05 4.40 0.14 4.43 0.03 5.15 0.07 5.15 0.02 
MnO 0.168 0.05 0.143 0.00 0.166 0.01 0.235 0.02 0.224 0.01 
MgO 3.33 0.05 3.31 0.07 3.14 0.02 3.08 0.01 3.04 0.02 
CaO 14.4 0.05 13.8 0.33 16.0 0.08 14.5 0.14 13.4 0.09 
K2O 1.79 0.05 1.87 0.01 1.71 0.03 1.88 0.05 2.06 0.04 
LOI 25.1 0.05 24.0 0.26 27.0 0.12 25.8 0.11 24.4 0.04 
Total 100.4 0.05 100.0 0.49 100.4 0.15 100.5 0.35 100.3 0.29 
C-Organic (calc) 3.43 0.05 3.17 0.20 3.85 0.12 3.95 0.10 3.69 0.06 

Table 14: Mean mineral concentration (%) ± SD (n=3) 

  Calcite Dolomite Quartz Plagioclase Microcline 
Cell N Avg % ±SD Avg % ±SD Avg % ±SD Avg % ±SD Avg % ±SD 
1(S) 3 19.0 0.3 14.8 2.6 21.2 1.7 8.6 0.6 4.5 1.2 
1(F) 3 18.6 1.5 12.4 1.7 22.8 1.0 9.8 0.9 5.5 0.6 
2 3 22.1 0.9 11.0 2.2 17.2 0.3 8.0 0.8 4.0 0.3 
3 3 20.7 0.9 11.1 1.5 17.0 0.6 7.1 0.6 4.0 1.0 
4 3 19.8 1.5 10.6 1.7 19.7 0.9 8.0 1.6 5.4 0.4 
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Table 14 cont’d: Mean mineral concentration (%) ± SD (n=3) 

  Muscovite Chlorite Amphibole Amorphous 
Cell N Avg % ±SD Avg % ±SD Avg % ±SD Avg % ±SD 
1(S) 3 8.4 0.4 1.5 0.3 1.7 0.6 20.3 1.7 
1(F) 3 9.3 0.7 1.8 0.2 1.5 0.3 18.3 3.0 
2 3 8.7 0.7 1.7 0.1 1.7 0.3 26.2 2.9 
3 3 9.3 1.3 1.7 0.1 1.4 N/A 28.5 2.5 
4 3 11.5 1.7 2.3 0.2 2.1 N/A 22.0 3.5 

Table 15: Mean metal concentration (%) ± SD (n=3) 

 Cell 1 (Summer) 1 (Fall) 2 3 4 
Metals Unit Avg % ±SD Avg % ±SD Avg % ±SD Avg % ±SD Avg % ±SD 
Li ppm 20.3 2.3 22.8 0.6 22.4 1.3 25.6 0.5 27.7 0.8 
B ppm 26.0 3.5 0.6 0.6 0.5 1.5 30.0 1.0 30.7 1.5 
Al % 2.05 0.2 0.6 0.1 0.5 0.1 2.47 0.0 2.63 0.1 
Cr ppm 33.7 2.1 33.7 1.5 34.7 1.5 38.0 1.0 38.7 0.6 
Mn ppm 1240 36.1 1043 49.3 1233 50.3 1740 144.2 1697 35.1 
Fe % 2.77 0.1 2.73 0.1 2.76 0.1 3.26 0.1 3.34 0.0 
Co ppm 9.4 0.4 9.5 0.2 9.7 0.2 11.2 0.2 11.6 0.1 
Ni ppm 23.6 0.8 23.9 0.5 24.4 0.4 26.9 0.5 27.8 0.3 
Cu ppm 33.3 1.4 31.2 0.7 35.8 0.6 34.2 0.4 32.5 0.2 
Zn ppm 153 5.9 151 2.5 170 2.1 181 3.8 176 1.7 
As ppm 4.60 0.1 4.37 0.2 4.27 0.1 5.03 0.2 5.40 0.1 
Ag ppm 0.118 0.0 0.118 0.0 0.138 0.0 0.143 0.0 0.135 0.0 
Ba ppm 139 8.5 136 4.2 145 1.5 167 3.1 169 3.5 
Cd ppb 0.530 0.0 0.543 0.0 0.553 0.0 0.557 0.0 0.533 0.0 
Au ppm 3.37 0.7 0.73 0.8 2.63 0.7 3.93 1.4 1.53 0.6 
Pb ppm 24.6 1.6 26.2 0.3 28.2 0.5 31.8 1.0 30.6 0.4 
Hg ppb 15.0 8.7 21.7 14.4 25.0 18.0 26.7 5.8 26.7 5.8 

4.2 Microcystis Growth Trends after P Sequestration 

4.2.1 Microcystis Growth Screening Tests 

A preliminary experiment was conducted to understand effect of sediment and surface: volume 

ratio on the dynamics of CB growth in both Reservoir water and BG1150 growth medium 

(Figure 16).  No difference in M. aeruginosa growth between flasks with and without sediment 

were observed the first 8 days for both Reservoir water and BG1150 medium (i.e., cell counts 

were not only within the same order of magnitude, but within 12%) (Table C2; Appendix C).  

However, from Day 14 onwards, all flasks with sediment had higher cell counts than those 

without sediment—this is evident in both Reservoir water (Figure 17) and BGll50 growth medium 
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(Figure 18), but more so in Reservoir water.  The initial SRP concentration in the Reservoir water 

was 24.4 µg P/L and ~50 µg P/L in BGll50 growth medium; the additional P introduced with the 

M. aeruginosa inoculum only increased background SRP concentrations to ~25 µ P/L in the 

Reservoir waters.  Background SRP concentrations were effectively unchanged in the BG1150 

growth medium, because the introduced inoculum contained the same concentration of SRP as 

the fresh growth medium (i.e. 50 µg P/L) (Appendix C). 

  
Reservoir water + sediment Reservoir water, no sediment 

  
BG1150 growth medium + sediment BG1150 growth medium, no sediment 

Figure 16: M. aeruginsoa growth on Day 14 in Reservoir water with (a) and without sediment (b), 
and in BGll50 growth medium with (c) and without (d) sediment. Note the two flask sizes (50mL 
and 250 mL) will have different surface: volume ratios 

Consistent with the observed changes in M. aeruginosa growth between flasks with and without 

sediment around Day 14, the stationary growth phase of M. aeruginosa began earlier—between 

Day 8 and Day 14—in flasks without sediment, whereas it began approximately 1-3 weeks later, 

on Day 21 in Reservoir water and on Day 35 in BG1150 growth medium.  These observations are 

(a) (b) 

(c) (d) 
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consistent with nutrient limitation (Scherfig et al., 1973; Hallegraeff, 1993; Leão et al., 2009; 

Dang et al., 2012; Edwards et al., 2012; Whitton, 2012) in absence of the sediment.  Notably, 

M. aeruginosa growth did not appear to vary between the surface:volume ratios (i.e., different 

flask sizes) investigated, regardless of suspension fluid.  It should be noted that while these 

experiments confirm that SRP desorbed from Reservoir sediment can enhance the proliferation of 

M. aeruginosa in Reservoir water and other media, the intention of these experiments was not to 

mimic the onset of a bloom. 

 

Figure 17: Comparison of M. aeruginosa growth in Reservoir water with and without sediment in 
25 and 50 mL of solution 

 

Figure 18: Comparison of M. aeruginosa growth in BG1150 medium with and without sediment 
in 25 and 50 mL of solution 
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Notably, the final SRP in solution was highest in flasks that contained sediment.  It was also 

lower than the initial SRP in all treatments except for the system with Reservoir water containing 

sediment.  The decreases in SRP were attributable to CB uptake.  In the system with Reservoir 

water and sediment, increases in SRP were attributable to P desorption from the sediment, as had 

been demonstrated previously in sorption tests with sediment.  Specifically, P desorbed from the 

sediment in both ultrapure (Figure 9) and Reservoir water (Figure 10) at solution SRP 

concentrations less than 104 and 82 µg P/L, respectively.  During the present experiment, the 

initial SRP concentration in Reservoir water (with the additional SRP from inoculum) was 

~25 µg P/L and the final SRP concentrations were 498 and 428 µg P/L in the respective 25 mL 

and 50 mL of Reservoir water and sediment flasks, thereby indicating substantial release of P to 

the water column from the Reservoir sediment.  Although M. aeruginosa growth was declining 

toward the end of the experiments, the primary source of the increased concentrations of solution 

SRP was from desorption from the Reservoir sediment, rather than CB death because the pairs of 

flasks had similar final SRP concentrations, but somewhat different cell counts (Figure 19). 

 

Figure 19: Relationship between final M. aeruginosa cell counts and final SRP levels in 
Reservoir water with and without sediment, and BG1150 growth medium with and without 
sediment on Day 35 
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4.2.2 Addition of Ferric Chloride to Sediment and Reservoir Water 

To investigate the impacts of P limitation on CB growth, proof-of-concept experiments were 

conducted. In these experiments, M. aeruginosa were grown in Reservoir water containing 

sediment from Cell 3 in the Reservoir; several doses of FeCl3 were applied and M. aeruginosa 

growth was evaluated.  It must be noted that these experiments were conducted with higher initial 

concentrations of M. aeruginosa cells (~106 cells/mL), which may be considered a bloom 

(Hitzfeld et al., 2000; Svrcek & Smith, 2004)–or a moderate risk level requiring diligence (WHO, 

1999).  Thus, the experiments were not representative of a situation in which FeCl3 application in 

an engineered drinking water supply reservoir might prevent a CB bloom, but rather, they were 

representative of a challenging scenario in which a high concentration of CB entering from the 

river might be treated. 

The experiments were conducted at higher cell densities for several reasons: 1) experimental 

limitations associated with culturing and growing M. aeruginosa (i.e. need for higher cell 

concentrations); 2) the reduced experiment time from competition for nutrients; and 3) historical 

data showing elevated cell counts entering the Reservoir (~5 x 105) (Table 9). 

M. aeruginosa cell growth at bloom conditions in reservoir water containing sediment from 

Reservoir Cell 3 was investigated.  FeCl3 was added at concentrations of 200, 300, and 400 mg/L.  

As demonstrated in Figure 20 (and Table 16), although the FeCl3 amendments on Day 0 reduced 

the initial SRP concentrations from ~52 µg P/L to ~7, ~3, and ~2 µg P/L, respectively, 

M. aeruginosa cell growth continued, potentially enabled by internal stores of P (Thompson et al., 

1994; Reynolds & Davies, 2001; Vahtera et al., 2007; Breu et al., 2008; Havens, 2008). 

Notably, the reductions in SRP were well below the water quality guidelines of 30 µg/L (of TP) 

that are generally believed to prohibit growth of nuisance CB (CCME, 2004).  Although 

substantial reductions in cell growth were not observed upon FeCl3 addition, it is worth noting 

that cell growth was generally and consistently lower at higher applied FeCl3 concentrations 

(Figure 20), thereby suggesting that some inhibition of M. aeruginosa cell growth was achieved.  

These results offer promise for preventing M. aeruginosa cell growth from reaching bloom 

conditions by decreasing P availability. 

At the end of the experimental time period, cell counts were similar between treatments and 

controls; despite this, Day 18 dry weight biomass decreased as FeCl3 dose increased (Figure 22b).  
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The decrease in biomass was not linearly related to cell counts (Figure 22a), and it was observed 

that cell size was generally smaller in the treatments, although quite variable (Figure 21).  While 

this decrease in mass in the FeCl3 treatments might be attributable to reduced cell size, variability 

in cell size measurements (Table 17) and temporal variability in cell size precluded a conclusive 

assessment. 

The average specific growth rates (Table 16) for the control were well within the range observed 

in the culture stock grown in unmodified medium (Figure 8); and these controls were considered 

to be growing “normally.” 

 

Figure 20: Relationship between M. aeruginosa growth and SRP levels in Reservoir water with 
sediment as a function of higher doses of FeCl3. Note treatment means ± 1 SD (n = 3) for cell 
growth are plotted on the primary Y-axis; SRP levels are plotted on the secondary Y-axis 
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Table 16: SRP concentrations and average growth rates of M. aeruginosa in response to higher 
doses of FeCl3 in Reservoir water with sediment 

FeCl3 
(mg/L) 

P (µg/L)1 Average 
growth rate (µ) 

Average 
growth rate (µ) 

Day 02 Day 10 Day 14 Day 18 Day 7 Day 14 
0 100.00 6.54 5.03 15.63 0.254 0.193 
200 6.21 3.23 3.65 14.19 0.384 0.268 
300 2.44 3.67 5.98 10.82 0.286 0.212 
400 1.95 2.95 12.30 11.57 0.340 0.232 
1 Background Reservoir water SRP = 52.20 µg/L (prior to sediment addition) 
2 Day 0 SRP values collected 18 hours after sediment additon and FeCl3 amendments, and prior to 
inoculum (Reservoir water had 18 hours contact time with sediment) 
 

Table 17:  M. aeruginosa cell size comparison after 14 days exposure to higher FeCl3 doses. 
Reported values are the mean of 3 or 4 cell measurements per treatment 

FeCl3 (mg/L) Diameter 
(µm) 

0 5.14 
200 5.68 
300 4.97 
400 5.26 

 

Figure 21: Photo of variable cell sizes of M. aeruginosa in FeCl3 (400 mg/L) under an optical 
microscope at high magnification (x400). Photo taken on Aug 25, 2015 

Doublets: in the 
process of cell division  

15 µm  
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Figure 22: Dry mass comparisons of 15 mL of filtered M. aeruginosa at higher doses of FeCl3 in 
Reservoir water and sediment: a) treatment averages (n = 3) ± 1 SD; b) individual replicate dry 
masses. Note that negative dry masses cannot be plotted and two values were plotted for FeCl3 = 
300 mg/L 
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4.2.3 Addition of Ferric Chloride to Reservoir Water in the Absence of Sediment 

M. aeruginosa cell growth at bloom conditions in reservoir water in absence of sediment also was 

investigated.  FeCl3 was added at concentrations of 100 and 200 mg/L.  As demonstrated in 

Figure 23 (and Table 18), both FeCl3 amendments on Day 0 reduced the initial SRP 

concentrations from ~74 µg P/L to ~1 µg P/L.  Notably, FeCl3 addition significantly decreased 

M. aeruginosa cell growth relative to the controls (Figure 23). 

Because there was no sediment in this experiment (and no FeCl3 in the controls), M. aeruginosa 

uptake was solely responsible for the large decrease in SRP in the control.  Analogously, the lack 

of substantial increase in cell concentration in the treatments suggested that FeCl3 coagulation can 

be useful for limiting the growth of CB such as M. aeruginosa in municipally and agriculturally 

impacted reservoir water. 

 

Figure 23:  Relationship between M. aeruginosa growth and SRP levels in Reservoir water (in the 
absence of sediment) as a function of moderate doses of FeCl3. Note treatment means ± 1 SD (n = 
3) for cell growth are plotted on the he primary Y-axis; SRP levels are plotted on the secondary 
Y-axis 

0	

10	

20	

30	

40	

50	

60	

70	

80	

5.0	

5.5	

6.0	

6.5	

7.0	

7.5	

8.0	

0	 2	 4	 6	 8	 10	 12	 14	

P	
(μ
g/
L)
	

Lo
g	
Ce

lls
/m

L	

Day	

Cell	Count	[Fe	=	0]	 Cell	Count	[Fe	=	100]	 Cell	Count	[Fe	=	200]	
P	at	[Fe	=	0]	 P	at	[Fe	=	100]	 P	at	[Fe	=	200]	



 65 

The average specific growth rate (Table 18) on Day 6 for the control was well within the range 

observed in the culture stock grown in unmodified medium (Figure 8) for the same time period.  

The average specific growth rate for the controls on Day 14 was 0.075/day; this rate was slightly 

lower than the culture stock growth rate for Day 14 (0.109/day); however, the controls still 

appeared healthy. 

Table 18: SRP concentrations and average growth rates of M. aeruginosa in response to moderate 
doses of FeCl3 in Reservoir water (in the absence of sediment) 

FeCl3 
(mg/L) 

P (µg/L)1 Average 
growth rate (µ) 

Average 
growth rate (µ) 

Day 02 Day 6 Day 14 Day 6 Day 14 
0 74.40 Not sampled 2.37 0.125 0.075 
100 0.99 3.58 2.34 -0.074 -0.017 
200 1.07 0.51 6.51 -0.114 -0.061 
1 Background Reservoir water (SRP = 105.80 µg/L) mixed with sediment and acclimated for 2 
months on the benchtop. Sediment was then removed. The resulting P was 74.40 µg/L 
2 Day 0 SRP values collected 18 hours after FeCl3 amendments, and prior to inoculum (Reservoir 
water had 18 hours contact time with sediment) 
 

Consistent with the experiments conducted with sediment, M. aeruginosa cell sizes were variable, 

but relatively small in the treatments.  Dry weight biomass decreased as FeCl3 dose increased 

(Figure 24b).  The decrease in bionass was not linearly related to cell counts (Figure 24a), and it 

was observed that cell size was generally smaller in the treatments, although quite variable.  

While this decrease in mass in the FeCl3 treatments might be attributable to reduced cell size, 

variability in cell size measurements and temporal variability in cell size precluded a conclusive 

assessment. 
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Figure 24: Dry mass comparisons of 15 mL of filtered M. aeruginosa at moderate doses of FeCl3 
in Reservoir water in the absence of sediment: a) treatment averages (n = 3) ± 1 SD; b) individual 
replicate dry masses 
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Chapter 5 Conclusions 

This research was conducted to understand the sediment-bound P loads in an engineered drinking 

water reservoir and the importance of SRP released from fine sediment in enabling M. aeruginosa 

growth; and to evaluate the utility of FeCl3 in sequestering the SRP to limit it’s availability in the 

water column and to limit the SRP such that M. aeruginosa does not proliferate.  Key conclusions 

of this research are listed below. 

5.1 Sorption experiments 

• Sediment is partitioned in multi-cell engineered drinking water supply reservoirs.  Sediment 

chlorite levels were highest in Cell 4 (i.e., the cell furthest from the reservoir inlet).  These P-

sorbing metal oxy-hydroxides are capable of releasing large amounts of P. 

• Internal loading and subsequent release of P can be significant in engineered drinking water 

supply reservoirs. 

• P release from engineered drinking water supply reservoir sediment could be minimized by 

FeCl3 addition at doses typical of DWTP’s (i.e. ~25 mg/L). 

• P loading in the study Reservoir does not appear to substantially vary from year to year. 

• FeCl3 application is more effective for reducing SRP in absence of sediment, as would be 

expected.  Thus, removing sediment from all Reservoir cells annually may maximize P 

sequestration by application of FeCl3 within engineered drinking water supply reservoirs. 

• The timing of FeCl3 application is important (i.e., the dosing and mixing protocol matters 

during bench-scale evaluation).  FeCl3 efficiency declined when applied prior to agitation and 

equilibration of sediment within the water matrix. 

• Chemical precipitation of phosphorus appeared to be the main mechanism of P sequestration 

in the engineered drinking water supply reservoir, as would be expected. 

5.2 Controlling Growth of M. aeruginosa 

• M. aeruginosa growth experiments in Reservoir water confirm that CB growth can be 

inhibited when P is sequestered; particularly when previously deposited sediment has been 

removed from the system.  The starting inoculum concentration used for these experiments is 

near or at bloom concentrations and represents the ability for FeCl3 treatments to control 

growth under challenging conditions.  Further work should be completed to examine non-
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bloom inoculum concentrations and optimization of the FeCl3 concentrations required for 

sequestration of P. 

• Nutrient limitation for M. aeruginosa cells during the moderate and higher doses of FeCl3 in 

sediment tests demonstrated that cell size (biomass) was negatively impacted. Additional 

work should be carried out to quantify cell size under nutrient-limited conditions 

• Sequestration of P does not necessarily inhibit M. aeruginosa growth immediately.  More 

research is needed to investigate if internal P stores within cells are sufficient for blooms to 

occur.  The biomass and cell size data suggest that this is unlikely. 
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Chapter 6 Implications and Recommendations 

The results of these M. aeruginosa growth experiments coupled with the sorption studies have 

implications for optimizing the use of a coagulant in drinking water supply reservoirs to control 

CB growth.  The following recommendations are based on findings in this current study: 

• Consideration must be given to when and where the coagulant is applied to ensure that rapid 

mixing allows for binding and precipitation of P. 

• FeCl3 addition requires a feed system, storage and monitoring; and increased sedimentation 

will require more frequent sediment removal. It is likely that these benefits, in combination 

with the likely reductions in in plant coagulant dose requirements, would outweigh the costs 

associated with the potential risk of CB blooms and potential toxin release. 

• The removal of sediment from a drinking water supply reservoir (e.g., annually) increases the 

probability that P sequestration with FeCl3 (or other coagulants) will be effective at low 

coagulant doses. 

• CB initially/primarily utilize dissolved P, but can revert to other sources of P.  CB are less 

likely to bloom at such conditions.  Nonetheless, when attempting to control CB growth in 

reservoirs, a reduction in TP levels should be targeted as well. 

• Predicting CB density based on current P levels is problematic in that there is often a delay in 

growth in relation to P levels.  In a reservoir, monitoring P levels in continually flowing water 

will not capture spikes in P that CB can rapidly consume prior to monitoring and/or analytical 

detection. 

• Cell counts only partially describe CB growth behaviour.  While cell counts remained 

consistent for FeCl3 treatments, biomass decreased and is likely associated with observations 

of decreased cell size. 

• The impact of biomass should be investigated to determine if there are mitigated or increased 

health risks when M. aeruginosa employ compensation strategies (i.e. does toxicity decrease 

or increase when cells are smaller because of nutrient limitation). 

Several considerations and suggestions for future research include: 

• The reservoir contains approx. 1920 m3 of sediment in total, and a bulk water volume of 

148000 m3; this ratio is equivalent to 0.09 g dry sediment per 25 mL of water. (Appendix B).  

The experiments were conducted using a ratio of 0.25 g sediment per 25 mL of water, so the 
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sorption experiments and M. aeruginosa assays were conducted using higher sediment loads 

that would be found in the reservoir.  Future testing should involve more realistic sediment-

water ratios. 

• More rapid and/or robust techniques for biomass quantification should be evaluated.  The use 

of fluorescent probes is an option for determining biomass in addition to cell numbers. 

• Dissolved P levels need to be reduced below the threshold at which CB experience P-

limitation, and this threshold is site specific; this may be less than 30 µg TP/L, and some 

suggest less than 10 µg/L to prevent blooms (WHO, 1999).  Accordingly, additional work 

should examine the need to drop P levels below this threshold. 

• Tests with lower inoculum concentrations should be conducted to determine if there is any 

significant difference in effectiveness of FeCl3 on CB growth. 
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The following tables provide a summary of the various nutrient levels and water quality 

parameters on select dates during the M. aeruginosa test at high FeCl3 doses. 

N and P ratios are an important consideration when determining nutrient levels.  Based on the 

results in Table A1, N is not considered a limiting factor. 

Table A1: N and P concentrations and ratios during M. aeruginosa test at high FeCl3 doses 

Nutrient FeCl3 
(mg/L) Day 0 Day 10 Day 14 Day 18 

PO4 
(µg/L) 

0 100.00 6.54 5.03 15.63 

200 6.21 3.23 3.65 14.19 

300 2.44 3.67 5.98 10.82 

400 1.95 2.95 12.30 11.57 

P 
(µmol/L) 

0 1.05 0.07 0.05 0.16 

200 0.07 0.03 0.04 0.15 

300 0.03 0.04 0.06 0.11 

400 0.02 0.03 0.13 0.12 

NO3
2−-N 

(mg/L) 

0 2.90 3.40 0.20 0.47 

200 3.40 2.90 1.80 0.10 

300 2.70 3.70 2.65 0.63 

400 3.00 3.00 5.60 0.90 

N 
(µmol/L) 

0 207.00 242.68 14.28 33.31 

200 242.68 207.00 128.48 7.14 

300 192.72 264.10 189.15 45.21 

400 214.13 214.13 399.71 64.24 

N: P ratio 

0 197 3524 270 202 

200 3711 6086 3343 48 

300 7501 6834 3004 397 

400 10429 6894 3086 527 
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Table A2: DO concentrations during M. aeruginosa test at high FeCl3 doses 

Day FeCl3 (mg/L) Solution DO 
(mg/L) 

Sediment interface 
DO (mg/L) pH 

0* 

0 5.95 - 7.15 

200 6.49 - 6.92 

300 6.60 - 6.87 

400 7.43 - 6.55 

4 

0 8.01 8.01 - 

200 7.93 7.13 - 

300 7.77 8.22 - 

400 7.67 7.17 - 

5 

0 7.81 7.81 - 

200 7.51 7.32 - 

300 8.09 7.37 - 

400 7.58 7.55 - 
*Day 0: DO and pH levels measured 18 hrs after FeCl3 application but before inoculation 

 

Table A3: Initial pH values of M. aeruginosa tests 

Media type FeCl3 (mg/L) pH* Avg. pH 
Reservoir water and 
sediment 0, 5, 25 7.36 7.36 

Reservoir water and 
sediment 0, 50, 100 

7.65 

7.60 7.53 

7.62 
Reservoir water and 
sediment 0, 200, 300, 400 7.74 7.74 

Reservoir water 0, 100, 200 

7.20 

7.10 7.00 

7.10 
*pH obtained after sediment and water were mixed but prior to FeCl3 application and inoculum 
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Grain Size and Distribution Results and 
Reservoir Sediment Calculations 
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Table B1: Mastersizer particle size distribution results from 2014 

Reservoir 
Cell 

S = south. 
F = far 

Percentage of grains below a given diameter 

< 0.1 µm < 0.2 µm < 0.3 µm < 0.5 µm < 1 µm < 2 µm 

1 

1 a S 0 0 0 0.16 1.48 3.08 

1 b S 0 0 0 0.17 1.49 3.14 

1 c S 0 0 0 0.19 1.73 3.75 

1 a F 0 0 0 0.21 2.04 4.66 

1 b F 0 0 0 0.19 1.73 3.75 

1 c F 0 0 0 0.22 1.96 4.30 

 avg 0 0 0 0.19 1.74 3.78 

2 

2a 0 0 0 0.22 1.95 4.15 

2b 0 0 0 0.19 1.76 3.72 

2c 0 0 0 0.30 2.01 4.09 

 avg 0 0 0 0.24 1.91 3.99 

3 

3a 0 0 0 0.17 1.53 3.13 

3b 0 0 0 0.2 1.79 3.75 

3c 0 0 0 0.21 1.88 3.96 

 avg 0 0 0 0.19 1.73 3.61 

4 

4a 0 0 0 0.19 1.7 3.61 

4b 0 0 0 0.22 1.83 3.84 

4c 0 0 0 0.18 1.63 3.43 

 avg 0 0 0 0.20 1.72 3.63 
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Reservoir 
Cell 

S = south. 
F = far 

Percentage of grains at a specific diameter (diameter at 
which X % of a sample is comprised) 

Specific surface 
area 

10% 50% 80% 90% m2/g 

1 

1 a S 5.95 27.86 70.80 125.67 0.543 

1 b S 5.95 29.62 80.77 190.06 0.535 

1 c S 5.01 24.24 58.61 94.83 0.621 

1 a F 3.95 19.99 53.43 94.28 0.732 

1 b F 4.92 24.10 62.96 109.67 0.624 

1 c F 4.39 23.06 65.29 120.83 0.674 

 avg 5.03 24.81 65.31 122.56 0.622 

2 

2a 4.50 19.95 48.70 84.21 0.694 

2b 4.93 21.26 53.33 98.19 0.646 

2c 4.76 22.21 54.93 96.05 0.670 

 avg 4.73 21.14 52.32 92.82 0.670 

3 

3a 5.74 25.11 58.75 98.14 0.569 

3b 4.96 22.66 53.03 85.82 0.638 

3c 4.71 21.6 50.1 79.16 0.665 

 avg 5.14 23.12 53.96 87.71 0.624 

4 

4a 5.11 25.48 63.23 112.76 0.604 

4b 4.97 25.5 63.14 110.67 0.621 

4c 5.41 26.24 64.19 110.82 0.583 

 avg 5.16 25.74 63.52 111.42 0.603 
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Table B2: Reservoir sediment calculations 

 beaker 
mass (g) 

wet mass 
(g) 

dry mass 
(g) 

net wet wt 
(g) 

net dry wt 
(g) 

Wet: dry 
ratio 

beaker A 30.76 43.09 33.79 12.33 3.03 4.07 
beaker B 31.52 42.00 34.04 10.48 2.52 4.16 
   avg (g) 11.41 2.78 4.11 
   avg (kg) 0.0114 0.0028  
HVR volume 
sediment present 

HVR volume water 
present (m3)    

Cell Vol (m3)      
1 456      
2 504      
3 504      
4 456      
Total 1920 Total 148000    
 
50mL beakers packed with 10 mL sediment and 0.5 mm standing water 

• 10ml = 0.01 L = 0.00001 m3 
 
Density of experiment wet sediment 

• density (avg net wet wt (kg) / 0.00001m3 = 1140.5 kg/m3 
• 1140.5 kg/m3 = g/L = mg/mL 

 
Sediment – volume fraction in HVR to bulk water 

• 148000 m3/1920 m3 = 0.013 m3/ m3 
• 0.013 m3 = L/L = mL/mL 

 
For experimental equivalency to HVR (using 12 x 50 mL flasks), required amounts are: 

• 600 mL HVR water (12 x 25mL) 
• 7.78 mL wet sediment (600 mL x 0.013 mL/mL sediment-volume fraction) 
• 8877.41 mg wet sediment (7.78 mL wet sediment x 1140.5 mg/mL density) 
• 2160.00 mg dry sediment (8877.41 mg wet / 4.11 ratio wet: dry) 
• 2.16 g dry sediment  

 
Based on isotherm/sorption experiments, required amounts are: 

• 25 mL HVR water 
• 0.32 mL wet sediment 
• 369.89 mg wet sediment 
• 90.00 mg dry sediment 
• 0.09 g dry sediment 

o 0.25 g of sediment were used in testing, therefore sorption tests were conducted 
under 2.7 x more sediment than natural systems. 
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Appendix C 

Microcystis aeruginosa Inocula, Cell Counts, Masses and 
Precision 
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Equation C1 describes the calculations to determine the initial concentration of P in the M. 
aeruginosa screening tests, taking into account the various sources of P including the inoculum, 
background water, and corresponding volumes of each: 

𝑃!"#! 𝑉!"#! = 𝑃!""#$ 𝑉!""#$ + 𝑃!"# 𝑉!"# Equation C1 

Where: 
Ptest = concentration of P in the test unit immediately after inoculation 
Vtest = volume of test water (including inoculum and Reservoir water starting volume) 
Pinnoc = concentration of P in the inoculum culture 
Vinnoc = volume of inoculum added to the Reservoir water starting volume 
PReservoir = concentration of P in the raw Reservoir water 
VReservoir = volume of raw Reservoir water starting volume for the test unit 

Table C1: Concentration of P introduced with inoculum shows the initial concentration of P in the 
M. aeruginosa Screening tests.  Based on these results, it was assumed that approx. 0.05 µg/L of 
P was introduced in each test vessel for the remainder of this study. 

Table C1: Concentration of P introduced with inoculum 

Ptest  
(µg/L) 

Pinnoc culture 
(µg/L) 

Vinnoc 
(L) 

PReservoir water 
(µg/L) 

VReservoir water 
(L) 

Vtest  
(L) 

25.38 50.00 0.001 24.40 0.025 0.026 

50.00 50.00 0.001 50.00 0.025 0.026 
      
Mass Pinnoc 
(µg/L) 

Mass PReservoir water 
(µg/L) 

% P 
introduced 

   

0.05 0.61 3.88    

0.05 1.25 0.00    
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Table C2: M. aeruginosa growth screening test cell count data 

Test Day 0 Day 2 Day 4 Day 8 Day 14 Day 21 Day 28 Day 35 
Average of three (3) haemocytometer counts (cells/mL) 

25 mL Reservoir water w/sediment 4.01E+06 3.73E+06 4.83E+06 8.15E+06 2.54E+07 3.86E+07 2.87E+07 4.67E+06 

50 mL Reservoir water w/sediment 3.50E+06 3.65E+06 5.74E+06 7.45E+06 2.24E+07 4.15E+07 3.99E+07 3.07E+07 

25 mL Reservoir water no sed 3.46E+06 5.33E+06 6.56E+06 7.73E+06 8.55E+06 5.12E+06 4.99E+06 4.73E+06 

50 mL Reservoir water no sed 3.38E+06 4.50E+06 6.49E+06 9.35E+06 8.10E+06 6.49E+06 5.29E+06 4.80E+06 

25 mL BG11(modified) w/sediment 3.28E+06 2.36E+06 4.63E+06 5.67E+06 2.38E+07 4.34E+07 6.85E+07 7.68E+07 

50 mL BG11(modified) w/sediment 3.79E+06 4.25E+06 5.29E+06 7.60E+06 1.91E+07 4.64E+07 6.15E+07 6.78E+07 

25 mL BG11(modified) no sed 3.59E+06 4.25E+06 6.93E+06 8.60E+06 1.46E+07 1.43E+07 1.65E+07 1.24E+07 

50 mL BG11(modified) no sed 3.74E+06 4.43E+06 6.08E+06 9.47E+06 1.47E+07 1.47E+07 1.52E+07 1.33E+07 
 Log cells (cells/mL) 
25 mL Reservoir water w/sediment 6.60 6.57 6.68 6.91 7.41 7.59 7.46 6.67 
50 mL Reservoir water w/sediment 6.54 6.56 6.76 6.87 7.35 7.62 7.60 7.49 
25 mL Reservoir water no sed 6.54 6.73 6.82 6.89 6.93 6.71 6.70 6.67 
50 mL Reservoir water no sed 6.53 6.65 6.81 6.97 6.91 6.81 6.72 6.68 
25 mL BG11(modified) w/sediment 6.52 6.37 6.67 6.75 7.38 7.64 7.84 7.89 
50 mL BG11(modified) w/sediment 6.58 6.63 6.72 6.88 7.28 7.67 7.79 7.83 
25 mL BG11(modified) no sed 6.56 6.63 6.84 6.93 7.17 7.15 7.22 7.09 
50 mL BG11(modified) no sed 6.57 6.65 6.78 6.98 7.17 7.17 7.18 7.12 

% difference reservoir water  
(sediment vs. non sediment) 1 2 2 1 7 12 12 11 

% difference BG11(modified) 
(sediment vs. non sediment) 1 4 3 3 3 7 8 10 
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All analysis was conducted using the mean cell count of three (3) replicates in log cells/mL. 

Equation C2 describes the % difference in growth between flasks of similar solution with and 
without sediment in the screening tests (note only 2 flasks per treatment) 

% 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  
max− 𝑚𝑖𝑛

𝑚𝑎𝑥
∗ 100 Equation C2 

Where: 
max = log cell count on a given day (use highest cell count) 
min = log cell count on a given day (use lowest cell count) 

Equation C3 describes the calculations to determine the yield at the end of a test: 

𝑦𝑖𝑒𝑙𝑑 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝑓𝑖𝑛𝑎𝑙 Equation C3 
Where: 

yield = change in population density at the end of a test, 
initial = mean cell count on Day 0 after inoculation; and, 
final = mean cell count at end of test. 

The average specific growth rate was calculated using the following equation: 

𝜇 = !" (!!⁄!!)
!!!!!  Equation 4 

Where: 
X1 is the initial raw cell count (cells/mL) and X2 is cell count at test end; and 
t is the time interval in days. 

The coefficient of variation represents the variability within a data set, or within the triplicate cell 
counts, and was calculated using the following equation: 

%𝐶𝑉 =
𝑆𝑡𝐷𝑒𝑣
𝐴𝑣𝑔

× 100 Equation 5 

Where: 
CV is the % coefficient of variation (or relative standard deviation, RSD) 
StDev is the standard variation around the mean; and, 
Avg is the mean of triplicate log-cell counts. 

Cell counts, expressed as logarithmic cell numbers/L, were used to determine % inhibition of 
control, and average growth rate.  The % inhibition of control was calculated using the following 
equation: 

𝐼 =
𝑅! − 𝑅
𝑅!

× 100 
Equation 6 

Where: 
I is the % inhibition of growth for each treatment; and 
Rc and R are the mean cell count (log counts) of the control, and of each treatment, 
respectively. 
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Table C3: Cell count data and precision at higher doses of FeCl3 

FeCl3 = 0 mg/L (Control) 

Rep Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 14 Day 18 

Average of three (3) haemocytometer counts (cells/mL) 

1 1.54E+06 2.26E+06 2.63E+06 3.06E+06 4.47E+06 5.73E+06 7.67E+06 1.08E+07 1.48E+07 1.92E+07 2.31E+07 3.31E+07 3.51E+07 

2 2.28E+06 2.92E+06 3.17E+06 3.63E+06 5.49E+06 7.99E+06 1.10E+07 1.37E+07 1.81E+07 1.78E+07 2.45E+07 3.15E+07 3.94E+07 

3 2.51E+06 3.02E+06 2.77E+06 3.19E+06 4.27E+06 6.97E+06 8.21E+06 1.29E+07 1.42E+07 1.89E+07 2.32E+07 2.97E+07 3.86E+07 

Log cells (cells/mL) 

1 6.19 6.35 6.42 6.49 6.65 6.76 6.88 7.03 7.17 7.28 7.36 7.52 7.55 

2 6.36 6.47 6.50 6.56 6.74 6.90 7.04 7.14 7.26 7.25 7.39 7.50 7.60 

3 6.40 6.48 6.44 6.50 6.63 6.84 6.91 7.11 7.15 7.28 7.36 7.47 7.59 

Avg 6.31 6.43 6.45 6.52 6.67 6.83 6.95 7.09 7.19 7.27 7.37 7.50 7.58 

St Dev 0.11 0.07 0.04 0.04 0.06 0.07 0.08 0.05 0.06 0.02 0.01 0.02 0.03 

%CV 1.77 1.07 0.65 0.59 0.87 1.06 1.20 0.76 0.78 0.24 0.20 0.31 0.35 

Yield -1.26 

Average specific growth rate (Day 7) 0.254 

Average specific growth rate (Day 14) 0.193 
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FeCl3 = 200 mg/L 

Rep Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 14 Day 18 

Average of three (3) haemocytometer counts (cells/mL) 

1 5.40E+05 2.35E+06 2.51E+06 3.32E+06 3.69E+06 4.60E+06 6.85E+06 8.98E+06 1.27E+07 1.69E+07 1.76E+07 2.95E+07 3.97E+07 

2 1.20E+06 2.31E+06 2.50E+06 3.65E+06 4.67E+06 6.38E+06 9.64E+06 1.20E+07 1.39E+07 1.82E+07 2.14E+07 3.52E+07 4.31E+07 

3 3.60E+05 2.57E+06 2.90E+06 3.39E+06 4.34E+06 5.74E+06 7.01E+06 9.86E+06 1.30E+07 1.60E+07 1.90E+07 2.49E+07 4.27E+07 

Log cells (cells/mL) 

1 5.73 6.37 6.40 6.52 6.57 6.66 6.84 6.95 7.10 7.23 7.25 7.47 7.60 

2 6.08 6.36 6.40 6.56 6.67 6.80 6.98 7.08 7.14 7.26 7.33 7.55 7.63 

3 5.56 6.41 6.46 6.53 6.64 6.76 6.85 6.99 7.11 7.20 7.28 7.40 7.63 

Avg 5.79 6.38 6.42 6.54 6.62 6.74 6.89 7.01 7.12 7.23 7.29 7.47 7.62 

St Dev 0.27 0.02 0.04 0.02 0.05 0.07 0.08 0.06 0.02 0.03 0.04 0.08 0.02 

%CV 4.60 0.38 0.56 0.33 0.79 1.07 1.20 0.90 0.29 0.39 0.59 1.00 0.26 

%inhib 8.32 0.80 0.53 -0.33 0.74 1.35 0.84 1.18 1.02 0.53 1.19 0.35 -0.60 

%control 91.68 99.20 99.47 100.33 99.26 98.65 99.16 98.82 98.98 99.47 98.81 99.65 100.60 

Yield -1.83 

Average specific growth rate (Day 7) 0.384 

Average specific growth rate (Day 14) 0.268 
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FeCl3 = 300 mg/L 

Rep Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 14 Day 18 

Average of three (3) haemocytometer counts (cells/mL) 

1 6.30E+05 1.61E+06 2.23E+06 3.18E+06 3.64E+06 4.90E+06 7.27E+06 1.19E+07 1.41E+07 1.67E+07 2.01E+07 2.95E+07 4.42E+07 

2 2.11E+06 2.47E+06 2.37E+06 3.01E+06 3.78E+06 4.30E+06 5.56E+06 7.47E+06 9.43E+06 1.03E+07 1.37E+07 2.51E+07 3.75E+07 

3 1.20E+06 2.42E+06 2.66E+06 3.23E+06 3.88E+06 4.65E+06 5.83E+06 9.86E+06 9.48E+06 1.36E+07 1.64E+07 2.16E+07 3.00E+07 

Log cells (cells/mL) 

1 5.80 6.21 6.35 6.50 6.56 6.69 6.86 7.08 7.15 7.22 7.30 7.47 7.65 

2 6.32 6.39 6.38 6.48 6.58 6.63 6.75 6.87 6.97 7.01 7.14 7.40 7.57 

3 6.08 6.38 6.42 6.51 6.59 6.67 6.77 6.99 6.98 7.13 7.22 7.34 7.48 

Avg 6.07 6.33 6.38 6.50 6.58 6.66 6.79 6.98 7.03 7.12 7.22 7.40 7.57 

St Dev 0.26 0.11 0.04 0.02 0.01 0.03 0.06 0.10 0.10 0.11 0.08 0.07 0.08 

%CV 4.33 1.67 0.60 0.25 0.21 0.42 0.92 1.46 1.44 1.49 1.16 0.91 1.12 

%inhib 3.91 1.64 1.11 0.30 1.47 2.50 2.25 1.57 2.22 2.02 2.09 1.27 0.13 

%control 96.09 98.36 98.89 99.70 98.53 97.50 97.75 98.43 97.78 97.98 97.91 98.73 99.87 

Yield -1.50 

Average specific growth rate (Day 7) 0.286 

Average specific growth rate (Day 14) 0.212 
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FeCl3 = 400 mg/L 

Rep Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 14 Day 18 

Average of three (3) haemocytometer counts (cells/mL) 

1 6.55E+05 1.94E+06 2.35E+06 2.86E+06 3.72E+06 3.75E+06 6.83E+06 1.03E+07 1.25E+07 1.51E+07 1.55E+07 2.30E+07 3.94E+07 

2 3.20E+05 2.09E+06 2.47E+06 2.84E+06 4.39E+06 4.68E+06 6.39E+06 8.85E+06 9.81E+06 1.20E+07 1.75E+07 2.18E+07 3.12E+07 

3 1.56E+06 2.54E+06 2.90E+06 3.27E+06 3.72E+06 4.95E+06 5.87E+06 8.24E+06 1.05E+07 1.22E+07 1.44E+07 2.00E+07 3.10E+07 

Log cells (cells/mL) 

1 5.82 6.29 6.37 6.46 6.57 6.57 6.83 7.01 7.10 7.18 7.19 7.36 7.60 

2 5.51 6.32 6.39 6.45 6.64 6.67 6.81 6.95 6.99 7.08 7.24 7.34 7.49 

3 6.19 6.40 6.46 6.51 6.57 6.69 6.77 6.92 7.02 7.09 7.16 7.30 7.49 

Avg 5.84 6.34 6.41 6.47 6.59 6.65 6.80 6.96 7.04 7.11 7.20 7.33 7.53 

St Dev 0.34 0.06 0.05 0.03 0.04 0.06 0.03 0.05 0.06 0.06 0.04 0.03 0.06 

%CV 5.90 0.95 0.74 0.54 0.64 0.96 0.49 0.70 0.79 0.78 0.60 0.41 0.79 

%inhib 7.54 1.49 0.70 0.64 1.19 2.75 2.07 1.89 2.19 2.15 2.38 2.17 0.64 

%control 92.46 98.51 99.30 99.36 98.81 97.25 97.93 98.11 97.81 97.85 97.62 97.83 99.36 

Yield -1.69 

Average specific growth rate (Day 7) 0.340 

Average specific growth rate (Day 14) 0.232 
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Table C4: Cell count data and precision at moderate doses of FeCl3 in the absence of sediment 

FeCl3 = 0 mg/L (Control) 

Rep Day 0 Day 1 Day 2 Day 6 Day 14 

Average of three (3) haemocytometer counts (cells/mL) 

1 2.55E+06 5.61E+06 1.94E+06 5.05E+06 6.95E+06 

2 2.49E+06 2.45E+06 1.50E+06 4.85E+06 6.91E+06 

3 2.35E+06 2.45E+06 1.77E+06 5.73E+06 7.12E+06 

Log cells (cells/mL) 

1 6.41 6.75 6.29 6.70 6.84 

2 6.40 6.39 6.18 6.69 6.84 

3 6.37 6.39 6.25 6.76 6.85 

Avg 6.39 6.51 6.24 6.72 6.84 

St Dev 0.02 0.21 0.06 0.04 0.01 

%CV 0.29 3.19 0.89 0.56 0.10 

Yield -0.45 

Average specific growth rate (Day 6) 0.125 

Average specific growth rate (Day 14) 0.075 

  

FeCl3 = 100 mg/L 

Rep Day 0 Day 1 Day 2 Day 6 Day 14 

Average of three (3) haemocytometer counts (cells/mL) 

1 2.69E+06 2.27E+06 1.76E+06 9.40E+05 1.26E+06 

2 1.66E+06 2.51E+06 1.50E+06 1.19E+06 1.35E+06 

3 8.30E+05 2.37E+06 1.99E+06 1.20E+06 1.51E+06 

Log cells (cells/mL) 

1 6.43 6.36 6.24 5.97 6.10 

2 6.22 6.40 6.18 6.07 6.13 

3 5.92 6.37 6.30 6.08 6.18 

Avg 6.19 6.38 6.24 6.04 6.14 

St Dev 0.26 0.02 0.06 0.06 0.04 

%CV 4.15 0.35 0.97 0.98 0.64 

%inhib 3.15 2.03 -0.05 10.04 10.36 

%control 96.85 97.97 100.05 89.96 89.64 

Yield 0.05 

Average specific growth rate (Day 6) -0.074 

Average specific growth rate (Day 14) -0.017 
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FeCl3 = 200 mg/L 

Rep Day 0 Day 1 Day 2 Day 6 Day 14 

Average of three (3) haemocytometer counts (cells/mL) 

1 1.74E+06 2.43E+06 2.02E+06 1.09E+06 8.20E+05 

2 2.47E+06 2.05E+06 1.87E+06 1.31E+06 9.40E+05 

3 2.55E+06 2.41E+06 1.77E+06 1.03E+06 1.12E+06 

Log cells (cells/mL) 

1 6.24 6.39 6.31 6.04 5.91 

2 6.39 6.31 6.27 6.12 5.97 

3 6.41 6.38 6.25 6.01 6.05 

Avg 6.35 6.36 6.27 6.05 5.98 

St Dev 0.09 0.04 0.03 0.06 0.07 

%CV 1.45 0.66 0.46 0.92 1.14 

%inhib 0.70 2.30 -0.60 9.84 12.65 

%control 99.30 97.70 100.60 90.16 87.35 

Yield 0.37 

Average specific growth rate (Day 6) -0.114 

Average specific growth rate (Day 14) -0.061 

 

Table C5: Dry mass data using higher doses of FeCl3 

Rep Filter + 
boat (g) 

Filter + boat + 
15 mL algae 

dry wt (g) 

algae dry 
wt (g) 

Avg dry 
wt (g) StDev 

FeCl3 = 0 
1 1.1096 1.1148 0.0052 

0.0055 0.0003 2 1.1057 1.1114 0.0057 
3 1.1018 1.1073 0.0055 

FeCl3 = 200 
1 1.1082 1.1120 0.0038 

0.0042 0.0005 2 1.1009 1.1056 0.0047 
3 1.1204 1.1244 0.0040 

FeCl3 = 300 
1 1.0969 1.1006 0.0037 

0.0035 0.0003 2 1.0988 1.1021 0.0033 
3 1.1046 1.0985  

FeCl3 = 400 
1 1.1066 1.1092 0.0026 

0.0033 0.0006 2 1.0932 1.0968 0.0036 
3 1.1024 1.1060 0.0036 
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Table C6: Dry mass data at moderate doses of FeCl3 in the absence of sediment 

Rep Filter + 
boat (g) 

Filter + boat + 
15 mL algae 

dry wt (g) 

algae dry 
wt (g) 

Avg dry 
wt (g) StDev 

FeCl3 = 0 
1 1.1008 1.1020 0.0012 

0.0010 0.0003 2 1.0978 1.0988 0.0010 
3 1.0743 1.0750 0.0007 

FeCl3 = 100 
1 1.1165 1.1167 0.0002 

0.0002 0.0001 2 1.0999 1.1002 0.0003 
3 2.0804 2.0806 0.0002 

FeCl3 = 200 
1 1.0865 1.0873 0.0008 

0.0004 0.0004 2 1.1072 1.1073 0.0001 
3 1.0960 1.0963 0.0003 
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Appendix D 

SRP Results 
in ultrapure water and reservoir water 
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Table D1: SRP values from sorption test using sediment and ultrapure water  

Initial SRP 
(µg/L) 

Rep Mass 
sediment 
(g) 

Mass 
standard 
(g) 

Final SRP 
(µg/L) 

Std Dev µg P 
adsorbed / g 
sediment 

0 1 0.249 20.021 307.00 4.36 -24.68 
0 2 0.252 19.982 308.00  -24.42 
0 3 0.250 19.969 315.00  -25.16 
25 1 0.249 20.000 122.00 2.31 -7.79 
25 2 0.249 20.001 126.00  -8.11 
25 3 0.249 19.989 126.00  -8.11 
50 1 0.250 20.006 86.10 0.15 -2.89 
50 2 0.250 20.029 85.90  -2.88 
50 3 0.251 20.003 86.20  -2.88 
100 1 0.251 20.009 63.50 1.80 2.91 
100 2 0.253 20.010 65.40  2.74 
100 3 0.249 20.032 61.80  3.07 
200 1 0.249 19.995 64.70 2.46 10.86 
200 2 0.249 20.004 63.90  10.93 
200 3 0.250 19.996 60.10  11.19 

 

Table D2: SRP values from sorption tests using low to moderate doses of FeCl3 added to sediment and 
reservoir water prior to agitation 

FeCl3 = 0 mg/L 
Initial SRP 
(µg/L) 

Rep Mass 
sediment 
(g) 

Mass 
standard 
(g) 

Final SRP 
(µg/L) 

Std Dev µg P 
adsorbed / g 
sediment 

32.48 1 0.270 24.999 82.70 2.32 -4.65 
32.48 2 0.265 24.842 78.20  -4.29 
32.48 3 0.244 24.977 81.40  -5.01 
58.64 1 0.250 24.997 78.00 1.51 -1.94 
58.64 2 0.250 24.997 77.60  -1.90 
58.64 3 0.243 24.995 75.20  -1.70 
84.83 1 0.247 24.958 80.30 2.25 0.46 
84.83 2 0.249 24.982 84.30  0.05 
84.83 3 0.244 24.973 84.10  0.07 
137.28 1 0.259 25.052 86.40 1.90 4.92 
137.28 2 0.252 24.999 88.10  4.88 
137.28 3 0.262 24.987 84.30  5.05 
239.98 1 0.246 25.043 101.00 1.88 14.15 
239.98 2 0.247 24.983 98.60  14.30 
239.98 3 0.247 24.994 97.30  14.44 
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FeCl3 = 5 mg/L 
Initial SRP 
(µg/L) 

Rep Mass 
sediment 
(g) 

Mass 
standard 
(g) 

Final SRP 
(µg/L) 

Std Dev µg P 
adsorbed / g 
sediment 

32.48 1 0.251 25.024 68.2 2.20 -3.56 
32.48 2 0.249 25.023 72.6  -4.03 
32.48 3 0.255 24.991 70.3  -3.71 
58.64 1 0.249 25.010 76.1 1.27 -1.75 
58.64 2 0.254 25.019 78.60  -1.97 
58.64 3 0.253 24.982 77.00  -1.81 
84.83 1 0.250 24.989 73.40 3.40 1.14 
84.83 2 0.249 24.987 76.60  0.83 
84.83 3 0.257 24.987 80.20  0.45 
137.28 1 0.251 25.050 80.40 0.86 5.68 
137.28 2 0.257 24.990 82.1  5.37 
137.28 3 0.253 25.005 81  5.56 
239.98 1 0.258 25.008 86.7 1.49 14.86 
239.98 2 0.260 24.986 89.5  14.46 
239.98 3 0.249 24.998 89  15.16 

 

FeCl3 = 10 mg/L 
Initial SRP 
(µg/L) 

Rep Mass 
sediment 
(g) 

Mass 
standard 
(g) 

Final SRP 
(µg/L) 

Std Dev µg P 
adsorbed / g 
sediment 

24.40 1 0.252 24.996 87.60 17.25 -6.27 
24.40 2 0.251 24.996 54.50  -3.00 
24.40 3 0.256 25.027 62.60  -3.73 
49.40 1 0.254 25.017 80.00 19.27 -3.01 
49.40 2 0.254 24.999 62.10  -1.25 
49.40 3 0.251 24.998 41.50  0.79 
74.40 1 0.253 25.005 65.40 11.91 0.89 
74.40 2 0.248 25.013 87.20  -1.29 
74.40 3 0.254 25.017 68.00  0.63 
124.40 1 0.251 24.999 92.50 7.91 3.18 
124.40 2 0.258 24.998 88.30  3.50 
124.40 3 0.252 25.056 77.20  4.69 
224.40 1 0.249 25.018 119.00 11.87 10.59 
224.40 2 0.250 25.001 97.30  12.71 
224.40 3 0.250 25.004 99.80  12.46 
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FeCl3 = 15 mg/L 
Initial SRP 
(µg/L) 

Rep Mass 
sediment 
(g) 

Mass 
standard 
(g) 

Final SRP 
(µg/L) 

Std Dev µg P 
adsorbed / g 
sediment 

24.40 1 0.251 24.994 77.50 7.73 -5.29 
24.40 2 0.251 25.008 62.60  -3.81 
24.40 3 0.251 25.002 66.50  -4.19 
49.40 1 0.252 25.024 75.00 12.00 -2.54 
49.40 2 0.250 25.013 71.00  -2.16 
49.40 3 0.250 24.999 52.50  -0.31 
74.40 1 0.255 25.004 58.50 4.52 1.56 
74.40 2 0.252 24.999 59.30  1.50 
74.40 3 0.250 24.998 66.70  0.77 
124.40 1 0.253 25.195 58.30 9.38 6.58 
124.40 2 0.255 25.006 77.00  4.65 
124.40 3 0.251 25.000 66.30  5.79 
224.40 1 0.250 25.000 72.40 7.63 15.20 
224.40 2 0.251 25.000 81.10  14.27 
224.40 3 0.255 25.015 65.90  15.55 

 

FeCl3 = 20 mg/L 
Initial SRP 
(µg/L) 

Rep Mass 
sediment 
(g) 

Mass 
standard 
(g) 

Final SRP 
(µg/L) 

Std Dev µg P 
adsorbed / g 
sediment 

24.40 1 0.252 25.001 44.20 3.98 -1.96 
24.40 2 0.250 25.005 49.80  -2.54 
24.40 3 0.252 25.013 42.10  -1.76 
49.40 1 0.252 25.004 62.30 14.46 -1.28 
49.40 2 0.258 25.022 33.40   1.55 
49.40 3 0.252 25.063 47.10  0.23 
74.40 1 0.252 25.003 88.30 19.08 -1.38 
74.40 2 0.251 25.025 52.70  2.16 
74.40 3 0.255 25.012 82.40  -0.79 
124.40 1 0.251 25.000 46.20 17.27 7.79 
124.40 2 0.255 25.000 80.70  4.28 
124.40 3 0.255 25.023 64.90  5.84 
224.40 1 0.254 25.010 75.50 23.23 14.66 
224.40 2 0.255 25.012 67.30  15.41 
224.40 3 0.255 25.003 111.00  11.12 
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FeCl3 = 25 mg/L 
Initial SRP 
(µg/L) 

Rep Mass 
sediment 
(g) 

Mass 
standard 
(g) 

Final SRP 
(µg/L) 

Std Dev µg P 
adsorbed / g 
sediment 

32.48 1 0.254 24.952 31.90 2.47 0.06 
32.48 2 0.266 25.022 27.90  0.43 
32.48 3 0.249 24.991 27.40  0.51 
58.64 1 0.249 25.002 33.30 2.91 2.54 
58.64 2 0.251 25.039 34.10  2.45 
58.64 3 0.252 24.987 38.70  1.98 
84.83 1 0.249 25.057 34.60 5.27 5.05 
84.83 2 0.261 25.003 35.90  4.69 
84.83 3 0.259 25.010 44.30  3.91 
137.28 1 0.254 25.035 37.00 1.88 9.88 
137.28 2 0.260 24.991 33.90  9.94 
137.28 3 0.244 25.062 37.30  10.27 
239.98 1 0.252 25.079 43.80 3.01 19.52 
239.98 2 0.254 25.005 40.40  19.65 
239.98 3 0.250 25.011 37.80  20.23 

 

FeCl3 = 50 mg/L 
Initial SRP 
(µg/L) 

Rep Mass 
sediment 
(g) 

Mass 
standard 
(g) 

Final SRP 
(µg/L) 

Std Dev µg P 
adsorbed / g 
sediment 

32.48 1 0.253 24.982 23.40 0.53 0.90 
32.48 2 0.251 25.007 23.20  0.92 
32.48 3 0.253 24.995 22.40  1.00 
58.64 1 0.250 24.982 19.30 1.94 3.93 
58.64 2 0.249 25.003 21.90  3.69 
58.64 3 0.252 25.006 23.10  3.53 
84.83 1 0.251 24.996 17.40 1.68 6.71 
84.83 2 0.252 25.006 20.60  6.37 
84.83 3 0.249 25.001 18.10  6.70 
137.28 1 0.252 24.978 16.00 2.06 12.02 
137.28 2 0.251 25.028 20.10  11.68 
137.28 3 0.248 25.015 18.40  11.99 
239.98 1 0.255 24.994 18.80 3.73 21.68 
239.98 2 0.252 24.995 19.10  21.91 
239.98 3 0.249 25.004 25.40  21.55 
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FeCl3 = 100 mg/L 
Initial SRP 
(µg/L) 

Rep Mass 
sediment 
(g) 

Mass 
standard 
(g) 

Final SRP 
(µg/L) 

Std Dev µg P 
adsorbed / g 
sediment 

32.48 1 0.249 25.004 11.40 2.38 2.12 
32.48 2 0.247 25.019 11.80  2.10 
32.48 3 0.251 25.012 15.70  1.67 
58.64 1 0.247 25.017 12.60 1.66 4.66 
58.64 2 0.265 25.004 11.20  4.48 
58.64 3 0.251 25.031 14.50  4.40 
84.83 1 0.252 25.009 14.60 2.20 6.97 
84.83 2 0.249 24.992 14.20  7.09 
84.83 3 0.251 24.989 10.60  7.39 
137.28 1 0.248 25.012 15.90 1.48 12.24 
137.28 2 0.249 25.027 15.00  12.29 
137.28 3 0.252 25.010 13.00  12.33 
239.98 1 0.256 25.002 13.00 0.23 22.17 
239.98 2 0.251 24.984 12.60  22.63 
239.98 3 0.256 24.991 12.60  22.20 

 

Table D3: SRP values from sorption tests using higher doses of FeCl3 added to sediment and reservoir 
water prior to agitation 

FeCl3 = 0 mg/L 
Initial SRP 
(µg/L) 

Rep Mass 
sediment 
(g) 

Mass 
standard 
(g) 

Final SRP 
(µg/L) 

Std Dev µg P 
adsorbed / g 
sediment 

60.90 1 0.251 25.007 83.50 4.39 -1.71 
60.90 2 0.248 24.998 74.80  -0.75 
60.90 3 0.250 25.000 78.10  -2.12 
86.03 1 0.249 25.007 68.30 10.72 -0.34 
86.03 2 0.251 24.998 82.10  1.86 
86.03 3 0.251 24.994 89.40  0.28 
111.20 1 0.250 24.998 67.40 11.14 4.38 
111.20 2 0.251 25.001 83.20  2.79 
111.20 3 0.250 25.001 88.90  2.23 
161.51 1 0.251 24.996 88.60 4.16 7.26 
161.51 2 0.249 25.000 89.70  7.21 
161.51 3 0.251 25.006 96.30  6.50 
262.10 1 0.249 25.004 110.00 11.02 15.27 
262.10 2 0.250 25.003 108.00  15.41 
262.10 3 0.250 24.997 128.00  13.41 
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FeCl3 = 200 mg/L 

Initial SRP 
(µg/L) 

Rep Mass 
sediment 
(g) 

Mass 
standard 
(g) 

Final SRP 
(µg/L) 

Std Dev µg P 
adsorbed / g 
sediment 

60.90 1 0.252 25.000 9.31 1.42 5.12 
60.90 2 0.250 25.003 6.54  5.44 
60.90 3 0.250 24.998 7.38  5.35 
86.03 1 0.250 24.997 6.54 2.50 7.95 
86.03 2 0.250 24.995 10.80  7.52 
86.03 3 0.249 25.000 6.40  8.00 
111.20 1 0.249 25.005 7.12 2.03 10.45 
111.20 2 0.250 25.003 4.67  10.65 
111.20 3 0.252 24.996 8.69  10.17 
161.51 1 0.250 25.002 7.24 0.29 15.43 
161.51 2 0.252 25.001 6.96  15.33 
161.51 3 0.250 25.012 6.66  15.49 
262.10 1 0.252 24.999 8.57 0.71 25.15 
262.10 2 0.251 24.993 7.23  25.38 
262.10 3 0.251 24.997 7.52  25.35 

 

FeCl3 = 300 mg/L 
Initial SRP 
(µg/L) 

Rep Mass 
sediment 
(g) 

Mass 
standard 
(g) 

Final SRP 
(µg/L) 

Std Dev µg P 
adsorbed / g 
sediment 

60.90 1 0.249 25.010 7.79 0.87 5.33 
60.90 2 0.249 25.008 6.22  5.49 
60.90 3 0.250 25.006 6.35  5.46 
86.03 1 0.250 25.019 6.80 0.28 7.93 
86.03 2 0.249 24.994 6.92  7.94 
86.03 3 0.249 25.005 7.33  7.90 
111.20 1 0.250 24.998 7.29 0.54 10.39 
111.20 2 0.249 24.996 7.32  10.43 
111.20 3 0.250 24.997 6.37  10.48 
161.51 1 0.250 25.006 6.83 0.57 15.47 
161.51 2 0.251 24.998 5.97  15.49 
161.51 3 0.250 24.997 7.04  15.45 
262.10 1 0.250 25.008 7.43 0.61 25.47 
262.10 2 0.252 25.002 6.21  25.39 
262.10 3 0.250 25.006 6.78  25.54 
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FeCl3 = 400 mg/L 
Initial SRP 
(µg/L) 

Rep Mass 
sediment 
(g) 

Mass 
standard 
(g) 

Final SRP 
(µg/L) 

Std Dev µg P 
adsorbed / g 
sediment 

60.90 1 0.252 24.995 5.75 1.08 5.47 
60.90 2 0.250 25.006 7.54  5.34 
60.90 3 0.250 25.003 5.59  5.53 
86.03 1 0.250 25.001 6.91 1.35 7.91 
86.03 2 0.250 24.993 4.56  8.14 
86.03 3 0.249 25.005 6.90  7.95 
111.20 1 0.251 25.007 6.57 0.90 10.42 
111.20 2 0.253 24.998 4.78  10.51 
111.20 3 0.251 24.997 5.67  10.51 
161.51 1 0.251 24.997 5.23 0.50 15.56 
161.51 2 0.249 25.011 6.01  15.62 
161.51 3 0.249 25.002 6.15  15.60 
262.10 1 0.250 24.997 5.39 0.61 25.67 
262.10 2 0.252 24.997 4.22  25.58 
262.10 3 0.253 24.998 5.11  25.39 

 

Table D4: SRP values from sorption tests using moderate doses of FeCl3 added to sediment and reservoir 
water after agitation 

Initial SRP 
(µg/L) 

Rep Mass 
sediment 
(g) 

Mass 
standard 
(g) 

Final SRP 
(µg/L) 

Std Dev µg P 
adsorbed / g 
sediment 

FeCl3 = 25 mg/L 
32.48 1 0.253 24.973 17.30 2.42 1.50 
32.48 2 0.262 24.978 17.30  1.45 
32.48 3 0.266 25.011 21.50  1.03 
84.83 1 0.252 25.003 19.00 1.91 6.53 
84.83 2 0.262 22.907 21.70  5.52 

FeCl3 = 100 mg/L 
32.48 1 0.251 24.922 9.51 0.36 2.28 
32.48 2 0.250 24.964 8.87  2.36 
32.48 3 0.253 24.981 9.46  2.27 
84.83 1 0.248 24.984 9.35 0.43 7.60 
84.83 2 0.250 25.089 9.37  7.57 
84.83 3 0.254 24.882 10.10  7.32 
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Table D5: SRP values from sorption tests using lower doses of FeCl3 added to sediment and BG11 
growth medium prior to agitation 

FeCl3 = 0 mg/L 
Initial SRP 
(µg/L) 

Rep Mass 
sediment (g) 

Mass 
standard (g) 

Final SRP 
(µg/L) 

µg P adsorbed / 
g sediment 

5335.00 1 0.261 24.990 

Out of range n/a 

5335.00 2 0.259 25.004 
5335.00 3 0.249 25.009 
5359.77 1 0.249 24.977 
5359.77 2 0.245 25.004 
5359.77 3 0.247 25.004 
5384.70 1 0.251 24.992 
5384.70 2 0.250 25.003 
5384.70 3 0.250 24.991 
5434.53 1 0.252 24.986 
5434.53 2 0.258 24.995 
5434.53 3 0.250 25.015 
5533.79 1 0.256 25.003 
5533.79 2 0.256 24.997 
5533.79 3 0.247 24.985 

 

FeCl3 = 5 mg/L 
Initial SRP 
(µg/L) 

Rep Mass 
sediment (g) 

Mass 
standard (g) 

Final SRP 
(µg/L) 

µg P adsorbed / 
g sediment 

5335.00 1 0.249 25.009 

Out of range n/a 

5335.00 2 0.258 25.004 
5335.00 3 0.252 25.017 
5359.77 1 0.247 25.009 
5359.77 2 0.246 25.010 
5359.77 3 0.277 25.002 
5384.70 1 0.254 24.984 
5384.70 2 0.252 25.002 
5384.70 3 0.247 25.000 
5434.53 1 0.246 24.991 
5434.53 2 0.255 25.003 
5434.53 3 0.252 25.012 
5533.79 1 0.259 25.004 
5533.79 2 0.244 24.995 
5533.79 3 0.268 24.992 
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FeCl3 = 25 mg/L 
Initial SRP 
(µg/L) 

Rep Mass 
sediment 
(g) 

Mass 
standard 
(g) 

Final SRP 
(µg/L) 

Std Dev µg P 
adsorbed / g 
sediment 

5335.00 1 0.260 24.998 

Out of 
range 

 

n/a 

5335.00 2 0.248 24.988  

5335.00 3 0.248 24.988  

5359.77 1 0.258 24.985  

5359.77 2 0.240 25.004  
5359.77 3 0.262 25.023 1110.00  405.89 
5384.70 1 0.242 25.003 1080.00 78.10 444.75 
5384.70 2 0.287 25.011 1070.00  376.01 
5384.70 3 0.242 24.989 940.00  458.96 
5434.53 1 0.240 24.991 904.00 57.85 471.76 
5434.53 2 0.241 24.981 982.00  461.53 
5434.53 3 0.249 24.998 869.00  458.35 
5533.79 1 0.243 25.006 1250.00 158.15 440.83 
5533.79 2 0.250 25.017 936.00  460.09 
5533.79 3 0.269 24.008 1060.00  399.28 

 

FeCl3 = 50 mg/L 
Initial SRP 
(µg/L) 

Rep Mass 
sediment 
(g) 

Mass 
standard 
(g) 

Final SRP 
(µg/L) 

Std Dev µg P 
adsorbed / g 
sediment 

5335.00 1 0.253 24.988 470.00 4.00 480.50 
5335.00 2 0.243 25.010 478.00  499.89 
5335.00 3 0.243 24.996 474.00  500.02 
5359.77 1 0.243 24.986 519.00 55.43 497.74 
5359.77 2 0.249 24.987 432.00  494.50 
5359.77 3 0.243 24.989 416.00  508.39 
5384.70 1 0.246 24.985 523.00 55.37 493.78 
5384.70 2 0.241 24.985 440.00  512.63 
5384.70 3 0.245 24.997 418.00  506.75 
5434.53 1 0.250 25.020 442.00 85.08 499.65 
5434.53 2 0.249 25.006 454.00  500.17 
5434.53 3 0.249 25.009 595.00  486.07 
5533.79 1 0.244 24.993 683.00 118.08 496.87 
5533.79 2 0.248 24.997 525.00  504.86 
5533.79 3 0.250 24.988 452.00  507.94 
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FeCl3 = 100 mg/L 
Initial SRP 
(µg/L) 

Rep Mass 
sediment 
(g) 

Mass 
standard 
(g) 

Final SRP 
(µg/L) 

Std Dev µg P 
adsorbed / g 
sediment 

5335.00 1 0.248 24.973 101.00 14.57 527.05 
5335.00 2 0.251 24.998 129.00  518.48 
5335.00 3 0.264 25.000 108.00  494.98 
5359.77 1 0.246 24.994 110.00 4.51 533.39 
5359.77 2 0.250 24.998 114.00  524.53 
5359.77 3 0.251 24.999 105.00  523.36 
5384.70 1 0.249 25.006 118.00 6.66 528.91 
5384.70 2 0.244 24.995 117.00  539.62 
5384.70 3 0.250 25.009 129.00  525.76 
5434.53 1 0.261 25.000 128.00 67.86 508.29 
5434.53 2 0.245 25.058 244.00  530.87 
5434.53 3 0.248 24.981 125.00  534.83 
5533.79 1 0.250 24.999 118.00 5.13 541.56 
5533.79 2 0.248 24.984 115.00  545.90 
5533.79 3 0.255 25.003 125.00  530.34 

Table D6: SRP values from sorption tests using lower doses of FeCl3 added to sediment and BG11 
growth medium after agitation 

Initial SRP 
(µg/L) 

Rep Mass 
sediment 
(g) 

Mass 
standard 
(g) 

Final SRP 
(µg/L) 

Std Dev µg P 
adsorbed / g 
sediment 

FeCl3 = 5 mg/L 
5335.00 1 0.249 24.985 

Out of 
range 

 

 n/a  

5335.00 2 0.260 24.990  
5335.00 3 0.252 25.020  
5384.70 1 0.249 25.001  
5384.70 2 0.252 24.994  
5384.70 3 0.267 25.004  

FeCl3 = 25 mg/L 
5335.00 1 0.246 24.982 981.00 128.42 442.16 
5335.00 2 0.258 24.982 871.00  432.25 
5335.00 3 0.273 25.006 725.00  422.26 
5384.70 1 0.248 24.993 930.00 76.10 448.94 
5384.70 2 0.260 25.005 871.00  434.10 
5335.00 1 0.249 25.019 779.00  462.77 

FeCl3 = 50 mg/L 
5335.00 1 0.247 25.004 389.00 87.73 500.69 
5335.00 2 0.266 25.012 273.00  475.98 
5335.00 3 0.261 24.995 217.00  490.13 
5384.70 1 0.254 24.999 226.00 13.32 507.73 
5384.70 2 0.251 25.001 202.00  516.23 
5384.70 3 0.251 24.987 204.00  515.74 
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Table D7: SRP values from sequestration (precipitation) tests using low to moderate doses of FeCl3 added 
to reservoir water in the absence of sediment 

Initial SRP 

(µg/L) 

Rep FeCl3 = 0 mg/L FeCl3 = 5 mg/L 
Mass 
standard (g) 

Final SRP 
(µg/L) 

Std Dev Mass 
standard 
(g) 

Final SRP 
(µg/L) 

Std Dev 

29.85 1 24.873 38.10 4.97 24.986 17.00 2.16 
29.85 2 25.003 29.00  24.989 12.80  
29.85 3 25.007 30.10  24.993 15.80  
55.13 1 25.009 53.00 0.31 24.997 24.40 0.29 
55.13 2 24.980 52.40  24.992 24.90  
55.13 3 25.008 52.80  25.008 24.90  
80.34 1 24.992 75.40 0.66 24.997 39.10 1.85 
80.34 2 24.993 76.20  25.000 36.00  
80.34 3 24.990 76.70  24.991 35.80  
130.83 1 25.008 121.00 1.00 25.003 71.30 3.52 
130.83 2 24.987 122.00  24.990 71.10  
130.83 3 24.992 123.00  25.009 65.10  
231.86 1 24.990 220.00 1.73 24.995 141.00 4.04 
231.86 2 24.993 223.00  25.011 136.00  
231.86 3 25.000 223.00  24.995 133.00  

 

Initial SRP 

(µg/L) 

Rep FeCl3 = 25 mg/L  FeCl3 = 50 mg/L 
Mass 
standard (g) 

Final SRP 
(µg/L) 

Std 
Dev 

Mass 
standard (g) 

Final SRP 
(µg/L) 

Std Dev 

29.85 1 25.014 12.50 0.47 24.980 12.70 0.35 
29.85 2 24.980 11.60  25.002 12.40  
29.85 3 24.991 11.80  24.996 12.00  
55.13 1 24.988 13.70 0.38 24.995 11.70 0.47 
55.13 2 24.982 13.10  24.986 11.50  
55.13 3 25.000 13.00  24.996 10.80  
80.34 1 25.006 18.80 2.57 25.003 11.90 0.44 
80.34 2 24.981 14.40  25.003 11.10  
80.34 3 25.003 14.30  25.000 11.20  
130.83 1 24.985 16.50 0.31 25.006 12.50 0.26 
130.83 2 24.988 16.30  25.002 12.00  
130.83 3 24.998 15.90  24.994 12.10  
231.86 1 25.009 22.30 0.62 25.005 14.10 0.46 
231.86 2 24.996 21.10  25.002 13.20  
231.86 3 24.990 21.40  25.007 13.50  
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FeCl3 = 100 mg/L  
Initial SRP 
(µg/L) 

Rep Mass 
standard (g) 

Final SRP 
(µg/L) 

Std Dev 

29.85 1 24.985 10.40 0.32 
29.85 2 24.996 9.85  
29.85 3 24.998 10.40  
55.13 1 24.993 10.90 0.71 
55.13 2 24.998 9.91  
55.13 3 25.004 9.52  
80.34 1 24.991 11.40 0.56 
80.34 2 25.016 11.00  
80.34 3 24.992 10.30  
130.83 1 25.009 10.30 0.21 
130.83 2 24.998 9.89  
130.83 3 24.998 10.00  
231.86 1 25.031 10.40 0.21 
231.86 2 24.991 10.50  
231.86 3 24.991 10.10  

 

Table D8: SRP levels during M. aeruginosa growth tests at varying FeCl3 doses 

Test 
Day 0 Day 6 Day 10 Day 14 Day 18 Day 21 Day 22 Day 35 Day 39 

SRP (µg/L) 

Reservoir water + sed 25.38       498.00, 
428.00  

Reservoir water (no sed) 25.38       4.86,  
2.67  

BG1150 + sed 50.001       24.00, 
21.71  

BG1150 (no sed) 50.001       0.74,  
0.35  

FeCl3 [0] 100.00  6.54 5.03 15.63     
[200] 6.21  3.23 3.65 14.19     
[300] 2.44  3.67 5.98 10.82     
[400] 1.95  2.95 12.30 11.57     

FeCl3 [0] (no sed) 74.40 n/a  2.37      
[100] 0.99 3.58  2.34      
[200] 1.07 0.51  6.51      

1 Estimated value
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Quality Control and Statistical Analysis 
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Table E1: Quality control and precision of lowest P-standard during SRP analysis 

P-standard 
ID no. 22 Aug 15 29 Aug 15 30 Aug 15 

 Measured Value (µg/L) 
25a 24.60 23.50 23.20 
25b 24.70 23.60 24.20 
25c 25.20 22.70 24.50 
25d 24.90 22.60 24.40 
25e 24.90 23.10 23.50 
25f 23.70 22.90 24.30 
25g 23.40 22.50 24.70 

Average 24.49 22.99 24.11 
StDev 0.67 0.43 0.55 
% CV 2.74 1.89 2.29 

Table E2: Quality control and precision of random replicate samples during SRP analysis 

Date Sample Measured Value (µg/L) % CV 

14 Dec 2014 107j 30.9 32.48     3.53 
WA 32.8 31.9 33.2 32.5 33.6 30.9 2.99	

1 Mar 2015 285j 29.6 30.0     0.95 
286j 30.1 30.9     1.85 

26 June 2015 1m1 45.70 44.54 43.20    2.81 

29 Aug 2015 420 100.00 98.2     1.28 
421 15.7 14.7     4.65 

14 Oct 2015 507 59.9 61.9     2.32 

Table E3: T-tests - comparison of final SRP values for FeCl3 amendments before vs. after 18 hours of 
agitations  

Initial SRP 
(µg/L) 

FeCl3 
(mg/L) rep 

Final SRP (µg/L)  Treatment 
comparisons FeCl3 added 

prior to agitation 
FeCl3 added after 
18 hrs agitation 

32.48 Fe = [25] 1 31.9 17.3 

p = 0.001 
(✓ significant 

difference) 

32.48 Fe = [25] 2 27.9 17.3 
32.48 Fe = [25] 3 27.4 21.5 
84.83 Fe = [25] 1 34.6 19.0 
84.83 Fe = [25] 2 35.9 21.7 
84.83 Fe = [25] 3 44.3  -  
32.48 Fe = [100] 1 11.4 9.51 

p = 0.004 
(✓ significant 

difference) 

32.48 Fe = [100] 2 11.8 8.87 
32.48 Fe = [100] 3 15.7 9.46 
84.83 Fe = [100] 1 14.6 9.35 
84.83 Fe = [100] 2 14.2 9.37 
84.83 Fe = [100] 3 10.6 10.1 
Comparison of all final SRP 
values (before vs. after) p = 0.011 (✓ significant difference)  
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Photos of experiments 
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Figure F1: Shaker table apparatus and test units 

 

  
Reservoir Water + sediment 
P = 25µg/L.  FeCl3 = 50 mg/L 

Reservoir Water (no sediment) 
P = 200 µg/L.  FeCl3 = 50 mg/L 

Figure F2: Photos of floc and precipitate formation in sorption tests with (a) and without (b) sediment. 
Precipitation is more obscured in tests with (a) sediment 

  

(a) (b) 
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M. aeruginosa in Reservoir water + 
sediment 
 

P0 (background SRP control) = 105.80 µg/L 

FeCl3 = 0, 50, 100 mg/L 

 

 
 
M. aeruginosa in Reservoir water (no 
sediment) 
 
P0 (control) = 105.80 µg/L 

FeCl3 = 0, 100, 200 mg/L 

Figure F3: Photos of floc and precipitate formation in M. aeruginosa tests with (a) and without (b) 
sediment. Precipitation is more obscured in tests with (a) sediment 

  

Day 4 

  

Day 14 

  

Day 35 

Flasks with sediment are on the right 

Figure F4: Photos of Screening Tests on different dates. Flasks with sediment are darker green indicating 
more CB growth 

HVR 
BG1150 BG1150 

HVR 

(a) 

(b) 
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Collection of 15 mL near surface to avoid 
uptake of sediment 

Pre filter (1.2 µm) to trap M. aeruginosa for 
dry mass 

 

 

Effluent retained and re-filtered (0.45 µm) into 
clean vial for SRP analysis 

Filtered wet samples and 2 filter blanks 
(method blanks)  

Figure F5: Photos of M. aeruginosa test process and filter apparatus 
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Appendix G 

SRP Results in BG11 growth medium 
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Sorption experiments were conducted using BG11 growth media, Reservoir sediment, and varying FeCl3 

doses and P- standards to determine if there were additional ionic interactions from the growth media that 

would affect the ability of FeCl3 to sequester the P from solution (as preparation for the M. aeruginosa 

testing). 

As shown in Figure G1, the X-axis reflects the initial background P-levels in the (unmodified) BG11 

growth medium, in addition to the P-amendments.  The initial P concentrations were extremely high in 

the growth medium (>5000 µg P/L to enable CB growth) and consequently the sediment only adsorbed P 

from the water column – no desorption occurred; and no horizontal equilibrium line was plotted. 

FeCl3 doses lower than 25 mg/L (i.e. 0, 5 mg/L) were unable to sequester enough P from the water 

column to reduce the final P to levels that could be measured on the autoanalyzer; these samples were 

labelled ‘out of range’.  At 25 mg/L FeCl3, the first treatment with no added P (i.e., P standard = 0 µg 

P/L) was also out of range; and these triplicate data points were not plotted on Figure G1. 

Despite a 6-fold dilution of the ‘out of range’ samples, the values remained out of range.  The 

autoanalyzer is capable of reading up to 200 µ/L P and it was determined the final P in solution was over 

1200 µg P/L (i.e., 6X dilution x 200 max detection is ≥ 1200 µg P/L). 

A comparison of initial vs. final solution SRP is shown in Figure G2.  FeCl3 doses of 100 mg/L are 

capable of reducing initial P levels in excess of 5500 µg P/L to approx. 100 µg/L.  Lower FeCl3 doses of 

25 mg/L are capable of reducing initial P levels in excess of 5500 µg/L to approx. 1000 µg/L.  The 

exception was the first treatment with no added P-standard (adjusted to background P of 5335 µg P /L). 
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Figure G1: Impact of FeCl3 on P sorption dynamics in BG11 growth medium and sediment from Cell 3. 
Note all replicates are plotted (N = 3) where feasible (i.e., within detection range) 

 

Figure G2: Impact of FeCl3 on the initial and final solution levels of SRP in BG11 growth medium and 
sediment 
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Table G1: SRP values from sorption tests using lower doses of FeCl3 added to sediment and BG11 
growth medium prior to agitation. Note that SRP results for doses of FeCl3 lower than 25 mg/L were out 
of range 

FeCl3 = 25 mg/L 
Initial SRP 
(µg/L) 

Rep Mass 
sediment 
(g) 

Mass 
standard 
(g) 

Final SRP 
(µg/L) 

Std Dev µg P 
adsorbed / g 
sediment 

5335.00 1 0.260 24.998     
5335.00 2 0.248 24.988     
5335.00 3 0.248 24.988     
5359.77 1 0.258 24.985     
5359.77 2 0.240 25.004     
5359.77 3 0.262 25.023 1110.00  405.89 
5384.70 1 0.242 25.003 1080.00 78.10 444.75 
5384.70 2 0.287 25.011 1070.00  376.01 
5384.70 3 0.242 24.989 940.00  458.96 
5434.53 1 0.240 24.991 904.00 57.85 471.76 
5434.53 2 0.241 24.981 982.00  461.53 
5434.53 3 0.249 24.998 869.00  458.35 
5533.79 1 0.243 25.006 1250.00 158.15 440.83 
5533.79 2 0.250 25.017 936.00  460.09 
5533.79 3 0.269 24.008 1060.00  399.28 

 

FeCl3 = 50 mg/L 
Initial SRP 
(µg/L) 

Rep Mass 
sediment 
(g) 

Mass 
standard 
(g) 

Final SRP 
(µg/L) 

Std Dev µg P 
adsorbed / g 
sediment 

5335.00 1 0.253 24.988 470.00 4.00 480.50 
5335.00 2 0.243 25.010 478.00  499.89 
5335.00 3 0.243 24.996 474.00  500.02 
5359.77 1 0.243 24.986 519.00 55.43 497.74 
5359.77 2 0.249 24.987 432.00  494.50 
5359.77 3 0.243 24.989 416.00  508.39 
5384.70 1 0.246 24.985 523.00 55.37 493.78 
5384.70 2 0.241 24.985 440.00  512.63 
5384.70 3 0.245 24.997 418.00  506.75 
5434.53 1 0.250 25.020 442.00 85.08 499.65 
5434.53 2 0.249 25.006 454.00  500.17 
5434.53 3 0.249 25.009 595.00  486.07 
5533.79 1 0.244 24.993 683.00 118.08 496.87 
5533.79 2 0.248 24.997 525.00  504.86 
5533.79 3 0.250 24.988 452.00  507.94 
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FeCl3 = 100 mg/L 
Initial SRP 
(µg/L) 

Rep Mass 
sediment 
(g) 

Mass 
standard 
(g) 

Final SRP 
(µg/L) 

Std Dev µg P 
adsorbed / g 
sediment 

5335.00 1 0.248 24.973 101.00 14.57 527.05 
5335.00 2 0.251 24.998 129.00  518.48 
5335.00 3 0.264 25.000 108.00  494.98 
5359.77 1 0.246 24.994 110.00 4.51 533.39 
5359.77 2 0.250 24.998 114.00  524.53 
5359.77 3 0.251 24.999 105.00  523.36 
5384.70 1 0.249 25.006 118.00 6.66 528.91 
5384.70 2 0.244 24.995 117.00  539.62 
5384.70 3 0.250 25.009 129.00  525.76 
5434.53 1 0.261 25.000 128.00 67.86 508.29 
5434.53 2 0.245 25.058 244.00  530.87 
5434.53 3 0.248 24.981 125.00  534.83 
5533.79 1 0.250 24.999 118.00 5.13 541.56 
5533.79 2 0.248 24.984 115.00  545.90 
5533.79 3 0.255 25.003 125.00  530.34 
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Glossary 

Benthic   dwelling on or near the bottom or on a substrate 

Control   test vessel not amended with P or FeCl3 

Eutrophic polluted; nutrient enriched; turbid due to presence of algae; highly primary 

producer productivity 

Hydrolysis  proton transfer, hydrogen atom; or breaking a bond 

Inoculum CB cells collected from a liquid stock culture and transferred to a new medium, 

resulting in a lower cell concentration 

Phytoplankton  small, suspended, photosynthetic plants and cyanobacteria 

Redox   electron transfer, loss or gain 
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