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Abstract

AUTOSAR (AUTomotive Open System ARchitecture) provides an open and standard-
ized E/E architecture to support modularity, transferability, reusability and scalability of
the various components required to implement a function in a vehicle. AUTOSAR has
become the de-facto standard for the automotive application development. Safety-critical
nature of the automobiles makes the automotive application development challenging, and
due to the growing complexity of the software in modern day vehicles, it has become
even more challenging. A system is called schedulable when it meets all its real-time re-
quirements under all the possible scenarios. An automotive application should always be
schedulable; failing it can have grim consequences. The overhead added by the AUTOSAR
stack can significantly change the schedulability of an automotive application. This thesis
proposes an overhead-aware method to find a schedulable design configuration for an AU-
TOSAR application. The method allows measuring the overheads of an AUTOSAR stack
implementation and assessing the impacts of the overheads on the timing and schedulabil-
ity of an application using a timing model of the application. The thesis demonstrates the
application of the method on a case study, and finally, it demonstrates the effects of the
different types of system overheads on the timing and schedulability on a range of synthetic
applications.
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Chapter 1

Introduction

The software applications used in the automotive industry are very complex. These ap-
plications have high safety requirements, stringent timing constraints and are required to
interact with many other software applications and hardware, e.g., ABS (Anti-lock Braking
System), cruise control application. In a vehicle, the effects of a task missing its deadline
can be catastrophic. For example, in ABS application, if the task responsible for applying
breaks misses its deadline the breaks of the vehicle will not be applied. This unintended
behavior of ABS applicaion can lead to severe consequences and create a safety threat. It
is of utmost importance that all the applications in a vehicle are always schedulable and
perform the functionalities as expected. A system is called schedulable if the execution of
all the jobs of all its tasks is guaranteed to be completed before their respective deadlines.
Schedulability analysis is the technique used to know whether the application is schedu-
lable or not. If the schedulability analysis of the system cannot guarantee that system
is schedulable then system is considered unschedulable. The schedulability of the system
depends on many factors, e.g., task running time, task deadline, operating system, and
hardware.

AUTOSAR is a worldwide partnership between major OEMs (Original Equipment
Manufacturers) and tier-1 suppliers to standardize an open software E/E architecture for
automobiles [5]. This standardization eases the process of automobile application develop-
ment and provides other benefits such as transferability, scalability, maintainability, safety,
lower development time and cost. The design process of an AUTOSAR application usually
starts from informal specifications about the functionality and their time bounds; more de-
tails are gradually added to it. To keep time and cost low, it is important to check at every
stage of application development whether the application is schedulable or not. Finding
unschedulability of the application in early stage of its development can save much of time
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and efforts. However, estimating the performance of the application in the early stage
of its development is limited by the information available about the whole system. This
lack of information decreases the accuracy of early stage estimates. The application design
phase is one of the early phases of application development. Generally, design phase is the
earliest phase when one has sufficient information to check the performance parameters of
the application. Furthermore, the performance estimation of the application in this phase
will be advantageous for the designer as they can explore different design alternatives and
even choose the hardware required [26].

AUTOSAR applications run with the infrastructural support provided by the AU-
TOSAR stack. This stack is generated based on the application needs and provides all
the interfaces to access hardware devices and other system services, e.g., communication
services, and OS services. All these facilities come with overhead cost added by the AU-
TOSAR stack. Unfortunately, this overhead is generally overlooked during the design
process and performance testing in the early stages of the application development. This
overhead can be significant enough to have effects on the AUTOSAR application’s perfor-
mance. Not considering these overheads in the performance estimation can result is poor
performance of the application to the complete failure of it. This is the problem targeted
in this thesis.

1.1 Contributions

The main contributions of this thesis are as follows:

1. An overhead-aware method for finding the schedulable AUTOSAR software applica-
tion design configuration. The proposed method can also be used for performance
estimation and design exploration of an AUTOSAR application.

2. Modeling the impacts of different types of system added overheads using synthetic
AUTOSAR applications.

Other contributions of this thesis are as follows:

1. Quantification of the different types of overheads due to the AUTOSAR stack

2. A framework to generate synthetic AUTOSAR applications

3. A framework to measure the execution time of any part of the AUTOSAR application
or stack implementation
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1.2 Related Work

Schedulability and performance analysis have been researched extensively. Over the years,
many techniques for performing schedulability analysis have been developed, e.g. offset-
based and holistic [31][32]. Since testing methods cannot guarantee that the worst case is
tested, they are insufficient to check if timing requirements of the application are met in
worst case conditions. This is the reason mathematical methods for schedulability analysis
are used. These mathematical methods are implemented using software tools to do the
schedulability analysis of an application. The most popular open source schedulability
analysis tools are MAST and Cheddar [20][14]; they both offer standard feasibility test-
ing, including the schedulability analysis of fixed priority and EDF based systems. One
important difference between these two is that MAST can perform function level charac-
terization, while Cheddar is limited to only task level characterization of the application.
For this reason, our proposed method uses MAST.

In the context of timing and schedulability analysis of AUTOSAR, the work done is not
extensive. For time modeling and analysis of AUTOSAR applications, TADL2 (Timing
Augmented Description Language) has been developed under the TIMMO-2-USE project
[30]. TADL is capable of symbolic timing expression modeling, timing constraint specifica-
tions, and probabilistic timing information. It is aligned with AUTOSAR timing models.
TADL is used to add the timing information to an AUTOSAR model which completes
the model for timing and schedulability analysis. Later versions of AUTOSAR introduced
timing extensions to specify the timing requirements of the application [6]. Hladik, et al.,
have analyzed a subset of AUTOSAR OS specifications from the schedulability perspec-
tive [33]. They concluded that the timing protection and schedule tables AUTOSAR OS
extensions correspond to the pre-existing concepts of real-time scheduling theory. Also, ex-
isting methodologies of the real-time scheduling theory can be used for analysis of real-time
AUTOSAR applications, mainly because these applications essentially use the scheduling
services provided by the AUTOSAR OS, which is implemented by following the specifica-
tion studied. Anssi, et al., have presented an approach for scheduling analysis of the AU-
TOSAR applications [29]. They have identified the main components of a model required
to perform the scheduling analysis on it. They have also shown how these requirements are
met by an AUTOSAR model. For the schedulability analysis, they have used MAST. In
their analysis, the workload consisted only of the application execution time and overhead
added by the AUTOSAR stack was not considered.

The closest attempt to observe the effects of overheads on the schedulability of an
AUTOSAR application is by [24] and [22]. Mehdi, et al., have discussed the overhead of
an RTOS. Their study is focused on how the RTOS overheads change if more than one
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RTOS is hosted on an ECU [24]. Moghaddam has performed a study for communication
overheads, focusing mainly on comparison of communication overhead in the inter-core
and the intra-core communication [22].

1.3 Thesis Organization

The rest of this thesis is organized in four chapters. Chapter 2 describes the background
information necessary for understanding the thesis. This chapter provides all the required
details about AUTOSAR and MAST. Chapter 3 presents details about the proposed
method and all its steps. Chapter 4 first evaluates the proposed method using a concrete
use-case to show the feasibility of the approach, and then later generalizes the effects of
the AUTOSAR system overheads on the schedulability of an AUTOSAR application using
synthetic applications. Chapter 5 presents the conclusion of the thesis followed by the
future work.
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Chapter 2

Background

This chapter gives the overview of the technologies and other concepts required to under-
stand the following chapters. The following sections present the details about the AU-
TOSAR standard and the MAST tool, used for the schedulability analysis in the proposed
method.

2.1 AUTOSAR

AUTOSAR (Automotive Open System Architecture) is a consortium founded in 2003 by
the OEM manufacturers and leading automotive suppliers. The target of this alliance is
to collaboratively standardize the open industry standard for automotive E/E architecture
to overcome the growing complexity of software in present-day vehicles while still leaving
room for competition by innovative implementations. In other words, the motto of the
AUTOSAR consortium is “Cooperate on standards, compete on implementation” [5].

The AUTOSAR standard is specified by a set of specifications. These standard speci-
fications are documents, models or templates which specify the normative results of AU-
TOSAR partnership [5]. The areas these specifications cover are:

1. Software Architecture including software applications, the environment in which ap-
plications will run, and the entire stack running on an ECU which is commonly called
BSW (Basic Software).

2. Methodologies for creating SWCs (Software Component) and basic software modules
[10][7]. For all of these, it also describes the description and exchange formats for
integration, and guidelines for using the framework.
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3. Syntax and semantics for all the interfaces of automotive applications from all the
domains.

2.1.1 Benefits of AUTOSAR

A product has to fulfill all the related requirements specified by the AUTOSAR standard
to become AUTOSAR compliant. The benefits of becoming AUTOSAR compliant are:

1. Maintenance, updates, and upgrades become easy because of the standardized spec-
ification. As shown in Figure 2.1, before AUTOSAR there was no clear separation
between application software, platform, and the lower layer hardware dependent code.
AUTOSAR standard has provided the interface which abstracts all the layers of the
Stack from each other.

Figure 2.1: AUTOSAR provides abstraction between different layers of stack.

2. A module implementing a functionality can be used with different vehicle and variants
of the platform. This reduces the version proliferation and increases the scalability
of the solutions.

3. Integration of different product used in a vehicle becomes easier and better manage-
able as all interacting products share the same standardized interfaces.
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4. By following the simple process and methodologies specified by the standard, prod-
ucts can be developed within lesser time and cost.

5. Having everything standardized creates room for more opportunities for new and
small suppliers. This, in turn, gives more choices to the vehicle manufacturers.

2.1.2 Architecture

AUTOSAR has a layered architecture. The whole stack is conceptually divided into three
layers - Basic Software Layer, RTE Layer, and Application Layer. These layers provide a
high level of abstraction. Following sections discuss each of these layers in detail.

2.1.2.1 Basic Software Layer

BSW (Basic Software) layer provides all the infrastructural service to higher layers [7]. In
itself, it does not implement any application functionality but provides the support needed
by the upper layers to execute these functionalities. This layer contains standard and ECU
specific modules. As shown in Figure 2.2 Basic Software Layer is further divided into
three sub-layers Microcontroller Abstraction Layer, ECU Abstraction Layer, and Service
Layer.

2.1.2.1.1 Microcontroller Abstraction Layer
MCAL (Microcontroller Abstraction Layer) is the lowest layer in the AUTOSAR stack that
provides the microcontroller level abstraction, thus making upper layers microcontroller
independent. To provide this abstraction, MCAL manages microcontroller peripheral and
provide underlying hardware independent value to the Basic Software layers above it.
MCAL contains internal drivers to directly access the hardware which makes it hardware
dependent, e.g., digital IO driver, serial peripherals.

2.1.2.1.2 ECU Abstraction Layer
ECUAL (ECU Abstraction Layer) decouples the higher BSW layers from the ECU by
providing a software interface for accessing ECU specific resources. As a result, layers
above ECUAL have no dependency on the ECU. This layer provides APIs to the higher
layers to access all the available peripherals and devices regardless of their location. E.g,
the application accessing a sensor will not know if the sensor is present on the same ECU
or on a different ECU.
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Figure 2.2: AUTOSAR Layered Architecture. Service Layer, ECU Abstraction Layer, and
Micro-controller Abstraction Layer are part of Basic Software Layer [5]

2.1.2.1.3 Service Layer
SL (Service Layer) is the highest BSW layer which makes the RTE layer completely
hardware-independent. This layer generally contains hardware independent code and pro-
vides the following functionalities:

• Operating System Services

• Memory Services

• ECU state and other related services

• Vehicle wide communication and resource related services

• Diagnostic and watchdog related services

2.1.2.1.4 Complex Device Drivers
CDD (Complex Device Drivers) spans through the entire BSW layer, i.e. from hardware
to RTE layer. They provide room to add any additional functionality such as:
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• Functionality with very tight time bounds which require direct access to hardware,
e.g., complex drivers accessing microcontroller specific interrupts to access intricate
sensors and actuators.

• Functionality for which AUTOSAR standards are not available.

• Functionality which is integrated with legacy architecture into the current system.
This also helps in migrating legacy systems to AUTOSAR standards.

CDD generally contains hardware dependent code and also does not necessarily provide
abstraction from hardware. So, an application using CDD could be hardware dependent
and thus not AUTOSAR compliant, e.g., injection control, electric valve control.

Broadly, BSW Layer’s services can be divided into four categories – Input/Output, Mem-
ory, Communication, and Systems. Figure 2.3 shows the different modules implementing
the BSW services at its three layers. IO services abstract the location of the peripheral
IO devices and hardware layout of the ECU and enables higher layers to access them in a
uniform way. Memory services are responsible for managing non-volatile data, e.g., saving
and loading data, error checking. Communication service provides the uniform interface
and support required from the BSW layer for network communication, e.g., CAN, LIN.
System services provides the collection of services used by modules of all layers, e.g., timer,
error manager, diagnostic event manager, watchdog manager.

Figure 2.3: Detailed AUTOSAR architecture [5]
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2.1.2.2 RTE Layer

RTE layer sits between the application layer and the BSW layer [9]. An AUTOSAR ap-
plication access all the services through RTE layer. This makes AUTOSAR compliant
software applications independent of the underlying infrastructure. Since needs of soft-
ware applications vary application by application, RTE needs to be tailored based on the
Software Applications hosted on an ECU. E.g., RTE generated for software application
having software components communicating with other components on the same ECU or
with components running on another ECU will require different communication support
from RTE. For the later inter-ECU communication case, RTE will have to support addi-
tional communication channels, e.g. CAN, LIN. This application specific tailoring makes
the RTE generated for one ECU different from another ECU.

2.1.2.3 Application Layer

The application layer is the topmost layer of the stack and is not standardized. All the
automotive software applications run in this layer. In the application layer, architectural
style is not layered but component based. All the functionalities are implemented using
software components which can use infrastructure through standardized interfaces. A
Software Component (SWC) is the smallest part of a software application that has a specific
function [10]. It is a fundamental design concept which separates the infrastructure from
the application. An application’s composition is hierarchical and consists of one or more
software components. There are two types of software components:

1. Atomic software component: A simple SWC running on only one ECU is called
atomic SWC.

2. Composed Software Components: A SWC that is composed of more than one
atomic or composite SWC and runs on more than one ECU is called composed SWC.

The functionality inside a SWC is implemented using Runnables. A runnable is the
smallest code fragment of an SWC. It is very similar to a function in standard programming
languages. Runnables implement only the application logic, for the system level services
they call RTE layer APIs. A runnable has to be mapped to an OS task to get scheduled.
OS tasks are the schedulable entities of the AUTOSAR OS which are similar to Linux
processes.

Software components communicate and access system services using two types of ports:
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1. PPort: Ports which are used to provide data as defined in the application interface.

2. RPort: Ports which are used to receive data as defined in the application interface.

There are two types of communication supported by the AUTOSAR standard:

1. Sender-Receiver: In sender-receive communication, a sender can send information
to one or more receivers and vice versa. The sender and receiver are completely
decoupled and are unaware of each other’s location. This communication can be
queued or un-queued. Furthermore, sender-receive communication can be divided
into two different types – Implicit and Explicit sender-receiver communication.
In implicit communication, all the data read by a runnable is copied to its local
environment before starting its execution and all the values written by it are written
from its local environment after its execution is finished. In explicit communication,
contrary to implicit communication, all the data is written and read, to and from the
ports, instantly.

2. Client-Server: In client-server communication, client requests the data from the
server. A client can invoke many servers and vice versa. Cient-server communication
also can be divided into two categories – Synchronized and Asynschronized client-
server communication. In the Synchronized client-server communication, the client
invokes the server and the server executes within the same task using the resources of
the client’s task. Once the server is done, control returns back to the client and client
resumes from the same point where it left. It is very similar to a nested function
call. In Asynchronized Client-Server communication, the client invokes the server
and proceed to the next instruction which means that client does not wait for the
server to finish. Once server is done it raises an event for which client runnable has
subscribed. The data can be passed as a message or using a shared buffer.

SWCs communicates with other SWCs on same or different ECUs using Virtual Func-
tion Bus. Virtual function bus is logical concept which provides the abstraction for com-
munication services [11]. A SWC will only see VFB and not the hardware dependent code.
For intra-ECU communication VFB is realized using RTE while for inter-ECU communica-
tion it is implemented by both RTE and BSW. Figure 2.4 shows an example of intra and
inter-ECU communication. SWC-B and SWC-C are hosted on the ECU-2 while SWC-A is
hosted on ECU-1. The communication between SWC-B and SWC-C is implemented by the
RTE layer of the AUTOSAR stack hosted on ECU-2. However, in order to communicate
with SWC-A, SWC-B and SWC-C are using the communication mechanism implemented
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by both RTE and BSW layers of the AUTOSAR stack running on ECU-1 and ECU-2. Ad-
ditionally, as shown by the SWC-C’s communication with the sensor, access to hardware
device requires support from entire AUTOSAR stack.

Figure 2.4: Intra and inter-ECU communication [5]

2.1.3 Operating System

AUTOSAR has specified a set of requirements for the operating system so that it complies
with the rest of its architecture and can be used by all the vehicle domains. These re-
quirements are specified in the document “Requirements in Operating System” [25]. Any
OS, whether proprietary or open source, can be used in AUTOSAR stack if it supports
all the requirements specified by the AUTOSAR standard. While drafting these specifica-
tions OSEK OS (ISO 17356-3) [8] served as the basis. The OSEK is a single processor OS
that provides all the functionalities required to support event driven control systems. The
priority of tasks is statically defined, and hence the user cannot change them at the time of
execution. OSEK supports both preemptive and non-preemptive scheduling. Furthermore,
OSEK supports two types of ISRs (Interrupt Service Routines) – ISR1 and ISR2. ISRs
of category one do not use any OS service and hence have no effect on task management.
ISRs of category two uses OS services in routine to handle the interrupt. Furthermore,
OSEK uses immediate priority ceiling protocol to avoid priority inversions.
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All the services expected from OS together with configuration are described in an
XML file. As mentioned in Section 2.1.4 in detail, based on the description in the OS
configuration file, a code generating tool generates the OS code which is compiled with the
rest of the code of the system to generate the executable for the ECU.

2.1.4 Methodology

AUTOSAR methodology defines the approach of building the ECU software. The whole
process is devised to solve the problems targeted by AUTOSAR consortium. All the
supplier and product developers can build their products independent of each other by
following standard interfaces and using standard data exchange formats. Figure 2.5
shows the basic steps of the methodology. As the first step, the vehicle manufacturer fixes
the requirements of the functionality which need to be implemented in the vehicle. The
next step involves finding different parts of the whole E/E architecture which satisfy its
requirements best. Mainly, these parts are Software Application, software tools to configure
and generate AUTOSAR stack, and the ECU. Next, following main standard interfaces
are described:

• SWC descriptions

• ECU resources descriptions

• System descriptions

Software descriptions contain the architecture and interface for the SWC, e.g., runnable
names, required services from the system, runnable communication details, and interfaces.
ECU resource description contains the details about all the hardware resources available
for the application, e.g., CPU, the number of DIO pins. System description contains all
the system-wide information which might be spreading over many ECUs. All these doc-
uments are defined using XML. In the second step, the entire system is configured using
software tools in accordance with the SWC, ECU resource, and System descriptions. For
example, Arctic Studio, an AUTOSAR stack configuration tool by vendor Arctic, contains
RTE and BSW editors in its sets of tools to configure the RTE and BSW layer for an
AUTOSAR application [3]. As an output of this step, ECU descriptions are generated. An
ECU description contains all the details about entire stack for a specific ECU. Next, each
ECU is configured according to its description. This configuration includes all the details
about how the application requirements are met by the application and AUTOSAR stack
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Figure 2.5: Overview of AUTOSAR Implementation Process [5]

on this ECU. In the fourth step, typically, software tools are used to generate all the RTE
and configurable BSW layer code for a specific ECU. The details of this step are shown
in Figure 2.6. Based on the configuration of each component of AUTOSAR stack, stack
generating software tool generates the code that implements a component according to
its configuration in ECU description. Generally, stack generating software tool consists of
many tools, each of which is responsible for generating one component of the AUTOSAR
stack, e.g., RTE generator, OS generator, MCAL generator, COM (Communication ser-
vices) generator. This code generation is supported by the libraries implementing various
functionalities, e.g., communication, transport protocols. Generally, these libraries are
provided by the AUTOSAR stack vendors along with the tools to generate the AUTOSAR
stack generating tools, e.g. Arctic Studio and Arctic Core [3][2]. Since the information
in ECU configuration is tailored according to the SWCs requirements, the generated AU-
TOSAR stack is specific to an application and SWCs hosted on this ECU.

Next, for each ECU in the system, rest of the non-configurable code of the system and
the implementation of SWC that are hosted on this ECU are added to the generated code,
and a standard, microcontroller suitable compiler is used to compile this entire code. After
successful compilation, an executable is generated for each ECU that implements all the
expected functionality on a specific ECU. As the final step, the executables are run on their
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Figure 2.6: Generating the ECU executable [5]

respective ECUs to implement the application functionality. Among the steps marked in
the Figure 2.5, steps 1a, 1b, and 1c can be executed in any sequence and by any vendor
while steps 2,3, and 4 have to be followed in the order mentioned and for each of the ECUs.
If required, the steps of this methodology can be iteratively repeated for corrections and
optimizations discovered during the development process.

2.2 MAST

MAST (Modelling and Analysis Suite for Real Time Applications) is an open source set
of tools to model and perform the timing analysis of an application [23]. MAST does
operation-level characterization, allows specifying the timing constraints in its models and
also performs schedulability analysis with them. It takes MAST model as an input which
contains the description of a system using a set of pre-defined elements. MAST performs
timing analysis on the model supplied as input using the technique selected by the user
and then publishes the results to the user.
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The tools MASTS provides are shown in Figure 2.7 [20]. They are divided into the
following categories:

1. Design Tools: These are the tools which convert models from other tool or formats
to MAST Models, e.g., MARTE or UML to MAST [15].

2. Data management: These are the tools which are used to manage the input, output
data or to convert them from one supported format to another, e.g., graphical result
viewer, XML converter.

3. Analysis Tools: These are tools used in performing the timing analysis, e.g., schedu-
lability analysis, sensitivity analysis.

Figure 2.7: Tools provided by MAST [20]

2.2.1 MAST Model and its Elements

An application needs to be modeled as a MAST model to perform the analysis on it. For
the MAST model descriptions, two formats are supported – text based special format, XML
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format. MAST models can be created manually or using a GUI-based editor, or translated
from existing models using the tools provided by MAST. Some important elements of the
MAST model and their usage is discussed below. Some of the self-explanatory attributes
from the structures of the elements listed below are omitted.

2.2.1.1 Processing Resources

Processing resource is used to model the processing capacity of any hardware com-
ponent. It can be of two types Regular Processor and a Packet Based Network. A
Regular Processor has following main attributes in its structure:

1 Proces s ing Resource (
Worst ISR Switch => Normalized Execution Time ,

3 Avg ISR Switch => Normalized Execution Time ,
Best ISR Switch => Normalized Execution Time ,

5 System Timer => System Timer ,
. . . ) ;

The attributes worst, average, and best ISR switches are used to represent worst,
average, and best ISR switch overheads. System timer attribute has a reference to a
concrete instance of the system timer element. It will be discussed in the following section.
A Packet Based Network has following main attributes in its structure:

Proces s ing Resource (
2 Max Packet Transmission Time => Normalized Execution Time ,
Min Packet Transmission Time => Normalized Execution Time ,

4 L i s t o f \ Driver s => ( Dr iver 1 , Dr iver 2 , . . . ) ,
. . . ) ;

Max and min packet transmission times represent the maximum and minimum time
taken in sending a packet over the network. These two are used to represent the packet
transmission overheads. List of drivers attribute contains a list of network drivers repre-
senting the overhead models associated with the transmission of data over the network.
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2.2.1.2 System Timers

System timer is used in modeling the way time events are handled by the system. It
has attributes to represent the overhead associated with the timed event handling, e.g.,
worst, average or best case overheads. System timer can be of two types, Alarm Clock,
and Ticker. The main difference between an alarm clock and a ticker is that while former
raises an interrupt when an alarm expires, the latter raises the interrupt periodically and
the system checks for the alarms that have expired during this period, if any. A system
timer element has following structure:

1 System Timer = (
Type => Ticker

3 Worst Overhead => Normalized Execution Time ,
Avg Overhead => Normalized Execution Time ,

5 Best Overhead => Normalized Execution Time ,
Period => Time)

The attribute Period is ticker type system timer’s additional attribute that is used to
represent the time period of the periodic ticks.

2.2.1.3 Network Drivers:

Network drivers are used in modeling the operations executed as a consequence of sending
or receiving any message over the network. There are three types of network drivers:

1. Packet Driver: This type of network driver is used to denote the drivers that get
executed on transmission or reception of each message.

2. Character Packet Driver: It is a specialized version of packet driver used to rep-
resent the additional overhead associated with sending each character of the message,
e.g. serial lines.

3. RT-EP Packet Driver: It is a specialized version of packet driver used to represent
the characteristics of RTEP (Real-Time Ethernet Protocol).

Then network driver element has the following structure:
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Driver = (
2 Type => Packet Driver ,
Packet Server => Schedu l ing Se rve r | I d e n t i f i e r ,

4 Packet Send Operation => Operation | I d e n t i f i e r ,
Packet Rece ive Operation => Operation | I d e n t i f i e r ,

6 . . . ) ;

Packet server has a reference to a concrete instance of scheduling server that will execute
this driver. Packet send and receive operations are the references to the concrete instances
of the Operation element which need to be executed each time a packet is sent or received,
respectively.

2.2.1.4 Schedulers:

Schedulers are used to model the operating system objects which implement the suitable
scheduling strategies to manage the processing power they have been assigned. The
structure of a scheduler element is following:

Scheduler (
2 Type => Primary Scheduler ,
Po l i cy => Schedu l ing Po l i cy ,

4 Host => I d e n t i f i e r ) ;

The Scheduler could be of two types Primary Scheduler and Secondary Scheduler. Host
attribute of primary scheduler has a reference to a processing resource whose processing
power this Scheduler will distribute between the tasks which are assigned to it. The
secondary scheduler has an attribute Server instead of the Host, which has a reference to a
scheduling server. In other words, a primary scheduler can schedule servers or tasks and a
server can schedule other servers or tasks through the secondary scheduler. The Scheduling
Policy has a reference to a concrete instance of Scheduling Policy element that defines the
scheduling strategy for this scheduler. Figure 2.8 shows the hierarchical structure of the
scheduler element that is described here.
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Figure 2.8: Hierarchy of scheduler and its associated elements[20]

2.2.1.5 Scheduling Policies:

The scheduling policy element defines the strategy that is used by a scheduler to deliver
the processing power it has been assigned. Scheduling policy has the attributes to
represent the best, average and worst context switch overheads. Its type field can
be used to select one of the MAST supported scheduling algorithm, e.g., fixed priority,
EDF (Earliest Deadline First). The structure of the scheduling policy element is following:

Schedu l ing Po l i cy (
2 Type => Fixed Pr i o r i ty ,
Worst Context Switch => Normalized Execution Time ,

4 Avg Context Switch => Normalized Execution Time ,
Best Context Switch => Normalized Execution Time ,

6 . . . ) ;
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2.2.1.6 Scheduling Parameters:

Scheduling parameters contains the information required by a scheduler to make scheduling
decisions about the associated scheduling server. The structure of a scheduling parameters
element is following:

Sched Parameters = (
2 The Pr io r i ty => 18 ,

. . . ) ;

The type attribute is used to represent scheduling policy, e.g. fixed priority policy, non-
preemptible fixed priority policy. The Priority attribute is used to represent the priority
of the associated task.

2.2.1.7 Scheduling Servers:

Scheduling server element is used to model the schedulable entities, e.g., processes,
threads. The structure of a scheduling server is following:

1 Schedu l ing Se rve r (
Se rve r Sched Parameters => Sched Parameters ,

3 Synchron izat ion Parameters => Synch Parameters ,
Scheduler => I d e n t i f i e r ,

5 . . . ) ;

The server scheduling parameters, synchronization parameter and scheduler attributes
of scheduling server contain a reference to a concrete instance of their respective elements.

2.2.1.8 Shared Resources:

This element is used to model the shared resources which should be accessed in the
mutually exclusive. The structure of shared resource element is as follows:
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1 Shared Resource (
Type => Immediate Cei l ing Resource ,

3 Ce i l i n g => 80 ,
. . . ) ;

The type attribute is used to specify the protocol used to manage the shared resource
accesses. The protocols supported by MAST are immediate ceiling protocol, priority in-
heritance protocol, and stack resource protocol [18]. The ceiling attribute represents the
ceiling priority of the shared resource that is the priority of the highest priority task among
all the tasks accessing this resource.

2.2.1.9 Operations:

Operations are used to model any executable piece of the code, e.g., function, message.
The operation element can be of a simple or composite type. The Simple type operation
has the following attributes,

Operation (
2 Type => Simple ,
Worst Case Execution Time => Normalized Execution Time ,

4 Avg Case Execution Time => Normalized Execution Time ,
Best Case Execution Time => Normalized Execution Time ,

6 Shared Resource s To Lock => ( I d e n t i f i e r , I d e n t i f i e r , . . . ) ,
Shared Resource s To Unlock => ( ( I d e n t i f i e r , I d e n t i f i e r , . . . ) ,

8 . . . ) ;

The Worst, Average, and Best case execution times attributes represent the worst,
average and best case execution time, respectively. If an operation accesses shared
resources mutually exclusively then the Shared Resources List attribute of the operation
can be used to list all the accessed shared resources. The Composite type operation
element has the following attributes:

Operation (
2 Type => Composite ,
Composite Operation L i s t => ( I d e n t i f i e r , I d e n t i f i e r , . . . )
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4 . . . ) ;

The Composite Operation List attribute is used to list all the simple or composite
Operation which a composite operation is comprised of.

2.2.1.10 Events:

Events elements are used to model the events occurring in the system, e.g., timer expired,
message received. Events are categorized into two categories, Internal and External.
Internal events are the events generated by an event handler. On the other hand, external
events are the events that are not generated by event handlers. Event handlers are the
actions that need to be performed when one or more events occur. Event handlers are
discussed in coming sections in detail. Internal event elements have an attribute Timing
Requirements that refer to a concrete instance of the timing requirements element.
Following is the structure of an internal event:

In t e rna l Event = (
2 Type => Regular ,
Timing Requirement s => Timing Requirement ,

4 . . )

An external event can be of following types:

• Regular: A general event

• Periodic: An event that needs to be generated periodically

• Singular: An event that will be generated only once at the absolute time defined
by its additional attribute Phase

• Sporadic: An aperiodic event that will have minimum inter-arrival time as specified
by its additional attribute Min Interarrival

• Burst An aperiodic event that can occur in burst; it has additional attributes to
describe the number of events and their distribution in a given time period
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The structure of external event of Periodic type is presented below. The Period
attribute specifies the period for this periodic type external event.

External Event = (
2 Type => Per iod ic ,
Per iod => Time ,

4 . . . ) ;

2.2.1.11 Timing Requirements:

This element is used to model the constraints applicable to an associated event, e.g., timing
requirements of generation of an associated event. The structure of timing requirement
element is following:

Timing Requirement = (
2 Type => Hard Global Deadl ine ,
Deadl ine => Time ,

4 Referenced Event => I d e n t i f i e r )

Deadline attribute represents the time limit imposed by the constraint. The type attribute
defines the restriction on the generation of the associated event. The type could be hard-
local, hard-global, soft-local or soft-global. In the case of a local type timing requirement,
the deadline is imposed on the duration when the event activating the associated event
generating runnable arrives till the associated event is generated. On the other hand,
for global type timing requirement, one additional attribute Referenced Event is defined
and the deadline is imposed on the duration from the referenced event occurred till the
associated event is generated.

2.2.1.12 Event Handlers:

These elements are used to model the actions triggered by the arrival of an event. The
structure of event handler element is following:
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Event Handler = (
2 Type => Act iv i ty ,
Input Event => I d e n t i f i e r ,

4 Output Event => I d e n t i f i e r ,
Ac t i v i t y Operation => I d e n t i f i e r ,

6 Act i v i t y S e rv e r => I d e n t i f i e r )

Type attribute represents the type of the event handler, e.g. Activity, System Timed
Activity. Activity is used to represent the instance of an associated operation to be executed
by an instance of scheduling server. These instances of operation and scheduling server
are referred by activity operation and server elements, respectively. The event that starts
this activity and the event that gets generated by this activity can be represented using
the attributes input and output events. Input and output event attributes have references
to the concrete instances of internal and external event elements, respectively.

2.2.1.13 Transactions:

This element is used to model the interrelated event and their respective handlers in the
system. The structure of this element is as follows:

Transact ion (
2 Type => Regular ,
Event Handlers => ( Event Handler 1 , Event Handler 2 , . . . )

4 External Event s => ( External Event 1 , External Event 2 , . . . ) ,
In t e rna l Event s => ( In t e rna l Event 1 , In t e rna l Event 2 , . . . ) ,

6 . . . ) ;

Event handlers, external event, internal event, contains the list of concrete instances of
the event handlers and their associated external and internal events, respectively.

Figure 2.9 shows the association between various MAST elements as described above.

2.2.2 MAST Results

After running the chosen analysis technique, MAST outputs a result file. This result file
contains predefined system performance parameters and their values. These values are
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Figure 2.9: Different elements of a MAST model and their relations[20]

the performance metrics which estimate how well the system performed in the mentioned
environment under the specified constraints. Slack is the percentage by which the execution
time of an associated element can be increased while keeping the system schedulable, e.g.,
system slack, transaction slack, operation slack. Some of the parameters a result file can
have are following:

• overall system slack

• processing resource specific slack and utilization

• transaction specific slack and best, average and worst response times for all of its
events

• operation specific slack

• shared resource specific queue sizes
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Chapter 3

Proposed Method

Testing and verifying the performance of any system in every stage of its development is
very important for avoiding the repetition of work. This approach helps in reducing the
development time and the cost of the product. In this respect, the design phase of an
AUTOSAR application development process is critical, mainly because:

1. In the design phase of application development one has almost all the information
about the application that is required for effective performance estimation.

2. The design of the application is the first concrete step in its development. Any design
error could be very costly, with effects from increased cost to the total failure of the
project.

AUTOSAR applications function in a safety critical environment. If they do not per-
form as intended then the effects could be fatal. Thus, AUTOSAR applications have
stringent safety requirements which have to be met under all circumstances. These safety
requirements make the schedulability analysis of the AUTOSAR applications even more
important. Unfavorably, the complex nature of the AUTOSAR applications makes the
procedures and tests to verify their schedulability error prone. One important factor to
consider during the performance analysis is the overhead added by the AUTOSAR stack.
Everything, apart from the application, executed by the CPU is considered overhead, e.g.,
context switch, communication overhead, calls to any RTE API, timer management. Gen-
erally, these overheads are either ignored completely or considered not to have a great
impact on the performance and schedulability of the AUTOSAR application. This fact
reduces the precision of the estimated performance, and thus, compromises the designer’s
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reliability on performance estimations. A precise estimation of the performance in the
application’s design phase can give designer leverage to efficiently explore possible alter-
native designs and configurations of the system. To get a factual application performance
estimate and thus more reliable application design, it is essential to consider the system
overheads in the schedulability analysis of the application. This chapter proposes a method
to address this problem. The proposed method tests and verifies the schedulability and
performance of the AUTOSAR application while considering all the overheads added by
the AUTOSAR stack. This method can also be used to select the hardware, AUTOSAR
stack vendors, and other resources needed for deployment or migration from one system
to another.

3.1 Overview

The goal of this method is to find a design configuration for an AUTOSAR application that
will make it schedulable. Once the AUTOSAR application designer has enough information
to calculate application execution times, the next step is to select the tools to generate an
AUTOSAR stack for this application, and the ECU which will host this application. Even
though all the tools which generate AUTOSAR stack abide by the same standard, their
performance can still differ based on the quality of their implementation of the AUTOSAR
standard. This means that different tools will generate different AUTOSAR stacks, which
will thus have different overheads. The ECU needs to be selected based on the requirements
of the application under development and the budget available. For this ECU, the next
step is to measure the application running time and the overheads of the stack generated by
the selected tool. After these measurements, one design configuration needs to be selected
by the designer based on the available knowledge about the system and his own expertise.
This configuration will be translated to the MAST model with application running time
and the system overheads. In the next step, MAST will be executed on this model. If
the performance is not satisfactory or the designer wants to explore more configurations,
the MAST output can be used as input to decide on the next configuration. Otherwise,
this configuration is selected as final and can be followed in the rest of the application
development. Figure 3.1 shows all the steps of the proposed method. These steps are
discussed in detail in the following sections.
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Figure 3.1: Steps of the proposed method
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3.1.1 Step 1: Measuring the AUTOSAR Stack Overheads

Ideally, the vendors providing the tools for generating the AUTOSAR stack should also
provide the overheads matrices for each of the overheads for their AUTOSAR stack imple-
mentation for the supported ECUs. The application designer will thus not have to measure
them. Nevertheless, if one has to measure the overheads of an AUTOSAR stack for a given
ECU, there are many ways of measuring the execution time of a piece of code which can be
used to measure the overheads, e.g., using the system timers. Accessing the system timer
and using it for execution time measurement requires understanding the system timer re-
lated code. However, in the case of AUTOSAR application, the AUTOSAR stack code is
supplied by a different vendor. Understanding this code and modifying it to measure the
overheads could be cumbersome for the application designer. In such cases, an external
timer can be used to measure the overheads. This is the method used in the evaluation of
the proposed method and is described in the Section 4.2.3.

The output of this step is the different types of overheads added by an AUTOSAR
implementation running on a specific ECU. These overheads can be different if the AU-
TOSAR stack or the ECU is changed. Furthermore, these overheads may or may not be
AUTOSAR application dependent, e.g., overhead added by PWM-Write RTE API is an
application independent while communication overhead is application dependent since it
depends on the several other factors listed in Section 4.3.1. For the application depen-
dent AUTOSAR stack overheads, vendors can provide the overhead measurements as input
dependent matrices so that the application designers will not have to measure them. In the
evaluation of this method, one such matrix is provided for the communication overhead in
Section 4.3.1. This matrix outputs the time taken by sending a message for a message
size range from 1B to 4KB. This matrix is specific to the explicit sender-receiver com-
munication with no message queue and when the communicating runnables are mapped
to the same task. As listed in the Section 3.2.2, in addition to the message size, com-
munication overhead depends on 4 types of communication, 3 runnable mappings, and 2
communication configurations. As a result, AUTOSAR stack vendor will have to provide
24 matrices (4x3x2) for each of the supported ECUs. Out of these 24 matrices, each matrix
will take the message size as input and will provide the communication overhead for one
of the possible 24 cases.

3.1.2 Step 2: Measuring SWC Timings

An AUTOSAR application is composed of many SWCs, and these SWCs are implemented
using runnables. The execution time for each of these runnables needs to be measured.
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The time measurement should cover all the functionality’s parts and should not include
RTI API calls or any other AUTOSAR stack code fragment. RTE APIs and system
service time execution is excluded from the SWC time measurement because its application
independent. These APIs takes constant time for an AUTOSAR stack running on a specific
ECU. Measuring them as AUTOSAR stack overheads reduces the trouble of measuring
them for each application. Additionally, since all system overheads are measure separately,
one doesn’t have to complete the implementation of AUTOSAR application and generate
AUTOSAR stack code for it in order to measure the execution time of application.

For this time measurement, a static code analysis tool can be used. Another way of
capturing these execution times is by using an external timer as mentioned in the method
described in Section 4.2.3. The output of this step is the execution time of different SWCs
of the AUTOSAR application.

3.1.3 Steps 3: MAST Execution and Result Analysis

Once the AUTOSAR stack overheads and application execution time are measured, the
next step is to model the AUTOSAR application into a MAST model. Later, MAST
is executed on this model. Depending upon the requirement one can select one of the
many analysis tools provided by MAST, e.g., Offset Based, EDF, Holistic. If there are no
precedence constraints between different tasks, i.e. no transaction across multiple tasks,
then Classic RM analysis technique can be used. Otherwise, offset-based analysis technique
can be used.

As described in Section 2.2.2, this execution will generate a result file. Using the GUI
of MAST Analyzer, the application designer can set the parameter he wants in the result
file. The application designer has to analyze this file and check whether the application
in the current environment is schedulable and meets the performance goals. If not, then
using the inputs from these results and his own expertise, the application designer can
decide the next design configuration to repeat the steps marked as “3” in Figure 3.1. Also,
a designer might want to explore more configurations, even after getting a schedulable
design configuration. In such cases, the process described in step 3 needs to be iteratively
repeated. Steps marked as “1” and “2” need not be repeated in this iterative process.
Furthermore, steps marked with “1” will be repeated only if either the hardware being
used or the AUTOSAR stack is changed; steps marked with “2” will need to be repeated
only if the application’s functional logic is changed.

This thesis focuses primarily on the quantification of AUTOSAR stack overheads and the
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process of modeling an AUTOSAR application into MAST.

3.2 Quantifying AUTOSAR Stack Overheads

As mentioned in Section 2.1 some part of AUTOSAR stack is generated specifically
for an application. It is tailored according to the application requirements. Later, this
generated stack is compiled with the AUTOSAR application implementation to generate
the executable, which will be run on an ECU to implement the required functionality in
the vehicle. While there are many advantages of using AUTOSAR, there is also a cost
to it – overhead. A timing overhead is the time taken by the CPU to execute any code
that is not a part of the application. In other words, everything that needs to be executed
by the CPU is considered overhead, except the application code. This overhead mainly
comes from various services used by the application or the management done to run the
application, e.g., process context switch, IO. An application is divided into SWCs, which
are implemented through runnables. Following code snippet presents an example of a
runnable:

/∗ Runnbale implementation ∗/
2 void swcHeadlightMainRunnable ( void ) {

S igna lQua l i ty qua l i t y = 0 ;
4 DutyCycle dutyCycle = 0 ;

f l o a t 6 4 headLightState = 0 . 0 ;
6 Std ReturnType r e t = E NOT OK;

8 r e t = Rte Read l i gh tBr i gh tn e s sRec e i v e r l i gh tBr i gh tn e s s ( &headLightState ) ;

10 i f (RTE E OK != re t ) {
/∗∗∗∗ e r r o r handl ing code ∗∗∗∗/ ;

12 }

14 i f (BEAMHIGH == headLightState )
headLightState = VOLTAGEMAX;

16 e l s e i f (BEAMLOW == headLightState )
headLightState = (VOLTAGERANGE/2 . 0 ) ;

18 e l s e
headLightState = VOLTAGEMIN;

20

ServoMotorContro l lerFunct ion(&headLightState , &dutyCycle ) ; /∗ l o c a l
f unc t i on c a l l ∗/
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22

Rte Call HeadlightPwmDuty Set ( dutyCycle , &qua l i t y ) ;
24

i f (RTE E PwmServiceSetDuty E OK != re t ) {
26 /∗∗∗∗ e r r o r handl ing code ∗∗∗∗/ ;

}
28 }

Runnables are not schedulable entities but rather a piece of related code that join
together to implements a part of the functionality of an SWC, e.g., swcHeadlightMain-
Runnable mentioned above is a runnable of SWC Headlight and is responsible for con-
trolling the headlight. This runnable executes its code and then communicates using
Rte Read lightBrightnessReceiver lightBrightness (..) RTE API. Based on the value re-
ceived in the message, the runnable calculates the brightness and the state for the headlight
of the car. It controls the head light using and Rte Call HeadlightPwmDuty Set(..) RTE
API.

A runnable is mapped to a task and gets executed when the event which activates this
runnable has occurred and its task is scheduled. This runnable-to-task mapping is done
in the RTE editor. The runnable swcHeadlightMainRunnable shown above was mapped
to task OsHTask. The following code snippet shows the RTE code generated for this
runnable:

/∗ RTE code generated to invoke runnable ∗/
2 void Rte swcHeadlight SwcHeadlightMainRunnable ( void ) {

/∗∗∗∗ Pre−runnable execut ion p ro c e s s i ng ∗∗∗∗/ ;
4 swcHeadlightMainRunnable ( ) ;

/∗∗∗∗ Post−runnable execut ion p ro c e s s i ng ∗∗∗∗/ ;
6 }

The following is a code snippet showing the code generated for the task OsHTask.
In this task, runnable swcHeadlightMainRunnable will get executed when the event
EVENT MASK OSEventStartH occurs.
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/∗ Task to which runnable was mapped us ing BSW ed i t o r ∗/
2 void OsHTask( void ) {

EventMaskType Event ;
4 do {

SYS CALL WaitEvent (EVENT MASK OSEventStartH) ;
6 SYS CALL GetEvent (TASK ID OsHTask , &Event ) ;

8 i f ( Event & EVENT MASK OSEventStartH) {
SYS CALL ClearEvent (EVENT MASK OSEventStartH) ;

10 Rte swcHeadlight SwcHeadlightMainRunnable ( ) ;
}

12

} whi le (RTE EXTENDED TASK LOOP CONDITION) ;
14 }

OsHTask is a periodic task. It has registered an periodic alarm that will generate
an event on its expiry. OsHTask waits for this event to occur. Whenever this event
occurs, OsHTask’s state is changed from waiting to ready. If this task is the high-
est priority task among all the ready and running tasks, then it will be scheduled for
execution. In the code snippet for the task OsHTask, EVENT MASK OSEventStartH
is the event that will be generated on the alarm expiry. SYS CALL WaitEvent(..) is
the system call used by the OsHTask’s to wait for this event to occur. Once the
EVENT MASK OSEventStartH has occurred, OsHTask’s execution will start. It will check
which runnable has to be started on the occurrence of this event (event to runnable map-
ping is also done in the RTE editor). OsHTask clears the event and then calls the RTE
function (Rte swcHeadlight SwcHeadlightMainRunnable (..)) to start this runnable. This
RTE function will do some preprocessing required to start the runnable and then it will
start the runnable. Now, the first instruction of swcHeadlightMainRunnable will be exe-
cuted. Once the runnable’s execution is finished control will go back to RTE layer function
which started the execution of this runnable. This function will do some post-runnable
processing and then control will go back to the OsHTask. Finally, since task does not have
any other runnable mapped to this event, it will go back to the waiting state and will
be activated periodically, each time this event occurs. The pre and post processing done
by the RTE function mainly involves setting up the parameters as per the requirements
of the services used by the runnable. For example, in case of implicit communication,
preprocessing involves copying the data from the shared buffer to the variables accessible
by the runnable. Similarly, postprocessing involves writing data from runnable accessible
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variables to the shared buffer.

In the last example of swcHeadlightMainRunnable, not everything executed by the
processor was part of the runnable, e.g. RTE code to start the swcHeadlightMainRunnable.
Execution of all the code that is not part of the runnable causes overhead. The following
sections present the details about the different type of overheads added by the AUTOSAR
stack.

3.2.1 OS Overheads

OS overhead is the overhead added by the AUTOSAR OS. Since OS is a part of AUTOSAR
stack, OS overhead does not depend on the AUTOSAR application. The main types of
overheads added by the OS are due to context switching, interrupt handling, and the
system timer.

Context switching is a procedure that is followed when a task under CPU execution is
switched. It can be initiated when a higher priority task becomes ready and preemption
is allowed, or when the execution of the current high priority task is finished. The cost of
context switching depends on the operations performed during the context switching. In
general, the scheduler determines which task needs to be executed next. After that, dis-
patcher stores the contextual information of the current task under execution and loads the
contextual information of the task that will be executed next. This contextual information
commonly consists of register and memory maps, stack pointer and program counter. The
time taken by the CPU in executing these operations is called a context switch overhead.
In general, the time taken by the dispatcher is constant, however, the time taken by the
scheduler depends on the number of tasks in the system. Due to this, the context switch
overhead might vary based on the number of tasks used in an application. The context
switch overhead can be measured by using the following method. The lower priority task
should run infinitely. This can be achieved by putting an “infinite while loop” in the task.
Higher priority task can be made periodic so that it will run each time after a fixed dura-
tion. The expiry of periodic alarm will make the higher priority task ready. This, in turn,
will prompt the scheduler to assign the CPU to this task. Since the lower priority task
runs infinitely, each time scheduler assigns the CPU to the higher priority task a context
switch will happen. Similarly, after the higher priority task is finished, a context switch will
happen again. Consequently, to measure the context switch, one simply has to measure
the time when the execution of higher priority tasks is finished and the execution of the
lower priority tasks is resumed.

The overheads associated with an interrupt handling can be divided into three parts
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interrupt entry, ISR execution time, and interrupt exit. Interrupt entry overhead is the
time elapsed between an interrupt occurred and its ISR is called. Conversely, interrupt exit
overhead is the time elapsed between ISR execution is finished and CPU resumes executing
the highest priority task. These overheads amount to the cost of CPU execution done due
to the occurrence of an interrupt. Since AUTOSAR OS has two types of overheads, the
interrupt entry and exit time will be different for these two ISRs. Interrupt exit and entry
time remain constant for an AUTOSAR stack implementation running on a specific ECU.
However, these two overheads are independent of AUTOSAR application. The overhead
caused by an ISR execution will vary from one ISR to another. As mentioned before, the
ISRs of category two can use system services, so they have greater interrupt entry, ISR
execution, and interrupt exit overheads. To measure the interrupt entry overhead for an
AUTOSAR implementation, an interrupt can be generated based on an external event,
e.g., analog input received over a pin on the hardware board. An ISR can be configured
in the system to handle this interrupt. Now, to measure the interrupt entry overhead one
simply has to measure the time difference between when the event that raised the interrupt
occurred and when the first instruction of the ISR responsible for handling this interrupt
was executed. ISR execution overhead for an interrupt can be measured by measuring
the time taken in ISR execution. Finally, the interrupt exit time can be measured my
measuring the time difference of the timestamps when ISR finishes and OS resumes to
normal processing.

The system timer is the timer used by the OS for measuring the time to handle timed
events. The AUTOSAR OS uses a periodic ticker to measure the time. After a fixed
period, ticker raises an interrupt which signifies a tick. On interrupt arrival, OS checks
for the counters which maintain the time in terms of the tick value. After each tick, OS
reduces the counters by one. When a counter’s value reaches zero, the associated alarm is
raised which in turn generates the event associated with it. In the described process, all the
instructions executed while receiving the tick interrupt periodically, maintaining counters,
firing alarms, and generating events cause the system timer overhead. To measure the
system timer overhead, one has to measure the execution time of the ISR that handles the
tick interrupt. The system timer overhead will be the sum of this ISR execution time, and
interrupt entry and exit times. The execution of timer ISR varies depending upon counters
maintained and alarm it needs to fire when a tick occurs. As a result, the timer overhead
will not be same for each tick. Designer has to consider the worst case execution time of
the timer ISR when considering the system timer overhead.

Figure 3.2 shows different types of OS overheads for an example of two periodic tasks.
The priority of the Task 2 is greater than the Task 1. Initially, Task 1 was being executed
by the CPU and Task 2 is waiting for its period to expire. System timer overhead occurs
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each time a tick is received. An interrupt is raised by a hardware device during the Task 1
execution, which causes the interrupt entry overhead, its ISR execution overhead, and later
interrupt exit overhead. After the interrupt handling is finished, Task 1 resumes execution.
Next, on the expiry of the periodic timer for the Task 2, its state changes from waiting
to ready. As a result, a context switch is triggered causing the context switch overhead.
After the context switch, Task 2 starts executing once it gets the CPU. For the sake of
simplicity, all other overheads are omitted from this figure.

Figure 3.2: Different types of OS overheads

3.2.2 Communication Overheads

Different types of communication mechanisms are described in Section 2.1.2.3. In all
types of communication mechanisms, messages are received or sent through RTE APIs,
e.g., RTE API Rte Read lightBrightnessReceiver lightBrightness(..) shown in the swc-
HeadlightMainRunnable’s code snippet. Calling the RTE APIs for communication in-
vokes the execution of the code which is not a part of application logic. The CPU time
taken in executing this code is called communication overhead. The implementation of
the communication APIs can be different for different AUTOSAR stack implementations.
Additionally, communication overhead depends on the following factors:
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• Communication type: Implicit or explicit Sender-Receiver communication, Syn-
chronous or Asynchronous Client-Server communication.

• Message size.

• Communicating runnable’s mappings to the tasks and their location: Com-
municating runnables mapped to same task or two different tasks, running on the
same ECU or two different ECUs.

• Communication configuration: Communication with or without message queue,
server runnable with or without invocation request queue.

To measure the sender-receiver communication overhead, one can simply measure the
execution time of the RTE API used to send or receive the message. This communication
overhead is RTE API specific and will vary for different APIs depending on the factors
listed above.

Measuring the communication overhead for client-server communication runnable is
more complex. Synchronous client-server communication is blocking, i.e., calling runnable
invokes the server runnable and waits for it to finish. The server runnable gets executed
similar to a nested function call within the client runnable. Synchronous client-server com-
munication overhead is measured in three parts. The first part is the time taken to invoke
the server runnable. The second part is the time taken in executing the server runnable.
The last part involves the time taken in returning the control from server runnable to the
client runnable. The first and the third parts are comprised of the code generated by the
RTE generator and hence remains same for an AUTOSAR stack implementation. The
execution time of these two parts is application independent, but varies with the size of
the data being communicated. This overhead can be measured irrespective of the appli-
cation if the size of the data being communicated is known. Asynchronous client-server
communication is non-blocking. The client invokes the server, but does not wait for the
server to finish. However, the client has registered for an event which will get generated
when the server finishes its execution. As a result, the client doesn’t wait for the server,
but still gets activated when the asynchronously invoked server is finished processing the
request. For asynchronous client-server communication, the communication overhead can
be measured by measuring the execution time of the RTE API. This overhead is specific
to the application.

Network overhead is the overhead caused by sending and receiving packets during inter
ECU communication. A runnable uses RTE APIs to sends or receives a packet over the
network. Network overhead is caused by time taken in executing these RTE APIs. In
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addition to all the factor which affect communication overhead, network overheads can
be affected by network topology, netwro capacity, network load, hardware used in the
network, communication protocol. Network overheads are not covered in this thesis and
will be targeted in the future.

3.2.3 Service Overheads

An AUTOSAR application accesses all the system services and resources through RTE
APIs. E.g., in the presented code snippet, swcHeadlightMainRunnable is setting the bright-
ness of headlight using the RTE API Rte Call HeadlightPwmDuty Set(..). This API is
generated as per the descriptions of this runnable and its configuration in the BSW editor.
Initially, in the swcHeadlightMainRunnable’s description, it is described that this runnable
uses the PWM server of the AUTOSAR stack. In the BSW editor, all the details about its
usage of the PWM server are configured, e.g., the channel to which PWM output will be
generated. Moreover, in the BSW editor, the output of this PWM channel is configured as
the input to the input channel of the headlight. All the code of AUTOSAR stack, including
BSW and RTE is generated using this configuration. When swcHeadlightMainRunnable
calls the Rte Call HeadlightPwmDuty Set(..), it passes the value for the duty cycle. Since
all the RTE and BSW code is tailored according to their respective configuration, they
statically know all the details about the input received and output to be sent. In the
example, the call to the RTE API will transfer the duty cycle value to the PWM server
present in the BSW layer. In turn, PWM server will call lower layer functions to control
the headlight. The CPU time used in executing all these functions is categorized as service
overhead. All these service interfaces are standardized, but their internal implementation
varies from one AUTOSAR stack implementation to another. This makes these overheads
independent of the application, but specific to an AUTOSAR stack implementation. These
overheads can be measured by measuring the execution time of their respective RTE APIs.

3.2.4 Runnable Overhead

Runnable overhead is the overhead involved in executing a runnable. It can be subdivided
into following four parts:

1. Pre-Runnable-Event overhead

2. Post-Runnable-Event overhead
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3. Pre-Runnable overhead

4. Post-Runnable overhead

Pre-Runnable-Event overhead is the time consumed in executing the code from the event re-
ceived by the task to the RTE API responsible for starting the runnable execution is called.
Pre-Runnable overhead is the time taken by this RTE API in starting the runnable execu-
tion since it is called. Post-Runnable overhead is the time taken since runnable execution
is finished and control reaches back to task through the RTE APIs. Post-Runnable-Event
overhead is the time taken by executing the task code from the RTE API responsible for
starting the runnable till the task goes into the wait state through a wait system call. In
the presented code snippet of the swcHeadlightMainRunnable, the pre-runnable-event over-
head is caused due to the execution of the code from SYS CALL WaitEvent(..) function of
the OsHTask till control reaches Rte swcHeadlight SwcHeadlightMainRunnable(..). Next,
the overhead caused due to the code execution from this point till the first instruction of
swcHeadlightMainRunnable(..) gets executed is called pre-runnable-event overhead. After
this, the overhead caused due the code execution since the last instruction of swcHeadlight-
MainRunnable(..) is executed till the control reaches back to the OsHTask (..) is called
post-runnable overhead. Finally, all the OsHTask (..) code executed from here i.e. after
Rte swcHeadlight SwcHeadlightMainRunnable() function call, till SYS CALL WaitEvent
(..) system call causes the post-runnable-event overhead. The total runnable overhead for
the swcHeadlightMainRunnable will be the sum of these four overheads. To calculate the
runnable overhead, one has to measure the above listed four overheads. Individually, these
overheads can be measured by measuring the execution time of the code that is causing
them.

Runnable overhead could be different for different runnables. It depends on how much
pre and post processing a mapped task and the RTE layer has to do before starting a
runnable. E.g., for a runnable with implicit communication, since all the messages are
read and sent before and after the runnable execution, the overhead will depend on mes-
sage size and degree of communication of the runnable. This pre and post processing
mainly involve setting the parameters as per the requirements of the services used by the
runnable. It will differ based on the AUOSAR stack implementation. For the AUOSAR
stack implementation used in the evaluation of this method, the only pre and post process-
ing observed was to support the implicit communication of the runnable. Figure 3.3 show
different types of runnable overheads for an example using two runnables Ruannable 1 and
Runaable 2. Both of these runnable are mapped to the same task and are activated by
the same event. First runnable has no RTE API while second runnable has two explicit
communication RTE APIs for receiving and sending two messages. One important thing to
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notice in the figure is that when the execution of the first runnable is over, post-runnable
overhead is applied, however, post-runnable-event overhead is applicable only after execu-
tion of second runnable is finished. For the sake of simplicity, all the OS overheads are
omitted from this figure. If the communication mechanism of second runnable is changed
from explicit to implicit, its overheads will change. Figure 3.4 shows the overheads for
this case. Notice that the pre and post runnable overheads are increased because for an
implicitly communicating runnable, all the messaged received and sent are read and sent
before and after the runnable execution, respectively.

Figure 3.3: Runnable overhead for two runnables mapped to the same task and are being
activated by same event. All communication done by Runnable 2 is explict communication.

One important point to remember during any overhead measurements is to measure the
critical section separately. For example, if an RTE communication API uses shared buffers
to implement communication between two runnbales mapped to two different tasks, then
the access to shared buffer has to be mutually exclusive. AUTOSAR code generated for
this RTE API will use a synchronization mechanism, e.g., a mutex, a lock or disabling
interrupts, to guarantee that the access to shared buffer is always exclusive. In such cases,
the time in executing code from RTE API to the critical section, critical section, and from
critical section to the end of the RTE API has to be measured separately. This requirement
comes from how this overhead is modeled into the MAST model of the affiliated AUTOSAR
application which is explained in the next section.

In the beginning of the Section 3.2 code snippets of swcHeadlightMainRunnable
were presented and the control flow involved in the execution of this runnable was dis-
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Figure 3.4: Runnable overhead for two runnables mapped to the same task and are being
activated by same event. All coomunication done by Runnable 2 is implicit communication.

cussed. Figure 3.5 represents the overheads involved in the execution of swcHead-
lightMainRunnable. The first overhead is due to the system timer. Since a tick is
periodic, the system timer overhead will be repetitive with the same period as of the
tick. After the first tick interrupt received in the figure (marked as System Timer),
the tick ISR will notice that counter responsible for firing the alarm that generates the
event EVENT MASK OSEventStartH has reached the zero value. As a result, the event
EVENT MASK OSEventStartH will be generated. A task in AUTOSAR waits for all the
events of all of its runnables to occur. swcHeadlightMainRunnable(..) has subscribed
for the event EVENT MASK OSEventStartH, so when this event will occur, the OS
will change the state of OsHTask from waiting to ready. Now, once OsHTask becomes
the highest priority task in the system, it will get scheduled for the execution. This
will cause the context switch overhead. After getting the CPU, OsHTask will start its
execution from SYS CALL GetEvent(..). The code from SYS CALL GetEvent(..) till
Rte swcHeadlight SwcHeadlightMainRunnable() RTE API call will cause pre-runnable-
event overhead. The execution of all the code from when this API is called and execution
of the runnable swcHeadlightMainRunnable(..) begins will cause the pre-runnable over-
head. Next, the swcHeadlightMainRunnable will start its execution. During the runnable’s
execution the function calls Rte Read lightBrightnessReceiver lightBrightness(..) and
Rte Call HeadlightPwmDuty Set(..) will cause communication and service overheads,
respectively. After the runnable execution is over, the execution of all the code from
there till the control reaches OHTask(..) will cause post-runnable overhead. In the
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Figure 3.5: Different types of overheads for swcHeadlightMainRunnable. The direction of
execution is from left to right.

end, all the code executed from Rte swcHeadlight SwcHeadlightMainRunnable(..) till
SYS CALL WaitEvent(..) function call of OsHTask will lead to the post-runnable-event
overhead.

3.3 Creating a MAST model for an AUTOSAR Ap-

plication

Implementing a functionality using AUTOSAR in a vehicle requires three things – hardware
resources, AUTOSAR stack, and AUTOSAR application. Section 2.2.1 described various
elements of a MAST model. By using these elements, hardware resources, AUTOSAR
stack, and AUTOSAR application can be represented in a MAST model.
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3.3.1 Modeling the ECU and Hardware Resources

All the hardware resources and their properties can be modeled using MAST elements.
The available processor of an ECU can be represented using the Processing Resource
element of MAST model. Each available computational resource of the ECU should be
represented using a concrete instance of processing resources. A processing resource of
Regular Processor type can be used to represent a physical core and its related attributes.
The min and max interrupt priority attributes of the processing resource can be used to
specify the minimum and maximum priorities of the interrupts modeled. It also has worst,
average, and best ISR switch attributes that can be used to specify the worst, average
and best overhead associated with the ISR switch. Furthermore, it has one system timer
attribute that can be used to specify the system timer associated with this processing
resource.

OSEK, the AUTOSAR OS, uses ticks to specify a counter for an alarm. A Ticker type
System Timer element can be used to model the mechanism used to handle the timed
events and its characteristics. The overheads associated with handling the alarms counter
ticks, can be specified using the Worst, Average, and Best Overhead attributes of the
ticker. The period of the ticker can be specified in the Period attribute.

Additionally, even though thesis doesn’t focus on network, however, if required then the
network that uses real-time protocols can be modeled using the Packet Based Network type
processing resource, e.g., CAN bus. Packet based network element has attributes to rep-
resent various network characteristics, e.g., throughput, transmission type (Simplex/Half
Duplex/Full Duplex), transmission time, packet size.

If the hardware resources have to be shared in a mutually exclusive way, then they can
be represented using Shared Resource elements of MAST model. This element makes sure
that the access to these resources is always mutually exclusive. Since, AUTOSAR OS uses
immediate ceiling protocol for resource sharing and management, the Type attribute of
the shared resource element should be set to Immediate Ceiling Resource. Additionally,
since AUTOSAR OS computes the priorities of shared resource by itself, the Preassigned
attribute should be set to No.

3.3.2 Modeling the AUTOSAR Stack

The AUTOSAR stack components that need to be modeled are the services used by the
AUTOSAR application and the OS properties. BSW layer services are accessed by the
application using RTE APIs. These APIs can be modeled using the Operation element of
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the MAST model. If an RTE API is divided into several parts for measuring the execution
time, then each part has to be represented individually. In such cases, a Composite type
Operation can be used to model the API. The Operation List of this composite operation
will contain the references to simple or composite operations. Each operation referred in
the list will represent the functions being used in the RTE API. The Time attributes of
an operation element can be used to specify the worst, average and best execution times
of its code.

A critical section can be represented by using the shared resource and operation ele-
ments. Each object used in ensuring the access to critical sections mutually exclusive can
be represented using an instance of shared resources, and each critical section can be repre-
sented using a simple type operation. The shared resource list of this operation should list
the shared resource protecting this critical section. Additionally, the time attributes of this
operation can be used to represent the execution time of the represented critical section.
For example, consider a code fragment with five critical sections. If one lock is used to
guarantee the mutual exclusive access to these five critical sections, then the MAST model
of it will have one shared resource and five simple operations. Each operation will list the
same shared resource in their respective shared resource list. On the other hand, if one
lock is used to guarantee the mutual exclusive access of each of the five critical sections,
then there will be five shared resources in the model and the shared resource list of the
each operation will contain its specific shared resource. The OS objects used in implement-
ing the scheduling strategy can be represented using a Primary Scheduler element of the
MAST model. Since priorities of the tasks in AUTOSAR are statically defined, the Policy
attribute of scheduler should refer to an instance of Fixed Priority type Scheduling Policy.
Moreover, policy attribute can also be used to represent the context switch attribute.

All the interrupts, ISRs and tasks running system services or OS functionalities should
be modeled, e.g. networking service, BSW service, external interrupts and their respective
ISRs. A Regular type Scheduling Server element can be used to model tasks. The pro-
cessor which is mapped to this task can be associated with the task using the Scheduler
attribute of scheduling Server. This scheduler will use its scheduling strategies to assign
the processing power associated with it to this scheduling server. The information required
by the scheduler to make scheduling decisions for this task can be represented using the
Server Scheduling Parameters attribute of the scheduling server. The type attribute of
the server scheduling parameter should be set Fixed Priority Policy. Further, its Priority
attribute can be used to specify the priority of the task. Since the priorities of tasks are
statically defined in AUTOSAR OS, so to stop MAST from calculating the new priority
of the associated scheduling server, the Preassigned attribute of the server scheduling pa-
rameter element must be set No. In the case of immediate priority ceiling protocol, the
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only information required from scheduling server is its priority. Consequently, the designer
need not supply the Synch Parameters attribute of the scheduling server, which is used to
supply additional synchronization information for the task to access the associated shared
resources. A scheduling server gets the workload from an Operation element which is
mapped to it using an Event Handler element. This is discussed in the next section.

3.3.3 Modeling the AUTOSAR Application

As mentioned before, an AUTOSAR application consists of SWCs and these SWCs imple-
ment their functionality using runnables. A runnable’s implementation is very similar to
a function. It has its own code and several calls to functions and RTE APIs, e.g., the code
snippet of runnable swcHeadlightMainRunnable in the Section 3.2 has its own code, a
function call, and two RTE APIs calls. A runnable can be modeled as an Activity type
Event Handler element of the MAST model. Its Operation attribute can have a reference
of Composite type operation element. The Operation List attribute of this operation can
contain the list of all the operations where each operation corresponds to either a piece of
code of the runnable, a function call, or an RTE API call. The task that is mapped to this
runnable can be specified in the Activity Server attribute of the activity element. Depend-
ing upon the AUTOSAR stack implementation, communication between the runnables
could use shared buffers. In such cases, if the size of the buffer is greater than the word
size of the ECU, each shared buffer should be modeled as a Shared Resource element as
described in the last section. Moreover, a runnable is usually activated by an event and
generates an event as its output. An event which starts a runnable can be modeled using
an External Event element. Its attribute Type can be used to represent how this event
should be generated, e.g. periodic, singular. An Internal Event element of the MAST
model can be used to model an element generated by a runnable. External and internal
events can be mapped to a runnable using the Input Event and Output Event attributes
of the activity representing the runnable. It is important to note that a periodic runnable
or any piece of code which gets executed after the event generated by the System Timer
element should be modeled as a System Timed Activity type event handler. For a system
timed activity, MAST implicitly considers the jitter caused by the system timer involved
in activating the Event Handler.

Timing constraints on a runnable or any collection of code can be imposed using the
events. First, the runnable or the piece of code has to be modeled as an activity as
mentioned in the last paragraph. The next step involves modeling the internal event
that the modeled activity will generate. The definition of the internal event will have a
reference to an instance of Timing Requirement element that will contain the information
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of the imposed timing requirement. As a final step, the reference timing requirement
element needs to be defined. The time limit of the timing constraint should be specified
in the attribute Deadline. The strictness of the timing constraint can be specified using
the “hard” or “soft” pre-defined values of the Type attributes of a timing requirement.
If the deadline has to be imposed from the time the execution of the activity started
till the associated event is generated, then Type attribute should be modeled as “local”.
Otherwise, if the deadline has to be imposed with reference to some other event then the
Type attribute should be modeled as “global” and the referred event should be specified
using the Referenced Event attribute.

Generally, runnables in an AUTOSAR application get executed one after another in a
chain sequence. A system generated event, e.g., periodic timer expiry, activates a runnable
and this runnable generates an event as an output that activates another runnable. This
event chain can be represented using the Transaction element of MAST model. The Ex-
ternal Events, Internal Events, and Event Handlers attributes of the Transaction element
can be used to specify the runnable activating events, runnable generated events, and
runnables, respectively.

Consider an example of AUTOSAR application. It has two SWCs. SWC1 has two
runnables R1 and R2 while SWC2 has one runnable R3. R1 has to be activated peri-
odically while R2 and R3 get activated by an event generated by R1 and R2, respec-
tively. R1 and R2 are mapped to the same task T1 while R3 is mapped to another task
T2. Additionally, R2 has a timing constraint that it should finish its execution in time
TC1. The MAST model elements and their relations corresponding to the described AU-
TOSAR application is shown in the Figure 3.6. R1 is modeled as a Timed Activity type
Event Handler Timed Activity 1 that get activated by a Periodic type External Event
Ex Event 1. The events generated by R1 and R2 that activates R2 and R3 are modeled
as Internal Events In Event 1 and In Event 1, respectively. The event generated by R3
is represented by In Event 3. The timing restrictions of R2 are modeled using a Timing
Requirement element Timing Req 1 that is associated with the generation of the event
In Event 2. The Type of the Timing Req 1 will be “local” and the attribute Deadline will
have the value TC1. Furthermore, the runnable to task mapping is represented using the
two Scheduling Server elements Sch Server 1 and Sch Server 2. R1 and R2 are mapped to
Sch Server 1 representing the task T1 while R3 is mapped to Sch Server 2 representing the
task T2. Finally, the two SWCs are represented using the two Transactions Transaction 1
and Transaction 2.

Table 3.1 represents the mappings of all the major element of an AUTOSAR system to
their corresponding MAST element.
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Figure 3.6: Example showing the modeling of runnables, tasks, and timing requirments.

AUTOSAR System Entity MAST Model Element
CPU Processing Resource of type Regular Processor
System timer System Timer of type Ticker
Network Processing Resource of type Packet Based Network
Operation done for handling incoming or outgoing packets Netwrok Driver
Shared hardware resources Shared Resource
RTE APIs (with no critical section) Simple or Composite Operations
RTE APIs (with critical section) Composite Operations
Synchronization mechanism Shared Resource
Critical section Operation with Shared Resources of type Immediate Ceiling Resource
OS scheduler Scheduler of type Primary Scheduler
Scheduling algorithm Scheduling Policy of type Fixed Priority
Tasks Scheduling Server with fixed priority
Runnable Event Handler of type Activity
Periodic runnable Event Handler of type System Timed Activity
Runnable activation events External Event
Events generated by a runnable Internal Event
Timing constraints of a runnable Timing Requirement
Event chain Transaction

Table 3.1: Summary of AUTOSAR system entities to MAST model elements mapping

Using the mappings described in the above sections, the runnable swcHeadlightMain-
Runnable and its related AUTOSAR entities present in the code snippets in the Section
3.2 are modeled into a MAST model. This MAST model is presented below. The time
values used for various parameters are indicative.
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Proces s ing Resource (
2 Type => Regular Processor ,

Name => cpu 1 ,
4 Max Inte r rupt Pr i o r i ty => 300 ,

M in In t e r rup t Pr i o r i t y => 250 ,
6 Worst ISR Switch => 186 ,

Avg ISR Switch => 186 ,
8 Best ISR Switch => 186 ,

(Type => Ticker ,
10 Worst Overhead => 3938 ,

Avg Overhead => 1191 ,
12 Best Overhead => 943 ,

Period => 72000) ,
14 Speed Factor => 1 . 0 ) ;

16 Scheduler (
Type => Primary Scheduler ,

18 Name => s chedu l e r 1 ,
Host => cpu 1 ,

20 Pol i cy =>
( Type => Fixed Pr i o r i t y ,

22 Worst Context Switch => 4559 .0 ,
Avg Context Switch => 4514 .0 ,

24 Best Context Switch => 4478 .0 ,
Max Prior i ty => 300 ,

26 Min Pr io r i ty => 1) ) ;

28 Schedu l ing Se rve r (
Type => Regular ,

30 Name => task OsHTask ,
Se rve r Sched Parameters =>

32 ( Type => F ix ed Pr i o r i t y Po l i c y ,
The Pr io r i ty => 8 ,

34 Preass igned => NO) ,
Scheduler => s ch edu l e r 1 ) ;

36

Shared Resource (
38 Type => immediate Ce i l ing Resource ,

Name => bu f f e r l i g h tB r i g h t n e s s ,
40 Ce i l i n g => 300 ,

Preass igned => YES) ;
42

Operation (
44 Type => Simple ,

Name => OHTask WaitEvent to Runnable ,
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46 Worst Case Execution Time => 23 .00 ,
Avg Case Execution Time => 19 .00 ,

48 Best Case Execution Time => 18 .00 ) ;

50 Operation (
Type => Simple ,

52 Name =>
Runnable Beg in ing to Communicat ion API Cr i t i ca l Sect ion ,
Worst Case Execution Time => 112 .00 ,

54 Avg Case Execution Time => 109 .00 ,
Best Case Execution Time => 108 .00) ;

56

Operation (
58 Type => Simple ,

Name => Communicat ion API Crit ica l Sect ion ,
60 Worst Case Execution Time => 108 .00 ,

Avg Case Execution Time => 106 .00 ,
62 Best Case Execution Time => 104 .00 ,

Shared Resource s To Lock =>
64 ( b u f f e r l i g h tB r i g h t n e s s ) ,

Shared Resource s To Unlock =>
66 ( b u f f e r l i g h tB r i g h t n e s s ) ) ;

68 Operation (
Type => Simple ,

70 Name =>
Communication API Critical Section to PWM RTE API ,
Worst Case Execution Time => 223 .00 ,

72 Avg Case Execution Time => 219 .00 ,
Best Case Execution Time => 218 .00) ;

74

Operation (
76 Type => Simple ,

Name => PWM RTE API,
78 Worst Case Execution Time => 323 .00 ,

Avg Case Execution Time => 319 .00 ,
80 Best Case Execution Time => 318 .00) ;

82 Operation (
Type => Simple ,

84 Name => PWM RTE API to End Of Runnable ,
Worst Case Execution Time => 33 .00 ,

86 Avg Case Execution Time => 29 .00 ,
Best Case Execution Time => 27 .00 ) ;

88
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Operation (
90 Type => Simple ,

Name => End Of Runnable to Wait Function of OHTask ,
92 Worst Case Execution Time => 44 .00 ,

Avg Case Execution Time => 43 .00 ,
94 Best Case Execution Time => 43 .00 ) ;

96 Operation (
Type => Composite ,

98 Name => swcHeadlightMainRunnable ,
Composite Operation L i s t =>

100 ( Runnable Begineing to Communication API ,
Communication API ,

102 Communication API to PWM RTE API ,
PWM RTE API,

104 PWM RTE API to End Of Runnable
) ) ;

106

Operation (
108 Type => Composite ,

Name => Executing swcHeadlightMainRunnable ,
110 Composite Operation L i s t =>

( OHTask WaitEvent to Runnable ,
112 swcHeadlightMainRunnable ,

End Of Runnable to Wait Function of OHTask
114 ) ) ;

116 Transact ion (
Type => r egu la r ,

118 Name => t r an s a c t i on head l i gh t ,
External Event s =>

120 ( ( Type => Per iod ic ,
Name => even t pe r i od i c h l 50ms ,

122 Period => 72000 ,
Max Jitter => 0 .000 ,

124 Phase => 0 . 000 ) ) ,
In t e rna l Event s =>

126 ( ( Type => Regular ,
Name => i n t e rna l unus ed even t ) ) ,

128 Event Handlers =>
( (Type => System Timed Activity ,

130 Input Event => even t pe r i od i c h l 50ms ,
Output Event => i n t e rna l unused event ,

132 Act i v i t y Operation => Executing swcHeadlightMainRunnable ,
Ac t i v i t y S e rv e r => task OsHTask ) ) ) ;
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Chapter 4

Evaluation and Results

This chapter evaluates the method presented in Chapter 3 using a use-case, and then
explores the effects of different types of overheads using synthetic applications. To evaluate
the proposed method, an AUTOSAR application Front Light Management was developed.
The overheads for the AUTOSAR stack used in the experiment were measured, and then
their effects on the Front Light Management were analyzed. Later, to generalize the effects
of overheads on any application, synthetic applications were used. It gives an interesting
insight on how different types of overheads affect an AUTOSAR application performance.
The following sections describe this process in detail.

4.1 Research Questions

The intention behind performing this evaluation was to know the answer of following main
questions:

1. Is it possible to perform schedulability analysis of an AUTOSAR application using
the proposed method?

2. How much effect these overheads can cause on the schedulability of an AUTOSAR
application?
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4.2 Experimental Set-up

While performing the evaluation, many software tools and hardware devices were used.
This section gives the details about all the software tools and hardware devices used, along
with their arrangements.

4.2.1 ARCCORE

ARCCORE is an AUTOSAR products vendor and offers a complete suite required to
develop an AUTOSAR application [1]. The two ARCCORE tools used in developing the
AUTOSAR application are the following:

1. Arctic Studio: It is a tool chain, which provides the development environment
and required tools for all the stages of the AUTOSAR based software applications
[3]. The Arctic studio IDE is eclipse based. Main tools provided by Arctic Studio
are [21],

• SWC Builder - used to describe the components of the AUTOSAR based soft-
ware application.

• EXTRACT Builder – generates the application extract for the ECU.

• RTE Builder – used to configure and generate the code for RTE layer.

• BSW builder – used to configure and generate the code for BSW layer.

The Arctic Studio version used in the experiment is ArcticStudio-arm-11.0.0 (64bit)
which follows the AUTOSAR 4 specifications.

2. Arctic Core: It is ArcCore’s AUTOSAR stack implementation [2]. It contains
the GPL source code to support all the features required in an automotive ECU, e.g.,
communication services, diagnostic services, microcontroller specific code, operating
system. The version used in experiment is core-v11 0 0 which is also AUTOSAR 4
based.

The process of developing the application starts by defining the descriptions of the
software components of the automotive software application in the Arctic Studio. Software
Component Language is the modelling language supported by the Arctic Studio, to model
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the SWCs. Software Component Language is one of the textual modelling languages for
AUTOSAR, standardized by ARText Framework [4]. As discussed in Chapter 2.1, SWC
descriptions contain runnable information, ports and interface used by an SWC, system
services required by the SWC, implementation details, and other requirements. Based on
the description of the SWCs, an application level composition is described using the same
language. Once its validation is successful, extract for the ECU is generated. Depending on
the requirements in this ECU extract, RTE, services required from BSW, and Operating
System are configured. ArcCore provides inbuilt support for several ECUs, if the ECU
being used is not supported, then one needs to provide the ECU resource description in
a format specified by AUTOSAR. In the next step, all these configurations are validated
and on successful validation, the code for all the required modules of AUTOSAR stack
is generated. This generated code also contains the RTE level interface files. These files
contain all the APIs which can be used during the implementation of the SWC, to access all
the stack services, e.g., Rte Call HeadlightPwmDuty Set(. . . ), Rte Read SwitchStatus(..).
Once the implementation of the SWCs is finished, it can be compiled with the rest of
the generated code. After the successful compilation, the executable for the ECU will
be generated. Now, this executable can be run on the targeted ECU in the vehicle to
implement the required functionality.

4.2.2 Hardware and Other Tools

The hardware board used to run the automotive software application developed was
STM32F 107VC. The key features of this ECU are [28]:

• Core: ARM R© 32-bit Cortex R© -M3 CPU, 72 MHz maximum frequency.

• Memories : 64 to 256 Kbytes of Flash memory, 64 Kbytes of general-purpose SRAM.

• DMA: 12-channel DMA controller.

• Supported peripherals: timers, ADCs, DAC, I2Ss, SPIs, I2Cs and USARTs.

• Serial wire debug (SWD) & JTAG interfaces.

• Up to 80 fast I/O ports.

• Up to 14 communication interfaces with pinout remap capability.
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Figure 4.1: Experimental Set-up for timing measurement

To debug and download the executable, generated using ArcCore tool chain, Keil uVi-
sion5 (ARM Microcontroller Development Kit ) was used [17]. It was connected to the
STM development board using ULINK-ME debug and trace adaptor [16]. ULINK-ME is
a JTAG debug interface based adapter.

To read the values from digital I/O pins of the STM board, Saleae’s Logic16 Original
logical analyzer was used [27]. It is a small size, GUI based, easy to use, logical analyzer
device which can be used to analyze and record digital signal samples, at the maximum
rate of 100 million samples per second. It can be connected to the pins available on the
board using standard wires and to the computer, using provided USB cable. Once the
device is connected, its GUI can be used from the computer, to configure all the available
parameters, access and visualize logs, and perform other required operations.

All the tools were used from a laptop running 64 bit version of Windows 7. This entire
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set up of this experiment is shown in Figure 4.1.

4.2.3 A Method to measure the Code Execution Time

To measure the execution time of a function or a collection of code, the following method
can be used. Any piece of code for which time needs to be measured has a start and
an end. The start and end can be represented using an integer. When the duration
starts, this value is written on DIO (Digital Input Output) pins, and when it ends, the
same integer value is written again on the same pins. This integer value is limited by
the maximum number which can be written on the DIO pins in the binary format. A
code fragment, similar to the one shown below can be added in the AUTOSAR stack
implementation to enable writing the start and the end of the time measurement on the
DIO pins.

1 typede f enum MyEventType{
EVENT START = 0 , //no value

3 Event 1 ,
Event 2 ,

5 Event 3
}TimeEvent E ;

7

#de f i n e ADDRESS ( ( u in t 32 t ∗) (0 x4001080C ) )
9 #de f i n e WRITE EVENT TIMESTAMP( event ) (∗ADDRESS) = event ; \

(∗ADDRESS) = 0x0 ;

The start and the end of time measurement can be marked as follows,

WRITE EVENT TIMESTAMP( Event 1 ) ;
2 Rte API Call ( . . . ) ;
WRITE EVENT TIMESTAMP( Event 1 ) ;

A logical analyzer which connects to the same DIO pins where values are being written
will store the timestamp along with the value whenever any value is written on these pins
in a log file. Now, these log files first need to be cleaned to remove any erroneous values
and then later simply parsed by checking the difference between the timestamp of the same
integer value in pairs designating the start and end of a duration. This measured time also
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contains the time taken in writing the logged value on the DIO pins. For example, when
the described method was used in the evaluation, the time taken in writing the logged
value of DIO pins was 9 CPU cycles. This additional time taken needs to be subtracted
from each of the measured time durations. Furthermore, the log parsing needs to be done
over a number of files and ideally, should give three outputs – Best Case Time, Average
Case Time, and Worst Case Time. This is the procedure used in the evaluation of this
method and is described in Section 4.3. The framework which cleans and parses the time
logs as described in this step of the method was implemented for the evaluation and can
be accessed from this repository [13].

4.3 Measuring the System Overheads

The technique described in Section 4.2.3 is used to measure the overheads for the
executable which implemented the Front Light Management functionality with its entire
AUTOSAR stack. The process started with finding all the places in the source code of the
AUTOSAR stack where the timestamp needs to be logged. These are the places which
mark either the start or the end of the execution of non-application code. A different
integer value was logged for each of the overhead twice, designating the start and the end
of the overhead. E.g.,

1 WRITE EVENT TIMESTAMP( Event 10 ) ;
OS CALL SuspendOSInterrupts ( ) ;

3 WRITE EVENT TIMESTAMP( Event 10 ) ;

5 ∗ value = Rte Buf fe r swcFrontLightManager l ightRequestRece iver ;

7 WRITE EVENT TIMESTAMP( Event 11 ) ;
OS CALL ResumeOSInterrupts ( ) ;

9 WRITE EVENT TIMESTAMP( Event 11 ) ;

These values were written to the four DIO pins which were connected to the logical
analyzer. Logical analyzer recorded the timestamp for each of these values and stored them
in a file. After collecting sufficient data, Time Measuring Framework was executed on these
files. It first cleaned the recorded logs to remove erroneous data and then calculated the
values of each of the overhead, by calculating the difference between two timestamps of
the integer value in the logs, assigned for that particular overhead. All the sources code of
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timing measurement, framework developed to clean the logs and calculate timing overheads
from these logs, can be found in the repository [13].

4.3.1 Overhead Measurement Results

Different type of overheads of AUTOSAR stack running on Arm Cortex-M3 core were
measured for the use-case. These overheads are are listed in Table 4.1. The unit of time
is CPU cycles for the entire experiment.

Overhead Worst Case Time Avg Case Time Best Case Time
Context Switching 4559 4514 4478
System Timer 3938 1191 943
Interrupt Entry/Exit (ISR1)1 - 184/161 -
Interrupt Entry/Exit (ISR2)1 - 256/334 -
Pre-Runnable-Event 279 278 277
Post-Runnable-Event 40 40 38
Pre-Runnable (no implicit communication) 18 18 16
Post-Runnable(no implicit communication) 23 22 20
Synchronization C-S Server Call 158 157 153
DIO Write 1296 1262 1202
DIO Read 644 615 590
PWM Write 477 473 468
Explicit communication from runnable to critical section 36 35 32
Explicit communication from critical section to runnable 41 39 36
Explicit communication critical section (4 byte) 153 149 148
Explicit communication critical section (64 byte) 194 191 190
Explicit communication critical section (4096 byte) 3591 3591 3586

Table 4.1: Time(in CPU cycles) measured for different types of overheads.

The System Timer overhead is the sum of a tick interrupt entry and exit time, and
the execution time of the timing ISR. The use-case has three periodic runnables and each
of these runnables is mapped to a different task. Furthermore, use-case maintains three
alarms, each of which generates an event on its expiry that in turn activates the mapped
runnable’s task to start the runnable execution. Additionally, none of the runnables use
implicit communication. As mentioned in the Section 3.1.2 In the case of implicit com-
munication, all the messages dealt by a runnable are received and sent at the beginning
and the end of the runnable, respectively. Due to this, the overhead caused by a runnable
with implicit communication will depend on its degree of communication and hence will
vary from case to case. For the runnables with no implicit communication, the runnable
overhead and communication overhead are accounted separately. After analyzing the code

1Taken from the Arctic Core benchmark results received from its vendor.
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generated for implicit and explicit communication, it is observed that the code generated
for both is very similar. In the case of explicit communication, the pre and post runnable
processing, and the communication code is placed at separate places while in the case of
implicit communication, all the communication code becomes the part of the pre and post
runnable processing. As a result, the sum of Communication, Pre, and Post Runnable
overheads will remain same for both implicit and explicit communication. So, the total
overhead of the system should be approximately the same, irrespective of implicit or explicit
communication. Overhead in the case of synchronized client-server communication includes
the time used in calling the server runnable and returning from the server runnable to the
client runnable. DIO Read/Write and PWM overhead include all the overheads caused by
the RTI API call used in the application to perform the intended operations. In this case,
communication is implemented using the shared buffers, so the communication RTE API
is divided into three parts and its overhead is listed for each part. Figure 4.2 shows the
explicit communication overhead for message size from 1 Byte to 4 KB. From the figure,
it can be concluded that this overhead increases linearly with the increase in message size.

Figure 4.2: The graph representing the increase in the time of communication when mes-
sage size increases. This matrix is for the explicit sender-receiver communication with no
message queue and when the communicating runnables are mapped to the same task.

To avoid any spurious value, each of these overheads was measured for a total time
of 240 seconds in 24 different occasions with each lasting for 10 seconds. For example,
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Figure 4.3 shows the timer ISR execution times measured for the use case application
used in the evaluation of the proposed method. For simplicity and clarity of the graph, only
the first 1,000 values are drawn out of total 240,000 measured values. All the measured
values are not same because the execution time of the timer ISR varies depending upon
on the counters and alarms it has to maintain during its execution each time.

Figure 4.3: This graph shows only first 1,000 Measured overhead values for the timer ISR
out of total 240,000 values.

4.4 Use-Case Evaluation

This is the realization of proposed method in Chapter 3. The following sections describe
the details and the results of each of the steps of the proposed method, executed for the
Front Light Management application.

4.4.1 AUTOSAR Application : Front Light Management

FLM (Front Light Management) is one of the most popular applications used in AU-
TOSAR specifications as an example. As the name suggests, this application implements
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the functionality to manage available lights in the front part of the vehicle. To replicate
the behavior similar to actual Front Light Management application running in a vehicle,
following resources from the STM board were used,

1. Two Buttons (marked as “key” and “temper” on the board). They will be addressed
as B1 and B2.

2. Four LEDs (marked as LD 1, 2, 3 and 4 on the board). They will be addressed as
LD1, LD2, LD3, and LD4.

The LEDs represented front lights of the vehicles and buttons acted as the available
switches in the vehicle, which are used by the driver to control the lights. The LEDs
mapping to the actual vehicle’s lights and their respective states are shown in Table 4.2.
Initial state for all the LEDs is “off”. Button B1 is mapped to LD2 and can be used to
change the state of LD2 to mimic the behavior of Headlight. Button B2 is connected to
LD1, LD3, and LD4. It can be used to control the states of these LEDs to mimic the
behavior of right indicator, left indicator, and daytime light.

LED Name Replicated Light States
LD2 Head Light Off, Low Beam, High Beam
LD1 Right Indicator Off, Blinking, On
LD3 Left Indicator Off, Blinking, On
LD4 Daytime Light Off, Blinking, On

Table 4.2: LEDs mapping to real vehicle lights and their states

The development of this application followed the steps described in Section 2.1.4
and 4.2.1. Initially, all application requirements were collected. Then the collected re-
quirements were converted into the design. In the design, functionality of the Front Light
Manager is implemented through four SWCs. Figure 4.4 shows the design of these SWCs.
The names of the runnables are shortened to accommodate them in the limited space. The
details of each of these SWCs are following:

1. SwcSwitchStatus: The task of this SWC is to check if any of the buttons is
pressed. This SWC has three runnables – initRunn, otherSwitchStatusRunn and
headLightSwitchStatusRunn. initRunn initializes this SWC while headLightSwitch-
StatusRunn and otherSwitchStatusRunn observe if any event has occurred at B1 and
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B2, respectively. headLightSwitchStatusRunn and otherSwitchStatusRunn are con-
nected to B2 and B1 using the interfaces shown by <<1>> and <<2>>, respectively.
These are the interfaces defined towards Digital Input Output(DIO) service provided
by BSW through RTE generated APIs for this application. Using the client-server
communication interfaces <<3>> and <<4>>, SWC SwcLightRequest invokes the
client SWC SwcSwitchStatus to get the status of the two Buttons.

2. SwcLightRequest: This SWC has two runnables – initRunn and lightRe-
questRunn. initRunn initializes this SWC while lightRequestRunn manages the
states of all the LEDs which can be changed by pressing the buttons. Once the
state is updated as per the button event, SwcLightRequest sends the information of
the mode and the brightness of each of the LEDs to the SWC SwcFrontLightManager
using sender-receiver interfaces <<5>>, <<6>>, and <<7>>.

3. SwcFrontLightManager: This SWC has two runnables – initRunn and frontLight-
ManagerRunn. initRunn initializes this SWC while frontLightManagerRunn turns
the LD1, LD3, LD4 on and off, based on their respective brightness and mode.
To control these LEDs, frontLightManagerRunn invokes the DIO server using its
<<9>>, <<10>>, and <<11>> client-server interfaces, towards the BSW. For
LD4, it does pre-processing of the data received from SWC SwcLightRequest, and
sends it to the SWC SwcHeadlight through the <<8>> sender-receiver interface.

4. SwcHeadlight: This SWC has two runnables – initRunn and headLightRunn. ini-
tRunn initializes this SWC while headLightRunn calculates the PWM (pulse width
modulation) duty cycles and controls the LD2 by invoking the PWM server using
the client-server interface <<12>>. The PWM channel, for whom this duty cycle
is being set, is configured in the BSW editor to connect it to the DIO channel of the
LD2.
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Figure 4.4: SWCs of the Front Light Management application. The numbers mentioned
as <<digit>>represent the interfaces

Each of the the main runnables, lightRequestRunn, frontLightManagerRunn, and head-
LightRunn are mapped to three different tasks and are subscribed for the three different
periodic events each having a period of 10 ms (72x104 CPU cycles). The priority of these
three runnables’s tasks is in following order lightRequestRunn > frontLightManagerRunn
> headLightRunn. This discussed design of the the four SWCs was described using Soft-
ware Description Language in Arctic Sdudio. Appendix A contains the complete de-
scription of all the four SWCs, their interfaces and ECU descriptions. As the next step,
modules for all the required BSW services, RTE, and OS were configured using the BSW
editor of Arctic Studio and the code for the AUTOSAR stack was generated. The RTE
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generated code contains all the APIs required by all the four SWCs, as per their specifi-
cation mentioned in the description of their respective interfaces. These RTE APIs were
used while implementing the SWCs to access system level services. In the final step, all the
AUTOSAR stack generated code and SWCs implementation was compiled together to pro-
duce the executable for the ECU. The implementation of SWCs and complete configuration
of BSW can be accessed from the cited repository [13].

4.4.2 Measuring the Front Light Management’s Execution Time

As mentioned in the proposed method described in Chapter 3, one of the important
parts of the schedulability analysis is the execution time of the SWCs of the application
under analysis. To calculate the execution time of Front Light Manager, the method
described in Section 4.2.3 was used. This is the same method used in measuring the
different types of overheads in Section 4.3. This execution time is purely the time taken
by SWCs execution, i.e. all the RTE API calls for communication or services, and all the
overheads should be excluded. Following is the code snippet of the implementation of the
swcHeadlightMainRunnable runnable of SWC swcHeadlight. For the sake of simplicity
some of the code is omitted.

1 void swcHeadlightMainRunnable ( void ) {
WRITE EVENT TIMESTAMP( Event 1 ) ; // Time 1 Start

3 S igna lQua l i ty qua l i t y = 0 ;
DutyCycle dutyCycle = 0 ;

5 f l o a t 6 4 headLightState = 0 . 0 ;
Std ReturnType r e t = E NOT OK;

7 WRITE EVENT TIMESTAMP( Event 1 ) ; //Time 1 End

9 r e t = Rte Read l i gh tBr i gh tn e s sRec e i v e r l i gh tBr i gh tn e s s ( &headLightState ) ;

11 WRITE EVENT TIMESTAMP( Event 2 ) ; // Time 2 Start
i f (RTE E OK != re t ) {

13 ; // e r r o r handl ing code
}

15 i f (BEAMHIGH == headLightState )
headLightState = VOLTAGEMAX;

17 e l s e i f (BEAMLOW == headLightState )
headLightState = (VOLTAGERANGE/2 . 0 ) ;

19 e l s e
headLightState = VOLTAGEMIN;
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21 ServoMotorContro l lerFunct ion(&headLightState , &dutyCycle ) ; // l o c a l
f unc t i on c a l l

WRITE EVENT TIMESTAMP( Event 2 ) ; //Time 2 End
23

Rte Call HeadlightPwmDuty Set ( dutyCycle , &qua l i t y ) ;
25

WRITE EVENT TIMESTAMP( Event 3 ) ; // Time 3 Start
27 i f (RTE E PwmServiceSetDuty E OK != re t ) {

; // e r r o r handl ing code
29 }

WRITE EVENT TIMESTAMP( Event 3 ) ; //Time 3 End
31 }

swcHeadlightMainRunnable is receiving one message and also calling RTE API to set
the PWM duty of the headlight. These two API calls need to be excluded from the
measurement. To achieve this, the time measurement for swcHeadlightMainRunnable is
broken into three parts. These parts are marked as Time 1, Time 2, and Time 3 in the
above code snippet. Table 4.3 shows the WCET (Worst Case Execution Time), ACET
(Average Case Execution Time), and BCET (Best Case Execution Time) measured for
each of these three parts.

Name of the parts WCET ACET BCET
Time 1 3142 2840 2637
Time 2 86600 76391 68174
Time 3 1767 1763 1367
Total runnable execution time 91509 80994 72178

Table 4.3: Execution times (in CPU cycles) of different parts of swcHeadlightMain-
Runnable.

Similar to what described in the swcHeadlightMainRunnable example, the execution
time for each of the runnables of all the four SWCs were measured. Appendix B contains
the time measured for each part of all the runnables. A summary of this is presented in
Table.
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Name of the runnable WCET ACET BCET
swcfrontlightmanager 548492 464900 230908
swclightrequestmainrunnable 35050 29053 26177
swcHeadlightMainRunnable 91509 80994 72178
swcheadlightswitchstatusrunnable 4344 3815 3290
swcotherlightsswitchstatusrunnable 4344 4015 3290

Table 4.4: Execution times (in CPU cycles) of the runnables

4.4.3 Executing MAST on MAST Model of Front Light Man-
agement

Using the method described in Section 3.3, a MAST model for the Front Light Manage-
ment Application was created. This model described all the runnable operations, com-
munications and other BSW services used by them. In the Front Light Manager’s MAST
model, each runnable is represented as a composite operation. Each SWC is also repre-
sented as a composite operation which is comprised of runnable’s composite operations.
The complete MAST model can be found in Appendix B. Each transaction in this model
has a deadline equal to its period. For checking the schedulability and estimating the
WCRT (Worst Case Response Time) of the application, this MAST model was executed
using offset-based response time analysis technique. To identify the effects of overheads,
this model was executed twice – with and without all the overheads. The results of this
experiment are presented in Tables 4.5 and 4.6.

Model Configuration CPU Utilization System Slack Schedulable
Without Overhead 93.76 % 6.25 % Yes
With Overhead 103.03 % -3.03 % No

Table 4.5: Schedulability results of Front Light Manager with and without overheads

SWC Name Without Overhead With Overhead
Slack WCRT Slack WCRT

SwcLightRequest 118.75 % 35164 -65.23 % ∞
SwcFrontLightManager 7.81 % 583651 -4.30 % ∞
SwcHeadlight 46.09 % 675052 -25.78 % ∞

Table 4.6: Slack and WCRT (in CPU cycles) for different SWCs
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Initially, all the tasks of this application had a periodicity of 10 ms (72x104 CPU cycles)
to make system more responsive to driver commands. After analyzing the results of the
last run, it was observed that the application can become schedulable if the periodicity
is increased to 50 ms (36x105CPU cycles). Since, FLM is not a very critical application,
a periodicity of 50 ms will not cause any safety violation. Additionally, this increase in
the system response time to driver commands is unnoticeable to the driver. Hence, the
periodicity of all the tasks was changed to 50 ms in the FLM’s MAST model. The results
of executing the MAST on this changed model are listed in Table 4.7 and 4.8. As shown
by the results, after making these changes the application became schedulable.

Model Configuration CPU Utilization System Slack Schedulable
With Overhead (Second iteration) 24.98 % 300.22 % Yes

Table 4.7: Schedulability results of Front Light Manager after increasing the task periods
to 50 ms.

SWC Name Slack WCRT
SwcLightRequest 766.8 % 120219
SwcFrontLightManager 285.55 % 709328
SwcHeadlight 2898.8 % 817723

Table 4.8: Slack and WCRT (in CPU cycles) for different SWCs after increasing the task
periods to 50 ms

4.4.4 Result and Discussion

The two executed scenarios (with and without the overhead), represent the cases when
during the AUTOSAR application design, the overheads added by the AUTOSAR stack
are considered or not. As shown in the Table 4.5, without overhead, CPU utilization
is 93.76%, which gives enough room to either decrease the periods of the task of this
application to make it more responsive to the user inputs or increase its features. Thinking
this, an application designer might add more features to the application. But, the CPU
utilization of the same Front Light Management application with the overhead, is 116.28%,
which means this application is actually not schedulable. Table 4.6 shows the slacks and
WCRT (Worst Case Response Time) for individual SWCs. As reflected by the CPU
utilization, when overheads are considered, the WCRT of the SWCs is infinite. This
shows that this design configuration with these timing constraints for the Front Light
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Management will not work, hence it needs to be changed. And the steps marked as 3 in
the Figure 3.1 need to be repeated, iteratively, until a schedulable design configuration
is found.

Based on the inputs received from the first run, the application design configuration
needed to be changed. Since the FLM’s performance will still be acceptable if periods of
its tasks are increased to 50 ms, so the periods of the tasks were increased to 50 ms in the
application’s MAST model. After all these changes, all the steps of the method which are
marked as 3 were repeated. Since, with these change application became schedulable, this
configuration was chosen as final design configuration for the FLM AUTOSAR application.

This evaluation of the proposed method answered all the questions raised in Section
4.1.

• (Q1) - Yes, it is possible to do schedulability analysis using the proposed method.
During the evaluation, all the steps of the proposed method were successfully per-
formed and in the end, a schedulable design configuration was found.

• (Q2) – The overheads are considerably large and can have measurable effects. As
shown by the results of the evaluation, overheads can change the schedulability and
performance of the overall system, drastically.

As shown in the evaluation of the method using FLM, apart from the schedulability
information, there are some other important parameters in the result which can be used
to get much more information about the system. E.g., system slack and CPU utilization
can be used to see how much system load can be increased without affecting the system’s
shcedulability and performance, or how much it needs to be decreased to make the appli-
cation schedulable. Slack and WCRT information about each SWC gives the information
which of the SWCs are missing or meeting their deadline, and how much they need to be
improved or can support more functionality, respectively.

4.5 Exploring the effects of Overheads using Syn-

thetic AUTOSAR Applications

Section 4.4.4 described the effects of the overheads on a use-case application - Front
Light Manager. The evaluation of Front Light Manager gives an idea about the impact
of overheads. The goal of this section is to generalize the effects of the different types
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of overheads. The generalization of the overhead effects will require analyzing them over
thousands of applications representing different design configuration. To establish the
effects of different types of overheads on any AUTOSAR application, a framework to create
MAST models for synthetic applications was developed. These synthetic applications
were used to perform experiments to see how the schedulability of a particular design
configuration changes, if some parameters from this configuration are varied. This gave
an interesting insight into how and up to what extent, different types of system added
overheads can affect the application performance. The output of this experiment can be
used during the design phase of the AUTOSAR application. Following sections chronicle
this in detail.

4.5.1 The GEP Framework

To generate synthetic AUTOSAR applications, a framework called GEP (Generator Ex-
ecutor Parser) was developed. It has several exposed APIs which can be used to tweak
the parameters to of the design configuration of a synthetic application of a synthet, e.g.,
setnoOfTasks(). The GEP framework automated the task of generating the application
MAST models, executing MAST over them, and then parsing the results, using following
three components:

1. Generator: This is the component responsible for generating the MAST model
for synthetic applications based on the parameters set. Due to the randomization
involved in choosing various parameters of a design configuration and a large number
of models generated for a set of parameters, the synthetic applications generated by
this component covers a wide range of AUTOSAR applications.

2. Executor: This component executes the MAST tool over the generated MAST
models and writes the results to an XML file in the configured directory. Various
parameters for the MAST tool can be configured here.

3. Parser: This component parses the XML output of the MAST execution and pro-
duces the output as an object of data class which contains all the information about
the models, e.g.- CPU Utilization, Worst Response Times. The main driving program
uses this data object to give the percentage of schedulable models for a particular
configuration.

Table 4.9 lists default values for of the configurable parameters of the GEP framework.
One of the input parameters for the GEP framework is utilization factor. Application’s
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utilization factor is the percentage of the total available computational power used by it.
The utilization value is divided uniformly between the number of tasks configured using
the UUniSort algorithm [12]. Next, the period of each task is selected randomly within
the range configured for the periods of the tasks. For each task, its period is multiplied by
its utilization factor to get the execution time for this task. For all the tasks, their period
is also their completion deadline. The priority of the tasks is assigned rate monotonically
[19].

In the next step, the number of runnables mapped to one task is selected randomly
within the configured range. Additionally, for each of these runnable, their message out
degree is selected randomly from the configured range. The receivers of these messages
are the runnables which are mapped to tasks other than the sender runnable’s task. The
receiver runnables are also selected randomly. Furthermore, for each of these messages, its
size is selected randomly within the configured range for the message size. The number of
IO hardware operations for a runnable are selected randomly within the configured range
of the number of IO hardware operation per runnable. After fixing all these parameters
for a task, the overhead due to each of them is added to the task’s execution time. This
completes all the information required for a synthetic AUTOSAR application. In the final
step, the synthetic AUTOSAR application is converted into a MAST model by following
the methodology described in Section 3.3. Later, MAST is executed on this model and
then its results are parsed and presented in an easy to understand format. All the source
code of GEP framework can be found in the repository [13].

Parameter Value or Range
Number of tasks 8
Periods of the tasks [1, 1x103]ms or [72x103, 72x106]CPU cycles
Number of runnables per task [1, 16]
Number of IO Hw Operations (DIO/AIO/PWM) per runnable [0,1]
Message out degree for a runnable [0, 2]
Size of a messgae [1B,1KB]

Table 4.9: Default configuration used to generate synthetic AUTOSAR applications

4.5.2 Results and Discussion

The objective of this experiment was to model the effect of each type of overhead individ-
ually. To achieve it, a general configuration for the synthetic AUTOSAR application was
fixed; and only one parameter causing overhead was varied. The general configuration used
in the experiment is the default configuration which is listed in the Table 4.9. As men-
tioned in the last section, every configuration of the synthetic application involved some
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randomization, e.g., periods of tasks and number of messages being sent by a runnable to
the runnables mapped to different tasks. This randomization helped in covering the wide
range of applications through the synthetic applications. Each configuration was run with
utilization factor from 0.04 to 1 with a step of 0.05. Furthermore, for each utilization fac-
tor of each configuration, 2500 synthetic application models were generated and analyzed.
For each executed case, the experiment was repeated twice. In the first run, all types of
overheads were considered and in the second run, all types of overheads were ignored. The
output of each experiment is shown using their respective graphs. In these graphs, the
y-axis represents the percentage of synthetic applications which are schedulable out of the
total synthetic applications generated for a configuration; the x-axis represents the uti-
lization factor of a synthetic application. Following sections model the effects of different
types of overheads when one of the parameters mentioned in Table 4.9 is varied.

4.5.2.1 Varying the Number of Tasks in a System

In general, application designers have flexibility in mapping the runnables to the tasks.
Due to this flexibility, the number of tasks in an application can be vary depending upon
the choices made by the application designer. In trying different design configurations,
the application functionality remains the same; this means that the utilization factor of
the application will remain the same. While depending on the number of tasks in the
application, the system overhead can vary. This experiment was performed to see the effects
of system overhead on an application when the number of tasks in its design configuration
is varied. Figure 4.5 shows the results of this experiment. As shown in the figure,
the percentage of schedulable synthetic applications decrease when the number of tasks
is increased from 4 to 16, and then later to 64. This effect is same for both the cases
when the experiment was conducted with and without the system overhead. However,
one important difference between these two cases is that for the same design configuration
and utilization factor, the percentage of schedulable synthetic applications is significantly
higher in the case when the system overhead was not considered. For the no-overhead case,
the increase in the number of tasks decreased the percentage of schedulable applications
because when the tasks are scheduled rate monotonically, schedulability decreases with
the increase in the number of tasks [19]. For the overhead case, the additional reason
for the decrease in the percentage of the schedulable application with the increase in the
number of tasks in the application is the AUTOSAR stack added overhead. The overhead
comes mainly from the context switching and other task management required running
and maintaining the tasks in the system, e.g., if there are more periodic tasks, then the
number of timers required to activate them will be more. Additionally, since the number of
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runnables is defined per tasks, the increase in the number of tasks will increase the number
of runnables in the application. This increase in the number of runnables will cause the
increase in the number of messages and IO operations because these parameters are defined
per runnable. As a result, with the increase in the number of tasks in an application, the
runnable, communication and IO hardware operation overhead will also increase. This
added overhead also caused the drop in the percentage of schedulable applications when
the number of tasks is increased.

The lesson learned from this experiment is that the design configuration which requires
lesser context switches should be preferred over another. One way to achieve this is by
mapping the runnables with the same period to one task.

Figure 4.5: Effect of the overhead when number of tasks in an application are varied. “O”
and “NO” represent the cases executed with and without overhead, respectively.

4.5.2.2 Varying number of Runnables mapped to a Task

This experiment was executed to model the effects of runnable overhead on an AUTOSAR
application. In this experiment, the number of runnables mapped to a task was not
randomly generated but fixed. Initially, the RPT (runnables per task) were fixed to 4
and then were increased to 16 and 64. The results of this experiment are presented in
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Figure 4.6. While increasing the number of runnables, the rest of the configuration was
kept same so that the total workload due to the factors other than number of runnables
in the application remains same. For example, even if the RPT are changed from 4 to 16
or 64, the total number of messages being sent in the entire synthetic application will still
remain same. From this graph, it can be concluded that runnable overhead alone does
not affect the application’s schedulability for at least up to 64 RPT. The reason behind
this result can be explained by the value of the runnable overhead presented in Table 4.1
which is very small to cause a significant effect.

Figure 4.6: Effect of the overhead when the RPT (runnables per task) are varied. “O” and
“NO” represent the cases executed with and without overhead, respectively.

4.5.2.3 Varying the range of the Periods of the periodic Tasks

This experiment was executed to check the effects of system overhead when the range of
the periods of the periodic tasks in the system is varied. The ranges of periods considered
are 1ms to 10ms, 10ms to 100ms and 100ms to 1000ms. The results of this experiment
are presented in Figure 4.7. The percentage of schedulable applications for the same
configuration is decidedly more for the period ranges [100ms, 1000ms] than the [10ms,
100ms]. However, the percentage of schedulable applications for the period range [1ms,
10ms] is drastically low. There are three main reasons behind this. First, with shorter
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periods, there will be more context switching and timer expiry overheads. Second, all
the overhead added by AUTOSAR stack, e.g., communication, IO operations, and OS
overhead, becomes relatively large when the period is short. The third and final important
factor that affected the percentage of schedulable applications for the period range [1ms,
10ms] is the 1 ms tick period of the system timer. Any deviation from a normal expected
value is called jitter. The jitter because of the tick period is at least 10% to maximum
100% for this period range. This jitter is very large and thus is capable of reducing the
schedulability of the synthetic applications greatly.

Figure 4.7: Effect of the overhead when range of the periods of the periodic tasks in an
application is varied. The ranges [1,10] [10,100] and [100,1000] when changed from ms
to CPU cycles are [72x103,72x104], [72x104,72x105] and [72x105,72x106]. “O” and “NO”
represent the cases executed with and without overhead, respectively.

4.5.2.4 Varying number of IO Hardware Operations per Runnable

This experiment was conducted to model the effect of hardware IO overheads. The hard-
ware IO overheads considered are analog IO, digital IO and PWM IO. In the overhead
classification presented in Section 3.2, these overheads fall under the RTE API overheads.
In this experiment, the IOPR (IO operations per runnable) is not randomly generated be-
tween the default range but fixed. For a fixed number of IO hardware operation, its type
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(analog IO, digital IO and PWM IO) was randomly selected. Initially, IOPR were fixed to
1 and then later were increased to 4 and 16. The results of this experiment are presented
in Figure 4.8. Since for the no-overhead cases, the plots for the cases were identical, only
one line is drawn to represent all of them. When the system overhead was considered, the
percentage of schedulable applications decreased gradually from the 1 IOPR to 4 IOPR and
then later to 16 IOPR. The reason behind this is the IO overhead values. These overheads
values are large enough to cause deciding effects when the IOPR is increased.

Figure 4.8: Effect of the overhead when the IOPR (IO operations per runnable) are varied.
“O” and “NO” represent the cases executed with and without overhead, respectively.

4.5.2.5 Varying the Message Out Degree of a Runnable

This experiment was conducted to model the effects of communication overhead on an ap-
plication’s schedulability when the degree of communication is varied. In this experiment,
the message out-degree of a runnable was fixed and its receiver was selected randomly
among all the runnables which are mapped to tasks other than the sender’s task. Initially,
MPR (messages per runnable) were fixed to 1 and then later were increased to 4 and
16. The results of this experiment are presented in Figure 4.9. Since, for no overhead
case the plots for 1, 4 and 16 MPR were identical, only one line is drawn to represent
both of them. When the system overhead was considered, the percentage of schedulable
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applications decreased gradually from 1 MPR to 4 MPR and then later from 4 MPR to
16 MPR. The communication in the synthetic application is implemented using shared
buffers. There are two reasons which caused the increased overhead when MPR are in-
creased. First, copying more buffers takes more time. Second, in the MAST model of the
synthetic applications, each shared buffer bigger than 32B is modeled as a different critical
section with its unique Operation and Shared Resource element. From the graph, it can be
concluded that increasing message out degree of a runnable in an AUTOSAR application
can have significant effects on its schedulability.

Figure 4.9: Effect of the overhead when the MPR (messages per runnable) are varied. “O”
and “NO” represent the cases executed with and without overhead, respectively.

4.5.2.6 Varying the size of the data of a Message

This experiment was conducted to model the effects of communication overhead on an ap-
plication’s schedulability when the message size is varied. In this experiment, the message
size was fixed. Initially, it was set to 1 byte and then later, it was increased to 4 KB. The
results of this experiment are presented in Figure 4.10. When the system overhead was
not considered, the plot remained same for all considered values of message out degree.
So, only one line is drawn to represent the no-overhead case. With the system overhead,
the percentage of schedulable applications did not change significantly when the message
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size was increased from 1B to 4KB. From this graph, it can be concluded that the size of
the message alone does not affect the application schedulability significantly. The reason
behind this result can be explained by the small amount of time taken in copying the
memory buffers of the larger sizes.

Figure 4.10: Effect of the overhead when the message sizes are varied. “O” and “NO”
represent the cases executed with and without overhead, respectively.

4.5.2.7 Overhead if messages are being sent individually or using a Structure

This experiment was performed to check the communication overhead if a message is being
sent as a structure and when all its elements are sent individually. In this experiment three
cases were considered. The first case is when one message was sent for each byte of the
data which need to be sent. In the second case, the message data was divided in random
size chucks and then one message was sent for each of these data chunks. In the third
case, entire message data was packed in one structure and then it was sent in one message.
Figure 4.11 shows the results of this experiment. As it can be seen in the figure, for
the first case the communication overhead increases exponentially with the increase in the
size of the data. In the second case, the overhead is still very large when compared to the
results of the third case. In the third cases, the communication overhead increases linearly
with the increase in the size of the message data. From this result, it can be concluded
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that among the considered cases, communication overhead is minimum when all message
data is packed into a structure and sent in one message.

Figure 4.11: Effects of how data is being sent on communication overhead

This experiment also answers the question 2 raised in the Section 4.1. In all the executed
cases, it was observed that irrespective of the parameter being varied, for the same design
configuration and utilization factor, the number of schedulable applications is significantly
lower when the system overhead is considered than the case when the experiment was
performed without considering system overhead. Table 4.10 has listed the summary of
this experiment.

4.6 Threats to Validity

The evaluation of the proposed method was done using a concrete use case. Later, the
effects of different types of overheads were generalized using synthetic applications. In
all these experiments, the ECU and the AUTOSAR stack used were always the same.
Different ECUs have different architecture, processing power, and hence can give different
results even if everything else is kept same. Similarly, many vendors supply different
AUTOSAR stack generating tools. Even though they follow same AUTOSAR standard,

79



Parameter Varied Effects
Number of tasks Significant
Number of runnables per task Almost no effect up to 64 RPT

Range of periods of tasks
Drastic for range [1 ms,10 ms]
Significant for range [10 ms,1000 ms]

Number of IO hardware operations Significant
Message out degree of runnable Significant
Message Size Moderate
Messages being sent individually or in a structure Significant

Table 4.10: Summary of the effects of system overhead when a parameter from a fixed
design configuration of an AUTOSAR application is varied.

their implementations still might be different, and hence can give different performance.
So, the results presented might not be same for different ECUs and AUTOSAR stack
implementations. During the experiment, applications did not use communication over
networks. Also, the SWCs of the application were executed on the same core. So, the
overheads and hence results might be different, if the application is hosted on multiple
ECUs and communicate over the network.
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Chapter 5

Conclusion and Future Work

In this thesis, an overhead-aware method to find the schedulable design configuration of
a given AUTOSAR application is presented. Among the various steps of the proposed
method, the main focus was on identifying and measuring the different types of system
added overheads, and representing an AUTOSAR system as a MAST model. Later, the
proposed method was evaluated using a sample AUTOSAR application to verify its appli-
cability. This evaluation using a use case proved that a schedulable design configuration of
an AUTOSAR application can be found by following the mentioned steps of the proposed
method. During this evaluation, the overheads of the AUTOSAR stack were quantified,
which gave an estimate of the values of different types of overheads. This evaluation also
proved that different types of overheads added by the AUTOSAR stack can have signif-
icant effects on the schedulability of the application. To generalize the effects of various
types of overheads, one more evaluation was performed. During this evaluation, to cover
different configurations and types of AUTOSAR application, synthetic AUTOSAR appli-
cations were generated and analyzed using GEP framework. The effect of each type of
overhead is modeled and presented in various graphs. The results of this experiment also
iterated that the system added overheads can decidedly change the schedulability of an
AUTOSAR application. This suggests that if the system added overhead is considered in
the early stage of the AUTOSAR application development, then it will save the efforts,
time, and cost which can otherwise be wasted if the application is found not schedulable
in the later stages of its development. Moreover, the method can also be used to select the
most suitable AUTOSAR stack implementation and hardware for the application.

In the future, the details about other steps of the proposed method will be presented.
Given the AUTOSAR stack overhead, application timings, and hardware capabilities, a
framework can be developed to automate all the steps to give the best design configuration
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for the application which is schedulable and meets all the mentioned constraints. This
framework will be able to convert an AUTOSAR application into a MAST model and then
performing the design exploration for it. Also, the generalization of the different types of
overheads can be extended to include all network-related overheads. In this experiment,
the applications considered were running on a single core. So the work can be extended
to an application hosted on multiple cores on the same and different ECUs. Furthermore,
in the overhead modeling using the synthetic applications, only a hardware device and an
AUTOSAR stack was considered; so the effects can be generalized even more by performing
these experiments with different combinations of the AUTOSAR stack implementation and
the ECUs.

82



References

[1] ArcCore. http://www.arccore.com/. Accessed: 2016-07-30.

[2] ArcCore. Arctic Core. http://www.arccore.com/products/arctic-core. Accessed:
2016-07-30.

[3] ArcCore. Arctic Studio. http://www.arccore.com/products/arctic-studio. Ac-
cessed: 2016-07-30.

[4] Artop. Software component language. https://www.artop.org/artext/. Accessed:
2016-07-30.

[5] AUTOSAR. http://www.autosar.org. Accessed: 2016-07-30.

[6] AUTOSAR. AUTOSAR Timing Analysis Specification. http://www.autosar.

org/fileadmin/files/releases/4-2/methodology-templates/methodology/

auxiliary/AUTOSAR_TR_TimingAnalysis.pdf. Accessed: 2016-07-30.

[7] AUTOSAR. Basic Software Specification. https://www.autosar.org/fileadmin/

files/releases/4-0/methodology-templates/templates/standard/AUTOSAR_

TPS_BSWModuleDescriptionTemplate.pdf. Accessed: 2016-07-30.

[8] AUTOSAR. OS specification. https://www.autosar.org/fileadmin/files/

releases/4-2/software-architecture/system-services/auxiliary/AUTOSAR_

SRS_OS.pdf. Accessed: 2016-07-30.

[9] AUTOSAR. Runtime Environment Specification. http://www.autosar.org/

fileadmin/files/releases/4-2/software-architecture/rte/standard/

AUTOSAR_SWS_RTE.pdf. Accessed: 2016-07-30.

83

http://www.arccore.com/
http://www.arccore.com/products/arctic-core
http://www.arccore.com/products/arctic-studio
https://www.artop.org/artext/
http://www.autosar.org
http://www.autosar.org/fileadmin/ files/releases/4-2/methodology-templates/methodology/auxiliary/ AUTOSAR_TR_TimingAnalysis.pdf
http://www.autosar.org/fileadmin/ files/releases/4-2/methodology-templates/methodology/auxiliary/ AUTOSAR_TR_TimingAnalysis.pdf
http://www.autosar.org/fileadmin/ files/releases/4-2/methodology-templates/methodology/auxiliary/ AUTOSAR_TR_TimingAnalysis.pdf
https://www.autosar.org/fileadmin/files/releases/4-0/methodology-templates/templates/standard/AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf
https://www.autosar.org/fileadmin/files/releases/4-0/methodology-templates/templates/standard/AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf
https://www.autosar.org/fileadmin/files/releases/4-0/methodology-templates/templates/standard/AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf
https://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/system-services/auxiliary/AUTOSAR_SRS_OS.pdf
https://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/system-services/auxiliary/AUTOSAR_SRS_OS.pdf
https://www.autosar.org/fileadmin/files/releases/4-2/software-architecture/system-services/auxiliary/AUTOSAR_SRS_OS.pdf
http://www.autosar.org/ fileadmin/files/releases/4-2/software-architecture/rte/standard/ AUTOSAR_SWS_RTE.pdf
http://www.autosar.org/ fileadmin/files/releases/4-2/software-architecture/rte/standard/ AUTOSAR_SWS_RTE.pdf
http://www.autosar.org/ fileadmin/files/releases/4-2/software-architecture/rte/standard/ AUTOSAR_SWS_RTE.pdf


[10] AUTOSAR. Software Component Template. http://www.autosar.org/fileadmin/
files/releases/4-2/methodology-templates/templates/standard/AUTOSAR_

TPS_SoftwareComponentTemplate.pdf. Accessed: 2016-07-30.

[11] AUTOSAR. Virtual Function Bus Specification. http://www.autosar.org/

fileadmin/files/releases/4-2/main/auxiliary/AUTOSAR_EXP_VFB.pdf. Ac-
cessed: 2016-07-30.

[12] E. Bini and G.C. Buttazzo. Measuring the performance of schedulability tests. Real-
Time Systems, 30(1):129–154, May 2005.

[13] Manish Chauhan. Source code for the autosar application front light manager, tim-
ing measurement framework, and gep syntactic mast model framework. https:

//bitbucket.org/iammanish/thesis, 2016.

[14] L. Marce F. Singhoff, J. Legrand, L. Nana. Cheddar : a flexible real time scheduling
framework. Proceedings of the 2004 annual ACM SIGAda international conference
on Ada: The engineering of correct and reliable software for real-time and distributed
systems using Ada and related technologies, pages 1–8, 2004.

[15] Object Management Group. Uml profile for marteTM: Modeling and analysis of real-
time embedded systemsTM. 20011.

[16] Keil. Ulink-me debugger. http://www2.keil.com/mdk5/ulink. Accessed: 2016-07-
30.

[17] Keil. uVision IDE. http://www.keil.com/download/product/. Accessed: 2016-07-
30.

[18] L. Sha, R. Rajkumar, J. P. Lehoczky. Priority inheritance protocols: An approach to
real-time synchronization. IEEE Transactions on Computers, 39(9):1175–1185, 1990.

[19] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. Journal of the Association for Computing Ma-
chiner(JACM), 20(1):46–61, May 1973.

[20] MAST. http://mast.unican.es/. Accessed: 2016-07-30.

[21] Jesper Melin and Daniel Boström. Applying autosar in practice. http://www.idt.

mdh.se/examensarbete/index.php?choice=show&id=1171, 2011.

84

http://www.autosar.org/fileadmin/ files/releases/4-2/methodology-templates/templates/standard/AUTOSAR_ TPS_SoftwareComponentTemplate.pdf
http://www.autosar.org/fileadmin/ files/releases/4-2/methodology-templates/templates/standard/AUTOSAR_ TPS_SoftwareComponentTemplate.pdf
http://www.autosar.org/fileadmin/ files/releases/4-2/methodology-templates/templates/standard/AUTOSAR_ TPS_SoftwareComponentTemplate.pdf
http://www.autosar.org/ fileadmin/files/releases/4-2/main/auxiliary/AUTOSAR_EXP_VFB.pdf
http://www.autosar.org/ fileadmin/files/releases/4-2/main/auxiliary/AUTOSAR_EXP_VFB.pdf
https://bitbucket.org/iammanish/thesis
https://bitbucket.org/iammanish/thesis
http://www2.keil.com/mdk5/ulink
http://www.keil.com/download/product/
http://mast.unican.es/
http://www.idt.mdh.se/examensarbete/index.php?choice=show&id=1171
http://www.idt.mdh.se/examensarbete/index.php?choice=show&id=1171


[22] Abdollah Safaei Moghaddam. Performance evaluation and modeling of a multicore
autosar system on theoretical modelling of speedup gain in heterogeneous multicore
systems. 2014.

[23] M. Gonzalez Harbour, J.J. GutiCrrez Garcia, J.C. Palencia GutiCrrez, J.M. Drake
Moyano. MAST: modeling and analysis suite for real time applications. ECRTS ’01
Proceedings of the 13th Euromicro Conference on Real-Time Systems, page 125, 2001.

[24] Mehdi Aichouch, Jean-Christophe Pr´evotet, Fabienne Nouvel. Evaluation of the
overheads and latencies of a virtualized rtos. 8th IEEE International Symposium on
Industrial Embedded Systems, 2013.

[25] OSEK. Operating System. http://www.osek-vdx.org. Accessed: 2016-07-30.

[26] Sorin Manolache, Petru Eles, Zebo Peng. Schedulability analysis of applications with
stochastic task execution times. ACM Transactions on Embedded Computing Systems
(TECS), 3(2), 2004.

[27] Saleae. Logic-16 original logical analyzer. https://www.saleae.com/

originallogic16. Accessed: 2016-07-30.

[28] STM. Stm32f-107vc development board. http://www.st.com/content/st_com/en/

products/microcontrollers/stm32-32-bit-arm-cortex-mcus/stm32f1-series/

stm32f105-107/stm32f107vc.html. Accessed: 2016-07-30.

[29] Saoussen Anssi, Sara Tucci-Piergiovanni, Stefan Kuntz, Sébastien Gérard, François
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Appendix A

SWC Descriptions of Front Light
Management Application

A.1 SWC SwcSwitchEvent

1 package SwcSwitchEvent

3 import I n t e r f a c e s . ∗
import ArcCore . S e r v i c e s . IoHwAb . ∗

5 import Prop Generic . S e r v i c e s . IoHwAb . ∗
import AUTOSAR. S e r v i c e s .EcuM. EcuM CurrentMode

7 import AUTOSAR. S e r v i c e s .EcuM. EcuMFixedTypeMappings

9 component app l i c a t i o n SwcSwitchEventType{
por t s {

11 c l i e n t OtherL ightsSwitchStatusCl i ent r e qu i r e s D ig i ta lSe rv i c eRead
c l i e n t HeadLightSwitchStatusCl ient r e qu i r e s D ig i ta lSe rv i c eRead

13 s e r v e r OtherLightsSwitchStatusServer prov ide s
SwitchEventLightRequestCSIf1
s e r v e r HeadLightSwitchStatusServer prov ide s SwitchEventLightRequestCSIf2

15 r e c e i v e r Mode r e qu i r e s EcuM CurrentMode
}

17 }

19 i n t e rna lBehav i o r SwcSwitchEventBehavior f o r SwcSwitchEventType {
dataTypeMappings {

21 EcuMFixedTypeMappings
}
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23

runnable SwcOtherLightsSwitchStatusRunnable [ 0 . 0 ] {
25 symbol ” swcOtherLightsSwitchStatusRunnable ”

s e r v e r Cal lPo int synchronous OtherL ightsSwitchStatusCl i ent . Read
27 opera t ion InvokedEvent OtherLightsSwitchStatusServer .

readOtherLightsSwitchStatus
}

29

runnable SwcHeadLightSwitchStatusRunnable [ 0 . 0 ] {
31 symbol ” swcHeadLightSwitchStatusRunnable ”

s e r v e r Cal lPo int synchronous HeadLightSwitchStatusCl ient . Read
33 opera t ion InvokedEvent HeadLightSwitchStatusServer .

readHeadLightSwitchStatus
}

35 runnable SwcSwitchEventInitRunnable [ 0 . 0 ] {
symbol ” swcSwitchEventInitRunnable ”

37 modeSwitchEvent e x i t Mode . currentMode .STARTUP as In i tEvent
}

39 }

41 impl ementation SwcSwitchEventImplementation f o r SwcSwitchEventType .
SwcSwitchEventBehavior {

language c
43 codeDescr ip to r ” s r c ”
}

A.2 SWC SwcLightRequest

package SwcLightRequest
2

import I n t e r f a c e s . ∗
4 import AUTOSAR. S e r v i c e s .EcuM. EcuM CurrentMode
import AUTOSAR. S e r v i c e s .EcuM. EcuMFixedTypeMappings

6

component app l i c a t i o n SwcLightRequestType {
8 por t s {

c l i e n t OtherL ightsSwitchStatusCl i ent r e qu i r e s
SwitchEventLightRequestCSIf1 {

10 comSpec readOtherLightsSwitchStatus
}
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12 c l i e n t HeadLightSwitchStatusCl ient r e qu i r e s
SwitchEventLightRequestCSIf2 {

comSpec readHeadLightSwitchStatus
14 }

sender beamModeSender prov ide s LightRequestFrontLightManagerSRIf
16 sender b l inkSender prov ide s LightRequestFrontLightManagerSRIf

sender l i ghtRequestSender prov ide s LightRequestFrontLightManagerSRIf
18 r e c e i v e r Mode r e qu i r e s EcuM CurrentMode

}
20 }

22 i n t e rna lBehav i o r SwcLightRequestBehavior f o r SwcLightRequestType {
dataTypeMappings {

24 EcuMFixedTypeMappings
}

26

runnable SwcLightRequestMainRunnable [ 0 . 0 ] {
28 symbol ” swcLightRequestMainRunnable”

s e r v e r Cal lPo int synchronous OtherL ightsSwitchStatusCl i ent .
readOtherLightsSwitchStatus

30 s e r v e r Cal lPo int synchronous HeadLightSwitchStatusCl ient .
readHeadLightSwitchStatus
data SendPoint beamModeSender . beamMode

32 data SendPoint b l inkSender . b l i nk
data SendPoint l i ghtReques tSender . l i gh tReques t

34 timingEvent 0 .1
}

36

runnable SwcLightRequestInitRunnable [ 0 . 0 ] {
38 symbol ” SwcLightRequest In i t ”

modeSwitchEvent e x i t Mode . currentMode .STARTUP as In i tEvent
40 }
}

42

impl ementation SwcLightRequestImplementation f o r SwcLightRequestType .
SwcLightRequestBehavior {

44 language c
codeDescr ip to r ” s r c ”

46 }
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A.3 SWC FrontLightManager

package SwcFrontLightManager
2

import I n t e r f a c e s . ∗
4 import Prop Generic . S e r v i c e s . IoHwAb . ∗
import Prop Generic . S e r v i c e s .BswM. ∗

6 import ArcCore . S e r v i c e s . IoHwAb . ∗
import AUTOSAR. S e r v i c e s .EcuM. ∗

8 import AUTOSAR. S e r v i c e s . Det . ∗
import AUTOSAR. S e r v i c e s . Dlt . ∗

10 import AUTOSAR. S e r v i c e s .Dem. ∗
import AUTOSAR. S e r v i c e s .WdgM. ∗

12

component app l i c a t i o n SwcFrontLightManagerType{
14 por t s {

r e c e i v e r beamModeReceiver r e qu i r e s LightRequestFrontLightManagerSRIf
16 r e c e i v e r b l i nkRece i v e r r e qu i r e s LightRequestFrontLightManagerSRIf

r e c e i v e r l i gh tReque s tRece ive r r e qu i r e s LightRequestFrontLightManagerSRIf
18 c l i e n t Park ingLightCl i ent r e qu i r e s D i g i t a l S e rv i c eWr i t e

c l i e n t Le f t I nd i c a to rC l i en t r e qu i r e s D ig i t a l S e rv i c eWr i t e
20 c l i e n t RightInd ica to rC l i en t r e qu i r e s D i g i t a l S e rv i c eWr i t e

sender l i gh tBr i gh tne s sSende r prov ide s FrontLightManagerHeadLightSRIf
22 r e c e i v e r Mode r e qu i r e s EcuM CurrentMode

c l i e n t RunControl r e qu i r e s EcuM StateRequest
24 c l i e n t Det r e qu i r e s DETService

c l i e n t Dlt r e qu i r e s DLTService
26 c l i e n t Dem TestEvent r e qu i r e s DiagnosticMoni to r

c l i e n t WdgM AliveSup r e qu i r e s WdgM AliveSupervision
28 r e c e i v e r WdgM LocalMode r e qu i r e s WdgM IndividualMode

sender WdgM StateReq prov ides WdgMModeRequestInterface
30 }
}

32

i n t e rna lBehav i o r SwcFrontLightManagerBehavior f o r SwcFrontLightManagerType {
34 dataTypeMappings {

EcuMFixedTypeMappings
36 WdgMTypeMappings

}
38

runnable SwcFrontLightManagerMainRunnable [ 0 . 0 ] {
40 symbol ” swcFrontLightManagerMainRunnable”

data Rece ivePoint beamModeReceiver . beamMode
42 data Rece ivePoint b l i nkRece i v e r . b l i nk

data Rece ivePoint l i gh tReque s tRece ive r . l i gh tReques t
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44 s e r v e r Cal lPo int synchronous Park ingLightCl i ent . Write
s e r v e r Cal lPo int synchronous Le f t Ind i c a to rC l i en t . Write

46 s e r v e r Cal lPo int synchronous RightInd ica to rC l i en t . Write
data SendPoint l i gh tBr i gh tne s sSende r . ∗

48 s e r v e r Cal lPo int synchronous Det . ReportError
s e r v e r Cal lPo int synchronous Dlt . SendLogMessage

50 s e r v e r Cal lPo int synchronous Dem TestEvent . SetEventStatus
s e r v e r Cal lPo int synchronous WdgM AliveSup . UpdateAliveCounter

52 s e r v e r Cal lPo int synchronous RunControl . Rele aseRUN
modeSwitchEvent entry WdgM LocalMode . currentMode . SUPERVISION FAILED as
localModeEvent

54 dataWriteAccess WdgM StateReq . ∗
timingEvent 0 .1

56 }

58 runnable SwcFrontLightManagerInitRunnable [ 0 . 0 ] {
symbol ” swcFrontLightManagerInitRunnable ”

60 s e r v e r Cal lPo int synchronous RunControl . RequestRUN
modeSwitchEvent e x i t Mode . currentMode .STARTUP as In i tEvent

62 }
}

64

impl ementation SwcFrontLightManagerImplementation f o r
SwcFrontLightManagerType . SwcFrontLightManagerBehavior {

66 language c
codeDescr ip to r ” s r c ”

68 }

A.4 SWC Headlight

package SwcHeadlight
2

import I n t e r f a c e s . ∗
4 import AUTOSAR. S e r v i c e s .EcuM. EcuM CurrentMode
import AUTOSAR. S e r v i c e s .EcuM. EcuMFixedTypeMappings

6 import ArcCore . S e r v i c e s . IoHwAb . ∗
import Prop Generic . S e r v i c e s . IoHwAb . ∗

8

component app l i c a t i o n SwcHeadlightType{
10 por t s {

r e c e i v e r l i g h tB r i gh tn e s sRe c e i v e r r e qu i r e s FrontLightManagerHeadLightSRIf
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12 c l i e n t HeadlightPwmDuty r e qu i r e s PwmServiceSetDuty
r e c e i v e r Mode r e qu i r e s EcuM CurrentMode

14 }
}

16

i n t e rna lBehav i o r SwcHeadlightBehavior f o r SwcHeadlightType {
18 dataTypeMappings {

EcuMFixedTypeMappings
20 }

22 runnable SwcHeadlightMainRunnable [ 0 . 0 ] {
symbol ” swcHeadlightMainRunnable”

24 data Rece ivePoint l i g h tB r i gh tn e s sRe c e i v e r . ∗
s e r v e r Cal lPo int synchronous HeadlightPwmDuty . Set as
swcHeadl ightCal lPo int

26 timingEvent 0 .1
}

28

runnable SwcHeadl ightInitRunnable [ 0 . 0 ] {
30 symbol ” swcHeadl ightInitRunnable ”

modeSwitchEvent e x i t Mode . currentMode .STARTUP as In i tEvent
32 }
}

34

impl ementation SwcHeadlightImplementation f o r SwcHeadlightType .
SwcHeadlightBehavior {

36 language c
codeDescr ip to r ” s r c ”

38 }

A.5 Interface Description

This contains only the interfaces used by SWCs i.e. so system provided service’s interface
is included here.

1 package I n t e r f a c e s

3 import ArcCore . Platform . ImplementationDataTypes . ∗

5 i n t e r f a c e c l i e n t Server s e r v i c e SwitchEventLightRequestCSIf1 {
e r r o r e r r o r CanNotRead 1
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7 opera t ion readOtherLightsSwitchStatus po s s i b l eE r r o r s e r r o r CanNotRead{
out u int32 otherL ight sSwi tchStatus

9 }
}

11

i n t e r f a c e c l i e n t Server s e r v i c e SwitchEventLightRequestCSIf2 {
13 e r r o r e r r o r CanNotRead 1

opera t ion readHeadLightSwitchStatus po s s i b l eE r r o r s e r r o r CanNotRead{
15 out u int8 headLightSwitchStatus

}
17 }

19 record impl LightRequestRecord {
uint8 o f f ,

21 uint8 l e f t I n d i c a to r ,
u int8 r i g h t I nd i c a to r ,

23 uint8 parking
}

25

i n t e r f a c e sender Rece iver LightRequestFrontLightManagerSRIf{
27 data uint32 beamMode

data s i n t 8 b l i nk
29 data LightRequestRecord l i ghtReques t
}

31

i n t e r f a c e sender Rece iver FrontLightManagerHeadLightSRIf{
33 data f l o a t 6 4 l i g h tB r i gh t n e s s
}

A.6 I/O Hardware Abstraction Description

1 package STM3210CEcu . S e r v i c e s . IoHwAb

3 import ArcCore . S e r v i c e s . IoHwAb . ∗
import ArcCore . Platform . ImplementationDataTypes . ∗

5

component ecuAbstract ion IoHwAb {
7 por t s {

s e r v e r D i g i t a l D i g i t a l S i gna l Othe rL i gh t sSw i t chS t a tu s prov ide s
D ig i ta lSe rv i c eRead
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9 s e r v e r D ig i t a l D i g i t a l S i gna l HeadL igh tSw i t chS ta tu s prov ide s
D ig i ta lSe rv i c eRead
s e r v e r D i g i t a l D i g i t a l S i g n a l Pa r k i n gL i gh t prov ide s D ig i t a l S e rv i c eWr i t e

11 s e r v e r D i g i t a l D i g i t a l S i g n a l L e f t I n d i c a to r prov ide s D ig i t a l S e rv i c eWr i t e
s e r v e r D i g i t a l D i g i t a l S i g n a l R i g h t I n d i c a to r prov ide s D ig i t a l S e rv i c eWr i t e

13 s e r v e r Pwm PwmSignal LED3Duty prov ides PwmServiceSetDuty
}

15 }

17 i n t e rna lBehav i o r IoHwAbBehavior f o r IoHwAb {
runnable concurrent Dig ita lRead [ 0 . 0 ] {

19 symbol ” IoHwAb Digital Read”
opera t ion InvokedEvent D i g i t a l D i g i t a l S i gna l Othe rL i gh t sSw i t chS t a tu s .

Read
21 opera t ion InvokedEvent D ig i t a l D i g i t a l S i gna l HeadL igh tSw i t chS ta tu s .

Read
}

23 runnable concurrent Dig i ta lWr i t e [ 0 . 0 ] {
symbol ” IoHwAb Digital Write ”

25 opera t ion InvokedEvent D i g i t a l D i g i t a l S i g n a l Pa r k i n gL i gh t . Write
opera t i on InvokedEvent D i g i t a l D i g i t a l S i g n a l L e f t I n d i c a to r . Write

27 opera t ion InvokedEvent D i g i t a l D i g i t a l S i g n a l R i g h t I n d i c a to r . Write
}

29 runnable concurrent PwmSetDuty [ 0 . 0 ] {
symbol ”IoHwAb Pwm Set Duty”

31 opera t ion InvokedEvent Pwm PwmSignal LED3Duty . Set
}

33 portAPIOption D i g i t a l D i g i t a l S i gna l Othe rL i gh t sSw i t chS t a tu s {
IoHwAb SignalType 0}
portAPIOption D ig i t a l D i g i t a l S i gna l HeadL igh tSw i t chS ta tu s {
IoHwAb SignalType 1}

35 portAPIOption D i g i t a l D i g i t a l S i g n a l Pa r k i n gL i gh t { IoHwAb SignalType 2}
portAPIOption D i g i t a l D i g i t a l S i g n a l L e f t I n d i c a to r { IoHwAb SignalType 3}

37 portAPIOption D i g i t a l D i g i t a l S i g n a l R i g h t I n d i c a to r { IoHwAb SignalType 4}
portAPIOption Pwm PwmSignal LED3Duty{ IoHwAb SignalType 0}

39 }

41 impl ementation IoHwAbImpl f o r IoHwAb . IoHwAbBehavior {
language c

43 codeDescr ip to r ” s r c ”
vendorId 60

45 }
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A.7 ECU Description

package Prop
2

import SwcSwitchEvent . SwcSwitchEventType
4 import SwcLightRequest . SwcLightRequestType
import SwcFrontLightManager . SwcFrontLightManagerType

6 import SwcHeadlight . SwcHeadlightType
import STM3210CEcu . S e r v i c e s . IoHwAb . ∗

8 import Prop Generic . S e r v i c e s .EcuM. ∗
import Prop Generic . S e r v i c e s .ComM. ∗

10 import Prop Generic . S e r v i c e s .Dcm.Dcm
import Prop Generic . S e r v i c e s . Det . Det

12 import Prop Generic . S e r v i c e s . Dlt . Dlt
import Prop Generic . S e r v i c e s .Dem.Dem

14 import Prop Generic . S e r v i c e s .NvM.NvM
import Prop Generic . S e r v i c e s .BswM.BswM

16 import Prop Generic . S e r v i c e s .WdgM.WdgM

18

compos i t ion TopLevelComposition {
20 pro to type SwcSwitchEventType swcSwitchEvent

pro to type SwcLightRequestType swcLightRequest
22 pro to type SwcFrontLightManagerType swcFrontLightManager

pro to type SwcHeadlightType swcHeadl ight
24 pro to type EcuM ecuM

pro to type IoHwAb ioHwAb
26 pro to type ComM comM

pro to type Dcm dcm
28 pro to type Det det

pro to type Dlt d l t
30 pro to type Dem dem

pro to type BswM bswm
32 pro to type WdgM wdgm

pro to type NvM nvm
34

connect ioHwAb . D i g i t a l D i g i t a l S i gna l Othe rL i gh t sSw i t chS t a tu s to
swcSwitchEvent . OtherL ightsSwitchStatusCl i ent

36 connect ioHwAb . D ig i t a l D i g i t a l S i gna l HeadL igh tSw i t chS ta tu s to
swcSwitchEvent . HeadLightSwitchStatusCl ient

connect ioHwAb . D i g i t a l D i g i t a l S i g n a l Pa r k i n gL i gh t to swcFrontLightManager .
Park ingLightCl i ent

38 connect ioHwAb . D i g i t a l D i g i t a l S i g n a l L e f t I n d i c a to r to swcFrontLightManager
. Le f t I nd i c a to rC l i en t
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connect ioHwAb . D i g i t a l D i g i t a l S i g n a l R i g h t I n d i c a to r to
swcFrontLightManager . RightInd ica to rC l i en t

40 connect ioHwAb . Pwm PwmSignal LED3Duty to swcHeadl ight . HeadlightPwmDuty

42 connect swcSwitchEvent . OtherLightsSwitchStatusServer to swcLightRequest .
OtherL ightsSwitchStatusCl i ent

connect swcSwitchEvent . HeadLightSwitchStatusServer to swcLightRequest .
HeadLightSwitchStatusCl ient

44

connect swcLightRequest . beamModeSender to swcFrontLightManager .
beamModeReceiver

46 connect swcLightRequest . b l inkSender to swcFrontLightManager . b l i nkRece i v e r
connect swcLightRequest . l i ghtRequestSender to swcFrontLightManager .
l i gh tReque s tRece ive r

48

connect swcFrontLightManager . l i gh tBr i gh tne s sSende r to swcHeadl ight .
l i g h tB r i gh tn e s sRe c e i v e r

50

connect ecuM . SR PropUser to swcFrontLightManager . RunControl
52 connect ecuM . currentMode to swcFrontLightManager .Mode

connect ecuM . currentMode to swcSwitchEvent .Mode
54 connect ecuM . currentMode to swcLightRequest .Mode

connect ecuM . currentMode to swcHeadl ight .Mode
56 connect det . DS DetPortReader to swcFrontLightManager . Det

connect d l t . Dl t s e r v i c e to swcFrontLightManager . Dlt
58 connect dem . Event TestEvent to swcFrontLightManager . Dem TestEvent

connect wdgm. a l ive Superv ised100msT ask to swcFrontLightManager .
WdgM AliveSup

60 connect wdgm. mode Supervised100msT ask to swcFrontLightManager .
WdgM LocalMode

connect swcFrontLightManager .WdgM StateReq to bswm.
modeRequestPort WdgMMode

62 }

A.8 System Description

1 package Prop

3

import Prop . TopLevelComposition . ∗
5 import Prop . Communication . ∗
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import STM3210CEcu . S e r v i c e s . IoHwAb . ∗
7 import Prop Generic . S e r v i c e s .WdgM.WdgMImpl
import Prop Generic . S e r v i c e s .ComM.ComMImpl

9 import Prop Generic . S e r v i c e s .Dcm.DcmImpl
import Prop Generic . S e r v i c e s .Dem.DemImpl

11 import Prop Generic . S e r v i c e s . Det . DetImpl
import Prop Generic . S e r v i c e s . Dlt . DltImpl

13 import Prop Generic . S e r v i c e s .BswM.BswMComponentImpl
import Prop Generic . S e r v i c e s .EcuM. EcuMFixedImpl

15 import Prop Generic . S e r v i c e s . IoHwAb . IoHwAbImpl
import Prop Generic . S e r v i c e s .NvM.NvMImpl

17

import SwcSwitchEvent . SwcSwitchEventImplementation
19 import SwcLightRequest . SwcLightRequestImplementation

import SwcFrontLightManager . SwcFrontLightManagerImplementation
21 import SwcHeadlight . SwcHeadlightImplementation

23 import I n t e r f a c e s .MemoryCmdIf . command
import I n t e r f a c e s .MemoryCmdIf . b lockId

25 import I n t e r f a c e s .MemoryCmdIf . payload
import I n t e r f a c e s . SwitchEventLightRequestCSIf . sw i tchStatus

27 import I n t e r f a c e s . LightRequestFrontLightManagerSRIf . ev
import I n t e r f a c e s . FrontLightManagerHeadLightSRIf . ∗

29

31 system Prop {
rootComposit ion TopLevelComposition

33

mapping {
35 implMap SwcSwitchEventImplementation to swcSwitchEvent

implMap SwcLightRequestImplementation to swcLightRequest
37 implMap SwcFrontLightManagerImplementation to swcFrontLightManager

implMap SwcHeadlightImplementation to swcHeadl ight
39 implMap IoHwAbImpl to ioHwAb

41 implMap ComMImpl to comM as comMMapping
implMap DcmImpl to dcm as dcmMapping

43 implMap DemImpl to dem as demMapping
implMap DetImpl to det as detMapping

45 implMap DltImpl to d l t as dltMapping
implMap NvMImpl to nvm as nvmMapping

47 implMap BswMComponentImpl to bswm as bswMMapping
implMap EcuMFixedImpl to ecuM as ecuMMapping

49 implMap WdgMImpl to wdgm as wdgMMapping
}
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51 }
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Appendix B

MAST model of Front Light
Management

2

Model (
4 Model Name => FrontLightManager ,

Model Date => 2016−05−27,
6 System Pip Behaviour => STRICT) ;

8 Proces s ing Resource (
Type => Regular Processor ,

10 Name =>cpu 1 ,
Max Inte r rupt Pr i o r i ty => 300 ,

12 Min In t e r rup t Pr i o r i t y => 250 ,
Worst ISR Switch => 256 ,

14 Avg ISR Switch => 256 ,
Best ISR Switch => 256 ,

16 System Timer =>
(Type => Ticker ,

18 Worst Overhead => 3938 ,
Avg Overhead => 1191 ,

20 Best Overhead => 943 ,
Period => 72000) ,

22 Speed Factor => 1 . 0 ) ;

24 Scheduler (
Type => Primary Scheduler ,

26 Name => s chedu l e r 1 ,
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Host => cpu 1 ,
28 Pol i cy =>

( Type => Fixed Pr i o r i t y ,
30 Worst Context Switch => 4559 .0 ,

Avg Context Switch => 4514 .0 ,
32 Best Context Switch => 4478 .0 ,

Max Prior i ty => 300 ,
34 Min Pr io r i ty => 1) ) ;

36 Schedu l ing Se rve r (
Type => Regular ,

38 Name => t a s k l i g h t r e q u e s t ,
S e rve r Sched Parameters =>

40 ( Type => F ix ed Pr i o r i t y Po l i c y ,
The Pr io r i ty => 8 ,

42 Preass igned => NO) ,
Scheduler => s ch edu l e r 1 ) ;

44

Schedu l ing Se rve r (
46 Type => Regular ,

Name => t a sk f r on t l i gh t manage r ,
48 Se rve r Sched Parameters =>

( Type => F ix ed Pr i o r i t y Po l i c y ,
50 The Pr io r i ty => 7 ,

Preass igned => NO) ,
52 Scheduler => s ch edu l e r 1 ) ;

54 Schedu l ing Se rve r (
Type => Regular ,

56 Name => t a sk head l i gh t ,
S e rve r Sched Parameters =>

58 ( Type => F ix ed Pr i o r i t y Po l i c y ,
The Pr io r i ty => 6 ,

60 Preass igned => NO) ,
Scheduler => s ch edu l e r 1 ) ;

62

Shared Resource (
64 Type => immediate Ce i l ing Resource ,

Name => r e c o rd bu f f e r 3 2 ,
66 Ce i l i n g => 300 ,

Preass igned => YES) ;
68

Shared Resource (
70 Type => immediate Ce i l ing Resource ,

Name => bu f f e r 64 ,

101



72 Ce i l i n g => 300 ,
Preass igned => YES) ;

74

Operation (
76 Type => Simple ,

Name =>
c ommun i c a t i o n exp l i c i t l e s s t h an wo rd s i z e on l y bu f f e r ,

78 Worst Case Execution Time => 23 .00 ,
Avg Case Execution Time => 19 .00 ,

80 Best Case Execution Time => 18 .00 ) ;

82 Operation (
Type => Simple ,

84 Name => commun i ca t i on exp l i c i t r unnab l e t o bu f f e r ,
Worst Case Execution Time => 36 .00 ,

86 Avg Case Execution Time => 35 .00 ,
Best Case Execution Time => 32 .00 ) ;

88

Operation (
90 Type => Simple ,

Name =>
commun i c a t i on exp l i c i t on l y r e c o rd bu f f e r 32 rw ,

92 Worst Case Execution Time => 113 .00 ,
Avg Case Execution Time => 109 .00 ,

94 Best Case Execution Time => 108 .00 ,
Shared Resource s To Lock =>

96 ( r e c o r d bu f f e r 3 2 ) ,
Shared Resource s To Unlock =>

98 ( r e c o r d bu f f e r 3 2 ) ) ;

100 Operation (
Type => Simple ,

102 Name => commun i ca t i on exp l i c i t bu f f e r t o runnab l e ,
Worst Case Execution Time => 41 .00 ,

104 Avg Case Execution Time => 39 .00 ,
Best Case Execution Time => 36 .00 ) ;

106

Operation (
108 Type => Composite ,

Name => commun i ca t i on exp l i c i t r e c o rd bu f f e r 32 rw ,
110 Composite Operation L i s t =>

( c ommun i ca t i on exp l i c i t r unnab l e t o bu f f e r ,
112 commun i c a t i on exp l i c i t on l y r e c o rd bu f f e r 32 rw ,

c ommun i c a t i on exp l i c i t bu f f e r t o runnab l e ) ) ;
114
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Operation (
116 Type => Composite ,

Name => c ommun i c a t i on exp l i c i t l e s s t han wo rd s i z e ,
118 Composite Operation L i s t =>

( c ommun i ca t i on exp l i c i t r unnab l e t o bu f f e r ,
120 c ommun i c a t i o n exp l i c i t l e s s t h an wo rd s i z e on l y bu f f e r ,

c ommun i c a t i on exp l i c i t bu f f e r t o runnab l e ) ) ;
122

Operation (
124 Type => Simple ,

Name => commun i ca t i on exp l i c i t on l y bu f f e r 64 rw ,
126 Worst Case Execution Time => 108 .00 ,

Avg Case Execution Time => 106 .00 ,
128 Best Case Execution Time => 104 .00 ,

Shared Resource s To Lock =>
130 ( bu f f e r 6 4 ) ,

Shared Resource s To Unlock =>
132 ( bu f f e r 6 4 ) ) ;

134 Operation (
Type => Composite ,

136 Name => commun i ca t i on exp l i c i t bu f f e r 64 rw ,
Composite Operation L i s t =>

138 ( c ommun i ca t i on exp l i c i t r unnab l e t o bu f f e r ,
c ommun i ca t i on exp l i c i t on l y bu f f e r 64 rw ,

140 c ommun i c a t i on exp l i c i t bu f f e r t o runnab l e ) ) ;

142 Operation (
Type => Simple ,

144 Name =>
s t a r t r unnab l e non imp l i c i t f r om even t o c cu r r ed t o runnab l e ,
Worst Case Execution Time => 306 .00 ,

146 Avg Case Execution Time => 304 .00 ,
Best Case Execution Time => 302 .00) ;

148

Operation (
150 Type => Simple ,

Name =>
end runnab l e non imp l i c i t f r om runnab l e t o aga in go ing back to wa i t ,

152 Worst Case Execution Time => 41 .00 ,
Avg Case Execution Time => 37 .00 ,

154 Best Case Execution Time => 36 .00 ) ;

156 Operation (
Type => Simple ,
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158 Name => s t a r t runnab l e s ynch s e r v e r ,
Worst Case Execution Time => 77 .00 ,

160 Avg Case Execution Time => 76 .00 ,
Best Case Execution Time => 72 .00 ) ;

162

Operation (
164 Type => Simple ,

Name => end runnab l e synch se rve r ,
166 Worst Case Execution Time => 81 .00 ,

Avg Case Execution Time => 81 .00 ,
168 Best Case Execution Time => 81 .00 ) ;

170 Operation (
Type => Simple ,

172 Name => i o hwab d i g i t a l w r i t e ,
Worst Case Execution Time => 1296 .0 ,

174 Avg Case Execution Time => 1262 .0 ,
Best Case Execution Time => 1202 .0 ) ;

176

Operation (
178 Type => Simple ,

Name => i ohwab d i g i t a l r e ad ,
180 Worst Case Execution Time => 644 .00 ,

Avg Case Execution Time => 615 .00 ,
182 Best Case Execution Time => 590 .00) ;

184 Operation (
Type => Simple ,

186 Name => iohwab pwm write ,
Worst Case Execution Time => 477 .00 ,

188 Avg Case Execution Time => 473 .00 ,
Best Case Execution Time => 468 .00) ;

190

Operation (
192 Type => Simple ,

Name => i n i t r unnab l e s on l y runnab l e t ime ,
194 Worst Case Execution Time => 3640 ,

Avg Case Execution Time => 3650 ,
196 Best Case Execution Time => 3690) ;

198 Operation (
Type => Composite ,

200 Name => i n i t r unnab l e s ,
Composite Operation L i s t =>

202 ( s t a r t r unnab l e non imp l i c i t f r om even t o c cu r r ed t o runnab l e ,
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i n i t r unnab l e s on l y runnab l e t ime ,
204 end runnab l e non imp l i c i t f r om runnab l e t o aga i n go i ng back t o wa i t )

) ;

206 Operation (
Type => Simple ,

208 Name =>
swch ead l i gh t sw i t ch s t a tu s runnab l e f r om beg i n i n g t o h ead l i gh t sw i t ch s t a tu s c l i e n t r e ad
,
Worst Case Execution Time => 1400 .00 ,

210 Avg Case Execution Time => 1200 .00 ,
Best Case Execution Time => 900 .00) ;

212

Operation (
214 Type => Simple ,

Name =>
swchead l i gh t sw i t ch s t a tu s runnab l e f r om head l i gh t sw i t ch s t a tu s c l i e n t r e ad t o end
,

216 Worst Case Execution Time => 2300 .00 ,
Avg Case Execution Time => 2000 .00 ,

218 Best Case Execution Time => 1800 .00) ;

220 Operation (
Type => Composite ,

222 Name => swchead l i ght sw i tchs ta tus runnab l e ,
Composite Operation L i s t =>

224 (
swch ead l i gh t sw i t ch s t a tu s runnab l e f r om beg i n i n g t o h ead l i gh t sw i t ch s t a tu s c l i e n t r e ad
,

i ohwab d i g i t a l r e ad ,
226

swchead l i gh t sw i t ch s t a tu s runnab l e f r om head l i gh t sw i t ch s t a tu s c l i e n t r e ad t o end
) ) ;

228 Operation (
Type => Simple ,

230 Name =>
swco th e r l i g h t s sw i t c h s t a t u s r unnab l e f r om beg i n i n g t o h e ad l i g h t sw i t c h s t a t u s c l i e n t r e ad
,
Worst Case Execution Time => 1400 .00 ,

232 Avg Case Execution Time => 1200 .00 ,
Best Case Execution Time => 900 .00) ;

234

Operation (
236 Type => Simple ,
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Name =>
swco th e r l i g h t s sw i t ch s t a t u s r unnab l e f r om head l i g h t sw i t ch s t a t u s c l i e n t r e ad t o end
,

238 Worst Case Execution Time => 2300 .00 ,
Avg Case Execution Time => 2200 .00 ,

240 Best Case Execution Time => 1800 .00) ;

242 Operation (
Type => Composite ,

244 Name => swco the r l i gh t s sw i t ch s ta tu s runnab l e ,
Composite Operation L i s t =>

246 (
swco th e r l i g h t s sw i t c h s t a t u s r unnab l e f r om beg i n i n g t o h e ad l i g h t sw i t c h s t a t u s c l i e n t r e ad
,

i ohwab d i g i t a l r e ad ,
248

swco th e r l i g h t s sw i t c h s t a t u s r unnab l e f r om head l i g h t sw i t c h s t a t u s c l i e n t r e ad t o end
) ) ;

250 Operation (
Type => Simple ,

252 Name =>
swc l i gh t r eque s tma in runnab l e f r om beg in i ng t o r e ado the r l i gh t s sw i t ch s t a tu s ,
Worst Case Execution Time => 8100 .00 ,

254 Avg Case Execution Time => 7800 .00 ,
Best Case Execution Time => 7700 .00) ;

256

Operation (
258 Type => Simple ,

Name =>
swc l i g h t r e qu e s tma in runnab l e f r om r e ado th e r l i g h t s sw i t ch s t a tu s t o l i g h t r e qu e s t
,

260 Worst Case Execution Time => 14000 .00 ,
Avg Case Execution Time => 9900 .00 ,

262 Best Case Execution Time => 9000 .00) ;

264 Operation (
Type => Simple ,

266 Name =>
swc l i gh t r eque s tma in runnab l e f r om l i gh t r eque s t t o r e adhead l i gh t sw i t ch s t a tu s
,
Worst Case Execution Time => 900 .00 ,

268 Avg Case Execution Time => 900 .00 ,
Best Case Execution Time => 500 .00) ;

270
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Operation (
272 Type => Simple ,

Name =>
swc l ightreques tmainrunnab le f rom readhead l ightswi tchstatus to beammode ,

274 Worst Case Execution Time => 1400 .00 ,
Avg Case Execution Time => 1300 .00 ,

276 Best Case Execution Time => 900 .00) ;

278 Operation (
Type => Simple ,

280 Name =>
swc l ightrequestmainrunnable f rom beammode to bl ink ,
Worst Case Execution Time => 9 . 00 ,

282 Avg Case Execution Time => 9 . 00 ,
Best Case Execution Time => 5 . 00 ) ;

284

Operation (
286 Type => Simple ,

Name =>
swc l i gh t r e que s tma in runnab l e f r om b l i nk t i l l e nd ,

288 Worst Case Execution Time => 900 .00 ,
Avg Case Execution Time => 900 .00 ,

290 Best Case Execution Time => 500 .00) ;

292 Operation (
Type => Composite ,

294 Name => swc l ightrequestmainrunnable ,
Composite Operation L i s t =>

296 (
swc l i gh t r eque s tma in runnab l e f r om beg in i ng t o r e ado the r l i gh t s sw i t ch s t a tu s ,

s t a r t r unnab l e s ynch s e r v e r ,
298 swco the r l i gh t s sw i t ch s ta tu s runnab l e ,

end runnab l e synch se rve r ,
300

swc l i g h t r e qu e s tma in runnab l e f r om r e ado th e r l i g h t s sw i t ch s t a tu s t o l i g h t r e qu e s t
,

c ommun i ca t i on exp l i c i t r e c o rd bu f f e r 32 rw ,
302

swc l i gh t r eque s tma in runnab l e f r om l i gh t r eque s t t o r e adhead l i gh t sw i t ch s t a tu s
,

s t a r t r unnab l e s ynch s e r v e r ,
304 swchead l i ght sw i tchs ta tus runnab l e ,

end runnab l e synch se rve r ,
306

swc l ightreques tmainrunnab le f rom readhead l ightswi tchstatus to beammode ,
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c ommun i c a t i on exp l i c i t l e s s t han wo rd s i z e ,
308 swc l ightrequestmainrunnable f rom beammode to bl ink ,

c ommun i c a t i on exp l i c i t l e s s t han wo rd s i z e ,
310 swc l i g h t r e qu e s tma in runnab l e f r om b l i nk t i l l e nd ) ) ;

312 Operation (
Type => Composite ,

314 Name => swc l i gh t r eque s t ,
Composite Operation L i s t =>

316 ( s t a r t r unnab l e non imp l i c i t f r om even t o c cu r r ed t o runnab l e ,
swc l ightrequestmainrunnable ,

318 end runnab l e non imp l i c i t f r om runnab l e t o aga i n go i ng back t o wa i t )
) ;

320 Operation (
Type => Simple ,

322 Name =>
swcfront l ightmanagermainrunnable from beginging to beam mode ,
Worst Case Execution Time => 1400 .00 ,

324 Avg Case Execution Time => 1300 .00 ,
Best Case Execution Time => 900 .00) ;

326

Operation (
328 Type => Simple ,

Name =>
swc f ront l i ghtmanagermainrunnab le f rom beam mode to l ight br ightness ,

330 Worst Case Execution Time => 1800 .00 ,
Avg Case Execution Time => 1500 .00 ,

332 Best Case Execution Time => 1400 .00) ;

334 Operation (
Type => Simple ,

336 Name =>
swc f r on t l i gh tmanage rma in runnab l e f r om l i gh t b r i gh tn e s s t o l i gh t r eque s t ,
Worst Case Execution Time => 90000 .00 ,

338 Avg Case Execution Time => 80000 .00 ,
Best Case Execution Time => 50000 .00) ;

340

Operation (
342 Type => Simple ,

Name =>
swc f r on t l i gh tmanage rma in runnab l e f r om l i gh t r eque s t t o b l i nk ,

344 Worst Case Execution Time => 413100 .0 ,
Avg Case Execution Time => 340200 .0 ,

346 Best Case Execution Time => 136800 .0) ;
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348 Operation (
Type => Simple ,

350 Name =>
swc f r on t l i gh tmanage rma in runnab l e f r om b l ink t i l l end ,
Worst Case Execution Time => 41270 .0 ,

352 Avg Case Execution Time => 41010 .0 ,
Best Case Execution Time => 40950 .0) ;

354

Operation (
356 Type => Composite ,

Name => swcfront l ightmanagermainrunnable ,
358 Composite Operation L i s t =>

( swcfront l ightmanagermainrunnable from beginging to beam mode ,
360 c ommun i c a t i on exp l i c i t l e s s t han wo rd s i z e ,

swc f ront l i ghtmanagermainrunnab le f rom beam mode to l ight br ightness ,
362 commun i ca t i on exp l i c i t bu f f e r 64 rw ,

swc f r on t l i gh tmanage rma in runnab l e f r om l i gh t b r i gh tn e s s t o l i gh t r eque s t ,
364 commun i ca t i on exp l i c i t r e c o rd bu f f e r 32 rw ,

swc f r on t l i gh tmanage rma in runnab l e f r om l i gh t r eque s t t o b l i nk ,
366 c ommun i c a t i on exp l i c i t l e s s t han wo rd s i z e ,

swc f r on t l i gh tmanage rma in runnab l e f r om b l i nk t i l l end ) ) ;
368

Operation (
370 Type => Composite ,

Name => swcfront l ightmanager ,
372 Composite Operation L i s t =>

( s t a r t r unnab l e non imp l i c i t f r om even t o c cu r r ed t o runnab l e ,
374 swcfront l ightmanagermainrunnable ,

end runnab l e non imp l i c i t f r om runnab l e t o aga i n go i ng back t o wa i t )
) ;

376

Operation (
378 Type => Simple ,

Name =>
swchead l i gh tma in runnab l e f r om beg ing ing to l i gh t b r i gh tne s s ,

380 Worst Case Execution Time => 2300 .00 ,
Avg Case Execution Time => 2000 .00 ,

382 Best Case Execution Time => 1800 .00) ;

384 Operation (
Type => Simple ,

386 Name =>
swchead l i ghtma inrunnab l e f rom l ight br i ghtne s s to pwm duty se t ,
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Worst Case Execution Time => 87300 .00 ,
388 Avg Case Execution Time => 77100 .00 ,

Best Case Execution Time => 68900 .00) ;
390

Operation (
392 Type => Simple ,

Name =>
swchead l i ghtmainrunnab le f rom pwm duty se t t i l l end ,

394 Worst Case Execution Time => 900 .00 ,
Avg Case Execution Time => 900 .00 ,

396 Best Case Execution Time => 500 .00) ;

398 Operation (
Type => Composite ,

400 Name => swcheadl ightmainrunnable ,
Composite Operation L i s t =>

402 ( swchead l i gh tma in runnab l e f r om beg ing ing to l i gh t b r i gh tne s s ,
c ommun i ca t i on exp l i c i t bu f f e r 64 rw ,

404 swchead l i ghtma inrunnab l e f rom l ight br i ghtne s s to pwm duty se t ,
iohwab pwm write ,

406 swchead l i ghtma inrunnab le f rom pwm duty se t t i l l end ) ) ;

408 Operation (
Type => Composite ,

410 Name => swcheadl ight ,
Composite Operation L i s t =>

412 ( s t a r t r unnab l e non imp l i c i t f r om even t o c cu r r ed t o runnab l e ,
swcheadl ightmainrunnable ,

414 end runnab l e non imp l i c i t f r om runnab l e t o aga i n go i ng back t o wa i t )
) ;

416 Transact ion (
Type => r egu la r ,

418 Name => t r a n s a c t i o n i n i t a l l r u n n a b l e s ,
External Event s =>

420 ( ( Type => Singular ,
Name => e v e n t s i n g u l a r i n i t r u nn a l e ,

422 Phase => 0 . 000 ) ) ,
In t e rna l Event s =>

424 ( ( Type => Regular ,
Name => i n t e r n a l e v e n t ) ) ,

426 Event Handlers =>
( (Type => Act iv i ty ,

428 Input Event => e v e n t s i n g u l a r i n i t r u nn a l e ,
Output Event => i n t e rna l e v en t ,
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430 Act i v i t y Operation => i n i t r unnab l e s ,
Ac t i v i t y S e rv e r => t a s k f r on t l i g h t manag e r ) ) ) ;

432

Transact ion (
434 Type => r egu la r ,

Name => t r a n s a c t i o n l i g h t r e q u e s t ,
436 External Event s =>

( ( Type => Per iod ic ,
438 Name => ev en t pe r i od i c l r 5 0ms ,

Period => 720000 ,
440 Max Jitter => 0 .000 ,

Phase => 0 . 000 ) ) ,
442 In t e rna l Event s =>

( ( Type => Regular ,
444 Name => i n t e r n a l e v e n t ) ) ,

Event Handlers =>
446 ( (Type => System Timed Activity ,

Input Event => ev en t pe r i od i c l r 5 0ms ,
448 Output Event => i n t e rna l e v en t ,

Ac t i v i t y Operation => swc l i gh t r eque s t ,
450 Act i v i t y S e rv e r => t a s k l i g h t r e q u e s t ) ) ) ;

452 Transact ion (
Type => r egu la r ,

454 Name => t r an s a c t i on f r on t l i gh t manag e r ,
External Event s =>

456 ( ( Type => Per iod ic ,
Name => event pe r i od i c f lm 50ms ,

458 Period => 720000 ,
Max Jitter => 0 .000 ,

460 Phase => 0 . 000 ) ) ,
In t e rna l Event s =>

462 ( ( Type => Regular ,
Name => i n t e r n a l e v e n t ) ) ,

464 Event Handlers =>
( (Type => System Timed Activity ,

466 Input Event => event pe r i od i c f lm 50ms ,
Output Event => i n t e rna l e v en t ,

468 Act i v i t y Operation => swcfront l ightmanager ,
Ac t i v i t y S e rv e r => t a s k f r on t l i g h t manag e r ) ) ) ;

470

Transact ion (
472 Type => r egu la r ,

Name => t r an s a c t i on head l i gh t ,
474 External Event s =>
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( ( Type => Per iod ic ,
476 Name => even t pe r i od i c h l 50ms ,

Period => 720000 ,
478 Max Jitter => 0 .000 ,

Phase => 0 . 000 ) ) ,
480 In t e rna l Event s =>

( ( Type => Regular ,
482 Name => i n t e r n a l e v e n t ) ) ,

Event Handlers =>
484 ( (Type => System Timed Activity ,

Input Event => even t pe r i od i c h l 50ms ,
486 Output Event => i n t e rna l e v en t ,

Ac t i v i t y Operation => swcheadl ight ,
488 Act i v i t y S e rv e r => t a s k h ead l i gh t ) ) ) ;
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