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Abstract 

HVDC converter stations, being non-linear loads for the AC system, have been 

relyïng on the use of s h t  AC passive filtas to rednee the h d  dec t s  that the 

harmonic AC currents impose on the AC system. AC passive filters, however, present 

several characteristics that redeem their performance to levels far tiom excellent. 

Concerns about harmonie-related problems caused by the of use of large-capacity 

non-linear loads have led to the use of active filters in the industry. Active filters cancel 

the airned harmonic content of a non-linear load by injecting harmonic cnrrents with 

the same magnitude but in complete phase opposition. Active filters present superior 

performance than that offered by the traditional AC passive füters. 

Although there have been proposals of the application of AGside active filtering 

in HVDC systems, the present ratings of the power semiconductor switches cornmer- 

cially avdable do not permit the strsightfomard implementation of these proposals 

yet. Besides the high power rating that characterizes HVDC systems, some of their 

operation characteris tics have been posing fnrther obstacles to the use of active Nters . 

This thesis proposes an active-filter topology that decouples the reactive-power 

supply and filtering h c t i o n s  that characterize the traditional HVDC AC passive 

filtas and all the active-filter proposals presented to date. The complete devotion to 

the filtering fnnction off' several advantages that might overshadow its potentially 

higher initial costs. 

The application of modem control theory is proposed as the basis of the control 

scheme. This technique suits more adequately the complexity of the control problem 

at hand than classical methods do, and provides a common Famework for cornparison 

of clifferent control approaches. The optimal-control technique is the approach used 

in this thesis. 

The CIGRÉ H M C  benchmark system has been chosen as the platform on which 
to test the performance of the proposed AC active filter. A simpMed version of 

this system, that still maintains the weak AC system and the A G  and DC-frequency 

resonances of the original system, has been used, and poses a good degree of diffiCUIty 

to the proposed activefilter operation. 



Acknowledgments 

1 wodd like to express m y  gratitude to Professor John Reeve for the opportunity 

to do this research, for his expertise, guidance, encouragement and support. 

1 am also profoundly indebted to Geraldo Leite Torres, whom 1 am non a sincere 

fiiend of, for his help in typing this thesis, expertise with B '  and personal support. 

A speual thanks is due to Edvina Uzunovic, an office colleague who, by capricious 

fate, became a close &end, and whose personal support was very important to this 

accomplishment . 
Thanks to Prof. David Wang for the valuable advice on Control Theory, to An- 

tonio G. G. Lima and Luiz A. S. Pilotto, from CEPEL, for th& recommendations 

and guidance, and to all of my office coueagues for many helpfd and interesthg 

discussions. 

1 wodd like to thank the Bravlian people tkough CAPES, for their hancial 
support and trust. 1 &O appreciate the support fiom the University of Waterloo, 

especially towards the end of the program. 

The Brazilian community of Waterloo, partidarly my close fiiends Antonio, Math 
and Matheas, also deserve my deep gratitude for easing rny homesickness by providing 

personal support and by keeping the Brazilian spkit always present. 

A big "thanks" go to Everton, Fernando, Geraldo and Pedro, the "night-shiftn 

group who, daring the last months of preparing this manuscript, provided me with 

support and relaxing moments at the coffee breaks in the early, and late morning 

hours. 

Finally, most of dl, 1 would like to thank my parents, Cecilia and Geraldo, for 

caring, for their love, and for the Me guidance and support that made this achievement 
possible. 

André Lniz da Rosa Plaisant. 



Glossary of Terms 

ABB 

AC 

BIL 

CEPEL 

CC1 

CIGRÉ 

CR-VSI 

CS1 

DC 

DSP 

ESCR 

ESR 

FACTS 

FBSOA 

FFT 

HDL 

m c  
IHD 

MTBF 

NPT 

PC 

PI 

PLL 

p-u. 

P m  

ASEA Brown Boveri 

Alternating cnrrent 

Basic instdation level 

Centro de Pesqnisas de Energia Elétrica 

Cturent-controlled inverter 

Conferénce Internationale des Grands Réseaux Electriques 

Cwent-regulated voltage-source inverter 

Current-source inverter 

Direct m e n t  

Digital signal processor 

Effective short-circuit ratio 

Equivalent series resistance 

Flexible AC transmission systems 

Forward-biased safe operating area 

Fast Fourier transform 

Hardware-descrip tion language 

High voltage direct current 

Individual harmonic dis for tion 

Mean-time between failmes 

Non-panch-throngh 

Phase comparator 

Proportional-intepl 

Phase-locked loop 

Per-uni t 

Pulse-width modnlator 



RBSOA 

RMS 

SCR 

SIS0 

SPWM 

svc 
VCI 

VCO 

VDCOL 

VSI 

THD 

Reverse-biased safe operating area 

Rmt-mean-square 

Short-circuit ratio 

Single-input , singboutput 

Sinusoida1 palse-width modulator 

Static VAr compensator 

Volt age-controUed inverter 

Voltage-controlled oscillator 

Volt age-dependen t carrent -order limiter 

Volt age-source inverter 

Tot al harmonic dis tortion 

Tehhone intedaence factor 



Contents 

1 Introduction 1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.1 Introduction 1 

. . . . . . . . . . . . . . . . . . . . . .  1.2 Magnetic-Flux Compensation 4 

. . . . . . . . . .  1.3 Cnrrent-Source P m  Inverter as an Active Source 6 

1.4 Capacitor-Commatated Inverter with a PLL-Generated Reference Signal 7 

. . . . . . . . . . . . . . . .  1.5 PWM CR-VSI and Economic Feasibility 10 

1.6 Combined Use of Series Active Filters and a Tkaclitional Bank of Shunt 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Passive Filters 13 

1.7 Combined Use of Active Filters in Series with a Traditional Bank of 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  ShuntPassiveFilters 16 

1.8 Combined Use of Active Filters in Series with Shunt Single-Tnned Filters 18 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.10 Condusion 21 

2 Harmonies in HVDC Systems 22 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.1 The HVDC System 22 

. . . . . . . . . . . . . . . . . .  2.2 AC-Current Characteristic Harxnonics 24 

. . . . . . . . . . . . . . .  2.3 AC-Current Non-Characteristic Harmonies 29 

. . . . . . . . . . . . . . . . . . . . . . . . . .  2.4 DCVoltage Harmonies 29 

. . . . . . . . . . . . . . .  2.5 DGVolt age Non-C haacteris tic Harmonies 32 



. . . . . . . . . . . . . . . . .  2.6 AC-DC Barmonic-Order Banderences 32 

. . . . . . . . . . . . . . . . . . . . . . .  2.7 Fkequency Range of Interest 33 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.8 Harmonic Indices 33 

3 AC Passive Fiters in EVDC Terminais 37 

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37 

. . . . . . . . . . . . . . . . . . . .  3.2 Point of Connection of the Filter 38 

. . . . . . . . . . . . . . . .  3.3 Types of AC Passive-Filter Connections 38 

. . . . . . . . . . . . . . . . . . . . . . . . .  3.3.1 Series Connection 39 

. . . . . . . . . . . . . . . . . . . . . . . .  3.3.2 ParaIlel Connection 39 

. . . . . . . . . . . . . .  3.4 Types of AC Filters Used in HVDC Systems 40 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  3.4.1 Tmed Filtas 40 

. . . . . . . . . . . . . . . . . . . . . . . . . .  3.4.2 Damped Filters 45 

. . . . . . . . . . . . . . . . . . . .  3.5 ACFilter Reactive-Power Snpply 48 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.6 The Design Process 50 

3.7 Disadvantages of the Use of AC Passive Filters in nVDC Terminah . 53 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.7.1 Design 53 

. . . . . . . . . . . . . . . . . . . . . . . . . .  3.7.2 Reactive Power 54 

. . . . . . . . .  3.7.3 AGSystem Fundamental-Fkequency Variation 54 

. . . . . . . . . . . . .  3.7.4 AGFdter-Component Value Variations 55 

. . . . . . . . . . . . .  3.7.5 Relative Impedance of the AC Network 55 

. . . . . . . . . . . . . . . . . . . . . . . . .  3.7.6 Series Resonance 57 

. . . . . . . . . . . . . . . . . . . . . . . .  3.7.7 Parallel Resonance 57 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  3.7.8 Physical Area 58 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.7.9 Cost 58 

4 The HVDC Test System 59 



. . . . . . . . . . . . . . . . .  4.1 The CIGRÉ HVDC Benchmark System 59 

4.2 The Derivation of the HVDC Test System . . . . . . . . . . . . . . .  60 

4.3 The HVDC Test-System Control . . . . . . . . . . . . . . . . . . . .  65 

4.3.1 TheVoltage-Dependent CurrenbOrderLimiter . . . . . . . . .  66 

4.3.2 The Current Control . . . . . . . . . . . . . . . . . . . . . . .  68 

4.3.3 The Firing Control . . . . . . . . . . . . . . . . . . . . . . . .  68 

5 The Active Filter 71 

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71 

5.2 The Connection of the Active Source to the AC System . The Path 

Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73 

5.3 Configuration of the Active Source . . . . . . . . . . . . . . . . . . .  79 

5.4 The Sinusoidd-Pulse- Widt h-Modula tion 

(SP WM) Switchiag-Control Method . . . . . . . . . . . . . . . . . . .  82 

5.5 Viability of the Proposa Concerning the Availability of the Switching 
Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84 

5.5.1 A Brief Suitability Appraisal of Power Semiconductor Devices 84 

5.5.2 The IGBT . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86 

5.6 The Active-Source Inverter Output Filter . . . . . . . . . . . . . . . .  91 

6 The Active-Fiter Control 100 

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  100 

6.2 The System's Equations . . . . . . . . . . . . . . . . . . . . . . . . .  102 

6.3 The Linear Optimal-Control Design . . . . . . . . . . . . . . . . . . .  104 

6.3.1 The ReguIator Problem . . . . . . . . . . . . . . . . . . . . .  105 
6.3.2 Application of the Internal-Mode1 Principle . . . . . . . . . . .  107 

6.3.3 The Transformation into a Servomechanism Problem . . . . .  110 

6.4 The State Estimation of the Reference Signal . . . . . . . . . . . . .  116 



6.5 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118 

6.5.1 Plmt State Estimation . . . . . . . . . . . . . . . . . . . . . .  118 

6 -5 -2 P haseLocked-Loop Fundamental-Component Signal Filter . . 121 

7 Dynamic Simulations of the AC/DC System 

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
7.2 Simplifications and Implementation Details . . . . . . . . . . . . . . .  

7.2.1 HVDC Thestors . . . . . . . . . . . . . . . . . . . . . . . . .  

7.2.2 Active-Source IGBTs . . . . . . . . . . . . . . . . . . . . . . .  

7.2.3 Active Source . . . . . . . . . . . . . . . . . . . . . . . . . . .  

7.2.4 The Phase-Locked-Loop Filter . . . . . . . . . . . . . . . . . .  

7.2.5 Simulation Time and Second-Harmonic Oscillations . . . . . .  

. . . . .  7.3 Simulation of the Original 60-Hz HVDC Benchmark System 

7.4 Simulation of the Modified 60-Hz HVDC Benchmark System with the 
Active Filters Disabled . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . .  7.5 Determination of the Matrices for Control and Estimation 

7.6 Simulation Test of the Active Filter . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.6.1 Steady State 

7.6.2 10%-Step of the D G h e  Current Order . . . . . . . . . . . . .  

8 Conclusions 171 

A The Test-System Data 176 

B State Estimation as an O p t h i z  . Problem 178 

References 183 



List of Tables 

2.1 Typical AC m e n t  harmonic content pattern of an HVDC system. . 35 

2.2 Typical DC voltage harmonic content pattern of an HVDC system . . 36 

7.1 Harmonic content of the HVDCconverter AC line m e n t  in phase a 

. . . . . . . . . . . . . .  with the original AC passive-filter branches. 138 

7.2 Harmonic content of the total m e n t  of the original AC passive-filter 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  branches in phase a. 139 

7.3 Harmonic content of the HYDGconverter AC line m e n t  in phase a 

which has not been Mtered by the original AC passive-filter branches. 140 

7.4 Harmonic content of the AC voltage in phase a at the HVDC-converter 

terminal (across the shunt capacitor banks) with the original AC passive- 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  filter branches. 142 

7.5 h o n i c  content of the HVDC-converter AC line current in phase a 

. . . . . . . . . . . . . . . . . . . . . .  with the active filter disabled. 144 

7.6 Harmonic content of the path-impedance current in phase a with the 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  active filter disabled. 145 

7.7 Harmonic content of the HVDCconverter AC line m e n t  in phase a 

which has not been Mtered with the active filte. disabled. . . . . . . .  146 

7.8 Harmonic content of the AC voltage in phase a at the HVDC-converter 

terminal (across the shunt capacitor banks) with the active filter disabled. 150 

7.9 Harmonic content of the reference-curent signal for the active-filter 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  controls. 151 



Harmonie content of the HVDC-converter AC line m e n t  in phase a 

with the active filter enabled- . . . . . . . . . . . . . . . . . . . . . .  

Harmonic content of the path-impedance m e n t  in phase a with the 
active filter enabled- . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Harmonic content of the HVDGconverter AC line m e n t  in phase a 

which has not been filtered with the active filter enabled. . . . . . . .  

Harmonie content of the AC voltage in phase a at the HVDGconverter 
terminal (aaoss the shunt capacitor banks) with the active f l t a  enabled.163 



List of Figures 

Circuit diagram of the magnetic-flux compensation method (extracted 

from [y). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Circuit of laboratory mode1 of a ment-source active filter (extracted 

fr.m [16]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Block diagram of the control scheme of the carrent-source shunt active 

filter (ertracted from [16]). . . . . . . . . . . . . . . . . . . . . .  

Capacitor-commntated active filter for harmonic h (extracted fcom [Hl). 

Control scheme of the capacitor-commutated active filter (extracted 

£iom [l?]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Capacitor-commutated active filter with "modified high-pass füter", 

for both the 11th and the 13th harmonies (extracted fiom [19]). . . .  
PWM CR-VSI active filter with umodified high-pass füter", for the 

11th and the 13th harmonies (extracted fiom [21]). . . . . . . . . . .  

Combined use of series active füters and the traditional shunt passive 

filters (extracted fkom [20]). . . . . . . . . . . . . . . . . . . . . . . .  

Details of one of the active sources of the series active filters (extracted 

kom [20]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Combined use of active filters in series with traditional shunt passive 

filters (extracted hom [27]). . . . . . . . . . . . . . . . . . . . . . . .  

Combined use of active mers in series with traditional shunt single- 

tuned passive Nters (extracted from [29]). . . . . . . . . . . . . . . .  



1.12 Active filter for the DC side of the Lindome HVDGconverter station 

(extracted from [34). . . . - . . . . . . . . . . . . . . . . . . . . . . . 20 

1.13 Control scheme of the active filter for the DC side of the Lindome 

HVDCconverter station (extracted 60m [SI]). . . - . . . . . . . . . . 

2.1 Conventional configuration of one pole of a bipolar tw*te.rminal HVDC 

systm . - . . . . - . . - - . - . - . . . . . - . . . . . . . . * . . . . . -  

2.2 Conventional configuration of an HVDGsystem convater terminal. . 

2.3 AC currents in the secondary wïndings of the converter transformer 

connected to phase a ( - Y-Y, - Y-A). . . . . . . . . . . . . . . . . 
2.4 HVDC-converter AC Line m e n t  in phase a. . . . . . . . . . . . . . . 
2.5 Fundamental and hifl~monic components of the HVDGconverter AC 

line m e n t  in phase a ( - line m e n t ,  --- hdamental  component, 

- total harmonic content). . . - . . . . . . . . . . . . . . . . . . . . 
2.6 Harmonic component of the ElVDCconverter AC line m e n t  in phase 

2.7 Percentage of AC harmonics as a fnnetion of the overlap angle. From 

top to bottom, on the p = 0" axis, the l l th,  13th, 23rd, 25th, 35th, 

37th, 47th and 49th ha~llonic-cment components. . . . . . . . . . . 
2.8 Maximum harmonic component of the AC line current. . . . . . . . . 
2.9 DC voltages of an HVDCconverter twelve-pulse bridge (- 12-pulse, 

- 6-pulse Y-Y, - - O  &pulse Y-A). . . . . . . . . . . . . . . . . . . . . 
2.10 Percentage of DC harmonics as functions of the overlap angle (a = 

15"). f i o n  top to bottom, on the p = O0 axïs, the 12th, 24th, 36th 
and 48th harmonie-voltage components. . . . . . . . . . . . . . . . . 

3.2 Requency characteristics of a single-tmed filter (4 = 3990 51, R = 
O 51, L = 24.06 mH and C = 2.417 pF). . . . . . . . . . . . . . . . . . 



3.4 Fkeqnency characteristics of a double-tuned filter (RI = O fi. R2 = O Cly 

R3 = 0.444 Q. LI = 41.95 mHY 62 = 1.44 mH. Cl = 1.691 pF and 
C3=49.f5pF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

3.5 Second-Order High-Pas Filter . . . . . . . . . . . . . . . . . . . . . .  
3 -6 Requeney characteristics of a second-order high-pass filter ( R =46 .76Q7 

L =2.318 mH and C =6.591 pF) . . . . . . . . . . . . . . . . . . . .  

3.7 Gtype high-pass filter . . . . . . . . . . . . . . . . . . . . . . . . . . .  

3.8 Frequency characteristics of a c-type high-pass filter (C = 5.57pF, 

R = 261.8751. Cl = 61.9DpFy LI = 113.67m.H and Ri = 29.7652). . . .  

3.9 Third-order high-pas filter . . . . . . . . . . . . . . . . . . . . . . . .  

3.10 Frequency characteristics of a third-orda hi&-pass filter (R = 2.1 0. 
L =0.48 mFI. Ci = 108.3 pF and Ca = 108.3 pF) . . . . . . . . . . . .  

3.11 Singlephase diagram of an HVDC terminal and connected AC system . 
3.12 Fundamental-fkequency deviations considered in the rectifier and in- 

verter terminals of the Itaipn project (esctracted from [46]) . . . . . . .  

4.1 The 50-Hz CIGRÉ HVDC benchmark mode1 [ay mH7 pF] . . . . . . .  

4.2 The 60-Hz HVDC refaence system used in the research [fi7 mH. pF] . 

4.3 Etequency characteristics of the DGside system . . . . . . . . . . . . .  

4.4 Freqnency characteristics of the total original AC passive filter . . . . .  

4.5 Frequency characteristics of the Thevenin equivalent of the AC system . 

4.6 Frequency charscteristics of the total equivalent AC system . . . . . .  
4.7 Block diagram of the voltage-dependent cutrentsrder limiter fnnetion . 

4.8 Constraining curves of the voltage-dependent carrent-order limiter h c -  

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.9 Current control 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.10 Firing control 

4.11 Generation of the PLL train-of-pulses in the firing control . . . . . . .  



4.12 Lineariaed representation of the PLL in the firing control. . . . . . . . 

Connection of the active filter to the system tkough an impedance. . 

Proposed H M C  active-filter path impedance. . . . . . . . . . . . . . 
Frequency characteristics of the onginal AC passive fdters and of the 

proposed path impedance ( - proposed path-impedance, - original 

passive füters). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
The simplified version of the proposed active-source inverter bridge. . 

Pulse-Width Modulation. . . . . . . . . . . . . . . . . . . . . . . . . . 
Portfolio of cnrrently available power semicondnctor devices (extract ed 

h m  reference [71]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
IGBT symbol and characteristics. . . . . . . . . . . . . . . . . . . . . 
Controllability of the f d - t h e  of the IGBT collector current. . . . . . 

Position of the output filter relative to the active source (P WM ampli- 

fier) and its load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Frequency characteristics of the Ioad of the active-source output filter. 

LC output filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Complete output filter of the active source. . . . . . . . . . - - . . . . 
Frequency characteristics of the switching-frequency block filter. - . - 

Fkequency characteristics of the switching-frequency block füter and of 

the proposed path impedance ( - block impedance, - path-impedance). 

Equivalent circuit of the system. . . . . . . . . - . . . . . . . . . . . . 
Fkeqaency characteristics of the equivalent circuit of the system. . . . 

Circuit diagram representing the plant, having the active source as input. 102 

Basic block diagram of the regulator problem. . . . . . . . . . . . . . 105 
Basic block diagram of regulator system for the augmented plant. . . 111 

6.4 Basic block diagram of the servomeehanism problem. . . . . . . . . . 114 



6.5 Rearranged basic block diagram of the servomechanism problem . . . .  

6.6 Conceptual block diagram of the KaIman-Bucy state estimator . . . .  

6.7 Basic block diagram of the reference state estimation . . . . . . . . . .  
6.8 Circuit diagram representing the plant, having the HVDGterminal 

harmonie-carrent content as input, for obtainment of . . . .  

6.9 Components of a generic phase-locked-loop filter . . . . . . . . . . . .  

6.10 Linearized block diagram of a phase-locked-Ioop filter . . . . . . . . . .  

6.11 Frequency characteristics of the notch filter . . . . . . . . . . . . . . .  

6.12 Etequency characteristics of the phasecorrector filter . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . .  6.13 Final block diagram of the PLL filter 

6.14 PLL-flta dynamic response to a fkequency step in the input signal . . 
6.15 Cornpiete block diagram of the active-füter control . . . . . . . . . . .  

HM)Gconverter AC h e  m e n t s  with the original AC passivefilter 
. . . . . . . . . . . . . . .  branches (- phase a.-- phase b. ... phase c)  

Total caments of the original AC passive-filta branches (- phase a.- 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  phase b. ... phase c )  

HVDC-converter AC Iine m a t s  which have not been filtered by the 

original AC passive-filter branches (- phase a.- phase b. *.. phase c) . 

Currents through the shunt capacitor banks with the original AC passive- 

îilter branches (- phase a.- phase b. .*. phase c)  . . . . . . . . . . . .  

ACsystem cnrrents with the original AC passive-filter branches (- 
. . . . . . . . . . . . . . . . . . . . . .  ... phase a.- phase b. phase c) 

AC voltages at the HVDCconverter terminal (across the shunt capac- 

itor banks) with the original AC passive-filter branches (- phase a.- 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  phase 8. .o. phase c)  

. . . . . . .  The AC/DC test system used in the research ($2. mE. pF] 

HVDCconverter AC Iùie currents with the active filter disabled (- 
. . . . . . . . . . . . . . . . . . . . . .  ... phase a.- phase b. phase c)  



7.9 Path-impedance m e n t s  with the active filter disabled (- phase a,- 

phase b, --- phase c).  . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 

7.10 HVDGconverter AC line currents which have not been filtered with 

the active filter disabled (- phase a,- phase b, --- phase c).  . . . . . 
7.11 Cnrrents through the shmt capautor b& with the active filter dis- 

abled (- phase a,- phase b, *-. phase e) .  . . . . . . . . . . . . . . . . 
7.12 ACsystem cnnents with the active filter disabled (- phase a,- phase 

b, --• phase c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
7.13 AC voltages at the HMGconverter terminal (across the shunt capac- 

itor banks) with the active filta disabled (- phase a,- phase b, * - O  

phasec) . . . . . . . . . . . . . . . . . . . . . . . . . . . - . . - -  

7.14 Reference-current signal for the active-filter controh. . . . . . . . . . 
7.15 HVDGconverter AC line carrents with the active filter enabled (- 

phase a ,  - phase b, --• phase c). . . . . . . . . . . . . . . . . . . a . 
7.16 Path-impedance currents with the active füter enabled (- phase a, - 

phase b, -*- phase c). . . . . . . . . . . . . . . . . . . . . . . . . . . . 

7.17 Path-impedance m e n t  in phase a with the active filter enabled. . . 

7.18 Frequency spectrnm of the path-impedance current in phase a with the 

active filter enabled. . . . . . . . . . . . . . . . . . . . . . . - . . . . 
7.19 Frequency spectram of the path-impedance m e n t  in phase a with the 

active filter enabled (reduced range of the amplitude axis). * . . . . . 
7.20 HVDGconverter AC line currents which have not not been filtered 

with the active filter enabled (- phase a, - phase 6, phase c).  . . 
7.21 Cments thrmgh the shunt capacitor banks with the active filter en- 

abled (- phase a, - phase b, * - -  phase c )  . . . . . . . . . . . . . . . . 
7.22 ACsystem currents with the active filter enabled (- phase a ,  - phase 

b, --• phase c). . . . . . . . . . . . . . . . . . . . . . . . * . . . . . . . 



AC voltage at the HVDCconverter terminal (across the shunt capac- 

itor banks) with the active filter enabled (- phase a, - phase b, - 0 -  

phase~)  . . . . . . . . o . . . . . o . . . . . . . . o . . . . . . . .  

PWM voltage-reference signal for active nlter in phase a. . . . . . . . 
Voltage across IGBT #1 in active soarce in phase a. . . . . . . . . . 
Curent through IGBT #1 in active soarce in phase a. . . . . . . . . 
Current through anti-pardel diode #1 in active source in phase a. . 

HVDCconverter AC Iine cnrrents - Response to a 10%-step in the 

carrent orda of the HVDC system (- phase a, - phase 6, - - O  phase c).  167 

PWM voltage-reference signal for active filter in phase a - Response to 

a 10%-step in the cnrrent order of the HVDC system. . . . . . . . . 

Path-impedance m e n t  in phase a - Response to a 10%-step in the 

m e n t  order of the HVDC system. . . . . . . . . . . . . . . . . . . . 
HVDC-converter AC line cnrrents which have not been filtered - Re- 
sponse to a 10%-step in the m e n t  order of the EVDC system (- 

phase a, - phase b, - O -  phase c). . . O O . . . . . . . . . . . . . . . . . 
Currents through the shnnt capacitor b d s  - Response to a 10%-step 

in the current order of the HVDC system (- phase a, - phase 8, --• 
phasec) . . . . . o . . . . . . . o . o . . - . . . . ~ . . . o . . . . . . -  

ACsystem currents - Response to a 10%-step in the m e n t  order of 

the HVDC system (- phase a, - phase b, --• phase c).  . . . . . - - 

AC voltages at the HVDGconverter terminal (across the shunt capaci- 

tor banks) - Response to a 10%-step in the m e n t  order of the HVDC 
svstem (-   hase a. -   hase b.   hase c)* . . . . . . . . . . . . . 



Chapter 1 

Introduction 

1.1 Introduction 

Harmonics are qualitatively defined as sinusoida1 waveforms of any keqnency; they 

may be voltages or cnrrents. Harmonic number h is the ratio between a harmonic and 

the fundamental fkquencies. The AC power-system fnndamental fkeqnency has "1" 

as its harmonic number. If the harmonic number is greater than one, the harmonic 

is termed a snperharmonic (or jnst "harmonicn , for short); if less than one, a sub- 

harmonic. The DC component of a waveform is sometimes refmed to as of order 

"O". 

Harmonics a ise  whenever non-sinnsoidal m e n t  s and/or voltages are genera t ed 

in the power system, they are generally referred to as harmonic distortion. The basic 

conditions that give rise to harmonie-related problems in power systems are, in brief. 
as follows [l, 21: 

a Non-linear loads; 

0 Phase imbalance; 

0 High input voltage or m e n t ;  

0 Resonance. 

The harmonie-related problems caused by the wide spread use of large-capacïty 



non-linear loads snch as rectifias, inverters and cycloconvaters in indastries [3] ando 
on an individual basis, lower capacity ones in modern office-automation equipment [4], 

lead to the relatively recent creation of a new area in the power eiectronics field: Power 

Qnality. Power quality is, nowadays, a major topic in the electric-power generation, 

distribution, and user arenas. 

The use of snch types of loads is ever increasïng [5]. Therefore, power quality 

concerns already play a very important sole in the electic-energy scenario, imposïng 

harmonie power consnmption constraints on the adoption of new power electronic 

t ethnologies. 

The IEEE Working Group on Power-System Earmonics listed the foIlowing areas 

and the harmonie problems [6]: 

O Failure of capacitor banks due to dielectric breakdown or reactive-power over- 

Ioad; 

a Interface with ripple control and power-line carrier systems, causing misopera- 

tion of systems which accomplish remote switchi~g, load control, and metering; 

a Excessive losses resulting in heating of induction and synchronous machines; 

a Overvoltages and excessive currents on the system fiom resonance to harmonic 

voltages or cments in the network; 

a Dielectric breakdown of insdated cables red t ing  from harmonic overvoltages 

in the system; 

Inductive interference with teleco~~l~~lunication sys tems; 

O Signal interference and relay malfiuiction, particnlarly in solid-state- and mi- 

croprocessor-controlled systems; 

O Interference with large motor controllers and power-plant excitation systems; 

a Mechanical oscillations of induction and synchronons machines; 

a Unstable operation of firllig circuits based on zero-erossing detecting or ktching. 



In what concems ntility companies, since it is difficult to i d e n t e  all the sources 

of harmonic distortion and take wide-range measnres, it is more practical and cost- 

effective to lessen the eEects of these distortions right at the equipment that causes 

them. At consumer levels, this practice ïs motivated by the imposition of extra taxes 

and/or fines on the infiactor. 

Tradikiondy, besides carefnl design of the equipment that caases harmonics and, 

if applicable, of its control, shunt passive filters have been widely used by energy 

utilities and consumers to minimize harmonie generation [?] . They consist of passive 

energy-storing elements (indnctors and capacitors) arranged in such a topology as 

to provide a low-hpedance path to the &round just for the harmonic fiequency (or 

fiequencies) to be reduced. It is said that the filters are "tunedn at these frequenues. 

Eigh-voltage-direct-current (HVDC) converter stations are, by their very nature, 

non-linear loads and th& operation deab with all of the conditions which cause 

harmonics in power systems. Th& high level of harmonic generation requires the 

installation of fdters. Shunt passive AC filters, as will be seen in Chapter 3, have the 

added benefit of providing reactive-power compensation at the power (fnndamental) 

fiequency and, thus, improve the power factor of the converter station. 

Since passive filters are expensive, tend to overload, and reqnire a considerable 

amount of space, consideration has been given to yet another power-electronic equip 

ment to solve these problems: the active filter. An active filter is a device that injects 

harmonic currents into the utility AC system with the same magnitudes but opposite 

phases as the harmonie cturents generated by a given non-hear load. 

For several years, the available ratings of power semiconductor switches have per- 

mitted their use in low- and mediam-powa active filtering (industrial applications). 

As a consequence, pulse-width-modulated (PWM) amplifiers have become available 

during recent years with ever inaeasing power capability and wîth very low losses. 

Concurrently, digital signal processors (DSP) , a key technology, have recently be- 

corne available with the capability of processing data at speeds commensurate with 

harmonic filtering [5]. 

Compared with industrial applications, until very recently, the available power- 

handling capabilities of power semiconductor switches have been inadeqnate for the 

needs of active Wers at HVDC converter stations. As it will be ciear hom the 
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sections ahead, this limitation has been having the application of active filtas in 

HVDC sys tems tundered. 

Yet, new ideas for active filtering applied to HVDC systems have been proposed 

in recent years both in universities and in indwtry. This ha9 been motivated by the 

existence of problems related to the design and use of passive flters, together with 

more and more stringent reqnirements &om power utilities on limiting interférence 

caused by harmonic currents fiom HVDC transmission lines [8-101, and recent break- 

tkoughs in power-hanrlling capabilities and speed of power semiconductor switches 

[II]. Some of these ideas wil l  be briefly described in the subsequent sections. 

1.2 Magnetic-Flux Compensation 

The first method for actively filtering harmonics generated by an HVDC converter 

station was origindy proposed by H. Sasaki and T. Machida in 1971 [12,13]. Their 
method was based on the principle of the magnetic-flux compensation in the converter- 

transformer core. The principle is illustrated in Figure 1.1. 

The carrents in the valves are detected on the secondary of the converter trans- 

former and fed into a tertiary winding by high-fidelity-type h e a r  amplifiers. The am- 

plified signals then induce the same amperes-turns as those indaced by the secondary 

current. The harmonie components in the magnetic flux are therefore theoretically 

cancelled by pafect compensation. Normal steady-state theoretically predictable (or 

"characteristic") harmonics as well as abnormal (or "non-characteristic") ones can be 

actively filtered. 

It can be noted fiom Figure 1.1 that the tertiary windings of three phases are 

connected in delta. The linear amplifiers are bypassed by series resonant circuits 

that provide zero impedance at the hdamental fkequency. This prevents the high 

fundamental fiequency voltage from being applied to the linear amplifiers. The cm- 

rent injected by the amplifiers does not circulate through the tuned flters either. 

The wye-connected capautors provide the path for the output currents and supply 

reactive power to the HVDC converter. 

Although the method is vay elegant, several aspects rendaed it impractical for 

implementation at that t h e .  Since the current to be injected has several harmon- 
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Figure 1.1: Circuit diagram of the magnetic-flux compensation method (extracted 

fkom [Ml). 

ics, the linear amplifiers should have a large power bandwidth. The use of a Linear 

amplifier was unreasonable due to very low efnaency. The detection circuit had to 

detect and ampiify these harmonies without any phase delay and with a d o m  

gain. It is an open-loop control scheme and, t h d o r e ,  although stable, is suscepti- 
ble to precision problems when detuning of the several passive flters components is 

considered. It reportedly had problems with low-order-harrnonic amplification in the 
output circuit [Ml. 

The problems perhaps could be smounted  with today's technologies. However, 

the main drawback of this method is in the special design of the converter trans- 

former (151. The converter transformers are arnong the most expensive components 

of an HVDC converter station. The use of special three-winding transformers besides 

inaeasing its price and coppa losses, adds complexity to deding with the practical 

efFects of mutual impedances and saturation. 



Figure 1.2: Circuit of laboratory model of a current-source active filter (extracted 

from [16]). 

1.3 Current-Source PWM Inverter as an Active 

Source 

In 1976, L. Gyugyi and E. C. Strycula presented the concept of P WM inverters using 

power semiconductor switches [16]. In th& work, a laboratory model was set up. 

The circuit can be seen in Figure 1.2. The active filter was shunt-connected to a 

single phase of a three-phase 220 V source feeding a six-pulse rectifier circuit with 

a resistive load current of 55 A. Instead of using a DC current source as the active 

source of the PWM inverter, a 15 mH indnctor was used. The power semiconductor 

switches were power transistors rated 375 V, ?O A. 

The bloclc diagram of the control scheme can be seen in Figure 1.3. The terminal 

voltage VT is passed through a fundamental-fieqnency-tuned (60 Hz) filter so that a 
reference signal is obtained. The actual terminal voltage is then subtracted fiom this 
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reference so that the aror signal Vg is generated. Depending on the instantanmus 

error, either pair of transistors QI or QI sin be ttuned on. The use of the inductor 

as a DC m e n t  source implies that the AC system mast snppIy its losses throngh 
the only connection to it; that is through the power transistors. The hdamental  

voltage aaoss the active filter is reduced by pIacing a 50-Hz paraIlel-tuned LC filter 

in series with it. A second input signai, VLoss, is intended to compensate for the 

intemal losses of the active element. The error amplifier is a bistable device with 

a hysteresis loop. It reverses its state only when input Vg is reduced to zero and 

then appears with sdicient opposite polarity. The terminal voltage is thus forced to 

follow the established reference waveform. In the experiment, the power transistors 

were operated at an average switching fiequency of 10 LBz. 

The problem with this scheme in an eventual application in HVDC converter 

stations is that a considerable part of the t u p i d y  large fnndamental voltage wodd 

have to be applied to the active filter. This is due to the necessary charging of the 

inductor (because of its losses) nsed as the current source and to the compensation 

for the PWM switching losses. Note that the type of nonlinear load nsed in the test, 

different fkom an HVDC converter station, makes use of diodes and, therefore, does 

not require reactive power compensation. 

1.4 Capacitor-Commutated Inverter wit h a PLL- 
Generated Reference Signal 

In 1977, N. Mohan et al. proposed the use of a capacitor commutated inverter (or, as 

it was refmed to, harmonic inverter) consisting of thyristors [17,18]. The complete 

circuit diagram is in Figure 1.4. 

The inverter thyristors are commutated by three series output capacitors. Once 

the capacitors have been charged dnring a start-np procedure, the inverter thyris- 

tors wodd be sequentially &ed at every 120 degrees of the harmonic fiequency. As 

opposed to Gyngyi and Shyda's  approach, the DC cnrrent source was a m e n t -  

controlled DC rectifier (or harmonic rectifier). The rectifier-inverter set is nowadays 

referred to as a cnrrent-regulated voltage-source inverter (CR-VSI). 

It can also be seen in Figure 1.4 that the fnndamental-voltage reduction aaoss 
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Figure 1.3: Block diagram of the control scheme of the carrent-source shunt active 
filter (extracted fiom [16]). 

the active filter is achieved by the single-tuned filter connected beh~een the active 

source and the AC system. The lower pardel-tuned filter is tuned to the harmonic 
fiequency to avoid "sinking". The pardel resistor provides damping and fadtates 
the stact-up process. 

Figure 1.5 shows the control scheme for the proposed capador-commutated ac- 

tive filter. The curent sensors were designed using phase-lodred loops (PLL). Am- 
plitudes and phases for a given harmonic fiequency of the injected curent and of 
the non-linear-load carrent are determined. With the magnitude and phase errors, 
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Figure 1.4: Capaci tor-commut ated active filter for hannonic h (extracted fiom [17]). 

the generated active-filter curent would then be accordingly controlled to reduce the 

specific harmonic content of the AGsystem current to an arbittarily s m d  value. 

Later, in 1979, N. Mohan snggested a new topology for the passive part of this 

active-filter concept (191. The "modified high-pass filtan, as it was referred to, would 
d o w  both the 11th and the 13th harmonics to be actively fltered at the same t h e  

(still by two separate harmonie rectifier-inverter sets), while bigber-order harmonics 
were deviated by passive Mters. Figure 1.6 shows the correspondhg circuit diagram. 

In 1981, G. Dreifixrst, in his Ph. D. Thesis [18], b d t  the same original basic 

circuit. The test set-up was controUed by several microprocessor agOnthms ninning 

in parailel. They were controllhg the DC curent provided by the harmonic rectifier 

and the firing angle of the harmonic inverter. In this case, a 12-puise non-iïnear load 

current was generated by means of digital-analog electronics. The phase-locked-loop 

detection sensors would lock on a harmonic component of the synthesized 12-pulse 
current waveform. Either-the 11th or the 13th harmonies were actively Htered by 
changing control parameters. 

One of the rqorted problems was that the harmonie-inverter generated noise 



Figure 1.5: Control scheme of the capacitor-commutated active fdter (extracted from 

afFected the data-acquisition system, the measmement devices and the PLL curent 

sensor [18,20]. Also, as l a t a  mentioned by C. Wong et al. [21], although this active 
filter worked w d  in steady-state operation, it had difE.cnlties handling cment-order 

changes in the DGsystem control. These transients would cause overvoltages in the 
active-fdter circuit itself. 

1.5 P WM CR-VSI. and Economic Feasibility 

In 1989, C. Wong et al. evaluated the economic feasibility for active filtering of A G  
side m e n t  harmonies and DCside voltage harmonies produced by a typical HVDC 
converter station [XI. Both desigs were cost-compared with existing schemes at 

the Dickinson terruinal of the CU HVDC transmission line project (1000 MW, f 
400 kV). Both designs wese based on the use of transformer-conpled PWM CR-VSI 
as active sources. Althoagh the work presented a digital simulation of the steady- 
state operation in a electromagnetic transients program for the DGside active filter, 

the authors did not present any simuiation results for the AC side. 

The controlled injected currents w d d  actively filter both the 11th and the 13th 
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Figure 1.6: Capacitor-commutated active Hter with "modified high-pass filter", for 
both the 11th and the 13th harmonies (extracted from [19]). 

harmonic cments. Based on measurement of site harmonic currents, the harmonic 

current required to drive the taminal harmonic voltage to zero was calcdated as a 

reference value. The suggested control method was similar to that of the previous 

proposal, that is, the actual injection m e n t  is forced to remain within a prescribed 

toletance band around the reference value by eontrouing the inverter switches. 

Since the passive components provide partial filtering of the AC curent harmon- 

ics, the rating of the active curent-injection source can be reduced. Furthemore, the 

kVA tating of the harmonie-current injection is conservatively estimated by neglect- 

ing individual harmonic phases by adding each individual harmonic RMS voltages 

together, as weU as individual RMS hamonic cnrrents, as if all the harmonic compo- 
nents were in phase with each other. 

The passive-topology part of the active filter is Mohan's ''modiiied high-pass filter" 

[19,21] and is shoani in Figure 1.7. 



It is essentially composed of two portions. The design of the upper portion, ZKp, 
led it to exhibit the following characteristics: 

O Low impedance to the llth and to the 13th harmonics; 

a Low impedance to the 23rd and higher order harmonics (comparable or lower 
than that of the exis ting high-pass filtes) ; 

a Same capacitive VAr's at the hdamental fkequency as the existing bank of 

mers. 

The ttmed fkequency and the quality factor were selected to be the same as those 

in the existing high-pass filter. The design of the lowa impedance, Zj, in para134 

with the active source, led to the following characteristics: 

r Low impedance at 60 Hz to reduce the voltage across the injection source; 

High impedance at the llth and at the 13th harmonic fiequenues to minimige 

the "sinking" of the injection carrent; 

Low impedance at higher fiequenues to achieve overd high-pass feature. 

Figure 1.7: PWM CR-VSI active filter wïth "modified high-pass nItern, for the l l th 
and the 13th hannonics (extracted fiom [21]). 



It was concladed that the cost of both AGside and DGside active-filter designs 

were comparable to those of the existing passive nIters. Hence, if it were a fntnre 

project, the choice should be considered based on the potential for a better filtering 

pdormance, favoring the active-filtering solution. 

Althongh the system's impedance and the bank of shunt capacitors were absent 

fkom the caldations of the ratings of the active source, they might have had little 

influence in the r d t  of the cost comparisons. As load varies, it is common practice 

to have some arms of the passive filtas connected or disconnected to control the AC 
fundamental voltage at the converter terminal. This could complicate the operation 

of such scheme. The economic advantage ofnsing one single impedance ZHp to inject 

the harmonic currents wodd disappear û différent arms had to be installed to allow 

fine control of the snpply of reactive power. Another approach, without any directly- 

connected passive elements, was proposed by Thanh-Nam Lê et al. in 1994 [22]. 

1.6 Combined Use of Series Active Filters and a 

naditional Bank of Shunt Passive Filters 

F. Peng et al. proposed the use of a small-capacity series active filter to operate in 

conjunction with a traditional bank of shunt passive filters in 1990 [20,23,24]. Their 

work &O presented a theoretical analysis of the stability of the suggested control 

scheme. The role of th& series active füta  is to improve the filtering characteristics 

of the shunt passive filters. The cirenit diagram of the laboratory mode1 which was 

built can be seen in Figure 1.8. 

The shunt passive filters, formed by a 10-kVA bank of passive filters, consisting 

of arms tmed at the 5th- and at the 7th-order harmonies aad a high-pass filter, is in 

parallel with a 20-kVA harmonie source (a three-phase six-pulse thyristor converter). 

The series active filter consists of three 45WA/15-kHz single-phase PWM-VSI 
units. They are each connected in series with the AC system through singlephase 

current transfomers with 120 as the tarns ratio. The en- correspondhg to the 

switching and copper losses of th- active filter is provided througn a 50-VA single- 

phase diode rectifier. Figure 1.9 presents details of the active-source design. 



Figure 1.8: Combinecl use of series active filters and the traditional shunt passive 

flters (extracted fiom [20]). 

Later, in 1993, H. Fujita and H. Akagi optimized the values of the capacitances 

of the single-tuned shunt passive füters by means of a graphieal method [25]. The 
same topology and control scheme were then used in a 12-pulse converter laboratory 

model. As a consequence, the required rating of the series active filter was fbrther 
reduced. 

The desired ovedl  behavior of the series active flter is to exhibit zero impedance 
at the fundamental fiequency, and of the order of kilohms at harmonie fiequencies. 

The control sdieme that achieves this is &O shown in Figure 1.8. 

The refaence output voltage varies proportionally (K) with the residud harmonic 
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Figure 1.9: Details of one of the active sources of the series active flters (extracted 

fiom [20]). 

current not removed by the bank of shunt flters. This refkence output voltage is 

then compared to a triangle carrier, prodacing the P W M  switching patterns that wilI 
generate the output voltage of the active filter. 

The determination of the harmonic curent to be injected by the active filter is 
based on the theory of the instantaneous reactive power (or p q  theory) developed 

by H. Akagi [26] in conjanction with a high-pars filter G(s ) .  The desired dynamic 
perfomance of the control scheme is obtained by varying the the gain K and the 

high-pas filter G(s) characteristics 

The main problem with this control scheme is that the instantaneons quantities 

being fltered by the high-pass filter G(s) also contains the fundamental fiequency. 

Since the magnitude of the fiuidamental-fiequency component is several thes  larger 

than the magnitude of the lowest-order harmonie component to be filtered, the design 

of G ( s )  becomes delicate. 

The harmonie ~01;1ents can be compensated more accurately by reducing the 

cut-off fiequency f, of the high-paps filter. However, dottunately, the barmonic- 
compensation eff'ectiveness at fiequenues dose to fundamental worsens as f, de- 

ereases. The consequence is that the output voltage of the active filter increases 

as f. decreases when the load current contains side-band components dose to the 

fundamental fiequency or when the load suddenly changes. In this case, the active- 



filter elements wodd be overloaded. This problem can be minimized by increasing 

the order of G(s) .  However, the transient characteristics also deteriorate as the order 

of the ftlter is inmeased. That is, if a fa~t response is reqnired, a low-order filter 

should be prefened. 

Analysis done by F. Peng et aL also indicated that although the system is always 

stable if G(a) is of the first order, there wodd be limits imposed on its mt-ofF fiequency 

f, and gain K if a higher-order filter were used. 

The proposed series connection of the active filter seems to have been an attempt 

to make use of the eristing bar& of shunt passive filtas without modifications. Un- 
fortunately, the series active filter is deasibIe both in cost and reliability. In such 

configuration, protection against large switching transients and lightening surges, 

wodd demand that the basic insulation level (BIL) of the coupling transformer to be 

very high. Another significant point is that the m e n t  carried by the active filter 

will also indude the fundamental component of the load m e n t  and the fundamental 

leadkg power factor current of the shunt passive filters. 

1.7 Combined Use of Active Filters in Series with 

a Traditional Bank of Shunt Passive Filters 

In 1990, H. Fugita and H. Akagi presented another combined system [27]: a smd-  

rated active filter in series with eiristing passive shunt filter banks. Again, the aim is 

the reduction of the required rating of the active filter. The circuit diagram of the 

experimental prototype mode1 is shown in Figure 1.10. 

This proposal had the three singlephase PWM CR-VSI replaced by one three- 

phase PWM VSI. The diagram also shows that a typical LC output filter was used to 

filter the harmonies generated by the high fkequency switchuig (20 kHz) of the power 

semiconductor swi t ches. 

Another characteristic of this circuit is that the energy corresponding to the 

switehing and conducting losses of the active filter is now provided through the power 

semiconductor switches and stored in a DC capacîtor, which plays the role of a DC 
voltage source. 
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Figure 1.10: Combined use of active filters in series with traditional shunt passive 

filters (extracted from [27]). 

The control scheme is similar to that of Section 1.6. This time, since the voltage- 
source capacitor must have its voltage b d t  up and regdated throughout the opera- 

tion, an additional control input signal was provided. In o r d a  to draw active power 
fiom the AC system, the output of the active filter must contain a fimdamental- 

fiequency voltage component that is in phase with the leading reactive carrent that 
flows through the shunt passive filter. Therefore, the electrical quantity to be con- 

trolled in the DGvoltage feedback loop is the instantaneous reactive power Aq. 

A following papa, [28] by the same authors, revisited the same circuit with a 
diode rectifier as the DC voltage source for the PWM inverter. 

The weakness of this scheme is that the active flter alwsys d e s  the capacitive 
fundamental component of the current through the shunt passive filter. 
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1.8 Combined Use of Active Filters in Series with 
Shunt SingleTuned Filters 

The scheme shonn in Figure 1.11 r a s  proposed by 1. Takahashi and Y. Omura in 
1993 [29]. Thek main parpose was to reduce the complexity of the harmonic inverter 
switches and thek control. 

Figure 1.11: Combined use of active flters in series with traditional shunt single-tuned 
passive filtas (extracted from [29]). 

The inverter used was of the square-wave voltage type and, therdore, there codd 

be only one fiequency being actively fütered by each active fdter. They were placed 

in series with the existing shunt single-tnned passive fltess of the corresponding har- 
monic order. The fiequency of the switching of the inverter must correspond to the 

order of the harmonie which is to be actively fütered. This way, reducing the number 

of switchings, reduction of losses is also achieved. 

The inputs that control the slsitching of the inverter are the amplitnde and phase 
of the harmonic voltage to be compensated. To obtain these quantities, the actuai 

voltage waveform first has its fiuidamental frequency eliminated by an analog/digital 

notch filter. This has the &ect of improving the resolution of the A/D converters 
that feed the digital processing unit. The DSP performs a Fourier analysis of the 
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harmonic content and provides the actuators with their required inputs. 

The process of reading the data into the DSP takes approximately 20 ms and 

about 4 ms for the FFT computation and the computation of the command values. 
The repetition perïod of the control is 40 ms. 

As in the previous approach, this active filter also carries the fnndamental capac- 
itive carrent of the s h ~ t  passive filSers. 

1.9 Active Filters for the DC side of HVDC Con- 

verter Stations 

The DC side of the HVDC system deah with less harmonics and does not involve 

reactive power compensation issues. This seems to have favored research centers and 

the main power-equipment mannfacturers to become interested in this side of the 

HVDC system fust [3û-331. Resdts of the operation of a prototype of a .  active 
DC-side filter in an HVDC converter station was published in 1993 [31,32]. The 

manufacturer, ABB, installed the active filter at the Lindome converter station of the 

Konti-Skan 2 HVDC link between Sweden and Denmark at the end of 1991. 

Figure 1.12 shows a simplified circuit diagram for the hybrid solution of active 

and shunt passive filters, connected in series, on the DC side of the converter station. 
The active filter comprises the part of the circuit within the dashed h e .  The passive 

filter is tuned to the first two characteristic DGIine harmonics (of the 12th and the 

24th orders). The objective of the installation is to compensate for all the remaining 

line harmonic voltages. 

The active source includes a PWM power amplifier whose losses are supplied 

by a rectifier. The inverta is isolated from the power circuit by a high fkequency 

transforma. The objective of capacitor Cl is to provide the active filter with isolation 

from the high D C transmission voltage. 

Figure 1.13 shows a simplified block representation of the control scheme. The 
controller is digitally implemented in a high speed cornputer. The main parts of this 

scheme are the second blods, which holds the digital models of the converter station 
and the DC line, and the third block, the controller itself. 



Figure 1.12: Active filter for the DC side of the Lindome HVDCconverter station 

(extracted fiom [3l]). 

Figure 1.13: Control scheme of the active fiter for the DC side of the Lindome 
HVDC-converter station (extracted fiom pl]). 

The report mentions that to achieve comparable resdts by passive filters aione 
wodd reqaire something like ten times more high voltage equipment. It is &O re- 

ported that is was easy to integrate the active filter to the existing passive filter, it 
has s m d  physical size, little installation work, short HVDC outage requirement for 
its installation and no outage requPement for maintenance and testing. The stan- 
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dardized fashion in which the digital control was designed allows easy implementation 

in 0th- installations. 

1.10 Conclusion 

It is apparent that the main obstacle to the implementation of active fdters in HVDC 
converter stations is the high ratings that such application demands. Thaefore, power 

requirement seems to be the most important element of the design. A few approaches 

to rating rednction in active füters have been proposed on the bais of a combination 

of active filters and passive filters. 

Except for the ABB report, ail of the previms works tested their approaches on 

laboratory models. An important aspect that ha9 not been mentioned in any of 

the proposais is that the circuits in question wodd probably demand series and/or 

par alle1 connection of the semiconductor switches. This poses additional problems 

in the selection and characteristic matching of the switches as well as to the gating 

circuit ry. 

Nevertheless, increasing needs for filter performance and economic considerations 

d l  maintain interest in an active-filter solution. Practicd evidence that the concept 

is indeed applicable to HVDC transmission systems and that this is a better alterna- 

tive to the traditional passive fdter banks (albeit restricted to DCside filtering) has 

been provided by the Lindome converter-station prototype. 

Cert ainly, the broad range of potential advantages over the traditional passive 

filters, and their snbsequent impact in tenns of the performance of HVDC systems, 

j u s t e  the consideration of fnrther specific research associated with this technology. 

This thesis is concerned with fnrther exploration of AC active fdters for HVDC con- 

verter stations. 



Chapter 2 

Harmonies in HVDC Systems 

2.1 The HVDC System 

Figure 2.1 shows one of the poles of a conventional configuration of a bipolar two- 

terminal HVDC transmission system [13,34-361. Since the steady-state operating 

point of the other pole is the same as the one shown (except for the opposite D G  
voltage polarity), its representation has not been considered in this work. The pole 

controls are designed to keep either the DC power or the DC-men t  in the DC line 
cons tant. 

Figure 2.1: Conventional configuration of one pole of a bipolar two-terminal H M C  
system. 



The HVDC converters are each connected to one end of the DC transmission he, 

at the converter stations, tkough smoothing reactors L,. The powet flows fiom the 

converter station being opaated as a rectifier to the converter station whieh is being 

operated as an inverter. Both converter stations can operate either as a rectifier or as 

an inverter, and th& basic operation is determined by the control philosophy of the 

firing pulses to the power semiconductor switches (thyristors), which depends upon 

the desired DC power-flow direction. 

Each of these converters typicdy consists of two three-phase six-pulse bridges con- 

nected in series per pole, and this combination r e d t s  in a tarelve-pulse arrangement. 

This can be seen in Figure 2.2. 

To the DC line 

Figure 2.2: Conventional configuration of an HVDC-system converter terminal. 

The number assigned to the valves (semiconductor switches) show the order in 
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which they are &ed in normal operation. At a give. converter station, the AC voltage 

is supplied fkom the AC system to each one of the six-pulse bridges by means of Y-Y 
and Y-A three-phase transformer banks. The connection of each six-p&e bridge to 

a differently connected tkee-phase t r d o r m e r  bank provides the bridges with 30" 

-phase-shifted three-phase voltages between them. Naturally, the transforma hirns 

ratio of the Y-A t r d o m e r  is increased by a factor of f i  in relation to the Y-Y 
transformer so that th& individual DC output powa remains the same. 

2.2 AC-Current Characterist ic Harmonies 

Considering a perfectly bdanced 60 EL AC/DC system, with a steady state DC cur- 
rent of Id = 2000 A and a commutation (or overlap) angle of p = 23-17" (period 

of time ekpsed fkom the moment of the firing of a valve nntil the DC m e n t  is 

completely transf'erred from another valve to it), Figure 2.3 shows one theoretical 

fundamental-fkequency period of the currents in both the Y- and A-connected sec- 

ondary windùigs of the three-winding single-phase transformer comected to phase a. 

Figure 2.4 shows the resulting line m e n t  in the primary winding considering turn 

ratios of N2,/N1 = 0.6126 for the Y-Y connection and NZA / Nt = 1.0610 for the 
Y-A connection. 

Just by means of a visual analysis of the AC h e  m e n t  waveform, it is readily 

concluded that, besides the fnndamental component, snch a twelve-palse converter 

arrangement also draws harmonic m e n t  components fiom the AC system. Theoret- 

ical Fourier analysis of such m e n t  waveform shows that, in a twelve-pulse converter, 

the AGside cnrrent consists of a fandamental 60 Hz component plus the currents at 

the so cded  characteristic harmonies of the orders 

h = 12k f 1, for k = 1,2,3,. . . . 

For a given AC line m e n t  waveform for which the commutation angle p is less 

than 60°, the RMS magnitude of each chasacteristic harmonic c m  be caldated 

by [12,351 

Ih = K ,/KI_ G~ - 2E_ Kt_ cos(2a + p) ,  



Figure 2.3: AC cnrrents in the secondary windings of the converter transformer con- 

nected to phase a ( - Y-Y, - Y-A). 

I I 1 I I 1 l 

O u -  

Figure 2.4: HVDCconverter AC line m e n t  in phase a. 
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where 

K =  &\/2~** 
2rXCh ' 

a firing (or delay) angle (measured from the zero crossing instant of the respective 

commntation voltage of each valve); 

p commutation (or overlap) angle; 

E* commntation voltage; 

X, leakage reactance of the converter transformer (commutation reactance). 

It c m  be seen that the magnitudes of the chatacteristic harmonics depend mainly 

on the commutation angle p, and that they tend to reduce as it increases. Basicdy, a 

change in the firing angle a just corresponds to a shat of the transformers7 secondary 

currents. Due to this dday angle in the firing of the valves, a certain amount of 

reactive power is then required by the HVDC convertet. Figure 2.5 repeats the 

waveform of Figure 2.4 and inchdes its fundamental and harmonic components. This 

h d  harmonic component is put into evidence in Figure 2.6. 

Figure 2.7 shows the dependence of the magnitndes of the first eight characteristic 

harmonics, as percentages of the hdamental  component, on the commutation angle 

pl for a h g  angle of a = 15" [35]. It can be easily noted fiom the graph that the 

two dominant current characteristic harmonics are the 11th and the 13th ones. The 

worst theoretical case takes place when p = O". In this case, the waveform is the most 

distorted it cap possibly be fiom the perfect sinusoid (see Figure 2.8). The maximum 
theoretical magnitude of a characteristic harmonic h for such a case (p  = 0') is given 

by 113,351: 

where Id is the DGline current. 



Figure 2.5: F'undamental and harmonie components of the nVDGconverter AC line 
current in phase a ( - line m e n t ,  - - O  fundamental component, - total harmonie 
content). 

Figure 2.6: Harmonic component of the KVDGconverter AC line current in phase a. 
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10 1 8 I I 1 1 

Figure 2.7: Percentage of AC harmonies as a fnnction of the overlap angle. From top 

to bottom, on the p = 0° axis, the llth, 13th: 23rd, 25th, 35th, 37th, 47th and 49th 

harmonie-went components. 

Figure 2.8: Mwcimtll~ harmonic component of the AC h e  curent. 



2.3 AC-Current Non-Characterist ic Harmonics 

A real HVDC system deviates from the assumption "pafedly bakneed AC/DC sys- 

tem" made for the derivation of the AC Iuie m e n t  waveform in Figure 2.4. T h d o r e ,  

expressions for the characteristic harmonics are not completely accurate (especially 

for higha fiequenues) and non-characteristic harmonics are &O present in the AC 
line curent [37-391. Actnally, H M C  systems draw harmonic currents of all orders 

fkom the AC system and the non-characteristic harmonic content is, in general, around 

7% of the characteristic harmonics [12]. 

The main factors that cause non-characteristic AC harmonics are [2]: 

Differences in the commutation inductances between phases, within one bridge, 

and between those of different bridges. These can vary in a complex manner; 

0 Firing angle variations (non-eqaidistant firing pulses to the valves and/or firing 
mors). These can vary in a complicated pattern and are determined by the 

control scheme of the pole; 

0 AC voltage unbalance (negative seqaence) and/or distortion. These can be 

produced by an amplitude diffaence between phase voltages and/or by a phase 

Merence fkom the 0/120/240 degrees arnong the phase voltages; 

Operation of the converter transformers near magnetic saturation. 

Another important cause of concern is the possibility of occurrence of the phe- 

nomenon known as "harmonic instability". This phenomenon will be further ex- 

plained in Chapter 3, but a prehninary explmation about DGside voltage harmonics 

generation as relevant to harmonic instability is given in the following section. 

2.4 DC-Voltage Harmonics 

In the same way as the non-linear nature of operation of the HVDC converter draws 

current harmonics fkom the AC system, it causes the converta to supply voltage 

harmonics to the DC transmission line together with its direct voltage [35]. One 



fimdamental period of the theoretical DC voltage waveform auoss a twelve-pulse 

converter of a 60 Hz AC/DC system, 500 kV/2000 AT and commutation angle p = 

23.17" is shown in Figure 2.9. The individual voltage waveforxns amss  each one of 
the six-pulse bridges that add np to form the DGhe voltage are also inclttded in 

this figure. 

V-d-6 Y-Y 

Figure 2.9: DC voltages of an EVDCconverter twelve-pulse bridge (- 12-palse, - 
6-pulse Y-Y, - = -  &pulse Y-A). 

Theoretical Fourier analysis of the 12-pnlse-converter DGvoltage waveform shows 

that it consists of a DC component plus the voltages at characteristic harmonies. 
Th& orders are given by 

... h = 12k, for k = 1,2,3,. 

For a given DGvoltage waveform for which the commutation angle p is less than 60°, 
the RMS magnitude of each characteristic harmonic can be calculated by [35]. 

where 



and Vs, is the maximum average DC voltage (no Ioad and a = O") that is given by 

Figure 2.10 shows the dependence of the 4 k t  DGhe-voltage characteristic har- 

monics (with respect to the fandamental component) on p when a = 15". 

Figure 2.10: Percentage of DC harmonics as fnnctions of the overlap angle (a = 15' ) . 
From top to bottom, on the p = O0 axis, the 12th, 24th, 36th and 48th harmonic- 

voltage components. 

It is interesthg to note that, unlike the AC m e n t  harmonics, in the case when 

p = 0" the harmonics stin depend on a. Harmonic contents (especially the higher 

order ones) increase with a. The maximum generation of voltage harmonics in the 

DC transmission h e  occurs when a = 90" and the individual harmonic level in this 

case is given by [13] 
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2.5 DC-Voltage Non-Charact erist ic Harmonies 

The same causes of the AC m e n t  non-characteristic harmonics apply to the DGline 
voltage [40]. The normal operation of each &pulse bridge reqnires that each cornmu- 

tating inductance will be commutated twice per period of the fbndamental fiequency; 

once due to the commutation of its upper valve, and once due to the commutation of 

its lower valve. These events are displaced by half a period of the fnndamental fie- 

quency. This defines the maximum interval of DGline m e n t  wave train repetition 

as the half period of fnndamental frequency (2nd harmonic). Thesefore, the corn- 

mutating inductance variations can only generate even non-characteristic harmonics 

(the 2nd, 4th, 6th, etc.). Hence, the most significant non-characteristic harmonics 

are d of even orders [35,41]. 

2.6 AC-DC Harmonie-Order Tramferences 

An AGcurrent harmonic of order h, somehow flowing in the AC system at the 

converter station causes an AGvoltage harmonic of the same order h, on the AC 

system [42,43]. On the DC side of the converter station, a DC voltage ha r~~on ic  of 

order hd, causes a DC m e n t  harmonic of the same order hd, on the DC side. The 
conversion fnnction, determined by the non-linear characteris tic of operation of the 

converter bridge on the A G  and DGcurrent and voltage harmonics are as follows. 

AC -t DC: The converter modulates an AC harmonic voltage at a hequency fh 

into h m o n i c  voltages at fiequencies fh I 60 Hz (hdamental  fie- 
quency) on the DC side. For example, the presence of a 2nd- order 

non-characteristic harmonic in the AC system voltage would cause the 

fundamental- and the 3rd-order components on the DC side. 

DC + AC: A harrnonic m e n t  at fkequency fh on the DC side will reflect onto the 

AC side as a harmonic m e n t  at frequencies fh f 60 Hz. For example, 

a fundamental component on the DC side causes DC and the 2nd-order 

components on the AC side. 

The complete cyde of the above harmonic transf'ences between the AC and DC 
sides of the converter station may cause what is known as "harmonie instabilityn, 



which, evident for a parti& instailation, must be rnitigated by appropriate filter 

and control modifications [42-44]. 

2.7 Fkequency Range of Interest 

In harmonie studies, it is generdy d c i e n t  to take into account at most the 50th 

AC harmonie current (3000 Hz for 60-Hz systems) because the theoretical and field 

results are in good agreement with each other in this fkequency range, and the magni- 

tudes of higher harmonies are reasonably small [12]. With respect to the DC voltage 

hannonics, although the highest dominant harmonic component corresponds to the 

36th order (2160 Hz for 60-Hz systems), the frequency spectrum of intaest goes up 

to 3600 Hz, the higher fkequencies accounting for the fiequency-dependency charac- 

teristics of the transmission line and coupling with the communication systems [35]. 

2.8 Harmonic Indices 

Some indices have b e n  created to define and evaluate harmonic distortion. These 

indices are also used as an aid to help in the design and assessrnent of the efFectiveness 

of the measures taken to mitigate the effects of the harmonic components [1,8]. The 

following indices are considered to be sufncient for the scope of this research and, 

therefore, telephonie interfetence factors (TIF) have not been included. Since the 
foIlowing definitions apply to both voltage or m e n t  quantities, the variable X will 
be used. 

Effective (or The, or Total) RMS 

Also referred to as '''Ihenor "Total" RMS, this index is applicable to a quantity with 
any periodic wavefonn, and is determined by the following expression: 
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where Xh is the RMS value of a harmonic component and is given by 

where Th is the period of the harmonic B. 

Individual Harmonic Distortion (IHD) 

This index is related to a specific harmonic h. 

For an alternating quantity: 

For a direct quantity: 

Tot al Harmonic Dist tort ion (THD ) 

This index is also referred to as "Total Root Sum Square Distortion". 

For an alternating quantity: 

For a direct quantity: 

Tables 2.1 and 2.2 show the resdts of actual measurements of the harmonic con- 

tents of two real HVDC systems together with th& respective caldated indices 

(characteristic harmonies are in bold characters) [12,45]. 



Table 2-1: TypicaL AC m e n t  harmonie content pattern of an HVDC system. 

1 THD 1 - 1 7.56 1 

Harmonic Order 1 Harmonic Cment [A-,] 
r 

Harmonic Distortion [%] 
1 



CHAPTER 2. IUl?MONICS fN HVDC SYSTEMS 

Table 2.2: Typical DC voltage hannonic content pattern of an KVDC system 
- - - - - - - - - 

Harmonic Ozder 

True RMS 

- - -  -- - - -- - - - - 

Harmonic Voltage [V-,] 1 Harmonic Distortion [%] 

250,885 1 - 

30 

32 

34 

36 

THD 

394 

330 

367 

3,404 

- 

0.158 

0.132 

O. 147 

1.362 

8.422 



Chapter 3 

AC Passive Filters in HVDC 
Ter minals 

3.1 Introduction 

In industrial applications, as wd as in power systems, the traditional way to pre- 

vent harmonic currents from being drawn £iom the AC network is by mod*g the 

"impedance frequency characteristicsn of the non-linear load that is causing them. 

This is done by adequately connecting suitable impedances (AC passive f i l ta)  to the 

system. 

The main objective of AC passive filters is, therefore, to limit the values of Indi- 
vidual Harmonic Distortions (IHD) and Total Harmonic Distortion (Tm) to levels 

which satisfy the international or local standards [8]. This involves choosing suitable 

values for the components to obtain a desired equivalent impedance at the required 

fkequency or fiequenues. 

As reviewed in Chapter 2, an HVDC converter terminal generates AC as well 
as DG harmonies. However, since this research involves only AC filters, DC passive 

flters, which are similady used on the DC side of the HVDC terminal, will not be 

discussed. From this point on, "AC filter" or simply "füter" will be used as a short 

form to designate "AC passive filter" unless it is necessary to avoid confûsion. 

This chapter continues with the review of the necessary 

37 

background for aader- 



standing the problems whieh are posed to the AC system by the AC passive filters 

that jastified the present research. Some of this background wil l  also be applicable 

to the design of the active filter, In Chapter 5. 

3.2 Point of Connection of the Filter 

The point of connection of the AC filters to the AC/DC system in relation to the 

converter transformer c m  be at either its primary, secondary, or tertiary windings [34]. 

The placement of the filters at the secondary (valve-side) ainding of the converter 

transformer would alter the commutation reactance. This would affect the rate of rise 

of the cntrent dnring the "tum-onn and the rate of rise of the reverse voltage daMg 
the "tnrn-OP, demanding adeqnate design of the snubber circuits of the valves. Be- 
sides, th& design wodd be more cornplex in order to consida the leakage inductance 

of the transformer (variable due to the tap changer action if any) together with the 

AC system or with the fdters. Thus, this has not fonnd practical application. 

The placement of the filters at a tertiary winding of the converter transformer 

is attractive because it offers a lower voltage rating. As in the previous option? its 

design must also consider the transformer leakage inductance. Again, this leakage 

inductance (usually higher at the tertiary winding (121) is variable if a tap changer is 

provided. However, the increased complexity of the design and cost of the converter 

transformer itself may be offset by the benefits of the lower voltage rating this method 

provides. In fact , quite a few HVDC systems make use of this arrangement [34]. 

The placement of the filters at the primary winding of the converter transformer 

is the only place where the design of the filters would be independent of tap changer 

operation and of possible resonances between the AC system and the converter bans- 

former impedance. This is, in fact, the most common point of connection. 

3.3 Types of AC Passive-Filter Connections 

In general, AC passive filtas can be connected in series, in pardel or in both ways 

to the non-linear load with an adequate fiequency characteristics as to neutralize the 



CHAPTER 3- AC PASSIVE FILTERS IN HVDC T E W A L S  

AGcnrrent hatlllonic flow. 

The AC passive filtas perform harmonic flow elimination by connecting passive 

elements with either high impedance (in the series connection) or with low impedance 

(in the parallel connection) at specific harmfid harmonic fkequencies. The circuit 

diagrams for simüar applications of both types of connection are electrïcal duals. 

In this type of connection, the filter acts as a "harxnonic isolator", impeding the 

AC-ment harmonic fiom flowing fiom the AC system by means of presenting high 

harmonic impedances. 

This type of connection has some disadvantages in HVDC applications: the filter 

would have to carry the bdamental  m e n t ,  its insulation 1evel should foIlow the 

BIL (Basic Insulation Level) of that point in the system and, consequently, in ad- 

dition? its protection becomes difECU1t and its reliability compromised. This type of 

connection would &O affect the operation of the B M C  converter as it is known. For 

these reasons, the series connection seems applicable (in conjunction with pardel- 

connected filters) only when the required pedormance of the overd filtering scheme 

of the HVDC station is very high. Otherwise, the parallei connection has been the 

prefmed arrangement in HVDC systems (see also Section 3.5). 

3.3.2 Parallel Connection 

The pardel-connected (also refared to as "shunt-connected" ) type of passive filter, 

as opposed t O the series-connected type, ac t s as an AGcurrent-harmonic Vivat  er" 

between the AC system and the HVDC terminal by means of presenting low harmonic 

impedance path to the ground, bypassing the H M C  converter station. An additional 

and decisive advantage of this type of connection wil l  be shortly seen in Section 3.5. 
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3.4 Types of AC Filters Used in HVDC Systems 

There are taro main types of filtas that are genaally used in HVDC systems: "ttmed* 

and "damped" Hters. 

3.4.1 Tuned Filters 

Tuned flters are aimed at providing low impedance at s p e a c  harmonic fiequenues 

only. They can be %ingle-tuned" filtas or "double-tnned" filtas, depending on th& 
topology, and, consequently, on their impedance characteris tics. 

Single-Tuned Filter 

This is the simplest of the tuned füters and it is &O called a "band-pass filter". 

Singlettmed filters are designed to filta just one specific harmonic fiequency. The 
circuit diagram of a single-ttmed filter is presented in Figure 3.1. 

Circuit analysis of the filter branch in the figure yields the expression for the 

dependency of its impedance on the fiequency: 

A small variation of this topology can be the inclusion of a resistor &, with a 

relatively high resistance, in pardel with the inductor and the resistor in series with 



it. This is done for improving the effectiveness of the overd filtering scheme of the 

converter station with respect to TIF (telephonic interference factor) indices [46]. 

Figure 3.2 shows one example of its corresponding complete fiequency character- 

istic. This characteristic is that of the fdter used to suppress the 11th harmonic at the 

60-Hz/345-kV inverter station of the Itaipu DC transmission system in Btazil [46]. 

Figure 3.2: Eequency characteristics of a single-tuned filter (4 = 3990 Q, R = O Q, 

L = 24.06 mH and C = 2.417 pF). 

The fkequency at which it is tuned is very evident fiom the sharp peak of the 

admittance magnitude. W e  it might not be so visually apparent as in Figure 3.2, 
the impedance magnitude characteristics displays a minimum at the tuned fieqnency 



and the phase characteristics shows that, at the tuned frequency? the behavior of the 

filter is p d y  resistive (phase zero). Note that at the fluidamental fkeqnency of the 

system, the filta presents a capacitive behavior. 

The lowest possible împedance d e  is obtained at  its resonance frequency (when 

the values of the inductive and capacitive reactances are equal and cancel each other) 

and is equal to the value of the resistance. This resonance fiequency is determined 

by 
1 

The value of the reactances at the resonance frequency is given by 

The ratio between the valne of the reactances at the resonance fkeqnency and the 

value of the resistance of the resistor, 

is called the "quality factor" Q of the iîlter. 

The quality factor is an indication of the sharpness of the filter at the resonance 

fiequency. The lower the value of the resistance of the resistor, the sharper the tuning. 

The usnal quality factor values for HVDC applications range from 30 to 60 [35]. The 

width and precise tuning fiequency are therefore two parameters that can be changed 

for every individual fdter. A quantity called "pass-bandn is dehed as the fkeqnency 

range defined by the frequencies at which 

That is, at these fkquencies, the dominant readive value eqnah the resistance and, 

therefore the impedance phase of the filter is 45'. 

Double-Tuned Filter 

A double-tuned filter presents low impedance to two s p e d c  harmonic fiequenues. 

Double-tuned filters can be designed to have approximately the same filtering charac- 

teris tics as t hose de termined b y the par del connec tion of taro separa te single- tmed 



filters as long as their resonance fiequenues are rea~onably close to each other. Fig- 

ure 3.3 shows the corresponding circuit diagram. 

In principle, if other design constraints allow, it might be possible to make use 

of one double-tuned filter instead of two single-tuned filters. For, example, in the 

Itaipu system, to avoid a phenornenon cded  "auto excitation" in the nine 50-Hz 

generators connected to the rectifier station, a minimum amount of capautance in 

the switchyard was imperative. The double-tuned solution was then preferred for its 

lower capacitance requirement when compared to that of tao  single-tuned füters. 

Also, it is cheaper to replace two single-tuned flters by one double-tuned Hter 

because only one inductor is subjected to fidl voltage instead of two and its funda- 
mental power loss is less than that in the hro individual filters (Ri is small). By 
analysis of Figure 3.3, the following expression for the dependency of its impedance 

on the fcequency can be obtained: 

Althongh it is possible to design a double-tuned flter which is an exact equivalent 

of two single-tmed arms in parallel, a better practical method is to design the h o  
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single-tuned filters normally and use them as a prototype considering resistor Ri as 

being the resistance of the indactor LI. Merence [34] shows expressions that yield 
very good resdts if the tao resonance fiequenues are not too close to each other. The 
impedance near the resonances are practically the same as those of the singletuned 
filters. The fact that the impedances at the other freqnencies are slightly different 

from those of the combined single-tuned flters is not nsnally important. Figure 3.4 

shows an example of the complete freqaency charact&stics of the llthjl3th double- 

tuned filters at the Itaipn 50-Hz rectifier converta station [46]. 

Figure 3.4: Fkequency characteristics of a double-tuned füter (Ri = O Q, RI = 0 a, 
R3 =0.444 0, LI =41.95 mH, L2 = 1.44 mH, Ci = 1.691 pF and C3 = 49.15 pF ). 

Although it is &O possible to design tripletnned or higher-ordered multiple- 



tnned filters, th& use is not practical for the complexity of their expressions and, 

consequentIy, th& adjust ment. 

3.4.2 Damped Filters 

Damped fdters are not aimed exclusively at specific fiequenues. Instead, they are 

designed so as to filter a larger segment of the harmonie firequency, efFectively filtering 
the harmonic frequency it ha9 been tuned to, as well as higha order harmonies. 

Damped filters are &O known as "high-pass filters" and, depending on th& topology, 
provide diff'ent impedance characteristics. The simplest type of high-pass filter is 

the so called "second-order high-pas filter". 

Second-Order High-Pass Filter 

The circuit configuration of the high-pass filter is sketched in Figure 3.5. 

Figure 3.5: Second-Order High-Pass Filter. 

The expression for the frequenqr-dependency characteristics of its impedance is 

obtained as: 

The high-pars filter is also tuned in accordance with eqnation (3.2). The quality 

factor for a second-order high-pass îdter is defmed as 
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This is the inverse relationship of that of a single-taned filter (3.4). However, it is 

still a m e m e  of sharpness, only, in this case, the higher the value of the resistance 

of the resistor, the sharper the hiaing. In genaal, a low quality factor (low vahe of 

resistance) is chosen to keep the impedanee at a low level for fiequencies above the 

resonance fkeqaenq. According to reference [35], the typical values for qnality factor 

Q range fiom 0.7 to 1.4. 

On the other hand, considering that the cost of a resistor is proportional to the 

power it consumes, and that the voltage across resistor R is f&ly constant, its resis- 

tance can be raised to minimize the fwidamental frequency current and, consequently, 

its power loss. 

An example of the corresponding complete frequency characteristics can be seen 

in Figure 3.6. This is the fieqaency characteristics of one of the high-pass branches 

of the Itaipa 60 Hz inverter station. 

By mod=g the basic configuration of the second-order high-pass filter it is 

possible to minimine the fundamental power loss and stiJl maintain h o s t  the same 

characteristics at the higher fiequenues. There are two methods largely used, and the 

modified versions are known as "Gtype high-pass filter3 and "third-order high-pass 

filter" (or just uthird-order filter" ) . 

This type of high-pass filter (or just "Gtype filter") requires a capacitor and a resistor 

to be instded in series with the inductor forming a single-tuned sub-füter tnned to 

the fundamental frequency. The fnnction of this sub-flter is to divert the fnndamental 

fkequency current fkom t h  main resistor. Figure 3.7 shows the circuit diagram. 

The fouowing fiequency-dependency expression can be extracted fkom this circuit 

analysis : 

Figure 3.8 shows, as an example, the complete frequency characteristics of the 

c-type filter used in the original CIGRÉ HVDC benchmark system [47-491 (60-Hz 



Figure 3.6: Fkequency characteristics of a second-order high-pars filter ( R = 46.7652, 

L = 2.318 m H  and C = 6.591 pF). 

base-transformed) . 

In this modified version of the second-orda high-pass fdter, a capacitor is installed in 

series with the resistor. Therefore, by increasing the impedance in the resistor branch 

at low fiequencies (the fundamental fieqnency included) the fnndamental fiequency 



Figare 3.7: Gtype high-pass filter. 

cment is minimized. The circuit of this filter is shown in Figure 3.9. 

The expression for the impedance as a fanction of the fkquency becomes 

Figure 3.10 shows an example of its complete fkequency characteristics. This is 
the impedance characteristics of the 160-MW (200 kV, 800 A) Cross-Channel Lydd 

Converter Terminal, in England [Ml. The advantage of the sharp dip at the resonance 

kequency may be offset by a broader anti-resonance efEect that raises the value of 

the impedance for higher frequencies just fier the resonance fiequency. Since the 

impedance characteristics are nsudy worse when different values of capacitance are 

used, Ci and C2 often have the same capautance. 

3.5 AC-Filter Reactive-Power Supply 

It can be noted that the fkequency characteristics of all the AC passive filter im- 

pedances seen thus far demonstrate a capacitive behavior a t  frequencies below th& 

resonance fiequemies (this range inchdes the fundamental frequency). 

Therefore, since the operation of an HVDG terminal demands a lagging AC current 
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Figure 3.8: Frequency characteristics of a c-type high-pass filter (C = 5.57pF, R = 
261.87Q, Cl = 61.90pF, LI = 113.67mH and RI = 29.76Q). 

due to the delay angle a in the firing of the valves, shunt filters, besides reducing the 

flow of AC harmonies fiom the AC system, also reduce the reactive power demand 

of the station. In fact, the size of a filter is, for practical purposes, defmed by the 

reactive power that the filta supplies at the fundamental frequency. It is essentially 

equal to the fimdamental reactive power supplied by the AC füter capacitors. 

Since the required reactive power of an HVDC terminal can be as high as 50% 

of the station rating, the abiliky to snpply reactive power is the other advantage 
of pardel-connected AC füters over the series comection. The pardel-connected 



Figure 3.9: Third-order high-pass filter. 

filters make a nsefd conhibution to the total reactive power needed, while the series- 

comected ones, being inductive in the fiequency range below th& resonance fie- 

quency (which inchdes the fiindamental fiequency), consume even more reactive 

power instead. 

ECVDC schemes are reqaired to operate at near flIUty power factor over the load 

range. Therefore, the AC filter operation must be combined with that of the shunt 

capacitors by means of adequately switching filter and shmt capacitor branches in 

and out during DC load variations. 

The amount of reactive power supplied by the minimum configutation of the 

passive AC filters should not be larger than the minimum reactive power which is 

demanded by the converter terminal during light load periods. 

3.6 The Design Process 

In simple h a ~ ~ l o n i c  flow studies in AC/DC systems, assuming the automatic control 

of DC current, the interaction between one pole of the HVDC t d a l  and the AC 
system can be represented in a per-phasebased equivalent circuit like the one shown 

in Figure 3.11. 

In this circuit, the BVDC system is modeled by h o  cnrrent sources in pardel. 

They represent the fnndamental current and the harmonic contents respectively de- 
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Figure 3.10: Frequency characteristics of a third-order high-pass filter (R = 2.1 a, 
L =0.48 mH, 4 = 108.3 pF and CI = 108.3 pF). 

manded by the EVDC terminal. AU the AC filters are lumped into one impedance 

Zf . The shunt capacitor bank (Cab), for reactive power supply, is connected in par- 

d e l  with the Thevenin impedance (2,) of the AC system. The AC system voltage 

is generated by two series-connected voltage sources. One of them provides the fun- 

damental component, and the 0th- one provides the harmonic "ambient noisen that 

always exist in a power system. 

The main control variables of the design of AC filters for HVDC converter stations 

are the amount of reactive power demanded by the HVDC converter terminal and 
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Figure 3.11: SingIe-phase diagram of an HVDC terminal and connected AC system. 

the resonance fiequency and sharpness of tuning of each of th& diffkrent branches. 

This design process has, basically, three stages [2]. 

The first one is to derive the harmonic carrent generation patterns of the converter. 

The basic input data for this stage are the ACsystem voltage, the direct m e n t  4, 
the commutating reactance X,, the firing angle a of the valves and the causes and 

amount of imbalance with th& correspondhg harmonic contributions. The validity 

of the resnlts from this stage is based on the reasonable assumption that the voltage 

distortion at the ENDC converter terminal wil l  be nepiigible after the installation of 

the AC filtas. 

The second stage is to study the injection of selected harmonic patterns into the 
AC network in pardel with the filters under all the configurations possible. These 

filters should be designed to meet the maximum disturbance criteria specified in terms 

of the disturbance indices presented in Chapter 2 to be applied by the utility. 

The final stage would consist of scanning the results of the previous stage to 

determine the highest amplihide for each harmonic and identify the related operating 

conditions. 

Although a filtering scheme depends on the spedic characteristics of the DC and 

AC systems involved, filtering, for a usual twelve-palse HVDC system, consists, at 

least, of two single-tuned filters (one for the 11th harmonic and the other one for 

the 13th harmonic) and a second-order high-pass filter tnned at or dose to the 23rd 
harmonic. These flters are all split into branches that, during their operation are 



individnally switched in or ont according to the reactive power demanded by the 

HVDC operation to match load variations. 

I t  is also common for an HVDC sdieme to make use of single- or double-tmed 

3rd/5th or 5th/7th flters. These are intended to inuease the damping of the low- 

order harmonie overvoltages due to paranel resonance between the AC network and 

the filter capacitor banks. 

3.7 Disadvantages of the Use of AC Passive Filters 

in HVDC Terminais 

Each one of the following subsections presents brief exphnations of the main draw- 

backs in the use of AC passive filters. 

3.7.1 Design 

Designing AC passive filters is not a trivial task. The problem involves the removal 

of quantities, based on th& diff'ences in amplitude and phase, fiom relativeiy much 

larger quantities. Besides the validity and acnuacy of the analytical process, obtain- 

ing of the harmonic current patterns, the representation of the AC network and the 

design of the filter, bring together a large number of altematives to be considered. 

This task tends to be so cornplex that the practical meaning of its results can easily 

become los& [2]. 

Each one of the problems desaibed in the following subsections are interdependent 

and yet, they deal with a certain speufic AC system configuration. Unfortunately, 

due to constant switching operations, there is uncertainty concerniflg the impedance 

eharacteristics of the AC system viewed from the HM)C converter termin& for it 

can operate nader sever al different topology configurations. Therefore, a solution for 

a certain resonance problem at a certain frequency, in one configuration, may create a 

new resonance problem at a different fiequency, at the same AGsystem configuration 

or at  some other configuration. The fact that the AC system &O evolves ove  the 

time adds op to the complacity of AC passive filter design and updating. 



In addition to covering the steady-date performance, transient studies (faults 

and switchings) must be carried out to determine ratings and protection measmes. 

A large portion of these stuclies are pedormed conmently wïth other interrelated 

investigations. These include the reactive-power balance, voltage fluctuations due to 

füter switching as well as power factor and risk of autoexcitation of generators. 

It is, therefore, clear that a pure mathematical tool for the design of AC passive 

flters is not possible. Thns, presently, the practical design involves relying on ex- 

tremes of network layouts and operating conditions, and the final solution is far kom 

being a broad-band solution. 

3.7.2 Reactive Power 

Since part, or all of the reactive power demanded by the HVDC converter, must be 

supplied by the AC passive filters, this fact imposes constraints in the fiee choice 

of the values of the filter components so as to meet the requVements on ACcurrent 

harmonic flow in the AC system. &O, the AC filters may deliver more reactive power 

than what is actnally needed by the HVDC converter at low transmitted DGpower 

operation, t hus, causing sus tained fimdament al-fiequency overvolt ages. 

The nse in the AC system voltage at  low loads is u m d y  prevented by switch- 

ing some 6üter nnits (high-pass) out [46]. In some systems, where harmonic 00w 

constraints axe high, it is prevented by switehing-in shunt reactors comected to the 

low-voltage tertiary windings of the converter transformers [21]. 

3.7.3 AC-Syst em Fundamental-Ekequency Variation 

The operating fi-equency of the AC system varies aromd its nominal valne as its 

Ioading condition changes and, t h d o r e ,  the sharpness of the AC filtas need to 

account for these changes. For example, to make provision for a fi-equency deviation 

of 1.0 Hz, the value of the capacitance of a third-harmonic AC filter capacitor is 

60% greater than that for a fiequency deviation of 0.5 Hz [50]. If the filters are not 

properly designed, a change of as mach as 1 Hz in the AC system fi-equency can lead 

to serious resonance problems [51]. 



This problem affects maidy single-tuned fdters and, dependkg on the system, an 

AC system frequency change as high as 5% could be expected at the design stage 

[35]. Figure 3.12 shows the frequency deviation information med in the designs of 

the rectifier and inverter stations of the Itaipu transmission system. The steady- 

state ranges w a e  considered having the redandant füters disconnected. The transient 

fiequency deviations, lasting at l e s t  one minnte, were considered with all flters in 

operation. The lowest possible fiequency at the Foz do I p  cn station is only likely 

to happen in an extreme contingency of the loss of 50% of the capacity of Itaipu's 9 

genera t ors [52]. 

3.7.4 AC-Filter-Component Value Variations 

The deviation of the AC fnndamental frequency, is compounded by the mistnning of 

the AGfilter elements. This may &se due to mcertainty in the component valnes 

(initial mis tuning of the füter due to madachring tolerances ) , intemal separately- 

hsed elements failmes (capacitors), changes in the values due to changes in the 

ambient temperature or by self-heating (mainly the capacitors) and the finite size of 

possible tnning steps (values made a d a b l e  by manufacturas). 

AU the above dects  must be combined to determine the worst detnning condi- 

tions. Any error will affect the filter and, hence, its aectiveness, which may cause 

resonance problems. A 2% change in the values of the inductance or capacitance of 

a single-tuned filter causes the same detnning as a change of the fiequency of the 

AC system of 1% [35]. The inductance of the filter buses can also contribute to the 

detuning of the AC filters. 

3.7.5 Relative Impedance of the AC Network 

It can be noted from Figure 3.11, that the dectiveness of the diversion of the AC- 
curent harmonies by the AC passive filters depends on the impedances of the AC 
passive filters, at each frequency, when compared to those of the paralleled connection 

of the shunt capacitor bank and the Thevenin eqaivalent circuit of the AC system. 

Therefore, the filtering rnay not be satisfactory if the harmonic Mpedance of the AC 
system is very small. 
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Figure 3.12: F'undament al-fiequency deviations considered in the rectifier and inver t er 

terminais of the Itaipu project (extracted fiom [46]). 



3.7.6 Series Resonance 

There are s e v d  other non-linear loads and equipment (generators, transformers) 

tkoughout the AC network that &O contribute to ambient AGcnrrent harmonics 

(especially low ordered ones). If the eqtiivalent series irnpedance of the AC system, 

together with the AC passive flters, form a series resonant circuit at a certain fke- 

qnency, the ambient harmonie currents may be diverted by the AC passive filters and, 

if not expected at the design stage, these will be overloaded. 

IR brief, AC passive filters do not discriminate AGvoltage- or ment-harmonic 

sources and may cause a concentration of converging m e n t  harmonics to the H M C  
station. In one real case, the harmonic carrent throagh the filtas, with the HVDC 
converters blocked, was even greater than the one expected due to the HVDC terminal 

itself [12]. 

This is closely related to the fadt level at the point of filter connection (also 

referred to as "harmonic driving point impedance" ). In fdter design, these studies 

extend over the whole range of harmonic fiequencies for which filtering is required. 

3.7.7 Parallel Resonance 

It has already been mentioned that the impedance behavior of AC passive filters 

below t heir resonance fkequency is capacitive. Therefore, considering t his range of 

fiequency, when the impedance of the AC network is basically inductive, a pardel 

resonance may occnr (see Figure 3.11) with the associated high equivalent impedance. 

In this case, if the resonance fiequency is close enough to any of those of AGcurrent 

harmonics drawn by the HVDC converter, harmonic overvoltages are caused. 

In this case, harmonic transferences between the AC and DC systems may produce 

a harmonic feedback loop ("harmonic instability") from which AC overvoltages, mag- 

nification of the harmonic currents, and even saturation of the converter transformer 

core may result [53-561. 

Actually, harmonic amplification can arise at nodes widely separated fiom the 

HVDC terminal. This puts constraints on the widening of pass-bands (necessary 

for couphg with AC system fiequency changes) and &O on the amount of reactive 

power that can be supplied by the AG passive filtas. 
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A pardel resonance at  a fiequency Iowa than the first characteristic harmonic is 

typical. The resonance problem is asnally more s i f lcmt  in the case of AC systems 

with low short-circuit ratios. h o ,  the higha the phase angle of the AC system, the 

less damped the resonance is. Schemes which are directly fed by remote generators 

withont any local load have v a y  iittle damping from the rest of the AC system on 

the rectifier side [46]. 

3.7.8 Physical Area 

A considerable area of the switch yard of an HVDC terminal substation is occupied 

by AC passive filtas. This is a critical factor especially in metropolitan areas. 

3.7.9 Cost 

Among all the components that constitute the AC pardel-connected passive filters, 

the most expensive ones are the capacitors (approximately 60 % [35]). Therefore, the 

price of such filters is almost always related to the reactive power which is snpplied 

by them. As a proportion of the total cost of the HVDC terminal, the cost of the 

AC filters d e s  from 5% to 15% '0351. However, if unexpected non-characteristic 

harmonies levels have to be accommodated, the use of additional filters to supplement 

the original AC passive filters might raise th& relative cost to levels as high as 

25% [12]. This could indeed affect the economic evaluation of a DC project. 



Chapter 4 

The HVDC Test System 

4.1 The CIGRÉ HVDC Benchmark System 

The 50-Hz CIGRÉ HVDC benchmark mode1 [4?,48,5?], shown in Figure 4.1, has been 

modified and chosen as the basis for the test system for this thesis. This hypotheti- 

c d  HVDC system ha9 characteristics that represent the factors that cause harmonic 

inçtability and other h-onic-related problems. As expected by the CIGRÉ work- 

ing group 14.02 (Contd in HVDC Systems), the delibaate operational djfficulties 

presented by this mode1 provide a very convenient platform on which to test new 

solution proposals for harmonie-related problems [56]. 

Figure 4.1: The 50-Hz CIGRÉ HVDC benchmark nmdel [Q, mH, @]- 
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4.2 The Derivation of the HVDC Test System 

Any of the possible control strategies applied at the converter station (DC power, DC 
voltage, DC m e n t )  result in a steady-state operating point at a certain DC curent. 

The transfer fiinctions of the control permit the DC system to be considaed as a 

constant carrent source for the parposes it has in AC filter evalnation. 

Since the scope of this research de& wîth a basic design of an active AGfilter 

scheme, the inverter station has been substituted by a h e d  ideal DC voltage source. 

As a consequence, the digital-simulation compntation time has been greatly reduced 

without compromising the validity of the performance of the active fiter. The choice 

for the simplification of the inverter terminal over the r e c a e r  terminal was done in 

favor of a simpler DC control and a more challenging AC system, which presents a 

higher parallel resonance and is less damped [47]. 

This simplification implies that all the dynamic charaetaistics of the inverter 

control has been disregarded, Le., whatever disturbances the D C sys tem experiences, 

the inverter voltage control will manage to maintain a fixed DC voltage at its end 

of the DC line. Evidently, this simplification does not d o w  power reversal or the 

invert er-ment-control mode of operation. 

With the objective to fit the test system and the results of this thesis h t o  a North 

American context, a 60-Hz version of the benchmark system has been derived. Fig- 

ure 4.2 shows the resdting 60-Hz modified version of the CIGRÉ HVDC benchmark 

system that has been used in this research. 

The inductance and capacitance values of the 60-Hz test system have been ob- 

tained by means of fieqnency base-change operations, and these values are five sixths 

of those of the 50-Hz system. Although it has been chosen to keep the original val- 

ues of the resistors unchanged, the consequent fact that the 60-Hz version became 

slightly more damped than the 5û-H~ version does not discredit the design of the AC 

active filter and avoided the tirne-consaming task of trimming new resis tance values. 

The main parameters definhg the steady-state operation point of the test system are 

listed in Appendix A. 

As requked by the nature of the study [49], each converter is modeled by a twelve- 

pulse bridge as illustrated in Figure 2.2. Dnring normal steady-state operation, the 
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Figure 4.2: The 60-Hz HVDC refèrence system used in the research [O, mH, 

theoretical cment  waveforms are exactly as those previoasly shown in Figures 2.3 to 

2.7. Likewise, the theoretical DC voltage waveforms, are as shown in Figures 2.9 and 

2.10- 

The DC transmission line mode1 is representative of a 1300-km-longf500-kV over- 

head line with which the smoothing-reactorllinecapacitance combination produces a 

DC-side resonance close to the fundamental frequency [57]. The fiequency character- 

istics of the DC side of the HVDC test system is shown in Figure 4.3. A D C m e n t  

oscillation at the hdamentd fiequency on the DC side will cause, by means of the 

converter operation, DC and 2nd harmonie components in the h e  carrent on the AC 
side, and possibly tngger resonance problems. 

The values chosen for the parameters of the converter transfomers are typical of 

AVDC installations and their original data &O include their saturation cnrves [47]. 

Althongh this is a convenient featnte, since an operation point close to the saturation 

knee also causes harmonic cnrrent flow (mainly at the second harmonie fiequency), a 

linear representation has been selected for the sake of the simpüfication of the design 

process and a faster digital simulation. 

The AC passive füters consist of 2 identical branches as shown in Figure 4.2. 
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Figure 4.3: Etequency characteristics of the DCside sys tem. 

Figure 4.4 shows the fiequency characteristics of the combined comection of both 

passiv~filter arms. As [57] claims, they provide a low impedance path to ground for 

low-order harmonies as well as for the characteristic ones and are rated at half the 

nominal DC power. 

The reactive poaer delivered by the AC passive fiters corresponds to approxi- 

mately 93% of the total reqnired reactive power in normal steady-state operation. 

The shunt capacitor bank, at the rectifier terminal, can respond for up to 23% of the 

same total reactive power. Therefore, it is possible, if all the shunt capacitor banks 

are connected, with the passive filters, to snpply extra reactive power equal to 16% 
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Fignre 4.4: F'requency characteristics of the total original AC passive filter. 

of the steady-state rated valne. 

The rectifier AC system is represented by a Thevenin eqnivalent &cuit. The 

frequency characteristics of the Thevenin impedance is depicted in Figure 4.5. This 
RRL circuit exhibits the same impedance angle of 84" for the fandamental and third- 

haxmonic frequencies. This is representative of a region in the AC system where 

power generation is predominant and, thmefixe, represents a critical case concerning 

the damping aspect. 

The combination of the impedance fiequency characteristics of the AC system to- 

gether with the AC passive füters and shunt capaeitor, as seen by the HVDC rectifier 
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Figure 4.5: Ekeqaency characteristics of the Thevenin equident of the AC system. 

converter station is shown in Figure 4.6. There is an evident pardel (or anti-) reso- 

nance close to the 2nd harmonic fiequency. The existence of this pardel  resonance 

at the 2nd harmonic on the AC side and the resonance close to the hdamental  

frequency on the DC side are pecnliarities of the benchmark mode1 that increases its 

degree of operational difEculty. 

The short-circuit ratio (SCR) of the rectifier AC system is 2.5 and the effective 

ratio (ESCR) is 1.9 (with a damping angle of 70"). These ratios and damping, char- 
acterizing a weak rectifier system, impose some degree of difficulty to the HVDC 
operation in terms of overvoltages, poor recovery fiom disturbances and voltage and 

harmonic ins tabilities. 
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Figure 4.6: Frequency characteristics of the total equivalent AC system. 

4.3 The HVDC Test-System Control 

The HVDC control system that has been implemented consists of only the basic 

hc t ions  to confer the system with the minimnm degree of operability necessary 

for the purpose of this thesis. Several control fimctions that are available in real 

HVDC schemes [52] are not necessary either for the scope and simulation-tirne scale 

of this study (e-g., frequency control, tap changing, reactive power control), or due 

to the small simulation time that the verification of the performance of the active 

filter reqnires (e.g. freqnency-stability control, overload control and tap-changer con- 

trol). Therefore, the control scheme that has been incorporated is not sigdcant to 
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the results of this thesis, and the validation and use of certain incorporated control 

hc t ions  can be deferred to ftiture studies. 

The usual quantity to be controlled by a real HVDC system is its transmitted 

power, and, therefore, a reference Ps, is set for the pole or bipole. Instead, in this 

thesis, with the objective of simplifying the anaiysis of the dynamic performance of 

this initial implementation, a carrent order Is, is issued. This value d, dtimately, 

determine the DC line m e n t  in normal steady-state operation. This m e n t  orda 

is, initidy, nsed as the input for the voltage-dependent current-order limiter. 

4.3.1 The Voltage-Dependent Current-Order Limiter 

The weak AC system called for the installation of a control fnnction that codd limit 

the m e n t  order to be dtimatdy forwarded to the m e n t  control depending on the 

DC terminal voltage. This control fanction is known as voltage-dependent murent- 

order limiting (VDCOL) [52]. The corresponding block diagram can be seen in Fig- 

ure 4.7. 

A sudden DGvoltage &op below a certain levd is a consequence of some con- 

tingency in the AC or DC systems. In this case, an immediate action to be taken, 

especially if power is the quantity being controlled, is to reduce the m e n t  order. 

This avoids aggravating the transient problem. Likewise, &er the fault is cleared, 

power mnst be restored in an orderly rnanner. This is particnlarly important when 

the DC system is connected to weak AC systems. The VDCOL, responsible for these 

actions, has its block diagram shown in Figure 4.7. 

Figure 4.7: Block diagram of the voltage-dependent current-order limiter hct ion.  

The normalizing fanction, implemented by the division of the DC voltage signal 



by its filtered d u e  with a long time constant (2 s) d o w s  the M C O L  to operate 

at different DC voltage levels. The resdting per-unit quantity is then filtered by 

a high-pass fdta with a variable time constant. This tirne constant assumes two 

difEérent &es, depending on the daivative of the per-unit value. In the case of a 

fadt (negative derivative), the control m u t  act quickly and, therefore, a mail time 

constant is used (5 ms). On the other hand, dnring the recovery of the f d t  (positive 

derivative), the used time constant is larger (89 ms), thus ensaring a cautions re- 

injection of power into the system. 

The actual voltage-dependent ment-order lirniking fandion is represented by 

the last non-linear fnnction block in Figure 4.7. The constraining fimctions for the 

possible f d y  of steady-s tate characteris tics are detailed by Figure 4.8. Findy, the 

original m e n t  order is simply scaled by being multiplied by the valne in per-unit. 

Figure 4.8: Constraining cuves of the voltage-dependent curreat-order limiter h c -  

tion. 



4.3.2 The Current Control 

The m e n t  control is pdormed by the proportional-integd (PI) type of control 

displayed in Figure 4.9 [58]. The input for this conhol is provided by the voltage 

dependent cnnent-order limiter previonsly explained. IdOtim is subtracted fiom the 

measured value (in p-a.) of the actnal DG m e n t  4, which generates the error signal 

Ide * 

Figure 4.9: Current control. 

Once a zero error is achieved, the integral part of the PI controller will be respon- 

sible for providing the firing control ai th a constant valne. This output (ao), is the 

firing-angle order that will assure an adequately synchroaized and thcequidistant 

firing of the converter valves. A limiting block is placed at the output of the integra- 

tor. The Iowa limit is the minimum firing angle = 5') that assures that there 

is a sufücient positive voltage across the valves at the moment of firing. This avoids 

misfirings and consequent overcatrents. The upper b i t  is the maximum transient 

firing angle ((i, = 180") that prevents the valves from receiving the firing pulse 

when the voltage across them is negative. 

4.3.3 The Firing Control 

The firing control is responsible for providing the converter valves with the sequential 

and time-equidistant firing pulses in normal steady-state operation. The correspond- 

h g  blodt diagram of this control is depicted in Figure 4.10. 

The firing control consists, basically, in a phase-locked-loop (PLL) oscillator, a 

commutation-voltage zercxrossing detector and a ring-counter [13]. The measured 

value of the f h g  angle a is obtained by sequentially, and synchronously, subtracting 
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Figure 4.10: Firing control. 

the zero-crossing time instant from the firing tkne instant. This d u e  is filtered, 

converted to degrees and compared to the ordered tiring angle a, value provided by 

the m e n t  control. The generated error signal then feeds the PLL. 

What follows is a brief explanation of the operation of the PLL having Figures 4.10 

and 4.11 as references. 

Figure 4.11: Generation of the PLL trainsf-pulses in the firing control. 

The center fiequency of the PLL mnst be the same as that of the steady-state 

zero crossings of the commutation voltages. Thaefore, it is 12 times the fundamental 

fkequency. Its fnnction is to control the phase of the firing pulses with respect to the 

zero crossings. If the input ae is zero, its output is a steady train of the-equidistant 

pulses. The pnlses are generated when the sawtooth waveform is reset after having 
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the same value as the reference d u e  pl&+ 

If the pole control desk determines a decrease in the m e n t  orda, the PI controller 

of the current control d increase the order a, so that the DC line voltage is lowered. 

The inaease of cr, arill make the vahe of a, positive. The efFect that the increase 

of a, wil l  have on the train of pulses is determined by the time delay with which 
the sawtooth waveform is reset. This dehy, which means a momentary decrease in 

the frequency of the train of pulses, wil l  k t  for as long as the signal a, exists. It 

can be noticed that the firing angle keeps increasing while this error exists. This 
confers an integral characteristic to the PLL. Once this error signal returns to zero, 

the train of pulses will have the same frequency as the that of the commntation- 

voltage zero crossings, be tirne-equidistant, but at a new operating point, shifted by 

a. with respect to the original train of pulses. The process following an increase of 

the DC curent order is equivdent. A simplified hear block diagram of the PLL is 
shown in Figure 4.12. 

Figure 4.12: Linearized representation of the PLL in the firing control. 

Findy, the train of pulses generated by the PLL is sequentially distributed to the 

respective converter individual valves by means of the 12-s tage ring-counter . 



Chapter 5 

The Active Filter 

5.1 Introduction 

The need for a better overall peâormance than that provided by AC passive filters has 
tumed the attention of major power consumers to the use of active filters. AC active- 

flter units, sometimes under the commercial name of "power line conditioners", are 

already a d a b l e  in the market for industria applications [59]. On the other hand, for 

HVD C terminais, which involve higher voltage and m e n t  levels , the cos t / benefit s 

ratio has not been completely evahated. 

In contrast to the nnmerous publications on the industrial applications of active 

Uters [20,22-24,27,28,5$-63], few papers [12,21,56,64] have addressed the specific fil- 
tering and harmonie problems in HVDC applications. With respect to active filtering 

in HVDC systems, the main needs are for large capacity, high control capability for 

better performance and high operating efficiency. No proposal seems to have found 

prac t ical accep t ance ye t . 

The principle of the operation of active flters can be divided into two stages. The 

fist stage consists of the detection of the amplitudes and phases of the AC current 

harmonics (or any other system quantity which is associated with them) which are 

present in the AC Iine. The second stage is the injection of the appropriate m e n t  

harmonics or insertion of appropriate voltage harmonics at these frequencies so as to 

supply the AC m e n t  harmonics demanded by the non-linear load locdy. 



The supply of this harmonic m e n t  is accomplished by means of a static converter 

whose power losses must be provided by the power system. There are, basically, two 

types of converters that can supply AC currents: cydoconvaters, and inverters. The 

main clifference between them is that cycloconverters use power directly fkom an AC 

source, while inverters connect to a DC source. Therefore, invetters need one extra 

power processing stage (rectifyïng) that cycloconvertas do not. Although cyclocon- 

verters reqnire one l e s  power processing stage, one recent work [65] suggests that 

such devices have inherent filtering limitations since they generate a broad spectrnm 

of harmonies of considerable amoant. Therefore, the inverter-type converter, together 

with its DGpower source, ha9 been chosen in this work. They will be referred to as 

the "active harmonic sonrce" or just "active sourcen of the active filter. 

Regarding its interaction with the AC power system, the active source can operate 

either as a m e n t  source or as a voltage source. The harmonic inverter can use either 

a voltage source or a m e n t  source. Respectively, inverters are then referred to as 

either a voltage- or a ment-fed type of inverter converta bridge. Irrespective of 

the type of inverter used, since it must be able to generate compensating h m o n i c  

currents corresponding to a reference with a minimum time delay, &om a control 

point of view, it can be considered a signal amplifier. 

As seen in Chapter 1, the active flter to be implemented in HVDC systems could 

be connected in series or in pardel  to the converter station. As seen in Chapter 3, 

the main problems associated to the use of series passive filters are the flow of the fun- 

damental current , reqnirement of high BIL Ievels, reliability, complexiky of protection 

against short circuits on the HVDC terminal side and consequent costs. Again, the 

same reasons that led to the traditional use of the pardel co~mection of the passive 

filters in HVDC systems will also favor pardel-connected active filters for HVDC sys- 

tems. The pardel connected active filter wodd, thedore, prevent the AC harmonic 

current from floning fkom the AC system by operating as an active harmonie-current 

"diverter". 



5.2 The Connection of the Active Source to the 

AC System - The Path Impedance 

Although the direct connection of the active harmonic source to the AC iine is feasible 

in industrial applications [6û-631, at an HVDC terminal, it would reqnire either a large 

number of power semiconductor devices in series to aithstand the total AC voltage 

or to realize the connection tkough a transformer (as mggested in [22]) to bring the 

AC voltage down. Still, both options wodd have to consider the need to connect the 

power semicondactor devices in a paralld arrangement to be able to accommodate the 

canent. Also, both options would involve configurations whose order of magnitude 

would be comparable to those of the most expensive parts of an HVDC terminal, 

which are the converter transformer and the semiconductor bridge. Therefore, due to 

the very high costs in HVDC applications, the direct connection must be discarded. 

A main issue in proposals for active filters in HVDC systems is to reduce the 

rating of the active source. Proposais for combining arrangements of AC passive 

füters with different types of active sources, in trying to reduce current and voltage 

ratings, simply reflect the difficulties that this application imposes on the design of a 

large capauty active filter. 

It is evident that, to reduce the rating of the active hannonic source, its con- 

nection to the AC system must be done t h g h  an impedance [21,27,28]. This 

impedance, however, mus t meet certain reqnirements: it must present a snniciently 

high impedance at the fandamental fkequency, so that it effectively reduces the AC 
fundamental-fiequency components of voltage and cnrrent at the active source; it 

must also offa a low impedance at harmonic fiequemies to provide an economical 

path for the cnrrent being supplied by the active source; it should have low losses. 

This impedance wil l  be referred to as the "harmonic path-impedance", or simply 

"path impedance" . Figure 5.1 shows the conceptual circuit diagram. This is, essen- 

t idy,  the same circuit as the one shown in Figure 3.11, in Chapter 3, with the passive 

füter Zf being substituted by the active filter, composed of the path impedance and 

the active source. 

Another means of fnrther reducing the power rating of the active source is to 

partially filter some harmonic nirrents, e.g. high ordered harmonies, by means of 
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Figure 5.1: Connection of the active filter to the system through an impedance. 

passive filtering. This would mean that only the lower order, higher amplitude 

harmonies, would be actively fdtered. Fnrther, besides the reduced rated voltage 

yidded by the path impedance, the active source would also have its cnrrent rating 

reduced [17,18,21,22,62,63]. 

Given the required characteristics, the most obvious candidate impedance is the 

equivalent combination of all the branches of the conventional passive füters them- 

selves 1281. In this case, the active source, in addition to the harmonic m e n t  it 

supplies, would also have to withstand the quadrature m e n t  which is determined 

by the capacitive characteristic of this path impedance at the fundamental fieqnency. 

Depending on the percentage of the reactive power demanded by the HVDC terminal 

to be supplied by the path impedance of the active filter, its rated VAr could have to 

be as high as 50% of the rated DC power. h a broad and practically feasible solution, 

the active sonrce should be rated to be able to deiiver jnst the power needed to corn- 

pensate for the harmonic currents demanded by the HVDC terminai. Thesefore, it 

shodd not carry any fkndamental frequency current or be subjected to findamental 

fkequency voltage. To accomplish this, the active source can be by-passed by a single- 

tuned filter providing a low impedance at the fundamental fkequency to ground. This 

approach wodd be convenient in an eventual application to an already existent sys- 

tem. However, on the other hand, this scheme would impose operational constraints 

on the ability, which characterizes traditional passive filters, to disconnect some of its 

branches to control its reactive power compensation during DC-load variations. 

Continuhg with the d o r t  to devise an active-filter scheme that is suitable for 

HVDC applications, the use of a band-blocking passive filter, as shown in Figure 5.2, 

is proposed as the path impedance. The expression for the fkequency dependency of 



this path impedance is given by 

The cesonance fiequency is given by 

At the resonance frequency, the magnitude of the reactances is given by 

Figure 5.2: Proposed HVDC activefilter path impedance. 

This type of path impedance has been used in [66] for Iower voltage power distri- 

bution systems and had the possibility of its application in high voltage AC systems 

adrnowledged in [67]. Its tuning to the fandamental fiequency of the AC system and 

an adequate choice of the capacitance and inductance values would have the potential 

to provide an impedance which has good agreement to the desirable characteristics 

of the path impedance mentioned earlier. 

The proposal in this thesis is to totally decouple the filtering of AC harmonies 

from the reactive power supply for the HVDC terminal. With this arrangement, all 

the reactive power required by the HVDC terminal would have to be supplied either 

by extra shunt capaeitor banks, by static VAr compensators (SVCs), by synchronous 

compensators, or by the AC system itself. When compared to the usual HVDC sta- 

tion, this radical proposal has the obvious and significant disadvantage of increasing 



the amount of capautors in the AC filter yard. It is worth noting that both elements 

are snb jected to the line-tegound AC voltage, it displays an inductive behavior be- 

low the fundamental frequency and that, at the fnndamental fiequency, the reactive 

power demand of the inductor is totally compensated by the paranel capacitance. 

Despite the lack of reactive support for the HM)C taminal, the following are some 

of the advantages that this approach offers: 

a This path impedance presents an extremely large impedance magnitude at the 

fundamental fiequency, which causes a negligible fiindomental voltage compo- 

nent aross  the active source. In fact, despite the very sharp resonance, the 

magnitude of the path impedance at fiequenues within the u w d  AC system 

fkequency swing limits [46] is still very high. Therefore, normal AC system fie- 

quency variations and/or detnning of capacitance and inductance values in this 

path impedance have negligible efKect on the rating of the active source due to 

fimdamental-fkequency components. 

Since the purpose of this impedance is to reduce the rating of the active source, 

and not exactly filtering, the quality factor can be high (no paraIlel resistor). 

Therefore, except for the intrinsic losses of the elements, this path Mpedance 

is Zossless. 

The power rating of the active source of the proposed scheme is only determined 

by the harmonic m e n t  of the HVDC terminal and by the voltage drop this 

cun-ent causes across the path impedance. Considering the percentage of non- 

characteristic harmonics as being around 7% of the characteristic ones, a rough 

estimate of the total current through the active source would consider a 10% 

increase in the rated current due to abnormal harmonics [?]. Since there are 

no resistors in the path impedance, the only losses are those determined by 

the efficiency of the active source and those which are inherent to the passive 

cornponents. The state of the art of PWM amplifiers can ensure very high 

eficiency levels (95% [28], 98% [59]). 

For a given resonance fiequency, the higha the inductance, the higher the mag- 

nitude of the path impedance at the resonance fiequency and the lower the value 

of the capacitance. It is worth mentionhg that for a given VAr rating, the cost 
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of an indnctor is much less than that of a capacitor. Fnrthermore, increasing the 

value of the indvctance al80 demases  the power ~ut ing  of both the inductor and 

capacitor. Bringïng the fimdamental voltage aeioss the active source to negligi- 

ble values, since one of the taminab of this device is grounded, is beneficial to 

i d a t i o n  levek Decreasing the valne of the capacitance increases the value of 

the magnitude of the path impedance at higher fiequenues, which demands, in 
turn, an increase in the voltage reqnirement of the active source. Of course, this 

increase might be negligible when compared to the benefiual decrease obtained 

at the fundamental voltage. 

a The frequency characteristics of the path impedance can naturally provide very 

low impedances at any harmonic fiequency other than the fundamental, and the 

presently a d a b l e  m e n t  and voltage ratings of IGBTs meet the reqnirements 

of many HVDC systems. Therefore, it seems that any hirther reduction of 

the power rating of the active source by means of additional passive filters (for 

example, a high-pass filter in pardel with the active source) w i .  under-utilize 

the fvll potential of the active filter. 

a The capacitor would act as a nutural voltage surge protection for the inductor. 

a Traditional passive single-tued füters present an inductive behavior at high 
frequencies, and, therefore, pose a high impedance for hi&-order audible fie- 

quencies. The capacitive behavior of the path impedance at high frequencies 

could improve the TIF performance of the overall flter. 

a The proposed path impedance can s a t i e  the requirement of low impedance for 

injection of fiequencies at virtually d super- and sub-harmonies. This charac- 

teristic codd extend the application of the active füter to a non-firndamental- 

frepuency control device. Therefore, sub-synchronous resonance phenornena as 

weli as transient ones generated by switchings or fadts could be counteracted. 

a Since the active fdter and the reactive power supply for the HVDC terminal, 

under this scheme, would have decoupled operation strategies, it codd yield 
greater flexibility to the overall operation of the HVDC system. 

a The overall characteristic of the active filter, being decoupled from the reactive 

power constraints imposed by the HVDC terminal, dows a higher degree of  



jkedom in minimUing the total cost of the a&e filter. Furthes &dom would 

be obtained if a transformer tertiary winding, for example, of a SVC or a syn- 

chronoas compensator were available. A decrease in the fundamental voltage 

level across the path impedance, accompanied by a correspondent increase in 

the m e n t  in the active source, codd prove to be ben&QaL to the total cost of 

the active filter. 

Remedies to unexpected non-characteristic harmonies may add as much as 25% 

to the original cost of traditional AC Nters [21]. This fact justifies consideration 

of this arrangement aiming at a broader solution and with a better performance 

despite its potential higher installation price. 

The factors that influence the decision about the values of the capacitance and the 

inductance of the proposed path impedance wodd vary from system to system, with 

overd cost of the active filter being a detamining factor. Unfortmately, although 

the CIGRÉ HVDC benchmark presents a good basis for performance evaluation, it 

has not been designed to be a platform on which to compare costs. Therefore, this 

thesis is confined to cornparisons based on filtering performance only. 

Since the proposed path impedance does not contribute with reactive power to 

the CIGRÉ HVDC benchmark system, all the reactive power supplied by the original 

AC passive filters mast be transfared to the shunt capacitor bank. Consequently, the 

reactivepower control is completely deferred to the shunt capacit ance in responding 

to load changes and contingencies. As a result, the capacitance of the shunt capacitor 

bank is increased to Cab = 13.92pF. The capacitance value of the path impedance 

to be used in this thesis is C, = 11.13 pF- This value delivers the same arnou.uk 

of reactive power as the original filters (166.64 MVAr/phase) and the same amount 

transferred to the shunt capacitor bank. The value chosen for C,, together with the 

fundamental fkequency of the AC system, determined the value of the inductance as 

Lp = 631.96 mEI. Figure 5.3 shows the fkequency characteristics of both the proposed 

path impedance and the original filtas. 

It can be noted that the proposed path impedance presents an extremely high 

impedance at the fundamental fiequency (60 Hz) and that, if used passively, it would 

provide similar filtering characteristics to the onginal benchmark filters (fkorn the 

11 th harmonic on). This choice, besides conferring similar frequency characteris tic 



Figure 5.3: Frequency characteristics of the original AC passive filters and of the 

proposed path impedance ( - proposed path-impedance, - original passive filters). 

on the path impedance as the onginal îdters, can, at least qualitatively, allow some 

hardware cornparison between both the original and the proposed arrangements. 

5.3 Configuration of the Active Source 

As mentioned in Section 5.1, the basic operation of the semiconductor bridge of the 

active source mnst be that of an inverter. The active power for the operation of the 

active source can be supplied fiom an external DC source or by the AC system itself. 



When supplied by the AC system, this active power can be drawn t h g h  the path 

impedance itself, or by means of a rectifier bridge. In the case of the former, energy 

would then, at each fiuidamental cycle, be stored in the magnetic field of an inductor, 

characterizhg a DC carrent-source inverter (CSI) [60-631 or in the electric field of a 

capacitor, characterizhg a DC voltage-source inverter (VSI) [L?, 18,221. 

In the DC ment-source inverter, the &cuit topology must ensure that there is 
always a path for the inductor m e n t  to flow (a free wheeling path) to avoid over- 

voltages. In the DC voltage-source inverter, depending on the desired instantaneoas 

harmonic current 0ow direction, the switching scheme must select the correct terminal 

of the capacitor to avoid overcuxrents. 

Since capacitor losses are smaller than those of inductors, the former is nsually 

prefared. In the fùture, once superconductor materials technology is better estab- 

lished, this tendency may be reversed. In both schemes, the inductor and capacitor 

Iosses must be compensated (at fimdamental fkequency) by an extra control to the 

active-filtering action so that the DC current, or the DC voltage, of the reactive ele- 

ment is kept at some desired constant level. In this condition, the inverter bridge of 

the active source should have rectifier operation capability so as to make it possible 

to draw the active powa from the AC system. 

Since the proper operation of inverter bridges with passive DC sources depend on 

the correct charging of the reactive element involved, it is questionable that these 

types of DC sources codd efl'ectively cope with the fast control actions of large 

amounts of power that involves the operation of HVDC systems. Moreover, since 

the proposed path impedance does not d o w  the flow of fandamental-frequency cur- 

rents, this approach is not possible and, therefore, a rectifier bridge is required to 

supply the DC power to the inverter of the active source. This rectifier converter is 

expected to have a much smder power rating than the main HVDC terminal and 

therefore, its AC harmonic m e n t  demanded fiom the AC system would easily be 

fltered by ordinary passive filters. In steady-s tate operation, the DC-voltage output 

of the rectifier should be kept ab a constant valne with the help of an output capacitor. 

This d u e  is expected to vary whenever the operathg point of the HVDC system 

changes. In this case the voltage level of the rectifier should be accordingly adjus ted. 

The semiconductor bridge of the active-source inverter codd have ùther a single- 
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phase or a three-phase configuration. Howeve., since a tkee-phase configuration 

would lllnit the ability of generating tmbalaaced m e n t  harmonies and, in HVDC 
terminab, due to the levels of power involved, system unbalances should not be disre- 

garded, the proposed invata bridge configuration shodd have completely indepen- 

dent phase behaviot. Therefore, individual single-phase active füters are proposed to 

be connected to each one of the phases of the HVDC terminal. 

These considerations have led to the single-phase inverter bridge schematically 

shown in Figure 5.4. This is the basic active source that has been used in this thesis. 

Figure 5.4: The simplified version of the ptoposed active-source inverter bridge. 

The inverter of the active source invokes four power semiconductor devices. The 

power semiconductor devices in Figure 5.4 are set in a bridge configuration in which 

only one pair a t  a time undergoes switching as explained in Section 5.4. The reason 

for the transformer is to electrically isolate the active source and its load. This 

electrical isolation causes the load to be "80atingn and, thadore, dows for a bipolar 

output. The load of the active source is the series connection of the path impedance 

and the paralle1 combination of the AC system and the new shunt capacitor bank 
of the HM)C teMninal. This can be verified in Figure 5.1. Another use for this 

transformer is to correctly match the voltage and current levels of the AC system 

and the devices comprising the active source. For this reason this transformer is 

also cded  "matchùig" transformer. With the objective of simplifying the analysis, 

and, during the digital simulations, not masking voltage and cnrrent levels to which 

the active-source components d l  be subjected to, the turn-ratio of the matching 
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troI1Sformer has b e n  chosen to be tmity. 

5.4 The Sinusoidal-Pulse- Widt h-Modulat ion 

(SP WM) Switching-Control Met hod 

The control of the m e n t  output of the active filter could be of 4th- the voltage- 

controlled-inverter (VCI) type, or of the current-controlled-inverter (CCI) type. Since 
the carrent-controlled approach has reportedly presented diflldties in handling han- 

sient conditions [lî, 18,211, the voltage-controlled approach has been prefkrred in this 

thesis. While determining the voltage across the active source, this approach allows 

harmonic cnrrents from other sources in the system to flow fieely through the device 

if no counter action is taken. 

The voltage-control method used in this thesis is one of a group known as 'pulse- 

width modulation" (PWM); inverters that operate under this scheme are also known 

as "PWM power amplifiers". The PWM switchlig method known as "sinusoidal" 

(SPWM), which is the most widely used in industrial applications, is illustrated in 

Figure 5.5 [5]. In this method, a voltage-refkrence signal, which would be supplied by 
the control system of the active filter (simply a sinusoidal waveform in this figure), 

is compared to a triangular carrier wave. The input signals to the power switching 

devices are generated at the mutual crossing instants of the two waveforms. 

Whenever the refecence signal is larges than the triangula waveform, power semi- 

conductor devices 3 and 4 are tumed off and, immediately after they are extinguished, 
power semiconductor devices 1 and 2 are tumed on. On the other hand, whenever 

the reference signal is lower than the trianguiar waveform, power semiconductor de- 

vices 1 and 2 are turned off and, immediately f i e r  they are extinguished, power 

semiconductor devices 3 and 4 are tumed on. This type of operation obviously re- 
quires that the power semiconductor devices have turn-off capability. These devices 

are usudy referred to as "power semiconductor switchesn or simply "switches". The 

simultaaeous conduction of switches in series must be prevented by theh gate control 

to avoid short-circuithg the DC source. This is achieved by allowing some time to 
elapse between these switching actions. This time period during which no switch of 

the bridge is condncthg is known as the "blank t h e n  or "dead t h e n  and shouid be 



Figure 5.5: Pulse-Width Modulation. 

kept to a minimum daration to avoid distortion of the output voltage of the active 

source [68]. The modulation of the pdse width sent to the switches is inherently, and 

proporti~nally~ controlled by the time variations of the reference signal. The inverter 

output is a train of variable-dnration pulses which fluctuates between &VdY and which 
reproduce the refèrence signal when averaged. It  is, therefore, a digitdy synthesized 

version of the input signal. 

The ratio between the amplitude of the trianpaiar waveform and that of the ref- 

erence signal is dehed as the Uamplitude modulationn 

The amplitude of the fnndamental component of the output of the inverter, provided 

that m. 5 1 and that the fkequency of the carnet ( f ~ )  is much bigger than the 

fiequency of the reference signal ( fGd), is given by 

Therefore, the amplitude of the output of the inverter varies hearly with ratio m. 

as long as the amplitude of the carrier waveform is greater than that of the reference 

signal. 



The switching fieqtlency of the PWM inverter, detamined by the fiequency of 

the triangalar car rie^ waveform, is the average rate at which the circuit devdops ont- 

put pulses. This value mast be severai times higher than that of the highest aimed 

harmonic orda. h an active-filter application, the higher the switching fiequency, 

the more fidelity to the ref'erence signal is obtained. UnfortIuiately, there are two 

factors which impose limits to the switching Eeqnency. The f i s t  one is the switch- 

ing frequency capability of the semiconductor device itselt The second is that the 

switching losses, being proportional to the switching fiequency, and iron losses (eddy 

current and hysteresis) in the matching transformer, &O increase, reducing the ch- 

cuit efficiency. Another problem that arises as the switching frequency is increased 

is the electromagnetic interférence (EMI). Still, the performance gains obtained from 

increasing the switching ftequency may override these problems, and this is reflected 

by the fact that the switching fieqnency of switches will be continudy increased by 

manufactnrers [69,70]. 

5.5 Viability of the Proposa1 Concerning the Avail- 

ability of the Switching Device 

5.5.1 A Brief Suitability Appraisal of Power Semiconductor 

Devices 

The main requirements determining the choice of the semiconductor switching device 

in an eventual implementation of any active-filtering system to an HVDC scheme, 

are the capability of handling the power level demanded by the application, turn- 

off control capability and a switching frequency which allows a good fidelity in the 

synthesization of the voltage-reference signal. 

Considering the switdring characteristics of a generic power semiconductor device, 

the ideal switch should have large voltage and m e n t  ratings, zero conduction &op, 

zero leahge curent in blocking condition, high temperature and radiation withstand 

capability, high mean time between failmes (MTBF), instant tum-on and turn-off 

char acteristics and economical price [70]. 

Besides the well known devices iike the thyristor, GTO, TRIAC, B JT and power 



MOSFET which appeared before 1980, some more recent devices like the IGBT (in- 

sdated gate bipolar transistor), SIT (static induction transistor), SITH (static in- 

duction thyristor) and MCT (mos-controlIed thyristor) have been introduced. The 
IGBT, being the earlier of these (1983), has its applications somewhat more estab- 

Iished, and the others, being still at th& early stage of development, Among well 

established power semiconductor saitches, the thyristor and the not being 

endowed with the controllable hini-off characteristic, are not natarally applicable to 

P WM inverters. Reference [Il] presents a detailed cornparison of these devices. 

Since none of the power semiconductor switches that codd be selected for this 

application (B JTs, MOSFETs, GTOs and IGBTs) is endowed with symmetrïc-voltage 

blocking capability, a diode must be connected in anti-pardel to each switch to avoid 

the reverse voltage (if it is not already provided in the semiconductor package itself). 

The anti-pardel diodes help to recharge the rectifier output-capacitor and, therefore, 

keep the DC voltage constant. 

Snubber circuits are &O reqnired to limit the rates of rise of current dnring "tuni- 

onn, and the rate of rise of voltage during 'tnrn-op. Another use of snubber circuits 

is to reduce the power loss that o c m s  doring switching. 

Figure 5.6 [71] shows the comparative switching frequency and current and voltage 

ratings of the w d  established power semiconductor switches. 

The state-of-the-art BJT has a very low forward voltage &op, high curent ratings 

and reasonably good switching fiequency capability. However, its need for a compar- 

atively higher powa requirement for the gating cirmitry together with a high leakage 

current, precludes its application to active filters for HVDC systems. Ln a PWM 
inverter application, one of the most important properties of a power semiconductor 

device is the switching speed and, consequently, its switching fiequency capability. 

This characteris tic has immediate infiuence on the output performance. This reqnire- 

ment also excludes the use of the GTO. Although power MOSFETs have extremely 

high switching fkequency capability and therefore have been extensively nsed in active 

filters at industrial power levels, th& power rating is too low for HVDC applications. 

IGBTs, on the other hand, have a sdicient switdung fiequency capability and yet a 

much higher power rating. Thedore, among cturently available devices, the IGBT 

appears to be the most promishg one for making it possible to take advantage of 
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Figure 5.6: Portfolio of currently available power semiconduct or devices (extracted 

from refaence [?Il). 

the high performance of active-filtering techniques in HVDC systems. The general 

characteristics of the IGBT are highlighted in the n d  section. 

5.5.2 The IGBT 

O ther commerual names for the IGBT are: MOSIGT (metal oxide semiconductor in- 

sulated gate transistor), COMFET (conductivity-moddated FET) , GEMFET (gain- 

moddated FET), IGT (insdated gate transistor) and IGR (insdated gate rectifier). 

An IGBT is, basicdy, a hybrid MOS-gated bipolar transistor that combines advan- 

tageous input characteristics of a MOSFET (high-input impedance and high speed 

capabilities) and advantageous output characteristics of a BJT (low saturation volt- 

age characteristics and high power ratings) [72]. Figure 5.7 shows the device symbol 

for the IGBT and its main characteristics. 

Presently commercially available IGBTs, such as from Toshiba, are available at 
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CoUector 

Fignre 5.7: IGBT symbol and characteristics. 

ratings up to 1600 V/1200 A (non-punch-through-type, NPT) and possess a switching 

frequency capability of ap to 20 lrHz (low audible noise) [71]. Such ratings may accom- 

modate H M C  filtering without the need of series or paralle1 connections of IGBTs 
in the method proposed in this thesis. Moreover, IGBTs are stiIl anda development 

and IGBTs with power ratings of 3300 V/1200 A have already been annonnced. The 
present rate at which improvements are being achieved may soon make IGBTs use in 

FACTS possible [Il, 731. 

In practice, the carrier freqnency is usudy set to one order of magnitude higher 
than the highest fkequency component to be compensated [62]. In this thesis, since 

harmonics of up to 2940 Hz (49th order harmonic) d l  be actively filtered. proper 

reference signal amplification up to this frequency harmonie would require a carrier 

fkequency of at least 30 LHz. This is currently beyond the switching capability of any 

available device at the reqnired power rating. In maintainhg reasonable accuracy with 

minimum switching loss, the switching fkeqnency has been chosen as 15 kHz. The 
switching fkequency is only aromd 5 times the highest targeted harmonic of interes t 

(49th), therefore, a high fidelity in the synthesis of the higher-order harmonics of the 

voltage reference signal should not be expected. 



Basic Operation 

The IGBT is tumed on (collector curre~t flows) by applying a positive voltage fiom 

gate to emitter v o ~  larger than a threshold value V&qUi) (3 - 6 V). The device is 

tnmed off by simply reducing the gate voltage to zero or by reversing its polaxity, 

and the drive circuit requires a s m d  power requirement when compared to the other 

switching devices. The collector m e n t  ic is linearly dependent on v ~ g  according 

to its transconductance value gr,, and, therefore, the IGBT can be nsed as a linear 

amplifier. In switching applications, however, as is the case in this thesis, the device 

must saturate. The collector-to-emitter saturation voltage (VcE(,t)) decreases with 

an increase in magnitude of ic. That is, for the lowest values of "on" state voltage, 

should be much greater than VGB(th) (generally around +15 V). Due to its high 

input impedance, the IGBT demands minimal gate drive power requirements. The 

IGBT is an unsymmetrical device, and its reverse blocking capability varies Fiom 

10 to 20 V. This characteristic requires the use of the anti-pardel diodes shown in 

Figure 5.4, which, due to the fast switching required by the application, must be of 

the fas t-recovery type. 

Short -Circuit Handling Capability 

Both the FBSOA and RBSOA (forward- and reverse-biased safe operating areas) 

of the IGBT are thermdy limited by the junction temperature Tj. The RBSOA, in 

particular, has a rectangular shape which is limited by the breakdom voltage and the 

short-circuit cment  amplitude of the IGBT. These characteristics are very important 

since it endows the IGBT with short-circuit controllhg characteristics. That is, even 

at high dvldt and dildt values, both the tum-on of a transistor to a short-circuit 

and the application of a short-circuit to a saturated IGBT (the latter one being more 

critical) may be handled by means of its linear characteris tic (high-dissipation active 

mode). This way, it is possible to tum the IGBT off, without damage, at any instant 

regardless of current amplitude. Another good characteristic of the IGBT is that 

the short-circuit cment  has a negative temperatnre coefficient, i.e., the short-circuit 

current drops as the junction temperature of the transistor inmeases. This means 

temperature stability during this ovaload. In fact, IGBTs can withstand full voltage 

and cment  ratings for some microseconds. The short circuit strength capability of 



the IGBT canses its protective and a d a r y  power mpply to be less costly. 

Losses 

Power losses in the IGBT consist of drive losses, condnction losses, off-state losses, 

and switching losses. Drive losses are inhaently negligible in IGBTs. In swïtching 

applications, conduction losses are proportional to the duty cycle D = T,/T-e-w, 
off-s t ate losses are proportional to 1 - D and, if the ambient temperature extremes are 

limited, off-state losses are generally insigdicant. The switching losses are directly 

proportional to the switching fkequency and are independent of duty cycle or pulse 

width. In low-frequency applications, where the total saitching times are mueh less 

than the period, switehing losses are also genaally nepiigible. 

Althoogh the rise t h e  of the IGBT does not depend on the temperature, the IGBT 
has a positive temperature coefficient associated with its f d  time (approximately 

0.27%/"C [72]. A characteristic of the IGBT, sometimes asefnl, is the ability it 

provides for controuing the fd time of the collector m e n t .  Figtxre 5.8 shows the 

characteristic waveform of the m e n t  of an IGBT durhg tnrn off. 

ïncrcliang Kr, by 

K---- inawiawing valut OF R, 

+ 
Constant f a  tirne t,, 

Figure 5.8: Controllability of the fd-time of the IGBT collector current . 

The initial fall t h e  (t f, ) can be corrected if a resistor RGB (in fact a thermistor ) 
is connected between the gate and the emitter with a compensating temperature 

coefficient. This resistor, together with the input capacitance of the gate terminal 

(a MOSFET characteristic) determines the initial fd tirne. The final fall t h e  (th) 

is characteristic to a particdar device and is not controllable (a BJT characteristic). 

Since the tum-off losses depend on tf, and th, the possibility of controllhg tfl by 



means of resistor & is a definite advantage. As b d y  mentioned, the muai way to 

minimize the device ova-heating due to switching and protect it fkom damage, is to 

install snubber &cuits. By delaying the rate of change of the current and/or voltage 

across the semicondactor switch dnring switchings, these waveforms are altered so 

that the prodnct vcsic is redneed to values doser to zero [72]. 

Parailehg of IGBTs 

In order to achieve the ambitions goal of actively compensating all the harmonies 

of an HVDC terminal, depending on the voltage and curent levels involved, series 

and/or pardel connection of IGBTs may have to be considered. The series connec- 

tion is problematic because IGBTs d e r  overv01tage stresses due to different indi- 
vidual switching times. Howeva, nominal voltage matchhg is preferably solved by a 

matching transformer with a snitable tnrns-ratio. 

In case the paralleling of IGBTs is required, the main concenis should be the 

turn-on and tu.-off times (more critical as the switching fiequency inaeases) and 

on-state current balancing. In p a r d e h g  IGBTs the characteristics that should be 

matched are the gate-to-emitter threshold voltage (VGE(m)) and the transcondnctance 

(gfr). An excellent characteristic of the IGBT (NPT-type) is that, a t  on-state, for 

currents greater than a certain value (around 70% of the rated current), it exhibits a 

positive temperature coefficient of on-resistance and contributes to a stabilization of 

the m e n t  sharing between paralleled IGBTs. 

As fkequency increases, package inductances and lead resistances c m  cause switch- 

ing tirne unbalances. In this case, all connecting leads shodd be as short as possible to 

minimize the resistance effect, and the physical layout of the pardeling should be ge- 

ometrically accomplished so as to minimize the inductance efFect. Use of appropriate 

individual gate series resistors &O correct switching unbaiances. 

The possibility of having to use paraüeled IGBTs should not pose greater prob- 

lems, since, in fact , the increases in their murent rating capabilities by mandactnrers 

have been achieved by internally paralleling IGBT chips. 
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5.6 The ActiveSource Inverter Output Filter 

Due to the switching action, the voltage output of the PWM inverter will indude 

high-fkequency snitching noise. Therefore, an output passive filter is incorporated 

in the circuit to prevent the corresponding m e n t s  these voltage harmonies wodd 

create fiom being injected into the AC system. 

The most common applications of PWM inverters deal with the supply of only one 

single (fundamental) fkequency. In this case, the largest harmonies (of order several 

times higher than the fundamental fiequency) are those of the carrier fiequency and 

its multiples [74]. The fiuidamental component and its multiples are also present in 

the spectrnm fiequency around these carMer-fkequency harmonies (as side-bands) . Li 
the active-filter case, the active source must snpply a wide range of voltage harmonie 

fiequencies and, therefore, the fiequency spectrnm aromd the switching hmonics 

is somewhat less predict able. 

The source of the harmonics to be passively filtered by the output filter is the active 

source of the active füter (PWM amplifier), and its load is the series connection of 

the path impedance and the pardel connection of the AC system and the new shunt 

capacitor bank of the HVDC terminal. This circuit is shown in Figure 5.9. Note 

that the voltage sources of the AC system have been short-circuited and the current 

sources representing the HVDC terminal have b e n  open-circuited (exduded). 

Figure 5.9: Position of the output filter relative to the active source (PWM amplifier) 

and its load- 

The output filter must provide the harmonic source (active source) and its load 

with the maximum impedance-mismatch possible. This mismatch is obtained by 

making use of the inherent fkequency characteristics of capacitors and inductors. That 



is, the impedance of a capaütor decreases with fkequency and that of an inductor 

increases with fkequency. Their characteristics determine that capacitors must be 

connected in parallel to the harmonic source and its load, and that inductors must 

be connected in series (behreen) with them. 

It is intuitive that the shunt capacitor impedance, if used by itself, must be much 
smaller than the parallel combination of the source and load impedances to effectively 

divert the unwanted harmonic m e n t  fkom the load. The same way, as a dual of the 

shunt capacitor, it is readily apparent that the impedance of a series inductor, if used 

by itself, must be much larger than the s& combination of the source and load 

impedances to effectively provide an open &mit to the lmwanted harmonic voltages 

from the load. By placing these elements close to the impedances to be mismatched, 

the attenuation due to both types of ideal elements wilI efficiently increase with 

the fieqnency. In fact, the respective contributions in the real devices to the total 

attenuation will be limited by parasitic inductances in the capacitors and parasitic 

capacitances in the inductors. As a consequence, for fiequenues above their intrinsic 

resonance fiequenues, their behavior wiU be those of the their respective parasitic 

element S. 

At this point, considering that the impedance of the active source is expected 

to be negIigible, it is clear that the efficiency of the filter depends, basically, on the 

active-source load, and, therefore, it s frequency characteris tics mus t be known. It 
can be shown that the maximum power tramfer occurs when the source impedance is 

matched to the load impedance. This should be expected from basic &cuit analysis. 

Since, in the filtering case, the opposite behavior is desired, the best mismatch pos- 

sible must be sought. The impedance fiequency characteristics of the active-source 

load, as seen fiom the output filta, is as shown in Figure 5.10. The low impedance 

characteris tic of the load at the active filter fieqaency range is basically determined 

by the HVDC shunt capacitor bank and the path-impedance capacitor. 

The traditional topology of output filters in single-fkequency inverters is the single 

LC füter c d  shown in Figure 5.11. The shunt capacitor, presenting a much lower 

impedance to high harmonies than the usnally inductive loads do, diverts the har- 

monic currents fkom the latter. The inductor, in sexies with the inverter bridge, 

isolates the low-impedance source from the low-impedance resdting from the parallel 

connection of the shunt capacitor and the load. This scheme, by itself, has also been 
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used in all proposais of active fdters, where, at most, two H M C  curent harmonics 

were actively filtered and the swïtchuig fkequency was several times higher than these 

harmonic frequencies. The chosen mit ching frequencyt being jus t approximately 5 

times the highest aVDC harmonic being actively filtered, makes this mismatch harder 

to be achieved with the m a l  CGC& sohtions. 

ln general, when an LC filter s ~ ü e n t l y  at tennates the lowes t harmonie present in 

the output of an inverter, the higher harmonics are antomatically adequately reduced 

to a pamissible Ievel. This is because a practical füter is usuaIly designed so that its 

resonance fkequency fi, is bdow the lowest harmonic to be attenuated. The lower the 

Figure 5.10: Frequency characteristics of the load of the active-source output flter. 



Figure 5.11: LC output filter. 

impedance of the source and the higher the impedance of the load at the harmonic 

fiequenues, the better the flter performance. 

Two important characteristics of the active source that are affected by the choices 

of the values of Ci, and Li, are the kVA rating of the inverter and its regulation. A 
large value of the capacitance and a small value of the inductance yields a very good 

regulation but inmeases the inverter m e n t  to values comparable to the load m e n t .  

A large value of the inductance and a small value of the capacitance, on the other 

hand, although it just slightly inaeases the inverter current, causes an unacceptable 

voltage drop across the series element. 

Both cases will adversely affect the kVA rating of the active source. Therefore, a 

trade-off is required and there must be a prime consideration for low insertion loss. 

Therefore, their values, besides the efficiency of the filtering performance, should a h  

at the mhimhation of the kVA requirements of the active source. Also, in agreement 

with this necessity, the inductor must have a high quaIity factor (low resistance) and 

the capacitor must have a low value of equivalent series resistance (ESR). Depending 

on the voltage and current ratings of the semiconductor switching device to be used, 

increased voltage may prove more desirable than inaeased current or vice-versa. 

The output-filter selectivity reqaired by the application at hand is very severe. 

This condition is imposed by the large difference between very high harmonic ampli- 

tude at the switching frequency and the low amplitude of the highest harmonies of the 

HVDC terminal to be actively fdtered, within a relatively narrow fiequency range. If 
it were not for the high degree of selectivity and the low kVA rating reqnired by the ap- 

plication, jnst a hst-order series inductor wodd snffice for this source-load impedance 

combination. The consideration of a commonly-used second-order low-pass LC fil- 
ter (LC c d )  by itself is also discarded. Presenting an extremely low impedance for 



the switching fiequency harmonies, the load codd only be short-circuited by an ex- 

tremely large shunt capacitor at the output filter. This wodd be prohibitive due to 

the large charging demand on the active source. A third order output LCL filter 

satisfies the mismatch reqnirement posed by the source and load impedances. How- 

ever, the reqnired selectivity would reqnire the output filter inductances to be very 

high. This wodd imply in the need for a large increase of the required voltage at the 

active-source rectifier due to the consequent poor regdation. 

The adopted solution to the filtering problem is the combined use of an ordinary 

second-order low-pass LC filter and a block LC filter tnned at the switching fiequency, 

resdting in a fourth-order ontput filter. The complete output filter can be seen in 

Figure 5.12 

Figure 5.12: Complete output filter of the active source. 

The block LC filter presents a very high impedance at the switching fkequency 

against which the the capacitor of the low-pass section can bet ter perform the diver- 

sion action. The infinite quality factor and aging deviations of the block filter should 

not pose problems since the switching fiequency of the carrier waveform could be 

controlled to automatically, and exactly, match the resonance frequency fixed by the 

block filter. 

The design of the block and Low-pass sections can be done faLly independently. 

The main requirement imposed on the block filter is not to adversely affect the regula- 

tion of the active source in the range of fkequencies to be actively filtered. Therefore 

the path impedance has been taken as a reference. The criterion adopted is that 



the redting equivalent impedance of the switching-fieqnency block filter shoald not 

significantly increase the impedance of the path impedance at the h s t  two HVDC 
characteristic harmonic fkequencies (660 Hz and 780 Hz). The redting values are 

0.3511 pF and 0.3207 d. Figure 5.13 shows the frequency characteristics of the 

switching-fkequency block filter, where the pardel resonance can be seen at 15 kHz. 
Figure 5.14, focusing on the active-filtering fiequency range, shows both the block 

and the path impedances in the same graph for cornparison. It can be seen that 

the impedances of the block filter at the highest characteristic harmonics are of the 

same order as those of the path impedance. Since the amplitude of these character- 

istic harmonics are relatively small when compared to the lower order ones, and the 

impedance of the total circuit is considerably lower at these frequencies, the incxease 

in the voltage reqnirements of the active source are not s i gdbn t .  

Further to the above considerations, the determination of the values of the ca- 

pacitance Clp and inductance Li, of the low-pass section of the output filter of the 

active source shodd take into acconnt the naturd frequencies of oscillation of the 

complete system. The swïtehing operation of the PWM hverter of the active source 

excites ail the modes of the circuit determined by the load, the output filter and 

the impedance of the active source. Since the active source is expected to have a 

negligihle impedance, the equivalent circuit , ob t ained by short-circuithg the active 

source and disregardhg the unitary matchhg transformer, becomes the one shown in 

Figure 5.15. 

This circuit presents a series connection of 4 pardel LC tuned filters with neg- 

ligible damping: The AC system and the HVDC shunt capacitor bank at the 2nd 

harmonie frequency, the path impedance at the fiuidamentd fiequency, the block- 

filter section of the output filter at 15 k& and the low-pass filter section. This 

arrangement of parallel resonances also created taro series resonance fkequencies that 

could give rise to active-flter control instabilities. The final values are Ci, = 4 pF 

and Li, = 0.24 mH, which yields f r ,  = 5136 Hz as the resonance fiequency of the 

low-pass section of the output filter. These values have been detecmined so that the 

natural frequency occurring within the range of active filtering was placed half way 

between the 37th and the 47th HVDC harmonics (2520 Hz). This had the objective 

of reducing the risk of excitation of the natural series resonance of the circuit. 

Although damping meapures could have been taken at the low-pass filter section, it 



Figure 5.13: Etequency characteristics of the switchhg-fkequency block filter. 

is believed that the fact of fr, being w d  above the highest EVDC harmonic fkequency, 

added to the existence of enough damping in a real system, would be enough to avoid 

control instabilities due to this parallel resonance. The fiequency characteris tics of 

the final circuit is shown in Figure 5.16 

As a final resdt, the compound output filter provides a very effective output 

filter for the switching fiequency harmonies with a moderate rate of roll-off for the 

remaining undesirable harmonic frequencies, detennined by reasonably-sized low-pass 

fdter section elements. Naturally, other main considerations shodd concern the filter 

cost, size and weight. 
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Figure 5.14: Fkeqnency characteristics of the switching-fieqnency block filter and of 
the proposed path impedance ( - block impedance, - path-impedance). 

Figure 5.15: Equivalent circuit of the system. 
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Figure 

f [Hz1 

5.16: Frequency characteristics of the equivalent circuit of the system. 



Chapter 6 

The Active-Filter Control 

6.1 Introduction 

In control theory, the tao most basic dasses of control problems are known as the 
"se~omechan~sm" and the %egtdatorn problems. The servomechanism problem is 

that of designing a control so that the output y(t) of a system tracks a reference 

signal P(t). The regulator problem is a specïal case of the servomechanism one, 

where the reference signal to be tracked is identically zero ( P ( t )  = O), and the task 
is that of taking an initial state of the plant (due, for example, to a disturbance) to 
zero. In the case of the active filter, sime its active source acts as a voltage source in 

the presence of the AC/DC system, it is desired that its output tracks the harmonic 

content of the HVDC converter carrent that is not diverted fkom the AC system by 

the path impedance. The problem at hand is that of a servomechanism design, where 
the output y( t )  is the m e n t  injected by the active filter into the power system, 
the reference signal Y ( t )  is the measured harmonic content of the KVDC converter 

carrent to be actively filtered, and the control signal u(t) is the voltage output of the 
P WM amplifier (or bet ter: the P WM-amplifier harmonie-free ref'erence v,f. In the 
control systems theory, the PWM amplifier plays the role of the actuator. 

There are two basic cnrrents of analysis and design procedure in control theory: 
(i) dassical control and (ii) modern control. 

The classical control is usually most successfuny applied to linear, the-invariant, 
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low order, singhinput singk-output (SISO) systems, and the description of the prob- 

lem is generdy in terms of the system's transfer fanction. The first concan of this 

approach mnst be to stabilize the dosed-loop sptem formed when the output sig- 

nal (and/or its derivatives) is fedback and nsed to genaate the control signal u(t). 

Only then, once the closed loop system has been stabilized, the transient response, 

bandwidth, and the steady-state error characteristics are tackled. The methods ased 

in the classical approach are basically andytical (Laplace transform, Roath test), 

graphical (root loci, Nyquist plots, Nichoh charts) and, most o f d ,  empirically based 

knowledge. For high-order systems, as is the case at hand, the designer's ingennity is 

indispensable in achieving a satisfac tory design. 

The modern control theory offers a less "ad-hoc" approach, and the design process 

is less dependent on practical experience. This rednces the load on the ingenuity of 

the designer in favor of his or her ability with mathematical tools and widens the 

classes of problems that can be tackled. The description of the problem is generally 

in terms of the system's state and output eqnations. 

A category of modern control theory is known as "optimal controln [75-773. It 
provides the best possible system of a par t idar  type [78]. Desirable characteristics 

snch as stability, bandwidth and cornpliance to classical control associated constraints 

are inherently obtained. If the plant and controllers are assnmed linear, the optimal 

control system is called linear. This is the type of control which has been designed 

for the active filter and is based mainly based on [76,79,80]. The opthal control 

system will add fnrther desirable characteristics to the final overail system. The main 

characteristics achieved with the application of a hear optimal control are 

a The resulting system is stable, irrespective of the stability of the plant. 

a Good gain and phase margins. 

a For a broad range of conditions, the resulting control system is equivalent to 

the reduction of sensitivity to plant parameta variations. 

a Very good tolerance to nonlinearities and may be applied to nonlinear systems 

operating on a s m d  signal basis. 

a The solutions are easily computed. 
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Provides a hmework for the d e d  study of the control problem stndied via 

classicd methods. 

O Extends the class of systems for which control designs may be achieved. 

6.2 The System's Equations 

The circuit diagram relative to the active-filter system (the plant) is shown in Fig- 

ure 6-1. 

L b 'P Lw 

Figure 6.1: Cirmit diagram representing the plant, having the active source as input. 

This is basically the same circuit presented in Figure 5.12, in Chapter 5, with the 

secondary-side circuit reflected to the primary side of the matching transfomer (unity 

tums ratio). It is worth noting that the design of the control system ignores the exis- 

tence of the fundamental components that exist in the actual AC/DC system. This is 

backed by the fandamental-eequency isolation provided by the path impedance. The 
AC system is considered fiee of harmonie sources and the exclusion of the harmonic 

current source that represents the HVDC converter terminal fiom the &cuit is in 

accordance with the superposition theosem. 

The plant will be represented in terms of its state variables [81-831. This circuit 

consists of four capacitors, four inductors and two resistors. The state variables have 

been chosen to be the voltages across capacitors and currents through indnctors. 

Since any one of the capacitor voltages can be determined hom the other three, the 

order of the circuit becomes the seventh order. Following the basic procedure and 

terminology for the derivation of the state eqnations of an electric circuit, the branches 

and connections with thicker lines in Figure 6.1 have been chosen as the "twigsn that 

constitnte one of the possible "treesn of this circuit. All the other branches are 

"linksn that connect %odesn of the tree. The derivation of the d y n e  and output 



equations of the plant follow the order of the numbers associated with the branches 

whose dements are of the energy-sto~g type. According to the conventions of voltage 

polarities and m e n t  directions chosen, the state vector of the plant is determined 

The input u(t) E 72 is the voltage reference for the PWM amplifier vvef and the 
output y ( t )  E 72 is the m e n t  id, injected by the active filter into the AC system. 

The dynamic and output equations become 

where 



The poles of rnatrix are at 

Very s m d  real parts confirm the v a y  lightly damped nature (although obviously 
stable) of the circuit, and the division of the imaginary parts by 27r provides the 

fiequenues, in hertz, at which the plant's modes osda te  (or resonate). These ke- 
quenues are easily identifiable in Figure 5.16 in Chapter 5 as the fiequemies at which 
the impedances assume the zero valne. 

Matrix andysis shows that this plant is completely controllable and completely 

observable [84]. The complete controllabiIity implies that it is possible, by means of 

bounded variables and gains, to take any state variable of the plant from an initial 

value xi at tirne ti to a final value zf at time tf in any finite period of time At = tf -ti. 
The complete observability implies that it is possible to identify the contribution of 

each one of the states to the output. 

6.3 The Linear Opt imal-Control Design 

The design approach is that described by [79]. This approach is based on an initial 

setting up of the problem as ifit were that of a regulator type instead of a servomech- 

anism one. In later steps, the regalator problem wiU be transformed into one of the 

servomechanism type, solved, and its results analyzed in light of the transformation 

performed. Having this in mind, the design method for the regulator problem is now 

presented. 
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6.3.1 The Regulator Problem 

Considering the state-space representation of a generic system 

the desked control signal u(t ) is a nondynamic hct ion,  i.e., an instantaneous fane- 

tion (no derivatives or integrals), of the states x(t), which are all assumed, at this 
point, to be available. The control law wi l l  be of the form 

and the corresponding control arrangement is shown in Figure 6.2. 

Figure 

The objective is 

6.2: Basic block diagram of the regulator problem. 

to perform the control action (take the states to zero) with the 

leas t possible amount of control and state energies. With this in mind, the following 

quadratic performance index is used: 

Q is a symmehic, nonnegative definite, matrix and it prevents the parcel referent to 
the states energy fiom being negative. This parce1 is allowed to be zero, and, actudy, 

should eventually be zero. R is a symmehic, positive definite, matrix (in this case, 
R E 72) and, therefote, constrains the part corresponding to the control energy to 

. . 
be always positive. MinuniPng V(x(ti), II(-), ti) ensures that ~ ( t  ) and ~ ( t  ) will be 

kept s m d  dong the tirne interval [ti,tr]. Therefore, the solution consists of finding 
an optimal control law u*(t), t E [t;, t t]  that minimizes V(x(t;), u(*), ti) where x ( t )  

and u(t) are subjected to the dynamic equation of the plant. The Hamilton-Jacobi 
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theory [84,85] applied to the regulator problem shows that the optimal performance 

index has the form 

where 

The optimal control is 

which is indeed the desired linear feedback law, where 

Now, since it is interesting that the control action be optimized up to the point 

when the system reaches steady state, tt  should be made as large as possible, Le., 

tr + oo. In the case where tr is bi te ,  V(x(ti), ~ ( m ) ,  ti) is always finite. In the case 

where tf + 00, the reqairement that the system is completely controllable is snfficient 

to ensure that V(x(ti), u(-), ti) is &O finite. Then, if P(t,  t i)  is the solution to the 

finite case with P(tf, t f )  = O, then the constant matna P = limt,,, P(t, tr) (or 

P = limr+-- P(t,tr)) is the steady-state solution. Moreover, P is also the solution 

to the algebraic Riccati equation: 

The optimal performance index has the form 

The optimal control will be 

and the feedback control mat& is 



The dosed loop system is therefore (recall that i(t) = 0) 

The requirement that the performance-index parcd that is responsible for the 

energies of the states observes all of the states is d u e n t  to guarantee that the 

dosed loop system is stable. If the plant is completely observable (which is the case), 

all the state trajectories are identifiable at the output. This fact can be used favorably 

if Q is chosen as Q = CC? This way, BU the trajectories will be represented in the 

integrand term corresponding to the energy states in the performance index. This 

will cause P to be positive definite and Vœ(x( t ) ,  t) to be a Lyapunov fanction [86,87]. 

This choice of matrix Q has the extra advantage of assigning weights to the states 

which are proportional to th& contribution to the output. 

6.3.2 Application of the Internai-Mode1 Principle 

The principle of the Internal Mode1 [88,89] states that, in a regdator problem, the 

feedback loop mnst have the same poles as those of the disturbance signal to be 

neutralized. This principle can be equdy applied to servomechanism problems (90: 

911. Therefore, the plant to be controlled must have the same poles as those of 

the reference signal to be tracked by the output. This signal, if continuous, can be 

represented as the output of an a d a r y  and fictitious system, with no input, and 

with suitably chosen initial values for its state variables. This so called "reference 

systemn has the form 

The reference signal j?(t) is the harmonic content of the HVDC converter being 
drawn fiom the AC system and is to be actively fütered. The reference signal be- 

ing the superposition of several harmonic fkequencies, with no decaying or increasing 

exponentials, is theoreticdy dehed as a margindy stable signal. The harmonic fie- 

quencies at  which the ref'erence signal osdates are determined by complex conjngate 

poles with no real parts. Therefore, each harmonic heguency fh of order h must be 

represented by a pair of ptuely imaginary complex conjngate poles ah+ = +j27r fh and 
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o; = -j27r fh. It can be checked that matrices kef,, and CTefh, togetha with the 
initiai state G~~~ (ti), given by 

where ah and bh are the Fourier coefficients of the harmonic component in question, 

genaate the harmonic component of order h. That is, they satisfy 

Since the total harmonic content is the superposition of all individual harmonies, 
the matrices of the system representing the complete ref'erence signal Y ( t )  have the 

following forms : 

Although the amplitude and phase of the charac teris tic harmonic m e n t  s de- 

manded by the HVDC converta terminal depend on the operating point, the char- 

acteristic hannonic frequenues do not change. That is, th& characteristic harmonic 

frequency orders always satise 

h = 12k f: 1, for k = 1,2,3, ... . 

In this thesis, however, the plant does not present any poles at fiequenues of the 

characteristic reference signal. Ln this case, the Internal-Mode1 Principle could have 



been satisfied in tao ways. The h t  wodd be to associate the plant with an aux- 

iliary system wïth the desired poles in a s& (or tandem) connection. This is the 

prinaple behind the Repetitive ControI approach [90,91]. The second way wodd be 

to modify the positions of the plant's poles in the 8 plane by means of state feedback 

(pole-placement technique) [92]- The second option is nsnally prderred to the fist 

for it does not necessarily increase the order of the resulting system. In the case at 

hand, the plant is a system of the seventh orda and the reference signal, considering 

all the eight characteristic harmonies until the forty-ninth, is of the sixteenth order. 

This means that it is necessary to make use of both ways to satisfjr the kiternal Mode1 

Prinüple. Therefore, the six poles of any three of the harmonic frequencies can be 

b d t  into the plant by means of a state feedback gain mafaix K f b  Ob"ously, the 

harmonic frequencies whose poles are chosen to be embedded into the plant are those 

that demand the state feedback gain matrix to have reasonably sized entries. The 
remaining ten poles of the reference signal are placed in the anxiliary system rep 

resenting the corresponding hannonic components in series with the modified plant. 

The modified plant is represented by 

where 

The nature of the plant determines that the three first , lowest-order, characteristic- 

harmonic poles have been placed into the plant. Consequently, the matrices of the 

tandem system, representing the ten remaining poies of the reference signal are 



CRAPTER 6. THE ACTn'E-FUTER CONTROL 

where 

Thedore, the resulting augmented plant [82] is 

where matrices 

yield the state vector 

Finally, the block diagram of the regnlator problem with the augmented plant is the 

one shown in Figure 6.3. 

6.3.3 The Dansformation into a Servomechanism Problem 

Now, the transformation of the optimal regdator design into that of a servomechanism 

one wiU take place. The angmented plant now has all the poles of the refaence signal 
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Figure 6.3: Basic block diagram of regulator system for the augmented plant. 

j?(t), hence s a t i e g  the InternaCModel Principle. Therefore, provided that a specific 

i&(ti) is used as the initial state, the reference signal can also be generated by the 

augmented plant with no input. That is, 

A performance index that reflects the necessity of reducing the error between the 

output of the plant and the output of the reference system can be 

and k,(t) is the reference-state transition that causes the output of the plant to 

track the output reference j?(t). This last performance index is, t h d o r e ,  trying 

to rednce the error, not between the output seference and the output of the plant, 



but between the refèrence-system state vector and the state vector of the augmented 

plant. This cornparison generates the state-vector error. 

The response of the active-flter control to system disturbances and to changes to 

the operating point shotdd be fast and smooth. With the objective of fnrther control 

on the smoothness of the states and, conseqaently, also on the output, a extra factor 

will now be added to the performance index [Tg], as 

where QI and Q2 are symmetric and nonnegative definite matrices. Since increased 

smoo t hness encourages smaller values of G, (t ) (and, consequently, of y,,(t) ) , t his 
may be confiicting with trying to keep the output error smd.  This is solved as 

follows. The state vector ~ ~ ( t )  is split into tao orthogonal components G~~ ( t  ) and 

&ug2 ( t )  , in the form 

so that one of the components stiu provides the output 

and the other one does not contribute to it at all: 

For the first component to be responsible for the whole output, it has to be in the 

range space of C,. That is, for some vector v(t )  , 

It can be checked that this vector is 

Hence, the orthogonal component can be obtained by simply operating on the real 

state vector ~ , ~ ( t )  of the augmented plant 



Therefore, this relationship can be built into the weighting m a t e  Q1 

where QI is an arbihary nonnegative definite symmetric matrix. This restriction to 

Q1 avoids the codict between the state energy ("smoothnessn) cost and the error 

cost. 

Since the theory ha9 origùially been developed for the regulator problem, it is 

convenient to maintain the original variables of the performance index, that is, in 
terms of the state error and control vectors. In this case, it can be shown [79] that 

the 0ngi.d weighting matrix Q, of the regnlator problem is related to Q1 and Q2 in 
the following way: 

To convert the servomechanism problem into a regulator one, the augmented 

plant is reqnired to be f iutha angmented. The new states are now the diffaences 

between the real angmented states and the reference states. Figure 6.4 shows the 

block diagram of the newly augmented system (the "regdator" system). 

The equations now are 

where 

The 



Figure 6.4: Basic block diagram of the servomechanism problem. 

where 

Therefore, according to the regdator theory, 

-1 T 
unf,.,(t) = -R B,P+,(~) 

where Pr, is the solution of the algebraic Riccati equation 

-1 T PregAeg + A ~ ~ P ~ ~  - PrwBF& + Qreo = 0, 

for which, due to the symmetry of the fiuther augmented system [80], 

The algebraic Riccati equation to be solved becomes 



and the new optimal control is 

Now the servomedianism problem can be represented in a more familiar block 

diagram, shown in Figure 6.5. 

A u g  Plant 30 

Figure 6.5: Rearranged basic block diagram of the servomechanism problem. 

The output reference signal (harmonic content of the converter m e n t  which is 
drawn from the AC system) is composed of the summation of u i t icdy stable com- 

ponents (harmonic fiequencies). In practice, one way of implementing this control 

system could be to continuously run a Fast Fourier 15ransform (FFT) algorithm to 

obtain the magnitude and phase of each harmonic component, and verify which har- 

monics exceed the correspondhg pre-established maximum dowed values. Given 

t hese frequencies ( poles ) , the feedback matrix Kfb and the series s ys tem, containing 

the remaining poles, could be adjusted, and the matrices of the augmented system 

wodd be determined. At this point, the algebraic Kccati equation could already be 

solved, and matrix K determined. But the problem of an efllcient on-line obtainment 

of the state reference to be followed still remains. That is, there is still a need to find 

out the trajectories Sug(t) that the states s,(t) must follow so that y( t )  follows the 

desired output f?(t). An optimal state estimation of this reference signal will therefore 

be performed (Kalman-Bncy filter) for this purpose. 



6.4 The State Estimation of the Reference Signal 

This section deab with the generation of the refêrence states to be tracked by the 

augmented plant. This procedure is based on the fact that the augmented system has 

all the poles that characterize the harmonic m e n t  to be actively fütered and, there- 

fore, given a suitable initial s tatevector value, can generate the required harmoaic 

m e n t .  

Obtairiing the states of a generai hear system through a Iinear combination of 

its inputs, outputs and their derivatives is not practical because the presence of noise 

in these signals will lead to vast errors. A very good property of the Kalman-Bucy 

state estimator is that it ha9 the same basic form as the system whose states are 

being estimated (as a model), using both its input u(t) and output y(t) as inputs 

and yielding the on-iine-estimated states f ( t )  as the outpnt. Another property of 

this state estimator is that it performs optimally in the presence of stationary noise 

which has the least &ect possible. Figure 6.6 shows this scheme conceptually. 
I 1 

Generic 
S ystem 

Figure 6.6: Conceptual block diagram of the Khan-Bucy state estimator. 

Having Figure 6.6 as ref'erence, in the case of the active-filter control, the generic 

system and its input do not exist (iï(t) = 0) and the measured refkrence signal ( i ( t ) ) ,  

being the only signal available for the estimation of its states, is used as the only input 

for the state estimator. The equations of the model used for the state estimation of 

the reference signal are those of the augmented system, which, making use of its fnll 
order, is minimaily sensitive to noise [79]. 

Since, from a certain time on, the estimated states of the reference signal %&(t) 
should be equal to the states that the augmented plant shodd follow Cua(t, t;) , 
the model of the estimator should be a model of the plant with the addition of a 

term reflecting the error between the plant output j ( t )  (the harmonic content of the 

converter carrent being drawn lkom the AC system) and the output of the estimator 



ji'(t) (the estimated output of the plant). The reqnirement that the system, that is, 

the pair (kW, Cau), be comptetely observable is satisfied. Therefore, 

would have the same information as kW@) - KJt) in a nonzero time interval and 
it  is a measnre of how good the estimation is. This mggests the estimator dynamical 

and output equations as 

Figure 6.7 shows the block diagram of the corresponding arrangement. 

Figure 6.7: Basic block diagram of the reference skate estimation. 

The dynamical equation can also be written in such a way that puts the state 

feedback in evidence, as 

KeSt could be carefully chosen (by means of pole placement) so that &w(t) - fi&.,(t) 

becomes smaller, at an exponential rate, as t h e  elapses. That is, so that the eigenval- 

ues of A, -K.&, all have negative real parts. If there is any noise associated with 

j?(t), it will be smoothed. If this is a white noise (uniform power spectrum), it will fdl 
away at high fkequenues. In general, the amornt of output noise wdl depend on the 

choice of Keat but the problem associated with passing noise through a diff'entiator 
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is avoided. The speed at which the output of the observer converges to the comect 

vaiue depends on size of the negative parts of the eigendues of - &&Ca,. Un- 

fortunately, increasing the convergence speed also increases the effective bandwidth 

of the estimator and, thedore, the noise in S ( t )  due to the noise in j?(t)- There- 

fore, there is an apper limit on the speed at which 2 ( t )  approaches i ( t )  and optimal 

estimators take this into consideration. 

The design depends on the probabilistic data concerning the noise associated with 

the measmement of f ( t ) .  Although the basic problem deab with obtaining the best 

possible estimator regardless of the noise content, this optimal filtering problem can be 

converted into one of a deterministic optimal control (regulator) problem (Appendix B 
describes how this is achieved) as follows. 

Assnming that P is the solution to the algebraic Riccati equation 

where Q is symmetnc nonnegative definite, defined by 

and R is positive definite. The gain of the optimal estimator shown in Figure 6.7 is 

The equations of the implemented optimal s t ate-es timat or sys tem are given by 

or, explicitly showing the cornparison between the measnred and estimated outputs 

6.5.1 Plant State Estimation 

The topology of the active filter, together with the control scheme being used, deter- 

mines that the behavior of the active source of the active filter is that of a voltage 



source. This means that m e n t s  generated by any other sources in the AC/DC 
system are allowed to flow & d y  through the active filter circuit. Thaefore, the 

harmonic m e n t  demanded by the HVDGconvata station is passively, and propor- 

tionally, shared (curent divider) by the parallel connection of the AC system, the 

shunt capacitor, and the circuit formed by the series connection of the path impedance 

and the output-filter circuit of the PWM inverter. In the branch formed by the path 

impedance and the output flter of the PWM inverter, the path followed by these cur- 

rents is provided by the antipardel diodes and the output capacitor of the rectifier 

that feeds the PWM inverter of the active source. It can be verified, in Figure 5.12, in 

Chapter 5, that diode pairs D i & 4  and D3&D4, together with the output capacitor 

of the rectifier of the PWM inverter, alternately provide the harmonie m e n t  due 

to the HVDC converter with paths for the positive and the negative cycles. The 

fundamental current does not take part in this process due to the high impedance 

provided by the chosen path impedance. 

In normal operation of the active filter, however, all the actual elements of the 

circuit will experience both harmonic voltages and currents generated by the HVDC 
converter as well as by the active source of the active filter. It is worth noting that 

simple measurements wodd be unable to distinguish voltages and cnrrents compo- 

nents due to the different sources. Fnrther, some of the actual elements of the system 

will also carry fnndamental-fiequency components, and the output-filter elements of 

the PWM inverta will also carry very high switching-frequency components. There- 
fore, the harmonic content of the states of the plant cannot be measured. Instead, 

they mnst be estimated. 

The plant model being considered (Figure 6.1) so far is a SIS0 type of system 

whose only input is the active source of the active filter, and, consequently, its states 

do not consider the harmonic m e n t  source representing the HVDC-converter termi- 

nal or fundament al-fiequency sources. Thedore, the estimation of the s t ates, being 

fed back to match the poles of the plant with those of the reference signal and for use 

by the optimal-control law, should consider only the active source as the plant input. 

Equally, the reference harmooic m e n t  to be tracked by the active füter, cor- 

responding to the AC-system harmonic currents (whose states were estimated in 

Section 6.4) should be estimated &om a plant model having only the harmonic cur- 

rent due to the HVDGconverter as input. The actual m e n t  that this estimated 



m e n t  represents must be candled by the successfd operation of the active flter 

and, therdore, the measured resnlting AGsystem harmonic m e n t  shotdd be zero. 

The estimation of the states of the plant, on the one hand, and of the reference 

m e n t ,  on the other hand, have both been simplified to mere on-line sidtaneous 

simulations of two different models of the same AC/DC system. 

For the estimation of the states which are fed bads and also used in the optimal- 

control law, the same plant model used in the optimal-control design, having the 

active-source voltage refkrence as input and its correspondhg active-filter m e n t  as 

output, is simulated. That is, the derivation of these states is executed by a pardel 

realization of Equations (6.3). 

The determination of the component of the harmonic carrent demanded by the 

HVDC terminal which passively cornes fiom the AC system is done by means of the 

on-line simulation of the circuit shown in Figure 6.8. This model uses the measured, 

and PLL-fltered (Section 6.5.2), AC line murent of the HVDC terminal as input 

and the AGsystem harmonic m e n t  as output. The states of this model are then 

forwarded to the reference-signal s tate estimator. 

Figure 6.8: Circuit diagram representing the plant, having the HVDCterminal 

harmonie-ment content as input, for obtainment of ir+ 

Being essentially the same plmt ased for control, the state variable representation 

of this circuit has the same poles (same matrix Apront) as derived for the control. 

However, all the o tha  matrices are different fiom those in Equations (6.3). The 

dynamic and output equations of this circuit nsing well known techniques [al-831 
and their respective matrix valnes are as follows. 



where 

Bih = 

6.5.2 P hase-Locked-Loop Fundamental-Component Signal Fil- 
ter 

Another important issue in the derivation of the reference m e n t ;  is the separation of 

the harmonic component (I,) for the fundamental component of the meamred signal 

i,. The fundamental component is typically 20 to 30 times Iarger than the llth, and 

largest, characteristic harmonic and they are only 600 Eb apart. Consequently these 

factors create considerable practical diff idty in removing the findamental compo- 

nent. An ordinary nth-order high-pass filter is insuffiCient to provide the confiicting 

attribute of accuracy (magnitude and phase) and speed. Furthamore, any transient 

or permanent small change in the system's hindamental frequency would cause loss 
of tuning and an incorrect reference signal. 

Alternatively, a notch filter would provide progressively negligible phase shift and 

at t enuation as fiequencies distance themselves fiom the fimdamental fkequency. How- 

ever, it would also be degrôded by variations of the fundamental fiequency. 

The solution has been to utilize a filter based on a phase-locked-loop (PLL) [93- 
981. It tracks and compensates for deviation in hdamental  hequency. The basic 

components of the PLL are the phase comparator, the low-pass nlter and a voltage- 

controlled oscillator, as shown in Figure 6.9. 
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input 

Iocked 
signal 

Figure 6.9: Components of a generk phase-locked-loop filter. 

A PLL basically synchronizes the fiequency of the output of the voltage- controlled 

osciUator with the fkequency of a reference signal. The filtered result of the phase 

cornparison is the error signal that controls the output signal of the VCO. The output 

of a phase comparator has the following general expression: 

Designating vf as the output of the low-pass filter, the general expression that 

governs the output fkequency of the VCO is 

where fo is the natural frequency of osdation of the VCO (with no input). 

In power systems, phase changes due to fkequency deviations are small and develop 

slowly, and can be detected by a simple analog mdtiplier as the phase comparator 

(PC in Figure 6.9. In the case of the active filter, the reference input is derived fiom 

the line m e n t  of the HVDC converter taminal. Ifonly the fundamental component 

of this current were considered, r( t )  and I(t) (see Figare 6.2) can be written as 

where 



and 
wi = 2 r f i .  

The mdtiplier output is then given by 

and the output of a pafect low-pass filter by 

It can be shown that [98], considering the closed loop in the locked state in whidi 
both the refkrence and the VCO output signals are at the same fkequency, the phase 

clifference between these signah mast be and that the system d o c k s  (or &skipsn) 

if the phase difference equals zero. It can also be shown that the reference angniar- 

fkequency range AwK, over which the locked PLL, is still able to reduce the phase 

difference to zero (Khold" range), in response to a fkequency deviation, is given by 

and that the reference angalar-firequency "captnre" range AwL, over which the PLL, 
if origindy unlocked, is able to acqaire lock and trads to reduce the phase diff'ence 
between the reference signal and the VCO output to zero, is given by 

where BL is the low-pass filter bandwidth. 

The harmonies in the reference signal will produce jitter in the zero crossings. 

Since the low-pass filter WU damp these oscillations to negligible values, the output 

of the VCO will continue to track the hdamental component of the reference signal. 

The design of a phase-locked loop, ultimately, depends on the design of the low- 

pass filter. The kequency-domain block diagram of the PLL is shown in Figure 6.10. 

Having Figure 6.10 as reference, the following relationships hold: 
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Figure 6.10: Linearized blodt diagram of a phase-locked-loop filter. 

O pen-loop transfer fanction: 

Characteristic equation: 

The majority of the applications of PLL Mters (mostly in communications) make 

use of a first-order low-pass filter. The high-acmacy requirement of the active filter 
demands the use of a second-order low-pass filter. This causes the closed-loop equation 
of the PLL filter to be of the third order. The design method of the thisd-order PLL 
füter used in this thesis has been the one suggested in [98]. 

The transfer function of the second-order Mter is in the following general form: 

Therefore, for the third-or der P LL filter, the followhg relationships hold: 

Open-loop transfer fnnction: 
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Characteristic equation: 

Ronth's stability analysis shows that a condition for the PCL filter to be stable is 

that 

It can also be shown that , in order to optimize the phase margin and, consequently, 

the Bode-stability of the PLL filter, the roots of the characteristic equation should 
be placed at 

82  = -Cun - jdl - C2w, 

where C is the damping factor and wn the natnral angular frequency. 

These values ensure that the phase 

tan aM 

and occurs at the cut-off frequency 

margin is rnzdmum, has its valne given by 

Considering the PLL for the HVDC converter line m e n t ,  the damping factor 

has been chosen as C = 2 to yield, through Equation (6.99), a good phase margin 

of d = BM = 4 5 O .  

The steady-state AGsystem fiequency has typically a very nanow variation range. 

Kd and Kg have both been set at nnity. These values: according to Equation (6.87) 
permit a maximum îrequency deviation of Af- = 0.16 Hz. This is compatible 



with the reqnirement specified at Itaipu [46]. Iiid and error technique resnlted in a 

selected cut-off frequency f, = 0.1 Hz. 

The generation of a large second-harmonic component is inberent to the opera- 

tion of the analog multiplier having sinusoidal signals as inputs (Eqnation (6.85)). 

Althoagh this component is considerably reduced by the second-order low-pass filta, 

the eventnal necessity of dealing with the active filtering of second-order current har- 

monics required the radical reduction of this component by means of the introduction 

of a notch-filter between the low-pass filter and the VCO tuned at fd = 120 Hz. 

The transfer fnnction of the notch füter is given by 

The qnality factor that considers the tradeoff between accuracy and speed has 

been chosen as Q = 10. The resdting fkequency characteristics plot is given in 

Figure 6.11. 

One last PLL component shodd now be included. Since the locked state deter- 

mines that the output of the VCO be shifted by : radians fkom the reference signal, a 

fist-order passive phase corrector filta [99] is used to obtain the fundamental compo- 

nent signal which is in phase with the fimdamental component of the H M C  converter 

line m e n t .  The transfer function of the phase-corrector filter is given by 

and its fiequency characteristics plot is given in Figure 6.12. The final block diagram 

of the PLL is shown in Figure 6.13. At this point, it is worth showing the dynamic 

response of the complete PLL filter. With this in mind, the response to a s m d  but 

abrupt frequency change in an nnitary-amplitude sinusoidal input signal has been 

simulated in MATLAB. Figure 6.14 shows the corresponding response of error signal 

PLL,,, between the input and the output signals, to a 0.1-Hz step in the fiequency 

of the input signal. The required simulated time of 20 s reflects the low cut-off 

fiequency of the PLL filter. 

Finally, the complete block diagram of the active-filter control is shown in Fig- 

ure 6.15, where ea& one of its sevaal components can now be easily identified. 



Figure 6.11: Frequency charac teris tics of the not ch filt er. 





Figure 6.13: Final block diagrm of the PLL fdter. 

Figure 6.14: PLL-filter dynamic response to a frequency step in the input signal. 
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Figure 6.15: Complete block diagram of the activefilter control. 



Chapter 7 

Dynamic Simulations of the 
AC/DC System 

7.1 Introduction 

Although the well known simulation program for power systems, EMTP, was available 

for this research, another program, SABER, was selected as having the potential to 

be more amenable to the incorporation of the modehg of the active filter, and its 

control- 

SABER, while not specificdy designed for simulating power systems, is a highly 
sophisticated and state-of-the-art commercial simulation tool. Its use had the promise 

of providing a very poweanl simulation platform while it presented considerable chal- 

lenge in adapting it to the power system problem at hand. For example, in compari- 

son with EMTP, no power system component models, e-g., semiconductor converter, 

power transformer, are provided, and these had to be developed fiom basic elements. 

SABER is self-defmed as a mixed-signal (continuous and discrete- time variables) 

s i d a t o r  [100], and its interna1 p r o g r d g  indudes independent analog and digital 

algorithms that , when needed, synchronously communicate the interaction between 

the two types of circuits. It allows the simulation (in the time and fiequency domains) 

of analog systems (continuous with any real value), digital systems (discontinuous, 

but with a limited set of values), event-driven analog systems (discontinuous, but with 
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any real value), and mixed modes where analog and digitd signals are transmitted 

between devices. 

As to the modeling language, SABER uses a hardware description language, 

MAST, for modeling analog and mixed-signal devices. This language allows the 

description of a circuit behavior without having to describe a structure or fanction 

to generate that behavior. The characteristics of a devke are passed to the simdator 

as programmatic featnres that spe* control flow and operations on data. Conse- 

qnently, the implementation of any new device does not require the use. to know the 

integration routines and solution of linear and non-linear equations in the source code 

(written in C) of the simdator. Besides deseribing the h c t i o n  of entire analog or 

digital &cuits and systems, MAST also allows measnrements during the simulation. 

Analog elements are rnodeled by their algebraic andior differential equations. The 
operation of the logic components are approximated, with an acceptable level of ac- 

curacy, by modeling bct ions  rather than precise operational characteristics. Digital 

components are represented by their state Boolean description and time delays, and 

have no resemblance to the analog cïrcuitry that it models. The state variables are 

solved at discrete times, and only those fnnftions which are dected by a changed 

state are computed. This way, the simulation of such systems are made a lot faster 

than with a pure analog simdator. 

The simulation starts from a DC solution for all States (voltages and currents), 

kom which the behavior of the circuit is observed in response to stimuli. SABER 
offers two options of integration methods: Bapezoidd and Gear (1st and 2nd orders). 

The 1st-order Gear was the integration method nsed becanse of its faster pdormance 

for the system studied. SABER allows the usez to determine the truncation error to 

be respected before ending the integration step. The integration time steps c m  be 
either fixed or variable, and the minimum and maximum the-step values can also 

be set. The method nsed for the solution of the non-linear equations can be chosen 

fkom Newton-Raphson (the method used) or Katzenelson (use suggested only when 

Newton-Raphson fails), and the s i d a t o r  also accepts an input for the maximum 

n u d e r  of iterations. 

SABER has been improved for the past ten years, and it now provides extensive 

libraries of generic components and of red-parts, of different technologies (electrical, 



mechanical, hydraulic, thermal), for Mmediate use. SABER also allows combined use 

of MATLAB, a wîdeiy used mathematical analysis sohare. Fnrther to this, SABER 
provides very flexible plotting capabilities which indude processhg and readings fiom 

the resulting waveforms (PLTOOL) . 

7.2 Simplifications and Implement at ion Details 

7.2.1 HVDC Thyristors 

The implementation of accurate nonlinear models of the thyristor valves wodd be, 

for the present parpose, nnnecessary and an element of complication in the modeling 

and analysis of the complete system. Therefore, the power semicondnctor devices had 

their ideal models implemented, and the drive circnits and heat sinks, that would be 

reqaired in a practical implementation, have been neglected. 

The implemented HVDC thyristor models change from off-state to on-state when- 

ever the voltage across th& terminals is positive and larger than a preset threshold 

value (set to 1 mV) and a firing pulse is concurrently applied to the gate terminal 

by the firing control. Once in their on-state, they present a preset value of forward 

voltage drop (set to 1 mV). On the other hand, the thyristor models will change from 

the on-state to the ofCstate whenever the m e n t  flowing thmngh the device becomes 

less than a preset threshold m e n t  (set to -1 mA) with a negative derivative. The 

recovery time, a time period during which a spontaneous reignition can o c m  in the 

event of a reapplication of a positive voltage across the terminab, even without the 

existence of a firing pulse, has not been modeled. 

7.2.2 Active-Source IGBTs 

A main characteristic of some currently available semicondnctor switches is that they 

present extremely low losses during the conducting state. Therefore, the losses of 

the active source with such devices, being basically related to the switching actions, 

are considered proportional to the number of swïtdiings (the switching fkequency). 

A power-loss stady wodd demand a rigorous model of the switching device, and 

this wodd consequently imply an extremely long computational tirne. With the 
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objective of simplifying the &cuit to be analyzed, while retaining the ideal waveforms 

of voltages and currents associated with the P WM operation, the IGBT switches have 

been considered as ideal devices, and no snabbers have been nsed in the active source. 

They present the same preset value of forward voltage &op, and change fkom the off- 

state to the on-state, and viceversa, the same way as the idedized thyristor models. 

Further, they also turn off whenever the firing pulse is removed. 

Another idealization concerning the PWM operation is that the power semicon- 

ductor switches are dowed to tum on and off at any rate. This implies that, at max- 

imum points of the voltage-reference signal which have approximately the same value 

as the triangnlar carrier waveform, the IGBT switches wodd tnrn on and immedi- 

ately off, almost ins tantaneously. This occurrence has intentionally been represented 

in Figure 5.5 in Chapter 5. In snch regions of the voltage-reference signal, a practical 

implementation would avoid these stresses and switching losses by not allowing the 

pulse to be removed from the semicondnctor's gate until a minimum period of time 

has elapsed and the reference signal is below a preset value. 

7.2.3 Active Source 

This t hesis ha3 considered a simplified version of the rectifier-conver ter /out put capac- 

itor set of the active source. They are represented by one ideal variable DGvoltage 

source which is instantaneously updated, at the end of each fnndamental period, to the 

highest peak value of the voltage-reférence signal (given by the active-filter control) 

that occurred during the previous period. However, it instantaneously responds to 

any increase in the voltage-reference signal that surpasses the previous DC voltage 

level. This simplification reduced the order of the system without afkting the issues 

of principal concerns in this thesis and saved computation tirne. 

The amplitude of the triangular carrier of the PWM inverter is also updated at 

the end of each fbdamental perïod to 1% higher than the largest peak-to-peak value 

of the voltage-reference signal that occmed during the previous hdamental period. 

Further, at any time, it immediately tracks a rise in the reference signal that surpasses 

the cnrrently set amplitude of the carrier. 
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7.2.4 The 

The PLL a t m  

to have a slow 

which, for the reasom expIained in Section 6.5, had to be designed 

time constant, demands a long computation time for reaching the 

steady-state operation kom the initialîzation point. Furthennore, since the simula- 

tions performed wodd not involve freqnency changes, the inclusion of the PLL model 

in the simdations was inconsequential to the steady-state resdts. As an illustration, 

the simulation of a simplified ACJDC test system, withont includhg the active-filte. 

circnits and their controls, reqnired 100 s of simulation t h e  for the PLL to accnrately 

reach its steady-state operation. This simulation was done over a Bday compntation 

period. 

For the parposes of the results presented in this thesis, the required compntation 

t h e  placed a practical limitation in combining the PLL simulation with the active 

filter. The research was therefore continued to MLidating the PLL in isolation from the 

active-filter performance. Since the presented results assume no frequency deviations, 

instead of the PLL, a single-tnned filter, tuned at the fnndamental frequency, and with 

quality factor Q = 10 has been used. The transfér fnnction of this füter is given by 

7.2.5 Simulation Time and Second-Harmonic Oscillations 

SABER is not able to initialize a circuit for a dynamic simulation from a fiequency- 

domain point of view as is usudy convenient in power systems applications. Instead, 

given the voltages across all the capacitors and currents through all the inductors of 

a circuit, it finds a DC operation point in the tirne domain. It is worthwhile noting 

that in a DCsolution scenario, voltage drops across inductances and currents thmugh 

capacitors are zero. Specifically, the large inductance and reduced resistance of the 

converter transfomers present a very large time constant and posed initialization 

hurdles . 
Therefore, to avoid the prohibitively large amount of simulation time for the 

system to reach the steady state fiom a DC solution, a set of initial conditions were 

required to be crafted in MATLAB and manually input in SABER AU the simulation 

cases have been run in the same fashion. The DC solution was first obtained fiom 
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the set of initial conditions. Then, the AC/DC system was simulated from the DG 
solution until a reasonably steady state was reached. 

The proportional and integral gains of the m e n t  control of the HVDC system, 

being extiemely small, require a rather long simulation time until the system is ab- 

solutely fiee from second-harmonic oscillations cansed by the initialization process 

and the AGsystem pardel resonance. Therefore, to Save computational tirne, it was 

decided to tolerate a s m d  amount of second-harmonic oscillations and s i d a t e  the 

AC/DC system for only 18 cycles. In fact, the presence of small second-harmonic 

oscillations can be seen as an extra stability test posed to activefilter control. 

AU the waveforms presented in this chapter are those of the last simdated fun- 

damental period (283.33 ms to 300 ms). The observed D G h e  voltage and current 

at the rectifier terminal are in agreement with the theoretical waveforms presented in 

Chapter 2. The required computational time for the simulation of the complete test 

system is approximately two and half hours for each fandamental period. 

7.3 Simulation of the Original 60-Hz HVDC Bench- 

mark System 

The simulation of the steady-state operation of the 60 Hz version of the Modified 

HVDC Benchmark System, shown in Figare 4.2, in Chapter 4, has been carried 

out with the objective of dowing a quantitative cornparison of the pdormance of 

the active filtering against the passive-filtering concept in SubSection 7.6.1 of this 

Chapter. 

Figures 7.1 to 7.5 are pertinent to the current balance at the point where the 

original AC passive-filter branches are connected to the HVDC terminal. Figure 7.1 

shows the AC Line currents of the HVDC converter, and Table 7.1 presents the corre- 

sponding noteworthy harmonic contents and individual harmonic distortions in phase 

a. 

The harmonic content is in qualitative agreement with Table 2.1 in Chapter 2. 

Figure 7.2 shows the total cnnents diverted to the ground by the AC passive filters. 

Note that these currents carry a significant amount of fnndamental component. This 
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fundamental component corresponds to the reactive power that is provided by the AC 
passive-filta branches. This component is &O evident in Table 7.2, which presents 

the harmonic magnitudes and phase angles in phase a, together with their percentages 

with respect to the hdamental  component of the HVDC-converter line m e n t .  

The snms of the currents that flow to the HVDC converter terminal and down the 

original AC passivô-filter branches are presented in Figure 7.3. The waveforms are far 

from pure sinusoids, and this is an inherent characteristic of the passive filtering. The 

amount of harmonic content that has not been properly filtered by the original passive- 

füta  branches and the corresponding percentage with respect to the findamental 

component of the HVDGconverter lïne carrent are quantitatively shown in Table 7.3. 

This table shows that the amonnt o f b d a m e n t d  component provided by the AC 
system and the shunt capautor bank has been reduced due to the reactive power 

support provided by the AC passiv+fiter banks. It is &O clear that the amount of 

compensation of harmonies is far fkom perfect for the fmst two characteristic harmon- 

ics and deteriorates for the higher-order ones. It is worthwhile noting that this trend 

follows the fkequency characteristics of the total AC passive-filter ba&s depicted in 

Figure 4.4 in Chapter 4. 

All the harmonic content that has not been fltered must flow through the AC 
system and the shunt capacitor bbank. The percentage of harmonic current that flows 

through the shunt capacitor bank satisfies the "current divider" rule. Since the shunt 

capacitor bank provides a much lower irnpedance at these harmonic kequencies than 

the AC system, practicdy all the hasmonic currents that the AC passive-filter bank 

failed to compensate fiow through the capacitors. These harmonic cnrrents are highly 

visible in Figure 7.4 and th& existence should be accoanted for at the design stage 

of a real HVDC system. Figure 7.5 confirms that the m e n t  flowing from the AC 
system is practicdy free from harmonic currents. 

Figure 7.6 shows the AC voltage wavefom at the HVDC converter terminal (across 

the shunt capacitor bank). Table 7.4 presents the harmonic distortion indices that, 

although s m d ,  cause the slightly visible waveform distortion. 
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Figure 7.1: HVDCconverter AC l i e  currents with the original AC passive-filta 
branches (- phase a,- phase b, -O -  phase c)  . 

Table 7.1: Harmonic content of the HVDGconverter AC line current in phase a with 

the original AC passive-füter branches. 

1 Harmonie / Amplitude 1 Phase 1 IHD 1 



Figure 7.2: Total cnrrents of the original AC passive-filter branches (- phase a;- 

phase b, --- phase c).  

Table 7.2: Harmonic content of  the total m e n t  of the original AC passivefilter 

branches in phase a. 

1 Harmonie 1 Amplitude 1 Phase 1 I 
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Figure 7.3: HVDCconverter AC line m e n t s  which have not been Ntered by the 

original AC passive-filter branches (- phase a ,  phase b, --- phase c).  

Table 7.3: Harmonic content of the HVDGconverter AC line m e n t  in phase a which 
has not been filtered by the original AC passivefilter branches. 
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Figure 7.4: Cments through the shunt capaator banks with the original AC passive- 

filter branches (- phase a,- phase b, * - -  phase c). 

Fignre 7.5: AGsystem cnrrents with the original AC passive-filter branches (- phase 

a,- phase b, * - O  phase c). 
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Figure 7.6: AC voltages at the HVDGconverter terminal (auoss the shunt capacitor 

banks) with the original AC passive-flter branches (- phase a ,  phase b, - O -  phase 

4- 

Table 7.4: Harmonic content of the AC voltage in phase a at the HVDGconverter ter- 

minal (across the shunt capautor banks) with the original AC passive-filter branches. 

1 Harmonic 1 Amplitude 1 Phase 1 IHD 
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7.4 Simulation of the Modified 60-Hz HVDC Bench- 

mark System with the Active Filters Disabled 

The objective of this section is to demonstrate the efEect that the active-filter circuit, 

when inoperative, has on steady-state operation of the AC/DC system. In this sim- 

ulation, the complete test system used in this research is modelled. The complete 

active-filter circuit substihtes the original AC passive filter, and the capacitance of 
the original shunt capautor bank is increased as to supply the reactive power that 
was previously suplied by the original AC passivefilta bank. The new component 

values are  those determined in Chapter 5 and the system can be seen in Figure 7.7. 

Figure 7.7: The AC/DC test system ased in the research [Cl, mH, pFj. 

Although connected to the system, the active filter is disabled by forcing the 
voltage reference to the active-source rectifier and PWM inverter (the active source) 

to zero v,,j = O. 

Figures 7.8 to 7.12 consider the current balance at the point where the path 

Mpedance of the active filter connects to the system. Figure 7.8 illustrates the t h  
AC line currents of the HVDC converter. The noteworthy harmonic components 

and their corresponding Individual Harmonie Distortion indices pertaining to phase 

a are  presented in Table 7.5 and are in good qualitative agreement with Table 2.1 in 

Chapta 2. 

Figure 7.9 shows the currents that passively flow t hrough the active-filter circuit. 
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Figure 7.8: HVDGconverter AC line carrents with the active füter disabled (- phase 

a,- phase b, O-. phase c). 

Table 7.5: Harmonic content of the HVDGconverter AC line current in phase a with 
the active filter disabled. 

IHD 

[%I 

47 2.61 - 27.54 0.10 

49 3.23 - 155.05 0.12 
1 

Phase 

PI 
Harmonie 

Order 
Amplitude 

[AI 
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Figure 7.9: Path-impedance earrents with the active filter disabled (- phase a.- 

phase 6, = - =  phase c).  

Table 7.6: Harmonie content of the path-impedance m e n t  in phase a with the active 

filter disabled. 

[%] 
Phase 

r'1 
Harmonic 

Order 

Amplitude 

[Al 
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Figure 7.10: HVDGconverter AC line cnrrents which have not been filtered with the 

active filter disabled (- phase a,- phase b, * -O  phase c) .  

Table 7.7: Harmonic content of the HVDCconverter AC line current in phase a which 
has not been filtered with the active filter disabled. 

Harmonic Amplitude Phase 

Order 
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Note that the chosen path impedance prevents these cnrrents fiom containing any 

findamental component. This can be quantitatively confirmed in Table 7.2 which 
presents the harmonic contents of the m e n t  throagh phase a, and the respective 

percentages with respect to the fandamental component of the HVDGconverter line 
m e n t  - 

The diffaences (or Yerrors") between the m e n t s  that flow to the HVDC con- 

verter terminal and the ones which are passively injected by the active-filter circuit 

are presented in Figure 7.10. As with the original AC passive filter, the filtering is 

only partial and these wavefoms are not pure sinusoids. Table 7.7 quantizes the 

amonnt of harmonic content that has not been properly (passively) fdtered by the 

active-filte. cirait . The corresponding percentages wit h respect to the fundamental 

component of the HVDCconverter Line m e n t  are also shown in Table 7.7. 

Differently fkom the original AC passive filter, this circuit leaves the AC fnndamen- 

tal-component m e n t  nntouched, meaning that the active and reactive fundamental 

components are being provided by the AC system and the shunt-capacitor bank. It is 
evident that the overall passive compensation of harmonics done by the active-filter 

circuit is worse than the one aehieved by the original passive filter, specially for the 

higher-order harmonics. This suggest s that the bypassing of the mat ching transformer 

of the active filter by a switch should be considered if the active filter is expected to 

be continuously disabled for long periods of t h e .  The amplification of the taro last 

char acteris tic harmonics is due to the exit  ation of the active-filter circuit resonances 

by the HVDGconverter line currents; however, in practice, the real circuit might be 

resis tive enough to avoid these resonances. 

This eventual bypass switchuig wodd exdode all the active-source circuit fiom the 

system and leave the path impedance directly connected to the ground. By visually 

analyzing the impedance characteristics of the path impedance and the one of the 

original passive-filter bank (Figure 5.3 in Chapter 5), it can be expected, based on 

the simulation of the original system, that, except for the 11th and 13th harmonics, 

all the other harmonics wodd be better diverted to the gromd, should the matchhg 

transformer be bypassed. 

The AC system aad the shunt capacitor bank proportiondy share (according to 

the "current divider" d e )  all the harmonic content that has not been passively fil- 
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tered by the activefilter circnit. Again, as in the previous simulation, practically all 

the harmonic cnrrents wiU flow through the mnch lower impedance of the shunt Ca- 

pacitor b d .  Figure 7.11 displays the harmonic currents distorting the fnndamental 

m e n t  component tkough the shunt capacitor bank. It is &O worthwhile noting 

that the reactive power rating of this shunt capacitor bank is much higher than that 

of the original bank. Therefore, the d t e r e d  harmonic m e n t  flow throngh the 

new shunt capacitor bank constitates proportionally less harmonic overload than the 

harmonic overload in the original system. This can be easily v d e d  by comparing 

Figure 7.11 against Figure 7.4. Figure 7.12 confirms that the carrent flowing fiom 

the AC system is practically fiee firom harmonic currents. 

Figure 7.13 shows the AC voltage waveform at the HVDC converter taminal 

(across the new shunt capacitor bads). An extremely s m d  amount of harmonic 

dis tortion can be visnally noticed and confirmed by the indices presented in Table 7.8. 

Figure 7.11: Currents through the shunt capacitor banks with the active filter disabled 
(- phase a,- phase b, * - =  phase c). 
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Figure 7.13: AC voltages at the HVDGconverter terminal (across the shunt capacitor 

banks) with the active filter disabled (- phase a,- phase b, --• phase c).  

Table 7.8: Harmonie content of the AC voltage in phase a at the HVDGconverter 

terminal (across the shunt capaeitor banks) with the active fdter disabled. 

1 Harmonic 1 Amplitude 1 Phase 1 IHD 1 



CHAPTER 7. D M V M C  SLMULATIONS OF THE AC'DC SYSTEM 

Fignre 7.14: Reference-ment signal for the active-filter controls. 

Table 7.9: Harmonic content of the seference-ment signal for the active-filter con- 

Phase Harmonic Amplitude 
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The state-variable representation of mch signal requires that its poles (the eigen- 

values of the characteristic matruc) be at the harmonie angalar fitequenues. Thedore, 

these eight pure pairs of pure complex conjugate poles mmt be 

As seen in Chapter 6, the plant has six of its original poles displaced onto the six 
poles corresponding to the f i s  t three characteristic harmonies. The s t ate feedback 

matrix that accomplishes this has been caldated, in MATLAB, by applying the 
command "place" on matrices &ad and Bfiad used in (6.3), as being 

The system mahices of the plant, just modified by the new pole placement by 
state feedback, can now expressed by Equations (6.26) to (6.31). The characteristic 
mahix of the system that contains the ten reférence poles that were not b d t  into 
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the plant model, and is placed in s a i e s  with the modified plant, is given by (7.4). 

Matrix Let,,,, together with the other unitary vectors Bref,,, in (6.35) and Cref,,, 
in (6.37) define this series system. The resnlting stable augmented system can now 

be completely expressed by expressions (6.39) to (6.42), and A, possesses all of the 

poles of the reference signal as its eigenvalaes: 
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At this point, the conversion of the problem into one of the regulator type can be 

done by means of expressions (6.59) to (6.63). The weighting matrices Q3 in (6.56) 

(determiaing QI), Q2 in (6.57) and R in (6.49) have been derived by means of trial 
and m o r  dnring simulation tests to produce an adeqnate dynamic performance with 

practically achievab1e gains, i.e. the âaal choice of values provided a good set thg 

time &er disturbances with reasonable values of entries for the control matrix K. 

It has been v d e d  that the dynamic performance of the control is most sensitive, 

by similar amounts, to the states vc,,, vc, and &,, and that the sensitivity to the 

other states is neglïgi'ble. Therefore, except for the diagonal entries corresponding to 

the states z.,,, x.,, and z,, which are all set to 0.01, dl other entries of Q3 are 

set to zero. 

The value of the weighting matrix responsible for the output-error cost has been 

set to Q2 = 5. Since the sensitivity of the dynamic performance of the active-filter 

control to the control energy cost was fotmd to be negligible, R has been set to 1. 

The solution of the Riccati equation in (6.69) with these weighting matrices and 
(6.70) provide the following control matrix: 

The determination of matrir R in Equation (6.76) for the estimation of the states 

of the reference signal has also been done by trial and error. A d u e  of R = IO-" 

ensured that the reference estimation would be f a ~ t  enongh in relation to the optimal 

control of the active füter and yield reasonable values for the gain matrix K.at. The 
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resdting gain matrix is 

Keat = 

7.6 Simulation Test of the Active Filter 

7.6.1 Steady State 

This section presents the s teady-state operation of the complete AC/DC system in- 

duding the fdly-operative active filta. 

Figures 7.15 to 7.22 relate to the carrent balance at the HVDC converter station 

bus. Figure 7.15 shows the line currents feeding the HVDC converter station. The 

harmonic content of the HVDCconverter-station line m e n t  in phase a is shown in 

Table 7.10 together with the IHD indices. 

These values are in dose agreement with Table 2.1 in Chapter 2. The cments 

flowing through the path impedances, in each one of the three phases, and injected 

into the AC/DC system are shown in Figure 7.16. The m e n t  in phase a is repeated 

in Figure 7.17 for clarity. 
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Figure 7.18 shows the freqnency spectmm of the path impedance m e n t  in phase 

a. This frequency spectrum is repeated in Figure 7.19 with a rednced range of the 

amplitude z&. 

Figure 7.19 demonstrates that this harmonic content does not include significant 

amonnt of harmonics due to the switching &equency of the active source or of any 

order other than the characteristic HVDC AC harmonics being actively fdtered. The 

amplitudes and phases of the relevant harmonics of the carrent through the path 

impedance in phase a, as well as th& relative errors with respect to the corresponding 

harmonic content of the HVDGconverter line ament, are all quantiiied in Table 7.11. 

As expected, due to the decreasing ratio between the switching fkequency of the 

PWM inverter and the frequencies of the higher-order harmonies, the active-filter 

performance, althongh still better than the original passivefilter banlrs, deteriorates 

both in magnitude and phase as the harmonie fiequency increases. 

The differences between the HVDC converter line currents and the currents in- 

jected through the path impedances reflect the error of the active-filter output. These 

waveforms, which should ideally be p u e  sinusoids, are presented in Figure 7.20. Ta- 

ble 7.12 demonstrates that the harmonie content that is not properly cancelled is far 

less than that obtained in the original system with passive-filter banks. 

Finalizing the harmonie-current balance analysis, Figures 7.21 and 7.22 respec- 
tively show the cments that flow into the new capacitor bank and from the AC 
system. AU the negligible harmonic content which has not been s u c c e s ~ y  canceled 

by the active füter is dram by the shunt capautor. This harmonie content by no 

means ovaloads the shunt capacitors. In Figure 7.22, it can be noticed that the line 

cnrrents flowing fiom the AC system are, for practical effects, pure sinnsoids. 

Figure 7.23 shows the practically clean phase voltages at the HVDC-converter bus. 

This is ctedited to the fact that, besides the excellent performance of the active filter, 

no harmonic sources have been represented in the AC. system. Table 7.13 c o b s  

the extremely low harmonic content of the bus in question. 



Figure 7.15: HVDC-converter AC line cnrrents with the active flter enabled (- phase 

a, - phase à, --• phase c). 

Table 7.10: Harmonic content of the HVDCconverter AC line current in phase a 

with the active filter enabled. 

1 Harmonic 1 Amplitude 1 Phase 1 IHD 1 
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Path-irnpedance currents with the active filta enabled (- phase a, - 
phase b, --• phase c). 

Figure 7.17: Path-impedance m e n t  in phase a with the active filter enabled. 
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Figure 7.18: Frequency spectrum of the path-impedance m e n t  in phase a with the 
active filter enabled. 

Figure 7.19: Frequency spectnun of the path-impedance m e n t  in phase a with the 
active filter enabled (reduced range of the amplitude axis). 
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Table 7.11: Harmonic content of the path-impedance m e n t  in phase a with the 

Figures 7.24 to 7.27 display waveforms concerning the active-source rectifier and 

PWM inverter connected to phase a. Figure 7.24 shows the PWM voltage-ref'erence 

signal generated by the optimal control. The maximum peak of this signal determines 

the DG voltage of the rectifier of the active source. The envelope fomed by the hm- 
dreds of pulses that occar daring one fnndamental period is presented in Figure 7.25. 

Rom this figure, it can be concluded that the voltage level which the IGBT switches 

must be able to withstand in steady state is 3,097 V. The current waveforms that 

flow throngh the IGBT switches and the anti-pardel diodes are in Figures 7.26 and 

7.27 respectively. Th& respective RMS values are 83.74 A and 68.02 A. These RMS 
values can be used as guides to the reqniied cment  ratings of these semiconductor 

devices. 
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Figure 7.20: EVDCconverter AC line cnrrents which have not not been filtered with 
the active filter enabled (- phase a, - phase b, --• phase c). 

Table 7.12: Harmonic content of the HVDC-converter AC line cment in phase a 

which has not been filtered with the active fdter enabled. 

Harmonic 

Order 

Phase 

PI 
Amplitude 

[Al 
PI 
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Figure 7.21: Currents through the shmt capacitor banks with the active filta enabled 

(- phase a, - phase b, --• phase c). 

Figure 7.22: AGsystem currents with the active filter enabled (- phase a, - phase 

b, phase c). 
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Figure 7.23: AC voltage at the HVDGconverta terminal (across the shunt capacitor 

banks) with the active filter enabled (- phase a, - phase b, phase c). 

Table 7.13: Harmonic content of the AC voltage in phase a at the HVDCconverter 
terminal (across the shunt capacitor banks) with the active filter enabied. 

1 Harmonic 1 Amplitude 1 Phase 1 IHD 
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Figure 7.24: PWM voltage-ref'ce signal for active filter in phase a. 

Figure 7.25: Voltage across IGBT #1 in active source in phase 
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Figure 7.26: Current through IGBT #l in active source in phase a. 

Figure 7.27: Current through anti-pardel diode #1 in active source in phase a. 
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7.6.2 10%-Step of the DC-line Current Order 

Further to the accuracy evaluation provided by the steady-state simulation, it is 

necessary to evaluate the dynamic performance of the active filter when subjected 

to changes in the operating point. With this objective, a 10%-step is applied to the 

current order Id, of the current control of the DC pole. Although the same circuit 

modeled in the s teady-state simulation is used in this simulation, the gains of the PI 
control, in the current control, are increased so that the change in the DC line occurs 

sificantly fast, for a proper active-flter control evaluation. The PI gains for this 

simulation have been set at Kp = 30 and Ki = 3000. The increasing of these gains 

&O provided the additional benefit of reducing the reqnired simulation t h e .  

The 10%-step case is simulated using the final conditions of the steady-state case 

as initial conditions, and the step in the current order takes place at t = 1 ps into the 

s ida t ion .  The increase in the transmitted DC power (active powa) is completely 

supported by the unregulated AC system, and, therefore, this causes the magnitude 

of the voltage at the HVDC terminal and, consequently, the shunt cspacitor bank 

currents, to be reduced. The system is simdated for 100 ms, enongh t h e  to show 

the performance of the active filter during the most critical period. Figure 7.28 shows 

that the 10%-increase in the line m e n t s  of the HVDC converter is almost fdly 

accomplished at the end of the simulation. 

The increase in the current in the converter transfomers causes the ovedap angle 

to increase as well. As theoretically expected fiom Figure 2.7, in Chapter 2, the 

increase of the overlap angle causes the shape of the AC line currents to be close to 

those of pure sinusoids, and, therefore, reduce their harmonic content. This reduction 

is detected by the active-filter control, which redaces the voltage reference to the 

PWM inverter of the active source. Figure 7.29 shows this reference v,,f only in phase 

a for clarity, and Figure 7.30 presents the resulting change in the current through the 

corresponding path impedance. 

The active filtenr in phases b and c present the same behavior as the one in phase 

a. The d t e r e d  currents in the three phases are shown in Figure 7.31. The optimal- 

control and reference-signal state estimation gains have been calculated &om a AC 
line m e n t  with a different harmonic content. Therefore, although the poles of the 

reference signal still rem& at the same fkequenues, the fact that the individual 
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Figure 7.28: HVDCconverter AC h e  currents - Response to a 10%-step in the 
current order of the HVDC system (- phase a, - phase b, --- phase c) .  

Figure 7.29: PWM voltage-reference signal for active filter in phase a - Response to 

a 10%-step in the m e n t  order of the HVDC system. 
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Figure 7.30: Path-impedance carrent in phase a - Response to a 10%-step in the 

current order of the HVDC system. 

harmonie amplitudes and phases have changed, causes the gains to be now sub- 

optimal. Therefore, once the new operating point is completely established, a FFT 
of the reference signal should be run, and new optimal gains calculated. However, it 

can be noticed from Figure 7.31 that, although the active filtering is not as accurate 

during the change in the operating point as it is daring the steady-state operation, 

the active iilters stiU perform satisfactorily. Furthemaore, Figure 7.32 shows that the 

shunt capacitor bank is never overloaded by the active filter, and Figare 7.33 attests 

that the AEsystem cnrrents do not present any significant hannonic content. The 

practicdy harmonie-free HVD Gconverter-terminal voltage waveforms are shown in 

Figure 7.34. 
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Figure 7.31: HVDCconverter AC line m e n t s  which have not been filtered - Re- 
sponse to a 10%-step in the current order of the HVDC system (- phase a, - phase 

6, --• phase c). 

Figure 7.32: Currents through the shunt capaeitor banks - Response to a 10%-step 

in the cment order of the HVDC system (- phase a, - phase b, * = =  phase c). 
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Figure 7.33: AGsystem cnrrents - Response to a 10Y&step in the m e n t  order of the 

HVDC system (- phase a, - phase à, --• phase c).  
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Figure 7.34: AC voltages at the HVDGconverter terminal (across the shunt capacitor 

banks) - Response to a 10%-step in the m e n t  order of the HVDC system (- phase 

a, - phase b, --a phase c). 



Chapter 8 

Conclusions 

The main objective of this research has been to devise a new AC active-filter scheme 

that is snitable for HVDC applications. In the light of the different drawbacks, 

presented in some previously proposed schemes and concepts, the active filtering 

topology and control scheme for this thesis have been snccessfidy demonstrated as 

a contribution in AC filtering for HVDC systems. The research has concentrated 

on the fnndarnental theoretical problems rather than the hardware implementation 

and economics. The simulations included in this thesis may be considered as an 

improvement on the previous works for having considered a considerably accurate 

model of the H M C  converter station, together with its most important basic controls, 

and a reasonably complex (from the operation point-of-view) AC system. Specific 

conclusions are as follows: 

a The proposed path impedance successfully reduced the rating requirements of 

the active source to only voltage and carrent levels speeifically reqnired by 

the harmonic active filtering and provided an dectrically inexpensive path for 

the injected hannonic currents. The level reqnired by the application to the 

CIGRÉ benchmark HVDC system is possible to be met by a single connection 

of presently a d a b l e  IGBT switches if a low tnrns-ratio matching transformer 

is used (e.g., o = Nl/N2 = 5). Higher current ratings can be obtained by using 

pardel comected IGBTs. The ongoing developments in power semicondnctor 

devices will soon allow more relaxed voltage and current rating constraints for 

the power level required by this application. Diffkently fkom previous proposais, 
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the topology, together with the es timation-based control-scheme implemented, 

conferred the active filter a voltage-source characteristics. Besides providùig 

means to smoothly respond to abrnpt changes in the opaating point of the 

HVDC system, the voltage-source characteristics of the active fdter &O allowed 

hirther rednction in the voltage and m e n t  ratings of the active source. 

0 It has been shown that the proposed active filter can acctuately reduce the 

amount of harmonics supplied by the AC system to negligit.de values, displaying 

a far superior performance than that of passive filtering. Yet, the injected 

m e n t  has negligible switching fkequency harmoaics and does not overload the 

HVDGconverter-station shunt capautor in steady-state operation or dnring 

changes in the operating point as has been reported on previons work. 

0 Although only the characteristic harmonics have been actively fütered, the 

topology and the control scheme implemented present a wide bandaidth. The 
topological and control concepts, being able to indude filtering capability of 

Wtually any non-characteristic harmonics by means of modifications concem- 

ing only software parameters, can also be considered as an improvement on 

previous works. 

0 The research has revealed that active filtering for AGside ECVDC harmonics 

is more complicated than simple classical feedback control for compensation of 

individual harmonics. Where multiple harmonie elMination is to be achieved, 

it has been conclnded that proper filtering, dynamic response and stability are 

more demanding and lead to a multi-variable state-space approach. 

0 In common with other potential applications of modern feedback control to 

power systems, the issue of practical feasibility and robustness are of concern. 

This thesis has concentrated on exploring the effectiveness of this new approach, 

achieved significant theoretical improvement on previons proposals, and does 

put it in the context of a practical method of connection to the DC system. For 

the limited test cases achieved, the active-filter concept ha9 been shown to be 

effective, d c i e n t l y  encouraging for practical implement ation to be explored. 

0 The optimal-contd strategy is robust in that it naturdy rejects disturbances 

in any oscillation modes other than those determined by the harmonics being 



actively filtered, and that it can be used with a path impedance exhibithg 

Werent impedance charact&stics. The response to a step in the m e n t  order 

of DC-line current of the HVDC linlr is smooth and does not cause overvoltages 

or overcnrrents in any of the elements of the active filter or the HVDC bas 
terminal. The controllabüity of this active device has the important potential 

to provide an enhancement of the system stability during the o c m e n c e  of any 

non-fnndamentd-fiequency dynamic phenornenon. Furthetmore, the temporary 

use of the lossy h e a r  region of the IGBT's characteristic may also be considered 

dnring contingent operatiom. 

In an eventual practical implementation, measuring devices and microprocessors 

must meet the speed and accnracy reqnirements of the control s h e .  The most 

demanding task of the control seheme is the Fourier analysis of the reference 

signal and the solution of the algebraic Riccati eqnation. Since the alterations 

in the state of the AC/DC system happen in a relatively large time span, the 
microprocessors time constralits are very relaxed. The fact that the control 

gains might have snb-optimal valaes between these calcnlations does not pose 

problems. Equdy, all the state estimations can be accomplished with simple 

fnnctions like integrators, adders and multipliers. 

The nature of the control scheme demands that the states of the ACsystem net- 

work be estimated. This wodd imply that further teal-time processing shodd 
be responsible for the topology and state estimation of the AC system. This 

is not a significant processing requirement because the AC-network topology 

changes happen at a relatively slower rate than the control process. 

a Since the chosen switching rate is only about five times larger than the 47th and 

49th harmonics, these cannot be accurately actively fltered. It is also proba- 

ble that an increase of the PWM switching, and consequent losses, would not 

compensate for the accurate filtering of these negligible harmonics. Alt hough 
this situation might change with fnrther increase of the power levels of HVDC 
systems, these taro harmonic currents could w d  be left to be passively fütered 

by the station shunt capacitor banlr, instead of providùig the &cuit with an 

extra impedance to the ground, in parallel with the matching transformer, as 

in previous work. 
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r The proposed scheme does not require any specidy-designed converter trans- 

former (as in the e d e s t  proposal), and the necessary measnring devices are 

already available in an HVDC converter taminal. 

a Unlike ail previons proposah, the passive elements of the active filter do not 

indude rais tors, and, excep t for inherent element losses, the switching losses 

are the only ones to snpplied by the AC system. It is believed that the use 

of a rectifier as the means for snpplying the active-filter losses provides a bet- 

ter dynamic performance than the energy-storing devices proposed in some of 

previous works. 

a The obvious drawback of the proposed path impedance is the requirement to 

inmease the amount of capacitors in the f i l ta  yard of the HVDC converter sta- 

tion. However, future operation performance reqnirements and lower harmonic 

generation limits in power systerns wiU lead to considering the higher perfor- 

mance provided by active filters in the design of AC flters for HVDC converter 

stations. As exposed in Chapter 5, all the flexibilities and better performance 

that corne with the decoupling of the filtering and reactive supply tasks might 

be worth a potential increase in the initial cost. Fnrther, the probable use of 

uni&-power-factor converters in the fnture would exempt the use of the shunt 

capacitor bank and &O encourage the use of the proposed path impedance. 

a Transient variations in the ACsystem frequency would cause the phase correc- 

tor filter in the PLL to be mistuned. Therefore, in practice, a second VCO, 
with the same dynamic characteristic as the one which output has its phase 

compared to the reference signal, but with its output relatively shifted by $ 
radians îiom the main one, shodd be prderred. 

Suggestions for Future Work 

The proposed decoupling of the filtering and reactive power support gives rise to 

many different studies relating these two fnnetions. What follows are just the most 

immediate visions. 
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The performance of the proposed control scheme should be tested with the 

occurrence of non-characteristic harmonics, and special attention should be paid 
to the potential AC/DC harmonie instability presented by the CIGRÉ HVDC 
benchmark systern. 

Additional control loops codd be added to the active filter to have its ability 
to counteract the so called "ambientn harmonics tested. 

The use of the proposed active-füter topology, being w& suited for subharmonic 

fiequenues, could prove to be very u s a  for coanteracting sabsynehronous 

oscillations. 

The activefilter capability of delivering control actions in any non-fundamental 

fkequency should be explored. These studies could, for example, verify its ability 
to minimize the effects of some switching transients U e  those of capacitors and 

trandormers. 



Appendix A 

The Test-System Data 

The DC System 

Nominal DC voltage: = 500 kV 

Nominal DC current: rd=2kA 

Nominal firing angle: a = 1 5 O  

Nominal overlap angle: C( = 23. l?45O 

Smoothing reactance: L, = 497.33 mH 

Nominal Active Power: Pd = 1000 MW 

Nominal Reactive Power: Qa = 535.21 MVAr 

DC line 

Length: 1,300 km 

Resistance: 0.027936 mQ/km 

Inductance: 1.863544 &/km 

Capacitance: 0.008337 pF/km 
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Converter Dansformers (Linear Single-Phase Units) 

Nominal powa: S = 199.3333 MVA 

Nomiad primary vokage: = 199.1858 kV 

Nomùial primary m e n t :  Il = 1.0007 kA 

Leakage reactance: XLed = 0.18 p.n. 

Couphg coefficient: 0.9991 

Excitation m e n t :  i, = 0.01 p.n. 

Y-Y bank 

Nominal secondary voltage: & = 121.9652 kV 

Nominal secondary m e n t :  I2 = 1.6343 LA 

Nominal turns ratio: a = = 0.6123 
Ni 

Y-A bank 

Nominal secondary voltage: 5 = 211.2500 kV 

Nominal secondary cnrrent: I2 = 0.9436 kA 

Nominal turns ratio: a = % = 1.0606 
Ni 

The AC System 

Nominal converter line voltage: fie,,,,, = 345.110 kV 

Nominal converter hie crifient: km,, = 1.8975 kA 

dm,, = -28.1561" 

Nominal AGsystem line voltage: flOi,., = 373.319 kV 



Appendix B 

State Estimation as an 
Optimization Problem 

Suppose the noise w(t ) in the measured signal is white (uncorrelated ftom instant to 

instant), gaussian (all the probabilistic information about the noise is given in the 

covariance of the noise) and has zero mean (as is umal in practice). This means that 

E [w(t)] = O for all t (B-1) 

~ [ w ( t ) w ( u ) ~ ] = S & ( t - u )  f o r a l l t a n d q  (B-2) 

where S is a constant positive SC& (stationary noise). It is also assnmed that 

kW@;) is a gaussian random variable with zero mean, covariance Pi and independent 

of w(t): 

The optimal estimator will be aiming for the least variance of the estimated state 

(and, consequently, output). That is, for a given state, a measurement B of the output 

i ( t ) ,  ti 5 t 5 t t ,  is desired snch that 

is minimum. Then P is the minimum variance estimate of bgw( t f ) .  It can be shown 

that, since all the random variables involved are gaussian with zero mean, P is the 



resdt of linear operations on f ( t ) :  

Therefore, for arbitrary b and tr 2 ti 2 -ml the problem is that of finding a 

fnnction of time s(t; b7 t f )  sach that 

is minimized. Then, once s( t  ; 6, t f  ) has been foand, a xninixntl~~l variance of b k w ( t f )  
will be exactly 

which makes use of signal measnrements until t = t f .  To be able to achieve this as an 

on line procedure, this problem will be transformed into one of an optimal regalator 
problem. The expected value can be shown to be able to be written as the foUowUig 

quadratic performance index: 

where the right-hand side, op posed to the left-hand side, is completely determinis tic. 

Matrices Pi and Q are symmetric, nonnegative definite, and R is positive definite, 

s ( t )  is arbitrary, and r ( t )  has the same dimension as GUg(t) and is given by 

Therefore, the problem of chosing a ( - )  to minimize the left side of B.10 is the 
same as the deterministic problem of chosing it to minimi.e the right side subjected 

to (B.11). Eowever, regarding the optimal regulator problem, there is in this case, a 

backward time characteristic. That is, the boundary condition on r ( t )  occurs at the 

final time t f  instead of at the initial t h e  ti and the ikst term of the right side of the 
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equality is at the initial tirne, as opposed to that of the regulator problem, where it 

codd be ased to define the final value (asnally close to zero) of the states. Creating 

the a d a r y  variable t = -t and defining new vectors i(0 = s(t), ~ ( 0  = r(t) the 

performance index becomes 

where if 5 & and the constraint equation is 

If P( i )  is the solution for the differential Riccati eqnation 

the following optimal control law achieves the minimization of the Pdormance In- 

dex B.12 subjected to B.13: 

Since matrices P(Q and Q are nonnegative definite and R is positive deiî.de, 

from the regulator theory, P(Q exists for all î 5 I!;, is symmetric and nonnegative 

definite. Now, defining P(t)  = P(i) when I! = -t, implies that P(t)  is the solution 

for the foUowing Riccati differential equation for ail i 2 & and is also symmetric and 

nonnegative definite: 

consequently, 

Now, substituting this second expression for function s(t) into the the originally 

s tat ed interdependence between s(t ) and r (t ) (equation B. 11) yields 
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whese 

Therefore an expression for r(t) is 

where t$,,(tf, t )  is the associated transition matrix. Consequently, kom the second 

expression relating s(t) and r(t) the 6ind shape of fnnction s ( t )  is explicitly 

This function 

above expression 

tion. 

s(-), finally, minimizes the probabilistic problem and satides the 

given that P(t ) is the solution of the last diffkzential Riccati equa- 

It can be shown that the minimum value of the deterministic problem (right side 

of equation B. 10) is bTP(t j) . Once h c t i o n  s(t ) has been obtained, 

the minimi7ed expected value is 

and since b is arbitrary, it 

Therefore, P ( t j )  is a measure of the error between ih , ( t f )  and its estimated value 

ji&,(tf) (error covariance). Again, it is the steady state condition that is relevant 

to the filtering problem, that is, ti -+ -00. Since the plant and noise are time 

invariant, the value of P(t)  as ti + -w is time invariant and can be computed as 

P = limt-)-= P(t) where P(t) sati&es the differential Riccati equation (equation 
B.14) with initial condition P(0) = O and P is the solution to the algebraic Riccati 

equation 
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The gain of the optimal estimator is also constant: 

T R-1 K, = -PCaq - 

It can be shown that the requirements that the pair (A,, CTw) be completely 

observable and that Q be chosen as Q = C ~ ~ C ,  ensure this system is asymptoti- 

cally stable (eigendues of A,& with negative real parts). 
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