
Case Studies of a Machine Learning
Process for Improving the Accuracy

of Static Analysis Tools

by

Peng Zhao

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2016

c© Peng Zhao 2016

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Static analysis tools analyze source code and report suspected problems as warnings
to the user. The use of these tools is a key feature of most modern software development
processes; however, the tools tend to generate large result sets that can be hard to process
and prioritize in an automated way. Two particular problems are (a) a high false positive
rate, where warnings are generated for code that is not problematic and (b) a high rate
of non-actionable true positives, where the warnings are not acted on or do not represent
significant risks to the quality of the source code as perceived by the developers. Previous
work has explored the use of machine learning to build models that can predict legiti-
mate warnings with logistic regression [38] against Google Java codebase. Heckman [19]
experimented with 15 machine learning algorithms on two open source projects to classify
actionable static analysis alerts.

In our work, we seek to replicate these ideas on different target systems, using different
static analysis tools along with more machine learning techniques, and with an emphasis
on security-related warnings. Our experiments indicate that these models can achieve high
accuracy in actionable warning classification. We found that in most cases, our models
outperform those of Heckman [19].

iii

Acknowledgements

First, I would like to extend my sincere gratitude to my supervisor, Michael Godfrey,
for his helpful guidance on my thesis.

I am deeply grateful for Andrew Walenstein, Andrew Malton, and Jong Park for their
great help and useful suggestions to my thesis.

Special thanks go to my family and friends for their support.

iv

Dedication

This is dedicated to the one I love.

v

Table of Contents

List of Tables ix

List of Figures xiv

1 Introduction 1

1.1 Problem . 7

1.2 Research Questions . 7

1.3 Contributions . 8

1.4 Organization . 8

2 Related Work 10

2.1 Ranking warning categories . 10

2.2 Machine learning models . 11

2.3 Security warnings . 13

3 Background 14

3.1 Static Analysis Tools . 15

3.1.1 Commercial Static Analysis Tool 15

3.1.2 Checker . 16

3.1.3 Actionable Warnings . 16

3.2 Security Vulnerabilities . 17

vi

3.2.1 Security Vulnerability Enumeration 17

3.2.2 Common Vulnerability Scoring System 17

3.3 Machine Learning . 18

3.3.1 Feature Selection . 18

3.3.2 Imbalance . 19

3.3.3 Machine Learning Adoption . 19

4 Methodology 20

4.1 Commercial Static Analysis Tool Analysis 20

4.2 Data Sources and Feature Extraction . 22

4.3 Experimental Datasets Labeling . 26

4.4 Machine Learning Approaches . 28

4.4.1 Machine Learning Classifiers . 29

4.4.2 Feature Selection and Machine Learning Classifiers 30

4.4.3 Machine Learning Techniques for Imbalanced Datasets 31

4.5 Measures . 32

4.6 Methodology Summary . 32

5 Experiments 33

5.1 Experimental Data Sets . 33

5.2 Experimental Infrastructure . 33

5.2.1 Feature Extraction Infrastructure 34

5.2.2 Feature Selection and Machine Learning Infrastructure 34

5.3 Threats . 35

6 Research Results and Discussion 36

6.1 Results of Machine Learning Approaches 36

6.1.1 Results of Machine Learning Classifiers 36

vii

6.1.2 Results of Feature Selection and Machine Learning Classifiers . . . 41

6.1.3 Results of Imbalance Techniques . 43

6.2 Comparison . 47

6.3 Execution Time Analysis . 52

6.4 Summary of Experiments . 58

7 Conclusion 59

References 60

APPENDICES 64

A PDF Plots From Matlab 65

A.1 Measurements for classifiers for all three projects 65

A.2 Measurements for feature selection and classifiers for all three projects . . . 68

viii

List of Tables

1.1 Three Research Questions and Methods of the thesis 8

4.1 Names and explanations of all the features extracted in our project 25

6.1 Accuracy of highest results of classifiers on Apache HTTPD, MySQL, and
Proprietary BlackBerry project . 37

6.2 Correlated precision of highest accuracy of best classifiers on Apache HTTPD,
MySQL, and proprietary BlackBerry project 38

6.3 Correlated recall of highest accuracy of best classifiers on Apache HTTPD,
MySQL, and proprietary BlackBerry project 38

6.4 Features that have ever been selected for all three projects with seven feature
selection strategies. 42

6.5 Accuracy of highest results of feature selection strategies on Apache HTTPD,
MySQL, and proprietary BlackBerry project 44

6.6 Correlated precision of highest accuracy of best feature selection strategies
on Apache HTTPD, MySQL, and proprietary BlackBerry project 45

6.7 Correlated recall of highest accuracy of best feature selection strategies on
Apache HTTPD, MySQL, and proprietary BlackBerry project 46

6.8 Accuracy of the highest results of resampling techniques for Apache HTTPD,
MySQL, and proprietary BlackBerry project. 47

6.9 Correlated precision of the highest accuracy of resampling techniques for
Apache HTTPD, MySQL, and proprietary BlackBerry project. 48

6.10 Correlated recall of the highest accuracy of resampling techniques for Apache
HTTPD, MySQL, and proprietary BlackBerry project. 48

ix

6.11 Accuracy of the highest results of cost-sensitive techniques for Apache HTTPD,
MySQL, and proprietary BlackBerry project. 49

6.12 Correlated precision of the highest accuracy of cost-sensitive techniques for
Apache HTTPD, MySQL, and proprietary BlackBerry project. 50

6.13 Correlated recall of the highest accuracy of cost-sensitive techniques for
Apache HTTPD, MySQL, and proprietary BlackBerry project. 51

6.14 Accuracy of the highest results of Heckman’s methodology on our dataset. 53

6.15 Correlated precision of highest accuracy of Heckman’s methodology on our
dataset. 54

6.16 Correlated recall of highest accuracy of Heckman’s methodology on our
dataset. 55

6.17 Execution time in classification, average time for one process in feature
selection and resampling imbalance techniques for MySQL datasets. 56

6.18 Execution time in cost sensitive imbalance techniques for MySQL datasets. 57

A.1 All the accuracies of actionable warnings classification on three projects with
classifiers . 65

A.2 All the precisions of actionable warnings classification on three projects with
classifiers. 66

A.3 All the recalls of actionable warnings classification on three projects with
classifiers. 67

A.4 All the accuracies of actionable warnings classification on Apache HTTPD
with combinations of seven feature selection strategies and seven classifiers 68

A.5 All the precisions of actionable warnings classification on Apache HTTPD
with combinations of seven feature selection strategies and seven classifiers. 69

A.6 All the recalls of actionable warnings classification on Apache HTTPD with
combinations of seven feature selection strategies and seven classifiers. . . . 70

A.7 All the accuracies of actionable warnings classification on MySQL with com-
binations of seven feature selection strategies and seven classifiers. 71

A.8 All the precisions of actionable warnings classification on MySQL with com-
binations of seven feature selection strategies and seven classifiers. 72

x

A.9 All the recalls of actionable warnings classification on MySQL with combi-
nations of seven feature selection strategies and seven classifiers 73

A.10 All the accuracies of actionable warnings classification on proprietary Black-
Berry project with combinations of seven feature selection strategies and
seven classifiers. 74

A.11 All the precisions of actionable warnings classification on proprietary Black-
Berry project with combinations of seven feature selection strategies and
seven classifiers. 75

A.12 All the recalls of actionable warnings classification on proprietary Black-
Berry project with combinations of seven feature selection strategies and
seven classifiers. 76

A.13 All the accuracies of actionable warnings classification on Apache HTTPD
project with resampling techniques. All the classifiers are trained with the
reconstructed datasets generated by resampling techniques. KStar and su-
pervised resampling with replacement achieve the highest accuracy at 93.5%. 77

A.14 All the precisions of actionable warnings classification on Apache HTTPD
project with resampling techniques. All the classifiers are trained with the
reconstructed datasets generated by resampling techniques. Decision Table
and spread subsample achieve the highest precision at 100.0%. 78

A.15 All the recalls of actionable warnings classification on Apache HTTPD project
with resampling techniques. All the classifiers are trained with the recon-
structed datasets generated by resampling techniques. A few classifiers
such as SVM Sigmoid Kernel with supervised resampling with replacement
achieve 100.0% recall. 79

A.16 All the accuracies of actionable warnings classification on MySQL project
with resampling techniques. All the classifiers are trained with the recon-
structed datasets generated by resampling techniques. The highest accuracy
is achieved by Logistic Regression and supervised resampling replacement. 80

A.17 All the precisions of actionable warnings classification on MySQL project
with resampling techniques. All the classifiers are trained with the recon-
structed datasets generated by resampling techniques. The highest precision
is achieved by Logistic Regression and supervised resampling with replacement 81

xi

A.18 All the recalls of actionable warnings classification on MySQL project with
resampling techniques. All the classifiers are trained with the reconstructed
datasets generated by resampling techniques. Supervised resampling with
replacement and KStar achieve 100.0% recall. 82

A.19 All the accuracies of actionable warnings classification on proprietary Black-
Berry project with resampling techniques. All the classifiers are trained with
the reconstructed datasets generated by resampling techniques. A few clas-
sifiers with supervised resampling with replacement achieve 100.0% accuracy. 83

A.20 All the precisions of actionable warnings classification on proprietary Black-
Berry project with resampling techniques. All the classifiers are trained with
the reconstructed datasets generated by resampling techniques. A few clas-
sifiers with supervised resampling with replacement achieve 100.0% precision. 84

A.21 All the recalls of actionable warnings classification on proprietary Black-
Berry project with resampling techniques. All the classifiers are trained
with the reconstructed datasets generated by resampling techniques. All
the classifiers with supervised resampling with replacement achieve 100.0%
recall. 85

A.22 All the accuracies of actionable warnings classification on Apache HTTPD
project with cost-sensitive techniques. SVM RBF Kernel and cost-sensitive
prediction achieves highest accuracy at 91.5%. 86

A.23 All the precisions of actionable warnings classification on Apache HTTPD
project with cost-sensitive techniques. The highest precision is achieved by
SVM RBF Kernel and cost-sensitive prediction. 87

A.24 All the recalls of actionable warnings classification on Apache HTTPD project
with cost-sensitive techniques. The highest recall is achieved by Conjunctive
Rules with cost-sensitive prediction. 88

A.25 All the accuracies of actionable warnings classification on MySQL project
with cost-sensitive techniques. The best classifier is SVM which achieves
89.1% accuracy with cost-sensitive prediction. 89

A.26 All the precisions of actionable warnings classification on MySQL project
with cost-sensitive techniques. Most of the precisions for MySQL despite of
classifiers are from 10.0% to 20.0% . 90

A.27 All the recalls of actionable warnings classification on MySQL project with
cost-sensitive techniques. Conjunctive Rules and Decision Table both achieve
100.0% recall with cost-sensitive prediction. 91

xii

A.28 All the accuracies of actionable warnings classification on proprietary Black-
Berry project with cost-sensitive techniques. All the accuracies are over
90.0% except from classifier BayesNet despite of cost-sensitive techniques. . 92

A.29 All the precisions of actionable warnings classification on proprietary Black-
Berry project with cost-sensitive techniques. The highest precision is achieved
by KStar and meta-cost at 50.0%. 93

A.30 All the recalls of actionable warnings classification on proprietary Black-
Berry project with cost-sensitive techniques. The highest recall achieved by
a few classifiers is 66.7%. 94

xiii

List of Figures

1.1 A non-actionable warning example from Apache HTTPD. In the example,
the return value from function ap make full path is not properly termi-
nated. 4

4.1 Process of feature extraction, feature selection, ground truth labeling, and
machine learning in Prioritizer . 21

4.2 An example of a warning that labeled as actionable from CSAT analysis of
MySQL . 27

4.3 The fix of the actionable labeled warning from CSAT analysis of MySQL . 27

4.4 An example of a warning that labeled as non-actionable from CSAT analysis
of MySQL . 28

6.1 Random Forest trained on Apache HTTPD dataset to classify actionable
warnings(partial) . 39

6.2 Random Forest trained on MySQL dataset to classify actionable warn-
ings(partial) . 40

6.3 Random Forest trained on proprietary BlackBerry project to classify action-
able warnings . 40

xiv

Chapter 1

Introduction

Large computer systems invariably have bugs. To combat this problem, many kinds of
tools have been designed to analyze software systems in different ways. One class of these
tools, known as static analyzers or static analysis tools, analyze programs by examining the
source code, such as looking for poor programming style and known bad designs, extracting
dependency information about program entities such as control flow graphs, and building
various kinds of models of the structure of the program source code. These tools are called
static because they perform their tasks without actually executing the system. Findbugs
is an open source example of a static analyzer for Java that is in wide use.

Many companies employ static analysis tools as part of their development process; they
may use them for a variety of purposes, such as performing quality assurance or as part
of a code review process. In particular, systems that require unusually strong assurance of
reliability and trust may use static analysis tools to look for critical bugs and detect known
security vulnerabilities. For example, in our studies we have used a commercial tool which
we shall refer to as CSAT (Commercial Static Analysis Tool); used by development teams
that work on high-security systems, this tool pays special attention to well-known classes of
security vulnerabilities, such as the Common Weakness Enumeration database (CWE). 1

Performing a myriad of checks for well-known problems such as Buffer Overflow, Injection,
and Null Pointers Dereferencing, CSAT also allows developers to add their own checks to
their CSAT installation. For example, Blackberry adds dozens of their own checkers to
look out for specific security concerns in their systems.

One of the major problems of existing static analysis tools is the amount of non-
automatable work that it takes to get useful results. By their nature, static analysis

1A non-disclosure agreement with our industrial partner prevents us from identifying CSAT by name.

1

tools have only an imperfect idea of the meaning of the underlying code; they tend to
assume that all possible problems should be reported, resulting in a high false-positive
rate. Furthermore, it is known that off-the-shelf static analysis tools often report perceived
problems that developers may not consider worth acting on. For example, in Google [38],
for Findbugs, only 55% of the warnings are addressed after loging into a bug tracking
system. Thus, even if a reported problem is a true-positive, it may not be considered to
be actionable by the development team. In BlackBerry, fewer than 10% of the warnings
from CSAT were acted on by engineers.

Listing 1.1 shows an actionable warning example of demonstration from CSAT that
detected in Apache HTTPD 2.2.10. The fix of the warning (bug) in Apache HTTPD
2.2.16 is shown in Listing 1.2.

1 char kb[MAX_STRING_LEN];
2 int i = 0;
3 rv = apr_dbm_firstkey(htdbm->dbm, &key);
4 if (rv != APR_SUCCESS) {
5 fprintf(stderr, "Empty database -- %s\n", htdbm->

↪→ filename);
6 return APR_ENOENT;
7 }
8 while (key.dptr != NULL) {
9 rv = apr_dbm_fetch(htdbm->dbm, key, &val);

10 if (rv != APR_SUCCESS) {
11 fprintf(stderr, "Failed getting data from %s\n",

↪→ htdbm->filename);
12 return APR_EGENERAL;
13 }
14 strncpy(kb, key.dptr, key.dsize);
15 kb[key.dsize] = ’\0’;
16 fprintf(stderr, " %-32s", kb);

Listing 1.1: An actionable warning that CSAT detected in Apache HTTPD 2.2.10 usage

of unsafe String API “strncpy”

The checker that caused the warning is looking for occurences of the C library function
strncpy which is historically unreliable and not a best practice according to security
experts. The function copies a certain number of characters from source to destination. It

2

does not require a terminator at the end of the destination string so it could be susceptible
to a variety of exploits such as buffer overflow.

In this case, strncpy copies key.dptr to kb with the length of key.dsize. Then
\0-terminator is added to the end of kb before printing kb out. If key.dsize>=
MAX STRING LEN then there is a buffer overflow in kb. avoid using kb, so there won’t
have buffer overflow In Listing 1.2, printf prints out characters from key.dptr directly
without using db which avoids buffer overflow.

1 while (key.dptr != NULL) {
2 rv = apr_dbm_fetch(htdbm->dbm, key, &val);
3 if (rv != APR_SUCCESS) {
4 fprintf(stderr, "Failed getting data from %s\n",

↪→ htdbm->filename);
5 return APR_EGENERAL;
6 }
7 /* Note: we don’t store \0-terminators on our dbm data

↪→ */
8 fprintf(stderr, " %-32.*s", (int)key.dsize, key.dptr

↪→);
9 cmnt = memchr(val.dptr, ’:’, val.dsize);

10 if (cmnt)
11 fprintf(stderr, " %.*s", (int)(val.dptr+val.dsize -

↪→ (cmnt+1)), cmnt + 1);
12 fprintf(stderr, "\n");

Listing 1.2: Fix of the example of the actionable warning in Apache HTTPD 2.2.16 that

removed the usage of String API strncpy

A non-actionable warning example in Figure 1.1 refers to the return value filename
from the function ap make full path. The return value filename is not terminated
properly. The comments of the function is shown in Listing 1.3 and the code of the
function ap make full path is shown in Listing 1.4.

3

Figure 1.1: A non-actionable warning example from Apache HTTPD. In the example, the
return value from function ap make full path is not properly terminated.

1 /*
2 * @return A copy of the full path, with one byte of extra

↪→ space after the NUL
3 * to allow the caller to add a trailing ’/’.
4 * @note Never consider using this function if you are dealing

↪→ with filesystem
5 * names that need to remain canonical, unless you are merging

↪→ an apr_dir_read
6 * path and returned filename. Otherwise, the result is not

↪→ canonical.
7 */
8 AP_DECLARE(char *) ap_make_full_path(apr_pool_t *a, const char

↪→ *dir, const char *f)
9 AP_FN_ATTR_NONNULL_ALL;

Listing 1.3: Comment of the function ap make full path that caused problems in the

non-actionable warning example

1 AP_DECLARE(char *) ap_make_full_path(apr_pool_t *a, const char
↪→ *src1,

2 const char *src2)

4

3 {
4 apr_size_t len1, len2;
5 char *path;
6

7 len1 = strlen(src1);
8 len2 = strlen(src2);
9 /* allocate +3 for ’/’ delimiter, trailing NULL and

↪→ overallocate
10 * one extra byte to allow the caller to add a trailing

↪→ ’/’
11 */
12 path = (char *)apr_palloc(a, len1 + len2 + 3);
13 if (len1 == 0) {
14 *path = ’/’;
15 memcpy(path + 1, src2, len2 + 1);
16 }
17 else {
18 char *next;
19 memcpy(path, src1, len1);
20 next = path + len1;
21 if (next[-1] != ’/’) {
22 *next++ = ’/’;
23 }
24 memcpy(next, src2, len2 + 1);
25 }
26 return path;
27 }

Listing 1.4: Code in the function ap make full path that generated the non-actionable

warning example

The code and comment of the function ap make full path verify the imperfect de-
sign of leaving one byte of extra space at the end of the return value. However, this warning
has never been fixed in their later versions of the code, presumably because the developers
did not consider it to be a serious risk. As long as a warning has never been acted on, we
define the warning as non-actionable.

In this work, we seek to use machine learning and other automated approaches to

5

reduce the rate of non-actionable true-positives of static analysis tools for both industrial
and open source projects. We build on previous work by Ruthruff [38] and Heckman [19].
Ruthruff adopted logistic regression on highly associated features against Google’s Java
codebase, while Heckman enlarged the feature sets from Ruthruff and compared more
popular machine learning models with selected features on open source Java projects.

Different from previous work, we explore the static analysis tool CSAT with a security
focus on both open source and commercial projects. We improve the usability and value
of static analysis tool by classifying actionable warnings. Ordinarily, static analysis tools
neither classify nor filter their output. Our Prioritizer project serves to develop techniques
to automatically classify as “actionable” and “non-actionable” warnings using machine
learning models. These machine learning models are derived from training the models on
labeled warnings generated by static analysis tools. One novel contribution of our work
is the security focus during the analyses which causes more false positives. A second
contribution of this project is the usage of machine learning techniques to handle the
extremely high ratio of false positives. A third innovative aspect concerns the generation
of the datasets, which consist of features and associated metrics that are extracted from
the source code repository and the development context. Features and associated metrics
are properties of source code repositories, source code development histories, static analysis
tool settings, and static analysis tool warnings histories. Significantly, the code repository,
development context, and static analysis tool warnings histories are typically not exploited
by static analysis tools. However, the context information shows statistical significance in
machine learning models. Some features are strongly correlated with the actionability of
warnings. We expect the results of our research to increase the usability of static analysis
tools for both open-source and commercial projects by using code contexts information.

Security experts at Blackberry, our industrial collaborator on this project, have selected
a set of default settings for the use of CSAT; in part, this is based on CSAT’s off-the-shelf
default settings. Apart from this set of default settings, security experts added customized
BlackBerry security checkers. The regular setting of CSAT enables its critical checkers to
detect potential critical bugs in less than an hour for Apache HTTPD. Those customized
BlackBerry security checkers cover a variety of known issues, such as the uses of unsafe
string API, misuse of memcpy, and customized message handlers.

The goal of this research is to improve the accuracy of static analysis tools with a secu-
rity focus related to actionability. We use supervised machine learning models and feature
selection algorithms on source code and extra-code (“context”) features. The security em-
phasis, supervised machine learning techniques for imbalanced datasets, and commercial
static analysis tools distinguish our work from previous work. We propose a portable pro-
cess of building machine learning models with features extracted from customized CSAT

6

analysis and experiment with different projects in the following steps: 1) analyze different
versions of source code; 2) extract features and explore strongly correlated feature sets;
and 3) compare different classifiers with highly imbalanced datasets including classifica-
tion, feature selection, and imbalance handling. We conduct experiments and validation
on both commercial and open-source projects.

We found that thousands of warnings are generated by our use of CSAT using the target
systems of Apache HTTPD, MySQL, and BlackBerry code base. Sampling hundreds of
warnings from them, our models classify actionable warnings. In our experiments, models
trained with the oversampling datasets correctly classify 90% of the warnings from the
datasets according to their actionability. These models achieve 100% recall, which means
these models classify all the actionable warnings as actionable. Our experiments improve
CSAT performance within BlackBerry and also indicate a method of improving security
vulnerability detection.

1.1 Problem

Static analysis tools detect potential critical bugs and generate warnings without ex-
ecuting the code. There are three risks in detecting actionable warnings. First, static
analysis tools detect a restricted number of (actionable) warnings but involve two trade
offs: false negatives versus false positives and accuracy vesus efficiency. This often results
in high false positive rates. Simultaneously, the static analysis tool provides flexibility
for users to adjust tradeoffs. It is historically difficult for users to successfully adjust the
sensitivity without a fair amount of experimentation. Second, the tools normally output
all the generated warnings without any filter or classification. With a high false positive
rate, most of the warnings displayed by static analysis tools are not useful for developers.
Third, the tools are typically not written to consider reporting warnings based on non-
program factors, such as frequency of code update, project type, and project sensitivity,
each of which has a significant value in actionable warnings prediction. However, those
non-program factors are not included in the scope of most static analysis tools.

1.2 Research Questions

With the problems we came across, table 1.1 lists the research questions that are in
scope for this research, and states the approach we will use.

7

Research Question Research Method

RQ1 What features are useful for predicting
security vulnerability warnings?

Over-generate features that arguably
are correlated to vulnerabilities and use
feature selection measures and accu-
racy observed to rank, evaluate, and se-
lect.

RQ2 What statistical models best predict
actionable warnings?

Explore supervised machine learning
algorithms and analyze their execution
time

RQ3 What are the differences between com-
mercial and open-source projects?

Compare commencial and open-source
projects with same techniques

Table 1.1: Three Research Questions and Methods of the thesis

1.3 Contributions

There are three main research contributions of this work:

1. A method for generating a predictive statistical model for filtering actionable static
analysis tool warnings that improves upon prior work in terms of accuracy and utilizes
features not explored in prior research.

2. An analysis of the utility of an extensive set of code and non-code features are
predictive of actionability of static analysis tool warnings. This includes measuring
and characterizing the utility of introduced features as well as previously used ones
(which were never evaluated in this way).

3. A method for selecting classifiers and machine learning techniques for predicting
actionable warnings from static analysis tools by combining rule-based (expert) filters
with the statistical classifier.

1.4 Organization

The thesis is organized as follows:

8

Chapter 1 explains the problems static analysis tools are facing. Chapter 3 introduces
the background of static analysis tools and security vulnerability standards. Chapter 2
discussed related work in this field. Chapter 4 describes our process and implementation.
Chapter 6 and 7 concludes the thesis and assesses threats.

9

Chapter 2

Related Work

Past research has attempted to resolve concerns of high false positives rate with non-
program factors, most commonly with respect to general problem of bug finding, rather
than the more specific purpose of discovering security vulnerabilities. Ranking warning
categories by the violated checkers based on historical experience (consider no other factors)
and using machine learning models [38], [20], and [19] are two strategies that have been
well-explored to date.

2.1 Ranking warning categories

The first technique uses history-based code information to rank warning categories in
order to prioritize warnings. Based on industrial experience, some categories of checkers
detect more severe warnings [22], [23], [43], and [44]. Kim and Ernst [22] proposed a
history-based warning prioritization (HWP) for static analysis tool warning categories by
mining software change history and warnings. They used keywords to identify commits for
three open source programs. They then marked code lines with software change history
and warnings. Afterwards, they calculated each warning category weight based on marked
code lines — the more often marked code lines have the heavier weight. Finally, the weight
was normalized for each category. This technique is most effective when the categories are
relatively fine grained. Their technique shows better results than classification based only
on warning categories in two out of three projects. However, one limitation of classifying
with warning categories is that it is most effective when the checkers in each category have
the same importance and weight.

10

The second technique uses more than purely categories ranking information to prior-
itize warnings which include code metrics. Heckman [20] proposed an adaptive ranking
model that utilizes feedback from developers to rank the likelihood of false positives. This
adaptive ranking model considers factors including developers’ feedback, historical data
from previous releases, and alert type. Boogerd and Moonen [1] presented a technique
for computating the likelihood of the code location being executed to rank warnings. The
higher the likelihood the code location would be executed, the more important the warning
is. Later, Liang [28] and Wu used code location information for identification of “generic-
bug-related” lines to label actionable warnings in a training set.

More studies have been done on the relevant factors of predicting warnings. Gall et
al. [14] have identified relationships between maintainability of systems and classes and
modules. Graves et al. [15] has pointed out that information from change history plays a
more important role than file characteristics, Hanam et al. [37] found warnings with similar
pattern based on code characteristics to classify actionable warnings, Williams and Holling-
worth [43], [44] automatically rank warnings based on information from history stored in
CVS repository (context information) and current version of the software (contemporary
context information). They rank functions that produce warnings with historical context
information and contemporary context information. Historical context information con-
tains functions that include potential bug fix in a CVS commit. Contemporary context
information shows the frequency of each function’s return value tested. They emphasized
warnings from static analysis tools would be more related to bugs identified in the software
development change history than in metrics based on the code based on their preliminary
manual inspection.

2.2 Machine learning models

Ruthruff et al. [38] exploited an open source static analysis tool, FindBugs, with
warning category ranking severity based on Google experience to classify true positives
and legitimate warnings that would be acted by developers. They sampled thousands of
warnings to validate their model and those models showed high accuracy and efficiency.
Two logistic regression models in binary classification were constructed for true positives
and legitimate warnings against Google Java codebase. In their models, a set of factors and
metrics were chosen for static analysis warning and programs based on their experience in
Google.

Originally, they collected code complexity metrics based on Nagappan et al. [34]. Those
factors were automatically collected, built, and analyzed from source code in enterprise-

11

wide settings. In total, they selected fourteen factors with their screening process. The
screening process used partial warnings and source code of 5%, 25%, 50%, and incremen-
tally up to 100% percent of the training datasets for their classifer. The screening process
does not decrease the accuracy while improve the efficiency of training classifiers by de-
creasing the size of the datasets. Their regression model was built with the screening
process with selected factors. It worth notice that the accuracy in model construction is
important as it is an incremental process with increasing warnings.

Similar to Ruthruff’s work [38], Heckman and Williams [19] used machine learning
models to classify warnings from FindBugs on two open source projects against Java code-
base. Their models were constructed based on a larger origin feature set. They compared
more than ten different classifiers combined with feature reduction algorithms. There is
no learner or feature set that work for every project based on their study.

Feature sets previous research studied included:

1. Importance of warning category type

2. Life span of defect related files

3. Similarities between defect related files [25] (defects from the same file are likely to
be fixed again); all show a positive effect on bug fixing [16].

4. Textual quality of bug reports

5. Perceived customer/business impact

6. Seniority of the bug opener

7. Interpersonal skills of the bug opener

There are 55 more features, apart from these seven possible features, for static analysis
warnings and program rankings from Ruthruff [38] and Heckman [20]. The difference
between our work and Ruthruff’s [38] work is that our work targets in applying more
machine learning techniques to classifying warnings with a security focus. Algorithms
used to select relevant factors include: BestFirst, GreedyStepwise, RandSearch, and Chi-
squared tests. BestFirst and GreedyStepwise add factors as they increase the predictive
power of the set. RankSearch evaluates each factor individually and returns the whole
set of factors [19]. Chi-squared tests evaluate deduction of different factors with deviance
ranges [38]. Most research was done with benchmarks [19] or comparably small data sets
that can be evaluated manually [38].

12

Machine learning algorithms towards relevant factors are likely to promote the ratio of
actionable defects. Widely used classification algorithms such as Bayesian Network (BN)
[25], Logistic Regression [38], J4.8, are used to prioritize warnings from static analysis
tools. Classified categories could be “false positives” (FP) or “true positives” (TP) [23].

2.3 Security warnings

While there has been some previous research studying how static and dynamic analysis
tools target security vulnerabilities in code, more work remains to be done. Chess [7]
developed a prototype checker that allows finding security flaws in C program. Their
prototype checker detects substantial classes of security vulnerabilities while LCLint [12]
can detect limited types of problems in C programs.

Liu and Huuck investigated the strengths and weaknesses of the tool Cppcheck and
Goanna [29] on the Android Kernel along with static security checking. Goanna has a
rate of over 90% TP rate or higher in eleven warning categories while Cppcheck has only
six categories have a rate of over 90% TP. V.Benjamin and Monica focused on security
vulnerabilities in Web applications such as SQL injections [30]. They did not explore
more general types of security vulnerabilities such as Null Pointer. Chess and McGraw
summarized the pros and cons of utilizing static analysis tools in security vulnerabilities
[6]. But the performance of commercial static analysis tools still remains unexplored.

13

Chapter 3

Background

In this Chapter, before discussing the research methods and experiment design, we
discuss technical background and contextual information that is relevant to the industrial
security vulnerability standards, static analysis tools, and terms in this thesis.

There are public industrial security vulnerability databases with effective discussion
and description of vulnerabilities in source code. One of the popular security vulnerability
scoring standards is Common Vulnerability Scoring System (CVSS) [13]. CVSS assigns a
severity score to security vulnerabilities by measuring metrics calculated by CVSS Calcu-
lator.

Static analysis tools analyze code without execution and generate warnings for potential
bugs. The commercial static analysis tool we used in our work — which we refer to as
CSAT, as we cannot name it explicitly — has a security emphasis with security relevant
checkers and customized security checkers. Among the generated warnings, some of them
needed to be acted on by developers later. Those warnings are called actionable warnings
in this thesis.

Commercial Static Analysis Tool (CSAT) is a commercial static analysis tool for major
programming languages including C and C++. It has more than 200 checkers for C
and C++ code. These checkers are divided into more than twenty categories. Some of
these checkers map to the recognition of security vulnerabilities reported in CWE. Our
industrial partner in this work, Blackberry, has adopted the use of CSAT enterprise-wide.
We perform static analysis on one proprietary BlackBerry project and two open source
projects sufficiently to classify actionable warnings to display to engineers.

14

3.1 Static Analysis Tools

Static analysis tools are designed to identify potential flaws, defects, or otherwise un-
desirable code patterns such as buffer overflow without having to execute programs. Those
undesirable code patterns in software systems that are exploited to detect potential vulner-
abilities are called checkers in CSAT. Checkers in CSAT are defined differently for several
major programming languages such as Java and C++, and are based on design properties
of the individual languages. The flexibility provided by CSAT allows users to customize
checkers to meet specific needs of the users.. These checkers are used to generate warnings
which make up data sets for further machine learning models.

CSAT pinpoints the warnings to accurate line numbers of code in source code files
(location). Line numbers of code might change for different versions of source code for the
same program. Location details determine specific pieces of code in revision history. They
are utilized to collect factors from specific pieces of code.

3.1.1 Commercial Static Analysis Tool

CSAT can look for seven categories of potential critical bugs and security vulnerabil-
ities including: Buffer Overflow, Memory and Resources Management, Web application
vulnerabilities such as SQL injection, Dereferencing Null pointers, memory allocation er-
rors, etc., for several major programming languages. It has a security emphasis with over
100 of CWE items mapped to CSAT checkers which differentiate it from a lot of static
analysis tools such as Findbugs.

CSAT uses checkers as predefined “rules” for code. Different programming languages
have different checkers due to the characteristics of programming languages. If there
is any potential in violating the rules, warnings are generated by CSAT. For instance,
“ABV.ANY SIZE ARRAY” is a checker in C++ with C99 style. Array size is determined
later in the code when memory is allocated rather than defining with initialization. This
can result in a buffer overflow. When there is a potential violation of any enabled checkers,
CSAT generates warnings — also called issues — accordingly.

Warning states indicate the history and states of a warning from the time it was gener-
ated to the time it is fixed. A warning is in one of the three states: “New”, “Existing”, and
“Fixed”. A new generated warning status is “New”. If the warning still exists in following
builds, it state is changed to “Existing”. If the warning is fixed, then the warning is marked
as “Fixed” in the next build.

15

CSAT has a good usability with its user interface and further analysis without any
changes to the code. Instead of compiling the code with a compiler, CSAT can compile the
code and analyze it at the same time or alternatively analyze the bytecode of the program.
The CSAT server makes it convenient to check all warnings through a web browser.

3.1.2 Checker

Each checker has an associated severity which is not related to the code base. Most
checkers are scored from 1 to 4 with 1 being the critical ones and 4 being review issues
based on CSATs experience. Different from traditional static analysis tools like Findbugs,
CSAT gives users the flexibility to enable and disable checkers and additional customized
checkers.

Configuration in CSAT projects has a setting of active checkers. BlackBerry uses two
settings: Regular and Noisy. Regular set enables most of the critical checkers with some
other non-severe checkers, as well as part of the BlackBerry customized checkers. Noisy
setting enables almost all the checkers including severe and non-severe checkers as well as
all of BlackBerry’s checkers.

BlackBerry has created over forty customized checkers for security vulnerability de-
tection. These customized checkers include unsafe usage of String API, memory copy,
etc. One of the customized checkers is to detect unsafe usage of String API, the function
sprintf can write past an array and therefore triggers undefined behavior.

3.1.3 Actionable Warnings

In building our training data sets, we treat actionable warnings as warnings that can be
fixed pragmatically, and which also are important enough to be fixed given the warning’s
severity and team’s resources [38]. Instead of using the false positive warnings marked by
developers, we labelled the data sets with two developers inside of BlackBerry for all the
projects used in the experiment.

The analysis projects are built based on modules or projects level which are typically
developed by a few teams in organizations. Within the organization, it is hard to guarantee
that all the teams would be using the same tool with the same settings. With different
development patterns of open source projects and commercial projects, it is even harder for
them to have the same frequency of maintenance. Therefore, the difference in development
patterns between open source projects and commencial projects leads to different rates of

16

false positives and datasets. In order to generate an unbiased training dataset, we randomly
select warnings from the whole warning set for each project and label their actionability
with our best judgement.

3.2 Security Vulnerabilities

Security vulnerabilities are security weakness in software that leave the software with
potential of being attacked. For example, buffer overflow allows attackers to access or over-
write data in memory if the associated programming language does not has protections.

3.2.1 Security Vulnerability Enumeration

There are some well-known security enumerations such as the National Vulnerability
Database (NVD) [35], Common Vulnerabilities and Exposures (CVE) [32], Common Weak-
ness Enumberation (CWE) [33]. They provide standards of weakness and vulnerability
description, management, and usage in source code.

CWE provides a set of security vulnerabilities to the public with detailed description
and industrial standard scoring. CVE identifies vulnerabilities for common usage. It
developed a preliminary classification of vulnerabilities. However, the CVE grouping is
too rough for the growing security assessment industry. CWE enriches the code security
assessment industry with better classification, analysis and further needs.

CWE also provides hierarchical analysis for NVD and CVE. NVD is a standards-based
security vulnerability database that enables security vulnerability management. NVD is
built upon CVE entries using CWE with hierarchies. Every entry in NVD has a CVSS
severity score and CVSS vector.

3.2.2 Common Vulnerability Scoring System

The Common Vulnerability Scoring System (CVSS) is a framework that represents
the severity of vulnerabilities with metric groups. There are three metric groups: Base,
Temporal, and Environmental. Those three metric groups consist of more detailed metric
vectors. Those vectors made up for CVSS vector.

Base metrics represents the characteristics that cause the vulnerability. They in-
clude exploitability metrics, scope and attack complexity. Exploitability metrics measured

17

whether the attack is through network or local namely Attack Vector (AV), Attack Com-
plexity (AC) of accessing the attack; Privileges Required (PR) before abusing the vulner-
ability; User Interface which captures if the attacker can exploit the vulnerability without
users’ participate (UI). Scope (S) refers to the authority granted by computer to compute
resources. Impact metrics refers to Confidentiality (C) of limited information access, In-
tegrity (I) as the veracity of resource, and Availability (A) as the loss of confidentiality
and integrity.

Temporal metrics include exploit code maturity, remediation level, and report confi-
dence. Exploit Code Maturity (E) measures the likelihood of attacking the vulnerability
with the current status. Remediation Level (RL) reflects the urgency of fixing the vul-
nerability. Report Confidence (RC) shows the exposures of the vulnerability, whether the
report describes a confirmed vulnerability with details.

Environmental metrics include security requirements and modified base metrics. Se-
curity Requirements enable the customized CVSS score depending on the needs of users.
This is measured with metrics of Confidentiality Requirement (CR), Integrity Requirement
(IR), and Availability Requirement (AR).

The detailed metrics of base metric, temporal metric, and environmental metric make
up the CVSS vector. With defined equations and scores of different levels in the metrics,
the CVSS calculator would calculate the CVSS score of the vulnerability.

3.3 Machine Learning

Machine learning builds statistical models of classification or prediction from study-
ing of data. In our case, the dataset are labeled with classification before training, it is
called supervised learning. If the training is upon data without labeling then it is called
unsupervised training. The classification of dataset can be binary or multiple classes.

3.3.1 Feature Selection

In machine learning, a feature is a measurement of observation such as total number
of lines of code in our project. Feature selection is an automatic process of selecting
features that are more relevant to the results. Feature extraction selects a subset of the
features and constructs new features from them. Different from feature extraction, feature
selection selects existing features instead of constructing new ensemble data factors. It can

18

decrease the complexity of machine learning models and therefore make the models more
understandable without information loss like feature extraction.

3.3.2 Imbalance

In a classification problem, the dataset used to train the model has more than one class.
If one of the classes takes much bigger part of the dataset, the ratio of different classes can
be extreme. For example, if the two classes are positive (90% of the data) and negative
(10% of the data), then it would be easy to train a classifier that always returns positive
and has an accuracy of 90%, but the classifier would have little practical use failing to
detect true negatives. In that case, machine learning classifiers might not be efficient. We
have this imbalance problem in our dataset too.

3.3.3 Machine Learning Adoption

We adopt machine learning approaches to classify actionable warnings from all the
warnings generated by CSAT. Machine learning features such as lines of code (expressed
with integer) in a file are utilized in classification. These features add more information
to classifiers that CSAT does not contain. We have way more actionable warnings than
non-actionable warnings. We reconstruct datasets and use specific approaches like cost
sensitive learning to solve the imbalance problem.

19

Chapter 4

Methodology

Classifying static analysis warnings based on actionability for large projects, especially
in a large industrial organization, can be costly due to the enormous size of the data set
with a high proportion of false positives. Our goal is to classify warnings generated by
static analysis tools with machine learning models in a cost-efficient way.

As shown in Figure 4.1, we do static analysis on several versions of the source code
of three projects and then collect the generated warnings to create data sets for further
training. Factors (features) of those warnings in the data sets were extracted from the
source code repository and history. Ground truth refers to the facts of which class any
given warning belongs to (e.g., actionable versus non-actionable). Ground truth labeling is
performed manually by experts. Labelling is based on the existence of a warning over time
in CSAT and code changes in the source code. Some of the warnings might be marked as
Fixed in CSAT without being fixed. With a large amount of features, feature selection is
important for classifier performance. Ensemble classifiers are built on selected features.

Our approach uses feature extraction, feature selection, ground truth labeling, and
statistical models to predict whether a warning is an actionable warning or not.

4.1 Commercial Static Analysis Tool Analysis

In our work, we use the CSAT tool to perform analyses on two open source projects
(Apache HTTPD and MySQL) and one commercial project (BlackBerry internal project)
with the regular setting of checkers. We analyzed multiple versions of three different
projects — Apache HTTPD, MySQL, and an internal proprietary project from Blackberry

20

Figure 4.1: Process of feature extraction, feature selection, ground truth labeling, and
machine learning in Prioritizer
Source code: commercial projects and open-source projects
Ground truth: label false positives or actionable warnings

21

— in turn. Five versions of the code from Apache HTTPD and nine versions of the code
from MySQL are picked spreading over two years. Three versions of the source code from
the proprietary BlackBerry project are picked spreading over half a year. Each of the
projects has over 500,000 lines of code. The regular setting satisfies the need for detecting
critical vulnerabilities without too many false positives based on experts’ experience from
BlackBerry. It should be noted that, both MySQL and Apache HTTPD include third party
libraries which are not maintained by the project development team. The source code of
these third party libraries is included in our analyses for completeness as those third party
libraries upgrade with the source code. For the proprietary BlackBerry project, due to the
size of the project, only one of the major modules is analyzed by CSAT while all the other
modules within the same project are ignored.

4.2 Data Sources and Feature Extraction

We chose our features based on experiences from experts in BlackBerry and other
researchers. These features were extracted from four perspectives of the static analysis
tools and the code where the warning was detected. First, we extracted some information
from the static analysis tool as do the work of Ruthruff [38], Heckman [19], and Kim [22]
for warning descriptions. Kim [22] found a strong correlation between warning severity
and bugs. Second, work by Bell [36] utilized features from individual files and commit
information. Heckman [19] added features from function level, package level, and project
level of the warning for predicting actionability. Third, code complexity often leads to more
security vulnerabilities in the code [31], [39]. Complicated code has a higher possibility
of being attacked. Shin [40] noticed that code complexity is the most important factor
among code complexity, code churn (history of code changes), and developer activity in
their benchmarks. Fourth, Ruthruff [38] and Heckman [19] both proved relevance of code
churn factors with the bug occurrences. Shin [40] proved relevant of code churn factors
with security vulnerabilities.

The goal of feature extraction is to remove noisy features and extract more structural
features such as code metrics from code repositories and factors from static analysis tools
that have good discriminatory value. Code metrics are made up of file characteristics,
source code factors, and churn factors. File characteristics include the files age which
reflects how long ago the file was created. Source code factors include lines of code which
count the total number of lines of code excluding blank lines and comments in a source
code file. Churn factors include total changes of code prior to the warning was reported.
By replicating previous research and extending it to experiment with more precise machine

22

learning and feature selection algorithms, these features were selected, as shown in Table
4.1.

Commercial Static Analysis Tool issues (warning) descriptor CSAT descriptor has
274 checkers for C/ C++ and 190 checkers for Java.

Code The code (issue code) refers to the unique abbreviated name assigned
to a detected warning type. For instance, ABV.ANY SIZE ARRAY is
the issue code and buffer overflow-unspecified-sized array index out of
bounds is the description.

Subcode Subcode refers to the unique abbreviated category name of a code. For
instance, ABV is the subcode of code ABV.ANY SIZE ARRAY and
stands for buffer overflow for array.

Severity Each checker has a severity from 1 to 4 with 1 being critical warning
and 4 being review warning. The severity shows up with each warning
is never changed with warnings status as each checker is bonded with a
severity.

File characteristics File characteristics contain the properties of the files where warnings
were reported.

File age The total days of time period between created date of the file and the
date the warning was detected.

File programming language
Programming language the file was written in. The programming lan-
guage is expressed as a number: +1(C/C++)/ -1(Java)

Sha date delta weeks
The total number of the weeks the file was released prior to the warning
detection

Directory The top one, top two, and top three hierarchies of the directories of
file path before file name. The top one hierarchy of the directories dis-
tinguish source code of open source projects from third party libraries
source code. If there are only two directories before the file, then the
top three hierarchies would be the same as the top two hierarchies of
the directories.

23

Source code factors Metrics of source code and code characteristics together form source
code factors. File length, lines of code (loc), and code indentation [21] show the complexity
of code.

Depth The ratio of the distance from the top of the file to the line of the warning
detection compared to the total lines of the file.

File length Total number of lines in the file including lines of code, empty lines, and
comments.

Mean tab Mean tabs indented in the beginning of code. If there is not tab in the
beginning of code, then mean tab would be zero.

Mean space Mean spaces and tabs indented in the beginning of code. If there is not
space in the beginning of code, then mean space would be zero.

Churn factors Churn factors consider the history of code changes prior to the warnings
detection calculated from development history.

Add loc Added lines of code in two weeks, three months, six months, nine months,
and twelve months prior to the warning detection.

Del loc Deleted lines of code in two weeks, three months, six months, nine
months, and twelve months prior to the warning detection.

Fre Frequency of the file been were touched in two weeks, three months, six
months, nine months, and twelve months prior to the warning detection.

Change total Number of total lines of code has been changed, which is the sum of
added lines of code and deleted lines of code, in two weeks, three months,
six months, nine months, and twelve months prior to the warning detec-
tion.

Percentage (add loc perc, del loc perc)
Percentage of added/ deleted lines of code in the past three months
compared to loc.

24

CSAT warnings descriptors

code Types of warnings CSAT detect

subcode Categories of the warnings CSAT detect be-
long to

severity Severity of warning types

File characteristics

file age, create date delta weeks The length of the time the file existed

file programming language Programming language of the file

sha date delta weeks The length of the time the file released

dir The top hierarchies of the file path

Source code factors

depth The ratio of distance of the warning to the
total length

indentation (mean tab, mean space) Spaces and tabs indented in the beginning of
code

loc Lines of code

total lines Lines of the file

Churn factors: files

add loc Added lines of code prior to the warning de-
tection

del loc Deleted lines of code prior to the warning
detection

fre Frequency of modifications prior to the warn-
ing detection

change total Modified lines prior to the warning detection

percentage (add loc perc, del loc perc) Percentage of added/deleted lines of code
prior to the warning detection

Table 4.1: Names and explanations of all the features extracted in our project

25

4.3 Experimental Datasets Labeling

For supervised machine learning models, the datasets require features in machine learn-
ing and class that each row (warning) of the datasets belongs to. To have a ground truth
to work from, we manually checked the elements in each dataset, and labeled each element
with either actionable or non-actionable based on whether the element has been fixed ac-
cording to the reported warning in later versions of the code. The labeling was performed
by two individuals: the author and another employee from BlackBerry. In the case of
disagreement, another BlackBerry employee decided on the label. Otherwise, we keep the
class of the warnings as labeled.

CSAT marked all the warnings that disappeared in later analysis as “Fixed”, on the
assumption that they disappeared from the code because they had been fixed by the
development team. However, not all the “Fixed” warnings are addressed by performers
regarding the warning reported issue. For instance, if the file where the warning has been
deleted, CSAT would still mark the warning as “Fixed”. But in our opinion, this warning
is non-actionable. We verified all the “Fixed” warning manually and labelled them with
actionability. If a warning is marked as fixed by CSAT, and fixed by performers towards
the warning, then we label it as actionable, vice versa.

For each project, a series of CSAT analysis were conducted on 5 to 10 versions of
historical code. Datasets generation is very time consuming as we label the actionability
of warnings manually. Therefore, we randomly select around 200 warnings from each of
the project and label them to form our datasets. For Apache HTTPD, the total amount
of warnings is 208 and 199 are selected, the confidence interval is 0.57 when the confidence
level is 95% [41]. If the accuracy is 90%, then with 95% confidence level, the accuracy
is between 89.43% (90 - 0.57) and 90.57% (90 + 0.57). For MySQL, the total amount of
warnings is 1506 and 193 are selected, the confidence interval is 4.43 when the confidence
level is 95% [41]. If the accuracy is 90%, then with 95% confidence level, the accuracy is
between 85.6% (90 - 4.4) and 94.4% (90 + 4.4). For proprietary BlackBerry project, the
total amount of warnings is 3668 and 200 are selected, the confidence interval is 3.07 when
the confidence level is 95% [41]. If the accuracy is 90%, then with 95% confidence level,
the accuracy is between 86.93% (90 - 3.07) and 93.07% (90 + 3.07).

All the repetitive warnings are removed from the datasets. If a warning is ever marked
as fixed by CSAT in any later analysis, we explore the warning by hand and label it as
actionable or inactionable. If a warning is never marked as fixed by CSAT in any of the
later analysis, we mark the warning as inactionable (not acted on). It is possible that
warning is fixed out of our scope of analysis. But it would be a subjective and biased
decision to make about actionability by us.

26

If a warning is addressed due to the reason CSAT reported then it is actionable. Two ex-
amples of actionable warning and non-actionable warning from CSAT analysis of MySQL.

Figure 4.2: An example of a warning that labeled as actionable from CSAT analysis of
MySQL

In Figure 4.2, “net -> vio” is checked for “NULL”. However, later “net -> vio”
is dereferenced without “NULL” checking. Logically, it is possible that “net -> vio”
is “NULL” and get dereferenced again. In Figure 4.3, the validity of “net -> vio”
is checked before usage. We label it as actionable because the warning is fixed for the
potential vulnerability reason as CSAT reported.

Figure 4.3: The fix of the actionable labeled warning from CSAT analysis of MySQL

In Figure 4.4, CSAT reported that “el -> el_line.buffer” is used after have
been freed. The function “el_realloc” calls realloc function inherited from C. It doesn
not automatically free the variable after calling. Thus the usage of “el -> el_line.buffer”

27

afterwards does not cause the problem CSAT reported. The warning which reported 4.4
is labelled as non-actionable.

Figure 4.4: An example of a warning that labeled as non-actionable from CSAT analysis
of MySQL

4.4 Machine Learning Approaches

Langley [26] showed that there is no machine learning approach that works in all the
fields. Therefore, we experiment with three different approaches so as to get the superior
results. We apply machine learning models to the same datasets with three different
approaches: machine learning classifiers, feature selection, and machine learning classifiers,
as well as machine learning techniques for imbalanced datasets. The datasets consist of all
the features from Table 4.1 and labeling of actionable or non-actionable. All the approaches
are implemented in Java Weka API [18].

For each of the three approaches, seven machine learning classifiers are trained and
evaluated in our study: Random Forest [3], Bayesian Network [2], KStar [8], SVM [4],
Conjunctive Rules [18], Decision Table [24], and Logistic Regression [27]. Then the trained
classifiers are evaluated with 5-fold cross-validation.

Random Forest [3], BayesNet [2], KStar [8], SVM [4], Conjunctive Rules [18], Decision
Table [24], and Logistic Regression [27] are all popular machine learning models for various
of tasks.

Random Forest [3] is an ensemble model that combines classification trees with a ran-
dom bagging step. Originally, the classification trees are constructed by generating nodes
that can best split the datasets. In a random forest, instead of using the best split nodes,

28

the random “feature bagging” step generates each node by the best among a subset of
nodes. After the construction, the datasets that to be predicted go down each of the trees.
Each of the trees gives an result and “vote” for the class.

Bayesian Network [2] is a directed acyclic graphical model that construct the dependen-
cies of a dataset. It can be used for classification especially when features have conditional
dependencies.

KStar [8] is a distance measure classification model that uses entropy to get benefits
such as missing value. It is an instance-based learner that classify new coming data from
classes of previous classified data that are similar to it. The distance measure is the
transformation of transforming one instance to another.

SVM [4] mode treats datasets as points in space and generates a trained classification to
ensure the gap between classes as far as possible. Four kernel models in SVM are included
in our experiments: Linear, Polynomial, RBF (Radial basis function), and Sigmoid. If the
trained classification kernel is specified as linear, then the generated trained classification
is a linear model that separate different categories.

Conjunctive Rules [18] classifies the class from “AND” rule of features.

Kohavi [24] found that Decision Table works surprisingly well in some cases when
datases include continuous features. Decision Table classifier [24] classifies datasets with a
simple decision table. It selects a subset of features to generate a schema in the decision
table. Then match the new coming data to the exact schema for the class. If no match is
found, the majority class is returned.

Logistic Regression [27] measures the relationship of features and class wth a logistic
regression. The model is modified in Weka to handle weighted datasets.

4.4.1 Machine Learning Classifiers

In the approach of machine learning classifiers, we train the seven classifiers with
datasets that consist all of the extracted features from Table 4.1. Within the datasets,
each row of the datasets is labeled with actionable or non-actionable as described in sec-
tion 4.3. The classifiers are trained for a binary classification and later evaluated with
5-fold cross-validation on the same training datasets.

29

4.4.2 Feature Selection and Machine Learning Classifiers

In the design of feature selection and machine learning classifiers, we select highly
correlated subsets of features first and then apply machine learning classifications to the
reduced datasets. There are seven strategies for correlated subset feature selection: Cfs-
SubsetEval [17] and GreedyStepwise, CfsSubsetEval and BestFirst, InfoGainAttributeEval
and Ranker, ClassifierSubsetEval and GreedyStepwise, ClassifierSubsetEval and BestFirst,
ChiSquaredAttributeEval and Ranker, PrincipalComponent (Principal Component Anal-
ysis) and Ranker.

CfsSubsetEval selects features that are correlated with the class with no intercorrelation
among them. It excludes redundant features during screening and include the highly
correlated features as long as they are not correlated with previous selected features.

InfoGainAttributeEval, Information Gain Evaluation in Weka, measures the features
with their contribution to reduce the overall entropy. A good feature reduces the most
entropy with the most information gaining. Information, also known as purity, represents
the necessary information to classify a row in the datasets.

ClassifierSubsetEval evaluates subset of features on training data and estimates the
“merit” of the subset with a classifier.

PrincipalComponent converts a set of features into a set of variables called principal
components. In Weka, Principal Component Analysis is in usge with Ranker search. This
can reduce the noise and redundancy of features.

GreedyStepwise performs a greedy forward or backward search in the feature set. It
starts with no or all features and stops when no more features increase the evaluation. It
implements steepest ascent search in Weka. In our experiments, we use greedy forward
search.

BestFirst, Best-first search in Weka, searches the subsets of features forward from an
empty set or backward from the full set of features. The search algorithm beam search is
used in BestFirst in Weka. We use forward in our experiments.

Ranker ranks features by their evaluators such as Entropy.

One of the seven strategies first select a subset of correlated features. Then the new
dateset that consist of subset of correlated features and actionablitily labeling is used to
train one of the seven classifiers. The classifier is then evaluated with original dataset. In
total, there are 49 combinations of seven feature selection strategies multiplied by seven
classifiers. The trained classifier is later evaluated with 5-fold cross-validation.

30

4.4.3 Machine Learning Techniques for Imbalanced Datasets

Within the field of machine learning, there are two major approaches to dealing with
imbalanced datasets: tweak the classifiers with cost-sensitive techniques and reconstruct
the datasets with resampling techniques. Cost-sensitive techniques, cost-sensitive predic-
tion, and meta-cost are three distinct techniques in cost-sensitive learning. Resampling
techniques include resample datasets with over-sampling and under-sampling to balance
the ratio of the datasets. Resampling techniques consist of over-sampling with replace-
ment, over-sampling without replacement, under-sampling (such as spread subsample),
and Synthetic Minority Oversampling Technique (SMOTE) [5] [11].

In cost-sensitive learning, weights are assigned to different classes in the training datasets.
These weights are applied in the machine learning process. Different from cost-sensitive
learning, cost-sensitive predicting predicts the class with weights to increase the cost of
misclassification. In meta-cost, the training data is reclassified from a bagging approach.
The meta-cost uses bagging iteration for reclassifying training datasets and generates one
classifier from the training datasets.

In the training of the seven classifiers, the cost matrix used by cost-sensitive learning,
cost-sensitive predicting, and meta-cost are the same: one extra cost for false positives
and ten extra cost for false negatives. The seven classifiers classify datasets on minimum
cost after applying the cost matrix. These trained classifiers are evaluated by 5-fold cross-
validation with the same datasets that they are used in training.

Over-sampling technique generates a random subsample of a dataset with or without
replacement of instances from the minority class from the original dataset. Under-sampling
such as spread subsample reduces the dataset by removing the instances from the majority
class (binary classification). In addition, SMOTE shows a combination of over-sampling
and under-sampling to achieve a better performance.

The reconstructed datasets from resampling are the same size with the original datasets
with 5:1 ratio of majority class compared to minority class. Then the trained classifiers
are evaluated with the datasets that are used in training with 5-fold cross-validation.

There is no guarantee that one of the approaches for imbalanced datasets work best for
all the projects. Therefore, all the approaches are adopted to experiment and compare for
our projects.

31

4.5 Measures

Three measures are employed in our experiments: accuracy, precision, and recall. Accu-
racy is preferred because it is the most popular measurement for machine learning models.
However, for an imbalanced binary class dataset, if the negative class takes up to 90% of the
dataset and the classifier classifies all data into this class, then the accuracy is 90% though
there is no true positives. In this case, high accuracy does not stand for high-performance
from the perspective of true positives. Thus, precision and recall are both adopted to give
a more thorough intepretation of our result.

4.6 Methodology Summary

To classify actionable warnings from a large amount of warnings generated by CSAT, we
use statistical models to predict actionable warnings based on code information. For all the
warnings generated by CSAT, we extract CSAT warning descriptors, files characteristics,
source code factors, and churn factors. We later label these warnings with actionable
or non-actionable to have a ground truth to work with. We use these labeled warnings
and correlated extracted features to train machine learning models. We adopt machine
learning techniques such as feature selection and imbalanced techniques to achieve a better
performance in our datasets. The details of our experiements based on our Methodology
are shown in Chapter 5

32

Chapter 5

Experiments

In this chapter, we evaluate our models generated using our approach to detect ac-
tionable static analysis warnings on the three target systems described previously. We
evaluate each model with accuracy, precision, and recall. We analyze time taken to train
the classifiers. Time for running CSAT with the default settings mainly depends on the
size of the project to be analyzed. We exclude time for running CSAT from our analysis
as that time is a one-time cost for each system version. We compare the models from our
methodology against the work of Heckman et al. [19].

5.1 Experimental Data Sets

We generate experiment datasets by selecting around 200 warnings from each project
(Apache HTTPD: 199, MySQL: 193, proprietary BlackBerry project: 200). Every instance
from these data sets is labeled by employees from BlackBerry. Instances are randomly se-
lected from the first analysis as this would guarantee more fixes from later analysis.

5.2 Experimental Infrastructure

In this chapter, we discuss the infrastructure of our project Prioritizer. Prioritizer is
made up by performing static analysis, data collection, feature extraction, feature selection
and machine learning models as described in Methodology.

33

5.2.1 Feature Extraction Infrastructure

Our static analyses are performed in C or C++ codebase for two open source project —
Apache HTTPD and MySQL — and one commercial project — the proprietary BlackBerry
project. We performed static analysis on six versions of Apache HTTPD, ten version of
MySQL, and three versions of the proprietary BlackBerry project. More than 200 CSAT
checkers and more than twenty BlackBerry customized checkers for C or C++ are utilized
in our analysis. More than 3000 unique warnings are generated and stored in our database.
All the experiments for three different projects are set up with the same static analysis
tools setting. This reveals the difference of commercial projects and open source projects
in different performance for static analysis.

CSAT conducts static analysis on source code during compilation and stores warnings
in server. It displays all the warnings in server website along with source code. After
the analyses, we collect warning information from the CSAT server. To have a better
view of the source code, code metrics and change history are measured based on the Git
source code repository. File characteristics and source code factors listed in Table 4.1 are
extracted from the source code Git repository. Then the datasets are labeled and used as
training datasets.

5.2.2 Feature Selection and Machine Learning Infrastructure

It is difficult to predict which features best describe the problem domain. One common
strategy is to fit all the features to every classification model and check the model’s perfor-
mance. This design enables models to classify datasets with all the available information,
which would help models such as random forest which selects features from the whole
dataset. A disadvantage of this design is irrelevant features might provide redundant and
bias information for models. However, bias for one project might not be bias for another
project. We adopt this strategy to give us a more direct view of our datasets.

Our second design uses a pipelined process of selecting features and training models.
In this design, machine learning models are trained with reduced datasets with selected
features which might provide a more structural datasets and improve the performance. A
weakness of this design is the loss of information from the reduced datasets might make it
harder to draw meaningful conclusion from the results. Another weakness is the difficulty
of picking up the best feature selection algorithms for different models and projects. There
is no universal solution for feature selection algorithms. We use this design and find that
some feature selection algorithms work well for one project but not another.

34

Due to the fact that most of the classifiers are built up based on accuracy, our ma-
chine learning classification models suffer from high accuracy with low true positives with
extremely imbalanced datasets, namely the ratios of inactionable warnings and actionable
warnings are more than 10:1. In order to solve this problem, we adopt cost-sensitive models
and resampling techniques in machine learning in our third and fourth designs are designed
to solve imbalance problems.

Cost-sensitive learning, cost-sensitive prediction, and metacost are compared separately
with all classification models in our third design. Cost-sensitive learning brings cost into
the classifiers misclassification during learning. Cost-sensitive prediction, on the other
side, use cost to predict class. Making every classifier cost-sensitive is arduous. Instead,
metacost [9] wraps a cost-minimizing procedure around the classifiers.

Nonetheless, cost-sensitive models do not always work better than resampling tech-
niques, according to Weiss [42]. Therefore we resample our datasets before training the
classifiers in our fourth design; then, we use the resampled datasets to train our classifiers
with same settings.

5.3 Threats

Construct validity, internal validity, and external validity are three main threats for
our work. The threats to construct validity is the bias in labelling training datasets. The
warnings are examined and labelled by two engineers within BlackBerry. Another engineer
was involved to make a final decision if there was any disagreement to discriminate the
effect of individuals. Apart from this, there is no guarantee that the non-fixed warnings
are non-actionable warnings as some of these warnings might be fixed in the future.

In this research, the internal threats concerns the size of datasets. Due to the size of
the proprietary BlackBerry project, only three versions of the source code are analyzed.
Among all the three projects, around five versions of source code are analyzed which might
cause discontinuity among projects. All the scripts and source code for this project are
tested manually within the units by the author. Errors within any source code could
invalidate some of our results.

We have only selected source code from release versions of open source projects and
rather complete versions of proprietary BlackBerry project. There is a high possibility
that security vulnerabilities have been mostly found out by tools before and fixed already.
Due to these limitations, the goal of this study is to explore more useful techniques in this
domain.

35

Chapter 6

Research Results and Discussion

We first show the selected features and results from our experiments which vary by
projects. Then, we compare the results among three different projects especially between
open source projects and commercial project. Later we compare our results with Heckman’s
approach[19] in our datasets. We were unable to re-implement Rutruff’s study, as they
provided insufficient detail to permit this.

6.1 Results of Machine Learning Approaches

We now describe the results of using three different machine learning approaches in our
study of static analysis warnings.

6.1.1 Results of Machine Learning Classifiers

Table 6.1 selects the three projects with best accuracy for each project and non-zero
reasonable precision and recall. The precision and recall of the correlated accuracy are
given in Table 6.2 and Table 6.3. Accuracies of all the classifiers on all three projects are
in Table A.1 in Appendix A. Precisions and recalls of all the classifiers on all three projects
are in Table A.2 and Table A.3 in Appendix A.

We use the following definitions:

• accuracy is the percentage of all warnings in the dataset that were correctly catego-
rized as actionable or non-actionable, according to our ground truth.

36

• precision is the percentage of actionable warnings that were correctly categorized as
such among all the predicted as actionable warnings.

• recall is the percentage of warnings correctly categorized as actionable among all the
actionable warnings.

As we can see in Table 6.2, the best performing approaches on Apache HTTPD and
MySQL are all from classifiers SVM, Random Forest, and KStar (compared in seven clas-
sifiers). It should be noted that the kernels for SVM are different for Apache HTTPD
(RBF) and MySQL (Linear). The highest accuracy is 89.4% for Apache HTTPD while
85.5% for MySQL.

Classifiers Apache HTTPD MySQL Proprietary Black-
Berry project

SVM (RK) 89.4%
(SK) 89.9%

(LK) 82.4%
(SK) 89.6%

(LK) 97.5%
(SK) 98.5%

Random Forest 89.4% 88.1% 97.5%

KStar 84.9% 84.5% 98.5%

Table 6.1: Accuracy of highest results of classifiers on Apache HTTPD, MySQL, and
proprietary BlackBerry project. The best classifiers are SVM Sigmoid Kernel for all three
projects and KStar for the proprietary BlackBerry project. They achieve accuracy of 89.9%
for Apache HTTPD, 89.6% for MySQL, and 98.5% for the proprietary BlackBerry project.
In the table, RK stands for RBF Kernel, SK stands for Sigmoid Kernel, and LK stands
for Linear Kernel.

Figure 6.1, 6.2, and 6.3 give a direct vision of the classifier Random Forest for three
different projects. Features that are relevant to the actionability are different in the three
projects. For example, subcode is relevant to actionability in Apache HTTPD and MySQL
but not in the proprietary BlackBerry project.

37

Classifiers Apache HTTPD MySQL Proprietary Black-
Berry project

SVM (RK) 42.9%
(SK) 0%

(LK) 11.1%
(SK) 0%

(LK) 25%
(SK) 0%

Random Forest 40% 33.3% 33%

KStar 22.2% 18.8% 50%

Table 6.2: Correlated precision of highest accuracy of best classifiers on Apache HTTPD,
MySQL, and proprietary BlackBerry project. The highest precision of actionable warnings
classification for Apache HTTPD is 42.9% reached by SVM RBF Kernel. The highest
one for MySQL is 33.3% achieved by Random Forest. The highest one for the proprietary
BlackBerry project is 50% from KStar. In the table, RK stands for RBF Kernel, SK stands
for Sigmoid Kernel, and LK stands for Linear Kernel.

Classifiers Apache HTTPD MySQL Proprietary Black-
Berry project

SVM (RK) 15%
(SK) 0%

(LK) 10%
(SK) 0%

(LK) 33.3%
(SK) 0%

Random Forest 20% 15% 66.7%

KStar 20% 15% 33.3%

Table 6.3: Correlated recall of highest accuracy of best classifiers on Apache HTTPD,
MySQL, and proprietary BlackBerry project. The highest recalls for Apache HTTPD,
MySQL, and the proprietary BlackBerry project are 20%, 15%, and 66.7% respectively,
achieved by Random Forest. In addition, KStar also gives the highest recall for Apache
HTTPD and MySQL. In the table, RK stands for RBF Kernel, SK stands for Sigmoid
Kernel, and LK stands for Linear Kernel.

38

Figure 6.1: Random Forest trained on Apache HTTPD dataset to classify actionable warn-
ings(partial)

39

Figure 6.2: Random Forest trained on MySQL dataset to classify actionable warn-
ings(partial)

Figure 6.3: Random Forest trained on proprietary BlackBerry project to classify actionable
warnings

40

6.1.2 Results of Feature Selection and Machine Learning Classi-
fiers

We compared seven classifiers with seven feature selection strategies as listed.

Strategy 1 CfsSubsetEval+GreedyStepwise

Strategy 2 CfsSubsetEval+BestFirst

Strategy 3 InfoGainAttributeEval+Ranker

Strategy 4 ClassifierSubsetEval+GreedyStepwise

Strategy 5 ClassifierSubsetEval+BestFirst

Strategy 6 ChiSquaredAttributeEval+Ranker

Strategy 7 PrincipalComponent+Ranker

There are in total 49 combinations (or 70 combinations, if the four SVM kernels counted
as four different classifiers) of different classifiers and different feature selection strategies.
Showing all of the results would be lengthy and detailed; instead, we present the best
performers here. All of the experimental results are listed in Table A.4, A.5, A.6, A.7, A.8,
A.9, A.10, A.11, A.12 in Appendix A. For a combination of a feature selection strategy and
a classifier, if the accuracy of the evaluation is greater than 75% and the recall is greater
than 15%, then the subset of the features is recorded. One subset of features is recorded
in one strategy. In total, there are seven subsets of the features. The union of the seven
subsets of features are listed in Table 6.4 for all three projects.

Among all the combinations, the highest accuracies of the combinations are listed, as
well as the correlated precisions and recalls as shown in Table 6.5, 6.6, and 6.7.

We notice some similarities shared by both open source projects and differences between
open source projects and commercial project in our case study. The module and directory
where the warnings are found are relevant to their actionability for open source project
which is not the case for our proprietary BlackBerry project. Another difference is that
the category a warning belongs to plays an important role to actionability for open source
projects only. For our proprietary BlackBerry project, the source code change history is
crucial to the classification.

41

Apache HTTPD MySQL Proprietary BlackBerry
project

dir1 dir1 -

dir2 dir2 -

dir3 dir3 dir3

subcode subcode subcode

code code code

severity severity severity

title title -

depth - -

- loc loc

- mean tabs mean tabs

- mean spaces mean spaces

create date delta week create date delta week create date delta week

- add loc 6 add loc 3, add loc 6,
add loc 9, add loc 12

- del loc 6, del loc 9,
del loc 12

del loc 3, del loc 6,
del loc 9, del loc 12

- fre 05, fre 6, fre 12 fre 05, fre 3, fre 6, fre 12

Table 6.4: Features that have ever been selected for all three projects with seven feature
selection strategies. Checkers’ catogeries and severity have a big influence on all three
projects. For MySQL and the proprietary BlackBerry project, the code change history is
important which is even more so for the proprietary BlackBerry project.

42

The highest accuracy for Apache HTTPD, MySQL, and proprietary are 89.9%, 89.6%,
and 98.5%. However, some of these classifications with the highest accuracy have no true
positives classified. The highest accuracy for Apache HTTPD with non-zero true positives
is 89.9%, for MySQL is 88.6%, for proprietary BlackBerry project is 98.5%.

Classifier such as Conjunctive Rules have poor performance for all of the three projects
with any feature selection approaches. Some classifiers such as KStar and Random Forest
work well for all of the three projects and feature selection approaches like ChiSquaredAt-
tributeEval and Ranker. Some feature selection approach combinations such as CfsSub-
setEval and GreedyStepwise work well for most classifiers and projects.

6.1.3 Results of Imbalance Techniques

The two most popular approaches to dealing with imbalanced data in machine learning
are resampling dataset and cost-sensitive techniques. The results of these imbalance tech-
niques combined with classifiers are shown in this chapter. It is noticeable that classifiers
SVM, Random Forest, KStar, and Logistic Regression have high accuracy for our projects.

Classifiers with Resampling dataset

As we can see from Table 6.8, 6.10, and 6.9, Supervised Resampling Replacement
dataset works surprisingly well for most of the classifiers for all three projects. It is under-
standable as our datasets have an extreme ratio of inactionable warnings over actionable
warnings. Supervised Resampling resampled actionable warnings to balance out the ratio
which helps the classifiers dramatically. All the results of actionable warnings classification
with resampled datasets can be found in Table A.13, A.14, A.15, A.16, A.17, A.18, A.19,
A.20, and A.21.

Results of Cost-Sensitive Techniques

There are three cost-sensitive techniques: cost-sensitive learning, cost-sensitive predic-
tion, and meta cost. These cost-sensitive techniques are combined with seven different
classifiers (classifier SVM has four kernels) on all the datasets. Among them, Table 6.11
lists high accuracy from those combinations for each project. Table 6.12 and 6.13 show the
corresponding precision and recall of the combinations in 6.11. All the results of actionable
warnings classification with cost-sensitive techniques can be found in Table A.22, A.23, and
A.24.

The results are not surprising. There is no combination of classifiers and cost-sensitive
technique that work for every project. For the open source projects, the combination
of SVM with cost-sensitive prediction has the highest accuracy while the combination of

43

Classifiers Apache HTTPD MySQL proprietary
BlackBerry
project

Strategy Accuracy Strategy Accuracy Strategy Accuracy

BayesNet 3 80.4% 4 89.6% 5 98.5%

6 80.4%

DecisionTable 1 89.4% 3 88.1% 4 98.5%

2 89.4% 6 88.1%

3 87.4%

6 87.4%

KStar 1 86.9% 3 85.0% 5 98.5%

3 84.9% 6 85.0%

6 84.9% 7 87.0%

7 85.4%

Logistic Regres-
sion

6 80.9% 1 86.5% 3 95.5%

7 83.9% 2 86.5% 4 98.5%

7 84.5% 6 95.5%

Random Forest 1 86.9% 3 86.5% 4 98.5%

3 88.4% 6 86.5%

6 88.4% 7 87.0%

7 87.9%

SVM 3 (RK) 89.9% 7 (SK) 88.6% 4 (LK) 98.5%

3 (PK) 79.9% 1 (PK) 93.5%

Conjunctive
Rules

6 89.9% 1 89.6% 5 98.5%

Table 6.5: Accuracy of highest results of feature selection strategies on Apache HTTPD,
MySQL, and proprietary BlackBerry project. RK stands for RBF Kernel, SK stands for
Sigmoid Kernel, LK stands for Linear Kerneal, and PK stands for Polynomial Kernel.
The best feature selection strategies achieve at least 80% accuracy on Apache HTTPD
and MySQL (regardless of classifiers) as well as over 95% accuracy for the proprietary
BlackBerry project.

44

Classifiers Apache HTTPD MySQL Proprietary
BlackBerry
project

Strategy Accuracy Strategy Accuracy Strategy Accuracy

BayesNet 3 14.8% 4 0.0% 5 0.0%

6 14.8%

DecisionTable 1 0.0% 3 28.6% 4 0.0%

2 0.0% 6 28.6%

3 0.0%

6 22.2%

KStar 1 20.0% 3 20.0% 5 0.0%

3 29.2% 6 20.0%

6 29.2% 7 22.2%

7 28.6%

Logistic Regres-
sion

6 20.0% 1 20.0% 3 12.5%

7 20.0% 2 20.0% 4 0.0%

7 18.8% 6 12.5%

Random Forest 1 25.0% 3 25.0% 4 0.0%

3 38.5% 6 25.0%

6 38.5% 7 27.3%

7 30.0%

SVM 3 (RK) 50.0% 7 (SK) 37.5% 4 (LK) 0.0%

3 (PK) 25.0% 1 (PK) 8.3%

Conjunctive
Rules

6 0.0% 1 0.0% 5 0.0%

Table 6.6: Correlated precision of highest accuracy of best feature selection strategies on
Apache HTTPD, MySQL, and proprietary BlackBerry project. RK stands for RBF Kernel,
SK stands for Sigmoid Kernel, LK stands for Linear Kerneal, and PK stands for Polynomial
Kernel. SVM with different feature selection strategies achieves highest precisions for both
Apache HTTPD and MySQL which are 50.0% and 37.5%. Logistic regressio with two
different feature selection strategies achieves the highest precision which is 12.5Correlated
precisions of the highest accuracies of the results with feature selection strategies combined
with classifiers for all three projects

45

Classifiers Apache HTTPD MySQL Proprietary
BlackBerry
project

Strategy Accuracy Strategy Accuracy Strategy Accuracy

BayesNet 3 20.0% 4 0.0% 5 0.0%

6 20.0%

DecisionTable 1 0.0% 3 10.0% 4 0.0%

2 0.0% 6 10.0%

3 0.0%

6 10.0%

KStar 1 10.0% 3 15.0% 5 0.0%

3 35.0% 6 15.0%

6 35.0% 7 20.0%

7 30.0%

Logistic Regres-
sion

6 30.0% 1 10.0% 3 33.3%

7 20.0% 2 10.0% 4 0.0%

7 15.0% 6 33.3%

Random Forest 1 15.0% 3 15.0% 4 0.0%

3 25.0% 6 15.0%

6 25.0% 7 15.0%

7 15.0%

SVM 3 (RK) 25.0% 7 (SK) 15.0% 4 (LK) 0.0%

3 (PK) 50.0% 1 (PK) 33.3%

Conjunctive
Rules

6 0.0% 1 0.0% 5 0.0%

Table 6.7: Correlated recall of highest accuracy of best feature selection strategies on
Apache HTTPD, MySQL, and proprietary BlackBerry project. RK stands for RBF Kernel,
SK stands for Sigmoid Kernel, LK stands for Linear Kerneal, and PK stands for Polynomial
Kernel. SVM with different kernels and different feature selection strategies get the highest
recall for Apache HTTPD and the proprietary BlackBerry project at 50.0% and 33.3%.
For MySQL, KStar with the feature selection strategy consisting of principal and ranker
strategy gets the highest recall at 20.0%.

46

Classifiers Apache HTTPD MySQL Proprietary Black-
Berry project

SVM (RBF Kernel)
SRWR 91.0%

(RBF Kernel)
SRR 89.6%

(Linear, RBF,
Polynomial Kernel)
SRR 100%

Random Forest SRR 92.0% SRR 90.7% SRR 100%

KStar SRR 93.5% SRR 91.7% SRR 100%

Logistic Regression SRR 86.9% SRR 93.8% SRR 99%

Table 6.8: Accuracy of the highest results of resampling techniques for Apache HTTPD,
MySQL, and proprietary BlackBerry project. SRR stands for Supervised Resampling
with Replacement, SRWR stands for Supervised Resampling without Replacement. KStar
and Supervised Resampling with replacement technique generates the highest accuracy for
Apache HTTPD at 93.5%. Logistic Regression and supervised resampling with replacement
generates the highest accuracy for MySQL at 93.8%. SVM, Random Forest, and KStar
along with supervised resampling with replacement generate the highest accuracy for the
proprietary BlackBerry project at 100%.

KStar with meta cost classifies most actionable warnings for the proprietary BlackBerry
project.

6.2 Comparison

We compare our best results with the replication of Heckman’s [19] best results.

In Heckman’s work, the best results for her projects come from combinations of five
different classifiers and four feature selection processes. The best result for runtime was
from IBk with Wrapper and BestFirst Search. The best result for jdom comes from KStar
classifier with ConsisitencySubsetEval and BestFirst Search. We include the best result
combinations and other high-accuracy combinations (KStar, Decision table, Conjunctive
Rules, Random Forest, and IBk classifiers combined with Cfs, RankSearch, and GainRatio/
Wrapper, RankSearch, and GainRatio) to compare with our work.

47

Classifiers Apache HTTPD MySQL Proprietary Black-
Berry project

SVM (RBF Kernel)
Supervised
Resampling without
Replacement 62.5%

(RBF Kernel)
SRR 87.2%

(Linear,RBF,
Polynomial Kernel)
SRR 100%

Random Forest SRR 86.8% SRR 86.1% SRR 100%

KStar SRR 89.0% SRR 86.3% SRR 100%

Logistic Regression SRR 92.6% SRR 89.4% SRR 97.2%

Table 6.9: Correlated precision of the highest accuracy of resampling techniques for Apache
HTTPD, MySQL, and proprietary BlackBerry project. SRR stands for Supervised Resam-
pling with Replacement, SRWR stands for Supervised Resampling without Replacement.
Logistic Regression and Supervised Resampling with replacement achieve the highest pre-
cisions for both Apache HTTPD and MySQL at 92.6% and 89.4%. SVM, Random Forest,
and KStar along with Supervised Resampling with replacement achieve 100% precision for
the proprietary BlackBerry project.

Classifiers Apache HTTPD MySQL Proprietary Black-
Berry project

SVM (RBF Kernel)
SRWR 25%

(RBF Kernel)
SRR 94.1%

(Linear,RBF,
Polynomial Kernel)
SRR 100%

Random Forest SRR 100% SRR 98.0% SRR 100%

KStar SRR 100% SRR 100% SRR 100%

Logistic Regression SRR 95.2% SRR 100% SRR 100%

Table 6.10: Correlated recall of the highest accuracy of resampling techniques for Apache
HTTPD, MySQL, and proprietary BlackBerry project. SRR stands for Supervised Resam-
pling with Replacement, SRWR stands for Supervised Resampling without Replacement.
All three projects’ recalls could reach 100% from KStar and Supervised Resampling with
replacement.

48

Classifiers Apache HTTPD MySQL Proprietary Black-
Berry project

SVM (RBF Kernel)
cost-sensitive
prediction 91.5%

(Linear Kernel)
cost-sensitive
prediciton 85.0%

(Linear Kernel)
cost-sensitive
learning 97%

Random Forest cost-sensitive learning
77.4%

cost-sensitive learning
80.8%

cost-sensitive predic-
tion 97.5%

KStar cost-sensitive predic-
tion 84.4%

cost-sensitive predic-
tion 83.9%

meta cost 98.5%

Logistic Regression cost-sensitive learning
78.9%

cost-sensitive predic-
tion 83.9%

cost-sensitive learning
96.5%

Table 6.11: Accuracy of the highest results of cost-sensitive techniques for Apache HTTPD,
MySQL, and proprietary BlackBerry project. The highest accuracies for Apache HTTPD
and MySQL are achieved by SVM (different kernels) and cost-sensitive prediction at 91.5%
and 85.0%. KStar and meta cost classified 98.5% of the warnings correctly for the propri-
etary BlackBerry project.

49

Classifiers Apache HTTPD MySQL Proprietary Black-
Berry project

SVM (RBF Kernel)
cost-sensitive
prediction 71.4%

(Linear Kernel)
cost-sensitive
prediciton 23.5%

(Linear Kernel)
cost-sensitive
learning 28.6%

Random Forest cost-sensitive learning
20.9%

cost-sensitive learning
28.2%

cost-sensitive predic-
tion 33.3%

KStar cost-sensitive predic-
tion 26.1%

cost-sensitive predic-
tion 21.1%

meta cost 50.0%

Logistic Regression cost-sensitive learning
17.6%

cost-sensitive predic-
tion 29.6%

cost-sensitive learning
16.7%

Table 6.12: Correlated precision of the highest accuracy of cost-sensitive techniques for
Apache HTTPD, MySQL, and proprietary BlackBerry project. The highest precision
for Apache HTTPD is 71.4% from SVM and cost-sensitive prediction. The precision for
MySQL is above 20% regardless of the classifiers or cost-sensitive techniques. The highest
precision for the proprietary BlackBerry project is 50.0% from KStar and meta cost.

50

Classifiers Apache HTTPD MySQL Proprietary Black-
Berry project

SVM (RBF Kernel)
cost-sensitive
prediction 25.0%

(Linear Kernel)
cost-sensitive
prediciton 20.0%

(Linear Kernel)
cost-sensitive
learning 66.7%

Random Forest cost-sensitive learning
45.0%

cost-sensitive learning
55.0%

cost-sensitive predic-
tion 66.7%

KStar cost-sensitive predic-
tion 30.0%

cost-sensitive predic-
tion 20.0%

meta cost 33.3%

Logistic Regression cost-sensitive learning
30.0%

cost-sensitive predic-
tion 40.0%

cost-sensitive learning
33.3%

Table 6.13: Correlated recall of the highest accuracy of cost-sensitive techniques for Apache
HTTPD, MySQL, and proprietary BlackBerry project. Random Forest and cost-sensitive
learning achieve the highest recall at 45.0% and 55.0% for Apache HTTPD and MySQL.
Random Forest and cost-sensitive prediction as well as SVM and cost-sensitive learning
both achieve the highest recall for the proprietary BlackBerry project.

51

Strategy 1 Cfs, RankSearch, and GainRatio

Strategy 2 Consistency, and BestFirst

Strategy 3 Wrapper, RankSearch, and GainRatio

Strategy 4 Wrapper, and BestFirst

It should be noted that there are a few changes in the feature set due to the difference
from properties of programming language and static analysis tools listed below. As there
are a large number of results from these experiments, only the results with highest accuracy
are shown in Table 6.14, 6.15, and 6.16.

Change 1 Comparing to Java, there is no direct match for the concept package in C++.
Therefore all the features relevant to package in Heckman’s work are removed in our
replication (package name, number of methods in package level, alerts for an artifact
in package level, staleness in package level).

Change 2 Not all the files have classes in C++. So the feature number of classes is
removed.

Change 3 For each project, all the warnings are picked up from the first revision to
guarantee there is time for fixing. Thus, there is no difference in those alert open
revision, total alerts for revision, or total open alerts for revision. And there is no
prior revision to the open revision. No set of developers between the open revision
and prior revision.

6.3 Execution Time Analysis

We now discuss the execution time of MySQL datasets in our four processes. With
almost same amount of data in each dataset, the execution time for Apache HTTPD and
proprietary BlackBerry project are similar. Most of the classifiers take less than one second
in classification except SVM Linear Kernel and SVM Polynomial Kernel.

As in Table 6.17 and 6.18, the classification itself costs less than one second for all the
classifiers. For the feature selection and resampling technique, most of the classifiers cost
less than one second, SVM Linear Kernel and SVM Polynomial Kernel costs around 30

52

Classifiers Apache
HTTPD

MySQL proprietary
BlackBerry
project

Strategy Accuracy Strategy Accuracy Strategy Accuracy

Decision Table 1 89.4% 1 89.6% 1 98.5%

2 90.5%

3 89.4%

Conjunctive
Rule

1 89.9% 1 89.6% 1 98.5%

Random Forest 1 89.9% 1 89.1% 2 98.5%

2 89.9% 2 89.1%

3 91.0% 3 89.6%

KStar 1 91.0% 1 89.1% 1 99.5%

2 90.5%

IBk 1 91.0% 1 89.1% 1 98.5%

2 86.9% 3 89.6%

3 91.0%

Table 6.14: Accuracy of the highest results of Heckman’s methodology on our dataset. Both
Random Forest and IBK achieve the highest accuracies in our dataset for Apache HTTPD
(91.0%) and MySQL (89.6%). KStar achieves the highest accuracy for the proprietary
BlackBerry project at 99.5%.

53

Classifiers Apache
HTTPD

MySQL proprietary
BlackBerry
project

Strategy Accuracy Strategy Accuracy Strategy Accuracy

Decision Table 1 0.0% 1 0.0% 1 0.0%

2 66.7%

3 0.0%

Conjunctive
Rule

1 0.0% 1 0.0% 1 0.0%

Random Forest 1 50.0% 1 33.3% 2 0.0%

2 50.0% 2 33.3%

3 75.0% 3 0.0%

KStar 1 60.0% 1 33.3% 1 100.0%

2 57.1%

IBk 1 57.1% 1 33.3% 1 50.0%

2 28.6% 3 0.0%

3 62.5%

Table 6.15: Correlated precision of highest accuracy of Heckman’s methodology on our
dataset. Random Forest achieves the highest precisions for both Apache HTTPD (75.0%)
and MySQL (33.3%). The highest precision is 100% for the proprietary BlackBerry project
with KStar.

54

Classifiers Apache
HTTPD

MySQL proprietary
BlackBerry
project

Strategy Accuracy Strategy Accuracy Strategy Accuracy

Decision Table 1 0.0% 1 0.0% 1 0.0%

2 10.0%

3 0.0%

Conjunctive
Rule

1 0.0% 1 0.0% 1 0.0%

Random Forest 1 20.0% 1 5.0% 2 0.0%

2 10.0% 2 5.0%

3 15.0% 3 0.0%

KStar 1 30.0% 1 5.0% 1 66.7%

2 20.0%

IBk 1 40.0% 1 5.0% 1 66.7%

2 20.0% 3 0.0%

3 25.0%

Table 6.16: Correlated recall of highest accuracy of Heckman’s methodology on our dataset.
IBk achieves the highest recalls for all three projects. Apache HTTPD’s highest recall is
40%, MySQL’s highest recall is 5%, and the proprietary BlackBerry project’s highest recall
is 66.7%.

55

Classifiers Classifica-

tion

Feature
Selec-
tion
(Aver-
age)

Imbalance
Technique
(Super-
vised
Resam-
pling With
Replace-
ment)

Imbalance
Technique
(Supervised
Resam-
pling
Without
Replacement)

Imbalance
Technique
(Spread
Resample)

Imbalance
Technique
(SMOTE)

Random Forest <1s <1s <1s <1s <1s <1s

BayesNet <1s <1s <1s <1s <1s <1s

SVM Linear
Kernel

<1s 35.7s 38.6s 18.0s 11.5s 46.4

SVM RBF Ker-
nel

<1s <1s <1s <1s <1s <1s

SVM Polyno-
mial Kernel

<1s 39.5s 36.9s 19.5s 19.8s 40.7s

SVM
Sigmoid
Kernel

<1s <1s <1s <1s <1s <1s

KStar <1s <1s <1s <1s <1s 2.6s

Conjunc-

tive
Rule

<1s <1s <1s <1s <1s <1s

Decision Table <1s <1s <1s <1s <1s <1s

Logistic Re-
gression

<1s <1s <1s <1s <1s 2.0s

Table 6.17: Execution time in classification, average time for one process in feature selection
and resampling imbalance techniques for MySQL datasets. Supervised Resampling with
replacement oversamples (/add) data from the minority class to construct a new dataset
with the same size as original dataset. Supervised Resample without replacement resamples
the data without adding data from minority repeatatively. Spread Resample generates a
random subset of data. There is no big difference in execution time for the other two
projects as those two projects have similar size of datasets.

56

Classifiers Imbalance
Technique
(Meta Cost)

Imbalance
Technique
(Cost-sensitive
Prediction)

Imbalance
Technique
(Cost-sensitive
learning)

Random Forest <1s <1s <1s

BayesNet <1s <1s <1s

SVM Linear Kernel 160.3s 20.2s 29.8s

SVM RBF Kernel 2.5s <1s <1s

SVM Polynomial
Kernel

260.0s 27.8s 33.8s

SVM
Sigmoid
Kernel

1.5s <1s <1s

KStar 37.6s 1.3s 1.2s

Conjunctive Rule <1s <1s <1s

Decision Table 2.3s <1s <1s

Logistic Regression 4.5s <1s <1s

Table 6.18: Execution time in cost sensitive imbalance techniques for MySQL datasets.
Most of the classifiers and imbalance techniques’ execution time are under 1s except for
SVM with Polynomial or Linear Kernel or meta cost imbalance technique. There is no big
difference in execution time for the other two projects.

57

seconds. These two SVM classifiers also costs much longer time in meta cost which is over
100 seconds. Except SVM classifiers, all the other classifiers take around one second for
cost-sensitive prediction and cost-sensitive learning.

Our data collection takes more than 30 minutes due to the searching in git history. If
we increase the feature set size, the data collection time would increase accordingly. The
time of interaction with static analysis server is ignorable compared to the other feature
collection. It should be noted that data generation time is not considered as it highly
depends on the size of the project and complexity of checkers, which need to be performed
only once.

6.4 Summary of Experiments

We found the results of our experiments and comparison to be surprising. Among all
the approaches — classifiers, combination of feature selection techniques and classifiers,
imbalance techniques — we would imagine the combination of feature selection techniques
and classifiers similar to Heckman’s work get the best results. The selected features are
more expressive and less noisy in this way. However, due to the specialty of our extremely
imbalanced dataset, imbalance techniques give better classification results for both open
source and commercial projects.

There are two advantages of our process compared to Heckman’s work. The first one
is the enlarged feature set. We track back more details of the source code change history
and these details in Table 6.4 played an important role. The second one is the imbalance
techniques such as cost-sensitive prediction used in our dataset.

In the imbalance techniques, cost-sensitive prediction and supervised resampling work
best for all of our projects. Cost-sensitive prediction and SVM classifier with RBF kernel
classified 91.5% for Apache HTTPD, supervised resampling with replacement and KStar
classifier classifies 93.5% actionable warnings. Supervised resampling with replacement and
Logistic Regression classifier classifies 93.8% actionable warnings for MySQL. It is higher
than 89.6% from Heckman’s work. Both resampling techniques and Heckman’s work can
classify 100% of actionable warnings for the proprietary BlackBerry project.

Our models provide some insight into the feature set and imbalance techniques for
imbalanced dataset. The improvement in accuracy increases the usability of the static
analysis tool in software development. In the future, we would like to experiment on more
sophisticated static analysis tools with a larger dataset.

58

Chapter 7

Conclusion

Static analysis tools exhaustively identify all potential instances of a given class of
problems. Unfortunately, static analysis tools also generate comparably a lot of false
positives. The goal of this work is to classify those warnings worth acting on to improve
the usability and save developers’ time.

We aim to increase the usability of Commercial Static Analysis Tool with a security
focus by classifying actionable warnings using machine learning techniques. We started by
trying to replicate Ruthruff’s work [38], exploring the domain of this field and more ma-
chine learning techniques. Given the characteristics of our dataset, namely the extremely
imbalanced ratio of actionable and unactionable warnings, it is necessary to adopt machine
learning techniques with an imbalance focus.

In our experiments, we found that the classifiers work best with cost-sensitive prediction
and supervised resampling techniques for our projects. They all reach the accuracy of over
90% in our dataset. Furthermore, our models surpass Heckman’s work [19] in open source
projects.

In future, we will work to deploy these models in BlackBerry with pilot study to adjust
our models to increase the number of actionable warnings displayed to the developers. And
we will generalize one of our models so that it works for more projects to save the effort of
adjusting models for each project.

59

References

[1] Cathal Boogerd and Leon Moonen. Prioritizing software inspection results using static
profiling. In 2006 Sixth IEEE International Workshop on Source Code Analysis and
Manipulation, pages 149–160. IEEE, 2006.

[2] Remco R Bouckaert. Bayesian network classifiers in weka. Department of Computer
Science, University of Waikato Hamilton, 2004.

[3] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[4] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines.
ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27, 2011.

[5] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
Smote: synthetic minority over-sampling technique. Journal of artificial intelligence
research, 16:321–357, 2002.

[6] Brian Chess and Gary McGraw. Static analysis for security. IEEE Security & Privacy,
2(6):76–79, 2004.

[7] Brian V Chess. Improving computer security using extended static checking. In
Security and Privacy, 2002. Proceedings. 2002 IEEE Symposium on, pages 160–173.
IEEE, 2002.

[8] John G. Cleary and Leonard E. Trigg. K*: An instance-based learner using an entropic
distance measure. In 12th International Conference on Machine Learning, pages 108–
114, 1995.

[9] Pedro Domingos. Metacost: A general method for making classifiers cost-sensitive. In
Proceedings of the fifth ACM SIGKDD international conference on Knowledge discov-
ery and data mining, pages 155–164. ACM, 1999.

60

[10] Pär Emanuelsson and Ulf Nilsson. A comparative study of industrial static analysis
tools. Electronic notes in theoretical computer science, 217:5–21, 2008.

[11] Nitesh V. Chawla et. al. Synthetic minority over-sampling technique. Journal of
Artificial Intelligence Research, 16:321–357, 2002.

[12] David Evans, John Guttag, James Horning, and Yang Meng Tan. Lclint: A tool
for using specifications to check code. ACM SIGSOFT Software Engineering Notes,
19(5):87–96, 1994.

[13] FIRST. Common vulnerability scoring system v3.0:specification document. https:
//www.first.org/cvss/specification-document, 2015. [Online; accessed
4-July-2016].

[14] Harald Gall, Mehdi Jazayeri, and Jacek Krajewski. Cvs release history data for detect-
ing logical couplings. In Software Evolution, 2003. Proceedings. Sixth International
Workshop on Principles of, pages 13–23. IEEE, 2003.

[15] Todd L Graves, Alan F Karr, James S Marron, and Harvey Siy. Predicting fault
incidence using software change history. IEEE Transactions on software engineering,
26(7):653–661, 2000.

[16] Philip J Guo and Dawson R Engler. Linux kernel developer responses to static analysis
bug reports. In USENIX Annual Technical Conference, pages 285–292, 2009.

[17] M. A. Hall. Correlation-based Feature Subset Selection for Machine Learning. PhD
thesis, University of Waikato, Hamilton, New Zealand, 1998.

[18] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H Witten. The weka data mining software: an update. ACM SIGKDD
explorations newsletter, 11(1):10–18, 2009.

[19] Sarah Heckman and Laurie Williams. A model building process for identifying ac-
tionable static analysis alerts. In 2009 International Conference on Software Testing
Verification and Validation, pages 161–170. IEEE, 2009.

[20] Sarah Smith Heckman. Adaptively ranking alerts generated from automated static
analysis. Crossroads, 14(1):7, 2007.

[21] Abram Hindle, Michael W Godfrey, and Richard C Holt. Reading beside the lines:
Using indentation to rank revisions by complexity. Science of Computer Programming,
74(7):414–429, 2009.

61

https://www.first.org/cvss/specification-document
https://www.first.org/cvss/specification-document

[22] Sunghun Kim and Michael D Ernst. Prioritizing warning categories by analyzing
software history. In Proceedings of the Fourth International Workshop on Mining
Software Repositories, page 27. IEEE Computer Society, 2007.

[23] Sunghun Kim and Michael D Ernst. Which warnings should i fix first? In Proceedings
of the the 6th joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineering, pages 45–54.
ACM, 2007.

[24] Ron Kohavi. The power of decision tables. In 8th European Conference on Machine
Learning, pages 174–189. Springer, 1995.

[25] Ted Kremenek, Ken Ashcraft, Junfeng Yang, and Dawson Engler. Correlation ex-
ploitation in error ranking. In ACM SIGSOFT Software Engineering Notes, volume 29,
pages 83–93. ACM, 2004.

[26] Pat Langley and Herbert A Simon. Applications of machine learning and rule induc-
tion. Communications of the ACM, 38(11):54–64, 1995.

[27] S. le Cessie and J.C. van Houwelingen. Ridge estimators in logistic regression. Applied
Statistics, 41(1):191–201, 1992.

[28] Guangtai Liang, Ling Wu, Qian Wu, Qianxiang Wang, Tao Xie, and Hong Mei. Auto-
matic construction of an effective training set for prioritizing static analysis warnings.
In Proceedings of the IEEE/ACM international conference on Automated software
engineering, pages 93–102. ACM, 2010.

[29] Tao Liu and Ralf Huuck. Case study: Static security analysis of the android goldfish
kernel. In International Symposium on Formal Methods, pages 589–592. Springer,
2015.

[30] V Benjamin Livshits and Monica S Lam. Finding security vulnerabilities in java
applications with static analysis. In Usenix Security, volume 2013, 2005.

[31] Gary McGraw. Software security: building security in, volume 1. Addison-Wesley
Professional, 2006.

[32] MITRE. Common Vulnerabilities and Exposures The Standard for Information Secu-
rity Vulnerability Names. http://cve.mitre.org/cve/, 2016. [Online; accessed
4-July-2016].

62

http://cve.mitre.org/cve/

[33] MITRE. CWE Common Weakness Enumeration A Community-Developed Dictionary
of Software Weakness Types. https://cwe.mitre.org/index.html, 2016.
[Online; accessed 4-July-2016].

[34] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to predict
component failures. In Proceedings of the 28th international conference on Software
engineering, pages 452–461. ACM, 2006.

[35] NIST. National Vulnerability Database automating vulnerability management, se-
curity measurement, and compliance checking. https://nvd.nist.gov/, 2016.
[Online; accessed 4-July-2016].

[36] Thomas J Ostrand, Elaine J Weyuker, and Robert M Bell. Where the bugs are. In
ACM SIGSOFT Software Engineering Notes, volume 29, pages 86–96. ACM, 2004.

[37] Improving Actionable Alert Ranking. Finding patterns in static analysis alerts. 2014.

[38] Joseph R Ruthruff, John Penix, J David Morgenthaler, Sebastian Elbaum, and Gregg
Rothermel. Predicting accurate and actionable static analysis warnings: an exper-
imental approach. In Proceedings of the 30th international conference on Software
engineering, pages 341–350. ACM, 2008.

[39] Bruce Schneier. Beyond fear: Thinking sensibly about security in an uncertain world.
Springer Science & Business Media, 2006.

[40] Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A Osborne. Evaluat-
ing complexity, code churn, and developer activity metrics as indicators of software
vulnerabilities. IEEE Transactions on Software Engineering, 37(6):772–787, 2011.

[41] Creative Research Systems. Sample size calculator. http://www.surveysystem.
com/sscalc.htm, 2012. [Online; accessed 15-September-2016].

[42] Gary M Weiss, Kate McCarthy, and Bibi Zabar. Cost-sensitive learning vs. sampling:
Which is best for handling unbalanced classes with unequal error costs? DMIN,
7:35–41, 2007.

[43] Chadd C Williams and Jeffrey K Hollingsworth. Bug driven bug finders. In Proceedings
of the International Workshop on Mining Software Repositories, pages 70–74, 2004.

[44] Chadd C Williams and Jeffrey K Hollingsworth. Automatic mining of source code
repositories to improve bug finding techniques. IEEE Transactions on Software En-
gineering, 31(6):466–480, 2005.

63

https://cwe.mitre.org/index.html
https://nvd.nist.gov/
http://www.surveysystem.com/sscalc.htm
http://www.surveysystem.com/sscalc.htm

APPENDICES

64

Appendix A

Complete results for our experiments

A.1 Measurements for classifiers for all three projects

Table A.1: All the accuracies of actionable warnings classification on three projects with
classifiers. The best classifiers achieve around 89% accuracy for open source projects and
98.5% for proprietary BlackBerry project.

Classifiers Apache HTTPD MySQL Proprietary BlackBerry project

SVM (linear kernel) 81.4% 82.4% 97.5%

SVM (polynomial kernel) 76.9% 73.6% 96.5%

SVM (RBF kernel) 89.4% 89.1% 98.5%

SVM (sigmoid kernel) 89.9% 89.6% 98.5%

Random Forest 88.9% 88.1% 97.5%

BayesNet 77.9% 75.6% 93.0%

KStar 84.9% 84.5% 98.5%

Conjunctive Rules 89.9% 89.6% 98.5%

Decision Table 89.4% 89.6% 97.0%

Logistic Regression 77.9% 81.9% 94.0%

65

Table A.2: All the precisions of actionable warnings classification on three projects with
classifiers. Random Forest achieves the highest precisions for all three projects at 40.0%,
33.3%, and 33.3%

Classifiers Apache HTTPD MySQL Proprietary BlackBerry project

SVM (linear kernel) 16.0% 11.1% 25.0%

SVM (polynomial kernel) 11.8% 8.1% 16..7%

SVM (RBF kernel) 42.9% 0.0% 0.0%

SVM (sigmoid kernel) 0.0% 0.0% 0.0%

Random Forest 40.0% 33.3% 33.3%

BayesNet 12.5% 17.1% 0.0%

KStar 22.2% 18.8% 50.0%

Conjunctive Rules 0.0% 0.0% 0.0%

Decision Table 33.3% 0.0% 0.0%

Logistic Regression 10.0% 20.0% 0.0%

66

Table A.3: All the recalls of actionable warnings classification on three projects with
classifiers. The best classifiers for Apache HTTPD including Random Forest which achieves
20.0% for recall. The highest recall for MySQL is achieved by BayesNet at 35.0%. The
highest recall for proprietary BlackBerry project is achieved by Random Forest at 66.7%.

Classifiers Apache HTTPD MySQL Proprietary BlackBerry project

SVM (linear kernel) 20.0% 10.0% 33.3%

SVM (polynomial kernel) 20.0% 15.0% 33.3%

SVM (RBF kernel) 15.0% 0.0% 0.0%

SVM (sigmoid kernel) 0.0% 0.0% 0.0%

Random Forest 20.0% 15.0% 66.7%

BayesNet 20.0% 35.0% 0.0%

KStar 20.0% 15.0% 33.3%

Conjunctive Rules 0.0% 0.0% 0.0%

Decision Table 5.0% 0.0% 0.0%

Logistic Regression 15.0% 25.0% 0.0%

67

A.2 Measurements for feature selection and classifiers

for all three projects

For the convinience of reading tables from this section, all the involved strategies are
listed as following:

Strategy1: Cfs-SubsetEval+GreedyStepwise

Strategy2: CfsSubsetEval+BestFirst

Strategy3: InfoGainAttributeEval+Ranker

Strategy4: ClassifierSubsetEval+GreedyStepwise

Strategy5: ClassifierSubsetEval+BestFirst

Strategy6: ChiSquaredAttributeEval+Ranker

Strategy7: PrincipalComponent+Ranker

Table A.4: All the accuracies of actionable warnings classification on Apache HTTPD with
combinations of seven feature selection strategies and seven classifiers. Among the seven
classifiers, SVM has four different kernels. The highest accuracy is 90.5% achieved by SVM
RBF Kernel.

Classifiers S1 S2 S3 S4 S5 S6 S7

SVM Linear 89.4% 89.4% 83.9% 89.9% 89.9% 83.9% 84.9%

SVM Polynomial 44.2% 44.2% 79.9% 10.1% 10.1% 79.9% 86.9%

SVM RBF 89.4% 89.4% 89.9% 10.1% 10.1% 89.9% 90.5%

SVM Sigmoid 89.9% 89.9% 89.9% 10.1% 10.1% 89.9% 89.4%

Random Forest 86.9% 86.9% 88.4% 89.9% 89.9% 88.4% 87.9%

BayesNet 86.9% 86.9% 80.4% 89.9% 89.9% 80.4% 88.9%

KStar 86.9% 86.9% 84.9% 89.9% 89.9% 84.9% 85.4%

Conjunctive Rules 88.9% 88.9% 89.9% 89.9% 89.9% 89.9% 89.9%

Decision Table 89.4% 89.4% 87.4% 89.9% 89.9% 87.4% 89.4%

Logistic Regression 84.9% 84.9% 80.9% 89.9% 89.9% 80.9% 83.9%

68

Table A.5: All the precisions of actionable warnings classification on Apache HTTPD with
combinations of seven feature selection strategies and seven classifiers. Among the seven
classifiers, SVM has four different kernels. The highest precision is 100.0% achieved by
SVM RBF Kernel.

Classifiers S1 S2 S3 S4 S5 S6 S7

SVM Linear 0.0% 0.0% 20.0% 0.0% 0.0% 20.0% 8.3%

SVM Polynomial 7.5% 7.5% 25.0% 10.1% 10.1% 25.0% 25.0%

SVM RBF 40.0% 40.0% 50.0% 10.1% 10.1% 50.0% 100.0%

SVM Sigmoid 0.0% 0.0% 0.0% 10.1% 10.1% 0.0% 0.0%

Random Forest 25.0% 25.0% 38.5% 0.0% 0.0% 38.5% 30.0%

BayesNet 0.0% 0.0% 14.8% 0.0% 0.0% 14.8% 25.0%

KStar 20.0% 20.0% 29.2% 0.0% 0.0% 29.2% 28.6%

Conjunctive Rules 33.3% 33.3% 0.0% 0.0% 0.0% 0.0% 0.0%

Decision Table 0.0% 0.0% 22.2% 0.0% 0.0% 22.2% 0.0%

Logistic Regression 0.0% 0.0% 20.0% 0.0% 0.0% 20.0% 20.0%

69

Table A.6: All the recalls of actionable warnings classification on Apache HTTPD with
combinations of seven feature selection strategies and seven classifiers. Among the seven
classifiers, SVM has four different kernels. SVM Polynomial kernel achieves 100.0% with
strategy 4 and 5.

Classifiers S1 S2 S3 S4 S5 S6 S7

SVM Linear 0.0% 0.0% 20.0% 0.0% 0.0% 20.0% 5.0%

SVM Polynomial 40.0% 40.0% 50.0% 100.0% 100.0% 50.0% 15.0%

SVM RBF 40.0% 40.0% 50.0% 10.1% 10.1% 50.0% 5.0%

SVM Sigmoid 0.0% 0.0% 0.0% 10.1% 10.1% 0.0% 0.0%

Random Forest 15.0% 15.0% 25% 0.0% 0.0% 25% 15.0%

BayesNet 0.0% 0.0% 20.0% 0.0% 0.0% 20.0% 5.0%

KStar 10.0% 10.0% 35.0% 0.0% 0.0% 35.0% 30.0%

Conjunctive Rules 10.0% 10.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Decision Table 0.0% 0.0% 10.0% 0.0% 0.0% 10.0% 0.0%

Logistic Regression 0.0% 0.0% 30.0% 0.0% 0.0% 30.0% 20.0%

70

Table A.7: All the accuracies of actionable warnings classification on MySQL with combina-
tions of seven feature selection strategies and seven classifiers. Among the seven classifiers,
SVM has four different kernels. A few classifiers achieve 89.6% accuracy with different
strategies.

Classifiers S1 S2 S3 S4 S5 S6 S7

SVM Linear 86.5% 84.5% 80.8% 89.6% 89.6% 80.8% 85.5%

SVM Polynomial 36.8% 34.7% 77.7% 10.4% 10.4% 77.7% 86.5%

SVM RBF 88.1% 88.1% 89.1% 10.4% 10.4% 89.1% 88.6%

SVM Sigmoid 86.5% 86.5% 89.6% 10.4% 10.4% 89.6% 88.6%

Random Forest 88.6% 88.6% 86.5% 89.6% 89.6% 86.5% 87.0%

BayesNet 83.9% 83.9% 68.9% 89.6% 89.6% 68.9% 89.6%

KStar 88.1% 88.1% 85.0% 89.6% 89.6% 85.0% 84.5%

Conjunctive Rules 89.6% 89.6% 89.6% 89.6% 89.6% 89.6% 89.6%

Decision Table 89.1% 89.1% 88.1% 89.6% 89.6% 88,1% 89.6%

Logistic Regression 86.5% 86.5% 79.3% 89.6% 89.6% 79.3% 84.5%

71

Table A.8: All the precisions of actionable warnings classification on MySQL with combina-
tions of seven feature selection strategies and seven classifiers. Among the seven classifiers,
SVM has four different kernels. The highest precision is 33.3% achieved by Decision Table.

Classifiers S1 S2 S3 S4 S5 S6 S7

SVM Linear 20.0% 14.3% 16.0% 0.0% 0.0% 16.0% 10.0%

SVM Polynomial 7.5% 8.6% 7.4% 10.4% 10.4% 7.4% 12.5%

SVM RBF 0.0% 0.0% 0.0% 10.4% 10.4% 0.0% 0.0%

SVM Sigmoid 0.0% 0.0% 0.0% 10.4% 10.4% 0.0% 37.5%

Random Forest 25.0% 25.0% 25.0% 0.0% 0.0% 25.0% 27.3%

BayesNet 0.0% 0.0% 2.4% 0.0% 0.0% 2.4% 0.0%

KStar 0.0% 0.0% 20.0% 0.0% 0.0% 20.0% 22.2%

Conjunctive Rules 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Decision Table 33.3% 33.3% 28.6% 0.0% 0.0% 28.6% 0.0%

Logistic Regression 20.0% 20.0% 22.2% 0.0% 0.0% 22.2% 18.8%

72

Table A.9: All the recalls of actionable warnings classification on MySQL with combina-
tions of seven feature selection strategies and seven classifiers. Among the seven classifiers,
SVM has four different kernels. A few classifiers achieve 100.0% recall.

Classifiers S1 S2 S3 S4 S5 S6 S7

SVM Linear 10.0% 10.0% 20.0% 0.0% 0.0% 20.0% 5.0%

SVM Polynomial 45.0% 55.0% 10.0% 100.0% 100.0% 10.0% 5.0%

SVM RBF 0.0% 0.0% 0.0% 100.0% 100.0% 0.0% 0.0%

SVM Sigmoid 0.0% 0.0% 0.0% 100.0% 100.0% 0.0% 15.0%

Random Forest 5.0% 5.0% 15.0% 0.0% 0.0% 15.0% 15.0%

BayesNet 0.0% 0.0% 5.0% 0.0% 0.0% 5.0% 0.0%

KStar 0.0% 0.0% 15.0% 0.0% 0.0% 15.0% 20.0%

Conjunctive Rules 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Decision Table 5.0% 5.0% 10.0% 0.0% 0.0% 10.0% 0.0%

Logistic Regression 10.0% 10.0% 40.0% 0.0% 0.0% 40.0% 15.0%

73

Table A.10: All the accuracies of actionable warnings classification on proprietary Black-
Berry project with combinations of seven feature selection strategies and seven classifiers.
Among the seven classifiers, SVM has four different kernels. All the classifiers can achieve
more than 90.0% accuracy with different strategies.

Classifiers S1 S2 S3 S4 S5 S6 S7

SVM Linear 96.5% 96.5% 97.0% 98.5% 98.5% 97.0% 96.0%

SVM Polynomial 93.5% 93.5% 97.0% 1.5% 1,5% 97.0% 96.5%

SVM RBF 98.0% 98.0% 98.5% 1.5% 1.5% 98.5% 98.5%

SVM Sigmoid 98.5% 98.5% 98.5% 1.5% 1.5% 98.5% 98.5%

Random Forest 96.5% 96.5% 96.5% 98.5% 98.5% 96.5% 96.0%

BayesNet 97.5% 97.5% 92.5% 98.5% 98.5% 92.5% 98.5%

KStar 98.5% 98.5% 98.0% 98.5% 98.5% 98.0% 97.5%

Conjunctive Rules 98.5% 98.5% 98.5% 98.5% 98.5% 98.5% 98.5%

Decision Table 98.0% 98.0% 98.0% 98.5% 98.5% 98.0% 98.5%

Logistic Regression 96.0% 96.0% 95.5% 98.5% 98.5% 95.5% 96.0%

74

Table A.11: All the precisions of actionable warnings classification on proprietary Black-
Berry project with combinations of seven feature selection strategies and seven classifiers.
Among the seven classifiers, SVM has four different kernels. Logistic Regression achieves
the highest precision at 12.5%.

Classifiers S1 S2 S3 S4 S5 S6 S7

SVM Linear 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

SVM Polynomial 8.3% 8.3% 0.0% 1.5% 1.5% 0.0% 0.0%

SVM RBF 0.0% 0.0% 0.0% 1.5% 1.5% 0.0% 0.0%

SVM Sigmoid 0.0% 0.0% 0.0% 1.5% 1.5% 0.0% 0.0%

Random Forest 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

BayesNet 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

KStar 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Conjunctive Rules 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Decision Table 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Logistic Regression 0.0% 0.0% 12.5% 0.0% 0.0% 12.5% 0.0%

75

Table A.12: All the recalls of actionable warnings classification on proprietary BlackBerry
project with combinations of seven feature selection strategies and seven classifiers. Among
the seven classifiers, SVM has four different kernels. SVM achieves 100.0% recall.

Classifiers S1 S2 S3 S4 S5 S6 S7

SVM Linear 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

SVM Polynomial 33.3% 33.3% 0.0% 100.0% 100.0% 0.0% 0.0%

SVM RBF 0.0% 0.0% 0.0% 100.0% 100.0% 0.0% 0.0%

SVM Sigmoid 0.0% 0.0% 0.0% 100.0% 100.0% 0.0% 0.0%

Random Forest 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

BayesNet 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

KStar 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Conjunctive Rules 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Decision Table 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Logistic Regression 0.0% 0.0% 33.3% 0.0% 0.0% 33.3% 0.0%

76

Table A.13: All the accuracies of actionable warnings classification on Apache HTTPD
project with resampling techniques. All the classifiers are trained with the reconstructed
datasets generated by resampling techniques. KStar and supervised resampling with re-
placement achieve the highest accuracy at 93.5%.

Classifiers Supervised re-
sampling with
replacement

Supervised
resampling
without replace-
ment

Spread subsample SMOTE

SVM Linear 86.4% 84.4% 76.7% 81.4%

SVM Polynomial 78.9% 83.4% 77.5% 70.4%

SVM RBF 87.4% 91.0% 84.2% 88.4%

SVM Sigmoid 52.8% 89.9% 83.3% 89.9%

Random Forest 92.0% 88.4% 81.7% 79.4%

BayesNet 84.4% 77.4% 67.5% 75.9%

KStar 93.5% 83.9% 82.5% 83.9%

Conjunctive Rules 75.9% 89.9% 83.3% 85.9%

Decision Table 77.9% 88.9% 84.2% 87.4%

Logistic Regression 86.9% 82.9% 79.2% 78.4%

77

Table A.14: All the precisions of actionable warnings classification on Apache HTTPD
project with resampling techniques. All the classifiers are trained with the reconstructed
datasets generated by resampling techniques. Decision Table and spread subsample achieve
the highest precision at 100.0%.

Classifiers Supervised re-
sampling with
replacement

Supervised
resampling
without replace-
ment

Spread subsample SMOTE

SVM Linear 83.6% 21.1% 34.6% 24.2%

SVM Polynomial 83.2% 24.0% 37.9% 14.5%

SVM RBF 83.3% 62.5% 55.6% 38.5%

SVM Sigmoid 52.8% 0.0% 0.0% 0.0%

Random Forest 86.8% 33.3% 43.8% 4.3%

BayesNet 83.6% 16.2% 22.9% 19.6%

KStar 89.0% 25.0% 47.1% 25.0%

Conjunctive Rules 86.1% 0.0% 0.0% 27.8%

Decision Table 72.3% 25.0% 100.0% 36.8%

Logistic Regression 82.6% 26.7% 40.0% 17.1%

78

Table A.15: All the recalls of actionable warnings classification on Apache HTTPD project
with resampling techniques. All the classifiers are trained with the reconstructed datasets
generated by resampling techniques. A few classifiers such as SVM Sigmoid Kernel with
supervised resampling with replacement achieve 100.0% recall.

Classifiers Supervised re-
sampling with
replacement

Supervised
resampling
without replace-
ment

Spread subsample SMOTE

SVM Linear 92.4% 20.0% 45.0% 40.0%

SVM Polynomial 75.2% 30.0% 55.0% 40.0%

SVM RBF 95.2% 25.0% 25.0% 25.0%

SVM Sigmoid 100.0% 0.0% 0.0% 0.0%

Random Forest 100.0% 15.0% 35.0% 5.0%

BayesNet 87.6% 30.0% 40.0% 45.0%

KStar 100.0% 30.0% 40.0% 30.0%

Conjunctive Rules 64.8% 0.0% 0.0% 25.0%

Decision Table 94.3% 5.0% 5.0% 35.0%

Logistic Regression 95.2% 40.0% 50.0% 30.0%

79

Table A.16: All the accuracies of actionable warnings classification on MySQL project with
resampling techniques. All the classifiers are trained with the reconstructed datasets gen-
erated by resampling techniques. The highest accuracy is achieved by Logistic Regression
and supervised resampling replacement.

Classifiers Supervised
resampling
replacement

Supervised
resampling
without replace-
ment

Spread subsample SMOTE

SVM Linear 76.2% 79.8% 78.3% 73.6%

SVM Polynomial 71.5% 77.2% 67.5% 77.1%

SVM RBF 89.6% 88.6% 83.3% 87.6%

SVM Sigmoid 52.3% 89.6% 83.3% 89.6%

Random Forest 90.7% 85.0% 82.5% 83.9%

BayesNet 82.4% 75.6% 67.5% 72.5%

KStar 91.7% 84.5% 75.0% 83.9%

Conjunctive Rules 75.1% 89.6% 83.3% 82.4%

Decision Table 83.9% 89.6% 81.7% 85.5%

Logistic Regression 93.8% 77.7% 72.5% 75.6%

80

Table A.17: All the precisions of actionable warnings classification on MySQL project with
resampling techniques. All the classifiers are trained with the reconstructed datasets gen-
erated by resampling techniques. The highest precision is achieved by Logistic Regression
and supervised resampling with replacement

Classifiers Supervised
resampling
replacement

Supervised
resampling
without replace-
ment

Spread subsample SMOTE

SVM Linear 78.9% 14.8% 33.3% 18.4%

SVM Polynomial 76.7% 14.7% 19.4% 17.1%

SVM RBF 87.2% 0.0% 0.0% 25.0%

SVM Sigmoid 52.3% 0.0% 0.0% 0.0%

Random Forest 86.1% 26.3% 46.2% 7.7%

BayesNet 79.6% 6.5% 27.9% 22.0%

KStar 86.3% 18.8% 29.2% 21.1%

Conjunctive Rules 68.5% 0.0% 0.0% 11.1%

Decision Table 80.2% 0.0% 33.3% 25.0%

Logistic Regression 89.4% 15.2% 25.9% 17.1%

81

Table A.18: All the recalls of actionable warnings classification on MySQL project with
resampling techniques. All the classifiers are trained with the reconstructed datasets gener-
ated by resampling techniques. Supervised resampling with replacement and KStar achieve
100.0% recall.

Classifiers Supervised
resampling
replacement

Supervised
resampling
without replace-
ment

Spread subsample SMOTE

SVM Linear 74.3% 20.0% 30.0% 45.0%

SVM Polynomial 65.3% 25.0% 30.0% 30.0%

SVM RBF 94.1% 0.0% 0.0% 10.0%

SVM Sigmoid 100.0% 0.0% 0.0% 0.0%

Random Forest 98.0% 25.0% 30.0% 5.0%

BayesNet 89.1% 10.0% 60.0% 65.0%

KStar 100.0% 15.0% 35.0% 20.0%

Conjunctive Rules 97.0% 0.0% 0.0% 10.0%

Decision Table 92.1% 0.0% 10.0% 20.0%

Logistic Regression 100.0% 25.0% 35.0% 35.0%

82

Table A.19: All the accuracies of actionable warnings classification on proprietary Black-
Berry project with resampling techniques. All the classifiers are trained with the recon-
structed datasets generated by resampling techniques. A few classifiers with supervised
resampling with replacement achieve 100.0% accuracy.

Classifiers Supervised
resampling
replacement

Supervised
resampling
without replace-
ment

Spread subsample SMOTE

SVM Linear 100.0% 97.5% 88.9% 98.5%

SVM Polynomial 100.0% 97.0% 88.9% 96.5%

SVM RBF 100.0% 98.5% 83.3% 98.0%

SVM Sigmoid 53.0% 98.5% 83.3% 98.5%

Random Forest 100.0% 98.0% 88.9% 96.0%

BayesNet 100.0% 92.5% 100.0% 94.5%

KStar 100.0% 98.0% 94.4% 98.5%

Conjunctive Rules 100.0% 98.5% 83.3% 97.0%

Decision Table 97.5% 97.0% 77.8% 97.0%

Logistic Regression 98.5% 95.0% 83.3% 94.5%

83

Table A.20: All the precisions of actionable warnings classification on proprietary Black-
Berry project with resampling techniques. All the classifiers are trained with the recon-
structed datasets generated by resampling techniques. A few classifiers with supervised
resampling with replacement achieve 100.0% precision.

Classifiers Supervised
resampling
replacement

Supervised
resampling
without replace-
ment

Spread subsample SMOTE

SVM Linear 100.0% 25.0% 66.7% 50.0%

SVM Polynomial 100.0% 20.0% 66.7% 0.0%

SVM RBF 100.0% 0.0% 0.0% 0.0%

SVM Sigmoid 53.0% 0.0% 0.0% 0.0%

Random Forest 100.0% 33.3% 66.7% 0.0%

BayesNet 100.0% 0.0% 100.0% 10.0%

KStar 100.0% 0.0% 100.0% 50.0%

Conjunctive Rules 99.1% 0.0% 0.0% 0.0%

Decision Table 95.5% 0.0% 0.0% 0.0%

Logistic Regression 97.2% 0.0% 50.0% 0.0%

84

Table A.21: All the recalls of actionable warnings classification on proprietary BlackBerry
project with resampling techniques. All the classifiers are trained with the reconstructed
datasets generated by resampling techniques. All the classifiers with supervised resampling
with replacement achieve 100.0% recall.

Classifiers Supervised
resampling
replacement

Supervised
resampling
without replace-
ment

Spread subsample SMOTE

SVM Linear 100.0% 33.3% 66.7% 33.3%

SVM Polynomial 100.0% 33.3% 66.7% 0.0%

SVM RBF 100.0% 0.0% 0.0% 0.0%

SVM Sigmoid 100.0% 0.0% 0.0% 0.0%

Random Forest 100.0% 33.3% 66.7% 0.0%

BayesNet 100.0% 0.0% 100.0% 33.3%

KStar 100.0% 0.0% 66.7% 33.3%

Conjunctive Rules 100.0% 0.0% 0.0% 0.0%

Decision Table 100.0% 0.0% 0.0% 0.0%

Logistic Regression 100.0% 0.0% 100.0% 0.0%

85

Table A.22: All the accuracies of actionable warnings classification on Apache HTTPD
project with cost-sensitive techniques. SVM RBF Kernel and cost-sensitive prediction
achieves highest accuracy at 91.5%.

Classifiers Cost-sensitive prediction Cost-sensitive learning Meta-cost

SVM Linear 83.4% 77.9% 69.3%

SVM Polynomial 79.4% 76.9% 50.0%

SVM RBF 91.5% 83.9% 82.9%

SVM Sigmoid 89.9% 58.3% 89.9%

Random Forest 76.9% 77.4% 75.9%

BayesNet 62.8% 78.4% 55.8%

KStar 84.4% 75.9% 80.9%

Conjunctive Rules 10.1% 71.4% 68.3%

Decision Table 39.7% 72.9% 60.3%

Logistic Regression 76.9% 78.9% 62.3%

86

Table A.23: All the precisions of actionable warnings classification on Apache HTTPD
project with cost-sensitive techniques. The highest precision is achieved by SVM RBF
Kernel and cost-sensitive prediction.

Classifiers Cost-sensitive prediction Cost-sensitive learning Meta-cost

SVM Linear 15.8% 22.7% 15.8%

SVM Polynomial 20.0% 19.0% 12.3%

SVM RBF 71.4% 31.3% 26.7%

SVM Sigmoid 0.0% 10.1% 0.0%

Random Forest 15.8% 20.9% 16.7%

BayesNet 13.5% 24.4% 14.6%

KStar 26.1% 18.2% 25.0%

Conjunctive Rules 10.1% 13.7 13.6%

Decision Table 11.5% 20.7% 15.3%

Logistic Regression 19.0% 17.6% 15.2%

87

Table A.24: All the recalls of actionable warnings classification on Apache HTTPD project
with cost-sensitive techniques. The highest recall is achieved by Conjunctive Rules with
cost-sensitive prediction.

Classifiers Cost-sensitive prediction Cost-sensitive learning Meta-cost

SVM Linear 15.0% 50.0% 6.0%

SVM Polynomial 35.0% 40.0% 65.0%

SVM RBF 25.0% 50.0% 40.0%

SVM Sigmoid 0.0% 40.0% 0.0%

Random Forest 30.0% 45.0% 35.0%

BayesNet 50.0% 55.0% 70.0%

KStar 30.0% 40.0% 45.0%

Conjunctive Rules 100.0% 35.0% 40.0%

Decision Table 75.0% 60.0% 65.0%

Logistic Regression 40.0% 30.0% 60.0%

88

Table A.25: All the accuracies of actionable warnings classification on MySQL project with
cost-sensitive techniques. The best classifier is SVM which achieves 89.1% accuracy with
cost-sensitive prediction.

Classifiers Cost-sensitive prediction Cost-sensitive learning Meta-cost

SVM Linear 85.0% 71.0% 61.1%

SVM Polynomial 77.7% 71.0% 40.9%

SVM RBF 89.1% 79.8% 80.3%

SVM Sigmoid 89.6% 10.4% 89.6%

Random Forest 75.1% 80.8% 77.2%

BayesNet 59.6% 76.2% 62.7%

KStar 83.9% 77.7% 71.0%

Conjunctive Rules 10.4% 47.7% 35.8%

Decision Table 10.4% 69.4% 45.1%

Logistic Regression 83.9% 80.8% 64.2%

89

Table A.26: All the precisions of actionable warnings classification on MySQL project with
cost-sensitive techniques. Most of the precisions for MySQL despite of classifiers are from
10.0% to 20.0%

Classifiers Cost-sensitive prediction Cost-sensitive learning Meta-cost

SVM Linear 23.5% 9.1% 17.5%

SVM Polynomial 10.3% 7.1% 13.8%

SVM RBF 0.0% 14.8% 5.0%

SVM Sigmoid 0.0% 10.4% 0.0%

Random Forest 18.2% 28.2% 26.0%

BayesNet 17.0% 25.0% 17.5%

KStar 21.1% 15.2% 12.5%

Conjunctive Rules 10.4% 12.8% 10.0%

Decision Table 10.4% 16.9% 14.2%

Logistic Regression 29.6% 24.2% 18.2%

90

Table A.27: All the recalls of actionable warnings classification on MySQL project with
cost-sensitive techniques. Conjunctive Rules and Decision Table both achieve 100.0% recall
with cost-sensitive prediction.

Classifiers Cost-sensitive prediction Cost-sensitive learning Meta-cost

SVM Linear 20.0% 20.0% 70.0%

SVM Polynomial 15.0% 15.0% 90.0%

SVM RBF 0.0% 20.0% 5.0%

SVM Sigmoid 0.0% 100.0% 0.0%

Random Forest 40.0% 55.0% 65.0%

BayesNet 75.0% 65.0% 70.0%

KStar 20.0% 25.0% 30.0%

Conjunctive Rules 100.0% 70.0% 65.0%

Decision Table 100.0% 50.0% 85.0%

Logistic Regression 40.0% 40.0% 70.0%

91

Table A.28: All the accuracies of actionable warnings classification on proprietary Black-
Berry project with cost-sensitive techniques. All the accuracies are over 90.0% except from
classifier BayesNet despite of cost-sensitive techniques.

Classifiers Cost-sensitive prediction Cost-sensitive learning Meta-cost

SVM Linear 97.5% 97.0% 91.5%

SVM Polynomial 98.0% 96.0% 95.0%

SVM RBF 98.5% 98.0% 98.5%

SVM Sigmoid 98.5% 98.5% 98.5%

Random Forest 97.5% 96.0% 96.0%

BayesNet 88.0% 96.0% 82.5%

KStar 98.0% 98.0% 98.5%

Conjunctive Rules 98.5% 97.5% 98.5%

Decision Table 96.5% 96.5% 96.0%

Logistic Regression 94.0% 96.5% 93.0%

92

Table A.29: All the precisions of actionable warnings classification on proprietary Black-
Berry project with cost-sensitive techniques. The highest precision is achieved by KStar
and meta-cost at 50.0%.

Classifiers Cost-sensitive prediction Cost-sensitive learning Meta-cost

SVM Linear 25.0% 28.6% 11.1%

SVM Polynomial 33.3% 14.3% 18.2%

SVM RBF 0.0% 0.0% 0.0%

SVM Sigmoid 0.0% 0.0% 0.0%

Random Forest 33.3% 0.0% 14.3%

BayesNet 4.3% 0.0% 5.6%

KStar 0.0% 0.0% 50.0%

Conjunctive Rules 0.0% 0.0% 0.0%

Decision Table 16.7% 0.0% 14.3%

Logistic Regression 0.0% 16.7% 0.0%

93

Table A.30: All the recalls of actionable warnings classification on proprietary BlackBerry
project with cost-sensitive techniques. The highest recall achieved by a few classifiers is
66.7%.

Classifiers Cost-sensitive prediction Cost-sensitive learning Meta-cost

SVM Linear 33.3% 66.7% 66.7%

SVM Polynomial 33.3% 0.0% 66.7%

SVM RBF 0.0% 0.0% 0.0%

SVM Sigmoid 0.0% 0.0% 0.0%

Random Forest 66.7% 0.0% 33.3%

BayesNet 33.3% 0.0% 66.7%

KStar 0.0% 0.0% 33.3%

Conjunctive Rules 0.0% 0.0% 0.0%

Decision Table 33.3% 0.0% 33.3%

Logistic Regression 0.0% 33.3% 0.0%

94

	List of Tables
	List of Figures
	Introduction
	Problem
	Research Questions
	Contributions
	Organization

	Related Work
	Ranking warning categories
	Machine learning models
	Security warnings

	Background
	Static Analysis Tools
	Commercial Static Analysis Tool
	Checker
	Actionable Warnings

	Security Vulnerabilities
	Security Vulnerability Enumeration
	Common Vulnerability Scoring System

	Machine Learning
	Feature Selection
	Imbalance
	Machine Learning Adoption

	Methodology
	Commercial Static Analysis Tool Analysis
	Data Sources and Feature Extraction
	Experimental Datasets Labeling
	Machine Learning Approaches
	Machine Learning Classifiers
	Feature Selection and Machine Learning Classifiers
	Machine Learning Techniques for Imbalanced Datasets

	Measures
	Methodology Summary

	Experiments
	Experimental Data Sets
	Experimental Infrastructure
	Feature Extraction Infrastructure
	Feature Selection and Machine Learning Infrastructure

	Threats

	Research Results and Discussion
	Results of Machine Learning Approaches
	Results of Machine Learning Classifiers
	Results of Feature Selection and Machine Learning Classifiers
	Results of Imbalance Techniques

	Comparison
	Execution Time Analysis
	Summary of Experiments

	Conclusion
	References
	APPENDICES
	PDF Plots From Matlab
	Measurements for classifiers for all three projects
	Measurements for feature selection and classifiers for all three projects

