CGU: A common graph utility for DL Reasoning
and Conjunctive Query Optimization

by

Jesus Alejandro Palacios Villa

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Mathematics
in
Computer Science

Waterloo, Ontario, Canada, 2005
(© Jesus Alejandro Palacios Villa 2005

I hereby declare that I am the sole author of this thesis. This is a true copy of
the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

i

Abstract

We consider the overlap between reasoning involved in conjunctive query opti-
mization (CQO) and in tableaux-based approaches to reasoning about subsumption
in description logics (DLs). In both cases, an underlying graph is created, searched
and modified. This process is determined by a given query and database schema
in the first case and by a given description and terminology in the second. The
opportunities for overlap derive from an abundance of reductions of various schema
languages to terminologies for common DL dialects, and from the fact that descrip-
tions can in turn be viewed as queries that compute a single column.

Our main contributions are as follows. We present the design and implementa-
tion of a common graph utility that integrates the requirements for both CQO and
DL reasoning. We then verify this model by also presenting the design and imple-
mentation for two drivers, one that implements a query optimizer for a conjunctive
query language extended with descriptions, and one that implements a complete
DL reasoner for a feature based DL dialect.

DL
REASONER

-

CQO DL
Client Client

Figure 1: CGU CONCEPT DIAGRAM

11

Acknowledgments

After completing this significative goal, I want to acknowledge some of those
that were important for accomplishing this task. I know the list is endless so I will
try to be as brief and concise as possible.

First I would like to thank God for allowing me to get here, living the life I have
lived, meeting the people I have met and receiving the gifts I have received. I also
want to thank my wife Yalina for staying countless hours by my side during this
stage, enjoying the good moments and persevering through the hard times and for
putting her professional goals aside while I was going through this stage. For her, I
give my love, my admiration and appreciation. To my parents, for all their support,
care and love, for all their teachings and all the time invested in us all these years.
They are still our model of family that now my wife and I would like to follow. To
our grand mother Maggie, for her love and dedication, and for being our presence
in Mexico when it was needed. To all our family in Mexico, for keeping in touch
with us and encouraging us to keep going while also being anxious for us to be back
with them.

I also want to thank my supervisor, professor Grant Weddell, for leading the
way during my research work, for showing me so many different points of view of
the database area and for investing so much time and interest during the realization
of this project. Also my gratitude to him as a friend, for sharing so many anec-
dotes that enriched our conversations, and for showing me how sometimes one can
talk and transmit so much with emotion and so little with words. To my course
professors, David, Peter, Frank, Alex, Chrissane and Anne, for the enjoyable class
experience I was able to experience.

I also want to thank the CONACyT (Science and Technology National Council)
in Mexico, for sponsoring my studies at the University of Waterloo, allowing me
to achieve this goal in my life and reinforcing my commitment to the development
and progress of my country and my people. To the University of Waterloo, for
providing such a rich environment where studying and researching is done with
complete freedom of mind.

And last but not least, thanks to my friends who were part of my day to day
life during these two years. Many, many thanks to the Chinaei family, Amir, Leila
and Hamid, my friends and office mates, for sharing this time with me, helping
me when I needed the most and sharing with me all they have. I wish them the
best success in their future degrees and careers. Special thanks also go to Carlos,
Claudia, Gabriel, Flor, Alberto and all our Latin-American friends who became

v

our family while we were here. Thanks to Salvador, Susy and Ivan, who supported
me and encourage me to come and help me staying. To all the members of our
friendship group from ITESM, the mythical “chapubanda”, for enjoying as a team
what each one of us has achieved individually and for all the funny and pleasant
moments we have shared together. And thanks to Larry, Rick, and all the people
in THS for helping me to succeed in this stage and receiving me back now that the
goal is completed.

To all of them and the ones I did not mention explicitly, many, many thanks.

Dedication

This thesis is dedicated to the memory of our beloved Betyna who unfortunately
passed away in April of 2005. She did not have a chance to see this work completed
but we are sure she would have enjoyed this milestone in our lives as much as we
do. We will never forget her support and the happiness she brought to our lives.
You will always be in our heart.

vi

Contents

1 Introduction and Overview
1.1 Tableaux in Conjunctive Query Optimization
1.2 Tableaux in Description Logics Reasoning
1.3 Database Schema and Terminologies
1.4 Summary and Overview of Thesis

1.5 Putting things in perspective.

2 Review
2.1 Conjunctive Query Optimization
2.2 Description Logic o
2.3 DL Reasoners

3 Architecture and Design
3.1 Overview.
3.2 Imterfaces
3.2.1 Naive List Processor
3.2.2 Version Control
3.2.3 Pattern Matcher/Rule Controller
3.24 Common Graph Utility (CGU)
3.25 DL Reasoner
3.2.6 Conjunctive Query Optimizer

vil

N S ot W o= =

©

4 Algorithmic details

4.1 Naive Lisp e
4.2 Version Control
4.3 Common Graph Utility
4.3.1 Expand functions
4.4 DL Reasoner
4.5 CQO . . .
4.5.1 Capturing conceptual design
4.5.2 Capturing Physical Design
4.5.3 CompilingaPlan 000

5 Summary and Conclusions

5.1 Futureworko
A Naive Lisp (NLISP)
B Versioning
C Pattern matcher/Rule controller

D CGU

viil

41
41
42
44
47
o1
23
o4
o6
58

65
66

68

72

74

76

List of Figures

1.1

2.1

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

CGU CONCEPT DIAGRAM . . . v v v v i it i s, i
SEMANTIC QUERY OPTIMIZATION PROBLEM 3
DL INTERPRETATION GRAPH o v v i i it 14
MODULES AND THEIR INTERACTIONS« o v v v v v . 19
ATOMS AND LISTS 22
VERSIONED CONS CELL . . . « o v v v v i e i it s 25
SAMPLE USAGE OF VERSIONING FUNCTIONS 43
VERSIONED CONS CELL (HIGH VS LOW LEVEL) 44
ALGORITHM FOR VRPLAGCD o v v v i i i it 45
SAMPLE USAGE OF THE CGU INTERFACE« 46
CGU DATA 47
GRAPH: SATISFIABLE(C2) 52
GRAPH: SUBSUMES(D2,D1) 53
ER FOR VEHICLE DB 54
CGU INDEX SUBGRAPH o v v v e i it s s 56
...................................... 63

1X

List of Tables

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2

4.3
4.4
4.5

DL CONCEPT CONSTRUCTORS . . « . v v v v i oo

DL CONCEPTS AND THEIR INTERPRETATION

S-EXPRESSIONS GRAMMAR v o v vt
SPECIAL SYMBOLS USED IN THE PATTERN INPUT
SPECIAL SYMBOLS USED IN THE BUILD FUNCTION
DLFDA CONSTRUCTORS . . « v v v v e e e e
DLFDA DL ABSTRACT SYNTAX VS. CONCRETE SYNTAX
DLFDA SEMANTICS . . . v v v i e e e e

SCHEMA CONSTRAINTS USED TO DEFINE THE DATABASE SCHEMA

QUERY LANGUAGE FOR THE CQO
QUERY LANGUAGE SEMANTICS
SIMPLE QUERY TO RETURN NAME OF EMPLOYEES
PLAN LANGUAGE oo

PLAN LANGUAGE DECLARATIVE SEMANTICS

S-EXPRESSION ENCODING FOR CGU DATA

PROPERTY LISTS FOR ATOMS CREATED DURING EXECUTION OF

CODE IN FIGURE 4.4
PRICE OF VEHICLES FROM MAKER :M
QUERY CANONICAL FORM

QUERY AFTER TRANSFORMATION OF CANONICAL FORM

13
14

21
27
28
33
34
35
37
38
38
39
40
40

45

47
60
60
61

4.6 DESCRIPTION Dg o,

4.7 DESCRIPTION —Dg oo

x1

Chapter 1

Introduction and Overview

1.1 Tableaux in Conjunctive Query Optimization

We consider the overlap between reasoning involved in conjunctive query optimiza-
tion (CQO) and in tableaux-based approaches to reasoning about description con-
tainment, called subsumption, in description logics (DLs). In both cases, an un-
derlying graph is created, searched and modified. This process is determined by a
given query @) and database schema S in the first case, and by a given description
D and terminology T in the second.

In symbolic terms, the underlying problem in CQO can be abstracted as the
following sentence:

S (Q2QP)and (QCQP) (1.1)

where QP denotes a low-level executable query, hereon called a query plan. In this
formulation, the “C” symbol is intended to suggest that the table specified by @ is
a subset of the table computed by P, while the “J” symbol is intended to suggest
the opposite, that the table computed by QP is a subset of the table specified by
Q. Overall, the sentence states that the query plan correctly implements the query
for any database satisfying the conditions imposed by the database schema S.

The query optimization problem thus deals with finding a plan that correctly
and efficiently implements a query. This problem has been dealt with in several
ways. The whole process of finding a plan has been split in several stages and quite
a few techniques have been developed to solve each one of those. One of the earliest
techniques that tries to simplify the query while still in the logical schema is called
the tableau chase, as described in [1]. Formally, a tableau query (7', u) is: (1) a set

of tuples T' containing variables and constants, and (2) a free tuple u, called the
summary, consisting of variables occurring in 7. The tableau chase is a procedure
where given a tableau query (7', u) and a set of dependencies X, the dependencies
in ¥ are applied to the query (7',) in some order. This sequence is guaranteed to
terminate (to be finite) if no new variables are created as a result of the application
of the dependencies and can be infinite otherwise. The key reason for applying the
dependencies to the query is that if the relation(s) to which the query is applied must
satisfy the dependencies given by the schema, then the query itself must satisfy the
same dependencies. Enforcing the dependencies directly on the tableau will usually
result in a simpler (and in that sense more optimal) query to execute while still
being equivalent to the original query. Another query optimization technique called
semantic query rewriting consists of, given a query expressed in some abstract form,
usually an algebra, rewrite the query in a semantically equivalent form that may
result in a cheaper execution plan. The rewrite of the query is done by applying
a set of semantic preserving rules whose application is sometimes driven by actual
cost functions and sometimes by simple heuristics. For example, it is equivalent
to make two selection steps or performing a single selection step with the clauses
of both selections combined; for two projection steps, combine them into a single
projection to obtain the same result; it is the same (semantically speaking) to do a
projection and then a selection than to do the selection first and then the projection;
and so on. A third approach we consider relevant for our work is presented in [2].
There, Deutsch et al describe a semantic optimization algorithm designed to work
considering the physical data independence property. In summary, their approach
works as follows: Given (1) a logical schema A, (2) a physical schema ®, (3) an
implementation mapping M (from the logical to the physical) and, (4) a query @
in the logical schema, find a query plan)’ that when executed against the physical
schema it will implement exactly @ (see Figure 1.1).

The algorithm proposed is a two phase run where the first phase consists of
the augmentation of the query with all the physical structures and access paths
given by the constraints, resulting in a universal plan; and then the second phase
removes redundant information from the plan (given the constraints and the query
itself) until the minimal query plan is found. A more detailed explanation of the
algorithm is presented in section 2.1.

Tn general, every tuple in 7 represents a relation (from the relational model) in the query.

T

A)
Logical Physical

Q Q

Figure 1.1: DIAGRAMATIC DESCRIPTION OF THE PHYSICAL DATA INDEPENDENCE
APPROACH TO SEMANTIC QUERY OPTIMIZATION

1.2 Tableaux in Description Logics Reasoning

In contrast to the CQO problem (1.1), the general formulation of the subsumption
problem in a DL is abstracted as follows:

T = (Dy C D). (1.2)

where D1, D, are general descriptions and 7 is DL a terminology. To understand
the relevance, consider that a database schema can be reduced to a terminology
in common DL dialects, and that a description D; can be viewed as a query that
evaluates to a table consisting of a single column. Thus, this sentence expresses
the condition that D; evaluates to a subset of Dy for any database satisfying the
conditions imposed by the terminology 7. For expressive enough dialects, i.e. those
that are boolean complete, formula 1.2 can also be expressed as

TE(DiNM-Dy) E L (1.3)

where the symbol “M” denotes conjunction of descriptions, the symbol “=” denotes
negation and the symbol “1” (read as “bottom”) denotes the concept that has no
elements (nothing). Note that it is only in boolean complete DLs that (1.2) and
(1.3) are interchangeable since =D, requires negation of general concepts (as op-
posed to just primitive concepts). Then (1.3) is equivalent to checking if (DM —Ds)
is satisfiable. Satisfaction checking and subsumption are closely related services pro-
vided by DL reasoners. As it will be seen in more detail in section 2.2, a problem

expressed as a subsumption of descriptions can be transformed into a satisfaction
check for a description that conveys the same meaning using the general identity:

Dy C Dy <= D; T =D, is unsatisfiable

The alternative formulations, 1.2 and 1.3 have led, respectively, to structural
testing and satisfiability testing approaches to DL subsumption problems, with
both techniques incorporating some form of tableau reasoning procedure.

The structural testing approach was one of the first approaches to deal with sub-
sumption before DL dialects with general negation emerged. Consider for example
[3]. In that paper, Borgida et al use a DL language called CLASSIC that does not
support negation of general concepts and therefore does not support disjunction.
They show that, determining whether Dy subsumes Dy, expressed in CLASSIC,
requires a three phase process: (1) Converting D; into a description graph Gp,
using a similar set of transformation rules for the tableau in the previous case, (2)
normalizing Gp, by removing redundant information from the graph and finally (3)
verifying whether Dy subsumes D; by recursively applying a structural checking for
the presence of Dy in the graph Gp,. Another similar example is found in [4] where
Khizder et al. define a comparable algorithm for a dialect called CFD. The di-
alect CFD (or CLASSIC with Functional Dependencies) does not support number
restrictions for Roles, but it adds a basic constructor to express path functional
dependencies. In this approach, to verify the subsumption of Dy by D,, a graph is
also created from a single individual and the initial description D; deposited in it.
This graph is then “expanded” using a set of transformation rules with the same
flavour as the ones presented in [3] but augmented to consider the possible existence
of a terminology expressed as a set of subsumption constraints S. Once the graph
is expanded, again a structural check is performed, but now with the appropriate
considerations to handle the path agreements for the functional dependencies case.
What we can see from both approaches, is that subsumption checking in these DLs
basically involves (1) an expansion phase for a graph using a set of deterministic
rewrite rules and then (2) a structural checking for the subsumer? description. As
we will see below, the expansion required in (1) is then very similar to the tableau
algorithms used for satisfiability testing.

For DL languages with full negation, the subsumption problem is reduced to a
satisfiability test that in turn is done using tableau algorithms. Please note that
the tableau referred here and the tableau (7', u) from the tableau chase procedure
are two apparently different concepts that we will later unify them to refer to the

2In Dy C D>, D; is called the subsumee and D is called the subsumer.

same abstract element: a graph. In DL, a tableau can be thought of as a graph
representing the information contained in the descriptions where nodes represent
hypothetical individuals of the domain, labels in the nodes denote descriptions, and
edges signal the existence of relations (roles or attributes) between nodes. Such al-
gorithms create first a tableau with a single individual belonging to the description
to be checked (e.g. D; M —D,). Then they apply a set of consistency preserving
transformation rules® that “expand” the tableau (creating new nodes and edges)
based on the conditions presented by each of a possible variety of concept con-
structors (description generating operators) used in the description. To deal with
disjunction of descriptions, the transformation rules introduce choice to encode a
search for a consistent tableau. A tableau is consistent if it does not have an obvious
contradiction, called a clash (like a single individual belonging to both C' and —C)).
When the expansion rules can no longer be applied, the algorithm terminates, and
if at least one of the tableaux generated in the expansion is consistent, then the
original description is consistent (satisfiable).

1.3 Database Schema and Terminologies

As mentioned before, we can understand D; in Equation 1.2 as a single column
query that, when evaluated, produces a subset of the table produced by Ds. Like-
wise, the terminology 7 can be understood as the representation of the constraints
presented in the Database Schema S. In fact there have been several approaches
aimed to transform DB schemas into DL terminologies as shown in [5]. This can
be observed, for example in [6, 7, 8] where the authors provide formal models of
object-oriented databases using DL. Furthermore, in [9, 10, 11] semantic data mod-
els based directly in DL are introduced and also, Borgida et al. present in chapter
16 of [5] a set of rules to transform Entity-Relationship schemas into knowledge
bases using the Description Logic DLR dialect. In this last approach the dialect
DLR is chosen because it extends traditional DL semantics in a way that allows the
modeler to capture not only binary relations but also relations of arbitrary arity.
This transformation basically consists of a mapping from the elements in the ER
schema to the set 7 of concepts, roles and descriptions in DLR. In particular,
every entity is assigned a primitive concept, every attribute in the ER schema is
assigned a primitive binary relation in 7 and every ER relation is assigned a prim-
itive n-ary relation in 7. Additionally, entity and relation specializations (IS-A)
in the ER schema are converted to subsumption of their respective concepts and

3For example, for a list of the rules used for ALCN please see chapter 2 of [5]

relations in 7'; attribute typings are converted to qualifying restrictions; and cardi-
nality constraints (except for 0 and oco) are transformed to number restrictions. As
presented in [8], it can be formally proved that such mapping is correct and that
there exists a one-to-one correspondence between legal database states conforming
to the ER schema and models* of 7.

1.4 Summary and Overview of Thesis

In general, the optimization procedures consist of representing the query in some
abstract way (a tableau, an algebra expression or a graph) and then manipulating
it (usually applying some set of rewrite rules) until an equivalent query is found
that is cheaper to execute. Moreover, if we would abstract the query from the
approach in [2] as a graph, their rewrite rules will have a similar effect to the ones
we see for reasoning in DL in the presence of a terminology and this is precisely
what motivates us to explore the similarities between both approaches.

It is important to note that the merging of these two areas of research is having
an increased interest due to the work required to deal with one of the largest
databases available, the World Wide Web, or simply the Web as it is commonly
referred. Of special interest is the work done in the Semantic Web area and in
particular in the OWL and OWL DL projects. Our work could be used as a
possible line of research in the area of query processing for OWL. We will discuss
this further in the chapter 5 when we talk about future work.

The rest of this thesis is organized as follows: In section 1.5 we present the reader
with a panoramic view, from databases in general to the focus of our research.
Some readers might find this very basic and can skip it without detriment of their
understanding of the rest of the content presented. In chapter 2 we briefly present
the relevant work including the CQO approaches, query rewriting, a review of
DL and tableau chase procedures and the common DL reasoners; in chapter 3 we
present the architecture and design of our approach, we define our DL language and
our query language plus the interface used for DL reasoning and CQO; in chapter
4 we reveal the algorithmic details of the main modules and will exhibit our main
contribution explaining the behavior of our dual-purpose chase procedures and
sketching the algorithm for the query plan generation using our expand functions;
and finally in chapter 5 we discuss the conclusions and we establish our proposed
lines for future work.

4Model is an interpreation that satisfies a terminology in DL. See section 2.2 for a more precise
definition of “model” in DL.

1.5 Putting things in perspective

Databases have been one of the most extensively researched areas in computer sci-
ence history and one of the most pervasive applications in the computing industry.
This is no surprise if we consider that currently, databases are usually at the core
of practically all of the data driven applications in most companies or institutions.
Databases involve nearly every aspect of any organization, from human resources
and accounting, to sales, order management and inventory control. Furthermore,
databases are so basic and so essential that nearly every personal computer and
even smaller computing devices have some type of database system in their appli-
cation set to perform simple operations like calendar and agenda management and
it has been explored to be used even for OS level operations. In general, database
systems should be able to store large bodies of data and to manage them efficiently.
Among the data management operations, arguably the most intensively used one
is the query operation, i.e. the retrieval of data from the database meeting certain
characteristics commonly expressed in terms of a particular language. A query
is then the specification expressing the characteristics of the data sought in the
database. To answer these queries, it is not trivial to decide what operations and
in what order should they be performed against the actual stored data. The factors
for this are on one hand that databases are designed to achieve logical and physical
data independence, and on the other hand, query languages usually allow the user
to express a particular query in many different ways. While each of the different
ways to express a query may be a suggestion of how to execute it, the actual exe-
cution of the query should be independent of the query itself (as long as it returns
the same result). This allows the database system to optimize the execution plan.
In other words, regardless of how the query is expressed, the system should find a
fast and efficient plan to answer it. This is called query optimization.

There have been many approaches and refinements in the area of query opti-
mization during the last 20 years, particularly in the relational and object oriented
models. Most of them rely on a process where the query is losslessly translated
into some type of algebra expression and then it is transformed into an equivalent
expression (if one exists) that is more efficient to execute. This step is usually re-
ferred to as the semantic query optimization. After such expression has been found,
a detailed strategy to execute the query, i.e. the plan, is devised, mainly on the
basis of the cost for the different access paths available to the data being queried.
In order to do this, a very common approach used is to create a query graph and
perform some operations on that graph to create the plan. An alternative approach
proposed for the semantic optimization step, is the translation of the query, or at
least part of it, into a Description expressed in some Description Logic (DL) di-

7

alect (an Al knowledge representation language) and then classify it with respect to
schema concepts and views [12]. The classification process basically returns a more
specific [stored] view (if one exists) such that when used in the plan it will avoid the
execution of the view as part of the query, effectively reducing the whole execution
time. After this, the plan is still generated in the usual fashion. This classification
is commonly done using the reasoning capabilities of a standard DL reasoner that
in turn is implemented using some sort of tableau (graph) representing the concept
descriptions and roles or attributes and a rule based algorithm dealing with the de-
scriptions presented in that graph. DL reasoning primarily refers to the deductive
services provided by the language that allows the user to pose questions about the
subsumption between concepts, effectively creating a hierarchy, i.e. a classification.

Yet another approach to query optimization proposed by [2] is that given the
query and the schema including semantic constraints and the access paths to the
data, the query is rewritten into a “universal” plan during a chase phase (usually
called the “grow” phase) and then a back chase phase removes the redundancies
from the plan according to the constraints (the “shrink” phase), producing an
optimal plan.

Our work then was based on the observation that what happens during the
grow phase of Conjunctive Query Optimization (CQO) is essentially similar to what
happens during the deterministic part of a tableaux based DL reasoner, for example
while it is determining subsumption of concepts. We believe that the graph created
for CQO is essentially similar to the tableau created during the expand phase of
DL reasoning. Additionally, we also believe that the shrink phase of CQO can be
refined to a differential approach that in turn is very similar to satisfaction checking
for DL. So with this in mind we wanted to explore the similarities between CQO
and tableaux chase reasoning.

Chapter 2

Review

We now present the overview of the topics we consider relevant for this thesis.
Please bear in mind that this is not in any way an extensive sumary of the research
done in the conjunctive query optimization. This review can be seen as the tip of
the iceberg for the work done in the tableau optimization for conjunctive queries.
We begin by presenting some notation on conjunctive queries before presenting the
main work from Deutsch an coleages about query optimization. We then review
the basic concepts for DL and conclude with a brief overview of DL reasoners.

2.1 Conjunctive Query Optimization

Conjunctive Queries are probably the simplest type of queries appearing in a broad
class of applications. However, while simple they are yet interesting enough to be
studied. Informally, conjunctive queries are those that can be constructed using
only “and”, equality and joins (plus possible projection) so they are commonly
referred as SPJ queries, in relation to the operations allowed (selection, projection
and join). Formally they can be defined in several ways, using rule-based queries,
tableau queries, conjunctive calculus, etc. For example, the general form of a
conjunctive query in the rule based approach is:

ans(ey, ... en) — Ri(uy), ..., Ry(uy)

and the equivalent query in the conjunctive calculus is:

{e1, ... em|Txr, ... Fzp(Ri(ur) A ... A Ry(uy))}

where x1, ...,z are variables occurring only within the variables set of uq, ..., u,,
(the body in the rule based approach), ey, ..., e, are the selected (projected) vari-
ables and Rq,..., R, are the relations joined. For a detailed presentation of these,
please refer to chapter 2 in [1]. Our own choice of language for conjunctive queries
is presented in chapter 3.

Some of the desirable properties conjunctive queries possess are the decidabil-
ity of equivalence and containment, one of the reasons why we chose them to be
contrasted against our choice of DL language, since the latter also enjoys the decid-
ability property. Query containment refers to the question Is query Q)1 contained in
query Q2?7 We say that indeed Q1 C Q2 (@1 is contained in Q) if for all databases,
the result of) is a subset of (). As one might also expect, the two queries are
equivalent, ()1 = ()9, if and only if each of them is contained in the other.

N =0Qr= Q1 CQNQ 20 (2.1)

As cited in [13], it turns out that in almost all cases, the only approach known
for testing equivalence is by testing containment in both directions, i.e. the literal
application of rule 2.1.

One of the main applications where query containment and equivalence tests are
highly used can be found in the information integration area. In a typical setting,
answers to queries have to be computed from the sources abstracted as views. Here
a query submitted to the integrator system has to be computed in terms of the
views (sources), and for the answer to be valid, the expansion of the views with
their respective definitions has to be equivalent to the original query submitted. The
generation of such possible answers, also queries, is called “synthesizing queries from
views”!. This problem is then equivalent to generate all the possible combination of
views containing the relations in the original query up to length less than or equal
to the length of the query and test for equivalence. The generation of such possible
answers has been dealt with in several ways as can be seen in the Information
Manifold project and the Tsimmis project?.

The other important use of query containment and equivalence is in the query
optimization area where typically a query submitted in a particular language gets
rewritten using some equivalence preserving rules in an attempt to make it simpler
or more efficient to execute. There has been a lot of research in this area but we
will briefly present below one of the branches that is of interest for our research
work.

1See [14] for a theoretical exploration of the issue of Answering queries using views.
2See [13] for a comparison between the two projects.

10

In [2], Deutsch et al. propose a semantic optimization algorithm based on the
physical data independence property, i.e. that the way data is physically encoded
and accessible should be independent from the logical schema and the query formu-
lation. To achieve this property, it is agreed that the problem should be expressed
as follows: Rewrite a query () written against a logical schema A into an equivalent
query plan @)’ written against a physical schema ® given a semantic relationship
between A and ®. They also point out that to characterize precisely this semantic
relationship there are two main approaches. The first one is to define an abstrac-
tion mapping A from ® to A that expresses the instances of the logical schema in
terms of those of the physical schema. This is similar also to the Global As View
(GAV) perception used to characterize local and global schemas in an information
integration setting if we consider the logical schema as the Global schema and the
physical schema as the local schema 3. The second approach is to define an imple-
mentation mapping M from A to ® that now delineate the physical instances in
terms of the logical schema, again similar to the Local As View (LAV) approach
from information integration if using the same consideration as before (see again
Figure 1.1).

In the first case, finding the plan @’ can be as simple as composing the query
@ with the abstraction mapping A. However, note that this will result in more
than one plan if several mappings are defined for some or all of the elements in the
logical schema. In that case an optimization phase is still required that evaluates
those alternative plans’ cost and then choose the cheapest. In the second case,
finding the plan @’ means solve for X the equation X o M =, @, where at the
end X = @’'. This latter approach is the one used in [2], where the physical access
structures, materialized views and other elements of the implementation mapping
are captured using constraints. The authors then propose a two-phase algorithm
to solve X that works as follows:

1. “Chase Phase”. Systematically bring all the relevant physical structures into
the logical query by repeatedly applying a set of rewrite rules based on the
applicable constraints until they no longer apply. A simplified example of a
rewrite rule will be:

select O(7) select O(7)
from ..., Ry ri,..., Rpy "m,... = from ..., Ry ri,..., Ry Tm, S1 S1,...,
where ...and B; and ... where ...and B; and Bs and ...

The result of this phase will be a rewritten query that will basically hold all
the possible physical plans expressible using the language suggested. This

3See [15] for a thorough discussion of GAV and LAV in an information integration environment.

11

Sy Snse - -

plan is also referred as the Universal plan U.

2. “Backchase Phase”. Repeatedly apply the rewrite

select O(Z,y) select O'(7)
from Ry z1,..., Ry rm, Ry = from Ry xq,..., Ry, ™
where C(Z,y) where C'(7)

provided that the remaining conditions, selections and relations are implied
by the ones in the original query and the constraints in the logical and physical
schemas. Therefore, the intention of each one of these rewrites is to remove
one binding R y from the from clause of the query. Usually, such rewrites
are applied until the minimal query is reached. A minimal query is then
defined as the query) such that there does not exist a subquery @’ with
fewer bindings than () while still being equivalent to Q).

The chase phase will result in the expansion of the original query into a universal
query plan by adding the physical structures of the data, reason by which this phase
is known as the “grow” phase, while on the other hand, the backchase phase will
remove redundant terms from the query, making the query “shrink”. If more than
one Universal plan is found, apply the back chase to each one and then apply usual
cost based optimization to keep the cheapest. It is precisely the “grow” phase of
this algorithm we consider to be greatly similar with the expand phase for DL
reasoning, as we will see later.

2.2 Description Logic

We provide below a summarized version of the important definitions of DL relevant
to our research. For a more detailed presentation, please refer to the introductory
chapters of [5]. Description logics (DL) is the denomination of a class of languages
used in knowledge representation (KR) systems. The main strength and character-
istic of these languages is that besides providing a way to store facts about the world
under study (universe of discourse, or UD) they also provide reasoning services that
allow the application to deduce implicit facts based on the knowledge represented
explicitly in the system. Thus a knowledge representation system in DL allows the
user to do three things: setting up a knowledge base (KB), manipulating it and
reasoning about it. A KB is composed of two things, the TBox or terminology that
contains the vocabulary, concepts (denoting just sets of individuals) and roles (de-
noting binary relations between individuals) of the application under consideration
and the ABox containing assertions about specific individuals defined in terms of

12

the vocabulary in the TBox. For example, a KB about the human resources in a
company will store in the TBox things like “employees have a salary”, “managers
are employees who manage a department”, and in the ABox things like “Adam is
an employee” and “Adam manages the Engineering Department”. Besides being
able to handle basic concepts, DL also allow the user to build complex descriptions
of concepts using a particular set of operators called “constructors”. Every DL
language is identified by the constructors it supports defining its expressive power
and hence its reasoning complexity.

D (syntaz) (comments)
T | Universal concept, also referred as Top
1 | Bottom concept
C' | Atomic concept
—C' | Atomic negation
D, M Dy | General concept intersection
VR.C | Value restriction
JR.T | Limited existential quantification

Table 2.1: DL CONCEPT CONSTRUCTORS

The most basic descriptions are atomic concepts and atomic roles and more
complex descriptions can be built using concept constructors following a predeter-
mined grammar. For example, we can see in Table 2.1 the grammar for AL, one of
the minimal DL languages of interest. There, C' denotes atomic concepts, i.e. those
that can not be defined in terms of another concept, D, D; and D, denote general
concepts, and R denotes atomic roles. The semantics in a DL language is generally
defined using interpretations. An interpretation I consists of a non-empty set A%
and an interpretation function ()I that maps atomic concepts to subsets of AZ and
atomic roles to subsets of AZ x AZ. The interpretation function is then extended
to general concept descriptions in a natural way as presented in Table 2.2:

We can now define the terminologies for the KB using axioms. There are two
types of axioms, equalities represented as C' = D and inclusions represented as
C C D. An interpretation 7 satisfies an axiom if:

(C=D) - C*=D*
(CC D) - CTcD?

In a terminology, equality axioms where the left hand side is a single concept
are called definitions and respectively, inclusion axioms are called specializations.
An interpretation that satisfies all the axioms in the terminology is called a model.

13

T | A
110
C|CTC AT
C | AT\ C7
Dy Dy | D¥ N DX
R| RECATxA?
VR.C' | {a € AT|Vb.(a,b) € RT — b e CT}
JR.T | {a € AT|3b.(a,b) € RT}

Table 2.2: DL CONCEPTS AND THEIR INTERPRETATION

@:{D1,...,Dn} T,y € A

x € Dq
R .
Y x € Dp
v {} (z,y) € R

Figure 2.1: EXAMPLE OF A DL INTERPRETATION AND ITS GRAPH REPRESENTA-
TION

As mentioned before, DL systems also support reasoning services about the
knowledge base contained. The typical reasoning services for a TBox or terminology
are to determine the satisfiability of a description, and to determine whether a
description is more specific than another. The former refers to verifing whether
or not a description is contradictory, while the latter implies deciding whether
one description is subsumed by (E) another. The latter service is also known as
classification of concepts. Formally, satisfiability is defined as follows:

C' is satisfiable w.r.t T if there exists an interpretation Z model of 7 where
CT#0

This essentially tells us that if we construct an interpretation Z that satisfying
all the axioms in 7 results in C being the empty set then the concept C is not

satisfiable because we were not able to find an individual in A that satisfying 7°
also satisfies C'.

Even though we recognize two different reasoning services, satisfiability and

14

subsumption, it is also known that in general?, a satisfiability checking problem
can be reduced to a subsumption problem and vice versa using a series of known
equivalences. For instance to reduce subsumption to (un)satisfiability we use:

CC D <= Cn-D is unsatisfiable

Then using those equivalences we can just reduce the subsumption problems to
satisfiability checking problems and answer all of them using a single DL reasoner
providing a satisfiability checking service.

Traditionally, satisfiability checking in the implemented DL reasoners is done
using tableau algorithms. In essence, the algorithm constructs a set of tableaux,
starting with one node zy containing just a single description Cy and then apply
some consistency-preserving transformation rules until no more rules apply. If the
tableau constructed this way does not contain a contradiction (called clash), then
Cy is satisfiable and unsatisfiable otherwise. The set of tableaux is obtained when
dealing with the disjunction of concepts that requires to try finitely many tableaux
and if at least one of them is satisfiable then the Cj is satisfiable.

The usage of DL directly in query optimization has been tried in the past in
three different ways. In the first one, queries are classified with respect to schema
concepts in order to find the most specific concept that satisfy the full query. This
means usually saving time since more specific concepts will have less individuals
than the general ones. In the second approach, the query is actually expressed
partially in DL and the rest in some other first order logic notation. The part
that is expressed in DL is classified and then the rest of the query is tested against
the most specific concept found in the classification process. Finally in the third
approach, the DL is used to remove redundant terms similarly to the grow-shrink
approach. First the query is expanded using the information in the schema and
then all the query subterms that subsume the rest of the query (i.e. the redundant
ones) are removed.

2.3 DL Reasoners

There are quite a few DL reasoners publicly available but since our interest is to see
the similarities between CQO and DL reasoning we would have to modify the core
functionality of one of the existing reasoners to achieve what we wanted. Since this

4Tt might not be possible to apply some of the equivalences if some of the constructors (like
general negation of concepts —) are not available.

15

task was not practical we implemented our own reasoner based in the language of
our choice that best suited our interests. However, we present below three of the
most common reasoners to give the reader an idea of what can be easily attainable.

FaCT: Fast Classification of Terminologies. The FaCT reasoner is the result of
research led by Ian Horrocks geared towards an optimized tableaux imple-
mentation of the DL reasoning algorithms. According to its website®, FaCT
is a DL reasoner used for concept classification and satisfiability testing. It
actually includes two reasoners, one for the DL dialect called SHF (ALC
augmented with transitive roles, functional roles and role hierarchies), and the
other for the SHZQ dialect (SHF augmented with inverse roles and quali-
fied number restrictions). Both reasoners use sound and complete tableaux
algorithms. The main features of the FaCT reasoner are:

e A highly expressive DL, supporting reasoning even for database schemas.

e Support for reasoning with arbitrary knowledge bases (i.e. containing
general concept inclusion dependencies)

e An optimized implementation for the tableaux algorithms (now the de
facto standard for DL systems)

e A client-server implementation based on the CORBA architecture.

A newer version of the reasoner called FaCT++ is available as an implemen-
tation of an OWL-Lite reasoner in C++ including new optimizations and
some new features.

RACER: Renamed A-Box and Concept Expression Reasoner®. RACER DL rea-
soner for the DL language SHZ Q. It supports reasoning with multiple TBoxes
and A-Boxes (while FaCT only reasons with one TBox and no A-Box). Be-
sides the basic features, it also supports reasoning with concrete domains that
allow it to deal with integer number restrictions, linear polynomial equations
over the reals, equalities and inequalities of strings, etc. Like FaCT, it also
supports reasoning with knowledge bases containing general concept inclusion
dependencies. Its main reasoning services are:

e Concept consistency with respect to a Terminology

e Concept subsumption with respect to a Terminology

Shttp://www.cs.man.ac.uk/ horrocks/FaCT/
Shttp:/ /www.racer-systems.com/

16

e Concept classification with respect to a Terminology

e Consistency of an Interpretation with respect to a Terminology, and a
few others.

Several other reasoners have appeared and disappeared throughout time but
these two are the ones probably considered to be the most predominant.

17

Chapter 3

Architecture and Design

3.1 Overview

To explore in depth the overlap between CQO and DL subsumption reasoning we
designed and implemented a subsystem containing the functions that were common
to both approaches. Clearly, this subsystem could be called and shared between
two (or more) applications built on top. It was evident that the main goal of this
subsystem should be to create and manipulate a graph and to apply a defined set of
rules over that graph representation. We thus named this subsystem the Common
Graph Utility, or CGU (pronounced see-gu) for short. Figure 3.1 shows the main
components of the architecture of our design including the supporting layers with
the drivers built on top.

Memory Manager. This is the lowest layer. Its main function is to provide unified
memory cells to the upper layers of the system. It is responsible for keeping
the list of free cells. It requests memory on demand to the host operating
system and places the released (not used anymore) cells back to the free list
so memory can be reused. Its functions are only accessible to the Naive Lisp
module.

Naive Lisp. This module handles the basic expressions similarly to most Lisp im-
plementations. Its basic data elements are “atoms” and “lists” and the typical
Lisp functions to create and manipulate symbolic expressions (S-expressions)
like read, car, cdr, cons, rplaca and rplacd. This is the basic under-
lying component for the rest of the modules in the CGU.

18

CONJUNCTIVE QUERY DL

COMMON GRAPH
UTILITY

PATTERN MATCHER

RULE CONTROLLER

VERSION
CONTROL

NAIVE
LISP

Y

MEMORY
MANAGER

Figure 3.1: MODULES AND THEIR INTERACTIONS

Version Control. In order to have the ability of “remembering” a particular state of
the graph, so changes can be applied and then undone, we created the version
control functions. These functions basically duplicate on demand the pieces
of memory that are modified and keep a log of which memory cells changed so
they can be rolled back to a previous state when desired. The module’s basic
operations are pushVer, and popVer and the re-implementation of the lower
level pointer navigation functions for S-expressions (car, cdr, rplaca and
rplacd) in their “versioned” flavor.

Pattern Matcher/Rule Controller. These two utilities implement a basic yet pow-
erful rule controller based on S-expressions. Its input is a rule-based control
strategy built recursively using a particular set of constructs (e.g. call, re-
peat, sequence, if, etc.). The rules themselves fire when a particular pattern
matches the input triggering an established set of actions that usually end
with the rewrite of the original pattern matched to a new expression.

CGU. The core set of functions of our research. It is composed of two parts:
(1) the graph manipulation functions and (2) the expand functions. The
former provides an interface to create graphs (also called partial databases),
add axioms to the terminology, create nodes, add descriptions to nodes, add
edges, and then checking for the existence of particular nodes, descriptions

19

and edges. The latter are the tableau algorithms modified to meet the re-
quirements of both DL reasoning and CQO. There are two expand functions,
the first one contains the deterministic part of the algorithm and the second
one implements the non-deterministic part (disjunction handling).

Drivers:

DL Reasoner Module. The reasoner module behaves as a typical DL reasoner
using a tell and ask interface where first a terminology is entered and then
the typical question “subsumes(Ds, D1)” is answered. In our case, this is
done by translating it into a satisfaction check of the description (D M —Ds)
transformed into negation normal form. The algorithm will then check for
the satisfaction of that concept and will return the appropriate value.

CQO Module. This is the module for a conjunctive query optimizer that will use
the CGU component to perform the optimization. It is a very basic algorithm
where given a database schema and a query it will return a plan that imple-
ments that query for a database that satisfies the given schema. In simple
terms, the query, given in a language provided in section 3.2.6, is transformed
into a DL description and then added to a node in a Partial Database. This
initial single node graph will be “expanded” with the schema previously in-
putted (abstracted as a terminology). Then using a second graph to generate
the plan and a series of additional expand iterations, it will incrementally
create a query plan based on the expanded query graph, choosing the appro-
priate access paths. This simple approach can be refined in multiple ways
and we sketched some of those in the future research section.

Each one of these modules has different variables and functions that serve as
their interface to the other layers. We briefly present below the main functions
with a brief explanation of their usage. This does not intend to be an extensive
documentation of the modules, but just a display of the key elements considered
for our design and particular implementation.

3.2 Interfaces

3.2.1 Naive List Processor

This module defines the basic elements for the upper layers. In essence, it is an
implementation of a very basic Lisp on C. We decided to create this basic layer,

20

as we believe this allow us to use a powerful, yet quick and simple prototyping
language as Lisp but without dealing with licensing issues or particularities of the
different implementations. It supports two classical data types:

e boolean: Truth value, it can be either TRUE, or FALSE.

e string: An array of characters.
And like most Lisps, it works with the following built in types:

e atom: Similar to atoms in Lisp, an atom is an indivisible unit. It can be either
a fixed length integer or a symbol which corresponds to a variable length
string with no spaces. Integer atoms require only a single cell of memory,
while atoms for variable length strings are encoded as one cell for the atom
information plus a linked list of cells (called stringstore cells) each containing
a fixed portion of the string. Atoms are unique within the system and have
a definition pointer so they can also be used as variable names.

e lists: Again, similar to lists in Lisp, our lists are single linked lists where each
cell of the list (called a cons) is composed of two pointers, the car and the
cdr. The car points to the data item (either an atom or another list) and the
cdr points to the next element of the list.

e nil: Null element, it can be either an atom or a list.

With those elements, we can form S-expressions recursively as follows!:

(Sexpr) | (comments)
nil null element
(atom,) atom

((Sexpr) - (Sexpr)) | cons cell (list)
Table 3.1: S-EXPRESSIONS GRAMMAR
Using the above grammar we can create S-expressions like 10, a, (nil - nil), (10-

(20-(a-nil))). These expressions are commonly represented using the diagrammatic
convention shown in Figure 3.2. There, we can see that an atom is depicted as

1See the seminal paper from John McCarthy [16] for more information about symbolic expres-
sions.

21

an item containing a definition pointer and the value of the atom while lists are
depicted as an item that has two pointers. The nil element is usually encoded as a
forward diagonal. Commonly, arbitrary length lists are written as (ejeses. .. e,) to
represent the S-expression (e; - (ez-(e3- (... (e, nil)...)))) like in the last example
in the same figure.

Atoms

nan

‘ 10 "10"

-
-

: car | cdr
Lists il 0)

‘ | ‘ . (10 20 a)
|

#

"o "0 "t

Y

Figure 3.2: EXAMPLES OF ATOMS AND LISTS IN OUR IMPLEMENTATION

Consequently, the functions contained in the NLisp are the ones needed to create
S-expressions from strings and to manipulate the S-expressions. The main functions
are:

lread: string — Sexpr: Parses the string and converts it to the correspondent
S-expression returning it in Sexpr.

cons: Sexpry, Sexpro — Sexpr: Creates a cons cell, points its car to Sexpr; and
its cdr to Sexpry and returns the newly created cons cell.

car: Sexpry — Sexpr: Only defined for lists, returns the Sexpr pointed by the
car pointer of the cons passed in Sexpr;.

cdr: Sexpry — Sexpr: Only defined for lists, returns the Sexpr pointed by the
cdr pointer of the cons passed in Sexpry.

rplaca: Sexpry, Sexpry — Sexpr: Replaces the car of the cons passed in Sexpry
with Sexprs and returns the modified cons cell.

22

rplacd: Sexpry, Sexprs — Sexpr: Similar to rplaca, it replaces the cdr of the
cons passed in Sexpr; with Sexprs and returns the modified cons cell.

atom: Sexpr — boolean: Returns TRUE if the Sexpr is an atom or FALSE
otherwise.

null: Sexpr — boolean: Returns TRUE if the Sexpr is nil (the null element) or
FALSE otherwise.

set: Sexpry, Sexpry — Sexpr: Assigns the definition pointer of the atom passed
in Sexpr; to Sexprs and returns the modified atom.

eval: Sexpr; — Sexpr: If Sexpr; is an atom, returns the value of the definition
pointer, otherwise, it assumes that it is a list where the first element is a
function name, therefore it calls that function with the cdr of Sexpr; and
returns the result in Sexpr.

eq: Sexpry, Sexpry — boolean: Equality test of S-expressions. When both are
atoms and both are the exact same atom it returns TRUE. If both are lists
then it performs a structural equality check and returns TRUE if both lists
are structurally equal. In all other cases, it returns FALSE.

This module also contains the functions to create and update property lists
for atoms. Property lists are used when an atom (the symbol) should be used as
a variable and it requires to hold more than one wvalue each of which is uniquely
identified with an indicator atom typically reflecting the name of a property. Thus,
a property list, is list or pairs where every pair is of the form (identifier value). The
functions available to manipulate property lists are:

putprop: symbol_atom,value_Sexpr,indicator_atom: Adds the property identi-
fied by indicator_atom to the property list of the symbol_atom. The value of
the property is passed in value_Sexpr.

remprop: symbol_atom,indicator_atom: It removes the property identified by
indicator_atom from the property list of the symbol_atom.

getprop: symbol_atom,indicator_atom — Sexpr: It returns the Sexpr value of
for the property identified by the indicator_atom in the property list for the
symbol_atom.

23

For example, the list (color red maker chevrolet) reflects that for the prop-
erty color the value is red, for the property model the value is astra and for the
property age the value is 3. Such list could be created by the following calls:

putprop(myvehicle,red,color), putprop(myvehicle,chevrolet,maker)

Then the call to getprop(myvehicle,color) would return red and the call to
remprop (myvehicle,color) would remove it. This set of functions will prove very
useful in the CGU module since all the description lists for the nodes are stored as
values in a property list for the node name.

Additionally, the NLisp also contains functions to traverse lists, append them
and do some other elaborated tasks but they are basically created using calls to the
previous functions. In summary, it behaves as most of the other Lisp implemen-
tations creating and manipulating S-expressions providing the powerful approach
that Lisp offers.

3.2.2 Version Control

The version control module provides the functions that allow the upper layers to
consider the cons cell as a more powerful entity. Such cons cell must keep track of
the different values of its car and cdr pointers throughout different points in time
(identified by a version number). This capability is important for backtracking
purposes (going back to a previous version). Note than only cons cells are versioned
and atoms are not. However, the definition pointers of atoms can be assigned to
a list first (like when using a property list) and then their values will be versioned
after that. Figure 3.3 shows a single cons cell pointing to different S-expressions at
three different versions. In the initial version 0, the car of the cons cell is pointing
to the atom a and the cdr is pointing to nil. In version 1, the car is still pointing
to a but the cdr is now pointing to b. In version 2, the car now points to ¢ while
the cdr still points tob. If we can remember the previous values (by storing them
somehow) we can then for example go back to version 1 and know that the car
points to a and the cdr points to b.

The version control functions allow to create these versioned cons cells and
maintain them as the version number is increased and their car and cdr values are
changed. The version control module defines two variables only accessible within
the module:

currentVer: Integer representing the current version number. Its initial value is
0.

24

version 1 version 2

' 1y

[[
| |
| |
i i

‘ i | 1] i | 1]
i i
i i
: Ila" "b" : "CH Hdll

Figure 3.3: STATE OF ONE CONS TROUGHOUT THREE DIFFERENT VERSIONS

popLog: List pointing to all the cons cells that changed in each one of the versions,
from the initial version to the current version.

Using those two variables, it then defines the following functions:

getcurrentVer:— integer: Returns the Integer value of the current version num-
ber.

resetLogVer: It will empty the popLog and will set the current version number
to 0.

pushVer: It increments the current version number by 1 and adds one entry to
the popLog to hold all the cons cells modified in the new version. The name
of this function derives from the idea that a new version will basically leave
the previous values of every cons cell untouched. This is equivalent to “push”
the current state of the system in a stack so that in can be recovered later.

popVer: It will decrement the current version v; by 1 to v;_; and it will traverse
the popLog such that the values for all the cons cells in version v; are removed
and the previous values in version v;_; are restored.

It then reimplements the pointer navigation and modification functions for cons
cells.

vecons: Sexpry, Sexpre — Sexpr: Creates a cons cell in the current version, points
its car to Sexpr; and its cdr to Sexprs and returns the newly created cons
cell.

vcar: Sexpr; — Sexpr: Returns the Sexpr pointed by the car pointer in the
current version of the cons passed in Sexpr;.

25

vedr: Sexpr; — Sexpr: Returns the Sexpr pointed by the cdr pointer in the
current version of the cons passed in Sexpr;.

vrplaca: Sexpry, Sexprs — Sexpr: Replaces the car of the current version for the
cons cell passed in Sexpr; with Sexpry and returns the modified cons cell.

vrplacd: Sexpry, Sexpry — Sexpr: Similar to rplaca, it replaces the cdr of the
current version for the cons cell passed in Sexpr; with Sexpro and returns
the modified cons cell.

The cons cells can be explicitly versioned if we use the set of functions with
the prefix “v” (vcons, vcar, vcdr, vrplaca, vrplacd) or they can be implicitly
versioned if using the default function (without the prefix) but with the version
control module configured to overwrite them.

3.2.3 Pattern Matcher/Rule Controller

The pattern matcher is used to find whether an S-expression matches a specified
pattern given in the input. The pattern grammar contains several symbols that
allow the user to indicate how to match the S-expression. It also allows to specify
variables for binding specific parts of the S-expression matched. The main function
is:

Match: pattern, Sexpression — boolean: Returns TRUE if the Sexpression
matches the pattern and FALSE otherwise. For example, given the pattern:

(plus > operandl > operand2) and the input: (plus 10 20)

the Match function will return TRUE, since the atom “plus” matches liter-
ally and the operand1 is matched with 10 and operand?2 is matched with 20.
When it finishes matching, the atom operandl holds the value 10 and the
operand? holds the value 20. For more complex patterns and S-expressions,
the search is performed in a left-to-right top-to-bottom direction on the pat-
tern. Besides the “>", several other symbols can be used in the pattern to
perform certain actions as described in Table 3.2.

In order to allow recursive usage of the patterns, the binding values in the
variables can be associated with an identifier in every iteration. A stack of matched
variables’ identifiers is maintained and the values are assigned to the variables using
a pair of accessor functions that ties the value with the current iteration identifier.
Thus, the functions performing that logic are:

26

(symbol) (action)
! matches the next atom literally

? matches one element

+ matches one or more elements

* matches zero or more elements
>

<

V binds V' to the next element
1% matches iff the next element matches the current binding of V
>+ V binds V' to a list of elements (one or more) matched by +
> %V binds V' to a list of elements (zero or more) matched by x*
<<V the current value of V' is appended to the pattern
<> (P1) (P2) | matches P1 P2 in either order
or EList matches if the next atom matches any member of EList
> or EList V | same as above but binds the atom matched to V'
where C succeeds if the S-expression C' evaluates to non-null

Table 3.2: SPECIAL SYMBOLS USED IN THE PATTERN INPUT

PushMatchVar: It pushes the current identifier into the stack and gets a new
identifier for the next iteration.

PopMatchVar: It pops out the identifier at the head of the stack and makes it
available for the next iteration.

GetBindVal: var — Sexpr: It returns the S-expression stored as the value of var
using the current match iteration identifier.

PutBindVal: var, val: It binds the value val to the variable var using the identifier
of the current match iteration.

Finally, the pattern matcher module also provides a function to build an S-
expression using the bindings of the variables previously assigned in a call to Match.
This is useful especially in the next module, the Rule Controller, where matched
patterns are rewritten using the values used in a previous call to Match. The
function:

Build: pattern — Sexpr: Returns the S-expression built from the pattern using
the bindings created by Match. It allows usage of some special symbols in the
pattern as presented in Table 3.3:

The rule controller has one main function whose job is to apply a given rule
control strategy to the S-expression passed as input. The signature of the function
is:

27

(symbol) | (action)

<V produces the binding of V/

<<V the list-valued binding of V' is spliced into the pattern
A produces the value A

Table 3.3: SPECIAL SYMBOLS USED IN THE BUILD FUNCTION

ApplyRuleControl: strategy, Sexpr — boolean. The function returns TRUE
if the application of the strategy was successful or FALSE otherwise. The
strategy can be specified using the following constructs:

(RuleName) —The rule called (RuleName) is applied. The general syntax
for a rule is ((RuleName) (Le ftHandSide) (Right HandSide) (formy) . ..).

If the given S-expression matches the (LeftHandSide), then (1) each of the
(form;) are built, (2) each of the built forms are evaluated and (Right HandSide)
is built replacing the given S-expression.

(call (StrategyName)): The control strategy with the given name is ap-
plied on the argument S-expression. Returns the result of applying (StrategyName).

(not (Strategy)): (Strategy) is applied. Returns logical negation of the
result.

(or (Strategy)...): Each (Strategy) is applied in sequence until the first
that successfully applies a rule. Returns logical disjunction of results.

(and (Strategy)...): Each (Strategy) is applied in sequence until the first
that fails to apply. Returns logical conjunction of results.

(seq (Strategy)...): Each (Strategy) is applied in sequence. Returns TRUE
if any of the (Strategy)s is applied.

(rep (Strategy)...): The argument (Strategy) is repetitively applied until
it no longer returns TRUE. Returns FALSE if non of the (Strategy)’s are
applied and TRUE otherwise.

(if (Pattern) (Strategy)):If (Pattern) matches the given S-expression (Strategy)
is applied and TRUE is returned.

(env clad]tr|eval (Strategy)): (Strategy) is applied on the clad]™r of the
given S-expression or even in the current S-expression (eval). Returns the
result of applying (Strategy).

(map (Strategy)): (Strategy) is applied on each element of the given S-
expression. Returns TRUE only if (Strategy) is applied to each of the ele-
ments.

28

These two modules are used by the CGU and the two drivers to perform different
tasks, like the transformation of descriptions into Negation Normal Form (NNF)
and the renaming of variables to enforce uniqueness. They are also used by the
expand functions to recognize each one of the different concept constructors and to
perform the appropriate transformations on the graph. For example consider the
following rules for the NNF program:

((DoubleNeg (not (not > P)) (<< P))
(SimpleNeg (not (atomic > P)) (not(atomic < P)))
(Atomic (atomic > P) (atomic < P))

The first rule deals with double negation of descriptions and removes the two
negations. The second and third rules just recognize atomic concepts and nega-
tion of atomic concepts as being already in negation normal form. Then, with
those rules, consider the following fragment of the strategy control for transforming
descriptions into NNF':

(negNForm
(or (or Atomic SimpleNeg)
(if (not (not > P))
(and DoubleNeg (env eval (call negNForm))))))

Now suppose that we call
ApplyRuleControl (negNForm, (not (not (atomic EMP))))

The call above will apply the control negNForm whose main strategy is a dis-
junction of two things. The first substrategy (or Atomic SimpleNeg) captures
that if the formula is already an atomic concept or the negation of an atomic
concept, then it is already in NNF. Thus, it will try to apply the rule Atomic
to (not(not(atomic EMP))) that in turn will try to match (atomic > P) with
(not (not(atomic EMP))). The match will fail, so the rule controler will go to the
next rule SimpleNeg failing as well. Since the first substrategy failed, it will con-
tinue to the next one (and it would continue until the first one that succeeds). Then
second substrategy is applied by first trying to match (not (not > P)) with (not
(not (atomic EMP))). The match will succeed and as a result (atomic EMP) will
be stored as the value of the variable P. Also, since the condition of the “if” was
true, the DoubleNeg rule is applied. This will match again (not (not > P)) with
(not (not (atomic EMP))) and as a result it will replace (not (not (atomic
EMP))) simply with (atomic EMP). Then it will recursivelly apply the negNForm

29

on (atomic EMP)and it will succeed in the first application of the Atomic rule.
This application of the control will return TRUE consequently the whole call will
return TRUE and the S-expression (atomic EMP) that is, as one might expect, the
transformation of (not(not(atomic EMP))) into NNF.

3.2.4 Common Graph Utility (CGU)

At the core of our implementation modules we find the Common Graph Utility.
The CGU is the module containing the functions to manipulate the graphs that
will represent queries or plans for the CQO driver and tableaux in the DL Rea-
soner. Traditionally, in the DL-Database community, a DL interpretation Z can be
considered also a database instance. If we recall from section 2.2, an interpretation
is defined via a set of individuals in a domain and an interpretation function that
maps concepts in DL to subsets of the domain and roles in DL to binary relations
between elements of the domain. Then an interpretation or database, can be repre-
sented using a graph in which nodes represent individuals of the domain, individuals
belonging to a subset are identified with a label tied to the individual, and labeled
edges represent binary relations between individuals. Since during the reasoning
process we only represent the information that we are certain to know, the database
is not always complete, so we say that we have a partial database. Thus, all the
functions that exist in the CGU are operations to be performed against one (or
more) of these partial databases.

The CGU supports handling one or more partial databases and a global ter-
minology shared among all of them. A partial database PD within our system,
is uniquely identified by a PDname. It has a local terminology (additional to the
global one shared across the databases) plus a list of nodes. Every node is identi-
fied by a nodeName and contains a set of labels (L(nodeName)) that encode the
following elements present in the graph related to that particular node:

e DL descriptions: A description can be any properly constructed description in
DLFDA. See subsection 3.2.5 for the complete list of DLFD.A constructors
and their corresponding S-expressions used.

e Edges: The presence of an edge labeled A from the current node to node n1
is encoded as (edge A nl).

e Inequality arcs: If two nodes are explicitly different, then there exist an in-
equality arc between them. We encode that n1 is different from n2 by placing

30

(ineq n2) in the list of labels for n1 (£(nl)) and (ineq n1) in the list of
labels for n2 (£(n2)).

e Equality between nodes: We encode the fact that several nodes can be equal
by creating a tree rooted in an arbitrary node in the set. All those nodes will
belong to the same equivalence class. Equivalent classes are identified by the
name of the root node of the tree. Then all the subtrees contain nodes that
are equal to the root and each one of those nodes has one tag indicating its
parent node. The S-expression used for this is (eq n) where n is the name of
the parent node.

e Event triggers: These are special tags encoding events that will be triggered
when additional concepts are added to the node or when additional edges are
added.

So in order to manipulate Partial Databases with the characteristics described
above, we have the following functions available:

createPD: PDName: This function creates the “context” space to store the el-
ements of a partial database and labels it PDName. The context space
basically requires to hold the name PDName, two stacks of description-node
pairs and the list of nodes.

deletePD: PDName: Deletes all the contents of the partial database PDName
and removes its context space from the system.

setPD: PDName: The system uses an indicator for the “current” partial database
used by the rest of the functions below to execute their actions to the cur-
rent PD. This function then sets the system variable currentPD to the PD
identified by PDName.

addGlobalIncDep: LHS, RHS: It adds the inclusion dependency LHS C RH S?
to the global terminology (available to all the partial databases).

addLocalIncDep: LHS, RHS: Adds the inclusion dependency LHS T RHS to
the terminology of the current PD.

createNode: nodeName: Adds the node nodeName to the current partial database.

addDescription: nodeName, D: Adds the description D to the node node Name.

2LHS=Left Hand Side. RHS=Right Hand Side

31

addEdge: nodeNamel,nodeName2,label: Adds an edge from nodeNamel to
node N ame?2 labeled label.

addEquality: nodeNamel,nodeName2: It makes the equivalence classes of the
two nodes the same and it will merge their descriptions. At the beginning,
all the nodes are their own equivalence class

addInequality: nodeNamel,nodeName2: It adds a label to nodeNamel to in-
dicate that it is different from node Name2 and it will add the correspondent
label to nodeName2 indicating that it is different from node Namel.

pushStackl: Description, NodeName: It adds the duple Description—NodeN ame
to the top of the stackl.

pushStack2: Description, NodeName: 1t adds the duple Description—NodeN ame
to the top of the stack?2.

expandl: Applies the deterministic rules to the duples in the stackl until it is
empty or a clash if found.

expand2: Applies the non-deterministic rules to the duples in the stack2 until it
is empty or a clash if found.

Additional functions also exist to: traverse all the nodes in the PD; for every
node, traverse the list of descriptions, test for a particular description existing in
the list and deleting a particular description from the list. With these functions we
can basically traverse and manipulate the graph as required for the drivers using
the CGU.

3.2.5 DL Reasoner

The DL reasoner driver implements a complete subsumption reasoning procedure

for the question:
T = (D1 C D)

The DL dialect chosen, called DLFDA, is a variation of CLASSIC where we al-
low general negation of concepts (and therefore, disjunction of descriptions), do not
handle roles but handle attributes and inverse attributes. The reason to just han-
dle attributes (also called features in traditional DL literature) is because typical
databases use attributes much more often than general roles and because attributes

32

can be considered a special case of roles with at most 1 and at least 1 number re-
strictions.

Definition 1 Let C denote primitive concepts and A primitive attributes. Derived
descriptions for the Description logic DLFDA is defined by the grammar presented
in Table 3.4:

D (concrete syntazx) (comments)
(top) | everything
(bottom) | nothing

(atomic C)

(not (atomic C))

(and D1 D2)

(equal (Pf1) (Pf2))

(nequal (Pf1) (P£2))

(at D A)

(pfd C (Al...An) Q)

(or (forall Pf (not (atomic C))) D)
(forall A D)

(or D1 D2)

P f (concrete syntaz)

primitive concept
concept negation
concept conjunction
path agreement

path disagreement
inverse attributes
keys

rule-based disjunction
attribute typing
concept disjunction

(comments)

O
(A PF)

identity function
path composition

Table 3.4: DLFDA CONSTRUCTORS

The first column of Table 3.4 shows the constructors with the concrete syntax we
use in the CGU. However, traditional DL papers use an abstract syntax as presented
in Table 3.5 just for reference. Since our CGU uses the S-expressions to handle all
the constructors, from this point forward, we try to refer to the DL constructors
using their correspondent S-expression unless the abstract syntax allows to present
the explanation in a clearer way.

A particular construct that we are adding as a special case is our rule-based
disjunction. We include it as a special case because while a disjunction, this par-
ticular form is actually handled by the deterministic part of the algorithm as we
will see in section 4.3. The name “rule-based” comes from the fact that it actually
capture things that look like rules of the type (VPf.C) — D.

33

D(abstract) D (concrete syntazx)
T | (top)
1 | (bottom)
C | (atomic C)
—C' | (not (atomic C))
D1 |_|D2 (and D1 DQ)
Pf, = Pfy| (equal (Pf1) (P£2))
Pf, # Pfy | (nequal (Pf1) (Pf2))
D@A | (at D A)
C:{A,..., A} —id| (pfd C (Al...An) ())
(VPf—C)U D | (or (forall Pf (not (atomic C))) D)
VA.D | (forall A D)
D1|_|D2 (OI‘ D1 D2)

Pf(abstract) Pf (concrete syntax)
id | O
A.Pf | (A PF)

Table 3.5: DLFDA DL ABSTRACT SYNTAX VS. CONCRETE SYNTAX

For the interpretation of the descriptions using the constructors above, we use
the traditional approach of defining an interpretation Z consisting of a domain A%
and an interpretation function ()I Note in particular that, while primitive con-
cepts are considered subsets of the domain, attributes are considered total functions
(as opposed to just binary relations like roles).

Definition 2 The Semantics of the dialect DLFDA is given by T = (AI, ()I> as
follows (Table 3.6):

In the reasoner, the concept of a knowledge base is captured by one partial
database as the context where the descriptions occur. Descriptions are directly
captured and the terminology is stored by means of the local inclusion dependencies.

The functions present in the DL Reasoner are mainly based in the “Proposal for
a DL Interface” [17] where the authors suggest a DL interface based on transactions,
with all the functions grouped as tell operations and ask operations. Our approach
does not support transactions so all the functions assume a single user is running
at any time. However, in the proposal they do not consider the existence of more
than one knowledge base so we borrowed the prototype of the first function from

34

(top) | AT
(bottom) |
(atomic C) | CF C A*
(not (atomic C)) | AT\ C?
(and D1 D2) | DY N DI

(equal (Pf1) (P£2)) | {a € AT|(pfi) a= (pfo) a

(nequal (Pf1) (P£2)) | Ja € AZ|(pfi) a # (pfo)’ a
Al AT AT S AT
(at D A) {a e AZT3b. (A b=anbe DI}
a€ ATV e C*
(pfd C (A1...An) ()) { (/\(Ai)za:(Ai)Ib>—>a:b}
(or (forall (Pf) (not (atomic C))) D) | {a e A7 ((pf)za ¢ OI) V(ae DI)}
(forall A D) | Jae AT|(A) ac DI}
(or D1 D2) | DU DZ

O | {(a,a) : a € AT}
(A Pf) {(a, b) : (pf)* ((A)Ia) _ b}

Table 3.6: DLFD.A SEMANTICS

the RACER reasoner that does support several TBoxes. The functions present in
our reasoner are:

InKnowledgeBase: K Bname: Equivalent to a setPD(K Bname). If the Par-
tial Database K Bname does not exist already, it will create it first using
createPD(K BName) and then execute the setPD call.

implies_c: D1, D2: This is equivalent to a call to addLocalIncDep(D1,D2) in
the CGU

equal_c : D1, D2: Equivalent to two symmetric calls, one to addLocalIncDep(D1,D2)
and another to addLocalIncDep(D2,D1).

satisfiable: D — boolean: This is implemented by creating a node and de-
positing D. The PD is then expanded and if it finds a clash (expands return
FALSE) then D is not satisfiable, if it returns TRUE then D is satisfiable.

35

subsumes : D2,D1 — boolean: As mentioned before, this is implemented by
creating a node in the current partial database (set by a previous call to
InKnowlegeBase) and depositing the Description (D1 M —D2) after being
normalized using a negation normal form.

The negation normal form is reached by pushing negation inside, removing
double negations and using the following transformations:

(not (and D1 D2))—(or (not D1)(not D2))

(not (or D1 D2))—(and (not D1) (not D2))

(not (equal (Pf1) (Pf2)))—(nequal (Pf1) (Pf2))
(not (nequal (Pf1) (Pf2)))—(equal (Pf1) (Pf2))
(not (forall (Pf) D))—(forall (Pf) (mot D))

Once we have the partial database with that node and the normalized de-
scription we call the expandl and if it succeeds then we call the expand?2
function. If any of the expand functions returns FALSE, a clash has been
detected meaning that the normalized description is unsatisfiable which tra-
duces in indeed D1 subsumes D2. If, on the contrary, none of the functions
find a clash, then they have just constructed a counter example of an indi-
vidual that is a D1 but not a D2 contradicting the fact that D2 subsumes
D1. Therefore, in the latter case the function subsumes(D2,D1) will return
FALSE.

The functions implies_c and equal_c are the tell operations and the satisfiable
and subsumes functions are the ask operations.

3.2.6 Conjunctive Query Optimizer

The query optimizer module implements a series of algorithms that allow the trans-
formation of a conjunctive query (expressed in the grammar described below) into
a DL description (using our DL dialect presented in the previous subsection) and
then to a graph representing roughly a universal plan in the sense presented in [2].
Then working with a differential analysis approach along the lines the one presented
in [18], generate a query plan to execute the query.

The interface to the CQO is composed of two operations in a “tell and ask”
fashion, similar to the DL reasoner module. The tell operation essentially deals
with inputting the database schema at the logical and physical levels and the ask

36

operation generates the plan based on the query passed as an input. The prototype
for the tell operation is:

addtoSchema (SchemaConstraint): Add the SchemaConstraint to the database
schema. The schema constraints can be any of the following (Table 3.7):

(schema constraints) (description)

(class C) Class Definition

(property C A) Property Definition for class C

(is-a C D) General Restriction. D is any DLFD.A description
(address C) Define C as an address to an object (general object)
(string C) Define C as string (data typing)

(integer C) Define C as integer (data typing)

(index C n) Define C as index with n parameters.

(param C Pi Ci) Define that parameter Pi of Index C is of type Ci

Table 3.7: SCHEMA CONSTRAINTS USED TO DEFINE THE DATABASE SCHEMA

The first three constraints are used to describe the schema at the logical level
and the last five are used to describe the schema at the physical level. We
will later present a more detailed usage of such constraints to define a sample
schema in section 4.5.

The function provided for generating the plan (ask operation) is:

compile()) — P: Generate the plan P that implements the query) on a
database conforming to the database schema previously inputted in with a
series of addtoSchema calls. () has to be a valid conjunctive query as defined
by the following grammar:

Definition 3 Let {A;,..., A,} be query variables. The syntax for the query lan-
guage used to define queries for the conjunctive query optimizer is :

Our chosen query language was originally presented in [4], where the authors
use this grammar as a way to characterize conjunctive queries and then to reason
about duplicate elimination using DL. This is the grammar we will use through
the rest of the thesis to express conjunctive queries. Its semantics is defined by
extending our concept of database or interpretation Z to also contain a mapping
function (-)° from queries to bags of tuples as defined below:

37

Q (comments)
(as C A) variable naming
(equal A; (Pf1) Ay (Pf3)) | equality clause
(select A;...A,Q) projection
(from @ Q) natural join
(elim @) duplicate elimination

Table 3.8: QUERY LANGUAGE FOR THE CQO

Definition 4 Semantics of queries. Let ()‘g be a mapping function from queries
to bags, then the sematics of the query language is given by grammar in Table 3.9.
Query variables occurring in a given query are assumed to satisfy standard condi-
tions of wellformedness and are never reused within the query.

Q ()°

(as C' A) {[{A:v):veC?|}
(equal A1 (Pf) Ay (Pfa)) ‘(Al v, As i w) v, w e A (PR v = (Pfy) w‘}
(select A;...A4, Q) [(A1:v@A;, ..., A, 1 v@A,) 1 v € QF}

(from Q1 Q2) {Q1 > Q2}
(elim Q) {v:iveQ}

Table 3.9: QUERY LANGUAGE SEMANTICS

For example, to express the query Give me the name of the employees working
in the computing department® we will use the query described in Table 3.10:

The compile function generates the plan that will implement the query () using
the following plan language constructs:

Definition 5 Let P be a query plan generated by the compile function. Then P is
given by the language presented in Table 3.11:

The semantics of the plan language can be given using the query language so
that by transitivity it translates into bags of tuples. Thus, the semantics for the
constructs in the plan language is then presented in Table 3.12:

The scan operation is equivalent to get all the individuals returned from the
index C when the values vy,...,v, have been bound. All the individuals will be

3 Assuming there are objects of type employee having properties ename and works_in and
objects of type department having a property dname.

38

(select ename
(from
(as employee E)
(from
(equal ename () E (ename))
(from
(as department D)
(from
(as ‘computing’ P)
(from
(equal D (dname) P ())
(equal E (works_in) D ())))))))

Table 3.10: SIMPLE QUERY TO RETURN NAME OF EMPLOYEES

bindings for v. The load operation is an assignment from vy to v;. The check
operation is a condition to discard the value if the current bindings of v and v; are
not the same value. The nest operation is just equivalent to consider all the values
in a nested loop join fashion and the keep operation is equivalent to a projection
operation, i.e. keep only the binding for vy,...,v, and discard the rest. The last
three operations in the plan language (Table 3.11) are just proposed here but they
are beyond the scope of this thesis and will be considered in a future work.

39

P

(comments)

(scan Cvwy,...,vp)
(load vy v9)

(loadr vy vy)
(check vy vy)
(checkr v vg)
(param v)
(nest P, ..
(keep vy, ..
(first P)
(empty vy,...
(cat P1 P2)

LB
.U, P)

7'Un)

index Scan

load into v; the value of v,

traverse the R attribute from v, and load it into v,
check whether v; has the same value of v,

check whether v; has the same value of v5.R
declare v as a parameter and load it
nest subplans Py,...,P, iteratively

keep bindings for vq,...,v, from plan P
get the first tuple from P

return the null tuple with schema vy, . ..
union plans P; and P,

’Un

Table 3.11: PLAN LANGUAGE

(plan) (semantics) |
(scan Cvwy,...,v,) | (from (as C' v)
(from (equal v (P) v;)
(from (equal v (FP,_1) v,—1 ()
(equal v (P,) v, O))...))
(load vy vy) (equal v; OO vy O)
(loadr vy vg) (equal v; O vy (R))
(check wvq v9) (equal v; () vy O)
(checkr vy v9) (equal v;) vy (R))
(nest Py,...,P,) (from P,
(from P,_{ P,)...)
(keep v1,...,v, P) (select A;...A, Q)

Table 3.12: PLAN LANGUAGE DECLARATIVE SEMANTICS

40

Chapter 4

Algorithmic details

We will now present the algorithms and some implementation issues relevant to
each of the important modules in the project. We will try to review the most rele-
vant decisions made while using several examples that will present the functionality
in a concrete way.

4.1 Naive Lisp

Our Lisp implementation was built using a data structure called a memblock. Each
memblock could be of any of these three types (using a union in C):

1. Free cell: Used in the memory manager for keeping the list of available mem-
ory. It only has one field called next to create the circular linked list.

2. Stringstore cells: Used to store fragments of strings. These cells can hold
up to a fixed amount of characters (currently 8) so we could store a string
(the value of an atom) of any length just by using the appropriate amount of
stringstore cells. For example, to store the string “intermitent” we will store
“intermit” in one stringstore and “ent” in another. It has two fields:

e strdata: An array of characters

e next: pointer to the next strstore.

3. S cells: Used to represent numeric atoms, string atoms, cons cells and the null
element nil. These cells have a type field (1=numeric atoms, 2=string atoms,

41

3=cons cell, 4=nil) and a reference count field that indicates the number of
references to the given cell. For example, a reference count of 3 in the atom
“A” indicates that there are 3 other objects (C variables, cons cells or atoms)
pointing to the atom “A”.

Atoms are unique in the system while cons cells are not. To guarantee unique-
ness, the atoms are referenced in a hash table using the contents of the first string-
store cell as the key. For numeric atoms, the value is used as the key.

Every time and S-cell is used, its reference count is incremented via a function
called assign. Likewise, every time an S-cell is no longer used, its reference count
is decremented via a function called release. When the reference count gets to 0
during a call to release, the memory is freed and returned to the list of free cells.
Besides a manual call to assign usually because of C variables, the functions cons
and set call assign on the second parameter because it is now referenced by the
first parameter. Similarly, the functions rplaca and rplacd call release on the
second parameter because it is no longer referenced by the first parameter.

4.2 Version Control

The version module implements every logically versioned cons cell as a list of cons
cells, two for every version in which the logical cons cell has a different value. For
this purpose it has to distinguish between the physical single cons cells (accessed by
the functions _cons, _car, _cdr, _rplaca, and _rplacd) and the logical versioned
cons cells. Intuitively, for a single versioned cons cell, the list of cons cells behaves
like a stack where the element at the top contains the values for the current version
and the elements below contain the values for the previous versions. In order to
show the reader how the versioned cells work, consider the sequence of calls to the
versioning functions presented in Figure 4.1:

Figure 4.2 shows the x cons cell as seen logically (above) and as seen physically
(below) throughout the execution of the program in Figure 4.1. After the original
creation of the cons cell (in line 1) we have that a single logical cons cell is imple-
mented using two physical cons cells (see Figure4.2(i)). In other words, the call to
vcons(a,b) is translated to two low level cons calls essentially in this way:

vcons(a,b) := _cons(_cons(a,b), nil)

Then in line two, we call pushVer () whose only effect is to increment the current
version number leaving the cons cell unaffected. At this point, calls to vcar and

42

x=vcons (a,b)
pushVer ()
vrplacd(x,d)
y=vcar (x)
pushVer ()
vrplaca(x,c)
z=vcdr(x)

Figure 4.1: SAMPLE USAGE OF VERSIONING FUNCTIONS

vedr will still return the same values as before the call to pushVer (). Now, after
the execution of line 3, the cons cell x looks like the Figure 4.2(ii). The call to
vrplacd to replace the cdr value of the cell in a newer version forces the creation of
two new cons cells “pushing” the new value to the top of the list. The pseudocode
for the vrplacd operation is presented in algorithm 1:

Algorithm 1 pseudocode for vrplacd
Require: a valid cons cell s, the new value v for the cdr
1: if version of the cell is lower than current version then
2: tl:=_cons(_car(s),-cdr(s)) {Copy the head of the stack}
3: _rplacd(s,t1) {Place the copy in the cdr of the head}
4: t2:= _cons(_car(_car(s)),v){Create a new low level cons cell with the previous
logical car value and the new cdr value}
5. rplaca(s,t2) {Point the head of the stack to the newly created cons cell}
6: Add s to the poplog list of the current version
7: else
8: _rplacd(_car(s),v) {Modify the cdr value of the cell at the car }
9: end if

Figure 4.3 shows the modification of the physical cons cells according to algo-
rithm 1. Figure 4.3(i) shows the cell at line 1, Figure 4.3(ii) shows the cell after
line 3 is executed and Figure 4.3(iii) shows the cell after line 4 is executed. Note
that only when the version of the cell is smaller than the current version, the cell is
added to the pop log and new physical cons cells are created. If the version is the
same, only the values are modified but no cons cells are added to the list. A very
similar algorithm is implemented for vrplaca.

Since we are always keeping the current version at the top and vcar and vecdr
only require the values for the current version, it is clear that retrieving the vcar or

43

version 0 version 1 version 2

”aH ”b" ”aH "d" "CH ”d"

Y

Y
Y

"aH lld" llall llb" "CH lld" "aH lld" llall llb"

(1) (i) (iii)

Figure 4.2: A SINGLE LOGICAL CONS CELL AS SEEN LOGICALLY (HIGH LEVEL)
AND PHYSICALLY (LOWER LEVEL)

vedr values for any versioned cons cell is a constant time operation. In particular,
vcar and vedr are simply implemented as:

vcar (x) :=_car(_car(x))
vedr (x) :=_car(_cdr(x))

Since these functions are implemented at this level, the Pattern Matcher/Rule
Controller, the CGU and the drivers built on top can use the versioning features it
without having to worry about keeping the proper values for the different versions
themselves.

4.3 Common Graph Utility

The CGU interface is based on the manipulation of the Global Terminology and
one or more partial databases. Both are stored using the S-expression encoding
presented in Table 4.1.

44

I I I I I

-
\‘ \v‘ tz\ \r‘
\
!

] I]

Hall Hd"

Y
Y

Vla" Vlbll Vla" Vlbll

(@) (i) (i)

Figure 4.3: STAGES OF THE VRPLACD ALGORITHM

(terminal symbols) (definition)
(CGUData) | (({(GlobalT)) (PDy) ...(PD,)) where n >0
(GlobalT) | nil| ((LHS) - (GlobalT))
(LHS) top| (atom)?
(PD;) | ((PDName) ((Stackl)) ({(Stack2)) ({(NodesList)))
(PDName) | (atom)?
(Stackl) | nil| ((NodeName) (Description)) (Stackl)
(Stack2) | nil| ((Node Name) (Description)) (Stack2)
(NodeName) | (atom)?
(NodesList) | nil|({(NodeName) - (NodesList))
(atom) | Lisp atom
(Description) | S-expression for a description in DLFDA

Table 4.1: S-EXPRESSION ENCODING FOR CGU DATA

Initially, the CGU data is the empty list. Either inclusion dependencies can be
added to the global terminology or partial databases can be created and manipu-
lated. A typical session for an application using the CGU consists of the (optional)
definition of the global terminology by one or more calls to addGlobalIncDep; then
a call to create a partial database with createPD and its subsequent setPD call;
thereafter (also optionally) create some initial nodes; then push description-node
pairs to stackl and; finally a call to the expand functions. Consider for example
the code in Figure 4.4 showing a typical use of the CGU interface.

Lines 1 and 2 add each one an inclusion dependency to the global terminology.

!The atom representing the name of an atomic concept
2The atom representing the name of the partial database
3The atom representing the identifying name of the node

45

addGlobalIncDep((atomic C1),(forall Al (atomic D)))
addGlobalIncDep((atomic C2), (forall A2 (atomic E)))
createPD (SamplePD)

setPD(SamplePD)

createNode (NodeX)

createNode (NodeY)

pushStackl((atomic C1), NodeX)

pushStackl((atomic C2), NodeY)

Figure 4.4: SAMPLE USAGE OF THE CGU INTERFACE

The function addGlobalIncDep recognizes that both left hand sides (LHS) are
atomic concepts and adds one entry to the list with the atom for each of the
atomic concepts. The right hand side (RHS) is stored as a property of the atom
representing the LHS using the identifier GlobalT. Line 3 creates an empty partial
database with the name SamplePD. At this point the partial database is nothing
more than the list with the name and null entries for the two stacks and the nodes
list. The S-expression for the partial database looks like: (SamplePD () (O ()).
Line 4 just sets the global variable for currentPD to point to the partial database
SamplePD. Lines 5,6 create the nodes NodeX and NodeY which consists in adding
the atoms NodeX and NodeY to the list of nodes for the SamplePD and adding
a property called SamplePD to each one of them. Finally, lines 7 and 8 will push
the description-node pairs (atomic C1)-NodeX and (atomic C2)-NodeY to stackl.

After the example code in Figure 4.4 has been executed, the S-expression for the
CGUData is:

((C1 C2) (SamplePD (((atomic C2) NodeY) ((atomic C1) NodeX)) () (NodeX
NodeY)))

Figure 4.5 shows the diagrammatic representation of the CGUData after some
inclusion dependencies have been added, n partial databases have been created and
m nodes exist in partial database PD1

The complete S-expression for Figure 4.5 is:
(((LHS)...(LHS)) (PD1 ((Stackl)) ((Stack2)) (N1...Nm))...(PD,))

Note that atoms’ property lists do not appear in S-expressions. Therefore, the
property lists for the left hand side of the inclusion dependencies and for the nodes
in the partial database are presented separately in Table 4.2

4The property list for an atom is returned when we evaluate that atom, hence the title of the
second column is eval({atom,)).

46

| -—L '%¢%¢% 7 (PD.)

\

(LHS) (LHS) "P]il” (Stackl) (Stack?2) [EE'_, ng
"N

™"

Figure 4.5: CGU DATA

(atom) eval ({(atom))*
C1 (GlobalT (forall Al (atomic D)))
C2 (GlobalT (forall A2 (atomic E)))

NodeX | (SamplePD ())
NodeY | (SamplePD ())

Table 4.2: PROPERTY LISTS FOR ATOMS CREATED DURING EXECUTION OF CODE
IN FIGURE 4.4

As mentioned above, typically after the code in Figure 4.4 has been executed,
the commands that will follow are calls to expandl and/or expand2. However, it is
possible but unlikely, that some of the other graph manipulation functions are used
directly on the partial database before calling the expand functions. Consequently,
having the terminology and the initial description/nodes in the stacks, the calls to
expandl and expand?2 will attempt to create in the graph the same logical implica-
tions that the descriptions represent and at the same time check if that description
or its implications did not introduce an inconsistency. These expand functions are
precisely the core of the CGU in terms of the reasoning performed on the graph so
we will review them in more detail below.

4.3.1 Expand functions

The expandl function roughly implements the rules that have a deterministic effect
on the graph. It generally covers the rules applied to all the constructors of DLFD.A
except the general concept disjunction and the attribute typing. These last two are
the ones covered by expand2. The structure of the expandl algorithm is really
simple as we can see in algorithm 2.

Note that expandl will return TRUE when, having deposited the descriptions
in the nodes requested, no clash is detected, and it will return FALSE as soon as the

47

Algorithm 2 Expandl general structure
1: while stackl not empty do

2: (D,n):=popStackl()

3: Attempt to deposit D into node n and trigger the appropriate actions
4: if clash detected then

5: return false

6: end if

7: end while

8: return true

first inconsistency is detected. The phrase “trigger the appropriate actions” in line
3 is more or less analogous to applying the equivalent rule of the tableau algorithm
presented in chapter 2 of [5]. The complete set of rules is presented below:

When trying to add D to n apply:

Deterministic Rules

C rule

1. If =C is in £(n) then clash.
2. Otherwise,

(a) Add C to L(n)
(b) If C C D isin 7, then try to add D; to n

(c) Check if the node was waiting for the concept C' and trigger the
action requested.

-(C rule

1. If C is in £(n) then clash
2. Otherwise,

(a) Add —C to L(n)
(b) Remove all the triggers that were waiting for the concept C.

VPf.—-C U Dy rule

1. Traverse the path Pf as far as possible.

48

2. If you get to the end of the path Pf at node npy, check if C'is in L(npy).
If it is, then add D, to n., If it is not, then wait for C' at node np; and
then try to add D5 to n.

3. If the complete path Pf does not exist, then wait for the path to be
completed and then proceed as above.

D, 11 Dy rule

1. Try to add D; to n.
2. Try to add Ds to n.

Pfi = Pf; rule

1. Traverse the path Pf; creating nodes and edges as necessary.
2. Traverse the path Pf, creating nodes and edges as necessary.

3. Add an equality arc between the two nodes npy,, npy,.

Pfi # Pf; rule

1. Traverse the path Pf; creating nodes and edges as necessary.
2. Traverse the path Pf, creating nodes and edges as necessary.

3. Add an Inequality arc between the two nodes npy,, npy,.
DQf rule

1. Create a new node n,e,. Add an edge f from ng,e, to n.

2. Try to add D to nyew-
Vf.D rule

1. If there is an edge f from n to any node ny, try to add D to ny.
2. If n is root, create a new node called f and try to add D to f.

3. Otherwise, let the non-deterministic rule to handle the description.
C:{A,.... A} —id

1. If any of the edges in {Aq,...,A,} is missing, wait for all the edges to
be added. When added, proceed to 2.

49

2. When all the edges are present, go to each of the nodes reached and
check all the corresponding incoming edges to see if you get to a C.
If when checking all the nodes reached from n by traversing the edges
{A;,..., A,} it is detected that they coincide with the nodes reached
by traversing the edges {Ai,...,A,} from another node y, and that
C € L(y) then, add an equality arc between n and y.

Non-Deterministic Rules

Vf.D rule

1. If there is an edge f from n to any node ny, try to add D to ny

2. Otherwise, create a new node ny,e,, add an edge f from n to n,e, and
try to add D to npey-

D1 L D2 rule

1. Set a check point

2. Add D; to n. if it leads to a clash backtrack to the previous checkpoint.
If no clash found, return TRUE.

3. If clash detected in 2, then Add D5 to n. If no clash detected return
TRUE.

Note that the two “waits” in the VP f.—~C' U Dy rule are handled using some
special descriptions placed in £(n). The addition of equality arcs is handled using
a node merge algorithm similar to encoding equivalence classes in a tree, commonly
known as the disjoint set union algorithm. Also note that the phrase “try to add D
to n” represent the recursive application of the rules since D can be any description
while “add C to £(n)” is an unconditional addition of the concept C to the labels
of node n. In our particular implementation, “try to add D to n” is translated
to push (D;n) to the stackl. Also note that expandl has an independent stack
from expand2 and whenever descriptions handled with the non-deterministic rules
appear in the stackl they are just pushed to the top of stack2.

For the algorithm of expand2, we have rougly the implementation of the two
non-deterministic rules as we can see in algorithm ??. The reason to have those two
sets of rules was to be able to handle the query optimization part more efficiently.
We noticed that only the deterministic rules were needed to create the query graph

20

including the terminology. On the other hand, the expand2 rules were still needed
to have a complete DL reasoner.

Another peculiarity of our CGU is that it also assumes the existence of a virtual
node called root. There is only one root in every partial database. This node is
virtual because it does not materially exist in the list of nodes for any of the partial
databases but we can still instruct the CGU to add descriptions to the root. These
descriptions can only use the constructs VPf.C, Pfy = Pfs, Pfi # Pfs, where
none of the Pf are just i¢d. It is clear to see that if we only use those constructors
then L(root) is always empty and therefore it is not needed. Also, for every node
in the partial database, there is one edge labeled “n” from the root node to the “n”
node.At this point the existence or not of this special node is transparent, but its
use will become evident when we discuss the CQO driver.

4.4 DL Reasoner

The algorithmic details for the DL, Reasoner driver have been mostly revealed in
chapter 3. This is partially because the implementation of the reasoner functions
can be mapped, almost directly, to simple calls of the CGU functions with very
little extra manipulation added. However for the purpose of understanding the
subtle minor manipulation required, consider the sample session of the DL reasoner
below:

1: inKnowledgeBase (AbstractKB)

implies_c((atomic C1), (forall A (atomic C3)))
implies_c((atomic C2), (and (atomic C1) (forall A (atomic C4)))
implies_c((atomic C3), (not (atomic C4)))

satisfiable((atomic C2))

In this example we are interested in knowing whether C2 is satisfiable or not
given the terminology presented above. The terminology says that C'1 are those
things that have an attribute A that is a C3 (line 2). It also says that C2 are
those objects that among other things are C2 and that have an A that is a C4 (line
3), and it also specify that C3 and C4 are disjoint (line 4). It is not hard to see,
that given the semantics for the DL constructors and the terminology, C'2 is not
satisfiable since it is required to have an attribute A to something that is at the
same time a C'3 and a C'4 which clearly contradicts the last inclusion dependency
of the terminology. Lets see then how the satisfiable function works so it detects
that contradiction. The algorithm for the satisfiable function is:

Require: C

ol

pushStackl((forall x C), root)
if expand1() then

return expand2()
else

return false
end if

After running expandl in line 2, the CGU creates a node x with C2,C1 in L(x)
and it will try to add VA.C3 to n and it will also try to add VA.C'4 to n. Since
there is no outgoing edge A from n, the processing of those two calls will be deferred
to the call of expand2. The call to expand2 in line 3 will then create a new node
nl and it will add an edge from n to nl labeled A. It will also deposit C'4,C3 in
L(n1l) and when trying to add =C4 to nl it will detect that C4 is already in that
node and then it will return false i.e. C2 is not satisfiable. The graph created is
presented in Figure 4.6.

x:{C2, Cl}

nl : {C4, C3}

Figure 4.6: GRAPH CREATED TO TEST THE SATISFIABILITY OF CONCEPT C2

For the subsumption test, the algorithm is pretty similar but with two changes
as we can see below:
Require: D2, D1
1: C' «+ transform D11 —-D2 to NNF
2: pushStackl((forall X (C), root)
3: if expand1() then
4. if expand2() then
return false
else
return true
end if
else
10: return true

52

11: end if

The two changes are that we transform the description D1M—D2 into negation
normal form and that we invert the result of the expand functions. This is because
we are actually checking for the unsatisfiability of that description for the test
subsumes (D2,D1) to be true. In practice, we could replace lines 2-10 by returning
the negation of the call to satisfiable(C). For example, we could remove the
line 3 from the terminology definition at the beginning of this section (4.4) and
then test whether C2 C VA.(C3 1M C4). We can see that when we transform
C2M - (VA.(C31MC4)) to NNF we will end up with C2MVA.(-C3 1 —-C4) which
requires the non deterministic check of both ~C3 and —~C'4. It is clear that the
check for satisfiability will return false proving that indeed VA.(C3MC4) subsumes

C?2 as expected.
x:{C2, Cl}
A
Y

nl:{}

Figure 4.7: GRAPH CREATED AFTER TESTING WHETHER OR NOT D2 SUBSUMES
D1.

4.5 CQO

The conjunctive query optimizer, as mentioned throughout this research work,
shares several processes with traditional DL reasoning procedures. It is then ex-
pected that our proposed query optimizer makes intensive use of the CGU to find
the execution plan for a given query (), in particular of the expand functions. As
presented in chapter 3, the CQO interface only has two functions. One to in-
put the schema and one to get the plan of a query. The algorithmic details of the
addtoSchema function are trivial since they are almost literal calls to the addLocal-
IncDep function in the CGU. However, the interesting issue, is how we can actually
capture the database schema using such inclusion dependencies.

23

4.5.1 Capturing conceptual design

For presentation purposes, we will use the widely used ER diagram tool to describe
the elements captured in a database. In simple terms, an ER diagram contains
three basic elements: Entities, Attributes and Relationships. Assume we have the
ER diagram presented in Figure 4.8.

CED s

Truck Car MaxSpeed

Figure 4.8: ER DIAGRAM FOR A VEHICLES DB

Using the first three rows in Table 3.7 we can capture the following constraints:

e There are three Entities: Vehicles, Trucks and Cars

— (class (atomic Vehicle))
— (class (atomic Truck))

— (class (atomic Car))
e Vehicles have a LicenseNum/[ber|, a Maker, a Model and a Price

— (property (atomic Vehicle) LicenseNum)

— (property (atomic Vehicle) Maker)

o4

— (property (atomic Vehicle) Model)
— (property (atomic Vehicle) Price)

A Truck is a kind of Vehicle. A Car is a kind of Vehicle

— (is-a (atomic Vehicle) (atomic Truck))

— (is-a (atomic Vehicle) (atomic Car))

All the Vehicles are Cars or Trucks

— (is-a (atomic Vehicle) (or (atomic Car) (atomic Truck)))

No Car is a Truck and no Truck is a Car, i.e. they are disjoint.

— (is-a (and (atomic Car) (atomic Truck)) (bottom))

— (is-a (atomic Car) (not (atomic Truck)))

LicenseNum/[ber]| is the key for Vehicles

— (is-a (atomic Vehicle) (pfd (atomic Vehicle) (LicenseNum) ()))

Moreover, although not present in the ER diagram and somewhat contrived for
the sake of showing the capability, we could express the following constraints:

e Foreign keys. Consider for example that the maker attribute is indeed another
entity.

— (is-a (atomic Vehicle) (forall Maker (atomic MakerType))
e Inverse Attributes. A Vehicle must be driven by a Person

— (is-a (atomic Vehicle) (at (atomic Person) Drives))

Essentially, all the class definitions are stored directly as primitive concepts, all
the property definitions declare the attributes for the primitive concepts and all the
is-a are translated directly to inclusion dependencies. For example:

addtoSchema((is-a (atomic Vehicle) (or (atomic Car) (atomic Truck))))
is simply translated to the call:

addGlobalIncDep((atomic Vehicle) (or (atomic Car) (atomic Truck)))

95

4.5.2 Capturing Physical Design

To capture the physical design, we basically generalize the notion of an index so it
can be used to characterize not only indices as known in databases but also simple
table scans and even field navigation within a record are abstracted in our design
as indices. In the CGU, an index is captured as the subgraph presented in Figure
4.9.

vl {..CI.}

vn :{...Cn..}

Figure 4.9: SUBGRAPH CHARACTERIZING AN INDEX IN THE CGU

Where C' is called an index; P1,...,Pn, R are special attributes, Pi’s being
the parameters of the index and R the resulting object of type C’. C1,...,Cn are
respectively the types of the parameters P1,...,Pn.

Consider now that at the physical level we have a table “Vehicle” with four
columns: LicenseNum, Maker, Model, Price and that we have an index on Li-
censeNum and an index on Maker. At the physical level could say:

e Vehicles are records identified by an address on a table in memory.

— (address (atomic Vehicle))

— The above is transformed to addLocalIncDep((atomic Vehicle), (atomic
Address))

e LicenseNum, Model and Price are integers; Maker is a string

— (integer (atomic LicenseNumType))
— (integer (atomic ModelType))
— (integer (atomic PriceType))

— (string (atomic MakerType))

o6

e We can scan the whole Vehicle table

— (index (atomic VehicleIndex) 0)

There is an index on LicenseNum

— (index (atomic LicenseNumIndex) 1)

— (parameter (atomic LicenseNumIndex) P1 (LicenseNumType))

There is an index on Maker

— (index (atomic MakerIndex) 1)

— (parameter (atomic MakerIndex) P1 (MakerType))

The Vehicle record has a Price field

— (index (atomic PriceField) 1)

— (parameter (atomic PriceField) P1 (PriceType))

Notice that the index on LicenseNum is defined analogously to the MakerIndex
and that we will have to define an index on each of the 4 fields to indicate the
capability of extracting the field given the address of the record. Notice that in our
simple model, we then only recognize integers, strings, addresses, and indices and
we do not really differentiate among different types on indices.

Similar to the processing of the schema constraints at the logical level, the
constraints at the physical level are also translated into axioms in the terminology.
Thus, for example, among other things, the following will be executed for the above

constraints:

addGlobalIncDep((atomic
addGlobalIncDep((atomic
addGlobalIncDep((atomic
addGlobalIncDep((atomic

addGlobalIncDep((atomic

PriceType), (atomic Integer))
MakerType), (atomic String))
vehicle), (atomic

MakerIndex),

PriceField),

57

(and
(and
(and

(and
(and
(and

Address))

(atomic INDEX)

(forall P1 (atomic MakerType))
(forall R (atomic vehicle))
(equal (R maker) (P1))))))
(atomic INDEX)

(forall P1 (atomic vehicle))
(forall R (atomic PriceType))
(equal (P1 price) (R))))))

The last two are created for every index and essentially they capture the types of
all the parameters and the type of the result. They also need the equality condition
that given a combination of the parameters, the returned element will have those
values in their appropriate attributes.

4.5.3 Compiling a Plan

Once we have defined the database schema we can now generate plans for the
desired conjunctive queries using the function compile(Q). The algorithm used is
presented in Algorithm 3:

Algorithm 3 Conjuctive Query Optimizer Main Module
: Receive)
Normalize @ to @’
Create description D¢ from @
Create T' = {DTlQl, ceey DTnQ’} from _|DQ
Create Query Partial Database PDg
Push Dg-root to Stackl
Create Plan Partial Database PDp
Initialize Plan P
while 7' is not empty do
Call expandl on PDg
if no further binding is possible then
return fail
end if
Select next node n to bind from PDg and mark it as “bound”
Push the [index| definition of the node n in the root of PDp
Update the Plan P with the new binding
Deal with the R attribute. (Copy or check in the plan) and update the plan
and the graph as appropriate.
18: Call expandl on PDp
19: while head(T) on PDp is inconsistent do
20: remove head(T) from T’
21: end while
22: end while
23: return P

e e e e e

The algorithm is basically a two phase approach similar to the one presented
in [18]. In the first phase a query graph is created after the query is transformed

o8

into a DL description, and then, in the second phase, a differential approach is
used to generate the plan. The plan graph is originally empty and as nodes are
being bound in the query graph they are being added to the plan graph and their
correspondent actions in the plan are included.

Normalization in line 2 refers to the process of converting the query from the
grammar described in chapter 3 to a more convenient form that allow us to trans-
form it to a description Dg in a straightforward way. During this transforma-
tion, additional concepts are added to help us identify three types of variables:
Query Variables, Iterative Variables and Existential Variables. The Query Vari-
ables (QVAR) refer to those that are in the outermost select clause, the iterative
variables (IVAR) are the ones that will be joined in an iterative semantics and the
existential variables (EVAR) refer to the existentially quantified variables. The set
T refers to each one of the disjuncts obtained by normalizing = Dg,.

Once Dy, is deposited in the root of the Query Partial Database (PDg) we enter
into a loop that will try first to create the query graph by expanding the description
in line 10 during the first iteration. At the end of this first expansion the query
graph will look similar to a universal plan as the one suggested in [2]. From now
on, in each one of the next iterations it will try to bind one more iterative variable
until the plan is completed or no more variables can be bound. In every cycle,
when a variable is bound, it is copied to the plan graph by pushing into the stackl
of the Plan Partial Database (PDp) the corresponding description of the iterative
variable that was bound in the current iteration. Additionally special code was
added to consider the cases were the binding of an index results in an attempt
to bind a variable already bound (resulting in the addition of a check clause to
the plan) and when binding a node in the plan graph that is equal to more than
one node containing query variables. At the end of the loop, we check if this new
variable binding resulted in one of the conditions of the query being met (translated
as one of the elements of T" leading to an inconsistency in the plan graph). Every
time a condition is met, it is removed from 7', therefore our termination condition
is when 7' is empty (i.e. the query is now answered by the plan).

To give the reader an example of what will be the result of this process, consider
the query in table 4.3:

Taking that query as input, we can then translate it into a canonical form that
makes the translation of the query into a description a straightforward process.
The canonical form uses a slightly different query language that allows a n-ary
from construct (from @ ...Q,), where n can even be 0. An empty from has the
semantics of the null tuple. The canonical query form looks like this:

In the canonical form, vg, ...vq, are the query variables, vy, ...v;, are the

29

Give me the price of the vehicles whose maker is :m

(select vprice, :m
(from (as vehicles v)
(from (as PriceType vprice)
(from (as param :m)
(from (as MakerType :m)
(from (equal v (price) vprice ())
(equal v (maker) :m (0))))))

Table 4.3: PRICE OF VEHICLES FROM MAKER :M

(select vq,...vq,
(from (as C; vp)

(as Cr UIS)
(elim (select vg, ...vp
(from (as C) vg,)

(as C, vg,)
(from
(equal vg, (Pf1) vg, (Pf2))
(equal vg, , (Pfy,-1) vg, (Pfy,))))))))

Table 4.4: QUERY CANONICAL FORM

iterative variables and vg, ...vg, are the existentially quantified variables. Also
note that

{vg, - vo,} CH{vy ..o, } U{vg, ... vg}
and that in turn

{UEl .. -UEt} Q {UEl ce UEu} U {UEl ce UEU}
Thus, the canonical transformation for our query is presented in Table 4.5:

Then from the canonical form, getting the description Dg is easy. It consists
in translating every query variable v, into Vvg,.QV AR, every iterative variable
vy, into Yuy, . IV AR, every (as C) vp) into Vuy,.C;, every (equal vg, (Pfi) vg,
(Pfy)) into (equal (vg,.Pf1) (vg,.Pf3)) and every existential variable into Vug,.C;,
and finally express the conjunction of all of the above. For our particular query,
the description Dy is presented in Table 4.6:

60

(select vprice, :m
(from (as vehicles v)
(as PriceType vprice)
(as param :m)
(as MakerType :m)
(elim (select v, vprice, :m
(from
(from
(equal v (price) vprice ()
(equal v (maker) :m ()))))))

Table 4.5: QUERY AFTER TRANSFORMATION OF CANONICAL FORM

(and (forall vprice (atomic QVAR))

(and (forall :m (atomic QVAR))

(and (forall v (atomic vehicles))

(and (forall v (atomic IVAR))

(and (forall vprice (atomic PriceType))

(and (forall vprice (atomic IVAR))

(and (forall :m (atomic param))

(and (forall :m (atomic MakerType))

(and (forall :m (atomic IVAR))

(and (equal (v price) (vprice))
(equal (v maker) (:m)))))))))))

Table 4.6: DESCRIPTION Dg

The description —Dg is obtained by negating the whole Dg directly and then
applying the negation normal form. The result is the disjunction of the negation of
each of the conjuncts in Dy as we can see in Table 4.7.

We could use = Dg directly as our condition to terminate the while in line 9,
however it is more efficient if we just consider each one of the disjuncts individually.
The reason is because the or rule requires an exponential check while checking each
one of the disjuncts individually can be done using the deterministic rules. Thus,
T as referred in line 4 in the CQO algorithm is just the set with each one of the
disjuncts of = Dy.

Then, the algorithm continues with the creation of the partial database for the
query and the partial database for the plan. The description Dg is then placed in

61

(or (forall vprice (not (atomic QVAR)))

(or (forall :m (not (atomic QVAR)))

(or (forall v (not (atomic vehicles)))

(or (forall v (not (atomic IVAR)))

(or (forall vprice (not (atomic PriceType)))
(or (forall vprice (not (atomic IVAR)))

(or (forall :m (not (atomic param)))

(or (forall :m (not (atomic MakerType)))

(or (forall :m (not (atomic IVAR)))

(or (nequal (v price) (vprice))

(nequal (v maker) (:m))))))))))))

Table 4.7: DESCRIPTION —Dg

the root node of the query PD ready to be expanded in the first iteration. The
plan is initialized with an outer keep operation of all the query variables and a
single nest operation plus a place holder that will be replaced by subplans in every
iteration as more variables are bound in the query graph and copied to the plan
graph. This iterative process is what will drive the creation of the plan. In our
case, the initial plan looks like this:

(keep vprice, :m

(nest [1))

In the very first call to expandl in line 10, the description Dy is expanded into
the query graph presented in Figure 4.10.

Initially, the only variable that can be bound is the parameter :m. Consequently
this is the variable selected to be bound next in step 14. Its selection causes (param
:m) to be added to the plan and the node :m to be created in the plan graph. The
node is created because the algorithm pushes the definition of the node :m in the
root of the plan PD and then we call expandl on the plan PD (line 18). Then T
is checked to see if one or more of the elements when added to the plan PD makes
it inconsistent. This step is our stopping condition. An empty 7T set means that
the plan graph now captures all what is required by the query. Since the very first
element of T is not inconsistent with the plan graph then we leave it in the set T'
and the first iteration ends.

At the beginning of the next iteration in line 10, the call to expand1 in the query
PD causes that a new possible node that can be bound be detected. The new node

62

INDEX
nl:MAKERINDEX
ADDRESS

IVAR

QVAR VEHICLES

v: ADDRESS
STRING

n2: PRICEFIELD
ADDRESS

Figure 4.10:

corresponds to the nl node since its only required parameter :m has been bound.
Hence, this new node is the next one bound, its definition pushed to the plan graph,
that in turn is expanded. The binding of n1 causes the nesting of the subplan (scan
MakerIndex nl :m) indicating that the index MakerIndex is scanned. Since nl is
an index, we need to deal with the result (R) attribute (see line ??). Dealing with
R refers to the addition of the plan the clause (copyr v n1). This expresses that
the result of the index scan will be ultimately assigned to the variable v. Then T is
checked again and since the first element can not be removed T is left unchanged.

In the final iteration, with :m, nland v bound and the call to expandl in query
PD detects that n2 can be bound next. It is then bound what causes the addition
of the subplan (scan PriceField n2 v) and also the addition of (copyr vprice
n2) when dealing with the R of n2. The expansion of the plan graph after these
two last nodes are bound in the query graph causes the plan graph to be completed.
Then when the elements of the set 1" are checked for inconsistency, all the elements
are found inconsistent and then removed from 7. Since now 7T is empty the while
terminates and the final plan is returned. The final plan looks like this:

(keep vprice, :m

63

(nest
(param :m)
(scan MakerIndex nl :m)
(copyr v nl)
(scan PriceField n2 v)
(copyr vprice n2)))

Although the correctness proof is beyond the scope of this thesis, we can see
that the plan above implements the query from Table 4.3 returning all the prices
labeled vprice for the vehicles whose maker is :m.

64

Chapter 5

Summary and Conclusions

We started this journey with the idea of exploring the similarities between two
apparently different processes, but those we believed had many things in common.
The two processes, subsumption of descriptions in DL and conjunctive query op-
timization, shared, in essence, the creation and manipulation of a graph as a way
to capturing and reasoning about the knowledge contained in the universe under
scrutiny. We then elaborated on the design and algorithms of those common func-
tions to create and manipulate the graphs enclosed in an utility set that we called
CGU and finally we discussed an presented the details of how that set of functions
can indeed be used to implement a DL reasoner and a simple conjunctive query
optimizer. Along the way, there were several lessons learned relating to common
functionality between DL reasoning and CQO.

On the DL reasoner side:

a) Separation of Expandl and Ezxpand2. Due to the fact that we have a set of
rules that behave deterministically and another set of rules that behave non-
deterministically, and considering that the CQO process essentially uses only
the deterministic set we had to separate the application of all the deterministic
rules in expandl from all the other rules in expand2. This allowed us to use
the non-deterministic rules only for the DL reasoner as required while the
CQO could use the rules in expandl as many times as needed with out going
into a non-deterministic check.

b) The special root node in the Partial Database. To encode the fact that every
node in the query graph becomes a variable that has to be bound in the plan
graph we introduced a special node called “root” that has an edge (repre-
senting an attribute) with the same name as the node it is pointing to. This

65

virtual node allowed us to have a starting point for the query graph and gave
us the capability of unifying, for that node only, attribute names and node
names. Because of this characteristic, when used as a DL reasoner, instead
of creating a node x and then reasoning with:

T E Dy C Dyor T DM —D;y is consistent?
we could simple use (from root):

T EVz.Dy CVx.Dy or T |=Va.(Dy M —Dy) is consistent?

The issue about Query Variables and node equalities. To identify that a node
was also a query variable, we introduced the atomic concept QVAR and we
found that even though for DL purposes if could be copied when two nodes
merge, it was necessary that we leave the QVAR description in the node
where it was originally placed. In this sense we had to handle this atomic
description differently from the others when two nodes merge. Our solution
was that even when the two nodes will not share the QVAR description, they
will still have a way to recognize that the other was a QVAR without having
to visit all the nodes in the equivalence class tree.

On the CQO side:

a)

Schema can be very rich. Using the DL language chosen, we were able to
describe many things that were usually described in DB schemas and used
for query optimization like entities, properties, foreign keys, etc., but we were
also able to include things like disjoint clauses and cover clauses (union of
concepts) that basically enrich the schema language and allow us to work on
some different rewrites for optimization.

DL fundamentally enriches the power of some rewrites, and also the power of
CQL. We basically found the CQO benefitted from the DL in the sense that
we could use the extra knowledge to deduce even more things, one example
being the reasoning about duplicate elimination using FDs as presented in [4]

5.1 Future work

At the end of this journey we found that there is a vast world of research directions
that we would like to explore because they pose intriguing questions given the
existence of the tools we created. Some of those directions include:

66

e Generalized Path Functional Dependencies. The constructor included in our
DL language to define keys was a particular case of the path functional de-
pendencies. We would like to explore more what will be the implications and
design problems when using a more general class of functional dependencies
like

CiCCy:{Pfr,....,Pfa} = Pf

e Join Order Selection. Our proposed CQO algorithm does not really consider
the problem of which variable bind next when there is more than one. The
rules required to do that in this setting seem also very valuable and worthwhile
exploring.

e Cost Models. Again, indices in our setting, do not distinguish between a
table scan from a fast B-plus tree index and from the different types of joins
in terms of the cost of the different approaches. A CQO with that capability
is highly desirable.

e Join plus union all. Our plan language does not support union and the
addition of this single operator is considered to bring the ability to expand
the query language to support a more general class of queries.

And finally there are many other considerations that would be nice to explore
as different interfaces to the query optimizer, for example we could accept valid
conjunctive SQL queries as input and the transform them so that ultimately we
could still generate the plans. Another idea is to couple this with the DL reasoning
required in the semantic web, in particular for OWL-DL and test how it will behave
in that setting. That will also probably required the addition of roles to the set of
rules in the algorithms which is also intriguing.

As we can see there are many other possible research directions out of this and
we hope that we can see some of them materialize in the not so far future.

67

Appendix A

Naive Lisp (NLISP)

The Naive Lisp (including the memory manager) requires the following files to be
compiled:

e store.h

e snode.c

e soper.c

e ecvaluate.c

e parser.h

® parser.c

e hash.c

e memmgr.c

The main header file for the Lisp module is the store.h header file. This file
declares all the functions available to the upper layers as we can see below.

/**

store.h - description
begin : Tue Aug 3 2004
copyright : (C) 2004 by Alex Palacios

68

email : japalaciosvilla@uwaterloo.ca
skoksksksk sk ok ok o o okok sk sk sksksk sk ok ok sk ok ok sk sksk sk sk sk sk o okok sk sksk sk sk sk sk ok sk ok ok sk sk sk sk sk sk sk sk ook ok ok ok ok /

//Max length of strings in string cell
#define STRSIZE 8

// define S cell types
#define INTTYPE O
#define STRTYPE 1
#define CONSTYPE 2
#define NILTYPE 3

// define TRUE and FALSE
#define TRUE 1

#define FALSE O

#define boolean short int

typedef union mblk *Sptr;

typedef union mblk {
struct stringcell {
char strdata[STRSIZE+1];
Sptr next;
} strstore;

struct cell {
short int stype;
int rcount;
Sptr nexthash;
union Stypes {
struct type0O {
Sptr def;
union atmcont {
int intval;
Sptr next;
}c;

} atom;

struct type2 {

69

unsigned int version;

Sptr car;
Sptr cdr;
} list;
ot
} Scell;

struct freeblk {
Sptr next;
} freecell;

} MemBlock;

//Functions in snode

Sptr getNil(void);

void release (Sptr);

Sptr newSnode(short int);
Sptr assign(Sptr);

Sptr decrement (Sptr) ;

Sptr stringToStrStore(charx);
void strStoreToString(Sptr,charx);
int stringcmp(Sptr, charx);
int storecmp(Sptr, Sptr);
void finish(int);

//Functions in soper

int getStype (Sptr) ;

int getAtomIntVal (Sptr);
Sptr getAtomStrStore (Sptr);

Sptr cons(Sptr, Sptr);
Sptr car(Sptr);

Sptr cdr(Sptr);

Sptr rplaca(Sptr, Sptr);
Sptr rplacd(Sptr, Sptr);
Sptr cvr(char*,Sptr);
boolean Atom(Sptr);
boolean Null(Sptr);
boolean Listp(Sptr);

70

Sptr
Sptr
Sptr
Sptr

set(Sptr, Sptr);

eval(Sptr); // in evaluate.c
mkatom(charx*) ;

lread(charx*) ;

// new in soper

boolean eql(Sptr, charx);
boolean eq(Sptr, Sptr);
boolean neq(Sptr, Sptr);
int atomcmp(Sptr, Sptr);
int compareS(Sptr, Sptr);

Sptr
Sptr
Sptr
Sptr
Sptr
Sptr
Sptr
Sptr
Sptr
Sptr
Sptr

gensym(charx) ;
getprop(Sptr, Sptr);
putprop(Sptr, Sptr, Sptr);
remprop(Sptr, Sptr);
getpropL(Sptr, Sptr);
putpropL(Sptr, Sptr, Sptr);
rempropL(Sptr, Sptr);
append(Sptr, Sptr);
last(Sptr);

insertSortList (Sptr, Sptr);
listUnion(Sptr, Sptr);

boolean member (Sptr, Sptr);

Sptr

Sptr
Sptr
Sptr
Sptr
Sptr
Sptr
Sptr
Sptr
Sptr
Sptr
Sptr

assq (Sptr, Sptr);

getp_fd(Sptr, Sptr, Sptr (%) (Sptr));

putp_fd(Sptr, Sptr, Sptr, Sptr (x) (Sptr), Sptr (*) (Sptr,Sptr));
remp_fd(Sptr, Sptr, Sptr (*) (Sptr), Sptr (*) (Sptr,Sptr));
findPrevList (Sptr, Sptr);

findListHead(Sptr, Sptr);

addList (Sptr, Sptr);

removelist (Sptr, Sptr);

updatelList (Sptr, Sptr, Sptr);

getprophead(Sptr, Sptr);

getpropLhead (Sptr, Sptr);

getph_fd(Sptr, Sptr, Sptr (*) (Sptr));

71

Appendix B

Versioning

The versioning module requires only two files to be compiled. The files are:

e version.h

e vlsversion.c

Those files need to be compiled on top of the NLisp files. The version.h header
file is the one declaring the interface to the upper layers. The header file is presented
below:

/K sk sk ok ok sk ook ok sk ok ok ok ok ok sk sk ok ok ok ok ok sk ok ok sk ok ok ok sk ok ok sk sk ok ok sk ok ok sk o ok ok sk ok ok ok ok ko ok ok ok ok ok ok ok

version.h - description
begin : Wed Jan 12 2005
copyright : (C) 2005 by Alex Palacios
email : japalaciosvilla®@uwaterloo.ca

S K KKK KKK oK K oK KoK K oK K ok K ok K ok ok K ok ok K ok ok K ok K ok Kok K ok Kok Kok K ok Kok KR KR KR KKK KKK KRk /
void resetLogVer(void);

void vprintS(Sptr);

void vsprintS(char*, Sptr);

Sptr _cons(Sptr, Sptr);
Sptr _car(Sptr);

Sptr _cdr(Sptr);

Sptr _rplaca(Sptr, Sptr);

72

Sptr _rplacd(Sptr, Sptr);

Sptr consO0(Sptr, Sptr);
Sptr vcons(Sptr, Sptr);
Sptr vcar(Sptr);

Sptr vecdr(Sptr);

Sptr vrplaca(Sptr, Sptr);
Sptr vrplacd(Sptr, Sptr);

Sptr vaddList (Sptr, Sptr);
Sptr vaddendList (Sptr, Sptr, Sptr);

int getVersion(Sptr);
int getCurrentVersion(void);
boolean currentVersion(Sptr);

void pushVer(void);

void popVer(void);
void setPopLog(Sptr, Sptr, Sptr);

73

Appendix C

Pattern matcher/Rule controller

This module requires the following files:

e pattern.h

e pattern.c

e rewrite.c

The header file pattern.h contains the declaration of the functions used in both
subcomponents. The pattern.c implements the functions of the Pattern Matcher

and the rewrite.c implements the functions for the Rule Controller. The header file
is presented below:

/**

pattern.h - description
begin : Thu Sep 30 2004
copyright : (C) 2004 by Alex Palacios
email : japalaciosvilla®@uwaterloo.ca

**/

void initVars(void);
void finalizeVars(void);
Sptr topCopy(Sptr);

Sptr getBindVal(Sptr);

74

Sptr putBindVal(Sptr, Sptr);

Sptr pushMatchVar(void);

Sptr popMatchVar(void) ;

Sptr Build(Sptr);

boolean Match(Sptr,Sptr);

Sptr Bindq(Sptr);

boolean ApplyRuleControl (Sptr, Sptr);
Sptr LoadRules(Sptr);

Sptr LoadControl(Sptr);

Sptr UnLoadRules(Sptr);

Sptr UnLoadControl(Sptr);

Sptr initControl(char *, char *);
Sptr finalizeControl(Sptr);

75

Appendix D

CGU

The files required in the CGU module are:

e reasonerapi.h
e reasonerapi.c

e expand.c

The reasonerapi.h contains the interface functions for the CGU. The reason-
erapi.c contains the implementation of those functions except for the two expand
functions that are implemented in expand.c. The header file is presented below:

/KK ok sk ok sk ok ok ok sk o ok ok sk ok ok 3 ok K ok ok 3 ok K ok ok 3k ok 3k ok K sk ok 3 ok ok ok ok 3 ok K ok ok 3 ok ok ok sk ok ok sk sk ok ok sk k ok

reasonerapi.h - description
begin : Thu Nov 18 2004
copyright : (C) 2004 by Alex Palacios
Shishir Agarwal
email : japalaciosvilla®@uwaterloo.ca

***/

/*x
Oshort Terminate the control program for the Negation Normal Form.

It will basically free the memory used for all the variables in the
control program for the Negation Normal Form. If called in the

76

middle of the program the variables will get reloaded in the next
call to negationNormalForm */
void finalizeNNFControl(void);

// define the cases used in Expandl
#define TOP 1

#define BOTTOM 2
#define Atomic_C 3
#define Not_Atomic_C 4
#define NFPD 5

#define And_D1_D2 6
#define Equal_Path 7
#define Path_Id1l 8
#define Path_Id2 9
#define Nequal_Paths 10
#define DatF 11

#define Forall F_D1 12
#define Or_D1_D2 13

#define Delete TRUE
#define Do_Not_Delete FALSE

/%%

Oshort Initializes the temporary patterns used by function in
reasonerapi.c file.

*/

void init_tmpPatterns(void);

/**

Oshort Release all the temporary patterns that were initialized
by init_tmpPatterns.

*/

void finalize_tmpPatterns(void) ;

/**
@short Creates a new Partial Database.

Creates a new PD and inserts it in the <list of PDs>
If "CGUData" is NULL then it intializes it also.

7

A PD is a 1list of 5 elements
1st element --> pointer to "PDid"
2nd element --> pointer to "poplog"
3rd element --> pointer to stackl (used for expandl)
4th element --> pointer to stack2 (used for expand2)
5th element --> a pointer to list of nodes.
It returns the pointer to "newPD".
Note: stackl and stack2 are lists. Each element of the list is a
pair of 2 things.
1st thing is node-id and 2nd is description.
@param PDid Atom. Id of PD to be created.
@returns Pointer to the newly created PD.

*/
Sptr createPD (Sptr PDid) ;

/*x

O@short Sets the currPD to PD with id = "PDid"

Sets the currPD pointer to PD whose Id is "PDid".

Oparam PDid Atom. Id of the Pd which has to be made current PD.
@returns Pointer to currPD, i.e, PD with id = "PDid"

*/
Sptr setPD(Sptr PDid) ;

/%%

O@short Deletes the PD with id = "PDid"

Deletes the PD from the PDList and also releases the memory.
Oparam PDid Atom. Id of the PD to be deleted

*/

void deletePD (Sptr PDid);

/%%

@short Prints the PD

Prints the PD data

@param Pointer to PD that has to be printed.

*/

78

void printPD(Sptr pd) ;

/*x

O@short Prints "every thing" in the CGUData.

Prints all the Global Dependencies, Partial databases etc.
*/

void printEveryThing(void);

/*x
Oshort Add a global inclusion dependency
It adds a global dependency. If "CGUData" is NULL then it intializes
it also.
@param LHS It can be either atom or list.
If its atom, the lhs and rhs of inclusion dependency added remain
same as LHS and RHS.
If it is a list and it matches (atomic > C), then lhs of inclusion
dependency added becomes "C" and rhs remains same as RHS.
If it is a list and it doesn’t match (atomic > C), then lhs of
inclusion dependency added becomes "top" and rhs becomes
(or RHS (not LHS))
Oparam RHS List.
*/

Sptr addGlobalIncDep (Sptr LHS, Sptr RHS) ;

/*x

O@short Same as addGlobalIncDep

At present, it just calls addGlobalIldep. But the idea is, it can be
used to add inclusion dependencies in only one particular database,
normally in currPD.

Oparam LHS see description in addGlobalIncDep

Oparam RHS see description in addGlobalIncDep

*/

Sptr addLocallncDep (Sptr LHS, Sptr RHS) ;

/*x

@short Adds the node to currPD.

Adds the node to currPD. Also adds a property with indicator as id
of currPD and value as null description list in the property list

79

of that node. If there is a global inclusion dependency with LHS as
"top", then it pushes the RHS of that IDep and this node in stackl.
Oparam NodeId Atom. The Id which the new node should have.

Oreturns Nodeld

*/

Sptr addNode(Sptr Nodeld) ;

/%%

@short no idea...ask Alex :)

*/

Sptr newQC(Sptr LHS, Sptr RHS) ;

/%%

@short Deletes CGUData.

Deletes all the inclusion dependencies and all the PDs. And thus
releases all the memory.

Sets "everyTing" and "currPD" to NULL. Also calls resetLogVer and
finalizeNNFControl.

*/

void finalizePD(void) ;

/%%

@short Returns true if the stack is empty.

Returns true if the stack is empty.

Oparam stackHead Pointer to a cons cell which is head of the stack
Oreturns TRUE or FALSE depending on whether stack is empty or not.
*/

boolean isEmptyStack (Sptr stackHead) ;

/*x

Oshort Pushes in stack a pair of description and node.

It forms a stack element which is a list of description and node.
It then pushes that element in the stack.

@param stackHead head of the stack in which to push

Oparam Desc The description to be added.

Oparam name The name of the node to be added.

@returns The stackHead

*/

80

Sptr pushStack (Sptr stackHead,Sptr Desc,Sptr name) ;

/*x

Oshort Pops and returns the top element of the stack

Pops and returns the top element of the stack.

Oparam stackHead Pointer to a cons cell which is head of the stack
@returns The top element of the stack.

*/

Sptr popStack(Sptr stackHead) ;

/%%
@short Returns the PD pointed to by currPD.
@returns the PD pointed to by currPD.

*/
Sptr getCurrPD(void) ;

/%%

Oshort Adds an edge from '"nodel" to "node2" with label as "label".
It adds an edge from "nodel" to "node2" with label as "label" if
there isn’t already an edge from "nodel" with "label". After adding
the edge, it checks whether there is an (waitf...) description in
"nodel" that can be processed. If that is the case, then it does so.
By adding an edge, it means adding the description

(edge <sink node> <label>) in source node and adding description
(redge <source node> <label>) in sink node.

Oparam nodel Atom. The source node

Oparam node2 Atom. The sink node

Oparam label Atom. The label of thee edge.

*/
void add_Edge(Sptr nodel,Sptr node2,Sptr label) ;

/*x

O@short Checks if inequality edge exists between nodel and node2 or not.
Checks if inequality edge exists between nodel (or its eqclass) and
node2 (or its eqClass) or not.

By existence of in equality edge we mean, existence of description

81

(ineq <other node>).

Oparam nodel Atom. First node

Oparam node2 Atom. Second node

Oreturns TRUE if inequality edge exists or FALSE if it doesn’t.
*/

boolean exists_Ineqality_Edge(Sptr nodel, Sptr node2);

/%%

Oshort Adds equality edge between nodel and node2.

It actually randomly selects either nodel or node2 and sets its

equivalance class to other.

Oparam nodel Atom. The first node.

Oparam node2 Atom. The second node.

@returns TRUE if there was no clash while adding the equality and
FALSE if there was a clash.

*/

boolean add_Equality (Sptr nodel,Sptr node2);

/*x

Oshort Adds inequality edge between nodel and node2.

It adds descriptions (ineq <other node>) in both the nodes indicating
an inequality edge between the two nodes. If the two nodes have
redges with same labels then those nodes which are pointed to by
redges are also made inequal.

Oparam nodel Atom. first node

Oparam node2 Atom. second node

@returns TRUE if there was no clash otherwise FALSE.

*/

boolean add_Inequality (Sptr nodel, Sptr node2);

/%%

@short Traces a given path from a node (or creating the path, if it
doesn’t already exist) and returns the final node reached.

Oparam fromNode Atom. Starting node

Oparam Path List. List of edges forming the path

@returns The node reached by tracing the path.

*/

Sptr findPath(Sptr fromNode,Sptr Path) ;

82

Sptr
void
void
Sptr
Sptr
Sptr
Sptr
void
void

findEdge (Sptr node, Sptr label) ;

addDescription(Sptr Node,Sptr Desc);
delDescription(Sptr Node,Sptr Desc) ;

getEqClass(Sptr Node) ;

getRHS (Sptr LHS);

createNode(Sptr 1bl) ;

isDescInNode (Sptr Pat, Sptr node, boolean deletePat) ;
finalizePatterns(void);

checkPath(Sptr Ni,Sptr N,Sptr Flist,Sptr C,Sptr D2);

83

Bibliography

1]

2]

3]

[4]

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

Alin Deutsch, Lucian Popa, and Val Tannen. Physical data independence,
constraints, and optimization with universal plans. In Proceedings of the 25th

VLDB Conference, pages 459-470, Edinburgh, Scotland, 1999.

Alex Borgida and Peter F. Patel-Schneider. A semantics and complete algo-
rithm for subsumption in the CLASSIC description logic. Journal of Artificial
Intelligence Research, pages 277-308, June 1994.

Vitaliy L. Khizder, David Toman, and Grant Weddell. Reasoning about du-
plicate elimination with description logic (preliminary report). Lecture Notes
in Computer Science, 1861:1017-1032, 2000.

Franz Baader, Diego Calavanese, Deborah MacGuinness, Daniele Nardi, and
Peter Patel-Schneider. The Description Logic Handbook. Cambridge University
Press, 2003.

Sonia Bergamaschi and Bernhard Nebel. Acquisition and validation of com-
plex object database schemata supporting multiple inheritance. Applied Intel-
ligence, 4(2):185-203, 1994.

Alessandro Artale, Francesca Cesarini, and Giovanni Soda. Describing
database objects in a concept language environment. [EEE Transactions on
Knowledge and Data Engineering, 8(2):345-351, 1996.

Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Unifying class-based
representation formalisms. Journal of Artificial Intelligence Research (JAIR),
11:199-240, 1999.

84

[9]

Alexander Borgida, Ronald J. Brachman, Deborah L. McGuinness, and
Lori Alperin Resnick. Classic: A structural data model for objects. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of
Data, pages 5867, 1989.

Howard W. Beck, Sunit K. Gala, and Shamkant B. Navathe. Classification as a
query processing technique in the candide semantic data model. In Proceedings
of the Fifth International Conference on Data Engineering ICDE, pages 572—
581, 1989.

Sonia Bergamaschi and Claudio Sartori. On taxonomic reasoning in conceptual
design. ACM Transactions on Database Systems, 17(3):385-422, 1992.

Martin Buchheit, Manfred A. Jeusfeld, Werner Nutt, and Martin Staudt. Sub-
sumption between queries to object-oriented databases. Technical Report RR-
93-44, Deutsches Forschungszentrum fiir Kiinstliche Intelligenz GmbH
Erwin-Schrodinger Strasse

Postfach 2080

67608 Kaiserslautern

Germany, 1993.

Jeffrey D. Ullman. Information integration using logical views. Theoretical
Computer Science, 239(2):189-210, 2000.

Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava.
Answering queries using views. In Proceedings of the 14th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pages 95—
104, San Jose, Calif., 1995.

Maurizio Lenzerini. Data integration: A theoretical perspective. In Proceedings
of the 21st ACM Symposium on Principles of Database Systems (PODS), June
2002.

John L. McCarthy. Recursive functions of symbolic expressions and their com-
putation by machine, part i. Commun. ACM, 3(4):184-195, 1960.

Sean Bechhofer, Ian Horrocks, Peter F. Patel-Schneider, and Sergio Tessaris. A
proposal for a description logic interface. In Proceedings of the 1999 Description
Logics Worksop, pages 33-36, 1999.

Petrus Kai Chung Chan. Optimizing OQL on legacy main-memory data struc-
tures with existential graphs. Master’s thesis, University of Waterloo, 1997.

85

