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Abstract

In adaptive control the goal is to deal with systems that have unknown and/or time-
varying parameters. An adaptive controller typically consists of an LTI compensator to-
gether with an identifier or a tuner which is used to adjust the compensator parameters.
A common approach to tuning is to invoke the Certainty Equivalence Principle, where at
each instance of time the estimated plant parameters are assumed to be correct and the
controller gains are updated accordingly.

In this work we consider the first order case. We use the Certainty Equivalence approach
to periodically estimate the plant parameters and then update the control action in order to
provide stability. The data from first two steps are used to estimate the system parameters
for the next two steps; the approach works by using a nominal control law and adding a
small perturbation to the gain. The controller is proven to be noise tolerant, and we are
able to prove a linear-like bound on the closed-loop behavior.
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Chapter 1

Introduction

1.1 The Background

Adaptive control is a systematic technique which provides tools for automatic adjustment
of a controller used in order to achieve or to maintain a desired level of control system per-
formance when the parameters of the plant dynamic model are unknown and/or change in
time. A classical example of an adaptive controller is a linear time-invariant (LTI) compen-
sator with adjustable parameters. A tuning mechanism is used to adjust the compensator’s
parameters to appropriately match the plant.

The study of such uncertain linear systems started in the 1950’s. The design of autopi-
lots for high-performance aircraft motivated intense research activity in adaptive control.
High-performance aircraft undergo drastic changes in their dynamics when they fly and
these changes cannot be handled by constant-gain feedback control. A sophisticated con-
troller, such as an adaptive controller, that could learn and accommodate changes in the
aircraft dynamics was needed. Model reference adaptive control was suggested by Whitaker
et al. [22] to solve the autopilot control problem. The goal in MRACP is to have the output
of the plant asymptotically track the output of the stable reference model in response to a
piece-wise continuous input. The lack of stability proofs and the lack of understanding of
the properties of the proposed adaptive control schemes coupled with a disaster in a flight
test caused the interest in adaptive control to diminish.

Due to the initial lack of success to solve this problem, the focus shifted to the easier
problem, in which the system parameters are fixed but unknown. In such cases, although
the structure of the controller, in general, will not depend on the particular values of
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the plant model parameters, the correct tuning of the controller parameters cannot be
done without some knowledge of the plant parameters. Adaptive control techniques can
provide an automatic tuning procedure for the controller parameters. In such cases, in the
absence of external disturbances, the effect of the adaptation vanishes as time increases
and the system settles down. Some general results which tackled this simplified problem
appeared in 1980 [6, 10, 16]. After the initial success, efforts to improve the transient
response, noise tolerance and tolerance to unmodelled dynamics led to the introduction
and adaptation of two main approaches. The first approach used the classic Certainly
Equivalence approach, which used an estimator with an LTI compensator. The plant
parameters were first estimated which updated the compensator gains periodically[7, 8].
The other approach was the switching approach, which involved switching between different
LTI compensators according to the required performance. Initially prerouted logic-based
switching approach [3, 14] were used and then more sophisticated approaches such as
supervisory and multi-model switching control were introduced [17, 18, 19]. Specifically,
one of the most successful results shown by Morse [17, 18] wherein robust LTI techniques
are used to design a family of LTI compensators, and suitable switching techniques are used
depending on the performance requirements. These controllers are tolerant to unmodelled
dynamics and provided step tracking for a large set of uncertain plants.

In the late 1980s and early 1990s a lot of effort was put into extending the results of
the late 1980s to linear time-varying systems. Many of the classical adaptive controllers
were suitably modified to tolerate some degree of time variation of the plant parameters.
Here is a list of some notable papers and articles on the work done in this area for the last
two decades [9, 11, 5, 2, 21]. As far as the author is aware, no work successfully handles
plants with non-minimum phase with fast time variations of the plant parameters.1

The central idea of adaptive control is to tune the controller in response to the time-
varying plant parameters and determine a control action accordingly. So far there were
two core ideas discussed namely the Switching approach and the Certainty Equivalence
approach, out of which we use the latter approach wherein the key idea is to first estimate
the time-varying parameters and then tune the control action accordingly to achieve desired
output.

1All of this work is in continuous time and does not extend naturally to discrete-time.
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1.2 Purpose

The goal of this thesis is to design an Adaptive Controller for a discrete-time first order
system with unknown and time-varying parameters. The objective of this is stability and
performance with three goals in mind:

• Exponential and BIBO stability for the system with fixed but unknown parameters
and no noise.

• Near optimal transient performance for the system with fixed but unknown param-
eters and no noise.

• Tolerance to time-variations.

We will be using the Certainty Equivalence approach, where the key idea is to periodically
estimate the plant parameters and then update the control action in order to provide
stability. At every other step, the system parameters are estimated which updates the
control action resulting in a controller of period two. The estimation is a basic computation
of the data available from the two steps to get the system parameters for the next two
steps. The controller runs in a very simple yet sophisticated manner. Roughly speaking, it
is designed in such a way that, whenever the system tries to go unstable (the state variable
increases), the effect of the noise decreases, giving us correct estimates making the state
variable of the closed-loop system close to zero again.

1.3 Organization

The following chapter deals with the required mathematical preliminaries. In Chapter 3
we will define the problems and state the necessary assumptions. Chapter 4 deals with the
stability analysis of the systems with fixed but unknown parameters; we will also look at
the transient performance of the proposed control action with respect to the performance
of an ideal DLQR controller. In Chapter 5 we analyse the case of a time-varying plant.
Chapter 6 presents some examples and simulations. And finally, Chapter 7 concludes the
thesis by summarizing the main goals achieved and outlining the scope of future work.
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Chapter 2

Mathematical Preliminaries

To measure the size of a vector we will use the infinity norm: for v ∈ Rn, we define ‖v‖ :=
max{|vi| : i = 1, 2 . . . n}. With A ⊂ R, we let s(A) denote the set of sequences taking
values on A; with δ > 0, we let s(A, δ) denote those x ∈ s(A) satisfying |x[k+1]−x[k]| ≤ δ
for k ∈ Z.

Let the set A ⊂ R be of the form A := [a1, a1] ∪ [a2, a2] ∪ · · · ∪ [an, an] with a1 < a1 <
a2 < a2 < · · · < an < an, n ∈ N, and define δA := 1

2
min{|a2− a1|, |a3− a2| · · · |an− an−1|}.

We define projection function ΠA : R → A by

ΠA(x) :=



x if x ∈ A;
a1 if x < a1;

aj if x ∈
(
aj,

1
2

(
aj + aj+1

))
and j = 1, 2, ..., n− 1;

aj+1 if x ∈ (1
2
(aj + aj+1), aj+1)

and j = 1, 2, ..., n− 1;

an if x > an.

This projection function will be used in our estimation procedure. In particular, if a ∈ A
and the estimation error is less than δA from A, then projecting the estimate onto A
reduces the estimation error.
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Chapter 3

Problem Statement and Assumptions

3.1 Discrete-Time Linear Systems

Plant P

w[k]

Feedback Gain f

u[k] x[k]

Figure 3.1: Closed-loop system under consideration

In adaptive control of time-varying systems, a first-order Discrete-Time Single-Input Single-
Output (SISO) plant can be described by the following state-space equations:

x[k + 1] = a[k]x[k] + b[k]u[k] + w[k], x[0] = x0, (3.1)

y[k] = x[k], (3.2)

where x[k] ∈ R is the system state, u[k] ∈ R is the control input, y[k] ∈ R is the measured
output, a[k] and b[k] are the plant parameters1 and w[k] ∈ R is the external disturbance.

1For LTI systems a[k] = a and a[k] = b for every k ∈ Z+.
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Here, a[k] lies in a compact set A consisting of a finite number of intervals; there may
be additional constraints required to ensure that the control law is well defined. Similarly
b[k] lies in a compact set B of a finite set of intervals not containing zero. This means, in
particular, that

a := min {|a| : a ∈ A} ≥ 0,

ā := max {|a| : a ∈ A} <∞,

b := min {|b| : b ∈ B} > 0,

b̄ := max {|b| : b ∈ B} <∞.

Associated with A and B are δA and δB (as defined in Chapter 2); we now define

δ := min {δA, δB} .

Remark 1: The noise is considered in the above way to simplify calculations. That being
said, we can have noise at both the input and the output and convert the setup to the
above form. To see this, consider a plant with input disturbance d[k] and the output
measurement noise n[k]:

x[k + 1] = a[k]x[k] + b[k]u[k] + d[k], x[0] = x0,

y[k] = x[k] + n[k].

Hence,

y[k + 1] = x[k + 1] + n[k + 1]

= a[k]x[k] + b[k]u[k] + d[k] + n[k + 1]

= a[k] (y[k]− n[k]) + b[k]u[k] + d[k] + n[k + 1]

= a[k]y[k] + b[k]u[k] + (d[k]− a[k]n[k] + n[k + 1]) .

If we define
w[k] := d[k]− a[k]n[k] + n[k + 1],

then

y[k + 1] = a[k]y[k] + b[k]u[k] + w[k],

which is of the form (3.1)-(3.2). �
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Occasionally we will consider the plant (3.1)-(3.2) when there is no time variation,
yielding

x[k + 1] = ax[k] + bu[k] + w[k], (3.3)

y[k] = x[k]. (3.4)

Regardless of whether we consider the time-varying or time-invariant case, the control ob-
jective is to provide, at the minimum, some form of stability in the presence of uncertainty
in the plant parameters. We plan to achieve this by using a state-feedback control law
whose gain depends on a[k] and b[k] (a and b in the linear time-invariant case); since these
quantities are not known, we adapt the Certainty Equivalence point of view and use the
present estimate.

We allow a very general state-feedback control law of the form

u[k] = f (a[k], b[k])x[k]

with f : A× B → R. We say that f is admissible if:

(i) f is stabilizing in the sense that a+ bf(a, b) ∈ (−1, 1) for all (a, b) ∈ A× B, and

(ii) f is globally Lipschitz continuous on A× B.

Some examples of f(a, b) are:

(a) Deadbeat Control: f(a[j], b[j]) = −a[j]/b[j].

(b) Pole Placement with λ ∈ (−1, 1): f(a[j], b[j]) = 1
b[j]
λ− a[j]

b[j]
.

(c) Discrete-Time LQR (DLQR): With r > 0, for a given initial condition x[0] the control
law which minimizes the cost

∞∑
k=0

[
x[k]2 + ru[k]2

]
for the LTI plant (3.3)-(3.4) is the state-feedback control law of the from

u[k] = f(a, b)x[k],

with

f(a, b) =

{
1−a2+b2−

√
(a2+b2−1)2−4b2

2ab
if a 6= 0,

0 if a = 0.

It can be verified that f is globally Lipschitz continuous on A× B.
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We define the image of f as

F := {f(a, b) : (a, b) ∈ A× B} ,

and
f̄ := max {|f(a, b)| : f ∈ F} <∞.

Proposition 1: If f : A× B → R is admissible then there exists a λ ∈ [0, 1) and γ > 0
so that

(i) for every (a, b) ∈ A× B,

|a+ bf(a, b)| ∈ [−λ, λ];

(ii) for every (a, b), (â, b̂) ∈ A× B,

|f(a, b)− f(â, b̂)| ≤ γ

∥∥∥∥[ ab
]
−
[
â

b̂

]∥∥∥∥ .
Proof:

Part (i) follows from the continuity of f together with the compactness of A× B.

Part (ii) follows from the definition of Lipschitz Continuity.

�

Even if a and b are time-varying, due to property (i) of f an admissible controller will
exponentially stabilize the plant in the absence of noise. The challenge is that a and b
are unknown. Hence, we estimate a and b yielding â and b̂ and we use this to form an
adaptive controller. To facilitate this process, we do not estimate the parameters at every
step, but rather every other step. Our objective is not only stability but we would also like
the adaptive control law to be close to the original state feedback control law.
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3.2 The Proposed Approach and Controller Action

Plant

w[k]

Control
Law

Estimate
a and b

Evaluating
f̂ [k]

x[k]

x[k]

u[k]

f̂ [k]

â[k], b̂[k]

Controller

Figure 3.2: The system setup with controller structure

Classical adaptive control uses an estimator which may not converge, and if it does, then
it typically converges asymptotically. Here our goal is to obtain a good estimate quickly
and so that the controller is close to the original one. Since there are two parameters to
estimate, we need at least two equations to solve; this motivates us to:

(i) Estimate a and b every other step.

(ii) We use the nominal control law for two steps, but we add a small perturbation to
the gain to facilitate the estimation. 2

To see how to carry out the estimation, with ε > 0 and f ∈ R, suppose that

u[0] = (f + ε)x[0],

u[1] = (f − ε)x[1],

a[k] and b[k] are constant, and the noise is zero. Then[
x[1]
x[2]

]
=

[
x[0] (f + ε)x[0]
x[1] (f − ε)x[1]

] [
a
b

]
. (3.5)

2This differs from the classical idea of probing in that here we are perturbing the gain whereas in
probing we add an exogenous input.
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The determinant of the two by two matrix on the RHS is −2εx[0]x[1], so if x[0] and x[1]
are non-zero then we can solve for a and b:[

a
b

]
=

[
x[0] (f + ε)x[0]
x[1] (f − ε)x[1]

]−1 [
x[1]
x[2]

]
.

With this as motivation we can now define the control law. The goal is to prove that
this controller is stabilizing, even in the presence of noise, and ideally provides closed-loop
behaviour which is very close to that provided by the original controller.

With the initial conditions of â[0] ∈ A, b̂[0] ∈ B, f̂ [0] = f̂ [1] = f(â[0], b̂[0]) and ε > 0,
we propose the adaptive control law

u[j] =
(
f̂ [j] + (−1)jε

)
x[j], j ∈ Z+, (3.6)

together with an estimation:

[
ǎ[2j + 2]

b̌[2j + 2]

]
=



[
x[2j] (f̂ [2j] + ε)x[2j]

x[2j + 1] (f̂ [2j + 1]− ε)x[2j + 1]

]−1 [
x[2j + 1]
x[2j + 2]

]
,

if x[2j]x[2j + 1] 6= 0,[
ǎ[2j]

b̌[2j]

]
, if x[2j]x[2j + 1] = 0,

(3.7)

â[2j + 2] = ΠA(ǎ[2j + 2]),

b̂[2j + 2] = ΠB(b̌[2j + 2]), j ∈ Z+;

}
(3.8)

using the Certainty Equivalence Principle we then define

f̂ [2j + 2] := f(â[2j], b̂[2j]),

f̂ [2j + 3] := f(â[2j], b̂[2j]).

}
(3.9)

At first glance, one might expect that we would need a very small ε even to achieve
stability, but this turns out not to be the case. The underlying reason can be seen by
considering the non-adaptive linear periodic control law

u[2j] = (f + ε)x[2j],

u[2j + 1] = (f − ε)x[2j + 1],

10



applied to the plant under the assumption that a+ bf ∈ (−1, 1). Assuming that the noise
is zero for simplicity we have

x[2j + 1] = ax[2j] + bu[2j]

= ax[2j] + b(f + ε)x[2j]

= ax[2j] + bfx[2j] + bεx[2j]

= (a+ bf)︸ ︷︷ ︸
=:acl

x[2j] + bεx[2j]

= (acl + bε)x[2j].

Similarly,

x[2j + 2] = (a+ bf)x[2j + 1]− bεx[2j + 1]

= (acl)x[2j + 1]− bεx[2j + 1]

= (acl − bε)x[2j + 1]

= (acl − bε)(acl + bε)x[2j]

= (a2
cl − b2ε2)x[2j]. (3.10)

For the closed-loop system to be stable we need (a2
cl − b2ε2) ∈ (−1, 1). If acl = a + bf

is stable, then closed-loop stability is assured if b2ε2 < 1, which is the case if ε < 1/b̄.
Inspired by this discussion, fix c0 ∈ (0, 1) and define, for a given admissible f ,

λ1 = max
{
| (a+ bf(a, b))2 − b2ε2| : (a, b) ∈ A× B, ε ∈ [0, c0/b̄]

}
, (3.11)

and subsequently define
λ2 := λ

1/2
1 ; (3.12)

both λ1 and λ2 lie in [0, 1). Note that in the deadbeat case we have

λ1 = c2
0 and λ2 = c0.

In the DLQR case there is no closed-form description for λ1 and λ2, although we do know
that they lie in [0, 1).

In Chapter 4 we will analyze the proposed controller (3.6)-(3.9) in the time-invariant
case, and in Chapter 5 we analyze it in time-varying case. Before moving to Chapter 4 we
present a technical result which will prove useful in both Chapter 4 and Chapter 5.
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Lemma 1: There exist a constant c1 > 0 so that, for every a ∈ s(A), b ∈ s(B), x(0) ∈ R,
â[0] ∈ A, b̂[0] ∈ B (yielding f̂ [0] = f̂ [1] ∈ F), w ∈ l∞,, ε ∈ (0, c0/b̄] and j ∈ Z+ when
the control law (3.6)− (3.9) is applied to the time-varying plant (3.1)-(3.2), if

|x[j + 1]| > ‖w‖∞ (3.13)

then
1

|x[j]|
≤ c1

|x[j + 1]| − ‖w‖∞
.

Proof: Let a ∈ s(A), b ∈ s(B), x(0) ∈ R, â[0] ∈ A, b̂[0] ∈ B (yielding f̂ [0] = f̂ [1] ∈ F),
w ∈ l∞ and ε ∈ (0, c0/b̄] applying the control law to plant (3.1)-(3.2) we have:

x[j + 1] = a[j]x[j] + b[j]u[j] + w[j]

= a[j]x[j] + b[j]x[j](f̂ [j] + (−1)jε) + w[j]

From our definitions, since we have bounds on a, b, ε and f in both the time-varying and
invariant cases, there exists a constant γ1 such that

|a[j] + b[j](f̂ [j] + ε)| ≤ ā+ b̄(f̄ + c0/b̄) =: γ1 (3.14)

In the time-invariant case, since a and b are constant, ā = a and b̄ = b. Assuming that
(3.13) holds we have

|x[j + 1]| ≤ γ1|x[j]|+ ‖w‖∞
⇒ |x[j]| ≥ 1

γ1

(|x[j + 1]| − ‖w‖∞),

which means

1

|x[j]|
≤ γ1

(|x[j + 1]| − ‖w‖∞)
. (3.15)

This yields us the desired result.
�
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Chapter 4

Linear Time-Invariant System

4.1 The Setup

In this chapter we consider the case of an LTI plant given by

x[k + 1] = ax[k] + bu[k] + w[k],
y[k] = x[k].

}
(4.1)

The controller that we proposed in Chapter 3 is rewritten here for convenience, and with
the notation slightly modified. With the original conditions of â[0] ∈ A, b̂[0] ∈ B, f̂ [0] =
f̂ [1] = f(â[0], b̂[0]) and ε ∈

(
0, c0/b̄

]
, the proposed adaptive control law, for k ∈ Z+ even,

is given by:
u[k] = (f̂ [k] + ε)x[k],

u[k + 1] = (f̂ [k + 1]− ε)x[k + 1],

}
(4.2)

[
ǎ[k + 2]

b̌[k + 2]

]
=


[

x[k] (f̂ [k] + ε)x[k]

x[k + 1] (f̂ [k + 1]− ε)x[k + 1]

]−1 [
x[k + 1]
x[k + 2]

]
, if x[k]x[k + 1] 6= 0[

â[k]

b̂[k]

]
, if x[k]x[k + 1] = 0,

(4.3)
â[k + 2] = ΠA(ǎ[k + 2]),

b̂[k + 2] = ΠB(b̌[k + 2]),

}
(4.4)

f̂ [k + 2] = f(â[k], b̂[k]),

f̂ [k + 3] = f(â[k], b̂[k]).

}
(4.5)
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We will first prove that the proposed control law is exponentially stabilizing and that
the map from the noise to x has a bounded gain; in fact, we also provide a quantitative
analysis of the effect of ε on the behavior. Secondly, we analyze how close the behavior of
the proposed control law is to the original control law.

The stability of the controller depends on the accuracy of the estimated plant param-
eters. For this purpose, we will look at the estimation process in detail. With the initial
conditions f̂ [0] = f̂ [1] ∈ F , let the control law (4.2)-(4.5) be applied to plant (4.1) for even
k, yielding the following response:

x[k + 1] = ax[k] + b(f̂ [k] + ε)x[k] + w[k],

x[k + 2] = ax[k + 1] + b(f̂ [k]− ε)x[k + 1] + w[k + 1],

⇒
[
x[k + 1]
x[k + 2]

]
︸ ︷︷ ︸

(known)

=

[
x[k] (f̂ [k] + ε)x[k]

x[k + 1] (f̂ [k]− ε)x[k + 1]

]
︸ ︷︷ ︸

=:φ[k+2](known)

×
[
a
b

]
+

[
w[k]

w[k + 1]

]
︸ ︷︷ ︸

(unknown)

. (4.6)

At this point we would like to get a bound on

∆[k + 2] :=

[
ǎ[k + 2]

b̌[k + 2]

]
−
[
a
b

]
;

if x[k]x[k + 1] = 0, then φ[k + 2] is not invertible then we define

∆[k + 2] := ∆[k].

Hence in the following analysis we assume that x[k]x[k + 1] 6= 0. From (4.3) we have[
ǎ[k + 2]

b̌[k + 2]

]
= φ[k + 2]−1

[
x[k + 1]
x[k + 2]

]
and from (4.6) we have[

a
b

]
= φ[k + 2]−1

[
x[k + 1]
x[k + 2]

]
− φ[k + 2]−1

[
w[k]

w[k + 1]

]
.

So we conclude that

∆[k + 2] = φ[k + 2]−1

[
w[k]

w[k + 1]

]
. (4.7)

⇒ ‖∆[k + 2]‖ ≤
∥∥∥∥φ[k + 2]−1 ×

[
w[k]

w[k + 1]

]∥∥∥∥ . (4.8)
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This quantity ‖∆[k+ 2]‖ is of great importance as it reveals the accuracy of the parameter
estimation. Analysing (4.7) yields

∆[k + 2] = φ[k + 2]−1 ×
[

w[k]
w[k + 1]

]
=

1

−2εx[k]x[k + 1]
×
[

(f̂ [k]− ε)x[k + 1] −(f̂ [k] + ε)x[k]
−x[k + 1] x[k]

] [
w[k]

w[k + 1]

]
.

So

‖∆[k + 2]‖ ≤ 1

2ε|x[k]||x[k + 1]|
× (1 + |f̂ [k]|+ ε)× (|x[k]|+ |x[k + 1]|)× ‖w‖∞

=
1 + |f̂ [k]|+ ε

2ε
×
[
|x[k]|+ |x[k + 1]|
|x[k]| |x[k + 1]|

]
× ‖w‖∞. (4.9)

An upper bound on f̂ [k] is f̄ and an upper bound on ε is c0/b̄, so

‖∆[k + 2]‖ ≤ 1 + f̄ + c0/b̄

2ε

(
|x[k]|+ |x[k + 1]|
|x[k]| |x[k + 1]|

)
× ‖w‖∞

≤ 1 + f̄ + c0/b̄

2ε

(
1

|x[k]|
+

1

|x[k + 1]|

)
× ‖w‖∞ (4.10)

for all k ∈ Z+ even and satisfying

x[k]x[k + 1] 6= 0.

To make ‖∆[k + 2]‖ small, we have to make sure that the states are much larger than the
noise ‖w‖∞. This motivates the definition of the scaled state variable

x̄[k] :=
x[k]

‖w‖∞
. (4.11)
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Lemma 2: There exist strictly positive constants c2, c3 and c4 so that, for every a ∈ A,
b ∈ B, x(0) ∈ R, â[0] ∈ A, b̂[0] ∈ B (yielding f̂ [0] = f̂ [1] ∈ F), w ∈ l∞, ε ∈ (0, c0/b̄]
and k ∈ Z+ even, when the control law (4.2)-(4.5) is applied to the linear time-invariant
plant (4.1), if

ε|x̄[k + 1]| > c2 (4.12)

then

‖∆[k + 2]‖ ≤ 1

ε

c3

|x̄[k + 1]|
and

|f̃ [k + 2]| := |f(a, b)− f(â[k + 2], b̂[k + 2])| ≤ 1

ε

c4

|x̄[k + 1]|
.

Proof: Let a ∈ A, b ∈ B, x(0) ∈ R, â[0] ∈ A, b̂[0] ∈ B (yielding f̂ [0] = f̂ [1] ∈ F),
w ∈ l∞, ε ∈ (0, c0/b̄] and k ∈ Z+ even with the control law (4.2)-(4.5) is applied to plant
(4.1).

First suppose that x[k]x[k + 1] = 0. If

x[k + 1] = 0

then (4.12) never holds. If
x[k] = 0

then

x[k + 1] = ax[k] + bu[k] + w[k]

= w[k],

so
|x̄[k + 1]| ≤ 1.

This means that (4.12) will now hold as long as

c2

ε
> 1⇔ c2 > ε⇔ c2 >

c0

b̄
.

Hence, (4.12) holds for the case as long as c2 is large enough, that is c2 >
c0
b̄

.

Now assume that x[k]x[k+ 1] 6= 0, which means that equation (4.10) provides a bound
on ‖∆[k + 2]‖. With c1 given by Lemma 1 and

γ1 :=
1 + f̄ + c0/b̄

2
,
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as long as |x̄[k + 1]| > 1, we have

‖∆[k + 2]‖ ≤ γ1

ε

[
c1

(|x[k + 1]| − ‖w‖∞)
+

1

|x[k + 1]|

]
× ‖w‖∞

=
γ1

ε

 (c1 + 1)− ‖w‖∞
|x[k+1]|

|x[k + 1]| − ‖w‖∞

× ‖w‖∞
=

γ1

ε

(c1 + 1)− ‖w‖∞
|x[k+1]|

|x[k+1]|
‖w‖∞

=
γ1

ε
×
c1 + 1− 1

|x̄[k+1]|

|x̄[k + 1]| − 1

=
γ1

ε
×
c1 + 1− 1

|x̄[k+1]|

1− 1
|x̄[k+1]|

× 1

|x̄[k + 1]|
. (4.13)

The middle term on the R.H.S of (4.13) converges to c1 + 1 as |x̄[k+ 1]| → ∞; hence, there
exists a γ2 > 1 so that if |x̄[k + 1]| > γ2, then

‖∆[k + 2]‖ ≤ 2γ1 (c1 + 1)

ε|x̄[k + 1]|
. (4.14)

In order to guarantee that

[
â[k + 2]

b̂[k + 2]

]
is a better estimate of

[
a
b

]
than

[
ǎ[k + 2]

b̌[k + 2]

]
, it

is enough that

∆[k + 2] < δ; (4.15)

this will be the case if

2γ1 (c1 + 1)

ε|x̄[k + 1]|
< δ.

⇔ ε|x̄[k + 1]| >
2γ1 (c1 + 1)

δ
. (4.16)

At this point we have to be careful to ensure that |x̄[k + 1]| > γ2 as well as (4.16) holds.
To this end, if we set

c2 := max

{
γ2
c0

b̄
,
2γ1 (c1 + 1)

δ

}
, (4.17)
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then
ε|x̄[k + 1]| > c2

clearly implies that

|x̄[k + 1]| > c2

ε
≥ c2

c0/b̄
≥
γ2

�c0
�̄b

�c0
�̄b

= γ2,

which in turn implies that (4.14),(4.15) and (4.16) holds. For such a choice of c2, if (4.12)
holds then

‖∆[k + 2]‖ ≤ 2γ1 (c1 + 1)

ε|x̄[k + 1]|
≤ δ,

so we will define
c3 := 2γ1(c1 + 1),

ensuring that ∥∥∥∥[ â[k + 2]− a
b̂[k + 2]− b

]∥∥∥∥ ≤ ‖∆[k + 2]‖

as well. With γ3 the Lipschitz Constant of f , we can also conclude that

|f(a, b)− f(â[k + 2], b̂[k + 2])|︸ ︷︷ ︸
=:f̃ [k+2]

≤ γ3

∥∥∥∥[ ab
]
−
[
â[k + 2]

b̂[k + 2]

]∥∥∥∥ ≤ γ3‖∆[k + 2]‖

≤ c3γ3

ε|x̄[k + 1]|
, (4.18)

so we will define c4 = c3γ3. �

We now introduce the theorem that proves that the closed-loop system is stable.
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4.2 The Main Result

Theorem 1: There exists a constant c5 > 0 such that for every a ∈ A, b ∈ B, x(0) ∈ R,
â[0] ∈ A, b̂[0] ∈ B (yielding f̂ [0] = f̂ [1] ∈ F), w ∈ l∞ and ε ∈ (0, c0/b̄], when the
control law (4.2)-(4.5) is applied to the linear time-invariant plant (4.1), we have

|x[k]| ≤ c5λ
k
2|x[0]|+ c5

(
1 +

1

ε

)
‖w‖∞, k ≥ 0.

Proof: Let a ∈ A, b ∈ B, x(0) ∈ R, â[0] ∈ A, b̂[0] ∈ B (yielding f̂ [0] = f̂ [1] ∈ F),
w ∈ l∞, ε ∈ (0, c0/b̄] and k ∈ Z+ be even. Since the initial condition f̂ [0] will typically
be inaccurate, the behaviour over the first two periods will typically differ from the ideal
behavior. Hence, we focus much of our analysis on what happens after this. To this end,
when the control law (4.2)-(4.5) is applied to the plant (4.1), we have

x[k + 3] =
(
a+ b(f̂ [k + 2] + ε)

)
x[k + 2] + w[k + 2], (4.19)

x[k + 4] =
(
a+ b(f̂ [k + 2]− ε)

)
x[k + 3] + w[k + 3]. (4.20)

From this point, we have divided the proof into simple steps which makes it easier to
understand.

Step 1: We will first obtain a crude bound showing how fast x increases. We first define
γ1 as defined in (3.14):

|a+ b(f̂ [l] + ε)| ≤ ā+ b̄(f̄ + c0/b̄) =: γ1, l ∈ Z+. (4.21)

This can be used to obtain a crude bound on the increase of x over a step:

|x[k + l + 1]| ≤ γ1|x[k + l]|+ ‖w‖∞, l ∈ Z
+. (4.22)

Step 2: The next goal is to obtain a bound on |x[k + 4]|, for which we will use the crude
bound derived in step 1. To achieve this we will analyze x[k + 4] for two cases, when
ε|x̄[k + 1]| is small and when it is large. Using the choice of c2 asserted to exist by (4.17)
in Lemma 2, we consider:
Case 1: ε|x̄[k + 1]| ≤ c2. Since ε|x̄[k + 1]| is not large, we can use the crude bound given
by (4.22) to get a bound on |x[k + 4]|. Using (4.22) three times in succession yields

|x[k + 4]| ≤ γ1|x[k + 3]|+ ‖w‖∞
≤ γ2

1 |x[k + 2]|+ γ1‖w‖∞ + ‖w‖∞
≤ γ3

1 |x[k + 1]|+ γ2
1‖w‖∞ + γ1‖w‖∞ + ‖w‖∞,
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which implies that

|x̄[k + 4]| ≤ γ3
1 |x̄[k + 1]|+ γ2

1 + γ1 + 1

≤ γ3
1c2

ε
+ γ2

1 + γ1 + 1. (4.23)

Case 2: ε|x̄[k + 1]| > c2. Combining (4.19) and (4.20) yields

x[k + 4] =
[
a+ b(f̂ [k + 2]− ε)

] [
(a+ b(f̂ [k + 2] + ε))x[k + 2] + w[k + 2]

]
+w[k + 3]

=

[(
a+ bf̂ [k + 2]

)2

− b2ε2

]
x[k + 2] +

[
a+ b(f̂ [k + 2]− ε)

]
w[k + 2]

+w[k + 3]

=
[
(a+ bf(a, b))2 − b2ε2

]
x[k + 2]︸ ︷︷ ︸

ψ1[k]

+
(
b2f̃ [k + 2]2 − 2 [a+ bf(a, b)] bf̃ [k + 2]

)
x[k + 2]︸ ︷︷ ︸

ψ2[k]

+
[
a+ b(f̂ [k + 2]− ε)

]
w[k + 2] + w[k + 3]︸ ︷︷ ︸

ψ3[k]

. (4.24)

Using the definition of λ1 given in (3.11) we see that

|ψ1[k]| ≤ λ1|x[k + 2]|. (4.25)

Using bounds on a, b, f̂ [k + 2] and ε yields

|ψ3[k]| ≤
(
ā+ b̄f̄ + 2

)
‖w‖∞. (4.26)

Now we turn to ψ2[k], which is more complicated to analyze. Using (4.22) we convert a
bound on |x[k+ 2]| to one on |x[k+ 1]| and Lemma 2 to provide a bound on |f̃ [k+ 2]|, we
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obtain

|ψ2[k]| ≤ (b̄2|f̃ [k + 2]|2 + 2λ1b̄|f̃ [k + 2]|) (γ1|x[k + 1]|+ ‖w‖∞)

= |f̃ [k + 2]|(b̄2 |f̃ [k + 2]|︸ ︷︷ ︸
≤ c4

ε|x̄[k+1]|≤
c4
c2

+2λ1b̄) (γ1|x[k + 1]|+ ‖w‖∞)

≤ c4

ε|x̄[k + 1]|

(
b̄2 c4

c2

+ 2λ1b̄

)
(γ1|x[k + 1]|+ ‖w‖∞)

= b̄

(
b̄c4

c2

+ 2λ1

)c4γ1
|x[k + 1]|
ε|x̄[k + 1]|︸ ︷︷ ︸

=
‖w‖∞

ε

+
c4

ε|x̄[k + 1]|︸ ︷︷ ︸
<

c4
c2

‖w‖∞


≤ b̄

(
b̄c4

c2

+ 2λ1

)(
c4

c2

+
c4γ1

ε

)
‖w‖∞. (4.27)

Substituting the bound on |ψ1[k]|, |ψ2[k]| and |ψ3[k]| into (4.24), it follows that there exists
a constant γ2 so that

|x[k + 4]| ≤ λ1|x[k + 2]|+ γ2

(
1 +

1

ε

)
‖w‖∞.

Equivalently

|x̄[k + 4]| ≤ λ1|x̄[k + 2]|+ γ2

(
1 +

1

ε

)
. (4.28)

Step 3: We will now combine the two cases of step 2 to get a bound on |x[k + 4]|. More
specifically, the bounds provided by combining cases 1 and 2 given by (4.23) and (4.28),
we conclude that regardless of the value of |x̄[k + 1]|, we have

|x̄[k + 4]| ≤ λ1|x̄[k + 2]|+ (1 + γ1 + γ2
1 + γ2) +

γ3
1c2 + γ2

ε
.

If we define
γ3 =: max

{
1 + γ1 + γ2

1 + γ2, γ
3
1c2 + γ2

}
we have

|x[k + 4]| ≤ λ1|x[k + 2]|+ γ3(1 +
1

ε
)‖w‖∞, k ∈ Z

+ even. (4.29)
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Step 4: We will now obtain a bound on |x[l]| for l ∈ Z+. Observe that (4.29) holds for
even k ∈ Z+; using the variable substitution with k = 2(j − 1) with j ∈ N, this becomes

|x[2j + 2]| ≤ λ1|x[2j]|+ γ3(1 + 1
ε
)‖w‖∞, j ∈ N.

Solving iteratively yields

|x[2j + 2]| ≤ λj1|x[2]|+ γ3

1− λ1

(
1 +

1

ε

)
‖w‖∞, j ∈ N. (4.30)

For the odd steps we use (4.21):

|x[2j + 3]| ≤ γ1|x[2 + 2j]|+ ‖w‖∞, j ∈ N.

Combining this with (4.30) yields:

|x[2j + 3]| ≤ γ1λ
j
1|x[2]|+

[
1 +

γ1γ3

1− λ1

(
1 +

1

ε

)]
‖w‖∞, j ∈ N. (4.31)

So for l ≥ 4 even, (4.30) says that

|x[l]| ≤ (λ
1/2
1 )l−2|x[2]|+ γ3

1− λ1

(
1 +

1

ε

)
‖w‖∞,

and for l ≥ 5 odd, (4.31) says that

|x[l]| ≤ γ1(λ
1/2
1 )l−3|x[2]|+

[
1 +

γ1γ3

1− λ1

(
1 +

1

ε

)]
‖w‖∞.

If we define

γ4 := max

{
γ3

1− λ1

, 1 +
γ1γ3

1− λ1

}
,

when combined these yields

|x[l]| ≤ γ1λ
−3/2
1 λ

l/2
1 |x[2]|+ γ4

(
1 +

1

ε

)
‖w‖∞, l ≥ 4. (4.32)

The last step is to analyse the first three steps. With γ1 defined by (4.21), it is easy to
see that

|x[1]| ≤ γ1|x[0]|+ ‖w‖∞, (4.33)

|x[2]| ≤ γ2
1 |x[0]|+ (γ1 + 1)‖w‖∞, (4.34)
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and
|x[3]| ≤ γ3

1 |x[0]|+ (γ2
1 + γ1 + 1)‖w‖∞. (4.35)

Combining (4.32) - (4.34) yields

|x[l]| ≤ (γ3
1λ
−3/2
1 )(λ

1/2
1 )l|x[0]|+

(
γ1λ

−3/2
1 (γ1 + 1) + γ4 +

γ4

ε

)
‖w‖∞, l ≤ 4. (4.36)

From (4.33), (4.34) and (4.35), we also see that

|x[l]| ≤ max
{

1, γ1λ
−1
1 , γ2

1λ
−2
1 , γ3

1λ
−3
1

}
λl1|x[0]|+

(
γ2

1 + γ1 + 1
)
‖w‖∞, l = 0, 1, 2, 3. (4.37)

Using the definition of λ2 = λ
1/2
1 , if follows from (5.40) and (5.41) that there exists a

constant c5 so that

|x[l]| ≤ c5(λ2)l|x[0]|+ c5

(
1 +

1

ε

)
‖w‖∞, l ∈ Z

+.

�
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4.3 Optimality

The proposed control action yields the closed-loop equation

x[k + 1] = ax[k] + b(f̂ [k] + (−1)kε)x[k] + w[k]. (4.38)

On the first two steps, we typically have a poor estimate of f so the closed-loop behavior
may be poor. As a consequence, starting from step k = 2 we will obtain a bound on the
difference between the proposed closed-loop system behavior and the “optimal behavior”.
The optimal state-feedback control action is defined by

uo[k] = f o[k]xo[k],

f o[k] = f(a, b);

with this control action the behavior of the closed-loop system with optimal controller will
be

xo[k + 1] = axo[k] + buo[k] + w[k]

= axo[k] + bf o[k]xo[k] + w[k], k ≥ 2, xo[2] = x[2];

here xo[k] is the optimal state variable. We also define the difference between x[k] and
xo[k] by:

x̃[k] := x[k]− xo[k].

Since we are comparing the two behaviors starting from step k = 2, we have defined the
initial condition to be x0[2] = x[2]1; since f o[k] = f(a, b), it means that a + bf o[k] = acl.
This yields

xo[k + 1] = aclx
o[k] + w[k], k ≥ 2. (4.39)

So for every ε ∈ (0, c0/b̄], from (3.11) and (3.12) we have:

|a2
cl − b2ε2| ≤ λ1 = λ2

2 for all ε ∈ (0, c0/b̄] ⊂ [0, 1/b̄]

⇒ |a2
cl| ≤ λ2

2

⇒ |acl| ≤ λ2, (4.40)

and so by (4.40) we obtain a bound on optimal state variable

|xo[k + 1]| ≤ λ2|xo[k]|+ ‖w‖∞. (4.41)

1Note that x̃[2] = 0.
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Theorem 2: There exists constants c6 > 0 and c7 > 0 such that for every a ∈ A, b ∈ B,
x(0) ∈ R, â[0] ∈ A, b̂[0] ∈ B (yielding f̂ [0] = f̂ [1] ∈ F), w ∈ l∞ and ε ∈ (0, c0/b̄], when
the control law (4.2)-(4.5) is applied to the linear time-invariant plant (4.1), we have

|x[k]− xo[k]| ≤ εc6

(
λ2 + 1

2

)k
|x[0]|+ c6

(
1 +

1

ε

)
‖w‖∞, k ≥ 2,

and

|u[k]− uo[k]| ≤ εc7

(
λ2 + 1

2

)k
|x[0]|+ c7

(
1 +

1

ε

)
‖w‖∞, k ≥ 2.

Proof: let a ∈ A, b ∈ B, x(0) ∈ R, â[0] ∈ A, b̂[0] ∈ B (yielding f̂ [0] = f̂ [1] ∈ F), w ∈ l∞,
ε ∈ (0, c0/b̄] and k ∈ Z+. Let the control law (4.2)-(4.5) be applied to plant (4.1). We
obtain a difference equation for x̃[k] for k ≥ 2:

x̃[k + 1] = x[k + 1]− xo[k + 1]

= ax[k] + b[f̂ [k] + (−1)kε]x[k] + w[k]− (axo[k] + bf o[k]xo[k] + w[k])

= ax[k]− axo[k] + bf̂ [k]x[k] + (−1)kεbx[k]− bf o[k]xo[k]

= ax̃[k] + bf o[k]x[k] +
(
f̂ [k]− f o[k]

)
x[k] + (−1)k εbx[k]− bf o[k]xo[k]

= (a+ bf o[k])x̃[k]− b(f̂ [k]− f o[k])x[k]− (−1)kεbx[k]

|x̃[k + 1]| ≤ |a+ bf o[k]| |x̃[k]|︸ ︷︷ ︸
=:g1[k]

+ |b(f̂ [k]− f o[k])x[k]|︸ ︷︷ ︸
=:g2[k]

+ |(−1)kεb| |x[k]|︸ ︷︷ ︸
=:g3[k]

, k ≥ 2. (4.42)

We now obtain a bound on each of these three terms.
A bound on g1[k]: We know that

a+ bf o[k] = acl,

so from (4.40) we have

g1[k] ≤ λ2|x̃[k]|, k ≥ 2. (4.43)

A bound on g3[k]: From Theorem 1 we already have an upper bound on |x[k]| for every
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k ≥ 0, a bound on g3[k] is given by 2

g3[k] ≤ εb̄

[
c5

(
λ2 + 1

2

)k
|x[0]|+ c5

(
1 +

1

ε

)
‖w‖∞

]

⇒ g3[k] ≤ εb̄c5

(
λ2 + 1

2

)k
|x[0]|+ c0c5

(
1 +

1

ε

)
‖w‖∞, k ≥ 0. (4.44)

A bound on g2[k]: We first obtain a crude bound on the increase of x at every step by
defining

|a+ b(f̂ [l] + ε)| ≤ ā+ b̄(f̄ + c0/b̄) =: γ1, l ∈ Z+,

and then observe that

|x[k + 1]| ≤ γ1|x[k]|+ ‖w‖∞ , k ≥ 0. (4.45)

As discussed earlier, since the estimate of f may be poor for the first two steps, we look
at the case of g2[k] for k ≥ 2. Equivalently, we obtain a bound on g2[k + 2] for k ≥ 0:

g2[k + 2] ≤ b̄|f̃ [k + 2]||x[k + 2]|, k ≥ 0. (4.46)

We now use Lemma 2 to obtain a bound on g2[k+ 2] for k ∈ Z+ even and then extend the
results to obtain the case when k ∈ Z+ odd. Motivated by Lemma 2 and with j ∈ Z+, we
will analyse g[2j + 2] (this is the even case) for the case when ε|x[2j + 1]| ≤ c2 and for the
case when ε|x[2j + 1]| > c2.
Case 1: ε|x̄[2j + 1]| ≤ c2 (equivalently, |x[2j + 1]| ≤ 1

ε
c2‖w‖∞). In this case, from (4.45)

|x[2j + 2]| ≤ γ1|x[2j + 1]|+ ‖w‖∞.

So from (4.42)

g2[2j + 2] ≤ b̄|f̃ [2j + 2]||x[2j + 2]|
≤ 2b̄f̄(γ1|x[2j + 1]|+ ‖w‖∞). (4.47)

Substituting the upper bound on |x[2j + 1]| yields

g2[2j + 2] ≤ 2b̄f̄(γ1
c2

ε
‖w‖∞ + ‖w‖∞)

≤ 2b̄f̄(γ1
c2

ε
+ 1)‖w‖∞. (4.48)

2We use a weaker bound than Theorem 1 provides in order to simplify later calculations.
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Case 2: ε|x̄[2j + 1]| > c2 (equivalently, |x[2j + 1]| > 1
ε
c2‖w‖∞). From (4.45) we have

|x[2j + 2]| ≤ γ1|x[2j + 1]|+ ‖w‖∞.

So from (4.42)

g2[2j + 2] ≤ b̄|f̃ [2j + 2]||x[2j + 2]|
≤ b̄|f̃ [2j + 2]|(γ1|x[2j + 1]|+ ‖w‖∞). (4.49)

From Lemma 2 we see that

|f̃ [2j + 2]| ≤ c4

ε|x̄[2j + 1]|
.

So

g2[2j + 2] ≤ b̄(γ1|x[2j + 1]|+ ‖w‖∞)
c4

ε|x̄[2j + 1]|

≤ b̄c4(
γ1

ε
+

1

ε|x̄[2j + 1]|
)‖w‖∞

≤ b̄c4(
γ1

ε
+

1

c2

)‖w‖∞. (4.50)

If we combine Case 1 and Case 2 and define γ2 by

γ2 = max

{
b̄c4γ1, 2b̄f̄ , 2b̄f̄ c2γ1,

¯
b
c4

c2

}
,

we end up with

g2[2j + 2] ≤ γ2(1 +
1

ε
)‖w‖∞, j ∈ Z

+. (4.51)

Now we consider the case of k ∈ Z+ odd. If we set k = 2j + 1 in (4.46), then we end up
with a bound on the odd terms:

g2[2j + 3] ≤ |b||f̃ [2j + 3]||x[2j + 3]|, j ≥ 0.

Using (4.45) to obtain bound on |x[2j + 3]|, we get

g2[2j + 3] ≤ |b||f̃ [2j + 2]| (γ1|x[2j + 2]|+ ‖w‖∞)

≤ γ1|bf̃ [2j + 2]x[2j + 2]|+ |b||f̃ [2j + 2]|‖w‖∞
≤ γ1g2[2j + 2] + 2b̄f̄‖w‖∞, j ≥ 0.
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Using the bound on g2[2j + 2] by (4.51), we get

g2[2j + 3] ≤
[
γ1γ2

(
1 +

1

ε

)
+ 2b̄f̄

]
‖w‖∞ , j ≥ 0. (4.52)

If we define
γ3 := max

{
2b̄f̄ , γ2, γ1γ2

}
,

we can combine (4.52) - (4.51) and obtain

g2[k] ≤ γ3

(
1 +

1

ε

)
‖w‖∞. (4.53)

Using the bounds (4.43), (4.44) and (4.53) in (4.42) we have

|x̃[k + 1]| ≤ λ2|x̃[k]|+ εb̄c5

(
λ2 + 1

2

)k
|x[0]|+ c0c5

(
1 +

1

ε

)
‖w‖∞

+γ3

(
1 +

1

ε

)
‖w‖∞, k ≥ 2.

To simplify the above equation we define

γ4 = γ3 + c0c5

so that

|x̃[k + 1]| ≤ λ2|x̃[k]|+ εb̄c5

(
λ2 + 1

2

)k
|x[0]|+ γ4

(
1 +

1

ε

)
‖w‖∞ k ≥ 2. (4.54)

The last step is to solve this difference inequality. For that purpose, let us define

θ[k] := |x̃[k]|

and

ψ[k] := εb̄c5

(
λ2 + 1

2

)k
|x[0]|+ γ4

(
1 +

1

ε

)
‖w‖∞.

So our difference inequality now looks like

θ[k + 1] ≤ λ2θ[k] + ψ[k], θ[2] ≥ 0, k ≥ 2; (4.55)
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notice that λ2 ≥ 0 and that θ[k] ≥ 0 and ψ[k] ≥ 0 for k ≥ 2. In order to solve this
inequality let us define an equation

θ̄[k + 1] = λ2θ̄[k] + ψ[k], θ̄[2] = θ[2].

Solving iteratively for any k we get

θ̄[k] = λk−2
2 θ̄[2] +

k−1∑
m=2

λk−1−m
2 ψ[m], k ≥ 2. (4.56)

Claim: θ[k] ≤ θ̄[k] for all k ≥ 2.

Proof of claim: We will use induction to prove this. Clearly the claim is true for k = 2.
Now, let us suppose that it is true for k = 2, 3, 4, . . . , j.; we need to prove it for k = j + 1.
From (4.55) we have

θ[j + 1] ≤ λ2θ[j] + ψ[j]; (4.57)

by hypothesis we also know that

λ2θ[j] + ψ[j] ≤ λ2θ̄[j] + ψ[j]︸ ︷︷ ︸
=θ̄[j+1]

. (4.58)

From (4.57) and (4.58), we conclude that

θ[k + 1] ≤ θ̄[k + 1].

�

From this claim and (4.56) we get

θ[k] ≤ λk−2
2 θ[2] +

k−1∑
m=2

λk−1−m
2 ψ[m], k ≥ 2;
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but θ[k] = |x̃[k]| and substituting the value of ψ[k + 1] yields

|x̃[k]| ≤ λk−2
2 |x̃[2]|︸ ︷︷ ︸

=0

+
k−1∑
m=2

λk−1−m
2

[
εb̄c5

(
λ2 + 1

2

)m
|x[0]|+ γ4

(
1 +

1

ε

)
‖w‖∞

]

≤ εb̄c5|x[0]|
k−1∑
m=2

λk−1
2 λ−m2

(
λ2 + 1

2

)m
+ γ4

(
1 +

1

ε

)
‖w‖∞

k−1∑
m=2

λk−1−m
2

≤ εb̄c5λ
k−1
2 |x[0]|

k−1∑
m=2

(
λ2 + 1

2λ2

)m
+

γ4

1− λ2

(
1 +

1

ε

)
‖w‖∞

≤ εb̄c5|x[0]|2λ
k−1
2 λ2

1− λ2

[(
λ2 + 1

2λ2

)k
− 1

]
+

γ4

1− λ2

(
1 +

1

ε

)
‖w‖∞

≤ εb̄c5
2

1− λ2

[(
λ2 + 1

2

)k
− λk2

]
|x[0]|+ γ4

1− λ2

(
1 +

1

ε

)
‖w‖∞

≤ ε
2b̄c5

1− λ2

(
λ2 + 1

2

)k
|x[0]|+ γ4

1− λ2

(
1 +

1

ε

)
‖w‖∞, k ≥ 2.

If we define

c6 := max

{
2b̄c5

1− λ2

,
γ4

1− λ2

}
,

then

|x̃[k]| ≤ εc6

(
λ2 + 1

2

)k
|x[0]|+ c6

(
1 +

1

ε

)
‖w‖∞, k ≥ 2. (4.59)

For the second part of the theorem, let us look at

ũ[k] := u[k]− uo[k]

=
(
f̂ [k] + (−1)kε

)
x[k]− f o[k]xo[k]

= f̂ [k]x[k] + (−1)kεx[k]− f o[k]xo[k]

= f̂ [k]x[k] + (−1)kεx[k]− f o[k]xo[k] + f o[k]x[k]− f o[k]x[k]

= f o[k] (x[k]− xo[k]) + (f̂ [k]− f o[k])x[k] + (−1)kεx[k].

|ũ[k]| ≤ |f o[k]x̃[k]|︸ ︷︷ ︸
h1[k]

+ |f̃ [k]x[k]|︸ ︷︷ ︸
h2[k]

+ |εx[k]|︸ ︷︷ ︸
h3[k]

, k ≥ 2. (4.60)
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We now obtain a bound on each of these three terms.
A bound on h1[k]: We know that

|f o[k]| ≤ f̄ ;

so using (4.59) bound on h1[k] yields

h1[k] ≤ f̄ x̃[k]

≤ εf̄c6

(
λ2 + 1

2

)k
|x[0]|+ f̄ c6

(
1 +

1

ε

)
‖w‖∞, k ≥ 2. (4.61)

A bound on h3[k]: From Theorem 1

h3[k] ≤ ε

[
c5

(
λ2 + 1

2

)k
|x[0]|+ c5

(
1 +

1

ε

)
‖w‖∞

]

≤ εc5

(
λ2 + 1

2

)k
|x[0]|+ c0c5

b̄

(
1 +

1

ε

)
‖w‖∞, k ≥ 0. (4.62)

A bound on h2[k]: If we look at the bound on g2[k] and compare it with h2[k] we get

h2[k] =
g2[k]

b
,

and g2[k] is bounded by (4.53). Using this bound yields

⇒ h2[k] ≤ γ3

b

(
1 +

1

ε

)
‖w‖∞. (4.63)

Combining the bounds (4.61), (4.62) and (4.63) will give us

|ũ[k]| ≤ εf̄c6

(
λ2 + 1

2

)k
|x[0]|+ f̄ c6

(
1 +

1

ε

)
‖w‖∞ + εc5

(
λ2 + 1

2

)k
|x[0]|

+
c0c5

b

(
1 +

1

ε

)
‖w‖∞ +

γ3

b

(
1 +

1

ε

)
‖w‖∞;

if we define

c7 := max

{
c5, f̄ c6,

c0c5

b
,
γ3

b

}
,

then

|ũ[k]| ≤ εc7

(
λ2 + 1

2

)k
|x[0]|+ c7

(
1 +

1

ε

)
‖w‖∞, k ≥ 2. (4.64)

�
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Chapter 5

Linear Time-Varying System

5.1 The Setup

In this chapter we consider the case of linear time-varying plant given by

x[k + 1] = a[k]x[k] + b[k]u[k] + w[k],
y[k] = x[k].

}
(5.1)

With the initial conditions of â[0] ∈ A, b̂[0] ∈ B, f̂ [0] = f̂ [1] = f(â[0], b̂[0]) and ε ∈(
0, c0/b̄

]
, we again state the proposed adaptive control law; for k ∈ Z+ even

u[k] = (f̂ [k] + ε)x[k],

u[k + 1] = (f̂ [k + 1]− ε)x[k + 1],

}
(5.2)

[
ǎ[k + 2]

b̌[k + 2]

]
=


[

x[k] (f̂ [k] + ε)x[k]

x[k + 1] (f̂ [k + 1]− ε)x[k + 1]

]−1 [
x[k + 1]
x[k + 2]

]
, if x[k]x[k + 1] 6= 0[

â[k]

b̂[k]

]
, if x[k]x[k + 1] = 0,

(5.3)
â[k + 2] = ΠA(ǎ[k + 2]),

b̂[k + 2] = ΠB(b̌[k + 2]),

}
(5.4)

f̂ [k + 2] = f(â[k], b̂[k]),

f̂ [k + 3] = f(â[k], b̂[k]).

}
(5.5)
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With some limitations on how fast the plant parameters change, we will prove that the
proposed control law is exponentially stabilizing and that the map from the noise to x has
a bounded gain.

As discussed in the previous chapter, since the stability of the controller depends on
how accurate the estimated plant parameters are, we will look at the estimation process
in detail. With the initial conditions f̂ [0] = f̂ [1] ∈ F , let the control law (5.2)-(5.5) be
applied to plant (5.1) for even k, yielding the following response:

x[k + 1] = a[k]x[k] + b[k](f̂ [k] + ε)x[k] + w[k]

x[k + 2] = a[k + 1]x[k + 1] + b[k + 1](f̂ [k]− ε)x[k + 1] + w[k + 1]

⇒
[
x[k + 1]
x[k + 2]

]
︸ ︷︷ ︸

(known)

=

[
x[k] (f̂ [k] + ε)x[k]

x[k + 1] (f̂ [k]− ε)x[k + 1]

]
︸ ︷︷ ︸

=:φ[k+2](known)

×
[
a[k]
b[k]

]
+

[
w[k]

w[k + 1]

]
︸ ︷︷ ︸

(unknown)

+

[
0 0

x[k + 1] x[k + 1](f̂ [k]− ε)

]
︸ ︷︷ ︸

=:ζ[k](known)

[
a[k + 1]− a[k]
b[k + 1]− b[k]

]
. (5.6)

At this point we would like to get a bound on

∆ltv[k + 2] :=

[
ǎ[k + 2]

b̌[k + 2]

]
−
[
a[k]
b[k]

]
;

if x[k]x[k + 1] = 0, then φ[k + 2] is not invertible and so we can not use (5.6) to obtain a
bound on ‖∆ltv[k + 2]‖. Hence, in the following analysis we assume that x[k]x[k + 1] 6= 0.
If we compare (5.6) to (4.6) we have an extra term due to the time-varying parameters.
We now define

∆a[k] := a[k + 1]− a[k]

and
∆b[k] := b[k + 1]− b[k].

Using these definitions and rearranging (5.6) yields[
a[k]
b[k]

]
= φ[k + 2]−1

[
x[k + 1]
x[k + 2]

]
− φ[k + 2]−1

[
w[k]

w[k + 1]

]
− φ[k + 2]−1ζ[k]

[
∆a[k]
∆b[k]

]
and from (5.3) we have [

ǎ[k + 2]

b̌[k + 2]

]
= φ[k + 2]−1

[
x[k + 1]
x[k + 2]

]
.
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So with this we conclude that

∆ltv[k + 2] = φ[k + 2]−1

[
w[k]

w[k + 1]

]
︸ ︷︷ ︸

=:∆[k+2]

+φ[k + 2]−1ζ[k]

[
∆a[k]
∆b[k]

]
︸ ︷︷ ︸

Term 2

. (5.7)

Observing (5.7), we see that we have two error generating terms. We see that the first
term, namely ∆[k + 2], is exactly the same as (4.7) (LTI case) and Term 2 is due to the
time-varying parameters. Using this yields

∆ltv[k + 2] = ∆[k + 2] + φ[k + 2]−1ζ[k]

[
∆a[k]
∆b[k]

]
.

Similar to Lemma 2, we now introduce an important result which will be helpful in proving
exponential stability of the closed-loop LTV system under consideration.
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Lemma 3: There exits strictly positive constants c8, c9, c10, c11 and c12 so that, for
every ∆a > 0, ∆b > 0, a ∈ s

(
A,∆a

)
, b ∈ s

(
B,∆b

)
, x(0) ∈ R, â[0] ∈ A, b̂[0] ∈ B

(yielding f̂ [0] = f̂ [1] ∈ F), w ∈ l∞, ε ∈ (0, c0/b̄] and k ∈ Z+ even, when the control
law (5.2)-(5.5) is applied to the linear time-varying plant (5.1), if

ε|x̄[k + 1]| > c8 (5.8)

and
2c9

ε
(∆a + ∆b) < δ (5.9)

then

‖∆ltv[k + 2]‖ ≤ 1

ε

c10

|x̄[k + 1]|
+
c9

ε
(∆a + ∆b) (5.10)

and

|f̃ [k + 2]| ≤ 1

ε

c11

|x̄[k + 1]|
+
c12

ε
(∆a + ∆b).

Proof: Let ∆a > 0, ∆b > 0, a ∈ s
(
A,∆a

)
, b ∈ s

(
B,∆b

)
, x(0) ∈ R, â[0] ∈ A, b̂[0] ∈ B

(yielding f̂0] = f̂ [1] ∈ F) , w ∈ l∞, ε ∈ (0, c0/b̄] and suppose that the control law (5.2)-(5.5)
is applied to the linear time-varying plant (5.1); let k ∈ Z+ be even.

First suppose that x[k]x[k + 1] = 0. If

x[k + 1] = 0

then (5.8) never holds. If
x[k] = 0

then

x[k + 1] = a[k]x[k] + b[k]u[k] + w[k]

= w[k].

Using the definition of x̄[k] given in (4.11) yields

|x̄[k + 1]| ≤ 1,

which means that (5.8) will not hold as long as

c8

ε
> 1⇔ c8 > ε⇔ c8 >

c0

b̄
.

35



Now assume that x[k]x[k+ 1] 6= 0. Using the same argument as in the proof of Lemma
2, we can prove that there exists constants γ1 and γ2 so that if |x̄[k + 1]| > γ2 then

‖∆[k + 2]‖ ≤ 2γ1 (c1 + 1)

ε|x̄[k + 1]|
.

Hence,

‖∆ltv[k + 2]‖ ≤ ‖∆[k + 2]‖+

∥∥∥∥φ[k + 2]−1ζ[k]

[
∆a[k]
∆b[k]

]∥∥∥∥
≤ 2γ1 (c1 + 1)

ε|x̄[k + 1]|
+

∥∥∥∥φ[k + 2]−1ζ[k]

[
∆a[k]
∆b[k]

]∥∥∥∥︸ ︷︷ ︸
Term 2

. (5.11)

Now, let us look at Term 2 on the R.H.S of the above equation in detail. Substituting the
value of φ[k + 2]−1 and ζ[k] in Term 2 yields

‖Term 2‖ =

∥∥∥∥ 1

2εx[k]x[k + 1]

[
(f̂ [k]− ε)x[k + 1] −(f̂ [k] + ε)x[k]
−x[k + 1] x[k]

]
×
[

0 0

x[k + 1] x[k + 1](f̂ [k]− ε)

] [
∆a[k]
∆b[k]

]∥∥∥∥
=

∥∥∥∥ 1

2εx[k]x[k + 1]
×
[
−(f̂ [k] + ε)x[k]x[k + 1] −(f̂ [k]2 − ε2)x[k]x[k + 1]

x[k]x[k + 1] (f̂ [k]− ε)x[k]x[k + 1]

]
×
[

∆a[k]
∆b[k]

]∥∥∥∥
=

1

2ε

∥∥∥∥[ −(f̂ [k] + ε) −(f̂ [k]− ε)(f̂ [k] + ε)

1 (f̂ [k]− ε)

] [
∆a[k]
∆b[k]

]∥∥∥∥
≤ 1

2ε

(1 + f̄ + c0/b̄)(1 + f̄ + c0/b̄)︸ ︷︷ ︸
=:2c9

 (∆a + ∆b)

≤ c9

ε
(∆a + ∆b). (5.12)

Substituting this inequality into (5.11) yields

‖∆ltv[k + 2]‖ ≤ 2γ1 (c1 + 1)

ε|x̄[k + 1]|
+
c9

ε
(∆a + ∆b). (5.13)
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In order to guarantee that

[
â[k + 2]

b̂[k + 2]

]
is a better estimate of

[
a
b

]
than

[
ǎ[k + 2]

b̌[k + 2]

]
, it

is enough that

‖∆ltv[k + 2]‖ < δ; (5.14)

this will be the case if

2γ1 (c1 + 1)

ε|x̄[k + 1]|
+
c9

ε
(∆a + ∆b) < δ,

which in turn will be the case if

2γ1 (c1 + 1)

ε|x̄[k + 1]|
<

δ

2

⇔ ε|x̄[k + 1]| >
4γ1 (c1 + 1)

δ
(5.15)

and

c9

ε
(∆a + ∆b) <

δ

2
. (5.16)

At this point we have to be careful to ensure that |x̄[k + 1]| > γ2 as well as (5.15) holds.
To this end, if we set

c8 := max

{
γ2
c0

b̄
,
4γ1 (c1 + 1)

δ

}
, (5.17)

then
ε|x̄[k + 1]| > c8

clearly implies that

|x̄[k + 1]| > c8

ε
≥ c8

c0/b̄
≥
γ2

�c0
�̄b

�c0
�̄b

= γ2

as well as

ε|x̄[k + 1]| > 4γ1 (c1 + 1)

δ
.

For such a choice of c8, if (5.8) and (5.9) holds then (5.13) and (5.14) are true; if we define

c10 := 2γ1(c1 + 1),
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then (5.13) becomes (5.10); furthermore∥∥∥∥[ â[k + 2]− a
b̂[k + 2]− b

]∥∥∥∥ ≤ ∥∥∥∥[ ǎ[k + 2]− a
b̌[k + 2]− b

]∥∥∥∥ = ‖∆ltv[k + 2]‖

as well. With γ3 the Lipschitz constant of f , we conclude that

f̃ [k + 2] ≤ γ3

∥∥∥∥[ ab
]
−
[
â[k + 2]

b̂[k + 2]

]∥∥∥∥ ≤ γ3‖∆ltv[k + 2]‖

≤ γ3c10

ε|x̄[k + 1]|
+
γ3c9

ε
(∆a + ∆b), (5.18)

so we will define c11 = γ3c10 and c12 = γ3c9. �

For the stability analysis of the closed-loop system involving the time-varying plant (5.1),
we define

acl[k] := a[k] + b[k]f(a[k], b[k]) ∈ (−1, 1)

and using the definition of (3.12) we can see

|acl[k]| ≤ λ2;

we choose

λ3 ∈ (λ2, 1). (5.19)
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5.2 The Main Result

Theorem 3: There exists constants c13 > 0 and c14 > 0 such that for every a ∈
s (A, c13ε), b ∈ s (B, c13ε), x(0) ∈ R, â[0] ∈ A, b̂[0] ∈ B (yielding f̂0] = f̂ [1] ∈ F),
w ∈ l∞ and ε ∈ (0, c0/b̄], when the control law (5.2)-(5.5) is applied to the linear
time-varying plant (5.1), we have

|x[k]| ≤ c14λ
k
3|x[0]|+ c14

(
1 +

1

ε

)
‖w‖∞, k ≥ 0.

Proof: Let a[k] ∈ s (A, c13ε), b[k] ∈ s (B, c13ε), x(0) ∈ R, â[0] ∈ A, b̂[0] ∈ B (yielding
f̂0] = f̂ [1] ∈ F), w ∈ l∞, ε ∈ (0, c0/b̄] and k ∈ Z+ be even. As discussed in previous
theorems, since f̂ [0] = f̂ [1] are typically inaccurate, the behaviour over the first few steps
will typically be poor. To this end, when the control law (5.2)-(5.5) is applied to the linear
time-varying plant (5.1), we have

x[k + 3] =
[
a[k + 2] + b[k + 2](f̂ [k + 2] + ε)

]
x[k + 2] + w[k + 2],

x[k + 4] =
[
a[k + 3] + b[k + 3](f̂ [k + 2]− ε)

]
x[k + 3] + w[k + 3]. (5.20)

We now divide the proof into simple steps which makes it easier to understand.

Step 1: We will first obtain a crude bound showing how fast x increases. We first define
γ1 as defined in (3.14):

|a[l] + b[l](f̂ [l] + ε)| ≤ ā+ b̄(f̄ + c0/b̄) =: γ1, l ∈ Z+. (5.21)

This can be used to obtain a crude bound on the increase of x over a step:

|x[k + l + 1]| ≤ γ1|x[k + l]|+ ‖w‖∞, l ∈ Z
+. (5.22)

Step 2: The next goal is to obtain a bound on |x[k + 4]|, for which we will use the crude
bound derived in step 1. To achieve this we will analyze x[k + 4] for two cases, when
ε|x̄[k+ 1]| is small and when it is large. Using the choice of c8 asserted to exist by Lemma
3, we consider:
Case 1: ε|x̄[k + 1]| ≤ c8. Since ε|x̄[k + 1]| is not large, we can use the crude bound given
by (5.22) to get a bound on |x[k + 4]|. Using (5.22) three times in succession yields

|x[k + 4]| ≤ γ1|x[k + 3]|+ ‖w‖∞
≤ γ2

1 |x[k + 2]|+ γ1‖w‖∞ + ‖w‖∞
≤ γ3

1 |x[k + 1]|+ γ2
1‖w‖∞ + γ1‖w‖∞ + ‖w‖∞
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which implies that

|x̄[k + 4]| ≤ γ3
1 |x̄[k + 1]|+ γ2

1 + γ1 + 1.

≤ γ3
1c8

ε
+ γ2

1 + γ1 + 1. (5.23)

Case 2: ε|x̄[k + 1]| > c8. Expanding (5.20) yields

x[k + 4] =
[
a[k + 3] + b[k + 3](f̂ [k + 2]− ε)

]
×
{[
a[k + 2] + b[k + 2](f̂ [k + 2] + ε)

]
x[k + 2] + w[k + 2]

}
+ w[k + 3]

=
[
(a[k + 2] + ∆a[k + 2]) + (b[k + 2] + ∆b[k + 2])(f̂ [k + 2]− ε)

]
×
[
a[k + 2] + b[k + 2](f̂ [k + 2] + ε)

]
x[k + 2]

+
[
a[k + 3] + b[k + 3](f̂ [k + 2]− ε)

]
w[k + 2] + w[k + 3]

=
[
a[k + 2] + b[k + 2](f̂ [k + 2]− ε) + ∆a[k + 2] + ∆b[k + 2](f̂ [k + 2]− ε)

]
×
[
a[k + 2] + b[k + 2](f̂ [k + 2] + ε)

]
x[k + 2]

+
[
a[k + 3] + b[k + 3](f̂ [k + 2]− ε)

]
w[k + 2] + w[k + 3]

=
[
a[k + 2] + b[k + 2](f̂ [k + 2]− ε)

]
×
[
a[k + 2] + b[k + 2](f̂ [k + 2] + ε)

]
x[k + 2]

+
[
∆a[k + 2] + ∆b[k + 2](f̂ [k + 2]− ε)

]
×
[
a[k + 2] + b[k + 2](f̂ [k + 2] + ε)

]
x[k + 2]

+
[
a[k + 3] + b[k + 3](f̂ [k + 2]− ε)

]
w[k + 2] + w[k + 3],
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so,

x[k + 4] =
[
(a[k + 2] + b[k + 2]f [k + 2])2 − b[k + 2]2ε2

]
x[k + 2]︸ ︷︷ ︸

=:ψ1[k]

+
[
b[k + 2]2f̃ [k + 2]2 − 2b[k + 2]f̃ [k + 2] (a[k + 2] + b[k + 2]f [k + 2])

]
x[k + 2]︸ ︷︷ ︸

=:ψ2[k]

+
[
∆a[k + 2] + ∆b[k + 2](f̂ [k + 2]− ε)

] [
a[k + 2] + b[k + 2](f̂ [k + 2] + ε)

]
x[k + 2]︸ ︷︷ ︸

=:ψ3[k]

+
[
a[k + 3] + b[k + 3](f̂ [k + 2]− ε)

]
w[k + 2] + w[k + 3]︸ ︷︷ ︸

=:ψ4[k]

. (5.24)

We now obtain bounds on ψ1[k], ψ2[k], ψ3[k] and ψ4[k] in order of difficulty. From the
definition of λ2 given by (3.12) we have

|ψ1[k]| ≤ λ2
2|x[k + 2]|. (5.25)

It is easy to see that

|ψ4[k]| ≤
[
ā+ b̄(f̄ + ε) + 1

]
‖w‖∞

≤ (γ1 + 1)‖w‖∞. (5.26)

Furthermore,

|ψ3[k]| ≤
[
∆a + ∆b

(
f̄ + ε

)] [
ā+ b̄

(
f̄ + ε

)]
|x[k + 2]|

≤
[
∆a + ∆b

(
f̄ +

c0

b̄

)] [
ā+ b̄f̄ + c0

]
|x[k + 2]|

≤
(
ā+ b̄f̄ + c0

)
max

{
1, f̄ +

c0

b̄

}
︸ ︷︷ ︸

=:γ2

(
∆a + ∆b

)
|x[k + 2]|. (5.27)

Now we turn to ψ2[k], which is the most complicated to analyse one to analyse. Since
ε|x̄[k + 1]| > c8 by hypothesis, if

∆a + ∆b <
δ

2c9

ε (5.28)

then by Lemma 3 we have

|f̃ [k + 2]| ≤ 1

ε

c11

|x̄[k + 1]|
+
c12

ε
(∆a + ∆b),
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which can be used to form a bound on |ψ2[k]|:

|ψ2[k]| ≤
[
b̄2|f̃ [k + 2]|2 + 2b̄|f̃ [k + 2]|

]
|x[k + 2]|

≤ b̄
(
b̄|f̃ [k + 2]|+ 2

)
|f̃ [k + 2]||x[k + 2]|

≤ b̄
(
2b̄f̄ + 2

)︸ ︷︷ ︸
=:γ3

|f̃ [k + 2]||x[k + 2]|

≤ γ3

[
1

ε

c11

|x̄[k + 1]|
+
c12

ε

(
∆a + ∆b

)]
|x[k + 2]|

≤ γ3c11

ε|x̄[k + 1]|
(γ1|x[k + 1]|+ ‖w‖∞) +

γ3c12

ε

(
∆a + ∆b

)
|x[k + 2]|

≤ γ1γ3c11

ε
‖w‖∞ +

γ3c11

c8

‖w‖∞ +
γ3c12

ε

(
∆a + ∆b

)
|x[k + 2]|. (5.29)

If we substitute the bounds on ψ1[k], ψ2[k], ψ3[k] and ψ4[k] onto (5.24) we conclude that if
(5.28) holds, then

|x[k + 4]| ≤
[
λ2

2 +
(
γ2 +

γ3c12

ε

) (
∆a + ∆b

)]
|x[k + 2]|

+

[
1 + γ1 +

γ1γ3c11

ε
+
γ3c11

c8

]
‖w‖∞. (5.30)

If (5.28) holds and (
γ2 +

γ3c12

ε

) (
∆a + ∆b

)
≤ λ2

3 − λ2
2

⇔
(
∆a + ∆b

)
≤ ε

γ2ε+ γ3c12

λ2
3 − λ2

2

⇐
(
∆a + ∆b

)
≤ λ2

3 − λ2
2

γ2ε+ γ3c12︸ ︷︷ ︸
=:γ4

ε, (5.31)

then (5.30) becomes

|x[k + 4]| ≤ λ2
3|x[k + 2]|+

[
1 + γ1 +

γ1γ3c11

ε
+
γ3c11

c8

]
‖w‖∞;

if we define

γ5 = max

{
1 + γ1 +

γ8c11

c8

, γ1γ3c11

}
,
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then this becomes

|x[k + 4]| ≤ λ2
3|x[k + 2]|+ γ5

(
1 +

1

ε

)
‖w‖∞. (5.32)

Now observe that if we define

c13 :=
1

3
min

{
δ

2c9

, γ4

}
,

then
∆a ≤ c13ε

and
∆b ≤ c13ε

implies that (5.28) and (5.31) both holds, which means that (5.32) holds.

Step 3: We will now combine the two Cases of Step 2 to get a bound on |x[k + 4]|. More
specifically, the bounds provided by combining Case 1 given by (5.23) and Case 2 given by
(5.32), we conclude that regardless of the value of |x̄[k + 1]|, we have

|x̄[k + 4]| ≤ λ2
3|x̄[k + 2]|+ (1 + γ1 + γ2

1 + γ5) +
γ3

1c8 + γ5

ε
.

If we define
γ6 := max

{
1 + γ1 + γ2

1 + γ5, γ
3
1c8 + γ5

}
we have

|x[k + 4]| ≤ λ2
3|x[k + 2]|+ γ6(1 +

1

ε
)‖w‖∞, k ∈ Z

+ even. (5.33)

Step 4: We will now obtain a bound on |x[l]| for l ∈ Z+. Observe that (5.33) holds for
even k ∈ Z+; using the variable substitution k = 2(j − 1) with j ∈ N, this becomes

|x[2j + 2]| ≤ λ2
3|x[2j]|+ γ6(1 + 1

ε
)‖w‖∞, j ∈ N.

Solving iteratively yields

|x[2j + 2]| ≤ λ2j
3 |x[2]|+ γ6

1− λ2
3

(
1 +

1

ε

)
‖w‖∞, j ∈ N. (5.34)
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For the odd steps we use (5.21):

|x[2j + 3]| ≤ γ1|x[2 + 2j]|+ ‖w‖∞, j ∈ N.

Combining this with (5.34) yields

|x[2j + 3]| ≤ γ1λ
2j
3 |x[2]|+

[
1 +

γ1γ6

1− λ2
3

(
1 +

1

ε

)]
‖w‖∞, j ∈ N. (5.35)

So for l ≥ 4 even, (5.34) says that

|x[l]| ≤ λl−2
3 |x[2]|+ γ6

1− λ2
3

(
1 +

1

ε

)
‖w‖∞,

and for l ≥ 5 odd, (5.35) says that

|x[l]| ≤ γ1λ
l−3
3 |x[2]|+

[
1 +

γ1γ6

1− λ2
3

(
1 +

1

ε

)]
‖w‖∞.

If we define

γ7 := max

{
γ6

1− λ2
3

, 1 +
γ1γ6

1− λ2
3

}
,

when combined these yield

|x[l]| ≤ γ1λ
−3
3 λl3|x[2]|+ γ7

(
1 +

1

ε

)
‖w‖∞, l ≥ 4. (5.36)

The last step is to analyse the first three steps. With γ1 defined by (5.21), it is easy to
see that

|x[1]| ≤ γ1|x[0]|+ ‖w‖∞, (5.37)

|x[2]| ≤ γ2
1 |x[0]|+ (γ1 + 1)‖w‖∞, (5.38)

and
|x[3]| ≤ γ3

1 |x[0]|+ (γ2
1 + γ1 + 1)‖w‖∞, (5.39)

Combining (5.36) and (5.38) yields

|x[l]| ≤ (γ3
1λ
−3
3 )λl3|x[0]|+

(
γ1λ

−3
3 (γ1 + 1) + γ7 +

γ7

ε

)
‖w‖∞, l ≤ 4. (5.40)

From (5.37),(5.38) and (5.39), we also see that

|x[l]| ≤ max
{

1, γ1λ
−1
3 , γ2

1λ
−2
3 , γ3

1λ
−3
3

}
λl3|x[0]|+

(
γ2

1 + γ1 + 1
)
‖w‖∞, l = 0, 1, 2, 3. (5.41)
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It follows from (5.40) and (5.41) that there exists a constant c12 so that

|x[l]| ≤ c12(λ3)l|x[0]|+ c12

(
1 +

1

ε

)
‖w‖∞, l ∈ Z

+.

�
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Chapter 6

Examples and Simulations

For all the examples in this Chapter we consider the following setup:

• a[k] takes values in A = [0, 5].

• b[k] takes value in set B = [−5,−1] ∪ [1, 5], yielding b̄ = 5.

• f is an LQR optimal gain for r = 1 given by

f(a, b) =

{
1−a2+b2−

√
(a2+b2−1)2−4b2

2ab
if a 6= 0,

0 if a = 0.

We construct a controller as defined in Chapter 4 and Chapter 5 satisfying the following
equations: with c0 = 1 yielding ε =

(
0, 1

5

)
, for k ∈ Z+, even

u[k] = (f̂ [k] + ε)x[k],

u[k + 1] = (f̂ [k + 1]− ε)x[k + 1],

}
(6.1)

[
ǎ[k + 2]

b̌[k + 2]

]
=


[

x[k] (f̂ [k] + ε)x[k]

x[k + 1] (f̂ [k + 1]− ε)x[k + 1]

]−1 [
x[k + 1]
x[k + 2]

]
, if x[k]x[k + 1] 6= 0[

â[k]

b̂[k]

]
, if x[k]x[k + 1] = 0,

(6.2)
â[k + 2] = ΠA(ǎ[k + 2]),

b̂[k + 2] = ΠB(b̌[k + 2]),

}
(6.3)

f̂ [k + 2] = f(â[k], b̂[k]),

f̂ [k + 3] = f(â[k], b̂[k]).

}
(6.4)
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6.1 LTI with No Noise

Example 1: Consider the following system:

x[k + 1] = 2.5x[k] + 3u[k],

y[k] = x[k];

here â[0] = 2 and b̂[0] = 5, yielding f̂ [0] = f̂ [1] = f(â[0], b̂[0]) = −0.3866 and x[0] = 1.

If we apply control law (6.1)-(6.4) with ε = 0.01, as expected the closed-loop system
accurately estimates the plant parameters from the very first estimation which can be seen
in Figure 6.1a. In absence of noise, the effect of the initial condition diminishes and the
state variable x[k] approaches zero, validating the results of Theorem 1 which states that

x[k] ≤ c5λ
k
2|x[0]|+ c5

(
1 +

1

ε

)
‖w‖∞, k ≥ 0.

We now vary ε to observe its effect on the plant. We repeat this simulation with ε = 0.1 and
ε = 0.19 and the simulation results are shown in Figure 6.1b and Figure 6.1c respectively.
These simulations indicate that as we increase ε and approach 1

b̄
= 0.2, the state variable

x[k] ripples before settling down to zero and these ripples increase as ε→ 0.2.
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Figure 6.1: Example 1: Response of closed-loop LTI plant with no noise.
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Figure 6.1: Example 1: Response of closed-loop LTI plant with no noise.

6.2 LTI with Noise

For this case we choose the most unstable value of a i.e. a = 5.

Example 2: Consider the following system:

x[k + 1] = 5x[k] + 1u[k] + w[k],

y[k] = x[k].

Here â[0] = 2 and b̂[0] = 5, yielding f̂ [0] = f̂ [1] = f(â[0], b̂[0]) = −0.3866; we choose
x[0] = 0 so that we can focus on the effect of the noise w[k] which is a random function
generating values in range [−0.01, 0.01].

We apply control law (6.1)-(6.4) to the plant considered in this example with ε = 0.01.
For testing the control law we run the simulations for 10,000 steps. Figure 6.2a shows a
part of the simulation. It indicates that the closed-loop system is stable and does not blow
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up, at least for the 1000 steps shown. As a matter of fact, the maximum value of |x[k]|
reached for the entire simulation is 1152.8 giving us a noise gain of order 105. In order
to improve the noise gain, if we increase ε to 0.05 and simulate with the same data set
of noise as in the previous simulation, we end up with a better noise gain, as shown in
Figure 6.2b. Motivated by this, we repeat the simulations with 3 more test cases ε = 0.1,
ε = 0.15 and ε = 0.19; their simulation results are shown in Figures 6.2c, 6.2d and 6.2e
respectively. Table 6.1 provides a summary of the effect of the variation of ε on noise gain.
One very important thing to note in all these simulations is that even though the parameter
estimates are not that accurate, the system is stabilizing because of the adaptive nature
of the control law.
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Figure 6.2: Example 2: Response of closed-loop LTI plant with noise.
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Figure 6.2: Example 2: Response of closed-loop LTI plant with noise.
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Figure 6.2: Example 2: Response of closed-loop LTI plant with noise.
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ε Maximum |x[k]| for 10,000 steps Estimate of Noise Gain
0.01 1152.8 1.15× 105

0.05 255.3 2.55× 104

0.10 172.8 1.73× 104

0.15 120.4 1.20× 104

0.19 49.14 4.91× 103

Table 6.1: Summary of the effect of ε on Noise Gain.

If we now focus on the estimation and the estimated parameters, Lemma 2 states that
if ε|x̄[k+ 1]| is large enough, our estimated f̂ [k] is very accurate. To illustrate this, Figure
6.3 shows part of simulation for the test case of ε = 0.19; we see that at the step 757 the
value of x[757] is 29.71 (large), so the very next estimate (at step 759), the estimates â[759]
and b̂[759] are very accurate, which results in x[k] becoming close to 0 again.
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Figure 6.3: Example 2: Simulation for case ε = 0.19 for steps 750 to 800.
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6.3 Comparison of the Proposed Control Law to the

Ideal Control Law

Example 3:

x[k + 1] = 5x[k] + 1u[k],

y[k] = x[k];

here, â[0] = 2 and b̂[0] = 5, yielding f̂ [0] = f̂ [1] = f(â[0], b̂[0]) = −0.3866; we set x[0] = 1.

We simulate the plant with the same control law given by equations (6.1)-(6.4) and
compare it with the ideal control action given by

u[k] = f [k]x[k].

Figure 6.4a shows the the difference |x[k]−xo[k]| on a log scale for the test case of ε = 0.01,
and Figure 6.4b shows for the case when ε = 0.19. Here we observe that the difference
quickly goes to zero in both the cases, and the maximum difference in |x[k] − xo[k]| is
almost the same in both test cases.
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(a) ε = 0.01

Figure 6.4: Example 3: Difference from optimality (|x[k]− xo[k]|) without noise.
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Figure 6.4: Example 3: Difference from optimality (|x[k]− xo[k]|) without noise.

Example 4: Now, consider the following system with noise identical to Example 2:

x[k + 1] = 5x[k] + 1u[k] + w[k],

y[k] = x[k];

here, â[0] = 2 and b̂[0] = 5, yielding f̂ [0] = f̂ [1] = f(â[0], b̂[0]) = −0.3866, we set x[0] = 0
and the noise w[k] is a random function generating values in range [−0.01, 0.01].

We apply the Control Law (6.1)-(6.4) and we again compare the state variable of the
proposed coontrol law x[k] to the ideal controller state variable in presence of noise. For
ε = 0.01 we plot the simulation run for 10,000 steps and the results are shown in Figure
6.5a. We see that the difference is of order 100. If we increase ε to 0.19 and simulate
the closed-loop system we see in Figure 6.5b that the difference is of order 10. This is
consistent with Theorem 2 which states that

|x[k]− xo[k]| ≤ εc6

(
λ2 + 1

2

)k
|x[0]|+ c6

(
1 +

1

ε

)
‖w‖∞. k ≥ 2.
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Figure 6.5: Example 4: Difference from optimality |x[k]− xo[k]| with noise.
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Since the maximum value of |x[k]−xo[k]| is almost the same size as that of the maximum
value of x[k], this bound is not useful unless the noise is very small with respect to the
initial conditions.

6.4 Linear Time-Variant Plant

For the time-varying plant, we will look at two different examples.

Example 5:

x[k + 1] = a[k]x[k] + b[k]u[k] + w[k],

y[k] = x[k];

here, â[0] = 3 and b̂[0] = 1, yielding f̂ [0] = f̂ [1] = f(â[0], b̂[0]) = −2.7033; we set x[0] = 0
so that we can see the effect of noise which is a random number in range [−0.01, 0.01]. The
value of a[k] is sinusoidal taking values in A:

a[k] = 2.5 + 2.5sin(0.01× k)

and b[k] is also sinusoidal taking values in B and switching signs ocassionally:

b[k] = 2cos(0.01× k) + 3sign(sin(0.01× k)).

For simulation purposes, we will carry the simulation for 10,000 steps. We start our
simulation with ε = 0.01 and the results are shown in Figure 6.6a which show the results
for the first 1000 steps. We see that the state variable x[k] gets very large for such a small
value of ε. Motivated by the observations of the previous simulations we now increase ε
to 0.05 and redo the simulations; we end up with a much smaller maximum value of x[k],
as shown in Figure 6.6b. We again increase ε to values ε = 0.1, ε = 0.15 and ε = 0.19,
respectively; the simulation results are shown in Figures 6.6c, 6.6d and 6.6d respectively.
We observe a constant decrease in noise gain and increasingly accurate estimates â[k] and
b̂[k].
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Figure 6.6: Example 5: Linear Time-Varying Plant with noise.
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(d) ε = 0.15: Maximum |x[k]| = 545.30 for 10,000 steps.

Figure 6.6: Example 5: Linear Time-Varying Plant with noise.
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Figure 6.6: Example 5: Linear Time-Varying Plant with noise.

Example 6: Here we re-examine the previous example, but with b[k] switching signs twice
as often:

b[k] = 2cos(0.01× k) + 3sign(sin(0.02× k)).

Following a similar simulation procedure, we do 5 simulations with 5 increasing values
of ε starting from 0.01 up to 0.19. The simulation results are shown in Figure 6.7a - 6.7e.
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0 100 200 300 400 500 600 700 800 900 1000
-1500

-1000

-500

0

500

x[k]

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

a[k]
ahat[k]

Step [k]
0 100 200 300 400 500 600 700 800 900 1000

-5

0

5

b[k]
bhat[k]
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Figure 6.7: Example 6: Linear Time-Varying Plant with noise (fast switching b[k]).
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Figure 6.7: Example 6: Linear Time-Varying Plant with noise (fast switching b[k]).
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(e) ε = 0.19: Maximum |x[k]| = 1.37× 103 for 10,000 steps.

Figure 6.7: Example 6: Linear Time-Varying Plant with noise (fast switching b[k]).

We see that the noise gains are now higher than before. For large value of ε we see that
the noise gain is increased by a factor of 10, probably because b[k] is switching signs faster.
If we look at Figure 6.7e, we see that the estimations are still very accurate when the state
gets large because of the adaptive nature of the controller. These results are consistent
with Theorem 3, which states that

|x[k]| ≤ c14λ
k
3|x[0]|+ c14

(
1 +

1

ε

)
‖w‖∞, k ≥ 0.

These simulations clearly indicate that the proposed control law provides exponential sta-
bility for even a highly unstable plant where a[k] and b[k] lie in such a huge range.

As an observation we perform another simulation, but not with a totally different setup.
We simulate for a stable plant with noise. All parameters are same as in previous examples
except

• a[k] takes values in A = [−0.75, 0.75].
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Example 7:

x[k + 1] = a[k]x[k] + b[k]u[k] + w[k],

y[k] = x[k];

here, â[0] = 0.1 and b̂[0] = 5, yielding f̂ [0] = f̂ [1] = f(â[0], b̂[0]) = −0.0192; we set x[0] = 1
and noise is a random number in range [−0.01, 0.01]. The value of a[k] is sinusoidal taking
values in A:

a[k] = 0.75 sin(0.01× k)

and b[k] is also sinusoidal taking values in B and switching signs ocassionally:

b[k] = 2cos(0.01× k) + 3sign(sin(0.02× k)).

We perform simulations for the above plant setup for two different cases one when ε = 0.01
and the other when ε = 0.19. The simulations are shows in Figure 6.8a and Figure 6.8b
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(a) ε = 0.01: Maximum |x[k]| = 1 for 10,000 steps.

Figure 6.8: Example 7: Linear Time-Varying Stable Plant with noise.

64



0 50 100 150 200 250 300 350
-1

-0.5

0

0.5

1

x[k]

0 50 100 150 200 250 300 350
-1

-0.5

0

0.5

1

a[k]
ahat[k]

Step [k]
0 50 100 150 200 250 300 350

-5

0

5

b[k]
bhat[k]

(b) ε = 0.19: Maximum |x[k]| = 1 for 10,000 steps.

Figure 6.8: Example 7: Linear Time-Varying Stable Plant with noise.

We observe that initially when the state variable is large we have accurate estimates,
which is clearly seen in Figure 6.8b. Once the state variable goes small, the estimates are
not accurate, but the stability is maintained.
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Chapter 7

Conclusions and Future Work

In this thesis, we considered the problem of adaptively stabilizing a first-order Discrete-
Time SISO plant for both Time-Invariant and Time-Varying cases. Here we have looked
at a class of such systems and constructed a linear adaptive controller that provides expo-
nential stability and a linear like bound on the closed-loop behavior.

We used the Certainty Equivalence Approach and made the controller adaptive by
estimating the plant parameters at every other step. The estimation process was dependent
on an estimation parameter ε. With the upper bound of ε = c0

b̄
, as ε → c0

b̄
the estimated

parameters became more accurate. With a given value of ε, when the magnitude of the
state variable was small, the estimated plant parameters were not at all accurate, which
made the states go large; and with such large state the very next estimated parameter
became accurate, which resulted in the state becoming close to 0 again. This property
is leveraged to prove the fact that the closed-loop system is exponentially stable and the
transient behavior (with no noise) is near optimal, with the error improving as ε→ 0.

Chapters 4 and 5 provided a mathematical analysis of the plant transient behavior when
applied with the proposed control law. In spite of conservative bounds, our simulations in
Chapter 6 suggests the existence of much stronger bounds. We observed that the effect
of noise was also reduced with the increase in ε. In the LTV case, the simulation results
clearly shows that we can allow a lot of time variations in a[k] and b[k] than the constants
defined in Lemma 3 and Theorem 2, which were intended in showing the existence of the
bound. The examples tested the most extreme plant parameter for sets A and B and the
simulations show that the closed-loop noise gains can be relatively acceptable. If we test
the controller with a comparatively nicer plant, we will end up with better noise gains.

With some work, these results should also be extendable to higher order plants as long
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as the state is measurable. It may also be possible to extend the work to yield step tracking.
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