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Abstract

The study of iterated function systems has close ties with the subject of fractal-based

analysis. One important application is the approximation of a target object by the fixed

point of a contractive iterated function system. In recent decades, substantial evidence

has been put forth suggesting that images (as the mathematical object) are amenable

to compression by these fractal-based techniques. With images as our eventual goal, we

present research on the 1-dimensional case- the reconstruction of a data set based on a

smaller subset of data. Formally posed here as the inverse problem, a myriad of possible

solution methods exist already in literature. We explore and improve further a generaliza-

tion in method that entails denotation of the target object as a measure and matching the

moments of this measure by optimizing over free parameters in the moments of the invari-

ant measure resulting from the action of an iterated function system with associated place

dependent probabilities. The data then required to store an approximation to the target

measure is only that of the parameters for the iterated function system and the probabil-

ities. Our generalization allows for these associated probabilities to be place-dependent,

with the effect of reducing the approximation error. Necessarily this technique introduces

complications in calculating the moments of the invariant measure, but we exhibit an

effective means of circumventing the problem.
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1 Introduction

The advent of computers has revolutionized the discipline of mathematics. Studies of

functions over large or dense domains have benefited, numerical schema especially. Most

central to this paper are those methods contrived to simulate dynamic or static views of

occurrences in the physical world. These studies necessitate a large amount of data in an

endeavor to recreate the infinity of natural processes, whether it be the infinite divisibility

of time increments or the near-infinite quantity of particles in macroscopic objects.

Regardless of advances in the compression of data storage devices, there will always ex-

ist a need to faithfully compact the data itself. This paper exists in an effort to alleviate

to some degree this unending demand for data compression; the focus here is towards the

condensed representation of data contained in signals and images.

Fractals have received a remarkable amount of attention concurrent to the widespread

use of computers. What began as pathogenic examples to motivate the necessity of gener-

alizing concepts in analysis and measure theory have now become useful for the represen-

tation of irregular (real-world) sets. This representation process starts with the means of

generating fractals, that is, iterated function systems. One might select a certain system

that generates a shape with similarities to the target, or one may prefer a more generalized

method where a system is capable of generating any set. The natural first question is,

can a target set be approximated by a set generated with an iterated function system?

This question is the basis of the inverse problem, which will be the ultimate goal of each

chapter in this paper. It is the purpose of this paper to reiterate, generalize, and improve

upon prior work in this area.

Beginning with the study of iterated function systems, fundamental results as well as

illustrative examples are developed in Chapter 2. This includes the rigorous formulation
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1 Introduction

of the inverse problem, the collage theorem, and some basic examples of iterated function

systems (IFS).

In the second section we introduce probabilities of selection for each of the maps in an

IFS. This addition gives rise to the idea of a Markov operator and an invariant measure for

a specific iterated function system with probabilities. The inverse problem is reconfigured

in this light, leading to a result by Forte and Vrscay [9] where one may solve the inverse

problem by optimizing over the probabilities.

Section 3 provides additional background to material developed in Chapter 3. We review

the work by Vrscay and Weil [23] that proposed a means by which one may approximate

missing moments of a distribution that arise when using polynomial maps in an IFS with

probabilities (IFSP).

The main results of this study are presented in Chapter 3. We generalize the probabili-

ties used in Chapter 2 to be dependent on x (the location within a measure), which leads

to some complications, but ultimately a more accurate solution to the inverse problem.

Detailed in the first section are some theoretical considerations for the contractivity, the

means by which we modify the chaos game, and issues arising in computing the moments

of the measure with an effective resolution to this issue.

Section 2 reconstructs the solution of the inverse problem, as well as providing detailed

instructions on how this solution scheme is implemented in practice. Concluding with a

comparison between the results of approximation obtained by IFSP and IFS with place-

dependent probabilities (IFSPDP).

Finally, we conclude with a summary of results and avenues for future work.
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2 Background

2.1 Iterated Function Systems

The theory of iterated function systems (IFS) pertinent here are those function systems

composed of contraction mappings. As such, we present relevant information on contrac-

tion maps first. For this section we assume that (X, d) is a complete metric space, that

is, every Cauchy sequence in X converges in X under the metric d.

Definition 2.1.1. Let (X, d) be a complete metric space. A mapping f : X → X is is said

to be contractive if there exists a c ∈ [0, 1) such that d(f(x), f(y)) ≤ c d(x, y) ∀x, y ∈ X.

c is called the contraction factor of f . Typically, the contraction factor considered is the

smallest, that is

c = sup
x, y ∈X,x 6=y

d(f(x), f(y))

d(x, y)
.

Of highest importance is the fact that every contraction mapping has a unique fixed

point. Proven originally by Banach and known as the contraction mapping theorem, it

states,

Theorem 2.1.1 (Banach [2]). Let (X, d) be a complete metric space. If f : X → X is

a contraction mapping, then there exists a unique x̄ ∈ X such that f(x̄) = x̄. Moreover,

∀x ∈ X, lim
n→∞

d(f◦n(x), x̄) = 0, f◦n(x) = f ◦ ... ◦ f(x).

This is a well-known theorem, but we include its proof as a fundamental result, useful

for understanding the behavior of dynamical systems.
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2 Background

Proof. Choose an arbitrary x0 ∈ X and generate the sequence xn+1 = f(xn) so that

xn = f◦n(x0). If m,n ∈ Z+, m < n, then

d(xm, xn) = d(f◦m(x0), f◦n(x0))

= d(f ◦ f◦m−1(x0), f ◦ f◦n−1(x0))

≤ c · d(f◦m−1(x0), f◦n−1(x0))

...

≤ cm · d(x0, f
◦n−m(x0)). (2.1)

Consider d(x0, xk), k ≥ 1. Applying repeatedly the triangle inequality yields,

d(x0, xk) ≤ d(x0, x1) + d(x1, x2) + . . .+ d(xk−1, xk)

≤ d(x0, x1) + c d(x0, x1) + . . .+ ck−1 d(x0, x1)

= (1 + c+ . . .+ ck−1) · d(x0, x1)

≤ 1

1− c
d(x0, x1). (2.2)

The finite sum of the convergent geometric series appears in Equation (2.2).

Combining Equations (2.1) and (2.2) yields,

d(xm, xn) ≤ cm

1− c
d(x0, x1).

Since c ∈ [0, 1), then given any ε > 0, there exists a natural number N such that

d(xm, xn) ≤ cm

1− c
d(x0, x1) ≤ ε ∀m,n ≥ N.

So the sequence {xn}∞n=0 is Cauchy, and hence convergent in the complete space (X, d) to

a point x̄ ∈ X, i.e.,

lim
n→∞

xn = lim
n→∞

f◦n(x0) = x̄.

The continuity of f on (X, d) follows immediately from the definition of contractivity.
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2 Background

Therefore

x̄ = lim
n→∞

xn

= lim
n→∞

f(xn−1)

= f
(

lim
n→∞

xn−1

)
= f(x̄),

which implies that x̄ is a fixed point of f .

To prove that this fixed point is unique, assume there exist distinct points x̄, z ∈ X

such that f(z) = z and f(x̄) = x̄, then

d(x̄, z) = d(f(x̄), f(z))

≤ c d(x̄, z).

Dividing by d(x̄, z) 6= 0 yields that c ≥ 1 which contradicts the contractivity assumption;

so x̄ = z and the fixed point is unique. QED

This establishes the dynamics of a contraction map. It is also crucial to understand the

dynamics of variations in contraction maps. Let’s explore this topic in the same manner

as Kunze, La Torre, Mendivil and Vrscay in [17]. First we denote the set of contraction

maps on X as

Con(X) = {f : X → X | ∃c ∈ [0, 1), d(f(x), f(y)) ≤ cd(x, y) ∀x, y ∈ X},

and then define a metric on this space,

dCon(X)(f, g) = sup
x∈X

d(f(x), g(x)) ∀f, g ∈ Con(X).

The following theorem found in [17] establishes that continuous variations in contraction

maps produce continuous variations in their respective fixed points, an important result

in studying the inverse problem.
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Theorem 2.1.2. If (X, d) is a metric space and f, g ∈ Con(X) have respective contraction

factors, cf , cg and fixed points xf , xg, then

d(xf , xg) <
1

1−min(cf , cg)
dCon(X)(f, g).

Proof. By assumption, xf = f(xf ) and xg = g(xg). Let z = f(xg). Application of the

triangle inequality yields,

d(xf , xg) ≤ d(xf , z) + d(z, xg)

= d(f(xf ), f(xg)) + d(f(xg), g(xg))

≤ cf d(xf , xg) + dCon(X)(f, g)

(1− cf ) d(xf , xg) ≤ dCon(X)(f, g)

d(xf , xg) ≤
1

1− cf
dCon(X)(f, g).

We could have chosen z = g(xf ) to yield

d(xf , xg) ≤
1

1− cg
dCon(X)(f, g),

and so an optimal choice, min(xf , xg), yields the desired result. QED

One may ask then, if given a point x ∈ X, can a contraction map with fixed point x be

found? The answer in general is no. However, a good approximation can usually be found,

and this is the subject of the inverse problem, first examined in the paper by Barnsley,

Ervin, Hardin, and Lancaster [6]. Formally, this problem is posed as follows.

Inverse Problem of Approximation by Fixed Points of Contraction Maps: given

a target point x ∈ (X, d) and an ε > 0, find a map fε ∈ Con(X) whose fixed point xε

satisfies

d(x, xε) < ε.

One of the original motivations for this problem was “fractal image compression” where
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2 Background

it was found that the number of parameters required to store the ‘fractal transform,’ fε

was significantly fewer than the number of parameters required for the storage of x, the

image itself. [3]

Given the nature of the fractal transform, the above inverse problem is a complicated

one. The issue of selecting an optimal map is not stressed, rather, the importance is placed

on finding a fixed point closest to the target.

Consider the problem with an emphasis on minimizing the approximation distance and

working backwards to find a map. Let f : X → X be an arbitrary contraction map with

fixed point x̄ and contraction factor c. Examine the distance between the target and the

fixed point,

d(x, x̄) ≤ d(x, f(x)) + d(f(x), x̄)

= d(x, f(x)) + d(f(x), f(x̄))

≤ d(x, f(x)) + cd(x, x̄)

(1− c)d(x, x̄) ≤ d(x, f(x))

d(x, x̄) ≤ 1
1−cd(x, f(x)). (2.3)

This shows that if the distance between the target and the action of f on the target

is small, then the approximation distance is small. This result is often referred to as the

“Collage Theorem”, originally proved in [6], and suggests that one look for a function

that maps the target close to itself. It allows the reformulation of the inverse problem as

follows,

Given a target point x ∈ X and a δ > 0, find a map fε ∈ Con(X) such that

d(x, fε(x)) < δ.

A solution to this reformulation would then give an approximation to the target, d(x, x̄) ≤
δ

1−c .

Iterated function systems (IFS) naturally involve set-valued functions, which we now

define. Let f : X → X be a mapping. We denote the set-valued counterpart of f as f̂
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and define it as follows: for any P ⊆ X,

f̂(P ) = {f(x) | ∀x ∈ P}.

An appropriate space in which IFS are defined is the set of non-empty compact subsets

of X denoted H(X), where X is our ‘base space,’ typically a subset of Rn. A metric for

this space is the Hausdorff metric,

dH(P,Q) = max
[

sup
x∈P

d(x,Q), sup
y∈Q

d(y, P )
]

∀P,Q ∈ H(X),

where the distance d(x, P ) is defined as the infimum of the distance between the point

and the set of points.

Theorem 2.1.3. Let (X, d) be a complete metric space, then (H(X), dH) is a complete

metric space.

The proof can be found in [3]. In order to use the Banach Contraction Mapping Theo-

rem, the next result is also needed,

Theorem 2.1.4. If (X, d) is a complete metric space and f ∈ Con(X) with contraction

factor c ∈ [0, 1), then f̂ : H(X)→ H(X) and f̂ is a contraction mapping on (H(X), dH).

Proof. Let P ∈ H(X). We must show that f̂(P ) ∈ H(X). Let {yn}∞n=1 ⊂ f̂(P ) be an

arbitrary sequence. For each yn ∈ f̂(P ), there exists an xn ∈ P . Since P is non-empty

and compact, the sequence {xn} has a convergent sequence {xim} whose limit point we

denote x̄. Since f is continuous,

lim
m→∞

yim = lim
m→∞

f(xim)

= f( lim
m→∞

xim)

= f(x̄),

and so the sequence yn ∈ f̂(P ) contains a subsequence converging to a point in f̂(P ).

Therefore, f̂(P ) is compact; f̂ : H(X)→ H(X).
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2 Background

Let P,Q ∈ H(X) and consider the distance,

dH(f̂(P ), f̂(Q)) = max
[

sup
x∈f̂(P )

d(x, f̂(Q)), sup
y∈f̂(Q)

d(y, f̂(P ))
]
. (2.4)

Analyzing the first term reveals,

sup
x∈f̂(P )

d(x, f̂(Q)) = sup
x∈f̂(P )

inf
y∈f̂(Q)

d(x, y)

= sup
p∈P

inf
q∈Q

d(f(p), f(q)) (2.5)

≤ sup
p∈P

inf
q∈Q

c d(p, q)

= c sup
p∈P

d(p,Q), (2.6)

where Equation (2.5) assumes x = f(p), y = f(q).

Similarly,

sup
y∈f̂(Q)

d(y, f̂(P )) ≤ c sup
q∈Q

d(q, P ). (2.7)

Substitution of Equations (2.6) and (2.7) into Equation (2.4) yields,

dH(f̂(P ), f̂(Q)) ≤ c max
[

sup
p∈P

d(p,Q), sup
q∈Q

d(q, P ).
]

= c dH(P,Q).

Therefore, f̂ is contractive on (H(X), dH) with contraction factor c ∈ [0, 1). QED

We are now in a position to define an IFS. Let (X, d) be a complete metric space and

let wi ∈ Con(X) 1 ≤ i ≤ N be a set of N contraction maps with respective contraction

factors ci ∈ [0, 1). We refer to the set w = {w1, w2, . . . , wN} as an Iterated Function

System on (X, d). Furthermore, define the following set-valued mapping ŵ associated

with w:

ŵi(S) = {wi(x) | ∀x ∈ S}
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ŵ(S) =

N⋃
i=1

ŵi(S), S ∈ H(X).

Finally, the next theorem, proven originally by Hutchinson in [14], allows the application

of Banach’s theorem to systems of set-valued maps.

Theorem 2.1.5. Let (X, d) be a complete metric space and (H(X), dH) be defined as

before. If wi ∈ Con(X) with respective contraction factors ci ∈ [0, 1), then the set-valued

mapping ŵ : H(X)→ H(X) is contractive with contraction factor c = max
1≤i≤N

ci.

For the proof we refer the reader to [14].

As a direct consequence of the Banach Contraction Mapping theorem,

Theorem 2.1.6. There exists a unique set A ∈ H(X) such that,

ŵ(A) = A

and

lim
n→∞

dH(ŵ◦n(S), A) = 0 ∀S ∈ H(X).

The set A is called the attractor of the IFS ŵ.

Presented below are two well-known examples of IFS attractors. For further examples

and a more rigorous study of their properties, we refer the reader to Hutchinson’s paper

[14].

X = [0, 1], w1(x) = 1
3x, w2(x) = 1

3x + 2
3 . The attractor of this IFS is the classical

Cantor set. To see this, we begin by applying the system of maps to the initial interval as

ŵ(X) = ŵ ([0, 1]) = ŵ1 ([0, 1]) ∪ ŵ2 ([0, 1]) =
[
0, 1

3

]
∪
[

2
3 , 1
]
,

yielding two intervals of length 1
3 . Applying ŵ again we find four intervals of length 1

9 ,

ŵ (ŵ(X)) = ŵ
([

0, 1
3

]
∪
[

2
3 , 1
])

=
[
0, 1

9

]
∪
[

2
9 ,

1
3

]
∪
[

2
3 ,

7
9

]
∪
[

8
9 , 1
]
.

A visual representation for the first several steps of this infinitely continued process is

shown in 2.1
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Figure 2.1: A visual representation of the first four steps in generating the Cantor set
by means of an iterated function system.

After n steps, what remains are 2n closed intervals of length 3−n. The Cantor set is

defined to be the intersection of these intervals, a totally disconnected set, i.e. composed

of single points [17].

In two dimensions we consider the IFS

X = [0, 1]2, w1(x, y) =
(

1
2x,

1
2y
)
, w2(x, y) =

(
1
2x+ 1

2 ,
1
2y
)
, w3(x, y) =

(
1
2x+ 1

4 ,
1
2y +

√
3
4

)
,

ow the attractor of which is the classical Sierpinski gasket depicted in Figure 2.2.
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Sierpinski Gasket
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Figure 2.2: Approximation to the Sierpinski gasket. This image was created using a
simple computer program, the details of which will be discussed in the next section.

2.2 Iterated Function Systems with Constant Probabilities

2.2.1 Chaos Game

In the generation of visual approximations to fractal sets, or the attractors of IFS in

general, there exist two main approaches: (i) a deterministic algorithm or (ii) a random

iterations algorithm known as the “Chaos Game.”

Exemplifying the deterministic algorithm was our description of creating the Cantor

set, that is, dividing the unit interval into thirds and removing the middle section. In

general, beginning with a IFS w = {w1, w2, . . . , wN} and a compact metric space, (X, d),

we repetitively apply the set-valued counterpart of the IFS to the compact set until the

image reaches an acceptable accuracy.

A more widely used means of generating fractal images is the random iteration al-

gorithm, or chaos game. Studied extensively by Barnsley in [3] the process begins by

choosing a random point x0 ∈ X. A map is then selected randomly and is applied to x0

12



2 Background

to obtain x1 = wσ1(x0). Iterating this process a large number of times and plotting each

iteration xn+1 = wσn(xn) will yield an approximation to the desired set or measure. To

eliminate the chance of points outside of the set appearing in the final image, the initial

iterations are not plotted; the algorithm should reach a suitable level of convergence before

points are retained.

A good way to choose a map from (w1, w2, . . . , wN ) randomly is to associate a vector

of probabilities with the IFS, p = (p1, p2, . . . , pN ) (thus far we have assumed pi = 1
N , 1 ≤

i ≤ N, we will remove this assumption from our discussion shortly). We call this an

iterated function system with probabilities, or IFSP. To adhere with the conventions of

probability, the conditions 0 ≤ pi ≤ 1 and

N∑
i=1

pi = 1 are required. x For a first example

consider the following simple IFSP,

X = [0, 1], w1(x) =
1

2
x, w2(x) =

1

2
x+

1

2
, p1 =

1

2
, p2 =

1

2
.

The attractor of this is the interval [0, 1]. Now examine the probability of visitation to

a subset of X during the chaos game. Beginning with an arbitrary xn, the likelihood

P(xn ∈ [0, 1]) = 1. After one iteration, P
(
xn ∈

[
0, 1

2

])
= 1

2 , since there is a 50% chance

that xn+1 = w1(xn). Likewise, P
(
xn ∈

[
1
2 , 1
])

= 1
2 . Graphically this can be viewed as a

plot of the probability density function, the evolution of which is seen in Figure 2.3a.

As is natural, curiosity regarding the behavior of IFS with unequal probabilities de-

velops. An immediate consequence of allowing this behavior is an unequal frequency of

visitation to the attractors of the maps.

If p1 and p2 are altered to be 2
5 and 3

5 respectively, then the behavior is seen in Figure

2.3b.
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(a) Equal Probabilities
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(b) Unequal Probabilities

Continuing over many iterations of the chaos game one finds that as the IFS converge

to their attractors and the plots of the density functions converge weakly to a probability

distribution. An example of this is shown in Figure 2.4.
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Visual Approximations
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(b) Cumulative Density Function

Figure 2.4: Plots characterizing the IFSP

{w1 = 1
3x, w2 = 1

3x+ 2
3 ; p1 = 1

2 , p2 = 1
2}.

We show here the representation of the Cantor-Lebesgue measure and its corre-
sponding cumulative distribution function. The CDF plot is often called the ‘Devil’s
Staircase.’

2.2.2 Theory

Continuing from the previous exposition and following Barnsley’s discussion in [3], one

valuable tool that can be added to the study of dynamical systems is a means of calcu-

lating the probability of an iteration entering a certain set. Recall the IFS generating the

Cantor set, w =
{

1
3x,

1
3x+ 2

3

}
on [0, 1]. In analyzing this evolution of probabilities, the

first iteration begins with the random point x0 ∈ [0, 1] with probability 1 of being in the

interval I0 = [0, 1]. A single application of the set-valued IFS yields I1 =
[
0, 1

3

]
∪
[

2
3 , 1
]

and the point x1 = w(x0) has 50% probability of being in
(
0, 1

3

)
(because w1 has a prob-

ability, p1 = 1
2 of being selected), a 50% probability of being in

(
2
3 , 1
)

(p2 = 1
2), and

a 0% chance of being in
[

1
3 ,

2
3

)
. A second iteration would yield the expected intervals

I2 =
[
0, 1

9

]
∪
[

2
9 ,

1
3

]
∪
[

2
3 ,

7
9

]
∪
[

8
9 , 1
]
, with equal probabilities of 1

4 .
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Figure 2.5: Plots characterizing the action of a random iteration according to the IFS

{w1 = 1
3x, w2 = 1

3x+ 2
3}.

The distributions plotted in Figure 2.5 are defined as,

ρn(x) =
(

3
2

)n
, x ∈ In, n = 0, 1, 2, . . . . (2.8)

and serve the purpose of normalizing the integral
∫ 1

0 ρn(x) dx to 1. Moreover, notice that

the integral of ρn(x) over each subinterval of support will yield the total probability of an

iteration visiting the subinterval; for example,

∫ 1
9

0
ρ2(x) dx =

1

4
.

We posit that the integral of the functions in Equation (2.8) satisfies the definition of a

probability measure µn on the compact space ([0, 1], d),

µn(S) =

∫
S
ρn(x) dx,

and the functions {ρn(x)} are the probability density functions.
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The general definition of a probability measure is as follows,

Definition 2.2.1. A probability measure on an σ-algebra, σ(X), is a real non-negative

function µ : σ(X) → [0, 1] such that ∀Ei ∈ σ(X) , i = 1, 2, . . . , with Ei ∩ Ej = ∅, i 6= j

and
⋃∞
i=1Ei ∈ σ(X),

µ

( ∞⋃
i=1

Ei

)
=
∞∑
i=1

µ (Ei) .

Furthermore, µ(∅) = 0 and µ(X) = 1.

Though our applications focus on the set [0, 1], we can in general use the probability

density functions {ρn} to define a sequence of probability measures on the σ-algebra of

subsets of the compact space (X, d), henceforth denoted σ(X),

µn(S) =

∫
S
ρn(x) dx

where S ∈ σ(X). These measures are probability measures since µn(X) = 1 for all

positive integers n. The triple (X,σ(X), µ) is called a probability measure space, or

simply probability space.

Previous analysis focused on a sequence generated by a repetitively applied system of

mappings on an interval. This sequence converged to the attractor A. Analyzed now is

the sequence of measures, where the support of each element is

supp(µn) = In = ŵ◦n(X). (2.9)

In order to more concretely understand the dynamics associated with the sequence of

probability measures, it is necessary to construct an operator such that µn+1 = Mµn,

known as the Markov operator.

Notice that

In = ŵ−1(In+1), (2.10)

where ŵ−1(S) = {x ∈ X : w(x) ∈ S} and ŵ−1(S) =
⋃N
i=1 ŵ

−1(S). Furthermore we know

that for any S ∈ σ(X), µn(S) = µn−1(ŵ−1(S)).

17
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Take Figure 2.5 for example; if S =
[
0, 1

3

]
∪
[

2
3 , 1
]

then ŵ−1(S) = [0, 1] and

µ1(S) = µ1

([
0, 1

3

]
∪
[

2
3 , 1
])

= 1
2µ0(ŵ−1

1 (S)) + 1
2µ0(ŵ−1

2 (S)) = µ0([0, 1]) = 1.

And letting S =
[
0, 1

2

]
we see that

µ1(S) = µ1

([
0, 1

2

])
= µ1

([
0, 1

3

])
+ µ1

((
1
3 ,

1
2

])
= 1

2µ0(ŵ−1(S)) = 1
2µ0([0, 1]) = 1

2 ,

because neither ŵ−1
1 (S) nor ŵ−1

2 (S) exist for S =
(

1
3 ,

1
2

]
. These observations, including the

associated probabilities p1, p2 acting as normalizing constants, and Equations (2.9) and

(2.10) detailing the effects of the IFS on the support of the measure, lead us to surmise

that

µ1(S) = 1
2µ0(ŵ−1

1 (S)) + 1
2µ0(ŵ−1

2 (S)),

µ2(S) = 1
2µ1(ŵ−1

1 (S)) + 1
2µ1(ŵ−1

2 (S)).

For the nth iteration we have,

µn+1(S) = 1
2µn(ŵ−1

1 (S)) + 1
2µn(ŵ−1

2 (S))

(Mµ)(S) = 1
2µ(ŵ−1

1 (S)) + 1
2µ(ŵ−1

2 (S)).

In the above example we chose for illustrative purposes N = 2 maps and equal probabilities

of choosing either map, p1 = p2 = 1
2 . One could just as easily let N be any natural number

and allow the probabilities p1, . . . , pN unequal values (while requiring p1 + p2 + . . . pN = 1

and 0 < pi < 1, ∀i = 1, . . . N). Inductively we reason that this would generalize the form

of the Markov operator to

(Mµ)(S) = µ(ŵ−1(S)) =

N∑
i=1

pi · µ(ŵ−1
i (S)). (2.11)

Contractivity

In order to use the Banach Contraction Mapping theorem to prove the existence of a

unique fixed measure, one must show that the Markov operator, M , is contractive, on
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some metric space of probability measures. The method used by Barnsley in [3] is repro-

duced here as the same method will be used in an attempt to show the contractivity of

the Markov operator for place-dependent IFSP. For the remainder of this thesis, we shall

assume that (X, d) is a compact metric space.

Let (X, d) denote a compact metric space and M(X) be the set of Borel probability

measures on X, that is ∫
X

dµ = 1.

We will use the Monge-Kantorovich metric for our space of Borel probability measures:

Let µ, ν ∈M(X). The Monge-Kantorovich metric [17] is defined,

Definition 2.2.2.

dMK(µ, ν) = sup
f∈Lip1(X)

{∫
X
f d(µ− ν)

}
, (2.12)

where Lip1(X) := {f : X → R
∣∣ |f(x)–f(y)| ≤ d(x, y), ∀x, y ∈ X} is the set of functions

with Lipschitz factor 1.

In [11, 12, 16, 24] the space (M, dMK) is shown to be complete when X is compact.

The Monge-Kantorovich distance is difficult to compute, primarily because finding a

Lip1(X) function that maximizes the difference in Equation (2.12) is, in general, not easy

to determine.

Since our aim is to study the action of the Markov operator we need to first understand

how to manipulate it within the Monge-Kantorovich metric. We give some essential def-

initions and results from measure theory taken from [10], and we refer the reader to this

source for a more complete treatment of the subject.

Definition 2.2.3. A property is said to be true almost everywhere (a.e.) on the set X if

the set of points E ∈ X where the property is not true has measure zero, µ(E) = 0. If

E = ∅ then the property is said to be true everywhere.

Definition 2.2.4. A real-valued function f : X → R is called a measurable function if

for any open set E ∈ R the set

f−1(E) = {x ∈ X | f(x) ∈M}
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is a measurable set.

Definition 2.2.5. A sequence {fn}∞n=1 of real-valued measurable functions is convergent

in measure if there exists a measurable function f such that for any ε > 0

lim
n→∞

µ [{x | |fn(x)− f(x)| ≥ ε}] = 0.

Definition 2.2.6. A sequence {fn}∞n=1 of real-valued measurable functions is called a

Cauchy sequence in measure if for any ε > 0

lim
m,n→∞

µ [{x | |fn(x)− fm(x)| ≥ ε] = 0.

Lemma 2.2.1. If {fn}∞n=1 is a sequence of a.e. real-valued measurable functions that is

a Cauchy sequence in measure, then there exists a real-valued measurable function f such

that {fn}∞n=1 converges to f in measure.

Definition 2.2.7. The characteristic function of a set E is defined

1E =

1 if x ∈ E,

0 if x¬ ∈ E.

Definition 2.2.8. A function f is a simple function is there exists a finite number of

mutually disjoint measurable sets E1, E2, . . . , Em and real numbers α1, α2, . . . , αm such

that

f(x) =

αi if x ∈ Ei i = 1, 2, . . . ,m,

0 x¬ ∈
⋃m
n=1Ei.

A simple function can then be expressed as

f(x) =

m∑
i=1

αi1Ei(x), x ∈ X.

Definition 2.2.9. A simple function f is said to be integrable if µ(Ei) < ∞ for all i

where αi 6= 0.

The integral of a simple function f is defined as

m∑
i=1

αiµ(Ei) where it is agreed that
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αiµ(Ei) = 0 when αi = 0 and µ(Ei) =∞. We will denote this integral as
∫
f(x) dµ(x) or

succinctly as
∫
f dµ.

Definition 2.2.10. A sequence of integrable simple functions {fn} is called Cauchy in

the mean if

lim
n,m→∞

∫
|fn − fm| dµ = 0.

Lemma 2.2.2. If {fn}∞n=1 is a sequence of integrable simple functions that is Cauchy in

the mean, then there exists an a.e. real-valued measurable function f such that {fn}∞n=1

converges in measure to f .

Now we may define an integrable function.

Definition 2.2.11. Let f be a real-valued measurable function on the measure space

X,σ(X), µ. f is called integrable if there exists a sequence {fn}∞n=1 of integrable simple

functions such that

1. {fn}∞n=1 is Cauchy in the mean.

2. {fn}∞n=1 converges in measure to f .

The following theorem, found in [7], connects the ideas of convergences in measure to

uniform convergence.

Theorem 2.2.3 (Egorov’s Theorem). Let (X,σ(X), µ) with finite nonnegative measure

µ. If the sequence of measurable functions {fn}∞n=1 converges to f in µ, then for every

ε > 0 there exists a set Xε ∈ σ(X) such that µ(X \Xε) < ε and the sequence of functions

{fn}∞n=1 converges uniformly a.e. to f on Xε.

For the proof we refer to [7].

For a myriad of reasons, probability theorists restrict their attention to probability

spaces on B(X), the σ-algebra of Borel subsets of X ⊂ R, that is, the smallest set of open

sets (including the empty set) which is closed under countably many unions, intersections,

or relative complement. A couple of reasons are most pertinent in our study of the Markov

process; every continuous function is measurable on (X,B(X), µ), and if f : X → R is

measurable, then a function g : X → R is measurable on (X,σ(X), µ) if and only if there

exists a measurable function h : R → R such that g = h ◦ f . Both of these facts will
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be used frequently and so we shall use only the probability space (X,B(X), µ) for the

remainder of this paper.

We return now to the Monge-Kantorovich metric, dMK , having all the tools above.

To make this metric easier to work with, we use a change of variable established by the

following lemma found in [22].

Lemma 2.2.4. Let w ∈ Con(X) be a single contraction mapping, and ŵ(X) denote its

set-valued counterpart. Let f : X → R be either a simple function or a continuous

function, and suppose µ ∈M(X) and ν = µ ◦ ŵ−1 ∈M(X), then∫
X
f dν =

∫
X
f ◦ w dµ.

Proof. Suppose that f : X → R is continuous. We can find a sequence of simple functions

{fn}∞n=1 that converges uniformly to f . As well,∫
X
fn dν =

∫
ŵ(X)

fn dµ+

∫
X\ŵ(X)

fn dµ

implies that {fn}∞n=1 converges in measure µ to f on ŵ(X). The simple functions fn can

be written,

fn(x) =

mn∑
i=1

αi1En,i(x), x ∈ ŵ(X).

The sets {En,i}mn
i=1 are disjoint and ŵ(X) ∼=

⋃mn
i=1En,i in measure.

Let ŵ−1(En,i) = Dn,i. Then X ∼=
⋃mn
i=1Dn,i. Moreover,

ν(En,i) = µ ◦ ŵ−1(En,i) = µ(Dn,i).

Since supp(ν) = ŵ(X), we have∫
X
fn dν =

∫
ŵ(X)

fn dν

=

∫
ŵ(X)

mn∑
i=1

αi1En,i dν

=

mn∑
i=1

αi

∫
ŵ(X)

1En,i dν
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=

mn∑
i=1

αiν(En,i)

=

mn∑
i=1

αiµ(Dn,i).

At the same time, ∫
X
fn ◦ w dµ =

∫
X
fn(w(x)) dµ(x)

=

mn∑
i=1

∫
Dn,i

fn(w(x)) dµ(x)

=

mn∑
i=1

∫
Dn,i

αi dµ(x)

=

mn∑
i=1

αiµ(Dn,i).

Hence
∫
X fn dν =

∫
X fn d(µ ◦ w−1) =

∫
X fn ◦ w dµ.

For each n, fn ◦w is a simple function. Since fn converges uniformly to f , the sequence

{fn ◦w}∞n=1 converges uniformly to f ◦w. Likewise, the sequence {
∫
fn dν}∞n=1 converges

almost uniformly to
∫
f dν. And thus {

∫
fn ◦ w dµ}∞n=1 converges almost uniformly to∫

f ◦ w dµ.

QED

Theorem 2.2.5 (Contractivity of the Markov Operator). Let w,p be an N-map IFSP,

wi ∈ Con(X) with contraction factors ci ∈ [0, 1) and c := max
1≤i≤N

ci.

If M :M(X)→M(X) is defined as

(Mµ)(S) =

N∑
i=1

pi (µ ◦ ŵ−1
i )(S),

then M is a contraction mapping on (M(X), dMK)

Proof. Following Hutchinson’s proof [14], let µ, ν ∈M(X).

dMK(Mµ,Mν) = sup

[∫
fd(Mµ−Mν)

]
(2.13)
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= sup

[∫
X

N∑
i=1

(pi ◦ w−1
i (x)) d(µ ◦ w−1

i (x))−
∫ N∑

i=1

(pi ◦ w−1
i (x)) d(ν ◦ w−1

i (x))

]
(2.14)

= sup

[∫ N∑
i=1

pi · (f ◦ wi)(x)dµ−
∫ N∑

i=1

pi · (f ◦ wi)(x)dν

]
.

Consider the function g : X → R, g(x) =
∑
pi · (f ◦ wi)(x) =

∑
pif(wi(x)), especially

the value |g(x)− g(y)|. Then

|g(x)− g(y)| = |
∑

pi · [f(wi(x))− f(wi(y))]|

≤
∑

pi · |f(wi(x))− f(wi(y))|

≤
∑

pi · d(wi(x), wi(y))

≤
∑

pici · d(x, y)

≤ c
∑

pid(x, y)

= c d(x, y).

This implies that q(x) = c−1g(x) is in Lip1(X).

Rewrite,

dMK(Mµ,Mν) = sup
[ ∫

fd(Mµ)−
∫
fd(Mν)

]
≤ c sup

q∈Lip1(X)

(∫
qdµ−

∫
qdν

)
= c dMK(µ, ν).

Therefore, the Markov operator is contractive on (M(X), dMK). QED

Theorem 2.2.6. The Markov operator M associated with an N -map IFSP, has a unique

and attractive fixed point, called the invariant measure, µ ∈M(X)

Proof. It follows immediately from an application of the Banach Contraction Mapping
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theorem to the results of Theorem 2.2.5. QED

Furthermore,

Theorem 2.2.7. Let (X, d) be a compact metric space. If (w, p) is an N -map IFSP with

invariant measure µ̄, then supp(µ̄) = A, where A is the attractor of the IFS, ŵ.

Proof. The proof is found in Barnsley, [3]. It follows from two proofs of uniqueness, one

for the invariant measure, one for the attractor. QED

2.2.3 Moments of the Invariant Measure

In our study of the inverse problem it will be useful to consider the integration of a

continuous function f : X → R over a measure ν = Mµ where M is the Markov operator

associated with an N -map IFSP. From Equations (2.13) and (2.14) where the change of

variable formula was established in Lemma 2.2.4, we see that the integral can be written

as ∫
X
fdν =

N∑
i=1

pi

∫
X

(f ◦ wi)(x) dµ. (2.15)

This equation will become eminently important in the study of the inverse problem.

In the case that ν = µ̄ = Mµ̄, (2.15) simplifies to

∫
X
fdµ̄ =

N∑
i=1

pi

∫
X

(f ◦ wi)(x) dµ̄. (2.16)

It is common in the study of statistics to characterize distributions by their moments.

Since the measures of concern here may be equally considered as distributions, perhaps

this can function as a means of identifying a suitable IFSP to approximate a target dis-

tribution.

The moments of the measure µ ∈M(X) on its support S ⊆ X are defined as,

gn =

∫
S
xn dµ, n = 0, 1, 2, . . . . (2.17)
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Given µ ∈M(X), it follows that

g0 =

∫
S

dµ = 1.

Hausdorff proved that this sequence of finite moments (g0, g1, g2, ...) on a finite interval X

defines a unique measure. He furthermore gave the conditions necessary for a measure to

have a unique set of moments. English reconstructions of his original proofs are found in

[20] and [1]. The conditions for these proofs are used in our determination of the moments

and that a measure has unique moments is guaranteed by the moment’s positivity.

For the remainder of this paper, unless otherwise noted, the maps used in the IFS are

affine contractions,

wi(x) = ai x+ bi |ai| < 1. (2.18)

Generally, the theoretical development does not necessitate this restriction, however in

the consideration of calculating moments there are some issues when allowing higher order

maps, detailed in the next section. Additionally, we will assume from here on that X ⊂ R.

From Equation (2.15) with affine maps defined in Equation (2.18), the equation

∫
S
xndν =

N∑
i=1

pi

∫
S

(aix+ bi)
ndµ (2.19)

is established. Barnsley and Demko, [4], noticed the following relationship. Note the term

(aix+ bi)
n may be cast as

(aix+ bi)
n =

n∑
k=0

(
n

k

)
aki x

kbn−ki (2.20)

using the binomial formula. Substituting Equation (2.20) into Equation (2.19) yields

∫
S
xndν =

N∑
i=1

pi

n∑
k=0

(
n

k

)∫
S
aki x

kbn−ki dµ.

Since the factor xk is independent of i it may be removed from the outer summation.
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Defining hn and gn to be the moments of ν and µ respectively, according to (2.17), yields

∫
s
xndν = hn =

n∑
k=0

(
n

k

)[ N∑
i=1

pia
k
i b
n−k
i

]
gk. (2.21)

Consider the case 2.16 and substitute hn ≡ gn into (2.21). Notice the sum on the right

hand side includes the term gn. Subtracting this last term yields,

gn(1−
N∑
i=1

pia
n
i ) =

n−1∑
k=0

(
n

k

)[ N∑
i=1

pia
k
i b
n−k
i

]
gk

gn =
1

(1−
∑N

i=1 pia
n
i )

n−1∑
k=0

(
n

k

)[ N∑
i=1

pia
k
i b
n−k
i

]
gk.

This result, derived originally in [5], shows that the moments of the invariant measure can

be calculated recursively in terms of pi, ai, bi, starting with g0 = 1.

Returning to the inverse problem of approximating measures, one may wonder if the

moments of a measure may be used to search for an IFS approximation to the target

measure. In other words, will two measures with nearly similar moments be nearly similar?

The answer is in the affirmative, proven in [8]. Posed formally,

Theorem 2.2.8. If X = [0, 1], f : X → R, and µ, µ(j) ∈ M(X), j = 1, 2, . . ., with

moments defined,

gn =

∫
X
xndµ, g(j)

n =

∫
X
xndµ(j), n = 0, 1, 2, . . . ,

then the following are equivalent:

1. lim
j→∞

g(j)
n = gn ∀n,

2. lim
j→∞

∫
f dµ(j) =

∫
fdµ, i.e. the sequence µ(j) converges weakly to µ,

3. lim
j→∞

h(µ(j), µ) = 0.

This theorem lends credence to the solution of the inverse problem by means of moment
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matching. One means of moment matching is presented in the next subsection.

Recall from the previous section the transformation of the inverse problem for IFS by

means of the Collage Theorem. A similar result can be constructed for measures.

Given a target measure µ ∈M(X) and a δ > 0 find an IFSP (w, p) with Markov

operator M such that dMK(µ,Mµ) < δ.

The object now is to cast this problem in terms of the moments associated with both the

target measure and the invariant measure of an IFSP to be determined.

First, an appropriate complete metric space must be defined. We follow the treatment

of Forte and Vrscay [9] and denote the set of moments for the set of measures M(X) as

D(X) =
{

g = (g0, g1, . . .)
∣∣∣ gn =

∫
X
xndµ, n = 0, 1, . . . , µ ∈M(X)

}
.

Consider the weighted Banach space of sequences,

¯̀2 =
{

c = (c0, c1, . . .)
∣∣∣ ci ∈ R, ‖c‖2¯̀2 := c2

0 +

∞∑
k=1

1

k2
c2
k <∞

}
.

We use the weighting 1
k2

for the purpose of eliminating the degeneracy caused by measures

defined using the Dirac distribution. For example the Dirac distribution at x = 1 has

moments gn = 1 for all n and the moment sequence g = (1, 1, . . .) is not `2-summable.

Clearly, D(X) ⊂ ¯̀2. Define the metric on this space as

Definition 2.2.12.

d2(g, h) = ‖g − h‖¯̀2 . (2.22)

The space (D(X), d2) is complete. A proof is given in the Appendix of [9].

Next, in order to analyze the dynamics of the sequence of moments associated with

the iterated action of the Markov operator, it is necessary to construct an operator A :

D(X)→ D(X). In fact, Equation (2.21) provides such an operator.

To use the Banach Contraction Mapping theorem to prove the existence of a unique

fixed moment vector ḡ, one must show that the operator A is contractive. The following

theorem is due to Forte and Vrscay [9]; its proof is instructive to present since we shall

use a similar analysis for IFS with place-dependent probabilities.
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Theorem 2.2.9. Let ν, µ ∈M(X) with moments h, g ∈ D(X) where (X, d) is a compact

space. If the linear operator A : D(X)→ D(X) has action defined by

hn =

n∑
k=0

(
n

k

)[ N∑
i=1

pia
k
i b
n−k
i

]
gk.

h = A(g),

then A is contractive on (D(X), d2).

Proof. In the standard basis {ei = (0, 0, . . . , 0, 1, 0, . . .)}∞i=0, the infinite matrix represen-

tation of A is lower triangular. The eigenvalues of A are the diagonal elements,

|λk| =
N∑
i=1

pi|ai|k ≤ ck
N∑
i=1

pi k ≥ 1.

So |λk| = |Akk| < ck < 1, ∀k > 1. Let w = u− v for any u, v ∈ D(X), then

‖A(w)‖¯̀2 ≤ c ‖w‖¯̀2 ,

which implies,

d2(A(u), A(v)) ≤ c d2(u, v).

Therefore A is contractive. QED

Theorem 2.2.10. The operator A has a unique and attractive fixed point ḡ ∈ D(X).

Proof. It follows immediately from an application of the Banach Contraction Mapping

theorem to the results of Theorem 2.2.9. QED

A collage theorem for moments may now be formally posed.

Theorem 2.2.11 (Collage Theorem for Moments [9]). Let (X, d) be a compact metric

space, µ, ν = Mµ ∈ M(X) with their respective moment vectors g, h ∈ D(X), where M

is the Markov operator associated with an N -map IFSP (w, p) with contractivity factor

c ∈ [0, 1). If d2(g, h) < ε then

d2(g, ḡ) <
ε

1− c
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where ḡ ∈ D(X) is the moment vector of the invariant measure µ̄ of (w, p).

Proof. It follows as a corollary to Theorem 2.2.10 and the techniques of Equation (2.3).

QED

Now in light of Theorems 2.2.8 and 2.2.11, the solution of the inverse problem for mea-

sures is transformed into a problem of finding an IFSP (w,p) with associated moment

operator A such that d2(g, h) is small, where g is the moment vector of the target measure

and h = Ag.

The major result of this section is given in the following theorem. However, with the

desire to avoid repetition, and given the lengthy proof, the theoretical justification, any

questions regarding the proof of density for invariant measures resulting from N -map IFSP

are directed to their answers in the original paper by Forte and Vrscay, [9].

Denote the collage distance for moment vectors (that have the zeroth-order moment

equal to 1) as

∆N (p) = d2(g, h) =
[ ∞∑
n=1

1

n2
(gn − hn)2

]1/2
.

Furthermore, the following refinement condition on an IFS will be necessary.

Definition 2.2.13. An infinite set of contraction maps W = (w1, w2, . . .), wi ∈ Con(X),

satisfies the ε-contractivity condition on X if for every x in X and for all positive ε there

exists an index i∗, i∗ ∈ N, such that wi∗(X) is a subset of Nε(x), where Nε(x) = {y ∈
X | d(x, y) < ε}.

A set of contraction maps satisfying this condition will necessarily have inf
i∈N

ci = 0.

Theorem 2.2.12. Let µ a target measure with moment vector g and an N -map IFSP

(w, p) with associated Markov operator M be given. Denote the moment vector h as that

which is associated with the measure ν = Mµ. If the given IFSP satisfies Definition

2.2.13, then

lim
N→∞

∆N (p) = 0.

For the proof we refer the reader to the paper by Forte and Vrscay [9].
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This is a density result proving that one may achieve an arbitrarily small collage error

using only a finite number of maps, provided that they satisfy the contractivity condition

defined in Definition 2.2.13. Having this result allows us to proceed with confidence in

practically solving the Inverse Problem.

2.2.4 The Inverse Problem for Moments as a Quadratic Optimization

Problem

In what follows, we let M denote the Markov operator, and g, h be the moment vectors

associated with the target measure and Ag respectively. Consider the square of the collage

distance,

SN (p) = (∆N (p))2 = d2
2(g, h) =

∞∑
n=1

1

n2
(hn − gn)2. (2.23)

The use of SN over d2 is to place emphasis on the yet-undetermined probabilities of the

N -map IFSP (w, p).

Denote A as before, the matrix representation of the linear operator acting on the

moments as a result of M acting on the measure, but with probabilities removed,

Ani =

∫
X

(aix+ bi)
ndµ

=

n∑
k=0

(
n

k

)
aki b

n−k
i gk.

Then

hn =
N∑
i=1

Anipi, n = 1, 2, . . . . (2.24)

Substitute Equation (2.24) into SN (p), Equation (2.23), to give

SN (p) =
∞∑
n=1

1

n2
(h2
n − 2hngn + g2

n)

=

∞∑
n=1

1

n2

[
(
∑

Anipi)(
∑

Anipi)− 2(
∑

Anipi)(gn) + g2
n

]
.
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Then converting the sums to matrices, SN (p) can be cast in the quadratic form,

SN (x) = xTQx + bTx + c,

with x = p = (p1, p2, . . . , pN ). The elements comprising Q are defined as follows,

qij =
∞∑
n=1

1

n2
AniAnj , i, j ∈ 0, 1, . . . , N,

b are defined,

bi = −2

∞∑
n=1

1

n2
gnAni, i = 0, 1, . . . , N,

and c is defined,

c =
∞∑
n=1

g2
n

n2
.

The minimization of the collage distance is then equivalent to finding the vector x that

minimizes SN (x) with the constraints,

N∑
i=1

xi = 1,

0 ≤ xi ≤ 1.

In practice, it is possible only to consider a finite number of moments, M ; the squared

collage distance and components are modified accordingly:

SNM (p) =

M∑
n=1

1

n2

(
gn −

N∑
i=1

Anipi

)2
, M = 1, 2, . . . .

It is also of interest to examine the distance between the moment vectors of the target

measure and the invariant measure of the optimal IFSP (w, p),

ΓNM =
[ M∑
n=1

1

n2
(gn − ḡn)2

] 1
2
,

where ḡ is the moment vector of the invariant measure. It follows from Theorem 2.2.11
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that the collage distance for moments,

ΓN <
1

1− c
∆N ,

where c is the contractivity factor of the IFSP.

Results of solving this quadratic programming problem are presented in Chapter 3.
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2.3 Polynomial Iterated Function Systems with Constant

Probabilities

Presented here is a partial summary of the paper by Vrscay and Weil [23] that describes

the difficulties in calculating the moments of an invariant distribution associated with an

IFS using polynomial maps. The techniques used here will be valuable for our original

work- an IFS with place-dependent probabilities which will elaborated upon in the next

chapter.

The polynomial IFS considered contains maps of the form,

wi(x) =

ni∑
k=0

cikx
k, ni > 1, i = 1, 2, . . . , N.

Recall the definition of the Markov operator presented in the previous section, Equation

(2.11),

(Mµ)(X) = µ(w−1(X)) =

N∑
i=1

pi · µ(ŵ−1
i (X)),

and the integral of a continuous function f : X → R is defined in Equation (2.15),

∫
X
fdν =

N∑
i=1

pi

∫
X

(f ◦ wi)(x) dµ.

Using fn(x) = xn gives the nth moment of the distribution, and substituting this ex-

pression into the above yields

gn =

∫
X
xnd(Mµ)(x) =

N∑
i=1

pi

∫
X

(

ni∑
k=0

cikx
k) · dµ(x). (2.25)

To illustrate the behavior more concretely, consider the example of quadratic maps,

wi(x) = aix
2 + bi,
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which gives the moment equations,

gn =

∫
X
xn d(Mµ)(x) =

N∑
i=1

pi

∫
X

(aix
2 + bi)

n dµ(x). (2.26)

The equations corresponding to n = 0, 1, 2, 3 in Equation (2.26) are

g0 =
∑

pi = 1

g1 = g2

∑
piai +

∑
pibi

g2 = g4

∑
pia

2
i + 2g2

∑
piaibi +

∑
pib

2
i

g3 = g6

∑
pia

3
i + 3g4

∑
pia

2
i bi + 3g2

∑
piaib

2
i ,

where the summations are understood to have index i = 1, 2, . . . , N .

In the case of affine probabilities, the highest order of moment on the left and right side

was equal for each equation. This allowed for a recursive calculation of each moment based

on the lower order moments. With quadratic maps we see that only g0 is determined; g1

is dependent on g2, g2 on g4, etc. It is evident then, that creating a recursion relation

for moments of an invariant measure corresponding to a polynomial IFS (similar to that

derived for affine IFS) is not possible. Nevertheless, an investigation into finding these

moments will be beneficial.

Each gn requires moments of order n+ 1 to 2n, however for the case of Equation (2.26),

each of the even moments can be written linearly in terms of the odd. These odd moments

are called “missing moments,” as their presence would allow a recursive calculation of all

moments. An estimation of these moments is possible from a result of the Hausdorff

moment problem [20]. Known as the Hausdorff inequalities,

I(m,n) =
n∑
k=0

(
n

k

)
(−1)kgm+k ≥ 0, m, n = 0, 1, 2, . . . , (2.27)

these equations apply several increasingly specific bounds when larger numbers of moments

are considered. To efficiently compute the results of the inequalities, the coefficients of

variable terms from Equation (2.27) are stored in an (N×M) matrix, A, and the constants

are separated and stored in a vector b of length N to give the non-canonical form of a
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linear programming problem,

maximize (xi) subject to Ax > b,

where xT = (x1, x2, . . . , xM ) and xi = g2i−1. This gives an upper bound on each compo-

nent of the vector x. To generate the lower bounds we use a negative objective function

−xi and the same constraints. The goal of this method is to find increasingly strict upper

and lower bounds on the odd-order moments. It was found to be successful to a degree

and we refer the reader to [23] for a more complete treatment and explanation of the

results.
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Place-Dependent Probabilities

The original work constituting this thesis is contained wholly in this chapter; at times a

few external results are referenced and generalized. Let us begin with an introduction and

motivation for this topic.

Previously we presented results from research on iterated function systems, providing

associated constants that served as probabilities for choosing a map in the system leading

to the idea of a probability measure as the fixed point of an IFS. Our purpose now is to

again consider IFS with associated probabilities, but with the generalization of allowing

these probabilities to be non-constant, specifically, place-dependent. This generalization

has been studied and used in applications many times, for instances see [15], [5], [21], [19],

and many others.

In this chapter we are concerned still with probability spaces of the form, (X,B(X), µ)

where X is a compact subset of R, B(X) is the Borel σ-algebra on X, and µ is a proba-

bility measure on B(X). The probability functions, pi : X → [0, 1], satisfy the following

constraints:

0 ≤ pi(x) ≤ 1 ∀x ∈ X, 1 ≤ i ≤ N,
N∑
i=1

pi(x) = 1 ∀x ∈ X. (3.1)

This modification is perhaps best explained in light of the chaos game. Beginning as

before, we choose an x0 ∈ X, but now calculate the probability vector at this point, p(x0).

We use this vector as the chance of selecting a mapping

wσ1(x0), σn = 1, 2, . . . , N.
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This is done by considering the probabilities as bins, σ1, with length pi(x0). Placing

these bins end to end on [0, 1] will fill the interval as a consequence of Equation (3.1).

We then choose a random number r ∈ [0, 1] and the bin containing r corresponds to the

map we choose. The starting point of the next iteration in the chaos game x1 = wσ1(x0)

is calculated and consequently a new probability vector p(x1) must be calculated. This

process is summarized as,

1. Select x0 ∈ X

2. Calculate p(x0) = (p1(x0), p2(x0), . . . , pN (x0))

3. Select wσ1 ∈ {1, . . . , N} according to the probabilities, p(x0)

4. Apply wσ1 , x1 = wσ1(x0)

5. Repeat this process using xn = wσn(xn−1) (calculated in Step 4) as the new x0.

Iterating this procedure many times will yield an approximation to the invariant measure,

provided that certain conditions are satisfied by the system and probabilities, discussed

further in the next section.

It is possible to estimate the moments of the invariant measure through an approxima-

tion of dµ by the frequency of visitation of each subinterval during the duration of the

chaos game. Directly we calculate the function xn where n is the moment of interest,

and multiplying this by dµ and taking the sum of this product over all intervals yields a

numerical estimation of
∫
xn dµ̄.

Plots

In the interests of elucidating the additional flexibility and generality afforded by using

place-dependent probabilities, we exhibit some examples.

38



3 Iterated Function Systems with Place-Dependent Probabilities

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

F
re

qu
en

cy

Probability  Density Function

(a) Probability Density Function

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

P
ro

ba
bi

lit
y

Cumulative Density Function

(b) Cumulative Density Function
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Figure 3.1: Plots characterizing the IFSPDP

{w1 = 1
2x, w2 = 1

2x+ 1
2 ; p1 = 1

20x+ 19
40 , p2 = −1

20 + 21
40x}.

We show here an example of an IFSPDP having only slight perturbation away from
constant probabilities. Both the probability and cumulative density functions are
remarkably close to Lebesgue measure on [0, 1], which is the invariant measure for
the IFSP p1 = p2 = 1

2 . We expect that there is a continuous variation in invariant
measures following a continuous variation in probability functions.
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(b) Cumulative Density Function
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Figure 3.2: Plots characterizing the IFSPDP

{w1 = 1
2x, w2 = 1

2x+ 1
2 ; p1 = 1

2x+ 1
4 , p2 = −1

2 + 3
4x}.

Shown here is an example of an IFSPDP with significant difference from the con-
stant probabilities analogue. Both the cumulative density function resembles the
usual Lebesgue measure, however the density function is markedly different.
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(b) Cumulative Density Function
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Figure 3.3: Plots characterizing the simple IFSPDP,

{w1 = 1
2x, w2 = 1

2x+ 1
2 ; p1 = x, p2 = 1− x}.

The most interesting feature of this example is an illustration of the variety of invari-
ant measures that are more possible with the implementation of place-dependent
probabilities. Using an IFS with constant probabilities and the same set of maps,
generation of this measure is impossible. The behavior of this IFSPDP is straight-

forward to explain, for x near 0, the probability of choosing w1 is low and for x
near 1, the probability of choosing w2 is low, as such, the probability of the Chaos
Game iteration visiting either of these maps’ respective fixed points is low.
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(b) Cumulative Density Function
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Figure 3.4: Plots characterizing the IFSPDP

{w1 = 1
2x, w2 = 1

2x+ 1
2 ; p1 = 1− x, p2 = x}.

This simple example shows a potential degenerate behavior when the probability
functions are not bounded away from zero. There are two invariant measures pos-
sible for this example, the dirac measure at x = 0 or at x = 1. To understand this
behavior, let us provide the initial steps of the chaos game: an initial point x0 = 0.5
has an equal probability of being mapped to x1 = 0.25 or x1 = 0.75. From here the
iterations will likely converge very quickly to one of the two endpoints and, upon
reaching either, will stay there permanently. In an effort to avoid such behavior and
to remain consistent with the requirements of the contraction mapping theorem for
IFSPDP Markov operators, we restrict the probabilities from being zero.
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(b) Cumulative Density Function
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Figure 3.5: Plots characterizing the IFSPDP

{w1 = 1
2x, w2 = 1

2x+ 1
2 ; p1 = x, p2 = 1− x ∀x ≤ 1

2 , p1 = p2 = 1
2 ∀x > 1

2}.

Although the piecewise probabilities used here are not considered in our applica-
tions, it is an interesting example of the flexibility of this method. As expected,
there is less frequency of visitation on the left side of the domain, but swapping the
associated probabilities would result in another degenerate case similar to Figure
3.4.
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(b) Cumulative Density Function
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Figure 3.6: Plots characterizing the IFSPDP

{w1 = 1
3x, w2 = 1

3x+ 2
3 ; p1 = x, p2 = 1− x}.

This example uses the maps that generate the Cantor set and places on this attractor
a unique measure. Compare it to Figure 2.4, the Cantor-Lebesgue measure. The
shape of cumulative density function is reminiscent of the usual Devil’s staircase.
Intuitively, the flat portions of the CDF in Figure 3.6b are the result of the gaps in
the PDF, shown in Figure 3.6a.
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The motivation for generalizing the IFSP studied earlier is to increase the variety of

invariant measures that can be generated. As a result, the inverse problem may be solved

with greater accuracy; having an extra parameter to optimize will give better solutions,

but at the expense of computation time.

First we must establish the theory of this generalization and prove that it is suitable

for use in the solution of the inverse problem.

3.1 Contractivity

As seen in the previous chapter, before any significant analysis can be done, the function

system in question must be established as contractive. In the case of IFS with probabilities,

the associated Markov operator is the contraction mapping of interest.

An initial approach of proving contractivity for IFSPDP may look similar to the proof

for IFSP. Our work on this route is presented here, following closely to Hutchinson’s proof

for IFSP (see Chapter 2 Section 2) and generalizing as necessary. What we find is that

these techniques are ineffective in providing reasonable conditions on the IFSPDP to en-

sure a contractive Markov operator.

First let us define the Markov operator. In Chapter 2 in the case for constant proba-

bilities, we considered compositions of the form

(Mµ)(S) =

N∑
i=1

piµ(ŵ−1
i (S)) S ∈ B(X).

For the IFS maps, this is used again. The probability functions will take a similar form.

Let us take an example of the chaos game: at x0 we calculate the ‘weights’ pi(x0) on the

maps wi(x0). The choice of map, σ1 and its resulting point x1 = wσ1(x0) is dependent on

the iteration immediately prior, suggesting that the probability function in the Markov

operator is a composition with the previous map choice, that is, the inverse of the mapped

point w−1
i (x). Then the associated Markov operator is

Mµ(S) =
N∑
i=1

(pi ◦ ŵ−1
i (S)) d(µ ◦ ŵ−1

i (S)) S ∈ B(X). (3.2)
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In order to show that this operator is contractive we need the following two lemmas

that are slight generalizations of those found in [3], Chapter 9 and also Chapter 2 of this

thesis.

Lemma 3.1.1. If M is defined as in Equation (3.2) and µ ∈ M(X) then M :M(X)→
M(x).

Proof.

(Mµ)(X) =
N∑
i=1

∫
X

(pi ◦ w−1
i (x)) d(µ ◦ w−1

i (x))

=

∫
wi(X)

N∑
i=1

(pi ◦ wi(x)) dµ

=

∫
X

N∑
i=1

pi(x) dµ(x)

=

∫
X

dµ(x)

= 1.

QED

Mimicking the change of variable formula from Theorem 2.2.4, we show only the steps

which deviate from the proof given in Chapter 2 for IFSP found in [22].

Lemma 3.1.2. For any continuous function, f : X → R and measure µ ∈M(X),

∫
X
f d(Mµ) =

∫
X

N∑
i=1

pi(x) · (f ◦ wi)(x) dµ.

Proof. Since f : X → R is continuous, there exists a sequence of simple functions {fn},
fn : X → R, converging uniformly to f . Employing similar arguments from Lemma 3.1.1
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we find,

∫
X
fn d(Mµ) =

∫
X

N∑
i=1

(pi ◦ w−1
i )(x) · fn(x) d(µ ◦ w−1

i (x))

=

∫
wi(x)

N∑
i=1

(pi ◦ w−1
i )(x) · fn(x) d(µ ◦ w−1

i (x))

=

∫
X

N∑
i=1

pi(x) · (fn ◦ wi(x)) dµ(x).

We then take the limit as n→∞ QED

There is one more result that we need that is of questionable applicability to our proof.

Lemma 3.1.3. For a function f ∈ Lip1(X) we have,
∣∣f(x)− f(y)

∣∣ ≤ d(x, y). In the case

that f(y0) = 0 for some y0 ∈ X, where X is a compact subset of R, then

∣∣f(x)− f(y0)
∣∣ =

∣∣f(x)
∣∣ ≤ d(x, y0) = diam(X).

The last equality follows from the evaluation of f(x) over all x ∈ X.

The problem with using this idea is that in general we are not guaranteed the existence

of a y0 ∈ X such that f(y0) = 0. Nevertheless we will employ the result in hope of some

simplification.

Now we begin our attempt to prove contractivity for a Markov operator resulting from

place-dependent probabilities following Hutchinson’s ideas for the constant probability

case.

Theorem 3.1.4 (Contractivity following constant probability ideas). Let (w,px) be an

N -map IFSPDP, with contraction factors ci ∈ [0, 1) and define c = max
1≤i≤N

ci. If M :

M(X) → M(X) is defined as above, then M is a Lipschitz mapping on (M(X), dMK)

with Lipschitz factor c+KLN where K and L are constants to be defined in the proof.
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Proof. By definition, for any µ, ν ∈M(X) and x, y ∈ X,

dMK(Mµ,Mν) = sup
f∈Lip1(X)

[∫
X
f d(Mµ−Mν)

]
(3.3)

= sup
f∈Lip1(X)

[ ∫
X

N∑
i=1

pi(x) · (f ◦ wi)(x)dµ

−
∫
X

N∑
j=1

pj(y) · (f ◦ wj)(y)dν

]
. (3.4)

Equation (3.4) follows from Lemma 3.1.2.

To mitigate repetition, we consider the function in the integral and denote it as

g(x) =

N∑
i=1

pi(x) · (f ◦ wi)(x).

And reflecting the behavior in Equation (3.4) we analyze the difference between two such

functions,

|g(x)− g(y)| =
∣∣∣∣ N∑
i=1

pi(x) · (f ◦ wi)(x)− pi(y) · (f ◦ wi)(y)

∣∣∣∣
=

∣∣∣∣ N∑
i=1

[pi(x) · (f ◦ wi)(x)]− [pi(x) · (f ◦ wi)(y)]

+ [pi(x) · (f ◦ wi)(y)]− [pi(y) · (f ◦ wi)(y)]

∣∣∣∣
≤

N∑
i=1

pi(x) ·
∣∣(f ◦ wi)(x)− (f ◦ wi)(y)

∣∣
+

N∑
j=1

∣∣pj(x)− pj(y)
∣∣ · ∣∣(f ◦ wj)(y)

∣∣, (3.5)

where Equation (3.5) follows from the triangle inequality.

Now we’ll analyze the two summations in Equation (3.5) separately. First, the sum

with index i is akin to the case of constant probabilities and is treated accordingly.
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N∑
i=1

pi(x) ·
∣∣(f ◦ wi)(y)− (f ◦ wi)(x)

∣∣ ≤ N∑
i=1

pi(x) · d(wi(x), wi(y)) (3.6)

≤
N∑
i=1

pi(x) · ci · d(x, y) (3.7)

≤
N∑
i=1

pi(x) · c · d(x, y) (3.8)

≤ c · d(x, y), (3.9)

where Equation (3.6) follows from f ∈ Lip1(X), Equation (3.7) from wi ∈ Con(X),

Equation (3.8) from c = max
i
ci, and Equation (3.9) from

N∑
i=1

pi(x) = 1. This procedure

finds that this sum has contractivity equivalent to the case of constant probabilities.

To analyze the summation over index j we must also include a bound on the probabil-

ities. Choosing pj ∈ LipKj
(X) and letting K = max

j
Kj yields

N∑
j=1

∣∣pj(x)− pj(y)
∣∣ · ∣∣(f ◦ wj)(y)

∣∣ ≤ N∑
j=1

Kj ·
∣∣(f ◦ wj)(x)

∣∣ · d(x, y)

≤
N∑
j=1

K ·
∣∣(f ◦ wj)(x)

∣∣ · d(x, y)

≤ K
N∑
j=1

L · d(x, y) (3.10)

= KLN · d(x, y), (3.11)

where L = diam(X) <∞ (since X is assumed to be compact) and Equation (3.10) follows

from Lemma 3.1.3

Combining Equations (3.9) and (3.11) we find

∣∣g(x)− g(y)
∣∣ ≤ (c+KLN) · d(x, y)
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and the function q(x) = (c+KLN)−1 · g(x)

∣∣q(x)− q(y)
∣∣ ≤ d(x, y).

Since q : X → R is in Lip1(X) it can be used in the Monge-Kantorovich metric.∫
X
f d(Mµ)−

∫
X
f d(Mν) = (c+KLN) ·

[∫
X
q dµ−

∫
X
q dν

]
≤ (c+KLN) · sup

q∈Lip1(X)

[∫
X
q dµ−

∫
X
q dν

]
= (c+KLN) · dMK(µ, ν). (3.12)

Using Equation (3.12) in the Monge-Kantorovich metric for the Markov operator, Equa-

tion (3.3) one finds

dMK(Mµ,Mν) = sup
f∈Lip1(X)

[∫
X
f d(Mµ)−

∫
X
f d(Mν)

]
≤ (c+KLN) · dMK(Mµ,Mν).

QED

Corollary 3.1.5. M is contractive on (M(X), dMK) if c+KLN < 1.

We see plainly that this contractivity condition is difficult to enforce. First, the Lips-

chitz factor of the IFS maps is added to the Lipschitz factor of the probability functions.

This value is additionally multiplied by the number of maps (rarely is this a small num-

ber) and the absolute value of a function composed with a map. We naturally seek an

explanation for the failure of this approach and a few examples will hopefully shed some

light on the subject.

What exactly are the consequences of enforcing such conditions on an IFSPDP? Say we

have a set of maps on [0, 1], {1
2x,

1
2x+ 1

2}, and our function of interest is just the constant

f(x) = 1. Substituting these into our contractivity condition we find,

1

2
+ 2K ≤ 1⇒ K ≤ 1

4
.
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So the only probability functions permitted are those in Lip1/4([0, 1]). Additional maps

restrict the probabilities even further, pushing them to Lip0(X) that is, constant. Indeed

if we allow only constant probabilities the usual contractivity result is recovered.

Examining closer Equation (3.1), we note that a worst case scenario is if pi(x) = 0 and

pi(y) = 1 then our contraction factor will be almost certainly greater than 1 depending

on f(wi(y)). If a reasonable condition can be found for |pi(x)− pi(y)| then this approach

may work.

Research on conditions yielding a contractive Markov operator has been completed by

other authors with better results. The paper by Barnsley, Demko, Elton, and Geronimo

requires (among lesser considerations) a Dini condition on the moduli of continuity of

the probability functions [5] and proves contractivity by examining the adjoint Markov

operator. Stenflo’s doctoral work [21] approximates the IFSPDP with an IFSP and thus

avoids the continuity restriction on the probabilities, showing contractivity by use of the

Markov chain. The tools used in these proofs are beyond the scope of this thesis. It

suffices to say that for our purposes, continuous probability functions bounded away from

zero will produce a contractive Markov operator and thus we may continue in working

towards a solution of the inverse problem.
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3.2 Solving the Inverse Problem for IFSPDP

3.2.1 The Inverse Problem for Moments as a Quadratic Optimization

Problem

The existence of an invariant measure resulting from the action of an IFSPDP lends cre-

dence to our hypothesis in solving the inverse problem. Initially implemented by Cabrelli,

et al., [8], a method of matching the moments of a target measure with those of an invari-

ant measure will yield a good approximation of the target measure itself by the invariant

measure.

The discussion in Chapter 2 Section 2.2 exhibits a successful implementation of this

idea, to reiterate, one begins with a fixed set of maps, {wi}Ni=1, and associated variable

probabilities, {pi}. These are used to calculate the moment operator A : D(X) → D(X)

such that the distance between moment vectors, d2(g, h) defined as in Equation (2.22), is

small; g denotes the moment vector of the target measure and h = Ag. The probabilities

appearing in the definition of A are free variables and an optimization over these produces

a quadratic programming problem. Here we seek a similar path of solution, that is, to

optimize over variable place-dependent probabilities as part of a quadratic programming

problem.

As asserted by Theorem 2.2.12 a measure can be approximated to arbitrary accuracy

with a finite number of maps. These maps must satisfy a refinement condition; the

example of Forte and Vrscay [9] is used here. With this set of maps (w,px) again the

collage distance is analyzed with the object of solving the inverse problem.

The goal is to minimize the collage distance function for moments,

∆N
x (px) := ‖g − hN‖¯̀2

where g is the moment vector of the target measure µ, hN is the moment vector of

νN =MNµ, and MN is the Markov operator associated with the IFS (w,px). One can

find g through simple integration, gn =
∫ 1

0 x
n dµ.

The first step in this process is to construct moment vector of the IFS while keeping the

probabilities as free variables in order to compare the sequences of moments from both

the target measure and the IFSPDP. For the remainder of this study we will use affine
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probabilities, pi(x) = αix+ βi and affine maps, wi(x) = aix+ bi.

In what follows, we let ν = Mµ. We seek to express the moments of ν, hn, in terms of

the moments of µ, gn.

hn =

∫
X
xndν

=

∫
X
xnd(Mµ)

=
N∑
i=1

∫
(aix+ bi)

npi(x) dµ (3.13)

=
N∑
i=1

∫
(aix+ bi)

n(αix+ βi) dµ (3.14)

=

N∑
i=1

αi

∫
x · (aix+ bi)

n dµ+

N∑
i=1

βi

∫
(aix+ bi)

n dµ

=
N∑
i=1

αi

[
n∑
k=0

(
n

k

)
aki b

n−k
i gk+1

]
+

N∑
i=1

βi

[
n∑
k=0

(
n

k

)
aki b

n−k
i gk

]
, (3.15)

where Equation (3.13) follows from Lemma 3.1.2.

Denote

Ani =

n∑
k=0

(
n

k

)
aki b

n−k
i gk+1 (3.16)

and

Bni =
n∑
k=0

(
n

k

)
aki b

n−k
i gk. (3.17)

The only difference between this case and that of constant probabilities, Equation (2.24),

is the term multiplying αi. Consider now the square of the collage distance,

SNx = (∆N
x (px))2 :=

N∑
n=1

1

n2
(gn − hn)2 (3.18)

and substitute the equations for hn: (3.15), (3.16), and (3.17) into the squared difference.
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(gn − hn)2 =

(
gn −

N∑
i=1

αiAni −
N∑
i=1

βiBni

)2

= g2
n − 2gn

(∑
i

αiAni +
∑
i

βiBni

)
+ 2

(∑
i

αiAni

)∑
j

βjBnj


+

(∑
i

αiAni

)2

+

(∑
i

βiBni

)2

. (3.19)

Equation (3.19) is suggestive of the quadratic form, and using this expansion in Equation

(3.18) we succinctly write the squared collage distance as,

SNx = xTQx + fTx + c

using the notations,

Q =

(
a · aT a · bT

b · aT b · bT

)
, (3.20)

a =

M∑
n=1

1

n2
Ani , b =

M∑
n=1

1

n2
Bni,

f = −2 ·

(
M∑
n=1

1

n2
gnAni ,

M∑
n=1

1

n2
gnBni

)
, (3.21)

c =
M∑
n=1

g2
n

n2
.

and

xT = (α1, α2, . . . , αN , β1, β2, . . . , βN ).

Therefore our minimization problem is cast as,

minimize SNx subject to
N∑
i=1

pi(x) = 1, and 0 ≤ pi(x) ≤ 1 1 ≤ i ≤ N. (3.22)
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The problem we encounter with place-dependent probabilities is that the constraint is

no longer a simple summation of constants. The constraints are now dependent on x.

In order to circumvent this issue let’s recast Equation (3.22) in terms of the αi and βi

to find constraints more conducive to computer algorithms.

The condition
N∑
i=1

pi(x) = 1, ∀x (3.23)

evaluated at the endpoint x = 0 reveals

N∑
i=1

βi = 1. (3.24)

Evaluation at the other side of the interval, x = 1, shows

N∑
i=1

αi + βi = 1. (3.25)

Combining constraints (3.24) and (3.25) we find

N∑
i=1

αi = 0. (3.26)

It is helpful to note that equality constraints (3.24) and (3.26) are sufficient to ensure

that Condition (3.23) is satisfied for all x in the interval.

The inequality constraint

0 ≤ pi(x) ≤ 1 ∀i = 1, . . . , N (3.27)

at the point x = 0 simplifies to

0 ≤ βi ≤ 1 ∀i = 1, . . . , N, (3.28)

and at the point x = 1 reduces to

0 ≤ αi + βi ≤ 1 ∀i = 1, . . . , N. (3.29)
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By evaluating the extreme values of α and β it can be shown that if the inequality

constraints (3.28) and (3.29) are satisfied, then Condition (3.27) is satisfied for all x in

the interval [0, 1].

3.2.2 Implementation

In this section we present the mechanics of solving the quadratic programming problem

for IFSPDP. Necessary first is the selection of our target measure µ with moment vector

{gn}∞n=0, then the choice of an infinite set of affine IFS satisfying the refinement condition,

Definition 2.2.13. We shall use the following set of maps on [0, 1]:

wi(x) =
1

i
+
j

i
, i = 2, 3, 4, . . . , j = 0, 1, 2, . . . , i− 1.

Because only a finite number of moments, M , and maps, N can be used in computations,

the infinite set of each will be truncated and denoted, (w,px) and {gn}Mn=0 respectively,

resulting in the truncated squared collage distance,

SNM (px) = (∆N
M )2(px) =

M∑
n=1

1

n2

(
gn −

N∑
i=1

αiA
N
ni −

N∑
i=1

βiB
N
ni

)2

. (3.30)

The accuracy of the approximation depends on both the number of moments and IFS

maps used in the calculations. The computational complexity however, increases rapidly

with a larger number of these parameters. Utilizing the ai, bi, and gi, we calculate the

coefficient matrices (Equations (3.16) and (3.17)). And finding these vectors allows the

computation of matrices Q (3.20), f (3.21), c (3.2.1), at which point the quadratic pro-

gramming routine is used. The function SNM is numerically determined to be very flat,

that is, the quadratic programming routine has difficulty locating a global minimum due

to computational error. To rectify this, a scaling factor on the order of 108 has been

implemented in order to magnify the global minimum. Some caution must be exercised in

using this scaling factor as the truncation error is increased which may result in a negative

minimum function value.

The routine used here is quadprog, a function provided by MATLAB. Our notation
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follows that given in the function documentation. This function takes the arguments, Q,

f , and c, and the matrices for the equality and inequality constraints that are constructed

here. We use the matrix equation, Aeq · x = beq to provide the equality constraints to

the routine. The matrices for these equality constraints (Equations (3.24) and (3.26)) are

constructed explicitly as:

Aeq =

(
1N 0N

0N 1N

)
, beq =

(
1

0

)
.

Where 1k is the k-vector (1, 1, . . . , 1) and 0k is the k-vector (0, 0, . . . , 0).

The inequality constraints, Equations (3.28) and (3.29), are likewise written as a matrix

equation, A · x = b.

A =


INN INN

ONN INN

−INN −INN

ONN −INN

 , b =


1N

1N

0N

0N

 .

where Ikk is the k × k identity matrix and Okk is the k × k matrix of zeros.

After finding the optimal probabilities, we concatenate these with their respective IFS

maps, forming the optimal IFSPDP. A bin counting routine, discussed in the introduction

to this chapter, allows for the construction of the density and distribution functions, and

subsequent comparison with the target function’s distribution.

Calculation of collage error is simply the square root of our minimum function value

plus the constant. The truncated distance in D(X) apprearing in [9],

ΓNM =

(
M∑
n=1

1

n2
(ḡn − gn)2

) 1
2

is omitted for the following reason: The computations leading to a value for Γ (where ḡ

is the moment vector of an invariant measure of the optimal IFSPDP) are detailed in the

following section- since this method cannot produce exact results we omit it from our table.
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Results from Forte and Vrscay [9] are shown for comparison to judge the validity and

utility of the generalization to place-dependent probabilities. First, we consider the target

measure t(x) = 6x(1 − x), with moment function ḡn =
∫ 1

0 x
n t(x) dx = 6

(n+2)(n+3) , and

M = 30 moments are used for each method. In Figure 3.7a the cumulative density

functions resulting from optimization over constant probabilities are compared to Figure

3.7b, the result of optimizing over place dependent probabilities. Both results are overlaid

with the plot of the density function for t(x). In Table 3.1 only the error ∆N
M , Equation

(3.30), is recorded. It may concern the reader that different values for the errors were

given in [9]; it is likely due to the differing IFS maps, quadratic programming routine, and

machine epsilon.

Table 3.1: Comparison of Error in Moment Matching Using IFSP and IFSPDP

IFSP IFSPDP

N ∆N
M (p) ∆N

M (px)
∆N

M (p)−∆N
M (px)

∆N
M (p)

2 2.13× 10−2 1.75× 10−3 9.18× 10−1

6 7.72× 10−5 3.05× 10−6 9.60× 10−1

14 1.05× 10−6 4.34× 10−8 9.59× 10−1

30 1.50× 10−7 1.05× 10−8 9.30× 10−1

As seen in Table 3.1, optimization over place dependent probabilities results in a relative

collage error reduction of approximately 90%.

One notable tradeoff in using this method is a decrease in compression factor. The

quadratic programming routine finds that at the minimum point, a majority of the maps

will have an associated probability of zero when only constant probabilities are allowed.

This enables the storage of fewer data (e.g. only 7 maps are actually used out of the original

30). However the minimum point found using IFSPDP includes non-zero probabilities for

all of the maps, requiring significantly more storage (e.g. 30 maps with 2 components

each). This tradeoff should be studied more extensively to determine if it exists in general,

i.e. for more complex target functions and for larger M .
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(a) The cumulative distribution functions of both the target measure and the invariant measure
resulting from an IFS with constant probabilities having 30 maps. The routine generating this ap-
proximation used 30 moments for matching.
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(b) The cumulative density functions of the target measure and invariant measure. This instance
shows the invariant measure that is the product of an IFS with place-dependent probabilities having
30 maps. The optimization giving this result used 30 moments.

Figure 3.7: Comparing CDFs of Invariant Measures from IFSP and IFSPDP with respect
to that of the Target Measure
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3.3 Moments of the Invariant Measure

Of special interest to us is the relationship between the moment vectors of the target

measure and the invariant measure. The target moment vector is given; after finding the

optimal probabilities for the IFSPDP the question is whether we can recursively calculate

the moments of the invariant measure. Let us begin from the definition,

hn(x) =

∫
X
xn dν n = 0, 1, 2, . . . (3.31)

Recall from Section 3.2.1 that substituting

ν = Mµ =

N∑
i=1

(pi ◦ w−1
i )(x) · (µ ◦ w−1

i )(x)

into Equation (3.31) yields Equation (3.14)

hn =
N∑
i=1

∫
X

(αi · x+ βi) · (ai · x+ bi)
n dµ(x). (3.32)

If ν is the invariant measure associated with the Markov operator, µ̄, then ν = Mµ̄ = µ̄

and hn is equivalent to gn in (3.32). Since the probabilities are dependent on x it is not

possible to remove them from the integral, as was done in the constant probabilities case.

Hence, a recursive calculation of moments cannot be made. Nevertheless we still proceed

with our calculation of the moment operator X. One possibility of rectifying the issue is

to separate the relation in Equation (3.32) on ν = µ̄ into two integrals,

gn =

N∑
i=1

αi

∫
X
x · (aix+ bi)

n dµ̄+

N∑
i=1

βi

∫
X

(aix+ bi) dµ̄.

To these integral expressions the binomial theorem may now be applied,

gn =
n∑
k=0

[ N∑
i=1

(
n

k

)
αia

k
i b
n−k
i

]
gk+1 +

n∑
k=0

[ N∑
i=1

(
n

k

)
βia

k
i b
n−k
i

]
gk

where gn =

∫
X
xn dµ̄.
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It is apparent then, that the matrix representation of h = Ag is no longer lower trian-

gular, but instead includes an additional diagonal above the central diagonal. In putting

forth evidence we let

gn =

n∑
k=0

cnkgk +

n∑
k=0

dnkgk+1

g = Cg + Dg = Ag, (3.33)

where g represents the infinite moment vector of µ̄ and the matrices C and D have

elements cnk and dnk respectively,

cnk =

N∑
i=1

(
n

k

)
βia

k
i b
n−k
i , dnk =

N∑
i=1

(
n

k

)
αia

k
i b
n−k
i .

Then Equation (3.33) can be written in succinct matrix notation as,
1

g1

g2

...

 =


1 0 0 0 0 · · ·
c10 c11 + d10 d11 0 0 · · ·
c20 c21 + d20 c22 + d21 d22 0 · · ·
...

...
. . .

. . .
...




1

g1

g2

...


.

The matrix C is lower triangular as before- it is associated with the constant βi in the

affine probabilities. It is helpful to imagine the matrix D as a lower triangular matrix as

well, but padded with a column of zeros on the left when added to C. The first row of

D is also a zero-row, it is a result of the condition,
∑
αi = 0, discussed in the previous

section.

The prospect of finding a recursion relation seems promising. In calculating the first

few moments gn we quickly notice an issue:

g0 = 1

g1 = c10 + (c11 + d10) · g1 + d11 · g2

g2 = c20 + (c21 + d20) · g1 + (c22 + d21) · g2 + d22 · g3
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g3 = c30 + (c31 + d30) · g1 + (c32 + d31) · g2 + (c33 + d32) · g3 + d33 · g4.

The system of linear equations has n rows and n + 1 unknowns, hence one free variable

per row. To combat this issue we need a means of determining the free variable’s value,

then the system above will be fully determined.

There are two sources that contribute to the free variable. First is the presence of a

moment one degree higher on the right hand side than the degree on the left. The second

issue is the one exception to this rule- the first row, g0 = 1 or 1 = 1. Because g1 is not

present here, its value cannot be calculated and so we choose it as our free variable. We

deem this independent variable as a “missing moment.”

The second row of the system above may be rewritten as

g2 =
1

d11
·
[
(1− c11 − d10) · g1 − c10

]
, (3.34)

the third row as

g3 =
1

d22
·
[
(1− c22 − d21) · g2 − (c21 + d20) · g1 − c20

]
. (3.35)

Because Equation (3.34) is linear in g1 and Equation (3.35) is linear in g2 and g1, the third

moment may be written as a linear function of g1 only. This process can be continued

for higher order moments, and indeed g can be written entirely in terms of g1. In matrix

notation we write it as

g = Jg1 + k

gi = Jiig1 + ki (3.36)

with J a diagonal matrix, g1 a vector (g1, g1, g1, . . .), and k a vector of constants.

Recalling the discussion in Chapter 2 Section 3 on missing moments let us attempt to

apply the technique from Vrscay and Weil [23], namely, bounding the missing moment
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using the Hausdorff inequalities:

I(m,n) =

n∑
k=0

(
n

k

)
(−1)kgm+k ≥ 0, m, n = 0, 1, 2, . . .

This is derived from the inequality∫ 1

0
xm(1− x)n dµ ≥ 0,

which is satisfied for any non-negative integers m and n on [0, 1]. These inequalities give a

necessary and sufficient condition that a unique measure exists on [0, 1] (a reconstruction

of the original proof by Hausdorff [13] is given in [1]) and thus it is highly appropriate

that we apply these to the invariant measure µ̄ on B(X) and the vector of moments gn

[23]. Our goal is to provide an upper and lower bound on g1 with the hope that these

bounds will converge to a value ḡ1 ± ε.
We utilize a finite number of moments, M > 0 and so the Hausdorff inequalities used

will be those indices that satisfy 0 ≤ m+ n ≤ M . This set of inequalities can be written

as an (M +1)× (M +1) matrix, I. We substitute the expressions of the moments in terms

of g1, Equation (3.36), into I and gather the constants into a vector b on the right hand

side of the inequalities, leaving the coefficients in a matrix H on the left hand side. This

allows the calculation of bounds on g1 as a linear programming problem:

maximize g1 subject to Hg1 > b,

where g1 is the (M + 1)-vector (g1, g1, . . . , g1). This gives an upper bound on g1. To gen-

erate the lower bound we use a negative objective function −g1 and the same constraints.

As an example, consider the IFSPDP on [0, 1]

w1(x) =
1

2
x, w2(x) =

1

3
x+

2

3
; p1(x) =

1

5
x+

3

5
, p2(x) = −1

5
x+

2

5
.

Using MATLAB it is possible to provide strict bounds on the missing first moment with

the expressions for small numbers of moments. Not many are required as the bounds
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converge quickly to a value. With M = 8 moments we find that the first moment is equal

to 0.3925. In Table 3.2 we show the first four moments calculated recursively using this

value and compared these with the values estimated by the Chaos Game.

Table 3.2: Moment Estimations from the Linear Programming Algorithm and the Chaos
Game

n Linear Programming Chaos Game Error(%)

0 1.0000 1.0000 0

1 0.3925 0.3923 0.051

2 0.2432 0.2430 0.082

3 0.1754 0.1752 0.110

4 0.1359 0.1095 24.1

Because the equations are quite long and much of the calculation is done symbolically, the

MATLAB program proves unstable for values of M greater than four.

In general, for an IFSPDP utilizing probability functions of order q, there will be at most

q independent variables, and all moment expressions will be linear in the first q-degree

moments, not including the zeroth-degree.
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4 Conclusion

At the outset of this thesis, we made clear our objective to generalize a method of solution

to the inverse problem of approximation. Our approach consisted of exploiting the con-

traction mapping theorem and its corollary result, the collage theorem. Following a brief

introduction to previous work on iterated function systems and the collage theorem we

sought to extend these techniques, specifically the collage theorem for moments, through

a generalization: the addition of an extra parameter over which one may optimize the

approximation. In light of the paper by Forte and Vrscay [9], which showed a great deal

of progress and ingenuity by using a fixed set of maps and optimizing the associated prob-

abilities, we continued their idea and implemented non-constant probability functions.

Some theoretical complications arising from this added complexity were identified, most

notably the proof of contractivity for the Markov operator and the lack of a recursion rela-

tion for the moments of the invariant measure. These considerations did not prove harmful

to the practical aspects of solving the inverse problem. In fact, we later showed that a re-

cursion relation for moments is still possible. Other authors have proven that the Markov

operator associated with iterated function systems with place-dependent probabilities is

contractive under conditions lenient enough to proceed with confidence.

Again following the lead of Forte and Vrscay, we cast our collage theorem as an opti-

mization problem, with the probabilities being the independent variables. The objective

function was then transformed to a quadratic form, at which point we used the built-in

MATLAB quadratic programming routine to solve for the optimal probabilities. The re-

sults showed an unexpected trade-off. The anticipated reduction in approximation error

appeared, but an increase in the number of maps necessary to attain this may hamper

the techniques desirability. A greater number of maps decreases the compression factor

of the method, which is opposite to the ultimate object of the inverse problem. Whether

this issue may be circumvented is a topic for future research.
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4 Conclusion

We have shown that the moments of the invariant measure of an IFSPDP cannot be

computed recursively. This is actually not surprising when one looks at the paper of

Vrscay and Weil which deals with IFS with constant probabilities but polynomials IFS

maps. Inspired by Vrscay and Weil’s work, [23], we used the technique of bounding the

moments by Hausdorff inequalities. This idea produced excellent results, since only the

first moment is ‘missing’ we reached a convergent value quickly.

With an eye towards the future, there is much still to research. It would be interesting to

see how higher degree polynomial probability functions would improve the approximation.

The resulting larger number of undetermined moments poses a commendable generaliza-

tion to our work. For the purposes of image processing one might apply this method

to two-dimensional target measures. We mentioned earlier the smaller data compression

factor, and in light of [18] we hope that some added sparsity constraints may reduce the

number of optimal maps decided by the quadratic programming routine.
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