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Abstract

We consider the problem of countinigansitive factorizationsof permutations; that is, we study
tuples (o, ..., 01) of permutations or{1, ..., n} such that (1) the produet; - - - o7 is equal to
a given target permutation, and (2) the group generated by the factersacts transitively on
{1, ..., n}. This problem is widely known as théurwitz Enumeration Problepsince an encoding
due to Hurwitz shows it to be equivalent to the enumeration of connectedid coverings of the
sphere by a surface of given genus with specified branching.

Much of our work concerns the enumeration of transitive factorizatidpeomutations into a
minimal number of transposition factors. This problem has received amasild attention, and a
formula for the numbec(rr) of such factorizations of an arbitrary permutatioras been derived
through various means. The formula is remarkably simple, being a protiuaileknown combi-
natorial numbers, but no bijective proof of it is known except in the ighease wherer is a full
cycle. A major goal of this thesis is to provide further combinatorial ratior@¢hiis formula.

We begin by introducing an encoding of factorizations (into transpositiaagdge-labelled
maps. Our central result is a bijection that allows trees to be “pruned” fiach maps. This is
shown to explain the appearance of factors of the fkifrim the aforementioned formula fa(r).

It also has the effect of shifting focus to the combinatorics of smooth nmiapsrhaps without
vertices of degree one). By providing decompositions for certain smoatlaptaaps, we are able
to give combinatorial evaluations ofr) whens is composed of up to three cycles.

Many of these results are generalized to factorizations in which the faatersycles of any
length. We also investigate tiiouble Hurwitz Problemwhich calls for the enumeration of factor-
izations whose leftmost factor is of specified cycle type, and whose rergdamtors are transpo-
sitions. Finally, we extend our methods to the enumeration of factorizations ap égquivalence
relation induced by possible commutations between adjacent factors.
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Chapter 1

Introduction

1.1 Preamble

Broadly speaking, this thesis is concerned with counfamjorizations of permutationsThat is,
we are interested in finding the number of decompositions of a given pernmutas a product
7 = oy --- oy Of permutation factors; satisfying various conditions. Specifically, we shall focus
on transitive factorizations, which are defined by the condition that the groups gedeog their
factors act transitively on the underlying set of symboils.

Transitive factorizations, in general, bear an important relation to geontetsygh a corre-
spondence between them and certain branched coverings of the.sphég discrete encoding of
branched covers is due to Hurwitz [44], and will be described briefly2r8.8. While it is has
been the primary reason for much recent interest in transitive factonzatie emphasize that this
geometric connection is peripheral here. We treat factorizations aly morabinatorial structures,
and no understanding of the associated geometry is assumed or reduiredeader.

Throughout, factorizations will be studied exclusively through their lgicad representation as
specially labelled maps. The particular correspondence exploited hevedrefactorizations and
maps is not altogether new. Rather, the novelty of our approach lies iniedétzestigation of the
descent structuref these maps. Of particular note is the ability to simplify mapgtyning trees
This allows for a shift in focus from transitive factorizations to the combimedafsmooth maps

We begin, in Chapter 2, with a thorough analysis of transitive factorizatmse factors are
all transpositions This is the most widely studied class of transitive factorizations, and staligtu
the simplest. We have therefore chosen to introduce our methods in this tcatgspgite the fact
that they also apply in more general settings. After the basic approadiebasestablished, these
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generalizations are then surveyed in Chapter 3. Finally, Chapter 4 tregtsablem of counting
transitive factorizations up to an equivalence relation defined in termshafneations of adjacent
factors. As will be seen there, the methods of Chapters 2 and 3 extenmdllyattn be applicable to
this modified problem.

Supplementary comments and references have been collected at thesewdraf major sec-
tions under the headingdditional Notes Appendix A contains technical material related to 84.2,
and suggestions for future work are summarized in Appendix B.

We caution the reader that, in order to minimize redundancy in terminologyentions are
occasionally adopted in the text that are to be understood in a restrictezktdrhese conventions
typically have the effect of augmenting previously stated definitions. liiqodar, the definition of
a mapis modified for the remainder of Chapter 2 by the conventions listed on pageHi@ the
definition of apolymapis altered on page 99 for the remainder of Chapter 3, and again on page 11
for the duration of §3.3.

In a similar vein, we warn that our usage of certain symbols is context sengjor instance,
the pervasive symbab is first met on page 26, and then redefined on pages 114, 132, 168, an
173.) This has been done in a deliberate effort to emphasize the similaritiesemedwariety
of different, but strongly related, problems. An index of frequentlydusetation is provided on
page 187. Symbols are listed there in order of their first appearanceein aantext.

1.2 Main Results

As mentioned above, this thesis is concerned with the analysis of factorgdbioough corre-
spondences between them and labelled maps. The general link betwigizétions and maps is
well-known, but the particular bijections utilized here (Theorems 2.4.11,Rahd their relatives
in later chapters) are significant, as they have not, to our knowledgaopsty been exploited in
tackling enumerative problems.

The crux of our analysis is a new method, called “tree pruning”, thatiftdy simplifies the
maps associated with factorizations. Theorems 2.6.7 and 2.6.10 in Chapseribe¢he tree prun-
ing bijection and its primary enumerative consequence, namely that a tiegeexies for transitive
factorizations into transpositions can be expressed as the compositioriaés counting certain
smooth maps with the series counting rooted, labelled trees. This algebraitddege on the tree
series has previously been observed by other authors, but trdagnuifers the first combinatorial
explanation of its presence. Theorems 2.7.11 and 2.7.14 provide bijectliolk allow for the
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straightforward enumeration of smooth maps with two and three facesctieghe When com-

bined with the tree pruning bijection, these results lead to new bijective tlerigg Theorems 2.8.4
and 2.8.7) of two special cases of Hurwitz's formula. Moreover, we gicombinatorial proof of a
recursion that shows the generating series for minimal transitive fadiorizao be rational when
written in terms of the tree series; this is Theorem 2.7.17, which was firstiebdbalgebraically
in [33, 36].

A host of extensions of these ideas to more general factorizations follGwapter 3, where the
pruning of cacti is paramount (Theorem 3.3.13). Much of the chaptesistdd to new combina-
torial proofs of known results, including progress on doeible Hurwitz probleniCorollaries 3.4.7
and 3.4.9). Some of these results appear in an amplified form. In particidadlraw attention
to Corollary 3.3.15, which extends an earlier result [31] concerning timeber of minimal tran-
sitive factorizations of permutations inkacycles. See also Corollary 3.4.14, which is related to a

bijection of Goulden and Yong [39].

A new graphical model of equivalence classes of factorizations igibescin Chapter 4, as
is the application of pruning techniques to the enumeration of these classaséim 4.3.9). The
model itself quickly leads to a derivation of Springer’s formula [65] for hiuenber of inequivalent
minimal factorizations of a full cycle into cycles of arbitrary lengths (Theo#e3.6). Pruning cacti
then allows for a straightforward treatment of inequivalent factorizatadnmermutations that are
a product of two cycles. The main result along these lines is Corollary 4.&High generalizes
a counting series for these objects found by Goulden, Jackson, dadrl{82]. This work is
extended in Corollary 4.3.14 to give an admittedly unrefined first expme$si@ generating series
for inequivalent factorizations of permutations composed of three cythesthesis concludes with
Theorem 4.4.2, which represents an initial step towards introducing thenradtexjuivalence into

the double Hurwitz problem.

1.3 Background Material and Notational Conventions

Itis assumed that the reader is familiar with the material summarized below. Aliveaigave used
standard notation when possible, we caution that certain nonstandarddiegyihas been adopted
for the convenience it provides. A thorough scan of this section is thrersfrongly suggested for
every reader.
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1.3.1 Sets, Compositions and Partitions

If n € N then we frequently writer]] for the set{1, 2, ..., n}. As usual,S| denotes the cardinality
of the finite setS.

A compositionof n € Nis a tuplex = (ay, ..., an) € N"such thay + --- + am = n. The
integersy; are called thearts of « and the number of parts tais known as itdength. We write
a = nto indicate thatr is a composition oh, and¢(«) denotes the length of.

A partition is a composition having weakly decreasing parts: thatds,...,om) = nis a
partition ofn if a3 > ap > --- > am. We writea F n to signify thata is a partition ofn. If the
partitiona hasm; parts equal td, then we writex = [1™ 2™2...], suppressing entries with; =
0. Any ambiguity between this definition of] and the previously mentioned] = {1, ..., n}
should be easily resolved from context. We also defifiet(«)| = [[; m;!, which is the number
of automorphisms of. For exampleq = (4,4, 2,2,2, 1) = [1224?] is a partition of 15 having
¢(a) = 6 and| Aut(e)| = 12.

1.3.2 Generating Series and Lagrange Inversion

Let R be a commutative ring with a unit. Recall thRfS] and R[[ S]] are, respectively, the rings
of polynomials andformal power seriesin the setS of algebraically independent and commuting
indeterminates with coefficients frof. All generating series appearing in this thesis belong to
RI[ S]], where the coefficient ring is invariably a subring of)[[ T]] for some sefT .

If X = (Xq,..., %) andi = (iq, ..., in), then we definel' to be the monomia>ki11 -..XIn_ The
coefficient ofx' in the seriesf (x) € R[[x1, ..., Xn]] is denoted by X'] f (x) It is also convenient to
definei! = iylio! - --i,! so that, for instancex[/i!] f(x) = i1!---in![X] f(x). We write f (0) for

the constant term of the seriés Theformal derivative of the seriesf (x) = )", anx" € R[[X]] is
defined to be the seri% = Y ,nax""1, and theformal integral of f is given by [ f(x)dx =
> Fllanx”“. Note thatf’(x) = g(x) and f (0) = 0 implies f (x) = [ g(x) dx.

The next result, known as theagrange implicit function theorem (or, briefly, Lagrange

inversion), will be a very important tool in our study.

Theorem 1.3.1(Lagrange) Let ¢ € R[[A]] be such thatp(0) # 0. Then there exists a unique
formal power seriesv € R[[X]] such thatw = x¢ (w). Moreover, for any fe R[[A]] and n> 0
we have

1
AT ()" ().

(X7 Fw) = [
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Example 1.3.2.Let R = Q[u, gy, 0, .. .] and consider the serigg(1) = e“?® e R[[A]], where
Q1) = quAr + 9222 + A% + ---. Then there is a unique series e R[[x]] which satisfies the
functional equation

w = X¢ (w) = x&' W),

Moreover, we can apply Lagrange inversion to determine the coeffiofehe generic monomial
gsgu'x" in the compositionQ(w). Here we have used the notatigp = qg, 0, - - - 9s,,, Where
B = (B1, B2, ..., Bm) is a partition. Lagrange’s theorem gives

(7] Q) = [ Qe e,

whence it follows that
n"QM)’
r!

d
_ )\'I'+l
r+ldAQ( )

1
[asu"x"] Q(w) = — [gsA"11 Q' (M)

nr—l

= [gs2" 1]

r

_ n

(41!
_ N n k
— (r+1)| [qﬁ)‘]z Z qd)“

k>1 ok
f(a)=r+1

nl’
:m[%] aZ':n O -

L(a)=r+1

(952" (0uh + GoA2 + a3 + )

If B Fnand{(B) =r + 1, then the ternuz appears exactlyr + 1)!/| Aut(8)| times in the final

summation, giving

(Ao X7 Q) =
u' x (w) =
b [AUt(B)|
in this case. The coefficient is zero under any other conditions. O

For further information regarding generating series and their combinkhtpydications, we
direct the reader to any of the standard references on combinatariabeation, such as [67], [68],
[74] and [26].
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1.3.3 Complete Symmetric Functions and Umbral Composition

Fix k > 0 andm > 1. Then thecomplete symmetric functionof total degree in the indetermi-
natesxs, ..., Xm is the serie$, € Q[Xy, ..., Xy] defined as follows:

i .
(X1, ..., Xm) = Z Xt Xy

‘il,..,,imzo
i1+-+im=k

We also introduce the serié§ consisting of all terms dfi, of positive degree. That is,

i .
hf (X1, ...\ Xm) = Z Xt Xim,

=,
Finally, withx = (X4, ..., Xm), we define the generating series
. . 1 k + Tt + 1k
A(t; x) = E T ghk(x)t and  AT(t; x) = .11 Tk = kzohk ()t

for he(x) andh;’ (x), respectively.

Let At) = >, a.tk be any formal power series over a commutative fi@with unit). Then
we define the serief(t) o A*(t; x) € R[[X]] as the following umbral composition oA(t) with
the complete symmetric functions,

Ao AT ) =Y > axt X (1.1)
k>0 i1,...,im>1
i1+ +im=k

The indeterminaté here is obviously a dummy variable. ThAgt) o AT (t; X) is obtained from
A(t) by replacingt® with the sum of all monomials;ill ... xim of total degreek and positive degree

in eachx;.

Lemma 1.3.3. Let A(t) € R][[t]] be any formal power series over the commutative ring R. Then,

form > 2,
m e
A e AT X Xm) = (CDAO + 3 A [ ¢ %
i=1 1§J;é§m
J#!
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1.3.4 Cyclic Lists

Two sequence&y, ay, . .., a,) and(bg, by, ..., by) areequivalent up to cyclic shift there is some
integer]j such thaty = a7 forall0 <i <n, wherei + | denotes the least nonnegative residue
of i + j modulon + 1. We call the equivalence classes under this relatigsiic lists (or cir-
cular sequencey and use the notatiofay, . . ., a,)° to indicate the class containing the sequence
(ag, ..., an). Thus, forexample(l, 3,2,4,2)° = (4,2,1,3,2)° = (3,2, 4, 2, 1)°.

Generally speaking, use of the notati@g, am.1, . - ., a,)° indicates that the symba, is to be
interpreted asg, wherek is the unique residue &fmodulon — m+ 1 in the rangen < k < n. For
instance, use of the notatiday, a;, a,, az)° impliesa_; = az andag = a;.

A cyclic list L = (ap, ..., a,)° of real numbers is said to becreasingif one of its represen-
tative sequences is strictly increasing. A similar definition holdstordecreasingeyclic lists. A
pair (a; _1, &) satisfyinga;_; > g is called adescentof L. ThusL is increasing if and only if it has
no descents. For examplg, 4, 1, 2)° is increasing, whereda8, 1, 2, 4)° is contains two descents,
namely 3> 1 and 4> 3.

Finally, if Sis a finite set of real numbers, then we wi8efor the unique increasing circular se-
guence composed of the elementsSofFor exampleS= {2, 1, 5, 4, 0} givesS* = (0, 1, 2, 4, 5)°.

1.3.5 The Symmetric Group

If X is a finite nonempty set then tkgmmetric group Sy is the group of permutations oX. For
a positive integen, we write S, in place of&y.

The symbol: will be used to denote the identity element®f (the parameten being under-
stood from context). We multiply permutations from right to left; that is, in a macpasistent
with the usual composition of functions:

1 23 456\(1 23 456 1 2 3 456

36 2145 1\1 426 5 3 316 5 4 2

Thesupport of 7 € &, is the subseE C [n] of symbols which are not fixed by, thatis,i € S
if and only if 7 (i) # i. Thus, for example, the identity has empty support. Wesalk-cycle if
its support can be arranged in a cyclic kai, . . ., ax)° such thatr (a)) = a1 for all i. We write
(a1 - - - &) for this k-cycle. We usually refer to 2-cycles &mnspositions andn-cycles inG, as
full cycles.

Each permutatiom € &, acts on fi] in the obvious way, and we let orbdenote the collection
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of orbits under this action. If orlr = {04, ..., O}, then®; = {7l (a) : 0 < j < ki} for some
a; € [n]and aminimak; > 0. Thust = 71 - - - mm, Wherer; is theki-cycle(a 7 (&) --- 75 1(a))
supported byd;. We call thern; the (disjoint) cyclesof #. The decompaosition ot into disjoint
cycles is unique. When it causes no confusion, we suppress cydisyth 1 (fixed points) from a

permutation written in disjoint cycle form. For example:

1 23 456 7 8
O =
374186 29

; = (134(27(589.

If = € &, hasm; disjointi-cycles, then theycle typeof n is the partition [I' 2™ ...] of n.
We write £(7r) for the number of cycles of. Clearly?(w) = £(«) whens has cycle typex. For
example,o above has cycle type [1ZBand ¢£(c) = 4, while: € &, has cycle type [1 and
L) =n.

The conjugacy classic'rno : o € &,} of a permutationr contains all those permutations
having the same cycle type as If « - n then we writeé,, for the conjugacy class i&,, consisting
of all permutations having cycle typet n. Thus we have

n!
|Cg€l| = ’
| Aut(e)| - [TL; «;

For examplek-cycles inG,, have cycle type [17Kk], and there ar¢jin-«y| = (;) (k— 1! of them.

1.3.6 The Group Algebra of the Symmetric Group

Recall that thegroup algebraof &, overC is the algebr& &, of all formal linear combinations of
permutations om symbols with scalars if€. It is well known that its centr& (C&,) has a basis
{K, : a F n} consisting of theclass sumK, = Zae% o. Thatis, any element o (CS&,) can
be resolved into a linear combination of class sums. Thusy fern andz € Z(C&,,), we extend
the usual coefficient operator notation and wrkg][z for the coefficient oK, in the expansion of
z into these basis elements. The scatgfs , = [K.]Kg, - Kg are known as theonnection
coefficientsof Z(CGSy).

There is another important bagis, : 6 - n} of Z(C&,), this one consisting afrthogonal
idempotents That is,FoF, = 8y ,Fs for all 6, p - n, whereé, , is 1if 6 = p and 0 otherwise.
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The idempotent§, are related to the class suids by

% f0
Ke = 1%l > % Foand  Fo=— 3 /K (1.2)

okn " akn

wherey? is the value of the character of the irreducible representatid,dhdexed byy - n at
any element of the clasg,, and f¢ = X[gln] is the degree of this character. Further details can be
found in [63].

1.3.7 Graphs

We definegraphs as usual, with loops and multiple edges allowed. That igragh is a tuple
¥ = (V, E, ¢), whereV andE are finite disjoint sets and is a function which assigns, to each
e € E, amultiset{u, v} with u, v € V. The elements o andE are called theverticesandedges
of ¢4, respectively. Asubgraphof ¢ = (V, E, ¢) isagraphy’ = (V', E/, ¢') such thatv’ C V,
E'CE,¢' =0¢|e,andg’(¢) C V' forall€ € E'.

Of course, graphs have their usual representatid®®ias collections of points (vertices) con-
nected by curves (edges). In particularpife) = {u, v}, then edgees is a curve joining vertices
andv. We frequently abuse terminology and refer{tp v}, rather thare itself, as an edge. This
generally allows us to suppress mention of the incidence fungtiemntirely.

The vertexv is incident with the edgee if v € ¢(e). We write §(v) for the set of all edges
incident withv. A loop is an edge incident with only one vertex. Two distinct vertiogedv are
adjacentif they are both incident with a common edge. Tdegreeof a vertexv, written dedv),
is the number of edges incident withwith loops counted twice.

An isomorphism of the graphs? = (V, E, ¢) and¥’ = (V’/, E/, ¢’) consists of a pai(f, g)
of bijectionsf :V — V" andg: E— E’ such that € V is incident withe € E in ¢ if and only
if f(v)isincidentwithg(e) in ¢’. Thus an isomorphism of graphs preserves edge incidence.

A walk of lengthk + 1 in ¢ is a sequencey, €, v1, €1, ..., Uk, &, Vky1 Of verticesv; and
edgesg such thatg is incident with bothy; andvi,; forall 0 < i < k. A walk of length 0 is
a single vertex. If no vertex or edge is duplicated in a walk then it is callpdth. The walk
vo, €, - . . , &, Vky1 IS Said to beclosedif vo = vk 1, and in this case we identify it with the circular
sequencé(vo, &), . . ., (Vk, &))°.

A graph isconnectedif there is a walk between any two of its vertices.cAmponentof the
graph¥ is a maximal connected subgraph®f We write 4\ e for the graph obtained by deleting
edgee from ¢, ande is said to be dridge if ¥\e has more components th&h In fact, if ¢ is
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connected them is a bridge of¢ precisely wher#\e has exactly two components. Furthermore,
it can be shown that an edge is a bridge if and only if it does not belong yala. cA tree is a
connected graph without cycles, and thus every edge of a tree is & bridg

A vertex-labelling of the graph®y = (V, E, ¢) is a functioni : V — L, wherelL is an
arbitrary set. The elements bfare calledvertex labels and the pai(¥, 1) constitutes arertex-
labelled graph. Note that the vertex labelseed not be distinct An isomorphism of vertex-
labelled graphs must preserve labels as well as incidence. That is rtee-labelled graph&?, 1)
and (¢’, )") are isomorphic if there is an isomorphigi, g) of the graphs? and¥’ such that
A (f(v)) = A(v) forall v € V. Edges can be assigned labels in a like manner toagige-labelled
graphs. Moreover, various labellings may be superimposed upon gzt @ven if they label the
same objects. For instance, (vertex)-rooted, vertex-labelled graplubtained by superimposing
two vertex-labellings on graphs: the first uses distinct labgls.1n, and the second assigns 0 to
all vertices except one, to which it assigns the syntahereby distinguishing it as the root.

We adopt two conventions concerning labelled graphs. First,i$f a vertex of the vertex-
labelled graph¥, 1), then we abuse notation and also use the symibolrepresent the labék(v)
of v. Our particular meaning will always be clear from context, and if labelsletenct then such
usage is unambiguous in any case. Second, we generally suppresstailnoéparticular labelling
schemes, making simple referencethe vertex-labelled grapt’, for example. Here it is to be
understood that the labelling under consideration is a bijection wjtHdr somen € N. Similarly,
if the vertices of¢ are said to bdabelled with the set |_.then the labelling is supposed to be a
bijection with L. Analogous conventions also apply for edge-labelled graphs. Thusrvention,
avertex- and edge-labelled graph on n vertices and m etigesrertices labelled (distinctly) with
the integers L .., n, and edges labelled (distinctly) with the integers.1, m.

1.3.8 Maps

A mapis a 2-dimensional cellular complex whose polyhediian geometric realization) is homeo-
morphic to some orientable surface sArface, in this context, is a compact, connected, 2-manifold
without boundary. The reader is directed to any text on combinatoritdctopology for further
details on cellular decomposition and surfaces. See, for example, [69].

The 0-cells, 1-cells, and 2-cells of a mag are referred to as itgertices edges andfaces
respectively. Th@genusof .# is the genus of its polyhedron. l# hasV vertices,E edges, and
F faces, then its genugis determined by th&uler-Poincaré formula,V — E + F =2 — 2g. In
what follows we make no effort to distinguish between a map and its polyhedro
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In practice, it is convenient to consider maps from a less technicalgtigp than is indicated
by the definition given above. A map can be thought of as an embeddingpoihected grap in
a canonical orientable surfa8eof given genusi(e. a sphere with a prescribed number of handles).
More precisely, the embeddinfy: ¥ — S defines a map if each of the connected components of
S — ¢ (%) is homeomorphic to an open disc. Of course, the map so defined has ské)etod its
faces correspond with the components$of ¢ (¢).

Much of our work will concern maps of genus 0, also knowmpkanar maps. Of course, these
are maps that arise as embeddings of graphs on the sphere or, eglyiviie plane. When such a
map is rendered in the plane, one of its faces is unbounded. We call trustdreface.

The vertices and edges of the mafs, along with their associated incidence relations, form
a connected graph known as thleeletonof .#. Graph theoretic terminologye(g. walk, loop,
bridge) applied ta# invariably refers to its skeleton. We writeZ\ e for the structure resulting
from the deletion of edgefrom .. If eis not a bridge of#, then.# \e s itself a map having the
same genus ag7, but one fewer edges and one fewer faces # {a, b} is a bridge, then#\e
naturally separates into two map#, and.#, whose genera sum to the genus#f

By definition, orientability guarantees the existence of a consistenkwisesense of rotation
everywhere on a map. This, in turn, allows for the unambiguous definitioiglof andleft. Let
F be a face of the map#. Then there is one (and only one) closed walk4h which traverses
precisely those edges incident withand, in doing so, keepB to the left of the line of traversal.
We call this walk theboundary walk of F. Its length is called thelegreeof F as is denoted by
degF). If F has boundary walkV = ((vo, &), ..., (v, &))°, then any subsequence_1, vi, §)
of W consisting of two consecutive edges and their common incident vertex isl eéatlerner of
F. Plainly, a corner cannot belong to more than one face of a loopless map.

An isomorphism of the maps# and.#’ is an orientation-preserving homeomorphism be-
tween them which sendscells toi-cells and preserves incidence. Antomorphism of .Z is an
isomorphism from.# to itself. The condition that an isomorphism be orientation-preserving is a
natural one for various reasons. In essence, it asserts that tarnigg “inside out” is not a valid
symmetry. In direct analogy with the case of graphs, the various cells ofpacarabelabelled
with arbitrary sets. In fact, all substructures of a map which are pregddsy isomorphism (such
as corners) can also be labelled. The notion of isomorphism is amplifiecd¢braass of labelled
maps to force the preservation of all labels. We adopt the same convefutidabellings of maps
as we do for labellings of graphs.

Each edge of a map can be considered to be composed bftivedges one for each “end” of
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the edge. Thus a half-edge is uniquely determined by a(pa@® consisting of a vertex and an
incident edgee. In particular, the closed wallk(vo, &), .. ., (vk, &))° is fully specified by a cyclic
list (ho, ..., hy)° of half-edges, wherh; determined by the pait, g ). Note that a clockwise tour
about any vertex, via a circle of small radius centred @tencounters all half-edges incident with
v exactly once in some cyclic order. We call the cyclic list of half-edges sdymed thesirculator

of v.

Half-edges get sent to half-edges under an isomorphism of maps,@thédy can be labelled.
Let.# be a half-edge-labelled map with vertex ¥eaind edge se€E. Note that, by convention, this
implies the half-edges of# are labelled with the sdd, ..., 2m}, wherem = |E|. We associate
with each edge < E the transposition, = (h i) € S,m, Whereh andh’ are the half-edges that
composee. With each vertew € V we associate thk-cyclec, = (hihy --- hy) € &Gom, Where
(hy, ..., hy)° is the circulator ofv. Geometricallyc, can be interpreted as an instruction to “pivot
clockwise” around vertex from one of its incident half-edges to the next. Similarly, the action of
Te is interpreted as that of “traversing the edge”If we definee, v € Gom by € = [[oe Te and
v =[],y Cv, then a cycle okv is seen to be cyclic list of the half-edges encountered along the
boundary walk of a face oi#. Hence the cycles afv completely determine the boundary walks
of the faces of# .

To put this more formally, define etation system on the symbold1, ..., 2m} to be a pair
Z = (e, v) of permutations ir6,, such thak € ¢pm. (Thatis, all cycles o€ are transpositions.)
The rotation systenge, v) is said to betransitive if the permutations: and v together generate
the full symmetric groups,. Then we have the following theorem [15, 42, 71], which serves to
completely combinatorialize half-edge-labelled maps:

Theorem 1.3.4(Embedding Theorem)There is a bijection between transitive rotation systems on
the symbolg1l, 2, ..., 2m} and half-edge-labelled maps on m edges. Moreover, i (e, v) is a
transitive rotation system, and.i#Z is the half-edge-labelled map correspondingZounder this
bijection, then the vertices, edges, and facesfare in correspondence with the cycles of the
permutations, €, andev, respectively. O

The correspondence referred to in the theorem, between the ce#(sarid the cycles ob, ¢,
andev, is precisely that which is described above. That is: (1) the ayglg of € corresponds with
an edge whose ends are labellednd j, (2) the cycle(i,, - - - ik) of v corresponds with a vertex
whose circulator igi, ..., ix)°, and (3) the cycl€j; - - - jm) of ev corresponds with a face whose
boundary walk is determined lyyy, ..., jm)°.



Chapter 2

Factorizations into Transpositions

2.1 Introduction

It is well known that the set of transpositiofi§ j) : 1 <i < j < n} generates all 06,,. That
is, any permutatiotr € &, can be expressed as a product of these transpositions. This leads to the
following definitions.

Definition 2.1.1. A factorization of r € &, is a tuple(z;, ..., 1) of transpositiong; € &, such
thatt, --- t; = . Thelength of this factorization is r and itslassis the cycle type of .

For example((14), (23), (35), (24, (13), (15)) is a factorization of1 2)(3 4)(5) of length 6
and of class [13, since

(12@B4(5) = 149H(23BH2H(13(1Y. (2.1)

We often circumvent the formality of Definition 2.1.1 and refer to an exprassich as (2.1) as a
factorization. Later, in Chapter 3, we shall consider factorizations e/fexgors are of arbitrary cy-

cle type, but throughout this chapter the tdantorizationwill always have the meaning described
above.

Definition 2.1.2. The factorization f= (z;, ..., 11) in &, is transitive if the group(ty, ..., 7 )
generated by its factors acts transitively pr}. That is, f is transitive if for any b € [n] there is

a permutationr € (1, ..., tr ) such thaiv(a) = b.

For instance, the factorization (2.1) is transitive, wherda® (34)(5) = (35341245
is not. Transitive factorizations are a natural and very important clafsetfrizations to consider.

13
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More will be said on this shortly; for now, suffice it to say that transitivetdaizations play a similar
role in the study of factorizations as do connected graphs in the studymtigrén fact, we shall
soon see that this is far from being a loose analogy.

The primary focus of this chapter is the enumeration of transitive factorimativough graphi-
cal constructions. To this end, we begin with a few comments concerningthegsible lengths of
factorizations under various conditions. We shall then be in a position tostisome of the known
results concerning the enumeration of factorizations. Finally, we introduegiety of graphical
representations of factorizations and devote the balance of the chaftieirtenumerative applica-

tions.

2.2 The Length of a Factorization

The aim of this section is to determine the number of transpositions requiredttr fagiven
permutation. The problem is straightforward if no conditions are placedefattiors, but if we
restrict our attention to transitive factorizations then more thought is rejuire

2.2.1 Cuts and Joins

Complete information about the possible lengths of factorizations followstherfollowing lemma.
It describes the effect that multiplication by a transposition has on the nwhbgcles in a permu-
tation.

Lemma 2.2.1.Letr € &, and let(ab) € G, be any transposition. Then

L(r)+ 1 ifaandb are onthe same cycleof
t((@abyr) =

L(r) — 1 ifaand b are on different cycles af.

Proof. Supposea andb are on the same cycle af, so that it has the formia---a' b---b’). Then
L((@b)yr) = £(r) + 1 follows since(ab)(a---a’'b---b') = (@---a)b---b’). Similarly if a
and b appear on distinct cycle@---a’) and(b---b’) of =, thent¢((abyx) = £(wr) — 1 since
(ab@---a)b---b)y=@---ab---b). O

The proof of the lemma is to observe that multiplying a permutation on the left bpsptaition
either cuts one of the permutation’s cycles in two, or joins two of its cycles into Bhe following
terminology reflects this description.
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Definition 2.2.2. The transpositiorfa b) is called acut for  if £((@ab)7) = £(r) + 1, and itis a
called ajoin for  if £((a b)) = £(r) — 1.

This definition extends to factorizations, as follows.

Definition 2.2.3. Let f = (14, ..., 7y) be a factorization. Then the facteris acut of f if 7j isa

cut for the initial productr;_; - - - ;. Similarly, 7 is ajoin of f ifitis a joinforzi_;--- 1.

Example 2.2.4. The factor(2 4) is a cut of the factorization

(12345 = (4924231314,

and each of the remaining factors is a join. O

The following fundamental lemma relates numbers of cuts and joins in a fadtonza the

number of cycles in its target permutation.
Lemma 2.2.5. Letr € &, be a factorization with C cuts and J joins. Thé@x) =n+C — J.

Proof. We use induction on the lengthof the factorization. It = 1 then clearly¢(z) = n — 1,
C = 0andJ = 1, as desired. Suppose the result holdsrfes k and letr = ¢ 17¢ - - - 71 be
a factorization having cuts andJ joins amongst its factors. First let us assutpe; is a cut in
this factorization. Theny; is a cut ofo = 1 -- 11, giving £(;1) = £(txy10) = £(0) + 1. But
the factorizationo = 1 --- 71 hasC — 1 cuts and] joins, implying€(c) = n+ (C — 1) — J by
hypothesis. Thug(r) = (n+ (C —1) — J)+1=n+ C — J. A similar argument applies when
Tk, IS @ join, and the result follows by induction. O

2.2.2 Minimal Factorizations

Let f be a factorization of the permutation It is well known that if f is of even (respectively,
odd) length therall factorizations ofr are of even (odd) length. The next result establishes this
elementary fact and also provides a lower bound on the lengthwafien no conditions are placed

on its factors.

Proposition 2.2.6. If 7 € &, admits a factorization into r transpositions, thenx n — £(x)
andr = n— £(r) (mod 2. In particular, either all factorizations of are of even length, or all

factorizations ofr are of odd length.
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Proof. Suppose we have a factorizationsefwith r factors,C of which are cuts and of which
are joins. Then Lemma 2.2.5 givéér) = n+ C — J, so thatn — ¢(r) = J — C. But clearly
r=J+C,sowehaven — £(7) <r andn—£¢(r)=J —C=r (mod 2 as required. O

Note that the&k-cycle (i1 i, - - - ix) admits the following factorization intk — 1 transpositions:
(ixip -+ i) = (i1i2)(2i3) - - (ik—2ik-1) (Ik-11k)-

It follows immediately that any permutation having cycle tgpe- (a1, a2, . ..) F nadmits a factor-
ization into) _; (¢j —1) = n— () transpositions. Thus the lower bound given by Proposition 2.2.6
for the length of a factorization is attainable.

Definition 2.2.7. A factorization ofr € &, into exactly n— £(;r) factors is said to beninimal.
The number - £(7) is called therank of .

2.2.3 Components

Proposition 2.2.6 identifies all possible lengths of a factorization af &, in the case that no
restrictions are placed on the factors. We now investigate a lower boutigeftength of a factor-
ization of  whose factors are restricted by a generalization of the transitivity condition

Any subgroupS of &, acts on the setn] in a natural way. That is, it € Sandi € [n]
theno acts oni to giveo -i = o(i). This action partitionsr]] into disjoint orbits. We write
O‘S = {o(i) : o € S} for the unique orbit containing € [n], and orbS for the set of orbits under
the action ofS. Note that eithet), = OL or 05N OL = g for alli, j € [n].

Let f = (,..., r1) be a factorization off € &,. ThenS = (t,..., r1) acts on fi] as just
described. Recall thét is transitive if S acts transitively onrj]. More generally, leCC,, ..., C. be
the orbits of this action and, for= 1, ..., c, let7; = | be the restriction ofr to the setC;.
Then, by selecting those factors bfwhich act nontrivially onC;, we naturally obtain a transitive
factorizationf; of 7;. For example, for the factorization

(123(HGO(NE®B) = (12(78)(45(23)(56)(46)(798),
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we have
Ci=1{123} Cz=1{4,5,6} Cs={7,8}
m=(123 w2 = (4)(56) 3= (N (8)
f1 =012, (293) f,=((49,(56), (46) f3 = ((798),(79)).
The transitive factorization$, ..., f; are called theomponentsof f. Clearly the transposition

factors of fi and f; commute fori # j. Hence everyc-component factorizatiori is a shuffling
of the factors ofc transitive factorizations. This identifies the transitive factorizations asdbkie b
“connected” blocks out of which all factorizations are built. Of courfds transitive precisely
when it has exactly one component.

We would like to find a lower bound on the length of a factorizatior dfavingc components.
To do so we require the following technical lemma:

Lemma 2.2.8. Let S be a subgroup @,. Let(ab) € &, be any transposition, and let T be the
subgroup generated by S agalb). Then

orbS if 02 = O
|orbT| = | | s s
|orbS| — 1 otherwise
Proof. Fix anyi ¢ 02U O%. If j € OSthenj # a, b, sothat@b) - j = j and hencer - j € O

forallz € T. In particularr -i € Oisfor allz € T, so that9!. Ois. As Sis a subgroup oT we
must also haves c OF, and therefore’; = 0.

Now consider the casee 0% U 93. Without loss of generality assumes O2. If j € O% then
clearly j € O5 c OL. If j € O then there existr, 0 € Ssuch thatr -i = aando - j = b,
implyingo~X(ab)x -i = j and hence agaip € 0. ThusO3U 0% c 0. Butif j € 03U 0% then
we also haveab) - j € O3 U 0%, and hence we find that -i € O3 U 0% for all = € T. It follows
thatO} c 03U 0%

Altogether we have); = 02U0%if i € OAUOR andO; = O otherwise. Thus in the cash =
0% we have orli = orbS, whereas otherwise we have dfb= (orbS) U {03 U 0%} — {0&, 08}.

The result follows immediately. O

Proposition 2.2.9. If = € &, admits a c-component factorization into r transpositions then

r>n+£(xr) — 2c.
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Proof. Proceed by induction on. If r = 1 then the factorization is = 7, wherer; is a trans-
position. Thus(r) = n — 1, the factorization has — 1 components, and the result holds in this
case. Now suppose it holds for all factorizations witk= k factors, and choose any factorization
T = Tgp1Tk - -+ T1. Seto = 1¢---p andS= (14, ..., ). Then the induction hypothesis gives

k>n+¢(c)—2|orbg. (2.2)

We consider two possibilities for the transpositiqn;.

First supposey,1 = (ab) is a cut ofo. Thenl(w) = €(1k110) = £(o) + 1. We also have
Os(@a) = Og(b) sincea andb are on the same cycle of = t---7;. Thus Lemma 2.2.8 gives
|orbS| = |orbT|, whereT is the group generated &and(a b). From (2.2) we therefore have

k+1>n+4@r)—2|orbT]. (2.3)

Next supposeay,1 = (ab) is a join ofo. Thené(x) = £(tk;10) = £(o) — 1 and Lemma 2.2.8
gives|orbT| > | orb S| — 1. With (2.2) this again yields (2.3). The result follows by induction since
T=(t1,..., Tky1)- 0

Corollary 2.2.10. Let r be a permutation having c disjoint cycles, ..., mx. If f is a minimal
factorization ofr, then its components arq,f .., fx, where fis a minimal factorization of;.

Proof. Let f = (%,..., 1) be a minimal factorization of € &,, and supposdy, ..., f. are
the components of. Then f; is a transitive factorization of length of some permutatiom;
acting on a subse® c [n]. Clearly S, ..., & are disjoint sets, angd = o3 - - - 0¢. Also note that
ri+---+rc=rand|S|+---+ || = n. By Proposition 2.2.9 we have

r>1S|+ (o) — 2 (2.4)

for eachi. Summing ovei givesr > n+ ) ; £(o;) — 2c, from which the minimality condition
r =n—£(x) gives .
2c> L(r) + Y L(o). (2.5)
i=1
This impliesc > £(r), asf(oj) > 1foralli. Butmr = 7, --- 11 forcesc = |orb{zy, ..., it )| <
£(r). Thusc = £(r) = k, and (2.5) now yieldg(oi) = 1fori = 1,..., c. Thatis,o; is afull cycle
of &,,. Sincer = o1 - - - 0y, it follows that the permutations coincide with the disjoint cycles of
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7. Finally, £(o;) = 1 forces (2.5) to be tight, which in turn forces (2.4) to be tight foii alThus
ri =|S| — 1, so thatf; is a minimal factorization of;. O

2.2.4 Transitive Factorizations

As mentioned previously, a factorization is transitive if and only if it has component. It is
readily demonstrated that the bound of Proposition 2.2.9 is always attainahktimnsitive case.
(This is true for any number of components. The demonstration is similar kgihien) For any

a = (a1, ..., ax) = nwe can express the generic permutation
T = (11...a%)(]_?...ag)...(1"...0[":)
of cycle typex as the product
6 L T o o Y i o Y R o R e, )8

Then-cycle on the far right of this product can be further factored (both miliynaad transitively)
into n — 1 transpositions, giving a factorization efinto(n — 1) + (k — 1) = n+ £(w) — 2
transpositions. As these transpositions clearly act transitivelpnjpithle bound of Proposition 2.2.9
has been attained. Accordingly, we make the following definitions.

Definition 2.2.11. A transitive factorization off € &,, having exactly n+ ¢(;r) — 2 factors is said
to beminimal transitive. The number i+ £(r) — 2 itself is known as th&ansitive rank of r.

Intuitively we expect that, of tha + £(;r) — 2 factors in a minimal transitive factorization of
7 € 6, there must be exactly— 1 joins (for transitivity) and’ () — 1 cuts (to obtairt(r) cycles
in the product). This intuition is proved correct by the following corollaryPobposition 2.2.9.

Corollary 2.2.12. A minimal transitive factorization of € &G, has n— 1 joins and¢(sr) — 1 cuts.

Proof. Suppose such a factorization h@scuts andJ joins. Then, since it must have exactly
n+ ¢(r) — 2 factors, we hav€ + J = n+ £(;r) — 2. ButLemma 2.2.5 give&(r) = n+ C — J.
Solving this system give€ = ¢(r) — 1 andJ = n — 1, as desired. O

Let f = (%, ..., 11) be any transitive factorization af € &,,, not necessarily minimal. Then
certainlyr > n 4 £(r) — 2. Moreover, the parity restriction of Proposition 2.2.6 guarantees that
exceeds + £(;r) — 2 by an even integer. This leads to the following definition.
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Definition 2.2.13. Let f be a transitive factorization of € &, of length r. Thegenus of f is
the nonnegative integer g defined by= (n + () — 2) + 2g. We write g(«) for the number
n+ £(a) + 2g — 2 of factors in any genus g factorization of class- n.

The reason for this peculiar choice of terminology will be made apparemt Iat€2.4. We
emphasize that, by definition, a gengdactorization is transitive. Thus the phrasgenus 0

factorization” and“ minimal transitive factorization” are synonymous.

2.2.5 Additional Notes

With the possible exception of Proposition 2.2.9, the material of this section isrfelkin [29], it
is shown that a transitive factorizatidnof = € &, has at least + ¢(;r) — 2 factors by considering
spanning trees of the graph 6f This is Proposition 2.2.9 in the case= 1. The approach followed
here is suggested in [70].

2.3 Enumeration of Factorizations and Hurwitz’'s Problem

The study of factorizations has quite a long history, dating back at least tatéh19th century and
the work of Hurwitz, so a good deal is known about their structure amdtbaount them. In this
section we review some techniques which have been successfully apiealyaing these objects.

We begin by looking at a very general algebraic technique for courdictgfizations, based on
computations in the group algebra of the symmetric group. In principle, this chétapplicable
to the enumeration of factorizations of any prescribed length, but, in peadtican be applied
only in the simplest circumstances. Next we turn our attention to transitiverizations, our
principal objects of study. We present an elegant formula of Hurwitztfernumber of minimal
transitive factorizations of a permutation of arbitrary cycle type, and suimenane of its proofs.
The method of proof we discuss is based on a simple combinatorial decompoitias heavily
supported by a purely algebraic argument — one which seems to belie the giygdlibe formula
that it verifies. This having been said, the same method has recently headecto factorizations
of higher genus with considerable success, and no alternative pattseortee results is currently
known. We conclude the section by briefly commenting on a link between tranfittorizations
and geometry.
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2.3.1 Factorizations of a Prescribed Length

Let F (o) denote the number of factorizations (not necessarily transitive) ofemyyiationr € %,
into exactlyr transpositions. We shall now quickly derive the generating series

"'
Yapw=) > |GlF@ =P
nr>1 aFn
of these numbers, whee= (p1, pz, ...) is a vector of indeterminates an@l = p,, Py, - - - for
o = (a1, 02, ...).

If = € ¢, then observe that the connection coefficigft][Kg, - - - Kg, of CS, is equal to

the number ofr -tuples (o1, ..., oy) of permutations witho; € 43 that satisfyo;---0r = .
(See 81.3.6.) In particular, we ha¥(a) = [K.] (Kgn25)". One can exploit the relations (1.2)
between the orthogonal idempotentsth,, and the class sums to express an arbitrary connection

coefficient as a character sum:

1 1 r-1
KK = o191 (1) e i 26)

oFn

Settings, = [1"~?2] for all i in (2.6) then yields
1 ny 1
I:I‘ (a) = m Z fe(“?@)r){g’ Where EG = <2> ﬁ X[an—22]~ (27)
" Okn

Recall that theSchur symmetric functions{s, : 6 - n} and thepower sum symmetric functions
{p« : o F n}arerelated [51], [61] through

1
=) xS and s =03 (X P (2.8)
on akn
We can therefore expregg as a scaling of the coefficient @f, in the resolution o, into power
sums. By doing so, (2.7) leads to the expression

z" 0o UE
Y(z p, u):ZHZf - (2.9)
n>1 OkFn
Equations (2.7) and (2.9) can, in principle, be used to deterrjiie). However, while&,
is easy to evaluate (see [51], p.118), the evaluation of the arbitranaatearappearing in (2.7)
or, equivalently, the extraction of the required coefficient from (d9yenerally intractable. One
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particularly nice exception is the special case whes (n), corresponding to factorizations of a
full cycle. In this case the Murnaghan-Nakayama rule implies tfjatanishes unlessis ahookof
the form [~ k]. Straightforward computation using (2.7) then leads to the following reshitw

first appeared in [47].

Theorem 2.3.1. There are
1S L /n—1 i
— (E) Y (-1 ( ) )(n 2k —1)
k=0
factorizations of any full cycle a@,, into r transpositions. 0

2.3.2 Transitive Factorizations and Hurwitz Numbers

It happens that the number of topologically inequivalent, almost sinmpfeld coverings of the
sphere by a Riemann surface of gegus directly related to the number of geng$actorizations
in &,. (A brief description of this connection can be found in §2.3.6.) It was in ¢bistext
that the study of minimal transitive factorizations began, in the late dehtury, with Hurwitz’s
investigation of branched coverings of the sphere by the sphere.

Definition 2.3.2. We write H(«) for the number of genus g factorizations of any fixed permutation
T € 6,. The numbers jl«) are known asdurwitz numbers. The generating series

n rg(@)

POz p.u) =Y [GulHyle) S -

—— P, (2.10)
n>1 abn rg(a)!

wherep = (p1, P2, ...) and R, = Py, Py, - - - » Will be called theHurwitz series.

In the literature, various scalings of the numbigg«) are also referred to as Hurwitz numbers.
The determination of these numbers is commonly referred to aduhgitz Enumeration Problem

Note that the scaling factq®, | appearing in the series (2.10) is a natural one. Since there are
Hg (o) genusg factorizations of each of thigg, | permutations in the conjugacy class, there are
|6« Hg () genusg factorizations of class in total.

Recall that (2.7) counts factorizations only by their length and class, witkgatd to the num-
ber of components. However, since a multi-component factorization isféisgof the factors of a
collection of transitive ones, a standard exponential generating segigmant for connected struc-
tures yields the following relationship between the classes of all factorizasiod their transitive
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atoms:

1+ Y(z,p,u) = exp(Zd>(9)(z, P, u)). (2.11)
=0

With (2.7) or (2.9) this connection can, in principle, be used to determine theitdiseries, but one
is still confronted with all the computational pitfalls of the non-transitive case, the logarithm
now involved compounds these troubles further. Furthermore, this ssipreoffers no combina-
torial insight into the nature of transitivity, nor is it amenable to simplification emarases where
simple formulas are known to exist, such as in genus 0.

Hurwitz [44] discovered the following remarkably simple formula for the numHg(«) of
minimal transitive i.e. genus 0) factorizations of any permutation of cycle type

Theorem 2.3.3(The Hurwitz Formula) For « = (ay, ..., am) F n we have

m aj

Ho(e) = n™ 2+ m—2)! [ —2 (2.12)
i=1

(i — DV
O

Hurwitz did not actually provide a complete proof of Theorem 2.3.3. This didcome until
a century later, when Goulden and Jackson [29] rediscovered dgdpfoved the formula. At
least three other proofs are now known, of analytic, geometric and catobial flavours. See the
Additional Notes at the end of this section further information.

Although obtained independently of Hurwitz's work, the proof of Theor2.3.3 offered by
Goulden and Jackson begins with essentially the same combinatorial argilnaieRturwitz had
followed. Through aut and joinanalysis (details will follow in 82.3.3) they develop a recurrence
relation for the numbers$io() in the form of a differential equation satisfied &% (z, p, u).
By applying a change of variables and following an algebraic argumertitstkaround Lagrange
inversion, they then demonstrate that the numbers generated by (2.1B)thédisame recurrence.
Finally, Theorem 2.3.3 is established by the uniqueness of solutions with igitial conditions.

Much more is known in the way of explicit formulae for Hurwitz numbers, tmnaof the higher
genus analogues of Theorem 2.3.3 shares its simple multiplicative form. Soimer fdetails can
be found in §2.3.7. Here we mention only the following evaluation of the spHEciakitz number
Hg((n)), which counts genug factorizations of a fixed full cycle 06,. The result was first
published in this form in [64].
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Theorem 2.3.4.For n > 1 and any g> 0 we have

Hg((n)) = wnn—l-ﬂg [ng] (Sinhx)”‘l .

229n! X

Proof. This comes routinely from Theorem 2.3.1 upon setting rg((n)) =n — 1+ 2g. O

2.3.3 Lagrangian Structure in the Hurwitz Series

A recurrence relation foHg(«) is obtained by noting that the final factar in a minimal transi-

tive factorizationf = (t;, ..., 71) must either be a cut of, and therefore cut ati + j)-cycle

of ,_1--- 17 into ani-cycle and aj-cycle, or be a join off, and do the reverse. In the former
case,t_1, ..., Ir) IS a transitive factorization, while in the latter it has exactly two components.
Thus deleting the final factay, and considering these two cases separately, leads to the following
differential equation for the Hurwitz serids = ®© (z, p, u):

join cut

oy (o [T e
u 2i Jplﬂapi ap, 1) Bi Pj

=1 OPi+]

). (2.13)

A good amount of technical work is required to show thadi{«) is given by (2.12) thed© does
indeed satisfy this differential equation. The verification in [29] involvesplicated summations
and essential use of Lagrange’s implicit function theorem. One particuldicitiypdefined series
is of central importance. For its definition, first set

$o(z,p) = Zn”pn%.

n>1

Now lets = s(z, p) be the unique formal power series solution of the functional equation

S = zexpgo(s, p). (2.14)

This series arises in the verification of (2.13) as a result of the many cthong between it and
®©. We mention only one such relationship presently, namely

2
(ZaiZ) q)(O) (Zs p’ 1) = ¢O(S’ p)’ (215)
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which can be verified using Lagrange inversion and (2.12). Note thaintreterminateu has
been suppressed. This does not result in a loss of information,cas be recovered through
®9(z,p,u) = ud 209 (uz up, 1). We shall comment on possible combinatorial interpretations
of (2.15) later, in §2.4.2.

Recently, these results have been generalized to factorizations ofgrgeeraus. The following
theorem of Goulden, Jackson and Vakil [34] demonstrates that thgdinérbetween factorizations
and the series(z, p) persists for all genera.

Theorem 2.3.5.Let®@(z, p) = &9 (z, p, 1). For eachi> 0 set

pzp) =Y g

n!’
n>1

and let s= s(z, p) be defined as i{2.14) Then

3 2
(za—z) ®(z, p) = ¢o(s, p),
1
oW(z,p) = > (log(1 — ¢1(s, p)) ™ — do(s, p)) ,

while, for arbitrary genus g 2,

59-5 e+g-1
g 1 9

()] — . g
29z, p)= ) oG P D) K pu(s.p)gy(s.p) -

e=2g-1 n=e-1 0

where the innermost summation is over all partitiehs- (61, 65, ...) = n of length e- 2(g — 1)
having no part equal to 1, and where the coefficienfsare known rational constants. O

The rational constants ] in the theorem are, up to sign, important numbers knowHadge
integralswhich properly belong to the realm of algebraic geometry. Their appeatzere reflects
the deep connections between the combinatorics of the symmetric group e@metge See the
Additional Notes for further references.

2.3.4 Labelled Trees

A standard combinatorial argument shows that the generating seresv (X, u) counting rooted
vertex-labelled trees with respect to number of vertices (markexl) land edges (marked hy)
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satisfies the functional equation
w = xe'". (2.16)

Applying Lagrange inversion gives

Xn
w = Z n”flu”*lm, (2.17)

n>1

and thus there amr@~* rooted trees on labelled vertices. Reversing the rooting process by dividing
by n immediately gives the following theorem, typically credited to Cayley [10].

Theorem 2.3.6. There are A2 trees on n labelled vertices. O

Of course, there ara” doubly rooted trees on vertices and, in generah™' labelled trees
with i 4+ 2 independently marked vertices. Numbers of the fafrii might therefore be calletiee
numbers The appearance of such humbers in Hurwitz’s formula (2.12) makesitrprising that
the serieav of (2.17) will play a fundamentabte in our analysis of transitive factorizations.

Definition 2.3.7. Throughout this chapter the symholill be used exclusively as defined17)
We refer tow = w(X, u) as thetree series.

Implicit differentiation of (2.16) yields the following useful formula for thengeating series

for doubly rooted labelled trees
dw w
— = ) 2.18
X dx 1—uw ( )

Combinatorially, this is reflected by the observation that the unique directedptween the roots
of a doubly rooted tree decomposes the tree into an ordered sequenotedftrees.

2.3.5 The Symmetrized Hurwitz Series

The following symmetrization of the Hurwitz serigg? appears in [33]. Fom > 1, letI1,, be the
operator

X" Xy ™ i L(a) = m,
Mim(Po) = 2neen 1 " (2.19)

0 otherwise
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extended linearly to act on all series in thes. Then, withx = (X4, ..., Xmn), let w,ﬁ?)(x, u) be the
image of®@ (1, p, u) underI,,. It follows that

0‘1 Xotm urg(a)

Uoew =3 ) Hy@- L @ (2.20)

n>1 oFEn
L(a)=m

In genus 0, Theorem 2.3.3 can be used to obtain an expression fomtineetsized Hurwitz series

in terms of the tree series. Before stating this result, we first introduce sotheif notation.

Definition 2.3.8. The symbolv; will be used throughout this chapter to denote the sewiés, u).
That is,w; = wj (X, U) is the unique series solution to the functional equatigr= x;e""i.

Theorem 2.3.9.Letm> 1and, forl <i <m, letwj = w(X;, u). Then

0 m dwj
0) _ 2m=-2
U (%, u) = u ™ <E Xi ax.> | 1| e

i=1

Proof. Use Theorem 2.3.3 together with (2.17) and (2.20). d

From (2.18) we have

d i 0
X = (2.21)
X 1— uwj dwj
so that Theorem 2.3.9 can be rewritten as
m 3 m-3 m
Y X, U) = u2m-2 wi o Wi .
m( ) gl—umawi lll—uwi
Form > 3, this expresse®?(x, u) as a rational function in the tree series, ..., wy. The
situation is similar for all genera. In light of Theorem 2.3.5, it is known that
E) d\ 1y Wi
W9 (x, u) = uP™29-2p(O ( x S 2.22
1) T PRRALF v El—Uwi (2.22)
forallm > 1 andg > 1, wherePy; 9 @,...,an) isa unigue symmetric polynomial of total degree
m + 3g — 3. In fact, for the partitionr = («y, ..., am) we have

Hg(e) = P (a1, ..., am) - |, |rg(a)l]_[ o
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Further details can be found in [33] and [34]. A primary goal of this thissig explain the combi-
natorial significance of the dependencelqﬁf) (X, u) on the tree series.

2.3.6 Geometry and Hurwitz Numbers

Below we provide a sketch of the connection between the combinatoricseitiva factorizations
and the geometry of branched coverings. Our description is not intéadedechnically complete.
For more extensive coverage, see [69], [22], or [19]. Thesgeates are listed in increasing order
of the level of detail they provide.

Let S? be the Riemann sphere, or, equivalently, the extended complex @lango} with its
usual topology. Avranched n-fold covering of the sphere by a surfacof given genus is a non-
constant meromorphic functioh: S— S? such that f ~1(p)| = n for all but a finite number of
points p € S2. The pointsp for which | f ~1(p)| < n are callecbranch points of the covering, and
all others areegular points. The numben is also called thelegreeof the covering. For example,
the mapz — Z? is a degree 2 branched covering of the sphere by the sphere witthippaimts 0
andoo. The coveringf’: S— S? is equivalentto f if there is a homeomorphisg: S— Ssuch
that f = f'¢.

For eachp € S? there is a partitiom = [122% ...] |- n, called thebranching type of p, such
that f behaves likez — 7' locally around exactly; of the points inf ~X(p). Regular points are
those with branching type ], and a branch point with branching typ€'{2 2] is said to besimple.

An almost simplecovering is one in which all branch points, except possibly one, are simple

Roughly speaking, one can view a brancimefibld covering of the sphere aslabelled sheets
(i.e. copies of the extended complex plane) wrapped about the sphere iasagtthat they interact
over only a finite number of points. These points are the branch points obttee. The manner in
which the sheets interact over a given branch pgiig dictated by a permutation € &, of the
their labels. In particular, starting on shéea counterclockwise tour on the covering surface over
p will terminate on sheet (i). The cycle type ofr is the branching type of. For exampler is
the identity precisely whemp has branching type [1, in which casep is a regular point and the
sheets ovep are mutually disjoint. Ifr is a transposition, then the branching typepds [1"2 2],
so thatp is a simple branch point. In this case, only two sheets interactmver

If Py, ..., Pyarethe branch points of a degmeeoveringf, andr, ..., 7, are their associated
permutations, then the consistency relatiear - - - 7, can be deduced geometrically. In the case
whereP4, ..., Pn_1 are simple branch points, so thatis a transposition; for 1 <i <m-—1,
it follows thatmy, = Tm_1--- 1. Thus we obtain fromf a factorization ofr,, into transpositions.
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Moreover, this factorization is transitive precisely wheiis aconnectectovering, and its genus is
the genus of the covering surface.

Up to a known scaling that accounts for the (artificial) labelling of sheetdtheitz number
Hg(x) is therefore seen to count inequivalent, connected, almost simple,edeg@verings of
the sphere by a surface of gengisfor which oo has branching type. The formularg(a) =
n+ £(a) + 2g — 2 for the length of the corresponding factorizations is, in the geometricééxn

a consequence of tiRiemann-Hurwitz formula

2.3.7 Additional Notes

The application of representation theory to the problem of enumerating teiomufactorizations
was initiated by Hurwitz [44], who showed that the answers to such proltenid be expressed
in terms of the irreducible characters &f,. Equation (2.9) appears in [29]. In fact, Goulden
and Jackson used this expression and (2.11) to generate the data wHic@rteto conjecture the
Hurwitz formula. (Hurwitz's work was not known to them at the time.) Mednyk8, 53] also
gives a complete solution of the general Hurwitz enumeration problem in tefrrmenaplicated
expressions involving character sums.

Computations ifC&, like those of §2.3.1 were first used by Stanley [66] to count factorizations
of permutations into full cycles. Jackson [47] applied these same methodsaia aibre general
results, including Theorem 2.3.1. A combinatorial proof of Theorem 2 &nlbe found in [25].

Hurwitz first stated the formula bearing his name in [45]. His work was larfygtyotten for
nearly a century, during which time various authors rediscovered theufar in whole or in part.
Dénes [13] showed combinatorially thédy((n)) = n"~2, and the physicists Crescimanno and
Taylor [12] found the expressioHy([1"]) = n"3(2n — 2)!. Arnol'd [2] was able to obtain a
formula for Ho((p, q)). A detailed exposition of Goulden and Jackson’s proof of Theorem &3.3
contained in [57]. Hurwitz himself had obtained (2.13), in the form of americe, but did not fully
prove that it is satisfied by the numbers that bear his name. He did, howewéde insight on how
such a proof might proceed. Strehl offers a possible reconstrudtidaravitz’s ideas in [70].

Bousquet-Mlou and Schaeffer [8] have recently derived the Hurwitz formula,lig&nerality,
as a consequence of a bijection between a class of factorizations meralgban those considered
here and certain rooted trees. Their proof of the formula is not truly higdiowever, as the final
stage of their argument requires inclusion-exclusion to restrict to faat@irs into transpositions.
We defer further discussion on their approach until 83.2.7. At the timeitifigyy no bijective proof
of Theorem 2.3.3 has been found.
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Branched coverings of the sphere have been counted by analytic méthod#together avoid
Hurwitz’s encoding of the problem in terms of permutation factorizationsahtiqular, singularity
theory and the analysis of thgyashko-Looijenga mapave led to substantial results. Briefly, the
Lyashko-Looijenga map assigns to a meromorphic funcfighe polynomial whose roots are the
critical values off . When its domain is restricted to almost simptéold coverings of the sphere by
a surface of genug for which oo has branched type - n, the Lyashko-Looijenga map is a finite
covering of the space of monic polynomials of degrge) = n+£(«x) 29— 2. The degree of this
covering bears a simple relation to the Hurwitz numbg(«), and can be computed through other
methods. The formula fdry(n) follows from Looijenga’s inaugural work [50]. This was extended
by Arnol'd [1] to evaluateHq((p, q)), and then by Goryunov and Lando [23] to arrive at the general
formula for Ho(), with arbitrarye«. Later, in the seminal paper [17], Ekedahl, Lando, Shapiro,
and Vainshtein pushed these ideas much further to prove that the Hurwitzemsi (of all genera)
are related to particuladfodge integralswhich are intersection numbers for the Chern classes of
certain line bundles on the moduli space of complex curves.

Vakil [72] has also given a proof of the Hurwitz formula in the contextrmfimerative geometry.
Using the theory of stable maps, he derives recursions satisfietj ), for arbitrarye, in genera
g = 0 andg = 1. He then observes that these recursions are also satisfied by thersobftio
certain straightforward graph enumeration problems.dg=er0, counting the relevant graphs leads
to Theorem 2.3.3. Wheg = 1, the graph counting problem also admits a closed form solution,
resulting in the formula

m aj

m
Hi(a) = 2—14(n + m)! (n” —n"t - ;(i - 2)g nm—i> H h

Herea = (a1, ..., am) is a partition ofn andg is thei-th elementary symmetric function evalu-
ated at(ay, ..., am). Although the classes of labelled graphs that are enumerated to obtain these
results are very simple to describe, no bijection between them and factarzaie been found.
Combinatorializing the geometric argument that leads to Vakil's recursioresappo be difficult.
The formula above was originally conjectured by Goulden and Jacks@3Jjndnd also proved by
them in [30] using methods completely different from Vakil's. See also AppeB.

Theorem 2.3.4 is first stated explicitly in [64], though the result upon whiishbiased (namely,
Theorem 2.3.1) appears earlier in [47] and [25]. The proof giveB4j ik identical to that of [47],
but the the connection with geometry was not observed in the latter paperulas forH((p, q))
for special values op andq are also given in [64].
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Minimal transitive factorizations are also known to be related to parkingifume In particular,
[6] contains a bijection between parking functions and minimal factorizatibfsliacycles, thus
giving another proof thaHy((n)) = n"~2. More recently, a bijection betwegmime parking func-
tions and transitive factorizations of clagds n — 1) has been found by Kim and Seo [48], thereby
proving thatHy((n — 1, 1)) = (n — 1)". Their methods have been extended by Rattan [60].

2.4 Graphical Representation of Factorizations

None of the approaches to the enumeration of factorizations described preatious section is
fully satisfying from a purely combinatorial perspective, as each releslgebraic arguments for
which no combinatorial interpretation is known. In fact, at present, then® iknown bijective
proof of Theorem 2.3.3, despite its strikingly simple form. We wish to better nstated Hurwitz’s
formula from a combinatorial standpoint.

In this section we introduce a general, graphical representation ofitations that we shall
exploit throughout the remainder of the chapter (indeed, throughouétthiie thesis). We begin
with Dénes’ well known encoding of minimal factorizations of full cycles as wertnd edge-
labelled trees. The balance of the section is devoted to extending of thidiegto give bijections
between arbitrary factorizations and certain classes of labelled maps.

2.4.1 Counting Minimal Factorizations

Let 7 be a full cycle inG,,. Sincer acts transitively onr], every factorization ofr is transitive.
In particular, minimal transitive factorizations sfare identified with minimal factorizations af,
which are precisely the factorizations of length- 1.

Dénes [13] discovered the following formula for the numbki(n)) of minimal transitive fac-
torizations of the full cyclg1 2 - -- n). The formula is interesting in its own right, but the method
of proof is truly intriguing. We shall actually reprove this result in a more garsetting in 82.4.7,
so some details are suppressed in the proof given here.

Theorem 2.4.1(Dénes) There are i~? minimal transitive factorizations of any full cycle @,.

Sketch proof.Let f = (th_1, ..., t1) be a minimal (transitive) factorization of a full cycle @i,
wheret; = (g bj) for 1 <i < n — 1. Construct the graph; having labelled verticefl, 2, ..., n}
and edgeg{ai b} : 1 <i < n— 1}. Assign labeli to edge{a;, b}, forl <i < n— 1. Note
that the transitivity off implies T; is connected. Thu$; is a vertex- and edge-labelled tree. This
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Figure 2.1: The tree corresponding to the factorization (2.23).

construction is reversible, anfd— Ty is seen to be a bijection between minimal factorizations of
full cycles in &, and vertex- and edge-labelled treesromertices. As there ara"—2 trees omn
labelled vertices, anth — 1)! edge labellings of each, there gre— 1)! n"~2 minimal factorizations

of full cycles in G,. The result follows by symmetry, since there &e— 1)! full cycles onn
symbols. O

Example 2.4.2. For example, the tree corresponding to the factorization
(123456789=(16)(3H(6Y(1LH5H2H(68(1H(76) (2.23)
under CEnes’ correspondence is drawn in Figure 2.1. O

Consider now a minimal factorizatiofi of the permutatiomr € &,. From Corollary 2.2.10, a
minimal factorization ofr is a shuffling of minimal factorizations of its disjoint cyclesnafhas cy-

cle type(asy, ..., am), then by Theorem 2.4.1 its cycles can be minimally factorea:r;jfiﬁ2 o gfm=2
ways, and thé_; (¢; — 1) = n — mresulting factors can be shuffled (gl_szm_l) ways. This
proves the following result, which can also be found in [13].
Corollary 2.4.3. There are

m -1

;i
(n —m)! 1_[ o

i=1

minimal factorizations of any permutatienhaving cycle typéa;, ..., am) F n. O

This result can also be put in a graphical context. By mimickirem&s’ proof, we find that
minimal factorizations of clasg = («4, ..., am) F n are in correspondence with vertex- and edge-
labelled forests consisting of tre@s, .. ., T, havingay, . . ., an Vertices, respectively. It is easy to
count such forests and, upon doing so and dividing by a symmetry factabtain Corollary 2.4.3.
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Figure 2.2: The graph of the factorization (2.24).

2.4.2 The Graph of a Factorization

Let f = (zr,..., 11) be a factorization ir&, with factorst; = (g by) for 1 <i < r. Following
the proof of Theorem 2.4.1, we construct a gr&ihon the verticeql, 2, ..., n} by interpreting
the transposition; as the edgéa;, bi}, for 1 < i < r, and assigning this edge the labeFactors
occurring more than once if correspond to multiple edges &% .
We refer to¢; as thegraph of f. For example, Figure 2.2 shows the graph of the factorization

(12345678910 = (67)(28) (45892 N(BH(1L)(1Y(BH125(910(35. (2.24)

Clearly, ¢; completely encodes the factorizatidn Thus f — % is a one-one correspondence
between factorizations i, of lengthr and loopless graphs anlabelled vertices and labelled
edges.

Dénes’ combinatorial derivation of the number of minimal transitive factorinatiof a full
cycle (Theorem 2.4.1) naturally compels us to seek a similar proof of the neorerag) Hurwitz
formula. In analogy with the graphical derivation of Corollary 2.4.3, it &sanable to conjecture
that the factors;" in Hurwitz's formula correspond to tree-like structures in the graph of a minima
transitive factorization. The fact@n + £(«) — 2)! probably again corresponds to an edge-labelling
of this graph, but the factan®—3 seems difficult to explain combinatorially; in particular, the
appearance of 3 may well correspond to an elusive symmetry.

The simple relationship (2.15) between the generating series for transitit@ifzations and
the implicitly defined series of (2.14) also calls for a combinatorial explanation along these lines.
For instance, the differential operator on the left-hand side of (2.1%ggponds to the marking
of two vertices in the graph of a factorization. The sedggsn the other hand, is reminiscent of
the functional equatiom = z€' for the generating serieé = T (2) for labelled rooted trees. In
fact, the numben" of doubly-rooted labelled trees anvertices appears (s, p), and so the
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indeterminatep, may serve to record the number of trees of a given size that should texlpas
together to form the graph of a factorization. No such combinatorial gtaleting of the dle

of s is currently known, though the interest in finding one is underscored doyliuity ofs in
Theorem 2.3.5. The connections with geometry mentioned tivéze Hodge integrals, suggest
that such an understanding could bring with it fresh combinatorial insightihe geometry of the
moduli space of curves.

Despite all this tantalizing combinatorial structure, the only transitive factiwizs currently
understood from a natural combinatorial standpoint are genus O i@ttons of full cycles, for
which Theorem 2.4.1 provides a simple characterization. (Schaeffesthads [41, 58] have given
combinatorial interpretations of certain computation€i#i, that enable them to count factoriza-
tions of full cycles of arbitrary genus, but their approach is not pdertusatisfying, as the com-
binatorics seems far from natural.) Our investigation of the graphs ofrfaatinns is motivated
by a desire to extend this understanding and, in particular, to explain thificsigne of tree-like
structure in factorizations.

2.4.3 Carriers and Orbits

Observe that the set of edges incident with a vertéxthe graph off = (t, ..., 1) corresponds
with the set of factors of which move the symbal. Thatis,é(v) = {e € [r] : te(v) # v}. We
shall use this basic connection to translate properties of a factorizationroperties of its graph.

For completeness, we begin with a formal proof of the fact that conrityativs characterizes
transitivity of f. More generally, it can be shown that the connected componeri#s afe the
graphs of the components 6f

Proposition 2.4.4. A factorization is transitive if and only if its graph is connected.

Proof. Let f = (7, ..., 71) be a factorization off € &,, and letS= (13, ..., iy ). Recall thatf
is transitive if and only ifS acts transitively onrj].

Suppose first tha¥; is connected. Then for arg, b € [n] with a # b there must be a walk
Vo, €0, - - - » &, Ukt1 IN ¥s from vy = ato vk,1 = b. Thus we havee, = (vjvj4q) forall0 < j <Kk,
and so the produet = 7, - - - 7o, € Ssatisfiesr(a) = b. HenceS acts transitively onr].

Assume now thaf is transitive and choose b € [n] with a # b. Then there is some product
0 = Tg, - Tg € Ssatisfyingo(a) = b, and this product determines a walk fr@nto b in ¢; as
follows: Let Te, be the first (rightmost) factor that moves = a, and sety; = Tg, (v0). Now let
Te, be the first factor aftefeio which movesy;, and set, = Tq, (V1). Proceed in this manner until
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Figure 2.3: (A) The carrier and (B) the orbit of vertex 1 in the graph fafchorization.

a vertexy is obtained such that no factor aftef movesv.1. By construction we have

k1 = (Ta, ** Tg,) (V0) = (Tey * * * Tey) (V0) = 0(a) = b,
and hencey, 6,, v1,8,, - - - , Uk, €, Uk+1 IS a walk froma to b. Therefore?; is connected. [

The construction in the second half of the proof of Proposition 2.4.4 caapbbed to the
productr = 1, ---1; and anyv € [n] to define a walkvg, €, - - - , &, vky1 IN %5 from vy = v
to w1 = w(v). More precisely, this walk is uniquely determined by the conditions= v,

vky1 = 7 (v), and

min & (vg) ifi =0,
& =1minfecdv) :e>q_1} if0<i <Kk, (2.25)
maxs (vk1) ifi =k

We call this walk thecarrier of v. Figure 2.3A illustrates the carrier of = 1 in the graph of a
factorization oft = (123(45)(6789. Notice that it starts at and ends at (v) = 2, with edge
labels increasing along the walk.

If v lies on the cyclgv 7 (v) ---7™(v)), then concatenating the carrierswfr (v), ..., 7™(v)
results in a closed walk which we call tlebit of v. Of course, the orbit ob is equivalent to the
orbit of 75(v) for anys. Figure 2.3B illustrates the orbit af = 1 in the graph of a factorization
ofr = (123(45(6789. Itis obtained by concatenating the carrierssok 1, 7 (v) = 2, and
m2(v) = 3. Hollow vertices mark the endpoints of these carriers. Note that the arbérzes edge
8 twice, once in each direction.

The following lemma serves to identify a closed walkdp as an orbit.



36 Factorizations into Transpositions

Lemma 2.4.5. Let f be a factorization of and let W= ((vg, &), . .., (v, &))° be a closed walk
in%:. If (&_1, vi, &) # (6_1, vj, §) fori # j and the conditions

6 miné (vj) if _1 = maxd(vi), (2.26)

min{fe € §(v;) : e > g_1} otherwise

are satisfied, then W is the orbit of some vertexin particular, if D = {i : §_; > ¢} and
D° = (ig, ..., im)°, then(vi, vi, - - - vj,) is a cycle ofr and W is the orbit ofj,.

Proof. First observe thak > 0 since%; is loopless. It follows thaD # @, as otherwise we
would haveey < ... < & < e with kK > 0. Choose anyg and setp = is andq = igy1.
Then the inequalitieg,_; > e, ande;_1 > €, together with the conditions (2.26), imply that
€, = Miné(vp), —1 = Maxd(vq), ande = min{fe € 6(v;) : e>g_1}forp <i <q—1. Thus
the walkvp, €p, ..., vq_1, -1, vq Satisfies conditions (2.25). It is therefore the carrievgf It
follows thatv;, , = 7 (v;,) for all sand thatWV is the concatenation of the carriersigf, vi,, . . ., vi,,.
Finally, the condition(e_1, vi, &) # (€_1, vj, €)) fori # | ensures that none of these carriers
coincide. Thereforévi, vi, ... vi,) is a cycle ofr andW is the orbit ofv;,. O

2.4.4 The Map of a Factorization

Let ¢4 be a connected, loopless, vertex- and edge-labelled graph,nwidhttices andm edges.
Through the correspondence described befévis associated with a unique loopless, vertex- and
edge-labelled map.

Let L be the set of all &1 symbols of the forrme’ in which edgee is incident with vertex of
. For each edge = {u, v} of ¢, let 7, be the transpositioe" €’) € &, . For each vertex, letc,
be thek-cycle (€] - -- &) € &, where(ey, ..., &)° = 8()°. Letv =[], C, ande = [, ¢ Te.
Then the paire, v) is a rotation system on the symbdls Moreover, since is connected, this
rotation system is transitive. (An argument similar to the proof of Propositibd 2ormally proves
this claim.) By Theorem 1.3.4¢, v) corresponds to a unique loopless map with half-edges labelled
by L. These half-edge labels induce vertex labels and edge labels in the ®vaguand so we
obtain a loopless, vertex- and edge-labelled map whose skelefoVile write.# (%) for this map.

Example 2.4.6. Consider the grap## presented in Figure 2.4A. The corresponding transitive rota-
tion system ige, v), where
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A B

Figure 2.4: Constructing the map of a factorization from its graph.

e = (1°1%)(2' 2°)(3°3%)(4' 4°)(5' 5% (6° 6°)
v = (24151 (1?3 4 6% (1% (3*5%(2°6").

For example, edge 3 &f contributes the transpositiag = (2 4) to € and vertex 2 contributes the
4-cyclec, = (12324?6°) to v. Figure 2.4B illustrates the (planar) half-edge-labelled map corre-
sponding to this rotation system through Theorem 1.3.4. Finally, Figure d@ssthe loopless,
vertex- and edge-labelled mag (¢) associated witl¥. The two internal faces of this map have
been shaded to underscore the distinction between it and the original diapice that the edge
labels encountered along a clockwise tour around any vertex appealimiocreasing order. [J

We now define theotator of a vertex in an edge-labelled map, a fundamental construct that is
analogous to a circulator in a half-edge-labelled map.

Definition 2.4.7. Let.# be an edge-labelled map. Thetator of a vertexv of ./ is the cyclic list
of edge labels encountered along a clockwise tour of small radius about

For example, in the map of Figure 2.4C, the rotators of vertices 1 and 2 emgedtively,
(2,4,5)° and(l, 3, 4, 6)°. In general, observe tha# (%) is constructed so thatv)® is the rotator
of vertexv. Thus¥Y — . (%) is a bijection between connected, loopless, vertex- and edge-labelled
graphs and loopless, vertex- and edge-labelled maps whose rotatimsraasing.

By virtue of Proposition 2.4.4, it follows that — .#(¥;) is a bijection between transitive
factorizations and loopless, vertex- and edge-labelled maps with inayeasators.

Definition 2.4.8. The map# (¢+) corresponding to the transitive factorization f is called thap
of f, and will be denoted simply hy7; .We writemAP for the bijection f— .#;.



38 Factorizations into Transpositions

Figure 2.5: Graphs and maps of the factorizations (2.27) and (2.28).

Example 2.4.9. Figure 2.5A displays the graph (on the left) and map (on the right) of therfaato
tion

DGO =(249BH(ABH2H(1H129(12), (2.27)

and Figure 2.5B does the same for the factorization

(D(23)(45 = 3BH(2H(24H(45(19(29(39H(12). (2.28)

Notice that the map of the latter factorization is of genus 1, despite the fadhthgtaphs of both
factorizations are planar. In fact, both factorizations have genud emtieat of their map. This is
not a coincidence. As we shall see in 82.4.6, the bijeatiar generally preserves genus. [

2.4.5 Edge-Labelled Maps and Descent Structure

In what follows, we shall be concerned only with maps that arise fronofaations. Since every
such map is loopless and edge-labelled with increasing rotators, it will avgida deal of re-
dundancy to absorb these two properties into the definition of a map. Unhessvise stated, the
following conditions are assumed throughout the remainder of Chapter 2.

e All maps are loopless.

o All maps are edge-labelled in such a way that rotators are increasing.
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Figure 2.6: Descent structure of the map of the factorization (2.29).

For instance, under these conventions, the correspondexieds a bijection between transitive
factorizations and vertex-labelled maps. We now introduce some funddrdefitétions that apply
to any (loopless, edge-labelled) map.

Let F be a face of the map#, and let((vo, &), ..., (vk, &))° be the boundary walk of. If
e_1 > g, then we call the paifte _1, ) a descentof face F, and we say that vertex is at a
descentof F. The cornere _1, vj, ) of F identified by the descerig _1, ) is called adescent
corner. The sef{v; : e_1 > g} of all vertices at descents & is said to be thelescent sebf F.
There is a natural cyclic ordering of this set, obtained by listing the verticdsinrder in which
they appear along the boundary walkraf The resulting cyclic sequence is called tescent cycle
of F. Finally, since the rotator of every vertex is increasing, each vertexdasascent of exactly
one face. Thus the descent sets of the face#ddre disjoint and partition the vertex set.# has
m; faces withi descents, then [22™ . ..]is called thedescent partition of .# .

Example 2.4.10.Figure 2.6 illustrates these definitions with the ma#fy of the factorization
56) (912614313284 12(26)/(91DH(1 86 H(B12(213(210051H(48 (2.29)

ofr = (1234(5)(678 91011121314 The boundary walk of the shaded faEeof this map
is highlighted; the direction of traversal keepson the left and pivots clockwise at each vertex.
Formally, the boundary walk is

((vo, &), ..., (v7,€7))° = ((1,7), (8,11, (2,4), (13 12), (3,5), (12 10), (4, 1), (8, 7))",

which has four descents, naméll, 4), (12, 5), (10, 1), and(7, 7). Vertex labels have been placed
at descent corners throughout the figure. In particular, vertices3land 4 are at descentsBf so
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thatF has descent s¢t, 2, 3, 4}. The descent cycle d¥ is seen to b&l, 2, 3, 4)°. Since the other
faces of.#; have 1 and 9 descents, the descent partitiow6fis (9, 4, 1) - 14.

Notice that the boundary walk df is simply the orbit of vertex 1. Moreover, this orbit is
the concatenation of the carriers of the vertices 1, 2, 3, and 4 that aleseénts of-. With
Lemma 2.4.5, this explains the coincidence of the descent cydteasfd the cyclgl 2 34 of the
target permutatiorr. These observations will be formalized in §2.4.6, below. O

2.4.6 A Bijection Between Factorizations and Maps

The following theorem is central to our discussion. It describes how #meigyand class of a
factorization are encoded in its map.

Theorem 2.4.11.The correspondenceapr : f — .#; restricts to a bijection between genus g
factorizations of clase and genus g vertex-labelled maps with descent partitioMoreover, if f
is a factorization ofr € &, then the descent cycles.af; coincide with the cycles of .

Proof. We have already seen thaip is a bijection between transitive factorizations and vertex-
labelled maps. Thus we need only show that the map of a ggfactorization of clasg is indeed
of genusg with descent partitiom.

Let f be a genug factorization ofr € %,. Let F be aface of#; and let((vo, &), .. ., (vk, &))°
be its boundary walk. Then this walk passes each cornérefactly once, so thatg _1, vi, ) #
(gj_1, vj, &) fori # j. Furthermore, since#; is loopless we can assert unambiguously tat
immediately followse _; in the rotator of vertex;. But the rotator ot is §(v;)°, so we have

minég (v;) if §_1 = maxs(vi),

minfe e §(vj) : e> g_1} otherwise

LetD = {i : e_1 > &} indexthe descents &f, and letD° = (o, ..., im)°. Then(v,, ..., v;,)°is
the descent cycle df, and Lemma 2.4.5 implies that this coincides with a cycle oSince every
vertex is at a descent of exactly one face, this correspondencedrefages of#; and cycles ofr
is one-one. In particular, the descent partition#t coincides with the cycle type of.

Finally, supposer - n. Then.#; hasn vertices and («) faces, as its descent partitionds
Since f must be of lengthg () = N+ ¢(a) + 29 — 2 we find that#+ also has + ¢(«) + 29 — 2
edges. The Euler-Poind&formula identifieg as the genus of#/;. O
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Observe that Theorem 2.4.11 identifies the Hurwitz sepi€yz, p, u), defined in (2.10), as the
generating series for gengsvertex-labelled maps with respect to labelled vertices (markez),by
labelled edges (marked ly, and descent partition (marked py.

Let f be a transitive factorization. The edge-labelling4f determines the descent structure
of .+, and hence, by Theorem 2.4.11, the clasd ofRelabelling the vertices oi#; results in
a new map whose associated factorization is of the same claks Bse next proposition shows
that relabelling almost always results in a map distinct freffa, which in turn corresponds to a
factorization distinct fromf .

Proposition 2.4.12. A map on n#£ 2 vertices has no nontrivial automorphisms.

Proof. Supposep is a nontrivial automorphism of the mag. Since¢ preserves edge-labels, it
cannot fix all vertices. Lett andv be distinct vertices witlp (u) = v. Thenu andv must have the
same rotator, since isomorphisms preserve rotators. This imptiadv are adjacent to each other,
and nothing else. ThugZ has exactly two vertices. O

Corollary 2.4.13. Leta - n, where n# 2. Then there arg%,|Hg(a)/n! genus g maps with
descent partitiora.

Proof. Let My(«) be the number of genug maps with descent partitiom. If n # 2, the propo-
sition implies there ar@! My («) vertex-labelled genug maps with descent partitiom. By The-
orem 2.4.11, there are the same number of ggniagtorizations of clase. That is,n!My(«) =
|6o|Hg(@). O

The corollary may leave some doubt as to the nature of maps on only two gerfibe next
proposition provides a full description of these maps, and will be used later

Proposition 2.4.14.For g > 0, there are exactly two maps with only two vertices. One of these
maps has one face ardg) + 1 edges, and the other has two faces &gd+ 2 edges.

Proof. The two possible vertex labellings of map on two vertices are obviously &guiv Thus
the number of genug maps on two vertices with descent partitier— 2 is equal to the number
of genusg factorizations of clasg. If @ = (2), then(12) = (1221 is clearly the only such
factorization, where the notatiofl 2 meansk copies of the factof12). If « = (1, 1), then
(1)(2) = (12292 is the only factorization. O
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The previous proposition establishes a (trivial) topological result thrahg link between fac-
torizations and maps forged by Theorem 2.4.11. Generally speakingyerall purpose is to ex-
ploit this link in the opposite direction and investigate factorizations through éissciated maps.
We now consider a brief example that may illustrate the usefulness of thipesger

Leto € &,. Then permuting the vertex labels of a mapby replacing with o (i) is equivalent
to conjugating the factors of the factorizatidncorresponding to#. Thatis, if f = (z, ..., 11),
then the relabelled map corresponds to the factorizatiory —2, . .., o t10 ). Proposition 2.4.12,
which essentially states that all vertex labellings of a map are inequivalengrefdhe equivalent
to the following result. The proof given here is based entirelgjn and should be compared with
the simple topological proof of Proposition 2.4.12.

Proposition 2.4.15.Let f = (%, ..., 1) be a transitive factorization of € &,. Foro € &, let

f = (0nwo™L,...,0ri071). Then §, = f,, implieso; = o, except in the case & 2.

Proof. Whenn = 2, eachr; is the transpositioril 2) and sof,, = f,, for all o1, 02 € G,. Now
letn > 2, and suppose thdt, = f,, for o1 # o0,. Thentip = pt; foreachi = 1,...,r, where
0= 020'1_1. Sincep # « there is some transpositian = (a b) such thatp does not fix botla and
b. But (ab)p = p(ab), so it follows thato(a) = b andp(b) = a. Sincef is transitive andh > 2
there must be a factak equal to eithera c) or (b ¢), wherec # a, b. Suppose, without loss of
generality, thaty = (ac). Then(ac)p = p(ac). But p(ac) sendsa to p(c), while (ac)p sendsa
tob, sincep(a) = b # ¢. Thusp(a) = p(c), which gives the contradictioa = c. O

2.4.7 Genus 0 Factorizations of Full Cycles

When applied in the genus 0 case with= (n), Theorem 2.4.11 shows that the number of min-
imal transitive factorizations of full cycles i®, is equal to the number of vertex-labelled pla-
nar maps with one face. Such maps correspond with vertex- and edgdedatrees, so we have
|%m | Ho((n)) = (n — 1) n"~2, or Ho((n)) = n"~2. Of course, this is just a reiteration o€Des’
proof of Theorem 2.4.1. Note, however, that this derivatiohlgf(n)) is not fully bijective, because
the factor(n — 1)! introduced by edge-labelling must be eliminated by division. We now shaw ho
the argument can be modified to make it truly bijective.

Notice that Theorem 2.4.11 actually provides a bijection between minimal tran&ittoriza-
tions of the full cycle(12--- n) and planar vertex- and edge-labelled trees whose lone descent
cycleis(l, 2, ..., n)°. All vertex labels save one can be stripped from such a tree without asy lo
of information, since the restriction on the descent cycle allows only onex#abelling once any
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Figure 2.7: A bijection between factorizations of full cycles and labellecstree

particular label has been assigned. Thus minimal factorizatiofsdf - - n) are in bijection with
vertex-rooted, edge-labelled treesromertices, where the root vertex carries labeNow observe
that the edge labels of such a tree can be “pushed” away from thendatraio the vertices, in the
sense that the label of an edge gets shifted to whichever of its endpointthisstufrom the root.
This process results in a tree niabelled vertices, and is clearly reversible.

This sequence of transformations gives a bijection between minimal fadtongaf(12 - - - n)
and trees om labelled vertices. The correspondence is illustrated in Figure 2.7, stariihghg
factorization

(1234567=B6A46)(37(13)(56(23.

The leftmost tree is the map of the factorization, and the other trees are abltgitfiest stripping
vertex labels and then pushing edge-labels. The circled vertex in thalkeat is its root. This
bijection is equivalent to that given by Moszkowski in [54].

2.4.8 Genus 1 Factorizations of Full Cycles

We shall now use Theorem 2.4.11 to enumerate genus 1 factorization ofdies in S,. This
special case is substantially more complicated than that of minimal transitiveifatitans treated
in the previous section. The approach we take héee,pruning trees, will be substantially mod-
ified and generalized to all classes of factorizations in the next section.c@rent description
of the method is intended only as a preliminary to the more general case, atwbigliagly ab-
breviated. To be succinct, we refer to genus 1 maps with one faceemapsthroughout our
discussion. Also, all maps, graphs, and trees that we encounterthredstex- and edge-labelled,
unless otherwise specified.

Theorem 2.4.11 implies that we can count genus 1 factorizations of fuéxytS, by deter-
mining the number of one-maps onvertices. Such maps have((n)) = n + 1 edges, so their
skeleton graphs are trees with two additional edges. These graphe pambdby first iteratively
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d
S

Figure 2.8: Pruning trees from graphs and maps.

removing vertices of degree one, and then contracting all edges joinitigegeof degree two, pro-
vided such contractions do not result in loops. Through this processktietons of one-maps can
be categorized into the seven types depicted in Figure 2.8A.

Pruning is reversed by “replacing” each bivalent vertex with a doutdyead tree and all other
vertices with singly rooted trees. Replacing a vertex with a rooted tree isiddhe obvious way,
by identifying the vertex with the root of the tree. Replacement of a bivatenéxv with a doubly
rooted treeT is only slightly more involved: ifv is incident with edges labelledand j, where
i < j, thenv is first deleted, then the first root @f is attached to edge and finally the second
root is attached to edge A schematic for pruning process and its reversal is given in Figure 2.8B
Labels have been suppressed in these diagrams for clarity.

Of course, one-maps can also be pruned. We call a oneimegjoicibleif it has no univalent
vertices and if no edge connecting two bivalent vertices can be cordragtgout forming a loop.
Thus pruning a one-map results in an irreducible one-map and a collectiootefl and doubly-
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Figure 2.9: Classes of irreducible one-maps.

rooted trees. However, to reconstruct the original map from this datayttie orderings of tree
edges around the vertices of the irreducible map must be known. Foliunlése orderings are
completely specified by the increasing rotator condition. Thus the prunouggs is reversible, as
is demonstrated in Figure 2.8C. Clearly two one-maps are isomorphic if andf timéyirreducible
maps and trees obtained from each by pruning are isomorphic, with pondisg locations for
attachment of the trees. Thus one-maps can be viewed as the compositi@to€iinle one-maps
with trees.

Figure 2.9 illustrates the five distinct classes of irreducible one-mapsgwiehave used the
standard polygonal representation of the torus. The skeletons of tiegse are also shown for
comparison with Figure 2.8A. (Note that graphs 6 and 7 of Figure 2.8Aatdramembedded on
the torus to produce maps with one face.) Fet 1,...,5, letg be the number of (vertex- and
edge-labelled) maps in clags Then the generating series for one-maps with respect to labelled
vertices, marked by, and edges, marked hy is

2 u3

5 6 24

w23 u wv? u
5 6 % B

w?v u? w?v? u
to gt

MW =ci-5r4 31 41

tey (2.30)

wherew = w(X, u) is the tree series and = v(X, u) is the generating series for doubly-rooted

trees. All series are exponentialxrandu.

We now determine,, ..., cs. To do so, we first hand-count all possible assignments of edge
labels to the maps in Figure 2.9 such that rotators are increasing. We tlda ldpvthe appropriate
number of automorphisms to obtain the true number of edge-labellings of eactirmally, we use
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Proposition 2.4.12 to deduce the number of distinct vertex-labellings of sutirey edge-labelled
structures. These are the numbers. .., cs. The symbols, b, c, d, eand f used in our analysis
are defined as in Figure 2.9.

Class 1:If ais the minimal label, then the ordar< b < cis fixed. A similar situation holds if
eitherb or ¢ is minimal. Thus there are 3 admissible labellings of the map. But there are also 3
automorphisms, corresponding to rotation of edges around the vertickthexrefore only 33 = 1
edge-labelled map in this class. Since this map has 2 vertices, its two possibkafeeiéngs are
equivalent. Thus we also haee= 1.

Class 2:If a is minimal, thema < b < c and(b, ¢, d)° must be increasing. Thues<d < b < c

ora < b < ¢ < d. A similar analysis holds ifl is minimal. If b is minimal, thenb < ¢ < a
andb < ¢ < d, giving only two possibilitiesh < ¢ < a < dandb < ¢ < d < a. The same
holds ifcis minimal. Thus there are 8 admissible labellings. There is only one nontriviahgyry

(a < d, c < b), and hence 8 = 4 inequivalent maps. There are 3 vertices, so Proposition 2.4.12
guarantees all 3! vertex-labellings are distinct. Tbhus- 3! - 4.

Class 3:1f a is minimal, thena < b < canda < d < e. There arg3) = 6 ways this can occur.
If bis minimal, therb < ¢ < aand(a, d, e)° is increasing. A quick check shows 6 possibilities in
this case, and the same is true,ifl or eis minimal. Thus there are-b = 30 admissible labellings.
There is only one nontrivial symmet < d, ¢ <> e), so there are 3@ = 15 inequivalent maps
in this class. Hence; = 4! - 15.

Class 4:If ais minimal, thema < b < cand(d, e, f)°isincreasing. There are@ = 30 ways this

can occur, and the same is trudijfc, d, e or f is minimal. Thus there are-80 = 180 admissible
labellings. There are-2 = 6 automorphisms, obtained through all compositions of rotation around
one vertex and the exchange <> d, b < e, ¢ <+ f). Hence there are 186 = 30 inequivalent
maps in this class, ared = 5! - 30.

Class 5: If a is minimal, then the ordest < b < ¢ < d is fixed. The same holds b, c, ord is
minimal. Thus there are 4 admissible labellings of the map. There are 4 autonmsphigations
around the central vertex), so there is oﬁ\ly& 1 edge-labelled map in this class. Thags= 3! - 1.

Using (2.18) to writev = w/(1 — uw), we can now simplify (2.30) to obtain

utw?(2 — uw)

M(X,u) = 241 —uw)

(2.31)
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By definition,n!(n 4+ 1)! [x"u™*1] M(x, u) is the number of one-maps ervertices. Equivalently,
this is the number of genus 1 factorizations of full cyclesSip, which is(n — 1)!H;((n)) since
Cmn = (n— D! Thatis,

_ 1 Hi(() _n it
M u) = 24Z n(n+1)!x u

n>1
One can now apply Lagrange inversion to expavidx, 1) as a series irx, thereby evaluating
H1((n)). Alternatively, implicit differentiation of (2.18) shows that

2dZw _ uw?(2 — uw)
dx2  (1—uw)d

Together with (2.17) and (2.31), this gives

1 d?w 1 n"-1
M(X,U) = —U’X°— = —
(X, ) 24 dx2 24 ot (n—2)!

uMtxn,

Equating coefficients now completes the proof of the following result, whiskés to be in agree-
ment with Theorem 2.3.4.

Theorem 2.4.16.For any n> 1, we have H((n)) = £n""*(n? — 1). O
We conclude by drawing attention to the fact that

1 d?w
M = —ux?——.
0w =" "0
The series on the right counts doubly vertex-rooted and singly edgeertrees with an additional
two edges adjoined (where both vertices and edges are labelled) upctoradfiad!, which possibly
accounts for some symmetry. This is probably coincidental, as such piéaisas are not apparent
for higher genus one-face maps, but perhaps there is a combinatmri&tuction based on these

observations that bypasses the case-analytic path we have followed.

2.4.9 Face-Labelled Maps

The examples of the previous two sections demonstrate how the connediieeebemaps and
factorizations can be gainfully applied to the study of factorizations. Wedemglop a variation of
the bijectionmAP that links factorizations to face-labelled maps.

We first require some new terminology. The face labels of a face-labellpchatarally induce
an ordering on the parts of its descent partition. It is natural, then, to leesulting composition
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Figure 2.10: A face-labelled map of descent clé&, 4) = 9.

represent the descent structure of such a map.

Definition 2.4.17. Leta = (a4, ..., om) be an m-part composition. A face-labelled map with m
faces is said to be afescent class« if face s has exactlys descents, fol < s < m.

For example, Figure 2.10A shows a face-labelled map of descent @a&s4) = 9, with
crosses placed at descent corners.

The next theorem is a corollary of Theorem 2.4.11 and the fact thatxvattelled maps have
no nontrivial automorphisms. It gives an alternative interpretation of theviz numbersHg(«)
in terms of face-labelled maps with distinguished descents.

Theorem 2.4.18.Letw be a composition and fix € 4,,. Then there is a bijection between genus g
factorizations ofr and face-labelled genus g maps of descent alaisswhich one descent of each
face has been distinguished.

Proof. Supposer hasm parts. Letry, ..., mm be the cycles of, and letp; be the minimal symbol
of 7r;. Without loss of generality, assume that the cyealesave been indexed sothat < - - - < pm.
Let f be a genug factorization ofr. By Theorem 2.4.11 4+ is a genug vertex-labelled map with
m faces with descent cycles, ..., mn. For 1 < s < m, assign labes to the face of#; having
descent cyclers. This yields a face-labelled map of descent clas®istinguish the vertices with
labelspy, ..., pm in some way, and then strip all vertex labels from this map. This transformation
is reversible, since the locations of all labels are uniquely determined bystent cycles from the
locations ofpy, ..., pm. We therefore obtain a face-labelled gemgusap of descent clags with
one descent of each face distinguished. Clearly any such map camsteucted in this way and,
since vertex-labelled maps have no nontrivial automorphisms, two ditfémetorizations never
lead to the same maps. O
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For example, the bijection of Theorem 2.4.18 associates the map drawn ire RigdB with
the factorization

(123(45(6789 =(19(26)(39(67(23(45(18)(24(17N(39).

In fact, we have already made use of a special case of Theorem 2 Xenus 0 withr =
(12--- n), it was the basis of the bijective proof of Theorem 2.4.1 given in 82.4willlbe used
again in 82.8 as a basis for further bijections of a similar nature.

2.4.10 Properly Labelled Maps

In Theorem 2.4.11 we established the bijectionP between factorizations and vertex-labelled
maps, and in Theorem 2.4.18 we described a close relative of this bijecttorotiveects factoriza-
tions with certain face-labelled maps. In this section, we consider anothéficatdn of MAP, this
one associating factorizations with vertex- and face-labelled maps. Althbagh correspondences
are extremely similar, each provides a slightly different representati@ctdrizations which is par-
ticularly well suited for certain applications. Theorem 2.4.21, below, will tsvenient when we
extend the method of pruning trees introduced in §2.4.8 in to arbitrary faations.

With any compositiont = (a1, ..., am) | h we associate a sequenbe(a), ..., Dm(a) of
subsetsif], defined as follows:

Ds(a) ={ar+---+as1+1, ..., a1+ - +as}, forl<s=<m.

We refer to these sets as ttenonical descent setassociated witke. For example, itr = (3, 2, 4)

then its associated canonical descent setdlate) = {1, 2, 3}, Dy(«¢) = {4,5} andD3(a) =

{6, 7, 8, 9}. We write S («) for the set of all permutations such that orlr = {Dy(«), ..., Dn(x)}.

That is,&(«) contains thg [, (e — 1)! permutations whose cycles are supported by the canonical
descent sets associated with

Definition 2.4.19. A vertex- and face-labelled map is said tofveperly labelled if it is of descent
classa = (a1, ..., am) and if face s has descent $&i(«), for 1 <s < m.

Example 2.4.20.Figure 2.11 shows a properly labelled map of descent dlasq10, 3, 2) = 15.
Its descent sets are the canonical descent setsraEmely

Di(x) =1{1,2,3,4,5,6,7,8,9,10}, Dy(w) ={11,12 13}, and Dz(x) = {14, 15}.
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Figure 2.11: A properly-labelled map of descent cldss 3, 2) = 15.

Stripped of its face labels, this is actually the map of a factorization of
7=(1109263754813 12 11(14 15,
which is one of the 9! 2! 1! members &f(«). O

The relationship between factorizations and properly labelled maps is foedafizthe next
theorem. Its proof is nearly identical to that of Theorem 2.4.18, and isimer ¢n full detail.

Theorem 2.4.21.Let« be a composition. There is a bijection between genus g factorizations of
permutations inS(«) and properly labelled genus g maps of descent alass

Proof. Let « havem parts. If f is a factorization ofr € G(«), then the descent cycles of; are
supported by the canonical descent d&i&x), ..., Dn(«). Assigning labek to the face of #;
having descent sés(«) yields the properly labelled map correspondingto O

Corollary 2.4.22. There are
Hg(e) [ J(ei — D!
i

properly labelled genus g maps of descent ctass («y, ..., om).

Proof. This follows immediately from the theorem sing@(«)| = []; (i — D! O

Thus the number of properly labelled germisnaps of descent classis a simple scaling of
the Hurwitz numbeHgy(«). Much of the remainder of this chapter is devoted to the study of the
generating series for such maps, which is defined as follows.
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Definition 2.4.23. We write My(«) for the number of properly labelled genus g maps of descent

classa. For fixed m> 1, setx = (Xy, ..., Xm) and let
) " U
lI‘Jm (X’ u) Z Z g( )a' ma (232)
n>1 ofEn
2(e)=m

be the generating series for the numbéMy(o) : £(a) = m}. When considering the genus 0
series, we often writd,, in place of\Il,(T?).

Notice thatxy, . . ., Xm andu are naturally exponential indeterminates in (2.32), wjtmarking
vertices at descents of fatef a properly labelled map (these are labelled withithle canonical
descent set), and marking labelled edges. Throughout this chapter, the symbwill always
represent the vect@ky, . .., Xm), wherem is understood from context.

The apparent clash of notation between the definitiow @t given here and the one presented
in §2.3.5 is resolved by Corollary 2.4.22, since the idenfity(o) = Hg(x) [[; (@i — 1)! shows
the series (2.32) for properly labelled maps to be equal to the symmetrizedtHaeries (2.20).
The combinatorial effect of the operator (2.19), which transformed thevkz series®@ into
the symmetrized serieg Y (see 82.3.5), is seen to be that of applying face labels to the maps of
factorizations.

We remark that we have actually already evaluatgl(x, u) in two special cases. In particular,
Theorem 2.4.1 implies

d
x&\llio)(x, u) = w, (2.33)

while (2.31) asserts that
udw?(2 — uw)
24(1 — uw)3

Note the dependence of both expressions on the tree series

W (x, u) =

2.4.11 Comments on Labelling

Proposition 2.4.12 implies that all vertex-labellings of a map are distirctrésult in nonisomor-
phic vertex-labelled maps) unless the map has exactly two vertices. Thuartti®nof properly
labelled maps should be easily obtained from the number of face-labelled rmapsfollowing
technical results make this notion precise.

Proposition 2.4.24. A face-labelled map with more than two vertices or more than one face has no

nontrivial isomorphisms.
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Proof. By Proposition 2.4.12, we need only consider face-labelled maps with exactlyertices
and at least two faces. Le# be such a map, say of gengiwvith verticesu andv. Proposition 2.4.14
implies.# has two faces andg4 2 edges. Moreover, the increasing rotator condition forces these

faces to have boundary walks
(W d),®2,...,u,29+1), v,2g+ 2)° and ((v,1D),U,2),...,w, 29+ 1), (u,2g+ 2))°.
Switchingu andv therefore interchanges the labelled faces/f resulting in a distinct map. [

Corollary 2.4.25. Leta = (ay, ..., am) # (2). Then there are () /(1! - - - am!) genus g face-
labelled maps of descent class

Proof. Let .# be a genug face-labelled map of descent class Propositions 2.4.12 and 2.4.24
imply that the vertices of faciecan be labelled with; («) in ¢;! distinct ways. Doing so for each
face results in a properly labelled map, and the result follows. O

The corollary indicates thak,?’

(X, u) can widely be regarded as the generating series for genus
g maps withm labelled faces, wherg is anordinary marker for descents in fage andu is an
exponential marker for labelled edges. The sole exception occurs fs witgh only one face and

two vertices. These maps correspond toxhéerm of\If{g) (X, u), where we have

29+1 1
2 U ) _ -
[X <2g+1>!}q’l Cew =72

In what follows, we shall often ignore this anomaly and interﬂr&’f as the series for face-labelled
maps rather than properly labelled maps. This usually has the effect of simg@ldyr combinato-
rial manipulations, since we need not worry about preserving verteidatd/e adopt this alternative
interpretation oY only whenm # 1, or when a differential operator suchyady/dx is being ap-
plied to w?(x, u). In the latter case, note that the serigg/ax)W.? (x, u) does faithfully count
one-face genug maps in which one vertex has been distinguished.

2.4.12 Additional Notes

A number of authors have given bijective proofs of Theorem 2.4.1.zZkmsski [54] was the first
among these, but see also [38], [39], and [57]. Both [39] and [bitain an alternative description
of Moszkowski’s bijection like the one presented in 82.4.7. A different, rbildated, correspon-
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dence between trees and factorizations of full cycles also appear8]in\[& shall encounter a
generalization of this bijection in 83.4.6. The graph of a general factorizegiconsidered in [4].

Arnol'd [2] is often credited with being the first to assign “map-like” prapes to the graph
of a factorization, though this seems somewhat generous. Throughiamadghods he determines
Ho((p, q)), and then, as a corollary, he makes the corresponding graph-thetaeticegarding the
number of vertex- and edge-labelled graphs with the property that tideigirof the transpositions
induced by the edges is equal to a permutation of cycle tppg). Arnol'd refers to the graph of a

factorization as anonodromy graph

The link established by Theorem 2.4.11 between factorizations and mapsentgimalescent
structure also appears, independently, in [56] and [57]. Poulallt@ssription [57] is essentially
identical to Theorem 2.4.11, whereas in [56] the correspondences &mige geometrical consider-
ations and is presented in different form.

2.5 Differential Equations for Labelled Maps

In this section we investigate a differential decomposition for face-labellgus nzend show how it
provides an algebraic rationale for the dependence of the symmetrizedtHseries on the tree
series. Throughout, we avoid vertex labellings altogether and reg%?das the generating series
for genusg maps withm labelled faces. (See §2.4.11 for comments on labelling.)

2.5.1 Decomposition of Planar Maps

Theorem 2.5.1, below, gives a differential equation satisfied by thergiimg seriesb,(x, u) for
planar, properly labelled maps. It first appeared in [33], in a roughn fand then again in [36] in
a form identical to that given here. The proof offered in both caselebeaic, consisting of an
analysis of the action of the symmetrization operator (2.19) on the cut-joirtiequ@.13). The
proof we give here relies on a decomposition for planar face-labelle@. map

Theorem 2.5.1.Fix m > 2. For any subsek = {A1,..., Ak} € [M], wherer; < --- < Ay, let
X = (Xog, ..o, X)) FOrl <i <m,letX; = Ximp\i;- Also, for each i, leb; denote the operator
X 8/0%;, and let®; be the collection of all pairgy, A} of subsets ofim] such thaty N A = {i} and
y Ui =[m]. Then
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8 m
SWmOG W =Y Y W (%, U) - 8 W O, W)
i=1 {y,A}eP;
Z Xj 0 Wm—1(Xj, U) — X 0j Wm_1(Xi, U)

2.34
T (2.34)

I<i<j<m

Proof. The series on the left-hand side of (2.34) counts all possible structes where.Z is a
face-labelled planar map witi faces anck is its maximal edge. The enumeration is with respect
to labelled edges o7\ e and the descent class @f. We show that the series on the right counts
these same objects. To this end, #tbe a face-labelled planar map witiifaces, and le¢ = {a, b}
be its maximal edge. Consider the effect of deletrigpm ./ .

Suppose first thatis incident with only one fac& of .#, labelledi. As shown below, deletion
of e separates# into two planar maps,#, and.#,, containing vertices andb, respectively.

These maps inherit labels from# in the obvious way.

Fq Fp
a b
My | My

The faces of#, and. ), are labelled withy C [m] andA C [m], respectively, whergg N A = {i}
andy U A =[m]. Let F; andF, be the faces of#, and.#, with labeli. Sincee is maximal, both
a andb are at descents df. Thusa is at a descent of,, andb is at a descent of,. The series
counting all pairg.#,, ./y) is therefore

0 Wy (X, U) - 05 W5 (X5, U)

where the operatos; has the effect of distinguishing verticasandb at descents ofF, and Fy,.
Summing ovei and over permissible paifg., y} gives the first summation on the right-hand side
of (2.34).

Now suppose s incident with two distinct faceb; andF; of .#, labelledi andj, respectively.
Sinceeis maximal,a is at a descent of one of these faces, lamglat a descent of the other. Without
loss of generality, assunzeis at a descent df;. Deletion ofe creates a new map?, by fusingF
andF; into a single facd~, which we label 0. All other faces and edges 4t inherit labels from
. The deletion ok is illustrated below.
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hEZD i

b

Observe that a vertex is at a descenfFfif and only if it is at a descent oF; or F;. If Fg has
n descents, faceB; and F; therefore havel andn — d descents, respectively, for sordewith
1 <d < n—1. Moreoverbis uniquely determined by the location@find this value ofl.

LetXi; = Xim)\(i,j), and define

- G -
G(X, Xij, W) = X——Wm-1(X, Xij, U).
X

Regardingx as a marker for descents of face 0, this series counts m#&psith m — 1 faces
labelled{0, ..., m}\{i, j} in which a vertexa at a descent of face 0 has been distinguished. From
the considerations above, the series counting all possible struc#ixess therefore obtained from

n

G by replacingx" with Zdj xidx?‘d. By (1.1) and Lemma 1.3.3, this yields

Xj G(Xi, Xij, U) — X G(Xj, Xjj, U)
X —Xj

G(X, Xij, U) o AT (X; Xi, Xj) =

But, since¥y,_; is symmetric,G(x;, Xij, U) = 9 ¥m_1(Xj, u) andG(X;, Xij, U) = 9; Wm_1(Xi, U).
Summing over all pair$i, j} € [m] gives the second summation on the right-hand side of (2.34).
O

Corollary 2.5.2. With the same notation as in Theorem 2.5.1, we have

R d Xj 3 Wm-1(Xj, U)
(ﬁ—;wia)wm(x,u)zz D, WY L)+ Y Xi_xj’ :

i=1 {y.\}eP, 1<i,j<m
lyl,Ix=2 i#]

Proof. If {y, A} € P; and|y| = 1, theny = {i} for somei € [m] andx = [m]. Hence, by (2.33),
W, (X, ) = 3 W1(X, U) = wi, anda; W, (X, u) = 9 ¥m(X, U). The result follows immediately
upon rearranging (2.34). O

Both [33] and [36] also give a differential equation satisfied by the sar@ (x, u) with positive
genusg. The restriction here to planar maps is intended only to simplify our presentation
is straightforward, though not particularly enlightening, to modify the pafofheorem 2.5.1 to
obtain decompositions for maps of any genus.
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2.5.2 A Change of Variables

The significance of the seemingly obscure differential operator on thdadetl side of Corol-
lary 2.5.2 will now be explained. For this purpose, we momentarily regard. ., wy, as alge-
braically independent indeterminates, forgetting the usual definition of $yesbols as tree series.
Then, following [36], we change variables by substituting

X = wie™" e Qu[[wil] (2.35)
for each occurrence of in ¥, (X, u). That is, we introduce the series
Cm(W, U) = W(wie ™™, ..., wne™ "™, u) € Qu][[w]], (2.36)

wherew = (ws, ..., wn). Of course, the substitution (2.35) can be inverted to identifyas a
series inx; andu. In particular, we havey; = x e"*i. Comparing with (2.16), we see that is
indeed the tree series(x;, u) € Q[U][[ %i]], which explains our choice of notation.

Having described the change of variables (2.35) and its inverse, weangyass freely between
the ringsQ[u][[ x]] and Q[u][[w]]. For instance, we can rewrite (2.36) as

Fm(Wv U) - \Ijm(xs u)’ (237)

where both sides are to be interpreted either as series in the indepeadahbtesw andu, or as
series in the independent variableandu. Under the former interpretation, differentiating (2.37)
with the chain rule gives

X

) o
5 TmW, W = (DmyaWm) (%, 1) - ==+ gwm)(x, W oy

= (Dims1Wm) (X, U) — Y (D W) (X, U) - wiX,
i=1

m
= <Dm+l - Z Wi Xi Di) Wn(X, u),
i—1

whereD; represents differentiation with respect to thila argument. Note that we have used (2.35)

to evaluatedx; /ou = —wize““’i = —w;X;. The expression above can be rewritten as

9 9 9
—I'mw,u) = — — iXi— | ¥m(X, U), 2.38
5u m(W, U) <8u ;wl |8Xi) m( ) ( )
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though we caution that the operatitou has different meanings on the left- and right-hand sides
of this equation. In particular, both thg on the left and the; on the right are to be regarded as
constants (independent of for the purposes of this operator.

Equation (2.38) shows that the differential operator of Corollary 2.52ahpleasant form in
terms of the tree series;. In fact, we can invert the operator to obtain the following recursive
expression fof ,(w, u).

Theorem 2.5.3.Fix m > 2. For any subsek = {\1, ..., Ax} € [M], wherer; < --- < Ak, define
Wy, = (Wy,, ..., wy,). Foreachie [m], setW; = Wiy} Also, for eachii, let
Wi 0
0 = —
1- uw; dw;j

and let?; be the set of all pairgy, A} with y, A C [m] such thaty N A = {i} andy U X = [m].
Then

m 4e—Uw18_F ~ W',U
CmW,w) =" " /BiFm(Wy,u)-ail“x|(wk,u)du+ > /w' Lm 1 Wi, W) g,

wi efuwi _ w] e—ij

i=1 {y,\}eP 1<i,j=m
lyl.A1=2 i#]
wherews, ..., wny, are considered to be constants independent of u in the integrations.

Proof. This follows immediately from Corollary 2.5.2 and equations (2.38), (2.3%)(2ar21). O

Corollary 2.5.4.

u2w1w2
(l — le)(l — Uwz) '

d 0
X1 + Xo— | Wa(X1, X2, U) =
90X 0%

Proof. Directly applying Theorem 2.5.3 in the case= 2 produces

woe 291N (w1, U) — w1€ "0, (w2, U) du
wie U1 — e~ tw2 '

Io(w1, wo, U) = /

From (2.21) and (2.33) we hawel'; (wi, U) = wj, and thus

wlwze—uwz _ w1wze_uwl

Io(w1, wa, U) = / du

w1e~ YW1 — e Uw2

2 A—Uw 2 A—Uw
wre " — woe v "2
=/< L 2 _(wl+w2)> du

w16~ YWL — e U2

= Iog( YL 2 ) — U(wy + wy). (2.39)

wle—uwl _ wze—uwz
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Therefore (2.35) and (2.37) yield

w1 — W2
Wy (X1, X2, U) = log ( ) — U(wy + wy).
X1 — X2
Using (2.21), this gives
X 9 Wy (Xg, X2, U) = o2 X2 (2.40)
Yoxg 2T (wp—wp)(L—Uwy) X — %o '
X 9 Wy(Xg, X2, U) = s X
2oxg 22T T (wy —wn) (L —Uwy) Xo—Xg|
from which the result follows. O
Corollary 2.5.5.
W3(Xq, X2, X3, U) = Wt wywaws
T T A - uw) (- uwp) (- uws)”
Proof. This follows from Theorem 2.5.3 and (2.40). Details can be found in [36]. O

Of course, the previous two corollaries are seen to be in agreement vatrérh 2.3.9 and, in
general, the recursive formula of Theorem 2.5.3 can be applied (&s)aioocompute closed form
expressions fod,(x, u) for anym > 2. However, it is not known how to obtain Theorem 2.3.9
through this method. In fact, it is not even clear from the recurrencethieaseriesv(x, u) is
rational inwy, ..., wy. This last point, at least, is cleared up by the following simplification of
Theorem 2.5.3 in the case > 4.

Theorem 2.5.6. Fix m > 4. With the same notation as in Theorem 2.5.3, we have

Fm(w,u):Z Z /aiFIVI(Wy,U)'air|x|(WA,u)du+ Z /(wjairm—l(Wj,U) du.

i=1 {y,\)eP; 1<i,j<m 1—uwp)(wi —wj)
lyl.IA|=3 i#]

Proof. Supposqy, A} € P; with |[y| = 2. Theny = {i, j} andA = [m]\{]j} for somei # j. We
therefore have

Wi Xj
(wi —wp)@ —uwi) X =X’

0
X —W), (X, U) =
|8Xi |V|( v )

0 a _
Xi —\D|A‘(Xk, U) =X _lljm—l(xj ) u)’
Xi X

where the first equation comes from (2.40). Upon substituting thesessipne in the differential
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Figure 2.12: A properly labelled map and its core.

equation of Corollary 2.5.2, all terms with denominatpr— x; cancel. Integrating the resulting
eqguation with respect to completes the proof. O

Together with Corollary 2.5.5, this theorem demonstratesdhsdik, u) is a rational function of
wi, ..., wn. However, the combinatorial rationale for this dependence on the tries s®unclear,
since the combinatorics of Theorem 2.5.1 is lost in the algebraic contortieastagieduce The-
orem 2.5.6. We now abandon this algebraic approach and return to thénedonics of properly
labelled maps.

2.6 Smooth Maps and Pruning Trees

In §2.4.8, we found thgtruning treeswas a key step toward the enumeration of one-face maps on
the torus. In this section we consider the extension of this method to arbiictorikations.

2.6.1 Cores and Branches

A leaf of a map is a vertex of degree one, and a magni®oth if it has no leaves. lteratively
removing leaves (and their incident edges) from a map clearly results in@tlsmap of the same
genus. Moreover, if the original map is not a plane tige pne-face planar map) then the smooth
map obtained in this way is unique. We call the map resulting from the reductiofi tife core of
., and denote it byZ°. It inherits labels from# in the obvious way. See Figure 2.12.

There is a natural correspondence between the faces of a map aadtlitsscore, since faces
are not destroyed by the removal of leavesF Ifs a face of.# and F¢ is the corresponding face
of .Z°, then the boundary walk df¢ is obtained from that o by removing all occurrences of
vertices and edges not in the core. The rotator of a vertex.#° is therefore obtained from its
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o

Map .# Core #°¢ BranchT

Figure 2.13: A map, its core, and one of its branches.

Figure 2.14: A properly labelled map and its branches.

rotator in.# by deleting edges not inZ°. It follows thatv is at a descent of € if and only if it is
at a descent o, as can be verified in Figure 2.12.

Let .7 be any map that is not a plane tree, anctlet {u, v} be an edge aof# such thaw lies
in .#° butu does not. Then detachirgfrom v results in two maps; one of these containsnd
the other is a vertex-rooted plane tfeavhose root is a leaf, incident only with edgeThe root of
T may be regarded as “missing” so that this decomposition preserves veviieesll T abranch
of face F, and edgee the stem of this branch. Vertex is known as théase vertexof T, and its
base corneris the corner ofF¢ at whiche was attached. See Figure 2.13 for an illustration. The
base corner of in F¢is indicated with an arrow in the diagram.

If the vertices of.# are labelled, then the non-root vertices of its branches are also naturally
labelled, while their roots are not. For example, Figure 2.14 displays thehmarof properly
labelled map, grouped by the face to which they belong.

The next two results are clear from the definitions above and the incgesmator condition.
The first of these lemmas makes the pruning of trees a plausible method éonplesing generic
maps, and the second allows descent structure to be preserved inrfrgprocess.

Lemma 2.6.1. Two maps are isomorphic if and only if their cores are isomorphic and thedhes
based at corresponding vertices coincide. O



2.6 Smooth Maps and Pruning Trees 61

Figure 2.15:; A two-face map on the torus.

Lemma 2.6.2. Let F be a face of the map?, and let T be a branch of F. Then every vertex of T
is at a descent of F. O

2.6.2 Normally Indexed Boundary Walks

Let .# be a vertex-labelled map, and [Etbe a face of# of degreek + 1. Then there ark + 1
distinct vertex-edge pair&, ) occurring along the boundary wall of F. If we fix one such
pair, (vo, &), then the symbols; andeg, for 1 < i < k, are well-defined by the assertion that
W = ((vo, &), ..., (v, &))°. We therefore say thal/ can beindexedin k + 1 distinct ways by
the symbolsy; ande . We would like to distinguish one of theget 1 possibilities as a canonical
indexing scheme fow. Phrased differently, we wish to determine a canonical “starting point” for
boundary walks.

Definition 2.6.3. Let W = ((vo, &), ..., (v, &))° be a boundary walk in a vertex-labelled map.
For0 < i < k, define the list L= (&, €1, ..., 86k Vi, Vi1, ..., Vipk) € Z*t2. We say W
is normally indexed by the symbolsvo, ..., v} and{ey, ..., &} if Lo is minimal, under standard
lexicographic order, amongst the lisfko, ..., Lk} .

The fact that the vertex-edge pairs e) of a boundary walk are distinct implies that any such
walk of lengthk + 1 admits a unique normal indexing o, ..., v} and{ey, ..., &}. Therefore
asserting that(vo, &), .. ., (vk, &))° is a normally indexed boundary walk unambiguously defines
the symbola; ande.

Example 2.6.4. The map in Figure 2.15 has two fac&ésandG, of degrees 11 and 3, respectively.
The boundary walK(vo, €), ..., (v10, €10))° Of F is normally indexed when

((vo, €9), - . ., (V10, €10)
=((a 1), (b, 2), @ 3),(c6),(d,4), (b 1), @ 2), (b4, (d>5),E€7),(C?3).
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Figure 2.16: The proof of Lemma 2.6.5, with= (2,7, 1, 3,6, 5, 7, 3)° ande = 4.

Similarly, the boundary walk(uo, fo), (U1, f1), (Uz, f2))° of G is normally indexed precisely when
(U, fo), (ug, f), (Uz, f2)) = ((d, 5), (c, 6), (&, 7)). 0

The definition we have given for normal indexing may seem somewhatunahaln particular,
it would be far simpler to say thatvo, &), ..., (v, &))° is normally indexed wherivg, &) is
minimal amongst all vertex-edge pairs, €). Indeed, this alternative definition would serve our
immediate purposes very well. The rationale supporting Definition 2.6.3 will beiled later,
in §2.8.1, where we prove that it usually makes vertex labels irrelevant idgtermination of
normal indexing. Thus Definition 2.6.3 extends naturally to all maps, with or withertex labels.

2.6.3 The Index of a Branch

We begin this section with a lemma concerning cyclic sequences. Its purpgsaanhe clear
initially, but we shall see shortly that it plays a centi@erin everything to follow.

Lemma 2.6.5.Let L = (ep, ..., &)° be a cyclic list of real numbers with d descents. IEeR
is not in the list L, then there are exactly d values of i Witk i < k such that(g_;, e, g)° is
nondecreasing.

Proof. Let P be the polygonal path in the plane connecting the pgitsy), .. ., (K, &), (k+1, &),
inthat order. Let be the -th step ofP. We calls anup stepf ¢ > g _; and adown stemtherwise.
Thus down steps o correspond with descents bf For example, Figure 2.16 shows the p&h
corresponding to the lidt = (2,7,1, 3, 6,5, 7, 3)°.

Note that(g _1, €, )° is nondecreasing if and only if either_;, <e < g,0re>g_1 > g, or
€_1 > g > e. Plainly, one of these conditions holds if and only if either §A)s an up step which
the liney = e crosses, or (B% is a down step which this line misses. Since the origin and terminus
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Figure 2.17: (A) The map/” and (B) its core 4 ©.

of P have the samg-coordinate, the numbers of up steps and down steps crossee-lgmust be
equal. Thus the number of indice$or which (A) or (B) is satisfied is equal 1, the total number

of down steps ofP, and this completes the proof. See Figure 2.16 for an illustration. Thedlashe
line ise = 4, and steps for whicte _1, e, g)° is nhondecreasing have been thickened. O

Let .# be a properly labelled map. Lé&t and F¢ be corresponding faces o# and .,
and let((vo, &), .. ., (vk, &))° be the normally indexed boundary walk Bf. If T is a branch of
F with steme and base vertex, then the base corner df is (e,_1, v, &) for a uniqueb with
0 < b < k. Hence(e,_1, €, &)° is increasing, as it is a subsequence of the rotatar iof .7 .
However, Lemma 2.6.5 implies th@g;_1, €, ;)° is increasing for exactlg values ofj in the range
0 < j <k, whered is the number of descents Bf. Let these values of be j; < --- < jg. Then
theindex of branchT is the unique value df € {1, ..., d} such thatj = b.

Example 2.6.6. Consider the properly labelled mag” and its core 4 ¢ drawn in Figure 2.17. For
s=1,2, 3, letFs andF¢, respectively, be the faces.of and. 4 © with labels. It will be convenient
here to identify the branches of” by their stems; we writ@, for the branch with stera = 5.

To compute the indices of the various branchBs Bi1, B, Bg, By} of Fy, first note that the

normally indexed boundary walk &} is
((vo, &), - - -, (vs, €))" = ((3,3), (11, 4), (8,6), (10,9), (14, 14), (16, 15), (4,7), (14,9), (10,12))°.

ThusF; hasd = 2 descents, namebg > e; andeg > .

Consider the branch = Bs of F,. The base corner daf is (4, 8, 6) = (e, vy, &), henceb = 2.
Thed = 2 values ofj with 0 < j < 8 such thate;_4, 5, €j)° is increasing arg; = 2 andj, = 6.
Sinceb = 2 = j;, we have = 1. Thus branctBs has index 1.
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| Face | Branches | Indices |
1 Bs, Bi1, By, Bg, Big | 1,1,2,2,2
2 Bi3, Big, Bi1 1,1, 2

Table 2.1: The indices of the branches ¢f.

Now consider brancih = Bg of F;. The base corner of this branch(ig 14, 9) = (&5, v7, €7),
so thatb = 7. Thed = 2 values ofj with 0 < j < 8 such thate;_1, 8, €j)° is increasing are now
j1=3andj, = 7. Sinceb = 7 = j,, the index ofBg isi = 2.

The branches of, are{Bi3, Big, B}, and the normally indexed boundary walkFef is

((vo, &), - .., (vs, €3))" = ((11, 3), (3, 12), (10, 6), (8, 4))°.

ThusF; hasd = 3 descents, namelyy > &, &, > €3, ande; > &. The base corner of branch
T = B;is (12 10,6) = (e, v2, &), Sob = 2. Thed = 3 values ofj with 0 < j < 3 for which
(gj_1, 1, €j)° isincreasing arg; = 0, jo = 2, andjz = 3. Sinceb = 2 = j,, B; has index 2.

Computing the indices of the remaining branches6fin a like manner leads to the data listed
in Table 2.1. O

2.6.4 Pruning Trees

Consider again the map” drawn in Figure 2.17 and analyzed in Example 2.6.6.(Rgt0,, 63) =
(2, 3, 2) be the descent class of °. Fors = 1, 2, 3, and for each with 1 < i < 6, let B} be the
set of all branches of faceof .4 that are of index. From each of these seff, construct a new
rooted tre€T;® by identifying the roots of the various branches it contains. Finally, gtbege trees

into the ordered forests
Fr = (T T, Fo = (T4, TA T, and  F3= (T2, T).

In this way, .4 decomposes into the smooth mags® and the forest§,, ¥, and F; depicted in
Figure 2.18. Notice that these forests provide a complete encoding of trenation in Table 2.1.
We could therefore reverse this construction and fully reco¥efrom the data _4¢, F1, F», F3).
The process outlined above effectively prunes trees from the pyoladelled map.4”, and
does so in a reversible manner. The next theorem formally specifies tloisgsrfor arbitrary maps.
We shall henceforth refer to the bijection described by this theorem asethpruning bijection.
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Figure 2.18: The smooth map and forests obtained from the.riagf Figure 2.17A.

Theorem 2.6.7(Tree Pruning Bijection)Let g > 0 and m > 1, with (g, m) # (0, 1), and let

a = (ay, ..., an) be any m-part composition. Then there is a bijection between properly ldbelle
genus g maps of descent clasand tuples®, ., F1, ..., Fm) with the following properties:
(@) 6 = (64, ...,6m) is acomposition witlh < ;.

(b) . is a smooth, vertex- and face-labelled genus g map of descentclass

(c) Fsis an ordered forest ofs rooted trees with labelled non-root vertices and edges.
(d) The descent set of face s.#ftogether with the vertex labels 8t partition Ds(«).

(e) The edge labels of’ together with those dfy, ..., I, partition {1, 2, ..., rg(a)}.

Proof. Let.# be a properly labelled gengsmap of descent clags = («q, ..., om), and suppose
its core.#° has descent clags= (01,...,6m). Then, forl<s <mand 1<i < 6, assemble
all branches of face of ./ that are of index into a rooted tred;® by identifying their roots as
a common new root vertex. L& = (T3, ..., T(f;) be the ordered forest consisting of the trees
obtained from facs. We claim the tuplg6, .Z°, ¥, ..., F) satisfies properties (a) through (e).
In fact, all conditions but (d) are immediate from the construction, and (d)d#rect result of
Lemma 2.6.2.

Lemma 2.6.1 implies that the correspondenger— (9, .#°, F4, ..., Fy) described above is
one-one. We now prove it is also surjective, onto the set of all tuples’, F1, . .., ) satisfying
(a) through (e). To this end, lé¢, ., F1, ..., Fm) be such a tuple, whet®s = (T7, ..., Tg). Fix
se{l,...,mjandi €({1,...,6}. Letebe an edge of;® incident with the root. Detachingfrom
the root leaves another rooted trBg whose root is incident only witle. Now let F be the face
of .7 labelleds, so thatF hasfs descents, and l€tvg, &), . .., (vk, &))° be its normally indexed
boundary walk. Then Lemma 2.6.5 implies tliat_1, e, €;)° is increasing for exactlys values of
jwithO < j <k,sayji < --- < Js. Attach the treeB. to . atvj;, doing so in the unique manner
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Figure 2.19: Tree pruning bijection.

that leaves the rotator of; increasing. Repeat this process forsail ande to obtain a vertex- and
face-labelled map#. Clearly.#¢ = ., and the fact that# is of descent clasg follows from
conditions (a) through (e). O

Example 2.6.8. Figure 2.19 illustrates the tree pruning bijection. The two-face planar.faip
the upper panel corresponds with the tu@ 2), .7, ¥1, F»), whose components are shown in the
lower panel. O

The tree pruning bijection suggests that understanding the nature ativefactorizations
is tantamount to understanding the structure of smooth properly labelled napight of this
revelation we make the following definitions.

Definition 2.6.9. Let §(0) be the number of smooth, properly labelled, genus g maps of descent
classg. For m > 1 we define the generating series for the numi§&s0) : £(6) = m} by

2 ure®
rPzuw=>Y Y SO);——:.
e et 0! rqy(0)!

£2(0)=m

wherez = (zy, ..., zm). When considering the genus 0 series, we often Wijfe place ofFr(,?).
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The apparent discrepancy between this definitiofipand the notation used in 82.5 is resolved
by comparing (2.36) with the next theorem, which makes precise the cormeetiween the series
'Y andw . This result finally identifies the combinatorial significance of the depereleh,?
on the tree series. We remind the reader that the sympil the statement of theorem represents
the tree series = w(X, U). (See Definition 2.3.8).

Theorem 2.6.10.For any g> 0 and m> 1 with (g, m) # (0, 1) we have
w9 (x, u) =9 (w, u,

wherex = (Xg, ..., Xm) andw = (wyq, ..., wm).

Proof. Let @ be anym-part composition. Then the number of tupl€s.s, F1, ..., Fn) satisfying
properties (a) through (e) of the Theorem 2.6.7 is equal (by the thedoely)(«). We now count
these objects directly.

The genusg map . is of descent clasg@. There are, by definition, exactlg, (@) properly
labelled maps of this type. The forekt consists ob; rooted trees, with labelled non-root vertices
and edges. The series counting such trees iguexp, whereu marks edges ang marks labelled
vertices. Thus the series counting fore&tss exp(uw; )% . Distributing labels properly betwee#f
and the forest§y, ..., ¥, (i.e. according to (d) and (e) of Theorem 2.6.7) amounts to multiplying
the generating series of these structures. Doing so, and summing overaneger, gives

o xfm fa®

X“ug “ 9 m Uwiq\v1 Uwm)om
) Myl )Jr()l_ZZSﬁ() ”'H_m!rg(e)!'(e ) (gm)

n>1 akn " k=l 6kk 01!
()=m £(@)=m

The result follows at once upon simplifying this expression with the aid 06(2.1 O

Perhaps surprisingly, Theorem 2.6.10 and the identity (2.22) combineotihol\Y (z, u) is
rational inz andu for all m > 3. For example, in genus 0 we immediately deduce the following
theorem.

Theorem 2.6.11.For any m> 2, we have

m

5 m-3 q

Z z
iz, u) = um2 . S
m(Z W) (Zl—uziazi El—uzi

i=1
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Figure 2.20: The 2-face planar map associated iy, 2, 7, 3, 8, 6, 4)°.

Through the tree pruning bijection, a combinatorial proof of this resuliidvprovide a combi-
natorial proof of Theorem 2.3.9, which is equivalent to Hurwitz's formutathe next section we
describe some progress that has been made along these lines.

2.7 Combinatorial Constructions for Smooth Maps

We have seen that the combinatorics of transitive factorizations is esseatjailyalent to that of
smooth properly labelled maps. In this section we investigate these maps in detasing on the
planar case. In particular, we present bijections that illuminate the struaftareooth planar maps
with two and three faces, and thereby offer combinatorial proofs obrfme 2.6.11 fom = 2, 3.
We also describe a general differential decomposition for maps with atfteagaces. This yields
another proof of Theorem 2.5.6, and explains the serendipitous aigebrglifications exploited
in the earlier, algebraic derivation of that result.

The comments made in §2.4.11 concerning interpretatiodsdix, u) also apply ta"iY (z, u).
That is, the latter series can largely be regarded as counting smootialfetied maps with respect
to labelled edges and descent class. We take this perspective throtigh@ection.

2.7.1 Two-Face Smooth Planar Maps

Recall that acircular permutation of [n] is a cyclic ordering of the elements ofi]f That is,
o = (a,...,an_1)°Iis a circular permutation of] if {ag, a1,...,an_1} = {1, 2, ..., n}. The pair
(a_1, 8) of consecutive elements ofis called arise if a;_1 < &, and afall if a_1 > g;.

A smooth planar map with two faces is simply a cycle, so smooth face-labelled preps
of descent clase = (a, b) correspond with circular permutations haviagises and falls. For
instance, the map corresponding to the circular permutatien(1, 5, 2, 7, 3, 8, 6, 4)° is drawn in
Figure 2.20. Note that has 3 rises and 5 falls, and the map is of descent ¢Ba%8.
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We require the following well-known result. The proof given here is Hase an inclusion-

exclusion argument.

Lemma 2.7.1. Let a, b > 1 and set n= a + b. Then there are

n![r2f°] log (ﬁ)

circular permutations of1, ..., n} having exactly a rises and b falls.

Proof. Leto = (ag, ..., ay_1)° be a circular permutation ofi. Letl, = {i : & < a1} index

the rises obr, and letS, be the set of circular sequences that can be obtained by choosinget sub
I c |, and, for alli € I, replacing the paig;, & 1 with the patterrg;, *, & ,1. For example, if

o =(1,3,2,5,4)° then

S ={(1,3,2,5,4°,(1,%,3,2,5,4)°,(1,%,3,2,%,54)°,(1,3,2,%,5,4)°}.

Note that each element &, corresponds with a unique cyclic list of maximal contiguous pat-
terns of the formg; = - - - x a4, whereg; < --- < 4. For example, it = (1, 3,4, 2,5, 6)° then

(1, %,3,%,4,2 % 5,6)° € 8§, corresponds tothe ligfh « 3x 4, 2% 5, 6)°. Let F (X, u) be the gener-
ating series for such lists, withmarking symbols ofif] (exponentially) andi marking occurrences
of % (ordinarily). The generating series, with respect to these markerpafternsa; - - - % a;
satisfyinga; < -~ < @4jiS) o1 uk—1xk/k! = ("% — 1)/u. Since logl — z)~! is the exponential
generating series for cycles, it follows that

ux _ 1 -1
F(x,u):log(l—eu ) .

Let G(x,r) be the generating series for circular permutationsion 2 symbols, wherex marks

these symbols (exponentially) andmarks rises between them (ordinarily). Then the above re-
placement argument givés(x, r + 1) = F(x, r) — X, where the subtraction eliminates the single

A circular permutation om symbols witha rises had = n — a falls. The number of such permu-
tations is thereforga + b)! [r2 f] G(f, rf ~1). The result follows from (2.41). O
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Proposition 2.7.2.

Z, — 2
F(O)Z,Z,U =lo _— .
2 (1 2 ) g ZleLJZZ—ZzeUZl

Proof. Lemma 2.7.1 gives
Pz, 2o, U) = Z (a+b)![r2f"] log =t za‘szer
2 e A~ ' ref — fe 2@+b!’
and the result follows immediately upon simplification. 0

Corollary 2.7.3.

w, — w
‘I"éo)(xl, X2, U) = log it .
w2 — et

Proof. This follows immediately from Proposition 2.7.2, Theorem 2.6.10 and (2.16). O

With some routine algebra, thm = 2 case of Theorem 2.6.11 can be deduced from these
results. In fact, Corollary 2.7.3 gives precisely the identity (2.39) thatmwasipulated to prove
Corollary 2.5.4, which is in turn equivalent to the Theorem 2.6.11 when 2.

This derivation of the serieséo) (X1, X2, U) is certainly more explanative than that givenin 82.5.2,
but it still is not bijective. Moreover, it is not at all clear how this method barextended to count
maps with more than two faces. We shall therefore now make a fresh attequvatg Theo-
rem 2.6.11, first in the case = 2, and then more generally.

2.7.2 Attaching Edges to a Map

The following lemma, which is a slight modification of Lemma 2.6.5, lies at the heaatl diie
remaining results of this chapter. Its specifiterwill be made clear below.

Lemma2.7.4.Let L = (e, ..., &)° be a cyclic list of real numbers with d descents. Let e be
any number not in the list L, and let i< --- < iq be the values of i witld < i < k such that
(-1, € 6)° is nondecreasing. Then, forady<t < s < d, the cyclic list(g,, €,+1, ..., &,-1, ©)°

has exactly s- t descents.

Proof. Let f = e+ 8, where O< 6§ < min; |e — &[. Then clearly(e;_1, f, €j)° is nondecreasing if
and only if(ej_1, €, €j)° is nondecreasing. In particular, there are exagtlyt — 1 indicesj with
it < ] < issuch that(e;_,, f, g)° is nondecreasing. Also note tha f, ,)° is nondecreasing,
while (e,_1, f,€)° is not. Let(fo,..., fi+i))° = (&, 6,41....,6,1,6)°. Then(fi_q, f, fi)°is
nondecreasing for exactlg—t —1)+1 = s—t values ofi with 0 <i < m. Lemma 2.6.5 therefore
implies that( fo, ..., fi+i;)° hass — t descents, as required. O
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Figure 2.21: Attaching an edge to a map.

Let F be a face of the map7 and let((vg, &), ..., (v, &))° be the boundary walk of. If
e e Rand(e_g, € §)° is nondecreasing, then we say corgr 1, vi, §) admits labele. We write
Ar (e) for the set of all corners df which admite. Graphically, the conditiofe _1, vi, §) € Ar ()
means that if an edge labelledwere attached te; in the corner(e _1, vj, ), then increasing
rotators would be maintained.

Letc = (e_1, vi, &) andc’ = (gj_1, vj, €;) be distinct corners of . Then bothc andc’ belong
to A (e) if and only if a new map can be produced by adding an ddge;} with labele between
these corners. Suppose this is the case, and'léle the map resulting from the addition{of, v;}.
Then.4” has the same genus.a& but one extra face. Indeefl;, vj} separate§ into two faces of
. For our purposes, it will be convenient to assign labels to these fadesherefore introduce
the (admittedly convoluted) notatio® @ (c, ¢')g, to denote the map obtained by assigning labels
s andt, respectively, to the faces of” containing cornerge, vi, §) and(e, vj, €)).

Example 2.7.5. Consider the map# drawn in Figure 2.21A, with fac& as indicated. Then
Ar (@) = {co, €1, Cy, C3, C4}, Where

c=3,26), c1=(6,u6), c=(27v5, c3=(0BXx7_8), c=(@1Yy,10). (2.42)

Shaded half-edges extending from these corners inteave been drawn to emphasize how an
edge with label 4 could be attached.#s. Figure 2.21B shows the four-face mag @ (c, cz)‘l"2
resulting from the attachment of the edge v} with label 4 between cornerg andc,. Note the
face-labelling of this new map. O

Observe that the descentsfare split amongst facesandt of .#Z @ (c, ¢')g,. Thatis, if F
hasd descents, then facesandt haveds andd; descents, respectively, wheid, d;) = d. In fact,
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Figure 2.22: An illustration of Lemma 2.7.6.

if label e and cornerc € A (e) are fixed, then the next lemma shows that with every composition
(ds, di) = d there correspondsumiquecornerc’ € Ar (e) such that faces andt of .#Z & (c, ¢)¢,
haveds andd; descents, respectively. This enables us to add edges to a map while maintainin

complete control of its descent class.

Lemma 2.7.6. Let .# be a map and let F be a face of with d descents and boundary walk
((vg, &), ..., (v, &))°. Let ee R be distinct from g, ..., e&. Then|Ag(e)| = d. Moreover, if
Ar(e) = {Co, ..., Cq-1}, Where ¢ = (&,-1,vi;,&;) and0=1ip < --- < ig_1 <K, then faces s and
t of . # @ (o, Cj)S; have j and d— j descents, respectively, far< j <d — 1.

Proof. That |[Ar(e)| = d follows immediately from the definition afl(e) and Lemma 2.6.5.
SupposeAr(e) = {Co, ..., Ca—1}, Wherec; = (-1, vi;,&;) and O=ip < --- <lig1 <k If1 <
j =d—1,thenfaces of .# @ (Co, ¢j)s, has boundary walk(viy, &), .. ., (vi;~1, &;-1), (vi;, €))°.
Lemma 2.7.4 shows that this face hiadescents. Since a vertex is at a descent of faaes of
A & (Co, Cj)g, if and only if it is at a descent of fade of ./, facet hasd — j descents. O

Example 2.7.7. Reconsider the map# with face F drawn in Figure 2.21A. In Example 2.7.5 we
saw that|Ar(4)| = 5, and plainlyF has 5 descents. Define cornegs. .., ¢, of F as in (2.42).
Then panels A through D of Figure 2.22 illustrate the mags® (Co, Cl)iz, M D (Cg, Cz)iz,

M B (Co, c3)‘1"2 and.Z & (co, 04)‘11',21 respectively. In each of these maps, face 1 has been highlighted
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Figure 2.23: Three-face planar maps with a tail.

and its descents have been marked with crosses. Note that faces 1fanfl @ @co, c;)7 , have]
and 5— j descents, respectively, ford j < 4. O

2.7.3 Two-Face Smooth Planar Maps Revisited

We are now ready to make another attempt at counting two-face smooth phapar this time
through the use of Lemma 2.7.6. We begin by introducing some convenient tdogyn

Definition 2.7.8. An ordered path is a planar map with one face and exactly two leaves, one
coloured white and the other grey. The leaves are callecbiias of the path.

Definition 2.7.9. A map.# is said to have dail in face F if either (1).# is smooth and a vertex
at a descent of F has been coloured grey, or.¢Z)contains only one branch, which is an ordered
path in face F whose white end is the base vertex of the branch.

A diagram reveals the reason for our use of the teiin For example, both maps of Figure 2.23
have a tail in the face markde. The following lemma shows that it is easy to derive the generating
series for maps with a tail from the series for smooth maps.

Lemma 2.7.10.Let# = n with £() = m. Then the number of genus g, face-labelled maps of
descent clasg with a tail in face i is

ure@ Z 9
[z"—} L. —T9(zu).
rg@']11—-uz 0z

Proof. A map with a tail in face is formed by selecting a smooth map and either distinguishing a
descent of facg, or attaching a branch in facei, whereT is a path. A branch can be attached at
a vertex if and only if the increasing rotator condition is maintained in the psoddaus, if a face
hasd descents, then Lemma 2.6.5 implies that a branch can be attached in that éaeettd
possible base vertices.
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The seriegzd/0z )I‘r(,?) (z, u) counts smooth maps with one descent of fadistinguished, the
seriesuz /(1 — uz) counts pathd to be attached as a branch in faceand(zia/azi)l“ﬁ,?) (z,u)
counts maps with a distinguished base vertex for attachment dhus the series counting maps
with a tail in facei is

ad uz d
49z m ( )+1—uz '3z m (2 U
The result follows upon simplification. O

Attaching a single edge to an ordered path clearly produces a two-faceMuapover, if the
added edge connects one end of the path to some interior vertex, then ffaeéwvoap so produced
has a tail. In the next theorem, we show how thissaaonstruction leads to a bijection between
ordered paths and maps with tails.

Theorem 2.7.11.Fix 6 = (61, 62) = n. There is a bijection between face-labelled planar maps of
descent clasg with a tail, and edge-labelled paifg., &2), wherex is an edge and?” is an ordered
path containing n vertices.

Proof. Let My be the set of face-labelled planar maps that have a tail and are of telss=A, and
let P, be the set of all pairér, &) of the form described in the theorem. We defitg P, —> M,
by constructing2, (1., £2) as follows.

Let F be the sole face of?, and let((vo, €p), . . ., (vk, &))° be its boundary walk, wheng and
um are the white and grey ends &, respectively. For & i <k, letg = (e _1, vj, ). This setup
is illustrated below.

€y “m-1

c
1
co@ N WG BV 7 Cm-1 Q”
77777777 —————Q
ek L% ek_1 _/ _/ em m
C C C
k k-1 m+1

(We remark that we could be more definitive here, as we clearly tieyen — 1 andk = 2n — 3.
However, our more general notation has been chosen with later abstsaictimind, and does not
muddy the argument in any case.)

Plainly, F hasn descents andy € Ar(1). Therefore Lemma 2.7.6 guarantees a unique corner
¢ € Ar(A), with 0 < r < Kk, such that the two-face mag? & (co, Cr)iz is of descent class
(61, n — 61) = (61, 62). Let Q2y(1, &) be this new map. Stripg of its colour and, ifr # m, colour
vertexv; white. The construction is illustrated in Figure 2.24r. B m, thenvy, is the only vertex of
Qo (A, &) of degree 1, and it is the grey end of a path extending fepntf r = m, then2y (A, &)
is smooth and, is grey. In either cas&y(x, 22) € M.
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Figure 2.24: The maps produced yj, ¢,).

We claim thatQ, : P, —> Mj is a bijection. It is clearly one-one, since any given map—=
Qy(1, &) is of one of the three types shown on the right side of Figure 2.24, andtitbhsdge
A and vertexvy of .# can be uniquely identified, as follows. First kgtbe the grey vertex if#
is smooth, and the white vertex otherwise. Ther= {vg, v;} is the unique edge such that the
vertex-edge paiv;, A) appears in the boundary walk of face L af°.

To see thaf2, is onto, observe that every? € My belongs to exactly one of the three classes
of maps on the right-hand side of Figure 2.24. Thus edged verticesy, v, of .Z are uniquely
determined, as above. LeéP be the ordered path with white end that is obtained by deleting
edgei from .#, and letF be the sole face of?. Then.Z = & & (cy, Cr)iz, whereu is at
cornercy € Ag(A) andu, is at cornerc, € Ag()). Since.# € My is of descent clasg, so also is
P & (o, cr)iz. But, by definition,Q2s (A, &) = & @ (o, c/)iz, wherec’ € Ag(A) is theunique
corner such that this map is of descent clas# follows thatc’ = ¢, and thus#Z = Q,(x, £2).
Therefore2, is surjective, and the proof is complete. O

Example 2.7.12.Let & be the ordered path shown in Panel A of Figure 2.25, and {et5. The
single faceF of &2 has boundary walk(vo, &), ..., (v13, €13))°, Where

(€, €1,...,€13) =(8,4,3,6,1,7,2,2,7,1,6,3,4,8).
Letci = (g_1,vi,6) for0 <i < 13. ThenAr(5) = {c, ..., G,}, where
(ig,...,i7) =(0,2,3,5,7,8, 10, 13).

Except forc;,, these corners are in indicated with small crosses in Panel B. By Lemmath€.6,
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Y0 O s e "7 \

Figure 2.25:; Constructing two-face planar maps from ordered paths.

mapZ @ (Co, G, )iz has descent clag$, 8— j) for1 < j < 7. Thus for the bijectiof2y determined
by 6 = (j,8— j) we haveQy(h, 2) = 2 & (Co, G )} ,, Wherer =1ij.

For example, ifo = (3,5) thenQy(x, &) is obtained by adding edg@yo, vi,} = {vo, vs}
with label 5 to &2 between cornersy andcs, as illustrated in Panel C. B = (6, 2), then edge
{vo, vig} = {vo, v10} is instead added t&” between cornersy andc,o to produce the map of Panel
D. Crosses have been drawn at the descents of these maps, showthgyttze, indeed, of descent
classeg3, 5) and(6, 2), respectively.

To reverse the construction illustrated in Panel Cyplet the white vertex of the final mag
shown there, and observe that the vertex-edge(pab) appears in the boundary walk of face 1 of
the core#°. This identifies edge 5 as the additional edge. Transfer the white colafring the
opposite end of edge 5. Then removal of edge 5 results in the initialgath O

Together with Lemma 2.7.10, the previous theorem provides another comizhatoof of
Theorem 2.6.11 in the case= 2. This is the content of the following corollary.

Corollary 2.7.13.

z 9 9 uz12,
— — | T2(z1, 25, U) = . 2.43
(1—uzl 821+ 1-uz 822> 2(21, 22, W) 1—uz)(1—uz) ( )
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Proof. Let G(z;, 2, u) be the series on the left-hand side of (2.43). By Lemma 2.%G1Oounts
two-face, face-labelled planar maps with a tail. Theorem 2.7.11 givesgameserving bijection
between maps of this type of any fixed descent c{dg¥,) &= n, and edge-labelled pai(&, &)
such thats is an edge and” is an ordered path on vertices. Thuss(z;, z,,u) = F(z,u) o
At (z; z1, 22), whereF(z, u) is the series counting pailg, &) with respect to vertices af?,
marked byz, and labelled edges, marked byClearlyF(z,u) = u-z/(1 —u2), so Lemma 1.3.3
gives

uzy uz
G(z1,22,u) = 2 -7
—2 1—-uzy 1-uz

The result follows upon simplification. O

Finally, we mention that Theorem 2.7.11 could be stated in a more simple form #hnandtwe
have chosen here. In particular, the theorem obviously gives a bijeatwebn permutations on
n symbols and planar maps of fixed descent cl@gsd,) = n with a tail. Thus there are! such
maps, and Corollary 2.7.13 is obtained immediately by noting that the coeffioﬁeh‘lzﬁizgz/n!
in the series on the right-hand side of (2.43) is alkoOur presentation has been chosen with the
generalizations of Chapter 3 in mind.

2.7.4 Three-Face Smooth Planar Maps

Theorem 2.7.14, below, describes a bijection between ordered patlisraaeface smooth planar
maps of fixed descent class. The structure of this bijection is very similar taitren in Theo-

rem 2.7.11, but its many cases make it more complicated.

Theorem 2.7.14.Fix 6 = (61,02,603) = n. There is a bijection between smooth face-labelled
planar maps of descent clagdsand edge-labelled tuples., &2, y), wherea, y are distinct edges
and & is an ordered path containing n vertices.

Proof. Let M, be the set of smooth face-labelled planar maps of descentilassl letP, be the
set of all tuples(x, &, y) as described in the theorem. We defiag: P, — M,y through the
following construction. Proofs of claims made within the construction can biedafter the main
proof.

Given (A, &, y) € P,, let F be the single face of” and let((vg, &), ..., (v, &))° be its
boundary walk, wherey andvy, are the white and grey ends 68, respectively. Of coursd; has
ndescents. For& i <Kk, letc = (g_1, vi, §). The situation is illustrated below.
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B “Q
CO@ o W B W
o N ey N
C C
k k-1

“m-1

SEOk
oy md 2N
[N "

“m+1

Notice that we trivially haveg € A (1) andcy, € Ar(y). Now define

Ih={0<i<m-1:¢eAr(\)} and ¢ =

0

and

lb={m<i<k:cgeAr(y)} and ¢ =

0

if (ém—1, A, ¥)° is nondecreasin
vy Y 2.49)

otherwise

if (e, ¥, A)° is nondecreasin
(@ 7, 4) Y (245

otherwise

Then|ly] + €1 + |I2] + €2 = n — 1 (Claim 1). Since#, + 0, + 63 = n, we have only the following

two cases to consider.

Case 1:Supposél;| + €1 > 0;.

Sincecy € Ar (1), Lemma 2.7.6 ensures a uniqaee Ar (1) such that? @ (co. ¢); , is of
descentclas®;, n—61) = (61, 6,+63). Infact, we have < m(Claim 2) Let.4 = Z®(cy, Cr)iz.
The construction of/” from &2 in cases < mandr = mis illustrated below.

o r v r<m

Let G denote face 2 of#". ThenG has boundary walk(v, &), ..., (vk, &), (vo, A))° andd, + 63

descents. We now consider cases m andr = m separately.

If r < m, thency,, € Ag(y) and Lemma 2.7.6 ensures a unique Ag(y) such that 4 &
(Cm, c)‘z’,3 is of descent clas@,, 9, 63). Strip the colour fromvg andvy, and letQy (A, £, y) =

N @ (Cy, c>g,3. This construction is shown below.

A @
. /(Nw
LN

c

“m V,
— 0
)
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If r = m, thenc/, = (%, vm, &n) is a corner ofG. Moreover,c,, € Ag(y) (Claim 3)
Lemma 2.7.6 therefore gives a uniqoes Ag(y) such that/ & (c,, c)g,3 is of descent class
(01, 02, 63). Stripvg andvy, of their colour, and lef2y (A, &, y) = A @ (C;,,, c>g,3. The construc-
tion is illustrated below.

O%\Q (©) @ A
"0 — Yo Vi=Vm
N )

L‘"n:(l, v e ) @ Y

m m

Case 2:Supposély| + €1 < 0y and|ly| + €2 > 6.

Sincecy, € Ar(y), Lemma 2.7.6 guarantees a unigiec Ag(y) such that? @ (cp, c,)g’1
is of descent clasén — 65, 6,) = (61 + 63,6,). In fact, we havan < r < k (Claim 4) Let
N =P @ (Cm, &)% . The construction of#” from 2 is illustrated below.

m
O
O © —_— ) ) )
Y0 ‘\C/ Q Y0 ‘r\cg/o”n
r Y

Let G denote face 1 of#". ThenG has boundary walk(v;, &), ..., (Vm-1, €n-1), (Um, ¥))°

and 6, + 63 descents. Sincey € Ag(r), Lemma 2.7.6 ensures a uniqaes Ag(A) such that
N @ (Co, c)},3 is of descent clas®,, -, 63). In fact, eitherc = (y, v, &) or ¢ = ¢ for somes
withr < s < 2k (Claim 5) Strip vg andv, of their colours, and leR¢ (A, £, y) = A4 @ (Co, C)ig.
The creation of2, (A, &2, y) from .4 is shown below.

‘0

@ c=c
@ Vm —_— Y0 Vm
/ v v v
N AT TN
v A Y
@

O}
) v c=(7, \;r er) @

Analysis: Clearly Q4 (A, £, v), as constructed above, is an elemeriyiffor all (A, £, y) € Pp.
We claim that, : P, —> My is a bijection. The proof is best described with the aid of Figure 2.26,
which shows the ten disjoint classes of three-face smooth planar mapsuthiag produced by the
construction. In particular, maps belonging to classes A through H areettthrough case 1 of
the construction, while classes | and J correspond to case 2.

Let .# be a face-labelled map belonging to one of classes A through H. Then tieu|za
class of.# can be determined, and the diagrams of Figure 2.26 unambiguously identifyese
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A A
7o\, © | ey, ©
Case 1 v d v |y r v

©) ; A ©) U A @ Y
' | e, Se\ o\ / o
Ym | vo Vm |V v,
G
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w2 [\ S\ e e
Y
A @ v A
|

Figure 2.26: The maps produced Qyy, ¢,.6)-

vo, vm @nd edges, y of .Z. This is clear from the fact that such maps lack automorphisms, but the
identifications could be carried out practically, as follows. For a vartek.#, let L, be the cyclic
sequence of alternating face- and edge-labels encountered on wisk¢kur abouw. If .# has

two vertices of degree 3, sayandv, such that., = (1,a,2,b, 3,¢)°andL, = (1,d, 3,¢e, 2, f)°

for some edgea, b, ¢, d, e, f, then it belongs to one of classes C through F, and we have v,

y = b ={u, vy} andr = d = {v, vo}. Classes C through F are now distinguished by equalities
betweeru andvg, andv andvy,. For example, class C is characterized by the conditiogsvg and

v # vm, While class D has = vg andv # vm,. Similarly, if .#Z has a vertex of degree 4 such that
L,=(,a,3,b,2,c, 3, d)°, then.# is of class B, and we have= a = {v, vp}, y = ¢ = {v, vn}.

The argument above shows that the constructiaRah., &2, y) is reversible, hencgy is one-
one. To see tha®, is onto, first observe that every mag € M, belongs to one of the classes of
maps shown in Figure 2.26. The particular class/fis then uniquely determined as above, as are
verticesvg, vy, and edges., y. Let & be the ordered path obtained by removingndy from .#
and colouringug white andv, grey. Let((vo, &), . . ., (vk, &))° be the boundary walk of the single
faceF of £, and set; = (g_1,vi,g) for0 <i <k, sothatcy € Ag(A) andcy, € Ag(y). Now
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definely, €1, 1, ande; as in (2.44) and (2.45).

Suppose# is of class A through H. Lettg = .#\y, and letG be the face of4; created
by the amalgamation of faces 2 and 3.af upon removal ofy. If G is assigned label 2, then
A is of descent clas®,, 6, + 63), since.# < My. Moreover, face 1 of4; has boundary walk
((vo, &), - .., (Vr_1, &_1), (vr, A))° for somer with 1 < r < m, and we havety = Z @ (¢, cr)iz.
If r < mthen Lemma 2.7.6 implied1| > 6;, whereag = m implies|l,| > 6; — 1. However,
in the latter case, observe th@t,_1, A, ¥)° is increasing, since it is a subsequence of the rotator of
vm in .. Thereforeg|l;| 4+ €1 > 61 in either case. By the uniqueness guaranteed by Lemma 2.7.6,
A4 coincides with the intermediary mag” created in (case 1 of) the constructiorcnf(r, £, y).
Now setc = ¢y if r < m, andc = (A, vy, &) if r = m. Then.Z = 4 @ (c, ¢)} 5 for some
cornerc’ € Ag(y). But cornerc’ is unique (by Lemma 2.7.6) and” = .45, SO comparison with
the construction of2s (A, &2, y) reveals that# = Qy(1, &, y).

If ./ is of class | or J, then a similar argument provgs= Q,(1, &, y). (Here we find that
[I2] + €2 > 62, so case 2 of the construction is in effect.) ThRsis onto, and the main proof is
complete. Proofs of the supporting claims follow. O

Proof of Claim 1:Consider the two-face smooth planar m@mbtained fromZ? by first augmenting
the path with an edgévn, v} labelledy, and then attaching an edge, vo} labelledi. This is
illustrated below.

Vo Vi Y v
The two facesQ; andQ,, of 2 have boundary walks

((v09 a))’ L] (Um—l, em—l)’ (Um, 7)7 (U, )"))O and ((Um7 em)s L] (vk’ er()? (UOa }\')9 (U, )/))O»

respectively. Note thad g, (1) = {(X, vo, €), (Bm—1, Um, Y)}U{(E_1, vi, &) i € I1}if (ém_1, A, ¥)°
is nondecreasing, adlo, (1) = {(A, vo, &)} U{(6_1,vi, &) : i € |1} otherwise. ThusAq, (V)| =
1+ [11] + €1. Similarly, we get|Ag,(y)| = 1+ |l2| 4+ €2. But, by Lemma 2.7.6, face®; and
Q2 have|Aq,(A)| and|Aq,(y)| descents, respectively. Sineg hasn + 1 vertices, this gives
[Ag, (M) + |Ag,(¥) =N+ 1. Thus|li| + €1+ |l2] + €2 =n—1. O

Proof of Claim 2: Sincecy, € Ar()A), Lemma 2.7.6 implies? & (co, cm)i2 has descent class
(di, d2) = n, whered; = |11] 4+ 1. If r > m, thend; < 6; and we get the contradictighy| + €; <
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[11] +1 < 61. Thusr < m, as claimed. In fact, if = mthenj = 6; and thusd; < |I1]| + €1 <
[11] + 1 = 61. Therefore = mimpliese; = 1.

Proof of Claim 3:1In the proof of Claim 2 we showed that= m impliese; = 1. But this implies
(én_1, A, ¥)° is nondecreasing. We also know that,_1, v, €n)° is nondecreasing, and together
these conditions forcé., v, en)° to be nondecreasing. Henge vn, €n) € Ag(y). O

Proof of Claim 4: Sincecy € Afr(y), Lemma 2.7.6 implies” & (Cn, co)g1 has descent class
(dy, do) = n, whered, = |I,| + 1. Butif 0 < s < m, thend, < 6, and we get the contradiction
[Io5] + €2 < |l5] + 1 < 65. Thusm < s < k, as claimed. O

Proof of Claim 5:Clearlyc must be one ofen_1, vm, ¥), Or (¥, vr, &), Or (s_1, vs, &) for a unique
swithO < s < morr < s <k, asthese are all the corners®fiside froncy. If ¢ = (eén_1, vm, ¥),
thenc € Ag()) implies(en_1, A, )° is nondecreasing, so that = 1. Then since/” @ (co, c)i3
has descent clags, 6,, 63), Lemma 2.7.6 implie®, = |l1| + 1 = |l1] + €1, which contradicts
[11] + €1 < 6;1. Similarly, if c = (es_1, vs, &) With 0 < s < m, then|l,| > 6, again a contradiction.
Thereforec = (y, v, ) orc = (es_1, vs, &) for someswithr < s <Kk. ]

Example 2.7.15.Let &2 be the ordered path shown in Figure 2.27A, and\let 6,y = 2. The
single faceF of & has boundary walk(vg, &), ..., (v13, €13))°, wherevg andv; are the white and

grey ends of?, respectively, and
(ep,€1,...,€13 =(4,83,59,7,1,1,7,9,5,3,8,4).

Thusm = 7 andk = 13. Letci = (g_1,vi,6) for 0 <i < 13. ThenAg(A) = {G, ..., Ci,} and

Ae(y) = {Cjy, ..., Cj;}, where
(ig,...,i7) =(0,1,4,5,7,8,11,12) and (jo,...,j7;) = (0,2,5,7,8, 10,11, 13).

Thusl; = {1,4,5} andl, = {8,10, 11, 13}. Neither(en, A, y)° = (1, 6, 2)° nor (&, y, 1)° =
(4, 2, 6)° is nondecreasing, sq = ¢, = 0. Thereford|,| + ¢; = 3 and|l,| + ¢, = 4.

If 6 = (3,2, 3), then|l1|+¢1 > 6; and we follow Case 1 to constru@y (1, &2, y). The process
is illustrated in Figure 2.27B. First observe that ® (cy, Cr)ﬁ,2 is of descent clasg3, 5) only for
r = 5. Therefore/ = Z®(co, c5)‘f’2. Now notice that < m, and that ¥ @®(cm, c)g’3 is of descent
classd = (3, 2, 3) precisely whert is cornercy,g of A4". ThusQy (A, £, y) = A & (Cy, 010)5’3.

If 6 = (4,3, 1), then|l{| +¢; < 61 and|l;| + €2 > 0,. We therefore follow Case 2 to construct
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Figure 2.27: Constructing smooth three-face planar maps from ordatiesl. p

Qy(x, &, v), as shown in Figure 2.27C. Sinc€ & (Cm, ;)3 , is of descent clases, 3) only for
r =11, we have/” = & & (C7, C11)3 ;. Sincet” @ (Co, C12)} 5 is of descent clasg = (4,3, 1),
we haveQy (1, &, y) = A @ (Co, C12)$ 5. O
Let .# be the smooth map constructed in Figure 2.27B, andrletenote face of this map,
fori = 1, 2, 3. Then the alternating cyclic lists of faces and edges encountered dmvideaours
about the vertices of7 of degree 3 aréF4, 6, F3, 7, F;, 9)° and(Fy, 9, F», 2, F3, 5)°. To reverse
the construction we compare these statistics with the diagrams of Figure 2.B6iddttifies.#
as being in clas€, with A = 6 andy = 2. Colour the ends of andy that are not of degree 3
white and grey, respectively. Then removing edges 2 and 6 firproduces the original ordered
path. O

Theorem 2.7.14 provides a combinatorial proof of the following result, visithem = 3 case
of Theorem 2.6.11.

Corollary 2.7.16.
U4Z1ZZZ3

I's(z4, 25, 723, U) = .
321, 22, 23, 1) A—-—uz)(1—uzn)(1—uzn)

(2.46)
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Proof. Theorem 2.7.14 shows smooth face-labelled planar maps of fixed dekxssi,, 6, 63) =
n to be in edge-preserving bijection with edge-labelled structires?, v), wherea, y are distinct
edges and” is an ordered path amvertices. Thus's(zy, 2o, 3, U) = F(z,U) 0 AT (Z; 71, 25, Z3),
whereF (z, u) is the series counting tuplée,, &, e;) with respect to vertices of?, marked byz,
and labelled edges, marked bySinceF (z, u) = u®- z/(1 — uz), Lemma 1.3.3 gives

3 2
usz Zj
I'3(z1, 22, Z3,U) = .
( ) Z1—uzi 1_[ Z — Zj

i=1 1<j=<3
J#A

The result follows upon simplification. O

Again, we note that Theorem 2.7.14 can be stated simply as a bijection beteresumtations on
n + 1 symbols and smooth planar maps of fixed descent ¢hass,, 63) = n. There are therefore
(n+ 1)! such maps, and Corollary 2.7.16 results by comparing coefficients orslatath of (2.46).
The motivation behind our approach will become clear in Chapter 3.

2.7.5 A Differential Decomposition for Smooth Planar Maps

The bijections given in Theorems 2.7.11 and 2.7.14 share a common themeis,Ta@amooth
map of predetermined descent class is built from an ordered path byiattdabelled edges to its
endpoints. Lemma 2.7.6 plays a fundamenié iin these constructions, guaranteeing that edges
of any given label can be attached in a unique manner to create a map esihedddescent class.
Unfortunately, we have been unable to extend this method to give similar gotisitrs for smooth
maps with more than three faces. Thus a combinatorial proof of Theorefrl2sienm > 3 is
currently beyond reach.

However, Lemma 2.7.6 can be used to develop a recursive decompositismdoth planar
maps. This is done in the next theorem, where the result is stated in the foandiérential
equation satisfied b¥,(z, u), for m > 4. In fact, through the identity'm(w, u) = ¥y (X, U), this
result is equivalent to Theorem 2.5.6. A positive genus analogue is edslily obtained by the
methods used here.
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E F

Figure 2.28: Decompositions of a smooth planar map.

Theorem 2.7.17.Fix m > 4. For any subsek = {A1,..., A} € [M], wherer; < --- < Ay, let
2, = (2, ..., 2Zy). Forl <i <m, sez =z ;. Also, for each i, let
Z; 0
= (2.47)
1—uz 9z

and let?; be the set of all pairgy, A} with y, A C [m] such thaty N A = {i} andy U A = [m].
Then

irm(z,u)zz Y oI,z w-aln@w+ Y 28 Lm-1(Zj, W (2.48)

u i=1 {y,A}eP; 1<i,j<m (1 o UZi)(Zi o Zj)
lyl.[A1=3 i ]

Proof. The series on the left-hand side of (2.48) counts all possible structbtaimed by deleting
the maximally labelled edge from a smooth face-labelled map wittaces. We show that the
series on the right-hand side of (2.48) counts these same structuress @odhlet.# be a smooth
face-labelled planar map withh > 4 faces, and le¢ = {a, b} be its maximal edge.

Since.# is smooth, the various diagrams of Figure 2.28 illustrate the six possible cratians
of ewithin .# . In each diagram, the shaded squares represent smooth maps withtatdeéaternal
faces (note that this distinguishes case E from F). Verticasda, as defined in the diagrams, may
coincide in all cases except D. The identity= v is possible in cases A, B, and F, white= b is
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possible in E. With the aid of these diagrams, now consider the effect dfrdpéefrom .# .

First examine case F. Let the sole fdeéncident withe have label. In this case, removal &
decomposes# into two planar maps#, and.#,, containinga andb, respectively, whose faces
are labelled witlh C [m]andy C [m], whereAnNy = {i}, AUy = [m], and|y|, |A| > 2. Let
F. andF, be the faces af#, and.#;, labelledi. This decomposition is illustrated below. Note that
u, v, a, b are distinguished by the deletion process, as has been indicated bympltbese vertices
in the diagram.

F
-—s -—s. —_—
u a b v
M

Sinceeis maximal, bothta andb are at descents &f. Thereforeau is at a descent df, whenu = a,

andv is at a descent of, whenv = b. Thus.#, has a tail inF,, and.#;, has a tail inF,. By
Lemma 2.7.10 and (2.47), the series counting all possible paits . #}) is

0j F‘},‘(Zy, u) - 9 1_‘|)L|(Z)n u).

Summing over and over permissible paifs, y} gives the first sum on the right-hand side of (2.48).
Now consider cases A, B, and E simultaneously. Assume facesid F; are labelled and

i, respectively. Let4” be the planar map witm — 1 faces resulting from the separation of edge

f = {v, x} from.Z. Let Fy be the face of/” created by the merger & andF;, and assign label

0 to this face. A vertex is at a descentkfif and only if it is at a descent df; or F;. If Fo hasn

descents, thef; andF; haved andn — d descents, respectively, for somavith 1 <d <n —1.

The construction of#” is shown below.

F; F; Fo

Lemma 2.7.6 implies that the position of edgevithin .# is uniquely determined by its label, one
of its endpoints (that isy or x), and the numbed of descents of5. But v can always be identified

as the only leaf of#". Thus.# can be recovered from#, d, and f alone. Deletion ot from .#

is therefore equivalent to deletion effrom .47, provided thad and f are recorded. Finally, note
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that deletinge from 4" is a reversible operation that results in a mapand an ordered pati,
where._4; hasm — 1 faces and a tail in face 0, and may be of length 0. This is illustrated below.

Fo
e
*—o ——0Q — O—e——0
u a b v u a b v
N Na &

A similar, but less complicated, analysis is valid for cases C and D. Hergichetd e from .#

creates a new map?, with m — 1 faces. Again, faceB; andF; (assumed to be labelledand j,
respectively) are merged into a single fd&gof .#,, and this new face is given label 0. Note that
My has a tall inFq. As before, ifFy hasn descents, thef; andF; haved andn — d descents,
respectively, where ¥ d < n—1. Lemma 2.7.6 shows tha# can be recovered from#, together
with the numbed of descents of;.

LetZj = Zm)\;i,j)- By Lemma 2.7.10, the series

z 9 IM'no1(z, Zj, u)
1—uzgz ™HoAD
counts maps such ag; or ., that havan—1 faces labelled witk0, . . ., m}\{i, j} and a tail in face

0. Herez marks descents of face 0, ananarks labelled edges, as usual. The seri€¢t — uz) - u
counts pairg.#Z, f), whereZ is an ordered path antlis a labelled edge. Let

G(vaij»u)=< z iFm—l(LZjv“))‘( uz +1>.

1—uzoz 1—-uz

Then, from our above analysis, the series counting all possible stegcike arising in cases A
through E is obtained fron® by replacingx” with zgj xidx}“d, foralln > 1. From (1.1) and
Lemma 1.3.3, this gives

ziG(z,Zj,u) —zG(zj,Zj,u)

G(z,Zj,u) o A% (z; 7,2j) =
Z —Zj

Observe thaG(zi R Zj ,u) = (1—-uz )7lai Fm_l(ij ,U) andG(z,— s Zj ,u) = (1—UZJ' )7131' '_1(Z, u).
Summing over all pairsi, j} € [m] therefore results in the second summation on the right-hand
side of (2.48). O

Notice that the proof of Theorem 2.7.17 sheds some light on the mystericelsraig cancel-
lation that occurred in the earlier derivation of Theorem 2.5.6. In particthe cancellation is
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reflected by our separate treatments of cases E and F (see Figurd2 (&8 casesg is a bridge,
so its deletion separate#’ into two maps, but the analysis above shows that case E can be naturally
grouped with cases A through D rather than with case F.

2.8 Bijections Between Factorizations and Trees

In 82.4.7 we described a bijection between minimal factorizations of full cyeidsertex-labelled
trees. This gave a bijective proof ofeRes resultHy((n)) = n"~2, which is the special case of
the Hurwitz formula forHg () whent(a) = 1. We conclude Chapter 2 with analogous correspon-
dences for minimal factorizations of permutations composed of two or thrieendisycles, thereby
providing combinatorial proofs of the Hurwitz formula whéfx) = 2 andé(a) = 3.

The framework for these results is already complete. In fact, the camdspces given in this
section are obtained simply by composing a close relative of the tree pruijgngidn with the
bijections defined in Theorems 2.7.11 and 2.7.14.

2.8.1 Preliminaries

In order to describe the forthcoming correspondences cleanly, weinttestuce some minor gen-
eralizations of earlier definitions. We begin with the normal indexing of bagndialks. As men-
tioned in 82.6.2, our earlier definition in the context of vertex-labelled mapsdesised with an
extension to all maps in mind.

We say a map isrivial if it has exactly two vertices and one face. The following technical
lemma allows for a well-defined normal indexing of the boundary walks ofrérivial map.

Lemma 2.8.1. Let W = ((vg, &), . . ., (vk, &))° be the boundary walk of face F in the maf. For
0<i <k, define b= (e,&8.41,...,84k) € Z¥L. If < is the strict lexicographic order o *?,
then either# is trivial or there is a unique i witl) < i < k suchthat L = min.{L; : 0 < j <kj.

Proof. If there is no such value af, then(ep, ..., &) = (&, ..., €j,€,...,€j, - ,€0,...,€j)
for somej > 0, where there aren > 2 copies of the sequenes, ..., g; in the latter list. This
showsW to be of the form

((UOv a)), ey (v] ) ej)v (Uj"rlv %)7 L) (U2j+19 ej)9 te (U(m—l)(j-‘rl)v &))9 L) (Um(j+1)—1, e] ))O'

Thuse = {vi, viy1} = {vigj+1, visj4o) foralli. Butvips # vigj42, Since otherwise corners

(&, vi+1, &41) and (&, vitj12, &4+1) of W would be identical. It follows that; = vi;j;2 and
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Vi1 = Vi4j+1. These identities combine to give,, = v; for alli. Sincevy # v1, we conclude that
W is incident with exactly two vertices. Moreover, each edg&\bfs encountered at least twice
(hence exactly twice), implying thét is the only face of# . 0

In light of the lemma, we say that a boundary wéllg, &), . . ., (v, &))° in a nontrivial map is
normally indexed if (eg, ..., &) = minL{(e,...,e4k) : 0<i <k}. Observe that this definition
of normal indexing is compatible with Definition 2.6.3, in the sense that they dgre®ntrivial
vertex- and edge-labelled maps. (No effective definition of normal iindecan be given for trivial
maps, since their two vertices are interchangeable.)

Let.# be any nontrivial map, and let vertexbe at one of thel descents of fac& of .Z. Let
((ep, vo), ..., (&, vk))° be the normally indexed boundary walk Bf and letj; < --- < jq be the
d values ofj with 0 < j < k such that; is at a descent df. Then we have;, = v for a unique
i €{1,...,d}. We call this value of theindex of vertexv in F.

The definitions of cores and branches given in §2.6.1 can be gendra&mllows. We define a
submapof the map# to be any map that can be obtained fro#hby successive removal of leaves
(and their incident edges). Thus tbere of a map is its minimal submap. Let” be a submap of
A, and lete = {u, v} be an edge of# such that/” containsv but notu. Thene is incident with
only one faceF, of .#Z. Detachinge from v yields a rooted tred@ whose root vertex is incident
only with e. We call this tree an/’-branch of faceF. Vertexv is thebase vertexof T and edges

is itsstem

When.#" is nontrivial, theindexof T is defined as follows. Let the face of corresponding to
F haved descents and normally indexed boundary w@lk, ep), ..., (v, &))°. By Lemma 2.6.5,
(ej_1, & €))° is increasing for exactlg values ofj in the range O0< j < k. Let these values of
bej; <--- < jg. Then thandex of T is the unique value af € {1, ..., d} such that = vj;.

Finally, we remark that the definition of normal indexing given here is comigatilith that
given earlier for vertex-labelled maps. That is, the normal indexing afum@ary walk in a non-
trivial vertex-labelled map is the same whether our current definition @hstéeng vertex labels) or
Definition 2.6.3 is used. Of course, this implies that our two definitions of thexintla branch are
also compatible.

Example 2.8.2. Consider the face-labelled mag’ drawn in Figure 2.29A. Note that the high-
lighted vertexv is at a descent of face 1. The normally indexed boundary walk of thés ifac
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Figure 2.29: (A) A map#, (B) a submap/4” of .#, and (C) the 4 -branches of face 1 o¥.

((vo, &), - .., (vis, €17))°, Where
(e, €1,...,6017) =(1,1,7,10,12,3,3,12,14,2,5,5,2,6,4,7, 13, 13).

Note thate;_1 > € for exactly thosg inthe list(jy, ..., jg) =(0,1,5,6,9,11, 12 14, 17). Since
v = v14 = Vjg, Vertexv has index 8 in face 1.

A submap#” of . is given in Figure 2.29B. Face 1 of this map has 5 descents, with normally
indexed boundary walk(ug, fo), ..., (us, fg))°, where

(fo, f1, ..., fo) = (2,2,6,4,10,12 3,3, 12, 14).

Thus the.4"-branches of face 1 of#, and their indices, are as shown in Figure 2.29C. For in-
stance, the branch with stem 7 has index 3, siiige1, 7, f;)° is nondecreasing foj in the list
(j1, .-, J5) = (1,3,4,7,8), and edge 7 of/# is incident with vertexus = uj, of 4", O

2.8.2 Factorizations of Clasgn1, n)

A dotted factorization of the permutationr € &, is a factorization ofr together with a choice
of a distinguished symbal € [n]. The special symbol is identified by marking it with a dot.
For example(13)(24)(12)(15) is a dotted factorization ofL 542 3. Algorithm 2.8.3, below,
transforms a minimal transitive dotted factorization of cléss ny) into a pair of doubly rooted
vertex-labelled trees and a certain set partitionmf+f n;]. Figure 2.30 on page 95 serves as a
running example of the algorithm, illustrating each step as it is applied to the datedifation

(9 10(8 16(2 5)(1 12(5 15(5 13/(1 8)(8 11)(2 4 (8 10)(6 12(2 3)(7 16)(1 13)(5 12(13 14)
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of the permutation

(123456(78910 11 12 13 14 15 1& Gs.

The panels of the figure correspond to similarly labelled steps of the algorithm.

Algorithm 2.8.3.

INPUT: A genus O dotted factorizatioh of (12--- ny)(ng+ 1 --- ng + ny).

A. Let.# be the face-labelled map with distinguished descents correspondinfptith its dot
ignored) through the bijection of Theorem 2.4.18. The descent clasg & (n1, n,), and
the dotted symbdk of f distinguishes a vertex o#, as follows. If 1< k < n4, then mark
the vertex of indeX in face 1. Ifn; < k < n; + ny, then mark the vertex of indék— n4 in
face 2.

B. Forj =12, letij € {1,2,...,n;} be the index of the vertex at the distinguished descent of

facej of #.

C. There is a unigue shortest path.i from its distinguished vertex to a vertex in its core.

Remove all vertices and edges.af except those belonging to eithe#° or this path to
obtain a submapt” of .# with a tail. Let(61, 62) be the descent class of".

D. Forj = 1,2, letB; be the set of#"-branches of facg of .#. Calculate the index of each
branch inB;.

E. Let(r, &) be the pair corresponding td” through the bijectiors2y, ¢,, of Theorem 2.7.11.
Letls, ..., ln+n,—1 be the edge labels &, in order from white end to grey end.

F. Split &2 into ordered path®, and P, of lengthsd; — 1 andd, — 1, respectively, having edge-

labelsly, ..., lg—1 andlg 41, ..., lg+9,—1, @S encountered from white end to grey end. Set

e = A ande, =lj,.

G. Forj =1, 2, form a doubly rooted tre§; onn; vertices by attaching all branches®) of
indexi to thei-th vertex of P;. The white and grey vertices & serve as the roots df.

H. Forj =1, 2, letE; be the set of edge labels ©f. Relabel the edges df; with {1, ..., 6;}
so that the relative order of the original labels is preserved. Refjaad a planar one-face
map, and assign labeal to the vertex with index;. (If T; has exactly two vertices, then its
white and grey roots are taken to have indices 1 and 2, respectively.)
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l. Forj =1, 2, transformT; into a doubly rooted, vertex-labelled tree by pushing the label of
each edge onto the endpoint o which is furthest from the vertex labelleq.

OuTPUT: Pairs(Ty, Ty), (E1, E2), and(ey, &), where eaclT; is a doubly rooted, vertex-labelled
tree onn; vertices, andE,, E;, {e1}, {&}} is a set partition ofrj; + ny] such thafE;| = n; — 1 for
ji=12.

Our previous work shows the algorithm above to be reversible. Thatisiawve the following
theorem.

Theorem 2.8.4. The correspondence defined by Algorithm 2.8.3 is a bijection betweers §enu
dotted factorizations of12 --- n)(n; + 1 --- ny + ny) and tuples(Ty, Ty, E;, Ez, €, &), where
each T is a doubly rooted, vertex-labelled tree on vertices, and wher¢E,, E,, {e1}, {&:}} is a
set partition offn; 4+ ny] such thafE;| = n; — 1for j =1, 2. O

Since there ara" doubly rooted, vertex-labelled trees orertices, andn; + ny) - Ho((N1, Ny))
genus 0 dotted factorizations of any permutation of clagsn,), we have a combinatorial deriva-
tion of the following special case of the Hurwitz formula.

Corollary 2.8.5. There are

Ny +n n n
g’ L = (N +np — D! ;
ni 4+ nN» nn—-1,n-1,1 1 (N — D! (np, — !
minimal transitive factorizations of any fixed permutatiore ¢, n,). O

2.8.3 Factorizations of Clasgni, na, n3)

We now describe an algorithm that transforms a minimal transitive factorizaticlass(n,, n,, n3)
into three doubly rooted, vertex-labelled trees and a certain set partitjon ¢fn, + nz + 1]. The
structure of this algorithm is very similar to that of Algorithm 2.8.3. See Figuré @rBpage 96 for
an illustration of the procedure as it is applied to the factorization

(11 12(15 16(14 17 (3 14 (14 16(10 12(7 13(2 16)(6 13(13 16(5 16/(3 16)(9 13(1 9(9 12(7 12(3 48 13

of the permutatiof1 23456 7(89101112 13141516 17 € G;7.
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Algorithm 2.8.6.

INPUT: A genus O factorizatiorf of (12 --- ny)(ny+1--- ny+ny)(ng+na+1--- ng+ny+n3).

A. Let.# be the decorated face-labelled map map of descent@lass,, n3) corresponding to
f through the bijection of Theorem 2.4.18.

B. Forj =1,23,letij € {1,...,n;} be the index of the vertex at the distinguished descent of
facej of .Z.

C. Let.+ be the core of#, and let(94, 65, 63) be its descent class.

D. Forj = 1,2, 3, letB; be the set of branches of fageof .#. Calculate the index of each

branch inB;.

E. Let(x, &, y) be the tuple corresponding ¢ through the bijectiors2, 4, ¢,) defined in the
proof of Theorem 2.7.14. Lé{, ..., ln,+n,+ns—1 D€ the edge labels a?, in order from white

end to grey end.

F. Split &2 into ordered path®,, P, and P; of lengths9; — 1, 6, — 1 andf; — 1, respectively,
having edge-labelk, ..., lp,_1 andlg, 41, ..., lo,+6,—1, @ndlo, 10,11, . . ., lo,+6,40,—1, @S €N-

countered from white end to grey end. 8et= A, & = lg,, €3 = ly,44,, aNdey = y.

G. Forj = 1,2, 3, form a doubly rooted tre€; onn; vertices by attaching all branches
of indexi to thei-th vertex ofP;. The white and grey vertices & serve as the roots df;.

H. Forj = 1,2, 3, let E; be the set of edge labels @f. Now relabel the edges df; with
{1,...,6;} so that the relative order of the original labels is preserved. Réfjaad a planar
one-face map, and assign labelto the vertex with index;. (If T; has exactly two vertices,
then its white and grey roots are taken to have indices 1 and 2, respettively

l. For j = 1,2, 3, transformT; into a doubly rooted, vertex-labelled tree by pushing the label
of each edge onto the endpoint o which is furthest from the vertex labelleqg.

OuTPUT: Tuples(Ty, To, Ta), (E1, Ez, Ez), and(ey, &, €3, &), where eaciT; is a doubly rooted,
vertex-labelled tree on; vertices, and whergE;, E,, Es, {e1}, {&}, {€3}, {€4}} is a set partition of
[n1+n2+ N3 + l] such thaﬂEH =nj— 1f0l’j =12 3.
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Again, this algorithm is clearly reversible. We therefore obtain the followirgptém and its
enumerative corollary, which is another special case of the Hurwitz fermu

Theorem 2.8.7.The correspondence defined by Algorithm 2.8.6 is a bijection betweers @enu
factorizations of the permutatiai 2 --- n)(ny+21 --- ng+ny)(ng+n2+1--- Ny +ny+ngz) and
tuples(Ty, Ty, T3Eq, Eo, Es, €1, &, €3, €1), where each Tis a doubly rooted, vertex-labelled tree
on n; vertices, and wher€E;, E,, Es, {€1}, {€}, {€3}, {€4}} is a set partition ofn; + ny + n3 + 1]
suchthafEj| =n; —1for j =1,2, 3. O
Corollary 2.8.8. There are

ni

ny n;
(N — D! (n, — D! (n3 — 1)!

T n+n+ns+1
2l A\ -1, -1, n3-1,1, 1,1, 1

) = (n1—|—n2—|—n3—|—1)!

minimal transitive factorizations of any fixed permutatiore €in, n,.ns)- O
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B ® C D
3 B B,
10 ® 5 8 1 4
Vertex Data:
(i1, ip) =(3,5) 12 13 6 14 11 15 9<L 16i>
5 N i=1  i=1 i=1 i=3 i=4 i=4
A=3
© 12 2 13 10 7 ©
G
(s 15) = (12,2, 13,10, 7) 6 ; .
12
+ 1 1 .5 o (=065
e4,85)=(2,3
s/ \5 13 10 7 e1,62)=(23)
PathPl: OTO F 16
Path Pa: Tree T Tree Ty
2. O * * O

13 10 7

Edge Data: (eq,ep) =(2,3)

(E1 E2) =({5,6, 8,12, 14}, {1,4,7,9, 10,11, 13, 15, 16})
(e1,€5) = (2,3)

E;=1{56,8,12,14}

(e4:€9) =(2,3)
E, ={1,4,7,9,10, 11,13, 15, 16}

H

Figure 2.30: An illustration of Algorithm 2.8.3.
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Vertex Data: (i, iy, i3) = (6,2, 3)

€4,€n,€q,8,)=(14,7,3,6 i1,19,02)=(6,2,3
(I 1g)=(15.7.9,12,3,4) (O 02 03 2a) = ) (112132629

11
13
‘ 15 8 12 16 17
9
5 10 18

2 1 4
Path Py: oO—o0
15 >
PathP,: O———O Tree Ty Tree Ty Tree T3
2 9 12

Path Pj: OTO

Edge Data: (eq, ey, €3, €4) = (14,7, 3, 6)

E;={25,8,10,11,15}
Ey={1,9,12,13,18}
E3={4,16,17}

(e1s €9, €3, e4) =(14,7,3,6)

Figure 2.31: An illustration of Algorithm 2.8.6.



Chapter 3

Generalizations

3.1 Introduction

In this chapter we extend some of the results of Chapter 2 to factorizatigesrafitations in which
the factors are not necessarily transpositions. Throughout, we asisarfadlowing definitions.

Definition 3.1.1. A factorization of 7 € &, of length r is an r-tuple(oy, ..., 01) of permutations
oi € &, suchthatr = o, - - - 01. Theclass of a factorization(oy, ..., 01) of  is the cycle type of
7, and itsfactor typeis the r-tuple(p;, ..., B1), whereo; € 63 forl <i <r.

For example((12)(34(5), (124 (3)(5), (15 (2 3)(4)) is a factorization of1 5)(2 4)(3) of length
3 since
192HR) =129BHO) - (12493 (D) - (1923 4. (3.1)

This factorization has class [#2and factor type([12?], [1%3], [1 2?]). As in Chapter 2, there is
typically no harm in circumventing some formality and referring equation (3.&lf és a factoriza-

tion.

The factorizationf = (ov, ..., 01) is transitive if the group (o1, ..., o ) generated by its
factors acts transitively o®,. More generally, ifc = |orb(os, ..., o )| is the number of orbits
of [n] under the action of oy, ..., o7 ), then we sayf is ac-componentfactorization. Thus 1-

component factorizations are synonymous with transitive factorizations.

The following proposition is an extension of Proposition 2.2.9 to arbitrarpfaations.

97
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Proposition 3.1.2. Let f = (o, ..., 01) be a c-component factorization sfe &,. Then

r
L)+ > Lloy) <n(r — 1) + 2.
i=1
Proof. Each factor off can be decomposed into a product= Trii e ri of ri = n— £(oy) trans-
positions. Hencer = o; - - - 01 can be expressed as a product of E{ezlri =nr — Z{:le(oi)
transposition:ﬁ} }. Let T be the subgroup a&,, generated by these. Proposition 2.2.9 then yields

nr—> (o) = N+ £(r) — 2/ orbT|. (3.2)
i=1

But{oy,...,0r ) isasubgroup of, and so we haveorbT| < |orb{o1, ..., 07 )| = C. O

Since the quantityr — Y "_, £(07) on the left-hand side of (3.2) arises as the length of a factor-
ization ofr into transpositions, the parity restriction of Proposition 2.2.6 implies Y [ _, £(0i) =
n—£(x) =n+£(x) (mod 2. From (3.2), it follows that there is a unique nonnegative integer
such that

r
nr — Zﬁ(m) =n+4(n) — 2c+ 2.
i1

For transitive factorizations (that is, when= 1) we make the following definition.

Definition 3.1.3. Let f be a transitive factorization of claasand factor typg g, ..., B). Then
r

E(oe)—i—ZE(ﬂi) =nr-1)+2-29 (3.3)
i=1

for a nonnegative integer g that is called tgenus of f. Genus 0 factorizations are also referred
to asminimal transitive factorizations.

3.2 Graphical Representation of General Factorizations

3.2.1 Polymaps

Recall that a map i&-colouredif its faces have been painted black and white so every edge is inci-
dent with both a black face and a white face. (Thus no two similarly colowessfare adjacent.).
We shall be concerned with a special class of labelled 2-coloured mefpsed as follows.
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Figure 3.1: (A) A polymap, and (B) its descent structure.

Definition 3.2.1. A polygonal map, or polymap, is a 2-coloured map in which the boundary walk
of every black face is a cycle.

We shall find constant need to differentiate between the black facestitedfaces of a polymap.
The following terminology allows us to do so with minimal effort.

Definition 3.2.2. The black faces of a polymap are callpolygons, with anmm-gon being a black
face of degree m. The white faces of a polymap are referred to simply fagéts and acorner
always refers to a corner of a white face.

If the polygons of a polymap are labelled, then we definerthtator of a vertexv to be the
unique cyclic list of black face labels encountered on a clockwise toumadlgadius aboub.
Just as we worked exclusively with edge-labelled maps in Chapter 2, inhthjgtar we shall be
considering only polymaps with labelled polygons. Thus we adopt the foltpfamiliar convention
throughout:

e The polygons of every polymap are labelled with positive integers in suchyatiat the

rotator of each vertex is increasing.

Notice that, in contrast with our convention for edge-labelled maps, the pokadpels of a polymap
need not be distinct.

Example 3.2.3. Figure 3.1A illustrates a polymap with 9 polygons and 3 faces. Note that lgeps a
allowed. The rotator of vertexis (1, 3, 4)°. O

We regard the edges of a polymap as being labelled, with an edge inheritingatgriam the
unique polygon that it borders. This convention allows us to defgscentsof the (white) faces
of a polymap exactly as they were defined for edge-labelled maps in §2 HekleScent corners
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Figure 3.2: A 3-constellation on 5 vertices.

of a face, as well as itdescent seanddescent cycleare defined similarly. Since all rotators are
increasing, each vertex of a polymap is at a descent of exactly oneifgaging that the descent
sets of the faces are disjoint and partition the vertex set. If a polymamhéesces containing
descents, then itdescent partitionis [1™2M2 .. .].

Example 3.2.4. Consider the polymap shown in Figure 3.1A. The cyclic list of edge labelstemc
tered along the boundary walk of its outer face¢lis4, 1, 3,5, 5, 1, 4, 4, 2, 2)°. This face therefore
has 7 descents. Similarly, the other faces contain 1 and 5 descents. €payiimap has descent
partition (7, 5, 1). In Figure 3.1B, all descent corners of this polymap are marked witlsespgand
the hollow vertices comprise the descent set of the outer face. O

3.2.2 Constellations

Letr be a positive integer. An-constellationis a vertex-labelled polymap in which the rotator of
every vertex i1, 2, ...,r)°. Figure 3.2, for example, illustrates a 3-constellation on 5 vertices.
Our interest in this special class of polymaps stems from the fact that gaesitive factorization

of lengthr corresponds to a uniqueconstellation. A formal technical description of this corre-
spondence will be given below, but it is illuminating to begin with a rough outline.

Let f = (ov,...,01) be a transitive factorization. For each cy¢t, ..., syn) of oj, create a
blackk-gon labelled and label its vertices, . . ., s in clockwise order around its perimeter. Doing
so for every cycle of each of the factass, ..., or results in a collection of(o1) + --- + £(ov)

labelled black polygons. Now join these polygons by topologically identifyinglarly labelled
vertices to create a 2-coloured map in which the rotator of every veri@dx is.,r)°. This map is
ther -constellation associated with

Example 3.2.5. The 3-constellation of Figure 3.2 corresponds to the factorizatigro,, o1) with
o1 = (15243, 0, = (1)(25(S)(4), andoz = (153(2)(4). This is a genus 0 factorization of
124(3)(5). U
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Formally describing this correspondence essentially amounts to replacisgrttevhat vague
reference to “topological identification” with an appeal to Theorem 1.3.4.ndiv proceed along
these lines.

Let f = (ov, ..., 01) be atransitive factorization af € &,. LetH be the set of all @r symbols
of the formij+ or ij‘ withl <i <r and 1< j < n, and consider the paik,v) € G4 x Gy
defined by

n n

H(l 1)@ 25,50ty g ;) and "=H(1j_ 172520 oty
j=1 j=1

For 1 < k < r, let rx denote the partial produek - - - o7. Then, under repeated actionaf, the
symbol ];1(1-) is mapped along the following orbit:

+ + + +
Lo~ anm - 3n3<1> Bl Ul VA gl S 1n1mu) = 2y
Sincen, = m, it follows that
— 1+ + + pt 1t +
wp = (17,00 20000 oo Las (o Zaatpo) A AP AR 4 (3.4)

is a cycle ofev wheneverp = (py pz - -+ pm) is a cycle ofr. Also note that the symbo| follows
the orbit

ir =i, =i, =i, —
J o M) o 2(3)) L))

under the repeated action©f. Thus

bs iciziD) (3.5)

i =g 05, 15, , 2 'S

is a cycle ofev whenevers = (s, S, - - - Sy) is a cycle ofej. In fact, all cycles okv are of one of
the two forms (3.4) or (3.5), as can be seen by observing that ever)od;j/fnbppears in some such
cycle. Thatis, we have the disjoint cycle decomposition= [ ], wp - [T™, T1sbsi, where the first
product extends over all cycles sf and the last extends over all cyclesopf

Since(o, ..., 0n) acts transitively onrj], the pair(e, v) defines a transitive rotation system
on the set of half-edge symbols. Let .#;: be the map associated with this system through the
correspondence of Theorem 1.3.4. As described in 81.3.8, the lgaGaed. #; are labelled with
H, and its vertices, edges, and faces correspond to the cycleg adindev, respectively.
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B

Figure 3.3: The map of the factorizatigh)(24)(3) = (143 (2) - (13)(24 - (1)(23)(4).

Example 3.2.6. Consider the factorizatiof = (03,02, 01) of 1 = (1)(24)(3) € &4, Where
o= (1)(23)(4), 0, =(13)(24), andos = (143 (2). Here we have

v= (17 1 27 27 37 3))(1; 1] 2, 25 3, 31)(15 13 25 23 35 30)(1, 1) 2, 2/ 3, 3))
e= (17 1127 25)(37 3))(1, 15)(25 2)(3;5 33) (13 1)(25 20) (353 3D) (1, 17)(25 23)(3; 33).

The half-edge-labelled mag; corresponding to the rotation systéamv) is shown in Figure 3.3A.

Observe that the cycles in the product

€V = W) - W24 - W) - b(l),l : b(23),l : b(4),1 : b(13),2 : b(24),2 : b(143),3 : b(z),s

= (1] 25 3))(15 21 3; 1 25 35)(13 24 35) (1) (15 15)(1,) (25 21)(24 25)(35 35 31)(37)

describe the faces of this map. For example, the aygley = (13 2] 3} 1; 21 37) lists the terminal
half-edges encountered along the boundary walk of the outer face. O

Now redecorateZ; by replacing the half-edge labelling with the following equivalent scheme.

For1< j < n, assign labe] to the vertex of# associated with the cycld; 1}L 27 Z}L Ty rj+)

of v. For1<i <r, assign label to each face of#; that is associated with a cycle ef of type
bs;. Now paint the faces af#; by colouring white all those faces corresponding to cyclesvof
of type wy, and colouring black all those corresponding to cycles of type Note that the two

ai ()
andwp, respectively. Thus no edge occurs in the boundary walk of two dissimatlarly coloured

hah‘-edgesi]-+ andi comprising the generic eddé;” iji(j)) appear inev in cycles of typeds;

faces. Moreover, the rotator of each vertex#f; is (1, 2, ...,r)°, by construction. Remove the
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original half-edge labels of#;, as they are now superfluous. The resulting structure, which we
continue to denote by#s, is anr -constellation naturally corresponding fo

Example 3.2.7. The 3-constellation#; corresponding to the factorizatioh = (o3, 02, 01) dis-
cussed in the previous example is shown in Figure 3.3B. Noteftlimtasily recovered fromv/s,
as the disjoint cycles of; are just the cyclic lists of vertex labels encountered alclogkwise
boundary traversals of the polygons.&f; labelledi. O

In agreement with the terminology of Chapter 2, we refer to the constella#ipcorresponding
to a transitive factorizatiori as thepolymap of f. The construction af#+ from f described above
is clearly reversible, so the corresponderice> .#; is bijective between transitive factorizations
and constellations. We denote this bijectionnpyp.

3.2.3 A Bijection Between Factorizations and Polymaps

Let .# be anr-constellation om vertices. For 1< r < nandj > 1, letb; be the number
of polygons of.# of degreej with labeli. Since each vertex aof#Z is incident with exactly
one polygon labelled, we haveZj jbij = n for eachi. Define partitionsss, ..., B, of n by
B = [1P12%2...] F n. We call ther-tuple (81, .. ., ;) thepolygon typeof ..

The following result is an analogue of Theorem 2.4.11 for generic faettions.

Theorem 3.2.8.Leta, B1, ..., B = n. The correspondenceapr : f — .#; restricts to a bijec-
tion between genus g factorizations of clasand factor typg8s, ..., 8r) and r-constellations of
genus g with descent partitieanand polygon typé€ps., ..., Br). Moreovey, if f is a factorization of

7w € Gy, then the descent cycles.af; coincide with the cycles of.

Proof. Let f = (o, ..., 01) be a factorization oft € €, C &, with factor type(By, ..., Br).
From (3.5) it is immediate tha¥Z; possesses precisely one polygon labelléat each cycle o#;,
so the polygon type of#s is (81, - . ., ). From (3.4) we see that each cyclemwtorresponds to a
unigue (white) face of#;. Let F be the face corresponding to the cy¢fm, ..., pm) of 7. Then,
in particular, (3.4) indicates that the cyclic list of edge labels encountéoed the boundary walk
of Fis(,2,...,r,1,2,...,r, --- ,1,2,...,r)°, where there aren iterations of the sequence
1,2,...,r. Moreover, the descents &f are seen from (3.4) to occur at the vertices#f labelled
P1, ..., Pm- Thus the descent cycle &fis precisely(p: p2 - -+ Pm)-

Since.#+ hasn vertices, each of degree At hasnr edges. It also haq«) + Z{:lﬁ(ﬂi) faces;
that is, the number of faces plus the number of polygons of each labgboSei”; is of genusy.
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Figure 3.4: The cactus of the factorization (3.6).

Then the Euler-Poincarformula gives — nr + £(a) + Y __; £(81) = 2 — 2g. Equation (3.3) now
identifiesg with the genus of the factorizatioh. O

3.2.4 Minimal Transitive Factorizations of Full Cycles

A planar polymap with only one face is callectactus Thus cacti are natural polymap analogues
of trees. What follows is a generalization of the correspondence irdeatin 82.4.7 between trees
and minimal transitive factorizations of full cycles into transpositions.

Forr > 1, anr-cactusis a cactus in which every vertex has rotattr2, ..., r)° or, equiv-
alently, a planar -constellation with only one face. By Theorem 3.2.8, minimal transitive factor-
izations of lengthr and clasg(n) are in bijection with vertex-labelled-cacti onn vertices. For
example, Figure 3.4 illustrates the 3-cactus corresponding to the factamizatio

123---12=(1212345067810 (5101189 - (21D. (3.6)

If f is a genus O factorization of a fixed full cycle, then observe that thensedaim of The-
orem 3.2.8 implies all vertex labels of the cact#& are determined by the position of vertex 1.
Thus minimal transitive factorizations @1 2 - - - n) with factor type(s, ..., Br) are in one-one
correspondence with vertex-rooteaacti having polygon typés,, ..., 8;). Counting such-cacti
leads to the following result, which originally appears in [27]. See the Additiblotes at the end
of this section for further comments.
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Figure 3.5: Decomposition of a rooted cactus.

Theorem 3.2.9.Letfs, ..., B Fn,andsetit=¢(B)forl <i <r.Ifty4+---+t, = r—1n+1,

then there are
oyt =DMt —=D!--- (& — D!

| Aut(Bo)| [ Aut(B2)| - - - | Aut(Br)|
minimal transitive factorizations afL 2 - - - n) of factor type(Bs, ..., Br), and there are no such

factorizations when this condition is not met.

Sketch proof:Fixr > 1, and letC; be the set of all vertex-rooted cacti in which every vertex except
the root has rotato(l, 2, ..., r)°, while the root vertex itself is incident with a single polygon
labelledi. Letwj = wj(u;, pi) be the generating series f6r, whereu; records the total number
of black polygons labelled, and the componerg; of pi = (pi1, Pi2, . ..) marks the number of
j-gons labelled.

Consider any fixed cactus € @;. If its root vertex is incident with &-gon, then removal
of this polygon results in an ordered collectionkofooted cactiC?, ..., CX, each of whose roots
has rotatord, ...,1,...,r)°, where the hat indicates that latédk to be suppressed. In turn, each
cactusC/ decomposes into — 1 rooted cactip{, el a e, er_l, whereCij € Gj, as is seen
by detaching polygons from the root. See Figure 3.5 for an illustration ofidttempaosition in the
case =3, k=4 andi = 2.

Forl<i <r,defineR, € Q[pi]l[Z]] by

PR@ =) px2™"

k>1

Then the combinatorial decomposition just described yields

o =UPw o o), forl<i<r, (3.7)
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where again the hat indicates that the faeipis suppressed in the product.

Let Q@ = Q(u, p) be the generating series for the §ebf all vertex-rootedr -cacti, where
U= (Ug, U ---),p = (p1, P2, - - - ), and the various indeterminates mark the same substructures
as before. Lep; = [1P120%2...]andb; = (biy, bip,...)for1 <i <r, and seb = (by, by, ...).
Then the number of vertex-rooted cacti with polygon type, ..., B;) is [u'p] 2. Now observe
that unhinging a rooted-cactus at its root vertex results in edtuple of rooted cacti, one from each
of the set, ..., C. ThusQ = w1 - - - .

The system (3.7) of functional equations implicitly defingse Q[p][[u]] for 1 <i <r.
The coefficient §I'p®] @ = [u'p®] w:1 - - - w; can now be evaluated through multivariate Lagrange
inversion applied to this system; see [27] for details. Note that the condlition-+t, = (r—1)n+1
necessary for the desired coefficient to be nonzero is immediate frolui@od settingg = 0O,
£(B) =ti, andé(a) = 1. ]

3.2.5 Suppression of Loops

Let e be a loop in the polymap#. Thene appears in the boundary walk of a unique polygon.
In fact, since the boundary walk of this polygon must be a cycle, we s¢e thaunds a 1-gon.
Contractinge to the single vertex with which it is incident has the effect of eliminating this 1-gon
from .# . Of course, the contraction of loops can be iterated.

Definition 3.2.10. The loopless polymap obtained from the polymépby contracting each of its
loops is called theeduction of .#, and is denoted by# ™.

Of importance here is the observation thatraoonstellation.# can be recovered from its
reduction.#" provided that is known. This follows because the location and label of the missing
1-gons are uniquely specified by the fact that the rotator of everywefte7 is (1, 2, ..., r)°. For
example, Figure 3.6 illustrates the reduction of the map of the factorization

f = (03, 02, 01), 03=(153(9(4), 02 = (D29 (4), 01 =(19(243. (3.8)

To recover.#; from ///fT loops are simply added so as to make each rotator éfjual3)°.

For the factorization (3.8), notice that the descent structure of the Salt@iion.#; is effec-
tively unaltered by suppressing its loops. That is, the descent cyckcbfface of #; is equal to
that of the corresponding facem/;r. That this is usually the case is a consequence of the increasing

rotator condition, as we now demonstrate.
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Figure 3.6: The reduction of a 3-constellation.

Lemma 3.2.11. Let.# be a polymap on at least two vertices, and let e be a loop incident with the
face F of.Z. Let.#’ be the polymap obtained froo# by contracting e, and let Foe the face of
' corresponding to F. Then the descent cycles of F ahdr€ identical.

Proof. Supposeis incident with vertex. If F were of degree 1, theswould bound both+ and a
1-gon, saw would be the only vertex ofZ. If F were of degree 2, then its boundary walk would be
((v,©), (v, €))° for some loope # e. But, sinceg’ also bounds a 1-gon, no edges aside feoamd

€ could be incident withy, and again would be the only vertex of#. ThereforeF is of degree at
least 2.

The boundary walk of is therefore((v, €), (v, €), (v1, €1), ..., (v, &))° for somev;, g, so
that the boundary walk dof’ is ((v, &), (v1, €1), ..., (vk, &))°. Thuswv is at a descent dF if and
only if e > eore > ey, while v is at a descent df’ if and only if g > ey.

If g = &, then one ok > eore > g holds, and obviouslg > e. Thusv is at a descent of
bothF andF’ in this case.

If &g # &, thenv is incident with at least three polygons, namely the 1-gon boundexiaog
at least two other polygons with labedsande. In fact, (&, €, €y)° is a subsequence of the rotator
of vin .#, and is therefore increasing. Thus eitker< e < gy, ore < ey < g, orgy < g < e. It
follows thate, > e if and only if eitheree > eore > e. Thatis,v is at a descent df’ if and only
if it is at a descent of. Clearly the cyclic orders in which the descentsoand F’ occur along

their respective boundary walks are the same, and the result follows. O

Proposition 3.2.12. Let f be a transitive factorization of a permutation on at least two symbols.
Then the descent cycles of corresponding face\/gfofand,///]:r are identical.

Proof. This follows immediately by repeated application of the lemma. O
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Figure 3.7: Maps corresponding to the factorization (3.9).

3.2.6 Factorizations into Transpositions

Consider the transitive factorization= (z;,...,71) 0f (1234567 891011 12 intor = 12

transpositions given below:

(1234567 89101112
= (67495712231 NEB 1011512391 10(7 83 12. (3.9

The map.#; of this factorization is a 12-constellation that contains precisely one 2-gbtea 1-
gons labelled, for 1 <i < 12. The only polygons in the reductio;%i(;r are therefore 2-gons, which
are labelled distinctly with the integers.1., 12. See Figure 3.7A for an illustration @6’2 Since
the value of is preserved as the maximal label of these 2-gons, no information hasdseéenthe
reduction.Zs — .///fT Furthermore, “flattening” each 2-gon M? into a single edge is clearly a
reversible process that results in the vertex- and edge-labelled map ir&igure 3.7B. This is, of
course, the map we previously called the “mapf 6fand studied extensively in Chapter 2,

Clearly these same considerations apply more generally to associate withravsitive fac-
torization f into transpositions the vertex- and edge-labelled map previously called thefrfap
In this way, Theorem 2.4.11 is seen to be a special case of Theorem\®&&int out that Propo-
sition 3.2.12 is instrumental in this connection, for it establishes that the desades of #;: are
the same as those w@’: which are, in turn, plainly identical to those of the final “flattened” map.
The need for many of the contrivances introduced in the earlier discuskitheorem 2.4.11 (such
as carriers and orbits) is eliminated when the result is established in this nreebmanner.
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3.2.7 Additional Notes

We have borrowed the teroonstellationfrom [8], where it is used in reference to maps that are
dual to the constellations defined here. Schaeffer and BousqgéletiMio not consider descent
structure in [8]. However, their main result, stated in our language, is \aalegant bijective
proof of the following formula for the number of planafconstellations with descent partition
a=[1mMm2M ...]

r

((r — Dn — D! -1\
r((r—l)n—e<a>+z>!n['( | )} : (3.10)

i=1

By Theorem 3.2.8, this formula gives the total number of minimal transitiveffiaettions(oy , . . ., o1)
of classx + n. If none of the factorg; of such a factorization is the identity, thé;) < n—1
for all i, and thus)_\_, €(oi) < r(m — 1). With (3.3), this gives < n + ¢(a) — 2. Setting
r = n+ ¢(x) — 2 forces these inequalities to be tight, so th@t) = n — 1 for alli. That is to say,
a genus 0 factorization of claasand of lengthr = n + £(«@) — 2 in which no factor is the identity
is necessarily a minimal transitive factorization into transpositions. This faseid in [8] to derive
the Hurwitz formula from (3.10), by applying inclusion-exclusion to eliminatedtetribution of

factorizations containing trivial factors.

Since all factorizations of a full cycle are necessarily transitive, Tdred@.2.9 actually provides
(r —Dn+1. Itis in this context that the result first appears, in Goulden and dagk@axtension [27]
of previous work of Goupil and &ard [40]. (See also Farahat and Higman [21].) The cacti
considered in [27] are dual to those introduced in this section.

Theorem 3.2.9 is thoroughly generalized in [58], which contains an eiatuaf cj’ .

arbitrary r and partitionss, ..., B - n. The special caseff'[‘z)k] is of particular interest because of
the following link with geometry. Factorizations of the form= op, whereo is a full cycle and

o is a fixed-point free involution, are seen, by Theorem 1.3.4, to paraimetaonopoles— that
is, maps with a single vertex. They appeared in this guise in the work of ldateZagier [43] on
the Euler characteristic of the moduli space of curves. These authtais @xplicit enumerative
formulae through integration over random matrices, but the same resuéissiieve been derived
through the character theory of the symmetric group [46, 58] and, tigckwn direct bijection [37].
Many other attempts have been made at evaluating particular connectidicienef of Z(CS,).

See, for instance, [5], [7] and [73] for some early efforts.
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Figure 3.8: The reduced map of the cycle factorization (3.11).

3.3 Cycle Factorizations

We shall now restrict our focus somewhat and explore factorizatiomsevfactors are all cycles,
possibly of different lengths. The factorizations (into transpositionshatuin Chapter 2 are of this
variety, so that the results of this section naturally generalize our eadiggtsefin particular, we

shall find that the method of pruning trees developed in §2.6 remains efactihis more general
setting.

3.3.1 Preliminaries

A cycle factorizationis a factorization whose factors are all cycles of length at least 2.cytie
index of such a factorization is the vect@r,, cs, . ..), wherec is the number ok-cycle factors it

contains. For example,

(123456 F(8)(9 10(11)(12)
—(78910-(1287-(61112-(412-(231)-(312-(610-(101D - (45 (3.11)

is a transitive cycle factorization of length 9 with cycle ind@&x2, 2,0, 0, .. .).

If f is a transitive cycle factorization of lengthwith cycle index(c;, cs, .. .), then its reduced
map://&’;r is composed of polygons distinctly labelled,1. ., r, with ¢, of these beingk-gons, for
k > 2. For example, Figure 3.8 shows the reduced map of the factorizatior).(3.11

As we shall be working exclusively with cycle factorizations in this sectiom.adopt the fol-
lowing conventions throughout:

e All polymaps are loopless.

e The polygons of every polymap are distinctly labelled.
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It will also be convenient to define thpolygon indexof a polymap containing k-gons, fork > 2,
to be the vectofi,, is, ...). Of course, cycle factorizations with cycle ind@, cs, . ..) correspond
to polymaps with polygon indefc,, cs, .. .) under the bijectiorf — ///fT

3.3.2 Properly Labelled Polymaps

Leta = (a1, ..., am) be anm-part composition. In accordance with 82.4.10, we say a polymap
is of descent class if it contains exactlym faces, these being labelled.1., m so that the face
with labels has exactlyrs descents, for k s < m. Thecanonical descent set®;(«), ..., Dn(x)
associated witl are defined as before, as is the sulidé&k) of permutations whose cycles are
supported by these sets.

Definition 3.3.1. A vertex- and face-labelled polymap is said to freperly labelled if it is of
descent class and the face labelled s has descentBgir), for1 < s < m.

Theorem 3.3.2, below, is a generalization of Theorem 2.4.18 for cycteriaations. It is a
straightforward consequence of Theorem 3.2.8 and the fact thakiabelled polymaps have no
nontrivial automorphisms.

Theorem 3.3.2.Let o« be a composition. The set of all genus g cycle factorizatiops. . ., 1)
satisfyingo; - - - 01 € &() is in bijection with the set of properly labelled, genus g polymaps that
are of descent class and contain r polygons. Moreover, under this bijection, a factorization with
cycle indexc,, cs, .. .) corresponds to a polymap with polygon index, cs, .. .).

Proof. Let f = (ot,...,01) be a genug cycle factorization oft € S(«). Supposex hasm
parts. Then Theorem 3.2.8 and Proposition 3.2.12 together shovmtﬁas a loopless, vertex-
labelled, genug polymap withm faces, whose descent cycles are supportedilgy), . . ., Dm(a),

and whose polygons are labelled distinctly with 1, r. Moreover, the cycle index of coincides
with the polygon index OM/fT. Assigning labek to the face ot//l,:r with descent seDs(«), for

1 < s < m, therefore produces a loopless, properly labelled, ggmuslymap of descent clags
with polygon index equal to the cycle index &f Clearly any such polymap can be constructed in
this way and, since%/fT admits only the trivial automorphism, two different factorizations cannot
lead to the same polymap. O

Example 3.3.3. The properly labelled polymap corresponding to the cycle factorizatiorl)3s1
drawn in Figure 3.9. 0
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Figure 3.9: The properly labelled planar polymap corresponding to (3.11)

Like its earlier analogue, Theorem 3.3.2 puts us in position to study transyle factoriza-
tions solely through the combinatorics of properly labelled polymaps. We bétiirthe following
definitions, which are familiar from §2.4.10.

Definition 3.3.4. For a vectori = (ip, i3, ...) of nonnegative integers and a compositionlet
Mg(ee ; 1) denote the number of properly labelled genus g polymaps of descestctaat have
polygon index. For fixed m> 1, let

X2 y'®

VO pW =YY" Y Mgle; i)"’iar(i)!’

n>1 i>0 «aEn
£(a)=m

be the generating series for the numb@ky(«; i) : €(@) = m, i > 0}, wherex = (X1, ..., Xm)
andp = (p2, ps, ...) are vectors of indeterminates, andy=i,+i3+---. When considering the
genus 0 series, we shall typically wrilg, in place of¥©.

For 1 <i < m, the indeterminate; in \If,(ng)(x, p, u) is an exponential marker for vertices at
descents of face of a polymap. These vertices are labelled with ikt canonical descent set.
Clearlyu is an exponential marker for labelled polygons, gndecords the number déEgons, for
k > 2. Observe that the serieiaﬁ?)(x, u) introduced in 82.4.10 is recovered by settipg= 1 and
Ps=ps=---=0in L2 (x, p, u). Throughout the remainder of this section, the synpbulill
denote the vectafp,, ps, ...) of indeterminates.

Corollary 3.3.5. Lete F n and fixz € %,. The number of genus g cycle factorizations okith
cycle indext = (¢, Cg, ...) is given by

I" o1 -0Om - [Xapcur] \Ijrg.?)(x, pa u)’

wherer=¢c,+C3+---.



3.3 Cycle Factorizations 113

Proof. This is immediate from Theorem 3.3.2 and the fact f@&tx)| = [[; (i — D). O

The next proposition is a polymap analogue of Proposition 2.4.24, and playsilar ©le
in our analysis. It implies that the vertices of a planar, face-labelled polymhalescent class
a = (o1, ...,om) can usually be labelled ia;! - - - ay! ways to obtain distinct properly labelled
polymaps. The only exceptions to this rule are polymaps with only one polygyuce the vertices
of ak-gon can clearly be labelled itk — 1)! distinct ways. In particular, fom > 2, we can regard
I'm(z, p, u) as the counting series for smooth, planar, face-labelled polymapswittes, with
respect to descent class and polygon type.

Proposition 3.3.6. A face-labelled planar polymap with at least two polygons has no nontrivial
automorphisms.

Proof. Supposep is a nontrivial automorphism of the face-labelled planar polymép Clearly a
vertex and its image under are incident with precisely the same polygons. Therefore, shnise
nontrivial, it cyclically permutes the vertices of all polygons. Thus eiti#rconsists of a single
polygon, or there exist distinct verticasandv, each incident with at least two polygons, such that
¢(u) = v. In the latter case, the cyclic lists of alternating polygon and face labelsietezed on
clockwise tours about andv must be the same. In particularandv are both incident with distinct
polygons labelleé andb, and cornersa, u, b) and(a, v, b) belong to the same face. The situation
is illustrated below.

Compatibly directed half-edges in the diagram must be connected to comgigiema so that the
marked corners remain in the same face. Clearly it is not possible to do thispratie O

Note that the Proposition 3.3.6 is restrictedptanar polymaps. Counterexamples in positive
genus are given in Figure 3.10A, where both face-labelled polymapgnshee invariant under
rotation of all their polygons by 180Since non-planar, face-labelled polymaps may have nontrivial
automorphisms, vertex-labellings cannot generally be ignored wheringonkth w9 for g>1
This problem could be overcome by considering rooted maps, but werghialeed to do so since
our attention will generally be restricted to planar polymaps.
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Figure 3.10: Failure of Proposition 3.3.6 in genus 1.

3.3.3 Minimal Transitive Cycle Factorizations of Full Cycles

Recall that acactusis a planar polymap with a single face. By definition, the sevieé&x, p, u)
counts properly labelled cacti, whereis an exponential marker for labelled verticas, is an
ordinary marker fok-gons, andi is an exponential marker for polygons. We wish to evaluate this
series, and thereby count minimal transitive cycle factorizatioris af - - n).

To this end, first leiw = w(X, p, u) be the generating series for vertex-rooted, properly labelled
cacti, with respect to the same markers as above. Then we have

d
w = x&wl(x, p, u). (3.12)

We now give a decomposition for such cacti that preserves labelledesgiw polygons.

Suppose the root vertex of a rooted cactus is incident witlm polygons. Detaching these
polygons from the root results in the single vertexogether with a collectiofCy, ..., Cy} of
rooted cacti with labelled non-root vertices. The root of e@¢chs unlabelled and incident with
only one polygon. See Figure 3.11. (Labels have been suppresseddiagitam for clarity.) Note
that the ordering o€, ..., Cy, aroundv need not be recorded, as it is can be deduced by virtue of
the increasing rotator condition. Thus= x Zmzo(u'))m/m! = xe”, wherew = w(Xx, p, u) is the
generating series for cacti such@s andx marks only labelled vertices throughout.

If the root of C; is incident with ak-gon, then removal of this polygon leavegka— 1)-tuple
Cl,...,CK ! of rooted cacti, as shown in Figure 3.11. This accounts for a contribution*—* to
the seriesv. Summing ovek therefore gives

W = UP(w), (3.13)
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G

Figure 3.11: Decomposition of a rooted cactus.

whereP € Q[p][[ Z]] is defined by
P@ =) pz™ (3.14)

k>2

Hence we obtain the recursive definition
w = xe'PW), (3.15)

This functional equation can be solved(fip, u][[ X]] by Lagrange inversion, as is demonstrated in
the proof of the next theorem. Since the analysis above is actually a simplificdtibat used to
prove Theorem 3.2.9, this result also follows immediately as a special césat efarlier theorem.

Theorem 3.3.7.Let (i, i3, ...) be a sequence of nonnegative integers and setip + iz + - -.

Then there are
n—1rl

szzik!
minimal transitive cycle factorizations ¢1 2 - - - n) with cycle indexi,, is, ...) in the case that
n+r —1=75.,Kik, and zero otherwise.

Proof. From (3.15), Lagrange inversion gives

% [kn—lpiur] enu P(1)
n -1 _ r
=T [A"1p'] (Z pk)»k_l)

k>2

-1
_n ( r )[Anl]kzkik(kl)‘

r! ig,ig,-'-

[aniur] w =

The result follows by Corollary 3.3.5, since (3.12) implie§g'u'] w = n - [X"p'u"] ¥ (X, p, U).
O
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An interesting special case of this theorem concerns factorizationsudfa¢le into cycles of
the same length. In general, for> 2, we define &-cycle factorizationto be a factorization whose

factors are alk-cycles.
Lemma 3.3.8. Let k> 2. A k-cycle factorization ot € &, of genus g has exactly

nN+4(m)+29—-2
k—1

factors. If this number is not integral then no such factorization @fists.

Proof. Let (oy, ..., 01) be ak-cycle factorization ofr of genusg. Thené(o;) = n — k + 1 for all
1<i <r,sothatt(r) + Z{Zl(n —k+1) =n(r —1) +2—2g. Solving forr produces the
result. O

Notice that the lemma identifieﬁ(n + £(x) — 2) as the minimal number of factors in a
transitivek-cycle factorization of clasa, with this minimum attained for minimal transitiveé €.
genus 0) factorizations. We now have the following corollary of Thed3e3rv.

Corollary 3.3.9. Fixn > 1and k> 2. If n = 1+ r(k — 1) for a positive integer r, then there are
n"~! minimal transitive k-cycle factorizations of the full cy¢lie2 - - - n). O

3.3.4 Differential Equations for Planar Polymaps

Having introduced properly labelled polymaps, we should now look for lgnpap analogue of
Theorem 2.5.1. Such a result would, at least, provide us with a reeuzsimputational scheme for
evaluating the serieg, for allm > 1.

To prove Theorem 2.5.1, we considered the effect of deleting the ddgeramal label from
a face-labelled map. Since an edge is incident with at most two faces, its ded@tier separates
a map into two maps, or merges two faces into one. Our proof of Theoremcamé from an
analysis of these distinct cases. Analogously, we should now studyfdue ef deleting polygons
from face-labelled planar polymaps. (Vertex labels can be ignored twewvif Proposition 3.3.6.)

Let .# be a planar polymap with two faces. Clearly no polygon#fcan border more than
two faces, so the removal of any polygon leaves either two cacti, or ascastlia smaller two-face
polymap. This decomposition leads to a recursive differential equatiotvingo(3.12) as initial
data. Solving this equation yields an expression¥g(x, p, u) that generalizes Corollary 2.5.4.
The derivation is similar to that of the earlier corollary, but is not include lecause we shall
obtain the result through different methods later. (See Corollary 3.3.15.)
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Figure 3.12: Complicated polymaps.

A&

For polymaps with three or more faces, a cursory analysis reveals cotiggic#hat did not
arise in Chapter 2. Consider, for example, the polym#@pshown in Figure 3.12A. Lef; be the
triangle (3-gon) of # with labeli, for 1 < i < 8. Observe that some triangles, such/gs are
incident with only one face, some are incident with two faeeg,(As), and some are incident with
three facesd.g, Ag). Thus deletion of a triangle can result in one, two, or three polymaps, and
faces of.# can be merged in complicated ways in the process. This makes it quite diffi&ek o
track of descents. For example, removalAgf results in two polymaps; the outer face of one of
these inherits descents from faces 2 and #6fwhile the outer face of the other inherits descents
only from face 2.

In general, removal of k-gon incident withj faces results in a collection & j + 1 polymaps
(some of these may consist only of a single vertex), and the possible tinesabetween &-gon
and its ambient polymap grow more complex for larger valuek.ofor instance, consider the
removal of the octagon from the polymap of Figure 3.12B. This leavesdolymaps (one of these
consists of a single vertex), each with only one face. Clearly some desoridf the incidences
between these polymaps and the original must be recorded if the deleta@spiis to be reversible.

Significant progress has been made on this problem in [31], though plee isawritten entirely
in terms of minimal transitivé-cycle factorizations, and not their associated polymaps, as is done
here. To describe the results contained therein, some notation is regemekl.> 2, let W, «(X)
be the series obtained by setting= px = 1 andp, = 0, fori # k, in ¥ (X, p, u). For instance,
(3.12) and (3.15) imply that

d
X&‘I’Lk(x) =S5,
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wheres € Q[[x]] is the unique series solution of the functional equation
s=x€e . (3.16)

Of course, ¥, x counts minimal transitivé-cycle factorizations of permutations composedrof
disjoint cycles.

The main result of [31] is a recursive differential equation satisfied bysitecialized series
Ynk(X) form > 1, wherek > 2 is fixed. Wherk = 2, the equation coincides with that given
in Theorem 2.5.1. However, for genelal> 2, the terms of the equation are indexed by certain
two-coloured trees ok edges, which themselves correspond to factorizations of full cycl€s.in
In our language, these trees parameterize the possible incidenckgyohan am-faced polymap.
The equations are solved easily whan= 1, 2, but significantly more effort is required to obtain
W3 . Form > 4 the expressions involved appear intractable. Thus the following paesaltris
currently the best that is known. (The formula 85 (X) given in [31] is off by a factor ok — 1.)

Theorem 3.3.10.Fix k > 2. Let s be defined as {{3.16) let § = s(x;) fori > 1, and set

Fik(s) =1,
Fox(st, 2) = (K — 1) (he_2(s1, 2))?,
Fak(S1, S2, %) = (Mk_3(S1, %2, S) + (K — Dhay_a(S1, S, )2,

where h(z, ..., zyn) is the complete symmetric function of total degree j. Foenl, 2, 3, we
have
m 3 m-3 m dS
Wik () = [ Y xi— Fnk(St. -0 s [ [ X (3.17)
- 0% i=1 dx
O

Whenk = 2, we haveF;x = F,x = Fsx = 1, and the theorem is seen to be a special case
of Theorem 2.3.9. It is conjectured that, for suitable symmetric polynorfiglsdependent on the
parametek, the identity (3.17) holds for ath > 1.

The methods employed in [31] are generally more transparent when eteuign the context
of polymaps, but no real progress has been made by this change ofWmwexpect that it should
be tedious, but not fundamentally difficult, to extend the proof of TheoBeilO to obtain an
expression forz(x, p, u). This work has not yet been done. The only higher genus analogues
known for any of these results are those that can be obtained throegialgzation of the arbitrary
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Polymap.# Core. ¢ BranchC

Figure 3.13: The core of a polymap and one of its branches.

genus extension [58] of Theorem 3.2.9.

3.3.5 Pruning Cacti

Since cacti are the natural polymap analogues of trees, it comes agpnigestinat the tree pruning
bijection generalizes to the pruning of cacti from polymaps correspondingcle factorizations.
The necessary definitions and constructions are essentially the samsegitiem earlier.

Definition 3.3.11. A leaf of a polymap is a polygon that shares exactly one vertex with another
polygon. A polymap ismooth if it does not have any leaves. If the polymaf is not a cactus,
then iteratively removing the leaves.@f results in a unique smooth polymap that we call ¢tbee
of .# and denote by#°.Labels of # are inherited by.#° in the obvious way.

Let .# be any polymap that is not a cactus. Lebe a polygon of# that shares only one
vertex,v, with the coreZ°. Let F be the unique face o## incident with p. Separating from v
results in two components, one of which is a rooted caCtusose root vertex is incident only with
the polygonp. (If .# is vertex-labelled, then the non-root vertice<oare labelled, but its root is
not.) The cactu€ is called abranch of faceF, and the polygormp is its stem We say that vertex
is thebase vertexof this branch. IfF¢ is the face of#° corresponding td-, then the corner ofF ¢
at which p was attached is called thrase cornerof C. See Figure 3.13 for an illustration of these
constructions, where the arrow indicates the base corner of b@nch

If the boundary walks of# can be normally indexed, then threlexof the branclC is defined
exactly as before. SuppoBé hasd descents and I€tvg, &), .. ., (vk, &))° be its normally indexed
boundary walk. Lete, 1, v, &) be the base corner &, where 0< b < k. Then(e_1, p, &)°
is a subsequence of the rotator @f and is therefore increasing. However, by Lemma 2.6.5,
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Figure 3.14: Pruning cacti from a polymap.

(ej_1, p, €)° is increasing for exactlyl values ofj with 0 < j < k, sayj; < --- < jg. The
index of C is the unique value df € {1, ..., d} such thatj = b.

With these definitions, the tree pruning bijection (Theorem 2.6.7) is readily @éedktio a cactus
pruning bijection for polymaps, as follows. Le# be a properly labelled genug polymap of
descentclass = (ay, ..., am), and letd = (04, ..., 6) be the descent class ¥ . For 1< s <
mand 1<i < 6, let B} be the set of all branches of indein faces of .#Z. Assemble all the cacti
of B} into a single rooted cactu3’® by identifying their root vertices, and then & be the ordered
forest(Ci, ..., C3). This gives a reversible decomposition.#f into the smooth polymap#° of
descent clasg and them-tuple (¥4, . . ., F,) of ordered forests of rooted cacti. See Figure 3.14 for

an example of this decomposition.
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Definition 3.3.12. For a vectori = (i,, i3, ...) of honnegative integers and a compositionlet
$(6; i) denote the number of smooth, properly labelled, genus g polymapsadrteclass: that
have polygon indek For fixed m> 1, let

ur®

rPEzpuw=>Y > > 06;)p am

k>1 i>0 6k
£(0)=m

be the generating series for the numb¢&(©; i) : £(6) = m}, wherez = (z, ..., zyn) and
r{i) =iz +iz+---. We typically writel'y, for the genus 0 serieg?.

Proposition 3.3.6 implies the genus 0 seiligscan generally be viewed as the generating series
for smooth planar polymaps witi labelled faces.

The cacti pruning bijection described above leads to the following polymaprgkzation of
Theorem 2.6.10. Its proof is essentially identical to that of the earlier thediee only change
being that the tree series of Chapter 2 is now replaced by the generaiggyfse rooted cacti.

Theorem 3.3.13.Fori > 1, letw; = w(X, p, U), wherew is given by(3.15) Then, for g> 0 and
m > 1 with (g, m) # (0, 1), we have

VO (x,p,u) =P w, p,w, (3.18)

wherex = (Xg, ..., Xm) andw = (wyq, ..., wm).

Proof. Let C be the set of vertex-rooted cacti with labelled non-root vertices. Uiigniipe poly-
gons incident with the root of € C leaves a collection of rooted cacti whose root vertices are
unlabelled and incident with only one polygon. The seties w(X, p, u) counting such cacti was
derived in §3.3.3. In particular, (3.13) implies tlif™ e Q[u, p][[ x]] is the generating function
for C, wherex marks labelled vertices.

Each of the forest§, ..., ¥, obtained through the pruning bijection is comprised of cacti
belonging toC. The proof now proceeds exactly as it did for Theorem 2.6.10, ugtig*’) as
the generating series of the for&tfor 1 <i < m. O

For example, note that this theorem anticipates the appearance in The8t&éthd the series
s, which counts rooted cacti all of whose polygons lergons. Indeed, witli"m, () defined in the
obvious way, (3.18) gives the identityy, (X1, . . ., Xm) = C'mk(St, ..., Sn) forallm > 2,k > 1,
wheres = s(X;).
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In what follows, the symbols andP are defined as in (3.15) and (3.14). Thatise Q[p]I[ Z]]
is given byP(2) = } -, pZ<1, andw = w(X, p, u) is the generating series for rooted cacti, im-
plicity defined through the functional equatian= xe&'"®)_ Implicitly differentiating this equation

yields d
w w
e A
Xax 1—uwP’(w) waw. p. W, (3.19)
where we have defined the series Q[u, p][[ Z]] by
&'(Z u) — ;
PW=9T uzP()’

Dependence of these series pandu will be assumed, and we shall henceforth writéx) and
&(2) for w(x, p, u) andé(z, p, u), respectively, whenever it is convenient to do so. Alsojforl,
we define the symbols;, &, P, andP/as follows:

w=w(x), &=&w) RA=Pw), and P =P

Thus, for instance (dwi /dx) = wi& = wi /(1 — uw; P)).

3.3.6 Two-Face Smooth Planar Polymaps

We now show how the methods of 82.7.1 can be extended to enumerate sniaadi, properly
labelled, two-face polymaps. With Theorem 3.3.13, this leads to an expndesid, (X1, X2, p, U),
the series counting minimal transitive cycle factorizations of clagsn,) with respect to cycle
index.

Theorem 3.3.14.

71—2 ) _U(le(Zl)—22P(22)>

l2(21.22.p. W) = log <21e—u Pz1) — z,e-UP2) 2 -2

Proof. We interprefl, as the generating series for smooth planar polymaps with two labelled faces.
Let.# be such a map, say withdistinctly labelled polygons. Observe that is simply a closed
chain of polygons, each incident with exactly two others. Uet...,I,)° be the cyclic list of
polygon labels encountered along the boundary walk of face 1, angl set 1, j») if the polygon
labelledl; is a(j1 + j2)-gon that hags — 1 vertices incident only with facg fors = 1, 2. Then#

is completely described by the cyclic sequetdgeys, ..., |, )°. We say that a vertex incident
with only one face isnternal to that face; all other vertices are said toéberemal For example,
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Figure 3.15: A smooth, planar, two-face polymap.

the polymap shown in Figure 3.15 corresponds to the sequence
(1,(1,1,3(21).5,3,3),2(1,2),4,(3, 2)".

Extremal vertices are coloured white in the diagram.

Clearly all vertices internal to a given face are at descents of that Tdwrefore, temporarily
ignoring its incident extremal vertices, a polygon wjth- 1 vertices internal to facg fors = 1, 2,

111J21

contributesupj, 1,2 to the seried",(zy, 25, p, U). Sum overjy, j» > 1to define

-1 k—1
-z P(z1) — P(22)
5= 3 up.pz 2 1—u2pk< : >:—

i1.j2>1 k=2 a-2 a-2

The sole extremal vertex incident with polygdns, andl; is at a descent of face 1 {f_4, i) is a
fall of the cyclic permutatioril4, ..., 1;)°, and at a descent of face 2 otherwise. By Lemma 2.7.1,
we therefore have

X—=Yy
I'2(z1, 2, p, u) = log <m)

-7
= log <—z e ezla) .
X=216, Y=226 1 2

Rearranging this expression using the identities

28 = U <21P(21) - 22P(22)> CUP@Zy). 26 —u <21P(Zl) - Zzp(Zz)) uP@)
21— 2o 2 —2p

gives the desired result. O

Corollary 3.3.15.

d d P— P2\ [wiP] — waP}

0X1 0Xo w1 — W2 w1 — Wy
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Proof. Let W, = W, (X, X2, P, U). Then combining the above result with Theorem 3.3.13 and (3.15)

immediately yields

\I/2=Iog(

w1 — W2 uwlpl_w2p2
X1 — X2 w1 — Wy ’

Differentiating, and simplifying using (3.19), gives

o P,— P X
Xy 2 _ w1 (1+ UE Wy 1 2) _ 1 ’
0X1 wq — W2 w1 — W2 X1 — X2
ow P.— P X
X5 2 _ w2 (1+ UEsws 1 2) _ 2 .
0Xo wo — W1 w1 — W2 Xo — Xo
Adding these expressions results in
J 9 - P —P
X1— 4+ Xo— | V2 = Uwiw> b1~ &2 ! 2 . (3.20)
0Xq dXo w1 — Wy w1 — Wy
Observe tha§; — & = u&1&>(w1 P — w,P,) to complete the proof. O

As a special case of Corollary 3.3.15, we can quickly derivarthe 2 case of Theorem 3.3.10.

Corollary 3.3.16. Fix k > 2, and define = Q[[x]] as in(3.16) Then

9 B ds ds
— — |V =(k -1 (h_ 2 —
(Xlaxl + Xzaxz) 2.k(X1, X2) = ( ) (hk—2(s1, &) Xlxzdxl 0%’

where g = s(X;) and $ = s(X»).
Proof. Setp; = 0fori # k, andu = px = 1 in Corollary 3.3.15. These substitutions redugeo

s, P tosh wi P/ to (k — 1), andwi & to x;(ds /dx). Thus

d d st g2 ° dsds
(Xl_ + X2—> Wo i (Xg, X2) = (K—1) T X

0X1 X2

and the result follows. O

3.3.7 Attaching Digons to a Polymap

The material of 82.7.2 is readily modified to describe the addition of digoas4-gons, or fat-
tened edges) to a polymap. Indeed, Fetbe a face of the polymap# with boundary walk
((vo, &), - .., (v, &))°, and letc; = (g_1, v, &) andc; = (ej_1, vj, ) be distinct corners of
F. Letg € R be distinct fromey, ..., &. If (6_1, 9, &)° and(gj_1, vj, €)° are both increasing,
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A

Figure 3.16: (A) A polygonal path. (B) A two-face polymap with a tail.

then the polymap# & (¢, c,—)gt is created by first attaching a digon labellgdetweenc; and

cj, and then assigning labedsandt, respectively, to the faces of the resulting polymap containing
corners(g, vi, §) and(g, vj, €)). Since the descents & are split between these two faces, the
proof of Lemma 2.7.6 remains valid in this setting.

These observations can be used to give a bijective proof of Corollar{zthat exactly mimics
our earlier proof of Corollary 2.7.13. The method is outlined below. We esipédhat the bulk
of the work has already been done, in 82.7.3. In particular, the genatate of our proof of
Theorem 2.7.11 makes it applicable in the current context, essentially withange. We need
only define suitable polymap generalization®afered pathsindtails.

Let(gi, ..., q) be alist ofl distinctly labelled polygons. Choose two distinct vertices of each
of these polygons, calling one thep and the other thbottom, and join the polygons in the plane
by identifying the top ofy; with the bottom ofg;, 1, for 1 <i < I. This results in a cactus composed
of | polygons, each incident with at most one other. Now distinguish the bottamarid the top
of g by colouring them white and grey, respectively. We call the resulting tsirei@n (ordered)
polygonal path of lengthl, and refer to the white and grey vertices asdtgls For example,
Figure 3.16A shows a polygonal path of length 6. Taking cyclic symmetry iotount, there are
k — 1 ways of choosing the top and bottom df-gon once its head is chosen. Therefore

! 1
k-1) _ — _
y4 § ( E (k — DHupz > = Z(l— uzP(z)) =252 -1 (3.21)

1>1 k>2

is the generating series for polygonal paths of length at least oneewhwarks vertices, and and
u record polygon index and labelled polygons, as usual.

As a natural extension of Definition 2.7.9, we say a polym#phas atail in face F if either
(1) .# is smooth and a vertex at a descentohas been coloured grey, or (2¥ contains only
one branch, which is a polygonal path in fd€evhose white end is the base vertex of the branch.
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For example, the two-face polymap shown in Figure 3.16B has a tail in fadésihg (3.21), a
derivation similar to that of Lemma 2.7.10 shows the counting series for plafanpps withm
labelled faces and a tail in faceo be

B
§(z)z a—zil“m(z, p, u). (3.22)

Unsurprisingly, polymaps with tails of fixed descent class can be comstidiom polygonal
paths by the addition of a polygon, as follows. Bix= (6, 6,) = n. Let & be a polygonal path
containingn vertices, letx be distinct from the polygon labels ¢?, and letd,, d, be any nonneg-
ative integers. Now let the sole faéeof &2 have boundary walk(vo, &), ..., (vk, &))°, wherevg
andv, are the white and grey ends &, respectively. For G i <k, let¢i = (g_1, vj, §). This
setup is illustrated below.

m m-1
2 (ad
CO C
)
N
k vcm+ 1

Clearly F hasn descents andy € Ag (1), S0 Lemma 2.7.6 guarantees a unique cocner Ag (1),
with 0 < r <k, such that the two-face mag = & @ (o, cr)Q,2 is of descent clas®, n — 6;) =
(61, 62). Stripvg of its colour and, ifr £ m, colour the bottom of the polygon incident with edge
e white. Then# is of descent class and has a tail. Finally, observe that can made to be of
descent clas@;+d;, 62+dy) simply by transforming the newly added digon int@a+d,+2)-gon
with exactlyd; of its vertices incident only with face fori = 1, 2.

Example 3.3.17.The polygonal patl®? in Figure 3.17A contains 17 vertices, and the crosses mark
the corners at which a digon labelled= 5 could be attached to this path. The enlarged cross
indicates the unique cornesuch that? & (cy, c)i2 is of descent clasg, 10) &= 17. The polymap
Z & (Co, c)iz, itself, is drawn in Figure 3.17B, and crosses there mark the 7 descefatseot.
Notice that transforming the additional digon into a 7-gon results in the polyrhdpseent class
(10, 12), with a tail, shown in Figure 3.16B.

Similarly, the polygonal path in Figure 3.17C has 15 vertices. Crosses ratkrs at which
a digon labelledv = 3 could be attached, and the large cross is the unique such corner at which
attachment yields a polymap of descent cl@%$) = 15. This smooth polymap with a tail is shown
in Figure 3.17D. 0
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Figure 3.17: Creation of a two-face polymap with a tail.

The correspondence?, i, di, dp) — .4 described above is a straightforward adaptation of
the bijection2, defined in Theorem 2.7.11. Modifying that proof in the obvious way shibzts
this correspondence is a polygon-preserving bijection between plahangps of descent class
(61+d1, 62+ dy) with a tail, and polygon-labelled structure®’, A, d;, dy), whereZ? is a polygonal
path orp; 46, vertices anda, d, do) describes a labelledl; +d,+2)-gon. Therefore, from (3.21),
we see that” contributes the factor

§(z1) —§(z2)

21— 2o

22— 1o AT (z; 21,20 = 2125

to the series for two-face polymaps with a tail, while d;, d;) induces the factor

k-1 k-1
dr 2~ % P(z1) — P(z)
E UPg1a,0 022572 = U E " —u .
Poy+d+221 25 p 21— 2, 21— 2,

d1,d2>0 k>2
From (3.22) there follows

P(z) — P(z2) §(z1) —§(2z)

-2 71— 2p

0 0
<21§(21)8—Zl + 225(22)8—22) ['2(z1, 22, p, U) = Uz 2

Finally, observe that (3.19) impliasig(wi)ﬁ = X 337. Hence (3.20) is obtained by replacing
z; with w; in the expression above and applying Theorem 3.3.13, and our alternafeop Corol-
lary 3.3.15 is complete. Of course, the advantage of this proof is that insssigple combinatorial
meaning to each of the factors appearing in (3.20).
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Figure 3.18: Creation of three-face smooth polymaps.

Smooth three-face polymaps can similarly be built by attaching digons to theeagslygonal
path, as shown in Figure 3.18A. However, not all smooth three-facenaqyg can be created in this
way. For example, this construction does not account for those magzag a polygon incident
with all faces, such as the one drawn in Figure 3.18B. This is the same cotigplithat was
discussed in §3.3.4, and it makes the quest for a polymap analogue dfa@oBo7.16 technically

involved.

3.3.8 Additional Notes

The failure of Proposition 3.3.6 in positive genus is reflected by the lackoytke factorization
analogue of Proposition 2.4.15. In fact, there exist transitiggcle factorizationd = (oy, ..., 01)
such thatf = (po;p~ 2, ..., porp~t) for permutationse other than the identity. For instance,
consider the transitive 4-cycle factorization

(15472638=(1728(3546(1324.

Notice that each of the three factors on the right-hand side is invariaet wodjugation by =
(12(34(56)(78). Incidentally, this factorization is of genus 1, and was obtained by assgignin
vertex labels to the rightmost polymap in Figure 3.10. Proving the genus O faatl@rization
analogue of Proposition 2.4.15 directlye( working only within the symmetric group) seems to be
tedious.

Theorem 3.3.7 has also appeared in [65], where Springer derivgaigtibg the same decom-
position of factorizations into cacti as we do here. He counts these castppf a bijection that
generalizes Rifer's [59] encoding of trees.
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3.4 The Double Hurwitz Problem

Recall that thedurwitz Enumeration Problepstudied extensively in Chapter 2, asks for the number
of genusg factorizations of a fixed permutation into transpositions. In this final secfi@hap-
ter 3, we discuss a particular generalization of this question known &xiliele Hurwitz Problem
Formal definitions will be given below, but the distinction between the probismpgite simply put
as follows.

Rather than counting factorizatioms = ;... t; of a permutationr into transpositiong;,
we now count factorizations = o7, --- 11, Where again the; are transpositions, but the last
factor o is forced to be of some fixed, but arbitrary, cycle type. Factorizatiorthisfsort have
geometrical significance in terms of ramified coverings of the sphere. isexlin §2.3.6, a genus
g factorizationr = ot --- 71 In &, corresponds to an-sheeted branched covering of the sphere
by a Riemann surface of of gengswith r 4+ 2 branch pointq0, oo, Py, ..., P} having simple
branching over thé%, and branching over 0 ansb specified by the cycle types af ando. See
also the Additional Notes at the end of this section.

3.4.1 B-Factorizations

Letr € 6, andB F n. A B-factorization of r is a transitive factorizatiotto, 7, ..., 77) of &
such thato € %% and eachy; is a transposition. We allow = 0, but note that only the trivial

factorizationr = o of a full cycler is possible in this case. As a nontrivial example, consider
(12345678910 =(165(27(34109(8) - (48(17(28(46)(29(69). (3.23)

This is a(4, 3, 2, 1)-factorization of(12345(6 7)(8)(9 10 of class(5, 2, 2, 1). Notice that (3.3)
givesr = £() + £(B) + 29 — 2 for aB-factorization ofr of genusy. Thus the factorization above
is of genus O.

Definition 3.4.1. Letw, B be partitions, and let g~ 0. Then we write (o, g) for the number of-
factorizations of genus g and clagsand we let j(«, ) denote the numbéei(a) +£(B8) + 29— 2 of
transposition factors any such factorization contains. The numbg(s,8) are known aslouble

Hurwitz numbers.

The double Hurwitz numbers are symmetrical, in the senseHgat, g) = Hg(8, o) for all
partitionse, 8. This is immediate from the fact that= o1, - - - 71 is equivalentter = 7ty --- 17
Also, sincet = o1, --- 11 ifand only if 6™ = 7, - - 71, the double Hurwitz numbely([1"], @)
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Figure 3.19: The hybrid map of a double Hurwitz factorization.

is equal to the (single) Hurwitz numbef,(«), for which we have the simple formula of Theo-
rem 2.3.3. (Note that genus is preserved becayge [1"]) = ¢(a) + N+ 29 — 2 = rg(a).)
Thus far, we have seen how to evaluate only one other special classldedHurwitz numbers. In
particular, we have the formula

sby—1 ((B) — 1!

Ho((n), B) =n 3.24
otm- | Aut(B)| (324
for arbitrary 8 = n, which comes from specializing Theorem 3.2.9.
3.4.2 Hybrid Maps
Let f = (o, 1,..., 1) be ap-factorization, wherg8 = [1”2...]  n. Then the reduced

polymape//{;r hasr digons distinctly labelled ,1..,r, and, for each > 1, exactlyb; i-gons
labelledr + 1, where a 1-gon is interpreted as a vertex not incident with any polydtms caveat
is an artifact of our elimination of loops.) We call a polymap with this structunglaid map of

polygon type . The rationale behind this terminology will be made clear momentarily.

The hybrid map of polygon typg = (4, 3, 2, 1) corresponding to thg-factorization (3.23) is
shown in Figure 3.19A. Notice that no information in the diagram is lost by raggsmng the labels
of the polygons with maximal labeHl- 1 = 7, and flattening the remaining labelled digons to edges,
as illustrated in Figure 3.19B. This is true in general, and we shall always laybrid maps in this
simplified manner. Thus a hybrid map of polygon typeappears to consist df(8) unlabelled
polygons (including 1-gons) joined together by distinctly labelled edgeat iShhybrid maps are
essentially hybrids of polymaps and the edge-labelled maps of Chapter 2.

We slightly alter our terminology to reflect this view of hybrid maps. Byadygon of a hybrid
map.# we always mean either a polygon with maximal label, or a vertex not incidentamigh
such polygon. Vertices of this sort are also callegons We refer to the remaining digons of
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as itssimple edges Thus every vertex is incident with a unique polygon, and every simple edge
is incident with one or two (white) faces. Finally, it is both convenient arghestive to regard

the polygons of a hybrid map, and their bounding edges, as havingdabdlhis reflects the fact
that the polygons of hybrid maps are always maximally labelled, and sugbastsur interest lies

in the labelling of simple edges. For the purposes of descent struetuig,interpreted as some
fixed integer larger than all other labels. For example,rtiator of vertex 4 in the hybrid map

of Figure 3.19B i93, 6, c0)°, which is, of course, increasing. The list of edge labels encountered
along the boundary walk of the outer face of this mafRiso, oo, 3, 0o, 00, 5, 00)°, so the outer
face has 5 descents.

The following result is an immediate consequence of Theorem 3.2.8 andcithragntions.

Theorem 3.4.2.Leta, 8 = n and g> 0. There is a bijection betweestfactorizations of genus g
and classr, and vertex-labelled hybrid maps of genus g with descent partitiand polygon type
B. Under this bijection, a factorizatiofv, z;, ..., 11) of = corresponds with a hybrid map with n
vertices£(8) polygons, and r simple edges, whose descent cycles coincide witltcteg afyr. [

If the faces of a hybrid map are labelled, then we speak digtssent classather than its descent
partition. A vertex- and face-labelled hybrid mag is properly labelled if it is of descent clasa
and the face labelleshas descent séls(«), for 1 < s < m. The next definition should, by now,

be familiar.

Definition 3.4.3. For a partition 8 and a composition, let My (o, ) denote the number of properly
labelled genus g hybrid maps of polygon typand descent class. For fixed m> 1, let

Xa urg(a»ﬂ)

OPx.qw=> > > Mol P o1 e Y1

n>1 gkn ofEn
£(a)=m

be the generating series for the numbgvk (o, B) : «, B - n, £(e) = m}, whereq = (qs, O, .. .)
andx = (X1, ..., Xm), and where g = gg,qg, - - - for the partitiong = (B1, B2, ...). We typically
write ®p, in place of©@ Q.

Notice that@,(ﬁ” (X, g, u) is naturally exponential in the indeterminates. . ., Xm, which mark
labelled vertices in faces, 1.., m of a properly labelled hybrid map, and alsounwhich marks
labelled simple edges. The symmetrized Hurwitz selig8 (x, u) of Chapter 2 is acquired from
0 (x, g, u) by settingg; = 1, andg; = O fori > 1.
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Vertex-labelled hybrid maps have no non-trivial automorphisms, so thegsfean be labelled
arbitrarily without obtaining duplicate maps. The proof of Theorem 3.3.2fthes applies, almost
verbatim, to conneg-factorizations with properly labelled hybrid maps. The resultis the following
analogue of Corollary 3.3.5.

Theorem 3.4.4. For any compositiox = (g, ..., ay) and partitiong, we have

Hg(er, B) = a1+ - - amrg(e, B! [X*qeu'e@P] 09 (x, g, u).
]

Since face-labelled hybrid maps with at least two faces do not admit niah&ivtomorphisms,
their vertices can be labelled arbitrarily without fear of duplication. T@l&%(x, g, u) can, for
m > 2, be regarded as the counting series for face-labelled hybrid mapsesjikeat to descent
class, polygon type, and labelled simple edges.

3.4.3 Hybrid Cacti

A hybrid cactus is a planar hybrid map with only one face. In what follows, we shall be eored
exclusively with vertex-rooted, vertex-labelled hybrid cacti. To avo@turelancy, we refer to these
maps simply asacti throughout. We further introduce the tesimple cactusto describe a cactus
whose root vertex is incident only with simple edges.(the root vertex is a 1-gon). Let =
?(X, g, u) andw = w(X, g, U), respectively, be the generating series for cacti and simple cacti with
respect to labelled vertices (marked %)y polygon type (marked byg), and labelled simple edges
(marked byu). The following combinatorial decomposition of cacti closely resembles thgiwen
in 83.3.3.

Let C be a cactus whose root is incident withlkegon. Then deletion of this polygon results in
an ordered listCy, ..., Cy) of simple cacti, as depicted in Figure 3.20. Thus we have Q(w),
where the serie® < Q[q][[ Z]] is defined by

Q@) =D gz~ (3.25)

k>1

It follows directly from the definition of9, that

d
x&®1(x, g,u) =9 = Q(w). (3.26)
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Figure 3.20: Decomposition of a hybrid cactus.

Now observe that if the root of a simple cactus is incident witlsimple edges, then removing
these edges leaves the root itself, together with a collectiom odoted cacti. Thereforar =
XY e Um0M/ml = xe”. Thus we find thatw is the unique series solution of the functional
equation

w = xe' W), (3.27)

Using (3.26) and (3.27), we may apply Lagrange inversion to obtain tHfaieets of the series
®1(x, g, U), thereby obtaining a formula fdty((n), 8) for arbitrary g + n. In fact, this work was

essentially carried out in Example 1.3.2, where we found that

nt®-1

| Aut(B)|

[gsu"x"] Q(w) =

Combining this result with Theorem 3.4.4 does indeed yield (3.24).

3.4.4 Pruning Cacti

A leaf of a hybrid map is a polygon incident with at most one simple edge, and a hyiaidis
smoothif it does not contain any leaves. As usual, leaves (and their incident sedpgkes) can be
iteratively removed from any hybrid mag#Z which is not a cactus to produce its uniqgue smooth
core, . ©.Branches of# and their indices are now defined as before. (That is, branchesrie s
cacti whose roots are unlabelled and incident with exactly one simple edges) p&imits the
pruning of cacti from a properly labelled hybrid mag, with similarly indexed branches of each
face being removed fromv and joined at their roots to produce forests of simple cacti. These
forests, together with the smooth mafs©, completely specify# .

This familiar process is illustrated once more in Figure 3.21. Notice that fadehk dybrid
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Figure 3.21: Pruning cacti from a properly labelled hybrid map.

map shown there has no branches, so all focus on face 2. Its bssareh@isplayed along with their
indices. Also shown are the three simple c&#j C3, C2 that are formed when similarly indexed

branches are joined together.

Mimicking the proof of Theorem 3.3.13 leads to the following expected reddftcgurse, the
rooted cactus series used in the proof of Theorem 3.3.13 is to be repl@beithe simple cactus
seriesw defined through (3.27).)

Theorem 3.4.5.Let §(«, B) be the number of smooth properly labelled genus g hybrid maps of
polygon type3 and descent class. For fixed m> 1, set

u g(“ B)

ARG W= > > S ﬁ)qﬁa'r( B

n>1 BkEn afEn
£(a)=m

Fori > 1, letw; = w(x,Q, u), wherew is given by(3.27) Then, for g> 0 and m > 1 with
(g, m) # (0, 1), we have
O (x, g, u) = AP W, q, u),

wherew = (wq, ..., wWm). O

We shall be concerned exclusively with the genus 0 series, and wyjitéin place of AQ.
Throughout the remainder of this section, we use the symbalsdQ as they are defined in (3.27)
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e

A

Figure 3.22: (A) A hybrid path. (B) A two-face hybrid map with a tail.

and (3.25). Implicit differentiation of (3.27) gives

dw w

Xa = m = wé(w, q, U), (328)
where the series € Q[u, q][[ Z]] is defined by
T P (3.29)
§(z,q,u) = TZQ(Z) .

Dependence of these seriesgandu is assumed, and generally suppressed. Note the close simi-
larity between these definitions and those of the same symbols in §3.3.5.

3.4.5 Combinatorial Constructions for Smooth Hybrid Maps

The material of 82.7.2 is again easily extended to allow for the addition of simgk=sed a hybrid

map, and hybrid map analogues of all the results recorded in §2.7 aily r@atdined. These are
described briefly below. As was the case in §3.3.7, the work reducesing guitable hybrid map
analogues of ordered paths and tails.

Letn > 0 and let(l4, ..., I,) be alist ofn distinct positive integers. Ldtp,, ..., phy1) be a
list of n + 1 polygons in the plane, possibly including 1-gons.(single vertices). Distinguish one
vertex of each polygon as itep, and a second as itottom. Here we allow the top and bottom
of a polygon to coincide. For k i < n, attach the top ofy to the bottom ofp;,; by a simple
edge with label;. This results in a hybrid cactus containing+- 1 polygons, each incident with at
most two simple edges. Distinguish the bottormpefand the top ofp,1 by colouring them white
and grey, respectively. We call the resulting structure an (ordérgatjd path of lengthn. For
example, Figure 3.22A shows a hybrid path of length 4, created from th@)it1, 3). Because
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Figure 3.23: Construction of two-face hybrid maps with tails.

of cyclic symmetry, there adeways of choosing the head and foot df-gon. Therefore the series

n+1
Zu”(qukzk) _ Q@ %(S(z) -1 (3.30)

n>0 k>1 1- UZQ(Z)

counts hybrid paths, wita marking verticesy marking labelled simple edges, agdrecording
polygon type.

We say the hybrid map# has atail in face F if either (1) .# is smooth and a vertex at a
descent of has been distinguished, or (2§ contains only one branch, which is in faEgand is
a hybrid path of length at least one whose white end is the base vertexlwitieh. For example,
the two-face hybrid map shown in Figure 3.22B has a tail in face 1. Note teawvhite end of a
hybrid path forming a tail is always a 1-gon, and that such a path caeraftlbngth 0. Therefore,
by (3.30), we find that the serie - %(g(z) — 1) = z(¢(2) — 1) counts hybrid paths of this type.
Thus the series counting planar hybrid maps witlabelled faces and a tail in faces

ad
f;:(Zi)Zi a_ZiAm(Za q’ u) (331)

See the proof of Lemma 2.7.10 for further details regarding this derivation.

Attaching a labelled simple edge from the white vertex of a hybrid path to any ofties ver-
tices plainly results in a planar two-face hybrid map with a tail. This is illustrated inr€ig.23,
where a simple edge labelled 4 is attached to a hybrid path containing 15 veotiobtain hy-
brid maps with tails of descent classgs 10) and (10, 5). The following generalization of Theo-
rem 2.7.11 ensures that this process faithfully produces all such maps.
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Theorem 3.4.6.Fix 6 = (61, 62) = n. There is a polygon- and edge-preserving bijection between
planar face-labelled hybrid maps of descent claswith a tail, and edge-labelled pairé., &)
wherel is a simple edge ané is a hybrid path containing n vertices.

Proof. Let (A, £?) be a pair as described in the theorem. (@}, ), .. ., (v, &))° be the bound-
ary walk of the sole facek, of 22, whereuy is its white end ande, A, €)° is increasing. Notice
that definingvg as the white end a#” is not enough to uniquely define an indexing of the boundary
walk of F, since this vertex may appear more than twice in the walk. However, the acdlitiomn-
dition that (&, A, &)° be increasing makes the indexing well-defined. Nowmdbe the minimal
positive integer such that, is the grey end of?, and follow the proof of Theorem 2.7.11. With
very few (trivial) modifications, it remains valid in this setting. 0

The following corollary appears in [36], though with a different praoinh that given here. See
the Additional Notes for further details..

Corollary 3.4.7. Letw; = w(X, g, u) and§ = &(w;) fori =1, 2. Then

w2 w

1
G -1+
w, — w2 W2 — Wi

0 0
Xi7— + Xo— ) ©2(Xg, X2, 0, U) =

™ % (62— 1.

Proof. By (3.31), the series on the left-hand side counts two-face hybrid mapsaviét. Now
follow the proof of Corollary 2.7.13, replacing the serimg (1 — uz) for ordered paths used there
with the series (3.30) for hybrid paths. The outcome is

9 9 1
(zlé‘(zl)a—zl + 225(22)8—2) A2(Z1,22,Q,U) = U - [G(S(Z) —1)oA%(z; 7, 22):|-

Apply Lemma 1.3.3 to expand the umbral composition, and then subsiifute z, fori = 1, 2.
The result follows from (3.28) and Theorem 3.4.5. O

We remark that this corollary can also be deduced by extending the mett&®2I3 d and §3.3.6
to two-face hybrid maps. Doing so yields

21— 2
z1€74Q@) — 7,e-UQ=)

A2(21, 22,9, u) = log ( ) —u(Q(z) + Q(22),

from which the corollary is immediately obtained by differentiation and an dpp&deorem 3.4.5.
Of course, three-face smooth hybrid maps can be built by adding two ldiséfigle edges to
a hybrid path, one extending from each of its ends. Figure 3.24 illustrasgsrtitess, with simple
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Figure 3.24: Construction of three-face smooth hybrid maps.

edges labelled 2 and 5 being attached to a path on 15 vertices in two diffexgsnto obtain smooth
hybrid maps of descent class@s 3, 8) and(3, 8, 4). The next theorem is surely expected; it shows
that the process just described creates all possible smooth hybrid map&/eh descent class, and
does so uniquely.

Theorem 3.4.8. For any fixedb = (01, 62, 63) = n, there is a polygon- and edge-preserving bijec-
tion between smooth, face-labelled, planar hybrid maps of descentglasd edge-labelled tuples
x, &, y), where, y are distinct simple edges an# is a hybrid path containing n vertices.

Proof. Modulo some obvious minor modifications, the proof of Theorem 2.7.14 remalitsin
this context. The most subtle alteration is that the indexing ), .. ., (v, &))° of the single face

of &2 should be chosen here so thatis the white end of?2, and (e, 1, &)° is increasing. This

is clearly always possible, and uniquely specifies the symilpoks. We now letm be the unique
index, with 0< m < k, such thaty, is the grey vertex of? and(en_1, ¥, €n)° is increasing. Note
that these conditions guarantee simple edges labgleudy can, indeed, be attached at corners
Co = (&, vo, &) andcm = (én—1, Um, €m), respectively. O

We quickly derive the following corollary, which again can be found in][36

Corollary 3.4.9. Letw; = w(X;, g, u) and§ = &(wj) fori = 1,2,3. Then

L& - 1.

w
Wi — wj

3
@3(X17 X2, X3, Q, U) = U2 Z 1_[

i=11<j<3
j#i
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Proof. Copy the proof of Corollary 2.7.16, replacing the sedeg(1 — uz) for ordered paths used
there with the series (3.30) for hybrid paths. This results in

As(Z1, 22,23, G, U) = U2(£(2) — 1) 0 AT(Z; 74, 22, Z3).

Now apply Lemma 1.3.3, replaag with w;, fori = 1, 2, 3, and apply Theorem 3.4.5 to complete
the proof. O

Finally, we mention that Theorem 2.7.17 also has a natural hybrid map araMfguonly state
the result here, since the proof is virtually identical with the one given eadie algebraic proof
can be found in [36]. Together with Theorem 3.4.5 and Corollary 3.4.9thkisrem shows that
®m(X, g, u) is a rational series iy, ..., wm, With no explicit dependence oq, ..., Xn. As with
Theorem 2.7.17, positive genus analogues are readily obtained.

Theorem 3.4.10.Fix m > 4. For any subsek = {A1,..., Ak} € [M], wherer; < --- < Ak,
definez, = (z,,,...,2,). Forl <i < m, setz; = 7. Also, for each i, let = &(z) and
0 = z& % and let?; be the set of all pairgy, A} with y, A c [m] such thaty N A = {i} and
y Ui =[m]. Then

m

d

SSAR@ G W =) Y AW A AL@ W+ )
i=1 {y,AleP 1<i,j<m

lylIA1>3 i]

Zj&i0i Am-1(Zj, u)
(z —zj) '

3.4.6 A Final Bijection

Form € G, andg > 0, letF,(r) be the set of all transitive factorizationsfinto transpositions.
We conclude this chapter with a bijection 6g(rr) that can be described nicely in terms of duals
of hybrid maps.

Letm € &, be of cycle types, and letf € Fy(). Then f is naturally associated with the
B-factorizationf’ = (771, ,, ..., r1) of the identity in&,, and hence also to the hybrid mag
corresponding td’ through Theorem 3.4.2. Note that is of descent class [], of polygon type
B, and contains simple edges. Now construct the dual mag* in the usual way, by placing a
vertex in each face and polygon o and attaching two of these new vertices by an edge if their
corresponding faces are incident with a common edgeirigsimple or not). The faces and edges
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of .#* inherit labels from the vertices and edges#fin the process. See Example 3.4.11, below,
for an illustration.

Let F be a face of# with boundary wallk((vg, €p), ..., (vm, €n))°, and letP be ak-gon of .#,
wherek > 2. LetvF andv® be the vertices of#* corresponding td= and P, respectively. Then
the rotator ofv™ is (e, ..., €)°. But (e, ..., &n)° is increasing, since# is of descent class 1,
so the rotator ob" is decreasing. Also note that no edge can appear twice in the boundargfwa
F, and the same is obviously true Bf This holds for all faces and polygons.ef, so every one
of its edges is incident with two distinct faces. Heng€ is a loopless edge- and face-labelled map
in which the rotator of every vertex corresponding to a (white) facezols decreasing.

Transform.#* into a hybrid map, as follows. First replace edge ldbefth r — 1 + 1, for
1 <1 <r, so that decreasing rotators are made increasing. Déldtem .~ * and form a polygon
from its neighbours in the obvious way; repeat this process for edghyqgoP of .# with at least
two vertices. Let#* be the resulting face-labelled hybrid map of polygon tgpeNote that.#*#
containsn vertices and (white) faces, and is therefore of descent clasg [1

Now shift the label of each face o#7* to the unique vertex that is at a descent of that face.
This transforms.#* into a vertex-labelled hybrid map whose polygons are labelled identically

with those of.#Z. Let (7%, 7/, ..., ;) be thep-factorization of the identity corresponding.t&*
through Theorem 3.4.2 and, finally, lét’ be the associated factorizatioy, ..., r;) of = into
transpositions.

Example 3.4.11.Let f be the factorization of = (1234(56789(10)(11) given below:
7 =((71)(56)(9 106 1D)(7 1HBHQ 10(16)(7912H(78)(1H(46). (3.32)

The hybrid map# corresponding to the associatéd4, 1, 1)-factorization of the identity is shown
in Panel A of Figure 3.25, on page 3.25. Panel B of the figure illustratesotietruction of the dual
*. The hybrid map#* is shown in Panel C, and from it we see that

7 = (46)(16)(78)(12)(89 (14 (8 10(23)(9 11)(19)(8 10(59)(6 11) (3.33)

is the factorizationf# of = associated withz*. O

The transformationf — f# defined above is clearly invertible and genus-preserving, and is
therefore a bijection fron¥y () to itself. We now introduce two statistics oy () that behave
well with respect to this transformation.



3.4 The Double Hurwitz Problem 141

Definition 3.4.12. Let f = (z, ..., 11) € Fy(,r), and let j € [n]. We say that pppearsk timesin

f if exactly k of the transposition factoeg are of the form(j |) for some e [n]. We say that | is
moved k timesby f if there are exactly k factors such thatrjzj_q - - - 70(j) # 7i_1-- - 12(j ), where

7p IS understood to be the identity. We writg f) for the set of symbols which appear k times in f,
and u( ) for the set of symbols it moves only once.

For example, we havei(f) = {2,3,5,8} andu,(f) = {1, 2, 4, 10, 11} for the factorization
f given in (3.32). From (3.33), also note thai f#) = {1, 2, 3,10, 11} andu.(f#) = {2, 3,5, 8}.
The fact thatv1 () = u1(f#) and|u2(f)| = |ao( £#)| is, of course, no coincidence.

Theorem 3.4.13.We havex(f) = ux(f#) forall f € F4(r) and k> 1.

Proof. Let f# = (¢/,...,1;), and let.# and.#* be the hybrid maps corresponding foand
f#, respectively. Fixj e [n], and letv andv”, respectively, denote the vertices.af and.#*
labelledj. Letv* be at a descent of fade of .#*, so thatv is the vertex of # dual toF. Let
((vo, &), ..., (vm, €n))° be the boundary walk df, wheregy is maximal amongsty, . . ., en. We
now prove thati € ax(f) is equivalent toj € pux( f#).

First note thatj € o (f) if and only if v is incident with exacthk simple edges in#. But the
rotator ofvis (r —en+1,...,r — e + 1)°, so this occurs precisely when either €)= oo and
k=m, or (2)ey # oo andk = m + 1. Sincegy > e, is the single descent ¢, we havey; = v*.
Hencer/tr/_;---71(j) # t{_,--- 71(j) holds precisely when € {ey, ..., &y} in the caseyp = oo,
whereas the condition holds fore {ey, €1, ..., en} otherwise. In the former cas¢, e pum( ),
while j € um1(f#) in the latter. Thereforg e u(f#) if and only if either (1) or (2), above, is
satisfied. O

A similar proof shows that we also havg(f*) = {(7(j) : j € u(f)}, and therefore
loac (%) = Ju(F)], for f € Fg(m). This is reflective of the obvious near-duality between
and f# induced by our constructions. In fact, we have the general ideptity’ = 7 f 71, where
the notation on the right indicates that each of the factork igfto be conjugated by .

Sincef — f*is a bijection orFy (), we get the following corollary of Theorem 3.4.13.

Corollary 3.4.14. |{f € Fg(m) : ax(f) =S} = |{f € Fy(w) : u(f) = S}|forall SC [n]. O

A factor of f € Jy(x) is called aconsecutive pairif it is of the form (j 7 (j)) for somej.
Consider the case where = (th_1, ..., 71) € Fo(rr) is a minimal transitive factorization of the
full cycle = € €. Since all factors off are joins, by Lemma 2.2.5, the consecutive pairé afre
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distinct. Whem > 2, we claim that the mapping+— (j 7 (j)) is a bijection betweep(f) and
the set of consecutive pairs 6f

Proof of claim: If j is moved only once by, then the unique factas such thatjzi_; - - - 71()) #
Ti_1---11(]) is clearly the consecutive pair = (j 7 (j)). If 7(j) were also moved only once by
f, we would haver?(j) = j, which is impossible since is a full cycle onn > 2 symbols. Hence
eachj € u1(f) corresponds with the unique consecutive gairr (j)) of f.

As noted above, all factors df are joins. So if; = (j 7(j)), thenj does not appear in factors
71, ..., Ti_1, andz (j) does not appear i1, ..., Th_1. (Otherwise,j andx (j) would not appear
consecutively, in that order, in the single cyclemof= t,_1---11.) Thus each consecutive pair
(j 7 (j)) of f corresponds with € p1(f). O

We remark that this claim is also evident through graphical consideratibn$. € F4(7),
then the symbols moved once lycorrespond with faces in the associated hybrid m#&pvhose
boundaries contain only one simple edge. Such an edge necessarilygosecative vertices of
a polygon, and therefore corresponds to a consecutive pdir i80 the mapping +— (j 7(j))
defined above is generally one-one, but not always onto. Howedem f is a minimal factor-
ization of a full cycle, then# is a planar map with only one polygon, and a simple edge con-
necting two consecutive vertices of this polygon clearly borders a fadegree 2 whose other
boundary edge is not simple. Thus, in this case, consecutive pafrsofrespond with symbols
moved only once. For example, the hybrid map corresponding to the fattorizl 2345678 =
26457 (25(78)(23)(16) is illustrated below. Its consecutive pairs d&3), (45), and
(7 8), and it moves symbols, 2, and 7 only once.

Proposition 3.4.15.Let = be a full cycle of&,, where n> 2. The number of minimal transi-
tive factorizations ofr containing the consecutive pait$; 7(j1)), ..., (jx w(jk)) is equal to the
number of such factorizations in which each of the symbols j, jx appears only once.
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Proof. This follows directly from the claim and Corollary 3.4.14. 0

Proposition 3.4.15 appears in [39], albeit in a somewhat different foam that given here. It
is stated in terms of a bijection between vertex-labelled trees and minimal trarfiagtieeizations
of a full cycle, through which leaves of a tree are matched with consecpaivs of a factorization.
The bijection is essentially a composition of a specialization of the correspoadetween factor-
izations and hybrid maps given here, and the bijection between treescadzations described
in 82.4.7.

3.4.7 Additional Notes

A great deal of information on the double Hurwitz problem is contained i, [B6luding a de-
scription of some conjectural links with intersection theory. For more on tBp dennections with
geometry, also see [35]. Using localisation theory and certain result&hfif8 shown there that
Faber’s intersection number conjecture [20] can be reduced to a stateonerrning genus 0 dou-
ble Hurwitz numbers. The conjecture concerns intersection theory of tdelnmspace of genug
smooth curves, and it is hoped that a combinatorial viewpoint will lead to a diaret proof.

Corollaries 3.4.7 and 3.4.9, and Theorem 3.4.10, are proved in [36]ghritie methods dis-
cussed in §2.5.2. (In fact, we simplified our description of those methodsbictiag to the single
Hurwitz case.) It is also shown there how to extract the desired coeffidierm ©,(x4, X,, 4, U)
and®s(Xy, X2, X3, 9, U) SO as to obtain an explicit evaluation of the double Hurwitz nunkbge, 8)
in the case thag$ - n is arbitrary andx has two or three parts. Finally, the representation theory of
C6, is used, as in 82.3.1, to give closed form expressionsif@(n), 8), for allg > 0 andg + n.

The bijection of [39] is phrased in terms of what are referred to theoérele chord diagrams
A circle chord diagram consists of a circle wittpoints on it, labelled .L .., n in clockwise order
around the perimeter, amd— 1 chords labelled 2. ., n that connect these points to form a tree.
Thus a circle chord diagram is simply an edge-labetied-crossing treen the circle; see [14, 55],
and also §4.4, for more on non-crossing trees. Notice that if a circle chagram is turned “inside-
out”, so that its chords lie on the outside of the circle, then the resulting steuciin be viewed as
a planar hybrid map with a singtegon (the circle) and — 1 simple edges (the chords).

A glimpse at the connection between factorizations and circle chord cavubd fn the work
of Cohn and Lempel [11]. They use a chord diagram induced by a tioleg, . . ., 7, of transpo-
sitions to determine a matrix whose rank is directly related to the number of cydies product
71 - - - Tn. Beck [3] later extended these ideas.
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Figure 3.25: The construction of7*.



Chapter 4

Inequivalent Factorizations

4.1 Introduction

The definition of factorizations as ordered tuples of permutations may bediasvsomewhat rigid,
as it distinguishes between factorizations that differ only trivially in the oodi¢heir factors. The
factorizationg34)(25)(35) (12 and(25)(34)(35)(12) of (12345), for instance, are considered
distinct, despite the fact that they share the same sets of factors, anddnel $& obtained from
the first simply by swapping the two leftmost (commuting) factors. We now relexntition of
sameness and consider the enumeration of factorizations up to an eoggvedéation induced by
commutation. Under this relation, the factorizations above will be deemedadeiiy

For the most part, we shall confine our discussions to cycle factorizat®imee two cycles
commute only if they are disjoint or equal, we adopt the following definition ofvedence.

Definition 4.1.1. Two cycle factorizations arequivalent if one can be obtained from the other by a
sequence of interchanges of adjacent, disjoint factors. We writegfto indicate that factorizations

f and g are equivalent.

Clearly,~ is an equivalence relation on the set of cycle factorizations. For exaon@esquiv-
alence class under this relation consists of the factorizations

{B34(29(35(12), 25B4BH(12), BH12H(12(@3Y),
29EH(12@3Y), (29(19(3B4H(39).

We shall occasionally use the symHboto denote the equivalence class containing the representative

145
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factorization f, but we typically speak of “inequivalent factorizations” rather thanufeglence
classes under”.

The broad goal is to determine the number of inequivalent cycle factomzatica fixed permu-
tation, subject to a variety of constraints, such as minimality, transitivity, getcidRelatively little
work has been done on this problem in comparison with the vast amount atuditeron ordered
factorizations. After describing in moderate detail the few results thatreoek, we show how the
methods of the previous two chapters can be modified so they are relevhistmew context.

4.2 Inequivalent Factorizations into Transpositions

As the title suggests, this section concerns only factorizations into transpasifibe ternfactor-
izationis used exclusively with this meaning throughout.

4.2.1 Minimal Factorizations

The study of inequivalent factorizations began with the work of Eidswi€§ fnd Longyear [49].
Both authors determined, through different methods, the number of wrsgni minimal factor-
izations of a full cycle into transpositions. Longyear’s analysis relied dinexct decomposition of
such factorizations to a canonical form, while Eidswick employed an inclesstgiusion argument.
Here we briefly describe only the work of Longyear, since it seems the matural of the two
approaches. (In fact, our description more closely follows a refinatitient of the method, found
in [32], than it does the original paper [49].)

Let [n] denote a minimal transitive factorization of the permutatiorit is shown in [49] that,
forany f = [(12--- n)], wheren > 2, there are uniqua, b with 1 < a < b < n such that

f~[23---a]*x[Qbd+D - n]xAa)yx[(@@+1) - b], (4.1)

where %’ indicates that the factorizations on the right are to be concatenated invibe gider.
Moreover, the three factorizations on the right-hand side are clearly@nig to equivalence, and
all values ofa, b with 1 < a < b < n are attainable. Thus (4.1) provides a canonical form for
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inequivalent minimal factorizations of a full cycle. For example, we have

(123456789=2HO667NAYGENALH233)(A4 789
~ (2423 x(18)(B8Yx (14 (67)(5N(47)
=[(234]x[(189]x (14 x[(4567],
so thata = 4 andb = 7 in this case. In general, the parametarandb corresponding to the
factorizationf = 1,_;--- 71 are given bya = (1) andb = 7; - - - t(1), wherek is the minimal
index such thaty (1) # 1. Note that this identifie€l a) as the rightmost factor of that moves 1,
as is clearly the case from (4.1).

Let h,, be the number of inequivalent minimal factorizationgd® - - - n), taking h, = 1 for
the empty factorization, and consider the generating series

h(x) = Z hpx"L.

n>1

The canonical form (4.1) leads to the cubic functional equation
h(x) = 1+ xh(x)3, (4.2)
which is solved routinely with Lagrange inversion to yield
~ 1 3n-3
hy = : 4,
" 2n—1(n—1> (43)

Thush, is a generalized Catalan number. This ubiquitous form implies the existenceriafdmy

bijections between inequivalent factorizations of full cycles and othélrkmewn combinatorial
objects.

Indeed, since the publication of [16] and [49], other derivations &)(Bave been found. Post-
nikov, for instance, has given a bijection between inequivalent faetiiwizs and non-crossing trees
on the circle. This can be found in [68, pg. 139], as can a bijection betwee-crossing trees and
plane cubic trees. Together, these results establish (4.2). In factalelstive Postnikov’s bijec-
tion later, in 84.4, as a special case of the graphical interpretation ofiuadejt 8-factorizations.
Springer [65], and also Goulden and Jackson [28], have genatdliese results. Their work is
described in 84.3.1.

We have treated here only the case of inequivalent minimal factorizatidiod ofcles. How-
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ever, the ostensibly more general problem of determining the number afitadent minimal fac-
torizations of a permutation composed of disjoint cycles,, ..., 7y is no more difficult. If f

is such a factorization, then we clearly hafle~ [1] * - -+ % [7m]. By (4.3), the number of in-
equivalent minimal factorizations of a permutation of cycle tgpe= (o1, ..., anm) iS therefore

[T, 2%171(2“:13). As we shall soon see, the structure of inequivalent mininaasitivefactoriza-

tions is far more complex.

4.2.2 Factorizations of a Prescribed Length

Letz € &, be any permutation of cycle type Following the notation of §2.3, &%, (o) denote the
number of inequivalent factorizations (not necessarily transitive) ioto exactlyr transpositions,
and IetH~g(a) denote the number of inequivalent gemu@ransitive) factorizations af. Note that
Fa_1((N)) = Ho((n)) = hy is given by (4.3). We introduce the generating series

Tepuw=) Y Mf@5up, (4.9)

nr>1 aFn

and
~ ~ Z"
POz p,u) =) ) 1%IHg(@) U p,,

n>1 akn
wherep = (p1, P2, ...) and Py = Po; Pa, - - - fOr o = (a1, a2, .. ).

Asin 82.3.1, an expression fat can be given in terms of the irreducible character&gfand
through the standard logarithmic connection this leads to an expressidri%or The derivation
of these formulae is based on the commutation monoid of Cartier and Foatahi@h we now
introduce.

Let A be a finite alphabet, and I€ be a set of unordered pairs frath The elements of
are to be understood @mmmutative pairsand two (finite) words o are C-equivalent if one
can be transformed into the other by iteratively exchanging adjacent symlaolida’ for which
{a,a’} € C. For example, ifA = {a, b, ¢, d} andC = {{a, b}, {a, ¢}, {a, d}, {b, c}}, then the words
abcdandcbd aareC-equivalent, but neither i8-equivalenttad ab c

For 1< k < |A|, define the formal sum

Ck=) &d-a,
A

which extends over all subsefs= {ay, ..., a} S A of sizek such that every paifa;, a;} € A
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belongs taC. More precisely, we mean that should be taken to be any swhthis form since the
word a; - - - ax corresponding tA = {ay, ..., ak} depends on the order in which the elementg\.of
have been indexed, and is therefore well-defined only ug-éguivalence. Thus we always have
C1 =) 4c4d Whereas, = ), . abdepends on the ordering chosen for each pat. of

It is shown in [9] that
1

= 4.5
l1-cg+c—C3+--- Zw (45)

where the summation on the right extends over a complete li€tinéquivalent wordsv on the

alphabetA. Of course, this expression is purely formal. It simply indicates that exaotyword
from eachC-equivalence class appearsjhj (Ci—Cp+C3—- - - )}, with unit coefficient, upon formal
expansion and simplification of the sum. Products here are interpreted asuidlgnoncommuta-
tive) concatenations of words. The particular words that appear inxih@nsion depend on the
choice ofc; for j > 2.

Following a suggestion of Goulden [24], we apply the result of Cartiextdo the following
context. Fixn > 1, and letA be the set of all transpositions @,. Let € be the set of all pairs of
disjoint elements ofA. ThenF, () is equal to the number d@f-inequivalent words of length on
A that evaluate to a permutation of cl&gswhen interpreted as a product@,. Since we clearly
havec; = Kyyn-2j 5ip, for j > 1, it follows from (4.5) that

-1
Fr () = [KU'] (1 + ) (DI WKz 2,-]) . (4.6)

j>=1

Let 8j = [1"~2 2]]for j > 0. Then, sinc&mKy = K, for all 6 - n, we have

1
Fr(e) = [KU'] Kpny <1 +) (- Km)

jz1

= [K.U'] <Z Fe) (1 + Y () %] Z 1y F(,)_
okFn

j>1 oFn

9 -1
[KU]ZF9<1+Z( uy’ 1651 )

oFn j>1

-1
—w YL xa(f92< Wi ) (4.7)

oFn >0

where the second and final equalities follow by (1.2), and the third by tmepdeency of the~,.
For6 + n, defines;(u) = n—l. ijo(—u)j |C, |ng. This notation is intended to be suggestive,
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as (2.8) implies thad; (u) is obtained from the Schur functien (viewed as a function of the power
sums) through the restrictiong = 1, p, = —u, andps = ps = --- = 0. Then, from (4.4), (4.7),
and (2.8), we have

~ )2 Xo §0y2_ %
Yzpw=) )" _|%|pa;(m) Sg(u)_z(m)zZ( Ysw @9

n>1 akFn n>1 o-n

Moreover, if f is a factorization with components, ..., f,, then the factors of distinct compo-
nentsf; and f; clearly commute pairwise, so the claSsan be viewed as the unordered collection
of classeq f1, ..., fm}. Hence we have the following connection betwéérand the serie®®
counting transitive factorizations:

14+7Y(z,p,u)= exp( > 09(zp, u)). (4.9)
g0
As was the case with the analogous expressions (2.9) and (2.11) fnedrthctorizations,
equations (4.8) and (4.9) do not shed much light on the nature of indguivfactorizations. In
particular, they do not simplify in any obvious way even for restricted cageere simple results
are known. For example, it is unclear how one would derive (4.3) frasdlexpressions.

4.2.3 Transitive Factorizations

Formula (4.3) for the number of inequivalent, minimal transitive factorizatadres full cycle into
transpositions is strikingly simple. However, for partitiamsvith two or more parts, far less is
known about the numbedo(e). In particular, no analogue of the Hurwitz formula (2.12) is known
for Ho(e) whent(a) > 2. Moreover, the existence of large factors in numerical data (obtained
through computer search) implies that these numbers are not of a simple multiplicath. Some
of this data is reproduced in Table 4.1. We remark that the Lagrangianwtudf the Hurwitz
series (see §2.3.3) was discovered in hindsight, with the Hurwitz formuladsieonjectured from
numerical evidence. We have not surmised any similar structure in the §é¥iesf any genus.
Notice that the simple cut-and-join analysis that led to the differential equa?id8)(is not
applicable to the study of inequivalent factorizations, as there is no taiéeactor whose behaviour
can be analyzed. Recently, however, Goulden, Jackson and L&8&jurdve combined elementary
cut-join analysis, reduction to a canonical form, and an inclusion-excligument to determine
a generating series for the numbdﬁ@((nl, n,)), whereny, n, > 1 are arbitrary. In fact, the series
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o ﬁo(a) o ﬁo(a) o I-|0(oz)
1,2 1 1,11 24 1,1,11 1578
2,1 8 2,11 300 2,1,11 24000
(2,2 74 (2,2,1) | 3792 2,2,1,1) | 357312
3,1 54 3,1,1) | 2754 (3,1,1,1) | 258606
3,2 | 540 || 4,1, 1 | 22704 | (1,1,1,1,1) | 183120
(4,1) | 352 (3,2,1) | 35028
(3,3) | 4134 || (2,2,2) | 48288
(4,2) | 3696 || (3,2,2) | 447984
(5,1) | 2275 | (3,3,1) | 324756
(4,3) | 29232| (4,2,1) | 289920
(5,2) | 24700 (5,1,1) | 177450
(6,1) | 14688

Table 4.1: Numbers of inequivalent minimal transitive factorizations.

they obtain is a familiar symmetrization o

Form > 1, let \T/m(x, u) be the image off)(o)(l, p, u) under the symmetrization operaty,
of (2.19). Then we have

- - X051 Xutm
Upx,u) =Y > Hole) = Z0yo@, (4.10)
n>1 akn @1 ®m
L(a)=m

With h(x) defined by the functional equation (4.2), the main result of [32] is the identity

~ h(x1) — h(x
Wy (X1, X2, 1) = log (1 + xlxzh(xl)h(xz)w). (4.112)
X1 — X2
The proof given there proceeds roughly as follows.
Forny,ny > 1, let8] = {1',...,nj} and83 = {1% ..., n3}. We consider factorizations of

permutations on the séﬁl U Sﬁz. In particular, let¥(ny, ny) be the set of all minimal transitive
factorizations of permutations on this set that are composed afiacycle on§} , and amy-cycle
on Sﬁz. Notice that everyf € F(ny, ny) is of lengthro((ny, N2)) = Ny + Ny and has a unigue cut,
by Lemma 2.2.5. In fact, the unique cut bfis the leftmost factor that is composed of one element
from each of fronS] ands3..

A transposition factor is called possible cutof f € F(ny, ny) if it is the unique cut of some
factorization equivalent td. Thatis,r is a possible cut of if the factors off can be commuted so
thatt is a cut of the resulting factorization. Fr> 0, let Dy (n1, ny) be the set of all factorizations
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f € F(ny, ny) in which k of the possible cuts have been distinguished. Thus a factorization with
| possible cuts appea(#) times inDx(ny, n,). Letdc(ny, ny) denote the number of inequivalent
factorizations inDy(ny, ny). Then, since every element {n;, ny) has at least one possible cut, a

straightforward inclusion-exclusion argument gives

Y (=1)*d(ny, ny) =0.

k>0

But clearlydy(ny, n2) = (N — 1)! (N, — 1)! I—~|0((n1, n,)), so from (4.10) there follows

Wo(xe. X2, 1) = Y (=DF " D(xq. X2), (4.12)
k>1
where we have put
- y X:Tl ng
Dk(xa, %) = Y di(ny, nZ)n_l!n_Z!' (4.13)
ny,np>1

In [32], determination of the serid§k(x1, X2) hinges on a subtle combinatorial decomposition
that the authors call awitching algorithm It is first shown that any two given possible cuts=
(a'b?) andp = (c'd?) of a factorizationf € F(n, ny) can be commuted so that they are adjacent
in some factorizatiorf’ that is equivalent td . Theswitch of f, denoteds (), is then obtained by
replacing the consecutive pair of factars = (a* b?)(ct d?) in f’ with the pair(al d?)(ct b?). Of
coursep ( f) depends on the cutsandp, but, given these, it is unique up to equivalence.

Note thaty (f) is never an element ¢&f(ny, n,). In fact, the combinatorial significance of the
switch is that it “splits” f into two smaller, disjoint factorizationsf; and f,. That is, we have
o(f) ~ f1 % fy, where eachf; is a minimal transitive factorization of a permutation composed of
two cycles. The cycles of; are supported by subsefs c S} andC? c 83, such thatCi U C3
and CZ U C3 are set partitions o8}, and 82, respectively. Moreover, botli; and f, contain
fewer possible cuts thah. The process can be iterated by choosing possible cutsarfid f, and
constructing the corresponding switch&gf,) and 9 (f,), etc, and it naturally terminates when
factorizations with only one possible cut are produced.

If applied only to distinguished possible cuts, the switching algorithm givescardposition
of a factorizationf € Dy(ny4, ny) into a collection ofk elements ofD,(ny, ny). Moreover, it
can be shown that the algorithm is reversible, up to equivalence. Ilpirasshatf)k(xl, X2) =
%51(x1, X2)K, where the factor Ak comes by taking ordering of the output into account. Thus (4.12)
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gives
U, (x1, Xp, 1) = log (1+ Di(xq, X2)). (4.14)

A canonical form akin to (4.1), but for special elements/nfin,, n,), is now introduced. Let
D.(n1,n2) C Di(nyg, ny) be the set of factorizations @' ... n})(12 ... n3) whose only distin-
guished possible cut i4! 1%). A tedious argument shows that, for afye D, (ny, ny), there exist
uniguep;, p2 with 1 < p; < n; and 1< p, < n, such that

f~[@(p2+D? - )]+ [@ (pr+ D - )]+ Q112 [ -+ pi1? .- pd)], (4.15)

Where[n] again denotes a minimal transitive factorizationmof Let d,(n1, np) be the number of
inequivalent factorizations i, (ny, ny). Then (4.15) implies

ny ny
d*(nl’ ny) = Z Z hnl—p1+1hn2—p2+lhp1+p2
p1=1p=1
h —h
= [x1"%3?] X1X2h(X1)h(Xz)w, (4.16)
1— A2

whereh; andh are as defined in §4.2.2. Finally, observe that the symbols of any fadioniza
D.(n1, ny) can be relabelled in;!n,! ways to obtain distinct elements @i;(ny, nz). Therefore
di(n1, ny) = nyIny! d,(ng, ny). Equations (4.13), (4.14), and (4.16) now combine to give (4.11).

We have investigated the extension of this method to the enumeration of inequirdnimal
transitive factorizations of clag®s, n», n3), but our attempts have met with little success. Factor-
izations of this type havey((ny, ny, N3)) = ny + ny + Nz + 1 factors and exactly two cuts, which
we call theleft andright with obvious meaning. The existence of two cuts introduces complications
that were not encountered in the derivation(f@f, above. For instance, note that the cuts, them-
selves, may commute. This makes the analysis of factorizatiofs' of - n})(12- - - n3)(13- - - n)
quite intricate. Itis unclear whether one should focus on a single cut at attirimgy to devise some
sort of shelling scheme, or whether one should instead consider posaitd@psimultaneous left
and right cuts.

Let D, (ny, Ny, N3) be the set of minimal transitive factorizations(@f - - - n})(12. .. n3)(13- .. nd)
that have a single distinguished pair of possible left and right cuts, naghely) on the left and
(13 al) on the right, where k a < n;. Notice that this choice of cuts is completely general, since
any minimal transitive factorization @’ - - - n})(12- .- n3)(13- - - n3) can be relabelled to be of this
form. By arguments similar to those used in [32] to obtain (4.15), we haveifcamonical forms for
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factorizations inD, (ny, Ny, n3). However, whereas (4.15) is universally valid for all factorizations

in D, (ny, ny), the elements db, (n1, Ny, n3) fall into five disjoint categories, each of which has its
own canonical form. Because of their length, these forms are listed innSidpé. Only under

the strong restrictions, = nz3 = 1 have we been able to obtain enumerative results based on such
decompositions. (We do not report further here, as these resultg@eeseded by Theorem 4.3.13,

to follow.) In all other cases, some analogue of the inclusion-exclusiomemgnployed in [32]
must be found before further progress can be made.

4.3 Inequivalent Cycle Factorizations

In this section we apply the methods developed in the previous chapters touhemtion of
inequivalent cycle factorizations. In particular, we describe howvedgmce classes of cycle fac-
torizations can be represented by certain decorated polymaps, aret feintiw how cacti can be
pruned from these polymaps so as to simplify their enumeration.

These graphical connections are exploited to count inequivalent miniamsitive cycle factor-
izations of permutations with ¢(zx) = 1 or£(;r) = 2, thereby generalizing the results outlined
in 84.2.1 and 84.2.3. The cagér) = 3 is far more complex, but by restricting our attention to
factorizations into transpositions we are able to derive a rough form afeties¥ (X, u) defined
in (4.10). When¢(r) = 1, our methods are closely related to work done by Springer [65], so we
begin the section with a brief description of his work.

4.3.1 Factorizations of Full Cycles

Goulden and Jackson were first to obtain a result concerning inéepiiveycle factorizations into
factors other than transpositions. In [28], they utilize a link between theexiion coefficients of
C&, and those of a certain symmetric function algebra to obtain a simple formula fauthber
§(n, k) of inequivalent minimal transitivk-cycle factorizations of a full cycle i®,. In particular,
it is shown there that

5. k) — %((Zk — 1)r)

r—1

in the case that = 1+ r (k — 1) for some positive integar, and3(n, k) = 0 otherwise. This is
done with the aid of the Cartier-Foata monoid, which is initially used to reducertidgm to a
coefficient extraction involving class sums@®,,. (See (4.6) for an analogous expression. In fact,
the class suni;n-2j »j; appearing there need only be replaced Wih «i i} to count factorizations
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into k-cycles.) The extraction is transformed into a computation involving symmetrictiéuns,
through which the serieg(x) = anl 3(n, k)x"~1 is found to satisfy the functional equation

S(X) = 1+ x* g (x)* L. (4.17)

The formula for§(n) given above then follows by Lagrange inversion.

Observe that (4.17) gives(x) = 1+xS(X)3 whenk = 2. This identifies,(x) with Longyear’s
seriesh(x), defined in (4.2). However, whereas (4.2) was obtained throughigtfaward com-
binatorial decomposition, the circuitous derivation of (4.17) leaves itidexfaombinatorial mean-
ing. The quest for a combinatorial explanation of this functional equatitaitin [28] as an open
problem.

Springer [65] found such an explanation by generalizing Longyearsnical form (4.1) to
cycle factorizations. Iff is a minimal transitive cycle factorization ¢1 2 - - - n), he shows that
there is a uniqu& > 1, and uniquey, ..., ax, by, ..., kwithl <a <by <ay<b, < ... <
ax < by < n, such that

f~[23 - a)]*[((1+1) (b1+2) - a)]*-x[(b+1) (b+2) ---nD] (4.18)
* (lagap - a) *[(@ (@ +1) - b)]*-- x[(@& @+1D - by,

where[n] represents a minimal transitive cycle factorizatiomofThis decomposition is then used
to recursively define a rooted plane tree associated with the equivallrsseof f. The non-leaf
vertices of these trees are all of odd degree. In fact, lifasiy k-cycle factors, fok > 2, then the
tree corresponding td has exactly, vertices of degreek’— 1. Inequivalenk-cycle factorizations
therefore correspond to trees whose non-leaf vertices are all cfeldg— 1. The series counting
such trees satisfies the functional equation (4.17), thus explaining its catmiéh significance. In
particular, wherk = 2 we have the previously mentioned bijection between inequivalent minimal
factorizations of a full cycle into transpositions and plane cubic trees.

More generally, trees with a specified number of internal vertices ohglegree can be counted
(see [18], for example) to obtain the following formula for the number of ined@nt minimal
transitive cycle factorizations @l 2 - - - n) of cycle index(i, is, .. .):

(Piz2(2k — Dig)!
(14 Yook — 2! [Tienik!

(4.19)

We shall derive this formula later (Theorem 4.3.6) by different, but tyostated, methods.
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N

Figure 4.1: Polymaps of equivalent cycle factorizations.

4.3.2 Graphical Representation of Equivalence Classes

Commuting the factors of a cycle factorization clearly maintains the relativeiogdef the factors
that move any given symbol. Here a factotis understood tanovethe symboli if o (i) # i, or,
equivalently, ifi lies on the cycler. Thus cycle factorization$ andg of = € &, are equivalent if
and only if (1) they have precisely the same factors, and (2) for eadm], the factors that movee
appear in the same order inas they do irg.

From these comments, we see that commuting the factofs®Eynonymous with relabelling
the polygons of its (reduced) polymaw;r in such a way that the relative order of the labels of the
polygons incident with any given vertex is preserved. Thus, in particsa havef ~ g if and
only if ///fT and///ér have the same descent structure.

Consider, for example, the following equivalent cycle factorizationd & 3)(4 5)(6 7 8):

(286)(357(46)(56)(143(27) ~ (357 (286)(27)(46)(143)(56). (4.20)

The factors moving symbol 6 aK® 6), (4 6), and(2 8 6), and they appear in exactly this right-to-
left order in both factorizations. Let andg, respectively, be the factorizations on the left and right
of (4.20). The polymaps%’fT and://lg;r are drawn in Figure 4.1. Note that the descent structure of
these polymaps is identical. That is, vertes at a descent of a given faceexartfT (Figure 4.1A) if

and only if it is at a descent of the corresponding face%tgf (Figure 4.1B).

In this way, the equivalence classes of cycle factorizations are seavécamatural graphical
representation. The clagscontaining the factorizatiof is represented by the polymap that results
from stripping the polygon labels onT and recording, instead, only the location of its descents.
For instance, the decorated polymap corresponding to both factorizatiqds?0) is shown in
Figure 4.2A.
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v
x x

A 7 B

Figure 4.2: Descent-marked polymaps.

Definition 4.3.1. A polymap is said to bemarked if certain of its corners have been distinguished
so that every vertex is at exactly one distinguished corner. rotator of a vertexv in a marked
polymap is the tuplé€P, ..., Py) of polygons incident with, listed in order as they are encoun-
tered along a clockwise tour aboutbeginning in the unique distinguished corner containingh
valid labelling of a marked polymap is a polygon-labelling under which descent cerc@ncide

with distinguished corners.

For instance, the polymap in Figure 4.2B is marked, with its distinguished cobedéng indi-
cated by small crosses. (This will be our standard convention for dgswohmarked polymaps.)
Note that the rotator of vertaxis (Py, P>, Ps3). Figure 4.1 shows two valid labellings of this marked

polymap.

Definition 4.3.2. A loopless polymap# is said to bedescent-marked if it is marked and admits
a valid labelling. The distinguished corners of a descent-marked polywfagre calleddescents.
Thedescent set of a face F of # is composed of all vertices at descents of F.Zfhas m faces

containing exactly i descents, thendescent partition is [1™2M2. . .].

Observe that the descent structure of a descent-marked polymapistennwith that induced
by any of its valid labellings. From Theorem 3.2.8 we can immediately deducentbatiiv-
alent cycle factorizations of genug classe, and cycle indexio, iz, ...) are in bijection with
vertex-labelled, descent-marked polymaps of gemusth descent partitiorr and polygon index
(ip,i3,...). However, as usual, we prefer to work with face-labelled maps.

Definition 4.3.3. Let.# be a descent-marked polymap with m labelled faces.dés=ent class of
A is the compositioniay, . . ., am), Whereg; is the number of descents in face i, b i < m.
We say# is properly labelled if its vertices are also labelled in such a way that face s has descent

setDs(), forl <s<m.
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The following result comes immediately from Theorem 3.3.2.

Theorem 4.3.4.Inequivalent genus g cycle factorizatiofs, . . ., o1) satisfyingo; - - - 01 € G()
are in bijection with genus g, properly labelled, descent-marked polythapare of descent class
and contain r polygons. Moreover, under this bijection, a factorization wittlecindex(i», is, . . .)
corresponds to a polymap with polygon index is, .. .). O

For a vectori = (i, i3, ...) of nonnegative integers and a compositigriet Mg(a; i) denote
the number of genug, properly labelled, descent-marked polymaps of descentelass polygon
indexi. Form > 1 andg > 0, let

T p =33 3 Fge: i) plu®,

n>1i>0 akEn
£(a)=m
wherex = (X1, ..., Xm), P = (P2, P3,...), andr (i) =i, +iz+---. As usual, we writel,, instead
of \AI?,(]?) for the genus O series. Notice that Theorem 4.3.4 imﬂi&(&; i) = Mg(a; D[] (i =D)L
We therefore have the following corollary.

Corollary 4.3.5. Leta = (a1, ..., am) be a partition and letr be any permutation with cycle type
a. Then, for g> 0 and any vector = (i, ig, ...) of nonnegative integers, the number of inequiva-
lent genus g factorizations afwith cycle index is given by - - - am - [x*p'uizHist]1 & (x, p, u).

O

4.3.3 Descent-Marked Cacti

Recall that acactusis a planar polymap with only one face. Notice that any marked cactus is
necessarily descent-marked. As a result, descent-marked cacti adartitalprly elegant recursive
decomposition.

Let C be the set of vertex-rooted, descent-marked cacti with labelled narvedices. For the
remainder of this section, we refer to elementLdimply ascacti. Letw = w(X, p, u) be the
generating series fat, with respect to labelled vertices (markedy polygon index (marked by
p), and total polygons (marked . Then we have

d ~
=Xx—W . 421
Xw de 1(X, p, ) ( )

Let C € C, and suppose its root vertex has rotathy, . .., Py). Detach polygons$>, ..., Pq
from the root to form a cactu€’ whose root has rotataiP,, ..., Py), as shown in Figure 4.3.
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Figure 4.3: Decomposition of a descent-marked cactus.

(Vertex labels have been suppressed for clarity.) Notice that=# 1, thenC’ consists of a single
vertex. Now focus on polygotr;. SupposeP; is ak-gon, and letv be one of itsk — 1 non-
root vertices. Le(P2, ..., P', P, P'*1 .. PS) be the rotator of, where the degenerate cases
r = 0 ands = r are possible. Detach the polygoR$ from v to form two cacti,C! and C2,
whose roots have rotatot®?, ..., P') and (P2, ..., PS), respectively. See Figure 4.3 for an
illustration. ThusC decomposes into a cact@s, together withk-gon P; and a(k — 1)-tuple of
triples (v, C1, C2).

It follows thatw = 1+ )"\, w - up«(xw?)*~*, where the presence of 1 accounts for the case
in which C consists of only one vertex. As in (3.14), we defides Q[p][[ Z]] by

P2 =) pz" (4.22)
k>2
so that we can write
w = 1+ uwP(xw?). (4.23)

Notice that settingt = px = 1, andp; = O fori # k, in this identity givesw = 1 4 xk" 1w,
Thusw, under these restrictions, is identified with the sesigg) of (4.17). That this should be the
case is clear from (4.21).

Through Lagrange inversion, (4.21) and (4.23) yield the followingltestnich is equivalent to
Springer’s formula (4.19).
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Theorem 4.3.6.Let (i, i3, ...) be a sequence of nonnegative integers and setip + iz + - -.
Then the number of inequivalent minimal transitive cycle factorizationd af- - - n) with cycle

index(ip, i3, ...) IS
@2n+r —2)!

@n — D! [[iepik!

inthe case thatA-r — 1= )", _,Kix, and zero otherwise.

Proof. Setv = w — 1 so that (4.23) becomes
v =U(l+v)P(X(1+ v)?).

By (4.21) and Corollary 4.3.5, we wish to determin@y' p'] xw = [x""u'p'] (1 + v). This is

accomplished through Lagrange inversion:

[X"u"p'T (L + v) = [x"p'] % A @+ D)PXA+ )2

1 . r
=S A+ " X (Z X1+ A)Zk—z)

k>2

_ r} @+ A+ x>2n_2< r )

in, i3, i4, ...
k>2 'K+
r —1! <2n+r —2)

T Tleoi! \ r—1

O

Corollary 4.3.7. Letn> 1 and k> 2 be such that n= 1 + r (k — 1) for some positive integerr.

1 n+r —2
2n—1 r

inequivalent minimal transitive k-cycle factorizations of the full cydl@ - - - n). O

Then there are

In hindsight, we remark that the decomposition of descent-marked cacfiloss here is es-
sentially a high-level graphical interpretation of Springer's canoniocahf(4.18). First observe
that an equivalence class of factorizations of the fixed full cyclg12 - -- n) corresponds with
a cactusC whose root has label 1. The labels of all other vertice€ afre determined from its
descent structure. Left be any member of the clads Then the polygorP; in our decomposi-
tion of C corresponds with the rightmost factor 6fthat moves 1. If, as in (4.18), this factor is
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the cycle(la; a, - - - a), thenP;y is a(k + 1)-gon with vertices labelled, By, . . ., a in clockwise
order about its perimeter. Moreover, fordi < k, the factorization{(ai @+ --- bi)] and
[((bi_1+1) (b_1+2) --- &)] appearing in (4.18) correspond with ca€fjf andCZ of our decom-
position, respectively, whilﬁ((bk +1)---n 1)] corresponds witlC’. Here we have leby = 1.

One benefit of our graphical approach to Theorem 4.3.6 is that it enzplsd$arger structure”
by eliminating the need to invoke intricate “element-wise” decompositions suchXs) (

4.3.4 Pruning Cacti

The absence of polygon labels makes pruning cacti from descent-enaokgnaps a less involved
process than that described by the cacti-pruning bijections of ChapfEne&enumerative conse-
guence of such pruning is given by Theorem 4.3.9, below, which is alogue of Theorem 3.3.13
for descent-marked polymaps. As to be expected, it describes a relimlid)ﬁween@é?) and a
certain serie$'\? counting smooth descent-marked polymaps. However, the d&ffeimtroduced
here is a refinement of its earlier counterparts, in that it accounts fortemnstatistic, namely face
degree. We define tHace degree sequencef a polymap withm labelled faces to be tha-tuple
d = (dy, ..., dn), whereds is the degree of the face labellsdfor 1 < s < m. Equivalently,ds is

the total number of corners in fase

Definition 4.3.8. Letgg(a; i ; d) denote the number of smooth, properly labelled, descent-marked
polymaps of genus g and descent claswith polygon index and face degree sequende For
m > 1, let

Foetpw=Y"Y 3 Fe:id 2oty

n>1i>0 akn
2(a)=m

wherez = (z3,...,Zn),t = (1, ..., tm), p = (P2, P3,...), and r(i) =i, + i3+ ---. We typically

(9)
m

write T, in place of "\’ for the genus O series.

The construction of the core of a polymap (see Definition 3.3.11) must be nwbdlightly
to account for distinguished corners in marked polymaps. Observedimatval of a leaf from a
marked polymap# results in the amalgamation of two of its cornezsandc;,, that contain the
same vertex. The amalgamated corner is to be distinguished if and only if eftbgrooc; isa
descent. (Note that; andc, cannot both be descents.) With this convention, the core7ols
defined as before by the iterated removal of leaves.
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Theorem 4.3.9.Let g > Oand m > 1 with (g,m) # (0,1). Forl < i < m, letwj =
w(X, p, u),wherew is given by(4.23) Then we have

YO, p,u)y=TPxow, w, p, u),

wherex = (X1, ..., Xm), W = (w1, ..., Wy) andX oW = (Xyw4, . . . , XmWm).

Proof. Let.# be a smooth, face-labelled, descent-marked polymap of gewith m faces. Letc
be a corner of the face o7 labelleds, letv be the vertex at this corner, and (et, Py, ..., ¢, Py)°
be the alternating cyclic list of corners and polygons encountered aloluglavise tour about.
Assume this list is indexed so that= c;.

If cis a descent corner, th&Ry, ..., Py) is the rotator ofv. Let C; andC, be cacti and leR;
and Ry, respectively, be the rotators of their root vertices. Then, by identjftfieir roots withv,
cactiC, andC,; can be attached t@7 in cornerc in a unique way so that the rotator obecomes
(Ry, Pi, - -+, P, Ry). The construction is illustrated below.

Observe that the marked polymap so formed is descent-marked, since &belithg is readily
obtained from any valid labelling o# .

Similarly, if c is not a descent corner, théR,, ..., P, Pi, ..., P_y) is the rotator ofv, for
somei # 1. Any cactusC whose root has rotatd® can be attached te7 in cornerc so that the
rotator ofv becomegP,, ..., P, R, Pi, ..., P._1). This is shown below, in the case= 2.

In either case, each non-root vertex of the attached cacti contribde=scant to the face sfof the

newly formed map.
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Figure 4.4: Pruning cacti from a descent-marked polymap.

Clearly any face-labelled, descent-marked polymap with cgrean be created by carrying out
this attachment process at all corners#f. Moreover, if the vertices of# are labelled, then its
corners are distinguishable and the process is reversible.

Observe that two cacti are to be attached at each afdklescent corners of fassof .#, while
one cactus is attached at its remainthg— «s corners. Thuss + ds cacti are attached in face
altogether. Since the seriegXx, p, u) counts cacti (with respect to the usual parameters), it follows
that®\? (x, p, u) is obtained fronT'\¥ (z, t, p, u) through the substitutions > Xsws andts > ws,
forl<s<m. O

The pruning of all cacti from a descent-marked polymap is illustrated in Eigut. For the
process to be reversible, vertex labels (or some other identifying meatjamigst be preserved. To
avoid clutter, these are not shown in the diagram.

4.3.5 Factorizations of Clasgny, ny)

We now apply Theorem 4.3.9 to evaluate the sefigshereby generalizing (4.11) to factorizations
with arbitrary cycle index. The main result comes as Corollary 4.3.12, whigsg@n expression
for Fz. Note the similarities between the derivation here and thdtafiven in 83.3.6. Throughout,
P andw are defined as in (4.22) and (4.23).

Lemma 4.3.10.Let m n > 1. Up to rotational symmetry, there are

X" ym Xy
) oo 100

distinct necklaces made of n labelled white beads and m (independengifethblack beads.
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Figure 4.5: A smooth, two-face, descent-marked polymap and its assocetiedce.

Proof. Any such necklace is formed by attaching the two ends of a string of labeliiéd and black
beads. A string of this type decomposes into blocks of the fonm - -- wbb - - - b, wherew andb
represent white and black beads, respectively, and at least od@beach colour is present. There

k
min! [xy"] ((1— xfé - y))

strings consisting ok such blocks. However, by circular symmetry, exagtlyf these strings form

are

the same necklace. Thus the desired number of necklaces is
1 Xy k X" ym Xy -1
Int[x"y™ ) = =1 1-— .
mn[xy]ék(a—x)(l—y)) [n! m!} °g< (1—x>(1—y>>

The result follows upon rearrangement. O

Theorem 4.3.11.

822122

P(t1z1) — P(t2z2)
1-§(zm+2) '

t1z1 — 2

T'2(z1, 2o, 1, to, P, U) = log (1 + ) ., where § = utit,
Proof. Let .# be a smooth, properly-labelled, marked planar polymap with two faces. ien

is a closed chain of polygons, each incident with exactly two others. Wehaaw vertex incident
with two polygons isextremal Notice that# is descent-marked if and only if at least one extremal
vertex is at a descent of each face. Suppose now that this is the case.

LetL = (v, ..., v )° be the cyclic sequence of extremal vertices encountered along the-bound
ary walk of face 1 of #. By regarding those; that are at descents of face 1 as white beads, and
those at descents of face 2 as black be&adsprresponds with a necklace of the sort counted by
Lemma 4.3.10. See Figure 4.5 for an illustration. Vertex (and bead) labetoashown in the
diagram, but extremal vertices are indicated in grey.
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By the lemma, the generating series for such necklaces with respect todabhite and black
beads (marked by andy, respectively) and total number of beads (markedtb)oig

bx - by )

1— (bx + by) (4.24)

log (1 +
Let M be the monomial irfg(zl, 2,11, 15, p, U) corresponding to#. Each vertexy; contributes
the factorz;tit, to M if it is at a descent of face 1, and contribue$;t, otherwise. A polygon
of .# with js — 1 vertices incident only with facs, for s = 1, 2, further contributes the factor
UPj+j,(tz1) 1 1(t2zp) 271 to M. ThusT',(z1, 25, ta, to, P, U) is obtained by performing the substitu-

tionsx — Z1t1to, Y= Zotqto, and

U P(t1z1) — P(t2z2)
11z1 — bz

b~ Z upjl+iz(t121)jl*l(tzzz)jzfl _

j1,j2>1

in (4.24). The series resulting from these substitutions agrees with the ditim theorem. O

Corollary 4.3.12. Withw; = w(X;, p, u) fori = 1, 2, we have

(Xqw1 — Xowp)? )

EIZ(Xla X25 p’ u) = Iog <
(X1 — X2) (Xqw? — Xow3

Proof. From Theorem 4.3.9 and Theorem 4.3.11 we get

82X1x2w1w2 )

Uy (X, Xo, P, U) = Ta(z1, 22, 1, to, P W),y = 10O (1+ ST ——
- 11 2W2

where
P(xw?) — P(Xow3)

§ = Uwiws > >
Xiwy — Xows

But (4.23) givesP (xiw?) = 1 — w; %, so we have

-1 -1
Szwlwg(l_wl ) — (1—w, ) wi—w

Xlez_ — XZU)% Xlez_ — sz%

It follows that

(w1 — w2)?X1X2 ) ’ (4.25)

Wa (X1, Xz, P, U) = log (1 +
(Xaws — Xow3) (X1 — X2)

which can be rearranged to give the result. O



166 Inequivalent Factorizations

Under the restrictions = p, = 1, andp; = O fori > 3, the functional equation (4.23) becomes
w = 1+ xw?3. That is,w restricts to the seridsof (4.2). In this case we also haxe? = 1 — w1,
so that (4.25) yields

~ B (w1 — w2)%X1 Xz
#0052 Dl 0o =198 (1 A= wh — A= w0 x2>>
= Iog (1 =+ X1 Xowq w2 w1 wz) . (4.26)
X1 — X2

This is the series (4.11) discovered by Goulden-Jackson-Latour. tNatehe current derivation
eliminates their intricate inclusion-exclusion argument entirely (see 84.2.3)swggksts a more
natural ble for the logarithm in (4.11). (Namely, that Itg— x)~* is the exponential generating
series for cycles.) In hindsight, all the constructs of the GJL argumenuding the switching
algorithm, have natural graphical interpretations.

4.3.6 Factorizations of Clasgni, ny, n3)

As explained in 83.3.4, the analysis of polymaps with at least three facemdicated by the fact
that a single polygon may be incident with three or more faces. This technibaktyprevented
us from finding a general expression #@g(x, p, u). However, the difficulty does not arise when
considering polymaps that contain only 2-gons, and we have been aldeite d rough form of
the restricted serie@g(x, P, W) ps=ps=-=0 that counts inequivalent minimal transitive factorizations
(into transpositions) of clag®,, n,, nN3).

Since the polymaps considered here consist solely of 2-gons, weadfem simply asnaps
and draw them accordingly, by “flattening” all 2-gons into edges. Fexity, we writeWs(x, u) and
T's(z, t, u) for the restrictions ofU5(x, p, u) andT's(z, t, p, u) underp, =1, ps = ps = --- = 0.

The following notation will also be convenient:

e For atriplex = (X1, X2, X3) and a permutation € Gz, we leto (X) = (X5 (1), X5(2), X0(3))-

e For f € QIt, u][[Z]] we write ( f) for the seriesi(1 — uf)~t.
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[O)|[eelifeSe

Figure 4.6: Classes of smooth, planar, three-face maps.

x @ x @ M
B C

Figure 4.7: Smooth, face-labelled, marked planar maps.

Theorem 4.3.13.Letz = (73, 2, z3) andt = (1, ty, t3). Define Gz, t, u) € Q[t, u][[ Z]] by

G(z,t,u) = (V{?? (Pya: Papr (V}'?) + Piot Pogi (V%) + Pror Prsi Py3) (4.27)

+ 2V 2V (ProPasPis — (V32) Pag(V5?)) (4.28)

+ 2V{BPio Pige + V5 12Pogi Pige + V3 123Pags Pror (4.29)

+ Pu1 (V22Pors + 2VIH2P1pr ) (V3 13Psp + 2ViH3Py5: ) (4.30)

where, forl < i, j,iy,...,im < 3, we have set j\}’"im = zjt, -, Bj = (\/iij +Vj”), and

Rj+ = Pj — (V). Then

aztuw= > G@. o). u.
0€{.(12.(13)}

Proof. Every smooth, planar, three-face map belongs to one of the three dasedepicted in
Figure 4.7. Observe that labelling the faces of any such map eliminates affiviahautomor-
phisms. Thuds(z, t, u) may be regarded as the (ordinary) generating series for smooth, face-
labelled, descent-marked planar maps with three faces, with respectentielass, face-degrees,
and edges. Examples of such maps are shown in Figure 4.7. We shattdwamicthese by category

to obtains.
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Category (A). Maps of this type contain exactly two verticesandv, of degree three. Observe
that the cyclic sequences of face labels encountered on a clockwisaltout these vertices are
always(1, 2, 3)° and(1, 3, 2)°. We focus on three subcategories of maps defined by the following
conditions: (Al)u andv are both at descents of face 1, (ARat a descent of face 2 whileis at

a descent of face 3, and (AB)is at a descent of face 3 whileis at a descent of face 2. These
subcategories are illustrated below. Descents at low-degree verticestahown.

e
’ Y
e

v

@ @ o @ o !
A1 A2 © A3 ©
A map in any of these classes decomposes into vertigaslv together with the three patls 8,
andy which connect them, as seen in the diagram. For each class, we counssillp descent-
marked pathsy, 8, andy such that every face of the map they generate contains at least one
distinguished corner and at least one undistinguished corner. To, deesexploit the observation
that a smooth, three-face, planar marked map admits a valid labelénts descent-marked) if and
only if every face contains at least one distinguished corner and attistinguished corner. We

also make heavy use of the ser{%'j ), Pj, etc, as defined in the statement of the theorem. Notice
that these series have the following natural combinatorial interpretationis ioahtext:

Vjil'“im corresponds to a vertex that is at a descent of faaed is incident withm corners
altogether, these belonging to fages. . ., im.

(\/iij ) counts paths bordering faceand j in which every vertex is at a descent of face

P counts paths bordering faceandj.

P+ counts paths bordering faceand j that have at least one vertex at a descent of face

Class (Al1):If every vertex ofu is at a descent of face 1, then some verteg afiust be at a descent
of face 2 (otherwise face 2 would not contain any descents), and sertex\ofy must be at a
descent of face 3 (otherwise every corner of face 1 would be &dBsdhe maps corresponding to
this subcase are therefore counted by the s€¥g&’)?(V2) Po+ Pos-. One factor ofV,'?3 appears

here for each ofi andv, while «, 8, andy give rise to factor$V112), P12+, and Py3+, respectively.
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If every vertex ofy is at a descent of face 3, then similar logic shows that the resulting counting
series iS(V2%)2Py, Pog+ (Vi3). Finally, if at least one vertex af and at least one vertex of are
at a descents of face 2, then the descengsadn be arbitrary; in facy can be of length 1, without
any descents. The corresponding serig¥§32Py,- P13+ P23 The total contribution td's(z, t, u)
from class (Al) is therefore

(Vi%)? (Prar Psz (V%) + Pazt Pagt (V{®) + Pizs Prar Prg) (4.31)

Classes (A2) & (A3):The analysis above could be applied here, with only minor modifications,
to obtain an expression similar to (4.31). Alternatively, notice that the onlypedlysa, 8, ¥ can
resultin a map that is not descent-marked isf@ndg to contain only vertices at descents of faces
2 and 3, respectively. All other choices @f 8, y are valid. Thus the contribution from each of
classes (Al) and (A2) is

V2 2V3%3 (PiaPasPis — (V37) Pas(V3) (4.32)

Summary:The total contribution td's(z, t, u) from classes (A1), (A2), and (A3) is given by the
sum of (4.31) and twice (4.32). Finally, observe that all other maps in agtéd) are obtained
uniquely by transposing either face labels 1 and 2, or 1 and 3, of the maipssia three classes.
Thus (4.27) and (4.28) are accounted for.

Category (B). Maps in this category contain exactly one vertexqf degree four. We consider
four subcategories. In each of these, the cyclic sequence of fags @itained from a tour about
is (1, 2,1, 3)°. The classes are characterized by which of the four corners corgaiisra descent,
as shown in the figure below.

Goleke|
s

Every map in classes (B1) through (B4) decomposes into veri@xd pathsy, g8, as illustrated.
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Applying the same analysis as in category A, we find that these classesaiogetitribute

(B1) (B2) (B3) (B4)

VI23P o Prae 4 V3 2Paps Pror + V2P Pige + VI 2Pogs Prgs

to I's(z, t, u). In the case of (B1), for instance, path(respectively,8) must contain at least one
vertex at a descent of face 2 (respectively, face 3) to create a \esdibdt-marked map; otherwise,
face 2 or 3 would have no descents. Again, all other maps in categopa(®)e uniquely obtained

from those in these four classes by transposing either face labels 1 andl @nd 3. This accounts

for (4.29).

Category (C). As in category (A), these maps contain exactly two verticeand v, of degree
three. We focus on nine subcategories. In each, the cyclic sequefifeegs encountered abaut
andv are(1, 2, 2)° and(1, 3, 3)°, respectively. The classes are distinguished by which of the three

corners containing andv are descents, as illustrated below.

c4 @ C5 @ Cé @ b
Rl N
x x X X u v

c7
@
x
0 Q

2@ | 0| @@

A map in any one of these classes decomposes as shown. In eaghisasearbitrary path incident
only with face 1. The corresponding counting serieBjis In classes (C1) through (C6), note that

must contain at least one vertex at a descent of face 2, while in clasethfough (C9) it instead

must contain a vertex at a descent of face 1. Note that the choicésaflways independent of that
of y. Of course, this argument is symmetricanand y, so we find that the total contribution to
['s(z t, u) of these nine classes of maps is

o 14

Pui(V32Pors + 2V{2Poe ) (V5 3Ps + 2ViH3P54 ).
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Once more, all other maps in category (C) can be obtained from those i ttivess classes by
transposing face labels 1 and 2, or 1 and 3. This accounts for (4r80ycmpletes the proof. [J

We have been unable to combine the contributionﬁgta, t, u) arising from the three distinct
categories of smooth three-face planar maps to produce any significamdyhwmogeneous repre-
sentation of the series than that which is given in Theorem 4.3.13. Thiugbrem 4.3.9, we are
therefore left with the following “rough form” of’5(x, u).

Corollary 4.3.14. Fori = 1,2, 3, let wi = w(X;, u), wherew = w(X, u) is the unique series
solution ofw = 1+ uxw3. Letx = (X1, X2, X3) and define kx, u) € Q[u][[x]] by

F (X, U) = (X1?%?Pro (Pasr (X13) + 2 Pig+ Pag) + X37X32%Pa3(2P31+ (X3%) + Por Pag)
+ X%123P12+ P13+ + X%123P21+ Pi3t

+ 5 P (X3PPore + 2X71Pr2: ) (X3Pars + 2X10Pyay ),

where, forl < i, j,i1,...,im < 3, we have *'”i”‘ = Xjwjwi, -+ Wiy, Pj = (Xiij +Xijj), and
Rj+ = Pj — (X/)). Then
W3(x,u) = Y F(o(x), ).
oeB3
Proof. This follows directly from Theorem 4.3.13 by symmetrizing and applying Téxeo4.3.9.
Note that the functional equation far comes from restricting (4.23) with; = p, =---=0. O

We have not been able to simplify this expression¥arx, u) in any meaningful way. The
functional equationv = 1 4+ uxw? allows for the elimination of high powers af, but it is un-
clear what general form should be targeted when using this relationnfigtiScation. Though it
represents truly minimal evidence, one might conjecture from (4.26)T1§,(at u) can be expressed
cleanly in terms of alternants involving the serigs Identities such as

w1 — w2
X1 Xowiw?
X

T XPPX3%Pya
lend support to this claim.

For now we regard Corollary 4.3.14 as a piece of raw data, and hopi¢ thatbe manipulated
to uncover further structure of inequivalent factorizations. It woarwre tedious than difficult to
extend the methods used here to obtain a similar conglomerate expressigp(fou), but there
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Figure 4.8: (A) Hybrid maps of equivaleptfactorizations, and (B) the vertex-labelled, descent-
marked hybrid map corresponding to their common equivalence class.

does not appear to be good reason to do so until more is known abotiuberfature of the results
that have already been obtained.

4.4 Inequivalent 8-Factorizations

We say that twos-factorizations(o, 7, ..., 11) and (o', 7/, ..., 7;) areequivalent if the factor-
izations(t;, ..., r1) and(z/, ..., 7;) are equivalent according to Definition 4.1.1. For instance we
have the following equivalence among8t 2, 1)-factorizations of1 2)(3 4)(5)(6):

(1(253(46) - (16(24HBD(26)(45 ~ (1)(253(46) - (249(45(16(26)(31).  (4.33)

The methods introduced in the previous section to count inequivalentfeptteizations are readily
altered to make them applicable to the enumeration of inequiv@ldattorizations. The nicest
result that we have obtained in this way concerns the number of inequiivaiaimal transitive
B-factorizations of a fixed full cycle. We conclude with a brief derivatiéthis result.

Observe that combining the material from 83.4.2 and 84.3.2 shows equieattasses of-
factorizations to be in correspondence with vertex-laballestent-marked hybrid mapspolygon
type 8. The formal definition of this class of maps is the obvious hybrid map analofief-
inition 4.3.2, and will not be given here. Instead, we refer to Figure 4t&resthe hybrid maps
corresponding to thg-factorizations of (4.33) are shown, along with the vertex-labelled,eddsc
marked hybrid map corresponding to their common equivalence class. Rotiecents setsic,
are also defined as before. Notice that a rotator in a descent-marked mdp consists of either
simple edges only, or simple edges and a single polygon. In the latter cag®jim®ut that the
polygon must come at the tail of the rotator. This follows from the fact thtgoms of a hybrid
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Figure 4.9: Decomposition of a rooted, descent-marked, hybrid cactus.

map are maximally labelled.

Theorem 4.4.1.Leta, B - nand g> 0. There is a bijection between inequival@ifactorizations
of genus g and classg, and vertex-labelled, descent-marked hybrid maps of genus g witermtes

partition « and polygon typé. O

Theorem 4.4.1 establishes that the set of inequivalent minimal trangifaetorizations of class
(n) is in bijection with vertex-labelled descent-marked hybrid cacthmertices with polygon type
B. Note that any such factorization h&g) — 1 transposition factors, so the corresponding cacti
have this number of simple edges.

Let C be the set of vertex-labelled, descent-marked, rooted hybrid cactieefid= 9 (x, g, u)
be the generating series foy wherex marks labelled vertices, marks edges, amgl= (qz, 0, . . .)
records polygon type. For brevity, we shall henceforth refer to elésnai© simply ascacti. By
the comments above, the number of inequivalent minimal trangitifactorizations of(12 - - - n)
is given by

[X"geu‘@ 1 9 (x, g, u). (4.34)

Define asimple cactusto be a rooted, descent-marked, hybrid cactus, with labeltedrootver-
tices, whose root vertex is incident only with simple edges. et w(Xx, g, u) be the generating
series for simple cacti, with respect to the same statistics as above. We nelsdéwnctional
equations relating andw by considering decompositions of cacti.

LetC € C be a cactus whose root is incident with polygenlf P is ak-gon, then observe that
C decomposes int® and ak-tuple ((v1, C1), ..., (v, Ck)), where each is a vertex ofP andC;
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Figure 4.10: Decomposition of a simple cactus.

is a simple cactus. See Figure 4.9 for an illustration. It follows that

9= okxw) = Qxw). (4.35)

k>1

where (as in §3.4) we have defin€de Q[q][[ Z]] by

Q) =)z,
k>1

Now consider a simple cact{s whose root vertex has rotator(ey, ..., e,). Letu be one
endpoint of the simple edga. Then the rotator oti is either(ay, ..., aj, e, by, ..., b, P) or
(@, ..., a;, ey, by, ..., b, where thes; andb; are simple edges? is a polygon, and we allow the
degenerate conditions= 0 andk = 0 (interpreted in the obvious way). In the former case, notice
thatC decomposes intey, two simple cactC,, C’, and a cactu€,, where the roots of,, C’, and
Cu whose roots have rotato(s,, . .., &n), (a1, ..., a;j), and(by, ..., bk, P). The same holds true
in the latter case, except th@t instead has rotatab;, . . ., by). See Figure 4.10.

From this decomposition there follows = 1+ uw??, where the addition of 1 accounts for the
case in whichC, consists of a single root vertex. With (4.35), we get

w =1+ uw?Q(xw). (4.36)

Lagrange inversion may now be applied to evaluate (4.34). This yields ltheifog tidy result.
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Theorem 4.4.2.Let B F n and set m= £(B). If m > 2, then there are

nm-2)!/n+2m-3
| Aut(B)] m-—2

inequivalent minimal transitivg-factorizations of the full cyclél 2 - - - n). If m = 1, then the only

such factorization is the trivial factorizatiod 2 --- n) = (12--- n).

Proof. Settingv = w — 1 in (4.36) gives
v =U(l+ )’ Q(X(L+v)),
so (4.35) impliesx"u™1qs] ¢ = [x"u™1gs] Q(X(1 + v)). Lagrange’s theorem now yields

1
XU sl QXL+ v)) = [Xgs] ——= "] QXL+ 2)X - (1 + M QML +2)™

— 1 m—2,,n—1 2m-3 i m
= mmop M XTI DT ] G Qx4 )
1

o~ IyMm=2yn-1 2m-3 i K ‘ m
= mm=—1 AT XTI A+ ax [9s] ;qu (L+2)

1 m! d
- _ - )mez n—1 14+ n+2m-3 o oyn
m(m—l)[ XA+ A | Aut(B)| dxX ’

and the result follows. O

A minimal transitive factorizationf = (tn_1,---, 1) of # = (12 --. n) into transpositions
is equivalent to a minimal transitive Ttfactorization ofz. Setting8 = [1"] in Theorem 4.4.2
therefore yields Longyear’s formula (4.3). Alternativefyjs associated with thén)-factorization
(m, 11, ..., th—1) Of the identity. Thus the equivalence class containingorresponds with a
descent-marked hybrid map with descent partitiof,[tonsisting of a singlen-gon andn — 1
simple edges, where the vertices of tigon are labelled 1 tm in clockwise order around its
perimeter. Turning this polygon “inside-out” and removing the descentimgskKwhich are super-
fluous) results in a non-crossing tree on the circle, as illustrated below.
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This correspondence between inequivalent minimal transitive factomsadica fixed full cycle and
non-crossing trees on the circle is essentially the same as a bijection crediastndov in [68].

In closing, we mention that Theorem 4.3.9 is easily modified to describe thengrahsimple
cacti from properly labelleddescent-marked hybrid maps. This can be applied, as in §4.3.5, to
determine a generating series for inequivalent minimal transfti¥@ctorizations of permutations
composed of two cycles. The form of this series is not particularly illuminatiogwe do not
include it here. The usual difficulties are encountered when attemptindegndethe method to the
enumeration of8-factorizations of permutations with arbitrary cycle type.



Appendix A

Canonical Forms for Inequivalent

Factorizations of Class(ny, ny, n3)

Fix n;,nz,n3 > 1, and lets}, = {1',...,n{} fori = 1,2 3. Let f be a minimal transitive factor-
ization of (11 - - - n})(12...n3)(13- . . n3) whose left cut ig1! 1%) and whose right cut i€1®a?), for
somea with 1 < a < n;. Then exactly one of the following five cases is applicable. Throughout,
the symbol[x ] represents a minimal transitive factorizationmafand the notatiomy « h indicates
that the factorizationg andh are to be concatenated in the given order.

Case 1:There are uniqug, p1, P2, pswWitha<q < p:1 <n;, 1< pr <nzand 1< p3 < nzsuch
that f ~ L % (111%) « C % (13al) « R, where

[P+ D nD]* [QP(p2 + D?---nd)] + [(LBP(ps + 13- - n)],
[t al@+ D)t pi1?--- pd)],
[( .. ql]_3 Ce pg)]

L
C
R

Case 2:There are uniqug, p1, p2, pswWithl < pp<a<g=<n;l<p;<hnyandl< pz<ng
such thatf ~ L * (1112)(1%a?) * R, where

[a%m+n at@+ D nD] # [(B(p+ D2 nd)] # [(B(ps + 13- nd)],

L

177
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Case 3:There are uniqug, p1, p2, pswWithl<g<a<pi<npl<p<hyandl< pz3<ng
such thatf ~ L % (11 1%)(1%a?) « R, where

[ (pr+ D nD]*[((@+ D --ah] * [(P2(p2+ D?- - nd)] + [(LP(ps + 13- --n)],

L
R [(al...pilz...p%]_l...q1]_3...p§)]_

Case 4:There are unique, p1, P2, pswWithl <a<py<n;,1<r <p;<nzandl< pz<ng
such thatf ~ L % (11 1%) %« C = (13a?) * R, where

[Py + DF - nh] * [((p2 + D2---m)] * [(B(pa+ 13- -nd)],
[--.alc + 12 pd)],
[(al. .. p%lz . .r213. .. pg)]

L
C
R

Case 5: There are unique, g, p1, P2, psWithg < pr <r <g<a=<n; 1< p; <nzand
1 < ps < nzsuch thatf ~ L % (11 1%)(1%a') x R, where

L=[@"pr+ D rH]*[@+ D' ah] = [(P3(p2 + D?---nd)] + [(LP(ps + - --n)],

R = [(_’]_1...p%]_z...pg)]*[(al...n%rl...ql]?...pg)]_



Appendix B

Future Work

Of the numerous questions left open in our investigations, we feel thadltbeiing three are of the
greatest importance. Of these, the first is the top priority.

e A combinatorial proof of Theorem 2.6.11 remains a major goal of futureamed. The ratio-
nal form of"(z, u) makes it an enticing object of study, yet assigning combinatorial meaning
to the iterated differential operat@® = ), 1_2{13 36_Z| seems difficult. We conjecture that the
effect of this operator is to build certain trees (by repeatedly attaching )it could take

the place of the patl#” in analogues of Theorems 2.7.11 and 2.7.14. That is, edges would be
repeatedly attached from the leaves of these trees so as to form smoottStizgstfer'son-
jugation of treeg62] could potentially be helpful in this context, but edge- and face-lalgellin
complicates matters.

In general, the possibility that Lemma 2.7.6 could be used to build smooth mapsr&esn
in some canonical manner should be explored further. Smooth planar fdgsoent class
(1, ...,1) would provide a natural starting point for such investigations. Theseaneted
by thesimple Hurwitz numbers ¢4[1"]) = n"~3(2n — 2)!. While this formula is suggestive
of various combinatorial interpretations, no bijective proof has beemdou

Note that the close similarities between §2.7 and 83.4.5 make it certain that a nekber u
standing of Theorem 2.6.11 would immediately lead to further insight into thel@éluywitz
problem.

e Leta = (s, ..., am) be apartition of. Letr, = n+£(a)—2 and letG, = n-Ho(x)/ []; oi-
ForS={iy,...,ix} C [mMlwithiy < --- < iy, letas = («i,, ..., aj). In[72], Vakil gives

179
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Future Work

the recurrence

lo —
Gy=(ta—1 ) ( )|ﬁ||y|GﬂG + 3 Zak > ( )Gﬁ ”
o NTB Ty 2i3 plaa
where the first sum is over all pai(8, y) = (as, at), where(S, T) is a partition of ], and
the second sum is over all paif8, y) = (ag, of), wherea’ = (o1, ..., 0k, ..., om, P, Q)
and(S, T) is a partition of m+ 1] havingp € S, g € T. For example, witlw = (4, 1), we
have

3 3
G(4’1) =4 { (3) 4.1, G(4)G(1) + (O) -1-4. G(l)G(4)}

1 4 4 4
3 4. {<2>G(1,1>G<3) + (3>G(2,1>G<2) + (4>G<3~1>G<1)

4 4 4
+ (2)(3(3)(3(1,1> + (1)(3(2)(3(2,1> + <O>G(1)G(3,1>}

Using results from [29], the recursion can also be simplified to

ro(re — 1) o —2
Gu=—"—"") (rﬂ’ y>|ﬁ||y|GﬂGy,
8.7}
where the sum extends over §l, y} = {as, a1}, where(S, T) is a partition of mm]. How-

ever, the

By Corollary 2.4.22, note thaB,, is the number of planar, vertex-rooted, edge- and face-
labelled maps of descent clags Interpreting the recursions above in terms of the combi-
natorics of such maps would be a great step forward. No progresehasen made along
these lines.

More work should be done to manipulate Corollary 4.3.14 into a more enlightéarimg To
this end, comparison with the counting series for each of the five categdifi@storizations
listed in Appendix A could be helpful. Further attempts should also be maddeatding
the switching construction of GJL [32], with graphical intuition potentially beangaluable
source of insight.
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