








































































CHAPTER 4. THE SOLUTION 27 

Theorem 4.1 Let G be the set of all elements g E S2n such that g is a product

of n disjoint transpositions. Let a E S2n- The equation XY = a, X, Y E G has a

solution if and only if the cycle decomposition of a has an even number of ( disjoint)

cycles of each order. 

If a has 2m; i-cycles so that

then the number of solutions is 

2n = Li·2m;, 
i=l 

rrn im; • ((2m;)!) 
m·!·2mi 

i=l 
t 

Proof: Consider X, Y E G, both with cycle decompositions composed entirely of 

disjoint transpositions. 

Look at the element a1 , and take its transposition in X, say ( a1 , b1). 

Then take the transposition (b1, a2) in Y, which must exist since Y only has trans­

positions, and all 2n elements possible must be in one of them. 

If a2 = a1 , then X contains (a1, b1) and Y contains (b1 , a2) = (b1 , a1 ). Since all 

transpositions in X and Y are disjoint, this is the only occurrence of a1 and b1 in 

X and Y. Thus XY = a would produce a1 --t b1 --t a1 and b1 --t a1 --t b1 , which 

gives (ai)(bi) in XY = a, a pair of 1-cycles. 

At this point in the process, having placed a1 and b1 in their cycle pair, we must 

choose a new starting element, one not equal to either a1 or b1, and begin again. 

n 
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If a2 =J a1, then take (a2 , b2 ) in X, which must exist as above. If b2 = b1, then we 

have ( a1, bi ) in X and (a2, b2) = (a2, b1) also in X, which contradicts our assump­

tion of disjoint transpositions. 

Then take (b2 , a3 ) in Y. Again, this must exist. 

If a3 = a2 then we have (b2, a3) = (b2, a2) in Y and (b1 , a2) in Y, which contradicts

the disjoint transpositions assumption. 

If aa = a1, we have (b2, aa) = (b2, ai), and (b1, a2) in Y, and (a1, b1 ) and (a2, b2) in 

X, which gives us b2-+ a1-+ b1 and a2-+ b1-+ a1 , so we have (b2, bi ) and (a2, ai ) 

in XY = a, a pair of 2-cycles. Using the ( a2, b2) transposition in this process in­

stead of (a1 , b1) gives us the same result. 

If a2 =J a1 , we continue the process as above, each time adding new elements until 

we find one repeated, ie ak = a1. This must happen, as all 2n elements in X are in 

some cycle (transposition) in Y. 

Then (a1, a2, ... , ak-d and (b1, bk-1, ... , b2) are in a. 

Note that in each case two disjoint cycles of the same length are produced. 

If the same procedure is repeated on the remaining elements, more pairs of disjoint 

cycles are produced, as no cycle could contain one of the already used elements. 

Thus, if X and Y are as given, an a of the required form is produced. 

Now take a such that it is a product of an even number of cycles of each order. 

Consider k-cycles, of which there are 2mk. 

Take two of these, say (a1,a2, ... ,ak ) and (b1,b2, ... , bk)- Pair these as (a1,b1), 

(a2, b2), ... , (ak-1,bk-1), (ak,bk) in X and (b1,a2), (b2,aa), ... , (bk-i,ak), (bk,ai) 

in Y. This is like writing one permutation above the other, and pairing the elements 
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vertically. Then, as above, the product of these gives (a1 , a2 , •.• , ak)(b1 , b2 , ••. , bk). 

Continuing this method on each remaining pair of like-ordered cycles we get a so­

lution (X, Y). 

Thus the first part of the theorem is proved. 

Again, consider k-cycles. There are 2mk of these. Thus, there are 

ways to choose one pair, 

for the next, and so on. Therefore, we have 

( 
(2mk)! ) ( (2mk - 2)! ) ( 4! ) ( 2! ) 

2!(2mk - 2)! 2!(2mk - 4)! · · · 2!2! 0!2! 
(2mk)! 

-(2!)m• 

ordered pairs of k-cycles. To look at unordered pairs we need to divide by mk!, the 

number of permutations of each set of pairs. Thus we have 

ways to choose the pairs. 

(2mk)! 
mk!2m• 

Finally, we can pair the elements of these k-cycles in k different ways for each of 

the mk pairs. 
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Thus we have 

km•(2mk)! 

mk!2m• 

ways to make 2-cycles of the k-cycles. 

Finally, taking the product over all cycles, we have 

rrn im' · {2m,)! 

m·!-2m, 
i=l i 

solutions to XY = a. 

30 

• 
From this theorem, we can see that AD, BE and CF are products of two permuta­

tions, each written as a product of only disjoint transpositions. These are our A, 

B, ... , F. The proof also tells us how to find A, B, ... , F, by pairing the elements 

of pairs of equal length cycles. 

4.2.4 Analysis of Theorem 4.1 

We can see from this theorem that, while we know how many solutions there are 

to XY = a, this number is not always small, or even reasonable. In fact, with only 

the 26 letters of the alphabet, there can be a huge number of solutions, sometimes 

billions of them (see Table A.l). What we need to know is how often this number 

is small enough to be useful. To find this out, we need to look at the individual 

cycle decompositions of our permutations, AD, BE, and CF. 
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First we need to look at the possible types of cycle decompositions of a E S26 . There 

are 101 of these. We then need to take a particular type of cycle decomposition, 

and find out how many of these there are. Since our permutations are composed 

of disjoint cycles, each cycle length appearing in an even number, we can come up 

with a formula for the number of possibilities. The formula for this is: 

(2n)! 
rr~=l ( i2m; • (2m,) !) . 

Finally, we need to calculate the number of solutions for each of the possible cycle 

decompositions, using the formula given in the theorem, 

II
n im; • (2m.!). 

m·'·2m; i;;;;l 'J" 

This data is collected in Table A.1 on page 63. 

Using the values in Table A.1, we can see that there are a total of 2, 927, 671, 

399, 386, 587, 378, 671, 616 possible permutations of the type we require. We now 

want to look at how often there are a small number of solutions to the equation. 

Table A.2 on page 69 gives these values. We can see that in most cases there will 

be very few solutions. In 96% of the cases, there will be less than fifty possible 

solutions for A. This means that most of the time, there were very few cases to 

look at to find the correct one, and that it would very seldom have been impossible 

to test all of the possible solutions, even given that that there was no access to 

computers. 



CHAPTER 4. THE SOLUTION 32 

4.2.5 Finding the Right Solution 

Now that we've discovered that we would usually have a small number of solutions, 

we need to discover which of these solutions is the correct one. To do this, we use 

the known foibles of the encryptors, mentioned earlier, such as using keys like 'aaa' 

and 'qwe'. This was not always possible given the message data on a given day, but 

an example will demonstrate how it could have been done. The following example 

was taken from [1]. 

For a given day, we collect the message keys (see Table A.3 on page 69). From this 

table, we can see that there are four keys that have been repeated: AHY OHU, 

KTR YZH, RHO KHE, and RPS KGO. Since the German message encoders were 

more likely to use alphabetic or keyboard sequences than any other sequence, we 

can assume that these represent such sequences. We also need to calculate the three 

permutations AD, BE, and CF. These are: 

AD= (XUFBV)(CMST J)(AOQ)(RKY)(DG)(EH)(LZ)(PW)(l)(N) 

BE= (UQNAJPGVIWCY)(FTZLKEXDRMOB)(H)(S) 

CF= (CYUVBXD)(EFPGTSO)(HWIR)(JQZL)(AN)(MK) 

The two pairs of I-cycles tell us that in the message keys, an I or N in the first 

position must decipher to the other, and in the second position, an H or S must 

decipher to the other. Not much of this information is useful, except that H deci­

phers to S. Thus AHY and RHO come from ?S? (where'?' represents an unknown 

letter). From the alphabet, we have RST, and from the keyboard, we have WSX, 
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ASD, and ESZ, as well as the reverses of these as possible keys. If we look again at 

the permutation AD, we see that Rand A come from 3-cycl~s, which we can match 

up in the following way: 

(AOQ) 

(RYK) 

This gives us the possibility that A deciphers to R and R deciphers to A, which in 

turn gives RHO into AS? and AHY into RS?. Looking back at our possible keys, 

we see that probably RHO deciphers to ASD and AHY deciphers to RST. This 

allows us to match up the 7-cycles in CF in the following way: 

(CYUVBXD) 

(STGPFEO) 

Using the previous information, we can take RPS to A ?C, which is likely to be 

ABC, and thus we have: 

(PGVIWCYUQNAJ) 

(BFTZLKEXDRMOB) 

in BE. Finally, we can decipher KTR to QA?, which is likely QAZ, and thus we 

get: 

(RHWI) 

(ZLJQ) 

in CF. This gives us most of the matchings for the theorem, and from here, we 

should be able to use the rest of the message keys to find the complete matchups. 
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In this way, we can use the message keys to find the exact permutations A,B, ... , 

F. You can see that this example is very artificial. However, on a normal day there 

could be many more messages, and thus more message keys to work with. This 

gave them more chances of finding repeated keys, and more chances to get keys 

that gave them more information. This method also relied heavily on the mistakes 

made by the encryptors, but these mistakes did happen fairly often. They also, over 

time, came to 'know' the individual encryptors, and what their particular mistakes 

might be. 

4.3 Rotors 

4.3.1 The Basic Equations 

We now want to try to convert the action of the Enigma into algebraic equations, or 

operations in permutations. We want to take each part of the machine, the rotors, 

the plugboard, the reflector, etc., and give each a letter to represent its action. If 

we use the same letters as Rejewski, we have: 

(See Figure B.1 on page 72) 

S = plugboard 

L = rotor 3 

M = rotor 2 

N = rotor 1 

R = reflector 

H = entry drum 
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Thus the path of a message entry through the Enigma is: 

SH NM LRL- 1 M-1 N-1 H-1 s-1 

which represents its travel from the keyboard through the plugboard, the entry 

drum, the three rotors and the reversing drum, and back to the lampboard. 

Since the Enigma rotated the rotors to create the code, we must take this successive 

movement into consideration. Thus we must introduce a permutation in S26 , called 

P, into the equation to represent this rotation. We will, for now, only consider 

the rotation of the first rotor. This is because the second rotor only turns every 

twenty-six rotations of the first rotor, and thus for a series of six rotations, of the 

twenty-six starting points of the first rotor, only twenty-one of these will involve a 

change in the second rotor. The third rotor changes even less frequently. 

If we take our permutation A to be the basic or intitial permutation shown above, 

we have: 

A= SHPNP-1 MLRL-1 M-1pN-1 p-1H-1s-1 

B = SH P 2 NP- 2 M LRL- 1 M-1 P2 N-1 p-2 H-1 s-1 

F = SH P 6 N p-s M LRL-1 M-1 P6 N-1 p-6 H-1 s-1 

Now we want to solve these equations for N, M, L and R. 
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4.3.2 The First Rotor 

At first it was assumed that the entry drum of the military Enigma was the same 

as that of the commercial Enigma. Thus the permutation created by this drum was 

thought to be 

H = ( qwertzuioasdf ghjkpyxcvbnml) 

abcdef ghijklmnopqrstuvwx y z 

That is, the rotor took input in the order of the German keyboard, and produced 

output in alphabetical order. Although this assumption eventually proved to be 

false, much time and effort was lost in trying to solve the Enigma using it, and 

work was consequently almost abandoned. [5, page 255] 

Although this original assumption was false, we will assume that His known. At this 

time, the ninth of December, 1932, Rejewski was given a photocopy of two tables 

of daily keys for September and October 1932 [5, page 256]. Since these tables also 

gave the daily plugboard connections, the permutation S was now known for some 

of the data. Thus we can write 

A= SHPNP-1MLRL-1 M-1pN-1p-1H-1s-1 

as H- 1s-1ASH= PNP- 1QPN- 1p-1 
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where the left hand side is assumed to be known. Similarly, we have 

where again the left sides are assumed to be known. Since P is also a known 

permutation, we transfer the preceding and succeeding P's from the right hand 

side to the left hand side, giving 

p-1H-1s-1ASHP = NP-1QPN-1 

p-2 H-1s-1 BSHP2 = NP- 2 QP2 N- 1 

Finally, for simplicity, we shall rename the left hand side: 

U = NP-1QPN-1 

V = NP- 2 QP2N- 1 
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Now we want to look at these equations as successive products. Thus we have: 

UV= NP-1QPN- 1NP- 2QP2N- 1 

= NP- 1(QP- 1QP)PN-1 

VW = NP- 2QP2N- 1NP- 3 QP3N- 1 

= NP- 2 (QP- 1QP)P2N-1 

YZ = NP- 5 QP5N- 1NP-6 QP6 N- 1 

= NP- 5 (QP- 1QP)P5N- 1
• 

Now, substitution gives us: 

VW = NP- 1 N-1(UV)NPN- 1 

WX = NP- 1 N- 1(VW)NPN- 1 

38 

From this we can see that VW is transformed from UV by the N p-l N-1 . Our goal 

now is to solve for N p-1 N-1 . To do this, we need a theorem. 

Theorem 4.2 Let a,/3 E Sn. The equation Xax-1 = /3 has a solution XE Sn if 

and only if a and /3 have the same cycle decompositions. 

Suppose that a (and /3} is a product of m1 1-cycles, m2 2-cycles, ... , mn n-cycles 



CHAPTER 4. THE SOLUTION 

so that 

n 

n= Li·m,. 
i=l 

Then the number of solutions to X ax-1 = fl is 

n 

IT im' · (mi!) 
i=l 

39 

Proof: Suppose a and fl have the same cycle decompositions. That is, both have 

m1 I-cycles, m2 2-cycles, ... , mn n-cycles. 

Now take each k-cycle in a and map the first element of that k-cycle to an element 

of a k-cycle in fl. For the k-1 elements left in the chosen k-cycles, continue this 

process by mapping each subsequent element in the k-cycle in a to the subsequent 

element in the k-cycle in fl. Continue this for each cycle in a, not reusing any cycle 

in fl. 

ie. if a= (12)(34)(5678) and fl= (23)(45)(6781) the following are possible map-

pmgs: 

(: 2 3 4 5 6 7 :) X= 
3 4 5 6 7 8 

~x= (: 
2 3 4 5 6 7 :) 5 3 2 8 1 6 
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Then XaX- 1 (1) = Xa(S) = X(5) = 6 = ,8(1). 

In general, suppose a : i -, j and X : i -, p, j -, q. Then X ax-1 : p -, i -, j -, q. 

Now show .B: p-, q. Since X: i-, p (and therefore x-1 : i-, p) and a: i-, j, 

by construction, and since X: j-, q, we have .B: p-, q. Thus Xax- 1 = ,8. 

Therefore a and .B having the same cycle decomposition implies that a and .B are 

conjugate. 

Now suppose a and .B differ only by replacing elements in cycles, that is, are conju­

gate. Since no element can be used more than once to replace another, the cycles 

remain disjoint, and thus c, and .B have the same cycle decomposition. 

Proof of the second part: 

Leave a in the given order. How many permutations of .B are there that leave cycle 

groupings as they are in a? 

Starting with the 1-cycles, there are m 1 of them. Thus there are m 1! orders to write 

the cycles in, since all the cycles are disjoint. Finally, there is only on way to write 

each 1-cycle, so we have a total of m 1! ways to write the 1-cycles. 

Now we look at the 2-cycles, of which there are m 2 • Thus there are m 2! different 

orders to write the cycles in, since, again, all cycles are disjoint. There are 2 ways 

to write each cycle as each has two elements. Therefore there are 2m, ways to write 

the cycles, not counting order of cycles, which gives us a total of 2m2 , m 2 ! ways to 

write the 2-cycles. 

:Finally, look at the n-cycles. There are mn n-cycles, which can be written mn! 

different orders. There are n ways to write each cycle, and therefore there are nm" 
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ways to write each cycle, not counting order of cycles. This gives nm" · mn! ways 

to write the n-cycles. 

Thus our final i:esult is: 

- rrn ,;mj • m·' - i=l C, i.· 

• 
So we let UV = a, VW = f3 and N p-l N-1 = X. From the theorem we know 

that there are solutions for N p-1 N- 1 = X and we know how many solutions there 

are. We can find these solutions by subscribing UV above VW as in the theorem. 

If we do this in all possible ways, we get all the possible solutions. Doing this for 

the other combinations, VW and WX, ... , XY and YZ, gives us the other sets of 

solutions. If we compare these sets, we should find at least one solution common 

to all the solution sets (there will always be at least one solution as these solutions 

come from a real code). In fact, we will probably have only to check two of the 

solution sets to find the solution, as there will usually be only one element common 

to any two sets. This common solution is our desired value for N p- 1 N-1 = X. 

At this point, Rejewski's solution seemed to fall apart. Contrary to the theory, 

there were no matching solutions in the solution sets. This setback almost caused 

the work to be abandoned, until Rejewski's looked at his original assumptions. He 

soon realized that he had the entry drum permutation wrong, as it was the only 

unfounded guess he had made. When he made another hypothesis, that the entry 

drum was connected in alphabetical order, that is, H was the identity, the solution 



CHAPTER 4. THE SOLUTION 42 

was clear. 

Now that we have a solution for N p-1 N-1 = X, we want to find N. This is done by 

subscribing Np-I N-1 below P, which we know, in all 26 possible ways ( as P, and 

therefore N p-1 N-1 , is a 26 cycle). This gives us all the ways that rotor N could 

be put in the machine. Each of the 26 solutions is correct for some setting, but it is 

difficult to know which is the "base case", the setting of the rotors that emerge in 

practice only when the rotors are put in the machine with identical settings. What 

could be done, however, was to choose one of the solutions to be our base case, and 

to adjust the interpretation of any given settings accordingly. 

4.3.3 Analysis of Theorem 4.2 

We know that there are a finite number of solutions, and we know that one of 

them must be in all the solution sets, and thus must be the correct solution. The 

important questions is, how many solutions are we finding and comparing? To 

discover this, we must analyze the values given by this theorem, much as we did 

those we found in Theorem 4.1. 

In this case, there are 2436 different cycle decompositions of permutations of 26 

elements. Therefore, we will not create a table of all of the values, but merely pick 

out some values that give us a good idea of what we are looking at. There are a 

total of about .4032914611 . 1027 permutations of 26 elements. The numbers and 

percentages of these with numbers of solutions less than some specific values are 

given in Table A.4 on page 70. 
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From Table A.4 we can see that the results for Theorem 4.2 are not as good as 

for Theorem 4.1. However, not as much analysis needs to be done with these 

numbers. All we need to do is find two that are the same, not check each to 

see if they work. We can find all the solutions for the first equation, and then 

find the solutions to the second equation until we find a matching one. Thus, on 

average, we would have to find about 300 solutions to the first equation, and then 

find 150 (assuming a random distribution) solutions to the second equation. This 

second number could probably be lowered by looking at the structure of the second 

equation, and eliminating matchings that would not be similar to anything found 

in the first equation, although this might not reduce the total time taken. 

4.3.4 The Entry Drum 

At this point we want to look at something that came up earlier. Although Rejew­

ski finds the permutation of the entry drum by guessing, he does mention that it 

could have been discovered through deduction [5, page 258]. We want to show how 

this might have been possible. This method is similar to that of finding the first 

rotor, but much more complicated, as we know much less about the structure of 

the machine at this point [2]. The only parts we can assume that we know are the 

plugboard, the positions (not configurations) of the rotors and the permutations A, 

B, ... ,F. 

We start by assuming that the first rotor is the same rotor starting at the same 

position throughout our analysis, but that the other two rotors have different con­

figurations, X and Y, that don't change with the rotation of the first rotor. Thus 
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we are using data from two different days. We will call the position the first rotor 

starts in the base position, and incorporate this into the permutation N so that we 

don't have to use extra notation. Finally, we know the plugboard configuration. 

Thus we can write: 

and 

K1 = s-1AS = HPNP-1XPN-1 p-1H-1 

K 2 = s-1 BS= HP2 NP-2 XP2 N-1 p-2 H-1 

K 6 = s-1 FS = HP6 NP-6XP 6 N-1 p-0 H-1 

K; = s-1 AS= HP NP-1Y P N-1 p-1 H-1 

K; = 5-1 BS = H p2 N p-2y p2 N-1 p-2 H-1 

where K, are known and X; and Yi represent the current positions of the middle 

rotors and the reversing drum. 

We can then take products of the equations K, and K,*, to get: 

K1K; = HPNP-1XPN-1P-1H-1HPNP-1YPN-1P- 1H-1 

= HPNP- 1XYPN-1P- 1H- 1 
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K2K; = H p2 N p-2 X p2 N-1 p-2 H-1 H p2 N p-2y p2 N-1 p-2 H-1 

= H p2 N p-2 XY p2 N-1 p-2 H-1 

KaK; = H pa Np-a X pa N-1 p-a H-1 H pa N p-ay pa N-1 p-a H-1 

= H pa Np-a XY pa N-1 p-a H-1 

If we now rearrange the equations to isolate XY, we get: 

XY = P N-1 p-1 H-1 K 1K{ HP N p-1 

XY = P2 N-1 p-2 H-1 K2K; H P2 N p-2 

We can now do some substitution: 

K2K; = H P2 N p-2 P N-1 p-i H-1 K 1K{ HP N p-1 P2 N-1 p-2 H-1 

= HP2NP-1 N- 1 p-1H-1 K 1 K{HPNPN- 1 p-2H-1 

= HP1 (PNP-1 N-1)p-1 H-1 K 1K;HP(NPN- 1 p-1)p-1 H-1 

KaK; = H pa Np-a ps N-1 p-s H-1 KsK; H ps Np-spa N-1 p-a H-1 

= H pa N p-1 N-1 p-s H-1 KsK; H ps Np N-1 p-a H-1 

= HP 5(P 1 NP-1 N-1)p-5 H-1 K 5 K;HP5(NPN- 1 p-1)p-5 H-1 

45 
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Since we know the values of K,K[ for i = 1, 2, ... , 6 we can solve for 

using Theorem 4.2. 

At this point, we must assume that the size of the solution set for the above equation 

is relatively small so that we can work with all the solutions. We now want to isolate 

(P1 N p-1 N-1) 

by moving the surrounding permutations to the other side: 

We can then equate the permutations containing r, and r,+1: 

and isolate r,+1: 

Now we can solve for HP H-1 , using Theorem 4.2, as both r, and r,+1 are known. 

We take the solutions to these equations that are in all five solution sets, and get 
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a possible set of values for each ii!; in the equation: 

With these values, we can solve for H, as P is known, which gives us a set of 

solutions for H. Since P is a 26-cycle, HP H-1 is also a 26-cycle, and there are 

only 26 solutions, one of which must be the solution of the entry drum, and this 

one must appear in all 5 of the possible solutions sets. Thus we have deduced the 

configuration of the entry drum. 

4.3.5 The Second Rotor 

Given the solution to the first rotor, how were the solutions to the other two found? 

A couple of items made that easier to do. The Germans, in order to make the code 

harder to solve, had been changing the order of the rotors quarterly. Also, the data 

supplied to Rejewski had been for September and October 1932, a period bridging 

two quarters. Thus, for messages after the change, with a new rotor in the first 

spot, the same method could be applied again. 

4.3.6 The Last Rotor 

Now we have 26 choices for each of 2 rotors, and one rotor left to solve. At this point 

we deviate from the actual methods used by Rejewski. We use a more mathematical 

method than he did, or at least, than he specified. 

To solve the last rotor, we assume that in at least one of the months that data was 
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supplied for, the unknown rotor was the last rotor in the machine. In this case, we 

need to use the A permutation that we used for solving the first two rotors, but 

for several days, rather than all six permutations from one day. We also need to 

choose days in which the settings of the rotors follow an arithmetic progression. 

At this point, we can assume that in our usual equation for permutation A, that 

we know rotors N and M, and the settings of each of these rotors (from the daily 

key). We want to adjust this equation so that it is possible to permute each of the 

rotors. That is, we are no longer assuming that just the first rotor moves. Thus, 

our equation would look like this: 

A = 8 P"' N p-x PYM p-y pz £p-z RP' L-1 p-z PY M-1 p-y P"' N-1 p-x s-1 

Since we know the configuration of rotors M and N, and their settings, we can let 

J-1 = SP"'NP-"'PYMp-y 

and so we can write 

A= J-1 P' £p-z RP' L-1 p-z J 

which gives J AJ-1 = P' £p-z RP' L-1 p-• = U 

where the left hand side is known. 
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We now have 

where n represents a given set of settings of rotors N and M. We know what a 

chosen An does to input on a given day, and we know what J does to input, given 

that we know the settings on that day. To solve for Un, we need to find, among 

the daily settings given for the month the L rotor is third, are 4 settings for the L 

rotor in some arithmetic progression. 

To give an example to work through the method with, we will choose a progression 

of 3. So, given our starting value, z, for the permutation of rotor L, we have these 

equations: 

We now move the bracketing P's from the right side to the left side, as these are 

also known: 

p-zJ A J-1 pz = £p-z RP· L-1 no no no 
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p-(z+9) J A J-1 pz+9 = £p-(z+9) RPz+9 L-1 
n9 fl9 n9 

Now we can rename the left hand side for simplicity: 

Next, we take products of successive W;'s: 



CHAPTER 4. THE SOLUTION 

And finally, substitute: 

i[Jai[Js = LP-3 L-1 (i[Joi[Ja)LP3 L-1 

i[Jsi[Jg = LP-3 L-1 (i[J3 i[J6 )LP3 L-1 
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Now, just as when we were solving for the other two rotors, we use Theorem ref­

prop:absoln to find £p-3 L-1 . Then we use the same method as before to solve 

for L, given that we know P and therefore p-3 • Finally, using the daily setting 

and our solutions to all 'three of the rotors, as well as "a sample of plain text and 

its authentic ciphergram at a stated daily key and message key" which had been 

supplied with the monthly tables of keys, the reversing drum was easy to discover. 

On a last note in the solution of the third rotor, we look at the question: can the 

value of the arithmetic progression be anything? No. If it is 13, for example, there 

are only two possible values to choose from: z and x+l3, as z+26=z. In this case, 

our analysis would not have been possible. While 2 has the same characteristic of 

13, that is, it divides 26, we are only dealing with 4 settings, while there are 13 

different values available from 2. However, in this kind of analysis, it is probably 

best to avoid numbers not relatively prime to the order of the permutation. 

4.4 Finding the Daily Key 

Now we want to figure out the other connections in the Enigma machine. That is, 

the particulars specified in the daily key: the plugboard, the rotor positions and 

orders, and the ring settings. These are the tools and information that we have 
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used until this time to find out the rotor configurations. Now, given the discovered 

configurations, we want to find the data that was known previously. 

We start by looking at the equations 

where 

A= SQ1s-1 

B = SQ2S- 1 

Q; = px; N p-x; pYi Af p-y; pz; Lp-z; RPz; L-1 p-z; pYi M-1 p-y; px; N-1 p-x; 

We then want to take products of these equations to get the permutations AD, BE, 

and CF: 

AD= SQ1s-1SQ4s-1 = SQ1Q4s-1 

BE= SQ2S-1SQ5S-1 = SQ2Q5S-1 

CF= SQas-1SQ6s-1 = SQaQGs-1 

We know that the permutations A, B, ... , F and their corresponding Q;'s have 

the same cycle decompositions, and that their products must also have the same 

decompositions. We also know that since they are composed of disjoint cycles of 

26 elements, there are 101 different possibilities for each decomposition. There are 
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three equations we are looking at, each with 101 possibilities, and thus 1013 = 

1,030,301 possible decomposition combinations for AD, BE, and CF. In addition, 

we know that there are 3! = 6 different orders for the three rotors, and 26 different 

positions for each of the three rotors, and thus 6 · 263 = 105,456 different complete 

settings for the rotors. Thus, there is an average ofless than 1 rotor setting for each 

cycle decomposition combination. While this does not mean that we have at most 

one rotor setting to test, it does suggest that we would not have to test very many, 

and that many of the decomposition combinations would not even be possible. 

Using this information, we want to make a catalogue of all rotor settings, filed 

by cycle decomposition combination. At the beginning of the Enigma's use, it 

was known that the plugboard switched exactly six letters and thus S and s-1 

consisted of six transpositions. It is also true that the plugboard did not change 

the cycle decomposition, just the individual permutations. Therefore, it would be 

quite simple to go through the catalogue and pick those permutations that differed 

from A by the switching of six letters. From these, it sufficed to try the given 

settings of rotors and inferred settings of the plugboard on the machine and see 

which gave intelligible output. Another factor that would help with this testing 

was the fact that most messages "began with the letters ANX from the word 'an' 

(German for 'to') and 'x' to separate the words." [5, page 261] This meant that in 

many cases as few as three letters would have to be checked. 

Thus, with a little bit of manual labour, a few calculations, and some luck, it 

was relatively easy to find the daily settings of the Enigma machine. This meant 

that the three Polish cryptographers could spend most of their time improving the 
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methods they already had, and finding new ways to deal with any changes made 

to the German methods. 

4.5 The German Changes 

As the Germans grew closer to starting their offensive, and as the subsequent 

war progressed, an increasing number of changes were made to the way messages 

were encoded on the Enigma machine. These changes meant that Rejewski was 

constantly working at solving the Enigma, and made all the cryptologists look for 

better and more efficient ways to find the daily key, decrypt messages, and keep up 

with all the changes. 

Until December 1st, 1936, there were always exactly six plugboard transpositions. 

After that time, this number changed to between five and eight transpositions. Not 

satisfied with the security afforded by this, the Germans increased the number to 

between seven and ten transpositions on January 1st, 1939 [5, page 268]. This 

change, however, can be easily dealt with using the catalogue method described 

in Section 4.4. They would still have to look up the permutation combinations, 

but instead of looking for a solution with exactly six switches, they would have to 

consider more of the choices. The catalogue method we describe is a combination of 

two methods we know the Polish used, their smaller catalogue and the cyclometer. 

Although not identical to either of these, it accomplishes essentially the same thing 

and works in a similar way, using the same mathematical principles and Enigma 

characteristics. 
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At the beginning, the rotor order was changed once a quarter. On February 1st, 

1936, the frequency of change increased to monthly, and eight months later, to 

daily. [5, page 262] This made knowing the rotor positions very important, and a 

method was devised to find this more quickly. This method was called the "clock 

method", and used "the unequal frequency of occurrence of letters in the German 

language" [5, page 262]. 

If we subscribe beneath each other, letter by letter, two texts in German, 
... , then within the compass of twenty-six letters, there will be, on average, 
two columns with identical letters, and this feature will be preserved, as well, 
when we encipher both texts with the same key. However, if we encipher 
each text using a different key to the machine cipher, then the twenty-six 
letters will include, on average, only one column with identical letters .... 
Within the compass of twenty-six letters, this phenomenon does not occur 
in a perceptible way, but when we have messages of say, two hundred sixty 
letters each, then in general we can tell by this procedure whether they were 
enciphered using the same or different keys. We make use of this in the 
following way: 
If we have a sufficient quantity of cipher material, we usually find between 
ten and twenty pairs of messages such that in each pair the first two letters 
of the keys are the same and only the third letters if the keys differ. We now 
subscribe the two messages of a pair beneath each other in such a way that the 
letters enciphered using the same setting of the drums will appear beneath 
each other. A priory, though, there are two possible ways of subscribing the 
messages beneath each other, depending on the position of drum N at which 
the rotation of the middle, the M, drum takes place. These positions are 
known and are different for each of the three drums .... It suffices, with each 
of the two possible ways of subscribing the messages beneath each other, 
to count the number of columns with identical letters, in order to find out 
which of the ways of subscribing the messages is the right one, and thereby 
to determine which of the three drums is at the right hand side. [5, pages 
262 - 263] 

This method was the only method that used characteristics of language, rather 

than of the Enigma machine. 

At the beginning, there were only three rotors to choose from, so it was necessary 
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merely to figure out in what order they were placed in the Enigma machine. Later, 

(on December 15th, 1938) however, this number was increased to five, although only 

three were actually used at any one time. This increased the number of possible 

rotor orders from six to sixty. To deal with this, the cryptologists had to find the 

configuration of the new rotors, and figure out which rotors were being used. They 

assumed that the first, or N, rotor, was a known rotor, that is, one of the original 

three. They also assumed that the other two rotors consisted of a known and an 

unknown rotor, and then proceeded exactly as had been done when solving for the 

third rotor. They would then be able to use a greatly expanded catalogue to find 

the daily keys. [5, page 268] 

On November 1, 1937, the Germans changed the reversing drum. Fortunately, they 

had discussed this change over the Enigma net prior to that day, so the Poles were 

prepared for it. Thus, all they had to do was solve the new reflector as they had 

done the previous one. 



Chapter 5 

The Spy: Was he really necessary? 

As mentioned in Section 2.3 on page 7, there is some controversy as to whether 

the data obtained from the spy, Asche, was really necessary to the solution of the 

Enigma. In this chapter, while we will not attempt to give a definitive answer, we 

will try to shed some light on some of the factors involved. 

One of the most significant factors in this decision is whether it would have been 

possible to find two days with the same rotor settings. To look at this possibility, 

we need to use the "birthday paradox", which says that in a group of 23 people, 

there is a 50% chance that two will have the same birthday. We tailor this to our 

situation using the following estimate, given in [6, page 237 - 238]. 

We start with an estimate of the probability of no collisions, that is, that no setting 

appears more than once in k days. We know that the choice on the first day is 

arbitrary. Given that there are n possible choices, the probability that there were 

no collisions by the second day is 1 - l, and 1 - k-l on the kth day. Thus our 
n n 
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estimate is 

( 1) ( 2) ( k 1) k-l ( ·) 1-; 1-; ... 1- ·: =[! 1-;;. 

When xis a small number, as ours is, we know that 1 - :c ~ e-x. The estimate is 

obtained from the first two terms of the series expansion: 

x2 x3 
e-x = 1 - :c + -, - -, ... · 

2. 3. 

Thus we get 

k-1 ( . ) k-1 

II i II -i -k(k-1) 
1-- :::::; en =e " . 

i=l n i=l 

Now we have that the probability of at least one collision is 

-k(k-1) 
1- e " . 

If we want this probability to be e, we can solve for k as a function of n and e: 

-k(k-1) 
e n ~1-E 

-k(k - 1) ~ ln(l - e) 
n 

k2 
- k ~ nln -

1
-. 

1-E 
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Ignoring the -k term, we estimate 

We finally take e = 0.5 and our estimate is: 

k ~ 1.17\f'n. 

With our n = 6 · 263
, k is approximately 380. 

Thus, after 380 days, it would be reasonable to expect two days with the same 

rotor positions. The problem that arose at this point would be recognizing that 

two settings were the same, given only the encrypted data of the two days. The 

method of comparing frequencies of pairs of letters used previously would be of some 

help, but would not be a guarantee of identical settings. It would only eliminate 

settings that were probably not the same. Comparing the cycle decompositions 

would also help, and a combination of these two checks could give a fairly good 

estimate of when a match was found. 

Finally, given that we have found two days with identical settings, we must solve 

the equations: 

A; = S,H P N p-i M LRL-1 M-1 P N-1 p-1 H-1 s,-1 

B, = S;H P 2 N p-2 M LRL-1 M-1 P 2 N-1 p-2 H-1 s,-1 
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where i = 1,2, 6,.3 = HPiNP-iMLRL-1M-'PiN- 1P-iH-1 , and A,, B,, ... F, 

are known. Isolating the A;'s in one set of equations, we can write 

Then substituting for A3 we get 

tl, = S11 A,S, 

A2 = S11 B,S, 

A2 = S2S1' A,s,s;' 

B2 = S2S1' B,s,s;' 

Now, using Theorem 4.2, we can solve for S2S1
1 . 

At this point, we run into a problem: how to solve for S2 and S11 , and thus 

for S1 . At first glance, it looks like an application of Theorem 4.1, but upon 

closer inspection, we see that it cannot be. Theorem 4.1 requires that S2 and S11 

be products of disjoint transpositions. This is not, however, the case. Both are 

products of six disjoint transpositions, and fourteen I-cycles. Thus we have to look 
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for some other method. 

What other method might we use to solve this? For a group of 26 elements, there 

are 

possible such permutations, and without further analysis, there is no way to tell 

which would be the correct ones. It would also require further work to find out 

how many permutations S1 and S2 existed for each product so that it could be 

known that all had been found. Then testing would have to occur on each of these 

permutation combinations to find the rotor settings given that choice of permuta­

tions. With the limited resources available, this compounding of the task may have 

made the solution virtually impossible. If you also take into consideration that they 

probably did not know, without the spy's data, that there were six transpositions, 

this solution just grows more difficult. 

The other main barrier in the solution of the Enigma was the time factor. The 

Poles knew that invasion was relatively imminent, and they did not want to be 

wasting the time of one of their most valuable people on something that might not 

be possible to solve. Several times, even after the information was received from 

the spy, work was almost stopped on the Enigma. If Asche had never existed, the 

work would likely have ended in order to use Rejewski's time more profitably than 

on a seemingly unsolvable code. 
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Thus we can see that there were many roadblocks on the way to the solution. The 

chances of finding two days with the same rotor setting were very slim, and the 

difficulty recognizing such an occurrence only added to the problem. Solving the 

permutation equations would also have been difficult, especially having been made 

hundreds or thousands of times harder by having to try each of the possible plug­

board solutions. Finally, the time constraints would have made all of this even 

more impossible, particularly with out the aid of any sort of computing device. 

Today, it may not be so difficult, as programs could be written, and computer time 

dedicated to this solution, but with three, and sometimes only one man working 

on the problem, the obstacles were most likely insurmountable. 



Appendix A 

Tables 

Table A.l: Number of Possible Permutations and Solu­

tions for each Cycle Decomposition in Theorem 4.1 

Cycle Decomposition Permutations Solutions 

1, 12 700158786678134784000000 12 

13 1193170003333152768000000 13 

1, 2, 10 126028581602064261120000 20 

2, 11 208311705127378944000000 22 

1, 3, 9 69151485104013312000000 27 

3, 10 112025405868501565440000 30 

1,4, 8 49229914688306352000000 32 

1, 1, 11 69437235042459648000000 33 

1, 5, 7 41152189910878126080000 35 
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Cycle Decomposition Permutations Solutions 

4, 9 77795420742014976000000 36 

5, 8 63014290801032130560000 40 

6, 7 57155819320664064000000 42 

1, 2, 3, 7 14288954830166016000000 42 

2, 3, 8 21879962083691712000000 48 

1, 2, 4, 6 10939981041845856000000 48 

1, 1, 2, 9 12965903457002496000000 54 

2,4, 7 16075074183936768000000 56 

2, 5, 6 14003175733562695680000 60 

1, 3, 4, 5 7001587866781347840000 60 

3, 4, 6 9724427592751872000000 72 

1, 1, 3, 8 7293320694563904000000 72 

1, 1, 4, 7 5358358061312256000000 84 

1, 1, 5, 6 4667725244520898560000 90 

1, 2, 2, 8 4102492890692196000000 96 

1, 6, 6 6482951728501248000000 108 

2, 2, 9 6482951728501248000000 108 

1, 1, 2, 3, 6 1620737932125312000000 108 

1, 1, 2,A, 5 1312797725021502720000 120 

1, 1, 1, 10 2800635146712539136000 150 

1, 2, 5, 5 1680381088027523481600 150 
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Cycle Decomposition Permutations Solutions 

1, 3, 3, 6 1440655939666944000000 162 

1, 2, 2, 3, 5 583465655565112320000 180 

3, 3, 7 2116882197061632000000 189 

2, 2, 3, 6 810368966062656000000 216 

1, 2,3,3,4 405184483031328000000 216 

3, 5, 5 1493672078246687539200 255 

4,4, 5 1312797725021502720000 240 

2, 2, 4, 5 656398862510751360000 240 

1, 1, 1, 2, 8 546999052092292800000 240 

1, 1, 2, 2, 7 446529838442688000000 252 

2,3,3, 5 518636138280099840000 270 

2,3,4,4 455832543410244000000 288 

1, 1: 1, 3, 7 317532329559244800000 315 

1, 1, 1, 4, 6 243110689818796800000 360 

1, 1, 3, 3, 5 172878712760033280000 405 

1, 1, 3, 4, 4 151944181136748000000 432 

1, 1, 2, 2, 3, 4 75972090568374000000 432 

1, 1, 1, 2, 3, 5 77795420742014976000 450 

1, 2, 2,J, 4 85468601889420750000 576 

1, 2, 2, 2, 6 60777672454699200000 720 

2, 2, 2, 7 89305967688537600000 840 
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Cycle Decomposition Permutations Solutions 

1, 1, 1, 1, 9 61742397414297600000 945 

1, 4, 4, 4 68374881511536600000 960 

1, 1, 1, 2, 2, 6 20259224151566400000 1080 

1, 1, 1, 5, 5 37341801956167188480 1125 

2, 2, 2, 3, 4 15194418113674800000 1440 

1, 1, 1, 2, 4, 4 11395813585256100000 1440 

1, 1, 1, 1, 2, 7 12757995384076800000 1470 

3, 3, 3, 4 24010932327782400000 1620 

1, 1, 1, 3, 3, 4 9004099622918400000 1620 

1, 1, 2, 2, 2, 5 7293320694563904000 1800 

1, 1, 1, 1, 3, 6 7717799676787200000 1890 

1, 1, 1, 1, 4, 5 6251417738197632000 2100 

1, 1, 2, 3, 3, 3 4001822054630400000 2430 

1, 1, 1, ,1, 2, 3, 4 2170631159096400000 2520 

1, 2, 2, 2, 3, 3 2251024905729600000 3240 

2, 2, 3, 3, 3 2000911027315200000 4860 

1, 1, 1, 2, 2, 3, 3 750341635243200000 4860 

1, 1, 1, 1, 2, 2, 5 520951478183136000 6300 

1, 2, 2, 2, 2, 4 610490013495862500 6720 

1, 1, 1, 2, 2, 2, 4 379860452841870000 7200 

1, 1, 1, 1, 1, 8 868252463638560000 7560 
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Cycle Decomposition Permutations Solutions 

2, 2, 2, 2, 5 781427217274704000 8400 

1, 3, 3: 3, 3 762251819929600000 8505 

2, 2, 2, 2, 2, 3 6029530997490000 90720 

1, 1, 1, 1, 1, 1, 7 8591242682880000 72765 

1, 1, 1, 1, 1, 2, 6 192944991919680000 11340 

1, 1, 1, 1, 1, 3, 5 123484794828595200 14175 

1, 1, 1, 1, 1, 4, 4 18088592992470000 45360 

1, 1, 1, l, 3, 3, 3 19056295498240000 42525 

1, 1, 2, 2, 2, 2, 3 90442964962350000 15120 

1, 2, 2, 2, 2, 2, 2 102776096548125 665280 

1, 1, 1, 1, 1, 1, 1, 6 64250746560000 810810 

1, 1, 1~ 1, l, 1, 2, 5 2104854457305600 103950 

1, 1, l, 1, 1, 1, 3, 4 1461704484240000 124740 

1, 1, 1, 1, 1, 2, 2, 4 9044296496235000 45360 

1, 1, 1, 1, l, 2, 3, 3 7146110811840000 51030 

1, 1, 1, 1, 2, 2, 2, 3 12059061994980000 37800 

1, 1, 1, 2, 2, 2, 2, 2 150738274937250 453600 

1, 1, 1, 1, 1, 1, 1, 1, 5 385504479360 10135125 

1, 1, 1, 1, 1, 1, 1, 2, 4 18070522470000 1081080 

1, 1, 1, 1, 1, 1, 1, 3, 3 2379657280000 3648645 

1, 1, 1, 1, 1, 1, 2, 2, 3 121808707020000 374220 
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Cycle Decomposition Permutations Solutions 

1, 1, 1, 1, 1, 2, 2, 2, 2 10767019638375 1587600 

1, 1, 1, 1, 1, 1, 1, 1, 1, 4 1968466500 137837700 

1, 1, 1, 1, 1, 1, 1, 1, 2, 3 133855722000 12162150 

1, 1, 1, 1, 1, 1, 1, 2, 2, 2 100391791500 16216200 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3 9209200 1964187225 

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2 164038875 413513100 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2 44850 27498621150 

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 7905853580625 
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Table A.2: Percent of Solution Numbers Within Given Bounds for XY = o: 

No. of Solutions No. Less Than Percent Less Than 

50 2813739736174304515200000 96.10845455 

100 2894931801899428949280000 98.88171886 

200 2919453261040612010937600 99. 71929439 

1000 2927504583673253964802800 99.99430213 

2000 2927649559078766757995280 99.99925401 

10000 2927670908460732334159780 99.99998323 

Table A.3: A Set of Message Keys 

AAT OJS JTZ CZL ROV KBB 
AHY OHU KIC YWY RPS KGO 
AHY OHU KTR YZH RPS KGO 
AUQ OQZ KTR YZH RQM KNK 
ASZ OLO LEA ZXN SGM TVK 
BKX VED LFB ZRX SVR TIH 
CFS MTO LFE ZTF sxo TDE 
CXP MDG LNI ZAR TGS JVO 
DJU GVP LUC ZQY THG JHT 
DUI GQR MPM SGK TLN JKA 
ECS HYO ONA QAN TLW JKI 
ETH HZW OPS QGO TMJ JOQ 
FHV BIW OSM QSK TOQ JBZ 
FVI BIR OXQ QDZ TOW JBI 
GVP DGB PDN WRA UOD FBC 
GZK DLM FIL WWJ WAL PJJ 
HVM EIK QDR ARH WWD FCC 
IVP IIG QYL AUJ XRQ UMZ 
JHD CHC RHO KHE ZHR LHH 
JSF CSP RHO KHE zws LCO 
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Table A.4: Percent of Solution Numbers Within Given Bounds for X ax-1 = /3 

No. of Solutions No. Less Than I Percent Less Than 

50 57213885045335786127360000 14.18673356 

100 87168883973322306355200000 21.61436390 

150 128081028367639780392960000 31. 75892394 

200 162158235504145766645760000 40.20869548 

286 201337467667480261877760000 49.92356326 

500 252872183691157601894400000 62. 70209218 

750· 292002335822630397468672000 72.404 79008 

1000 317150564622134895783936000 78.64053549 

2400 363358319973141502872576000 90.09819325 
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Figure B.l: The Enigma Machine 

R L M N H 

Rotors: Reflector Rotor 3 Rotor 2 Rotor 1 Entry Drum 

QWERTZUIO 
ASDFGHJK 

P Y X C V B N M L 
Lampboard 

QWERTZUIO 
A s· D F G H J K 

P Y X C V B N M L 
Keyboard 

Q W~R T Z U I 0 
A S D F G H J K;-,;,----

p Y X CV B N1M L 
Plugboard (S) 
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Figure B.2: A Rotor 
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Figure B.3: Inside the Reflector 
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